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Abstract 

The problem that students have perceiving a need for proof is well-known to high school 

teachers and has been identified by researchers as a major problem in the teaching of proof 

My research addresses the problem of teaching of proof, especially the role of proof as 

explanations for students. My study builds on Hayles' ( 1997) and Reid's ( 1995a 1 studies to 

explore what qualities make an explanation a good explanation for the student. 

Through a questionnaire. classroom observations, and interviews vmh students and 

their teachers I researched the kinds of explanations students prefer, what constitutes a good 

explanation for students and teachers. and whether or not students mirror teachers' 

explanations or if they have their own style of explaining. 

Both quantitative and qualitative research methods were employed to collect and 

report the findings. A student questionnatre. set in two domains of mathematics, geometry 

and arithmetic;algebra. compnsed the quantitative pan of the study. To help determine the 

kind of explanation preferred. the questionnaire offered deductive, inductive and analogtcal 

explanations. The student questtonnatre v .. ·as administered to adult learners who were 

enrolled in the trades, technician. business. applied ans. and Adult Basic Education (ABE) 

programs at the College of the Nonh Atlantic. Happy Valley-Goose Bay campus. 

Interviews, participant observations and document analysis comprised the qualitative 

pan of the study. Person-to-person. semt-structured interviews were conducted with eight 

adult learners enrolled in the ABE program at the same college. The two ABE mathematics 

instructors also participated m the person-to-person interviews. Both students and their 
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instructors were observed within their classroom setting. The interviews and observations 

helped to determine students' preference for a particular kind of explanation. what qualities 

make an explanation a good explanation for the student and for the teacher and whether or 

not students mirror teacher explanations. Document analysis involved an intense literature 

review of proof, proving. and the different purposes proving serves. 

Students sho·wed an overall preference for multiple example explanation and 

analogical explanation. It was the form of the explanation, namely its familiarity and 

accessibility, that students used as criteria for acceptance. The logical structure of an 

explanation was what the teacher used as criteria for acceptance. Conforrnmg to teacher 

expectations was seen as a motivation for proving in the classes observed. 
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Chapter I 

STATEMENT OF THE PROBLEM 

My research addresses the problem of the teaching of proof, especially the role of 

proof as explanations for students. More specifically, I researched what qualities make an 

explanation a good explanation in the eyes of students. 

The problem that students have perceiving a nc:ed for proof is well-known to high 

school teachers and has been identified by researchers as a major problem in the teaching 

of proof. Wheeler ( 1990) comments on the fact that teaching proof will always be a 

difficult thing in a mathematics classroom because it was not put there for any clear reason 

other than to imitate the activities of mathematicians. De Villiers ( 1990) claims that the role 

and function of proof in the classroom has either been completely ignored. or it has been 

presented as a means of cenainty. Hayles ( 1997) claims that students' difficulty with proof 

may be anributed to proofs ambiguous meaning and the fact that proof requires the 

coordination of a range of competencies such as identifying assumptions and organizing 

logical arguments. Hayles believes that many students have a limited awareness of what 

proof is about. "Students are unable to distinguish between empirical argument and 

deductive reasoning" (p. 7). She maintams that many students believe they have proved a 

conjecture if their examples verify the statement. 

Deductive reasoning serves different purposes depending on the user. While in 

mathematical practice the main function of proof is justification and verification, its main 

function in mathematics education is surely that of explanation (Hanna. 1990 ). For Hanna. 



"a proofthat explains" proves using evidence derived from the phenomenon itself while at 

the same time showing why a statement is true. Many other researchers (e.g., de Villiers 

1990, Reid l995a., Bell 1976) have investigated the need and function of proof in the search 

for an alternate way to teach proof. 

For the mathematician, proof serves not only the need to verify, but also the need 

to understand the why of one's mathematical discoveries (Thurston. 1994 ). Ironically. the 

teaching of proof in schools continues to focus on proving to verify. The teacher may 

perceive proof as a means of establishing truth or validity while ignoring the wh_v. These 

beliefs are then passed on to students. leaving students with the belief that proof establishes 

cenainty, which may contribute to student difficulty in understanding proof(Hanna., 1990). 

A. U/hat is a proof? What is proving? 

Researchers, mathematicians, math educators and students all differ in their 

perceptions of what a proof is. A logical or convincing argument using deducttve reasoning 

is a consistent characteristic among these varying perceptions. 

Among researchers, Hanna states that "a formal proof (the succession of statements 

according to rules of inference), mechanizable in nature, is a finite sequence of sentences 

such that the first sentence is an axiom. each of the following sentences is either an axiom 

or has been derived from preceding sentences by applying rules of inference and the last 

sentence is the one to be proved" (p.6 ). Barbeau ( 1990) describes a formal proof as "a 

succession of statements ordered according to rules of inference" (p.24 ). For Reid ( 1995a ), 
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proving is "investigating using deductive reasoning"; "reasoning that proceeds from agreed 

upon premises to conclusions, using logical arguments" (p. 7). The deductive aspect of proof 

characterizes the way of investigating which Reid calls proving. I have used Reid's 

definition of proof as my working definition. 

B. Jf!hat is an explanation? 

One ofthl! many usl!s of proving is explanation. Bdl (1976), de Villil!rs (1990). 

Thurston ( 1994 ). Hanna ( 1990), Reid ( 1995a) and Hoyles ( 1996 ), all suggest explaming as 

a need to prove. Hersh ( 1993) believes that the main function of proof is to explam. Both 

Manin ( 1981) and Bell ( 1976) believe that explanation is a criterion for a good proof For 

Thurston ( 1994 ), " the measure of our success is whether what we do enables people to 

understand and think more clearlv and effecnvelv about mathematics" l p. 163) - . 

The Gage Canadian Dictionary ( 1983) defines e.xplam as "to make clear or 

understandable: tell what something means or how something is done. orgamzed. or used: 

give an acceptable reason for: excuse or justify." Reid ( 1995a, p.22) describes explaining 

as something which provides connections between what 1s known and what IS bemg proven 

in a way that clarifies wh_v a statement is true. An explanation for Hanna ( 1995) would be 

that which promotes understandmg and makes us wiser. Hanna uses the tenn c:xplam when 

a proof reveals and makes use of the mathematical ideas which motivate it. According to 

Hanna( 1990), a proof that explains must provide a rationale based upon the mathematical 

properties that cause the asserted theorem or other mathematical statement to be true. The 

... 
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quest for an explanation is an attempt to find a rationale which may or may not be reduced 

to deductive proof (Sierpinska, 1994 ). 

Based on the literature related to explanatory proofs, I proposed the following as my 

working definition of an explanation. An explanation uses mathematical properties to 

de'!lonstrate why mathematical discoveries are true. The why may or may not be a deductive 

proof. 
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Chapter II 

PURPOSE OF THE STUDY 

My study builds on Hoyles' ( 1997) and Reid's (1995a) studies to explore 

explanations offered to students. Through investigation and observation, I addressed the 

following questions: 

• What kinds of explanations do students prefer? (E.g .. Deductive, inductive. or 

analogical) 

• What constitutes a good explanation for teachers? 

• What constitutes a good explanation for students? 

• Do students mirror teachers' explanations or do they have their 0\ .. 11 style of 

explaining? 

Using these four questions. I explored how the research of others fits with students' 

behaviour in Labrador, possibly adding to what others have discovered. 

A. Kinds of Explanations 

Many kinds of explanations have been identified by researchers in mathematics 

education. They fall into three main types: deductive. inductive, and analogical. 

A. ( 1) Deductive Explanations 

Reid ( l995a) defines deductive reasoning as ''reasoning that proceeds from agreed 

upon premises to conclusions, using logical arguments" (p.7). Deductive explanations can 

be further classified as: formulated or unformulated. Reid distinguishes between 

"formulated" and "unformulated" deductive reasoning with formulation based on the 



"provers' knowledge that they are proving" (p.25). The prover is unaware that he:she is 

proving when providing an unformulated explanation. Reid found that unformulated 

explanations as explanations for others were inadequate because of hidden assumptions and 

the lack of articulation. This lack of articulation and hidden assumptions accompanying 

unformulated proving makes it difficult for others to understand. 

Deductive formulated and unformulated explanations may be presented in the form 

of a proof. Pre-formaL semi-formal. formal, and informal proofs are terms used to describe 

the degree of formality of a proof 

A pre-formal proof might appear in the working notes of a mathematic tan (Reid. 

1995a). Such a proof might include references to inductive or analogical evidence and 

involve hidden assumptions. and the use of informal language. 

A semi-formal proof consisting of deductive arguments using formal symbols and 

natural language is presented in a form suitable for publication. ln a semi-formal proof. 

unusual assumptions are made explicit. If steps are omitted in a semi-formal proof, a note 

to the reader will show how these steps may be worked out. 

A formal proof includes all steps and all assumptions are made explicit. The 

language of a formal proof is symbolic . 

The prover is unaware that hetshe is proving in an informal proof Thus, an 

mformal proof is considered to be unformulated but deductive. 

Reid ( 1995a) describes an additional type of deductive proof called "formulaic" 

proof. According to Reid. a formulaic proof is not proving. A formulaic proof is 
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constructed according to principles which are associated with the creation of the sons of 

proofs teachers like. Formulaic proofs result from what Reid calls "teacher-games". 

A. (2) Inductive E'Cplanations 

Inductive reasoning is a kind of reasoning in which the conclus1on is based on 

several past observations. That is. an inductive explanation makes a generalization based 

on several specific cases. For exampk, making the generalization that the sum of two odd 

numbers is even from specific cases such as 3 + 5 = 8, 21 -r 33 =54, 67 + 45 = 111. 

Inductive explanations can be fur.her classified as: single example. multiple example 

or generic example. A single example explanation would involve the use of an example to 

show that the conjecture holds true. The example may be presented numencally, vtsually 

or symbolically. 

Multiple example explanation would include more than one example as t!mpirical 

evidence that a conjecture holds true. Multiple example explanation might be presented 

numerically, visually, or symbolically. 

According to Reid ( 1998), a generic example is one where the example 1s not critical. 

Using 7 - 11, it can be shown through generic example that the sum of two odd numbers is 

even. Both eleven and seven can be written as the sum of two numbers, for example I 1 = 

10.,.. I and 7 = 6- I. Therefore II - 7 = 10- 1 - 6- I. Since 6- 10 is even. because it 

is the sum of two even numbers and 1 - 1 = 2 which is even implies that 6.,.. lO-. 2 is even . 

So, II .... 7 = 18 (an even number). This example shows that for the two odd numbers 7 and 

11 their sum is even and that this method can be seen to work for all cases. 
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A. (3) Analogical Explanations 

An analogy involves making a conjecture based on similarities between two cases. 

For example, one might conjecture that the sum of two odd numbers is even from the 

principle which says that the product of two negative numbers is positive. In Reid's ( 199 5a l 

study, some students used analogy for their explanations. Bill. a participant in Reid's study 

used the principle that the product of two negative numbers is positive to explain why the 

sum of two odd numbers is even. Using Bill's analogy, Reid explains how reasoning by 

analogy can be based on a case and lead to a case, or be based on a rule and lead to a rule. 

Bill's analogy shows how he reasoned from a rule to a rule. In Reid's study. students' 

analogies are described as strong or weak based on the level of understanding provided. 

Reid claims that a strong analogy may not only satisfy a need for explanation. but may also 

be preferred over a deductive explanation. 

B. A Good Explanation 

B. (1) What constitutes a good explanation for teachers? 

De Villiers ( 1990) believes that proof is either completely ignored within the 

classroom or is presented as a means of certainty. Hayles' ( 1997) discussions with teachers 

in the UK reveal that some teachers are comfortable with an informal explanation while 

others require a fonnally presented logical argument. Wheeler ( 1990) claims that teachers 

teach students algorithms as a recipe for understanding proof Students in Hayles study have 

a clear perception of what the teacher expects as an explanation. In Hoyles' ( 1997) study, 
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she discovered that students chose general proofs as the type of proof which would be 

assigned the best IIl3l"k whereas, proofs that were both general and explanatory were chosen 

by students for understanding. Thus, the teacher must have a distinct method of explainmg 

which is being relayed to students. 

B. (2) What constitutes a good explanation for students? 

lt is clear from the research that explaining is 1mponant to students. Schoenfeld 

believes that students are like mathematicians in that students want to understand why a 

mathematical proposition is valid De Villiers ( 1990) suggest that students develop an inner 

compulsion to understand why a conjecture is true if they have seen it to be true. Dreyfus 

and Hadas ( 1996) reports that students feel a need to prove in order to explain phenomena 

they could not explain otherwise or in order to convince themselves of counter·intuitive 

results. 

"With reference to Mason's ( 1982.) statement that when you prove. first you convince 

yourself, then convince a friend, and then convince an enemy .... It is my contention that 

in order for an argument to be considered a proof. the students have to not only convmce 

themselves and others. but also explain" (Zack.I997, p.2.92.). Hanna ( 1995) has asserted 

that in education proofs that explam should be favoured over those that merely prove: the 

children also seem to seek proofs which explain. 

There seems to be little discussion in the literature of what features of an explanation 

are important for students' acceptance of them. Hoyles ( 1996) discovered that the form of 
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an explanation was important for students' acceptance of them. ln her study, students chose 

narrative explanations as their individual preference. 

B. (3) Do students mi"or teachers' explanations or do tltey have tlleir 
own style of explaining? 

Hoyles' ( 1997) study seeks to investigate the influence of the teacher on students' 

responses to proof. While some teachers were comfortable with informal explanations, 

Hayles discovered that others would requtre a logical argument. In her study. students chose 

for themselves proofs that were general and explanatory. Yet, proofs that students believed 

would be assigned the best mark were evaluated as general but not explanatory. According 

to Hayles, students in her study connect the requirement to prove with the prescribed format 

and language of presentanon found in the investigations part of the UK curriculum. Hoyles 

found that students employed the same type of proof on every question regardless of whether 

it was appropriate. Hoyles' research demonstrates teachers' influence on students' 

understanding of proof. Her research highlights the role of the curriculum in shaping 

students' perceptions and approaches to proof 

Hoyles' ( 1997) study clearly shows that students' perceptions of what is acceptable 

as a proof and what is valued as a proof differs. Reid (1995a), Alibert (1988) and 

Schoenfeld ( 1983) have all recognized the importance of conforming to teacher expectations 

as a motivation for proving. Mok ( 1997) infers that the fonnulation of students' 

explanations may be a result of their learning experience in the course of instruction. Wong 

( 1993) believes this to be true in Hong Kong where reception learning ts the typically 

10 



preferred model and students do not expect the opportunity to articulate their mathematical 

thoughts. De Villiers' ( 1992) study shows that students' strength of belief in, or attachment 

to a particular method is based on external rather than personal grounds. 
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Chapter III 

SIGNIFICANCE AND LIMITATIONS OF THE STUDY 

A. Significance of the Study 

"Proof has been relegated to a less prominent role in the secondary mathematics 

cwriculum in North America over the last thirty years or so." "This has come about in part 

because many mathematics educators have been influenced by certain developments in 

mathematics and mathematics education to believe that proof is no longer central to 

mathematical theory and practice and that its use in the classroom will not promote learning 

in any case" (Hanna, 1996 ). Hanna infers that mathematics educators have sought relief 

from the effort of teaching proof by avoiding it altogether. "The use of computer-assisted 

proofs, the growing recognition accorded mathematical experimentation, and the invention 

of new types of proof that do not fit the standard have led some to argue that mathematicians 

will come to accept such forms of mathematical validation in place of deductive proof' 

(Hanna. 1996). Such notions have caused great concern for researchers like Hanna. who 

believe that proof is a central feature of mathematics and a valuable tool for promoting 

mathematical understanding. 

Do we need proof m mathematics education? Schoenfeld ( 1994) replies 

unequivocally: "Absolutely. Need I say More? Absolutely." (Schoenfeld quoted in Hanna, 

1995, p.49). Proof and proving can promote mathematical understanding. Utilizing the 

many functions of proof within the mathematics classroom can help make proof a more 

meaningful activity. More specifically, the explanatory function of proof should be stressed 



in situations where conviction already exists to satisfy students' need for explanation. 

My research addresses the problem of the teaching of proof, especially the role of 

proof as explanations for students. By investigating what makes an explanation a good 

explanation, my findings contributes to the teaching of proof as a meaningful activity. I 

expect my findings to be used to enhance the teaching of proof, in particular. its explanatory 

function. ln addition. the study provides insight into ways teachers can formulate their 

explanations to enable better student understanding. 

B. Limitations of the Study 

The research reported in this thesis combines qualitative and quantitative techniques. 

The results from the quantitative part of the study (a questionnaire) are generalisable to the 

geographical location (Labrador) and student population (adult learners who were enrolled 

in the trades, technician, business, applied arts, and Adult Basic Education (ABE) programs 

at the College of the North Atlanttc. Happy Valley-Goose Bay campus) . The remamder of 

the study, in keeping with its qualitative character, seeks to understand and interpret how the 

various participants in a social settmg construct the world around them. The study design 

focuses on in-depth interaction with eight research participants. The main research 

instrument is the researcher who interacts with the study's participants by observing them 

(in their mathematics classes) and by asking questions (in semi-structured interviews). This 

allows an element of subjectivity into the research as the researcher explores and interprets 

multiple possible realities. Because of the mixture of qualitative and quantitative techniques, 

the study as a whole is neither reproducible nor generalisable. [nstead it offers qualitative 
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insight into individual appreciations of mathematical explanations. which illuminate 

generalisations based on the quantitative results. 
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Chapter IV 

LITERATURE REVIEW 

The literature review looks at what researchers have to say about what a proof is. 

what purpose proof serves, the kinds of proof, the criteria for a good proof and the teaching 

of proof. Hoyles' discoveries of students' understanding of proof are reviewed as well. 

A. What is a proof! What is proving? 

In his doctoral thesis. Reid ( l995a, p.6) asks "what is proving~" . Responses provided 

include: "proving is making a proof' and "a proof is what results from proving" . According 

to Reid. "proving is investigating using deductive reasoning" (p. 7). "Deductive reasoning 

refers to reasoning that proceeds from agreed upon premises to conclusions, using logical 

arguments" (p. 7). According to Hanna ( 1990), "a formal proof (the succession of statements 

according to rules of inference), mechanizable in nature is a finite sequence of sentences 

such that the first sentence is an axiom. each of the following sentences is either an axiom 

or has been derived from preceding sentences by applying rules of inference and the last 

sentence is the one to be proved" (p.6 ). A logical or convincing argument usmg deductive 

reasoning seems to be consistent characteristics in the many definitions of proof and proving 

found in the research. Yet. the many definittons of proof difter depending on what need 

proof fulfils. 

B. Purposes of Proof 

Proving satisfies many needs including: verification, explanation, exploration, 

systematization, communication, aesthetics, personal self-realization, developing logical 



thinking and teacher games. 

B. (1) Verification 

Verification (conviction or justification of the correctness of mathematical 

statements) has been the main focus and/or function of proof. 

Bell (1976) has identified verifying as a need to prove. Verifying determines the 

truth or falsity of a statement whose value of truth is questioned. For Wilder ( 1944) a proof 

is " only a testing process and we apply to these suggestions of our mtuitions" {p.318 l. 

Kline ( 1973) states that "a proof is only meaningful if it answers the student's doubts. when 

it proves what it is not obvious" (p. 151 ). Ali bert ( 1988) says that "the necessity. the 

functionality of proof can only surface in situations in which the student meets uncertainty 

about the truth of mathematical proposition" (p.31 ). 

For Hanna ( 1989 ). " a proof is an argument needed to validate a statement, an 

argument that may assume several different forms as long as it is convincing" t p.20 ). 

Volminik ( 1990) in Pythagoras states that "we may regard proof as an argument sufficient 

to convince a reasonable skeptic" ( p . I 0 ). Mason. Burton. and Stacey ( 1982) propose three 

stages in the putting up of a convincing argument, namely convincing oneself. convincing 

a friend and convincing an enemy. Movshovttz ( 1988) and Alibert ( 1988) have provided 

ways of presenting theorems and proofs, such as the stimulating response method. and the 

scientific debate method. In their presentations. proof is viewed as a valid argument. 

De ViiJiers ( 1990) argues that conviction provides the motivation for a proof. Many 

teachers believe that a proof provides absolute authority in the establishment of the validity 
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of a conjecture. For example, "a proof in mathematics consists of steps that show how one 

statement follows logically from other statements" (Jurgensen, Maier, & Donnelly. 1973) 

Alberta Education ( 1991) as cited in Reid { l995a, p.7) defines to prove as " to substantiate 

the validity of an operation, solution, formula or theorem in general and to provide logical 

arguments for each step in the process." In this sense proving is considered as logical. 

deductive and certain. Thus, proving is concerned with establishing validity. Students. 

themselves, view provmg as making certain and believe that inductive evidence provided 

by examples is sufficient. Reid's ( 1995a) research supports this claim. 

B. (1) £l:planation 

For Balacheff. a proof is an explanation by virtue of it being a proof 

We call an explanation the discourse of an individual who aims to 
establish for somebody else the validity of a statement. The validity 
of an explanation is initially related to the speaker who articulates it. 
We call proof an explanation which is accepted by a community at 
a given time. We call a mathematical proof a proof accepted by 
mathematicians. As a discourse, mathematical proofs have now-a­
days a specific structure and follow well defined rules that have been 
formalized by logicians. (Balacheff, 1988 cited in Hanna, 1990. 
p.47). 

For Balacheff. then, all proofs would seem to be explanations. Yet not all proofs have 

explanatory power (Hanna. 1990 ). 

De Villiers ( 1990) recommends that the explanatory function of proof should be 

utilized to present proof as a meaningful activity to students rather than focusing on proof 

as a means of verification - especially when a high level of conviction already exist. 
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According to de Villiers, it is not a question of making sure, but rather a question of 

explaining why. De Villiers believes that stressing the explanatory function of proof in 

situations where conviction already exists, may not only make proof potentially more 

meaningful to students, but it is in such cases probably more intellectually honest. Students 

do research like mathematicians. Both are easily convinced by authority and gain conviction 

by means of intuition and quasi-empirical testing. "Like mathematicians, students exhibit 

an independent need for explanation which seems to be satisfied by the production of some 

sort of logico-deductive argument" (de Villiers, 1990 ). 

Within a social context. do students employ deductive reasoning to explam and to 

explore problem solving situations? Reid's ( 1995a) study examines this question. After 

analyzing student responses to problem prompts, Reid concluded that within a social context 

it was natural for students to explain but not necessarily to verify. Reid concludes that the 

purpose of proving in a classroom context. particularly, that of verification. should be 

replaced by explanation. 

Reid found that analogy can be a powerful method of explaining m mathematical 

situations. Analogies were described as strong or weak based on the level of understanding. 

A strong analogy can satisfy a need for explanation. A strong analogy. as Reid discovered 

can be preferable to a deductive explanation. Explaining by analogy was more or Jess 

successful depending on the "strength of the analogy'' (p.38) (see also Polya 1968). 

Recognizing that a proof that proves and a proof that explains are both legitimate 

proofs, Hanna distinguishes between the two. She states that a proof that proves provides 
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essential reasons to show that a theorem is true. Substantiation is its main concern: that is. 

with Ratwnes cognoscendi, -why-we-hold-it-to-be-so reasons. For Hanna ( 1995), a proof 

that explains also shows why the theorem is true: it provides a set of reasons that derive from 

the phenomenon itself. Rationes essendi,- why-it-is-so-reasons. Mathematical induction 

or syntactic considerations alone may suffice for a proof that proves. But a proof that 

explains must provide a rationale based upon the mathematical ideas involved, the 

mathematical properties that cause the asserted theorem to be true. When a proof reveals 

and makes use of the mathematical ideas which motivate it, it is a proof that explains. Like 

Steiner (1978 ). Hanna agrees that a proof explains when it shows what characteristic 

property entails the theorem it purports to prove. 

Steiner ( 1978) is quoted by Hanna ( 1990 ). as saying that 

... an explanatory proof makes reference to a characterizing 
property of an entity or structure mentioned in the theorem. such that 
from the proof it is evident that the results depend on the property. 
It must be evident. that is. that if we substitute in the proof a different 
object of the same domain. the theorem collapses: more. we should 
be able to see as we vary the object how the theorem changes in 
response. ( p. 143) 

Unlike Balacheff who believes that a proof is an explanation by virtue of it being a 

proof. Hanna prefers to use the term explain only when the proof reveals and makes use of 

the mathematical ideas which motivate it. ln line with Steiner. Hanna says that a proof 

explains when it shows what characteristic propeny is included in the theorem that it 

purports to prove. According to Hanna ( 1989 ), the first step in promoting understanding 

through explanatory proof is to recognize that understanding is much more than confirming 
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that all the links in a chain of deduction are correct. that in fact the completeness of detail 

in a formal deduction may obscure rather than enlighten, and that understanding requires 

some appeal to previous mathematical experience. For Man in ( 1981, p. 1071) and Bell 

( 1976, p.24 ), explanation is a criterion for a good proof when stating respectively that it is 

convincing " one which makes us wiser " and that it is expected to convey an insight into 

why the proposition is true. 

Schoenfeld ( 1982) describes proving for the mathematician as . 

Proving is a means of coming to understand, and of coming 
to know what understanding is. ln trying to prove something new, 
one is asking what makes it tick~ in trying alternative proofs, 
rejecting them, modifying them, one is discovering things about its 
structure- and solidifying one's knowledge in the process. This is the 
deep reason for much of the emphasis on proof in mathematics. The 
mathematician comes to accept proving as a way (if not the way) of 
thinking, a way of demanding and insuring that he does indeed 
understand. (Schoenfeld. 1982, p.168, emphasis in original. cited in 
Reid. 1995. p.8} 

B. (3) Exploratio~ AIUllysis, Discovery and Invention 

For the mathematictan, proof is a means of exploration. analysts. dtscovery and 

invention. Both de Yilliers ( 1990) and Reid ( 1995a) believe exploring motivates proving. 

"Exploration extends the bounds of what is known" (Reid. 1995a. p.21 ). 

B. ( 4) SystemtJ'I.Jltion and Comlflllnication 

Proof is seen as a means of systematization of various known results tnto a deductive 

system of axioms, definitions and theorems. "It appears that proof is a form of discourse, 

a means of communication among people doing mathematics" . (Volminik. 1990, p.8) as 
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cited in de Villiers ( 1990, p.22). De Villiers ( 1990, p.22) quotes Davis and Hersh ( 1986, 

p. 73 ): "In stating that mathematical argument is not mechanical or formaL we have also 

stated implicitly what it is- namely, a human interchange based on shared meanings. not all 

of which are verbal or formulaic." 

Developing logical thinking was seen as a purpose for teaching proof. Yet while 

research conducted by Sekiguchi, ( 1991, p.:!6) shows that there is little transference of proof 

skills learned in mathematics to other contexts. some teachers still believe that this is the 

primary function of proof. 

B. (5) Teacher-games 

In a teacher-game (Reid 1995a, p.23 ). students try to satisfy the implicit or explicit 

demands of the teacher. Attempting to achieve a high grade. or avoiding social discomfort 

are reasons why students play teacher-games. Playing a teacher-game as a motivation for 

proving has been recognized by Alibert (1988) and Schoenfeld (1983) who point to the 

importance of conforming to teacher expectations. 

C. Kinds of Proof 

As stated earlier, proving satisfies many needs including verification. explanation. 

exploration, systematization. communication, developing logical thinking and teacher 

games. Different kinds of proofs help to satisfy these needs. Reid ( 1995b) distinguishes 

between formulated and unformulated proving for the purpose of explanation. 

According to Reid ( 1995a) formulated proving allows extended explanations beyond 
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what analogy can provide. Mok (1997) cites Reid's (1995b) distinction of formulated and 

unformulated proving to explain. Formulation describes "the degree to which the proof is 

thought of and thought out and is related to the aniculation and hidden assumptions while 

proving" (Reid, 1995b, p. l37). Explaining can be done by proving, which can be more or 

les~ formulated. Formulated proving is not necessarily preferred over explaining by analogy . 

Appropriate social context is needed for formulated proving and for explaining. Either, a 

social context in which fonnulated proving is already occurring to address another need, or 

one in which there is a strong need to explain to others, or one in which a teacher (present 

or in the past) indicates that formulated proving should be used (Reid, 1995b). 

Unformulated explanations are limited precisely because they are unformulated 

(Reid. 1995b l. According to Reid. unformulated proving as an explanation is inadequate, 

because of its lack of articulation and hidden asswnptions, which prevents other people from 

being able to understand it. Unformulated explanations in classroom situations are useless: 

but, as explanations for an individual, they may work. if the argument required is short. 

Mok ( 1997) classifies students' formulation of an explanation into an hierarchy 

beginning with prestructural progressing through unistructural, to multistructural and 

extended abstract. Prestructural explanations involve those formulations of explanations in 

which students are not really engaged. Unistructural explanations are usually in the form 

of recalling familiar procedural rules. They are brief, suggesting quick closure and may be 

inconsistent. Unistructural/multistructural explanations tend to be short and straightforward 

although students do attempt to elaborate. Rational explanations are founded on relevant 
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clues; i.e. the operations and variables. Extended abstract involves an attempt to prove. 

Students no longer rely on observed cases. At this level, students justify their formulated 

hypothesis through a chain of coherent arguments. Mok concluded from his study that if 

students thought an explanation was simply recalling facts/rules or carrying out routine 

manipulations. then they would not be likely to give high level explanations. 

D. The Role of Proof in ~lathematics Education 

Hanna ( 1990) uses three different aspects of proof. formal proof, acceptable proof 

and the teaching of proof. to help distinguish among different perceptions of proof. 

D. (1) Formal Proof 

For Hanna, "a formal proof (the succession of statements according to rules of 

inference), mechanizable in nature is a finite sequence of sentences such that the first 

sentence is an axiom. each of the following sentences is either an axiom or has been denved 

from preceding sentences by applying rules of inference and the last sentence is the one to 

be proved" tp.6 ). 

D. (2) Acceptance 

Realizing that proofs may have ditTerent degrees of formal validity and still gain the 

same degree of acceptance. mathematicians and mathematics educators have come to 

reassess the role of formal proof According to Hanna ( 1990) mathematicians freely admit 

that a proof may lack conviction when it is shown to be valid by virtue of its form alone. 

without regard to its content The signiticance of what is proved rather than the correctness 



of a proof determines its acceptance. "The acceptance of a theorem by practismg 

mathematicians is a social process which is more a function of understanding and 

significance than of rigorous proof' (p. 8 ). 

Hanna ( 1983) provides the following criteria for mathematicians' acceptance of 

proofs: 

Most mathematicians accept a new theorem when some 
combination of the following factors is present: 

l . They understand the theorem, the concepts embodied 
in it, its logical antecedents, and its implications. There is nothing to 
suggest that it is not true~ 

" The theorem is significant enough to have 
implications in one or more branches of mathematics (and thus 
important and useful enough to warrant detailed study and analysis): 

3. The theorem is consistent with the body of accepted 
mathematical results: 

-l. The author has an unpeachable reputation as an expert 
tn the subject maner of the theorem: 

5. There is a convincing argument for it (rigorous or 
otherwise). of a type they have encountered before. 

If there is rank order of criteria for admissibility. then these 
five criteria all rank higher than ngorous proof. tp. 70) 

Hanna offers an alternative approach to proof based on explanatory proofs, proofs 

that are acceptable from a mathematical pomt of view. For Hanna. an explanatory proof 

focuses on understanding rather than on syntax requirements and formal deductive methods. 

D. (3) Teaclring of proof 

According to Balzano as cited in Hanna ( 1990), making certain requires no more 

than a formal demonstration. while building a foundation demands an approach which also 

provides insight into the connections among ideas. The focus of an explanatory proof is not 
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upon the deductive mechanism but upon understanding. The teacher's argument must 

indicate why the resuJt is taught, whether for its beauty, usefulness, or critical importance 

in the development. 

Wheeler ( 1990) claims that because it is so difficult to teach students proof. teachers 

teach them algorithms as a son of recipe. The recipe has become what is commonly referred 

to as the T-proofor two column proof which Wheeler believes defeats the purpose of proofs. 

Hayles ( 1997) argues that the ambiguity of proof makes proof difficult for students to 

master. Hayles questions the existence of a hierarchy of proving competencies. Proof has 

the purpose of verification - confirming the truth of an assenion by checking the correctness 

of the logic behind a mathematical argument. [f proof simply follows conviction of truth 

rather than contributing to its construction and is only experienced as a demonstration of 

something already known to be true, It is likely to remain meaningless and purposeless in 

the eyes of students (see De Villiers, 1990, Tall, 1992, Hanna and Jahnke. 1993 as cited in 

Hayles 1997). Hayles (] 997) believes that school proofs should shed light upon the 

mathematical structures under study rather than seeking to verify correctness by providing 

insight as to why a statement is true. She suggests adding a social dimension to the 

explanatory process. A social dimension to explanatory proof exists where students explain 

their arguments to a peer or a teacher which helps to engage students and to enable them to 

claim ownership of the proving process. 

Hanna ( 1990) implies that m the teaching of proof emphasis is placed on the 

"convincing argument" . This is a result of educators recognizing proof as a means of 
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communication and the social processes involved in the idea of proof. Volminik ( 1988) 

believes that if the curriculum were to place greater emphasis on the social criteria for the 

acceptance of a mathematical truth then mathematics education would benefit. Hanna 

(1995) believes that the role of proof in mathematics curriculum is to reflect mathematics 

itself. and furthermore that the main function of proof in the classroom reflects one of its key 

functions in mathematics itself- the promotion of understanding. 

E. .Boyles' Discoveries of Students' Understandings of Proof 

According to Hoyles ( 1996 ), there has been a huge outcry, among mathematicians, 

engineers and scientists in universities in the UK, complaimng about the mathematical 

incompetence of entrants to their universities. The London Mathematical Society ( 1995) as 

cited by Hoyles ( 1996) states that the serious problems perceived by teachers in higher 

education result from: 

• a serious lack of essential technical facility- the ability to undenake numencal and 

algebraic calculation with tluency and accuracy: 

• a marked decline tn analytical powers when faced with simple probh!ms requiring 

more than one step: 

• a changed perception of what mathematics 1s - in panicular of the essential place 

within it of precision and proof (London Mathematical Society, 1995, p. 2). 

Hoyles believes that many students prefer empirical argument over deductive 

reasoning. Many students judge that after having giving some examples which verify a 
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conjecture they have proved it (Hoyles, 1996 ). Both Gonobolin and Chazan share stmilar 

beliefs to that ofHoyles. Gonobolin ( 1954) argues that students do not recognize the need 

for a logical proof of a geometric theorem when the theorem can be shown using empirical 

evidence. Chazan (1989) reports that high school students who are taught geometry and the 

method of deductive proof in a beginner's course seemed to hold two incorrect beliefs: the 

empirical evidence is proof for all cases, and that deductive proof is evidence for only one 

case (see also Fischbein and Kedem, 1992: Balacheff. 1988: Chazan, 1993 : Finlow-Bates. 

1994 ). 

Hoyles completed a comprehensive study of students' v1ews of prov1ng and proof and 

the major influences on them. In her study, Hoyles examined students' perceptions of the 

nature of mathematical proof and its purposes. The identification and analysts of students' 

written responses to a range of questions concerning proof comprises the empirical core of 

her study. The meaning of what is required as a proof is r.ot made explicit : neither is it clear 

what students have been taught, or what has been emphasized, or what forms of presentation 

have been deemed acceptable. Hayles pomts out that proof is discussed either explicitly 

or implicitly in curricula. Where proof is discussed explicitly, definitions, logical 

deductions and acceptable fonns of presentation of proofs are made apparent whereas. 

implicitly mathematical proof and its criteria are negotiated during the activity. Hoyles 

discovered that some teachers were comfortable with informal explanations while others 

would judge this to be inadequate and would require a logical argument. A logical argument 

would be representative of the ' two column proof'. 
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Hoyles' study compares the general proof to the explanatory proof to ascenain \\'hich 

type of proof is valued by the student and which proof the student perceives as acceptable. 

More specifically, Hayles questions whether empirical examples help students explain their 

results. The 15 year old students, who were participants in Hayles' study, chose for 

thc:mselves proofs that are general and explanatory, while the proofs they thought v ... ·ould be 

assigned the best mark are general but not explanatory. Students in Hayles' study chose 

formal presentation (correct or incorrect) as highly favoured for the best mark while the 

narrative proof was the favourite for individual choice. 

Proof should be seen as a generative and not merely descnptive process. Hovles 

believes that teachers must resist the temptation to assume that situations that engage 

students with proof must follow a linear sequence from mduction to deduction. "The 

challenge remains to design situations that motivate students to use proof for all its functions 

and that help students to forge connections between these functions at every opportumty. 

Teachers need to engage students into a mathematical proving culture where students see 

a sense of purpose in proving and realize that proof is generattve and not merely descnptive" 

(Hovles, 1997). 
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Chapter V 

METHODOLOGY 

Methodology encompasses method, theory and epistemology (Guba. 1990). Usmg 

naturalistic or qualitative inquiry methods, I studied what makes a mathematical 

explanation a good explanation within a natural setting, without manipulating or controlling 

the setting or its members. Qualitative information consists of description and 

interpretations in narrative form collected and analyzed from intervi<!ws, participant and 

non·participant observations, interviews, documents and records. 

A. Qualitative Research 

Qualitative reseaich is an approach to research that is evolutionary and emergent in 

nature, that takes place m the subjects' natural setting, and that uses 

sociological/anthropological methods ( parttcipant observation, document analysis, and 

interviews) as data collection techniques. The philosophical framework is phenomenology, 

and the belief system regarding reality is that it is pluralistic and socially constructed. Data 

are largely descriptive, and are reported using, as much as possible, the words and language 

of the subjects. The next three sections will address theory, epistemology and method. 

A. (1) Theoretical Orien1ations 

Guba ( 1990) says that the naturaltstlc approach, which is characteristic of qualitative 

research, uses a discovery oriented approach that minimizes constraints and places no prior 

constraints on what the outcome will be. Glaser and Strauss ( 1967) believe that hypotheses 

in qualitative research are grounded in the research and emerge with the collection and 



analysis of data. Grounded theory (Glaser and Strauss, 1967) is generated inducttvely 

through the discovery approach that occurs during research. Categories, properties. and 

hypotheses are three components of grounded theory. Through content analysis. conceptual 

categories are developed by looking for recurring regularities in the data. Categories should 

be analj1ical and sensitizing. Properties are concepts that describe a given category or 

attributes of categories. Hypotheses emerge during data collection and analysis for the 

qualitative researcher, who prefers the term working hypotheses. so as not to limit the scope 

and depth of the research. 

The advantage of taking a qualitative approach is that 1 do not have a theory or 

hypotheses to verify (falsify) but rather an idea to explore and to interpret. allowing for a 

hypotheses to emerge. My hypotheses or theory were grounded in research and emerged 

through exploring and interpreting the context. 

A. (2) Epistemology 

Epistemology is concerned with what kinds of knowledge we have or can get by the 

various investigatory means at our disposal. The underlying framework of qualitative 

research. phenomenological inquiry focuses on understanding human beings in context 

specific settings. Phenomenological inquiry is inductive and has a holistic perspective. A 

phenomenological approach says somethmg about our views as to what constitutes valuable 

knowledge, or epistemology and our perspective on the nature of reality. or ontology. 

Qualitative research is defined by the way the researcher sees the world. 
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A. (3) Qualitative Research ll1ethods 

Qualitative researchers use interviews, participant and non-participant observations. 

and docwnent analysis as data collection methods. 

A. 3(a) lntenJiewing 

Interviewing is used to find out what others think and feeL what opinions they hold 

and to find out things that cannot be observed. Qualitative interviC\\ing begins v.ith the 

asswnption that the perspective of others is meaningful, knowable, and can be made explicit. 

lnterviewing is best used in conjunction with document analysis and observation. 

Person-to-person interviews were conducted with eight adult learners enrolled m the 

Adult Basic Education (ABE) program to determine students' preference for a particular kind 

of explanation. Being able to ask why students preferred or rejected a particular explanation 

helped me discover what constitutes a good explanation for the student. In addition, the 

interviews allowed an opportunity to discover whether or not students mirror teacher 

explanations outside of the classroom setting. Person-to person interviews were also 

conducted with the two ABE mathematics instructors to determine what constitutes a good 

explanation for the teacher. 

A. 3(b) Participant-obsenJation 

Participant-observation requires that the researcher be a genuine participant. such 

that his/her presence becomes accepted as pan of the setting. Often m qualitative studies 

observation is limited to non-participatory observation because of time constraints. 

Observation is valuable in that the researcher is able to see with one's own eyes. 
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Panicipant-observation occurred on a daily basis over a five week period m which 

I observed ABE students within their classroom setting. Observing the linds of explanations 

offered by students and teachers within their classroom setting provided data that helped to 

determine what kinds of explanations students prefer. and what constitutes a good 

explanation for the student and/or teacher. As well , observing the kinds of explanations 

offered by students that teachers deemed acceptable provided further insight into what 

constitutes a good explanation for the teacher. 

A. 3(c) Document AIUllysis 

For the purpose of qualitative research, a document is considered to be all wrinen 

information about the entity under study. Documents are a rich source of data on 

panicipants' views of the situation under study. Data from documents can furnish 

descriptive information. verifY emerging hypotheses, offer historical Wlderstanding and 

advance new themes and categories Document analysis. like observation should be cross-

checked with data collected from using other methodological approaches. 

The document analysis involved an intense literature review of proof. proving. and 

the different puqx>ses proving serves. The literature review asststed in defining the problem, 

selecting the methodolOk''Y. and interpreting the findings . Surveying. interpreting. and 

synthesizing what has been studied and published about the teaching of proof provided the 

foundation and direction for the current research study . 

A student questionnaire. set in two domains of mathematics arithmetic/algebra and 

geometry offering deductive, inductive and analogical explanations was administered to help 



detennine the kind of explanation preferred. The different kinds of explanations offered on 

the student questionnaire served as categories for data analysis. The student questionnaire 

served as a rich source of data on students' views of what constitutes a good explanation. 

A. (4) Methodological Issues 

A. 4(a) Rigor of Qualitative Research 

Lincoln and Guba { !986) stress that the criteria used to judge the rigor of scientific 

methods hold for naturalistic or qualitative inquiry. Trustworthmess and authenticity of 

naturalistic or qualitative inquiry are parallel terms for rigor of scientific or quantitative 

inquiry. The criteria of trustworthiness that parallel those of the conventional paradibrm 

(truth, value, applicability, consistency and neutrality) are credibility, transferability, 

dependability. and confirmability. These criteria can be assessed using triangulation of data. 

member checks, persistent observation, prolonged engagement in the setting, external audits, 

and thick description. Triangulation of data refers to multiple data collection methods used 

as a means of establishing trustworthiness. Member checks allow the participant an 

opportunity to review data collected from interviews to ensure accuracy. Lmcoln and Guba 

( 1985) believe that enlisting an outsider to audit field notes, analysis and interpretations 

contributes to trustworthiness of findings . Thick description is a literal description of the 

entity being researched, the circumstances under which it is used and the characteristics of 

the people involved. By presenting balanced views of multiple realities. and being 

empathetic and understanding to all audiences, the researcher can achieve authenticity of 

findings. The qualitative or naturalistic researcher is concerned with credibility of findings 

........ 
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rather than internal validity. Credibility is or will be established using cross-checking and 

triangulation to corroborate data.. Lincoln and Guba refer to applicability as being enhanced 

with working hypotheses and with the use of thick description. 

According to Sanders ( 1994 ). qualitative analysis involves an inductive, interactive, 

an~ iterative process whereby the researcher confirms andior explains the purpose of the 

research and tests conclusions 'J..ith relevant audiences. Sanders, in his article, Ana~vsrs t~( 

Qualuatrve lnjinmatron, states that the researcher must assure accuracy of findings by 

seeking confirmatory evidence from more than one source and subjecting inferences to 

independent verification. Auditability of naturalistic inquiry will assure the evaluation's 

confirmability (using cross checking and member checks) which is analogous to an evaluator 

using quantitative inquiry guarantying the research's neutrality . 

A. 4(b) Neutrality in Qualitative Research 

Because the chief instrument of qualitative inquiry is the researcher, the tssue of 

neutrality arises. Worthen and Sanders ( 1987) state, "because of their reliance on the human 

tendency to minimize the importance of instrumentation and group data. advocates of thts 

approach have been criticized for loose and unsubstantiated findings". Such criticism of 

a participant-onented approach is based in the scientific paradib'lll and the beliefs about 

objectivity. Researchers do not believe that qualitative research can be objective or neutral 

since it is emergent in design. The data collected are not specified in advance: there are no 

controls laid down: there are multiple realities capable of being explored to different depths 

by different researchers. Qualitative research is intensely subjective, but it does not make 
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the findings less believable or biased. 

A. (5) Establishing Rigor for the Cu"en1 Research Study 

Triangulation of observation. interviews, and questionnaire data corroborates my 

findings. Thick description and member checks were employed to establish rigor. 

Recognizing that data is not independent of its context whatever data was collected was not 

taken at a face value or unduly generalized. 
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A. Instrumentation 

Chapter VI 

DESIGN OF STUDY 

In addition to employing qualitative methods of data collection (participant 

observation, interviewing and docwnent analysis), a student questionnaire was administered 

to obtain empirical evidence. The questionnaire was divided into two sections. the first 

related to geometry and the second concerned with algebra. Both sections were presented 

in a multiple-choice format as illustrated in the sample questionnaire attached in Appendix 

A. The purpose of having a multiple choice question was to expose students to a range of 

possible ways of explaining- namely, empirically, deductively and analogically. Student 

responses were analyzed to determine what the student perceives as a good explanation -

especially after having been exposed to a variety of types of explanations. 

B. Study's Participants 

Students attending the College of the North Atlantic. Happy Valley - Goose Bay 

Campus who were enrolled in the technician. Business Computer Studies (year I and II), 

Early Childhood Education and Adult Basic Education (ABE) programs were invited to 

panicipale in the study. Approximately 100 students were invited to participate. Of these 

students. 17 were enrolled in the Sheet Metal program. 12 in the Welding program. 12 in the 

Industrial Warehousing program. 16 in the Automotive Technician program, 12 in the Adult 

Basic Education. 6 in the Early Childhood certificate program and 28 in the Business 

Computer Studies (year I and II) program. Of the one hundred and three students invited 



to participate in the questionnaire, eighty-two actually did. Business Computer Studies. year 

II students were preparing for final exams and could not afford the time to participate in the 

study. 

Students enrolled in these programs are required to complete Mathematics l 000 or 

Mathematics 1510 (with the exception of Early Childhood Education and Adult Basic 

Education students) (see Appendix C for course descriptions) . Adult Bas1c Education 

students complete the equivalent mathematics program to that of the high school curriculum . 

Business Computer Studies, year I and year II students have to complete Mathematics 151 0 

in their first semester of their two year program. Early Childhood students are not required 

to complete a mathematics course. Although I teach at the same campus, 1 was not 

responsible for teaching any of the above students in the second semester of the 1997-1998 

school year, which is when the study was conducted. 

C. Instruments 

C. (1) Questionnaire 

C. l(a) How was the questionnaire designed? 

My questionnaire was based on that of Hoyles. Hayles ( 1997) used two survey 

instruments- a student questionnaire and a school questionnaire. In order for the proofs to 

be accessible, familiar, and in tune with the UK curriculum, Hoyles chose mathematical 

content that was sufficiently straightforward. To ensure differentiation between student 

responses, the content was challenging. The student questionnaire, set in two domains of 
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mathematics arithmetic/algebra and geometry was presented in a variety of forms -

exhaustive, visual, narrative, and symbolic (Hoyles, 1997). Different "proof types" were 

offered on the questionnaire to determine whether students were influenced by the form as 

well as the content of a proof. "Proof types included empirical, enactive, narrative, visual 

or fiJrmal, with two examples of formal proof, one correct and one incorrect" (Hayles. 1997). 

Using an example to show that a mathematical statement holds true is characteristic of an 

empincal proof For an enactive proof, the student discovers the mathematical statement 

to be true by doing. A visual proof uses visual representation to show why something is 

valid. A symbolic proof uses mathematical notation to verify a mathematical statement. A 

formal proof is a finite sequence of sentences such that the first sentence is an axiom, each 

of the following sentences is either an axiom or has been derived from preceding sentences 

and the last sentence is the one to be proved. 

Many months were spent reviewing eXJsting literature. discussing and brainstorming 

with the thesis supervisor, teachers, and students (who were not associated with the study) 

all of which aided in the design of the student questionnaire. Like Hoyles. I too wanted the 

mathematical content to be sufficiently straightforward for the explanations to be accessible. 

familiar and in keeping with the Newfoundland and Labrador high school curriculum and 

the mathematics curriculum of the college in which l work and where I conducted my study. 

The content was kept challenging enough so there would be differentiation amongst student 

responses. Keeping with what Hoyles did, the questionnaire presented explanations in a 

variety of forms - exhaustive, visual , narrative and symbolic and set in two domains of 
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mathematics- algebra/arithmetic and geometry. A sample of the student questionnaire is 

attached in Appendix A. Students were given ample time to complete the questionnaire. 

The amount of time required to complete the student questionnaire was determined after the 

questionnaire was piloted. Student questionnaires were distributed in the second school 

semester. Over this same period, I observed student explanations within the classroom 

setting. Audio tape recordings were made, and formal interviews (voluntary and outside of 

normal class hours) were conducted. All information gathered in trus study is strictly 

confidential and at no time were individuals identified. Consent was obtained from 

administration. teachers and students. 

The questionnaire was divided into two sections, the first concerned with geometry 

and the second with algebra~ arithmetic. Each of the three questions were presented in a 

multiple-choice format (see Appendix A). The purpose of having a multiple-choice question 

was to introduce students to a variety of possible meanings of'to prove'. 

The student questionnaire addressed three questions 

• \\'hy does the sum of the interior angles of any triangle equal 180°? 

• Wby is the sum of two odd numbers even? 

• Why do perfect trinomial squares have the form x: + 2bx + bl? 

Inductive (single example, generic example, and multiple example), deductive 

(formulated and unformulated) and analogical explanations were offered. Students or 

participants could select their preferred explanation for each question. 
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Five different explanations were offered for the first question. Both the first question 

and the explanations offered were duplicated from Hayles' ( 1997) study. The explanations 

included two (2) inductive/multiple example explanations, one ( 1) deductive. formulated. 

semi-formal explanatio~ one ( 1) deductive, fonnulatecL pre-formal explanation and one ( 1 ) 

for:mulaic explanation. 

Figure 1 

Why does the sum of the interior angles of any triangle equal 180°? 

Amanda's answer: 

l tore the angles up and put them together. It came to a straight line which is 180° . 

I tried for an equilateral and an isosceles as well and the same thing happened. 

Amanda's inductive explanation uses three different examples to explain why the 

sum of the interior angles of any triangle equals 180 o. She tears up the angles of a triangle, 

puts them together and discovers that the angles form a straight line. Amanda tried the same 

thing for an equilateral triangle and an isosceles triangle only to discover that the same thing 
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happens. She discovers that the sum of the interior angles of a triangle equals 180" by 

doing, which is indicative of an enactive proof. In an enactive proof, the prover discovers 

the conjecture to be true by doing. Amanda's inductive explanation uses a visual aid to show 

what she did. 

Figurel 

Barry's answer: 

I drew an isosceles triangle, with c equal to 65" . 

Statements 
a= 180°- 2c 
a= 50" 
b = 65" 
c=b 

therefore, a .... b.,.. c = 180" 

I~ 
/ \ 

I \ 
i \ 

Reasons 
Base angles in isosceles triangle equal 
180° - 130" 
180"- (a-.- c) 

Base angles in isosceles triangle equal 

/ \ 
/ \ 

/c b \ 

Barry's explanation uses the concept that the angles opposite the equal sides of an 

isosceles triangle are equal. His explanatiOn is presented in the statements and reasons 

format. Barry's explanation would be considered a formulaic explanation, because it is 
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constructed according to principles which are associated with the creation of the sons of 

proofs teachers like. According to Barry's formula, the interior angles of an isosceles 

triangle equals 180° , because the base angles of an isosceles triangle are equivalent. A 

diagram accompanies Barry's formulaic explanation. Barry concludes his explanation with 

a formula. 

Figure 3 

Cynthia's answer: 

I drew a line parallel to the base of the triangle 

Statements 
p=s 

q = t 

therefore s ..;.. t - r = 180 c 

Reasons 
Alternate angles between two parallel lines are 
equal 
Alternate angles between two parallel lines are 
equal 
Angles on a straight line 



Cynthia's deductive, formulated, semi-formal explanation also uses statements and 

reasons format. Deductive reasoning "that proceeds from agreed upon premises to 

conclusions using logical arguments" (Reid, 1995a, p. 7) is employed by Cynthia to explain 

why the sum of the interior angles of any triangle equals 180° . Cynthia uses parallel lines 

and congruent angles to explain why the sum of the interior angles of any triangle equals 

180°. Since Cy11thia makes reference to parallel lines and congruent angles, it is safe to say 

that she is aware that she is proving. Based on Reid's definition of formulation -- "prover's 

knowledge that he/she is proving" ( 1995~ p.25), I would describe Cynthia's deductive 

explanation as formulated . It is semi-formal in the fact that it is a deductive argument 

suitable for publication. Like Barry's formulaic explanation, Cynthia's deductive. 

formulated. semi-formal explanation is presented using statements and reasons format and 

concludes with a formula. However, the two explanations differ in that Barry is not proving. 

Figure 4 

Dylan's answer: 

I measured the angles of all sorts of triangles accurately and made a table 

a b c total 
110 34 36 180 
95 43 4:2 180 
35 T2 73 180 
10 27 143 180 

They all added up to I 800 

Dylan's inductive/multiple example explanation uses four numerical examples to 
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show that the sum of the interior angles of any triangle equals 180 o . Dylan does not use a 

diagram as part of his explanation. Of the five different explanations provided, Dylan's is 

the only one that does not include a diagram (see Figure 4 ). 

Figure 5 

Ewan's answer: 

rf you walk all the way around the edge of the triangle, you end up facing the way 

you began. You must have turned a total of 360° . You can see that each exterior angle 

when added to the interior angle must give 180° because they make a straight line. 

This makes a total of540° . 540°-360° = 180° . 

\ 
\ 

\ 

Ewan's deductive, formulated, pre-formal explanation differs from Cynthia's 

deductive, fonnulated, semi-formal explanation in that Ewan's is more narrative and does 

not use the statements and reasons format. Ewan's explanation is deductive because he 
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comes to the conclusion that the sum of the interior angles of any triangle equals J80c using 

the exterior angle theorem and the straight angle theorem. Because Ewan's argument uses 

infonnallanguage and hidden assumptions, it would be described as a pre-formal proof .A. 

diagram accompanies Ewan's explanation (see Figure 5). 

Why is the sum of two odd numbers even? 

Four different explanations were provided for the second question. Since the intent 

of the study was to build on Hayles' ( 1995) study and Reid's (1995a) study and since both 

used this question in their studies, I thought it pertinent to include it in my study. The 

explanations for this question were generated by the thesis supervisor and myself. They 

included one ( 1) deductive, formulated, semi-formal explanation, one ( 1) inductive/single 

example explanation. one ( 1) inductive:multiple example explanation and one ( 1 ) analogical 

explanation. The analogical explanation was a duplication of one offered by a participant 

in Reid's (1995a) study. A description of each of the explanations for this quesnon follows. 

Figure 6 

Andy's answer: 

Let one odd number be ( 2n- I) and the another odd number (2m - I 1. then (2n- 1 1 
-(2m - 1) = 2(n- m l- 2 

Andy's deductive. formulated. semi-formal explanation is somewhat like a symbolic 

proof which uses mathematical notation to verify the mathematical statement that the sum 

of two odd numbers is even. 
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Figure 7 

Bill's answer: 

+ 

= 

................ 
= 

Because Bill uses a finite set of dots. his explanation would be considered to be a 

single example. His single example is strictly visual with the use of dots to represent 

numbers. 

FigureS 

Cora's answer: 

13 + 45::: 58 
7-+- 9 = 16 
113 - 335 = 448 
I 077 -517 = 1594 

Although Cora's explanation is also inductive. she uses more than one example to 

show that the sum of two odd numbers is even. Unlike Bill's inductive/single example 

explanation. Cora's inductive/multiple example explanation is strictly numerical. 
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Figure 9 

Drake's answer: 

An odd number plus an odd number equals an even number because of the same principle 
. which says a negative number times a negative number is a positive . 

Drake uses an analogy to explain why the sum of two odd numbers is even. Drake's 

analogy shows how he reasoned from a rule to a rule. His analogy compares the sum of two 

odd numbers being even to a negative number times a negative number being positive. 

Why do perfect trinomial squares have the form x1 + 2bx + b1? 

The third question was suggested by the thesis supervisor. However the different 

explanations were generated by the researcher. supervisor and students (not associated with 

the research). Students enrolled in the Common First Year program were invited to 

formulate explanations for the trinomial square question. At the time of the invitation, these 

students were completing the topic, Review of Fundamental Algebra in their Mathematics 

l l 00 course. Any formulated explanations were developed outside of regular classroom 

time and was on a voluntary basis. Five different explanations were provided to explain the 

third question. They included one ( l) inductivetmultiple generic example explanation. one 

( 1) deductive, formulated, pre-formal explanation, one ( 1) inductive/multiple example 

explanation, one ( 1) deductive. formulated, semi-formal explanation and one ( 1 ) deductive. 

unformulated, informal explanation. The deductive, formulated, pre-formal explanation was 

offered by a student from the Common First Year program. The inductivetmultiple generic 

example explanation, inductive/multiple example explanation, deductive, formulated, semi-
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formal explanation and the deductive. unformulated, informal explanations were generated 

by the thesis supervisor. 

Figure 10 

Lisa's answer: 

If you take the number 144. then 144 is equal to 10: + :2( 10)(:!) ~ 2: 
Likewise. 169 ~ 13: is 10:- 2( 10)(3)- 3: 
Finally, 81 = 9: is 81 

- 1(8)( 1) - 1: 

Therefore, any perfect square number is equal to a binomial square which always 
multiplies out into the form x: • 2bx + b~ 

The binomial is found by finding two numbers which add up to the number before 
it is squared. For example 9 = 8- I and 91 = 81. Similarly, 13 = 10-3 and 13: = 169 

Lisa's inductive/multiple generic example explanation uses three generic examples 

to explain "Why perfect trinomial squares have the form x= - 2bx - b:'l" 

Figure 11 

Julia's answer: 

If you multiply two same bmom1als such as ( x- b)(x- b) using the FOIL method. 
then the first two terms of the two binomials will multiply to x *x == x= ~ the two outside 
terms will be x times b = xb :the two inside terms will be b times x = bx: and the two last 
terms of each of the two binomials multiplied together v~ill be b2 Combining like terms. 
the xb and bx will equal 2bx. Thus. ( x .... b)( x ...- b) will always multiply into the form x= ..­
:!bx- b: . 

Julia's explanation is deduct1ve 1n that she uses the FOIL method (abJTeed upon 

premises) to come to the conclusion that perfect trinomial squares have the form x~ + 2bx 

- b:. With the use of the FOIL method to show that (x- b)(x- b)= x=- 2bx- b:. Julia is 

aware that she is proving. Thus. her explanation is formulated. Yet, her explanation 



assumes the reader is familiar with the FOil.. method. Because Julia's deductive. formulated 

explanation involves hidden assumptions and informal language, her explanation would be 

characteristic of a pre-formal proof According to Reid ( 1995a, p.9), a pre-formal proof may 

involve hidden assumptions, and use of informal language and notation. 

Figure 12 

Jody's answer: 

(x- 2)( x- 2) = x"- 2x- 2x- 4 = x=- 4x.,.. 4 
. .., .. 9 , 6 9 (X - 3 )(X + 3) = X"" - -'X .._ -'X .,.. = x- _._ X + 

( x- 5 )( x- 5) = x2 - 5x -Sx..,.. 25 = x:- lOx+ 25 
(3x + 4)(3x + 4) = 9x-" ... l2x + 12x + 16 = 9x-" + 24x + 16 
(2x- 3)(2x- 3) = 4~- 6x -6x + 9 = 4x~- 12x + 9 

Therefore perfect trinomial squares always have the form x1
- 2bx _._b: 

Using multiple examples, Jody shows how a squared binomial multiplies into a 

perfect trinomial square. 

Figure 13 

Dena' answer: 
Using the distributive law: 
(x + b)(x _._b) 
( x _._ b )x = x~ ..,.. bx 
( x + b )b = xb + b: 

(X -.- b)( X .,.. b) = X~ - bx - xb - b.: 
The "~"comes because "xb" occurs m both distributions 

Dena's explanation uses mathematical properties, namely the distributive law to show 

that (x-.- b)(x +b)= x.:- 2bx.,.. b.:_ Although Dena's explanation explains why the":!" occurs 

-"The '2' comes because 'xb' occurs in both distributions."- she does not show a concluding 
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step X':: + 2bx + b:!. With the use of the distributive propeny, Dena is aware that she IS 

proving. Thus, her explanation is formulated. 

Figure 14 

Cheryl's answer: 

(x ~b) represents a line segment oflength (x ~b) 

X b 

X xb 

b bx b"2 

Cheryl's explanation for why do perfect trinomtal squares have the fonn x~- 2bx­

b:: would be considered deductive but unformulated. Without a statement to show that she 

is multiplying two binomials or a concluding statement like (x- b)( x- b)= x;- 2bx .... b:, 

it is safe to say that Cheryl is unaware she is proving. That is, her deductive explanation is 

unformulated. Cheryl finds the area of a square with length (x- b) to show that (x +b)(x­

b)= ,r + 2bx + b:!. 
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c l(b) How was the questionnaire administered? 

The questionnaire was administered over a two week period (prior to the second 

semester break) by the researcher w1th the shop instructor or home room instructor present. 

Students were given as much time as needed to complete the questionnaire. The instructions 

for completing the questionnaire consisted of checking one of the students' explanations for 

each of the three questions presented. Participants were told that they could choose one 

explanation and were not asked to specify their reason for domg so. 

c (2) Observations 

Adult Basic Education (ABE • level III) students were chosen for observation. 

because they were accessible and willing to participate in the classroom observations. At 

the end of the second school semester, most students had finished their program of studies 

or were on-the·job-training with the exception of the ABE students. ABE level 111 students 

and their mathematics instructors volunteered to be observed in their classroom setting. 

Students' mathematical background varied given entrance requirements. For the 

most part a high school diploma is required as entrance into the Trades and Technology, 

Business and Applied Arts probrrams: but. often students are accepted through the mature 

student clause. The mature student clause states that applicants who do not meet the 

educational prerequisites for the probrram they wish to enter may be considered for 

admission on an individual basis provided that they are at least 19 years of age and have 

been out of school for at least one year. Students enrolled in the Level Ill , ABE program are 
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representative of the school population since some are high school graduates seeking better 

grades or refresher courses as entrance requirements for university programs and others are 

mature students. 

During the seven week intersession (April27, 1998- June 12. 1998), I \..-as able to 

ob_serve students and their teachers on a regular basis. Approximately one to two hours daily 

were spent observing students and teachers in their mathematics class. The classroom 

observations concluded at the end of the fifth week when all possible data had been 

collected. 

Audio tapes were used to record data along with field notes. The intent of the 

classroom observations was to relate questionnaire responses to the classroom setting 

looking tor commonalities among students' preferences. By observing students and teachers 

within the classroom setting, data was collected to determine the kinds of explanations 

students offer their classmates or teachers: kinds of explanations offered by students that 

teachers deemed acceptable: kinds of explanations students provided on the questionnaire 

and in classroom setting. These data collections helped to answer the four research 

questions. 

c. (3) 

C. J(a) 

L 

Interviews 

Student interviews 

How were students selected? 

Level Ill, ABE (both the academtc and general mathematics) students who 
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voluntarily participated in the classroom observations were invited to parttcipate in the 

interviews Eight of the twelve level ill, ABE students were receptive to the invitation. Of 

the eight students who volunteered to be interviewed, six (6) students were from the 

academic mathematics stream and the other two (2) were from the general mathematics 

stream. The eight interviews were conducted over the last two weeks of the 1997-1998 

school year. Most of the eight students had completed their required credits for graduation 

and had time to participate in the study. 

ii. What questions were used? 

The questionnaire questions were used for the interviews as a means of finding 

patterns in student responses to see if students' preference for a type of explanation was 

consistent among different settings. By using the questionnaire questions. the researcher 

was able to determine not only what kind of explanation students preferred but why they 

preferred it. This provided insight into what constitutes a good explanation for the student. 

Other questions in addition to the questionnaire questions were used for the 

interviews. These additional questions came about from the classroom observations. The 

"Pick Up Charge" question and "Solving an Equation with Negative Numbers" question were 

asked to the same students who were observed solving them in their classroom settings . 

Both of these questions were chosen to collect data relating to whether or not students mirror 

teachers' explanations. Other questions, namely, "Why does .45/.99 reduce to 45/99'l" and 

"Which of the following sequences is geometric and why?" were asked to the academic 

students who were interviewed. These questions were explained by their teacher in the 
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classroom setting. By asking the same questions in the interviews, data could be collected 

to see if students parrot the teacher. 

Pickup Charge 

I asked student #5 and student #6 how they would calculate the pickup charge for 

275 kg of a product if$6.10 is charged for each 100 kg or fractional part. Both students 

could choose from the answers provided. 

$6.10 * (275 ~ 100) = $16.775 or $6. 10 *(300 ~ 100) = $18.30 

Sol\'ing an equation with negative numbers 

I asked student #7 to choose from the two different ways of solving the following 
equation. 

1020 =a 1-255) or 1020 =a C-255) 
-I -I 

-1020 =a (-255) or 1020 =a (255) 

a=4 or a=4 

Why does .45/.99 reduce to 45/99? 

Which of the following sequence is geometric and why? 

1/3 1/9 1/27 

5 tO 15 20 
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c. 3(b) Teacher interviews 

The two ABE mathematics instructors were also receptive to being interviewed. The 

two teachers were busier than their students in the last two weeks of the school year when 

the student interviews were conducted. Thus, the teacher interviews were conducted during 

the summer vacation. The questionnaire questions were used for the teacher interviews to 

collect data that would help answer what constitutes a good explanation for the teacher. 
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Chapter VII 

Results 

The first part of the results section records the data collected from the questionnaire. 

The second part records the data from the interviews. The first section of part two of the 

results records the data collected from the student interviews. The second section compares 

the results from the questionnaire and the student interviews. The third section of part two 

of the results records the data collected from the teacher interviews. The fourth section 

records the data from student interviews using the questions developed from classroom 

observations. 

A. Questionnaire Results 

The student questionnaire addressed three questions set in two domains of 

mathematics, algebra/arithmetic and geometry. 

• Why does the sum of the intenor angles of any triangle equal 180 °., 

• Why is the sum of two odd numbers even? 

• Why do perfect trinomial squares have the form x:!- 2bx - b2
" 

Inductive (single example, generic example, and multiple example), deductive 

(formulated and unformulated) and analogical explanations were offered. Students or 

participants could choose the explanation of their choice for each of the three questions. 

The three questions and the explanations offered are explained in detail in the design 

chapter. 



A. (1) Why does the sum of the interior angles of any triangle equal 180 "? 

Five different explanations were offered for this question. They included two (2) 

inductive/multiple example explanations, one (I) deductive, formulated, semi-formal 

explanation, one ( 1) deductive, formulated, pre-formal and one ( 1) formulaic explanation. 

Table I 

Why does the sum of tbe interior angles of any triangle equal 180°? 

Students' Kind of Explanation Number from the 
Explanations questionnaire who chose a 

particular explanation n == 82 

Amanda Inductive/Multiple Example 16 (19.5%) 

Barry Formulaic 21 (25 .6%) 

Cynthia Deductive, formulated, semi-formal 18 (22%) 

Dylan Inductive/Multiple Example 21 (25 .6%) 

Ewan Deductive, formulated, pre-formal 6 (7.3%) 

Of the eighty-two students who participated in the questionnaire, most chose either 

Barry's formulaic explanation (twenty-one students, 25 .6%) or Dylan's inductive, multiple 

example explanation (also twenty-one students. 25 .6%). Nearly as many preferred Cynthia's 

deductive, formulated, semi-formal explanation (eighteen students, 22%) or Amanda's 

inductive. multiple example explanation (sixteen students, 19.5%). Only six students (7.3%) 

preferred Ewan's deductive, formulated, pre-formal explanation. 
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A. (2) Why is the sum of two odd numbers even? 

Four different explanations were provided to explain why t.he sum of two odd 

numbers is even. They included one ( 1) deductive. formulated, semi-formal explanation, 

. one ( 1) inductive/single example explanation, one ( 1) inductive/multiple example 

ex-planation and one ( 1 ) analogical explanation. 

Table 2 

Why is the sum of two odd numbers even? 

Students' Kinds of Explanations Number from the 
Explanations questionnaire who chose a 

particular explanation 
n = 82 

Andy Deductive, formulated. semi-formal 1 I (13.41%) 

Bill Inductive/Single Example/Visual 3 (3 .67%) 

Cora Inductive/Multiple Example 35 (42 .68%) 

Drake Analogy 33 (40.24%) 

Of the eighty-two students who panicipated in the questionnaire. most chose 

either Cora's inductive/multiple example explanation (thiny-five students, 42.68%) or 

Drake's analogy (thiny-three students. 40.24%). Only eleven students ( 13.41%) preferred 

Andy's deductive, formulated, semi-formal explanation: fewer students preferred Bill's 

inductive, single example explanation (three students, 3.67%). 
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A. (3) Why do perfect trinomial squares have theformr + 2bx + b1 ? 

Five different explanations were offered to explain why perfect trinomial squares 

have the form ,2 + 2bx + b2
. They included one ( 1) inductivetmultiple generic example 

explanation. one ( 1) deductive, formulate<L pre-formal explanation, one (I) deductive. 

formulated. semi-formal explanation, one ( 1) inductive/multiple example explanation, and 

one { 1) deductive/unformulated/visual explanation. 

Table 3 

Why do perfect trinomial squares have the form x2 + 2bx + h: ., 

Students' Kinds of Explanations Number from the questionnaire 
Explanations who chose a particular 

explanation n = 82 

Lisa Inductive/Generic Example 8 (9 .76%) 

Julia Deductive, formulate<L pre- 32 (39.02%) 
formal 

Jody Inductive/Multiple Example 17 (20.731%) 

Dena Deductive. formulate<L semi- 16 (19.51%) 
formal 

Cheryl Deductive, 9 ( 10.91 %) 
unformulated/informal 

Julia's deductive. formulated, pre-formal explanation was the most preferred with 

thirty-two students (39.02%) choosing it. Only half as many chose Jody's inductive, multiple 

explanation (seventeen students, 20.73%) with almost the same number of students choosing 

Dena's deductive, formulated, semi-formal explanation (sixteen students, 19.51% ). The 
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number of students who chose Lisa's inductive, generic example explanation 1 e1ght students. 

9.76%) was about the same as Cheryl's deductive. unformulated. informal explanation (mne 

students. 10.91 ~o ). 

B. Interviews 

The student interviews included questions from the questionnaire and from 

classroom observations. 

B. (I) Student inte"'iews using questionnaire questions 

B. l(a) 

Table 4 summarizes the data collected from the student interviews using the tirst 

questionnaire question. 

Table 4 

Why does the sum of the interior angles of any triangle equal 180°? 

Students' Explanations Kinds of Explanations Number from the 
interview who chose a 
particular explanation 
n=8 

Amanda Inductive/Multiple Example 4 

Barrv Formulaic 1 

Cynthia Deductive . formulated. semi- 2 
formal 

Dylan Inductive/Multiple Example 1 

Ewan Deductive. formulated, pre- 0 
formal 
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Four of those students interviewed preferred Amanda's inductive1multiple example 

explanation.. Cynthia's deductive, fonnulated. semi-fonnal explanation was the second most 

preferred. Of the eight students interviewed, one preferred Barry's formulaic explanation 

and another preferred Dylan's inductive/multiple example explanation. Of the eight students 

imerJiewed, no one chose Ewan's deductive, formulated, pre-formal explanation. 
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Table 5 specifically shows who from the interviews conducted preferred a particular 

explanation, the kind of explanation preferred and their reason for choosing the explanation 

for the questionnaire question, ''Why does the swn of the interior angles of any triangle equal 

Table 5 

Why does the sum of the interior angles of any triangle equal 180o? 

Student Choice of Kind of explanation Reason for choosing 
interviewed explanation explanation 

Student #1 Amanda's inductive/Multiple Example Familiar 

Student #2 Amanda's inductive/Multiple Example Easy 

Student #3 Amanda's Inductive/Multiple Example Clear 

Student #4 Amanda's Inductive/Multiple Example Obvious 

Student #5 Barry's Formulaic Statements & Reasons 

Student #6 Cynthia's Deductive, formulated, semi- Statements & Reasons 
formal 

Student #7 Cynthia's Deductive, formulated, semi- Logical 
formal 

Student #8 Dylan's Inductive/Multiple Example Straightforward 

Because Amanda's inductive/multiple example explanation did not require any 

additional explanations, for example. why alternate angles are equal, it was student #3's 

preferred choice. Student #3 described Amanda's exp:anation as clean and clear and not 

warranting subsequent proofs. "I tell ya now .. . Amanda's answer hmm hmm because it's 
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clear. It is very clean. It's not cluttered. lt answers the question fully without going into 

long details" (see Appendix B). 

Amanda's inductive/multiple example explanation was student #4's choice because 

of its obviousness that three bends would straighten into a straight line equalling 180° . 

" . . . three different bends. Then it's obvious. Three angles got to equal 180 o" (see Appendix 

B). 

Student #2 liked Amanda's inductive1multiple example explanation for its easmess. 

Student #2 felt that Amanda's explanation was easy because it did not involve statements and 

reasons. "It is easy. It doesn't involve statement and reasons" (see Appendix B). 

Student # 1 thought that Amanda's inductive/multiple example explanation was the 

most appropriate explanation. because he could relate what Amanda was saying to one-half 

of a circle which equals 180 o . When I ran into student # 1 a few weeks after the interview, 

I asked him how Amanda's inductive/multiple example explanation reminded him of a half 

of a circle. I finally understood that student# 1 was relating Amanda's inductive/multiple 

example explanation to a half circle, because in Amanda's explanation she cuts up the angles 

which according to student # 1 is like cutting a circle in half equalling 180°. "Think of circle 

- 180° is 1/2 of a circle- you add them all up together equal 180° -so go with Amanda's 

response. She cut the angles and made a straight line. Like a circle is 360° but, ah, if you 

cut in half, then you get a straight line 180°" (see Appendix B). So, student #I was 

explaining why he preferred Amanda's inductive/multiple example explanation using an 

analogy. For student# 1, Amanda's inductive/multiple example explanation served as an 
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analogy in which his reasoning by analogy was based on a case and lead to a case (see 

Appendix B). 

Student #5 preferred Barry's formulaic explanation, because he uses statements and 

reasons providing a formula at the end "Barty's because first he showed what he did - why 

in. statements and reasons and then a fonnula at the end" (see Appendix B)_ 

The format, namely statements and reasons, of Cynthia's deductive, formulated, 

semi-fonnal response was why student #6 preferred it as an expianation for -- Why does the 

sum of the interior angles of any triangle equal 180° O? "Cynthia's answer because she is 

using statements and reasons" (see Appendix 8)_ 

Student #7, on the other hand, preferred Cynthia's deductive, formulated. semi­

formal response for its reasoning. According to student #7. Cynthia's explanation uses 

logical arguments with the use of the straight line and equivalent angles. "Cynthia's - she 

justifies using logical arguments and equivalent angles. Kind of liked Ewan's too because 

that one's using reasoning- all of them would be same triangle right- not going to change 

degrees" (see Appendix B). 

Student #8 was convinced and did not require any further explanation why the sum 

of the interior angles of any triangle always equals 180° than what Dylan's 

inductive;multiple example explanation provided. Student #8 was convinced that \\"hen you 

add the interior angles of any triangle your answer wiii always be 180° by the simple fact 

that three different measurements added summed to 180° _ 
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B. l(b) 

Table 6 summarizes the data collected from the student interviews using the second 

questionnaire question_ 

Table 6 

Why is the sum of two odd numbers even? 

Students' Kinds of Explanations Number from the interview 
Explanations who chose a panicular 

explanation n = 8 

Andy Deductive, formulate<l semi-formal 1 

Bill Inductive/Single ExampleNisual 1 

Cora Inductive/Multiple Example ... 
.) 

Drake Analogy ... _, 

Three of the eight students interviewed preferred Cora's explanation. and another 

three preferred Drake's analogy_ One of the eight students interviewed preferred Andy's 

deductive, fonnulate<l semi-forrnal explanation and another preferred Bill's inductive1single 

example explanation. 

Table 7 specifically shows who from the interviews conducted preferred a particular 

explanation, the kind of explanation preferred and their reason for choosing the explanation 

for the questionnaire question - Why is the swn of two odd numbers even':! 

65 



Table 7 

Why is the sum of two odd numbers even? 

Student Choice of Kind of explanation Reason for choosing 
interviewed explanation explanation 

Student #5 Andy's Deductive, formulated, Statements & 
semi-formal Reasons (Formula) 

Student #7 Bill's Inductive/Single Visual 
Exam pi eN isual 

Student #2 Cora's Inductive/Multiple Example Examples 

Student #3 Cora's Inductive/Multiple Example Examples 

Student #4 Cora's Inductive/Multiple Example Examples 

Student# 1 Drake's Analogy Familiar 

Student #8 Drake's Analogy Familiar 

Student #6 Drake's Analogy Wrinen in words 

Student #5 tended to prefer responses that were in the statements and reasons format. 

Because Andy's deductive, formulated. semi-formal explanation provided, in student #5's 

opinion. statements and reasons and then a formula at the end. tt was her preferred 

explanation. "Andy's- he is saying what one number is and another in formula and then he 

went on to say why he did it- then the formula" (see Appendix 8). Student #5 believed that 

Andy's deductive explanation provided statements and reasons: yet. he does not indicate why 

2n- I or 2m T I equals an odd number and why 2(n- m)- 2 is an even number. 

Student #7 chose Bill's inductive/single example explanation because it provided a 

visual representation of why the sum of two odd numbers is even. Both Drake's analogy and 
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Cora's inductiveJmultiple examples explanations caught student #7's attention. but. she still 

preferred Bill's visual explanation. "I'm better with visuals sometimes. It depends on what 

I'm doing. If I can see things. Not that I would dispute that (Cora's explanation) or that" 

(Drake's explanation) (see Appendix B). When I asked student #7 what she thought about 

Andy's deductive, formulated. semi-formal explanation, she indicated that she could see the 

logic to it. but she could not think of the algebra at the time. "Andy's is alright, but like right 

now I can't think odd numbers. I'm trying to think of the algebra stuff- the numbers-- the 

equations. It is logical to see where it worked out" (see Appendix B). Yet, logic was the 

reason student #7 had chosen Amanda's inductive/multiple example explanation to explain 

why the sum of the interior angles of any triangle equals 180° . However, for the sum of two 

odd numbers is even. student #7 chose the visual explanation over the 'Jogtcal' explanation 

(see Appendix B). 

Cora's inductive1multiple example explanation showing the sum of two odd numbers 

is even through examples was enough to convince student #'2 . When asked if Cora's 

explanation would be proof that the sum of two odd numbers is always even. student #"2 

responded 'sure' . Student #2 indicated that Cora's inductive/multiple example explanation 

was a lot easier to see or understand. "I would say Cora's answer. This one is a lot easier 

to see . The numbers make it easier. You don't have to count the dots" (see Appendix 8). 

Student #2 did not like Drake's analogy because it sounded too much like a word problem 

to her. "Drake's is like a word problem" (see Appendix B) Nor did she like Bill's 

inductive1single example explanation because she did not want to count the dots. 
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Both student #3 and student #4 also preferred Cora's inductiveJmultiple example 

explanation because Cora's explanation provided examples of why the sum of two odd 

numbers is even, and thev would not have to figure out whv a negative times a negative is 
J - .. - -

positive. "Cora's answer on that one, because, not only, does she give more than one example 

and it's clear, again, it is the contents of it" (see Appendix B- student #3 ). "Given bunch of 

examples, right, which I think would be easier to do than just trying to explain something, 

okay, like a negative times together would give you a positive: whereas. if you were given 

an example, then I would say students would learn better. would understand better" (see 

Appendix B - student #4 ). 

Student # 1 decided on Drake's analogy. Student # 1 found that he could relate an odd 

number to a negative number and an even number to a positive number. It was clear to 

student #I that if a negative times a negative is positive , then an odd plus an odd is even. 

"Drake's answer because it goes along with a negative times a negative gives you a positive. 

So. an odd plus an odd is even. Ya. okay, an odd number is like a negative number and an 

even number is like a positive" (see Appendix B). For student# 1, Drake's reasoning by 

analogy which is based on a rule and leads to a rule was strong. That is. Drake's analogy 

allowed student# I to understand why the sum of two odd numbers is even. 

Student #8 also preferred Drake's analogy because it related the sum of two odd 

numbers is even to a familiar principle that says the product of two negative numbers is 

positive: therefore, the sum of two odd numbers must be even. "Drake's because a negative 

times a negative nwnber is positive: therefore, an odd number plus an odd number is an even 
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number" (see Appendix 8). 

The fact that Drake's analogy uses words and not numbers, symbols or dots was 

reason enough for student #6 to choose his explanation. "Drake's because it's written out not 

using numbers" (see Appendix B). 

B. l(c) 

Table 8 summarizes the data collected from the student interviews using the th1rd 

questionnaire question. 

Table 8 

Why do perfect trinomial squares bave the form x: + 2bx + b2 
" 

Students' Kinds of Explanations Number from the interview 
Explanations who chose a particular 

explanation n = 5 

Lisa Inductive/Multiple Generic Example I 

Julia Deductive, formulated. pre-formal 
., 
.) 

Jody Inductive/Multiple Example 1 

Dena Deductive, formulated. semi-formal 0 

Cheryl Deductive, unformulated/informal 0 

Julia's deductive, pre-formal explanation was the most preferred with three of the 

five students interviewed choosing it. Only one of the five students interviewed chose Lisa's 

inductive/multiple generic example explanation. Likewise. only one of the five chose Jody's 

inductive/multiple example explanation. No one from the interviews conducted selected 

Dena's deductive, formulated, semi-formal explanation or Cheryl's deductive. unformulated 
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explanation. 

Table 9 specifically shows who from the interviews conducted preferred a partJcular 

explanation. the kind of explanation preferred and their reason for choosing the explanation 

for the questionnaire question- Why do perfect trinomial squares have the form x :_ :!bx-b)) 

Table 9 

Why do perfect trinomial !quares have the form x2 + 2bx + b1 
., 

Student Choice of Kind of explanation Reason for choosing 
interviewed explanation explanation 

Student# 1 Lisa's Inductive/Multiple Generic Two different wavs 
Example 

Student #2 Julia's Deductive. formulated, pre- Familiar 
formal 

Student #3 Julia's Deductive. formulated, pre- Straightforward 
formal 

Student #4 Julia's Deductive. formulated, pre- Straightforward 
formal 

Student #8 Jody's Inductive/Multiple Example Familiar 

Student #I seemed impressed that Lisa's inductivetmultiple generic example 

explanation provided a different means to obtain the square of a number. He liked how 12 z 

could be wrinen as a binomial squared which multiplied out provided the same result as 12 z 

"Lisa's answer because she shows two different ways" (see Appendix 8) 

Student #2 chose Julia's deductive. formulated. pre-formal explanation because of 

its familiarity. Julia's explanation uses the FOIL method of multiplication which was 
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familiar to student #2. Student #2 did not know how her choice of explanations would have 

been different if the FOIL method had not been so familiar to her. "Julia's response because 

she is using the FOIL method- maybe because it's familiar" (see Appendix B). 

Student #4, like student #2, chose Julia's deductive explanation, because she uses 

the FOIL method which student #4 thought was straightforward. "Ah, because she is using 

the FOIL method, right, and in my opinion, it is easier for students to understand and I mean 

-it is straightforward- First Outside Inside Last" (see Appendix 8). 

Student #3, too, chose Julia's deductive, formulated, pre-formal explanation, because 

she uses the FOIL method of multiplication which, according to student #3. is simple. In 

student #3's opinion, it is simple. because it uses straightforward instructions which you 

could follow like a recipe . "Say. Julia's answer for this one because it's-- she 1s explaimng 

what she is doing. She is using the FOIL method of multiplication. Not only that, she'll go 

through every step of the FOIL method m each line. Again, it's simple-- simplicity. itself 

This here is very simple, straightforward instructions. If you had different numbers and you 

were going to do this, you could almost follow like a recipe which she has here and learn 

and teach yourself how to do something like that." (see Appendix 8). 

Although student #8 preferred Jody's inductivetmultiple example explanation, she 

did for the same reason as student #2, student #3 and student #4 chose Julia's deductive, 

formulated, pre-formal explanation Student #8 chose Jody's explanation. because he uses 

the FOIL method. Student #8 seemed to focus more on the final product than the method, 

indicating that the perfect square trinomial works out evenly as a result of using the FOIL 
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method. 

B. /(d) Summary of student interviews using questionnaire questions 

Table 10 swnmarizes the student's choice of explanation, the kind of explanation for 

each of the three questions and why he/she preferred a panicular explanation. 
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Table 10 

Student Choice of explanation for the Cho1ce of explananon for Cho1ce of explananon 
mtervtewed sum of the mtenor angles in the sum of twO odd numbers for perfect mnonual 

any mangle 1s 180 o and why. lS even and why squares and why 

Student #I Amanda's Inducnve/Mulnple Drake's L1sa's 
Example Analogy lnducnvetMuluple 
Familiar Familiar Genenc Example 

Two different ways 

Student #2 Amanda's Inducnve/Mulople Cora's Inducnve!Muluple Juha's 
Example Exampie Deducuve. formuia1ed. 
Easy Examplrs semJ-formal 

Familiar 

Student #3 Amanda's lnducnvefl\.1ulople Cora's Juha's 
Example lnducnve!Mulople Example Deducnve. formulated. 
Clear Eumplrs sem1-formal 

Straightfonr.~rd 

Student#4 Amanda's lnducnve/M ultiple Cora's Juha's 
Example lnducnve!Mulnple Example Deducnve. formulated. 
Obvious Examples sem1-formal 

Strai2htforward 

Student #8 Dylan's Drake's Juha's 
lnducnvetMulnple Example Analogy Deducnve. formulated. 
Straightforward Familiar serru-formal 

Familiar 

Student #'5 Barry's Andy's N/ A 
Fonnulruc Deducnve. formulated. 
Statements & sem•-formal 
Reasons Stalements & Reasons 

(Formula) 

Student #6 Cynthia's Drake's N/A 
Deducnve. formulated. sem1- Analogy 
formal Written out in words 
Statement & Reasons 

Student #7 Cynthia's Bill's N/A 
Deducnve. formulated. sem1- lnducnve!Smgle Example 
formal Visual 
Logical 
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B. (2) Comparison of findings between questionnaire and student 
interviews 

Tables 11, 12 and 13 compare the results from the questionnaire and the student 

· interviews for the three questions 

• Why does the sum of the interior angles of any triangle equal 180°" 

• Why is the sum of two odd numbers even? 

• Why do perfect trinomial squares have the fonn x= ..... 2bx- b~') 

B. 2(a) 

Table I I 

Why does the sum of the interior angles of any triangle equal 180°? 

Students' Kinds of Number of participants Number of 
Explanations Explanations from the questionnaire participants from 

who chose a particular the interviews who 
explanation n = 82 chose a particular 

explanation n = 8 

Amanda lnducti ve/Mul ti pie 16 (19.5%) 4 (50%} 
Example 

Barry Formulaic 21 (25 .6%) I (12.5%) 

Cynthia Deductive, 18 (22%) 2 (25%) 
formulated. semi-
formal 

Dylan Inductive/Multiple 21 (25.6%) I (12.5%) 
Example 

Ewan Deductive, 6 (7.3%) 0 (0%) 
formulated, 
pre-formal 
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Although there are no obvious consistencies among the type of explanation preterred. 

students did seem to prefer the empirical explanations over the deductive explanations. It 

is interesting to note that only six of the eighty-two questionnaire participants (7 .3%) and 

no one from the interviews preferred Ewan's deductive, formulated, pre-formal explanation. 

B. 2(b) 

Table 12 

Why is the sum of two odd numbers even? 

Students' Kinds of Number of participants Number of partictpants 
Explanations Explanations from the questionnaire from the interviews 

who chose a particular who chose a particular 
explanation n = 8:2 explanation n = 8 

Andy Deductive, 1 I (13.41%) I (1:2 .5%) 
formulated, semi-
formal 

Bill inductive/Single 3 (3 .67%) 1 (12 .5%) 
Example 

Cora Inductive/Multiple 35 (42.68%) 
.., (37.5%)' , 

Example 

Drake Analogy 33 (40.24%) 3 (37.5%) 

Although it was not obvious what kind of explanation students preferred for why the 

sum of the interior angles of any triangle equals 180°, it was obvious for why is the sum of 

two odd numbers even. Thiny-five of the eighty-two questionnaire participants ( 42 .68%) 

and three of the eight students interviewed (37.5%) preferred Cora's inductive/multiple 

example explanation (see Table 12). An equal number of students interviewed (37.5%) (see 
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Table 2) and over forty percent (40.24%) (see Table 12) of those students who panicipated 

in the questionnaire preferred Drake's analogy. 

B. 2(c) 

Table 13 

Why do perfect trinomial squares have the form x:: + 2bx + b2 
., 

Students' Kinds of Number of Number of 
Explanations Explanations participants from the participants from the 

questionnaire who interview who chose 
chose a particular a particular 
explanation n = 82 explanation n = 5 

Lisa Inductive/Multiple 8 (9.76%) 1 (20%) 
Generic Example 

Julia Deductive. 32 (39.02%) 3 (60%) 
formulated, pre-
formal 

Jody Inductive/Multiple 17 (20.73%) 1 (20%) 
Example 

Dena Deductive. 16 (19.51%) 0 (0%) 
formulated. semi-
formal 

Cheryl Deductive. 9 ( 10.91 %) 0 (0%) 
unformulated' 
informal 

Cora's inductive/multiple example explanation which was strictly numerical was 

favoured for why is the sum of two odd numbers even; while Julia's deductive, formulated, 

pre-formal explanation was favoured for why do perfect trinomial squares have the form 
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x2+2bx+b.:: . Close to forty percent (39.02%) of the students who participated m the 

questionnaire and sixty percent (60%) of those interviewed preferred Julia's deductive. 

formulated. pre-formal explanation (see Table 13 ). 

B. 2(d) Sumnwry of comparison 

Tables 14, 15 and 16 show the chi-square test for each of the three questionnaire 

questions. 

Table 14 

Why does the sum of the interior angles in any triangle equal 180°? 

Kind of Number of Number of ( QQ~erv~g - ex~~t~g }.:: 
Explanation students who explanations expected 

preferred a offered 
particular n = 5 (%) 
explanation 
n = 82 (%) 

Inductive/Multiple 37 (45%) 2(40%) 0.54 
Example 
Amanda's 
Dylan's 

Formulaic 21 (26%) I (20%) 1.2q 
Barry's 

Deductive 24 (29~·o ) 2 (40%) 2.36 
Cynthia's 
Ewan's 

I.x.:: = 4.19 

The Chi-square statistic of -l. 19. at 2 degrees of freedom indicates that there is about 

a 90% chance that students preferred inductive and formulaic explanations over deductive 
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explanations for some other reason than chance. 

Table 15 

Why is the sum of two odd numbers even? 

Kind of Number of Number of ( QQS~rved - ~~~~teg)1 

Explanation students who explanations expected 
preferred a offered 
particular n = 4 (%) 
explanatJOn 
n = 82 (%) 

Inductive/Single 3 (4%) I (25%) 14.94 
Example 
Bill's 

lnductive!Multiple 35 (43%) I (25%) 10.26 
Example 
Cora's 

Deductive 11(13%) 1 (25%) 4.40 
Andy's 

Analogical 33 (40%) I (25%) 7.62 
Drake's 
- --~ · - ~- -- ---·~-- - --

~ 

~- - ---· ·- ~ -

'~ = 37 ..,.., 
I.... ' ·--

The Chi-square statistic of 3 7. 22. at 3 debJTees of freedom indicates that there is more 

than a 99% chance that students preferred inductive and analogical explanations over 

deductive explanations for some other reason than chance. 
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Table 16 

Why do perfect trinomial squares have the form x1 + 2bx + b2? 

Kind of Number of Number of (QQ~~rv~g- ~x~cteg)1 

Explanation students who explanations expected· 
preferred a offered 
particular n = 4 (%) 
explanation 
n = 82 (%) 

lnducti ve/Multiple 25 (30%) 2 (40%) 1.85 
Example 
Jody's 
Lisa's 

Deductive 57 (69%) 3 (60%) 1.24 
Julia's 
Dena's 
Cheryl's 

Ix:: = 3.09 

The Chi-square statistic of 3.09. at one degree of freedom indicates that there IS 

about a 90% chance that students preferred deductive explanations over inductive 

explanations for some other reason than chance . 
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B. (3) Teacher Interviews 

The results of the interviews with the two instructors showed that both preferred the 

deductive explanations, with one preferring formulated and the other not expressing that 

preference. 

B. J(a) Results from the teacher interviews using the .first questionnaire question 

Why does the sum of tbe interior angles of any triangle equal 180? 

Both instructors preferred C)'llthia's deductive, fonnulated, semi-formal explanation 

for the sum of the angles in a triangle question. According to instructor # l , Cynthia's 

deductive, fonnulated, semi-formal explanation uses postulates, theorems and proven 

statements which makes it the best choice. "Cynthia, she used postulates and theorems, 

proven statements." (see Appendix 8). Instructor #'2 liked Cynthia's deductive explanation, 

because "she shows an understanding of some aspects of math and application of them." (see 

Appendix 8) 

Dylan's inductivetmultiple example explanation also interested mstructor # I. 

Instructor# 1 believed that Dylan's inductive/multiple example explanation was based on 

sound geometric principles. "Dylan's is trial and error where he measured angles. It's based 

on sound geometric principles." The fact that Cynthia's deductive. formulated, semi-fonnal 

explanation uses proven statements was reason enough for instructor # I to prefer it over 

Dylan's inductive/multiple example explanation (see Appendix 8). 

Instructor # 1 did not like Amanda's inductive/multiple example explanation. The 
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idea that Amanda's enactive proof tears up paper to show that the angles in a triangle fonn 

a straight line was not accurate enough for instructor# 1. "Tearing up paper is not accurate. 

in my opinion. II (see Appendix B). Instructor #2, like instructor # l, felt that Amanda's 

inductive/multiple example explanation was not accurate, because it did not provide proof 

for _all cases, but rather for one panicular case. "Amanda's is not proving for all cases: she 

shows that it is for one instance only - no accuracy ." (see Appendix B) . 

During the instructor interviews, I asked both instructors for their opmion of E wan's 

deductive, forrnulate<L pre-formal explanation. Both selected Cynthia's explanation which 

was also a deductive, formulated explanation and I expected that they would be equally 

comfortable with Ewan's. Instructor # l's first reaction to Ewan's deductive, formulated 

explanation was that she did not understand it. "I don't understand that at all." (see 

Appendix B). After a period of time studying Ewan's deductive explanation. instructor# 1 

said that his explanation "explains it in a round about manner" and that it was "no better than 

the others" (see Appendix B). In instructor #2's opinion, Ewan's deductive. formulated 

explanation does not apply mathematical concepts. "Ewan's uses no mathematical 

concepts. II (see Appendix 8) 

B. 3(b) Results from the teacher interviews using the second questionnaire question 

Why is the sum of two odd numbers even? 

As was the case for the first question. both instructors preferred the deductive, 

formulate<L semi-formal explanation for the second question. Both instructors preferred 

Andy's deductive, formulated, semi-formal explanation (see Appendix B). Instructor #I 
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liked the fact that Andy's deductive explanation "makes more sense because it'~ algebraically 

laid out" (see Appendix 8). Instructor #2, noted that it "shows some thought given to 

mathematical aspects" (see Appendix 8). 

Instructor # 1 noted the similarities between Cora's inductive/multiple example 

explanation and Dylan's inductive/multiple example explanation for the sum of the angles 

in a triangle question. "Cora's is the same as Dylan's, but it is trial and error and has only 

four, not enough to substantiate. It's only four, not a large sample size." Because Cora's 

inductive/multiple example explanation is based on trial and error and included a small 

sample size, it came second to Andy's deductive, formulated, semi-formal explanation (see 

Appendix 8). 

Both instructors disliked Bill's inductive/single example explanation saymg they 

found the dots confusing. "I find the dots confusing, but a visual learner might like it." (see 

Appendix 8- instructor# I). "Hated the dots" (see Appendix 8- instructor #1) . 

According to instructor# 1, Drake's analogy "makes no sense what so ever, because 

of two totally unrelated principles or cases are being compared" (see Appendix B) . The fact 

that the product of two negative numbers is positive did not convince instructor #I that thus 

the sum of two odd numbers is even 

B. 3(c) Results from the teacher interviews using the third questionnaire question 

Why do perfect trinomial squares have the form x2 + 2bx + b1 ? 

Again, instructor #I chose the deductive, formulated explanation for the perfect 

trinomial square question. Instructor# I preferred 1 ulia's deductive, formulated, pre-formal 
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explanation for why do perfect trinomtal squares have the form x:: .,.. 2bx - b:: " Howe\'er. 

instructor #2 preferred Cheryl's deductive, unformulated. informal explanation <see 

Appendix B). 

Of the three deductive explanations, (Julia's, Dena's and Cheryl's ) Julia's was 

instructor # 1's preference. Instructor # 1 thought that Julia gave a better explanation. "It 

explains step by step what you are doing." Although Julia's deduct1ve. formulated. pre­

formal explanation was instructor #.1's favourite, she also liked to some extent Dena's 

deductive, formulated. semi-formal explanation. "Julia's and Dena's. they·'re both similar 

except Julia's gives an explanation" (see Appendix B). Like instructor# 1, instructor #.2 also 

had some positive comments regarding Dena's deductive. formulated . semi-formal 

explanation. "Dena's is not bad. She shows where the two (2) comes from. but Cheryl's 

provides a diagram" (see Appendix 8 ). 

Although instructor # 1 preferred Julia's deductive. formulated, pre-formal 

explanation, she felt that Cheryl's deductive. unformulated. informal explanation would be 

more suitable for a visual learner (see Appendix 8). Contrary to instructor# 1. instructor #'2 

did prefer Cheryl's deductive. unformulated. informal explanation. because of its application 

with area to show why perfect trinomial squares have the form x:: • 2bx • b::. ''Cheryl's 

shows through the use of application the process and should be easier to see for students as 

area" (see Appendix 8). 

Lisa's inductive/multiple generic example explanation was confusing and unclear to 

instructor# 1. A small sample size was another thing about Lisa's inductive/multiple generic 
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example explanation that instructor # l disliked. "Lisa's is retarded. How would you know 

to break down 144. Not a whole lot of cases to support- unclear" (see Appendix 8 ). 

Likewise, instructor # 1 did not like Jody's inductive/multiple example explanation 

because of the small sample size which instructor# 1 felt was inconclusive. "Jody's is trial 

and error. Five cases, small sample size is not enough to conclude" (see Appendix 8). 

Instructor #'2 supports instructor # l's claim that Jody's inductive/multiple example 

explanation is inconclusive. "Jody's doesn't prove anything. He only shows that it is for 

those particular cases, but not for all cases" (see Appendix 8). 
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B. (4) Results from student interviews using questions from classroom 
observations 

B. 4(a) 

Pickup Charge 

Two students were asked how they would calculate the pid..-up charge for ?.75 kg of 

a product if$6.10 is charged for each 100 kg or fractional part. Both students could choose 

from the answers provided. 

$6.10. (?.75-:- 100) = $16.775 or $6. 10 *(300-:- 100) = $18.30 

When deciding that the second response was the best. student #S commented- "The 

\vay we learned it is that 100 ... I 00- I 00 = 300; ?.75 is 75 more than ?.00 so you go to the 

next 100 kg up which brings you to 300 kg" (see Appendix 8). For similar reasons. student 

#6 also chose the second response. Student #6 remarked that since ?.75 was 25 away from 

300 kg you would have to use 300 kg (see Appendix 8 ). 

The manual which provided the question and answer showed $6. 10 * (275 -=- 1 00) = 

$16.775. Student #6 and student #5 were both familiar with the textbook answer. In class. 

their mathematics instructor told them that it was incorrect and should be changed to $6 . 10 

• (300 -=-100) = $18.30. Without questioning, both student #5 and student #6 accepted that 

their instructor was right and the manual was wrong. This is evident in student #S's 

comment- "The way we learned it is ... " (see Appendix 8). 
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B. 4 (b) 

Solving an equation witb negative numbers 

I asked student #7 to choose from the two different ways of solving the following 

equation. 

1020 =a l-255) 
-I 

-1020 =a (-255) 

a=4 

or 

or 

or 

1020 = a<-255) 
-I 

1020 =a (255) 

a=4 

In class, student #7 solved the equation using the first method as was shown in the 

answer key. However. during the interview. she preferred to solve the equation using the 

second method, because she could eliminate the negative signs. "Because you are bringing 

the negative back over on this side . You still got the negattve here . Just get rid of the 

negatives." (see Appendix 8). 

B. 4(c) 

Why does .45/.99 reduce to 45/99? 

Three of the five students interviewed usmg this question said that because .45 and 

.99 have the same number of decimal places, the decimal would cancel or be eliminated. 

Their explanations were much the same as what their mstructor had provided. 

"Because .45 and .99 have the same number of decimal places, it can reduce down 

to 45/99 ." (see Appendix 8 • Instructor# I) . ''Because there ah is two numbers after the 

decimal. You can just eliminate the decimal - I guess. That's what I would do." (see 
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Appendix B- student #4). "Each has the same nwnber of decimal places. Because decimal 

places are in the same spot~ they are each the same amount of decimal places from - so that 

it doesn't change it." (see Appendix B - student #3 ). "Well you know I don't have to use 

them because theyre the same distance apart. That goes to that because where your decimal 

pla~e is the same or both sets of numbers." (see appendix B- student #7). "Don't you have 

to multiply by 100?" (see Appendix 8 -student #'2). 

B. 4(d) 

\Vhich of the following sequence is geometric and why? 

1/3 

5 

1/9 

10 

1/27 

15 20 

Five of the six students questioned said that 1 1.'3 1.'9 L'27 was a geometric 

sequence. Student #1, student #4, student #7, and student #3 concluded that 1 l/3 1/9 1/27 

was geometric after dividing the second number by the first andJor the third number by the 

second to determine the common ratio for each sequence. Since 5/1 does not equal I 0/5, the 

second sequence was ruled out. Because LJ'1 and 1l 9/1 .'3 are equal, l 1.'3 ] :'9 1. '27 was a 

geometric sequence. Student #3 also added that the sequence I 1/3 1/9 1/27 was getting 

subsequently smaller by the same amount-- "each subsequent number is being multiplied 

by 1/3." Student #8 chose to work with the sequence 1 5 10 15 20 first. Because 15/10 = 

1.5 and 10/5 = 2, student #8 concluded that this particular sequence was not geometric . 

Although student #8 appeared to know how to calculate the common ratio for a geometric 
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sequence, she did not knew how to calculate it for the fractional sequence. Like student #3, 

though, she knew the sequence was changing by a factor of 1/3 and that the next number in 

the sequence was 1/81 (see Appendix- B). 

Student #2, on the other hand, decided on 1 5 10 15 20 as a geometric sequence. 

Student #2's calculations involved dividing five (5) by one ( 1) to get five ( 5) and then adding 

five (5) to each preceding number to obtain the next number in the sequence (see Appendix 

- 8). 
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Chapter VIII 

Analysis 

The study investigated students' understanding of the role of proof as an explanation. 

Adult learners attending the College of the North Atlantic, Happy Valley-Goose Bay 

Campus enrolled in the technician. business. applied arts and Adult Basic Education 

programs participated in the study. Students' written responses to questions concerning 

proof made up the empirical core of the study. The meaning of what was required as a proof 

was not made explicit to the study's participants. Because each of the research questions 

required slightly different approaches to analysis, each question is considered separately. 

A. What kinds of explanations do students prefer (deductive, inductive, 
analogical)? 

Data collected from the eighty-two questionnaires was analyzed, looking for 

commonalities among resJXJnses. Any pattem" found in student responses were then related 

to the student interviews and classroom se•.ttng to see if students' preference for a particular 

type of explanation was consistent. StLdents showed an overall preference for multiple 

example explanations and analogical expla7".ations . Deductive argument was also preferred 

at t imes. 

A. (1) Inductive/Multiple £..::ample £..::planations 

The most popular kind of explanation among the study's participants was the 

multiple example explanation. Five different multiple example explanations were offered 

for the three questionnaire questions. Cora's multiple example explanation was the most 



preferred explanation for "Why is the sum of two odd numbers even?'' Over forty percent 

(42.68%) of the questionnaire panicipants preferred Cora's multiple example explanation 

(see Table 2 ). Three of the five multiple example explanations (Amanda's explanation. 

Dylan's explanation, and Jody's explanation) were fairly favourable with about twenty 

percent or more of the questionnaire panicipants preferring either one of the three 

(Amanda's explanation- l9S% sec Table 1, Dylan's explanation- 25 .6% see Table 1. Jody's 

explanation- 20.73% see Table 3). Less than ten percent (9 .76%) of the questionnaire 

participants preferred Lisa's multiple generic example explanation. Students' preference for 

multiple example explanations supports the research which says that students prefer 

empirical evidence over deductive argument (see Fischbein and Kedem. 1982 : BalachefT. 

1988: Chazan. 1993: Finlmv-Bates. 1994 ). 

A. (2) Analogical Explanations 

The only analogical explanation offered on the student questionnaire was Drake's 

analogy for "Why is the sum of two odd numbers even?'' Over forty percent (40.24%) of the 

t!ighty-two students who partictpated in the questionnaire and thirty-seven percent (37.5%) 

of those interviewed indicated a preference for Drake's analogical explanation. Although 

analogical explanations only occurred once on the questionnaire. students' reaction to this 

kind of explanation was highly favorable . Students in my study, like Polya ( 1968) 

recognized the imponance of analogical explanation. This supports Reid's ( 1995a) claim 

that a strong analogy can be preferable to a deductive explanation. 
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A. (3) Deductive Explanations 

Six deductive explanations were offered on the student questionniare v.·hich 

included: Cynthia's, Ewan's, Andy's, Julia's, Dena's, and Cheryl's explanations. Five of the 

six deductive explanations were formulated with the other, Cheryl's explanation being 

unformulated. Students did not show an overall preference for deductive explanations, 

neither did they dismiss deductive argument. Although students did not mdicatc a 

preference for deductive explanations for the first two questionnaire questions, they did for 

the third question. Julia's deductive, formulated, pre-formal explanation was the most 

favored for "Why do perfect trinomial squares have the form x1 + 2bx + b2?" with close to 

forty percent (39.02%) of the questionnaire participants choosing it. Over twenty percent 

(22%) of the questionnaire participants preferred Cynthia's deductive, formulated, semi­

formal explanation for the first question. About twenty percent ( 19.51%) of the 

questionnaire participants preferred Dena's deductive, formulated, semi-formal explanation 

for the third question. A little more than ten percent ( 13.41%) of the questionnaire 

participants preferred Andy's deductive. formulated, semi-formal explanation for the second 

question. Approximately ten percent (I 0.91 ~ o) of the questionnaire panicipants preferred 

Cheryl's deductive, unformulated, informal expianation for the third question. Less than ten 

percent (7.3%) of the questionnaire participants preferred Ewan's deductive. formulated, pre­

formal explanation for the first question. 
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A. (4) Explanations that were not preferred 

A. (4a) Inductive Explanations (Single Example and Generic Example) 

Students and instructors indicated a dislike for Bill's inductive.'single example.' visua! 

explanation. Only three of the eighty-two questionnaire participants preferred Bill's 

explanation. Lisa's multiple generic example explanation for the third questionnaire 

question v.<lS not well liked either. Only eight of the cighty-m·o questionnaire participants 

indicated a preference for it. Other explanations that were not well received were Ewan's 

and Cheryl's deductive explanations. 

A. (5) What is it about these explanations that students rejected them? Why were the 
popular explanations preferred? 

No kind of explanation was preferred by the majority on all three of the questionnaire 

questions. Deductive explanations were among the most common explanation but the least 

popular. On the first question the formulaic explanation, Barry's explanation was almost as 

popular as a correct deductive explanation, Cynthia's explanation and Dylan's inductive 

explanation. These results suggest that there is something other than the logical structure 

of the explanation that detennines students' preference for a particular explanation. 

B. What constitutes a good explanation for the student? 

The data collected to answer this question came from analyzing the questionnaire, 

interviewing students, and observing students within their classroom setting. Students' 

preferences and dislikes for different explanatic!lo; were analyzed to determine what 

constitutes a good explanation for the student. Students' preferences were also analysed 
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using Hoyles ( 1997) "proof types", but no pattern of preference was found (see Chapter VI. 

section C. l(a)) 

B. (I) Why were the popular erplanations preferred? 

The more popular explanations (Cora's multiple example explanation, Drake's 

an~logy, and Julia's deductive, formulated, pre-formal explanation) were preferred for their 

familiarity, clarity, obviousness, easiness, and straightforwardness. In addition, Cora's use 

of examples was why students preferred it for the second questionnaire question. 

Three of the eight students interviewed selected the same kind of explanation for 

each of the questionnaire questions: two multiple example explanations and a deductive 

explanation (see Table 10). In doing so, they described their preferred explanations as easy, 

familar. straightfonvard. and obvtous. 

Prior learning experience influenced these three students' choice of explanations. 

Their familiarity with the straight angle made Amanda's inductivetmultiple example 

explanation seem easy. clear and obvious. Likewise their prior learning experience or 

familiarity with the FOIL method made Julia's deducuve. formulated, pre-formal explanation 

straightforward. Cora's use of examples to show that the sum of two odd numbers is even 

provided clarity and made the conJeCture easter to understand. 

Student's familiarity with the mathematical principle that the product of two negative 

numbers is positive was the reason for at least two of the eight students interviewed 

preferring Drake's analogy . 
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B. (2) Why were the unpopular explanations rejected? 

The presentation of Bill's inductive/single example explanation was what students 

and teachers disliked. That is. students and instructors rejected Bill's single example 

explanation because they did not want to count the dots. 

Students' unfamiliarity with Ewan's deductive, formulated, pre-formal explanation. 

and Lisa's inductive/multiple generic example explanation was why they rejected these 

explanations. Ewan's walking around the triangle explanation is a type unfamiliar to the 

students and the instructors, and so was rejected. This is evident in the instructor's 

comments regarding Ewan's explanation for "Why the sum of the interior angles in a triangle 

equals 180°?" - "I don't understand that at all. It explains it in a round about manner." The 

same instructor refers to Lisa's inductive/multiple generic example explanation as "retarded" 

and says "How would you know to break down 144?" (see Appendix 8). 

So, what makes an explanation a good explanation for the student? Student #7 chose 

explanations based on their being logical and visual. Four of the five explanations for the 

first questionnaire question were visual. so logical may have been student #7's second 

criterion. For the other students, however, accessibilitv or familiaritv seems to be more - -

important than the kind of explanation offered (deductive. inductive. or analogical). 

Students in my study seemed to use the same kinds of criteria that Hanna ( 1983) says 

mathematicians use to determine acceptance of a proof (see Chapter IV, section 0(2)). ln 

particular, students seemed to use Hanna's criteria# I and #5 : 

1. Tney understand the theorem. the concepts embodied in it, its logical 
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antecedents. and its implications. There is nothing to suggest that it is not true: 

5. There is a convincing argument for it (rigorous or otherwise), of a type they 

have encountered before. 

Students in my study, like the mathematicians Hanna refers to, acceptl!d an 

explanation ifthere was nothing to suggest that it was false . More importantly. what seemed 

to maner to the students in mJ study was whc::thc::r or not the:: explanation v.-as of a type 

familiar to them. Thus, Hanna's criteria #5 for mathematicians' acceptance of proof was the 

same criterion students used to determine what constitutes as a good explanation . 

C. What constitutes a good explanation for the teacher? 

The data collected to answer this question came from interviewing and observing the 

two mathematics instructors that teach at the same college as the researcher. Explanations 

that teachers provided for the students were analyzed. Observing the kinds of explanations 

offered by students that teachers deemed acceptable helped to determine what constitutes 

a good explanation for the teacher. 

The results of the interviews wtth the two mathematics instructors showed that both 

preferred the deductive explanations with one preferring formulated and the other not 

expressing that preference. For instructor# I. a good explanation is one that is deductive 

and formulated. one that uses postulates, theorems and proven statements, and one that ts 

clear- explaining step by step. ln addition. trial and error or empirical explanations must 

include large sample sizes. For instructor # 2, a good explanation had to not only use 
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logical arguments. but had to apply the question mathematically. 

D. Do students mi"or teachers' explanations or do they have their own 
style of explaining? 

Do students respond differently in different situations; that is, do students respond 

differently in an informal setting than a classroom setting? Do students offer similar 

explanations on test questions as their teachers offered in class or do they tend to use their 

own style of explaining? Observing students and their teachers in the classroom. observmg 

students in informal situations and interviewing students and teachers coupled with the 

empirical data collected from the questionnaire provided answers to this question. 

The manual which provided the question and answer for the pick up charge question 

showed $6.10 * (275 -:-toO)= $16.775. Both students interviewed (student# 5 and student 

=1 6) were familiar with the textbook answer. In class. their mathematics instructor told them 

that it was incorrect and should be changed to $6.10 * (300 + 1 00) = $18.30. Without 

questioning. both students accepted that their mstructor was right and the manual was 

wrong. This is evident in one student's comment - "The way we learned it is ... " This 

example shows the teachers authonty as a disincenttve to explain. lfthtngs are the way they 

are solely because the teacher says so. then there is no reason for the student to explain. De 

Yilliers' ( 1992) study shows that students' strength of belief in or attachment to a pantcular 

method is based on external rather than personal grounds. Both students showed an 

attachment to the way the teacher had explained the pickup charge question and had made 

sure they would answer any related test questions accordingly 
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Solving mathematical equations according to the answer key is another example of 

how students are influenced by other authorities (see Results B. 4(b)). ln this case, the 

answer key influenced student# 7's decision to carry the negative to other side rather than 

eliminating it from the beginning. Reliance on answer keys adversely affects students' 

confidence to do and to understand mathematics. How does the level of education or prior 

learning experience affect students' mathematical confidence? Are ABE students and other 

adult learners taught to rely on answer keys? 

Perhaps, students were accustomed to formulating their explanations so as to 

confonn to teacher expectations. This is especially evident with student # 5 and student #6 

and the pickup charge question. The formulation of students' explanations was influenced 

by thetr learning experience in the course of instruction. Again, this is evident through 

students' parroting of the teachers' explanations (see Results B. 4. (c) and 4. (d)). There was 

only one student who seemed to use her own style of explaining. She either explained things 

differently, or she did not have a response for the question being asked in the interviews. 

This is interesting to note because prior to entenng ABE she anended htgh school in 

Ontario; whereas, all of the others had attended high school in Labrador. Maybe her method 

of explaining was similar to what Ontario teachers used. 
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Chapter IX 

Conclusion 

No kind of explanation was preferred by the majority on all three questionnaire 

questions. Students showed an overall preference for multiple example explanation and 

analogical explanation. Deductive explanations were one of the most common kind of 

explanation offered but the least preferred Students did not show an overall preference for 

deductive explanations: neither did they dismiss deductive argument. It \vas the form of the 

explanation, namely its familiarity and accessibility, that students used as criteria in 

determining its acceptance. Unlike the students, the instructors accepted or favored an 

explanation based on its logical structure. lt was also found that students' reliance on answer 

keys adversely affects their confidence to do and understand mathematics. Students' 

parroting of teacher explanations shows how they are accustomed to formulating 

explanations so as to conform to teacher expectations as a motivation for proving (see Reid 

1995a.. Ali bert 1988, Schoenfeld, 1983 and Wheeler. 1990). If things are the way they are 

solely because the teacher says so, then there is no reason for the student to explain. 

Teachers need to be cognizant of the kinds of explanations offered to students and 

by students. Although the logical structure of an explanation seems to be important for the 

teacher, the student may perceive things differently. Teachers must be aware of students' 

criteria for acceptance of an explanation. That is. its accessibility and familiarity. 

Students should be exposed to the different purposes proof serves, in particular, the 

explanatory function of proof. If proof serves a distinct purpose within the classroom it will 



be meaningful for students. The teaching of proof should shed light upon the mathematical 

structures under study by providing insight as to why a statement is true. Hanna ( 1995) 

claims that the main function of proof in the classroom is the promotion of understanding. 

Perhaps, math educators can promote understanding by placing greater emphasis on the 

so~ial criteria for acceptance of an explanation. 

Encouraging students to formulate their own explanations will enhance their 

confidence to do and understand mathematics. Exposing students to the different purposes 

proof serves will serve better as a motivation for proving than formulating explanations so 

as to confonn to teacher expectations. 

Finally, additional research will help to answer some of the questions my research 

has raised such as: 

• Would students' preference for a kind of explanation differ if deductive explanations 

were made more accessible" 

• What role could analogical explanations play in the teaching of proof:' 
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Appendix A 

Sample of Student Questionnaire 

Why does the sum of the interior angles of any triangle equal 
180°? 

Amanda's answer: 

I tore the angles up and put them together. It came to a straight line which is 

180°. I tried for an equilateral and an isosceles as we:l and the same thing 

happened. 

\ 
\ c ' \ / \v 
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Barry's answer: 

I drew an isosceles triangle, "ith c equal to 65 o . 

Statements 

a -= 180°-~C 

a= 50° 
b =65° 
c=b 

therefore. a ~ b - c = 180c 

Reasons 

Base angles in isosceles triangle equal 
180° - 130° 
180° -(a+ c) 
Base angles in isosceles triangle equal 
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Cynthia's answer: 

I drew a line parallel to the base of the triangle 

p 

Statements 

p=s 

q = t 

p + q + r = 180° 

therefore s- t - r = \80° 

Reasons 

Alternate angles between two parallel lines 
are equal 

Alternate angles between two parallel lines 
are equal 

Angles on a straight line 
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Dylan's answer: 

I measured the angles of all sorts of triangles accurately and made a table 

a b c total 
110 34 36 180 
95 43 42 180 
35 T2 73 180 
10 '27 143 180 

They all added up to \80 o 
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Ewan's answer: 

If you walk all the way around the edge of the triangle, you end up facing the way 
you began. You must have turned a total of 360 o. You can see that each exterior 
angle when added to the interior angle must give 180° because they make a 
straight line. 

This makes a total of 540 °. 540° - 360c = 180° . 
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WHY IS THE SUM OF TWO ODD NUMBERS EVEN? 

Andy's answer: 

Let one odd number be (2n + 1) and the another odd number (2m+ I), 
· then (2n + I) + (2m- 1) = 2(n-.- m)- 2 

Bili's answer: 

+ 

= 

= 

Cora's answer: 

13-.-45==58 
7- 9 = 16 
113 + 335 = 448 
1077 +517 = 1594 

Drake's answer: 

An odd number plus an odd number equals an even number because of the same 
principle which says a negative number times a negative number is a positive. 
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Why do perfect trinomial squares have the form x2+2bx+b2? 

Lisa's answer: 

If you take the number 144, then 144 is equal to 102 + 2( 10)(2) + 2~ 
Likewise, 169 = 131 is t<r + 2(10)(3) + 32 

Finally,81 =<r is82 +2(8)(1)+ 12 

Therefore, any perfect square number is equal to a binomial square which always 
multiplies out into the form x? + 2bx + b1 

The binomial is found by finding two numbers which add up to the number before it is 
squared. For example 9 = 8 + l and cf = 81. Similarly, 13 = 10 + 3 and 132 = 169 

Julia's answer: 

[fyou multiply two same binomials such as {x ...... b){x +b) using the FOIL method, then 
the first two tenns of the two binomials will multiply to x •x = x~ : the two outside terms 
will be x times b = xb : the two inside terms will be b times x = bx~ and the two last 
tenns of each of the two binomials multiplied together will be b~ . Combining like terms. 
the xb and bx will equal2bx. Thus, (x • b)(x +b) will always multiply into the form x.:-
2bx + b2

. 

1 ody's answer: 

(x + 2)(x + 2) = x2 + 2x + 2x + 4 = x? + 4x + 4 
(x + 3)(x +3) = x? + 3x + 3x + 9 = x2 + 6x + 9 
(x- 5Xx- 5) = x2- 5x -5x + 25 = x2

- lOx +25 
(3x+4)(3x..-4)=9x~-l2x-12x-16=9x!-24x-l6 

(2x - 3 )(2x - 3) = 4x2 
- 6x -6x - 9 = 4~ - 12x - 9 

Therefore perfect trinomial squares always have the form x2 + 2bx +b2 

Dena' answer: 

Using the distributive law: 
(x • b)(x +b) 
( x + b )x = x.: + bx 
( x + b )b = xb ...... b2 

t x + b)( x + b) = x2 + bx - xb ...... b.: 
The "2" comes because "xb" occurs in both distributions 
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Cheryl's answer: 

(x +b) represents a line segment oflength (x + b) 

X b 

xb 

b bx b"2 
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Appendix B 

I. Why does the sum of the inlerior angles of any triangle equal 180 ~ 

1. (a) StudenJs' responses to Amanda's inductivelmJlltiple example 
explanation 

Student #I 

"Think of circle- 180" is 1:'2 of a circle -you add them all up together equal 180 c --

so go with Amanda's explanation_ She ct..1 the angles and made a straight line. Like a circle 

is 360"' but, ah, if you cut it in half, then you get a straight line 180" ." 

Student #2 

"Amanda's answer because she tore up the angles. It is easy. It doesn't mvolve 

statement and reasons." 

Student #3 

''I tell ya now .. . Amanda's answer hmm hmm because it's clear. it's not. it's very. ah. 

She is trying to solve the problem and she said well to add up to 180 o . 'I took all the angles 

basically straighten them out and when l did so they all became a straight line:' so. therefore. 

that's why, right. It is very clean. It's not cluttered~ whereas. I found some of the other 

answers- they're big equations. large equations and stuff like alternate angles between two 

parallel lines are equal. How do you know this? You don't. You have to prove that that 

subsequently. This says everything. lt answers the question fully without going into great 

big long details." 
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Student #4 

.... . three different bends. Then it's obvious. Three angles got to equal 180°. " 

l.(b) Students' responses to Barry'sformulaic explantltion 

Student #5 

"Barry's because first he showed what he did - why in statement and reasons and 

then a formula at the end." 

1. (c) Students' and instructors' responses to Cynthia's deductive, formulated. semi­
formal explanation 

Student #6 

"Cynthia's answer because she is using statements and reasons." 

Student #7 

''Cynthia's - she justifies using logical arguments - stra1ght line and equivalent 

angles." 

"Kind of liked Ewan's too because that one's using reasoning- all of them would be same 

triangle right - not going to change degrees." 

Instructor #1 

"Dylan's is trial and error where he measured angles. lt's based on sound geometric 

principles. Cynthia's is better. Cynthia, she used postulates and theorems. proven 

statements. Tearing up paper is not accurate. in my opinion (implying Amanda's 

explanation. I donl understand that at all (implying Ewan's explanation). It explains it in 

a round about manner. No better than the others." 
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Instructor #2 

"Cynthia's, this answer shows an understanding of some aspects of math and 

application of them. Ewan's uses no mathematical concepts. Amanda's is not proving for 

all cases~ she shows that it is for one instance only - no accuracy." 

I. (d) Students' responses ro Dylan's inductivei17Ulltiple example explanation 

Student #8 

"Dylan's - pretty straight forward - you take any angle and make the measure equal 

I. (e) Instructors' respmiSes to £wan's deductitJe,formulated, pre-formal explanation 

Instructor #1 

"1 don't understand that at all (implying Ewan's explanation). It explains it in a round 

about manner. No better than the others." 

Instructor #2 

"Ewan's uses no mathematical concepts." 
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2. Why is the sum of two odd numbers even? 

2. (a) Students' and instructors' responses to Andy's deductive. formulated. semi­
formal explanation 

Student #5 

"Andy's- he is saying what one number is and another in formula and then he went 

on to say why he did it - then the formula." 

Instructor #I 

"Andy's makes more sense because it's algebraically laid out. Cora's is the same as 

Dylan's, but it is trial and error and has only four, not enough to substantiate . It's only four, 

not a large sample size. I find the dots confusing, but a visual Ieamer might like it (implying 

Bill's inductive/single example explanation). Drake's makes no sense what so ever, because 

of two totally unrelated principles or cases are being compared. I don't know how you can 

come to that conclusion. Do you?" 

Instructor #2 

"Andy's shows some thought to mathematical aspects and factoring. Hated the dots." 

2. (b) Student's response to Bill's inductive/single example/visual explanation 

Student #7 

"I'm better with visuals sometimes. It depends on what I'm doing. If I can see things. 

Not that I would dispute that (Cora's explanation) or that (Drake's explanation). I know there 

is something better than that -just the same. I don't know if it is in one of those tease 

testers- some kind of book- some explanation. You know like all kinds of game type of 
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things. I know there was a whole bunch of stuff similar to that. but there's so many different 

things- so many numbers. Andys is alrigh~ but like right now I can't think odd numbers. 

I'm trying to think of the algebra stuff- the numbers- the equations. It is log1cal to see 

where it worked out." 

2. (c) Students' responses to Cora's inductit1elmultiple example explanation 

Student #2 

"Rose, this one here. I would say Cora's answer. This one here is a lot easier to see. 

The numbers makes it easier. You don't have to count the dots. Drake's is like a word 

problem. 

Interviewer- "So. you would be convinced given a few examples that the sum of two odd 

numbers will always be even?'' 

Student #'2 "Sure~" 

Student #3 

"Cora's answer on that one, because. not only. does she give more than one example 

and it's clear, again. it is the contents of it. If you read Drake's, he goes into the same 

principle which says a negative number times a negative Pumber is positive. Well, if you 

didn't know that or if you weren't versed in algebra. you wouldn't know that: whereas this 

is basic addition. You can see that, wei L they made the statement -- Why is the sum of two 

odd numbers even? Well, while Cora's answer doesn't explain why it is. she does show that 

it is. Okay. She does say- you know what I mean- okay. It may not be explained to a 

level of understanding. but it's taken as a given by the way she explains it. She says look at 
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it·- no matter how many times you do it, it works out that way. Therefore. its got to be 

true." 

Student #4 

"Given bunch of examples, right, which I think would be easier to do than just tryt ng 

to explain something, okay, like a negative times together would give you a positive~ 

whereas, if you were given an example, then I would say students would Jearn better. would 

understand better." 

2. (d) Students' responses to Drake's analogical explanation 

Student #I 

"Drake's answer because it goes along with a negative times a negative gives you a 

positive. So, an odd plus an odd is even. Ya.. okay, an odd number is like a negative number 

and an even number is like a positive ." 

Student #8 

"Drake's because a negattve times a negative number is positive~ therefore. an odd 

number plus an odd number is an even number." 

Student #6 

"Drake's because it's written out not using numbers." 
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3. Why do perfect trinomial squares have the form r + 2b.x + b2 ? 

3. (a) Student's response to Lisa's inductive/multiple generic aample aplanation 

Student #1 

"Lisa's answer because she shows two different ways" 

3. (b) Students' and instructors' responses to Julia's deductive, formulated, pre­
formal explaiUJtion 

Student #2 

"Rose. Julia's response because she is using the FOll.. method - maybe because it's 

familiar." 

Student #3 

"Say, Juiia's answer for this one because it's- she is explaining what she is doing. 

She is using the FOIL method of multiplication. Not only that, she'll go through every step 

of the FOIT.. method in each hne. Agai~ it's simple- simplicity. itself Stacks of numbers--

if you were just learning how to do this and I saw this- Jody's answer you wouldn't know 

what to make of it. lt would be very difficult to follow because you be - because there is 

such ah of infonnation closely written together: whereas, this here is very simple. straight 

forward instructions. If you had different numbers and you were going to do this, you could 

almost follow like a recipe which she has here and learn and teach yourself how to do 

something like that. Because you are adding like terms, she goes on to explain what like 
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terms are to a cenain extend anyway - combining like tenns xb and bx leads to 2bx - so 

effective." 

Student #4 

"Ah, because she is using the FOll... method, right, and in my opinion, it is easier for 

students to understand and - I mean - it is straight forward - First Outside Inside Last." 

Instructor #1 

Julia's and Dena's, they're both similar, except Julia's gives an explanation. In fact. 

Julia's is probably better. Perhaps, it is- because rm not sure what is really happening here. 

Dena's is a little unclear. because she starts with one equation. then splits in two and then 

makes it one or reverts back to one. I can see what she's done, but someone else might be 

confused by that. Julia explains step by step what you are doing. Dena does not explain that 

xb = bx. A visual learner would probably like that way sort of better (implying Cheryl's 

deductive, unformulated explanation). But it is not as good as the other misses I implying 

Julia's deductive, formulated, pre-formal explanation). Lisa's is retarded. How would you 

know to break down 144. Not a whole lot of cases to support - unclear." 

3. (c) Student's response to Jody 's inductive/multiple example explanation 

Student #8 

"Jody's answer because she uses the FOIL method- they work out evenly like 

, ~~ ~ 

(x + 2)(x + 2) = x- + 2x- 2x + .:.: = x- • 4x + 4." 
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3. (d) Instructors' responses to Dena's deductive, formulated. semi-formal 
explanation 

Instructor #1 

"Dena's is a little unclear. because she starts with one equation. then splits in two and 

then makes it one or reverts back to one. I can see what she's done, but someone else might 

be confused by that. Julia explains step by step what you are doing. Dena docs not explain 

that xb = bx." 

Instructor #2 

"Dena's is not bad. She shows where the two (2) comes from. but Cheryl's provides 

a diagram." 

3. (e) Instructor's response to Cheryl's deductive. unformulated aplanation 

Instructor #1 

"A visual Ieamer would probably like that way son of better (implying Cheryl's 

deductive, unformulated. informal explanation)." 

Instructor #2 

"Cheryl's shows through the use of application the process and should be easier to 

see for students as area. Dena's is not bad. She shows where the two (2) comes from. but 

Cheryl's provides a diagram. Jody's doesn't prove anything. He only shows that it is for 

those particular cases, but not for all cases. Cheryl kind of explains it similar to Dena but 

with a diagram." 
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4. Instructor and students' responses to "Why does .451.99 reduce to 45/99?" 

Same Number of Decimal Places 

Instructor #1 

"Because .45 and . 99 have the same number of decimal places, it can reduce down 

to ~5/99. Okay." 

Student #4 

"Because there ah is two numbers after the dectmal. You can JUSt eliminate the 

decimal - I guess. That's what I would do." 

Student #3 

"Each has the same number of decimal places. Because decimal places are in the 

same spot they are each the same amount of decimal places from - so that it doesn't change 

it." 

Student #7 

"Well you know I don't have to use them because they're the same distance apan. 

That goes to that because where your decimal place is the same or both sets of numbers." 

Multiply by 100 

Student #2 

"Don't you have to multiply by I 00"" 

Equivalent Fractions 

Student #8 

"I don~ know why, but it works out on the calculator. You get the same answer for 
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both (.45/.99 and 45/99)- so they're equivalent" 

Summary 

Three of the five students interviewed using this question said that because .45 and 

_99 have the same number of decimal places. the decimal would cancel or be eliminated_ 

Their explanations were much the same as what their instructor had provided. 

5. Instructor and students' responses to "Which of the following sequence is 
geometric and why? 

1/3 l/9 1/27 

5 10 15 20 

Instructor #1 

"Divide the second number in the sequence by the first and the third number by the 

second. It is nongeomtric if you get different answers_" 

Student #1 

"Divide second number by first get l/3 - l/3 divided by I equals l /3 and l /9 divided 

by 1/3 equals 1/3_ Five divded by one is five and 10 divided by five is two- bottom one's 

not " 

Student #3 

"The first one because if you divide the second one by the first one or third by the 

second you are going to get a common ratio and if you times it together no matter what, 
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you11 always get - if you times the common ratio by it right, hmm. I'm getting confused -

right Okay, basically, no matter how many numbers are there, right, you11 get a common 

ratio that you can multiply, right, to get the following one; I guess is what I'm trying to say. 

right" 

Student #8 

Liilian wrote 15d 0 = 1 5 and 10/5 = 2 and said ··so not geometric because different 

answers." 

Student #7 

"Same even number of digits and try to divide." 

l /3 divided by l equals 1/3 

1 /9 divided by 1 /3 equals 1 /3 

5/ l = 5 and 10/5 = 2 "Not geometric." 

Student #3 

"The first one ( l \/3 \/9 1.'27). because tt is getting progressively smaller by the same 

amount It's, it's, ah., okay, because you're multiplying by l /3. so each time each subsequent 

number is getting multiplied by 1:'3 by \.'3." 

Interviewer- "Student #3, how did you determine that?" (implying the 1/3 factor)'> 

Student #3 - "I is greater than. less than or equaled: whereas. the r is less than, 

greater than l' Ah., second divided by the first. n 
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6. Student #7's response to "Solving an equation with negative numbers.' 

1020 =a C-255) 
-1 

-1020 =a ( -255) 

a=4 

Interviewer 

"Which way do m prefer?" 

Student #7 

or 

or 

or 

"This way." (Implying the second choice) 

Interviewer 

1020 =a (-255) 
-1 

1020 =a (255) 

a=4 

"Why didn't you like this way," (Implying the first choice) 

Student #7 

"Because you are bringing the negative back over on this side. You still got the 

negative here. Just get rid of the negatives" 

Interviewer 

"When you were actually doing tt you lookt!d at the answer key and the answer key 

had it this way, carrying the negative over to the other side, so you left it according to the 

answer key. Why didn't you change it to the way you wanted?" 

Student #7 

"I don't know. Because I was probably going to ask about it sometime later. but 

never got around to it. But that would be what I would go with, myself, right, get rid of all 
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of the negative signs. I figure to get rid of all negatives, make it positive." 
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Appendix C - Course Descriptions 

MATHEMATICS 1510 

MATHEMATICS FOR COMPUTER STUDIES I 

TIME ALLOCATION: Semester Length: 15 weeks @4 hours/week 

TEXT: ,\farhemallcs for Programmmg Computers, F. J. Clarke. 

CREDIT VALUE: FOUR (4) 

PREREQUISITES: None 

DESCRIPTION: This course involves the study of mathematical topics which are 
applicable to business computer studies. 

COURSE OBJECTIVES: 1.0 Revtew related algebraic concepts 

2.0 Use the decimal, binary, octaL and 
hexadecimal numeration systems. 

3.0 Perfonn basic arithmetic operations in the 
four nwneration systems. 

4.0 Apply Boolean Algebra. 

5.0 Use Determinants and Matrices. 
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TYPES AND PURPOSE: 

CALE~'DAR ENTRY . 

PREREQUISITES: 
SCHEDULE: 

TEXT: 

COURSE AIMS: 

MAJOR TOPICS: 

MATHEMATICS 1000 

ESSENTIAL MATHEMATICS 

This is a course in basic mathematics designed to help 
alleviate specific weaknesses in students' mathematical 
skills. This course is a non-<:redit prerequisite for 
Mathematics 1100 f(\r those students identified by the 
placement testing procedure. 

Opt!ralions ~ith 'Wbole Numbers and Fractions; Operations 
with Decimals and Percents: Operations with Integers and 
Exponents; Linear Equations, Operations with Algebraic 
Expressions; Operations with Fractional Expressions, 
Solving Fonnulas: Graphing, Systems of Linear Equations: 
Basic Geometry and Trigonometry 

None 
Duration: I 3 weeks 
Class Hours: 5 hourSJweek = 65 hours total 

Zimmer, R. A., Essentwl Mathematics (Kendai/Hunt 
Publishing Co.) 

I) To provide an opportunity for students to eliminate 
mathematical deficiencies as identified by the 
placement testing procedure. 

2) To strengthen the student's mathematical skills in 
order to enhance the probability of success in 
his/her chosen technology program. 

1.0 
2.0 
3.0 
4.0 

5.0 

6.0 
7.0 

Operations with Whole Numbers and Fractions 
Operations with Decimals and Percents 
Operations with Integers and Exponents 
Linear Equations, Operations with Algebraic 
Expressions 
Operations Involving Fractional Expressions, 
Solving Formulas 
Graphing, Systems of Linear Equations 
Basic Geometry and Trigonometry 
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