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Abstract 

Out-planted black spruce seedlings were harvested from unburned as well as low and 
high intensity prescribed burned sites to assess the effects ofburning and fire intensity 
upon ectomycorrhizal (ECM) fungal diversity. The polymerase chain reaction (PCR). in 
conjunction with universal and fungal specific primers, was used to amplify a fragment 
spanning the two internal transcribed spacers (ITS 1 and ITS2) of the nuclear ribosomal 
DNA belonging to ECM fungi. Sampling allowed for the harvesting of both mycorrhizal 
and non-mycorrhizal (NM) root tips. Despite the fact that some tips were classified as 
being NM. a PCR fragment was amplified from them. Staining ofNM root tips showed 
there to be numerous types of endophytic hyphae surrounding and penetrating the root 
cortical cells. Restriction fragment length polymorphisms (RFLP) were used to classify 
specific fungal genotypes. Molecular data indicated that root tips harboring EC:Vl fungi 
with distinct mantles (mantled tips), produced distinct RFLP genotypes compared to 
those root tips presumed to be non-mycorrhizal, or supporting mycorrhizas with 
thin/patchy mantles (exposed tips). Both NM tips, along with tips supporting 
thin/patchy-mantled fungi, displayed a wide variety ofRFLP genotypes. 

Both the Shannon-Wiener and the Simpson indices were used to assess diversity based 
upon the RFLP patterns. It was found that neither fire. nor its intensity, caused a 
significant change in the ECM fungal diversity and/or community structure. Mantled tips 
showed distinct RFLP clades. which corresponded to crude morphotype groups. Some of 
these clades showed several intraspecific polymorphisms representing a particular 
genotype. It appears that the Glide Lake study site has a very high degree of ECM. as 
well as endophytic. fungal diversity. The level of diversity within the endophytic 
genotypes was comparable to that of ECM genotypes. The study also indicates that 
traditional diversity indices (Shannon-Wiener and Simpson) are not \veil-suited for 
molecular data. Thus an index based upon phylogenetic distances. the 'Phi mdex'. \vas 
constructed. The greater the degree of variability among the distances then the greater 
the diversity. 

It would appear that foresters need not be overly concerned with prescribed burning. nor 
the intensity of these bums, affecting the ectomycorrhizal diversity of outplanted black 
spruce. However, this does not mean that other ECM fungi, which do not associate with 
black spruce, are not affected. Further studies are needed in order to investigate the 
effects of fire upon other hosts and their associated mycorrhizal fungi. As well, more 
rigorous testing is needed before the Phi index can be declared a better measure of 
diversity when using RFLP data. 
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1.1: Generalltrtroduction 

Around the 19th century. foresters began to make use of prescribed burning as a means 

of clearing land that was scheduled for reforestation. This land may have harbored 

forests that were too old for harvest. or contained slash left behind from previous harvest 

(Neal er al .. 1965). At this time little was known about the effects of tire upon the soil. 

and the flora and fauna that rely upon the soil for existence. This prompted scienti tic 

investigation into the physical and chemical effects that prescribed burning has upon the 

biota and whether these effects were beneficial or detrimental. 

1.2: Fire: Physical and chemical ejfects upon the soil 

Natural fires. or wildfires. occur mainly during the drier summer months and are a 

most often a result oflightning strikes (Viro. 1974). The unpredictability of a wildfire 

makes it impossible to have control over the area in which they occur. the amount of 

destruction that ensues. or the intensity at which they bum. Fire does have beneficial 

effects on forests. [tallows for the removal of old growth forests that have entered a state 

of decay or disease. This cleared land provides a new niche for flora and fauna that could 

not exist within the confined. light deprived to rest floor typical of most old growth 

forests. As well the fire releases minerals and nutrients back into the soil which had 

previously been unavailable because they were tied up in cellular materials of living and 

decaying plants. 

ln the 19th century toresters began to implement fire use into their silvicultural 

procedures. Prescribed burning of clear-cuts allowed for the reduction of fire hazards. 
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opened new seedbeds. allowed easy access to the area for man and machinery. as well as 

created food sources for wildlife. However, even though prescribed burning has been 

used for the past century there has been little research to investigate the effects that it has 

upon the physical and chemical properties of soils. The research literature contains 

contradicting results. which is understandable since such things as fire intensity. 

temperature. tuel type and amount. and soil moisture content can all affect the outcomes 

of burning depending upon the ecosystem under investigation (Wells eta/ .. 1979). 

Wildfires can be classitied into three main categories~ ground fire. surface tire and 

crown fire. Ground fires (or subsurface fires) bum duff. roots. \Vood and peat below the 

litter layer of the forest floor (Hartford and Frandsen, 1992 ). Surface fires are those in 

which the materials above the duff layer act as the fuel source (Merrill and Alexander. 

1987). Crown tires occur on standing and supported forest materials above the ground 

(Merrill and Alexander. 1987). Prescribed bums are usually surface tires. and tend to be 

more restricted than wildfires with respect to certain parameters. For instance. wildfires 

usually have an erratic burning path that is controlled by the prevailing winds and the fuel 

type and load. It is not even uncommon to see unburned sections \Vi thin the con tines of a 

wildfire. Prescribed bums are more regulated, as foresters can model fire path and 

intensity with the input of information on fuel type. load and moisture level. as well as 

meteorological information. In essence, wildfires can be viewed as a patchwork of 

smaller fires. each with varying characteristics. Prescribed burns tend to be uniform in 

nature with no 'patch-like' pattern observed. 
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Fire changes physical properties not only of the above ground vegetation but 

indirectly these changes can cause below ground alterations. depending on the severity of 

the fire. A majority of Newfoundland's forests are conifer dominated or contain mixed 

deciduous/coniferous tree species. Within Canada's boreal forest. older forests tend to be 

white or black spruce dominated (Kelsall era!.. 1977). Due to the cooler climate. shorter 

grO\ving season. and the resiliency of coniferous needles. the decay rate of organic matter 

in Canadian coniferous forest soils is slow ( Viro. 1974). Thus most of these forests have 

a thick humus layer. This humus layer plays an important part in the regulation of soil 

temperature and moisture levels. 

The temperature of the forest soil is the primary determinant of plant growth rates and 

microbial activity (Viro. 1974 ). However. with a thick. wet humus layer it takes longer 

for the soils to heat during the spring. which limits tree growth in northern climates. 

During the fall. the dry humus acts as a good insulator. allowing soils to remain warm 

longer. Therefore soils tend to be cold during spring. when solar and nutrient conditions 

are optimum for vegetation development (Viro. 1974). When tire destroys the humus 

layer the effects can be either beneticial or detrimental. Low intensity burns result in 

partial destruction of the humus layer. leaving behind a thinner humus layer covered \Vith 

ash and charcoal. The combination of the increased absorption of solar radiation by the 

black ash and the insulation properties of the humus allow for soils to heat sooner in 

spring. This heat increase can cause explosions of microbial and plant activity within a 

short time after the fire (Viro. 1974; Sims. 1975). Prescribed fires that bum at high 

intensities tend to volatilize the organic material covering the soil. Although the initial 
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release of nutrients into the soil will be greater. this is a short-term effect and positive 

impacts tend to be out weighed by the effects of more extreme temperature fluctuations. 

Neal et a!. ( 1965) found that burned soils reach temperatures 11 °C higher than unburned 

soils during hot summer months. During the winter these soils. without the insulating 

effects of humus, become frozen much sooner and to greater depths . The combined 

effect of drying in the summer and early freezing slows decomposition. microbial and 

chemical activity. the effect of\vhich can be worse than having too thick of a humus 

layer. 

Besides regulating the soil temperature. the humus layer plays a major role in 

controlling soil moisture levels. When humus is severely dry it can act as a hydrophobic 

layer that prevents the penetration of rain to soils. unless the rains are heavy. However. 

during dry periods this covering of dry humus prevents the loss of moisture from the soil 

by breaking the capillary connection to the surface (Viro. 1974). As in the above 

situation. a low intensity bum. leaving some of the humus layer. will allow for the 

entrance of more moisture into the soil and upon drying \viii slow the loss through 

evaporation. A high intensity bum would remove this water retaining feature. therefore 

altering the soil conditions and possibly allowing for the introduction of ne\v flora and 

fauna. Feller ( 1982) indicates that the moisture holding capacity of soil usually decreases 

with burning. However, this effect will depend upon such factors as: intensity of the 

bum, amount of organic material present in the soil, and the degree of incorporation in 

the soil. and the moisture content of the soil during the burn. 
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Studies have shown that surface conditions after burning will vary depending on the 

intensity of the fire, thus the degree of erosion will vary as well (Feller. 1982). A 

vegetative cover slows or prevents the degradation and removal of soil and rock. 

However, when this cover is removed it does not take long for weathering to become 

apparent. Ash and charcoal provide little protection against rain and wind thus. 

depending on the climate. the parent material of the soil. soil porosity and depth. slope of 

the land. and the rate of revegetation. erosional effects can be signiticant I Feller. 1982 ). 

Low intensity fires only remove a portion of the vegetation. usually the above ground 

portion and they may create patches ofbumt/unbumt regions. As such. the roots of 

shrubs and trees can remain in the soil for several years before being degraded. These 

roots maintain the porosity of the soil. allowing for aeration and drainage of surface 

\Vater. They are also responsible for preventing the compaction and separation of soils 

( Viro. 1974 ). Roots of some species are regenerative in nature. and will sprout new 

shoots once conditions become favorable in the post-tire environment. This rate of 

revegetation will vary depending on the plant species that previously occupied the site 

and the surrounding vegetation. 

Whether prescribed burning is used to clear a section of decaying forest. or to remove 

the slash left on a clear-cut. studies have made some general observations of the chemical 

changes which result both above and below ground. The amount of change to the organic 

material in the soil depends on the intensity of the fire and its duration. However. in 

general, at least part of the litter and humus covering the forest floor becomes volatilized. 

releasing large amounts ofnitrogen and smaller amounts of other elements. while less-
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volatile compounds are transformed to soluble mineral forms which are more susceptible 

to leaching (Wells eta/., 1979). 

One element released by burning is nitrogen. A well aged forest or a clear-cut. 

containing slash, holds tons of nitrogen in the form of living and dead plant materials. 

The amount of nitrogen present in this organic material will depend on the fertility of that 

particular site (Viro. 1974). During a fire there is a significant reduction in the overall 

mass of the surface vegetation. Grier's ( 1975) study on the Entiat tire in north central 

Washington showed that only about 3°'o of the nitrogen originally in the forest floor 

remained atler burning. Most of this nitrogen is lost to the atmosphere during 

volatilization and some via ash-fly. However. upon combustion of the vegetation there is 

an increase in the amount of usable nitrogen in the form of ammonium within the ash 

(Boyle. 1973;Grier. 1975; Neal eta/ .. 1965; Viro.1974; Vold.l982). 

Atter a tire the amount of ammonium nitrogen available within the ash layer will 

depend on how much nitrogen was lost to volatilization. Thus the more intense a tire. the 

less usable nitrogen there is left behind. This is evident in Boyle's ( 1973) jack pine 

plantation study in which he found no significant increase in available nitrogen atter 

burning off the slash and heavy litter layer. 

Two other important nutrients found in charred humus are calcium (Ca) and 

magnesium (Mg). These usually exist as oxides and carbonates and small amounts as 

phosphates. Due to the solubility of oxides in water, their maintenance in this state is 

dependent upon the first rains (Viro. 1974). Water in the form of rain or melting snow 

dissolves Ca and Mg compounds and carries them from the ash to the soil below. The 
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level of each nutrient in the ash layer is dependent on the vegetation that existed prior to 

the fire. 1 Alhgren ( 1974) found that after burning a spruce dominated forest. the level of 

Cain the charred humus was three times the amount on the control sites and the level of 

Mg was twice that found in the controls. 

Phosphorus (P) and potassium (K) are two essential nutrients which become available 

within the ash layer. Phosphorus usually exists as alkali phosphates and K occurs both as 

an oxide and carbonate. The oxide ofK is very water soluble and is quickly converted to 

the carbonate term (~Alhgren. 197-l). Like Ca and \-1g. the amounts ofK and P found in 

the ash will depend on the amount and types of vegetation. 

The amount of each nutrient present in the ash layer is dependent on the previous 

vegetation cover as well as the fertility of the soil. However. investigations have shown 

(Boyle. 1973; Grier. 1975; ~ Alhgren. 1974) that the amounts of Ca. Mg. K. and P present 

after a tire vary from those amounts existing prior to the tire. This variation can be 

attributed to the vaporization temperatures of each element. K vaporizes at 760'1C. P at 

280"C. whereas Ca and Mg vaporize at l2401.)C and 11071.)C. respectively <Grier. 1975). 

The lower vaporizing temperatures of K and P mean that larger volumes of these 

essential elements will be lost to the atmosphere than that ofCa and Mg. 

The previously mentioned nutrients all exist within the ash layer. but over time 

become dissolved in water and are leached into the mineral soil. Bivalent elements 

displace monovalent elements from the surface of soil particles (e.g. bivalent elements 

like Ca displaces monovalent elements such as Mg). However. if there is an over 

abundance of a monovalent element such as K. then it can displace a bivalent element to 
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some degree (Grier. 1975;:: Alhgren. 1974). The movement of cations through the 

ash/soil column is important since the cationic and anionic charges will become balanced 

within the soil. The movement of elements through the soil column will vary depending 

on such factors as: the amount of precipitation that area receives. slope. ash layer 

thickness. soil composition (whether sandy. rocky. clay based. etc.), amount of external 

cation input from surrounding areas. 

1.3: Fire a11d Micro-organisms 

Boreal forests are characterized by podzolic soil conditions. Cooler summer 

temperatures and a short growing season are characteristic of temperate boreal forests. lt 

is these conditions that slow the microbial breakdown of vegetative matter thus producing 

a thick humus layer overlying the parent soil. The build up of plant tissue and the slow 

release of humic and flu vic compounds during decomposition. gives podzolic soils their 

characteristically high acidity ( Pietikainen and Fritze. 1993 ). As previously mentioned. 

the burning ofboreal soils results in the reduction of the humus layer thus leading to a 

number of physical and chemical changes to these soils. Fire also directly and indirectly 

affects the microfauna existing \vithin these soils. 

The effects of wild and prescribed fires upon ecosystems are complex and intricate. 

thus providing researchers with a multitude of questions. However. over the past several 

decades researchers such as Ahlgren (l97 4 ). Wells et a/. ( 1979 ). Klopatek et a/. ( 1988) 

have attempted to determine the effects that fire disturbances have on soil residents. in 

particular bacteria and fungi. 
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Klopatek et ai. (unpublished and 1988) have shown that vesicular-arbuscular 

mycorrhizae (V AM) colonization and propagule survival are negatively affected by an 

increase in soil disturbance. The 1988 study showed that YAM fungal propagules \vere 

moderately affected when soil temperatures were less than 50°C. However. once 

temperatures rose above 60'>C there was a noticeable negative effect upon spore survival. 

Within this experiment Klopatek eta/. ( 1988) noticed that the moisture content of the soil 

helped prevent soil temperatures from reaching levels that would be seen in dry soils. 

Soils supporting V AM propagules are more likely to be recolonized by V AM dependent 

plants if the soi I had a high moisture content prior to burning as compared to the same 

soil burned dry. A tallow up study done by Klopatek et ai. (unpublished) confirmed the 

previous results. as well as indicated that the fuel load prior to a burn can drastically 

affect future V AM colonization. The researchers found that soils with a good canopy 

cover had a higher litter cover than interspace zones (areas between adjacent trees. i.e. no 

canopy cover), which in turn provided more fuel for burning. Higher fuel loads allO\ved 

fires to burn longer and at much higher temperatures than fires over interspaces. Since 

VA~ spores and propagulcs are temperature sensitive. it was not surprising that the total 

number ofpropagules decreased significantly under canopies as compared to that of 

interspaces. This study also showed how fire can drastically alter the species distribution 

ofV AM fungi. Prior to burning VA mycorrhizal fungal diversity was greater under 

pinyon and juniper canopies. however after burning both the canopy and it~terspace zones 

had a more homogenous species distribution. Zak and Wicklow ( 1979) also looked at the 

heat sensitivity of fungi, in particular carbonicolous ascomycetes. [n their study they 



11 

were concerned with the effects that temperature, as well as ash and subsurface soils. had 

upon the structure of post-tire ascomycete communities. They noticed that soils heated to 

either 55\}C or 70°C contained high occurrences of carbonico to us ascomycetes. They 

attributed this to two factors: 1) high temperatures stimulated the germination of 

ascospores, and 2) high temperatures reduced the levels of other soil microbes. which 

prior to the fire were possibly releasing fungistatic compounds which were inhibiting 

growth and fruiting of carbonicolous fungi. They also noticed that the addition of an ash 

layer to steam-sterilized soil altered the community structure from the steam treatment 

alone. This suggests that although carbonicolous fungi can thri\'e in post-tire habitats. 

the amount of ash left behind can alter the pH of the subsurface soil. thus ensuring the 

growth of only those fungi that can tolerate higher alkalinity levels. As well. toxic 

elements. or allelopatic compounds can bind with the carbon in the ash thus providing a 

less favorable environment for certain species of fungi. As mentioned earlier. a tire's 

intensity and duration is directly dependent upon the amount of fuel existing on that site. 

Thus a lower fuel load may mean that only the first few centimeters of topsoil \viii 

become sterilized. Soil layers below this sterile soil still contain microbial populations 

that could provide inoculum for surface colonization. Zak and Wicklow ( 1979) noticed 

that when they added untreated soil to the steamed soil there \vas a significant decrease in 

the number of ascocarps developing as compared to the steamed soil alone. This would 

support the idea that either the untreated soil contained some type of fungistatic property 

or that the microbial population out competed the carbonicolous fungi for available 

resources within the steamed soil. 



12 

From the previous studies it appears that the temperature and duration of a fire on a 

site has the greatest intluence on future microtloral community structure. The more 

intense the fire then the more cellular destruction to vegetation and microbial life. This in 

effect will sterilize the upper portion of the soil and mineralize any accumulated organic 

matter (Gochenaur, 1981 ). 

The sterilization of soils after burning is a short-lived event that is usually followed 

by a bloom of bacterial and fungal growth. An intense burn will result in combustion of 

all surface materials thus enriching the surface with a variety of oxides. hydroxides and 

salts (Petersen. 1970: Gochenaur. 1981: Neal et at .. 1965). Rebuilding ofbacterial and 

fungal communities after such an intense bum will vary with time. ln some cases 

populations may remain well below pre-fire conditions anywhere from a few months 

(Neal eta/.. 1965) up to several years (Bissett and Parkinson. 1980). Usually the addition 

of moisture from rains allows for an increase in the rate ofmicrotloral recolonization. 

Less intense tires leave behind a matrix of charred material and soils penetrated \vith 

roots of previous plants. The blackened surface absorbs incoming solar radiation much 

more easily than the white ash commonly found after very intense fires. thus altering soil 

temperatures from that of pre-fire conditions. ln both cases. the result is a change in the 

structure of the microbial and fungal communities. Many fungi are unable to survive 

once soil temperatures rise above 50°C (Bissett and Parkinson. 1980). The overall effect 

is a reduction in the species diversity, but the severity of this species reduction will 

depend on the intensity of the fire (Pietikainen and Fritze, 1993 ; Gochenaur. 1981 ). 
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1.4: Mycorrhizal fu11gj 

Estimates have been made that at least over 90 percent of the world's higher plants 

have some type of mycorrhizal association including arbuscular (YAM), ecto-(ECM). or 

ericoid (EM) (Kendrick, 1985 ). There have been numerous studies to determine the 

nature of this complex association. A consensus opinion is that this association is 

mutualistic. a beneficial partnership in which the fungus and the plant each obtain 

nutrients from the other. 

Mycorrhizae occur in many different habitats. but for this revie\v l will mostly limit 

the discussion to temperate forest types. Forest soils. especially coniferous types. are 

relatively acidic. thus providing an environment in which nitrification processes are slow 

and the main form of ionic nitrogen exists as ammonium (France and Reid. 1983 ). 

Within the soil, ammonium and nitrate are absorbed by the plant roots via metabolically 

active carrier systems. The rates at which these nitrogen-based molecules are taken up 

depends on their concentrations within the soil, plant demand. and the soil moisture 

levels. Preference for one or the other. by the plant, is not only environmentally 

dependent but also plant dependent. Since nitrate reduction is energy consuming. then 

the plant's energy status. and the induction of nitrate reductase wi II limit its use of soil 

nitrates (France and Reid, 1983 ). The nitrogen obtained from the absorbed nitrates. 

ammonium, and organic N are essential for plant growth and productivity. 

Once mycorrhizal fungi infect a host root system there is generally an increase in the 

plant's growth (Marschner and Dell, 1994). These fungi act as root extensions that move 

beyond the nutrient depletion zones that generally surround most plant root systems. The 
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plant on its own usually obtains its nitrogen from inorganic sources but this will depend 

on many of the environmental conditions within that area. Depending on the fungus 

inhabiting the plant, the nitrogen source can vary. V AM fungi rely on inorganic nitrogen 

sources such as NH~-N or N03-N, similar to that of plant mots. ECM and EM fungi can 

use inorganic N as well as make use of organic N (Chalot and Brun. 1998). These fungi 

are able to release acid proteinases which can release N that normally would be 

inaccessible to non-mycorrhizal plants. thus giving an edge to those plants growing in 

areas low in inorganic Nand high in organic N <Marschner and Dell. 1994). 

Phosphorus is another nutrient that can become limiting within ecosystems. 

Phosphorous limitations tend not to be as serious as nitrogen limitations. although most 

plants have a P depletion zone around their root systems. Again the association of 

hyphae with the roots allows for the exploitation of unattainable P sources. li eta/. 

( t 991) found that V AM hyphae could draw upon P resources that extended over I 0 em 

beyond the root surface of white clover. ECM and EM fungal hyphae also extend into 

the soil, which may make more P sources available to them. However. few studies have 

been conducted on P transport and P acquisition by ECM and EM fungi . One of the ways 

in which these fungi gain access to P that normally would be unavailable to the plant is 

with the release of acid phosphatases. which free P from organic compounds within the 

soil (Ho, t 989). Some studies have shown that V AM fungi also release acid 

phosphatases but more work is necessary before definitive conclusions can be drawn 

(Marschner and Dell, 1994 ). 
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Aside from providing the host plant access to new macro- and micro- nutrient 

resources. the fungal symbiont can also provide physical and chemical protection. Th~ 

thick mantle created by many ECM fungi may reduce the grazing on roots by many soil 

nematodes. As well many mycorrhizal fungi release chemical compounds which can 

inhibit bacteria as well as parasitic fungi (St. John and Coleman. 1983 ). A study by 

Garcia-Garrido and Ocampo ( 1989) showed how mycorrhizal tomato plants were better 

protected against the bacterium Pseudomonas syringae, than non-mycorrhizal plants. 

Not all mycorrhizal fungi reduce the incidence of infection by parasites upon their host 

plant but they can increase the plant's tolerance to these external or internal attacks. so 

one must not assume that all mycorrhizal associations will increase protection tor the host 

plant (Fitter and Garbaye. 1994 ). Such things as climate, soil conditions. and tloral and 

fauna populations associated with the plant/fungal symbionts will all affect the 

plant/fungus relationship. More studies need to be performed before tirm conclusions 

can be made. 

The extension of plant roots systems by mycorrhizal fungi not only allows for the 

uptake of soil nutrients but soil water as well (St. John and Coleman. 1983 ~ Boyle and 

Hellenbrand. 1991 ). The existence of mycorrhizal fungi on roots of plants inhabiting 

xerophytic environments indicates the importance of such associations. Stutz and Y1orton 

( 1996) showed that the species richness of V AM fungi in arid systems was equivalent to 

that of most other plant communities. These fungi permit the plants to exist in soils that 

experience extreme physical and chemical stress due the low availability of water. Boyle 

and Hellenbrand ( 1991) were interested in finding a mycorrhizal fungus that would be 
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appropriate for inoculating conifer seedlings that were to be planted in drought-stressed 

areas. Their study showed that different mycorrhizal fungi vary \Vith respect to their 

response to imposed water stresses. It \vas found that fungi that formed rhizomorphs. 

which can penetrate into soil horizons containing water, provided host plants with more 

abundant water supplies than fungi that do not form rhizomorphs or rhizomorphs \Vhich 

only extend into the upper reaches of the soil. This study was done under controlled 

laboratory conditions and thus may not apply in the field. 

So far I have only discussed the oenefits which the fungus provides for the host plant. 

In order for this to be considered a mutualistic relationship there must be an exchange 

between both partners. On its own. the fungus may exists as a saprotrophic organism 

extracting necessary carbohydrates from dead or dying organic matter or it may remain as 

a dormant spore in the soil column. However. once the mycorrhizal fungus encounters a 

host plant and associates with the root system. it begins to dra\v upon the plant's store of 

photosynthates. There are many difficulties associated with looking at plant!fungal 

carbon exchanges in the field. thus laboratory studies have been used as simplitied 

models. Most studies looked at what compounds the fungus could breakdown. These 

ranged from monosaccharides. disaccharides. and trisaccharides to more complex 

polymeric carbohydrates and organic acid structures (France and Reid. 1983 ). The exact 

process of carbon exchange from plant to fungus is still being investigated and is believed 

to vary from one mycorrhizal type to another. YAM fungi have structures. arbuscules. 

which exist within the host's root cells. Here fungal and plant membranes come in 

contact and enzymes such as succinate dehydrogenase are concentrated. which may aid in 
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carbon transfer (Allen, 1996). ECM fungi lack the delicately structured arbuscules of 

V AJv1 fungi but the hartig net common to this group provides broad contact between the 

hyphae and cortical root cells. The fungus commonly hydrolyzes sucrose into glucose 

and fructose and after uptake these sugars become converted to trehalose. glycogen. and 

mannitol. respectively (France and Reid. 1983; Kendrick, 1985 ). These new 

carbohydrates are unusable by the plant. thus a gradient trom host to fungus is created. 

making the fungus a metabolic sink (France and Reid. 1983 ). 

It would appear that the union of mycorrhizal fungi with plants can only bring 

prosperity to both partners. however this is not always the case. Studies have shown that 

as the concentration ofP around VAM colonized plants increases. the grmvth 

enhancement effects conferred by the fungus decreases. Thus there may be a halt or c:ven 

a decrease in the productivity of that plant (Marschner and Dell. 1994 ). The mutualistic 

relationship has now switched to that of a parasitic one with the fungus being the sole 

benefactor. It has also been shown that mycorrhizal fungi can be used to combat certain 

diseases whether they are viral. fungal. or animal related. However. a study by Toth er 

a/. ( 1990) indicated that there may be a positive correlation between disease 

susceptibility and mycorrhizal susceptibility. This clearly shO\vs that more tield based 

experiments are required ifwe wish to better understand the complex relationship 

between plant and fungus. 

I. 5: Biodiversit)' and mycorrh izalfungj 

Biodiversity is defined as the measure of the extent of all biological variation on 

Earth ( Hawksworth, 1991 ). lt has been estimated that there are over 5000 ecto/ectendo-
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mycorrhizal fungal species (Allen et al., 1995; Molina and Trappe, 1982). Much of this 

diversity of ECM species is in the higher latitudes or at higher elevations where the 

diversity ofp1ant species is much lower than that of tropical latitudes (Allen ec al.. 1995). 

Some of these temperate and boreal coniferous tree species , such as Douglas tir 

(Pseudotsuga menziesii (Mirbel) Franco), have been estimated to associate with over 

2UUU ECM fungi (Trappe, 1977). It has been argued that with such a high number or 

fungal associations there must be some degree of functional redundancy (Hawks\vorth. 

1991 ). 

Some have argued that within a given ecosystem there are numerous species that 

perform the same function. suggesting that species diversity is not related to functional 

diversity ( Leps eta/.. 1982~ MacGillivary et al .. 1995 ). Therefore. the removal of somc 

of these redundant species would not affect the overall productivity of that ecosystem. :\ 

recent paper by Tilman eta!. ( 1997) has shown that the functional component of di\·ersity 

is much more important to ecosystem processes than the species component. They argue 

that the number of functional groups in an ecosystem is more important than the total 

number of species. However. Tilman and his colleagues do realize that functional 

diversity is dependent to a certain extent upon species diversity. Their tindings support 

conclusions drawn by Hawksworth ( 1991) and Bond ( 1994 ). that there are certain 

'keystone species' within all ecosystems. Keystone species are species that once removed 

would lead to major. ana in some cases drastic. changes to that particular ecosystem 

(Hawksworth, 1991; Bond, 1994; Ehrlich, 1994). Thus, many agree that removal of 
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redundant species from any given ecosystem may have no significant effect upon the 

overall 'productivity' of each functional group. 

The debate over the significance of species eradication from an ecosystem is an age 

old one. Since the existence of each species within an ecosystem intluences the existence 

of many other species in that community, it is impossible to predict all of the 

consequences when a species is removed. Thus, the debate over the importance of 

maintaining biodiversity within an ecosystem continues! 

1.6: Morplzological vs Molecular 

1. 6.1: Molecular Characteriration 

Mycologists have relied upon macroscopic and microscopic observation as a means 

of identifying mycorrhizal fungi . This involves noting such things as color. presence of 

emanating hyphae. presence of rhizomorphs. and characterizing cystidia. Agerer ( 1987) 

put together an impressive list of characters one should note during mycorrhizal 

identifications. Even with a few samples this process can take an experienced mycologist 

an extensive amount of time. When one is faced with surveying a large population of 

mycorrhizas, morphological classification is not feasible (Egger. 1995; Henrion et af. 

1994: Lutzoni and Vilgalys. 1995; Mehmann eta/. 1995; Nylund et a/.1995: Sanders et 

a/. 1995 ). 

Due to sample numbers, the assessment of mycorrhizal diversity within and betw·een 

communities requires the use of techniques that are efficient, reproducible, and relatively 

inexpensive. The advent of the Polymerase Chain Reaction (PCR) method has made this 
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possible (Mullis and Faloon~ 1987). During the early stages of molecular biology. 

chemical and equipment expenses were high. however today companies are offering 

lower prices for higher quality materials. thus molecular analysis is rapidly becoming an 

important method for assessing biodiversity ( Gardes ec a/. 1991: ~Gardes and Bruns. 

1996). 

1.6.2: Wlzv Ribosomal DNA? 

Mycological investigations that rely on molecular techniques to clarify fungal 

classitication must have an appropriate molecular marker. This marker must be 

universally conserved amonest the various organisms but at the same time show 

maximum differentiation between species and minimum differentiation within species 

(Egger. 1995). As a result the nuclear ribosomal RNA gene region (rONA) was adopted 

as a molecular marker for my fungal studies. Specifically. an 1100 bp fragment within 

the rRNA region was amplified using the universal primer ITS 1. and the fungal specitic 

primer NL6Bmun. 

The nuclear rONA is composed of three gene coding regions: the 18S subunit. also 

called the small subunit (SSU); the 5.8S subunit, and the 28S subunit. also called the 

large subunit (LSU) (Figure l ). Located on either side of the 5.8S subunit are two 

noncoding but transcribed spacer DNA segments called Internal transcribed spacers 

! ITS). They have been designated as ITS 1 and ITS2. ITS l lies between the SSC and the 

5.8S subunit; ITS2 lies bern:een the 5.8S subunit and the LSU. Between each coding 

region is a largely non-transcribed region referred to as the Iotergenic spacer ( IGS) 

(Singer and Berg, 1991 ). 
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The nuclear rONA usually occurs as long clusters of tandem repeats (Figure l ). The 

relatively high copy number of the rONA provides an adequate amount of template 

during the PCR process. Another advantage of using rONA is that there is a high degree 

of variability within each repeat. The coding regions are the most highly conserved. 

followed by the moderately conser\'ed ITS regions. and the IGS region. which has the 

highest degree of variability. These different degrees ofvariability have been utilized by 

a variety of researchers in order to determine the degree of variation within a species 

(Hausner era/.. 1993: Hintz era/ .. 1988). or between species (Egger and Fortin. 1989: 

Egger and Sigler. 1993) and has become the standard for PCR-RFLP studies of 

mycorrhizae (Gardes eta/ .. 1991: Erland. 1995:: Karen and Nylund. 1996: 1 Karen era!.. 

1997: ~Karen and Nylund. 1997). 



Figure I: (a) rONA structure and primer sites utilized in this study. (b) an example of 
rONA organized as tandem repeats [IGS (intergenic spacer), ETS (external 
transcribed spacer), ITS I and ITS2 (internal transcribed spacers), SSU (small 
subunit), and LSU (large subunit)]. 
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1. 7: What is a species? 

The first question that must be asked is whether PCR-RFLP genotypes correspond to 

a taxonomic level. such as genus or species. or encompasses intraspecific variation. Most 

PCR-RFLP studies ofthe ITS region assume that PCR-RFLP genotypes correspond 

roughly to species ( 1 Gardes and Bruns. 1996 ). ~Karen era/. ( 1997) indicate that 

sometimes a single RFLP-type may represent more than one species due to the IO\v 

interspeci fie variation of the ITS of closely related species. This could lead to an 

underestimation of overall species diversity . lt is also known that certain fungal species 

exhibit intraspecific variation within the ITS region. albeit occurring at a relatively low 

frequency (Gardes et al .. 1991 ~ 2KAren ec a/..1997; Lee and Taylor. 1992). This would 

tend to lead to an overestimate of species diversity. In order to assess the degree of 

interspecitic versus intraspecific variation. a more intensive analysis using such 

techniques as DNA stquencing would be required. However. due to the high number of 

isolates and the lack of an effective morphological characterization of the morphotypes. it 

would require extensive research to infer which isolates were intraspecific variants and 

which were species or groups of closely-related species. Since my study was concerned 

with using PCR-RFLP as a method of assessing ectomycorrhizal diversity. for calculating 

the Shannon-Wiener and the Simpson diversity indices I made the assumption that each 

unique RFLP pattern represented individual species. If considerable intraspecific 

variation was present in my samples. then following this assumption could lead to an 

overestimation of the true number of mycorrhizal fungal species present in the study site. 

However. this would be balanced somewhat by closely-related species that share the 



25 

same RFLP pattern. 'Nnen estimating the Phi Index (see later discussion), it is not 

necessary to make the assumption that each RFLP genotype is a different species. 

1.8: Root endaphytes: More than mycorrhizas! 

.-\s previous sections will support. the rhizosphere is rich in organisms such as 

arthropods. annelids and bacteria. There are also saprophytic and pathogenic fungi 

residing near or on plant roots. This is not the only realm of activity. as tissues within the 

plant may also harbor organisms. Within the root. fungi and bacteria can inhabit the 

intercellular spaces. or they can occur within cells. 

Ylany researchers have devised terminology to describe organisms that live within 

plant tissues. The most common is "endophyte". Petrini ( 1991) and Chanway ( 1996 l use 

the term to encompass all organisms that grow inside plant tissues \Vithout causing 

disease symptoms. Others vie\v them as 'latent pathogens· ( \Vilcox. 1983: Egger anJ 

Paden. 1986 ). or consider them 'pseudomycorrhizas' (Melin. 1923) As the terminology 

suggests, it is not clear if they are pathogens. mutualists. or saprotrophs. Regardless. the 

one characteristic that these fungi share is that they spend most. ifnot all. of their life 

within plant tissues. 

These fungi include species of ascomycetes, deuteromycetes. a few basidiomycetes 

and a few oomycetes (Isaac, 1992). They are found in most, if not all plants ([saac. 1992: 

Carroll. 1995). They can be found in most conifers. several Quercus species. other 

members of Fagaceae. Coprinus. Euca~lpllts. and many woody species (Petrini ec a/ .. 

1992). Host plants can carry multiple endophyte species (Carroll. 1992), although they 
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tend to occupy limited domains within plant tissues (often in lumens and single cells) 

(Carroll, 1986; Carroll, 1995). It has also been found that these endophytes often differ 

in frequency among organs or even parts of organs within host plants (Rodrigues. 1994; 

Carroll. 1995). 

Surprisingly. even though these endophytic fungi are prevalent. little is known about 

them. perhaps because many of them do not cause severe morphologtcal dtstorttons. or 

diseases or their 'mutualistic' behaviour is not as obvious as that of mycorrhizal fungi. 

Regardless of the reasons for our lack of knowledge, these fungi must be considered 

when we are investigating rhizosphere activities. 

Melin's 1923 study showed pine and spruce trees growing on drained peat bogs \Vere 

deficient in mycorrhizae. or that they were unable to proliferate. However. hyphae of 

non-mycorrhizal fungi did exist intracellularly within the host's lateral roots. ~lelin 

proposed that these 'pseudomycorrhizas' occurred in 'mother' roots and older portions of 

mycorrhizae but \Vere excluded from short roots by true mycorrhizas. If the short root 

was uncolonized or the mycorrhizal fungus became inactive. there was an opportunity for 

the pseudomycorrhizal fungi to move intracellularly. He also isolated a dark brown 

pseudomycorrhiza that he assigned to the genus A{vcelium radicis arrovirens ( M.r.a. ). A 

study by Richard and Fortin ( 1974) showed that this endophyte could exist. as different 

strains, within roots of Picea mariana (Mill) B.S.P., but as a pathogen. 
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1.9: Objectives ofthis study 

l . To measure mycorrhizal composition on clear-cut (unburned) and prescribe burned 
(low and high intensity burned) plots 

2. To determine whether fire or fire intensity causes changes in mycorrhizal diversity 
and/or community structure. 

The null hypothesis was that fire would not alter mycorrhizal diversity or 
community structure. 

3. To develop an appropriate diversity measure for molecular ( PCR-RFLP) data. and 
compare this measure against other diversity measures on the molecular data 
collected in the tield study. 



28 

Chapter 2: 

Methods and Materials 
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2.1: Study site and Specimen Collection 

Twelve ( 12) treatments were situated on a southwest facing slope located a few 

hundred meters from Glide Lake (57°l8"N and 49u8"E) . Glide Lake is located 20-25 

kilometers northeast of the town of Pasadena. Newfoundland. The site is situated within 

a clear-cut on the edge of a mixed coniferous forest. the dominant trees being balsam tir 

[Abies halsameu (l.) Mill.] and black spruce [Picea marianu (Mill.) B.S .P.]. 

The Glide Lake site was clear-cut during the winter of 1990 and summer of 1991. A 

randomized complete block design. consisting of 4 blocks with 3 randomly allocated 

bum treatments (control. low intensity. high intensity). was applied to the site in the fall 

of 1992 (Figure 2 ). In 1993 bum treatments were initiated tor the 12 plots. Two weeks 

after burning the plots were planted with 25 week old containcr-grO\vn black spruce. 

Each plot (30 m x 50 m) received 364 seedlings at 2m spacing. Another 217 seedlings 

were planted at 1 m spacing between the 2 m rO\vs . These seedlings served tor 

destructive sampling (Wells. 1994). 

This project has been broken down into two studies. The first study was initiated in 

the fall of 1993 and will be referred to as "Regen 1" (refer to Appendix I for details). 

The second started in the fall of 1995 and will be referred to as .. Planted 2". Each study 

will be referred to as such from this point on. 



Figure 2: Experimental design of Glide Lake research site 
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Block I Plot 1 Plot 2 Plot 3 
Low Burn High Burn Control 

Block 2 Plot 4 Plot 5 Plot 6 
High Burn Low Bum Control 

Block 3 

Plot 7 Plot 8 Plot 9 
Low Bum High Bum Control 

Block ..J Plot 10 Plot 11 Plot 12 
Control Low Burn High Burn 

30m 30m 30m 



2. 2: Sampling and Collection 

1.2.1: Pla111ed 2 
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During the middle of August, 1995, a total of 120 black spruce seedlings were 

collected from the twelve experimental plots. Ten seedlings were randomly selected 

from the 217 destructible samples. Each seedling had approximately two and a halfyears 

of growth. A 60 em diameter rootball was excavated for each seedling. Excess soil \Vas 

shaken from the rootball in order to reduce the carrying load. Extreme care was taken to 

ensure that roots weren't lost or damaged during the transport back to the laboratory. 

2.3: Mvcorrhiza/ Recovery and Processing 

1.3.1: Plallted 2 

The rootball of each seedling was soaked tor approximately half an hour and then 

gently washed to ensure minimal destruction of the finer roots. In many cases the root 

plug .characteristic of containerize greenhouse seedlings, was still intact which provided 

a reference point from which specific roots could be selected. It is not uncommon tor 

greenhouse grown seedlings to contain certain mycorrhizal fungi. One of the more 

common forest nursery fungi is Telephora terrestris Ehrh.:Fr .. lt nourishes in the high 

moisture and nutrient rich greenhouse environment (Browning and Whitney, 1993 ). 

Since the objective of this project was to investigate the mycorrhizal biodiversity of the 

treatments. steps were taken to avoid collecting these greenhouse fungi; only roots that 

extended 5 em or more from the root plug were selected. lt has been shown that 

greenhouse mycorrhizas cannot compete with wild mycorrhizal fungi (Dahlberg and 
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Stenstrom. 1991 ), thus the further from the plug then the less chance there would be of 

collecting these introduced mycorrhizas. 

Roots were collected from each tree seedling. A root in this case refers to larger 

primary roots (holding secondary and tertiary roots) that were quite noticeably extending 

out from the root plug. The number of roots collected ranged from 2-24 per seedling. 

The roots for each tree were numbered and then a 50% sample was randomly selected 

(unpublished data suggested that a 50% sampling of a population provides a good 

estimate of diversity). These selected roots \vere then cut into 2 em sections from which 

ten (I 0) sections were randomly selected. After selection the roots were blotted dry and 

stored at -200C. Another ten { 1 0) sections were collected and lyophilized as a backup 

precaution. 

During collection roots were examined microscopically in order to gain morphological 

data on the types of mycorrhizal fungi being collected. Such things as color. mantle type 

(if any). hypha! density and structure and overall root appearance allowed tor the 

descrip::on of several morphotypes \vhich \viii be referred to in more detail later. 

In early august of 1996 another thirty-six (36) black spruce (3 per plot) seedlings were 

collected from the treatment plots. These roots were analyzed more thoroughly for 

mycorrhizal morpho types (Tables l a and l b). 

Percentage abundance data had been obtained from a previous study, within this site. 

carried out during the summer of 1993. Collection of root tips is described by Baldwin 

( 1994). Ten, 2 em root segments/seedling (spruce and balsam fir) were surveyed, with a 

stereomicroscope, for the presence of several noticeable mycorrhizal types {types: l. 3. 6. 
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8. and 10). Percentage abundance ofthese morphotypes (corresponding to those ofthe 

present study) were estimated (Appendix Va and Vb). 
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Table 1 : Brief descriptions of mycorrhizal types found on Picea mariana root tips. 
These types were noted during the 1995 summer collection as well as during the 1996 
collection. EH= emanating hyphae; R= rhizomorph. Appendix II contains several 
plates of some of the morphotypes mentioned below. 

Mycorrhizal Color EHIR Description 
type 

Type 1 Black (dull +/- Dense mantle, very stiff 
( Cenococcum appearance) EH (brown/black), Stellar 
geophilum) pattern on mantle 
Type2 Tawny Brown + (sparse)/- Loose mantle, hyaline, EH 

are clamped 
Type3 young: Coal Black + (sparse)/- Dense mantle, stiff EH 

(shiny) 
old: Black-brown 

Type4 White + (sparse)/- Loose mantle 
TypeS Coal Black - Dense mantle 
Type6 young: light brown - Tight fitting mantle, roots 

old: Dark red-brown take on twisted 
deformation 

Type7 young: White +I- Dense mantle, matted EH, 
old: Golden Brown clamped EH, concentric 

patterns on mantle 
TypeS Hyaline - Thin mantle, roots are 

inflated (2-3X normal size) 
Type9 Brown-Black +/- Dense mantle, roots 

inflated (2X), clamped EH 
Type A Smoky Gray +/- Very loose mantle, EH 

have a cottony appearance 
TypeB Creamy Yell ow R Very loose and patchy 

mantle, elaborate R 
*Type E Brown +I- Dense mantle, coarse EH 
*Type G Greenish-Brown - Dense mantle 
*Type L Yellow - Dense mantle 

* These types were descnbed dunng the harvestmg of tips for extractiOn, 1.e. after bemg 
frozen. Due to the freezing, color and other descriptive details may not be accurate. 
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Table 2: These mycorrhizal types, classified as unknown (UK), are types that were not 
found during the 1995 collection. They were found only on the 1996 summer 
collections. 

Mycorrhizal Color EHIR Description 
type 

UKl Hyaline +(sparse)/- Sheathing mantle, smooth, 
translucent, meandering EH at 
base of roots 

UK2 young: Beige-yellow - Sheathing, balloons over root tip, 
old: Beige root is inflated (2X) 

UK3 Patchy yellow-green and - Dense patches of mantle, 
black-brown. 

UK4 young: light brown - Dense mantle, smooth and shiny 
old: black 

UK5 Yellow-white +/- Loose mantle, hyaline EH, 
clamped EH 

UK6 Black-gray +/- Loose mantle, EH have cottony 
(possibly Type appearance 
A) 
UK7 young: Hyaline - Sheathing mantle 

old: golden brown 
UKS young: yellow-white +(sparse)/- Dense sheathing mantle, inflated 

old: tawny to dark brown mantle hyphae 
UK9 young: Tawny brown +I- Loose mantle, EH are clamped 

old: Reddish brown 
UKlO White +I- Dense mantle, EH have cottony 

appearance, H junctions and tips 
anastamosing 

UKll young: whitish-yellow + (sparse)/- Patchy but dense mantle regions, 
old: brownish-yellow inflated mantle hyphae 

UK12 young: light brown +I- Loose mantle, clamped EH, EH 
old: black-brown exist as clusters 

UK13 young: Brownish-black +(sparse)/- Dense sheathing mantle, clamped 
old: Coal black EH, large angular synenchyma 

cells 
UK14 young: Whitish-yellow R Dense mantle, EH have cottony 

old: Deep Yellow appearance, densely clamped EH 
UK15 Hay line R Dense mantle, clamped EH 



2.4: Genomic DNA Extraction 

1. 4.1: Soorocarps 
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Genomic DNA was extracted via the CT AB PCR miniprep procedure (Zolan and 

Pukkila, 1986). Approximately 0.02 to 0.04 grams of air dried sporocarp tissue, taken 

from the cap to ensure a good supply of DNA. was used in each extraction. Each tissue 

sample was deposited in a 1.5 ml microcentrifuge tube and then crushed with a tube 

pestle. Approximately 700 ul of 1 X CT AB extraction buffer (700 mM NaCI. 50 mM 

Tris-pH 8. 10 mM EDTA. I 01o CTAB. 0.2° 'o mercaptoethanol) was added to the tubes 

containing the air dried tissue. Tissues \Vere then incubated in a 600C water bath for 

approximately forty-tive (45) minutes. 

Atler incubation, 700 ul of a Chloroform: Isoamyl alcohol (24: 1) mixture was added to 

each tube. Samples were emulsified and then centrifuged at 13.000 rpm for 10 minutes at 

room temperature. Most of the upper aqueous phase was removed with a pipette. being 

careful not to take up any of the cellular phase. and transferred to a clean 1 .5 ml 

microcentri fuge tube. 

Precipitation of the genomic DNA was facilitated by dispensing 700 ul of cold 

isopropanol (Propan-2-ol) into the aqueous phase and then inverting the tubes repeatedly 

to ensure mixing. Usually a nucleic acid rope precipitated out immediately. Hov.:ever. if 

this did not occur then the tubes were placed at -!SOC for 5 minutes and then repeatedly 

inverted at room temperature for another 3-4 minutes. 

The nucleic acids were pelleted by centrifuging ( 13,000 rpm) the tubes for 2 minutes 

at room temperature. The supernatant was decanted off and pellets were washed twice 
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with two 500 ul aliquots of cold. 70°/o ethanol. After each wash the pellets were 

centrifuged ( 13.000 rpm} for 2 minutes at room temperature. 

Pellets were dried in a vacuum desiccator and then resuspended in 50 ul of autoclaved. 

nanopure tiltered (ANF) water. The pellets were either allowed to dissolve overnight at 

40C or they were dissolved by incubating the tubes at 600C over a 10 minute period. The 

latter method was used when the DNA was required immediately. All DNA extractions 

were stored at -200C. 

Horizontal gel electrophoresis \Vas used to determine the presence and quality of 0 1\j.-\ 

from the sporocarp extractions. About 5.0 ul of the extraction was mixed with 3.0 ul ot" 

loading butTer (0.25°/o bromophenol blue. 30% glycerol) and then loaded into an agarose 

gel (0.7% GTG grade agarose in 0.5X TBE buffer). Gels were run in 0.5X TBE buffer 

(89 mM Trisborate. 89 mM boric acid. 2 mM EDTA pH 8.0) at 70-90 volts for 

approximately 20 minutes. The gel was soaked in ethidium bromide solution (0.5 mg.,ml) 

tor 15 minutes in order to stain any DNA within the gel. Bands were visualized using the 

Biophotonics Gel Print 2000i (BioCan Scientific} system and photographed with the 

Mitsubishi P67UA processor. 

2.4.2: Root tips 

Root tips were collected from the naturally regenerating seedlings (fir and spruce) and 

from the outplanted black spruce seedlings. Recovery of all root tips was done on ice to 

slow the enzymatic breakdown of the genomic DNA. 
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Approximately 2-3 mm of a root apex was severed from the parent root and placed 

into a cold micromortar (Mandel Scientific lnc.). Root tips and mortars were cooled to-

800C for 15-30 minutes. Afterwards the tips were crushed \Vith micropestles. Freezing 

the tips increased the amount of cellular fracturing during crushing which allowed for the 

release of more genomic DNA from fungal cells .. 

Micromortars. containing the crushed tissue. received 175 ul of a 2X CT AB extraction 

buffer ( 1.4 mM NaCI. 100 mM Tris-pH 8. 20 mM EDTA. 2% CTAB. 0.2% 

mercaptoethanol). The contents of each micromortar were homogenized with a 

micropestle and transferred to their respective !.5 ml microcentri fuge tubes. Another I 75 

ul of2X CTAB buffer was used to rinse the micromortars and this solution transferred to 

their respective tubes. Samples were incubated in a 600C water bath for approximately 

forty-five (45) minutes. 

After incubation. 350 ul of a Chloroform:lsoamyl alcohol (24: 1) mixture was added to 

each tube. Samples were emulsified and then centrifuged at 13.000 rpm for 10 minutes at 

room temperature. Most of the upper aqueous phase was pipetted off. being careful not 

to pick up any of the cellular phase. and transferred to a clean 1.5 ml microcentri fuge 

tube. 

Precipitation of the genomic DNA was facilitated by dispensing 320 ul of cold 

isopropanol (Propan-2-ol) into the aqueous phase and then inverting the tubes repeatedly 

to ensure mixing. Unlike with the sporocarp extractions the amount of DNA being 

extracted was too minute to be seen thus the alcohol/DNA mixtures were set at -150C for 
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five (5) minutes to ensure maximum precipitation. Afterwards the tubes were repeatedly 

inverted at room temperature for another 3-4 minutes. 

The nucleic acids were pelleted by centrifuging ( 13.000 rpm) the tubes for five (5) 

minutes at room temperature. However. since the quantity of DNA being extracted from 

a single tip was so little precautions were taken to ensure that none was lost during the 

recovery. The supernatant was removed by suction until approximately 50 ul was left. 

The pellets were washed twice. the suction procedure being used each time between 

washes. with two 175 ul aliquots of cold ethanol (70%). After each wash the DNA 

solutions were centrifuged (13.000) rpm for tive (5) minutes at room temperature. 

After a final suctioning. leaving a 50 ul volume. the samples were dried in a dcsiccater 

and then resuspended in 50 ul of sodium hydroxide solution (8mM ~aOH) . The pellets 

were either allowed to dissolve overnight at 40C or they were dissolved by incubating the 

tubes at 600C over a 10 minute period. The latter method was used when the DNA \Vas 

required immediately. All DNA extractions were stored at -200C. 

The amount of DNA present in the root tip extractions was too minute for gel 

detection. Due to time constrains. resulting from the optimization of the protocol design 

for mycorrhizal root tips. only nine of the twelve sites (collected from in 1995) were 

analyzed. 



2.5: DNA Amplification 

2. 5. I: Sporocarps 
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The Polymerase Chain Reaction (PCR; Mullis and Faloona, 1987) was used to amplify 

a specific region of the ribosomal DNA (rONA) from the genomic DNA extracts. using 

two rDNA specific primers, ITS l and NL6Bmun. NL6Bmun is a primer designed 

specifically for fungal amplifications (Egger. 1995). 

The sporocarp extractions were diluted ( 1 :50) in order to lower the concentrations of 

phenolic compounds and other inhibitors which might have interfered \vith the 

amplification. Dilutions would have decreased the chances of amplifying from root tips 

thus the undiluted extractions were used for PCR. 

The amplification of the rONA segment from the sporocarp tissue involved the 

preparation of a PCR premix (0.2 mM dNTPs. l X Promega thermo buffer. 1.5 mM 

MgCl:!, 0.4 uM NL6Bmun. 0.4 uM ITS 1. 0.5 units Taq DNA polymerase. ANF water). 

All mixtures and stock solutions were kept on ice to prevent premature annealing of 

primers to other regions within the genomic DNA. Approximately 2.0 ul of diluted. 

genomic DNA was then mixed into 48.0 ul ofthe PCR premix. Two control tubes were 

also prepared with the reaction tubes. The positive control. was used to ensure that the 

amplification was working properly while the negative control ensured that none of the 

stock solutions were contaminated. One drop of light, white mineral oil (Sigma 

Chemical Co.) was used as an overlay to prevent the evaporation of the mixture. 

Prepared tubes were centrifuged (800 rpm) at room temperature for a few seconds to 

ensure good mixing of the premix/DNA mixture. All reaction samples and controls were 
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loaded onto the preheated (940C) block of a Perkin-Eimer C~tus DNA thennocycler 

(model 480). All sporocarp samples were amplified using the same parameters. 

The initial denaturing step maintains the block at 940C for two minutes. This step is 

performed only once during the entire amplification. All denaturing steps afterwards were 

held at 940C for 45 seconds. The block was cooled to 420C. the annealing temperature. 

at maximum speed and maintained at this temperature for 45 seconds. A ramp time of l 

minute was used to heat the block from 420C up to 720C. the extension temperature. The 

block remained at this temperature for a period of l minute and 30 seconds. A total of 35 

cycles were performed. As the program proceeded through each cycle the tina! extension 

time \vas increased by one second tor each new cycle. theretore the tina! cycle had an 

extension time of 2 minutes and 5 seconds. Once the thirty tive cycles had been 

completed. the block remained at 720C for a further 5 minutes then cooled to soc until 

the tubes were removed. 

Horizontal gel electrophoresis was used to verify the success of the amplification. 

Approximately 4.0 ul of PCR product was mixed with 3.0 ul of loading buffer and then 

pipetted into a 0.7% TBE agarose gel. One half a microgram of a one kilobase DNA 

ladder ( 1 uglul~ Life Technologies) was run with the samples as a standard to determine 

the band sizes. The gel was run at 80 volts for 25 minutes. It was then stained in 

ethidium bromide (0.5 mg.tml) for 15-20 minutes. DNA bands were illuminated and 

controls checked to ensure that there was no contamination of the PCR premix. Gels 

were then photographed for future reference. 
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2. 5. 2: ECM tip amplifications 

Due to the lower concentrations of DNA within the root tip extractions. premix 

concentrations and amplification parameters had to be altered from the previously 

mention protocol. 

The premix contained the following solutions: 0.21 mM each of dATP. dCTP. dGTP. 

and dTTP (Pharrnacia); lX thermo buffer (BioCan Scientific): 2.1 mM MgCl2 (BioCan 

Scientitic); 0.43 uM each of ITS 1 and NL68mun; and 0.007 units of Ultra Therm Taq 

DNA Polymerase (Bio Can Scientific). Again all solutions were on ice and the tinal 

reactions mixtures were kept on ice. Approximately 4.0 ul of root tip extraction was 

added to each 30.0 ul volume reaction and then topped \Vith a drop of oil. 

Reactions were amplified using either the Perkin-Elmer Cetus ..JSO or the Delta ll 

(Idaho Inc.) thermocyclers. Both thermocyclers. used the following parameters: 

preheated block (not possible for the Delta II); initial denaturing step was 940C for one 

minute; all denaturing afterwards consisted of940C for 45 seconds; the annealing took 

place at 480C over 45 seconds; a ramp time of 55 seconds was used to reach the 

extension temperature of 720C, where it remained for 2 minutes and l 0 seconds. This 

was repeated tor 35 cycles. After every cycle the extension time was increased by one 

second thus taking 1 minutes and 45 seconds to tinish the last extension. 

The tina! extension and gel electrophoresis follow the same as previously mentioned. 

Any root tip samples that did not amplify the first time were used in a second attempt in 

which the amount of Ultra Therm (Bio Can Scientific) was boosted to 0.014 units. If this 

attempt was unsuccessful then it was assumed that there was no DNA present in the 
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extraction. Whether this was due to effects of inhibitors or lack of DNA was not 

determined. 

2.6: Restriction Fragment Length Polymorpllisms fRFLPs.) 

Once the ITS l/NL6Bmun fragment had been successfully amplified for all sporocarps 

and root tips, samples were then cleaved by three cndonuclcascs: .1/u I ( AG.'CT), Rs•1 l 

(GT/AC), and Hinfl (GI ANTC. with 'N' referring to any nucleotide: Phannacia). 

Approximately 5.0 ul of ANF water was added to a 200 ul microcentrifuge tube. along 

with 2.0 ul of a lOX One-Phor-All buffer (Phannacia). Approximately 7.0 ul of PCR 

product, whether fruitbody or root tip, was added into the reaction. Two (2) units of one 

of the restriction enzymes was added to the mixture. The mixture was "tingcr \·ortexcd". 

centrifuged for a few seconds. and then incubated at 3 70C over a 5 hour period. 

After incubation approximately 4.0 ul of loading buffer was mixed with the digested 

sample, which was then loaded into a 2.5% horizontal agarose gel ( 1.5°/o ~usieve: I "o 

Agarose GTG in 0.5X TBE buffer). During the casting of the gel, 0.23 ug of ethidium 

bromide was incorporated into the gel in order to facilitate band visualization after 

electrophoresis. The gel was immersed in 0.5X TBE buffer and run at I 05 volts. The 

current was maintained until the dye front was one centimeter from the end of the gel 

(run time \vas approximately 4 hours). The DNA bands were visualized and digitally 

photographed using the 2000 i imaging system (Bio Can Scientific). 
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2. 7: Data Analvsis 
~ 

1. 7.1: Regen/ 

Analysis of the percent abundance data involved employing nonparametric techniques 

since standard transformation formulas could not normalize the data. The Kruskal and 

Wallis test (Kruskal and \Vallis, 1952~ Sakal and Rohlf, 1995) was used to rank the mean 

percent cover displayed for each morphotype1tree species. This test \vas used to 

determine whether the percentage abundance of each ectomycorrhizal morpho type \vas 

affected by: that particular morpho type in question. or by the location of the seedling 

with respect to the forest. The Mann-Whitney U-test was used when there was a 

comparison between two samples (Sakal and Rohlf. 1995). Again I tested to see ifthe 

location of the seedling would affect the overall ectomycorrhizal percent coverage. as 

\veil [ \vas interested in whether the species of the host tree affected coverage. 

1. 7.2: Planted 1 

Restriction fragment patterns. tram the gels. were saved as digital images and 

analyzed with RFLPscan (v3.0: Scanalytics). The program allowed us to set l~p two 

tolerance levels in order to determine the percent similarity between bands from different 

samples. The first tolerance level was set within each geL Each individual gel had a 

tolerance level of2%. This is to say that if a band was weighted at lOOO basepairs (bp) 

then any band falling within the range of 980-l 020 bp would be considered the same as 

that 1000 bp band. This tolerance level was determined by comparing known fragment 

sizes to that of molecular standards (in this case. 1 Kb ladder [Life Technologies]). The 
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other tolerance level was set when comparing samples between gels. A tolerance level of 

6'% was used to compare samples in order to compensate for uncontrollable errors such 

as: slight changes in gel density. and fluctuations in buffer concentrations \vhich would 

alter DNA migration. lt was found that after running a range ( l-12 °1o) oftolerance 

levels. against a known database of molecular genotypes, the level which produced the 

most accurate depiction of the total number ofRFLP genotypes was that of6~o. 

RFLP data collected from the Regen 1 mycorrhizal samples was used to determine: 

whether there were any molecular types common to both naturally regenerating spruce 

and fir seedlings. did a particular tree species host unique molecular types. were there any 

differences between the molecular types on trees tound in or near the torest verses those 

collected from within the clear-cut. and could any of the molecular types be matched up 

with the RFLP data of collected sporocarps. 

The RFLP data collected from the ·pJanted2' study was divided two sub-sets (9 of 12 

treatment plots x 2; time constraints prevented us from analyzing plots 10.11 and 12 ). It 

was noticed that when the RFLP data was separated on the basis of presence or absence 

of a 'whole· mantle. data interpretation was easier. Thus. each plot has RFLP data 

separated into two sub-sets: that which was obtained from root tips harboring fungi with a 

complete or partial fungal mantle (e.g. Cenococcum geophilum) verses that which was 

obtained from root tips which were presumed to harbor no fungi (i.e. non-mycorrhizal). 

These 18 mini-databases were then merged in a variety of ways to compare samples. The 

combinations are as follows: all control samples (plots 3. 6. and 9), all low bum samples 

(plots l. 5, and 7), all high bum samples (plots 2. 4, and 8), all samples in block l {plots 



47 

l, 2, and 3 ). all samples in block 2 (plots 4, 5. and 6). all samples in block 3 (plots 7. 8. 

and 9). Comparisons were made between plots with different treatments to determine if 

they shared any similar ectomycorrhizal types and to determine if there were any unique 

types found withm a particular treatment. The main interest \vas assessing the 

biodiversity within each treatment to determine if high or low intensity tires affect the 

overall diversity of ECM fungi. Minidatabases were also compared with the sporocarp 

databases to try and link fruitbodies with mycorrhizal types. 

During August of 1996 another 36 outplanted. spruce seedlings were collected from 

the twelve plots (4 blocks). The mycorrhizal fungi associated with these seedlings were 

morphologically characterized (to a much greater extent than that of the 1995 

collections). and several samples of each morphotype were collected. RFLP patterns 

were obtained tor each 1996 morphotype and recorded into a reference database. This 

reference database was compared with each of the 18 mini-databases ( 1995 data). This 

was an attempt to try and match more of the 1995 unknown RFLP genotypes to the better 

described 1996 morphotypes. Comparisons were also made between data from ''Regen I" 

and "Planted 2" to determine whether fungi that were occurring on the roots of naturally 

regenerating seedlings (fir and spruce) were colonizing the roots of the outplanted spruce. 

Database comparisons were accomplished using the "pairwise function" within 

RFLPscan (Scanalytics) software. This "pairwise function" takes each lane in the 

database and matches it. pair-wise. against every other lane. A lane refers a single RFLP 

pattern produced from a single restriction enzyme. This study used 3 restriction 

enzymes, thus each sample had three lanes of patterns. All comparisons were stored in a 
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"matched pairs" table listing the paired samples, the number of shared bands bet\veen the 

two, the number of polymorphic bands and the total number of bands. The default 

procedure in this program generates a distance matrix based upon total number of 

polymorphic bands and inputs this into the UPGMA cluster analysis module in the 

phylogenetic analysis package PHYLIP ( Felsenstein. 1993 ). Hmvever. I wished to use a 

different index. Dice's Index (Appendix lll). \vhich corresponds better to the distribution 

of restriction site changes between two isolates {Egger. unpublished): 

Dice Index = 2x common bands/2x common bands + polymorphic bands 

In order to output the data to PHYLIP. it had to be converted into a distance value. Thus 

the distance for each pair of samples was calculated using a modi tied version of Dice's 

index which is mathematically equivalent to: I -Dice Index. 

Modified Dice Index= sum[(polymorphic bands)/(shared bands+ total bands)l/3. 

Division by '3' \Vas needed since three restriction endonucleases were used. The resulting 

value ranges between 0 and I. with 0 representing identity. and l representing maximum 

distance (i.e. no shared bands). 

I then used cluster analysis {UPGMA) to create a phylogram. The Neighbor program 

from PHYLIP (Felsenstein. 1993) was used for UPGMA cluster analysis. All 

phylograms were visualized using Treeview95 (version 1.5.0) (Page. 1996). The tree was 

used to visually identify identical types. rather than to infer phylogenetic relationships. 

The phylograms provided data on both RFLP genotype number and the number of 

individuals within each RFLP genotype. To achieve this it was assumed that every 

sample that grouped alone, on a phylogram. was an individual genotype. Figure 3 
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explains in more detail these assumptions. Both the number of genotypes and the number 

of individuals per genotype were recorded for each treatment. Both the Simpson and 

Shannon-Wiener indices were used to determine the amount of diversity present in each 

treatmem. Appendix [V coniains the equations for each index as well as their 

assumptions. An analysis of variance (ANOVA) was implemented to determine whether 

the differences existing between diversity values. for each treatment. w·ere signiticant. 



Figure 3: A simple phylogram which will be used to explain our assumptions. The 
above phylogenetic tree shows the similarity of four individuals, with respect to RFLP 
data. 'A' and 'D' are unique in their RFLP patterns, however, individuals '8' and ·c' 
have the same RFLP pattern. Thus, this tree shows three species; two unique species 
and one species with two individuals. 
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2.8: Root stainilrg 

Several sections of root. which appeared to harbor no ectomycorrhizal fungi. were 

selected for observation. The objective of this procedure was to determine the source of 

positive PCR amplifications derived from root tips that were thought to be uncolonized. 

Root tips were placed in a test tube containing a few milliliters of a I 0° o sodium 

hydroxide (NaOH) solution. Several test tubes were set up in such a manner and a 

variety of cellular stains added to each. One stain was phenol cotton blue (30 ml of80°'o 

phenol with 5 mg of cotton blue). Another was phenol red (in 50% glycerol) and another 

was cotton blue in lactic acid (Smg/30 ml of lactic acid). 

Each KOH/stain mixture was gently heated over an open flame to boiling. Gentle 

boiling continued for approximately five minutes and then the solution was set aside to 

cool. Roots were removed and rinsed several times with distilled water to remove t!XCI!ss 

stain. Root tips were viewed and photographed. using bright tield. \Vith the Olympus 

BX50 compound microscope. 
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Chapter 3: 

Results 
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3.1: Preliminazy Data 

During the summer of 1993. three year old. naturally regenerating black spruce and 

balsam fir seedlings were harvested from a clear-cut in western Newfoundland. A total 

of six sites were investigated: three sites were within 10 m of the boundary line of the 

forest and clear-cut. the other three sites were located more than 20 m from the forest 

boundary. well within the clear-cut. The objective was to determine whether there was a 

difference between the types of mycorrhizal fungi inhabiting the rhizosphere of naturally 

regenerating fir and spruce seedlings in relation to the clear-cut boundaries (Baldwin. 

1994) 

Fungal cultures were grown. on E-strain agar (Egger and Fortin. 1989}. from individual 

root tips that were known to harbor ectomycorrhizal fungi. Once enough tissue was 

obtained from the cultures the genomic DNA was extracted and subjected to the PCR 

method. The combination of a universal primer (ITS 1) and a fungal speci tic primer 

( ~L68mun) were used to amplify an approximately 1100 bp fragment within the rD~A 

region. Four restriction endonucleases (Alu I. Hinfi. Hlw I. and Rsa [)were used to 

generate restriction fragment patterns for each fungal isolate. These tragment patterns 

were compared among isolates to determine proportion of shared restriction tragments. 

Also fragment patterns from root tips were cross-referenced with patterns derived from 

basidiocarps collected from the clear-cut site. 

RFLP data indicated that of the twenty (20) isolates. 18 apparently belonged to 

ascomycotina (Figure 4 ). One of the remaining two isolates fell in with the 
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basidiomycete group, which consisted of sporocarps collected from the site. and the other 

isolate was identified as a yeast contaminant (Figure 4) . 



Figure 4: Classification based on neighbor-joining analysis ofRFLP patterns from 
digestion of partial rONA sequences of 18 fungal isolates and 10 basidiocarps. 
Specimen numbers are given in the diagram along with either a brief culture 
description or the genus name for the basidiocarps. 
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Sporocarp collections made by Keith Egger and Dirk Krtiger were subjected to 

PCRIRFLP analysis in order to build a basidiomycete database for which to compare 

with ectomycorrhizal root tip fragment patterns. Table 3 provides a listing of 

basidiocarps collected during the summers of 1993 and 1994. 

Table 3: Sporocarps collected in and around the Glide Lake study site, during the 
summers of 1993 and 1994 (molecular code is 'GL'). Other sporocarps were collected 
from St. John ' s area (molecular code is ' SJ') . Letter within the collection codes refers 
to sub-sites and can be located on figure A-1 , Appendix I (Glide Lake area only). 

Collection Molecular Mycorrhizal Author 
Species code(s) code(s) 

Amanita muscaria QFB93 GLsp93qb yes (LIN. ex 
FR.)PERS. 

Amanita prophyria A62, GLA62, yes (ALB.etSCHW.ex 
QFB91 GLsp91qb FR) 

SECR. 
Armillaria ostoyae L 102, CC GLL102, no ROMAGN. 

142 GLCC142 
Bisporella citrina A4 GLITS1-4, no (BA TSCHexFR.) 

GLITSV-4 KORFetCARPEN 
TER 

Clavulina cristata s 40 GLS40 no (FR.)SCHROT 

Clitocybe clavipes , cc 53 GLCC53 no (PERS .exFR. )KU 
MMER 

Collybia acervata A8 , CC 110 GLA8, no (FR.)KUMMER 
GLCC110 

Cortinarius (Leprocybe) spp G21 GLG21 yes 
Cortinarius (Myxacium) spp B1 76 GLB176 yes 
Cortinarius (Phlegmacium) spp B1 69, Q 82 GLB169, yes 

GLQ82 
Cortinarius (Sericeocybe) Q 79 GLQ79 yes PECK 
lilacinus cf 
Cortinarius (Sericeocybe) spp A 57 GLA57 possibly 
Cortinarius (Sericeocybe) Q 80 GLQ80 yes FR. 
trag anus 
Cortinarius (Sericeocybe) Q 31 GLQ31 yes (FR.)S.F.GRA Y 
violaceus 
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Cortinarius (Telamonia) spp B111,Q32, GLB111, possibly 
B1 67, E2 GLQ32, 
89, E2 92, GLB167, 
E1 96, E1 GLE289, 
98, R 115, GLE292, 
R 116 GLE196, 

GLE198, 
GLR115, 
GLR116 

Cortinarius lilacinus QFB90 GLsp90qb yes PK. 
Cortinarius spp. QFB86 GLsp86qb possibly 
Cortinarius spp. QFB83 GLsp83qb possibly 
Dacrymyces palmatus cc 83 GLQ83 no (SCHW.)BRES. 
Dentinum repandum Q 38 GLQ38 no (FR.)S.F.GRA Y 
Dermocybe spp A 58, E2 91, GLA58, 

cc 132 GLE291, 
GLCC132 

Entoloma spp cc 86 GLCC86 possibly 
Fuscoboletinus spectabilis F 123 GLF123 yes (PECK)POMERL 

EAUet 
A.H.SMITH 

Galerina spp Q 34, cc 55, GLQ34, no 
CC 138, A GLCC55, 
63 GLCC138, 

GLA63 
Heboloma spp . B1 77, Q 81 GLB177, possibly 

GLQ81 
Hygrophoropsis aurantiaca cc 128, GLCC128, possibly (WULF .exFR. )M 

SJ@2, SJ@2, RE. 
ITSI@1, ITSI@1, 
SJITSV@1, SJITSV@1, 
SJgama Sjgama 

Hygrophorus spp B1 78 GLB178 yes 
Hypholoma capnoides cc 54, cc GLCC54, no (FR.exFR. )KUM 

106 GLCC106 MER 
Hypholoma polytrichi group B1 101 GLB1101 no (FR.)SINGER 
Inocybe geophylla s.I. K 141 GLK141 yes (SOW .exFR. )KU 

MM. 
Inocybe spp B1 68, E1 94 GLB168, yes 

GLE194 
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Laccaria bicolor El 19, GLE119, no (MRE.)ORTON 
QFBB, GLspBqb, 
QFBC GLspCqb 

Laccaria deceptivus Bl 70 GLB170 no PECK 

Laccaria laccata CC 49, A 60, GLCC49, no (SCOP.exFR.)FR. 
cc 66, GLA60, 
SJIXXX GLCC66, 

SJIXXX 
Lactarius camphoratus K 137, GLK137, yes (BULL.exFR. )FR. 

QFBD GLspDqb 
Lactarius hibbaradae K 136 GLK136 yes PECK 

Lactarius helvus QFBA GLspAqb yes FR. 

Lactarius vinaceorufescens R 39, R 117 GLR39, yes A.H.SMITH 
GLR117 

Limacium erubescens R 112, K GLR112, (FR.)WUNSCHE 
135 GLK135 

Lycoperdon pyriforme B1 16, CC GLB116, no SCHAEFF .exFR. 
51 GLCC51 

Mycena or Collybia spp A7 GLA7 no 
Mycena spp B1 10, CC GLBllO, no 

111 CLCClll 
Paxillus involutus cc 127, GLCC127, yes (FR.)FR. 

SJPax.in SJPax.in 
Peziza badia cc 103, GLCC103, no PERS.exMERA T 

cc 120 GLCC120 
Pluteus atricapillus cc 48, GLCC48, no (SECR. )SINGER 

. BN#2 118 GLBN2118 
Psathyrella spp cc 44, cc GLCC44, no 

46, cc 143 GLCC46, 
GLCC143 

Psilocybe tenax s.l. BN#8 87 GLBN887 no (FR.)KUHNERet 
ROMAGN 

Rickenella fibula cc 139 GLCC139 no (BULL.exFR. )RA 
ITH 

Rozites caperata A65, GLA65, yes (FR. )KARSTEN 
QFB85, GLsp85qb, 
QFB89 GLsp89qb 

Russula spp QFB88 GLsp88qb yes 
Russula spp QFB84 GLsp84qb yes 
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Russula spp AS, A6, B1 GLA5, yes 
72, R 113, K GLA6, 
134 GLB172, 

GLR113, 
GLK134 

Stropharia hornemannii L 114, CC GLL114, no (FR.exFR.)LUND 
129 GLCC129 .et 

NANNF. 
Suillus spp. QFB92 GLsp92qb yes 
Tricholoma davisiae c.f. E1 122 GLE1122 yes PECK 
Tricholoma fulvum A64 GLA64 yes (DC.exFR. )SACC 

Tricholoma portentosum A 61 GLA61 yes (FR.)QUEL. 
Tricholoma virgatum B1 73 , R 108 GLB173 , yes (FR.exFR. )KUM 

GLR108 MER 

Tricholoma spp. SJ beta SJ beta yes 
unknown cc 52 GLCC52 
unknown CC99 GLCC99 
unknown cc 100 GLCC100 
unknown BN#2 105 GLBN2105 
unknown BN#2 119 GLBN2119 
unknown snxxxx snxxxx 
unknown G 125 GLG125 
Xeromphalina campanella B1 71 , GLB171, no (BAT.exFR.)KUH 

QFB82 GLsp82qb NERetMRE. 

3.1.1: Percent Abundance ofMycorrhizal Fungi 

Root tips collected for the preliminary study (above, section 3.1) were further surveyed 

to determine the percent abundance of several different fungal morpho types on naturally-

regenerating seedlings. Six sites were surveyed in total; three bordered the edge of the 

clear-cut/forest and three were located within the Glide Lake clear-cut. See appendix I 

for a visual layout of sites. Table 4 gives a brief description of the morpho types. 

Appendix Va and Vb contains raw data for the percent abundance of each morphotype 
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upon each tree species. Tables 5 and 6 show the mean percentage abundance of each 

fungal morphotype. 

An attempt was made to do an analysis of variance for various aspects of the data, 

however, an inspection of the residuals indicated that the data were not normally 

distributed. Parametric analysis had to make way for nonparametric techniques in the 

form of either a Kruskal and Wallis (Kruskal and Wallis, 1952; Sokal and Rohlf, 1995) or 

a Mann-Whitney test (Sokal and Rohlf, 1995). 

Table 4: A brief description of five mycorrhizal types discovered on naturally 
regenerating balsam fir and black spruce seedlings. Seedlings were collected during 
the summer of 1993, near Glide Lake (Pasadena, Newfoundland). EH= emanating 
hyphae, R = rhizomorphs. 

Myc()'d:~biz31 *Cof'9r EUIR ~ 'il Description 
t:Jpe 

~' 

Type 1 Black (dull +I- Dense mantle, very stiff EH 
( Cenococcum appearance) (brown/black), Stellar pattern 
geophilum) on mantle 
Type3 young: Coal Black + Dense mantle, stiff EH 

(shiny) (sparse)/-
old: Black-brown 

Type6 Hay line +/- Thin mantle, short EH 
TypeS White +/- Roots take on a twisted 

appearance, EH are cottony in 
appearance 

Type A Smoky Gray +I+ Very loose mantle, EH have a 
cottony appearance 
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Table 5: Mean percentage abundance of mycorrhizal fungi on naturally 
regenerating balsam fir seedlings collected from Glide Lake. Root systems 
were analyzed from three seedlings (T), per site. 

Table 6: Mean percentage abundance of mycorrhizal fungi on naturally 
regenerating black spruce seedlings collected from Glide Lake. Root 
systems were analyzed from three seedlings (T), per site. 
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Table 7: An average of the mean percent abundance values for 
each morphotype displayed in tables 4 and 5. 

Mean o/o abundance 
Morpbotype Sample (Black (Balsam Fir) 

Size Spruce) 
1 18 2.92 0.667 
3 18 7.65 4.38 
6 18 0.544 0.0278 
8 18 4.65 4.48 
A 18 0.0889 0.583 

Averages of the mean percent abundance of each morpho type for each tree species are 

shown in table 7. The Kruskal and Wallis test was used to determine if there was 

significant difference between the average percent mycorrhizal coverage for each 

morphotype, per tree (table 8). 

Table 8: Results of the Kruskal and Wallis test to determine whether there was a 
significant difference between the morphotype and its percent abundance on a 
particular tree species. Tests were also performed to determine whether or not the 
mean differences based on seedling location were significant. "*" indicates 
significance. H= Kruskal and Wallis statistic, D= Correction factor due to ties, Ha= 
Adjusted Kruskal and Wallis statistic using the correction factor, a= sample si ze, 
x2= Chi-squared statistic. 

Tree species Scenario H D Ha a ,.t. 
X .OOS(a-1] 

Pice a Morphotype vs 13.26 0.718310 18.46 5 14.860 
mariana %abundance * 

Pice a location vs % 0.21 0.724138 0.29 2 7.879 
mariana cover 

Abies Morphotype vs 25.83 0.745885 34.63 5 14.860 
bal.samea %abundance * 

Abies location vs % 0.05 0.714285 0.07 2 7.879 
balsamea abundance 
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Results from the Kruskal and Wallis test indicate that there is a significant difference 

between the % ectomycorrhizal abundance based upon the morphotype for both tree 

species. Thus, morphotypes 1, 3 and 8 appear to be the dominant ectomycorrhizas on 

collected tips in comparison to types 6 and A, at least with respect to black spruce 

seedlings. With respect to balsam fir (Table 7) it appears that this is the case only for 

types 3 and 8. This raised the question of whether or not differences for the mean 

abundance, for the same morphotype, between tree species, were significant. 

Mann-Whitney U-tests were performed on morphotypes 1, 3, and 8. All three cases 

showed no significant difference (a=0.05) between tree species, based upon the mean 

percent abundance of each morphotype. Appendix VI contains the output information, in 

Minitab (Minitab Inc.) format, for the three Mann-Whitney comparisons. I was also 

concerned with whether or not the location of a seedling, with respect to the surrounding 

forest, affected the overall ectomycorrhizal percent abundance (Table 9). 

Table 9: An average of the mean percent abundance values based upon 
location of mycorrhizal seedlings. Seedlings belonging to sites 1,3, 
and 6 were either in the forest or near its edge (within 3m). 
Seedlings of sites 2,4 and 5 ranged from 40-1 OOm from the forest 
edge, inside the clear-cut. 

Mean °/o abundanc~ 
Location Sample Black Spruce Balsam Fir 

Size 
Near Forest 45 4.18 1.964 

edge 
In Clear-cut 45 2.16 2.089 

The generic null hypothesis would state that there was no difference between the mean 

percent abundance of ectomycorrhizal fungi growing in the clear-cut and the nearby 
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forest. This hypothesis was applied and tested for both tree species. Table 8 shows the 

results obtained from a Kruskal and Wallis test. ln both cases the null hypothesis was not 

rejected. The Mann-Whitney U-test was also employed and confirmed these tindings 

(Appendix Vll). 

Lastly the Mann-Whitney U-test was used to determine ifthere \vas an overall 

difference between the mean total ectomycorrhizal% abundance occupymg spruce and 

tir seedlings. Again there was no significant differences bet\veen each tree species· mean 

percent abundances (Appendix VH[). 

3.2 Molecular analysis ofECMs 

3.2.1: Sampling qfRoot Tips 

Root tips were collected in late summer of 1995 and stored at -20°C until analyzed. 

Three replicates of each treatment. for a total of nine plots. were studied: three controls. 

three high intensity burns and three low intensity burns (Plots 1-9; Plots I 0-12. although 

sampled \vere not included in the analysis due to time constraints). A total of 100 root 

tips were collected from ten spruce seedlings per plot. Table I 0 shO\vs the success rate 

for the amplification of fungal rONA from each of the 100 root tips. An average 

amplification rate of 76 percent indicates that the modified CT AB extraction (see 

previous section on methods) proved to be quite reliable for the extraction of the minute 

quantities of fungal DNA found on these root tips. 
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Table 10: Information concerning the success ofPCR amplifications for each plot. One 
hundred root tips were examined from each plot. Note: the values in the 'Total Mean' 
column were calculated from actual values and not from the percentages presented in 
this table. 

Control High Burn Low Burn 
Plot Plot Plot Plot Plot Plot Plot Plot Plot Tota1 

3 6 9 2 4 8 1 5 7 Mean 
0/o amplified 78 88 69 80 80 63 74 72 78 75.8 
o/o noticeab]e db 5.13 1.14 0 1.25 1.25 0 1.35 1.39 2.56 1.61 
after amp1ification 
0/o digested singlets 100 77.3 92.8 88.8 72.5 81.0 94.6 73.6 87.2 85.2 
o/o db after 3.85 1.14 0 8.75 5.00 9.52 2.70 9.72 0 4.40 
digestion of sing1ets 

Normally with an amplification of a fragment ofrDNA one sees only one florescent 

band on the gel, however, one of two scenarios can occur to produce different results. 

First, one might obtain two separate bands for a single sample. Second, the amplification 

gel shows only one band for the sample but restriction endonuclease digestion reveals 

two PCR products within this one band. Figure 5 provides a visual explanation of these 

two scenarios. 



Figure 5: In the amplification gel, used as a check to determine whether or not the 
amplification was successful, sample 2 shows a typical 'double amplification· pattern. 
Samples 1 and 3 show there seems to be only one product, i.e. only one fungal species 
was amplified. However. upon digestion we see that this is not always the case. The 
sum of sample one's digested fragments equals that of the original band size, thus 
suggesting only one species was amplified. The sum of the digestion fragments for 
sample three is much greater than the original band size. Thus two fungal species 
were amplified originally. Both had an equal base pair size thus making it appear as if 
there was a single amplification product. 
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A double amplification is the result of two fungal species being present on one root 

tip. and w·here both are amplified by PCR. It is not unusual to see two or more fungal 

species present on a root tip. lt is assumed that both fungal species provided DNA 

template of roughly equal quantity (no PCR competition) and of equal annealing 

compatibility with the primer. However, one of the fungal species has either a deletion or 

insertion within its ITS regions. which produces a PCR product that is either larger or 

smaller than the expected size (figure 5). However, more frequently both PCR products 

are of the same molecular size. thus producing a single band on the amplification gel 

(sample 3. figure 5). We are only aware of this scenario after endonuclease digestion. 

when the sum of the fragments adds to larger than the original amplitication size. 

On average at least 1.6 percent of the amplified products displayed double or multiple 

bands (multiple bands. i.e. more than two. were very rare) when visualized on a gel 

(Table I 0). ln the case of double bands that were only detectable after digestion. this 

number jumped to 4.4 percent (table 1 0). Overall. approximately 6 percent of the 

successful amplifications displayed double PCR products. 

These double amplifications were not included in this study since it \vould have 

required separating the t\VO bands. extracting each band from the agarose gel and doing a 

re-ampli fication from the extracted bands. A future project is being planned to look more 

closely at these double bands to determine if the species being amplified together form a 

particular association. 

Although there was a relatively high success of amplification (76 <%)this does not 

mean that all amplified products were suitable for digestion. Some amplifications 
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produced relatively weak bands when stained with ethidium bromide. Thus. if these 

samples had been digested they would have been difficult to visualize on the agarose 

gels. Several attempts were made to generate a better amplification product for these 

'weak amplifications' but l was not always successful. Table l 0 indicates that 

approximately 85 % of the amplified products were successfully digested. 

Extraction of mycorrhizal DNA required using a single root tip measuring 

approximately 3mm in length. Since l was dealing with such minute quantities of fungal 

material (ectomycorrhizal mantles usually covered 35-70 % of the root tip). dilution of 

the template before PCR amplification proved unsuccessful. \Vhen trying to amplify 

from fungal material associated \vith plant tissue one has to deal with such things as 

phenolic compounds and other substances that can inhibit the PCR reaction. Overcoming 

these inhibiting compounds can be achieved by either diluting the template DNA or 

ensuring that when extracting from the target tissue there is a relatively large quantity of 

starting material used so that there is sufficient template DNA for amplification. 

My experimental design was set up such that not only were ·ectomycorrhizal' root tips 

selected. but also root tips that did not show obvious signs of ectomycorrhizal 

colonization. Since l was using a fungal specific primer it was expected that non­

ectomycorrhizal (NM) root tips would not produce PCR products. However. table ll 

indicates that approximately 66.3% of the NM root tips produced PCR product, 

indicating that some fungal material was associated with these root tips and was 

amplified. Theoretically, the PCR reaction only requires one copy of the template DNA 
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in order for it to produce successful amplification, however, in reality this low a template 

concentration would be difficult to visualize on the amplification gels. 

Table 11: Percentage of non-ectomycorrhizal root tips that had successfully amplified . 

Plot Plot Plot Plot Plot Plot Plot Plot Plot Total 
1 2 3 4 5 6 7 8 9 Mean 

0/o of tips not 37 33 30 40 54 35 52 49 34 40.4 
mycorrhizal 
0/o of non-mycorrhizal 62.2 69.7 66.7 67.5 61.1 74.3 75 .0 67.3 52.9 66.3 
tips that amplified 

Successful amplification from NM root tips suggests that enough fungal material was 

present either on the outside or within the root tip to be amplified by PCR. Each tip was 

individually viewed with a stereo-microscope, thus those tips classified as NM could 

probably not have contained enough visible fungal material on their exterior to have 

provided a template for the PCR reaction. This suggests that some internal fungus , or 

endophyte, must hav~ provided enough template DNA which had been amplified. In 

order to test this hypothesis, several non-ectomycorrhizal root tips were cleared stained 

and studied using a stereomicroscope. Figure 6 shows that tips which lacked 

ectomycorrhizal hyphae harbored endophytic hyphae. A study by Ahlich and Sieber 

( 1996) showed there to be a wide variety of endophytic fungi inhabiting non-

ectomycorrhizal roots of Abies alba, Picea abies, and Pinus sy lvestris , thus providing 

support for my findings. As well, Richard and Fortin (1974) found MRA to be common 

in the roots of black spruce. 

Further investigations found that some of the NM tips showed no visible signs of 

mycorrhization but after staining a very thin hyphal mantle did surround the tip. Thus, 
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my database ofNM tips could contain molecular types of these thin. hyaline 

ectomycorrhizas. Figure 7 provides a few pictures of these NM tips \vith their hyaline 

ECMs. 

Several tips harboring noticeable ectomycorrhizal fungi. mainly Cenococcum. were 

also stained to determine whether endophytes were present. Again. some tips did show 

that the intracellular spaces of the ECM tips did support endophytic fungi. Figure 8 

shows what appears to be MRA fungi running between plant cells wi£h several 

Cenococcum geophilum hyphae on the exterior of the root. 



Figure 6: (A) MRA-like hyphae within a black spruce root tip classified as non­
ectomycorrhizal. Stained with cotton blue. 200X (B) Another MRA-like hypha! 
network. Stained with phenol blue. 400X. 
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A) 

B) 



Figure 7: (A) A very loose, hayline hyphal mantle covering what was assumed to be A 
non-ectomycorrhizal (NM) tip. Stained with Phenol blue. 1 OOOX. (B) What appears 
to be a semi-loose mantle covering another presumed NM tip. Stained with phenol red. 
400X. 
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A) 

B) 



Figure 8: (A) Hyphae of Cenococcum geophilum. This is a perimeter shot since internal 
plant cells could not be stained due to the thickness of C. geophilum's thick mantle. 
(B) Endophytic hyphal cells occupying root intracellular spaces. just below the mantle 
of C. geophilum 
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A) Cenococcum hyphae 

B) 
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3.2.2: Prescribed burning and biodiversi(y 

Since the main objective of this study was to look at the effects of prescribed burning 

on the molecular diversity of ectomycorrhizal ( ECM) fungi. I decided to remove PCR 

amplifications from the data suspected of representing non-target fungi. As such. all data 

obtained from NM tips were separated from the ECM tips data [EC\-1 tips refer to those 

tips harboring distinct mantles (figure 9) and those harboring patchy mantles ( tigure 10) ]. 

It was noticed that within the ECM-tip RFLP data there were several samples that 

matched to the RFLP patterns of NM tips. See figures A-3 to A-1 1 in appendix IX for 

more detail. As a result these ECM samples were also removed from the ECM databases. 

In the previous section it was shown that endophytic hyphae do exist within NM and 

Cenococcum ECN! tips. suggesting the possibility that endophytic hyphae could have 

been present within other EC\-1 tips. 



Figure 9: (A) Overview of a root tip harboring a ectomycorrhizal fungus, Cenococcum 
geophi/um. Photo taken by Hamiman and Durall ( 1996). Notice the extensive mantle. 
(B) and (C) A cross section of an ectomycorrhizal root tip. Notice that the mantle is 
several cell layers thick. 
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A) 

C) 



Figure 10: Overview of a black spruce root tips harboring an ectomycorrhizal fungus. E­
strain. (a) Notice the loosely developed mantle. Notice that the mantle is a single cell 
layer thick. (b) A loosely colonized root tip. (c) Colonized, with emanating hyphae, 
and unco Ionized roots. 
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3.2.3: Diversi(Jl ofEctomvcorrhizal fungi 

After the removal of the NM samples from each of the nine databases. their respective 

RFLP data were analyzed using RFLPscan software (Scanalytics). Using a modified 

Dice's index (Appendix III) and Neighbor joining (UPGMA clustering) software 

( Felsenstein. 1993) phylograms \Vere created to shO\v similarities bet\veen samples tor 

each database (Figures II to 19). The phylograms that are to follmv all contain sample 

code names that describe various facts about that particular root tip. Each code contains 

8 characters. The first two, "GL". refer to the study site (Glide Lake). The third 

character refers to the plot from which the sample was taken (there were a total of nine 

plots). The fourth. fifth. and sixth characters refer to the tree (within that plot) from 

which the root was sampled. There \vere a total of 217 trees that had the potential of 

being selected. thus the reason for the three digits in the code. The seventh character 

refers to the crude morphotype number assigned to the fungus on that particular root tip 

(e.g .. "' 1" refers to type 1 =C. geophilum; "0" refers to the non-mycorrhizal tips; "'!" 

refers to the uncertainty of the mycorrhizal status of a tip). The last character of the code 

refers to the root tip number of that particular seedling (a total of I 0 tips were selected 

from each seedling so an alphanumeric coding. 1-A, was used). This is probably best 

explained with an example. Sample "GL ll273A" was taken from study plot L seedling 

number 127. The mycorrhizal fungus on the tip appeared to be a "type 3". Finally. this 

sample was the tenth root tip(" A") from that particular seedling. In order to make it 

easier to talk about certain trends associated with a particular morphotypes. code names 
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were colored. Each phylogram will denote a particular morphotype with a color. For 

example, in figure ll all samples denoted as "Type I" have been color coded in red. 



Figure It: Phylogram showing the similarity among ectomycorrhizal fungi collected 
from plot 1 (low bum). Each sample has been color coded according to a crude 
morphotyping. Morphotype is coded as the second last number of the sample name. 
See table Ia for morphotype descriptions. 
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Figure 12: Phylogram showing the similarity among ectomycorrhizal fungi collected 
from plot 2 (high bum). Each sample has been color coded according to a crude 
morphotyping. Morphotype is coded as the second last number of the sample name. 
See table la for morphotype descriptions. 
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Figure 13: Phylogram showing the similarity among ectomycorrhizal fungi collected 
from plot 3 (control). Each sample has been color coded according to a crude 
morphotyping. Morphotype is coded as the second last number of the sample name. 
See table la for morphotype descriptions. 
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Figure 14: Phylogram showing the similarity among ectomycorrhizal fungi collected 
from plot 4 (high burn). Each sample has been color coded according to a crude 
morphotyping. Morphotype is coded as the second Jast number of the sample name. 
See table 1 a for morphotype descriptions. 
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Figure 15: Phylogram showing the similarity among ectomycorrhizal fungi collected 
from plot 5 (low bum). Each sample has been color coded according to a crude 
morphotyping. Morphotype is coded as the second last number of the sample name. 
See table 1 a for morpho type descriptions. 
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Figure 16: Phylogram showing the similarity among ectomycorrhizal fungi collected 
from plot 6 (control). Each sample has been color coded according to a crude 
morphotyping. Morphotype is coded as the second last number of the sample name. 
See table 1 a for morpho type descriptions. 
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Figure 17: Phylogram showing the similarity among ectomycorrhizal fungi collected 
from plot 7 (low burn). Each sample has been color coded according to a crude 
morphotyping. Morphotype is coded as the second last number of the sample name. 
See table 1 a tor morphotype descriptions. 
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Figure 18: Phylogram showing the similarity among ectomycorrhizal fungi collected 
from plot 8 (high bum). Each sample has been color coded according to a crude 
morphotyping. Morphotype is coded as the second last number of the sample name. 
See table l a for morphotype descriptions. 
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Figure 19: Phylogram showing the similarity among ectomycorrhizal fungi collected 
from plot 9 (control). Each sample has been color coded according to a crude 
morphotyping. Morphotype is coded as the second last number of the sample name. 
See table 1 a for morphotype descriptions. 
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Table 12 shows that each plot has quite a wide range with respect to the number of 

molecular "species" and individuals. Both the Shannon-Wiener and Simpson diversity 

indices were calculated using these data (Table 13). These two indices were 

calculated in order to determine whether the differences that were found were a result 

of differences in the data and not a factor of the index being used. Each index factors 

in all of the individuals within that sample. hmvever. they each place a different value 

on the importance of unique species. The Simpson index puts less weight on those 

species represented by only one individual as compared to that of the Shannon-Wiener 

index. Therefore the Simpson index places a greater emphasis on species dominance. 

while the Shannon-Wiener index emphasizes species richness. See appendix lV for 

comparison of the two indices. 

It is assumed that diversity indices are normally distributed ( Magurran. 1988 ). thus a 

one-way analysis of variance (ANOVA) was used to look at treatment relationships. :'v1y 

analysis looked at three possible treatment comparisons; Control verses Low intensity 

bums. Control verses High intensity burns. and Low verses High intensity bums. All 

comparisons, using both indices, showed that there were no significant differences across 

any of the treatments. Calculated ANOVAs can be viewed in appendix X. 
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Table 12: Summary of the number of molecular species 
and individuals/species for each research plot. LB= low 
bum intensity; HB= high bum intensity; Control= 
unburned. 

#of 
Plot #of species individuals 

1 (LB) 33 42 
2 (HB) 33 42 
3 (Control) 26 43 
4 (HB) 24 35 
5 (LB) 22 26 
6 (Control) 20 27 
7 (LB) 19 23 
8 (HB) 7 8 
9 (Control) 19 29 

Table 13: Calculated Shannon-Wiener and Simpson indices for each 
treatment. 

Treatment Plot Shannon index Simpson index 
(H') (1-D) 

3 3.1263 0.9725 
Control 6 2.9161 0.9775 

9 2.8065 0.9629 
1 3.4073 0.9858 

Low Burn 5 3.0264 0.9846 
7 2.8728 0.9801 
2 3.4155 0.987 

High Burn 4 3.0667 0.9747 
8 1.906 0.9643 

Table 14 shows the F statistic taken from each calculated ANOV A. According to my 

analysis the overall molecular diversity, of ectomycorrhizal fungi, is not significantly 

changed when one bums a clear-cut using either a high or low intensity burning protocol. 
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Table 14: F statistics for each ANOVA comparison using both the 
Shannon-Wiener and Simpson indices. The expected F value was 
Fo.os[I ,4J= 7.71. Since all values are less than the expected F value 
then there is no significant difference between treatments. 

ANOVA Shannon-Wiener Simpson 
comparisons 

Control vs Low 0.08 7.35 
Control vs High 0.11 0.31 

Low vs High 0.00 1.45 

Upon viewing individual phylograms I found that some of my crude morphotypes 

formed strong molecular groupings while others seemed to hold no structure whatsoever. 

Across all nine plots it was found that types 1 (C. geophilum), 3, 6, and 7 tended to form 

strong molecular groups. In each case there were individuals that strayed from the 

groups and were dispersed throughout the phylograms. Morphotypes B (plot 9) and 9 

(plots 6 and 9) also clustered into groups. These six ectomycorrhizal morphotypes all 

represented fungi that had very distinct and thick mantles. It was found that morphotypes 

which displayed very thin and non-continuous mantles tended to produce molecular 

patterns that did not form nicely clustering groups similarly to those previously 

mentioned. Mainly I am speaking of morpho types 2 and 8. In most phylograms it was 

seen that they were randomly scattered and only forming clusters if they happened to 

have been sampled from the same seedling (forming a genet). 

Another area of concern was to determine whether or not there was any sharing of 

species across similar treatments as well as across different treatments within the same 

block. Figures 20, 21 and 22 show phylograms, each constructed from three plots, for 

each treatment type. Comparisons within repeat treatments showed that there was 
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minimal sharing of species. Within the three control plots only two species were shared. 

and even then they were not shared across all three plots. One species was shared 

between plots 6 and 9, the other was shared between plots 3 and 6 (figure 20). The lmv 

bum plots showed that two species were shared bernreen plots 1 and 5. and none with plot 

7 (figure 21 ). The high bum plots had only one species from plots 2 and 4 that matched 

band patterns (figure 22). The low number of ECM samples for plot 8 may explain \\;hy 

there were no matches (figure 18 ). 



Figure 20: Phylogram showing the molecular diversity of ectomycorrhizal fungi found 
across the three control treatments (plots 3. 6 and 9). "match" refers to the matching 
of two or more RFLP genotypes that have originated from different replication plots. 
As can be seen the distances are very large indicating a very diverse grouping. 
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Figure 21: Phylogram showing the molecular diversity of ectomycorrhizal fungi found 
across the three low burn treatments (plots 1, 5 and 7). "match" refers to the matching 
of two or more RFLP genotypes that have originated from different replication plots. 
As can be seen the distances are very large indicating a very diverse grouping. 
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Figure 22: Phylogram showing the molecular diversity of ectomycorrhizal fungi found 
across the three high burn treatments (plots 2, 4 and 8). "match" refers to the 
matching of two or more RFLP genotypes that have originated from different 
replication plots. As can be seen the distances are very large indicating a very diverse 
grouping. 



114 

J 
I I 

I I 
I 

..___ -
J 
I 

-

I 
I I 

I 

. 
r-

-

...__ 
..____ 

I 
I 

"-i_ 

0.1 

I 
L J 

I 

rt 

I 

I 
I 

----1 J 

LC 

I 

I 

I 

I 
I 
I 

_j 
I 

I 
I 

I 
I 

I 

I 

.....__ 

I 

I 

Gl200762 
GU06431 
GL807131 
GL400312 
Gl219131 
Gl207231 
Gl213S3l 
Gl20873l 
GU08732 
GL406611 
GU19141 
GU19142 
GU16141 
Gl219122 
Gl208761 
Gl219121 
GL2204LJ 
GL2204L2 

~~:~g@ GL20218l 
Gl200781 .C 
GUU982 ~ 
Gl20078' = 
GI200783 a 
Gl220421 
GL2204?1 
Gl220431 
GI203181 
GI207281 
Gl208721 
GL208772 
(,1.20'~82 
GU05212 
GL211414 
GL40527l 
GL400321 
GU00381 
GU06423 
GU13S6l 
GU19123 
GL414971 
GU20442 
GL421673 
GL421671 
GL421672 
GL81822S 
GL819021 
GL207261 
GU14961 
GL421662 
GU21611 
GL421621 
GL421631 
GU2166l 
GU02lll 
GL206412 
GL202112 
GL202113 
GL203Ill 
Gl206413 
GL41.913 
GIAOS211 
GL819012 
GL400311 
GU19711 
GUI9712 
GU11412 
GU11413 
GL416121 
GL416142 
CiL802281 
GU06411 
GL819011 
GL819013 
GL2ll411 
GL4161EI 
GIA09911 
GU09912 
GI -l04082 
GU04081 
GIA04062 
GIA04063 
GL4161E2 
GL810411 



115 

Previously I had looked at the clustering of individual morphotypes within each of the 

nine plots. When I merged the data from each treatment (three plots, treatment) it \vas 

found that some of the morphotypes;molecular groups held together very strongly. 

namely types l, 7. 9, and B. Thus suggesting morphotype variants were shared across all 

treatment plots. Types 3 and 6 broke down into smaller. yet distinct clusters. Suggesting 

that each type may contain two or three distinct molecular groups which exist across all 

plots. Those types that had thin. non-continuous mantles (types 2 and 8) showed no 

consistent groupings across all plots. 

Comparisons were also made between different treatments. arranged according to the 

blocks each plot fell into (see figure 2. Section 2.1 ). It was seen that those morphotypes. 

molecular groups that had previously shown strong cohesion began to break apart. For 

example. within blocks 2 and 3 (tigures 24 and 25. respectively) it was seen that type l s 

formed a much looser association than previously viewed. Block 1 is an exception. It 

was noticed that most ofthe type 1 samples still clustered relatively tightly (tigure 23). 

There was minimal sharing of molecular species between different treatments. There 

were no cases in which one species was found in all three plots. Within block I there 

were only three matches (figure 23 ). Two were shared between plots l and 2 (low and 

high burns. respectively), and one \'v'ith plots 2 and 3 (high bum and control. 

respectively). Block 2 had only one match between plots 5 and 6 (low burn and control. 

respectively) (figure 24). Block 3 did not have any sharing of species between different 

treatments (figure 25). 



Figure 23: Phylogram showing the molecular diversity of ectomycorrhizal fungi found 
across block 1 (containing plots 1, 2 and 3). "match" refers to the matching of two or 
more RFLP genotypes that have originated from different replication plots. As can be 
seen the distances are very large indicating a very diverse grouping. 
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Figure 24: Phylograrn showing the molecular diversity of ectomycorrhizal fungi found 
across block 2 (containing plots 4, 5 and 6). "match" refers to the matching of two or 
more RFLP genotypes that have originated from different replication plots. As can be 
seen the distances are very large indicating a very diverse grouping. 
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Figure 25: Phylogram showing the molecular diversity ofectomycorrhizal fungi found 
across block 3 (containing plots 7, 8 and 9). "match" refers to the matching of two or 
more RFLP genotypes that have originated from different replication plots. As can be 
seen the distances are very large indicating a very diverse. 
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3.2.4: Diversity ofPresumed Endaphvtic Fungi 

As mentioned earlier the RFLP data obtained from the ·non-mycorrhizal' (NNl) root 

tips were kept separate from the ectomycorrhizal (ECM) root tip data. Initially when 

both NM and ECM data were combined it \vas found that some of the EC\tl tips fell in 

with the NM tips. suggesting that there was no amplification of the EC\-1 fungus. Instead 

non-target DNA was amplified by the PCR reaction. Figures 26 to 34 shO\v the 

relationships. using UPC\1A clustering, found between the non-target amplifications 

(presumably root endophytes) within each study plot. 



Figure 26: Phylogram showing the similarity among non-target ON As, discovered in 
plot l (low bum). 
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Figure 27: Phylogram showing the similarity among non-target DNAs. discovered in 
plot 2 (high bum). 
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Figure 28: Phylogram showing the similarity among non-target DNAs, discovered in 
plot 3 (control). 
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Figure 29: Phylogram showing the similarity among non-target DNAs. discovered in 
plot 4 (high bum). 
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Figure 30: Phylogram showing the similarity among non-target DNAs, discovered in 
plot 5 (low burn). 
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Figure 31: Phylogram showing the similarity among non-target DNAs, discovered in 
plot 6 (control). Genotype I is an example of a "genet", i.e. an example where a 
single RFLP genotype appears to have dominated the roots of a single seedling. 
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Figure 32: Phylograrn showing the similarity among non-target DNAs, discovered in 
plot 7 (low burn). 
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Figure 33: Phylogram showing the similarity among non-target DNAs, discovered in 
plot 8 (high bum). 
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Figure 34: Phylogram showing the similarity among non-target DNAs, discovered in 
plot 9 (control). 
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A quick review of each phylogram shows that there is considerable diversity among 

endophytes within each plot. Distances in most cases are quite large. usually greater than 

l 0%. However. a few plots do show some patterns. Control plots 3 and 6 reveal a lower 

number of unique RFLP genotypes. Instead there are more closely related clusters 

containing several representatives of an individual genotype. This. to a lesser degree. can 

also be seen for plots 7 t lmv bum l and 8 ( htgh bum). 

Frequently most of the individuals that fonn that cluster originate from the same tree . 

For example. within plot 6 l saw that ·genotype r contains 5 individuals all originating 

from tree #75. The only other sample from tree #75 is situated within a 2°'il difference 

from the clade. This suggests that the entire tree could possibly be harboring only one 

RFLP genotype. or even genet of endophytic fungi. i.e. endophytic growth is clonal. 

Observation of other clusters and other plots shows that this type of genet organization to 

be a common occurrence. Thus within individual plots there tends to be a large degree of 

endophytic fungal diversity bet\veen trees. howeYer. individual trees contain a Yery low 

degree of diversity. lt would appear an individual tree usually contains only one or two 

dominant endophytic RFLP genotypes. 

Comparisons were made across each of the treatments. Data from each of the 

replicate plots were combined for each treatments and analyzed for distinguishable 

patterns. Figures 35 to 36 show that the endophytic diversity is quite high for both the 

low and high bum treatments. Distances are quite large indicating that there is little 

sharing of genotypes across these two treatments. In fact there is only one example 
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where the same RFLP genotype is found across two replicate plots ("Genotype II". Figure 

36). 'Genotype II' is found in plots 2 and 8. 

Figure 37 illustrates the data for the three control plots. The most noticeable factor is 

the decrease in the distance between RFLP genotypes, in comparison to the previous two 

treatment phylograms. This indicates that the control plots contain genotypes that are 

more closely related than genotypes in the other two treatments. Another thing to note is 

that there is an increase in the number of endophytic genotypes shared bct\veen plots. At 

least tour different genotypes were found to be shared amongst control plots. There was 

no case in which one genotype was shared across all three plots. 



Figure 35: Phylogram showing the molecular diversity of endophytic fungi found across 
the three low burn treatments. As can be seen the distances are very large indicating a 
very diverse group. 



-

rl 

- -

-

. 

r------

'------

0.1 

144 

'---

-

-

I 
I 

y 

~ 

r----1 

-

--1 

~~ 
r------

L--c 

I 

I 

.------

_j 

I 

GLI11601 
GLilll802 
OLI002'12 
GLS03301 
GL100203 
OL11118?1 
OL112902 
OL70982S 
OL709824 
OL7098Zl 
GL709803 
OL709804 
GL700306 
GL!03808 
GL707921 
GL721023 
OL721002 
GL721003 
GL709801 
OLI09001 
GL109002 
OL118801 
OL7214QA. 
GL721409 
OL7'214011 
GL7'21407 
OL721406 
GL721403 
OL721404 
GL7'21401 
GL721403 
GL101807 
GL700303 
GL717901 
OL7'21006 
GL707803 
GL7'21003 
OLIO I SOl! 
GL700303 
OL707903 
OL707904 
OL707805 
OL70790J 
GLJ01826 
GL103806 
GL707804 
GLI03803 
OLI03104 
OLI0~825 
GLSOS304 
GL707802 
OL713201 
GL709805 
GL709823 
GL721004 
GL7'21022 
OLSOSW 
OLSOS3?1 
GL508201 
GL109061 
GLSOS302 
GLSOZSOI 
GU02803 
GLS0Z806 
OU02804 
OLSOZSOS 
OL101809 
OL704304 
GL103809 
OL704303 
OL114701 
GL508202 
OLSI3901 
OLS13904 
GL120SOI 
OLIZOS62 
OLSIOIOI 
GLSIOIOZ 
OL709802 
GL71320Z 
OLS13902 
GL1109'11 
OL112901 
GL111603 
OLS19901 
OLSI4943 
GLSI4942 
GLS14911 
GLS14932 
GU02802 
GL700304 
OLIJ1602 
GL704301 
GLS13922 
OLSI3903 
GLSI3921 



Figure 36: Phylogram showing the molecular diversity of endophytic fungi found across 
the three high burn treatments. As can be seen the distances are very large indicating a 
very diverse group. Genotype U refers to a single RFLP genotype that was tound in 
two different treatment plots (in this case plots 2 and 8). 
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Figure 37: Phylogram showing the molecular diversity of endophytic fungi found across 
the three control treatments. Distances for a large portion of the samples is greatly 
reduced in comparison to the previous two phylograms. 
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Y!olecular data from each block (each block contains three plots. representing each of 

the treatments) was analyzed using LTPGMA clustering. Figures 38 to 40 show the 

results. Blocks 1 and 2 show that those samples from the centro I plots ( 3 and 6) tend to 

group quite tightly and with smaller average distances between isolates as compared to 

those from the other treatments. There is some sharing of RFLP genotypes across 

treatments. 

Figure 40 shows that plot 9. although a control plot. is more diverse than plots 3 and 

6. Although a control. it appears to be more characteristic of the burned plots. 



Figure 38: Phylogram displaying the molecular relationships between fungal endophytes 
located within Block l (plots 1, 2, and 3). Notice how tightly clustered many of those 
samples from the control treatment (plot 3) in comparison to those samples from either 
the high or low burned treatments (plots 2 and 1, respectively). 
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Figure 39: Phylogram displaying the molecular relationships between fungal endophytes 
located within Block 2 (plots 4, 5, and 6). Notice how tightly clustered many of those 
samples from the control block (plot 6) in comparison to those samples from either the 
high or low burned treatments (plots 4 and 5, respectively). 
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Figure 40: Phylogram displaying the molecular relationships between fungal endophytes 
located within Block 3 (plots 7, 8, and 9}. Samples from control plot #9 are much 
more scattered throughout the phylogram as compared to the control plots from the 
two figures previously. 
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3.2.5: Ectomycorrhizal identification 

Sporocarps that were collected from the study site, for two consecutive summers, were 

subjected to molecular analysis in order to determine the identity with any of the 

mycorrhizal root tips. As well other sporocarps were collected from various regions in 

St. John's, Newfoundland. Sporocarp specimens were also obtained from the National 

Mycological Herbarium of Canada and used as another means of trying to identify my 

unknown ectomycorrhizal fungi. Tables 4 and 15 list the details of each specimen. 

Table 15: Fungal sporocarps obtained from the Mycological Herbarium of Canada. 

Collection Molecular 
Species code(s) code(s) Author 

Cortinarius (Leprocybe) DAOM 187547 SR187547 (FR.exFR. )FR. 
limonius 
Entoloma abortivum DAOM 190387 SR190387 (BERK.etCURT.)DON 

K 
Inocybe geophylla var. DAOM 190876 SR190876 QUEL. 
lilacina 
Russula olivacea DAOM 213247 SR213247 FR. 
Thelephora terrestris DAOM 196056 SR196056 (BULL.exFR.)KARST. 

A total of 122 sporocarps, encompassing 33 different fungal genera, were used to 

identify my molecular mycorrhizal types. Forty-three of these sporocarps were identified 

to the species level. In the previous sections I detem1ined that other fungal DNA, besides 

ectomycorrhizal, had been amplified. Thus, I used mycorrhizal and non-mycorrhizal 

sporocarps in the identification process. However, even with this large number of 

sporocarp RFLP patterns my success at identifying tips was very poor. Only two of the 

310 (0.6%) molecular patterns (presumed to be ectomycorrhizal) could be associated with 
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the sporocarps. Even then, these were not perfect matches, suggesting that the sporocarp 

and ECM tip could be closely-related species, or genotypic variants of a particular 

species. Table 16 lists the ECM tips and the sporocarp fragment sizes. The main base 

pair discrepancies occur with Alu I and Rsa I. ECM tip GL613971, is approximately 

89% similar to the sporocarp, while the other (GL320774) is 83% similar. Each ECM tip 

arises from a different study plot, plots 6 and 3 respectively. Two points of interest do 

arise. Both plots belong to the control treatment, and both fungi were classed as a 'type 

7' , a white ECM type (table 1). Upon viewing the phylograms for each plot (figures 13 

and 16) it can be seen that both samples fell out as 'unique' molecular species. The 

sporocarp was identified as Lactarius deceptivus. 

Table 16: Sporocarp and EM tip fragment lengths (bps) after endonuclease digestion 
using Alu and Rsa I. Digested PCR product contained the ITS region belonging to 
fungal rDNA. All numbers represent base-pairs. 

Sample Fragment Molecular weights (bps) Total 
B170 466 229 188 112 995 

(Lactarius deceptivus) 
GL613971 471 219 148 125 963 Alu I 
GL320774 485 224 186 115 1010 

B170 396 322 166 150 1034 
(Lactarius deceptivus) 

GL613971 390 321 172 157 1040 Hinfl 
GL320774 399 325 167 151 1042 

B170 816 189 1005 
(Lactarius deceptivus) 

GL613971 795 200 995 Rsa I 
GL320774 831 203 1034 
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As previously mentioned, only 0.6% of the ECM tips were linked to a sporocarp, at 

least to the species level. This percentage may rise if I were to look only at the generic 

level. however due to a RFLPscan software problem [ was unable to produce phylograms 

for my ·sporocarp/ECM tip' comparisons. Without these phylograms it proved to be too 

difficult to decipher the similarity tables in order to look at sister clusters. \vhich may 

suggest generic relationships. 

3.2.6: Molecular patterns and u11ique species 

Although there were no significant differences in diversity between treatments this 

does not mean that they shared similar RFLP genotypes. A total of 14 different 

morphotypes were identified during the harvesting of the root tips (see methods section. 

table 1 ). The molecular data indicates that this was a large underestimation of the 

diversity. However. the phylograms (figures ll to 19) do show that some of the 

morphotypes do form molecular clusters that hold together for individual plots as \Veil as 

when the data for each plot is merged. This section will look into some of the major 

molecular groups and their molecular patterns. 

One of the more prominent morphotypes was identified as Cenococcum geophilum 

(type 1 ). A total of 75 samples. presumed to be ·type 1'. made it to the final analysis 

stage. These were spread across all nine plots but had a higher occurrence in plots l. ::!. 3. 

4. 7. and 8 (see table 17). From figures ll to 19 it can be seen that a majority of the 

samples classified as 'type 1' group into a distinct cluster, suggesting that the molecular 

similarity within this group is high. Other samples that were identified as ·type 1 · 

showed highly variable RFLP genotypes, thus placing these samples well outside the 
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'Cenococcum cluster'. These highly variable RFLP genotypes may have resulted from 

two types of errors: 1) the sample appeared to be 'type 1' but was another fungal species, 

or 2) the sample is a 'type 1' but another fungus, either an endophyte or some other 

ectomycorrhizal fungus associated with the ECM in question, was amplified instead of 

the target DNA. 

Table 17: Percentage occurrence of certain collected morphotypes, from individual 
treatment plots. 

Morphotype Percentage occurrence per plot 
1 2 3 4 5 6 7 8 9 Plots 

1 12 12 16 14 7 9 14 10 4 
7 8 5 10 9 3 3 2 2 7 

Within the main 'type 1' cluster it can be seen that there is more than one molecular 

type. In fact there appears to be at least four polymorphic types. These four polymorphic 

types are spread across plots 1, 2, 3, 4, 5, 6, and 7. Plots 8 and 9 both have 'type 1' 

samples but the RFLP patterns are very different from those in the other plots. Table 18 

presents the average molecular weights for each polymorphic 'type 1 '. However, since 

the morphotyping was a crude method for identifying the mycorrhizal fungi, some of 

these 'polymorphic types' may be different species of fungi. 



Table 18: Fragment lengths after endonuclease digestion using Alu I. Hif!fl. and Rsa I. Digested PCR product contained the ITS region 
belonging to fungal rONA. All numbers represent base-pairs. 

Molecular Sum of Sum of Sum of 
~l!e Alul Alul Hinll Hinll Rsal Rsal. 
e_qtyrnomhic 
Type Ia 434 152 I 14 700 271 180 164 130 93 838 904 904 
Type lb 439 159 120 96 814 275 185 168 135 98 861 870 870 
Typelc 431 154 117 702 273 167 135 104 679 888 888 
Typeld 437 152 1 16 70S 276 164 130 98 93 761 910 910 
Type Is 430 149 J J 2 691 278 161 127 87 6S3 991 991 
Type 19 420 184 131 123 8S8 355 324 165 150 994 993 993 

0 Type 7t,J 665 192 I 12 969 321 279 165 152 917 730 178 908 \0 - Type 7J 663 187 142 I 14 1106 318 276 165 151 75 98S 747 176 923 

Type 96 419 177 110 98 804 318 216 164 151 849 970 970 
Type 99 422 182 124 115 843 219 180 161 145 108 813 988 988 

N.~~:-RQl~mQ_m~ic 
TypeL 377 186 124 119 100 906 356 324 680 830 176 1006 

TypeG 566 183 116 1 1 1 976 316 259 163 150 103 991 1055 tOSS 

Type Ba 573 191 118 98 980 316 286 163 150 91S 749 178 927 
Type Bb 422 188 149 123 115 997 322 222 168 153 107 972 1031 1031 

subscripts refer to the research plot from which the molecular type belonged. 
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"Type 7' is another ectomycorrhizae that had very distinct morphological 

characteristics. A total of30 samples, presumed to be type 7. made it to the analysis 

stage. Table 17 indicates that plots I. 3. 4. and 9 harbored the highest proportions ofthis 

type. However. RFLP patterns indicate that plots 4 and 9 show no molecular types like 

those from plots I and 3. Almost every sample seems to be a different molecular species. 

Plots I and 3 do share similar molecular types with plot 3 possibly holding two 

polymorphic types (table I8). 

Other morphotypes (2. 3. 4. and 8) were shared across all plots. however these types 

showed numerous molecular fragment patterns. Aside from 'type 3 · the other three types 

possessed mantles that were very thin. and non-continuous (patchy). These mycorrhizal 

types would have fewer fungal cells. thus less DNA available tor PCR. Theretore. it is 

likely that if there were other fungi. endophytic or ectomycorrhizal. in the vicinity then 

these non-target types could compete with the target template for amplification. Thus it 

is difficult to determine the molecular pattern for each of these morphotypes .. -\s for 

'type 3'. it looked very similar to C. geophilum but it is evident from the many molecular 

patterns that it is more diverse than 'type I' . A total of 20 samples. presumed to be type 

3. made it to the final analysis. Earlier explanations regarding competitive PCR. primer 

affinity, and how viable the fungus was upon collection can explain why 'type 3' has 

such a diversity of molecular patterns. 

Aside from molecular types that are shared throughout treatments and plots. there were 

four morphotypes that were restricted to single plots or treatments. Two of these 

morpho types had low representation in terms of occurrence per plot; 2% for ·type L · and 
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4'% for 'type G' . When the RFLP fragment patterns were investigated it was found that a 

single, distinct, molecular pattern existed for each morphotype (table 18). 'Type L • was 

found only in plot 2, high burn, and 'type G' was discovered in plot 7, low burn . Since 

these molecular types did not occur on any of the other treatment plots. it is impossibk to 

determine whether or not these fungi prefer burned soils. for these EM fungi. It is 

possible that these ECM fungi are of the carbonicolous type, that is types that prefer post­

tire regimes. 

Morphotypes ·9' and ·g' had higher occurrence than the previous two types; 1 0° a and 

16% respectively (plots 6 and 9). 'Type 9' was found on plots 6 and 9. and 'type B' v..-as 

restricted to plot 9. Both plots were control treatments. Each morphotype appeared to be 

visually distinct thus increasing the accuracy of my morphotyping in these cases (see 

table I tor descriptions). However. a closer inspection of their RFLP fragment patterns 

revealed that each morphotype had at least two major molecular types. 

Figures 16 and 19 show that within each plot those classitied as 'type 9' term a 

distinct molecular type. However. fragment patterns tor Hinfi indicate that those ·type 

9' samples from plot 6 (hereafter referred to as type 9(}) have a 3 18 bp fragment which is 

not found in the samples from plot 9. Instead those samples in plot 9 (referred to as type 

9q) have two smaller bands (180 bp and 108 bp) which may indicate extra restriction sites 

not found on those samples in plot 6. These two smaller bands would only produce a 

fragment of 288 bp. which is 30 bp shorter than the 318 bp fragment tound in type 9". 

One of two possibilities explain this 30 bp loss: 1) measurement errors associated with 

the software package and standards, or 2) there were two Hinfl restriction sites within the 
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318 bp fragment. This would give us the 180 bp and 108 bp bands, which are quite 

visible on the agarose gel, as well as a 30 bp fragment which would not have been 

visible. Table 18 shows that fragment patterns for Alu I and Rsa I were very similar but 

there were some length differences. Again these differences may be measurement errors 

incurred when comparing samples from different gels. l conclude that type 9,., and 9.~ are 

polymorphs. 

A close inspection of 'type 8' suggests that there are two possibilities: l) there are two 

variants. or 2) these are two closely related species. The tirst possibility is remote since 

within each restriction set there is considerable length variability between respective 

fragments. These length variances cannot be attributed to measurement error since they 

are so large. The second possibility that seems more likely given the restriction fragment 

differences is that these are two closely related species. \Vhich share similar macroscopic 

characters. This example stresses the imponance of molecular characterization so that 

such confusion can be avoided. 

3.2. 7: Traditiona/J'erses New Diversi(Jl Measures 

Diversity is a concept that seems intuitively simple. Even without the complex 

equations which set a value for the index of diversity within a given area. most people are 

able to grasp the concept of one area being more biologically diverse than another 

( Magurran. 1988 ). However. in order to discuss the diversity of one community in 

comparison to others. researchers need consistent and comparable values for \vhich to 

quantify this diversity. Over time numerous diversity indices have been created to help 



164 

with this quantification. The main reason that so many indices exist is that diversity takes 

into consideration both species evenness and abundance (Magurran, 1988). 

Three types of diversity measures can be described. The first is species richness 

indices. This type of index measures the number of species in a sampling unit (e.g. 

\-targalef index). Secondly there are species abundance models which describe 

distributions of species abundance (e.g. Log series). Lastly are those indices that 

emphasize proportional abundance ofspecies . These indices try to put richness and 

evenness into a single value (e.g. Shannon-Wiener and Simpson). These types of indices 

are the most commonly used. 

lndices based upon the proportional abundance of species can be broken down into 

two categories. First are those that measure diversity in a similar manner to the \vay one 

would get information from a code or message. These indices arc called the in(orn~tuwn 

theory indices. The Shannon-Wiener index is one such example. This index assumes 

that sampling of individuals is from an ·infinitely large ' population. lt takes into 

consideration all individuals within the sample (p,= n,1N; n, is the number of individuals 

within the i1
h species and N being the total number of individuals \Vithin the sample). 

However. this proportion will always be biased since one can never really obtain the true 

proportion from a sampling. Therefore. the error will increase as sampling intensity 

decreases. 

The second category of abundance indices is referred to as dominance measures. 

These indices are more concerned with the abundance of the commonest species instead 

of species richness. For example, the Simpson index (D) estimates the probability of any 
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two individuals drawn at random from an infinitely large community belong to dtfferem 

species. i.e. D=[pi2
• One problem with this index is that it is heavily weighted t0ward::; 

the most abundant species and less sensitive to rare species. 

Within this study both the Shannon-Wiener and Simpson indices were used to attempt 

to determine the diversity of mycorrhizal fungi based upon molecular data. Both indicc:s 

rely upon the fact that we are already aware of the number of spectes Within a given 

sample. lntraspecific variation within a given species may not be noticeable or may be 

de-emphasized in identification keys. at the phenotypic level. thus making div~rsity 

analyc;;is relatively easy. However. at the molecular level the presence of intraspeciti\.: 

variation can have maj0r repercussions for traditional diversity meac;ures. 

The amount of intraspecific variation within a species will vary Such things as th~ 

geographic location of that species. whether 1t reproduces c;exually or ase:\.ually. and ;Ja~l 

genetic history are some of the factors that determine rhe proportion 0f intraspecific 

variation residing withm a species. Restriction fragment length polymorphtsms (RFL.Ps) 

can be very sensitive to these changes. As well RFLP analysis can detect error associated 

with PCR-RFLP analysis. These errors can factor in those patterns resulting from 

mcomplete digestion. phantom PCR bands resulting from multiple bmding sites, and 

fragment size calculation errors resulting from comparing samples across gels. As a 

result a single fungal species may have more than one molecular pattern. 

An easier way to view the effects of intraspecific variation upon traditional diversity 

measure is via an example. Figure 41. taken from Stoyke eta/. ( 1992). shows the 

diversity within a Phia/ocepha/a fortinii clade. This example will proceed to increase tht. 
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amount of intraspecific variation within this phylogram in order to see the effects it will 

have upon traditional diversity indices. At 0%, that is no intraspecific variation, we see 

that there is one species with two individuals and fifteen species with one individual. At 

5% there are nine species with one individual, one species with five individuals, and one 

species with three individuals. At 10% there are eight species with one individual, one 

species with six individuals, and one species with three individuals. Lastly, at 15% there 

are seven species with one individual and one species with ten individuals. Table 19 

shows the calculated Shannon-Wiener and Simpson values. 

Table 19: Varying levels of intraspecific variation applied to 
figure 41and the associated values for two traditional diversity 
indices. 

%intraspecific Shannon-Wiener Simpson value 
variation (H') (1-D) 

0 2.75 0.993 
5 2.17 0.9 
10 2.01 0.868 
15 1.48 0.669 



Figure 41: Phylogram showing the diversity within the Phialocephalafortinii clade 
(Stoyke et a/., 1992). 
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From these calculations it can be seen that species richness indices, such as Shannon­

Wiener, are least affected by intraspeci fie variation whereas species dominance indices 

(Simpson) are greatly affected. Regardless. all traditional indices that are based upon 

proportional abundance of individuals within species are all sensitive to molecular 

intraspecific variation to some degree. 

Although l used traditional diversity indices to analyze my molecular data. 1t was 

soon obvious that they may lead to misleading interpretations. thus a more reliable index 

was needed. There are numerous indices that look at the levels of genetic variation 

within and between populations (e.g. Lynch. 1990). However. these indices are based 

upon the assumption that variation is occurring 'within' a single species. not between 

different species. There did not appear to be any population diversity index that would be 

appropriate for measuring diversity of a sample of different species. Indices based upon 

phylogenetic data have been developed which are more appropriate for measuring 

diversity ofa sample ofspecies (Krajewski. 1994). However. these indices were 

designed to examine diversity of monophyletic groups of organisms, and to take 

extinction rates into account in the estimate. Since the ecological samples [ obtained 

would not conform to the requirement for monophyly, and extinction rates were 

unknown, I felt that these indices were also not appropriate for ecological samples. 

Therefore. a new index was invented. Since [ was obtaining species richness and 

abundance data from the phylograrns, l decided that a more sensitive measure should take 

into consideration the actual distances used to create the phylograms themselves. This is 

intuitively satisfactory since groups of similar species would contribute smaller distances. 
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even factoring in the intraspecific variation that exists within a species. To illustrate this, 

figure 42 shows three phylograms which contain the same number of species, but all with 

varying degrees of similarity. Tree 1 shows that there are small distances separating most 

of the species indicating that the relationships are high among them. Tree 2 has collapsed 

many of the shorter branches that were viewed in tree 1, thus increasing the similarity 

among several species. However, tree 3 shows a similar grouping of species as that of 

tree 2, but larger distances separate each cluster. Both the Shannon and Simpson indices 

were calculated for each of the trees, and the values are in table 20. 

Table 20: Shannon-Wiener, Simpson and Phi index values calculated for 
the three hypothetical phylograms (Figure 42). 

Diversity Values 
Ehylogram Shannon Simpson Phi 

(H') (D) (P) 
Tree 1 2.20 0 0.150 
Tree2 1.21 0.25 0.146 
Tree3 1.21 0.25 0.291 



Figure 42 Three hypothetical phylograms to demonstrate the Shannon-Wiener, Simpson. 
and Phi indices. 
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The Shannon index suggests that tree 1 has a more diverse community than the other 

two, while trees 2 and 3 have the same values. However, from looking at the distances 

separating each cluster it is quite apparent that tree 3 would be the most diverse at the 

phylogenetic level. Appendix XI contains the matrix used for the creation of each of the 

three trees . Also included are the calculations for my "Phi index" (Appendices XII) . 

The Plu mdex ts calculated usmg the phylogenetic distances obtained from the distance 

matrix created during my PHYLIP analysis ( Felsenstein. 1993 ). All the distances (d) for 

an individual are squared and summed (rd2
) to give D. This D value is then divided by 

"N-1 ", that is ''0/(N-1 )". "N" being the total number of individuals for that sample. 

These two steps were done for each individual within the matrix. All "0/(N-l )'' values 

were summed and then divided by "N". that is "-r(D/(N-1 )]IN". Table 20 shows that 

trees l and 2 are much closer in diversity using the Phi index. whereas tree 3 shows a 

greater difference and a much greater diversity. This would suggest that my Phi index is 

less sensitive to the problems intraspecific variation introduces. and thus may be more 

reliable than traditional diversity indices. 

Previously the Shannon, Simpson and Phi indices were calculated for the Glide Lake 

data. Table 21 summarizes the index values. 
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Table 21: Shannon-Wiener (H'), Simpson (1-D) and Phi index (P) values calculated for 
the nine experimental plots near Glide Lake. There are two values for each plot based 
upon the separation of non-target data from ectomycorrhizal data. LB= low bum, 
HB= high bum. 

The values for the Simpson index shows very little difference between plots. Since 

this index is sensitive to the abundance of individuals, and due to the fact that most RFLP 

genotypes in a plot only consisted of one sample, it is not surprising that the diversity was 

so uniform in each plot. The Shannon-Wiener index relies more upon species richness, 

thus explaining the high values (which were very close to the maximum index value 

based upon the sample size. For example: plot 1 had 33 RFLP genotypes in only 42 

samples, giving a H'= 3.41. If plot 1 had 42 genotypes in 42 samples then H'= 3.50. The 

two are quite close, thus suggesting that plot 1 was very close to having the maximum 

possible diversity). The greater the number of genotypes (distinct molecular patterns) 

then the greater the index value, that is to say this index is sensitive to the genotype 

number and to the number of samples. For example, plot 8 (mantled tips) has a total of 7 

molecular species, the lowest of all the plots, thus explaining its low index value. The 

Phi index does not depend upon species abundance nor species richness. Instead it relies 
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upon the distance data thus producing values that are more sensitive to changes in the 

phylogenetic diversity of the samples. 

lfwe were to look at bar graphs of the means for each of the above mentioned indices 

certain trends can be noticed. Figure 43 shows that within the ectomycorrhizal root tips 

there is a different trend for each index. Looking at the Shannon-Wiener values it 

appears that the low burns have the highest diversity. followed by the controls and then 

the high burns. The Simpson shO\vs that all three treatments seem to be almost equal 

with respect to diversity. On the other hand the Phi index shows an increase in ECM 

diversity as one moves from control. to low. to high treatments. In the previous section 

(3.2.3) an ANOV A was performed upon both the Shannon and Simpson values and it was 

found that neither were statistically significant. An ANOV A performed upon the Phi 

index values for ECM root tips showed that there was no significant difference between 

treatments with respect to diversity (Appendix XII[). 

ANOVAs pertormed on the three index values (table 21) calculated with the non­

target data (non-mantled tips) indicated that all possible comparisons showed no 

significant differences between treatments. with respect to molecular diversity (Appendix 

XIV). Looking at a plot of the means. of each index, for the non-target DNAs data it was 

seen that they also showed different trends. The Shannon-Wiener index had the low 

burns showing the highest diversity, followed by the control and the high burns having 

about equal mean diversity values. The Simpson index showed very little difference 

between the three treatments. The Phi index showed a trend different from that which 
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was viewed for the ectomycorrhizal index. The low bum had the greatest degree of 

diversity. This was followed by the high bum and finally the control (figure 44 ). 



Figure 43: Graphic representations ofthe means of each index (Shannon-Wiener, 
Simpson, and Phi) obtained for the three treatment plots. Indices were calculated 
using the data collected for ectomycorrhizal root tips only. Bars in the center of each 
bar represent the standard error. ( 1 = Control treatments; 2= Low burn treatments; 3= 
High burn treatments}. 
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Figure 44: Graphic representations ofthe means of each index (Shannon-Wiener, 
Simpson, and Phi) obtained for the three treatment plots. Indices were calculated 
using the data collected for non-mantled root tips only. Bars in the center of each bar 
represent the standard error. ( 1 = Control treatments; 2= Low bum treatments; 3= High 
burn treatments). 
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Chapter 4: 

Discussion 



4.1: Ectomycorrhizal Abundance 

4.1.1: Pre/imi11ary A11alvsis 

182 

The preliminary study allowed me to draw several conclusions concerning the 

rhizosphere diversity of naturally regenerating spruce and tir seedlings within the Glide 

Lake clear-cut. First. it was evident that roots of naturally-regenerating seedlings were 

colonized by ectomycorrhizal fungi, as evidenced by the presence of roots with 

developed fungal mantles. Second. the endophyte diversity within this site was 

potentially quite large. Fungal cultures indicated that there \vas a large population of 

ascomycete fungi inhabiting the root rhizosphere. Since the root tips were sterilized 

before cultures were isolated. l believe that most of the cultures obtained \vere root 

endophytes rather than surface contaminants. Finally. it was clear from collections of 

basidiocarps that there was a high diversity of potential mycorrhizal fungi in the 

surrounding forest. although l was unable to confinn that mycorrhizal basidiocarps 

represented in the sample were fanning mycorrhizae on seedlings in the clear-cut. 

4.1.2: Percent Abundance ofMycorrhi;al Fu11gi 

The new analysis of data from the preliminary study indicated that there were no 

statistically-signiticant differences between percent abundance of individual 

ectomycorrhizal fungal species verses location. for mycorrhizas found on black spruce or 

balsam fir seedlings. The colonization potential of these five morphological types were 

similar. regardless whether the seedlings were planted near the forest edge or in the clear­

cut. Of course this can only be said for the five fungal types that were investigated. 
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My investigation showed that there was a significant difference. tor both tree 

species. in the types of fungi colonizing roots. Both tree species had rnorphotypes 3 

(shiny. black fungus) and 8 (white, cottony fungus) being the most dominant. Type 3 

covered almost twice as much of the root systems ofblack spruce as compared to that of 

balsam fir. This would suggest that spruce seems to be the preferred host tor this fungus. 

lt was found that type 1 (C. geophilum) was another dominant ti.tngus on spruce roots. but 

not on the fir. In fact it was five times more prevalent on the spruce than the tir. This 

may suggest that spruce. instead of fir. may be the preferred host tor C. geophi/um within 

my study area. A study by Doudrick eta/. ( 1990) showed that aseptic synthesis of 

ectomycorrhizas between black spruce and Cenococcum sp. were accomplished quite 

easily. lt appeared that overall ectomycorrhizal abundance. regardless of species. was 

greater on black spruce instead of on fir. however. I found that this \Vas not statistically 

the case. 

I saw that both naturally regenerating black spruce and balsam fir harbor a variety of 

ectomycorrhizal fungi. Overall both tree species have an equivalent amount of 

ectomycorrhizal abundance. However, does this mean that the greater ectomycorrhizal 

abundance a particular host has. then the better it's chances of survival'? This is an 

ongoing debate. Some believe that it is not the frequency of mycorrhizal species which 

affects the host's fitness, but the particular species of fungi that form these associations. 

That is to say that some fungal species have more important functional roles than others 

(MacGillivary eta! .. 1995; Tilman eta! .. 1997). If this is true then one would expect to 

see more of certain species occupying root systems of a host than that of other fungal 
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species. In the case of my data this would seem to hold true. Maybe the host is not 

always the determining factor in what fungal species will occupy root systems. Other 

factors such as soil type. moisture content, fauna composition could have more of an 

influence than host type. In my study it was apparent that both fir and spruce seedlings 

held the same frequency and types of ectomycorrhizal fungi. However. this speculation 

must be taken carefully since my study did have a limited sample size and limited 

morphotyping capabilities. Although my five fungal types were quite distinct. this does 

not mean that some individual types could not have actually been two or more species. 

For example. my type 3 (shiny. black mantle) when analyzed at the molecular level 

(section 3.2.6) revealed that many different molecular patterns arose from it. This 

suggests that many fungal types can adopt a similar morphological appearance. which 

could have easily affected the analysis of percent coverage. Thus. molecular analysis 

allows one to formulate a better estimate of the 'true' species diversity which would 

enable one to perform more accurate assessments ofthings like functional and species 

diversity. 

4.2: Molecular analysis ofectom vcorrhjzalfungi 

4.2.1: fercellt PCB am.plificatioll a11d prese11ce ofdoublets 

The mean success rate of the PCR amplifications was estimated to be 76~1o (684 out 

of900), ranging from 88% to 63%. Karen and Nylund ( 1997) had a success rate of89% 

(94 out of 106). Erland eta/. (unpublished) had an amplification success rate of86% and 

82'% at their two study sites. The main reason for the difference between my success rate 
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and that of the others is that I was not just dealing with ectomycorrhizal roots. Our study 

also included 'non-mycorrhizal' root tips. If I were to just look at the amplitication rate 

of ectomycorrhizal tips. I saw that I had 440 out of 536 successful amplitications (82%). 

This is much closer to the success rates of the other studies. Also we must factor in the 

amount of material used in each study. My study and that of Erland era!. (unpublished) 

extracted from individual root tips. Karen and Nylund ( 1lJlJ7) used multiple tips within a 

single extraction. The increase in the amount of fungal material used by these 

researchers may explain their higher amplification rate. 

My overall percentage of double amplifications (doublets). noticeable on detection 

gels and those within digestion gels. equaled 6°•o. Karen and Nylund ( 1997) had 

approximately 38% of their amplitications containing doublets. Their high value may be 

attributed to the use of several tips within a single extraction. thus increasing the chances 

of obtaining two fungal species within the same extraction. Karen and Nylund ( 1997) 

also suggest the possibility of the co-existence of mycorrhizal or saprophytic fungi on 

single root tips as another reason for the double amplification. My data also suggests that 

there is yet another possibility for this double amplification. Since endophytic fungi were 

so prevalent throughout our study site, it is possible that the Karen and Nylund study site 

also harbored a healthy population of endophytes. which would provide another source 

for double amplifications. Erland eta!. (unpublished) found that their percentage of 

doublets were 11% and 21% for each study site. The higher degree of doublets compared 

to my study could be a result of numerous factors. Different sites contain different fungal 

species which may form different associations with roots, thus my site may have root 
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systems that contain fewer dual occupied tips. Also another factor may have to deal with 

the primer sets used in each study. and the specificity regime of each set. I used 

ITS L.-NL6Bmun and Erland el al. (unpublished} used ITS l.'ITS4. 

Therefore. one must be wary of the potential for dsDNA being amplified from some 

mycorrhizal and non-mycorrhizal root tips to belong to that of non-mycorrhizal fungi 

(e.g. endophytes). There are several scenarios possible when amplifying from a root tip: 

( 1) a living ectomycorrhizal fungus has taken up residence on the tip and has excluded 

both invading soil fungi as well as endophytic fungi. Thus. amplified DNA will belong 

to this particular fungus. (2) The ectomycorrhizal tip has either senesced or become 

damaged thus exposing root epidermal cells through the mantle. .-\s a result endophytic 

fungi may have invaded the root tip . Thus. tht! amplified DNA may bdong to the 

endophyte(s) or the ectomycorrhizal fungus (if it has senesced then the time of death will 

affect the condition of its DNA. which in tum will affect the PCR outcome). ( 3) a non­

mycorrhizal root tip may appear uninfected. however it is being colonized by one or more 

endophytic fungi. Thus. a positive amplification would result from the PCR. (4} the root 

is inhabited by an ectomycorrhizal fungus that supports a relatively thin mantle. thus 

preventing the fungus from excluding endophytes. Again the PCR could contain the 

DNA of either the mycorrhiza or the endophyte. ln the case of scenarios 2 and 4. another 

possibility can arise. Both the mycorrhizal and endophytic fungal DNAs have equal 

affinity for the primers. The result is equal amplification of both thus producing a 

'double amplification'. In some cases there is a significant size difference between 

amplified products. and when run on a horizontal agarose gel they separate to indicate a 
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double amplification. However, in other cases, when both have equivalent base numbers. 

double amplifications will not be realized until after endonuclease digestion. In this case 

one, or more, endonuclease band patterns will sum much greater than the expected base 

SIZe. 

4.2.2: What was responsible for amplification from "non-mvcorrhilal" roots? 

A high proportion of roots that were classified as non-mycorrhizal when sorted under 

a dissecting microscope. did produce amplification products. There were three possible 

sources for the template DNA: 1) surface contaminants, 2) ectomycorrhizal fungi that 

produce a thin, hyaline mantle. and 3) root endophytes. 

Endophytic fungi are not newcomers to the mycological field . \'lelin ( 1923) makes 

reference to ·pseudomycorrhizas· which were considered to be non-mycorrhizal fungi 

that occurred in mother roots and older portions ofmycorrhizas found on pine and spruce 

trees. One particularly dark pigmented pseudomycorrhiza was named :'v(vcelium rLLdicis 

atrovirens (M.r.a.). Richard and Fortin ( 1974) found this endophyte to be quite common 

in the roots of Pica mariana (Mill) B.S.P. [as well saw similar hypha! structures within 

my spruce root tips (Figures 6 and 8). After clearing and staining numerous spruce roots. 

both non-mycorrhizal and mycorrhizal tips contained extensive fungal hyphae within the 

intra- and intercelluar spaces of these rools. This staining process \Vas implemented 

because l witnessed, initially. a very diverse set of RFLP patterns for what were 

presumed ·non-mycorrhizal' (NM) root tips 

Given the observations of endophytic fungi in cleared and stained roots showed only 

sparse coverings of surface fungi, but abundant endophytic fungi, l consider it most likely 
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that the largest proportion of amplification products recovered from non-mantled roots 

were endophytes. A study by Ahlich and Sieber ( 1996) showed there to be a wide variety 

of endophytic fungi inhabiting non-ectomycorrhizal roots of Abies alha. Picea abies. and 

Pinus syh:estris. thus providing support for my findings. 

In some cases I was able to link roots that were classified as non-mycorrhizal to roots 

that were classitied as ectomycorrhizal. This probably occurred because some collections 

represented ECM in early stages of development. before the mantle \vas fully formed. ln 

these cases. the thin mantled ECM type was transferred to the ECM database. The 

remaining types were transferred to a separate endophyte database. The results of the 

analysis ofthese two databases is discussed below. 

4.2.3: Wiry djd we amplify 11011-target DNA? 

There have been numerous studies which have looked at the molecular diversity of 

endophytic fungi (Stoyke et al .• 1992~ Wetzel III eta/ .. 1996: Harney eta/ .. 1997). as 

well as that of ectomycorrhizal fungi ( 1Gardes and Bruns. 1996: Karen and Nylund. 

1996: Karen and Nylund. 1997: Erland eta/ .. unpublished; Dalhberg eta/ .. 1997). 

However. there appear to be no studies which have looked at both fungal types within the 

same host. This was surprising since both are common to most plant systems. 

The main purpose of this study was to look at the molecular diversity of ECM fungi. 

however. it is sometimes easy to overlook ECM fungi that are in the early stages of 

development. thus healthy. ·non-mycorrhizal' root tips were included in my sampling 

[By 'non-mycorrhizal', I refer to those root tips that did not show any signs of infection 

such as color change, distortion of the tip (like swelling, twisting, etc.), or harboring of 
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hyphae]. By doing this I discovered that there was a very diverse endophytic community 

within my study area. and that this community existed along with the ECMs! 

The presence of these endophytes with ECMs indicates that any study dealing with 

direct amplification from ECM roots must be careful with the assumptions made. ~o 

matter how distinct the ECM fungus observed. there is the potential that the RFLP pattern 

may belong to any underlying endophyte. Karen and Nylund ( 1997) indicated that they 

were aware. from double amplifications, that there were other non-target fungi present 

with ECMs. They refer to the possibility that these fungi were external saprophytes. 

however my study indicates that these non-target fungi could exist within the roots. 

underneath the ECM mantle. 

Another reason that my study has identified so many endophytic RFLPs has to deal 

with the primer set used in the PCR. The study used the universal primer ITS 1 along 

with NL6Bmun (fungal specific) . Although the latter was designed to favor 

amplification ofbasidiomycete rONA. extensive tests show that. at the annealing 

temperature used in this experiment. it readily amplifies most ascomycete rONA as well 

(unpublished data). Other studies have used primers that favor the amplification of 

basidomycetes. ITS 1 F /ITS4B ( 1 Gardes and Bruns, 1996 ), or ascomycetes, ITS l /ITS4 

(Karen and Nylund, 1997). Although ITS 1 /ITS4 are considered universal primers and 

thus should recognize both ascomycete and basidiomycete DNAs. a study by Gardes and 

Bruns ( 1993) showed that this primer set has a higher affinity for ascomycetes. 

Therefore, the types of primers used in a study can greatly affect the diversity of 

endophytic species amplified from root tips. 1 Gardes and Bruns ( 1996) found that they 
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could not identify five RFLP types from ECM roots. It may be possible that some of 

these are basidiomycete endophytes. Since only a few endophyte species belong to the 

Basidiomycota (Isaac, 1992) there is probably more of a likelihood that these unknown 

molecular types are ECM types. Many endophyte species belong to the Ascomycota 

group ( lsaac. 1992). which in part may explain the higher number of unknown RFLP 

patterns ( 12 of21) that Karen and Nylund ( 1997) encountered while looking at ECM 

fungi on Scots pine and Norway spruce. Since my primer set readily amplifies 

ascomycete DNA then this may explain why there were more molecular patterns than 

morphotypcs and why I had amplification from NM root tips. 

Our observations of endophytic fungi in ECM roots would agree with the findings of 

Summerbell ( 1989), who was able to isolate Phialocephala fortinii. a dark septate 

endophytic fungus. from serially washed ectomycorrhizal roots of black spruce. Otht:rs 

have also found various conifers that harbor a variety of these DSE fungi within their 

roots (Holdenrieder and Sieber, 1992; Harney ec al .• 1997). 

There are four possible explanations to explain why the DNA of these endophytes 

amplified instead of that of the target ectomycorrhizal fungus which was observed upon 

the root tip. First. although a mantle was present the ECM fungus may not have been 

viable. This is especially a problem for ECM with darkly pigmented hyphae such as 

Cenococcum geophilum (type 1) and type 3. After death DNA is quickly broken down 

and would yield little to no amplifiable ECM DNA. If there \vere endophytic fungi 

present below the old mantle then this could produce a positive amplification of non­

target DNA. A second scenario is that competitive PCR was occurring, that is 
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competition between DNA templates belonging to two or more fungal species. Not all 

DNA amplifies equally efficiently. Therefore. rONA from an ECM and an endophytic 

fungus may have been present in the extraction solution. however during the PCR 

reaction the endophyte's DNA had a higher affinity for the primers thus being 

preferentially amplified over the ECM template. A third potential problem is differential 

concentration of DNA template tor each fungus. Some ECM fungi do not produce 

uniform. thick mantles (figure 9). Instead their mantles are thin. and patchy ( tigure 10). 

In the case of those ECM fungi with thin and patchy mantles the amount of DNA present 

in the hyphae is likely to be lower than that of ECM fungi with thick mantles. Therefore. 

an endophyte inhabiting a root tip that was host to a thin. patchy mantled ECM fungus. 

may provide relatively more DNA for the PCR reaction than that of the ECM fungus . .-\. 

final possible cause of differential amplification is the presence of inhibitory compounds 

naturally occurring in the DNA extracts. These compounds can interfere \Vith the normal 

operation of the PCR reaction. They may bind to the DNA polymerase used in the 

reaction or they may interact with the template DNA and prevent amplification. The 

latter is dependent on the characteristics of the template. Just as some DNAs have higher 

affinities towards primer annealing. some are more resistant to inhibitory compounds. 

Therefore. in the presence of a PCR inhibiting compound, some ECM DNAs may not 

have been able to take part in the amplification reaction. but an endophyte's DNA may 

not have been affected. 

It is quite apparent that trying to amplify DNA from an ECM fungus. on an individual 

root tip. is no easy task! There will always be the presence of other potential DNA 
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templates, whether they come from other ECMs, surface non-mycorrhizal fungi. or 

endophytic fungi. Thus, if we wish to better understand mycorrhizal communities. we 

must gain a better knowledge of how; our primers behave in silll. how we can better 

protect DNAs from inhibitory compounds. how different DNAs interact during the 

amplification process. and how to improve screening techniques so that \Ve can reduce 

the chances of including several fungal DNAs into a single extraction (if possible). 

4.2.4: Notr-Target DNAs: Now You see 'em. 110w YOU doll 't! 

Many researchers have looked at the morphological and c:cological characters of 

endophyte fungi (Peterson er al .. 1980; Wang and Wilcox. 1985; Wilcox and Wang. 

1987: Stoyke and Currah. 1991; Holdenrieder. and Sieber. 1992; Stoyke ec a/ .. 1992: 

Currah ec al .. 1993; Currah and Tsuneda. 1993; Carroll. 1995: Ahlich and Sieber. 1996: 

Fernando and Currah. 1996; Bayman era/ .• 1997). Researchers have found that these 

endophytes exist extensively throughout plant systems. They are quite numerous within 

the leaves of some trees (Carroll. 1995). They have been isolated torrn bark samples 

(Bissegger and Sieber. 1994). They are also quite often found throughout the roots of 

many plants (Stoyke era/ .. 1992; Currah era/ .. 1993; Harney era/.. 1997). Our data tor 

the NM tips showed that: ( 1) every treatment had a very diverse set of molecular species. 

(2) some treatments showed sister taxa that originated from the same seedling, and (3) the 

treatment type may have affected the community structure. with respect to species 

composition. 

The first observation is easily supported by the phylograrns (figures 20 to 28), and 

from the calculated Phi index (table 21, section 3.2.7). Within each bum treatment the 
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diversity tends to be quite extensive, some plots more so than others. For example. plot 

1 (low bum, Figure 11) shows at least 33 distinct molecular species. The distances are so 

large, greater than 5%, between most isolates, this is justification enough to support their 

claims as being distinct species. It was found that distances greater than 5% indicated 

that compared samples had all three enzyme patterns varying. According to Karen et a!. 

( ll)97). a three enzyme vanation Within the ITS region of rONA tends to be a satistactory 

criteria for separation of most mycorrhizal species. 

However. when I looked at the control treatments, it was seen that two of the three 

plots (3 and 6) contained a large group of isolates with distances of I 0% or less. between 

each other (figures 13 and 16 ). This suggests that samples were more closely related. 

The other control treatment, plot 9. showed a very high degree of diversity. The larger 

distances indicate that there are fewer closely related RFLP genotypes. As to \vhy this 

control did not show the same trends as its sister treatments. no answer is yet available. 

Our data suggests that burned soils contain a higher diversity of endophytic fungi 

than that of the controls. Endophytic fungi can be latent pathogens. mutualist. and! or 

saprobes (Carroll. 1995). Carroll ( 1995) observed that endophytic fungi tend to restrict 

themselves to a few cells within tissues. Since endophytes encompasses such a large 

group of fungal types, and the ability for several species to exist within a single host may 

explain the high degree of diversity found on the burned sites. After burning there was 

plenty of damaged plant material left behind which could have provided a multitude of 

host material necessary for pathogenic and saprophytic endophytes. Once the spruce 
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seedlings were planted then fresh plant tissue could possibly provide and attraction for 

many of these endophytes. 

Within the control plots there is the possibility that the endophytic community is 

becoming more homogeneous. It could be a result of limited resources requiring 

specialized endophytic species which can tap these resources. An extended project 

lookmg at yearly. or even. seasonal. changes m the endophyte commumty would be m 

order before any conclusions could be made. 

lt was noticed that within many of the treatments there could be seen particular 

groupings of endophytes which had originated from the same seedling. For example. 

consider 'genotype I' within figure 31. This group contains one. posGibly two (closely 

related). molecular type(s) for what was assumed to be at least three different fungal 

morphotypes (types 0, 4 and 6). lt would appear that this group, or genet. was the 

predominant fungal type within that seedling since no other molecular types are shown to 

exist for that seedling. A total often root tips were randomly selected from each 

seedling, thus on a microscopic level. providing a vast amount of tissue material for 

potential endophyte colonization. Carroll ( 1995) tC,und that within an individual Douglas­

fir needle there existed at least tive endophyte species. Carroll suggests that these fungi 

occupy extremely limited domains within plant tissues. Thus. given the amount of 

material l used and the vastness of the selection potential, it would seem that my findings 

do not agree with that of Carroll. It appears that my seedling's root system was taken 

over by either a single individual (a clone). or an individual species (a multitude of 

individuals). This is similar to what Liu et. a/. ( 1998) found when they looked at ericoid 
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endophytes within Woo/lsi a pungens. They found that some of their root systems seemed 

to contain only one endophyte genet. In support of Carroll's observations there are also 

numerous examples within my data in which a single seedling supports 3 or 4 distinct 

molecular species. These genets can be found in every treatment. but are most strongly 

supported in the control plots (plots 3 and 6~ figures l3 and 16. respectively). thus 

explaining the lower Phi index values for these plots (table .21 ). 

4.3: ECM Diversjzy 

4.3. 1: Identification ofECi\1 root tips 

It was not surprising that I was unable to identify such a large portion of my ECM 

molecular types. only 0.6%. It is becoming increasingly clear that above ground fruiting 

structures do not correlate well with below ground mycorrhizal fungi (Read. 1984: 

1Gardes and Bruns. 1996). Even though my sampling of fruitbodies took place over two 

seasons. it appears that I barely came close to collecting one percent of the mycorrhiLal 

fruit bodies. As fungal fruiting is so dependent upon a variety of environment factors it is 

not inconceivable that many of my ECM fungi did not produce fruiting structures in 

either summer. It is quite likely that I missed the fruiting of many of the ectomycorrhizal 

fungi inhabiting the root tips. [t is also possible that these fungi may have produced 

fruiting structures that were either too small or buried beneath litter and soil. thus 

preventing us from detecting them. 

Although morphological and molecular data can provide insights into better 

understandings of mycorrhizal biodiversity. both techniques in unison give maximum 
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clarity. Without this union. scientists may over. or under estimate the true mycorrhizal 

biodiversity. 

4.3.2: Whv no change in ECM diversi(J!? 

Our study found that there was no significant difference in diversity between ECM 

fungal communities existing on control plots compared to that of burned plots, regardless 

ofburn intensity. This would suggest that ectomycorrhizal fungi \Vithin the Glide Lake 

region could be composed of species that can tolerate the physical and chemical effects 

that accompany burning and/or have a high capability for recolonization after 

disturbance. If this is the case it would suggest that the site itself may have experienced 

past pressures, whether wildfire or some other type of disturbance, which caused the 

ECM community to contain only those species that could thrive after such disturbances. 

Therefore. with respect to the planting ofblack spruce it would seem that the intensity of 

the prescribed bum would have no harmful effects on the ectomycorrhizal populations 

inhabiting their root systems. HO\vever. this is not to say that these burning techniques 

would not alter the growing regime of the ectomycorrhizal community. Although the 

diversity of the ECM community may remain the same as the control. it does not mean 

that the uptake of nutrients and water will be equivalent. Water and nutrient availability 

for burned areas are drastically altered in comparison to unburned areas. With less 

vegetative cover there is an increased amount of moisture evaporating from burned soils. 

Ash left after burning will alter the pH of burned soils and allow Nand P to be leached 

into the soils. Unburned soils tend to have lower concentrations of N and P due to their 

being tied up in above ground vegetative matter (Neal eta/. , 1965; Boyle, 1973; Grier. 
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1975; Sims, 1975; Wells et at., 1979; Feller, 1982; Void, 1982). These alterations to the 

soil may not have been enough to change the species composition of the ECM 

community, but there could be major alterations to the types and amounts of nutrients 

extracted by the fungi. For example, one particular species of mycorrhizal fungus may 

have a slightly faster growth rate than that of another, thus allowing it to explore a larger 

volume of soil and have access to larger volumes of nutrients. This in tum could 

drastically alter the growth rates of the host. in this case black spruce. 

Our assumption that ECM fungal diversity has not been affected by the prescribed 

burning treatments must be viewed in relation to black spruce. Since the site is situated 

within a mixed forest (balsam fir. paper birch. and black spruce), there is no doubt other 

ECM fungi exist within the surrounding soils. However. the out planted black spruce 

may not be the preferred host for some of these other ECM fungi. thus the survey would 

have missed them. As such a broader host range would need to be investigated in order 

to determine the overall effects ofbuming on the ECM fungal community. 

Another factor to take into consideration concerns timing. This is making reference to 

the time of the burning of the sites and the collection of the root tips. The study sites 

were burned around mid august of 1993, however the collection of root tips did not occur 

until two years later. There is no doubt that burning has signiticant effects upon 

microbial soil populations, however it does allow for the release of oxides, hydroxides 

and salts which can promote bacterial and fungal. saprophytic and mycorrhizal, growth 

(Petersen, 1970; Gochenaur, 1981; Neal et at., 1965). The time required for mycorrhizal 

populations to return to pre-fire conditions can vary from a few months to several years 
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(Neal eta/ .. 1965; Bissett and Parkinson, 1980). There might have been a different 

pattern if root tip collection had been implemented after the first year. It is possible. 

although unlikely, that ectomycorrhizal fungal populations may already have returned to 

pre-bum conditions over the two years prior to collection. 

From my results it would appear that foresters need not be overly concerned with 

prescribed burning, nor the intensity of these bums. affecting the ectomycorrhizal 

diversity of outplanted black spruce. Seedlings inhabiting prescribed burned sites did not 

have significantly lower ECM diversity than those planted upon unburned sites. 

4.4: ECMs and Endophvtes: What is the connection? 

Why did I amplify so many putative endophytic fungi'? This is a question that does 

not have an easy answer. For decades researchers have been trying to understand the 

function and structure of ectomycorrhizal communities. The endophyte community. 

which had been ignored for quite a while. due to the difficulties associated with their 

culturing and characterization. is only just recently being explored. 

Following are some hypotheses regarding the relationship between endophytic fungi 

and ECM fungi. ( 1) ECM may protect roots from infection by endophytes. It is kno\vn 

that certain ectomycorrhizal fungi can protect the host against pathogenic fungi. ECMs 

can present both physical and chemical barriers to invading fungi (Zak. 1964; Richard et 

a/., 1971 ). Many endophytes are thought to be pathogenic . although some appear to 

provide growth benefits under marginal conditions (Wilcox and Wang, 1987). 

Endophytes can also exist within plant tissues without causing damage to the host. 

Wilcox ( 1983) referred to these endophytes as latent pathogens. Therefore. endophytes 
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may represent a range of symbiotic associations, from parasitic to commensalistic or even 

mutualistic. Whatever the type of symbiosis. it is likely that endophytes represent more 

of a net carbon drain than the ECM fungi associated with the root. If so. I hypothesize 

that endophytic fungi would be reduced in frequency in root tips that are colonized by 

ECM fungi. Unfortunately, my experimental design did not allow us to test this 

hypothesis. [did observe fewer non-target amplifications from roots with an obvious 

ECM mantle. However. since I amplified from whole root tips. I could not determine 

whether endophytes are less frequent in ECM roots. or whether endophytes are less likely 

to be amplified from ECM roots because of the greater quantity of ECM template DNA 

available for PCR. In order to distinguish whether this is a difference in frequency of the 

fungi. rather than difference in relative quantity of template for PCR. \Ve \vould have to 

remove the ECM mantles from the roots and amplify. Although. we must realize that 

removing the ECM mantle is only 'reducing' the amount of ECM hypha! material 

available in the reaction. The Hartig net formed by the ECM fungus '.viii still provide a 

template. If the root sample with ECM mantles removed have fewer non-target 

amplifications than NM tips. it would suggest that ECM play a role in restricting 

infection by endophytic fungi. A second hypothesis is that both the ECM and endophytic 

fungi have some type of symbiotic. mutalistic relationship with one another. Not all 

ECMs provide a protective advantage for the host. however. it has been shown that some 

endophytic fungi demonstrate antagonism towards certain insects (Webber. 1981; 

Wilson. 1992). Maybe the ECM fungus is taking advantage of the endophyte's 

protective ability. The ECM may or may not be conferring some sort ofbenefit upon the 
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endophyte in return. [t would require further experimentation to determine if there are 

such secondary associations. 

4.5: Intraspecific variation a11d molecular species 

Not all samples which display a different RFLP pattern are distinct species. For 

example. there were several morphotypes which displayed two or more similar but 

distinct RFLP patterns. which can be attributed to intraspecific variation. Intraspecitic 

variation has been investigated by numerous researchers. such as LaChance er a/ . ( 1985 ). 

LoBuglio er al. ( 1991 ). Chewer ul. ( 1997). Sequerra era/. ( 1997). and ' Karen er ul. 

( 1997). These and others have shown that the amount ofintraspecitic variation within 

fungi can vary from one species to another. depending upon the techniques used to assess 

the variation. 

RFLP analysis of 'type 1 '. which on the basis of gross morphology \vas recognized as 

Cenococcum geophilum. revealed at least 4 (possibly 6) different molecular types. Table 

16 shows that most ofthe variation was noticeable with the use of the restriction 

endonuclease. Hinfl. The presence of possibly 6 different polymorphs from 75 samples 

suggests that C geophifum. although a morphologically distinct species. could actually be 

several species that display similar morphological traits. This would agree with the 

findings of LoBuglio eta/. ( 1991) who found that from their 71 isolates of C geopltifum. 

32 distinct restriction fragment length phenotypes arose. They suggest that C. geophilum 

may be a polyphyletic group that has undergone phenotypic morphological convergence. 

lfthis is the case. the question arises, how many other morphologically distinct 

mycorrhizal fungi actually consist of an aggregation of several molecular species? Such 
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findings could have important implementations. For instance, C. geoplzilum has been 

found on over 200 tree species (Trappe 1962; Trappe, 1964; Chilvers 1968; Molina and 

Trappe 1982) which indicates its ecological importance. Mycorrhizal fungi vary in their 

ability to increase nutrient and water uptake (Rousseau et al .. 1994; Boyd eta!.. 1986; 

St. John and Coleman. 1933; Boyle and Hellenbrand. 1991 ), and release different 

enzymes into the soil thus allowmg the host plant access to a variety of nutnent pools 

(Marschner and Dell, 1994; Li era/., 1991; Ho. 1989). Therefore, if a mycorrhizal 

fungus such as C. geoplzilum is actually a complex of different species. each taxon may 

provide different benefits to the plant. This could i1ave implications for reforestation. as 

inoculation with strains native to a site may produce better results. More research needs 

to be done to determine if strains that previously existed on a site are better suited for 

nutrient acquisition within that area. and thus allow new seedlings to establish more 

effectively. 

Morphological characterization has always played an important role in species 

identification, however as we investigate organisms as variable as mycorrhizal fungi we 

are finding that this method of classification can be deceiving. Due to the variety of hosts 

and environments that one mycorrhizal fungal species can be associated with. it is not 

inconceivable that one species could take on a different morphological traits in different 

environments and on different hosts. As such we must draw upon other tools. such as 

molecular characterization. in order to escape the pitfalls imposed by traditional methods. 

This is not to say that molecular identification does not have its own problems. As 

previously mentioned, there may be numerous fungi inhabiting a single root tip and there 
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is no guarantee that the mycorrhizal fungus viewed on the root tip will be the one that 

gets amplified during the PCR process. Such factors as competitive PCR, template 

affinity to oligonucleotide primers, viability of the fungus in question, and the type of 

inhibitory compounds associated with the root tip all determine to which fungus the final 

PCR product will belong. Just as a single mycorrhizal fungal species can have a variety 

of physical charactenstics that vary according to host and environment. the same can be 

said for its molecular characters. The previous paragraphs have shown that polymorphic 

type:; for a single species can cause confusion. ls it a polymorphism or is it another 

closely related species? This is a difficult question to answer since at the molecular level 

we are still unsure how to classify a species. As such, tools which have worked 

successfully for classification based upon morphology can not always be applied at the 

molecular level. For example. both the Shannon-Wiener and Simpson indices assume 

that one can distinguish individual species and count numbers of individuals. ~either of 

these properties can be easily evaluated from molecular data on mycorrhizal fungi. As 

indicated previously, molecular genotypes do not always correspond to morphological 

species, because molecular analyses capture some proportion of intraspecific as well as 

interspecific genetic variation. lfthe average proportion of intraspecific variation in a 

sample varies from plot to plot, this can have significant impacts upon diversity index 

estimates. Also, we can not assume that each root tip represents a distinct mycorrhizal 

'individual'. Fungi have indeterminate growth that is clonal, thus a single clonal 

individual could infect multiple root tips on a single plant. but would be counted as 

multiple individuals. For these reasons molecular data from mycorrhizal fungal samples 
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are particularly unsuited to analysis using traditional diversity indices. This is why new 

indices, such as the Phi Index, which do not depend upon knowledge of species and 

individuals are important. 

4. 6: Effects o.fprescribed burning on ECM commzurity structure 

It has been in only the past four or five years that people have started to use 

mycorrhizal roots as a means of investigating mycorrhizal community structure (Erland. 

1995~ Mehmann et al.. 1995~ 1Gardes and Bruns, 1996~ Dahlberg et al.. 1997: Karen and 

Nylund. 1997; Erland et al .. unpublished). Many of these researchers have found that 

traditional methods. using sporocarp data, provide an inaccurate account of the 

mycorrhizal community structure on root-tips. which underlines the benefits of using 

PCR based methods to get a better understanding of local mycorrhizal populations. 

Our study was concerned with how an invoked disturbance. fire. affected the 

structural composition of an ectomycorrhizal community. at the species level. inhabiting 

the roots ofblack spruce seedlings. With respect to the statistical analysis of the ECM 

molecular diversity, using traditional indices (Simpson and Shannon-Wiener). it was 

found that there were no significant differences between control sites and burned sites. 

both high and low intensity burns. I also found that there was no significant differences 

between the ECM molecular diversity when the two burned treatments were compared. 

The variation in the intensity of prescribed fire does not appear to change the overall 

species composition of ECM fungi that colonize black spruce seedlings. These results 

are similar to what Karen eta/. ( 1997) discovered when investigating the effects of 

different regenerating methods upon mycorrhizal community structure. They found that 
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the method of forest regeneration, shelterwood verses clear-cut and planting, only 

affected the abundance of one of forty-three RFLP mycorrhizal types. This mycorrhizal 

type was more prevalent in the planted sites. than compared to the shelterwood and old 

forest. Another study by Kan~n and Nylund ( 1996) found that the application of 

nitrogen-free fertilizer to Norway spruce stands did not have any drastic effects on the 

abundance of major ECM morphotypes. 

Although there were no significant differences concerning the diversity of 

mycorrhizal genotypes. there were subtle differences with respect to community structure 

in regards to control plots verses treatment plots. The most obvious difference concerns 

the occurrence of genets, molecular species occurring on the same seedling which share 

very similar or identical RFLP patterns. Control plots contained a larger number of these 

genets. with smaller phylogenetic distances. in comparison to the high and 10\.v burned 

plots. What would cause these genets to be more infrequent. and more phylogenetically 

distant within the burned treatments? One reason may have to deal with the availability 

of mineral nutrients. Gibson and Deacon ( 1990) found that the types of mineral nutrients 

available to a fungus will affect its ability to colonize host roots. Burning releases usable 

mineral nitrogen, previously less available in the form of plant material. into the soil 

(Boyle, 1973~ Grier. 1975~ Neal eta/., 1965~ Viro. 1974; Void. 1982). Therefore. the 

mycorrhizal species previously residing on clear-cut plots may not have been destroyed 

by the fire but their numbers may have been reduced enough to allow other fungal 

species to move in that needed, or could utilize, this excess nitrogen which \vas 

previously unavailable. This hypothesis is supported by Arnebrant and Soderstrom 
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( 1992), and Karen and Nylund ( 1997) who showed that nitrogen fertilization did affect 

ECM community structure. 

Another explanation for the higher frequency of genets within the control sites may 

have to do with competition effects. Some species of fungi may be better suited for a 

particular environment. Such species may have a similar genotype. Thus these closely 

related species may colonize new root tips and prevent different mycorrhizal genotypes. 

with a greater degree of variation, from moving into the community. This would reduce 

the degree of variation among genotypes. thus producing genets. However. after a 

disturbance such as fire or clear-cutting, the habitat has changed and new fungal colonists 

move in. or recolonize from soil propagules. thus displaying few·er genets. 

4. 7: Djversit)' index dilemmas 

This study emphasizes the major problems associated with the use of traditional 

diversity indices to analyze species data at the molecular level. Both the Shannon­

Wiener and Simpson indices make the major assumption that the investigator is clear on 

what is a species. The species concept is still being debated at the molecular level. and to 

some degree at the phenotypic level (Harrison, 1991 ). My study appeared to have several 

cases of intraspecific variation. which in turn showed that the traditional diversity indices 

could not handle such scenarios. I was relatively sure that these samples were the same 

genotype, but due to the design of the Shannon and Simpson indices, I had to count them 

as separate RFLP genotypes. As a result I was introducing errors into the statistical 

analysis which in tum may have affected the tinal outcome. 
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Due to the difficulties associated with these traditional diversity indices, I realized 

that a new index needed to be created in order to provide a better assessment of molecular 

data. I realized that the one reliable factor which would take into consideration the 

problem of intraspecific variation was the phylogenetic distance. This value is a measure 

of how closely related one individual is to another. The greater the phylogenetic distance 

bet\veen t\vo individuals. then the greater the chance that they are different species. 

Based upon this assumption. l developed the Phi index. The example using hypothetical 

phylograms (section 3.2.7) showed that the use of the phylogenetic distance does seem to 

be a good estimator of diversity. When I used the Phi index against my data. I found that 

there was still no significant difference between control and treatment ECM diversities. l 

also found that the values obtained for each treatment (pertaining to the mycorrhizal data) 

showed a trend (control having the lowest diversity and high intensity bums having the 

greatest diversity). much different than those observed for the traditional indices. that 

seemed to be more explainable. 

Since traditional (Shannon-Wiener and Simpson) indices requires one to know what 

is a species. their use in the analysis of molecular data is very limited. Their inability to 

decipher closely related individuals from that of intraspecific individuals. increases the 

chance of overestimating the diversity. Our newly formulated Phi index seemed to 

handle this problem without any difficulty, but I had limited the testing of this index to 

only a few scenarios. There is also the case in which interspecific variation may exist. 

but is not detected using the RFLP data. For example. Karen eta/. ( 1997) found that 

there were several Cortinarius species that could not be separated using three restriction 
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endonuclease enzymes, yet these samples were considered distinct species. On an 

evolutionary scale this would suggest that these are recent divergences. The Phi index 

would register this as being a low diversity value. This would in essence bias the reading 

as an underestimation of the overall diversity. However, an overestimation error would 

seem much more common than that of an underestimation. Before I can declare this as 

an alternative index more rigorous testing must be done. 
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Appendix I 

I. I: Regen 1: Seedling and sporocarp collections 

In late August of 1993 mycorrhizal specimens were collected from 3 year old. 

naturally regenerating balsam fir and black spruce seedlings. Three seedling samples of 

each type were collected from six different locations within the study site. Three 

collection sites were situated near or within a 70 year old forest. Spruce seedlings of the 

required age were easily found under the dense canopy, however [was unsuccessful in 

finding fir seedlings within the forest boundary. I collected the fir seedlings within a 

three (3) meter distance of the foresUclear-cut boundary. The other three collection sites 

were located towards the central portion of the clear-cut region. distances ranging from 

40-l OOm. Basidiocarps were collected from the clear-cut and the surrounding forest in 

order to provide information on the diversity of basidiomycetes within the surrounding 

area. Also they were to be used as references for the collected mycorrhizal samples. 

These basidiocarps were stored in brown paper bags and allowed to air dry for 

preservation. 

In the fall of 1994 another 24 seedlings. 12 of each species. were collected. Figure A­

l shows where the seedlings were collected. Dirk KrUger collected sporocarps from 

these sites which would be used as references in order to try and identify ectomycorrhizal 

types found on the study site. 



Figure A-1: Schematic layout of collection area near Glide Lake. Refer to table 1 for a 
more detailed description of each site. Three tree species were common to this area: 
black spruce ( '),balsam fir (A), and paper birch ( Sf? ) 
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Table 1: Brief site descriptions within the Glide Lake study area. All site names are 
taken from Figure 3 on the previous page. 

Site Description 
A Picea dominant, soil very moist and carpeted with mosses 

BtiB2 Picea predominant, some Juniperus sp and mosses 
c1 Abies predominant with grasses, Equisetum spp, and water puddles present 
c2 Small group of Betulla papyrifera Marsh, and mosses 
D Scattered group of Picea, moss carpet 
Et Abies predominant with grasses, ferns, Equisetum spp, extremely wet (open 

water) 
E2 Picea predominant, moss carpet 
F Scattered Abies and Larix laricina (Du Roi) K. Koch with grasses and 

water puddles 
Fe Fresh clear-cut, less than a year old 
G Abies predominant with grasses, ferns, Equisetum spp, extremely wet (open 

water) 
H Picea predominant, moss carpet 
I Mixed Abies and Picea, moss and Lycopodium spp ground cover 
K Abies predominant with grasses, ferns, Equisetum spp, extremely wet (open 

water) 
L Island of Picea/Abies!Betula, Lycopodium spp and Vaccinium spp 
M Picea predominant, moss carpet 
N Abies predominant 
0 Abies and Larix laricina (Du Roi) K. Koch with grasses and water puddles 
p Abies predominant with grasses, ferns, Equisetum spp, extremely wet (open 

water) 
Q Mixed Picea/Abies, mossy ground cover 
R Abies and Picea, mixed grasses and ferns 
s Mixed Picea/Abies, mossy ground cover 

L2: Mycorrhizal recovery and processing 

Roots collected in august 1993 were soaked in tap water for about half an hour and 

then washed under a slow stream of water to remove excess debris and to expose 

colonized roots. Only the external portions of the roots were examined, therefore only 

those roots with ectomycorrhizas were recovered. Various types of mycorrhizas were 

described during the inspection of the roots. These types were classified on the basis of 
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hypha~ pigmentation, hyphal density within the mantle. and the overall appearance of the 

hyphal strands. Each mycorrhizal type was collected by severing the root tip from the 

parent root. Root tips were then washed with distilled water, blotted dry and then frozen 

(-lSOC). Later these root tips were lyophilized to ensure that freeze/thawing did not 

occur. 

Ten, 2 em root sections were randomly collected from each of the thiny-six root 

systems (eighteen of each tree species). Each 2 em root section was surveyed with 

compound microscope and the percentage cover of five ectomycorrhizal types was 

recorded. 

Seedlings, collected in august of 1994. containing intact rootballs were transponed 

from the study site to the laboratory at soc. The roots were washed and prepared 

similarly as in the previous few paragraphs. 

Root tip recovery and PCR procedures follow the same as those found in the Methods 

and Materials section. The same is true for sporocarp amplifications. 
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Appendix II 

11.1: MorphotJ?.pe plates 



Figure A-2: Several photographs showing some of the morpho types that were 
encountered in our study. (A) Type 1 (Cenococcum geophilum). (8) Type 2; notice the 
swelling and pointing of the tip . (C) Type 3; mantle is thinner and shiner than Type 1. 
Emanating hyphae are shorter and fewer than that of Type 1. (D) Type 6; no emanating 
hyphae and light brown in color. (E) Type 7; matted emanating hyphae with a cottony 
appearance. (F) Type 8; root tip is very swollen and more rounded than that of Type 2. 
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Appendix III 

III.l: Dices index 

Dice's similarity coefficient follows the formula: 

2a/(2a+b+c) 

This formula can be best explained using Figure lila. The coefficient is calculated by 
dividing two times the number of shared bands (since there are two samples) by the sum 
of the number of polymorphic bands for each sample (band c) and twice the number of 
shared bands. Thus. the similarity coefficient for these t\\'O samples would be; 
(2*2)/(2*2+3+2) = 4/9. If we were to convert this coefficient into a distance value it 
would require subtracting the coefficient from one. ie. l - 4/9 = 519. 

j 

-a--a-
-

Figure lila: A hypothetical gel showing RFLP 
patterns for two samples (i and}). Shared bands are 
denoted with 'a', polymorphic bands for sample i are 
denoted with 'c', polymorphic bands for sample} are 
denoted with 'b' 
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Appendix IV 

IV. I: Diversity comparisons 

Shannon-Wiener 

H' = -Ip, ln p, 

p; is the proponion of individuals found in the ith species, which is estimated as n,iN. n,= 
the number of individuals in the ith species, and N= the total number of individuals 
(Magurran, 1988). 

This index assumes that the individuals are randomly sampled from an 'indefinitely 
large' population. It also assumes that all species are represented in the sample. 

Simpson 

0 = Ip/ =I [n;(n;- l )IN (N- 1 )] 

p; is the proponion of individuals found in the ith species. n,= the number of individuals 
in the ith species, and N= the total number of individuals. 

Less weight is put on the ·unique' species, i.e. species that have only one individual. 
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Appendix Va 

Va.J: Percentage abundance data for black spruce 

Table 1: Percentage abundance of mycorrhizal fungi on Black Spruce (Picea mariana) 
roots. 
Site Tree# Morphotype o/o abundance 

l 1 6 0 0 0 1 1 
0 0 0 0 0 

1 l 8 50 60 15 25 50 
5 10 25 10 0 

1 2 1 10 10 0 5 0 
5 15 5 0 5 

1 2 6 1 1 0 0 1 
1 0 5 0 5 

1 3 3 1 1 50 30 20 
60 1 1 30 0 

1 3 6 0 0 0 0 l 
0 0 0 0 0 

1 3 8 10 10 15 20 50 
10 70 30 10 0 

2 1 3 20 5 0 1 5 
10 5 0 5 10 

2 1 8 0 0 0 0 0 
1 0 0 0 0 

2 2 3 1 1 10 1 5 
5 40 30 50 0 

2 2 8 5 0 1 1 10 
0 0 10 1 5 

2 3 1 0 0 0 1 1 
1 5 1 1 1 

3 1 1 30 1 50 10 5 
5 20 50 20 10 

., 
1 6 20 20 10 1 5 j 

0 5 5 10 5 
3 2 3 5 l 0 5 10 

l 1 0 0 0 
3 3 3 0 5 5 5 10 

40 5 1 0 30 
3 3 10 0 0 0 1 5 

0 1 1 0 0 
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0 0 0 0 0 

Site Tree# Morphotype %abundance 
4 1 3 1 5 0 1 40 

10 1 1 0 5 
4 1 10 0 0 0 l 5 

1 0 I 0 0 
4 2 3 10 5 1 5 1 

I 5 5 20 10 
4 3 1 20 5 5 40 1 

10 5 1 5 1 
4 3 8 10 1 0 0 15 

5 5 5 35 1 
4 3 yellow 5 0 0 0 0 
5 1 3 10 5 0 15 0 

10 5 0 0 0 
5 1 8 5 0 0 5 0 

0 5 lO 0 0 
5 2 3 0 20 5 I 5 

I I 5 5 5 
5 2 8 5 5 10 0 5 

I 0 0 5 10 
5 3 3 5 5 10 40 30 

50 60 1 30 30 
6 1 3 I 60 5 40 15 

20 I 10 30 5 
6 1 8 5 lO 20 5 30 

10 0 40 5 60 
6 2 3 0 50 1 20 1 

15 50 30 15 5 
6 3 1 5 10 10 10 5 

20 10 5 30 60 
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Appendix Vb 

Vb.J: Percentage abundance data for balsam fir 

Table 2: Percentage abundance of mycorrhizal fungi on randomly selected Balsam Fir 
(Abies balsamea) roots. 
Site Tree# Morpbotype 0/o abundance 

1 1 1 0 1 0 0 5 
1 0 0 0 0 

I 1 8 0 0 0 0 0 
50 5 0 6 0 

1 2 1 1 1 0 1 4 
0 5 0 15 0 

1 2 6 0 0 0 0 0 
0 0 1 0 0 

1 2 8 5 40 7 40 60 
5 80 3 60 5 

I 3 3 1 1 I 5 0 
0 I I 0 1 

I 3 8 0 I 0 0 I 
0 0 0 0 0 

2 1 I none i : 
I 

2 2 3 2 2 10 3 2 
15 5 6 9 0 

") 2 8 0 0 15 10 40 
8 10 12 6 10 

2 3 6 0 0 0 1 I 
0 0 0 0 0 

2 3 3 2 0 0 0 0 
0 0 0 0 0 

3 1 3 0 0 10 I 5 
50 10 0 30 5 

3 I 10 0 0 0 0 0 
15 40 0 40 10 

3 2 3 1 l L 1 l 
1 5 1 5 5 

3 3 3 0 0 5 5 0 
1 l 0 1 0 
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Site Tree# Morphotype 01o abundance 
4 1 3 0 5 0 0 5 

20 1 15 12 5 
4 1 8 3 5 

., 
5 10 .) 

3 15 10 1 1 
4 2 3 10 5 5 5 40 

70 30 1 15 10 
4 2 8 5 0 0 20 15 

0 5 20 I 30 
4 3 3 0 0 0 0 0 

0 0 1 0 5 
4 3 8 0 1 10 l l 

0 0 l 5 30 
5 1 1 0 l 50 10 5 

0 10 10 0 0 
5 1 8 0 0 0 0 0 

0 0 0 30 I 
5 2 3 1 0 I () 10 

1 0 5 1 l 
5 2 8 1 1 0 0 5 

0 0 0 5 1 
5 3 3 20 10 20 1 I 

30 5 10 50 0 
5 3 8 l 1 0 5 0 

0 I 1 I l 
6 1 3 0 5 5 40 5 

5 l 1 l 0 
6 1 8 0 0 0 5 0 

1 50 5 0 0 
6 2 3 0 0 50 1 5 

0 0 5 1 5 
6 2 8 0 0 0 0 0 

10 0 I) 0 0 
6 3 3 0 1 0 5 0 

l 0 1 10 0 
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Appendix VI 
VI.l: Mann- Whitney U-tests for morpho(Jlpe comparisons 

Mann-Whitney U-test preformed on(% abundance of a morphotype x tree species). 
Three morphotypes were investigated based upon data collected from the 1994 Glide 
Lake study. 

Spr-x = Black spruce Fir-x = Balsam fir 

Mann-Whitnev Confidence Interval and Test 
I) Morpbotype t 
Spr-1 N = 18 Median = 0.000 
Fir-1 N = 18 Median = 0.000 
Point estimate for ETA l-ET A1 is 0.000 
95 .2 Percent C.L for ETA1-ET A1 is (-0.000.-0.002) 
w = 355 .5 

-x = morphotype # 

Test of ETA I = ET A2 vs. ETA l -= ETA2 is significant at 0.4864 
The test is significant at 0.3389 (adjusted for ties) 

Cannot reject at alpha = 0.05 

2) Morpbotype 3 

Spr-3 N = 18 Median = 5.450 
Fir-3 N = 18 Median = 1.900 
Point estimate for ETA l-ET A1 is l.l 00 
95.2 Percent C.l. for ETA l-ETA2 is ( -1.100.6.298) 
w = 356.0 
Test ofETAl = ETA2 vs. ETAl -= ETA2 is significant at 0.4765 
The test is significant at 0.4717 (adjusted for ties) 

Cannot reject at alpha= 0.05 

3) l'Horphotype 8 

Spr-8 N = 18 Median = 0.00 
Fir-8 N = 18 Median= 1.20 
Point estimate for ETA1-ETA2 is -0.00 
95.2 Percent C.I. for ETAl-ETA2 is (-3.10,0.10) 
w = 305.0 
Test ofETAl = ETA2 vs. ETAl-= ETA2 is significant at 0.3843 
The test is significant at 0.3624 (adjusted for ties) 

Carmot reject at alpha= 0.05 
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Appendix VII 

VILJ: Ma1rn-Whitney U-tests for location comparisons 

Black Spruce 

Mann-Whitney U-Test (Raw results) 
-location VS 0/o abundance 
Near For N = 45 Median = 0.000 
In Clear N = 45 Median= 0.000 
Point estimate for ETA l-ET A2 is 0.000 
95.0 Percent C. I. for ETAl-ETA2 is (0.001.-0.001) 
w = 2104.0 
TestofETA1 =ETA2 vs. ETAl-=ETA2issignificantat0.6513 
The test is significant at 0.5939 (adjusted for ties) 

Cannot reject at alpha= 0.05 

Balsam Fir 

Mann-Whitney Confidence lnterval and Test 

Near For N = 45 Median = 0.000 
ln Clear N = 45 Median = 0.000 
Point estimate for ETA1-ETA2 is -0.000 
95.0 Percent C .I. for ETA l-ET A2 is ( -0.000.-0.00 l) 
W=2019.5 
Test of ETA l = ET A2 vs. ETA l -= ET A2 is significant at 0.8244 
The test is significant at 0.7972 (adjusted for ties) 

Cannot reject at alpha = 0.05 
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Appendix VIII 

Vl/1.1: Mann-Whitney U-testsfor complete percent coverage comparisons 

Fir %abundance N == 90 Median = 0.000 
Spr %abundance N == 90 Median = 0.000 
Point estimate for ETA l-ET A2 is -0.000 
95 .0 Percent C.I. for ETA l-ET A2 is (0.000,0.000) 
w = 8105.5 
Test of ETAI = ET A2 vs. ETA l -= ETA2 is significant at 0 .9112 
The test is signi tic ant at 0.8963 {adjusted for ues) 

Cannot reject at alpha = 0.05 
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Apoendix IX 

IX.l: Relationships between mantled and non-mantled tips 

The following figures show that some of the "mantled tips" are more closely related to the 
··Non-mantled tips" thus justifying their removal from the analysis of"mantled tips" only. 



Figure A-3: Phylogram showing the similarity of some ·mantled tips' towards some ·non­
mantled tips' within plot 1. Highlighted samples were removed from the ·mantled tips· 
database and put with the •non-mantled tips' database. 
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Figure A-4: Phylogram showing the similarity of some 'mantled tips' towards some ·non­
mantled tips' within plot 2. Highlighted samples were removed from the "mantled tips' 
database and put with the "non-mantled tips' database. 
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Figure A-5: Phylogram showing the similarity of some 'mantled tips' towards some 'non­
mantled tips' within plot 3. Highlighted samples were removed from the 'mantled tips' 
database and put with the 'non-mantled tips' database. 
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Figure A-6: Phylogram showing the similarity of some "mantled tips' towards some ·non­
mantled tips' within plot 4. Highlighted samples were removed from the "mantled tips' 
database and put with the •non-mantled tips' database. 
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Figure A-7: Phylogram showing the similarity of some •mantled tips' towards some ·non­
mantled tips' within plot 5. Highlighted samples were removed from the "mantled tips ' 
database and put with the •non-mantled tips' database. 
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Figure A-8: Phylogram showing the similarity of some "mantled tips' towards some ·non­
mantled tips' within plot 6. Highlighted samples were removed from the •mantled tips· 
database and put with the 'non-mantled tips' database. 
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Figure A-9: Phylogram showing the similarity of some •mantled tips' towards some ·non­
mantled tips' within plot 7. Highlighted samples were removed from the 'mantled tips· 
database and put with the 'non-mantled tips' database. 
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Figure A-10: Phylogram showing the similarity of some ·mantled tips' towards some ·non­
mantled tips' within plot 8. Highlighted samples were removed from the 'mantled tips· 
database and put with the 'non-mantled tips' database. 
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Figure A-ll: Phylogram showing the similarity of some ·mantled tips' towards some ·non­
mantled tips' within plot 9. Highlighted samples were removed from the "mantled tips· 
database and put with the 'non-mantled tips' database. 
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C= Control, L= Low intensity burn, and H= Higb intensity bum 

ANALYSIS 
SOURCE 
treat 
ERROR 
TOTAL 

LEVEL 
1 
2 

0:&' VARIANCE ON 
DF 

1 
4 
5 

N 
3 
3 

ss 
0.020 
0.998 
1. 017 

MEAN 
2.9496 
2.8355 

POOLED STDEV = 0.4995 

SW-CvsL 
MS 

0.020 
0.249 

STDEV 
0.1625 
0.6874 

MTB > Oneway 'SW-CvsH' 'treat'. 

ANALYSIS OF VARIANCE ON 
SOURCE 
treat 
ERROR 
TOTAL 

LEVEL 
1 
2 

OF 
1 
4 
5 

N 
3 
3 

POOLED STDEV = 

ss 
0.035 
1.302 
1. 337 

MEAN 
2.9496 
2.7961 

0.5705 

SW-CvsB 
MS 

0.035 
0.325 

STDEV 
0.1625 
0.7903 

F p 
0.08 0.793 

INDIVIDUAL 95% CI'S FOR MEAN 
BASED ON POOLED STDEV 
----------+---------+---------+-----­

(---------------*---------------) 
(---------------*---------------) 

----------+---------+---------+------
2.50 3.00 

F p 
0.11 0.758 

INDIVIDUAL 95% CI'S FOR MEAN 
BASED ON POOLED STDEV 

3.50 

---------+---------+---------+------­
(--------------*--------------) 

(---------------*--------------) 
---------+---------+---------+-------

2. 40 3.00 3.60 



MTB > Oneway 1 SW-LvsH I 
1 treat 1

• 

ANALYSIS OF VARIANCE ON 
SOURCE DF SS 
treat 
ERROR 
TOTAL 

LEVEL 
1 
2 

1 

4 
5 

N 
3 

3 

POOLED STDEV = 

0 . 002 
2. 194 
2. 197 

MEAN 
2.8355 
2.7961 

0.7407 

SW-LysH 
MS 

0.002 
0.549 

F 
0.00 

p 
0.951 

INDIVIDUAL 95% CI'S FOR MEAN 
BASED ON POOLED STDEV 

STDEV - -------+---- - --- - +---------+---- - ---

0.6874 (----- - -- - - - - -- -- *------- - - - -----) 
0.7903 (- - -- - - -- - - --- -- -*-------- - ---- - --) 

-- - - - -- - +----- ---- + - - ----- - -+ - - - -----

2.10 2.80 3.50 

MTB > Oneway 1 Sim-CvsL' 'treat'. 

ANALYSIS OF VARIANCE ON Sim-CysL 
SOURCE DF SS MS 
treat 1 0.0002356 0.0002356 
ERROR 4 0.0001282 0.0000320 
TOTAL 5 0.0003638 

F 
7.35 

p 
0.053 

INDIVIDUAL 95% CI 1 S FOR MEAN 
BASED ON POOLED STDEV 

LEVEL 
1 
2 

N 
3 
3 

MEAN 
0.97097 
0.98350 

STDEV - - - - - - - - - + - - - - - - - - - + - - - - - - - - - +- - - - - - -

0.00742 (---- -- - - *---- -- - ) 
0.00301 ( - - - - -- -- - *-- - -----) 

- - - - - - - - - + - - - . - - - -- - + - - - - - - - - - + - - - - - - -

POOLED STDEV = 0.00566 0.970 0.980 0.990 



MTB > Oneway 'Sim - CvsH' 

ANALYSIS 
SOURCE 
treat 
ERROR 
TOTAL 

LEVEL 
1 
2 

OF ~ARIANCE ON 
OF 

1 
4 
5 

N 

3 
3 

ss 
0.0000286 
0.0003684 
0.0003970 

MEAN 
0.97097 
0 . 97533 

POOLED STDEV = 0 .0 0960 

r treat r . 

Sim-Cv~H 
MS 

0.0000286 
0 . 0000921 

STDEV 
0 . 00742 
0.01136 

MTB > Oneway 'Sim-LvsH' 'treat'. 

ANALYSIS 
SOURCE 
treat 
ERROR 
TOTAL 

LEVEL 
1 
2 

QF VARIANCE QN 
OF 

1 
4 
5 

N 

3 

3 

ss 
0.0001000 
0.0002763 
0.0003763 

MEAN 
0.98350 
0 .9 7533 

POOLED STDEV = 0.00831 

Sim-LvJ;lH 
MS 

0.0001000 
0.0000691 

STDEV 
0.00301 
0.01136 

F p 
0.31 0.607 

INDIVIDUAL 95% Cl'S FOR MEAN 
BASED ON POOLED STDEV 
- ----+ - --- - -- - -+- - -- - -- - -+---- -- ··-- +-

( - -- - -- -------- * - ---- ------- -- ) 

(----- - - - - - - -- -*-- - --- ---- - - ---) 
-·· -- -+ --- - -- - - - + - --- -- -- - +---- -----+ -

0 . 960 

F 
1. 45 

0.970 

p 
0.295 

0 . 980 

INDIVIDUAL 95% CI'S FOR MEAN 
BASED ON POOLED STDEV 

0.990 

-- ---- -- +- - -- ---- - + ----- - --- +- - -- ----
( - .. - - - - - - - - - - - * - - - - - - - - - - - - ) 

(- ----- - -- -- -*--- - .. --- -----) 
--- -- -- -+ - ----- - - - + - ---- - ---+ - --- ----

0.970 0.980 0 . 990 
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Appendix XI 

XI. I: Distance matrices for hvpothetical phylograms 

Distance matrices for each of the hypothetical phylograms created to demonstrate the 
attributes of the Phi index. in comparison to traditional diversity indices. 

Table A-4: Distance matrix for hypothetical phylogram # 1. 

51 52 53 54 55 56 57 58 59 
51 0 0.07 0.14 0.14 0.21 0.28 0.28 0.28 0.7 
52 0.07 0 0.14 0.14 0.21 0.28 0.28 0.28 0.7 
53 0.14 0.14 0 0.07 0.21 0.28 0.28 0.28 0.7 
54 0.14 0.14 0.07 0 0.21 0.28 0.28 0 .28 0.7 
55 0.21 0.21 0.21 0.21 0 0.28 0.28 0.28 0.7 
56 0.28 0.28 0.28 0.28 0.28 0 0.07 0.14 0.7 
57 0.28 0.28 0.28 0.28 0.28 0.07 0 0.14 0.7 
58 0.28 0.28 0.28 0.28 0.28 0.14 0.14 0 0.7 
59 0.7 0.7 0 .7 0.7 0.7 0.7 0.7 0.7 0 

Table A-5: Distance matrix for hypothetical phylogram ~2. 

Tree2 
51 52 53 54 55 56 57 58 59 

51 0 0 0 0 0.21 0.28 0 .28 0.28 0.7 
52 0 0 0 0 0.21 0.28 0.28 0.28 0.7 
53 0 0 0 0 0.21 0.28 0.28 0.28 0.7 
54 0 0 0 0 0.21 0.28 0 .28 0.28 0.7 
55 0.21 0.21 0.21 0.21 0 0.28 0 .28 0 .28 0.7 
56 0.28 0.28 0.28 0.28 0.28 0 0 0 0.7 
57 0.28 0.28 0.28 0.28 0.28 0 0 0 0.7 
58 0.28 0.28 0.28 0.28 0.28 0 0 0 0.7 
59 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0 
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Table A-6: Distance matrix for hypothetical phylogram #3. 

Tree 3 
51 52 53 54 55 56 57 58 59 

51 0 0 0 0 0 .56 0.56 0 .56 0 .63 0.7 
52 0 0 0 0 0.56 0.56 0.56 0.63 0.7 I 

53 0 0 0 0 0.56 0.56 0.56 0.63 0.7 
54 0 0 0 0 0 .56 0.56 0.56 0.63 0 .7 
55 0.56 0 .56 0.56 0 .56 0 0 0 0.63 0 .7 
56 0 .56 0 .56 0 .56 0.56 0 0 0 0.63 0 .7 ' 

57 0.56 0.56 0.56 0.56 0 0 0 0.63 0.7 
58 0 .63 0.63 0.63 0 .63 0.63 0 .63 0.63 0 0 .7 
59 0.7 0.7 0.7 0 .7 0.7 0.7 0 .7 0.7 0 
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Appendix XII 

XII. I: Phi index calculations (or hvoothetical ohvlograms 

Phi index calculations for the three hypothetical phylograms created to demonstrate the 
attnbutes of the Phi index, in comparison to traditional diversity indices. All distances (d) 
have been squared. Unaltered distances can be viewed in Appendix IX. 

Table A-7: Phi-index calculations for hypothetical phylogram #l . 

Tree 1 

S1 
S2 
S3 
S4 
ss 
S6 
S7 
sa 
S9 

S1 
0 

0.0049 
0.0196 
0.0196 
0.0441 
0.0784 
0.0784 
0.0784 

0.49 

S2 S3 S4 S5 S6 S7 Sa 
0.0049 0.0196 0.0196 0.0441 0.0784 0.0784 0.0784 

0 0.0196 0.0196 0.0441 0.0784 0.0784 0.0784 
0.0196 0 0.0049 0.0441 0.0784 0.0784 0.0784 
0.0196 0.0049 0 0.0441 0.0784 0.0784 0.0784 
0.0441 0.0441 0.0441 0 0.0784 0.0784 0.0784 
0.0784 0.0784 0.0784 0.0784 0 0.0049 0.0196 
0.0784 0.0784 0.0784 0.0784 0.0049 0 0.0196 
0.0784 0.0784 0.0784 0.0784 0.0196 0.0196 0 

0.49 0.49 0.49 0.49 0.49 0.49 0.49 

S9 
0.49 
0.49 
0.49 
0.49 
0.49 
0.49 
0.49 
0.49 

0 

D o.a134 O.a134 O.a134 O.a134 0.9016 0.9065 0.9065 0.9212 3.92 

; ~:~~':l ~:~~~ 0.1017 0.1017 0.1017 0.1127 0.1133 0.1133 0.1152 0.49 

Table A-8: Phi-index calculations for hypothetical phylogram #2. 

Tree 2 
S1 S2 S3 S4 ss S6 S7 sa S9 

S1 0 0 0 0 0.0441 0.0784 0.0784 0.0784 0.49 
S2 0 0 0 0 0.0441 0.0784 0.0784 0.0784 0.49 
S3 0 0 0 0 0.0441 0.0784 0.0784 0.0784 0.49 
S4 0 0 0 0 0.0441 0.0784 0.0784 0.0784 0.49 
S5 0.0441 0.0441 0.0441 0.0441 0 0.0784 0.0784 0.0784 0.49 
S& 0.0784 0.0784 0.0784 0.0784 0.0784 0 0 0 0.49 
S7 0.0784 0.0784 0.0784 0.0784 0.0784 0 0 0 0.49 
sa 0.0784 0.0784 0.0784 0.0784 0.0784 0 0 0 0.49 
S9 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0 

0.7693 0.7693 0.7693 0.7693 0.9016 0.882 0.882 3.92 
. 0.09616 0.0962 0.0962 0.0962 0.1127 0.1103 0.1103 0.1103 0.49 

0.14646 
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Table A-9: Phi-index calculations for hypothetical phylogram #3. 

Tree3 

S1 
S2 
S3 
S4 
S5 
S6 
S7 
sa 
S9 

S1 
0 
0 
0 
0 

0.3136 
0.3136 
0.3136 
0.3969 

0.49 

S2 S3 S4 SS S6 S7 Sa 
0 0 0 0.3136 0.3136 0.3136 0.3969 
0 0 0 0.3136 0.3136 0.3136 0.3969 
0 0 0 0.3136 0.3136 0.3136 0.3969 
0 0 0 0.3136 0.3136 0.3136 0.3969 

0.3136 0.3136 0.3136 0 0 0 0.3969 
0.3136 0.3136 0.3136 0 0 0 0.3969 
0.3136 0.3136 0.3136 0 0 0 0.3969 
0.3969 0.3969 0.3969 0.3969 0.3969 0.3969 0 

0.49 0.49 0.49 0.49 0.49 0.49 0.49 

S9 
0.49 
0.49 
0.49 
0.49 
0.49 
0.49 
0.49 
0.49 

0 

D 1.8277 1.8277 1.8277 1.8277 2.1413 2.1413 2.1413 3.2683 3.92 , :-. :~.~~/1 o0~= 0.2285 o.22as o.2285 o.2an o.2an o.2an o.4085 o.49 



MTB > Oneway 'ECM-CvL' 'subs'. 

ANALYSIS OF VARIANCE ON ECM-Control verses Low Burn 
SOURCE DF SS MS F p 
subs 1 0.00194 0.00194 0.77 0.430 
ERROR 4 0.01009 0.00252 
TOTAL 5 0.01204 

LEVEL 
1 
2 

N 

3 
3 

MEAN 
0.28433 
0.32033 

POOLED STDEV = 0.05023 

STDEV 
0.05824 
0.04067 

MTB > Oneway 'ECM-CvH' 'subs'. 

INDIVIDUAL 95% CI'S FOR MEAN 
BASED ON POOLED STDEV 
-------+---------+---------+--------­

(------------*-------------) 
(------------*-------------) 

-------+---------+---------+---------
0.240 0.300 0.360 

ANALYSIS OF VAR4ANCB ON BCM-Control verses High Burn 
SOURCE DF SS MS F p 
subs 1 0.01612 0.01612 4.70 0.096 
ERROR 4 0.01373 0.00343 
TOTAL 5 0.02985 

LEVEL 
1 
2 

N 

3 
3 

MEAN 
0.28433 
0.38800 

POOLED STDEV = 0.05858 

INDIVIDUAL 95% CI'S FOR MEAN 
BASED ON POOLED STDEV 

STDEV -------+---------+---------+---------
0.05824 (-----------*----------) 
0.05892 (----------*-----------) 

-------+---------+---------+---------
0.240 0.320 0.400 



r'"l 
\0 
t"l 

MTB > OneW<lY 1 ECM- LvH 1 1 subs 1 
• 

ANALYSIS OF VARIANCE ON ECM-Low Burn verses High Burn 
SOURCE DF SS MS F p 
subs 1 0.00687 0.00687 2.68 0.177 
ERROR 4 0 . 01025 0 . 00256 
TOTAL 5 0 . 01712 

INDIVIDUAL 95% CI'S FOR MEAN 
BASED ON POOLED STDEV 

LEVEL N MEAN STDEV - -- - -- + -- - ---- -- +- - --- --- -+-- -- --- -- + 
1 3 0 . 32033 0 . 04067 ( --- - -- - - - -- *-- -- ------) 

2 3 0. 38800 0.05892 ( - - ------ -- * - --- -- - --- -) 
- -----+ - -- --- -- - +- - ---- - --+---- --- --+ 

POOLED STDEV = 0. 0 5 063 0.280 0 . 350 0.420 0.490 

NOTE: Ps=0.05, F'0 o., 11 _4 J=7.71; Since "p" for every comparison is greater than 
the statist .i c al "p" then there is no significant difference between each 
comparison Phi index . 



Shannon-Wiener Index 

MTB > Oneway 'HNM-CvL' 'treats'. 

ANALYSIS 
SOURCE 
treats 
ERROR 
TOTAL 

LEVEL 
1 
2 

OJ' VARIANCE ON 
OF SS 

1 0.0620 
4 0.3607 
5 

N 

3 
3 

0.4227 

MEAN 
2.7267 
2.9300 

POOLED STDEV = 0.3003 

NM-Control 
MS 

0.0620 
0.0902 

verses Low Burn 
F p 

0.69 0.454 

INDIVIDUAL 95% CI'S FOR MEAN 
BASED ON POOLED STDEV 

STDEV ------+---------+---------+---------+ 
0.3550 (-------------*-------------) 
0.2330 (-------------*------------) 

------+---------+---------+---------+ 
2.45 2.80 3.15 3.50 



MTB > Oneway • HNM - CvH • • treats • . 

ANALYSIS OF VARIANCE ON NM-Control verses High Burn 
SOURCE OF SS MS F p 
t r eats 1 0.001 0.001 0.01 0.929 
ERROR 4 0.471 0.118 
TOTAL 5 0 . 472 

INDIVIDUAL 95% CI'S FOR MEAN 
BASED ON POOLED STDEV 

LEVEL 
1 
2 

N 
3 
3 

MEAN 
2.7267 
2.7533 

STDEV - - - ---- - +- ----- --- +---- - -- - - +- --- - - --
0.3550 ( -- -- - -- --- - - ---*- --- -- ---- -- - --) 
0 . 3308 ( --------- - -- -- - * - ---- ---- -- - --) 

- - ·- - - - - - + - ·- - - - - - - - + - - - - - - - - - + - - - - - - - -
POOLED STDBV = 0.3431 2.45 2.80 3 .15 

MTB > Oneway 'HNM-LvH' 'treats'. 

ANALYSIS OF VARIANCE ON NM-Low Burn verses High Burn 
SOURCE OF SS MS F p 
t r eats 1 0 . 0468 0.0468 0 . 57 0.492 
ERROR 4 0.3275 0.0819 
TOTAL 5 0.3743 

LEVEL 
1 
2 

N 
3 
3 

POOLED STDEV = 

MEAN 
2.9300 
2 . 7533 

0.2861 

STDEV 
0 . 2330 
0.3108 

INDIVIDUAL 95% CI'S FOR MEAN 
BASED ON POOLED STDEV 
-· - - - + - - - - - - - - - + - - - - - - - - - + - - - - - - - - - + - -

( ----- - - - -- - ---- * --- ---- -- - --- - ) 

( - - - - - - - - - - - -· - - - * - - - - - - - - - - - - - - ) 
- -- - + - - -- -- -- -+ -- --- - - --+ - - - -- - - - -+--

2 . 40 2.70 3.00 3.30 



Simpson index 

MTB > Oneway 'DNM-CvL' 'treats'. 

ANALYSIS 
SOURCE 
treats 
ERROR 
TOTAL 

OF VARIANCE ON 

LEVEL 
1 
2 

DF 
1 
4 
5 

N 
3 

3 

POOLED STDEV = 

ss 
0.000817 
0.003245 
0.004061 

MEAN 
0.9407 
0.9640 

0.0285 

NM-Control 
MS 

0.000817 
0.000811 

verses Low Burn 
F p 

1. 01 0.372 

INDIVIDUAL 95% CI'S FOR MEAN 
BASED ON POOLED STDEV 

STDEV ---- - + -- ---- - --+ -- ------ - +---------+-
0.0287 (- -- ---- -- - -- *-------- -- --) 

0 . 0282 (- - -- -- - -- ---*-- - ---------) 

- - - - - + - - - - - - - - - + - - - - - - - - - + - - - - - - - - - + -

0.910 0. 945 0.980 1.015 



MTB > Oneway 'DNM-CvH' 'treats'. 

ANALYSIS OF VARIANCE ON NM-Control verses High Burn 
SOURCE OF SS MS F p 
treats 1 0.000171 0.000171 0.19 0.685 
ERROR 4 0.003591 0.000898 
TOTAL 5 0.003762 

LEVEL 
1 

2 

N 

3 
3 

MEAN 
0.94067 
0.95133 

POOLED STDEV = 0.02996 

STDEV 
0.02875 
0.03113 

MTB > Oneway 'DNM-LvH' 'treats'. 

INDIVIDUAL 95% CI'S FOR MEAN 
BASED ON POOLED STDEV 
---+- --- -----+---------+ - --------+ - --

( - ------------- - *----- - ---------) 
(---------------*-- --- ----------) 

- - - + - - - - - - - - - + - - - - - - - - - + - - -- - - - - - - + - - -
0.900 0.930 0.960 0.990 

ANALYSIS OF VARIANCE ON NM-Low Burn verses High Burn 
SOURCE DF SS MS F p 
treats 1 0 . 000241 0.000241 0.27 0.629 
ERROR 4 0.003531 0.000883 
TOTAL 5 0.003771 

LEVEL 
1 
2 

N 
3 
3 

POOLED STDEV = 
MTB > 

MEAN 
0.9640 
0.9513 

0 . 0297 

INDIVIDUAL 95% CI'S FOR MEAN 
BASED ON POOLED STDEV 

STDEV - --- -----+---------+ - --------+-------
0.0282 (- --- - -- ---- -- --*-- -- -----------) 
0.0311 ( -- ---- -- ----- - -*------- - -------) 

----- --- - +- - - -- ----+- --- -----+-------
0.930 0.960 0.990 



00 
\0 
N 

Phi index 

MTB > Onew~y 'NM-CvL' 'subs'. 

ANALYSIS OF VARIANCE ON NM-Control verses Low Burn 
SOURCE OF SS MS F p 
subs 1 0.0066 0.0066 0.47 0.529 
ERROR 4 0.0558 0.0140 
TOTAL 

LEVEL 
1 
2 

5 

N 
3 
3 

POOLED STDEV = 

0.0624 

MEAN 
0.2300 
0.2963 

0.1181 

INDIVIDUAL 95% CI'S FOR MEAN 
BASED ON POOLED STDEV 

STDEV - -- -- - --~---------+---------+--------

0 . 1234 {-----------*- - ----------) 
0.1126 {--- --- - --- --* --- - - - ---- - ) 

- - --- --- +------ - -- + ---- ---- -+--------
0.15 0.30 0.45 



MTB > Onewc:1y 1 NM- CvH 1 1 subs 1 
• 

ANALYSIS OF VARIANCE ON NM-Control verses High Burn 
SOURCE OF SS MS F p 
subs 
ERROR 
TOTAL 

LEVEL 
1 

2 

1 
4 
5 

N 
3 

3 

0.00427 
0.03387 
0.03814 

MEAN 
0.23000 
0.28333 

POOLED STDEV ~ 0.09202 

0.00427 
0.00847 

STDEV 
0.12341 
0.04130 

0.50 0.517 

INDIVIDUAL 95% CI 1 S FOR MEAN 
BASED ON POOLED STDEV 
--+- -- - -- -- --4· - -- - - - - - - + - -- - -----+----
( - - --- - - --- - - - -*- - - - - - - - ------) 

(------- - -- --- *--- -- ---------) 
--+- - - - - -- --+--- - -- - - - +---------+- - --

0.10 0.20 0.30 0.40 

MTB > Oneway 1 NM- LvH 1 1 subs 1 
• 

ANALYSIS OF VARIANCE ON NM-Low Burn verses High Burn 
SOURCE OF SS MS F p 
subs 1 0.00025 0.00025 0.04 0.860 
ERROR 4 0.02878 0.00719 
TOTAL 5 0.02903 

LEVEL 
1 
2 

N 
3 
3 

MEAN 
0.29633 
0.28333 

POOLED STDEV = 0.08482 

INDIVIDUAL 95% CI'S FOR MEAN 
BASED ON POOLED STDEV 

STDEV --+- - - - --- - -+ - - --- - -- - + - --------+----

0.11262 (- - -- -- - - ----- - --* - -------------- - ) 
0. 0413 0 ( - - ---- - --- ---- - - * -- ---- - ---------) 

- - +--- - -- ---+---- - · - --+ -- -------+----
0.160 0.240 0.320 0.400 

NOTE: p9 ~0 . 05, Fo .oo;IJ, 4 J=7 . 71; Since "p" for every comparison is greater than 
the statistical "p" then tl1ere is no significant difference between each 
comparison Phi .index. 










