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ABSTRACT 

Armillaria (Fr.:Fr.) Staude is a genus of root-infecting fungal pathogens which 

cause disease in forests and orchard plantations. Biological species of Armillaria are 

identified by sexual incompatibility mating interactions. Epidemiological studies of North 

American species of Armillaria indicated that some are saprotrophic, some mycotrophic, 

and others are necrotrophic pathogens often producing death of the host Stress of the 

host tree is often considered a critical factor in disease development 

Three objectives to this study examined different aspects of the pathogenicity of 

Armillaria. The first was to estimate phylogenetic relationships among North American 

biological species (NABS) of Armillaria. This allowed inference of inheritance of 

pathogenic traits among species. The second was to develop species-specific molecular 

markers for NABS Armillaria. This would provide a method of identification for 

pathogenic species. The third was to examine disease development of Armillaria inoculum 

using different types and degrees of stress inflicted on the host tree. Molecular techniques 

were employed to examine the first two objectives. The third objective involved a field 

inoculation trial with two Newfoundland isolates of A. ostoyae. 

This study is consistent with previous phylogenetic hypotheses concerning 

relationships among species of Armillaria. Phylogenetic analysis of randomly amplified 

DNA regions of unknown function provided strong support for intraspecies clustering. 

Most NABS Armillaria were resolved using four anonymous nucleotide sequences 
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combined within a single data set. There was stong support for the clustering of NABS 

i and II, as well as NABS III and VII. Isolates of NABS V showed sequence 

polymorphism. 

Species-specific molecular markers were developed for most NABS Armillaria. 

PCR amplification using a combination of different random primer sets in each of the 

reaction mixtures, yielded species size-specific bands on an agarose gel for each of NABS 

i, II and VI. A common band was found specific for NABS III and VII. Although 

NABS V, IX and X contained less variation, 10 nucleotide primers could be used to 

confirm their identity. Results from inverse PCR suggested that secondary DNA structure 

and primer/template competition played a significant role in determining species

specificity with SWAPP 10 nucleotide primers. 

Results from the field inoculation trials suggested that two years was sufficient 

time to allow forest managers to make informed decisions regarding stand management. 

Host stress appeared to influence Armillaria root disease development. The black spruce 

plantation had more infection than the naturally regenerated stand. There was more 

disease in the balsam fir thinned stand than the un-thinned stand. Significant correlation 

between infection and above ground tree symptoms occurred in a very severely defoliated 

balsam fir sawfly plot only. Well-drained sandy soil seemed to increase the 

aggressiveness of the Armillaria isolate used as inoculum. 

The utilization of molecular techniques, combined with knowledge of ecological 

processes, would greatly enhance the efficiency of forest management. 

III 



ACKNOWLEDGEMENTS 

I sincerely thank my supervisors, Dr. Keith Egger and Dr. Jean Berube, who 

provided guidance, support, and constant optimism. Their efforts to answer my never

ending questions were greatly appreciated, and to act as role models in the lab and the 

field are well-documented I 

My lab co-workers, Barbara Saunders, John Norman, Quentin Baldwin, Annette 

Greenslade, Dorothy Crutcher, and Manuel Furtado-Neto offered open ears and helpful 

comments when discussion was sorely needed . Thanks to those friends who contributed 

to the critical evaluation of papers; Jerry Browne, Sean Clancy, Dave Kivlichan, and 

Allan Costello 

Gordon Carew, with his many years of experience, provided tireless, and 

seemingly unending, valuable information and field activity. Other field workers who 

donated their much appreciated sweat and comedial attitudes were James Kirkpatrick, 

Carol Anne Devereaux, Carolyne Carroll, and Roy Dudley. 

Many thanks to my committee members, Dr. S. Carr and Dr. R. Lee who provided 

helpful suggestions on the thesis. 

Lastly, I would like to thank my sons, Jason and Steven, who provided 

understanding, and willingness to include in their lives the career-driven quirks of their 

Mom . In addition, I thank my parents, Phyllis and Jim Piercey, who were always willing 

to help 

iv 



1 would like to thank D. Swofford for granting permission to S. Carr and the 

GEMS Lab for the use of PAUP 4.0dS2 . 

Financial support for the research was provided by Natural Resources Canada; 

Canada Newfoundland Cooperative Agreement for Forestry Development (CAFD) and 

Green Plan lntegrated Forest Pest Management (IFPM) Network. 

v 



Title 

Abstract 

Acknowledgements 

List of Tables 

List of Figures 

List of Abbreviations 

1.1 Armillaria 

1.2 Disease 

1.3 Economic significance 

1.4 General Objectives 

TABLE OF CONTENTS 

Chapter 1 

General Introduction 

Chapter 2 

Phylogenetic history and species of Armillaria 

2.1 Introduction 

2. la Biological species 

2.lb Molecular techniques 

2. lc Phylogeny 

2. ld Fungal genomes 

2.le Objectives 

vi 

ii 

iv 

xii 

XIV 

XX 

4 

6 

6 

7 

9 



2.2 Materials and methods 

2.2a Procedural summary 

2.2b Material examined 

2.2c DNA extraction 

2.2d Polymerase chain reaction 

2.2e Phylogenetic analysis 

2.2f Molecular clock 

2.2g Inverse PCR 

2.2h Purification of PCR product 

2.2i Sequencing 

2.3 Section A: Phylogeny 

2.3A Results 

2.3Aa Analysis of individual fragments 

2.3Ab Phylogenetic signal and congruency 

2.3Ac Phylogenetic analysis 

2.3Ad Molecular clock 

2.3B Discussion 

2.3Ba Analysis of individual fragments 

2.3Bb Phylogenetic signal and congruency 

2.3Bc Phylogeny of Armillaria 

vii 

10 

10 

15 

15 

15 

19 

20 

20 

21 

22 

23 

23 

23 

32 

38 

46 

46 

48 

53 



NABS III and VII. 

NABS V, IX and X. 

NABS [ and II. 

2.3Bd Molecular clock 

Calculation of substitution rates. 

Co-evolution of fungus and bost. 

2.4 Section B: Species specific markers 

2.4A Results 

54 

55 

56 

58 

58 

60 

65 

2.4Aa Species specific SWAPP markers with 10nt primers 65 

2.4Ab Species specific 20mer markers 65 

2.4Ac Development of nested 20nt primers 70 

2.4Ad Inverse PCR 77 

2.4Ae Primer/template dynamics 87 

2.4Af Significance of the I Dbase primer sites in specificity 88 

2.4B Discussion 93 

2.4Ba Species specific SWAPP markers with 10nt primers 93 

2.4Bb Species specific 20mer markers 95 

Specificity of markers 

Dynamics 

Species specifi city 

viii 

95 

96 

97 



Primer sequence mismatches 

2.4Bc Development of nested 20nt primers 

2.4Bd Inverse PCR 

Genus specific band and cloning 

Gene walking 

Touchdown PCR 

2.4Be Why would 20mers produce numerous polymorphic bands? 

2ABf Primer/template dynamics 

2ABg Significance of 10base primer sites in specificity 

2ABh Qualitative primer/templat mismatch 

Liberal 

Conservative 

Consensus viewpoint 

2.5 Section C: Repetitive DNA 

2.5A Results 

2.5B Discussion 

Chapter 3 

Pathogenicity of Armillaria oSloyae in Newfoundland 

3.1 Introduction 

ix 

98 

100 

102 

102 

103 

103 

104 

106 

107 

110 

110 

113 

116 

117 

117 

122 



3.2 Materials and Methods 126 

3.2a Source of inoculum 126 

3.2b Inoculation of trees 126 

3.2c Experimental design 126 

3.2d Definition of treatment groups 128 

3.2e Site descriptions 129 

3.2f Statistical analysis 134 

3.3 Results 136 

3.4 Discussion 160 

3.4a Disease causing agent 160 

3.4b Pathogenicity 161 

3.4c Foreign Armillaria 162 

3.4d Black spruce plantation and natural regeneration 164 

3.4e Thinned and un-thinned stands with adelgid 165 

3.4f Above ground tree symptoms 169 

3.4g Low-level pathogenicity 171 

3.4h Balsam fir on a sandy site 172 

3.4 i Agent of predisposition - insect or pathogen? 176 

x 



4.1 Phylogeny 

4.2 Species-specific markers 

4.3 Repetitive DNA 

4.4 Pathogenicity 

Chapter 4 

Conclusions 

4.5 General conclus ions and future directions 

Chapter 5 

References 

Appendices 

Appendix A 

Appendix B 

Appendix C 

Appendix D 

Appendix E 

Append ix F 

Appendix G 

Append ix H 

xi 

179 

181 

184 

184 

186 

189 

207 

209 

211 

213 

217 

221 

225 

230 



LIST OF TABLES 

Table 2-1 : Strains of Armillaria showing name of collector, host species 
on which it was collected, and location of collection. 17 

Table 2-2: Primer sequences used to obtain fragments . 19 

Table 2-3 : Armillaria strains amplified by the primer sets indicated at the 
~~~~~ M 

Table 2-4: Evaluation of frequency distributions of SOOO randomly 
sampled tree lengths for phylograms of four primer sets, V-2S0, III-180, 
III-S20, and 83/66 and the combination data set (four primers) showing 
consistency index (CI), homoplasy index (HI), actual tree length 
(parsimony), mean tree length (random sample), standard deviation (SO) 
and gl. 31 

Table 2-S : Results from Kashino and Hasegawa (1989) likelihood tests 
comparing each individual tree with the corresponding combined set for 
congruency. Maximum parsimony trees from 100 bootstrap replicates of 
the modified combined sets (V2S0 and 83/66) are shown in Figure 2A-4. 
Each individual tree is considered significantly worse than the tree 
produced from the combined data set in explaining the combined 
sequences, when the difference of log likelihood is more than twice the 
standard deviation. 3 S 

Table 3-1 Effects of treatment, isolate, root response, tree health and 
presence of rhizomorphs on occurrence of disease in each of seven plots 
using Kruskal-Wallis and Spearman's Rank Correlation tests. 137 

Table 3-2: Comparison of soil properties for six plots, natural regeneration 
black spruce (I), balsam flf hemlock looper defoliation (2), balsam fir 
artificial defoliation (3), balsam fir adelgid and thinned (4), balsam flf 
adelgid and un-thinned (S), and balsam flf sawfly defoliation (6). Samples 
were taken from two sites within each plot (1 ,2), and analysis was done on 
the upper LFH soil layer (a) and the lower mineral layer (b). Soil 
properties included pH (in water), organic matter (OM) (%), nitrogen (N) 
(%), phosphorus (P) (ppm), potassium (K) (meq/ IOOg), calcium (Ca) 
(meq/ lOOg), magnesium (M) (meq/100g), silt (%), clay (%), sand (%) and 

xii 



texture (Text). 

Table 3-3 : Proportion of trees infected by two isolates of A. ostoyae used 
as inoculum showing percentages per plot and total percentages with and 
without controls. Sample size is indicated in parentheses. Dashes represent 
no samples taken. 

xiii 

147 

149 



LIST OF FIGURES 

Figure 2-1: Flowchart outlining procedure for experiments involving 
molecular techniques. See text for explanation. II 

Figure 2A-I : Character information content for each of the nucleotide data 
sets amplified by the four primer sets, V2S0, IIII80, IIIS20 and 83/66, 
comparing total number of characters, number of constant characters, 
number of phylogenetically uninformative characters and number of 
phylogenetically informative characters. 2S 

Figure 2A-2: Phylograms based on nucleotide sequences amplified by A: 
V2S0 for 224 base pairs, showing highest degree of resolution of the four 
data sets, and B: IIl180 for 177 base pairs, showing lowest degree of 
resolution, for eight of the NABS Armillaria, using two isolates of NABS 
VI as outgroup. Numbers indicate bootstrap proportions from 100 bootstrap 
replicates . Horizontal branch length is proportional to distance and tree was 
obtained using maximum parsimony. 27 

Figure 2A-3 : Phylograms based on nucleotide sequences amplified by A: 
IIlS20 for 122 base pairs, and B: 83/66 for ISO base pairs, both showing 
moderate degrees of resolution, for eight of the NABS Armillaria, using 
two isolates of NABS VI as outgroup. Numbersindicate bootstrap 
proportions from 100 bootstrap replicates. Horizontalbranch length is 
proportional to distance and tree was obtained using maximum 
parsimony. 29 

Figure 2A-4 : Phylograms from 100 bootstrap replicates of the four 
combined data sets corresponding to : A: V2S0-Two isolates of NABS IX 
were removed so taxa would match those in V2S0 data set, B: 83/66-0ne 
isolate of NABS II and two isolates of NABS IX were removed to match 
taxa in 83/66 data set, and C: IIIS20, IIII80, and combined set - Nothing 
was removed since taxa in IIIS20, IIll80, and combined set were all the 
same. This tree is identical to the phylogram in Figure 2A-S . The 
topology among A, B and C is more similar than the topology between 
V2S0 (Figure 2A-2) and the combined set (Figure 2A-S). V2S0 and the 
combined set were statistically congruent (Table 2-S). 33 

Figure 2A-S : Phylogram based on combined nucleotide sequences from 

xiv 



four primer sets for 23 taxa of eight NABS Armillaria using two isolates 
of NABS VI as outgroup. A single most parsimonious tree from 100 
bootstrap replicates was produced. Horizontal branch length is proportional 
to distance,and tree was obtained using maximum parsimony. 

Figure 2A-6: Network diagrams based on nucleotide sequences of A: 
V2S0, B: III I 80, C: IllS20, and 0: 83/66 comparing variation to a 
consensus sequence. Substitutions were determined manually to illustrate 
all substitution changes among taxa. Length of branches correspond to 
number of substitutions. Transition : transversion ratios are indicated on 
each branch. S=transition, V=transversion, del=deletion, and ins=insertion. 
Taxa epithets correspond to those in Figure 2A-S . 

Figure 2A-7: Divergence times of NABS Armillaria estimated from 
phylogeny (Figure 2A-S) showing branch lengths proportional to the 
average percent nucleotide substitutions (Table 2-6). 

Figure 28-1: SWAPP-PCR amplification with 10nt primer pairs showing 
bands specific to a species or group of species of NABS Armillaria. A: 
Primer set 831147 produced a 600bp fragment (arrow) in isolates of NABS 
III and VII. B: Primer set 83/66 produced a 3-band repeat, IISbp, 13Sbp 
and 170bp (arrows), in isolates of NABS VI. C: Primer set 171127 
produced a 390bp fragment in isolates of NABS V and X, and a S2Sbp 
fragment (arrows)in NABS VII. 0 : Primer set 29/122 produced a 27Sbp 
fragment (arrow) in NABS IX. Far left lanes represent 123bp size ladder 
in A and IKb size ladder in B, C, and D, NABS Armillaria are indicated 
by Roman numerals,At is A. tabeseens, and Ctl is negative control. 

Figure 28-2: PCR amplification of species specific fragments showing A : 
120bp band in NABS VI amplified by Saib, B 80bp band in NABS I and 
1I amplified by 10112, C: 220bp band in NABS II amplified by laib, 0 : 
180bp band in NABS III, VII, X, and European 8 amplified by 9aib. 
Roman numerals at top of gel represent species of NABS Armillaria, 
Roman letters indicate European species, At is Armillaria tabeseens, Af is 
A. jumosa, Qld is Qld8 an isolate from Australia, IJMI21 is a European 
isolate of A. ostoyae, Ctl is negative control, and IKb is the IKb DNA 
size ladder used to indicate size of bands. 

Figure 28-3 : Key for identification of NABS Armillaria using molecular 
characters obtained by 10 and 20nt primers. Amplification reaction 
conditions and cycles, and electrophoresis conditions should be followed 

xv 

36 

39 

44 

66 

68 



as outlined in "Materials and Methods" . 

Figure 2B-4: Alignment of nucleotide sequences of 390bp fragments 
amplified by SWAPP 10nt primers 171127 for NABS V and X (from 
Figure 2B-1 C), showing regions of DNA from which more stable nested 
20nt primers (V250alb) were developed (underlined). Sequences are written 
in 5' to 3' direction. RC is reverse complement. Inverse primer sites are 
shown at center of sequence. Dashes indicate no sequence. 

Figure 2B-5: PCR amplification of NABS Armillaria using nested 20nt 
primers developed from sequences of SWAPP 10nt primers showing the 
variable results obtained. A: Primer set 1X250alb produced no bands. B: 
Primer set VlI520-1/2 produced bands found in NABS ill and VII and 
European species B. C: Primer set V250alb produced 250bp fragments 
found in all NABS Armillaria. D: Primer set 1850alb produced 
polymorphic bands with some degree of monomorphism, found in all 
species of Armillaria. NABS Armillaria are indicated by Roman numerals, 
At is A. labeseens, Ae is A. eetypa, Ah is A. hinula, Roman letters indicate 
European species, Ctl is negative control, and I Kb size ladder is in far left 
lane. 

Figure 2B-6: Banding pattern observations from A: a genus specific 220bp 
band with IOnt primers 29/34, and B: PCR with 10 and 20nt primers 
showing numerous bands when the "gene walking" technique was applied. 
Roman numerals indicate NABS Armillaria, AI is A. jumosa, Ctl is 
negative control, and the far left lane contains the IKb size ladder. 
Numbers in B represent primers used in amplification reactions. 

Figure 2B-7: PCR amplification showing results obtained at each of four 
stages to locate the SWAPP 10mer sites. A: Amplification of 390bp 
fragment (arrow) in NABS V and X using SWAPP 10nt primer pair 
17/ 127 . B: Amplification of 250bp band in all NABS Armillaria using 
nested 20nt primer pair, V250alb, developed from sequences amplified by 
SWAPP 10nt primers 171127, which were chosen to be specific for NABS 
V. C: Inverse PCR amplification of ligated product of NABS II and V 
from each of four restriction enzymes, using inverse 200t primers, 
lNV250alb, showing the IKbp band (arrow) in NABS V cut by restriction 
enzyme Xhol. D: PCR amplification of genomic DNA using new 20nt 
primers incorporating SWAPP 10mer sites, V-17 and V-127, developed 
from sequences in C. Roman numerals indicate NABS Armillaria, At is A. 
labeseens, Cd is negative control, and the I KB size ladder is in the far left 

xvi 

71 

73 

75 

78 



lanes. 

Figure 2B-8: Alignment of nucleotide sequences obtained from the four 
stages corresponding to those in Figure 2B-7 . Sequence "17/127" was 
produced from SWAPP 10nt primers 1711 27 (Figure 2B-7 A). Sequence 
"V2S0alb" was produced from nested primers V2S0alb (Figure 2B-7B), 
showing homology with SWAPP 171127 sequence. Sequence "INV2S0A" 
was amplified from inverse primers INV2S0alb (Figure 2B-7C), and shows 
homology with the latter half of sequences from V2S0 and 171127 from 
which the primer was developed. The sequence continued past the end of 
the V2S0 fragment showing all the primer sites. Sequence "V-17N-127" 
(Figure 2B-7D) was produced from 20nt primers developed from the 10nt 
primer sites, showing no homology with the other sequences. All four 
sequences were from NABS V isolate V83621 . Primer sites are underlined 
and names in parentheses. RC is reverse complement, and dashes indicate 

80 

no sequence. 82 

Figure 2B-9: Primer/template alignments for the sequences amplified by 
inverse primers A: INV2S0a and B: 1NV2S0b showing sequence of 
primer(top) and template (bottom), for species of NABS Armillaria. 
Dashes represent continuation of template sequence with no primer site. 
Dots in primer sequence indicate a match, and mismatches are indicated 
by bases. Ambiguity in template sequence is shown in parentheses with the 
two possible bases. RC is reverse complement. A: All possible primer sites 
are indicated by A-I to A-S from INV2S0a, and B: B-1 to B-4 from 
INV2S0b. A-I and B-1 sites show alignment for 20nt primers. All other 
sites show JOnt primer alignments. Isolates used in amplification reactions 
are indicated at left of each sequence. 84 

Figure 2B-10: Line drawing of sequences amplified from inverse primers 
INV2S0alb of six isolates of Armillaria showing location and S' to 3' 
orientation of all possible primer sites. RC is reverse complement. Primer 
sites A-I to A-S and B-1 to B-4 correspond to sites in Figure 2B-9. Scale 
is 2 inches ~ 100bp in length. 89 

Figure 2B-II : Diagrammatic representation of location and orientation of 
SWAPP 10nt and 20nt primer sites and the hypothesized stem loop 
structure in genomic DNA showing the fragment bordered by primers 
171127. Shaded boxes represent reverse complemented (RC) primer sites, 
and clear boxes represent the active primer sites.Arrow represents direction 
in which extension occurs. The 20nt primers incorporating the 10bp 

xvii 



primer sequences at the 3' ends are shown as V-127 and V-17. Diagram is 
not drawn to scale. 

Figure 2C- I: PCR amplification with SWAPP primers showing repetitive 
banding pattern found in separate species (A and C), and the stair-step 
banding pattern produced when each band was excised and re-amplified 
separately (B and D). A: Three bands present in NABS III (I at 360bp, 2 
at 300bp, and 3 at 240bp) with primers 34/ 122. B: Excised bands from A 
shows re-amplified product from separate bands, I, 2, and 3, for each 
sample in A. C: Three bands present in NABS VI (I at 170bp, 2 at 13Sbp, 
and 3 at IISbp), and NABS VII (4 at 200bp, 5 at 170bp, and 6 at 160bp) 
with primers 83/66. D: Stair-step banding patterns produced from re
amplified excised bands in C. 

Figure 3-1 : Map of the island of Newfoundland showing location ofthe 
seven plots. Plot I was black spruce natural regeneration, plot 2 was 
balsam fir hemlock looper, plot 3 was balsam fir on a sandy site, plot 4 
was adelgid thinned, plot 5 was adelgid un-thinned, plot 6 was balsam fir 
sawfly defoliation, and plot 7 was black spruce plantation. 

Figure 3-2: Proportion of trees in each plot showing degree of 
pathogenicity for each of the two inoculum isolates, AS-14 and AS-II , and 
control blocks. Numbers represent combination of superficial colonization 
and cambial infection. 

Figure 3-3 : Comparison of physical factors of trees (y-axis) in each of 
seven plots (x-axis) showing mean and standard deviation for each plot. A: 
Height of trees (meters) estimated from soil surface to apicaltip. Trees in 
plot 2 were not measured and were estimated to be 10 to 12 m high. B: 
Diameter at breast height (DBH) (cm) was taken approximately 1.3 meters 
above soilleve!. C: Tree age (years) was counted from stem cores at DBH. 
D: Leader length (cm) was estimated from the highest whorl of branches 
to the apical tip, representing the last year of growth. Trees in plot 2 were 
too high to estimate leader length, and those in plot 5 were too dense. 
Sample sizes for plots I through 7 are 93, 70, 30, 40, 20, 30 and 70 trees 
respectively. 

Figure 3-4: Soil profiles for six plots showing depth of LFH and mineral 
layers. LFH represents the upper organic layer consisting of litter (L), 
fermented layer (F), and humus (H). Mineral layers consist of gray and 
brown layers. Nutrients have leached out of the gray layer and into the 

xviii 

91 

118 

130 

139 

141 



brown layer producing a color difference. The mineral layer contains both 
gray and brown layers with no color differentiation. Rock represents the 
parent material from the bedrock. Two sites per plot were sampled except 
plots 4 and 5. 145 

Figure 3-5: Proportion of trees at each pathogenicity level within 
plots. Percent trees was calculated as number of trees infected according to 
each level of pathogenicity, divided by the total number of trees within 
each plot. 150 

Figure 3-6: Proportion of trees showing each type of root responseto 
infection within plots. Percent trees was calculated as number of trees 
exhibiting each type of root response per plot, divided by the total number 
of trees within each plot. 152 

Figure 3-7: Proportion of trees in each plot containing roots associatedwith 
rhizomorphs as an indication of disease potential. 154 

Figure 3-8: Relationship between level of defoliation of the host (x-axis) 
and infection by A. oSloyae. Percent trees (y-axis) was calculated as 
number of trees per pathogenicity level per level of defoliation (treatment), 
divided by the total number of trees in each defoliation level. Pathogenicity 
levels are indicated as follows; ---0--- is no mycelium on inoculum block 
and none on root; ---[J..-- is mycelium on block but oonean root; ---4--- is 
mycelium on block and on root, and; ---v--- is mycelium in cambial tissue. 
A: Black spruce natural regeneration (plot I) , B: Balsam fir hemlock 
looper (plot 2), C: Balsam fir artificial defoliation(plot 3), D: Balsam fir 
adelgid, thinned (plot 4), E: Balsam fir adelgid, un-thinned (plot 5), F: 
Balsam fir sawfly (plot 6), and G: Black spruce plantation (plot 7). 156 

Figure 3-9: Relationship between level of defoliation of the host (x-axis) 
and root response measured as three levels for each plot. Root response 
was calculated as number of trees per response type at each level of 
defoliation (treatment), divided by total number of trees in each defoliation 
level. Root responses are indicated as follows;---o--- is no response. 
healthy root; ---0--- is superficial colonization of mycelium on root; ---A--
is cambial infection of mycelium under bark of root. A: Black spruce 
natural regeneration (plot I), B: Balsam fir hemlock looper (plot 2), C: 
Balsam fir artificial defoliation (plot 3), D: Balsam fir adelgid, thinned 
(plot 4), E: Balsam fir adelgid, un-thinned (plot 5), F: Balsam fir sawfly 
(plot 6), and G: Black spruce plantation (plot 7). 158 

xix 



ABI 
Adj 
bp 
BP 
' C 
ca. 
Ca 
CaCO, 
CI 
em 

Cli 
DBH 
del 
df 
DNA 
F 
g 
gIL 
gl 
gDNA 
H 
Hl 
IGR 
lGS 
ins 
K 
Ka 
Kb 
L 
m 

Ma 
20mer 
meq 
Mg 
mM 
mtDNA 
N 
NABS 
nt 
OM 
p 

P 

LIST OF ABBREYIA nONS 

Applied Biosystems Incorporated 
Adjusted for ties 
base pairs 
Bootstrap Proportion 
degrees Celcius 
calculated 
Calcium 
Calcium Carbonate 
Consistency Index 
centimeters 
Control 
Diameter at Breast Height 
deletion 
degrees of freedom 
Deoxyribonucleic acid 
fermented layer 
grams 
gramslLitre 
g I skewness index 
genomic DNA 
Humus layer 
Homoplasy Index 
lntergenic Region 
Intergenic Sequence 
insertion 
Potassium 
Thousand years ago 
Kilobases 
Litter layer 
meters 
Million years ago 
20 nucleotide primer 
milliequivalents 
Magnesium 
milliMolar 
mitochondrial DNA 
North or Nitrogen 
North American Biological Species 
nucleotide 
Organic Matter 
Phosphorus 
probability 

xx 



PAUP 
PCR 
ppm 
r 
rONA 
RAPD 
RC 
RFLP 
S 
SO 
SWAPP 
Text 
TBE 
~L 
~M 
UV 
V 
W 
3' 
5' 

Phylogenetic Analysis Using Parsimony 
Polymerase Chain Reaction 
parts per million 
Spearman's rank correlation 
ribosomal DNA 
Random Amplified Polymorphic DNA 
Reverse Compliment 
Restriction Fragment Length Polymorphism 
Transitions 
Standard Deviation 
Sequencing With Arbitrary Primer Pairs 
Texture 
Tris Borate EDT A 
micro Litres 
micro Molar 
Ultraviolet 
Transversions 
West 
3-0H "prime" 
5-P "prime!! 

xxi 



Chapter 1 

GENERAL fNTRODUCTlON 

1.1 Armillaria: 

The basidiomycetous fungus, Armillaria bulhosa (Barla) Kile and Watling, is one 

of the largest and oldest living organisms in the world. One individual mycelium, found 

in northern Michigan, covered 15 hectares and was more than 1500 years old (Smith et 

aI. , 1992). The knowledge that a fungus involved in this study has such growth capacity, 

defies general ideas of fungal habits, and presents an intriguing concept on which to 

begin a study. Although molecular techniques were used to determine the size of the 

individual, they can also be used for other purposes. 

The genus Armillaria (Fr. :Fr.) Staude contains approximately 40 species that are 

distributed world-wide. Many of these species cause root disease in more than 600 

species of woody plants (Raabe, 1962). Some species are necrotrophic pathogens, while 

others are saprotrophic (Gregory et aI. , 1991), or form mycotrophic associations with 

achlorophyllous plants, such as the orchid Galeola seplenlrionalis Reichb . f. (Terashita 

and Chum an, 1987). Species of the genus Armillaria can be divided into annulate and 

exannulate morphological species, depending on whether an annulus is present on the 

stipe. Until recently the annulate species were considered a single species, Armillaria 

mellea (Vahl: Fr.) Kummer (sensu lalo) with a high degree of variation in virulence and 

host preference (Redfern and Filip, 1991). The biological species concept was applied 



to the genus only after Hintikka (1973) described the bifactorial sexual incompatibility 

system. Sexual compatibility occurs when haploid single spore isolates of the same 

biological species carry different alleles at two mating type loci. Compatible matings in 

Armillaria produce vegetatively stable diploid mycelia lacking clamp connections. 

Macroscopic colony morphological differences distinguish between compatible and 

incompatible matings in the laboratory. A flat crustose mycelium is produced by a 

compatible mating of two monospore isolates, whereas incompatible rnatings maintain 

the fiuffiy white mycelial appearance of the monokaryon (Hintikka, 1973). Using this 

criterion seven European species (Korhonen, 1978), five Australasian species (Kile and 

Watling, 1983), and nine North American biological species (NABS) (Anderson and 

Ullrich, 1979; Ullrich and Anderson, 1978) of Armillaria have been described. 

NABS Armillaria vary in their degree of pathogenicity. A. ostoyae (Romagnesi) 

Herink (NABS I) is highly pathogenic on conifers (Guillaumin et aI. , 1989; Gregory, 

1985) and distributed throughout the northern hemisphere. A. gemina Berube and 

Dessureault (NABS II) has been found to form saprotrophic to weakly pathogenic 

(Morrison, 1989) associations with hardwoods in south-east Canada (Berube and 

Dessureault, 1989) and eastern United States (Anderson, 1986). A. calvescens Berube 

and Dessureault (NABS 1IJ) is saprotrophic to weakly pathogenic and associated with 

hardwoods in the northeastern United States (Proffer et aI. , 1987), and southeast Canada 

(Berube and Dessureault, 1989), but has been found to be pathogenic on hardwoods in 

some studies (Harrington et aI. , 1989; Proffer et aI. , 1987). A. lit/ea (Synonyms: A. 

gallica Marxmuller and Romagnesi , A. bl/lbosa (Barla) Kile and Watling) (NABS VII) 



is saprotrophic to weakly pathogenic and associated with hardwoods throughout the 

northern hemisphere. A. sinapina Berube and Dessureault (NABS V) is weakly 

pathogenic on hardwoods and found throughout Nortb America (Morrison et aI. , J 985b; 

Dumas, 1988). A. mellea (Yahl: Fr.) Kummer (senslI sfric/o) (NABS VI) is highly 

pathogenic on hardwoods and found in both northern and southern hemispheres 

(Guillaurnin et aI. , 1989). A. nabsnona Yolk and Burdsall (NABS IX) is saprotropbic or 

weakly pathogenic on hardwoods (Morrison, 1989) and has been collected from a small 

area in northwestern North America (Morrison et aI. , 1985b; Yolk et aI. , 1996). NABS 

X has yet to be named. and is saprotrophic with conifers in southeast British Columbia 

(Morrison et aI. , 1985b). Although only some species are pathogenic, all can survive 

saprotrophically on woody debris in the soil (Redfern and Filip, 1991). There is also a 

large amount of variation in pathogenicity among individuals within some species. 

1.2 Disease: 

Pathogenicity refers to the disease-causing characteristic of a genus or species. 

Virulence refers to an observed ability of an individual of a pathogenic species to cause 

infection (British Federation of Plant Pathologists, 1973). Rishbeth (1984) suggested that 

pathogenicity tests should be done using a natural method of infection, and with host 

material having a moderate degree of resistance. Tn addition, Koch 's postulates must be 

satisfied to prove pathogenicity of a species (British Federation of Plant Pathologists, 

1973) 
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The first pathogenicity test of Armillaria was done by R. Hartig in 1874, who was 

one of the first to recognize that Armillaria caused disease. (Gregory et aI., 1991). Root 

infection occurs when mycelial fans of Armillaria grow in the outer bark and penetrate 

the cambium which causes necrosis of the tissue (Morrison et aI. , 1991). Plants are pre

disposed to disease when stress imposes chemical changes so they cannot produce 

sufficient defense response to maintain a pathogen (Schoeneweiss, 1975). Host stress is 

an important factor to consider in predisposition of a tree to infection by Armillaria, 

especially in the more resistant host species. Similarly, host stress may create conditions 

more favourable for the less virulent individuals of Armillaria than for the more virulent 

isolates. Stress may be produced from different sources such as drought, flooding, 

shading, competition for nutrients, insect damage, pollution, or other foliar diseases 

(Wargo and Harrington, 1991). Stress may predispose the host to attack by Armillaria. 

Alternatively, Armillaria may stress the tree to allow other organisms to attack. 

Armillaria may act as a primary pathogen infecting healthy, vigourous trees, or as a 

secondary pathogen becoming opportunistic and infecting trees that have been weakened 

by stress. 

1.3 Economic significance: 

Because Armillaria affects many different host species and is distributed world

wide in boreal, temperate and tropical forests , it is an important consideration in the 

management of natural and planted forests. Armillaria causes endemic disease that is 



constantly present within a small area. A balance maintains the coexistance of host and 

pathogen in natural forests. However, fluctuations in disease levels may occur from 

changing biological or environmental conditions. It is becoming a common practice to 

plant seedlings in harvested forest areas in order to replace and improve stands of 

economically valuable species. Forest management activities may aggravate root disease 

caused by Armillaria by imposing stress on the host plants, and making them more 

susceptible to fungal attack. Forest harvesting and orchard plantations may provide more 

opportunities for less virulent Armillaria species to cause disease. Hence, a thorough 

understanding of the pathogen is important for development of management practices aDd 

sustainability of the forests . 

1.4 General objectives: 

The main objective of this study was to investigate pathogenicity of NABS 

Armillaria. Three separate projects provided means to examine important aspects of 

pathogenicity: I) To develop a molecular phylogeny of NABS Armillaria in North 

America, in order to allow comparison of inheritance of pathogenic traits among 

biological species; 2) To develop species-specific molecular markers to provide forest 

managers with a fast, efficient method to identify pathogenic species; and 3) To examine 

pathogenicity of two isolates of A. ostoyae in inoculation trials with mature conifers in 

a natural environment. 
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Chapter 2 

Phylogenetic History and Species of Armillaria 

2.1 INTRODUCTION 

2.la Biological species: 

Although interfertility testing is an ideal tool with which to distinguish among 

biological species, haploid isolates must be paired in culture with tester strains, a process 

which takes about six weeks. Other techniques used to identify species of Armillaria 

include identification of fruit body or rhizomorph morphology (Marxmuller, 1982; Berube 

and Dessureault, 1988; 1989; Yolk et aI. , 1996; Banik et aI. , 1996), rhizomorph growth 

habit in soil (Morrison, 1991), immunological techniques (Lung-Escarment et aI. , 1985), 

RFLP with mitochondrial DNA (mtDNA) (Smith and Anderson, 1989), ribosomal DNA 

(rDNA) (Anderson et aI. , 1987), without DNA extraction (Harrington and Wingfield, 

1995), mitochondrial and nuclear DNA hybridization (Jahnke et aI. , 1987), isozyme 

patterns (Morrison, 1982a; Morrison et aI. , 1985a; Lin et aI. , 1989; Agustian et aI. , 1994), 

clamp connection characters (Larsen et aI. , 1992) and fractal geometry of rhizomorphs 

(Mihail et aI. , 1995) Anderson and Stasovski (1992) compared sequences of the 

intergenic sequence (IGS) region of rONA to infer a phylogeny of biological species of 

Armillaria. The relationship between species-specific and phylogenetic characters of a 

group of species is linked. The phylogenetic history of a group of species is reflected in 

the species-specific characters of the individuals . Sequence divergence helps to identify 



species, but the number and kind of differences among species may serve as an estimate 

of the phylogeny of the group. 

2. J b Molecular fechniques: 

The utilization of a single 10 nucleotide (nt) primer to amplify species specific 

bands in various organisms is common, and is correctly referred to as randomly amplified 

polymorphic DNA (RAPD) (Williams et aI. , 1990; Welsh and McClelland, 1990). A 

similar technique called SWAPP (sequencing with arbitrary primer pairs) uses two 

different 10nt primers to amplify fragments (Burt et aI. , 1994). Since RAPD fragments 

cannot be sequenced, the use of two different primers permits the fragment to be 

sequenced ... allowing development of more stable 20nt primers. Differences in banding 

patterns observed when using these techniques may be caused by several mechanisms. 

RAPD-PCR may produce polymorphisms due to insertion of DNA between two annealing 

sites producing a fragment too large to be amplified, deletion of DNA containing a primer 

site resulting in loss of the fragment, nucleotide substitution at the primer site that affects 

annealing of the primer to the template, or insertion or deletion of a small piece of DNA 

between primer sites leading to a change in size of the amplified fragment (Weising et 

aI. , 1995). Primer/template dynamics may further complicate polymorphisms in DNA 

banding patterns. 



2.1 c Phylogeny: 

Combined analysis of phylogenetic data has become a popular approach in recent 

literature. The efficacy of the use of separate or combined approaches has been debated 

(Hillis, 1987; 1995; Kluge, 1989; Omland, 1994; Miyamoto and Fitch, 1995; de Queiroz 

et aI., 1995; Lutzoni and Vilgalys, 1995) Combined data sets provide a larger number 

of characters with which to infer a phylogeny of a group of species. Since single gene 

trees may not accurately reflect species trees (Page and Charleston, 1997), sequences from 

a larger number of genes incorporated into the gene tree may bring it closer to congruence 

with the species tree. 

On the assumption that nucleotide and protein sequences evolve in a clocklike 

manner, times of occurrence of branching events in a phylogenetic tree could be 

determined based on the number of sequence differences that have accumulated within 

each lineage since divergence from the common ancestor (Wilson et aI., 1977). Proteins 

evolve at different rates depending on the amount of constraint on the molecule, and non

coding DNA typically evolves more rapidly than coding regions (Ohta, 1992). 

2. Jd Fungal Gellumes: 

Fungal DNA is organized into chromosomes similar to other eukaryotes (Taylor, 

1986). Mitochondrial DNA inheritance may occur through a uniparental mode (either 

maternally or paternally), biparentally, or with recombination between chromosomes. 

Animal mtDNA genomes are small (I 6-19 Kbp) , whereas fungal mitochondrial genomes 



are more variable in size (18.9-176 Kbp) (Taylor, 1986). The size of the mtDNA genome 

in Armillaria is approximately 80-100 Kbp (Jahnke et aI. , 1987). 

Fungal nuclear genomes are small (2 .0xI04 to 8xlO4 Kbp) compared with other 

eukaryotes such as insects (2xI0' to 6x10' Kbp), birds (10' Kbp), and !lowering plants 

(2xI0' to 2x10' Kbp) (Primrose, 1995). Fungi contain a small amount of repetitive DNA 

« 20%) (Arthur et aI. , 1982; Timberlake, 1978; Hamer et aI. , 1989; Morton et aI. , 1995). 

Nuclear gene intron size of fungi range between 55 to 80 nucleotides in length (Radford, 

1993), and the [GC] content lies between 43% and 61% (Storck and Alexopoulos, 1970; 

Arthur et aI. , 1982; Jahnke et aI. , 1987). The [GC] content for Armillaria genome is 

approximately 46% to 48% (Jahnke et aI., 1987). 

2.1 e Objectives: 

The objectives of Part A of this study were to detennine the effectiveness of 

combining data sets of four different conselVed fragments to estimate a phylogeny, and 

to infer phylogenetic relationships among NABS Armillaria so as to place NABS 

Armillaria into an historical framework. 

The purpose of Part B was to develop species-specific primers for NABS 

Armillaria which could be used to rapidly identify isolates collected from diseased trees , 

and secondarily to examine primer/template dynamics. 

Part C discusses observations on repetitive DNA banding patterns shown to be 

species-specific. 
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2.2 MATERIALS AND METHODS 

2.2a Procedural summary: 

Polymerase chain reaction (peR) was used to screen single IOnt primers and 

combinations thereof in order to produce bands with a different primer at each end (Figure 

I) i). These primer pairs were then screened for species-specificity (Figure I, ji). Some 

primer pairs amplified species-specific 3-band clusters, which is discussed in Part C. 

Species-specific bands were excised, fe-amplified and sequenced to develop more stable, 

nested 20nt primers from regions located downstream from the lOmer sites (Figure I, iii). 

Monomorphic bands were fe-amplified (Figure 1, iv) and two separate techniques were 

employed to produce a phylogeny (Figure 1, v; Part A) and to investigate species-specific 

sites in the DNA template by inverse PCR (Figure I, vi; Part B). 

The phylogenetic analysis involved combining monomorphic fragments from four 

sets of primers to produce a single phylogenetic tree (Figure I, vii) . Variable regions 

within these sequences were then used to develop species-specific primers (Figure I, viii) 

Inverse peR was performed on fragments specific to NABS V to locate the 10nt 

primer sites on template DNA (Figure 1, vi). Twenty nt primers were made from the 

center of the template DNA in an inverted orientation, so that direction of extension was 

outward, encompassing the nested 20mers and the species-specific IOmers (Figure I, ix). 

DNA digestion was performed using a restriction enzyme with a recognition site upstream 

from all primer sites on the template DNA, followed by ligation (Figure I, x) and PCR 

using inverse primers (Figure I, xi). The inverse fragment was sequenced to obtain all 



Figure 2-1: Flowchart outlining procedure for experiments involving molecular 

techniques. See text for explanation. 
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primer sites and new 20nt primers were made from these sites incorporating 10 bases of 

the 10nt primer for the 3' end, and an additional 10 bases upstream to encompass the 5' 

end of the primer. These primers were then used to ampli fy genomic DNA (gDNA) 

(Figure I, xii) 

2.2h Material examined: 

North American biological species of Armillaria are indicated by Roman numerals 

(Anderson and Ullrich, 1979). Fungal material was all haploid and obtained from various 

sources for the phylogeny (Table 2-1) . Material screened for species-specific research 

included 87 stra ins of Armillaria, and seven non-Armillaria species. Isolates were 

determined as biological species by the source, using interfertility tests with standard 

tester strains 

2.2c DNA extraction 

Crude genomic DNA from Armillaria was extracted from approximately 200mg 

lyophilized fungal tissue using a modified 2X CTAB procedure loosely based upon the 

protocol of Zolan and Pukkila (1986) DNA was extracted with chloroform :isoamyl 

alcohol , precipitated with isopropanol , and resuspended in TE-S buffer. 

2.2d Polymerase Chain Reaction· 

PCR reaction components included 0.1 ~M each oligonucleotide primer (Table 2-



16 

2), 2mM of each of dATP, dCTP, dGTP, and dTTP, 2.0 mM MgCI 2, 50 mM KCI, 10 mM 

Tris-HCl (pH 9.0 at 25°C), 0 .1 % Triton X-I OO, and 0.4 units Taq DNA polymerase 

(Prom ega) . For each 20).lL reaction, 21l L of 1 10 dilution of approximately l Ong genomic 

DNA was added. Five ~L of purified DNA was added to each I OO~L reaction. One drop 

of light white mineral oil was placed in each tube to prevent evapo ration. Amplification 

occurred on a Perkin Elmer Cetus 480 Thermal cycler. peR cycle conditions changed 

depending on the nature of the prim er used . All peR cycles began with 1 minute preheat 

at 94°C, and ended with link to 4°C soak. Thirty-five temperature cycles for the 20nt 

primers consisted of denaturation at 94°C for 1 minute, annealing from 45°C to sooe 

(depending on the primer used) for 1 minute, and extension at 72°C for I minute with a 

50 second ramp time. Amplifi cation with the 10nt prim ers consisted of 42 cycles of the 

same temperatures and tim es, except annealing occurred at 38°C. Two different IOnt 

primers were used in each reaction to a llow for sequencing of the fragments. This 

method was described by Burt et al. ( 1994) as sequencing with arbitrary primer pairs 

(SW APP). The I Ont primers were obtained from Regional DNA Synthesis Lab, Calgary, 

Al berta. Twenty nt primers were synthes ized by Laboratoire d'Analyse et de Synthese 

d'Acides Nucl eiques, Universite Laval , Quebec, Canada. Primer sequences are provided 

in Table 2-2 for "Phylogeny" , and Appendix A for "S pecies-Specific Markers" 

2.2e Phylogenetic Analysis: 

Crude sequence alignments were performed o n a Maclntosh computer using 
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Table 2-1 Strains of Armillaria showing name of collector, host species on which it 
was collected, and location of collection . 

Sample Collector Host species Location 

1 DMR 20 T Harrington Abies halsamea Wildcat MI. , NH, 
USA 

1 BOW PK 1 Berube Undetermined wood Bowring Park, St. 
debris John's, NF 

I JB 08 1 Berube Acer saccharum Oka, Ottawa River 
Valley, QC 

[JB 09 1 Berube Belliia poplilifolia Sainte-Therese, 
north Montreal , QC 

[JB 13 1 Berube Betliia papyri/era Chicoutimi, Lake St-
Jean, QC 

[GG 12D 1 Berube Pinus banksianG Chicoutimi, Lake St-
Jean, QC 

[NOF 1076 Y. Hiratsuka Pinlls cmllor/a Hinton, Alberta 

[NOF 830 FJ.Emond Pinus con/orla Cow Lake, Alberta 

II JB 38 Berube Acer saccharum Duchesnay, near 
Quebec City, QC 

II JB 39 Berube Acer saccharum Duchesnay, near 
Quebec City, QC 

II 160-8 1 Anderson Undetermined Smuggler's Notch, 
VT, USA 

II JB 85 1 Bembe AceI' saccharum Bromont, Eastern 
Township, QC 

III JB 56 Berube Acer saccharum St.-Ange, Beauce, 
QC 

III JB 61 1 Berube unknown Donnaconna, near 
Quebec City, QC 

V 83 91 C. G. Shaw III unknown Petersburg, Alaska 

V 48-3 1 Anderson unknown Ithaca, NY,USA 

V J8 75 1 Berube Ace,. saccharum St-Odilon, Beauce, 
QC 

V J8 66 1 Berube Acer saccharum St-Odilon, Beauce, 
QC 
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V Bow Pk 1. Berube American Mountain Bowring Park, 
Ash Newfoundland 

V JB 07 1. Berube Ace,. saccharum Bromont, Eastern 
Townships, QC 

V JB 72 1. Berube Acer saccharum St.-Odilon, Beauce, 
QC 

V JB 19C 1. Berube Pinus strobus St.-Jean, Vianney, 
Lake St.-Jean, QC 

VI PD 37 1. Berube Quercus alba Oka, Ottawa River 
Valley, QC 

VI KJS-6 T. Harrington Acer I'uhrllm New Market, NH, 
USA 

VI GB 898 D. Bills unknown / Augusta Co, V A, 
Hardwoods USA 

VI 97-1 Anderson Acer ruhrum Provincetown, MA, 
USA 

VII 90-10 Anderson Fraxinlls americana Burlington, VT, 
USA 

VII HHB 11912 H.H. Burdsall dead Ulmus Madison, WI, USA 

IX TJV 179-1 T Volk Picea sitchensis Jefferson Co, W A, 
USA 

IX TJV 200 T Volk Acer sp. Olympic national 
Park, Jefferson 
County 

IX TJV 188-4 T Volk Acer macrophyllul11 Olympic national 
Park, Jefferson 
County 

IX 121-2 1. Anderson AceI' macrophyllum Vancouver, Be 
IX 139-1 1. Anderson soi 1 surface Moscow, Idaho 

X SP812015 D. Morrison conifer stump South of Nelson, BC 
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Tab le 2-2 : Primer sequences used to obtain monomorphi c fragments in eight NABS 
Armillaria. 

Primer 

V 250a 

V 250b 

III 180a 

III 180b 

[[] 520-1 

1II 520-2 

83 

66 

I Primer sequence (5'-3' ) 

CGA ACT GAT CGT CGT CGA 

GTT TCG AAC GCG AAT ATG CTC 

ACC ACA TCC TTG TCG CCG AG 

GTG GTT GAT GAG ATT GTT CG 

CAT GGT CGC TAC TTA CTC TGA TAA CGG 

GAG TTG ACG TAG ACT AC 

GGG CTC GTG G 

GAG GGC GTG A 
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Seq Ed, vers ion 1.0.3 (Applied Biosystems) fo llowed by manual adj ustment. The 

phylogeny was produced with PAVP vers ion 4 .0dS2 and by permission of D . Swofford, 

us ing NABS VI as the outgroup. The following PAUP parameters were used : random 

stepwise addi tion sequence, nearest neighbour interchange branch swapping algori thm , 

characters had equal weights, 10 heuristic replicates for each of the 100 bootstrap 

replicates, and 50% majority rul e consensus w ith maximum parsimony_ Due to technical 

limi tations a constrai nt was placed on analysis of the data set produced by III1 80. No 

more than 90,000 trees were saved with a length ~ 20, rather than saving all optimal trees. 

2.2/ Molecular Clock: 

A distance matrix from aligned sequences for the combined data set was produced 

using Seq Ed, version 1.0.3 (AB I) , and manually corrected for miss ing data. Divergence 

times were calcul ated using the methods described in Berbee and Taylor (1993), w ith 

minor modifications . Substitution rates for groups of lineages were not normalized as 

they were in Berbee and Taylor (1993). Hence, divergence times represent actual 

di stances . 

2.2g Inl'erse PCR: 

Inverse pe R was employed to obtain DNA regions fl anking the nested 20nt primer 

si tes. Inverted 20nt primers were made from the center of the sequence amplified wi th 

primers 17 and 127, specific for NABS V and X. Genomic DNA was quantified on 
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Hoefer TKO 100 Fluorometer (Hoefer Scientific Instruments) and 0.5~g/~L gDNA was 

digested with the appropriate restriction enzyme. Restriction enzymes with recognition 

sites within the sequence to be amplified were not used in the digestion . Digestion 

reactions contained 0.2-1 .0 ~g/~L gDNA in a volume of 20~L. Sterile distilled water was 

mixed with DNA to give a volume of 18~L. Two ~L of the appropriate restriction 

enzyme buffer was mixed with the solution before 2 units of the enzyme was added. 

Reaction components were incubated at the appropriate temperature for 4 hours 

(Manniatis et aI. , 1982). The reaction was stopped by adding O.5M EDT A (pH 8.0) to 

a final concentration of IOmM . Digested DNA was purified by extraction with 

phenol :chloroform (I I) (modified from Manniatis et aI. , 1982). Dessicated DNA was 

resuspended in a Ligation buffer to a concentration of O.2~g/mL (modified from Ochman 

et aI. , 1990). Ligation reaction was initiated by adding I unitiuL t4 DNA ligase. Reaction 

components were incubated at 15' C for 16 hours, followed by precipitation with salt and 

ethanol. PCR components were identical to those in regular PCR, but changes in the 

cycle consisted of 35 cycles of 30 seconds denaturation at 94' C, 30 seconds annealing at 

50°C, and 2 minutes extension at 70°C, 

2.211 Purificatioll of peR product: 

PCR product was visualized on 1% NuSieve (FMC) 2% agarose (Sigma) gel in 

0.5X TBE buffer by staining with ethidium bromide and fluoresced with UV light 

Agarose plugs were removed from bands and DNA was resuspended in I OO~L water, and 
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heated to 70"C for 30 minutes. DNA was purified with Magic PCR Preps DNA 

Purification system (Prom ega), and re-amplified in 3 volumes of I OO~L reactions. Three 

I OO~L reactions were pooled for each sample, and again purified with the Magic PCR 

purification kit. 

2.2; Seqllencing: 

Purified DNA was quantified on Hoefer TKO 100 Fluorometer (Hoefer Scientific 

Instruments) , and subjected to e lectrophoresis on agarose gels as described in "Purification 

of PCR product" DNA was sequenced on an Automated 373A DNA Sequencer (ABI) 

using the Prism Ready Reaction DyeDeoxy Terminator Cycle Sequencing Kit (ABI). 

Cycle sequencing reaction involved 25 or 30 temperature cycles (depending on the 

primers used) of denaturation at 98' C for I second, annealing at 45' C or 50' C (depending 

on the primer used) for 15 seconds, and extension at 60' C for 4 minutes. 

Sequences were deposited in Genbank with accession numbers corresponding to 

samples in Table 2-3 ; AFO I3777 to AFOl3797 (for V250), AFO 145 14 to AFOl4533 (for 

83/66), AFO l4534 to AFOl4556 (for 1lI 180), and AFO 14557 to AFOl4579 (for IIT520) 

Sequence alignment is shown in Append ix G . 
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2.3 SECTION & Phylogeny 

2.3A RESULTS 

2.3A.a Analysis oj individllal fragments: 

The V250, 1II520 and 83/66 fragments were more variable and produced a larger 

number of phylogenetically informative sites than the IIIISO fragment (Figure 2A-l). The 

data set for III 180 contained a larger number of constant characters than the other three 

data sets (Figure 2A-I). Hence, this data set produced a large number of unresolved 

taxonomic groups (Figure 2A-2B). 

Different groups of taxa were identified by each of the four data sets. Sample sets 

are listed in Table 2-3 . Monophylies for NABS 1I, III and VTT were produced by primer 

set V250. Primer 111520 identified a significant monophyletic clade for NABS IX, and 

83/66 produced weakly supported monophylies for NABS I, 1Il and IX (Figures 2A-2 and 

2A-3) 

The data set from V250 had the largest number of characters (Figure 2A-l) and 

produced the highest degree of resolution of taxa (Figure 2A-2). The TTTI80 data set 

contained a larger number of characters than the TTT520 or 83/66 data sets, yet had a lower 

Consistency Index (CI) (Table 2-4), indicating that the type of characters within the data 

set were affecting the outcome of the analysis . 

2JA.b Phylogenetic signal and congruency: 

The data sets were tested for phylogenetic signal by analysis of frequency 
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Table 2-3 Armillaria isolates amplified by the primer sets indicated at the top of each 
column. Isolate names correspond to those in Table 2-1. This table illustrates the layout 
of the combined data set in the NEXUS file for PAUP . Isolate names in the first co lumn 
(V250) were used to label all branch termini in the topologies 

V-250 I ill-ISO I lJ1-520 83/66 

I DMR 20 I DMR 20 I DMR20 I NOF 1076 

I Bow Pk I Bow Pk I Bow Pk I Bow Pk 

I JB 08 I JB 08 1m 09 1m 09 

I GG 12D I GG 12D I GG 12A 1m 13 

II m 39 II m 38 1m 38 II m 38 

II 160-8 II 160-8 II 160-8 Missing 

II m 85A II m 85A II m 85B II m 39 

TIl m 56 TIl m 56 TIl m 56 TIl m 56 

III m 61D III m 61D III m 61D III m 61D 

I NOF 830 I NOF 830 I NOF 830 I NOF 830 

V 83621 V 48-3 V 48-3 V 48-3 

V m 75B V m 75B V m 75B V m 66 

V Bow Pk V Bow Pk V m 72 V Bow Pk 

V m 07 V m 07 V JB 19 V 83911 

VI PD 37C VI PD 37C VI PD 37C VI GB 898 

VI KJS-6 VI KJS-6 VI KJS-6 VI 97-1 

VII 90-10 VII 90-10 VII 90- 10 VII 90-10 

VII HHB 11912 VII HHB 11 912 VII HHB 11912 VII HHB 11912 

IX TJY 179-1 IX TIV 179-1 IX TJY 179-1 IX TJY 179-1 

IX TJY 200-9 IX TIV 200-9 IX TJV 200-5 Missing 

Missing IX TJV 188-4 IX 121-2 IX TJY 188-4 

Missing IX 139-1 IX 139-1 IX TJY 188-4 

X SP8 12015 X SP812015 X SP812015 X SP812015 



Figure 2A-I : Character information content for each of the nucleotide data sets 

amplified by the four primer sets, V250, IIl180, IIl520 and 83/66, comparing total 

number of characters, number of constant characters, number of phylogenetically 

uninformative characters and number of phylogenetically informative characters. 
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Figure 2A-2: Phylograms based on nucleotide sequences amplified by A: V250 for 

224 base pairs, showing highest degree of resolution of the four data sets, and B: 

Inl80 for 177 base pairs, showing lowest degree of resolution, for eight of the NABS 

Armillaria, using two isolates of NABS VI as outgroup. Numbers indicate bootstrap 

proportions from 100 bootstrap replicates. Horizontal branch length is proportional 

to distance and tree was obtained using maximum parsimony. 
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Figure 2A-3 : Phylograms based on nucleotide sequences amplified by A: III520 for 

122 base pairs, and B: 83/66 for 150 base pairs, both showing moderate degrees of 

resolution, for eight of the NABS Armillaria, using two isolates of NABS VI as 

outgroup. Numbersindicate bootstrap proportions from 100 bootstrap replicates. 

Horizontalbranch length is proportional to distance and tree was obtained using 

maximum parsimony. 
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Table 2-4 : Evaluation of frequency distributions of 5000 randomly sampled tree 
lengths for phylograms of four primer sets, V-250, III-180, III-520, 83 /66 and the 
combination data set (four primers) showing consistency index (el), homoplasy 
index (HI), actual tree length (parsimony), mean tree length (random sample), 
standard deviation (SD) and gl (skewness index). 

Primer set CI HI Actual Mean SD gl 
tree tree length 
length (random) 
(parsi-
mony) 

V-250 0.795 0.205 307 448 11.4 -0.89 

III-I 80 0.537 0.463 108 124 3.2 -0.69 

111-520 0.694 0.306 206 302 9.5 -0.55 

83 /66 0.774 0.226 217 266 4.9 -0.95 

Combined 0.716 0.284 790 1141 21.3 -0.62 
four 
primers 
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distributions of 1000 random trees . Frequency distributions were all skewed to the left 

as shown by negative g I values (Tab le 2-4), and length of each most parsimonious tree 

of four of the five data sets was at least one standard deviation shorter than the shortest 

of the random trees (Tab le 2-4) . Shape of the frequency distributions is indicated by the 

g I val ues, the range, and the number tree lengths less than the mean of the random tree 

lengths (Table 2-4). The length of the 1110st parsimonious Illl80 tree was within the 

range of random tree lengths (p~O. 1 5) , but the g I value was negative (Tab le 2-4) . 

Congruence of the four data sets was measured by applying Kashino and 

Hasegawa's (1989) likelihood test. Because each data set contained slightly different taxa 

due to missing data, topologies of the correspondiog combined trees were compared 

(Figure 2A-4). The V250 tree was the only tree congruent with the combined tree (Table 

2-5). However, due to the insufficient resolution of each individual tree, the four data sets 

were combined to produce a final tree which was supported by existing hypotheses. 

2.3A.c Phylogenelic analysis: 

The combined data set separated the eight species into three clades; NABS I , II 

and all other NABS Armillaria (Figure 2A-5). Three isolates of NABS J were separated 

by large geograph ical distances but remained very simi lar with a bootstrap value of 99% 

Variability with in NABS [ was indicated by relatively weak bootstrap support of 67% for 

the entire clade of five isolates. NABS II formed a strong monophyletic group supported 

by 99% bootstrap value (Figure 2A-5). 



Figure 2A-4: Phylograms from 100 bootstrap replicates of the four combined data 

sets corresponding to: A: V2S0-Two isolates of NABS IX were removed so taxa 

would match those in V250 data set, B: 83/66-0ne isolate of NABS II and two 

isolates of NABS IX were removed to match taxa in 83/66 data set, and C: 1II520, 

1Tl180, and combined set - Nothing was removed since taxa in 1I1520, 1I1180, and 

combined set were all the same. This tree is identical to the phylogram in Figure 2A-5 . 

The topology among A, Band C is more similar than the topology between V250 

(Figure 2A-2) and the combined set (Figure 2A-5). V250 and the combined set were 

statistically congruent (Table 2-5). 
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Table 2-5 : Results from Kashino and Hasegawa (1989) likelihood tests comparing each individual 
tree with the tree from the corresponding combined set for congruency. Maximum parsimony 
trees from 100 bootstrap replicates of the modified combined sets (Y250 and 83/66) are shown 
in Figure 2A-4. Each individual tree is considered significantly worse than the tree produced 
from the combined data set in explaining the combined sequences, when the difference of log 
likelihood is more than twice the standard deviation . 

Trees Log Difference of Standard Significantly 
Likelihood Log Deviation worse? 

Likelihood 

*Y250 -3416.87 20.71 21.67 No 
Combined -3396.17 (Best) 
tree (omitting 
appropriate 
taxa to match 
Y250) 

III I 80 -4364.82 848A5 102.39 Yes 
1II520 -3879.77 363AO 61AI Yes 
Combined -3516.37 (Best) 
tree 

*83/66 -368131 356.89 53.29 Yes 
Combined -3324A2 (Best) 
tree (omitting 
appropriate 
taxa to match 
83/66) 

*Combined set was modified to correspond with the taxa present in the individual sets for 
likelihood comparisons 



Figure 2A-5: Phylogram based on combined nucleotide sequences from four primer 

sets for 23 taxa of eight NABS Armillaria using two isolates of NABS VI as 

outgroup. A single most parsimonious tree from 100 bootstrap replicates was 

produced. Horizontal branch length is proportional to distance,and tree was obtained 

using maximum parsimony. 
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NABS Ill, Y, VII, IX and X formed the third clade in the phylogenetic tree 

(Figure 2A-5). NABS HI and VII formed a monophyletic group with strong bootstrap 

support (93%) NABS IX formed another monophyletic group but bootstrap support was 

weak (61 %). The resolution of isolates of NABS V was poor and indicated 

polymorphism withi n the sequences examined. NABS X was weakly associated with 

NABS II] , VII, and part of V. The combined data set contained missing sequences and 

ambiguity at some character positions (unpublished data) . 

Although minimum-length networks from each of the four separate data sets were 

very simi lar to the trees produced by maximum parsimony (Figures 2A-2 and 2A-3), there 

were minor differences in 83/66 data set, and there was a much higher degree of 

resolution in the 111180 network (Figure 2A~6B) than the corresponding parsimony tree 

(Figure 2A-2B). 

Neighbour joining (N}) analysis inferred a phylogeny (Appendix B) that was 

consistent w ith phylogenetic relationships produced by maxim um parsimony. 

Comparison of each of the sequences with those in Genbank, using the search 

algor ithm BLAST, showed very little similarity with known sequences 

2.3A.d Molecular clock: 

NABS VI was placed at 30 million years (Ma) based on fossil evidence from 

closely related Agar icales (Hibbett et ai. , 1995) . The phylogeny was superimposed on the 

molecular clock (Figure 2A-7) based on a calibration point of 30 Ma. 



Figure 2A-6: Minimum-length network diagrams based on nucleotide sequences of 

A: V250, B: III180, C: III520, and D: 83/66 comparing variation to a consensus 

sequence. Substitutions were detennined manually to illustrate all substitution changes 

among taxa. Length of branches correspond to number of substitutions. Transition : 

transversion ratios are indicated on each branch. S=transition, V=transversion, 

del~deletion, and ins~insertion . Taxa epithets correspond to those in Figure 2A-5. 
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Figure 2A-7: Divergence times of NABS Armillaria estimated from phylogeny 

(Figure 2A-5) showing branch lengths proportional to the average percent nucleotide 

substitutions (Table 2-6). Dashed line indicates a large amount of variation around the 

divergence. PI is Pliocene, Pt is Pleistocene, Qt is Quaternary, and R is Recent in the 

time scale. 
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DISCUSSION 

2.3B.a Analysis of individual ji-agmenls: 

Sequences of fragments obtained with Y250, 83/66 and 1II520 were more variable, 

and provided a larger number of phylogenetically informative sites than the IIIl80 

sequences (Figure 2A-l). Each of the four data sets resolved different groups of species, 

yet produced a resolution from the combination of the four data sets that was supported 

by other studies (Anderson and Stasovski, 1992). The Y250 tree resolved NABS lI, III 

and Yll supported by bootstrap values of 100%, 100% and 79% respectively. 

Interestingly, NABS IX-TIVI79 formed a significant monophyly with three isolates of 

NABS I for this primer set only (Figure 2A-2). This isolate of NABS IX was the only 

one collected from a softwood host, forming a synapomorphy with NABS I, which was 

also from softwood hosts. The connection between NABS I and IX may be coincidental 

since sample size was limited, and only two kinds of host were examined, softwood and 

hardwood . Although primer III 180 alone did not resolve any groups (Figure 2A-2), the 

network diagram and skewness index (g I ~-0.69) indicated there was phylogenetic 

information present in the sequence. Primer [[[520 resolved NABS IX with bootstrap 

support of 99%, and 83 /66 resolved NABS I, III and IX with bootstrap support of 80%, 

57% and 72% respectively (Figure 2A-3). The combined tree resolved all NABS except 

NABS Y, which was partially resolved (Figure 2A-5). Separate data sets also failed to 

resol ve all isolates of NABS Y. 

The numbers and types of characters present in each of the four sequence data sets 
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yielded insight into the relative contribution of each type of character to the amount of 

phylogenetic information resolved (Figure 2A-I). The total number of characters in the 

V250 fragment was high and the number of constant characters was moderate to low 

compared to the other three fragments (Figure 2A-I). Analysis of this V250 fragment 

produced a phylogenetic tree yielding the highest resolution, as indicated by the highest 

consistency index and lowest level of homoplasy (Table 2A-4), topology of the tree 

(Figure 2A-2A) and the network (Figure 2A-6). 

Analysis of the data set containing the second longest fragment (1II1SO) produced 

the tree yielding the least information of the four fragments (Figure 2A-2B) which is also 

reflected in the character information content. Fragment 1II ISO had a large number of 

constant characters compared to the other three fragments (Figure 2A-I) indicating the 

fragment was more conserved than the others The actual number of informative 

characters was the lowest of the four fragments which may have resulted in unresolved 

intraspecific clustering (Figure 2A-2B), a low consistency index and a high homoplasy 

index (Table 2A-4). Although maximum parsimony produced an unresolved tree (Figure 

2A-2B) the network for IIIISO formed clusters of related groups sharing substitutions 

including complete resolution for NABS III and VII, as well as the group of NABS 1 and 

II (Figure 2A-6). 

The remaining two data sets, from 111520 and S3/66, contained smaller number of 

total characters, and the number of informative characters, HI, and CI were intermediate 

between those in V250 and 1II ISO . The information gained from the branching pattern of 
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phylogenetic trees of 1II520 and 83 /66 was also intermediate. The network for III520 was 

in agreement with the phylogenetic tree, but the network for 83 /66 produced varied 

results. It resolved NABS VII, and the clade NABS III and VII, but dissolved NABS IX. 

The high degree of variation within this sequence was evident in the low bootstrap values 

for the monophylies (Figure 2A-3B). 

By comparing the character information content with the branching patterns of the 

phylogenetic trees, the actual number of informative characters within a sequence seems 

to be the most important factor influencing the information presented by the branching 

pattern of the phylogenetic tree. The number of constant characters may be a measure of 

the degree of conservation of the fragment within the genus. Generally, the longer the 

sequence the greater the chance there will be more informative characters present. This 

notion was not supported by the information content and the length of fragment lIII80 

(Figure 2A-2B). 

2.3B.h Phylogenetic signal and congruency: 

The fragments amplified by each of the four primer sets were the same length, and 

were present in most isolates of all NABS, indicating that the regions amplified were well 

conserved and therefore good candidates for a phylogenetic study. Frequency 

distributions of tree lengths, homoplasy and consistency indices were used to test whether 

tbe data contain more phylogenetic signal than would be expected purely by chance 

(Table 2-4). Frequency distributions of tree lengths of each of the individual trees as well 
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as the combined tree were all skewed to the left, as indicated by the negative g I values 

(Sokal and Rohlf, 1981) (Table 2-4), indicating presence of phylogenetic signal in the data 

set (Hill is and Huelsenbeck, 1992). The lengths of the parsimony trees were located at 

least one standard deviation below the shortest in the frequency distributions (except 

IIl180) (Table 2-4), indicating the tree length obtained by maximum parsimony was 

significantly shorter than a tree produced with random data (p<0.05). Since p~0.15 for 

the tree produced by ITT 180, the most parsimonious tree cannot be considered sign ificantly 

different from a tree produced from random data. However, the negative g 1 value 

supports inclusion of this data set in the combined analysis. Although the function and 

location of the fragments within the genome was unknown, the left-skewed frequency 

distributions of tree lengths and the location of the tree length obtained by maximum 

parsimony outside the 95% confidence intervals, supports the use of these fragments in 

a phylogenetic study. Consistency indices (CI) were 0.49 to 0.71 , and homoplasy indices 

(HT) were 0.28 to 0.50. Archie (1989) critically evaluated the CI and reported that the 

CI was insensitive in data sets where the number of trees outnumber the characters, and 

when the absolute levels of homoplasy increase. This may be occurring in the III 180 data 

set. The CI of the combined data set was more or less an average of the four separate 

sets (ca. 0.65). Since the combined set produced the most highly resolved tree, and CI 

was lower than in each of the best trees from the individual sets , then it would seem 

appropriate to conclude that the CI is not a reliable measure to compare IIbest" trees 

among different data sets. However the Cl may be used as a general measure of 
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consistency within a data set, comparing the fit of the most parsimonious tree to that data 

set 

Congruence among independent data sets and their combinations provides strong 

evidence for a phylogenetic hypothesis (Hillis, 1987). Kluge (1989) argued for "total 

evidence" in a phylogeny. He suggested that it was not necessary for individual results 

to be consistent with the combined result, since the explanatory power of the data in the 

combined analysis would then be maximized. The use of more than one data set would 

increase the size of the sequence data available so that the trees obtained may converge 

toward the one true tree (Quicke, 1993). However, Miyamoto and Fitch (1995) believed 

that individual analyses should be performed on the data sets because separate analyses 

may provide insights into evolution of the separate data sets . The insights for the separate 

data sets in this study were discussed with reference to analysis of individual fragments, 

but the individual fragments provided insufficient resolution to justify using them 

individually. The combined analysis of these data sets emphasizes the value of Kluge's 

(1989) "total evidence" concept to maximize the explanatory power of the data. Tn this 

study results obtained from the combined data set were in agreement with a previous 

phylogenetic hypothesis (Anderson and Stasovski, 1992) and morphological groups 

(Berube and Dessureault, 1989). 

It was not possible to test likelihoods of trees containing different numbers and 

kinds of taxa, so taxa were removed in the combined set corresponding to the missing 

taxa in the individual sets , and the individual trees were tested against the corresponding 
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combined set. Since statistical analysis could not be performed on each of these 

combined trees, Figure 2A-4 provides a comparison of topology. The topology among 

these trees is more simi lar than that between the V250 tree and the combined tree which 

are considered congruent by the likelihood test (Table 2A-S). 

The Kashino and Hasegawa (1989) likelihood test was applied to the four separate 

data sets in this study. The question addressed was whether the most parsimonious of 

each of the individual trees was significantly worse in explaining the data for the 

combined analys is, than the tree produced from the combined data set. The V250 tree was 

not significantly worse, but the other three trees were significantly worse than the tree 

from the combined data set, suggesting that the data sets were not congruent and do not 

readily support combining data sets. However, if different data sets are samples of the 

same species history, yet by themselves they incomplete ly resolve the phylogenetic 

history, it wou ld seem appropriate to combine them in the same way that longer 

nucleotide sequences would improve resolution or a larger number of morphological 

characters would improve resolution . Since each of the four fragments were chosen from 

random segments of the DNA, with the only criterion that 1I:hey be conserved within the 

genus, then the final result is that the length of DNA seque nce has been increased to a 

size sufficient to resolve a phylogenetic history. 

A parsimony based incongruence test, ILD (Farris et aI. , 1995) was applied to the 

individual data sets in this study. Cunningham (1997) show-ed that the ILD was the best 

of three tests to distinguish degree of incongmence betweell1 genes. Interpretation of the 
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p-value (p=O.OO 1) warrents discussion of the phylogenetic trees. Individual trees resolved 

specific groups leaving others unresolved. Farris et al. (1995) suggested that the ILD is 

large when groups that are well supported by one tree conflict with groups well supported 

by another tree. Discrepancy among groups in this study was not a result of incongruent 

fully resolved trees, but rather because different components of each data set were 

resolving different groups, leaving a lack of information available to form the remainder 

of the tree 

Sequences did not match any entries from Genbank. Possible identifications of 

each of the fragments may have been an unused protein-coding sequence such as a 

pseudogene, or an intron, or non-coding DNA since start and stop codons were present 

throughout the sequences (unpublished data). All transition/transversion (SlY) ratios were 

greater than one except in the 83 /66 fragment (Figure 2A-6). Transitions are more 

common than transversions in protein coding genes (Mason, 1991). Since the fragments 

in this study were chosen randomly and were of unknown function and location, they may 

be part of pseudogenes or introns in nuclear DNA with lower SlY ratios than mtDNA, yet 

evolving fast enough to accumulate more transitions than transversions (except 83/66). 

The 83/66 fragment may contain more non-coding DNA undergoing less evolutionary 

constraint, or has been a pseudogene for a longer period of time than the other three 

fragments, and hence transversions could accumulate at the same rate as transitions. More 

transitions were apparent in the shared substitutions in the networks, and transversions 

became more common near taxa differentiation (Figure 2A-6), indicating that 
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transversions signify changes in amino acids responsible for taxa differentiation. 

Alternatively, if transitions accumulate at a constant rate, and the terminal branches 

become saturated with transitions, it would appear that there were fewer transitions than 

transversions . 

2.313.c Phylogeny of Armillaria: 

Both parsimony and distance analyses indicated similar relationships among NABS 

Armillaria. Most of the sequence variation was between rather than within species. 

Initial observations of the combined phylogenetic tree of NABS Armillaria (Figure 2A-S) 

indicated that one group of species, NABS 1Tl , V, VII, IX and X, were more similar to 

one another than to NABS I , II and VI. This observation was also supported by similarity 

analysis (Appendix B). 

NABS VI is a temperate and tropical species with a wide distribution found in 

both Northern and Southern hemispheres, and is parasitic on hardwood hosts. It was 

therefore chosen as the outgroup. It has been considered the most divergent of the North 

American species (Anderson and Stasovski , 1992) based on morphological features 

(Berube and Dessureault, 1988), the lack of clamp connections on the basidia (Korhonen, 

1978), and a larger rONA repeat, placing it in an rONA ciass of its own (Anderson et aI. , 

1989), and mtDNA digests (Anderson and Smith, 1988). Preliminary analyses using 

sequences of A. labeseens as the outgroup always placed NABS VI basal to the rest of 

NABS Armillaria (unpublished data). Isolates of NABS VI grouped together with a large 
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number of common base substitutions in the networks which were based on direct 

similarity to consensus sequences (Figure 2A-6), further supporting the choice of VI as 

outgroup. 

NABS III and VII. The close phylogenetic relationship hypothesized by Anderson 

and Stasovski (1992) and Smith and Anderson (1989), between NABS III and VII, was 

supported by this study. NABS III and VTl formed a monophyletic cluster with a 

significant bootstrap proportion of 930/0 in both parsimony and neighbour joining 

cladograms (Figure 2A-5). NABS III and V[] were both found in the same rONA class 

(Anderson et aI. , 1989) based on restriction maps of rONA. They show similarity in 

cluster analyses of RFLPs of mtONA (Smith and Anderson, 1989), in fruit body 

morphology (Berube and Dessureault, 1989), and are considered closely related species 

based on intergenic (IGR) sequences of rONA (Anderson and Stasovski, 1992). They are 

also found as weak pathogens or saprotrophs on hardwood hosts. NABS III and VTl are 

both distributed in eastern North America, but the European counterpart of VII, A. IlIlea, 

is distributed widely in Europe and far east Asia. Consequently, NABS VII may have 

given rise to the more narrowly distributed NABS Ill. 

Anderson et al. (1989) placed the European species, A. cepislipes, in the same 

rONA class as III and VII. A.cepislipes exhibits very low interfertility with NABS V 

(Berube et aI. , 1996) and is partially interfertile with NABS X (Anderson et aI. , 1980). 

It is not surprising in this study that isolates of NABS V and NABS X formed a 

paraphyletic group with the clade containing NABS III and VII in both cladograms 
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(Figure 2A-5), which implies a close relationship between the monophyletic clade, NABS 

III and VII, and the more variable clade, NABS V, IX and X. This is consistent with 

IGR sequences in which V, IX and X form a close common ancestry with III, VII and A. 

cespislipes (Anderson and Stasovski, 1992). 

NABS V, IX and X In this study four isolates of NABS IX formed a monophyletic 

clade weakly supported with 61% bootstrap value in the phylogram (Figure 2A-5). 

Missing data in three of 16 fragments may explain the low bootstrap value in this study 

(Table 2A-3). NABS IX may have diverged from the same common ancestor that gave 

rise to NABS V and X This is consistent with phylogenetic analysis of IGR sequences 

of rDNA of Armillaria placing NABS IX more distantly related to V and X (Anderson 

and Stasovski , 1992). Anderson et al. (1989) showed that NABS V, IX, and X formed 

the same rDNA class 4. Further evidence supporting their relatedness was given in Miller 

et aJ. (1994) who were unable to resolve relationships among III, VII, V, IX and X based 

upon DNA reassociation values . However, Harrington and Wingfield (1995) were able 

to distinguish NABS IX from other NABS Armillaria using RFLP-PCR. NABS V is 

distributed across temperate North America and Japan and is found on hardwoods. Both 

NABS IX and X are small populations found on the west coast of North America but IX 

generally colonizes hardwoods (Volk et aI. , 1996) and X colonizes conifers (Anderson et 

aI. , 1980; Morrison et a\. , 1985b). NABS IX and X may be derived from the more 

widely distributed NABS V, a hypothesis consistent with shared morphological features 

of NABS V and IX such as absence of scales, small black hairs present on the surface 
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of the pileus and a more orange coloration than other species (Berube and Dessureault, 

1988; Volk et aI. , 1996). 

Two isolates of NABS V (VBowPk and V JB07) were collected a long distance 

(more than 2000 Km) apart, in Newfoundland and Quebec, respectively . The phylogenetic 

position of the other two isolates of NABS V, V83621 and VJB75 , collected from New 

York and Quebec respectively, was unresolved, but both groups of NABS V remain 

within the clade containing NABS X and a clade of NABS IX. The paraphyly of isolates 

of NABS V indicated a high degree of polymorphism within the sequences relative to the 

other species (Figure 2A-5). Isolates of NABS V also seem to be variable with respect 

to pathogenicity (Mallett, 1990). This variation may be an indication of a recent sympatric 

speciation of NABS V, IX and X which was discussed by Anderson et al. (1989) and 

Miller et al. (1994) as occurring between NABS I and II. The phylogenetic position of 

NABS X was unclear since only a single isolate with ambiguous sequence was used in 

this study. 

NABS I and II. Despite the large geographical separation of the isolates, IDMR20, 

IBowPk and INOF830, they remained phylogenetically similar with a significant bootstrap 

value of 99% (Figure 2A-5) . The addition of two more isolates , IJB08 and IGG 12, 

reduced the bootstrap value to 67% for the clade containing NABS I. Host species for 

the five isolates consisted of a mixture of softwoods and hardwoods (Tables 2A-1 and 3) 

which may partially explain the variation. NABS I has also been considered variable in 

its degree of pathogenecity (Rishbeth, 1982; Guillaumin et aI. , 1983) and in fruit body 
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morphology (Berube and Dessureault, 1988). 

This study indicated that there was less variation in DNA of the narrowly 

distributed NABS 11 (Bootstrap proportion (BP)~99%) than that of the widely distributed 

NABS 1 (BP~67%), but there was a distinct separation between NABS I and NABS II 

based on parsimony results (Figure 2A-5). This may be explained in several ways. First, 

the NABS II clade may be an artifact resulting from inherent characteristics of the 

samples collected and the collection sites, suggested by the high bootstrap value 

associated with three isolates of NABS II forming an ancestral position to NABS I 

(Figure 2A-5). Second, these four sequences may indeed represent divergence between 

NABS 1 and 11, since the high bootstrap value (94%) uniting the clade NABS I with the 

other clade containing NABS III, VII, V, IX and X, significantly excludes NABS 11 from 

the cluster. Nevertheless, the high bootstrap value (100%) connecting NABS II with all 

other NABS rellects the strong relationship between NABS II and all other NABS 

Armillaria (excluding NABS VI). Thirdly, NABS [ and II shared substitutions in the 

III520 and III 180 sequences, but substitutions were shared by NABS VI and 11 in V250 

and 83/66 sequences (Figure 2A-6). In contrast, Miller et al. (1994) showed that isolates 

of NABS I and II phenetically clustered tightl y together based on DNA reassociation 

measures . But the present study, based on four sequences, may more accurately rellect 

other differences between these two species such as differences in virulence and 

rhizomorph morphology (Korhonen, 1978; 1980). Consequently, the synplesiomorphy of 

occupying a hardwood host, as well as sequence similarity among isolates of NABS II 
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and VI in this study, may provide conditions sufficient for the NABS II monophyly to 

appear ancestral to NABS L NABS 11 , being limited in distribution, may have diverged 

from the widely distributed NABS I as supported by networks of fragments IJIl80 and 

III520 (Figure 2A-6) . This type of sympatric speciation was suggested by Anderson et 

al. (1989) and supported by Anderson and Stasovski (1992). Alternatively, sequences 

from V250 and 83/66 may have represented paralogous genes from NABS" and VI. 

2.3B.d Molecular Clock: 

Calculation of substilulion rales. Rates of substitution vary among lineages of 

Armillaria (Appendix C). Since two isolates of NABS VI were used as the outgroup, and 

their distances were similar to one another, calculation of all relative rates was determined 

using isolate VIP037 . The distance from VIP037 to present was determined by 

calculating the midpoint between lowest and highest dissimilar values in the distance 

matrix, rather than the average of dissimilarity values, or dissimilarity with consensus 

sequence. A midpoint would eliminate any bias toward short or long branches. However, 

the midpoint calculated as 14.60% was very similar to the average of 14.33%. In contrast 

to Berbee and Taylor (1993), substitutions for lineages were not normalized, and relative 

rates were based on distance. Since the use of genetic distance assumes equal amounts 

of homoplasy across taxa, Mindell and Thacker (1996) discouraged the use of genetic 

distance in relative rate tests. However, topologies between the neighbour joining 

distance (Appendix B) and parsimony based (Figure 2A-5) trees were very similar in this 
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study . Rate variation between isolates , indicated by the staggered end points of the 

terminal branches (Figure 2A-5), would also affect molecular clock estimates of 

divergence times . Divergence times of basal branches were calculated using two of the 

highest and two of the lowest dissimilarity values to obtain an average to represent the 

divergence. Divergences occurring near terminal branches were calculated as an average 

of all possible rates for each divergence. 

Berbee and Taylor (i 993) provided molecular evidence that the Basidiomycetes 

emerged 200 to 300 Ma at the beginning of the Mesozoic, and that mushrooms appeared 

about 130 Ma, coinciding with the radiation of the Angiosperms. The origin of 

AgaricaJes in the Mesozoic era is suggested by their present day involvement in 

ectotrophic symbioses leading to the evolution of the Pinaceae (Pirozynski , I 976). 

Divergence of mushroom groups, Athelia and Spollgipellis, occurred approximately 120 

Ma (Berbee and Taylor, 1993), and the divergence of Coprinus was even more recent 

(Bruns et aI. , 1992). 

The oldest fossil gilied mushroom was found in the mid-Cretaceous (90-94 Ma). 

A more recent finding was dated 25-30 Ma (Hibbett et aI. , 1995) revised from an earlier 

estimate of 40 Ma (Poinar and Singer, 1990). This mushroom, Coprinites dominicana, 

was considered to be a member of the Agaricaies , and had many similarities with the 

present-day genus Coprinus (Poinar and Singer, 1990). Although accelerated 

morphological divergence has been observed among mushroom genera (Bruns et aI. , 

1989), and rare recessive alleles can produce extensive morphological change in the 
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basidiocarp (Hibbett et aI., 1994), Hibbett et al. (1995) suggested that extant morphologies 

such as gilled mushrooms, may be of ancient origin. However, the difficulties of relating 

extinct fossil mushrooms to extant genera, suggest that present-day genera may be fairly 

recent. Assuming NABS VI is as old as Copril1iles, the calibration point in this study 

was 30 Ma for NABS VI with 14.60% substitution in that time. Consequently, NABS 

VI may be younger than 30 Ma, but this calibration point was used as an estimate based 

on limited available fossil evidence. The objective of this section was an attempt to put 

the evolutionary divergence of NABS Armillaria into an historical framework . This 

nucleotide substitution rate of 48 .7% per 100 Ma for anonymous gene sequences in 

Armillaria was higher than the I % per 100 Ma used for 18S ribosomal gene sequences 

(Berbee and Taylor, 1993) Since sequences used in this study were conserved only 

within the genus Armillaria, and rRNA genes are found in all fungi , a faster rate of 

evolution would be consistent with the degree of conservation of the genes. 

lo-eVO/litioll of fimt,TfIS and host. Angiosperms were thought to have evolved 

from Gymnosperm ancestors. Coniferous Gymnosperms appeared about 300 Ma, but 

Angiosperms did not appear until 140 Ma (Stewart and Rothwell , 1993). Meeuse (1975) 

and Hughs (1977) suggested that Angiosperms evolved from a heterogeneous 

Gymnosperm ancestry displaying a combination of characters, some found only in 

Angiosperms, some only in Gymnosperms, and some that fit neither group. The rapid 

evolution and diversification of the Angiosperms in the Cretaceous may account for the 

estab li shment of ancestral Armillaria species as pathogens of Angiosperm hardwoods. 
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If this early Armillaria ancestor had been exposed to heterogenetic traits of conifers from 

the Carboniferous, an already established group related to the Angiosperms, perhaps 

present-day Armillaria retained its variable genetic traits allowing the pathogen 

compatibility with the genetic diversity of its host. The variation in soft and hardwood 

host pathogenicity displayed by the extant genus Armillaria may be reflected in exposure 

of its ancestor to host heterogeneity . Basidiomycetes that radiated in the Mesozoic are 

considered the most aggressive wood mtters in present environments (Robinson, 1990). 

Armillaria can subsist as a saprotroph on decaying wood debris in the soil until a suitable 

host becomes available. The ancestor of NABS VI may have been one of those wood 

rotters , with extant species maintaining both saprotrophic and pathogenic modes of life. 

Major climatic changes occurred about 50 to 60 Ma (Hopkins et aI. , 1971). 

Radiation of the more modern type of Angiosperms occurred, while diversity of the 

Gymnosperm flora decreased (Stewart and Rothwell , 1993). Major continental uplifts and 

climatic cooling occurred during the Miocene, which was characterized by more 

mesophytic vegetation in which broad-leaf evergreens were limited to lower latitudes, and 

present-day forest associations became established (Stewart and Rothwell, 1993). If the 

ancestor of NABS VI contained genetic diversity suitable for colonization of both soft and 

hardwoods, then diversification of the ancestor would occur as the Angiosperms radiated 

50 Ma, and remained successful for 30 million years . Dramatic climatic fluctuations 

occurred during the tertiary, although it was characterized mainly by tropical forest 

(Wolfe, 1971). The proposed separation of two lineages of Armillaria during these 
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changes is supported by the present world-wide distribution of NABS VI, and the 

radiation of eight other more recent NABS Armillaria throughout the Northern 

Hemisphere. Phylogenetic study of Plellro/lis demonstrated that early evolving species 

are presently broadly distributed, whereas more recently evolved species are restricted in 

their geographic distributions (Vilgalys and Sun, 1994). Perhaps the widely distributed 

NABS VI continued to colonize the successful hardwood hosts, and the other less widely 

distributed ancestral group colonized both soft and hardwood hosts. 

Vegetation was adapted to drier, cooler environments in the Pliocene (Heusser and 

King, 1988), which included softwood conifers of the present-day boreal forest. Since 

conifers began to invade the habitat already occupied by Armillaria in the Miocene, a 

coniferous niche was opened which required adaptations of the pathogen to a different 

host. The second lineage of Armillaria diverged into 2 major groups as environmental 

changes occurred (Figure 2A-7). One group became highly pathogenic on conifer hosts 

(NABS I) and the other group formed five species neither entirely pathogenic nor 

saprotrophic, and colonizing both hard and softwood hosts (NABS III, V, VII, IX and X). 

Isolates of NABS I were successful in the Miocene, and presently colonize the 

Northern Hemisphere. Although two data sets in this study supported similarity between 

NABS I and II (Figure 2A-3A, and Figure 2A-6B and C), it also demonstrated 

synplesiomorphies present between NABS II and VI (Figure 2A-2A and Figure 2A-6A 

and 0). These synplesiomorphies affected the combined phylogenetic tree placing NABS 

IT basal to all NABS Armillaria including NABS I, with significant bootstrap support of 
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94% (Figure 2A-5). This in turn affected the placement of NABS II in the molecular 

clock making it appear ancestral to NABS I. However, NABS I and II have been shown 

to be very similar based on morphological characters (Berube and Dessureault, 1989) and 

molecular characters (Anderson et aI. , 1989; Anderson and Stasovski, 1992; Miller et aI. , 

1994), with the exception of host preference and base substitutions from anonymous 

sequences in this study (Figure 2A-6A and D). NABS I is presently distributed 

throughout the Northern Hemisphere, while NABS Il occupies a limited area east of the 

Great Lakes Region. Literature evidence is in favour of NABS II being sympatrically 

derived from NABS I , but this study suggests that NABS II is ancestral to NABS I. 

As the Laurentide ice sheet receded from the Great Lakes Region about 13 

thousand years ago (Ka), the area was first invaded by conifers such as spruce and fir 

(Davis and Jacobson, 1985), and later hardwoods such as sugar maple and chestnuts 

followed (Davis, 1981). Other species present in this area today include beech, yellow 

birch , basswood, ash and oak making these forests highly diversified. If previous studies 

prove correct then perhaps the phylogenetic species of Armillaria had gone through a 

bottleneck from the more primitive character of colonizing a hardwood host in NABS VI, 

to a more recent character of colonizing a softwood host in NABS T, and reverting back 

to colonizing a hardwood again in NABS II. The opening of the hardwood niche by the 

retreat of the Laurentide ice sheet provided a habitat in which these primitive characters, 

retained from the ancestral genotype, could fe-surface in a sympatric speciation event 

creating NABS II which presently colonizes hardwoods (Table 2A-I). Base substitutions 
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in the sequences in this study reflect independent characters common to NABS II and VI. 

Alternatively, if this study proves correct, then perhaps NABS I had diverged from NABS 

fl , rapidly colonizing the Northern hemisphere and causing NABS II to recede toward the 

Great Lakes area. In addition, perhaps NABS fl resulted from hybridization between 

NABS I and VI, retaining the ancestral polymorphism apparent in the sequences. 

The divergence producing NABS I, specializing as pathogens of softwood hosts, 

also produced a second lineage, an ancestral form which was not quite as specialized, 

colonizing both soft and hardwoods and sometimes producing disease, but mostly 

obtaining nutrients saprotrophically (NABS III, V, VII, IX and X). All members from 

this second lineage, as well as NABS 1I, produce monopodial branched rhizomorphs 

which are typical of less virulent Armillaria. NABS I retained an ancestral character from 

NABS VI in that both produce dichotomously branching rhizomorphs which are typical 

of more virulent forms. The ancestor to NABS III and VII diverged about 10 Ma, and 

was probably more similar to the more widely distributed NABS VII than the more 

narrowly distributed III. The remaining non-specialists include NABS V, IX and X. The 

high degree of diversity in NABS V in this study has also been shown by Harrington and 

Wingfield (1995) The consistency in variation may have been overlooked and explained 

as being an unresolved group, whereas the variation may be evidence that speciation is 

occurring in this group. The wide distribution of NABS V throughout Asia and North 

America may represent the ancestral state which produced local outgrowths forming the 

more narrowly distributed monophyletic NABS IX and NABS X 
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SECTION f!.; Species-Specific Markers 

RESULTS 

2.-IA.a S"pecies-.'!Jecijic SWAPP markers with JOnl primers: 

A set of200 IOnt primers were examined and 42 pairs of these were screened for 

bands specific to a species or group of species. Electrophoresis of SWAPP PCR product 

on 3.00/0 agarose gels showed species specifi city for several pairs of I Ont primers. Primers 

83 and 147 produced a 600bp fragment for NABS III and VII (Figure 2B-IA) . Primers 

83 and 66 produced three bands at 115, 135 and 170bp for NABS VI (Figure 2B-IB). 

Primers 17 and 127 produced a 390 bp fragment for NABS V and X, and a 525bp 

fragment for NABS VII (Figure 2B-1 C). Primers 29 and 122 produced a 380bp fragment 

for NABS IX (Figure 2B- 1 0). Primers 151 and 159 produced an 850bp fragment for 

most NABS I and II. Primers 34 and 122 produced three bands for NABS III at 240, 300 

and 360 bp 

2 . ..fA.h ,-)pecies ~pecific 20mer markers: 

Monomorphic fragments produced by three nested 20nt primer sets, V250, IITISO, 

III 520, and one IOnt primer set, 83/66, yielded sequences containing short regions which 

were specifi c to species. These fragments were the same fragments used in the phylogeny. 

Primers were made from these regions and fe-amplification from gDNA produced bands 

showing species-specificity (Figure 2B-2). Approximately 30 isolates were screened 

against each species specific primer Primers 5a/b amplified a 120bp band in six iso lates 



Figure 2B-l : SW APP-PCR amplification with IOnt primer pairs showing bands 

specific to a species or group of species of NABS Armillaria. A: Primer set 831147 

produced a 600bp fragment (arrow) in isolates of NABS III and Vll. B: Primer set 

83/66 produced a 3-band repeat, 115bp, 135bp and 170bp (arrows), in isolates of 

NABS VI. C: Primer set 1 71l 27 produced a 390bp fragment in isolates of NABS V 

and X, and a 525bp fragment (arrows) in NABS VII. D: Primer set 291122 produced 

a 275bp fragment (arrow) in NABS IX. Far left lanes represent 123bp size ladder in 

A and lKb size ladder in B, C, and D, NABS Armillaria are indicated by Roman 

numerals, At is A. lahescens, and Ctl is negative control. 
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Figure 2B-2: PCR amplification of species specific fragments showing A: 120bp 

band in NABS VI amplified by 5a1b, B: 80bp band in NABS I and II amplified by 

10/12, C: 220bp band in NABS II amplified by I alb, D: 180bp band in NABS ill, 

VII, X, and European B amplified by 9a1b. Roman numerals at top of gel represent 

species of NABS Armillaria, Roman letters indicate European species, At is 

Armillaria tabescens, AfisA.jumosa, Qld is Qld8 an isolate from Australia, IJMI21 

is a European isolate ofA. astayae, Ctl is negative control, and IKb is the IKb DNA 

size ladder used to indicate size of bands. 
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of NABS VI as well as some European species. Primers 10/12 amplified an 80bp 

fragment in NABS I and II, primers I alb amplified a 220bp band in NABS II. Primers 

9a/b amplified a 180bp band in NABS III, VII, X and some European species (Figure 

2B-2). Primers 6a1b amplified a 140bp band in NABS III, V, VII, IX, X and European 

species. Uti li zation of these 20bp primers, as well as some 10bp primers for confirmation, 

allowed identification of most NABS Armillaria (Figure 2B-3). 

2 . .JA.c Development of nested 20nt primers: 

Since I Ont primers are easily denatured from the temp late strand, more stable 20nt 

primers were developed from the sequences obtained from the species specific IOmers 

representing each species or group of species. Sequences of two to five isolates were 

aligned before a consensus sequence was chosen (For example, Figure 2B-4). Sequences 

from the 10nt primers which were used to design the 20nt primers are enclosed in 

parentheses in Table 4. 

Amplifi cation of the DNA using the nested 20nt primers produced a variety of 

results. One set of primers, IX-250alb, produced no bands (Figure 2B-5A). Primer set VII-

520-1/2 produced bands only within NABS III and Vll but the PCR product was weak 

(Figure 2B-5B). Primer set V-250a/b produced monomorphic bands in all species (Figure 

2B-5C). Seven of the 9 primer sets developed produced many bands, some were more 

variable (ie. 1-850) than others (ie. v-250), but there was a monomorphic band across most 

species tested within each primer set (Figure 2B-50). An additional Armillaria genus-



Figure 2B-3 : Key for identification of NABS Armillaria using molecular characters 

obtained by 10 and 20nt primers. Suggested amplification reaction conditions and 

cycles, and electrophoresis conditions are outlined in "Materials and Methods". 
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1 . peR with primers 6a/b : 

a) 140 bp band = NABS III, V, VII, IX or x ........ Go t o 4 . 

b) No band = NABS I, I I or VI . 

2 . peR with primers la/b and 5a/b : 

a) 120bp band = NABS VI . 

b) 220bp band = NABS II . 

. .... Goto2 . 

c) No band .................. • . .. • • . ••.• . • ..... Go to 3 . 

3 . peR with primers 10/12 : 
a) 80bp band = NABS I . 

b) No band ................ . . .... Go to 4 . 

4. peR with primers 9a/b: 

a) 180bp band = NABS I II I VII or X .....• . .. •...... Go to 5 . 
b) No band = NABS V or IX ..............•. 

5 . peR with VII-520-1/2 : 

a) 70bp band = NABS III or VII. 

b) No band = NABS X ................ • 

6. peR with lObp primers : 

a) 34/122 3/band repeat = NABS III. 
b) 17/127 52Sbp band = NABS VI! . 

390bp band = NABS X . 

7 . peR wi th lObp primers : 
a } 29/122 = 350bp band = NABS IX. 

b) 17/127 = 390bp band = NABS V . 

c) 17/82 = 390bp band = NABS V . 

. ..... Go to 7 . 

. ..... Go to 6 . 

. ..... Go to 6 . 



Figure 2B-4: Alignment of nucleotide sequences of 390bp fragments amplified by 

SWAPP 10nt primers 171127 for NABS V and X (from Figure 2B-IC), showing 

regions of DNA from which more stable nested 20nt primers (V250a/b) were 

developed (underlined). Sequences are written in 5' to 3' direction. RC is reverse 

complement. Inverse primer sites are shown at center of sequence. Dashes indicate 

no sequence. 
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1 X-Sp12 TCAATGTGTTGCCAGTTTTGTTGGAAGAGCGTCGTGCGCCAGATCGATTTTGT~ 

2 X-splS TC-AYGTGTTGCCAGTTTTGTTGGAAGAGCGCCGTGCGCCAGATCGATTTTGT.fl 

3 V-83621 TCAATGTGTTGCCAGTTTTGTTGGAAGAGCGTCGTGCGCCAGATCGATTTTGT.!i. 

V-8391 1 TCAATGTGTTGCCAGTTTTGTTGGAAGAGCGTCGTGCGCCAGATCGATTTTGT~ 

V-NOF891 TCAATGTGTTGCCAGTTTTGTTGGAAGAGCGTCGTGCGCCAGATCGATTTTGTg 

(V/ X250b) 

1 TTTCGMCGCGMIATGCTGAAAATGCGCGAGCAAGCAGTGAAGTATTCGGCTCACTTCTTTT 

2 TTTCGAACGCGMTPJGCTCAAAATGCGCGAGCAAGCAGYGAAGTATTCGGCTCACTTCTTTT 

TTTCGMCGCGAATATGCTGAAAA.TGCGCGAGCAAGCAGTGAAGTATTCGGCTCACTTCTTTT 

TTTCGMCGCGMTATGCTCAAAATGCGCGAGCAAGCAGTGAAGTATTCGGCTCACTTCTTTT 

5 TTTCGMCGCGAATATGCTGAAAATGCGCGARCAAGCAGTGAAGTATTCGGCTCACTTCTTTT 

(RC INV250b) 

TGGCATAGTACTCATACGTCCACACAGTGTTGTGTCTCAACCAGAGGTAGATGCCAATGAAGA 

TGGSATAGTACTCATACGTCCACACAGTGTTGTGTCTCAACCAGAGGTAGATGCCAATGAAGA 

3 TGGCATAGTACTCATGCGTCCACACAGTGTTGTGTCTCAACCAGAGGTAGATGCCAATGAAGA 

4 TGGCATAGTACTCATGCGTCCACACAGTGTTGTGTCTCAACCAGAGGTAGATGCCAATGAAGA 

5 TGGCATAGTACTCATACGTCCACACAGTGTTGTGTCTCAACCAGAGGTAGATGCCAATGAAGA 

(INV250a) 

CCAGCTCACTTTGATCBCGACGCTCTTACCTACTAAAACATTGTCAAGTATGTTTCATGTCTT 

CCAGCTCACTTTGATCACGACGCTCTTATCTACTAAAACATTGTCAAGTATGTTTCATGTCTT 

3 CCAGCTCACTTTGATCACGACGCTCTTACCTACTAAAACGTTGTCAAGTATGTTTCATGTCTT 

4 CCAGCTCACTTTGAICACGACGCTCTTACCTACTAAAACGTTGTCAAGTATGTTTCATGTCTT 

5 CCAGCTCACTTTGATCACGACGCTCTTACCTACTAAAACGTTGTCAAGTATGTTTCATGTCTT 

(Re V250a and X250a) 

1 TTCTCACCGAGAGAGCAGATGCTGAATCGACGACGATCAGTTCGCCGGCGTGGATGCCTACCC 

2 TTCTCACCGMGAGAGCAGATGCTGAATCGACGACGAICAGTTCG-CGGCGTKGATGCCTACCC 

3 TTCTCACCGAGAGAGCAGATGCTGAATGGACGATGAICAGTTCGCCGGCGTGGATGCCTACCC 

TTCTCACCGAGAGARCAGATGCTGAATGGACGATGATCAGTTCGCCGGCATGGATGCCTACCC 

TTCTCACCGAGAGANCAGATKCTGAATGGACGATGAICAGTICGCCGGCGTGGATGCCTACCC 

1 CTTCAATATTTACGAGAAGAATTC 

2 CTYCAATATTTACGAGAAGAATTC 

CCTCRATA---------------

CTTCAATA.TTTACGAGAAGAATTC 

CTTCAATA.TTTACGAGAAGAT-- -



Figure 2B-5: PCR amplification of NABS Armillaria using nested 20nt primers 

developed from sequences of SWAPP 10nt primers showing the variable results 

obtained. A: Primer set lX250alb produced no bands. B: Primer set VII520-112 

produced bands found in NABS III and VII and European species B. C: Primer set 

V250alb produced 250bp fragments found in all NABS Armillaria. D: Primer set 

I850alb produced polymorphic bands with some degree of monomorphism, found in 

aU species of Armillaria. NABS Armillaria are indicated by Roman numerals, At is 

A. tabeseens, Ae is A. eetypa, Ah is A. hinula, Roman letters indicate European , 
[ SpeCies, CtI is negative control, and IKb size ladder is in far left lane. 

t 
1 . 
• . 
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specific 220bp band was found with two 10nt primers, 29 and 34. 'Gene walking' was 

used to search for the species specific 10nt primer site using a 20nt and a 10nt primer 

pair. Results produced variable bands (Figure 28-6). 

2.-IA.d I"verse peR: 

Inverse PCR was employed to locate the I Ont primer sequences amplified by V250 

and 1850. Fragments amplified by 10nt primers, 171127, produced 390bp bands present 

in NABS V and X (Figure 28-7A and 28-8). Nested 20nt primers were made 

downstream from these 10nt primer sites and re-amplification with the nested 20nt 

primers produced monomorphic bands in all NABS Armillaria (Figure 28-78 and 28-8). 

Six restriction enzymes were tested for inverse PCR and a IKbp band was amplified in 

NABS V using restriction enzyme Xhol (Figure 28-7C and 28-8). The sequence of this 

I Kb band was used to locate the 10nt primer sites from which more stable post inverse 

20nt primers were developed. These 20nt primers (v-17 and v-127) produced no species 

specificity (Figure 28-70 and 28-8). Twelve restriction enzymes were tested for the 1850 

but none produced PCR product larger than [850 fragment. The fragment for the 1850 

(400bp) was longer than that for v250, which increases the chance for internal recognition 

sites. Results from inverse PCR on Armillaria strains such as NABS V-83621 , lIT-JB56, 

V-NOF891 , VII-90-10, IX-TJV200 and I-JBI3 showed numerous mismatches in the 

10base primer-template duplex (Figure 28-9). 



Figure 2B-6: Banding pattern observations from A: a genus specific 220bp band with 

lOnt primers 29/34, and B: PCR with 10 and 20nt primers showing numerous bands 

when the "gene walking" technique was applied. Roman numerals indicate NABS 

Armillaria, Af is A. jumosa, Ctl is negative control, and the far left lane contains the 

1 Kb size ladder. Numbers in B represent primers llsed in amplification reactions. 
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Figure 2B-7: PCR amplification showing results obtained at each of four stages to 

locate the SWAPP IOmer sites. A: Amplification of390bp fragment (arrow) in NABS 

V and X using SWAPP 10nt primer pair 171127. B: Amplification of250bp band in 

all NABS Armillaria using nested 20nt primer pair, V250alb, developed from 

sequences amplified by SWAPP 10nt primers 171127, which were chosen to be 

specific for NABS V. C: Inverse PCR amplification of ligated product of NABS II 

and V from each offour restriction enzymes, using inverse 20nt primers, INV250alb, 

showing the lKbp band (arrow) in NABS V cut by restriction enzyme Xhoi. D: PCR 

amplification of genomic DNA using new 20nt primers incorporating SWAPP 1 Orner 

sites, V-I? and V-127, developed from sequences in C. Roman numerals indicate 

NABS Armillaria, At is A. tabescellS, Ctl is negative control, and the IKB size ladder 

is in the far left lanes. 
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Figure 2B-8: Alignment of nucleotide sequences obtained from the four stages 

corresponding to those in Figure 2B-7. Sequence" 171127" was produced from 

SWAPP 10nt primers 17/127 (Figure 2B-7A). Sequence "V250a/b" was produced 

from nested primers V250a/b (Figure 2B-7B), showing similarity with SWAPP 

171127 sequence. Sequence "INV250A" was amplified from inverse primers 

INV250alb (Figure 2B-7C), and shows similarity with the latter half of sequences 

from V250 and 171127 from which the primer was developed. The sequence 

continued past the end of the V250 fragment showing all the primer sites. Sequence 

"V-17N-127" (Figure 2B-7D) was produced from 20nt primers developed from the 

10nt primer sites, showing no similarity with the other sequences. All four sequences 

were from NABS V isolate V83621. Primer sites are underlined and names in 

parentheses. RC is reverse complement, and dashes indicate no sequence. 



1 17/127 

2 V2504l.!b 

3 INV250A 

83 

TCAATGTGTTGCCAGTTTTGTTGGAAGAGCGTCGTGCGCCAGATCGATTTTG 

4 V-1? /V-127 ATCGAGKKACATSCACSAGCKGGCACTGCTGGCMSGACTCMACGASRCTSAT 

( V250b ) 

ITGTTTCGMCGCGMTAIGCTCAAAATGCGCGAGCAAGCAGTGAAGTATTCGGCTCACTTCTTT 

2 - - - - - GMCGCGMTATGCTCAAAATGCGCGAGCAAGCAGTGAAGTATTCGGCTCACTTCTTT 

3- -- ------- -- ----- -- - - ---- - -- - -- - - - ---- ---------- - -------------

4RTACCGATYCCGAAJ(STGASCCGACTGCGTCGTCTAMGAGGGATCCKGTTCAGWGTCGTAGTAG 

(Re INV250b) 

ITTGGCATAGTACTCATGCGICCACACAGIGTTGTGTCTCAACCAGAGGTAGATGCCAATGAAGA 

ZTTGGCATAGTACTCATGCGTCCACACAGTGTTGTGTCTCAACCAGAGGTAGATGCCAATGAAGA 

3--- - ---------- -- ----- --- -- ---- -- --------- ------------

4ATYCACTGCACGAGGSTGAATCCTCTACGGATGGGTATKTACAGTGMTNGTGAGGT8CMAWT 

(INV250A) 

lCCAGCTCACTTTGATCACGACGCTCTTACCTACTAAAACGTTGTCAAGTATGTTTCATGTCTTT 

2CCAGCTCACTTTGATCACGACGCTCTTACCTACTAAAACGTTGTCAAGTATGTTTCATGTCTTT 

3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -TACTACARCGTYGCYAAGTATGTTTCAWGTCTKC 

4CACCTTGGAKYGASGATTCATCGSWGGTATWGRMTCAGTCAACAGTTGGGTCARCAAAACAGCG 

(RC V250a) 

ITCTC.u"CCGAGAGAGCAGATGCTGAATGGACGATGATCAGTTCGCCGGCGTGGATGCCTACCCCC 

2TCTCACCGAGAGAGCAGATGCTGAATCGACGACGATCAMM-----------------------
3TCTCACCGAGAGAGCAGATGCTGARTCGACGACGAKXAKKCYSACRGTGCGGGWGCAAGCCCCT 

4ACGATGCTRTSAACCTTCTKGCTGKGKGACTAKCTCAGRGATACTCACACCGACAGTTCATGAN 

1 TCRATA- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --

2------------------ ---- ---- (RC 1/17) - - ---- --- ---------------------

3ACGTTTTCGGCTCACTGCTTTCGGGGAGGGC,GMlSSATMCGTCCATATAGTTTCGWGACTAATSM 

4GGCGTCGTCGTGTNGGGTANCACANTNNTCGNNTCANCATNNANTCTCNNANCCNAATCAANTG 

1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- -- - - - - - - - - - - - --- - - - -- - - - - - - - - --

2--------- ---- ---- (RC #17) -- ------------------ -------- -----------

3AGTGGTRKTYAYYARTRAGGACCASWTCACfOmNYNCACGAYGCTCTCASCGWMTGAATAGYMS 

4NACCCNNCGCAGCNTCCCGTAGTCCNCTTCCCCTGAGGAGGNAAATCGCCACGNNTNTNTNNTN 

1- - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - - - -- - -- -- - - - - - - - - - - -------

2 - - - - - - - - - - - - - - - - - - -- - - - - - - - - -- - - - - - - - - - - - - --- --- -- - - - - - - - - - - ----

3ACAATYTWW'l'CCAGCTTCTTCTSTCASMGTCCAC------------------------------

4TTGAAGNTTCCCCCTTGNCNACANANNAGNNCNCCNNNCANCATAANNCNTGNNACNNACACCN 



Figure 2B-9: Primeritemplate alignments for the sequences amplified by inverse 

primers A: INV250a and B: INV250b showing sequence ofprimer(top) and template 

(bottom), for species of NABS Armillaria. Dashes represent continuation of template 

sequence with no primer site. Dots in primer sequence indicate a match, and 

mismatches are indicated by bases. Ambiguity in template sequence is shown in 

parentheses with the two possible bases. RC is reverse complement. A: All possible 

primer sites are indicated by A-I to A-5 from INV250a, and B: B-1 to B-4 from 

INV250b. A-I and B-1 sites show alignment for 20nt primers. All other sites show 

iOnt primer alignments. Isolates used in amplification reactions are indicated at left 

of each sequence. 



85 

INV250A 
A-I RC v - 250A : 

9 t c . g . tcg 
tcga (a/c) (e/g) acga (gft) tattctc------------------

V-NOF891 

t 9 9 9 t 9 
- (gft) (g/c) (a/g) ac (a/g) (a/c) (e/g) gat (cit) (aft) (gft) t (cit) c (a/g)-

. . acg .. ca . t .. g 
I I I - JBS 6 t cgaacgcgaa ta tgc tea - - - - - - - - - - - -- - - - - - - -- - - - - - - - - ---

VII - 90-IO tcga (e/g) gac (a/g) atcagt (cit) cg-- - ---------------- - -

.... c 9 ac ... c . g t tcg 
IX - TJV200 tcgaa (cit) gtgattat (g It) atc------------------ - ---- - -

A-2 RC #17 A - 3 RC #17 

9 9 c . cagg 9 9 9 c. 9 9 
V83621 ga (gft) (a/g) gcgctc--------- (aft) a (a/g) (gft) acca (e/g) (a/t) 

.ggc . cagg ccc . gg 
VNOF891 gac (g/c) ten (a/c) cc-----------ga (a/g) (a/c) (e/g) 9 gac a/c) 

.... c a gg 9 9 
VII 90-1 0 9 (al g) ggccg (a/ g) cc-----------------gagg (g / c) a ta (g/ t ) a 

a g g 
IXTJV200 ---------------------------g (al g) ag (al c) (cIt) ta (cit j 9 

c c . agg ... g . c . ag . 
IJB13 (g/c) agg (cIa) tctca----- -----gagacgcccg--------------- --

A-4 RC #17 

... cc .. 9 9 
IXTJV200 gagggtcaa {cit} 

A-5 RC #17 

9 a gg . a g. 
VII90-10 (g/t) (g/tjntcc(c/gj (a/c)tg 
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INV250B -I B 1 RC V250b 

V-83621 -gagCatattCg~gttCga~ (a;t) c - ---- ---------------

c eta a 
V-NOF891 -gag (c/ g) atattcgtgt (c/ t) ega (a/t) _ c-------------

c . t .... aa . 
-gagcatattcg (cit) gatcgacgc---------------------

a c 9 .... aa . 
-gagcat (aft) ttcg (cit) (c/ g) ttcga ttc------ - ------

........... c . t a a a . 
- gagcatattcgtgt (cit) cg (a/ c) (cit) tc-------------

c ... . t . .. g . a a . 
-gag (a/c) atatacgcattcga (aft) tc-----------------

B2RC#17 B 3 RC #127 
. . . g C c. a g . 

V83621 gagt (a/g) tc (gft) ag---------------------------------

a 9 c ... g 9 
VNOFB 91 9 (aft) 9 (a/ g) tccaa (a/ g) -- -- --- -- --- - ---- - -----------

. ct . c . 
I I IJBS 6 ---------------------------------gaggacaga t----- -- -

gee c age . g . c ... t 
VII90-10 gag (c/g) a (c/g) (a/c) t (c/t) g------g (c/t) t cc (c/t) agag 

c . g . c ... t 
IXTJV200 - -- - - - - - -- -- ------ -- -- -- --------- g (c/ g) tccgagag---

B 4 RC #127 

V83621 --------gctgc (g/c) agat- ---- --

g a 
VNOF891 ------ (g/ c) ctgccag (a/ c) t ---------------------------

g . a 
II I JB5 6----- ----tctgccag (a/ g) t------- -------------------- - -

9 c t g . c a g . t 
VII 90-10------ (g/t) (a/c) (a/ t ) (a/c) cg (c/g) (c/g) aa-----------

9 c t g . c a g . t 
IXTJV200------ (g/t) (a/c) (a/t) (a/c) cg (c/g) (c/g) aa-----------
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2.-IA.e Primer/templale dynamics: 

The sequence amplified by primer lNY2S0A showed primer sites for the reverse 

complement (RC) Y2S0a at position A-I (80bp downstream from TNV2S0A)(Figure 2B-

10), RC # 17 at positions A-2 (14Sbp downstream from lNY2S0A), A-3 (200bp 

downstream from lNY2S0A), A-4 (23Sbp downstream from lNY2S0A), A-S (290bp 

downstream from lNY2S0A) and A-6 (3S0bp downstream from lNY2S0A) (Figure 2B-

10). The sequence for NABS I showed no similarity to primer Y2S0a at A-I , 1TT-JBS6 

showed 10 mismatches in 20 bases of the primer, IXTJY200 showed 9120 mismatches, 

Y1l90-10 and YNOF891 matched perfectly with the primer, and Y83621 showed S 

mismatches. Most mismatches were near the 5' end of the primer. 

The sequence amplified by primer fNY2S0B showed primer sites for RC Y2S0b 

at position B-1 (80bp downstream from lNV2S0B), RC # 17 at B-2 (160bp downstream), 

and RC # 127 at B-3 (180bp downstream) and B-4 (290bp downstream). The sequences 

for I-JB 13 and TIJ-JBS6 showed 3 mismatches in 20 bases for V2S0b, and IX-TJY200, 

YII-90-10, V-83621 , and V-NOF89I showed 2/20 mismatches each. Most mismatches 

were near the S'end of the primer. 

Summary of occurrence of PCR bands in agarose gels for each group of primers, 

SW APP IOnt primers, nested 20nt primers, and species-specific primers, is presented in 

Appendices 0 , E, and F. 
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2.~Af Significance of the lObase primer sites in specificity: 

Sequences amplified from the SWAPP 10nt, nested 20nt, and inverse primers 

aligned with one another (Figure 2B-8), but the sequence obtained by the post inverse 

20nt primers incorporating the lObase primer sites did not align with the others (Figure 

2B-8) indicating that the sequence produced from the site incorporating the 10nt primers 

was not homologous to the initial species specific sequence. Amplification of the DNA 

using post inverse 20nt primers made from the 3' ends of the lObp primer sites and an 

additional 10 base pairs on the 5' end of the sequences produced by primers 17 and 127 

for NABS V, produced variable bands (Figure 2B-70). Distances between suggested 

primer sites (Figure 2B-l 0) did not agree with length of electrophoresis product (Figure 

2B-7) . A stem loop structure was proposed to explain the discrepancies (Figure 2B-ll). 



Figure 2B-I 0: Line drawing of sequences amplified from inverse primers INV250aJb 

of six isolates of Armillaria showing location and 51 to 31 orientation of all possible 

primer sites. RC is reverse complement. Primer sites A-1 to A-5 and B-1 to B-4 

correspond to sites in Figure 2B-9. Scale is 2 inches ~ 100bp in length. 
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Figure 2B-ll : Diagrammatic representation of location and orientation of SWAPP 

IOnt and 200t primer sites and the hypothesized stem loop structure in genomic DNA 

showing the fragment bordered by primers 17/ 127. Shaded boxes represent reverse 

complemented (Re) primer sites, and clear boxes represent the active primer sites. 

Arrow represents direction in which extension occurs. The 20nt primers 

incorporating the IObp primer sequences at the 3' ends are shown as V-127 and V-17. 

Diagram is not drawn to scale. 
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2AB DISCUSSION 

2.-IB.a Species-specific SWAPP markers wilh 10ni primers: 

Amp lification with SWAPP IOnt primer pairs produced bands present within a 

species or group of related species (Figure 2B-I). False negatives were present in two 

isolates of NABS III (Figure 2B-1 A) and one isolate of NABS V (Figure 2B-1 C). These 

false negatives may be a result of lack of sufficient template DNA to be amplified or 

insufficient template match at the primer site. Weising et al. (1995) suggested that 95% 

of RAPD markers were amplified from nuclear DNA. Since much of nuclear DNA is 

present in low copy numbers, and the primers used in this study were the same as RAPD 

primers, then insufficient template DNA may not produce enough amplification product 

to be visib le on an agarose gel. Although the genomes of relatively few fungi have been 

investigated, nuclear genomes of fungi are smaller than those of other eukaryotes 

(Prim rose, 1995), and contain < 20% repetitive DNA (Arthur et aI. , 1982; Timberlake, 

1978). However, complex RAPD fragment patterns found from fungal DNA (Weising et 

aI. , 1995) may be explained by mismatch and primer competition . Primers prefer to bind 

to sites with a higher degree of simi larity (Williams et aI. , 1993). 

If each of the 10 bases in the template DNA primer sites were not sufficiently 

conserved to be exactly the same among isolates of the same species, then amplification 

of the fragment may not occur in some isolates . Caetano-Anollcs et al. (1992a) showed 

that it was necessary for the first eight nucleotides from the 3' end of the primer to match 

the template in order for the amplifications to be consistent Single base changes within 
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this region produced variable amplification patterns. However, Sommer and Tautz (1989) 

showed that a 20nt primer required only three matching nucleotides at the 3' end of the 

primer for successful amplification of the same band. Williams et a1. (1990) showed that 

a single base change at any position on a 10nt primer produced changes in the amplified 

product. A change near the 3' end produced a more dramatic change in product than one 

near the 5' end . Nevertheless, if the match at the 3' end of the 10nt primers in this study 

were less than three, then amplification would be weak or nonexistent. 

Isolates of NABS VI produced a three band marker with primers 83 /66. However, 

the 300bp fragment present in all remaining NABS Armillaria was also present in NABS 

VI but much weaker (Figure 2B-I B). Since the 3-band character of NABS VI was 

shorter in length than the 300bp fragment it was likely outcompeting the 300bp fragment. 

Hence, the "context effect" described by Welsh and McClelland ( 1993) seemed to have 

occurred . The 300bp band in NABS VI was not visible in the gel even though it may not 

have contained a mutation but rather the degree of template matching the primer sequence 

for the 3-band character was greater than the match for the 300bp fragment. Similarly, 

Rieseberg (1996) discussed the effects of competition among RAPD fragments . DNA 

regions poorly matched with the primers would have weak amplification . If these poorly 

matched fragments were homologous among taxa, then competition may occur with other 

fragments that represent a better match with the primer. This would result in the 

conclusion that the fragments were not homologous among taxa in question, when they 

were indeed homologous but containing a smaller degree of primer/template 
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complementarity. This may explain the weak presence of the 300bp fragments in NABS 

VI (83 /66) (Figure 2B-1 B). 

2.-IB.h 5pecies-.<,peciftc 20mer markers: 

Specificity of markers. It was not surprising that NABS I and" produced the 

same marker for I Oil 2, since NABS [ and II have been shown to be very similar based 

on fru it body morphology (Berube and Dessureault, 1988; (989), DNA reassociation 

values (Miller et aI. , 1994), rONA (Anderson et aI. , 1989; Anderson and Stasovski, 1992) 

and RFLP patterns (Harrington and Wingfield, 1995). Primers lOll 2 specific for both 

NABS I and II also showed an 80bp band in Qld8, an isolate from Australia (Figure 2B-

2B) (Table 2B-5). Similarly, IXTJVI79 produced an 80bp band (Table 2B-5). This was 

the only NABS IX isolate coll ected from a softwood host Individuals of NABS I also 

inhabit softwood hosts. Interestingl y, an A. o-'Ioyae isolate from Europe (ie. NABS I , 

[1M 121) produced no band (Table 2B-5). This indicated that the 80bp marker for NABS 

I and II may be specific to North American isolates only. The same isolate did not 

amp lify when tested for the 850bp band in 1511159 ( I Ont primers amplified NABS I and 

II) (Table 2B-3). Neither of two markers produced a band in European IlMI2l suggesting 

either insufficient DNA, or a large difference between European and North American 

isolates of A. oSloyae. 

Primer 5a/b amplified a 120bp band in isolates of NABS VI including the isolate 

from Europe (VI-1M 122) (Figure 2B-2A) (Table 2B-5). Sim il arly, this isolate produced 
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a NABS VI-specific 3-band repeat with 83/66 (Table 2B-3) . The primers specifi c for 

NABS VI also produced a band in European Band D, A. jllmosG, NABS V, X, and 

European I1M121 However, intensity of the band in NABS V and X were low compared 

with NABS VI (Figure 2B-2A). The other isolates were not North American isolates, so 

this marker may be considered specific for NABS VI. 

The marker produced by I alb, specific to NABS II, was not present in any other 

isolate tested (Figure 2B-2e). This marker appeared to be strongly specific to NABS II. 

All primer sets were examined on closely related non-Armillaria species 

(Appendices D, E and F), and produced amplification product for isolates within the 

genus only 

Dynamics. Isolates showing the presence of a band with species-specific primers, 

may not always show presence of a band with the more conserved nested primers (Tables 

2B-3 and 4). Primer 5a1b amplified a 120bp band in VI97-I , but there was no band 

produced from VI97-1 with V250, the primer sequence from which 5a1b was developed . 

It is interesting that 220bp I alb band was present in all isolates of NABS II tested 

including IIJB38 (Table 2B-5), but the V250 band was missing from lIJB38 (Table 2B-4). 

Sample IXI39 produced the 175bp specific band with primers 6a1b, which were designed 

from V250 (Appendix G), but the V250 band was not present in IX139. RAPD-PCR may 

produce polymorph isms from deletion of a primer site, or mutation within the primer site 

preventing the fragment from being amplified (Weising et aI. , 1995). The nested 20nt 

primers may undergo simi lar processes as was suggested by this study . 
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Species specificity. A 180bp marker amplified by 9aJb was found in NABS 1lI, 

VII, X, European B, A. fUn/osa and one isolate of NABS IX. NABS III, VII and B were 

shown to have a low level of interfertility (Anderson et aI. , 1980), similar nuclear rDNA 

(Anderson and Smith, 1988; Anderson et aI. , 1989) and similar DNA reassociation values 

(Miller et aI. , 1994). The band in NABS X was weak and was present in only one of the 

two isolates tested, and IX was one of S isolates tested . NABS IX and X were found to 

be paraphyletic to NABS III and VII (Figure 2A-S) . The weak amplification may be 

explained by a small amount of DNA present in the sample, or that the primerltemplate 

complementarity may have been insufficient to produce strong amplification with these 

reaction conditions, reflecting a lower level of specificity of the primer for NABS III and 

VII. 

Primer set 6aJb amplified bands in NABS III, V, VII, IX and X and some 

European and Australian species but not in NABS I, II and VI. Consequently, this marker 

was the first step in the key used to separate the two clades for identification (Figure 2B-

3). NABS V, IX and X belonged to the same rDNA class (Anderson and Smith, 1988). 

NABS III, V, VII, IX and X also formed a single clade using four anonymous sequences 

(Figure 2A-S). However, identification of NABS V could be inferred if PCR with 6a/b 

produced 17Sbp band, and subsequent PCR with 9a/b produced no band. 

NABS V was the only pathogenic species in the first clade which may require 

identification by foresters, whereas both I and VI in the second clade are very pathogenic 

hence were identified at the beginning of the key . Steps 2 and 3 in the key differentiated 
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between and confirm ed identifi cation of each of NABS I , II and VI. Further identification 

among NABS III, V, VII, IX and X involved amplification using various other primers. 

There was more variation in species-specific 20bp fragments for NABS 1lI, V, VII, IX 

and X, than for NABS I, II and VI, making the former less reliable as markers than the 

latter. 

Weak amplification or none at all may not necessarily mean that the samp le was 

not the species for which the marker was designed, but rather that too little DNA resulted 

in insufflcient amplification. It may be necessary to include a positive control for the 

sample such as amplification w ith a generaJ fungal rDNA primer to indicate presence of 

DNA. Alternatively, if the primer/temp late complementarity is not 100%, or the primer 

site is missing, or insertion of a large piece of DNA between sites has occurred, then 

amplification may also be weak or non-existent, indicating that the region used to develop 

the primer was not present in that particular isolate, and therefore was not highly 

conserved within the species. 

Primer sequence mismatches. The primer sequence chosen to differentiate NABS 

II from I (la/b) was the same in both NABS I and II except the third and first positions 

at the 3' terminus of NABS II (Appendix G). Primer I alb strongly differentiated between 

NABS I and II probably due to the purine-purine mismatch in third position from the 3' 

end, two substitutions at the 3' end, and the stringent annealing temperature of 60°C. 

Primer Sa (specific to NABS VI) contained 4 base changes within 6 positions of 

3' end of the selected primer (Appendix G). The three changes nearest the 3' end were 
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pyrimidine-pyrimidine having little effect on extension. However the sixth change from 

the 3' end resulted in a purine-purine mismatch having a significant effect on extension 

(Kwok et aI. , 1990). The strong differentiation between NABS II and VI was probably 

due to the combination of 4 substitutions at the 3' end one of which was purine-purine, 

two additional non-deleterious mismatches from NABS [] at II and 13 bases from the 3' 

end, and the stringent annealing temperature. Primer 6a (specific for NABS III and VII) 

contained two mismatches in six positions from the 3' end which were non-deleterious, 

and therefore specificity was not strong. 

Results may have been complicated by the presence of coding regions within some 

of the anonymous sequences from wh ich the primers were designed. If the region coded 

for a protein, then a base change at the first position of the codon would be less likely 

to occur than one at the third position, a silent substitution. For example, if 'g' in the third 

position from the 3' terminus in 1a and Sa was at the first position of the codon, this base 

would be highly conserved and therefore a good choice for a marker. However, if it was 

in the third position of the codon, then silent substitutions could be common, and the 

substitution would be a poor choice for a marker. 

The type of substitution, transition or transversion, in a protein coding region may 

also playa role in the ability for the primer to differentiate among taxa. Two of the 3 

primers which differentiated among taxa (I and S) contained a transversion from the 

consensus sequence within 3 bases at the 3' end of the selected primer sequence. The third 

primer (10112) contained a 3-base insertion at the 3' end. The insertion itself was further 
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strengthened by the 'g' and Ie' contained within it. The remaining primers contained no 

transversion near the 3' ends, and neither did they differentiate taxa at the same resolution 

as I alb , SaJb and 10/ 12. A transversion in a sequence produces a purine-purine mismatch 

which was shown to significantly affect extension (Kwok et aI. , 1990). If the region is a 

protein coding region, then a transversion mismatch would indicate that the amino acid 

was different. Consequently, the primer would have a strong capacity to differentiate 

among taxa. 

2.4B.c Deve!opmenf of nested 20nt primers: 

Welsh and McClelland (1993) recommended the use of20nt primers where context 

effects were a problem. Since a template match of 20 bases would be more stable than 

a match of 10 bases, nested 20nt primers were developed from the sequences produced 

by the SWAPP 10nt primers (Figure 2B-I). Sequences were aligned and 20nt primers 

were chosen from regions downstream from the 10bp sites (Figure 2B-4). Since 290bp 

sequences were present in only NABS V and X (Figure 2B-IA) then sequencing and 

subsequent alignment could only be performed on these samples. Therefore the only 

criterion that could be imposed was that the primer sequences be specific to the species 

for which they would be developed. For example, the primer sequence for NABS V 

contained a Ie' and 'a' at positions 2 and 8 from the 3' end, whereas NABS X contained 

two 'g's at these positions (Figure 2B-4). This should have been sufficient to produce 

specificity when amplified since the changes were located within the 8 nucleotide domain 



101 

at the 3' end of the primer (Caetano-AnolJ.;s et a!. , I 992a; Sommer and Tautz, 1989). 

However, amplification with V250 and X250 produced monomorphic bands in all NABS 

Armillaria (eg. Figure 2B-5C). The nine primer sets developed, using the same method, 

produced variable results; no bands (Figure 2B-5A), partial species specificity (Figure 2B-

5B), monomorphic bands in all species (Figure 2B-5C), and polymorphic bands showing 

some degree of monomorphism (Figure 2B-50). It was unexpected that a high proportion 

of bands showing species specificity with I Ont primers (Figure 2B-I), actually contained 

regions downstream of the primer sites that were highly conserved within the genus 

Armillaria and produced monomorphic fragments (Figure 2B-5). If the internal sequence 

and nested 20nt primer sites were so highly conserved, what was responsible for the 

species specificity shown by the 10nt primers in the banding patterns on the agarose gel? 

Since species specificity was produced by amplification with 10nt primers then the region 

of DNA responsible for delineating species must have been the matching template 

sequence to the I Ont primer sequence. Alternatively, since the banding pattern contained 

few bands, competition among primer sites on the template DNA or interference by 

secondary structure, may have played a role in species specificity (Welsh and McClelland, 

1993). Investigation of the phenomenon required that the 10base primer sites be located, 

sequenced, and used to develop 20mers. These 20mers would then be used in PCR of 

genomic DNA to test for species specificity. 
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2 . .JB.d /Ilverse peR: 

Inverse peR was employed to locate the 10bp sites on the template DNA and 

develop more stable post inverse 20nt primers using the 10bp site as the 3' end of the 

20nt primer, so that species specificity could be retained by maintaining the 10 base 3' 

terminal primer/template match and by eliminating competition among primer sites. 

Inverse peR of V250 for NABS V and X resulted in polymorphic bands in all species 

(Figure 2B-7D). 

Sequences obtained with nested 20nt and 10nt primers aligned with one another 

indicating they were homologous (Figure 2B-8) . The fragment bordered by nested 20nt 

primers was more conserved than the entire region bordered by I Omers, but this conserved 

region lay within the species specific region. The sequence obtained from inverse peR 

using restriction enzyme XhoI and the inverse primer INV250 was homologous to the 

latter half of both fragments amplified by V250 and 171127 (Figure 2B-8) indicating the 

choice of band obtained by XhoI (Figure 2B-7C) was correct. However, the 20nt primers, 

incorporating 10bp sites at the 3' end, chosen from this sequence did not produce species 

specificity. The sequence obtained by INV250 was more ambiguous further from the 

primer site, which made choice of primer bases uncertain. The significance of 

primerltemplate dynamics and proposed primer sites will be discussed (Section 2.4B.g). 

Gelllls specific band and cloning. peR with two 10mer primers, 29 and 34, 

produced 220bp monomorphic band in all species of Armillaria, making the fragment 

suitable to include in a phylogenetic study (Figure 2B-6A). Attempts to sequence the 
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220bp band resulted in ambiguous sequences, appearing as though two or more fragments 

of the same length were present in the sequencing reactions. It was thought that blunt

ended cloning of peR product with pue 18 in DHS-a Escherichia coli cells (Sam brook 

et aI. , 1989) would provide individual fragments which could then be amplified and 

sequenced. However, good progress was being made with four other monomorphic 

fragments to be used in the phylogeny. Since these four fragments produced a 

phylogenetic history of the genus Armillaria (2 .3 Section I: Phylogeny) cloning of the 

29/34 band was discontinued. 

Gene walking. The search for the species specific RAPD primer site was ongoing. 

A technique employed to locate the site, described by Parker et al. (1991), was called 

"targeted gene walking" peR. The technique can produce amplification of unknown DNA 

sequence adjacent to a known sequence. It uses a sequence specific primer with a 

nonspecific "walking" primer. In this study the 20mer was the sequence specific primer 

and the I Orner was the "walkingH primer. If the portion of the same fragment containing 

the 20mer could be amplified, then the sequence would produce the missing species 

specific 10mer site from which a more stable primer could be made. However, peR 

product showed numerous and ambiguous bands for each sample (Figure 2B-6B). Many 

bands were very close together and smears were common. 

Touchdown peR. When final results from Inverse peR technique revealed that 

the I Omer sites were not responsible for species specificity of the RAPD bands, numerous 

attempts were made to refine the peR cycle of these final primers. The initial cycle was 
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94°C in I second for I minute, 45°C in I second for I minute, and 72°C in 50 seconds 

for 1.5 minutes for 35 cycles . The annealing temperature was changed to 50"C and 

extension time to I minute, then the annealing temperature was changed to 55°C, then to 

60"C, 58"C, 63"C, magnesium was increased from 2mM to 4mM and annealing 

temperature at 58"C. Touchdown PCR' (Don et aI. , 1991) was tried with the intentions 

of eliminating non-specific annealing of the primer to template DNA. In contrast, another 

technique was used to increase amplification of non-specific products. Neither cycle 

produced ideal results . Although the 20mer primers were made from the 3' ends of the 

RAPD sites, there were sites in other parts of the genome which produced a better match, 

as indicated by the unknown bands (Figure 2B-7D). PCR with nonspecific 20mers could 

produce variable bands in the same way that RAPDs could. Similar results with 

polymorphic bands were found from other techniques such as the nested 20nt primers 

(Figure 2B-5D) and inverse PCR with 20mers (Figure 2B-7D). 

2 . ..fB.e Why would 20mers produce IUl/uerous polymorphic bands? 

Unless the 20mer is perfectly matched to a region of DNA, as a target specific 

primer, the 20 bases in that primer provide room for mismatching. Caetano-Anolles et al. 

(I 992a) showed that it was necessary for the first eight nucleotides from the 3' end of the 

primer to match the template in order for amplifications to be consistent. Sommer and 

Tautz (1989) showed that a 20mer required only 3 matching nucleotides at the 3' end of 

the primer for successful amplification. Assuming the 3 nucleotides at the 3' end were 
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matching, then the remaining 5 bases (of the 8) could be randomly distributed 

(maintaining their order) among the remaining 17 bases of the 20mer. The number of 

combinations of 17 distinct bases (n) taken 5 at a time (r) would be: 

" C, = nlfr!(n-r)! (Huntsberger and Billingsley, 1981) 

= 17! /5!(17-5)! 

= 6, 188 different combinations. 

Factors influencing primer/template binding would ultimately affect the success of 

amplification . However, assuming all influences to be minimal, the addition of a non

specific 20mer to a PCR reaction would theoretically be equivalent to adding a maximum 

of 6, 188 different 8mer primers to the reaction . Since primer/template binding and 

amplification is influenced by many chemical and physical attributes of primer and DNA, 

this number would be considerably reduced. Nevertheless, the addition of more than one 

primer to the reaction would increase the number of successful amplifications and visible 

bands on the agarose gel. This would explain the occurrence of many bands when 20mers 

were used in this study. Another explanation for longer primers producing more 

amplification product than shorter primers was described by Caetano-Anolles et al. 

(1992b). Shorter primers are less stable than longer primers before extension begins, and 

if a hairpin loop located adjacent to the primer annealing site contains high Igel content 
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creating strong bonds, then the 10base primer may not be sufficiently stable to cause 

denaturation of the loop. Therefore, less amplification product is produced with shorter 

primers . 

2.~/3j Primer/template dynamics: 

Sequences amplified from inverse primers (TNV250a/b) revealed primer sites with 

variable degrees of complementary base matching (Figure 2B-9). The 20nt primers 

matched the template better than the I Ont primers. Primer V250b formed a better match 

than V250a to all the sample sequences (Figure 2B-9) indicating that the sequence 

incorporating V250b was more conserved than that encompassing V250a. Absence of a 

primer site for V250a at position A-I in J-JB 13 (Figure 2B-I 0) was confirmed (Appendix 

E) . Since there was no primer site present, there was no amplification product. However, 

the internal sequence was present since INV250 amplified a sequence for IJB 13. Presence 

of the primer site was confirmed for V83621 , TIIJB56, VU90-l0, and IXTJV200 (Table 

2-9), producing a 250bp band, but VNOF89 1 was not tested. Since size changes in 

RAPD amplification product are rarely observed (Weising et aI. , 1995), the absence of the 

250bp band in J-JB 13 may reflect the recessive condition for that marker. About 95% of 

RAPD markers act as dominant markers, and less than 5% act codominantly, while the 

absence of the fragment represents a recessive allele (Williams et a!. , 1990). Although 

these fragments are technically not RAPD fragments, they were obtained by 1 Ont primers 

and a PCR cycle similar to RAPD-PCR. Therefore they would be expected to exhibit 
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characteristics of RAPD-PCR. 

Kwok et a1. (1990) found that a single g:t mismatch at the terminal 3' end 

amplified as efficiently as a fully complementary primer/template duplex. This 3' terminal 

g:t mismatch was present in 3 non-ambiguous and 6 ambiguous duplexes (Figure 2B-9). 

Efficient extension of DNA also occurs for pyrimidine-pyrimidine and purine-pyrimidine 

mismatches, whereas purine-purine mismatches do not extend efficiently (Kwok et aI., 

1990) Purine-purine mismatches are present in 11 10mers and 8 20mers in noo-

ambiguous positions. 

Primer set V250 and X250 did not distinguish between NABS V and X because 

there was one mismatch in the last four 3' positions, and the 3' terminus was a 't' . Kwok 

et a1. (1990) found that the combination of a 3' terminus 't' as well as a mismatch at the 

penultimate position would produce efficient amplification . Differentiation between 

NABS V and X seem to have required more rigorous mismatches in primer design. 

2.-Il3.g Significance of IOhase primer sites in specificity: 

Since the alignment between homologous portions of sequences from V250afb and 

171127 contained 97 .8% similarity (Figure 2B-8), then they were indeed homologous, but 

the ends of the sequences between V250 and 10bp sites, contained variation which was 

evident from inverse PCR (Figure 2B-8). By summing distances between proposed 

primer sites (Figure 2B-I0) a comparison between sequence length and size of 

electrophoretic bands could be made. The distance between V250a and V250b was 225bp 



108 

(add 40bases between inverse primers) (Figure 2B-10). This corresponded to the size of 

the band on the agarose gel (Figure 2B-7B). However, calculation of the shortest distance 

between proposed primer sites 17 and 127 for NABS V (Figure 2B-l 0) resulted in a much 

longer fragment (540bp) than the band found in the agarose gel (390bp) (Figure 2B-7A). 

Although one of the bands obtained from V-17/v-127 from inverse PCR was ambiguous, 

it was approximately 530bp long (Figure 2B-70) and closer in length to the calculated 

distance of 540bp if A-3 and B-3 were the selected sites (Figure 2B-l 0). 

A stem loop structure may explain the discrepancy in the distance between the 

proposed primer sites (Figure 2B-l 0) and the length of the amplified product (Figure 2B-

7A) . Since the sequence for RC # 127 at B-4 in NABS V, was a perfect match (Ol iO 

mismatches) then confidence could be placed in the location of this primer. Because 

# 127 was located outside V250b, then # 17 must have been located on the opposite side 

of V250a. Possible locations for # 17 and # 127 would be those presented in Figure 2B-I o. 

A-3 was the likely site for primer # 17 in NABS V because the two samples have 0 and 

l purine-purine mismatches in non-ambiguous positions, whereas the A-2 site had 3 and 

3 purine-purine mismatches in non-ambiguous positions (Figure 2B-9). The other species 

also indicate more favourable extension at the A-3 site. Assuming primer # 17 was located 

at the A-3 site, and primer # 127 at B-4, the sequence would be 540bp long. One 

explanation would be that a loop of 150bases (540-390bp) was formed between V250 and 

a 10nt primer in order to make the size of amplified product (Figure 2B-7 A) agree with 

distance between proposed primer sites (Figure 2B-1 0). DNA loop structures are not 
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easily denatured by short primers (Caetano-Anoll';s et a!. , 1992b). The longer the 

complementary regions within the loop structures, the more stable the loop becomes. 

Secondary structure of introns in the nuclear rRNA genes in Hymenoscyphfls er;cae 

contain stem loop structures with a high proportion of 'ge' pairing in tbe stem portion of 

the loop (Egger et aI. , 1995). Hairpin loops with high ' gc ' content have been described 

in inverted repeats of bean (Xodo et aI. , 1991) If the 10nt primer site was near the 

terminal stem portion of the loop, there may not have been sufficient extension to produce 

enough stability to denature the complementary regions of the loop, so extension 

proceeded past the base of the loop to produce a shorter PCR fragment (Figure 2B-II). 

Alternatively, a process similar to the replication of palindromic base sequences at 

telomeres (Cavalier-Smith, 1974) may have occurred without the endonuclease activity. 

If the formation of a hairpin loop of palindromic ends occurred in early stages of PCR, 

the 3' ends of the loop would act as a primer for extension of the DNA The final product 

would then be twice as long as the original DNA A third process which may account for 

the increased sequence length would involve PCR jumping (Innis et aI. , 1990). If the 

template DNA was not long enough to act as template for the primers, the primers may 

have amplified shorter fragments during the first few cycles of PCR. The 3' ends of the 

shorter fragments would then overlap, and a longer fragment would subsequently be 

amplified . However, since the fragment in this study was found in more than one sample, 

and the DNA was in good condition, the likelihood of the occurrence of PCR jumping 

would be low. 
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Results from this study suggest that the species specific fingerprints obtained by 

10nt primer amplification was likely a result of competition among primer/template 

binding sites and secondary DNA structure, rather than the presence of discrete 10nt sites 

specific to a species . Secondary structure has the potential to interfere with amplification 

and produce intact PCR fragments which span portions of DNA that are actually found 

some distance apart. 

2 . .JB.h Qualitative primer/temp/ale mismatch: 

Since there was a high degree of ambiguity in the primerltemplate sequences 

obtained from inverse peR, two viewpoints will be taken to discuss variation in 

complementarity of the primer sites with template DNA; liberal and conservative. The 

liberal viewpoint imposed no restraint on the choice of base in the ambiguity code in 

template DNA. [t assumed that the nucleotide in the primer was consistent with the 

matching base in the ambiguity code of the template DNA, ultimately giving the least 

number of mismatches. The conservative viewpoint uses caution when matching bases 

in the primer with those in the ambiguity code of the template DNA. [t assumed that 

nucleotides in the primer were not the matching bases in the ambiguity codes, resulting 

in the largest number of mismatches. A consensus viewpoint combined the two 

approaches for analysing PCR dynamics. 

Liheral. A 390bp band was present in V83621 using 171127 (Table 28-3), and 

potential sites for primer 17 were present at two locations, A-2 and A-3 , downstream from 



III 

INV250A primer site (Figure 2B-1O). The A-2 site contained 511 0 mismatches, with the 

3 near the 5' end being purine-purine mismatches indicating that they would have an 

effect on extension (Kwok et aI., 1990). All mismatches were within 6 bases of the 5' 

terminus, having less of an affect on extension than if they were near the 3' terminus 

(Kwok et aI. , 1990). In contrast A-3 site had 3/10 mismatches which were (possibly 2 

were purine-purine) at positions 1, 5 and 10 from 3' terminus . One possible purine-purine 

was at the 3' terminus. If the nucleotide at position 1 from 3' end was 'a' then this A -J site 

with 80% gc content would outcompete A-2. If the position were 't' then it would be more 

likely that A-2, with 80% gc content would outcompete the A-3 site. Competition would 

be high between these two sites. 

Although VNOF891 was not tested with 171127, speculation can be made on the 

success of its amplification. There were 411 0 mismatches in A-2 site (80% gc content) 

with three purine-purine and one purine-pyrimidine, whereas the 5/10 mismatches in the 

A-3 site (80% gc content) contained a mixture of purine-purine (3) and purine-pyrimidine 

(2) mismatches. The purine-purine in the A-2 site was third from 3' end, but in A-3 site 

it was fifth from 3' end. Since purine-purine mismatches are deleterious to extension 

(Kwok et aI., 1990), the mismatches at A-3 site were less hazardous to extension than 

those at A-2 site. Consequently, A-3 site would most likely outcompete A-2 site. 

There was no 390bp band for ITIJB56 using 171127 (Table 2B-3), and the inverse 

peR results indicate there was no # 17 primer site located within the vicinity with 

INV250A (Figure 2B-9). Therefore inverse PCR sequences supported results from 
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electrophoresis banding pattern. 

The remaining samples contradict results from inverse peR. However, fragments 

other than those amplified from sites located in the inverse sequences may be 

outcompeting those presented here. Although A-2 and A-3 sites in VII90-10 have the 

same number of mismatches (3/1 0), A-3 site (80% gc content) would be more probable 

for amplification because it consisted of non-deleterious mismatches, whereas A-2 site 

(80% gc content) consisted of two purine-purine mismatches at the 51 terminus. 

Competition may be high since the purine-purine mismatch was outside the 8 nucleotide 

domain necessary for amplification (Caetano-Anollos et aI. , I 992a). 

The A-3 primer site in IXTJV200 contained 80% gc, with only two mismatches, 

was a likely site for amplification since both mismatches were purine-pyrimidine. Site A-2 

in Jrn]3 contained 80% gc content and all four mismatches were within five positions 

from the 51 terminus, with two being purine-purine. The A-3 site also had two purine

purine mismatches three positions from the 5' but it had 70% gc content. Therefore, the 

A-2 site would probably outcompete the A-3 site for IJB13. 

All of the 4/ 10 mismatches and 80% gc content in A-4 for IX-TN200 were non

deleterious producing strong amplification. 

Both mismatches for VII-90-10 at site A-5 were purine-purine. The primer, with 

800/0 gc content, may produce amplified product since deleterious mismatches were 4 and 

9 from me 3' end. 

The B-2 site for primer # 17 in sample V-8362I contained 5/10 mismatches, I was 
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purine-purine, and 800/0 gc content, indicating this was poor site. Since 8-4 site for primer 

127 contained no mismatches and had 60% gc content, amplification most likely occurred 

from this site. 8-4 site was also the only site downstream from INV250A which could 

code for primer 127. 

Although 8-2 site for VNOF891 had 80% gc content, and contained 2 non

deleterious mismatches, it seems probable amplification could occur from this site. The 

8-4 site contained no mismatches and had 60% gc content which represented a good 

binding site for primer 127. 

The 8-3 site for lllJB56 (60% gc content) had three non-deleterious mismatches. 

However the B-4 site for the same sample and same primer # 127, contained one purine

purine mismatch at the 3' terminus. Competition would be high . 

The B-2 site for VlI90-10 contained 3/ 10 mismatches and 80% gc content, with 

two purine-purine mismatches near the 5' end may amplify product. For the same sample 

the 8-3 site contained 2/10 mismatches, with one being purine-purine, and 60% gc 

content, whereas the 8-4 site contained 1/10 pyrimidine-pyrimidine mismatches and 60% 

gc content. Consequently the 8-4 site would most likely outcompete 8-3 for primer 127. 

80th 8-3 and 8-4 site for 127 for sample lXTJV200 contained 60% gc content. 

8-3 site had 3/1 0 mismatches and 8-4 had 4/1 0 mismatches. Since one of the 

mismatches for 8-3 was purine-purine, then 8-4 may have outcompeted B-3. 

COllservative. The A-3 site for sample V83621 was more likely the binding site 

for # 17 than A-2 site. A-2 contained 7/10 mismatches, four were purine-purine with on 
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at the third position from the 3' end, and 80% gc content. The A-3 site (80% gc content) 

contained 611 0 mismatches, four were purine-purine and 2 of these were within four 

positions from 3' end. 

The A-2 site was less likely the binding site for # 17 for sample YNOF891 than 

A-3 since it contained 7110 mismatches, 5 were purine-purine, and 800/0 gc content, 

whereas A-3 site also contained 7/ 10 mismatches but the fourth from the 3' end was a 

possible purine-purine and 2 at the 5', end and 80% gc content. 

A-3 site for primer 17 for sample Y1l90-1 0 might outcompete the A-2 site since 

both have 50% mismatch, but 2 of A-2 mismatches were purine-purine, both were near 

the 5' end, and the one A-3 purine-purine mismatch was second from the 5' terminus. 

Both sites contained 80% gc content. 

The A-3 site for sample IXTJY200 was a good binding site for primer 17 since 

it contained 80% gc content and only I of its 6110 mismatches was purine-purine and 

located second from the 5' end. 

The A-3 site may have outcompeted the A-2 site for primer # 17 in sample IJB 13 

since both sites contained 80% gc content. Three of the 6110 mismatches in A-2 was 

purine-purine with two near the 5' terminus and one at the 3' terminus. Two of the 4/1 0 

mismatches in A-3 was purine-purine both near the 5' end . 

Amplification may occur from the A-4 site in sample IXTJY200 containing 4110 

mismatches and 80% gc content. Its one non-ambiguous purine-purine mismatch was at 

the 5' terminus . 
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The poor A-5 binding site for primer 17 in sample VII90-10 contained 7110 

mismatches and 80% gc content with six purine-purine mismatches. 

The 8-2 binding site for #17 in V83621 contained 5/1 0 mismatches and 80% gc 

content. One purine-purine mismatch was fourth from the 3 1 end, indicating that extension 

may be difficult. The 8-4 site for #127 contained a single pyrimidine-pyrimidine 

mismatch and 60% gc content, indicating it was an efficient site. 

One of the 5110 mismatches for 8-2 site for 17 in VNOF891 was purine-purine 

in the second position from the 3' end, and the 80% gc content indicated it was a poor 

site. The 8-4 site for primer 127 was a good binding site containing 60% gc content and 

2/10 purine-purine mismatches, one located at the 3' end. 

The 8-3 site for primer # 127 in lllJB56 contained 3/1 0 non-deleterious 

mismatches near 3' end and 60% gc content, probably producing weak peR product. 

Whereas one of the two mismatches in B-4 was purine-purine and at the 3 1 terminus and 

60%gc content, producing weak or no peR product 

Weak product was probably also produced by 8-2 and 8-3 sites in VTJ90-1 0 with 

6 and 4/1 0 mismatches, and 80% and 60% gc content. The 8-4 site for 127 was a poor 

site with four of its 8110 mismatches purine-purine, one at the 3' end, 60% gc conten!. 

8-3 and 8-4 sites for 127 in IXTJV200 would produce weak amplification since 

they contained 4, with one being purine-purine, and 8/1 0 mismatches, with !.hree being 

purine-purine, and both have 600/0 gc content The B-3 site may outcompete the B-4 site 

since it would produce a shorter fragment, since smaller fragments are more efficiently 



116 

amplified than larger ones. 

COI1SenSllS viewpoint. Since true primer/template complementarity and subsequent 

amplification probably exists somewhere between liberal and conservative viewpoints, 

consensus primerltemplate complementarity was extropolated from the level of agreement 

between the two viewpoints. 

The A-3 site would likel y outcompete the A-2 site for primer # 17 in V-83621 and 

V-NOF891. However, competition would be high, and if mismatch dynamics become 

equal , the shorter fragment will outcompete the longer fragment. The A-3 site was also 

better than the A-2 site for # 17 for NABS VII, IX and I. The A-4 was good but the A-5 

site was considered poor. 

8-2 site for primer 17 in V-83621, V-NOF891 and VIl-90-IO were considered 

poor. However, primer 17 at this site was oriented in the wrong direction and too close 

to primer 127 to produce a fragment. Site B-3 for primer 127 in VII-90-IO and IX

TJV200 was also poor, whereas 8-4 in V-83621 and V-NOF891 and VII-90-10 formed 

a very good binding site, but not in IX-TJV200 . This would explain presence of the 

390bp fragment in NABS V isolates. There was also a 525bp fragment in VII-90-10, but 

there was no homology between 390bp in V and the 525bp in VII. Evidence supported 

the location of the primer sites for 390bp fragment in NABS V to A-3 for # 17 and 8-4 

for # 127. 
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2.5 SECTION .G.; Repetitive DNA 

2.SA RESULTS 

Three nearly equidistant bands were visible in the agarose gel for NABS III 

(240bp, 300bp, and 360bp) with primers 341122, NABS VI (I ISbp, 13Sbp, and 170bp) 

with primers 83 /66 , and NABS VII (160bp, 170bp, and 200bp) with primers 83/66 (Figure 

2C-I A and C). Stairstep banding patterns were produced when each band was excised and 

re-amplified (Figure 2C-1B and D). 

2.S8 DISCUSSION 

The length of the fragments in NABS 1Il was approximately 240bp, 300bp, and 

360bp (Figure 2C-1 A), with the repeat unit being 60bp long. Each of the three bands were 

excised and re-amplified separately, producing a stair step banding pattern (Figure 2C-IB) 

indicating the presence of internal primer annealing sites on the longer fragments. 

Similarly, the three fragments in NABS VI were IISbp, 13Sbp, and 170bp long, 

making the repeat units 20 and 3Sbp long (Figure 2C-IC). The three fragments in NABS 

VII were 160bp, 170bp, and 200bp long, making the repeat units 10 and 30bp long. Both 

sets of three bands in NABS VI and VII produced stairstep banding patterns indicating 

that internal annealing sites were present in the longer bands (Figure 2C-ID). 

Minisatellites range in size from a few hundred to several Kbp, and the repeat units vary 

from 10 to 60bp . The repeat units in this study fell within this range. 

Variation among repeat sequences are reflected in length differences and base 

composition. All three bands for NABS III showed equal intensity on the original gel. 



Figure 2C-I : PCR amplification with SWAPP primers showing repetitive banding 

pattern found in separate species (A and C), and the stair-step banding pattern 

produced when each band was excised and re-amplified separately (B and D). A: 

Three bands present in NABS !II (I at 360bp, 2 at 300bp, and 3 at 240bp) with 

primers 341122. B: Excised bands from A shows re-amplified product from separate 

bands, I , 2, and 3, for each sample in A. C: Three bands present in NABS VI (I at 

170bp, 2 at 13Sbp, and 3 at IISbp), and NABS VII (4 at 200bp, 5 at 170bp, and 6 

at 160bp) with primers 83/66. D: Stair-step banding patterns produced from re

amplified excised bands in C. 
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However, in each stair step pattern the intensity of the shorter I or 2 bands was less than 

the topmost longer band . Morton et aI. , (1995) reported differences among sub-repeat 

sequences of oomycetes . The longer band contained a considerable amount of DNA since 

it was excised and resuspended from the original gel. Since PCR product of the top band 

was already present in the reaction tube in large quantities, this product had a head start 

in the second reamplification and used more reagents, making fewer reagents availab le 

to produce smaller bands, appearing weak on the agarose gel. These weak bands occurred 

in all three species . 

The three amplified bands in each of the three species may have been part of a 

longer repeat region . Equidistant bands were present above the 3-band repeat in NABS 

III at 400bp, 440bp, and 480bp (Figure 2C- 1 A), suggesting a longer array. These repeat 

units were 40bp long. However, because the 3 shorter bands were small er, competition 

among reagents in the amplification reaction favoured shorter fragments . Primer sites may 

have differed sli ghtly among regions creating variation in strength among amplification 

product. Similarl y, a longer fragment at 240bp was present above the 3-band cluster in 

NABS VII. 

Repetitive DNA sequences are present in all eukaryotic and some prokaryotic 

organ isms (Singer and Berg, 1991) varying from 2bp to several thousand bp. The repeat 

regions in this study appeared to be species-specific to NABS Ill , VI and VII. 

Microsatellite identification of sperm whales (Richard et aI. , 1996), brook charr (Angus 

and Bernatchez, 1996) and tomato cultivars (Rus-Kortekaas et aI. , 1994) produced 
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variation . Rus-Kortekaas et al. (1994) found that RAPD DNA was more conserved than 

microsatellite DNA in tomato. Since the repeat regions in this study were found using 

IOnt primers (ie. RAPD primers) then it would be expected that they be conserved such 

as within a species or group of species. 
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Chapter 3 

Pathogenicity of Armillaria ostoyae in Newfoundland 

INTRODUCTION 

Armillaria ostoyae (Romagnesi) Herink is considered a highly pathogenic root 

pathogen (Wargo and Shaw, 1985) commonly found associated with many coniferous tree 

species (Guillaumin et aI. , 1989). A. ostoyae is distributed throughout North America and 

Asia, and completes a northern circum boreal distribution with its European counterpart, 

A. obsc1Ira (Secretan) Herink (Guillaumin et aI. , 1991). Two species of NABS Armiliaria 

occur in Newfoundland. A. oSloyae (NABS I) is commonly found in soi ls throughout the 

island (Singh, 1981b), and A. sinapina (NABS V) occurs as an isolated co ll ection from 

a hardwood, Mountain ash, in a city park (Berube, personal communication). A. ostoyae 

has been associated with root disease of black spruce and balsam fir, causing mortality 

(Blodgett and Warrall, 1992), and is considered one of the two major diseases of conifer 

seed plantations in Canada (Cote and Dessureault, 1994). The root system of black spruce 

and balsam fir is shallow (upper 30cm) with wide spreading lateral roots growing in the 

same soil layer as the rhizomorphs of Armillaria (humus and O-1 5cm deep) (S ingh, 1975). 

Trees growing in plantations in Newfoundland are generally planted as 2-year old 

seedlings started in cone shaped containers. Spreading of the roots as the tree grows is 

restricted by the container so that roots of a mature tree remain deformed, affecting 
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nutrient uptake and predisposing the tree to Armillaria root disease (Livingston , 1990). 

Trees weakened by Armillaria are more susceptible to other invaders that can 

overcome defense reactions of the host (Mallett, 1995; Mallett and Volney, 1990; Cobb, 

1989), making Armillaria a primary pathogen. Alternatively, trees weakened from biotic 

or abiotic stress tend to be more vulnerable to Armillaria (Wargo and Shaw, 1985 ; Singh, 

1975; Filip, 1989) making it a secondary pathogen. Singh (1983) reported that because 

trees growing in Newfoundland soils are growing in unfavourable soil conditions, they 

are stressed and more susceptible to A. mellea (sensu lata). Many forest insect pests also 

cause damage and stress to trees, providing an opportunity for secondary pests or 

pathogens to attack. If the insect infestation is low, the tree may be able to withstand the 

attack and ward off secondary invasions, surviving for many years and possibly 

recovering if conditions are unfavourable for the invaders. However, if the insect attack 

is severe, and one or several secondary invaders attack, the tree may succumb and die 

within one or two growing seasons. The dead tree would then act as an inoculum source 

for Armillaria to increase biomass and attack surrounding living trees. 

Two reviews (Filip, 1989; Wargo and Harrington, 1991) and numerous studies 

have been carried out on the relationship between insect defoliation and Armillaria root 

disease (Mallett and Volney, 1990; James and Goheen, 1981 , Raske and Sutton, 1986; 

Wargo, 1977; Kulhavy et ai. , 1984). Different species of insect pest feed in a variety of 

ways causing various amounts of stress on a tree. The hemlock looper (Lambdina 

jisee/laria jiscellaria (Guen.), (Lepidoptera: Geometridae» has undergone four major 
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outbreaks since 1912 (Carroll , 1956) and poses a threat to the forest industry when 

outbreaks begin. The insects feed mainly on new foliage from early spring as a frrst 

instar larva, through to late summer when pupation occurs. They may feed on old foliage 

later in the season if all new foliage has been consumed. The looper is termed a 

'wasteful' feeder in that it will take several bites from one needle and move on to the next 

(Carroll , 1956). The needles senesce and turn brown after the feeding has damaged them. 

The balsam fir sawfly (Neodipriol1 ahielis Harris) (Hymenoptera: Diprionidae) is also a 

defoliator, but this insect feeds on old foliage and consumes entire needles before moving 

on to the next (Tves and Wong, 1988). It may defoliate a tree leaving the trunk and bare 

branches standing with only the current year's foliage present. The balsam woolly adelgid 

(Adelgespiceae (Ratz.) (Homoptera: Adelgidae» is also a common pest in Newfoundland, 

but it generally causes little tree mortality. Feeding of this aphid causes deformation and 

stunting of the branches, sometimes causing defoliation . It is believed that the formation 

of galls by this insect decreases water flow to the crown (Hollingsworth and Hain, 1994) 

placing water stress on the tree. Other studies have investigated the incidence of 

Armillaria root rot in adelgid infested balsam fir stands (Hudak and Singh, 1970; Hudak 

and Wells, 1974). 

Depending on the type of foliage damage, the degree of stress placed on a tree 

may vary. Mined leaves were consistently avoided by herbivores, whereas chewed and 

artificially defoliated leaves were preferred (Hartley and Lawton, 1987). Defoliation from 

insect feeding may induce a response from the tree by increasing leaf phenolic levels by 
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250/0, whereas mechanical damage from artificial defoliation may elicit an increase in 

phenolic levels by only 9% (Hartley and Lawton, 1987). Consequently, the type of insect 

damage may induce different chemical changes in foliage. Defoliation is also known to 

cause chemical changes in root bark of trees (Parker and Houston, 1971). 

lnoculation trials with Armillaria have been commonly done on greenhouse 

seedlings or young potted plants (Mallett and Hiratsuka, 1988; Mugala et ai. , 1989; Singh, 

1983 , Rishbeth, 1982, 1984; Shaw et ai. , 1981 ; Anselmi et ai. , 1994). Few field 

inoculation trials have been performed on mature established trees (Davidson and 

Rishbeth, 1988; Wargo and Houston, 1974; Wilbur et ai. , 1972). Incidence of Armillaria 

in Newfoundland has been extensively studied (Singh, 1981a, 1981b; Warren and Singh, 

1970; Singh and Raske, 1983 ; Singh and Carew, 1983), however field inoculation of 

mature trees has never been done in a boreal forest. 

The purpose of this study was to examine the pathogenicity of Armillaria ostoyae 

on black spruce and balsam fir trees undergoing various types and degrees of stress by 

inoculating roots with two Newfoundland isolates. Several objectives were proposed. The 

first objective was to determine whether different methods of insect feeding would affect 

rate of infection by A. oSloyae. A second objecti ve was to examine effects of artificial 

defoliation on infection rate of A. oSloyae. Thirdly, a comparison was made between 

pathogenicity of A. oSloyae in a plantation and in a naturally regenerated black spruce 

stand . The last objective examined the effects of the degree of insect and artificial damage 

to the tree on the infection rate by A. oSloyae. 
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3.2 MA TERIALS AND METHODS 

3.2a Source of inoculum: 

Two isolates of Armillaria osloyae, ASI4-2R-2 and ASII-4H-I , were used as 

inoculum, and were collected from Crabbes River and Big Cooks Pond areas respectively, 

by G. Warren in 1991. ASI4 was isolated from recently killed black spruce trees in a 

plantation and AS I I from birch stumps left from a hardwood cutover, and grown on 3% 

Malt extract agar 

3.2b Inocllialion of Irees: 

Rye kernals were soaked in water with CaCO, (2 L3g1L) and distributed in bags, 

and autoclaved twice for 45 minutes at 24 hour intervals. Whole cultures of Armillaria 

were mashed in a blender with water, and each autoclaved jar was inoculated with IOmL 

of the liquid inoculum, and incubated for 3-5 weeks. Inoculum blocks, consisting of 

autoclaved white birch twigs (3cm x 20cm), were placed in the inoculated mason jars and 

incubated to all ow mycelium to grow beneath the bark layer These blocks were then 

placed against the long axis of a major root with one side of the mycelial fan exposed to 

the root, and secured in place by two pieces of wire. The upper forest layer of sailor 

moss was replaced to cover the root. 

3.2c Experimenlal design: 

The experiment was manipulative witll completely randomized design, and was 
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conducted from July, 1994, when host trees were inoculated with Armillaria, to July, 

1996, when the inoculum was removed and results recorded. Experimental units were 

defined as inoculated trees within a plot, and each tree was undergoing one of four stress 

levels . The stress level was the treatment variable, and the treatments were randomly 

assigned to experimental units (ie. inoculated trees in discrete physical locations). Ten 

trees were inoculated per fungal isolate for each treatment variable, and the area on which 

trees were located for that treatment was referred to as a plot. Survival of inoculum on 

the birch twigs was imperative for examination of the effects of Armillaria on host trees. 

If lab inoculation of birch twigs was not successful, then fewer than 10 trees were 

inoculated for each treatment group. Infection was determined by observing presence of 

mycelium on the inoculum block and on or in the root, by listing six levels of 

pathogenicity: 

I = Mycelium ahsent all block, ahsent all root, No infection. 

2 = Mycelium absent on block, present on root, Foreign Armillaria. 

3 = Mycelium present on block, absent on root, No infection. 

4 = Mycelium present on block, present ON root, Superficial co lonization. 

S = Mycelium present on block, present IN root, Cambial infection. 

6 = Mycelium ahsent on block, present IN root, Foreign Armillaria. 

Root response was determined by the following criteria: 

I = No response, healthy root. 

2 = Superficial swelling, necrosis , or lesion on the root. 
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3 = Resinosis , callus tissue, or necrosis present below the bark. 

4 = Lesion located away from inoculum block, indicating foreign Armillaria. 

5 = Reaction to wire damage. 

Tree health was used as an indication of above ground tree symptoms with the following 

criteria : 

= Healthy, 0% defoliation from beginning of study. 

2 = Lower and inner needles yellow, chlorotic, or pale green. 

3 = Needles green but sparse. 

4 = Dead branches present in half the tree. 

5 = Recovering from adelgid with new growth on affected branches. 

3.2d Dejinitol1 of treatment groups: 

Two species of conifer, balsam fir (Abies balsamea) and black spruce (Picea 

mariana), were inoculated with both isolates of Armillaria. Treatments involving artificial 

defoliation were defined as low when 30% of the branches were removed at each node 

of the tree; as moderate when 50% of the branches were removed; and as severe when 

80% of the branches were removed from each node. 

Different definitions were required for levels of defoliation for each type of insect. 

Hemlock looper defoliation levels took into account 1992, 1993, 1994 and percent crown 

defoliation, but were based mainly on the 1993 percent defoliation levels. Low levels 

were defined as 20 - 50% 1993 needles absent; moderate levels were 50 - 80% 1993 
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needles absent; and severe defoliation was 80 - 100% 1993 needles absent from the 

branches. 

Two levels of defoliation were defined for the balsam fir sawfly. Severe levels 

consisted of 2:: 70% needles missing from the crown, and moderate levels were anything 

less than 70% needles missing from the crown. 

Three levels of adelgid damage were defined for the thinned site, and two levels 

(low and severe) for the unthinned site. Low level of damage included trees with less 

than 5% foliage missing and containing swollen nodes. The moderately defoliated trees 

were those with 5 - 30% foliage missing, swollen nodes, and they mayor may not have 

stunted branches. The severely defoliated trees were those with stunted brancbes, swollen 

nodes, and more than 30% foliage missing, chlorotic and/or necrotic. 

Control trees were inoculated in the same manner as the treatment groups, except 

the birch segments were sterile and autoclaved, containing no fungal growth. In 

artificially defoliated plots the control trees were healthy with no branches removed. 

However, in the insect defoliated plots, the control trees were chosen without prior 

knowledge of the level of defoliation . Consequently they consisted of three different 

levels of defoliation, but no fungal inoculum was applied to the root. 

3.2e Site Descriptions: 

Locations of the seven plots are shown on the map of Newfoundland (Figure 3-1). 

The Hungry Hill site (plot 1), located in central Newfoundland (48" 42.33' Nand 



Figure 3-\: Map ofthe island of Newfoundland showing location of the seven plots. 

Plot I was black spruce natural regeneration, plot 2 was balsam fir hemlock looper, 

plot 3 was balsam fir on a sandy site, plot 4 was adelgid thinned, plot 5 was adelgid 

un-thinned, plot 6 was balsam fir sawfly defoliation, and plot 7 was black spruce 

plantation. 
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56° 28.25' W), was a dry to moist natural regeneration black spruce stand with trees 

spaced from 0.25 to 3 meters apart. The upper part of the site was well drained and the 

lower portion was very wet. Bellila papyri/era was heavily browsed. Flora was 

dominated by Picea mariana (70%), and other species included Abies balsamea, Picea 

glallca, 13elllla papyri/era (0.6 m high), AIIIIIS sp. (2 meters high), Cornlls canadellsis, 

VaCcillill111 anglls/~folillm, Kalmia angllstifolia, Maianlhemllm canadense, Clinlonia 

borealis, Gaffltheria hispidula, 7henlalis borealis, Linaea borealis, Hieraciufl1 

GliranliaCIIIlJ , Taraxacum officinale and Epilohilll11 anglls/~rolillm Bryophytes consisted 

of Hy/ocollJniul11 ,..\plendons, Dicranu111 sp., Plellrozilll11 shreberi, and Sphagnum sp . 

The Snowshoe Pond site (plot 2) near Douglass Lake, (48" 26' Nand 56" 44.5' W) 

was a wet balsam fir site defoliated by the hemlock looper in 1993 . Trees were 10 to 12 

In high, spaced about 2.5 meters apart, and the forest floor was moss covered with 15% 

fa ll en logs . The upper part of the site was moist to wet. The understory consisted of 

Abies balsamea « 0.3 m high), Belllia papyri/era « 0.3 m high), Moneses uniflora, 

Cornus canadensis, Cau/theria hispidula, Clintonia borealh;, Maial1lhemlltn canadense, 

ferns, and scattered lichens and mushrooms. Bryophytes included Ptiliul11 crisla-castrensis, 

Hy/ocomimn jplendolls, and PlelfrOzillfJ1 shreberi . 

Site 3 was artificially defoliated balsam fir (p lot 3) also near Douglass Lake (48" 

26'N and 55" 44.5'W). Trees were growing on a well drained ridge at the edge of a 

gravel pit. The upper part of the site was well-drained sandy material, and the lower part 

was moist with bryophytes. The forest floor consisted of compact dry soi l overlain with 
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many loose brown needles. The dominant tree species was Abie.\' balsamea, with small 

amounts of Picea mariana, and understory Belllia papyrijera. Other plants included 

Cornll5 canadensis, Rubus idaells, MaianthemllJJ1 canadense , Kalmia angllst{fo/ia, and 

Vaccinillll1 angustifolium. Bryophytes were Plellrozium shl'eheri, Dicranum spp . and 

HY/OC()l11illl1l .\plelldolls. 

Sites 4 and 5, near Crabbes River in southwestern Newfoundland, were located 

adjacent to one another (48" 21.5'N and 58" 43 .5'W). One plot was thinned (plot 4) and 

the other was not thinned (plot 5). Both were dominated by Abies balsamea whi ch was 

infested with the wooll y adelgid (Adelges piceae). Site 4 was open canopy, thinned, dry 

to moist and covered with many dry bare stumps and twigs (40%). Black spruce and 

white birch was present before thinning as evidenced by the fallen logs. Other plants 

included Cornlls canadensis, Lil/aea borealis, Belllia papyrijera « 0.3 m high), Solidago 

rugosa, Cli%nia borealis, Rubus idaelfs, Allaphalis margarilaceae, Gaultheria hi.'~pidllla, 

Pnmus pen.\ylval1ica, AceI' seedlings and ferns. Bryophytes included Pleurozium shreberi, 

and !l.hylidiadelphus lore liS. Site 5 was closed canopy, flat and moist with some decaying 

stumps and logs, and many brown needles and decaying birch leaves on the ground. 

Understorey flora included Prill/liS pel/sylvallica « 0.6 m high), Betllia papyrijera, Ahies 

balsamea and ferns were present only where light reached the fl oor. Other plants were 

Lillaea borealis, Maiallthemul1I canadense, COrlms canadensis, some Clin/onia borealis, 

Rihes glandulosum, and bryophytes such as Hylocomiul1I splelldol1s, Dicranlll1l sp . and 

P/iliul11 cris/-cas/rensis. Mushrooms such as Hydmlll1, Lac/arills, Rusula, Mycena and 
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Canlharellus were abundant. 

The Caribou Lake site (plot 6), was dominated by Abies balsamea infested with 

balsam fir sawfly, and was located on a south facing slope (48' 34.5'N and 58' 14'W). 

The upper main site was moist to dry with PillllS strobus, Sm"hus sp., Clinlonia borealis, 

Solidago rugosa, Betliia papyrifera (0.5 to 1 m high), Rllblls idaells, Linaea borealis, 

COr/illS canadensis, EpiIobium angllslijo/ium, Kalmia angustifolia, ferns, and bryophytes 

such as Sphagnum ~pp. , Polytrichlll11 jjp. , Plililll17 crista-caslrensis, and Hylocomium 

.\plendolls. The lower site consisted of a moist lumpy terrain with moss covered logs and 

stumps overlain with a carpet of Linaea borealis and Cornus canadensis. Plants growing 

on the forest floor included Linaea borealis, Cortms canadensis, Solidago rugosa, Rubus 

idaells, and understory Abies balsamea and Betliia papyri/era (I m high). 

Plot 7 was a container planted black spruce plantation near South Pond, central 

Newfoundland (49' 21.75'N and 56' 08 .75'W). The site was flat, dry to moist with Alnlls 

sp. (2 meters high), Picea glallca, Belllla papyr{fera, Corl1l1s canadensis, Vaccinium 

allgllsl(jolillm, Maialllhemum canadellse , cpilohillm angllslijolillm, and lichens and 

stumps. 

3.2f Statistical allalysis: 

Non -parametric Kruskal-Wallis and Spearmans Rank Corrrelation tests (Sokal and 

Rohlf, 1981) were performed in Minitab Release 7.2, Standard version (Minitab, Inc.) and 

graphs were generated in Sigmaplot version 2.0 I (Jandel Corporation). Treatments within 
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each plot were replicated 5 to 10 times for each isolate, but it was not feasible to replicate 

entire plots with similar physical characteristics, so two pairs of plots were compared 

using statistical tests. These plots were black spruce naturall y regenerated stand (plot I) 

and plantation (plot 7), and the balsam fir adelgid thinned (plot 4) and un-thinned (plot 

5) stands. Comparison among the three insect defoliated plots were discussed biologicall y 

(as opposed to statistical analysis) with reference to major differences confounding the 

comparisons. 

The six levels of pathogenicity were ranked in four levels for statistical 

comparisons. Level I remained as absence of inoculum, level 2 was omitted, level 3 was 

described as no infection, level 4 was superficial colonization, level 5 was cambial 

infection, and level 6 was omitted. This resulted in levels 1, 2, 3 and 4. 
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RESULTS 

Most rank correlations were less than 0.500 indicating poor relationship between 

variables . The highest correlation between isolate and level of pathogenicity (r=-0.409), 

and also root response and pathogenicity (r=+0.700), was with the balsam fir sawfly plot, 

the most severely defoliated plot The highest correlation between presence of 

rhizomorphs and pathogenicity (r=+0.630) occurred in the black spruce natural 

regeneration stand (Table 3- 1) . 

There was a significant difference in virulence among the isolates. Both isolates 

produced significantly more disease than contro ls in all plots except the un-thinned 

adelgid plot (no disease) and the black spruce plantation (H..os[2[=4.76, p=0.093 , df = 2, 

r=-0.202) (Figure 3-2). The only significant effect of treatment on pathogenicity occurred 

in the black spruce naturally regenerated stand, in which healthy and low level artifi cial 

defoliation had more root disease than high levels of defoliation (Ho.os[3[= 17.54, p=O.OO I, 

df=3, r=-0.162) (Table 3- 1). There was significantly more root response with 

pathogenicity in all si tes except both adelgid plots (Table 3-1). The only site showing a 

significant relationship between tree health and pathogenicity was the sawfly plot 

(HO.OS[2[=6.86, p=0.033 , df=2) (Table 3-1). Presence of rhizomorphs produced significantly 

more pathogenicity in plots 1, 2 and 3 only (Table 3-1 ). 

The black spruce naturally regenerated stand (plot I) and the black spruce 

plantation (plot 7) were similar with regards to height, diameter at breast height (DBH) 

and age (Figure 3-3). The adelgid infested balsam fir sites, thinned (plot 4) and un-thinned 
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Table 3-1 Effects of treatment, isolate, root response, tree health and presence of 
rhizomorphs on occurrence of disease in each of seven plots using Kruskal-Wallis and 
Spearman's Rank Correlation tests. 

Fllctor H 

Plot 1 

Treatment 15.48 
17.54 

Isolate 9.57 
10.84 

Root 13.87 
Response 15.70 

Tree Health 

Rhizo- 30.67 
morphs 34.70 

Plot 2 

Treatment 

Isolate 3.31 
5.2\ 

Root 5.67 
Response 9.19 

Tree I lcalth 

Rhizo- 2.60 
morphs 4.09 

Plot 3 
................................. ........................ 

Treatment 16.15 
18.30 

Isolalc 17.25 
19.54 

Root 16.22 
Response 18.67 

Trec Ilcalth 

Rhizo- 5.97 
morphs 6.77 

P (0::: = (UIS) 

0.002 
0.001 (Adj.) 

0.009 
0.005 (Adj.) 

0.000 
0.000 (Adj.) 

1'>0.05 

0.000 
0.000 (Adj .) 

P > 0.05 

0.069 
0.023 (Adj.) 

0.017 
0.001 (Adj.) 

P > 0.05 

0.107 
0.043 (Adj.) 

Rank 
Co rrel a
tion (r) 

-0.162 

-0.321 

+(1.423 

+(1.630 

-0.302 

+(1.436 

+(1.268 

. ........................................ 

0.007 -0.546 
0.003 (Adj.) 

0.000 -0.660 
0.000 (Adj.) 

0.000 +(1.71 4 
0.000 (Adj.) 

P > 0.05 

0.QI5 +0.433 
0.009 (Adj.) 

Interpretation 

Healthy and 30% artificial defo liation 
had more disease than controls, 50%, 
or 80% defoliation. 

Isolate AS- J4 was more vimlent than 
iso late AS-II or controls. 

Tree roolS with necrosis had more 
v imlence than roots with no response. 

"nlCrc was more disease whcn 
rhizomorphs were present. 

Isolate AS-14 was more virulent than 
AS-II. 

'!11cre was more disease on necrotic 
rool') than on roots with no necrosis. 

·l1lCre was more disease when 
rhizomorphs were present. 

AU levels or arti fi cial deroliation 
showed more virulence than (.;ontrols. 

Ooth isolates were more vimlenl than 
autoclaved controls. 

Rool necrosis and cambial inrection 
showed more virulence than no 
response or wire damage. 

'111Crc was more disease when 
rhizomorphs were present. 
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Pl ot 4 

['rcalment P > 0.05 

Isolate 

Root 
Response 

Tree Health 

Rhizo
morphs 

Plot 5 

Plot 6 

T reatment 

Isolate 

Root 
Response 

Trcc Health 

Rhizo-
morphs 

Plot 7 

Tr~atme!11 

Isolate 

Root 
Response 

Tree Ilealth 

lUlizo-
morphs 

4.51 
5.23 

4.19 
4.86 

11.9 
13.84 

5.91 
6.86 

4.01 
4.76 

5.75 
6.93 

3.21 
3'!Q 

0.034 
{l.{m (Adj.) 

P > 0.05 

P > 0.05 

P > 0.05 

P> 0.05 

0.041 
0.028 (Adj.) 

0.003 
0.001 (Adj.) 

0.053 
0.033 (Adj.) 

1' > (J.OS 

P > 0.05 

0.135 
0.093 (Adj.) 

0.017 
0.009 (Adj.) 

All trees i.n one 
health t;atcgory. 

0.073 
0.051 

-0.371 

-0.409 

+O.70a 

+D.486 

-0.202 

+0.319 

+0.239 

Isolate AS-II was more virulent than 
controls. 

No tests perfonned since there was no 
infedion. 

Isolate AS-II was more vimlelll than 
autoclaved controls. 

Root necrosis and cambial infection 
showed more virulence than no 
response. 

Trees with needles missing or dead 
bmnches had more infection than 
healthy trees 

Both isolates were more vimlent than 
ilutoclaved controls. 

Rool necrosis was more virulent than 
no response. 

111cre was more discase when 
rhizomorphs were present. 



Figure 3-2: Proportion of trees in each plot showing degree of pathogenicity for each 

of the two inoculum isolates, AS-14 and AS-II, and control blocks. Numbers 

represent combination of superficial colonization and cambial infection. 
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Figure 3-3: Comparison of physical factors of trees (y-axis) in each of seven plots (x

axis) showing mean and standard deviation for each plot. A: Height of trees (meters) 

estimated from soil surface to apical tip. Trees in plot 2 were not measured and were 

estimated to be IO to 12 m high. B: Diameter at breast height (DBH) (cm) was taken 

approximately 1.3 meters above soil level. C: Tree age (years) was counted from 

stem cores at DBH. D: Leader length (cm) was estimated from the highest whorl of 

branches to the apical tip, representing the last year of growth. Trees in plot 2 were 

too high to estimate leader length, and those in plot 5 were too dense. Sample sizes 

for plots I through 7 are 93 , 70, 30, 40, 20, 30 and 70 trees respectively. 
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(plot 5) were also similar with regards to height, DBH and age (Figure 3-3), as well as 

soil profile (Figure 3-4). However, the looper defoliated balsam fir site (plot 2) was taller, 

older, and had a larger DBH than any other site (Figure 3-3). Although the artificially 

defoliated balsam fir (plot 3) was similar in tree measurements, the soil profile was very 

different with less than 2 em organic layer, and high sand composition (Figure 3-4, Table 

3-2). The sawfly defoliated site (plot 6) was taller than the other balsam fir sites, but was 

similar in age and DBH (Figure 3-3). 

YinJlence was defined according to incidence, superficial colonization of mycelium 

on the root, and intensity, its entry into root cambial tissue. There was 4% cambial 

infection in the total 350 trees in the study, but there was an average of25% both cambial 

infection and superficial colonization combined (Table 3-3). 

The highest level of infection occurred on the balsam fIr sandy site (Table 3-3, 

Figure 3-5) corresponding to the highest level of root response (Figure 3-6). But the 

highest proportion of rhizomorphs was found associated with roots in the black spruce 

natural regenerated stand (Figure 3-7). However, rhizomorphs were also abundant on the 

balsam fir sandy site and black spruce plantation . The balsam fir sandy site contained a 

large proportion of sand content and a higher pH than all other sites (Table 3-2). 

Within the plots pathogenicity corresponded to root response (Figures 3-8 and 3-9). 

Root response increased with disease incidence and vice versa. The significant 

relationship between treatment and pathogenicity in the black spruce natural regeneration 

site was unexpected in that low levels defoliation had higher pathogenicity than higher 
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levels defoliation (Figure 3-8) . 



Figure 3-4: Soil profiles for six plots showing depth ofLFH and mineral layers. LFH 

represents the upper organic layer consisting of litter (L), fermented layer (F), and 

humus (R). Mineral layers consist of gray and brown layers. Nutrients have leached 

out of the gray layer and into the brown layer producing a color difference. The 

mineral layer contains both gray and brown layers with no color differentiation. Rock 

represents the parent material from the bedrock. Two sites per plot were sampled 

except plots 4 and 5. 
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Table 3-2: Comparison of soil properties for six plots, natural regeneration black spruce ( I), balsam fir looper defoli ation (2), 
balsam fir artificial defoliation (3), balsam fir adelgid and thinned (4), balsam fir adelgid and un-thinned (5), and balsam fir 
sawfly defo liation (6). Samples were taken from two sites with in each plot ( 1,2), and analysis was done on the upper LFH soil 
layer (a) and the lower mineral layer (b). Soil properties included pH (in water), organic matter (OM) (%), nitrogen (N) (%), 
phosphorus (P) (ppm), potassium (1<) (meqIlOOg), calcium (Ca) (meq/ IOOg), magnesium (Mg) (meqIlOOg), silt (%), clay (%), 
sand (%) and texture (Text). 

Plot I pl-I-Ia pH-lb pH-2a pH-2b OM- Ia OM- Ib OM-2a OM-2b N-la N- Ib N-2a N-2b 

3.78 3.98 4. 10 4.90 64.96 5.78 57.54 16.1 1 1.24 0.10 0.74 0.21 

3.64 3.75 3.38 3.84 92.32 5.16 86. 17 8.33 1.19 0.06 1.19 0. 14 

4.85 5,05 5.42 5.02 22.9 4.38 15.33 3.97 0.47 0.06 0.38 0.05 

3.81 4.54 90. 12 7.24 1.59 0.14 

3.86 4.17 86.4 5.70 1.44 0. 14 

r-- 1 - 4.23 3.70 4.23 5.24 92. 13 5.15 0.11 1.83 0.10 ... 
.-< 

1'101 P- Ja P-Ib P-2a 1'-2b K-la K-Ib K-2a K-2b Ca-Ia Ca- Ib Ca-2a Ca-2b 

25 12 14 2. 13 0. 13 1.75 0. 11 6.94 1.97 8.94 0.97 

60 31 20 2.48 0.05 1.16 0.06 9.09 0.28 1.19 0.15 

17 45 25 17 0.66 0.05 0.93 0.03 6.35 0.28 7.09 0. 18 

30 2.26 0.08 18.34 0.93 

50 22 1.78 0.06 16.23 0.79 

4 1 0.30 1.89 0.02 0.54 18.65 0.30 



Plol Mg-Ia Mg-Ib Mg-2a Mg-2b Sill-I Silt-2 Cla)'- I Clay-2 Sand· I Sand·2 rext -I Text-2 

2.47 0.5 1 2.45 0.19 68 49 10 15 22 36 Silty Loam 
loam 

3.45 0.12 2.93 0.09 51 46 10 43 44 Loam Loam 

1.33 0.05 1.08 0.03 28 13 66 82 Sandy Sandy 
loam loam 

7.09 0.39 48 45 Sill)' 
loam 

5.75 0.36 39 SS Sandy 
loam 

00 

1- 0.25 7.05 0. 11 47 5S II 43 39 Loam Sill)' 

'" r-i loam 
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Table 3-3 : Degree of infection caused by each isolate of A. ostoyae used as inoculum 
showing percentages per plot and total percentages with and without controls. Since plots 
3 and 5 had no controls, a comparison was made among all plots with and without 
controls. Values are percent of the total for each isolate with sample size indicated in 
parentheses . Dashes indicate no samples taken. 

Isolate Site I Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 

AS-14 33 (42) 10 (30) 67 (15) 44 (25) 

AS-II 23 (40) 3.3 (30) 33 (15) 33 (30) 0(20) 45 (20) 37 (35) 

Control 9 (II) 0(10) 20 (10) 20 (10) 10 (10) 

Total 26 (93) 5.7 (70) 50 (30) 30 (40) 0 37 (30) 36 (70) 
(with 
controls) 

Total 28 (82) 6.7 (60) 50 (30) 33 (30) 0 45 (20) 40 (60) 
(without 
controls) 



Figure 3-5: Proportion of trees at each pathogenicity level within plots.Percent trees 

was calculated as number of trees infected according to each level of pathogenicity, 

divided by the total number of trees within each plot. Levels of pathogenicity are as 

follows: 1 = mycelium absent from inoculum block and absent from root; 2 = 

mycelium absent from block, present on root (foreign Armillaria); 3 ~ mycelium 

present on block, absent from root (no infection); 4 ~ mycelium present on block, 

present ON root (superficial colonization); 5 ~ mycelium present on block, present 

IN root (cambial infection); 6 ~ mycelium absent from block, present IN root (foreign 

Armillaria). 
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Figure 3-6: Proportion of trees showing each type of root response to infection 

within plots. Percent trees was calculated as number of trees exhibiting each type of 

root response per plot, divided by the total number of trees within each plot. 
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Figure 3-7: Proportion of trees in each plot containing roots associated with 

rhizomorphs as an indication of disease potential. 
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Figure 3-8: Relationship between level of defoliation of the host (x-axis) and 

infection by A. ostoyae. Percent trees (y-axis) was calculated as number of trees per 

pathogenicity level per level of defoliation (treatment), divided by the total number 

of trees in each defoliation level. Pathogenicity levels are indicated as follows; ---0--

is no mycelium on inoculum block and none on root; ---0--- is mycelium on block but 

none on root ~ ---6.--- is mycelium on block and on root, and; ---v--- is mycelium in 

cambial tissue. A: Black spruce natural regeneration (plot I), B: Balsam fir hemlock 

looper (plot 2), C: Balsam fir artificial defoliation (plot 3), D: Balsam fir adelgid, 

thinned (plot 4), E: Balsam fir adelgid, un-thinned (plot 5), F: Balsam fir sawfly (plot 

6), and G : Black spruce plantation (plot 7). 
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Figure 3-9: Relationship between level of defoliation of the host (x-axis) and root 

response measured as three levels for each plot. Root response was calculated as 

number of trees per response type at each level of defoliation (treatment), divided by 

total number of trees in each defoliation level. Root responses are indicated as 

follows ;---o--- is no response, healthy root; ---0 --- is superficial colonization of 

mycelium on root; ---l>--- is cambial infection of mycelium under bark of root. A: 

Black spruce natural regeneration (plot 1), B: Balsam fir hemlock looper (plot 2), C : 

Balsam fir artificial defoliation (plot 3), D: Balsam fir adelgid, thinned (plot 4), E: 

Balsam fir adelgid, un-thinned (plot 5), F : Balsam fir sawfly (plot 6), and G: Black 

spruce plantation (plot 7). 
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3.-Ia Disease causing agent: 

160 

DISCUSSION 

The underlying assumption in this study was that the A. ostoyae isolates used for 

inoculum were the disease causing agents. This was verified by the use of controls. 

Controls were included which consisted of securing an autoclaved sterile wooden block 

to tree roots , undergoing the same stress levels as experimental trees, in the same manner 

that the inoculated blocks were secured to experimental trees. If occurrence of disease in 

controls was as high as in the experimental trees, then analysis of the experiment would 

be invalid . However, in most testable cases isolate I was significantly more virulent than 

isolate 2, andlor isolate 2 was significantly more virulent than controls (Table 3-1 and 

Figure 3-2), justifying further analysis of the study. In plots I and 2 isolate AS-14 was 

more virulent than AS-II and controls. In plot 7 both isolates were more virulent than 

controls (Table 3-1) though statistically significant only at a ~ 0.10, with a p-value of 

0.093 . Because this site was a plantation, a large amount of foreign Armi/faia may have 

been present. However, a p-value of 0.093 may be considered biologically important. 

Isolate AS-14 was collected from an area several kilometers away from the adelgid plot 

(plot 4 and 5), and isolate AS-I I was collected from Big Cookes Pond outside Corner 

Brook. It was not unexpected that isolate AS 14, collected from a conifer, was more 

virulent on conifers than AS II which was collected from a hardwood. Control trees tested 

for presence and effects of foreign Armillaria on the trees. There were two superficial 

infections in controls of plot 4, I superficial and I cambial presence in controls of plot 
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6, and I superficial in controls of plot 7. This indicated that foreign Armillaria was 

present in the soil , however inoculum may have escaped into the soil and travelled some 

distance attacking the root at a weakened point. 

3 . .fh Pathogenicily: 

Average total infection (25%) was lower than that reported by Mallett and 

Hiratsuka (1988) on Lodgepole pine. However they used 2 year old seedlings in a 

greenhouse environment whereas this study used mature trees (Figure 3-3). Rishbeth 

(1982) reported 12% pine seedlings killed by inoculation with A. oSloyae, and Singh 

(1980) inoculated 2 to 4 year old black spruce seed lings in a greenhouse with A. mellea 

(sensu lalo) producing 21 % infection . A larger amount of superficial colollization than 

cambial infection in all the plots (Figure 3-5) would suggest that two years was not 

sufficient time for A. oSloyae to establish root infection on mature trees in Newfoundland, 

but the pathogen was beginning its attack by moving onto the root. Although the rate of 

spread of A. oSloyae varies with climate and location , van derKamp (1993) reported that 

the time from tree response to tree death of I 10 year old firs was 6 years, much longer 

than the time permitted by this study. The oldest stand in this study (plot 2) was 45 to 70 

years old and demonstrated low infection (Table 3-3 , Figure 3-5). Older trees tend to be 

more resistant to Armillaria root disease than younger trees (Buckland, 1953; Johnson et 

aI. , 1972; MacKenzie, 1987), and wou ld explain the slower rate of disease progression . 

All other plots contained trees ranging between 10 and 25 years old which were more 
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capable of producing root response to resist infection. Callus formation in conifers 

increased between 5 and 20 years of age (Johnson et aI. , 1972). Whitney (1988) found 

that 6 to 7 year old black spruce trees were more susceptible to Armillaria than older 10 

to 20 year old trees in plantations. The two isolates used as inoculum were collected in 

1991 and cultured in the lab for three years before field inoculation, possibly losing some 

aggressiveness during that time. Proportions of infected trees in this study varied 

considerably from plot to plot (Figure 3-5 and Table 3-3). 

Rhizomorph growth across all plots did not appear to be positively correlated with 

pathogenicity of Armillaria suggesting that soil conditions (Redfern, 1973, 1978), and 

possibly Armillaria isolate (Gregory, 1985 ; Mallett and Hiratsuka, 1988), may 

interactively play roles in the growth of rhizomorphs. Singh (1981 a) showed that a well

drained loam site favoured rhizomorph growth, over moist and wet sites. Similarly, 

Whitney (1978) reported poor rhizomorph growth in wet sites. Non-rhizomorph root to 

root infection has been observed with A. ohscllra (Whitney, 1988). Plots with the largest 

number of roots containing rhizomorphs corresponded with plots containing the largest 

amount of superficial colonization by Armillaria (Plots 1, 3, 4 and 7) (Figures 3-5 and 3-

7) . However, Omdal et al. (1995) reported that the ability of A. ostoyae to produce disease 

was highl y correlated with rhizomorph production. 

3.-Ic Foreign Armillaria: 

Isolates were still alive after two years on the inoculum blocks in all cambial 
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infected roots except one, occurring in plot 7, which may have been a foreign Armillaria 

isolate already in the soil , or the isolate from the inoculum block before it died. Otherwise 

records of cambial infection, with inoculum block still harbouring the pathogen suggested 

infection was caused by the inoculum itself, and occurred in sites 1, 6 and 7. Similarly, 

the absence of the inoculum on the block, but surface colonization of the root might 

imply that a foreign Armillaria was invading the tree. Small amounts of suspected foreign 

Armillaria occurred in the balsam fir artificial defoliation and the severely infested balsam 

fir sawfly plots (Figure 3-5). These incidents were negligible compared with the infection 

associated with Armillaria remaining on the inoculum block. 

Measures of root response also indicated that foreign Armillaria was affecting the 

trees. A response by the root away from the inoculum block indicated that a foreign 

Armillaria had attacked the root. Similarly, root damage caused by the wire used to secure 

the inoculum block to the root, created an opening for any organism to invade the root 

and cause it to respond, or response may have been caused by mechanical injury. One or 

both responses (5 and 7) were present in all plots except the naturally regenerated black 

spruce (plot I) which also did not exhibit pathogenicity levels 2 or 6 (Figure 3-5). Despite 

this, plot I had the largest proportion of roots associated with rhizomorphs (Figure 3-7), 

suggesting that if the rhizomorphs were from foreign Armillaria, the trees were able to 

prevent the pathogen from invading the root. 
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3 . .Jd Black 'pruce plan/a/ion alld na/llral regeneration: 

The black spruce plantation had more colonization and cambial infection (40%) 

(HOOS IIJ= 10.58, p=O.OOI , df= l , r=+0.259), than the naturally regenerated black spruce plot 

(28%) (Table 3-3), supporting implications by Buckland (1953) and Livingston (1990) 

who reported that root deformities from container planting pre-disposed spruce to 

Armillaria root disease. 

Both plots had more infection in healthy and 30% artificially defoliated trees than 

in more severely defoliated trees supporting results from Parks et al. (1994) who refuted 

the long standing paradigm that defoliation contributed to enhanced disease in conifers, 

by reporting that defoliated seedlings had less disease than undefoliated seedlings. In 

contradiction to this finding, seedlings grow fast relative to mature trees, hence seedlings 

would allocate more carbon to growth than to defense compounds (Entry et aI. , 199Ib). 

Seedlings are believed to be more susceptible to disease than mature trees (Whitney, 

1988). However in this study, low levels of defoliation may have been sufficient to 

minimize any effects from water stress but not enough for defense production and so 

Armillaria attacked the roots. The lack of infection in the moderately defoliated trees may 

have resulted from insufficient foliage re-growth to re-route all the carbon allocation to 

re-growth , but stressed enough to induce production of defense compounds. Infection 

decreased in the naturally regenerated stand with severity of defoliation, but in the 

plantation infection increased as defoliation increased (Figure 3-8) supporting the findings 

of Wargo and Harrington (1991). The 80% defoliation alone in the naturally regenerated 
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stand was not enough stress to allow Armillaria to attack, since any water stress was 

minimized by removing 80% of the foliage, and the roots were spread out to maximally 

absorb water. But in the plantation 80% defoliation combined with root deformities from 

the planting method which may have minimized water uptake, and with an increased 

necessity to replace lost foliage, insufficient amounts of defense compounds may have 

been produced allowing Armillaria to attack. Consequently these trees would be infected 

by Armillaria before the slower growing trees at the lower levels of defoliation . Root 

response in both plots coincided with pathogenicity (Figure 3-9), emphasizing progression 

of the disease. Both sites were dry to moist (see site descriptions), but the lower portion 

of the naturally regenerated site was very wet and not suitable for growth of Armillaria 

(Singh, 1981 a; Whitney, 1978), possibly accounting for less infection in that site (Figure 

3-8). In addition, the plantation contained more decaying stumps than the naturally 

regenerated stand, serving as substrate for both inoculum isolates and foreign isolates. 

Whitney (1988) reported an association between Armillaria-killed trees and below ground 

inoculum from o ld growth stumps in Ontario . Disease may have also been complicated 

by the presence of foreign Armillaria as indicated by infection in controls (Figure 3-8). 

3.-Ie Thinned and Un-thinned stalld, with adelgid: 

There was more infection by A. astayae in the thinned (33%) (plot 4) than the un

thinned plot (0%) (plot 5) (Figure 3-5 , Table 3-3) (Ho.05JlI~636 , p~0 . 012, df~ I), which 

was also reflected in the above ground health of the tree. The un-thinned plot had 
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significantly better health than the thinned plot (HO.OSIII=4.32, p=O.038, df= I) . In contrast, 

Filip and Goheen (1995) showed that there was no difference in tree mortality due to 

Armillaria root disease between thinned and un-thinned plots. Similarly, Entry et al 

(1991 b) reported lower infection in an un-thinned Douglas Fir control stand than a thinned 

stand with A. osloyae, although differences were not significant Another study showed 

significantly more infection by A. oSloyae in light limited conifer seedlings (indicative of 

an un-thinned site) than light and nitrogen balanced seedlings (indicative of thinned site) 

(Entry et aI. , 1991 a). However in this study additional stress was placed on the thinned 

and un-thinned stands by the woolly adelgid, accounting for some discrepancies in results. 

Isolate AS-II , the only isolate used in this plot, was significantly more pathogenic 

than autoclaved control blocks (Table 3-1 and Figure 3-2) indicating that the higher 

incidence of pathogenicity from inoculum blocks was more than by chance alone. 

However, controls contained 200/0 infection compared with 330/0 in experimental trees 

(Table 3-3), indicating that foreign Armillaria was present and active in the soil. There 

may also have been an effect from the large number of dead and decaying stumps in the 

area serving as inoculum source for both blocks and foreign Armillaria. An additional 

carbon source, such as decaying stumps, must be present for fungi to degrade the 

defensive compounds of the host (Kirk, 1981). After thinning, the additional carbon 

source (stumps) and drier soil (possibly increasing the aggressiveness of the pathogen 

(Whitney, 1995)) became available to the fungus, so the biomass of the fungus increased. 

Stress imposed on trees by the adelgid may have caused an increase in glucose and 
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fructose in the bark of the root (Wargo, 1972; Wargo et aI. , 1972). Glucose increases 

fungal growth in the presence of phenolic compounds (Wargo, 1980). Armed with an 

increase in biomass from the carbon source, Armillaria could utilize root glucose and 

degrade any phenolic compounds which may have present in the root of the host. Trees 

that are growing extremely fast or are highly stressed may not allocate carbon for 

production of defense compounds (Entry et aI. , 199Ia). The greater light conditions and 

less competition from thinning would provide an opportunity for trees to grow faster. If 

additional carbon source increased the biomass of the inoculum, both in the surrounding 

stumps and in the inoculation blocks, then defense compounds produced by the stressed 

trees would be inadequate to prevent A. oSfoyae from entering the roots . If foreign 

Armillaria was already mounting attack on other roots, the trees would be stressed more 

than they appeared to be from the adelgid alone. There were very few decaying stumps 

in the unthinned stand and therefore little inoculum source. Singh (1970) reported that 

most of the dead and chlorotic trees infected with A. lIIellea (senslI/alo) were located near 

infected stumps . 

The thinned stand contained more silt and more soil nutrients than the un-thinned 

stand, such as Mg, Ca, K and organic matter, but Nand P were no higher than other sites 

(Table 2) . Since Armillaria can absorb minerals from soil (Morrison, I 982b), the higher 

incidence of rhizomorphs in the thinned stand (Figure 3-7), (probably from increased 

aeration (Morrison, 1976), loss of moisture from the thinning process, and increased 

nutrients (Morrison, 1975» , would improve the pathogenic capacity of the fungus. 
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Redfern (1973) suggested that soil disturbance, such as thinning a stand, may stimulate 

fresh rhizomorph development. Similarly, Singh (1975) found more disease in cutover 

sites with moist or dry well-drained soils and suggested that well-drained sites have more 

rhizomorphs and a higher incidence and intensity of root disease. In addition, the water 

stress in the crown of the tree, caused by reduction in sap flow from the aphid galls 

(Hollingsworth and Hain, 1994), would have been compounded by the lowering of the 

soil moisture from the thinning process. However the extra minerals and light, and less 

competition from the thinning process, would also improve tree vigour. Though not 

significant there was a higher degree of root response in the thinned than in the un

thinned plots to both pathogen and wire damage (Figure 3-6). Soil pH was more 

favourable for Armillaria in the mineral layer of the thinned stand (4.54) but was lower 

in the un-thinned stand (4.17). Dichotomously branching rhizomorphs, such as those of 

A. os/oyae, prefer acidic soils (Morrison, 1974; Singh , 1975). 

There was more colonization present in low and severe adelgid than in moderate 

adelgid infestations in the thinned plot (Figure 3-8). Superficial necrosis was high in low 

and severely infested trees (Figure 3-9) coinciding with high levels of colonization by 

Armillaria (Figure 3-8) indicating that the trees were responding to the presence of 

Armillaria. The un-thinned plot had no Armillaria on or in the root at either level of 

adelgid infestation, yet Armillaria survived on the inoculum block (Figure 3-7). This 

might imply that trees were not as stressed as those in the thinned site and able to prevent 

entry of the pathogen by producing defensive compounds, or the wet un-thinned site, with 
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little carbon source from stumps, was unsuitable for fungal growth and disease 

progression was slower to occur. In addition, the level of photosynthesis was probably 

lower than in the thinned site due to limited light conditions and hence less carbohydrate 

storage in the roots, producing little fungal biomass. Hudak and Wells (1974) reported 

that disease incidence in adelgid damaged stands increased significantl y with severity of 

damage, but the total amount of disease was higher (ca. 56%) than in this study (33%) . 

3.-11 Above ground tree .'ymplol11s: 

Above ground tree symptoms positively correlated with infection in the sawfly 

infested site only (Hoo5[2[=6.95 ,p=0.031 , df=2, r=+0.489). This site also had the largest 

amount of cambial infection (Figure 3-5), and the second largest total infection (Table 3-

3). At the time of inoculation this was the site with the most severe level of needle 

defoliation compared with all other plots. Above ground symptoms on Douglas Fir trees 

infected with A. as/ayae are not obvious until mycelium grew close to the root collar 

(Bloomberg and Morrison, 1989). Live spruce can be infected with A. as/ayae without 

showing noticable symptoms (Whitney et aI. , 1989; Livingston, 1990). Defoliation in this 

plot invol ved the slow chewing of the needles by sawfly larvae until the branches were 

bare, whereas artificial defoliation involved removal of entire branches at the nodes . 

Haukioja and Neuvonen (1985) found that insect damage was a more effective inducer 

of changes in birch foliage than mechanical damage. Defense reactions are not induced 

by artificial defoliation to the same degree as they are by pathogens because of the 
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absence of a stimulus such as saliva (Hartley and Lawton, 1987). An insect bites the same 

needle many times adding saliva with each bite. If many insects on the same tree steadily 

consume many needles, adding saliva with each bite, the tree is being triggered to produce 

defense reactions, using elicitors produced by both the insect saliva as well as cell wall 

fragments of the host (Yamada, 1992), in many places and over a prolonged period of 

time. Manual defoliation, by removing a large amount of plant tissue without saliva, 

would cause the plant to respond to elicitors produced by the plant itself, in one small 

area on the plant, and at a single moment in time. 

The severe nature of the sawfly attack may have pre-disposed this site to attack 

by A. oSloyae. There was also evidence of root collar weevil (Hylobills sp.) and woolly 

adelgid (Adelges piceae) , contributing to the degree of stress inflicted on the tree. Raske 

and Sutton (1986) reported that incidence of root collar weevil increased with increasing 

defoliation of black spruce in Newfoundland. The degree of stress on the other sites may 

not have been severe enough to pre-dispose the trees to infection . Trees in the other sites 

as well as this one could still produce defense reactions (Figure 3-9). Although this site 

had the highest level of cambial infection (Figure 3-5), there was no higher level response 

to the infection such as resinosus or production of callus tissue to compartmentalize the 

fungus. If the trees were low vigour and severely weakened, such as by insect removal 

of photosynthetic tissue, then resinosis would be uncommon or absent (Buckland, 1953). 

Plot 6 contained fewer rhizomorphs but a larger amount of cambial infection (Figure 3-5). 

This may be explained by infection from a larger amount of root to root contact, or in this 
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case inoculum block to root contact, due to the severity of the balsam fir sawfly attack 

on the trees, and the seemingly faster rate of infection in this stand than in others . 

3.-Ig Low level pathogenicity: 

Plots 2 and 5 had the lowest number of rhizomorphs (Figure 3-7), and sbowed the 

lowest pathogenicity levels (Figure 3-5), yet Armillaria was alive on the inoculum blocks 

without spreading to the roots in the largest proportion of trees of any site, as indicated 

by pathogenicity level 3 (Figure 3-8) . Since root response and pathogenicity was low in 

both these sites, then soi l and/or tree conditions were unsatisfactory for the growth and 

pathogenicity of A. ostoyae but allowed Armillaria to survive on the blocks. The looper 

defol iated balsam fir trees in plot 2 were 8 to 10m high, much taller than trees in any 

other plot. They were also much older and had a larger DBH than any others (Figure 3-3). 

Detrimental effects of Armillaria root disease generally decreases with increasing age of 

the tree (Buckland, 1953 ; Johnson et aI. , 1972; MacKenzie, 1987). Resin production in 

Lodgepole pine increased until 50 years of age, but decreased in 91 to 120 years of age 

(Shrimptom, 1973). Trees in plot 2 were 45 to 70 years old, more capab le of defense 

against root infection. [n contrast, Whitney (1995) reported no signifi cant difference in 

infection by A. ostoyae between different ages of balsam fir. 

Soil pH was lower in these two plots than in the others, ranging from 3.4 to 3.8 

in plot 2 (balsam fir hemlock looper site), and 3.9 to 4.2 in plot 5 (balsam fir un-thinned, 

adelgid site), whereas the others ranged from 3.7 to 5.4 (Table 3-2) . Rhizomorph growth 
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may be encouraged by a higher pH (Singh, 1970), however if tree condition is severely 

weakened then direct contact may be sufficient to spread infection. Although the sawfly 

site had a pH similar to the adelgid un-thinned site, but more infection than the adelgid 

site, the trees in the sawfly site appeared to be more severely stressed with less foliage . 

There was no significant effect of treatment on virulence in plot 2 (Table 3-1), but 

low level defoliation had more superficial colonization than moderate or high level 

defoliation (Figure 3-8). An increase in root response by swelling and superficial necrosis 

coincided with surface colonization (Figure 3-9) indicating that the trees were responding 

to early Armillaria attack. Nutrient levels in the old growth looper plot were similar to 

those of other plots, but soil pH was lowest in this plot (Table 3-2). Entry and 

Emmingham (1995) reported that nutrient concentrations in mineral soil were equal for 

all forest ages. Trees in this site may have been recovering from the insect attack, 

lessening stress, and allowing the tree to respond to fungal attack. 

3.-Ih Balsam fir on a sandy sile: 

Balsam fir growing on a well-drained sandy site (plot 3) appeared to be more 

prone to attack by A. oSloyae as indicated by the high level of superficial colonization on 

the root (Figure 3-5). However it also appeared to be more capable of defending itself as 

indicated by more severe root response (Figure 3-6), and would explain the absence of 

cambial infection. Redfern (1978) reported the highest incidence of infection by A. mellea 

(sellslI lalo) on an acid (pH 4.9) sandy so il , supporting the findings in this study (Table 
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3-3). Similarly, Whitney (1984) found that Armillaria root rot was more severe on coarse-

textured sandy soils than silty soils. 

Low levels of artificial defoliation were associated with superficial colonization 

of Armillaria on the root in plot 3. Necrotic resinosus (response 4) was more prevalent 

than superficial necrosis in the low levels of defoliation (Figure 3-9) indicating the trees 

were in good health and able to respond to the attack. Singh (1980) showed that conifer 

species with less infection produced more resinosis on the root. Buckland (1953) showed 

more resinosus occurred on the more vigorous host. Also Armillaria may be in a more 

optimal environment in the sandy site and therefore more aggressive. Superficial 

colonization by Armillaria was high at 30 and 50% defoliation levels, but slightly 

increased at 80% defoliation . This difference was not significant, but tbey were 

significantly different from controls (Table 3-1). All altificially defoliated trees required 

more growth to replace the tissue removed, with more required in the 80% than the 50 

or 30% defoliation. This increase in growth may have been sufficient to allocate carbon 

to the production of sugar and cellulose for growth rather than for production of defense 

compounds (Entry et ai , 199Ia). Trees with lowered resistance are more susceptible to 

disease (Gregory et aI. , 1991). The lack of any cambial infection in this site may have 

been a reflection on the ability of the host to produce sufficient defense compounds in 

light of the re-growth process . Good quality soil conditions (Table 3-2) was beneficial to 

the host as well as the pathogen. 

Rhizol11orphs from A. mellea tend to grow in the surface 5 CI11 of soil on moist 
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sites and are absent from that layer on dry sites (Morrison, 1976), corresponding to the 

layer (top 10 cm) which contains the highest concentration of nutrients (Entry and 

Emmingham, 1995). Soil profiles in this study showed that the top 5 cm of soil consisted 

of organic matter (LFH) in all sites sampled except both sites in plot 3 (Figure 3-4) which 

contained < I and 2 cm LFH above 30 to 40 cm of sandy, mineral, dry soil. Blodgett and 

Warrall (1992) reported that A. oSloyae grew well in spruce-fir sites with soils high in 

sand, but low in silt and clay content. Plot 3 also had a large amount of rhizmorphs 

present around the root (Figure 3-7) and the highest amount of root response to pathogen 

attack (Figure 3-6), as well as the largest amount of superficial root colonization (Figure 

3-5) indicating that A. oSloyae was pathogenically active in that site. However good 

drainage and aeration in the sandier soil of plot 3 (Table 3-2) may have been beneficial 

for growth of both Armillaria (Morrison, 1976) and the host tree (Redfern, 1978). 

Excellent tree health in plot 3, supported by the highest proportion of healthy trees of all 

the balsam fir plots, and the longest leaders of all balsam fir plots measured (Figure 3-3), 

suggested that soil conditions were near optimal for growth of balsam fir. Low organic 

matter in plot 3 in both LFH and mineral layers (Table 3-2) suggested that soil nutrient 

conditions for growth ofrhizomorphs was not optimal since Morrison (1982a) showed that 

soils high in organic matter supplied more nutrients. Blodgett and Warrall (1992) showed 

that organic matter in the mineral layer was 13 .8%, similar to that found in the organic 

layer in this study (Table 3-2). However soil pH of plot 3 was higher than that of the 

other sites (Table 3-2) and closer to the optimal pH for growth of Armillaria rhizomorphs 
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according to Singh (1970), but was too high according to Singh (1983) (3.8 was better 

than 4.8) and Singh (1981a) (3 .5-4.3 was better than 4 .0 to 4.9). Plot 3 had large amounts 

of P in the mineral layer (Table 3-2). However, Shields and Hobbs (1979) found soil 

phosphorus levels to be quite variable. An association between low soil nitrogen and high 

incidence of root disease in conifer stands has been reported (Shields and Hobbs, 1979; 

Singh, 1970). Plot 3 contained the lowest nitrogen of all the plots in both soil layers 

(Table 3-2). High soil nitrogen inhibits rhizomorph growth (Kirk, 1981), especially if it 

takes the form of nitrate nitrogen over ammonium nitrogen (Li et aI. , 1967). Good 

rhizomorph growth for plot 3 (Figure 3-6) was probably a result of optimal pH (Singh, 

1970), decreased N (Kirk, 1981 , Li et ai , 1967) and increased aeration and less moisture 

from sandier soil. Whitney (1995) reported higher infection in black spruce and balsam 

fir by A. osloyae on drier sites . The high level of root colonization in this site may have 

been a reflection of good conditions for rhizomorph growth. 

In contrast with the natural regeneration black spruce plot, virulence on balsam fir 

increased with severity of defoliation, but virulence on black spruce decreased with 

severity of defoliation (Figure 3-8), reflecting greater susceptibility in balsam fir than in 

black spruce. Rizzo and Harrington (1988) reported a higher incidence of root and butt 

rot in fir than in spruce. However, Redfern (1978) showed more infection by A. mel/ea 

(sensu lato) in Picea ahies and P. sitchel1.s'is than in Abies grandis. 
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3.-li Agellt of predispositioll - iI/sec/ or pathogell?: 

Debate has arisen as to whether Armillaria root disease predisposes a stand to 

insect attack, or if the insect infestation predisposed the stand to root disease (Mallett, 

1995; Mallett and Volney, 1990). Warren and Singh (1970) reported the incidence of 

conifer trees containing both Hylohills weevil damage and Armillaria root rot was low 

(and approximately the same as those containing Armillaria alone) compared to trees with 

weevil only. This might imply that the weevil infested the trees before Armillaria. Other 

studies suggested that the weevil provided infection courts for Armillaria (Whitney, 1961; 

Smerlis, 1961). Hudak and Wells (1974) concluded that aphid damage was a main factor 

influencing root disease. However absence of disease in the un-thinned site in this study 

indicated that the adelgid alone was not predisposing the host to root disease, until soil 

conditions changed. James and Goheen (1981) reported more Douglas fir and subalpine 

fir trees infected with A. lIIellea (sellslI la/o) than bark beetles or wood borers, implying 

that Armillaria pre-disposed these trees to beetles and borers. Cobb (1989) suggested that 

root rot fungi predisposed trees to bark beetle attack. Beetles and borers require that trees 

be stressed to reduce defense reactions before they can attack. However, on white fir and 

Engelmann spruce the opposite occurred, emphasizing host species differences. Mallett 

and Volney (1990) showed more Armillaria root disease in dead and top-killed jack pine 

following a jack pine budworm infestation . They suggested that since Armillaria was 

present in the roots at the time of defoliation, then Armillaria may have predisposed the 

trees to insect attack. Hertert et al. (1975) reported that root disease was an important 
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factor in predisposing Grand Fir to attack by bark beetles. Raske and Sutton (1986) 

interpreted Armillaria as being a secondary pathogen in spruce-budworm defoliated 

stands. Preliminary investigations for this study showed that Armillaria was present in all 

sites before the study began. Singh (1981 b) showed that Armillaria was ubiquitous in 

Newfoundland soils, however at the time of inoculation it was not infecting any of the 

major roots in this study. 

The adelgid infestation seemed to impose the least amount of stress on the host 

trees. However, when thinning was implemented it caused a change or disturbance in site 

conditions, which affected both host and pathogen. The pathogen became more aggressive, 

and the host trees relinquished defense reactions for faster growth. 

The hemlock looper damage occurred on older, more resistant trees, and at the 

time of inoculation the stand was scheduled to be sprayed for hemlock looper. 

Inadvertently the experiment in this stand was complicated by the trees being older and 

more resistant to root disease, as well as recovery from looper damage. Hence very little 

infection occurred from inoculation. 

The sawfly damaged stand, the stand suffering from a moderate amount of 

infection , was actually the most severely infected of the three types of insect damage. 

This stand had previously been infested with the hemlock looper, and currently by the 

balsam fir sawfly. Trees in this stand were devastated with sawfly damage leaving bare 

branches containing tufts of current years foliage at the tips . It was difficult to find 

moderately damaged trees and impossible to find low level damage in tllis stand. There 
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was also evidence of Hylobius weevil and woolly adelgid which further depressed the host 

defense system . 

Tn the moist wet soils of Newfoundland A. ostoyae may act as a secondary 

pathogen waiting for other stress agents to reduce the quality of host defense reactions, 

or as a primary pathogen with reduced virulence due to unsuitable soil conditions. 

However, in drier, sandier soils in Newfoundland, A. ostoyae may act as a primary 

pathogen, becoming aggressive and predisposing the host tree to agents of suppression. 

Depending on the aggressiveness of the isolate, soi l conditions, and the type of insect 

defoliation , either insect or fungus may predispose the tree to attack. It was suggested that 

several consecutive dry years, followed by a wet year, would trigger insect development 

and infestations. If the top soi l layer becomes dry, such as with the thinned adelgid site, 

Armillaria may become more active and attack the roots. 
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Chapter 4 

CONCLUSIONS 

Combining data sets from four conserved fragments is an effective way to estimate 

a phylogeny. DNA regions examined in this study represented regions conserved within 

species and were variable among species, containing a level of variation suitable for 

studies in phylogeny and species specificity. The use of SWAPP PCR is a promising 

technique to locate regions of DNA suitable for phylogenetic studies. SWAPP regions 

tend to be short, randomly selected, and numerous which would increase the sample size 

and improve the "total evidence" (Kluge, 1989) of the phylogenetic history of a group of 

organisms. 

Short conserved fragments can be found throughout the nuclear genome. With no 

prior knowledge of the function or specific location of the fragment, the choice is more 

random than choosing the fragment based on a known history. The use of "Goodness of 

Fit" statistics, such as those used in this study, confirm presence of phylogenetic signal 

and congruency for anonymous sequences. Combination of more than one fragment 

incorporates a larger part of the whole organism into a molecular phylogeny, and can be 

valuable for identifying missing pieces of a phylogenetic history. The phylogeny 

presented here compared anonymous sequence characters with biological species of 

Armillaria. The sequences represented a small aspect of the relationship among species 
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used to assemble an evolutionary history of Armillaria. Similarly, the consistency of the 

disjunct group of NABS V in previous and present studies has been considered 

problematic. However, the variability of NABS V may act as a clue to resolve the 

evolutionary history of the genus. Nevertheless, the study illustrated the effect that 

different characters can have on the topology of a species tree, and that more study is 

required to resolve the evolutionary history of closely related species of Armillaria. 

Phylogenetic relationships were successfully inferred from the four data sets, and 

the combined phylogenetic tree supported existing literature hypotheses. NABS III and 

VII formed a significant monophyletic cluster. Five isolates of NABS I formed a 

monophyly. NABS IT was ancestral to NABS I, and NABS V, IX and X exhibited 

variation in clustering patterns . 

The sequences may have consisted of non-coding DNA since start and stop codons 

were present and randomly located throughout the sequences, and transition' transversion 

ratios were generally greater than one. It has been shown that fungi contain introns 

(Radford, 1993), and sub-repeat sequences (Morton et aI., 1995). 

Most of the phylogenetic information obtained was found in fragment V250, and 

the least in III 180, even though both were longer than the other two fragments . Hence, 

the notion that longer fragments provide more information may not always be accurate. 

Lineages containing large geographic distances among collection sites of isolates 

of NABS I and small distances among those of NABS II produced significant bootstrap 

values . Similar results occurred with NABS V. Therefore, geographic distance appeared 
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to have no correlation with sequence polymorph isms in biological species of Armillaria, 

and suggested that similarities or differences among isolates was not a result of 

geographic isolation. 

A molecular clock placed NABS Armillaria in an historical framework by 

correlating the co-evolution of the pathogen with its host. The calibration point was 

calculated from the discovery of a fossil mushroom, Caprini!es daminicana, from 30Ma. 

Broad climatic changes and diversification of host Angiosperms were speculated to be 

connected with the divergence of NABS VI from the remaining NABS Armillaria. NABS 

II appeared ancestral to NABS I in this study. However, in order to assimilate evidence 

from this study with that of current literature, it was hypothesized to have gone through 

a bottleneck from colonization of a hardwood host, to a softwood host, and reverting back 

to the hardwood host again. Alternatively, NABS I may have indeed diverged from NABS 

II and rapidly colonized North America, causing NABS II to recede toward the Great 

Lakes region. Another explanation may be that NABS II was a result of hybridization 

between NABS I and VI. 

-1.2 Species-Specific Markers: 

This study was successful in developing species-specific markers for most NABS 

Armillaria. Twenty nt markers were more reliable for NABS I, II and VI than for NABS 

TTl, V, VII, IX and X. However, the IOnt markers initially developed could be used to 

confirm the more variable species such as NABS III, V, VII, IX and X In addition, other 
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methods of identification such as interfertility tests, basidiome morphology, geographic 

distribution, and RFLP-PCR patterns from other studies may be used for confirmation of 

identification. The entire process including DNA extraction, PCR, and electrophoresis 

could be completed within 10 hours. This would make it possible for forest managers to 

determine species of Armillaria in two working days as opposed to two months with 

mating tests. 

Primer/template dynamics and PCR were examined in terms of the sequences 

amplified by species-specific SWAPP 10nt primers which were used to develop more 

stable nested species-specific 20mers. However the primer sequences chosen were highly 

conserved within the genus, Armillaria. This, in turn, raised a question regarding the 

mechanism underlying the species-specificity of the lOnt SWAPP primers. What was 

responsible for specificity; the template sequence of 10 bases complementary to the 

SW APP primer, or competition among primer sites and DNA secondary structure? Results 

suggested that secondary structure and competition did indeed playa role in determining 

species markers. A stem-loop theory was presented which provided an explanation for 

discrepancies between primer site distances and band sizes. 

Results from Inverse PCR demonstrated the potential value of the technique to 

locate flanking sequence regions and secondary structure, and to explain some of the 

anomalies present in molecular studies. Context effects were evident between the 3-band 

repeat and the 390bp band for NABS VI with primers 83/66. It was hypothesized that a 

recessive allele was represented by the absence of a nested 20nt primer site where the 
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SW APP peR product (which included the nested 20mers) was present. Similar results 

were obtained from the species-specific primers in which peR product was produced, but 

nothing was amplified from the corresponding nested primers. If protein coding regions 

were present, silent substitutions, transitions, and transversions could playa large role in 

stability and specificity of the primer for template DNA. The type and number of primer 

base mismatches with template DNA could also playa role in determining extension 

efficiency of the primer regardless if the template DNA was protein or non-coding. 

Two or more conserved fragments of the same length may present problems for 

studies such as this one, however, the occurrence of this phenomenon seemed to be 

uncommon. 

Gene walking with long and short primers produced numerous bands. Similarly, 

results from nested 20mers and Inverse peR produced multiple bands in a single sample. 

This was explained in terms of calculating the number of 8nt primers that could be made 

from random base selection of a 20nt primer 

Weak amplification may have been due to variation in peR primer/template 

dynamics or from insufficient amount of genomic DNA. This could be avoided by using 

a positive control for these samples using primers from a multi copy gene such as rDNA. 

It was hypothesized that primer/template dynamics operate at the primary 

nucleotide sequence level while influenced by secondary DNA structural levels . Both 

levels of complexity may be important in taxa differentiation with nucleotide sequence 

having base composition and order specific to taxa, and the secondary structure having 
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structural convolutions and loops specific to taxa. Both levels of complexity may playa 

role in peR and the production of the banding pattern. The significance of a "molecular 

ecos" is that variation in results among taxa may be occurring at several different levels 

of genome complexity, rather than the misconception that peR product always results 

from amplification of a single continuous piece of DNA with well-defined perfectly 

matched primer sites at either end . 

-1.3 lIepelilive DNA: 

Repetitive DNA sequences were found with IOnt SWAPP primers that appeared 

to be species-specific. Sequencing of the shortest repeat unit with subsequent inverse peR 

to locate flanking sequences, could potentially provide species-specific markers. 

-1.-1 Palhogenicily: 

Interaction among many factors complicated results for Armillaria root disease 

development. Among the genetic components, host species may determine degree of 

susceptibility to the pathogen. Within a species genetic variation may play an important 

role such as the "sink competition hypothesis " (Larson and Whitham, 1997) in the adelgid 

infested trees. Similarly, the aggressiveness of the inoculum source used, as well as 

developmental changes with host age, may have influenced disease occurrence. Planting 

method, soil conditions, and stand thinning appeared to influence the pathogenicity of A. 

oSloyae. Both artificial and insect defoliation occurred at varying intensities, and results 
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were complicated by other factors influencing the ability of the tree to respond to attack. 

The influence of stress from artificial defoliation was different from that of insect 

defoliation. Within the plots, statistically significant differences were apparent in the black 

spruce naturally regenerated stand only, in which more infection occurred in low level 

defoliation rather than high levels. The method of defoliation may have inadvertently 

acted to alleviate water stress in the high levels of defoliation by removing excess 

transpiring tissue so the host could sufficiently produce defensive reactions to the 

inoculum. Artificial defoliation in black spruce plantation and balsam fir on a sandy site 

were biologically examined. Infection occurred at all levels of artificial defoliation but 

results were confounded by the added stress of the planting method in the black spruce 

plantation, and the optimal soil conditions for growth of the pathogen in the balsam fir 

sandy site. 

A drawback in the experimental design involved the method of treatment selection. 

The treatment, being insect species and degree of insect defoliation, was chosen based on 

pre-existing infestations in the plots. If the tree was genetically controlling the level of 

susceptibility to insect defoliation, then the measure of disease would not necessarily be 

a reflection of the influence of the insect on the tree. However, if the insect was 

determining the level of susceptibility of the tree, which in turn determined the degree of 

insect defoliation, then the measure of disease would indeed be a reflection of the 

influence of the insect defoliation on the tree. For example, the "sink competition 

hypothesis" (Larson and Whitham, 1997) explained how plant architecture affected 
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resistance to aphid galling. Resistant genotypes had a larger number of natural sinks 

(buds) relative to sources (stem volume) than susceptible genotypes. Similarly, Scaff 

(1995) reported green, non-defoliated jack pine trees in a stand severely infested with jack 

pine budworm, suggesting that the green trees were resistant to defoliation . 

Two years appeared to be sufficient time to produce results which would allow 

forest managers to assess the progression of Armillaria root disease, and make well

informed decisions regarding stand management. However, more than 2 years would be 

required to complete an inoculation study in Newfoundland and produce results on disease 

causing death of the host. Comparison of trees within plots were statistically justified, but 

comparison between plots would have been committing pseudoreplication (Hurlbert, 

1984). Larger sample sizes and replicated plots might improve resolution and statistically 

support the study. 

-1.5 Ceneral Conclllsions and Futllre Directions: 

Armillaria has been present in the forest ecosystem remaining in a state of balance 

and sometimes creating openings to allow new species to colonize. As this balance 

becomes displaced by the increasing forest and orchard industries, and the horticultural 

enthusiasm for ornamental plants, Armillaria can overcome the lowered resistance of host 

plants. The increasing attention placed on Armillaria root disease has become noticeable 

regarding plantations and other re-cultivated disturbed areas, and has developed into an 

economIC concern . 
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The distinction among biological species of Armillaria is the foundation on which 

all three studies were developed. All species of Armillaria have the capacity to be 

pathogenic, however some are more aggressive pathogens than others. The ability to 

distinguish among these pathogenic species is essential to understanding the epidemiology 

of the genus. The species specific marker study was successful in developing markers for 

the highly pathogenic species. Although it was also successful for the weakly pathogenic 

species, there was more variability among them, and more work is required to distinguish 

among closely related species . 

The phylogenetic study attempted to examine the history of the genus to shed light 

on the development of pathogenicity through time, and to relate the evolution of the 

species to evolution of host plants. A more accurate account of geographic distributions 

would greatly improve resolution of the phylogeny. 

The habitat in which Armillaria is found is influenced by environmental changes. 

Attempts to understand these influences began with inoculation of greenhouse plants and 

young trees in plantations. These studies allow strict control of environmental influences, 

and have provided and will continue to provide valuable information on environmental 

effects. However, inoculation studies on naturally regenerated stands are equally as 

valuable to understand epidemiology. These stands can provide insight into conditions in 

which Armillaria does not express pathogenic activity. More of these studies are required 

in order to understand epidemiology of Armillaria. 

Pathogenic variation within a species is another level of variation which should 
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also be addressed. Establishment of biological species provides a foundation on which 

pathogenicity could be inferred, and an indication of the amount of concern to be applied 

to the occurrence of the species. However, wide variation in pathogenicity within a 

species provides no pre-existing knowledge on which to base forest management practices. 

It would be necessary to monitor disease progression on a continuous basis for foresters 

to determine seriousness of disease in a species with wide variation in pathogenicity. 

Future research would be required to allow more predictive measures of disease detection 

such as an investigation of pathogenic genotypes rather than species. Molecular techniques 

have the capacity to provide fast efficient probes for virulence genes. This technique, in 

combination with knowledge of environmental influences, would provide more 

ammunition with which foresters could maintain their industry. 
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Appendix A: List of primers used in all stages of PCR and Inverse PCR to obtain 

species-specific markers. 
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Primer sequence 

Species specific 1011.1 SIVAPP primers: 
151 get g13 g18 t 
159 gag eec gta g 
17 eet ggg eet c 
127 atctggcagc 
83 ggg etc g18 g 
66 gag gge gtg a 
34 eeg gee eea a 
122 gta gac gag c 
147 g18 cgt eet c 
29 eeg gee tta c 

Nested 2011./ primers developed from SWAPP !ragmLnls: 
1-850a aeg age eaa aeg atg ace gg 
I-850b gcg eet ega tac agt aeg tc 
0-850a gga aga gaa ggt agt aga gg 
0-850b aeg eet cga tac age aeg tc 
ill-520-! cat ggt cgc tac tta etc tga taa egg 
ill-520-2 gag ng acg tag act ac 
Vll-520-J gtg gee aaa cae m gat en eet agg 
VU-520-2 agt gu aga tet aga gt 
ill-ISOa ace aea tee ng tcg eeg ag 
ill- J 80b gtg gn gat gag aU gtt cg 
V-250a ega act gat cgt cgt ega 
X-250a ega act gat cat cgt eea 
V/x-250b gtt teg aae geg aat atg etc 
VII-SOOa agt etg aag gaa tea tg 
VD-500b e18 gta cat atg cag tea cc 
lX-250a ttc tac aeg eaa atg ace ag 
IX-250b tcg g18 aag tet tcg aag ac 

Inverse primers from center of SWAPP fragments: 
INV250a gat cac gac get crt ace 
INV250b cae aae act a18 18g acg 
INV-151 cte gae eee aae egt tec 
INV-159 18e tga age tge tee aga tee 

Extended 10nt primers: 
V-127 gte a18 get ate 18g eag e 
V-17 g18 gee eet ggg ect e 

20nl species-specific primers: 
I a gte gtc gat na aea tcg gt 
1,5,6b aM 18e geg age aag cag 18 
Sa gca gct ate tet gga 18g gt 
10 gta gag g18 e18 e18 ctg ct 
12 act ttt na gte cgg gat te 
6a ggt crt cat tgg cat eta et 
7 18ctgaegttttggeaagataaaae 
8 cag tat ett gtg tgg eca gg 
9a tea cat aga ata ggt gat g 
9b ggt e18 aag na att g 



Appendix B: Phenogram based on combined nucleotide sequences from four primer 

sets for 23 taxa of eight NABS Armillaria, using two isolates of NABS VI as 

outgroup. A neighbour joining algorithm was used, and horizontal branch length is 

proportional to distance. 
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,-------VI-PD37 
i-----------L---VI-KJS6 

-=5 

"------II-160 

"-------1-0012 

I-NOF830 

r------- I-DMR20 

'----- I-BOWPK 

IX-200 
'----L----IX-188 

r-------V-83621 

"-------X-SPI5 

,-----V-JB75 

V-BOWPK 

'-------- V-JB07 

r---- III-JB56 
L-___ III-JB61 

,---- VII-90-10 

'------ VII-HHB 



Appendix C: Nucleotide substitutions for divergences (mean percent substitution ± 

standard deviation (SO» and lineages (mean percent substitution ± SO) for NABS 

Armillaria (Figure 2A-5). 



Event Divergenc e of taxa 

Radiati o n o f NAB S Armi ll.;tri a • NABS VI - Al l other 
f r o m A . me ll e a . NABS. 

VI P037 - VIKJS 6 

Ori g in o f NABS II ? ? NABS I I - All other 
NABS 
11160 - IIJB39, IIJB85 

Radiation of all o ther NABS • All other NABS 
excl uding NABS I I and VI . NABS II and VI. 

Divergence o f NABS I from NABS I - III, VII, V , 
NA8S III, V, VII, IX and X. IX and X. 

IJB08 - IGG12, t NoFa 30, 
IDMR, and IBowpk. 
IGG12 - I NOFSlO, I DMR 
and IBowPk. 
INOF830 - IDMR and 
IBowpk. 

N 
rl0ivergenc e of predominantly • NABS III, VII, V , 
N saprotro phic NABS from IX and X - NABS I 

pathoge ni c NABS I. 

Rad i ation of monophyly NABS IX - NABS I I I, 
NABS I X . VII, V and X 

IXTJV179, IXTJV188 
IXTJV200. IXl39 
IXTJV200, IXl39 -
I XTJV1 79. IXTJV188 

The splitting of isolates of • NABS III. VII. X. 
NABS V. VBowPk and VJB07 -

all oth ers 
NABS I II, VII, VBowPk. 
VJB07 - NABS X 
VBowpk . VJB07 - NABS 
III and VII 

Divergence of A . c epeatipes NABS III and VII -
related group. VBowpk and VJB07 

NABS II I - NABS VII 
NABS VII - NABS I II 

Pero ent 
• ub.ti tut i o n 
o f div ergenc e 
(mean :t S D) 

5.70 t 1 86 
2. 4 5 + 0 4 2 

1. 4 5 t 3S 
1.30 .t 36 

4.65 .t 0.89 

4 . 4 0 t 1. 4 7 

4 .40 t 1. 71 

3.20 :t 1.59 

2.60 t 1.56 

4.50 .t 1.00 

3.30.t 2 . 53 

3.65 .t 2.32 

0.35 t 2 20 

3.90 :I: 1.21 

3.50 :t 0 . 59 

3.00 t 0.95 

2.95 :I: 0.4 4 
1. 95 t 0.83 

1.65 t 0. 44 

Divergeno e 
tim. 
(Ma :t S D) 

11. 71 t 3 . 82 
5.03 .t 0.86 

2.98 t 0.72 
2.67 .t 0.7 4 

9.55 t 1.83 

9.0 4 :I: 3.02 

9.04 t 3.51 

6 . 58 :I: 3.27 

5.34 t 3.21 

9.25 :t 2 05 

6.78 t 5.20 

7.50 t 4 77 

0.72 :t 1 48 

8.01 :t 2. 4 9 

7 . 19 t 1.21 

6.16 t 1 95 

6.06 .t 0.90 
4 .01 t 1. 71 
3.39 t 0.90 

Tox • 

VI - PD31 
VI - KJS6 

II ~ 1 60 
II - JB85 
II - J8B 

1-.1808 
I-GG12 
I - NOF 830 
I - DHR 
I - BowPk 

11 1-.185 6 
III -JB61 
VII-90-10 
VII -HHB 

V- 83621 
V- J875 

IX-TJV179 
IX-TJV188 
IX-TJV200 
IX-139 

X- Sp 8120 
V-BowP k 
V-JB07 

Peroent .ub-
.titutio n o f 
lineage 
(mean) 

14 33 :t 0.32 
13 98 :I: 1. 4 5 

2 . 35 
1.13 
1.63 

4 .22 
4 .95 
4 . 4 8 
7.28 
5.68 

7. , 
7.25 
6. 4 5 
6. 8 5 

5.75 
7.' 
7.6 
' .7 

6 . 3 
6 OS ... 



Appendix 0 : Occurrence of peR bands in 3% agarose specific to species or group 

of species of NABS Armillaria for 10nt primer pairs showing length (bp) of 

representative band, absence (-) of band when tested, and sample not tested (NT) for 

the primer set. The three bands indicated in NABS III represent fragments 240, 300, 

and 360bp long, and in NABS VI represent fragments lIS, 135, and 170bp long. 
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1 Sample 129/122 1831147 1341122 1171127 183/66 11511159 I 
I-GG12 - - NT NT 300 -
I-JB08 - - - NT 300 850 

I-NOF830 - - NT - 300 850 

I-JB77 - - NT NT NT NT 

I-JB40 NT NT NT - 300 850 

I-JB 14 NT NT NT NT NT 850 

I-Bow Pk NT NT NT NT 300 -

I-GG13 NT NT NT NT 300 -

I-JB 15 NT NT NT NT NT 850 

I-JB87 NT NT NT NT NT 850 

I-JB46 NT NT NT NT NT 850 

I-JB06 NT NT NT NT 300 850 

I-JB79 NT NT NT NT 300 850 

I-JB97 NT NT NT NT NT 850 

I-JB73 NT NT NT NT NT 850 

I-JB90 NT NT NT NT NT 850 

I-JB96 NT NT NT NT NT 850 

I-JB86 NT NT NT NT NT 850 

I-JB09 NT NT NT NT 300 NT 

I-DMR20 NT NT NT NT 300 850 

I-Amm9067 NT NT NT NT NT 850 

I-JM121 NT NT NT NT NT -
I-PD32 NT NT NT NT 300 NT 

I-JB 16 NT NT NT NT 300 NT 

II-JB85 - - NT NT 300 850 
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II-JB38 - - NT 300 850 

11-28 - - NT - - -

II-35-5 NT NT NT - 300 NT 

II-160 NT NT NT NT 300 850 

II-JB39 NT NT NT - 300 850 

II-JB19 NT NT NT NT 300 850 

II-JB 102 NT - NT NT 300 NT 

III-II - 520 3-band NT 300 NT 

III-MD52 - 520 - - 300 NT 

III-JB56 - 520 3-band - 300 NT 

III-JB61 NT 520 3-band NT 300 NT 

III-JB55 NT 520 3-band NT 300 NT 

V-JB19 NT NT NT 390 - NT 

V-JB66 NT NT NT 390 300 -
V-JB72 - - NT NT NT NT 

V-83911 - - NT 390 300 NT 

V-NOF891 NT - - NT NT NT 

V-83621 NT NT NT 390 NT NT 

V-JB?5 NT NT NT 390 300 NT 

V-JBO? NT NT NT - 300 NT 

V-BOWPK NT NT NT NT 300 NT 

V-86372 NT NT NT NT 300 -
V-JNOF898 NT NT NT NT NT 850? 

VI-GB898 - - NT - 3-band NT 

VI-KlS6 - - - NT 3-band NT 

VI-9?-1 - - - - 3-band 850? 

VI-49-8 NT NT NT - 3-band 850? 
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VI-PD37 NT NT NT NT 3-band NT 

VI-JM122 NT NT NT NT 3-band NT 

VI-FMOI NT NT NT NT 3-band NT 

VII-90-IO - 520 NT 525 300 NT 

VII-HHB - 520 - 525 300 -
IX-139 350 - - - 300 NT 

IX-121 350 - NT - 300 NT 

IX-180 350 NT NT NT 300 -
IX-188 - NT NT NT 300 NT 

IX-200 350 NT NT - 300 NT 

IX-179 350 - NT - 300 850 

X-SPI2 - - NT 390 300 NT 

X-SPI5 - - - 390 300 NT 

Qld8 NT NT NT NT 300 NT 

A. tabescens - - - NT NT NT 
MB222 

A.tabescens - - NT NT 300 NT 
CBS198.54 

A.tabescens NT NT NT - 300 NT 
924852 

A. tabescens NT - NT NT 300 NT 
CBS 139.32 

B8809 NT NT NT NT 300 NT 



Appendix E: Occurrence of peR bands in 3% agarose for each nested 20nt primer 

pair developed from sequences ofSW APP IOnt primers (Appendix D) for isolates of 

Armillaria showing length (bp) of representative band, absence (-) of band when 

tested, and sample not tested (NT) for the primer set. Primers in parentheses represent 

the SWAPP IOnt primer sequence from which the nested 20nt primer was designed. 
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mple III520 VII520 IIIISO V250 IS50 
(S31147) (S31147) (341122) (171127) (1511159) 

l-ffiS6 220 - NT NT NT 

l-ffiOS 220 - ISO 250 400 

l-ffil4 220 NT NT 250 NT 

l-ffi73 220 NT NT - 400 

I-BOWPK 220 NT ISO 250 400 

l-ffil3 220 NT ISO - NT 

l-ffi40 220 NT NT NT NT 

l-ffi09 220 NT NT NT 400 

I-GGI2 220 NT ISO 250 400 

I-MS21 220 NT ISO - NT 

I-PD32 220 NT NT - -
l-ffi46 220 NT ISO NT NT 

I-Amm9067 220 NT ISO - 400 

l-ffi77 NT NT NT 250 NT 

I-DMR20 NT NT NT 250 NT 

I-NOFS30 NT NT ISO 250 NT 

l-ffil5 NT NT NT 250 NT 

II-ffi3S 220 - ISO - 400 

Il2S 220 NT NT NT NT 

II-160 220 NT ISO 250 400 

II-ffiS5 220 NT ISO 250 400 

II-ffi39 - NT ISO 250 400 

II-ffi19 NT NT NT 250 400 

II-ffi102 NT NT ISO 250 NT 

II-35-5 NT NT ISO NT NT 
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III-JB55 220 110 ISO 250 400 

III-JB56 220 110 ISO 250 NT 

III-MD52 220 - NT 250 NT 

III-I I-I 220 110 NT NT NT 

III-JB61 220 NT NT 250 400 

V-S3621 220 - NT 250 400 

V-BOWPK NT NT ISO 250 400 

V-JB72 220 NT ISO 250 400 

V-JBI9 220 NT ISO 250 400 

V-48-6 - NT NT NT NT 

V-S6372 - NT NT 250 NT 

NAI45D52 220 NT NT NT NT 

V-JNOFS9S 220 NT NT NT NT 

V-JB162 220 NT NT NT NT 

V-JB 164 220 NT NT NT NT 

V-JB75 NT NT ISO NT NT 

GCI1219S5 220 NT NT NT NT 

V-JB07 NT NT ISO 250 NT 

VI-97-1 220 - ISO - -
VI-PD37 NT NT ISO 250 NT 

VI-JM122 220 NT NT 250 NT 

VI-KJS6 NT NT ISO NT NT 

VI-GB898 220 NT 180 250 NT 

VII-90-10 220 110 180 250 400 

VII-HHB 220 110 ISO 250 400 

IX-139 220 - ISO - NT 

IX-188 220 NT 180 250 400 
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IX-121 NT NT - - NT 

IX-ISO 220 NT ISO 250 NT 

IX-179 200 NT ISO 250 400 

IX-200 - NT 180 250 400 

X-SPI2 - NT NT NT NT 

X-SPI5 NT NT ISO 250 NT 

A.ectypa 220 - NT - NT 

A.hinula 220 - 180 250 NT 

B472 220 110 ISO 250 NT 

BS2544 NT 110 ISO 250 -

BS50929 220 110 ISO 250 400 

A. tahescens 220 NT ISO - 400 

Afumosa 220 NT ISO NT 400 

0-IMD 220 NT ISO 250 -

Laccaria - NT - - -

Collyhia 220 NT - - -
Rickenella 220 NT NT NT NT 

A. tabescens NT NT ISO - NT 
CBS 139.32 

Amanita - NT - - -
Ascomycete - NT - - NT 

Russula - NT - - NT 

Cortinarius - NT - - NT 

Suillus - NT - - NT 

A. tabescens - NT ISO - 400 
924S52 



Appendix F: Occurrence of species-specific peR bands in 3% agarose for isolates 

of NABS Armillaria showing length (bp) of representative band, absence (-) of band 

when tested, and sample not tested (NT) for each 20nt primer pair (Appendix E). 

Primers in parentheses represent the sequence from which the species-specific 20nt 

primer was designed. 
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Sample I alb 3 alb 5 alb 6a1b 10/ 12 9a1b 7/8 
(V250) (V250) (V250) (V250) (83 /66) (III520) (III520) 

I-JB09 - - - - 80 - -
I-JBI6 - - - - 80 - -
I-JB87 - - NT - 80 - -

I-JB77 - - - 80 - -
I-GGI2 - - - NT 80 - -
I-JM121 - NT 120 NT - NT -
I-JBI3 - NT NT NT 80 NT NT 

I-JB06 - NT NT 80 - -
I-JBI5 NT NT NT NT 80 NT NT 

I-JB40 NT NT NT NT 80 NT NT 

I-JB90 - NT NT NT NT NT NT 

II-JB38 220 - - - 80 - -

11-160 220 NT - - 80 - -
II-JB 19 220 - - NT 80 NT 

II-JB39 220 - - NT 80 - -

II-JB85 220 - NT NT 80 - -
III-JB56 - 250 - 175 - 180 70 

III-JB61 NT 250 NT 175 NT 180 70 

III-JB55 NT 250 - NT - 180 70 

V-83621 - 250 - NT NT - 70 

V-BowPk NT NT NT 175 NT NT NT 

V-83911 NT NT NT 175 NT NT NT 

V- - - NT - - - NT 
JNOF898 

V-JBI9 - - - 175 NT NT NT 
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V-S6372 - - 120 175 - -
V-JB07 - - NT NT - 70 

V-JB66 NT NT NT 175 - - 70 

V-JB72 NT NT NT 175 NT NT 70 

VI-KJS6 - - 120 - - NT NT 

VI-GBS9S NT - 120 NT NT - NT 

VI-PD37 - - 120 - NT -
VI-49-S - - 120 - - - -
VI-97-1 - NT 120 NT - - NT 

VI-JM122 NT NT 120 NT NT - NT 

VU-HHB - - 175 - ISO 70 

VII-90-10 - 250 - 175 - ISO 70 

IX-139 - - NT 175 NT - 70 

IX-200 - - - 175 - - -
IX-ISS - - - 175 NT ISO 70 

IX-121 NT NT NT NT NT NT 70 

IX-179 - - - NT SO - -
IX-ISO - - - NT NT - NT 

X-SPI2 - - - - - - -
X-SPI5 - - - 175 - ISO NT 

X-POR- NT - 120 NT NT NT -
100 

A.tabescen - - - - - - NT 
s 
CBS 139.32 

Ajumosa - - 120 175 - ISO NT 

BS50929 - 120 175 - ISO NT 

BSS0901 - - - 175 - ISO NT 
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D4MD - - 120 - - - NT 

Qld8 - - 175 80 NT 

B472M3 NT NT NT 175 - NT NT 

NA#248 NT NT NT NT NT - NT 

B82544 NT NT NT NT NT 180 NT 

A.labescen NT NT NT - NT NT 
s 924852 



Appendix G: Combined nucleotide sequences obtained from nested 20nt primers for 

aU NABS Armillaria, showing location of species-specific primer sites for 3a (specific 

for NABS III), la (specific for NABS II), 6a (specific for NABS III and VII), 5a 

(specific for NABS VI), and the complement to primers 1,3,5, and 6a which is 

general for aU species. Other primer sites included 9a1b amplifYing NABS III, V, VII, 

and X; 7/8 for NABS IX; and 10/12 for NABS I and II. Dots represent matches with 

consensus sequence, dashes represent deletions, mismatches are represented by bases, 

and question marks indicate missing data. 
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••••••••••••• 11.. ••• • C ..... . G ...•..•..... AGT • X-SP1S 
IX-200 
IX·179 

.... . A.T ... A ...... T .......... ,c. . ...... T. 
.. A.I.A ... 11.. •••••••••••••••• G .. 

VII-HHB .......... C. . .... . . T. 
VII-90l0 ............. 11.. •••••••••••• • ••• C. 0 ••••••• T . 
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Appendix H: Unrooted phylogenetic trees based on nucleotide sequences ofJGR of 

nine species of Armillaria. Results from these trees can be compared with those in 

Figure 2A-S. 3A: One of22 most parsimonious trees for 106 variable sites. Scale bar 

equals four substitutions. 3D: Strict consensus of the 22 most parsimonious trees 

(branch lengths not drawn to scale). (From Anderson and Stasovski, 1992). 
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