eENCNR
oL

TOTAL OF 1v PAG

MAY BE XERC(

(Without Author’s Permission)

MOHD. ROKONUZZAMAN

661311

g TOR NFLD, ST

oot P

A

4, S

G OniAL pWHHO
NEWFOUN

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and

print margins, and improper alignment
can adversely affect reproduction.

lnmmammmwﬁ@mumlawﬂmmwa\d
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawil charts) are by
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white photographic
prints are available for any or il ing in this copy for
an additional charge. Contact UMI directly to order.

Bell & Howell Information and
300 North Zeeb Road, Ann Arbor, Mi 48106-1346USA

800-521-0800

[L |

National Library Bibliothéque nationale
of Canada du Canada

uisiti d uisitions et
mmgm:h‘fca&mus sy bibliographiques
s ON KiA 0N S ON K1 ara
Canada Canada
[p—
O e N etbence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant 4 la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-42486-3

Canadi

Memorial

University of Newfoundland .

This is to authorize the Dean of Graduate Studies to deposit two copies of my thesis/repert-entitied

2ISCRETE EV I _DFUELOPMENT FRAMEwORK FOR HIGLN

LELIAMLE ENSQR FULSH X< TEA
in the University Library, on the following conditions. | understand that | may choose only ONE of
the Options here listed, and may not afterwards apply for any additional restriction. | further
understand that the University will not grant any restriction on the publication of thesis/seport
stracts.
(After reading the explanatory notes at the foot of this form, delete TWO of (a), (b) and (c},
whichever are inapplicable.)

The conditions of deposit are:
(a) that two copies are to be made available to users at the discretion of their custodians,
OR

09 that access to, .and quotation from, this thesis/report is to be granted only with my written
permission for a period of one year from the date on which the thesis/report, after the approval
of the award of a degree, is entrusted to the care of the University, namely,
19 . after which time the two copies are to be made available to users at the discretion of
their custodians,

OR

0 that access to, and quotation from, this thesis/report is to be granted only with my written
permission foraperiodof _________ years from the date on which the thesis/report,
after approval for the award of a degree, is entrusted to the care of the University: namely,
o 19__; after which time two copies are to be made available to

users at the discretion of their custodians.

Date__ 08 ~02- 79 Signed B ANV -

/L@& Witnessed by M

Dean of Graduate Studies

NOTES

1. Restriction (b) will be granted on application, without reason given.
However, applications for restriction (c) must be accompanied with a detailed explanation, -
indicating why the restriction is thought to be necessary, and justifying the length of time
requested. Restrictions required on the grounds that the thesis is being prepared for publication,
or that patents are awaited, will not be permitted to exceed three years.
Restriction (c) can be permitted only by a Committee entrusted by the University with the task
of examining such applications, and will be granted only in exceptional circumstances.

2. Thesis writers are reminded that, if they have been engaged in contractual research, they may
have already agreed to restrict access to their thesis until the terms of the contract have been

fulfilled:

Discrete Event Development Framework for Highly
Reliable Sensor Fusion Systems

By
eMohd. Rokonuzzaman, B.Sc.Eng., M.Eng.

A THESIS SUBMITTED TO THE SCHOOL OF GRADUATE
STUDIES IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY

FACULTY OF ENGINEERING AND APPLIED SCIENCE
MEMORIAL UNIVERSITY OF NEWFOUNDLAND
APRIL, 1999

ST. JOHN'S NEWFOUNDLAND CANADA

Abstract

Intelligent Systems are being deployed increasingly in safety and mission critical

This thesis has ized a novel for pil

highly reliable sensor fusion systems (SFS) of multi-sensori intelligent systems for the
applications in the safety and mission critical environments. This methodology includes
both the avoidance of faults during the development phase and the tolerance of sensor
failures during the operation phase. Petri net based novel discrete event framework has
been proposed to model SFS as discrete event dynamic system. This intuitive
mathematical framework abstracts the SFS as a hierarchically finite state machine. The

intuitive graphical nature of this framework has the potential to enhance the

between the per and the client to capture sensing requirements

resulting in i of i errors. The ical attribute enables the
developer to analyze different attributes of the modeled SFS to ensure logical and
temporal correctness of the performance of the system. This proposed discrete event
framework has been verified by simulating the design of an example sensor fusion
system. The reasoning basis of the architecture of the underlying computing system from
this Petri net model of the SFS has also been developed to ensure the temporal
correctness during the operation phase. The use of redundancy to tolerate failure of
sensors has been experimentally verified. Overheads have been identified to incorporate
hardware fault-tolerance in this proposed SFS framework to tolerate sensor faults during
the operation phase. A novel scheme has been developed to manage these overheads in a
predictable manner. A fault-tree based novel scheme has been proposed to measure the
probability of failure of different levels of fusion due to the failure of different sensors. A
computationally simple scheme to detect transients present on the sensor data stream has
been proposed with extensive simulation results to enhance system performance in

operation phase. The loss of time sensitive data during the fault clearance intervals

the i of fault-tol in the SFS. A parallel sensing based
novel scheme has been proposed to restore sensor data lost during the fault clearance
intervals. The effectiveness of this proposed scheme has been experimentally verified by

restoring data lost during fault clearance intervals of a triple modular redundant optical sensor.

Acknowledgements

T would like to express my sincere gratitude to my thesis supervisor, Dr. Ray Gosine, for
his active supervision of this research work. It is through his patience, understanding and
advice that this work has been done. I would like to extend my gratitude to my thesis
supervising committee members, Dr. John Quaicoe and Dr. Charles Randell, for their

advice and guidance.

I am grateful to the members of my Ph.D. hensi inati i Dr. R.
Venkatesan and Dr. Michael Hinchey, for their time and constructive advice. I am

indebted to Dr. J. J. Sharp for his care, patience, advice and understanding.

This research work was supported by the NSERC/Canadian Space Agency Partnership
Grant-“Sensor P and i ion for 1l " with Petro-

Canada Resources, Canpolar East Inc., and Atlantic Nuclear Services Ltd. I would like to
express my special thanks to the participating organizations, McGill University,
University of British Columbia, and C-CORE of Memorial University, of this research
project. Particular thanks go to Dr. Ray Gosine, the Principal Investigator for this
collaborative research project. My special thanks to the staff of C-CORE for providing

me pleasant and friendly working environment.
T would like to express my thanks to the staff of the Faculty of Engineering & Applied
Science and the School of Graduate Studies for the help extended to me during my

graduate studies at MUN.

Finally, I thank to my dear family for their patience, encouragement and blessings when I

have been thousands of miles away from them.

iii

L [[Seereees

Title Page i
Abstract i
Acknowledgements il
Table of Contents iv
List of Figures XV
List of Tables xxxi
List of Acronyms and Symbols xxxvi
1 Introduction 1
1.1 The Overview of Intelligent Systems 1
L.1.1 The Overview of Sensor Fusion 3

1.2 The Sensor Fusion Sub-System (SFS) 7
1.2.1 Importance of Discrete Event Requirements 9

1.2.2 Importance of Discrete Event Specifications 10

123 of ing about the DSPU i 11

1.2.4 Importance of Fault-Tolerance 12
1.2.4.1 Hardware Fault-tolerance 13

1.2.4.1.1 Reliability and Availability of the SFS 13

1.2.4.1.2 The Fault Tree of the SFS 14

1.2.4.1.3 Quantitative Fault Tree Analysis 14

1.2.4.2 Software Fault-tolerance 15

1.3 Literature Review 16

1.3.1 Sensor Fusion Sub-System and Petri nets 21

1.3.2 Discrete Event Requirements (DEVR) 22

1.3.3 Discrete Event Specifications (DEVS) 24
1.3.4 Reasoning About the DSPU Architecture (RDA) 25
1.3.5 Fault-Tolerance of the SFS 26
1.4 Approach of this Thesis Work 27
1.5 Objective of this Thesis 28
1.6 Overview of this Thesis 30
1.7 The Novelties of this Thesis 32

TheDiscrete Event Requirements Model of
the Sensor Fusion System 34

2.1 Introduction 34
2.1.1 Petri Net Model of Different Modes of Sensor Data

Integration 36

2.1.1.1 Cy itive or Sensor i 36

2.1.1.2 Complementary Sensor Integration 37

2.1.1.3 Independent Sensor Integration 37

2.1.1.4 Temporal Integration 37

2.2 Periodic Requirements 38

2.2.1 Task Directed Sensing 42

222C ication with the ing Sub-Syst 43

2.3 Aperiodic Requirements 43

2.4 Combination of Periodic and Aperiodic Requirements 44

2.5 Discrete Event Model of Requirements (DEVR) 45

2.5.1 The State Spaces of the DEVR Model 48
2.5.2 The Effect of Death of Conditions on the Performance of the

Sensor Fusion System (SFS) 48

2.6 Analysis of Discrete Event Requirements Model 49

2.6.1 Logical Correctness 50

2.6.2 Temporal Correctness 53

2.6.3 Reachability 56
2.6.4 Presence of Deadlock 56
2.6.5 Repetitiveness 57

2.7 The Utilization of the Operational Time 58
2.7.1 The Approaches to Increase the Value of the Busy Period 60
2.7.2 Incorporation of More Sensors 60

2.8 Chapter Summary 61

Discrete Event Specifications of the Sensor

Fusion System 62
3.1 Introduction 62
3.2 Discrete Event Dynamic Interaction of the Computing
Components in the SFS 64
3.2.1 Functional Specification of the System 64
3.2.1.1 Formation of Elementary Traces 66
3.2.1.2 Formation of Compound Traces 67

3.2.2 Verification of the Logical Correctness of the Functional

Specifications 70

3.3 Determination of the Temporal Specifications of the Computing
Components of the Sensor Fusion System 70
3.3.1 Sensitivity Analysis of the Components Execution Times 73
3.4 The Reliability Aspects of the Discrete Events Specification 74
3.5 The Modeling of Multi-node based Sensor Fusion System 75
3.6 Chapter Summary 75

vi

The Architecture of the Embedded Computing
System to Implement the DEVS Model of the SFS

4.1 Introduction
4.2 The ion Time of a Computing Ct
4.3 The ing Basis of the Archi of the C ing System

4.4 The Architecture of the Computing System to Execute Elementary
Traces

4.5 The Architecture of the Computing System to Execute Compound
Traces

4.6 [mplementation of Multiple DEVS Models on a Single Computing
System

4.7 of ion Times of C ing C on

Modemn Processors

4.8 Chapter Summary

Hardware Fault-Tolerance of the
Sensor Fusion System (SFS)

5.1 Introduction
5.2 The Fault-Tolerance of the Building Blocks
5.2.1 The Fault-Tolerance of the Sensors
5.2.1.1 Techniques of Fault-Tolerance of Sensors
5.2.1.1.1 Majority Voting Technique for Sensor’s Fault
Detection
5.2.1.1.2 Estimation Technique for Sensor’s Fault
Detection
5.2.1.2 The Effect of Sensor’s Fault-Tolerance on the
Performance of the System
5.2.1.2.1 The Effect of Voting Technique

76

76

76

78

79

80

81

82
84

85

87

87

88

88

90

91
92

5.2.1.2.2 The Effect of Estimation Technique 93

5.2.2 The Fault-Tolerance of the Analog Processors (APs) 94
5.2.3 The Fault-Tolerance of the Analog to Digital Converters
(ADCs) 94
5.2.4 Separation of faults of Sensors, APs and ADCs 95
5.2.5 The Fault-Tolerance of the Digital Processors (DPs) 96
5.2.5.1 The Effect of Digital Processor’s Fault-Tolerance on
the Performance of the System 97
5.2.5.1.1 The Effect of Voting Technique 97
5.2.5.1.2 The Effect of Estimation 97
5.2.6 The Fault-Tolerance of the Memory Module (MD) and the
digital /O 98

5.3 The measure of the Dependence of Different Levels of Fusion on the
Reliability of Sensors 99

5.3.1 The Fault Trees and Reliability Profiles of the Example Sensor
Fusion System at Data Fusion Level 100

5.3.2 The Fault Trees and Reliability Profiles of the Example Sensor
Fusion System at Feature Fusion Level 100

5.3.3 The Fault Trees and Reliability Profiles of the Example Sensor
Fusion System at Decision Fusion Level 101

5.4 Chapter Summary 101

The Detection of Sensor’s Faults
Through Estimation 102

6.1 Introduction 102
6.2 The Detection of Transient Faults Using Local

Statistics of Sensor Data 104
6.3 The Statistical Characteristics of The Test Signals 105
6.4 The Analysis of The Signature of The Transient Faults on

The Test Signals 106
6.5 The Effect of the Transient Faults at Different Locations
on The Local Statistics of The Sensor Signals 107
6.6 The Effect of Window Size on Local Statistics at
Transient Fault on Test Signals 108
6.7 The Effect of Window Locations Relative to the
Position of The Transient 109
6.8 The Effect of Different Frequencies of Transient Faults
on the Local Statistics 109
6.9 The Effect of Noise Power on Detectability of Transient Faults 110
6.10 The Detection of Permanent Faults 110
6.11 Chapter Summary 1t
Restoration of Lost Sensor’s Data
During Fault-clearance Intervals 112
7.1 Introduction 112
7.2 A Unified Approach to Restore Lost Samples During
Fault-Clearance Intervals 114
7.3 Restoration in Fault-Tolerance with Dual Modular Redundancy 116
7.4 Restoration in Fault-Tolerance with Triple Modular Redundancy 118
7.4.1 Restoration Using Hardware Implementation of Voting
Algorithm with Triple Modular Redundancy 18
7.4.2 Restoration Using Software Implementation of Voting
Algorithm with Triple Redundancy 122
7.5 Generalized Fault-Tolerance Scheme 123
7.6 Chapter Summary 125

8 Conclusions and Recommendations for
Future Work 126
8.1 Conclusions 126
8.2 Recommendations for Future Work 129
References: 131
A A Design Problem to Verify the Discrete Event Framework
to Engineer a Reliable Sensor Fusion System 138
A.1 Introduction 138
A.2 Problem Statement 138
B Verification of Discrete Event Requirements
Model of SFS by Simulation 142
B.1 Introduction 142
B.2 Execution Path and Time Analysis 150
B.2.1 Execution Paths From the First Sensor 150
B.2.2 Execution Paths From the Second Sensor 151
B.2.3 Execution Paths From the Third Sensor 152
B.2.4 Execution Paths From the Fourth Sensor 153
B.2.5 Execution Paths From the Fifth Sensor 154
B.2.6 Execution Paths From the Sixth Sensor 155
B.2.7 Execution Paths From the Seventh Sensor 156
B.3 Repetitiveness and Reachability Analysis 157
159

B.4 The Sensing Sequence Analysis

Verification of Discrete Event Specifications
Model of SFS by Simulation 163

C.1 Introduction 163

C.2 The Decomposition of Aperiodic Events in Terms of Interactions

Among the Computing Components 164
C.2.1 The Decomposition of the Aperiodic Event AE, 164
C.2.2 The Decomposition of the Aperiodic Event AE, 166
C.2.3 The Decomposition of the Aperiodic Event AE; 167
C.2.4 The Decomposition of the Aperiodic Event AE, 168
C.2.5 The Decomposition of the Aperiodic Event AE, 170
C.2.6 The Decomposition of the Aperiodic Event AE, 171
C.2.7 The Decomposition of the Aperiodic Event AE, 173
C.2.8 The Decomposition of the Aperiodic Event AE, 174
C.3 The Optimization of the ion Times of the C
Components 175
The Archi e of the E C i
System to Implement the Example SFS 180
D.1 Introduction 180

D.2 The Architecture of the Computing System While
Parallelizable Components are Executed in Sequential Fashion 180

D.2.1 Sensor Fusion System (SFS) Running on Dedicated Single

Computing Node 181
D.2.2 Multiple SFSs Running on Single Computing Node 181
D.3 The Architecture of the Computing System While Parallelizable
Components are Executed in Parallel Fashion 183
D.4 The in the ion Time of a C

Component on Pipelined Architecture 185

xi

D5 in ion Time of a C

C on Hi ical Memory

Improvement of the Reliability and the Required
Overhead for the Incorporation of Hardware
Fault-Tolerance in the Example SFS

E.1 Introduction
E.2 Hardware, Energy, and Space Overhead to Incorporate Fault-
Tolerance
E.2.1 Overhead to Incorporate Fault-Tolerance Using Voting
Technique Based Faults Detections
E.2.2 Overhead to Incorporate Fault-Tolerance Using Estimation
Technique Based Faults Detections
E.3 Reliability Profile of a Fault Tolerant Sensor System
Using Voting Based Fault Detection Scheme
E.4 Reliability Profile of a Fault Tolerant Sensor System Using
Estimation Based Fault Detection Scheme
E.5 The Comparisons of The Reliability Profiles of Different
Fault-Tolerant Sensor Systems and Single Sensor
E.6 The Reliability Profile of the Example Sensor Fusion
System at Different Levels of Fusion
E.6.1 The Reliability Profile of Terminal Event AE,
E.6.2 The Reliability Profile of Terminal Event AE;
E.6.3 The Reliability Profile of Terminal Event AE,
E.6.4 The Reliability Profile of the Data Fusion with Event AE,
E.6.5 The Reliability Profile of the Data Fusion with Event
AE, and AE,
E.6.6 The Reliability Profile of the Feature Fusion with
Event AE,

188

191

191

192

192

193

194

195

196

197

198

199

200

102

203

204

E.6.7 The Reliability Profile of the Data Fusion with Event AE, 205

E.7 Temporal Overhead to Manage Redundancy

Detection of Sensor Faults in Multisensory System
by Simulation

F.1 Introduction
F.2.1 The Characteristics of the First Test Signal
F.2.2 The Characteristics of the Second Test Signal
F.2.3 The Characteristics of the Third Test Signal
F.2.4 The Characteristics of the Fourth Test Signal
F.3 The Analysis of the Signature of Transient Faults
F.3.1 Signature of the Transient Fault on the First Signal
F.3.2 Signature of the Transient Fault on the Second Signal
F.3.3 Signature of the Transient Fault on the Third Test Signal
F.3.4 Signature of the Transient Fault on the Fourth
Test Signal
F.4.1 The Transient Fault at Different Locations on the
First Signal
F.4.2 Transient Fault at Various Locations on
the Second Signal
F.4.3 Transient Fault at Various Locations on
the Third Signal
F.4.4 Transient Fault at Various Locations on
the Fourth Signal
F.5.1 The Effect of Window Size on Local
Statistics at Transient Fault on the First Test Signal
F.5.2 The Effect of Window Size on Local Statistics
at Transient Fault on the Second Test Signal
F.5.3 The Effect of Window Size on Local Statistics

xiii

206

207

207
208
209
210
211
212
213
214
215

217

218

219

220

222

at Transient Fault on the Third Test Signal 223
F.5.4 The Effect of Window Size on Local Statistics at

Transient Fault on the Fourth Test Signal 224
F.6.1 The Effect of Window Locations on Local Statistics

at Transient Fault on the First Test Signal 225
F.6.2 The Effect of Window Locations on Local Statistics

at Transient Fault on the Second Test Signal 226
F.6.3 The Effect of Window Locations on Local Statistics

at Transient Fault on the Third Test Signal 227
F.6.4 The Effect of Window Locations on Local Statistics

at Transient Fault on the Fourth Test Signal 228

F.7.1 The Effect of Transient Faults of Different Frequencies

on the Local Statistics of the First Test Signal 229
F.7.2 The Effect of Transient Faults of Different Frequencies

on the Local Statistics of the Second Test Signal 230
F.7.3 The Effect of Transient Faults of Different Frequencies

on the Local Statistics of the Third Test Signal 231
F.7.4 The Effect of Transient Faults of Different Frequencies

on the Local Statistics of the Fourth Test Signal 232

Performance of a Fault Tolerant Optical

Sensor Using Triple Modular Redundancy 233
G.1 Introduction 233
G.2 Fault Tolerant Optical Sensor Using Triple Modular Redundancy 234
G.3 The Detection of Fault Clearnce Interval 236

G.4 Minimization of the Effects of the Dips Caused During
Fault Clearnce Intervals 237

- List of Figures

1 Introduction

Figure 1.1: Closed loop Petri net model of an Intelligent System. 1

Figure 1.2: The block diagram representation of an intelligent system
to data flow (without feedback signals) among different
sub-systems 2
Figure 1.3: A block diagram model of a sensor fusion system. 3
Figure 1.4: Data processing activities in a typical sensor fusion system. 4

Figure 1.5: The fusion process from the perspective of input/output

characteristics [7]. 4
Figure 1.6: A hi ion of data i ion steps [6]. S
Figure 1.7: High level block diagram of the sensor fusion sub-system. 7
Figure 1.8: Petri net model of periodic event generation. .
Figure 1.9: Petri net model of aperiodic event generation. 8
Figure 1.10: Petri net models of services of events through the dynamic

i among i 10
Figure 1.11: A model of services of events by the DSPU. 11
Figure 1.12: High level fault tree of an intelligent system. 13

Figure 1.13: The reliability model of the sensor fusion sub-system. 13

Figure 1.14: Fault tree of the sensor fusion sub-system. 14
Figure 1.15(a): The archil of and

sensor fusion [2]. 16
Figure 1.15(b): The architecture of the hybrid sensor fusion [2]. 17

Figure 1.16: A network structure based sensor fusion framework [16]. 17

Figure 1.17: An information flow graph based sensor fusion
architecture [17].

Figure 1.18: A self-improving multisensory fusion system
architecture [5].

Figure 1.19: Sensor-level tracking approach to combine

sensor data [18].

Figure 1.20: A generic pattern of multisensory integration

and fusion system [19].

TheDiscrete Event Requirements Model of
the Sensor Fusion System

Figure 2.1: Block diagram of completion of a task.
Figure 2.2: Petri net model of user’s typical requirements.
Figure 2.3: Types of non-clerical requirements errors[8].
Figure 2.4: Petri net model of competitive sensor integration.
Figure 2.5: Petri net model of complementary sensor integration.
Figure 2.6: Petri net model of independent sensor integration.
Figure 2.7: Petri net model of generation and service of periodic

events for data acquisition.
Figure 2.8: Timing diagram of the generation of periodic

events for three example sensors.
Figure 2.9: Petri net model of an aperiodic event.
Figure 2.10: The simplest sensor fusion system.
Figure 2.11: The discrete event requirements (DEVR)

model of a typical sensor fusion system.
Figure 2.12: The discrete event requirement model

of an example sensor fusion system.

Figure 2.13: The flow chart of the algorithm for the

xvi

20

38

39

43

45

46

47

generation of periodic events. 50
Figure 2.14.: The distribution of busy and idle periods
in the DEVR model 58

Discrete Event Specifications of the Sensor
Fusion System

Figure 3.1: Hierarchical decomposition of a discrete event system. 62
Figure 3.2: Petri net model of a discrete requirement. 63
Figure 3.3: Flow of at and temporal il i 63
Figure 3.4: of yand traces. 65
Figure 3.5. Formation of elementary segments. 68
Figure 3.6: Petri net model of an example system. 70
Figure 3.7: Abstraction of SFS as a collection of parallel traces. 71

Architecture of the Embedded Computing
System to Implement the DEVS model of the SFS

Figure 4.1: A model of embedded events service system. 78
Figure 4.2: The exponential growth of the waiting time with

the increase of the arrival rate. 78
Figure 4.3: Multiple nodes based architecture of the embedded

computing system to execute compound traces. 80
Figure 4.4: Interlacing of two DEVR models to increase the

factor of the system. 81

Hardware Fault-Tolerance of the
Sensor Fusion System (SFS)

Figure 5.1: The reliability profile of redundant parallel system. 85

Figure 5.2: Model of a sensor as an analog signal source.
Figure 5.3: Redundant sensors to detect the states of sensors.
Figure 5.4: Two redundant sensors can detect only the
presence of faults.
Figure 5.5: Distribution of time for different tasks between
two successive periodic events.
Figure 5.6: Loss of data during fault clearance period.
Figure 5.7: Generation of f{z) from physical signal.
Figure 5.8: The generation of event for detection of
faults in sensor, AP and ADC.
Figure 5.9 : The generation of events for detection of
fault in sensor, or AP, or ADC.

Figure 5.10: The fault tree of a typical event.

The Detection of Sensor Faults
Using Local Statistics

Figure 6.1: The distribution of the ratio of the peaks of

local variances of the test signals at transient fault.
Figure 6.2: The variations of the ratios of the peaks during transient
with the peaks during the rest of the signal at different

window sizes for the fourth test signal.

Figure 6.3: The maximum variation of the ratio of the peaks
with the variation of the window locations
relative to the transient.

Figure 6.4: Variation of ratio of local variances with the
signal to noise ratio(SNR).

xviii

87

88

91

92

94

95

95
99

106

108

109

110

Restoration of Lost Sensor’s Data During
Fault-clearance Intervals

Figure 7.1: An architecture of fault tolerant sensor
fusion system [80].

Figure 7.2: A general scheme of fault-tolerant sensing
using hardware redundancy.

Figure 7.3: The acquisition of data related to same physical signal
using two parallel channels.

Figure 7.4: An example of recovery of samples lost during
fault-clearance intervals.

Figure 7.5: The flow diagram of the fault-clearance process.

Figure 7.6: R ion of data during faul in dual
redundant fault-tolerant sensing.

Figure 7.7: A simplified representation of voting module.

Figure 7.8: The selection of module with the output from the voting
module.

Figure 7.9: The restoration of lost samples in hardware
implementation of the voting algorithm.

Figure 7.10: The comparator and majority voting modules in the
voting module.

Figure 7.11: Hardware realization of the voting logic.

Figure 7.12: Fault-clearance time consists of three components.

Figure 7.13: Restoration of signal in triple modular redundancy with

software implementation of voting algorithm.

Figure 7.14: The structure of crossbar switch to connect the modules.

Figure 7.15: A i i of fault-tol: t sensing to

achieve different level of redundancy.

112

113

114

115
117

117
118

118

119

119

120

121

122

124

Verification of Discrete Event Requirements
Model of SFS by Simulation

Figure B.1: The Petri net model of the specified example
sensor fusion system.

Figure B.2: The branching and parallel operations in the Petri
net model of the SFS.

Figure B.3. The execution paths from the periodic process PE, to
serve the sensing of the 1st sensor.

Figure B.4 : The execution paths from the periodic process PE,
to serve sensing of the second sensor.

Figure B.5: The execution paths from the periodic process
PE, to serve sensing of the third sensor.

Figure B.6: The execution paths from the periodic process
PE, to serve sensing of the fourth sensor.

Figure B.8: The execution paths from the periodic process
PE; to serve sensing of the fifth sensor.

Figure B.9: The execution paths from the periodic process
PE, to serve sensing of the sixth sensor.

Figure B.10 : The execution paths from the periodic process
PE, to serve sensing of the seventh sensor.

Figure B.11: Simplified Petri net model of the example SFS to

the problem of veri; ion of repetitivent
Figure B.12. Distribution of sensing time of
different sensors.
Figure B.13: The sensing sequence using user's initial

specification.

Figure B.14: The sensing times during the second phase of sensing.

142

150

150

151

152

153

154

155

156

158

159

160
162

Verification of Discrete Event Specifications
Model of SFS by Simulation

Figure C.1: The decomposition of the aperiodic event AE,.
Figure C.2: The decomposition of the aperiodic event AE,.
Figure C.3: The decomposition of the aperiodic event AE,.
Figure C.4: The decomposition of the aperiodic event AE,
Figure C.5: The decomposition of the aperiodic event AE;.
Figure C.6: The decomposition of the aperiodic event AE,.
Figure C.7: The decomposition of the aperiodic event AE,.
Figure C.8: The decomposition of the aperiodic event AE;.
Figure C.9: Flow chart for optimization.

Figure C.10: The ratio of the total reduction of the service

times of all aperiodic events to the decrement of the

time of the critical

The Archi e of the Embedded Ct i
System to Implement the Example SFS

Figure D.1: Single node based computing system.

Figure D.2: Multiple nodes serve requests from the same
queue resulting in reduced waiting time.

Figure D.3: The three parallel independent computing nodes
to execute parallelizable components parallely.

Figure D.4: The operating states of different nodes to serve
the aperiodic event AE,.

Figure D.5: The eight-stage pipeline structure of the R4000
uses pipelined instruction and data caches [42].

Figure D.6: The of the ion time of an i

instructions already in execution in the pipeline [42].

xxi

166
167
168
170
171
173
174
177

179

181

182

183

184

185

on the
186

Figure D.7 The variations of the MIPS R4000's pipelined CPI

of SPEC92 benchmarks. 187
Figure D.8 A four-level memory architecture. 188
Figure D.9:Data transfer between adjacent levels. 188

Improvement of the Reliability and the Required
Overhead for the Incorporation of Hardware
Fault-Tolerance in the Example SFS

Figure E.1:

Figure E.2:
Figure E.3:

Figure E.4:

Figure E.5:

Figure E.6:

Figure E.7:

Figure E.8:

The hardware configuration of the example
sensor fusion system. 191

Triple modular i ionof sensor 1. 192

Estimation technique based triple modular

redundant sensor system. 193
State diagram using Markov's Model showing

possible state transitions for TMR system. 193
The comparison of the reliability of a TMR system

consisting of the three identical sensor modules with

the reliability of a single sensor. 194
The comparison of the reliability profile of

4-modular sensor system with those of TMR sensor

system and single sensor. 194

The ison of reliability profiles of fault-tols

sensor using voting technique based fault detection technique
with those of fault-tolerant sensor using estimation based fault

detection technique, and single sensor. 195

The ison of reliability profiles of fault-tolerant
sensor system having different levels of redundancy

using voting and estimation techniques. 196

Figure .E.9: The ratios of reliability profile of fault-tolerant
sensor system using estimation and voting techniques
for fault detection. 197
Figure E.10: Fault tree of AE, in relation to the failure of

the supporting sensors 1 and 2. 198
Figure E.11: The reliability profile of the aperiodic event AE, 198
Figure E12: The fault-tree of the event AE;. 199
Figure E.13: The reliability profile of the aperiodic event AE;. 199
Figure E.14: The fault-tree of the failure of aperiodic event AE,. 200
Figure E.15: The reliability profile of the aperiodic event AE;. 201
Fig.E.16: The fault-tree of event AE,. 202
Figure E.17: The reliability profile of the aperiodic event AE,. 202
Figure E.18: The fault-tree of the event AE,. 203
Figure E.19: The reliability profile of the aperiodic event AE,. 203
Figure E.20: The fault-tree of the aperiodic event AE,. 204
Figure E.21: The reliability profile of the aperiodic event AE,. 204
Figure A.E.22: The fault-tree of the aperiodic event AE,. 205
Figure E.23: The reliability profile of the aperiodic event AE,. 205

Figure E.24: Sequence of tasks to acquire fault-free data while

estimation technique is used to detect faulty sensors. 206

Detection of Sensor Faults in
Multisensory System by Simulation

Figure F.1: The first physical signal. 208
Figure F.2: The first sensor signal with noise. 208
Figure F.3: The local means of the first signal. 208
Figure F.4: The local variances of the signal. 208
Figure F.5: The second physical signal. 209

xxiii

Figure F.6: The second sensor signal with noise. 209

Figure F.7: The variations of the local means. 209
Figure F.8: The variations of local variances. 209
Figure F.9: The third physical signal. 210
Figure F.10: The third sensor signal with noise. 210
Figure F.11: The local means of the sensor signal. 210
Figure F.12: The local variances of the signal. 210
Figure F.13: The fourth physical signal. 211
Figure F.14: The fourth sensor signal with noise. 211
Figure F.15: The local mean profile. 211
Figure F.16: The local variance profile. 211
Figure F.17(a): A transient signal as damped sinusoid. 212
Figure F.17(b): A sinusoid corrupted with the transient. 212
Figure F.18: The first physical signal. 213

Figure F.19: The first sensor signal corrupted with transient fault. 213
Figure F.20: The local means of the corrupted sensor signal at

transient fault. 213
Figure 21: The local variances of the corrupted sensor signal

at transient fault. 213

Figure F.22: The second physical signal. 214
Figure F.23: The second sensor signal superimposed with

transient noise. 214
Figure F.24: The local mean of the sensor signal at transient fault. 214
Figure F.25: The local variances of the sensor signal at transient fault. 214
Figure F.26: The third physical test signal. 215
Figure F.27: The third sensor signal corrupted with transient noise. 215
Figure F.28: The local mean profile of the third sensor signal

at transient fault. 215
Figure F.29: The local variance profile of the third sensor

signal at transient fault. 215

Figure F.30:
Figure F.31:

Figure F.32:
Figure F.33:
Figure F.34:
Figure F.35:
Figure F.36:
Figure F.37:
Figure F.38:

Figure F.39:

Figure F.40:
Figure F.41:

Figure F.42:

Figure F.43:

Figure F.44:

Figure F.45:

Figure F.46:
Figure F.47:

The fourth physical test signal.

The fourth test sensor signal corrupted with
transient noise.

The local mean profile of the fourth test signal

at transient fault.

The local variance profile of the fourth test signal
at transient fault.

The transient fault at the origin.

The variances for the fault at origin.

The fault at 18 ms from the origin.

The variances for fault at 18 ms.

The ratios of the peaks of local means at transient
fault with those at no fault.

The ratios of the peaks of local variances at

transient fault with those at no fault.

The transient fault at the origin on the second test signal.

The variance profile of the second test signal while
transient is at the origin.

The transient fault at 18 ms from the origin

on second test signal.

The variance profile of the second test signal
while transient is at 18 ms from the origin.

The ratios of the peaks of local means at

transient fault with those at no fault.

The ratios of the peaks of local variances at

transient fault with those at no fault.

The transient fault at the origin on the third test signal.

The variance profile of the third test signal while

transient is at the origin.

216

216

216

217

217

217

217

217

217
218

218

218

218

218
219

219

Figure F.48: The transient fault at 18 ms from the origin on
third test signal.

Figure F.49: The variance profile of the third test signal while
transient is at 18 ms from the origin.

Figure F.50: The ratios of the peaks of local means at
transient fault with those at no fault.

Figure F.51: The ratios of the peaks of local variances at

transient fault with those at no fault.

Figure F.52: The transient fault at the origin on the fourth test signal.

Figure F.53: The variance profile of the fourth test signal while
transient is at the origin.
Figure F.54: The transient fault at 18 ms from the origin on
the fourth test signal.
Figure F.55: The variance profile of the fourth test signal
while transient is at 18 ms from the origin.
Figure F.56: The ratios of the peaks of local means at transient
fault with those at no fault.
Figure F.57: The ratios of the peaks of local variances at
transient fault with those at no fault.
Fig. F.58: The transient fault on the First signal.
Fig. F.59: The variances at window width .4ms.
Fig. F.60: The variances at window width 3ms.
Fig. F.61: The variances at window width 10ms.
Fig. F.62: The ratios of the peaks of the local means at
different window widths.
Fig. F.63: The ratios of the peaks of the local variances at
different window widths.

Fig. F.64: The transient fault on the 2nd signal.
Fig. F.65: The variances at window width .4ms.

Fig. F.66: The variances at window width 3ms.

xxvi

219

219

219
220

220

220

220

220

220

221

221

221

221

221

221

222
222

222

Fig. F.67: The variances at window width 10ms.
Fig. F.68: The ratios of the peaks of the local means at
different window widths.
Fig. F.69: The ratios of the peaks of the local variances at
different window widths.
Fig. F.70: The transient fault on the 3rd signal.
Fig. F.71: The variances at window width .4ms.
Fig. F.72: The variances at window width 3ms.
Fig. F.73: The variances at window width 10ms.
Fig. F.74: The ratios of the peaks of the local means at
different window widths.
Fig. F.75: The ratios of the peaks of the local variances at
different window widths.
Fig. F.76: The transient fault on the 4th signal.
Fig. F.77: The variances at window width .4ms.
Fig. F.78: The variances at window width 3ms.
Fig. F.79: The variances at window width 10ms.
Fig. F.80: The ratios of the peaks of the local means at
different window widths.
Fig. F.81: The ratios of the peaks of the local variances at
different window widths.
Fig. F.82: The transient fault on the 1st signal.
Fig. F.83: The variances at window displacement of .02 ms
from the origin.
Fig. F.84: The variances at window displacement of .66 ms
from the origin.
Fig. F.85: The variances at window displacement of 1.2 ms
from the origin.
Fig. F.86: The ratios of the peaks of the local means at different

window displacements.

xxvii

222

222

222

223

223

223

223

223

223

224

224

224

224

224

224

225

225

225

225

Fig. F.87: The ratios of the peaks of the local variances at
different window displacements.
Fig. F.88: The transient fault on the 2nd signal.
Fig. F.89: The variances at window displacement of .02 ms
from the origin.
Fig. F.90: The variances at window displacement of .66 ms
from the origin.
Fig. F.91: The variances at window displacement of 1.2 ms
from the origin.
Fig. F.92: The ratios of the peaks of the local means at
different window displacements.
Fig. F.93: The ratios of the peaks of the local variances at
different window displacements.
Fig. F.94: The transient fault on the 3rd signal.
Fig. F.95: The variances at window displacement of .02 ms
from the origin.
Fig. F.96: The variances at window displacement of .66 ms
from the origin.
Fig. F.97: The variances at window displacement of 1.2 ms
from the origin.
Fig. F.98: The ratios of the peaks of the local means at
different window displacements.
Fig. F.99: The ratios of the peaks of the local variances at
different window displacements.
Fig. F.100: The transient fault on the 4th signal.
Fig. F.101: The variances at window displacement of .02 ms
from the origin.
Fig. F.102: The variances at window displacement of .66 ms
from the origin.

Fig. F.103: The variances at window displacement of 1.2 ms

xXxviii

225
226

226

226

226

226

227

227

227
228

228

228

from the origin.
Fig. F.104: The ratios of the peaks of the local means at
different window displacements.
Fig. F.105: The ratios of the peaks of the local variances
at different window displacements.
Fig. F.106: The 500 Hz transient on 1st signal.
Fig. 107: The variances at 500 Hz transient on Ist test signal.
Fig. 108: The variances at 5 KHz transient.
Fig. 109: The variances at 10 KHz transient.
Fig. F.110: The ratios of the peaks of the local means at
different transient frequencies.
Fig. F.111: The ratios of the peaks of the local variances at different
transient frequencies.
Fig. F.112: The 500 Hz transient on 1st signal.
Fig. 113: The variances at 500 Hz transient on Ist test signal.
Fig. 114: The variances at 5 KHz transient.
Fig. 115: The variances at 10 KHz transient.
Fig. F.116: The ratios of the peaks of the local means at different
transient frequencies.
Fig. F.117: The ratios of the peaks of the local variances at different
transient frequencies.
Fig. F.118: The 500 Hz transient on 3rd signal.
Fig. 119: The variances at 500 Hz transient on 3rd test signal.
Fig. 120: The variances at 5 KHz transient.
Fig. 121: The variances at 10 KHz transient.
Fig. F.122: The ratios of the peaks of the local means
at different transient frequencies.
Fig. F.123: The ratios of the peaks of the local variances at different
transient frequencies.
Fig. F.124: The 500 Hz transient on 4th signal.

XXX

228

228
229
229
229
229

229
230
230
230
230

230

230
231
231
231
231

231
232

Fig. 125: The variances at 500 Hz transient. 232

Fig. 126: The variances at 5 KHz transient. 232
Fig. 127: The variances at 10 KHz transient. 232
Fig. F.128: The ratios of the peaks of the local means
at different transient frequencies. 232
Fig. F.129: The ratios of the peaks of the local variances at different
transient frequencies. 232
P erformance of a Fault Tolerant Optical

Sensor Using Triple Modular Redundancy

Figure G.1:

Figure G.2:

Figure G.3:

Figure G.4:

Figure G.5:

Figure G.6:

Figure G.7:

Figure G.8:

An optical sensor whose output voltage level

is function of illumination level. 233
An optical fault tolerant sensor using triple

modular redundancy. 235
The dips caused on the output signal from fault tolerant

sensor module during fault clearance intervals. 236
The detection of fault clearance instances by monitoring the

changes of the control signal sent to the multiplexer by the

microcontroller board. 237
The data stream from the first sensor. 238
The data stream from the second the sensor. 238

The processed output signal from a fault tolerant sensor
module after removal of the first dip. 239
The processed output signal of a fault tolerant

sensor module with reduced effects for dips

caused during fault clearance intervals. 240

xxx

List of Tables

1 Introduction
Table 1.1: Potential applications of multisensory systems.
2 The Discrete Event Requirements
Model of the Sensor Fusion System

Table 2.1: The sensing sequence of an example sensor system

Table 2.2: The sensing sequence of an example sensor system

3 Discrete Event Specifications
of the Sensor Fusion System

Table 3.1: The possible firing sequences of the processes of an

example SFS as shown in Fig. 3.6

4 The Architecture of the Embedded Computing System
to Implement the DEVS Model of the SFS

5 Hardware Fault-Tolerance of the
Sensor Fusion System (SFS)

xxxi

40
41

71

The Detection of Sensor Faults Using Local Statistics

Table 6.1: The local means of test signals. 105
Table 6.2: The local variances of test signals. 105
Table 6.3: Bandwidth of the test signals. 105

Table 6.4: The statistics related to the signature of the
transient on test sensor signals. 106
Table 6.5: The variation of the maximum peaks of the sensor signals with the

occurrence of transient faults at different locations. 107

Restoration of Lost Sensor’s Data During Fault-clearance Intervals

Table 7.1 : Generation of outputs from the voting module in response

to inputs from the comparators. 120

A Design Problem to Verify the Discrete Event Framework to
Engineer a Reliable Sensor Fusion System

Table A.1: The phases and periods of sensing. 138
Table A.2: The life-times of the conditions. 139
Table A.3: The service times of the periodic processes. 139
Table A.4: The service times of aperiodic processes. 139
Table A.5: G ion of i number of itions by
periodic processes. 140
Table A.6: G ion of il number of itions by
aperiodic processes. 140
Table A.7: A ion of conditions by aperiodic processe: 141

xxxii

Verification of Discrete Event Requirements
Model of SFS by Simulation

Table B.1: Different levels of data integration in the example SFS.
Table B.2: The summary of the execution path analysis.

Table B.3: The summary of sensing time estimation.

Table B.4: The modified phases of the sensors.

Table B.S: The periods of the sensors.

Verification of Discrete Event Specifications Model of SFS
by Simulation

Table C.1: The i ion of a set of

Table C.2: The minimum service times of the aperiodic events and the
corresponding attainable service times.

Table C.3: The modified minimum service times of the aperiodic
events and the corresponding attainable service times.

Table C.4: The aperiodic events and the execution times of their
corresponding computing traces to serve them.

Table C.5: The aperiodic events and the corresponding computing
components.

Table C.6: Optimized execution times of the computing components.

Table C.7: The service times of the aperiodic events after optimizarion.

Table C.8: The selection of temporally critical component at different

interations.

xxxiii

143
157
159
161
161

163

175

176

176

177

178

178

179

The Archi eof the E Computing
System to Implement the Example SFS

Table D.1: The maximum total computation times to serve the aperiodic events

for the i of 180
Table D.2: The maximum total computation times to serve the aperiodic events

for the parallel ions of i 183
Table D.3: The rand of total pipelined CPI and the ibutions of the

four major sources of stalls are shown [42]. 186

Table D.4: The statistics of the variations of CPI of SPEC92 benchmarks. 187
Table D.5: Typical values of access times of different levels of memory. 188

Table D.6: The effect of data distribution on the memory access time. 190

Improvement of the Reliability and the Required Overhead for
the Incorporation of Hardware Fault-Tolerance in the
Example SFS

Detection of Sensor Faults in Multisensory System by Simulation

Table F.1: The i ions of the si i i 207
Table F.2: The statistics of the first test signal. 208
Table F.3: The ststistics of the second test signal. 209
Table F.4: The statistics of the third signal. 210
Table F.5: The statistics of the fourth signal. 211
Table F.6: The specification the test transient. 212
Table F.7: The statistics of the first test signal at transient fault. 213
Table F.8: The statistics of the second test signal at transient fault. 214
Table F.9: The statistics of the third test signal at transient fault. 215
Table F.10: The statistics of the fourth test signal at transient fault. 216

xxxiv

G

Performance of a Fault Tolerant Optical
Sensor Using Triple Modular Redundancy

Table G.1: The specifications of the optical sensor (photo cell)

233

Acronyms and Symbols:

The following lists of acronyms and symbols appear throughout the body of this
document. The acronyms are defined here in alphabetical order, and the symbols are

defined approximately in the order in which they appear in the text.

Acronyms Definitions
ADCs Analog to digital converters.
ADCU Analog to digital conversion unit.
APs Analog processors.

AS Action sub-system.

ASPU Analog signal processing unit.
DAT Data acquisition time.

DES Discrete event dynamic system.
DEVR Discrete event requirements.
DEVS Discrete event specifications.
DPs Digital processors.

DSPU Digital signal processing unit.
FT Fault tolerance.

/0 Input and output.

IS Intelligent system.

MMs Memory modules.

MTTF Mean time to failure

RB Recovery block.

RDA Reasoning about the DSPU architecture .
RS Reasoning sub-system.

SA Sensor array.

SFS Sensor fusion sub-system.
STAE Service time of aperiodic events.

xxxvi

Acronyms Definitions
TBPE Time between two successive periodic events.
TCAD Time for computation of the acquired data.
WT Waiting time.
Symbols Definitions
Chapter 1:
Prp Perception process.
Pry Reasoning process.
Prg Actuation process.
Tep Time window for perception.
Tey Time window for reasoning.
Teq Time window for actuation.
E An event.
Identification of an event.
t Time of occurrence of an event.
Te Service time of an event.
Pr The process to be executed fo serve an event.
PE; The ith periodic event.
AE; The ith aperiodic event.
Wq Waiting time in the queue.
As The failure event of SFS.
Ay The failure event of RS.
Ap The failure event of AS.
Rsa(t) Reliability of sensor array.
Raspul) Reliability of analog signal processing unit.
Radeu(®) Reliability of analog to digital conversion unit.
Rdspu®) Reliability of digital signal processing unit.

Symbols

Definitions

As() "Availability of sensor fusion system.
Asalt) Availability of sensors array.

Aaspu(®) Availability of the ASPU.
Aadeal) ‘Availability of the ADCU.
Adspu(t) Availability of DSPU.

P[Z] The probability of occurrence of terminal event Z
Chapter 2:

Sn The nth sensor.

S Set of sensors.

Pry The nth process.

Pe A place to hold conditions.

Pep The nth place to hold conditions.

Ts: The sensing period of the ik sensor.
min(ATs;) Maximum allowable service period for ith periodic

event of the ith sensor.

@; Sensing phase of the ith sensor.

of TLower limit of sensing phase of the ith sensor.

D Upper limit of sensing_phase of the iz/ sensor.

T The lower limit of the period of the itk sensor.

™ ‘The upper limit of the period of the ith sensor.

Gp The grain size of period.

gp The grain size of phase.

Vi The set of virtual sensors of the ith sensor.

Prc The set of preconditions.

Poc The set of post conditions.
PE;.Poc The post conditions of ith periodic event.
AE; Pre The preconditions of the jz/ aperiodic event.

Xxxviii

Symbols

Definitions

AE;Poc The postconditions of the ¢ aperiodic event.

Lpc; The life-time of the ith condition.

u The state of the DEVR model.

u The new state of DEVR model.

Csj The cycle number of the izh periodic event.

Tpij The execution time of the jt4 path driven by the ith

periodic event.
ajj The number of times the jth aperiodic event
executes in path /.

Bp; Maximum busy period to serve the ith sensor.
Bp() Total busy period during the operational time L.

U@ The degree of utilization of the operational period

Chapter 3:

Teg The execution time of a component at level ‘0.
Tni The execution time of the ith system at the nth level
Se Sequential trace

Sc Compound trace

cn The nth computing component

C Set of computing components

Se The trace vector.

P The position vector.

z The set of all integer numbers.

Pyj Position operator.

st Pick one trace from a set of traces.

po Runs more than one traces in parallel.

br Select one trace from a set of traces to branch.
Sgej An elementary segment.

Sgei

A compound segment.

St; The execution time of the ith trace
At The incremental change of execution time of ith
computing component.
AT; The total change of execution.
G The cost related to the per unit change of computation
time for the ith component.
Sen; The sensitivity of the execution time of the ith
computing component.
Csenj The cost sensitivity of the ith component.
Chapter 4:
cc The computational complexity vector.
oeT The computational load for integer.
CCF The computational load for floating point.
cCc.D The computational load for control flow.
cCcM The i load for memory
CCH The system management overhead.
A The traffic arrival rate in the queue.
Teff The effective access time of a data unit.
Chapter 5:
p The probability of failure of nth parallel component.
() The physical signal.
s(t) The operating state of the sensor.
20 The electrical signal generated from the sensor.
M The message space.
D The decision space
dz) The decision rule

S0

The signal from the analog signal processor.

x1

Symbols Definitions

ap(t) The operating state of the analog signal processor.
Chapter 6:

8g(nT) Discrete sensor signal.

oK) The mean of the kzh segment.

2X(K) The variance of the k&zh segment.

Chapter 7

Sin] The segment of signal acquired in a session.
syn] The segment of signal acquired by channel 1.
Ssi[n] The segment of signal acquired by channel 2.
F; The ith fault clearance interval.
tij(k) The position of samples in the ith channel in the jth
fault clearance interval.
Tirla] The positions of undefined samples in the itk channel
in the rzh region.
5[n) The recovered signal.
te The comparison time taken by the comparator.
ts The selection time taken by the voter.

The switching time taken by the multiplexer.

Chapter 1

- Introduction

1.1 The Overview of Intelligent Systems

An intelligent system (IS) perceives, reasons, and acts through the dynamic interaction of
a set of discrete events within the specified time windows. A Petri net [1] based closed

loop system model as shown in the Fig.1.1 represents this scenario of dynamic

interaction. The processes Prp, Pry, and Prg
dis to i i and
: s 3 Ressoning 1 —
action must be executed within the time process Request
for action
windows Tep, Ter, and Teg respectively. This
Perecived
type of system is being used increasingly in information it
safety and mission critical operations in space,
e . - Percepion
medicine, manufacturing, mining, undersea, and il oo m;z“m!
harsh environments. Some of these operations O o |
Request for
require unsupervised, autonomous functions. | pecepion @ Buteeviny
High r ity andfail;safe e Figure 1.1: Closed loop Petri net
critical operational requirements of these systems. model of an Intelligent System.

To achieve these requirements, faults must be avoided during both the development and
operation phases of product life cycle. During the development phase, through the
practice of appropriate formal methods, it is possible partially to realize this objective. To
achieve these objectives in the operation phase, the system must have the ability to detect
the failure of the constituting components and, if possible, to replace the failed

component with a fault-free one. If there is no spare component for replacement, the

system should take necessary steps to avoid malfunctioning. The incorporation of these
attributes in the different phases of the product life cycle will result in a highly reliable
Is.

Perception by an IS is partially accomplished through fusing information from a set of
complementary and/or redundant sensors [2]. This fusion of sensor data is performed in
the Sensor Fusion Sub-system (SFS). The SFS acquires data from different sensors, fuses
them to extract necessary information and sends them to the Reasoning Sub-system (RS).
The RS sends i to the Action Sub-system (AS) [1]. The data flow

among different sub-systems in an intelligent system is shown in Fig. 1.2. The SFS is the
subject of this present work, which addresses the system engineering aspect of the
development of a highly reliable sensor fusion system. It is expected that the results of
this work will equip the developers with necessary quantitative reasoning tools to develop
reliable SFS. This scientific knowledge to engineer reliable SFS will partially realize the
broader i of i ing highly reliable i i systems for safety and

mission critical operations.

A setof Asetof
sensors actuators
Ar
Sensor fusion Reasoning Action
b-sy b o mibssyst
(SFS) (RS) (AS)

Figure 1.2 The block diagram representation of an intelligent system to show data flow
(without feedback signals) among different sub-systems.

1.1.1 The Overview of Sensor Fusion

Sensor fusion i integrate
information from multiple sensors in
1

order to make an inference about a

physical event, activity, or situation as

shown in Fig. 1.3. The basic objective Sensor fusion |12

unit

of multi-sensori data fusion is to

achieve improved accuracies and more

specific information than could be

achieved by the use of a single sensor
alone [2,3]. This refers to the Figure 1.3: A block diagram model of a sensor
synergistic use of the information fusion system;

provided by multiple sensory devices to assist in the accomplishment of a task by a
system. The data integration from senses - sights, sounds, smells, tastes, and touch - by
the ongoing cognitive process in the human's body is a common example of sensor fusion
[4]. The timeliness, accuracy, and precision are salient attributes of such fusion process.
A typical sensor fusion process consists of four activities: acquisition, processing,
integration, and analysis as shown in Fig. 1.4. In the process of multi-sensori data
integration, sensors can provide temporally related competitive, complementary, and

independent information [6].

From the perspective of input/output (I/O) characteristics, sensor fusion has been
described in a three-level hierarchy: data, feature, and decision. This three-level
hierarchical fusion is performed in five fusion processes as shown in Fig. 1.5 [7]. The
hierarchical fusion of data from eight data sources is shown in Fig. 1.6 [6]. In this
example system, data D, and D, are combined in the data integration step into feature F,,.
In the similar way, D,and D,, Dyand D,, and D, and Dj are integrated to produce features
F,,, Fy, and Fq respectively. In the next step, the features F,, and F;, are integrated into
decision De, . The integration of features Fs, and Fy, produces the decision De,. In the

Physical variable
Data acquisition
Data in-
New data Data input | feature out
fusion
Processing or
allignment
Feature
Scaled data Feature input
Integration
Decision
output
tabegrated data Feature input
Analysis .
Decision
Decision input ooy
Decision dekieiuh
Figure 1.4: Data processing Figure 1.5: The fusion process
activities in atypical sensor from the perspective of
fusion system. input/output characteristics [7].

final stage, the local decisions are combined to produce the final decision about the
sensing environment as De, ;. The number of data integration steps is a function of the

requirements of a particular scnsing fask. The example shown here is a generic

of different data i ion steps.
The sensor fusion process can be defined as the i ion of
in order to represent the information originally present in the environment. The
occurs due to i fission that takes place during sensing due to the

physical constraints of sensors (e.g., resolution, spatial coverage). In essence, this

reunification of information is the main objective of sensor fusion and an ideal sensor

fusion system will be able to
restore all information of -
interest in the environment (=] D
from the data sensed by the [P} | |
multi-sensori suite [7]. P
Daa |]
The problem environments B! fusion| Fse | |Dew
requiring the applications of
multi-sensori systems - " Fused
generate a large volume of (o] el s dgngf,‘fn
data with differing spatial _ e s
and temporal resolution, and o
often corrupted by noise and .
clutter. It is a formidable [D4] fusion|
challenge for an engineer to

design and develop a sensor Figure 1.6: A hierarchical representation of data
fusion system to integrate data integration steps [6].
from multiple sensors in such environments, especially given the real-time constraints

that are often imposed by the real-world needs [5]. The applications of sensor fusion are

some typical ication areas di in the literature are summarized in
Table 1.1 [2].

The goals of sensor fusion are different for different application environments. The fusion
objectives of a specific application typically include one or more of the following
functions:

* Detection of the presence of an object or environmental condition.

* Identification of an object or event.

e Classification of detected objects or events.

e Tracking of an object or continued monitoring of an event.

Algorithms to fuse data from different sensors use techniques from several disciplines:

signal processing, statistics, artificial i it pattern

psychology, and information theory. The rapid evolution of computer hardware
technology (e.g., microprocessors and memory), advanced sensors and new techniques
have led to new capabilities to combine data from multiple sensors for improved
inferences. Implementation of such systems requires an understanding of basic

data fusion ing models, and i This work focuses on

generic architectural aspect of SFS from the system engineering point of view.

Table 1.1: The potential applications of multi i systems from [2].
Specific | Inference sought | Primary obser- | Spatial coverage | Sensor platform
i by SFS vable data
Location, identifi- _|» Optical signals | Microscopic to tens |« Robot body
Robotics cation of obstacle, |e Acoustic signals [of feet about the
and objectstobe | EM radiation robot.
i « X-rays
Location, < Xrays < Laboratory
Medical identification of ® Acoustic signals
diagnostics |tumors, o Optical signals ~ |Human body
abnormalities, and |» MRI
disease. « Chemical data
Tdentification, < SAR, Optical o Salcllu:s
Environmental |location of natural e Seismic Hundreds of miles |» Aircs
monitoring and manmade ® EM radiation Gmund based
« Chemical .t
[Detection and « Optical signals [+ Ships,
Preventive characterization of |e EM radiation Microscopic | Aircraft
maintenance |system incipient |« Acoustic, vibration |inspection to |+ Ground-based
faults o Electric, magnetic [hundreds of feet |systems (e.g. factory|
o Xerays i
Detection, tracking,| © Satellites
identification of|* SAR Hundreds of nauticalle Ships, Aircraft
vessels, offshore|e Optical signals |miles « Submarines
surveillance [structures, biological| EM radiation « Ground-based
& chemical consti-|e Acoustic signals |Air/surface/sub-
tuents icebergs, seal rface
lice and fish stocks.
Detection of indica-|
tions of impending| + Hundreds of miles
Strategic [strategicactions. |e SAR to global o Satellites
warning and [Detection and|e Optical signals (strategic). o Aircrafts
defense | tracking of missiles, s EM radiation's « Ships
aircraft, ground-|e Acoustic signals | Miles (Tactical) | Ground-based
based targets.
and|» Optical signals i) y floor.
tic signals [feet
o Laser

1.2 The Sensor Fusion Sub-System (SFS)

An SFS can be developed either as a

cooperating multi-node based system or a

single node based system (centralized sensing

[

system of mobile robots). In this thesis, the

TEREESE I

focus is on the i i design

methodology of single node based SFS. The Figure 1.7: High level block diagram of
the sensor fusion sub-system

unique issues related to the design of multi-

node based sensor fusion systems are beyond the scope of this thesis. The block diagram
of a single node based SFS is shown in Fig.1.7. The SFS consists of four major hardware
components: sensor arrays (SA), analog signal processing unit (ASPU), Analog to digital
conversion unit (ADCU), and digital signal processing unit (DSPU).

It should be stated that SFS could be abstracted as a finite state machine; the occurrence
of an event (e.g., the detection of change of the environment) makes state transition of the
SFS. To show real time behavior, the system must serve the events by executing
appropriate processes within specified time windows. An event, E, can be defined as
four-tuple vector,

E={L1t Te Py} (L.1)
Here, I stands for identification, ¢ for the time of occurrence, Te for the event service
time, and Pr for the corresponding process. From temporal point of view, events are of

two types: periodic and aperiodic events.

Periodic events are generated at regular time intervals | Timer, generating
periodic events

and time is the forcing factor for their occurrence. For
example, the periodic checking of the status of a

Event speci-
fic process

process parameter (e.g., temperature, pressure) can

generate events PE; to run specific process Pr; at time Figure 1.8: Petri net model of
periodic event generation.

period Ar; and can be represented by the equation
PEj= {Ij, ty+). At,, Tej, Pri}; to, starting time (1.2)
=

A Petri net model of periodic event generation is shown as in Fig. 1.8. In this periodic
event generation scheme, it has been considered that event generation period is larger

than the event execution time.

events with the of

certain conditions fall into this category. These
conditions depend upon the dynamic behavior of the
Failure of a of the SFS (e.g,

sensor) also generates aperiodic event. A Petri net

model of aperiodic event generation is shown by

Figure 1.9: Petri net model of

Fig.1.9. In this model, process Pr, an aperiodic event cl$ J
aperiodic event generation.

specific process, will be executed when all of the input
conditions, Pc,...Pc,, are satisfied. The fulfillment of the ith condition (e.g., Pc;) will be
represented by placing a token in the ith place. Therefore, the occurrences of these events

are aperiodic in nature and can be represented by the following equation

AE={I,t, Te, Pr} (1.3)

The interaction of these events inside the SFS results in a discrete event dynamic system
(DES). These are real-time systems. The reliable operation of these systems requires that
their functions maintain logical and temporal correctness. This work covers the following

aspects of the development of the SFS:

1. Discrete event requirements (DEVR)
2
3. Reasoning about the DSPU architecture (RDA)
4. Fault-tolerance (FT)

iscrete event specifications (DEVS)

1.2.1 Importance of Discrete Event Requirements

The development of a SFS starts with the ion of the i This

is also the time at which the most costly errors are introduced in terms of being the last
and most difficult to find [8]. The i d which to the

behavioral specification of the system’s activities, describes the system’s discrete states

of operation and the events that cause the system to change states [9]. This must reflect
the required properties of the controlled physical process. To ensure high reliability, these
requirements must be explicit and form the basis for the design. Therefore, the developer

must be provided with mathematical tools to record such system properties [10]. These

tools enable verification of the and of the r

, these ical tools should be natural, simple, and intuitive,
so that the developer can use them as a communication media with the domain expert

(.., the client).

The job of the SFS is to serve the dynamic interaction of a set of discrete events (both
periodic and aperiodic) to satisfy the client’s sensing requirements. Therefore, the
requirements document of the SFS can be modeled as a DES. Petri nets are simple,
natural, graphical, and mathematical tools, which can be used to model this requirement

document as DES. Petri net models can be analyzed to verify the correctness and

of the modeled [1]. Petri nets, as a graphical tool, provide a
powerful communication medium between the developer, typically requirement
engineers, and the client. Due to the dynamic nature of Petri nets, SFS models can be
treated as a virtual machine. The analysis of these models will help develop better
insights into the client’s sensing requirements. This formalism in the early stage of the
development will help capture the system requirements more correctly. The subsequent

development phases of the SFS will use this DEVR as a reference.

1.2.2 Importance of Discrete Event Specifications (DEVS)

The DEVR, the virtual dynamic machine, describes the system specifications from the
user’s perspective [9]. The SFS serves the RS through the service of discrete events. In

this control paradigm, the RS expects to receive sensor responses to its requests within

definite time windows. Each B .
C,;={1,2,3,...n} is set of computing components.
event is served through the
dynamic interaction of a set of |g. o Crf Caiz Can2

computing componentsmovmas |5 OO0

processes as shown in Fig.1.10.

: o cy Catq Caz
The requirements document S;‘E’m
of E2
defines the time windows for the
service of the set of events, cLu Catq Catz Citz

Service

En=(1.23.n), where n s a loe, f-Of=O~-O-0O

positive integer. Therefore, the

Figure 1.10: Petri net models of services of events
through the dynamic interaction among serial
allowable execution times of the computing components.

relationship of Ep.Te with the

components can be defined by the following equations:

Ep.Te < (t]+t3+12) (1.4)
EjTe < (tj+tq4+t3) (L.5)
E3.Te < (1]+14+13413) (1.6)

Usually sensor fusion algorithms have different levels of computational complexity. The

selection of a particular level of ities of those i (sensor

fusion algorithms) may satisfy one of those equations, but may not satisfy others.
Therefore, there is a need to develop optimum algorithms within the DEVS formalism to
decompose the event service time (i.c., corresponding process service time) into the

constituent component execution times.

Using this model, simulation may be used to the i so that

the SFS satisfies the DEVS model of the sensor fusion system. This event level
specification will form the basis for the different phases of system development including
design, fabrication, integration, testing, and updating. A guideline of the optimum

component level research can be derived from this DEVS model.

1.2.3 Importance of Reasoning about the DSPU Architecture

The DEVS model of the SFS will be realized
through the seq of i i among

The scenario *| processing

unit

Events queue

can be abstracted as a queuing system shown in

Fig. 1.11. Now to serve an event properly, the Figure 1.11: A model of services of

following condition should be satisfied eventsby tha DSPU.

Wq+Ts < Te an

Here, Wq is the expected waiting time of an event in the queue; T is the execution time
of the corresponding process; Te is the event service time. Some of these events are
periodic and some of them are aperiodic. The waiting time is a function of arrival rate. To
handle this operation, it is necessary to have the DSPU with the following questions

answered:

e Computing nodes:
e Number

e Specification of each node

o Int d

* Stability in response time
Due to the random execution time delay of one or more components to serve
random events (e.g., events generated due to failure of components), the event

service time should not increase cumulatively.

1.2.4 Importance of Fault-Tolerance

Applications in safety and mission critical operations require highly reliable intelligent
systems, which are fault-tolerant. In this operational scenario, the quality of data and the
effective utilization of time are very critical factors. The following features can satisfy

these objectives:

* high reliability (high ility of proper function),

e high availability (relatively low down time associated with repairs),

* minimum time to recover from a detected fault,

extremely low failure rates for short time periods,

. high ility of ition to a safe state after occurrence of a

malfunction,

e easyand timely on-line diagnosis and repair of faults.

Faults in both hardware and software contribute to system failure. Therefore, in order to

develop a reliable SFS, both hardware and software fault-tolerance must be addressed.

1.

.1 Hardware Fault-tolerance

The fault tree in Fig.1.12 illustrates the impact of fault-
tolerance of the SFS on system reliability. Here Ay, 4, and
Ap are the terminal events of the SFS, RS, and AS
respectively. From a qualitative analysis of the fault tree, it
is evident that failure of any sub-system (e.g. failure of SFS,
A5=0) will result in system failure since terminal events

(sub-system failure) are connected by an “AND’ gate to the

failure of the system.

Figure 1.12: High level fault
tree of an intelligent system.

1.2.4.1.1 The Reliability and Availability of the SFS

In this preliminary model of the SFS there are no
s b e EE—E—
reliability model of the SFS is illustrated in

Fig.1.13. Here, Rsq(t). Raspult). Radcu(t) and
& salt). Raspul). Radeult) Figure 1.13: The reliability model of the

Rdspu(t) represent the reliabilities of SA, ASPU, sensor fusion sub-system

ADCU and DSPU respectively. The overall reliability of the SFS is given by Eq.(1.8).

R (1) = Ryg (1) Raspu(8)- Rage (£)- Rt (1) (1.8)
The availability, 4s(), of the SFS is calculated using Eq.(1.9).
A5(0) = Arg () Ausp () A 8)- A (5) (1.9)

Here, As(t). Asa(t). Aaspu(t) Aadeu(t). and Adspy(?) represent the availabilities of the
SFS, the sensor array, the analog signal processing unit, the analog to digital conversion

unit, and the digital signal processing unit respectively.

1.2.4.1.2 The Fault Tree of the SFS

The fault tree of the SFS depicts how component-level failures propagate through the
system to cause a system-level failure (system-level ired events). The
level failures are called the terminal events. In this work, failures of SA, ASPU, ADCU

and DSPU are considered terminal events. The fault tree of the SFS is shown in Fig. 1.14.
Here, 4sq, Aaspu. Aadcu and Adspy represent terminal events of the SA, ASPU, ADCU
and DSPU respectively. The terminal event, Z, represents the failure of the SFS.

1.2.4.1.3 Quantitative Fault Tree Analysis

In this reliability analysis of the SFS, the SFS is considered to be a nonrepairable system.

In this system, as all the events are statisti the ility of Z at time ¢

is given by the equation

PAZ] = PLAsa)Pl Ausp VPl Auden VL At] (1.10)

Here, P[4sa], Pl4aspul, Pl4adcul, and PlAdspu]

are the probabilities of Asq. Agspu Agdeus and -

Adspy respectively at time ¢.

This analysis of the fault tree reveals that the
failure of each component (probabilities of these
components need not to be equal) of the SFS is

equally responsible for the failure of the system. e @ @ @

Therefore, there is a need to enhance the

reliability of every unit to develop a reliable Figure 1.14: Fault tree of the sensor

sensor fusion system. fusion sub-system.

1.2.4.2 Software Fault-tolerance

The requirement of high reliability of the SFS can be dealt with in two fundamental ways:
Jault avoidance and fault tolerance [11]. The different fault tolerance techniques are
based on the premise that a complex system, no matter how carefully designed and
validated, will encounter unpreventable operational faults and will contain residual design
faults [11]. Due to success in hardware fault-tolerance using redundancy, some
researchers have proposed the use of similar approaches to address this problem (i.e.,
software fault tolerance) [12]. These are well known recovery block (RB) and N-version
programming approaches. It has been reported that these approaches are capable of
increasing the reliability of the system [13]; but, it has also been argued that it is certainly
not the case that when a fault appears, the system dynamically generates new corrected
code [14]. A detailed study of fault tolerance indicated that the differences between
software and hardware severely limit the application of hardware fault tolerance
techniques to software [14]. This study also indicates that the current software fault
tolerance techniques can be described as delayed debugging [14]. Most of the techniques
used to achieve hardware fault tolerance enable systems to tolerate physical rather than
design faults. The software is error prone due to design faults, certainly not due to aging
of software components (i.., code). There is no evidence that the level of reliability
required in the safety critical software can be achieved using redundancy or N-version
programming approaches [15]. Therefore, this thesis does not address the problem of
software reliability emulating the concept of hardware fault tolerance or using N-version
programming approach. It has been reported that the failure to use the system level
approach to develop software systems for safety and mission critical operations appears
to be the main problem in achieving the required level of reliability [15]. Therefore, it is
believed that the use of system level approach based on DES formalism in the different
phases of development of the SFS will help the designer to realize the required level of
reliability for safety and mission critical operations. Moreover, this is beyond the scope of

this thesis to address the software fault-tol aspectina ive manner.

1.3 Literature Review

The architecture of sensor fusion system in the block diagram level as shown in

Fig.1.15(a) and Fig 1.15(b) has been reported [2]. Due to the lack of a mathematical

this

cannot be si to verify logical and temporal

correctness. Moreover, this architecture does not provide the framework for different

modes of data integration in the same sensor fusion system.

Detection &

A. Centralized Fusion

Sensors controls

Estimation
@ Freprocessing

Target
[Composite | state

[Data alignment

& association Correlation filtering

Tracking &
classification
parameters

« Target classification
« Probability of success
o declarations

B. Autonomous Fusion

Detection &
Estimation Sensors controls
Sensor}—{Preprocessing [¢| [Tracking &
e <
I .
z Data alignment [Composite
Preproce: |Tracking & A G Stte
0
s .
. : \Txacldng & Classification
_ « Target classification
[Preprocessing T"‘C‘f’-“g & parameters « Probability of success
classification Mt
Figure 1.15(a): The of ized and sensor fusion [2].

Estimation

Detection & T

C. Hybrid Fusion

Sensors controls

[Preprocessing
F

\Tmcking &
classification

parameters

* Target classification

de

[Tracking &

Probability of successf

leclerations

Figure 1.15(b): The architecture of the hybrid sensor fusion [2].

A network structure as shown in Fig.1.16 has been proposed as a framework for sensor

management [16]. This framework is not with

T,
Tt

(=

Logical pathway sensor | Logical pathway sensor 2

ACT : pathway size
OBS : Sensor observation
STA : sensor status

ACC : sensor accuracy

1V : feature in field.

Figure 1.16: A network structure based sensor fusion framework [16].

Centralized

Distributed

Hierarchical with feedback

@ Sensor/data source (©) 1aformation consumer

Fusion node

Figure 1.17: An information flow graph based sensor fusion architecture [17].

An architecture based on information graph for modeling the information flow in
distributed fusion environment has been reported as shown in Fig.1.17 [17]. Despite the
use of graph theory approach to represent different scenarios of sensor data integration,

this architecture does not provide a mathematical formalism to define different modes of

sensor data i ion (e.g., inds ds Y,).

An i for self-improvi i y fusion system has been reported [5] as
shown in Fig. 1.18. This is an adhoc graphical representation of a concept.

Decision 1|
]

Decision 2
pe .

Fused

Sensor DM Decisiony Decision

n in - Decision out
ion processor.

Tuner
Decision n

Feedback to subsystem for self improvement

Figure 1.18: A self-improvis i y fusion system i [51.

A sensor-level tracking

approach with directed lines to

indicate the flow of

Central-level
. . Sensor 2
information has been used to | |5 Eackupdate
with sensor-
combine data from multiple level tracks and
using track
sensors for surveillance and correlation
) L Tracks matrices
tracking problems that arise in | [SensorN N
aerospace and defense as

shown in Fig. 1.19 [18]. This

correlation

sensor data combination lacks

in mathematical formalism to Figure 1.19: Sensor-level tracking approach to combine
model the semsor data sensor data [18].

integration scheme. It has been reported that the design and implementation of automated
systems requiring fusion of data from multiple sensors are not well understood [18]. A
general pattern of multisensor data integration using directed lines without the support of
mathematical tools to simulate the system performance has been reported [19]. This

general architecture of sensor fusion in intelligent systems is shown in Fig. 1.20.

The uses of ad hoc to

integrate data from multiple sensors

have been reported [20]-[27]. These

Data
transformation ||

approaches are mainly based on
informal drawings and textual
descriptions without the support of
mathematical formalisms to model the
data integration scheme. Despite the
increasing dependence of our society
on multi-sensori sensing system based
intelligent systems, it has been
mentioned that the development of
sensing systems comprising different

types of multiple sensors is still more | =] ENVIRONMENT |

of an art than a science [28]. Figure 1.20: A generic pattern of multi-sensori
integration and fusion system [19].

A ical framework called ic feature relation graph (GFRG) has been
proposed to integrate features sensed by different sensors [29]. This GFRG graph deals
with algorithmic aspects of sensor fusion. The computational framework proposed in [30]
deals with the formal descriptions of static nature of spatially distributed sensor networks.

The schemes reported in [29] and [30] have deficiency in the use of system approach.

From the literature it appears that present state-of-the-art for engineering a sensor fusion
system is deficient in using mathematical formalism. The architectures reported in the
public domain as reviewed here are simple graphical representations of concepts for the
integration of multi-sensori data. None of these architectures can accommodate different

modes of sensor data i i itive, Y, 1 and

temporal in the same SFS. These architectures are not supported with mathematical
formalism so that the different attributes of the system can be verified through simulation

(e.g., logical and temporal correctness). These reported works do not provide the

for seamless i ion of these high level architectures. Although safety

and mission critical applications have a high demand for multi-sensori systems, none of

these i include fault-tol The reliability profiles of different levels of
fusion (e.g., data, features, decision) have not been addressed by any of these
architectures. Therefore, based on the state-of-the-art review, there is a need to develop a
comprehensive framework to address Lhe‘se issues for the development of highly reliable

sensor fusion system.

Knowledge relating to this problem is available in the public domain and may be applied
in searching for a solution to this problem. However, this knowledge is not directly
usable as solution. As a matter of fact, some of the unique aspects of this problem have
not been addressed by those developments. Some existing knowledge has helped to

comprehend this problem, while some has been used as a tool to formulate the solution.

The i ip of existing kn to the ion and ion of the

solution proposed in this thesis is outlined in the ing sub-sections. It is imp to
note that the objective of this literature review is not to give an exhaustive account of
developments of related fields, but rather to describe how those developments can be

used as aids to address this problem.

1.3.1 Sensor Fusion Sub-System and Petri nets

An SFS can be abstracted as a finite state machine. The discrete events, both periodic and
aperiodic (stochastic), cause the SFS to change its state. As SFS is a real-time system, the
state changes must satisfy stringent timing constraints. That is, one must guarantee that
required computations be completed before specified deadline [31]. The dynamic
interactions of those events go beyond the intuitive capability of the developer. It is
required to equip the developer with a mathematical tool that is simple, intuitive and

quantitative, so that the dynamic nature of the system can be readily represented

and through ical analysis. The per will be able to perform a
check of the properties related to the behavior of the SFS (e.g., precedence relations

21

amongst events, freedom from deadlock, repetitive activities, time required to serve a
particular event). The simulation-based model validation should produce only a limited
set of states of the modeled SFS, and thus should show the presence of errors in the

model.

Petri nets are being developed in a search for natural, simple, and quantitative methods
for modeling the behavior of the DES [1], [32]. Petri nets are system engineering tools.
The analysis of the modeled system using Petri nets reveals important information about
the structure and dynamic behavior of the modeled system [33]. In this modeling
paradigm, the system is into i i (in an SFS, these are

computing components). The modeled system changes its states through the generation of
discrete events. These events are served through the interaction of corresponding
computing components. This Petri net model of the system can be analyzed to check the
precedence relations among events (for periodic events), deadlock, sequence of
interaction of components to serve events, required time to serve an event. The
randomness of aperiodic events can be addressed using stochastic Petri nets [34]. Petri
nets have been used to design the simulator for flexible manufacturing systems (FMSs)

and to verify the presence/absence of deadlock of the logic used to design the

for the used in the FMSs [35]. The modeling of a real-time

system i ion to ine whether the speci ion is with respect to
the imposed timing constraints has been performed with Petri net models [36]. The ability
of Petri nets to evaluate the performance of real-time systems has been demonstrated in
the literature [37]-[39]. From the study of the literature, it appears that Petri net can be a

useful tool to engineer an SFS.

1.3.2 Discrete Event Requirements (DEVR)

The performance models evolve from descriptions of the system performance at the total
system level to component properties in the late design cycles. The use of same

mathematical formalism at different levels of system development including the

22

requirements phase has been outlined in [40]. This work has not proposed any
quantitative method in this aspect. Time constraint discrete event formalism has been
used to ensure end-to-end requirements of real-ime systems [41]. This work has
structured the system under development as a set of process components connected by

asynchronous channels, in which the end points are the system’s external inputs and

outputs. Although this work includes a i it lacks simplicity. A
graphical tool with textual descriptions has been used for requirement specification for
process control system [8]. Although this method has tried to represent the discrete event
interaction of a process control system in graphical format, due to the lack of

this technique does not provide the means to analyze the model

to verify its correctness and completeness. A process algebraic approach has been used to

model the requirements of resource-bound and real-time systems [42]. Due to a

and the lack of a graphical representation, this

method may result in poor ion between the developer and the client.

It has been reported that it is a challenge to find suitable mathematical theories and
notations that allow a designer to record the deep insight in the properties of the

controlled physical process [10]. i textual iptions or

notations that the clients find difficult to will impede the process
of SFS. The requirement model should be simple, natural and must have mathematical
formalism for analysis. The requirements of the SFS can be abstracted as DES. Therefore,
Petri nets based virtual machine modeling of the requirements of the SFS will be an
effective solution to this problem. The developer will be able to analyze this model to
ensure that the system requirement model satisfies required system functional goals and

temporal constraints. Having a natural graphical property, this Petri net model will enable

the requi engincer to icate with the customer easily. Moreover, this

model can be into phases of the development to

model the interaction of discrete components. Therefore, use of the same mathematical
model of the system at different levels of development will minimize the flow of errors

from one level to the next.

1.3.3 Discrete Event Specifications (DEVS)

Recent developments in the paradigm of advanced robotics and intelligent automation has
shown how systems may be advantageously represented as discrete event models by
employing techniques based on the DEVS formalism [43]. This DEVS formalism is a
means of formal representation of discrete event systems capable of mathematical
manipulation, just as differential equations serve this role for continuous systems. The
DEVS formalism is a set of models together with operators that combine models to form
other models in ways in which real systems are connected [44]. The use of DEVS

formalism to measure the performance of DES has been demonstrated [45].

There have been developments in the field of discrete event real-time system
specifications using approaches other than DEVS formalism [42],[46],[47]. Usually these

developments use either complex mathematical notations or textual descriptions. As a

result, they are deficient either in simplicity of ion or ical ability.

Therefore, these developments will not be very useful for the specification of the SFS.

Petri nets being graphical and mathematical DEVS formalism provide a suitable
environment for modeling and analysis of the specification of the SFS. Moreover, since

Petri net formalism has been selected for modeling the requirements of the SFS, there

will be a uniform ition of the P! from to i ion phase.
The importance of the use of the development process as the stepwise reduction of
abstraction has been reported [40]. Petri net has been used for modeling the automation

system in hierarchical and modular fashion [48],[49].

1.3.4 Reasoning About the DSPU Architecture (RDA)

The development effort in avionics has resulted in an integrated modeling approach in
embedded computing system development [40]. The goal of this approach is to abstract
the system under development at different levels of complexity. The top most level is the

model of system requirements from user point of view. The subsequent levels steadily

reduce the i from ion (system i to i

(physical system). The DSPU architecture will implement the DEVS model of the
system. Therefore, the reasoning about the architecture of the DSPU should be based on
the DEVS model. The use of a system level approach has been recommended to address
this problem [15]. This work [15] has reported that the lack of system level viewpoints
and approach of developing embedded computing systems are the greatest cause of the

when are used to control complex processes.

According to the DEVS model, the DSPU is supposed to respond to both periodic and
aperiodic events within specified time windows. Scheduling of real-time systems has
addressed to be the problem of periodic events[50],[51]. There is a need to develop a
stochastic process model to address the aperiodic events. Then this process model should
be used to reason about the underlying architecture of the DSPU. The reasoning of the
architecture should be based on the quantitative analysis of the DEVS model and the
performance of the processing modules, so that the temporal specifications of the events
can be satisfied. To facilitate the development process the Petri net can be used as a

mathematical tool to model this reasoning process.

25

1.3.5 Fault-Tolerance of the SFS

To show high reliability, the ility of failure of the SFS is very small,

typically in the range of 10” to 10"%, depending on the consequences of the failure [52].
For a SFS to be adequately reliable for safety and mission critical operations, it must be

capable of surviving a specified number of random component faults with a probability

approaching unity. The use of level has been to achieve

this objective [53]. Due to the stringent real-time requil and costs, the
management is an important issue to consider. It has been suggested that the overhead

with i must be quantified precisely so that certain

guarantees about the real-time behavior of the system can be made [54]. The failure of
components generates aperiodic events. Therefore, a stochastic Petri net model will help
to address this problem [55].

The fault-tolerance techniques available in the public domain suspend the operation of the
system during the fauit clearance time. If this type of technique is used to address the
fault tolerance of the SFS, data from the sensor during the fault clearance time will be lost
[56]. Therefore, there is need to look at this problem to adopt fault-tolerance in the
development of the SFS.

If a sensor fails or partially malfunctions and its effect is not considered in the fusion of
sensor data, the dependability of the fused information will suffer. While one of the
solutions may be to use redundant sensor system [57], such a sensor system cannot detect
all types of faults (c.g., transient faults). Moreover, in the operation of unsupervised
intelligent systems in mission critical operation (e.g., autonomous deployment of
scientific experiment in space) redundant fault-free sensors may not be available to detect
and replace a faulty sensor. In such an operational scenario, even a partially faulty sensor
may be required to continue functioning. Therefore, there is a need to develop a scheme

to address this problem. The solution should be simple and adaptable.

26

1.4 Approach of This Thesis Work

The SFS is an real-time ing system. The i of the use of

system level approach to develop this type of system has been reported [15]. The tools
supporting system level approach should be simple and mathematical. The simplicity will
enable the developer to comprehend the system to avoid errors in different phases of
development. The mathematical attributes of the tool will equip the developer to verify
the conformity of the functions of the system under development with the customer’s

requirements.

The adopted approach should be a stepwise reduction of abstraction to simplify the
complexity of development process [40]. This should produce a smoothly evolving set of
designs at different levels of abstraction. The design approach should proceed from

conception to implementation in a cyclic manner.

The simplicity and the mathematical nature of Petri nets have already been mentioned.
Using the Petri net model it is possible to decompose the complexity of the system in
hierarchical fashion. It has been explained that the Petri net formalism can be used in
different phases of developments. Therefore, stepwise reduction of abstraction of

development can be realized through this system modeling formalism.

The Petri net based DES modeling formalism has been adopted in this thesis to approach
this problem. This approach decomposes the problem in a hierarchical fashion. In each
cycle, the level of abstraction is reduced. In the early cycles, the abstract model may be a
combination of hardware and software, but in the late cycles, they are very specific
hardware and software design representations. In every phase, the developer will be able

to verify the correctness of the functionality of the system under development.

27

1.5 Objective of this Thesis

The objective of this thesis is to synthesize engineering knowledge to develop a highly
reliable SFS using a system engineering approach. Although the main focus of this thesis
is to address the system aspects of the development process of the SFS, due to
insufficient public domain solutions, this thesis also includes the unique algorithmic

aspects pertinent to the development of highly reliable SFS for mission and safety critical

(e.g., space, icil The | term objective of this thesis is to develop a
software tool to automate the development process of reliable sensor fusion systems. The

specific short-term objectives are summarized in the following points:

- To develop formalism for the DEVR model of the SFS with the provision of different

modes of sensor integration in the same system: competitive, complementary,

independent, and temporal. This intuitive and quantitative model of the
will be a virtual machine to satisfy the customer needs. This model will be the
reference of communication between the customer and the development engineer. The

intuitiveness of this model will help the clients to understand whether the system

under satisfies their i The itative aspect will enable
the developer to analyze different attributes of the system (e.g., modes of sensor data

integration, logical and temporal correctness).

2. To develop a formalism for the DEVS model of the SFS. This model will enable the

developer to define the dynamic i ion among the i to

serve an event. The event level ification will be into the

component level. The allocation of time for the computing components to serve a set
of periodic and aperiodic events will be optimized through this model. This model
will help the developer enhance the logical and temporal correctness of the execution

of computing components to serve the events.

28

3. To develop reasoning taxonomy of the DSPU. This taxonomy will establish a link
between the DEVS model of the system and the underlying computing system to

this model. The quantitative aspect of this reasoning process will enable

the developer to design the architecture of the DSPU to satisfy the DEVS model.

=

. To develop a framework to measure the reliability that data will be provided to each
stage of sensor fusion from the supporting sensors. It is also an objective to develop a

scheme. This scheme will enable the developer

to consider the effect of redundancy management overhead on the system

This itative i ion will be i in the DEVS model of

the system, so that the architecture of DSPU will keep enough room (determined from
redundancy management overhead) to cope with the aperiodic events while

maintaining logical and temporal correctness of DEVR model.

w

. To develop a simple and adaptable sensor fauit detection scheme, so that sensor fault-

tolerance can be i d using estimation based fault-detection approach. Due to
the potential of transient faults to corrupt sensor data in safety and mission critical
operations (e.g. medicine and space), one of the objectives of this work is to detect

and locate transients in sensor data stream.

o

. To develop methodology to minimize the effect of lost sensor data during fault
clearance time. This work will address the problem of data recovery during the fault
clearance time. Appropriate algorithms will be developed to recover this data. This
data recovery scheme will also extend the data acquisition time. An estimation of this
extension will be provided which should be considered in developing the DEVS

model of the system.

1.6 Overview of this Thesis

The synthesization process of engineering knowledge to satisfy the objective of this

thesis has tailored the relevant developments in the related fields to fit in the solution

domain. This pment can be broadly classified as the design ion for highly
reliable sensor fusion systems. The theoretical developments of this work have been
reported in main body of this thesis. The verifications of these theoretical developments
through simulations and experi ions have been ized in the di

The development of the formalism to capture the customer’s requirement in terms of a
discrete event dynamic virtual machine known as DEVR model is reported in Chapter 2.

This proposed modeling technique has the ability to model different modes of sensor data

and temporal. The graphical

representation and quantitative analysis of this model is also shown. The quantitative
analysis justifies the logical and temporal correctness. The realization of the task directed
sensing and abstraction of RS as a sensor in the DEVR model to provide bi-directional
communication are depicted in this chapter. The quantitative framework to measure the
utilization factor of the underlying computing system is developed to realize a cost-
effective SFS. It is also shown that this model can be analyzed to check the presence of

deadlock, reachability, and repetitiveness of the operation of SFS.

Chapter 3 reports the development of the formalism of the DEVS model of the system.
The dynamic i ion among the i to realize the DEVR model

of the system under development is shown in the DEVS model. The optimization model

for the ion of time to i considering both temporal and

computational constraints is reported in this chapter. The sensitivity analysis of
component execution time is reported here to detect temporally critical computing
components. This detection will help further development and/or special implementation

(e.g., implementation in hardware) of these critical components.

30

The reasoning taxonomy of the DSPU is developed in Chapter 4. The relationship
among service time of an event, waiting time in the queue, and the execution time and
parallel nature of the corresponding traces is used as the basis of reasoning for the

architecture of the DSPU. The reasons of randomness of execution times of the

on modern are reported here. Necessary guidelines are
also provided to avoid this randomness of execution time to realize reliable

implementation of DEVS model on the underlying embedded computing system.

The potential to enhance the reliability of the sensing system using redundant sensors is
evaluated in Chapter 5. A novel technique to measure the probabilities of failures of
different levels of sensor fusion (e.g., data, features, and decision) due to the failure of the

supporting sensors is proposed in this chapter.

The P! of the estimati; ique using local statistics to detect and locate

sensor’s faults (specifically transient faults) is reported in Chapter 6. The profiles of
local statistics of four test signals at transient faults are also evaluated. The dependence of
local statistics based approach on the location of transient, window size, the location of
window relative to the starting of transient and the frequency of the transient to detect and

locate transient fault are evaluated through simulation.

Chapter 7 reports the development of the restoration scheme of lost sensor data during
the fault clearance period. The reported scheme minimizes the loss of these real-time sensor
data during fault-clearance period. This scheme is based on the restoration of data through
parallel sensing. The restoration processes for both dual and triple modular redundancy
schemes are explained. The effects of both hardware and software implementation of voting
logic on the performance of the system and the quality of restoration are shown, and it is shown

that this scheme is capable of recovering almost every datum lost during fault-clearance.

Chapter 8 summarizes the ibutions and provides ions for future work.

1.7 The Novelties of this Thesis

This thesis presents a novel, unified framework for the development of reliable sensor
fusion system, which will help produce a set of designs reducing the system abstraction
from ion to i ion. The proposed allows the per to

avoid faults in both the development and operation phases of SFS's life cycle. The

following points summarizes the novel aspects of the work proposed in this thesis:

. The proposed DEVR model of the SFS provides a novel framework for modeling the
system requirement as a virtual machine covering different modes of sensor data
integration. The quantitative attributes of this framework enable the developer to
analyze different aspects of the system under development at different phases of the

development process to ensure that the system satisfies its intended purpose.

2. The proposed DEVS model of the SFS allows the developer to decompose the DEVR.
model in a hierarchical fashion to the computing component level. This unified

approach helps ensure that the dynamic i i among the

components satisfy the logical and temporal correctness of the DEVR model.

w

. The proposed derivation of the architecture of the underlying computing system from

the DEVS model ensures that temporal correctness of DEVR model is provided in the

operations phase of SFS. The identifications of sources of of

times to run i on modern and the proposed solutions

to avoid them allows the developer to implement an SFS ensuring temporal

correctness in operation phase.

4. The measure of reliability that data are provided at different levels of sensor fusion by

the supporting sensors helps the deslgner to measure system performance at different

levels of sensor i ion. The i of to i

hardware redundancy and proposed different techniques to cope with this overhead
helps to develop predictable redundancy management schemes.

5. The proposed local statistics-based approach is a simple and adaptive sensor fault
detection technique. This technique has the ability not only to detect a transient fault

at different conditions, but also to locate the fault.

6. This work proposes different schemes to restore time-critical sensor data lost during
fault-clearance interval. This contribution helps develop fault-tolerant sensor fusion
system for safety critical operations where the system performance degrades

considerably due to loss of data.

To the best of the author’s knowledge there is no report of such developments in the

public domain. It appears that these novelties have sufficient potential to enhance the

tate-of-the-art of engineeris for ping reliable sensor fusion system

for safety and mission critical applications.

Chapter 2

- The Discrete Event Requirements

Model of the Sensor Fusion System

2.1 Introduction

From system point of view, the basic unit of

the user’s need can be defined as the

requirement of completion of a particular sensing task within a specific period of time. A

block diagram ion of the
for the of

ibratior

the standard deviation of N samples g

of a vibration sensor data is shown

in Fig. 2.1. This can be clarified as

= dard deviation of

Measure the stan-

N samples within
time T

follows: if the inputs are ready, the | BU¢ 21

: Block diagram of completion of a task.

enabled task should be executed within the specified time. The enabling of a task can be

considered as an extra input in addition to the necessary data. A Petri net formalism for

modeling this requirement is shown in Fig. 2.
generation of an event and the event is served
by the execution of the corresponding process
P, within time Te. The execution time includes
both the processing of the inputs and the
transmission of outputs to the corresponding
buffers. Therefore, the basic unit of the user’s
requirements can be modeled as the service of
an event if certain conditions are met. The
outputs of an event can be used as the partial

fulfillment of the generation of another event.

2. The availability of the inputs is the

Input buffers Output buffers
O_] J—'O
H b
: H

Process : Pr
Time of
execution : Te

Figure 2.2: Petri net model of typical
user requirements.

. The service of this event within the

34

specified time window is also part of the user’s requirements. Therefore, the user’s
sensing requirement can be abstracted as a discrete event dynamic system (DES). The
discrete event requirements (DEVR) model of the SFS transforms the user’s need into a
finite state virtual machine. This virtual machine represents the dynamic interaction of the
discrete events to satisfy the user’s need. The user’s requirements can be broadly
classified as:

e Periodic requirements

e Aperiodic requirements

The growth in the complexity of the SFS creates for the i In
the requirement analysis stage, one is required to deal with the increased capabilities of

these systems due to the unique

combination of hardware and software, 5

1
which operate under stringent timing 90
constraints. It is well known that the flaws -

70
in understanding requirements can seoe: O uon
substantially contribute to the reliability, |ermors :g

31%

time and cost [8]. The lack of a formalism 30
contributes to the improper understanding 20 3%

10 | % 2%
by the per of the user’s i 0 1 =

L F O I A M

of these systems [8]. Statistics of non- IF: Incorrect fact O: Omission
It : t i in Fig. I Inconsistency A: Ambiguity
elexical. requirement error are:shown in Fig. MR: Misplaced requirement
2.3. Moreover, i is

Figure 2.3: Types of non-clerical
requirement error [©1981 IEEE Computer
of the DEVR model should address to Society Press].

an important issue. Therefore, the analysis

answer the following questions to minimize these errors:
1. Logical correctness
2. Temporal correctness

3. Reachability

35

4. Presence of deadlock
5. Repetitiveness

6. Sensitiveness

2.1.1 Petri Net Model of Different Modes of Sensor Data

Integration

The objective of sensor fusion is to integrate information from multiple sensors in order
to make a more accurate or complete inference about a physical event, activity, or

situation than could be achieved with a single sensor [2],[3]. In this fusion process,

sensors can provide lly related competitive, , and i

information [6]. The Petri net models of different modes of sensor data integration are

in the ing

2.1.1.1 Competitive or Redundant Sensor Integration

C itive ion requires i sensor

readings, which ideally are identical, but in reality may |—
be noisy and one or more sensors may fail partially or
completely. It is the objective to ignore the erroneous

information from faulty sensors in the integration

process. A Petri net model of this i ion process |{Sn |

is shown in Fig.2.4. In this process model, data in the Figure 2.4: Petri net model of
itive sensor i i

form of n tokens come from n itive sensor
processes to the place Pc. It has been assumed that tokens will be sent to the place only if
the corresponding sensor functions properly. Availability of only one token in the place
Pc is required to drive the following process Pr. Therefore, this sensor suite will serve the

purpose as long as one sensor is functioning properly.

2.1.1.2 Complementary Sensor Integration

Partial and overlapping information from more than

one sensor is integrated into more complete

The istic use of ing and

complementary sensor data provides information that

is not available from individual sensors. The

integration of information from n complementary

sensors in the Petri net model is shown in Fig.2.5. Figure 2.5: Petri net model of
complementary sensor integration.

Here, the process Pr integrates information derived
from n sensors. Every sensor specific process sends only one token in the place Pc and n
tokens are required in the place p to drive the integration process Pr. In this operational

scenario, the integration process runs if every sensor functions properly.

2.1.1.3 Independent Sensor Integration

Independent data from # sensors are i to develop

wider world model of the operating environment. The Petri
net model of such an integration scheme is shown in Fig.

2.6. Failure of one or more sensors will result in an

incomplete model of the environment. This modeling

technique can also be used to model the validation of Figure 2.6: Petri net model of
- . " independent sensor integration.
diverse sensor data to provide robustness in the system at a Incepencent sensorintess

fusion level (e.g., the use of laser ranging sensor to validate stereo image data).

2.1.1.4 Temporal Integration

In temporal integration, data sampled from different sensors at particular time intervals

are d to sense the i in a particular sequence so that temporal

relationship among the sensed signals can be exploited. Using the frequency and phase
concept data can be acquired from different sensors in a particular sequence to achieve

this objective. The proposed mathematical formalism to model temporal integration is

as periodic requi in the ing section.

2.2 Periodic Requirements

In SFS, data should be acquired from sensors at regular intervals of time. These events
are generated using a clock signal as shown in Fig. 2.7. The system consists of a set of

sensors, S={S;: i€ I, [is the size of the set). Ts; is the period of individual sensor.

Min(ATs;) is the allowable service Readiness for next

X - Clock
time for the periodic events of the | memmpmm— event
ith sensor. This is the time period aecine
pecific
. hase delays EI’ PE:
between the generation of the event P —L:l

for the ith sensor and the generation

of the temporally closest event for

\T's;
\T'sy
another sensor. The value of —'O—-I—*O—

i

min(4Ts;) is dynamic as shown in

Fig. 2.8. In the worse case, this

]
o

value may be reduced to zero T 5 'I
resulting in overlapping of sensing @_ PE,
periods of multiple sensors. If this Ts

problem is not addressed in the

development of the SFS, the single Figure 2.7: Petri net model of generation and
processor based SFS may not be service of periodic events for data acquisition.
able to show expected performance. Moreover, due to the dynamic nature of the problem,
the performance will be unpredictable. As a result, the reliability of the system will

suffer. One of the novelties of this work is to address this problem.

38

I | I N
sl by heanre ==
==) [l |

NI

Figure 2.8: Timing diagram of the generation of periodic events for three
example sensors.

min(aTs

To overcome the overlapping of sensing periods of multiple sensors, a scheme should be
developed so that required service time can be guaranteed. A simple solution may be to
reset the system, when the value of ATs; goes lower than the acceptable limit. The time to
reach this point can be called the system period, SP. There is a cost to reset the system in
terms of quality of performance. In the worse case, the system may not function at all if
the value of SP is smaller than the threshold limit. Therefore, it is necessary to devise an
algorithm to maximize SP while guaranteeing the critical value of min(ATs;) The
problem can be defined by the following set of equations. Here, all the numbers are

positive integer.

N;=®,+>Ts @1
pa
(N,~N,) = min(ATs,) forall i and Nj2N; 22)
Maximum value of Nj, Ny =.J‘(®,-‘T:‘) (23)
D <0, <0 ©4)
Ts' < Ts, < Ts" @5)

Now, the job is to select optimum values for Ts; and ®, to maximize the value of A; (i.e.,

the system period).

Here, N; : the instances of generation of periodic events corresponding to the ith sensor.

;- the phase of the ith sensor.

@ : the lower limit of the value of the phase of the it sensor.

@ the upper limit of the value of the phase of the ith sensor.

7 : the lower limit of the value of the period of the itk sensor.

The analysis of the computational complexity:

the upper limit of the value of the period of the ith sensor.

Let the difference between upper and lower bound of ®; be D; and that of Ts; be C.

Therefore, the size of the solution set for / number of sensors is

DixCj xDy xCy x...xDy xCp

.6)

So, the sequential search of this solution set for the maximum value of N; even for a few

sensors may be unrealistic. Two examples shown in Table 2.1 and Table 2.2 will help to

understand the structural nature of this problem to reduce the solution size.

Table 2.1: The sensing sequence of an example sensor system

Phase Time of generation of periodic events
T 5o o[13 [20] [25]
2 |10 1 1 21
3 5] 2 7
7 [20] 3 23]

Table 2.2: The sensing sequence of an example sensor system

Phase Time of generation of periodic events
T 3 0 [0 3 6 9 12] 15] 18] Ill l [24] [27]
2 g |1 T B 17 23]
3 0| 2 2 12 23]
4 213 3 15] | | 27]

In Table 2.1, the events do not collide. Here, the periods are integral multiple of 5 (i.e.,
grain size of the periods is fixed). The phases of the periods increase at constant step.
From a knowledge of number theory [58] it appears that under this circumstance the

events will never collide if the phase is smaller than half of the period grain size.

The analysis of the data of Table 2.2 reveals that due to the absence of the integral
multiplicity of the periods, it is virtually impossible to guarantee that the events will not
collide. Therefore, the solution of avoidance of collision of events can be simplificd by

imposing the following constraints to select periods and phases for the sensors:

The periods and phases should be integral multiple of grain sizes Gp and gp respectively
and Gp is the integral multiple of gp. The grain sizes Gp and gp are the smallest period
and phase respectively. No two sensors will have the same phase, but they may have the

same period. The phase of any sensor should satisfy the following condition

©, <Gp foralli 2.7

For more simplification of this problem, it can be assumed that the min(ATs;) for each
sensor is the same and maintains the following relation

min(ATs;) 2max{ min(ATs) : i el} 2.8)

Then satisfaction of the i ition will that min(4Ts;) will be

maintained for each sensor of the set.
gp 2 min(ATs;) 29

The imposed constraints will limit the size of the sensor set. The maximum number of
sensors is equal to Gp/gp. The maximum value of Gp is limited by the variability and
minimum values of periods of sensors and the minimum value of gp is limited by the
required maximum service time of any event. In the worse case, if the event service time
is greater than Gp, this scheme will not accommodate more than one sensor. These
constraints simplify the solution significantly. From the literature it appears that in real
life applications, the number of sensors assigned to a single SFS is on order of 10 and the
service time is much smaller than Gp [18-30]. For larger number of sensors, multiple

SFSs may be used to cope with this problem.

This proposed ique has been used to detect overlapping sensing periods
in the design of an example sensor fusion system in section B.6. The modification of the
values of phases and periods of the sensors using this technique have been used to avoid

this overlapping.

This new D! has imp the state-of-the-art of the engineering of multiple
sensors based system. This critical design decision is based on sound quantitative

reasoning.

2.2.1 Task Directed Sensing

A recent study has revealed that the reasoning sub-system only needs that information
which is directly in support of the current tasks that the intelligent system is trying to
accomplish [59]. The concept of ‘task directed sensing’ or active sensing is a response to
this operational requirements [59]. The task directed sensing can be incorporated in the
discrete event requirement model by abstracting a physical sensor as a set of virtual
sensors as shown below:

S={ S,'j: J €V}, Vj is the size of the set of the virtual sensors for the ith sensor}.

42

These virtual sensors have different phases and periods as per the requirements of
variable sensing from the ith sensor. In the synchronization planning phase of the periodic
requirements as explained in the previous sections, these virtual sensors will be treated as

independent physical sensors, one of which will be in operation at one time.

2.2.2C ication with the R ing Sub-System

The closed-loop Petri net model of an intelligent system as shown in Chapter 1(pp.1,
Fig.1.1) depicts that the communication between the sensor fusion sub-system (SFS) and
the i b-system (RS) is bi-directi The DEVR model so far developed only
i idirecti from the SFS to the RS. From the perspective

of communication from the RS to the SFS, the RS can be abstracted as a sensor in the
DEVR model of SFS. This incorporation of an extra sensor does not change the general
DEVR model of the SFS other than the addition of an extra virtual sensor. The
propagation time of feedback from the RS to SFS should be considered to specify the
phase and frequency of this virtual sensor.

2.3 Aperiodic Requirements

In SFS, periodic events collect information from

from periodic B apetiodic
and aperiodic rents
acquired information satisfies particular events

the cor di should O] IO
N
:
:

the environment reading sensor values. If the

be executed to fuse these data within defined

time windows. These conditional requirements

are known as aperiodic requirements. The Process : Pr
. . . . Time of
generation of this type of requirement is known execution : Te

as an aperiodic event. These aperiodic events are - -
. . . Figure 2.9: Petri net model of an
serviced by executing corresponding processes. aperiodic event.

A Petri net model of an aperiodic event is shown in Fig. 2.9. It should be noted that
aperiodic events are dependent, while periodic events are independent. Conditions may
flow to an aperiodic event from both periodic and aperiodic events. But an aperiodic
event can generate conditions only for other aperiodic events.

An SFS consists of a set of aperiodic events, AE={4E;: i€Z, Z is the set of positive
integers}. The generation and service of these events are controlled by a set of
preconditions, Pre={Prc;: i€Z } and a set of postconditions, Poc={Poc;: i€Z }. If there
are M preconditions and NV postconditions, M-bit and N-bit binary numbers may be used
to specify the iti

P and itions of an aperiodic event
respectively. The value of a bit will indicate the presence or absence of the corresponding
precondition or postcondition. Therefore, an aperiodic event can be defined by updating

the basic definition of an event as shown,
AE={I, Prc,Te,Pr,Poc } (2.10)

Similarly, a member of the set of periodic events, PE=(PE;: i €Z }, can be defined as
PE={Te,Pr.Poc} @.11)

Here, 7 is the identity number of the event; Te is the service time; Pr is the corresponding
process.

2.4 Combination of Periodic and Aperiodic Requirements

The requirement of an SFS consists of dynamic interaction of a set of periodic and

aperiodic events to derive a decision from sensor data. The periodic events are activated

by temporal information. Therefore periodic events have no preconditions; but they have

postconditions and these are the subsets of preconditions of aperiodic events. The

relationship between periodic and aperiodic events can be defined as

(PE;Poc 0 AEjPre) <1 (2.12)
(PE;Poc n\ PEj.Prc) =0 (2.13)
(AE;Poc 0 AE}.Prc) <1 (2.14)

The life of a postcondition is Lpc;, This finite life concept of a postcondition will enable
the designer to incorporate the temporal value of information in the system model, which

is an important factor to consider in modeling real-time systems.

2.5 Discrete Event Model of Requirements (DEVR)

The Petri net structure of the discrete event model of requirements, DEVR, is a four-tuple
net, DEVR=(Pc, E, Prc, Poc). The tuple Pe={Pc,,Pc, Pc,,....,Pc,.} is a finite set of places

to hold conditions, both Readiness state for

o - Clock
preconditions and postconditions, HesLEvent
Sensor
m 2> 1. The number of the places specific
phase delay o

should be at least one to hold the

readiness state to respond to the

next periodic event. E=PE U AE is Figure 2.10: The simplest sensor fusion system.

the set of all periodic and aperiodic events, £ > /. This means that the system has at least
one sensor. The set of conditions and events are disjoint. The tuple Pre is the input
function, which defines the required conditions for an event. Poc defines the conditions
generated from the service of an event known as output functions. A place Pc; holds the
precondition of an event Ejif Pc; € Pre(Ej); Pc;holds the postcondition of an event £j if
Pe; € Poc(Ej). Therefore, according to this model the most simple sensor fusion system

may have only one sensor, a periodic event and no aperiodic event as shown in Fig. 2.10.

as

This system only acquires data and after preliminary processing sends these data to the
RS. The maximum number of sensors and aperiodic events are not limited by the model,
that is rather defined by the user’s requirements. The number of periodic events is equal
to the number of sensors. In case of task directed sensing, each virtual sensor will have a
periodic event. The DEVR model of a typical SFS is shown in Fig. 2.11. Here, all the
aperiodic events are shown as a single event. The process corresponding to this event is
responsible for the data fusion, feature fusion and decision fusion. After the formation of

this DEVR model, the input and output functions of the modeled SFS can be studied to
ensure that the system has been modeled according to this formalism. This study has

Readiness state for Clear the
next event ‘matured conditions

Clock

Sensors
specific
phase delays

Figure 2.11: The discrete event requirements (DEVR) model of a
typical sensor fusion system.

been performed on the model of an example sensor fusion system shown in section B.1.
This characteristic of the proposed discrete event based modeling framework enables the
designer to avoid partially faults at the very early stages of system development resulting

in better reliability in system performance.

To make the concept comprehensible the following example can be considered. This
sensing system consists of five sensors. The sensing job is done by the interaction of five

periodic events and six aperiodic events. Seven places, Pc,,...,Pc,, hold conditions

generated from periodic and aperiodic events. The post conditions generated by periodic
events are shown by the bit pattern of Poc used in specification of periodic events. The bit
patterns of Poc and Prc to specify aperiodic events define the required post conditions and
generation of preconditions by the aperiodic events respectively. The DEVR model of

this example sensor fusion problem is shown in Fig. 2.12.

Periodic events Aperiodic events
87654321 87654321 87654321

PE,={¢,,Ts,, Te,, Poc,=00000001} AE,={1,Prc,=00000011,Te,Pr,,00100000}
PE,={¢,,Ts,, Te,, Poc,=00000010} AE,={1,Prc;=00000010,Te,,Pr,,01000000}
PE,={6,,Ts,, Te,, Poc,=00000110} AE;={1,Prc;=00000100, Te;,Pr;, 10000000}
PE,~{$,,Ts,, Te,, Poc,=00001000} AE={1,Prc,=00011000, Te,,Pr,,10000000}
PE,={#s,Ts;, Te;, Poc,=00010000} AE;={1,Prc;=00010000, Te,,Pr;, 10000000}
AE,={1,Prc,=01100000,Te,,Pr,, 10000000}

Readiness state fornext Clear the matured
o conditions P,
Sensors @ @
specific
phase delays

Clock
————

| PE,

Periodic area

periodic area

X

Figure 2.12: The discrete event requirement model of an example sensor fusion system.

47

2.5.1 The State Spaces of the DEVR Model

A marking p is an assignment of conditions to the places of the model. Conditions are
assigned to the places by the execution of the events and they reside in those places for
their life times if they are not consumed by the events. At the end of the life-time they
disappear from the model. The number and position of conditions in the model change
during the execution of the system. The marking i can be defined as an m-vector, p={y1,,

Mz, s M} > Where y; corresponds to the number of corresponding conditions [1],{32].

The state of the modeled SFS is defined by its markings. The firing of an event represents
a change in the state of the system by a change in the distribution of conditions in the
system. The state space of the model with m conditions or places is the set of all
markings, that is M, where N is the number of any conditions. The state of the system
changes due to the firing of the events as well as due to the expiration of the life of the

conditions.

During the life-time of the conditions, the change in state caused by firing an event is
defined by a change function called the next-state function. When applied to a state p
and an event £; this function yields the new state p', 8(u, t;) = u'. The change of state due
to the expiration of time of the conditions can be defined as d(x cj) = 4, ¢; is the jth

condition.

2.5.2 The Effect of Death of Conditions on the Performance of the
Sensor Fusion System (SFS)

In the sensor fusion system, the conditions generated by both periodic and aperiodic

events have a certain lifetime. If during this lifetime, the conditions are not consumed by

48

the aperiodic events, they will die. This provision is very useful to incorporate the
temporal characteristics of conditions in the operation of the system, but this provision
also creates complications in the system analysis. If it is assumed that no condition will
die during the period min(ATs;) for the itk event, the problem will be simpler. Under this
operational scenario, the conditions can die during the time when the system is in
readiness state. This will ensure that during min(4Ts;) the system will only change state

due to the ion and of itions by the events. At the end of each

periodic cycle the system will do housekeeping work to clear the conditions whose lives
have expired. This assumption seems to be not unreasonable as min(47s;) is usually very

small.

2.6 Analysis of Discrete Event Requirements Model

It has been shown that discrete event model captures the user’s requirements as virtual
machine. However, modeling by itself is of little use. It is necessary to analyze the
modeled system. In order to verify the conformity of the modeled system performance
with the user’s requirements the independent (periodic) events are generated in the SFS at
regular intervals of time. The phase and period information of the periodic events are

shown by the following matrix
D, Ty

PET=| . - (2.15)

The system starts at t=0. The flow chart of the algorithm for the generation of periodic

events for ¢ < @, is shown in Fig. 2.13.

49

Generation of |

initial events ‘

Figure 2.13: The flow chart of the algorithm for the generation of periodic events.

The generation of periodic events for ¢ > @, can be controlled by the following matrix

relation
o] [0 .. 0TcCy] [@+TCs
[of -
s 0 0 = (2.16)
o] [0 . .. T,)c) (@470

If (t=t+GP) is equal to (@, +T75Cs;), ith periodic event is generated and Cs; is
incremented by one. Here, Cs; is the number of cycles already generated corresponding to

the ith sensor.

2.6.1 Logical Correctness

The firing sequence of the Petri net model can be used to check logical correctness. In
fact, logical correctness can be verified by depicting the interaction between the events.

The matrix rep ion of the itions and p itions of the aperiodic events

and postconditions of the periodic events make this task simpler.

50

Aperiodic

events Preconditions Postconditions

AE by - - bafby - - - by

4E, || b, o | but bom
Periodic

events Postconditions

AE b, - - - b,
A.E. bnl bm

The events responsible for the generation of an aperiodic event can be found by checking

the value of the elements of the preconditions and postcondition matrices.

Theory:
For the ith aperiodic event, if the b,-j element of the precondition matrix is
1, the events having the jh element of postconditions matrix of non-zero

value are responsible for the generation of the itk event.
The numerical nature of the representation of system behavior makes software based

automation feasible for this task. This automation has potential to make designer's job

faster and more accurate.

51

This concept can be explained by analyzing the previous example problem.

Aperiodic
events Preconditions Postconditions
AEJOo 0 0 0 0 0 1 1JO 0 1 0 0 0 O O
AE, |0 0 0 0 0 0 1 0j0 1 00 O0O0O0O
AE, |0 0 0 0 0 1 0 Of1 0 0 00 O0OO
AE,10 0 0 1 1 0 0 01 0 0 0 0 O0O0O
AE; |0 0 0 1 0 0 0 Of1 0 000 O0O0O
AE,JO 1 1 0 0 0 0 0j1 0 0 0 0 0O O

Periodic

events Postconditions

PEJo 0 00O0O0OTI

PE,Jo 000001 O

PESJloooo0oo0 1 10

PEjJoo 001000

PEJo 001 0000

From the analysis of these matrices it can be shown that

Driven report:
AE] is driven by PEjand PE;or PE3
AEis driven by PE3 or PE3
AE3is driven by PE3
AE4 is driven by PE4and PEs5
AE5 is driven by PE§5
AEg is driven by AE and 4E].

52

Drives report:
Periodic events:
PE| drives AE], AE (known as path)
PE2 drives AE1,AE6
AE2,AE6
PE3 drives AE3, PE4 drives AE4, PES drives AES

Aperiodic events: AE| drives AEg, AE) drives AEg, AE3 drives none, AE4 drives none,
AEj5 drivies none, 4E4 drives none.

The death of the conditions has not been considered, because the objective of this report

is to observe the inter-dependence of the events. The inclusion of the limited life span for

the itions reduces this i Now, this report will vary with the user’s

Any ification can be il with d

changes in the precondition and postcondition matrices.

This basic concept to check logical correctness has been applied more systematically in
an example SFS through execution path analysis technique as shown in Appendix B.2.
The analysis of all execution paths for each periodic event allows the designer to check
the logical correctness of the interaction of different periodic and aperiodic events to
serve each sensing task. This attribute of this proposed framework allows the designer to

avoid logical faults in the very early phase of system development.

2.6.2 Temporal Correctness

It has been explained that the ith periodic event should be served within min(47s;). This

includes the time for PE; and the ion times of aperiodic

events. Let the ith periodic event drives p paths. Each rath can consist of any number of

aperiodic events for any number of times. Therefore, under this situation, the following

condition should be satisfied
min(A7s)) 2 max{ 7pi1. Tpi2. .. Tpip} 2.17)

Here, Tpy; is the execution time for the j¢k path driven by the ith periodic event. The time

required for the ion of a path can be by the ing
Toa| [an - - - a, [4E.Te] [PE.Te
= - B R (2.18)
| |@m -+ - @p, | AE,.Te| | PE.Te

Here, ajj is the number of times the jzh aperiodic event executes in path i. Therefore,
from the user’s data corresponding to the execution time of periodic and aperiodic

the temporal of the operation of the system can be verified.

AE;Te is the i time to ish the ith task. Now, within this
constraint, Eq.(2.17) should be satisfied. Therefore, there is a need to optimize the
distribution of execution times to the events. The relative complexity information of each
task is necessary to derive a solution of this optimization problem. Let AE;.Pr.C be the

of the process i) to serve the ith event. The

problem can be simplified by assuming that unit time is required to execute a single unit
of complexity. In real life problem, the degree of complexity is usually variable.
Therefore, the degree of complexity of the execution of every event has a lower and an

upper bound. The upper bound is AE;. Te and the lower bound is greater than zero.

Now the optimization problem can be defined as

Maximize AE; te and PE;.te (2.19)
Here, AE;.te is the execution time of the itk aperiodic event and PEj.te is the execution

time of the ith periodic event.

Subject to constraints

o PE, te+a, AE te+ay AEyte+ - - - +ay,AE,.le< min(ATs;)

o PEp.te+amAE te+a,,AEs e+ - - -+, AE,.le < min(ATs,)
(220
lower limit < AEj.te > AE;.Te, lower limit < PEj.te > PE;.Te

Here, m is the total number of possible paths for all periodic events. If the itk periodic

event contains P; paths, min(475s;) will be copied to P; rows. The total number of rows of

this ization matrix can be by the ing relation

(221

Here, 7 is the total number of periodic events (i.e., sensors). Using a mathematical

this optimization problem can be solved.

For an example sensor fusion system, every execution path for all seven periodic events
corresponding to seven sensors has been analyzed as shown in Section B.2. Based on this
analysis, the maximum service time for each periodic event has been estimated as shown
in Table B.3. The distribution of the sensing times of all these seven sensors are shown in
Fig. B.12. This analysis allows the developer to ensure temporal correctness for data
acquisition from each sensor and the fusion of acquired. This capability of this proposed
framework allows the developer to avoid temporal faults, resulting in improved system

performance.

55

2.6.3 Reachability

The reachability problem is one of the most basic analysis problems associated with
discrete event systems. Through this analysis it can be verified whether it is possible to
fire an aperiodic event from a particular state of the system. The reachability set R(DEVR,
) is the smallest set of states defined by,

if ' € R(DEVR,) and p"=8(n', E)) for some Ej e E, then p” & R(DEVR, p).

Death of the iti should be i during the ition period of the system.

The drives and driven report shown in the previous section will be the basis of this

reasoning. From this analysis, the developer will be able to verify the possibility of
execution of an event. Moreover, the developer will optimize the life-time of the
conditions to ensure expected functionality of the system. At this stage, close co-
operation between the developer and the customer will help ensure expected system

functionality.

The reachability analysis of an example SFS is performed in section B.3. It is shown that
using this proposed framework it is possible to perform reachability analysis of each

periodic and aperiodic events.

2.6.4 Presence of Deadlock

A deadlock is a set of conditions such that every event which outputs to one of these

conditions in the deadlock also inputs from one of these conditions. This means that once

all of these conditions in the deadlock become the entire set of conditions will

always be unmarked; no event can execute in the deadlock because there is no condition

available to fire an event. Under this condition, the system will go in an endless loop and
will not be able to come back to the readiness state to serve the next periodic event
generated by the clock. To overcome this problem, the developer can avoid recursive
representation of the user’s sensing requirements. Otherwise, special care must be taken

5o that all the conditions of the deadlock set are not consumed.

2.6.5 Repetitiveness

The repetitiveness is the condition that after the service of every periodic event, including
the subsequent aperiodic events, the system will come back to the readiness state to serve
the next periodic event. To ensure this, the last events of all the paths from all periodic
events will generate only the readiness condition, certainly no other conditions. The left-
most digit of the postcondition numbers of these events should be one and all other digits

should be zero.

This basic concept to check repetitiveness has been applied successfully to verify that a
sensor fusion system consisting of seven periodic events and eight aperiodic events is

repetitive in its operation as shown in section B.3. This feature of this proposed

framework allows the designer to avoid perating state (e.g., petitive
operating state) thus resulting in higher reliability of system it This
11 i to the of the reliability of an i

system by avoiding such a catastrophic (system hung up) fault in the early stages of

development.

57

2.7 The Utilization of the Operational Time

It has been explained previously that the system remains busy handling periodic and
aperiodic events during certain intervals of time. The rest of the time the system is
waiting in the readiness state to serve the next periodic event. The utilization factor of
operation time is the ratio of the maximum busy period required to serve the events to the
minimum waiting period in the readiness state. From the optimum distribution of
execution times to both periodic and aperiodic events as proposed in section 2.6.2 it is
possible to determine the maximum busy period of the system to serve the izh sensor by

the following equation
Bp, = PE,.Te + max{Tp,, Tops- o} @2

The graphical representation of the busy and idle periods of a typical system is shown in
Fig. 2.14. The total busy period during the operational time ¢ can be calculated by the

following relation:

.
B =Yt 10’ Bp; 23)

s,

=

busy

By
sl "7 g

[Jdle

Figure 2.14.: The distribution of busy and idle
periods in the DEVR model.

State of
Operat.

Therefore, the utilization factor of the operational time is

(2.24)

The value of Uft) is also the measure of the utilization of the underlying computing

system. By imizing the use of the i system, the per can reduce the
system cost. The increase of Ufz) allows the developer to switch to the less powerful
computing module for performing the same amount of computing job resulting in cost
savings. Alternatively, this increase will allow the same computing module to incorporate
more sensors. Therefore, it is desirable to increase the value of U(t). The value of U(z) can

be increased by, (1) increasing the value of Bp;, and, (2) incorporating more sensors.

The utilization factor of the underlying computing system based on single processor to
implement an example sensor fusion system (Fig.B.1) has been measured as shown in
Eq.(B.47). The detailed specifications of this sensor fusion system is given in Appendix
A. For this example system consisting of seven sensors, the utilization factor is 27.62%.

This attribute of this proposed framework offers a quantitative means to measure system

per in terms of utilization of ing resources. This measure allows the
justification of alternate sensing strategy as explained in sec. 2.7.1 and sec.2.7.2 for better

of the i resulting in reduced system cost.

2.7.1 The Approaches to Increase the Value of the Busy Period

The sensors are grouped in a number of clusters. Each cluster is served by individual
sensor fusion systems. One of the limiting factors for the maximum value of busy period,
Bpj, of the ith sensor in a cluster is min(AZ;). This limiting factor is the function of the
phases and the periods of all the sensors corresponding to that cluster. By changing the
phases and periods of the sensors, the busy period can be increased as explained before
(section 2.7). The value of Bp; also can be increased by dropping sensors from a cluster

or by reorganizing the sensors among the clusters.

2.7.2 Incorporation of More Sensors

The total busy period, Bp(?), is the function of the total number of sensors when Bp; is
constant. Instead of min(47s;), if the maximum allowable execution period of the events
limits the value of Bp;, more sensors can be accommodated in the cluster in order to
increase Bp(1). The addition of more sensors to the cluster will make it more difficult to
ensure min(4Ts;) for each sensor. Therefore, by selecting appropriate phases and periods
of all the sensors more sensors can be added to increase Bp() resulting in higher

utilization factor.

60

2.8 Chapter Summary

The discrete event approach for modeling different modes of sensor data integration has
been reported in this chapter. It is shown that different levels of sensor integration can be
in this modeli . This is a i i

technique, which is not limited by the number of sensors. The number of sensors, which

can be accommodated in a particular SFS, is limited by the sensing requirements. The
quantitative basis of this attribute of this modeling paradigm is shown in Section 2.2. The
technique to ensure logical and temporal correctness of a modeled SFS is demonstrated.
A quantitative approach to measure the performance of a SFS in reference to the resource

utilization is proposed in this chapter. The effectiveness of this proposed discrete event

to model i of a i y sensing system is shown in
Appendix A. It can be concluded that this novel quantitative system approach to model

the requirements of sensor fusion system has enhanced the state-of-the-art of engineering

for ping the sensing sub-sy of’ i 'y systems.

Chapter 3

3.1 Introduction

Discrete Event Specifications
of the Sensor Fusion System

Generalized system theory allows the designer to decompose a discrete event dynamic

system (DES) into components, which are also conceived as DES [60]. This hierarchical

decomposition of the DES proceeds in cycles, each closer to the actual physical system.

The component specification in (n-/) cycles becomes the system specification in the nth

cycle. In the nth cycle, the system is again

of

as dynamic i

components which are (n+)th level systems. This hierarchical decomposition of the

system complexity is shown in Fig. 3.1.

Input Events
(IEs)

Discrete Event
System 0.1

S il

Discrete Event
System O.n

|-

Discrete Event
System 0.1.1

R i

Discrete Event
System 0.1.n

|-

Discrete event interaction among components at a
particular level

Discrete Event
I Component |

Discrete Event
Component 2

Block diagram representation of component interaction

IEs OEs

Petri net representation of component interaction

Figure 3.1: Hierarchical decomposition of a discrete event system.

It has been explained that sensor fusion system (SFS) is a discrete event dynamic system.

Therefore, SFS is in hi ical fashion using i system theory.

The discrete event requirements model is the zero level representation (i.c., system

from user's ive). In this level, the requirement engineer interacts
with the customer to develop the virtual prototype of the system. This prototype defines

the user’s discrete requirements and their dynamic interaction. The preconditions,

postconditions and execution time of each

: . : . Precondition Postconditions
discrete requirement as shown in Fig. 3.2 are | ot discrere ot a discrete
requirement requirement

defined in the requirement modeling stage.

These discrete requirements will be conceived O—L, —I—»O
s .
3 3
: 3

as systems. These systems will be decomposed

as dynamic interaction of next level sub-

systems. This process of recursive Process =Pt

decomposition will continue to reach the level to o
execution : Te

represent the system as discrete event dynamic

Figure 3.2: Petri net model of a discrete

of discrete requirement.

The number of level of decomposition depends

upon the complexity of the system as well as the size of the computing components.

In each level, a system (micro system) will be defined e

as iti itions and ion time.

Each micro system is connected to the rest of the
Prc,

system through the interface of preconditions and

Here, iti and
postconditions are the input and output of the system

according to the conventional system theory. The

dynamic i ion of the

must satisfy the i and temporal ificati Figure 3.3: Flow of functional
and temporal specifications.

of these micro systems. It has been explained that

63

components in the (n-/)th level are treated as systems in the nth level of decomposition.
Therefore, functional and temporal specifications flow from higher level, (r-1), to lower
level, n, as shown in Fig. 3.3. The functional and temporal performance of the (n-I)th
level must be supported by the dynamic interaction of the components in the nth level.
This is the job of the discrete event specification (DEVS) model to establish the link
between the (n-I)th level and nth level. This hierarchical decomposition will also allow
the simulation of the discrete event model in modular fashion to cope with the complexity

of the Petri net model, which usually grows exponential with the increase of system size.

3.2 Discrete Event Dynamic Interaction of the Computing

Components in the SFS

A system in the nth level (ie., a component in the (n-I)th level) is realized by the

sequence of dynamic interactions of the components. In an SFS, these sequences of

interactions are conditional. In order to satisfy the i and temporal

of the system, the execution of all of these traces should be accomplished within the
defined time window, Ty j, the execution time of the ith system at the nth level

determined by the (n-1)th level specifications.

3.2.1 Functional Specification of the System

The interaction among the components in a particular sequence (trace) guarantees the
functional specification of the system. A trace may be elementary or compound. In an

'y trace, all the are one after another forming a series as

shown in Fig. 3.4(a) [1],[32]-[35]. This elementary trace consists of sequential operation
of four components as represented by the Eq. 3.1.

Se={c;,¢3.€35.64} 3.1

cr Cc2 C3 Cy

FO- OO0

(a). Elementary trace

c3 cs

cs Cs

(b) Compound trace

Figure 3.4: of y and traces.

A compound trace consists of a number of elementary traces connected in series and/or
parallel pattern as shown in Fig. 3.4(b). Mathematically, this trace can be represented by
the following equation
S = {Se,, Scy, Sey} 3.2)
Here, Se, = {c,c.}:S¢, = {Sey, Sera}iSen, = {es,¢6hs

Seiy = {e3,64};5e; = {eq}

The systematic approach for the formation of these traces is explained in the following

sub-sections.

65

3.2.1.1 Formation of Elementary Traces

Let the component set consists of n number of components, C={c,: n &Z}. The

ofm y traces can be by the ing matrix relation:
Se| [By By - - - B][e
Se| (B By - - - Py |e
ol H s 59
Sen]| P Fux © - Fulle
Se=P C G4

Here, Se, P and C are the trace, position and component vectors respectively. The values
of the elements of P indicate the position of a component in the corresponding trace; the
null value stands for the absence of the component. The following example explains this

trace formation phenomena:

Se] 2 0 1] (¢
Se, [=[3 1 2] |e, (3.5)
Se,] {0 2 1] |

The elements of the first row of the position matrix defines that the component ¢, has
second position (‘2°), component ¢, does not participate (‘0°) and the third component ¢,
is in first position in the formation of the elementary trace Se,. The matrix relationship

shown in Eq.(3.5) forms the following traces:

Se; ={e3,¢1) (3.6)
Sey = {en,es01) 3.7
Seg = fes.cz} (38

In this matrix ion, ‘+’ operator of i matrix algebra has been replaced by

‘position operator’, which uses the elements of P matrix to position the corresponding

components of C to form a trace.

3.2.1.2 Formation of Compound Traces

A compound trace is composed of a number of segments, Sg={Sg;: iZ}. Each segment
may form as

® a trace (elementary or compound);

* a parallel operation of more than one elementary and/or compound traces;

® abranch to other traces (elementary and/or compound);

® aloop of a trace (elementary and/or compound) ;

Segment formation operators (So):

st=(1,p) : pick one trace from a set of traces
pr =(2,p) : runs more than one trace in parallel
br =(3,p) : select one trace from a set of traces to branch

Ip =(4,p): runs a trace multiple number of times.
Here, p stands for position information.
Segments are of two types:
* Elementary segment, Sge;: i€Z ; composed of only elementary traces related

by segment formation operators.

e Compound segment, Sgc;: i€Z; the constituting elements are compound

traces related by segment formation operators.

67

Formation of simple segments can be defined by the following matrix relationship:

sga] [Sou So, - - - So,][Sa
Sge, | |Son Son - - - So,||Se,
I P | 69
Sge; Soy So, - - - So; | |Se;

An example to explain the above segment formation relationship is as follows:

Sge|_[@D @2)] [Se
[Sgej‘[an m)] [S&.] G10

The first row of segment formation operator matrix defines that the first elementary
segment Sge, is formed by the parallel operation of elementary traces Se, and Se,. The
second elementary segment is formed by the branching operation of the elementary traces
Se, and Se, defined by the elements of the second row of the segment formation operator
matrix. Therefore, newly formed elementary segments can be defined by the following
equations:

Sge, = priSe. Ses} @.11)

Sgey = br{Se,.Se;} (3.12)

The Petri nets models of these two traces are shown in Fig. 3.5.

Figure 3.5. Formation of elementary segments.

The compound traces can be formed by the following matrix relationship:

Se| [B B - - - R[S
Se,| |By By - - - Pnl||Sg,

R . G
Seo) B B v - - Bl [Sel

In the first iteration, segments, Sg;, are simple, but in the following iterations they are

compound. The following matrix relation defines the formation of compound segments.

See,] [Sou Son - - - So,] [Sa
Sge,| [Soy Soy - - - Soy| |,
B I | 614
Sge,| [Sou Sop - - - So;| [Se

The formation of compound trace as well as compound segments is recursive in nature.
These trace formation processes using matrix operations enable the developer to specify
the component interaction through the values of elements of the matrix. This quantitative
representation of the dynamic interaction among the components facilitates the
development of design automation software. It should be noted that the use of recursive
for stepwise reduction of system complexity is different from recursive representation of
user requirements. The recursive representation of user requirements has the potential to

create deadlock in system operation.

The representation of the processes to serve the aperiodic events of an example sensor

fusion system through elementary and compound traces is shown in section C.2.1.

69

3.2.2 Verification of the Logical Correctness of the Functional

Specifications

The methodology to check the logical correctness of the discrete event requirement model
as explained in chapter 2 can be used to verify the logical correctness of the executions of

the components to realize the system specification. Moreover, other related issues, as

such avoi of deadlock, ility, and repetiti in the dynamic interaction of

the components can be checked in the similar way.

The decomposition of the processes to serve eight aperiodic events in terms of interaction
among sixteen computing components of an example sensor fusion system has been
shown in section C.2.1. This decomposition allows the verification of the logical
correctness of the component interaction in the similar way as shown for the DEVR
model. This is one of the most important advantages of using the same modeling

technique at different phases of the development cycle.

3.3 Determination of the Temporal Specifications of the

Computing Components of the Sensor Fusion System

It should be noted that the

execution of an event is
conditional in an SFS. The
generations of postconditions
for the executions of the
processes are variable. Due to

the firing of a process, a

fraction of the total

Figure 3.6: Petri net model of an example system.

no condition or all of the conditions, may be Table 3.1: The possible firing
sequences of the processes of an

generated. This situation can be explained by an ple SFS as shown in Fig. 3.6

example shown in Fig. 3.6. The possible firings Paths

Firing of processes

of the processes are summarized in Table 3.1 Br, [P [P [P o6
(this is not the exhaustive list). Now, for any T 910)) 0
sequence of firing of the the total 3 T To To 1o 16
execution time of any sequence or trace should 3 i 1o o 1o
be smaller than or equal to the system response i i T 5 T)
time. The system includes of a number of parallel 3 : o150
traces, and the system’s temporal sp S T T T 5 I
should be greater than the temporal longest trace.

The execution of the system can be abstracted as the execution of m parallel traces, S=
{Si. 1 <i 2m} as shown in Fig. 3.7. It should be noted that the executions of these traces

are conditional as explained (section 3.1). In the best case, no trace may be required to

execute; but in the worst case all the
traces may be required to execute. Preconditions Postconditions
The design should be based on the »
worst case situation, and the

executions of all these traces should
satisfy the following relation:

Figure 3.7: Abstraction of SFS as a collection of
parallel traces.

7,, > max{St, Sts-.-St,} G.15)

Here, St; is the execution time of the it/ trace.
This proposed technique is applied successfully to compute the service time of eight
aperiodic events for an example sensor fusion system as shown in section C.2. These

aperiodic events have been served by the interaction of a set of 16

n

The execution times required for m traces for n components having execution time c, can

be calculated using the following matrix relation

St [an ay, [ea
Ca

o = ’ (3.16)
Stn] [am A

The coefficient a; is the number of times the jth component is present in the formation of
the ith trace. A zero value of this coefficient indicates that the jth component is not part of
the formation of the ith trace. Usually there is a domain of selection of component

execution time, and there is a scope for optimization in the distribution of time to the

components. The objective of this imization is to allow
execution time. There is a cost to lowering the execution time of the components. This
cost may be due to the requirement of additional research to lower the computational

of the or to use i less powerful algorithms to do

the same type of work sacrificing quality, or to switch to higher cost processor. The

jective of optimization is to imize the ion time of each component while

satisfying the temporal specification of each trace.

Maximize c, ; Subject to

ey +ap.Co a3t o 0 Ay STy
3.17)
@1-Cy +81p.Coy +813.C3 +
and
Ciseise,,; (3.18)
Here, c,;is the lower limit and ¢, ; is the upper limit of the ith component execution
time.

This optimization function has been successfully utilized to select the execution times of

a set of computing components to serve the aperiodic events of an example sensor fusion

system as shown in section C.3. The application of a formal quantitative approach to
optimize the use of system resources is one of the novelties of this research work. This
knowledge component enhances the state-of-the-art of the practice of scientific methods

to engineer sensor fusion systems.

3.3.1 Sensitivity Analysis of the Components Execution Times

The sensitivity analysis of the component execution times is a measure of the rate of

change of the total distribution of ion time of the due to the change of
execution time of a particular component. Due to a change Az, amount in execution time
of the ith component, the total change of the execution of time, A7, over n-/ components

can be calculated by the following relation:

aT=y Ay (3.19)

Therefore, the sensitivity of the execution time of the itk component is

AL
Sen, =—~ 3.20
e = AT (3:20)

This sensitivity analysis can be related to cost optimization. If Cj is the cost related to the
per unit change of computational time for the ith component, the cost sensitivity of the ith

can be by the ing relation

Csen, = (3.21)

An investment to decrease the computational time of the ith component is justified as
long as the value of Csen; is greater than one. Therefore, this basic relationship can be
used to justify the investment on the research to develop computationally less complex
components. Moreover, this finding can be used to justify the decision to implement
highly sensitive computing component in dedicated hardware or in other special type of

devices to reduce the overall system cost.

The sensitivity analysis of the component execution times will enable the developer to
optimize the system cost, while maintaining temporal performance of the system. Similar
analysis can be performed on the discrete event requirement model to determine the rate
of change of the optimum service times of both periodic and aperiodic events. This
development has added scientific knowledge in the engineering process of such system

development.

3.4 The Reliability Aspects of the Discrete Events Specification

The DEVS model generates the functional and temporal specification of each computing

and rep: the dynamic i ion among these This model
satisfies the execution of each discrete requirement as defined in the discrete event
requirement model. The Petri net based modeling tool as proposed in this chapter has
enough power to ensure the realization of the functional and temporal specifications of
each discrete requirement by defining the specification of each component and the
dynamic interaction among them. Therefore, it can be concluded that this model has
enough potential to avoid error in mapping the user’s sensing requirements to the
component level specification. This thesis has addressed the problem of enhancement of
reliability of SFS by avoiding temporal and logical faults in the development phase. This
objective can be partially achieved by icing this proposed

as explained in this chapter.

3.5 The Modeling of Multi-node based Sensor Fusion System

In a multi-node based SFS (e.g., distributed sensing system of mobile robots, distributed
air defense system), the nodes are organized in hierarchical fashion [6]. In this
hierarchical organization, each leaf node consists of processing unit and a set of
associated sensors. At each level, nodes receive information from lower-level nodes,
integrate the information received according to their position in the hierarchy, and send
extracted information to nodes at next higher level. This proposed discrete event based
modeling technique can be directly applied to model leaf level sensing nodes. To model
higher level nodes, associated each lower level node can be abstracted as virtual sensor.
Abstracting each lower level node as virtual sensor this modeling approach can be
applied to model each node of different levels. Therefore, the discrete event modeling
approach reported in this thesis can be used to model multi-node based sensor fusion

system as well.

3.6 Chapter Summary

The hierarchical decomposition of DEVR model to component level specification has
been proposed. A mathematical framework to model the interaction of the components in

terms of trace and segments has been shown in section 3.2. This quantitative abstraction

of i ion enables the ion of the design work. The proposed
technique (section 3.3) to optimize the component execution times provides means for
improved utilization of system resources. This novel technique has been used

to derive level i ion from the DEVR model of the

example SFS shown in Appendix B. This proposed formal method of mapping the user’s
sensing requirements to component level specifications is an important contribution of
this thesis.

5

Chapter 4
The Architecture of the Embedded
ComputingSystem to Implement
the DEVS Model of the SFS

4.1 Introduction

The discrete event requirements model (DEVR) of a sensor fusion system (SFS) defines
the interaction of user level events and allocates optimum times to the execution of the
corresponding processes. The discrete event specifications model (DEVS) defines the

level i ion to i the DEVR model of the system

under development. The underlying computing system must execute every computing
component within the time window as specified by the DEVS model. The architecture of
the computing system should be optimized to economize the cost as well. The work load
offered to the system is defined by the DEVR model. Therefore, the architecture should
be reasoned from the DEVR model.

4.2 The Execution Time of a Computing Component

The i ion of the i is defined in the DEVS model. The
of these must be i by the redefined time windows
derived from the DEVR model. In terms of i ity, a can

be represented by a five-tuple vector as shown in the following equation

C={LF,D M H} .1

Here, I, F, D, and M stand for computation load of integer, floating point, compare and
memory operations respectively. The fifth tuple H, represents other execution overhead
(e.g., component specific system management job). Due to the presence of decision

making and looping ions in a i i for plausible values

for the tuples are usually subjective. But in a SFS system, the components should be
executed within defined time windows. Therefore, the temporal worst case operation

scenario should be considered when calculating the values of the tuples.

The ion time of a " on a particular processor can be calculated

by the following equation

(P[I+PEF+PpD+PyM+PHH) “42)

Here, Pf, P, Pp, Pas, and Py represent the estimated required clock pulses to execute
each unit of integer, floating point, compare, memory operation and execution overhead
operations respectively. The time period of the processor clock is represented by //f. The
execution time of simple and compound traces as explained in the DEVS model in the

previous chapter (Sec. 3.2.1) can be calculated by the equations

Ser=ci+ ciptezten @3
Scy=Sey+Scy+Serz “4
Scyy=max(Ses; 1 , Seu2), for parallel operation 4.5)
Scyy=Sey1j+Seyi2 , for sequential operation (4.6)

77

4.3 The Reasoning Basis of the Architecture of the Computing

System

The quantitative relations d ped so far help us
to reason about the architecture of the embedded
computing system. The request for the execution
of a it by the

system can be considered as a discrete event. The

arrival and service of these events can be modeled

Events Queue

Computis
system

Figure 4.1 A model of embedded
events service system

as single server queue as shown in Fig. 4.1. Now to serve an event properly the following

condition must be satisfied

Wq+Ts<Te

Here, W is the expected waiting time of an event
in the queue; 7s is the execution time of the
corresponding process; Te is the time window
within which the event must be served to satisfy
the DEVS model. To simplify the modeling process,
the arrival of the events (i.e., the request to execute

the i is idered as a

Poisson process [61]. In this simplified

representation of the problem, the request of the

“4.7)
s
in p sec
] k
:
Ts=70ns Arrival rate A

Figure 4.2: The exponential
growth of the waiting time with
the increase of the arrival rate.

execution of only one type of computing component arrives in the queue in a random

fashion. Then the expected waiting time in the queue can be shown as [61]

N
1

L L
=7

(4.8)

Here, A is the arrival rate of the events in the queue of the computing system. The waiting
time increases exponentially with the increase of arrival rate as shown in Fig. 4.2. Here,
to simplify the problem the service time to each event is assumed to be the same. For a
particular event, the service time Te is predetermined from the DEVS model. In the

DEVS model, Te represents the component execution time.

4.4 The Architecture of the Computing System to Execute

Elementary Traces

In an elementary trace as explained in the previous chapter (sec.3.2.1), the execution of
the components takes place in a sequential manner. The outputs of the upstream
components become the inputs of the downstream components. The existence of

in the ion of these can be detected using Bemstein’s

2]. The in’s conditions state that two processes P; and P with their

input sets /; and /2 and output sets O; and O3, respectively can execute in parallel if the

following conditions are satisfied:

I} n Oz = ¢. Here, ¢ is the empty set (4.9)
L nOor=9¢ (4.10)
0r Nn02=¢ @11

Therefore, from these conditions it is evident that the components in the elementary
traces cannot be executed in parallel. It should also be noted that the executions of
upstream components generate the events to execute downstream components. Under this
circumstance, no event waits in the queue to be served resulting in zero waiting time.

Therefore, the ion time of the ing the y traces should

be equal to or less than the time windows specified in the DEVS model. The speed of the

execution of a elementary trace is limited by the computing power of a single processing

units. Under this operational scenario, a single node based computing system is a solution

for i y traces. The per can negotiate with the customer to
redefine the time requirements to increase the time windows of the elementary traces to

switch to a less powerful processor.

4.5 The Architecture of the Computing System to Execute

Compound Traces

A compound trace consists of 2 number of el y traces in ial and

in parallel manner as explained in the previous chapter (sec. 3.2.1.2). The sequential part

Soes mot; satisly, the 8 ‘Compound Trace Execution Unit

conditions as explained in the

previous section 4.4. But the | EventsQueue
parallel part satisfies those r
conditions. Therefore, a ‘

multinode architecture can be

used to exploit the power of

Figure 4.3: Multiple nodes based architecture of the
realize a cost effective sensor embedded computing system to execute compound
fusion system as shown in Fig. traces
4.3. The parallel elementary traces can be executed in sequential fashion as well, as
shown in Eq. (4.5, 4.6). In that case the waiting time will be equal to the execution of the
previous parallel elementary traces. Therefore, both single node and multiple nodes
based architecture can be used to implement compound traces. In the distribution of time
windows to the events in the DEVR and DEVS models the parallelism of the service of
the events must be considered for optimum allocation. This makes it very clear that the
DEVR and DEVS models are directly related to the architecture of the underlying
embedded computing system. Therefore, both DEVR and DEVS model, and the

80

architecture of the computing system should be recursively optimized to reach an
optimum solution. In some cases, there may exist parallellsm in the DEVR and DEVS

model but due to the cost consideration the puter system may adopt single

node based architecture. It should be noted that multiple nodes based architectures can
enhance the execution speed only if there exists parallelism in the DEVR and DEVS
model. Therefore, a Petri net based ism in the ing of the i and

specification will enable the designer to determine the optimum architecture of the
embedded computing system. This is one of the novelties of this work to link the
different stages of the development process through a uniform reasoning technique. The
higher level abstraction in the early cycles of the development process gradually proceeds
to physical system in the latter cycles through sound quantitative reasoning. This
reasoning basis has been utilized to reason the basic structure of the embedded computing

system of the example sensor fusion system as explained in section D.2 and section D.3.

4.6 Implementation of Multiple DEVS Models on a Single

Computing System

The method proposed in section 2.2 to avoid overlapping of sensing periods in order to

satisfy periodic requirements may not keep the underlying computing system busy during

the entire period of
P Busy period for first DEVR model

operation. Rather the Busy period for 2nd DEVR model
system will remain Idle period

busy for a defined
State of

period of time as | operation

determined by the

DEVR model as Time, ¢
shown in Fig. 2.11. Figure 4.4. Interlacing of two DEVR models to increase the
Therefore, the ion factor of the ing system.

multiple DEVR model can be i to be i on a single
system. The implementation of two DEVR models in interlaced fashion is shown in Fig.
4.4. This will increase the total busy period of the system resulting in higher utilization
factor of the underlying computing system. To utilize this interlacing concept, sensors
can be divided into multiple clusters and each cluster will have its own DEVR model.
This will increase design complexity, because these different DEVR models should be
interlaceable. The discrete event formalism proposed in this thesis will help deal with this
complexity transparently. There is a scope to increase the utilization factor of the
computing system interlacing DEVR models of different SFSs resulting in cost effective

solution. This is a new concept about the architecture of a sensor fusion system.

4.7 Randomness of Execution Times of Computing

Components on Modern Processors

It has been mentioned (Sec.4.2) that the i time of a i is

a function of a number of variables as defined by Eq. 4.1. The DEVS model allocates
definite time windows to the components. In order to satisfy the DEVS model, the
component execution time must be predictable and the maximum value must be within

the corresponding window.

Over the years the architectures of microprocessors have adopted pipeline architectures to

achieve high average throughput. This pipeline feature, however, has incorporated

in the actual ion time of a i as ined in sec.

D.5. The actual execution time not only depends upon the computational complexity of

the component, but also upon the sequence of i i ing the
The reasons behind this randomness are the hazards that prevent the next instruction in

the i ion stream from ing during its i clock cycle [63]. These

82

hazards include structural hazard, data hazard and control hazard [63]. The occurrence
of these hazards will stall the pipeline and the execution time of an instruction will be
extended by an undefined amount depending upon the nature of the other previous
instructions in the stream. Therefore, the value of the tuples / F and D should be

computed by running the on the actual . The value by

the i ity will not provide the basis of calculating actual

execution time. If this is not done in the prescribed way, it will be very difficult or may

be impossible to satisfy the DEVS model in the i ion phase in a fecti

manner. As a result the reliability of the system will suffer.

The statistics of clock cycles per instruction (CPI) for different benchmark programs
running on a modem processor has been reported in Section D.3 [63]. From these

statistics, it appears that the variations of CPI in these programs are more than 100%.

Therefore, the consideration of this source of in the

time is very important in estimating the actual computing time.

Hierarchical memory organization has been accepted as a realistic approach in building
memory system [64]. Memory devices at a lower level are faster to access, smaller in
size, and more expensive per byte, having a higher bandwidth and using a smaller unit of
transfer as compared with those at higher level. The effective access time of a data unit

from the memory can be defined by the following equation [62]

Ty= Z‘ fits (4.12)

Top = Ity + (1= hyty + (L= Iy Y= iy sty ool =y Y= By)= (L= iy)t (4.13)

Here, f; is the access frequency (probabilistic term) to ith level, #; is the access time to ith
level, A;is the hit ratio (probabilistic term) at ith level. Therefore, it is evident from these
equations that data access time is random, and depends upon the distribution of data in

different memory levels. The processors developed in recent past (e.g., Pentium, Alpha)

have internal memory known as on-chip cache [63]. Therefore, the designer of the

system to i the DEVS model has little room to avoid this

randomness in data access time. It should be noted that this randomness not only depends
upon the data access pattern within the computing component, but also upon the initial
data distribution at the different levels of memory due to data access of the previous

It has been i that the rands of the ion of

aperiodic events will make it virtually i ible to predict the distribution of data at
different memory levels. Therefore, it is recommended that the data distribution in the
different levels of the memory system must be initialized to obtain predictable value of
the 4th tuple, M. Due to the i of this initialization at the inning of the

of each i the value of the 5tk tuple H will increase. But
but this will help to make good estimate of the execution time of a particular component
resulting in higher reliability of the implementation of the DEVS model. This problem
can be dealt with as well by measuring worst case value if the system requirements do not

put constraints on lower bound of execution times.

A quantitative example of different scenarios of data distributions at different memory
levels has been shown in Table D.6. From this example problem, it appears that the
randomness of initial data distribution may make the actual execution times of the
components highly random. The consideration of this source of error is important to

ensure temporal correctness of the DEVS model in the operational stage.

4.8 Chapter Summary

The rationale of selecting the i of the it system for

implementing the DEVR model of a SFS has been outlined here. The hazards to ensure
temporal correctness of the DEVR model in the implementation phase have been
identified and potential solutions to address these hazards have been proposed. The
quantitative framework discussed in this chapter will help the developer implement a

sensor fusion system ensuring temporal correctness in a cost-effective manner.

84

Chapter 5

- Hardware Fault-Tolerance of the
Sensor Fusion System (SFS)

5.1 Introduction

From the hardware perspective, an SFS is a physical system consisting of a number of
electronic components and sensors connected in a particular fashion. Mechanical
components (e.g., connectors, wires, PCB) to support the system are not part of this work.
Due to the effect of the manufacturing process, aging, and operating conditions these
components may fail to do their job in course of time. Therefore, the reliability of the
system is a function of the mean time to failure (MTTF) of these components [65]. Due to
the requirement of the unsupervised operation of the SFS for a prolonged period of time
in safety and mission critical operations, the failure of these components should be
detected and a faulty component should be replaced by a fault-free one autonomously.

The detection and replacement of the faulty components will be treated as if these

components did not fail,

provided that this fault

clearance operation is not

detrimental to the system’s

H
E
H : P
per This g //
H
in the use of components has g // 2
the potential to increase the i % ;
reliability of the system [57]. - ”) =
1|
This is based on the argument E e matse Syt o 20

that if there are n identical

Figure 5.1: The reliability profile of redundant parallel

components in parallel, on the system.

85

assumption that only one working component will provide the required output, the

reliability of this parallel system is

R=1-p" G.1)
Here, p is the probability of failure of each parallel component. The reliability profile of

such parallel system for different numbers of parallel sensors (paths) is shown in Fig. 5.1.

Due to the need of some mechanism for checking the working component and switching
to the next component when it fails, a better figure for overall reliability is given by

multiplying R by the reliability of the checking and switching mechanism.

If no fault-free component is available, the SFS should report its functional status to the
reasoning unit to avoid the malfunctioning of the intelligent system as a whole. Due to
the stringent timing requirements of the periodic and aperiodic events (Chapter-2), the
overhead of the detection and clearance of these component faults should be estimated.
This estimate will allow the developer to keep enough room in the temporal specification

of the discrete i and the ituti to ensure the

correct temporal performance of the system.

The SFS is composed of multiple building blocks. The fault-tolerance of these building
blocks can be achieved using different techniques. The redundancy overhead of these
building blocks has different effects on the periodic and aperiodic events of the
requirements model of the system. In general, different techniques to achieve fault-
tolerance of different building blocks of SFS will be explained in this chapter with
particular emphasis on the sensor module. The improvement of reliability and the
required overhead for the incorporation of fault-tolerance in sensor module will be
analyzed. Special emphasis will be given to the dependence of different levels of fusion

on the reliability of the supporting sensors.

86

5.2 The Fault-Tolerance of the Building Blocks

The SFS is made of six major building blocks: sensors, analog processors (APs), analog
to digital converters (ADCs), digital processors (DPs), memory modules (MMs), and I/O.
These building blocks operate in the analog, hybrid and digital domains. Due to their
uniqueness, the techniques and effects of detection and clearance of faults of these

building blocks are not identical.

5.2.1 The Fault-Tolerance of the Sensors

From the ive of
Sensor
fault-tolerance, a sensor | ngescage to b Analog electrical
signal g(t)
can be modeled as an sensed Physical Erbedded o
Sensor
analog electrical ~signal [e]

ST (9 iss' shown I Figure 5.2: Model of a sensor as an analog signal source.
Fig. 52. Some of the

commercially available sensors have built-in preamplifiers and filters to sense very weak
information in noisy environment. Therefore, there is a justification for modeling a sensor
as signal source from a practical point of view. Here, it has been defined that physical
information (e.g., pressure, vibration, temperature) will be called physical signal and its
electrical equivalent will be called signal. The wave form of g(1) depends upon the
pattern of the sensed physical signal, p(?), and the functioning state, s(%), of the sensor as
shown by the relation

8(1) = Kp(1)s(t) ¢2)
Here, the coefficient K, the conversion ratio, is a constant. From the perspective of fault-

detection (i.e., presence of fault), s(?) is a binary signal: erroneous value and error-free

value.

87

5.2.1.1 Techniques of Fault-Tolerance of Sensors

To achieve fault-tolerance in the operation of the sensors, the faulty sensors should be
detected and replaced by fault free ones. Through a simple switching mechanism a faulty
sensor can be replaced by a properly functioning one. The main problem lies in the
detection of a faulty sensor. The state of the functioning of the sensors can be detected by

using majority voting and estimation techniques [55],[57],[30].

5.2.1.1.1 Majority Voting Technique for Sensor’s Fault Detection

The majority voting i in

fault detection of sensors is based | A particular A setof
message 5€nsors

on the principle that if a set of
sensors S={s; 2< :) is used to

sense the same physical parameter,

by comparing the sensed signals

from different sensors the state of
{hieserisors: cair bes determined, Figure 5.3: Redundant sensors to detect the states of

sensors.
This is i in

Presence/absence
of fault

Fig. 53. Experimentally faulty
sensor was detected using this

voting concept as reported in section

G.2. Different types of voting

techniques are used in the Figure 5.4: Two redundant sensors can detect
only the presence of faults.

comparator module to detect the state

of the sensors. Available voting i work sati ily if the size of the set of the

redundant sensors is more than two [57]. In case of two redundant sensors, the voting
technique is able to detect only the presence of faults, but is unable to detect the faulty
sensor as shown in Fig.5.4. This technique completely fails to detect the state of the

88

sensor if the size of the set is one. The state diagram using Markov's Model showing the
possible state transitions for a triple modular redundant sensor system using voting as a
fault detection technique is shown in Fig. E.4. The reliability profiles of fault-tolerant
sensor systems having triple and 4-modular redundancy are shown in section E.3. From
these profiles it is evident that a sensor module with redundant sensors has the potential

to have higher reliability than that of single sensor alone.

The addition of the comparator module (usually in hardware) increases the complexity of
the system. The failure of this module will result in the failure of the system. Thus the

reliability of the system will suffer. To make this scheme effective, the redundant sensors

should be in ion. This i i will make the effective service time
of the sensors shorter. , in a power i ion (e.g., unsupervised
system in mis ity powered by battery) the extra power loss in the

operation of redundant sensors will impede the application of this scheme. The cost
related to deploy extra sensors is another limitation of this scheme. This scheme becomes
ineffective and even can provide a completely wrong decision if more than half (or all) of
the sensors fail simultaneously. This situation may occur due to a problem in power
supply. The overheads in the form of hardware, energy, and space to incorporate fault
tolerance in the sensor module of an example sensor fusion system are explained in
Appendix E2.1.

The saturation characteristic of the physical sensor and the supporting electronics is
another constraint to the effectiveness of this approach. If the values of the physical
signal go beyond the expected threshold value, due to the saturation effect of the sensor,
the signal generated from the sensor will not represent the corresponding physical signal.
In this operating condition, all the sensors will generate the same g(z)(dc value due to
saturation effect). Therefore, this voting technique will fail to detect that the sensors have

failed to convert the physical signal p(?) to its equivalent electrical signal g(z).

5.2.1.1.2 Estimation Technique for Sensor’s Fault Detection

The message space M, the state of the sensor, has two messages m, , fault-free state, and
m,, faulty state and the decision space D also has only two elements d,, sensor is
functioning properly, andd,, sensor is malfunctioning. Therefore, this is a binary
decision theory problem [66] and the decision is based on the measure of differences
between the features of the p(2) and g(?). If the probability distributions of the features of
p(t) are known, the decision rule d(z) maps the observation space, features of g(z), into
the binary decision space in some optimal manner. Since there are only two decisions,

this is equivalent to dividing Z into two decision regions Z, and Z, such that

d(z)=d, ifz €2 (5.3)

d(z)=d, ifz €2, (5.4)

The regions Z, and Z, must be disjoint (i.e., Z A Z, = @) in order that each point in Z
will yield a unique decision. The regions Z, and Z, must cover Z (i.e., Z UZ,=Z) in

order that each point in Z will have a decision associated with it.

If the adopted estimation technique satisfies these decision conditions, most of the
limitations to detect sensor fault vsing different voting techniques will be overcome. The
limitations of this scheme are the degree of accuracy of its ability to detect sensor faults

and the required computational time to perform this detection.

The comparisons of the reliability profiles of a triple and four modular redundant fault
tolerant sensor systems using voting and estimation techniques as a means of fault
detection are given in section E.5. The ratios of the reliability profiles of fault tolerant
systems using voting and estimation techniques shown in Fig. E.9 clearly indicate that

estimation based technique has the potential to achieve higher reliability than voting.

5.2.1.2 The Effect of Sensor’s Fault-Tolerance on the Performance of

the System

The periodic events (Chapter 2)

interact with the sensors.

Service time of

iodc events
Therefore, the overhead related aperiodc v

to the fault-tolerance of the | —»| Time between two successive periodic events |&—

sensors will affect the periodic DAT : Data acquisition time .

TCAD: Time for the computation of the acquired data
performance of the system. The PE.Te: Time for the service of a periodic event

WT: Waiting time at readiness state for next periodic event
TBPE: Time between two successive periodic events
STAE: Service time of aperiodic events

system waits in the readiness

state to serve the next periodic

event. To make the operational Figure 5.5: Distribution of time for different tasks
. ; between two successive periodic events.
scenario comprehensible, the
interval between two successive periodic events is divided into multiple segments as
shown in Fig. 5.5. The relationship among these segments is given by the following
equations

TBPE = DAT +TCAD + STAE +WT (5.5)

PE.Te = DAT + TCAD (5.6)

The occurrence of a sensor’s fault during TCAD, STAE, and WT does not interfere with
the operation of the tasks executed during these periods. Therefore, the detection and
clearance of sensor’s fault occurred during these periods can be deferred to the beginning
of the next periodic event. The value of #T is random, which varies from zero to a certain
positive number depending upon the operating conditions of the system. Therefore, fault-
clearance during this period may not be justified for safety critical systems. However, for
systems with limited safety requirements, the developer can use this time for the
clearance of faults. The conservative solution is to extend the DAT to accommodate time

for the detection and clearance of faults of the cor ing sensor. U this

91

scheme wastes system resources. Another scheme is to pause the periodic event
generation clock to extend the DAT on demand basis. This scheme dynamically changes
the sensing period. If both the rate of occurrence of faults and the time required for
detection and clearance of the faults are very low, this scheme is an acceptable approach.

There is a need for optimization to select a particular approach.

If fault occurs during DAT, the fault should be cleared immediately. During this fault
clearance period data will be lost and the DAT will be extended due to this interruption.
Therefore, steps should be taken to address this problem to handle faults occurred during
DAT.

The effects of fault-tolerance overhead on the system depend upon the adopted fault

detection scheme (i.e., voting and estimation). Therefore, they should be treated

separately.

5.2.1.2.1 The Effect of Voting Technique

If the voting algorithm is
implemented in hardware logic in the
comparator module, the fault | Amplitude

detection scheme will run in parallel 2

with the service of other events | Faultclear- [pry
ance period

creating no temporal overhead on the

execution of the user’s requirements. Figure 5.6: Loss of data during fault clearance
period

Therefore, it is recommended to

extend DAT to clear the faults occurred during TCAD, STAE, and WT. But if faults occur
during DAT, valuable data will be lost during fault clearance time as shown in Fig. 5.6.
The presence of this effect has been detected in an experimental setup to achieve fault-

tolerant triple modular optical sensor as shown G.2. Either the data must be restored or

the data acquisition process must be repeated. Both the restoration and the repetition will
extend the DAT. The developer has the option either to keep enough room (required for
restoration or repetition) to specify the PE.Te or to pause the clock until error free data

is complete to this ion. The decision will be driven by the

nature of the system. For stringent temporal specifications, it is recommended to specify
PE.Te considering the time required for data restoration. On the other hand, for less time
critical systems it may be feasible to pause the clock until error free acquisition is

complete.

5.2.1.2.2 The Effect of Estimation Technique

This technique analyzes the sensor data to estimate the state of the sensor. Since the

of data is a ition of this ique, part of PE.Te is permanently

assigned to do this estimation job. If the fault is detected, the faulty sensor must be
replaced by a fault-free one and the data acquisition process must be repeated. It should
be noted that the fault detection task is executed in sequential fashion. The estimation
technique is unable to separate the faults occurred during DAT and TBPE-DAT. In this

scheme there is no room for data i The i should be

executed every time to acquire data from the sensor. Therefore, this will create significant
overhead in the temporal behavior of the system. To reduce this effect, the estimation
algorithm should be simple and effective. A very complex algorithm may be very
effective in fault detection, but may not be suitable for application due to temporal
overhead. An optimization of the effectiveness and temporal overhead should be

performed to deploy any estimation technique for fault detection.

This basic framework to detect the overhead to incorporate sensor fault tolerance in
system design has been used to detect temporal overhead of an example sensor fusion

system as explained in Section E.7.

5.2.2 The Fault-Tolerance of the Analog Processors (APs)

The job of the analog p is to
condition the signals generated from the

Py &)
sensors to make them easily interpretable.

The propagation of physical signal through
the sensor and analog processor Figure 5.7: Generation of /{t) from
] . physical signal.

(for signal) can be

explained by Fig. 5.7. In a sensor fusion system, the information about p(z) is recovered

from f{t). Therefore, it is essential that the wave shapes of f{z) and p(z) must be very
similar. If it is assumed that the sensor is fault free, the relationship among p(?), f{t) and
the operating state of the AP, ap(?), is defined as follows

S)=K p() ap(t) (5.7

This Eq.(5.7) is similar to Eq.(5.2), which relates the physical signal, the operating state
of the sensor and the output signal g() from the sensor. Therefore, the fault detection
techniques as described for the sensors can be applied for the APs. The analog processors
like the sensors are used to serve the periodic events. Therefore, the effects of the fault-

tolerance of the APs are similar to those of sensors.

5.2.3 The Fault-Tolerance of the Analog to Digital Converters
(ADCs)

The ADC converts the analog signal, /{2), conditioned by the AP into a digital signal,
f(nT). The information content of f{n7) and /{z) must be very close to make it possible to
recover information from f{nz) about p(%). Therefore, the relationship between f{%), f{nT)
and the operating state of the ADC can be explained in the same way as for the

relationship between sensor and the AP. Like sensors, Aps and ADCs are only used to
serve periodic events. Therefore, their fault tolerance and effects on the operation of the

system can be viewed in the same ways as those for sensors and APs.

5.2.4 Separation of faults of Sensors, APs and ADCs

If the voting technique is used to detect the faults in the sensors, the APs and the ADCs,
the failure of these units generate unique events as shown by Fig. 5.8. If the estimation

technique is used to detect the faults of sensors, APs, and ADCs, the problem is

as the estimati ique is based upon the difference of the features of
f(nT) and p(t) as shown in Fig. 5.9.

Event for fault in Event for fault in Event for fault in
sesnor analog processor ADC

Figure 5.8: The generation of event for detection of faults in sensor, AP and ADC

Event for
fault in
sensor or
Ap or ADC

Figure 5.9: The generation of events for detection of fault in sensor, or
AP, or ADC

Therefore, the faults of sensors, APs and ADCs are fused together as single fault. Under
this circumstance, the sensors, APs and ADCs should be replaced one after another until
the system is fault free. This will increase the fault detection overhead significantly.

Therefore, to use estimation technique, this overhead should be considered.

5.2.5 The Fault-Tolerance of the Digital Processors (DPs)

Both voting and estimation techniques may be used to detect the faulty processor. The
voting technique uses more than two processors connected in parallel through a
comparator similar to the technique used for the sensor. After detection of a fault, the
faulty processor should be replaced by a fault free one. The voting technique for detection
of faulty processor suffers from similar limitations to those of the voting technique for the
detection of faulty sensor. Therefore, these disadvantages should be considered before

accepting technique.

The estimation techniques for the detection of faulty processors are different from those
for sensors, APs and ADCs. The basic concept of estimation of the presence of faults in a
processor is to test the functional reproducibility of the processor [57]. Allowing the
processor to perform a known task can test this. The execution of this test job should use

all of the internal components of the processor.

Different types of voting and estimation techniques are available in the public domain
[55]. The objective of this work is not to develop a new technique or explain the publicly
available ones, rather it is to study the effect of these techniques on the performance of

the system.

5.2.5.1 The Effect of Digital Processor’s Fault-Tolerance on the

Performance of the System

The failure of the digital processor will affect both the aperiodic and periodic events
unlike sensors, APs and ADCs. Therefore, special care should be taken to handle faults of

the digital processor.

5.2.5.1.1 The Effect of Voting Technique

In this scheme, due to the occurrence of faults in the processor, any event (both aperiodic
and periodic events) under execution will be interrupted. If a fault occurs during DAT,
either data lost during the fault clearance time should be restored or the data acquisition
process should be repeated until error free data are collected. If a fault occurs during the
period other than DAT, only the problem of unpredictable delay of service of the events
should be addressed. It has been assumed that due to the occurrence of faults in a
processor all processing states can be restored from a parallely operated fault free
processor. The delay of the service time of the events due to the temporal overhead of
fault clearance can be addressed either keeping enough room (required for restoration or
repetition) in the temporal specification of the discrete events or pausing the periodic

event generation clock on demand basis.

5.2.5.1.2 The Effect of Estimation

Estimation is a delayed fault detection technique and in order to minimize the effect of
delayed detection the test program should be run as frequently as possible. The
malfunctioning of the system due to this delay should be as minimum as possible. This

requirement will create extra computational overhead on the service of the events. If n is

97

the number of times the test program is run during the service of an event, the service
time of the event will be extended by
ATe=nT (5.8)

Here, T is the execution time of the test program.

Therefore, during the requirements modeling this overhead should be considered to
ensure temporal performance of the system. It should be noted that the effect of the delay
of the detection of fault should be optimized with the execution overhead of the test
program. The sequence of tasks to acquire fault-free data while estimation technique is

used to detect faulty sensors is shown in Fig. E.24.

5.2.6 The Fault-Tolerance of the Memory Module (MD) and the
digital I/O

The fault tolerance techniques for memory module and digital /O are similar to those for
the digital processor. The effect of faults of memory module and digital VO are also
similar to those for the processor. Therefore, these problems should be addressed as

discussed in section 5.2.5.1.

98

5.3 The M e of the Depend of Different Levels of

Fusion on the Reliability of Sensors

In a typical sensor fusion system, fusion occurs at three different levels: data, feature, and
decision. To achieve the goal of this work to synthesize an engineering framework for
the development of a reliable sensor fusion system, it is important to measure the
dependence of a particular level of fusion on the availability of data from the supporting

sensors. To materialize this objective,

a fault tree [65] has been used to
visualize the links of the failures of
Fault free state : 1

the sensors to the failures of the | Faultystate :0
OR logic

AND logic
R . for
generation of the events at different

for
levels of fusion. In this proposed redundant
role

independent or
complementary
roles

discrete event frame work, fusion
oceurs through the service of these

events. Therefore, a failure to

Failure | | Failure
of sensor | | of sensor
3| 4

Figure 5.10: The fault tree of a typical event.

generate these events will result in

the failure of fusion. The fault tree of

a typical event is shown in Fig. 5.10.
In this proposed framework, the
service of the event ‘A’ will result in the fusion of data from sensors 1, 2, 3, and 4. The
failure of the supply of data from the sensors 1 or 2, 3, and 4 will result in the failure of
the generation of the event ‘A’. The reliability of the generation of the event ‘A’ (i.e.,
fusion of data by the service of event “A’) is a measure of the compound reliability of

these sensors. The quantitative relation to measure this reliability profile is shown below.
R@) =[1-{1-R ()} 1= Ry (D}R, (DR, (?) (5.9
Here, R() is compound reliability; R;(2), Ra(2), R3(2), and Ry(t) are the reliabilities of

sensors 1, 2, 3, and 4 respectively.

99

This development has been applied for the depiction of the fault trees and reliability
profiles of different aperiodic events of the example sensor fusion system (Appendix A
and B) at different levels of fusion. This SFS fuses data at three different levels (e.g., data
level, feature level, decision level) by the service of eight aperiodic events (i.e.,
AE,,..,AE,).

5.3.1 The Fault Trees and Reliability Profiles of the Example

Sensor Fusion System at Data Fusion Level

The data level fusion is performed by the service of the five aperiodic events: AE,, AE,,
AE,, AE,, and AE;. The fault trees of the generation of these events AE,, AE,, AE,, and
AE; are shown in Fig. E.10, Fig.E.16, Fig.E.18, and Fig.E.12 respectively. The reliability
profiles of these events with different levels of redundancy are shown in Fig.E.l1,
Fig.E.17, Fig.E.19, and Fig.E.13 respectively. From these reliability profiles it is evident
that the redundancy in the sensor modules decreases the probability of failures of these

events.

5.3.2 The Fault Trees and Reliability Profiles of the Example

Sensor Fusion System at Feature Fusion Level

The generations of the aperiodic events AE, and AE, cause the feature level fusion. The
fault trees of AE, and AE, are shown in Fig.E.20 and Fig.E.22 respectively. The
reliability profiles of these events shown in Fig.E.21 and Fig.E.23 make it clear that the
fault tolerance in the sensor system has the potential to enhance the reliability of feature
fusion.

5.3.3 The Fault Trees and Reliability Profiles of the Example

Sensor Fusion System at Decision Fusion Level

The fault tree of the only event AE, responsible for decision fusion in this sensor fusion
system is shown in Fig.E.14. The reliability profile of this event shown in Fig.E.15 shows
that the redundant sensor system also increases the reliability of decision fusion.

5.4 Chapter Summary

The potential to enhance the reliability of sensor system by the use of fault tolerance has

been . The heads to i this fault tolerance have been identified.

Techniques have been proposed to change the DEVR model to accommodate this
overhead. The fault-tree based approach is proposed to measure the reliabilities at
different levels of fusion and this technique has been used successfully to evaluate the
reliability profiles at different levels of fusion of an example sensor fusion system as
shown in Appendix E. This novel technique to measure the reliability of different levels

of fusion in terms of the reliability of the supporting sensors has the potential to improve

the st: f-the-art of the ineering method of i y sensing systems. The
measurement of this critical design parameter is based on sound quantitative reasoning

and tested in the design of an example sensor fusion system. This knowledge component

specifically contributes to the process of ization of scientific to

engineer highly reliable sensor fusion system.

Chapter 6

- The Detection of Sensor Faults
Using Local Statistics

6.1 Introduction

High reliability is a dition for the d of multi: i systems in safety
and mission critical operations. The use of redundant sensors has the potential to enhance the
reliability of the sensing sub-systems (Appendix A). The estimation based fault detection scheme
has better potential to enhance the reliability than voting technique based fault detection scheme
(Section E.5). Moreover, the voting technique fails to detect the presence of faults if all the
redundant sensors are affected [57], for example in the case of transient faults due to the
switching actions of the neighboring inductive loads (e.g., dc motors, relays) [67] or due to
electrostatic discharge induced in a space environment. These transient faults may corrupt the

data acquired from multi: i unsupervised systems (e.g., scientific experiments
deployed in unmanned space environment [55] or in other special environments). If the presence

of i remains the data acquired from these unsupervised

autonomous systems may lead to the misconceptions about the sensing environments. To remain
within the scope of this thesis, the detection of transient faults will be investigated in this Chapter
of this thesis. Other types of sensor faults are not addressed by this work (e.g., intermittent fault).

In a single processor based multi-sensori system, data are acquired from each sensor for a short
period of time in a particular sequence. The sequence of sensing is defined by the phases and the
periods of the sensors defined by the DEVR model of the SFS (section 2.2). The data acquired
from each sensing session must be interpreted to detect the presence of faults. The main aim of

this research is to devise a robust mechanism to detect the presence of transient faults in the

102

acquired data. As reported in Section 5.2.1.2, the data interpretation time required fault detection

must be as small as possible to keep temporal overhead at minimal level.

For a particular process, the measurable parameters have specific domains of amplitudes and
variances. The prior knowledge of these domains may facilitate the detection of faults in the
sensors deployed to measure these process parameters [68]. The detection of sensor faults by
examining the pattern of deviations of engine signals from their nominal unfailed values has been
reported [69], and a Kalman filter-based dedicated observer has been used to detect sensor faults
[70]. The requirement for a dedicated processor for each sensor is a limitation for its use in single
processor-based multi-sensori systems. Semsor faults have been detected by using
computationally complex and model-based estimation technique [71]. The sensor signal
amplitude has been used to detect the failure of faults in automotive engines [72]. The detection

of transient fault has not been addressed [72]. The different algorithms based on analytical and

ge based for fault di is reported in a survey [73] are computationally
complex. The DI of another putati complex if has been reported to
detect sensor faults [74]. The i for a dual system is the limitation of a

reported technique to detect sensor faults [75]. The limited scientific basis (subjective due to the

dependency on training set) for ing the pattern iti makes the neural

network based fault detection approach [76] inappropriate for the present problem. A reported
technique for the detection, isolation and identification of sensor faults in nuclear power plant
does not address the problem of detection of transient faults [77]. The use of statistical
characteristics to detect faults in earth sensors has not covered the detection of transient fault in

sensor data stream [78].

The available techniques uncovered in this literature search have been developed mainly to detect
the permanent faults of sensors. Despite the mathematical sophistication of these methods, it is
fair to say that most of these techniques are computationally complex. Moreover, none of these
techniques has addressed the problem of detection of transients present in sensor data in multi-

sensori systems in a comprehensive manner. The i of a dedicated to detect

fault in each sensor is another limitation of some of these methods. Therefore, it is fair to

103

conclude that these available techniques for the detection and isolation of faulty sensors are not
computationally simple and adaptive. The objective of this part of this thesis is to develop a
simple and adaptive technique for the detection of transients in sensor data stream. It should be
noted that due to the potential of degradation of sensor signal the use of a low pass filter to

eliminate the transient has not been pursued in this thesis.

6.2 The Detection of Transient Faults Using Local Statistics of

Sensor Data

A typical sensor used to measure physical parameter produces an equivalent electrical signal

corrupted with normally distributed random noise as given by

#(T) = p(nT) + ©.1)

Here, g(nT) and p(nT) are discrete sensor and physical signals respectively, and T is the

sampling period.

The local variance and mean of a segment of this sensor signal are measured by the following

relations:

et
> (elk)—g(KN +)T)

by te

£K= yroat 62

5 scrn v omy
(K= =

(6.3)

v

Here, g?(K)and g(K) are the local variance and mean of the K segment.

The variance is the measure of the scatter of the corresponding sensor data (e.g., pressure,

temperature) from the mean value [78]. The upper and lower limits of the variance specify the

domain of of the corresponding sensor data. The presence of a transient

fault is characterized by the presence of variances outside of this domain. The use of this

parameter is proposed to detect the transient fault [79]. The transient is modeled here as damped
sinusoid as explained in Section F.3 [67]. To verify the effectiveness of this approach, the local
statistics of four test signals at different fault iti are by si ion and
documented in Appendix F.

6.3 The Statistical Characteristics of the Test Signals

The waveforms of the four test physical signals and the corresponding sensor signals are shown
in section F.2. Each test signal has been divided into 50 segments. The local statistics of each
segment is calculated by placing a window of the same dimension at the beginning of each
segment. The local means of these sensor signals resemble the waveforms of the corresponding
physical signals. The upper bounds of local variances of the first three sensor signals are very
low. Due to high frequency components of the

fourth sensor signal the upper bound of the Table 6.1: The local means of test signals.

local variance of this signal is much higher than | Test signals | Upper bound [Lower bound
those of the first three sensor signals. The 8,(nT) 7.01 1.82
upper and lower bounds of the local means and g,(nT) 8.20 291
variances of these four test sensor signals are g(nT) 7.01 1.82
shown in Table 6.1 and Table 6.2 respectively. 2,nT) 7.60 372
The bandwidths of these test signals are shown
in Table 6.3.

Table 6.3: Bandwidth of the test

Table 6.2: The local variances of test signals. signals.

Test signals [Upper bounds[Lower bounds| Signals Bandwidth in Hz
&@T) 0.1298 0.0057 £(nT) 20 Hz
&(nT) 0.1169 0.0065 (nT) 40 Hz
&mD) 0.1298 0.0057 &(nT) 60 Hz
8,(nT) 1.006 0.0092 2(nT) 180 Hz

105

6.4 The Analysis of the Signature of the Transient Faults on the Test

Signals

A transient fault in the form of a damped sinusoid [67] of Sms duration has been superimposed
on these four test signals at 70ms from the origin as shown in section F.3.1, F.3.2, F.3.3, and
F.3.4. It appears that the local means of these signals do not indicate the presence of these
transients. The signature of these faults as sharp rise of local variances at almost 70ms from the
origin reveals that the thresholding of local variances can be used to detect the presence of
transients. The ratios of the peaks of these local variances to those of the corresponding fault
free sensor signals are shown in Table 6.4. The locations of these variance peaks are also shown
in this table. It appears that the ratios of these variance peaks are function of the highest

frequency components present in these ~ Table 6.4: The statistics related to the signature of the
transient on test sensor signals .
test signals as shown in Fig. 6.1.

Test signals | Ratio of peaks | Location from origin
From this simulated test result, it is &) 42 70ms
found that there is a good potential to | £20D) 16 10ms
detect and locate the presence of &(nT) 13.79 70ms
transients on sensor signals by &@T) 210 70ms

comparing the peaks of the local
5 - 5 The distribution of the ratio of the peaks
variances at faulty condition with those for different signals

at fault free condition. It should be
noted that the achievable locational

The ratio of

accuracy is extremely high and is not a
Y, ¥ high the peaks

function of the bandwidth of the sensor
signals. It is found that the o

15
20
[0
Yoy

delectability of transients by this
method diminishes with the increase of The test signals

the bandwidth of the sensor signal. Figure 6.1: The distribution of the ratio of the peaks of
local variances of the test signals at transient fault.

106

6.5 The Effect of the Transient Faults at Different Locations on the
Local Statistics of the Sensor Signals

The occurrences of transients at 98 different locations on these test signals are studied. These
faults have been simulated at integral multiples of 2ms from the origin. The profiles of the local
statistics of the test signals with transient faults at different locations are shown in section F.4.1,
F.4.2, F.43, and F.4.4. From this simulation results it is clear that the local means are not
affected by the variations in faults locations. But the ratios of the maximum peaks of the
variances vary noticeably with the variation of the location of occurrence of transient faults. The

pertinent salient features of these variations are summarized in Table 6.5.

Table 6.5: The variation of the maximum peaks of the sensor signals with the occurrence
of transient faults at different locations.

Sensor signals Upper bound Lower bound Difference of | % of variation
of the of the variations
i peak i peak
&(nT) 43 34 9 32%
&(nT) 20 14 7 50 %
2,@T) 8 3 5 38%
8(nT) 4 2 2 50%

Due to this wide variation of the peaks with the location of the transient faults, it is
recommended to consider the worse case scenario to set the threshold. This simulation reveals
that the ratios of these variations are not directly related to the bandwidth of the signals. But the

differences in these variations are found related to the bandwidths of these test signals. From the

profiles of vari: of the of i at two different locations from the origins
(e.g., Oms and 18 ms) it is understood that the locational accuracy is not a function of the position

of the faults.

107

6.6 The Effect of Window Size on Local Statistics at Transient Fault

on Test Signals

The local statistics of the sensor signals at different window sizes varying from .2 ms to 12 ms
have been calculated. The simulation results of this study have been reported in sections F.5.1,
F.5.2, F.5.3, and F.5.4. With a decrease in window size, the computational complexity increases
linearly. From this simulation study it is found that with the decrease of window size the
transient detectability increases due to the generation of higher value of variance peaks. At large
window size the transient detectability decreases significantly. This finding can be clarified
further by observing the effect of window size on the local variances of the fourth signal. At a

4ms window size, the maximum peak has a

much higher value at the location of the transient 15
than at other places. With the increase of the 10.
window size, values of the peaks at other places ;:"'.: 5.
of the signal become comparable to those at the o
location of the transient resulting in a false .

: <) 4ms 3ms 10ms
detection. The effect of window size on the i

The window size

detectability of transients using this proposed

Figure 6.2: The variations of the ratios of
the peaks during transient with the peaks
Fig.6.2. From this graph it appears that the during the rest of the signal at different
window sizes for the fourth test signal.

local statistics based approach is shown in

probability of false detection of a transient
increases with an increase in window size. It
should also be noted that the peak size decreases with the decrease in window size beyond a
certain value (e.g., the .6 ms for this test simulation). The maximum peak values for these four
test signals have been detected at the .6 ms window size. Therefore, the dependence of the value
of the peak on the window size must be taken into consideration in order to select the threshold

for a particular sensor signal.

108

6.7 The Effect of Window Locations Relative to the Position of the

Transient

The window location has been varied in
.05ms steps relative to the starting position 280,
of the transient. The simulation study e

reported in section F.6.1, F.6.2, F.6.3, and vanation
the ratio of

the peaks

150.

100.
F.6.4 reveals that the value of the peak is a
s0.

function of the location of the window. For

First Second Third Fourth

these four test signals, it has been found
. . . Test sig Il
consistently that the maximum peak size s

occurs when the window is located at the Figure 6.3: The maximum variation of the ratio of
the peaks with the variation of the window

start of the transient. iati : : i
sicnt, “The variation’of peal locations relative to the transient.

sizes with the change of the location of the
window are shown in Fig. 6.3. Therefore, this characteristic must be taken into consideration in

order to detect the transient using a local variance method.

6.8 The Effect of Different Frequencies of Transient Faults on the

Local Statistics

The frequency of the transient has been varied from 500 Hz to 10 kHz in 500 Hz increments. The
From this study it is

simulation results are reported in sections F.7.1, F.7.2, F.7.3, and F.7.
found that the detectability of transient increases with the increase of the frequency. The effect of
the change of frequency of transient is more visible in low frequency sensor signal than in higher

frequency sensor signal.

109

6.9 The Effect of Noise Power on Detectability of Transient Faults

It has been noticed that the
detectability of transient faults using
local statistics (e.g., variance)
diminishes with an increase in noise
power. The ratio of the maximum
value of local variance of a sinusoidal
signal (first test signal as shown in
section F.2.1) to that of the same
signal corrupted with transient noise

is shown in Fig. 6.4.

45
40

Ratio 35
of peaks 30
of 25
tocal 20
variances 15

10
s
LE,
857 14.54 20.56 26.61 30.17 3276 3464 36.16
Signal to noise ratio (d8)

Figure 6.4: Variation of ratio of local variances with
the signal to noise ratio(SNR).

6.10 The Detection of Permanent Faults

Under permanent faults, the possibility that the output may be stuck at the lowest value or stuck

at maximum saturation level (intermediate values have not been addressed) has been addressed

here. Due to these extreme low and high values of the sensor signal, the local mean will go

beyond the normal operating domain. This deviation of the local mean at faulty condition than

that at normal operating condition can be used to detect the faulty sensor. It has been shown

through simulation in Appendix F that the local statistics mostly remain unaffected due to the

occurrence of transient fault. Therefore, it would be possible to separate permanent faults from

transient faults.

110

6.11 Chapter Summary

In this thesis it has been reported that there is a potential to detect and locate transient sensor
faults sensor signals based on the local variance of the sensor signals. The detectability based on
this principle is a function of the location of the transient, the window size, the location of the

window relative to the starting of transient and the frequency of the transient. Through

study, the itative i ion of these i ips has been ped in this
work. It has been shown that particular type of permanent fault can be detected with the
information of local mean which is virtually unaffected by the transient fault. It should be noted
that the estimation based sensor faults detection technique is based on finding odd features in the
sensor signals. There is always a potential that the estimation based technique can falsely identify

odd features.

Chapter 7

Restoration of Lost Sensor’s Data During
Fault-clearance Intervals

7.1 Introduction

The application of voting technique to detect faults in the fault tolerant sensor fusion
system as shown in Fig. 7.1{80] will result in loss of data during the fault-clearance
time(sec. 5.2.1.2.1). In a simplified form, Fig.7.2[56] shows the fault-tolerant sensing
scheme with hardware redundancy. In this figure, p(2) is the physical signal and f{n1) is

its equivalent digital electrical signal. The detection and replacement of faulty

* Physi APU: s W ADCU: DP: Digial
\PS e, PSn are physical AP P conversion unit P[Py are mictoprocessors
- A2 Embeded amplifiers. S ¢ First analog switch ADC1—ADCy ey DS Seconddigial switch
lasy = 1 ¢ First igt unitin
7 P Bt dkstion it in analog siate DSy + First digial switch ﬂiphl sute.
analo 'DF Fi it dteton i DFCU: Faulsciesrce it of DPU
71, 795 and 773 v st patem in digital state. S : Reasoning

F: Flag to represent the status of the SFU.

Figure 7.1: An architecture of fault tolerant sensor fusion system [80].

with fault-free require certain amount of time known as the fault
clearance interval. During this time, on-line sensor data will be lost. A simple solution to
this problem is to repeat the data acquisition cycle. If the signal is highly transient, the

of the isition cycle will lose signi! amount of i i Y

the ition will create signi: overhead to satisfy the stringent timing

requirements of the system. This unpredictable behaviour may result in malfunctioning of

the system. Therefore, a scheme should be developed to restore the lost data.

[Betection and
Ireplacement

Fault-fee one

Figure 7.2: A general scheme of fault-tolerant sensing using hardware redundancy.

The restoration of lost samples in digital signals in the area of communication and digital
storage is based on the estimation of the unknown samples from the information of the
neighboring samples [81]. The methods documented in public domain literature deal with
the ion of samples of band-limited and low-pass signals [82]-[85]. If the signal is

highly transient, the performance of these schemes suffers significantly. The estimation
schemes having the ability to recover transient signals with reasonable performance are
computationally complex [84]. Usually these schemes are iterative in nature. Initial
estimates for unknown samples are chosen, the signal is restricted to its assumed
frequency band, and the signal values at the positions of the unknown samples are used as
new estimates. This procedure is repeated until satisfactory results are obtained [86]. The
recovery of lost samples as solution of unknown samples from a linear system of

equations has also been used [82]. Some of these schemes are non-adaptive due to the

113

requirements of signal spectrum, or equivalently the autocorrelation function has to be
known in advanced [86],[87]. It appears that these available digital samples restoration
schemes are not very effective to recover sensor data lost during the fault-clearance
interval. To overcome these limitations, this thesis has proposed a new scheme based on
parallel sensing to restore data lost during the fault-clearance interval in hardware
redundancy based fault-tolerant sensing. This scheme is computationally very simple,
non-iterative and is not limited to particular class of signals. It does not require any
information about the nature of the signals and is virtually independent of the information
for the neighboring samples. This proposed scheme is capable of restoring lost sensor

data during fault-clearance interval.

7.2 A Unified Approach to Restore Lost Samples During Fault-

Clearance Intervals

In a data

session, N samples are Ficibchannst

. Analog Analog to Digital | 5i[7]
acquired from a sensor. Let ﬂ processor Convertor
Physicd

sfn] : n=12...N be the signal p(t) Second i

segment of samples ﬁ Annéwg to Digital | s2/n
) . . processor onvertor

acquired in a particular

session and s, the vector in Figure 7.3 : The acquisition of data related to the same
physical signal using two parallel channels

which the segment of data is
arranged. Let us assume that two segments of data s(n]and s,[n] are collected in parallel
from two separate sensors and analog channels sensing the same physical signal as shown
in Fig. 7.3. Therefore, under fault-free operation, these two segments are identical. When

a fault occurs, these segments of data contains £ and F2 number of fault-clearance

intervals. The positions of the samples during these intervals are at ¢;(k), k=1,2,...,mjj and

Jj=0.1,...,Fj. Here, i is the channel number, j is the number of fault-clearance interval and k&

114

is the number of lost samples in the corresponding fault-clearance interval. It is assumed
that these segments have o; regions having undefined samples of length U at locations
starting at the positions /iy[u], r=0,1,...,0i and u=0,1,..,U. It has also been assumed that
the fault-clearance intervals of these two channels do not overlap (i.e., at least one of
these two channels is functioning properly during the entire data acquisition period). The
samples in the ith channel during the fault-clearance intervals can be processed by the

following equations

si[n]=0,if n=tj(k) for all the permissible values of ;,./, and k. (7.1)

sj[n]=2*sj[n], if n=tj(k) for all the permissible values of ;,n/, and k. 7.2)
5 v/ if
Most of the lost samples can be recovered by the following relation

s'nl=

silnl+s:(n]
alnlsind 3

Due to the switching effect, data at locations /;[u]

in this recovered segment will be undefined. Due to | 7 |

the very short duration of switching time the value =g

of u will be very small. Therefore, these undefined

data can be recovered by simple linear interpolation | “i¥= ==
without incorporating significant error to obtain the :.':.1::”’"’{

estimated signal. This data recovery scheme can be

P
explained by a simulated test signal as shown in |™==ie™ 1‘
e
Fig.7.4. This concept has been successfully used to | ™= - o

recover data lost during fault clearance intervals in

a laboratory experiments as shown in section G.4.

Figure 7.4: An example of recovery of
samples lost during fault-clearance
intervals.

115

7.3 Restoration in Fault-Tolerance with Dual Modular

Redundancy

In dual modular redundancy, the voting technique cannot detect the faulty block. The
presence of faults in any one of the constituting blocks (e.g., sensors, analog processors,
and analog to digital converters) detected by the voting technique must initiate a process
to detect and change the faulty block. The time at different steps of the fault-clearance
process should be recorded to detect corrupted sample positions, so that sample values of
those positions can be restored using the restoration technique as explained in the
previous section (sec. 7.2).The fault-clearance process is explained in Fig. 7.5. Let us
consider that the probabilities of failure of the same type of blocks in both the two
channels are the same. It is assumed that only one block fails at a time and no other block
fails during the subsequent fault-clearance interval. Since the fault-clearance time is
extremely small in comparison to the total operating period of the system, this
assumption is reasonable. It is also assumed that fault-free blocks are available for the
fault-clearance operation. It should be noted that if the replacement of a probable faulty
block in the first channel does not clear the fault, it is likely that the fault has occurred in
the second channel. Then the fault-free block must be switched back to its previous

position. This switching in the fault-free channel (in this case channel 1) will make a few

samples during these iti The iti should be made as small as
possible so that these undefined samples can be using simple i

techniques (e.g., linear i i without i i igni error in the
reconstructed signal.

The restoration of corrupted samples due to fault-clearance is shown in Fig. 7.6. It has
been assumed that the interrupt generated for fault-clearance will carry the time of

occurrence of fault. It should be noted that if f; is the sampling frequency of the signal,

116

the delay (i.e., the value of m in delay block) and the fault-clearance interval should

maintain the following relation

. xfi > fault-clearance interval. (7.3)
This means that both the two sequences must be stored before reconstruction.
Change the Change the
Read status | probable faulty faulty block
word block from first from second
— f channel

ts1, the time the block
was switched in chap.-1

=0 152, the time the block
was switched in chap.-2

1 the time the fault

Locate the positions
152=0 means switching in of corrupted samples

channel did not occur.

Figure 7.5: The flow diagram of the fault-clearance process.

status word (SW) Interrupt for

fault-clearance
[Comparator 1
I Ce tor 2
! _:Cnmpanmr 3t
First channel
57 Analog Analog to Digital || | si(#]
processor Convertor
Physic
signal p() Second chamnel
5 Analog ‘Analog to Digital
processor
b, b, by Status word
0 0 0 Faultfree condition
0 0 1 Faultinsensor
0 1 0 Faultin analog processor
1 0 0 FaultinADC
Figure 7.6: ion of data during fault-cl in dual fault-tols sensing.

17

7.4 Restoration in Fault-Tolerance with Triple Modular

Redundancy

In triple modular redundancy, the voting algorithm to detect and replace the faulty block

can be implemented either in hardware or in software. Usually the fault-clearance time is

longer using software i ion than using hard i ion. The fault-

clearance time in hardware implementation can be made within the range of a few (e

one or two) sample times. The samples lost in this low fault-clearance time can be
restored through simple interpolation techniques, such as linear interpolation. The
restoration techniques in both the two approaches of implementation of voting algorithms

are explained in the subsequent sections.

7.4.1 Restoration Using Hardware Implementation of Voting
Algorithm with Triple Modular Redundancy

The basic concept of restoration of samples using

hardware implementation of voting algorithm with Voting “
module to -

triple modular redundancy in fault-tolerant sensing select the fault
is shown in Fig. 7.7. For this reason it is assumed o
that the voting module senses three inputs and
produces two outputs as shown in Fig. 7.8. The Figure 7.7: A simplified
representation of voting module.
input signals are derived from the i PR p——
00 1

block as shown in Fig. 7.9. These signals are analog !
3

x

0
for the sensors and analog processors and digital for L
1

1
0
1

the analog to digital converters. The relationship

between the two output signals and the selection of Figure 7.8: The selection of module
ith the output from the votin
the ¢omresponding block is shown in Fig. 7.8. e Raetae

118

PO [s2} Analog
multiplexer multiplexer| multiplexer|
s34 s T so S0 st so
‘oting module Voting module Voting module
selects the fault free selects the fault free selects the fault free
block block
’ lirlu]
restored
inear | signal sfn]
interpolation
at lir[u]
Figure 7.9: The restoration of lost samples in hardware is ion of the voting

The input signals of the voting module are to detect the presence of fault. Analog
comparators are used for the detection of faults of sensors and analog processors. For the
detection of faults of ADCs, digital

Triple
are used. The

5 dule
module and the relationship of the b

comparator module with the rest of 450;12;::3!?
= ﬁ%

the voting module is shown in Fig.

7.10. The fault-free block is selected | [j“’z“;‘;g‘;',_

J'L—J
from among the three modules based | [z

| T |
on the output of the comparator E'L_\‘_ 3 (123) L

module using majority agreement of

the inputs.

Figure 7.10: The comparator and majority voting
modules in the voting module.

119

The output of a comparator is zero if its inputs are equal (within certain range) and is one

if the inputs are not equal.

Therefore, the voter can be

The inputs and outputs of the majority voter are binary.

Table 7.1: Generation of outputs from the voting module in

designed as a digital response to the inputs from the comparators.
combinational circuit. The ["nputto the voter from | Outputofthe | Fault-free
truth table for the majority the comparator voter to the mux. | modules
voter is shown in Table [T uan] cioen [caen | s S

7.1. If only one module 0 0 0 0 0 1,2,&3
fails, the voting 0 0 1 x x unrealistic
is capable of 0 1 0 x X unrealistic
L output 5 T T 0 [} 182
signal to the T 0 0 X X unrealistic
to switch to the next — 5 T) 1 383
available fault-free T T) T) 1&3
module. If more than two T T T 1 T T
modules fail, the output (1

Figure 7.11: Hardware realization of the voting logic.

120

, 1) is an indication that more than two modules have failed. The digital logic circuit to

implement this algorithm is shown in Fig. 7.11.

In this scheme, the multiplexers select one among the three inputs as output. This selected
one can be called the main module and the remaining two can be called support modules.

If the fault occurs in the main module, the hardware realization of the voting logic

a to the multi to select a fault-free support module. After
switching to the fault-free module, the voting unit interrupts the processor to replace the
faulty module with spare fault-free module. The outputs of the comparator module (i.e.,
c.¢2, and c;) are used as inputs to an ‘OR” gate to generate this interrupt. The output of
the comparator module enables the processor to
replace the faulty module directly without trial
and error. Therefore, in this process data is lost [—*’C et i il SR
le—— FeP———f
only during the switching period of the faulty e

main module. This switching period can be |- comaparison time taken by the

o i comparator module

called fault-clearance period in this scheme. This | selction time taken by the voter

£, switching time taken by the multiplexer

fault period (FeP) i mainly

three components as shown in Fig. 7.12 and by Figure 7.12: Fault-clearance time
. . consists of three components.
the following relation:

FeP=t, 41, +1, a4

As all these three operations are done in hardware, FcP is very small. As a result very few

samples (one or two) are recoverable by using simple linear interpolation.

Due to the addition of extra hardware components to realize the voter, the reliability of
the system decreases. This situation can be improved by implementing the voter in the

software level provided that the software module does not contain bugs. Based upon the

of parti ication the designer will choose the specific approach for

the implementation of the voter.

121

7.4.2 Restoration Using Software Implementation of Voting
Algorithm with Triple Modular Redundancy

The software level implementation of the voter increases the value of ¢, which increases
the length of the fault-clearance period. This increase imposes constraints on the
restoration of lost samples using different restoration algorithms. Because the quality of
the performance of available algorithms depends on the number of the lost samples (i.e.,

FcP) and the known signal characteristics, steps are taken to overcome this problem.

This problem is overcome by reading data from two channels simultaneously, similar to
the case of dual redundancy. The signal from the support module is only used by the
comparator to assist the software voter to detect the faulty module without trial and error.
This scheme is better than dual redundancy in the sense that the chance of switching of

the fault-free module will be avoided. Therefore, there will be no undefined samples in

Interrupt to
the processor
Interrupt generator for
faul- clearance]_’
o i biasus
— word will be read
T by the processor
detect the fauity
['—;:: module.
Triple Triple i
comparator| |comparator comparator

(k)

i ey
(k)

Figure 7.13: Restoration of signal in triple modular redundancy with software
implementation of voting algorithm.

122

the /jy[u] periods. The overall system diagram is shown in Fig. 7.13. Due to the
avoidance of the chance of switching of fault-free module this scheme has the potential to
recover the signal completely. It should also be noted that this scheme outperforms the
hardware voter through complete elimination of the need of interpolation to restore
undefined samples. This scheme has been applied successfully in a laboratory set up to

realize triple-modular redundant fault tolerant optical sensor as reported in Appendix G.

7.5 Generalized Fault-Tolerance Scheme

From the system development point of view, it is logical to have the provision of
different levels of redundancy in the same system. This will maximize the use of the
system resources. The system uses triple redundancy when there are three or more than
three similar blocks. Dual modular redundancy is used when only two similar modules

are available. When no redundant modules are available, the system uses the estimation

algorithm to detect the fault. To achieve this objective
it is necessary to have a switching module which
allows both single and broadcast type of connections,
such as the crossbar switch. The basic concept of a
crossbar switch is shown in Fig. 7.14 [41]. Through

this switch module any module in the input can be

connected with any one in the output. It is also
@ on
O off

Figure 7.14: The structure of
connected to Oy, and /; has been connected with both ¢rogshar switch to connect the

possible to connect an input module to multiple output

modules. In Fig. 7.12., the input module, /7 has been

03 and Op,. This broadcast feature of crossbar allows modules
different levels of redundancy in the same design. The

overall system diagram is shown in Fig. 7.15.

123

Interrupt to

Tnterrupt generator for | (e processor
fault- clearance

Connection
selection

of fault-tolerant sensing to achieve different level
of redundancy.

For dual redundancy, the same module is connected to the two inputs of the comparator.
In the case of no redundancy, the same module is connected to all three inputs of the

comparator. The software maintains the record of the failed components and the level of

redundancy.

124

7.6 Chapter Summary

The proposed scheme is not based on the recovery of lost samples from the information
of the neighboring samples and is not limited to any class of signals (e.g., band limited
signal). It does not require prior information about the signal characteristics. This scheme
is computationally simple and is not iterative in nature. Therefore, this proposed scheme
based on parallel sensing is fast and is capable of recovering lost samples of any class of
signal. The addition of error to recover lost samples during switching periods through
interpolation is low due to the availability of very fast switching devices. Although the
requirements of hardware and software for the implementation of this scheme increase
the system complexity, the rapid recovery of lost samples makes this scheme a useful

solution for restoration of time sensitive signal in safety and mission critical operations.

125

Chapter 8

Conclusi and R dations for
Future Work

8.1 Conclusions

The objective of this thesis work was to synthesize a novel engineering methodology for
developing highly reliable sensor fusion systems of multi-sensori intelligent systems for
the applications in the safety and mission critical environments. This methodology
includes both the avoidance of faults during the development phase and the tolerance of
sensor failures during the operation phase. The salient features of this thesis work are

summarized in the following points:

. Petri net based a novel discrete event framework has been developed to model

requirements of sensor fusion systems as finite state machine. This framework allows

the modeling of different modes of data i i itive, 5
independent, and temporal in a unified manner. This framework has both the
graphical and mathematical attributes. The intuitive graphical attribute has the
potential facilitatis ication between the pers and the clients to capture

sensing i resulting in i of i errors. The
attribute will enable the developer to ensure logical and temporal correctness of the

sensing i through the si ion of the modeled sensor fusion system.

The effectiveness of this novel P! has been d d by si ing an

example sensor fusion system.

2. A novel of deriving the i ifications from the

discrete event requirements (DEVR) model has been developed. This is based on the
decomposition of DEVR model as hierarchical finite state machine. The use of the

same formalism at different levels of sensing system decomposition will help avoid

errors in deriving specifications of the i from client’s high level
sensing requi The use of the optimizati ique in deriving temporal
of the i has been shown in order to enable the

developer to optimize the cost of the underlying computing hardware. The use of this
methodology has been illustrated by deriving the specifications of the computing

components of an example sensor fusion system.

3. To ensure the temporal correctness of the sensor fusion system during the operation
phase, the reasoning basis to derive the architecture of the underlying computing

system from the sensing requirements has been developed.

4. A novel methodology to include redundant sensors to tolerate the failure of sensors
during operation phase has been developed. The sensor fault tolerance using
redundancy has been experimentally verified. The temporal overhead in incorporation
of redundant sensors has been detected and necessary techniques have been
developed to deal with this overhead. A fault-tree based novel technique to measure
the dependence of different levels of fusion on the reliability of sensors has been
developed. This technique has been used to derive the fault trees and reliability

profiles of different levels of fusion of an example sensor fusion system.

o

The voting technique based fault detection scheme cannot detect transient faults

due to the switching actions of the nei; ing inductive loads (e.g.,

electric motors, electromagnetic relays) or due to electrostatic discharge in space and

industrial envi A i simple novel ique has been
developed to detect the presence of transients in sensor data stream using local

statistics.

127

6. The loss of sensor data during fault-clearance interval is one of the limitations of
using voting technique based on redundancy for sensor fault tolerance. A novel
parallel sensing based technique has been developed to address this problem. The
implementation of this technique for fault tolerant sensor system of different levels of
redundancy has been shown. The utility of this technique to restore data during fault-
clearance interval for a triple modular optical sensor system has been experimentally
verified.

The use of this formal, graphical, and i ique will help the per to

avoid faults during the development phase. The use of redundancy will help tolerate
sensor faults during the operation phase. The novel engineering methodology that is
reported in this thesis has addressed different issues of fault avoidance and fault tolerance
of sensor fusion systems in a unified framework. Therefore, it’s the understanding of the
author that this novel engineering methodology will enable the developer to engineer
highly reliable sensor fusion systems of multi-sensori intelligent systems for the

applications in safety and mission critical environments.

128

8.2 Recommendations for Future Works

The novel contributions reported in this thesis are the outcomes of a research work
towards the development of a software system to automate the development process of
highly reliable sensor fusion systems. Results of simulations and experiments have
demonstrated the utilities of these contributions. There is a need to undertake
development work to develop a software system in order to make the novel engineering

methodology reported in this thesis readily usable by the development engineers.

It is necessary to develop a set of integrated discrete event software tools. This tool set
will allow the modeling of requirements of sensor fusion system (SFS) as discrete event
dynamic system. User friendly intuitive graphical user interface should be provided in
order to facilitate ication between the pers and users. The simulation of

this model will help ensure logical and temporal correctness of the SFS. This tool will
also measure different features of the modeled SFS (e.g., the sensitiveness, the utilization
of the operating time). This tool set will allow the decomposition of the DEVR model as
hierarchical finite state machine in order to derive the specifications of the computing
components. The architecture of the underlying computing system will also be derived
with the help of this tool set in order to ensure the temporal correctness during run time.
This same tool set will also generate control signals in order to execute the computing
components in run time as an interpretation of modeled SFS. The fault trees and
reliability profiles at different levels of fusion of sensor fusion systems will also be

derived with the help of this tool set.

A repository of the computing components required for fusion of data should be
developed. The discrete event tool set in run time will activate these components
interpreting the discrete event model of sensor fusion systems. The use of same tool set in
both development and operation phases will help the developer to avoid faults in
realizing sensor fusion systems. This formalism will also be suitable for the enhancement

of the features of already developed sensor fusion systems using this framework.

129

Due to the availability of high performance computing system and graphics library (e.g.,
OpenGL) at a reasonable price, the development work can be undertaken for the
visualization of modeled sensor fusion systems as discrete event dynamic systems in 3-D

graphics environment. This development work will include the visualization of the

sensing systems i ing sensors and i i among

sensing envi and sensed i ion. The i will process

data by sil sensors. This vi: ization scheme will further enhance the
between the pers and clients resulting in better understanding of

sensing requirements and limitations of different sensing schemes.

Further development work is required to validate the proposed local statistics based
technique for the detection of transient faults present on sensor data stream. The
development work should include the acquisition of transients generated by different
phenomena (e.g., switching of inductive loads, electrostatic discharge in space, industrial,
and laboratory environments) in wide variety of conditions, the modeling of these
transients and the improvement of this proposed technique to make it capable for

detecting.

In this thesis it has been shown that redundancy has the potential to improve the

reliability of sensing system. In order to make this concept readily usable, it’s necessary

to work to develop fault-tolerant sensor modules using different

levels of redundancy, so that SFS developer can use them as building blocks. These fault-
tolerant sensor modules should implement the proposed parallel sensing based technique
to recover sensor data lost during fault clearance interval. These fault-tolerant sensor
modules should be smart enough to inform the higher level system modules about the
status of different sensors, so that the system can avoid the interpretation of data provided

by potentially faulty sensors.

The use of this methodology to develop complex sensor fusion systems will provide
feedback in order to make this framework more effective and versatile. Moreover, there
will be a need of continuous development of this framework to keep pace with the ever-

increasing requirements of more complex intelligent systems.

130

References:

[11J.L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, Inc.,
1981.

[2] David L. Hall and James Llinas, "An Introduction to Multisensor Data Fusion,"
Proceedings of the IEEE, vol. 85, no. 1, January 1997, pp.6-23.

3] David L. Hall, Math ical T i in i Data Fusion, Artech House,
Yy
Inc.1992.

[4] M. Mongi A. Abidi, and R.C. Gonzalez, Data Fusion in Robotics and Machine
Intelligence, Academic Press, Inc. , 1992.

[51B. V. Dasarathy, "Sensor Fusion Potential itati Archi and
F ings of the IEEE, vol. 85 no. 1, January 1997,

pp.24-38.

[6] S.S. Iyengar, L. Prasad, and Hla Min, Advances in Distributed Sensor Integration, pp.
65-81, Prentice Hall P TR, 1995.

(7] B.V. Dasarathy, Decision Fusion, IEEE Computer Society Press, 1994.

[8] N.G. Leveson, M.P. Erik, H. Hildreth, and J. D. Reese, “Requirements specification
trol systems,” £ ings of the IEEE, vol. 82, no. 1, January 1994,

for p
pp. 684-707.

[917. M Atlee and J. Gannon, “State-based model checking of event-driven system
ions on Software Engil ing, vol.19, no.1, January

1993, pp. 24-40.

[10] A. P. Ravn, H. Rischel, and K.M. Hansen, “Specifying and verifying requirements of
real-time systems,” JEEE Tt ions on Software Engiy ing, vol.19, no. 1, January
1993, pp. 41-55.

[11] J.F. Meyer and H. Pham, “Fault-tolerant software: Guest editor’s prolog,” [EEE
Transactions on reliability, vol. 42, no. 2, June 1993, pp. 117-118.

[12] A. Avizienis, “The N- ion approach to fault-tolerant software,” JEEE Transaction
on Software Engineering, vol. SE-11, no. 12, December 1985, pp. 1491-1501.

[13] T.J. Shimeall and N. G. Leveson, “An empirical comparison of software fault
tolerance and fault elimination,” JEEE Transactions on Software Engineering, vol.
17, no. 2, February 1991, pp. 173-182.

[14] R. J. Abbott, “Resourceful systems for fault tolerance, reliability, and safety,”
Computing Surveys, vol. 22, no. 1, March 1990, pp. 35-68.

[15] Nancy G. Leverson, "Software Safety: Why, What, and How," Computing Surveys,
vol. 18, no. 2, June 1986, pp.125-163.

[16] A. Gaskell and P. Probert, "Sensor Models and a Framework for Sensor
Management," Proceedings of SPIE-The International Society for Optical
Engineering, vol. 2059, pp. 2-13, 1993.

[17] ME. Liggins H C. Chong, I. Kadar, M.G. Alford, V. Vannicola, and S.
Fusion and Algorithms for Target Tracking,
Praceedmgs oj’the IEEE, vol. 85, no. 1, January 1997, pp.95-107.

[18] S.S. Blackman and T.J. Broida, "Multiple Sensor Data Association and Fusion in
Aerospace Applications,” Journal of Robotic Systems, vol. 7, no. 3. 1990, pp. 445-
485.

[19] Ren C. Luo and Michael G. Kay, " i ion and Fusion in
Systems," IEEE Transactions on Systems, Man, and Cybernetics, vol. 19, no. 5,
1989, pp. 901-931.

[20] M. Nashman, B. Yoshimi, T.H. hong, W.G. Rippey, and M. Herman, "A Unique
Sensor Fusion System for Coordinate Measuring Machine Tasks," Proceedings of
SPIE on Sensor Fsuion and Decentralized Control in Autonomous Robotic Systems,
Vol. 3209, 1997, pp. 145-156.

[21] K.A. Korzeniowski and E Woods, "Generic Archi for Real-Time M
Fusion Tracking Algorithm Development and Evaluation," Proceedings of SPIE on
Sensor Fusion VII, Vol. 2355, 1994, pp. 33-42.

[22] A. Akerman III, "Pyramid T¢ it for Multi Fusion," ings of SPIE
on Sensor Fusion V, vol. 1828, 1992, pp.124-131.

[23]R.W. Gelger and J. T Snell ”Inlerdlsclplmary Multisensory Fusion: Design Lessons
from P dings of SPIE on Sensor Fusion V, vol. 1828.
1992, pp.132-143.

[24] C. Bridgewater, C. Barral, and M. McGrath, "Sensor Integration in a Behavior-
Based Architecture," Proceedings of SPIE on Sensor Fusion V: Control Paradigms
and Data Structures, vol. 1161, 1991, pp. 496-503.

[25] P. Greenway, "SKIDS Data Fusion Project," Proceedings of SPIE on Sensor Fusion
V: Control Paradigms and Data Structures, vol. 1161, 1991, pp. 504-515.

132

[261S. Lee, E. Zapata, and P.S. Schenker, "Interactive and Cooperative Sensing and
Control for Ad d T " Pi dings of SPIE on Sensor Fusion V:
Control Paradigms and Data Structures, vol. 1161, 1991, pp.516-530.

[27] F. Martinerie, "Data Fusion and Tracking Using HMMs in a Distributed Sensor
Network," JEEE T on Aerospace and ics Systems, vol. 33, no. 1,
1997, pp.11-28.

[28] M. Dekhil and T.C. " Sensor System Archi " The
International Journal of Robotics Research, vol. 17, no. 4, April 1998, pp.402-417.

[29] Y.C. Tang and C.S. George Lee, "A Geometric Feature Relation Graph Formulation
for Consistent Sensor Fusion," IEEE Transactions on Systems, Man, and Cybernetics,
vol. 22, no. 1, 1992, pp. 115-129.

[30] S.S. Iyengar and L. Prasad, "A General C i for Di:
Sensing and Fault-Tolerant Sensor Integration", /[EEE Tmnsucuans on Systems,
Man, and Cybernetics, vol.25, no. 4, 1995, pp. 643-650.

(31 J. Xu and D.L. Pamas, “On satisfying timing constraints in hard-real-time systems,”
IEEE Ty on Software ing, vol.19, no.1, January 1993, pp. 70-84.

[32] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the
IEEE, vol. 77, no. 1, April 1989, pp. 541-580.

[33] A. Caloini, G. Magnani, and M. Pezze, "A Technique for Designing Robotic
Control Systems Based on Petri Nets," [EEE Transactions on Control Systems
Technology, vol. 6, no. 1, 1998, pp.72-87.

(34] P.J. Haas and G.S. Shedler, “Stochastic Petri Net representation of discrete event
» IEEE T ions on Software Engineering, vol. 15, no. 11, April
1989, pp. 381-393.

[35] M. Kamath and N. Viswanadham, “Application of Petri Net based models in the
medelling and analysis of flexible ing systems,” P; dings of IEEE
International Conference on Robotics and automation, 1986, pp. 312-317.

[36] J.I.P. Tasi, S. J. Yang, and Y. Chang, “Timing constraints Petri Nets and their
apphcanon to schedualibility analysis of real-time system specification,” JEEE
T on Software Engineering, vol. 21, no. 1, January 1995, pp. 32-49.

[37] G. Chiola, M. A. Marsan, G. Balbo, and G. Conte, “Generalized stochastic Petri
Nets: a definition at the Net level and its applications,” JEEE Transactions on
Software Engineering, vol.19, no. 2, February 1993, pp. 89-107.

133

[38] C.V. Ramamoorthy and G.S. Ho, “Performance evaluation of asynchronous
concurrent systems using Petri nets,” JEEE Tr ions on Software i ing,
vol. SE-6, no. 5, September 1980, pp. 440-449.

[39] M. Felder, D. Mandrioli, and A. Morzenti, “Proving properties of real-time systems
through logical specifications and Petri Net models,” JEEE Transactions on Software
Engineering, vol. 20, no. 2, February 1994, pp. 127-141.

[40] M. W. Maier, “Integrated modelling: A unified approach to system engineering,” J.
Systems Software, vol. 32, 1996, pp.101-119.

[41] R. Gerber, S. Hong, and M. Saksena, “Guaranteeing real-time requirements with
resource-based calibration of periodic process,” IEEE Transactions on Software
Engineering, vol. 21, no. 7, July 1995, pp. 579-578.

[42] L. Lee, P. Bremond-Gregoire, and R. Gerber, “A process algebraic approach to the
specification and analysis of resource-bound real-time systems,” ,” Proceedings of
the IEEE, vol. 82, no. 1, January 1994, pp. 158-171.

[43] B. P. Zeigler, “DEVS representation of dynamic systems: event-based intelligent
control,” Proceedings of the IEEE, vol. 77, no. 1, January 1989, pp. 72-80.

[44] K.M. Inan and P.P. Varaiya, “Algebras of discrete event models,” Proceedings of the
IEEE, vol. 77, no. 1, January 1989, pp. 24-38.

[45] G. Cohen, P. Moller, J. Quadrat, and M. Viot, “Algebraic tools for the performance
evaluation of discrete event systems,” Proceedings of the IEEE, vol. 77, no. 1,
January 1989, pp. 39-58.

[46] D. L. Kiskis and K. G. Shin, “SWSL: A synthetic workload specification language
for real-time systems,” IEEE Transactions on Software Engineering, vol. 20, no. 10,
October 1994, pp. 798-811.

[47] P. Inverardi and A. L. Wolf, “Formal specification and analysis of software
architectures using the chemical abstract machine model,” IEEE Transactions on
Software Engineering, vol. 21, no. 4, April 1995, pp. 373-386.

[48] C. Ausfelder, E. Castelain, and J. Gentina, “A method for hierarchical modeling of
the command of flexible manufacturing systems,” IEEE Transactions on Systems,
Man, and Cybernetic, vol. 24, no 4, April 1994, pp.564-573.

[49] M. Notomi and T. Murata, “Hierarchical reachability graph of bound Petri nets for

concurrent-software analysis,” [EEE Transactions on Software Engineering, vol. 20,
no. 5, May 1994, pp. 325-336.

134

[50] J. Xu, i ing of Pr with Release Times, Deadlines,
and i ions," IEEE Tr ions on Software
Engineering, vol. 19, no. 2, February 1993, pp.139-155.

[5117J. Zhu, T. G. Lewis, W. Jackson, and R. L. Wilson, “Scheduling in hard real-time
application,” IEEE Software, May 1995, pp. 54-63.

[52] J.H. Lala and R.E. Harper, “Architectural principles for safety-critical real-time
applications,” Proceedings of the IEEE, vol. 82, no. 1, January 1994, pp. 25-54.

[53] A. E. Barbour and A.S. WO_[Clk ‘A general ive approach to fault-tol it
design using " [EEE Ti on vol. 38, no. 1, January
1989, pp. 15-29.

[54] K.G. Shin and P. “Real-ti ing: A new discipline of Computer
Science and Engineering,” Proceedings of the IEEE, vol. 82, no. 1, January 1994,
pp. 6-24.

[55] M. Rokonuzzaman and R.G. Gosine, “An intelligent sensor fusion architecture for
autonomous microgravity experiments,” Proceedings of the SPIE's Conference
Sensor Fusion and Distributed Robotic Agents, vol. 2905, November 1996, pp.53-63.

[56] M. Rokonuzaman and R.G. Gosine, “Minimization of the effect of fault-clearance
period in the fault-tolerant sensing of an intelligent system,” Proceedings of the
SPIE's conference Sensor Fusion and Decentralized Control in Autonomous Robotics
Systems, October .

[57] B.W. W. Johnson, Design and Analysis of Fault-Tolerant Digital Systems, Addison-
Wesley Publishing Company, 1989.

[S8]R. Blllstem, S. leeskmd and J.W. Lott, 4 Problem Solving Approach to
The ings Publishing Company, Inc., 1990.

[59] R. James Firby, “Task directed sensing,” SPIE vol. 1198 Sensor fusion II: Human
Machine Strategies (1989), pp. 480-489.

[60] G Schweizer, “Foundations for the ECBS Process,” Procecdings of the ECBS'96,
Int’l IEEE and p on Engi of Computer-Based Systems,
1996, pp. 16-22.

[61] M. Schwartz, T icati : Protocols, Modeling and Analysis,
Addision-Wesley, 1987.

[62] Kai Hwang, 4d; d Computer Archit : P
Programmability, McGraw-Hill, Inc., 1993.

[63] D. A. Patterson and J.L. Computer i A O

Approach, Morgan Kaufimann Publishers, Inc., 1996.
[64] H. S. Stone, High Pe Computer i , Addi Wesley, 1993.
[651C. jan, Guide to Reliabili ing: Data, Analysis, Applications,

Implementation, and Management, Van Nostrand Reinhold, 1991.

[66] J. L. Melsa and D.L. Cohn, Decision and Estimation Theory, McGraw-Hill, Inc.,
1978.

[67]11.. G Ele ic C ibility, Prentice Hall, 1995.

[68] S.C. Lee, "Sensor Value Validation Based on i ion of the Sensor
Redundancy for Fault Diagnosis KBS," IEEE Transactions on Systems, Man, and
Cybernetics, vol. 24, no. 4, 1994,pp 594-605.

[69] G. Rizzoni and Paul S. Min, "Detection of Sensor Failures in Automotive Engines,”
IEEE Tr on Vehicular Technology, vol. 40, no. 2, 1991, pp.487-500.

[70] R N. Clark and W. Setzer, "Sensor Fault Detection in a System with Random
" [EEE Tr on Aerospace and El Systems, vol. AES-
15, no. 4, 1980, pp. 468-473.

[71] T. E. Menke, "Sensor/Actuator Failure Detecttion in the Vista F-16 by Multiple
Model Adaptive Estimation,” /EEE Tr ions on pace and Electronic
Systems, vol. 31, no. 4, 1995, pp.1218-1228.

[72] P. Hsu, K. Lin, and L. Shen, "Diagnosis of Multiple Sensor and Actuator Failures in
Automotive Engines," JEEE Transactions on Vehicular Technology, vol. 44, no. 4,
1995, pp. 779-789.

[73] N. P. Piercy, "Sensor Failure Estimators for Detection Filters,” /EEE Transactions
on Automatic Control, vol. 37, no. 10, 1992, pp. 1553-795.

[74] A.S. Willsky, "A Survey of Design Methods for Failure Detection in Dynamic
Systems," Automatica, vol. 12, pp. 601-611.

[75131.C. Deckcn M.N. Desai, JJ Deystand A. S. Willsky, "F-8 BFBW Sensor Fallure
Using " IEEE T on
Control, vol. AC-22, no. 5, 1977, pp. 795-803.

136

[76] Y. Maki and K.A. Loparo, "A Neural-Network Approach to Fault Detection and
Diagnosis in Industrial Process," [EEE Transactions on Control System Technology,
vol. 5, no. 6, 1997, pp. 529-541.

[77] R. Dorr, F. Kratz, J. Ragot, F. Loisy, and J. Germain, "Detection, Isolation, and
Identification of Sensor Faults in Nuclear Power Plants," JEEE Transactions on
Control System Technology, vol.5, no. 1, 1997, pp.42-60.

[78] S Mumgesan and P.S. Goel, "A Scheme for Fauh Tolerance in Earth Sensors,"
E Tr on space and ic Systems, vol. AES-25, no. 1, 1989,

pp. 21 -29.

[79] M. Rokonuzzaman and R.G. Gosine, "Adaptive Fuzzy_Statistical Decision Model
to Grade Sensor Data," Proceedings of the IEEE Canadian Conference on Elctrical
and Computer Engineering, vol. 11, 1997, pp. 773-776.

[80] M. Rokonuzzaman and R.G. Gosine, "Fault-tolerant Sensor Fusion Architecture for
Mission Critical Applications", The Proceedings of the Seventh Annual
Newfoundland Electrical and Computer Engineering Conference, May 3, 1996.

[81] R. Veldhuis, Restoration of Lost Samples in Digital Signals, Prentice Hall
International (UK) Ltd.,1990,

[82] R.J. Marks II, "Restoring lost samples from an oversampled bandlimited signal",
IEEE Transaction on ASSP, vol. 31, n0.3, pp. 752-755, 1983.

[83] N. Erdol, C. Castelluccia and A. Zilouchian, "Recovery of Missing Speech Packets
Using the Short-Time Energy and Zero-Crossing Measurements," IEEE Transaction
on Speech and Audio Processing, vol. 1, no. 3, pp.295-313, 1993.

[84] L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series
Analysis, Addison-Wesley Publishing Company, 1991.

[85] S. J. Godsill and Peter J.W. Rayner, "A Bayesian Approach to the Restoration of
Degraded Audio Signals," IEEE Transaction on Speech and Audio Processing, vol.
3, no. 4, pp.267-277, 1995.

[86] J Feng, K_ Lo, and H. Mehrpour, "Error Concealment for MPEG Video
" IEEE Tt ion on Consumer El ics, vol. 43, no. 2, pp. 183-

186, 1997.

[87] Y. Chen and B. Chen, "Model-based Multi ion of Speech Signals and
its Application to Recovery of Missing Speech Packets," ZEEE Transaction on
Speech and Audio Processing, vol. 5, no. 3, pp.220-231, 1997.

137

Appendix A

A Design Problem to Verify the Discrete Event
- Framework to Engineer a Reliable Sensor
Fusion System

A.1 Introduction

This is an example design problem to verify the different proposed modeling techniques
and algorithms developed in this thesis. The parameters of this design problem have been
chosen to demonstrate the capability of the proposed discrete event framework to deal

with worst case sensing scenarios. This design problem is stated in the following section.
A.2 Problem Statement

1. The set of sensors is, $={S,, S, . . . ,S;}.

2. The sensing sequence is defined in the Table A.1 in terms of phases and periods.

Table A.1: The phases and periods of sensing

Sensors Range of phases (in units) Range of periods (in units)
@' :Lower limit @ :Upper limit T :Lower limit T* :Upper limit
S, 0 0 1900 2000
S, 50 100 1800 2000
S, 200 250 2000 3000
S, 300 400 2000 2000
S 500 550 3000 3000
S¢ 600 650 2000 3000
S, 800 850 1000 1100

138

3. The set of conditions is, PC={Pc,, Pc,, . . ., Pc,,}. The lifetimes of these conditions are
shown in Table A.2.

Table A.2: The lifetimes (in units) of the conditions

The conditions
Pc, | Pc, | Pe, | Pe,

Pc, | Pc,

Pc, | Pc, | Pc, | Pcy, | Pey, | Pey

Life 25 | 27 [28 | 29 [100] 36 | 19 | 48 | 35 [20 | 25 | 30
[7[=] Bl R AR N

4. The set of sensors specific periodic processes (activities) is, PE={PE,, PE,, . . .

» PE;}.
The service times of these processes are shown in Table A.3.
Table A.3: The service times (in units) of the periodic processes
Periodic processes
Service times PE, PE, PE, PE; PE, PE, PE,
Lower limit 10 18 12 14 16 20 25
Upper limit 15 22 14 16 19 27 30
5. The set of aperiodic or conditional processes (activities) is, AE={AE,, AE,, . . ., AEg}.

The service times of these processes are shown in Table A.4.

Table A.4: The service times (in units) of aperiodic processes

Aperiodic processes

Service times | AE, AE, AE, AE, | AE AE, AE, AE,

Lower limit 12 14 15 16

20 18 12 15
20 24 20 14 16

Upper limit 16 16 19

6. The i ips between itions and

are shown in the Tables A.5-A.7.

139

Table A.5: G

number of |

(tokens) by periodic processes

The periodic processes

The conditions

PE3;

PEq

PEs

0
0
0

o| of o

o| of of of o

o| o] of of of o

o| o o of of of o

o| of of of o

o o o ©

Table A.6:Gt

number of

(tokens) by aperiodic processes

The aperiodic processes

The conditions

2

AE;

AE3

AE4

AEs | AEg

ol of of of of of o

ol of of of of of o

o| of of of of of of o

[50}

Peyy

o ~| o of of of of of of of o

ol o of o of of of of of of o

Pd

~ o o of o of of of of of of o

o| of o| o

o| of o o

140

Table A.7: Absorption of conditions by apetiodic

The aperiodic processes

The conditions | AE; | AE; | AE3 | AE; | AEs | AEg | AE7 | AEg
Pc, I 0 0 T 0 0 0 0
Pc, T T T 0 0 0 0 0
Pc, 0 0 0 T 0 0 0 0
Pe, 0 T 0 0 T 0 0 0
Pe, 0 0 0 T 0 0 0 [
Pc, 0 0 0 0 T 0 0 0
Pc, 0 0 0 0 T 0 0 0
Pc, 0 0 0 0 0 T 0 0
Pc, 0 0 0 0 0 T 0 0
Pe,,] 0 0 0 0 0 T 0
Pe,, 0 0 0 0 0 0 0 T
Ps, 0 0 0 0] 0 0 0

An event (periodic or aperiodic) will generate conditions by placing tokens in particular
places. For example, aperiodic event AE, can generate the condition Pc, by placing a
token in place Pc,. An event will absorb conditions by removing token from places. For
example, the event AE2 will absorb tokens from places Pc, and Pc,. An event may or
may not generate conditions (tokens in places). The generation of conditions depends
upon the state of sensing environment (e.g., the periodic process, sensing temperature
sensor, may generate a condition if temperature goes beyond certain threshold value, the

specific value depends upon the sensing i of a particular envil)

These tables represent the discrete requi of ina ized form. The
information in this tabular form will be generated in the requirements definition phase of
the system development. In this phase, each discrete requirement (e.g., the execution of a
particular aperiodic process) will be treated as a separate entity. This approach will

enable the system developer to capture the of user’s requirements with fewer errors.

141

Appendix B

Verification of Discrete Event Requirements
- Model of SFS by Simulation

B.1 Introduction

Clock Py HE Py
I

N Vi A S —

specific
phase delays

Data Features Feature Decisions Decision
fusion fusion fusion

Daa Acquired
acquisition data

Figure B.1: The Petri net model of the specified example sensor fusion system

142

The DEVR model of the sensor fusion system as specified in Appendix A is shown in

Fig.| In this modeled SFS, sensor data are acquired in a particular sequence and are

temporal i ips among these sensed data. In this integration
process, sensor data are integrated in different modes. For example, sensors 1 and 2 are
playing redundant roles due to the placement of tokens by periodic events PE, and PE, at
the same place Pc, and the requirement of only one token by the aperiodic event AE,. The
mode of data integration from these two sensors can be defined as complementary by
adopting the constraint that AE, needs 2 tokens from the place Pc,. Using the
conventional terminology of sensor fusion the role of these events are shown in Table
B.1.
Table B.1: Different levels of data integration in the example SFS

Data acquisition Data fusion Feature fusion Decision fusion
PE,
PE, AE,
PE, AE, AE,
PE, AE, AE,
PE; AE, AE,
PE, AE,
PE,

Here, in the data fusion level the decisions placed by the event AE, and AE, in place Pc,,
play redundant role. But they can be complementary if AE, requires two decisions from

the place Pc,,.

The input and output functions of the modeled SFS are defined by the following matrices
D~ and D* respectively. To define the input function, the feedback from the reasoning
sub-system to the periodic processes shown as dashed arrows have not been considered,
because the reasoning sub-system is outside the scope of this work. To capture the
interaction between the sensor specific periodic processes and aperiodic processes, the
tokens generated by the clock and the phase related processes have not been considered to
define the output function.

143

0

Tsy

0

Tss

0
0
0
0
0
0
0
0

0
0

PE,

0

0
00

0]
0|
0|
0|
[J

&l

PEs

D* = 4E,
AE,

AE,
AE;
AE,

HE

(B.2)

144

To study the salient features of the modeled sensor fusion system, the matrix D~ defining
the input function can be partitioned into a number of sub-matrices. The first one is at the

leftmost top corner as shown below.

T, 0 0 0 0 0 0
0T, 0 0 0 0 0
0 0 T, 0 0 0 0
D1={0 0 0 Ts, 0 0 O (B.3)
00 0 0 T 0 0
0 0 0 0 0 Tsy 0
o 0 0 0 0 0 T

According to this proposed framework, every sensor is periodically sensed with unique
periodic process. Therefore, the number of periodic processes is equal to the number of
sensors and the diagonal matrix represents the relationship among them. So, if this sub-
matrix of a modeled SFS is other than a diagonal matrix, the system has not been
modeled properly using this framework. For a system of n number of sensors, this sub-
matrix is a n x n diagonal matrix; where the diagonal elements are the sensing periods of

the corresponding sensors.

The second sub-matrix is at the left-most bottom one relating the places Ps,,...Ps,,

AE,,...,AE,, and HE as shown below.

(B.4)

cococococoocoo
ccocococoocoo
cocoococococoo
cocococooocoo
cococcocococoo
cocococooo oo

This is a null matrix. According to this framework, the clock drives only the periodic
processes; therefore aperiodic processes do not have any direct link with the clock. So,
for a modeled SFS if this sub-matrix is other than null, the system has not been modeled

correctly using this framework. For a system of n sensors, this sub-matrix is a matrix of n

145

column and any number of rows. The number of rows will depend upon the number of

aperiodic events.

The third sub-matrix is at the top-most right comner in the input definition matrix D™.

This sub-matrix relates the periodic events PE,,...,PE, with Pc,,...,Pc,;, Py, and P,.

fo

0
00
00
D™3=|0 0
00
00
00

Qoocoaa
coooois
cocilil
2ol
Soiliis
cocolil
scoolil
Sooolil
coillil
ccoolil
E

According to this modeling framework, tokens in the output places of periodic and
aperiodic events, and house keeping event do not drive the periodic events. Only the
token in the place P, drives the periodic events. Therefore, all the elements, except those
of the right-most column of this sub-matrix, are zero and all the elements of the right
most column are 1. If the matrix D~.3 does not satisfy this criteria, the modeled system
has a flaw according to this framework. If there are # number of sensors, p conditional

places, this third sub-matrix dimension is (1 x p+2).

The fourth sub-matrix defines the generation of all aperiodic events and this is at the right
bottom part of the input definition matrix as shown below. Here, the rows are the
aperiodic events AE,,...,AE; and the columns are places for the conditions Pc,,...,Pc;,.

0

(B.6)

cocooo
cooco~-ooo
coo~oco~o
ccoo~-~ooo
cco~oooo
cco~oooo
co~-~oocooo
oc~ocooooo
~ocoooooo

1
0
0
1
0
0
0
0

co~oooo

146

The number of non-zero element in a column is the possible value of the token placed in
that place. For example, if the token in place Pc, represents the size of a target, in this
case the target may have three different sizes (e.g., small, medium, big). These different
values or color of token (e.g., size of the target) are used in this model for branching to
generate appropriate events to address the issue of detection of different sizes of targets.
The presence of more than one number in a cell indicates that the corresponding place
receives the same token from more than one process (e.g., periodic sensor sensing). These
redundant tokens may be used by the corresponding event to increase reliability. If there
are m number of aperiodic processes and n number of conditional places, the dimension

of this matrix isam x n.

The 5th sub-matrix relates aperiodic processes AE,,..,AE;, P, with P, as shown in
Eq.(B.7). This is a null matrix, because the tokens in the places P, and P, do not generate
aperiodic events according to this modeling formalism. The rows of this matrix represent
aperiodic events and the columns correspond to Py and P,. If there are m aperiodic events,

the dimension of this matrix is m x 2.

ccoooooo
cooooooo

The input relationship of the house keeping event, HE, with the conditional places,
Pc,,...Pc,,, P, and P, is shown by the sixth sub-matrix given in Eq.(B.8). All the elements
of this matrix are zero except the second element from the right. If there are n conditional

places, the dimension of the matrix is / x n+2.

D76=[0 000000000010 (B.8)

147

The partitioning process for the input definition matrix can be repeated for the output
definition matrix D* to reveal more features of the modeled system. The generation of
the tokens in the places, Pc,,....Pc,, by all periodic and aperiodic events,
PE,,....PE,,AE,....,AE,, is shown by the top left-most sub-matrix of the output definition

matrix as shown below. Here, the rows represent the events and the columns are places.

D'1= (B.9)

cococococococococococoo~o
cocococoococoooo0o~~o0
coccococococooo~r~ooo
cococooococoocoo~o0oooo
ccococoococooc~~0o0o0o0
coocococococo~cooooo
cocococo~—-0o0o0ooo0o0o0
cococo~-~cococoococoooo
coco~-~-~ocoococoocoocooocoo
o-—~cococococoooooo o

ccococoocoocoococooo o = ~

Multiple non-zero elements in a particular column indicate that the corresponding events
are playing redundant role by generating tokens in the same place. For a system of m
events (both periodic and aperiodic) and » conditional places the size of this matrix is m x
n. According to this modeling paradigm, the possible values of an element of this matrix

areQorl.
The terminal events are identified by the 2nd sub-matrix of the output definition matrix
relating all periodic and aperiodic events with the place P, as shown in Eq.(B.10). This

matrix has been represented in transpose form.

p*2=p 0 000001000100 1 (B.10)

148

The events corresponding to the non-zero elements of this matrix are terminal events. In
this present example, the terminal events are AE,, AE,, AE;. According to this design

formalism, all the elements of this sub-matrix must not be zero.

The third one is a null matrix relating all periodic and aperiodic events with the place P,

as shown below in transpose form.

D'J=[nooououooouuooo]" (B.11)

The forth sub-matrix relates the token generation of the housekeeping event, HE, with all
conditional places, P, and P, as shown in Eq.(B.12). According to this framework, all the

elements of this sub-matrix are zero except the right most one.

D*4=[0 00 0000000001 (B.12)

The check of the characteristics of these sub-matrixes for a particular modeled SFS will
enable the designer to have a preliminary check to ensure that the system has been
modeled according to this formalism. Due to the numerical nature of these verification
techniques, software based automation is quiet feasible for this work. It's the author's
understanding that this automation has the potential to improve the accuracy of the design
and speed up the design process. Therefore, it is reasonable to conclude that this
formalism will enable the designer to partially avoid faults at the very early stage of

system development resulting in better reliability of system performance.
The execution path analysis will enable the designer to check logical and temporal

correctness of the modeled system. The technique of this execution path analysis is

depicted in the following sub-section.

149

B.2 Execution Path and Time Analysis

The value (i.e., color) of a token in a
place is used by the SFS for branching
decision. The execution of a process (i.e.,
service of an event) may generate tokens
in more than one place resulting in

parallel operation of multiple processes.

This concept is depicted in Fig.B.2. The
underlying computing system may execute

these parallel or

Place Process
.
.
.
Branching Parallel
(br) (1)

Figure B.2: The branching and parallel
operations in the Petri net model of the SFS.

B.2.1 Execution Paths From the First Sensor

The sequence of execution of different processes to serve the sensing requirements of the

Lst sensor is shown in Fig. B.3.

Figure B.3. The execution paths from the periodic process PE, to serve the sensing of
the 1st sensor.

150

The execution paths to serve the first sensor are defined by the following equations

S,.p=PE,AE, ®.13)
S,.p.=PE,AE,AE, AE, (B.14)
S,.p=PE,,AE,AE,AE, (B.15)

The maximum total time to serve the event of periodic sensing of the first sensor is
S,.t=max{ (PE,.t+AE,t), (PE,.t+AE t+AE,.t+ AE t+AE.t)} (B.16)

for it ion of two i processes AE, and AE, , or

S,.t=max{ (PE,t+AE,.t), (PE,.t+AE,.t+max.(AE.t, AE.t)+AE.t)} (B.17)

for parallel executions of AE, and AE,.

B.2.2 Execution Paths from the Second Sensor

The execution paths for sensing the second sensor are shown in Fig.B.4.

Py
e |

Figure B.4: The execution paths from the periodic process PE, to serve sensing of the second sensor.

151

The execution paths to serve the second sensor are defined by the following equations

8.p=PE,, AE, (B.18)
..p=PE,, AE,, AE,, AE, (B.19)
S..p,=PE, AE,, AE,, AE, (B.20)
S.p~PE,, AE, AE,, AE, ®21)
S.ps=PE,, AE,, AE,, AE, (B.22)

The maximum total time for periodic sensing of the second sensor is

S.t=PE,t+max. {(AE,), (AE+AE+AE+AE,)}+max. {(AE+AE+AE,),
(AE;+AE+AE,)} (B.23)

for ial ion of i or

S..t= PE,.t+max. [max. {(AE), (AE;+max. (AE,, AE,}*AE,)}, max. {(AE;+AE-+AE,),
(AE+AEGAE,)}] (B.24)

for parallel ion of

B.2.3 Execution Paths from the Third Sensor

The execution paths for sensing the third sensor are shown in Fig.B.5.

Figure B.5: The execution paths from the periodic process PE; to serve sensing of the third sensor.

152

The execution paths to serve the third sensor are defined by the following equations
S,.p=PE,, AE,, AE,, AE, (B.25)

S,.p:=PE,, AE,, AE,, AE; (B.26)

The maximum total time for periodic sensing of the third sensor is

S,.t=PE,.t+ AE,t+ AE+AE..t+ AE.t (B.27)
for ial execution of i or
S,.t=PE,.t+ AE..t+max.(AE,, AE,.t)+ AE,.t (B.28)

for parallel ion of

B.2.4 Execution Paths from the Fourth Sensor

The execution paths for sensing the fourth sensor are shown in Fig.B.6.

Py

® jPE

Figure B.6: The execution paths from the periodic process PE; to serve sensing of the fourth sensor.

The execution paths to serve the fourth sensor are defined by the following equations
S, pi=PE,, AE;, AE,, AE, (B.29)

S.p=PE,, AE, (B.30)

153

S.p,=PE, AE,, AE,, AE, (B.31)
The maximum total time for periodic sensing of the fourth sensor is

S.t=PE.t+ max. {(AE..t+ AE.t+AE, 1), AE.t, (AE.t+ AE,t+AE, 1) } (B.32)

B.2.5 Execution Paths from the Fifth Sensor

The execution paths for sensing the fifth sensor are shown in Fig.B.8.

pg,lr
s
4 414

4

Figure B.8: The execution paths from the periodic process PE; to serve sensing of the fifth sensor.

The execution paths to serve the fifth sensor are defined by the following equations

S;.p=PE,, AE,, AE,, AE, (B.33)
S,.p,=PE,, AE,, AE,, AE, (B.34)
S;.ps=PE;, AE,, AE,, AE, (B.35)
S;.p=PE;, AE,, AE,, AE, (B.36)

The maximum total time for periodic sensing of the fifth sensor is

S, t=PE,t+ [max. {(AE..t+ AE,.t), (AE,.t+ AE,.t) }+ AE t+AE,.t+ AE,t)[+AE,t
B.37)

for i ion of i or

S;.t=PE;.t+ max. [max. {(AE,.t+ AE.t), (AE,.t+ AE,.t) }, AE t+max. (AE,t,
AE,)] +AE, t (B.38)

for parallel ion of

B.2.6 Execution Paths From the Sixth Sensor

The execution paths for sensing the sixth sensor is shown in Fig.B.9.

Figure B.9: The execution paths from the periodic process PEj to serve sensing of the
sixth sensor.

The execution paths to serve the sixth sensor are defined by the following equations

S¢.p,=PE,, AE, (B.39)
S¢p,=PE,, AE, AE, (B.40)

The maximum total time for periodic sensing of the sixth sensor is

S.t=PE t+(AE,.t+ AE,.t+AE,.t) (B.41)

for i ion of | or

155

Set=PE,t+max. { AEt, (AE,.t+AE,.t) } (B42)

for parallel ion of

B.2.7 Execution Paths from the Seventh Sensor

The execution paths for sensing the seventh sensor are shown in Fig.B.10.

Figure B.10: The exccution paths from the periodic process PE, to serve sensing of the
seventh sensor.

The execution paths to serve the seventh sensor are defined by the following equations
S;.p=PE;, AE, (B.43)
S,.p=PE,, AE,, AE, (B.44)

The maximum total time for periodic sensing of the seventh sensor is

S,.t= PE,.t+(AE,t+ AE,.t+AE.t) (B.45)
for ion of i or
S,.t=PE,.t+max. {AE,., (AE.t+AE,.t)} (B.46)
for parallel ion of

156

B.3 Repetitiveness and Reachability Analysis

To facilitate the reachability and repetitiveness analysis the service sequence of different

events are summarized in tabular form as shown in Table B.2.

Table B.2: The summary of the execution path analysis.

Execution paths Periodic Events Aperiodic Events
[PE, [PE; [PE, [PE; [PE, [PE, UE, |AE, AE, |AE, 4E; |AE, |AE, AE,
S,.p~PE, AE, x x
S, P=PE, AE, AE, AE, X x x| x
IS,-p:=PE, AE, AE,AE, x x x x
S2-p,=P x x
Pl x x x x
x x x| x
x X x x
x x x x
x x x x
x x x| x
x x x x
x x
x x x | x
S.P\=PE, AE,, AE,, AE, x x x x
E,, AE;, AE,, AE, 3 x X x
E;, AE,, AE,, AE, x x x x
Es, AE,, AE,, AEy x x x [x
Eg, AE; x x
Sop-=PE,, AE,, A, 3 x| x
(S+P1=PE;, AE, x x
[S7.p:=PE;, AE,, AE, X | x

A few salient features of this formalism can be highlighted from the design data
summarized in the above table. It should be noted that this proposed design formalism of
SFS considers that for each sensor there must be a unique periodic event. The validity of
the design to satisfy this proposition can be justified by checking the columns of the
periodic events for each execution path. To satisfy this proposition each execution path
serves only one periodic event (i.e., only one cell in the periodic events area is marked for

each execution path).

157

In this proposed framework of SFS, the sensing operation is periodic in nature. To verify
this repetitiveness criterion a simplified model of the SFS is shown in Fig.B.11. In this
simplified representation only the terminal events (AE,,AE,, AE,) and the periodic events

are shown.

The periodic events
(e.g., PE,...PE; are
generated at regular |—

%

]
o

Py
‘F

intervals of time. Now

v,

if there is at least one

)
&

execution path from

|
&

ol
;

each periodic event

ending in any one of

I
-

o
&

the terminal events
(e.g, AELAE,AE), |—
the operations of the
designed SFS will be |~

P
“Vﬁ

i

o
&,

periodic in nature. To

L

satisfy this requirement igyre B 11: The Simplified Petri net model of the example
at least one cell of the SFS to understand the problem of verification of repetitiveness

column of each periodic event should be marked and at least one shaded cell of the same
row should be marked. The design data summarized in the table for this example SFS
satisfy this criterion. Therefore, this designed SFS is repetitive.

If each member of all the events (both periodic and aperiodic) is executed by at least one
execution path, it can be concluded that every event is reachable. To satisfy this
proposition each column of the events as shown in the table must be checked at least one

and this is satisfied for the design of this example SFS.

158

B.4 The Sensing Sequence Analysis

The total sensing time of each sensor considering minimum event service time and

of the

is shown in the Table B.3.

Table B.3: The summary of sensing time estimation.

Sensors Execution time relating equations Sensing time
S, |Si= max{ (PE,t*AE, 1), (PE, .LrAE, tFAE, 1+ AE, tAE, D)} | max.(22,53) |53
=max.{ (10+12), (10+16+12+15)}
S, S,.= PE;.t+max. {(AE,), (AE+AE+AE+AE)} + 18+max.(12,
max. {(AE;+AE,+AE), (AE,+AE,+AE,) 61) 125
=18+max. { (12), (16+18+12+15)}+max. {14,15}+18+15 +15+33
S, | Syt PE.tr AE tr AE+AE, t+ AE,t 61 61
=12+16+18+15
S, | Sut=PE,tr max_ ((AE,.tr AE, tFAE, 1), A f, (AE; t+
AE,t+AE, 1) } 14+ 61
=14+max. { (14+18+15), 20, (20+12+15) } max. (47,47)
S, = PE, t+ max. {(AE.t+ AE,.0), (A5t AE,.1) 1+ 6+max.(32, | 109
AEtH(AEgt+ AE,) +AEq.t 32)+16+30+15
=16+ max.{ (14+18), (20+12)}+16+(18+12)+15
Sy | Set= PEtH AE; i+ AE, t+AE.) 67 67
=20+20+12+15
S, S,.t= PE,.t+(AE.t+ AE,.t+AE.t) 72 72
=25420+12+15

The time for house keeping operation is
more or less constant for each sensing
sequence and has been assumed to be zero

for simplicity in

Sensing
The distribution of the sensing time of| ™
each sensor can be shown in graphical
form as in Fig.B.12. Here, the minimum

sensing time is 53 units for S, and

Sensing time distribution

Sensors

maximum sensing time is 125 units for
S,.

Figure B.12. Distribution of sensing times of
different sensors.

A plot of the sensing sequence using initially user's defined sensing phase (max. phase),
frequency (min. frequency) is shown in Fig.B.13. This plot shows the available and

required total sensing time for each sensor.

Sy
S2
S
S
eee
Ss
o sénsing
time 6f two senisors
Ss
% 0 I T S W N N
50 100 150 200 250 300 350 400 450 500 550 600 630 700 750 800 850 922 2000
L ‘ $2 s 3 ‘ s ‘ s ‘ |
2| 2 2, 2y 2, 2 2,

Figure B.13: The sensing sequence using user's initial specification.

From this plot it appears that in the first sequence of sensing, except one instance, there is
no overlapping of sensing times and the first sequence of sensing finishes before the
beginning of the second sequence. Therefore, the distribution of phase needs little
modification to avoid this overlapping to make the SFS implementable on a single

processor.

It is now worthwhile to go back to the proposed theory of sensing phase and periods
distribution. From the initial investigation of the specified phase it seems that the phase
grain size, gp=150 satisfies the initial condition, which is larger than the largest sensing
time, 125. Now, all the phases should be integral multiple of this grain. Therefore, the
proposed modified phases are shown in the Table B.4.

160

Table B.4: The modified phases of the sensors.

Sensors
s, [s. [Ss [s: [Ss [[S:
Phases |0 | 150 | 300 450 | 600 [750 [900

This modification in phase value will avoid detected overlapping of sensing time in the
first sequence as shown in the previous figure. If the client agrees with this modification,

the first sequence of sensing is free from overlapping.

Now according to the theory, the grain size of the periods should be larger than the sum
of the longest phase and the corresponding sensing time, and should be an integral
multiple of phase grain size. In this case, Gp=1050 is a reasonable choice. Now all the
periods should be integral multiple of this grain size. To satisfy this condition the slightly
modified periods are shown in the following Table B.5.

Table B.5: The periods of the sensors.

Sensors
Ts, S [T [Ts [Ts [T
Periods | 2100 szo J3150]3150 [3150 3150] 1050

If the client agrees with this modification, according to the theory there will be no overlap
in the sensing time. This can be verified by plotting the sensing time in the second

sequence of sensing as shown in Fig. B.14.

With respect to this design data this SFS can accommodate a maximum of 7 sensors. The
sensor's number can be increased either by decreasing the maximum sensing time (in this
case the sensing time of the second sensor is 125) or increasing the smallest period. It
should be noted that in the 2nd sequence of sensing the system is idle for a long period of

time. The CPU utilization factor of this system is shown below

U(3900+67)=

(53+125+61+61+109+67+72)+(72+53+125+ 61+61+109+67) _ 1096 _ . .
3900+ 67 3967
(B.47)

161

S

S,

Ss

23 24 25 26 27 28 29 30 3 6 37 8

s,
9 34 35
Tsi+¢; Tssts [Tsotbs lvs,vo; Tsgtbs

20 21 22
(Tsi+b, ‘Tsz"o:
—4.—4

Figure B.14: The sensing times during the second phase of sensing.

This simulation study has shown the use of the proposed novel technique (chapter 2) to
model the requirements of the example sensor fusion system (Appendix A). Through the
execution path analysis technique the temporal and logical correctness of the modeled
SFS has been studied. The repetitiveness and reachability analysis has been performed.
The overlapping of the sensing periods has been identified by the analysis of sensing
sequence and that has been avoided by the use of the technique proposed in chapter 2.
The resource utilization factor of this example SFS has been measured by the proposed

method (section 2.7).

162

Appendix C

Verification of Discrete Event Specifications

C.1 Introduction

Every aperiodic event of the DEVR model as shown in appendix B will be served by the

of a set of i It has been assumed that the size of this set is /6.

The lower and upper limits of ion times of these are shown in Table C.1.

These limits have been selected randomly and vary from / to 4 units of time. The input and

output it of these are selected ly as well and shown in the same

table. The sequential, branching, looping and parallel ions of the i to

serve an event have been considered here. It has been assumed that every event in DEVR model

has appropriate unique VO interfaces requiring very small execution times.

Table C.1: The specification of a set of
C fon times 7e)
Cower limit | Upper limit Tnputs Outputs
< 36 36 2 1
c1 39 4.0 3 2
c, 38 4.0 1 2
<. 32 34 3 1
c 7.0 4.0 1 1
Cs 2.8 30 2 i
c, 18 2.0 2 2
< 32 36 2 3
< 34 338 1 2
i 2.1 23 2 1
Sy 32 34 2 2
< 32 40 2 1
s 2.0 2.1 1 1
C. 2.7 3.0 1 2
Cis 35 37 2 1
Cee 28 3.0 1 1

163

C.2 The Decomposition of Aperiodic Events in Terms of Interactions
among the Computing Components

The eight aperiodic events of the DEVR model of the example sensor fusion system as modeled

in appendix B will be served by the ion of a set of i as shown in
Table C.1. Each execution path of these interactions is analyzed to compute the total execution

times required to serve these aperiodic events.

C.2.1 The Decomposition of the Aperiodic Event AE,

The representation of the aperiodic event AE, with the i ion of the

is shown in Fig. C.1.

Figure C.1: The decomposition of the aperiodic event AE,.

The execution paths to serve the aperiodic event AE, is shown by the following equations:

Sag,.p=AE,;, 2¢,, €3, AE,, «n
SaE.p,=AE,;, €5, €13, AE o (C2)
Sae;.p,=AE,;, C, i3y AE o (€3)

The maximum total computation time to serve the event AE, is

Sag,.t= AE, .t+2¢,.t+ ¢,5.t +max.(Cs.t, Cie.t)+ Cpat+ AE, C4)
for i ion of i or
SaE.t= AE, t+max. [{2c,.t+c5.t }, {max.(Cst, Cie.t }+ €5t}]+ AE ot (C.5)
for parallel ion of
The objective is to maximize the jon time of each computing component with the

constraint that the total execution time of the constituting components does not exceed the
allocated service time of the corresponding aperiodic event in the DEVR model. The maximum
and minimum values of total computation time to serve the event AE, for sequential execution of

parallelizable components are shown by the following two relations.
SAE b= 0 +2x2.0+ 2.1 +max.(4.0, 3.0)+ 2.1=4.0+2.1-+4.0+2.1=12.2 (C.6)
SAE =0 +2x1.8+ 2.0 +max.(4.0, 2.8)+ 2.0=3.6+2.0+4.0+2.0=11.6 ©n

From the above two equations, it appears that SAE,.t,,,, exceeds the allocated service time of AE,

specified by the DEVR model, but Sag,.t,y, is lower than the allocated total time. Here, a decision

should be made to reduce the ion times of i It should
be noted that these components will be used to serve other aperiodic events within temporal
constraints defined by the DEVR model. A few salient features of the effect of the reduction of

time of a on the total ion time can be ined by an example. For

example, if the execution time of c, is reduced by .1 unit, the total execution time of the
components to serve the event AE, is reduced by .1x2=.2 units. On the other hand, the reduction
of execution time of the component ¢, from 3.0 units to 2.8 units does not have any effect on the
total execution time. The effect of the reduction of computing time of each computing

component on the service times of all aperiodic events should be studied before the selection of

time of any to imize the total reduction of execution times to serve all

the aperiodic events.

165

C.2.2 The Decomposition of the Aperiodic Event AE,

The representation of the aperiodic event AE, with the i ion of the

is shown in Fig. C.2.

Figure C.2: The decomposition of the aperiodic event AE,.

‘The execution paths to serve the aperiodic event AE, is shown by the following equations:

SaE.p=AE,;, ¢,,C5AE,,

SaE:p=AE,;, C,,Cp, AE;,
SaE:p=AE,;, €13,C10, AE,

SAEp=AE,;, CioCiny AE,,

The maximum total computation time to serve the event AE, is
SaE,.t= AE, .t+ c.t+cs.t+max.(Cy.t, Ce.t)+C .t +AE, ot

for i ion of i or

Sae.t= AE, .t+ max. {c,.t, max.(c,y.t, C;e.t)}+max. (Cs.t, Cyp.t} +AE, .t

for parallel ion of

(C8)

(€9

(C.10)

(€11

(C.12)

(C.13)

166

Therefore, using the i ion of all the

SAE2.ty=0+3.6+4.0+max.(2.1, 3.0)+4.0+0=7.6+3.0+4.0=14.6 (C.14)
SAE2.ty;,=0+3.6+4.0+max.(2.0, 2.8)+3.2+0=7.6+2.8+3.2=13.6 (C.15)

The Sag2.t,,,, exceeds the allocated lower limit of service time for AE2, but it is smaller than the
upper limit of the allocated time. On the other hand, SAg2.t, is even lower than the lower limit of

the allocated service time.

C.2.3 The Decomposition of the Aperiodic Event AE,

The representation of the aperiodic event AE, with the i ions of the
is shown in Fig. C.3. The execution paths to serve the event AE, is shown by the following
equations:

SAE,p=AE, i, ¢,5,Cs, AE,., (C.16)
SaEp=AE, i, €,5,C12, AE;., (C17)
SaE,p=AE, i, ¢,5,¢,5, AE;., (C.18)

SAEp.~AE,, €,1,Cy0, AE;, (C.19)

Figure C.3: The decomposition of the aperiodic event AE,.

167

The maximum total computation time to serve the event AE, is

SAE.t= AE; .t+ ¢ .thcstte . t+ max.(Cy.t, 3¢,.t) + AE; .t (C.20)

for i ion of i or

Sag,.t= AE; . t+ max. {c,s.t, max.(c,s.t, 3¢,,.t)}+max.(cs.t, c;p.t) + AE, .t (C.21)

for parallel ion of
Therefore, using the i ion of all the
Sy by =0+3.5+4.0+3.2+max.(2.0, 3x3.2)+0=10.7+9.6=20.3, and (C22)
Sy by =0+3.7+4.0+4.0+max. (2.1, 3x3.4)+0=11.7+10.2=21.9 (€.23)

Here, the minimum execution time (20.3 units) to serve the aperiodic event AE, is higher than

the upper limit (19 units) of the service time defined in the DEVR model.

C.2.4 The Decomposition of the Aperiodic Event AE,

The representation of the aperiodic event AE, with the i ion of the

is shown in Fig. C.4.

Figure C.4: The decomposition of the aperiodic event AE,

The execution paths to serve the aperiodic event AE, is shown by the following equations:

SaEp=AE,; ¢c,, AE,,
SaE.p=AE,; ¢5, ¢, , AE,,
Sae.p=AE,; c;, ¢, , AE,,

SAE.D=AE,;, ¢ , ¢, 5 Coy AE,,

The maximum total computation time to serve the event AE4 is

SaE.t=AE, t+cg t+c,.t+4 ¢, .t + ¢, t + AE, it

for i ion of i or

Sae.t=AE, t+c; .t + max.(co.t , 4 ¢,.t) +ct+ AE, .t

for parallel ion of

Therefore, using the i ion of all the

SAE, 1y =0.0+3.6+4.0+4x3.4+3.4+0.0=7.6+13.6+3.4=24.6

Sag.ty, = 0.0+3.2+3.9+4x 3.2+3.2+0.0=7.1+12.8+3.2=23.1

(C24)

(€25

(C26)

(©2n

(C28)

(C.29)

(C:30)

(€31

169

C.2.5 The Decomposition of the Aperiodic Event AE;

The representation of the aperiodic event AE; with the i ion of the

is shown in Fig. C.5.

Figure C.5: The decomposition of the aperiodic event AE;.

The execution paths to serve the aperiodic event AE; is shown by the following equations:

Sag.p=AEs; c, , AE;, (C32)
SaE.p=AE;; ¢, C,, AE;, (C.33)
Sae,p,=AE;,, ¢, , C; , AE;, (C34)
SAE,p~AEs;, 4, €y 5 Co» AEs, (C.35)
Sag.p=AE;;, ¢, €y , Cyy, AEs, (C.36)
SaE.p~AE;;, g, €y , Cs, AE; (C.37)

170

The maximum total computation time to serve the event AE; is
SaE.t = AE; .t + Cq .t +C,.t + 4 ¢t +max. (Cu.t, .ty Gt) + AE, .t (C.38)

for i ion of i or

Saect=AE; t+ ¢y .t + max.(C,.t, 4 ¢,,.t) + max. (.8, 5.ty cst) + AE; .t (C.39)

for parallel execution of

Therefore, using the i ion of all the

SAE, £, =0.0+3.6+4.0+4x3.4+max. (3.4, 2.1, 4.0)+0.0=7.6+13.6+4.0=252 (C.40)

SAE, ;= 0.0+3.2+3.9+4x 3.2+max. (3.2, 2.0, 4.0)+0.0=7.1+12.8+4.0=23.9 (C.41)

C.2.6 The Decomposition of the Aperiodic Event AE

The representation of the aperiodic event AE, with the i ion of the

is shown in Fig. C.6.

Figure C.6: The decomposition of the aperiodic event AE,.

171

The execution paths to serve the aperiodic event AE, is shown by the following equations:

Sag,p=AE,; ¢, ¢5 , AE,, (C42)
Sag.p:=AEq; Co iz » AEgo (C43)
SaE.p=AE,;, C;5; AE, (C44)
SAE.P=AE,; C5, C , AE, (C.45)
Sag.p=AEq, Cy¢, €12 » AE, (C.46)

The maximum total computation time to serve the event AE, is

Sae.t = AE, .t + g .t + max.(Cst,Cp6.t) + Cst +Cpp.t +eyst + AE,,t (C47)

for i ion of i or
Sag.t=AEq.t + max.{ ¢, .t , max.(Cs.t,c,s.t) }+ max.(cs.t, Cpot, C5.t) + AE .t (C.48)

for parallel ion of

Therefore, using the i ion of all the
SAE, e =0.0+3.0+max.(4.0, 3.0)+4.0+4.0+3.7+0.0=3.0+4.0+11.7=18.7 (C49)

SAE, tyi =0.0+2.8+max.(4.0, 2.8)+4.0+3.2+3.5+0.0=2.8+4.0+10.7=17.5 (C.50)

172

C.2.7 The Decomposition of the Aperiodic Event AE,

The representation of the aperiodic event AE, with the i ion of the

is shown in Fig. C.7.

Figure C.7: The decomposition of the aperiodic event AE,.
The execution paths to serve the aperiodic event AE, is shown by the following equations:
SAEp=AEy;, ¢y, AE;, (C.s51)
SaE.p;=AE;;, ¢;, AE,, (C52)

The maximum total computation time to serve the event AE; is

SaE.t=AE, t+3 ¢, t+2c.t+AE, t (C.53)
for t ion of i or
Sag.t=AE; t+max. 3¢, .t,2c.t)+ AE, .t (C.54)
for parallel ion of
Therefore, using the i ion of all the
SAE, .t =0.0+ 3x3.4+ 2x2.0+0.0=10.2+4.0=14.2 (C.55)
SAE. b, =0.0+3x3.2+2x1.8+0.0=9.6+3.6=13.2 (C.56)

173

C.2.8 The Decomposition of the Aperiodic Event AE;

The representation of the aperiodic event AE; with the i ion of the
is shown in Fig. C.8.

Figure C.8: The decomposition of the aperiodic event AE,.
The execution paths to serve the aperiodic event AE, is shown by the following equations:
SaE.p=AE;, ¢,,, ¢ AE;, (C.57)
SaE.p=AE,, ¢, G, AE;, (C.58)

The maximum total computation time to serve the event AE; is

SaE.t = AE; t+c,, .t+c,t+3 ¢t + AE, b (C.59)
for ial execution of i or
Sag.t = AE, .t +c,,.t+ max. (c,.t, 3 c; .t)+ AE; .t (C.60)

for parallel execution of parallelizable components.

Therefore, using the i ion of all the
SAEty, =0.0+3.4+ 3.0+ 3x2.0+0.0=3.4+3+6.0=12.4 (C.61)
SABty =0.0+3.2+2.8+3x1.8=6.0+5.4=11.4 (C.62)

174

C.3 The Optimization of the Execution Times of the Computing
Components

For this optimization problem, the minimum service times for the aperiodic processes have been
considered. The specified service times for the aperiodic events, attainable service times

and i ions of the cor i i are

shown in Table C.2. For this optimization problem, it has been assumed that the parallellizable

components have been executed i on a single based ing system.

Table C.2: The minimum service times of the aperiodic events and the corresponding attainable

service times.
Aperiodic processes | Allocated service time | Attainable mini inabl
execution times execution times
_ AE, 12 11.6 122
AE; = 14 13.6 14.6
15 203 219
AE, 16 231 246
A, . 20 239 252
18 17.5 18.7
AE, 12 132 14.2
AE; 15 11.4 124

The allocated service times for AE,, AE, and AE, are within the range of attainable minimum

and maximum execution times. For these aperiodic the optimizati i as

proposed in section 3.3 will imize the allocated ion times of the

computmg components. For AE,, the allocated service time is even greater than possible

times of the i Therefore,

will have no effect on allocation time of this event.

The allocated service times of AE,, AE,, AE,, and AE, arc even higher than the attainable
minimum execution times. In this case, it is the job of the designer to brmg the allocated service

times of these events within the range of the attai and ion times.

The designer can change the sensing strategy or redefine the interaction of components to serve

175

these events, or can negotiate with the clients to redefine the system requirements. For this

present analysis, it has been assumed that due to the change of the system requirements the

allocated service times of the aperiodic events AE;, AE,, AE;, and AE, are 21, 24, 24 and 14

units respectively. The modified service times are shown in Table C.3.

Table C.3: The modified minimum service times of the aperiodic events and the corresponding

service times.

Aperiodic processes | Allocated service time inabl bl
execution times execution times
AE, 12 11.6 122
AE, 14 136 146
AE, 21 203 219
AE, 24 231 246
AE; 24 239 252
AE, 18 175 18.7
AE, 14 132 14.2
AE, 15 114 124
The equations to calculate the total ion times of the cor 1

to serve these aperiodic events are shown in the Table C.4.

Table C.4: The aperiodic events and the execution times of their corresponding computing traces

to serve them.
Aperiodic events The execution times of the traces to serve aperiodic events
AE, Sag,.t= AE, t+2c,.t+ ¢ p.t +max.(Cs.t, €yt)+ Cpput+ AE, .t
AE, SaE,t= AE, .t+ ¢,.tHc, tmax (5.4, Cret) Tyt TAE, ot
AE,; SAE,.t= AE, ;.t+ ¢ s.t+cgtthe,, t+ max.(Cys.t, 3¢,.t) + AE; .t
AE, SaE.t=AE, t + ¢, .t+c, tH ¢t + et + AE, t
AE, SaE.t=AE; .t + ¢ .t+C,.t + 4 .t +max,(Ct, Cipt, €5t) + AE; b
AE, SaE.t=AEgt + ;.1 + MaXy(Cst,Ciet) + Cot +ept +Cyst + AEqqt
AE, Sag.t=AE; t+3c, .t+2c,t+AE, .t
AEg SaE.t=AEy .t +c, t+cat+3 ¢t + AE; t
Now the ion times of the i i should be

according to the proposed technique as explained in Section 3.3.

176

From preliminary i igation, the of the specified set as shown in Table C.1 which
do not take part in serving these events can be sorted out as shown in Table C.5.

Table C.5: The aperiodic events and the

Events Computing components

C | C | C | C | C |G| C[Cs| CofCuo|Cul|CrafCu|CulfCs]|Ci
AE, X X X X
AE, | x X X [x X
AE; X x| x X
AE, X X x X
AE; X x | x x X
AE x | x X x| x
AE, X X
AE, X | x X

The components Ci, C;, Cy, and ¢,,
did not take part in serving these

cight aperiodic events. Therefore,

Set execution times of the

the optimization of their values will ||components to the upper limits.

not be considered here.

"Are the attaina™
ble values equal to o?
less than the service
times of all
events)

It should be noted that there is max,

(maximum time of the

Select the computatio-

operator in the equations to nally critical component.

compute the attainable service times

Reduce the specified execution|

time of the critical component
by one unit

Calculate the attainable
service times of the events

optimization algorithm is shown in Figure C.9: Flow chart for optimization.
Fig. C.9.

of the aperiodic events by executing
the cor i as
shown in Table C.4. Therefore, the

linear optimization will not work

here. The flow chart of the adopted

177

It took 2/ iterations for the optimization of this present problem. After the optimization, the

specified

times of the

are shown in Table C.6.

Table C.6: Optimized times of the
C times Optimized times
Tower limit | Upper limit
c 36 36 36
o 39 7.0 39
c 38 2.0 4.0
C 32 34 34
< 40 40 4.0
< 28 30 28
<, 1.8 2.0 [
G 32 36 33
< 34 338 38
Cio 21 23 23
Cu 32 34 32
Cis 32 4.0 32
s 2.0 2.1 2.0
i 2.7 5.0 3.0
Cis 33 37 35
Cis 28 3.0 3.0

The service times of the aperiodic events with these new optimized execution times of the

computing components are shown in Table C.7.

Table C.7: The service times of the aperiodic events after optimization

Aperiodic processes | Allocated service time | Attainable service times
after optimization
AE, 2 116
AE, 4 38
AE, 21 20.30
AE, 24 23.40
AE, 24 24.00
AE, 18 175
AE, 14 132
AE, 15 114

178

At each iteration, this optimization algorithm selects the temporally most critical component to
maximize the overall reduction of the service times of all aperiodic events. The profile of the
selection of these temporally critical components for this present optimization problem is shown
in Table C.8.

Table C.8: The selection of ly critical at different i

No of iterations
1|2|3|4]5|6|7|8r9|10[ll’12‘13|14|15|16|l7|18[l9|20’21
Components [, |eu | ¢ | & | €| @[] Ci[G| e[en] e [[e [cis[eu[en[o e [en

The ratio of the total reduction of the service times of all the aperiodic components at each

iteration to the of ion time of the critical is shown in

Fig.C.10.

1500 %

700%

300%

200%

2 4 9 10 Il 12 13 14 15 16 17 18 19 2

No of iterations

Figure C.10: The ratio of the total reduction of the service times of all aperiodic events to the
of the ion time of the critical

This simulation study has shown the mapping of the DEVR model of the example SFS to

level ifications in an optimized way.

179

Appendix D

The Architecture of the Embedded Computing
- System to Implement the Example SFS

D.1 Introduction

The i ions of the i for the service of the aperiodic events to realize
the example sensor fusion system as defined in the Appendix A have been shown in Appendix C.
The decomposition of the execution paths as shown in sections C.2.1,...,C.2.8 reveals that the
components interact in both sequential and parallel ways. It should be noted that parallelizable
components can be executed both in sequential and parallel fashion. Depending upon the mode

of ion of i the i of the underlying computing system

can be based on a single node or multiple nodes (processors).

D.2 The Archi e of the Computi System while Parallelizable
C are E: d in Seq ial i

Table D.1: The maximum total computation times to serve the aperiodic events for the sequential

of
Aperiodic events The maximum computation times
AE, SAE.t= AE, .t+2C,.t+ Cyp.t +max.y(Cs.t, Ct)+ Cy5t+ AE, ot
AE, SAE.t= AE, .t+ Cp.tHCs.t+maX.o(Cpa-t, Cat) €yt +AE; ot
AE, SAE.t= AE; tF ¢ s s they, th max,(Cpst, 3¢,,.1) + AE; ot
AE, Sae.t=AE, t+c; t+c,tHd ¢t +c t+ AE, .t
AE SaE.t = AE t +Cq .t +C,.t +4 ¢t +max,,(Cot, Caut, €5t) + AEs .t
AE, Saket=AEt + Cg .t + Max.(Cs.t,Cis.t) + Cs.t +C 1t +Ci5t + AEg 8
AE, Sag,.t=AE, t+3c, t+2c.t+AE, .t
AE, Sag.t=AE, t+c,, .t +c.t+3 c,.t + AEg .t

180

The maximum total computation times to serve the aperiodic events AE,,...,AE, for sequential

of the i are shown in Table D.1. The branching operations

have been shown with max., operator. These equati also show the

complexity to serve the corresponding aperiodic events.

D.2.1 Sensor Fusion System (SFS) ing on i Single C ing Node
If a dedicated computing node is assigned to execute

. & 5 Events
these computing components as shown in Fig. D.1, ESIF Qe = -
the waiting time of each component in the queue is o0 system [
zero. The service time of each event (ie., the
execution of a component upon its arrival in the Figure D.1: Single node based
queue) is equal to the corresponding execution time computing system.

only. In this operational scenario, components arrive in the queue only if the queue is empty. The
addition of extra computing node will not reduce the service times of the aperiodic events.
Therefore, the computing power of this single computing node should be adequate to guarantee

that Ts < Te for each i As in Appendix B, the i ilization factor

of this computing system will be 27.67% to avoid overlapping in the DEVR model. Moreover,
all the components used to estimate the maximum service time of each aperiodic event will not
always be in operation. They will come in operation only if some specific conditions are met
which depend upon the sensing environment. Therefore, the utilization factor of this computing

system will be lower (may be much lower) than 27.67%.

D.2.2 iple SFSs ing on Single C ing Node

To increase the utilization factor, multiple SFS can be implemented on the same computing
system. As explained in section 4.6, DEVR models of multiple SFSs can be interlaced to
increase the utilization factor. For this example problem, it has been shown in section B.6 (to

specify sensing sequence) that there are idle periods in the DEVR model of this example SFS. In

181

this operational scenario, interlacing the DEVR model of another SFS with the DEVR model of
this example SFS can increase the utilization factor. Due to the interlacing of the DEVR models,
the components will not wait in the queue of the computing node to be executed resulting in zero
waiting time. Therefore, the computing power of the single computing node should be adequate
enough to guarantee that Ts < Te for each computing component of both the SFSs. The addition

of extra computing nodes will not increase the system performance in terms of service time.

All the computing components used to calculate the maximum total execution times to serve
these aperiodic events will only come in operation if certain operating conditions of the sensing

environment are met. Therefore, even in the busy period of the DEVR model the computing node

will not be always busy. Therefore,

multiple DEVR models can be

Requests to Component|
implemented on a single node to share the execute execution
K i components.
same busy period. In this scheme, the
service time of each computing La g

(ie., the ion time and

the waiting time) will be random due to

the randomness in the waiting time which

Figure D.2: Multiple nodes serve requests from

is a function of the arrival rate of the et e
the same queue resulting in reduced waiting time.

component in the queue as explained in

Section 4.3. Under this operational scenario, the addition of extra node will decrease the
waiting time resulting in reduced service time. The request of the execution of the components
will come to single queue and multiple nodes will use the same queue as shown in Fig. D.2. The
task coordination unit will make sure that the components belonging to the same SFS do not go

into execution on both the processors.

182

D.3 The Architecture of the Computing System while Parallelizable

Components are Executed in Parallel Fashion

The maximum total computation times to serve the aperiodic events AE,,..,AE, for parallel

of the i are shown in Table D.2. The parallel operations have

been shown with max., operator.

Table D.2: The maximum total computation times to serve the aperiodic events for the parallel

of
Aperiodic The maximum computation times
events
AE, SAE, 1= AE, tFmax,, [{2C.tF Cyyl }, {MaxXy(Cst, et)F st} 1+ AE,,
AE, SAE. = AE, .t MaX., (€., MaXy(Cpyt, Crg D} FMAX.(Cst, Cpat) +AEy,
AE; SaE, t= AE, . t+ max., {¢;s.t, max.,(C;.t, 3¢,.)} +max.(cs.t, ¢\p.t) + AE; .t
AE, Sae.t=AE,;t +¢g .t + max.p(c,t, 4 ¢,p.t) +cit + AE b
AE, SaE.t = AE; .t +cq .t + max.(Cp.t, 4 ;p.t) + max., (Cyt, Cyaet, Cot) + AE ot
AE, SaE.t =AE .t + max.,{ c; .t, Mmax.(Cs.t,016.t) }+ max.,(Cs.t, Cpp.t, Cy5.t) + AEg,.t
AE, | Saet=AE, t+max, (3¢, t,2c.t)F AE, .t
AE, Sag,t = AE, .t +c,,.t+ max., (Cgt, 3 ¢;)+ AE; .t
In these execution sequences to serve the aperiodic
Queue 1
events AE,,.,AE; the maximum level of
parallelization is 3. Therefore, the underlying it !
computing system may have three independent nodes Queue 2
with separate queues to achieve higher temporal ’
performance as shown in Fig. D.3. In this ot
the i will be Queue 3
sent to separate queues. For example, to serve the
)

aperiodic event AE, the components c,, Gy, and ¢;s

will be executed simultaneously by the three

Figure D.3: The three parallels

independent nodes 1, 2, and 3 pectively thus

reducing total computational time.

nodes to execute

parallelizable components parallely.

183

The utilization factor of this multi-

node based parallel architecture will be Busy
lower than single-node based | Operating Idle
state of Cs
architecture. Because, during the node 3
of i
components the two of three nodes will | Operating
- o stueiof GslCie: Cn
remain idle. If it is assumed that the node 2
execution time of each
component is equal, the state of | Operating
state of AE c ¢ i
operations of each these of three node 1 ot g L =
computing nodes to serve the aperiodic 5 - 5 oy

event AE, when all the components Figure D.4: The operating states of different nodes to
come in operation are shown in Fig. serve the aperiodic event AE,.
D.4. Here, the node 3 and node 2 remain idle during 66% and 33% of the total service time of

AE,respectively.

Different approaches to enhance the overall utilization factor as explained in the previous section

for the single node based system can be applied here too.

The modem i utilize to exploit i ion level
parallelism in order to reduce the required clock cycles per instruction (CPI). This attribute of

these modern processors contributes to the to the ion time of an i

The instruction execution time depends not only upon the computational complexity of the

instruction alone, but also upon the instructions already in different stages of executions in the

pipeline [63]. This has been explained in the ing sub-secti

184

D.4 The in the E ion Time of a Computing Component on
Pipelined Architecture

To understand this problem a closer look can be taken to the pipeline structure of a particular
class of architecture. Due to the superior performance of reduced instruction set computer
(RISC) over compound instruction set computer (CISC), the effect of pipeline structure of the
MIPS R4000 processor family on the of the i i ion times has been

studied here. The R4000 uses a eight-stage pipeline structure and sometimes this is called
superpipeline as shown in Fig. D.5 [63]. The pipe stages are labeled and their detailed functions
are described in the following text.

F s RF EX DF DS TC WB

| ‘
|
Instrudtion memory -m Data memory

Figure D.5: The eight-stage pipeline structure of the R4000 uses pipelined instruction and data
caches [42].
The function of each stage is as follows:

IF : First half of the instruction fetch.

IS : Second half of instruction fetch.

. RF : Instruction decode and register fetch.
EX : Execution.

DF : First half of the data fetch.

6. DS : Second half of the data fetch.

. TC : Tag check.

8. WB : Write back.

wos e

=

185

The d

of the

time of an i

stages of executions in the pipeline is shown in Fig. D.6.

on other instructions already at different

Clock number
Instruction number 1 2 3 4 s 6 7 8 9
LW RI F IS RF EX DF DS TC WB
JADD R2,R1 IF s RF stall stall EX DF DS
[SUB R3,R1 i3 s stall stall RF EX DF
JOR R4,R1 IF stall stall s RF EX
Figure D.6: The of the time of an i on the instructions

already in execution in the pipeline [63].

The variations of clock cycles per instruction (CPI) for the 10 SPEC92 benchmarks [63] are

shown in Table D.3. The variations of these pipelined CPIs in graphical form are shown in the

Fig.D.7.

Table D.3: The randomness of total pipelined CPI and the contributions of the four major sources

of stalls are shown [63].
Benchmark Pipeline CPI | Load stalls | Branch stalls | Floating point | FP structural
(FP) result stalls | stalls

compress 1.20 0.14 0.06 0.00 0.00
eqntott 1.88 0.27 0.61 0.00 0.00
espresso 1.42 0.07 0.35 0.00 0.00
gee 1.56 0.13 0.43 0.00 0.00
I 1.64 0.18 0.46 0.00 0.00

Integer 1.54 0.16 0.38 0.00 0.00
average(IA)
doduc 2.84 0.01 0.22 139 0.22
‘mdjdp2 2.66 0.01 031 120 0.15
ear 2.17 0.00 0.46 0.59 0.12
hydro2d 2.53 0.00 0.62 0.75 0.17
su2cor 2.18 0.02 0.07 0.84 0.26
FP average 2.48 0.01 0.33 0.95 0.18

Overall 2.00 0.10 0.36 0.46 0.09
average(OA)

186

The CPI of SPEC92 benchmarks

SPEC92 benchmarks

Figure D.7 The variations of the MIPS R4000's pipelined CPI of SPEC92 benchmarks

Table D.4: The statistics of the variations of CPI of SPEC92
[imum | Minimum ‘| Average | Variance | (Max-Min)*100Min__|
[284 [120 | 200 | 21 | 164%

The statistics of the randomness of the MIPS pipelined CPI of SPEC92 benchmarks is shown in
Table D.4. In this study, it appears that the maximum clock cycles per instruction (CPI) is 164%
higher than the minimum CPIL Therefore, it is not reasonable to depend on the CPI values to

calculate the time required executing a computing component on modern pipelined processing

units. It is to run the i on those CPUs to estimate the time
required for its execution. If this point is not considered in the implementation phase of the SFS,
the system may suffer setback to satisfy the temporal specifications of the DEVR and DEVS
models. This setback will result in the development of less reliable sensor fusion system.
Therefore, the consideration of this limitation (from temporal point of view) of modem central

processing units will help us realize reliable sensor fusion system.

D.5 Randomness in Execution Time
Hierarchical Memory Architecture

of a Computing Component on

the of the hi
memory architecture of modern computing

To

system on the randomness of the execution times
of the computing components it can be assumed
that the system has cache (internal and external),
main memory and disk storage. These four levels
of memory hierarchy with increasing capacity and
decreasing speed as shown in Fig.D.8 [62]. The
data transfers sequence between successive levels
of memory hierarchy during the execution of the

computing components is shown in Fig. D.9.

To quantify the effect of the presence of
required data in particular level of memory on
the execution time of an instruction, the typical
values of access times of different levels of

memory are shown in Table D.5 [62].

Table D.5: Typical values of access times of
different levels of memory.

Increase

= Level 1
access

e Level2

Level 3
gure D.SA four-level memory architecture
cPU
Registers

Memory Level Access time
CPU Registers A few clock cycles
Cache (SRAMs) 25ns
Main Memory 70 ns
Disk array Sms

Figure D.9:Data transfer between adjacent levels

The data access time in disk is 4x10° times higher than that in Cache. Therefore, the availability
of data required for the execution of a particular computing component at different memory

levels will contribute highly to the total execution time of that component.

The memory reference patterns for the ion of the i are caused by the

following locality properties [62],[63]:

1. Temporal locality
2. Spatial locality
3: Sequential locality

The spatial and sequential localities depend upon the memory access patterns of a particular
component. The temporal locality not only depends upon the memory access pattern of the
particular component, but also upon the data distribution at different levels made by the
executions of the past computing components. Therefore, the memory access time during the
execution of a particular component not only depends upon the data access pattern of the code of
that component alone, but also on the data access pattern of the previously executed components.

The of ion of different i to serve different aperiodic events

is random due to the randomness of the arrival of aperiodic events. This randomness of data

distribution at different memory levels by the previously executed components will cause

d in the ion time of a i To explain the problem, the effect

of different memory reference patterns on the ion times of a il can be

considered as shown in Table D.6.

189

Table D.6: The effect of data distribution on the memory access time

Scenarios Data available | Data available | Data available | Total memory
in Cache in Memory in Disk access time in

1 40% 30% 20% =100 ms

2 30% 40% 30% =150 ms

3 20% 50% 30% =150 ms

4 60% 40% 0% 4300 ns

5 40% 60% 0% 5200 ns

From the data shown in Table D.6, it is evident that there is a potential of high degree of

in the ion time of a i due to the of the initial

data distribution at different memory levels by the previously executed components. This
randomness in execution time may result in failure of temporal correctness of the execution of
the computing components to serve different events. As a result the reliability of the system will

suffer.

One of the solutions of this problem may be achieved by flushing the different levels of memory

at the inning of the ion of each i This will result in a memory
reference pattern of each computing component independent of data distribution caused by the

previously executed components.

In this study, the rationale for the il i to i the example

SFS has been explained. The quantitative measure of the sources of randomness of the
component execution times on modern computing hardware has been provided. This finding will

help ensure temporal correctness in execution time.

190

Appendix E

Improvement of the Reliability and the Required
- Overhead for the Incorporation of Hardware

Fault-Tolerance in the Example SFS

E.1 Introduction

The example sensor fusion system has seven sensors and these sensors are sensed sequentially. If
it is assumed that this SFS is implemented on a single processor based system and all the sensors

are sensed using the same analog channel, the high-level hardware configuration is as shown in

Sensor 3
L—f 7tol
s Z multi-
ensor 4| ————3 plexer
—
sensing event

generator

Analog channel Digital
| computing

E unit

Sensor 7

Figure E.1: The hardware configuration of the example sensor fusion system.

Fig.E.1. This study will focus on the improvement of reliability and the required overhead for the

of hardware fault-tol; The fault-tol ined here only the

issues of the failure of sensors. It has been assumed that other components will function properly.

E.2 Hardware, Energy, and Space Overhead to Incorporate Fault-Tolerance

The required overhead to implement fault-tolerance depends upon the techniques used to detect

fault sensors. The voting and estimation are the most i fault detection i as

explained in Chapter 4.

E.2.1 Overhead to Incorporate Fault-Tolerance Using Voting Technique
Based Faults Detections

If the sensor fault detection scheme is
implemented using majority voting
technique, for triple modular
redundancy (TMR) the system will
require 7x3=2/ sensors and 7 voters. | p()

The TMR uses three identical sensors

with a majority voter to determine the
Block 3
output as shown in Fig.E.2. All these
Figure E.2: Triple modular redundancy
implementation of sensor 1
power to drive the sensor suit. These extra /4 sensors, 7 voters and the required extra energy

sensors should be in operation

resulting in at least 200% increase in

source to keep them operational will also require more space. As a result the material and

operation cost will rise. The nature of the ications and of system reliability may
Jjustify this cost.

192

E.2.2 Overhead to Incorporate Fault-Tolerance Using Estimation Technique
Based Faults Detections

In fault-tolerant sensor system using

estimation technique based fault detection
scheme as shown in Fig. E.3, it is not /
G

Data from

necessary to keep all the redundant sensors

operational. This will reduce the energy ‘Selection of fault-fre
election of fault-free

overhead in comparison to hardware based sensor by the CPU

TMR technique. Trple modular e eohmique based miple

based on estimati i modular redundant sensor system.

will require the same number of sensors (7x3=21). The hardware based TMR system failed after
the failure of one sensor as shown in the state diagram as shown in Fig.E.4 [36], but in estimation
based technique the system will be functioning as long as one fault-free sensor is available. As a
result, it appears that the estimation based technique has the potential to have better reliability

profile than voting based fault detection system.

All three sensors | One sensor : Twosensors | ‘Three sensors
are functioning | failed * failed) failed *

TMR sensor system failed
Figure E 4: State diagram using Markov's Model showing possible state transitions for
TMR system.

193

E.3 Reliability Profile of a Fault Tolerant Sensor System Using Voting Based
Fault Detection Scheme

If R,(t) is the reliability of the first sensor and the other two sensors to support triple modular
redundancy have same reliability, the reliability of the first TMR sensor system is as follows

R (0=3R(-2R(1) (E.])

In a TMR sensor system, as long as two of

the three sensors are functioning correctly,

L Reliablity of

‘TMR sensor
! el

the sensor system will perform correctly.

In the above equation the reliability of the

voter has been ignored. The T
i i of a single
p Sensor.

profile of TMR sensor system in

Ratabityofthe THR sorsor systom
F
&

comparison to the reliability of a single

sensor is shown in Fig. E.5. From this

% T 0

) % £
Single sansar esasiaty RU100

T)) i Tigure E.5: The comparison of the reliability of
systemaill; beshigher-only, It the TMR system consisting of the three identical sensor

reliability of a single sensor is more than modules with the reliability of a single sensor.

50%. In realistic sense, most of the Reliability of TMR
sensor system

figure it is evident that the reliability of the

overhead. The wuse of 4-modular

sensor's reliability is more than 80% for | ¢ i -
i T
reasonable lifetime. Therefore, this § <ol A
£ 0% Retiabitity of
approach has the potential to increase E 4-modular i
system's reliability at the cost of extra g system. of single
H
H
H

redundancy instead of triple modular ¢ i

redundancy will require only one 705 20

additional sensor. The reliability of 4-

% % £
Singie sensor rlabilty R 100

. Figure E.6: The comparison of the reliability
modulassensor;system is as fllows profile of 4-modular sensor system with those of
TMR sensor system and single sensor.

Rymoa (1) = 3R* (1)~ 8R* (1) + 6R*(1) (E.2)

194

The ison of the reliability of 4-modul: sensor system with the reliabilities of

TMR and single sensor is shown in Fig. E.6. From this graph, it appears that the 4-modular
redundancy has much better reliability profile than that of TMR system at the cost of one

additional sensor.

E.4 Reliability Profile of a Fault Tolerant Sensor System Using Estimation
Based Fault Detection Scheme

A triple modular sensor system as shown in Fig. E.3 will function properly as long as one fault-
free sensor is available. It appears that these three sensors are functioning as independent signal
sources; the signal will be available as long as one source is functioning correctly. The following

relation measures the reliability of such system:

R(0)=1-(1-R () (E3)

Here, the failure of the

has been ignored and it has been 1 T
Reliability of

assumed that all the sensors have £
. % | systemjusing | &
the same reliability. The | §,,| cimhtion |
comparison of the reliability | tecltfiue; T Rttty of
p TMR
profiles of TMR sensor system E 4 system using
/ 5 i oeliin

using estimation based fault ; \ techhique.
detection technique with those of o cliabili

of single
TMR sensor system using voting sensor

20

K
Single sensor rafabillty R()"100

technique to detect faults, and the

Figure E.7: The comparison of reliability profiles of fault-
tolerant sensor using voting technique based fault detection
From these reliabilities, it appears technique with those of fault-tol t sensor using estimati
based fault detection technique, and single sensor.

single sensor is shown in Fig. E.7.

that fault-tolerant system using
estimation based fault detection technique has much better reliability profile than that of sensor
system using voting technique based fault detection scheme. Moreover, the reliability of the

TMR sensor system using estimation technique is always higher than that of single sensor.

195

E.5 The Comparisons of the Reliability Profiles of Different Fault-

Tolerant Sensor Systems and Single Sensor

The graph shown in Fig. E.8 gives a comparison of the reliability profiles of fault-tolerant

systems having different levels of redundancy using voting and estimation techniques for fault

detection.
REfiability of &~
module sensor
jystem using
E 1 imati
4 technique. \
2 Reliability of | / /> =
5 TMR sensor - y
2 08 fem using. £ Reliabi £
3 estimation e 4-module
£ technique. sensor system
E using voting
B Reliability of 'co e
& J \TMR sensor
£ 7 system ising
s e, 2
= ,<R¢hammy technidue.
5 of single
s sensor
o}
(4
4 60 80 100 120
Single sensor reliability R(t)*100
Figure E.8: The ison of reliability profiles of fault-tol t sensor system having different

levels of redundancy using voting and estimation techniques.

From this graph, it appears that the estimation based i i to show better
performance than the voting based technique. It should be noted that unlike voting technique the
estimation based technique does not require separate voter for each sensor module. If the
probability of failure of this voter were brought under consideration, the estimation based fault-

tolerant system would show much better performance than voting based technique.

196

For more itati i of
the reliability profiles of fault-tolerant]
5 2 Ratio of the reliability | i
sensor systems using voting and . profiles of 3-module |
estimation techniques, the ratios of | % Locai
H
- 3 ; i Ratio of the reliability
the reliability profiles of TMR and 4- i o —piormesat e
module sensor systems using = \\ | senmsorsystem.
estimation to those of TMR and 4- | ¢ \ | | 1
modular redundant systems using \
voting technique are shown in E wwm % & ®
Sioge sensor retabily RUF100

Fig.E.9. For better comparisons in the
Figure .E.9: The ratios of reliability profile of fault-

region of high reliability values, the (olerant sensor system using estimation and voting
ratio profiles have been shown for the techniques for fault detection.

reliability of more than 30% of a single sensor.

E.6 The Reliability Profile of the Example Sensor Fusion System at Different
Levels of Fusion

The sensor fusion system specified in appendix A will partially fail due to the failure of any
terminal events (AE,, AE,, AE,) as shown in the DEVR model in appendix B.

It is also necessary to quantify the probability that data will be provided at different levels of
fusion: data fusion, feature fusion, and decision fusion by the supporting sensors. This measure
will enable the designer to measure the system performance to extend the finctionality of already
designed sensor fusion system. The reliability profiles of the terminals will be first studied in the
following subsections. Then this study will be continued to quantify the reliability profiles of
different levels of fusion. This study is limited to the failure of the supporting sensors only.

197

E.6.1 The Reliability Profile of Terminal Event AE,

A fault tree shown in Fig depicts the
failure of the sensors to the failure of AEL. E.10. The
reliability of the aperiodic event AE, in terms of the

reliabilities of the supporting sensors 1 and 2 is as follows:

Rg () =1-(1- R()(1- Ry(1))

The reliability profile of the AE, at different levels of
redundancy in the supporting sensor suite is shown in Fig.

E.11 with the assumption that all the sensors have same

reliabilities.

of the

(E4)

Failure of the
aperiodic
event
AE,; OR logic.
AE, will
fail if both
sensors
fail.

Failure |
of sensor
2 |

Figure E.10: Fault tree of AE,
in relation to the failure of the
supporting sensors 1 and 2.

Reliability of AE, with Reliability of AE, with

TMR redunddncy using | -module redundancy

Stiration ‘using estimation
b}
<
g &
3
g P8
5
2 Reliability of AE, with
I 4-module fedundancy
2 06 usimg votin
5
2
] “Reliability of AE, with
g .

04 TMR using.
2 voting
K] Reliability of
3 AE, withbut
€02) Tedundancy
Reliability of
/ single senfor
oll
20 40 60 80 100 120
Single sensor reliability R(t)*100

Figure E.11: The reliability profile of the aperiodic event AE,

198

E.6.2 The Reliability Profile of Terminal Event AE

The fault-tree of the aperiodic event AE; in

relation to the failure of the supporting sensors is Failure of the
shown in Fig. E.12. To support data for the service
of AE;, sensors 4 and 5 play redundant role, while
sensors 4 and 5 are complementary to sensors 6
and 7. The reliability of the aperiodic event AE; in
terms of the reliabilities of the supporting sensors

4,5,6,and 2 is as follows:

Ryg, (1) = (1= (1= Ry(1)(1 = Rs())Rs(D)Rs (1) (E.5)

Failure |

| of sensor
L s
The reliability profile of AE; is shown in
Fig.E.13 1gure E12: The fault-tree of the event »

Failure
of sensor
4

Reliability of AE, with
4-module redundancy

ing estimation
1 X
Reliability of AE; with \ / y

w0
w
<
£
2 TMR redundancy using P
K2 0.8 esamation
3
2 i
2 .
g 06 . Reliabilitylof AE, with
5 F-module redundancy
o using votisg
=
g
S04 y
2 [single sensor Reliability of AE, with
= TMR redundhney using
3 voting
£ 02 ReRsbiliy of
AE, without
redundancy
0 -~
20 40 60 80 100 120

Single sensor reliability R(t)*100

Figure E.13: The reliability profile of the aperiodic event AE;.

199

E.6.3 The Reliability Profile of Terminal Event AE,

The fault-tree of the aperiodic event AE, in relation to the failure of the supporting sensors is

shown in Fig. E.14.

Failure of
the aperiodic
event

AE,

Failure

ure
of sensor 2

ailure
of sensor 5

Failure
of sensor 7

Failure
of sensor 6

Failure
of sensor 4

of sensor 5

{ Failure

Failure
of sensor 2

Failure
of sensor 1

Figure E.14: The fault-tree of the failure of aperiodic event AE.

200

The derivation of the relation to estimate the reliability of the aperiodic event AE; in terms of the
reliabilities of the supporting sensors with the assumption that all the sensors have same

reliabilities is shown below.

Ry, (6)= R(EX1-Q*(1)), O() is the unreliability (E.6)
Ry, (1) = (1- QX (1)} {L - Q*(}R() (E.7)

Rag, (1) = (1= QX (OIR(OR() (E.8)

Rag, () =[1-{1= RO - QO - Q1 - Q*(IR()] (E9)
R, (0=[1- 1= Q* (0} 1= (RO - 1= @ ()} ROR(©)}] (E.10)

Ryg, =[1=[1- (1= RO - Q*) QONLI - 0} (1= QX I RO = (1 - 1= @ ()} (1= QP (N RM[1 - 1~ Q* I RORWI

(E.11)
The reliability profile of the AE, at different levels of redundancy in the supporting sensor suite
is shown in Fig. E.15.

Relidbility of AE, withla-
moddle redundancy using.
estimation

o 1

w

<

£ Reliability of Ay

2 with TMR.

208 i

& G

2 estimation

3

-

g

a

S o6 -
e Kehahxhlyn:/ module redupdancy sing
2 single sensor voting

g

> 0% Reliability of AEs
= with T

] redundancy ubing
<

€ 0.2

- Reliability of
/1 \AEy without
3 redundancy
o

20 40 60 80 100 120
Single sensor reliability R(t)100

Figure E.15: The reliability profile of the aperiodic event AE;.

E.6.4 The Reliability Profile of the Data Fusion with Event AE,

The data level fusion of data from sensors 2, 4, and 5 is
performed by the service of event AE,. The fault-tree of
the aperiodic event AE, is shown in FigE.16. The
reliability of providing data from the sensors to generate

the event AE, is shown below.

R (0= RO(1-0'(®)) (E12)

The profile of reliable data supply to the aperiodic event
[Failure Failure || Failure
AE, is shown in Fig.E.17. |of sensor 2 || of sensor 4| of sensor 5

Fig.E.16: The fault-tree of event AE,.

Reliability of AE, with
4-module redundanty
using estimation

&1
]
< \
= Reliability of AE, with g
2 g | TMR redundincy using y
o 08 estmmtion
3
8
2
5
2
Sos & Rblisbility-oF-AB-with.
H 4imodule redundancy
2 8 e
]
S04
O e 4 Reliability of AE; with
B g TMR redundancy using
% 'voting
x 0.2
Reliability of
AE; without
. redundaricy
0 20 40 60 80 100 120

Single sensor reliability R(t)*100

Figure E.17: The reliability profile of the aperiodic event AE,.

202

E.6.5 The Reliability Profile of the Data Fusion with Event AE, and AE,

The reliability profiles of AE, and that
of sensor 2 are the same, because AE;
is provided data only by that sensor.
The fault-tree of the aperiodic event
AE, is shown in FigE.18. The
following relation measures the

readability of the event AE4:

Rye, ()= {1-Q* (0}~ Q*(0}R() (E.13)

The graph shown in Fig.E.19 gives the
reliability profile of event AE,.

Failure

Failure

Failure
of sensor 2

Failure |
of sensor 3

Failure
of sensor 5

Figure E.18: The fault-tree of the event AE,.

Reliability of AE, with
4-module redundancy
using lestimation

0.8

Reliability of AE, with /
TMR redunddncy using

<
w
<
z
2
3
o estmaton
3
]
2
5
g
Sos linbility-of Alby-with
H module redundancy
g ing voting
I Reliability of AE, with
2 ; eliabili L wi
3 sHigle-sensoly TMR redundancy using
s voting
& 02

Reliabilify of

AE, without

s redundaricy
0
20 40 60 80 100 1

single sensor reliability R(t)*100

Figure E.19: The reliability profile of the aperiodic cvent AE,.

203

E.6.6 The Reliability Profile of the Feature Fusion with Event AE¢

The failures of the events AE, and AE, contribute to the
failure of AE,. The fault-tree of the aperiodic event AE,
is shown in Fig.E.20. The reliability that data will be
provided to AE, by the sensors is calculated by the

following equations.

R, ()= (1= (1= Ry, M)A~ RINR £, (1)

Ry, ()= [1- {1 - R()(1 - Q2 (AN - QX ()} {1 - O (IR(M)]

The reliability profile of the event AE, is shown in

FigE21.

(E.14)

(E.15)

[Failure |
of AE,

Failure
of sensor 2

Failure |
of AE,

Figure E.20: The fault-tree of the
aperiodic event AE,.

Reliability profile of aperiodic event AE6

0.8

0.6

04

0.2

Reliability of AEg wi
4-module redundang
usingestimation

< E

Reliability of A, with
TMR redundancy using

ESHIAton

Jiability-of-A .

\4imodule redundancy

ing voting

single sensor #/

Reliability of AE, with
TMR fedundancy using

'voting]
Reliability of
20 40 60 80 100 120

Single sensor reliability R(t)*100

Figure E.21: The reliability profile of the aperiodic event AE,.

E.6.7 The Reliability Profile of the Data Fusion with Event AE,

The output of the aperiodic events AE, and AE, are
redundant. The failure of both of these events will result in
failure of the event AE;,. The fault-tree of AE, in terms of the
failure of AE, and AE, is shown in Fig.E.22. The reliability
that data will be provided to AE; by the sensors is estimated

by the following equations.

Rug, ()= 1= (1= Ry, (D)1= Ry, (1)) (E.16)

Ryg, (1) =[1- (1= QX (0} (1= Q* (RO - {1 - QX (DIR(DR()}]

(E.17)

Failure
of AE,

[Failure

of AE,

Figure A.E.22: The fault-tree of
the aperiodic event AE,.

The reliability profile of this aperiodic event is shown in Fig. E.23.

0.8

0.6

04

Reliability profile of aperiodic event AE7

0.2

Reliability of AE, with
4-module redundancy
using estimation

Reliability of AE, with
undagcy

rosing estimation

Reli

bility of AE, with

Reliability o
single sensor)

4-m
usin

idule redundaricy
voting

Relibility

™ voting

/

TMR redundancy using

TAE, With

Relfability of

/ AE, without
i / rédundancy

Y4l

40 60
Single sensor reliability R(t)*

0
100

Figure E.23: The reliability profile of the aperiodic event AE,.

205

E.7 Temporal Overhead to Manage Redundancy

The temporal overhead to manage redundancy depends upon the technique used for sensors

faults detection.

In voting technique, if fault occurs during the data acquisition time (DAT) as explained in section
5.2.1.2, fault should be cleared instantly. The time required to detect and switch the faulty sensor
with a fault-free one will be very negligible. During this fault clearance period data will be lost
and these data may be recovered using parallel sensing technique as explained in chapter 6 and
the time of this recovery will be small in comparison to the total allocated time for periodic
process as shown in Table A.3. In this case, the lower limits of the service times of the periodic
processes should be extended by this data recovery time. If faults occur during TCAD, service
time of the aperiodic events and WT, the data recovery is not required and voter may have the
potential to operate autonomously resulting in no temporal overhead on the DEVR model.
Therefore, in this operational scenario, DAT should include enough time to recovery data lost

during fault clearing period when fault occurs during DAT.

In estimation technique, at the end of every data acquisition

session estimation algorithm should be run on these acquired

data to make sure that the sensor is fault-free. This sensing .
Use estimation |
sequence is explained in Fig. E.24. In this sensing scenario, the algorithm to
detect sensor
total allocated times for periodic processes as shown in Table status

A.3 should include enough time for at least acquiescing data
twice and running the estimation algorithm twice to

accommodate at least one failure between two successive

periodic events. This i will create
s Replace the | ["Eror free
temporal overheard on the DEVR model. The estimation faulty sensor || oo o
) . - . with fault free
technique has the potential to show better reliability profile in one

comparison to voting technique, but this is at the cost of extra Figure E.24: Sequence of tasks

to acquire fault-free data while

estimation technique is used to
detect faulty sensors.

temporal overhead on each periodic process.

Appendix F

Detection of Sensor Faults in
_ Multi-sensori System by Simulation

F.1 Introduction

In this simulation study, four test signals have been composed by the combination of different
harmonic components. The Fourier series representation of the formation of these test signals is

given by

f(1)=00+z‘:a" cos(nax)i»ib, sin(nar) (F.1)

where ¢ being an independent variable represents time, @ = ZT—” is the first harmonic, n is the

number of harmonics, and a, and by, are the amplitudes of the harmonics nw.

The specification of this simulation is shown in Table F.1. The study of local means and
variances of these test signals at fault free condition will be followed by the study of these
parameters at different fault conditions. The study will examine the effects of different instances
of occurrence and different frequencies of transient faults on local statistics. The variations of
these local statistics with the variation of window size and location will also be investigated. The

permanent faults causing +ve and -ve saturation will only be addressed here.

Table F.1: The 1 ions of the sil
Signal duration | Signal amplitude range | Sampling frequency Sensor noise
100 ms Tto 9V 50 kilo samples/sec Normally distributed

random variable

207

F.2.1 The Characteristics of the First Test Signal

The following relation gives the formation of this test signal:

fi(e) =5+ 2sin((2720)¢) + 2 cos((2720)¢) (F.2)
The equivalent physical signal, sensor signal with noise, dynamic local mean and variance of the
sensor signal are shown in Fig. F.1, Fig.F.2, Fig.F.3, and Fig. F.4 respectively.

H i \ FANAY
i \ \ B\ / \ /
H A H / A /
H H O Nt/
£ S i N7
i
L s e
Figure F.1: The first physical signal. Figure F.2: The first sensor signal with noise.
o
i 1
i i
£ £ o
H 1.1 i IR I
2 TrecesT] [fadee] H
T [THT
ol [i
e 5 3 2 figmesessapagesssscegipuensio,
e sec a——
Figure F.3: The local means of the first signal. Figure F.4: The local variances of the signal.

Table F.2: The statistics of the first test signal.

The domains of the physical signal, Signals Upperbound | Lower bound

sensor signal, local means and variances PG 782 717

of this sensor signal are given in Table () 8.09 1.85

F2. Local means 782 218
Local variances 0.0517 0.0057

208

F.2.2 The Characteristics of the Second Test Signal

The formation of the second test signal is given by the following relation

[f2(£) =5 +sin((2720)1) + LS cos((2720)¢) + L5sin((4720)¢)

F.3)

The equivalent physical signal, sensor signal with noise, the local means and variances of the

sensor signal are shown in Fig. F.5, Fig.F.6, Fig.F.7, and Fig. F.8 respectively.

i i - ! -~ |
ENTA A N 7\
Y 7\ B /X
T] B\ J LY
8\ r £ UAT /
g 7 > ; J Y N\ ™

Figure F.5: The second physical signal.

Figure F.6: The second sensor signal with noise.

[r——

i ‘
Ciits H
i g =
L) ———

Figure F.7: The variations of the local means.

The Table F.3 shows the major statistics of

the physical signal, sensor signal, local

means and variances of this sensor signal.

Figure F.8: The variations of local variances.

Table F.3: The statistics of the second test signal.

Signals Maximum Minimum
FXG) 827 2.90
20 347 3.65
Local means 8.20 291
Local variances 0.1169 0.0065

209

F.2.3 The Characteristics of the Third Test Signal

The formation of the third test signal is given by the following relation

f3(2) = 5+55in(2720¢) - LS cos(2x20r) + sin(2740¢) + cos(2x40¢) + 05sin(2x60¢) + 05cos(2760r) (F4)
The corresponding physical signal, sensor signal with noise, the local means and variances of the
sensor signal are shown in Fig. F.9, Fig.F.10, Fig.F.11, and Fig. F.12 respectively.

s H
§’ £) i
i 1

| H Y
i / =Y i VA
Figure F.9: The third physical signal. Figure F.10: The third sensor signal with noise.
s ‘ » :

i 1 PR i

1 R A i

& ST [T ST H

i’ H}mmunlmmmmm} i

il E

B ||||||||| i i s e

Figure F.11: The local means of the sensor signal. ~ Figure F.12: The local variances of the signal.
Table F.4: The statistics of the third signal.

The domains of the physical signal, Signals Maximum Minimum
sensor signal, local means and ps(t) 7.00 1.80
i e ralEE 0 7.24 1.60
variances are listed in Table F.4. Tocaloioans 701 182
Local variances 0.1298 0.0057

210

F.2.4 The Characteristics of the Fourth Test Signal

The fourth test signal is formed by the following relation

S3(¢) = 5+5sin(2760¢) + L cos(2760r) + 05sin(27120¢) + cos(2120r) + 05sin(27180¢) + 0.5 cos(2180r)

(E.5)

The corresponding physical signal, sensor signal with noise, the local means and variances of the
sensor signal are shown in Fig. F.13, Fig.F.14, Fig F.15, and Fig. F.16 respectively.

¥ R 30 VR W W Y |

0 O Y T 0 O O Y O

0L T Y O H 0 D

LTS ATSVAT VATV TSRS ERTCYRTCYALTYRI VANV RY

i L ——y H A 4 S . .
£

Figure F.14: The fourth sensor signal with noise.

hadle:
il

L

[reT—

nseconds

[T~

52
Time i sacands

Figure F.15: The local mean profile.

The range of values of the physical
signal, sensor signal, local means and

variances are listed in Table F.5.

Figure F.16: The local variance profile.

Table F.5: The statistics of the fourth signal.

Signals Maximum Minimum
[XC] 7918 3.588
() 8.09 3.40
Local means 7.60 3.72
Local variances 1.006 0.0092

211

F.3 The Analysis of the Signature of Transient Faults

The following relation has simulated the transient signal as a damped sinusoid:
()= Ae™ sinax (F.6)
The effect of the transient on the sensor signal has been modeled by superimposition as shown by
the following relation.
T @ = £+ £t =to)tto) E.7)

For the initial analysis the specification of the transient signal is given in Table F.6.

Table F.6: The specification the test transient.

Amplitude, A | Damping coefficient,ot | Frequency | Duration
[3.0v 500 | 1000 Hz I Sms

This specified transient and a sinusoidal signal corrupted with this transient are shown in Fig.
F.17(a) and Fig. F.17(b) respectively.

H
N]
] oy . H " 7
\ ¥ X) ! \ !
g =
T 1 T T B T N 7
T T
N — i
i ; |
H L | Il |
T £ 5 o o LR oo gl
FE— e Time i seconce
Figure F.17(a): A transient signal as damped Figure F.17(b): A sinusoid corrupted with the
sinusoid. transient.

F.3.1 Signature of the Transient Fault on the First Signal

The local statistics of a IKhz transient fault of duration Sms at distance 70ms on the first test
signal are shown in Fig. F.19, Fig. F.20, Fig. F.21, and Table-7.

P —

T 3
= ~— i ~
A iy 7
] ! Y 7 A N
i \ / £
! \—/ /
: » w i
" - o

Figure F.18: The first physical signal

F-19: The first sensor signal corrupted

with transient fault.

[CT T pp——,

T H
= ! E
. 3 : = H
3 s D = i
s Py et H
3
il
L —— C L %
Figure 21: The local variances of the corrupted

Figure F.20: The local means of the corrupted

sensor signal at transient fault.

sensor signal at transient fault.

Table F.7: The statistics of the first test signal at transient fault

Signals Maximum value Minimum value
Absolute Ratio Absolute Ratio
() 7.82 1 2.17 1
) 3.103 T 187 T.01
Local means 7.81 1 2.18 1
Local variance 212 42 0.005 1

213

F.3.2 Signature of the Transient Fault on the Second Signal

. - i

FI JAl Al X

3 A\ \ FX

i \ A\] R A WY

H AN N\ i~/ \CALL VLA

i \7 \ b N/ ¥ hd
i [T T ; i T S

Figure F.23: The second sensor sign:
superimposed with transient noise.

{i .

- e,

| I P S O

P L e

£

j T T .
e L B N

Figure F.24: The local mean of the sensor
signal at transient fault.

Figure F.25: The local variances of the sensor
signal at transient fault.

Table F.8: The statistics of the second test signal at transient fault

Signals Maximum value Minimum value
Absolute Ratio Absolute Ratio
FXQ) 827 T 2.90 T
FA0) 8.46 T K 026
Local means 8.20 L 291 1
Local variance 1.9 16 .0057 0.87

F.3.3 Signature of the Transient Fault on the Third Test Signal

. I

i i

i S —

{ 7 {R AT

i 7) IV AR V|)

i A ; \/ \

H 7 i .Y Vi
g

Figure F.26: The third physical test signal.

Figure F.27: The third sensor signal corrupted
with transient noise.

[T ———

07

C 5

Vsl sersor gl o s vaien 2k

t

o a5

Figure F.28: The local mean profile of the third

sensor signal at transient fault.

Figure F.29: The local variance profile of the
third sensor signal at transient fault.

Table F.9: The statistics of the third test signal at transient fault

Signals Maximum value Minimum value
Absolute Ratio Absolute Ratio

ps(t) 7.00 1 1.80 1

%) 92 127 163 T

Local means 7.00 1 1.84 1

Local variance 179 13.79 0.006 1

F.3.4 Signature of the Transient Fault on the Fourth Test Signal

N (VAR Y| §7
H 1 N A A 1 I E3
01 T T A T T H
FATSYRTCYATSY ATV RIS AIY) H
2 |

£

gure T The Tor

Figure F.30: The fourth physical test signal. ST The ST Sens.
corrupted with transient noise.

§ 1 Y i —
: I O <
Y N ALY W 6 WAL A i
; oo/ o[) Rl H
H : H
i | O PR PETS)
< i R SO P O 0 S 1 0

Figure F.32: The local mean profile of the Figure F.33: The local variance profile of the
fourth test signal at transient fault. fourth test signal at transient fault.

Table F.10: The statistics of the fourth test signal at transient fault

Signals Maximum value Minimum value
Absolute Ratio Absolute Ratio

PO 79188 1 3.588 1
20 8.24 1.01 1.89 0.55

Local means 7.61 1 3.75 1

Local variance 2.122 2.10 0.0091 1

216

F.4.1 The Transient Fault at Different Locations on the First Signal

5 I ! T i
i
S ES
g 7/ H
£ £ T
i / H
: £
i i
e T,

Figure F.34: The transient fault at the origin. Figure F.35: The variances for the fault at origin.

!
i, f

LN i,

H] i
g LY - g‘ +

H A4 I H

i ‘ i

g st

Figure F.36: The fault at 18 ms from the origin. Figure F.37: The variances for fault at 18 ms.

Ratios of
= = ‘maximum
e H
H 2
i 1
H ; :
3 H + —
H 3 H i
H Rbtosat Ratibsat i | .
H maimum maximum : | Ratios of
2 7 7 i minirmin
MmO o B S S~ - B
Tine i secanda
Figure F.38: The ratios of the peaks of local Figure F_30: The ratios of the peaks of local

means at transient fault with those at no fault: yarjances at transient fault with those at no fault.

217

F.4.2 Transient Fault at Various Locations on the Second Signal

i3

o,

T Tep—————
|
|4t

Vo ol sesor st et

T g g g o

el 35 35 5 B

Figure F.40: The transient fault at the origin on
the second test signal.

Figure F.41: The variance profile of the second
test signal while transient is at the origin.

3 H H T

- H i

£\ £ H .
Y- i ‘
=

$ §

i i

o7 5
Tima in sconds

ot 5% 5

a5 3%
Time nseconds.

Figure F.42: The transient fault at 18 ms from
the origin on second test signal.

Figure F.43: The variance profile of the second test
signal while transient is at 18 ms from the origin.

t

i 4

:

H

H

]

2 Ratios of Ratios of
H makimum maxifwm
] ¥ ¥

g C o

T 5
ime n seconds

[T —

B
imein seconts

Figure F.44: The ratios of the peaks of local
means at transient fault with those at no fault.

Figure F.45: The ratios of the peaks of local
variances at transient fault with those at no fault.

218

F.4.3 Transient Fault at Various Locations on the Third Signal

T
H 1 i
H H
i Lt £ —
N/ o i
H - §
A VARV N} i
H 7 7 i
H —\J \/ i
i : V— v i
| | | izl p—
LI — ah I T M v
inein secas Time nseconds
Figure F.46: The transient fault at the originon Figure F.47: The variance profile of the third test

the third test signal. signal while transient s at the origin.
3 : H
i) | . £
£ 7% S
g NN i T
i LW \ [N/ iF i !
; T \ i -
i TN /] i
< T T = 0o, o
Figure F.48: The transient fault at 18 ms from the Figure F.49: The varance profile of the third test
origin on third test signal. signal while transient is at 18 ms from the origin.
i £ 1
£ |
i H T
i - i | ommen
H kid e HIE 2 WS U aN
¢ £, * ! it
T S =

Figure F.50: The ratios of the peaks of local Figure F.51: The ratios of the peaks of local
‘means at transient fault with those at no fault. variances at transient fault with those at no fault.

219

F.4.4 Transient Fault at Various Locations on the Fourth Signal

F 1 F
|
I - - i
: 1 I S A 1 E
1 L]
VYl P Vel] 1A
L YV v v
S M =
[(: i) T‘ TIRE M
e — B e
ime i seconc Tene nseconds
Figure F.52: The transient fault at the origin on Figure F.53: The variance profile of the fourth
the fourth test signal. test signal while transient is at the origin.
H f
! T
s o
YA VAV YRR
vy v v v
PR PRERS D
OO 3 70 2SO DO 5 O |
T 5 L -
Figure F.54 The ransient 1ault at 18 ms from Figure F.55: The variance profile of the fourth test
the origin on the fourth test signal. signal while transient is at 18 ms from the origin.
I
1
i ‘ i
£ 3
H 3
H H
i i -
H Ratjos of H i Ratios of '
H miicium i | e
e i secoms Terain saconie
Figure F.56: The ratios of the peaks of local Figure F.57: The ratios of the peaks of local

means at transient fault with those at no fault. variances at transient fault with those at no fault.

220

F.5.1 The Effect of Window Size on Local Statistics at Transient
Fault on the First Test Signal

eT——

gt oo saror s s i

v

G C o

o 5
me n seconds

T g ™ d
T nseconds

Fig. F.58: The transient fault on the First signal.

Fig. F.59:The variances at window width .4ms.

i
B I
e i
i i
H T
i [
| SR
3 L .
Tome et

18- "The variances at window width 3ms.
on i
i ;
]
H
! | Ratios of
i il ‘minimum

i, oy

A

e S wt 2
i st secari
ratios of the of the local

means at different window widths.

e 3 e 0] e [0
variances at different window widths.

221

F.5.2 The Effect of Window Size on Local Statistics at Transient
Fault on the Second Test Signal

H H !

I RTAY 7 i

Ly / i

i \ VG 3

A \\W%ﬁ |

IR i | 3 ; T
e e e [e s

Fig. F.64: The transient fault on the 2nd signal. ~ Fig. F.65:The variances at window width .4ms.

i
‘
S

|
|

ottt

ate e ottalr 1 1,] .
5 S n 5 sty s s
i i

Fig. F.66:The variances at window width 3ms. Fig. F.67:The variances at window width 10ms.

. ! P
‘ L
i "Ratios of
s
Raiop ot e
- it -
= wolalrlllll
- : I» i
0008 X oor To12 o 0002 0008 0,006 0,008 001 0012
L R .
1g. F.08:The ratios of the peaks of the local Fig. F.69:The ratios of the peaks of the local
means at different window widths. variances at different window widths.

222

F.5.3 The Effect of Window Size on Local Statistics at Transient
Fault on the Third Test Signal

- H
o H
i
, H
H
! i
| H
I H 1
T i i
i i i % k.
o0z T 08 Goa o o " g - ¥
e T nsecons
Fig. F.70: The transient fault on the 3rd signal. Fig. F.71:The variances at window width .4ms.
1 — 3 —
i 3
! ' .
; i
2 2 !
; T
| H
T H
2 i i A § 1 1 [I
R N N
I S
Fig. F.72:The variances at window width 3ms. ~ FI&- F./3: The vanances at window width T0ms.
T =
H H
[o ; Ratios of
: - i
i H minitnum i
! | Ratiogol’ -
— T i
oo i shcie

Flg.F7 .merauosoﬁﬁepaﬁofme ocal

means at Sifforent window widhie. Fig. F.75:The ratios of the peaks of the local

variances at different window widths.

223

F.5.4 The Effect of Window Size on Local Statistics at Transient
Fault on the Fourth Test Signal

H ‘ 3
H H
i, A A AR i H
3 T Y L D I E:
RV AN A AT YR
R A \
H i '
i i
! ok
& Cine i st - ™ ® meinsecons.
Fig. F.76: The transient fault on the 4th signal. ~ F18- F-//-[he variances ai window widih -4ms.
E
H
E
4
e |
1 P [
cone Loae Ted Ao, Ilo e W el T 7] T I
g Ea— E o I S
Fig. F.78:The variances at window width 3ms. Fig.F.79:The variances at window width 10ms.
1 i H
3 Raeser Rargosor
7 H ; minjmum
Raiés of i
Ratios of Tinimum 3
i < L
D S e B e e
o e e Wetowwi e
Fig. F.80:The ratios of the peaks of the local Fig. F.81:The ratios of the peaks of the local
means at different window widths. variances at different window widths.

F.6.1 The Effect of Window Locations on Local Statistics at
Transient Fault on the First Test Signal

™
i

[T ————
=1
™~

Vanarca ol vrsor st g e

Fig. F.82: The transient fault on the 1st signal.

dnsplacement of .02 ms from the origin.

displacement of .66 ms from the origin.

! H

i H

: &

Bosl——— H

i i

E H +

H H [

g | i { P
: [l [loness
gy ity I

S 2
Fig F84 The vaniances at window Tg T857The vanances at window

of 1.2 ms from the origin.

Raonofpesh tbcaimenre o)

e Ritiosof.
maximudn ‘minimum
rd S
o5 75
Dlspiacomentotwiowiscstors in secods

Fig. F.86:The ratios of the peaks of the local
means at different window displacements.

' Ratios of }

il

I
e ||0||1||||H II‘ |
[

Raos o

1
Eiﬁ]ﬂ“it||||mnn|u|m|lHm

il llﬂ[[llll\lﬂIHIIIIIIIIHHH

8. . P
variances al different window displacements.

225

F.6.2 The Effect of Window Locations on Local Statistics at
Transient Fault on the Second Test Signal

Vatance e sesor el g bt bt (ah

%%

B

%"

wor 7
v i second

Fig. F.88: The transient fault o

nd si

al.

5 g
Time insecants

Fig. F-89:The variances at window

i

displacement of .02 ms from the origin.

displacement of .66 ms from the origin.

g.,]
: i i
3
s - 5) .
1l 3 []
e i I
L-3 l"hl--—ll L)] = ”
o
1g. F.90:The vanances at W S

Fig. F91 The variances at window

of 1.2 ms from the origin,
Ratios of

. pop e
& 4| 3. 7
| i / /
e e f
o o
i e —— i/
i
R R g
Fig. F.92:The ratios of the peaks of the local e e oo)
means at different window displacements. 1. F.93:The ratios of e p To!

variances at different window displacements.

226

F.6.3 The Effect of Window Locations on Local Statistics at
Transient Fault on the Third Test Signal

3 N NI § A
AV T \
v/ T/
/ Y/

Fig. F.95 The variances at window

Fig. F.04: The transient fault on the 3rd signal. ; W
displacement of .02 ms from the origin.

3 H
§ i
£
—— |
1S i | S
et itaeesy ittty o et temsepgytnliseepggtisentts,
elnsecrs e nseconts
“FTg- F967THe vanances al window Fig. F.07 The variances af window

displacement of .66 ms from the origin. i of 1.2 ms from the origin.
s 3 RaEor T

5, H minimum ik

H 3

£ i

i S S 1

3 3

H 3

2 Ratios of Ratios of H

H maximum minmum H

3 V4 ~ 3w llle’nn .

il
L AR
Onpacemertaindow beasos n et

Fig. F.08: The ratios of the peaks of'v.he loc I Fig. F.99:The ratios of the peaks of the local

means at different window displacements. variances at different window displacements.

227

F.6.4 The Effect of Window Locations on Local Statistics at
Transient Fault on the Fourth Test Signal

2 T E
H i A Y i
I T T 3 I 1 _
[A AT A A P i
TYRYATSYRTR Y ANTY H
v NV ¥ \ H
. N Y I TR)
1 R SO S A S
Fig. F.100: The msi;:;;a;lt on the 4th signal. Fig. F.TUT-The variances at window

displacement of .02 ms from the origin.

Vit ot srsr s ootk

I 1l 1o ol

PN 11
Smowons

P C
Hthlelagial
1o

Fig. F.103:The variances at window

dlsp]acement of .66 ms from the origin. displacement of 1.2 ms from the origin.
s
H H
i i :
1 1 Raosof | Ratiosar
H i ‘minimym st
H R &: s =
: e H i
i T — i 7

g 65 OF the :
means at difforent window displacements, variances at different window displacements.

228

F.7.1 The Effect of Transient Faults of Different Frequencies on the
Local Statistics of the First Test Signal

% § s s

1\ N/ i =

N R { i

: ; : i

Fig. F.106: The 500

. :

i

Fig. 108: The variances at 5 KHz transient. Fig. 109: The variances at 110 KHz transient.

(ol [e 1]

: I mﬂuhm !IIHIIII!HII pEA ""W

i i | IIIIMI |||HI|]|||W || UIIH ||||N‘ i

i i | i i. Hli"qllll L
—— :] \l',IIHIIIH |||! i||\Iﬂm1||i|lWJ||||mmIIIHJill I

Fig. F.1 10:The: :&;s:;:h;;eaks of the local Fig. F.111:The ::t:::o“t’:;:p:aks of the local

means at different transient frequencies. variances at different transient frequencies.

229

F.7.2 The Effect of Transient Faults of Different Frequencies on the
Local Statistics of the Second Test Signal

LT ——,

i

5 7 :
//'_"/ \ | l\v ::

h i

Fig.

F.112: The 500 Hz transient on 1st signal.

Ist test signal.
 E—
H 1 —
§ -
K
s I g
Fig 115: The variances at 10 KHz transient.
Rhtios of
- migimum
s E
i
i o C
P e e o / i
i B S o T JI;WHHIIFIH\lll\llﬂ]]IIIUI (i MHIII[”UII[!’N]H"
T . mn III R
mﬁ%m A er::t:o € Iocal

means at different transient frequencies.

variances at different transient frequencies.

230

F.7.3 The Effect of Transient Faults of Different Frequencies on the
Local Statistics of the Third Test Signal

H H
E
: | ——
InN \ N/
; || |
* Pl c n
5 S a g o e
v socorte e secords
Fig. F.118: The 500 Hz transient on 3rd signal. ~ F18- e Vzﬂr:l:ce‘s at ; fransient on
est signal.
3 3
i
13 i
i
H H e o
i i
& 1, & 2 2. o
e S] T e e
Fig. 120: The variances at 5 KHz transient. Fig. 121: The variances at 10 KHz transient.
Ratios of
o - mipimum
] i/ ot
: i i
LN 5 i [
H matimum minjmum H
@ 3 o1 lllil\ﬂllllll\lﬂ WIIIW!IIH ‘ II|| ‘lllll}llll‘l'm]'” VI ll
. T i
8. * € p e Fig. F.1Z23:The ratios of the peaks of the local
means at different transient frequencies. variances at different transient frequencies.

231

F.7.4 The Effect of Transient Faults of Different Frequencies on the
Local Statistics of the Fourth Test Signal

pep———

v ¥ LIS B v

w.,_.,",,.w.‘.,.m_.
—
—
5
==
Sl
;>
-

i \ I P TS S { Y
| 1] R O OV AR 3 OO OO
Fig. F.124: The 500 Hz transient on 4th signal. Fig. 125: The variances at 500 Hz transient.
1 S — H
i s e i
S S S RO i ‘
§ t ; i :
; 1 i i Z
H T T] . sl
g P NN RS 1 é PR N I
R A A A E 01 Y A A 0 2

. 127: The variances at 10 KHz transient.

]
(3

Fig. 126: The variances at 5 KHz transient.

5 i & T
H H !
i i ;
! i i
i H i
H i H 1
i Ratios of Rafiosof | | i !
i e i H Ratosof|
2 N i &
T :
» J - L ° 2000 4600 ‘6000 8000 10000
I -

Fig. F.128:The ratios of the peaks of the local Fjg, F.129:The ratios of the peaks of the local
means at different transient frequencies. variances at different transient frequencies.

232

Appendix G

Performance of a Fault Tolerant Optical
Sensor Using Triple Modular Redundancy

G.1 Introduction

An experiment was set up to study the potential of achieving sensor fault tolerance using triple

modular redundancy. This study included the verification of the scheme to restore sensor data

lost during fault clearance interval using parallel sensing technique proposed in Chapter 7.

Three photocells of same specifications were used to build the triple modular sensor system. The

specifications of these photocells are shown in Table G.1.

Table G.1: The specifications of the optical sensors (photocells)

Sensitive Typical at 100 at Max. applied
area at 10 Lux Lux dark minimum voltage
0.45 cm’ 15 kQ £40% 3KQ 0.5 MQ 200V (peak)

Each of these photocells was used to
control the gain of an amplifier with
the variation of its resistance due to the
change of illumination level shown in
Fig. G.1. The input voltage is a
reference negative dc voltage which is
amplified to the output as function of
illumination level as shown in

Eq.(G.1).

R,
Photo cell

Figure G.1: An optical sensor whose output voltage
level is function of illumination level.

233

(G.1)

Therefore, the output voltage of the optical sensor shown in Fig. G.1 is directly proportional to

the illumination level (or inversely proportional to the value of resistance R7).

G.2 Fault-Tolerant Optical Sensor Using Triple Modular
Redundancy

A triple modular optical sensor system was realized connecting three optical sensors having same
specifications to an analog multiplexer as shown in Fig. G.2. A microcontroller
(MC68HC811E2FN) based single board computer was used for the detection of fault sensor and
generation of control signals for the multiplexer to change the faulty sensor with fault-free one. A
software running on the microcontroller based single board computer compares the signals from
three sensors with each other, and, based on majority voting technique, detects the faulty sensor.
If the fault channel is on as the multiplexer output, the channel is switched with a fault-free one

by generating an appropriate control signal.

Artificial faults were generated by making a short circuit across the sensor, by disconnecting the
sensor from the circuit, and by creating optical shadow on the sensor. Successful detection and
followed by the switching of faulty channel with fault-free one as the output of the multiplexer
was demonstrated. It should be noted that this triple modular redundancy based fault-tolerant
optical sensor system couldn't detect faulty sensors if more than one sensor fail. It was noticed
that the output signal dipped during fault clearance interval as shown in Fg.G.3. These dips were
created to clear faults caused by artificial shadow on the photocells. The detection of these dips
and the schemes for the minimization of the effect of these dips are explained in the following

subsections.

234

Select On Channel
B A ¥(1)

T T (1)

T " x5()

H T x3(0)

H H X

R,
Photo cell

xi(0)
FR0) Multiplexer | y(r)
x5(1) MCsarraticaos?|
Al B
MC68HC811E2FN

microcontroller based single

board computer

Figure G.2: An optical fault tolerant sensor using triple modular redundancy.

235

3L Output signal dipped during
fault clearance intervals

2F \
.
= M\ -~ D — -
:,
E
<

2L 4

0 1000 2000 3000 4000 5000 6000

Samples of data acquired over 60 seconds

Figure G.3: The dips caused on the output signal from fault tolerant sensor module during fault
clearance intervals.

G.3 The Detection of Fault Clearance Interval

The software running on the microcontroller board detects the faulty sensor and switches the
output channel to the fault free sensor by generating control signal for the multiplexer. Therefore,
the change in control signal can be used to detect the fault clearance interval as shown in Fig.
G.4. The duration of fault clearance interval will depend upon particular situation. This window

can be by ing the signal value of the faulty sensor with that from a

free one.

236

4
Change in
3| control 1
| — signal
2L /7 \\]
5 [N— o}
g,
s ol
E
<
-1 4
2F 4
-3
0 1000 2000 3000 4000 5000 6000
Samples of data acquired over 60 seconds

Figure G.4: The detection of fault clearance instances by monitoring the changes of the control
signal sent to the multiplexer by the microcontroller board.

G.4 Minimization of the Effects of the Dips Caused during Fault

Clearance Intervals

After the detection of fault clearance instances from the change of control signal, the data sample
of faulty sensor around these instances can be compared with those of fault free sensor to
measure the duration of the dips. Then for the duration of the fault clearance interval, data can
be copied from the fault free sensor to replace the corresponding data samples of the output data
stream to reduce the effect of these dips. This can be explained by removing the first dip. At the
beginning, the multiplexer outputs the signal from the first sensor. The signals from the first

sensor and the second sensor are shown in Fig. G.5 and G.6 respectively.

237

3p
2
vV
-1
-3
1000 2000 3000 2000 5000 6000
Samples of data acquired over 60 seconds
Figure G.5: The data stream from the first sensor.
4
3
2
2
2 1
£
Y
g ~ ~
g0
<
2f
3 A R T
1000 2000 3000 4000 5000 6000

Samples of data acquired over 60 seconds

Figure G.6: The data stream from the second the sensor.

The location of the first dip caused on the output signal shown in Fig.G.4 corresponds to the first
dip caused on the first signal as shown in Fig.G.5. At this location there is no dip caused on the
second sensor signal. Therefore, if both the second sensor signal and the output signal of the
multiplexer were recorded simultaneously, the first dip could have been removed by the scheme
proposed in Chapter 7 as shown in Fig.G.7.

4

3L]
‘The first dip has been

5 removed. The remaining

effect is due to dissimilar
ignal levels generated by

2.l different sensors.
£
~" N N N
i
£ o}
13
Z
1
2l]
-3

1000 2000 3000 4000 5000 6000
Samples of data acquired over 60 seconds

Figure G.7: The processed output signal from a fault tolerant sensor module after removal of the
first dip.

239

In the similar way, the remaining dips can be removed and the processed output signal after the

removal of all dips as shown in Fig. G.8.

4
Dips have been removed. The
5 cause of the remaining effects
r is the dissimilar values of the 1
sensor signals.
2l
2
ERR]
£
i
3 (28 4
£
<
Eln
2|
-3
[1000 2000 3000 4000 5000 6000
Samples of data acquired over 60 seconds

Figure G.8: The processed output signal of a fault tolerant sensor module with reduced effects for
dips caused during fault clearance intervals.

The results of an experiment on fault-tolerant sensor system reported here explain that there is a
potential to detect the faulty sensor and to replace it with fault-free one using triple modular
redundancy. It has also been demonstrated that the effect of the dips caused on the output signal
during fault clearance interval can be reduced by the parallel sensing scheme proposed in

Chapter 7.

240

\“ 1OR BHD, gy
& %y

JUL 18 197 |
. &
Op NEan uu\“‘h‘\e j

)9"‘

	001_Cover
	002_Inside Front Cover
	003_Blank Page
	004_Blank Page
	NQ42486_page_0000
	NQ42486_page_0001
	NQ42486_page_0002
	NQ42486_page_0003
	NQ42486_page_0004
	NQ42486_page_0005
	NQ42486_page_0006
	NQ42486_page_0007
	NQ42486_page_0008
	NQ42486_page_0009
	NQ42486_page_0010
	NQ42486_page_0011
	NQ42486_page_0012
	NQ42486_page_0013
	NQ42486_page_0014
	NQ42486_page_0015
	NQ42486_page_0016
	NQ42486_page_0017
	NQ42486_page_0018
	NQ42486_page_0019
	NQ42486_page_0020
	NQ42486_page_0021
	NQ42486_page_0022
	NQ42486_page_0023
	NQ42486_page_0024
	NQ42486_page_0025
	NQ42486_page_0026
	NQ42486_page_0027
	NQ42486_page_0028
	NQ42486_page_0029
	NQ42486_page_0030
	NQ42486_page_0031
	NQ42486_page_0032
	NQ42486_page_0033
	NQ42486_page_0034
	NQ42486_page_0035
	NQ42486_page_0036
	NQ42486_page_0037
	NQ42486_page_0038
	NQ42486_page_0039
	NQ42486_page_0040
	NQ42486_page_0041
	NQ42486_page_0042
	NQ42486_page_0043
	NQ42486_page_0044
	NQ42486_page_0045
	NQ42486_page_0046
	NQ42486_page_0047
	NQ42486_page_0048
	NQ42486_page_0049
	NQ42486_page_0050
	NQ42486_page_0051
	NQ42486_page_0052
	NQ42486_page_0053
	NQ42486_page_0054
	NQ42486_page_0055
	NQ42486_page_0056
	NQ42486_page_0057
	NQ42486_page_0058
	NQ42486_page_0059
	NQ42486_page_0060
	NQ42486_page_0061
	NQ42486_page_0062
	NQ42486_page_0063
	NQ42486_page_0064
	NQ42486_page_0065
	NQ42486_page_0066
	NQ42486_page_0067
	NQ42486_page_0068
	NQ42486_page_0069
	NQ42486_page_0070
	NQ42486_page_0071
	NQ42486_page_0072
	NQ42486_page_0073
	NQ42486_page_0074
	NQ42486_page_0075
	NQ42486_page_0076
	NQ42486_page_0077
	NQ42486_page_0078
	NQ42486_page_0079
	NQ42486_page_0080
	NQ42486_page_0081
	NQ42486_page_0082
	NQ42486_page_0083
	NQ42486_page_0084
	NQ42486_page_0085
	NQ42486_page_0086
	NQ42486_page_0087
	NQ42486_page_0088
	NQ42486_page_0089
	NQ42486_page_0090
	NQ42486_page_0091
	NQ42486_page_0092
	NQ42486_page_0093
	NQ42486_page_0094
	NQ42486_page_0095
	NQ42486_page_0096
	NQ42486_page_0097
	NQ42486_page_0098
	NQ42486_page_0099
	NQ42486_page_0100
	NQ42486_page_0101
	NQ42486_page_0102
	NQ42486_page_0103
	NQ42486_page_0104
	NQ42486_page_0105
	NQ42486_page_0106
	NQ42486_page_0107
	NQ42486_page_0108
	NQ42486_page_0109
	NQ42486_page_0110
	NQ42486_page_0111
	NQ42486_page_0112
	NQ42486_page_0113
	NQ42486_page_0114
	NQ42486_page_0115
	NQ42486_page_0116
	NQ42486_page_0117
	NQ42486_page_0118
	NQ42486_page_0119
	NQ42486_page_0120
	NQ42486_page_0121
	NQ42486_page_0122
	NQ42486_page_0123
	NQ42486_page_0124
	NQ42486_page_0125
	NQ42486_page_0126
	NQ42486_page_0127
	NQ42486_page_0128
	NQ42486_page_0129
	NQ42486_page_0130
	NQ42486_page_0131
	NQ42486_page_0132
	NQ42486_page_0133
	NQ42486_page_0134
	NQ42486_page_0135
	NQ42486_page_0136
	NQ42486_page_0137
	NQ42486_page_0138
	NQ42486_page_0139
	NQ42486_page_0140
	NQ42486_page_0141
	NQ42486_page_0142
	NQ42486_page_0143
	NQ42486_page_0144
	NQ42486_page_0145
	NQ42486_page_0146
	NQ42486_page_0147
	NQ42486_page_0148
	NQ42486_page_0149
	NQ42486_page_0150
	NQ42486_page_0151
	NQ42486_page_0152
	NQ42486_page_0153
	NQ42486_page_0154
	NQ42486_page_0155
	NQ42486_page_0156
	NQ42486_page_0157
	NQ42486_page_0158
	NQ42486_page_0159
	NQ42486_page_0160
	NQ42486_page_0161
	NQ42486_page_0162
	NQ42486_page_0163
	NQ42486_page_0164
	NQ42486_page_0165
	NQ42486_page_0166
	NQ42486_page_0167
	NQ42486_page_0168
	NQ42486_page_0169
	NQ42486_page_0170
	NQ42486_page_0171
	NQ42486_page_0172
	NQ42486_page_0173
	NQ42486_page_0174
	NQ42486_page_0175
	NQ42486_page_0176
	NQ42486_page_0177
	NQ42486_page_0178
	NQ42486_page_0179
	NQ42486_page_0180
	NQ42486_page_0181
	NQ42486_page_0182
	NQ42486_page_0183
	NQ42486_page_0184
	NQ42486_page_0185
	NQ42486_page_0186
	NQ42486_page_0187
	NQ42486_page_0188
	NQ42486_page_0189
	NQ42486_page_0190
	NQ42486_page_0191
	NQ42486_page_0192
	NQ42486_page_0193
	NQ42486_page_0194
	NQ42486_page_0195
	NQ42486_page_0196
	NQ42486_page_0197
	NQ42486_page_0198
	NQ42486_page_0199
	NQ42486_page_0200
	NQ42486_page_0201
	NQ42486_page_0202
	NQ42486_page_0203
	NQ42486_page_0204
	NQ42486_page_0205
	NQ42486_page_0206
	NQ42486_page_0207
	NQ42486_page_0208
	NQ42486_page_0209
	NQ42486_page_0210
	NQ42486_page_0211
	NQ42486_page_0212
	NQ42486_page_0213
	NQ42486_page_0214
	NQ42486_page_0215
	NQ42486_page_0216
	NQ42486_page_0217
	NQ42486_page_0218
	NQ42486_page_0219
	NQ42486_page_0220
	NQ42486_page_0221
	NQ42486_page_0222
	NQ42486_page_0223
	NQ42486_page_0224
	NQ42486_page_0225
	NQ42486_page_0226
	NQ42486_page_0227
	NQ42486_page_0228
	NQ42486_page_0229
	NQ42486_page_0230
	NQ42486_page_0231
	NQ42486_page_0232
	NQ42486_page_0233
	NQ42486_page_0234
	NQ42486_page_0235
	NQ42486_page_0236
	NQ42486_page_0237
	NQ42486_page_0238
	NQ42486_page_0239
	NQ42486_page_0240
	NQ42486_page_0241
	NQ42486_page_0242
	NQ42486_page_0243
	NQ42486_page_0244
	NQ42486_page_0245
	NQ42486_page_0246
	NQ42486_page_0247
	NQ42486_page_0248
	NQ42486_page_0249
	NQ42486_page_0250
	NQ42486_page_0251
	NQ42486_page_0252
	NQ42486_page_0253
	NQ42486_page_0254
	NQ42486_page_0255
	NQ42486_page_0256
	NQ42486_page_0257
	NQ42486_page_0258
	NQ42486_page_0259
	NQ42486_page_0260
	NQ42486_page_0261
	NQ42486_page_0262
	NQ42486_page_0263
	NQ42486_page_0264
	NQ42486_page_0265
	NQ42486_page_0266
	NQ42486_page_0267
	NQ42486_page_0268
	NQ42486_page_0269
	NQ42486_page_0270
	NQ42486_page_0271
	NQ42486_page_0272
	NQ42486_page_0273
	NQ42486_page_0274
	NQ42486_page_0275
	NQ42486_page_0276
	NQ42486_page_0277
	NQ42486_page_0278
	NQ42486_page_0279
	NQ42486_page_0280
	NQ42486_page_0281
	NQ42486_page_0282
	NQ42486_page_0283
	NQ42486_page_0284
	Z001_Blank Page.jpg
	Z002_Blank Page.jpg
	Z003_Inside Back Cover
	Z004_Back Cover

