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Abstract

A major problem plaguing programmable robot-based assembly systems today

is the lack of communicatiOD between robot programming and assembly planning.

Whereas a robot learns to perform assembly tasks through programming, it assem­

bles mechanical parts into a product by foUowing the assembly sequence determined

by planning. Robot programming and assembly planning have been dealt with mostly

as two separate research topics. Nevertheless, the internal representation of parts and

their topological and geometrical relationship required by planning could be automat­

ically synthesized from tbe information obtained in programming. This observation

becomes a view in adV1lIlced assembly automation systems that integrate robot pro­

gramming and assembly planning for better performance and higher efficiency.

This thesis addresses the issues of graphical integration of the robot progra.mro.iDg

process and the sequence planning process for mechanical assembly. It treats the r0­

botic: assembly sequencing as a motion-planning problem with special constraints.

During the programming phase, the order of effective assembly actions is built once

a robot effectively performs an assembly task. AJ; a result, the information of an as.­

sembly scene and ordered robotic actions can be produced and stored. In the unified

system presented in the thesis, the sequence planning process directly retrieves this

information for automatic and fast planning. Since analyzing ordered robotic actions

iv



and executiDg partial geometric checks are usually much fast than perfonniDg full geo­

metric checks, this integrated approach offers significant computational advantages

in comparison with other 'full-automatic' planning approaches. In addition, the ap­

proach feeds all the feasible sequences generated from the planning process to the

programming proceSs, and provides the 'automatic nrprogra.m.miug' feature to the

programm.ing process. As a link between the programming and piaIwing processes,

this integrated approach presents a richer form of communication between them,

which is necessary to efficiently solve real-world robot-based automation problem.

The validity of this approach is justified with a prototype system, namely INTEG.

Experimental results are also given in the thesis that include examples varying from

simple to complex assembly tasks.
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Chapter 1

Introduction

Tomorrow's product systems need a radical change to the conduct of manufactur4

ing business. With the revolutionary advances in information, telecommunication,

and computing technologies, the impact on the Computer-Integrated ManufaetUJ"4

ing(CIM) is shifting tbe tradition 'factory integration' philosophy to a 'virtual fac­

tory' management philosophy (31, 25, 56, 39]. A variety of supporting techniques

for achieving the paradigm of 'virtual factory' is promising and bas been attracted

much attention. Concurrent Engineering(CE) is defined as a systematic approach to

the integrated, simultaneous design of products and processes, including manufac­

turing and support (48, 29]. Virtual Manufacturing(VM), in comparison, is defined

to be an integrated, synthetic manufacturing environment exercised to enhance all

levels of decision and control [13, 14]. The work presented in this thesis, towards the

application of CE and VM techniques to the development of robot-based assembly

systems, investigates tbe integration of robot programming and sequence planning

for assembly automation. The following sections of this chapter describe thesis scope

and motivation, research issues and objectives, and the overall structure of the thesis.



1.2 Motivation

1.1 Thesis Scope

This thesis addresses the problems of exploring robot-based assembly with funda­

mental capabilities required by an iDtelligent and autonomous system. Aithough

robot-based assembly automation covers a wide range of processes [45,8, 40, 18], the

thesis concentrates mainly on the integration of the robot programming and sequence

planning processes for 'optimal re-programming'. This is because they are two ba­

sic processes that not only robot-based assembly automation requires hut also the

concept of concurrent engineering applies to. While robot programming is a process

of improving robotic operations [46], a.ssembly plo.nning is a process of determining

a set of instructions for mechanically assembling a product from a set of subcompo­

nents (35]. These two research areas have emphases of their own, and have been dealt

with as two different topics. This thesis posits at the interlacing problems - 'program­

ming for planning' or 'planning for programming'. It endeavors to seek the intrinsic

connections between them, and to incorporate them so that design, programming,

planning, scheduling and re-programming activities can be better practiced.

1.2 Motivation

The research of an integration of robot programming and assembly sequencing is ini­

tiated for at least three reasons. FiISt, recent strides toward Concurrent Engineering

call for a tighter integration of assembly planning with robot task planning [58, 241.

This is because a significant amount of assembly cost can be cut by re-planning the

assembly tasks, and re-programming robots. Secondly, there are close relationships
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between robot programming and sequence pla.nn.ing. In order to choose an assembly

plan, as an example, one must kDow how the tasks will be executed; but the way tasks

are executed depends on the choice of the assembly sequence.. As a result, the output

of assembly planners should he compatihle with what is required by task and motion

planners (36]. Finally, programming and planning can be perfonued more efficiently

and can be further automated if they are compatible with eac.h o-tller. For instance,

there are many common cases in which the re..design of a rohot program is necessary

or desirable. In these cases, 'automatic re-programming' is preferable. The premise

of 'automatic re-programming' is that a robot can practice an assembly plan o!f.line,

use that experience to generate other feasible assembly plans, and re-program itself

for effectiveness and productivity [72].

The exchange of data between object modeling, assembly planning, robot pro­

gramming, and motion planning is an open question although cc>osiderable efforts

have been put in each of these areas. Publications on integrated models for robot

progra.mming and sequence planning are still rare, and the majority of related work

rests either in assembly sequence planning (5, 47, 35, 50, 451, where the manipulator

constraints or the virtual process ofgenerating assembly sequences are not concerned,

or in off·line robot progra.mmi.ng [34, 23, 26, 12, 621, where the functions of assem­

bly sequence planning are ignored. Discussions on 'automatic re-programming' as a

complex problem-solving activity are uncommon, which suggests t:hat generic robot

programming techniques usually do not provide 'automatic re-programming' features.

After an initial period of developing stand-alone programming and planning systems,

tbe need of integrating them became apparent. Advanced industrial manufacturing
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requires the extension of existing robot programming and planni.Dg techniques, and

further exploration of new techniques. The result will be the development of new

robot programming techniques.

1.3 Research Issues and Objectives

Two main objectives underlie this resean:h: one is to investigate an integrated ap­

proach that makes the robot programm.ing and planning processes as user-friendly as

possible; the other is to design an integrated model for off-line robot assembly and

to use it in robot programming and sequence planning. As the integration of pro­

gramming and planning processes is focused in the thesis on the extension of off-line

programming systems by adding functions of sequence planning, the following three

questions are fundamental:

1. What information is required to develop a schema for the integration of the

robot programming process and the assembly planning process? Since generally

a very large amount of information is required to synthesize these two processes,

it is necessary to identify and extract the most relevant information for their

integration.

2. What kind of methodology can be used to create a robot workcell that is ca­

pable of programming a robot off-line? The method must be convenient for

programming a robot, and effective for solving assembly sequencing problems

later.
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3. How to design and develop an assembly planner that facilities sequence planning

in an off-line programmingsystem? Assembly planning is strongly dependent on

manipulation machines. For example, ao assembly plan that is ideal for assem­

bling may not be suitable for machining. Hence, approaches to computer-aided

assembly planning are influenced by the type of selected robot task processes.

These three questions are also the problems that this thesis research is to address.

The first problem needs an integrated model for robot programming and sequence

planning. Sucb a model is intended to integrate diversified expertise and to improve

the fiow of infonnation from the programming and sequencing processes. The second

problem needs an understanding of relations between robot and human so as to

develop a scheme to program a robot off-line. The scheme should facilitate both

interactive programming and automatic sequencing. And the third problem needs to

study the effect of robot assembly operations on assembly planning at a higher level of

abstraction without certain elements of detail. This research explores the possibility

of implementing assembly sequencing algorithms for problems of a manageable size

with special robot operations.

To sum up, this thesis research is to establish a mapping between robot pro­

gramming and sequence planning and to identify basic issues related the systematic

synthesis of these two processes. Relevant issues are taken as the specific objectives

of the thesis study. In order to achieve the objectives, an integration of both robot

programming and sequence planning is essential. The ultimate objective of this re­

search is to develop an integrated approach of creating intelligent and autonomous

robot-based assembly systems witb a high degree of flexibility, which can be used
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directly to improve assembly processes of manufacturing.

1.4 Thesis Structure

There are seven chapters in this thesis. The structure of the thesis reflects the struc­

ture of the research itself. A research introduction has been given in tbis chapter,

while the rest of this thesis is organized as follows.

Chapter 2 presents a literature review of related areas. It has two sections. The

first section describes various approaches to robot programming, especially to off-line

programming. And the other section describes existing approaches to computer-aided

assembly pla.nn.ing, with discussion about their limitations.

In Chapter 3, the thesis proposes an integrated approach to robot-based assem­

bly automation through an integration model. This approach features an 'automatic

re-programming' functionality. Problem-domain concepts, including robotic assem­

bly definition and representation, are also given in this chapter.

Chapter 4 first gives a formal geometric definition to the robot assembly prob­

lem, then discusses the direct kinematics problem which determines the position and

orientation of a robotic simulator from a given state of all the joints, and finally

reaches to a definition of the 'teach-in' process.

Chapter 5 describes an approach to the extension of off-line programming sys­

tems by adding an assembly sequencing feature. As the core of this thesis, this chapter

identifies the basic meaning of robotic assembly sequencing. And then it presents an

assembly planner, which works in a 'semi-automatic' fashioo and generates all the
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feasible assembly sequences for a robotic assembly from the result of off-line robot

progra.m.mi.ng.

Chapter 6 describes the development of a proof-of-roncept prototype, namely

INTEG, for robotic assembly programming and sequence planning. It also provides

a set of experiment examples to demonstrate the operation of INTEG.

The last chapter, Chapter 7, summarizes the main research accomplishments

of this thesis, describes the anticipated. impact, and highlights several contributions

to computer-aided manufacturing and robot-based assembly automation. This chap­

ter concludes witb a discussion of the current limits of the thesis research and the

directions for future research.



Chapter 2

Review of Related Research Work

This chapter presents a summary of research work in the area related to the

topic of this thesis. In the last two decades, many researehers have addressed robot

progra.mm.ing and assembly planning in different manufacturing applications, An

overview of their work and the relative techniques is particularly useful to developing

a schema for the integration of robot programming and sequence planning. The

review starts with robot programming and tben assembly planning. A number of

approaches adopted or developed for off-line programming and assembly planning

are also presented with discussions about their limitations.

2.1 Robot Programming

A robot is a general purpa>e programmable manipulator. £t can be used to perform

tasks that it has been 'taught' to do. The process of teaching a rohot is also called

'programming' the robot (38, 46, 44, 41j. There are different programming methods

available to meet the requirements of different programmer skills and the complexity
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of the task, as well as the related productivity and safety issues. Teaching a robot is

in fact to program it to perform i!L specific task. A luge part of robot programming

involves defining a path for the robot to follow. There are two main approaches of

robot teaching: on-line programming and off-line programming. When using on-liDe

methods, the robot itself has to be used during progra.mmi.ng. In comparison, the

off-line approach allows the user to program tasks on a different computer system

and then download task application programs into the robot's control system. More

discussions 00 on-line programming methods can be found in [71, 631. The olf·line

methods, as of interest to this thesis research, are discussed below.

2.1.1 Off-line Programming

Off-line programming suggests developing robotics control programs away from the

robot system and perhaps on a different computer [63J. The idea has been around

for years but it gained importance only recently due to the integration of simulation

paclcages, computer-aided design, and computer graphics into one programming envi·

rooment. There are more advantages when using off-line programming environment.

Several reasons for programming robot off-line are Ested as follows .

• Reduction in robot down-ti.me: Using off-line programming, if an engineer.

ing change is made, the robot's programs may be developed off-line and loaded

into the robot's system. Off-line programming makes programming possible

even before the robot's work-cell is completely installed.

• Ease of progrwnming: Off-line programming considerably reduces the time
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required to create a program and makes programming changes much easier.

In addition, the programmed task may be visualized on the computer screen

before being used to operate the real robot.

• Use of CAD systems: The availability of CAD systems means that com­

puters can acquire design data specifications and derive procedures to imple­

ment a working program for the robot. The cost effectiveness of using personal

computers with CAD systems is a decisive factor in the popularity of off-line

programming.

• Visualization: With the aid of computer graphics and CAD representation

of robots, machine tools, and different objects, it is possible to generate an

animated simulation of robotic tasks. This simulation of positional data makes

it easy to generate accurate robot programs.

2.1.2 Approaches of Off-line Programming

There is a variety of different approaches to programming robots off-line. Depend­

ing on the application of a robot, different teaching methods may be used. These

approaches are discussed below:

Textual program.m.ing Textual programming is often used in academic environ­

ments. A programmer stores a rohot command sequence in a computer as a

textual program [60]. It requires a long development period and expert pro­

grammers. A problem with this textual programming method is the difficulty

to specify the movement points without the robot.
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Teach By Showing or PbD The 'teaching-by-.showing' method consists of making

& robot, for example, by meaDS of & remote control. The method requires human

to show robot movements and then a robot would have to repeat these move­

ments. It suits quite well to early simple robot applications. Using this method,

Kuniyoshi et al.(70J, Suehiro et al.[65}, and Friedrich et aL (15, 161 created auto­

programming methods which have been called Programming by Demonstration

(PbD) or Demon.!tration for Programming (DIP). In PbD method, a human

instructor demonstrates a task to a robot by performing it himself. However,

PbD methods are based on vision and require a lot of computer power for the

recognition of assembly states or the operator's movements.

Teleoperation To explore hazardous environments, teleopuntion methods have been

proposed (43, 69, I). This method uses a master manipulator for teaching and a

slave manipulator for execution. An engineer controls the master manipulator

in a safe environment while monitoring the hazardous environment through a

remote TV camera. By using this method, users can only teach a robot tra­

jectory information. HO'l\-ever, it is difficult to build a flexible robot system of

planning and recovery capabilities.

Automatic program.ming Automatic programming tries to develop geometric rea­

soning systems which can generate textual programs to control a robot from

geometric information given by geometric models and task specifications. It is

a promising direction. However, there are many issues to be addressed before a

complete automatic programming system becomes possible; Problems with this
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method arise due to the high oomplexity of the tasks which require planning

systems that are currently not available for industrial applications{15].

VR approach Takahashi d al.(67, 66, 17, 21 proposed a robot teaching interface

which uses Virtual Reality(VR). An operator wearing a data glove device teaches

an assembly task in a virtual workspace. A robot with sensors and macro com­

mand interpretation facility performs the assembly task in an actual workplace.

This method requires not only a lot of hardware resources but also new methods

to handle and to calibrate virtual objects.

Interactive computer graphics Recent advances in computer graphics technology

have made it possible to simulate the teaching of robots [59, 26, 62]. Software

systems with off-line programming capabilities are commercially available [27, 7,

34). These systems have many advanced features: collision detection, signature

models, and dynamic simulation, as well as the ability to write device control

codes. But these systems often C06t more than the hardware 00 which they are

running, and also too much focus on graphical simulation since they lack the

ahility to integrate with the assembly planning process.

2.2 Assembly planning

Assembly planning primarily concerns the feasible sequences that assemble a prod­

uct. The field of computer-aided mechanical assembly planning has emerged in recent

years from the progress in artificial intelligence and robotics, especially in the areas

of planning, and geometric and physical reasoning. The importance of automating
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the planning of mechanical assembly is twofold. First, it gives industrial designers a

tool with which they can assess their designs for easier assembly. It hence increases

the efficiency of production process and drastically reduces redesigns due to manufac­

turing constraints. Second, it closes the gap between computer-aided design (CAD)

and computer-aided manufacturing (CAM) by providing tools for automating the

programming of robots and assembly work-<:ells. It therefore expedites the execu­

tion of these chores by reducing their cost and improving their quality[35J. Areas of

assembly planning that are particularly relevant to this thesis research are as foDows.

2.2.1 Assembly Representation

An assembly planning relies on the representation of assembly parts and assembly op­

eratioDS. Several methodologies for representing assembly plans have been proposed

and utilized. They include representations based on directed graphs, and AND/OR

graphs, on establishroent conditions, and on precedence relationships [371. Among

them, the last one includes two types; precedence relationship between the estab­

lishment of one part connection and the establishment of another, and precedence

relationship between the establishment of one connection and the states of an assem­

bly process. The methods based on directed and/or AND/OR graphs are explicit

representations since there is a mapping from the assembly tasks into the elements

of the representations. And the others based on establishment conditions and prece­

dence relationships are implicit representations because tbey consist of conditions

that must be satisfied by the assembly sequences. A clear understanding of these

different representations and of bow one maps into the others is important in the
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development of an assembly pl&D.Iler.

2.2.2 Sequence Planning

'4

Sequence planning considers the order in which the component parts will be assem­

bled [5.5J. There has been considerable research in assembly sequencing during the

past decade. Early assembly sequences were mainly interactive sequence editorsj ge0­

metric reasoning was then added to generate assembly sequences automatically[9, 21J.

This research first resulted in generate-and-test sequences, with a module guessing

candidate sequences and several geometric reasoning modules checking their feasi­

bility. More efficient techniques were later proposed to replace the time-consuming

generate-and-test[47J. Assembly sequencing has been shown to be intractable[21J.

This negative result has led researchers to consider restricted, but still interesting

types of assembly sequences. Typically most research so far has focused on comput­

ing either monotone sequences, wbere each operation generates a final subassembly,

or two-banded sequences, where every operation merges exactly two sub-assemblies.

Though restrictions vary slightly among the assembly sequences proposed so far, one

is made in all of them: parts are uniquely defined by their nominal geometry.

2.2.3 Approaches of Assembly Planning

Assembly pla.nni.ng is also a topic that has been addressed in the literature. Two

basic approaches of dealing with geometry have been prevalent (72):

Editor Planning 'Editor' approach is to avoid the problem of assembly planning by
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not requiring automated geometric reasoning. In the systems fust developed

by Boujault [221 and later improved by DeFario and Whitney[LO], geometric

reasoning was done by a human interacting with a computer-based system.

The user specifies assembly plans by answering a series of questions about the

'liaison' relationships between components.

Automatic Planning 'Full-automatic' approach is emerging as an approach that

facilitates the automa.tion of planning. It performs full geometric reasoning

with traditional CAD representations. Much work can be found in [5, 47, 50,

28,57, 21J.

Both approaches are intended to work with realistic assemblies, and hence require

realistic representations of the components. In the human-based ('editor planning')

systems, this representation is a mental model of the assembly, moot similar to a

relation graph. However, manual analysis of the 'liaison' relationships between com-

ponents is laborious and time<onsuming. In the automated systems, on the other

hand, this representation is a CAD model. Due to the complexity of automated geo­

metric reasoning, measures have to be taken to either eliminate automatic reasoning

or perform it as infrequently as possible. In practice, the computational automated

analysis of assembly operations is time consuming.



Chapter 3

Integration of Robot Progranuning and Se­
quence Planning

This chapter proposes a new scheme of a robot-based assembly system that inte­

grates the planning process with the programming process in a unified system with a

common database. The proposed approach is initiated from a novel idea - providing

off-line programming system with 'automatic re-programming' features (72). In this

approach, assembly representation bas been considered as a manipulation planning

problem [501_ The succeeding sections give a definition of the problem and present in

detail the framework of this integrated approach.

3.1 Towards Integration

The use of programmable robot systems bas enabled a partial or complete automa­

tion of product assembly. The perfonnance of off-line robotic assembly tasks requires

an integration of an assembly infonnatioD with an internal representation of parts,

together with geometries 8Jld relationships. More systematic approaches to the au-
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tomatic synthesis of these information an! needed to enhance their performance and

enable their cost-effective implementati~n. This thesis investigates the integration of

robot programming and sequence pla.nniJng with an emphasis on exploring 'automatic

re-programming'.

3.1.1 'Automatic Re-programuning'

There are many common cases in which,. a re-design of robot programs is necessary

or desirable. They have & fixed set of assembly tasks with only their order needing

to be changed to adapt to the changing conditions in an environment. For example,

a supplied assembly task sequence is tLnlally not the optimal solution as users sel­

dom consider all assembly task sequences before choosing a sequence. These tasks,

therefore, may need to be re-programmed for product improvement. In addition, pro­

gramming chores in manufacturing are time consuming and error-prone. For small

batches of a production, the cost of pr~grammingweighs heavily in the total pro­

duction cost. Moreover, the time spent im programming, when carries out manually,

may excessively delay the actual production. The automation of th05e chore will

expedite their execution, r«iuce their ~t, and improve their quality. As a result,

an advanced programming system needs to perform robot simulation concu.rrently

with other planning processes and provide a feedback mechanism for 'automatic re­

programming' whenever necessary.

The exploration of an 'automatic re-programming' feature requires an integrated

model that allows a computer to generate aU the feasible assembly sequences for a

robotic assembly. These sequences are strictly from the simulation of robot's per-
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fonniIlg the same task.. A theoretical work on geometric. assembly planning suggests

that an assembly sequencing problem can be seen as a motion planning problem with

multiple moving objects (50). Assembly informatioo can thus be acquired by either

a motion planDer or an assembly planner, and the most reliable way is to simulta­

neously take both and to appropriately integrate the assembly information from the

two methods.

3.1.2 Relation to Other Work

An idea similar to the integrated approach of robot-based assembly automation has

been presented and constructed through the aid ofan assembly planner in robot-based

CAMjCL\{ systems [45, 68J. Despite the incorporation of a feasible assembly planner

based on the pre-planning conditions associated with planning before programming,

the system. was not capable of 'automatic re-programming'. The functionality of

'automatic re-programming' requires an assembly planner that uses the pre- and post·

conditions associated with robotic assembly tasks to construct sequential high-level

assembly analysis. Earlier work [35, 50) on assembly plannillg systems facilitated the

subsequent manufacture. However, they do oat suit to the integration with off-line

robot programming systems, in which assembly planner.; have to take into account

the capabilities and limitations of task and motion planners.
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The basic structure oftbe proposed integrated model (shown in Figure 3.I) consists of

a programming model and a planning model. The program.m.ing model offers the user

a graphics interface to program a robot off-line. and the planning model generates all

the feasible robotic assembly sequences for automatic ~progra.mm.ing. As a means

of reaching to integration, infonnation regarding to lU1 assembly scene and an order

of robotic actions is directly stored in the programming phase. and then retrieved

and ~used in the planning phase to help fast sequence generation. For instance, a

precedence expression of assembly operations can be used to find other valid operation

orders. In such a way, the check of geometric feasibility can be significantly reduced

by introducing simple robot action analysis in the planning phase. Furthermore, all

the feasible sequences generated from the planning model can be fed back to the

progra.mming model for 'optimal' programming.

Many approaches are possible for the development of a programming model and a

planning model. They include 'teaching-hy-sbowing', 'YR', and 'automatic program­

ming' approaches for the programming, and 'editor' and 'full-automated' approaches

for the planning. in this thesis, the programming model and planning model are de­

veloped with an 'interactive graphics' programming approach and a 'semi-automated'

planning approach respectively. While detailed discussions on these two models will

be provided in the succeeding chapters, a brief introduction is presented as follows.
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Figure 3.1: The basic structure of an integrated model.

3.2.1 Programming Model
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The programming model is basically composed of a workcell module for the geomelric

definition of robot and component parts, a kinematics module for controlling manip­

ulator positioning, and a control module for specifying robotic assembly tasks. This

programming model creates a simple, useful, and problem-oriented programming in­

terface.

3.2.2 Planning Model

The assembly planner model, conceruing both assembly and manipulator constraints,

composes of three basic components. They are the reasoning, deduction, and gen­

eration modules. The reasoning module performs geometric reasoning and detects

geometric constraints between t\m parts; the deduction module deducts assembly
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precedence constraints among parts; and the generation module generates a feasible

assembly tree based on a set of assembly precedence relationships.

3.3 Robotic Assembly Problem and Representa-

tion

3.3.1 Robotic Assembly Definition

A mechanictJl fUSembly, or assembly for short, is a composition of interconnected

parts fonning a stable unit. Each part is a solid object, and parts ace interconnected

whenever they have one or more surfaces in contact. In the thesis, a robotic c.s.sembl"

is referred to an assembly in which the product is assembled by a robot arm assigned

with certain assembly tasks. In most robot-based assembly systems, part positioning

is carried out sequentially, with only one part or a subassembly positioned at a time.

A stable workstation, denoted by tab or Po, is a place at which a robotic assembly

takes place. Po or tab is alway assumed to exist in a robotic assembly system. Figure

3.2 shows a robotic workcell for robotic assembly.

A robotic a.uembly proc:eu is therefore assumed to consist ofa succession of robotic

assembly tasks, each of which in turn consists of joining sub-assemblies to form a

larger subassembly. It is also assumed that exactly one part is ·pick.and-placed' on

other sub-assemblies or a stable workstation (Le. table) at each assembly task, and

that after parts have been put together, they remain together until the end of the

assembly process. More fonnally, a robotic assembly is defined as follows:
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Figure 3.2: A robotic workcell for robotic assembly.
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Definition 3.1 (Robotic Assembly) A robotic assembly is an assembly A(P, 7),

in which the product is assembled from a set of parts P by a robot arm assigned

with an ordered assembly tasks T in a 3-dimensional workspace i(.( and no obstacles

exist. /n the assembly, P = Po + P, where Po denotes a stable workstation and

P = {PI, HI, , Pn } is the set of parts of assembly, and T =TI T2 _. Tn is an ordered

'pick-and-place' operation task for assembly_

The above definition of a robotic assembly works with a general-purpose linetJr

assembly_ Other robot operations such as one-hand 'side-insert' and 'multi-hand'

operations, which are allo....-ed in a wide application domain, are not oo\-ered by Def-

inition 3.1.

3.3.2 Assembly Programming

In robot-based assembly systems, the way that a manipulator handles component

parts determines the efficiency of geometric operations. It is necessary to consider

about collision-free trajectory between two objects which are the base part with
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its fixture and the secondary part with its handling device. With the assumption

that one of the robotic assembly plans is known in advance, the user programs a

robot for robotic assembly off-line by following the gi\'9 assembly sequence. Robot

programming then specifies the course of robotic actions and provides collision-free

trajectory to achieve assembly goal. Currently, robot actions are restricted to 'pick­

and~place' operations. In such a case, the motion of a part is simply a translation

in the x-y plane of a coordinate system. These assumptions commonly exist in some

applications such as printed wiring assembly or loading assembly. They also reflects

the limited motion freedom of industry robots.

3.3.3 Assembly Sequencing

A robotic assembly pIon consists of a set of assembly tasks with ordering constraints

among its elements. The assembly planning problem is actually a manipulation

planning problem, in which the initial configuratioo satisfies Definition 3.1 and the

result is an assembled product. Assembly.sequencing focuses 00 the order that 'pick­

and-place' operations will follow to define a feasible assembly. For instance, it decides

in what order the component parts should be needed for an assembly. The generated

assembly sequences are also under various constraints regarding the robot and its

surrounding world related to the underlying goal.

3.3.4 Robotic Assembly Representation

Robot programming and sequence planning requires a representation that is inde­

pendent of the robot that will be performing robotic assemblies. This representation
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should also be used later for assembly sequence planning. To demonstrate the ooncept

without being hindered by other computational problems, the manipulated objects

will be limited to polyhedral objects. A moving object is attached to other stationary

environmental objects to form a particular assembly relation with each other. As-­

sembly relations are in turn defined with face contacts between a manipulated object

and its stationary environmental objects. The essential goal of an assembly task is

to establish a new face contact between a manipulated object and its environmental

objects. For example in Figure 3.2, the goal of placing a cylindrical object P2 onto a

stationary subassembly PI is to make a face contact so that the bottom face of the

P2 attaches to the top face of PI. The type of assembly relations becomes the central

representation for defining assembly task models. This thesis research employs face

contact relations [33] as its basic representations. It describes an assembly task as a

transition from pre-assembly relations to post-assembly relations.

3.3.5 Component Representation

One way to represent objects is to use geometric data supplied by CAD models

of objects. The complexity of this task depends on the complexity of the models

and their representations. The simplest case is with polybedral objects [41. A more

complex class of models involves objects produced by comhining "nameablen surfaces

such as planes and cylindrical surfaces, and solid shape primitives such as boxes,

cylinders, and spheres [51]. The most complex case addressed to date involves objects

with parameterized surface patches expressed as bicubic equations [52). Such models

are called houndary representation (B-rep) models. Most of mechanical parts can be
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represented with the CSG formalism [20. 51) or feature-based merging [6, 73].

3.3.6 Assembly Constraint
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The integrated model considers the generated assembly plans are sequential and

monotone, without cohermoe constraints. The assembly planner adds in another

constraint on linearity. A plan is li1U'.tJr if no more than one part is moved at a

time [28]. Such a plan contains no sub-assemblies and is constructed entirely in a sin­

gle fixture. There are many common assemblies in which the use of sub-assemblies is

desirable. For such assemblies, the parts can be first broken down into sub-assemblies.

and each subassembly is then treated as a separate linear plan.

Assembly pan PI must be exculed before assembling part P2.

'"

(a) Geometric cOllSU'lint (b) Stable consuaint (c) Orientation consttaint

Figure 3.3: lliustrations of assembly constraints for robotic assembly.

A robotic assembly process has to follow some logic in order to avoid useless

~rientations or repeated tool changing. Assembly planning is also subjected to

assembl!l constraint..f. The order of assembly operations depends on the feasibility

of assembly steps. The following list specifies some of the most common constraints

applied to robotic assembly tasks:
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• Geometric constraint: When mating two parts there must be at least one

collision·free trajectory allowing to bring the two parts in contact. For exam­

ple, Figure 3.3 (a) shows two parts PI and P2 in their goal position. Since

P2 is 'external of' PI, it is necessary to assemble part PI first. A notation

PC(PI, P2) is used to indicate such a precedence relation. It means tbat part

PI must be assembled before part P2.

• Stable constraint: Each part produced. in the cowse of an assembly process

must be stable, and all the involved. components have a fixed spatial relationship

between each other. As shown in Figure 3.3 (b), to place part P2 on top of part

PI, part PI must be assembled first. Again, the resulting precedence constraint

between PI and P2 is denoted by PC(PI, P2)j

• Orientation constraint: In tbe path of moving a component part, the orienta­

tion of part also imposes certain constraints. In fact, the concept of orientation

constraints is relative as it depends largely upon tbe type of robot and the spa­

tial relationship between component parts. When 'pick-and~place'operations

are the operations to use, the orientation of assembling parts is along the :z

axis. After assembling Po and Pb (Figure 3.3 (c)), part PI under P2 must be

assembled before Pl. Consequently, the orientation constraint in this example

is also denoted by PC(PI, P2).

The constraints 00 geometry, stability, and orientation work fine with the 'pick­

and-place' operations. However, otber constraints will have to be introduced in order

to bring robotic assembly systems closer to reality.
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Graphic Robot Programming

The basic goal in modern robot-based design is to make the teaching process as

user-friendly as possible. Recent advances in computer graphics technologies have

made it pa;sibJe for robotic simulation. This chapter first gives a fonnal geomet­

ric definition to the robot assembly problem, then discusses the direct kinematics

problem which determines the position and orientation of a robotic simulator from a

given state of joints, and finally rea.ches to a definition of the 'teach-in' process. The

objective of this chapter is to show how interactive graphics can be used in a virtual

robot workce1l.

4.1 Towards Off-line Program.ming

There is a growing tendency in the research community towards semi-autonomous

systems, where a given task would be mediated by a human, leading to the concept

of shared autonomy.
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4.1.1 Interactive Graphic Programming
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While rese.arclJers are developing automa.ted systems, interacth-e programming is ODe

of the new topics that has recently attracted the attention of many researchers. The

user of an interactive system works within a graphical robot workcell environment to

program a robot performing specific tasks. Working with a virtual simulator greatly

simplifies the programming of assembly tasks. The interactive capability of a system

makes difficult tasks easy to conduct, for example, in assembly sequence spec.i.fication

and path planning. The system understands the assembly operatioDs that an operator

performs. And it can discard unnecessary computing which are often necessary with

automatic programming. In such a sense, an interactive programming system is more

dextrous than automatic programming systems. Figure 4.1 shows the structure of

a graphic programming system, which outlines the interactive graphic; approach of

the thesis research.

4.1.2 Relation to Other Work

Efforts are CUITe.Dtly underway to make robot easier to program. A major research

activity aimed at the development of an off-line robot programming environment

has been carried out in many places. FOT instance, HANDEY [641 is a visioD-based

system that is capa.ble of planning for 'pick-and-place' operations. Several prototypes,

using task-level programming methods, have been developed to ESPRlT 623 [45] and

ROPSrr [611. They use task-level languages, instead of motions or other low~level

robot related commands. Task-level systems, though useful, have not been completed
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Figure 4.1: Structure of a graphic programming system for robotic assembly appli­
catiODS.

yet. Examples of interactive systems include the SMALL system [4.21 and the RV­

Ml system [23}, which provide a powerful graphics interface for easy·to-use robot

programming. But these systems focus too much on graphical simulation and lack

the ability to be integrated with the assembly planning process. Another prototype

system RPD (IS} has also been developed but it is more in the Programming by

Demonstn.tion (PbD) domain.

4.2 Geometric Robot Assembly WorkceU

Generally speaking, a robot arm, a fixed station, and a set of workpieces are three ba-

sic components that composite a manufacturing workcell. The robot arm is required
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to perform assembly tasks. The fixed station (workstation) is a tabletop or a wa.I1.

It supports the assembly (in the presence of gravity) and defines the boundary of a

warkeell. Workpieces are component parts of a product. In the thesis resean:h, the

shapes of the robot ann, the workstation, and the wodcpieces are assumed to consist

of planar surfaces only. They can be represented by polyhedral objects.

4.2.1 A Simulated Robot

In robotics, only rigid bodies are considered. They represent mechanical links. These

links are interconnected by joints. Eleven types of joints may be considered between

two links [53J, and two of them are used in the thesis research. They are revolutionary

joints for rotational motions and sliding joints for translation. Figure 4.2 (a) shows a

simulated robot arm operating with these two types ofjoints. It has a base support, an

arm, and an end effector(gripper). The arm can be further divided to two individual

sections, including an upper arm and a forearm. The segments between joints are

called links. Links are the rigid members of a robot that support the loads carried

by the robot. Joints in the example are either rotating, or sliding (or a combination

of both). In particular, the simulated robot has three joints. The base is rotary; the

upper arm moves horizontally; and the forearm moves vertically. A robot with this

characteristic is called a cylindrical-coordinate robot. Since the cylindrical structure

of robot can be modeled, the simulated robot is stored in the database of the system,

together with all the other information that describes machines, workpieces and the

cell layout.
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(a) Structure of a simulator (b) Link-coordinate diagmlTI

Figure 4.2: A robot simulator.

4.2.2 Object Modeling

The shapes and geometric relationships of the parts and robot arms are crucial in

graphic assembly programming amI plauJling. As polygon shapes are much less com-

plex and call be rendered at higher rates than curved surfaces, they are used in the

thesis to represent object models. For complex objects, they are constructed in forms

of esc structures Pl, 11, 20J with a set of simple primitive objects by means of

regularized Boolean set operators. Each of them is a tree with operations at tbe

internal nodes and sitrlple primitives at the leaves.
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Positioning the linlcs of a robot involves finding a set of joint variables and link trans­

formations for a particular manipulator goal point. This can be accomplished by

either forward (or direct) kinematics, or inverse kinematics. While direct kinemat­

ics finds the position and orientation of a manipulator from the given states of all

joints, invu.te kinematics finds the states of all the joints from a given location and

orientation of the manipulator. In general, inverse kinematics is much more difficult

than forward kinematics because forward kinematics involves straightforward matrix

multiplications, but inver.>e kinematics usually involves solving non-linear systems to

obtain individual joint variables. More discussion on inver.;e kinematics can be found

in [53,491.

4.3.1 Homogeneous Transformations

To simulate the operation of a robot, a. transformation from the Cartesian coordinate

system to the robot coordinate system must be perfonned. The relative position and

orientation between adjacent coordinate frames are determined by a homogeneous

transfonnation. Mathematically, this transformation is represented by a 4 x 4 matrix

in the following format:

Rotation Position

matrix VECtor

-[
R,.,

12::';· ]T_ (4.1)

Perspective Scaling f 1x3

transformation factor
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The upper.left. 3 x 3 submatrix describes the rotational relationship between the

two coordiDate systems. The upper-right 3 x 1 column matrix describes the trans­

lation vector from the origin of the reference coordinate system to the origin of the

rotated coordinate system. The lo~r-left 1 x 3 row matrix provides the perspective

transformation along the three coordinate axes. And the lower-right 1 x 1 subroatrix

performs a scaling function. In manipulator kinematics, the elements of the perspec-

live transformation matrix, r, are always set to :zero ([000l) and the scaling matrix,

W, is always set to one ([1)). Thus, Equation 4.1 can be simplified to Equation 4.2:

(4.2)

'Ii'aosformations

The 4 x 4 homogeneous transformation matrix T in Equation 4.2 is the primary

mathematical function used in robot kinematics to transform an arbitrary vector

from a moving coordinate &arne to a reference coordinate frame.

a. Translational Transformation

The position vector of a homogeneous transformation matrix tells the location of the

origin of a link-attached coordinate frame when translated away from a reference

coordinate frame. Let p = p%i +~ + p~k corresponds to this translation vector. A

transformation matrix T then takes tbe following form:
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b. Rotation Transformation

o P,]o ..
1 pz .

01

34

(4.3)

The rotation matrix of a homogeneous transformation matrix describes the ditrections

of the link-attached coordinate axes when rotated around an axis in the reference

coordinate frame.. Let r-y'-z' be a coordination system rotated about the x: axis of

the reference frame x-y·z by an angle 8 without moving its origin. The homo@geneous

transformation matrix is given by

ocos,
sin 8

-sinO

005'
o

:]o .
1

(4.4)

Similarly, the homogeneous transformation matrices for rotation about th-e y and

% axes are given by:

[ ,~. sin8

~] ,
T ~ Rot(.,') ~ 0

,~.
(4.5)

-slO8

0

..d
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(4-6)

A direct kinematics solution starts with assigning the link-attached coordinate frame

to each link of the manipulator. The link pacameters between the i - 1th and ith

frames are used to establish the homogeneous transformation matrix Ttl- The state

of the end effector, the nth link-attached frame, with respect to the base coordinate

frame, frame 0, is found to be the chain products of the T matrices. Let the nth

frame be the coordinate system attached to the end effector and the Oth frame be the

base coordinate system. Their spatial relationship is then represented by T~, which

is a composition of n individual transformations

TQ=T~~···-r:_1 (4.7)

Figure 4.2 (b) sbows a Iink-eoordinate diagram for the simulator in Figure 4.2

(a). The simulator is aD open kinematic chain consisting of three links L; and three

joints J i , where i = 1,2,3. The state of the end effector, link-attached frame FR , with

respect to the base coordinate frame Fo, is determined by T,:!!~~ as follows:
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(4.8)

where T~ = Trans(O, 0, dl)Rot(zO, 81), ~ = Trans(a2, 0, 0), and ~ = Trans{O,

0,-d3).

4.4 Assembly Task Specification and Control

Robot programming and plannin.g require a representation fo[" the plans which nol

only an! independent of the operating robot but also can be transfonned into a

representation that includes the robot. Such a representation should model the world

components that can be connected and disconnected to define various aspects of the

world. A programming environment can be decomposed into three distinct entities:

tasks, a robot, and objects. Tasks are actions on objects; a robot is the perfonner

of actions; and objects are the recipients of actions. Among these entities, 'action' is

the common denominator. I.n a robotic environment, these actions represent physical

motion. These are some primitive actions that cause a basic physical motion, such as

rotation, locomotion, etc.. Figure 4.3 lists the primitive actions employed in assembly

task specification.

Task control is to interpret application programs and to supervise task execution.

A graphical user interface has to be developed in such a way that an ope["ator can

efficiently control assembly tasks. There are different human~computer interaction

functionalities that can be used in the specification of functional parameters. For
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Move move along a plane to

Rotate rotate around an aris

Pick grasp and roue an objut

Place flip down (rde4Se an objut

Figure 4.3: Primitive actions employed in assembly task specification
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example, cliclring a 'pick-up' butter may be used to specify the 'grasp' of an object.

And the motion of a robot can be controlled by a robot control box and severaJ

menus. A robot 'teach-in' box: (processor), controlled with a keyboard, can be used

to manually move robot joints, to re<:ord frame variables, and to specify trajectory

segments. With a 'teach-in' box, the users can interactively specify sequences of tasks

(the courses of actions) to program robot off-line. Given a robotic assembly A(P, 7)

as in Figure 4.4, a sequence of tasks to accomplish the assembly is as follows:

AT 1: Fixing of PI to Table.

AT 2: Fixing of P2 to Table.

AT 3: Assembly of P3 on PI and P2.

AT4: Assembly of P4 on P2.

In the programming process, each assembly task (AT) will be further refined to

a sequence of elementary robot task operations(ERATO). For instance, the assembly

task ATI consists of the following ERATO sequence:

ERATO 1: Pick up Pl.
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Figure 4.4: A robotic assembly scene for task specification.

ERATO 2: Move PI to Table.

ERATO 3: Place PI 011 Table with compliance.
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Chapter 5

Robotic Assembly Sequencing

A feasible assembly sequence consists of a set of assembly operations that satisfy

certain assembly constraints. The capability of an assembly system to find feasible

assembly sequences is particularly useful in improving the efficiency of robotic assem­

bly. It is not a Dew concept and has been discussed in both assembly planning and

the design of object-level task programming languages. Instead of using the existing

<full-automatic' and 'editor' approaches, this chapter presents a novel method, called

'semi-automatic'> for robotic assembly sequence planning [721. This method uses the

input module of off-line programming and thus significantly reduces the Dumber of

geometric reasoning steps. Presented in Section 5.1 is a model of robotic assembly

sequencing that utilizes the concepts of assembly precedence graphs and feasible as­

sembly trees. The strategy of 'semi-automatic' sequence planning is then illustrated

with detail in Section 5.2.
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Given a robotic assembly A{P,n, since there are no two tasks applying on the

same part, an ordered assembly tasks 'Tt'T2'" 'T.. corresponds to an ordered sequence

PlPl .. P~ of a n·parts product. In the sequence, pt is the first part to pick-and­

place and ~ is the last. Therefore, a robotic assembly can also be defined in a simple

way as follows:

Definition 5.1 (Robotic Assembly) A robotic auembly is an assembly A{P). in

vil.ich the produd is auembled from n parts by a robot ann. An ordered set of

parl8 P is auigned with n 6&[Ut:ntial 'pick+and.pl~'operation assemb11l ta.sk:s: in

a 3-dimen.sionaJ workspace V.... with no additional obstacles. P = ~PfPl ... p;. is

a feasible assembly sequence, where Po denote.s a 6table workstation and Uf.l Pj
= P = {PI,'" ,p.. } is a set of ports to auemble.

The above definition shows that the problem of robotic assembly sequencing is

a manipulation planning problem, where the initial configuration satisfies the con-

straints in Definition 5.1 and the goal is to assemble a product from a set of distinct

parts. Each assembly task defines a 'pick-and-place' operation. Motion planning

however is not roncerued because the paths of robot motions have been generated by

an operator in off-line programming.

5.1.1 Precedence Constraints

An assembly plan consists of a set of assembly tasks with ordered constraints among

its elements. These constraints are called precedence constraints that are used to find

a valid order of assembly operations. They are caused by either the tasks themselves
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or from other resources such as robot, gripper, etc. that execute the tasks. The order

of assembly operations depends all the feasibility of assembly steps.

In fast planning, precedence constraints are further categorized into two different

types: din:d prr:a:dence con&traints and implicit preadena. constraints. Let PC

denote a set of pre<:edence COIlStralnts for a robot assembly A(P} that has n partS,

direct precedellce COllstraints and implicit precedence COIlStraints can be defined as

follows.

Definition 5.2 (Direct Precedence Constraints) Given a.set ofpruedence con­

straint" PC, a precedence corutraint PC(P" Pj) E PC is a direct precedence con­

.straint if there is no P,t e 'P such that 3PC(Pj , P,t) e PC and 3PG(P,t, Pj) E PC.

DPC then denotes a set of direct precedence constraint", i.e., DPC~ {PC(P;, Pj)1

PC(~, Pj) e PC II -.31\ e P(PC(Pi , PI:) E PC 1\ PC(P", Pj) e PC)}.

Given any two parts, they have a direct precedence constraint if one part overlaps

with the other olle and there is no other parts in between them. Direct prec::ed.ence

constraints are expressed as explicit constraints. They are detected by applying

geometric reasooiug but not to be infened. from COIlStraint propagatiOIl.

Definition 5.3 (Implicit Precedence Constraints) Given a set ofprecedence con-­

.straint.s PC, a precedena constmint PC(?;, Pi) e PC is ct1lled an implicit preadena

coruhuint if there e%ists Pt: E P such that 3PC(Pi , Pt:) e PC and 3PC(P", Pj) E

PC. fPC then denotes a set of direct preadence corutroints, i.e., [PC ~

(PC(f';, P;)lPC(P;, P,) E PC A3P. E P(PC(f';,p.) E PC A PC(p.,P,) E PC)}.

Implicit precedence constraints represent the precedence relationships that can be

inferred from explicit precedence constraints. For example, by applying constraint

propagation, PC(i,}) can be deduced from PC{i,k) and pe(k,j).
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5.1.2 Robotic Assembly Sequence
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Given a robotic assembly A(P17) that has n parts, an ordered set of n robotic as­

sembly tasks TI'J"2. • T .. is an auemblll task n:quern:e if there are no two tasks applying

on the same part. The output of the tasks is a product. For example, an assembly

sequence that accomplisbed fOT the assembly in Figure 5.1 (a) is:

Table....!4 PI....!4 P2....!4 P3~ P4 (5.1)

An assembly sequence is said to be feasible if aU its assembly tasks are geomet­

rically and mechanically feasible, and the sub-assemblies of all tasks are stable. The

assembly sequence in Equation 5.1 is feasible. An infeasible assembly sequence for

the same assembly could be:

TabLe....!4 Pl....!4 P3....!4 P2~ P4 (5.2)

It is infeasible because the third task TJ is not geometrically feasible. There is no

collision free path to position P2 onto the Table as in Figure 5.1 (a), once both PI

and P3 are joined iDto a subassembly.

5.1.3 Representation of Robotic Assembly Plan

There are many approaches for the representation of product assembly. They include

representations based on directed graphs, on AND/OR graphs, on establishment

conditions, and on precedence relationships [35, 371. The following discussion presents
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(3) A scene of llssembling four parts (b) A precedence constraint grJph

Figure 5.1: A sample robotic assembly and its constraint graph.
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a method of the representation of robot's assembling a product based on a precedence

constraint graph and an assembly tree.

Precedence constraint representation

In the thesis research, precedence constraint graphs are used to represent robotic

assemblies. A precedence constraint graph{CG) is an acyclic directed graph, in which

the initial node represents a stable workstation, and the other nodes correspond to

the set of assembly parts. An edge in a CG graph links two ordered nodes, and

indicates the precedence relationship between them. In addition, a directed edge

Pi --t Pj corresponds to a direct precedence constraint DPC(P;, Pj) E oPC.

Definition 5.4 (Precedence Constraint Graph) A precedence con.straint graph

of a robotic assembly A(P)is an acyclic directed graph CG(P,£), in which each node

of graph corresponds to a distin.quished element of P. E: is the set of n directed
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txlgu. If Ep;Pj i6 a directed edge from 1>; to Pi, then E~ {Ep;Pil3Pi3Pj(~,Pj E 1''''

DPC(P;, P;l E DPe).

Precedence constraint graphs are a convenient method to represent the flow of

assembly operations. In a CG graph, the directed edges define the chronological

order of assembly operations. For example, Pi -+ Pi means that part Pi can only

be assembled after the operation on another part Pi is completed. The information

of parts and edges is stored in a constraint matrix eM. An example of precedence

constraint graph is in Figure 5.1 (b), which represents a 4-parts assembly as in Figure

5.1 (a).

Assembly tree representation

Since each assembly sequence is an ordered list, all the assembly sequences can be

represented by a set of ordered lists, each of which corresponds to a different assem­

bly sequence. As many assembly sequences have common subsequences, attempts

have been made to create more compact representations that encompass all assembly

sequences [37). A feasible ru"embly tree (AT) is developed in the thesis to represent

all feasible sequences of a robotic assembly.

Definition 5.5 (Assembly Tree) An a&Semb1Vtru. U ud of9-tuplu AT(P,N,£).

In the tree, 'P = Po + P, when: Po i6 0 8tahle work8tonon and P is the set of assembly

pans. All the nodes of tru. are in N = E~ Nd, where N~ U 0 set of nodes unose

depth in tree i6 d, and d E {O, ... ,n} indicatu the number of robotic assembly task

that has been executed. The initial node N8 i6 QUocioted with Po, ond every node

Nt E N - {N8} corresponds to a part Pi E P. Nt' iJ a tip node which stands for the

last part to a.!8emble. Moreover, E denotes the set of directed edgu, each of which

COTTe8ponds II feasible robotic a.!8embly task.
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A feasible assembly tree is a tree with depth R. Each of its nodes has at most one

parent. Each path of length n that walks through a sequence of nodes(NPNl .. Nr)

corresponds to a feasible assembly sequence. When a robotic assembly is represented

with an assembly tree AT, finding a feasible assembly sequence becomes finding a path

of length R in the tree. Consequently, finding all the feasible assembly sequences is

simplified to generating an assembly tree for that assembly.

5.2 Autonlatic Sequence Planning

In practice it is difficult for the operator to visualize the concept of precedence con­

straint. It relies on an automatic approach to deduct assembly constraints and gen­

erate feasible sequences. Figure 5.2 shows the structure of a planning system for

automatic assembly sequencing. The system consists of a reasoning module for de­

tecting the geometric intersection of parts, a deduction module for deducting assem­

bly precedence constraints, and a generation module for generating feasible assembly

sequences. The following sections discuss the three modules in details.

5.2.1 Geometric Reasoning for Detecting Intersection of Parts

In order to automatically generate sequences, it is neeessazy to perform geometric

reasoning in search of assembly precedence constraints. In the integrated model, ge0­

metric reasoning is only required to search ope constraints. When a robot performs

'pick.and.place' operations, only the projection along the z axis is needed to check

the feasibUity of moving a mechanical part in a working environment. The projection
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Figure 5.2: Structure of a planning system for automatic assembly sequencing.

4.

plane perpendicular to the z axis is the XV plane. Therefore, in a 'pick-and.place'

assembly system, geometric reasoning for determining the assembly precedence re­

lation between two partS is simply to examine if their projections on the XV plane

intersect.

E\lrthermore, with the restriction that all objects in the assembly space are merged

from a set of polyhedral objects, the projection of an object on the XV plane is either

a simply polygon or an arbitrary polygon. A rimple polygon, called as a polygon for

simplicity, is a primitive polygon without internal boles. On the contrary, an arbitrary

polygon is constructed with a set of simple polygons by means of regularized Boolean

set operators. For example, in the Figure 6.9{a), tbe project of the part Spi~ on the

XV plane is an arbitrary polygon that is composed from one large polygon subtracted

other two small polygons. Here, without Joss of generality, the thesis treats a cycle

as a special polygon. Obviously, along with calculating the corresponding Boolean
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set operators. a basic algorithm for checking the intersection of two simple polygons

can examine whether the projections of two objects are intersection on a. plane.

By notation, a polygon p is represented as a set of vertices (or points) vP. V" =
{l'o. ", v:,}, where nP is the number of vertices in the polygonp. An edge of pis a

line 4. composed of its two end points (V;'_l, V;'). One way to check the intersection

of two polygons is to apply the 'scan-line' algorithm. This method checks if a point

on the scan-line is inside both of the two polygons. This scan-line method is useful to

check the intersection of two arbitrary shapes. But. to the problem of the intersection

of two polygons. this metbod is computationally expensive. The following algorithm

uses geometric reasoning. and is more efficient than the scan-line method to checlt

the intersection of two polygons.

Algorithm 5.1 (Intersection of polygons)

Input: Two polygons PI and P:!. and they have been constructed with nP'

vertices and n" vertices respectively, where nP', n" 2:: 3.

Output: 1. if they intersect. or O. if they don't intersect.

Description; It is easy to observe that PI and p:! intersect if and only if at least
one of the following conditions is satisfied.

1. Do the boundaries of Pl and 1'2 intersect?

2. Is there a vertex of PI in 1'2?

3. Is there a vertex of 1'2 in Pl?

Procedure: for each £f'. i E [0, nP' I
for each £f.i e [O,n"]

if(4'intersect£'F>
Return 1 ( tbe boundaries of PI and 1'2 intersect );

Timelntsect +-- a ;
take a point~ in Pl;
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make a line C-.rt4 connecting two vertices V"'~ and Yr, l{'" E VJ'3;
fore.acll.cr',i E (O,n"']

if (.cr' intersect I:..m4 )
Timelntsect i- Timelntsect + 1 ;

If ( Timelntsect is an even number)

Return 1 ( P2 lies in Pl );

TimeJnt3ect i- a ;
take a point v:, in P2i

make a line .c.... connecting two vertices~ and vr', 11' E \1'" i

for each .cr, i E [a, n""]
if (.er intersect.c.... )

TimeIntsect +-- Timelnt3ect + 1 ;

If ( TimeIntsect is an even number )

Return 1 ( PI lies in P::l );

Return a (PI and P2 don't intersect);
end; {Procedure}
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Algorithm 5.1 is a basic algorithm for checlcing the intersection of two nmple

polygons. For a polygon PI with n'" ~ices and a polygon P2 with n"" vertices,

the time bound of checking their intersection is O(n"'n""). To cbeclt the intersection

of two polygons which include an arbitrary polygon, the planner then requires to

calculate the Boolean set operators along with this basic algorithm.

In the geometric reasoning process, the planner uses an intersection matriz (IM)

to store the infonnation of intersection. obtained from Algorithm 5.1. An element

IM(i,i) of 1 or 0, where 0:5 i,i :5 fl., indicates the intersection or non-intersection

status between the ith and ith parts respectively. Similarly, IM(i,j) shows an im-

plicit relationship when marked with -lor an invalid relationship when marked with

-9. An implicit relationship between two parts means that this relationship can be
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inferred from 1M elements, rather than being directly obtained from geometric rea-

soning. To a sequence planning process, the number of its geometric reasoning checlcs

is equal to the total number of the positive elements in its 1M matrix because the

geometric reasoning is only required to determine these elements. At the left side of

Figure 5.3 is the intersection matrix for the sample assembly in Figure 5.1, and it

shov."S the intersection relationships between the parts and the table.

1M To'" PI pe pe I P,

Table -. -1 -1 -1 -1

PI -. -. 0 1 0

P! -. -. -9 1 1
pe -. -. -9 -. 0
P, -. -. -9 -9 -.

¥ I To", PI Pi I P3 P,
-. 3 3 2 2-. -9 0 3 0

P! -9 -9 -9 I 3 3
pe -9 -9 -. -. 0
P, -. -. -. -. I -9

Figure 5.3: 1M matrix and eM matrix of the sample robotic assembly

5.2.2 Deduction of Assembly Precedence Constraints

The planning process uses another matrix, namely a constroint matri%(CM), to spec-

ify precedence constraints. The rows and columns of its elements CM(i,j),O:5 i,;:5

n, are ordered by an initial feasible assembly sequence. An entry eM(i,j) represents

the precedence constraint relationship between the ith and jth parts. eM(i,j) is

owhen there is no precedence constraint between them. When CM(i,j) is marked

with -9, it indicates a situation that can never take place in the current model. IT,

however, CM(i,;) is marked with 3 or 2, it indicates that either there exists a prece­

dence constraint relation between the ith and the jth parts or part Pi can only be
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assembled after part~. The former is a dirul precedmce C01I.ftmint and the latter

is an implicit prt:a:dence COTU'troinL At the right side of Figure 5.3 is the precedence

coIlStraint matrix for the sample assembly in Figure 5.1.

A constraint matrix keeps all the information about what is obtainable from both

the symbolic and geometric reasonings. Geometric reasoning is useful in finding di­

rect precedence constraints. Symbolic reasoning, on the other hand, can be used to

search for implicit precedence constraints. Symbolic reasoning has higher priority

than geometric reasoning because it is faster. Only when symbolic reasoning fails to

find the precedence constraints will the geometric reasoning be used. Searching prece­

dence constraints starts with re-using an initial feasible assembly sequence, which is

directly obtained frnm tbe analysis of an ordered robot action in off-line program·

mingo So, instead of using full checks in 'full-automatic' planning systems, it only

requires partial checks within the upper-right balI of a eM matrix. Besides, most

of the robotic assembly operations perform 'f~ntact' operations, in which one

part is assembled onto another (Figure 6.6 (a»). Therefore, a more promising way of

searching is to select an element CM(i,j) on thediagclDaIline in a eM. An algorithm

for automatically detecting precedence constraints is presented below.

Algorithm 5.2 (Creation of Precedence. Constraint Matrix)

Input: An intersection matrix 1M, obtained from geometric reasoning.

Output: a prececlence CODStraint matrix eM.

Description: For every CM(Pi, Pi) on a diagonal line in the upper.right half of

eM, search for an implicit precedence constraint between ~ and PJ'

II there is not such implicit precedence constraint, geometric reason~

ing is performed to determine a direct precedence constraint based
on their projection intersection. The row of elements for the table
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is a!so determined according to the precedence constraints between

Tab and Pj.

Procedure: for each CM(Pi , Pj) +- -9, where i E [0, ni,; E [0, n];
for each i E [O,n-i]

i+-O;
for each 9 e [i+ l,n]

j =;+1;
if CM(Pj, p.) < 0 (seacch for implicit constraint)

for each k E [i + 1,9 -lJ

if CM(Pj , P.t) + CM(P", P,) > 3
CM(Pit P,) = 2;
break;

ifCM(Pj, P,) < 0 (search for direct constraint)

CM(Pj,P,) = 3 x IM(Pj,P,)i

CM(Tab, Pi) +- 3;

for each j E [i,i]
ifCM(PjrPi+I );:: 2 (find p/+1 on Pj)
CM(Tab'~+l) =2;

end; {Procedure}

Algorithm 5.2 is presented to enrich the communication between Ithe assembly

sequencer (Algorithm5.3) and the geometric reasoner (Algorithm 5.1). The number

of calls to the geometric reasoner in Algorithm 5.2 is the overriding f:actor for the

total running time of the automatic sequence planning. Using the con cept of a 1M

matrix, the number of calls to the geometric reasoner will be easily computed for a

n-parts assembly. Consider the worst situation where there is no implicit precedence

constraint between the assembled parts, such as in Figure 6.7(a), the geometric rea­

soning is required to detennine all of the elements IM(i,i), where 1 :$ i :5 n-1 and

i + 1 :5 j :5 n. Thus, in the worst case, the number of calls to the geometric reasoner
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= E;;oI i = n(n - 1)/2 = O(n2 ).

From the constraint matrix eM of a robotic assembly A('P), its constraiIJt graph

can be easily created. The first step is to create an initial node for the table. Un­

derneath the Table node is a list of n nodes representing all tbe component parts.

Then, for 0 :S i,j :S n, there is a directed edge from & node Pi to another node Pj if

CM(Pt, fj) = 3. Figure 5.1(b) shows the constraint graph obtained from a constraint

matrix eM shown in tbe rigbt side of Figure 5.3.

5.2.3 Generation of Feasible Sequences

From a constraint matrix or constraint graph, all the feasible assembly sequences

can be generated in forms of an assembly tree. For example, the assembly tree ill

Figure 5.4 is generated from the constraint graph in Figure 5.1 (b). It starts with the

Tab node (Figure 5.4 (a)), and then expands to include nodes PI and P2 as its two

successors in the tree (Figure 5.4 (b» since PI and P2 are the two direct children

of Tab in the graph (Figure 5.1 (b». To further expand node PI, its brother node

P2 is directly placed to the next level in the tree(Figure 5.4 (c». However, node PJ.

which is a child of Pi in the graph(Figure 5.1 (b», has to be abandoned since P2 and

PJ have a precedence restriction in the graph. Otherwise, a child node in the graph

become a child node in the tree if there are not precedence constraints attached, as in

the case of P4 for expanding nodes at P2 (Figure 5.4 (c». The tree construction is

finished when each patb contains all the parts. Figure 5.4 (e) shows tbe generation of

the assembly tree, where its nodes are numbered in the order of their expansion. Tbe

tree is finisbed with a breadth-first search because the expansion of nodes in the tree
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proceeds along a "contours" ofequal depth. But it may also be a deep-first searching.

A general algorithm of generating a feasible assembly tree from a constraint matrix

is given below.

(a) IniliaJ.ling (b) Expandin. nQCU aI Ta.b (c) Expandina DOh:S aI PI and P2

(d) Expanding notcsa\ P2. PI, and P4. (c) E:o;panding ROles atP3'p4'p4, P3,and PI

Figure 5.4: Generating an assembly tree for the sample robot a::.-sembly.

Algorithm 5.3 (Generation of feasible assembly tree AT)

Input A precedence constraint matrix CM.

Output A feasible assembly tree AT.

Description: The steps of generating an assembly tree AT is as follows:

1. Choose the root node Tab as the current upanding node Nt
for expansion, where i = 0, d = O.

2. Select the sibling (brother) nodes of Nt, i.e., sNt, with respect

to the expanding subtree as its new children for expansion.
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3. Search for the parts that have direct precedence constraints

with the expanding node Nf and do not have precedence con­

straints with the sibling nodes of tv.~. and expand them as its
additionaJ children.

4. Take one by one the outgoing nodes as the current expanding
node Ni

lt , and then go to Step 2 for the next round of expansion.

Procedure: CreateFeasibleAssemblyTree

Nt = Tab; Nl +-0;
PROCEDURE CreateChildOfNode (Nf);
fOT each d E [1,n- 1)

N~H +- 0;
for each Nt E Nit, where N~ is a set

of the nodes whose depth are d in the tree.

PROCEDURE CreateChildOfNode (Nf);

end; {Procedure}

Procedure: CreateChildOfNode (Nfl

KidNt +-0;
SNt +- a set of the sibling nodes of Ni

tl ;

for each Pi E {fjol Pi E P [CM(Nt,Pj ) =

31\3S::t E 5 Nt (CM(S::t.Pj ) #2 or 3))}
KidNt = KidNf U Pi;

KidHt =SNf U KidNf;
return N!H =Nf+l U KidNf;

end; {Procedure}

Because of the complex ways in which the geometry of an assembly can affect

the size of its assembly tree AT, it is difficult to find meaningful bounds on tbe

computation required to build it. For instance, given an assembly with n parts, the

number of nodes in an assembly tree AT can range from n + 1 when there is only
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one legal sequence (as in Figure 6.6), to Ei'".lmj."+l-; j) + 1 when all sequences ace

legal (as in Figure 6.7). Consider the situation in which all sequences of assembly are

valid, such as in Figure 6.7, tbe total number of assembly sequences is n!. Therefore,

the complexity of the presented assembly sequencing can be a NP-<:omplete problem..



Chapter 6

Implementation and Examples

To illustrate the operation of the assembly system. developed in this thesis, a

prototype system called INTEG has been designed and implemented. A complete

description of the development of tbe whole system could be rather lengthy as it

requires discussions on GUI design with C/C++ progra.mming and X-toolkits on

Unix systems. For simplicity, Section 6.1 gives a brief overview on the current system

INTEG with an emphasis on its functionality and its interface to tbe users. A set of

experiment examples follows in Section 6.2.

6.1 A Prototype INTEG

A prototype is useful for the discovery of system specifications and helps to reduce

the ovel"all development cost [19J. To illustrate the integrated approach of robot as­

sembly programming and sequence planning, a prototype system cal.Jed INTEG has

been designed and developed. A proof-of-concept implementation ofhasic procedures

has been completed with tbe C/C++ programming language and the SRGPjSPHIG
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graphics toolkits [20]. C/C++ programming language is used to define data struc­

tures and to implement algorithms, while SRGP/SPHIG toolkits is used to build

a graphics interface and to display simulations. The INTEG currently runs undeT

Unix/X-window and Sun-OS environments.

6.1.1 Structure of INTEG

INTEG prototype is a CAD/CA..M. tool for robot-based assembly automation. Its

completed system should eventuaUy integrate mode.! designing, robot programmiDg,

and sequence planning processes with a common database. Figure 6.1 shows the

architecture of INTEG, which is composed of severa.I subsystems. They are the

modeling, programming, and sequencing subsystems. The modeling subsystem han­

dles object modeling, object selection, and the specification of functional parameters

for workpieces arrangement. The programming subsystem allows the user to define

a workstation and a robot, to specify assembly tasks, and to control robot paths

within a graphics interface. And the sequencing subsystem provides symbolic rea­

soning and geometric reasoning. It deducts assembly precedence relations, creates

precedence constraint graphs, and generates aU the feasible assembly sequences for

robotic assembly tasks. In the INTEG system, divenified expertise can be integrated

to improve the ftow of infonnation among design, programming, and sequencing. For

example, the information generated in the sequencing subsystem can be fed back to

the programming subsystem for re-programroing or to the modeling subsystem for

the DFA/DFM (Design for Assembly and Design for Manufacturing (46, 30)) task

analysis.
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Figure 6.1: The architecture of rNTEG.

6.1.2 Interface Controls and :FUnctions
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A proof-of-concept implementation of basic procedures focuses on the development of

programming and sequencing subsystems. In the programming subsystem, the basic

layout of the graphics interface is divided into four main regioos, as shown in Figure

6.2 (a). The main portion of the screen is taken up by a viewing window, which

displays the virtual robot-based assembly scene, On the top is a set of buttons for

function specification, which, when being clicked upon, pop-up submenus for users to

select items such as "file", "view", "color", "styles", "select", and "help". The upper-

right is the 'teach-in' box area for path control and task specification. The lower right

of the screen opens up a window for real·time robot siInulation. The robot simulator

can be zoomed, viewed, and controlled in the main window. Figure 6.3 shows an

example of multiple views of the simulator, which is also provided within the maio

window. In the sequencing subsystem, the interface coosists of three regions, as

shown in Figure 6.2 (b). The upper region, which displays a set of menu-buttons and
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control-buttons, allows the input of commands and parameters. The lower region,

on the other hand, displays sequencing results such as CG graphs, AT graphs, aJld

feasible sequences. The small region in between is a message window for feedback

messages.

(a) Programming system (b) Sequenclng system

figure 6.2: A screen display of programming and sequencing systems.

6.2 Experiment Examples

The following three sections demonstrate the implementation results of the assembly

system INTEG. Section 6.2.1 gives a robotic assembly task to assemble eight ran­

domly placed disjoint parts. To evaluate the performance, Section 6.2.2 gives the best

case and worst case for the task of assembling seven simple parts. Section 6.2.3 exer­

cises the system with the pendulum assembly task, which is a widely tested example

in robotics research and application.
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(a) Isometric projection (b) Top-elevation (XY plane)
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(c) Front-elevation (YZ plane) (d) Side-elevation (XZ plane)

Figure 6.3: Multiple views of the simulator.

6.2.1 An Assembly of Eight Random Parts

An assembly instance can be represented unambiguously by a collection of solid mod-

els (i.e., unambiguous representations of rigid solids), each of which has a geometric

transformation that defines its position in a workcell. Figure 6.4 (a) illustrates an as~

sembly of eight randomly placed parts. The parts are assembled in the programming

subsystem in an order given below.
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AssTaskl: Fixing of PI to Table.

AssTask2: Fixing of P2 to Table.

AssTask3: Fixing of P3 to Table.

AssTask4: Fixing of P4 to Table.

AssTask5: Assembly of P5 on P4 and P3.

AssTask6: Assembly of P6 on P5 and P2.

AssTask7: Assembly of P7 on P6 and PI.

AssTask8: Assembly of PB on P7.
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The precedence constraint graph and feasible assembly sequences are generated

by the sequencing subsystem. In the sequence planning, the system first generates the

intersection matrix and the precedence matrix, and then the precedence constraint

graph and a feasible assembly tree. Figure 6.5 shows the 1M: matrix and the eM

matrix for this B-parts assembly. Figure 6.4 (b) and Figure 6.4 (c) show the precedence

constraint graph and the feasible assembly tree respectively. The information gained

from the test shows that the total number of feasible assembly sequences is 48, which

requires only 16 geometric reasoning checks for the deduction of assembly precedence

constraints. The geometric reasoning checks are only performed on those positive

elements in the intersection matrix 1M, as shown in the left side of Figure 6.5.

6.2.2 Two Special Assembly Cases

To evaluate the performance, the INTEG system has been tested in several special

cases. One of them is the best case of assembling seven simple parts, such as in
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Figure 6.6. Within this example, seven geometric reasoning checks are used to deduct

assembly constraints. The total number of feasible assembly sequences is one only. In

the worst case of assembling seven parts, shOWD in Figure 6.7,21 geometric reasoning

checlcs are used to deduct assembly constraints and the total number of feasible

assembly sequences reaches to 5,040.

6.2.3 Pendulum Assembly Task

One typical example of robotic assembly is the Pendulum Assembly Task [3J. It was

evolved from the Cranfield Assembly Benchmark Kit [32, 45, 68J (Figure 6.8(b)) by

reducing the 18 involved parts to nine (Figure 6.9(a)). The assembly benchmark

shown in Figure 6.8 is a famous robotic assembly example that was used by Cranfield

Institute of Technology (England) for on-line testing of robot programming. An as­

sembly sequence of programming the nine-parts Pendulum task off-line with INTEG

1'"1: Fixing of Splatel into table.

1'"2: Insertion of Spaced into Splatel.

1'"3: Insertion of Sparer2 into Splatel.

1'"4: Insertion of Spacer3 into Splatel.

1'"5: Insertion of Spacer4 into Splatel.

1'"6: Assembly of Shaft on Splatel.

rr: Insertion of Spiece into Spaced and Spacef2.

Ta: Assembly of Lever on Shaft.

T9: Assembly of Splate2.
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Its corresponding feasible assembly sequence is

Table~ Splatd -.!4 Spacerl ....!4 Spacer2 ....!4 Spacer3~

Spaoe:r4 ....!4 ShD.ft~ Spiea.~ Lever ...!4 Splate2,
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In the sequence, PI is for Splctd, P2 for Spacerl, P3 for Spacer2, P4 for S~3,

P5 for Spacer4, P6 for Shaft, P7 for Spiece, pa for Lever, and P9 for Splate2. In

sequence planning, the geometric intersection matrix and precedence matrix are first

created; then the precedence graph and feasible assembly sequences are generated

from the CM matrix. Figure 6.10 shows the 1M matrix and the CM matrix for the

pendulum assembly; and Figure 6.9 (b) shows its preadence graph. A fuU assembly

tree and all the feasible sequences for pendulum assembly are provided in detail in

Appendix.. The resulting infonnation gained from this experiment shows that the

total number of feasible assembly sequences is 840, during which only 30 geometric

reasoning checks are needed for constraint deduction. The geometric reasoning checks

are only required to detennine those positive elements in the intersection matrix 1M,

as shown in the left side of Figure 6.10.

6.2.4 On Optimal Planning and Re-programming

The thesis does not explicitly discuss on optimal planning and re-programming issues.

This is because the thesis research focuses on finding all the feasible solutions first.
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The users then use this general solution to solve their own special interesting problems

with applying the specific extrinsic constraints. Normally, there are two approaches of

finding optimal sequences. One, qualitath-e approach, is to develop rules to eI.imi.nate

assembly plans that include difficult tasks or awkward intermediate sub-assemblies.

Another quantitative approach is to introduce an evaluation to compute the merit of

assembly plans. It may be based on the cost of the resources needed to complete an

assembly, on the total time required, or- on the difficulty of execution. Concerning

assembly stability here, we have a scheme that assembling large part has higher

priority than assembling small one. Then the optimal assembly sequence of Pendulum

assembly (shown in Figure 6.9), for- instance, can be searched from the assembly tree

and found as follows.

Table ....!4 Splatel ~ Shaft ....!4 Lever~ Spacerl ....!4

SpaceT2~ Spieoe .!4 SpaceT3~ Spaoer4~ Splate2

Furthermore, consider a fixed set of robotic assembly task with only their- order

needing to be changed to perform a re-program of robot, the ordered robotic assem·

bly tasks 7'"17'"S7'"a7'"27'"3Tf'T".r$1"t can be directly used for automatically re-progra.m.ming a

robot.
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(a) A scene of assembling eight parts
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(b) A precedence constraint graph
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(c) Anassemblylree

Figure 6.4: An assembly of eight random parts.
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"411- - 1- - 1- -1-
HI- -1- I- -

-I- - 1-

- - - -I-

- r- t
- J- - -1-1
-1- r- -1- -1-

-1- - J- I-

Figure 6.5: lM matrix and eM matrix for the 8-parts assembly task
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(.) A scene of assembling seven pans

(b) A prccedence ConstrllntJflph (c) AnlSsemblycree

Figure 6.6: A simple assembly case for assembling seven parts.
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(ll) A scene of assembling seven P'lrts
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(b) A precedence constraint graph (c) Apartiallissemblytree

Figure 6.7: A worst assembly case for assembling seven parts.
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(a) Workcell for CASK assembly (b) 18-pans CASK assembly
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Figure 6.8: A robotic assembly for Cranfield Assembly Benchmark Kit.
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(a) 9·pans pendulum assembly
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(b) A precedence eonsU'"d,inl gnlph
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(e) A panial assembly lree

Figure 6.9: A robotic assembly for Pendulum Assembly.
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Figure 6.10: 1M matrix and eM matrix for the pendulum assembly task.



Chapter 7

Conclusions

This thesis presents an integrated approach to robotic assembly programming and

sequence planning for the development of robot-based assembly automation systems.

This approach recognizes the importance of off-line programming techniques in robot

assembly. By applying off-liDe programming methods as a sequeoce planner's input

modus, it develops an integrated model to automatically generate different robotic

assembly sequences and explores the feature of 'automatic fe-programming'. The

validity of this integrated approach is justified with a prototype system INTEG.

Two of the INTEG's processes have been implemented. They are the programming

process and the sequence planning process. The main reseacch contributions of this

thesis research are summarized in Section 7.1. Its anticipated impact on assembly

automation is given in Section 7.2. Future research is also discussed in Section 7.3.
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7.1 Research Contributions
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Off-tine programming and assembly sequence planning are two different research areas

that have been addressed by many researchers. However, few attempts have been

devoted to a tight integration of both the areas. Most research approaches assume

that the sequence planning process finishes before executing the off-line progra.mming

process, and therefore deals with the two processes separately. The related work rests

either in assembly sequence planning, where the manipulator constraints or the virtual

process of generating assembly sequences are not concemed (5, 47, 35, 50, 45], or in

off-line robot programming, where the functions of assembly sequence planning are

ignored [34, 23, 26, 12, 621. In these systems, programming and sequencing modules

are loosely coupled.

The integrated approach presented in this thesis overcomes the problems of is0­

lated approaches. Its advantages come mainly from the following two aspects.

• Dextrous and Intelligent Programming

The interactive graphics capability enables the system to understand the assem­

bly operations that an operator performs. It, for instance, avoids unnecessary

computations which ace often required with an automatic programming sys­

tem. The system also allows the visualization of assembly operation processes

and sequence planning processes. Therefore, this integrated approach is more

dextrous than isolated approaches. With a sequence planner integrated in the

system, feasible assembly sequences can be automatically generated and di­

rectly used to ~program robots to achieve higher efficiency. This 'automatic
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re-programming' feature is one of maiD capabilities that an intelligent robotic

assembly system should bave..

• Automatic and Efficient Sequencing

Since tbe results of off·line programming are used as an input to the assem­

bly planner in tbe integrated system, tbe planner can directly retrieve nec­

essary information from tbe programming subsystem and tberefore performs

sequence planning witbout buman intervention. In addition, this integrated

approach significantly reduces the number of geometric reasoning steps by uti­

J..izing precedence constraint expressions such as an ordered robot assembly task

sequence. Evaluating tbe precedence expressions and executing partial ge0­

metric checks are usually much faster than performing full geometric checks.

Therefore, this integrated approach offers significant computatiooal advantages

over tbose 'full-automatic' planning approaches. It is more efficient to conduct

geometric reasoning with tbe INTEG system.

7.2 Anticipated Impact

This research explores a way to integrate olf-line programming with sequence planning

for tbe ultimate goal of robot-based assembly automation. It belps improving the

productivity of operators by allowing them to program assembly tasks through a

graphic interface and providing tbem witb automatic re-programming. The planning

algorithms developed in the thesis are also useful in other planning and scheduling

applications, including VLSI design, high-volume repetitive bandling and assembling,
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autonomous robot navigation, and work-Bow control.

The research results, presented in the previous chapters lead to a new paradigm

for the development and practical application of virtual robot-based systems in me­

chanical assembly automation. These systems will allow the users to program robots

off-line for assembly tasks, to derive different solutions for productivity and manu­

facturability analysis, to select an optimal sequence for 'automatic re-programming',

and to instruct robots to follow the computed paths and perform assembly tasks

on-line.

The thesis research is an effort of systematically developing design, planning, and

programming processes for robot-based assembly automation. The experienCi! gained

in the development of the prototyping system can be used to carry out further de­

velopment. The developed prototype provides a subset of the total functionality.

The prototype makes it possible to demonstrate and assess new techniques for the

investigation of robotic assembly problems such as the integration of robot program­

ming and sequence planning. This prototype can also be refined into an industrial

prototype.

7.3 Future Research

The integration of robotic assembly programming and sequence planning is an area of

research that is still in a research phase. These are still many problems in .-J.eveloping

practical off-line robot-based automation systems. Following are some directions for

future research.
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• Improving off-line programming models The control model should have

exactly the same hehavior of a real controUer. It is necessary to use the algo­

rithms that drive real controllers. SolutioQS to problems such as tbe singu.larity

of a robot are controller-specific. The system has to have different robot simu­

lators and to allow a simulation of different controller.;: within a workcell.

• Incorporating otber planning approaches The presented approach as­

sumes that one of the assembly task sequences is known in advance. In less

structured, mOfe dynamic manufacturing systems, the context of an assembly

plan is not known in advance and there is a need to conduct planning before the

teaching process. In such cases, the presented approach needs to incorporate

'editor' or 'full-automatic' approaches for pre-planning.

• Integration or planning The integration of assembly and task planning is

receiving great attentions recently(58I. Ta8k planning determines a sequence

of tasks (the course of actions) to be performed. by a robot to achieve some

desirable state in the robot's world (the goal). Task planners often deal with

high level issues and thus rely on lower level planners to complete lower level

tasks. In particular, gross motion planning for assembly operations and fine

motion planning io general are the two technologies that are usually uti1i2.ed in

assembly and task planning systems.

• Complexity study In the example given in c:hapter 6, the number of distinct

feasible assembly plans can be very large even for assemblies made up of a small

number of parts. If the planning task involves many objects, the complexity
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will be very high.. A proper selection of all possible operations is therefore

needed. Moreover, the time needed to compute a possible plan to reafue a task

increases rapidly when the complexity of the tasic increases. IT the planning

problem is not restricted by other means, the complexity of planning can be a

NP-complete problem. When it happens, there is no guarantee that a plan will

be generated within a given time. Since a complete enumeration of assembly

plan is prohibitive in m06t real applications, finding systematic ways to narrow

down the alternatives is crucial for the automatic planning of assembly [54J. To

overcome the problems associated with the complexity of planning for exception

handling, the following requirements must be met: (l) The planning space

must be limited. This implies that a limited number of sequences is needed

to bring the robot system from its initial state into the desired goal state. (2)

Heuristic knowledge concerning the application environment is needed to guide

the planning activity. In this way, the planner can be tailored to the application

and thus yield a better perfonnance.

• Higbt level robot operations Testing a simulator with operations other

than 'piclc:-&Ild-place' is much more complicated. This thesis does not work on

general algorithms to deduct all the feasible sequences for other types of robotic

operations. Existing technologies still face great difficulties when attempting

to create an integrated model for general-purpose operations. Although many

industrial automation applications do not require the sophistication of robot

operations, the introduction of different robots' operations - ranging from

'side-insert' to 'multi-hands' operations - points to a strong need of a wide
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application domain.
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• Finding optiJ:na.l sequences In this thesis, optimal planning issues are not

considered. In order to explore the 'automatic re-prograroming' feature., a plan­

ner capable of finding the optimal assembly sequence within a set of feasible

assembly sequences is needed [54]. Two approaches are being tried. One, qual­

itative approach, is to develop rules to eliminate assembly plans that include

difficult tasks or awkward intermediate su~asseroblies. Another quantitative

approach is to introduce an evaluation function to compute the merit of assem-

bly plans. It may be based on the cost of the resources needed to complete

an assembly, on the total time required, or on the difficulty of execution. A

combinatioD of the two approaches may attain the advantages of both.
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Appendix A

Testing Results of The Pendulum Assem­
bly Task

A.I A Feasible Assembly Tree

A.2 All Feasible Sequences
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$ .."., aNa_S ,.,_$_,.S_ S......,_S_._S..I· ... S_ ... w..-_S ,
s...".,,<2 ..aNa.$ , ... S__$_I .. S_._._•• S../._ _ ..__ ...

S..".,:HS ..aNa_5,.,... ' .. $..--._$_,_S_._S_.... $-. ... $ /._ ......... _$ ...
" ...Ha'''''' $......,_ .._ ... $_1_"...,...._ .../._.11' 5__ ""-_5 .
S..H.,20' 5,.,. .. '_$__S_.... S_,_S..,._S,........ _ __ S .

S..H." _S _S_'_"__5_'_ /'_$__S_ w.- ... $,.Ia .

S..Ha,I'? _S , ... $__ S S_,_S /._5__ $_... _$ ...,

S,,"'a,'" _5 '_S......,_$ _S ,_$../'_ _S_ :II-._5 ....
S ...Ha,'''' ..aNa_ S $_.,_ $ _ S , _ $..../ u .$";__ S_... _ 5 '

" ..H., UO S _ $ ,_ S _ 5 _ 5001... _ ,,~.... _ 5"" _ w.-", S ,

S..Ha,2I' _S $ S S _$ _ SIo4/._5 _I.<-o _" .

S .."."" W S , _" _ S _5 '_$ /._'-' S _5 .

5 ".," 1 5 _S s _S _$ $""/'" S " 1

S ••".,,.• ........ S , " 1 $ 5 _ " _ 5"./ Lo_ S 5 ..

"..".,U' ...... _$ ,_" ,.$ , _S _'_S 5.../._ _ "•••
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A.2 All Feasjble SeqUellce5

$...".'_ T..-_$ '_$_ S_~_$_ ,._$_,_e..--_$__ t
$.,.".,20' T..-_$ ' ...._ _ .. S ,._$_,_$__ '-- _

s..".,_ T..- .. S_'_$_._S_t_S__ /._"'-_$_,_._ .. $ ...

$ ...".,.., T..- .. S ' ...S~_S__ S /._S_._S '--_S_ ... S ...

S ..".,_ T..- ... S _ ot_S__ S ,._S_, ... S S__ '--_'I ...
S ".'tt'T..-_S , ... S _S t_S , _, .. "-- S..._ .. S S ""

S ".'1U T.w.._S ,.S_._$ t_S ,._.s _....... _$_ • .s_ S _

S ".,H11 Tolol._-'" S , ... $_.t_S , .... .s _S.--._S_ S .

s ,a... Tolol.... S , _$ _.s _$ {._$ , S _ _$ _$ ...

'I , 10. T"'" _ Sol.','''' S _ s a SA.{.... S S , $,; s ,••
S••",., r ••' s ,_S S SA.{._ S _S ,_S _' Sol ..

S..".,107 r.w s ,.,_S_ S_ _ / .... S _ _S_'_.ol S ..
S ..".,_ r S ,.,_S _ S _ $ ,. _ _ $_.. ,_ -'" ..-.._ $,<_ _ s a
-'"..".,_ T.w.._$ <c,_$ S S / S ....... , S S _S .

S ".,%70 rolol._,1 '.,_$_.t S__t_S , S_ S_, _ S ...

S ,·." r .... _s '_ ........t_._._S '_$ _S ,,_S__ '-- S ...

S ,27'2 T.w.._S_'_S~_S "'",S , S ''''S'''/.",,,,,,,,,,,,,,S__ .s ....
S,,".,nJI T.w.._S ' ... S S S......,., S S_ ... S.../, ... '--_S _
S ,tT. r.w.. ... s '_ _._ _.s_,_ ,._ _.s__ "'-_ ...
S ".'tT.T _$ S S , S , S S__ S _
S..".,t" r s_..'_._ S__ S_.,_ ,._.s__S_•• _,,"-O ... S .

$.,. ,.,.., r.w.. s '_'I,.....ot_'I_ _S........ ,_ ,._ _ ....... _'I_•• _.s .
S , T _S S ot ... S S......,., ... S , S_._S _ .
S , rolol S , _ S _ S_ _ S , _ , s_ _ S S .

S ,_ T $.,l••• , _S _ $.-.•• _S ,_S _S _S ,._ S.,l ..

S , 10' r _ Sol.',' S S 'I , S,;. s ,. _ $ a_ _ S ,et

s ,an T S , _S _ S S ,.S _S {._ L _S a S,l••et

s ,al1 r ••'._S.,l '_S I_ S _5 _ ,_S {._5 __ S ,...

'I , r.w._s ,., S .a_S S .J_, S { _S _.J ,••
S , us r.w S ,.. _ s a ... 5 _ .s _ S , _ S _ {, _ Ln 'I ,••

S..".,,,, r _ S , 'I ' _ S_ _ 5 _ s ,. _ S , _ __ s_._S t

.....".'21. rolol._S , S t_S__ S_._S ,._S ,_S__ '--_5 a

S ,_ r _s '_ a ... s_.. _s_..~_ ,.... ""-o_S...... , ... S ....... _S .
S ,_ r _s ' ... S _S__ S /._ ..._, _S _£&__ .s__ S t

S..H.,_ r _s '_$ _$-.-._S / S_. _ ,_S__ ,-... _S _

S ..".,., r _s '_S_ S............ S /, S_.,_ _S_._S__ ...
S , .. r s '_S _S__ S /'_S_,_ _s__ s_.a s_

S ,_ r _s '_ _ _S-.-_S /,_ ,_S_.S_.~... W- S .
S..H.,_ r _ S_, ... S _ S_... _ S {._ , _ S__ "" _ S S ,••

S ,_ r S , _ S_ _ S__ 'I , S_..~ ... S_., S""'" _ s,...,.a

S H.,_ r s ,_S S _S ' s..-..a_s..-..'_S__ _s a

S..H.,"' r _ S ,_$ _S _S , •• S..-.... _ _S....., _S S .

"'..H.,'" T _ S , .J..-.•• _S _$ ,._ "".. _S , $ .._._$_ .J ..

$..,".,_ r .Jol ' .J 1 .J s , $ , $ s _s a
s..,,,,., _ T _ 5 ' $ S _ s ,. _ 'n " .J _ s , .. .J_. _ S~"'.2

$ /'1.,10' T _ $ _ S 1_ s ,. _ s " _ .J _ s _ .J .sol ..

S H.,_ T _5 ' ... .J_•• _s••/ .... s ,_s_•• _$ _s__ .J,.,.. ..
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A.2 All Feasible Sequences

s ..."'.,_ T_ .. S ' ..S_... S...J S_, S.....~ '-- ... .f_.... :J_ ... S ......2

.1..".'_ T _S ' :J_0'2 .. S"", S_, S_ '--_S__S_ _S_

:J..".,_ _.s ' __ ISIoo'._S_•• _:J_ S S_ .s......'
..." •• _ T _S ' .. :J__ ISIoo'._S_... S_, _'-- .. S__S-..

........ _ T _:J ' ... S__ ISIoo'.... .s_' ..6_ .. S_._ .s .f.,...,

:J...... _ S , ..S_.. S'Ioo" .. :J........ , ... :J_ .. :J........S_:J_ S.,...,s
6.."'",_ T__ :J S__ :J..., S'_, .. S_ '-- ..S-S ..S_ .. S""._

S..".,JI, '_S__ ISIoo! S....-' .. S_ '-- .. S_ .. 6_._S ...,
S.."'.'S" _ :J , .. :J_0'2_S ,._S....-..,_S__ S _S_S ... w- ... S _

S..".,S" .1 , .. S_.1 .I , .1_,,,, S.--. .. .I S .....~_S o.s
..."'.'SU MoI S ' .. :J_ S , S_;_e.-.... ... S_S_S S_ S""••d

S..",.,.,. T '_:J_ S , S_., .. '--" .. S_._.s__ .s_ .s""•••1

.s..... 'S,• ........... S"" ' .. 6_ .. S '._S_., .. _ :J_._.s_...S_ .. S"".,,,

.I.." •••,. T _'''''.'., ... .s......... _.s , .s ' .. _ 6.......... .s_ .. S _S .

:J..".",. ToSl 6""."'" .1_."" .I"', .I , .. _ .1_ .. :J_'" .I"""' .I .

6 TMoI._ :J"" .1_ :J..t, .. S..Qed .. _ _ :J-'_ :J .I .f d

:J"".,310 T .I , .. S O'2 .. .I••,. _ .1..-..' .. S .I........... .1..-. L-ao .I .

.1"",.,,:10 ~, :J"" " $0." .. .1 ,,_.. :J,....•• _ t :J _ " .

"..,..'S" T S' , .. " _S"", S ,_S..__ :J L-ao S ..
"..,..,.n T :JJt/••• , .. :J 1 .. " .., .I , .. "Jt/ , - e.-.... .. S S"".,..
s••",.,su ,,.10 •• , .. ,, S.., S :J t :J_ :J sJt/ .

.I.."."" MoI S , .. :J S..' 6 " .. :J S 6..-. S ..

6..."'•• = SJt/••• ,_S S..' S_.3 S_'_:J_ I.o S-. sJt/ ...

5 ..,.., oSl 6 ' 5 6..' 5.-. S ' .f 6 5 .

6 ",.. ,= oSl S .1_0'2 .. 6 .." :J_ s ' _5_ 6_ .. 6Jt/••••
6 ,..,.". MoI 6 ' .. 5_ :J ' S....- .s .s__ 6_ :J.,.,..

6 .."'",_ 6 5_ 5 ..' 5 ..._ .. 5_' .. 5 .1_.. _ _.1.,. .

5..,... ,3lIO 6 ' 5_.. 5..' S__ 6 S e.-.... .. S_ 5 .

...."'... 33 _ 5 '_5_' .. s ' 5_ .. :J_ S_, .. I.o..._S_ s ...
:J.."'.. ,S32 6 _ ..... S ' 5_ 6_ S_' ... S_ ......... _5 ...

.1.." .. '222 :J , .. :J_ .. s , .s .f_ '--_S_._6_ .. 6 '
:J..,..,»o T S '_ ........,_6 ' 5_ 6_' .. S ........... 6__ :J.,...2

6.."'., :J ,_s_... S '._5_ '--_S_' .. 5_ .. :J_ .. 6...1d
s..",•• SSI s , .. s_O'2 .. S , s_ S_ ... S_' ..6_ .. :J.,.....
s..",.,_ T _S ' .. s .....O'2 .. s " :J_ .. s_, .. s__ s_.. S ..

5 ..",.,_ T .s ' .. S_ :J , S'........... s .s_._s_ ,-- ... 5.,. .

s"".,1)0 T _S ' 5_ S ' S_ .. 5_' :J_s :J__ s 1d
s..,..,soo T _S , _ :J '._5 _._ "'_ .. .f _s .
5 ,;1.&' TMoI , .. S O'2 .. 5 " .. S ,,_, .. s s_.s e.-...._SJt/ .

...",.,.n T _ 6 ' :J , .s,...., 5_., 5,0-. .. L-ao•• _ 5..-. '''''.2

...."'., ... T 6 ' .. S , .. S " .. 5 S rS .. 5 ' .. "'__ S ..._ .. :J""....

6 ..""'''' ToSl. _ :J , ,. _ .1_ s , :J";-'" L-ao 5Jt/••••

s , ToSl 6".'.'" SAo, 5 _ 5 L-ao .I , .. 5 5 .

6"",,,,. '3<0 T.~' :J,.••• , , 5...-•• _ "'"-'" .. s , .I .I ..

....,..,.n T.~' :J , :J 5""" 5 /.cw 5 :J"' .I sJt/ ..

6 .."'. ,SU T.W ., .I , :I ~ S s , .. .I s ,••
:J..,..,S4Q T.", .I ,., .. ., ~ s .., L-ao.. _ .1..-.., :J ~ 5 sJt/ ..

96



A.2 All Feasible Sequences

is...I<.,:IOII T-. ... iS""•• ' .. iS~ .. iS"f''''r.-.... .. S '",S~ S_ ... S_'''",S''',,~
s..,1<.,a' T-._S.... ' .. S_ S... , ... r.-...._S '_S_ iS_~.. iS__ S ~

is..I<.,= T_... is"'''''' S , .. is""'" w- , .. S__S_ ... S_.... S .

S..,..,:I03 T-'_iS"''''_S_'_S'''f'''~_S_'_S_''S"""""iS ..__ '''''''''

"..1<., .... T-'''iS_' .. iS.....~'_'''''/'''''''''''_iS_'''''_''S_.. "_._,, ....
S ".,,,,,. T-.._S '_S_r2_S /<_r.-.... S_~ ... iS_'_"__ S__ S 1d

" 1<.,_ T-. .. " ' ..S~ .. iS / iS_~ .. S ' .. S_ ... S_... _ ....

S N.,.~ TM<. .. S ' ..$_ $ , S_~ .. S _S '_S_ .. S ...

S ..I<.,_ TM<. .. " '_iS_ _S '._ _"__iS_' .. S ~ ... S_ .. S ....
S..N.,_ T S."... ' .. S_._S ,._ S__S_, .. S__ S_•• _S ...

is...I<.,_ T S ' .. S_""" , _,,_ .. $......-~ S_, .. S S .

S..N.,.' T_._S '.,_S_ S_., S "" ... S_.. iS... ' ,_ S ....
is...N •• :on T S '.' .. , ~ _, ""_""" S_' .. I"'"" w_~ S""'" _S .

1..".,_ T _"""" .. ,_S ~_S......'_5.......... S _S_ .. S ... / S ..

S ..."., ..... T _ S , S ~~ _ S .._, .. 5......-'" S , S_~ S_ is .

is..''.,_ T " , .. S _S_., .. S_r2_S ,,_S w..~_5_._S d

' ..".,_ T I ' ... S S ...... , ... S ~ S , .... S" _5....... _ _S .

S..,..,3I' T _ " , .. S is..«.' _is Sb" .. S ~_ .. S ~._iS '••
S ..".,_ T _S , .. S,.... is ' ... 5 S""'" .. w __ .. S 5 5 '..

.....N•• _ T_ 5"""''',,, ",.... " , .. 5 S""', ~ S" 5 '" _ S ..

S ..".,,,,,, T iS S ~ .. S ,_5 S,.; S S / S .

.....N • • Ji" Td'. _ 5 ' .. S ~ .. is '" S S ,,""', S S ~

" ..rt., .... T...... S , .. " " , -" ",.;_ .. " / " " .

"..,..,373 TM<. _ " ,., _ is_ "_~'" " "' .. "......- " , S _ " ,••

" ...N"37' r_... " , .. is is ' ... 5_~._" " , W_"""__ S",'"
5,,""371 TM<. .. S ' .. S " '_"....."' ... iS S__ ".../._ S ..

" ..,..,"'" T is ' .. ''_ S ' ... 5__ S ' ,,...-... .. w.- " " .
5..rt.,:077 T iS ' .. "_rl_"_.. _iS_ "' iS_~._S_ " .
S ".,371I T S ' .. ,_.... S_., .. ".....-. ' iS_~ .. S_ .. S ~

S ".,~... T S , ... " .....'~ .. S..... , .. S , S_~ ,_ w.... _S_ S ...
S ..".,_ T _S ' .. S__ S......-, .. S / S_ S_ .. ,,_ S .

S "., .., TaIIo .. S ' ... S_~~ .. S_' .. iS ' "_~ w- .. S_._,,_ .. S _
S "., .... TaIIo_S ' .. ,,_.. S_, .. S ,,_S_ w..... .. iS__ 5 _S ..

S ..".,_ TM<._iS '_S_ S_, .. S , S-' .. S_ .. S_ S .

is...".,_ TaIIo .. " ' .. ,_~ S_, .. S , S_... S_ .......... _ 5 _

S ..,..,_ TM<._S , .. S rI .. is_.'"S"'""S",-,,,S,,,,,,,,,, w.- 5 S ...

S ..,..,_ T S ' .. S ~_S ~, ,._S_ _,,_•• _S_ _S ..

S..,.., T S ' .. S iS '_S , S _ ......... iS_ S S .

S ..,.., TM<. .. S , ... S_.~_S_~, .. " , _ is_'" " _ "" _ S ,..

" N.,.., T is"",'_ ,1_.... 5_~1 _Sh"" r.-.... ... S .......'" S_ .. is_ is''',,,

S ".,_ T.W S S ~._ S_~, .. Shlt_ r.-.... .. S__S_." is_ .. is ..

is N., .. , T.W._ S , .. s ~... is 5 ~' .. S S ...,. _S,.;-. " .

S ". 'WI T.W 5 ' .. S ~~_ S 1 .. 5 ' .. S n." _ w_~ .. 5 5 .

""".,193 T " ,_s ~ .. 5 5 ' .. 5 5,.;_ .. S""'" ~ S ,..

is••".' W4 T.o, S , .. S ~._ $ ~2 _5 ' .. S~." .. s ~ is''; ~ 5 '..

5 ..rt_,:wII T 5"""" s S 5 ' .. S , S "' s" S .

S ••"., .... T s..... , .. S ~_ S _S ~, _ " ..,._S" is ~._ _S .
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A.2 All Feasible Sequences

1..,,,.,_ T S S_,.S ' I_' ... S~.w.- S_ ... $_... _I ...

$.."., .... T I ' $-"'"_S / $_••I~.$_ $__ w-._$ ....

s..,".,_ ._ S ' I_.S / $_, ... $_,_S__ w.-_S_ S,.r..d

.1..,,,.,"07 ._ $""" I_t • .1"'/'''' .1_,,,,$_ ... 1_.'", '"-.$ $........

_"., eWe ... I $-S ... I / •• $_._$_ I_' ... $ ...... _r...- S ,..,

S.."., eWe_$ ,_$_.'.I /._S_ S_ w.- S_•• S S ,

_".,_ ._.S ' S......s I / $_, w.-.S , S_._S _S ,

S..... ,~. T S ' $_, S / S_, _S '_S.......... $__ .

$..".,~ $ ,.S_,.S / I_ w.-.S_••S_.S S .

S.."., ...... T__ S ' I '_" / "~.I_ $_.'"-_"_ ,, ,
S..".,_ .doIo S ' I_ S / S_, ... " S......... I __ r...- .. S .

1..,".'401 S , I '" .1 / ""'_'_ " , w.- .1_.... .I.......... .I ..,

" ..". , I"",'", 1_., S / ,,_ " """ t.-..- .. 1__$_.. S .,

1..... '407 I ' ... I ' S / "_ S..«.' I_ .. $ '-"" ,, ,..,

I .."., I ,.,. $ , S / •• ,,_ s..«., I"' $_ " .

"..N., _ _ I ' • .I , I ' $_ S.."" .I , _ .1",_. S ,

S..N.,"" , $ , I '. 1"'/' " ..«rt .. " ..« 1 ..«., .. S S ,.,

S , .. , •••,._S ,., S ,.S~./' .. I ..« I ..« S_, " .._.1"""
" ..N."62 T ••' So/.,., 5 S~./,_ S S ,. S__ S,.;_ S ,..,

S..."., _ S ,., .. $_••,. S~'/'''' S ..,.,., 1 '.1,.;•••• " .."' 5".','
" ••"., _ T S , ... I .....' _ / oS_.' _ S S , _ "''';0« _ S ,

S...H.,"" •.-.t S , _ .1_., .. S , S ......... S_.., S , 1.< .1";0« _ .I ,

I ..H., _ S ,. S..""., 1"'/'", .1.._ •• S,....., S S "" S 2

I .."., I ' .. ,$ ' I .../ « ... _S_ ,$_ _ .

.....".,_ I ' , "../ 5 ..« .. _ I , _ ..,.......v.,_ .eWe_S , .. S , .. S,../' I_.... S _S_' .. I_ I '

1 ..".,.>0 I '_,$_., ... $ / •• I __ S_..s_w-. .. I..-' " S ,

" ..N.,., _S , ... ,$_.t_S / S_.. _ I..-'_S_' S S ....
S...N., ..n " ,_S_,.".,,/ S__ ,,_, ... S_, S_.S ,

s..".,ns S _I_t .. S / ...-. .. s $_,_$_ S ....

.1..".,07' S , .. ,,_,_S /._ S_•• S_, .. S...... _S_.S ,

I..,,,.,.n 'oM< .. s _ 1-"," .I , .I....., • • _ S_•• I ........ 1 '

I ..".,'''' ........ I ' .. I_,.., " / ~ "--' .. S_, _.,,_ .. ,, .
1 ..".,.fT .-. .. 1 '••• " ,_.1 , .1_' 1_' • .1_ ......_ .. _.1 ,

I ..".,.,. ._ , ..s s /._ I_ I_'_S_ '

I..,,,., ..,,, T $ ,.'"'''_'_''''''/'.'''''''.'''_'''''_'''._''' .1"",,"''''''''<02"..H.,_ ,.. ,$ , .. .1 / ...-. _ 1_' .. ,$__' ",.;- .. .1 ...

I .."., .., ,,0/ _ .1 1_'_.1....,.'_,$,../ .1_ ,

s..".,on I ' _ I , _ $ , .. .1_, S..." .. 1.<__ .I I"""

1 ..",,_ T .I , $ 5_., .. 5 ' .. s.._, $_ .. 1 ... / 501...'

1 ..".,_ T _ ,$01."'''' 5 5 '.5 ,_ 5 ... / s_.., s_ 100.'ot

" ..".,_ so/ , ... I '" $ ' ... 5 $""/ .1....., 1_ .. .1 '.,

S..,N.,_ _5 '.'. J I_..'_S _".., S,.f."" S ,_ s ,ot

S..N.,0II7 $ ,., $_ I '.I..«.' S ,._s _J..«., s ,.•
S.."., $"".,. s J , .I s I ' J_••, s";o«'" 50/••••

S..H., _ T.W 1,.1 ,. $ s , _ I ' .. $ ••/, J 5 ,..,. $01 .

I ...H.,.to T I '.' ... 5 J , ... .I , ... s,.;_ .. s , 1"'/,,,, _ s ,ot
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A.2 All Feasible SeqUel]ces

s " •••• T S s_.. S 5_2 .. S_ Sf04./ S..- ............. 5 .
s " •• _ T S s_ S_.' 5........2.. S _/ '--- ..S_~.5 _
s " •• _ r '.5_ 5_ S_.~.s_ f04.1< .. 5_ S 2
5..".,_ r __ .. s s_.S_ S........2..S~ .. Sf04.,... e.-. s_ .. s <a

5 ".,_ r s ' .. s_.. s_., ..s_..s_... s_.s.., s ..,
s ".,_ T S ' .. s_.. S 5_.. 5.../ ••S~ .. w- .. S_.s _
s ".,_ r_ s '.J'_..... 5 ' ..S_~ .. s.." .. s_.s_ ........... s ...
...".,_ r s J'_ ..S_'.5_~.S ...' 5_,.S_.s ,
s ".,_ r_ s s_ s.......,.s../...s~.s "'_ .. s_ .. s ...
s ".,..., r_•• 5 ' s_, .. S../ ••S~••_ 5_ ............ J' _
S"'''.'IIO' r s ' .. s S_.... s ..,•• s_ S_'.S_ .. S ..
S " •• 102 T 5 ' .. S_ S_.' .. 5,../•• S rI 5_.S ~ .. S 2
5 ".'_ r.wc .. s-'- s..-.s_ Sf04.I< .. s , .. S,.Nco .. s_ s-'-...
s"".,10< T S-'- •• ,.S S , .. Sf04./ 5_ J'_ 5 5 ...
5..".,:105 ro4ol s , .. s s , .. $f04./ s ,_ s_ .. s ...
s...".,_ To4oI S '01.S s " .S... / 5 J' '''S''''.'' ...._ .. 5 02

s.."., _ r S ,., .. S S , .. 5"', s S.._I .. s_ .. S ..
s.."., T S , .. s s , • s /•• t S s_." s~.... • S""ol
s.."., r._I 5 ' .. 1' S ..<O", .. s~., , s S~ s " ,
..."., r so/••• , .. " " , .. S , s s,,; so/ .
s .."., "" r.w.. s , .. s s s s_..~. s / s" So/._
5 •• ,V.,SIl ro4ol s-'-•• , .. " " s , ..S_~.S , s_ .. S ..

S.."'.,I'. ro4ol so/... ,.S " s,.....,.S_~ .. ,_ s""/ S '.I

S..".,I'. T""." so/.,.,.S S s ' .. n./•• s 504<< 5"""
S...".,I'" r s , .. s " S,......,.S / s e.-. s_.$-'-•••
S..".','" r _s '.S S_,.., .. 5_ S ' 5_ ..S_~ 5 ..

S..".,ln r s J'_ s_.. s_ s , s_ s_~ .. s _
s..".,.,. r s S_.S s s , S_ .. 5_ .. 5-'-_
S..".,1I0 r s s_.. S rI .. s_, .. s , s_ .. s s .
s..,,,.,_ r s s_.. s s_,.S_.S_ .. s... , s ...
S..".,51. r s '.5_ .. S_' .. s_., .. S_ .. J' ' 5_~ _.s .
5..".,= r s , .. s s.......$_, .. S_ .. S / s s ...
S ...".'023 r 5 _ S S_' .. 5 1'_'" s ,•• 5_ .. '-- .5 .
s..".,124 r s ' .. J'_ .. 5_... S_ s s ,._"'- s_ .. s ...
s.." •• us r_ .. s '.S_.S~ .. 5_ J'_ s_ .. S...., '--- .. S .
S"".,". r s , .. s _s S_ s... , S , .. e.-. s_ .. s ...
1'..".,1'" r s ,.S_ s S_••• 5f04.'._J' , .. S S ...
s..".,s. r s ' .. S_ S 2 _ ... S... , s , .. s_ .. s .
s..,,,., I. r s , • S_ S s /, .. s_•• , .. s_.~ .. £0 S_ • 5"""
s..". ,uo r_ so/ , .. s s , .. s , s , .. S s_ s .
s.."., .., r.IoI so/ 5 S I .. s , s , 5_~ .. s so/ ..
S "., T.IoI s , .. s s , .. 5""'. S , s,,;_ .. s S ..
5 "., T $ '.' .. 5 s..« s , s , .. s S e.e-r .. 5".'"

s..". '124 r s , .. s 5 5~.' s.-." .. , ..__ .. t s , .. so/....
s ..".'us T._I•• s ,., .. 1' 5 "" .. s.... , s.-..... S £o s"" 50/••••

s .."., S:lll T so/.'" .. S s 5~."" 5,.«•• _ 5 s_ .. £ow so/••••
S"".,137 T So/.'.'_5 5_ S , s "'- '.5_ 0/ ..
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s.."'., T _S_._Jr_ _s--._s..,._<-..- ... s_s_s_,_s__ s ...s
s.",., , T _S _s_ _s_s_Jr__,_s_s_s..,._s__ <-..-_s ...s
s..... 'us T __ S d ... S_ S_.s_s_., ... s_._Jr..,._ ...__ s__ s .
s."'.,us T.w. ... S_'_s_•• _,,_s_s_,_s_._Jr__ Jr..,._~ ... s ....
s."'., .... T _S '_s_ ... s_a_s_'_s.., s~_w- ... S__ S d

S."'.'''' T _S"' ' ... s__ s_s_s_, ... s .., s~ ... s__ <-..-_s .
s.",., T Jr_._s_ _S_S_5_'_5...'._'""-_S_"_S__ S ...s
s."'., T 5 S_ _s_s_s-"_s_,_s..,._s_ ... t.--_s ..
s.",., T _S s__ S_.S ... 5_r2_S_' s...'._ _5__5 S
s.."' T _5_..'_S_ _S_.S_5_.1_"_' S__ s ,._'--_s_ .
s."' T _S ,_s_ _S_.2_5_._S '._s_,_ __ S__ $ .

$."' , T _Jr ,., ... $_ S ..._._5.."".I " ' ,,_.,_s__ (,......- ... $ 1

$q"'•• '" T _ ,,"'••• ,_s_•• _ S_.2_5 S , s ,_s"'.... _S"'•••1
5q..... ua _s"'.,., ... s_••• _$ ..s ... s ,._s < s..""•• _ _5,,;__ S"'.,..
S""'.,I.. T..W s ,.,_ s S coo.2 _ s..,._ .5 , S I s,,;_ _ w-.- _ s ,..
s••",,,,.,, T..W._5 '_' " <••2_S••,. $ , <-"-_$ <••• _.5"; ' 'd

".."'., Td'._S"'.",,, ' _5....,••2_5••" .. , , ....... , _,_ .5 ..
, .."'., T _" .5 ,_.2_5""" ,_~ ,_•• , S,,;__ w. $ .

'_""'_ T _ " ,., .5_ 2_•• _ 5""" 5_.' _ , ....... , _ 5";_", , ..
, ..,.•• 148 T _ S ,.,_ .5_ _.5.u••2 .. " ..,._ _, , ... ,_. _ "r" _ _ " ,..
'q"•. MO T _.5 , ... ,_•• _$.......2_S...' _._ _,..._,_,,__ " '.1

s••",•. .." T S"".. ,_ ......... _,..,._,,_,_,_,..,_.5_.2 .. "--._$__ ,"",..
"q"'.,'" T _"""..,_"__ ,,..,._S_'_"_.I_._.S_,,__ ........ _,,"" .
" ..",.,,,,,, TdI<L _ " ....., _ ._... _ " ..,._ """." _ ,,_., ... .:.- .. s_s_ ,,_ .. """ .
s.."'., .... T__ 5_",_"_",_"",.",,_,,,"_r2_<-..-_S_ .. s_s_s_ ..
"..",.,_ TdIa ... S......'_"__"...,._,,..._.. _,,__,_s_.. .5_r2_w-. .. s .
"..",.,_ TdIa_"_..' ... .5_.. .5..,._s..-'_s__ ,__ "--_S_2 S ..
s.,.., .... TdIa_S '_s_.... S..., "_,_.5_ S_.1_ ...__S_ ,, .
"..",.,_ TdIa_S '_S__S.., s_,_S_ _r2 .. ,,__ '--_S""....
.5..."'•. _ T..... _S ' ... S......... _"...'._5_'_S_ S_._5__ S.......s
S",,,,.,",,,, T.w."S""",_._"'_"""_S_,_<-"-""_" ..-S_.5__ .5,,,,..1
s .."'•• n'T.w._s_..' ... .5_ _s..,._s_,_ .5 ,,__ .5_.S ... S .
S""'.'07'1 TdI<L_.5 _s_ S..,._S_.,_ _S s_._S_._s ....
Sq"'.,17S T.w. ... S s__ s ,._s~_S__'_S_2 ......_._S__ s ..
S...".,I" T _ ' ,,_..... s ,._,,_ ,,__,_S-....s_s__ ........ _s .
S.."'.,I•• T S ' .. .5_._S ,._S_ 5_.' <-..-_"_2_S__ " ,..
S..",." .. T _ ' s_ , '._'.......I S_' ' __ s a_'''' ..
, ..",.,1" _, .5_ .5..,.... s_ s_.,.S__ S_.2_ _5 .
""",.,"" TdI<L_.5"" ..'_"_ ,,..,._S_ s_., .. s_ r.- S_.S ... s ..
"..,..,In T ....... S .... ,., ... ,,_.. _S...'._5_.._S_ , , _S..·_.s ..
"_".' Td.'. _.5".,.,_ " "..,,_ " coo.'_ " " , .. s _ _ :..- S"'.'d
" ..II., .., T _S"'••• , .. " " .." S _, _t.. " , ",,; _S .

S""•• H' T _""'••• ,_" _".., S , <1I., .. " S~ _" ,..

.5..".,,,,,, T " " " , s < , ..""., ,,_ S..co.S SoI ..

$ ••"'.,_ T """ ••,_"_.__ ,, ,._S_.I r.- " ........~ .5...... ,_s,;- _s .
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" ",.,ws ..-_ ... ,,""' .. , ,,_ """', ,,_ ,,_., $_., ,,_ ... ,,""'...
" "'., ... ..-_ .. !IyM... ' I_ " ' ,,_~ "_' I_ "_ ~ .. I""'..t
"..",.,_ ..-_.I.....' "_ .. I ' S_~ .. ,,_, t.-.... "_ I_.I""".'
s.."'., ... ..-_ I""'..' I_ " ' s__$_ I_ I_ .. I""'..'
"..,,,,., .. T 1 ' "_ " , s ~ .. $_ s_,."_ <-OO- I ..<ct

" .."'.,_ T_ 1 , "_ .. " ,< .. ,, 1_ t.-.... "_, ",.;«o I ....<ct

"..,,,.,", T " "_ I '<.I_ "_' I_' I_ ..",._

" ...".,_ T " ' s-..- " '< I_ I_ $_ "_ ,,....a
S"".,18I T_." ' "_ ,,.., ,,_., ,,_' .."_ I_ ",.....
" ..",.,_ T " ' ..S_ I ..' s_., ,,_, s_ s_ s <2

,1'..",.,_ T_ " ' s_ s..., ,,_, ,,_ ,,_•• ,,_ .s ,••

I .."'.' ..... T """".' ".,. I ..." I_ $_ "_ ... " .. I .

" ..,.., .. T I '.' " _ " .." "_ I_ "_' .. .s_ ..
s ..",.,_ T~ " , " " ... , " I_... ' "_, ... s_ " ..
" .."'. ,..., T " ., " ",.., ,,_••••_.", "_",,,,,,_ ." .

s••"'.,«I' T " , "~.,, .. s , .s " s.,. .s~_." ,
s.."., 002 T••I " ,., """. " , I " ,1' s L._ I '

" ••"'.,_ ..-••, " ,., ",..' 1 ' .. " " " s~_ " ,••
" ••"., .... T.W " ,., .. " .... , " ,. " I ~ " $ .s ,••
I •• H.,,,,," T.w " , ... "u, "_, .. " " ~ .. " I t " ..

I N.,,,,," T.w s ,., .. ".." .."_, "_.,., I """' .s " .
" ..,.., _ T~ " , .. " ....1 .... "_ , .. " " " w ,,_ " ,

" ..",.,_ T " , " ••1' .. "_ ' ... " " 1 " _.1 .

I ..H.,_ T " , 1 , .1_''''''_'_1 " _s .
I .."'.'.'~ T " , .. " .., s_, • ..._ ,,_ s_ s_~ " ..
" .."'.,." T__ " ' .. " , "_, ... " " ,,'O'- .. ,,_ ,, ,..

"..N., ... T " , ... " , ,,_, .. ,,_ "_"",0.- .1..-..3 """'"
"..,,,.,'13 T " '_".., "_, ,, _,,_ "_ " I.._
" ..".,.,. T " '., " ..' I_' S_ "_ "-. ,,_ ,, ..,,
"..,,,., ... ..-dOo .. " ' s.., "_ ,,_ ,,_ ,,_ ,,_ ,, ...
I ..N.,.,. TdOo .. I ' " .., "_' .. I_ "_ s_ "_ I .....

" ..."., ... T ........ " S ..I· " ......... • ... s_ s_ ,,_ ,,_.. ,,""' .
I .."'.,.'. TdIc .. I " .." "_, .. "...-> ",o.- I_ S_ ,, ...

" ..H.,.,. TdIc .. " s.., ,,_ s...-> ,,-. "_ I_ S ,..

s.."' T S , .. " ..I S_' s""-O ,,_ s_, "__ I""",
s ..",., , TdIc " s.., "_' I "_ S_ I S .

.s..N., T.W. .. " , .. " .., s_, JJ_ .. s " s .
.I..".,,,, T , .. " , ,1'_, s_ s s_ s_ .s .
s.."'., Tdf S ' s .., s_, ,,_ JJ_ _ .s s ,..
s••"'., To.IoIc .. " ,. " , •• I ' .s s s .s,.;.... .. s ,..
.I••"., T , s , s , .. s s s s .s ,..
s ".,.", T s ' n.' JJ_.., .. $ s " " s ..
s "., ..- s ,.' JJ I S , .. s " " s " ,..
s••", ••••• TaO I '.' " " s , s " " s , " .
" ••H.,_ T.W 5 ' .. s.." " , .. I s ", s " s ..
s..",.,." T " JJ , "_, s " ,, t._ ,,~_ .s ,..
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s ".'_ T_.S ' / s_•• s_~ s..._ "_ s_ te-.,, .
s ".,_ T_ ... S ' / s_•• s_~ s_ _ s ..._ s_ s _
s ".,GoO T_.S ' s / s_,.s......s te- .--1 s_.s_ s .
s ""'_ n, , / _ s_~•• w- " _ ... s..._ s .
s ""'_ T_ S ' / s_, S.--1 s_•• ,,-".s__ s ...
s..,,,.. ,IDl'T_ ,, , S / h._'.s_ _ s ............. e..-•• s_ ... s .
S I'.. ,_ T_.S ' /•• s_, ... s..._ s_ s_•• s_ _.s ...
S H.. ,_ T_ ... S ' /•• s_,.s_.s_ e..-.. s s-..s 'a
.1 " .. , T_.S ' s / .... s_, ... s_ s...-.... _ s_.s s .
S H., T_.S /•• s_••s_ s_ s_ s...-.... te- s .
S H.,'" T_." "../ s_, ... s_ s -> s_ s s ..
s "., ... T_ S '.s../ s ,.s_.s s...-.....t.e s_.s .
s ".' '" T..w s ,.,. s"-/ S ,. s..._._. s _. s s_ s .
s.."., ... T S ,.S / s_,.s s_••• _ s s-. .
s••I'.,"" T S '., s /•• s ,.s _ s_ s__ s ...
s "., T S , " / s , s s_ s --..s ~•• s .
S ..N., r s , 11 / s , S S II II S ,""
S ..H.,&<' T s , .. ,,~./,.s ,_ ko S ~•• II _~ " s s ,••
S..N.,6IO ToO'.'" s Sh/ s , s ~ S 3 s,.... $ c.... • 11 '..
....".,", T ••' S " /, s s " S s s ,••
S ..H., .... T S s""'/ s , ""' s S II S s .
S..H..,~ T II '.' /, s , <.c....._s -. s s_ s ..
.1..".,024 T S ,., s / s ,.<.c..... s s-. .. s s s ...
s..".,,,, T s , .1 / II ' <.c..... s S_ " s_ s .
.1.."., .... T_ S , s / s , ""' S_~•• S _.s_ s ,..
S ..H.,21T T..w S ' II../•• S_, s,..... s_ _ s_ .. s ,••
s.."., .... T_ S , s""'/ s , ""' s_ s_ s S II""" ..
s..I'.,'" T_ S ' .. s/w, s , <.c..... s..._ s s-. s s ,..
s.."",_ T S ' .. " , s_ _ .. s...- " S.--1.s-. s .
S..,.., .., T S , , s~ s...... , ... s_ s_ t.e...... s_ s ...
.1..." .. ,_ T S ' .. " , s_•• s_,.s_ ,,_ s_.w-. s .
S..N.. ,., T S ' s../ s s_, ... s_ s_... s-..s""' .......N.,_ T_ S S../ s_,.s_ w- S_.s_ s ..,
S...H.. ,_ T_ .. S , .. s.../ s $_.... s,.....••• s_ .. s_ s .
S..H.. ,_ T $ ' s/w/ s $_., .. s,.....rS s_ s_.. s .
...."., ... T-. S '., , s_ $_, ••_ S_.~ _ s_ ... s .

s..",.,_ T_.S '.II..' •• S_ s....... , s_ t.e_ s_ s_ s ...
...."., ..... T " , s.... ,•• s $_, s_ ""' s_ s_ s .
S ..H.. ,.,., T..w S ' II..' •• s s_., s_ s_ S""' ...

S..H.,1Jn T S '.II/w" S_ s_, S II w- S ,J .

S••"'.,1Jn T " ,.S.." s $ ~I ""' " " _ $ .

S H., s'. T s ,., • • /w/, s , s --. .. s c s .
...."'., If' ToO' , "../ s $,.."",., S s_ .
.....",., If" ToO' S.'''''''' S../ s ~ S ~l ~ S ~ S_ ~ S ,..
S",N.,,," T S , s / s s , .. ""' s.._ s s oI.'..
s ",.,,,n T , , s $ , S _. " s s .
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......,..... T-. '.' .. , '._ , .. s_.,_s__ s__ _ ••_

....,..,"" T~._' '_I "_' ,_s_,_,_ _, .. "' _ d

......,..'na'1'-. '., " I••_.' _s I_,__ ""'--.' 1

...N •• ". T _ '_.h"_._I_S '_ "'-' I oocc .

...N.' , ••, , 10." s , .. t •••• _s s.._ 1

' ••N.,." '1'••". , , .. Su,,_,.......: ~_.~,_ _s..__ 'oocco _ .
' ...N•• = '1'.IoIc .. .I ,10." _....__, ,.. /.co I _ _ Soocco .. .1 1

,,,,".,r:13 T~._ , '._'_".. , _ •• _s_ _"'_ Soocc ,
...N.,714 '1' , ' 1 _ _ _._ .

..."., ..... T _ s '._ I_I_ ,._•• _"'-'_._ __, _
_ "., .. T I _I '._ _ _w-_._.s__ .
...".,= T _ _s..'._._I_I_••_._,_ _ ............. ' ,
..." '1' _ , ,._, 1_._'_ _,_._ .
11..".'" '1'__ 11 ,._._ ". __ 11 ' _11_ _

..."., '1' 11 11 '._11_ ' .. 11 _1_.. _'__ .

, .."., T _II , _s _ •• _ II ' .. II_ '

S ..".,,02 '1' _ ", _ 5 '._ ._ S I W- ... 5_..' _ _._ .. II ' ••

11""."03 T '.,_s..,' _5 "'-'_I s " .
II••"., '1'" _11.'.'" .. 5~.'._'_ _S ,_"' 5 < _11 ' .. s , ,••
...,.. , T..' II '.'_II~."_'_ II '_S _ t , .
...1'.,'" ,., .. .I , , _ , .. II _11_ w. _ ,
11..1'.,7"7 _11 '_' "_11 _ 11...-.'_ 1 __"._.11 1

_"•• 7.. '1'...,. .. 11 '_1 ' '_ __._•• _5_ "'_ ... 11_ .. 11 .

II , _ ,_,.., _ ".__11_ 1 1_ .. "'-' _

_ no 11 _' ,._._ ...- _ _ 1_._11_ .. ' _

1 '>5 ,_ , ,1_1.. 5_ _ _._' .. ,1_._11_ .
1 ..1'., ...,..,1 ,., .. $ ..,._,1_ 5...-_ _1_... ,1_._.__ ,. _
...... ,1'0 ,1 ,_,1....,...._ _ ,_.-".. ,1_._.__ .
' ..N.,a< ...,._ , .. , .."_,_ """ _ ,,._ ,1_ ...__ ,..
...".,7'" '.'_1 " _ _ _,1 ,_._ ,..
" ..1'.,7'" ,., .. s " _ s ,_s _ s ..
...".,707 Td'. _ II '.' _ s ,. _ ,. tcv.. _ ".,. _ 5 _' _ _ 5 '.1",..
" ..1'.,'11 , _ ,., .. .I , """ ,I ,I ,I , _ s ,
, ••N •• tslI ,._,1 _,1 _$_ , ,.,
, ..1'., '1'oIto I..'._S _ s s.." ,_s.._ ,
' ..1'.,'" ,._._ ,_._._ _ _ .. S ...

' ..1'.,,,,",, , _SIJ.O,._s_" _ ... s__S_._.__ ........., ,._S_._I_..•__ _._ s_.S ...
1 ..".,_ oIto _s ,._._.. s_ s_ _,_ .._ .
, ..".,_ ,...,. , _ s_ -..o _ .. ,1_<4 ,
..." oIto _s..,._s_ _., _ s__ _s_, ...
, ..".,,, .- , '_'" Sl'"<" s,......., • •_" .. "' _. ,. ...
...".,_ IoIc .. ' '_s , s s_,_s ,__ /.co .

,..".'''' r ,.. Su'." _ ' , 1 ,1 _ s.._ ,
' ..".,.n r , , _ s~., s s co t .1..< _S _S_ $ _S ..

' ..N.,n, , ,_ , 5 '_ _S S ,••

' ..1'•• 111 ' ,. ,1"',._, ,.. ,1 _ "",.. _5 '_"""""'_'__ S"""
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s.." •. m s ,_s..., ... s_ .. s--" .. s_,.s_.. w-.._s__ s ...
s.." •. n s ,_~,•• s_•• s--".s,.....,_s , .. s_ _s .
S""•• 1111 _s.-..,_s ,••s_ ... s--".s,....., _s_,.s s ..
s..".,~ ...- ... , _s , .• s_.s_'"".$ , s....... s_.,.s ..
s..".,,," ....,.__ S ,'.S 5--".$ '.S_ .. 5_••_~.5 ...

S..H., 1111 ",-. , ,. , ". , , _ .5_,""" ' , _ ' ~. k.-. S ' .

.5..H~,~ T.-_5 '_' ".,,......_,_'"". , , ..,•• , , ...

' ..H~,_ ..A ... _.5 '~' .. n~'•• '_... s $ '.'...-,.s_ _.5 ,••
.5","A, ft, ...-. s ~ ..,.$ ,•• $__• .5 _ , ~., .5 ..-,. ,"'__ 5"""
' ..H.,,.• ......... .5"' , .. ' " .. 5 5_ t 5 ' .. ' , .. s 5"'.,..

, .."., 'lIS T~l>l... .5"'~•• , .. , ". , , , t 5 ' .. ,_ .. $ ,. 5"'A'"

5..,.., 'M T"',,, 5 ' _ s••" .. 5 5 co,"" 5 ' ..5_' .. , S"'A'"
$ ..""'U T 5 ' _ 5 ". s ,_ 5...-' .. ,_., .. s w- 5 5.,IA1d

5.." •• 7M 5 5 " ..5_ .. '--".S_.'.$_ .. 5_ ' ,..

5..,H•• _ T 5 5 ".5......... '...-'.,_,_ .......... .5...-•• 5 5 ' ..
5..H •• 7M ..__ .5 ' .. 5""'... 5__ 5 ......... 5-' .. 5,.....'_ S , ....

s..,H•• 7M T 5 '.$""'•• $......... .5_••s-' $,....., .. '_ 5 ..

,..,H.,_ T S '_$"",._,_._$,......_5-' .5_, .. s"O-_, .
s..,,.~, .., _.5 , .. ,"", $__ ,_ ,_, .. ,,........ S........ $ A'..

_H.,,.. T .5 ' ..$..' 5_A .. $_._ 5_... '_'.'-.. .. ' 1d

5..,,..,,., _$ , .. $"", '_ 5 ' ..$_..5_' .. ' ,. ...
,..,,..,_ T ' '., .. $ .., $_ ~ .. '_.'.5_.. 5 '_ 5 ...
5.,.".,,.. T 5 ' .. ' .., ,,..... s_., .. ,,....., ... .5,..... s,.;- .. , .
5..,,..,7M T ' , .. $ .., $ ,_••• s_, .. s,....., .. s"'_ .. ,.,IA,..
, ..".,_ T.., 5 '. , •• , 5 _ _' ' ~.' .. 5"'_ .. ' .......... , , ••

5..,,..,7M T~ ,."'~,., .. s ••" .. , ,-.. ' 5 ' .. ',.<_ .. .5 ,..

5..,,,., "" T._'~ .. .5"'~.. , _ , .... , •• .5 t ' .., .. ' , .. s .5,.<_ .. .5"'A'"

.5..,,,.,_ ~ • .5 , _ nA"" s ~•• _ t s '"" .. " _ $ ~.,. , ""'A'"

" ..,.•• 10' , , .. s " s-.. s ' A .. S,.... S .

s .." •• "", TA s , .. , , _ ' , .. s s_, s _,_ S.,IA,.,
5 ..",,_ ...., , , .. $ .., s,....., .. 5_ A .. 5,.....' .. S,.;- " .

s..",,_ T ' ' ... $.., _ .. s...~.,.$-' '_ A ..S_ ... S ,., ,..

' ..,.~,_ s ,.. ,"", £c_ .. s_, .. s_ .. s_ .. ,_,_s_ , .
s ..".,_ T ' ' .. 5..' s........, .. s........... ,_.. s_ .. $ , ...

s ..,..,_ T S ' .. 5..'._ 5_' ..'_'.,_... s......... , __ ' .
, ..,.~,_ T ' ' .. , .., _ .. s_., .. ,_.. s,......_,_ ..'_.... 5 ...

, ..".,_ TU« .. s , 5"',. £c__ $__' .. $_.,. ' 5 ''''__ , .

s..,..,." T........ S ' .. ,""' £C_ 5_'_' s s ,., _, ...
5 ..,..,1" TU« .. 5 ' .. ' .., ,,....., .. , S,..... 5 S s ....
S.."."" TU« .. ' '.,..".£c_ s_, .. s...- ,,_, .. s,..... ,_., .
, ..,.."IS T..-...' ' ... 5.... ' •• £C , , ' ' 5,.....A ..$_.' ,..
s..,,.. ,I, ' ,., .. 5""" .. £c , , , .,_, ' ,_.... S.,IA...
.5.."., lilT , ,., .. , ". £c .5 , , • , ".,. , s",... • .5.... ,••

,..".,.It 'T~ .5",.,.,. , " .. £c 5 ' , .. ' .5", $ , .. ,,,,.,,,

,..,,,., ,IT 'l"~"'•• ,,,,,,.., .. ,.~" .. t ' ' , .. ' 5 «.'.5 _ ''''A'''
.5..1'1."" T._, , $ , ,," , '"" .. $ ' .. $_ 5 ~ '_ s"' .
' ..1'1.,'" T $ , .. , , ""..,•• , 5_"'''' ' .. 5 s ..
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s.""., T_ .. ,. / ,.~ .. ,._.. ,._... ,._ .. ,._•• _,....Od

,..."., T_ .. ,._ ,. / w- ,.~ ..,._~ .. ,._.. ,._,_,._ .. ,._
,...,.•• _ T __ ,. I ,. / ,._2 ..,._..,._'_,._~... ,._ ... ,. 2

,..."•. _ T_ .. ,. ,.. ,. / £C_ ,.-" ... ,._ ... ,._... , ... ,.__ .. ,._~ .. ,. ..,,...,. T_ .. ,. ,... ,. /._~ .. ,._2 .. ,._ .. ,._~ .. ,._,_,.__ ,. 2
,...,. T ,. , .. ,. / ... £C_ .. ,._.~_,._'.. ,._1 .. S_...S_ .. S ,.,

S ..".,_ T _S ,., .. S /._£C_ .. ,.......... S_... , .. ,._ ,._ .. ,._.... ,. ,..

S .."."" T S '., .. S /' .. £C..r_S_.~_,..._., .. ,._ S_._S.._ .. ,. ,..

,...".,..., T _.s ,., ... S~./'_£C ..... .s .s _S ,_S ,..._ .. ,. ,..

!I.."."" Td' S ,.,_ n." _ £C..r'" ,. ,. 2_ ,. , _ S _ .s _ .s1O/.,d
""".'_ T ,. , _11 / Lo••• _S _.s 2_,. _S_r' ... 11 ,.10/••.,

.s..".,." T ,.IO/ , .. .s ' Lo S_ II ,. , .. S _.s__ S 2

11..".,_ T"" ,. , _,.../. _ Lo _ S ~_,._•• _ .s_2 ... ,._ , .. .s_ ... .s .
.....I<~, ... T _S ,_,. /._£C _.s _.s.....'_.s_2_.s_~.. ,.__ .s 2

.s.." .. ,,," T__ .s ,_S / ,.__ .s_.'_S_2..S_ ..S_ ... .s .

.s..".,_ T__ .s '_S /._£C_ .s_ .s....., .. S_... .s_.... ,.'O-'_"' ..,

.s..I<.,_ T_ ... ,. '... ,. , ,._ .s_ ... ,._,_,._._,.__ "' .

.s..".,_ T.w. _ ,. ,_ S / r .. .s_ .s..-. _ ,._, _.s_ .. .s_.~ .. .s ..,

.s..I<.,_ T_ ... ,. '_,. ,'_£C ,._ _ ......_._,._,_S__ .s ..,"..1<.,_ T__ .s '_.s ,,_ _ .s_.~_.s_._._._.__ .s ..,
....."., .. T.... _.s '_.s../' _.s__ .s_.~ .. .s__ .s_,_._ ... .s 1
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A.2 All Feasible Sequences

,.""
llo:29ll

110:::»0

no:3l0

tlo:JZO
llo:)JO

"""",.""
~""
11II:170

..."",.""
t/(l:"'IO
~,

1...:.lZD
llo:oQO,.......
IID~

110:-160
lto:(7Q

IIn:.m
110:490,.,.,
110:510

..."'",....,.,.,
,.""
no:5GO

,."'"

,....
,."'",.­
"'"IB.....
"""",....,.­,....
,..",..........
,."'"
llI.:11B

1..:120

...""
1"':140
lla:1Sl1

...'"...""
""'"1IlI:J3lI........."',
,.'",..",...

(cl'Tbcl1lin:ll*'ol ......
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Figure A..l: A feasible assembly tree for the pendulum assembly task.
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