

INFORMATION TO USERS

This manusaipt has been reproduced from the microfilm master. UMI films the

text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
~_.

The quality at this reproduction is dependent upon the quality of the copy

submiltlld. Broken or indistinct print, coIoI'ed or poor quality iUusbatior!s and

photographs, print bleedttlrough, substandard margins, and improper alignment

can adversely affect reproduction.

In the ..nikely event that the author did ~t S«KI UMI a complete manuscript and

then! are missing pages, these will be noted. Also, I unauthorized copyright

material had 10 be 1emOVed, a note 'NiI1 indicate the deletion.

Oversize materials (e.g.• maps, drawings, charts) are reproduced by sectioning

the original, begiming at the upper left-hand comer and continuing from left to

right in equal sections with small ovetIaps.

Photographs ncIuded in the original manusaipt haYe been reproduced

xerographically in this copy. Higher quality 6" x ~ b'ack and w,ite photographic

prints are available for any photographs or illustrations appearing in this copy for

an additional charge. Contact UMI directly to ord8/'.

Bell & HaweD Information and Learning
300 North Zeeb Road, AM Arbor, MI -4811:&1346 USA

UMl"
800-521...()6QQ

1+1 NatiooalLbraI)'
of Canada

Acquisitions and
Bibliographic Services

:!95wtIlIinglonSIl'_
=ONK1AQN4

Bibliolheque nationale
du Canada

Acquisltionset
servicesbi)Nographiques

3i5, WI6'lgton
ea-aON K1A~

eo-

The author bas granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microfonn,
paper or electronic fannals.

The author retains ownership of the
copyright in this thesis_ Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

L'auteur a accorde une licence non
exclusive pennettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer au
vendre des copies de cette these SOllS

la forme de microfiche/film. de
reproduction sur papier au sur format
electronique.

L'auteur conserve 1a propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ei ne deivent etre imprimes
au autrement reproduits sans son
autonsation.

0-612-42486-3

ThIs IS to authorIze the Dean of Graduate StudlOlS 10 deposIt two COPIe5 of mythesi~~ed

(n the University Library. on the following <;O,ndilion$. I unde,nand mat I may choose only ONE of
the Options here listed, and may not afterwards apply for any addItional restriction. I further
understand mat the Unive'llity will not grant any ,estriction on the publication of thesis!<af"l'!'t

-~
(After retJding Ine explmuuory "oles ~, .ne foot of Ihis form, delele TlfO of (<I.), (bl _d (c),
wh'chellerg""pplicgble.)

The cooditiof'ls of deposit ara:

(al thaltwOo;opiesarelobemldeallallablelousersatthediscretionoflhe;rcustodians.

I)J Ihat access to•.i1nd quotation from. this thesIs/report is t~ be granted only with my wrinen
permission for a period of one year from Ihedale on wtlich thelhOlSis/repon. afte. the approval
of the award ofa degree. is entruned to lhe <:are of Ihe Univer$ity. namely. _

\9 _. after which tIme the two copies are 10 be made available 10 users al Ihe discretIon of
theirCUSlodians.

I)ll that ac<;OlSS to. and quotation f,om. Ihis lhesio/report is to be graMed only voilh my written
permission for a period of years from the date on which Ihe Ihesis/report.
after approval for the award of a degree. is enlrusted to the <:are of the University; namely.
_____ 19 _; after which lime two copies are to be made available to

u.....sat the discretion 01 tlleir custodians.

NOlES

I. Res"tclio.. (bjillbe!." ...'edo .. appb"c4lio>l. ",ilhoutre41ongi",,,,.

Ho~er. "Pp/icgriorlS fo, ",slricrio" (c) must be <u:comp_ied ",irh g delailed expl,,,,,,rio,,, .
i..dicgling wfty the ,e.rriC/ion is Ihought 10 be necusary. ovrd j~r'fying rhe le"grh of time
requurtd. Resrricrio"s,equi,ed 0" rhegrou..o.srh..r rhethesisisbeingpreP":,edfo'public"tio ...
0' rh"l p.. lenrs ",e """,ired. ",ill not be permitted 10 exceed th,ee ye"rs.

Restricrion (c) aln be permirted o ..ly by g Commitree ,mt",uted by Ine U.. ive'siry ..nth the r<lS1<
of ugmi"i..g such gpplicgtio..s...nd will be grg .. led only i.. exclprio",,1 cireumst"...:es"

2. Thesis ",rirers <I'" remi..ded Ihgr. if rhey ""ve bee" engggld i" .:o..trguugl resf<lrch; the)! ""'y
""~ "I'lady "greed to ",sl,ict "".:us ro tftei, thesis unril thl rums of the co ..tract h<llle been
fulfilled.

Discrete Event Development Framework for Highly

Reliable Sensor Fusion Systems

By
cMohd. Rokonuzzaman, B.Se.Eng., M.Eng.

A THESIS SUBMITTED TO THE SCHOOL OF GRADUATE

STUDIES IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

FACULTY OF ENGINEERING AND APPLIED SCIENCE

MEMORIAL UNIVERSITY OF NEWFOUNDLAND
APRIL, 1999

ST.JOHN'S NEWFOUNDLAND CANADA

Intelligent Systems are being deployed increasingly in safety and mission critical

applications. This thesis bas synthesized a novel engineering methodology for developing

highly reliable sensor fusion systems (SFS) of multi-sensori intelligent systems for the

applications in the safety and mission critical environments. This methodology includes

both the avoidance of faults during the development phase and the tolerance of sensor

failures during the operation phase. Petri net based novel discrete event framework has

been proposed to model SFS as discrete event dynamic system. This intuitive

mathematical framework abstracts the SFS as a hierarchically finite state machine. The

intuitive graphical nature of this framework has the potential to enhance the

communication between the developer and the client to capture sensing requirements

resulting in avoidance of requirement errors. The mathematical attribute enables the

developer to analyze different attributes of the modeled SFS to ensure logical and

temporal correctness of the performance of the system. This proposed discrete event

framework has been verified by simulating the design of an example sensor fusion

system. The reasoning basis of the architecture of the underlying computing system from

this Petri net model of the SFS has also been developed 10 ensure the temporal

correctness during the operation phase. The use of redundancy to tolerate failure of

sensors has been experimentally verified. Overheads have been identified to incorporate

hardware fault-tolerance in this proposed SFS framework to tolerate sensor faults during

the operation phase. A novel scheme has been developed to manage these overheads in a

predictable manner. A fault-tree based novel scheme has been proposed to measure the

probability of failure ofdifferent levels of fusion due to the failure ofdifferent sensors. A

computationally simple scheme to detect transients present on the sensor data stream has

been proposed with extensive simulation results to enhance system performance in

operation phase. The loss of time sensitive data during the fault clearance intervals

compromises the effectiveness of fault-tolerance in the SFS. A parallel sensing based

novel scheme has been proposed to restore sensor data lost during the fault clearance

intervals. The effectiveness ';If this proposed scheme has been experimentally verified by

restoring data lost during fault clearance intervals of a triple modular redundant optical sensor.

Acknowledgements

r would like to express my sincere gratitude to my thesis supervisor, Dr. Ray Gosine. for

his active supervision of this research work. It is through his patience, understanding and

advice that this work has been done. I would like to extend my gratitude to my thesis

supervising committee members. Dr. John Quaicoe and Dr. Charles Randell, for their

advice and guidance.

I am grateful to the members army Ph.D. comprehensive examination committee, Dr. R.

Venkatesan and Dr. Michael Hinchey, for their time and constructive advice. r am

indebted to Dr. 1. J. Sharp for his care, patience, advice and understanding.

This research work was supported by the NSERC/Canadian Space Agency Partnership

Grant-"Sensor development and integration for autonomous experiments" with Petro­

Canada Resources, Canpolar East Inc., and Atlantic Nuclear Services Ltd. I would like to

express my special thanks 10 the participating organizations, McGill Universily,

University of British Columbia, and C~CORE of Memorial University, of Ihis research

project. Particular thanks go to Dr. Ray Gosine, the Principal Investigator for this

collaborative research project. My special thanks 10 the staff of C-CORE for providing

me pleasant and friendly working environment.

I would like to express my thanks to the staff of the Faculty of Engineering & Applied

Science and the School of Graduate Studies for the help extended to me during my

graduale studies at MUN.

Finally, I thank to my dear family for their patience, encouragement and blessings when I

have been thousands of miles away from them.

iii

_Icontents

Title Page

Abstract

Acknowledgements

Table of Contents

List of Figures

List ofTables

List of Acronyms and Symbols

1 Introduction

iii

iv

xxxi

xxxvi

1.1 The Overview of Intelligent Systems

1.1.1 The Overview of Sensor Fusion

1.2 The Sensor Fusion Sub-System (SFS)

1.2.1 Importance of Discrete Event Requirements

1.2.2 Importance of Discrete Event Specifications 10

1.2.3 Importance of Reasoning about the DSPU Architecture II

1.2.4 ImponanceofFault.To!erance 12

1.2.4.1 Hardware Fault-tolerance 13

1.2.4.1.1 Reliability and Availability of the F 13

1.2.4.1.2 The Fault Tree of the SFS 14

1.2.4.1.3 Quantitative Fault Tree Analysis 14

1.2.4.2 Software Fault-tolerance 15

1.3 Literature Review 16

1.3.1 Sensor Fusion Sub-System and Petri ncts 21

iv

1.3.2 Discrete Event Requirements (DEVR) 22

1.3.3 Discrete Event Specifications (DEVS) 24

1.3.4 Reasoning About the DSPU Architecture (RDA) 25

1.3.5 Fault-Tolerance of the SFS 26

1.4 Approach of this Thesis Work 27

1.5 Objective of this Thesis 28

1.6 Overview of this Thesis 30

1.7 The Novelties of this Thesis 32

2 The Discrete Event Requirements Model of
the Sensor Fusion System 34

2.r Introduction 34

2.r.1 Petri Net Model of Different Modes ofSensor Data

Integration 36

2.1.1.1 Competitive or Redundant Sensor Integration 36

2.1.1.2 Complementary Sensor Integration 37

2.1.1.3 Independent Sensor Integration 37

2.1.1.4 Temporal Integration 37

2.2 Periodic Requirements 38

2.2.1 Task Directed Sensing 42

2.2.2 Communication with the Reasoning Sub-System 43

2.3 Aperiodic Requirements 43

2.4 Combination of Periodic and Aperiodic Requirements 44

2.5 Discrete Event Model of Requirements (DEVR) 45

2.5.1 The State Spaces of the DEVR Model 48

2.5.2 The Effect of Death ofConditions on the Performance of the

Sensor Fusion System (SFS) 48

2.6 Ana!ysis of Discrete Event Requirements Model 49

2.6.1 Logical Correctness SO

2.6.2 Temporal Correctness

2.6.3 Reachability

2.6.4 Presence of Deadlock

2.6.5 Repetitiveness

2.7 The Utilization ofthe Operational Time

53

56

56

57

58

2.7.1 The Approaches to Increase the Value of the Busy Period 60

2.7.2lncorporation of More Sensors 60

2.8 Chapter Summary 61

3 Discrete Event Specifications of the Sensor
Fusion System 62

3.1 Introduction 62

3.2 Discrete Event Dynamic rntcraction of the Computing

Components in the SFS 64

3.2.1 Functional Specification of the System 64

3.2.1.1 Fonnation of Elementary Traces 66

3.2.1.2 Formation ofCompound Traces 67

3.2.2 Verification of the Logical Correctness of the Functional

Specifications 70

3.3 Determination of the Temporal Specifications of the Computing

Components of the Sensor Fusion System 70

3.3.1 Sensitivity Analysis of the Components Execution Times 73

3.4 The Reliability Aspects of the Discrete Events Specification 74

3.5 The Modeling ofMulti-node based Sensor Fusion System 75

3.6 Chapter Summary 75

4 The Architecture of the Embedded Computing
System to Implement tbe DEVS Model of the SFS 76

4.1 Introduction 76

4.2 The Execution Time ofa Computing Component 76

4.3 The Reasoning Basis of the Architecture of the Computing System 78

4.4 The Architecture of the Computing System to Execute Elementary

Traces 79

4.5 The Architecture of the Computing System to Execute Compound

Traces 80

4.6 Implementation of Multiple DEVS Models on a Single Computing

System 81

5

4.7 Randomness of Execution Times ofComputing Components on

Modem Processors

4.8 Chapter Summary

Hardware Fault-Tolerance of tbe
Sensor Fusion System (SFS)

82

84

85

5.1 Introduction 85

5.2 The Fault-Tolerance of the Building Blocks 87

5.2.1 The Fault-Tolerance of the Sensors 87

5.2.1.1 Techniques of Fault-Tolerance ofSensors 88

5.2.1.1.1 Majority Voting Technique for Sensor's Fault

Detection

5.2.1.1.2 Estimation Technique for Sensor's Fault

Detection

5.2.1.2 The Effect ofSensor's Fault-Tolerance on the

Performance of Ihe System

5.2.1.2.1 The Effect of Voting Technique

vii

88

90

91

92

5.2.1.2.2 The Effect of Estimation Technique 93

5.2.2 The Fault-Tolerance of the Analog Processors (APs) 94

5.2.3 The Fault-Tolerance of the Analog to Digital Converters

(ADCs) 94

5.2.4 Separation of faults of Sensors, APs and ADCs 95

5.2.5 The Fault-Tolerance ofthe Digital Processors (DPs) 96

5.2.5.1 The Effect of Digital Processor's Fault-Tolerance on

the Performance of the System 97

5.l.5.U The Effect of Voting Technique 97

5.2.5.1.2 The Effect of Estimation 97

5.2.6 The Fault-Tolerance of the Memory Module (MD) and the

digitalUO 98

5.3 The measure of the Dependence ofDifTerent Levels of Fusion on the

Reliability ofSensors 99

5.3.1 The Fault Trees and Reliability Profiles of the Example Sensor

Fusion System at Data Fusion Level 100

5.3.2 The Fault Trees and Reliability Profiles of the Example Sensor

Fusion System at Feature Fusion Level 100

5.3.3 The Fault Trees and Reliability Profiles of the Example Sensor

6

Fusion System at Decision Fusion Level

5.4 Chapter Summary

Tbe Detection of Senso ... ·s Faults
Tb ... ough Estimation

101

101

102

6.1 Introduction 102

6.2 The Detection of Transient Faults Using Local

Statistics ofSensor Data 104

6.3 The Statistical Characteristics ofThe Test Signals 105

6.4 The Analysis ofThe Signature ofThe Transient Faults on

viii

The Test Signals 106

6.5 The Effect of the Transient Faults at Different Locations

on The Local Statistics orThe Sensor Signals 107

6.6 The Effect of Window Size on Local Statistics at

Transient Fault on Test Signals

6.7 The Effect of Window Locations Relative to the

Position ofThe Transient

108

109

6.8 The Effect of Different Frequencies ofTransient Faults

on the Local Statistics 109

6.9 The Effect of Noise Power on Detectability of Transient Faults 110

6.10 The Detection of Permanent Faults 110

6.11 Chapter Swnmary I II

7 Restoration of Lost Sensor's Data
During Fault-clearance Intervals 112

7.1 Introduction 112

7.2 A Unified Approach to Restore Lost Samples During

Fault-Clearance Intervals 114

7.3 Restoration in Fault·Tolerance with Dual Modular Redundancy 116

7.4 Restoration in Fault-Tolerance with Triple Modular Redundancy 118

7.4.1 Restoration Using Hardware Implementation of Voting

Algorithm with Triple Modular Redundancy 118

7.4.2 Restoration Using Software Implementation of Voting

Algorithm with Triple Redundancy 122

7.5 Generalized Fault-Tolerance Scheme 123

7.6 Chapter Summary 125

8 Conclusions and Recommendations for
Future Work 126

References:

8.1 Conclusions

8.2 Recommendations for Future Work

126

129

131

A A Design Problem to Verify the Discrete Event Framework
to Engineer a Reliable Sensor Fusion System 138

B

A.I Introduction

A.2 Problem Statement

Verification of Discrete Event Requirements
Model of SFS by Simulation

8.1 Introduction

8.2 Execution Path and Time Analysis

B.2.1 Execution Paths From the First Sensor

8.2.2 Execution Paths From the Second Sensor

8.2.3 Execution Paths From the Third Sensor

9.2.4 Execution Paths From the Fourth Sensor

B.2.5 Execution Paths From the Fifth Sensor

8.2.6 Execution Paths From the Sixth Sensor

8.2.7 Execution Paths From the Seventh Sensor

B.3 Repetitiveness and Reachability Analysis

8.4 The Sensing Sequence Analysis

IJ8

IJ8

142

142

ISO

ISO

lSI

IS2

IS)

IS4

ISS

IS6

IS7

IS9

c Verification of Discrete Event Specifications
Model of SFS by Simulation

C.I Introduction

163

163

C.2 The Decomposition of Aperiodic Events in Terms of Interactions

Among the Computing Components !64

C.2.1 The Decomposition afthe Aperiodic Event AE l 164

C.2.2 The Decomposition of the Aperiodic Event A.E;; 166

C.2.] The Decomposition of the Aperiodic Event A..E:J 167

C.2A The Decomposition of the Aperiodic Event AE. 168

C.2.5 The Decomposition of the Aperiodic Event AE.; t 70

C.2.6 The Decomposition of the Aperiodic Event AE6 171

C.Z.7 The Decomposition of the Aperiodic Event AE7 173

C.2.8 The Decomposition of the Aperiodic Event AE. 174

C.3 The Optimization of the Execution Times of the Computing

Components 175

D The Architecture of the Embedded Computing

System to Implement the Example SFS

D.l Introduction

180

180

0.2 The Architecture of the Computing System While

Parallelizable Components are Executed in Sequential Fashion 180

D.2.1 Sensor Fusion System (SFS) Rwming on Dedicated Single

Computing Node 181

D.2.2 Multiple SFSs Running on Single Computing Node 181

D.3 The Architecture of the Computing System While Parallelizable

Components are Executed in Parallel Fashion 183

D.4 The Randomness in the Execution Time of a Computing

Componenl on Pipelined Architecture 185

E

0.5 Randomness in Execution Time ofa Computing

Component on Hierarchical Memory Architecture

Improvement of the Reliability and the Required
Overhead for the Incorporation of Hardware
Fault-Tolerance in the Example SFS

188

191

192

192

191E.I Introduction

E.2 Hardware, Energy, and Space Overhead to Incorporate Fault­

Tolerance

E.2.1 Overhead to Incorporate Fault-Tolerance Using Voting

Technique Based Faults Detections

E.2.2 Overhead to Incorporate Fault-Tolerance Using Estimation

Technique Based Faults Detections 193

E.3 Reliability Profile ofa Fault Tolerant Sensor System

Using Voting Based Fault Detection Scheme 194

E.4 Reliability Profile ofa Fault Tolerant Sensor System Using

Estimation Based Fault Detection Scheme 195

E.5 The Comparisons ofThe Reliability Profiles of Different

Fault-Tolerant Sensor Systems and Single Sensor 196

£.6 The Reliability Profile of the Example Sensor Fusion

System at Different Levels of Fusion 197

E.6.1 The Reliability Profile ofTenninal Event AE, 198

£.6.2 The Reliability Profile ofTenninal Event AE, 199

£.6.3 The Reliability Profile ofTerminal Event AEa 200

£.6.4 The Reliability Profile of the Data Fusion with Event AE1 102

E.6.5 The Reliability Profile of the Data Fusion with Event

AE) and AE.

£.6.6 The Reliability Profile of the Feature Fusion with

EventAE6

lIii

203

204

E.6.7 The Reliability Profile of the Data Fusion with Event~ 205

E.7 Temporal Overhead to Manage Redundancy 206

F DetectioD of Sensor Faults in Multisensory System
by SimulatioD 207

F.1 Introduction 207

F.2.1 The Characteristics of the First Test Signal 208

F.2.2 The Characteristics of the Second Test Signal 209

F.2.3 The Characteristics of the Third Test Signal 210

F.2.4 The Characteristics of the Fourth Test Signal 21 I

F.3 The Analysis of the Signature ofTransient Faults ZIZ

F.3.1 Signature ofthe Transient Fault on the First Signal ZI3

F.3.Z Signature of the Transient Fault on the Second Signal ZI4

F.3.3 Signature of the Transient Fault on the Third Test Signal ZIS

F.3A Signature of the Transient Fault on the Fourth

Test Signal 216

FA.I The Transient Fault at Different Locations on the

First Signal

FA.2 Transient Fault at Various Locations on

the Second Signal

FA.3 Transient Fault at Various Locations on

the Third Signal

F.4.4 Transient Fault at Various Locations on

217

218

219

the Fourth Signal 220

F.S.l The Effect of Window Size on Local

Statistics at Transient Fault on the First Test Signal 2Z1

F.S.Z The Effect of Window Size on Local Statistics

at Transient Fault on the Second Test Signal

F.S.3 The Effect of Window Size on Local Statistics

l':iii

222

at Transient Fault on the Third Test Signal 223

F.S.4 The Effect of Window Size on Local Statistics at

Transient Fault on the Fourth Test Signal 224

F.6.1 The Effect of Window Locations on Local Statistics

at Transient Fault on the First Test Signal

F.6.2 The Effect of Window Locations on Local Statistics

at Transient Fault on the Second Test Signal

F.6.3 The Effect of Window Locations on Local Statistics

225

226

at Transient Fault on the Third Test Signal 227

F.6.4 The Effect of Window Locations on Local Statistics

at Transient Fault on the Fourth Test Signal 228

F.7.1 The Effect ofTransient Faults ofDifferent Frequencies

on the Local Statistics of the First Test Signal 229

F.7.2 The Effect of Transient Faults of Different Frequencies

on the Local Statistics of the Second Test Signal 230

F.7.3 The Effect ofTransient Faults of Different Frequencies

on the Local Statistics of the Third Test Signal 231

F.7.4 The Effect ofTransient Faults ofDifferent Frequencies

on the Local Statistics of the Fourth Test SignaL 232

G Performance of a Fault Tolerant Optical
Sensor Using Triple Modular Redundancy

G.I Introduction

233

233

G.2 Fault Tolerant Optical Sensor Using Triple Modular Redundancy 234

G.3 The Detection of Fault Clearnce Interval 236

GA Minimization of the Effects of the Dips Caused During

Fault Clearnce Intervals 237

_I List of Figures

1 Introduction

Figure 1.1: Closed loop Petri net model of an Intelligent System.

Figure 1.2: The block diagram representation of an intelligent system

to data flow (without feedback signals) among different

sulrsystems

Figure 1.3: A block diagram model of a sensor fusion system.

Figure 1.4: Data processing activities in a typical sensor fusion system. 4

Figure 1.5: The fusion process from the perspective ofinputioutpul

characteristicsP]·

Figure 1.6: A hierarchical representation afdata integration steps [6J.

Figure 1.7: High level block diagram of the sensor fusion sub-system.

Figure 1.8: Petri net model of periodic event generation.

Figure 1.9: Petri net model of aperiodic event generation.

Figure 1.10: Petri net models of services of events through the dynamic

interaction among computing components. 10

Figure t.II: A model of services ofevents by the DSPU. II

Figure 1.12: High level fault tree ofan imelligent system. 13

Figure 1.13: The reliability model of the sensor fusion sub-system. 13

Figure 1.14: Fault tree of the sensor fusion sub-system. 14

Figure 1.15(a): The architecture of centralized and autonomous

sensor fusion [2]. l6

Figure 1.15(b): The architecture of the hybrid sensor fusion [2]. 17

Figure 1.16: A network structure based sensor fusion framework [16]. 17

Figure 1.17: An infonnation flow graph based sensor fusion

architecture [t7].

Figure 1.18: A self-improving multisensory fusion system

architecrure[S].

Figure 1.19: Sensor-level tracking approach to combine

sensor data [18J.

Figure 1.20: A generic pattern of multisensory integration

and fusion system {19].

2 The Discrete Event Requirements Model of
the Sensor Fusion System

18

19

19

20

Figure 2.1: Block diagram of completion of a task. 34

Figure 2.2: Petri net model oruser's typical requirements. 34

Figure 2.3: Types of non-clerical requirements errors[8]. 3S

Figure 2.4: Petri net model of competitive sensor integration. 36

Figure 2.5: Petri net model ofcomplementary sensor integration. 37

Figure 2.6: Petri net model of independent sensor integration. 37

Figure 2.7: Petri net model of generation and service of periodic

cvents for data acquisition.

Figure 2.8: Timing diagram of the generation of periodic

events for three example sensors.

Figure 2.9: Petri net model ofan aperiodic event.

Figure 2.1 0: The simplest sensor fusion system.

Figure 2.11: The discrete event requirements (DEVR)

model of a typical sensor fuSion system.

Figure 2. I 2: The discrete event requirement model

of an example sensor fusion system.

Figure 2.13: The flow chart of the algoritlun for the

38

39

43

45

46

47

generation of periodic events.

Figure 2.14.: The distribution ofbusy and idle periods

in the DEYR model

3 Discrete Event Specifications of the Sensor
Fusion System

50

58

Figure 3.1: Hierarchical decomposition ofa discrete event system. 62

Figure 3.1: Petri net model ofa discrete requirement. 63

Figure 3.3: Flow of functional and temporal specifications. 63

Figure 3.4: Examples ofelementary and compound traces. 65

Figure 3.5. Formation ofelementary segments. 68

Figure 3.6: Petri net model of an example system. 70

Figure 3.7: Abstraction ofSFS as a collection of parallel traces. 71

4 Architecture of the Embedded Computing
System to Implement the DEVS model of the SFS

Figure 4.1: A model ofembedded events service system.

Figure 4.2: The exponential growth ofthe waiting time with

the increase of the arrival rate.

78

78

Figure 4.3: Multiple nodes based architecture of the embedded

computing system to execute compound traces. 80

Figure 4.4: Interlacing of two DEVR models to increase the

utilization factor of the embedded computing system. 81

5 Hardware Fault-Tolerance of the
Sensor Fusion System (SFS)

Figure 5.1: The reliability profile of redundant parallel system. 85

xvii

Figure 5.2: Model ofasensor as an analog signal source. 87

Figure 5.3: Redundant sensors to detect the states of sensors. 88

Figure 5.4: Two redundant sensors can detect only the

presence of faults.

Figure 5.5: Distribution oftime for different tasks between

two successive periodic events.

Figure 5.6: Loss of data during fault clearance period.

Figure 5.7: Generation Of/(l) from physical signal.

Figure 5.8: The generation ofevent for detection of

faults in sensor, AP and ADC.

Figure 5.9 : The generation ofevents for detection of

fault in sensor, or AP, or ADC.

Figure 5.10: The fault tree ofa typical event.

6 The Detection of Sensor Faults
Using Local Stati.stics

88

91

92

94

95

95

99

108

Figure 5.l: The distribution of the ratio of the peaks of

local variances of the test signals at transient fault. 106

Figure 6.2: The variations of the ratios of the peaks during transient

with the peaks during the rest of the signal at different

window sizes for the fourth test signal.

Figure 6.3: The maximum variation of the ratio of the peaks

with the variation of the window locations

relative to the transient. 109

Figure 6.4: Variation of ratio of local variances with the
signal to noise ratio(SNR). 110

113

112

7 Restoration of Lost Sensor's Data During
Fault-clearance Intervals

Figure 7.1: An architecture of fault tolerant sensor

fusion system [801.

Figure 7.2: A general scheme of fault-tolerant sensing

using hardware redundancy.

Figure 7.3: The acquisition ofdata related to same physical signal

using two parallel channels. 114

Figure 7.4: An example of recovery of samples lost during

fault-clearance intervals. 115

Figure 7.5: The flow diagram of the fault-clearance process. 117

Figure 7.6: Restoration of data during fault-clearance in dual

redundant fault-tolerant sensing. 117

Figure 7.7: A simplified representation of voting module. 118

Figure 7.8: The selection of module with the output from the voting

module. 118

119

Figure 7.9: The restoration of lost samples in hardware

implementation of the voting algorithm.

Figure 7.10: The comparator and majority voting modules in the

voting module. 119

Figure 7.11: Hardware realization of the voting logic. 120

Figure 7.12: Fault-clearance time consists of three components. 121

Figure 7. i]: Restoration of signal in triple modular redundancy with

software implementation of voting algorithm. I22

Figure 7.14: The structure ofcrossbar switch to connect the modules. 123

Figure 7.15: A generalized architecture of fault-tolerant sensing to

achieve different level ofredundancy. 124

B Verification of Discrete Event Requirements
Model of SFS by Simulation

Figure B.l: The Petri net model of the specified example

sensor fusion sySlem. 142

Figure B.2: The branching and parallel operations in the Petri

net model of the SFS. 150

Figure B.3. The execution paths from the periodic process PEl to

serve the sensing of the 1st sensor.

Figure B.4 : The execution paths from the periodic process P~

to serve sensing of the second sensor.

Figure 8.5: The execution paths from the periodic process

PEl to serve sensing of the third sensor.

Figure B.6: The execution paths from the periodic process

PE. to serve sensing of the fourth sensor.

Figure B.8: The execution paths from the periodic process

PEs to serve sensing of the fifth sensor.

Figure B.9: The execution paths from the periodic process

P~ to serve sensing of the sixth sensor.

Figure B.10: The execution paths from the periodic process

PE, to serve sensing of the seventh sensor.

150

151

152

153

154

155

156

159

Figure B.11: Simplified Petri net model of the example SFS to

understand the problem of verification of repetitiveness 158

Figure 8.12. Distribution ofsensiog time of

different sensors.

Figure B.13: The sensing sequence using user's initial

specification. 160

Figure B.14: The sensing times during the second phase of sensing. 162

C Verification of Discrete Event Specifications
Model of SFS by Simulation

Figure C.I: The decomposition of the aperiodic event AE I • 164

Figure C.2: The decomposition of the aperiodic event AE,;. 166

Figure C.3: The decomposition of the aperiodic event AE,. !67

Figure C.4: The decomposition of the aperiodic event AE, 168

Figure C.5: The decomposition of the aperiodic event AEs. t 70

Figure C.6: The decomposition of the aperiodic event AE.. t 71

Figure C.7: The decomposition of the aperiodic event AE.. 173

Figure C.8: The decomposition of the aperiodic event AEI • 174

Figure C.9: Flow chart for optimization. 177

Figure C.IO: The ratio of the total reduction of the service

times ofall aperiodic events to the decrement of the

execution time of the temporally critical component. 179

D The Architecture of the Embedded Computing
System to Implement tbe Example SFS

Figure 0.1: Single node based computing system. 181

Figure 0.2: Multiple nodes serve requests from the same

queue resulting in reduced waiting time. \82

Figure 0.3: The three parallel independent computing nodes

to execute parallelizable components parallely. 183

Figure 0.4: The operating states of different nodes to serve

the aperiodic event AE.. 184

Figure 0.5: The eight-stage pipeline structure of the R4000

uses pipelined instruction and data caches [42]. 185

Figure 0.6: The dependence of the execution time ofan instruction on the

instructions already in execution in the pipeline [42J. 186

Figure 0.7 The variations of the MIPS R4000's pipelined cpr

ofSPEC92 benchmarks.

Figure 0.8 A four-level memory architecture.

Figure D.9:Data transfer between adjacent levels.

187

188

188

E Improvement of the Reliability and the Required
Overhead for the Incorporation of Hardware
Fault-Tolerance in the Example SFS

Figure E.I: The hardware configuration of the example

sensor fusion system. 191

Figure E.2: Triple modular redundancy implementation of sensor I. t 92

Figure E.3: Estimation technique based triple modular

194

193

193

194

redundant sensor system.

Figure E.4: State diagram using Markov's Model showing

possible state transitions for TMR system.

Figure E.5: The comparison of the reliability ofa TMR system

consisting of the three identical sensor modules with

the reliability ofa single sensor.

Figure £.6: The comparison of the reliability profile of

4-modular sensor system with those ofTMR sensor

system and single sensor.

Figure E.7: The comparison of reliability profiles of fault-tolerant

sensor using voting technique based fault detection technique

with those of fault-tolerant sensor using estimation based fault

detection technique, and single sensor.

Figure E.8: The comparison of reliability profiles of fault~to(erant

sensor system having different levels of redundancy

using voting and estimation techniques.

195

196

lIJ<ij

197

Figure .E.9: The ratios of reliability profile offault·tolerant

sensor system using estimation and voting techniques

for fault detection.

Figure E.!O: Fault tree of AE, in relation to the failure of

the supporting sensors I and 2. 198

Figure E.I!: The reliability profile of the aperiodic event AE, 198

Figure El2: The fault-tree of the event AEs. 199

Figure E. 13: The reliability profile of the aperiodic event AEs. 199

Figure E.14: The fault·tree of the failure ofaperiodic event AE.. 200

Figure E.!S: The reliability profile of the aperiodic event AEI • 201

Fig.E.16: The fault-tree ofevent AE~. 202

Figure E.17: The reliability profile of the aperiodic event AEz. 202

Figure E.l8: The fault-tree ofthe event AE.. 203

Figure E.19: The reliability profile of the aperiodic event AE.. 203

Figure E.20: The fault-tree of the aperiodic event AEo' 204

Figure E.2!: The reliability profile of the aperiodic event AE6. 204

Figure A.E.22: The fault-tree of the aperiodic event AE,. 205

Figure E.23: The reliability profile of the aperiodic event AE,. 205

Figure E.24: Sequence ortasks to acquire fault-free data while

estimation technique is used to detect faulty sensors. 206

F Detection of Sensor Faults in
Multisensory System by Simulation

Figure F.!: The first physical signal.

Figure F.2: The first sensor signal with noise.

Figure F.3: The local means of the first signal.

Figure FA: The local variances of the signal.

Figure F.S: The second physical signal.

:uiil

208

208

208

208

209

Figure F.6: The second sensor signal with noise. 209

Figure F.7: The variations oCthe local means. 209

Figure F.8: The variations oClocal variances. 209

Figure F.9: The third physical signal. 210

Figure F.lO: The third sensor signal with noise. 210

Figure F.ll: The local means of the sensor signal. 210

Figure F.12: The local variances of the signal. 210

Figure F.13: The fourth physical signal. 211

Figure F.14: The fourth sensor signal with noise. 21t

Figure F.15: The local mean profile. 211

Figure F.l6: The local variance profile. 211

Figure F.17(a): A transient signal as damped sinusoid. 212

Figure F.l7(b): A sinusoid corrupted with the transient. 212

Figure F.18: The first physical signal. 213

Figure F.19: The first sensor signal corrupted with transient fault. 213

Figure F.20: The local means oCthe corrupted sensor signal at

transient fault. 213

Figure 21: The local variances of the corrupted sensor signal

at transient fault. 213

Figure F.22: The second physical signal. 214

Figure F.23: The second sensor signal superimposed with

transient noise. 214

Figure F.24: The local mean oCthe sensor signal at transient fault. 214

Figure F.25: The local variances of the sensor signal at transient fault. 214

Figure F.26: The third physical test signal. 215

Figure F.27: The third sensor signal corrupted with transient noise. 215

Figure F.28: The local mean profile ofthe third sensor signal

at transient fault. 215

Figure F.29: The local variance profile of the third sensor

signal at transient fault. 215

:uiv

216Figure F.30: The fourth physical test signal.

Figure F.31: The fourth test sensor signal corrupted with

transient noise. 216

Figure F.32: The local mean profile of the fourth test signal

at transient fault. 216

Figure F.33: The local variance profile of the fourth test signal

217

217

217

216

217

at transient fault.

Figure F.34: The transient fault at the origin.

Figure F.35: The variances for the fault at origin.

Figure F.36: The fault at 18 ms from the origin.

Figure F.37: The variances for fault at 18 ms.

Figure F.38: The ratios of the peaks of local means at transient

fault with those at no fault. 217

Figure F.39: The ratios of the peaks of local variances at

transient fault with those at no fault. 217

Figure FAD: The transient fault at the origin on the second test signal. 218

Figure F.4t: The variance profile of the second test signal while

218

218transient is at the origin.

Figure F042: The transient fault at 18 ms from the origin

on second test signal.

Figure FA3: The variance profile of the second test signal

while transient is at 18 ms from the origin. 218

Figure F.44: The ratios of the peaks oflocal means at

transient fault with those at no fault. 218

Figure FA5: The ratios of the peaks of local variances at

transient fault with those at no fault. 218

Figure FA6: The transient fault at the origin on the third test signal. 219

Figure FA7: The variance profile of the third test signal while

transient is at the origin. 219

Figure F.4S: The transient fault at 18 ms from lhe origin on

third test signal. 219

Figure F.49: The variance profile oflhe lhird test signal while

transient is at 18 ms from the origin. 219

Figure F.50: The ratios oflhe peaks of local means at

transient fault wilh lhose at no fault. 219

Figure F.5 I: The ratios of the peaks of local variances at

transient fault with those at no fault. 219

Figure F.52: The transient fault at the origin on the fourth test signal. 220

Figure F.53: The variance profile of the fourth test signal while

transient is at the origin. 220

Figure F.54: The transient fault at IS ms from the origin on

the fourth test signal. 220

Figure F.55: The variance profile of the fourth test signal

while transient is at 1S ms from the origin. 220

Figure F.56: The ratios of the peaks of local means at transient

fault with those at no fault. 220

220

221

221

221

221

Figure F.57: The ratios of the peaks oflocal variances at

transient fault with those at no faule

Fig. F.5S: The transient fault on the First signal.

Fig. F.59: The variances at window width Ams.

Fig. F.60: The variances at window width 3ms.

Fig. F.61: The variances at window width !Oms.

Fig. F.62: The ratios of the peaks of the local means at

different window widths. 221

Fig. F.63: The ratios of the peaks of the local variances at

different window widths. 221

Fig. F.64: The transient fault on the 2nd signal. 222
Fig. F.65: The variances at window width Ams. 222

Fig. F.66: The variances at window width 3ms. 222

nvi

222Fig. F.67: The variances at window width IOms.

Fig. F.68: The ratios of the peaks of the local means at

different window widths. 222

Fig. F.69: The ratios of the peaks of the local variances at

different window widths. 222

Fig. F.70: The transient fault on the 3rd signal. 223

Fig. F.71: The variances at window width .4ms. 223

Fig. F.72: The variances at window width 3ms. 223

Fig. F.73: The variances at window width !Oms. 223

Fig. F.74: The ratios of the peaks of the local means at

different window widths.

Fig. F.75: The ratios of the peaks of the local variances at

different window widths.

Fig. F.76: The transient fault on the 4th signal.

Fig. F.77: The variances at window width Ams.

Fig. F.78: The variances at window width 3ms.

Fig. F.79: The variances at window width 10ms.

Fig. F.80: The ratios of the peaks of the local means at

different window widths.

Fig. F.8l: The ratios of the peaks of the local variances at

different window widths.

223

223

224

224

224

224

224

224

225

225

Fig. F.82: The transient fault on the 1st signal.

Fig. F.83: The variances at window displacement of.02 ms

from the origin.

Fig. F.84: The variances at window displacement of .66 ms

from the origin. 225

Fig. F.85: The variances at window displacement of 1.2 ms

from the origin. 225

Fig. F.86: The ratios ofthe peaks of the local means at different

window displacements. 225

:uvii

Fig. F.87: The ratios of the peaks of the local variances at

different window displacements. 225

Fig. F.88: The transient fault on Ihe 2nd signal. 226

Fig. F.89: The variances at window displacemenl of .02 ms

from the origin. 226

Fig. F.90: The variances al window displacement of .66 ms

from the origin. 226

Fig. F.91: The variances at window displacement of 1.2 illS

from the origin. 226

Fig. F.92: The ralios of the peaks of the local means at

different window displacements. 226

Fig. F.93: The ratios of the peaks of the local variances at

different window displacements. 226

Fig. F.94: The transient fault on the 3rd signal. 227

Fig. F.9S: The variances at window displacement of .02 illS

from the origin. 227

Fig. F.96: The variances at window displacement of .66 illS

from the origin. 227

Fig. F.97: The variances at window displacement ofl.2 illS

from the origin. 227

Fig. F.98: The ratios of the peaks of the local means at

different window displacements. 227

Fig. F.99: The ratios of the peaks of the local variances at

different window displacements. 227

Fig. F. I00: The transient fault on the 4th signal. 228

Fig. F.I 0 I: The variances at window displacement of .02 ms

from the origin. 228

Fig. F.I02: The variances at window displacement of .66 illS

from the origin. 228

Fig. F.I03: The variances at window displacement of 1.2 illS

xxviii

228

228

229

from the origin.

Fig. F.I 04: The ratios of the peaks of the local means at

different window displacements.

Fig. F.l05: The ratios of the peaks of the local variances

at different window displacemenls. 228

Fig. F.I06: The 500 Hz transient on 1st signal. 229

Fig. 107: The variances at 500 Hz transient on 1st test signal. 229

Fig. 108: The variances at 5 KHz transient. 229

Fig. 109: The variances at 10 KHz transient. 229

Fig. F.II0: The ratios of the peaks of the local means at

different transient frequencies.

Fig. F.IIl: The ratios of the peaks of the local variances at different

transient frequencies. 229

Fig. F.112: The 500 Hz transient on 1st signal. 230

Fig. 113: The variances at 500 Hz transient on 1st test signal. 230

Fig. 114: The variances at 5 KHz transient. 230

Fig. 115: The variances at 10KHz transient. 230

Fig. F.I16: The ratios oCthe peaks of the local means at different

transient frequencies. 230

Fig. F.117: The ratios of the peaks of the local variances at different

transient frequencies. 230

Fig. F.IIS: The 500 Hz transient on 3rd signal. 231

Fig. 119: The variances at 500 Hz transient on 3rd test signal. 231

Fig. 120: The variances at 5 KHz transient. 231

Fig. 121: The variances at 10 KHz transient. 231

Fig. F.122: The ratios of the peaks of the local means

at different traruiient frequencies. 231

Fig. F.123: The ratios of the peaks of the local variances at different

transient frequencies.

Fig. F.124: The 500 Hz transient on 4th signal.

231

232

Fig. 125: The variances at 500 Hz transient.

Fig. 126: The variances at 5 KHz transient.

Fig. 127: The variances at 10 KHz transient.

Fig. F.128: The ratios of the peaks of the local means

at different transient frequencies.

Fig. F.129: The ratios of the peaks of the local variances at different

transient frequencies.

G Performance of a Fault Tolerant Optical
Sensor Using Triple Modular Redundancy

Figure G.I: An optical sensor whose output voltage level

is function of illumination level.

232

232

232

232

232

233

235

Figure G.2: An optical fault tolerant sensor using triple

modular redundancy.

Figure G.3: The dips caused on the output signal from fault tolerant

sensor module during fault clearance intervals. 236

Figure G.4: The detection offault clearance instances by monitoring the

changes of the control signal sent to the multiplexer by the

microcontroller board. 237

Figure G.5: The data stream from the first sensor. 238

Figure G.6: The data stream from the second the sensor. 238

Figure G.?: The processed output signal from a fault tolerant sensor

module after removal of the first dip. 239

Figure G.8: The processed output signal ofa fault tolerant

sensor module with reduced effects for dips

caused during fault clearance intervals. 240

_I List of Tables

1 Introduction

Table 1.1: Potential applications of multisensory systems.

2 TbeDiscrete Event Requirements
Model of the Sensor Fusion System

Table 2. (: The sensing sequence ofan example sensor system

Table 2.2: The sensing sequence ofan example sensor system

3 Discrete Event Specifications
of tbe Sensor Fusion System

Table 3.1: The possible firing sequences of the processes ofan

example SFS as shown in Fig. 3.6

4 The Architecture of the Embedded Computing S}'stem
to Implement the DEVS Model of the SFS

5 Hardware Fault·Tolerance of the
Sensor Fusion System (SFS)

40

41

71

6 The Detection of Sensor Faults Using Local Statistics

Table 6.1: The local means of test signals.

Table 6.2: The local variances oftest signals.

Table 6.3: Bandwidth of the test signals.

Table 6.4: The statistics related to the signanrre of the

transient on test sensor signals.

Table 6.5: The variation of the maximum peaks of the sensor signals with the

occurrence oftransient faults at different locations.

lOS

lOS

lOS

106

107

7 Restoration of Lost Sensor's Data During Fault-clearance Intervals

Table 7.1 ; Generation of outputs from the voting module in response

to inputs from the comparators.

A A Design Problem to Verify tbe Discrete Event Framework to
Engineer a Reliable Sensor Fusion System

Table A, (: The phases and periods of sensing.

Table A,2: The life-times of the conditions.

Table A.3: The service limes of the periodic processes.

Table A.4: The service times ofaperiodic processes.

Table A.S: Generation of maximum number of conditions by

periodic processes.

Table A.6: Generation of maximum number of conditions by

aperiodic processes.

Table A.7: Absorption of conditions by aperiodic processes.

120

138

139

139

139

140

140

141

175

176

B Verification of Discrete Event Requirements
Model of SFS by Simulation

Table B.I: Different levels ofdata integration in the example SFS. 143

Table B.2: The summary of the execution path analysis. 157

Table B.3: The summary ofsensing time estimation. 159

Table B.4: The modified phases of the sensors. 161

Table 8.5: The periods of the sensors. 161

C Verification of Discrete Event Specifications Model of SFS
by Simulation

Table C. I: The specification ora set ofcomputing components. 163

Table C.2: The minimum service times of the aperiodic events and the

corresponding attainable service times.

Table C.3: The modified minimum service times of the aperiodic

events and the corresponding attainable service times. 176

Table C.4: The aperiodic events and the execution times of their

corresponding computing traces to serve them.

Table C.S: The aperiodic events and the corresponding computing

components. 177

Table C.6: OptimiZed execution times of the computing components. 178

Table C.7: The service times of the aperiodic events after optimizarion. 178

Table C.8: The selection of temporally critical component at different

interations. 179

D The Architecture of the Embedded Computing
System to Implement the Example SFS

Table 0.1: The maximum total computation times to serve the aperiodic events

for the sequential execution of parallelizable components. 180

Table 0.2: The maximum total computation times to serve the aperiodic events

for the parallel executions of parallelizable components. 183

Table 0.3: The randomness of total pipelined CPt and the contributions of the

four major sources of stalls are shown [42]. 186

Table 0.4: The statistics of the variationsofCPI ofSPEC92 benchmarks. 187

Table 0.5: Typical values ofaccess times of different levels of memory. 188

Table 0.6: The effect ofdata distribution on the memory access time. 190

E Improvement of the Reliability and the Required Overhead for
the Incorporation of Hardware Fault-Tolerance in the
ExampleSFS

F Detection of Sensor Faults in Multisensory System by Simulation

Table F.I: The specifications of the simulating environment. 207

Table F.2: The statistics of the first test signal. 208

Table F.3: The ststistics of the second test signal. 209

Table F.4: The statistics of the third signal. 210

Table F.5: The statistics of the fourth signal. 211

Table F.6: The specification the test transient. 212

Table F.7: The statistics of the first test signal at transient fault. 213

Table F.8: The statistics of the second test signal at transient fault. 214

Table F.9: The statistics of the third test signal at transient fault. 215

Table F.IO: The statistics of the fourth test signal at transient fault. 216

x;uiv

G Performance of a Fault Tolerant Optical
Sensor Using Triple Modular Redundancy

Table G.I: The specifications of the optical sensor (photo cell) 233

Acronyms and Symbols:

The following lists of acronyms and symbols appear throughout the body of this

docwnent. The acronyms are defined here in alphabetical order, and the symbols are

defined approximately in the order in which they appear in the text.

Acronyms Definitions

ADCs Analog 10 digital converters.

ADeu Analog to digital conversion unit.

APs Analog processors.

AS Action sub-system.

ASPU Analog signal processing unit.

OAT Data acquisition time.

DES Discrete event dynamic system.

DEVR Discrete event requirements.

DEVS Discrete event specifications.

OPs Digital processors.

DSPU Digital signal processing unit.

IT Fault tolerance.

110 Input and output.

IS Intelligent system.

MMs Memory modules.

MTIF Mean time to failure

RB Recovery block.

RDA Reasoning about the DSPU architecture.

RS Reasoning sub-system.

SA Sensor array.

SFS Sensor fusion sub-system.

STAE Service time ofaperiodic events.

Acronyms Definitions

TBPE Time between two successive periodic events.

TCAD Time for computation of the acquired data.

WT Waiting time.

Symbols Definitions

Chapter 1:

Prp Perception process.

Pry Reasoning process.

PYa Actuation process.

Tep Time window for perception.

Tey Time window for reasoning.

Tea Time window for actuation.

E An event.

Identification ofan event.

Time ofoccurrence ofan event.

T,

p,

PEj

AEj

Wq

A,

Ap

Rsa(t)

Raspu,{t)

Service time ofan event.

The process to be executed to serve an event.

The itk periodic event.

The itk aperiodic event.

Waiting lime in the queue.

The failure event ofSFS.

The failure event ofRS.

The failure event of AS.

Reliability of sensor array.

Reliability ofana[og signal processing unit.

Reliability ofanalog to digital conversion unit.

Reliability ofdigital signal processing unit.

xxxvii

Symbols

Aaspu(t)

Aadcu(l)

AdspU(I)

P[Z]

Chapter 2:

s

Pc

TSi

min(LJTsJ

<f)i

Ti

Gp

gp

Vi

Poc

Definitions

Availability of sensor fusion system.

Availability of sensors array.

Availability of the ASPV.

Availability of the ADCU.

Availability ofDSPU.

The probability of occurrence of terminal event Z

The nth sensor.

Set of sensors.

The nih process.

A place to hold conditions.

The nih place to hold conditions.

The sensing period of the ilh sensor.

Maximum allowable service period for ilh periodic

event of the ith sensor.

Sensing phase ofthe ith sensor.

Lower limit of sensing phase of the ith sensor.

Upper limit of sensing phase of the itk sensor.

The lower limit of the period of the ith sensor.

The upper limit of the period of the ith sensor.

The grain size of period.

The grain size of phase.

The set of virtual sensors of the ith sensor.

The set ofpreconditions.

The set of post conditions.

The post conditions of ilh periodic event.

The preconditions ofthejth aperiodic event.

xxxviii

Symbols

LpCf

CSi

TPii

Definitions

The postconditions of the jlh aperiodic event.

The life-time of the ilh condition.

The slate of the DEVR model.

The new state ofDEVR model.

The cycle number of the irh periodic event.

The execution time ofthejlh path driven by the ilh

periodic event.

aij The number of times the ilh aperiodic event

executes in path i.

Bpi Maximum busy period to serve the ilh sensor.

Bp(t) Tolal busy period during the operational time t.

U(l) The degree of utilization of the operational period

Chapter 3:

Teo The execution time of a component at level '0'.

Tn.i The execution time of the ith system at the nth level

Se Sequential trace

Sc Compound trace

en The nth computing component

C Set of computing components

Se The trace vector.

P The position vector.

Z The set of all integer numbers.

Pij Position operator.

Pick one trace from a set of traces.

po Runs more than one traces in parallel.

br Select one trace from a sel of traces to branch.

Sgei An elementary segment.

Sgq A compound segment.

Sti The execution time of the ith trace

&j The incremental change of execution time of ith

computing component.

I:J.Ti The total change ofexecution.

Ci The cost related to the per unit change of computation

time for the ith component.

Seni The sensitivity of the execution time of the ith

computing component.

Cseni The cost sensitivity of the ith component.

Chapter 4:

CC The computational complexity vector.

CC.l The cornputationalload for integer.

CC.F The computational load for floating point.

CCD The computational load for control flow.

CCM The computational load for memory operations.

CCH The system management overhead.

The traffic arrival rate in the queue.

Teff The effective access time ofa data unit.

ChapterS:

p'I The probability of failure of nth parallel component.

p(t) The physical signal.

s(t) The operating state of the sensor.

g(t) The electrical signal generated from the sensor.

M The message space.

D The decision space

d(z) The decision rule

1ft) The signa! from the analog signal processor.

Symbols Definitions

ap(t) The operating state of the analog signal processor.

Chapter 6:

g(nT) Discrete sensor signal.

g(K) The mean of the kth segment.

g1(K) The variance of the kth segment.

Chapter 7:

sfnj The segment of signal acquired in a session.

Sir,,} The segment of signal acquired by channel 1.

s If"} The segment of signal acquired by channel 2.

Fi The ith fault clearance interval.

lij(k) The position of samples in the ith channel in the jlh

fault clearance interval.

firfuj The positions of undefined samples in the illl channel

in lhe rth region.

s[lll The recovered signal.

Ie The comparison time taken by the comparator.

IS The selection time taken by the voter.

lm The switching time taken by the multiplexer.

xli

Chapter 1

_IIntrodUCtiOn

1.1 The Overview of Intelligent Systems

P=ei..",
(of",m,";OII

action must be executed within the time

An intelligent system (IS) perceives, reasons, and acts through the dynamic interaction of

a set of discrete events within the specified time windows. A Petri net [1] based closed

loop system model as shown in the Fig.I.1 represents this scenario of dynamic

interaction. The processes Prp. Prr, and Pra

corresponding to perception, reasoning, and

windows rep. Ten and Tea respectively. This

type of system is being used increasingly in

safety and mission critical operations in space,

medicine, manufacturing, mining, undersea, and

harsh envirorunents. Some of these operations

require unsupervised, autonomous functions.

High reliability and fail safe characteristics are

critical operational requirements of these systems.

To achieve these requirements, faults must be avoided during both the development and

operation phases of product life cycle. During the development phase, through the

practice of appropriate formal methods, it is possible partially to' realize this objective. To

achieve these objectives in the operation phase, the system must have the ability to detect

the failure of the constituting components and, if possible, to replace the failed

component with a fault-free one. [f there is no spare component for replacement, the

system should take necessary steps to avoid malfunctioning. The incorporation of these

attributes in the different phases of the product life cycle will result in a highly reliable

IS.

Perception by an IS is partially accomplished through fusing information from a set of

complementary andlor redundant sensors [2}. TIlis fusion of sensor data is performed in

the Sensor Fusion Sub-system (SFS). The SFS acquires data from different sensors, fuses

them to extract necessary information and sends them to the Reasoning Sub-system (RS).

The RS sends appropriate commands to the Action Sub-system (AS) (1]. The data flow

among different sub-systems in an intelligent system is shown in Fig. 1.2. The SFS is the

subject of this present work, which addresses the system engineering aspect of the

development of a highly reliable sensor fusion system. It is expected that the results of

this work will equip the developers with necessary quantitative reasoning tools to develop

reliable SFS. This scientific knowledge to engineer reliable SFS will partially realize the

broader requirements of engineering highly reliable intelligent systems for safety and

mission critical operations.

A set of
sensors

Asetof

Figure 1.2 The block diagram representation of an intelligent system to show data flow
(without feedback signals) among different sub-systems.

Figure 1.3: A block diagram model ofa sensor
fusion system.

1.1.1 The Overview of Sensor Fusion

Sensor fusion techniques integrate ,...-----------,

information from multiple sensors in

order to make an inference about a

physical event, activity, or situation as

shown in Fig. 1.3. The basic objective

of multi-sensori data fusion is to

achieve improved accuracies and more

specific information than could be

achieved by the use ofa single sensor '------------....

alone [2,3]. This refers to the

synergistic use of the information

provided by multiple sensory devices to assist in the accomplishment of a task by a

system. The data integration from senses - sights. sounds, smells, tastes, and touch. ~ by

the ongoing cognitive process in the human's body is a common example of sensor fusion

[4}. The timeliness, accuracy, and precision are salient attributes of such fusion process.

A typical sensor fusion process consists of four activities: acquisition, processing,

integration, and analysis as shown in Fig. 104. In the process of multi-sensori data

integration. sensors can provide temporally related competitive, complementary, and

independent information [6}.

From the perspective of input/output (VO) characteristics, sensor fusion has been

described in a three-level hierarchy: data, feature, and decision. This three-level

hierarchical fusion is performed in five fusion processes as shown in Fig. 1.5 (7]. The

hierarchical fusion of data from eight data sources is shown in Fig. 1.6 [6]. [0 this

example system, data 0 , and 0 1 are combined in the data integration step into feature F,l .

In the similar way, OJ and 0 •• Os and 0 6, and 0, and O. are integrated to produce features

F..., Fj6, and Fn respectively. In the next step, the features F'1 and Fl. are integrated into

decision De,.., The integration of features FSIl and Fn produces the decision Oe~. In the

Physical variable

Data acquisition

New data

Processing or
allignmenl

Scaled data

Inlegration

Integrated data

Analysis

De<:lsion

~
atain-o~~~t

Data input data out
fusion

~
atain- ~~a::

Data input fcalurcout
fusion

~
"=Feanu-eln- output

Feature Input feanm:oul
fusion

Figure 1.4: Data processing
activities in atypical sensor

fusion system.

Figure 1.5: The fusion process
from the perspective of

input/output characteristics [7].

final stage, the local decisions are combined to produce the final decision about the

sensing environment as Del.,' The number of data integration steps is a function of the

requirements of a particular sensing task. The example shown here is a generic

representation ofdifferent data integration steps.

The sensor fusion process can be defined as the reunification of fragmented information

in order to represent the information originally present in the environment. The

fragmentation OCCtIn; due to inescapable fission that takes place during sensing due to the

physical constraints of sensors (e.g., resolution, spatial coverage). In essence, this

reunification of infonnation is the main objective of sensor fusion and an ideal sensor

The problem environments

requiring the applications of

from the data sensed by the

multi-sensori suite [7].

design and develop a sensor

fusion system to integrate data

F"""
decision

D<,.

Figure 1.6: A hierarchical representation ofdata
integration steps [6}.

systemsmulti-sensori

generate a large volume of

data with differing spatial

and temporal resolution, and

often conupted by noise and

clutter. It is a formidable

challenge for an engineer to

fusion system will be able to

restore all information of

interest in the environment

from multiple sensors in such environments, especially given the real-time constraints

that are often imposed by the real-world needs [5]. The applications of sensor fusion are

widespread; some typical application areas discussed in the literarure are summarized in

Table 1.1 [2].

The goals of sensor fusion are different for different application environments. The fusion

objectives of a specific application typically include one or more of the following

functions:

Detection of the presence of an object or environmental condition.

Identification ofan object or event.

Classification ofdetected objects or events.

Tracking ofan object or continued monitoring of an event.

Algorithms to fuse data from different sensors use techniques from several disciplines:

signal processing, statistics, artificial intelligence, pattern recognition, cognitive

psychology, and information theory. The rapid evolution of computer hardware

technology (e.g., microprocessors and memory), advanced sensors and new techniques

have led to new capabilities to combine data from multiple sensors for improved

inferences. Implementation of such systems requires an understanding of basic

terminology, data fusion processing models, and architectures. This work focuses on

generic architectural aspect ofSFS from the system engineering point of view.

Table 1.1: The potential applications ofmulti-sensori systems reproduced from [2].

Specific Iofereoce sought Primary obser- Spatial coverage Seosor platform
ApplicatiODs by SFS vable data

Location, identifi- _ Optical sigoab Microscopic to tens _ Robol: body
Robotics cationofobslade, _Acoustic signals of feel about the

andobjeclStobe -EM;adiation robot.
manipulaled. _X_rays
Location, _X_rays

Medical identification of _Acoustic signals
diagnostics tumors, _ Optical signals Human body

abnormalities, and _ MRI
disease. _Chemicaldata

-LaboralOry

IdeotificatiOl\, _ SAR, Optical
Eovironmental location of natural _ Seismic

monitoring and manmade _ EM radiation
phenomena. - Chemical

_Satellites
Hundredsofmiles _Aircraft

_Ground_based
_Underground

_Satellites
Hundredsofnautical_Ships,Aircraft
miles _ Submarines

-Ground-based

~lectionand _Oplicalsignals
Preventive characterization of _ EM radiation Microscopic

maintenance systemincipiel\t _Acoustic, vibration inspection to
faults _ElectriC,magnetic hundredsoffeet

_X_rays
~tection, tracking,
identification 0 _SAR

Ocean vessels, offshore_Opticalsignals
surveillance struclUrcs,bioiogicai_EMradiacion

&. chemical const!- - Acoustic signals Air/surface/sub-
tuents iccbergs, sea surface
iceandflShslOClcs.

-Ships.
_Aircraft
_Ground_based
systems (e.g.,factory
equipments)

_Hundrcdsofmiles
roglobal _Salellites
(strategic). -Aircrafis

_Ships
_Ground_based

Detection of indica.
tions ofirnpending

Stratetic strategic actions. _ SAR
warning and Detection and _ Optical signals

defense tracking of missiles, - EMradiatioo's
aircraft, ground-_Aoousticsignals _Miles(Tactical)
basedwgcts.
Measurements and - Optical signals Micromclers 10 few Factory floor

Manufacturin& inspections. -Acousticsignals fecI
_Laser

unique issues related 10 the design of multi-

1.2 Tbe Sensor Fnsion Sub-System (SFS)

An SFS can be developed either as a rr.i--;;;;;;;====::::;;=1
cooperating multi-node based system or a I~::~M~~2:"'
single node based system (centralized sensing ,. _ : ASPU "DC QSPU~

system of mobile robots). In this thesis, the ~ - Sa

focus is on the engineering design ~""':=======---.J
methodology of single node based SFS. The Figure 1.7: High level block diagram of

the sensor fusion sub-system

node based sensor fusion systems are beyond the scope of this thesis. The block diagram

of a single node based SFS is shown in Fig.l.7. The SFS consists of four major hardware

components: sensor arrays (SA), analog signal processing unit (ASPU), Analog to digital

conversion unit (ADCU), and digital signal processing unit (DSPU).

It should be stated that SFS could be abstracted as a finite state machine; the occurrence

ofan event (e.g., the detection ofchange of the envirorunent) makes state transition of the

SFS. To show real time behavior, the system must serve the events by executing

appropriate processes within specified time windows. An event, E, can be defined as

four-tuple vector,

E= {E, t, Te, Pr } (1.1)

Here, E stands for identification, t for the time of occurrence, Te for the event service

time, and Pr for the corresponding process. From temporal point of view, events are of

two types: periodic and aperiodic events.

Periodic events are generated at regular time intervals Ti"",,".~~;ng•

and time is the forcing factor for their occurrence. For periodic .~.nl< pr.

example, the periodic checking of the status of a E~<tI'$'p<C"

process parameter (e.g., temperature, pressure) can L. "_''''''_~__--'

generate events PEj to run specific process Prj at time Figure 1.8: Petn net model of
periodic event generation.

period LJli and can be represented by the equation

PEi= {Ii, to+:t6Ji , Tei. Pri}; to. starting time
J~

(1.2)

A Petri net model of periodic event generation is shown as in Fig. 1.8. [n this periodic

event generation scheme, it has been considered that event generation period is larger

than the event execution time.

Aperiodic events generated with the fulfillment of r--:--:--~c::----,

certain conditions fall into this category. These~c?:~- •

conditions depend upon the dynamic behavior of the Pc, Pr

environment. Failure of a component of the SFS (e.g, •

sensor) also generates aperiodic event. A Petri net P,,-
model of aperiodic event generation is shown by '-;::='-;-;=====,-J
Fig. 1.9. In this model, process Pr, an aperiodic event Figure 1.9. Petn net model of

aperiodic event generation.
specific process, will be executed when all of the input

conditions, Pc" ..,Pcn, are satisfied. The fulfillment of the ith condition (e.g., Pc!) will be

represented by placing a token in the ith place. Therefore, the occurrences of these events

are aperiodic in naNre and can be represented by the following equation

AE={I, t. Te. Pr} (1.3)

The interaction of these events inside the SFS results in a discrete event dynamic system

(DES). These are real-time systems. The reliable operation of these systems requires that

their functions maintain logical and temporal correctness. This work covers the following

aspects of the development of the SFS:

I. Discrete event requirements (DEVR)

2. Discrete event specifications (DEVS)

3. Reasoning about the DSPU architecture (RDA)

4. Fault-tolerance (Ff)

1.2.1 Importance of Discrete Event Requirements

The development ofa SFS starts with the generation of the requirements document. This

is also the time at which the most costly errors are introduced in terms of being the last

and most difficult to find [8]. The requirements document, which corresponds to the

behavioral specification of the system's activities, describes the system's discrete states

of operation and the events that cause the system to change states [9]. This must reflect

the required properties of the controlled physical process. To ensure high reliability, these

requirements must be explicit and fonn the basis for the design. Therefore, the developer

must be provided with mathematical tools to record such system properties (10]. These

tools enable verification of the correctness and completeness of the requirements

documents. Moreover, these mathematical tools should be natural, simple, and intuitive,

so that the developer can use them as a communication media with the domain expert

(i.e.• the client).

The job of the SFS is to serve the dynamic interaction of a set of discrete events (both

periodic and aperiodic) to satisfy the client's sensing requirements. Therefore, the

requirements document of the SFS can be modele<! as a DES. Petri nets are simple,

natural, graphical, and mathematical 100Is, which can be used to model this requirement

document as DES. Petri net models can be analyzed to veritY the correcmess and

completeness of the modeled phenomena [1]. Petri nets. as a graphical tool, provide a

powerful communication medium between the developer, typically requirement

engineers, and the client. Due to the dynamic nature of Petri nets, SFS models can be

treated as a virtual machine. The analysis of these models will help develop better

insights into the client's sensing requirements. This fonnalism in the early stage of the

development will help capture the system requirements more correctly. The subsequent

development phases of the SFS win use tillS DEVR as a reference.

1.2.2 Importance of Discrete Event Specifications (DEVS)

The DEVR, the virtual dynamic machine, describes the system specifications from the

user's perspective [9]. The SFS serves the RS through the service of discrete events. In

this control paradigm, the RS expects to receive sensor responses to its requests within

definite time windows. Each

event is served through the

dynamic interaction of a set of

computing components known as

processes as shown in Fig. t.l O.

The requirements docwnent

defines the time windows for the

C.-{1,2,3•...,n} is selofeornputingeomponents

Service
orE,

c/-'/ C4.14 C2.12 C).I)

1-0-+0+0+O
relationship of En. Te with the

allowable execution times of the

service of the set of events,
Service

En={J.2.3•...•n}, where n is a orE,

positive integer. Therefore, the L..",...-....,-':":"'":-,...--....,.....,--,...-....,-----l
FIgure 1.10. Pem net models ofservJces ofevents

through the dynamic interaction among serial
computing components.

components can be defined by the following equations:

E,.Te 5' (1/+t3+t))

E2.Te 5' (1/+t4+1j)

E).Te 5' (1/+/4+12+13)

(1.4)

(1.5)

(1.6)

Usually sensor fusion algorithms have different levels of computational complexity. The

selection of a particular level of complexities of those computing components (sensor

fusion algorithms) may satisfy one of those equations, but may not satisfy others.

Therefore, there is a need to develop optimum algorithms within the DEVS fonnalism to

decompose the event service time (i.e., corresponding process service time) into the

constituent component execution times.

10

Using this model, simulation may be used to configure the computing components so that

the SFS satisfies the DEVS model of the sensor filsion system. This event level

specification will form the basis for the different phases of system development including

design, fabrication, integration, testing, and updating. A guideline of the optimwn

component level research can be derived from this DEVS model.

1.2.3 Importance of Reasoning about tbe DSPU Arcbitecture

Events queue

foHowing condition should be satisfied

The DEVS model of the SFS will be realized

through the sequence of interactions among

computing components. The operational scenario

can be abstracted as a queuing system shown in 1;:,--:-7':--:--""""""""""'-"'"
Fig. 1.11. Now to serve an event properly, the Figure 1.11; A model ofservices of

events by the DSPU.

Wq+Ts:f Te (1.7)

Here, Wq is the expected waiting time of an event in the queue; Ts is the execution time

of the corresponding process; Te is the event service lime. Some of these events are

periodic and Sottle of them are aperiodic. The waiting time is a function ofarrival rate. To

handle this operation, it is necessary to have the DSPU with the following questions

answered:

Computing nodes:

Nwnber

Specification of each node

Inter-node communication architecture

II

Stability in response time

Due to the random execution time delay of one or more components to serve

random events (e.g., events generated due to failure of components), !he event

service time should not increase cumulatively.

1.2.4 Importance of Fault-Tolerauce

Applications in safety and mission critical operations require highly reliable intelligent

systems, which are fault-tolerant. In this operational scenario, the quality of data and the

effective utilization of time are very critical factors. The following features can satisfy

these objectives:

high reliability (high probability of continuous proper function),

high availability (relatively low down time associated with repairs),

minimum time to recover from a detected fault.

extremely low failure rates for short time periods,

extremely high probability of transition to a safe state after occurrence of a

malfunction,

easy and timely on-line diagnosis and repair of faults.

Faults in both hardware and software contribute to system failure. Therefore, in order to

develop a reliable SFS, both hardware and software fault-tolerance must be addressed.

1.2.4.1 Hardware Fault-tolerance

The fault tree in Fig.1.l2 illustrates the impact of fault­

tolerance of the SFS on system reliability. Here As. Ar. and

Ap are the tenninal events of the SFS, RS, and AS

respectively. From a qualitative analysis of the fault tree, it

is evident that failure of any sub-system (e.g. failure ofSFS,

As~O) will result in system failure since tenninal events

(sub-system failure) are cormected by an 'AND' gate to the

failure of the system.

Figure 1.t2: High level fault
tree ofan intelligent system.

1.2.4.1.1 The Reliability and Availability of the SFS

In thi,p"limimuymotl,lofth,SFS th''',,",no~I

"d=d~t ,omponoo". Und", thi, condition, tho R
R,,(l) R_(t ..,(1 ~(l

reliability model of the SFS is illustrated in

Fig.I.13. Here, Rsa(t). Raspu(t). Radcu(t) and Figure 1.13: The reliability model of the

Rdspu(t) represent the reliabilities of SA, ASPU, sensor fusion SUb-system

ADCU and DSPU respectively. The overall reliability of the SFS is given by Eq.(1.8).

(1.8)

The availability, As(t). of the SFS is calculated using Eq.(1.9).

(1.9)

Here, As(t). Asa(t). Aaspu(t) AadclI(t). and Adspu(t) represent the availabilities of the

SFS. the sensor array, the analog signal processing unit, the analog to digital conversion

unit, and the digital signal processing unit respectively.

Il

1.2.4.1.2 The Fault Tree of the SFS

The fault tree of the SFS depicts how component.level failures propagate through the

system to cause a system-level failure (system-level undesired events). The component­

level failures are called the terminal events. In tllis work, failures of SA, ASPU, ADCU

and DSPU are considered terminal events. The fault tree of the SFS is shown in Fig. 1.14.

Here, Asa, Aaspu> Aadcu and Adspu represent terminal events of the SA, ASPU. ADCU

and DSPU respectively. The terminal event, Z, represents the failure of the SFS.

1.2.4.1.3 Quantitative Fault Tree Analysis

In this reliability analysis of the SFS, the SFS is considered to be a nonrepairable system.

In this system, as all the events are statistically independent, the probability of Z at time t

is given by the equation

P[Z] '" P[A...)P(A"'...)P[A......)P(A"""'l (t.lO)

Here, P[AsaJ, P[AaspuJ, P[AadcuJ, and P[Adspul

are the probabilities of Asa. AasplI, Aadcu, and

Adspu respectively at time t.

This analysis of the fl'.ult tree reveals that the

failure of each component (probabilities of these

components need not to be equal) of the SFS is

equally responsible for the failure of the system.

Therefore, there is a need. to enhance the L -.J

reliability of every unit to develop a reliable Figure 1.l4: Fault tree of the sensor

sensor fusion system. fusion sub-system.

1.2.4.2 Software Fault-tolerance

The requirement ofhigb reliability of the SFS can be dealt with in two fundamental ways:

fault avoidance and fault tolerance [11]. The different fault tolerance techniques are

based on the premise that a complex system, no matter how carefully designed and

validated, wilt encounter unpreventable operational faults and will contain residual design

faults [II]. Due to success in hardware fault-tolerance using redundancy, some

researchers have proposed the use of similar approaches to address this problem (i.e.,

software fault tolerance) [I2]. These are well known recovery block (RB) and N-version

programming approaches. It has been reported that these approaches are capable of

increasing the reliability of the system [13]; but, it has also been argued that it is certainLy

not the case that when a fault appears, the systcm dynamically generates new corrected

code [14]. A detailed slUdy of fault tolerance indicated that the differences between

software and hardware severely Limit the application of hardware fault tolerance

techniques to software [14]. This study also indicates that the current software fault

tolerance techniques can be described as delayed debugging [14]. Most of the techniques

used to achieve hardware fault tolerance enable systems to tolerate physical rather than

design faults. The software is error prone due to design faults, certainly not due to aging

of software components (i.e., code). There is no evidence that the level of reliability

required in the safety critical software can be achieved using redundancy or N-version

programming approaches [IS}. Therefore, this thesis does not address the problem of

software reliability emulating the concept of hardware fault tolerance or using N-version

programming approach. It has been reported that the failure to use the system level

approach to develop software systems for safety and mission critical operations appears

to be the main problem in achieving the required level of reliability [IS]. Therefore, it is

believed that the use of system level approach based on DES fonnalism in the different

phases of development of the SFS will help the designer to realize the required level of

reliability for safety and mission critical operations. Moreover, this is beyond the scope of

this thesis to address the software fault-tolerance aspect in a comprehensive manner.

IS

1.3 Literature Review

The architecture of sensor fusion system in the block diagram level as shown in

Fig.1.15(a) and Fig 1.15(b) has been reported [2]. Due to the lack of a mathematical

formalism, this architecture cannot be simulated to verify logical and temporal

correctness. Moreover, this architecture does not provide the framework for different

modes ofdata integration in the same sensor fusion system.

A. Centralized Fusion

SensOl'5conlrols

Figure 1.15(a): The architecture of centralized and autonomous sensor fusion [2].

16

C. Hybrid Fusion

Figure t. t5(b): The architecture of the hybrid sensor fusion [2J.

A network structure as shown in Fig.Lt6 has been proposed as a framework for sensor

management (16). This framework is not supported with mathematical fonnalism.

T,
T..,

ACT}----_

ACf : pathway size
aBs : Sensor observation
STA :SCllSOTstatus

,•"c , ACC:sensoraccuracy

I-V: fean= in field.

ACC

Logical pathway scnsor2

Figure t.l6: A network structure based sensor fusion framework [t6].

Cectralized

Hierarchical with feedback

Hierarchicalwithoutfec:dback

Distributed

0SenSCrfdalasource C9 Information consumer ~ Fusion node

Figure 1.17: An infonnation flow graph based sensor fusion architecture [17].

An architecture based on infonnation graph for modeling the infonnation flow in

distributed fusion environment has been reported as shown in Fig.I.17 [t 7]. Despite the

use of graph theory approach to represent different scenarios of sensor data integration,

this architecture does not provide a mathematical fonnalism to define different modes of

sensor data integration (e.g., independent, complementary, redundant).

18

An architecture for self-improving multisensory fusion system has been reported [5} as

shown in Fig. 1.18. This is an adhoc graphical representation ofa concept.

F=d
Decision

Decision in· ~cisionoul
fusionproce5!ior.

Decision"

Fttdback to subsystem for sclfimprovemenl

Figure U8: A self-improving multisensory fusion system architecture [5].

Cenlrill-Icvel
1--'=;==;="-==--+-+1 track update

with sensor­
level tracks and

using track
correlation

matnces

A sensor-level tracking--------------,

approach with directed lines to

indicate the flow of

information has been used to

combine data from multiple

sensors for surveillance and

tracking problems that arise in I ~S.""M",,"-"N}-----,c---.,-------'='+---I

aerospace and defense as

shown in Fig. 1.l9 (18]. This

sensor data combination lacks

in mathematical formalism to ~===:==-::-::::::,="::::::::::=:::7"":'

model the data

integration scheme. It has been reported that the design and implementation of automated

systems requiring fusion of data from multiple sensors are not well understood [18}. A

general pattern of mullisensor data integration using directed lines without the support of

mathematical tools to simulate the system performance has been reported (19]. This

general architecture of sensor fusion in intelligent systems is shown in Fig. 1.20.

19

The uses of ad hoc approaches to

integrate data from multiple sensors

have been reported (20]-[27]. These

approaches are mainly based on

informal drawings and textual

descriptions without the support of

mathematical fonnalisms to model the

data integration scheme. Despite the

increasing dependence of our society

on multi-sensori sensing system based

intelligent systems, it has been

mentioned that the development of

sensing systems comprising different

types of multiple sensors is still more L.;,~::;:;;;;::~~=:::~~~~=~
ofan art than a science [28J. Figure 1.20: A generic pattem ofmulti-sensori

integration and fusion system [19].

A mathematical framework called geometric feature relation graph (GFRG) has been

proposed to integrate features sensed by different sensors [29]. This GFRG graph deals

with algorithmic aspects of sensor fusion. The computational framework proposed in [30]

deals with the formal descriptions of static nature of spatially distributed sensor networks.

The schemes reported in [29] and [30] have deficiency in the use of system approach.

From the literature it appears that present state-of-the-art for engineering a sensor fusion

system is deficient in using mathematical formalism. The architectures reported in the

public domain as reviewed here are simple graphical representations of concepts for the

integration ofmulti-sensori data. None of these architectures can accommodate different

modes of sensor data integration: competitive, complementary, independent, and

temporal in the same SFS. These architectures are not supported with mathematical

formalism so that the different attributes of the system can be verified through simulation

(e.g., logical and temporal correctness). These reported works do not provide the

framework for seamless implementation of these high level architectures. Although safety

and mission critical applications have a high demand for multi-sensori systems, none of

these architectures include fault-tolerance. The reliability profiles of different levels of

fusion (e.g., data, features, decision) have not been addressed by any of these

architectures. Therefore, based on the state-of-the-art review, there is a need to develop a

comprehensive framework to address these issues for the development of highly reliable

sensor fusion system.

Knowledge relating to this problem is available in the public domain and may be applied

in searching for a solution to this problem. However, this knowledge is not directly

usable as solution. As a matter of fact, some of the unique aspects of this problem have

not been addressed by those developments. Some existing knowledge has helped to

comprehend this problem, while some has been used as a tool to formulate the solution.

The relationship of existing knowledge to the comprehension and formation of the

solution proposed in this thesis is outlined in the following sub-sections. It is important to

note that the objective of this literature review is not to give an exhaustive account of

developments of related fields, but rather to describe how those developments can be

used as aids to address this problem.

1.3.1 Sensor Fusion Sub-System and Petri nets

An SFS can be abstracted as a finite state machine. The discrete events, both periodic and

aperiodic (stochastic), cause the SFS to change its state. As SFS is a real-time system, the

state changes must satisfY stringent timing constraints. That is, one must guarantee that

required computations be completed before specified deadline [31]. The dynamic

interactions of those events go beyond the intuitive capability of the developer. It is

required to equip the developer with a mathematical tool that is simple, intuitive and

quantitative, so that the dynamic nature of the system can be readily represented

graphically and through mathematical analysis. The developer will be able to perform a

check of the properties related to the behavior of the SFS (e.g., precedence relations

21

amongst events, freedom from deadlock. repetitive activities. time required to serve a

particular event). The simulation-based model validation should produce only a limited

set of states of the modeled SFS. and thus should show the presence of errors in the

model.

Petri nets are being developed in a search for natural. simple. and quantitative methods

for modeling the behavior of the DES [I]. (32). Petri nels are system engineering tools.

The analysis of the modeled system using Petri nets reveals important information about

the structure and dynamic behavior of the modeled system [33]. [n this modeling

paradigm. the system is decomposed into interacting components (in an SFS. these are

computing components). The modeled system changes its states through the generation of

discrete events. These events are served through the interaction of corresponding

computing components. This Petri net model of the system can be analyzed to check the

precedence relations among events (for periodic events). deadlock. sequence of

interaction of components to serve events. required time to serve an event. The

randomness of aperiodic events can be addressed using stochastic Petri nets [34]. Petri

nets have been used to design the simulator for flexible manufacturing systems (FMSs)

and to verify the presence/absence of deadlock of the logic used to design the

hardware/software forthe controllers used in the FMSs [35]. The modeling ofa real·time

system specification to determine whether the specification is schedulable with respect to

the imposed timing constraints has been performed with Petri net models [36]. The ability

of Petri nets to evaluate the performance of real-time systems has been demonstrated in

the literature [37]-[39]. From the study of the literature. it appears thaI Petri nel can be a

useful tool to engineer an SFS.

1.3.2 Discrete Event Requirements (DEVR)

The perfonnance models evolve from descriptions of the system performance at the lotal

system level to component properties in the lale design cycles. The use of same

mathematical formalism at different levels of system development including the

22

requirements pnase nas been outlined in [40). This work nas not proposed any

quantitative method in this aspect. Time constraint discrete event fonnalism has been

used to ensure end-to-end requirements of real-time systems [41]. This work nas

structured the system under development as a set of process components connected by

asynch.ronous cnannels, in whicn the end points are the system's external inputs and

outputs. Altnough this work includes a mathematical fonnalism. it lacks simplicity. A

grapnical tool with textual descriptions has been used for requirement specification for

process control system [8]. Although this method has tried to represent tne discrete event

interaction of a process control system in graphical fonnat. due to the lack of

mathematical fonnalism this technique does not provide the means to analyze the model

to verify its correctness and completeness. A process algebraic approach nas been used to

model the requirements of resource-bound and real-time systems [42]. Due to a

complicated mathematical fonnalism and the lack of a graphical representation, this

method may result in poor communication between the developer and the client.

It has been reported that it is a challenge to find suitable mathematical theories and

notations that allow a designer to record the deep insight in the properties of the

controlled physical process (to}. Ambiguous textual descriptions or mathematical

notations that the clients find difficult to understand will impede the development process

of SFS. The requirement model should be simple, natural and must have mathematical

fonnalism for analysis. The requirements of the SFS can be abstracted as DES. Therefore,

Petri nets based virtual machine modeling of the requirements of the SFS will be an

effective solution to this problem. The developer will be able to analyze this model to

ensure that the system requirement model satisfies required system functional goals and

temporal constraints. Having a natural graphical property, this Petri net model will enable

the requirement engineer to communicate with the customer easily. Moreover, this

requirement model can be decomposed into subsequent phases of the development to

model the interaction of discrete components. Therefore, use of the same mathematical

model of the system at different levels of development will minimize the flow of errors

from one level to the next.

23

1.3.3 Discrete Event Specifications (DEVS)

Recent developments in the paradigm ofadvanced robotics and intelligent automation has

shown how systems may be advantageously represented as discrete event models by

employing techniques based on the DEVS formalism [43]. This DEV$ formalism is a

means of formal representation of discrete event systems capable of mathematical

manipulation, just as differential equations serve this role for continuous systems. The

DEVS formalism is a set of models together with operators that combine models to form

other models in ways in which real systems are COIlllected [44]. The use of DEVS

formalism to measure the performance of DES has been demonstrated [45].

There have been developments in the field of discrete event real-time system

specifications using approaches other than DEVS formalism [42],[46],[47J. Usually thcse

developments use either complex mathematical notations or textual descriptions. As a

result, they are deficient either in simplicity of representation or analytical ability.

Therefore, these developments will not be very useful for the specification oftbe SFS.

Petri nets being graphical and mathematical DEVS formalism provide a suitable

environment for modeling and analysis of the specification of the SFS. Moreover, since

Petri net formalism has been selected for modeling the requirements of the SFS, there

w111 be a uniform transition of the development from requirements to specification phase.

The importance of the use of the development process as the stepwise reduction of

abstraction has been reported [40]. Petri net has been used for modeling the automation

system in hierarchical and modular fashion [48],[491.

1.3.4 Reasoning About the DSPU Architecture (RDA)

The development effort in avionics has resulted in an integrated modeling approach in

embedded computing system developmenl [40]. The goal of this approach is to abstract

the system under development at different levels of complexity. The top most level is the

model of system requirements from user poinl of view. The subsequent levels steadily

reduce the abstraction from conception (system requirements) to implementation

(physical system). The DSPU architecture will implement the DEVS model of the

system. Therefore, the reasoning about the architecture of the DSPU should be based on

the DEVS model. The use of a system level approach has been reconunended to address

this problem [15]. This work [15] has reported that the lack ofsyslem level viewpoints

and approach of developing embedded computing systems are the greatest cause of the

problems experienced when computers are used to control complex processes.

According to the DEVS model, the DSPU is supposed to respond to both periodic and

aperiodic events within specified time windows. Scheduling of real-time systems has

addressed to be the problem of periodic events[50],[51]. There is a need to develop a

stochastic process model 10 address the aperiodic events. Then this process model should

be used to reason about Ihe underlying architecture of the DSPU. The reasoning of the

architecture should be based on the quantitative analysis of the DEVS model and the

performance of the processing modules, so that the temporal specifications of the events

can be satisfied. To facilitate the development process the Petri nel can be used as a

mathematical tool to model this reasoning process.

25

1.3.5 Fault-Tolerance of the SFS

To show high reliability, the acceptable probability of failure of the SFS is very small,

typically in the range of to-l to 10"°, depending on the consequences of the failure [52].

For a SFS to be adequately reliable for safety and mission critical operations, it must be

capable of surviving a specified number of random component faults with a probability

approaching unity. The use ofcomponent level redundancy has been suggested to achieve

this objective [53]. Due to the stringent real-time requirements and costs, the redundancy

management is an important issue to consider. It has been suggested that the overhead

associated with managing redundancy must be quantified precisely so that certain

guarantees about the real-time behavior of the system can be made [54]. The failure of

components generates aperiodic events. Therefore, a stochastic Petri net model will help

to address this problem [55].

The fault-tolerance techniques available in the public domain suspend the operation of the

system during the fault clearance time. If this type of technique is used to address the

fault tolerance of the SFS, data from the sensor during the fault clearance time will be lost

(56]. Therefore, there is need to look at this problem to adopt fault-tolerance in the

development of the SFS.

If a sensor fails or partially malfunctions and its effect is not considered in the fusion of

sensor data, the dependability of the fused infonnation will suffer. While one of the

solutions may be to use redundant sensor system [57], such a sensor system carmot detect

all types of faults (e.g., transient faults). Moreover, in the operation of unsupervised

intelligent systems in mission critical operation (e.g., autonomous deployment of

scientific experiment in space) redundant fault-free sensors may not be available to detect

and replace a faulty sensor. In such an operational scenario, even a partially faulty sensor

may be required to continue functioning. Therefore, there is a need to develop a scheme

to address this problem. The solution should be simple and adaptable.

26

1.4 Approach of This Thesis Work

The SFS is an embedded real-time compuling system. The importance of the use of

system level approach to develop this type of system has been reported [IS]. The tools

supporting system level approach should be simple and mathematical. The simplicity will

enable the developer to comprehend the system [0 avoid errors in different phases of

development. The mathematical attributes of the tool will equip the developer to verify

the confonnity of the functions of the system under development with the customer's

requirements.

The adopted approach should be a stepwise reduction of abstraction to simplify the

complexity of development process [40]. This should produce a smoothly evolving set of

designs at different levels of abstraction. The design approach should proceed from

conception to implementation in a cyclic manner.

The simplicity and the mathematical nature of Petri nets have already been mentioned.

Using the Petri net model it is possible to decompose the complexity of the system in

hierarchical fashion. It has been explained that the Petri net formalism can be used in

different phases of developments. Therefore, stepwise reduction of abstraction of

development can be realized through this system modeling formalism.

The Petri net based DES modeling formalism has been adopted in this thesis to approach

this problem. This approach decomposes the problem in a hierarchical fashion. In each

cycle, the level of abstraction is reduced. In the early cycles, the abstract model may be a

combination of hardware and software, but in the late cycles, they are very specific

hardware and software design representations. In every phase, the developer will be able

to verify the correctness afthe functionality of the system under development.

27

1.5 Objective of tbis Thesis

The objective of this thesis is to synthesize engineering knowledge to develop a highly

reliable SFS using a system engineering approach. Although the main focus of this thesis

is to address the system aspects of the development process of the SFS. due 10

insufficient public domain solutions, this thesis also includes the unique algorithmic

aspects pertinent to the development of highly reliable SFS for mission and safety critical

applications (e.g., space, medicine). The long-term objective of this thesis is to develop a

software tool to automate the development process of reliable sensor fusion systems. The

specific short-term objectives are summarized in the following points;

1. To develop formalism for the DEVR model orlhe SFS with the provision of different

modes of sensor integration in the same system: competitive, complementary,

independent. and temporal. This intuitive and quantitative model of the requirements

win be a virtual machine to satisfy the customer needs. This model will be the

reference of commwtication between the customer and the development engineer. The

intuitiveness of this model will help the clients to understand whether the system

under development satisfies their requirements. The quantitative aspect will enable

the developer to analyze different attributes of the system (e.g., modes of sensor data

integration, logical and temporal correctness).

2. To develop a formalism for the DEVS model of the SFS. This model will enable the

developer to define the dynamic interaction among the computing components to

serve an event. The event level specification will be decomposed into the computing

component level. The allocation of time for the computing components 10 serve a set

of periodic and aperiodic events will be optimized through this model. This model

will help the developer enhance the logical and temporal correctness of the execution

ofcomputing components to serve the events.

28

3. To develop reasoning taxonomy of the DSPU. This taxonomy will establish a link

between the DEVS model of the system and the underlying computing system to

implement this model. The quantitative aspect of this reasoning process will enable

the developer to design the architecture of the DSPU to satisfy the DEVS model.

4. To develop a framework to measure the reliability that data will be provided to each

stage of sensor fusion from the supporting sensors. It is also an objective to develop a

predictable redundancy management scheme. This scheme will enable the developer

to consider the effet:t of redundancy management overhead on the system

performance. This quantitative information will be considered in the DEVS model of

the system, so that the architet:tureofDSPU will keep enough room (determined from

redundancy management overhead) to cope with the aperiodic events while

maintaining logical and temporal correctness ofDEVR model.

5. To develop a simple and adaptable sensor fault detection scheme, so that sensor fault­

tolerance can be implemented using estimation based fault-detet:tion approach. Due to

the potential of transient faults to corrupt sensor data in safety and mission critical

operations (e.g. medicine and space), one of the objectives of this work is 10 detect

and locate transients in sensor data stream.

6. To develop methodology to minimize the effect of lost sensor data during fault

clearance time. This work will address the problem of dala recovery during the fault

clearance time. Appropriate algorithms will be developed to recover this data. This

data recovery scheme will also extend the data acquisition time. An estimation oftbis

extension will be provided which should be considered in developing the DEVS

model of the system.

29

1.6 Overview of this Thesis

The synthesization process of engineering knowledge to satisfy the objective of this

thesis has tailored the relevant developments in the related fields to fit in the solution

domain. This development can be broadly classified as the design automation for highly

reliable sensor fusion systems. The theoretical developments of this work have been

reported in main body of this thesis. The verifications of these theoretical developments

through simulations and experimentations have been summarized in the Appendix.

The development of the fonnalism to capture the customer's requi....ement in tenns of a

discrete event dynamic virtual machine known as DEVR model is reported in Chapter 2.

This proposed modeling technique has the ability to model different modes of sensor data

integration: competitive, complementary, independent, and temporal. The graphical

representation and quantitative analysis of this model is also shown. The quantitative

analysis justifies the logical and temporal correctness. The realization of the task directed

sensing and abstraction of RS as a sensor in the DEVR model to provide bi-directional

communication are depicted in this chapter. The quantitative framework to measure the

utilization factor of the underlying computing system is developed to realize a cost­

effective SFS. It is also shown that this model can be analyzed to check the presence of

deadlock, reachability, and repetitiveness of the operation ofSFS.

Chapter 3 reports the development of the formalism of the DEVS model of the system.

The dynamic interaction among the computing components to realize the DEVR model

of the system under development is shown in the DEVS model. The optimization model

for the allocation of time to computing components considering both temporal and

computational constraints is reported in this chaptet". The sensitivity analysis of

component execution time is reported here to detect temporally critical computing

components. This detection will help further development andlor special implementation

(e.g.• implementation in hardware) of these critical components.

30

The reasoning taxonomy of the DSPU is developed in Chapter 4. The relationship

among service time of an event, waiting time in the queue, and the execution time and

parallel nature of the corresponding traces is used as the basis of reasoning for the

architecture of the DSPU. The reasons of randomness of execution times of the

computing components on modem processors are reported here. Necessary guidelines are

also provided to avoid this randomness of execution time to realize reliable

implementation ofDEVS model on the underlying embedded computing system.

The potential to enhance the reliability of the sensing system using redundant sensors is

evaluated in Chapter S. A novel technique to measure the probabilities of failures of

different levels of sensor fusion (e.g., data, features, and decision) due to the failure of the

supporting sensors is proposed in this chapter.

The development of the estimation technique using local statistics to detect and locate

sensor's faults (specifically transient faults) is reported in Chapter 6. The profiles of

local statistics of four test signals at transient faults are also evaluated. The dependence of

local statistics based approach on the location of transient, window size, the location of

window relative to the starting of transient and the frequency of the transient to detect and

locate transient fault are evaluated through simulation.

Chapter 7 reports the development of the restoration scheme of lost sensor data during

the fault clearance period. The reported scheme minimizes the loss of these real-time sensor

data during fault-clearance period. This scheme is based on the restoration of data through

parallel sensing. The restoration processes for both dual and triple modular redundancy

schemes are explained. The effects of both hardware and software implementation of voting

logic on the performance of the system and the quality of restoration are shown, and it is shown

that this scheme is capable of recovering almost every datum lost during fault-clearance.

Chapter 8 summarizes the contributions and provides recommendations for future work.

Jl

1.7 Tbe Novelties of Ibis Tbesis

This thesis presents a novel, unified framework for the development of reliable sensor

fusion system, which will help produce a set of designs reducing the system abstraction

from conception to implementation. The proposed framework allows the developer to

avoid faults in both the development and operation phases of SFS's lifc cycle. The

following points summarizes the novel aspects ofthe work proposed in this thesis:

I. The proposed DEVR model of the SFS provides a novel framework for modeling the

system requirement as a virtual machine covering different modes of sensor data

integration. The quantitative attributes of this framework enable the developer to

analyze different aspects of the system under development at different phases of the

development process to ensure that the system satisfies its intended purpose.

2. The proposed DEVS model of the SFS allows the developer to decompose the DEVR

model in a hierarchical fashion to the computing component level. This unified

approach helps ensure that the dynamic interactions among the computing

components satisfy the logical and temporal correctness of the DEVR model.

3. The proposed derivation of the architecture of the underlying computing system from

the DEVS model ensures that temporal correctness ofDEVR model is provided in the

operations phase of SFS. The identifications of sources of randomness of execution

times to run computing components on modem processors and the proposed solutions

to avoid them allows the developer to implement an SFS ensuring temporal

correctness in operation phase.

4. The measure of reliability that data are provided at different levels of sensor fusion by

the supponing sensors helps the designer to measure system petfonnance at different

levels of sensor integration. The identification of computing overheads to incorporate

hardware redlUldancy and proposed different techniques to cope with this overhead

helps to develop predictable redlUldancy management schemes.

5. The proposed local statistics-based approach is a simple and adaptive sensor fault

detection technique. This technique has the ability not only to detect a transient fault

at different conditions, but also to locate the fault.

6. This work proposes different schemes to restore time4critical sensor data lost during

fault-clearance interval. This contribution helps develop fault-tolerant sensor fusion

system for safety critical operations where the system performance degrades

considerably due to loss ofdata.

To the best of the author's knowledge there is no report of such developments in the

public domain. It appears that these novelties have sufficient potential to enhance the

state-of-the-art of engineering methodology for developing reliable sensor fusion system

for safety and mission critical applications.

3J

Chapter 2_
ITheDiscrete Event Requirements
Model of the Sensor Fusion System

2.1 Introduction

From system point of view, the basic unit of the user's need can be defined as the

requirement of completion of a particular sensing task within a specific period of time. A

block diagram representation of the

requirement for the measunnent of

the standard deviation of N samples

of a vibration sensor data is shown

in Fig. 2.1. This can be clarified as '- ~

follows: if the inputs are ready, the Figure 2.1: Block diagram ofcomplction ora task.

enabled task should be executed within the specified time. The enabLing ora task can be

considered as an extra input in addition to the necessary data. A Pctri net formalism for

modellng this requirement is shown in Fig. 2.2. The availability of the inputs is the

Oulputbuffcrs

~
.. .. .

Process :Pr
Time of
e:-:ccution:Te

lnputbuffcrs

outputs of an event can be used as the partial

generation of an event and the event is served

by the execution of the corresponding process

P, within time Te. The execution time includes

both the processing of the inputs and the

transmission of outputs to the corresponding

buffers. Therefore, the basic unit of the user's

requirements can be modeled as the service of

an event if certain conditions are met. The ""'"gu="'""'"'",",,p""=tn=n"'''=m=o'''d'''"'o"',=typ='",,",'
user requirements.

fulfillment of the generation of another event. The service of this event within the

34

specified time window is also part of the user's requirements. Therefore. the user's

sensing requirement can be abstracted as a discrete event dynamic system (DES). The

discrete event requirements (DEVR) model of the SFS transfonns the user's need into a

finite state virtual machine. "This virtual macltine represents the dynamic interaction of the

discrete events to satisfy the user's need. The user's requirements can be broadly

classified as:

Periodic requirements

Aperiodic requirements

The growth in the complexity of the SFS creates numerous problems for the engineers. In

the requirement analysis stage. one is required to deal with the increased capabilities of

these systems due to the unique ...- .,

5% 2%

49%

IF A MR
IF: Incorre<:1 faCI 0: Omission
I: Inconsistency A: Ambiguity
MR:Misplacedrequircmcnl

100

90

80

70

combination of hardware and software.

which operate under stringent timing

constraints. It is well known that the flaws

in understanding requirements

substantially contribute to the reliability,

time and cost [8]. The lack of a formalism

contributes to the improper understanding

by the developer of the user's requirements

of these systems [8]. Statistics of non­

clerical requirement error are shown in Fig.

2.3. Moreover, requirement management is L.- ---l
Figure 2.3: Types of non-clerical

an important issue. Therefore, the analysis requirement error [©198IlEEE Computer

of the DEVR model should address to Society Press].

answer the following questions to minimize these errors:

I. Logical correctness

2. Temporal correctness

3. Reachability

35

4. Presenceofdeadlock

5. Repetitiveness

6. Sensitiveness

2.1.1 Petri Net Model of Different Modes of Sensor Data

Integration

The objective of sensor fusion is to integrate information from multiple sensors in order

to make a more accurate or complete inference about a physical event, activity, or

situation than could be achieved with a single sensor [2],[3]. In this fusion process,

sensors can provide temporally related competitive, complementary, and independent

information [6]. The Petri net models of different modes of sensor data integration are

represented in the following subsections.

2,1.1.1 Competitive or Redundant Sensor Integration

Competitive integration requires replicated sensor .- ,

readings, which ideally are identical, but in reality may 3-+P
"

be noisy and one or more sensors may fail partially or I

oompletely. It I, the objeotlve to Igno« the erroneo" : Po P,

information from faulty sensors in the integration Pro

process. A Petri net model of this integration process IS.:l
is shown in Fig.2.4. In this process model, data in the '-:::F,-.",-e""2'"'.4".p""e:-tn""n""'et-m-od-'-e-'-l0'""':-'

form of n tokens come from n competitive sensor competitive sensor integration.

processes to the place Pc. It has been assumed that tokens will be sent to the place only if

the corresponding sensor functions properly. Availability of only one token in the place

Pc is required to drive the following process Pro Therefore, this sensor suite will serve the

purpose as long as one sensor is functioning properly.

2.1.1.2 Complementary Sensor Integration

Partial and overlapping information from more than ,_--::- ---,

one sensor is integrated into more complete ~:J+'p,

information. The synergistic use of overlapping and Pc Pr

complementary sensor data provides information that : n

is not available from individual sensors. The Pro

integration of information from n complementary L..:;::=---::..,....,,.,..,.--::--,...,....,.....
sensors in the Petri net model is shown in Fig.2.5. FIgure 2.5. Petn net model of

complementary sensor integration.
Here, the process Pr integrates information derived

from n sensors. Every sensor specific process sends only one token in the place Pc and n

tokens are required in the place p to drive the integration process Pro In this operational

scenario, the integration process runs if every sensor functions properly.

2.1.1.3 Independent Sensor Integration

Independent data from n sensors are integrated to develop ,_-;::-_=__---,
wider world model of the operating environment. The Petri ~SlPr Pc,

net model of such an integration scheme is shown in Fig. P

2.6. Failure of one or more sensors will result in an Pro Pc"
incomplete model of the environment. This modeling s~

technique can also be used to model the validation of "F",gu-"-::'''''.6"'''.P"etn""'n""e,-m-od"'"e'"\0""'"

diverse sensor data to provide robustness in the system at a independent sensor integration.

fusion level (e.g., the use of laser ranging sensor to validate stereo image data).

2.1.1.4 Temporal Integration

In temporal integration, data sampled from different sensors at particular time intetvals

are processed to sense the environment in a particular sequence so that temporal

37

relationship among the sensed signals can be exploited. Using the frequency and phase

concept data can be acquired from different sensors in a particular sequence to achieve

this objective. The proposed mathematical fonnalism to model temporal integration is

explained as periodic requirements in the following section.

2.2 Periodic Requirements

in SFS, data should be acquired from sensors at regular intervals of time. These events

are generated using a clock signal as shown in Fig. 2.7. The system consists of a set of

sensors, S=-{Sj: if? 1. I is the size of the set). TSi is the period of individual sensor.

Min(.dTsi) is the allowable service

time for the periodic events of the

ith sensor. This is the time period

between the generation of the event

for the irh sensor and the generation

of the temporally closest event for

another sensor. The value of

~
' s",'PE",

Ts,.

5, PE,

T.,

min(.dTsj) is dynamic as shown in

Fig. 2.8. in the worse case, this

value may be reduced to zero

resulting in overlapping of sensing

periods of multiple sensors. If this

problem is not addressed in the

"""""=====::7.':==-=:::--'development of the SFS, the single Figure 2.7; Petri net model ofgeneration and
processor based SFS may not be service of periodic events for data acquisition.

able to show expected petformance. Moreover, due to the dynamic nature of the problem,

the petfollTlance will be unpredictable. As a result, the reliability of the system will

suffer. One of the novelties of this work is to address this problem.

J8

,

::;~:~,r__I ----::10:'=----::f-I~~I_-,--I----::±:-I
;;.!,~t; , ..{~, ..~ ..=..

::~:H ~~~_
---!=.-.-

::;~:H_-----,-__,~~~
~

[:g~'rL,---1..L.JIILLI-,--,-;;::-,-_,LLLLLL
~

Figure 2.8: Timing diagram of the generation of periodic events for three
example sensors.

To overcome the overlapping of sensing periods of multiple sensors, a scheme should be

developed so that required service time can be guaranteed. A simple solution may be to

reset the system, when the value ofLlTsj goes lower than the acceptable limit. The time to

reach this point can be caJled the system period. SP. There is a cost to reset the system in

terms ofquality of performance. In the worse case, the system may not function at all if

the value of SP is smaller than the threshold limit. Therefore, it is necessary to devise an

algorithm to maximize SP while guaranteeing the critical value of min(LlTsil. The

problem can be defined by the following set of equations. Here, all the numbers are

positive integer.

(Ni-NI)~min{t.Ts;) for all ior!i andNj8li

Maximum value of Ni' Nnw. =1(¢I;.TSi)

C1>/ $<tliS<tl;"

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

39

Now, the job is to select optimum values forTs; and ¢It to maximize the value ofNi (Le.,

the system period).

Here, Ni; the instances of generation of periodic events corresponding to the ith sensor.

lll;: the phase of the ith sensor.

lllj; the lower limit of the value ofthe phase of the ith sensor.

llli: the upper limit of the value of the pnase of the ith sensor.

T/; the lower limit of the value of the period of the ith sensor.

Tt: the upper limit of the value of the period of the jth sensor.

The analysis of tbe computational complexity:

Let the difference between upper and lower bound of 4>/ be Di and that of TSj be Cj.

Therefore, the size of the solution set for [number of sensors is

(2.6)

$0, the sequential search of this solution set for the maximum value of Ni even for a few

sensors may be unrealistic. Two examples shown in Table 2.1 and Table 2.2 will help to

understand the structural narure of this problem to reduce the solution size.

Table 2.1: The sensing sequence ofan example sensor system

Time of generation of periodic eventsSensors Period Phase

o 0 10 l' 20 "
10 1 lITTTTTTTTI Jill I I I 21

l'
20

17

40

Table 2.2: The sensing sequence ofan example sensor system

Sensors Period Phase Tiroeofgeoennionof periodicevenlS

o 0

10 2

12 t5 18

17
241 I 127

25

III

In Table 2.1, the events do not collide. Here, the periods are integral multiple of 5 (i.e.,

grain size of the periods is fixed). The phases of the periods increase at constant step.

From a knowledge of nwnber theory [58] it appears that under chis circumstance the

events will never collide if the phase is smaller than halfof the period grain size.

The analysis of the data of Table 2.2 reveals that due to the absence of the integral

multiplicity of the periods, it is virtually impossible to guarantee that the events will not

collide. Therefore, the solution of avoidance of collision of events can be simplified by

imposing the following constraints to select periods and phases for the sensors:

The periods and phases should be integral multiple of grain sizes Gp and gp respectively

and Gp is the integral multiple of gpo The grain sizes Gp and gp are the smallest period

and phase respectively. No two sensors will have the same phase, but they may have the

same period. The phase of any sensor should satisfy the following condition

It>i <Gp for all j (2.7)

For more simplification of this problem, it can be asswned that the min(LlTsj) for each

sensor is the same and maintains the following relation

min(LlTsJ 2:max(min(LlTsJ: i€J} (2.8)

Then satisfaction of the following condition will guarantee iliat min(LlTsj) will be

maintained for each sensor of the set.

gp::: min(llTsi) (2.9)

41

The imposed constraints will limit the size of the sensor set. The maximum number of

sensors is equal to Gp/gp. The maximum value of Gp is limited by the variability and

minimum values of periods of sensors and the minimum value of gp is limited by the

required maximum service time of any event. In the worse case, if the event service time

is greater than Gp, this scheme will not accommodate more than one sensor. These

constraints simplify the solution significantly. From the literature it appears that in real

life applications, the number of sensors assigned to a single SFS is on order of 10 and the

service time is much smaller than Gp [18-30]. For larger number of sensors, multiple

SFSs may be used to cope with this problem.

This proposed technique has been used successfully to detect overlapping sensing periods

in the design of an example sensor fusion system in section 8.6. The modification of the

values of phases and periods of the sensors using this technique have been used to avoid

this overlapping.

This new development has improved the state-of-the-art of the engineering of multiple

sensors based system. This critical design decision is based on sound quantitative

reasoning.

2.2.1 Task Directed Sensing

A recent study has revealed that the reasoning sub-system only needs that information

which is directly in support of the current tasks that the intelligent system is trying to

accomplish [59]. The concept of 'task directed sensing' or active sensing is a response to

this operational requirements [59]. The task directed sensing can be incorporated in the

discrete event requirement model by abstracting a physical sensor as a set of virtual

sensors as shown below:

Sl={ Sij:jEVi, Vj is the size of the set of the virtual sensors for theith sensor}.

"

These virtual sensors have different phases and periods as per the requirements of

variable sensing from the ith sensor. In the synchronization planning phase ofthc periodic

requirements as explained in the previous sections, these virtual sensors will be treated as

independent physical sensors, one ofwlUch will be in operation at one time.

2.2.2 Communication with the Reasoning Sub-System

The closed-loop Petri net model of an intelligent system as shown in Chapter l(pp.I,

Fig.I.I) depicts that the communication between the sensor fusion sub-system (SFS) and

the reasoning sub-system (RS) is bi-directional. The DEVR model so far developed only

incorporates unidirectional communication, from the SFS to the RS. From the perspective

of communication from the RS to the SFS, the RS can be abstracted as a sensor in the

DEVR model of SFS. This incorporation of an extra sensor does not change the general

DEVR model of the SFS other than the addition of an extra virtual sensor. The

propagation time of feedback from the RS to SFS should be considered to specify the

phase and frequency of this virtual sensor.

2.3 Aperiodic Requirements

fn SFS, periodic events collect infonnation from "'P:::=:::'''''d:::iti:::'M~---PO-''-''-'d-iti-''''''''

the environment reading sensor values. If the ~o::.~~::~ to :':e~~c

acquired infonnation satisfies particular events

conditions, the corresponding processes should ~.
be executed to fuse these data within defined: :

time windows. These conditional requirements

are known as aperiodic requirements. The Process : Pr
Time of

generation of this type of requirement is known execution: Te

as an aperiodic event. These aperiodic events are '-------------'
Figure 2.9: Peln net model ofan

serviced by executing corresponding processes. aperiodic event.

43

A Petri net model of an aperiodic event is shown in Fig. 2.9. It should be noted that

aperiodic events are dependent, while periodic events are independent. Conditions may

flow to an aperiodic event from both periodic and aperiodic events. But an aperiodic

event can generate conditions only for other aperiodic events..

An SFS consists of a set of aperiodic events, AE={AEj: j EZ. Z is the set of positive

integers}. The generation and service of these events are controUed by a set of

preconditions, Prc>={Prc;: JEZ } and a set of postconditions, Poc"'{Poc;: j fEZ t. If there

an: M preconditions and N posrconditions, M-bit and N-bil binary numbers may be used

to specify the corresponding preconditions and postconditions of an aperiodic event

respectively. The value ofa bit will indicate the presence or absence of the corresponding

precondition or postcondition. Therefore, an aperiodic evenl can be defined by updating

the basic definition ofan event as shown,

AE"'{I, Pre, Te,Pr,Poc } (2.10)

Similarly, a member of the set of periodic events, PE= (PEj: j EZ I, can be defined as

PE-{I.Te,Pr,Poc) (2.11)

Here, lis the identity number of the event; Te is the service time; Pr is the corresponding

2.4 Combination of Periodic and Aperiodic Requirements

The requirement of an SFS consists of dynamic interaction of a set of periodic ~d

aperiodic events to derive a decision from sensor data. The periodic events are activated

by temporal infonnation. Therefore periodic events have no preconditions; but they have

postconditions and these are the subsets of preconditions of aperiodic events. The

relationship between periodic and aperiodic events Can be defined as

(PEfPOC (\ AE/Prc) :5 I

(PEj.Poc ('l PE/Prc) = 0

(AEj.Poc ('l AE/Prc) S; I

(2.12)

(2.13)

(2.14)

The life ofa postcondition is LpCi. This finite life concept ofa postcondition will enable

the designer to incorporate the temporal value of information in the system model, which

is an important factor to consider in modeling real-time systems.

2.5 Discrete Event Model of Reqnirements (DEVR)

The Petri net structure of the discrete event model of requiremenIS, DEVR, is a four-tuple

precondilions and postconditions,

m ~ J. The number of the places

should be at least one to hold the

net, DEVR=(pc, E, Pre, Poc). The tuple Pc={PC1.P~.PCJ>""'Pc",} is a finite set of places

to hold conditions. both
k Readiness state for

to~'"~phase delay , To
Ts, RS

readiness state to respond to the L,,--....,..,,.,:::::--=--..,::=::....._,,....,--_.J
next periodic event. £o;aPE uAE is Figure 2.10. The Stmplesl sensor fusIOn system.

the set of all periodic and aperiodic events, E :t J. This means that the system has at least

one sensor. The set of conditions and events are disjoint. The tuple Prc is the input

function, which defines the required conditions for an event. Poc defines the conditions

generated from the service of an event known as output functions. A place Pc, holds the

precondition ofan event Ej if PCi € Prc(EjJ: PCjholds the postcondition of an event Ej if

PCj E Poc(Ej). Therefore, according to this model the most simple sensor fusion system

may have only one sensor, a periodic event and no aperiodic event as shown in Fig. 2.W.

45

This system only acquires data and after preliminary processing sends these data 10 the

RS. The maximum number of sensors and aperiodic events are not limited by the model,

that is rather defmed by the user's requirements. The number of periodic events is equal

to the number of sensors. In case of task directed sensing, each virtual sensor will have a

periodic event. The DEVR model of a typical SFS is shown in Fig. 2.1 L. Here, all the

aperiodic events are shown as a single event. The process corresponding to this event is

responsible for the data fusion, feature fusion and decision fusion. After the formation of

this DEVR model, the input and output fimctions of the modeled SFS can be studied to

ensure that the system has been modeled according to this formalism. This study has

Clear the
matured conditions

been performed on the model of an example sensor fusion system shown in section B.I.

This characteristic of the proposed discrete even! based modeling framework enables the

designer to avoid partially faults at the very earLy stages of system development resulting

in better reliability in system performance.

To make the concept comprehensible the following example can be considered. This

sensing system consists of five sensors. The sensing job is done by the interaction of five

periodic events and six aperiodic events. Seven places, Pct , .••,P~, hold conditions

46

generated from periodic and aperiodic events. The post conditions generated by periodic

events are shown by the bit pattern ofPoc used in specification of periodic events. The bit

patterns ofPoc and Pre to specify aperiodic events define the required post conditions and

generation of preconditions by the aperiodic events respectively. The DEVR model of

this example sensor fusion problem is shown in Fig. 2.12.

AE,={I,Prcl=OOOOOOII,Tel.Pr"OOIOOOOO}

~={I.Prcl=OOOOOOIO,Te;,Prl,OIOOOOOO}

AEJ={I,PrcJ=OOOOOIOO,Tel,Prl,IOOOOOOO}

AE.={I,Prc.=OOOIIOOO,Te.,Pr.,IOOOOOOO}

AEs={ I,Prc,=OOO 1OOOO,Tes'Pr" IOOOOOOO}

AE.={ I ,Prc.=()J IOOOOO,Te.,Pr., 100000001

Periodic events

87654321

PE1={<!l"Ts1, Tel' Poc1=OOOOOOOI}

P~={¢l2,Ts2' Te;. Poc2=OOOOOOIO}

PEl={¢lJ.Tsl' T~, Poc)=OOOOOIIO}

PE.={¢I.,Ts., Te., Poc.=OOOOlOOO}

PEI={¢lI,Tsl, Tes' Pocl-oDOIOOOO}

Apniodic evenls

87654321 87654321

Clear tbe marured
conditions P,

Aperiodica:rea_

Figure 2.12: The discrete event requirement model of an example sensor fusion system.

2.5.1 The State Spaces of lhe DEVR Model

A marking /l is an assignment of conditions to the places of the modeL Conditions are

assigned to the places by the execution of the events and they reside in those places for

their life times if they are not consumed by the events. At the end of the life-time mey

disappear from the model. The number and position of conditions in the model change

during the execution of the system. The marking jl can be defined as an m·vector. 1l""{I-l"

1l2' ...• I-tn,}. wherei corresponds to the number ofcorresponding conditions (!],[32].

The state of the modeled SFS is defined by its markings. The firing ofan event represents

a change in the stale of the system by a change in the distribution of conditions in the

system. The state space of the model with m conditions or places is the set of all

markings, that is N"l, where N is the number of any conditions. The state of the system

changes due to the firing of the events as well as due to the expiration of the life of the

conditions.

During the life-time of the conditions, the change in state caused by firing an event is

defined by a change function 5 called the next~state function. When applied to a state Ji

and an event Ej this function yields the new state Ji', 0(/1, ~) = Ji'. The change of state due

to the expiration of time of the conditions can be defined as d(1J, Cy = P'. Cj is the jlh

condition.

2.5.2 The Effect of Death of Conditions on tbe Performance of tbe

Sensor Fusion System (SFS)

In the sensor fusion system, the conditions generated by both periodic and aperiodic

events have a certain lifetime. If during this lifetime, the conditions are not consumed by

48

the aperiodic events, they will die. This provision is very useful to incorporate the

temporal characteristics of conditions in the operation of the system, but this provision

also creates complications in the system analysis. If it is assumed that no condition will

die during the period min(L1Tsj) for the jth event, the problem will be simpler. Under this

operational scenario, the conditions can die during the time when the system is in

readiness state. This will ensure that during min(,1Tsj) the system will only change state

due to the consumption and generation of conditions by the events. At the end of each

periodic cycle the system will do housekeeping work to clear the conditions whose lives

have expired. This assumption seems to be not unreasonable as min(,1Tsj) is usually very

small.

2.6 Analysis of Discrete Event Requirements Model

It has been shown that discrete event model captures the user's requirements as virtual

machine. However, modeling by itself is of little use. It is necessary 10 analyze the

modeled system. In order to verify the conformity of the modeled system performance

with the user's requirements the independent (periodic) events are generated in the SFS at

regular intervals of time. The phase and period information of the periodic events are

shown by the following matrix

<1>, Ts,

PET = (2.15)

The system starts at c=O. The flow chart of the algorithm for the generation of periodic

events for t < 4>1 is shown in Fig. 2.13.

49

I ...lR.-
Figure 2.13: The flow chart aCthe algorithm for the generation of periodic events.

The generation of periodic events for l> cD j can be controlled by the following matrix

relation

If (t=t+GP) is equal to (l1>j + Tsjw/), irh periodic event is generated and CSt is

incremented by one. Here, Csj is the nwnber of cycles already generated corresponding to

the ith sensor.

2.6.1 Logical Correctness

The firing sequence of the Petri net model can be used to check logical correctness. In

fact, logical correctness can be verified by depicting the interaction between the events.

The matrix representation of the postconwtions and preconditions of the aperiodic events

and postconditions of the periodic events make this task simpler.

"

Aperiodic

events Preconditions

b,.

b_

Periodic

The events responsible for the generation of an aperiodic event can be found by checking

the value of the elements of the preconditions and postcondition matrices.

Theory:

For the ith aperiodic event, if the bi) element of the precondition matrix is

I, the events having the jth element of postconditions matrix of non-zero

value are responsible for the generation of the ith event.

The numerical nature of the representation of system behavior makes software based

automation feasible for this task. This automation has potential to make designer's job

faster and more accurate.

51

This concept can be explained by analyzing the previous example problem.

Aperiodic

events

.<£'1

0.<£, 0

AEJ 0 0

AE. 0 0
AEs 0 0

AE. 0 I
'1

0

o 0
o ,
o ,
o ,
o ,

Periodic

~ Posteonditions

[
PE'l0 0 0 0 0 0 0 ']PE~OOOOOOIO

PEJOOOOOI1{)

PE. 0 () () () I () 0 0

PEsOOO\OOOO

From the analysis of these matrices it can be shown that

Driven report:

AEJ is driven by PEj3ndPE2orPE3

AE2is driven by PE20r PE3

AE3 is driven by PE3

AE4 is driven by PE4 and PEj

AEj is driven by PEj

AE6 is driven by AE2andAEJ.

"

Drives report:

Periodic events:

PEjdrives AEj,AE6(knownaspath)

PE2drivesAEj.AE6

AE2.AE6

PE3 drives AE3. PE4 drivesAE4. PE5 drives AE5

ApeTiodicevents: AEj drivesAE6. AE2 drives AE6. A£3 drives none, AE4 drives none,

AE5drivies none, AE6 drives none.

The death of the conditions has not been considered, because the objective of this report

is to observe the inter-dependence of the events. The inclusion of the limited life span for

the conditions reduces this inter-dependence. Now, this report will vary with the user's

requirement document. Any modification can be incorporated with corresponding

changes in the precondition and postcondition matrices.

This basic concept to check logical correctness has been applied more systematically in

an example SFS through execution path analysis technique as shown in Appendix 8.2.

The analysis of all execution paths for each periodic event allows the designer to check

the logical correctness of the interaction of different periodic and aperiodic events to

serve each sensing task. This attribute of this proposed framework allows the designer to

avoid logical faults in the very early phase of system development.

2.6.2 Temporal Correctness

[t has been explained that the ith periodic event should be served within min(LlTsj). This

includes the time for PEi and the execution times of !''.lbs-=quent dependent aperiodic

events. Let the ith periodic event drives p paths. Each rath can consist of any number of

53

aperiodic events for any number of times. Therefore, under this situation, the following

condition should be satisfied

min(LlTsi) 2: max { Tpil. Tpi2. Tpip} (2.17)

Here, Tpij is the execution lime for the jlh path driven by the irh periodic event. The time

required for the completion ofa path can be calculated by the following relationship

(2.18)

Here, aij is the number of times the jrh aperiodic event executes in path i. Therefore,

from the user's data corresponding to the execution time of periodic and aperiodic

requirements. the temporal correctness of the operation of the system can be verified.

AEi"Te is the maximum allowable time to accomplish the ilk task. Now, within this

constraint. Eq.(2.17) should be satisfied. Therefore, there is a need to optimize the

distribution ofexecution times to the events. The relative complexity information of each

task is necessary to derive a solution of this optimization problem. Let AEi.Pr.C be the

complexity information of the process (computing component) to serve the irh event. The

problem can be simplified by asswning that unit time is required 10 execute a single unit

of complexity. In real life problem, the degree of complexity is usually variable.

Therefore. the degree of complexity of the execution of every event has a lower and an

upper bound. The upper bound is AEi. Te and the lower bound is greater than zero.

54

Now the optimization problem can be defined as

Maximize AEj.le and PEpe (2.19)

Here,AEpe is the execution time of the ilh aperiodic event and PEi.te is the execution

time of the ith periodic event.

Subject to constraints

+a_AE.../eSmin(6Ts.l

(2.20)

lower limit S AEi.te ~ AEj.Te. lower limit s: PEi.le ~ PEi.Te

Here, m is the total number of possible paths for all periodic events. If the ith periodic

even! contains Pi paths, min(L1Tsj) will be copied to Pi rows. The total number of rows of

this optimization matrix can be calculated by the following relation

(2.21)

Here, I is the total number of periodic events (Le., sensors). Using a mathematical

prograrruning technique, this optimization problem can be solved.

For an example sensor fusion system, every execution path for all seven periodic events

corresponding to seven sensors has been analyzed as shown in Section 8.2. Based on this

analysis, the maximum service time for each periodic event has been estimated as shown

in Table 8.3. The distribution of the sensing times ofall these seven sensors are shown in

Fig. B.12. This analysis anows the developer to ensure temporal correctness for data

acquisition from each sensor and the fusion of acquired. This capability of this proposed

framework allows the developer to avoid temporal faults, resulting in improved system

performance.

2.6.3 Reacbability

The reachability problem is one of the most basic analysis problems associated with

discrete event systems. Through this analysis it can be verified whether it is possible to

fire an aperiodic event from a particular state of the system. The reachability set R(DEVR.

Jl) is the smallest set of states defmed by,

if Jl' E R(DEVR.Il) and Jl~=.s(Jl', Ej) for some Ej E E. then J.1" e R(DEVR.Il).

Death afthe conditions should be considered during the transition period of the system.

The drives and driven report shown in the previous section will be lhe basis of this

reasoning. From this analysis, the developer will be able to verify the possibility of

execution of an event. Moreover, the developer will optimize the life-time of the

conditions to ensure expected functionality of the system. At this stage, close co­

operation between the developer and the customer will help ensure expected system

functionality.

The reachability analysis of an example SFS is performed in section B.3. It is shown that

using this proposed framework it is possible to perform reachabitity analysis of each

periodic and aperiodic events.

2.6.4 Presence of Deadlock

A deadlock is a set of conditions such that every event which outputs to one of these

conditions in the deadlock also inputs from one of these conditions. This means that once

all of these conditions in the deadlock become consumed, the entire set of conditions will

always be unmarked; no event can execute in the deadlock because there is no condition

"

available to fire an event. Under this condition. the system will go in an endless loop and

will not be able to come back to the readiness state to serve the next periodic event

generated by the clock. To overcome this problem, the developer can avoid recursive

representation of the user's sensing requirements. Otherwise. special care must be taken

so that all the conditions of the deadlock set are not consumed.

2.6.5 Repetitiveness

The repetitiveness is the condition that after the service of every periodic event, including

the subsequent aperiodic events, the system will come back to the readiness state to serve

the next periodic event. To ensure th.is, the last events of all the paths from all periodic

events will generate only the readiness condition, certainly no other conditions. The left­

most digit of the postcondition numbers of these events should be one and all other digits

should be zero.

This basic concept to check repetitiveness has been applied successfully to veritY that a

sensor fusion system consisting of seven periodic events and eight aperiodic events is

repetitive in its operation as shown in section B.3. This feature of this proposed

framework allows the designer to avoid unwanted operating state (e.g., non-repetitive

operating state) thus resulting in higher reliability of system operation. This knowledge

component specifically contributes to the enhancement of the reliability of an intelligent

system by avoiding such a catastrophic (system hung up) fault in the early stages of

development.

2.7 The Utilization of the Operational Time

It has been explained previously that the system remains busy handling periodic and

aperiodic events during certain intervals of time. The rest of the time the system is

waiting in the readiness state to serve the next periodic event. The utilization factor of

operation time is the ratio of the maximum busy period required to serve the events to the

minimum waiting period in the readiness state. From the optimum distribution of

execution times to both periodic and aperiodic events as proposed in section 2.6.2 it is

possible to determine the maximum busy period of the system to serve the ilh sensor by

the following equation

BPi = PEi·Te+ max {Tp;p TPi1' .. ,Tp",} (2.22)

The graphical representation of the busy and idle periods of a typical system is shown in

Fig. 2.14. The total busy period during the operational time t can be calculated by the

following relation:

(2.23)

Figure 2.14.: The distribution of busy and idle
periods in the DEVR model.

Therefore, the utilization factor of the operational time is

(2.24)

The value of U(I) is also the measure of the utilization of the underlying computing

system. By maximizing the use of the computational system, the developer can reduce the

system cost. The increase of U(t) allows the developer to switch to the less powerful

computing module for performing the same amount of computing job resulting in cost

savings. Alternatively, this increase will allow the same computing module to incorporate

more sensors. Therefore, it is desirable to increase the value of U(t). The value of U(t) can

be increased by, (1) increasing the value of BPi. and, (2) incorporating more sensors.

The utilization factor of the underlying computing system based on single processor to

implement an example sensor fusion system (Fig.B.!) has been measured as shown in

Eq.(B.47). The detailed specifications of this sensor fusion system is given in Appendix

A. For this example system consisting of seven sensors, the utilization factor is 27.62%.

This attribute of this proposed framework offers a quantitative means to measure system

performance in terms of utilization of computing resources. This measure allows the

justification ofalternate sensing strategy as explained in sec. 2.7.1 and sec.2.7.2 for better

utilization of the computing resources resulting in reduced system cost.

59

2.7.1 The Approaches to Increase the Value of the Busy Period

The sensors are grouped in a number of clusters. Each cluster is served by individual

sensor fusion systems. One of the limiting factors for the maximum value of busy period,

Bpi, of the ilh sensor in a cluster is min(.1Tsi)' This limiting factor is the function of the

phases and the periods of all the sensors corresponding to that cluster. By changing the

phases and periods of the sensors, the busy period can be increased as explained before

(section 2.7). The value of BPi also can be increased by dropping sensors from a cluster

or by reorganizing the sensors among the clusters.

2.7.2 Incorporation of More Sensors

The total busy period, Bp(tJ, is the function of the total number of sensors when Bpi is

constant. Instead ofmin(.1Tsi), if the maximum allowable execution period of the events

limits the value of Bpi, more sensors can be accommodated in the cluster in order to

increase Bp(t}. The addition of more sensors to the cluster will make it more difficult to

ensure min(.1Tsi) for each sensor. Therefore, by selecting appropriate phases and periods

of all the sensors more sensors can be added to increase Bp(t) resulting in higher

utilization factor.

60

2.8 Chapter Summary

The discrete event approach for modeling different modes of sensor data integration h.as

been reported in this chapter. It is shown that different levels of sensor integration can be

accomplished in this modeling framework. This is a generalized requirement modeling

technique, which is not limited by the nwnber of sensol'S. The nwnber of sensol'S. which

can be accommodated in a particular SFS, is limited by the sensing requirements. The

quantitative basis of this attribute of this modeling paradigm is shown in Section 2.2. The

technique to ensure logical and temporal correctness of a modeled SFS is demonstrated.

A quantitative approach to measure the performance of a SFS in reference to the resource

utilization is proposed in this chapter. The effectiveness of this proposed discrele event

framework to model requirements of a multisensory sensing system is shown in

Appendix A. It can be concluded that this novel quantitative system approach 10 model

the requirements of sensor fusion system has enhanced the state-of-the-art of engineering

methodology for developing the sensing sub-system of multisensory systems.

61

Chapter 3

-
IDiscrete Event Specifications
of the Sensor Fnsion System

3.1 Introduction

Generalized system theory allows the designer to decompose a discrete event dynamic

system (DES) into components, which are also conceived as DES [60]. This hierarchical

decomposition of the DES proceeds in cycles, each closer to the actual physical system.

The component specification in (n-l) cycles becomes the system specification in the nth

cycle. In the nth cycle. the system is again represented as dynamic interaction of

components which are (n+l)th level systems. This hierarchical decomposition of the

system complexity is shown in Fig. 3.1.

Hi~rarc:hiealde<:omposilionofdiscreteevenl

'Y"=
Discr<:te event interacrion among components at a

particularleveJ

Pemncl"'P,osentationofcomponcminleraction

Figure 3.1: Hierarchical decomposition ofa discrete event system.

62

~
.. .. .

Process :Pr
Time or
exeeution:Te

This process of recursive

discrete requirement as shown in Fig. 3.2 are

defined in the requirement modeling stage.

These discrete requirements wilt be conceived

as systems. These systems will be decomposed

as dynamic interaction of next level sub-

It has been explained that sensor fusion system (SFS) is a discrete event dynamic system.

Therefore, SFS is decomposable in hierarchical fashion using generalized system theory.

The discrete event requirements model is the zero level representation (i.e., system

requirements from user's perspective). In this level, the requirement engineer interacts

with the customer to develop the virtual prototype of the system. This prototype defmes

the user's discrete requirements and their dynamic interaction. The preconditions,

postconditions and execution time of each ,- ~_~,....,

Precondition Poslconditions
ofadiscrclC ofadiseretc
requirement requlItment

decomposition will continue to reach the level to

systems.

represent the system as discrete event dynamic

interaction of discrete computing components. Figure 3.2. P::~i%:;:;1 of a discrete

The number of level of decomposition depends

upon the complexity of the system as well as the size of the computing components.

In each level, a system (micro system) will be defined ,------,P:::",-.---,
as preconditions, postconditions and execution time. 8

r"Each micro system is cOlUlected to the rest of the

system through the interface of preconditions and Prco./ l
postconditions. Here, preconditions and S ... ~
postconditions are the input and output of the system ~reO_I'l Pl'C(J.I .•

according to the conventional system theory. The r---*--,
TeO./.J ••• ~

dynamic interaction of the constituting components '-;:::=======~
must satisfy the functional and temporal specification Figure 3.3. Flow of functIonal

and temporal specifications.
of these micro systems. It has been explained that

6J

components in the (n-/)th level are treated as systems in the nth level of decomposition.

Therefore, functional and temporal specifications flow from higher level, (n./), to lower

level, n, as shown in Fig. 3.3. The functional and temporal perfonnance of the (n-I)th

level must be supported by the dynamic interaction of the components in the mil level.

This is the job of the discrete event specification (DEVS) model to establish. the link

between the (n.l)th level and nth level. This hierarchical decomposition will also allow

the simulation of the discrete event model in modular fashion to cope with the complexity

of the Petri net model, which usually grows exponential with the increase of system size.

3.2 Discrete Event Dynamic Interaction of the Compnting

Components in the SFS

A system in the nth level (i.e., a component in the (n-l)th level) is realized by the

sequence of dynamic interactions of the components. In an SFS, these sequences of

interactions are conditional. In order to satisfY the functional and temporal specifications

of the system, the execution of all of these traces should be accomplished within the

defined time window, Tn.i, the execution time of the ith system at the nth level

determined by the (n.l)th level specifications.

3.2.1 Functional Specification of the System

The interaction among the components in a particular sequence (trace) guarantees the

functional specification of the system. A trace may be elementary or compound. In an

elementary trace, all the components are connected one after another fonning a series as

shown in Fig. 3.4(a) [1],[32]-[35]. This elementary trace consists of sequential operation

of four components as represented by the Eq. 3.1.

(3.1)

64

I

CJ C} Cj C,

I
J-O+O-+--O-i--O

(a).Elementaryttace

Cj C,

~
C, C,

(b) Compound rrace

Figure 3.4: Examples ofelementary and compound traces.

A compound trace consists of a number of elementary traces connected in series and/or

parallel pattern as shown in Fig. 3.4(b). Mathematically. this trace can be represented by

the following equation

S<:"'{Se"Sc"Se:l

Here, SC," {c"c:!:Sc, '" \Scn,Se,l};Se" '" {CI,C~J;

Se'l = {Cj,C.J;SCl = {c7f

(3.2)

The systematic approach for the raonation of these traces is explained in the following

sub-sections.

65

3.2.1.1 Formation of Elementary Traces

Let the component set consists of n nwnber of components, C=(cn: n EZ}. The

formation of m elementary traces can be represented by the following matrix relation:

Se1 ':1 ':2
Se2 Pzl Pu

(3.3)

Se=oPC (3.4)

Here, Se, P and C are the trace, position and component vectors respectively. The values

of the elements of P indicate the position of a component in the corresponding trace; the

null value stands for the absence of the component. The following example explains this

trace formation phenomena:

[S"]_[' '] [C,]Se2 - 3 2 c1

Se) 0 1 c l

(3.5)

The elements of the first row of the position matrix defines that the component c l has

second position ('2'), component c2 does not participate ('0') and the third component cl

is in first position in the formation of the elementary trace Sel' The matrix relationship

shown in Eq.(3.5) forms the following traces:

Sel : {c),cll (3.6)

(3.7)

(3.8)

66

In this matrix operation, '+' operator ofconventional matrix algebra has been replaced by

'position operator', which uses the elements of P matrix to position the corresponding

components of C to form a trace.

3.2.1.2 Formation of Compound Traces

A compound trace is composed of a number of segments, Sg={Sgr i EZ}. Each segment

may fonn as

a trace (elementary or compound);

a parallel operation of more than one elementary and/or compound traces;

II branch to other traces (elementary and/or compound);

II loop ofa trace (elementary and/or compound) ;

Segment formation operators (So):

st =: (l,p): pick one trace from a set of traces

pr =(2,p) : runs more than one trace in parallel

br =(3,p) : select one trace from a set of traces to branch

Ip =(4 ,p): runs a trace multiple number of times.

Here, p stands for position infonnation.

Segments are of two types:

Elementary segment, Sgej: i EZ ; composed of only elementary traces related

by segment formation operators.

Compound segment:. SgCj: iEZ; the constituting elements are compound

traces related by segment formation operators.

67

Formation of simple segments can be defined by the following matrix relationship:

Sge! SOil SOl7

Sge7 SO!I S021

(3.9)

An example to explain the above segment formation relationship is as follows:

[sge,]. [(2,1) (2.2)] [se,]
Sge,. (3,2) (3,1) St;

(3.10)

The first row of segment formation operator matrix defines that the first elementary

segment Sge l is fonned by the parallel operation of elementary traces Sel and Se1 • The

second elementary segment is formed by the branching operation of the elementary traces

Set and Se2 defined by the elements oflhe second row of the segment formation operator

matrix. Therefore, newly fanned elementary segments can be defined by the following

equations:

Sge l "'pr{Sel ,Se7 J

Sge2 =br{Se2 ,Sed

The Petri nets models of these two traces are shown in Fig. 3.5.

~~
(a) (b)

Figure 3.5. Formation of elementary segments.

(3.1\)

(3.12)

68

The compound traces can be formed by the following matrix relationship:

SCI ~I ~l

SCl Pzl P22

(3.13)

In the first iteration. segments, Sgi, are simple. but in the following iterations they are

compound. The following matrix relation defines the fonnation of compound segments.

Sgc\ Soil SOil

SgCl Sou SO~l

SOli Sci
SOli SCl

(3.14)

The formation of compound trace as well as compound segments is recursive in nature.

These trace formation processes using matrix operations enable the developer to specify

the component interaction through the values ofelements of the matrix. This quantitative

representation of the dynamic interaction among the components facilitates the

development of design automation software. It should be noted that the use of recursive

for stepwise reduction of system complexity is different from recursive representation of

user requirements. The recursive representation of user requirements has the potential to

create deadlock in system operation.

The representation of the processes to serve the aperiodic events of an example sensor

fusion system through elementary and compound traces is shown in section C.2.1.

69

3.2.2 Verification of the Logical Correctness of the Functional

Specifications

The methodology to check the logical correctness of the discrete event requirement model

as explained in chapter 2 can be used to verify the logical correctness of the executions of

the components to realize the system specification. Moreover, other related issues, as

such avoidance ofdeadlock, rcachability, and repetitiveness in the dynamic interaction of

the components can be checked in the similar way.

The decomposition of the processes to serve eight aperiodic events in tenns of interaction

among sixteen computing components of an example sensor fusion system has been

shown in section C.2.1. This decomposition allows the verification of the logical

correctness of the component interaction in the similar way as shown for the DEVR

model. This is one of the most important advantages of using the same modeling

technique at different phases of the development cycle.

3.3 Determination of the Temporal Specifications of the

Computing Components of the Sensor Fusion System

It should be noted that the ,--;======;;::====:;-,
execution of an event is

conditional in an SFS. The

generations of postconditions

for the executions of the

processes are variable. Due 10

the firing of a process, a

fraction of the total conditions, L-':=:::::~=:::::=;:::====:!....---.J

Figure 3.6: Petri net model ofan example system.

70

no condition or all of the conditions, rna)' be

generated. This situation can be explained by an

example shown in Fig. 3.6. The possible firings

of the processes are summarized in Table: 3.1

(this is not the exhaustive list). Now. for any

sequence of firing of the processes. the total

execution time of any sequence or trace should

be smaller than or equal to the system respOnse

time. The system includes of a number ofpataIlel

traces. and the system's temporal specificlltion

should be grealer than the temporal longest uace.

Table 3.1: The possible firing
sequences of the processes of an

example SFS as shown in Fig. 3.6

p,"" Firing of processes

"', "', "', "'. p"

I 0 0 0 0 0

2 I 0 0 0 0

3 I I 0 0 0

4 I I 0 I 0

5 I I 0 2 0

6 I I I 2 I

The execution of the system can be abstracted as the execution of m parallel traces, S­

ISj, lSi.? m} as shown in Fig, 3.7. It should be noted that the execulions of these traces

are conditional as explained (seclion 3.1), lf1 the best case. no trace may be required to

execute; but in the worst case all Ihe

traces may be required to execute, PreCOnditions PQS(COIlditiODS

The design should be based on the

worst case situation. and the

executions of all these trae:es should

satisfy the following relation:

FIgure 3.7. Abstraellon ofSFS as a collecnon of
parallel traces.

(3.15)

Here, Sti is the execution time of the ith trace.

This proposed technique is applied successfully to compule the service time of eight

aperiodic events for an example sensor fusion system as shown in section C.2. These

aperiodic events have been served by the interaction ofa set of 16 components.

71

The execution times required for m traces for n components having execution time ctican

be calculated using the following matrix relation

Is" _[a" a'"j:::

St.. a.I ••• a"", c'"

(3.16)

The coefficient ali is the number of times thejth component is present in the fonnation of

the irh trace. A zero value of this coefficient indicates that the jth component is not part of

the fonnation of the ith trace. Usually there is a domain of selection of component

execution time, and there is a scope for optimization in the distribution of time to the

components. The objective of this optimization is to allow maximum component

execution time. There is a cost to lowering the execution time of the components. This

cost may be due to the requirement of additional research to lower the computational

complexity of the components, or to use computationally less powerful algorithms to do

the same type of work sacrificing quality, or to switch to higher cost processor. The

objective of optimization is to maximize the execution time of each component while

satisfying the temporal specification ofeach trace.

Maximize cli ; Subject 10

+a,~,c .. S T. i

(3.17)

""d
(3.t8)

Here, C"i is the lower limit and c" / is the upper limit of the ith component execution

time.

This optimization function has been successfully utilized to select the execution times of

a set of computing components to serve the aperiodic events of an example sensor fusion

system as shown in section C.3. The application of a fonnal quantitative approach 10

optimize the use of system resources is one of the novelties of this research work. This

knowledge component enhances the state-of-the-art of the practice of scientific methods

to engineer sensor fusion systems.

3.3.1 Sensitivity Analysis of the Components Execution Times

The sensitivity analysis of the component execution times is a measure of the rate of

change of the total distribution of execution time of the components due to the change of

execution time of a particular component. Due to a change 61; amount in execution time

of the ith component, the total change of the execution oftime, LIT, over n-l components

can be calculated by the following relation:

(3.19)

Therefore, the sensitivity of the execution time of the ith component is

(3.20)

This sensitivity analysis can be related to cost optimization. If Ci is the cost related to the

per unit change of computational lime for the ith component, the cost sensitivity of the ith

component can be measured by the following relation

(3.21)

13

An investment to decrease the computational time of the ilh component is justified as

long as the value of Cseni is greater than one. Therefore, this basic relationship can be

used to justify the investment on the research to develop computationally less complex

components. Moreover, this finding can be used to justify the decision to implement

highly sensitive computing component in dedicated hardware or in other special type of

devices to reduce the overall system cost.

The sensitivity analysis of the component execution times will enable the developer to

optimize the system cost, while maintaining temporal performance of the system. Similar

analysis can be perfonned on the discrete event requirement model to determine the rate

of change of the optimum service times of both periodic and aperiodic events. This

development has added scientific knowledge in the engineering process of such system

development.

3.4 The Reliability Aspects of Ihe Discrete Events Specification

The DEVS model generates the functional and temporal specification of each computing

component and represents the dynamic interaction among these components. This model

satisfies the execution of each discrete requirement as defined in the discrete event

requirement model. The Petri net based modeling tool as proposed in this chapter has

enough power to ensure the realization of the functional and temporal specifications of

each discrete requirement by defining the specification of each component and the

dynamic interaction among them. Therefore, it can be concluded that this model has

enough potential to avoid error in mapping the user's sensing requirements to the

component level specification. This thesis has addressed the problem of enhancement of

reliability of SFS by avoiding temporal and logical faults in the development phase. This

objective can be partially achieved by practicing this proposed engineering methodology

as explained in this chapter.

74

3.5 The Modeling of Multi~nodebased Sensor Fusion System

In a multi-node based SFS (e.g., distributed sensing system of mobile robots. distributed

air defense system), the nodes are organized in hierarchical fashion [6]. In lhis

hierarchical organization, each leaf node consists of processing unit and a set of

associated sensors. At each level, nodes receive infonnation from lower-level nodes,

integrate the infonnation received according to their position in the hierarchy, and send

extracted infonnation to nodes at next higher level. This proposed discrete event based

modeling technique can be directly applied to model leaf level sensing nodes. To model

higher level nodes, associated each lower level node can be abstracted as virtual sensor.

Abstracting each lower level node as virtual sensor this modeling approach can be

applied to model each node of different levels. Therefore, the discrete event modeling

approach reported in this thesis can be used to model multi-node based sensor fusion

system as well.

3.6 Chapter Summary

The hierarchical decomposition of DEVR model to component level specification has

been proposed. A mathematical framework 10 model the interaction of the components in

tenns of trace and segments has been shown in section 3.2. This quantitative abstraction

of component interaction enables the automation of the design work. The proposed

technique (section 3.3) to optimize the component execution times provides means for

improved utilization of system resources. This novel technique has been used

successfully to derive component level specification from the DEVR model of the

example SFS shown in Appendix B. This proposed formal method of mapping the user's

sensing requirements to component level specifications is an important contribution of

this thesis.

7l

Chapter 4
_ , The Architecture of the Embedded

ComputingSystem to Implement
tbe DEVS Model of tbe SFS

4.1 Introduction

The discrete event requirements model (DEVR) of a sensor fusion system (SFS) defines

the interaction of user level events and allocates optimum times to the execution of the

corresponding processes. The discrete event specifications model (DEVS) defines the

computing component level interaction to implement the DEVR model of the system

under development. The underlying computing system must execute every computing

component within the time window as specified by the DEVS model. The architecture of

the computing system should be optimized to economize the cost as well. The work load

offered [0 the system is defined by the DEVR model. Therefore, the architecture should

be reasoned from the DEVR model.

4.2 The Execution Time of a Computing Component

The interaction of the computing components is defined in the DEV$ model. The

execution of these components must be accomplished by the redefined time windows

derived from the DEVR model. In leons of computational complexity, a component can

be represented by a five-tuple vector as shown in the following equation

c= {I. F. D. M. H} (4.1)

Here, /, F, D, and M stand for computation load of integer, floating point, compare and

memory operations respectively. The fifth tuple H, represents other execution overhead

(e.g., component specific system management job). Due to the presence of decision

making and looping operations in a computing component, estimates for plausible values

for the tuples are usually subjective. But in a SFS system, the components should be

executed within defined time windows. Therefore, tbe temporal worst case operation

scenario should be considered when calculating the values of the tuples.

The execution time ofa computing component on a particular processor can be calculated

by the following equation

cr=] (P//+PpF+PDD+PMM+PHH) (4.2)

Here, PJ. PF, PD, PM. and PH represent the estimated required clock pulses to execute

each unit of integer, floating point, compare, memory operation and execution overhead

operations respectively. The time period of the processor clock is represented by ilf. The

execution time of simple and compound traces as explained in the DEVS model in the

previous chapter (Sec. 3.2. t) can be calculated by the equations

SCr=Set/+Sct/+Ser2

SCII=max(Sell/ ' Selll),jor parallel operation

SCI/=Set/ /+Selll ,jar sequential operation

(4.3)

(4.4)

(4.5)

(4.6)

77

~
"""Q'''",

Computlog
••• system

4.3 The Reasoning Basis of the Architecture of the Computing

System

The quantitative relations developed so far help us ,.----------...,

to reason about the architecture of the embedded

computing system. The request for the execution

of a computing component by the computing

system can be considered as a discrete event. The '-F-,gure--4-.t-A-m-Od-e-to-'-em-b-ed-d-ed..J

arrival and service of these events can be modeled events service system

as single server queue as shown in Fig. 4.1. Now to serve an event properly the following

condition must be satisfied

Wq+TsSTe (4.7)

Here, Wq is the expected waiting time of an event~.

in the qu~ue; Ts is the ex.ecution .time ~f the inllse<:HQ
correspondmg process; Te IS the time wmdow I'
within which the event must be served to satisfy ...!. 0.2 •

the DEVS model. To simplify the modeling pro<:ess, o. I 1(1

the atrival of the events (i.e., the request 10 execute Tp10 nS ~

the computing components) is considered as a
Figure 4.2: The exponential

Poisson process [GIl· In this simplified growth of the waiting time with

representalion of the problem. the request of the the increase of the arrival rate.

execution of only one type of computing component arrives in the queue in a random

fashion. Then the expected waiting time in the queue can be shown as [61]

~=-t-:-
-(--AI
Ts Ts

(4.8)

78

Here, 'A. is the arrival rate of the events in the queue of the computing system. The waiting

time increases exponentially with the increase of arrival rate as shown in Fig. 4.2. Here,

to simplify the problem the service time to each event is assumed to be the same. For a

particular event, the service time Te is predetermined from the DEV$ model. In the

DEVS model, Te represents the component execution lime.

4.4 The Architecture of the Computing System to Execute

Elementary Traces

In an elementary trace as explained in the previous chapter (sec.3.2.1), the execution of

the components takes place in a sequential manner. The outputs of the upstream

components become the inputs of the downstream components. The existence of

parallelism in the execution of these components can be detected using Bernstein's

conditions[62]. The Bernstein's conditions state that two processes PJ and p} with their

input sets [, and [2 and output sets 0, and 02, respectively can execute in parallel if the

following conditions are satisfied:

I, n O} = ,. Here, ,is the empty set

I2 nO, = 4>

0, n 02 = $

(4.9)

(4.10)

(4.11)

Therefore, from these conditions it is evident that the components in the elementary

traces cannot be executed in parallel. It should also be noted that the executions of

upstream components generate the events to execute downstream components. Under this

circumstance, no event waits in the queue to be served resulting in zero waiting time.

Therefore, the execution time of the components composing the elementary traces should

be equal to or less than the time windows specified in the DEVS model. The speed ofthe

execution of a elementary trace is limited by the computing power of a single processing

79

units. Under this operational scenario, a single node based computing system is a solution

for executing elementary traces. The developer can negotiate with the customer to

redefine the time requirements to increase the time windows of the elementary traces 10

switch 10 a less powerful processor.

4.5 The Architecture of the Computiug System to Execute

Compound Traces

Therefore,

multinode architecture can be

used to exploit the power of

commodity microprocessors to l",.-==';=====:==-:-:J
Figure 4.3: Multiple nodes based architecture of the

realize a cost effective sensor embedded computing system to execute compound

fusion system as shown in Fig. traces.

A compound trace consists ofa number of elementary traces connected in sequential and

in parallel manner as explained in the previous chapter (sec. 3.2.1.2). The sequential part

does not satisfy the Bernstein's

conditions as explained in the

previous section 4.4. But the Eveots Queue

parallel part satisfies those

conditions.

4.3. The parallel elementary traces can be executed in sequential fashion as well, as

shown in Eq. (4.5, 4.6). In that case the waiting time will be eqll3.1 to the execution of the

previous parallel elementary traces. Therefore, both single node and multiple nodes

based architecture can be used to implement compound traces. In the distribution of time

windows to the events in the DEVR and DEVS models the parallelism of the setvice of

the events must be considered for optimum allocation. This makes it very clear that the

DEVR and DEVS models are directly related to the architecture of the underlying

embedded computing system. Therefore, both DEVR and DEVS model, and the

8.

,,,,"or]
operatlon

architecture of the computing system should be recursively optimized to reach an

optimum solution. In some cases, there may exist parallelism in the DEVR and DEVS

model but due to the cost consideration the underlying computer system may adopt single

node based architecture. It should be noted that multiple nodes based architectures can

enhance the execution speed only if there exists parallelism in the DEVR and DEVS

model. Therefore, a Petri net based fonnalism in the modeling of the requirements and

specification wili enable the designer to detemtine the optimum architecture of the

embedded computing system. This is one of the novelties of this work to link the

different stages of the development process through a unifonn reasoning technique. The

higher level abstraction in the early cycles of the development process gradually proceeds

to physical system in the latter cycles through sound quantitative reasoning. This

reasoning basis has been utilized to reason the basic structure of the embedded computing

system of the example sensor fusion system as explained in section D.2 and section D.3.

4.6 Implementation of Multiple DEVS Models on a Single

Computing System

The method proposed in section 2.2 to avoid overlapping of sensing periods in order to

satisfy periodic requirements may not keep the underlying computing system busy during

the entire period of

operation. Rather the

system will remain

busy for a defined

period of time as

determined by the

DEVR model as L -====::... ~

shown in Fig. 2.11. Figure 4.4. Interlacing of two DEVR models to increase the
Therefore, the utilization factor of the embedded computing system.

81

multiple DEVR model can be interlaced to be implemented on a single computing

system. The implementation of two DEVR models in interlaced fashion is shown in Fig.

4.4. This will increase the total busy period of the system resulting in higher utilization

factor of the underlying computing system. To utilize this interlacing concept, sensors

can be divided into muttiple clusters and each cluster will have its own DEVR model.

This will increase design complexity, because these different DEVR models should be

interlaceable. The discrete event formalism proposed in this thesis will help deal with this

complexity transparently. There is a scope to increase the utilization factor of the

computing system interlacing DEVR models of different SFSs resulting in cost effective

solution. This is a new concept about the architecture ofa sensor fusion system.

4.7 Randomness of Execution Times of Computing

Components on Modern Processors

It has been mentioned (Sec.4.2) that the computational time ofa computing component is

a function of a number of variables as defined by Eq. 4.1. The DEVS model allocates

definite time windows to the components. In order to satisfy the DEVS model, the

component execution time must be predictable and the maximum value must be within

the corresponding window.

Over the years the architectures of microprocessors have adopted pipeline architectures to

achieve high average throughput. This pipeline feature, however, has incorporated

randomness in the actual execution time of a computing component as explained in sec.

0.5. The actual execution time not only depends upon the computational complexity of

the component, but also upon the sequence of instructions constituting the component.

The reasons behind this randomness are the hazards that prevent the next instruction in

the instruction stream from executing during its designated clock cycle (63]. These

82

hazards include structural hazard, data hazard and control hazard (63]. The OCCUlTCnce

of these hazards will stall the pipeline and the execution time of an instruction will be

extended by an undefined amount depending upon the nature of the other previous

instructions in the stream. Therefore, the value of the tuples l F and D should be

computed by nmning the component on the actual processor. The value computed by

analyzing the computational complexity will not provide the basis of calculating actual

execution time. If this is not done in the prescribed way, it will be very difficult or may

be impossible to satisfy the DEVS model in the implementation phase in a cost-effective

manner. As a result the reliability of the system will suffer.

The statistics of clock cycles per instruction (CPO for different benchmark programs

running on a modem processor has been reported in Section D.3 [63]. From these

statistics, it appears that the variations of CPI in these programs are more than 100%.

Therefore, the consideration of this source of randomness in the component execution

time is very important in estimating the actual computing time.

Hierarchical memory organization has been accepted as a realistic approach in building

memory system (64]. Memory devices at a lower level are faster 10 access, smaller in

size, and more expensive per byte, having a higher bandwidth and using a smaller unit of

transfer as compared with those at higher level. The effective access time of a data unit

from the memory can be defined by the following equation (62]

Here,Ji is the access frequency (probabilistic tenn) to ilh level, ti is the access time to ith

level, h;is the hit ratio (probabilistic term) at irh level. Therefore, it is evident from these

equations that data access time is random, and depends upon the distribution of data in

different memory levels. The processors developed in recent past (e.g., Pentium, Alpha)

83

have internal memory known as on-chip cache [63]. Therefore, the designer of the

embedded computing system to implement the DEVS model has little room to avoid this

randomness in data access time. It should be noted that this randomness not only depends

upon the data access pattern within the computing component, but also upon the initial

data distribution at the different levels of memory due to data access of the previous

computing components. It has been mentioned that the randomness of the generation of

aperiodic events will make it virtually impossible to predict the distribution of data at

different memory levels. Therefore, it is recommended that the data distribution in the

different levels of the memory system must be initialized to obtain predictable value of

the 4th tuple, M. Due to the requirement of this initialization at the begilUling of the

execution of each computing component, the value of the 5th tuple H will increase. But

but this will help to make good estimate of the execution time of a particular component

resulting in higher reliability of the implementation of the DEVS model. This problem

can be dealt with as weB by measuring worst case value if the system requirements do not

put constraints on lower bound ofexecution times.

A quantitative example of different scenarios of data distributions at different memory

levels has been shown in Table 0.6. From this example problem, it appears that the

randomness of initial data distribution may make the actual execution times of the

components highly random. The consideration of this source of error is important to

ensure temporal correctness ofthe DEVS model in the operational stage.

4.8 Chapter Summary

The rationale of selecting the architecture of the embedded computing system for

implementing the OEVR model of a SFS has been outlined here. The hazards to ensure

temporal correctness of the DEVR model in the implementation phase have been

identified and potential solutions to address these hazards have been proposed. The

quantitative framework discussed in this chapter will help the developer implement a

sensor fusion system ensuring temporal correctness in a cost-effective manner.

84

Chapter 5

-I

5.1 Introduction

Hardware Fault-Tolerance of the
Sensor Fusion System (SFS)

From the hardware perspective, an SFS is a physical system consisting of a number of

electronic components and sensors connected in a particular fashion. Mechanical

components (e.g., connectors, wires, PCB) to suppon the system are not pan of this work.

Due to the effect of the manufacturing process, aging, and operating conditions these

components may fail to do their job in course of time. Therefore, the reliability of the

system is a function of the mea.'1 time to failure (MITF) of these components [65]. Due to

the requirement of the unsupervised operation of the SFS for a prolonged period of time

in safety and mission critical operations, the failure of these components should be

detected and a faulty component should be replaced by a fault-free one autonomously.

The detection and replacement of the faulty components will be treated as if these

components did not fail,

provided that this fault

clearance operation is not

detrimental to the system's

performance. This redundancy

in the use of components has

the potential to increase the

reliability of the system [57].

This is based on the argument

that if there are n identical

components in parallel, on the Figure 5.1; The rc:liabil~~sie:~le of redundant parallel

85

assumption that only one working component will provide the required output, the

reliability of this parallel system is

R:I-p· (5.1)

Here, p is the probability of failure of each parallel component. The reliability profile of

such parallel system for different numbers of parallel sensors (paths) is shown in Fig. 5.1.

Due to the need of some mechanism for checking the working component and switching

to the next component when it fails, a bener figure for overall reliability is given by

multiplying R by the reliability of the checking and switching mechanism.

If no fault-free component is available, the SFS should report its functional status to the

reasoning unit to avoid the malfunctioning of the intelligent system as a whole. Due to

the stringent timing requirements of the periodic and aperiodic events (Chapter-2), the

overhead of the detection and clearance of these component faults should be estimated.

This estimate will allow the developer to keep enough room in the temporal spedfication

of the discrete requirements and the constituting computing components to ensure the

correct temporal perfonnance of the system.

The SFS is composed of multiple building blocks. The fault-tolerance of these building

blocks can be achieved using different techniques. The redundancy overhead of these

building blocks has different effects on the periodic and aperiodic events of the

requirements model of the system. In general, different techniques to achieve fault­

tolerance of different building blocks of SFS will be explained in this chapter with

particular emphasis on the sensor module. The improvement of reliability and the

required overhead for the incorporation of fault-tolerance in sensor module will be

analyzed. Special emphasis will be given to the dependence of different levels of fusion

on the reliability of the supporting sensors.

86

Sensor
Message to be Analogelecuical

~,g",Physical Enilo6ded
Sensor anaJosarcu;

5.2 The Fault-Tolerance of the Building Blocks

The SFS is made of six major building blocks: sensors, analog processors (APs), analog

to digital converters (ADCs), digital processors (DPs), memory modules (MMs), and liD.

These building blocks operate in the analog, hybrid and digital domains. Due to their

uniqueness, the techniques and effects of detection and clearnnce of faults of these

building blocks are not identical.

5.2.1 The Fault-Tolerance of the Sensors

From the perspective of--------------..,

fault-tolerance, a

can be modeled as an

analog electrical signal
source g(l) as shown in '-J

Figure 5.2: Model ofa sensor as an analog Signal source.
Fig. 5.2. Some of the

commercially available sensors have built-in preamplifiers and filters to sense very weak

infonnation in noisy environment. Therefore, there is a justification for modeling a sensor

as signal source from a practical point of view. Here. it has been defined that physical

information (e.g.• pressure. vibration. temperature) will be called physical signal and its

electrical equivalent will be called signal. The wave form of g(l) depends upon the

pattern of the sensed physical signal. p(l). and the functioning state. s(l). of the sensor as

shown by the relation

g(t) = Kp(t)s(t) (5.2)

Here. the coefficient K. the conversion ratio. is a constant. From the perspective of fault~

detection (i.e.• presence of fault). s(l) is a binary signal: erroneous value and error-free

value.

87

A set of
sensors

5.2.1.1 Techniques of Fault-Tolerance of Sensors

To achieve fault-tolerance in the operation of the sensors, the faulty sensors should be

detected and replaced by fault free ones. Through a simple switching mechanism a faulty

sensor can be replaced by a properly functioning one. The main problem lies in the

detection of a faulty sensor. The stale ofthe functioning ofthe sensors can be detected by

using majority voting and estimation teclmiques [55],[57],[30].

5.2.1.1.1 Majority Voting Tecbnique for Sensor's Fault Detection

The majority voting technique in ,- ,

fault detection of sensors is based

on the principle that if a set of

sensors S"'{s;: 2:S ;) is used to

sense the same physical parameter,

by comparing me sensed signals

from different sensors the state of .",._"':":"-:-,....-,....-__--,--,-.__~

the sensors can be determined. Figure 5.3: Redundan~:::~:~ to detect the states of

This phenomenon is explained in

Fig. 5.3. Experimentally faulty

sensor was detected using this

voting concept as reported in section

G.2. Different types of voting L.;:,=~=__===-=-.~
techniques are used in the Figure 5.4: Two redundant sensors can detect

only the presence of faults.
comparator module to detect the state

of the sensors. Available voting techniques work satisfactorily if the size of the set of the

redundant sensors is more than two [57}. In case of two redundant sensors, the voting

technique is able to detect only the presence of faults, but is unable to detect the faulty

sensor as shown in Fig.5.4. This technique completely fails to detect the state of the

88

sensor if the size oftbe set is one. The state diagram using Markov's Model showing the

possible stale transitions for a triple modular redundant sensor system using voting as a

fault detection technique is shown in Fig. EA. The reliability profiles of fault-tolerant

sensor systems having triple and 4-modular redundancy are shown in section E.3. From

these profiles it is evident that a sensor module with redundant sensors has the potential

to have higher reliability than that of single sensor alone.

The addition of the comparator module (usually in hardware) increases the complexity of

the system. The failure of this module will result in the failure of the system. Thus the

reliability of the system will suffer. To make this scheme effective, the redundant sensors

should be in operation. This operational requirement will make the effective service time

of the sensors shorter. Moreover, in a power constrained operation (e.g., unsupervised

autonomous system in microgravity powered by battery) the extra power loss in the

operation of redundant sensors will impede the application of this scheme. The cost

related 10 deploy extra sensors is another limitation of this scheme. This scheme becomes

ineffective and even can provide a completely wrong decision if more than half (or all) of

the sensors fail simultaneously. This situation may occur due to a problem in power

supply. The overheads in the form of hardware, energy, and space to incorporate fault

tolerance in the sensor module of an ex:ample sensor fusion system are explained in

Appendix E.2.1.

The saturation characteristic of the physical sensor and the supporting electronics is

another constraint to the effectiveness of this approach. If the values of the physical

signal go beyond the expected threshold value, due to the saturation effect of the sensor,

the signal generated from the sensor will not represent the corresponding physical signal.

In this operating condition, all the sensors will generate the same g(t)(dc value due to

saturation effect). Therefore, this vOling technique will fail 10 delect that the sensors have

failed to convert the physical signalp(t) to its equivalent electrical signalg(t).

89

5.2.1.1.2 Estimation Tecbnique for Sensor's Fault Detection

The message space M. the state of the sensor, has two messages ml , fault-free state, and

mz• faulty state and the decision space D also has only two elements d l , sensor is

functioning properly, andd1 , sensor is malftmctioning. Therefore, this is a binary

decision theory problem (66} and the decision is based on the measure of differences

between the features of the p(t) and g(t}. If the probability distributions of the features of

p(t) are known. the decision rule d(z) maps the observation space, features of g(t), inlo

the binary decision space in some optimal manner. Since there are only two decisions,

this is equivalent to dividing Z into two decision regions 21 and Zl such that

(5.3)

(5.4)

The regions 2 1 and 2 1 must be disjoint (i.e., 2
1
r. 21 = 0) in order that each point in Z

will yield a unique decision. The regions Z, and Z2 must cover Z (i.e., Zl U 22=Z) in

order that each point in Z will have a decision associated with it.

If the adopted estimation teclmique satisfies these decision conditions, most of the

limitations to detect sensor fault using different voting techniques will be overcome. The

limitations of this scheme are the degree of accuracy of its ability to detect sensor faults

and the required computational time to perfonn this detection.

The comparisons of the reliability profiles of a triple and four modular redundant fautt

tolerant sensor systems using voting and estimation teclmiques as a means of fautt

detection are given in section E.5. The ratios of the reliability profiles of fault tolerant

systems using voting and estimation techniques shown in Fig. E.9 dearly indicate that

estimation based technique has the potential to achieve higher reliability than voting.

'0

5.2.1.2 Tbe Effect of Sensor's Fault-Tolerance on the Performance of

the System

~
E.T'

TeAr &rvicetime:O~
OAT ~r.;.:l I

---+j Time between two successive periodic events j+---

Figure 5.5: Distribution of time for different tasks
between two successive periodic events.

interact with the sensors.

The periodic events (Chapter 2)

Therefore, the overhead related

to the fault-tolerance of the

sensors will affect the periodic OAT: Data acquisition time.
TeAD: Time for the computation ofthe acquired data

performance of the system. The PE.Te: Time: fnr the service of a periodic event

system waits in the readiness ~;~:;=c:tnC:~~c~:~::~~:j~:~~~ event

state to serve the next periodic L...S_T_AE_'_S'_~_ice_=_·_"_'.;.''''_ri_''''_''_,._'"_"J

event. To make the operational

scenario comprehensible, the

interval between two successive periodic events is divided into multiple segments as

shown in Fig. 5.5. The relationship among these segments is given by the following

equations

TBPE.:: DAT+TCAD+STAE+WT (5.5)

PE.Te.::DAT+TCAD (5.6)

The occurrence of a sensor's fault during TCAD. STAE, and WT does not interfere with

the operation of the tasks executed during these periods. Therefore, the detection and

clearance ofsensor's fault occurred during these periods can be deferred to the beginning

of the next periodic event. The value of WTis random, which varies from zero to a certain

positive number depending upon the operating conditions of the system. Therefore, fault­

clearance during this period may not be justified for safety critical systems. However, for

systems with limited safety requirements, the developer can use this time for the

clearance of faults. The conservative solution is to extend the DAT to accommodate time

for the detection and clearance of faults of the corresponding sensor. Unfortunately, this

91

creating no temporal overhead on the

scheme wastes system resources. Another scheme is to pause the periodic event

generation clock to extend the DAT on demand basis. This scheme dynamically changes

the sensing period. [f both the rate of occurrence of faults and the time required for

detection and clearance of the faults are very low, this scheme is an acceptable approach.

There is a need for optimization to select a particular approach.

If fault occurs during OAT, lhe fault should be cleared immediately. During this fault

clearance period data will be lost and the OAT will be extended due to this interruption.

Therefore, steps should be taken to address this problem to handle faults occurred during

OAT.

The effects of fault-tolerance overhead on the system depend upon lhe adopted fault

detection scheme (i.e., voting and estimation). Therefore, they should be treated

separately.

5.2.1.2.1 The Effect or Voting Technique

If the voting algorithm is l--
implemented in hardware logic in the

comparator module, lhe fault AmPlitude) ?

detection scheme will run in paraliel

with the service of other events -+l Fault clear-I.-- lime

anceperiod -

execution of the user's requirements.

Therefore, it is recommended to

Figure 5.6: Loss ordala dunng fault clearance
period

extend DATto clear the faults occurred during rCAD, STAE. and WT. But if faults occur

during DAT, valuable data will be lost during fault clearance time as shown in Fig. 5.6.

The presence of this effect has been detected in an experimental setup to achieve fault­

tolerant triple modular optical sensor as shown G.2. Either the data must be restored or

92

the data acquisition process must be repeated. 80th the restoration and the repetition will

extend the DA T. The developer has the option either to keep enough room (required for

restoration or repetition) to specify the PE.Te or to pause the clock until error free data

acquisition is complete to accommodate this extension. The decision will be driven by the

nature of the system. For stringent temporal specifications. it is reconunended to specify

PE. Te considering the time required for data restoration. On the other hand. for less time

critical systems it may be feasible to pause the dock until error free acquisition is

complete.

5.2.1.2.2 The Effect of Estimation Technique

This technique analyzes the sensor data to estimate the state of the sensor. Since the

acquisition of data is a precondition of this technique, part of PE.Tc is permanently

assigned to do this estimation job. If the fault is detected. the faulty sensor must be

replaced by a fault-free one and the data acquisition process must be repeated. It should

be noted that the fault detection task is executed in sequential fashion. The estimation

technique is unable to separate the faults occurred during OAT and TBPE-DAT. In this

scheme there is no room for data restoration. The estimation algorithm should be

executed every time to acquire data from the sensor. Therefore, this will create significant

overhead in the temporal behavior of the system. To reduce this effect. the estimation

algorithm should be simple and effective. A very complex algorithm may be very

effective in fault detection, but may not be suitable for application due to temporal

overhead. An optimization of the effectiveness and temporal overhead should be

perfonned to deploy any estimation technique for fault detection.

This basic framework to detect the overhead to incorporate sensor fault tolerance in

system design has been used to detect temporal overhead of an example sensor fusion

system as explained in Section E.?

93

5.2.2 The Fault-Tolerance of the Analog Processors (APs)

The job of the analog processors is to ~---------~

condition the signals generated from the

sensors to make them easily interpretable.

The propagation of physical signal through l..- --l

the and analog processor Figure 5.7: Generation of[(t) from
physical signal.

(responsible for signal enhancement) can be

explained by Fig. 5.7. In a sensor fusion system. the infonnation about p(t) is recovered

from [(t). Therefore, it is essential that the wave shapes of f(t) and p(t) must be very

similar. If it is assumed that the sensor is fault free, the relationship among p(t). f(t) and

the operating state of the AP, ap(t). is defined as follows

f(t)=Kp(t) ap(t) (5.7)

This Eq.(5.7) is similar to Eq.(5.2), which relates the physical signal, the operating state

of the sensor and the output signal g(t) from the sensor. Therefore, the fault detection

teclmiques as described for the sensors can be applied for the APs. The analog processors

like the sensors are used to serve the periodic events. Therefore, the effects of the fault­

tolerance of the APs are similar to those of sensors.

5.2.3 The Fault-Tolerance of the Analog to Digital Converters

(ADCs)

The ADC converts the analog signal,f(t), conditioned by the AP into a digital signal,

f(nT). The information content off(nT) andf(t) must be very close to make it possible to

recover information fromf(nt) about p(t). Therefore, the relationship betweenf(t),f(nT)

and the operating state of the ADC can be explained in the same way as for the

relationship between sensor and the AP. Like sensors, Aps and ADCs are only used to

serve periodic events. Therefore, their fault tolerance and effects on the operation of the

system can be viewed in the same ways as those for sensors and APs.

5.2.4 Separation of faults of Sensors, APs and ADes

If the voting technique is used to detect the faults in the sensors, the APs and the ADCs,

the failure of these units generate unique events as shown by Fig. 5.8. If the estimation

technique is used to detect the faults of sensors, APs, and ADCs, the problem is

complicated as the estimation technique is based upon the difference of the features of

j(nl) andp(t) as shown in Fig. 5.9.

Event for fault in Evenl for fault in
analog processor

Event for fault In
ADC

Figure 5.8: The generation ofevent for detection offaults in sensor, AP and ADC

Figure 5.9: The generation ofevents for detection of fault in sensor, or
AP,orADC

9S

Therefore, the faults of sensors, APs and ADCs are fused together as single fault. Under

this circumstance, the sensors, APs and ADes should be replaced one after another until

the system is fault free. This will increase the fault detection overhead significantly.

Therefore, to use estimation lecbnique, this overhead should be considered.

5.2.5 Tbe Fault·Tolerance oftbe Digital Processors (DPs)

Both voting and estimation techniques may be used to detecl the faulty processor. The

voting technique uses more than two processors connected in parallel through a

comparator similar to the tedutique used for the sensor. After detection of a fault, the

faulty processor should be replaced by a fault free one. The voting technique for detection

of faulty processor suffers from similar limitations to those of the voting technique for the

detection of faulty sensor. Therefore, these disadvantages should be considered before

accepting technique.

The estimation techniques for the detection of faulty processors are different from those

for sensors, APs and ADCs. The basic concept of estimation of the presence of faults in a

processor is to test the functional reproducibility of the processor {57]. Allowing the

processor to perform a known task can test this. The execution of this test job should use

all of the internal components of the processor.

Different types of voting and estimation techniques are available in the public domain

ISS]. The objective of this work is not to develop a new technique or explain the publicly

available ones, rather it is to study the effect of these techniques on the performance of

Ihesystem.

96

5.2.5.1 The Effect of Digital Processor's Fault-Tolerance 00 the

Performance of the System

The failure of the digital processor will affect both the aperiodic and periodic events

unlike sensors. APs and ADCs. Therefore. special care should be taken to handle faults of

the digital processor.

5.2.5.1.1 The Effect oeVoting Technique

In this scheme. due to the occurrence of faults in the processor. any event (both aperiodic

and periodic events) under execution will be interrupted. If a fault occurs during OAT.

either data lost during the fault clearance time should be restored or the data acquisition

process should be repeated until error free data are collected. If a fault occurs during the

period other than OAT. only the problem of unpredictable delay of service of the events

should be addressed. It has been assumed that due to the occurrence of faults in a

processor all processing states can be restored from a parallely operated fault free

processor. The delay of the service time of the events due to the temporal overhead of

fault clearance can be addressed either keeping enough room (required for restoration or

repetition) in the temporal specification of the discrete events or pausing the periodic

event generation clock on demand basis.

5.2.5.1.2 The Effect of Estimation

Estimation is a delayed fault detection technique and in order to minimize the effect of

delayed detection the test program should be run as frequently as possible. The

malfunctioning of the system due to this delay should be as minimum as possible. This

requirement "'ill create extra computational overhead on the service of the events. If n is

97

the munber of times the test program is run during the service of an event, the service

time of the event will be extended by

!J.Te = nT

Here, Tis the execution time of the test program.

(5.8)

Therefore, during the requirements modeling this overhead should be considered to

ensure temporal performance of the system. It should be noted that the effect of the delay

of the detection of fault should be optimized with the execution overbead of the test

program. The sequence of tasks to acquire fault-free data while estimation technique is

used to detect faulty sensors is shown in Fig. E.24.

5.2.6 The Fault-Tolerance of the Memory Module (MD) and the

digital 110

The fault tolerance techniques for memory module and digital VO are similar to those for

the digital processor. The effect of faults of memory module and digital VO are also

similar to those for the processor. Therefore, these problems should be addressed as

discussed in section 5.2.5.1.

98

5.3 The Measure of the Dependence of Different Levels of

Fusion on the Reliability of Sensors

In a typical sensor fusion system, fusion occurs at three different levels: data, feature. and

decision. To achieve the goal of this work to synthesize an engineering framework for

the development of a reliable sensor fusion system, it is important to measure the

dependence of a particular level of fusion on the availability of data from the supporting

sensors. To materialize this objective, .-,

a fault tree [65] has been used to

visualize lhe !inks of the failures of

the sensors 10 the failures of the

generation of the events at different

levels of fusion. In this proposed

discrete event frame work, fusion

occurs through the service of these

events. Therefore, a failure to

generate these events will result in

the failure of fusion. The fault tree of

a typical event is shown in Fig. 5.10. 1.::==_===--===--===
In this proposed framework, the Figure 5.10: The fault tree ofa typical event.

service of the event 'At will result in the fusion of data from sensors 1,2,3, and 4. The

failure of the supply of data from the sensors I or 2, 3, and 4 will result in the failure of

the generation of the event 'A'. The reliability of the generation of the event 'A' (i.e.,

fusion of data by the service of event 'A') is a measure of the compound reliability of

these sensors. The quantitative relation to measure this reliability profile is shown below.

R(t) '" [1- {l- R,(l)} {l- RlCt))]RJ(t)R.(t) (5.9)

Here, R(t) is compound reliability; RI(t). Rl(t). RJ(t). and R-t(t) are the reliabilities of

sensors 1,2,3, and 4 respectively.

99

This development has been applied for the depiction of the fault trees and reliability

profiles of different aperiodic events of the example sensor fusion system (Appendix A

and B) at different levels affusion. This SFS fuses data at three different levels (e.g.• ~ta

level. feature level. decision level) by the service of eight aperiodic events (i,e.,

AE" ...,AEJ.

5.3.1 The Fault Trees and Reliability Profiles of the Example

Sensor Fusion System at Data Fusion Level

The data level fusion is perfonned by the service of the five aperiodic events: AE,•~,

AEI , AE., and AEs. The fault trees of the generation of these events AE,,~, AE., and

AE, are shown in Fig. E.1O, Fig.E.16, Fig.E.lS, and Fig.E.12 respectively. The reliability

profiles of these events with different levels of redundancy arc shown in Fig.E.lI,

Fig.E.l?, Fig.E.19, and Fig.E.!3 respectively. From these reliability profiles it is evident

that the redundancy in the sensor modules decreases the probability of failures of these

5.3.2 The Fault Trees and Reliability Profiles of the Example

Sensor Fusion System at Feature Fusion Level

The generations of the aperiodic events AE6 and AE, cause the feature level fusion. The

fault trees of AE6 and AE, arc shown in Fig.E.20 and Fig.E.22 respectively. The

reliability profiles of these events shown in Fig.E.21 and Fig.E.23 make it clear that the

fault tolerance in the sensor system has the potential to enhance the reliability of feature

fusion.

100

5.3.3 The Fault Trees and Reliability Profiles of the Example

Sensor Fusion System at Decision Fusion Level

The fault tree of the only event AE. responsible for decision fusion in this sensor fusion

system is shown in Fig.E.14. The reliability profile of this event shown in Fig.E.15 shows

that the redundant sensor system also increases the reliability ofdecision fusion.

5.4 Chapter Summary

The pOlential 10 enhance the reliability of sensor system by the use of fault tolerance has

been evaluated. The overheads to incorporate this fault lolerance have been identified.

Techniques have been proposed to change the DEVR model to accommodate this

overhead. The fault-tree based approach is proposed to measure the reliabilities at

different levels of fusion and this technique has been used successfully to evaluate the

reliability profiles at different levels of fusion of an example sensor fusion system as

shown in Appendix E. This novel technique to measure the reliability of different levels

of fusion in tenns of the reliability of the supporting sensors has the potential to improve

the stale-of-the-art of the engineering melhod of multisensory sensing systems. The

measurement of this critical design parameter is based on sound quantitative reasoning

and tested in the design of an example sensor fusion system. This knowledge component

specifically contributes 10 the process of synlhesization of scientific knowledge to

engineer highly reliable sensor fusion system.

101

Chapter 6_ IThe Detection of Sensor Faults
Using Local Statistics

6.1 Introduction

High reliability is a precondition for the deployment of multi~sensoriautomated systems in safety

and mission critical operations. The use of redundant sensors has the potential to enhance tne

reliability oflhe sensing sub-systems (Appendix A). The estimation based fault detection scheme

has better potential to enhance the reliability than voting technique based fault detection scheme

(Section E.5). Moreover, the voting technique fails to detect the presence of faults if all the

redundant sensors are affected [57), for example in the case of transient faults due to the

switching actions of the neighboring inductive loads (e.g., de mOlors, relays) [67] or due to

electrostatic discharge induced in a space environment. These transient faults may corrupt the

data acquired from multi-sensan unsupervised autonomous systems (e.g.• scientific experiments

deployed in unmanned space environment [55} or in other special environments). If the presence

of b'ansients remains undetected, the corrupted data acquired from lhese unsupervised

autonomous systems may lead [0 the misconceptions about the sensing envirorunents. To remain

within lhe scope of this thesis, lhe detection of transient faults will be investigated in this Chapter

of this lhesis. Other rypes of sensor faults are not addressed by this work (e.g., intermittent faull).

tn a single processor based multi-sensori system, data are acquired from each sensor for a short

period of time in a particular sequence. The sequence of sensing is defined by the phases and the

periods of the sensors defined by the DEVR mode! of lhe SFS (section 2.2). The data acquired

from each sensing session must be interpreted to detect the presence of faults. The main aim of

this research is to devise a robust mechanism to detect the presence of transient faults in the

102

acquired data. As reported in Section 5.2. t .2, the data interpretation time required fault detection

must be as small as possible to keep temporal overhead at minimal leveL

For a particular process, the measurable parameters have specific domains of amplitudes and

variances. The prior knowledge of these domains may facilitate the detection of faults in the

sensors deployed to measure these process parameters (68]. The detection of sensor faulls by

examining the pattern of deviations ofengine signals from their nominal unfailed values has been

reported [69J, and a Kalman filter-based dedicated observer has been used to detect sensor faults

[70J. The requirement for a dedicated processor for each sensor is a limitation for its use in single

processor-based multi·sensori systems. Sensor faults have been detected by using

computationally complex and model-based estimation technique [71]. The sensor signal

amplitude has been used to detect the failure of faults in automotive engines [72J. The detection

of ttansient fault has not been addressed [72J. The different algorithms based on analytical and

knowledge based redundancy for fault diagnosis reported in a survey (73] are computationally

complex. The development of another computationally complex algorithm has been reported to

detect sensor faults [74]. The requirement for a dual-redundant system is the limitation of a

reponed technique to detect sensor faults (75). The limited scientific basis (subjective due to the

dependency on training set) for measuring the pattern recognition performance makes the neural

network based fault detection approach [76] inappropriate for the present problem. A reported

technique for the detection, isolation and identification of sensor faults in nuclear power plant

does not address the problem of detection of transient faults [77]. The use of statistical

characteristics to delect faults in earth sensors has not covered the detection of transient fault in

sensor data stream [78].

The available techniques uncovered in this literature search have been developed mainly to detect

the permanent faults of sensors. Despite the mathematical sophistication of these methods, it is

fair to say that most of these techniques are computationally complex. Moreover, none of these

techniques has addressed the problem of detection of transients present in sensor data in multi­

sensori systems in a comprehensive manner. The requirement of a dedicated processor to detect

fault in each sensor is another limitation of some of these methods. Therefore, it is fair to

103

conclude that these available techniques for the detection and isolation of faulty sensors are not

computationally simple and adaptive. The objective of this part of this thesis is to develop a

simple and adaptive technique for tbe detection of transients in sensor data stream. It should be

noted that due to the potential of degradation of sensor signal the use of a low pass filter to

eliminate the transient has not been pursued in this thesis.

6.2 The Detection of Transient Faults Using Local Statistics of

Sensor Data

A typical sensor used to measure physical parameter produces an equivalent electrical signal

corrupted with normally distributed random noise as given by

(6.1)

Here, g(nT) and p(nT) are discrete sensor and physical signals respectively, and T is the

sampling period.

The local variance and mean of a segment of this sensor signal are measured by the following

relations:

t' .. ((K /lTl

i"iKTw-'··--N--

Here, g2{K) and g(K) are the local variance and mean of the K segment.

(6.2)

(6.3)

The variance is the measure of the scatter of the corresponding sensor data (e.g., pressure,

temperature) from the mean value [78]. The upper and lower limits of the variance specify the

acceptable domain of randomness of the corresponding sensor data The presence of a transient

fault is characterized by the presence of variances outside of this domain. The use of this

Table 6.1: The local means of test signals.

Test signals Upper bound Lower bound

8,(nT) 7.01 1.82

glnT) 8.20 2.91

gJ(nT) 7.01 1.82

g.(nT) 7.60 3.72

parameter is proposed to detect the transient fault [79]. The transient is modeled here as damped

sinusoid as explained in Section F.3 [67]. To verify the effectiveness of this approach, the local

statistics of four test signals at different fault conditions are calculated by simulation and

documented in Appendix F.

6.3 Tbe Statistical Cbaracteristics of tbe Test Sigoals

The wavefonns of the four test physical signals and the corresponding sensor signals are shown

in section F.2. Each lest signal has been divided into 50 segments. The local statistics of each

segment is calculated by placing a window of the same dimension at the beginning of each

segmenL The local means of these sensor signals resemble the wavefonns of the corresponding

physical signals. The upper bounds of local variances of the first three sensor signals are very

low. Due to high frequency components of the

founh sensor signal the upper bound of the

local variance of this signal is much higher than

those of the first three sensor signals. The

upper and lower bounds of the local means and

variances of these four test sensor signals are

shown in Table 6.1 and Table 6.2 ~tively.

The bandwidths of these test signals are shown '------'-----'-----

in Table 6.3.

Table 6.2: The local variances of test signals.

Test signals Upper bounds Lower bounds

Table 6.3: Bandwidth of the test
signals

10'

6.4 The Analysis of the Signature of the Transient Faults on the Test

Signals

A transient fault in the form of a damped sinusoid [67] of 5ms duration has been superimposed

on these four test signals at 70ms from the origin as shown in section F.3.1, F.3.2, F.3.3. and

F.3.4. It appears that the local means of these signals do not indicate the presence of these

transients. The signature of these faults as sharp rise of local variances at almost 70ms from the

origin reveals that the thresholding of local variances can be used to detect the presence of

transients. The ratios of the peaks of these local variances to those of the corresponding fault

free sensor signals are shown in Table 6.4. The locations of these variance peaks are also shown

in this table. It appears that the ratios of these variance peaks are function of the highest

frequency components present in these Table 6.4: The statistics related to the signature orlhe
transient on test sensor signals.

test signals as shown in Fig. 6.1.

Thetesisignals

The distribution of the ratio of the peaks
for different signals

Th.~,;oo<j[l;;]..
the peaks 2,,,

o ~ [! i

Test signals Ratio of peaks Location from origin

gl(nT) 42 70ms

ginT) 16 70ms

g)(nT) 13.79 7llim

g,,(nT) 2.10 70ms

Figure 6.1: The dlstnbunon of the rana ofthe peaks of
local variances of the test signals at transient fault.

From this simulated test result, it is

found that there is a good potential to

detect and locate the presence of

transients on sensor signals by

comparing the peaks of the local ~=============~
variances at faulty condition with those

at fault free condition. It should be

noted that the achievable locational

accuracy is extremely high and is not a

function of the bandwidth of the sensor

signals. It is found that the

delectability of transients by this

method diminishes with the increase of

the bandwidth of the sensor signal.

106

6.5 The Effect of the Transient Faults at Different Locations on the

Local Statistics of the Sensor Signals

The occurrences of transients at 98 different locations on these test signals are studied. These

faults have been simulated at integral multiples of 2ms from the origin. The profiles of the locaL

statistics of the test signals with transient faults at different locations are shown in section FA.I,

F.4.2. F.4.3, and FAA. From this simulation results it is clear that the local means are not

affected by the variations in faults locations. But the ratios of the maximum peaks of the

variances vary noticeabLy with the variation of the location ofoccurrence of transient faults. The

pertinent salient features of these variations are summarized in Table 6.5.

Table 6.5: The variation of the maximum peaks of the sensor signalS with the occurrence
of transient faults at different locations.

Sensor signalS Upper bound Lower bound Difference of % ofvariation
of the of the variations

maximum peak maximum peak
g,enn 43 34 32%

gl(nT) 20 14 50%

gJ(nT) 18 13 38%

g.(nT) 50%

Due to this wide variation of the peaks with the location of the transient faults, it is

recommended to consider the worse case scenario to set the threshold. This simulation reveals

that the ratios of these variations are not directly related to the bandwidth of the signals. But the

differences in these variations are found related to the bandwidths of these test signals. From the

profiles of variances of the occurrences of transients at two different locations from the origins

(e.g., Oms and 18 ms) it is understood that the locational accuracy is not a function of the position

of the faults.

107

much higher value at the location of the transient

than at other places. With the increase of the

window size, values of the peaks at other places

of the signal become comparable to those at the

location of the transient resulting in a false

detection. The effect of window size on the

6.6 The Effect of Window Size on Local Statistics at Transient Fault

on Test Signals

The local statistics of the sensor signals at differel1t window sizes varying from .2 ms to 12 ms

have been calculated. The simulation results of this study have been reported in sections F.5.1,

F.5.2, F.S.3, and F.5.4. With a decrease in window sizc, the computational complexity increases

linearly. From this simulation study it is found that with the decrease of window sizc the

transient detectability increases due to the generation of higher value of variance peaks. At large

window size the transient detectability decreases significantly. This finding can be clarified

further by observing the effect of window size on the local variances of the fourth signal. At a

Ams window size, the maximum peak has a ,-__-========,

=]Q
.4ms 3m. 10ms

detectability of transients using Otis proposed ~__-,,_....,......,......,......,......,.._,..J
local statistics based approach is shown in ~~;:~~~~gv=:li~:~ ~:~:~~:::
Fig.6.2. From this graph it appears that the during the rest ofthe signal at different

probability of false detection of a transient window sizes for the fourth test signal.

increases with an increase in window size. It

should also be noted that the peak size decreases with the decrease in window size beyond a

certain value (e.g., the .6 ms for this test simUlation). The maximum peak values for these four

test signals have been detected at the .6 ms window size. Therefore, the dependence of the value

of the peak on the window size must be taken into consideration in order to select the threshold

for a particular sensor signal.

'"

Test signals

"'[Ijjj""
~~: 150

Ihe rallo of 100 .. _. ..

Ihepeaks

'",
First Second Third Fourth

6.7 The Effect of Window Locations Relative to the Position of the

Transient

The window location has been varied in r-----~------___,

.05ms steps relative to the starting position

of the transient. The simulation study

reported in section F.6.1, F.6.2. F.6.3, and

F.6.4 reveals that the value of the peak is a

function of the location of the window. For

these four test signals. it has been found

consistently that the maximum peak size

occurs when the window is located at the L,F,=,,,,,,=,76."3.<Th",:-:m:-:,,,:-:,'=m"'um""""van=a,:-:,o"'n""o,"',h"",",,"',,"'oo,.,.l,

start of the transient. The variations of peak the PI::i::r~:'~Va;~ti~h: a:::~:~~dOW
sizes with the change of the location of the

window are shown in Fig. 6.3. Therefore, this characteristic must be taken into consideration in

order to detect the transient using a local variance method.

6.8 The Effect of Different Frequencies of Transient Faults on the

Local Statistics

The frequency of the transient has been varied from 500 Hz to 10 kHz in 500 Hz increments. The

simulation results are reported in sections F.7.1. F.7.2. F.7.3. and F.7.4. From this study it is

found that the detectabiJity of transient increases with the increase of the frequency. The effect of

the change of frequency of transient is more visible in low frequency sensor signal than in higher

frequency sensor signal.

109

6.9 The Effect of Noise Power on Detectability of Transient Faults

Figure 6.4: Variation of ratio of local variances with
the signal to noise ratio(SNR).

'LR3tlo 35
ofpnks30

of 25
loc;o1 20

",rl,"~':!

8.57 ,..~ 20.56 26.t11 30.17 32.76 34.fM 36.16

Slgn31 10 noise ntlo (dB)

power. The ratio of the maximum

value of local variance ofa sinusoidal

signal (first test signal as shown in

section F.2.1) to that of the same '- ...J

signal corrupted with transient noise

is snown in Fig. 6.4.

It has been noticed that the ,---------------,

detectability of transient faults using

local st<llistics (e.g., variance)

diminishes with an increase in noise

6.10 The Detection of Permanent Faults

Under permanent faults. the possibility that the output may be stuck at the lowest value or stuck

at maximum saturation level (intennediate values have not been addressed) has been addressed

here. Due to these extreme low and high values of the sensor signal, the local mean will go

beyond the normal operating domain. This deviation of the local mean at faulty condition than

that at nonnal operating condition can be used to detect the faulty sensor. It has been shown

through simulation in Appendix F that the local statistics mostly remain unaffected due to the

occurrence of transient fault. Therefore. it would be possible to separate permanent faults from

transient faults.

110

6.11 Chapter Summary

In this thesis it has been reported that there is a potential to detect and locate transient sensor

faults sensor signals based on the local variance of the sensor signals. The detectability based on

this principle is a function of the location of the transient, the window size, the location of the

window relative to the starting of transient and the frequency of the transient. Through

simulation study, the quantitative information of these relationships has been developed in this

work. It has been shown that particular type of permanent fault can be detected with the

information of local mean which is virtually unaffected by the transient fault. It should be noted

that the estimation based sensor faults detection technique is based on finding odd features in the

sensor signals. There is always a potential that the estimation based technique can falsely identitY

odd features.

Chapter 7_ IRestoration of Lost Sensor's Data During
Fault-clearance Intervals

7.1 Introduction

The application of voting technique to detect faultS in the fault tolerant sensor fusion

system as shown in Fig. 7.1[80] will result in loss of data during the fault-clearance

time(sec. 5.2.1.2.1). In a simplified form, Fig.7.2[56] shows the fault-tolerant sensing

scheme with hardware redundancy. In this figure, p(t) is Ute physical signal andf(/11) is

its equivalent digital electrical signal. The detection and replacement of faulty

Af'lJ:AnoI"lJipalp<ocessin,uni' ADCU: An>101 "'diJit>1 DI'-:Dipl>lda"PfOC"';nlu";,
AI'I~.A""""""'''IJip'''_''''''' convet$ion"" pJ'/_.;sI'w.",microproceuon
M/,f1"'lnll"llWit<h ADCt_.ADC.ue ..>.lOJ DSl:SeconddigiW;lCh

AF/:Fintr...'d<t<cti""""i, rodiJital«>n DF1'Sramdr..ltol<lttlioni';n
in..,.I"I'"'' OS, , fintdlJjtal h dig;taI

DF,:Fintf>.td'ol<l«rionllll;' DFCfJ:f""l,cle:lF.lllC.""j'ofOPU
inditulrutc. RS, "'aJon;,,;PJl>.sy>'.m

Figure 7.1: An architecture offault tolerant sensor fusion system [801.

112

components with fault-free components require certain amount of time known as the fault

clearance interval. During this time. on-line sensor data will be lost. A simple solution to

this problem is to repeat the data acquisition cycle. If the signal is highly transient. the

repetition of the acquisition cycle will lose significant amount ofinfonnation. Moreover.

the unpredictable repetition will create significant overhead to satisfy the stringent timing

requirements of the system. This unpredictable behaviour may result in malfunctioning of

the system. Therefore, a scheme should be developed to restore the lost data.

The restoration of lost samples in digital signals in the area of communication and digital

storage is based on the estimation of the unknown samples from the infonnation of the

neighboring samples (81]. The methods documented in public domain literature deal with

the restoration of samples of band-limited and low-pass signals [82]-[85]. If the signal is

highly transient, the perfonnance of these schemes suffers significantly. The estimation

schemes having the ability to recover transient signals with reasonable perfonnance are

computationally complex [84]. Usually these schemes are iterative in nature. Initial

estimates for unknown samples are chosen, the signal is restricted to its assumed

frequency band, and the signal values at the positions of the unknown samples are used as

new estimates. This procedure is repeated until satisfactory results are obtained (86]. The

recovery of lost samples as solution of unknown samples from a linear system of

equations has also been used [82]. Some of these schemes are non-adaptive due to the

113

FimcbanneI

~
J Analog r._=",'"'w"D"'i,,"'·w"L2fnJ

processor . Convenor !
Physica

signalp(l) ~condebannel

~~_Jr.,",'::,;::'''''"'tt>''D"'i''=·~''I~n
~Convcrtor!

requirements of signal spectrum, or equivalently the autocorrelation function has to be

known in advanced [86},[87J. It appears that these available digital samples restoration

schemes are not very effective to recover sensor data lost during the fault-clearance

interval. To overcome these [imitations. this thesis has proposed a new sclteme based on

parallel sensing to restore data lost during the fault-clearance interval in hardware

redundancy based fault-tolerant sensing. This scheme is computationally very simple.

non-iterative and is not limited to particular class of signals. It does not require any

information about the nature of the signals and is virtually independent of the information

for the neighboring samples. This proposed scheme is capable of restoring lost sensor

data during fault-clearance interval.

7.2 A Unified Approach to Restore Lost Samples During Fault­

Cleanance Intervals

In a data acquisition r-----------------,
session. N samples are

acquired from a sensor. LeI

s[n] ; n=c.J.2, ...•N be the

segment of samples

acquired in a particular

session and s, the vector in '--;FO:,gure=~7.73:-:'10=':":,,=qu:::',="='o:::oo:::f:::d.=t.:":~::;l="od=to:-:th~e:-:,="",:::e:-'
which the segment of data is physical signal using two parallel channels

arranged. Let us asswne that two segments of data s,[njand s2[nj are collected in parallel

from two separate sensors and analog channels sensing the same physical signal as shown

in Fig. 7.3. Therefore, under fault-free operation, these two segments are identical. When

a fault occurs, these segments of data contains FJ and F2 number of fault-clearance

intervals. The positions of the samples during these intervals are at fij(k). k=/.2.....mij and

j'="O./•Fi. Here. i is the channel number,j is the number offault-c1earance interval and k

is the number of lost samples in the corresponding fault-clearance interval. It is assumed

that these segments have OJ regions having undefined samples of length U at locations

starring at the positions /irfU]. r=O./ oi and u=O.J•..• u. It has also been assumed that

the fault-clearance intervals of these two charutels do not overlap (i.e.• at least one of

these two channels is functioning properly during the entire data acquisition period). The

samples in the ith channel during the fault-clearance intervals can be processed by the

following equations

Si[n]=O, if naij(k) for all the permissible values ofi.nJ. and Ie. (7.1)

sJln]=2*sj[n], if nSij(k) for all the pennissible values ofi.nJ, and Ie. (7.2)

Most of the lost samples can be recovered by the following relation

s,[n] = s,(n l ;sl[n] (7.3)

Due to the switching effect. data at locations /ir[U} I
in this recovered segment will be undefined. Due to ·:~:;:=-I~ -:-_
the very short duration of switching time the value I
ofu win be very small. Therefore, these undefined ":::"'..":'-,_---,- -,--_

data can be recovered by simple linear interpolation I
without incorporating significant error to obtain the ::-=::=::1~ '-' ,.------:_
estimated signal. This data recovery scheme can be

explained by a simulated test signal as shown in ;:.::=.: ~'II.
Fig.7A. This concept has been successfully used to l::::=-=-===~~=~==J
recover data lost during fault clearance intervals in Flgure 704: An example of recovery of

a laboratory experiments as shown in section GA. samples lost ~~~~I~~ult.c1earance

lIS

7.3 Restoration in Fault-Tolerance with Dual Modular

Redundancy

[0 dual modular redundancy, the voting technique cannot detect the faulty block. The

presence of faults in anyone of the constituting blocks (e.g., sensors, analog processors,

and analog to digital converters) detected by the voting technique must initiate a process

to detect and change the faulty block. The time at different steps of the fault-clearance

process should be recorded 10 detect corrupted sample positions, so that sample values of

those positions can be restored using lhe restoration technique as explained in the

previous section (sec. 7.2).The fault-clearance process is explained in Fig. 7.5. Let us

consider that the probabilities of failure of the same type of blocks in both the two

channels are the same. It is assumed that only one block fails at a lime and no other block

fails during the subsequent fault-clearance interval. Since the fault-elearance time is

extremely small in comparison to the total operating period of the system. this

assumption is reasonable. It is also assumed that fault-free blocks are available for the

fault-clearance operation. It should be noled that if the replacement of a probable faulty

block in the first channel does not clear the fault, it is likely that the fault has occurred in

the second channel. Then the fault-free block must be switched back 10 its previous

position. This switching in the fault-free channel (in this case channel I) will make a few

samples during these transitions tmdefined. The transitions should be made as small as

possible so that these undefined samples can be recovered using simple interpolation

teclmiques (e.g.• linear interpolation) without introducing significant error in the

reconstructed signal.

The restoration of corrupted samples due to fault-clearance is shown in Fig. 7.6. It has

been assumed that the interrupt generated for fault-clearance will carry the time of

occurrence of fault. It should be noted that ifIs is the sampling frequency of the signal.

116

the deLay (i.e., the value of m in delay block) and the fault-clearance interval snould

maintain the following relation

m >< 1. ~ fault.clearance interval.
r,

This means that both the two sequences must be stored before reconstruction.

1$2-Qme3.nSswitehingin
channel did notOCCllr.

Figure 7.5: The flow diagram of the fault·cLearance process.

b,b, b. Status word
o 0 0 Fault-freeeondition
o 0 I Fault in sensor
o I 0 Fault in analog processor
I 0 0 FaultinADC

(7.3)

Figure 7.6: Restoration of data during fault-clearance in dual redundant fault-tolerant sensing.

Sl so seleeledmodule
00 1
01 2
10 3
11

7.4 Restoration in Fault-Tolerance with Triple Modular

Redundancy

In triple modular redundancy, the voting algorithm to detect and replace the faulty block

can be implemented either in hardware or in software. Usually the fault-clearance time is

longer using software implementation than using hardware implementation. The fault­

clearance time in hardware implementation can be made within the range of a few (e.g.,

one or two) sample times. The samples lost in this low fault-clearance time can be

restored through simple interpolation techniques, such as linear interpolation. The

restoration techniques in both the two approaches of implementation of voting algorithms

are explained in the subsequent sections.

7.4.1 Restoration Using Hardware Implementation of Voting

Algorithm with Triple Modular Redundancy

The basic concept of restoration of samples using r----------,
hardware implementation of voting algorithm with

triple modular redundancy in fault-tolerant sensing

is shown in Fig. 7.7. For this reason it is assumed

::u::s ::o:u:::

UI
: ss::: :e;i~~~~::: I---:F"i""'-,-='.-="""'A,-'""'im-p7"lifi""oo..,.-....J

representation of voting module
input signals are derived from the corresponding

block as shown in Fig. 7.9. These signals are analog

for the sensors and analog processors and digital for

the analog to digital converters. The relationship .",._=-::::----:--:_,,--:-:'
between the two output signals and the selection of Figure 7.8. The selectlon of module

with the output from the voting
the corresponding block is shown in Fig. 7.8. module.

118

To

Figure 7.9: The restoration of lost samples in hardware implementation of the voting algorithm.

The input signals of the voting module are to detect the presence of fault. Analog

comparators are used for the detection of faults of sensors and analog processors. For the

detection of faults of ADCs, digital ...-

comparators are used. The comparator

module and the relationship of the

comparator module with the rest of

the voting module is shown in Fig.

7.10. The fault-free block is selected

from among the three modules based

on the output of the comparator

module using majority agreement of L__....:==== J
the inputs.

Figure 7.10: The comparator and majority voting
modules in the voting module.

The output ofa comparator is zero if its inputs are equal (within certain range) and is one

if the inputs are nol equal. The inputs and outputs of the majority voter are binary.

Therefore. the voter can be
Table 7.1: Generation ofoutputs from the voting module in

designed as a digital response to the inputs from the comparators.

combinational circuit. The Input to the voter from Output of the Fault~free

truth table for the majority the comparator voter to the mw:. modules

unrealistic

available

voter is shown in Table

7.1. If only one module 1--~+--"--+"+--;;-+-"+~1','2,.&'3.---i

fails, the voting algorithm

is capable of generating f-O-+-~+"-+--::-+---:-+"'-unre=a:Cl;"""'-;c-i

the corresponding output f-O-+-~+-;--+-;;-+-"-+-71&'"2.--i

signal to the multiplexer f-~+-"+"-+--::-+---:-+"'-u..,-","'-oa:CI;"""'-k-i

to switch to the next f-~+-~+-;--+-;;-+-~-+-'2&"'3.--i

fault-free f-~+-~+"-+----''---+-''-+-71&'''3.--i

module. If more than two f-~+-~+-;--+----''---+-~-+-unkn=''o'''-wn=--i

modules fail. the output (1 '---_-L_---'--_---"-__-L_---"- -'

Figure 7.11: Hardware realization of the voting logic.

120

, I) is an indication that more than two modules have failed. The digital logic circuit to

implement this algoritlun is shown in Fig. 7.11.

In this scheme, the multiplexers select one among the three inputs as output. This selected

one can be called the main module and the remaining two can be called support modules.

If the fault occurs in the main module, the hardware realization of the voting logic

generates a command to the multiplexer to select a fault-free support module. After

switching to the fault-free module, the voting unit interrupts the processor to replace the

faulty module with spare fault-free module. The outputs of the comparator module (i.e.•

CI.C), and CJ) are used as inputs to an 'OR' gate to generate this interrupt. The output of

the comparator module enables the processor to r----------,
replace the faulty module directly without trial

and error. Therefore, in this process data is lost

only during the switching period of the faulty

main module. This switching period can be

called fault-clearance period in this scheme. This

fault-clearance period (FcP) comprises mainly

three components as shown in Fig. 7.12 and by

the following relation:

t.:cornaparisontimetakenbythe
companllormodule

t~'sektioDtimetakenbythevoter

t..:switchrngtimetakenbythemultiplexer

Figure 7.12: Fault-clearance time
consists of three components.

(7.4)

As all these three operations are done in hardware, FcP is very small. As a result very few

samples (one or two) are recoverable by using simple linear interpolation.

Due to the addition of extra hardware components to realize the voter, the reliability of

the system decreases. This situation can be improved by implementing the voter in the

software level provided that the software module does not contain bugs. Based upon the

characteristics of particular application the designer will choose the specific approach for

the implementation oftbe voter.

121

7.4.2 Restoration Using Software Implementation of Voting

Algorithm with Triple Modular Redundancy

The software level implemenlation of the VOler increases the value of Is. which increases

the length of the faull-clearance period. This increase imposes constraints on the

restoration of lost samples using different restoration algorithms. Because the quality of

the perfonnance of available algorithms depends on the number of the lost samples (i.e.,

Fe?) and the known signal characteristics, steps are taken 10 overcome this problem.

This problem is overcome by reading data from two channels simullaneously, similar to

the case of dual redundancy. The signal from the support module is only used by the

comparator to assist the software voter to detect the faulty module without trial and error.

This scheme is better than dual redundancy in the sense Ihat the chance of swilching of

the fault-free module will be avoided. Therefore, there will be no undefined samples in

Figure 7.13: Restoration ofsignal in triple modular redundancy with software
implementation of voting algorithm.

122

the lirfUJ periods. The overall system diagram is shown in Fig. 7.13. Due to the

avoidance oCthe chance of switching of fault-free module this scheme has the potential to

recover the signal completely. It should also be noted that this scheme outperfonns the

hardware voter through complete elimination of lhe need of interpolation to restore

undefined samples. This scheme has been applied successfully in a laboratory set up to

realize triple-modular redundant fault tolerant optical sensor as reported in Appendix G.

7.5 Generalized Fault~ToleranceScheme

From the system development point of view, it is logical to have the provision of

different levels of redundancy in the same system. This will maximize the use of the

system resources. The system uses triple redundancy when there are three or more than

three similar blocks. Dual modular redundancy is used when only two similar modules

are available. When no redundant modules are available. the system uses the estimation

B---T?9
§J ~ §J.00

o off

algorithm 10 detect the fault. To achieve this objective

it is necessary to have a switching module which

allows both single and broadcast type of cOlUlections,

such as the crossbar switch. The basic concept of a

crossbar switch is shown in Fig. 7.14 [41]. Through

this switch module any module in the input can be

connected with anyone in the output. It is also

possible to connect an input module to multiple output

modules. In Fig. 7.12., the input module, 12 has been L..",.....--=-,....."...--.....,,..J
Figure 7.14: The structure of

connected to 01. and II has been connected with both crossbar switch to connect the

02 and On. This broadcast feature of crossbar allows modules

different levels ofredundancy in the same design. The

overall system diagram is shown in Fig. 7.15.

123

For dual redundancy, the same module is connected to the two inputs of the comparator.

In the case of no redundancy, the same module is connected to all three inputs of the

comparator. The software maintains the record of the failed components and the level of

redundancy.

7.6 Cbapter Summary

The proposed scheme is not based on the recovery of lost samples from the infonnation

of the neighboring samples and is not limited to any class of signals (e.g., band limited

signal). It does not require prior information about the signal characteristics. This scheme

is computationally simple and is not iterative in nature. Therefore, this proposed scheme

based on parallel sensing is fast and is capable of recovering lost samples of any class of

signal. The addition of error to recover lost samples during switching periods through.

interpolation is low due to the availability of very fast switch.ing devices. Although the

requirements of hardware and software for the implementation of this scheme increase

the system complexity, the rapid recovery of lost samples makes this sch.eme a useful

solution for restoration oftime sensitive signal in safety and mission critical operations.

Chapter i_
Conclusions aud Recommeudations for
Future Work

8.1 Conclusions

The objective of this thesis work was to synthesize a novel engineering methodology for

developing highly reLiable sensor fusion systems of multi-senson intelligent systems for

the applications in the safety and mission critical environments. This methodology

includes both the avoidance of faults during the development phase and the tolerance of

sensor failures during the operation phase. The salient features of this thesis work are

summarized in the following points:

t. Petti. net based a nove! discrete event framework has been developed to model

requirements of sensor fusion systems as finite state machine. This framework allows

the modeling of different modes of data integration: competitive, complementary,

independent, and temporaL in a unified manner. This framework has both the

graphical and mathematical attributes. The intuitive graphical attribute has the

potential facilitating communication between the developers and the clients to capture

sensing requirements resulting in avoidance of requirement errors. The mathematical

attribute will enable the developer to ensure logical and temporal correctness of the

sensing requirements through the simulation of the modeled sensor fusion system.

The effectiveness of this novel development has been demonstrated by simulating an

example sensor fusion system.

116

2. A novel methodology of deriving the computing component specifications from the

discrete event requirements (DEVR) model has been developed. This is based on the

decomposition of DEVR model as hierarchical finite state machine. The use of the

same fonnalism at different levels of sensing system decomposition will help avoid

errors in deriving specifications of the computing components from client's high level

sensing requirements. The use of the optimization technique in deriving temporal

specifications of the computing components has been shown in order to enable the

developer to optimize the cost of the underlying computing hardware. The use of this

methodology has been illustrated by deriving the specifications of the computing

components ofan example sensor fusion system.

3. To ensure the temporal correctness of the sensor fusion system during the operation

phase, the reasoning basis to derive the arehitecturc of the underlying computing

system from the sensing requirements has been developed.

4. A novel methodology to include redundant sensors to tolerate the failure of sensors

during operation phase has been developed. The sensor fault tolerance using

redundancy has been experimentally verified. The temporal overhead in incorporation

of redundant sensors has been detected and necessary techniques have been

developed to deal with this overhead. A fault-tree based novel technique to measure

the dependence of different levels of fusion on the reliability of sensors has been

developed. This technique has been used to derive the fault trees and reliability

profiles of different levels of fusion of an example sensor fusion system.

5. The voting technique based fault detection scheme cannot detect transient faults

generated due to the switching actions of the neighboring inductive loads (e.g.,

electric motors, electromagnetic relays) or due to electrostatic discharge in space and

industrial environments. A computationally simple novel technique has been

developed to detect the presence of transients in sensor data stream using local

statistics.

6. The loss of sensor data during fault-clearance interval is one of the limitations of

using voting technique based on redundancy for sensor fault tolerance. A novel

parallel sensing based technique has been developed to address this problem. The

implementation of this technique for fault tolerant sensor system of different levels of

redundancy has been shown. The utility of this technique to restore data during fault­

clearance interval for a triple modular optical sensor system has been experimentally

verified.

The use of this fonnal, graphical, and mathematical technique will help the developer to

avoid faults during the development phase. The use of redundancy will help tolerate

sensor faults during the operation phase. The novel engineering methodology that is

reported in this thesis has addressed different issues of fault avoidance and fault tolerance

of sensor fusion systems in a unified framework. Therefore, it's the understanding of the

author that this novel engineering methodology will enable the developer 10 engineer

highly reliable sensor fusion systems of multi-sensori intelligent systems for the

applications in safety and mission critical environments.

128

8.2 Recommendations for Futnre Works

The novel contributions reported in this thesis are the outcomes of a research work

towards the development of a software system to automate the development process of

highly reliable sensor fusion systems. Results of simulations and experiments have

demonstrated the utilities of these contributions. There is a need to undertake

development work to develop a software system in order to make the novel engineering

methodology reported in this thesis readily usable by the deVelopment engineers.

It is necessary to develop a set of integrated discrete event software tools. This tool set

will allow the modeling of requirements of sensor fusion system (SFS) as discrete event

dynamic system. User friendly intuitive graphical user interface should be provided in

order to facilitate communication between the developers and users. The simulation of

this model will help ensure logical and temporal correctness of the $FS. This tool will

also measure different features of the modeled SFS (e.g., the sensitiveness,the utilization

of the operating time). This tool set will allow the decomposition of the D£VR model as

hierarchical finite state machine in order to derive the specifications of tbe computing

components. The architecture of the underlying computing system will also be derived

with the help of this tool set in order to ensure the temporal correctness during nm time.

This same 1001 set will also generate control signals in order to execute the computing

components in run time as an interpretation of modeled SFS. The fault trees and

reliability profiles at different levels of fusion of sensor fusion system will also be

derived with the help of this tool set.

A repository of the computing components required for fusion of data should be

developed. The discrete event tool set in run time will activate these components

interpreting the discrete event model of sensor fusion systems. The use of same 1001 set in

both development and operation phases will help the developer to avoid faults in

realizing sensor fusion systems. This formalism will also be suitable for the enhancement

of the features of already developed sensor fusion syslems using this framework.

129

Due to the availability of high performance computing system and graphics library (e.g.,

OpenGL) at a reasonable price. the development work can be undertaken for the

visualization ofmodeled sensor fusion systems as discrete event dY'-1amic systems in 3-D

graphics environment. This development work will include the visualization of the

sensing systems including sensors and interactions among computing components.

sensing environments. and sensed information. The computing components will process

data generated by simulated sensors. This visualization scheme will further enhance the

communication between the developers and clients resulting in better understanding of

sensing requirements and limitations of different sensing schemes.

Further development work: is required to validate the proposed local statistics based

technique for the detection of transient faults present on sensor data stream. The

development work should include the acquisition of transients generated by different

phenomena (e.g.• switching of inductive loads, electrostatic discharge in space, industrial.

and laboratory environments) in wide variety of conditions, the modeling of these

transients and the improvement of this proposed technique to make it capable for

detecting.

In this thesis it has been shown that redundancy has the potentia! to improve the

reliability of sensing system. In order to make this concept readily usable, it's necessary

to undertake development work to develop fault-tolerant sensor modules using different

levels of redundancy. so that SFS developer can use them as building blocks. These fault­

tolerant sensor modules should implement the proposed parallel sensing based technique

to recover sensor data lost during fault clearance interval. These fault-tolerant sensor

modules should be smart enough to infonn the higher level system modules about the

status of different sensors, so that the system can avoid the interpretation ofdata provided

by potentially faulty sensors.

The use of this methodology to develop complex sensor fusion systems will provide

feedback in order to make this framework more effective and versatile. Moreover, there

will be a need of continuous development of this framework to keep pace with the ever­

increasing requirements of more complex intelligent systems.

130

References:

[I] J.L. Peterson, Petri Net Theory and the Modeling ofSystems. Prentice-Hall, Inc.,
1981.

[2] David L. Hall and James Uinas, "An Introduction to Multisensor Data Fusion,"
Proceedings ofthe IEEE, voL 85, no. I, January 1997, pp.6~23.

[3] David L. Hall, Mathematical Techniques in Multisensory Data Fllsion. Artech House,
Inc.1992.

[4) M. Mongi A. Abidi, and R.C. Gonzalez, Data Fusion in Robotics and Machine
Intelligence, Academic Press, Inc., 1992.

[5] B. V. Dasarathy, "Sensor Fusion Potential Exploitation ~ Innovative Architectures and
Illustrative Applications," Proceedings ofthe IEEE, vol. 85, no. 1, January 1997,
pp.24-38.

[6] 5.5. Iyengar, L. Prasad, and Hla Min, Advances in Distributed Sensor Integration, pp.
65-81, Prentice Hall P T R. 1995.

(7] B.V. Dasarathy, Decision Fusion, IEEE Computer Society Press, 1994.

[8J N.G. Leveson, M.P. Erik, H. Hildreth, and J. D. Reese, "Requirements specification
for process--eontrol systems," Proceedings ofthe IEEE, vol. 82, no. 1, January 1994,
pp. 684-707.

[9] J. M. Atlee and 1. Gannon, "State·based model checking of event-driven system
requirements," IEEE Transactions on Software Engineering, vol.19, no.l, January
1993, pp. 24~40.

[10] A. P. Ravn, H. Rischel, and K.M. Hansen, "Specifying and verifying requirements of
real~time systems," IEEE Transactions on Software Engineering, vo1.l9, no. 1, January
1993, pp. 41-55.

[II] J.F. Meyer and H. Pharo, "Fault-tolerant software: Guest editor's prolog," IEEE
Transactions on reliability, vol. 42, no. 2, June 1993, pp. 117-118.

[12] A. Avizienis, ''The N-version approach to fault-tolerant software," IEEE Transaction
on Software Engineering, vol. SE~II, no. 12, December 1985, pp. 1491-1501.

[13] T.J. Shimeall and N. G. Leveson, "An empirical comparison of software fault
tolerance and fault elimination," IEEE Transactions on Software Engineering. vol.
17, no. 2, February 1991, pp. 173-182.

131

[14] R. J. Abbott, "Resourceful systems for fault tolerance, reliability, and safety,"
Computing Surveys. vol. 22, no. I, March 1990, pp. 35-68.

[151 Nancy G. Leverson, "Software Safety: Why, What, and How," Computing Surveys,
vol. 18, no. 2, June 19&6, pp.125-163.

[16] A. Gaskell and P. Probert, "Sensor Models and a Framework for Sensor
Management," Proceedings ofSPIE-The International Society for Optical
Engineering, vol. 2059, pp. 2.13,1993.

[17] M.E. Liggins II. C. Chong, I. Kadar, M.G. Alford, V. Vannicola, and S.
Thomopoulos, "Distributed Fusion Architecture and Algorithms for Target Tracking."
Proceedings ofthe IEEE, vol. 85, no. I, January 1997. pp.95-107.

[18] S.S. Blackman and TJ. Broida, "Multiple Sensor Data Association and Fusion in
Aerospace Applications," Journal ofRobotic Systems, vol. 7, no. 3. 1990, pp. 445­

485.

[19] Reo C. Luo and Michael G. Kay, "Multisensor lntegrntion and Fusion in lntelligent
Systems," IEEE Transactions on Systems, Man, and Cybernetics, vol. 19, no. 5,
1989, pp. 901·931.

[20] M. Nashman, B. Yoshimi, T.H. hong, W.G. Rippey, and M. Hennan, "A Unique
Sensor Fusion System for Coordinate Measuring Machine Tasks," Proceedings of
SPIE on Sensor Fsuion and Decentralized Control in Autonomous Robotic Systems,
Vol. 3209,1997, pp. 145-156.

[21] K.A. Korzeniowski and E Woods, "Generic Architecture for Real-Time Multisensor
Fusion Tracking Algorithm Development and Evaluation," Proceedings ofSPlE on
Sensor Fusion VlI, Vol. 2355. 1994, pp. 33-42.

[22] A. Akennan ill, "Pyramid Techniques for Multisensor Fusion," Proceedings ofSPIE
on Sensor Fusion V, vol. 1828, 1992, pp.124-131.

[23] R.W. Geiger and J.T. Snell. "Interdisciplinary Multisensory Fusion: Design Lessons
from Professional Architects," Proceedings ofSPfE on Sensor Fusion V, vol. 1828.
1992, pp.132-143.

[24J C. Bridgewater, C. Barral, and M. McGrath. "Sensor Integration in a Behavior­
Based Architecture," Proceedings ofSPIE on Sensor Fusion V: Control Paradigms
and Data Slnt.Clures. vol. 1161, 1991, pp. 496-503.

[25] P. Greenway, "SKIDS Data Fusion Project," Proceedings ofSPIE on Sensor Fusion
V: Control Paradigms and Data Structures, vol. 1161, 1991. pp. 504·515.

132

[26] S. Lee, E. Zapata. and P.S. Schenker, "Interactive and Cooperative Sensing and
Control for Advanced Teleoperation," Proceedings ofSPIE on Sensor Fusion V:
Control Paradigms and Data Structures. voL 1161, 1991, pp.516.530.

[27] F. Martinerie, "Data Fusion and Tracking Using HMMs in a Distributed Sensor
Network," IEEE Transactions on Aerospace and Electronics Systems, vol. 33, no. t,
1997, pp.II ~28.

[28] M. Dekhil and T.e. Henderson, "Instrumented Sensor System Architecture," The
International Journal ofRobotics Research, vol. 17, no. 4, April 1998, pp.402-417.

[29} Y.C. Tang and C.S. George Lee, "A Geometric Feature Relation Graph Formulation
for Consistent Sensor Fusion," IEEE Transactions on Systems, Man, and Cybernetics,
voL 22, no. I, 1992, pp. 115-129.

[30] S.S. Iyengar and L. Prasad, "A General Computational Framework for Distributed
Sensing and Fault-Tolerant Sensor Integration", IEEE Transactions on Systems.

Man, and Cybernetics, vo1.25, no. 4,1995, pp. 643·650.

[31] J. Xu and D.L. Parnas, "On satisfying timing constraints in hard-real~time systems,"
IEEE Transactions on Software Engineering, vo1.19, no. I, January 1993, pp. 70-84.

[32J T. Murata. "Petri nets: Properties, analysis and applications," Proceedings ofthe
IEEE, voL 77, no. I, April 1989, pp. 541-580.

[33] A. Caloini, G. Magnani, and M. Pezze, "A Technique for Designing Robotic
Control Systems Based on Petri Nets," IEEE Transactions on Control Systems
Technology, vol. 6, no. I, 1998, pp.72-87.

[34] P.l. Haas and G.S. Shedler, "Stochastic Peoi Net representation ofdiscrete event
simulators,"tEEE Transactions on Software Engineering, voL IS, no. II, April
1989, pp. 381-393.

[35] M. Kamath and N. Viswanadham, "Application of Petri Net based models in the
medelling and analysis of flexible manufacturing systems," Proceedings of IEEE

International Conference on Robotics and automation, 1986, pp. 312~317.

[36] l,J.P. Tasi, S. J. Yang, and Y. Chang, "Timing constraints Petri Nets and their
application to schedualibility analysis of real-time system specification,"tEEE
Transactions on Software Engineering, vol. 21, no. I, January 1995, pp. 32-49.

[37] G. Chiola, M. A. Marsan, G. Balbo, and G. Conte, "Generalized stochastic Petti
Nets: a definition at the Net level and its applications,"tEEE Transactions on

Software Engineering, vo1.l9, no. 2, February 1993, pp. 89·107.

133

[38] C.V. Ramamoorthy and G.S. Ho, "Performance evaluation of asynchronous
concurrent systems using Petri nets," IEEE Transactions on Software Engineering,
vol. SE-6, no. 5, September 1980, pp. 440-449.

[39J M. Felder, D. Mandrioli, and A. Morzenti, "Proving properties of real-time systems
through logical specifications and Petri Net models," IEEE Transactions on Software
Engineen'ng, vol. 20, no. 2, February 1994, pp. 127-141.

[40] M. W. Maier, "Integrated modelling: A unified approach to system engineering," J.
Systems Software, vol. 32, 1996, pp.IOI-119.

[41] R. Gerber, S. Hong, and M. Saksena, "Guaranteeing real-time requirements with
resource-based calibration of periodic process," IEEE Transactions on Software

Engineering, vol. 21, no. 7, July 1995, pp. 579·578.

{42J 1. Lee, P. Bremond-Gregoire, and R. Gerber, "A process algebraic approach to the
specification and analysis of resource-bound real-time systems," ," Proceedings of
the IEEE, vol. 82, no. I, January 1994, pp. 158-171.

[43] B. P. Zeigler, ''DEVS representation ofdynamic systems: event-based intelligent
control," Proceedings ofthe IEEE, vol. 77, no. I, January 1989, pp. 72-80.

[44] K.M. Inan and P.P. Varaiya, "Algebras of discrete event models," Proceedings ofthe
IEEE, vol. 77, no. 1, January 1989, pp. 24-38.

(45J G. Cohen, P. Moller, 1. Quadrat, and M. Viot, "Algebraic tools for the performance
evaluation ofdiscrete event systems," Proceedings ofthe IEEE, vol. 77, no. I,
January 1989, pp. 39-58.

(46} D. L. Kiskis and K. G. Shin, "SWSL: A synthetic workload specification language
for real-time systems," IEEE Transactions on Software Engineering, vol. 20, no. 10,
October 1994, pp. 798-811.

[47] P. Inverardi and A. L. Wolf, "Formal specification and analysis of software
architectures using the chemical abstract machine model," IEEE Transactions on
Software Engineering, vol. 21, no. 4, April 1995, pp. 373-386.

[48] C. Ausfelder, E. Castelain, and J. Gentina, "A method for hierarchical modeling of
the command of flexible manufacturing systems," IEEE Transactions on Systems.
Man, and Cybernetic, vol. 24, no.4, April 1994, pp.564-573.

[49] M. Notomi and T. Murata, "Hierarchical reachability graph of bound Petri nets for
concurrent·software analysis," IEEE Transactions on Software Engineering, vol. 20,
no. 5, May 1994, pp. 325-336.

[50] J. Xu, "Multiprocessor Scheduling of Processes with Release Times, Deadlines,
Precedence, and Exclusion Relations," IEEE Transactions on Software
Engineen·ng, vol. 19, no. 2, February 1993, pp.139-155.

[51] J. Zhu, T. G. Lewis, W. Jackson, and R. L. Wilson, "Scheduling in hard real-time
application," IEEE Software, May 1995, pp. 54-63.

[52] J.H. Lala and R.E. Harper, "Architectural principles for safety-eritical real-time
applications," Proceedings ofthe IEEE, vol. 82, no. 1, January 1994, pp. 25-54.

[53] A. E. Barbour and A.S. Wojcik, "A general, constructive approach to fault-tolerant
design using redundancy," IEEE Transaction on computers, vol. 38, no. 1, January
1989, pp. 15-29.

[54] K.G. Shin and P. Ramanathan, "Real-time computing: A new discipline ofComputer
Science and Engineering," Proceedings ofthe IEEE, vol. 82, no. I, January 1994,
pp.6-24.

[55] M. Rokonuzzaman and R.G. Gosine, "An intelligent sensor fusion architecture for
autonomous rnicrogravity experiments," Proceedings ofthe SPIE's Conference
Sensor Fusion and Distributed Robotic Agents, vol. 2905, November 1996, pp.53-63.

[56] M. Rokonuzaman and R.G. Gosine, "Minimization of the effect of fault-clearance
period in the fault.toleranlsensing ofan intelligent system," Proceedings ofthe

SPIE's conference Sensor Fusion and Decentralized Control in Autonomous Robotics
Systems, October.

[57] B.W. W. Johnson, Design and AnalysisofFault-Toleram Digital Systems, Addison­
Wesley Publishing Company, 1989.

[58] R. Billstein, S. Libeskind, and J.W. Lott, A Problem Solving Approach to
Mathematics, The Benjamin/Cummings Publishing Company, Inc., 1990.

[59] R. James Firby, ''Task directed sensing," SPfE vol. 1198 Sensor fusion II: Human
Machine Strategies (1989), pp. 480-489.

[60J G. Schweizer, "Foundations for the ECBS Process," Proceedings of the ECBS'96,
Int '{IEEE Symposium and Workshop on Engineering ofComputer-Based Systems,
1996, pp. 16-22.

[61) M. Schwartz, Telecommunication Networlcr: Protocols. Modeling and Analysis,
Addision-Wesley,1987.

135

[62] Kai Hwang, Advanced Computer Architecture: Parallelism. Scalability.
Programmability, McGraw-Hili, Inc., 1993.

(63] D. A. Patterson and J.L. Hennessy, Computer Architecture: A Quantitative
Approach, Morgan Kaufmann Publishers, Inc., 1996.

[64J H. S. Stone, High Performance Computer Architecture. Addision*Wesley, 1993.

[65] C. Sundararajan, Guide to Reliability Engineering: Data. Analysis. Applications.
Implementation. and Management, Van Nostrand Reinhold, 1991.

[66] J. L. Melsa and D.L. Cohn, Decision and Estimation Theory, McGraw-Hill, Inc.,
1978.

[67) J.J. Goedbloed, Electromagnetic Compatibility, Prentice Hall, 1995.

(68] S.C. Lee, "Sensor Value Validation Based on Systematic Exploration of the Sensor
Redundancy for Fault Diagnosis KBS," IEEE Transactions on Systems. Man. and
Cybernetics, vol. 24, no. 4, 1994,pp 594-605.

(69) G. Rizzoni and Paul S. Min, "Detection ofSensor Failures in Automotive Engines,"
IEEE Transactions on Vehicular Technology, vol. 40, no. 2, 1991, pp.487-500.

[70] R.N. Clark and W. Setzer, "Sensor Fault Detection in a System with Random
Disturbances," IEEE Transactions on Aerospace alld Electronic Systems, vol. AES­
16, no. 4,1980, pp. 468-473.

[71] T. E. Menke, "Sensor/ActuatorFailure Detecttion in the Vista F-16 by Multiple
Model Adaptive Estimation," IEEE Transactions on Aerospace and Electronic
Systems, vol. 31, no. 4,1995, pp.1218-1228.

[72] P. Hsu, K. Lin, and L. Shen, "Diagnosis of Multiple Sensor and Actuator Failures in
Automotive Engines," IEEE Transactions on Vehicular Technology, vol. 44, no. 4,
1995, pp. 779-789.

{73] N. P. Piercy, "Sensor Failure Estimators for Detection Filters," IEEE Transactions
on Automatic Control, vol. 37, no. 10, 1992, pp. 1553*795.

[74] A.S. Wil1sky, "A Survey ofDesign Methods for Failure Detection in Dynamic
Systems," Automatica, vol. 12, pp. 601·611.

[75J J. C. Deckert, M.N. Desai, J.I. Deyst and A. S. Winsky, "F-8 BFBW Sensor Failure
Identification Using Analytical Redundancy," IEEE Transactions all Automatic

Control, vol. AC-22, no. 5,1977, pp. 795-803.

136

[76] Y. Maki and K..A. Loparo, "A Neural-Network Approach to Fault Detection and
Diagnosis in Industrial Process," IEEE Transactions on Control System Technology,
vol. 5, no. 6,1997, pp. 529-541.

[77) R. Dorr, F. Kratz, J. Ragot, F. Loisy, and J. Germain, "Detection, Isolation, and
Identification ofSensor Faults in Nuclear Power Plants," IEEE Transactions on

Control Sysiem Technology, voJ.5, no. I, 1997, pp.42-60.

[78] S. Murogesan and P.S. Goel, "A Scheme for Fault Tolerance in Earth Sensors,"
IEEE Transactions on Aerospace and Electronic Systems, vol. AES-25, no. I, 1989,
pp.21-29.

[79] M. Rokonuzzaman and R.G. Gosine, "Adaptive Fuzzy-Statistical Decision Model
to Grade Sensor Data," Proceedings ofthe IEEE Canadian Conference on Elctrical

and Computer Engineering, vol. II, 1997, pp. 773-776.

[80] M. Rokonuzzaman and RG. Gosine, "Fault-tolerant Sensor Fusion Architecture for
Mission Critical Applications", The Proceedings oflheSevenlh Annual

Newfoundland EleClrical and Compuler Engineering Conference. May 3, 1996.

[8t] R. Veldhuis, Resloration ofLosI Samples in Digital Signals, Prentice Hall
International (UK) Ltd.,1990,

[82] R.J. Marks II, "Restoring lost samples from an oversampled bandlimited signal",
IEEE Transaction on ASSP, vol. 31, no.3, pp. 752-755,1983.

[83] N. Erdol, C. Castelluccia and A. Zilouchian, "Recovery of Missing Speech Packets
Using the Short-Time Energy and Zero-Crossing Measurements," IEEE Transaclion
on Speech and Audio Processing, vol. 1, no. 3, pp.295-313, 1993.

[84] L. L. Scharf, Statistical Signal Processing: Delection. Estimation. and Time Series
Analysis, Addison-Wesley Publishing Company, 1991.

[85] S. J. Godsill and Peter J,W. Rayner, "A Bayesian Approach to the Restoration of
Degraded Audio Signals," IEEE Transaclion on Speech and Audio Processing, vol.
3, no. 4, pp.267-277, 1995.

[86] J. Feng, K. Lo, and H. Mehrpour, "Error Concealment for MPEG Video
Transmissions," IEEE Transaction on Consumer Electronics, vol. 43, no. 2, pp. 183­
186,1997.

[87] Y. Chen and B. Chen, "Model-based Multirate Representation ofSpeech Signals and
its Application to Recovery of Missing Speech Packets," IEEE Transaction on
Speech and Audio Processing, vol. 5, no. 3, pp.220-23I, 1997.

137

Appendix A_ IA Design Problem to Verify tbe Discrete Event
Framework to Engineer a Reliable Sensor
Fusion System

A.I Introduction

This is an example design problem to verify the different proposed modeling techniques

and algorithms developed in this thesis. The parameters of this design problem have been

chosen to demonstrate the capability of the proposed discrete event framework to deaJ

with worst case sensing scenarios. This design problem is stated in the ronowing section.

A.2 Prnblem Statement

1. The set of sensors is, S={S" Sl, . ,S,}.

2. The sensing sequence is defined in the Table A.I in tenns of phases and periods.

Table A.I: The phases and periods of sensing

Sensors Range of phases (in units) Range of periods (in units)

<Il' :Lowcr limit 4l-:Uppe-rlimit r/:Lowerlimit r":Uppe-rlimit

S, 1900 2000

S, 50 100 1800 2000

S, 200 250 2000 3000

S. '00 400 2000 2000

S, 500 550 '000 3000

S. 600 650 2000 3000

S, 800 850 1000 t 100

138

J. The set of conditions is. PC::{Pc" PC;, ..• Pc ll}. The lifetimes of these conditions are

shown in Table A.2.

Table A2: The lifetimes (in units) of the conditions

4. The set of sensors specific periodic processes (activities) is. PE={PE" PE,•...• PE,}.

The service times of these processes are shown in Table A.3.

Table A.3: The service times (in units) of the periodic processes

Pel'"iodic processes

Servic:etimes PE, I PE, I PE, I PE, I PE, I PE, I PE,

Ulwerlimit 10 I 18 I 12 I 14 I 16 I 20 I 25

Upper limit 15 1 22 I 14 I 16 I 19 I 27 I 30

5. The set of aperiodic or conditional processes (activities) is, AE""{AE" AE!. . .• AE.}.
The service limes of these processes are shown in Table A.4.

Table A.4: The service times (in units) of aperiodic processes

Apel'"iodic: processes

Service times AE, 1 AE, T AE, I AE, I AE, I AE, I AE, I AE,

Lower limit 12 1 14 T 15 I 16 I 20 I 18 I 12 I 15

Upper limit 16 r 16r 19 1 20 I 24 I 20 I 14 I 16

6. The relationships between conditions and processes are shown in the Tables A5-A 7.

139

Table A.S: Generation ofmaximum number ofconditions (tokens) by periodic processes

The periodic processes

Tbecondltions PEl PE, PE3 PE. PES PE6 PE,

Po, I I 0 0 0 0 0

p,. 0

Po,

Po.

Po,

P~

P~

Po,

P~

Pc"

Pc"

P, T" T" T,. T,. T,. T, T"

Table A.6:Generation of maximum number ofconditions (tokens) by aperiodic processes

Tbe aperiodic processes

The conditions AE[

pC! 0

p"

P'3

p"

P'S

P'6

p"

p"

P"J

PClO

PCll

Pd

o 0 0 0 0 0

Table A.7: Absorption ofconditions by aperiodic processes

The aperiodIc processes

The conditions AEI AE2 AE3 AE4 AES AE6 AE7 AES

Pc, 0 0 0 0

Po,

Po,

p'.
P'-
p'.
Po,

p'.
p'.
Pc,.

Pc"

An event (periodic or aperiodic) will generate conditions by placing tokens in particular

places. For example, aperiodic event AE! can generate the condition Pc. by placing a

token in place Pc•. An event will absorb conditions by removing token from places. For

example, the event AE2 wi!! absorb tokens from places Pc! and Pc,. An event mayor

may not generate conditions (tokens in places). The generation of conditions depends

upon the state of sensing environment (e.g., the periodic process, sensing temperature

sensor, may generate a condition if temperature goes beyond certain threshold value, the

specific value depends upon the sensing requirements ofa particular environment).

These tables represent the discrete requirements of customers in a summarized form. The

infonnation in this tabular fonn will be generated in the requirements definition phase of

the system development. In this phase, each discrete requirement (e.g., the execution of a

particular aperiodic process) will be treated as a separate entity. This approach will

enable the system developer to capture the of user's requirements with fewer errors.

Appendix B_ IVerification of Discrete Event Requirements
Model of SFS by Simulation

B.llntroduction

L..-JL..-J
Data Acquired

acquisition dala

P,

L-tL-J~
Oata Features Featurf: Decisions Decision
fusicm fusion fusion

Figure 8.1: The Petri net model of the specified example sensor fusion system

The DEVR model of the sensor fusion system as specified in Appendix A is shown in

Fig.8.1. In this modeled SFS, sensor data are acquired in a particular sequence and are

integrated exploiting temporal relationships among these sensed data. In this integration

process, sensor data are integrated in different modes. For example, sensors I and 2 are

playing redundant roles due to the placement of tokens by periodic events PEl and PEl at

the same place Pc, and the requirement ofonly one token by the aperiodic event AE ,. The

mode of data integration from these two sensors can be defined as complementary by

adopting the constraint that AE, needs 2 tokens from the place Pc l . Using the

conventional terminology of sensor fusion the role of these events are shown in Table

8.1.

Table B \. Different levels of data integration in the example SFS

Data acquisition Data fusion Feature fusion Decision fusion

PE,

PE,

Here, in the data fusion level the decisions placed by the event AE., and AE, in place PC II

play redundant role. But they can be complementary if AE1 requires two decisions from

the place PCII •

The input and output functions of the modeled SFS are defined by the following matrices

D- and D· respectively. To define the input function, the feedback from the reasoning

sub-system to the periodic processes shown as dashed arrows have not been considered,

because the reasoning sub-system is outside the scope of this work. To capture the

interaction between the sensor specific periodic processes and aperiodic processes, the

tokens generated by the clock and the phase related processes have not been considered to

define the output function.

143

P', PJ~ P', P', P>, P" P" Po, Po, Po, Po, Po, po. Po, po. po. Pe ,a Pen Pd p.

PE, T" 0 0 0 0 I

PE, T>, 0 0 0 I

PE, 0 T" 0 0 0 I

PE, 0 0 n, 0 0 0 I

PE, 0 0 T" 0 0 1

PE. 0 0 0 T,. 0 0 1

PE, 0 0 0 T" 0 0 1

D- - A£, 0 0 0 1 0 0

AE~ 0 0 0 1 0 0

AE, 0 0 0 I 0 0

AE, 0 0 0 0 0 0

AE, 0 0 0 0 0 0

AE. 0 0 0 0 0 0

AE, 0 0 0 0 0 0

AE, 0 0 0 0 0 0

HE 0 0 0 0 1 0

(8.1)

Po, Po, Po, Po, Po, Po. Po, Po. Po. Pe,o Pc" P</Po
PE, 1 0 0 0 0 0 0 0 0 00

PE, 1 I 1 0 0 0 0 0 0 00

PE, 0 0 1 0 0 0 0 0 0 00

PE, 0 0 0 1 0 0 0 0 0 o 0

PE, 0 0 0 1 1 0 0 0 0 00

PE. 0 0 0 0 0 1 0 0 0 00
PE, 0 0 0 0 0 0 I 0 0 00

D' '"' AE, 0 0 0 0 0 0 0 0 0 10

AE, 0 0 0 0 0 0 0 1 0 00

AE, 0 0 0 0 0 0 0 1 0 00

AE, 0 0 0 0 0 0 0 0 1 00

AE, 0 0 0 0 0 0 0 0 1 I 0

AE. 0 0 0 0 0 0 0 0 0 00

AE, 0 0 0 0 0 0 0 0 0 00

AE. 0 0 0 0 0 0 0 0 0 I 0
HE 0 0 0 0 0 0 0 0 0 0 1

(8.2)

To study the salient features of the modeled sensor fusion system, the matrix D- defining

the input function can be partitioned into a number of sub-matrices. The first one is at the

leftmost lOp comer as shown below.

T" 0

T"
0 T"

D-J_ 0 0 T,. (B.3)
0 0 n,
0 0 TSII

0 0 0 T"

According to this proposed framework, every sensor is periodically sensed with unique

periodic process. Therefore, the number of periodic processes is equal to lhe number of

sensors and the diagonal matrix represents the relationship among them. So, if this sub~

matrix of a modeled SFS is other than a diagonal matrix, lhe system has not been

modeled properly using this framework. For a system of n number of sensors, this sub­

matrix is a n x n diagonal matrix; where the diagonal elements are the sensing periods of

the corresponding sensors.

The second sub-matrix is at the left-most bottom one relating the places PS" .Ps
"

AE" ...,AE., and HE as shown below.

o
o
o
o

D- 2= 0

o
o
o
o

00

o 0

00

00

00

00

o 0

o 0

00

(BA)

This is a null matrix. According to this framework, the clock drives only the periodic

processes; therefore aperiodic processes do not have any direct link. with the clock. So,

for a modeled SFS if this sub-matrix is other than null, the system has not been modeled

correctly using this framework. For a system of n sensors, this sub-matrix is a matrix of n

145

column and any number of rows. The number of rows will depend upon the nwnber of

aperiodic events.

The third sub-matrix is at the top+most right comer in the input definition matrix 0-.

This sub~matrix relates the periodic events PEl' .,P~ with PCW··,Pc ll • P4• and Po.

'0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0-3~ 0 0 0 0 0 0 0 (B.5)

0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

According to this modeling framework, tokens in the output places of periodic and

aperiodic events. and house keeping event do not drive the periodic events. Only the

token in the place Po drives the periodic events. Therefore. all the elements, except those

of the right·most column of this sub-matrix, are zero and all the elements of the right

most column are 1. If the matrix D- .3 does not satisfy this criteria., the modeled system

has a flaw according to this framework. If there are n number of sensors. p conditionaL

places, this third sub-matrix dimension is (n x p+2).

The fourth sub-matrix defines the generation of all aperiodic events and this is at the right

bottom part of the input definition matrix as shown below. Here. the rows are the

aperiodic events AE I , •••AE. and the columns are places for the conditions Pc l , ...PCII •

I I

01

01

I 0

o 0

o 0

o 0
o 0

00

00

00

00

00

I I

00
00

(B.6)

146

The number of non-zero element in a column is the possible value of the token placed in

that place. For example, if the token in place Pc! represents the size of a targct, in this

case the target may have three different sizes (e.g.• small, medium, big). These different

values or color of token (e.g., size of the target) are used in this model for branching to

generate appropriate events to address the issue of detection of different sizes of targets.

The presence of more than one number in a cell indicates that the corresponding place

receives the same token from more than one process (e.g., periodic sensor sensing). These

redundant tokens may be used by the corresponding event [0 increase reliability. If there

are m nwnber of aperiodic processes and fI number of conditional places, the dimension

of this matrix is a m x fl.

The 5th sub-matrix relates aperiodic processes AE!>..,~, Pol with Po as shown in

Eq.(B.7). This is a null matrix, because the tokens in the places Pol and Po do not generate

aperiodic events according to this modeling formalism. The rows of this matrix represent

aperiodic events and the columns correspond to Poland Po. If there are m aperiodic events,

the dimension of this matrix is m x 2.

00

00

o 0

o 0
D-5'"

00

00

00

00

(B.7)

The input relationship of the house keeping event, HE, with the conditional places,

Pc l , ...Pc ll , Pol and Po is shown by the sixth sub-matrix given in Eq.(B.8). All the elements

of this matrix arc zero except the second element from the right. IT there are n conditional

places, the dimension of the matrix is /ll: n+2.

D-.6=[0 0 0 0 0 0 0 ° 0 ° 0 I oj (B.8)

The partitioning process for Ihe input definition matrix can be repeated for the output

definition matrix o· to reveal more features of Ihe modeled system. The generation of

the tokens in the places, Pcl,...•Pc ll • by all periodic and aperiodic events,

PEw..,PE,.AEI.....AE., is shown by the top left-most sub-matrix of the output definition

matrix as shown below. Here, the rows represent the events and the columns are places.

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0
O·j .. 0 0 0 0 0 0 0 0 0 (8.9)

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

Multiple non-zero elements in a particular column indicate that the corresponding events

are playing redundant role by generating tokens in the same place. For a system of m

events (both periodic and aperiodic) and n conditional places the size of this matrix is m x

n. According to this modeling paradigm. the possible values of an element of this matrix

areOor I.

The tenninal events are identified by the 2nd sub-matrix of the output definition matrix

relating all periodic and aperiodic events with the place p~ as shown in Eq.(B.10). This

matrix has been represented in transpose fonn.

0·2 .. (0 0 0 0 0 0 0 I 0 0 0 I 0 0 1JT (8.10)

1"

The events corresponding to the non-zero elements of this matrix are terminal events. In

this present example, the tenninal events are AE,• AE•• AEs. According to this design

formalism. all the elements of this sub-matrix must not be zero.

The third one is a nuU matrix relating all periodic and aperiodic events with the place Po

as shown below in transpose form.

D~.J .. [O 0 0 0 0 0 0 0 0 0 0 0 0 0 o]r (B.II)

The forth sub-matrix relates the token generation of the housekeeping event, HE, with all

conditional places. Pd and Po as shown in Eq.(B.12). According to this framework. all the

elements of this sub-matrix are zero except the right most one.

D·.4-[O 0 0 0 0 0 0 0 0 0 0 0 I) (B.12)

The check of the characteristics of these sub-matrixes for a particular modeled SFS will

enable the designer to have a preliminary check to ensure that the system has been

modeled according to this formalism. Due to the numerical nalure of these verification

techniques, software based automation is quiet feasible for this work. It's the author's

understanding that this automation has the potential to improve the accuracy of the design

and speed up the design process. Therefore, it is reasonable to conclude that this

formalism wiU enable the designer to partially avoid faults at the very early stage of

system development resulting in better reliability of system performance.

The execution path analysis will enable the designer 10 check logical and temporal

correctness of the modeled system. The technique of this execution path analysis is

depicted in the following sub-section.

149

B.2 Execution Path and Time Analysis

Parallel
(pr)

Brmching
(brl

The value (i.e., color) of a token in a ,----------,

place is used by the SFS for branching

decision. The execution of a process (i.e.,

service of an event) may generate tokens

in morc than one place resulting in

parallel operation of multiple processes.

This concept is depicted in Fig.B.2. The FIgure B.2. The branchmg and parallel

underlying computing system may execute operations in the Petri net model of the SFS.

these parallel processes simullaneously or sequentially.

B.2.1 Execution Paths From the First Sensor

The sequence ofexecution ofdifferent processes to serve the sensing requirements of the

1st sensor is shown in Fig. 8.3.

P,

AE,

Figure B.3. The execution paths from the periodic process PEl to serve the sensing of
the 1st sensor.

ISO

The execution paths to serve the first sensor are defined by the following equations

S,.p,""PE"AE,

S,.p,=PE"AE"AE,.AE,

S,.p,=PE,.AE..AE.,AE.

The maximum total time to serve the event of periodic sensing ofthe first sensor is

(B.13)

(B. 14)

(B.15)

Spt= max { (PE,.t+AE,.t), (pE,.t+AE•.t+AE,.t+ AE•.t+AE•. t)} (B.16)

for sequential execution of two paralJetizable processes AE. and AE, ,or

S,.t= max{ (pE,.t+AE,.t), (PE,.t+AE•.t+max.(AE,.I, AE.,.t)+AE•.t)} (B.17)

for parallel executions or AE6 and AE,.

B.2.2 Execution Paths from the Second Sensor

The execution paths for sensing the second sensor are shown in Fig.SA.

p~!

AEl'f:' AE!f'
~!:! AEo!AEo!

AEo!

Figure 8.4: The execution paths from the periodic process PE,. to serve sensing of the second sensor.

lSI

The execution paths to serve the second sensor are defined by the following equations

S,.p,=PE" AE,

S,.p,=PE" AE., AE., AE.

S,.p,= PE" AE.. AE" AE.

S,.p.=PE" AE" AE., AE.

The maximum total time for periodic sensing of the second sensor is

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

S,.t=PE,.t+max. {(AE,), (AE.+AE.,+AE,+AE.)}+max. {(AE,+AE.+A.E.),
(AE,+A£.+AE.>l (B.23)

for sequential execution of paralielizable processes, or

S,.t=' PE,.t+max. [max. {(AE,), (AE.+max. (AE., AE,)+AE.)}' max. {(AE,+AE,,+AE.),
(AE,+AE.+AEJ) 1 (B.24)

for parallel execution of para11e1i2able processes.

B.2.3 Execution Paths from the Third Sensor

The execution paths for sensing the third sensor are shown in Fig.B.5.

Figure 8.5: The execution paths from the periodic process P~ to serve sensing of the third sensor.

The execution paths to serve the third sensor are defined by the following equations

S,.p,=PE.. AE., AE" AE,

The maximum total time for periodic sensing of the third sensor is

S,.t= PE,.t+ AE•. t+ AE.,+AE,.t+ AE..I

for sequential execution of paralielizable processes, or

S,.t= PE,.t+ AE,.t+max.(AE,., AE,.t)+ AE,.t

for parallel execution ofparallelizable processes.

8.2.4 Execution Paths from the Fourth Sensor

The execution paths for sensing the fourth sensor are shown in Fig.B.6.

P,

AE,

(B.25)

(B.26)

(8.27)

(B.28)

rEO

AE/\E'
AE'j l~'

IA~

Figure 8.6: The execution paths from the periodic process PE4 to serve sensing of the fourth sensor.

The execution paths to serve the fourth sensor are defined by the following equations

S•.p,=PE" AE,

(B.29)

(B.30)

S,.p,-PE.. AE., AE., At;.

The maximum total time for periodic sensing ofthe fourth sensor is

(B.31)

S•.t= PE•.t+ max. {(AE,.I+ AE.-t+A£. .1), AE,.1, (AE,.t+ AE,..t+A£. .t)} (8.32)

B.2.S Execution Patbs from tbe Fiftb Sensor

The execution paths for sensing the fifth sensor arc shown in Fig.B.8.

AE,

P,

p~j

p'

AE/\:. AE.1
~l ~11P1

~l

Figure B.8: The execution paths from rhe periodic process PEs 10 serve sensing of the fifth sensor.

The execution paths to serve the fifth sensor arc defined by the following equations

(B.33)

(B.34)

(B.3S)

(B.36)

The maximum lolal time for periodic sensing ofrhe fifth sensor is

1>4

S•. t= PE,.t+ [max. {(AE,.t+ AB•.t), (AE,.t+ AE,.t) }+ AE,.t+(AE..t+ AE,.t)]+A.E..t
(B.37)

for sequential execution ofparallelizable processes, or

S,.t- PE,.t+ max. [max. {(AE,.t+ ~.t), (AE,.t+ AE,.t) }, AE,.t+max. (Mo.t,
AE,.t)]+AE..t (B.38)

for parallel execution of paralielizable processes.

B.2.6 Execution Patbs From tbe Sixth Sensor

The execution paths for sensing the sixth sensor is shown in Fig.B.9.

p.

Figure 8.9: The execution paths from the periodic process PE6 to serve sensing of the
sixth sensor.

The execution paths to serve the sixth sensor are defined by the following equations

S6·PI=PE., AE,
S6·P!=PE., AE" AE,

The maximum total time for periodic sensing of the sixth sensor is

S•.t=' PE.,.t+(AE,.t+ AE,..t+AE".t)

for sequential execution of para11elizable processes, or

(B.39)
(B.'O)

(BAI)

155

S•.t"" PE"t+max. { AE•. t, (AE,.t+A£..t) }

for parallel execution of parallelizable processes.

B.2.7 Execution Paths from the Seventh Sensor

The execution paths for sensing the seventh sensor are shown in Fig.B.1 O.

(B.42)

Figure RIO. The executIon paths from the penodlc process PE7 to serve senSing of the
seventh sensor.

The execution paths to serve the seventh sensor are defined by the roUowing equations

The maximum total time for periodic sensing of the seventh sensor is

S7.r- PE,.t+(AE,.t+ AE,.I+A£..t)

for sequential execution of parallelizable processes, or

(8.43)

(B.44)

(B.45)

5,.1= PE,.t+max. {AE,.t, (AE,.t+AE..t)} (8.46)

for parallel execution ofparallelizable processes.

15'

B.3 Repetitiveness and Reacbability Analysis

To facilitate the reachability and repetitiveness analysis the service sequence ofdifferent

events are summarized in tabular ronn as shown in Table 8.2.

Table B.2: The summary of the execution path analysis

Execution paths Periodic Events· Aperiodic Events

,.p,"PE"AE,
,.p,-PE,.AE.,AE."Afa
,.p,"PE,,AE,,AE..AEa

,.p,-PE"AE,

,.p,. p~ AE,. AE" AE.

,.p."'PE" AE" AE.. AEa

,.p,- PE..-, AE,. AE.. AE.

~·PI"'PE" AE.., AE,., AEo

,.p,-PE"AE"Af.o.AEa
•.p,-PE"AE,

,·P.·p£... AE" A£" AEa
,.p,"PE"A.E"AEo,AEo
•.p,=PE,. AE,. AE" AEo
.p,"'PE,. AE" AE.. AE•

•.p."PE" AE.. AE" AE,
•.p,-PE",AE,

,.p,-PE", AE" A£,
,.p,-PE,.AE,

A few salient features of this fonnalism can be highlighted from the design data

summarized in the above table. It should be noted that this proposed design formalism of

SFS considers that for each sensor there must be a unique periodic event. The validity of

the design to satisfy this proposition can be justified by checking the columns of the

periodic events for each execution path. To satisfy this proposition each execution path

serves only one periodic event (Le., only one cell in the periodic events area is marked for

each execution path).

157

In this proposed framework ofSFS, the sensing operation is periodic in nature. To verifY

this repetitiveness criterion a simplified model of the SFS is shown in Fig.B.l\. In this

simplified representation only the terminal events (AE"AE.. AE,) and the periodic events

are shown.

The periodic

(e.g.. PE" ...,P~) are

generated at regular

intervals of time. Now

if there is at least one

execution path from

each periodic event

ending in anyone of

the terminal events

(e.g., AE"AEI.AEs),

the operations of the

designed SFS will be

periodic in nature. To

PE,

AE,

AE,

AE,

satisfY this requirement Figure B.ll: The Simplified Petri net model of the example
at least one cell of the SFS to understand the problem of verification of repetitiveness

column of each periodic event should be marked and at least one shaded cell of the same

row should be marked. The design data summarized in the table for this example SFS

satisfy this criterion. Therefore, this designed SFS is repetitive.

{feach member of all the events (both periodic and aperiodic) is executed by at [east one

execution path, it can be concluded that every event is reachable. To satisfy this

proposition each colunm of the events as shown in the table must be checked at least one

and this is satisfied for the design of this example SFS.

158

""Iii"""'''
Sensing 80lime 60 '. _ ,

-0 < • , ". : •

20; ;, .
51 52 53 54 55 56 57

B.4 The Sensing Sequence Analysis

The total sensing time of each sensor considering minimum event service time and

sequential execution of the corresponding processes is shown in the following Table 8.3.

Table B 3' The summary of sensing time estimation

Sensors Execution time relating equations Sensing time

S, S,.t'" maxI (PE,.l+AE,.I), (PE,.t+AE••t+AE,.t+ AE".t+AE•.l)f max..(22,53) 53
-max.{ (10+12), (10+16+12+15l}

S, S:.!"" PE.:.t+max. {(AE,), (AE,+AE.+AE,+AE,.)}+ 18+max.(l2,

max.{(AE:+AE,,+AEo). (AE,+AE,,+AE,,) 61) 125
-18+max.{ (12), (16+18+12+15)}+max.{14, 15}+18+15 +15+33

S, S,.t- PE,.t+ AE•.t+ AE,.+AE,.!+ AE•.t 61 61
-12+16+18+15

S, S,.t- PE•. t+ max. ({~.I+ AE".t+AE" .1), AE,.!. (AE,.t+

AE,.I+AE,.l)} 14> 61
"14+max.{(14+18+15),20,(20+12+15) f max. (47,47)

S, S,.P" PE,.t+ max. {(AE,.t+ AE,..I), (AE,.t+ AE,.t) }+ 16+max.{32, 109
AE,.t+(AE,..t+ AE,.t)+AEa.! 32)+16+30+15

-16+ max.{ (14+18), (20+12)}+16+(18+12)+15

S. S•. t- PE".t+(AE,.l+ A£,.t+AE.,.I) 67 67
-20+20+12+15

S, s,.t-PE.,.t+{AE,.I+AE,.t+AEo·t) 72 72
- 25+20+12+15

The time for house keeping operation isr-------------,
Sensing time distribution

more or less constant for each sensing

sequence and has been assumed to be zero

for simplicity in remaining calculations

The distribution of the sensing time of

each sensor can be shown in graphical

fonn as in Fig.B.12. Here, the minimum

sensing time is 53 units for S, and

m",im= " ..ing tim, i, 125 unit> fo, '--F,gure--B.-12.-0-"tn-b-ut-wn-o-f,-,n-"n-g-tom-,,-o--'f

S2' different sensors.

'59

A plot of the sensing sequence using initially user's deftned sensing phase (max. phase),

frequency (min. frequency) is shown in Fig.B.l3. This plot shows the available and

required total sensing time for each sensor.

5,r-•., , , .. , , ,.. ,.".,., , , , , , .
5'1·'·· L , , ; i. , .

5'1·;······,····,····;···"_,···,··,··,,

5'1'·'········<

5. 1 ..; ; , , .

S,!cO-5f,;O--+"100~""--""

!c.1 ~!

Figure 8.13: The sensing sequence using user's initial specification.

•••

922 2000

From this plot it appears that in the first sequence of sensing, except one instance, there is

no overlapping of sensing times and the first sequence of sensing finishes before the

beginning of the second sequence. Therefore, the distribution of phase needs little

modification to avoid this overlapping 10 make the SFS implementable on a single

processor.

II is now worthwhile to go back to the proposed theory of sensing phase and periods

distribution. From the initial investigation of the specified phase it seems that the phase

grain size, gp:::150 satisfies the initial condition, which is larger than the largest sensing

time, 125. Now, all the phases should be integral multiple of this grain. Therefore, the

proposed modified phases are shown in the Table 8.4.

Table 8.4: The modified phases of the sensors.

s,
Phases 0

s,
150

s,
300

Sensors

s,
450

s,
600

s.
750

s,
900

This modification in phase value will avoid detected overlapping of sensing time in the

first sequence as shown in the previous figure. If the client agrees with this modification,

the first sequence of sensing is free from overlapping.

Now according to the theory, the grain size of the periods should be larger than the sum

of the longest phase and the corresponding sensing time, and should be an integral

multiple of phase grain size. In this case, Gp=1050 is a reasonable choice. Now all the

periods should be integral multiple of this grain size. To satisfY this condition the slightly

modified periods are shown in the following Table B.S.

Table 8.5: The periods of the sensors.

Sensors

Ts,

Periods 2100 2100 3150 3150 3150 3150 1050

If the client agrees with this modification, according to the theory th.ere will be no overlap

in the sensing time. This can be verified by planing the sensing time in the second

sequence of sensing as shown in Fig. 8.14.

With respect to this design data this SFS can accommodate a maximum of7 sensors. The

sensor's number can be increased either by decreasing the maximum sensing time (in this

case the sensing time of the second sensor is 125) or increasing the smallest period. It

should be noted that in the 2nd sequence of sensing the system is idle for a long period of

time. The CPU utilization factor of this system is shown below

U(3900+ 67)" (53+125+61 +61+ 109+ 67 +;:~+~~~+ 53+ 125+61+ 61 + 109 +67) ,. ~:~ '" 27.67%

(B.47)

lOl

5,

S,

5,

5, -
5,

5, ...
S,

I' 20 21 22 2J 24 27 2829 30 31 12
."••. h~5 "... I ••••• ~'~I~l~

Figure 8.14. The sensmg ttmes dunng the second phase ofsensmg.

This simulation study has shown the use of the proposed novel technique (chapter 2) to

model the requirements afthe example sensor fusion system (Appendix A). Through the

execution path analysis technique the temporal and logical correctness of the modeled

SFS has been studied. The repetitiveness and reachability analysis has been performed.

The overlapping of the sensing periods has been identified by the analysis of sensing

sequence and that has been avoided by the use of the technique proposed in chapler 2.

The resource utilization factor of this example SFS has been measured by the proposed

method (section 2.7).

162

Appendix C_ IVerification of Discrete Event Specifications
Model of SFS by Simulation

C.I Introduction

Every aperiodic event of the DEVR model as shown in appendix B will be served by the

interactions of a set of computing components. It has been assumed that the size of this set is /6.

The lower and upper limits of computation times of these components are shown in Table Cl.

These limits have been selected randomly and vary from 1 to 4 units of time. The input and

output conditions of these components are selected randomly as well and shown in the same

table. The sequential, branching, looping and parallel operations afthe computing components to

serve an event have been considered here. It has been assumed that every event in DEVR model

has appropriate unique I/O interfaces requiring very smB.ll execution times.

Table Cl: The specification of a set of computing components.

Components Execution times va conditions
Lower limit Upper limit fnputs Outputs

0, 3.6 3.6 2 I

C, 3.9 4.0 3 2
0, 3.8 4.0 I 2
0. 3.2 3.4 3 I
0, 4.0 4.0 I I

'" 2.S 3.0 2 I

C, LS 2.0 2 2

'" 3.2 3.6 2 3

'" 3.4 3.8 I 2

0" 2.1 2.3 2 I

0 .. 3.2 3.4 2 2
0 .. 3.2 4.0 2 I

0 .. 2.0 2.1 I I

0 .. 2.7 3.0 I 2
0 .. 3.5 3.7 2 I

0" 2.8 3.0 I I

C.2 The Decomposition of Aperiodic Events in Terms of Interactions

among the Computing Components

The eight aperiodic events of the DEVR model of the example sensor fusion system as modeled

in appendix B will be served by the execution of a set of computing components as shown in

Table C.l. Each execution path of these interactions is analyzed 10 compute the total execution

times required to serve these aperiodic events.

C.2.l The Decomposition of the Aperiodic Event AE1

The representation of the aperiodic event AE, with the interaction of the computing components

is shown in Fig. c.t.

~
p".;~:\p

j :'
Pc : .!

"'.".,/

Figure C.I: The decomposition of the aperiodic event AE I .

The execution paths to serve the aperiodic event AE, is shown by the following equations:

(0)

(0)

(C3)

The maximum total computation time to serve the event AE I is

for sequential execution of parallelizable components, or

for parallel execution ofparallelizable components.

The objective is to maximize the execution time of each computing component with the

constraint that the total execution time of the constituting components does not exceed the

allocated service time of the corresponding aperiodic event in the DEVR model. The maximum

and minimum values of total computation time to serve the event AE1 for sequential execution of

parallelizable components are shown by the following two relations.

S"E1.c",..- 0 +2x2.0+ 2.1 +max.(4.0, 3.0)+ 2.1=4.0+2.1+4.0+2.1"'12.2 (C.6)

S"EI'!"';."=' 0 +2x:1.8+ 2.0 +max.(4.0, 2.8)+ 2.0=3.6+2.0+4.0+2.CFI1.6 (C.?)

From the above two equations, it appears that S"E1.t"... exceeds the allocated service time of AEI

specified by the DEVR model, but S"EI.1,m, is lower than the allocated total time. Here, a decision

should be made to reduce the computation times of appropriate computing components. It should

be noted that these components will be used to serve other aperiodic events within temporal

constraints defined by the DEVR model. A few salient features of the effect of the reduction of

computing time ofa component on the total execution time can be explained by an example. For

example, if the execution time of C, is reduced by .1 unit, the total execution time of the

components 10 serve the event AE, is reduced by .lx2=.2 units. On the other hand, the reduction

of execution time of the component c" from 3.0 units to 2.8 units does not have any effect on the

total execution time. The effect of the reduction of computing time of each computing

component on the service times of all aperiodic events should be studied before the selection of

computing time of any component to maximize the total reduction of execution times 10 serve all

the aperiodic events.

165

C.2.2 The Decomposition of the Aperiodic Event AE2

The representation of the aperiodic event AE! with the interaction of the computing components

is shown in Fig. C.2.

Figure C.2: The decomposition of the aperiodic event ~.

The execution paths 10 serve the aperiodic event~ is shown by the following equations:

(e.S)

(e.9)

(C.10)

(e.ll)

The maximum total computation time to serve the event~ is

for sequential execution of parallelizable components, or

for parallel execution ofparallelizable components.

166

Therefore, using the sequential execution ofall the components

S...E2.t"...=O+3.6+4.o+max.(2.1,3.0)+4.0+0=7.6+3.0+4J)=14.6 (C.14)

S"'E2.l".;,,-O+3.6+4.O+max.(2.0, 2.8)+3.2+0=7.6+2.8+3.2=13.6 (C.15)

The S"'E2.t"... exceeds the allocated lower limit of service time for AE2, but it is smaller than the

upper limit of the allocated time. On the other hand, S"'E2.t",;. is even lower than the lower limit of

the allocated service time.

C.2.3 The Decomposition of the Aperiodic Event AE)

The representation of the aperiodic event AE) with the interactions of the computing components

is shown in Fig. C.3. The execution paths to serve the event AEJ is shown by the following
equations:

......

(C.16)

(C.17)

(C.18)

(C.i9)

Figure C.3: The decomposition of the aperiodic event~.

107

The maximum total computation time to serve the event AEl is

for sequential execution of parallelizable components, or

for parallel execution of parallelizable components.

Therefore, using the sequential execution of all the components

SAE,.t,..;~'::()+3.5+4.0+3.2+max.(2.0,3x3.2)+0=10.7+9.6"'20.3, and (C.22)

SAE,.t........::()+3.7+4.0+4.o+max.(2.1, 3x3.4)+o=II.7+ t 0.2"'21.9 (C.23)

Here, the minimum execution time (20.3 units) to serve the aperiodic event AE} is higher than

the upper limit (19 units) of the service time defined in the DEVR model.

C.2.4 The Decomposition oftbe Aperiodic Event AE..

The representation of the aperiodic event AE4 with the interaction of the computing components

is shown in Fig. CA.

Figure CA: The decomposition of the aperiodic event AE...

168

The execution paths to serve the aperiodic event AE. is shown by the following equations:

(C.24)

(C.2S)

(C.26)

(07)

The maximum total computation time to serve the event AE4 is

SAE..t = AEH.t + c•.t +cz.t+4 C".t + c•. t + AE•.o.t (C.28)

for sequential execution of parallelizable components, or

SAE..t = AE•.i.t + c1 .t + max.(C:2.t , 4 clI.t) + c,.t + AE•.o.t (C.29)

for parallel execution of parallelizable components.

Therefore, using the sequential execution of all the components

SAE,.t"..,..=0.0+3 .6+4.0+4x3.4+3.4+0.0=7.6+13.6+3.4=24.6 (C.30)

SAE..t",;n= O.0+3.2+3.9+4x 3.2+3.2+0.0=-7.1+12.8+3.2-23.1 (C.31)

16'

C.2.5 The Decomposition of the Aperiodic Event AEs

The representation of the aperiodic event AEs with the interaction of the computing components

is shown in Fig. C.S.

Figure C.S: The decomposition of the aperiodic event AEs.

The execution paths to serve the aperiodic event AEs is shown by the following equations:

(C.32)

(C.33)

(C.34)

(05)

(C.36)

(C.37)

170

The maximum total computation time to serve the event AE, is

SAE,.t = AEs_;.t + c, .t +c,..t + 4 CII.t +max. (c•.t. clJ.t. c,.t) + AE5.0.t (C.38)

for sequential execution of parallelizable components. or

SAE,.t => AElJ"t + C, .t + max.(~.t. 4 cll.t) + max. (c•.t. cll.t. cs.t) + AEs •. t (C.39)

for paraJleI execution of parallelizable components.

Therefore. using the sequential execution of all the components

SAE•. t,.,...=O.0+3.6+4.0+4x3A+max. (3.4. 2.1. 4.0)+O.0=7.6+13.6+4.D-25.2 (CAO)

SAE,.!:",;.= 0.0+3.2+3.9+4x 3.2+max. (3.2. 2.0. 4.0)+0.0=7.1+12.8+4.0=23.9 (CAl)

C.2.6 Tbe Decomposition of tbe Aperiodic Event AE,

The representation of the aperiodic event AE6 with the interaction of the computing components

is shown in Fig. C.6.

Figure C.6: The decomposition of the aperiodic event AE6 .

171

The execution paths to serve the aperiodic event AE6 is shown by the following equations:

(C.'2)

(C.'3)

(C.44)

(C.")

(C.46)

The maximum total computation time to serve the event AE6 is

for sequential execution ofparallelizable components, or

for parallel execution ofpara1lelizable components.

Therefore, using the sequential execution orall the components

SAE".1mu =O.0+3.O+max.(4.0, 3.0)+4.0+4.0+3.7+0.0=3.0+4.0+1 t.7=18.7 (C.49)

SAE,.t,..,6 =O.0+2.8+max.(4.0, 2.8)+4.0+3.2+3.5+0.0=2.8+4.0+10.7=17.5 (C.50)

C.2.7 The Decompositioo of tbe Aperiodic Eveot AE7

The representation of the aperiodic event AE, with the interaction of the computing components

is shown in Fig. C.7.

Figure C.7: The decomposition of the aperiodic event AE,.

The execution paths 10 serve the aperiodic evenl AE, is shown by the following equations:

SAE,·PJ=~.;'C;,A.E,-O

The maximum total computation time to serve the event AE, is

for sequential ex~ution ofparalleLizable components, or

SAE.,.t = AE,.;.t + max. (3 cll .t , 2 C;.t)+ AE,.•. t

for parallel execution of parallelizable components.

Therefore, using the sequential execution of all the components

SAE.,.t.n.... =0.0+ 3x3.4+ 2x2.0+0.O=-lO.2+4.0=14.2

SAE•. t".;. -o.0+3x3.2+2xl.8+O.0=9.6+3.6=13.2

(CSl)

(C.52)

(C53)

(C.S4)

(C.SS)

(CS6)

113

C.2.S The Decomposition of the Aperiodic Event AEs

The representation of the aperiodic event AE, with the interaction of the computing components

is shown in Fig. C.8.

..•..-....
Pc" f AEa \ Pd

0-+K)

Figure e.8: The decomposition of the aperiodic event AE..

The execution paths to serve the aperiodic event AE1 is shown by the following equations:

The maximum total computation time to serve the event AE, is

SAE•.t= AE.,;.t+C" .t+C6 .t+3 cl.t + AE'.o.t

for sequential execution of parallelizable components, or

SAE••t= AE..;.t +c".t+ max. (c6.t, 3 cl.t)+ AE,.•. t

for parallel execution of parallelizable components.

Therefore, using the sequential execution of all the components

(C.S7)

(C.S8)

(C.59)

(C.OO)

SAE,.t"..,. =0.0+3.4+ 3.0+ 3x2.0+0.0=3.4+3+6.0=12.4 (C.61)

SAE,.t.m, =O.0+3,2+2.8+3xl.8=6.O+S.4=II.4 (C.62)

174

C.3 The Optimization of the Execntion Times of the Compnting
Components

For this optimization problem. the minimum service times for the aperiodic processes have been

considered. The specified service times for the aperiodic events, attainable service times

considering minimum and maximum executions aCthe corresponding computing components are

shown in Table C.Z. For this optimization problem. it has been assumed that the parallellizable

components have been executed sequentially on a single processor based computing system.

Table C.2: The minimum service limes of the aperiodic events and the corresponding attainable
service times.

Aperiodic processes Allocated service lime Attainable minimum Attainable maximum

execution times execution times

~I- 12 11.6 12.2

AE; 14· 13.6 14.6

AE, IS 20.3 21.9

AB, 16 23.1 24.6

A?$__ .,: 20 23.9 25.2

AE, 18 17.5 18.7

AE, 12 13.2 14.2

AB, IS 11.4 12.4

The allocated service times for AEI, ~ and AE6 are within the range of attainable minimum

and maximum execution times. For these aperiodic processes, the optimization technique as

proposed in section 3.3 will maximize the allocated execution times of the corresponding

computing components. For AEI , the allocated service time is even greater than possible

maximum execution times of the corresponding components. Therefore. optimization technique

will have no effect on allocation time of this event.

The allocated service times of AE.:J. AE4, AEs• and AE1 are even higher than the attainable

minimum execution times. rn this case, it is the job of the designer to bring the allocated service

times of these events within the range of the attainable minimum and maximum execution times.

The designer can change the sensing strategy or redefine the interaction of components to serve

175

these events, or can negotiate with the clients to redefine the system requirements. For this

present analysis, it has been assumed that due to the change of the system requirements the

allocated service times of the aperiodic events AEJ • AE4, AEl> and~ are 21, 24, 24 and 14

units respectively. The modified service times are shown in Table C.3.

Table C.3: The modified minimum service times of the aperiodic events and the corresponding
attainable service times

Aperiodic processes Allocated service time Attainable minimum Attainable maximum

execution times execution times

AE I 12 11.6 12.2

~ 14 13.6 14.6

AE] 21 20.3 21.9

AE4 24 23.1 24.6

AEs 24 23.9 25.2

AE6 18 17.5 18.7

AEr 14 l3.2 14.2

AE, 15 11.4 12.4

The equations to calculate the total execution times of the correspondmg computmg components

to serve these aperiodic events are shown in the Table CA.

Table C.4: The aperiodic events and the execution times of their corresponding computing Iraces
to serve them

Aperiodic events The execution times of the traces to serve aperiodic events

Now the execution times of the corresponding computing components should be optimized

according to the proposed technique as explained in Section 3.3.

176

From preliminary investigation. the components of the specified set as shown in Table C.l which

do not take part in serving these events can be sorted out as shown in Table C.5.

Table C.S: The aperiodic events and the corresponding computing components.

Events Computing components

AE,

AE,

AE,

AE,

AE,

AE,

AE,

AE,

The components c,. c... c,.. and c,.

did not take part in serving these

eight aperiodic events. Therefore,

the optimization of their values will

not be considered here.

It should be noted that there is maxb

(maximum time of the branches)

operator in the equations to

compute the attainable service times

of the aperiodic events by executing

the corresponding components as

shown in Table C.4. Therefore. the

linear optimization will not work

here. The flow chart of the adopted

optimization algorithm is shown in

Fig. C.9.

Figure C.9: Flow chart for optimization.

177

It look 2/ iterations for the optimization of this present problem. After the optimization, the

specified execution times ofthe computing components are shown in Table C.6.

Table C.6: Optimized execution times of the computing components.

Components EXCi::ution times Optimized times
Lower limit Upper limit

C, 3.6 3.6 3.6
C, 3.9 4.0 3.9
C, 3.8 4.0 4.0
c. 3.2 3.4 3.4
C, 4.0 4.0 4.0
c. 2.8 3.0 2.8
C, 1.8 2.0 1.8
Co 3.2 3.6 3.3
Co 3.4 3.8 3.8
Coo 2.1 2.3 2.3

C" 3.2 3.4 3.2
c,: 3.2 4.0 3.2

C" 2.0 2.1 2.0

C" 2.7 3.0 3.0

C" 3.5 3.7 3.5
Coo 2.8 3.0 3.0

The service times of the aperiodic events with these new optimized execution times of the

computing components are shown in Table C.7.

Table C.7: The service times of the aperiodic events after optimization

Aperiodic processes Allocated service lime Attainable service times
after optimization

AE, 12

AI;, 14

AE, 21

AE. 24

AE, 2.

AB, 18

AI;, 14

AB, 15

I\.6

(3.8

20.30

23.40

24.00

17.5

13.2

11.4

178

At each iteration, this optimization algorithm selects the temporally most critical component to

maximize the overall reduction of the service times of all aperiodic events. The profile of the

selection of these temporally critical components for this present optimization problem is shown

in Table CS.

Table e.8: The selection of temporally critical component at different interations.

No of iterations

1 2 3 4 5 6 7 8 9 to II 12 13 14 15 16 17 IS 19 20 21

Components C II Cll C, C, C,: c,: c,~ c" c" c,: C" c" c, C. C. c" c" c" c. c. c.

The ratio of the total reduction of the service times of all the aperiodic components at each

iteration to the decrement of execution time of the temporally critical component is shown in

Fig.C.IO.

Noofilerarions

Figure C.IO: The ratio oCthe total reduction of the service times ofall aperiodic events to the

decrement of the execution time of the temporally critical component.

This simulation study has shown the mapping of the DEVR model of the example SFS to

components level specifications in an optimized way.

179

Appendix D_ IThe Architecture of the Embedded Computing
System to Implement the Example SFS

0.1 Introduction

The interactions of the computing components for the service of the aperiodic events to realize

the example sensor fusion system as defined in the Appendix A have been shown in Appendix C.

The decomposition of the execution paths as shown in sections C.2.1 •...•C.2.8 reveals that the

components interact in both sequential and parallel ways. It should be noted that paralleJizable

components can be executed both in sequential and parallel fashion. Depending upon the mode

of execution of parallelizable components the architecture of the underlying computing system

can be based on a single node or multiple nodes (processors).

D.2 The Architecture of the Computing System while Parallelizable

Components are Executed in Sequential Fashion

Table 0.1: The maximum total computation times to serve the aperiodic events for the sequential
execution ofparalleLizable component~.

Aperiodic events

AE,

AE,

AE,

AE,

AE,

AE.

AE,

AE.

The maximum computation times

S"E,.t ~.i.t + 3 cll .t + 2 e,.t + AE.,.•.t
S"£,.t AEu t+c".t+c6.t+3e,.t+AE..•. t

180

The maximum total computation times to serve the aperiodic events AEI.....AEI for sequential

execution of the parallelizable components are shown in Table D.l. The branching operations

have been shown with max'b operator. These equations also show the maximum computational

complexity to serve the corresponding aperiodic events.

0.2.1 Sensor Fusion System (SFS) Running on Dedicated Single Computing Node

If a dedicated computing node is assigned to execute ,---------...,

these computing components as shown in Fig. 0.1, ~venlSQueue
Computing

the waiting time of each component in the queue is • • • systtm

::~ti:e o;e~::m:~neen:fu:::\:v:v~:·e~~ :: '-F-i-gure-O-.,-,-s,-.ng-le-n-od-e-b-",-ed--'

queue) is equal to the corresponding execution time computing system.

only. In this operational scenario, components arrive in the queue only if the qucue is empty. The

addition of extra computing node will not reduce the service times of the aperiodic events.

Therefore, the computing power of this single computing node should be adequate to guarantee

that Ts :S Te for each computing component. As in Appendix B. the maximum utilization factor

of this computing system will be 27,67% to avoid overlapping in the DEVR model. Moreover,

all the components used to estimate the maximum service time of each aperiodic event will not

always be in operation. They will come in operation only if some specific conditions are met

which depend upon the sensing environment. Therefore, the utilization factor of this computing

system will be lower (may be much lower) than 27.67%.

D.2.2 Multiple SFSs Running on Single Computing Node

To increase the utilization factor. multiple SFS can be implemented on the same computing

system. As explained in section 4.6, DEVR models of multiple SFSs can be interlaced to

increase the utilization factor. For this example problem, it has been shown in section B.6 (to

specify sensing sequence) that there are idle periods in the DEVR model of this example SFS. In

181

this operational scenario, interlacing lbe DEVR model of anolber SFS with the DEVR model of

this example SFS can increase the utilization factor. Due to the interlacing of the DEVR models,

the components will not wait in the queue of the computing node to be executed resulting in zero

waiting time. Therefore, the computing power of the single computing node should be adequate

enough to guarantee that Ts S Te for each computing component of both the SFSs. The addition

ofextra computing nodes will not increase the system performance in terms of service time.

Figure 0.2: Multiple nodes serve requests from
the same queue resulting in reduced waiting time.

component in the queue as explained in

All the computing components used to calculate the maximum total execution times to serve

these aperiodic events will only come in operafion if certain operating conditions of the sensing

environment are met. Therefore, even in the busy period of the DEVR model the computing node

will not be always busy. Therefore, , ,

multiple DEVR models can be

implemented on a single node to share the

same busy period. In this scheme, the

service time of each computing

component (i.e., the execution time and

the waiting time) will be random due to

the randomness in the waiting time which '- -===:.J
is a function of the arrival rate of the

Section 4.3. Under this operational scenario, the addition of extra node will decrease the

waiting time resulting in reduced service time. The request of the execution of the components

will come to single queue and multiple nodes will use the same queue as shown in Fig. 0.2. The

task coordination unit will make sure that the components belonging to the same SFS do not go

into execution on both the processors.

182

D.3 Tbe Arcbitecture of tbe Computing System wbile Parallelizable

Components are Executed in Parallel FasbioD

The maximum total computation times to serve the aperiodic events AE
"

.,AE. for parallel

executions of the parallelizable components are shown in Table 0.2. The parallel operations have

been shown with max.~ operator.

Table 0.2: The maximwn total computation times to serve the aperiodic events for the parallel
executions ofparaJlelizable components.

Aperiodic The maximum computation times

AE, SAE,.t - ~,;.t + max.p (3 cll .t, 2 c,.t)+ AE,o.t

In these execution sequences to serve the aperiodic .--....,...--------,
Queue t

events AE"...,AE.., the maximum level of

para!1elization is 3. Therefore, the underlying

computing system may have three independent nodes

with separate queues to achieve higher temporal

performance as shown in Fig. 0.3. In this

architecture the parallelizable components will be

sent to separate queues. For example, to serve the

aperiodic event AE6 the components c), Cll' and CI~

will be executed simultaneously by the three L--=F:-,g-~:-'D::-."'3."':T:-h'-tM:-,,-p-=:-j:-j,:-j,--J
independent nodes I, 2, and 3 respectively thus independent computing nodes to execute

reducing total computational time. paraJlelizable components parallely.

'83

The utilization factor of this multi­

node based parallel architecture will be

lower than single-node based

architecture. Because, during the

execution of sequentially executable

components the two of three nodes will

remain idle. If it is assumed that the

execution time of each computing

component is equal, the state of

operations of each these of three

computing nodes to serve the aperiodic

event AE. when all the components

come in operation are shown in Fig.

~
o,<rnM'r ~ ~state of

node)

~

Op=tin'rstale of CfIC,. CO'
node 2

f-- -
o,<rnM'rstate of AE... C. C" AE•.o

nodel

0 I 3 4

FIgure D.4: The operattng states ofdIfferent nodes to
serve the aperiodic event AE•.

D.4. Here, the node 3 and node 2 remain idle during 66% and 33% of the total service time of

AE. respectively.

Different approaches to enhance the overall utilization factor as explained in the previous section

for the single node based system can be applied here too.

The modem computing processors utilize pipelined architecture to exploit instruction level

parallelism in order to reduce the required clock cycles per instruction (CPD. This attribute of

these modem processors contributes to the randomness to the execution time of an instruction.

The instruction execution time depends not only upon the computational complexity of the

instruction alone, but also upon the instructions already in different stages of executions in the

pipeline [63]. This has been explained in the following sub·section.

184

D.4 The Randomness in the Execution Time of a Computing Component on
Pipelined Architecture

To understand this problem a closer look can be taken to the pipeline structure of a particular

class of architecture. Due to the superior perfonnance of reduced instruction set computer

(RISe) over compound instruction set computer (elSe), the effect of pipeline structure of the

I\flPS R4000 processor family on the randomness of the instruction execution times has been

studied here. The R4000 uses a eight-stage pipeline structure and sometimes this is called

superpipeline as shown in Fig. D.5 [63]. The pipe stages are labeled and their detailed functions

arc described in the following text.

IS RF EX DF DS TC WB

Figure 0.5: The eight-stage pipeline structure of the R4000 uses pipelined instruction and data
caches [42].

The function of each stage is as follows:

l. IF: First halfofthe instruction fetch.

2. IS: Second half of instruction fetch.

3. RF: Instruction decode and register fetch.

4. EX: Execution.

5. OF: First half of the data fetch.

6. OS: Second half of the data fetch.

7. TC: Tag check.

8. WB: Write back.

185

The dependence of the execution time ofan instruction on other instructions already at different

stages ofexecutions in the pipetine is shown in Fig. 0.6.

Clock number

Instruction number I 2 3 4 5 6 7 8
WRI IF IS RF EX DF DS TC WB

U>DR2.RI IF IS RF stall stall EX DS

US RJ,RI IF IS stall ,mU RF EX DF

pRR4.RI IF stall ,mU IS RF EX

FIgure 0.6. The dependence of the executIOn lIme ofan mstnlctlon on the instructions
already in execution in the pipeline [63].

The variations of dock cycles per instruction (CPr) for the 10 SPEC92 benchmarks [63] are

shown in Table 0.3. The variations of these pipelined CPIs in graphical fonn are shown in the

Fig.D.7.

Table D.3: The randomness or total pipe1ined cpr and the contributions of the four major sources
ofstalIs are shown [63]

Benchmark Pipeline cpr Load stalls Branch stalls Floating point FP structural
(FP) result stalls stalls

compress 1.20 0.14 0.06 0.00 0.00

eqntott 1.88 0.27 0.61 0.00 0.00

espresso 1.42 0.07 0.35 0.00 0.00

goo 1.56 0.13 0.43 0.00 0.00

Ii 1.64 0.18 0.46 0.00 0.00

IDteger 1.54 0.16 0.38 0.00 0.00
average(lA)

doduc 2.84 0.01 0.22 1.39 0.22

mdjdp2 2.66 0.01 0.31 1.20 0.15

"" 2.17 0.00 0.46 0.59 0.12

hydro2d 253 0.00 0.62 0.75 0.17

su2cor 2.18 0.02 0.07 0.84 0.26

FP average 2,48 om 0.33 0.95 0.18
Overall 2.00 0.10 0.36 0.46 0.09

average(OA)

186

The CPI of SPEC92 benchmarks

Figure 0.7 The variations ofthe MIPS R400O's pipeiined cpr ofSPEC92 benchmarks

Table 0.4: The statistics of the variations ofCPI ofSPEC92 benchmarks
Maximwn Minimwn Average Variance (Max.~Min)"100IMin

2.84 1.20 2.00 .21 164%

The statistics of the randomness of the MIPS pipelined CPI of SPEC92 benchmarks is shown in

Table 0.4. In this study, it appears that the maximum clock cycles per instruction (CPO is 164%

higher than the minimum CPI. Therefore, it is not reasonable to depend on the cpr values to

calculate the time required executing a computing component on modem pipelined processing

units. It is recommended to run the computing component on those CPUs to estimate the time

required for its execution. If this point is not considered in the implementation phase of the SFS,

the system may suffer setback to satisfy the temporal specifications of the DEVR and OEVS

models. This setback will result in the development of less reliable sensor fusion system.

Therefore, the consideration of this limitation (from temporal point of view) of modem central

processing units will help us realize reliable sensor fusion system.

187

D.S Randomness in Execution Time of a Computing Component on

Hierarchical Memory Arcbitecture

Memory Level Access time

computing components is shown in Fig. 0.9.

Table 0.5: Typical values ofaecess times of

different levels of memory.

fD"kl
~

Disk array 5ms

Main Memory 70 os

CPU Registers A few clock cycles

Cache (SRAMs) 25 ns

To understand the eontribution of the hier.uchical ,-------------,

memory architecture of modern computing

system on the randomness of the execution times

of the computing components it can be asswned

that the system has caehe (internal and external),

main memory and disk storage. These four levels

of memory hierarchy with increasing capacity and

decreasing speed as shown in FigD.8 [62). The

data transfers sequence between successive levels

of memory hierarchy during the execution of the I...,=~=.;;;;;;;;::;;;;;;:;:;;;;~
'&U'"

To quantify the effect of the presence of

required data in panicular level of memory 00

the execution time ofan instruction, the typical

values of access times of different levels of

memory are shown in Table 0.5 [62].

Figure 0.9:0a13 transfer between adjacenllevels

188

The data access time in disk is 4xl<f times ltigher than that in Cache. Therefore, the availability

of data required for the execution of a particular computing component at different memory

levels will contribute highly to the total execution time of that component.

The memory reference patterns for the execution of the computing components are caused by the

following locality properties [62),[63J:

I. Temporal locality

2. Spatial locality

3: Sequential locality

The spatial and sequential localities depend upon the memory access patterns of a particular

component. The temporal locality not only depends upon the memory access pat1ern of the

particular component, but also upon the data distribution at different levels made by the

executions of the past computing components. Therefore, the memory access time during the

execution ofa particular component not only depends upon the data access pattern ofttle code of

that component alone, but also on the data access pattern of the previously executed components.

The sequence ofexeculion of different computing components 10 serve different aperiodic events

is random due to the randomness of the arrival of aperiodic events. This randomness of data

distribution at different memory levels by the previously executed components will cause

randomness in the execution time of a computing component. To explain the problem, the effect

of different memory reference patterns on the execution times ofa computing component can be

considered as shown in Table D.6.

'"

Table D.6: The effect ofdata distribution on the memory access time

Scenarios Data available Data available Data available Total memory
in Cache in Memory in Disk access time in

40% 30% 20010 ",100 ms

30% 40% 30% ",150ms

20% 50% 30% ",,150ms

60% 40% 0% 4300 os

40% 60% 0% 5200 ns

From the data shown in Table 0.6. it is evident that there is a potential of high degree of

randomness in the execution time ofa computing component due 10 the randomness of the initial

data distribution at different memory levels by the previously execmed components. This

randomness in execution time may result in failure of temporal correctness of the execution of

the computing components to serve different events. As a resull the reliability of the system will

suffer.

One of the solutions of this problem may be achieved by flushing the different levels of memory

at the beginning of the execution of each computing component. This will result in a memory

reference pattern of each computing component independent of data distribution caused by the

previously executed components.

[n this study. the rationale for the embedded computing architecture to implement the example

SFS has been explained. The quantitative measure of the sources of randomness of the

component execution times on modem computing hardware has been provided. This finding will

help ensure temporal correctness in execution time.

Appendix E_ IImprovement of the Reliability and the Required
Overhead for the Incorporation of Hardware
Fault-Tolerance in the Example SFS

E.l Introduction

The example sensor fusion system has seven sensors and these sensors are sensed sequentially. If

it is assumed that this SFS is implemented on a single processor based system and all the sensors

are sensed using the same analog channel, the high·level hardware configuration is as shown in

Figure E.!: The hardware configuration of the example sensor fusion system.

Block 3
Sensor I

Fig.E.!. This study will focus on the improvement ofreliabiHty and the required overhead for the

incorporation of hardware fault-tolerance. The fault-tolerance examined here only addresses the

issues of the failure of sensors. It has been assumed that other components will function properly.

E.2 Hardware, Energy, and Space Overbead to Incorporate Fault-Tolerance

The required overhead to implement fault*tolerance depends upon the techniques used to detect

fault sensors. The voting and estimation are the most prominent fault detection techniques as

explained in Chapter 4.

E.2.1 Overbead to Incorporate Fault-Tolerance Using Voting Technique

Based Faults Detections

If the sensor fault detection scheme is r--------------,
implemented using majority voting

technique, for triple modular

redundancy (TMR) the system will

require 7x3""'2/ sensors and 7 voters.

The Tl\.1R uses three identical sensors

with a majority voter to detennine the

output as shown in Fig.E.2. All these

sensors should be in operation L..._..",._:;:::=:==--,--,--,-,. .J
Figure E.2: Triple modular redundancy

resulting in at least 2000/0 increase in implementation ofsensor I

power to drive the sensor suit. These extra /4 sensors, 7 voters and the required extra energy

source to keep them operational will also require more space. As a result the material and

operation cost will rise. The nature of the applications and enhancement of system reliability may

justify this cost.

192

E.2.2 Overhead to Incorporate Fault-Tolerance Using Estimation Technique
Based Faults Detections

In fault-tolerant sensor system using ...- -,

estimation technique based fault det~tion

scheme as shown in Fig. E.3, it is not

necessary to keep all the redundant sensors

operational. This will reduce the energy

overhead in comparison to hardware based

TMR t~hnique. Triple modular Figure E.J: Estimation technique based triple

redundancy based on estimation technique modular redundant sensor system.

will require the same number of sensors (7x3~21). The hardware based TMR system failed after

the failure ofone sensor as shown in the state diagram as shown in Fig.EA (36], but in estimation

based technique the system will be functioning as long as one fault-free sensor is available. As a

result, it appears that the estimation based technique has the potential to have better reliability

profile than voting based fault detection system.

All three sensors
arefunetiooing

One sensor
failed

Two sensors
failed

Tbreesensors
failed

TMRsensorsystem failed

Figure EA: State diagram using Markov's Model showing possible state transitions for
TMRsystem.

193

E.3 Reliability Profile of a Fault Tolerant Sensor System Using Voting Based

Fault Detection Scheme

If Rl(t) is the reliability of the first sensor and the other two sensors to support triple modular

redundancy have same reliability, the reliability of the first TMR sensor system is as follows

(E.l)

In a TMR sensor system, as long as two of i----;=::::;:========:;-l
the three sensors are functioning correctly,

the sensor system will perform correctly.

In the above equation the reliability of the

voter has been ignored. The reliability

profile of TMR sensor system in

comparison to the reliability of a single

sensor is shown in Fig. E.5. From this

figure it is evident that the reliability of the '-F""gure=,CE<10 .. 5"',"'h:=e:::e;::;;m:;;p-:;;",::::,:-:;;n""o.,.;~",~~;.,oo,o;1el"''''''b,r.;'',,"YO'''f";'---'
TMR system will be higher only if the TMRsystem consisting of the tluee identical sensor

reliability of a single sensor is more than modules with the reliabilit of a sin Ie sensor.

'.

!se~rIs~~t;m IR
i '1---==c.:p~:-7~-----j

j ..

I··,
[1---+7"-+--+-1-------+-----1

50%. In realistic sense, most of the

sensor's reliability is more than 80"10 for

reasonable lifetime. Therefore, this

approach has the potential to increase

system's reliabilily at the cost of extra

overhead. The use of 4-modular

redundancy instead of triple modular

redundancy will require only one

additional sensor. The reliability of 4- '- --'
Figure E.6: The comparison of the reliability

modular sensor system is as follows profile of 4-modular sensor system with those of
TMR sensor system and single sensor.

(E.2)

194

The comparison of the reliability of 4-modular redundancy sensor system with the reliabilities of

TMR and single sensor is shown in Fig. E.6. From lhis graph, it appears that the 4-modular

redundancy has much better reliability profile than that of TMR system at the cost of one

additional sensor.

E.4 Reliability Profile of a Fault Tolerant Sensor System Using Estimation

Based Fault Detection Scheme

A triple modular sensor system as shown in Fig. E.3 will function properly as long as one fault­

free sensor is available. It appears that these three sensors are functioning as independent signal

sources; the signal will be available as long as one source is functioning correctly. The following

relation measures the reliability of such syslem:

(E.3)

I',
I",
Io'f---++-+--*,---+-,

i g••I--I-!----cli"---!--t--,.,."
I ..

Here. the failure of the multiplexer ,------------------,

has been ignored and it has been

assumed that all the sensors have

the reliability. The

comparison of the reliability

profiles of TMR sensor system

using estimation based fault

detection technique with those of

TMR sensor system using voting

technique 10 detect faults. and the '-;==============;;-'
single sensor is shown in Fig. E.7. Figure E.7: The comparison ofreliabitity profiles offault-

tolerant sensor using voting technique based fault detection
From these reliabilities, it appears technique with those of fault-tolerant sensor using estimation

based fault detection technique, and single sensor.that fault-tolerant system using

estimation based fault detection technique has much better reliability profile than that of sensor

system using voting tectmique based fault detection scheme. Moreover, the reliability of the

TrvrR. sensor system using estimation technique is always higher than that of single sensor.

195

E.5 The Comparisoos of the Reliahility Profiles of Different Fault­

Tolerant Sensor Systems and Single Sensor

The graph shown in Fig. E.8 gives a comparison of the reliability profiles of fault-tolerant

systems having different levels of redundancy using voting and estimation techniques for fault

detection.

12010040 60 80
Single sensor reliability R(t)*100

I 1

;,
~ 0.8 f'>'"",,-"'-r+"--7f-r-:+=-"

"~
~ O.6f---++--i-r--fi'-\-;;-cc7=-m1

l
~ 0.4 f----cl-f+--+-+;;S=::+--'-.."
~
~ 0.2 f-ff--:+''-7''---+---+----j---t-----j

Figure E.8: The comparison of reliability profiles of fault-tolerant sensor system having different
levels of redundancy using voting and estimation techniques.

From this graph. it appears that the estimation based technique continues to show bettcr

perfonnance than the voting based technique. It should be noted that unlike voting technique the

estimation based technique does not require separate voter for each sensor module. If the

probability of failure of this voter were brought under consideration, the estimation based fault­

tolerant system would show much better perfonnance than voting based technique.

196

Figure .£.9: The ratios of reliability profile of fault­
tolerant sensor system using estimation and voting

teChniques for fault detection.

For more quantitative comparisons of ,-----------------,

the reliability profiles of fault-tolerant

sensor systems using voting and

estimation techniques, the ratios of

the reliability profiles of TMR and 4­

module sensor systems using

estimation to those of TMR and 4­

modular redundant systems using

voting technique are shown in

Fig.E.9. Forbeuercomparisons in the

region of high reliability values, the

ratio profiles have been shown for the

reliability of more than 30% ofa single sensor.

E.6 The Reliability Profile of the Example Sensor Fusion System at Different

Levels of Fusion

The sensor fusion system specified in appendix A will partially fail due to the failure of any

terminal events (AE I , AE., AEs) as shown in the DEVR model in appendix B.

It is also necessary to quantifY the probability that data will be provided at different levels of

fusion: data fusion, feature fusion, and decision fusion by the supporting sensors. This measure

wilt enable the designer to measure the system performance to extend the functionality of already

designed sensor fusion system. The reliability profiles of the terminals will be first studied in the

following subsections. Then this study will be continued to quantify the reliability profiles of

different levels of fusion. This study is limited to the failure afthe supporting sensors only.

E.6.1 The Reliability Profile of Termioal Event AE I

AE, will
fai[[fboth

=~
fail.

Figure E.IO: Fault tree of AE,
in relation to the failure of the

supporting sensors I and 2.

(£.4)

A fault tree shown in Fig depicts the relationship of the .----------,

failure of the sensors to the failure of AEl. E.IO. The

reliability of the aperiodic event AE l in terms of the

reliabilities of the supporting sensors I and 2 is as foHows:

The reliability profile of the AE, at different levels of

redundancy in the supporting sensor suite is shown in Fig.

E.ll with the assumption that all the sensors have same L...::==~"'::::=:::"'_-J

reliabilities.

~ 'r"T=--+---z~~=-±=-::::=or~~/r---l

! 0.8 f---\-c,f-"L--+"--r'4----".dL---f-----j
]
1l.-8 0.6 f--,I-f-+--f-,+="-+L----+~;,;g::;;;;,,,F=---1

~ ofAE, with

; 0.4 f---!l--+t'--:I-~::---+---",OM"ll-"g~"Iod=o="'&-i-----i

I 0.2 f--#---,.'-I-.¥--I-+--T.~~~---+---f-----j

40 60 80
Single sensor reliability R(t)"1 00

100 120

Figure E.ll: The reliability profile of the aperiodic event AE1

198

E.6.2 Tbe Reliability Profile of Terminal Event AEs

The fault-tree of the aperiodic event AEs in

relation to the failure of the supporting sensors is

shown in Fig. E.12. To support data for the service

of AEs, sensors 4 and 5 play redundant role, while

sensors 4 and 5 are complementary to sensors 6

and 7. The reliability of the aperiodic event AEs in

terms of the reliabilities of the supporting sensors

4,5,6, and 2 is as follows:

The reliability profile of AEs is shown in
Fig.E.t3.

40 60 80
Single sensor reliability R(W100

Figure E.I3: The reliability profile of the aperiodic event AEs.

120

199

E.6.3 Tbe Reliability Profile of Terminal Event AE.

The fault-tree of the aperiodic event AE, in relation to the failure of the supporting sensors is

shown in Fig. E.14.

Figure E.14: The fault-tree of the failure ofaperiodic event AE1.

The derivation of the relation to estimate the reliability of the aperiodic event AE, in tenns of the

reliabiJities of the supporting sensors with the asswnption that all the sensors have same

reliabilities is shown below.

RAE/I) = R(tXI_Q2(f». Q(t) is the unreliability (E.6)

R.lE, (I) .. II- Q2(ln {1-Q2(t)}R(ll (E.7)

R,jE,(tj .. {1~Ql(llIR{I)R(r) (E.B)

R,jE.(!) -[1- {l- R(t)(I-Q1UHQ(t)][{l_Ql(tllll-Ql(I)lR(tl] (E.9)

R,j£.(II_[I_{l~Ql(tll{I_Ql(t)}R(t)][I_II_Ql(t)}R(t)R(t)l1 (E.IO)

RAE, .. [l-[l-ll- R(I)(I-Ql(/IIQ(/l][(1_01(/)1 II - Ol(/lIR(/)1J[1 - [1-11- 0 1(/11 (I-Ol(t)lR(/)J(I-ll- Ql(I)lRCljR(I)lll

(E.Il)

The reliability profile of the AE. at different levels of redundancy in the supporting sensor suite

is shown in Fig. E.15.

~ 1r----j---:;;o?=---±:,...--::o=t=~_:;r-----j

~
~ 0.8 f-"'......~"i'-t'----,L-+-I"'-+'--,C----olL---f------1
'8
l-5 0.6 f------,ItI.-I'----+/---++"'.

"e
~ 0.4 f---+IP""-I~-+"'+",,,,",=lcc---f------1

:s

~ 0.2 f---I--1-¥-----j'---,-'-¥-==*----j---f------1

100 120

Figure E.15: The reliability profile of the aperiodic event AE,.

E.6.4 The Reliability Profile of the Data Fusion with Event AE2

The data level fusion of data from sensors 2, 4, and 5 is ,--------,

performed by the service of event ~. The faull-tree of

the aperiodic event ~ is shown in Fig.E. 16. The

reliability of providing data from the sensors to generate

the event~ is shown below.

The profile of reliable data supply to the aperiodic event

~ is shown in Fig.E.17.

Fig.E.16: The fault-tree of event AE~.

40 60 80
Single sensor reliability R(t)·100

Figure E.17: The re(iability profile of the aperiodic event AE,.

120

202

E.6.5 The Reliability Profile of tbe Data Fusion with Event AEJ and AE4

The reliability profiles of AE) and that ,-------::==-------,
of sensor 2 are the same, because AE)

is provided data only by that sensor.

The fault-tree of the aperiodic event

AE. is shown in Fig.E.18. The

following relation measures the

readability of the event AE4:

The graph shown in Fig.E.!9 gives the L:::==~=::::~====~==:::J
reliability profile of event AE... Figure E.18: The fault-tree of the event AE•.

100 120

Figure E.l9: The reliability profile of the aperiodic event AE•.

203

E.6.6 The Reliability Profile of the Feature Fusion witb Event AE6

Figure E.20: The fault·tree of the
aperiodic event AE6.

R-u:. (t) = (1- (1- RAE, (1»(1- R(t»)RAE•(1) (E.14)

RAEo (t) .. [1- (1- R{t)(l- Q2{t)}Q(I)][{I_ Ql(m {l- Ql(rHR(I)]

(E.15)

The failures of the events AE:z and AE. contribute to the ...-------------.

failure of AE6• The fault-tree of the aperiodic event AE6

is shown in Fig.E.20. The reliability that data will be

provided to AE6 by the sensors is calculated by the

following equations.

The reliability profile of the event AE6 is shown in

Fig.E.21.

Figure E.21: The reliability profile of the aperiodic event AE6•

204

E.6.7 The Reliability Profile of the Data Fusion witb Event AE,

The output of the aperiodic events AE4 and AEj are ,--------..,

redundant. The failure of both of these events will result in

failure of the event AE1. The fault-tree of~ in tenns of the

failure of AE. and AEs is shown in Fig.E.22. The reliability

that data will be provided 10~ by the sensors is estimated

by the following equations.

RA£,(tj=l-{l-RA£.(t»(l-R,,£,{t» (£.16) L,-----:--:---,J
RA£, (tj .. [1- {I- Ql(/l} {I- QlUHR(t)j[l- {I- Ql(tHR(t)R(t)J I

(E. 17)

The reliability profile of this aperiodic event is shown in Fig. £.23.

Figure E.23: The reliability profile of the aperiodic event AE,.

120

205

E.7 Temporal Overbead to Manage Redundancy

The temporal overhead to manage redundancy depends upon me technique used for sensors

faults detection.

In voting technique, if fault occurs during the data acquisition time (DAn as explained in section

5.2.1.2, fault should be cleared instantly. The time required to detect and switch the faulty sensor

with a fault-free one will be very negligible. During this fault clearance period data will be lost

and these data may be recovered using parallel sensing technique as explained in chapter 6 and

the time of this recovery will be small in comparison to the total aUocated time for periodic

process as shown in Table A.). In this case, the lower limits of the service times of the periodic

processes should be extended by this data recovery time. If faults occur during TeAD, service

time of the aperiodic events and WT, the data recovery is not required and voter may have the

potential 10 operate autonomously resulting in no temporal overhead on the DEVR model.

Therefore, in this operational scenario, OAT should include enough time to recovery data lost

during fault clearing period when fault occurs during OAT.

In estimation technique, at the end of every data acquisition r---:::===----...,
session estimation algorithm should be run on these acquired

data to make sure that the sensor is fault-free. This sensing

sequence is explained in Fig. E.24. In this sensing scenario, the

total allocated times for periodic processes as shown in Table

A.3 should include enough time for at least acquiescing data

twice and running the estimation algorithm twice to

accommodate at least one failure between two successive

periodic events. This requirement will create tremendous

temporal overheard on the DEVR model. The estimation

technique has the potential to show better reliability profile in

comparison to voting technique, but this is at the cost of extra ""'~~;:=;:=:"::.,,==::-'
temporal overhead on each periodic process.

Appendix F

-
IDetection of Sensor Faults in
Multi-sensori System by Simulation

F.l Introduction

In this simulation study, four test signals have been composed by the combination of different

harmonic components. The Fourier series representation of the rannation of these test signals is

given by

(F.I)

where t being an independent variable represents time, W == ¥ is the first harmonic, n is the

number ofhannonics, and an and bn are the amplitudes afme hannonics n<'tl.

The specification of this simulation is shown in Table F.1. The study of local means and

variances of these lest signals at fault free condition will be followed by the study of these

parameters at different fault conditions. The study will examine the effects of different instances

of occurrence and different frequencies of transient faults on local statistics. The variations of

these local statistics with the variation of window size and location will also be investigated. The

pennanent faults causing +ve and -ve saturation will only be addressed here.

Table F.l: The specifications of the simulating environment.

207

F.2.! Tbe Cbaracteristics of tbe First Test Signal

The following relation gives the formation of this test signal:

}i(t) .. S+-2sin(2R"20)t)+2cos(21r20)/) (F.2)

The equivalent physical signal, sensor signal with noise, dynamic local mean and variance of the

sensor signal are shown in Fig. F.t. Fig.F.2. Fig.F.3, and Fig. FA respectively.,:."",:.',.r : : ~: r:·"
i ; ! ! ;

!: '. ; '.: 1:.':,."j; : , : ~ i::,:
, ! ! !: ,::':
• I : ! ' I ,

• .., .~,:;~ o. .., Go t,,, .:.. .. _:.':" ."'" <I.,

FIgure F.l: The first phYSical signal.

.,
j.
!.
i.

I:
'.

Figure F.3: The local means orthe first signal.

Figure F.2: The ftrSt sensor signal with noise.

Figure FA: The local variances of the signal.

Table F.2: The statistics aCthe first lest signal.
The domains of the physical signal, ~-S~ign~'l-'-~U~p-p,-,b~o-=~d~~L-ow-'-';"bo-=-d~

sensor signal, local means and variances f--=p;,(;:t)=--+.2c;7;:'.8;:2=+-=~2;:'.1;;7=:....j

of this sensor signal are given in Table g,(t) 8.09 1.85
F.2. I-,Lo-,""."',m"-'C-""'-+-~7~.8~2--+-c-2~.1~8--j

Local variances 0.0517 0.0057

208

F.2.2 The Characteristics of the Second Test Signal

The formation oflhe second test signal is given by the following relation

f:(t)cS+sin«1n-l0jt)+l.5cos{(2Jr20)r)+I.5sin{(41r20)tj (F.3)

The equivalent physical signal, sensor signal with noise, the local means and variances of the

sensor signal are shown in Fig. F.5, Fig.F.6. Fig.F.7, and Fig. F.B respectively.

~. , '
i' Ci: /.
\. I

i:j:
>- I "

" -" _.
Figure F.5: The second physical signal.

~,

J.
I:
i:

Figure F.7: The variations of the local means.

Figure F.6: The second sensor sIgnal With nOise.

Figure F.B. The vanatlons aflocal vanances.

Local variances 0.1169 0.0065

209

F.2.3 The Characteristics of the Third Test Signal

The formation of the third test signal is given by the following relation

!i<t) - S+jsiD(2x2Ot)- LSc:os(2z2Or) + siJl(2K4Ot) + CO$(2x4Ot) +O.$IiD(ZriOt) + O..5eos(2rlOl) (F.4)

The corresponding physical signal, sensor signal with noise, the local means and variances of the

sensor signal are shown in Fig. F.9, Fig.F.lO. Fig.F.ll. and Fig. F.l2 respectively.

Figure F.9: The third physical signal

".f~ : : [.
!. : . . :

!: : . . .-
~. .; .~....: .: ...

Figure F.l 0: The third sensor signal with noise.

Figure F.Il: The local means oftbc sensor signal. Figure F.12: The local variances of the signaL

Table FA: The statistics of the third signal

The domains of the physical signal,

sensor signal. local means and

variances are listed in Table F.4.

Signals Maximum Minimum

PJ{t) 7.00 1.80

83(t) 7.24 1.60

Local means 7.01 1.82

Local variances 0.1298 0.0057

210

F.2.4 Tbe Cbaracteristics of tbe Fourtb Test Signal

The fourth test signal is fonned by the following relation

f)U)- S+.55in(211"60r) + Icos(2K60I} + 0.5siD(2xl2Ot) + cos(2KI2QI)+ OSsin(2.dSOI)+O.scos(2A'ISOt) (F.5)

The corresponding physical signal, sensor signal with noise, the local means and variances afthe

sensor signal are shown in Fig. F.I3. Fig.F.14. Fig.F.15, and Fig. F.16 respectively.

Figure F.13: The fourth physical Signal

Figure F.15: The local mean profile.

.'

J:
!.
l·
I:

Figure F.14: The fourth sensor signal WIth nOise.

Figure F.16. The local vanance profile.

Table F.5: The statistics of the fourth signal.

The range of values of the physical

signal, sensor signal. local means and

variances are listed in Table F.S.

Signals Maximum

p~(t) 7.918

&(t) 8.09

Local means 7.60

Local variances 1.006

Minimum

3.588

3.40

3.72

0.0092

211

F.3 Tbe Analysis of tbe Signature of Transient Faults

The following relation bas simulated the transient signal as a damped sinusoid:

(F.6)

The effect afthe transient on the sensor signal has been modeled by superimposition as shown by

lhe following relation.

((t)_/(t)+ 1,(1 -Io)l(t-,o)

For the initial analysis the specification afthe transient signal is given in Table F.6.

Table F.6: The specification the test transient.

(F.7)

This specified transient and a sinusoidal signal corrupted with this transient are shown in Fig.

F.17(a) and Fig. F.17(b) respectively.

"
Figure F.17(a). A transient signal as damped

sinusoid.
Figure F.l7(b). A smusOId corrupted With the

transient

212

F.3.1 Signature of the Transient Fanlt on the First Signal

"" I'i' I'

i: ,:
I' ,. .-I: ..,/: I'

I:

The local statistics ofa IKhz transient fault ofduration Sms at distance 70ms on the first lest

signal are shown in Fig. F.19, Fig. F.lO. Fig. F.2I. and Table-7.

IB
Figure F.18. The first physical signal 19ure '. I}I': e first sensor Signa! corrupte<l

with transient fault.

"I' 00

J,
.- -.

i'
I'.'J: '-'

19ure :l. I: I ne DCa vanances ot the c:orruptM
sensor signal at transient fault.

figure F.20: The local means of the corrupted
sensor signal al transient faull

Table F.7: The statistics of the first lest signal al transient fault

Signals Maximum value Minimwn value

Absolute Ratio Absolute Ratio

7.82 2.t7

8.103 1.87 1.01

Local means 7.81 2.18

Local variance 2.12 0.005

2IJ

F.3.Z Signature of the Transient Fault on the Second Signal

J.

" I'
i' ;.

~,

i: roo, "
I.

!. I-
i: .- 'r .i:

Figure F.22: The second ph.ysical signal.

Flgun: F.24: The local mean aCthe sensor
signal at transient fault.

Figure .23: The second sensor signa
superimposed with transicnl noise.

~-I­
I-
t"

i ':j::::::;;;:;;;::=+.':;:.:;;.::::t;;;:~.
Figure F.2S. The local vanances of the sensor

signal at transient fault.

Table F.8: The statistics aCthe second test signal at transient fault

Signals Maximum value Minimum value

pit)

Local means

Local variance

Absolute

8.27

8.46

8.20

1.9

Ratio

16

Absolute:

2.90

.69

2.91

.0057

Ratio

0.26

0.87

214

F.3.3 Signature of the Transient Fault on the Third Test Signal

"
Figure F.26. The third physIcal test signal.

I'

r

~ 'r~ffi~~~~~~]
i·' ",':,
!' ".'
I:t=:;t::=:;t=;t:::=:;:=.=J,

I'll'!

' .'.. ...• :........ :•.•.•....

• ' . , I ;

~. : ; I

I.' 'i. ! : I

i. i :

i: '
'0 .:.. .~ .. ,_~ .:.. 0.•

Figure F.27. The tlurd sensor signal corrupted
with transient noise.

I"

!,~.~~~~~j.:
I'...
i',..

rt.' ••

"
Figure F.28. The local mean profile afthe thud Figure F.29. The local vanance profile afthe

sensor signal at transient fault. third sensor signal at transient fault.

Table F.9: The statistics of the third test signal at transient fault

Signals Maximwn value Minimum value

git)

Local means

Local variance

Absolute Ratio Absolute Ratio

7.00 l.80

9.2 1.27 1.63

7.00 1.84

1.79 13.79 0.006

215

F.3.4 Signature of tbe Transient Fault on tbe Fourtb Test Signal

·:11::';,. :•.' :.. .; :•.I: ' , : :

j ~ : i ' i ;
°0 (1.02 o,;:,. ..~

Figure F.30. The fourth physical test signal.

I'

l:
I.•

i'§""~'..I'
i'
i:

Figure F.32. The local mean profile of the
fourth test signal at transient fault.

I'
j'.'
~..
t:
"i:

19ure t'.J I: I ne ounn les sensor Signa
corrupted with transient noise

Figure F.33: The local vanance profile of the
fourth test signal at transient fault.

Table F.lD: The statistics of the fourth test signal at transient fault

Signals Maximum value Minimum value

Absolute Ratio Absolute Ratio

P.(t) 7.9188 3.588

",(t) 8.24 1.01 l.89 0.55

Local means 7.61 3.75

Local variance 2.122 2.10 0.0091

F.4.1 The Transient Fault at DiffereDt Locations on the First Signal

Figure F.34: The transient fault at the origin. Figure F.35: The variances for the fault at origin.

"I'

~:mmf: -"
I'

i: I

Figure F.36: The fault at 18 ms from the origin. Figure :;.37: The vanances or au t at 18 ms.

'II'"lit ° i ~ ! !
i 7 ! I : I

I: ' ; : :
i· :. : i ,:I: "",I~": : ~.."

0 0 O~' .~ .. .-:::. o~ 0,1

:."
Raliosof

i- 7:"·"
•

~i "---I- II- I

L i ~l~os!,f :
I i/__.1.

[gure F:JB:TIle ranos onne peaKS 0 ocar 19ure t' ..j'l: I ne ranos or me peaKs 0 oca
means at transient fault with those at no fault. variances at transient fault with those at no fault.

217

F.4.2 Transient Fault at Various Locations on the Second Signal

~,

t u

I'

il.$~~~~~~~~~~j,;
'._.

1"

L

Figure FAO. The transient fault at the ongm on Figure FAt. The vanance profile of the second
the second tcst signal test signal while transient is at the origin

Figure F.42. The transient fault at 18 ms from Figure FA3. The vanance profile of the second lest
the origin on second lest signal. signal while transient is at 18 ms from the origin

Figure F.44: The ratios of the peaks of local Figure FA5: The ratIOs of the peaks of local
means at transient fault with those at no fault. variances at transient fault with those at no fault.

218

F.4.3 Transient Fault at Various Locations on the Third Signal

Figure F.46: The transIent ault at the origin on Figure F.4?: The variance profile of the third test
the third test signal signal while transient is at the origin

19ure .40: 1 ne transient au t at 10 ms uum lIIe Figure F.49: The vanance profile 0 t-the third test
origin on third test signal signal while transient is at 18 ms from the origin

~"r----r-r---r-~-I

i"r-----tl-t----t------i
!" I ,~,I ~'~m

j:~~
i i/rrnnl""f' I

Figure F.50. The rallos of the peaks of local Figure F.5I. The ranos of the peaks of local
means at transient fault with those at no fault. variances at transient fault with those at no fault.

219

F.4.4 Transient Fault at Various Locations on the Fourth Signal

Figure .:U.. : lnc transient au t at me ongm on Figure F.53: The variance profile of the fourth
the fourth test signal test signal while transient is at the origin

rf-----+-----+---+----'-----1
! "I----+---'--'--i--__I
1"1-----!,-:...:-"-~-tor--+----;----I
i ..L--+,'~"""";~"'Tme....,";"~+--I

, I 1.1""''''.

Figure f.56. The rabos of the peaks of local FIgure F.57. The ratlOS of the peaks of local
means at transient fault with those at no fault. variances at transient fault with those at no fault.

220

F.5.1 Tbe Effect of Window Size on Local Statistics at Transient
Fault on tbe First Test Signal

,
,I"

Fig. F.SS. The transient fault on the First sIgnal. Fig. F.59.The vanances at wmdow wIdth Ams.

_..- _..-
's·

Ig. eratloso e 0 e
means at different window widths.

221

F.5.2 Tbe Effect of Window Size on Local Statistics at Transient
Fault on the Second Test Signal

FIg F 64' The transient fault on the 2nd signal FIg F 6S-The vanances at wlOdow width 4ms

Fig. F.66.The vanances at window width 3ms. Fig. F.67.Thevanances at wmdow width IOms.

Ig. .va: tile ratlos Oll-Ue pe<t:<.s 01 IIle oca
means at different window widths.

222

F.5.3 Tbe Effect of Window Size on Local Statistics at Transient
Fault on tbe Tbird Test Signal

,.,
l,;
L
Ju
I'...
I.:

.1

I,
I

.~.

Fig. F 71 The vanances at Window WIdth 4ms

Fig F n·ne vanances at WIndow WIdth 3ms

~.

i:
I,

i·
j:

Ig. . 4:The ratlos afthe peaks of the oca
means at different window widths.

18. : I lie vanances at wmc10w Wlc1m lurns.

fig. F.7S:The ratios of the peaks aCthe local
variances al different window widths.

223

F.5.4 The Effect of Window Size on Local Statistics at Transient
Fault on lbe Fourtb Test Signal

".' ~.

l i:,,
I I
i : r mafei.....

RaIib.of I

i Rali"!'of """'t'"'Jm i:

'·:111'·'·········
!: I , :

~ "j: iii
I: ! : ! :

j: : ! • :
•• 0.0, .~~~": 'oo •. '

Fig F.76· The transient fault on the 4th signal

Fig F 78 The vanances at wmdow width 3ms

Fig. F.80.The ratios of the peaks of the local
means at different window widths.

),.,
I.

~.:
I»
I'."I.:
Ig. : I ne vanances at wmaow wtom ms.

'''E'···I.: .•.. '.' '.' •I j , ;

I~; ,
I' . . 'r: i .

'0 .:. .::.. ..~.. ' ... G.'

Fig. F.79.The vanances at wmdow Wldth toms.

19. eratloso epe 0 e oca
variances at different window widths.

F.6.1 The Effect of Window Locations on Local Statistics at
Transient Fault on the First Test Signal

til::;'I I!'I:. !:
f> ',' " , ""j. ! ! !
I- ' . ,

"0 .~ o:.:..~-:: .'.. 0.'

Fig. F.82: The transient fault on the 1st signal.

Ig. l' .lS4: 1 ne vanances at wmoow
displacement of 66 ms from the origin

Fig. F.86.The ratios of the peaks of the local
means at different window displacements.

Ig. '.~.): Inc vanances a WUlaow
displacement of 02 ms from £he origin

"[II:"I' , '
f: ; ~ : ~

lu , •• ., .",,'I.: : ' :.:
i.: : . :

o 0.0> t.O< G." "

Ig. '.lS:>:lne vanances at wmaow
displacement of 1.2 ms from tbe origin.

Ig. eranoso cpe 0 e ac
variances at different window displacements.

22S

F.6.2 The Effect of Window Locations on Local Statistics at
Transient Fault on the Second Test Signal

e transient faul ndsi al.
Ig. [" .07: 1 ne vanances a WlnuOW

displacement of 02 ms from the origin

lu
I'...
i~

Ig. ~.W:lhe vananccs at Wl.J1(1(Iw

djmlacement f.66 ms fTnm the nrieri".

~.

i:
I.
i·i: mulrtOJ"1

Fig. F.92.The ranos oClhe peaks of the local
means at different window displacements.

19. r.Y I; 1ne vanances at WlnuvW

acemen fl.2msfro~.. i

F.6.3 Tbe Effect of Window Locations on Local Statistics at
Transient Fault on the Third Test Signal

Fig. F.94. The transient fault on the 3rd signal.

[g. : inc vanances a WlnOOW

displacement of 66 ms from the origin

Ig• .r.'~: 1 ne ranos or me peaKS 0 ltle oca
means at different window displacements.

I"

l.~'~.
\ ..
I''0>
j~

..,_.
Ig. r .".: e vanances a wrn ow

displacement of 02 ms from the origin

fig. F.97.Thevanances at wmdow
di lacement fl.2msfromtheori on.

Fig. F.99:The ratios 0 the peaks oftbe local
variances at different window displacements.

F.6.4 Tbe Effect of Window Locations on Local Statistics at
Transient Fault on tbe Fourtb Test Signal

i':I11:·:···'!~: : : ! :
I . ,! ~

!. : '

j~. .~ .L.J .l ..,
Fig. F. tOO. The ttanslent fault on the 4th signal.

I»
! '."i.'

Ig. .1 U~: I ne vanances at wmoow
displacement of 66 ms from the origin

Ig. .: 1 ne ranos or me peaxs 01 me OC3..1
means at different window displacements.

rm;···i'~ . .
!, .• '
i'" i : . :
I' " ..•
>0:. .~ .:.:..~.~~ ... 0.'

J.:•......•.....•........
I,; , , . .
'.: ,. ,
l,; , . ,
i.: :: . ..,

"0 .0.> o~-::-,

FIg. F.I03.The vanances at wmdow
displacement of 1 2 ms from the origin

~
... . .

:... ~ ; ;

i: -'-----'>,. •• m','",m ,=..~I. ' , ,
L i : i

! i
• ,.5 , ,.. ,._or__..._. no'

Ig. F.105: e ratIos ot"the peaks 0 t e oca
variances at different window displacements.

228

F.7.1 The Effect of Transient Faults of Different Frequencies on the
Local Statistics of the First Test Signal

~
'!'

I" .' '. : :i: ! : ; i
!. : i : :

i :, J .L ,L ,L ..
Fig. F.106. The 500 Hz transient on 1st signal.

I"
I',..
j,;

.-.. .'"
Fig. to : The vanances at 5 z transient.

Fig. F.1lO.The raMs of the peaks ofthe local
means at different transient frequencies.

Ig. : ine vanances a ~vv nZ transient on
1st test signal.

'"l,:
I"
I',..
j,:

Fig. 109: The variances at 10 KHz transient.

Fig. F.III:The ratios of the peaks of the local
variances at different transient frequencies.

'29

F.7.2 The Effect of Transient Faults of Different Frequencies on the
Local Statistics of tbe Second Test Signal

I"c--+--:-+--+~'------1
~ 'b'\--+--+--I"<---+--I
j. \ : I ~ ,
I \! "" / i\ I ..:....
" Y I i '\If!i' i

Fig. F.112: The 500 Hz transient on 1st signal.

Ju
I.:
i.:

•g,

mini'mum

19. I:lhcratlosotthepeakso t e oca
means at different transient frequencies.

'"L
L
Ju
! '
iu

!.:
Ig. ll.): IUevanancesat JVV ztranslenton

1st test signal

Fig. tt5. The vanances at 10 KHz transient.

Ig. eraloso ep 0 e oca
variances at different transient frequencies.

230

F.7.3 The Effect of Transient Faults of Different Frequencies on the
Local Statistics of the Third Test Signal

i)I'"j_' " i , '.

}: , I 1 '
I ' , ' ,

i:. .l .~..L .l .'

I"

l,;
L
I"
I-."j.:

Fig. F.II8: The SOO Hz transient on 3rd signal. Ig. ilY: 1he vanances at ~tHJ Hz transient on
3 si I

Fig. 1 0: The vanances at S KHz transient.

Ig. '.L,U.:ineranOSotmepeaKsotme oc
means at different transient frequencies.

'.""r i : iii
i: : '. : ; :
!, '-'~

, i , : , I

°0 ..:,. ._~.,... ~ .l.. ,..;..

FIg. 121: The vanances at 10

i
T I

I"

l.:
~ ­I ..
j,
i,..

I.;

F.7.4 The Effect of Transient Faults of Different Frequencies on the
Local Statistics oftbe Fonrtb Test Signal

'!Ii'j"
;.,. '
I '.
"
j: .! :.._.~ .,.

Fig. F.124: The 500 Hz transient on 4th signal.

Fig. 126. The vanances at 5 KHz transient.

'11'"
t: : I :,. , , . ,
). I i I ! •

i. I ' I ,

I. • 0 R.ol~'" ori . 'm,m m' .=m
. '
•• , ••:.::.,"'... _ 1000 ,_

Fig. F.128:The ranos of the peaks of the local
means at different transient frequencies.

"'11j'
!.': : : : :

I:: • : : .
!.: '".... ~.~
Fig 125' Thevanances at 500 Hz transient

'''II····I,; • , , •
f,; •i, • • . •
E': : : :!.. . : :.

•• 0;" .~ ..--:~~ r 0.'

Fig. 127: The variances at 10 KHz transient.

'II""",_.. ; : : : :t ~".'" , i •

j,o ! : :R.oti.o< or! :
: : I : ~

°0
.- ,...=........::::::............ '....

FIg. F.129:The ratIOs of the peaks of the local
variances at different transient frequencies.

Appendix G_ IPerformance of a Fault Tolerant Optical
Sensor Using Triple Modular Redundancy

G.I Introduction

An ex.periment was set up to study the potential of achieving sensor fault tolerance using triple

modular redundancy. This study included the verification of the scheme (0 restore sensor data

lost during fault clearance interval using parallel sensing technique proposed in Chapter 7.

Three photocells of same specifications were used 10 build the triple modular sensor system. The

specifications of these photocells are shown in Table G.!.

Table G.I: The specifications of the optical sensors (photocells)

Each of these photocells was used to

control the gain of an amplifier with

the variation of its resistance due to the

change of illumination level shown in

Fig. G.t. The input voltage is a

reference negative de voltage which is

amplified to the output as function of

illumination

Eq.(G.l).

v.

level as shown in '--:::-,..__--, -,----'
Figure G.t: An optical sensor whose output voltage

level is function of illumination level.

233

(G.!)

Therefore, the output voltage of the optical sensor shown in Fig. G.t is directly proportional to

the illumination level (or inversely proportional to the value of resistance RI).

G.2 Fault-Tolerant Optical Seusor Usiug Triple Modular

Redundancy

A triple modular optical sensor system was realized connecting three optical sensors having same

specifications to an analog multiplexer as shown in Fig. G.2. A microcontroiler

(MC68HC811E2FN) based single hoard computer was used for the detection of fault sensor and

generation ofcontrol signals for the multiplexer to change the faulty sensor with fault-free one. A

software running on the microcontroUer based single board computer compares the signals from

three sensors with each other, and, based on majority voting technique, detects the faulty sensor.

If the fault channel is on as the multiplexer output, the channel is switched with a fault-free one

by generating an appropriate control signal.

Artificial faults were generated by making a short circuit across the sensor, by disconnecting the

sensor from the circuit, and by creating optical shadow on the sensor. Successful detection and

followed by the switching of faulty channel with fault-free one as the output of the multiplexer

was demonstrated. It should be noted that this triple modular redundancy based fault-tolerant

optical sensor system couldn't detect faulty sensors if more than one sensor fail. It was noticed

that the output signal dipped during fault clearance interval as shown in Fg.G.3. These dips were

created to clear faults caused by artificial shadow on the photocells. The detection of these dips

and the schemes for the minimization of the effect of these dips are explained in the following

subsections.

'3<

Select O"Ch;mnel
B A yVl
L L ...-,(1)

L H x!(f)
H L XJ{I)

H H X

>----J'--::;::~~;::.-.-+-I Multiplexer y(1)

Figure G.2: An optical fault tolerant sensor using triple modular redundancy.

23S

-1

-2

-3 O~---'-10"O;;;-O-"""'2~OO"'O-~3'"'O"'OO----;'''OO;;;-O----;5'''OO'''Oc--N!6000
Samples ofdala acquired over 60 seconds

Figure G.3: The dips caused on the output signal from fault tolerant sensor module during fault
clearance intervals.

G.3 The Detection of Fanlt Clearance Interval

The software nuuting on the microcontroller board detects ilie faulty sensor and switches the

output channel to the fault free sensor by generating control signal for the multiplexer. Therefore,

the change in control signal can be used to detect the fault clearance interval as shown in Fig.

GA. The duration of fault clearance interval will depend upon particular situation. This window

dimension can be calculated by comparing the signal value of the faulty sensor with that from a

freecne.

236

Change in

v---V ~~~\~~
1

-2

-3
o 1000 2000 3000 4000 5000

Samples of data acquired over 60 seconds
6000

Figure G.4: The detection of fault clearance instances by monitoring the changes of the control
signal sent to the multiplexer by the microcontroller board.

G.4 Minimization of the Effects of the Dips Caused during Fault

Clearance Intervals

After the detection of fault clearance instances from the change of control signal, the data sample

of faulty sensor around these instances can be compared with those of fault free sensor to

measure the duration of the dips. Then for the duration of the fault clearance interval, data can

be copied from the fault free sensor to replace the corresponding data samples ofilie output data

stream to reduce the effect of these dips. This can be explained by removing the first dip. At the

beginning, the multiplexer outputs the signal from the first sensor. The signals from the first

sensor and the second sensor are shown in Fig. G.5 and G.6 respectively.

237

~ '1-,,..-------,,-----"""i 0 v

-30~--,,'OOO;;;:O---,;20O;OO;;--3"'O"'OO;----,,~OO;;;;O:---.5'OOO;;;:O-~60'OO
Samples of data acqoired over 60 seconds

Figure G.5: The data stream from the first sensor.

~

~ 't-----v----------r-----IJ0

-30~--,-""'O~O-~2;;;;O"'OO:--,3"'OO;;;;O-----,,,,"'OO;;----,""'---,---=!
Samplesofdalaacquiredover60seconds

Figure G.6: The data stream from the second the sensor.

238

The location of the first dip caused on the output signal shown in Fig.G.4 corresponds to Ihe first

dip caused on the first signal as shown in Fig.G.S. At this location there is no dip cauSed on the

second sensor signal. Therefore, if both the second sensor signal and the output signal of the

multiplexer were recorded simultaneously, the first dip couJd have been removed by the scheme

proposed in Chapter 7 as shown in Fig.G.7.

Tbef1l'5ldiphasbeen
«:moved. The «:ll1.lining
effe.:tisd"eIQdissimilar

~
"&nalleVCISgeDeratedbY

~ 1 different sensors.

.E

10 u
-2

-3 o!;------c,o,:,o;no---,2,:,oo'''oc-~3"'0\;;00,--...0;';;ono----.5~00"'Oc-c-.'"'0'00
Samples of data acquired over60 seconds

Figure 0.7: The processed output signal from a fault tolerant sensor module after removal of the
first dip.

'"

In the similar way. the remaining dips can be removed and the processed output signal after the

removal of all dips as shown in Fig. G.S.

Dipsbavebeeuremoved. The
causc of the rcmaining effects
IstbedissimiJar"valuesoftbe

seusorsignals.

-,
-2

-3!-0--~''''00~0-~2'''00~0--'''30'=00~-~40'''0~0-~5'''00'''0~-='6000
Samples of data acquired over 60 seconds

Figure G.S: The processed output signal ofa fault tolerant sensor module with reduced effects for
dips caused during fault clearance intervals.

The results of an experiment on fault-lolerant sensor system reported here explain that there is a

potential to detect the faulty sensor and to replace it with fault-free one using triple modular

redundancy. It has also been demonstrated that the effect of the dips caused on the output signal

during fault clearance interval can be reduced by the parallel sensing scheme proposed in

Chapter?

'"

	001_Cover
	002_Inside Front Cover
	003_Blank Page
	004_Blank Page
	NQ42486_page_0000
	NQ42486_page_0001
	NQ42486_page_0002
	NQ42486_page_0003
	NQ42486_page_0004
	NQ42486_page_0005
	NQ42486_page_0006
	NQ42486_page_0007
	NQ42486_page_0008
	NQ42486_page_0009
	NQ42486_page_0010
	NQ42486_page_0011
	NQ42486_page_0012
	NQ42486_page_0013
	NQ42486_page_0014
	NQ42486_page_0015
	NQ42486_page_0016
	NQ42486_page_0017
	NQ42486_page_0018
	NQ42486_page_0019
	NQ42486_page_0020
	NQ42486_page_0021
	NQ42486_page_0022
	NQ42486_page_0023
	NQ42486_page_0024
	NQ42486_page_0025
	NQ42486_page_0026
	NQ42486_page_0027
	NQ42486_page_0028
	NQ42486_page_0029
	NQ42486_page_0030
	NQ42486_page_0031
	NQ42486_page_0032
	NQ42486_page_0033
	NQ42486_page_0034
	NQ42486_page_0035
	NQ42486_page_0036
	NQ42486_page_0037
	NQ42486_page_0038
	NQ42486_page_0039
	NQ42486_page_0040
	NQ42486_page_0041
	NQ42486_page_0042
	NQ42486_page_0043
	NQ42486_page_0044
	NQ42486_page_0045
	NQ42486_page_0046
	NQ42486_page_0047
	NQ42486_page_0048
	NQ42486_page_0049
	NQ42486_page_0050
	NQ42486_page_0051
	NQ42486_page_0052
	NQ42486_page_0053
	NQ42486_page_0054
	NQ42486_page_0055
	NQ42486_page_0056
	NQ42486_page_0057
	NQ42486_page_0058
	NQ42486_page_0059
	NQ42486_page_0060
	NQ42486_page_0061
	NQ42486_page_0062
	NQ42486_page_0063
	NQ42486_page_0064
	NQ42486_page_0065
	NQ42486_page_0066
	NQ42486_page_0067
	NQ42486_page_0068
	NQ42486_page_0069
	NQ42486_page_0070
	NQ42486_page_0071
	NQ42486_page_0072
	NQ42486_page_0073
	NQ42486_page_0074
	NQ42486_page_0075
	NQ42486_page_0076
	NQ42486_page_0077
	NQ42486_page_0078
	NQ42486_page_0079
	NQ42486_page_0080
	NQ42486_page_0081
	NQ42486_page_0082
	NQ42486_page_0083
	NQ42486_page_0084
	NQ42486_page_0085
	NQ42486_page_0086
	NQ42486_page_0087
	NQ42486_page_0088
	NQ42486_page_0089
	NQ42486_page_0090
	NQ42486_page_0091
	NQ42486_page_0092
	NQ42486_page_0093
	NQ42486_page_0094
	NQ42486_page_0095
	NQ42486_page_0096
	NQ42486_page_0097
	NQ42486_page_0098
	NQ42486_page_0099
	NQ42486_page_0100
	NQ42486_page_0101
	NQ42486_page_0102
	NQ42486_page_0103
	NQ42486_page_0104
	NQ42486_page_0105
	NQ42486_page_0106
	NQ42486_page_0107
	NQ42486_page_0108
	NQ42486_page_0109
	NQ42486_page_0110
	NQ42486_page_0111
	NQ42486_page_0112
	NQ42486_page_0113
	NQ42486_page_0114
	NQ42486_page_0115
	NQ42486_page_0116
	NQ42486_page_0117
	NQ42486_page_0118
	NQ42486_page_0119
	NQ42486_page_0120
	NQ42486_page_0121
	NQ42486_page_0122
	NQ42486_page_0123
	NQ42486_page_0124
	NQ42486_page_0125
	NQ42486_page_0126
	NQ42486_page_0127
	NQ42486_page_0128
	NQ42486_page_0129
	NQ42486_page_0130
	NQ42486_page_0131
	NQ42486_page_0132
	NQ42486_page_0133
	NQ42486_page_0134
	NQ42486_page_0135
	NQ42486_page_0136
	NQ42486_page_0137
	NQ42486_page_0138
	NQ42486_page_0139
	NQ42486_page_0140
	NQ42486_page_0141
	NQ42486_page_0142
	NQ42486_page_0143
	NQ42486_page_0144
	NQ42486_page_0145
	NQ42486_page_0146
	NQ42486_page_0147
	NQ42486_page_0148
	NQ42486_page_0149
	NQ42486_page_0150
	NQ42486_page_0151
	NQ42486_page_0152
	NQ42486_page_0153
	NQ42486_page_0154
	NQ42486_page_0155
	NQ42486_page_0156
	NQ42486_page_0157
	NQ42486_page_0158
	NQ42486_page_0159
	NQ42486_page_0160
	NQ42486_page_0161
	NQ42486_page_0162
	NQ42486_page_0163
	NQ42486_page_0164
	NQ42486_page_0165
	NQ42486_page_0166
	NQ42486_page_0167
	NQ42486_page_0168
	NQ42486_page_0169
	NQ42486_page_0170
	NQ42486_page_0171
	NQ42486_page_0172
	NQ42486_page_0173
	NQ42486_page_0174
	NQ42486_page_0175
	NQ42486_page_0176
	NQ42486_page_0177
	NQ42486_page_0178
	NQ42486_page_0179
	NQ42486_page_0180
	NQ42486_page_0181
	NQ42486_page_0182
	NQ42486_page_0183
	NQ42486_page_0184
	NQ42486_page_0185
	NQ42486_page_0186
	NQ42486_page_0187
	NQ42486_page_0188
	NQ42486_page_0189
	NQ42486_page_0190
	NQ42486_page_0191
	NQ42486_page_0192
	NQ42486_page_0193
	NQ42486_page_0194
	NQ42486_page_0195
	NQ42486_page_0196
	NQ42486_page_0197
	NQ42486_page_0198
	NQ42486_page_0199
	NQ42486_page_0200
	NQ42486_page_0201
	NQ42486_page_0202
	NQ42486_page_0203
	NQ42486_page_0204
	NQ42486_page_0205
	NQ42486_page_0206
	NQ42486_page_0207
	NQ42486_page_0208
	NQ42486_page_0209
	NQ42486_page_0210
	NQ42486_page_0211
	NQ42486_page_0212
	NQ42486_page_0213
	NQ42486_page_0214
	NQ42486_page_0215
	NQ42486_page_0216
	NQ42486_page_0217
	NQ42486_page_0218
	NQ42486_page_0219
	NQ42486_page_0220
	NQ42486_page_0221
	NQ42486_page_0222
	NQ42486_page_0223
	NQ42486_page_0224
	NQ42486_page_0225
	NQ42486_page_0226
	NQ42486_page_0227
	NQ42486_page_0228
	NQ42486_page_0229
	NQ42486_page_0230
	NQ42486_page_0231
	NQ42486_page_0232
	NQ42486_page_0233
	NQ42486_page_0234
	NQ42486_page_0235
	NQ42486_page_0236
	NQ42486_page_0237
	NQ42486_page_0238
	NQ42486_page_0239
	NQ42486_page_0240
	NQ42486_page_0241
	NQ42486_page_0242
	NQ42486_page_0243
	NQ42486_page_0244
	NQ42486_page_0245
	NQ42486_page_0246
	NQ42486_page_0247
	NQ42486_page_0248
	NQ42486_page_0249
	NQ42486_page_0250
	NQ42486_page_0251
	NQ42486_page_0252
	NQ42486_page_0253
	NQ42486_page_0254
	NQ42486_page_0255
	NQ42486_page_0256
	NQ42486_page_0257
	NQ42486_page_0258
	NQ42486_page_0259
	NQ42486_page_0260
	NQ42486_page_0261
	NQ42486_page_0262
	NQ42486_page_0263
	NQ42486_page_0264
	NQ42486_page_0265
	NQ42486_page_0266
	NQ42486_page_0267
	NQ42486_page_0268
	NQ42486_page_0269
	NQ42486_page_0270
	NQ42486_page_0271
	NQ42486_page_0272
	NQ42486_page_0273
	NQ42486_page_0274
	NQ42486_page_0275
	NQ42486_page_0276
	NQ42486_page_0277
	NQ42486_page_0278
	NQ42486_page_0279
	NQ42486_page_0280
	NQ42486_page_0281
	NQ42486_page_0282
	NQ42486_page_0283
	NQ42486_page_0284
	Z001_Blank Page.jpg
	Z002_Blank Page.jpg
	Z003_Inside Back Cover
	Z004_Back Cover

