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Abstr..t

Wireless sensor network (WSN) is an emerging networking paradigm that promises
a wide range of potential applications in both civilian and milit - areas. WSN runs
different kinds of applications in a variety of physical environmen  which offers many
challenges. The main design constraints include energy efficiency, fault tolerence, and
security. In this thesis, we investigate the research problems involved in tliree types
of sensor networks including the UnderWater Sensor Network (UWSN), the Wireless
Terrestrial Sensor Network (WTSN), and the Wireless Multimedia Sensor Network
(WMSN).

We first formulate the node clustering problem into a cluster-centric cost-based
optimization problem with an objective to improve the encrgy efficiency and pro-
long the network lifetime in UWSN, A novel ¢ ributed clustering protocol called
minimum-cost clusterii  protocol (MCCP) is proposed, which sele  a set of non-
overlapping clusters from all potential clusters | sed on the cost ietric assigned
to each potential cluster and attempts to minimize the overall cost of the  ected
clusters. To provide a robust clustered architecture against cluster-head failures in
UWSNs, a dependable cluste = 1 protocol is proposed in which two mechanisms are
employed: fault prevention clusterii and ¢l  er head replication. Fault prevention
clustering altempts to sclect those healthy nodes as cluster heads to prevent cluster

head failures, and cluster head replication attempts to select a primary cluster head
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for encrypting the visual key.

Finally, we propose a clustered on-demand multi-channel M C protocol ~ OM-
MAC) to support encrgy-cfficient, high-throughput, and reliable data transmission in
WDMSNs. A scheduled multi-ct nel medium acct  is used within each cluster so that
cluster members can operate in a contention-free manner in both time and fr¢ iency
domains to avoid collision, idle listening and overhearing. A traf adaptive and
QoS-aware scheduling algorithm is executed to maximize the network throughput. A
spectrum-aware ARQ) is further incorporated to better exploit the unused spectrum

for a balance between reliability and retransmission.
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Introduction

1.1 Wireless Sensor Networks

A wireless sensor network (WSN) typically consists of a large number of r  rce-
constrained sensor nodes which have limited computation and communication capac-
ities and communicate with each other through wireless communication chan s, as
shown in the Figure 1.1. WSN promises a wide range of potential applications in both
civilian and military areas such as environmental monitoring, health applications, and
battlefield surveillance [3].

Each node in a sensor network is typically equipped with a low-power radio
transceiver, a small microcontroller, and an energy source, usually a battery. The
constraints on sensor nodes such as low cost and small size lead to many chall  zing
problems in sensor networking, such as constraints on energy, me ory, computational
speed and bandwidth. Some technical paramet  of several typical sensor devices
are shown in Table 1.1.

WSN can be used for different kinds of applications in a varicty of physical envi-

ronments, which offers many challenges. Energy efficiency is the primary concern in
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Table 1.1: Sensor Platforms [1]

Platform ) B i o o )

CPU ATMEL  MSP430  ML-67Q500 nRF24el CC2430_
Clock 16 Mhz 8 Mhz 60 Mhz 20Mhz 32Mhz
Active Power 8 mA 2 mA 40 mA 3 mA 7 mA
Sleep Power 201 A 27 A 20pA 2pA 0.9uA4

MCU + TX power 23.3mA  21.8 mA 69.8 mA 10.5 mA 27 mA
MCU + RX power 21.0 mA 19.5 mA <..3 mA 19.0 mA  24.7 mA
Price (MCU + RF) $9.2 $95 $8.43 $3.29 $ 3.90

1.2.1 UnderWater Sensor Networks
1.2.1.1 Energy Efficiency

UnderWater Sensor Network (UWSN) is an eme ng networking paradigm that
promises a wide range of potential applications in both civilian and military areas
[4, 5, 6]. A UWSN typically consists of several underwater sinks (called uw-sinks)
located at the centers of d....rent monitored ar i, a number of ocean bottom sensor
nodes surroundii  sach uw-sink, and a surface station providii  a link to an on-shore
control center, which collaborate to accomplish a common task, such as underwater
environmental monitoring, mine  onnaissance, id military surveillance, as  own
in Figure 1.2. Compared with traditional underwater monitoring or surveillance tech-
nologies, a UWSN has a number of advantages, such as unmanned underwater ex-
ploration, localized and precise information acquisition, large-scale unde  ater mon-
itoring, reduced implementation cost, and more frequent operations 6], which have

received much attention cently. UWSN has some unique characteristics, such as
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hical environment,

highly limited bandwidth, long propagation delay, harsh geogr:
More importantly, in the underwater, it is

and relatively small network scale [4].

inconvenient to replace the battery of the sensor node located on the ocean bottom.
Therefore, the lifetime of a UWSN is largely restricted by the energy constraint in sen-
-otocols, must

sor nodes. This means all aspects of sensor nodes, from hardware to

be designed to be extremely energy-efficient. Although some sensor nodes specially

designed for UWSN can be recharged by current energy converter, an underwater

sensor node must make cfficient use of its limited energy capacity to ensure long-term

and continuous underwater environmental monitoring,.
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Figure 1.2: UWSN architecture.

To improve energy efficiency, node clustering has been widely considered in WSNs

(7). With clustering, each sensor node only needs to send data to its associated
ed to relay the locally

cluster head at a short distance while only the ¢’
aggregated data to a data sink at a long distance, which can significantly reduce the

ter heads
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predefined property, such as the largest node degree. In [8], a clustering protocol
is proposed for an autonomous network of underwater vehic , which employs a
clustering algorithm called 1 st-i 1t clustering algorithin (LIDCA) proposed in
(10] for terrestrial ad hoc mobile network. Althot 1 LIDCA is simple »implement, it
is not suitable for UWSNs because it constructs the clusters based on node identifiers
while energy efficiency is not a factor considered.

In this thesis, we formulate the node clustering problem into a cluster-centric
cost-based optimization problem with an objective to improve the energy efficiency
and prolong the lifetime of the network. To solve the formulated problem, a novel
distributed clustering protocol called minimum-cost clustering protocol (MCCP) is
proposed, which selects a set of non-overlapping clusters from | potential clusters
based on the cost metric assigned to each potential cluster and attempts to minimize
the overall cost of the selected clusters. MCCP can adapt geographical cluster head
distribution to the traffic pattern in the network 1d thus avoid the formation of hot
spots around the uw-sink. It « 1 also balance the traffic load between cluster heads

and cluster members through periodical re-clustering the sensor 1 les in the network.

1.2.1.2 Fault Tolerance

In addition to energy efficiency, 1lt tolerance is a great concern in underwater sen-
sor networks [4, 5, 6]. To enable lo  term and continuous underwater monitoring,
underwater sensor nodes are usually complex and expensive systems and aren  nally
equipped with various electronic and mechanical devices. However, the harsh nder-
water environment niakes sensor nod particularly vulnerable to failures or physical
damages, which would largely t the Hustness of such netw  <s. In particular, a
single cluster-head failure can result in the loss of connectivity «  all affected cluster

members and thus disrupt the operation of the whole cluster. Thus, fault-tolerent
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clustering and cluster head replication. First, fault prevention clustering attempts to
select those healthy nodes as cluster heads to prevent cluster head failures. Then,
during clustering, cluster head replication attempts to select a primary cluster head
and a backup cluster head for each cluster member so that the constructed cluster

hierarchy can tolerate cluster-head failures.

1.2.1.3 Fault Detection

Fault detection is a prerequisite for recovering the disrupted cluster in the event of a
cluster-head failure. In a clustered network, each cluster member can independently
detect the failure of its cluster i | by checking the heartbeats periodically sent
by the cluster head [15]. Due to the channel uncertainty or signal interference in
the harsh underwater environment, however, a sensor node may mistakenly detect a
cluster-head failure that does not actually exist, which would unnecessarily igger
a fault recovery process and thus w ¢ a considerable amount of energy in sensor
nodes. To avoid such energy waste, it is important to accurately detect the failure of
a cluster head. However, most previous work was focused on the recovery of a faulty
cluster [12, 16, 14]. The accuracy problem in detecting a cluster-head failure has not
been well addressed.

In [15] and [16], the heartbeat-based fault detection mechanisms were proposed,
which detect the failure of a cluster head by checking the heat-beats periodica - sent
by a cluster head. This mechanism is simple to implement, but takes much time
to achieve higher detection accuracy. Meanwhile, the gossipii based fault detec-
tion [17], usually used in t litional ad hoc networks, is not suitable for und vater
applications because a pii bas ° detection mechanism is usually based on a re-
liable and delay propagation negligible communication mediumni. It would incur severe

contention and congestion, and thus lead to an v ounded delay.
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In our research, we propose a cooperative fault detection mechanism for detecting
cluster head failures in cluster-based UnderWater Sensor Networks (UWSNs). The
proposed detection mechanism aims to accurately and quickly detect the failure of a
cluster head in order to avoid unnecessary energy consumption caused by a mistaken
detection. For this purpose, it allows each cluster member to independently tect
the fault status of its cluster head and then employs a distributed agreement protocol
to reach an agreement on the fault status of the cluster head among wultiple « 1ster

members.

1.2.2 Wireless Terrestrial Sensor Networks
1.2.2.1 Energy . .ficiency

In a wireless terrestrial sensor network (WTSN) [3], a number of sensor nodes are
densely deployed in a field of in” st with one or  re data sinks located either at the
center or out of the field. The sensor nodes observe the phenomenon at different points
of the field and send the measured data to the siuk(s). The observed phenomenon is
usually a spatially dependent continuous process, in which the observed data have a
certain spatial correlation. In meral, the degree of the spatial correlation in the data
increases with the decrease of the distances between sensor nodes. Therefore, spatially
proximal sensor observations e highly correlated, which leads to considerable data
redundancy in the network [18]. To efficiently usc  twork resources to increase energy
efficiency in data transmission, it is highly desiral.  to remove such data red- Jancy
through effective data aggre; :ion  hniques.

To remove data redundancy caused by the data correlationin /TSN, Slep -Wolf
coding (19, 20] can be employed. Slepian-Wolf coding is a data compression technique

that can completely remove data  undancy without requiring inter-sensor commu-
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not considered. In [21], it has been shown that . plying Slepian-Wolf coding locally
within each cluster is able to overcome the effect of node and re - failures on the data
reconstruction at ther  Hte sink. However, no clustering protocol has been proposed
to construct a cluster hierarchy and no work has taken account into the intra-cluster
transmission cost which depends on the rate allocation within cach cluster. On the
other hand, existing clustering protocols for WSNs {7, 9, 10, 11, 29, 30, 31, 32, 33]
are generally correlation structure blind and are not designed to maximally exploit
Slepian-Wolf coding with respect to global comp  sion gain. In addition, little work
has been conducted on the optimization of data compression in the context. of node
clustering. The effect of spatial correlation on MAC protocols a.  routing algorithims
has been investigated in [34, 35].

In this thesis, we study the major problems in applying Slepian-Wolf coding for
data aggregation in cluster-based WSNs with an objective to optimize data compres-
ston so that the total amount of data in the whole network is minimized. We first con-
sider the clustered Slepian-Wolf coding problen, which aims to select a set of disjoint
potential clusters to cover the whole network such that the global compression gain
of Slepian-Wolf coding is maximized. To solve this problem, a distributed «  mal-
compression clust 1g protocol (DOC) is proposed. Under the optimal cluster hier-
archy constructed by DOC, we then consider the optimal intra~- ster rate allocation
problem and present an approximation algorithm that can find an optimal rate al-
location within each cluster to ~ imize the intra-cluster communication cost. With
the optimal intra-cluster rate " Hcation, the procedures to perform Slepian-Wolf cod-

ing within a cluster are also presented. Finally, we propose a low-complexity joint

coding scheme that combines cluste | Slepian-Wolf coding  hint.  cluster _ icit
entropy coding to further strip =~ = .a redundancy caused by the possible spatial

correlation between different clusters.
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1.2.2.2 Security

When sensor networks are deployed in a hostile environment, sccurity becomes ex-
tremely important. Security e1 ires that certain information is never disclosed to
unauthorized entities. Transmission of sensitive information, such as strategic or tac-
tical military information, requires sccurity. Leakage of such information to enemies
could have devastating consequences. However, security in WTSN is not easy to
achieve. Compared with conventional computer systms, severc ¢l enges exist in
WGENs, in which sensor nodes have limited processing capacitly, storage, bar  vidth,

and energy.

To protect the sensitive contents of the communications, encr. tion is  sually
used, where the original intelligible content is converted into apparently random non-
sense. So far, network-wide encryption is widely employed for WSN, where all the
sensor nodes in the network are required to perfo  encryption. Since a WSN typi-
cally involves hundreds or thousands of sensor nod  network-wide encryption would
cause considerable computation, co. nunication, and storage overhiecad due to data
encryption. Two types of conimonly used euncryption schemes i1 ude symmetric-key
encryption and public-key encryption [36]. Cor ared with a = blic-key alternative
(e.g., RSA), symmetric encryption (e.g., AES) is much more energyv efficient and thus
more suitable for WSNs. Since the symmetric encryption uses the same secret key for
both encryption at the sender and decryption at the receiver, key distribution mech-
anisms are required to securely deliver a secret key to each pair of sensor nodes in the
hostile environment. The constrain  of WSN, however, will affect the implementa-
tion of key d On one hand, sensor nodes are normally attery
powered and can not be ! after the network deploymc . This implies that

the key distribution schemes should iucur little communicatic and computational
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Figure 1.3: Hlustration of the four-pass key distribution protocol model.

1.2.3 Wireless Multimedia Sensor Networks
1.2.3.1 High Throughput

Wircless Multimedia Sensor Networks (WNSNs) are an emerging networking paradigm
that allows retrieving video streams, still images, as well as generic sensing data from
the environment [42]. A WMSN promises a wide range of potential applications in
both civilian and military are  which require visual and audio information, such as
multimedia surveillance, advanced health care delivery, and industrial process con-
trol [42]. Different from conventional wireless sensor networks, a WMSN normally
demands larger bandwidth and  itails higher network throughput to transport large
volunie of data to the remote data sink rapidly and reliably. However, data rates
provided by existing commercial  sor produc  e.g., 250Kb; in MICAz [2], are

not sufficient to support mult edia traffic.

On the other hand, current sensor nodes, such as MICAz and WINS [2, 42],
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already support multiple channels for communication, for example, 40 channels in
WINS [42]. Thus, by developing a multi-chan = MAC protocol, which can effec-
tively utilize the available channel capacity through the cooperative work from other
sensor nodes, we can achieve a better support for multiniedia a Hlications which de-
mand high data rates. The design of a highly efficient and reli: le MAC protocol is
thus critical. Conventionally, the goal is to provide sufficient transmission capacity
at the minimum energy cost under a moderate network load coundition. In order to
support multimedia applications in wireless multimedia sensor networks, the design
becomes the tradeoff between complexity/cost and the network throughput. Most
MAC protocols in wireless sensor networks, such as S-MAC [43] and T-MAC [43],
were proposed to support single-channel architecture. They are >t suitable for nl-
timedia applications: they are designed to be ene v efficient, however, it is at the cost
of increased latency and degraded network throughput. The Multi-frequency MAC
protocol (MMSN) [44] is the first contention-based multi-channel protocol for wireless
sensor networks. It consists of two parts: static channel assig:  :nt and contention-
based data transmission. The channel assignment problem aims to statically locate
collision-free channels for nodes within two hops range. This problem can be re-
duced to a distance-2 coloring problem in grap theory. After channel assignment
is completed, each sender switches to the receiver’s channel for transmissior — Data
transmission follows a contention-based approach on the per- ket basis, which will
incvitably introduce significant cont  overhead. Besides their low energy of  iency,
most contention-based multi-channel MAC protocols are particularly not suitable for
delay-sensitive WMSN because every packet has to contend for medium access and
the delay for data delivery could be potentially bounded. ..e amount of time re-
quired to resolve collision is based on the load condition of the network, which makes

it very difficult to guarantee a bounded delay.
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node cluster  problem is formula  into a cluster-centric cost-based optimization
problem with an objective to improve energy efficiency and prolong network lifetime.

Second, we study the major problems in applying Slepian-Wolf coding for data
aggregation to cluster-based WSNs, including the clustered Slepian-Wolf coding prob-
lem, the optimal rate allocation problem, and the joint Slepian-Wolf and explicit
entropy coding problem. To the v of our knowledge, this  the first time that
Slepian-Wolf codii  is applied to cluster-based WSNs for data . jregation with spe-
cific effective solutions proposed to solve these problems, in particular, for the first
time a distributed heuristic algorithm proposed to solve the clustered Slepian-Wolf
coding problem.

Third, we propose a novel encryption niechanism, called spatially sclective encryp-
tion, to achieve network wide security in WSNs. Unlike the conventional netwe  -wide
encryption,the proposed encryption mechanism requires that o1+ a small portion of
sensor nodes are sclected to perforin encryption of their data while allowing other
sensors to send their data without performing any encryption. As long as the data
of the selected nodes are protected, the data from other nodes can be properly pro-
tected. The proposed method can significantly reduce the energy consumption for
both data encryption 1 key distribution.

Finally, we propose a cooperati fault detcction mechanism with high accuracy
and bounded delay for underv er sensor networks. To the best of our knowledge.
this is the first time that the a failure detection scheme is proposed by exploiting
the inherent characteristics of WSNs. Unlike the conventional heartbeat-based or
gossiping-based fault detection mechanisims, the proposed detection mechanisni is
based a TDMA MAC protocol used in the net  tk and ru concur itly with normal
network operation by periodici ” performir  a distributed detection process at each

cluster member.
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1.4 Thesis Orgar*-ation

In chapter 2, we formulate the node clustering problem into a cluster-centric cost-
based optimization problem with an objective to improve the energy efficie , and
prolong the lifetime of the network. To solve the formulated problem, a novel dis-
tributed clustering protocol called minimum-cost clustering protocol (MCCP) is pro-
posed. In chapter 3. we present the proposed dependable clustering protocol to pro-
vide a robust clustered architecture against cluster-head failures in UWSNs. In chap-
ter 4, we propose a cooperati fault detection mechanisin for detecting cluster-head
failures in cluster-based UnderWater Sensor Networks (UWSNs). In chapter 5, we
study the major problems in applying Slepain-Wolf coding for data aggregati in a
cluster-based WSN with  objective to optimize data compression so that the total
amount of data generated in the whole network is minimized. In chapter 6. we -esent
a combined data aggregation and encryption scheme using Slepain-Wolf coding for
efficient and secured data tra: nission in wireless sensor networks (WSNs). In chap-
ter 7, we propose a clustered on-demand multi-channel MAC protocol (COM-MAC)
in order to maximize the network throughput with enhanced energy efficiency. In

chapter 8, we conclude this thesis and introduce the future works.




Chapter 2

Distributed Minimum-Cost

Clustering _ rotocol

2.1 Introduction

Node clustering has been widely stt  >d in terrestrial wireless sensor networks [7, 9,
10, 11]. Due to the unique characteristics of underwater sensor networks, however,
the clustering algorithms proposed for terrestrial WSNs and m ile ad hoc networks
(MANETS) cannot be applied to UWSNs directly without modification.

In this chapter, we study the node clusterin  problem aud cousider encrgy effi-
ciency in UWSNs. We formulate the problem into a cluster-centric cost-based opti-
mization problem with an objective to improve the energy efficiency and prolong the
lifetime of the network. In the formulated problem, every node in the network is a
cluster head candidate, which can potentially form a cluster t« ther with some com-
bination of its neighbors. The generation of a set of clusters is based on a cost metric
(called cluster cost) defined for a potential cluster, which takes into account three im-

portant parameters that are relevant to the energy status of the cluster, including (1)

19
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the total energy consumption of the cluster members for sending data to the cluster
head; the residual energy of the cluster head and its cluster members; and the relative
location between the cluster head 1d the uw-sink. To solve the formulated problem,
we first propose a centralized minimum-cost clustering algorithm (MCCA) and then
present a minimum-cost clustering protocol (MCCP) that implements MCCA in a
distributed manner. Unlike most existing clustering algorithims, MCCA and MCCP
select clusters, rather than cluster heads, based on the cost metric assigned to each
potential eluster and attempts to minimize the overall cost of the sclected sters.
Simulation results show that the proposed MCCP significantly improves the energy

efliciency and prolong the network lifetime of a UWSN.

2.2 Problem Stat ment

2.2.1 Network archii :ture

A UWSN typically consists of several uw-sinks located at the centers of different mon-
itored areas, a number of ocean bottom sensor nodes surrounding each uw-sink, and
a surface station providing a link to an on-shore control center, as shown in Figure
2.1. A uw-sink has a sufficient power supply and is capable of handling multiple
parallel communications with other sensor nodes. All sensor nodes are homogencous
and quasi-stationary. Each of them can adjust its transmission range with trans-
nission power control. Unlike the terrestrial sensor network, a UWSN has some
1" ue characteristics, such as highly limited ndwidth, long propagation delay.
harsh geographical environment, and relatively small network scale [4]. Without loss

of generality, we conusider a network with one fixed uw-sink in this chapter.
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Figure 2.1: Network architecture.

2.2.2 Energy Model

We use the same energy model as used in [45], which was proposed for underwater
acoustic networks. According to the model, to achieve a power vel P at a receiver

at a distance d, the transmitter power ™ .(d) must be
Ew(d) = Py - d?- 105 (2.1)

where (), measured in ¢ 'm, is a medium absorption cocfficient depending on the
frequency range of interest under given water temperature and water salinity. a(f)

is given by

VIR

=0.1: _—
olf) =0 . 100+ 2

x 10772+ 3 x 1078, (2.2)

where [ is the carrier frequency for transmission measured in kHz.
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2.2.3 Minimum-Cost Node Clustering

Given a network consisting of a finite set of sensor nodes V, every sensor node in the
network is initially a cluster head candidate. We assume that the cluster dia:  ter of
cach candidate is fixed, limited, and identical. The sensor nodes within the cluster
diameter of a candidate v form a finite poiut set N, with the cardinality of |N,|,
where N, is called the neighbor set of candidate v. The power set of N,, denoted
by P(N,), is a set whose elen 1ts are the subsets of N, and P(N,) constitutes all
possible combinations of nodes in Nv. Thus, the cardinality of P(N,) is 2™, Each
element of P(NV,) is called a cluster member set of candidate v, which is denoted by
N,. Thus, a candidate v, combined with each cluster member set B, € P(N,), cau
form a potential cluster A := B, |J{v}, and the total number of potential clusters
generated by candidate v is 2/™!. Obviously, there initially exist a total nu  ber of
2 vev 2N+ potential clusters in the network, which are generated by all cluster head
candidates in V. We use S to denote the cluster set which consists of all the po  1tial
clusters in the network.

Given the above assumptions, the node clustering problem can be formulated into
a cluster-c  “ric cost-based optimization problem with an objective to improve the
energy efficiency and thus prolong the lifetime of the network, i.e., to select a set of
potential clusters C* from the cluster set S to cover the whole network so that the

overall cost of all selected clusters, 1s minimized, i.e.,

C* arg cost(A), (2.3)

Acu

where U co- A=V and | j4ec. A . cost(A) is a cost metric defined for a cluster,
which will be described in the next section. We also refer to this problem as m ni-

cost node clustering (MCNC) problem.
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2.2.4 Cost Metric

To consider encrgy efficiency, we define in the formulation a cost metric called cluster
cost or simply cost for a potential cluster, which takes into account three important
parameters that are relevant to the cnergy status of the cluster, namely, the total
energy consumption of the cluster members for sending data to the cluster head; the
residual energy of the cluster head and its cluster members; and the relative location
between the cluster head and the uw-sink. For ease of exposition, we first consider the
first and third parameters, and then incorporate the residual energy in the definition.

Given a potential cluster A := B, [J{v}, where v is a cluster head candidate and

N, is a cluster member set of v, the cluster cost of cluster A is defined as

cost(A) = Z cost(u,v) + cost(v, s), (2.4)

u& B,

where Y7 5 cost(u,v) is the total energy consumed by all sensor nodes in IV,
for sending one  .a packet to v, which is also called inira-cluster cost. cost(u, s)
is the energy consumed by v for sending one data packet to the uw-sink s directly,
which is also called 7elay cost. The relay cost is proportional to the distance between
v and s. In the above definition, the geogra ™ =« ribution of a ch head h.  a
dominant impact on the cost of a potential cluster. A small change in the distance
between a cluster head and the uw  k would lead to a big change of the relay cost
and this change will overwlhchn the small fluctuation of the int  -cluster cost, which
is bounded by the fixed cluster diameter and the limited variance of the number
of cluster members in different clusters. Thercfore, if a c¢lt  er head is closer to
the area surrounding the ink v ich has a h ier traffic load, its cluster tends

to have a smaller cluster cost. On the other hand, the effect of the intra-cluster

cost would dominate the cluster cost if the cluster heads of different chusters have
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very close spatial proximity relative to cach other in a local area or have the same
distance to the uw-sink but in different areas. In this case, a cluster with a smaller
intra-cluster cost has a sn  ler cluster cost. The defined cost metric actually reflects
the energy consumption of a potential cluster. To more comprehensively reflect. the
dynamic energy status of the ¢ er, the residual energy of the cluster head and its
cluster members should also be considered. In this case, the cost metric should be
defined such that when the cluster head candic es initially have plenty of residual
energy, the energy consumption term dominates, while when the residual energy of
the cluster head candidate bec s small, the re lual energy term dominates. When
two candidates have comparable residual energy levels, the one covering the cluster
members with low residual energy should be given preference. Based on the above

arguments, a complete definition of the cost metric is given as follows

ZUEF costli. Y fHi{E.) + costl(v. s) fal A)
J1{Ly)

cost(A) (2.5)

where E,(or E,) is the residual energy of node v (or u) normalized by the initial

energy of the node and

—ﬁ;+0.1,xz E,

fizy=1¢ " (2.6)
= + 0.1,.’17 < Et
B A FUR,)
fa(X) = , (2.7)

where F, (0 < E, < 1) is a threshold for the residual energy. When the normalized
residual energy of a node is la  r than this threshold, a node is said to be in a high
energy state. Otherwise, it in a low en _  state. E, is used to control how long
a node can act as a cluster head. 1 a selected cluster head, it can return to be a

cluster member only when its normalized residue energy is below E;. In this case,
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fi(E,) in the denominator would largely decrease, which leads to a big increase of
the cost of the cluster head and thus makes the cluster head return to be a cluster
member. Meanwhile, when a cluster head covers a cluster meniber in a low energy
state, its cost metric will diminish because the numerator of the cost metric decreases
with the number of the cluster members in a low _rstate. ais a coeflici  used
to control the sensitivity of the cost metric to the residual energy when a node is in a
high energy state while 3 is a coefficient used for the same purpose when a node is in a,
low energy state. Both «v and /4 can be adjusted to accommodate less or more energy
consideration in the cost metric. In this work, E; is set to be 0.25 so that a cluster
head can make sufficient contribution before it returns to be a cluster member. « is
set to be 30 so that the cost metric changes dramatically over normalized residual
energy in a high energy state because in this ce  fi(z) is approximately 1. /4 is set
to be 2 so that the energy consunmiption termn dominates the cost nietric when a node

is in a low energy state.

2.3 Tistributed Minimum-Cost Clustering Proto-

col

In our research, we propose a distributed minimum-cost clusterin  algorithm (MCCP)
to solve the MICNC problem in = ¢ ibuted cer ol . We first present
a centralized minimum-cost clustering algorithm (MCCA) and then present MCCP

that implements MCCA in a distributed manner.
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2.3.1 Centralized Minimum-Cost Clustering Algorithr

In a centralized network, node ¢l ering is performed at a cen il controller {(e.g.. a

uw-sink), which has the full knowledge of the network.

If we consider cost(A) as the weight associated with a cluster A, the MCNC
problem is very similar to the minimum weight set cover (MWSC) problem, whicl is
described as follows. Given a set of points (i.e., a set of sensor nodes V), a ¢ 2ction
of potential point sets (i.e., the cluster set S), and a nonnegative weight assigned to
each point set (i.e., cost(A) assigned to a potential cluster A € ¢ find a subset of the
collection of potential point sets (i.e., a cluster set C* C §) such that each clement
in the given set of points (i.e., each sensor node u € V') belongs to at least one of the
point sets in the subset (i.e., one cluster in the cluster set C*) and the sum of the
weights of the point sets in the subset (i.c., the overall cluster cost of all clusters in
C*) is minimized.

Note that the only difference between the two problems is that a point in the
MWSC problem can be covered by more than one point set while a sensor node in
the MCNC problem can be covered by one and only one clus . Meanwl | it is
worth pointing out that if the MWSC problem L »sanie nu oer of points as that,
in V, the total number of potential point sets in the MWSC problem is 2'*'!, while
in the MCNC problem the total number of potential clusters decrcases to ), 2IN

because of the limited cluster diameter of each node in the network.

The MWSC problem is well-known to be I hard. To solve this problem, an
approximation algorithm was proposed by Chvatal [46], which is based on ase  mtial
greedy method. If we use the same notations S to denote a collection of potential
point sets and C* to denote a collection of point sets we would like to find, Chvatal's

algorithin starts with C*:=¢ 1d each = : greedily adds one "qualified” s to C*
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until the sets in C* include all points. Figure 2.2 gives the pseudo-code of Chvdtal's
algorithm, where A is a set (called ”qualified” set) with miniinum I‘X_E??ll’ W is a set
containing all nodes which are covered by all "qualified” sets already added to €%,
and A — W is a set of elements which are members of A, but not members of V.
Hence, |A — W/ 1s the number of new nodes to be covered by C* if a new " qualified”
set A is added to C*. Thisn ns that a selected "qualified” set A may | re members

in common with the sets already in C*, which is not allowed in the MCNC problem.

CHVATAL(v)

1 C*—¢and Q — o
2 while Q #V

3 do

W(A)
[A-Q|

C*—C U{A}and Q 2QUA

4 Select a set A € S such that is minimized

[

Figure 2.2: Chvatal’s algorithin.

To solve the MCNC problem, we propose a heuristic algorithm ¢ :d minimum-
cost clustering algorithm (MCCA) based on Chvatal’s algorithm to generate a pair-
wise disjoint C*, in which any two distinct sets e disjoint. F 1re 2.3 presents the
pseudo-code of MCCA, where cost corresponds to weight in the MWSC problem, Z is
a set containing all remaining cluster head candidates, H is a set containing the clus-
ter heads of all clusters already selected, and A is a set containing all representative

clusters already found. The main steps are described as follows.

1. Find out all nodes that have not been covered by the clusters already added

" 0o C* and are lc ida (ie,Z=V-W).
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HEURISTIC ALGORITHM(v)

1 Ct—=¢and Q — ¢:H — ¢
while @ # V

doZ—V—-0Q
M—¢
for
— . cost({riUmy . p
6 do 13, 11;,[16[1,{2}3_()){ U 4 B J{v}
7 M — MU{R.}
s gensi(Ry
8 A arg 15'1‘1611‘1)[{—————“‘,“'
9 Cm—C U{A} and Q@ — QU &H — HJ{u}

Figure 2.3: Heuristic algorithnu.

ble combination of the nodes that are in its neighbor set N, but have not been
covered by the clusters already in C*, i.e., P(N, —W). Then, calculate the cost
of each of its potential clusters and find out its representa e 1ster R,, which

is the potential cluster with the minimum average cost cost(R,)/|R.|, where

R, = {v}B,.

3. Compare the average cos of the representative clusters of all candid. s and
select the representative cluster A with the minimum average cost as a "qual-
ified” cluster to be added into C"™*. The ¢ esponding candidate u beconies a

cluster head.

4. Return to step 1 and repeat the above st 3 until the clusters . C* cover all

|
2. For each candidate v, construct its potent  clusters by combining every possi-
nodes in the network.




CHAPTER 2. DiIsTRIB D MINIMUM-Co0ST CLUSTERING PROTOCOL 29

2.3.2 Distributed Minimum-Cost Clustering Protocol

In the centralized MCCA, whether a candidate v can become a cluster head is deter-
mined by whether its corresponding representative cluster R, has a minimu  value
of cost(R,)/|Ry| among the representative clusters of all candidates  the network.
In a distributed network, however, cach node makes a clustering decision it pen-
dently. The value of cost(R,)/|R.| of candidate v can only be changed if any of the
candidates within a distance of at most 2 times the cluster diaincter (2-hop range)
becomes a cluster head, which may lead to the changes of cost(R,) and |R,|because
only the candidates within a 2-hop rauge may cover common nodes. Therefore, if the
value of cost(R,)/|R,| is smaller than that of any other candidate within a distance
of at most 2 hops from v, MCCA will select v as a cluster head with its representative
cluster before any of the candidates within a distance of at most  hops. Based  this
observation, we present a distributed MCCP to  plement the centralized MCCA in
a distributed manner. With MCCP, all candidates, instead of a single central con-
troller, need to find out tI r own representative clusters based on local information,
and then exchange the rerage costs of their representative clusters within a 2-hop
range to collaboratively sclect the “qualified” ¢lv s,

MCCP consists of stages: initialization stage and execution st: . w :h are

described as follows.

e Initialization stage: When a network is initially deployed, all nodes are set to be
candidates. Then  h cand ¢ construc its neighbor set and its uncovered
neighbor set, which consists of the nodes that are in the neighbor set  ut are

still candidates.

e Execution stage: A candidate generates its potential clusters by searching every

possible combination of elements in its uncovered neighbor set, selects a rep-
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resentative cluster from these potential clusters, and sends the average cost of
the representative cluster to all candidates within its 2-hop range. A candidate
collects the average costs of the representative clusters of all candidates within
its 2-hop range. If the candidate itself has nimuni average cost, it becoies
a cluster head and advertises an INVITE message to all the nodes in its repre-
sentative cluster to invite them become its cluster members. Otherwise, there

are two cases for a candidate.

1. If an INVITE message is received and the destination of this message is
the candidate, the candidate first changes its candid : status to a cluster
member. Then it extracts the cluster head ID from the INVITE  2ssage
and broadcasts a JOIN message to all the nodes within its cluster diameter.
This JOIN message will acknowledge the receipt of the INVITE message
to the candidate and at 1 :same time notify the other candidates within
the cluster diameter that the candidate has become a cluster member of

some cluster head.

2. If no INVITE message is received or some INVITE messages for other
nodes are received, the candidate stays in its candidate status and reselects
its representative cluster because some elements in its uncovered neighbor
set might have been covered by some cluster heads or have ecome cluster

heads.

The above procedures are performed by all candidates until each of them becomes
either a cluster head or a cluster m 1ber. At the end, no candidate remair in the
network and every cluster member belor  to a cluster.

The pseudo-code of the above procedures are shown as in Fi re 2.4 « . the

messages or variables used in the pseudo-code are defined in "~ ¢ 2.1.
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|

DrPENDARLE CLUSTERING PROTOCOL( 1}

status{e) € {head, cand, memb} 5 status{ey — cond, CH{v) — o
send and receive sftatus(e} within 2 hops
U — {ul]status(u and.u € N,
while status(u) = cand
do C.— P} B, — oy ;,ll”'“{'_HlEl)%—L’l’f“—’}
A= A{e U B, sannfe) — %’;‘—'
send arg(e) within 2 hops
G {ulavgle)senthyuisrecerved}
if arg(e) = win,eofergla)}
then status{e) — head
send INVITE{v. X, ) within 1 hop
else  wait until selection timeout
if v receives TNVITE(u X))
thenif + e .\,
then statustv) — wmemb o cluste rhe ad(v) — u
CHe) = (YU CHe) tsend JOILN (cou)
else status{r) — cand ; U, — U, = {u}
clseif ¢ receives JOTN(u )
then sfatusit) «— cand ; U, — U, = {u}
wait until clustering timeont
if status(u) = menh
then CH primary(ey — clustorhead(r) : CHoold(e) — CH{(v)
repeat 1- 21
CHSETY — CHEOJCOH old(v)
Backup SET () — CHSEL{e) = {CH _primaey(e)}

hackup{v) — arpg min {drst{von)}
uf Hacknpos i (e

Figure 2.4: Distributed minimum-cost clustering protocol.
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on the formation of a cluster in the area closer to the uw-sink can be avoided. If two
candidates are within a distance less than two  1es the cluster diameter, the one
closer to the uw-sink is niore likely to construct a cluster because its cluster tends
to have a smaller average cost. The reason is that the cost metric is designed such
that the distance between cluster head and the uw-sink don ates the cost of a
cluster. On the other hand, to become a cluster head, a candidate necds to select a
proper set of nodes within its cluster diameter to build a cluster with the mi mum
average cost (representative cluster). If the car date is around the uw-sink, ouly
clustering the nodes closer to the candidate itself can lead to a representative with a
smaller average cost. For a candida far away from the uw-sink, its distance [rom
the uw-sink dominates the cost metric. In this case, incorporating more nodes as
cluster members without considering their proximity to the candidate can lead to a
representative cluster with a smaller average cost.

This property can be illustrated by a simple example shown in Fi; re 2.5. Can-
didate A0 can generate four po tial clusters: {AO}, {A0 Al}, {AO0 A2}, and {AO
A1 A2}. Similarly, BO has four potential clusters: {B0}, {BO B1l}, {B0 B2}, and
{B0 B1 B2}. Obviously, ™) and A0 can become two cluster heads at the sonie time
without affecting each other. The four potential clusters of A0 have average costs
proportional to - . !/ 5, (.- +32)/2 = 17, (52+82)/2=44.5, and (52+82+32)/3=
32.66}. A0 associated with Al constructs the cluster which has the minimum average
cost because the cost metric is sensitive to the intra-cluster cost and adding A2 to
the cluster will result in a larger average cost. The four potential clusters of B have
average costs proportional to {402/1=1600, (402+32)/2 = 804.5, (402+82)/2 = 832,
(402+82+32) /3= 557.6667}. For BO. the cluster with {B0 B1 B2} has the i 1
average cost because the relay cost dominate the ¢t metric (in this case, cost  >tric

approximately proportional to 402) and incorporating more nodes to construct the
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the network because I’ does not have the adaptive property for the geographical

traffic pattern of the network.
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Figure 2.6: (a) Node distribution; (b) Cluster head distribution wi ~ MCCP; (c)
Cluster head distribution with HEED.

Figure 2.7(a) shows t nporal lifetime with MCCP and HEED,  »yec  ely.
Obviously, MCCP improves the temporal lifetihn  as compared with HEED, espe-

cially if the temporal lifetime is defined as the nu  ber of rounds when the first node
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The siinulation results show that MCCP significantly iinproves the nctwork  time

as compared with the well-known HE™™ protocol.




Chapter 3

A Robust Architect re for

Underwater Se..s.r N.twork

3.1 Introduction

Node clustering provides an effective approach to improve the energy efficiency and
prolong the network lifetime of a WSN. Moreover, clustering leads to a hierarchical
network architecture, which enables scalable medium access control, robust routing,
and coordinate-free localization. In the harsh underwater environment, however, an
underwater sensor node is vulnerable to failures or physical damages, which may affect
normal network operation. In particular, a single cluster-head failure can result in the
loss of connectivity of all affected cluster menbers aud thus dis  pt the operation of
the whole cluster. To address this problem, re-clustering can be employed to recover
the failed cluster. However, such a recovery mechanism is usually time-insensitive.
Furthernmore, in the case of a cluster-head failure, sensor nodes in the failed ster
will remain inactive until  : next re-clustering is performed. Sensii cover. : will

be incomplete during the inactive p  od and thus affect normal network operation
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inevitably. To shorten this inactive period, frec ut re-clustering is required, which
would result in significant control overheads and thus is not desired.

In this chapter, we propose a dependable clustering protocol to provide a robust
clustered architecture : nst cluster head failures in UWSNs. To achieve the ob-
jective, the proposed clustering protocol employs two mechanisms: fault prevention
clustering and cluster head replication. First, fault prevention clustering attempts to
select those healtliy nodes as cluster heads to  :vent cluster head failures. Then,
during clustering, cluster head replication attempts to select a primary cluster head
and a backup cluster head for each cluster member so that the constructed cluster

hierarchy can tolerate cluster head failures.

3.2 Fault Prevention Clustering

The proposed protocol consists of threc phases: failure predic n, cost evaluation,
and clustering optimization. The purpose of failure prediction  to predict the po-
tential failure of an underwater sensor based on its lifetime distribution so that those
unhealthy nodes are prevented from being sclected as cluster hicads. Cost evi  1ation
is to evaluate the cost caused by the failure of a sensor node if the node is cted
as a cluster head, taking into account both the reliability and residual energy status
of the node. Clustering optimization aims at constructing a ¢ ster ierarc - that
minimizes the overall cost of all sclected clusters based on the cost ¢ uation 2ach

sensor node.

3.2.1 Failure Prediction

The purpose of failure prediction is to predict the potential failure of a sensor node

based on its lifetime distribution so that those unhealthy nodes are prevented from
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being selected as cluster heads during clustering. Unlike the sensor nodes used in ter-
restrial sensor networks, underwater sensor nodes are usually complex and expensive
systems equipped with various electronic and m 1anical devices. These components
follow the progression of degradation of some parameter(s). Accor gly. parameter
monitoring can be performed to predict the potential failure of a sensor node or the
probability that a sensor node is going to fail v hin a certain period of ti This
probability multiplied by the cost of such a failure provides us a criterion for selecting

a cluster head.

The reliability of a sensor node can be represented by a lifetime-distribution fune-
tion, which is defined as the probability that the actual lifetime of a sensor node is

smaller than a given tin  i.e.,

F(t) = Pr(T < t), (3.1)

where ¢ is a given time, T is the actual lifetime of a sensor node. For the sake of
simplicity and without loss of  1erality, we assume that the life ue distribution
of each sensor node is identical and follov the Weibull distribution [49], v " " I is
a popular statistical model used in reliability engineering and fail ¢ analysis. Its

cumulative distribution function is given by

F(tk,))  1—e W (3.2)

where & > 0 is the shape parameter and A > 0 is the ‘ale param r of the ¢ ni-
bution. We choose & > 1 to indicate "wear out”, i.e., a sensor node is more ely to

[ 7 as time prc  esses.
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3.2.2 Cost Evaluation

The cost of a cluster-head failure depends on the cluster members associated with
that failed cluster head. In the event of a cluster-head failure, if a cluster member
in a failed cluster is located in the overlap arc with an ad ent cluster, it can
resunie connectivity and short range comumunication by joining in the adjacent cluster.
Otherwise, it has to communicate with the UW-sink directly, which wou cause
much more energy consumption or igher cost. For this reason, we consider the
worst-case scenario as the cost of a cluster-head failure to stress the reliability of the
whole network, which is defined as the sum of the energy cons' ptic  of all cluster
members in a failed cluster for transmitting one data packet directly to the UW-sink.
Since we use the worst-case cost as the cost of a cluster-head failure, we : o call
it dependable cluster cost. To achieve high network robustness, a ¢ er hierarchy
with a minimum sum of dependable cluster costs of all clusters is preferred during the

clustering process.
e Dependable Cluster Cost

Given a cluster A := B, ' '"v}, where v is a cluster head candidate, NV, is a cluster

member set of v, t  dependable cluster cost of cluster A is defined as

cost(A, t) = [] F(t)] ZuEB.. [COSt’(“’U) t COSt(U’ S)] (3.3)

+F(t) 7 ¢p, cost(u,s),

where ¥

wep, COst(u,v) is the total energy consumed by all sensor nodes in cluster
A for sending one data packet to the cluster head v. cost(v,s) (or cost(u,s is the
energy consumed by v (or u) for sen 7 g one data packet to the UW-sink s directly,

and E,(or E,) is the residual 7 of candidate v (or cluster meml  u) no1 alized

by the initial energy of the node. From Equation (3.3), it is easy to see that the
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dependable cluster cost is actually the expectation value of the encrgy consumption

of a cluster.
o Modificd Dependuble Cluster Cost

The dependable cluster cost defined in Equation (3.3) only considers the reliability
of each sensor node. As indicated carlier, a clustering protocol should also consider
the residual energy status of each sensor node | selecting cluster heads in order to
support long-term seafloor monitoring. Therefore. the residual energy status of cach
sensor node should also be taken into account i the dependal  cluster cost, which

can be further modified as

we By cost(u,v) flEu {1\ L enetlps)

TTE.(0)] - (3.4)

cost(A,t) =[1 - F(t,)]z

+F(t) Y e p, costu, s)

and

0.9 -
m+0.1, x> Ey
f(z) = ) (3.5)

N A 0.1, T < Eu,

where ., (0 < By < 1) is at’ sshold for the residual energy. When the normalized
residual energy of a node is larger t1 1 this th  old {e.g., # > Ey), nodeis in
a high encrgy state. Otherwise, it is in a low energy state (e.g., < Ep). f(E.(f))

and f(FE,(t)) are the energy functions of a node u and its corresponding cluster head

candidate v, respectively.
o Properties of Dependable Cluster Cost

By using the modified dependable cluster cost, those low-energy nodes will nd to

become cluster members durii  the clustering process. As are: ., they only ced to
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transmit data over a short distance to its associated cluster heads, thus consuming less
energy. At the same time, the current energy converter equipped in each sensor node
will recharge and make the node restore its high energy state and its qualific  ion to
become a cluster head in the future. In Equation (3.4), the energy function f[FE,(t)]
can make the cluster head candidate v have a higher cost and thus become less
qualified to be selected as a cluster head. This is because the cluster-head candidate
v in a low energy state (e.g., E,(t) < Ey,) will rce f[E,(t)] to tend to be infinite
small, thus gradually leading to an infinite large dependable cluster cost. On the
other hand, f[E,(t)] can make a node u in a low energy state tend to b Hme a
cluster member, This is because a node in a low energy state (c.g., F,(t) < Euy,)
will force its corresponding cluster head v to have a lower dependable cluster cost
due to smaller cost(u,v)fi[E,(f)], thus making v tend to include node v as a cluster

member.

3.2.3 Optimal Clust ‘ing

The optimal clustering problem is to construct a cluster hierarchy that minimizes the
overall dependable cluster cost in the whole network. Given an  vork consisting of a
finite set of sensor nodes V, every sensor node in the network is initially a cluster head
candicdate. We assume that the cluster diameter of each candidate is fixed, limited,
and identical. The sensor noc  within the cluster diameter of candidate v form a
finite point set N, with the cardin ty of |[N,|,\ zre N, is called the neighbor set of
candidate v. The power set of N,, denoted by P(N,), is a set whose clements are the
subsets of IV, and P(N,) constitutes all possible combin: s« nodes in Nv. Thus,
the cardinality of P(N,) is 2™, Each element of P(N,) is called a cluster member

set of candidate v, which is denoted by N,. Thus, a candidate v, combined w 1 each
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cluster member set B, € P(N,), can form a potential cluster A := B,|Jv, and the
total number of potential clusters generated by candidate v is 2™/, ( viously, there

INol potential clusters in the network, which

initially exist a total number of ) . 2
are generated by all cluster h 1 candidates in V. We use W to denote the cluster
set which consists of all the potential clusters in the network.

Given the above assumptions, the optimal clustering at time ¢ can be formulated
into a optimization problem with an objective to select a set of potential clusters C

from the cluster set W to cover the whole network so that the overall dependable

cluster cost of all selected clusters is minimized, i.e.,

C* = arg min gcost(fl, t), (3.6)

where (J . A =V and [ A = ¢. cost(A,t) is the dependable cluster cost.

This optimal clusteriy problem is very similar to the minimuni-c¢ . node cluster-
ing (MCNC) problem introdu  in Chapter 2. The difference between the twc  rob-
leins is the different cost metric applied. To solve the optimal clustering problem, we
propose dependable clustering protocol based on the distributed mini 1m-cost clus-
tering protocol (MCCP) propo  in Chapter 2 to minimize the overall dependable

cluster cost. We also refer to th  protocol as Fault Prevention Clustering.

3.3 Cluster Head R plication

3.3.1 Problem Star mnent

Fault Prevention Clusterit is ro otive  lt- mt mechanism which is alming
to prevent cluster he: failis  before failures really happen. H  ver, the un-

predictable factors in hash underwater environment may lead to unexpected death of
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The pseudo code of Dependable Clustering Protocol is given in Figure 3.1, CH (v)
is the CH list of candidate v. A, is the qualified cluster of candidate v. U, is the
uncovered neighbor set of candidate v. P(U,), called power set of U,, is a set whose
elements are the subsets of U, and constitute all possible combinat s of nodes in
U,. avg(v) is the average cost of A,. X, is a set containing the cluster members of
A,. head is a flag indicating a cluster head. cand is a flag indicating a candidate.
memb is a flag indicating a cluster member. G is a set containing the average costs
sent by other cluster heads within 2-hop range of a candidate, INV. E(v, X,) is a
message inviting the nodes in set X, to become the cluster members of candidate v,
JOIN (v,u) is a message a«  owledging that node v has received the INVITE message

sent by candidate u and joined the cluster as a cluster member of candidate .

3.4.4 Computational Complexity

sensors uniformly distributed over a regic  with

Consider a network consistii  of |V
a predefined node density p to guar ee the sensing coverage. The compu ional
complexity of dependable clusteri: | Htocol is O(]V]). This is because the proposed
protocol consists two consecutive steps. It first selects a set of primary cluster heads
to cover the whole network. Then it removes the selected cluster heads and selects
another set of cluster heads from the remaining sensor nodes as backup cluster zads.
During each step, the clustering protocol MCCP is employed, which is introduced
in Chapter 2. Since - utational complexity of MCCP is O(|V]), which is
discussed in Chapter 2.3.3, the computational ¢ exity of dependable clustering

protocol is also O(|V]).
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3.5 Performance valuation

In this section, we evaluate the performance of the proposed depenc »Hle clustering
protocol using the network simulator ns-2.

The network robustness i1s define as the ratio of the number of working sensor
nodes to the total number of sensor nodes which still have battery energy. The
working nodes do not include the failed cluster h 1s and the cluster members which
lost the connectivity with the data sink due to the failed cluster heads. We use the
reliability funetion of sensor nodes defined in Equation (3.2) to model the node failures
over time. The shape parameter k in the reliability function is set to be 4 to suggest
hardware degradation. The scale parameter X is randomly selected within the range
form 200 to 600 to simulate the different “wear out” processes of different sensor
nodes. In investigating the network robustness, we only look at the first 35 clustering
rounds. This allows for the isolation of the effect of node degradation failures from
that of energy depletion.

Figure 3.2 shows the network robustness with the proposed protocol and HEED,
respectively. As expected, the proposed protocol hieves better 2twork robustness.
This ts because the proposed protocol considers not only energy efficiency ol nsor
nodes but also potential node failures due to non-battery factors whilel ED i ilure

insensitive protocol which does not consider failure prevention during cluster. ;.

Figure 3.3 shows the network capacity with the proposed protocol and  SED,
respectively, which is defined as the total amount of data transmitted in the whole
network within a certain period of time and is a performance metric affected by net-
work robustness. It is seen that t] proposed protocol can achieve better network
capacity. This is because the proposed protocol can achieve be 1 network robust-

ness, which means a smaller numnber of sensor nodes e affected by the failed cluster
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that at the beginning of @ TDM frame interval, 4 cluster = ds fail. The failed
cluster heads are randomly selected from the currently primary cluster heads. Figure
3.5 shows the total data received by the sink with using the proposal protocol and
MCCP, respectively. As expected, the proposed protocol outperforms MCCP. This
is because using MCCP, the nodes associated with a failed cluster head have  wait
until after re-clustering is performed to transmit their sensed data. In contrast, the
proposed protocol allows the sensor nodes to quickly switch to the cluster with the
backup cluster head. More importar vy, since normally a cluster mer er is covered
by niore than two active cluster heads as seen in Figure 3.4, a sensor node will always

find additional cluster heads even though the backup one fails.

L ant
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3.6 Summary

In this chapter, we have proposed a dependable clustering protocol to provide a robust
cluster hierarchy against clus ~head failures in UWSNs. The proposed clustering
protocol attempts to select those healthy nodes as cluster heads to prevent cluster
head failures. Meanwhile, it attempts to select a primary cluster head and a ackup
cluster head during clustering so that the cluster embers assocziated with the failed
cluster head can quickly switch over to the backup cluster head in the event of a
cluster-head failure. The simulation results have shown that the protocol can effec-

tively enhance network robustness.
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is usually based on a reliable and propagation lay negligible medium, ar  would
incur severe contention and congestion, and thus an unbounded delay.

In this chapter, we propose a cooperative fault detection mechanism for accurately
and quickly detecting cluster-head  lures in a clustered UWSN. The propo | de-
tection mechanism runs concurrently with normal network operation vy periodically
performing a detection process at each cluster member. To increase detection accu-
racy, it allows each cluster member to independently detect the fault status of its
cluster head and then employs a distributed agreement protocol to reach an agree-
ment on the fault status of the cluster head among multiple cluster members. To
reduce energy consumption, it uses a time division multiple access ~ IMA) mediun
access control (MAC) protocol and makes use of the data periodically sent by a
cluster head as the heartbeats for fault detection. A couple of forward and back-
ward time-division-multiplexii  (TDM) frames e specially structured for  abling
multiple cluster members to reach an agreement within two frames in cach detection
process. Moreover, a schedule generation algorithm is also proposed for a cluster head
to generate the transmission schedule in the forward and backward {  nes. Through
simulation results, we show that the proposed detection mechanism can achieve high
detection accuracy unc  high packet | i rat in the harsh unde ter  riron-
ment, and can detect a cluster-head failure faster than a tradition fault-detection

mechanism with a delay bound of two TDM frames.

4.2 Network Architecture

A UWSN typically c of s al und  ater sinks located at the ¢ ers of
different monitored arcas, a munber of ocecan bottom sensor nodes surrounding cach

uw-sink, and a surface station providing a link to an on-shore control center, as was
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shown in Figure 1.2. A uw-sink u¢ lly has an adequate power supply and is pable
of handling multiple parallel communications with the sensor nodes. All sensor nodes
are homogeneous and quasi-stationary. Each of them can adjust its transmission
range with transmission power control. Unlike terrestrial sensor networks, a UWSN
has some unique characteristics, such as highly limited bandwidth, long propagation
delay, harsh geographical environment,  1relatively small network ¢« :[4].  ithout
loss of generality, we consider a clustered network with only one fixed uw-s . We
assume that the network is clustered into a set of clusters by performing a distributed
clustering protocol, which always selects the healthiest sensors (i.e., with the largest
residual energy) as cluster heads and periodically re-clusters tI network. Moreover,
the network uses TDMA for medium access ¢ irol, which is energy efficient and
delay guaranteed. With the TDMA MAC protocol, time is divided into a series of
TDM frames of equal size for cach cluster. 1 h frame is further divided into a
fixed number of timeslots. In each frame, the time slots are numbered from 0 to
n-1, where n is the number of nodes in the cluster and is also called frame size.
The nodes in each cluster are mchronized on a timeslot basis by using the time
synchronization technique for an underwater environment proposed in [17] such that
the nodes can transmit successively in their own timeslots in consecutive TDM  ames.
The cluster head of each cluster is responsible for allocating timeslots, generating the
TDM schedule, and distributing the schedule to each cluster memb  The cluster
head reserves timeslot 0 for 1 If to distribute control inform on (e.g., the TDM

schedule) and transmit data packets.
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4.3 Cooperative Fault Detection Mechanism

In a TDMA-based ¢’ “ered netwo | each clus - member can detect the fault sta-
tus of its cluster head by checking the hearth: s periodically sent by the cluster
head. Due to the channel uncertainty or signal interference, however, the heartbeat
signals may be corrupted during transmission,  ich would result in a sensor node
to mistakenly detect the failure of the cluster head. In this case, a fault 1 overy
process would be unnecessarily triggered, which would waste a significant amount of
energy in sensor nodes. To address this problem, we can allow each cluster member
to independently detect the fault status of the cluster head and then enable multi-
ple cluster members to reach an agreement about the fault status of the cluster head
through some control protocol. Only when the agreement is reached will a de  1on be
made and a recovery process triggered. Based on this idea, we propose a cooperative
fault detection mechanism for accurately detectii  the failure of a cluster head in a

cluster-based UWSN.

4.3.1 Fault Detection Mechanism

The proposed fault detection mechanism requires each cluster member in a cluster to
maintain a status vector, lich each bit corresponds to a ¢ ster memb and is
initialized to zero. Once a cluster member detects that the cluster h 1 has failed, it
will set its corresponding bit. Meanwhile, it will update the other bits in its vector as
soon as it overhears a status vector from the other nodes. If mn iple or a predefined
number of bits in the status vector of a cluster member become “1”, an agreement is
considered being reached 1d the cluster :mber will conclude that its clus  head
has failed. Note that in order to accommodate a cluster meniber .ilure, an agreenient

is supposed to be reached among multiple cluster members, rather than all cluster
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by each cluster member. To reach an agreement, gossiping is a traditional technique
to exchange the information that each cluster member maintaing individually ¢  the
liveliness of the cluster head. However, this technique would cause severe con 1tion
and congestion, and may interrupt normal data transmission to the cluster head for
an unbounded delay. In particular, the contention-based MAC protocols (e.g., IEEE
802.11) that enable gossiping are im ctical in an underwater environment [4]. To
address these problems, we propose a distributed agreement protocol, which uses a
contention-free transmission schedule based on the TDMA MAC protocol proposed
for UWSNSs (8, 51], thus guaranteeing a bounded detection delay while not interrupt-

ing normal data transmission between the cluster head and its cluster members.

4.3.2 Distributed A ‘eement Protocol

The distributed agreement protocol uses a couple of consecutive T M frames to reach
an agreement on the fault status of a cluster head among multiy  cluster me  ors.
One of the frames is called forward frame and the other is called backw ~ rame. >th
forward and backward frames have the same frame size with the first timeslot reserved
for the cluster head and the others allocated to cluster members. What makes them
different is that the transmission order of cluster members in the backward fi ne is

reversed with respect to that in the forward franie. Moreover, the tran ission order

of cluster members is schedu | = a local hierarchy so that after two consecutive
forward and backward frames an agreement can be reached am multiple cluster
members.

To better understand the above concep  let us take a look  a siniple example.
Consider a cluster with eight cb  er members denoted by p?,; ..., p8 asshown in

Figure 4.1(a). For case of exp tion, we assume that a cluster head failure is detected
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Figure 4.1: Example of distributed agreement = stocol

bution; (b) Spanning tree; (c) Frame structures.
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only when an agreement amo  all the cluster members is reached. Suppose that
cluster member p! is determined as the root and a broadcasting tree is constructed
among these cluster members by the cluster head, as shown in Figure 4.1(b). In each
detection process, the forward frame is scheduled efore the backward frame. 1 the
forward frame, the first timeslot is reserved for the cluster head for data transmission.
During this timeslot, all cluster mer ers must keep awake to check the data as a
heartbeat. Accordingly, after the first timeslot, each cluster member can dete  the
current status of the cluster head. If a cluster member does not « .ect a fault status,
it only needs to send its normal data with its status vector piggybacked on in its
own timeslot, which will not cause additional energy consumption for fault detection.
Otherwise, it needs to send a partict r packet containing the status vector to the
cluster head, which will cause additional energy cost.

On the other hand, a parent node (e.g., p4) is always scheduled for transmission
after its child nodes (e.g., p7 and p8). Since a parent node 1 overhear the data
from its child nodes, it will extract and merge the status vectors with its own vector,
piggyback the merged vector on its own data, and transmit the data in its own
timeslot. Therefore, if the cluster members transmit in an order based on the tree
structure {p8, p7 ..., pl} in the forv d frame, 1e root node p! can overhear the
status vectors of all the other nodes after node ; transmits its data in its t  slot
(i.e., TS2). Then it will extract and merge all received status v tors and transniit
the merged vector together with its data in its own timeslot (i.e., TS7). Up to this
point, if the cluster only has 3  p3, and p4, all of them can overh - the status vector
sent by p? and can thus judge whether the cluster head has failed as well. However,
the cluster still has p5, pG, and p7, which are not within the transmissi  diameter ol
pl and thus are unable to overhear the merged status vector sent by pl. To enable

these nodes to receive the me d status vector, the backward frame must be used,
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in which the transmission order of cluster members is reversed with respect to the
forward frame, i.e., {pI, p2, ..., p8}, asshowni Figure 4.1(c). During the backward
frame, if a child node re the status vector from its parer it will simply send
it in its own timeslot and if the child node is a afl node it will not send the status
vector. As a result, after the backward frame, each cluster m  ber can receive the
merged status vector sent by the root node pI and thus know the fault statuses
detected by all the other members. Therefore, an agreement. is reached among all the
cluster members on whether the cluster head has failed or not. It should be noted
that to save encrgy pl does not have to transmit in the backward frame. Also, an
agreement does not have to be reached among all the cluster members in order to
accommodate cluster member failures.

Now the remaining problem is how to generate the transmission schedule of the
cluster head and cluster members in cach cluster. For this purpose, we propose a

schedule generation algorithm, whic  will be described in next section.

4.3.3 Schedule Generation Algorithm

We first model a cluster  an undi  ted graph Ge=(Ve, ), in which Ve={p1, p2,

., pn} is the set of cluster members, excluding the cluster head, and an ¢ ¢ {p1,
pj}€Ec if and only if pi is a one-hop neighbor of pj and vice versa. 1is graph can
be represented by an adjacency list for future embedded computing. The a«  cency
list consists of | Ve| lists, one for each cluster me: er pj, 0<i<|Ve|-1, 1ich gives the
cluster members to which pj is adjacent. The cluster head in cach cluster can casily
obtain this list via topole r discovery performed during clustering, when the lists of

one-hop neighbors of each node are exchanged among adjacent nodes.

The schedule generation algorithm is performed by a cluster head to generate the
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transmission schedule of all nodes in the cluster once the cluster is constructed. It con-
sists of four consecutive "7 went phi 's: cluster -aph partition, component center
determination, broadcasting tree construction, and transmission timeslot alloc. on.

In a cluster, it is not always possible to find a path between each pair of cluster
members, which means that the graph of a cluster ¢ could be an unconnected graph.
An example of an unconnected cluster or graph is shown in Figure 4.2(a). This phe-
nomenon is caused by the network deployment or 1e dynamical characteristic of the
ocean currents, which makes uniform node distribution impossible. For an uncon-
nected graph Ge, it must be first decomposed into a set of connected components
(or simply components), each of w is a maximal connected subgraph of Ge. In
Figure 4.2(a), for example, the unconnected graph is decomposed into two connected
components CI and C2, where CI consists of nodes (p1, p2, p3, p4, p5, p0) and C2
consists of nodes (p7 p8, p9). Once the cluster graph partition is complet  the
component center determination, broadcasting constructic  and trans: ssion
timeslot allocation are applied to each component.

In the second phase, the center of a subgraph is determined as the root node for
constructing a broadcasting tree in each component. For example, the center of C1 is
pl and the center of C2 is p7. The purpose is to increase the trar nission reliability
of the agreement protocol in the detection process. Due to the = nnel uncertainty
and signal interference, the transmission of the status vector of each cluster 1 uber
may not be reliable. To increase the reliability, it  desirable ton imize the distance
(or the number of hops) from the root node to all other nodes. Since the center of a
sub-graph is a vertex whose maximum distance to all other ver :es minimal, the
shortest path tree can be constructed with the center of the subgraph as the root
node in that component.

In the third phase, the shortest path tree directed from the root node of each
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Figure 4.2: Il ration of schedule gencration.
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component is constructed, which has the minimum height among all the trees that
could be constructed from that conmr nent, as shown in Figure 4.2(b). Consequently,
the constructed broadcastii  tree as the maximal lower bound of the transmission
reliability.

In the fourth phase, timeslot allocation is performed for eac member in a cluster
based on the constructed broadcasting trees. In the allocation, both the forward
frame and the backward frame can be divided into several seg =nts. Each segment
corresponds to a connected subgraph or component, aud specifies the transmission
order of the cluster members in that component. For each component, timeslot
allocation is performed for the nodes at one level a time and at 2 same level in
a specified order, e.g., from right to left in Figure 4.2(b), where a level is defined
in terms of the distance from the root of the tree. In each allocatic  the smallest
available timeslot number among all available timeslots is taken. Based on the above
allocation policy, it is guaranteed that t1 set of nodes on each level trans: | data
only after receiving the data from all the nodes on an adjacent level. For a forward
frame, timeslot allocation starts at the most bottom level of the tree and proceeds
upwards while for a backward frame the order is reversed, as shown in Figure 4.2(c).
This guarantees that two consecutive TDM frames, a forward frame followed by a
backward frame, are sufficient to exchange the fault status of a cluster head among
all the cluster menbers in the cluster. Note that the timeslot allocation for the
forward frame is the same 3 that for the normal frame.

Next we further describe the schedule generation algorithm in more detail. The
building block of this rithm is the Breath ..rst Search  F¢ algorithm [52]

because of its followit unique 1d useful chara ‘ristics:

1. BFS is a level-by-level traversal through a graph that visits all of the vertices
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reachable from a particular source vertex, which means that BFS can e 1rn a

component containing the given source vertex;

2. The traversal paths generated by BFS actually build a shortest-path tree (SPT)

directed from the source vertex to all reachable nodes;

3. The level-by-level traversal of I S is similar to the procedure of timeslot allo-

cation.

Assume that the cluster head of a cluster initially already has the local cluster
topology obtained via topology discovery during clustering, which is represented by
an adjacency list. This local topology is then partitioned into a set of connected
components by executing a cluster partitioning process based on the FS algorithm.
More specifically, if a cluster consists of a sct of connected components Cy, Cyp, L0 .
Cr, the cluster partitioning process will return a tree corresponding to each C;. BI'S
is a level-by-level traversal throv 1 a aph that visits all of t.  vertices reachable
from a particular source vertex. In each execution, BFS actually returns a tree, which
is a maximal connected subgraph (or a component) of Gc¢ containing the selected
source vertex. Given a cluster Ge, the cluster head first rando y selects a cluster
member as the source vertex ¢ ~  akes a ¢ 7 to BFS, and then determines there
is any unvisited vertex left. Consequently, a set of components in Gc is obtained by
making repeated calls to BFS on the unvisited vertices which have not been  vered
by a component yet.

For each component, the cluster head then determines the center of the compouent
as the root node. Consider a component C with a set of vertices {vy,vs,... v, }. The
distance between any two vertices v; and »; in C, represented by d(v;, v;), is the
length of the shortest path in C' between v; and v;. Hence, a point z€{v1, va, ...,

v, } 1s a center of C if
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i To) < ma3 TV Vg, ... . .
lnsllaSJE1 d(vi, ) < lnslt_‘gl(l(v,,r)\/r € {vy,vg, ..., v} (4.1)

Let Di={d(vi,1;), ..., d(vs,v;)} be a distance vector of v; 1 d* be the max-
imal entry in D;. Obviously, if d* = min(d{*,dy*, - ,d}}), ve is the center [ the
component. .o generate D; for each vertex v;, the cluster head first allocates a
vector D;=¢ to each node v;, and then make a call to BFS with v; as the source
vertex. BFS will first visit all vertices with a distance 1 to v;, e.g., {vi,..., 0.}, a<n,
and set D;={d(vi1,v;)=1, ..., d(va,v;)=1}. Then it will visit all vertices with  dis-
tance 2 to v;, e.q., {va + 1,... 0}, a<b<n, and set D;={d(vy,v;)=1,...,d(vq,v;)=1,
d(v, + 1,v;)=2,..., d(vy,v;)=2}. In the same manner, BSF will visit and process the
remaining nodes until all nodes in {v|,vq,...,v,} have been visited. As a result, a vec-
tor Dy={d(v1,vi), ..., d{v,,v;)} is obtained. Since it is well known that BI'S actually
returns a shortest-path tree with v the root, D;  surely the distance vector of
v;, which consists of the length of the shortest path between the source  tex v; and
each node {v;,vo,..., v, }.

Meanwhile, timeslot allocation is performed concurrently with the above center
determination process. Before the process, a FIFO queue @; .ed lor each
node v;€{v1,vs,...,v,} in the component. During the process, BSF is called for each
source vertex v; (a candidate center). Each time BSF visits a node ¢;€{ vi,v2,... U},
it puts ¢; into the queue ;. As a result, we can obtain an order @Q;€{q;,. .. ,g.} upon
the completion of the current BSF. After comple g the whole center determ: ation
process, a queue vector {@1,...,Qn} is obtained. If v, is the center of the component,
Q. actually stor the tim ot order of the nodes {v;vs,...,v,} for the hackward
fran By reve ng this order, the order for the forward [rame can be accordingly

obtained. BFS is level-by-le-  trave 1 which always visits the nodes at a distance |
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to the source node before the nodes at a distance [+ 1. Therefore, the order obtained
by running BFS is the order = :ded for the backward frame. The pseudo code of
the algorithm is given in F re 4.3 and Figure 4.4. @Q is a FIFO queue, level(v) is
the level of node v, comp is a set cousisting of 1e nodes in a con oneut, SCH is
a queue indicating the transmission orders of the nodes in a compon ., cor  sct is
a set containing the components in a cluster, and center(C') is a set containing the

compornents in a cluster.

4.4 Performance valuation

In this section, we evaluate the performance of the proposed fault detection mecha-
nism through simulation experiments. We first investigate the  -formance in terms
of detection accuracy under different packet loss rates and cluster sizes. The detec-
tion accuracy is descri | by the probability of false positive, which is defined as the
probability that an operational cluster head is mistakenly detected as a faulty one.
Also, we compare the proposed detection mechanism with a traditional fault detec-
tion mechanism in terms of detection time taken to achieve co: Harable pro  bility
of false positive, where the detection time is defined as the number of TDM frames.

In the simulation, we consider a single cluster and assume that all nodes including
the cluster head have the same transmission rat The sensor nodes are uniformly
distributed in the region of the cluster. Due to the unreliable unc  water communica-
tion channel, packet loss exists during transmission, which is described by the packet
loss rate. Moreover, we use the same energy model used in [45], which was proposed
for underwater acoustic networ’

In the first stimulation experiment, we investigate the effects of the packet loss

probability and the cluster size on detection accuracy. Due to the complex and
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SCHEN LE GENERATION ALGORITHN (V1)

1 © Begin Initinlization

2 forl 17"

3 dolerel(r) — x

4 End Inittalization

5 > Begin Cluster Graph Partition

G comp_sct — o

T ofor eV

N do it leecl{u) = <

0 then comp.set — comp_set U BSFiu gcteomp)
1 & End Cluster Graph Partition

11 > Begin Component Center Determination

12 tor " € comput

13 do center_candidate — o candudate Tevel — o
14 for levid{u) = <
15 do lcedlarray — BSE(a getloedy of — arg max eedlarvau(e)
v deedaaray
16 level ve —  max leedarray(e)
R
17 center_candidate — contor_candidate U e?
] candidatop e (00) — loeel om
19 conter(C) — arg nax candidate Jeccl(e)

e eentor _candidude

200 End Component center determination
21 Begin Broadeasting Tree Constrnetion and Transmission Tinweslot Allocation
22 Jorwardframe — o backwardframe — o

23 for O € comp_sct

24 do schedule — BSFlecuter(C) getselicdul e
25 backwardframe — appendUhaclewardf rame  schedule)
26 Jorwarvdframn rererse (backwardf rame)

27 > End Broadeasting Tree Constroetion and Trmsmission Thweslot Alfocation

Figure 4.3: Schedule Gener on Algorithm.
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BES{«. option)
1 Q— o leedd{s) — )
2 if option = gcteomponcut
3 then COMDP — o COMDP — COMPU{s)
4 elseif option = getsehodule
it then SCH — ol cnqucuc (SCH.s)
G enguene (SCH. )

7 Q£

] then v — deqacue((Q)

9 for ¢ & udj(n)

10 doif leeel{e) =~

1 then cnquenc(Q.v)

[2 leedd(v) — level(u) + 1

13 if option = getcomponvat

14 then COMP  COMPU{e)
In elseif option  qetschedule

16 then cngueuc(SCH, )

17 Af option = geteomponont
13 then return(C'OND)
19 elseif option = getsehedule
20 then return(SCH)

20 elseif option = yetsleeel

22 then return{le cel)

F e 4.4: BSF.
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expensive transceivers equipped on each sensor node for the extreme underwater
environment, sensor nodes are usually sparsely deployed in a UWSN. For this reason,
we assume that in a cluster there are only a small number of sensor nc s (e.g.. 10-20)
in the cluster, which are available to cooperatively detect the cluster-head failure. On
the other hand, since the proposed detection mechanism aims at achieving accurate
fault detection in the hostile underwater environment, we only consider the network
scenario where the packet loss possibility is relatively high (e.g., 0.4-0.6), w  icking
the unreliable underwater communication.

Figure 4.5 shows the simulation results of the first experiment. It is seen that
with the increase of the packet loss rate the probability of false positive increases,
which leads to lower detection accuracy. Also, a larger number of s¢  or nodes lead
to a smaller probability of false positive, i.c., higher detection accuracy. Under a high
packet loss rate of 0.5, the probability of false positive is below 107! with a cluster
of 15 nodes, which is quite low. As expected, the proposed detection mechanism can
achieve high detection accuracy even under hig packet loss rates in the harsh and
sparse underwater environment.

In the second simulation experiment, we compare the proposed tection mecha-
nism with a traditional detection mechanism in term of detection time under the same
detection accuracy or probability of false positive. In the traditional mech sm, a
sensor node can independently detect the status of the cluster head by checking the
heartbeats periodically sent by the cluster head. Each sensor node can individually
make a decision on a failure if it misses several consecutive heartbea

Figure 4.6 shows the simulation sults of the second experiment with a cluster
of 15 nodes. It is seen t . the detection time with the traditional mechanism is
much larger than that with the proposed mechanism and it decreases non nearly

with the increase of the pa t 1 ra The detection time with the proposed
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Figure 4.5: Detection . :uracy.

mechanism keeps constant at 2 TDM frames, whi  is much faster than that with the
traditional mechanism. Note that the detection time with the traditional mechanism
is obtained under the same detection accuracy. The specific values of the probability
of false positive are 8 x 10797 8 x 10796 6 x 1079, 3 x 107%¢ and 1 x 10793,
corresponding to the packet loss rates 0.40, 0.45, 0.50, 0.55, and 6, respectively.

In the last simulation experiment, we investigate the energy cost of the proposed
fault detection mechanism under different cluster sizes and packet loss rates. The
cuergy cost is defined as the ave e energy col ption of the  1sor nodes within a
cluster for cooperatively performing a fault detection process during two consccutive

TDMA frames.

Figure 4.7 shows the simulation results of the experiment. It is secn that wi  the

decrease of the packet I rate the energy cost decreases, which is straightf wvard.
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uses a couple of specially-structured forward and backward frames in the agreement

process, which are ene  efficient and do not ¢ ¢t normal network operation.




Chapter 5

vistribut ' Mata Aggregat on

Using Slepian-Wolf Coding

5.1 Introduction

Wireless sensor networks have many applications which require a den  deployment
of a large number of sensor nodes in a field of interest with one or more data sinks
located either at the center or out of the field [3]. The sensor nodes observe the
phenomenon at different points in the field and se | the observed data to the sink(s).
The observed phenomenon is usually a spatially dependent continuous process, in
which the observed data have a certain spatial correlation. In gencral, the degree
of the spatial correlation in the data increases with the decrease of the separation
between sensor nodes. Therefore, spatially proximal sensor observations are usually
h iy correlated, which leads to cons  rable data redundancy in the network [18]. To
efficiently use network resources to increase energy efficiency in data transmission, it
is highly ¢ rable to remove such data redundancy through effective data aggregation

techniques.
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lower-bounded by their joint entropy H (X, X»,...,Xn) as long as t i respective
rates are under the constrair ven by

R(U) =2 H(X(U)|X(U)), (5.1)
forall U C {1,2,---,N}, where {1,2,--- , N} is a set of the indices of sensor nodes

in the network, U¢ is the complementary set of U, H(X) is the entropy of X, d

R(U)=) R, (5.2)
el
X(U)={X;li eU}. (5.3)

For example, consider a simple case of two s sor nodes producing rcadings X,

and X,. Their individual rates should be subject

R, > H(X\|Xs), (5.4)
Ra > H(Xa| X)), (5.5)
R+ Ry > H(X,, X). (5.6)

According to chain theory [20], under the above constraints, it is always possible
to find a rate allocation for the two nodes, which makes the total rate (bits) of two

nodes equal to their joint entropy, i.e.,

R+ Rs H(Xl) + H(le)(l) H(X],Xg). (57)
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Correspondingly, for an arbitrary ordering of N nodes (e.g., in the ascending or
descending order of nodes’ ID numbers), there exits a rate allocation (vector) {R;}¥,
such that the number of generated bits from all nodes can achieve t  value of their

joint entropy, e.g.,

AT

L;Ri:H(le)(Qv‘”aXN)» (58)

where Ry = H(X)), Ri = H(X;|Xi-1, Xiz2,- -+, X1),2 <1 < N,

Therefore, a cluster of nodes A can be encoded with H(X;, X,,---, X4) bits
using Slepian-Wolf coding without communicating with each other, where |A] is the
number of nodes in cluster A, and there always exists an optii | rate allocation to

achieve this local maximum compression performance.

5.2.2 Clustered Sl | ian-Wolf Coding Problem

2

Consider a network consisting of a finite set of sensor nodes V. Every sensor node
in the network is initially a cluster head candidate. We assume that each candidate
has an identical cluster diameter within which all other nodes n  becoine its cluster
m  ers. ..ue nodes within the cluster diameter of a candidate v form a finite point
set Nv with the cardinality of [N, |, ich is called the neighbor set of candidate v.
The power set of Nv, denoted by P(N,), is aset v ose elements are the subsets of V,,.
P(N,) contains all possible combinations of nodes in N),. Thus, the cardinality of
P(Nv)is "I Since a candidate v, associated with each combination of nodes (- ister
members) within its cluster diameter (e.g., a set of nodes B,, where B, € P(N,)),
can form a unique potential cluster (e.g., A B,{J{v}), a candidate v can generate

|NU

up to 2! potential clusters. Recall that initially every node in the network is a

candidate, thus there are a total number of |V |candidates. Therefore, there exists
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a cluster set S consisting of "

‘

wev 2/N00 potential clusters in the whole network.
Meanwhile, each potential cluster A can be encoded with H(3 X,,---, X}4)) bits
using Slepian-Wolf coding in that cluster.

With the above assumptions, the clustered Slepian-Wolf coding roblem is to
select a set of disjoint potential clust 5 C* from the cluster set S to cover the whole
network such that the global compression gain of Slepian-Wolf coding is maximized,
or more specifically, the total rate (bits) of the encoded data gencrated by the

clusters (or all the nodes) in the network, is minimized, i.e.,

C*  arg glglg Q) H(X(4)), (5.9)
AeC
where U ee- A=V, Nyee- 4 o, and X(A) = {X;|j € A}.

5.2.3 Optimal Intra-Cluster Rate Allocation Problem

Suppose that a cluster hierarchy has already been constructed in the clustered ! pian-
Wolf coding problem. Consider a cluster A with |A|sensor nodes and let {Ri; i=1, 2,
..., |A|} be a rate vector allocated to the nodes in the cluster. Also, let d(4, 1) be the
distance between node i and the cluster head v, which is v d to estimate the energy
consumed by node 7 for:  ding one bit of data tc 1e cluster head v because normally
transmission energy dissiy .lon is proportional to signal propagation distance. Then
the objective of the intra-cluster rate aliocation problem is to find a rate vector for
the nodes in the cluster under the constraints given by Equation (5.1) such that the
total energy consumed by 1 nodes for sending the data encoded with  ir individual
rates to the cluster head is minimized, i.e.,

14l

{r}2 g min ~ 4@, 1)R; (5.10)

= (R )12

i=1 1=1
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subject to
SRS HXY)X(Y),VY € {1,2,...|Al}, (5.11)
3%

where {1, 2, ..., |A]} is a set of the indices of the sensor nodes in the cluster A.

Note that the clustered Slepian-Wolf coding problem assumes that there exists a rate
allocation such that the total rate of encoded data in a cluster is equal to the joint
entropy of readings or observations. However, a solution to the intra-cluster rate
allocation problem considered may generate a rate allocation which is not subject to
that assumption. We will prove in Section 5.4 that the presen 1 ¢ .imal solution

conforms to the assumption in the clustered Slepian-Wolf coding problem.

5.3 Clustering Using Slepiz..-Wolf Coding

In this section, we present a distributed optimal-compression clustering protocol
(DOC) to solve the clustered Slepian-Wolf coding (CSWC) problem. The CSWC
problem is very similar to the minimum-cost node clustering (MCNC) prol n in-
troduced in Chapter 2. The difference between the two problems is the different cost
metric applied. To solve the optin  clustering probleni, we propose dependable clus-
tering protocol 1 " on the d ited minimum-cost clustering protocol (MCCP)
proposed in Chapter 2 to m: nize global compression gain of Slepian-Woll  ding.

In DOC, a candidate generates its potential clusters by searchitr  rery possible
combination of elements in its uncovered neighbor set, calculates each potential clus-
ter’s entropy which only depends on the distances between the nodes in the ¢ ster,
selects a representative cluster, and sends the average entropy of the representative
cluster to all candidates I its hop range. A candidate collects the average
entropies sent by all candidates within its 2-hop range. Il the candidate itsell has

minimum average entropy, it becomes a cluster head and advertises an INVITE n
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DOC(r)

1 status(e) € {head. cand. nmemb}

2 status(v) — cand

3 send and receive sfatus(e) within 2 hops

1 U. — {u||status(u) = cand, w € N, }

5 while status(u) = cand

6 do

7 . — P

i e

9 Ao —{rtUDB.

10 arg(v) — iLI\_*(%

11 send ary(e) within 2 hops
12 G — {ulavg(e)senthyuisreceived}

13 if aeg(e) = minge{avg(u)}

1.1 then status(v) — head

15 send [ NVITFE(e. X)) within 1 hop
16 else

17 wail until selection timeout,

18 if © receives INVITE(u. X,)

19 then if ¢ € X,
20 then status(e) — mamb
21 send JOIN (v, u)
22 clse status(e) «— cand
23 Uy — Uy — {u}
24 ¢ if vreceir  JOIN(u, )
25 then status(ev) — cand
26 Ui — U, —{u}

Figure 5.1: Distributed optimal-compression clusteri  protocol.
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5.4.1 Optimal Intra-Cluster Rate llocation

The intra-cluster rate allocation problem can be analogized to the global rate allo-
cation problem discussed in [27]. Given a multi-hop sensor network consisting of N
nodes, where each node 7 produces reading Xi and uses the shortest path with weight
e(1,s) to reach a common sink s, the global rate allocation problem is to find an
optimal rate vector { R}, for all N nodes so that the total flow co Zfil e(i, s)R;
under the constraints given by Equation (5.1) is minimized. According to [27], the

optimal rate vector is given by

R; = H(Xl)
R = H(Xi|Xiet, Xizo, - X1),2<i< N (5.12)
where the nodes (i=1, 2, ..., N) with the observations of (X, Xs, -+, Xy) are

organized in the descending order of the weights of the shortest paths, i.e.,

e(l,s) <e(2,s) <--- <e(N,s). (5.13)

The analogies between these two problems are given as follows:

1. In the intra-cluster rate allocation problei each cluster is analogous to the
whole network in the global rate allocation problem because it performs coding

independently of all other clusters.

2. In the intra-cluster rate allocation problem, the cluster head of each cluster can
be considered as a local virtual data sink.  hus, the cluster head is analogous
to the data sink and each cluster member is analogous to a sensor node in the

global rate allocation problem.
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3. In the intra-cluster rate allocation problem, the shortest path between a cluster
niember ¢ and the cluster head v is a single-hop path with a distance d(3,1),
which is analogous to the weight e(4,s) of the shortest p 1 between a sensor

node ¢ and the data sink s in the global rate allocation problem.

Due to the above analogies, the intra-cluster - e allocation problen: can be solved
by using the same approximation algorithm for solving the global rate allocation
problemi. The optimal intra-cluster e allocation has the sa;  for  as E 1ation
(5.12).

Although we can obtain an optimal rate allocation, we still need to prove that this
solution is valid, i.e., the optimal rate allocation obtained by Equation (5.12) does
not contradict thie assuniption in the clustered Slepian-Wolf coding problem, where
the rate allocation for each cluster must satisfy the condition that the total rate of
the coded sensor readings in a cluster (e.g., a whole network in the extrer  case)
is equal to their joint entropy. According to chain theory, we can casily prove the
validity of the solution given by Equation (5.12) if the whole network is considered

as a single cluster, i.e.,

AT

z

Rf = H(/Yl) + H(X1

i

X Xicoo - X1)  H(X1, Xay . Xx). (5.14)

i=1 =2

Therefore, let {R;‘}i‘ill be a rate vector to be allocated to the nodes in a given
cluster A consisting of |A| sensor nodes and the sservation at ode 7 in the cluster
is X;. Let d(4,1) be the distance between node ¢ and the clus  head v. Nc  that

d(1,1)=0 denotes the distance between the cluster head v and itsell. The optimal

intra-cluster rate allocation is  ven by

Ry = H(X)), (5.15)
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Ry = H(XJ{X;ld(j,1) < d(i,1).j € A}),2 < i <Al (5.16)

Here the cluster head with zero distance to itself is encoded with a rate equal to
its unconditional entropy and each of the cluster members in the cluster is encoded
with a rate equal to its respective entropy conditioned on all the other nodes in the
cluster which are closer to the cluster head than itself. According to chain theory, we

have

I Al

s R = H(Xy, X2, -+, Xja)- (5.17)
Therefore, {R{}W is a valid rate vector for the optimal clustered Slepian-Wolf

g=]

coding problem.

5.4.2 Clustered Slepian-Wolf Coding with Optimal Intr Cluster

Rate Allocation

With an optimal intra-cluster rate allocation, we now discuss how to perform Slepian-
Wolf coding within a single cluster. Consider a cluster A with |A| sensor nodes shown
in Figure 5.2, where the node in black represen the cluster head and the noces in
white represent cluster members. The cluster head produces reading X1. From left
to right, the first cluster member is the closest one to the cluster head and produces
reading X2, the next closest one produces readir X8, and so on. Thus, the clustered

Slepian-Wolf coding within this cluster is described as follows:

1. The cluster head schedules the cluster members in the descendis  order of their

distances to the cluster head itself, as shown in Figure 5.2.
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H(X|a|XiA-1,..., X1)

H{X4)X3X2X1

H(X3)X2X1)

H(X2[X1)

H(X1)

Figure 5.2: Slepian-Wolf coding within a cluster.

2. The cluster head generates a list for each cluster member ¢, which contains the
indices (or IDs) of all the other nodes that are closer to the cluster hea than

cluster member i. For example, the list for cluster member 3 contains (2, 1).

3. The cluster head distributes the generated | s within the cluster. After receiv-
ing the list, a cluster member i encodes its reading with a rate equal to t  its
respective entropy conditioned on all the nodes in the received list, i.e., cluster
meniber 3 encodes its data with arate equal to H(X3| X2 X1) =H(X3X2X -H(X2X)).
Note that in this case only distances aniong (X3, X2, X,) is needed to calculate
the rate and perform encoding with a priori knowledge of the correlation struc-

ture.

4. After the cluster head receives ~ comp: ied data from all its cluster me  >rs,
it relays the data to the data sink, where conditional decoding is performed on
the collected data. The sink decodes the cluster head’s reading X, encoded
with a rate equal to H (X)) without using any side information, while all other

readings are decoded with the knowlec : of the readings of the nodes t . are
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closer to the cluster head. For example, reading X5 which is encoded with a
rate of H(X3|X,) is decoded with the knowledge of X, and reading X; which
is encoded with a rate equal to H(X;|X;_1,---, X)) can be decoded with the
knowledge of (X, Xa, -+, Xi—1). Thus, t loss of the data from one sensor
node may affect the reconstruction of the sensor values fro  other nodes within

the saime cluster, but does not affect the decoding of the data from other sters.

5.5 Joint Coding Mechanism

Slepain-Wolf coding can completely remove the data redundancy within each cluster
with a priori knowledge of the correlation structure. However, the encode data
from two physically separated clusters may still have a certain & sunt of information
in common or redundancy even though the correlation degree genecrally decreases
quickly with the spatial separation between clusters. Explicit entropy coding is a
low-complexity in-network data aggregation technique, where each sensor node en-
codes/decodes its reading only conditioned on the readings (explicit side information)
it has already received from other nodes with no need to know the correlation struc-
ture a priori [35, 53]. Since in a cluster-based network, a cluster head uses other
cluster heads as a relay, data (side information) from one cluster are available at the
relay chuster heads. In this case, explicit entropy coding can be used to further re-
duce the potential correlation in the data from different clusters without sign  ~antly

increasing coding complexity.

H(X1) H(X2iX1)  H(X3|X2X1)
| | -
1 2 3 sink

Figure 5.3: Joint clustered S-W coding  d explicit entropy coding.
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Based on the above observation, we propose a joint coding scheme, in which
the Slepian-Wolf coding is first applied within each cluster. If a relay clus - lead
receives data from other cluster heads, it performs explicit entropy encoding only
on its own sensed data, which can not be compressed via clustered Slepian-Woll
encoding because the optimal intra-cluster rate allocation requires the cluster head
to encode its own data with a rate equal to the unconditional entropy. The coding
scheme is briefly illustrated in Figure 5.3, where node 1, 2, and 3 are three cluster
heads, and cluster head ¢ produces reading X; (1=1, 2, 3). Initially, a cluster ead 3
encodes its reading X; with a rate equal to H(X;) due to the requirement of clustered
Slepian-Wolf coding, and when cluster head ¢ receives data (side information) from
other cluster heads, it re-encodes X; with a new rate equal to its respective entropy
conditioned on all other cluster heads which the side information has been :eived
from and forwarded to. In summary, when explicit entropy coding is applied jointly
with clustered Slepian-Wolf coding, the data sent by a given cluster head depends
not only on the received data from cluster meinbers in its own cluster but also on the
data from other clusters whose cluster heads use that cluster head as a relay to the
data sink. Therefore, the additional compression gain obtained by explicit entropy
coding actually depends on the routing structure, as shown in Figure 5.3. We can see
that a cluster head closer to the data sink encode its own data with a smaller rate,
which can distribute more evenly the traffic load throughout the network, helping to

avoid the formation of hot spots around the data sink.
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5.6 Data Aggregation Using wistributed Lossy Cod-
ing

5.6.1 Distributed Lossy Coding

Consider a network with N sensor nodes distril ed in a region of interest, where
each node 7 produces reading Xi and all the readings constitute a set of jointly
ergodic sources denoted by X=(X,,X,,...,Xy) with distribution p(z;,z,,...,2n),
which describes the spatial correlation structure and is known by each node a priori.
The distributed lossy coding allows a distortion level of D; in the reconstruction
of source reading X;. According to the rate-distortion region for coding correlated
sources with high-resolution quantization [54], the nodes in the network can jointly
encode their data without inter-node communication, with a total rate (in bits) lower-

bounded by

h(X1, Xz, ..., Xn) — 1/2log(2me) ] D (5.18)

1<i<N

As long as their respective rates are under the constraints given by

R(U) > h(X (U)X (U®) - 1/2log(2me)V ] Dx, (5.19)
U

for all UC{1,2,... ,N}, where {1,2,...,N} is a set of the indices of sensor nodes in
the network, Uc is the complementary set of U, h(X) is the differential entropy of X,

and

R(U)=\"R, (5.20)
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X(U) = {X;5 € U}. (5.21)

For example, consider simple case of two  nsor nodes producing rea P N1
and X2 with reconstruction distortion DI and 72 Their indi lual rates should be

subject to

1
R1 > /Z(/\’l Xg) - § log(?ne)Dl, (522)
, 1
Ry 2 h(XolX1) - 5 log(2me) Dy, (5.23)
1
Rl + R2 2 }L(Xl, JYz) - §lOg(2ﬂ'€)2D1D2. (524)

According to chain theory [20], under the above constraints, it is always possible
to find a rate allocation for the two nodes, which makes the total rate of the two

nodes equal to their joint entropy subtracted by the distortion factor, e.g.,

Rl + RQ = h(Xl) + II(X2|X1) — %10g(27re)D1 — %log(f )D), (5 2r)
2]

= h(Xy, Xq) — %log(Qﬂ(f)QDng.

Correspondingly, for an arbitrary ordertn  of N nodes (e.g., in the ascending or
descending order of nodes’ ID numbers) and a “ven distortion vector {D;}X . there
always exists an optimal rate allocation vector {R;}, such that the total rate of
encoded data generated by all the nodes is equal to their joint entropy subtracted by

the distortion factor, i.e.,

N
1 .
Z Ri = h.(Xl, /YQ, e, /YN) - § 1 .Qﬂ'e)N H Di» (526)
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is 2™, Since a candidate v, associated with each combination of nodes (or cluster
members) within its cluster diameter e.g., a set of nodes B,, where B, >(N,), can
form a unique potential cluster (e.g., 4A:=B,U{v}), a candidate v can generate up to
2!l potential clusters. Since initially every node in the network is a candidate, there
are a total number of | V] candidates. Therefore, there exists a cluster set S cor  sting
of 3 .cv 2Nl potential clusters in the whole network. Meanwhile, each potential
cluster A can be encoded with h(X;, Xs, -+, X|a)) — %log(2m Al Hls:‘SlAl D; bits
using lossy coding in that cluster.

Given the above assumptions, the CLC problen: is to select a set of disjoint clusters
C*, with an allocated distortion vector, {{D;}ica-}a-cc, from the cluster set S to
cover the whole network such that under given total and individual distortion bounds,
the total rate (in bits) of encoded data generated by all the clusters (or all the nodes)

in the network is minimized, i.e.,

{C* {{D} }iea- }a-ec- }

N 1
=a min v (R(X(A) = —log2me)* TT D) (5.30)
c~8§ {Ditiea

{{Di}z‘eA}A 3

subject to
ZDi S Dtatal (531)
3%
Di S Dmax1 Sl - |V| (532)

where Jyecr A =V, Npee- 4 0. X(A)={Xjlj€A}, Dyt is the maximum total

distortion bound and D,,,, is the maxinium individual bound.
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{C", {{Djtica-tarec-} = arg min > h(X(4)

ccs AeC
{{Di}iea}tacc
1
— arg Cmgaxs AEZC 5 log(2me) 4! {ng 1X5.36)
{{Diticatacc

In the first part of Equation (5. ), the objective function > ;.- h(X(A)) does
not contain any factor related to the distortion vector {Di}i€ A. Hence, the argument

{{Di}ic A} A€ C related to distortion can be oir .ed. Then the first part becomes

ar min hMX(A))=a min )Y h(X(A)). 5.37
gCQS?((Di}iEA}AEC/;j (X(4)) CQSAEZC (X(4) ( )

According to the logarithmic it 1itity, we have

loga +logbh logab. (5.38)

Hence, the second part of Equation (5.36) can be written as

1
arg nmax Zﬁlog(,‘zﬂe)l’” H D;

ccs A {DiFies
{{Di] .}AeC
1
arg nL. , log . r(J)‘UAGU Al H D;. (5.39)
C = S (Dl}ie(UAE(.A)

{Di. }aec
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That is, the overall CLC problem can be decoupled two subproblems: (1) to opti-
mally cluster the network to minimize global network entropy without considering
distortion allocation; Equation (2) to optimally allocate a distortion to each node

without considering node clustering.

5.7 Performance r.valuation

In this section, we evaluate the effects of the spatial correlation degree and 2 net-
work size on the compression performance of DOC through simulations based o NS-2.
Also, we investigate the performance of optimal intra-cluster rate allocation with re-
spect to the intra-cluster communication cost under the cluster hierarchy constructed
by DOC.

Unless otherwise specified, we consider a network with 100 sensor nodes uniformly
deployed in a 100mx100m sensing region and a sink located at the center of the
region. The simulation results are based on the rerage of 30 ¢ Heriments and each

experiment uses a different randomly-generated topology.

For the correlation structure, we assunie that the observations X, Xy, -+, Xy at
N sensor nodes are modeled as an N-dimensional random vector X = [X, Xa, -, Xn]7,
which has a multivariate normal distribution with mean (0, 0, ..., 0) and cov  iance

matrix K, i.e., the density of X is

1 1 vTir 1
X) = —e 2V R X 5.44
f( ) \VL?(}"|I\|‘/2 ( )

and the differential entropy of (X, Xy,---, Xy) is

1
(X, Xy, Xn) = 51og(27re)N\K| (5.45)
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the data to the cluster head, thus significantly reducing the intra-cluster transmission

cost.
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Figure 5.6: Total intra-cluster communication cost with distributed data aggregation

and centralized data aggregation.

Figure 5.7 compares the total amount of data generated in the twork using
the clustered Slepian-Wolf coding and the joint coding, respectively. As expected,
the joint coding results in obviously less amount of data, thus leading to etter
compression performance. This is because the joint coding employs clustered Slepian-
Wolf coding combined with inter-cluster explicit entropy coding, whi  can further
strip the data redundancy caused by the possible spatial correlation between different
clusters. In addition, it is observed at in the case of high correlation (i.e., small
value of the correlation par ter), the joint coding can achieve better performance

in terms of the total amount of generated data because higher correlation leads to
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more data redundancy between spatially separi d clusters, which can be further
removed by the joint coding. Meanwhile, more ita redundancy removed from the
network infers less energy consumed for data transmission. Figure 5.8 shows the
total inter-cluster communication cost with Slepian-Wolf coding and joint coding,
respectively. The total inter-cluster communication cost is defined as the suin of the
communication costs of all cluster heads for relaying data to the rem :sink, where
the communication cost is represented by [data volume x transmission distance]. As
expected, less communication cost is incurred with the joint coding. In addition, it is
observed that under moderate correlation (e.g., # =0.006), the joint coding leads to
9 % less communication cost than that with only the clustered Slepian-Wolf coding,
but only 4 % less data. This is because each cluster head employs multi-hop routing
for relaying data from other cluster heads and removing data redundancy locally at
each cluster head by joint coding leads to further energy saving for each cluster head
along the multi-hop routir  path.

Figure 5.9 shows the approximate ratio of the total amount of data transmitted
with the clustered Slepian-Wolf codii  to that transmitted with the optimal coding
in a network of 50 nodes uniformly deployed in the same region. With the optimal
coding, Slepian-Wolf coding is applied globally in > whole network with the assump-
tion that each node has the full knowledge of the correlation structure of the network,
which can remove all data redundancy in the network and thus 1ieve the maximal
compression gain. However, this is costly and usually impossible in a real-world rge
network. We investigated the total amount of data transmitted in the network with
the cluster diameter ranging from 10 to 20 and the correlation parameter ranging
frc¢  0.005 to 0.01. In Figure 5.9, it is seen that w 1 the increase of the cluster range
the total amount of data transmitted with clustered Slepian-Wolf coding becomes

closer to the optimal result because increasing the cluster range means that more
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nodes are included in each cluster, thus further reducing the data redundancy caused

by the possible spatial correlation between different clusters.
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Figure 5.9: Approximate ratio of the total amount of data transr ted with the

clustered Slepian-Wolf coding to that transmitted with the optimal coding

Figure 5.10 shows the relation between the total rate of encoded data and the
distortion allocated to each sensor node. The parameter 6 is set to be 0.01. The total
distortion bound Dtotal changes from 8e~* to 8¢~? and the inc idual bound Dmax
is set to be 0.1Dtotal. According to the optimal distortion allocation, each sensor
node is allocated an identical distortion equal to Dtotal/80. 1t is seen that the total
rate of encoded data decreases monotonically as the distortion allocated to each node

increases. This result is expected because a larger distortion a wed at each sensor

node leads to a smaller total rate of encoded data in the network.
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Figure 5.10: Relation between the total rate and the allocated distortion.
5.8 Summary

In this chapter, we have stud  the major problems in applyit  Slepian-Wolf  ling
for data aggregation in cluster-based WSNs, including the clustered Slepian-Wolf
coding problem, the optimal intra-cluster rate allocation problem, and the joint intra-
clustered Slepian-Wolf coding and inter-cluster explicit entropy codi:  probl . A
distributed optimal-compr  on clustering protocol (DOC) was proposed, which can
select a set of disjoint potential clusters that maximize the global compressic gain
of Slepian-Wolf coding. Under tI  optimal cluster hierarchy con uct by DO we
then presented an approximation algorithm that can find an optimal rate all  ation

within each cluster and described the procedures to perform Slepian-Wolf coding
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with an optimal intra-cluster rate allocation. Finally, we present a low-com] xity
joint coding scheme that combines clustered Slepian-Wolf coding with inter uster
explicit entropy coding to further reduce the data redundancy caused by the possible
spatial correlation between different clusters. The simulation res' sde onstrate that
the clustered Slepian-Wolf coding enabled by D(  can significantly reduce the total
amount of data in the whole network while the transmission cost wi  in each . ster

can be remarkably reduced by performing the optimal intra-cluster rate alloc  ion.



Chapter 6

Combined Data Aggregation and

Encryption

6.1 Introduction

In the previous chapter, we have shown that to increase energy efficic vy in wireless
sensor networks, it is desirable to remove data redundancy and for this purpose data
aggregation has been widely used. On the other nd, data security is an important
issue for many WSN applications. To provide data security, the conv :ional way is
to encrypt the sensed data at each sensor node and then decrypt the data at the data
sink(s). However, network-wide :r: ion would cause cousiderable comput onal,
communication, and stor: : overhead due to data encryption and key managenient
operations.

Slepian-Wolf coding [19, 20] is a distributed source coding technique that can
completely remove data rec ¢y without requiring inter-sensor communication
and is therefore a promising technique for data aggregation in a WSN. To perform

Slepain-Wolf coding, each sensor node must know a prior: the correlation struct e of

117
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the whole network, which depends on the distances between the sensor nodes: d the
characteristics of the observed phenomena [20]. For this reason, Slepian-Wolf coding
is not suitable or practical for being applied globally in a large netwo  In ¢  ister-
based network, however, each cluster covers a smaller number of sensor nodes within a
smaller local range of the network. To perform Slepain-Wolf coding, each sensor node
only needs to know the local correlation structure of the cluster, whi is practically
easy to obtain. In addition to its capacity of removing data redur .acy, Slepain-
Wolf coding has the inherent characteristic of jo . decoding, which we find could be
used to achieve the effect of encryption within a single cluster. This observation has
nmotivated us to apply Slepain-Woll coding [or both data aggregation and encryption
in cluster-based WSNs in order to achieve efficient and secured data transmission.
In this chapter, we propose a combined data aggregation aud encryption heme
using Slepain-Wolf coding for efficient and secured data transmission in WSNs. We
first study the optimal intra-cluster rate allocation problem in using Slepain-Wolf
coding for data aggregation, which aims to find rate allocation subject to Slepian-
Wolf theorem such that the total energy consumed by all sensor nodes in a cluster for
sending encoded data is minimized. Based on the properties of Slepain-Woll coding
with optimal intra-cluster rate "“cation, we then propose a novel encryption iecha-
nism, called spatially selectivc icryption, for data encryption within a single cluster.
This encryption mechanism only requires the cluster head to encrypt its data while
allowing all cluster members to send their data without performing any encryption.
Using this mechanism, as long as the data of the cluster head (or the virtual key)
is protected, the data from all cluster members can also be protected, which can
significantly reduce the en - consumption for « -a encryption. Furthermore, an
energy-cfficient key establishment protocol is also proposed to sccurcly and cfficiently

establish the key used for encrypting the virtual key.
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Data aggregation and encryption have been widely studied in the context of WSNs
9, 56, 57]. However, no research work has been found on combined d: . aggregation
and encryption using Slepain-Wolf coding. To the best of our knowledge, this is
the first attempt to apply Slepian-Wolf coding in cluster-based WSNs for both data

aggregation and encryption purposes.

6.2 Data Aggreg_tion Using Slepian-Wolf Coding

6.2.1 Optimal Rate Allocation for Slepian- Wolf Coding

Since we are considering cluster-based WSNs, we first suppose that a cluster hierarchy
has already been constructed in the network by using a clustering protocol s I as
HEED [9] or any other clustering protocol. Consider a cluster A with | A|sensor nodes
and let {Ri; i=1, 2, ..., |A|} be a rate vector allocated to the nodes in the cluster.
Also, let d(4, 1) be the distance bets mn node ¢ and the cluster head v, which is used
to estimate the energy consumed by node 7 for sending one bit data to the cluster
head v because normally transmission energy dissipation is proportional to signal
propagation distance. Then the objective of the intra-cluster rate allocation = >blem
is to find a rate vector for the nodes in the cluster under the constraints given by
Equation (6.2) such that the total encrgy consumed by all nodes for sending the data

encoded with their individual rates to the cluster head is minimized, 1.e.,

[A|
{RZ}'A] = arg min Zd(i, )R, (6.1)
{R;
subject to
NTR CC HX(Y)X(Y)), VY ~{1,2, ..., |A]}, (6.2)

ey

where {1, 2, ..., |A|} isa . of the indices of the sensor noc  int. cluster A.
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As discussed in Chaper 5, the intra-cluster : e allocation problem can be solved
by using the same approximation algorithm [27] for solving the global rate allocation
problem. Using the approximation algorithm, the optimal intra-cluster rate allocation
is obtained as follows.

Let {R{}li‘l be a rate vector to be allocated to the nodes in a given cluster A
consisting of | A] sensor nodes and the observation at node 7 in the cluster is X;. Let
d(i, 1) be the distance between node ¢ and the cluster head v. Note that d(1, 1)=0
denotes the distance between the cluster head v and itself. Therefore, the optimal

intra-cluster rate allocation is given by
R} = H(X,), (6.3)
Ry = HXi|{X;|d(j,1) <d(i,1). € A}),2 <i<A] (6.4)

Here the cluster head with zero distance to itself is encoded with a rate equal to
its unconditional  ropy and each of the cluster members in the cluster is encoded
with a rate equal to its respective entropy conditioned on all the o =r nodes in the
cluster which are closer to the cluster head th: itself. According to chain theory
[20] and Equation (6.4), the sum of the rates allocated to the sensor nodes within the

cluster is equal to their joint entropy, i.e.,

|4}
NTROH(X X X)), (6.5)

Therefore, {R;‘}Li'l is a valid ra  vector for achieving the entropy limit or the

maximal compression gain of & > -Wolf codi

6.2.2 Properties

With the optimal rate allocation, Slepa” Wolf codii  has the followir important

properties.
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Property 1. Joint Decoding

In Slepain-Wolf coding, decoding of the data from a sensor nc ' is jointly or
conditionally performed with the knowledge of { : data from the oth sensor nodes.
According to the optimal rate allor  ion in Equation (6.4), reading X from the cluster
head, which is encoded with a rate equal to H(X), can be decoded without using any
other information. However, reading X5 from cluster member 2 eneoded with a rate
equal to H(X9 |X) can be decoded only with the knowledge of reading X,. Similarly,
reading X3 encoded with a rate equal to H(X3|2 X)), can be decoded only with the
knowledge of readings (X;, X2). In this manner, reading X; from cluster member 3
encoded with a rate eqi  to H(X; |X; — 1, ..., X;) cannot be decoded without the

knowledge of readings (X, X, ..., X; — 1).

Property 2: Data Inde: dency

The data encoded with the optimal allocated rates at each sensor node is inde-
pendent of that of any other sensor node, whic implies that the encoded ta at

each sensor node are not spatially correlated and thus have no redundancy.

Note that this property can be verified by using a proof-by-contradiction method:
if the argument were not true, a | ter rate allocation is supposed to be f nd to
further remove the remainii da redundancy, which is contradictory to the fact
that the optimal rate allocation already achieves the maximal compression gain of

Slepian-Wolf coding descril . in Equation (6.5).

The two properties make it possible to use Slepain-Wolf coding to achiceve the
cffect of data eneryption within a cluster. Based on this observation, we pr ose a

spatially selective encryption mechanism, which will be described in the next seetion.
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6.3 Spatially Selective Encryption

6.3.1 Spatially Selective ™ 1cryption

The basic concept of the spatially selective encryption is to select a subsel of sen-
sor nodes from a cluster, and encrypt their data using symmetric-key or public-key
cryptographic ciphers such as AES or RSA [36]. The sensor nodes not selected will
send their data without any encryption. Since the data from the selected sensors
are protected by cryptographic ciphers, it is p  tically impossible for attackers to
reconstruct any data from these sensor nodes. If the data from 1e s sor nodes not
selected cannot be reconstructed either, we can achieve a security level for the cluster

which is equivalent to that with the data of all sensor nodes encrypted.

Given the properties discussed in Section 6.2, this concept can be i plemented by
using Slepian-Wolf codii  with tl  optimal intra-cluster rate allocation in Equation
(6.4). Specifically, in the proposed encryption mechanisi, we only select the cluster
head of a cluster as the node that encrypts its data using a cryptographic algorithm
while allowing all cluster meml to send their data without any encryption. Ac-
cording to Property 1, the data from each cluster =mber cannot be reconstructed
without the knowledge of the data from the cluster head. This implies that Slepain-
Wolf coding not only has the data compression function but also can achieve the
cffect of data encryption. Since the data of the cluster head actually acts as a key
for reconstructing the data of each cluster imember, we refer to it as the vir i key
hereafter to differentiate it from the secret key in the symmetric-key crypt :aphy
and public-private key pairs = the public-key cryptography [36]. Intuitively, if the
virtual key is protected, the data of all cluster members are also protected with no

need to perform encryption. However, this observation is true only if the following
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conditions are satisfied.

1. An attacker or intruder cannot reveal the wvirtual key by analyzing the data of

the cluster members with no encryption.

2. An attacker or intruder cannot reveal the  tual key by performing the Brute-

Force Attack (or Exhaustive Searching) [31 on the key space.

According to Property 2, the optimal rate allocation in Equation (6.4} can lead
to the maximal data compression gain, which ensures that the data from the cluster
head is not revealable even if the unencrypted data from the cluster members arc
available. On the other hand, the observed phenomenon at each sensor node is
usually a random process. This means that the sensed data at the cluster head
is also of randomness and vary constantly, thus le: © ; to an enormous key space
which prohibits the Bru  “orce Exhaustive Searching [rom practically predicting the
virtual key. Therefore, both condi ns are actually satisfied, which ensures that
as long as the virtual key is protected, the data of all cluster members are also
protected without need to perform any encryption. This can considerably reduce the
energy and resource consumptions for achieving data security ir 1e network. On one
hand, the amount of energy consumed for computing the cryptographic algorithms
on the sensor nodes is significantly reduced because only a limi 1 number of cluster
heads need to perform encryption on their own sensed data. On the other hand, the
amount of energy consumed for establishing and distributing the cryptograp :c keys
is considerably reduced because the cluster mer de ot iy en ption
operations, thus eliminati  :he need to exchange key management information (e.g.,

secret keys) within each cluster.
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6.3.2 Combined Data Aggregation and Spatially Selective

Encryption

Now we discuss how to perform the combined data aggregation and encryption scheme
within a single cluster.

Consider a cluster A with | A| sensor nodes shown in Figure 6.1, wl e the de in
black represents the cluster head and the nodes  white ref  >nt cluster members.
The cluster head produces reading X7. From left to right, the first cluster 1 mber
is closest to the cluster head and produces reading X2, and so on. Thus, the process
of the combined data ag_ gation and encryption using Slepian-Wolf coding within a
cluster is described as follows:

H(XalXA]-1,...,.X1)

H(X4|X3X2X1

H(X3[X2X1)

H(X2[X1)
8D
~

H(X1)

Figure 6.1: Spatially selective encryption within a cluster.

1. The cluster head arra; s the cluster members in the descendi:  order of their

distances to the cluster head itself, as shown in Figure 6.1.

2. The cluster head generates a node ™ . for each cluster member 7, which contains

the indic  (or IDs) of all the other members that are clos  to the clus  head
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than cluster member 7. For example, the list for cluster member 3 contains

(2,1).

3. The cluster head distributes the generated node lists withir 1e cluster. Once re-
ceiving the list, each cluster member encodes its reading with a rate equal to the
its respective entropy conditioned on all the nodes in the received list, e.g., clus-
ter member 3 encodes its data with a rate equal to H(X; | X2X,)=H(X3X,X))-
H(X,X;). After encoding the sensed data, each cluster member 4 sends its

encoded data to the cluster head without performing encryption.

4. After the cluster head receives the encoded data from all its clus -~ men ers, it
only encrypts its own encoded data or the visual key, and sends the encrypted
data as well as the encoded data from its cluster members to the data sink,
where deeryption is first performed on the data from the cluster head, and then
conditional decoding is performed on the unencrypted data. In Figure 1, the
sink will first decrypt the data of the cluster head, and  2n decodes reading
X, encoded with a rate equal to H(X;) without using any other infornation.
However, reading X, encoded with a rate equal to H(X3|X,) is reconstructed
with the knowledge of X;. In this manner, the data from cluster member i
encoded with a rate equal to H(X;| X, — 1, ..., Xj) can be structed with

the knowledge of (X, X, ..., X; — 1).

6.3.3 Energy-Effici.__. Key Establishment Protocol

Since the spatially selective encryption only pe rms encryption on the wisual key,
now the problem is how to properly select an « ‘ryption algorithm » encrypt the
virtual key. As mentioned, the virtual key is actually the sensed data equently sent

by a cluster head. Since a cluster head is also a  ource-constrained sensor node, it
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equipped with more resources, and thus has more powerful computational capability.
To take advantage of this capability, it is more desirable to put computal ally-
intensive operations on the data sink while allowing the cluster he 3 to perform
computationally-light operations. Based on this idea, we propose an energy-efficient
key establishment protocol based on Rabin’s public key algorithm.

Rabin’s algorithm is a variant of 1e well-known RSA algorithm [36]. It has the
characteristic of computational asyinmetry in encryption and «  -yption. It requires
the encryption party to perform a single modular squaring operation, which is com-
putationally light, and the decryption party to perform a nmc ilar exponeuntiation
operation, which is computatior ly intensive. Meanwlile, Rabin’s algorithin is prov-
able secure based on the intractability of the RSA problem (RSAP) [36], which is
reducible to a hard problem of factoring large integers [36].

The energy-cfficient key establishment protocol consists of two main ph st 1)
key generation and pre-distribution and 2) key establishment, which are described as
follows.

Phase 1: Key Generation and Pre-Distribution

Before the sensor nodes are deployed, the data sink generates and re-dist Hutes
a unique public key to each se1 1 node. For this purpose, the data sink chooses two
large primes p; and ¢;, and then calculates the public key n;=p; x ¢;, re-distributes
the public key n; to sensor node 4, and keeps the private key (p;, g;) itself. Due to the
special characteristic of public-key cryptography, data encrypted by a sen:  node
with its public key can be decrypted only with the corresponding private key, which
in our case is kept securely at the data sink.

“ha: Ty T stablishment

1. After clustering is performed, each cluster head i generates a randoni value as
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striped by the clustered Slepian-Wolf coding, thus resulting in more trans ssion

energy consumption reduced.

T n=10

Intra-cluster Communication Cost Ratio

i 1 I 1 1 A
0409 8 6 5 3 3 2
C ion Parame © x10°

Figure 6.2: Intra-cluster communication cost ratio.

Figure 6.3 shows the computational ene s consumption with the Hatially selec-
tive encryption and the network-wide encryption, respectively, under differ : net-
work sizes. The computational energy consumption is measured in the total anount
of data required for encryption within a cluster. For the network-wide encr: tion,
we considered two scenarios: (1) It is combined with the cent .ized data aggrega-
tion with infinite aggregation gain, where a cluster head aggregates the packets from
all cluster members into a ¢ et; (2) It is combined ith the prop data
aggregation. It is sent that the spatially sele  7e encryption significantly reduces

the computational energy consumption compare with the network-wide encryption.
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Figure 6.4: Energy consumption for key establishment.

rameters, radio transmission model, and routing protocol used in [9], which are typical
settings for sensor networ To model the computational cost, we use real exper-
imental data [58] of the energy consumption for MIPS4000, a low-p ser micropro-
cessor for sensor nodes, in computing a single modular squaring required for Rabin’s
scheme/algorithm. Since only the cluster heads are required to perfi 1 the key es-
tablishment protocol, we use the average energy consumption of the cluster heads to
evaluate the energy consumption of the protocol. It is seen from Figure 6.4  at the
aver: : energy consumption of the clus  hear is less than 20 pJ under different
nctwork sizes. Therefore, the proposed key establishment protocol is cuergy efficient

in key establishment.
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6.5 Summary

In this chapter, we have proposed a combined data aggregation and encryption scheme
using Slepain-Wolf coding for efficient and secured data transmission in wireless sen-
sor networks. We first studied the optinal intra-cluster rate allocati  problem for
Slepain-Wolf coding and then proposed the spatially selective encryption mec nism
for data encryption within a single cluster based on the properties of Slepain-Wolf
coding with optimal intra-cluster rate allocation. The propos encryption mech-
anism only requires the cluster head to encrypt its data while allowing all eluster
members to send their data without performing any encryption. Furthermore, an
encrgy cfficient key establishment protocol is also proposed to securely  ad efficiently
establish the key used for encrypting the data of the cluster head. Thrc ;h simulation
results, we showed that the combined data aggregation and encryption sclhieme can
significantly improve energy efficiency in data transmission while providing a high

level of data security.









CHAPTER 7. MULTI-CHANNEL MEDIUM AccCESS CONTROL PROTOCOL 136

MAC, a clustering protocol is first applied so that each sensor is associated wi  one
aggregator. In this case, an aggregator is called a cluster head d the sensor nodes
associated with it are called its cluster members. A cluster head, together with its
associated members are called a cluster collectively. Within each cluster, a s¢  luled
multi-channel medium access protocol is considered, where the cluster head coordi-
nates the communication among its members in a contention-free man - within both
the time and frequency domains, so as to avoid collision, idle listening and overhear-
ing. Sccondly, to maximize the network throughput, a traffic-adaptive and QoS-aware
(Quality of Service) scheduling algorithm is performed where the cluster head dynam-
ically allocates time slots and channels for its members accordii  to the current QoS
requirements and network traffic status. Fiually, to enhance transmission relii  lity,
a spectrum-aware ARQ is used to opportunistic y exploit the unused spectrum for
a balance between the reliability and retransmission. Through simula  m resu ., we
show that the proposed COM-MAC can improve network throughput significantly,

while by introducing very small control overhead.

7.2 Design of the C""M-MAC Protocol

7.2.1 Network Architecture and Assumptior

As shown in Figure 7.1, a WMSN consists of several more powerful nodes (cluster
heads) located at the center of different monitoring area, a nt ber  regular mul-
timedia sensor nodes surrounding each cluster  ul, and a remote ¢ .a sink which
will store the multimedia content locally for later retrieval. In addition, we m: > the

following assumptions regar = the configuration of the network:

1. There are N different channels -ailable for use and all channels have t  same
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bandwidth.

2. All multimedia sensor nodes are identical and quasi-stationary. Each nsor
node is equipped with a single half-duplex transceiver, which means a  nsor

node will not be able to transmit and receive simultaneously.

3. A multimedia sensor node can .y transmit or receive on one channel at a tine.
But it is able to switch among channels dynamically. The channel switching

time is less than 224us according to [62].

4. 7 h cluster head is equipped with N half-duplex transceivers, which means
that a cluster head can transmit or receive on N channels simultancously. In
addition, each cluster head will have sufficient power supply and better process-

ing capacity.

5. The working of a cli  er of sensor nodes is synchronized to the cluster head and

each sensor node can communicate directly with its cluster head.

6. A cluster head can usually communicate directly with the data sink using an
out-of-band channel. However, if direct communication is unavailable, multi-

hop routing is also employed.

7.2.2 Overview of the COM-MAC Protocol

We assunie that the clustering process has been completed by performing sc e dis-
tributed clustering protocol and each sensor node bas been associated with a nearest
cluster head. Wit a cluster, t| o] .tion is organized in t : ervals. Each
interval consists of three consecutive sessions: request session, scheduling session and

data transmission session, as shown in Figure 7.2.
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During the request session, each sensor node sends a REQ message to the cluster
head. QoS requirements, such as the amount of multimedia data to be transmitted,
delivery deadline, and priority inforn ion, are included in the I 1) message. Based
on the information, during the sche 1ling session, the cluster head schedi ; the
transmission for each sensor nodes using certain optimal scheduling sorithm, and
then distributes the resulting schedule to all sensor nodes in the cluster. The schedule
gives the information of time slots and channels. igned to each sensor node during
the following data transmissi  session. Sensor nodes will then switch to the assigned
channel and start to send their data in the schedr d slot without further contentiou.

Next, we examine the details of the three sessions in the COM-MAC protocol.

O Cluster mem

. Cluster H
ﬁ Sink

Figure 7.1: WMSN network architecture.
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o

interval e |

7 % ML

% Request sessian
W Scheduling session
UI[D Data transmi  in session

nrerval >}

N\

Figure 7.2: Franie structure.

7.2.3 Request Session

During the request session, two protocols are designed for each sensor node to send
its request to the cluster head. One is a contention-based protocol and the other is a
contention-free TDMA /FDMA based protocol.

The operation of the contention-based protocol consists of two steps: the control
channel assignment phase and the request transmission phase. During the control
channel assignment phase, a channel is allocated for each node to transmit the request
message (REQ). To improve channel utilization, all available channels can be used as
control channels during the request session. Because the number of av.  able channels
is usually limited, it is likely that a channel be assigned to mul »>le nodes. To avoid
possible congestion, sensor n will be evenly distributed to the ava ble channels.
Furthermore, different channels will be assigned to geographically adjacent sensor
nodes because nodes in close proximity tend to discover the same event and then
request for transmission simultaneously, which tend to introduce potential co :ntion
without proper channel spatial reuse schemes. ¢ er control channel is assigned, the
request transmission phase arts. If a node has data to send, it will notify the
cluster head by sending a RE~ ¢  'ng the assigned control channel. Upon

receiving the REQ, the cluster head replies with an ACK. To further avoid possible
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collisions, a random backoff scheme  employed in each sensor node before sending
the REQ message. The backoff interval is randomly chosen in e range of Treq
— Treg_trans|, where Treq is the duration of the request session 1 Treg_trans is the

duration to deliver the RE(Q message.

The contention-free TDMA/FDMA protocol consists of two phases: control slot
assignment and request transmission. Control slot assignment, which is only per-
formed when the network is initially deployed, is used to statically i ocate time
slot of a channel to each sensor node to send request message. Similar to the mech-
anism incorporated in the contention-based protocol, all available ¢ nnels can be
used as control channels. Each channel is further divided a n uber of time slots.
The duration of each slot is equal to the time to transmit a RE(Q) message. The total
number of slots for each channel is calculated by X/Y, where X denotes the total
number of sensor nodes in a cluster and Y dcnotes the total number of channels
available. Then, each slot on each channel 1s assigned to a unic e node so that any

request can be sent without interfering with the transmission of other nodes.

The two proposed protocols can be used for different application scenarios. When
network traffic load is not very intensive and the channel condition is relatively un-
reliable, the contention-based protocol is favored ecause the probability of potential
collision and congestion to send the request w age is low. Althot 1 the request
message may be lost due to collision, a simple retransmission scheme can be used
to avoid the transmission delay of multimedia data. In contrast, the contention-free
TDMA/FDMA protocol is more appropriate for applications with reliable channel

conditions and heavier traffic load.
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7.2.4 Scheduling Session

Based on the information obtaii | in the request session, during the scheduling ses-
sion, cluster heads then generate a s =dule to coordinate the data transmissions of
each sensor node and broadcast the message through control channels, where a sen-
sor nodes are tuned to and listen on. The schedule to be broadcast on each control
channel will only include the information for sensor nodes which are assigned to that
channel. In order to enhan the transmission reliability, the schedule roadcast will
be repeated. However, for better energy efliciency, a sensor node will turn off its
transceiver once a full schedule has been received, until its time slot for trans  ssion

approaches.

For each sensor node, the generated schedule includes both time slot and radio
channel for data transmission. For example, considering a cluster with 16 sensor
nodes, let p; denote the request sent by node ¢, where 1 = 1,2,...,16, which also de-
scribes the amount of data to be sent by a sensor node. Assuming that there are 5
non-overlapping channels available, there can be a large number of different p - ntial
schedules. One possible schedule is  own in Figure 7.3. Obviously, s schedule is
not optimal with respect to network throughput because a big portion of unu:  spec-
trum, which is indicated by H1, H2, H3 and H/, is not utilized for the transmission
for node 6. To enhance network throughput, we first show that the maximal t ough-

put problem can be converted to an optimal mul channel scheduling problem. Then

we present a heuristic algorithm to solve the problem.

.ae throughput is a fun  n of the channel capacity used for da  transmission.
Given that the packet size P bits, time used to deliver a packet is T, and capacity

of the channel is C bps, then the throughput is given by
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be described as: Given a set of re 1ests {p1,p9,...,Pm}, which is associated with
a corresponding set of priorities {ry,7,...,7,} and N available channels, find an
assignment schedule that puts all requests to the N channels ! ed on the order of
their priorities so that the total amount of time to transmit all requests, in other
words, the maximum transmission time, on any  annel is minimized.

To solve this problem, a request scheduling heuristic is provided. First, all requests
of the same priority are grouped together. Then, all groups are sorted based on
the descending order of the priorities. We then schedule the requests for each group
according to their priority level, beginnii  with the group with of the highest | ority.
Within each group, all the requests are also sorted based on the desc ding  ler of
the transmission time and a request with the minimum amount of time to t  smit
will be assigned to a channel first until all channel capacity has been fully utilized.

This process is repeated until a complete schedule is generated.

7.2.5 Data Transmission Session

After receiving the schedule, each sensor node will transmit its data during 10 as-
¢ ed time slots and channel. Each time slot is further divided i1 » two sections:
data transmission section and ACK section. The ACK section is 1 d to support
link-layer error control, which is critical for WMSN. Normally, for high-quality video
perception, a frame loss rate of lower than 1072 is required [42]. However, the inherent
unreliable nature of wireless medium poses a significant challenge for the applications
of WMSN. To address this problem, an implicit selective repeat ARQ tecl que is
cmployed, whicl is briefly described below.

After receiving the | kets from a sensor node, the cluster head acknowledges

every properly received packet by sending an ACK message. 1 ‘kets which are not
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acknowledged are simply assumed to be lost in the network, which will be marked
by the sensor nodes and retransmitted during the next interval. Although such a
retransmission mechanism improves the transmission reliability, extra delay will be
introduced, which is not favo 1 for critical applications such as real-time video or
audio transmission. To mitigate this problem, a hybrid MAC protocol is used to better
exploit the unused spectrum during the data transmission session, for example, H1,
H2, H3, and H/ as shown in Figure 7.3.

The working of the Hybrid NAC is briefly described here: First, in the schedul-
ing scction, the cluster head piggybacks the completion time of cach channel to its
broadcast schedule, for example, the completion t e of p3 for channel 1in Fig e 7.3.
When receiving the schedule, each node obtains the explicit knowledge of the poten-
tial available spectrum. Then, after the scheduled contention-free data transmission,
the sensor nodes can employ an energv-efficient 1 \C, such as S-MAC, to retransinit
the lost packets. In this way, better balance between the required reliability and the

sustainable delay can be achieved at the applica mn layer.

7 ° Perform:s—ce Eve 1ation

In this section, we evaluate the perl  1ance of the proposed COM-NAC through sim-
ulation experiments using ns-2. We investigate the performance in terms of network
throughput and transmission delay. The performance of COM-MAC is compared with
that for a baseline protocol, the multi-channel TDMA (M-TDMA) protocol. For M-
TDMA, the cluster head first evenly distribute the cluster members on the av - lable
channels. Then, the cluster head generates a TDMA schedule on each channel and
allocates a fixed slot to each cluster inembers.

In our experiments, the capacity for each channel is 250hbps. The tran  ssion
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range of each node is approximately 10m. Each source node generates and transmits
a constant-bit rate (CBR) data stream. ..ach node is randomly sclected to have a
packet arrival rate between 0 and 10 to refleet the network traffic dynamics. Each
simulation run is performed for the duration of 30 seconds. Each data pomt in the
performance figures is the average of 20 runs. Unless otherwise specified, we assume

3 channels and the packet size is 525 bytes,
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Figure 7.4: ..ror put performance for various cluster sizes.

Figure 7.4 compares the network 1roughput erformance of COM-MAC and M-
TDMA for different cluster sizes, which is the total number of seusor ne s in a cluster.
[t is clear that the throughput of both protocols increase as the cluster size increases.
This is because more sensor nodes need to access channels to transmit data to the
cluster head. It is also n | n the figure that the iner of the throughput
of COM-MAC becomes slower when the ister size exceeds 45. This is bee. e the

channel tends to be saturated when more nodes are trying to utilize the channel. As
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expected, COM-MAC outperforms M-MAC for different conditions. This is because
COM-MAC is designed to maximize the netwo throughput by applying traffic-
adaptive scheduling algorithmi where the time slots and channels are dynan ally
allocated for its members according to data traffic. However, M-TDMA assigns cach

node a fixed time slot without considering the traffic load condition on other nodes.

“+-COM-MAC
——M-TDMA

7
()

-
- [3,]
T t

Throughput Standard Deviation(bps)
o !
o

%

*\ep

30 35 20 45
Cluster Size

N
L4

Figure 7.5: Thro “iput standard deviation for various cluster sizes.

Figure 7.5 shows the standard deviation of ¢ throughout performance for the
three available channels over different cluster size. It is clear that the curve for
COM-MAC is much smoother than that from the M-TDMA protocol. This indicates
that COM-MAC can achieve better and more | anced utiliza m of each available
channel so that the network throughput can be maximized. In contrast, the standard
deviation of M-TDMA is much | _ . possesses significant fluctuation, which
indicates that by using M-TDMA, some channels have already been over lized

while some channels still remain under-utilized, ‘en if some nodes have data to be
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Figure 7.6: Packet delay performance for various cluster sizes.

Figure 7.6 shows the delay performance compassion of COM-MAC and M-TDMA
protocols as cluster size increases. It is obvious that COM-MAC inc s lower delay
when compared to that from M . OMA. This is due to the fact that with M-TDMA, a
sensor node has to wait until its time slot comes to send out its data, even if there are
time slots on its assigned channel or on other channels available for use. COM-MAC
can achieve a better utilization of the channel resources, thus leadi: to a better
delay performance. We also notice that the delay performance in i as cluster

size increases for both protocols. This is because that larger cluster size will lead to

heavier network load so that a packet has to wait longer to be transmitted.
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7.4 Summary

In this chapter, we have studied a cluster based on-demand multi-char 21 MAC pro-
tocol, which is proposed to provide better energy-efficiency, high-throughput, and
data reliability support in wireless multimedia s¢ or networks. 'e have prop 1 a
scheduled multi-channel medium access within each cluster for contention-free intra-
cluster communication. We also proposed a scheduling algorit. . to achicve better
channel utilization under different traffic conditions 1d QoS requirements. We incor-
porated a spectrum-aware AR() scheme to enhance the transmission reliability. Our
simulation results demonstrate that COM-MAC can achieve bet - network through-
put and lower delay when compared with the baseline M-TDMA protocol at the cost

of a small control overhead.






CHAPTER 8. CONCLUSIONS AND FUTURE WORK 150

e Distributed Minimum-cost Clustering Protocol

We have studied the node clustering problem in a UWSN and formulated the
problem into a cluster-centric cost-based optimization problem with an objective
to improve the cnergy efficiency and prole - the lifetime of the network. To
solve the formulated problem, a distributed minimum cost clustering protocol
(MCCP) has been proposed, whicl can not only adapt geographical cluster head
distribution to the traffic patte in the network, and thus avoid the formation
of hot spots around a uw-sink, but also balance the traffic load >tween cluster
heads and cluster members through periodical re-clustering the sensor nodes in
the network. The siinulation results show that MCCP significantly iniproves

network lifetime as compared with = well-known HEED protocol.

Robust Architecture for Underwater Sensor Network

We have proposed a dependable clustering protocol to provide a robust . ster
hierarchy against cluster-head failures in UWSNs. We have proposed a de-
pendable clustering protocol to provide a robust clustered architecture against
cluster-head failures in UWSI  The proposed ch 1g pri Hcol takes into
account both the relia” ™" y and residual e1  _y status of each sensor node, and
introduces failure prediction, cost evaluation, and clustering optimization during
clustering to coustruct 1 cfficient and robust cluster hierarchy. The proposed
clustering protocol attempts to select those healthy nodes as ¢ ster heads to
prevent cluster head failures. Meanwhile, it attempts to select a primary cluster
head and a backup clus  head during clustering so that the chh err ibers
associated with the fa’ 1 cluster h | can quickly switch over to the wup

cluster head in the event of a  1ster-head failure. The simulation results have
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is also proposed to securely and efficiently establish the key used for encrypt-
ing the data of the cluster head. Through simulation res1 s, we have showed
that the combined data aggregation and encryption scheme can significantly
improve energy efficiency in data transmission while providing a high level of

data security.

Clustered On-demand Multi-channel MAC Protocol

We have studied a cluster based on-demand multi-channel MAC protocol, which
is proposed to provide hetter support for energy-cfficiency, high-throughput, and
data reliability in wireless multimedia  1sor networks. We have proposed a
scheduled multi-channel medium access within each cluster for contention-free
intra-cluster communication. We have also proposed a scheduling algorithm
to achieve better channel utilization under different traffic cond ons s | QoS
requirements. We have incorporated a spectrum-aware ARQ scheme to enhance
the transmission reliability. Our simulation results demonstrate that COM-
MAC can achieve better network throughpr and lower delay performarnce when
compared with the baseline M-TDMA protocol at the cost of a small control

overhead.

Future Work

e Parameter choices in MC P

For MCCP, we have >propriately set the values of the parameters o, 3, and E;
the cost metric. These parameters may have an impact on the performance of
MCCP. Mc  over, the re-clustering period of MCCP may also have an impact

on the network perfo e. It is worthwhile to investigate ¢ how different
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security of the whole network iainly depends on that of the cluster heads.
To secure the data frc  cluster heads, Rabin’s algorith: is ¢ »pted. which
is a variant of the well-known RSA algorithm. Since Rabin’s algoritt  only
aims at protecting data of the cluster heads from being revealed, how to avoid
cluster heads being compromised by enemies should be investigated in the fu-
ture so that the capture of a cluster head will not jeopardize the security of
the whole cluster. There are two interesting schemes which can be consi red:
dynamically re-clustering and anouymous routing. In the st scheme, dynam-
ically re-clustering could make the compromised cluster heads replaced by new
ones, whereas in the latter one, anonymous uting could make the routing IDs

concealed from enemies.

Multi-channel MAC with Time-varying Channels

A multi-channel MAC protocol has been proposed to support energy-eflicient,
high-throughput, and reliable data transmission. To maximi the n vork
throughput, a traffic-adaptive scheduling algorithm has been proposed to dy-
namically allocate time slots and channels for sensor nodes  ased on the current
traffic condition. The channels considered : homogeneous, time-invariant and
have equivalent bandwicth. Tt is highly desired that a new optimal scheduling
algorithm will be developed under niore realistic channel conditions, .ch as

time-varying heterogeneous channels.
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