
CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author's Permission)

INFORMAnON TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while Olhers may be from any type of

computer printer.

The quality of this ,...-oduction is dependent upon the quality ol the

copy submitted. Broken or indistinct print. colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely atrad reproduction.

In the unlikely event that the author did not send UMI a compete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicata the deletion.

Oversize materials (e.g.. maps, drawings, charts) are reproduc:ed by

sectioning the original, begiming at the upper left-hand comer and continuing

from left to right in equal sections with small over1apS.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality e· x 9" black and white

photographic prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contad UMI directly to order.

Bell & Howelllnfonnation and Leaming
300 Nor1h Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

1+1 National Ubrary
of Canada

Bibliotheque nationale
du Canada

Acquisitions and
Bibliographic Services

Acquisitions et
services bibliographiques

395 Wellington Street
Ottawa ON K1A ON4
Canada

395. rue Weflinglon
onawa ON K1A ON4
canada

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distnbute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
penruss10n.

L' auteur a accorde une licence non
exclusive pennettant a Ia
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
Ia forme de microfiche/film, de
reproduction sur papier ou sur fonnat
electronique.

L' auteur conserve Ia propriete du
droit d' auteur qui protege cette these.
Ni Ia these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0-612-47432-1

Can ad~

Coping with Value Dependency

for Failure Recovery

in Multidatabase Systems

St. John's

by

Yongmei Sun, BSc.

A thesis submitted to the

School of Graduate Studies

in partial fulfillment of the

requirements for the degree of

Master of Science

Department of Computer Science

Memorial University of Newfoundland

November 1997

Newfoundland

Abstract

Local autonomy is the main impediment to achieving failure atomicity in a

multidatabase system since it allows a local database to unilaterally commit or

abort a subtransaction. Compensating a committed subtransaction is in general

hard to realize due to the complication arising from the propagation of the com-

mitted effects. Resubmitting an aborted subtransaction is more realistic since

the problems arising from inter-subtransaction dependencies are more predictable

than those from propagation of committed effects. However, if such a dependency

is cyclic or if it not only involves values but also data items, then the problem

becomes more complicated. In this thesis, a failure recovery scheme1 using resub-

mission is proposed. The scheme is based on distinguishing the subtransactions

into two different types, and employing different strategies for them. As a re-

sult, the scheme allows an aborted subtransaction to be restarted. Compared

with other failure recovery schemes which also do not rely on compensation, the

scheme compromises local autonomy to a lesser extent. In this thesis, different

kinds of dependencies are also studied, their impact on the correctness of resub-

mission method discussed and solutions proposed.

1 A preliminary version of the scheme was presented in International Conference on Data and
Knowledge Systems for Manufacturing and Engineering,Hong Kong, pp 297-306,1994.

This thesis is dedicated to

my mother, ChuanShen Chu

and my father, DaZhen Sun

and my husband, John Yang

for their support and encouragement throughout

the course of my education

ll

Acknowledgements

I wish to express my thanks to my supervisor Dr. Jian Tang for his guidance,

interest, suggestion and enthusiasm. Without his help, it would be impossible to

give this thesis its current quality.

I would like to thank the system support staff for providing help and assistance

while I conducted this research.

I am also very grateful to the administrative staff who have helped in one way

or another in the preparation of this thesis.

In addition, I would like to acknowledge the financial support received from

the Department of Computer Science and the School of Graduate Studies.

Special thanks are due to my fellow graduate students Zhengqi Lu, Xu He,

Zhiming Shi and Chen Hao for their valuable comments and useful suggestions.

iii

TABLE OF CONTENTS

A.bstract 1

Acknowledgements iii

List of Figures vii

Chapter I - Introduction 1

Chapter II- Concurrency Control of Multidatabase Systems 8

2.1 Traditional Approaches to Concurrency Control 8

2.2 The Problem of Concurrency Control in Multidatabase Environments 12

2.3 A Brief Review of Existing MDBS Concurrency Control Techniques 14

2.4 Using 2PL to Achieve the Serializability of .MDBS 16

Chapter III- General Problems of Failure Recovery 18

3.1 Concept of Failure Recovery 18

3.2 Two Phase Commit Protocol 21

3.3 Problems in Multidatabase Recovery 22

lV

Chapter IV - Literature Review of MOBS Failure Recovery 24

4.1 2PC Agent Method 24

4.2 Variation of 2PC Protocol Using Prepared to Commit State 26

4.3 Excluding Local Transaction 28

4.4 Failure Recovery by Compensating Transactions 30

Chapter V - A System Model for the Proposed Protocol 32

5.1 Transaction Processing 32

5.2 Inter-dependency of Subtransactions 34

Chapter VI - The Protocol 37

6.1 The Commit Sequence Based on Value Dependency Graph 37

6.2 Dealing with a Cyclic Dependency Graph 38

6.3 Handling Local Transactions in the Recovery Period 41

6.4 Distributed Commitment42

6.5 The Global Failure Recovery 47

6.6 Restart a Subtransaction 50

6. 7 . .:\n Example 53

v

Chapter VII- An Informal Discussion about Access Dependency 58

7.1 The Problem Caused by Access Dependency 58

7.2 Approaches 61

Chapter \tlll - Discussion 71

8.1 Performance 71

8.2 Local Autonomy 73

8.3 Implementation of L-HANDLER 74

Chapter IX - Conclusion 76

vi

LIST OF FIGUBES

Figure 6.1 Dependency graph and relaxed dependency graph of G Pg. 53

Figure 6.2 The logs when G reaches commit point Pg. 54

Figure 6.3 Dependency graph when Gl commits Pg. 54

Figure 6.4 The logs after site 2 is repaired Pg. 55

Figure 6.5 The logs after site 3 is repaired Pg. 56

Figure 6.6 The logs after the second failure of site 3 Pg. 56

Figure 7.1 The graphs for Example 4 Pg. 60

Figure 7.2 DG and relaxed DGs

after applying MODIFY to the DG in Example 4 Pg. 67

Figure 7.3 DP and modified DP for Example 6 Pg. 68

Figure 7.4 The relaxed DPs Pg. 69

vii

Chapter 1

Introduction

Many of today's database systems share information in an organization-wide basis.

These database systems are usually developed independently of each other. As a

result, they may be heterogeneous, indicating the use of different structures, data

models, control policies, etc. They may also maintain local autonomy, meaning

the relationship among them is not coordinator-subordinator oriented. In other

words, individual database systems have the freedom of not being controlled by

the others.

Sharing information among heterogeneous and autonomous database systems

is a complicated task. The complication arises from the fact that it is generally

required that both heterogeneity and local autonomy of the individual databases

be preserved. A multidatabase approach provides to users a uniform interface by

integrating the database systems. This has the advantage that the users view the

collection of the databases as a single and powerful database, and therefore are

free from the burden of handling various problems caused by heterogeneity and

local autonomy.

1

A multidatabase system (MOBS) is a collection of several databases. An

MDBS creates the illusion of a single database system. It allows users to ma

nipulate data contained in the various databases without modifying current ap

plications and without migrating the data to a new database. The MOBS hides

from users the intricacies of different DB.MS's and different access methods. It

provides uniform access to pre-existing databases without requiring the users to

know either the location or the characteristics of different databases and their cor

responding DBMS's. The MDBS query and data manipulation languages allows

users to access multiple pre-existing databases in a single query or application.

A multidatabase is divided logically into two levels, global and local. At the

global level is a multidatabase management system (MDBMS) which among other

things is responsible for maintaining data consistency across local databases. At

the local level is a set of local database management systems (LDBMS), one for

each site. A LDBMS ensures data consistency within the corresponding local

database.

A multidatabase user requests service through a global transaction, and a local

database user through a local transaction. A transaction is simply a sequence

of read and write operations defined on a database. A global transaction is a

transaction that is submitted to the MDBMS and is executed under the MDBMS

control. A local transaction, on the other hand, is a transaction submitted to a

local DBMS, outside of the MDBMS control.

It is difficult to design a general multidatabase system that is both correct and

2

efficient in all cases. In this respect, local autonomy posts many difficult problems.

Local autonomy exists in different forms. One aspect of autonomy is the right of

every node to commit or abort a transaction at any time.

In this thesis, serializability and atomicity are used to be the criteria for en

suring consistency. Serializability requires that an execution of global and local

transactions be equivalent to a serial execution of these transactions. Atomicity

requires that a transaction either performs all its write operations or performs

none of them. Atomicity is the goal of most failure recovery schemes.

A MDBMS can be thought of as containing two logically separate components,

a global concurrency controller (GCC) and a global recovery manager (GRMGR).

\Vhen a global transaction is submitted to the system, the GCC first schedules the

execution of each subtransaction of the global transaction to ensure serializability.

The GRMGR is responsible for ensuring atomicity of global transactions.

Most of the work in the area address only concurrency control ignoring failures.

The example of concurrency control methods are the site graph method [6], the

altruistic locking (28], the cycle detection method (29], the optimistic algorithm

of [14], the integration method using observability and controllability (25], the

superdatabases (27] and the top down approach [13].

In the current literature, several approaches have been suggested to handle

failure recovery in a multidatabase system [5,8,20,34]. One approach tries to

achieve true atomicity (5,8,34]. The price to be paid for that is compromising

local autonomy to some extent. Another approach is based on the notion of

3

logical atomicity by compensation [20]. This approach does not compromise local

autonomy, but is hard to realize in practical applications since it requires the use of

compensating transactions. In a multidatabase system where different databases

exhibit heterogeneous and autonomous behaviors, compensating a transaction

whose effects have been propagated to the other databases is an extremely difficult

task in the general case.

The difficulties in achieving failure atomicity in a multidatabase system are

mainly due to two factors. One is that different databases are allowed to commit

or abort a transaction unilaterally. The other is the fact that usually there exist

various dependencies, aggregately called value dependencies (henceforth simply

called dependencies), between different operations of a transaction. If the inter

dependent operations are executed at different databases and some commit while

the others abort, then we must either undo the committed or redo the aborted

operations. Undoing the committed operations, as mentioned before, is difficult.

Redoing the aborted operations, on the other hand, may be undermined by the

inter-dependencies between the committed and the aborted operations.

The value dependencies among different subtransactions of the same global

transaction may be input/output oriented or dialogue oriented. In input/output

oriented dependency, the input of a subtransaction is generated from the output

of some other subtransactions which have finished successfully. In dialogue ori

ented dependency, the write operation of a subtransaction depends on the values

of the read operations of other subtransactions. These must be submitted to the

4

global site even before subtransactions terminate which then forwards them to

execute the dependent write operation. Dialogue oriented dependency occurs in

those applications where data at different local sites are related by global con

straints and therefore requires close interaction among subtransactions. As a

result, dialogue oriented dependency requires that the operations in individual

subtransactions be coordinated in terms of their execution order. Note that this

coordination is inevitable in any concurrency control mechanism which deals with

applications where dialogue oriented dependency exists. On the other hand, the

existence of dialogue oriented dependency complicates the design of concurrency

control and failure recovery protocols. This issue has been studied in several works

[14,31~32,33,34]. Another point worth noting is that to preserve dialogue oriented

dependency does not contradict execution autonomy (refer to Section 2.2) , since

each local site has the freedom to choose to abort or commit a subtransaction.

Dialogue oriented dependency may or may not form a cycle. In [34], the

authors note that if it does not form a cycle, then some operations of a multidata

base transaction can be committed in an ordered fashion toward failure atomicity.

However, if it forms a cycle, the authors suggest using two different transactions

to encompass the operations of a multidatabase transaction at a single site. This

method may not be feasible if there exist direct dependencies among the opera

tions at a single site which belong to the same multidatabase transaction.

In this thesis, a method is proposed for failure recovery in a multidatabase

system where dialogue oriented dependency exists. The method achieves fail-

5

ure atomicity by properly ordering the commit operations based on the value

dependencies existing in a multidatabase transaction. To resolve the problems

caused by cyclic dependency, restrictions are put on a few operations but n.o re

strictions on the others. With this treatment the idea of commit order can still

be used in the face of cyclic dependency and at the same time minimize the loss

of local autonomy. The proposed protocol is feasible without relying on the way

the operations of a transaction depend on each other and does not need expensive

compensate transactions. Different types of dependencies are also studied and the

impact which they have on the commitment protocols are analyzed.

An expense that is paid by the proposed commitment protocol is that local

autonomy is compromised to some extent. However, as will be explained in Section

8.2, such compromises are justified.

The rest of this thesis is organized as follows. In Chapter 2, we discuss the issue

of concurrency control in MDBS as well as a special method, 2PL. In Chapter 3! we

describe general problems of failure recovery. In Chapter 4, we survey some of the

recent research in the area of atomic transaction commitment. In Chapter 5, we

first discuss a transaction processing model in a multidatabase system, and then

give a description of the essential concepts related to value dependency. In Chapter

6, we discuss the proposed commitment protocol in detail. In Chapter 7, we give

a more thorough examination of value-dependency, relax some assumptions we

made at Chapter 5 and present the solutions. In Chapter 8, we discuss various

6

issues related to the protocol, such as performance, local autonomy and imple

mentation. We conclude the thesis by summarizing the main results.

7

Chapter .2

Concurrency Control of
Multidatabase Systeins

In this thesis, we concentrates on the issue of failure recovery of multidatabase

systems. Our commitment protocol is under the assumption that we use a special

concurrency control mechanism, two phase locking (2PL). Since failure recovery is

closely related to the concurrency control issue, we discuss the concurrency control

problem in this chapter. First, we introduce the basic concept of the concurrency

control problem and then we discuss traditional approaches to solve this problem.

The multidatabase concurrency control issue is also addressed. We put emphasis

on two phase locking mechanism as it is used in our context of failure recovery.

2.1 Traditional Approaches to Concurrency Con
trol

In a database system, several users may read and update information concurrently.

Undesirable situations may arise if the operations of various user transactions

are improperly interleaved. Concurrency control is an activity that coordinates

8

concurrently executing operations so that they interleave with each other in an

acceptable fashion.

Most traditional approaches follow one of three main approaches to concur

rency control:two phase locking (the most popular example of locking protocols),

timestamp ordering, and optimistic concurrency control. Some mechanisms add

multiple granularities of locking and nesting of transactions. In this section, we

give a detailed description of 2PL mechanism as well as strict two phase locking

mechanism as they are used in our context of failure recovery.

The idea behind locking is intuitively simple. Each data item has a lock

associated with it. Before a transaction T1 may access a data item, the scheduler

first examines the associated lock. If no transaction holds the lock, then the

scheduler obtains the lock on behalf of Tt. If another transaction T2 holds the

lock, then T1 has to wait until T2 gives up the lock. That is, the scheduler will

not give T1 the lock until T2 releases it. The scheduler thereby ensures that only

one transaction can hold the lock at a time, so only one transaction can access

the data item at a time.

Locking can be used by a scheduler to ensure serializability. To present such

a locking protocol, the following notation is used.

Transactions access data items either for reading or for writing them. We

therefore associate two types of locks with data items: read locks and write locks.

Here rli[x] (or wl;[x]) is used to indicate that transaction Ti has obtained a read

(or write) lock on x. \Ve use the letters o, p, and q to denote an arbitrary type of

9

operation, that is, a Read(r) or Write(w). We use oli[x] to denote a lock of type

o by Ti on x.

Two locks pli[x] and qli[Y] conflict if x = y, i =F j , and operations p and q are

of conflicting types. Two locks conflict if they are issued by different transactions,

and one or both of them are write locks. Thus, two locks on different data items

do not conflict, nor do two locks that are on the same data item and are owned

by the same transaction, even if they are of conflicting types.

We use rui[x] (or wui[x]) to denote the operation by which T;, release its read

(or write) lock on x. In this case, we say T;, unlocks x (the u in ru and wu means

unlock) .

Here are the rules according to which a basic 2PL scheduler manages and uses

its locks:

1. \Vhen it receives an operation Pi(x], the scheduler tests if pli[x] conflicts with

some qli[x] that is already set. If so, it delays Pi[x], forcing T;, to wait until

it can set the lock it needs. If not, then the scheduler sets pli[x] , and then

sends Pi[x] to execute.

2. Once the scheduler has set a lock for T;,, say pli[x], it may not release that

lock at least until after the corresponding operation Pi[x] has been processed.

3. Once the scheduler has released a lock for a transaction, it may not subse

quently obtain any more locks for that transaction (on any data item).

Rule 1 prevents two transactions from concurrently accessing a data item in

10

conflicting modes. Thus, confiicting operations are scheduled in the same order in

which the corresponding locks are obtained. Rule 2 supplements Rule 1 by ensur

ing that operations on a data item are processed in the order that the scheduler

submits them. Rule 3 guarantees that all pairs of conflicting operations of two

transactions are scheduled in the same order.

Almost all implementations of 2PL use a "-ariant called Strict 2PL. This differs

from the Basic 2PL scheduler in that it requires the scheduler to release all of a

transaction 's locks only when the transaction terminates.

There are two reasons why a strict 2PL is necessary in practical applications.

First, consider when a 2PL scheduler can release some oli[x]. To do so the sched

uler must know the following:

1. Ti has set all of the locks it will ever need, and

2. ~ will not subsequently issue operations that refer to x.

One point in time at which the scheduler can be sure of 1 and 2 is when Ti

terminates, that is, when the scheduler receives the £; or ai operation. In fact , in

the absence of any information, this is the earliest time at which the scheduler

can be assured that 1 and 2 hold.

A second reason for the scheduler to keep a transaction's locks until it ends,

and specifically until after the transaction's Commit or Abort is processed, is to

guarantee a strict execution [16].

Executions are called strict when they satisfy the condition that both Reads

11

and Writes for x are delayed until all transactions that have previously written x

are committed or aborted.

Strict histories have nice properties. For this reason, 2PL implementations

usually take the form of Strict 2PL scheduler, rather than the Basic 2PL sched-

ulers.

2.2 The Problem of Concurrency Control in Mul
tidatabase Environments

The problem of concurrency control in multidatabase environments is different

from that in traditional distributed database systems. Furthermore, most efforts

attempting to generalize the classical concurrency control strategies for multidata-

base systems are only partially successful. For example, many concurrency control

protocols proposed for MDBSs either violate local autonomy or do not maintain

global serializability.

Designing a concurrency control strategy for a heterogeneous database envi-

ronment is more difficult than in its homogeneous counterpart, primarily because

we must deal not only with the data distribution but also with heterogeneity

and autonomy of underlying databases. In a homogeneous distributed database

system, local database management systems use the same concurrency control

stratagem and the global concurrency controller has access to all information it

needs to produce and/or certify the schedules. In addition, the global concur-

rency controller normally has control over all transactions running in the system.

12

In contrast, in a multidatabase systems, we must deal with the following problems

caused by autonomy of the local systems:

1. Local concurrency controllers are designed in such a way that they are

totally unaware of other LDBSs or of the integration process. This type of au

tonomy is defined as design autonomy and indicates that each of the LDBSs is

free to use whatever algorithms it wishes. When this LOBS is incorporated into

a multidatabase system, design autonomy specifies that we cannot retrofit its

algorithms.

2. The Global Concurrency Controller (GCC) needs information regarding

local executions in order to maintain global database consistency. However, the

GCC has no direct access to this information and can not force the Local Con

currency Controllers (LCCs) to supply it. This type of autonomy is defined as

communication autonomy which means that an LCC is allowed to make indepen

dent decisions as to what information to provide.

3. LCCs make decisions regarding transaction commitments based entirely on

their own considerations. LCCs do not know or care whether the commitment of

a particular transaction will introduce global database inconsistency. In addition,

a GCC has no control over LCCs at all. For example, a GCC can not force an

LCC to restart a local transaction even if the commitment of this local transaction

will introduce global database inconsistency. We call this type of autonomy the

execution autonomy; it says that each of the LCCs is free to commit or restart

any transaction running under its control.

13

There has been a flurry of research to develop new approaches to transaction

management that meet the requirements of consistency of multidatabase system.

In the following section, some of them are discussed.

2.3 A Brief Review of Existing MDBS Concur
rency Control Techniques

Breitbart proposed a global concurrency control protocol based on site graphs

[6]. The protocol works as follows. Before a global transaction is submitted,

the GCC analyzes its read and write operations, trying to select some sites to

execute them without creating cycles in the site graph. The acyclicity of the site

graph will guarantee the correctness (serializability) ofthe global execution. This

algorithm preserves local autonomy, and does not abort any global transactions.

The problem with this algorithm, however, is that it allows a low concurrency

degree for global transactions. One observation is that a global transaction with

operations at all sites blocks the execution of other global transactions until it

is committed. Another observation is that no two global transactions can access

multiple sites concurrently.

The altruistic locking algorithm [28] is a lock based algorithm. The locking

granularity is that of a local site. In other words, a local site can execute at most

one global subtransaction and many local transactions at a time. In order to

access a local database, the global procedure has to lock the local site and then

issue a global subtransaction to the local transaction manager of that site. The

14

locking or releasing of local sites must follow specific rules. This algorithm has

the following two problems: First, since the granularity is a site, the degree of

concurrency for the global procedures is very low. Second, since the effect of the

local transactions is not considered, the global serializability is not guaranteed.

The optimistic algorithm [14] is based on a centralized controller and uses

operating system robust processes (STUBs). One of the key ideas is the STUB

process. It ensures the successful execution of a global subtransaction even though

it may get aborted or restarted repeatedly by the local concurrency controller.

This algorithm does not violate local autonomy. However, because of the lack of

consideration for local transactions, this algorithm may generate a non-serializable

schedule.

The basic idea of superdatabases algorithm [27] is as follows. Every LDBS re

ports to the GCC the serialization order, a-element, of each global subtransaction

executed on it. The GCC uses these a-elements to construct an a-vector for each

global transaction. It then validates the execution of a global transaction against

the set of recently committed global transactions. It does this by trying to find a

consistent a-vector position among the a-vectors of the recently committed global

transactions attempting to commit. The problem is that it is unclear how the

GCC could get these a-elements in an autonomous environment.

In the distributed cycle detection algorithm [29], each local site keeps a local

serialization graph for the transactions executed on it. The local serialization

graph is kept acyclic by the local concurrency controller. The GCC validates

15

the execution of a global transaction by invoking a distributed cycle detection

algorithm to make sure that the commitment of this global transaction will not

create a global cycle among the local serialization graphs. However, this algorithm

violates local autonomy by requiring the local sites to keep the local serialization

graphs for the GCC.

All of the protocols discussed above either violate local autonomy in a certain

way, allow low concurrency degree, or fail to maintain global serializability.

2.4 Using 2PL to Achieve the Serializability of
MDBS

As mentioned above, all of the protocols discussed above have their limitations.

The common assumption made in the above protocols is that the local concur-

rency control mechanism of a participating database system is unknown. This can

be accommodated only by the global concurrency controller with very low con-

currency level. Additionally, with the notable exceptions of the trivial site graph

method [6] and the top down approach [13], the methods require modifications to

participating database management systems.

To ensure the correctness of our failure recovery scheme, each local LDBMS

is required to use a strict two phase locking mechanism for concurrency control.

Global concurrency controller is required to use the two phase locking mechanism.

The requirement that each local LDBMS use the strict two phase lock mechanism

is practical because most of the commercially available systems use the strict two

16

phase locking policy.

As concerned with the applicability of strict 2PL to distributed databases,

it has been shown that, in the absence of failures, a global transaction scheduler

using the distributed two phase locking protocol produces strict histories for global

transactions [4]. It ha.s been also proved that this is true for a mix of global and

local transactions [7].

17

Chapter 3

General ProbleiDs of Failure
Recovery

3.1 Concept of Failure Recovery

Computer systems fail in many ways. It is not realistic to expect to build DBSs

that can tolerate all possible faults. However, a good system must be capable of

recovering from the most common types of failures automatically, that is, without

human intervention.

There are two types of failures that are most common in databases, known as

transactionfailures, and systemfailures. A transaction failure occurs when a

transaction aborts. A system failure refers to the loss or corruption of the contents

of volatile storage (i.e., main memory).

In a database system, if failure occurs and a transaction cannot be completed

correctly, an abort operation is issued to the transaction. When a transaction

aborts, the DBMS wipes out all of its effects. The prospect that a transaction

may be aborted calls for the ability to determine a point in time after which the

18

DBMS guarantees to the user that the transaction will not be aborted and its

effects will be permanent. The commit operation accomplishes this guarantee. Its

invocation signifies that a transaction terminated "normally" and that its effects

should be permanent. Executing a transaction's commit operation constitutes

a guarantee by the DBMS that it will not abort the transaction and that the

transaction ~s effects will survive subsequent failures of the system. A transaction

that has issued its Start operation but is not yet committed or aborted is called

active. A transaction is uncommitted if it is aborted or active.

The objective of failure recovery is to bring the database to a consistent state,

removing effects of uncommitted transactions and applying missing effects of com

mitted ones. To be more precise, define the last cammitted value of a data item

x in some execution to be the value last written into x in that execution by a

committed transaction. Define the committed database state \\-;th respect to a

given execution to be the state in which each data item contains its last committed

value. The goal of failure recovery is to restore the database into its committed

state ,.,.;th respect to the execution up to the system failure.

The data recovery manager is primarily responsible for ensuring that the data

base contains all of the effects of committed transactions and none of the effects

of aborted ones. The data recovery manager is normally designed to be resilient

to failures in which the entire contents of volatile memory are lost. After a sys

tem failure, the only information the data recovery manager has available is the

contents of stable storage. Since the data recovery manager never knows when a

19

system failure might occur, it must be very careful about moving data between

volatile and stable storage.

Failure recovery of a distributed database system is more complicated than

that of a centralized database system because of the following fact. A transaction

Tin a distributed system has operations in various sites of the distributed system.

When the Commit operation of T comes~ to which sites should this operation be

fonvarded? A Commit operation concerns all sites involved in the processing of

T. The same is true for Abort. Thus, the processing of a logically single operation

(Commit or Abort) must take place in multiple places in a distributed database

system.

The problem is more subtle than it may appear at first. Having sent Commit

operations to all other sites is not enough. It is possible that a Commit is sent, but

a local site rejects it and aborts the transaction. In this case, if the transaction is

distributed, it should abort at all other sites where it accessed data items.

In a distributed system, we can have partial failures, that is, some sites may

be working while others have failed. \Ve must ensure that a single logical ac

tion (Commit or Abort) is consistently carried out at multiple sites when partial

failures occur.

The simplest and most popular algorithm that ensures this consistency is called

two phase commit (2PC) protocol. It will be described in detaii in the next section.

20

3.2 Two Phase Commit Protocol

Assuming no failure, the two phase commit protocol goes roughly as follows:

1. The coordinator sends a VOTE-REQ (i.e., vote request) message to all par

ticipants.

2. When a participant receives a VOTE-REQ~ it responds by sending to the

coordinator a message containing that participant's vote: YES or NO. If the

participant votes No, it decides Abort and stops.

3. The coordinator collects the vote messages from all participants. If all of

them were YES and the coordinator's vote is also Yes, then the coordinator

decides Commit and sends COMMIT messages to all participants. Oth

erwise, the coordinator decides Abort and sends ABORT messages to all

participants that voted Yes (those that voted No already decided Abort in

step (2)). In either case, the coordinator then stops.

4. Each participant that voted Yes waits for a COMMIT or ABORT message

from the coordinator. When it receives the message, it decides accordingly

and stops.

The two phases of2PC are the voting phase (step (1) and(2)) and the decision

phase (step (3) and (4)). A participant's uncertainty period starts when it sends

a YES to the coordinator (step (2)) and ends when it receives a COMMIT or

ABORT (step (4)) . The coordinator has no uncertainty period since it decides as

21

soon as it votes - with the knowledge, of course, of the participants' votes (step

(3)).

In step (4), a participant p that voted Yes is waiting for a COMMIT or ABORT

from the coordinator. At this point p is uncertain. In this case the participant

must consult with other processes to find out what to decide. This consultation

is carried out in a termination protocol (for 2PC).

2PC protocol is widely used in distributed database systems. However, the

autonomy and heterogeneity of the local database systems that participate in a

MOBS causes several new problems, so 2PC can not be used in a MDBS.

3.3 Problems in Multidatabase Recovery

The objective of multidatabase recovery is to maintain the atomicity and durabil

ity of global transactions in the presence of failure. Here multidatabase recovery

from site and subtransaction failures is discussed. Subtransaction failures oc

cur when subtransactions of global transactions are unilaterally aborted by the

LDBSs (e.g., to resolve local deadlocks). \\7hile many of the recovery principles

used in distributed database systems can be applied in multidatabase systems,

the autonomy and heterogeneity of the local database systems that participate

in a MDBS causes several new problems that do not exist in other distributed

database systems.

We say that a multidatabase transaction G is globally committed when it

commits at the MOBS. To complete a globally committed multidatabase trans-

22

action G, the MDBS has to commit all its subtransactions at their LDBSs. A

globally committed multidatabase transaction G becomes locally committed at

LDBSi when the multidatabase system commits the subtransaction 9i of G at

LDBSi. Multidatabase recovery must deal with the following problems which are

due to the autonomy of the LDBSs:

1. The LOBSs cannot distinguish locally uncommitted subtransactions that

belong to globally committed multidatabase transactions from uncommitted local

transactions. When a LOBS comes up after a site failure, its local recovery pro

cedures roll back all locally uncommitted subtransactions, even if they belong to

globally committed multidatabase transactions.

2. MOBS recovery actions at each LOBS constitute new transactions. From

the point of view of the LOBS, recovery transactions have no connection to the

failed subtransactions they are supposed to complete.

3 Global transactions which have a locally committed subtransaction cannot

be rolled back. The MOBS has either to complete the failed subtransactions

of the globally committed transaction or compensate for the locally committed

subtransacion.

23

Chapter 4

Literature Review of MDBS
Failure Recovery

In this chapter, some approaches for failure recovery in multidatabase systems

are reviewed, It will be shown that most solutions proposed either allow incorrect

results or place severe restrictions on global and local transactions.

4.1 2PC Agent Method

In distributed database systems, the database consistency is attained by means of

the basic two-phase commit protocol {2PC) or its variations and related recovery

protocols. In the basic 2PC -,cheme, a coordinator responsible for the transac

tion commitment communicates with participants executing the operations. It

is typical of the scheme that every participant has to move a subtransaction to

a recoverable prepared state before the transaction is finally committed. In this

state the unilateral aborts are no longer allowed at a participating DBMS, albeit

that they are allowed before it.

Systems supporting the prepared state are called two-phased DBMSs, whereas

24

systems without an appropriate 2PC interface will be called single-phased DBMSs.

It is evident that if arbitrary single-phased DBMSs are used as participating

DBMSs and, additionally, submission of local transactions is allowed, then the

objective to guarantee database consistency cannot be met in general. The fact

that most of the existing systems are single-phased, and thus neither support the

prepared state nor have an external interface for participating in the 2PC protocol,

is a major obstacle in the way of heterogeneous DBMS integration.

Wolski and Veijalainen in [32] addressed the problem of failure recovery in

multidatabase system assuming a MOBS in which the participating LDBSs use

two phase locking (2PL) and permit only rigorous [9] schedules. They suggest

a system as follows: The coordinator decomposes global transactions into global

subtransactions, submits the corresponding commands to the Participating Sites

and returns the results to the application. Upon receiving the global Commit, the

Coordinator starts the distributed commitment procedure according to the basic

2PC protocol. The participant role is played by the 2PC Agent (2PCA) modules

(unless there is a two-phased DBMS).

The important assumptions about the 2PC Agent interface described in [32]

are:

1. Upon receiving the Prepare command, the 2PC Agent votes, e.g. it re

sponses either with the REFUSE or READY message; In the latter case the cor

responding global subtransaction enters the prepared state, meaning that it may

either become committed or aborted at the Coordinator's subsequent request, de-

25

spite certain failures that might have occurred at the Participating Site in the

meantime.

2. For any subtransaction in the prepared state, the 2PC Agent has to accept

and confirm the COMMIT/ABORT message,i.e. has to execute the correspond-

ing Commit/ Abort command. Thus, it does not have execution autonomy with

respect to these messages.

The scheme of this method is based on the idea of subtransaction resubmission,

which is a repeated execution of all the commands belonging to a global subtrans-

action when a corresponding local subtransaction had been aborted by the local

database. A transaction resubmission results in a new local subtransaction. In

the process of recovery, the 2PCA may generate many local subtransactions for a

given global subtransaction. Then, all but the last one (in the history) are in the

aborted state. The last one may be incomplete, aborted or committed.

4.2 Variation of 2PC Protocol Using Prepared
to Commit State

The basic requirement to develop a variation of the 2PC protocol for a multi-

database system is the availability of a visible prepared to commit state for all

sutransactions of global transactions [22]. A subtransaction enters its prepared

to commit state when it completes the execution of its operations and leaves this

state when it is committed or aborted. Only when a transaction is committed,

can its updates be observed by other transactions. The prepared state is visible if

26

the primitives the local DBMS provides in its interface allow the MOBS to decide

whether the sutransaction should commit or abort.

Many DBMSs support a visible prepared to commit state (e.g., SYBASE) and

can directly participate in a multidatabase 2PC. However, there are DBMSs which

do not provide a prepared state or a corresponding primitive in their interface.

An approach which does not require the modification of the LDBSs is to sim

ulate the prepared to commit state [33] . According to this approach, the MOBS

has to determine whether all operations issued by the subtransaction have been

successfully completed. This can be accomplished as follows:

1. Many DBMSs designed using the client-server architecture provide primi

tives to request the status of outstanding operations. For example, the Remote

Database Access (RDA) standard and the DBMSs that comply with it provide

an inquire operation which can be used by the MOBS to determine whether all

operations of a subtransaction have been completed.

2. The MOBS may force a handshake after each operation. According to

this approach, the MOBS submits the operations of each subtransaction once at

a time and waits for the completion of the previous database operation before it

submits the next one. Subtransactions are reduced to collections of totally ordered

operations.

However these approaches only have limited application domain since not all

DBMS applications provide such primitives.

27

4.3 Excluding Local Transaction

Centralized and distributed database recovery has been under extensive inves

tigation. Solutions used for these environments are not directly applicable to

multidatabase systems. The difficulty results from the autonomy of individual

DBMSs which only know how to recover their own local databases. Individual

DBMSs cannot distinguish between local transacions and transactions which are

a part of a large global transaction that must be recovered so that multidatabase

consistency is maintained.

The typical recovery procedure in a centralized DBMS requires the following:

1. Restart the DBMS (upon instructions from the operating system).

2. Recover the database by using information kept in the stable database log.

3. Open the DBMS for user access, that is, permit new transactions to be

submitted.

4. Terminate the local restart process.

Ken Barker and M.Tamer Ozsu in [5] proposed that the local recovery process

can be revised to accommodate the recovery of the global transactions. A method

must be devised to inform the MDBS about the fate of the global subransactions.

This is accomplished by modifying Step 2 described above as follows:

2a. Recover the database by using information kept in the stable database log.

2b. Open the database so that the MOBS has exclusive access.

2c. Establish a handshake with the MOBS to notify it that the database is

recovered. Wait until the MDBS responds and recovers the global subtransactions.

28

2d. MOBS relinquishes exclusive access.

This modification permits the MOBS to recover global transactions by resub

mitting all GSTs that were ready to commit at the time of the failure. The MDBS

must maintain its own log for global transactions to perform this recovery and that

log is called the global log. Information in the global log enables MDBS to deter

mine the global subtransaction 's current state and which global transactions are

still active.

Concerning the violation of local autonomy, they argue as follows: When the

DBMS has failed and is being recovered~ it is not operational nor is it acting

autonomously since the recovery is being performed in consort with the database

administrator. The DBMS will not actually become operational, and therefore

autonomous, until the local restart process terminates at Step 4. Since this is only

a modification to the restart process involving interaction with the administrator

it cannot be considered a violation of autonomy.

The revised recovery protocol raises two pragmatic issues. First, it is necessary

to define the tasks performed by the MOBS when it has exclusive access. Secondly,

it is necessary to demonstrate that establishing such a handshaking is feasible.

When the MOBS acquires exclusive access it determines the status of all global

subtransactions at the time of the failure and resubmits any of those which were

READY. Others which had not yet reached the READY state are aborted together

with the global transactions of which they are a part. All of this is facilitated by

the information recorded in the global log and by the simulation of the READY

29

state.

The practicality of establishing a handshaking between an autonomous DBMS

and the MOBS can be demonstrated by noting that the DBMS views the MOBS

as a user application. Therefore, the question becomes whether it is possible

for a DBMS to restart and restrict the access to the database to only one user

(or one class of users). They point out that their investigation into a number of

commercial DBMSs (SYbase, Oracle, Ingres) has revealed that all of them provide

means for establishing such exclusive access.

4.4 Failure Recovery by Compensating Transac
tions

In traditional data recovery, when a transaction is aborted for some reason, all

the changes that it introduced are undone and the database is returned to the

state that existed before the transaction began. This operation is called rollback.

The concept of rollback is not applicable to multidatabase because multidata-

base permits other transactions to change the same objects that its committed

subtransactions have changed. Thus, it would not be possible to restore the data-

base to its state before the aborted global transaction started without cascaded

aborts of all the committed transactions that viewed the partial results of the

aborted transaction. Instead, user-supplied compensation functions are executed

to compensate for each transaction that was committed at the time of failure or

automatic abort.

30

A compensation function undoes the actions performed by a transaction from a

semantic point of view. For example, if a transaction reserves a seat on a flight, its

compensation function would cancel the reservation. We cannot say, however, that

the database was returned to the state that existed before the transaction started,

because, in the meantime, another transaction could have reserved another seat

and thus the number of seats that are reserved would not be the same as it was

before the transaction.

This approach does not compromise local autonomy, but is hard to realize

in practical applications since it requires the use of compensating transactions.

In a multidatabase system where different databases exhibit heterogeneous and

autonomous behaviors, compensating a transaction whose effects have been prop

agated to the other databases is an extremely difficult task in the general case.

31

Chapter 5

A System Model for the
Proposed Protocol

5.1 Transaction Processing

A MDBMS can be thought of as containing two logically separate components~ a

global concurrency controller (GCC) and a global recovery manager (GRMGR).

The former is responsible for ensuring serializability and the latter atomicity.

'When a global transaction is submitted to the system, the GCC schedules the

execution of each subtransaction of the global transaction to ensure serializability.

As first discussed in Chapter 1, some operations of a local subtransaction may

depend on the value of read operations of other local subtransactions. The GCC

schedules the execution of each subtransaction properly so that only when the

read operations which the write operation depends upon are finished and values

forwarded, can the write operation be executed. As mentioned in Chapter 1, such

an enforcement of execution order is unavoidable for the applications in which

dialogue oriented dependencies exist.

32

When all of the operations of the global transaction complete successfully, the

global transaction is said to have reached its commit point. Once a global trans

action reaches its commit point, the GR.J.\1GR initiates a commitment process to

ensure atomicity. It is assumed that the GCC uses a 2PL at the global level.

Thus a subtransaction will not release the locks before the global transaction

commits/aborts. (Note that in the proposed commitment protocol which will

be presented in the subsequent chapters, individual subtransactions may com

mit (abort) before the global transaction commits (aborts), the global locks a

committed (aborted) subtransaction holds will not be released before the global

transaction commits (aborts).)

Due to the isolation assumption described above, it is allowed to discuss a

commitment process based only on a single global transaction.

\Ve make the following assumptions:

1. Each global transaction contains at most one subtransaction at any local

site.

2. The data items accessed at each local site can be identified by the MDBMS.

3. Each local LDBMS uses a strict two phase locking for concurrency control.

4. A subtransaction will not be aborted at a local site if it has finished all its

operations and if there is no failure at the site.

Assumptions 1 and 2 are essentially conditions 3 and 4 in [23]. The first as

sumption is necessary since otherwise a global transaction may not preserve its

33

consistency even if it is executed alone. The second assumption is necessary for

the MDBMS to determine when synchronization is needed. The third assumption

requires that a LDBMS ensure a property called 'strong recoverability' (10] for

local executions. Strong recoverability has been considered to be essential to the

transaction processing in most of today's database systems. The fourth assump

tion looks a little strong, but it is quite realistic. Since once a transaction has

acquired all the locks it needs, it will never get into a deadlock and is unlikely

to be aborted if there is no failure. (A transaction may be aborted for reasons

other than deadlock such as operator-initiated abortion, for example. However,

the issue of how to handle this kind of abortion is orthogonal to the discussion

in this paper.) [18] gives a more detailed justification for an assumption which is

duplicated by assumption 4.

5.2 Inter-dependency of Subtransactions

Among the subtransactions of a global transaction, some may write into a local

database the values which depend on the values read by some other subtransac

tions. Specifically, let G be a global transaction, and G = {G1 , G2 , • • ·, Gn} where

each Gi is a subtransaction at site i. If Gi contains a write operation wi(v), and

the value written is calculated based on the values returned by the read opera

tions rj1 , • • · , r;~e from G;tl · · ·, Gi~e• respectively, then we say that wi(v) depends

on rj 1 , • • ·, ri~e• and denote this by Tj1 -+ wi(v), · · ·, ri~e ~ wi(v). We also say that

Gi has a dependency on Gill···, Gi1c• and denote this by Gj1 -+ Gi, · · ·, G;lc ~ Gi.

34

Definition: A dependency graph for a global transaction G is a directed graph

D(G) = (V, E) where V contains all subtransactions of G and an arc from Gi to

Gi is in V if and only if Gi has a dependency on Gi·

Thus, a node in a dependency graph denotes a subtransaction. (In the fol

lowing, when the issues relating to dependency graph is discussed, 'nodes' and

'subtransactions' will be used exchangeably.) If a dependency graph does not

contain cycles, then there is a partial order where Gi precedes Gi if and only if

there is a path from Gi to Gi in the graph. In this thesis, the following termi

nologies will be used. In an acyclic dependency graph, Gi is a parent of Gi (Gi is

a child of Gi) if there is an arc from Gi to Gi. Gi is a predecessor of Gi if there

is a path from Gi to Gi. Gi is minimal if it does not have any incoming arcs,

and maximal if it does not have any outgoing arcs. All these terminologies can be

rephrased in terms of the partial order, and are omitted here.

The value dependency relation among the subtransactions of a global trans

action can be pushed even further to access dependency. An access dependency

implies that the data items accessed by a subtransaction may vary depending upon

the values read by another subtransaction. For example, assume Gi is a subtrans

action that makes deposits into either the checking or the saving account in a bank

for a customer. Whether the deposit will be made into the checking account or the

saving account depends on the balance in the third account in a different bank.

An access dependency posts some additional problems to a resubmission-based

recovery protocol. In the following discussion, it is first assumed that the access

35

dependency does not occur. In later chapters, this restriction by addressing the

problems caused by access dependencies will be relaxed and the solutions will be

presented.

36

Chapter 6

The Protocol

6.1 The Commit Sequence Based on Value De
pendency Graph

As mentioned before, the atomic commitment of a global transaction in a multi-

database is difficult to achieve since local sites can unilaterally commit or abort a

subtransaction. Life would be much easier if whenever a subtransaction aborts, it

could be resubmitted at some later time without destroying the semantics of the

global transaction. Unfortunately this in general is not possible. The problem is

as follows. Suppose in a global transaction G ~ a subtransaction Gi aborts while

another subtransaction Gi which depends on Gi commits. If we resubmit Gi , then

some of the read operations in Gi may read different values from what they read

previously. Thus Gi would have written a different value than the one committed

should it also be resubmitted alongside with Gi· This has the effect that Gi has

written a value that is calculated based on a value Gi does not read, a violation

of the semantics of G.

The above problem can be resolved by requiring that Gi commits first and

37

Gj starts committing only if Gi has committed. In this way, when Gi aborts, Gj

can also be aborted and then both Gi and Gi are resubmitted at the same time.

Clearly, this solution works only if there is no cyclic dependency between Gi and

Gi. In general, if the dependency graph of a global transaction does not contain

a cycle, then the partial order defined in Section 5.2 can be used to define the

commit order of the subtransactions. In this case, a subtransaction can commit if

and only if all its parents have committed. If a subtransaction aborts, its program

can be resubmitted later without compromising the correctness since none of its

descendants has committed, and hence they can all be resubmitted at the same

time.

6.2 Dealing with a Cyclic Dependency Graph

If the dependency graph of global transaction G contains cycles, no partial order

exists in the dependency graph. Thus the commit sequence described in the last

section cannot be used. To resolve this problem, we break the cycles by choosing

some nodes in the dependency graph and deleting all arcs emanating from them.

Since the resulting graph no longer contains cycles, the commit order described

above can be used.

Definition: Given a dependency graph M, a set K of nodes is a key set of M

if by deleting the outgoing edges from the nodes in K all cycles can be broken.

The resulting acyclic graph M' is called a relaxed dependency graph generated by

K. The nodes in K are called firm nodes for M' .

38

Note that for any dependency graph, there always exists at least one key set,

i.e., the set of all nodes in the dependency graph. It is also easy to see that any

superset of a key set is still a key set in a dependency graph. As will be seen in

later chapters, the nodes in a key set involve higher cost than the other nodes in

the commitment protocol. Thus we are always in favor of small key sets.

Definition: For any dependency graph, a minimal key set is a key set such that

none of its proper subsets is a key set.

Example 1: Given in Figure 7.3 c (page 68) is a dependency graph which

contains five cycles. There are three minimal key sets, {G2, G3},{G1, G4 } and

{G1, G2 }. The superset of any of them is also a key set. The relaxed dependency

graph generated by the first two minimal keys are shown in Figure 7.4 a and b.

In the following discussion, we will be interested only in a minimal key set.

For easy presentation, 'key set' will be used simply for 'minimal key set'.

Note that in general different key sets generate different relaxed dependency

graphs. Also note that a firm node (i.e., subtransaction) is well defined only if

it is related to a specific key set, since a firm node for one key set may not be

firm for the other. Thus in the following discussion, whenever we mention a firm

subtransaction without at the same time mentioning the related key set, it should

be understood that a key set has been (implicitly) related.

Since a relaxed dependency graph is generated by deleting all outgoing edges

of the firm nodes in the initial dependency graph, a firm node in the corresponding

39

relaxed dependency graph does not have any child. The children of a firm node in

the initial dependency graph are called the hidden children of that firm node (or

the firm node is the hidden parent of those children) in the relaxed dependency

graph. Note any hidden child of a firm node still depends on that node. Thus

even if the relaxed dependency graph has been (artificially) made acyclic, we still

must cope with the problems arising from those dependencies when we attempt

to use the partial order in the relaxed dependency graph as the commit order for

subtransactions.

The point is that a hidden child Gi can never be a descendent of its hidden

parent Gi in the relaxed dependency graph. Thus Gi may commit before Gj. If

site i fails after Gi commits but before Gi does, then Gi will be aborted locally

by site i when the failure is repaired. Since Gi has a dependency on Gi and G1

has committed, we must not let Gi read different values than it did before. To

achieve this goal, two approaches are possible. One is to force Gi to read the old

values each time it is restarted. The other is to restore the values Gi writes before

the failure by initiating a restore transaction. However, both methods are subject

to interference by local transactions, as demonstrated by the following example.

Example 2: Assume G1 = r1(a)w1(b), G2 = w2(c) and a dependency r 1(a) ~

w2 (c) . Suppose G 1 has been chosen as a firm node. Thus G2 is the hidden child

of G 1 in the relaxed dependency graph. After G2 commits, a site failure aborts

G1 . After the site is repaired, we attempt to restore the value written by w1 (b).

But before a restore transaction Rc1 = wr(b) is submitted, a local transaction

40

L = Wt(a)wt(b) is submitted and committed. Then R.c;1 commits. We have the

following execution: r 1(a)wt(a)wt(b)wr(b). This is equivalent to unserializable

execution r1(a)wt(a)wt(b)w1(b).

Example 2 shows how restoration of a subtransaction may introduce inconsis-

tency in the presence of local transactions. A similar scenario can occur for the

first approach, i.e., forcing a subtransaction to read the old values it read previ-

ously. To make either approach work, proper provisions must be made to handle

the local transactions after the failure.

6.3 Handling Local Transactions in the Recov
ery Period

To avoid the problems like that described in Example 1, we may use a method

similar to the one suggested in [19], which excludes indiscriminately all local trans-

actions before the restoration completes. Although it is simple, this method may

sacrifice performance unnecessarily since only a portion of the local transactions

may actually interfere with the recovery of subtransactions. Alternatively, we

choose to prevent only those local transactions which try to modify the data

items read by the subtransaction being recovered.

Let F be a firm subtransaction at site i which is undergoing a recovery after

the site failure. If a local transaction Lis submitted before the end of the recovery

period, it is under the scrutiny of a process called L-HANDLER which determines

if L can be accepted.

41

Process L-HANDLER

{In the following RF denotes the recovery transaction for firm subtransaction

F . }.![denotes the set of all firm subtransactions whose recovery transactions are

yet to commit at this site.}

Get a local transaction L;

accept~ true;

for each F E M do

if r(F) n w(L) f. fjJ then

accept~ false

end if

end for

if accept=false then reject L else accept L

Since a local transaction is accepted only if its write set does not intersect the

read set of any firm subtransaction under the recovery, the problem in Example

2 will not occur.

Note that logically, process L-HANDLER is not considered as part of the

GRMGR. However, it will interact with the GRMGR. For example, the values in

A1. will be updated whenever the recovery for a firm subtransaction commits.

6.4 Distributed Commitment

In this section, the overall structure of the commitment protocol are described.

Assume a global transaction G is submitted to site i . (As usual, the term coordi-

42

nator is used to represent the site where the global transaction is submitted and

participants the sites where subtransactions are executed.) G will be analyzed

first and its dependency graph determined. If the dependency graph contains a

cycle, a key set of nodes will be chosen for the purpose of breaking the cycles. The

coordinator then deletes all arcs emanating from them in the dependency graph

to generate a relaxed dependency graph. \Vhen the coordinator submits the sub

transactions to the local sites, for each subtransaction in the key set, it includes

into the messages a flag indicating the subtransaction is firm, together "';th the

read set of that firm subtransaction. The latter information will be necessary if

the firm subtransaction later must undergo a recovery due to site failures. If the

global transaction can reach its commit point, then the coordinator will initiate

the commitment protocol, otherwise it aborts the entire global transaction. Shown

below is a description of the actions taken by the coordinator in the commitment

protocol.

Coordinator

1. Create dependency graph M of G;

2. If At/ contains cycles, choose a key set K of nodes, and delete all arcs em

anating from the firm nodes, i.e., the nodes in K. Let M' be a variable

which is initialized to be the relaxed dependency graph generated by K.

For each Gi E K, send START-GrFIRM, as well as r(Gi) to site j . For

each Gi ¢ K, send START-Gi to site j.

43

{ G is executed here. During the execution, store the values read by each

subtransaction into the log at the coordinator site. If any subtransaction

aborts before the global transaction reaches its commit point, then abort

Gi for all j, otherwise execute the following steps for commitment. }

3. Po f- ¢;

4. P +--- { Z : Z is unmarked and is a minimal node in M' and Z ¢ Po};

5. If Pi=¢, then for each Gi E P, Po+--- Po U {G;} and send COMMIT-Gi to

site j;

6. If M' = ¢, stop; (The commitment protocol finishes.) otherwise wait until

one of the following events occur:

• Gi-COMMIT is received from site j:

a Delete Gi and the adjacent arcs from 1.\J';

b Po+--- Po- {Gi};

c . Go to step 4;

• GrABORT is received from site j:

a . Activate the restart process to restart Gi and all its descendants

in M' and mark them in M';

b . Po ~ Po - { Gi };

c . Go to step 6;

• Gi restart finished: unmark Gi in M', go to step 4;

44

The message START-GrFIRM indicates the start of a firm subtransaction Gi.

The reason that the values read or written by each subtransaction are required to

be stored in the log is that those values may be used later by the execution of some

subtransactions when they have to be restarted. (See Section 6.6.) Variable P0

denotes the set of all subtransactions which have not been aborted since the last

time the coordinator sent the commit signal. P is the set of the subtransactions

whose commit operations can be initiated as a result of the commitment of some

of its parents. A subtransaction in M' being marked signifies it is currently being

restarted and therefore should not get started for commitment.

For the sake of clarity, the restart process is logically separated from the com

mitment protocol. The coordinator can activate the restart process for a subtrans

action whenever it wishes and be informed of the final status. The completion

of the restart of a subtransaction is signified by the completion of the last opera

tion of that subtransaction. When the restart of a subtransaction is finished the

coordinator is informed, which then sends a commit signal to the corresponding

site.

The following is the actions taken by a participant at site j .

Participant j

1. When START-GrFIRM, together with r(Gj) are received, store GrSTART

and GrFIRM, as well as r(Gj) in the log; if START-Gi is received, store

G rSTART into the log;

45

{Here the operations of Gi are delivered to the LDBMS. For each write

operation of G1 where GrFIRM is in the log, store the value to be written

into the log.}

2. When COMMIT-Gi is received, perform the following operations in the

order specified:

a . Store GrCOMMIT into the log;

b . Request the LDBMS to commit G1. One of the following events must

occur

• The LDBMS commits the GJ= Send GrCOMMIT to the coordi-

nator;

• Site failure occurs: After the failure is repaired, perform the recov

ery operations. (See section 6.5);

3. When ABORT-Gi is received, store GrABORT into the log, inform the

LDBMS to abort G1;

The messages a participant stores in the log indicate the status and the types

of a subtransaction. \Vhen the participant receives COMMIT-Gj, it must confirm

the commit of Gi to the coordinator. The confirmation may make the coordinator

to commit more subtransactions which follow G1 in the partial order.

Recall that a participant can receive an abort message only if one or more sub

transactions abort before the global transaction reaches its commit point. In this

46

case, the coordinator must have aborted the entire global transaction. Thus when

ever site j receives ABORT-Gj, it must abort Gj locally. Note that the actions

described here are those taken in the normal case. When failures occur, special

failure recovery actions must be taken at the global level, which are discussed in

the subsequent sections.

6.5 The Global Failure Recovery

\Vhen a site failure occurs, the execution of an ongoing subtransaction may be

intercepted by the failure. The fate of the transaction after the site is repaired

depends on its status and the status of the global transaction to which it belongs

at the time of the failure. The global transaction may or may not have reached its

commit point before the failure occurs. In the latter case, the subtransaction will

be aborted. In the former case, the subtransaction will undergo different recovery

procedures, depending upon its status and types. These have been shown in the

process nam~d G-RECOVERY.

47

G-RECO VERY

Enable L-HANDLER;

For each G1 such that GrSTART is in the log:

Case 1. GrFIRM is not in the log:

1. if GrCOMMIT is not in the log, then store GrABORT in the log, send

GrABORT to the coordinator and exit;

2. if G1-COMMIT is in the log, then inquire the LDBMS about the status of

G1. If G1 aborts, replace GrCOMMIT by GrABORT, send GrABORT to

the coordinator and exit, otherwise send GrCOMMIT to the coordinator

and exit;

Case 2. Gj-FIRM is in the log:

1. if GrCOMMIT is not in the log, then contact the coordinator. If the global

transaction has been aborted, then store GrABORT into the log and exit,

otherwise store GrABORT into the log, send Gi-ABORT to the coordinator

and record Gi as recovering.

2. if GrCOMMIT is in the log, then inquire the LDBMS about the status of

G1. If G1 aborts, record G1 as recovering and repeatedly submit Rei to the

LDBMS until it commits,then record Gj as recovered, send GrCOMMIT to

the coordinator, and exit, otherwise send GrCOMMIT to the coordinator

and exit.

48

If no transaction is recovering, disable L-HANDLER.

In the algorithm, 'exit' is used to denote the end of the recovery for G i. After

that point, Gi will switch to the normal mode. The two cases correspond to two

different types of subtransactions~ non-firm and firm. Note that Gi-COMMIT

being in the log does not necessarily mean Gi has been committed locally, since

site j may fail after it receives CO:NfMIT-G1 from the coordinator and inserts Gr

COMMIT into the log, but before the LDBMS actually commits Gi. However, the

presence of GrCOMMIT in the log does indicate all Gi's parents have committed.

Thus Roi' the restore transaction for Gi, can be initiated if Gi has been found

aborted. On the other hand, if G;-COMMIT is not in the log, then Gi has been

aborted for sure by the LDBMS during the local recovery. This is implied by the

order at step 2 in the commitment protocol for a participant. Thus the GRMGR

stores GrABORT into the log, which indicates Gi has been aborted locally. Note

that when Gi is aborted locally but the global transaction is not aborted globally,

G1 will switch to the normal mode if it is non-firm, and stay in failure mode if it is

firm. The reason they are treated differently in this respect is because the restart

process of a non-firm subtransaction is viewed as a normal case action. In other

words, for a non-firm subtransaction G;, after the GRMGR sends G;-ABORT, G1

will return to the normal mode. Thus the restart process for Gi will run in normal

mode. On the other hand, the restart process of a firm subtransaction is viewed

as a failure case action. This treatment is necessitated by the fact that the restart

of a firm subtransaction always triggers the execution of L-HANDLER, which is

49

regarded as an exception handler. Thus it should run ouly for a subtransaction

which is in the failure mode.

6.6 Restart a Subtransaction

Under two circumstances a subtransaction must be restarted: 1. it aborts but

one of its predecessors commits; 2. one of its parents restarts. The first condition

implies that a subtransaction is restarted only if the global transaction bas passed

its commit point. Note that from assumption 4 in Section 5.1, this implies that

the subtransaction is aborted due to failure. The second condition implies that

once a subtransaction restarts, all its descendents must restart as well. In this case

we say that the restarts of the descendants are caused by that subtransaction, and

that they are under the same restart process. If the restart of a subtransaction

is not caused by any of its predecessors, we say that it is the originator of that

restart. Clearly, if a subtransaction is the originator of a restart, then the restart

must result from its being aborted (due to failures).

Note that the commitment process will restart a subtransaction only if it is

certain that the subtransaction falls into one of the above two cases. For the

first case, this means that the coordinator h&S received an abort message for

the subtransaction and a commit message for its predecessor. For the second

case it means that the coordinator has initiated the restart process for one of its

predecessors.

vVhen the restart process is activated for a subtransaction Gi at site i, the

50

specific actions it takes depend upon whether or not Gi is firm. If Gi is not firm,

then the restart process will resubmit the program for Gi as if Gi were a new

subtransaction. This has two implications. One is that all information about Gi

previously stored in the log becomes void. (These include, among other things,

the values previously read by Gi.) The other is that the LDBMS will be informed

to abort Gi , and therefore release all the locks obtained by Gi.

If G i is firm, the restart process only back track the program for G i. This means

the following. Firstly, the coordinator views all the values which Gi previously

read as still valid. This is necessary since those values will be used by G1 itself for

calculation. (See the explanation below.) Secondly, if Gi is in normal mode when

it is restarted, then it will not be aborted, and therefore still hold whatever locks

it had obtained before. This is essential for the correctness since in the normal

mode, L-HANDLER is not active, and therefore releasing the locks could possibly

let the local transactions introduce inconsistency. Finally, if Gi is restarted after

the failure of site i, then when it should execute a read operation, the coordinator

picks up the value for that read operation from the log and delivers it to site

i, rather than letting Gi reread it from the local database. (Note that this is

possible since our protocol requires the coordinator log the value read by each

read operation of the global transaction.) This is necessary since after site i is

repaired, all the read locks initially obtained by Gi are released. If Gi rereads the

corresponding data items, it may risk reading different values than it did before.

On the other hand, recall our assumption that Gi has no access dependency on

51

any of its parents. Thus if the restart of Gi is caused by its parents, then had it

actually performed reread it would not read different data items from those stored

in the log1. Thus obtaining the values from the log for a firm subtransaction is

justified.

One more detail is worth mentioning here. When subtransaction Gi , whether

firm or not, is restarted, either it is the originator of this restart, or the restart

is caused by some of its parents. In the former case, when Gi requires the values

from its parents, those values cannot be read by the parents at run time since

the parents have already finished their operations (or may have even committed).

However, this posts no difficulties since all the values read by any subtransactions

are logged by the coordinator. Thus the coordinator can get those values from the

global log, without affecting the execution of Gi. In the latter case~ on the other

hand, the values will be read at run time by those parents whose restarts cause

Gi to be restarted. In summary, our algorithm for restarting a subtransaction is

the following.

Process Restart

{Assume Gi is the sub transaction under the restart.}

Case 1 : If Gi is not firm, then mark all information in the log about Gi as void,

inform the LDBMS to abort Gi and resubmit Gi to the LOBS. When Gi

needs values from a parent, the values will be read at run time if Gi and

1 Actually this method is not necessary if Gi is in the normal mode when being restarted.
Since it still holds the read locks, Gi can read the same values anyway as it did before. For
simplicity this case will not be treated differently.

52

that parent are under the same restart, otherwise the coordinator fetches

them from the log;

Case 2 : If Gi is firm, then reevaluate the write operations only, but get the

value for each read operation from the log at the coordinator site. When Gi

needs values from a parent, do the same thing as that in case 1. \Vhen Gi

finishes, record Gi as recovered.

6.7 An Example

In this section, an example is used to show how the proposed protocol works in a

typical scenario.

Example 3: Let G be defined as G = r(e)r(a)r(c)w(f)w(b)w(d) where a and

bare stored at site 1, c and d at site 2, e and fat site 3. Let G 1 _ r1(a)w1(b),

Suppose the dependencies among the operations are as follows: r 3(e) ~

w 1(b),r1(a) ~ wz(d), r2 (c) -4 w3 (f). The dependency graph for G is shown

in Figure 6.1 a.

Ga

~
G' o,E----:b----'o G:

Figure 6.1. dependency graph and relaxed dependency graph of G

Suppose {GJ} has been chosen as the key set, thus G3 is a firm subtransaction.

53

The relaxed dependency graph is shown in Figure 6.1 b. Assume site 1 is the

coordinator and initiates the execution. The log at each site when G reaches its

commit point is shown in Figure 6.2. ((ri(p), q) means ri(p) reads value q from

data item p and (wi(p), q) means wi(p) writes value q into data item p.) Note

that since G3 is a firm subtransaction, its read set { e} and the value u written by

its write operation have also been logged. Since site 1 is the coordinator, it also

stores into the log the values read by each subtransaction.

Gt-START (rJ(c). ll I

(rl(al. y I

(r2(c). z)

0

G2-START

0

GJ.SIART

GJ.FIRM

1\GJ):{e) (w3(f).u)

w(G3):{f)

0

Site I Site 2 Site 3

Figure 6.2. 1l1e logs when G reaches commit point

Now, site 1 starts commitment process. It starts committing G1 first since G1

is a minimal node in the relaxed dependency graph. Suppose site 1 is notified of

the commit of G17 it modifies the dependency graph as shown in Figure 6.3. It

then sends COMMIT-G2 to site 2.

G l o ... oeE--------.o G:

Figure 6.3. Dependency graph when G 1 commits

Suppose site 2 fails before COMMIT-G2 arrives. When site 2 is repaired,G2-

START is the only message in the log. Thus site 2 inserts G2-ABORT into the

log, resulting in Figure 6.4.

54

GI-ST ART (rJ(e), x)

G!-COMMIT (rl(a).y)

(rl(c), z)

0
Site I

G2-sTART

G2-ABORT

G3-START

G3-FIRM

r(G3):(el (wJ(f},u)

w(G3):{fl

0 0

Sile 2 Si1e 3

Figure 6.4. The logs after site 2 is repaired

Site 2 then sends G2-ABORT to site 1, the coordinator. Upon receiving the

message, site 1 initiates the restart process for G2 and G3. G2 will be resubmitted

as a new transaction. During its execution, when G2 needs the values from r 1(a),

the coordinator will fetch y from the log. However, when G3 needs value from

r 2(c), the value is read from c by r 2(c) at run time since both transactions are

under the same restart. Suppose the new value returned is z'. Based on z' w3(!)

writes a value, say u' into f. When r3 (e) is about to be executed, the coordinator

fetches x from the log. Note that x is exactly the value based on which the

committed value written by w 1(b) has been calculated.

\Vhen the execution of G2 and G3 reaches the commit point, the coordinator

will start another cycle of commitment as it did before, but only for G2 and G3 .

Now, suppose site 2 notifies site 1 that G2 commits successfully, site 1 then

starts committing G3 by sending COMMIT-G3 to site 3. But before the message

arrives, site 3 fails.

vVhen site 3 is repaired, G3-START is the only message in the log. Thus the

GRMGR at site 3 inserts G3-ABORT into the log, and sends G3-ABORT to the

coordinator. The log at each site at this moment is shown in Figure 6.5.

55

Gl-START (r3(e). x) G2-START GJ.START r(G3):(e} (w3(0.u")

GI-COMMIT (rl(a). y J G2-COMMIT G3-RRM w(G3):{f)

G3-ABORT
(t2(c)~· l

0 0 0

Sice 1 Sice 2 Sile 3
Figure 6.5. 1be logs after site 3 is repaired

Now the coordinator initiates the restart process for G3 , which requests the

value for r2 (c) to carry out w3(f). Note that G3 now is the originator of this

restart. Thus the coordinator gets z from the log, making w3(J) write into f

the same value as it did last time, namely, u'. When G3 should execute r3 {e),

the coordinator fetches x from the log. This again guarantees the validity of the

value committed by w 1(b). (Note that now L-HANDLER is in action to prevent

any local transaction from modifying e.) Suppose G3 finishes the restart. The

coordinator then sends COMMIT-G3 to site 3. Site 3 receives it and stores G3-

COMMIT into the log. The log at this point is shown in Figure 6.6.

Gl-START

Gl-COMMIT

(r3(e), x)

(rl(a). y)

(r2(c), z')

G2-START

G2-COMMIT

G3-START r(G3): (e)

w(G3):(f)

Site 1 Sire 2 Site 3
Figure 6.6, The logs after the second failure of site 3

(w3(f),u')

Now suppose before the GRMGR informs the LDBMS to commit G3 locally,

site 3 fails again. When site 3 is repaired, G3-COMMIT is in the log. Thus wr(J),

56

the restore transaction for G3, is initiated to restore value u'. When Rc3 commits,

site 3 sends G3-COMMIT to the coordinator. This completes the commitment

for G. 0

57

Chapter 7

An Inforlllal Discussion about
Access Dependency

7.1 The Problems Caused by Access Dependency

:\s mentioned before, access dependency means that the data items, not just the

values of a data item, that a subtransaction accesses depend on the values read

by some other subtransactions. In this chapter, this problem will be introduced

and the idea behind the approaches to solving it will be discussed in a semi-formal

manner. The reason is twofold. First, the theme of the thesis is centered on value

dependency. Access dependency is inherently a different problem in nature, and

therefore a discussion on this topic is largely orthogonal to the main theme of

the thesis. Second, since its formation is very similar to value dependency, it is

interesting to get some insight into the problem and its solution.

If the set of data items which a subtransaction G; reads from (write into) may

vary depending upon the values read by another subtransaction Gi, we say that

G; has an r-dependency (w-dependency) on Gi· In the following we will use the

58

notation Gi ~ G; to denote that G; has an access dependency on Gi.

If a firm subtransaction has an access dependency on its parents, then the

correctness of the protocol cannot be guaranteed, as demonstrated in the following

example.

Example 4: A global transaction G is defined as follows.

if b= 100 then

if c=O then e:=5 else e:= 10;

else

if d=O then e:=l5 else e:=20;

if f=O then a:=O else a:=l

Suppose data item a and b are stored at site 1, c and d site 2! and e and f

site 3. The subtransactions are defined as follows. G 1 = r 1(b)w1 (a), G2 = r 2 (c)

or r2 (d) depending upon the values read by G1, and G3 = w3 (e)r3 (J). Thus we

have G 1 ~ G2 . In addition, G2 r-depends on G1 • The dependency graph for G is

shown in Figure 7.1 a. (The darkened line denotes an access dependency.) Now

we choose { G2 } to be the key set. Thus G2 is the firm subtransaction and G3 is

its hidden child. The relaxed dependency graph is shown in Figure 7.1 b.

59

D a.\
o, < 0 0 , a, 0<: 0 0 ,

a.Dependency graph b. Relaxed dependency graph generated by key set {G2}

Figure 7.l. The graphs for Example 4

The commit order is G3, G 11 G 2 . Suppose initially, b = 100 at site 1, c = 0 and

d = 0 at site 2, and f = 0 at site 3. Thus, G1 reads 100 from b, G2 reads 0 from

c and G3 writes 5 into e. Now, suppose G3 commits but G 1 aborts due to site

failure. Thus G1 and G2 will be restarted. Suppose when G1 is resubmitted, the

value in b has been modified by a local transaction to 101. This would require G2

to execute r 2 (d), not r2 (c). In other words, operation r2 (c) which was performed

last time becomes illegal should the program for G2 be executed in the current

restart. Thus G3 should write into e either 15 or 20, instead of 5. Since value 5

in e has already committed, we have had an incorrect execution.

The above example shows how an r-dependency may jeopardize the correctness

of the proposed protocol. A w-dependency can also cause the same problem. To

see how, suppose Gi is a firm subtransaction which has a w-dependency on Gi.

Further assume that its hidden child G" has committed. Now assume Gi fails but

Gi does not, then both Gi and Gi will be restarted. Note that in the execution

for the resubmission, Gi still holds all the locks it initially obtained. Since Gi

w-depends on Gi, it may perform different write operations in the restart and

therefore request new write locks. Thus local deadlock may occur and, to break

60

the deadlock, G1 may be aborted by the LDBMS. When this happens, the LDBMS

will release all the locks held by G1 and reschedule it at some later time. Thus

when it is rescheduled, G1 may read a value that has been modified by some local

transactions and make the values committed by G~c invalid.

7.2 Approaches

It is easy to see that the problems arising from either r-dependency or w-dependency

are from the same source. That is, due to an access dependency, a value read or

a read operation itself in the previous execution of a firm subtransaction becomes

illegal should the program of the firm subtransaction be executed in the current

restart. In the following, we partially formalize this idea. (A full formalization

would require a formal model for the transaction execution using resubmission,

and is beyond the scope of this thesis.)

Definition: Let G1 be a firm subtransaction which is currently under a restart.

Let p(a) be an operation, where p = r or w, which was performed in the last

submission of Gi. Then we say that p(a) is legal in the current restart if the

program for Gi had been executed in the restart ~ the execution would contain

p(a).

Definition: Let Gi and p(a) be the same as in the above definition. Let x be

the value which p(a) read from or wrote into a in the last submission of G1. \Ve

say x is legal for p(a) in the current restart of G i if 1. p(a) is legal in the current

restart; 2. p(a) reads x from or writes x into a should the program for Gi be

61

executed in the current restart.

From the above definition, the read operation r 2 (c) is not legal when G2 is

restarted. Thus the value 0 for r 2 (c) is also not legal.

If the values previously read by Gi become illegal, then the values calculated

based on those illegal values which G~; commits also become illegal. In other

words, those values committed by G~; have to be invalidated. For instance, in

Example 4, since r2 (c) becomes illegal when G2 is restarted, the committed value

5 in e by G3 is invalidated.

Note that in a multidatabase, only those values which are committed by a

subtransaction that is a hidden child of some firm transaction can possibly be

invalidated. This is because if a subtransaction is not a hidden child of any

firm subtransaction, then it can never happen that the subtransaction commits

before its parents. In other words, once it commits, all of its parents must have

committed, and therefore will never be restarted. Thus all we need is to find a

way of avoiding invalidating the values committed by a subtransaction that is a

hidden child of some firm subtransaction.

From the previous discussion, we observe that for a firm subtransaction Gi

and its hidden child G~;, the restart of Gi will not invalidate the committed values

of G k if once G k commits, the read operations and their values stored in the

log for Gi are always legal when Gi is restarted. Interestingly, this goal can be

achieved by only slightly modifying a dependency graph. The method is based

on a theorem presented below. Before the theorem is given, a lemma which is

62

essential for the theorem will be present.

Lemma 1: Assume a dependency graph M contains two paths: Gi ---+ Gi -+ G,.

and Gi -+ G~c. Let M' be the relaxed dependency graph of }vf generated by key

set K. Then at least one of the following conditions is true:

L Gi is not a firm subtransaction;

2. both Gi and Gi are firm subtransactions;

3. Gi is a parent of G~c in M' .

proof Suffices it to show that if the first and the second conditions are not

true, then the third condition must be true.

The fact that the first two conditions are not true implies that Gi is not a firm

subtransaction. From the way a rela.xed dependency graph is obtained from the

dependency graph, all of the outgoing arcs of Gi contained by 1\1/ are presented

in lvf'. Thus k/' contains arc Gi -+ G~c. This means that Gi is a parent of G,. in

At/'. o

The commitment protocol is slightly modified as follows. In the protocol pre

sented in section 6.4, when a firm subtransaction is restarted, the values to be

read by its read operations are always obtained by the coordinator from the log,

regardless of whether or not any of its hidden children has committed. Now It

is required that this action be taken only if at least one of the hidden children

of the firm subtransaction has committed, otherwise its restart procedure must

be the same as that for a non-firm subtransaction, namely, being aborted locally

63

and resubmitted as if it were a new transaction. This is necessary since if a sub

transaction has an access dependency on its parents, then when its parents are

restarted, those read operations in the log may become illegal, as it is explained

previously.

The following theorem establishes a basis for the method.

Theorem 1: Let 1"Y be a dependency graph for a global transaction Gin which

G1 has an access dependency on Gi, and ftll' be a relaxed dependency graph. If lvl

contains two paths: Gi ---+- Gi ---+- Gk and Gi ---+- G~c and Gi is firm, then once Gk

commits, the read operations and their values stored in the log for Gi are always

legal if either the restart of Gi is caused only by Gi or G; is the originator of the

restart.

proof Note that if Gi is the originator of a restart, then this restart will not

make the the read operations or their values stored in the log illegal. This is

because the restart of Gi is not caused by its parents. Thus whatever values it

gets from its parents are fetched from the log, and hence never change. Therefore,

a restart of Gi caused by Gi will only be considered.

By Lemma 1, one of the three conditions specified there must be true. Since

Gi is assumed to be firm, the last two conditions will only be considered. Suppose

condition 2 is true. Since Gi is firm, Gk must be its hidden child in M'. Since Grc

has committed, during the restart of Gi, its read operations get the values from

the log. This implies that they get identical values to what they got last time.

Thus the corresponding restart of Gi performs the same read and write operations

64

as it did before. This means its read operations are legal. In addition, since it

performs the same write operations, the situation described in the last paragraph

of Section 7.1 will not occur. This means the values stored in the log for those

read operations of Gi are also legal. Now suppose condition 3 is true. Since Gk is

a child of Gi in M', it commits after Gi· Thus if a restart of Gi occurs after Gk

commits, it occurs also after Gi commits. Thus Gi must be the originator of that

restart which, as it is explained earlier, cannot make either its read operations or

their values illegal. 0

From Theorem 1, in the face of access dependency, additional arcs can be added

to a dependency graph to prevent any committed values from being invalidated.

The following algorithm is used for this purpose.

Algorithm MODIFY

Input: a dependency graph At/ and an access dependency relation among the

nodes in !vl ;

output: a modified dependency graph used by the commitment protocol to ensure

atomic commitment;

while there is a path Gi ~ G1 ~ Gk E A1 and Gi is in a cycle of 1.\f

and Gi ~ Gk ¢At! do

add Gi ~ Gk to M

end while

The reason that we check if G1 is in a cycle is because access dependency Gi ~

65

Gi may invalidate G~c only if Gi can possibly be chosen as a firm subtransaction.

This can happen only if G i is involved in a cycle. The following theorem establishes

the correctness of the method for handling the access dependency. A formal proof

of the theorem will not be given, but the idea will be illustrated.

Theorem 2: Let G be a global transaction, N be the dependency graph for G ,

1\!J be the modified dependency graph generated by applying algorithm MODIFY

to N, K be a key set in M which generates a relaxed dependency graph M', and

G1 E K be a firm node of which Q is a hidden child. Then once Q commits, the

values it writes will never be invalidated by any restart.

proof. We consider any path in At! with the form p = Gn ~ Gn_1, • • ·, ~ G 1

where for all i, 1 ::; i ::; n, Gi is a firm node and Gn has no access dependency on

any of its parents. We must prove that for any such path, the values committed

by the hidden children of G 1 will not be invalidated by any restart. To this end,

we only need to prove that for all Gi, the read operations and their values stored

in the log are legal once Q commits. (Note that it is not sufficient to prove such

a legality only for G1 , since if Gm where 2 ::; m ::; n has illegal read operations,

then all the values committed by Q may still be invalid since they depend on

the read operations and their values for G1 , which depend transitively on the read

operations and the values for Gm.) Firstly, assume n = 1. For any parent P of G 11

If P -7 Gn is not an access dependency, then once Q commits, the read operations

stored in the log for G 1 are always legal. If P -7 Gn is an access dependency,

from the definition of algorithm MODIFY, there must be an arc P -7 Q in M'.

66

By Theorem 1, once Q commits, the read operations and their values stored in

the log for G1 are legal. An easy induction can prove the theorem in the general

case. 0

Here example is used to show how the protocol works in a typical scenario.

Example 5: We apply MODIFY to the dependency graph in Figure 7.1 a. (The

darkened line denotes an access dependency.) The modified dependency graph is

shown in Figure 7.2 a. It is easy to see that there are only two possible key

sets for this modified graph, {Gt} and {G3}. The former generates the relaxed

dependency graphs in Figure 7.2 band the latter generates that in Figure 7.2 c.

z;
G, < Oo ,

a. Modified dependency graph b. Rewed dcp.graph gcncraiCd by (Gil c. Rc:l:uted dcp. graph generated by (G3}

Figure 7 .2. DG and relaxed DGs after applying MODIFY to the 00 in Example 4

\Vhen { G 1 } is the key set, G 1 is the firm node whose hidden children are G2

and G3, and parent is G3. The read operations and their values for G 1 stored

in the log are always legal since the only dependency, G3 ---+ G1, G1 has on its

parent is not an access dependency. A similar situation occurs when {G3 } is the

key set. In this case, the firm subtransaction G3 has two dependencies, G 1 ---+ G3

and G2 ~ G3 , neither being an access dependency.

To give more intuitions for the method, a slightly more complicated example

in the following will be given as a conclusion of the section.

67

Example 6: Suppose a global transaction G contains five subtransactions, and

there are two access dependencies, G 1 ~ G2 and G2 ~ G3 • The dependency

graph for G is shown in Figure 7.3 a. (A darkened line in the graph represents

an access dependency.) This dependency graph contains two cycles. Obviously,

{ G3 } is a key set, which generates the relaxed dependency graph in Figure 7.3 b.

G3 has three hidden children, G4 , Gs and G1 in the relaxed dependency graph.

They can commit before the rest of the nodes. Suppose G4. and G5 commit but

G1 aborts due to failure. Since G 1 ~ G2 is an access dependency, when G1 is

restarted, the read operations stored in the log for G2 may become illegal, which

in turn may cause the read operations and their values in the log for G3 to be

illegal. Thus the committed the values by G4 and G5 may be invalidated.

G:o< o.o

~~
G. G I G~ G· G I Gs

a_ Initial DP. b. Relaxed DP genc:r.uc:d by [G3} c. Modified DP by applying

MODIFY 1o the initial DP
Figure 7.3. DP and modified DP for Example 6.

Now we apply MODIFY to Figure 7.3 a. The resulting dependency graph

is shown in Figure 7.3 c. Note that in this new dependency graph, {G3 } is no

longer a key set. There are three choices for the key sets. These are { G2 , G3},

{ G 1, G 4 } and { G 1, G2}. The construction of the relaxed dependency graphs for

these key sets are straightforward. Shown in Figure 7.4 a and bare those gener-

68

ated by the first two key sets. (The number inside a circle indicates the commit

order for the corresponding subtransaction. A boldfaced name represents a firm

su btransaction).

& J 2 Q

a. Relaxed DP generated by { G2.G3) b. Relaxed DP generated by { G 1.04)

Figure 7.4. The relaxed DPs

To see why the committed values by any hidden children of a firm node will not

be invalidated by any restart, let us consider the case where {G2 , G3 } is the key

set. In the dependency graph in Figure 7.3 c, there are two paths, G2 ~ G3 and

G2 , which have the form of the path in the proof for Theorem 2, with n = 2 and

n = 1, respectively. \Ve now consider the first path. Take the hidden child G4 of

G3 as an example. Once G4 commits, G 1 must have committed. We first examine

the legality of the read operations and their values in the log for G2 . Suppose

a restart of G2 occurs after G4 commits. This restart cannot possibly be caused

by G1 , since G 1 has already committed. In this example it cannot be caused by

G4 either, since G4 has also already committed. Thus the only possibility is that

G2 itself is the originator of the restart. This will not make G 2 perform different

operations from those stored in the log. Thus the read operations and their values

in the log for G2 are legal once G4 commits. Using the similar arguments, we can

69

say the same thing about G3. This means once G4 commits, the values it installed

will not be invalidated.

It is illustrative to compare Figure 7.3 b and Figure 7.4 a to see how the

application of MODIFY resolves the problem. In both situations, G 3 is a firm

node with G4 and G5 being two of its hidden children. In Figure 7.3 b G 1 can

be restarted after G4 and G 5 commit. We have seen this mav make the read

operations of G3 illegal. However, in Figure 7.4 a, G 1 is a parent of G 4 and G5 ,

and hence must commit before them. In other words, after G4 and G5 commit,

G 1 cannot possibly be restarted.

70

Chapter 8

Discussion

8.1 Performance

In the proposed protocol, the execution of the commit operations of the subtrans

actions of a global transaction follows the partial order in the relaxed dependency

graph. In committing a subtransaction, the coordinator first sends the commit

message to the site where the subtransaction is executed, and then waits for the

confirmation. It then sends the commit signal to the next eligible ones based on

the partial order. This is similar to a two phase commit protocol in the sense

that after it sends the first message the coordinator must wait for the response

to decide what actions it must take next. The difference is that in a two phase

commit protocol all the participants execute the commit operations in parallel

while in the proposed protocol the participants execute the commit operations

in a predefined (partial) order. Thus in committing a global transaction the pro

posed protocol may be slower than those which simulate the traditional two phase

commitment. On the other hand, in the proposed protocol the coordinator sends

71

only one message per participant (i.e., commit signal) while in a two phase proto

col the coordinator sends two messages per participant (i.e., prepare and commit

signals). Thus the proposed protocol has better message overhead.

A merit of our protocol is that it never needs to run compensation transactions.

As mentioned before, even if compensating an already committed subtransaction

is possible in some specific context, it is comprehensible that developing such

compensating transactions is an expensive task. This is because at the time when

a committed subtransaction need to be compensated for, its effects may have

already been propagated to the other local databases. Compared with compensa

tion, resubmitting an aborted subtransaction is more realistic and cost-effective.

As shown in the previous context, a non-firm subtransaction requires almost no

recovery actions. It is perceivable that in most cases, non-firm subtransactions

account for a majority number of the subtransactions in a global transaction.

From the specification the proposed protocol is non-blocking for any non-firm

subtransactions. It may or may not be blocking for a firm subtransaction de

pending upon the time the site failure occurs. If the site fails after it receives

the commit signal from the coordinator, then after the site comes up the sub

transaction will be either recovered or committed without consulting with the

coordinator. If the site failure occurs before it receives the commit signal, then

after the site is repaired the GRMGR must wait until the communication with

the coordinator is resumed. In the mean time, a local transaction may be denied

the access to some data items if it can possibly introduce an inconsistency.

72

8.2 Local Autonomy

One of the expenses that are paid by the commitment protocol is that in two

occasions local autonomy is compromised to some extent. One occasion is when

process L-HANDLER is used to restrict the access of local transactions to the

data items during the recovery period. The other is when a site is repaired from

the failure, and the commit signal is found in the global log for a subtransaction,

the GRMGR must inquire the LDBMS about the status of that subtransaction.

In both occasions, however, it is believed that the compromises are essential and

not unreasonable. For the first case, based on the study on issues relating to

failure recovery, it has become increasingly clear that to ensure atomicity some

kind of restrictions must be imposed on the access to certain data items by local

transactions during the global recovery period. This principle underlies almost all

the protocols developed so far that handle failure recovery, (except for those using

compensation). Compared with those protocols which divide the data items into

the globally updatable and the locally updatable, or those that exclude all local

transactions from accessing the local database, the violation of local autonomy by

the proposed protocol is to a lesser extent. This is due to two salient features of our

protocol. First, the violation of local autonomy mentioned above only happens in

the recovery of a firm subtransaction, which in most cases should account for only

a small minority. Second, for a firm subtransaction that is under the recovery,

only those local transactions whose write sets intersect with the read set of the

firm subtransaction will be rejected.

73

In the second case, such a 'violation' should be even more acceptable than the

first one since all that is required by the GRMGR is the information about the

status of a subtransaction. Supplying this piece of information should post no

problem to the LDBMS since in the normal case, it is supplied anyway by the

LDBMS whenever the subtransaction commits or aborts locally. In the face of

failures, the information supplied by the LDBMS may be intercepted by a failure,

forcing the GRMGR to make such an inquiry after the failure is repaired. (We

say that this is a violation of local autonomy since the interface provided by an

LDBMS may have to be expended to allow a GRMGR to make such an inquiry.)

8.3 Implementation of L-HANDLER

As specified in Section 6.3, L-HANDLER enforces access control over local trans

actions using the information about the write set of a local transaction or the

read set of a firm subtransaction. In general, a global transaction is written in

a multidatabase language but a local transaction is written in a language pro

vided by the local database. Usually these two kinds of languages are different,

(both syntactically and semantically.) Thus in order to compare the read sets of

subtransactions with the write sets of local transactions, we must either translate

the local transaction into a transaction written in the multidatabase language or

translate the subtransaction into a transaction written in local database languages.

Among these two approaches, We are in favor of the latter. This is because the

former not only violates the local autonomy, but also is hard to achieve since the

74

local database model underlying a local database language is usually semantically

poorer than that underlying a multidatabase language. A translation from the

local database level to multidatabase level would require additional mechanism to

enrich the semantics of a local data mode. On the other hand, a translation from

the multidatabase level to local database level is relatively easier to achieve, and

this must be done anyway before a subtransaction can be executed at the local

database, whether or not we use an L-HANDLER.

75

Chapter 9

Conclusion

In this thesis, a failure recovery scheme for multidatabase systems is proposed.

The scheme enforces a commit order among subtransactions which can be derived

from the dependency relations over the subtransactions of a global transaction. To

achieve failure atomicity, an aborted subtransaction is allowed to be resubmitted.

To resolve the problems arising from cyclic dependency, certain restrictions are

put on some subtransactions while no restriction on the others. In this way

we can still use the commit order in the face of cyclic dependency while at the

same time reduce the loss of local autonomy. A special class of value dependencies,

namely access dependencies, is defined and the impact it has on the failure recovery

schemes using resubmission is discussed. Possible solutions are provided to the

problems arising from applying resubmission as a platform of failure recovery when

access dependency is possible.

Some issues deserve future study. For example, how do we construct a formal

model for the transaction execution based on resubmission? How do we develop

efficient mechanisms to derive the dependency relation among the subtransactions

76

of a global transaction? What is the impact that the different choices of key

sets have on the performance of the proposed protocol? The solutions to these

problems will give deeper insight into the theoretical soundness and practical

performance of resubmission-based protocol for failure recovery in MDBSs.

77

REFERENCES

1. R.Alonso, H.Garcia-Molina, and K.Salem." Concurrency control and Recov

ery for Global Procedures in Federated Database Systems " In IEEE Data

Engineering,pp 5-ll,Sep 1987.

2. C.Beeri, P.Bemstein, and N. Goodman." A Model for Concurrency in Nested

Transactions Systems" Journal of the ACM, Vol.36,No.2,pp 230-269,1989.

3. Joel S. Berson." Generic RDA Editor " Information Processing Systems

Open Systems Interconnection - Remote Database Access - Part 1: Generic

Model, Service, and Protocol ISO/IEC JTC 1/SC 21 WG3 ISO,pp 20-

35,1990.

4. Philip A. Bernstein, Vassos Hadzilacos and Nathan Goodman." Concurrency

Control and Recovery in Database Systems " Addison-Wesley Publishing

Company, ISBN 0-201-107155, U.S.A,l987.

5. Ken Barker and M.Tamer Ozsu." Reliable Transaction Execution in Mul

tidatabase System " In Proceedings of 1st \Vorkshop on RlDE,pp 344-

347,1991.

6. Yuri Breitbart and Avi Silberschatz. " Multidatabase Update Issues " In

Proceedings of ACM SIGMOD Conference, Chicago,pp 135-142,May 1988.

7. Yuri Breitbart and A vi Silberschatz. " Multidatabase Systems with a Decen-

78

tralized Concurrency Control Scheme" IEEE Distributed Processing Tech

nical Committee Newsletter, Vol.10,No.2,pp 35-41,1988.

8. Yuri Breitbart, A.Silberschatz and G.Thompson." Reliable Transaction Man

agement in a Multidatabase System" Technique Report, University of Ken

tucky,pp 33-56,1990.

9. Yuri Breitbart, D. Georgakopoulos, M. Rusin Kiewicz and A. Silberschatz.

" Rigorous Scheduling in Multidatabase Systems " In Workshop in Multi

databases and Semantic Interoperability,pp 79-lOl,Oct 1990.

10. Y.Breitbart,A.Silberschatz and G.Thompson." Transaction Management Is

sues in a Failure-Prone Multidatabase System Environment " The VLDB

Journal, Vol.l,No.l,pp 121-154,July 1992.

11 . Divyakant, Abbadi and Ambuj. " Consistency and Orderability: Semantics

Based Correctness Criteria for Databases " ACM Transaction on Database

System, Vol.l8,No.3,pp 231-266,Sep 1993.

12. vVeimin Du and Ahmed K.Elmagarmid." Quasi Serializability: A Correct

ness Criterion for Global Concurrency " Control in InterBase Proceedings

of 15th VLDB Conference,Amsterdam,pp 347-355, August 1989.

13. A.K.Elmagarmid and W.Du." A Paradigm for Concurrency Control in Het

erogeneous Distributed Database Systems" In Proceedings of IEEE Interna

tional Conference on Data Engineering, Los Angeles,pp 254-278,Feb 1990.

79

14. A.K.Elmagarmid and A.A.Helal. "Supporting Updates in Heterogeneous

Distributed Database Systems " In Proceedings of the International Confer

ence on Data Engineering,pp 564-569,1988.

15. A.K.Elmagarmid and M.Rusinkiewicz." Critical Issues in Multidatabase Sys

tems" Technique Report CSD-TR-966,pp 36-71,March 1990.

16. K.Eswaran, J.N.Gray, R.Lorie and I.Traiger." On the Notions of Consis

tency and Predicate Locks in a Database System " ACM Transactions on

Computer Systems, Vol.19,No.ll,pp 624-633,1990.

17. Abdel Aziz Farrag and M. Tamer Ozsu." Using Semantic Knowledge of

transactions to Increase Concurrency " ACM Transactions on Database Sys

tems, Vol.l4,No.4,pp 162-187,Dec 1989.

18. D. Georgakopoulos." Multidatabase Recoverability and Recovery " In Pro

ceedings of of lrd Workshop on RlDE,pp 348-355,1991.

19. D. Georgakopoulos and M. Rusinkiewicz." Transaction Management in Mul

tidatabase Systems " Technique Report UH-CS-89-20, Department of Com

puter Science, University of Houston,pp 29-46,Sep 1989.

20. H. Garcia-Molina and K.SALEM." S<'.gas " In Proceedings of the ACM SIG

MOD 1987 Annual Conference, ACM Press,pp 249-259,May 1987.

21. J .Gray." The Transaction Concept: Virtues and Limitations " In Proceed

ings of the International Conference on Very Large Databases, Cannes,

80

France,pp 144-154,Sep 1981.

22. V.Gligor and G.L.Luckenbaugh." Interconnecting Heterogeneous Database

Management Systems" IEEE Computer, Vol.l7,No.l,pp 213-266,Jan 1984.

23. V. Gligor and R. Popescu-Zeletin." Transaction Management in Distrib

uted Heterogeneous Database Management Systems " Information Systems,

Vol.ll,No.4,pp 287-297,1986.

24. H.K.Korth, E. Levy and A.Silberschatz." A formal Approach to Recovery

by Compensating Transactions " In Proceedings of VLDB Conference,pp

95-106,1990.

25. Yahiko Kambayashi." Integration of Different Concurrency Control Mech

anisms in Heterogeneous Distributed Databases " In Proceedings of Sec

ond International Symposium on Interoperable Information Systems,pp 313-

320,1988.

26. E. Moss." Nested Transactions, an Approach to Reliable Distributed Com

puting" The MIT Press,pp 59-87,1985.

27. C.Pu. " Superdatabases for Composition of Heterogeneous Databases " In

Proceeding of the International Conference On Data Engineering,pp 548-

555,Feb 1988.

28. K.Salem, H.Garcia-Molina, and R.Alonso. " Altruistic Locking: A Strategy

for Coping with Long-live Transaction " Technical Report CS-TR-087-87,pp

81

101-135,April 1987.

29. Kazuo Sugihara. "Concurrency Control Based on Distributed Cycle Detec

tion " In Proceedings of IEEE 3rd International Conference in Data Engi

neering,pp 267-274,1987.

30. John Shillington and M.Tamer OZsu." Semipermeable Transactions and

Semantics-Based Concurrency Control for Multidatabases " 0-8186-3710-

2/93 IEEE,pp 213-267,1993.

31. J . Tang." Using Dummy Reads to Maintain Consistency in Heterogeneous

Database Systems", In Proceedings of 3rd International Workshop on Future

Trends of Distributed Computing Systems,pp 312-317,April1992.

32. Antoni Wolski and Jari Veijalainen." The 2PC Agent Method and its Cor

rectness" Tiedotteita Meddelanden Research Notes,pp 23-78,1992.

33. Antoni Wolski and Jari Veijalainen." 2PC Agent Method: Achieving Se

rializability in Presence of Failures in a Heterogenous Multidatabase " In

Proceedings of PARBASE-90 Conference, pp 49-78,Feb 1990.

34. A. Zhang and J. Jing." On Structural Features of Global Transactions in

Multidatabase Systems " In Proceedings of 3rd Workshop on RIDE,pp 199-

206,1993.

35. Murhy Devarakonda, Bill Kish and Ajay Mohindra. " Recovery in theCa

lypso File System " ACM Transactions on Computer Systems, Vol.14,No.3,

82

pp 287-310,August 1996.

36. Flaviu Cristian, Bob Dancey, Jon Dehn. " Fault-Tolerance in Air Traffic

Control Systems " ACM Transactions on Computer Systems, Vol.14,No.3,

pp 265-287,August 1996.

37. Rohit Chandra, Ding-Kai Chen, Robert Cox, Dror E.Maydan, Nenad Nedeljkovic

" Data Distribution Support on Distributed Shared Memory Multiproces

sors" ACM SIGPLAN Vol.32,No.5,pp 334-346,May 1997.

83

