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EFFECfS OF MUSCLE TEMPERATURE ON RECOVERY FROM EXERCiSE



ABSTRACT

The primary goal of this srudy was to investigate the interaction effects of ~~QC

local muscle temperarure on me recovery of specific evoked and voluntary conu-.lCt.ile

properties in intact human plantar flexors at 1-.5-. and IO-minutes :Uterhigh intensity.

isometric ex;ercise. The secondary goal of this study was to validate previous studies and

add to the body of knOWledge about the main effects of recovery from fatigue with

homeostatic temperature and the main effects of local hypothennia on unfatigued muscle

on evoKed and voluntarY contractile properties in intact human plantar flexors. Twelve

subjects were tested for muscle voluntary and evoked contractile proper.:ies prior to

fatigue (i.e. pre-fatigue). fatigued using interminent. high-intensity. isometric conlr.1ction.

and then retested at 1-. 5-. and 100minutes post-fatigue conditions under localized

hypothermic and normothennic conditions. Volunr..ary properties of the plantar flexor

muscles were monitored by measuring the force of a maximal voluntary isomettic

contraction. as well as muscle activation deri~'ed from the interpolated twitch technique

(fIT) and integrated electromyographic \iEMG) activity. Evoked contr.K:tile propenies

included the force and temporal char.lCteristics of a maximal No"itch and tetanic

contraction of the plantar flexor muscles. Data were analyzed with a ::!.-way repeated

measures ANDVA for main effects of a) hypothermic and nonnothermic conditions. bl

prefatigue and at posl-fatigue intervals. and C) imeractions between hypothermic and

nonnothermic pre- and posl-fatigue intervals. During recovery from high intensity­

intenninent fatigue there was a general augmentation of evoked properties of the plantar

iii



flexors with a deceleration and decrease of the force of yolunury properties.

Hypothermia nad Iinle effect on all bUI the: temporul characleristics of the plantar flexor

muscles. which were slowed by cold. The effeci of cold on the rate of recovery of the

plantar flexor muscles was generally not significant. Thus il may be: concluded that local

muscle hypothermia does nOI impair recovery of Yolunury and evoked contractile

properties of the plantar flexors from high intensity exercise.
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DEfINmON OF TERMS

Core temperature:

The lemperature of Ihe body core is a measure of Ihe core compartment of Ihe

body. It can be measured by esophageal or recta.ltemperature probes.

Evoked ContrilCliJe Propenjes·

Properties of a muscle generated by electrical stimulation. Specific definilions of

evoked coolractile propenies can be found in Appendix C (Table of Dependent

Variables).

Excitation<ootGCtjon coupling:

The sequence of events by wnicn an aClion potenlial in tne plasma membr.llle of a

muscle fiber leads to cross bridging ::activity by increasing cYlosolic calcium

concenlration.

Interwl::a!ed Twitch ilchniaue 1ITO:

nT is a method of estimating muscle activation by stimulating Ihe muscle from

an eXlemal electrica.l source. This will superimpose a maximal twitch during a

muscle contraction and dividing the torque gener:J.ted to a lwitcn delivered

immediately after Ihe Yolunlar)' contr.u;tion.

Peripheral temlXr:J.tun;:

The temperature of a Iarget limb is measured on the sk.in or inU1llTluscularly.

xvii



Voluntarv Contractile Properties:

Properties of a muscle generaled by a subjec( s deliberale muscle activation.

Specific definitions of volunlal)' contractile propenies can be found in Appendix C

(Table of Dependenl Variables).

xviii
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INTRODUCTION

Early studies to elucidate precise causes of the effects of hypothermi.aon m.ufs ability to

perform work in the cold centered around the systemic effects of cold on milil3J)' pen>OOI'leJ ;ll;ulely

immersed in ocean waten>. often relating to the Second World War (Glaser. 1950: Keatinge. 1965:

Molar. 19461. More recent studies are exploringeffect£ of peripheral cooling in order 10 isolate if

certain effects are centrally or peripherally mediated (Giesbrcchet et aI .• 1(95). As manual labor.

athletics. and recreation fields expand into cold environments.. it is also relevant to begin studying

how humans recover from fatigue in the cold. Military personnel. commercial SCUBA divers.

runners. and hikers all perfonn work in cold environments. Often the insulation of their tor.;os is

adequate to prevent ceno-al hypothermi(L but they still experience peripheraJ cooling of the muscles

tGiesbrecttet et aJ.. 1995). While studies have been conducted on the mte of recovery from fatigue

under normothennic conditions cBehm and SLPierre. 1997: Petrofsl..'"Y et aI .• 1980) none have

studied recovery while hypothermic. Theref~ this study explored the effects of local hypothermia

on recovering from Ioca.l muscular fatigue following high intensi()'. isometric exercise.

The effects of ambient temperature on voluntary and evoked muscle contractile

propenies have bet:n previously reviewed (Bennett. 198-J I. Also. both decreased ambient and

muscle temperarures have been dcmonstr'l[c<! to alter in different ways properties such as

voluntary force (Bennett. 1985: Bergh and Ekblom. 1979: Faulkner. 1990: Ranarungacl aI.• 1987:

Ranatunga and Wylie. 19821. EMG (Kossler et aJ.. 198n. EMG power spectrum cPetrofsky and

Lind. 1980) (Witch and tetanic stimulation (Bell and Lehmann. 1987: Close. 1972: Kassler and

Kuchler. 1987: Kassler et aL 1987: Ranarunga and Wylie. 1989). rate processes (Bennett. 1984:



Close and Hoh. 1968: CornwalL 1994: Davicset al.. 1982: Davies and Young. 1983: Faulkner.

1990: Kossler and Kuchler. 1987: Kassler et al.. 1987: Ranarunga.. 1982: Ranarunga. 19~:

Ranarunga et al.. 1987: Ranarunga and Wylie 1982: Ranarunga and Wylie. 1983: Rome. 1990:

Segal et aI .• 1986\ and endurance (Sennen:. 1984: Edwards et aI.. 1972: Ranarunga.. 1977: Rome.

19901 depending on the propeny srudied. muscle fiber rype. and the cuent of cooling. However

it is nor known 10 what euent these alternlions are caused by cemrnlli.e. from the brain 10 the

neuromuscular junction1or peripheral (i.e. after the neuromuscular junction I faclors.

Similarly. muscle fatigue has been e::uensivcly reviewed (Sale. 19881 and srudied .....ith the

interpolated twitch technique IAllen et aI .• 1995. Behm el aI.. 19961. Properties srudied after fatigue

li.e. during recovery I include twitch torque tBehm and St.Pierre. 1997: Petrofsl.:y et:l.l.. 1980l.

tetanic tension tPetrofsky et aI .. 19801. tempornl characteristics (Behm and St.Pierre. 1997:

PetrOfsky et aI.. 1980). compound muscle action potential tBehm and 51. Pierre. 1997: Bellemare

and Garzanti. 1988: Bigland·Ritchie et aI_ 1979: Fuglevand et aI .• 1993; PetrOfsky et aI.. 1980l.

MVC tBehm and St. Pierre. 1997; Paasuke et aI_ 1997: SruJl and Clarke. 19711. endurance tBehm

and St. Pierre. 11;197: Petrofsky et aI .. 1980). EMG power spectrum ILe Bozek and Rougier. 1991:

SIDlen and de Luca. 19821. and power (dt Hann et aL 1989: Jameset al.. 1995: Nilsson el aI.•

1977). Recovery of voluntary and evoked contr.lCtile properties after both high and low intensity

fatigue protocols in normothennic conditions has also been srudied t Behm and St.Pi=. 1(97).

Each factO\' pn:v1ously srudied is altered in different ways by fatigue depending on the property

studied.. t.lJe muscle group. and the intensity and duration of the fatigue proIocol. Since the effects of

cold. fatigue. and recovery from fatigue have been studied independently. interaction of the two

effects should be studied next. While the effects of cold environments on muscle activation are



~y well documented. a distinct lack. of mammalian experiments in recovery from fatigue

while cold indicates that funher research in the area of recovery from fatigue of mammalian muscle

while cold is needed.

Therefore the goals of this study were two-fold. The primary goal of this study was 10

investigale the interaction effects of 22"C local muscle temperature on the recovery of specific

evoked and voluntary contractile propenies in inlaCt human planw flexo~ at one-. tive-. and 10­

minutes after high inlensily fatigue. The secondary goal of this study was to validate previous

studies and <ldd 10 the body of Irnowledge about me main effeclS of recovery from faligue with

homeostatic temperarure and the main effects of local hypothennia on unfaligued muscle on

evoked and voluntary contractile properties in intact human plantar flexors.



REVIEW OF UTER.ATURE

l.t 1atroductioa

Militaty personnel. outdoor workers. and many individuals involved in outdoor pursuil

ac:tiv;tiesandsponspc:rform wen in3.cold~vironmen,-lnt:hcSccond World W3r. pillXS3l'ld

nwiners ofle:n reponed hav;ng difficulty staying afI031 or holding flotation dev;ces for extended

pcriodsoftimc: in coldoce:an w;lter{Glaser. 1950: Keatingc. 1965: Mo{ar. 1946I.ln modem sociely

hypothermi3. continues 10 be 3. concern. In 1997. 39 Canadi3n water·rela1ed f:uaiities cite

hypothcrmi3. 3S a conuibuting cause of de3lh (831'SS. [999).:IS immersed boa(r;f'S find thaI uying 10

swim 10 »here or hold on 10 a flotation device becomes more r:1pidly fatiJUing in cold water. Canoe

paddlers find. it inct'e:lSingly difficuh to hold 3. paddle once me hands get cold. SCUBA divers have

inct'e:lSing difficulty v,ith fine mou)(" uslts once cold. and milil:1ry personnel find their movements

much slower when coldlGicsbtecht et 3.1.. 1995).

The effectS of cold on muscle volunl:1ry 3lld e\'oked conU'3Ctile properties have been

(nviously rev;ewed tBennen. 1984). and numerous experiments have been conducted on

\'olunwy fCITe (Bennen. 1985; Bergh and Ekblom. 1979; F3.ulkneret 3.1.. 1990; Ran.3tunp et 3.1..

1987; R2narunpand Wylie. 1982). EMG (Kossleret 3.1 .• 1987l. 3lld twitch and letanic

stimulation (Bell and Lehmann. 1987; Oose. 1m; Kassler 3nd Kuchler. 1987; Kosslu et al-.

1987: Ranarunp and Wylie. (989). Rate processes like time 10 twitch Of' volunwy contraction Of'

relax a muscle contraction (Dennen. 1984: Close and Hoh. 1968: Cornwall. 1994: Dav;es et al..

[982: Dav;es and Young. 1983: Faulkner. 1990: Kassler and Kuchler. 1987: Kassler el 31.. 1987:

Ranatunga. 1982: Ranatunga. 1984; Rmlanmga el 3.1.. 1987: Ranarunga and Wylie 1982:

R.macunga and Wylie 1983: Rome. 1990: Segal et aI .• 1986) and rate of onset of fatigue



IBennen. 1984: Edwards et aI .• 1972: JUnarunga. 19TI: Rome. 1(90) have also been snubed.

AU of these listed propetties have been shown 10 eilher incK:LSe: or decrease by changes in

tempe:rarun:: depending on (he property being studied.

lnconsislent findings ~prdin& the effects of cold on muscle may often be :lCCounled for

by variations in Ihe level of temper.uur-e. the length of cold expos~. !he method of cooling.

mett:od of temperarure monitoring. and even (he amount of body fat of the subject IPelrofsky 3tld

Lind. 1915). Similar inconsistent findings regarding the effect.~ of fatiJUe may be explained by

studying different muscle fiber types. training state of the subject. 3tld duration and intensity of

conlr:lCtions studied IBehm and SI. Pierre. 19971. Also important when studying fatigue is

knowing if contractions are sustained or intennlrtent. evoked or volunUlry. 3tld St:ltic or dynamic

IBehm and St. Pierre. 19971. ntis review will Olpproach these details of cold and fatigue research

in a way th:u describes the effectS of cold on peripheral muscle and then the effectS of fatigue on

peripberaJ muscle so thaI infe~nces may be drawn to the inter.iCtion effectS of 21"C local muscle:

lemperarun:: on the recovery of specific evoked and \'olunUlry conuactile: propenies in intact

human planw Oexors at one-. five-.~ ID-minutes after high intensity fatigue. The goal will be

10 in\'estigate the main effectS of recovery from fatigue with norma.I homeostatic te:mper.uurc and

the main effects of recovery from fatigue with local hypolhermia on evoked and volunUlry

conlr.lCtile properties in intact human planw Oexors.

1.2 Measuring Tbermal DepEDdeoce of Muscle

Commonly used abbreviations used in research relating to how lemperatl1l"e affects a

muscle"s properties all!: QIO and Ru). "These abbreviations~n[ a ratio of normothermic and



hypothermic responses. Tempcr.uure dependence of roue processes or muscle is ~ferred to as :l.

-<)10~ score (Rome and Bennett. \9901 while an -RIo-score ~1:l.leS tof~ of me muscle IRome:

and BenneR 1990). In both scales a raring of 1.0 coovel's no change or dependence. Ies.s man 1.0

is a neptive dependence. and greater than 1.0 is a positive dependence. A seen of greater l1un

2.0 or 1ess than 0.5 conveys a strong thenna.l dependence. QlOcan be calcul~ in me following

formula:

QIO::IRYRlllllMT:'TI'1

in which R: and R I :are ra(c processes al lemperatures T: and T\ (Rome and Bennett.

1990). RIO can be calculalcd by a similar formula:

in which F: and FI are forces 3llcmperarures T: and T l fRome and Bennett. 1990l.

2.J FUDCti....C~olCoki and Fatif:ue OD MUlde FUDCtioe

"t.3.1 Maxima! Voluntary ConQ1!Ctions

23.1.1 Hypothermic

A( :l. muscle Iernpet'Ol[Ule of 25"C isometric force production has lowrem~

dependence in humans (Bennett. 1985; Bergh and Ekblom.. 1979: Ranatunp el aL 198n. mice

IFaulkner et a..I_ 19901 and other animals (Edwards et a..I•• 1972: Ranatunga and Wylie. 19831.

Maximal force in humans and other animals rends not (0 be altered by periphcr.Jl muscle

remperatures when those lemperatur'es are belWccn 25 and 35°C and is represented by a RIO of I·

1.1. (Clarke el a..I •• 1958a: Rome. 19901. Vol.untary force ~mains unchanged with peripher.U

muscle remperatures of 3S"C to 25"C but decreases~ io the I2-IS"C rnnge. and at 1000C has



dea'eased~ in bolh humans(~petaI.• 19871 and in rats CRananmga and Wylie.

19831. Olher srudies demonstr31e: similar impairmenl but aI slightly higher lC'mper.uures. Hwnan

muscles below 27°C have been shown to decrease isomeuic: Jrip slleniU' by 1..\.80;. in males and

30.5% decrease in females though the authol"s did f1()( offer~ explanation of why the sex

difference exislC'd (Cornwall. 1994). Olher srudies indicalC maxinuJ force declines by 3-S'ii: II~C

drop in muscle Ie:mperarure I Bergh and Ekblom. 1979; Sargeant. 1987). though this lcind of linear

relationship is not supponed by mosl existing research IBennc:lt. 1985; Bergh and Ekblom. 1979:

Faulkner et aL 1990: Rananmgaet aI•• 1987: Ranatunga and Wylie. 1982). While: the: ~xac:t

mec:hanism of c:hanges during peripheral cooling l\as !'lOt been identified. some research

lGiesbrechct et aI .. 1995. Ranatunga and Wylie. 1982\ focused on the depression of voluntary

tension due 10 a direct effect of cold on muscle and not from central mechanisms. while others

1Heier el aI .. 19941 focused more on central effectS.

RalheT!han rqxxt muscle temperarure.. several. ~ies report Waler. skin. or air

lemperarure• .;I. factor thai may aa:owtl for conflicting results. Holewijn ~d Heus 11992\ found

that il1'lJ'llCnion in IS~C water for 30 minutes resulted in significanl 21.8'it decline in rruutimaJ

force of pip ~ngtb. However. Bundschuh and Clarke 119821 found IKl change in initial or final

grip strength with 10 minutes of il"lUl\ClSion of the foreann in IO"C w:uer immersion. results thai

also conflict with Petrofsky and Lind (1980). Clarke and Wojcicc:howic:s (1978\ dc:monstr.l.ted

that as temperarure was lowered.. final strength and tOla!. work inc:reascd. i.\lC' of fatigue was

slower Ii.e. endurance mc:reased). and initial force output was noc significantly lowered with

cold. Unfortunately. muscle or body con: lCmpc~were nOl: reponed in these studies.



Therefore it is generally well accepted that thermal dependence of maximal volunmry force

outpUt is genera.lly low at a muscle temperarure above 25°C.

2.3.1.2 Fatigue

The effects of fatigue on MVC has been elltensively srudied (Behm and SI. Pi~. 1997:

Paasuke et aI .• 1997: Stull and Oarke. 1971) and reviewed tEnok.a and Stuart. 199:t Fins. 19961.

Fatigue lTI3y be defined as "an acute impairmenl of penormance that includes both ani~ in

the perceived effort necessary to ellert a desired force and an eventual inability to produce this force

(Enoka and Stuart. 1992. p. 16311. The effects offilligue and recovery from fatigue~ dependent

upon the dur.uion of the ellercise period. the type of muscle contraction. the rest period berween

contraetions. the intensiry of the contraction. and the length of time per conlJ'i1Ction \ Behm and St.

Pierre.. 1997\.

lmpainnent oflT13.l!imal contrat:tion dunng high inlensity. isometric. inlermittent fatigue is

likely caused by a build.-up of inorganic phosphates and production of hydrogen ions from the

glycolytic pathway that directly inhibits cros.s.bridging \Westerbland and Allen. 1991l. Fatigue may

also result from impairment of the dihydropyridine (DHP) receptors thal result from a decreased

depolarization gradient thereby inhibiting calcium release (Fins. 19961. Accwnulating hydrogen

ions also bind v.ith uoponin..c thus inhibiting the binding of calcium. Slightly longer dW"alioo

fatigue may also result from decreased creatine phosphate ICPI (Hargreaves et a1_ 1998). Thus.

impaired MVC results from impairment of E-e coupling and decreased cross-bridge cycling.

lmpainnenl of E-e coupling is more severe from long duration exertion and is the ITI3jor cause of

low ~uency fatigue (Jones. 1996) while metabolic disturbances may be the~nant factor



affecting [he functioning of myofilamenl cross-bridging dwing~ dur.u:ion. high inrensiry

fatigue (Bigland-Rilchie and Woods. 1984).

, 3.' Sub-maximAl Volunwy Conrrxtjons

2.3.2.1 Hypmhennic

It has been gencr:Ll1y well documcnled mar m:uimal muscle enduronce occurs wim

pcriphcr.ll muscle lempcr.uurcs of ~-32"C Ihough !here is nor ~I agrecmcnl on the ex3Ct

[CfTlpcr.lIW'e for optimal. endur:mcc (Bennett. 1984: Edwards o:t al .. 1972: F:wlknerel ;1.1 •• 1990;

Segal d aL 1986). Lind and coworkers (Clarke et a1.. 19S8a: Clarke et al .• 19S8b: lind. 19S9:

Lind and Samuclorr. 19S7: Petrofsky and Lind. 19801 have found maximal endurance of

suswned sub-maximal iwmctric muscle conU"3Ctions in humans occurred in 20"C water wilh a

similar muscle lempcr.lIure of 27°C. a muscle tempcrnrure thai was employed by Davies and

Young \ 19831. Similar findings indicated me endurance of a f:UiJUing iwmemc contraction of

cat soleus muscle was three times longer:u 28°C Ihan :u 22 or 38°C (Kassler and Kuchler.

19871.

While muscle foccc generating a.biliry remains reasonably constant with cooting to

approximau:ly 25°C. temporal cbar.lctcristics. as will be <tiscusscd l:uer in this rcv;ew. steadily

decline lbercby reducing power. Ranatunga( 19771 explained thai: r:u:s attmlpllO gencr.1te the same

power and fon:e no maner what the rempcrarute. lbe:y accomplish this through a neur.LI mechanism

referred to as -compression of the rccNitment ordc:r" which is recruiting more muscle fibers at low

re~ Iban at high ones. lbe muscle fibeTs aR rccruilcd in Ihc same ordtt at <tiffercnt

rempernrures (i.e. slow lWildt fibers are ~tcdbefore fast twllch). The lower power output of
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slow twitch fibers at lower temperature causes the faster. more powerful fibers to be rttruited

earlier. Therefore. at a given workload. more fast twitch muscle fibers are used at lower

temper.uures. For example. EMG activity increased by 25% as slcin temperature a,•.J is decreased

below 19-20"C (Rissanen et aI.• (996). Nme that this is total. ;]Ctivil)' as measured by in!egr•.lted

activity. nor fuing frequency. This lowers endurance at a given work load at low temperntw"eS due

to a greater use of glycolysis (Faulkner et aI .• 1990: Rome. 1990).

At a muscle lempernrure range of 25-32~C. a lower firing frequency may compensate for

the increased rare of glycolysis. thereby allowing increased endurance. Ar a stimularion nne of

28Hz. the extensO{ digitorum longus had single twitches 01.1 3Q.40~C. unfused retanus at 25°C.

and fused tetanus at 20"C lSegai eta!.. (986). As muscle temperaU1re increases. the TPT and '!l

RT.... shorten and the stimulation frequency must be ino-eased 10 attain similar levels of force

developmenilClose and Hoh. 1968: Ranarunga. 1982: Segal and Faulkner. 1985; Segal t;t al..

1986). This effect is attribuled 10 the accompanying increase: in myosin ATPase activity and

calcium sequestering by the sarcoplasmic reticulum (SR) as muscle remperarure ino-eases (Segal

et aI .• 19861. There is also a shift of cold muscle to lower firing frequencies mat will be discussed

larerinthisreview.

The reason for optimal endurance at muscle lempenl.tures of 2S-32~C could be explained

by the fluctuation of muscle tempera.ture during resl and exercise. Ar rest and following

exhaustive exercise in an environmental temperature of 20-25~C the temperatures of leg muscles

are 34°C and 41°C (BishOp et 01.1.. 1975) respectively. In an ambient temperarure: of SoC and

exposed to wet and wind. resting muscle ternper.uure declined to 23°C lSegal et aL 1986). The

depression of endurance may be due to low temper.lIUres inhibiting neuromuscular transmission
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along me mOlOr nerves. at me neuromuscular junction. or along me sarcolemma and to failure

of the muscle fibers due lO factors such as increases in glycolytic metabolism while cold

tRanarunga el al.. (987). The anenuation of local muscular endurance in of muscles in a

temperarure range of 25-32Q C may be due to slowing me energy release and local melabolism of

the muscle cells by colder temperarures.

.!.3..!..! Fatigue

The rapid decrease in me endurance time at sustained isomeaic levels for contractions

above IS-2Q€k MVC has been amibuted to reslriction in blood now in the muscle. producing an

ischaemic effect due 10 the increased inuaml1£CUlar pressure from me heavy load t Komer et aL

1984). Ischaemia in tum causes an inabilily to clear the muscle of metabolites and depletes the

muscle of ollygen. thereby increasing lactate production and impairing the contraction process.

Ionic imbalance le.g. K-). and reduced energy substtates (e.g. CPl impair a variety of conU11Ctile

processes. OecremenlS associated with impaired ollygen delivery and metabolic removal will

have direct effeclS upon Ihe muscle as well as effects upon the motoneuron. Further detail

regarding me mechanisms oflhese irnpairmenlS will be presemed funher in lhis review.

~ preViously presented. metabolic by-produced such as hydrogen ions (Westerbland and

Allen. 1991). inorganic phosphates lWesterbland and Allen. [991). and potassium (McKenna.

1995) are major conlributors 10 high intensily fatigue. Blood flow serves to flush a.c<:umulaled

melabolites to assist recovery (Viires et aL 19831. Reactive hyperaemia is known to increase

blood flow immediaICly after occlusion originating from intense muscle conuaetion (Pitcher and

Miles. 1997). Many metabolites. such as tr. laetale. and rulric oxide are also known 10 mediate
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functional hyperaemia (Balon and Nadler. 1994: Pitcher and Miles. 1997; Poucher. 1995).

Therefoce increased blood flow could result if metabolites accumulated at a fasler rate due to

both contraction-induced and metabolic by-produci induced hyperemia thereby removing

metabolites faster. and thus enhancgin recovery (Badier et al.. 1994; Pitcher and Miles. 1997).

2.4 Neuromuscular- Medaanisms of Voluntary EMG and Power- Spectnun

EleclrOmyograph signals (EMG) represent the 10tal electrical activity in a pven muscle.

EMG signal is typically rectified and then measured for the area under the curve as integrated

EMG (iEMGt II is assumed that recruiunenL ruing frequency and/or muscle fiber conduction

velocity afme muscle will cause the aceaofthe EMG signal to increase (Peuofsky:utd Lind.

1980). Engineering analysis on signals may also involve power spectrum analysis IPSA)

tKwamy et aI.. 19701. The power spectrum represents the avernge disoibution of the power. or

area under the curve. across the frequency range of inleresl tKamatb and Fallen. 19931. The PSA

can be used to analyze iEMG signals and isolale how a certain firing frequency contributed to Ihe

10tai contraction IFreeman el aI.. 1991). PSA provides the basic infonnation of how power

distributes as a function of frequency.

:!.4.1 Hypothermia

UnfortunalCly. many studies do DOl coru;ider the effects of cooling the body core on

muscle lemper.uure or bow peripheral cooling alters cenual mechanisrm. Seveml studies

{Giesbrechl et aI .• 1995: Heieret aI. 1989: Planner et a1.; 19961 have demonsualCd thai there is

little restriction of heat flow between peripheral and core tissues. lsolaLing cooling to the body
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core can even alter evoked contractile propenies ofperipher.:LI muscles (Heieret aI .• 1994).

Therdore if the core cools. central temper-llure changes will further modify peripheral activity

and lemperature. While these effeclS may be minimal (Giesbrechl etal.. 1995). they are

nevertheless presem. Since Giesbrecht et al. (1995) did not sludy evoked contractile properties.

not finding central dfeclS does nOI necessarily contradict Heier et al. (1994) who found

significanl central effects on peripheral action but did not actively control limb temperalUre.

Signals from the central nervous system (CNS) contribute to the control of rale of force

development and force oUlput (Sale. 1988). RtzGibbon el al. ( 19841 concluded that impainnenl

of the signals from the CNS would only occur at a muscle temperature of below 33" C. though

mild hypothermia may cause mild impairmenl that would be detectable in physical performance

(Clarke et al.. 1958a). This may indeed be the case since Giesbrechl el al. (1995) averaged a low

esophageallemperature of 35.6"C during total body cooling which was responsible for 2-IS'k of

the decreases found in a vanelY of motor tasks. This temperalure would not be cold enough.

according to FilzGibbon et 011.(1984) to evoke central changes. thus supponing Clarke et 011.

(1958a). lmpainnem of the signals of the CNS to the muscles may be a result of decreased firing

frequency induced by cold.

EMG amplitude has been shown 10 be highest at it muscle temperature of 20"C (Mucke

and Heuer. 1989; Winkel and Jorgensen. (991). increasing by 3.5% fl"C (Zipp. 1977) though

decreases of EMG begin below 20"C. Possible explanations for this increase include increased

duration of the action potential. compression of the recruitment order. or loss of force due to cold

necessitating increased recruiunent and firing frequency (Winkel and Jorgensen. 1991). As there

is more activity in the muscle. it may be expected thai endurance of muscle conlr.1Ctions will
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decrease. However while more fibers are active. as demonstrated wim PSA. they are active at a

lower frequency. thereby eXlending endurance time.

Petrofsky and lind (1980) noted that changes in EMG PSA due to decreasing muscle

tempernlUre have been found 10 resemble the effects of fatigue-induced muscle wisdom. (i.e. a

decrease of muscle firing frequency in order to maintain force) showing similar changes in

ampliwde and frequency to lower frequency components. For example. Oska et al. ( 1997) found

during me shortening phase of maximal rebound jumps. the mean power speclrum of agonists

declined from 124 Hz at 27°e to 82 Hz at lOoe ambient temperallm:. Slow twitch motor units

tetanizing at lower frequencies due to prolonged twitch duration at cooler tempel1l1ures likely

cause mis effeeL Thus fibers are recruited at a more economical frequency of discharge

(Pelrofsky and Lind. 1980). Since IT fibers are recruited earlier. thus increasing the idte of

fatigue. defense mechanisms 10 earlier fatigue will be beneficial to maintaining conU'actions.

As centrnl changes have only a mild to modernte effect on peripheral activity. as

discussed by Giesbrecht ct aI. (1995). changes of the periphery lend also to have minimal effects

on cenlnll activation. Several experiments have experimented with the effects of skin t Kregel et

aI .. 1992) and muscle (Ray et aI .• 1997) cooling on autonomic nervous activity. specifically

muscle sympathetic nervous aetivily. Their observations do not indicale that temperature­

sensitive muscle afferents regulate muscle sympathetic nervous activity during peripheral

cooling. Similarly. Rissanen et aI. (1996) demonslnlled that a1lering the temperature of one leg

did not a1ler the EMG of Ihe contralateral leg. though it did increase EMG activity of the cooled

leg. This indicates mat that EMG activity increase is not: due to increased sympathetic outflow
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since the effect of this would be systemic. Thus. mild alterations of hxal cooling do not seem to

alter autonomic nervous activiry.

:!A.:! Fatigue

80lh average amplitude of EMG and Iota! powcr of the EMG powcr spcc1nlm h:!"e:l

linear relationship to increasing focce IZcdb. CI a1.. (997) in moderate li.c. l00C) Icmperarures

tPetrofsky and Lind. 1980). though il becomcs curvili~a( lower in[ensities and lower

temperatures IPetrofsky and Lind. 19801. Increasing muscle [cnsion occurs by recruiling:

additional motor units (i.e. increasing recruittne:ntl or by increasing firin, frequency of al~dy

firing motor unil (i.e. increasing tale coding) (Deluca. 1985). By increasing either or both of

[hcse. EMG oulpllt will increase.

Lin!OSCn et aI. 119901 dcmonsu'lIed IhaI there is an initial increase in E.\ltG during

inlil~rmincntsubmaximal isometric conuactions. The initial increase may be accounled for by

increasing ~oncnlof malO!" unilS. and synchronization of mocor unit firing tBigland-Ritchic

3JId Woods. 198-1-1. During sustained contr.lCtions B·1.G initially increases. plateaus. and as

faligue progresses EMG begins 10 decrease lLinsscn el al .• 1990). This decrease: is an effect

likely caused by decreasing musc'e fiber conduction velocilY IMFCVl tLinssc:n Cl al.• 19901. a

conclusion supponed by proportional declines of MFCV and swfacr EMG t L:lteva. 1988)

though may also be linked to muscle wisdom (Marsden et a1.. 19831.

Cenlta1 fatiguc from maximal or near maximal comractions results in a declinc of neural

dischargc during sustaincd c:ontr.lCtion. A feedback. loop from the musclc via the Ia afferent to

cenlnl1 activation causes a decrease of the o.-mOlOOCuron discharge n1le and force generation.
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often refelTed to as ""muscle wisdom~ (Marsden et aI .• 1983). As muscle fatigue increases.

central neural drive :mempts [0 maintain force generation by decreasing the discharge rate

tBigland-Ritchie el al.. 1986bl so that the discharge rate is maintained al the minimum level 10

maintain force (Bellemare et aI .• 1983). thereby optimizing firing frequency to the desired force

output in an anempt 10 postpOne central neural fatigue (Enoka and Stuart. 1991). Reflexes from

the muscle 10 central mechanisms via afferents are responsible for this effeci (Bigland-Ritchie el

aI .• 1986b1. a theory thai seems likely since this reduclion of firing frequency can be pre\"ented

by blocking the muscle afferents (Hagbanh and Macefield. 19951.

During fatigue there is also increased antagonisl muscle activity (i.e. lower levels of

reciprtx:al inhibilion) (Moritani. 1993). There is diminished discharge from the 13 afferent as

well as increased inhibition from the [b afferents (Hakkinen and Komi. 1986: Kraemer et al..

1988) and additional inhibition from type 1II and IV atTerents tBadiu et al.. 19931. These

inhibitors are speculated to be a fonn of protection against muscle and joint damage found in the

muscle proprioceplors and connective ti!>Sue (Kraemeret al.. 1988). By increasing antagonist

activjty. 10tai voluntary force is reduced and energy expendirure increases as the antagonist

muscle group resists force production.

l.e Bozek and Rougier (1991) demonstruted a shift of the E.'vIG PSA 10 lower

frequencies. indicaring a decline in the mean power frequency. Also. the amplitude of the low

frequency peak and the power of the corresponding component in the EMG PSA increased.

thereby decreasing the mean power frequency of the sample t l.e Bozek and Rougier. 1991:

Stulen and de Luca. 1982). Wblle the mean frequency declines. as muscle fatigue begins. the

total power of the EMG signal increases (Kwatny el aI.. 19701. This is produced by an elevation
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of the low frequency ponion of me spectrum that outweighs a simultaneous decrease in the high

frequency portion. in addition to an in=ase in me syn<;hronization of motor units with fatigue.

The most common explanations for the shift of PSA to lower frequencies include changes

in the synchronization of motor units and decreasing MFCV tDatta and Stephens. 1990: Naeije

and Zorn. 1982: StUlen and de Luca.. 1982: Zwans el al .. 1987). There is a linear relalionship

bl:lWeen the median frequency and conduction velocity tStulen and de Luca. 19811. Van der

Hoven et al. (1993) showed decreases of median power frequency and MFCV during their one­

minute isomeuic MVC fatigue protocol. Patients with McArdle's Disease. a deficiency of

myophosphorylase resulting in an inability to usc muscle glycogen as fuel. do not produce

intramuscular lacute. Such patients also have a significant shift of the PSA to lower frequencies

(Mills and Edwards. 19~). Therefore Mills and Edwards t 19~) speculale that the shifl [0 lower

frequencies is due to disturbances of muscle membrnne excitability such as extracellular

potassium ions. nOllactic acid. Such disturbances mereby slow MFCV. Also. decreased median

frequency from fatiguing isometric con!r.lClions recovers faster than intramuscular pH

\ Veslergaard-Poulsen et a1.. 1995). Slowing conduction velocity may also help explain the

similarity of PSA shift of cold and fatigue \Mills and Edwards. 19~1.

Badierel al. (1993)demonstr.ltedaprogressive shift [0 lower frequencies in EMG PSA a

few secon~ after the muscle begins to conuaci isometrically. The leftward spectral shift occurs

prior to actual muscle fatigue. This led to their conclusion thai EMG PSA changes were likely

due to changes in rote coding panems of mOloneurons during the developmem of fatigue (Badier

el aI.. 1993: Bigland·Ritchie el aL 19811. This shift is suggested to correspond to reflex-induced

chan~ in centraJ mOlorcontrol. Group m and [V afferenlS (i.e. chemically sensitive
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mctabaIOKCCplOl'S) exert a powerful inhibition of the spinal TnOl:oneuron (Badier et al .• 1993).

They are ac:UV3led when muscle pH falls and exmuxllular potassium concentr:l.tions illCfea5e

with the development of fatigue. Thus the decline of tiring frequency may result from the

subsequent stimulation of group IU and rv afferents. Therefore:. the analysis of power s~clIUm

mean frequency seems to be more useful to recognize recruiuocnl pacterns of motor units rather

than muscle failure itself. however both are closely reliUed.

'.5.1 Twitch TEnsion

2.5.1.1 HypodJennic

Generally. the thermal dependence of electrically stimulated sk.eletal muscle force

genemtion is low (Bell and Lehmann. 1987: Bennett. 1985: Bergh and Ekblom. 1979: Faulk.ner

et al .• 1990: Kassler and KUlChler. 1987: Kassler et a1.. 1987: Ranarungaec 011 .. 1987: Ranacunga

and Wylie. 1983: IUnatunga and Wylie. 1989). Human peripheml muscle may experience a large

thermal r::l.tIge on a daily basis.. reaching as high as.& I" C mer exhaustive exercise IX as low as

13" C ar. rest depending on activity level and environmental temperature (SepJ et al .• 1986) with

the: exception of fast twitch fibers. Consequently it may be ellpected that muscle would remain

unchanged with cooling (Le. a QIO ofapprollimar.ely 1.0) IX illCl'ea5e willi cooling low (i.e. a Q,o

of below 1.0).

The thermal dependence of peak twitch force is both temperallm: and fiber type specific

SeMen. 1984). 1be twitch tension in a fast twitch muscle type (m generally increases down to

a muscle temperature ofll to 24"C (Kosslcr and Kutchler-. 1987: Rananmg.a and Wylie. 1989)
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whcre.u twitch tension in a slow twitch muscle type 1m either decreases or remains constant

10 this temperature (Sennen.. 1984; Kossler and Kutchler. 1987; Ranarunga and Wylie. 19891. It

has been demonstrated that a IT muscle warmed from 200 e up 10 37°C~ peak twitch tRIO

=0.7) but ST muscle remains constant (RIO: 1.0) (Close. 1972; Ranarunga et :11.• 1987). Primarily

fast twitch fibers exhibiled a dislinet maximum be{ween 22 and 2~oC followed by a 50~

decrease between 22 and 34°e IKosslerand Kmchler. 1987: Davie;> el 301 .• (982). In the first

dorsal interosseus muscle in the human hand however. 3. muscle which is 60% ST fibers.

maximal twilch lension decreased by 50% in cooling from 35°C 10 Izoe with tension decre3Se in

these fibers W3S significantly more pronounced below 25°e IRanatunga et aI .. (987). In other

human studies. twitch output of predominanlly slow (witch soleus (SOL) muscle fibers increased

s{eadily with warming up to 36°e tKassler and KUlchler. 1987),

Varying twitch tensions in the fiber types can be explained by the difference in the

development of the SR. The sateoplasrnic reticulum ,SRI of Fr fibers is more e:uensive than ST

fibers since IT fibers are estimated to have 2-4 times higher densilY of Ca~: rele3Se channels

tDamiani and Margreth.. 1994l and ea:~ ATPase was found 10 be 10 times gre.:uer for the EDL than

the SOL tKossler and Ku{chler. 1987). In a warm Sfale. the higher r:llC of calcium re-uplake of Ihe

IT fiber has the calcium sequestering process staned before full tension can be produced. The Fr

muscle theTcfore produces lower !ension in a warm state since. in this context. !he calcium is

sequestered tOO rnpidly for-maximum !eosion 10 develop. In a cool Fr fiber or in a warm ST fiber.

higher £Witch tension is achieved because the calcium sequestering process is slower. Accordingly.

the rate of decay oftbe active swe is faster in Fr muscle fibers (Kossler and Kutcbler. 1987). II is
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this difference between lhe rwo fibtt types thaI suggest that ~ing slows c:aJ.ciwn sequestering..

iinee cooling allows mc:: longer utilization of lhe active stale.

~. c:akiwn scnsitivi~of myofibrillar (min filament) 3C!ivation has been shown

to increase v.ith cooling (Ranarunp. and Wylie. 1989: Stephenson and Williams.. 1981: Stephensoo

and Williams. 1985\. This cak:iwn sensitivity pocentialcs tension between lQ-37"'C. Below

3pp!'OxilTl3lely 20"C temper.1~ in lhe fas! rwilCh. and below3~ in the slow fWitch.lhe cooling

depression of tension production may be dominating over the tension potentiating effect of

increased calcium sensitivity.

2.5.1.2 Fatigue

1bere is some variation of the response of twitch tension depending upon fiber type and

method of fatiguing. For example. PetrOfslcy. et aI. t 1980l found that after isomeuic fatigue

proIocols of~ or 7O'ii: of maximum stimulated force. t",itch tension was reduced in both !he

medial gastrocnemius and !he soleus in intact c::lt fi~. Behm and St.Pierre (1997) invesligaled

!he difference of e\'oked contr.tetile property differences of quadriceps and plantar llexocs in

lonl tern! (25 or SO% MVC ~vely)and short-term fatigue ISO or 7Slk respectj\'c1y) in

inl3Ct human fibel"S widl mean endlUlUltt times of approximately 20 minutes and approximately

~ minutes respectively. Behm and St. Pierre (1997) found dlat while qUOldriceps twitch torque did

not deaease. the plantar flexol"S were significantly increased b:-- 16.1~ while fatigued.

Differences likel:-- exist belWccn the findings of Behm and SL Pierre t 1997) and Petrofsky et al.

I 1980) because different muscles were used. namely medial gastroeneminus of die eat and the

quadriceps femoris of humans. at different intensities of 15 or 40% and SO and 70% of maximal

21



force. Petrofsky et al. I 1980) also used maximal stimulation while Behm and St. Pierre (1997)

used voluncary conuaetion. In vivo human muscles are known 10 be heterogeneous. often being

predominantly. bUI not exclusively. IT or ST IBehm and 5[, Pierre. 1997).

P::iasulce el aI. (1997) demonstraled thaI while there is potentiation of twitch by 155.1 'K

immedialely after a 5 second MVC in plantar nexors immediately after fatigue. tension dedines

during recovery from sustained sub-maximal contractions. The demonsU'ated decrease in force

and twitch torque indicate both peripheral and centr.LI ftltigue. similar 10 lhe resulrs of Behm and

St. Pierre (1997). Twilch tension recovered in 10- minutes in the medial gastrocnemius but

required only 3-minute recovery in the soleus (petrofsky et al.. 1980). The vanety of resuh.~ is

summarized in Table I while Tables 2 summarizes differences of methodology between Behm

and St.Pierre ( 1997). Petrofsky et al. I 1980) and Piiasuke ct al. ( 1997), These tables summarize

according to the dominance of tiber types in the specitic muscle; no human muscle is eXclusively

one fiber (ype.

Depression of twitch torque has been anributed 10 a depression of SR release of calcium

(Lopes el ai.. 1983\ or by impairment of E-C coupling (Bigland·Rilchie et al.. 1986af.

Furthennore. Edwards et aI. I 19n) demonstrated that declining twitch ampJirude could be

overcome with high frequency stimulation. The impainnenl of these mechanisms may be

induced by accumulation of metabolic by-prodUCts in the more anaerobic FT fibers. Greater

twitch potentiation in ST fibers has been ascribed to fewer impairing by-products being produced

by ST fibers and an increasing accumulation of calcium in the cYtOPlasm in addition to increased

sensitivity of calcium binding sites to calcium (Lindingerel al.. 1995).
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LDFf

Increase

Decrease -

SDST

Increase

Increase

decrease :

SOFf

Incre=

Table 'l. Comparing tmensjtjes and 6ber Type... Used By Behm and SI. Pierre! !997) and Petrofsky

~

Ff ST

LD !S% of MVC quad I 5~ MVC planlar flexors', ,
! 40% of maximal stimulation i -lOCk of maximal stimulation

so

medial gastroenemiu.s :

5()I;i ofMVCquad

soleus:

7S<f of MVC plantar t1exo~

! 70'* medial gasuocncmius: i 70~ of maximal stimulation

soleus:

6O'it- plantar flexors '

Tables I and:! compare srudies ofBehrn and SL Pierre \ [997). Pclrofsky el at I19801. and Paasuke
CI aI. t 1997). SO - short duration (approximately 4 minutes I. LD -Ioni! duration (approximately:!O
minutes). 5T - slow twTtch. Fr - fast twitch: 1- Betun and St. Pierre (1997) 2- PelrOfsky ct a1.
(1980) J.. P:ial>ukcetal.{i997)
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2.5.") Thl.3.njcTensjon

2.5.2.1 Hypothermic

There is a sharp difference between hypothennic twitch tension and hypothermic tetanic

tension. The different muscle fiber types have almost identical increases in maximal tetanic tension

(Bennen. 1984\ with regards [Q thermal dependence. Maximum tetanic tension will steadily decline

with cooling from 30°C to 6°C (Kossler and Kutchler. 1987) dropping only 1()'20~ in cooling to

!SoC (Buller et aI .• 1984: Close and Hoh. 1968: Ranarunga. 1980: Ranarunga and Wylie. 1989\

but 4O-50'i- when cooled to 10°C (Bressler. 1981: Kossler and Kutchler. 1987: R.anaJ:ung.a.. 1982:

Segal et aI .• 1986: Stephenson and Williams. 19851. so lhat it is clear that mere is increased

tempernrure sensitivity at lower temper-.ltLlres. Kassler and KUlchh:r (1987) demonstruled an RIO of

2.3 (EDL) and '1.7 (SOL) fortemperarures between 1'1 and !!OC. Segal et aI. (1986\ attributed this

decrease to impairment of connactile protein binding.

Since active muscle stiffness. a measure of Ole nwnber ofanadled cross bridges. is similar

regardless of temperature (Kassler and Kutchler. 1987: KutchIeI' and Patzali.. (989). decreased

force by lower temperarwes may be the result of decreased fora' gen=tion by each anached cross

bridge (Bressler. 1981: Kessler and Kuchler. 1987: Kossler et a1.. 1987: Kutchler and Patzak.

1989: Stein et aI .• 1982). possibly by a lower rate of cross bridge cycling (Kossler and Kuchler.

1987. Kutchler and Paruk. 1989). As a rOiu!l of the decline ofOlesc mechanisms with cooling. as

m~le temperarure drops below 'l5°C (Bennett. (984) or !(J°C (RanatungaetaI_ 1987) there is a

steep decline in maxima.l tetanic teosion. Cold may alter any IX all oftbe membrane potentiaL ionic

pumps. the propagation of the action potential via the t-tubules. or gating properties of ionic

channels. though the extent of alterntion remains unknown (Kessler and Kuchler. 1987).
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Maximal tetanic lension has been reported to increase. decrease. or remain conslaltl at

temperatures greater than 30"C depending upon stimulation rale (Segal et al .• 1986). Therefore.

care should be taken when comparing studies. especially in those using low stimulation

frequencies. New stimulation rates should be re-detennined at each temperature if attempting to

use minimal stimulation rates. During tetanic stimulation. the calcium is not rapidly sequestered

as it was during the twitch due 10 slowing of SR ATPase. Therefore. there is 001 as large a

decrease in lension in the fast twitch fibers during letanic stimulation in the higher temperature

ranges as was seen with twitches.

There is an expected difference between peak twilch tension and peak tetanic lension

since voluntary muscle contraction is letanized in all physiological conditions (Bennett. 19S...1-1.ln

an organism... muscle fibers do nOl regularly experience twitches. so muscles would not evoh·e a

functional response 10 twilch. bUI would evolve to tetanic slimulation I Rg. 2·11. For this re:JSOn

tetanic stimulation has more consistent results with voluntary contr.tctions.

2.5.2.2. Fatigue

The response of tetanic lension development while the muscle is fatigued is similar to Ihe

response to cold Isometric fatigue at either 40 or 70% of maximal stimulated force led 10 a

decline of tetanic tension for both soleus and the medial gastrocnemius in cats cPeuofsky e[ al..

19801. Tetanic tensions recovered in 10- minutes for gilSuocnemius and in 3· minutes in soleus

(Petrofslcy et al.. 1980). A decline of tetanic force is expected since this represents impairment of

the myofilaments associated with impaired cross bridge cycling. As previously discussed with



MVC. a build-up of inorganic phosphaIes and production of hydrogen ions directly inhibits

cros.s-bcidging by impairing the bonding on calcium with ttoponin C.

., 5.3 Muscle Fiber Excitetion

2.5.3.1 Hypolhennic

As previously mentioned. tale processes deal \loith lhc time dependent fearures. 1bcy are

useful in studying lhc speed at which a panicular process is accomplished and may be used 10

explain such characteristics as power development or speed of a response. 1be thermal dependence

of the skeletal muscle rate processes is very strong IBennen. 19~:Oose and Hoh. 1968: Cornwall.

1994: Davies et aI .• 1982: Davies and Young. 1983: Ranarung:a. 1982: Ranarunga. 198.4: Ranarunga

C'l 2.1 •• 1987: Ranatunpand Wylie. 1982: R.anaNngaand Wylie. 1983: Rome. 19901. As

temper.uurei~ the speed of r3le processes continue to increase up [() a point thaI. may

<bmage the muscle SU'UCfUR: tBennett. 198-l1. Time to peak twitcntTPl). time to halfrelaJtalion of

twicdl 1\01: RT.. I and shortening velocity. aU r3le proc:es.soes. h.ave average QIO scores of 2-2.5.

Dynamic performance involving factors thai: ate r.ue process dependenL such as mv.imaJ

powerowpuL improve as rempet'alUte incn::ases{Bennett. 198-l: Bennett. 19&5: Binkhom et aI ..

(917) thus relleaing the positive rela!:ionship ofincre:asing temper.UUI"e on tale proces.ses. Wilhin a

muscle temper.uure range of25-35~C (Fau1tneret aI•• 1990: R.manmpC'l aL 1986) or- 22-J8QC

(Binlchorst et a1.. 1977) time to peak twilch increases with decreasing ternperarure. Th=flm.~

is a clear re1aIionship between thermal dependence IQlO:Z 1.6-3\ of raLe pnxesses and temperanm::

over physiological tempemure ranges tRome. 1990). mough exactly whar. thaI. temperature range is

not clear. QID scores for- raLe pnx.esses as a whole ltime-to-peak twitch. time to half reiaxaiion of
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(Witch. and rate of rise of tetanic tension) determined for !emper.lIures below 20°C we~

considerably higher than those obtained fortemperarures above !Soc. being 2.75 and lAS

respectively (Elmubarak and Ranarung:L 1984).

Time to peak twitch (rpl) specifically increases as temperarure decreases (Bennen. 198-+:

Cornwall. 1994: Davies et aI.• 1982: Davies and Young. 1983\ with a TPT QIO= 2.2 * 2..,1. (Kossler

and Kuchler. 1987: Kossler el aI.• 1987: Rome. 19901. Between 2S*35°C the rote offortt

development is also impaired.. being slowed by 22% (Faulkneret aI.. 1990). This slowing of muscle

contr.lCtion results in a shift of the forcc:.\·elociry curve 10 the left (Holewijn and Heus. 1992)

reSUlting in lower forces:u low velocities.

There is some disagreement on the thennal dependence of TPT though the variance is

slight. TPT has been shown to have a similar thermal dependence in both muscle types tQIO= 2

in fast and 2.1 in slow) (Bennett. 198-+: Ranarunga. 1984). There has also been shown a gre::J.ter

thermal dependence in FT (QIO of2.1-2.21 than in ST (IA-l.6) for shortening velocity (Bennett.

1984). II has also been shown th:u maximum shonening velocity of the rat SOL was more sensitive

respectively I (Ranatunga. 19841. II should be noted th:u while variation exists between studies.

variance is nOl gre:u and likely results from differenl methodologies or individual variations among

subjects.

In both muscle fiber types of the rot. another chancteristic effect of temperature is [he

prolongation of If2 RTrw in ~spon.se to cooling (QIO= 2.7) CKossler and Kuchler. [987: Kossler et

aI .. 1987). 1bere is a pronounced !henna! dependence of If2 RT.... particular[y below 20°e. Qill

valuesof25-2.8 foclf2RT... in rat EDLand SOL {Rome. 1990: Segal elal.• 19861 while aQlliof
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2.7 has been shown in frog muscle (Kossler et al .. 1987). In cooler muscles. the prolongation of

relaxation may be caused by slowerdelllChmenl of the cross-bridges (Faulknerel aL 1990lor

slowed calcium sequestering.

The thenna! dependence of muscle fiber excitation different muscle Iypes may also be

explained by a change in the net attachment rate of cross bridges due 10 cooling lElmubar.lk and

Ranatunga. 19841. Ihough these exact changes remain unknown (Ranarunga. 1984). These changes

are unlikely to be caused by a change in muscle stiffness since viscous resislaOce to sliding

movemenl offilamcnts is negligible (Ranarunga. 19~1. Changes may be a consequence of

temper.uure-dependent decrease of thot maximal rate of adenosine 5' .Diphosphate (ATP) hydrolysis

(Bergh and Ekblom. 19791. or impaired neuromuscular tr.I.nsmission (Edwards et al.. 19n1. The

direct result of increasing tempernlUre is accelernted metilbolic rate (Bergh and Ekblom. 1979:

Faulkner et al .• 1990). and accelerated kinetics of the muscle fiber action potentials (Segal and

Faulkner. 1985: Ward and Thesleff. 1974). The impairment of maximal velocily of shonening

during cold might also be a function of the actomyosin ATPase activity (Faulkner et al.. 19901.

Rome and Bennett (1990) described thai temperature"s effecr on maximal performance and

maximal sustainable performance are from cold's effecl on shOl1ening velocity. Decreases in

contrnetile kinetics can be explained. by deaeased cycling frequency. In addition. il has been

shown that cooling the muscle may interfere with neuromuscular uansmission of the superficial

muscle fibers and conduction velocity within the rnusclb (Bigland.Ritchie el al. 1992. Franssen

and Wienek.e. 1994) and hence ma.umum speed thereby setting limits on power and speed

(Ranarunga. (977). The limited existiog body of evidence indicates that the explanation may lie

in any of these hypotheses though future research in this area is needed..
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1.5.3.2 Fatigue

Evoked temporal characteristics vary by muscle group. time to fatigue. and intensity of

contractions. As demonstraled by Behm and St. Pierre ( 1997). quadriceps TPT was prolonged

15.3% while PFTPTwasnotsignificantlychanged.Thisstudyaisoindicatedthatsubjecbina

shon duration. more intense (quadriceps at 50% MVC and PF at 75~ MVCl fatigue protocol

experienced a greater prolongation of TPT. The authocs speculated that me decline of the

quadriceps twitch torque and prolongation of the TPT might imply impninnent of E-e coupling.

likely the Ca·! release from the 5R and/or cross.bridge cycling tBehm and St. Pierre. 1997). E-C

coupling involves the activation of the surface membrane and the propagation of the signal down

the t-tubules. In addition 10 depre~ion of twitch torque. diminished rates of force development

and diminished rates of relaxation have been attributed to a depre!iSion of SR ATPase Ca·1 pump

as demonstrated with caffeine studies (Lopes el al.. 19831. Time to peak twitch has been

demonstrated to either increase or decrease depending on the work intensity. McKenzie: and

Gandevia (1991) found that lUgher intensities (20-509r MVC) seem to prolong TPT but low

intensities t5-10% MVCl shonen TPT in elbow f1exon. They sunnised thai there must be a

crucial aerobic rest intervaL Discrepancy between this study and Behm and St. Pie:m: (1997) may

be due to different fatigue protocols or because Behm and 51. Pierre ( 1997) used greater than

50% MVC for all protocols except the long duration fatigue of me: quadriceps.

In me long duration fatigue protocol. Behm and St. Pierre (1997) found 16.8% faster

twitch half·relaxation times (Yl RT... l bUI t:he shon durution fatigue protocol experienced a 9.7'ito

slowing.. and also found a difference in Lbe Yl RT... and the TPT depending on the length of the

protocol. It may be expected that if one of the temporal charocteristics is impaired so should the
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others. though impaired calcium release. a passive process. does not necessarily mean there will

be impaired calcium reuptake. an active process (Betun and 51. Pierre. 1997).

Peuofsky et aI. (1980) demonstraled that conunction velocity in catS of both fiber Iypes

slowed with fatigue though the greatest decremenlS of the unloaded muscle occurred during

longer fatigue at 40% of maximum stimulaled force rather than shoner fatigue protocols at 70%

of maximum stimulated force. Orizio et a1. (1999) found thai TPT of the human tibialis anterior

recovered within I minute post-fatigue while lh RT... was still significantly slower at 6 minutes

post-fatigue when stimulaled at 35 Hz. Contraction time (en and lfI RT... also indicated (hat

recovery of the diaphragm had not occurred after 30 minutes of rest. CT was still l{}'it slower

and lfIRT"" was 30% slower IMetzger and FitlS. 1987) after stimulated fatigueoft~ ral

diaphragm alltigh (75 Hz) and low 15 Hzl fTc:quencies. While the time: course: may not agree.

both studies agree that rate of contraction recovers faster than relaxation lime. cr has also been

implicated to get faster. as with Pliasuke et al. I 1991), Twitch was delivered immediately after a

5 second MVC. cr was faster by ~1.9ll- while YJ. RT... was nOl allered. Holding 60% ofMVC of

the elbow OeJ;ors to ex:haustion 3 times with ~ minutes rest between mals was then used to

induce fatigue. Post-fatigue. CT got faster though lfl RT.......'as slower post.fatigue. recovering 5

minutes after fatigue lPaasuke el aI .• 1997). Peuofslty et al. (19801 demonstnlted that isometric

fatigue at either 40 or 70% of maximum stimulated force in rats led to declines ;n comraclion

velocity while twitch duration inctu.sc:d for both soleus (STland the medial gasrrocnemius (Fr).

Comraction velocity recovered in less than I minute (Petrofsky el aI .. 1980).

Increases in the Y2 RT... an: typically accounted for by decreases in calcium re-upuke

(Gollnick et aI .• 1991). Note that the active sequestering process is not necessarily related to the
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passive calcium release process. Therefore energy availability and usc may playa part in

slowing sequestering but not release. Again. the development levels of the fiber's SR can

account for the diffcrence between IT and ST. Alterations ofCT may be related to similar

processes as increasing or decreasing availability of residual calcium in the sarcoplasm.

Tabl$; 3: Effects of Fatigue on Temporal Charncterislic*

Speed-Up Slowed -ISlowed'- Slowed

Slowed!
I

I
! \Iz RT""lspeCd.uP

I Slowed~

LOFT SDST ! SOFT VeryLD

!
Recovery !

ITAI i
>6min - I

I

I
TP'T \ No chan~e Slowed - no chan~ ISlowed - Speed up' < I min - !

j slowed- slowed -

I
Table 3 compares studies of Behm and St. Pierre ll997). Pelrofsky e[ al. (1980). and Paasuke et al.
(1997). SO - short duration. LD - long duration. ST - slow twitch. IT - fast twitch. TA - tibialis
anterior. I· Behm (1997) 2- Peuofsky et al. (1980) 3- Paasuke et al. (1997)

2.5A.I Hypothermic

Thc muscle compound action potential (M·wave) represents the propagation of the action

potential along the sarcolemma. It is usually measured through the skin during a twitch and is

collected in the same fashion as EMG. The Iimitcd research in this area has demonstrated that

cooling alters M·W3VCS. In an experiment by Bell and lehmann (1987) on the triceps sume. a

muscle cooled to 12g C resulted in a decrease in the amplitude of the M-w3ve. It would be

expected that the impairment of much of the neural functioning and propagation along the
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lO:Il'COlemma would decrease the :unpHrude of the H-~nex I i.e. neural propag:llioo) and M-wa...e

(i.e. sarcolemmal) respectively. Slowing oflhe r.lte of ATP hydrolysis may lengthen lhe latency

beNieen stimulation and the beginning ofbolh the M·...·a\·e and H..-retlex.

In summary. prog:res5ively cooling muscle to a r.lIlge of22_:!~oC causes potentiation of

twilch tension in IT fibe~ (Belland Lehmann. 1987: Kossleret aI .• 1987) but causes eilher no

change 0( deprcssion of ST fibet's (IGmatung:a et al.. 1987). Most research agrees that fatigue of

FT fibe~ decreases twitch torque (Peuofsky. et aJ.. 1980) though this is often difficult 10

demonstrnte in intact muscle fibers. The~ is some disapeement regarding the effect of

prolonged contraclions of ST fibers on evoked conuaclile properties (see Tables 1.3. and ~I.

Then: seems to be agr~ment regarding the decline of tetilnic tension wilh cold. A~menl is

also undivided on the slowing effects of cold on In, RT... and TPT.

:!.SA.:! Fatigue

1be M-wave is much better studied in fatigued Slales r.llher man in cold.. Bctun and SI.

PierT'C t 1997) found a 1~.7'i- depression of M·wa.ve amplitude: after long duration fatigue bUI a

IS.7'i- potentiation after shan dutalion fatigue. Simil:lrly. it has been shown thai using shan tenn

high intensity contractions did I'IOt aller M·wa...e amplitude tBigfaod-Rilchie el al.. 19791. while

prolonged submaximailFugievand et aI .• 1993) and ~petiriveMVC (Bellemare and Garzanli.

19881 ha...e demonstroiled decreases of M·waves. Petrofsky et aI. (1980) found that after fatigue

protocols of 40 or 70% of maximum stimulated force. duration of the action potential was

extended in both fiber types though ampurude of the action potential was not significantly
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al{ered... 1be dur.1lion and ampliNde of the compound muscle 3Ction pokntial recovered in less

man I minute lPetrofsky et aI .• 1980).

1be ionic balance of the muscle membrane can affect E-C coupling: by hindering: me :iUfn of

depolarization. the rate ofdepollU'ization. conduction velocity.:and the: D'lUtSmission down the (-

rubule 10 the 5R!hat ultimalely ~ectS the release of calcium. A1lhough M-W;:Lve depression could.

~ pxenlially detrimental. prolonging the swf::JCe action poIenti:LI could increase !he amount and

length of time the myofilamenlS an: exposed to calcium thereby providing more contractile force:.

Declining M·wave amplirude implicalcs failing membrane propagation or muscle membr.1ne

excitability. lherefore muscle membrane propagalion failure is not the primouy cause Qffatigue. 011

leas! not in Iheshort tetm.

Db!, 4: Effm! or rarifY'; duvUjoo of different fiber- IVOSS 00 M_lIIia\'e 3IT!ptiJUde found bv Behm
and 51 Piem; I 1997) ilOd Petrpfskv et aI. ! 19801

LOST LOFT 5D5T SOFT

amplilUde

""== I

So change :

""== I

Noctu1nge:

In~ase ' Incn:ase I

So change: No cl1ange :

!M-.....ave dur.ltion 1 Longer' Longer - Longer - Longer·
, ,

Table ~ compares srudies of 8ehm and 51- Pierre ( 1997) and Pelrofsh et aL ( 1980). SO­
short duration. LD - long duntion. ST - slow [Witch. FT - fast twitch: I: Behm (1997) 2·
PclrofsKy et aL (1980).
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2.6 Conclusion

How cold and fatigue alters voluntary and evoked conU'aCtile properties of mu.'iCle lends (Q

be dependent upon faclors including fiber type. intensity. and dur.uion of exposure 10 me stress.

Thermal dependence of No;tch torque is bom tempcrarurc and fiber type specific. FT lWilch torque

tends 10 increase up Itl a muscle IemperalUre of 12·:':4"C and declines in temper.uures below mis

while ST twitch lorque decreases or remains constalll in this muscle temperature range and declines

below !his. While !here is agrecmenl !hat FT twitch torque decreases. disa~ment exists regarding

ST IW'ilch torque !hough duration of fatigue and the muscle group is a possible explanation for this.

Hypomermic telanic tension steadily declines wilh cooling in eilher fiber type: a... is the casc with

fatigue a.s well. Cooling drastically slows rate processes such as maximalletanic tension. TPT. '.'j

RT..... time to peak tetanh: tension. and contraction velocity, with higher sensilivily as lemperalure

declines though disagreement exists regarding which fiber type is more sensitive. Duration of the

fatiguing protocol seems to be me determining factor regarding rate~s.While Petrofsky et

al.119801 indicates ali rate processes slow at either duration in either fiber. Bchm (1991)

demonstrates a great dcal of variety. As cold slows me r.tle processes the amplirude of the H-reflex

and M-wave diminish and !he waveform and time to onset extends. though there is very limited

research in this an:a. Usually Ibc: M-wave becomes longer and eilher does not change in amplinJde

or is dependem upon durnlion of fatigue. Muscle temperatW'C ranging from 2S-32"C has been

demonstralCd to eXlend isometric endurnnce while fatigue undisputedly shortens it. Cold and fatigue

are blown to have similar effects of decreasing iEMG and lowering !be firing frequency range.

Therefore it is relevant 10 slUdy !be inleraction effecl5. of 22"C local muscle temperature

on the recovery of specific evoked and voluntary contractile properties in intact human plantar
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flexors at one-. five-. and IO-minutes after rngh intensily faligue since hypothennic recovery

has not been srudied. It is also relevanlto validate previous srudies and add to the body of

knowledge about the main effeclS of recovery from fatigue with homeostalic temperature and the

main effeclS of local hypothermia on unfaligued muscle on evoked and voluntary contr.lctile

properties in intact human planlar flexors. The following research will conlribute lhc firsl known

study 10 the area of hypothermic recovery by invcstigaring the intemction effects of local muscle

hypothennia and high intensity intermittenl local fatigue.
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METHOOOLCXiY

.3.1 Subjects

Ten male volunteer subjectS of a me:lfl age of!3 years (+,. 6.11. with a me311 weighl of

82.8 Itg (50-+1· 8.5 kg) 3IId a mean hc:i!lllof In.s cmlSO ...,. 6.3 cm). were nxnJ,ited from Ihe

universily communit~ (Appendix AI. "They read. 3IId signed a consent form tAppendix Bl

approved by the Hum311 Ethics Commiltee prior 10 expcrimenution. Subjects were inf()(tllo:d

thai they could withdraw from the experiment at any lime withoUi prejudke.

3.2 Instrumeatatioa

All volunury and evolted torque signals were ck:teclr:d by a slr.l.in gauge. senl through a

high gain amplifier (Biopac Syslems Inc. DAIOO and analog to digital convener MPIOOWSWI.

and monitored on compuler tSona Phoenix PC). 1be lOalTlpling rate was set at 1000 Hz and all

dau were storM on computer. Data. were recocded and analyzr:d with a commercially designed

jOl'tw3re progr.un tAcqKnowled!C llL Biop:lC Systems Inc. I. EMG :Ktivit~ was amplified

tBiopac: Sysr:ems inc. EMG 100 and analog to digit::ll conveT1er MPIOOWSWl. fihered (10-1000

Hz). monitorM and stored on compuler. The computer software program rectified and inlegnued

the E.'1G signal. M~menlSwere monitored over a 500 ms period during a maxima!

volunla.ry eonlnl.cOon (MVCt

Fine abrasive [sand) paper and 70Ck isopropyl alcohol was used 10 clean the anesthetic

injection site and EMG electrode placement siles. The temperature probe sile was anesthetized
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with 2% injectable xylocaine tAstra Pharma lnc.l thai was injecled from a I ml syringe through

a 160 3/8" intradermal bevel needle to a depth of approximately 2 crn.

The refrigerating pump circulated liquid glycol through 17 meters of plastic (Tygon)

tubing of 3/8" diameler with a 1/16" wall (R-3603l.

3.3 Overview of Testing

In this study. subjects performed isometric maximum voluntary contr:lctions (MVCl of

the plantar nexors. Subjects were lested on the rate of recovery of a variety of voluntary and

evoked contr:lctile properties of the plantar nexors while either normothermic or hypothermic

Isee appendix C). SUbjects served as their own conlfOls and it was randomly delermined if

hypothermic or nonnothermic SCMion would be lested firs!. During plantar tlexion. subjects were

seated with hips and knees at 90". with their foot in a modified bom apparatus oulfiued with a

cuslom designed strain gauge.

SubjeCls perfonned each testing session. separaled by alleast three days. al a similar time

of day since Martin et al. \ 19991 indicate thai force produced during a maximal voluntary

contr:lction was 8.9'k higher in the evening than in the moming and CT and It2 RT... were also

reduced during the evening. The time of day that the subjecl was tested was chosen on the basis

of the subject's and experimenter's availability. but remained consistent for both testing sessions.

While all subjects did participated in regular physical activily. including progressive resistance

exercises. they had not performed any strenuous activity within 24 hours of the testing session.
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3.4 Protocol Setup and Initial Tesdlll

Surface EMG recording electrodes were placed over the belly of the tibialis anterior.

belly of the lateral g3Stroncminus. and distal portion of the soleus. Ground electrodes wcre

securecllo bony landmar~on the patclla and lalcra1 malleolus. Thorough skin preparation for

all clectrode sitcs includcd shaving the area and removal of dead epithelial cells with an abr.bh"e

lsand) paper around !he designatcd area followed by cleansing with an isopropyl alcohol swab.

Bipolar surface stimulating electrodcs were secured ovcr the peroneal nerve in Ihe

poplitial fossa behind the knee and me gilSuucnemius-t>Oleus intersection. Slimulating

c1eclrodes. ~-5 ccntimcters in length. were conslrUcted i!lthc laboralory from aluminum foil. and

paper coatcd with conduction cream lSigna Creme) and immersed in waler. The clcclrode length

was sufficient to wrap the width of the posterior portion of the limb. The electrodes were placed

in approximately the same position for each SUbject.

Prior 10 insertion of a myocardial temperarure probe ethennisten into the lateral

gaslroneminus. the subject's leg was swabbed with 70% isopropyl alcohol and anesthelized with

a xylocaine injection. While il was thetempenuure of the gastroneminus that was measured. a

myoc;ardial temperalUre probe was ideal in design for our purpose. The xylocaine was injected

by a physician. who then inserted the myocardial temperature probe into the belly of the laler.l.l

gastroneminus to a depth of 2 em. The myocardial temperature probe was then secured with tape.

Teenier and associates t 1991) demonstr:lIed that EMG and volunt:Jry force of the four muscles of

mastication were nOI impaired by local lidocaine anesthetic. Nydahl and associates ( 1990) also

demonstrated mat intravenous 1000al anes!hetic (rnepivacaine and etidocmne) did not affect

isometric muscle force or EMG of the knee eXlenders. There was therefore no concern that the
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small area of the gasrroneminus anaesthetized would affect the results. Thc temper.llure probe

was carefully place to avoid vascular and neurally dense areas.

Once the subject was prepared and secured into the modified boO[ apparatus. the voltage

and amperage required to evoke maxinutl twltch amplitude was determined. Maximal twitch

amplilUde was deu:nnined by gradually increasing voltage and amplitude of the electrical

stimulation until maximal tWitch torque was obLained. Stimulation did not exceed 150 volts at I

Once a maximal twitch was established. sub-maximal tetanic torque was measured. Sub-

maximal tetanus was evoked with 100 volts at the amperage mat was used for maximal twitch. A

stimulating frequency of 100 Hz for 300 milliseconds was used. The shon duration was chosen

to reduce the extent of discomfon for the subjecL

TIle interpolated twitch technique lIlT) was then administered during an MVC first and

then 75. 50. and 259: voluntary contraction intensities that were performed in random order to an

unfatigued muscle. A doublet 12 twitches delivered at a frequency of 100 Hzl rather than a single

twitch was utilized for the iOlerpolated evoked stimulation since it provides a higher signal to

noise ratio. An interpolated twitch \m ratio would later be calculated comparing the amplitudes

of the superimposed stimulation with the post-eontraetion stimulation to estimate the extent of

inactivation during a voluntary contraction. Since the post-.:ontraetion stimulation represents full

muscle activation. the superimposed torque using the same intensity of stimulation would

activate those fibers len inactivated by the voluntary contraction. All ma.timal and submaximaJ

(1009:. 7S'k. 50'k. 25% of MYel forces were co~latedwith their respective IT ratios in order

(0 generate a second order polynomial equation for all sUbjet:ts. Set:ond order polynomials using
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bOlh maximal and :>ubmaximal contractions (IT ratio:» have b«n shown 10 be valid and reliable

providing a more accurace estimation of muscle activacion chan a single IT ratio (Behm and 51.

Pierre. 1997). Once chese unfatigued. normothermic (baseline) measures were laken the prolocol

branched. In che cold prococol the limb W:L'> cooled prior 10 faligue and funher lesting. In Ihe

normochennic prococol che cooling prolocol W:L'> omiued.

3.5 Cooling Protocol

To lower muscle lemper:llUre during the hypothermic ce:>ting session. active cooling

methods were used involving a refrigerating pump circulacing cold j·3eC) liquid glycol \anli·

freeze I chrough Tygon CUbing. The :>ubjec(s lower leg was wrapped with the cubing in a ..:oiling

fashion co cover the entire leg. The baseline cescing procedures were repeaced as soon a... possible

afler che subjecf s muscle cemperacure reached 22"C.

3.6 Fatigue Protocol

In both normochermic and hypolhennic prococols. fatigue of the plantar f1exon; was

induced within 5 minules after baseline voluntary and evoked contractile propenies were

measured for that condilion (i.e. normothermic baseline measures for Ihe normothennic lesting

session. and normothermic baseline measures and unfatigued hypothennic measures for the

hypothermic session). The fatigue protocol consisted of isometric contractions of the plantar

flexors at 75'1- of the SUbject's MVC. Subjects look 3 seconds 10 rise to this level. held 75'1- of

MVC for 1.4 seconds. and cook 3 seconds to relax. This inlennittenl protocol repealed for as long
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as the subject could maintain 75% of MVC. Verbal encouragement was provided throughout

though no music was played. The recovery process was passive.

3.7 Post Fatigue Protocol

Many of the dependenl variables could be assessed in the same lest pr~dure. For

example from a single Iwitch each of time to peak twitch. roue of twitch torque developmenl.

twitch torque. half-relaxalion time of twitch. M-wave amplitude. and M-W;l\·e duration could be

assessed. The testing prolocol of peak twitch. sub-maximallelanus. and ITT at .:!5. 50. 75 and

100% of MVC was repeated at I. 5. and 10 minutes post faligue.

3..8 Analyses

Data were initially convened to percent change from the previous measurement li.e. pre-

fatigue. pre-fatigue to one-minule posl-fatigue. one-minute posl.fatigue 10 five-minutes post­

faligue. and five-minutes to 10 minutes post-fatigue I. Percent changes were analyzed wilh a (Wo­

way ANaVA with repealed measures. The two factor.; 12x~1 were lemperarure {normothermic

and hypothermic levels) and testing {pre.fatigue. one-. fi\·e-. and la-minutes of recovery levels).

F r.uios were considered significant at p<O.OS. A Bonferroni - Dunn's post-hoc test was used to

assess significanl differences between variables. ResullS in the teXI include means +1· standard

deviation.

Assessed on each dependant variable was the main effeet of rute of recovery from fatigue

on a norrnothennic ml1S(;le. Ihe main effect of hypothennia on the unfatigued muscle. and then of

most importance to dtis study was Ihe internaion effect of hypolhermia on Ehe dependant
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variable's rate of recovery. Each dependent variable was analyzed in an A.I'IlOVA format tTable

51.

Table 5: ANOVA formal 10 Maine both !he main effects of mllg!e Jemps@Dm;and{he
jnleractjon of the muscle temperatures at djfferent points of recoverv

Pre~ ! one-minute I five·minutes i IO-minutes I
fatigue i of recovery j of recovery \ of recovery i

I I ' .
Noonothermic I I

Therefore the goals of this study were two-fold. The primary goal of this study was 10

investigate the interaction effects of 2:!~C local muscle temperature on the recovery of specific

evoked and voluntary conlraCtile properties in intact human plantar flexors al one-. five-. and 10-

minutes after high inlensity fatigue. The secondary goal of this study was to validate previous

studies and add to the body of knowledge about the main effec15 of recovery from fatigue with

homeostatic ternperarure and the main effects of local hypothermia on unfarigued muscle on

evoked and voluntary contractile properties in intact human plantar flexO!'!>.
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3.9 Drepmdeat Variables

A wide variety of specific dependent ....ariables that represent a F.ll\ge of pbysiolopcal

impliC3tions were investigated (Appendix Cl.

3.10 Hypothesis

I. The: roue of recovery of recovery ofvoll.lnl:l.ry activation will be slowed by local

mUSClllar hypolhennia.

_. The rate of recovery of voluntary lorql.le will be slowed by local muscular

hypothennia.

3. Thc: roue of recovery of twitch torque will be slowed by local muscular

hypolhennia.

~. 1bc rale of recovery of tetanic torque will be slowed by local muscular

hypothermia.

5. 1bc rate of recovery of the rate of voluntary lorque dcvelopmcnl will be slowed

by local muscular hypothermia.

6. 1bc rate of reco...ery of Ihc roue of twitch lorqUC dcyelopmcnl will be slowed by

local muscular hypothcrmia.

7. The r.l.te of reco\'ery of the roue of teW1ic torque dcvelopmenl will be slowed by

local muscular hypothermia.

8. The r.l.te of recovery oflwilch half-relaxation time will be slowed by local

muscular bypothcnnia.



9. The rate of recovery of tetanic half-relaxation time will be: slowed by local

muscular hypothennia

10. The rale of recovery of the duration of the compound muscle action potential will

be slowed by local muscular hypQ[hennia.

II. The rate of recovery or amplirude of the compound muscle action potential will

be slowed by local muscular hypothennia.

12. The r:ue or recovery or time 10 peak torque of twitch conlr.lction will be: slowed

by local muscular hypothermia.

13. The r:ue of recovery of time to peak torque of tetanus contraction will be: slowed

by local muscular hypothermia.

l~. The rate of recovery of lime to peak torque of volunury conEnlction will be

slowed by local muscular hypothennia.



RESULTS

4.1 Muscle Temperature

In the normothermic muscle. mean temper.uure was J.J..6 +/- O.7°C. The muscle was cooled

to 21.3 +/- O.5°c. Tempera~ steadily but insignificaJltly increased during recovery. reaching !.2..::!

+1- 1..::!°C. .::!.3.8°C +/- 1.3°C. and 242 +1- 1.6°C after ooe-. five-. and 10- minutes of recovery

respc:ctively.

4.2 Hypothermia

With all hypothermic data pooled over recovery dala. the 12"C mllScle lemperatures did

not significantly alter voluntary properties such as MVC. muscle activation as measured by the

ITT and iEMG activity of the GAST. SOL TA. or any agonislto antagonisl ratio~. Although

there was a significant decrease in lctanic torque lfigure 3-11. there was no significant change in

other evoked contractile properties (i.e. twitch torque. M-wave amplitude or duration I except

those related to time that were slowed (i.e. MVC Tale of lorque development. TPT. rate of twitch

torque developmenL \-J RT.... time to peak tetanus. rate: of letanic torque devdopmenL and ~'Z

RTd \ Figures 3-2 to 3-8 respecl.ively). Endurance time: did not demonstrate a significant change

'o\ith cooling. Significant changes were predominantly associated with temporal contractile

propeme:s.

The only significant alteration to force with muscle cooling was a decrease in tetanic

torque of 29.1'k tp<O.OI. F= 40.341 (Fig. 3-1 I. There was no significant change in endurance
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time 3.vcr.aging 161 +/- 61.1 seconds when nonnotbcnnic versus 153 +/- 61.7 seconds when

hypolhcmtic.

~ ., ., T(mparn! Characteristics

Hypothermic MVC fiue of torque development tFig. 3-1) w::as 25.1 c;r IO""'cr than

nonTlOlhemtic ~c me oftorque development tp<O.05. F: 6.101. Time-to-peak twitch tFig. 3­

31 increased 30.3% (p<O.05. F: 6.501. This is furthcr dcmonstraled in die present study with the

!Otowing of the roue ofr ;itch torque development 1p---o.OI. F: 7.9~IIFig 3-l1 by 33A'k. Also

slowed was thc '.., RT lp<O.OI. F- 31.66HFig. }·5) by 3-l..I'k. The time to pe:ak tetanus (Fig. 3-

61 showed a significant incre3SC of6.7'k (p<O.05. F= 5.561.....·hile roue oftctanic torque

de\·elopmcntIFig. 3-7) decreased by 33.~'k (p<O.OI. F= 11.97). The other tempornl

characteristic :altered by cold .....::as the: ..., RT.. (Fig. 3-81. slo.....ing. 38.1 'k tp<O.OI. F: 18.031.

Assessing for the main effect of fiUigue. varying recovery limo did I\()( :a.llereither ~­

W3ve duration Of 3rtlplirude_ Of the time to peak rwitetl_ Fatigue caused significant changes. at

e:l':h recovery intet'VaI after fatigue {i.e. one-. five-. and la-minuteS I. in torque generation.

muscle activarion. and lemponJ characteristics. MVC. MVC roue of force devetopment IRFDl_

voluntary inactiv3tion. twitch torque. tetanic torquc_ and alilemporal characteristics of Ixlth

twitch and telarlus. except TPT.... we~ all significantly :altered by fatigue:. All iEMG !Oignals were

also significantly altered during recovery. exccpt the SOLTA rntlO.
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.U I Force Oumur

MVC lorque of the planlar flexors lFig. 3·9) significanlly declined 13.5% between pre·

fatigue and one- minute recovery (p: 0.01. F:: ~9.92). and continued to be significantly lower al

five· (p=0.01. F= 3SA3) and 10- minutes tp=-O.OI. F: 26.04) recovery. recovering 10 [[.3% and

9.7% respectively. There was a 22A% potentiation of twitch torque (Fig. 3-[0) between pre­

fatigue and one·minute: tp= 0.01. F= 56.81) post fatigue. which was still significantly higher

112.7%1 at five- minutes (p<O_OI. F= 1~.56). but had recovered by 10- minutes of recovery. A

decrease also existed between one-minute recovery and five- lp= 0.01. F:: 13.57) and 10·

minutes (P= 0.0 I. F= 35.35) of recovery compared 10 one minute.

There was an increase in the torque gener.lted by the recovering plantar flexors during

telanic stimulation lFig. 3-(1). Torque increase: from tetanus was not significanl until five­

minutes of recovery when there was an increase of 28.1% 1p<0.01. F:: 81.601 and by 10· minules

had reached an increase of 24.8% (p<0.01. F::S8.191. Five- and 10- minute of recovery tp=- 0.01.

F= 50.95 and 32.87 respectively) were also greater than one-minute of recovery.

~ 3."l Muscle Agjvar:jon

Volunury inactivation increased with recovery (Fig. 3-12). While there was an increasc: in

inactivation al one- minute: of recovery_ the increase was DOl significant. 1be only signifit:ant

increase of inactivation was by five- minutes of recovery. by which time inactivation had risen

signifit:antly Ip<O_05_ F= 8.99) from 1.2% to 5.7%.

An insignificant decrease of the antagonist.. T A EMG (Fig. 3-13) at one-minute recovery.

had a significant (p<O.OS. F=10.39j22% increase belWeen one· and 10- minutes recovery. While
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EMG of the TA experienced little change. GAST EMG (Fig 3-14) experienced significant

32.5% decreases between pre-fatigue and one- minute (p<O.OI. f':: 27.581. !5.9% by five­

minutes (p<O.OI. f':: 11.59), and 16.9% by 10- minutes (p<O.05. F= 1.50). Changes of SOL

EMG (Fig. 3-15) experienced an initial significant decline of 18.6% belween pre-fatigue and

one· minute (P<0.01. F=13.52.) and then began 10 increase. The increases after one- minute

increased significantly by 18.8% from one- to five- minutes (p<O.OI, f':: 13.62) and 2.4.1~ from

one- to 10- minutes Ip<O.OI, f':: 2.5.89). though the five- and 10- minute imervalsdid not vary

significantly from pre- faligue values.

The EMG ratiooflhe GAST and TA had a significant 19.8% decline by one· minule of

recovery (Fig 3-16) Ip<O.OI. F:: 12.35). This EMG ratio continued 10 decline. reaching 10.9% by

five- minutes (p<0.01. F= 13.68) and 22.1 % by 10- minules q><O.OI. F= 15.221 of recovery.

~ 3 3 Temooral Characteristics

Rate of volunlary torque development IFig. 3-17) declined 29.3% between pre-fatigue

and one-minule of recovery (p<O.05. F= 9.60). Rate of twitch torque development (Fig. 3·181

was increased at one- minute 1p<0.01. F:: 58.59). five- minutes (p<0.01. F= 10.941. and 10-

minules (p<O.OS. F= 10.31)ofrecovery by 36%. 25.2"k. and 18.9% respectively. One- minute of

recovery was significanlly higher than five- and lo-minutes (p<0.05. F= 9.28: p<O.OI. F= 19.58

respectively) after faligue. Significan[ a1ter::ltions also occurred with several temporal

characteristics of letanus. The time to peak tetanus (Fig. 3-(9) had a slight but significanI6.1%

decrease by both one- and five- minutes (p<O.OI. f':: 15.84: p<O.OI. F= 15.74 respectively) and

5.4% by 10- minules ofre<:overy (p<O.OI. F= 12.26). The rate of the telani<: torque development
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lFig. 3-20) significantly increased with recovery. increasing [4<;t at one- minute 1p<0.01. F=

10.18 I and by five· minutes had increased 31.5% (p<O.O [. F= 80.6-1) and was still 28'k faster by

[0- minutes 1p<0.01. F= 57.241. Five· and 10- minutes of recovery 1p<0.01. F= 33.52: p<0.01.

F= 19.15 respectively) were also significantly greater than one· minute ofrecovery.

ll:z RT"" (Figure 3-21l became faster as recovery continued thought did not reach

significance until 10- minutes of recovery. at which time it was !5.5'k fa:ilerlp<O.OI. [3,821,

The only significant 1p<:0.05. F= 8. [9) change of'h RT.. lFig. 3-21} was in comparing one- and

10- minutes of recovery that declined 2IL6'k.

...... Effects of Cold on Recov~

Cooling of the plantar flexor.; made no significant difference in the rate of recove!1' of

:-.fVC. mte of torque development. voluntary inactivation. E\1G_ or twitch or tetanic torque:.

Differences were found with 'h RT..... time to peak tetanus. and M-wave duration bet\O.'een the

nonnolhermic and hypothcnnic conditions.

4.4.1 Temporal Ch.ar:!cledstig

The recovery of the 'h RT.... lFig. 3·23) was 32.5'k longer by 10- minutes of recovery

Ip<: 0.05. F= [2.78} and time to peak tetanus lFig. 3-241 was 1:!.3'k longer Ip=O.OI. F= 35..191 at

one· minute of recovery. The orner difference found was in the first minUle of recovery of the M.

wave duration IFig. 3-25) that was significantly :!2.9'k longer tp<O.05. F= [ I.O[ l.
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DISCUSSION

5.1 General Comments

Thc main CffCClS of each variablc in thc current study wcre not uncxpected. Thc main

tJfcets of thc ratc of rccovery from thc high intcnsiry fatigue protocol wcre generally in

agreemcnt with CUITcnt!itcrature IC.g. Bchm and Sf. Pierre. 1997: PelTOfsky Ct31.• 1980). For

cxample. voluntary force was decreased while cvokcd forcc wa.~ potentiated. Also. cach indicatOr

of voluntary activation dccreased whilc ratc proces.scs wcre gcnerally fastcr. The main effects of

local hypomcnnia on musclc function wcre also consistent wim thc litcrature le.g. Bcnnct!. 1984:

BennctL 1985). For cxamplc. tcmporal charactcristics of bam cvokcd and voluntary contractile

propcnies were impaircd mough force was generally not.

An effCi;t of interaction occur.; when a relation betw~n at Icast two variablcs Ii.e. r..ltc of

recovery from fatigue from Q.. to one· minute of recovery. from one· to five- minutes of recovery

and from five- to 10- minutes of recovery) is modified by at least onc other variable \muscle

temperature l. Duc 10 slowed rate processes it was expected mat recovery from fatigue would be

impaircddue to hypomennia. This was not the case howevcr. The primary goal oflhis study was

10 investigate hypothennic recovery of evoked and contractile properties of PF muscles. The

recovery rate of most properties investigated. including both evoked and voluntary. were not

impaircd by the cold.
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5.2 Hypotbermic meets on Recovery

5." I RecQvery Qf Manv VQluntary and EVQked Contrnetile Properties An; Not Affecled Bv CQld

COnUUC)i tQ prior expectatiQns. cold had minimal effects on the recovery of moSI

VQluntary and eVQKed contr:1Ctile properties. This was unexpected since most other rote p~ss

are impaired by cooling. One possible explanatiQn is rel:ued [0 blood flow following exercise.

Blood flow serves to flush accumulated metabolites OUt of the muscle and into the vascular and

lymphatic systems to be absorbed. filtered. or metabolized by other tissues and organs. thus

assisting recQvery Qf the muscle IViires et 011 .• 1983). It is IrnQwn that there is an increase in

blood flow immediately after occlusion. Irnown as reactive hyperaemia (Pitcher and Miles.

1997), OCclusion would originale from both the intense muscle contr.lCtion and the hypothermia.

induced vasoconstriction. Also occurring is functiQnal hyperemia that also results in increased

blood flow to exercised muscles immediately after exercise. especially those of higher intensity

tWalloe and Wesche. 1988l and may be prescnt beyond:!O minutes after intense exercise. Many

metabolites. such as tr and lactate. arc known to mediate functional hyperaemia wllile vascular

occlusion stimulates reactive hyperaemia [Pilcher and Miles. 1997t Nitric oxide. a dose

dependent vasodilator increasing 50 - :!OO% during periods of repetitive isometric contraction

[Balon and Nadler. 1994l. is also known to stimulale functional hyperaemia (Poucher. 1995).

Increased blood flow eQuid result if metabolites ;l(;l;Umulaled at a faster role due to both

conuaetion·induced and hypothennic vasoconstriction·induced occlusion. This increased blood

flow. removing metabolites faster. may enhance recovery [Badieret aL 1994) enough to offset

the impairing effects of cold. Pitcher and Miles (1991) demonsuated that recovery from fatigue

was much faster in a muscle that was fatigued while receiving no circulation than in a muscle
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that was fatigued while receiving intermittent circulation. Therefore. little change in the r::lte of

recovery may have been seen between normothermic and hypothermic recovery since adequate

blood flow was maintained throughout the recovery period. It should be noted however thai

blood flow during hypothennic exercise was neither directly or indirectly measured in this study

and may be a direction for future research.

5."." Recoverv of Coott:!Crile Pmpen;es Affected by Cold

5.1.1./ Timt' w fI.·irch Ha/f-R~/a.wri{)fI Time

"l RT.... lFig. 3-23) did not increase until 100minuies of hypothermic recovery Ip<O.OSl.

Since nOfTIlothennic fatigue also caused a decrease of the lh RTo.; (Fig. 3-211 only al 10- minutes

il seems likely that the mechanisms underlying this response were similar. M previously

discussed. it is possible that the reactive and funclional hyperemia triggered an influx of blood to

the muscle capillaries. The increase of fluids would contribute to increased muscle sliffness

IEbersole ~I aL 1999) by increasing intracellular fluid pressure. Increasing stiffness would lead

10 reduced. Ih RT..... An increase in the intr.l·cellular fluid pressure would result in a greater

osmotic pressure. forcing plasma fluid from the blood into inuaeellular and exuaeellular spaces.

A delayed of this increase in the intr.l-cellular fluid pressure 1>5- minutes) might be expected

since time would be needed to build up intr.lcapillary osmotic pressure and subsequent diffusion

of fluid 10 the sarcoplasm of the muscle fibers.
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5.1.2.1 nm~ 10 P~ak T~tanu.s

TPT. was longer {I><O.OI) (Fig. 3-24) at one- minute of hypothermic recovery.

Westerblad e{ aI. (1997) demonsrrmed that while shonening velocity of tetanized muscle was nO(

allered at 300C with a decline of 0.5 pH units. il declined 20"i- al 12"C thus demonstrating the

temper.lIUfe dependence of pH on rale of corque generation. A similar effecl has been observed

with inorganic phosphates cPi) at lower {emper.uures (DanlZig ec aI .• 1992). Dantzig et al. (1992)

explained this decline in rate oflorque generation by a heighlened effect of Pi while Weslerblad

et al. ( 19971 explained a similar effect of tr in lower lemperatures. While a similar phenomenon

occurred in the currene experiment. it is noc clear why TP'T. was che only locque or contrJclion

velocity char.lCleristic affected by chis relationship.

5.2.2.3 M-Wa\'l' Duration

tn the present scudy. M·wave was prolonged only at one- minute of hypothennic recovery

Ip<O.051. This is likely related 10 impairment used 10 power the sarcolemmal cation pumps.

While Gree:n C 1998) explained that Na-·K" ATPase activity slowed in relation (0 fatigue. il has

also been shown that the rale of ATP hydrolysis is impaired with cold (Bergh and Ekblom. 19791.

This could lead co a slOWing of the compound muscle action potential as demonstrated in the M.
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The decline of tetanic U)fque of skeletal muscle with hypothermia is strongly supported in

current liler.uute 3tKI ~fore was e,;pected though the euenl of the decline was unusual. Most

lite~ reported that tetanic force drops only 1()..:!O'ii: in cooling of muscle 10 .!SoC {Buller et

aI .. 1984: Close and Holt. 1968: Ranarunga.. 1980: Ranatungn and Wylie. 19891 though the

present study found a decline of 29.1 % of tetanic force at :!~ec IFig. 3-11.

It is speculated that this decline is related to a lower- r-olte of cross bridge cycling (Kossler

and Kuchler. 1987. KUlchler and Plltzak.. 19891. A l;hange in the force-velocity relationship at Ihe

level of the muscle l;ould be due to a slowing of cross bridge 9dinj; {de Hann et aI .. 19891

leading 10 slower gener.uion of force over a specifk stimulation period. The decline of letanic

lorqUC of the PF muscles in this study is likely the resull of a decline in rate of force

developmenL Sioce. in no subject did teUU1ic Iorque reac:h a plateau ILe. maximum forcel over

the 300 maslimulation period. !he slope oflbe fon:e--time interval was still increa...in,g.. A lower­

r:lte of cross-brtdge cycling would adven;ely affect rate of force development resulting in an even

lowC'f position on the fon:e·rime inlegnl slope. This decrease of cross-bridge l;yeling is

evKk:noed by the decrease in the rate of teWlk Iorquc development and increase of !he time 10

peak tetanus. Therefore. the decrements in tetanic torquc with hypolhermia in lhis e,;perimcnt

may be relaled more to a ~ilSC in rate of force de"'elopmenl than the abiliry to develop

maximal tetanil; torque.



5: ] ., TemP9@1 Characlerisrics

Many of the lernp::n! characteristics in 2:!°C PF muscles including deae:ases in the r:lle

of volunwy [orque de\'elopment (RVTD) tFig 3-21. r:ue of twitch torque development tRIDT.. 1

tFig. 3-41. roUe of letanic lorque dcvelopmem. IRIDTe I tFig. 3·7). ilfld increases in lime to pea

twitch CT'PT.. ) tFig. ].]) ilfld time 10 peak letanus tTPTd. Fig. 3-61 e:lCh can be explained by twO

factors. Changes may be a consequence of lempc:rature-dependcnt decrease of the maximal roue of

ATP hydrolysis (Bergh and Ekblom. 19791 due to impaired i1ClOmyosin ATPase activity (Faulkner

e( a1.. 1990) causing a decreased rolle of cross bridge cycling. Decreases of RFD could also be

due 10 impaired neuromuscular o-ansmission (Edwards et aL 19711 as seen in impaired

conduction velocily within hypc)(hennic muscles (Bigland-Ritchie et at. 1992. Fr.mssen and

Wieneke. 19941. Cold is known to impair both of these processes. Bergh ilfld Ekblom. 1979:

Frans.sen and Wieneke. 1994).

While RFD is directly affected by cros.s bridge anoldlmenL Ca·: release. ATP hydrolysis.

:and neural facton such as r:lle coding can also affect roUe of force development and can be:

measured with iEMG t Miller eI aL 19811. However neural factors did noc seem to be a factor in

the pre:se:nl study since !here was no alteration of iEMG aethity.

The other temporal ch:Ir.lctrristics affected werei~ of If.z RT... and If.z RT....

lmpalrrnent of relaxation properties may be explained by a hypolhennia-induced ~aseof

calcium re-uptake (Kossler and Kutehler. 1981). possibly from decreased ATP hydrolysis leading

(0 an impairment of the mechanisms responsible for the re-upUlke of Ca': from the sarcoplasm

into the SR Ii.e. SR Ca·: ATPase I.
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Anolherpossibitity for-increased Yz RT... andY:! RT... .:ould be:an incre:lSCof\·i~ilY.

As hypothesized by Labe el 31. (1986\. Price and Lehmann t 1990) dcmonstr.Ued that viscous

stiffness increases as iJ, dirttt relation 10 cold in the fore:arm:and anJOe: respecti\'e1y. Furthermore.

Edwards et 31. (1912) dc:monslTaIed that bonding of actin :and myosin becomes !Je:uer;u. low

temperarures thereby causing muscle stiffness. By il'lCTeasing \;scosity:and par.Ulel elaslic

components Yz RT... :and Yz RT.. could itlCl"e:lSe.

5.4 OveraU fatigue Effects

~

MVC remained significanlly lower Ihroughoul the 10- minules of recovery (rom fatigue

lp<O.OII. VoluntarY for« may be affected either positively or negatively by either or both

ccnU':11 and periphler.ll f3C1Ol'S. Myosin ATPase activity has been dc:monsu:ued 10 m:loce wilh lhe

accumulation of metaboliles In addition lO ra:lucing the enerJY released from ATP hydrolysis

tCook. and P:ue. 19901. Pmpherally. the accumulation of hydroFn ioruo. inocpnic phosphaJes

tPit and laa:ue C3JI 311 impair force generation by slowing cross bridge cycling ICook and P:ue.

1990: de Hann et 31 .. 1989: Wesr.erblad el 31.. 1998). Slower cross-bridge cycling m:ty be a result

of reduced ATP hydrolysis (de Hann et 31.. 1989):and reducing force per anacbed cross bridge.

though the major determinant seems 10 be Pi since acidification 3Ione caused only minor

impairment of force generation l Westerblild el 31.. 19981.

Also found in this study WlIS polentiation of the twilch torque at one- and five-minutes of

recovery from fatigue (p<O.OII (Fig. 3-10). ShorNerm fatigue may 3Iso cause a pol:entiaLion of

evoked force. Calcium will 3C1 as a second messenger- lO activale myosin light chain kinase



(MLCK). a protein kinase. MLCK will cause phosphorylation ofphosphorylatable light chain

(P-LC) on the myosin molecule. Phosphorylated myosin light chain (pLC) regulates (orce:

generation by increasing actomyosin ATPase activity IGrange e:t al .. 19931. This can result in a

potentiation of (orce (ollowing short-term (atigue. Moore et al. t 19901 suggest that this

phosphorylation also makes contractile proteins more sensitive to available Ca·:. Zhu and :-.losek.

\ 19911 demonstr:l.ted that accumulating inorganic phosphates impair SR Ca·: .....TPa...;c causing

slow ea-: reuptake. With the slower removal of Ca·:. the PLCs remain phosphorylated longer

thereby maintaining tension (Grange et al.. 1993). becoming de:phosphorylated with a time

constant o( -5 minutes tMoore et aI .. 19901. There(ore. a given level o( stimulation will generate

a larger twitch due to the accumulation o(Ca-: in the cytoplasm that will eventually subside as

the Ca-; is sequestered back into the SR. While the potentiated twitch is directly Iink.ed to PLC

(Moore and StulL 19&4). the exact nanlre is still not well understood (Grange et aI .. 19931. The:

study o( Ca·: sequestering is difficult to isolate due to the variety o( compensatory mechanisms

to generate and maintain force.

Tetanic torque Wll!> pD(entiated in the PF at five· and lo-minutes recovery IFig. 3-(1). The

c:xplanation is likely related to an increase o(the rate o( tetanic tocque development. As

mentioned previously. the short 300 ms stimulation period resulted in a (orce output on the

ascending slope: o( the force-time integral. Increases in rate o( tetanic torque development would

allow greater (orces to be achieved in the set period of stimulation. This effect was not seen at

one-minute of recovery from fatigue Ip<O.OI) IFig. 3-111 pos5ibly due to a decrease of force per

attached cross bridge that CICClJn with fatigue (de Hann et aI .. 19891 thaI ocrors for the same

reason that decreases occur in voluntary contractions.
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S ..." MUsek Aetivarion

t\tIothet' finding oflhis study w3S the increase ofvolunl3J)' inactivation (i.~. decrease in

voluntary 3Ctivation) lhroughoul ~overy from fatigue. lhough Ihis W3S only significanl at fivc-

minulcs of fttOvery tp<O.05l {Fig. 3-1,2). Also dccre3sed by fatigue was iE.MG of mc GAST

tp<O.Oll (Fig. 3-1..) and GAST:TA (p<O.OII (Fig 3-161 r.u:io Ihroughoul recovery. and dccrea.sed

iEMG of SOL at one-minutc of recovery tpd).OI) IFig. 3-151. While fatigue·induced decrements

in MVC force can be: attributed to metabolic dislUrb:lnccs in the periphery. there is also evidence

for decreases in muscle activation (i.e. decreased IlT and agonisl EMGl. It is unlikely that

supraspinal controls wcre depressed by the fatigue protocol. however peripheral proces~s may

renexively inhibit motoneuron excitability since inhibition may be: derived from III and IV

afferents IBadier el aI.. 1993). These inhibitOl'S are: found in the muscle propnoceptol'5 and

connective lissue and are: speculated to be: a form ofprolection against muscle and joinl damage

IKraemeret aI.. 1988). Group W and IV aff~nlSa.~ mel:lborttcptors thai are: sensitive 10.

:unon! other stimului. ischemia and pH t Kaufman et al.. 198-1 I and exen a powerful inhibition 10

deaease motocon:ical discharge. They are: activ:Ued v.1lc:n muscle pH falls and extr.K:'ellular

pot3SSium concentrations inause with the developmenl of fatigue. Ischemia also results from

any muscle contr.ICtion o~·er.5O'ii- tSjopan1. 1981). Thus. the inhibition ofmoloneuron

ucitabilily from the subsequent stimulation of group mand IV afferents may result in a decline

of firing lRquency to a muscle tBadieret aI .• 1993: Bigiand-RilChie et aI .• 19S6b,. Funhcr

evidence of afferem inhibition is provided by findings that show blocking the afferent pathways

results in no decline of firing frequency (Hagbartb and Maccfield. 1995),
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Since irlCT'eaSing muscle tension OCCW'S by recruiting additional motOf units (increasin,

reauitme:nl) ()( by i~asing firing frequency ofa1ready firing molOf unit (inae:LSing rille

coding) (Deluca.. 1985) deaused muscle acti ...:uion m.3y result by decreasing either Of both of

these. This study. and others also demonsuate that fatigue impairs xth·:ttion (Behm and St.

Pierre. I997: Petrofsky et aJ.. 1980). Fatigue aln impair volunury activation due [0 failure of

regencrillion of the action potential along the axon. iKTOSS the sarcolemma. and into the t-rubule

10 the [enninal cisternae (see review by Green. 1997). Also implica[ed in failing activation are

[he regulatory and contr:l.cti\e proteins. and impaired ATP generation {see review by Green.

19971.

5-13CO-COf\lractions

Lower levels of reciprocal inhibition could uptain the increase ofTA iE.\1G 301 I().. minutes

of recovery as compared [0 one-minute of recovery from fatigue Ip<O.05l (Fig. 3·13). II has bttn

demonsU1Ued that during f:tti.gue there is increased antagonist muscle activily (I.e. Io...·er levels of

rKiprocaJ inhibition) (MOfitani. 1993llik.ely to stabilize and prolett the joinllK.:u:z et 31•• 19911.

though in athletes it is nOl uncommon [0 observe an initial decre:u;e of anl:J.gonist activity tKatz

et al .• 1991). Similarly. with recovery from fatigue this e",petirnent demonstmed. an initial

~ase of T A iE.~G. though not significanl. followed by slowly increasing antagonist activity

I Fig. 3·13). The relatively small but silPlificant changes in both the EMG of the SOL and TA

explains the lack of significance being found in the SOL - TA ratio.
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, ~ ~ Tf(mpoG! Ch;u"acleristig

The present swdy found an increased roue of twitch (Fig. 3-18) and telallic torque

developmcm lFig. 3-20) in !he plantar flexors and a decTeased time to peak ldanUS lTPT,,1 tFig.

3-19). in addition. Y: RT... (Fig. )..21) declined for both twitch and telallic torque. While some

resc3rCh indicates that there is a decrease of conuaction velocilies with fatigue (MelZger and

Fitts. 1987; Orizio. 1999; Petrofsky et a1.. 19801. olhers indic:lIe an increase (Paasuke et 011..

1997). While rate of voluntary torque development decreased. the roue of twitch and tel<mic

torque development increased. As mentioned pceviously. central activ:ltion decreased. possibly

resulting in decreased firing frequency leading to :I lower rate of voluntary fon.:e development.

Central activation is not:l f:ICtor in evoked conU':1ctile properties since the source of stimul:ltion

is eltlem:ll lBehm and St. Pierre. 1997). Therefore a reduced r:Ile ofC:I-: reuptake would

mainta.in PLC phosphorylation allo.....ing: for fon::e to be generated man: quickly. An additional

possibility to expla.in!he increased rate of evoked torque is a post-OICtivalion inaease of t~

sensitivity of calcium:as initially described by Mettgel' and :lS:iOCioues t 19891. and funhcr

suppotted by studies from Gr.lngc and associates tGran!C et :I.i_. 1995: V3l1denboom et at .• 19951.

The 'h RT.. eXperienced a slight. insiptificant incre:ase:lt one- minute of recovery from

fatigue followed by a decrease by 10- mjnute5 (p<O.OSl (Fig. 3-22) compared to one- minute of

recovery. The Y: RT... 3lso only decreased:1I 10- minutes of recovery from fatigue (p<O.OI) (Fig.

3-21 ) compared to pre-f:ltigue values. It may be likely that the YJ RT... was decreased throughout

the recovery period. though the potenti:ltion of twitch torque :It one- lind five- minutes of

recovery ovenhadowed the more rapid Y: RT.... It was only when the twitch torque returned to

baseline values that the decre.:ase ofrel:uation time was demonstrated (Fig. 3-10 and 3-21).
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Behm and St. Pierre t 1997) also found a decrease ofl,".! RT... from high inlensi[y fatigue. As

pn:Vi0U5ly discussed. it is possible thai the reactive and funclion:1l hyperemia triggered 3fl influx

of blood to lhe muscle. The ina-ease of blood would conuibule to increased sliffness (Ebersole ec

:11.• 1999) by the elaslic components~by le:lding 10 reduced 'n RT.... While olher properties

showed mpid ch3flge to hyperemia due [0 clearing of metabo{ic byproduets. osmotic pressure

would require moce time 10 build 3fld~ iolO the muscle tissue.

5.sSummary

The goals of lhis study were two-fold. The primary goal of this study was to invesligate

the inter.u:tion effects of :!2uC local muscle lcrnper:lrure on the recovery of specific evoked and

volunUlrY con[t;1ctile propenies in intact hwn3fl pl3flW flexOfS:U one-. fi\'e-. and 100minutes

afler high inlensily" fatigue. This was accomplished but found linle interaction effect of cold on

the roue of recovery. Sin« most r3[e proce:sses are: impaired by cold in muscle il .....as

hypothesized that raJe or recovery would also be slowed. This W3S not the case for the most pan.

One possible explanation. though not measured. is a reflex vasodilation of the blood .supply 10

and from me PF muscles allowing fOl" unimpaired n:co\'ery thereby negating any inhibi[ion

effectS of cold. Tbe vasodilation can be caused by metabolic byproduets th3.1 OCCUT as a resull of

high inlensity conuactions (I.e. functional hyperemial, Occlwion will also occur due to cold:

occlusion thilt will in rum slimulale further reactive hyperemia. The vasodilation may continue to

allow for recovery despite the low lemper:lture,

The secondary goal of this study was to validale previous studies and add to the body of

Knowledge aboul the main effeClS of rttOvery from fatigue: with homeostatic temper:l1UrC and the
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main effects of local hypothermia on unfatigued muscle on evoked and voluntary contractile

properties in inlllCt human plantar flexors. The resullS found for both cold and fatigue .....ere

generally well supported by the current lilerarure.
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SUMMARY AND CONCLUSION

The primary goal of dtis srudy was to investigale the interaction effects of :!l°C local muscle

temper.u\lfe on the recovery of specific evoked and voluntary contractile properties in intact human

planur flexors at one-. five-. and lQ.-minutes after high intensity fatigue. The secondary goal of this

study was to validal:e previous srudies and add 10 the: body of knowledge <loom the main effects of

recovery from fatigue with homeostatic temperature and the main effects of local hypothermia on

unfatigued muscle on evolced and voluntary contractile properties in inlaCt human plantar flexors.

The effects of both local hypothermia and local muscle fatigue on voluntary and evoked contr.lClile

propertio::s have previously been well documented. In the present srudy. analyzing each variable

independently generally confirmed me results that have been previously demonsuated. The curn:nl

study has dcmonstr:lled that while the majorily of rate dependent processes in the PF muscle group

are impaiRd by local hypothermia. recovery from fatigue is generally not. While these results were

unexpected. reactive and functional hyperemia seems a logical explanation for mainlaining the rolle

of recovery between normothennic and hypothermic conditions. Srudying this theory more dire"tly

should be a direction for furuce research.

This srudy began with the following statements of hypodlesis:

I. The roue of recovery of recovery of voluntary activation will be slowed by 10C'.u

muscular hypothermia.

_. The rate of recovery of voluntary lorque will be slowed by local muscular

hypothermia.
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3. The rate of recovery of twitch torque will be slowed by local muscular

hypothermia

-I. The rate of recovery of tetanic torque will be slowed by local muscular

hypothermia

5. The rate of recovery of the rate of voluntary torque development will be slowed

by local muscular hypothermia.

6. The rate of recovery of the rate of twitch torque development will be slowed by

local muscular hypothermia.

7. The rate of recovery of the rate of tetanic torque development will be slowed by

local muscular hypolhermia.

8. The rate of recovery of twitch half-relaxation time will be slowed by local

muscular hypothermia.

9. The rate of recovery oftetartic half-relaxation time will be slowed by local

muscular hypothermia.

10. The rate of recovery of the duration of the compound muscle action potential will

be slowed by local muscular hypothermia.

11. The rate of recovery of amplitude of the compound muscle action potential will

be slowed by local muscular hypothermia.

11. The rate of recovery of time to peak torque of twitch contnlCtion will be slowed

by local muscular hypothermia.

13. The rale of recovery of time to peak torque of tetanus contraction will be slo~'ed

by local muscular hypothermia
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I~. The r.:ue ofrccovcry orume 10 peat lorque of volunt3t)' coolt'ilCtion will be

slowed by loc:al muscul3t hypothermia..

The rbUils oflhis study can conclude lhallhe null hypothesis of :all but hypothesis 8. 10. and 13

c:Il\llOl be rejected since: 10CllI hypothermia had no staristically signiflClfll effect on ~y other

dependent variable.

There 3te sever.l! vouiables that can be:altered or manipulated in order to study from anorher

perspecti\'e the question of how hypothennia affects ~very from rmiguc. This study investigated

hiah intensity. isomeuic exercise 4nd recovery from the subsequent fatigue in pl4nlar flexors al

22°C. There are sevcr.l! future directions that this rese.an=h could take. Thc theory put focward hcre

!hm reactive and functional h~miakept ~vcrya[ a normothennic rouc could be investiga[c by

measuring blood flow. The duration or \he fatigue prolOCQl has been dcmonsmued to have different

mechanisms offatiguc:~ has the type ofconaxtion used so that lbOinglower intensity dynamic

contr.lCtions would be a logical progrusion to the~t study. Evoked and voluntarY contr::Ktilc

properties have also been shown to display different rbUlts al varying Ievcls of cold or beat so

cxperimenting with altem:llive temper.mues would be another possible resc:udt topic. It may:also

be interesting 10 study core hypothenni300 local muscle fatigue and aerobic recovery.
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Appendix A

THE EFFECTS OF LOCAL HYPOTHERMIA ON
PLANTAR FLEXOR

VOLUNTARY AND EVOKED CONTRACTll..E
PROPERTIES

Volunteers Needed for Pbysiology Research
(18-30 years old)

Research is being conducted to investigate the effects of
cold water on the voluntarily and evoked activation of

muscles.

This study will involve two IY2 hour test sessions in
which subject's leg will be partially wrapped in cold

tubing during which muscles will be electrically
stimulated. Invasive temperature monitoring will be

conducted during testing.

For more information in test procedures. please contact
Dr. David Behm

School of Physical Education. Recreation. and Athletics
Office: PE 2006
Phone: 737-3408
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Appendix B

SCH<X>L OF PHYSICAL. EDUCATION. RECREATION AND ATIU..ETlCS
MEMORIAL UNIVERSITY OF NEWFOUNDLA.~

COIISftII To Pu1ic:ipate In Bio-medic=aI Research

THE EFFECTS or LOCAL HYPOTHERMIA ON PLANTAR AND DORSlFLEXORS
VOLUNTARY A."'ID EVOKED CONTRACTILE PROPERTIES

INVESTIGATORS: Eric Drinkwater. BPE: David Behm. PhD: Matthew White. PhD: ~eil

Rodgcn. MD

You have been asked 10 panicipl1te in a research study. Participation in this sludy is enlirely
voluntary. You may decide nOI to participate or may wimdnJw from Ihe study at any lime
w;moul penalty.

Informalion oblained from you (X" aboUl you during mis srudy. which could identify you. will be
kepi confidential by me investiplOfS. The investigator will be available during me ,;rudy at all
limes should you have any problems or questions about me sludy.

1. Purpo.R of study

This srudy will demonsu':ue the effeclS of localized cooling on me recovery from fatigue: of muscles
and ner'Ve3; of !he lower leg. While a gre:u de:l.l of~ exists repding muscle activation and
recovery Wlder normal temperanares. resean:h is limiled in !he are:l repding how cooling dunlO
recovery. lhis will be important to many people invoh·ed in outdoor labor and rcaeWor...

2. DEscriptioo of pnx:edurn aad talS

The subject·s skin of the lower dominanlleg will be shaved and cleaned. A physician will numb
a small section oflhe leg and an intramuscular- lhermometer will be insened 20 millimelers inlo
the caJfmuscle. A total of nine surface moniloringelectrodes will be placed on lhe subject·s
skin. Two stimulating eleetrodes will also be placed above and below me calf muscle on me skin
surface.

In me finl experimental day all procedures will be conducted in a warm room wim the SUbject
clothed in shorts and a t-shin. During me sel:OIId experimental se~ion in which the limb cooling
procedUTe is. the subject's leg will be WT1lpped. in rubing circulating ·)"C anti-freeze and then
Vr'nJppcd in insulation.
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Once all appararus are in place. the subject will be secured into a modified boot appararus.
During initial testing. subjects will be asked to maintain varying intensities of muscle
controetions by pressing the toes down (plantar flexion). much like pressing the gas pedal of a
C"M. Stimulation of these muscles will occur during resting and contr:1Cting conditions.

After this initial testing. plantar flexion fatigue testing will proceed. Subjects will be given 3
seconds to contr:lct the calf muscle to 75% of their maximum. hold that contnlction for 14
seconds. and then slowly release it over the final 3 seconds. This will proceed for as long as the
subject can continue to do so. The initial testing will then be repeated immediately after fatigue.
five minutes after fatigue. and ten minutes after fatigue.

3. Duraoon of partidpaot's Involvement

Subjects will be needed on tWO separate days with two to three days between each session. Exh
session will last approximately one and one·half hours.

4. Possib&e risks, discomforts. or inc:oDvenienc::es

Subjects will experience mcxlerate discomfort and have a low risk of light bleeding with the
injection of the anesthetic and insertion of the thermometer into the muscle. There is an unlikely
possibility of an allergic reaction (0 the lidocaine anaesthetic.

Cold will be experienced with the cooling of the leg for a shon period of time until the leg­
acclimatizes to the cold.

Twitch stimulation will in'''olve 100 to 150 volts for 50 micro--seconds. Tetanic stimulation will
involve 100 volts at a high frequency for 113 of a second. Both procedures feel like a shon
muscle l;Taffip and are not dangerous.

Subjeeu will be asked to perform lower leg exercise to fatigue that may cause some discomfort.
Mild muscle soreness may occur one to three days after the fatiguing protocol.

Cable will be sealed onto the subject with adhesive tape. Subjects must shave the lower ponion
of the leg being tested. Removal of the tape will cause some discomfort.

S. Liability statement

YoW" signature indicates your consent and that you have understood die information regarding
the research srudy. In no way does this waive your legal rights nor release the investigator.> or
Memorial University from their legal and professional responsibilities
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Signature Page

THE EFFECTS OF LOCAL HYPOTHERMIA ON PLANTAR FLEXOR
VOLUNTARY AND EVOKED CONTRAcnU PROPERTIES

INVESTIGATORS: David Behm. PhD: Matthew While. PhD: Eric Drinkwater: Arash Fard.
MD

To be signed by parTicipant:

L the undersigned. agree 10 my panicipation in the research sludy described above.

Any queslions have been answered and I understand whal is involved in the study. I realize thaI
panicipalion is voluntary and that there is no guaranlee that I will benefil from my involvement.

I acknowledge that a copy of this form has been given 10 me.

Signature of Particip.uu Date

Signature of Witness Date

To be signed by investigator:

To Ihe best of my ability I have fully explained the nature of this research study. I have in"iled
questions and provided answers. I believe that the participant fully understands the implicarions
and voluntary nature of the study.

Sigoarurc of Investigator Date
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IDependent
I Variable
i
I MVClorque

i I
i I

Hypothesis
Quem..
lnvesti led

Appendix C
Tableof[)e nl Variables
Pbysiolopcal Sigailkana

Force die sUbject can volunUJily generate: it is die functional
oucput of the combination of centtal activation and peripheral
c::tp::tclty.

I The inlerp:llaled twitch technique evoked contr.lclions
! interpolated onco volunc.ary contr.lctions of 25. 50. 75. .;llld
1I~ of MVC to develop::t:second order polynomial for lhe
: estimation of muscle activation tBe:hm et al. 1996).

IRate of 13
I VolunlarV
i torque .

devel ent I

i Ri1te 21. which the subject C3n volunUJily gener.1Ce force: it is

Ireli1ted to firin! frequency ::tnd the rate of the events of
excitation-contraetion coupling.

I

I Measuring electrical activity of a primary antagonist during a
, voluntary conlr.lction as an indication of the cxtenl of co-
i contraetions to determinc possible changes in inlermusculaT
; co-<lC'dinarioo.

. As. Gl1SlftXOCmiUS: Tibialis Anlerior

I
I

I Using evoked conlrXtions inlerpolated onto voluntary
I conlr3CtiotlS of 25.50.75. and Ij)()% of MVC
I
1Measuring electrical activily of a primary agonisl during a
j voluntary contraCtion:lS a funher measure of muscle

Iact,ivation.. It was collected to l. calculate agonisl co antagonist
mllos. and 1. validatc the results of Ihe m.

i As gastrocnemius EMG

I FaLigue: of an agoninor synergist muscle group will often
, gcncr:ue activity of the antagonist. Reducing this ratioIindiCateS fatigue. This activation med\anism becomes less

dominanl in weighl-lr.I.ined indi-.iduals.
I Solcus:

Tibialis
Anterior E.'-tG

Muscle I

I~vationlbY I

I Tibialis I
~ AnteriorE..\1G

I

IGastrocnemius:
I TibialisIAnteriorE.MG

Twitch torque

Time to peak
twilch torque

I Evoked contraction to measure die tota! forcc genc:r.1Ced by a

Isingle maximal elecuical stimulus as an indication of possible
chan es in eXCltation-contraCtion cou Iinv:.

I
Evoked contraction to measure die l"ll.le of fora: development
with excitation-conlr3Ction coupling. II is an assessment of the

I
~ation of the action potential. and sarcoplasmic reticulum
ea·· release and bindin _
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:e;ftwitCh 13
develoomcnt I
Twitch ~ I"
relaJl3tiontime

Ampiitudeof
compound
musclex:tion
potential IM­
wave I
Duration of M- 5

Tetanic torque

Time to peak
tetanic locque

Rate of tetanic
torque
dcvelooment

Tetanic~ I"
rela.ution lime

Since a muscle may develop less force but in the same amount
of rime. the r:u.e at which Ihat force is developed is also
relevanL
Time to release tension from the evoked conttaetion to
me3SW'C the roue of :activity of Ihe S3rCOplasmic reticulum Ca.:'
re-u we and release ofmvosin C1'OU-bridves.
Evoked propertY me:lSw-ed from the twitch. It is a measure of
the muscle electrical propeny measuring the voluge
differential of the muscle's action potential during an evoked
twilch. II is derived from Ihe Na' and K"" nux that generates the
action potential alonl!: the sarcolemma. I
Muscle e1ecoie:t.l property measuring Ihe duration of the
change in voltage differential of the muscle·s action po'lential 1
during an evoked twitch. It is derived from the rate of Na' and II

Ie" nux that generates the aclion potential along the
sarcolemma.

I Evoked stimulation al a high liring frequency used as an
I indication of changes in the r.lIe of cross--bridge cycling.
I Again. if voluntary RFO declines. the causes are central; if
I tetanic RFD declines. the cause is oerioheral.

Since a muscle may develop less force but in the same amount
of time. the rate at which that force is developed is also
relevanL

ITime 10 release tension from Ihe evoked cOlltraction 10

Imeasure the me of:activily oflhc S3rCOplasmic reticulum Ca:­
re-upwe and releze of myosin cross-brid2CS.IVolunLar'y kxal muscular endurance
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AGURES LEGEND

1~ I: Graphs schematically represent me effectS of fiber type on hypothermic twitch and teranic

tension

Figure 3-1: Bars represent me lorque generaled by Ihe dominant pJanur flexors wim tcranic

stimulation comparing normothermic to hypothermic condilions. Asterisk..'i indicate Ihat the

torque generated was significantly differenl to the p<O.05 level.

Figure 3-1: Bars represent !he rate of MVC lorquc developmenl in the dominant plantar flexors

under normothermic and hypothermic conditions. ~terisb indicate Ihat the torque generated

was significantly different to the p<O.05 level.

Figure 3-3: Bars represent the time to maximal twilch lorque of the dominant plantar flexors

tOrque under normorhermic and hypothermic conditions. Aslerisb indicate that the torque

generated was significantly different to the p<O.05 le\'el.

Figure 3-4: Bars represent the ra.te of twitch torque developmem of dominant plantar f1e1!>OfS

twitch under normothermic and hypothermic conditions. Asterisks indicate that the torque

generated was significantly differem to the p<O.05 level.
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Figure 3-S: Ban represent the balf relaxation time of lhe twitch 'l.;th the dontinant planur

flexors under normothermic and hypcxhennic conditions. Asterisks indic:ue that the torque

!enerated was significantly different to the p<O.OS level.

Fi!Ure 3-6: Bars represent the: time to peak tetanus of the dominant plantar nexors under

nonnothennic and hypothermic conditions. Mterisks indicate that the torque gener:ued was

significantly different to the pocO.OS leveL

Figure 3·7: Ban represent the rate of tetanic torque dcvelopment of the dominant plantar tlexors

under normothermic and hypothennic conditions, Asterisks indic::ue that the r:tte of torque

development was signific:llllly different to the p<O.OS level.

Figure H: Ban represent the IuIf relaxation time of the tetanUS in the: dominant planl:lT ikxors

under normothermic and hypodlermic conditions. Asterisks indicate that the r:u:e of tOl'1l~

development w:lS siplifiC<llldy diff~nt to the p<O.OS level.

Figure 3-9: Bars represent the MVC torque generaled by the dominant planw flexors at.3. p\'cn

recovcry intervaJ. Asterisks indicate that torque gener.u:ed was significantly different from pre_

fatiJUe vaJues to !he p<O.OS level.
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Fi~ 3-10: Bars represenl the peak rwilCb lorque of Ihc: dominanl plantar flexors 31;), given

~very interval. Asterisks indic::Jle: thaI me torque was signifiC3rltly differenl from pre-fulirue

values fO !he p<O.05 level,

Figure 3-11: Bars represenl the peak lelanic torque of me dominant planw nexors at ;). g1\'en

~very interv3l. Asterisks indicate thai the torque generated was sianificantly different from

pre-fatigue values 10 the p<O.OS levcl.

Fia:ure )-I:!: Bars represent rile perccDl of inactivc fibers as eslimated by the: intcrpolalcd twilch

tcchnique tITT) during an MVC in thc dominant planur flexors at a pven recovery inlerval.

Aslcrisks indic3lc thai the time was significantly different to the p<O.OS level.

Figure }-13: Bars represeOl the integrated. rectified E.\ofG activity during a maximal voluDlilry

contraction from the dominant TA al a given recovery intef\'31. Addition signs indicatc that the

time was significantly differenl from I-minute recovery \'a1ues to the p<a.OS le'·e1.

Figure 3-1..J: Bars represent the integr.u.ed. rectified EMG activity during a nuAimal voluntary

contraction from the dominant gastTOCnCmius (GASTI at a given recovery interval. Aslerisks

indicate mal the time was significantly different [0 the p<O.05 level.

Figure 3-15: Ban represent the inlegrated. rectified EMG activity during a MVC from the

dominant solcus (SOL) at a liven ~very interval. Aslerisks indicale that the time was



significantly different from pre-fatigue values to the p<O.OS [evel. Addition signs indicate that

the time significantly different from I-minute recovery values to die p<O.OS level.

Figure 3- [6: Bars represent die ratio of integrated. rectified EMG activity of the dominant

gastrocnemius (GASn and tibialis anterioc (TA) during a maximal voluntary contraction at a

given recovery interval. Asterisks indicate diat die time was significantly different to the pc::O.OS

level.

Figure 3-17: Bars represent the rate of MVC torque development in the dominant plantar flexors

at a given recovery interval widi data collapsed over normothermic and hypothermic dua.

Asterisk.!> indicate diat the rate of torque development was significantly different from pre-fatigue

values to the p<O.OS level.

Figure 3- [8: BilD represent the rate of twitch torque development in die dominant plantar t1exors

at a given recovery interval. Asterisks indicate that die rate was significantly different from pre­

fatigue values to at [east the p<O.OS level. Addition signs indicate diat die rate was signiticant[y

different from I-minute recovery values to at least the p<O.OS level.

Figure 3-19: BilD represent the time to m:uimal tctanic torque in the dominant plantar t1exors at

a given recovery interval with data collapsed over normothermic and hypothermic data.

Asterisks indicate that the time was significantly different from pre-fatigue values to the p<O.OS

level.
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Rgure 3-20: Bars represent the r.ue of teunic torque develop~nt in the dominant plantar flexon;

at a given recovery interval. Asterisks indiciuc [hat the rale of IOrque develop~nl was

significantly different to the p<O.OS level. Addition signs indicme that the rate was significantly

different from I-minute recovery values 10 the p<.O.OS level.

Rgure 3-21: Bars represent the half relaxation time of the twitch in the dominant planur flexors

at a given recovery interval. Asterisks indicate thatlhe time was significantly different to the

p<O.OS level. Addition signs indicale that the time significamly different from I-minute recovery

values [0 at least the p<O.OS level.

Rgure 3-22: Bars represent the half relaxalion time of the tetanus in the dominant planur flexoTli

at a given recovery interval. Addition signs indicate that the time was significantly different from

I-minute recovery values 10 the p<O.OS level.

Rgure 3-23: Bars represent the half relaxation time of the twitch in the dominant plantar flexoTli

at a given recovery inlerval while either normothermic or hypothennic. Asterisks indicate that

the time was significanlly different from nonnotbennic values 10 the p<O.OS level.

Rgure 3-24: Bars represent the time to peak tetanus in the dominanl plantar flexors aI a given

recovery interval while either normothermic or hypothermic. Asterisks indicate thai the time was

significantly different from normothermic values to the p<O.OS level.
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Rgure 3-25: Bars represent the duration of the M·wave in Ihe dominant planlar flexors al a pven

recovery interval wltile either nonnothennic or hypothermic. A,jterisks indicale that the (ime was

significantly different from normothermic values 10 the p<O.05 level.
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FIGURES

Figure 2-1: The effects of fiber type on hypothermic twitch and tetanic tension

Temperature (low 10 high)

Figure 3-1

a) tetanic
(fast twitch)

b) tetanic
(slow twitch)

c) twitch
(fast twitch)

d) twitch
(slow twitch)
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Figure 3-2
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Figure 3-3

Effect of Cold on Time to Peak Twitch
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Figure 3-6

Effect of Cold on Time to Peak Tetanic
Torque

Warm

Figure 3-7

Effect of Cold on Rate of Tetanic Torque
Development
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Figure 3-8

Effect of Cold on Half Relaxation Time of
Tetanic Torque
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Figure 3-9

Effects of Recovery on MVC
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Figure 3-10
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Figure 3-15

Effect of Recovery on iEMG of SOL

600,--------------,------,
~ 600 +- ----.......--p,-j

;400

a:i 200

Pre laligue 1minute 5 minutes 10 minutes

Figure 3-16
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Figure 3-17
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Figure 3-15

Effect of Recovery on IEMG of SOL
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Figure 3-16
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Figure 3-18

Effect of Recovery on Rate of Twitch
Torque Development..
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Figure 3·19

Effect of Recovery on Time to Peak
Tetanic Torque
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Figure 3-20
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Figure 3-21

Effect of Recovery on Twitch Half
Relaxation Time
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Figure 3·24

Effect of Cold on the Recovery Rate of
Time to Peal< Tetanus
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Figure 3-25

Effect of Cold on Recovery Rate of M­
Wave Duration
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