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ABSTRACT 

The occurrence of damage in a ship's structure especially at the connection between a 

longitudinal and a heavy transverse members of the side shell is unavoidable under all 

operating conditions. The damage does not generally result in the loss of ships, nevertheless, 

it is often the cause of costly repairs and replacements of hull structures. Therefore, damage 

should be identified at an early stage in order to prevent the development of a more 

significant damage. This study presents a procedure for the identification of damage 

occurrence in the side shell of a ship's structure using a neural network technique. The 

structure is modeled as a stiffened plate. 

An experimental study using modal testing techniques was carried out for measuring 

the time history of the random response of undamaged and damaged models. The damage 

was made using a hacksaw at several locations on the longitudinal faceplate near the 

transverse member. The random decrement signatures, and the auto and cross-correlation 

functions were obtained from the random response. 

A finite element model was developed to generate numerical acceleration frequency 

response functions for the model. Excellent agreement was obtained between the numerical 

and the experimental acceleration frequency response functions. The numerical and the 

experimental data were used for validating an identification technique using neural networks. 

The results of the present study show that one can use the random signature or the 
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autocorrelation function for the random response to identify the extent and location of 

damage. 
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Chapter 1 

Introduction 

1.1 General 

During operation, a ship•s structure is affected by cyclic regular and irregular loads due to 

waves. Cyclic wave loads on a ship's structure may produce fatigue damage, especially at 

locations where there are high stress concentrations such as at the connection between a 

longitudinal and a heavy transverse member of the side shell. Although, in many cases, this 

damage may not lead to the loss of the ship, it should be identified at an early stage as to 

prevent the ship from developing a more significant damage. This will save on costly repairs 

and replacements of expensive hull structure components. 

Many analytical and experimental techniques for damage identification have been 

reported in the literature. Non-Destructive Evaluation (NDE) techniques using parametric 

identification methods are widely used to detect the occurrence of damage. These methods 

use the changes in the vibration characteristics of the structure which results as a 
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consequence of the structural damage. 

NDE techniques can identify a suitable mathematical model corresponding to the 

change of the physical properties of the structure based on the measurement of the modal 

parameters. However, the range of damage identification scenarios, likely to be encountered 

in realistic application to all physical systems, is extensive. Therefore, it is necessary to find 

methods which can cope with the various specific applications. 

In recent years, many researchers have developed non-parametric identification 

approaches for assessing structural damage using a new computing architecture, called neural 

networks. These methods were inspired by the knowledge gained from the study of human 

brain and nerve cells. The basic approach of this method is to identify the changes in the 

modal parameters and/or in the physical properties of the structure which are related to 

various damage states. 

There are many types of neural networks which can be developed by changing the 

network topology, node characteristics and learning procedures to identify structural damage. 

Most of the available methods have been used to detect the damage in trusses, frames, 

beams, and plates used for applications in civil, mechanical and aerospace engineering. 

These methods have not yet been used to identify the damage in component structures (such 

as stiffened panels, transverse frames, etc) used in ship structures. 

For these reasons, the present study extends the work of other researchers by dealing 

with the structural damage identification of ship structures at the location of high stress 

concentrations such as at the connections of longitudinal to heavy transverse members of the 
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side shelL The structure was modeled as a stiffened plate. 

1.2 Scope of the Present Study 

The present study is carried out to develop a technique for identifying damage occurrence in 

the side shell of a ship's structure. This technique does not only determine the existence of 

the damage, but also its location and its extent. The technique is based on the use of the 

autocorrelation function of the random response of the structure as a mathematical model. 

Neural networks are utilized to identify the changes occurring in the model as a result 

of damage occurrence. Experimental data obtained from the testing of four physical models 

as well as numerically generated data using a finite element model were used to develop the 

technique and to validate it. Physical models were tested both in air and water and data was 

analyzed using modal testing techniques as well as the technique developed in the present 

study. 

1.3 Methodology 

In order to identify the damage occurrence in the structure, four stiffened plate models were 

tested. Each model consisted of a plate, an unequal angle longitudinal, and a T -section 

transverse member. The models were designed and fabricated to represent the side shell of 

a ship' s structure. The dynamic responses of the undamaged and damaged models were 

3 



investigated experimentally and numerically. 

A modal testing procedure was used for canying out the experimental study of the 

models in air and water. In order to investigate the effect of water on the stiffened plate 

models, the models were placed in a water tank. Fast sine sweep and random excitations 

were selected for exciting the modeL The damage was simulated by saw cuts of 0.01 inches 

(0.025 em) width and of different lengths (!; 1.20 inches = 3.048 em) at several locations of 

the longitudinal faceplate near the transverse member. The fast sine sweep signal and its 

dynamics were used for obtaining the acceleration frequency response functions of the 

undamaged and damaged model. From the vibrating models due to the random excitation, 

the acceleration random time responses of the undamaged model:; as well as the modeis with 

progressive damage were measured. 

A finite element model was developed and used for generating the acceleration 

frequency response functions, the acceleration free vibration responses, and the acceleration 

auto- and cross-correlation functions of the undamaged and damaged stiffened plate models 

subjected to an impulse and random excitations. The presence of damage was represented 

by introducing a gap of 0.01 inches between identified elements of the faceplate of the 

longitudinal. The effect of water on the models was modeled using an added mass factor. The 

results of the numerical frequency response functions were compared to those of the 

experimental ones for validation. 

The random responses were filtered around the predominant mode using a wide-band 

filter, and the results were averaged using the random decrement technique for obtaining an 
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estimate of the free-vibration responses. called the random decrement signatures. The 

random decrement signatures along with the free vibration responses were used for 

identifying the location and extent of damage in models. 

In addition to the random decrement technique. the filtered random responses were 

also analyzed using a statistical procedure for obtaining the auto- and cross-correlation 

functions. The experimental and numerical auto- and cross-correlation functions were also 

utilized for detecting the presence of damage in models. 

The results indicated that the randomdec signature, the free vibration response. and 

the autocorrelation function can be used to identify the presence of damage as well as its 

extent and its location. However. the change in !he natural frequencies of the structure as a 

result of damage was very small. Also. the randomdec signatures. the free vibration 

responses. and the autocorrelation functions had similar shapes for undamaged and damaged 

conditions. On the other hand. it was found that damage alters the shape of the 

crosscorrelation function. which can be used to detect the onset of damage. 

Because of the above reasons, the identification of the damage in the model was 

carried out using a neural network technique. Input to the network consisted of the 

autocorrelation functions resulting from the experimental and numerical studies of Model 

#l and their first derivative. The output consisted of a single function which was fonned by 

adding together the damping force and the nonlinear part of the restoring force. This function 

was then used to identify not only the damage occurrence in the model. but also its extent and 

location. 
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1.4 Organization of the Dissertation 

The research study reported in this dissertation contains three parts. viz .• (i) the experimental 

study using a modal testing procedure; (ii) the analytical modal analysis using finite element 

procedure; and (iii) the analytical study using neural network technique. The study employed 

a combination of the experimental and analytical data. The organization of the dissertation 

is given as follows: 

Chapter 1 addresses the general idea of using neural network for identification of 

damage in the structure. The scope and methodology used in the present study as well as the 

organization of the dissertation are also presented in this Chapter. 

Chapter 2 contains a review of literature to provide an overview of the procedures for 

damage detection and identification in the area of floating bodies using parametric 

identification methods. The limitations of the existing methods are analyzed and the need for 

neural network analysis is brought out. 

The theoretical background pertaining to the research reported in this dissertation is 

explained in Chapter 3. This includes the basic theories of finite element analysis. random 

decrement technique. auto- and cross-conelation functions. modal analysis and testing. 

neural networks. and their application to the problem at hand. 

The experimental study of the stiffened plate models is described in Chapter 4. This 

includes the fabrication of the models. the experimental setup. derails of instrumentation and 
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their calibration. the placement of the load cell and accelerometers, and the experimental 

procedure used in modal testing. 

The analyses of the experimental and analytical results are given in Chapter 5. 

Changes in the frequency response functions and the free vibration responses that resulted 

from inducing the damage on the stiffened plate models are presented and discussed in this 

Chapter. This includes validation of the results of the finite element analysis by comparing 

the analytical results with experimental ones. The identification of damage occurrence in the 

model using the randomdec signature is also discussed in this Chapter. The effect of added 

mass on the frequency, the free vibration responses and the randomdec signature is also 

explored. 

Chapter6 presents the results ofusingthe experimental autocorrelation functions for 

identifying the presence of damage in the model. A comparison between the randomdec 

signatures and the autocorrelation function is given. Analytical results are also presented to 

complement the experimental ones. In addition to autocorrelation functions, the identification 

of damage occurrence using crosscorrelation functions is also discussed. 

The use of neural networks for damage identification in the stiffened plate model is 

demonstrated in Chapter 7. The training of neural networks using the training set data 

resulting from experimental and numerical autocorrelation functions is analyzed and 

discussed in this Chapter. Also, the capability of the trained neural networks to identify the 

extent and location of damage in the stiffened plate model is demonstrated. 

Finally, the conclusions drawn from this research investigation are summarized in 
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Chapter 8. In this Chapter. the problem areas that need to be further investigated are also 

proposed. 
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Chapter 2 

Literature Review 

2.1 Introduction 

Identification of damage in structural components in service is very important and essential 

to ensure the integrity of any structure. The reason being. that the damages tend to propagate 

and cause sudden failures which are usually very costly in terms of property damage or 

worse, human life. The most common method of damage identification is visual inspection 

using NDE techniques as pointed out in the previous chapter. However. the visual inspection 

of large and comple~ structures such as ships and offshores structures may be difficult and 

costly due to problems of accessibility in which the investigator needs to access the 

component under operating conditions. In some cases the visual inspection may prove to be 

unreliable and impossible when the damage is small. 

Therefore. in recent years. the indirect diagnostic methodologies for damage 

identification. such as modal analysis and neural networks. have attracted the attention of 
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many researchers. The basic approach is to detect changes in the dynamic characteristics of 

the structure. These changes are subsequently related to various damage states. The objective 

of any damage identification is to determine whether structural damage has occurred and if 

so, to determine the location and the extent of the damage. 

This chapter reviews the studies on the damage identification using NDE techniques 

and indirect diagnostic methodologies, which were carried out by earlier researchers, which 

can be applied to floating bodies such as ships and offshore structures. 

2.2 Ship's Damage Identification 

Recently, High Tensile Steel (}ITS) has been extensively used in hull constructions for 

reducing a ship's weight. The welded HTS structures have a higher operational stress level; 

however, there is no improvement in fatigue properties compared with that of mild steel 

structures. Thus, the fatigue of component structures made with fiTS causes most of the 

damage in ship structures, especially for component structures with high stress 

concentrations such as connections and details. For this reason, several analytical and 

experimental studies relating to ship damage, in particular on the side shell of tankers, 

satisfying regulatory requirements, have been published in recent years. These articles, which 

are directly related to the present study, are reviewed briefly. 

Strathaus and Bea (1992) carried out a study on structural maintenance of new and 

existing ships. The objectives of the study were: (i) to develop practical tools and procedures 
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for analysis of proposed ship structure repairs, and (ii) to provide guidelines for cost effective 

design and construction of lower-maintenance ship structures. One of the important results 

from this study was that about 42% of all the fatigue damage in ships have occurred in the 

side shell, especially in the connections between longitudinal and heavy transverse members 

of the side shell as shown in Figure 2.1. 

Longitudinal / Sideshell 

~ 
Heavy 

Transverse Member 

Figure 2.1 Crack in the Connection between the Longitudinal and the Heavy Transverse 
Member 

A procedure for evaluating fatigue damage in the longitudinal of the side shell of 

tankers due to external wave pressure was developed by Cramer et al. (1993). The procedure 

used the stress response, generated by external water pressure due to relative wave heights, 

to initiate and grow fatigue damage. A numerical study of 25 stiffeners having six different 

sizes was carried out to investigate the fatigue damage. The mean pressure and stress 
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variation in ballast. laden, and combined ballast/laden conditions for each stiffener were 

studied. The results showed that the highest fatigue damage was experienced for stiffeners 

located at mean water lines. 

Hansen and Winterstein (1995) predicted the fatigue damage. along the side shell. 

that was caused partly by a combination of vertical and horizontal wave-induced hull 

bending, and partly by outside water pressure. The fatigue damage was calculated in laden 

and ballast conditions using longitudinals of segregated ballast tankers. They reported that 

the outside water pressure accounted for the majority of fatigue damages, and that the 

combination of stresses due to vertical and horizontal wave-induced hull bending resulted 

in a significant increase in fatigue damage. 

Sucharski (1995). identified typical fractures in tankers. the probable effects and 

responses due to such damages. and gave a strategy for their prevention. He identified the 

fractures that were found in four classes of eight crude oil tankers operating between Alaska 

and the U.S. West Coast and observed that fatigue was the main cause for fractures that 

occurred in various tankers. He found that at least two-thirds of the fractures occurred in the 

connection between longitudinal members of the bottom or the side shell and significant 

transverse structures such as transverse bulkheads and web frames. 

From the literature reviewed above. it appears that most of the fatigue damage in ship 

structures tend to be located at the longitudinals of the side shell near their connections with 

the transverse members and bulkheads. Because of the location of longitudinals is in cargo 
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holds or tanks, it is difficult to get access to the location of damage for evaluating the extent 

of damage under operating conditions,. For this reason, some researchers have used 

numerical methods to evaluate the extent of damage. 

Ghoneim and Tadros ( 1992) examined the damage existing in the side shell structures 

of M.V. Roben LeMeur and M.V. Arctic due to ice loads. They examined the indentation 

damage at the frame where maximum deformation had occurred, predicted the forces causing 

damage, and enhanced the understanding of the behavior of structure based on measured 

indentation using FE analysis. Based on the evaluation of experimental results of M.V. 

Robert LeMeur, they concluded that damage was caused by numerous ice impacts. each 

occurring over relatively small areas. 

Based on S-N curves and Miner's formula. Xue et al. (1994) developed a formula to 

calculate the cumulative fatigue damage (D) in longitudinals of tankers and containers due 

to primary wave induced loads and hydrodynamic pressures. D was designed as a function 

of the stress parameter(~) which represented the cumulative action of wave induced loads 

on structures, and incorporated the combined effects of stress levels and, its occurring 

frequency, such that: 

(2.1) 

where: Twas the time over which the damage was calculated, and A was an empirical 

constant. Xue et al. (1994) used several examples of tankers and container ships with 
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different block coefficients and hull fonns to compare the effect of ship type on Op. From 

the example results they stated that the above fonnula could be applied to real ship structures 

to calculate the fatigue damage, provided that ~ was calibrated using real structural 

behavior. 

Strathaus and Bea (1996) reviewed the results of the SSllS (Ship Structural Integrity 

Information System) I project in which one of the aims was to use an integrated database 

system for damage identification in ship structures. They evaluated the existing database 

systems that could detennine and represent failure location in a ship's structure. They 

concluded that existing database systems have powerful features to improve ship 

maintenance; nevertheless, it was necessary to improve the existing database systems so that 

they could define and develop detailed representations of the failure locations in a ship's 

:;tructure. 

In addition to the litenature reviewed above, many other researchers have also used 

numerical calculations for the evaluation of damage in tankers. All investigations, however, 

have evaluated only the damage due to accidents such as collision and grounding. 

Ito et al. (1994) developed the NKK energy method which could be used to analyze 

the strength of the side shell of tankers in collision. Kuroiwa et al. (1994) conducted 

experiments of collision, drop, and raking tests to develop numerical simulations of failure. 

These experiments used full scale, ~ scale, and 1f3 scale structural models to evaluate the 

structural damage of tankers, such as that due to plate rupture and welds failure during 
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collision and grounding. Paik and Lee (1995) estimated the raking length of tankers due to 

grounding, using semi-empirical formulae for energy. They also analyzed the damaged hull 

section due to vertical bending moments using a progressive collapse analysis method. De 

Kat et al. (1995) predicted the damage growth and hull strength of stranded tankers due to 

wave-induced loads and dynamic ship motions, using FE analysis. Rodd and Sikorai (1995) 

conducted a series of grounding experiments using a quarter-scale hull bottom models. Their 

results provided vital information toward the understanding of the detailed structural failure 

mechanisms that lead to the inner shell rupture during grounding accidents. Rodd and 

Sikoras' results could also be used as a validation to develop crashworthiness systems for 

tankers using analytical and numerical modeling techniques. 

From this literature review, it is clear that most numerical studies and the consequent 

formulae proposed determine the damages that occur due to collision only. Only a small 

number of studies have calculated the damage that occuned due to wave action during the 

normal operation of ships. Moreover, the main cause of ship structural damage was fatigue 

due to wave induced loads, especially for structures with large stress concentrations at the 

connection between the longitudinal and the heavy transverse members of the side shell. 

However, in all the literature reviewed, no study has identified this damage at an early stage 

nor has found the location and extent of the damage. 
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2.3 Damage Identification 

2.3.1 Changes in Modal Parameters 

As pointed out in the previous Chapter, damages that occur in a structure usually change its 

physical properties, i.e., stiffness and damping. These changes can be reflected in the changes 

of modal parameters of the structure, such as natural frequencies, damping ratios and mode 

shapes. Therefore, Non-Destructive Evaluation (NDE) techniques which use the changes of 

vibrational characteristics of the structure have been used by many researchers for damage 

identification. The following discussion is focused on a review of the damage identification 

for offshore structures, which like ship structures, are affected by external wave forces. 

Yang et al. (1980. 1981. 1984) applied the random decrement technique for 

inspecting the damage in offshore structures. They used a 1: 13.8 scale model of the actual 

Gulf of Mexico offshore oil platform for an experiment. The damage was modeled using saw 

cuts of the welded section of the structure on the cross beam. This technique required 

measurements only of the dynamic responses of the structure and not the input excitation. 

The results indicated that this method could identify damage by evaluating the differences 

between the random decrement signatures in the damaged and the undamaged situations. 

However, this method could not be used to locate the damage or to give an estimation of its 

severity. 

Shahri var and Bouwkamp ( 1986) detected the existing damages in structural elements 

of an eight-legged k-braced steel offshore oil and gas production tower by determining its 
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natural frequency shifts. They performed modal testing of an offshore framed platform 

model, with grossly cracked structural members. SAP IV, a general purpose program, was 

employed to model the structure mathematically. Experimental and analytical results showed 

that the damage caused a reduction in natural frequencies and an increase in structural 

responses. 

Marshall ( 1990) used a hydro-elastic model of a typical four-legged jacket offshore 

platform to carry out structural integrity monitoring. Structural damage was simulated by saw 

cutting inclined member(s) in a k-braced panel under consideration. and responses data were 

analyzed using the Mmple algorithm with the Maximum Entropy Method (MEM). The 

detection of damage was based on the changes in resonant frequencies compared with the 

intact structure. Marshall (1990) concluded that the resonant frequency change indicated 

clearly the structure had been damaged. 

Roitman et al. (1991) used modal testing for identifying a damaged tubular joint in 

a fixed offshore framed structure. They examined two small scale models which were 

designed based on the similitude theory. The damage was modeled by cutting one of the end 

joints. In addition to natural frequencies and damping ratios, modal amplitude responses 

were also measured. Absolute differences between modal amplitude responses for the intact 

and damaged structures were measured. Therefore, Roitman et al. ( 1991) stated that modal 

analysis could be applied to offshore jacket stnactures for identifying the occurrence of 

damage in joints of tubular diagonal members. This technique, however, could not be used 
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to identify the location of the damage. 

Damage evaluation of offshore structure models using the changes of vibration 

signatures was also carried out by0seguedaandD'Souza(l992). Modal testing of a jacket

type offshore structure model was conducted. The damage was caused by disconnecting one 

end of a diagonal member at the lower joint. Osegueda and D'Souza (1992) evaluated the 

damage in each member by comparing the internal modal energy distribution of the 

undamaged structure to that of the severed structure. Experimental results of damaged 

structures showed that the damage would occur at the element with high energy distribution. 

This technique could locate the correct member which has been affected by the damage. 

Chen and Swamidas ( 1993) proposed a procedure of modal testing for detecting the 

crack growth in a tripod tower platfonn using global sensors (an accelerometer and a linear 

variable displacement transducer (LDVT)) and local sensors (strain gaug~s). In order to 

confirm the accuracy of experimental results. a numerical computation using FE analysis was 

also carried out. The damage was modeled as a small crack (45° inclined saw cut). Results 

showed that accelerometers and LDVTs could determine changes of natural frequencies in 

the structure. These changes indicated the possibility of a growing crack in the structure. 

Strain gauges located in critical areas of the structure could find out the location and 

magnitude of the crack. 

Chen ( 1996) investigated vibration techniques for crack detection in fatiguing plate

type structures using the model of plated T -joints. He performed modal testing on fatigue-
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cracked models of plated T -joints to measure the Frequency Response Function (FRF). 

Numerical calculation was also carried out using FE analysis, and results were refined by 

comparing the FRF from the FE and intact experimental models. A combination of the 

experimental and numerical procedures was then developed to find out the location, length 

and depth of the crack. Chen (1996) stated that this method was a promising method for 

crack detection in complex structures such as offshore structures, and would help in the 

further development of a new vibration-based NDE technique for industrial applications. 

In addition to the literature reviewed above, Doebling et al. (1996) have reviewed 

many papers dealing with damage identification of structural systems due to changes in their 

vibration characteristics. Their report describes the development of damage identification 

methods and applications, and summarizes the cUITent state-of-the art. They stated that 

measured vibration data could be used to identify the damage in structures. However, they 

noted that the literature needs to focus more on specific applications and industries, and that 

researchers should focus more on the testing of real structures in their operating environment. 

The performance of some damage identification methods, i.e., MAC, CO MAC, MSF, 

RD. and Change in Modal Vector Perpendicular to Predominant Modal Direction, on 

offshore platforms was evaluated by Viero and Roitman (1999). Two different small scale 

and redundant hydroelastic models, constructed based on the Similitude Theory, were tested 

in air. The results showed that the MAC and MSF methods had a sensitivity to the imposed 

damages and the deck mass changes. The COMAC method was able to clearly indicate the 
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damage location. The Change in Modal Vector Perpendicular to Predominant Modal 

Direction method was able to detect damage using a deck instrumentation only. 

All the methods reviewed here could identify the existing damage, and some of them 

could give the location and the extent of damage in structures. The severity of damage was 

mostly simulated by cutting off (in physical experiment) one or more members, or by 

reducing the stiffness of one or more elements where the crack was located. However, these 

methods have evaluated only the damages that occur in trusses, frames. beams, and plates 

used in applications for civil, mechanical, and aerospace engineering. No available 

publication identifies the damage in stiffened plates and its application to ship structures. 

2.3.2 Neural Network Procedures 

While NDE techniques that utilize the changes in vibration characteristics of structures have 

been examined by many researchers, in recent years, many other researchers have developed 

non-parametric identification approaches for assessing structural damage. They use a new 

computing architecture, called neural network technique, which was inspired by the study 

of the behavior of human brain and nerve cells. The following discussion reviews the use of 

neural networks for detecting and identifying the damage in structures. 

Wu et al. (1992) used back-propagation neural networks with a single hidden layer 

to simulate the damage states in structures using a three-story building frame. The structure 

was subjected to an earthquake excitation, and its transient response was computed in the 
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time domain. The damage was modeled by reducing the stiffness of its members. A neural 

network was used to identify the map from the Fourier spectra as input data to the level of 

the damage in each of the members as output data. As a pilot study, this neural network could 

identify any existing damage in structures with promising results. 

Kudvaet al. ( 1992) also used a back -propagation neural network to detect the damage 

in an aircraft structure which was represented as a 16-baystiffened panel model. The damage 

was represented as circular holes of various sizes and at several locations. Their effects on 

strain values were determined using FE analysis. A neural network was utilized to identify 

the map from the strain gauge data as input data to the location and the size of the hole as 

output data. They found that a neural network could be used to determine the damage 

location without any appreciable error. but stated that the prediction of damage size was 

more difficult giving sometimes erroneous results. 

The work of Kudva et al. (1992) motivated Worden et al. (1993) to locate the 

position of a fault in the framed structure using a multi-layer perceptron (MLP) neural 

network. In order to model the damage, one of the structural members was removed 

completely. The neural network was used to identify the map from static strain data as input 

data to a subjective measure of the damage as output data. Like Kudva et al. ( 1992), Worden 

et al. ( 1993) also trained the neural network using data from FE simulation. However, unlike 

Kudva et al. (1992). who did not test the trained neural network using data from 

experimental results, Worden et al. (1993) also compared the trained neural network with 
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the experimental results from a two-dimensional cantilever latticework model. The results 

showed that a trained neural network could successfully locate faults in an experimental 

structure even though the neural network. was trained using FE data. 

Elkordy et al. (1993) investigated the feasibility of using analytically generated states 

of damage to train neural networks. They used data obtained from two analytical models of 

a five-story steel frame. A neural network was utilized to identify the map from the mode 

shapes as input data to the percentage change in member stiffness as output data. The 

capability of the neural network was verified using a set of the damage state obtained from 

the shaking-table test of a physical model of the five-story steel frame. Elkordy et al. (1993) 

stated that a trained neural network has the strong potential for making on-line structural 

monitoring a practical reality. 

The use of an MLP neural network, based on a training algorithm, to identify damage 

in a four element cantilever beam was presented by Leath and Zimmerman (1993). The 

damage in the beam was modeled by reducing Young's modulus up to 95%. The algorithm 

was able to identify damage with a maximum error of 35%. 

Szewczyk and HajeJa ( 1994) used an improved counter-propagation neural network 

(CPN) to detect the damage in structures. They modeled the damage as a reduction in 

stiffness of a structural element that was measured by its static displacement under prescribed 

loads. A neural network was used to identify the map from static deformation under load as 

input data to Young's modulus of the members as output data. Szewczyk and Hajela (1994) 
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observed from exercises on framed structures that a neural network performance was 

generally precise, with gradual deterioration in the presence of noisy and incomplete 

measurements. 

Ceravalo and Stefano ( 1995) used a back-propagation neural network for identifying 

damage in a truss structure modeled using the FE method. In this study, damage was modeled 

by removing elements of the truss. The results showed that the network located the damage 

well. However, the authors did not discuss how noisy measurements or multiple damage 

would affect the results. 

A neural network approach, for damage detection and identification in structures, also 

attracted the attention of Rhim and Lee ( 1995). They used a MLP neural network to identify 

the characteristics of damage in composite structures. Delamination in a FE model of the 

structure was used to model the damage. Before a neural network was applied, forces and 

accelerations were extracted using an auto-regressive exogenous (ARX) model as transfer 

function input patterns, and various types of damage were designed as output patterns. A 

neural network was used to identify the map from the characteristic polynomial as input data 

to an empirical damage scale as output data. The results from numerical simulation 

demonstrated that this method had potential for practical application since it was robust to 

measurement noise and distortion of input patterns. 

Barai and Pandey (1995) also adopted a MLP neural network with a back-propagation 

learning paradigm to identify damage in truss structures such as railway bridges. The damage 
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was simulated by reducing the area of its members. The neural network was used to identify 

the map from various nodal time histories measured in-situ, as input data. to the changes in 

the cross sectional of the stiffness, as output data. FE modeling of the truss structure with a 

moving point force was used to train the neural network. They claimed that this method had 

great potential for damage identification and needed to be investigated funher. They also 

stated that a suitable chosen location of vibration signature measurements was imponant, 

since it affected the accuracy of results. 

Adaptive resonance theory (ART) neural networks were applied by Mangal er al. 

(1996) to detect the damage in the model of a jacket-offshore platform. The neural network 

was used to identify the map from natural frequencies and modal vectors as input data to the 

changes in deck mass and stiffness, respectively, as output data. FE analy:\is was used for 

numerical computations. and the results used as input and output data for training neural 

networks. As a comparison, the damage in the model was also detected by using a back

propagation network (BPN). Both ART and BPN gave good results for damage detection. 

However, while the previously trained BPN could not adapt itselfto new situations, the ART 

could adapt itself to changed conditions and new situations. Therefore, for better 

performance Mangal et al. (1996) suggested that both ART and BPN should be used 

simultaneously. 

Two probabilistic neural networks were used by Klenke and Paez ( 1996) to identify 

the damage in mechanical systems. The first technique used a probabilistic neural network 
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(PNN) that used Bayesian decision analysis, and the second one used a probabilistic pattern 

classifier (PPC) which was designed by Klenke and Paez (1996). PNN was used to analyze 

a number of undamaged and damaged systems, and the PPC was used to analyze the member 

location of the damaged system. An experimental measurement of an aerospace housing 

component using the virtual environmental for test optimization (VETO) was carried out for 

generating experimental data in which damage was represented by five progressive cuts in 

the housing. Based on the experimental results, Klenke and Paez ( 1996) stated that both PNN 

and PPC clearly offered robust methods for assisting in damage identification of structures, 

even in the most lightly damaged case. However, these methods could not determine the 

location and the extent of damage. 

Masri et al. (1996) used a feedforward multilayer neural network to detect damage. 

in linear and non-linear systems. Their approach was based on the identification of a high

fidelity neural network to match the restoring forces associated with an element of the system 

to be monitored. The changes in stiffness and damping were used to simulate the damage. 

The neural network was used to identify the map from the velocity and the acceleration, as 

input data. to restoring forces, as output data. Vibration measurements from a healthy system 

were required for training the neural network using an adaptive random search algorithm. To 

monitor the health of the systems, the trained neural network was fed with comparable 

vibration measurements from the same systems under different conditions of responses. 

Outputs from the neural network and systems were compared, and damage in the system 
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could be identified by observing the output errors between them. Masri et al. (1996) stated 

that this approach provided a robust method for damage detection through monitoring of the 

systems' restoring forces. even for a small change in modal parameters. 

The limitation of traditional neural networks (TNN) in dealing with patterns that may 

vary in the time domain caused Barai and Pandey (1997) to develop their investigation in the 

damage identification of truss structures. In this study. they applied time-delay neural 

networks (TDNN). In order to demonstrate the superiority of the TDNNs, they also used their 

previous data (Barai and Pandey 1995) to train TDNNs. Unlike the TNNs. which provided 

a signal to the network from a series of input channels in tum, the TDNNs provided a signal 

to the network from a series of input channels together. Based on the comparison results of 

the damage detection of railway bridges, Barai and Pandey (1997) concluded that TDNNs 

perfonned better than TNNs. 

Seed and Murphy (1998) were successful in applying the multilayer pen:eptron neural 

network for modeling the chaotic behavior of the growth of short fatigue cracks in medium 

carbon steel. They used the Hobson short fatigue crack growth law for modeling fatigue 

crack growth. The neural network was used to identify the map from the number of separate 

crack data a, as input data. to crack growth rate dD/dN. as output data. The results were then 

used for predicting the characteristics of microstructural threshold d and empirical constants 

a; , and C using the following equation: 
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(2.2) 

The application of neural networks in the area of floating bodies is very limited. 

William (1993) discussed a general understanding of how neural network technology can be 

used for solving complex problems in naval and commercial ships, i.e.: on-line maintenance 

monitoring, diagnostics, and failure prediction systems. Roskilly and Mesbahi (1996) used 

artificial neural network for simulating the pipe connections in a marine system, representing 

the data in the Moody diagram. Haddara et al. (1992, 1994, 1995, 1996, 1998, and 1999) 

used a neural network technique for identifying ship's parameters such as ship's stability, 

free roll decay, free response of coupled heave-pitch and sway-yaw motions, and 

hydrodynamic characteristic from ship maneuvering trails. 

Beyond what is mentioned in the above literature discussed review, some researchers 

have carried out studies on modal parameter identification using neural networks. Although 

these studies did not specifically refer to damage in structures, their ideas could be applied 

to the identification of structural damage. Lim et al. ( 1996) developed the concept of a neural 

network that could identify the modal parameters of structures such as natura] frequency, 

damping ratio, and mode shape on-line. Yang and Lee ( 1997) developed a back-propagation 

neural network for system identification, on-line state estimation, and vibration suppression 

to control the vibration response of composite smart structures with built-in sensors and 

actuators. 
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2.4 Summary 

Most of the damage in ship structures occurs at the connection between the longitudinal and 

heavy transverse members of the side shell. Numerical and experimental studies have been 

carried out for damage identification in ship structures. However, only a few numerical 

methods are available to identify the existing damage in ship structures where the location 

and the extent of damage could be identified. Moreover, all the earlier experimental methods 

used destructive techniques where the structural member was completely damaged and 

focused their attention on the identification of damage that occuned only due to accidents. 

On the other hand NDE techniques. using changes in vibrational characteristics of 

structures via modal testing and analysis, are widely used for damage detection. With the 

advancement in computer perfonnance capability, the availability of more accurate modal 

testing devices, and the development of FE analysis, the diagnosis of damage using these 

techniques could not only identify the existence of damage, but could also give the location 

and accurate extent of damage. However, the use of these techniques is still limited for 

structures such as trusses, frames, beams and plates. No available technique identifies the 

damage occurring in stiffened plates and its application to ship structures in which the water 

effect was considered. 

In the meantime, the use of neural network techniques for damage identification in 

structures is still in its beginning stages. Although many neural network techniques could 

determine the existing damage without errors, their capabilities for identifying the location 
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and the extent of damage still lack precision. Like modal analysis, most of the available 

techniques using neural networks have only been applied to structures such as trusses, 

frames, beams, and plates. 

Based on the above review, the present study as given in the subsequent Chapters 

extends the current techniques to the stiffened plates used for ship structures. This procedure 

uses a combination of current neural network techniques and modal testing to identify the 

existing and the location of damage. Meanwhile, numerical computation using FE analysis 

would also be carried out. The goal of this study would be the development of a neural 

network technique that could identify not only changes of the modal parameters recorded at 

several critical locations in the side shell due to the existing damage. but also give the precise 

location and the extent of damage on-line. 
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Chapter3 

Theoretical Background 

3.1 Finite Element (FE) Analysis 

The aim of the present study is to identify the change in the dynamic response of the stiffened 

plate models when a damage occurs. It would be preferable if one can use a large number of 

physical models which cover all damage scenarios. Because of cost and time constraints. 

only four models were fabricated and used to measure the dynamic response. In order to 

complement the experiments, finite element models were developed to obtain the dynamic 

response in cases that were not covered by the experiments. These will be referred to as FE 

models. The following general equation of motion for a multiple-degrees-of-freedom system 

was used in formulating the FE models: 

[MJ{V(t)} + [C]{V(t)} + [K]{v(t)} = {f{t)} (3.1) 

where [.M]. [C] ,and [K] are the mass, viscousdampingandstiffnessmattices,respectively, {v} 
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is the displacement vector and {Itt)} is force vector. It is assumed that the viscous damping 

matrix [ C] or Rayleigh damping can be expressed as: 

[C] = CI(Mj + PlKJ 

where ex and p are proportionality constants. The solution of Equation (3.1) is valid for any 

time t > 0 and any set of initial conditions. Details of the derivation of Equation (3.1) using 

FE analysis are given in Appendix A. 

3.1.1 Application of FE Analysis in the Present Study 

In the present study, FE analysis was used to model the stiffened plate and its supports. 

Unlike Satsangi and Ray (1998) who used an eight noded isoparametric plate element to 

model the plate and a three noded beam element to model the stiffener, the present study 

used an eight noded shell element (parabolic thin shell elements) for modeling both the 

stiffened plate and its supporting structure. The reason for modeling the suppons is to 

simulate the vibration of the tank bottom, which occurred due to manner in which the 

stiffened plate model was connected to the tank bottom. The stiffened plate and its supports 

were discretized into 3208 elements and the results are shown in Figure 3.1. 
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3.l.a: The stiffened plate 3.l.b: The left support 3.l.c: The right support 

not to scale 

Figure 3.1: FE Model of the Stiffened Plate and its Supports using Thin Shell Elements available in I-DEAS Program 
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In the experimental study. a crack was made in the faceplate of the longitudinal near 

the heavy transverse member using a saw blade. Therefore. the crack was modeled by 

creating a gap of 0.01 inch wide between identified elements. This represents the thickness 

of the saw blade. The model was used to generate the frequency response functions. the free 

vibration responses. the auto- and cross-correlation functions. and the modal parameters of 

the undamaged and the damaged stiffened plate models. 

The calculations were perfonned using an industrial package: I-DEAS Master Series 

software package (Lawry. 1996). This package determines the modes of vibration 

characterized by the natural frequencies and mode shapes. and uses these to calculate the 

dynamic responses such as the frequency response functions, the free vibration responses.. 

and the auto and cross-correlation functions. When the modes of vibration were obtained. 

the resulting equations of motion are: 

[\M\]{ji} + [\C\]{.V} + [\K\]{y} = {l{t)} (3.2) 

but now the mass. damping and stiffness matrices are diagonal. making the mathematics 

much simpler. Equation (3.2) is called the modal form of the equation of motion. 

3.2 Modal Analysis 

Modal analysis is the process of characterizing modal parameters of a linear. time-invariant 
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system eitherthrough analytical or experimental approach. In orderto apply modal analysis 

to the system, the system is assumed to satisfy the following four basic assumptions 

(Allemang et al., 1996): 

a. The structure is assumed to be a linear. This means that the response of the system, 

due to any combination of forces which applied simultaneously, is equal to the sum 

of the individual response to each of the forces acting alone. 

b. The structure is time-invariant. This implies that the system parameters such as the 

mass, the stiffness, and the damping ratio are constants with respect to time. 

c. .The structure is considered to follow Betti-Maxwell' s reciprocal theorem. It states 

that the deformation at point j due to a force applied at point k. is equal to the 

deformation at point k due to a force at point j. Under this condition, it is required to 

measure only a column or a row of the system frequency response functions. 

d. The structure is observable. The input-output measurements that are made contain 

enough information to generate an adequate behavioral model of the structure. 

The theory of modal analysis and testing used in the present study is reviewed in 

Appendix B. 
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3.2.1 Application of Modal Analysis in tbe Present Study 

The modal analysis and testing were used to record the dynamic responses of the stiffened 

plate model due to a fast sine sweep excitation, from which the frequency response functions 

(FRFs) were obtained. Furthermore, the modal parameters, such as the natural frequencies 

and damping ratios were extracted from the conesponding FRFs. 

A single input/single output (SISO) function was used to measure the acceleration 

FRF models at six different locations in the stiffened plate. The experimental FRFs were 

measured using the B&K 2034 signal analyzer (Bruel &Kjaer Inc., 1987). The B&K signal 

analyzer provided facilities to solve the problems outlined in Appendix 8.2.1 - 8.2.4. A 

Hanning window was used for signal analysis, and a linear averaging method with 75% 

overlap was used in which the number of averaging was 100. Also, a zoom of 50.00 Hz 

frequency span was used so that a better acceleration FRFs {coherence = LOO) can be 

obtained. The FRFs obtained using the B&K 2034 signal analyzer were then transferred to 

a personal computer using the National Instruments GPIB interface. The modal parameters 

were extracted using The STAR STRUCf® software {Spectral Dynamics, Inc., 1994). A 

block diagram for the experimental procedure is given in Chapter 4. 

The experimental FRFs and the corresponding modal parameters were utilized to 

verify the correctness of FE model. The analytical FRFs were calculated using the FE 

analysis performed using the I-DEAS Master Series software package (Lawry, 1996). An 

impulse excitation was applied to the dynamic model to obtain the numerical FRFs and their 
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modal parameters. 

3.3 Random Vibration 

3.3.1 The Random Decrement Technique 

The random decrement technique, called randomdec technique hereafter, is a technique 

developed for averaging the time history of the random response of a structural system to 

obtain an estimate of its free vibration response. This response is usually referred to as the 

randomdec signature. The main advantage of this technique is that only the measured 

dynamic response of a structure is needed Therefore, this technique can be used to identify 

the free vibration response of a structure on-line without disrupting the normal operation of 

the structure being tested. 

The randomdec technique was empirically developed by Cole (1973) for detecting 

the failure of a space shuttle wing model. He also hypothesized that the randomdec signature 

is equivalent to the free vibration response of the system with initial displacement equal to 

the threshold level and an initial slope equal to zero. 

The basic concept of the randomdec technique is based on the fact that the random 

response of a structural system under random excitation is composed of two components: a) 

a deterministic component and b) a random component (assumed to have a zero average) 

(Ibrahim, 1977). By averaging enough samples of the random response, the random 

component of the response will average out to zero, leaving the deterministic component of 
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the response, which gives the randomdec signature. The technique computes the average of 

a large number (N) of segments, each of time length 'f of the random response {y(t)} given 

by Equation (3.2) in the following manner. 

The starting time t; of each segment is selected such that {y(t;)} = {.v,} = constant. 

called threshold level or trigger level, and the slope {Kt1)} has alternating positive and 

negative values. This process can be represented in mathematical form as follows: 

{x('f)} = ..!. t {y ( tt + 't)} 
N i"' I 

(3.3) 

where: 

i=l,2,3 .... 

i=l,3,S . ... 

{Y(t;)} ~ 0 i=2,4,6 .... 

The function {x('f)} is the randomdec signature, and is only defined in the time 

interval 0 ~ 't ~ 'f 1 , where 't 1 is the length of the random record. An example of the 

randomdec signature {.x('t)} obtained using Equation (3.3) is shown in Figure 3.2. 

Next, replacing time t in Equation (3.2) with (11 + 'f), summing over number of 

segments N, dividing by N , and using Equation (3.3), Equation (3.2) can be written as: 
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y(t) 

3.2.a. A random response 

X(T) 

3 .2.b. Signature after two averages 

xtr) 

3.2.c. Signature after N averages 

Figure 3.2. The Extraction of Randomdec Signature from a Random Response 
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[MJ{.i('t)} + [C]{.i('t)} + [K]{x('t)} = )_ t {f{t;+'t)} (3.4) 
N i=t 

Now considering the right-hand side of Equation (3.4), since {f{t)} is a stationary random 

input with zero mean, and Gaussian random process, then: 

(3.5) 

and Equation (3.4) reduces to: 

[M]{i('t)} + [C]{.i('t)} + [K]{x('t)} = 0 (3.6) 

Equation (3.6) and Figures 3.2.c. describe the free motion of the system whose forced 

response is described by Equation (3.2). 

Vandiver et al. (1982) developed a mathematical basis for the relationship between 

the autocorrelation function and the randomdec signature. For a single-degree randomdec 

signature, they have shown that the randomdec signature is related to the autocorrelation 

function as follows: 

(3.7) 

From Equation (3.7), it can be observed that the autocorrelation function of the 
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random response is proportional to the randomdec signature. This means that the 

autocorrelation function and the randomdec signature have similar behavior and properties. 

3.3.2 The Auto- and Cross-correlation Functions 

The correlation function defines the correlation between two parameters as a function of the 

time (Curtis and Lust, 1996). H the two parameters are the same except for the time of 

observation, i.e., y(J) and y(j + 't), the function is known as an autocorrelation function. The 

mathematical expression of the autocorrelation function R
7
y('t) is given as 

1 J-'t 
R {-r) = -- E y(])y(j+-r) 

))' J- 't j•l 
(3.8) 

If the two parameters are physically distinct, i.e., y
1
(J) and y2(j + 't) the function is known 

as a crosscorrelation function R {'t) as shown in Equation (3.9): 
Y": 

(3.9) 

On the other hand, the power spectral density (PSD) S,.(w) provides information of 

the random response in the frequency domain. PSD is the FastFourierTransfonn (FfT) of R,.( 't) 

as shown in Equation (3.10): 
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• S (w) = JR ('t) e--..~ dt 
JIY " 

(3.10) 

--
Therefore. the autocorrelation function can be obtained in the form of an Inverse Fast 

Fourier Transform (lfFf) of the PSD: 

1 f- . R ('t) =- S (w)e .. " dw 
JIY 21t JIY 

(3.11) 

-· 

3.3.3 Application ofRandomdec Technique, the Auto- and Cross-

correlation Functions in the Present Study 

The randomdec technique. and the auto- and cross-correlation functions were used to analyze 

the experimental random response so that an estimate of its free vibration response can be 

obtained. The random response of the model was obtained by applying random excitation to 

the model. A single input/multiple output (SIMO) procedure was used to measure the 

acceleration random responses at six different locations on the stiffened plate model. 

The acceleration random response was filtered using a wide-band filter around the 

predominant frequency. The filtered results were then analyzed using Equation (3.3) to 

obtain the randomdec signature. and using Equations (3.8) and (3.9) to obtain the auto- and 

cross-correlation functions. The filtering of the random responses and the calculation of the 

auto and cross-correlation functions were performed using the Matlab 4.1 software package 

(The Math Works, Inc, 1992). A FORTRAN program was used to calculate the randomdec 
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signature. 

The FE model was used to obtain the free vibration response and the autocorrelation 

function. The free vibration response was obtained by exciting the model using an impulse. 

A white noise random signal was used to excite the model, and the random response was 

used to determine the power spectral density (PSD). The autocorrelation function was 

obtained by applying an Inverse Fast Fourier Transform (IFFf) to the PSD. All processes 

were performed using I-DEAS Master Series 6 software package (Lawry, 1996). Similar to 

the experimental autocorrelation functions, the numerical autocorrelation function were also 

filtered using the Matlab 4.1 software package mentioned earlier. 

3.4 Added Mass 

The stiffened plate models represent the side shell, of a ship's structure, which is always in 

contact with water; therefore, the influence of the water on the models must be considered. 

This effect can be represented as an added mass. The effect of the added mass is to cause a 

decrease in the natural frequency and an increase in damping ratio of the model. 

There are many theoretical and experimental studies which have been canied out to 

determine the added mass coefficients for similar structures. Haddara and Cao ( 1996) 

developed a non-dimensional value, called an added mass factor (.AMF') to measure the 

change in the natural frequencies due to the fluid-loading effect. They defined the added 

mass factor as: 
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where: 

M.. 
I AMF=--

M,., 
(3.12) 

(3.13) 

and M;• is an added mass of the;"' mode of the model, M,., is mass of the ;til mode of the 

model in air, and M,JIDI is the mass of the ;"' mode of the model in water. 

Since the physical stiffness [K] of the models remain unchanged whether they are 

in air or in fluid. and the undamped natural frequencies (&); are given by: 

(3.14) 

The following relation is obtained: 

(3.15) 

or: 
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(3.16) 

By substituting Equation (3.16) into Equation (3.12), the following equation is 

obtained: 

(&) 

AMP=< ~- r- 1 
(&) i/bllll 

(3.17) 

3.4.1 Application of an Added Mass Factor in the Present Study 

The natural frequencies of the stiffened plate models in air and in water obtained from the 

experiments were used to calculate the AMF in Equation (3.17). The AMF was used to 

estimate the added mass value using Equation (3.12). The added mass was then added to the 

mass of the stiffened plate models used in calculating the vibration responses using the FE 

analysis. 

3.5 Artificial Neural Networks 

An anificial neural network is an information processing system that is nonalgorithmic, and 

intensely parallel. It is not a computer in the sense people think of them as today, nor it is 

programmed like a computer (Caudill, et al., 1994). It is inspired by the neuron architecture 
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and operation of the human brain, which has a capability to handle problems such as 

language understanding, visual processing, speech recognition, and other tasks which involve 

perception and induction. A basic nerve cell or neuron is composed of a processing body, 

transmitting axons, receiving synapses, and dendrites as shown in Figure. 3.3. It can be seen 

from Figure 3.3 that dendrites feed information into each neuron or nucleus. At each 

dendrite/ neuron interface, a synapse controls the strength of the signal fed in. Each neuron 

sums its inputs and sends out a signal along its single axon if the sum is above certain 

threshold. The axon branches into dendrites which feed into other neurons. 

1 Axon hillock 

.!~----....... 

Figure 3.3: Biological Network 

Based on the understanding of neurons. a computational model of a neural network 

was developed. For a single nerve cell, it could be modeled as an artificial neuron 
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(computational unit). which consists of receiving sites (synapses), receiving connections 

(dendrites). a processing element (cell body). and transmitting connections (axons) as shown 

in Figure 3.4. 

Mathematically. it consists of an input layer. one or more hidden layers and an output 

layer of neurons. The input and hidden layers each contain one bias neuron with input unity. 

The summed inputs into the hidden layer neurons are processed by a transfer function when 

they pass through the neuron. For the nodes in the hidden layers. the most widely used type 

of transfer function is a sigmoid function. 

The sigmoidal or the S -shaped function which drives its name from sigma for S in 

Greek, relates the output of a neuron to the weighted input. which the neuron receives, as 

follows: 

1 - e -t 
j{i)=--

1 + e -t 
(3.17) 

The j{z) plays a central role in neural networks since it simulates the firing action of the 

biological neurons. The value of j{l) in Equation (3.17) is always between -1 and +1. 

For a single input-output case, the mapping equation for a single neuron as shown in 

Figure 3.4 (Haddara and Hinchey, 1995) is given by: 

(3.18) 
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where: 0 is an output of a single neuron, W IB is a threshold applied to neurons in the hidden 

layer (unity), W 1M is a threshold applied to neurons in the hidden layer (input), W0• is a 

threshold applied to neurons in the output layer (unity), and W0 .v is a threshold applied to 

neurons in the output layer (input). 

It can be seen from Equation (3.18) that the weights can be used in an input-output 

plot to scale and shift both horizontally along I and vertically along 0 using the transfer 

function. 

In the present study, the creation of the neural network to model an input-output 

system is achieved by establishing the appropriate values of the connection weights ~and W0 

using a learning algorithm so that the response ON of the system matches the target response 

OT. The Method of Steepest Descent was used to optimize the weights using an iterative 

procedure. The training starts by assigning arbitrary values to the weights so that the value 

of the response error is determined as: 

(3.19) 

where Er is an error, ON is a network output, Or is a target output, and 
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where W0 is synapses weights applied to inputs to the neurons in the output layer and M is 

output from a hidden layer. 

In order to get the appropriate values of the weights. the error squared EEr1 must 

be minimized. For small changes in W0 and M. one can write: 

(3.20) 

Since M = .I[E W11], AM= E aM A W1; therefore, the Equation (3.20) can be written as: 
aJVr 

A&l = E [ CJErl ]AW: + E [ iJErl] E aM AW. 
aw 0 

· aM aw 1 
0 I 

(3.21) 

At each step. the next weights are calculated according to: 

W(NEW) = W(OW) + A W (3.22) 

Therefore: 

(3.23) 

and: 
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(3.24) 

where K is parameter. The negative of the gradient in Equations (3.23) and (3.24) shows the 

direction of steepest descent. 

The above technique was applied to identify the extent and the location of damage 

in the stiffened plate models using Equation (3.1). For this purpose, Equation (3.1) is 

rewritten as a set of independent equations using modal analysis. 

In order to obtain the independent equations fonn of Equation (3.1), the eigenvalue 

problem of the undamped system associated with matrices [M] and [K] is solved. The 

solution can be written in the general fonn: 

[MJ[p]((a)!J = [K][p] (3.25) 

The modal matrix [p] can be normalized so as to satisfy 

(3.26) 

(3.27) 

Next, the following linear transformation is considered: 

{v(t)} = [pl{z(t)}. (3.28) 
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relating the vectors {v(t)} and {z(t)}, where the vectors represent two different sets of 

generalized coordinates. Because fp] is a constant matrix, a transfonnation similar to 

Equation (3.28) exists between {W(t)}, {ii(t)}, and {Z(t)}, {i(t)}. Substituting Equation 

(3.28) into Equation (3.1), premultiplying by fp]r, and considering Equations (3.26) and 

(3.27), one obtains 

{i(t)} + [CJ{Z(t)}+ £(1)!Hz(t)} = {G(t)} (3.29) 

where: 

{G(t)} = fp)T {J{t)} (3.30) 

(3.31) 

Matrix [C] can be assumed to be a linear combination of matrices [MJ and [K], and u and p 

are constants, thus the matrix [CJ is diagonal. If 

[CJ = [2{w.] (3.32) 

Equation (3.29) can be written in the following fonn. 

zr<t> + 2{,w,.,z,(t) + (l)!,z,(t) = G,(t), ,. = 1, 2, ... , 1ft (3.33) 
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Equation (3 .33) is a set of m independent equations of the original Equation (3.1) and similar 

to Equation 3 .2). Therefore, it can be written in the form of the random decrement equation. 

i,.(t) + 2{ ,.W J,.(t) + ID ~,.(t) = 0 (3.34) 

Introducing 

F,(x~,.) = m!, r:; x,. + 2 {, w,.,:i,. (3.35) 

into Equation (3.34). one obtains 

i,(t) + m~,.(t) + F,.(x~,) = 0 (3.36) 

where Cal d., is the frequency of the damped free vibration. The mathematical formulation 

given by Equation (3.36) describes the free motion of a set of models whose forced response 

is described by Equation (3.1). Equation (3.36) was used to identify the occurrence, extent, 

and location of the damage by estimating the function F,.(x,.;i,.) for the undamaged and 

damaged conditions at the predominant mode using a neural network technique described 

above. 

The rationale behind using the function F,.(x,..;i,) for damage identification is that the 

presence of damage causes the change of dynamic responses of the model such as 
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displacement x, and velocity i. It can be analyzed from Equation (3.35) that the change of 

x, and i causes the change of the function F,(x,~,). 

3.5.1 Application of the Neural Network Technique in tbe Present 

Study 

In order to determine the function F,(x,~,), a block diagram of the neural network, which 

represents Equation (3.36) was designed as shown in Figure 3.5. The network has an input 

layer, a middle or hidden layer of six neurons, and an output layer of neurons. The input and 

hidden layers each contain one bias neuron with input unity. For the undamaged and each 

damaged condition, the autocorrelation function that could represent a free motion of the 

system (Zubaydi et al., 2000). and its first derivative were used as input data to the network. (a)!,. 

is obtained from the autocorrelation function by measuring the period of the decaying 

oscillation. 

The function F,(z,.,i,) was expressed as a nonlinear function of the displacement x, 

and velocity i using two sets of weights using the neural network algorithm as: 

(3.37) 

where: 
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Figure 3.5: Block Diagram for the Neural Network used in Damage Identification 
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(3.38) 

and M0 = l and x0 = 1. 

The weights wfo> and ~o> were applied to input and the hidden layers, whereas M1 

is the output of the k"' neuron in the hidden layer. By obtaining the two sets of weights 

(W
1

, W o> and substituting them to Equation (3.37) and (3.38). the function F,.(x,,i,.) can be 

obtained. 

The function F,.(x,...;t,.) determined from the network is then substituted back in 

Equation (3 .36) and the equation is integrated numerically using a fourth order Runge-Kutta 

technique to obtain the corresponding estimates of the average values for the autocorrelation 

function. The estimated autocorrelation function is then compared with the input 

autocorrelation function. The difference between the two is the error to be minimized in the 

subsequent iterations. 

The experimental and numerical autocorrelation functions of Model #1. its first 

derivatives. and the damped frequencies for all cases were used as input data for training the 

neural network. The neural network technique used for damage identification was written 

using a FORTRAN program. 
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3.6Summary 

This Chapter provides an overview of the theoretical approach used in the present study. It 

discusses the general equation of motion of system with viscous damping in Section 3.1. 

Section 3.2 summarizes the theory of FE analysis used to generate an FE model, and its 

solution procedure for the dynamic analysis of thin shell elements. In Section 3.3, the theory 

of modal analysis and testing provides a basis for understanding the methodology used for 

the computation and for the planning of the experimental study, in which the dynamic 

characteristics such as FRFs and modal parameters are obtained. 

Next, Section 3.4 provides the methods for interpreting the random responses using 

the randomdec technique, the auto- and cross-correlation functions. The calculation of added 

mass factors from the natural frequencies of a vibrating structure in air and in water was 

discussed in Section 3.5. Finally, in Section 3.6, the theory of neural network and its 

application for identifying the occurrence of damage in the stiffened plate models as well as 

its extent and location were summarized. 
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Chapter4 

Experimental Study 

4.1 Introduction 

Experimental studies are very important tools for investigating the behavior of a structure, 

since they make it possible to gain a direct insight into problems which are difficult to 

conceive analytically. Therefore, in order to investigate the behavior of an undamaged and 

damaged stiffened plate structure in air and in water and to make the correlation with 

analytical results, the experimental study of the stiffened plate models were carried out. 

As pointed out in the literature review and discussed in the theoretical background, 

any physical change that occurs in the structure, such as a crack, will cause changes in the 

physical properties. These can be expressed in terms of changes in the mass, stiffness and/or 

damping of the structure. The change of stiffness or damping will produce changes in the 

modal parameters such as natural frequencies~ damping ratios, and mode shapes of the 

structure. The change of mass as a consequence of a crack is negligible. 
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Among the various modal testing techniques available for damage identification, the 

acceleration FR.Fs and acceleration random responses were utilized in the present study. 

Accelerometers were used to measure accelerations of the stiffened plate models from which 

the acceleration FRFs and random responses can be obtained. 

In this chapter, the details of the experimental study of the stiffened plate models are 

described. This includes the fabrication of the models, the experimental setup, 

instrumentation, calibration, and the procedure of the experiment. Data processing and 

analysis will be meaningful only when proper data acquisition has been made using the 

correct experimental methods. 

Four models of the stiffened plate have been tested in the present study. One model 

has been tested in air, and the remaining ones have been rested in water. For convenience, 

the tested models will be identified as Models #1, #2, #3, and #4, respectively. In orde;: to 

monitor the responses, six accelerometers were attached to each model at six different 

locations. 

The experimental study has been carried out in the Fluids & Hydraulics Laboratory 

of the Faculty of Engineering and Applied Science. The details of the experimental study are 

given in the subsequent sections of this chapter. 

4.2 Fabrication of the Stiffened Plate Models 

Two pieces of 7 I 16 inch and one piece of V2 inch thick structural plate, along with one piece 
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of unequal leg angle steel section of 'h inch, were jointed together by welding to form a 

stiffened plate model as shown in Figure 4.1. Figure 4.2 shows the dimensions of the single 

stiffened plate model. The dimensions were measured when the surface of models were dry 

and clean. A photograph of one of the tested stiffened plate model, Model #3 is shown in 

Figure 4.3. The choice of dimensions was based on a combination of factors, namely, the 

dimensions of real ship structures, the maximum capacity of the equipment available at the 

laboratory, and the materials available in the Faculty of Engineering and Applied Science, 

Memorial University of Newfoundland. St. John's. 

However, due to manufacturing errors, the actual thicknesses of plate and angle 

sections were different for different specimens; they were different from those given in the 

fabricator's data sheet. In order to have the actual dimensions of the model, the thickness of 

the tested specimens were measured at several locations on the Models and the average 

values are listed in Table 4.1. 
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Table 4.1: The Thickness of Stiffened Plate Models (inches) 

EKperimental specimens measurements 
Geometry Fabrication 
(thickness) data sheet Model Errors Model Errors Model Errors Model Errors 

#I (%) #2 (%) #3 (%) #4 (%) 

Side shell 
7116 0.4554 4.09 0.4560 4.23 0.4570 4.46 0.4570 4.46 

plate 

Unequal 0.50 0.4997 0.04 0.5170 . 3.40 0.5100 1.80 0.5080 1.60 angle 

Transverse 0.50 0.5086 1.72 0.5138 2.72 0.5128 2.56 0.4980 0.40 member plate 
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4.3 Experimental Setup 

The experimental setup for modal testing was designed as shown in Figure 4.4. Since the 

experiments were also carried out in water. the stiffened plate models were placed in a water 

tank as shown in Figure 4.5. 

The dimensions of the tank were (290.00 x 30.00 x 40.00) inches. The wall of the 

tank was made of transparent plastic and constructed on steel frames used to strengthen the 

wall. The tank was fixed to five rigid supports. The fixed boundary condition of the model 

was obtained by clamping the side shell and the angle over a length of 22.00 inch at each end 

between two heavy square steel blocks (12.00 x 12.00 x 1.00) inches. 

The lower block was supported by a heavy 1-beam (8.00 x 8.00 x 1.00) inches. in 

which the right support was welded to a thick plate (30.00 x 12.00 x 0.50) inches and the left 

support was bolted to the same thick plate. This plate. which was used to strengthen the tank 

bottom. was then welded to the tank bottom. The reason for bolting the left support to the 

thick plate is to allow the easy replacement of the models. see Figure 4.4. 
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4.4 Instrumentation 

In the present study, the SISO (single-input excitation and single-output excitation) and the 

SIMO (single-input excitation and multi-output data acquisition) techniques were used. 

Figure 4.6 shows a schematic of the measurement setup. In order to excite the stiffened plate 

models, a fast sine sweep and pseudo-random signals were selected for obtaining the 

dynamic responses. 

The fast sine sweep and the random noise signals were generated by a HP 3314A 

function generator and a Wavetek 132 noise generator. respectively. The signals were 

amplified by a power amplifier B & K 27067 and sent to the vibration exciters B & K 4801 

and 4802 to excite the model through a connecting rod. The excitation force applied to the 

model was measured using a Kistler load cell model 912 attached between the connecting 

rod and the model. Accelerometers type PCB 330A were used to measure the dynamic 

responses of the stiffened plate models from which the acceleration FRFs and the 

acceleration random responses could be obtained. 

The fast sine sweep signals and their acceleration responses were amplified by a 504E 

dual mode amplifier and PCB 433A differential amplifier, and filtered through a Krohn-Hite 

filter model3323. From this filter, both the force and response signals were sent to a dual 

channel amplifier B&K 2034 analyzer for performing a Fast Fourier Transform so that FRFs 

and coherence functions could be obtained, and then to a data acquisition system for storing 

the original and the analyzed data. At the same time, the force and response signals were 
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viewed through an oscilloscope (Tektronix T 922) for monitoring purposes, so that large 

force signals that clip the response signals could be avoided. Furthermore. FRFs and 

coherence data were transferred to a personal computer using the National Instruments GPIB 

interface for analysis. A commercial software package. STAR STRUCf® (Spectral 

Dynamics, Inc., 1994), was used to analyze the FRFs and the coherence so that modal 

parameters can be obtained. 

Like the fast sine sweep signals and their acceleration responses, the random force 

signals and their acceleration vibration responses were also passed through a 504E dual 

mode amplifier and PCB 433A differential amplifier to the Krohn-Hite model 3323 filter. 

From this filter they were passed to a Keithley 570 data acquisition system. All the measured 

data were digitalized by the Keithley 570, manipulated by KDAC500, and stored on the hard 

disk of a personal computer. Also, the random force signals and their acceleration random 

responses were sent to a Tektronix T 922 oscilloscope to monitor the signals so that the 

large signal could be avoided. The random responses were used to obtain the randomdec 

signatures. 

The details of the instrumentation used in the present study and the process of their 

calibration are reviewed in Appendix C. 
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4.5 Location of the Load Cell and the 

~ccelerommeters 

In order to have a good understanding of the dynamic responses of the undamaged stiffened 

plate models as well as the models with damage of different lengths, the load cell and the 

accelerometers must be mounted at the proper locations. 

4.5.1 Load CeO Arrangement 

The load cell was mounted on that side of the shell which was without the longitudinal and 

heavy transverse members. The load cell was located slightly off the center of the stiffened 

plale model to generate all the symmetric and asymmetric vibration modes. The exciting 

force represented the action of the wave pressure which would cause the majority of fatigue 

damages (Hansen and Winterstein, 1995). The load cell was fixed venically on the model 

to apply an axial load as shown in Figure 4.7. 
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4.5.2 Accelerometers Arrangement 

In order to determine the best positions for the points of measurement, six accelerometers 

were attached to each stiffened plate model at six different locations for acquiring the 

responses of the models. The accelerometers were placed on the models at a location near 

the web of the heavy transverse member at which the damage was expected to occur. based 

on the literature review. 

Two accelerometers were located on the side shell, two were located on the faceplate 

of the longitudinal, and two were located on the faceplate of the heavy transverse member. 

Figure 4.7 shows the details of the location of the six accelerometers. 

4.6 General Procedure 

The experiment was carried out using a modal testing technique (Ewins, 1996). Modal 

testing was perfonned by monitoring the input excitation and the output response of the 

oscillating structure at the points of measurement. The details of the experimental procedure 

are given below. 

1. The fast sine sweep signal was applied to the undamaged stiffened plate model 

(Model# 1 ), and at the same time the acceleration FRFs were recorded at the location 

of accelerometer# 1. The experiment was carried out in two steps. First, the fast sine 

sweep signal with a frequency span of 1000.00 Hz (1.00 - 1000.00 Hz) was used to 
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roughly locate the resonant frequencies of the model. Second, the signal frequencies 

were swept through a cenain predefined frequency range. The frequency span of 

50.00 Hz (between 20.00 Hz to 870.00 Hz) was selected so as to give a better 

acceleration FRFs and coherence. These results were sent to the computer via the 

National Instruments GPffi interface, and the STAR STRU~ software was used 

to measure the modal parameters. This procedure was repeated for accelerometers 

#2,#3, #4. #5, and #6. 

2. The fast sine sweep signal was disconnected, and the random signal was applied to 

Model #L The acceleration random responses were recorded at the six different 

locations of the accelerometers using the SIMO technique. The results were then 

digitized. manipulated and stored on the disk. The data was analyzed using the 

randomdec technique and the auto- and cross-correlation functions were calculated. 

3. In order to simulate the damage that occurs in the critical area of the longitudinal. 

a small initial saw cut of length of 0.40 inch was made at the tip of the longitudinal 

faceplate near the heavy transverse member(ofModel #I) at a distance of0.90 inch 

from the heavy transverse member (on one side only). (see Figure 4.7 for detail). 

4. The fast sine sweep at a frequency span of 50.00 Hz (between 20.00 to 870.00 Hz) 

and random signals were applied again to Model #I for damage identification, and 

at the same time the responses were recorded. In this step. the responses were 

recorded at the location of accelerometers #I and #2 only. A preliminary study, 
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indicated in Chapter 5, demonstrated that the responses measured at the location of 

accelerometers# 1 and #2 were much more pronounced than those measured at other 

locations. 

5. Steps 3 and 4 were repeated for crack lengths of 0 .80 inch. and 1.20 inch, 

respectively. 

6. In order to ensure that the experiments gave accurate and complete damage results 

, steps l - 5 were repeated for Model #2. The location of crack was the same as 

Model #1, i.e., at a distance of0.90 inch from the heavy transverse member (on one 

side only). However, the experiments were carried out by increasing the damage 

length by 0.20 inch. 

7. The stiffened plate model represents the side shell of a ship's structure which is 

always in contact with water. Therefore, the experiments of Model #2 were also 

carried out in water. The depth of submergence above the model was 0.00 inch for 

partial submergence and 4.00 inch for full submergence. 

8. In order to investigate the effect of the damage location on the dynamic responses, 

steps l-7 were applied for other models also, viz .• Models #3 and #4. The location 

of cracks were 1.35 inch (Model #3) and 1.80 inch (Model #4) from the heavy 

transverse member (on one side only). 
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Effect of damage growth at several locations, both in air and in water, were 

determined from the FRFs measurements, the randomdec signature and the auto- and cross

correlation functions calculations. The modal parameters such as natural frequencies and 

damping ratios were also determined. 

4.7 Summary 

The fabrication of stiffened plate models. experimental setup, instrumentation, calibration, 

placement of the load cell and accelerometers. and the procedures used for the experimental 

study were briefly described in this chapter. Getting accurate and reliable results require a 

proper experimental setup and calibration, careful test parameter identification. and 

intelligent and precise experimental measurement. These procedures have been meticulously 

followed in the present study to test the four stiffened plate models so that proper and well 

conditioned data could be obtained. 

The results such as acceleration FRFs, acceleration random responses, randomdec 

signatures, auto- and cross-correlation functions, and modal parameters such as natural 

frequencies and damping ratios for the undamaged and damaged models were acquired in 

the present study. The analyses of these data are presented in the subsequent chapters with 

a view to identify the crack size and location. 
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Chapter 5 

Dynamics of Stiffened Plate Models 

5.1 Introduction 

In this chapter. we present the results of the calculation of the acceleration frequency 

response functions for stiffened plate models using data obtained from experiments as well 

as that obtained from the FE models. Also, the results of the calculation of the free vibration 

response using the FE models, and the randomdec signatures using the experimental random 

responses are presented. 

Although the calculations were made for the four models, only the results obtained 

using Model # 1 will be presented here. Results obtained for the other three models are given 

in Appendix D. These results are in agreement with the results obtained for Model #1. This 

provided confidence in the accuracy of the conclusions derived from the present study. 
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5.2 Undamaged Model 

5.2.1 Frequency Response Function (FRF) 

Figures 5 .1.a - 5 .l.f show the experimental FRFs obtained at the locations of accelerometers 

#1, #2, #3, #4, #5, and #6, respectively. The values of the dominant experimental natural 

frequencies and damping ratios ofFRFs are tabulated in Table 5.1. From the Figures S.l.a-

5 .1.f and Table 5 .1. it can be seen that the FRFs obtained from the response measured at the 

six different locations have similar shapes. frequencies and damping ratios. Figures S.l.a

S.l.f also indicate that the founh mode has the highest amplitude in the FRF record. This 

means that the fourth mode is the mode which has the most dominant frequency. The 

difference between the left (accelerometers# 1. #3, and #5) and the right (accelerometers #2, 

#4, and #6) ones may be due to the fact that Model #1 was not symmetric. The asymmetry 

was caused by the slight difference in the dimensions caused by fabrication tolerances. 

It can also be noticed that only FR.Fs obtained from measurements made using 

accelerometers #1 and #2 showed peaks corresponding to all modes up to the eighth mode. 

Measurements obtained from other accelerometers failed to show peaks corresponding to 

some modes. This is a direct consequence of the geometry of the arrangements of the 

accelerometers and the responses at the accelerometer locations due to model behavior. Six 

accelerometers have been used to identify the best location for measurements. It was, 

therefore, decided to use hereafter measurements obtained using accelerometers #1 and #2. 
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Table 5.1: Comparison of Experimental Natural Frequencies and Damping Ratios of the Undamaged Model at Six Different 
Locations 

Accelerometer # 1 Accelerometer #2 Accelerometer #3 Accelerometer #4 Accelerometer #5 Accelerometer #6 

No Freq Damp. Freq Damp. Freq Damp. Freq Damp. Freq Damp. Freq Damp. 
(Hz) (%) (Hz) (%) (Hz) (%) (Hz) (%) (Hz) (%) (Hz) (%) 

I 50.31 1.710 50.63 1.690 50.25 0.589 50.00 0.482 49.94 1.060 50.38 0.461 

2 113.31 0.214 ll3.13 0.185 - - - - - - - -
3 310.71 0.101 310.69 0.093 309.50 0.041 310.31 0.112 310.44 0.080 310.44 0.088 

4 409.19 0.865 409.50 0.930 407.13 0.963 406.69 1.150 410.06 1.430 406.88 1.480 

5 525.31 0.028 525.31 0.044 - - - - - - - -
6 569.38 0.181 569.94 0.185 569.88 0.245 569.13 0.245 569.94 0.182 569.56 0.226 

7 741.56 0.290 742.19 0.256 744.56 0.263 745.31 0.321 - - - -

8 854.38 0.214 853.56 0.225 854.25 0.225 854.19 0.197 854.19 0.186 852.67 0.227 
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In order to compare between the FRF obtained using the FE model and the 

experimental FRF. we needed to modify the FE element model to take into consideration the 

boundary conditions resulting from the flexibility of tank bottom. For that reason, three 

excitations were applied to the FE models at the locations designated I, II, and m in Figure 

5.2. The numerical FRF was obtained by summing up the FRFs obtained using these three 

excitations, see Figures 5.3.a- 5.3.c. This addition did not take into account the influence of 

the phase of the FRF obtained for the three-excitation at locations I, II and ill. Similar to the 

experimental FRF, the highest peak of the numerical FRF also occurred at the founh mode. 

This means that the founh mode is the predominant natural frequency 

10"3 ~------~------._------~------._------~ 
0 200 400 600 800 1000 

Frequeacy (Hz) 

5.3.a: Numerical FRF due to excitation at location I 
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5.3.d: Numerical FRF due to excitations at location I, U, and ill 

Figure 5.3: Numerical FRFs 
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Figure 5.4: Comparison between Experimental and Numerical FRFs 
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Table 5.2: Comparison between Experimental and Numerical Natural Frequency and 
Damping Ratio of the Undamaged Stiffened Plate Model 

Error 
Numerical Analysis Experiment between 

No Analysis and 
Frequency 

Damping(%) 
Frequency 

Damping(%) Experiment 
(Hz) (Hz) (Hz) 

1 50.95 0.005 50.63 1.690 0.32 

2 110.66 0.005 113.13 0.185 -2.47 

3 307.19 0.005 310.69 0.093 -3.50 

4 412.31 3.00 409.50 0.930 2.81 

5 521.66 0.005 525.31 0.044 -3.65 

6 566.71 0.700 569.94 0.185 -3.23 

7 748.33 0.400 742.19 0.256 6.14 

8 860.15 0.040 853~56 0.225 6.59 

Figure 5.4 shows a comparison between acceleration FRF obtained experimentally 

and numerically. The values of the experimental and numerical natural frequencies are listed 

in Table 5.2. Figure 5.4 and Table 5.2 indicate that the numerical FRF is in good agreement 

with the experimental one for all modes. The difference in the damping ratio is mainly due 

to the fact that the exciting force used in the experiment was different from that used in the 

analysis. The experiment used a sine sweep force, whereas the FE analysis used an impulse 

force. 

In order to get the best results for the FRFs and coherence, the sine sweep force was 

swept through acenain smaller. predefined frequency range in which the FRF magnitude was 
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well defined; whereas the impulse force was swept through the whole frequency range. An 

anti resonant region was observed in the experimental FRF around 200.00-240.00 Hz. which 

could not be obtained from the numerical model. To match the amplitude and modulus of 

the experimental and numerical FRFs. the damping ratios were adjusted. 

In order to get a better understanding of the model's behavior for each mode. the 

associated mode shapes are shown in Figures 5.5.a-5.5.h. These figures show that the first 

mode is a bending mode in which the vibration of the heavy transverse member is dominant. 

The second mode is a torsional mode of the heavy transverse member. and the third mode 

is the second bending mode of the heavy transverse member. The fourth mode is the bending 

mode for the side shell and the longitudinal. 

Furthermore. the fifth mode is a coupled mode with the left support vibration being 

dominant. and the sixth mode is a coupled mode with the right support being dominant. The 

seventh mode is a coupled mode of the right support and the longitudinal, whereas the eighth 

mode is a coupled bending and torsional mode of the side shell and the heavy transverse 

member. From Figures 5.4, 5.5, and Table 5.2, it is clear that the fourth mode is the mode 

with the most dominant natural frequency. Based on the above results, it can be concluded 

that the FE analysis accurately modeled the undamaged stiffened plate; hence, it was used 

to predict the free vibration response of the undamaged stiffened plate model and its natural 

frequency using the combination of the three SISO. 
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5.5.a: Mode 1 (50.95 Hz) 5.5.b: Mode 2 (110.66 Hz) 

5.5.c: Mode 3 (307.19 Hz) 5.5.d: Mode 4 (412.31 Hz) 

5.5.e: Mode 5 (521.66 Hz) 5.5.f: Mode 6 (566.71 Hz) 
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5.5.g: Mode 7 (748.33 Hz) 5.5.h: Mode 8 (860.15 Hz) 

Figure 5.5: Dominant Mode Shapes of the Undamaged Model 

5.2.2 Free Vibration Responses and Randomdec Signatures 

Numerical free vibration responses due to excitations at locations I, II, and III are shown in 

Figures 5.6.a, band c, respectively. These figures indicate that the free vibration response 

due to excitation at location I is similar to that due to excitation at location III but is 

completely different from that due to excitation at location II. However, the magnitude of 

the free vibration response due to excitation at locations III is much lower than that due to 

excitation at location I. The reason is that the free vibration responses represent the vibration 

response for the fourth mode of the model, in which the vibration of the longitudinal and the 

heavy transverse member was dominant, and the vibration ofthe left and right supports was 

not dominant (see Figures 5.4 and 5.5). 
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5.6.b: Numerical Free Vibration Response due to Excitation II 
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5.6.d: Numerical Free Vibration Response due to Excitations I, ll, and m 

Figure 5.6: Numerical Free Vibration Response 
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Figure 5.6.d shows the actual free vibration response for the stiffened plate model. 

which is the combination of the three free vibration responses obtained from the FE model. 

This response is similar to that shown in Figure 5.6.a. Since the contributions of the free 

vibration responses due to excitation at locations n and m are very small. they could be 

neglected while considering the numerical free vibration response of the model. The natural 

frequency obtained from Figure 5.6.ais412.73 Hz. This frequency is slightly higher than that 

tabulated in Table 5.2, but this difference is within the experimental error. The numerical free 

vibration response is then used. to verify the randomdec signature obtained from the 

experimental random response. 

The experimental random response of the undamaged stiffened plate model was 

recorded from accelerometer #2, see Figure 5.7 .a. The record was obtained over a period of 

1.00 sec and contained 7000 data points. The response was filtered around the most dominant 

frequency using a wide-band filter, and the result is shown in Figure 5.7 .b. The filtered 

response was then used to calculate the randomdec signature, Equation (3.3). The process 

of calculation is as follows: 

The filtered response was divided into more than 700 overlapping segments. each 

having a length of 0.001 second, and starting with the same initial displacement. This gave 

70 points per segment. The segments were summed up, and they yielded a record of the 

randomdec signature as shown in Figure 5.8. This figure indicates that the randomdec 

signature can be used to represent the free vibration response of the system with an initial 

displacement to the trigger leveL 
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Figure 5.8 shows that the magnitude of the randomdec signature is very small and the 

natural frequency is very high. The cause is that, due to the limitation of laboratory facilities 

as mentioned in Chapter 4, only small part of the structure with limited dimensions could be 

modeled as the stiffened plate modeL If the randomdec signature of the random response of 

a full scale model due to waves at sea is calculated. the magnitude of the randomdec 

signature is expected to be higher and the natural frequency is expected to be lower. The 

technique developed in this study will be still suitable for the analysis of this data. 

The randomdec signature is then compared with the numerical free vibration 

response as shown in Figure 5.9. It can be observed from Figure 5.9 that the agreement 

between the numerical free vibration response and the experimental randomdec signature is 

excellent. especially for the first two cycles. The disagreement between the two records 

beyond the second cycle will not pose any problem. since the identification method used in 
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the present study does not require a long record of the response. One cycle of the response 

is used to identify the damage. 

--PVnerical Free Vibration Response -.- ••• • Experftltntal F'-ndomiec Signature 
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Figure 5.9: Comparison between Experimental Randomdec Signature and Numerical Free 
Vibration Response of Undamaged Model 

Based on the above results, it can be concluded that FE analysis has accurately 

modeled the undamaged stiffened plate, and the numerical free vibration response can be 

used to verify the randomdec signature. Therefore, the model can be used to generate the 

dynamic behavior of the undamaged model at different conditions. The model is then used 

to determine the FRFs and the free vibration responses of the stiffened plate model with 

several damage lengths. 
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5.3 Effect of Damage 

In order to examine the acceleration FRFs, the free vibration response, and the randomdec 

signature of the stiffened plate Model* 1 for damaged conditions, the damage was simulated, 

in both the experimental and numerical studies. Experimentally. saw cuts were made in the 

stiffened plate for modeling the damage. Numerically, the damage in the structure was 

modeled by introducing a gap of 0.01 inch between certain identified elements of 

longitudinal's faceplate. The gap represents the thickness of the hacksaw blade used in the 

experiment. 

5.3.1 Frequency Response Function {FRF) 

The experimental and numerical acceleration FRFs for the damaged stiffened plate model 

with crack lengths of0.40 inch, 0.80 inch, and 1.20 inch are drawn together in Figure 5.10.a-

5.10.d, respectively. The comparison between the dominant experimental and numerical 

frequencies of the damaged model along with the undamaged one is listed in Table 5.3. 

As observed from Figures 5.10.a- 5.10.c and Table 5.3, the numerical acceleration 

FRFs are in good agreement with the experimental ones. Table 5.3 indicates that detectable 

changes in the frequency, due to the presence of damage, start to occur in the frequency of 

the fourth mode. This result was observed for the experimental as well as the numerical data. 

The frequency of this mode decreases as the crack length increases. This is due to the fact 

that the fourth mode is a bending mode with dominant vibration of the side shell and the 
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longitudinal in which the crack is located,. see Figure 5.5.d. For the other modes, shown in 

Figures S.S.a, b, c, e, f, g, and h, respectively, the longitudinal and the side shell vibrations 

are not dominant; consequently the changes due to the presence of damage are marginal. 

Although, Figures 5.5.a- 5.5.h show dominant mode shapes of the undamaged 

stiffened plate model, they can also be considered as the mode shapes of the damaged 

stiffened plate model. The reason is that the cracks to be identified in the present study are 

limited to a length of 1.20 inch; therefore, the damage did not influence the mode shapes 

much. It has only affected the frequencies. 

10"3 .___ ___ .._ ___ ...._ ___ ........ ___ ........ ___ _, 

0 200 400 600 800 1000 
Frequency (Hz) 

5.10.a: Crack length= 0.40 inch 
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5.10.b: Crack length= 0.80 inch 
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Figure 5.10: Comparison between Experimental and Numerical Acceleration FRFs 
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Table 5.3: Comparison of Experimental and Numerical Dominant Natural Frequencies (Hz) 

Damage with length of 

No 0.00 inch 0.40 inch 0.80 inch 1.20 inch 

Exp. Num. Eltp. Num. Exp. Num. Exp. Num. 

I 50.63 50.95 50.19 50.95 50.56 50.95 50.25 50.94 

2 113.13 110.66 113.13 110.66 113.31 110.66 113.19 110.66 

3 310.69 307.19 311.50 307.19 311.38 307.18 31 1.94 307.17 

4 409.50 412.31 408.56 410.96 406.81 406.80 406.06 399.76 

5 525.31 521.66 525.38 521.60 525.50 521.60 525.50 521.60 

6 569.94 566.71 568.87 566.71 - 566.71 - 566.71 

7 742.19 748.33 741.94 748.11 - 747.38 - 745.59 

8 853.56 860.15 853.81 859.25 853.25 859.25 853.69 858.05 

Note: Exp. = Experiment; Num. = Numerical 
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From the above results, it can be concluded that the FE analysis has also accurately 

modeled the damaged stiffened plate. Hence, it could be used to characterize the damaged 

behavior of the stiffened plate Model #1. The model was then used to generate the free 

vibration responses of the damaged stiffened plate model. 

5.3.2 Free Vibration Responses and Randomdec Signatures 

Figures.5 .11.a-5 .ll.c show a comparison between experimental randomdec signatures and 

numerical free vibration responses for the damaged model with crack lengths of 0.40 inch. 

0.80 inch, and 1.20 inch, respectively. A comparison of the experimental and the numerical 

frequencies obtained from Figure 5.9 for the undamaged condition and Figures. 5.1l.a -

S.ll.c for damaged conditions is given in Table 5.4 and plotted in Figure 5.12. respectively. 

Like the undamaged model, the signatures of the damaged model shown in Figures 5 .ll.a -

S.ll.c also represent the randomdec signatures and the free vibration responses of the fourth 

mode. 
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Figure 5.11: Comparison between Experimental Randomdec Signatures and Numerical 
Free Vibration Responses (Model #1 in Air) 

Table 5.4: Comparison between Natural Frequencies obtained from Experimental 
Randomdec Signatures and Numerical Free Vibration Responses (Hz) 

Crack 
Experimental Randomdec Numerical Free Vibration Length 

(inches) Signature Response 

0.00 412.73 412.62 

0.40 411.59 411.55 

0.80 408.66 408.53 

1.20 404.66 404.53 
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Figure 5.12: Comparison of Experimental Randomdec Signatures and Numerical Free 
Vibration Responses Natural Frequencies of Model #1 in Air 

It can be observed from Figures 5.1l.a - 5.1l.c, and Table 5.4 that at least the first 

cycle ofthe experimental randomdec signatures matches closely the numerical free vibration 

response. As mentioned before, the identification technique uses only the first cycle. 

Furthermore, Figure 5.12 and Table 5.4 indicate that the frequency of the damaged model 

with crack length of 0.40 inch is almost the same as the undamaged one. It is also clear that 

the frequency decreases as the crack length increases. When compared with the frequencies 

in Table 5.2, the frequencies shown in Table 5.4 are slightly different, for both the 

experimental and the numerical ones. Frequencies in Table 5.2 were obtained from the 

experimental and the numerical fRFs; therefore, the results represent the actual frequency 

of Model# 1. Frequencies shown in Table 5.4 were obtained from Figures 5.9 and 5.11. The 

random responses used for the randomdec signatures were filtered using a wide-band filter. 
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Therefore. they might contain more than one frequency, i.e., one was the predominant 

frequency and the others were the higher and I or the lower frequencies. The higher or the 

lower frequencies might affect the measured frequency. This problem also occurred for the 

free vibration responses that were not filtered. Nevertheless, these differences are within the 

allowable experimental errors. 

Moreover, the higher amplitudes of the acceleration responses shown in Figures 5.11 

are those of the numerical acceleration free vibration responses; this was obtained using the 

unit impulse response of the structure through the FE analysis.ln fact. the actual magnitudes 

of the experimental acceleration randomdec signatures were much lower than the numerical 

ones, see Figure 5.8. This is due to the fact that the actual force applied to the stiffened plate 

model through the function/noise generator was very smalL Since, the experimental 

acceleration randomdec signatures were verified using the numerical free vibration 

responses, their magnitudes were scaled up so that they have the same starting point 

magnitudes as the numerical ones. 

From the above results, it can be concluded that the randomdec technique and the FE 

analysis could be used to identify the dynamic behavior of Model #1 for both the undamaged 

and damaged conditions. In order to ensure that these methods would give the accurate and 

complete results of the damage in the stiffened plate model in the process of damage 

identification, they were used again to identify the damage in other models, viz., Models #2, 

#3, and #4, which have similar dimensions and characteristics as Model I 1. Since the results 

were similar, they are presented and discussed in Appendix D. 
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5.4 Summary 

Application of the randomdec technique and the FE analysis in the identification of damage 

in the stiffened plate models in air and water have been investigated experimentally and 

numerically. The effects of the crack length and location and added water mass on the 

randomdec signatures, the free vibration responses and frequencies were analyzed. The 

randomdec signatures were able to identify the damage occurrence along with its extent and 

location and the presence of water by changing their signatures and frequencies. The FE 

analysis was also successful in modeling the stiffened plate so that the frequencies and the 

free vibration responses in air and water could be obtained. 

The results obtained using randomdec signature and free vibration responses 

indicated that the signatures and responses for all cases have similar shapes, especially for 

the first cycle. Also, the change in frequencies due to the presence of damage was very small. 

In the field, this may cause the detection of small cracks in a structure to be a difficult task 

using the randomdec technique or the FE model. In order that the damage occurrence could 

be detected in its earliest stage of development, the random responses as well as the FE 

model used in this Chapter are analyzed using another method called the auto- and cross

correlation function approach in the next Chapter. The randomdec signatures obtained in this 

Chapter are used for verifying the results. 
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Chapter 6 

Use of Auto- and Cross-correlation 

Functions for Damage Detection 

6.1 Introduction 

The dynamic response of the undamaged and damaged models are identified using another 

form of the vibration response: the auto and cross-correlation functions. The advantage of 

using the auto and cross-correlation functions is that they can be easily obtained from the 

stationary random responses of the structure using statistical methods. In the present study, 

the experimental and numerical auto and cross-correlation functions obtained for Model #1 

in air are calculated and analyzed. 
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6.2 Autocorrelation Functions 

6.2.1 Experimental Data 

The experimental randomdec signatures and autocorrelation functions for the undamaged 

stiffened plate model, as well as the damaged model with different crack lengths. are 

compared, and the results are shown in Figures 6.l.a- 6.l.d. As can be observed from 

Figures 6.l.a- 6.l.d, the experimental autocorrelation functions match the experimental 

randomdec signatures closely. Figures 6.l.a-6.1.d also indicate that only the first two cycles 

in randomdec signatures may be reliable. After the first two cycles the transient solution that 

is assumed to be represented by the randomdec signature decays and noise will predominate. 

However, these differences should not affect the results, since only the first cycle is used in 

the method of analysis adopted in the present study. 

Table 6.1 shows the magnitudes obtained for the frequency of the predominant mode, 

i.e., the fourth mode. It can be seen from Table 6.1 that the frequencies obtained from the 

experimental autocorrelation functions are in good agreement with those obtained from the 

experimental randomdec signatures. Table 6.1 also indicates that the frequency of the 

damaged model with a crack length of 0.40 inch is very close to the undamaged one. It is also 

clear that the frequency decreases as the crack length increases. 
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Figure 6.1: Comparison between Experimental Randomdec Signatures and 
Autocorrelation Functions 
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Table 6.1: Comparison of Experimental Random~ Signature and Autocorrelation 
Function Frequency (Hz) 

Crack length of 

No 
Undamaged 

0 .40 inch 0.80 inch 1.20 inch 

RS ACf RS ACT RS ACT RS ACT 

1 412.73 412.96 411.59 411.11 408.66 407.79 404.66 404.98 

Note: RS = Randomdec Signature, ACT = Autocorrelation Function 

A study of the sensitivity of the autocorrelation function to the crack length has also 

been carried out. The experimental autocorrelation functions obtained for the undamaged 

condition and for the crack conditions shown in Figures 6.1 are plotted again in Figure 6.2. 

It can be seen from Figure 6.2 that the autocorrelation functions have a similar behavior for 

the undamaged and damaged conditions. However, the crest and the trough of the first two 

cycles steadily shift to the right side when the crack becomes longer. This shifting causes the 

frequency to decrease as the crack length increases. 

The above results indicate that the experimental autocorrelation functions can be used 

to represent the randomdec signatures and characterize the undamaged and the damaged 

responses of Model# 1. This means that the experimental autocorrelation functions can also 

be used to represent the free vibration response. Hence, it can be used for verifying the 

numerical autocorrelation functions. 
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6.2.2 Numerically Generated Data 

Figure 6.3.a shows the comparison of experimental and numerical autocorrelation functions 

for the undamaged condition. Figures 6.3.b - 6.3.d show the comparison for the damaged 

conditions with crack lengths of 0.40 inch, 0.80 inch, and 1.20 inch, respectively. The 

frequencies for the fourth mode of the undamaged model along with the damaged model are 

shown in Table 5.6. 
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Figure 6.3: Comparison of Experimental and Numerical Autocorrelation Functions 

Table 6.2: Comparison of Experimental and Numerical Autocorrelation Functions 
Frequency (Hz) 

Crack length of 
Undamaged 

No 0.40 inch o_80 inch 1.20 inch 

Exp. An. Exp. An. Exp. An. Exp. An. 

1 412.96 412.86 411.11 411.08 407.79 408.25 404.98 404.84 

Note: Exp. = Experiment; An. = Analysis 
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It can be observed from Figures 6.3 and Table 6.2 that the agreement between the 

numerical autocorrelation functions and the experimental ones are also good for both the 

signatures and the frequencies. The numerical autocorrelation functions corresponding to 

various crack lengths are shown in Figure 6.4. Like the experimental ones, the numerical 

autocorrelation functions shown in Figure 6.4 also have a similar behavior for undamaged 

and damaged conditions. The crest and the trough of the first two cycles also steadily shift 

to the right side as the crack length increases. Moreover, Figure 6.4 shows that, at a saw cut 

length of0.40 inch, the numerical autocorrelation function is similar to the undamaged ones. 

Changes in the magnitude become increasingly obvious when the crack increases. 

6.3 Crosscorrelation Functions 

It has been shown in the two previous sections that the experimental and numerical 

autocorrelation functions can be used to identify the dynamic behavior of the undamaged 

stiffened plate model and the model with several crack lengths. However. it is also noticed 

that the change in the frequency is small as a result of the occurrence of the crack. It can not 

be used as a practical method for crack identification, until the crack length becomes very 

large. 

Based on these considerations. the use of the crosscorrelation functions to detect 

crack occurrence was investigated. The crosscorrelation function was calculated using the 

random responses obtained from two different locations, i.e .• accelerometers #1 and #2. In 
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addition, their autocorrelation functions are also analyzed. Figures 6.5.a- 6.5.b show the 

autocorrelation functions for the undamaged condition obtained from accelerometers# 1 and 

#2, respectively, whereas Figure 6.5.c shows their crosscorrelation functions. 

As shown in Figures 6.5.a- 6.5.b, the autocorrelation functions obtained from two 

different locations have similar shapes. However, the magnitude of the autocorrelation 

function obtained from accelerometer #l is slightly higher than that obtained from 

accelerometer #2. The difference in magnitude may be caused by the fact that Model# 1 was 

asymmetric. Furthermore, the crosscorrelation function shown in Figure 6.5.c is also similar 

to the autocorrelation functions. However, the magnitude is completely different. 

The autocorrelation functions for the damaged model with the crack lengths of 0.40 

inch, 0.80 inch, and 1.20 inch are drawn in Figures 6.6.a- 6.6.b, 6.7.a- 6.7.b, and 6.8. a-

6.8.b, respectively. Theircrosscorrelation functions are shown in Figures 6.6.d, 6.7.d, and 

6.8.d, respectively. Similar to the undamaged condition, it can also be observed from Figures 

6.6.a- 6.6.b that the autocorrelation functions also have similar shapes when the crack is 0.40 

inch. The presence of damage caused the magnitude of autocorrelation function obtained 

from accelerometer #2 to be lower than that obtained from accelerometer #1. 
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This may be caused by the fact that the crack was nearer to accelerometer #2. The 

same condition is also found from the autocorrelation functions of Model #l with different 

crack lengths as shown in Figures 6.7.a - 6.7.b and 6.8.a - 6.8.b. Furthermore, the 

crosscorrelation functions are also similar to their autocorrelation functions for all damage 

cases, see Figures 6.6.c, 6. 7 .c. and 6.8.c. 

Based on the above, it can be seen that it is difficult to use the crosscorrelation 

functions as a tool for the identification of the occurrence of a damage in the structure. 

6.4 Summary 

Application of the auto and cross-correlation functions in the identification of damage for 

the stiffened plate model has been discussed. The relationship between the experimental 

autocorrelation function and the random decrement signature has been established. Using the 

autocorrelation functions, the frequency of the most predominant mode could be determined. 

However, the decrease in frequency as a result of damage occurrence was very small. There 

was a good agreement between the experimental and numerical autocorrelation functions. 

The crosscorrelation functions exhibited the same characteristic as the autocorrelation 

functions. 
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Chapter 7 

The Identification of Damage in Stiffened 

Plates using Neural Network Techniques 

7.1 Introduction 

A neural network technique that has been used for identifying the occurrence of damage in 

the stiffened plate model will be presented in this chapter. The technique identified not only 

the occurrence of damage at several locations in the faceplate of the longitudinal of the 

model, but also the location and the extent of damage. The technique was applied to both 

experimentally measured and numerically generated autocorrelation function data. The 

experimental as well as the numerical autocorrelation functions for Model #1 were used as 

inputs to the network. Unlike the experimental study that only analyzed the autocorrelation 

functions of the damaged model at one location, the numerical study also investigated the 

autocorrelation functions of the damaged model at several locations. 

A function }{x,i) was used as the identification criterion. In the following sections, 
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the underlying theory and the results obtained are explained. 

7.2 Theory 

The random decrement equation for the structure has been derived in Chapter 3 as: 

i,.(t) + 2C,w..j,.(t) + w~,.(t) = 0 (7.1) 

Since w~ = w! ( 1 - { 2 ), Equation (7.1) can be rewritten as: 

i,(t) + w~,.(t) + F,.(z,i,.) = 0 (7.2) 

where 

(7.3) 

The identification technique proposed uses a neural network algorithm to identify the 

function F,.(x,;i,.). The displacement x, and the velocity :i,. are utilized in generating the 

autocorrelation function and its first derivative. The procedure for the identification of 

F,.(x,..;i,.) is detailed in section 3.5. 
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7.3 Results and Discussion 

7 .3.1 Experimental Data 

Using the random response. one can easily calculate the autocorrelation function. Since both 

the autocorrelation function and its first derivative are used as inputs to the neural network. 

the first derivative was obtained using numerical differentiation. The frequencies (I) d could 

be easily calculated from the first cycle of the autocorrelation function curves. Only the first 

two cycles of the autocorrelation functions were needed for training the neural network. In 

order to minimize the round-off errors. th~ autocorrelation functions were normalized by 

dividing by its highest value. 

Figures 7 .l.a-7 .l.d show a comparison between the original autocorrelation function 

curves used in the training of the neural network and their predicted curves obtained using 

the neural network technique for the undamaged and the damaged cases. The input and 

output weights for the four cases. obtained when the neural network was iterated more than 

8000 times and the error between the original and predicted curve was minimum. are 

tabulated in Table E.l in Appendix E. It could be observed from Figures 7 .l.a- 7 .l.d that the 

agreement between the actual autocorrelation functions input and the predicted 

autocorrelation functions record is excellent in all conditions. This means that the neural 

network technique has predicted the experimental autocorrelation functions very well. 

The values of the function F{x,i) are tabulated in Table E.2 and drawn together in 
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Figure 7 .2. Similar to the input and output weights, Table E.2 and Figure 7.2 also show that 

the various values of the function.F(.r,.i) as a function of time for the undamaged and the 

damaged conditions could be clearly identified. There is a consistent and appreciable change 

in the values of the function F(.r,.i), as a crack is introduced and as its length grows from 

0.40 inch to 1.20 inch. 

A correlation between the peak values of the function F(.r,.i) and the length of the 

crack, for a crack location of0.90 inch from the heavy transverse member, is shown in Figure 

7.3. 
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obtained using the Neural Network for Model ~H (Experiment. Crack at 0 .90 inch away 

from center) 
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It can be observed from Figure 7.3 that the minimum value of the function F(z~) 

corresponds to the undamaged condition. The presence of damage is indicated by an increase 

in the value of F(z,i) . The value of F(z~) increases as the crack :ength increases. Then it 

tapers off to a constant value as the length of the crack reaches a value of 0.85 inch. After 

reaching the maximum value, the value of function F(z,i) decreases slightly. This 

phenomena has been used as a basis for identifying the presence of damages with small crack 

lengths G; 1.20 inch) in Model #1. 

This method can also be used to detect the occurrence of damage in similar structures. 

The function F(x~) is calculated for the undamaged structure and is used as a reference 

value. The structure is monitored and the value of the function F(z,i) is calculated at specific 
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intervals of time and the history of the function ptx,i) is monitored. Changes in the value 

of the function Ftx.i) indicates the occunence of cracks. 

7 .3.2 Numerically Generated Data 

This section deals with the use of the FE model for identifying the extent and the location 

of damage in the stiffened plate model. A FE model for Model #1 was developed so that it 

could be used for calculating the autocorrelation functions of the undamaged model and the 

damaged model with various damage lengths at several different locations. Three crack 

lengths of 0.40 inch, 0.80 inch and 1.20 inch were introduced in the model at ten different 

locations of the faceplate of the longitudinal. 

The distance between each crack was 0.45 inch, and the locations were 0.00 inch, 

0.45 inch, 0.90 inch, ....... , 3.60 inch, and 4.05 inch from the heavy transverse member, 

respectively. Similar to the experimental autocorrelation functions, the numerical 

autocorrelation functions were also normalized. The neural network was also trained using 

the first two cycles of the autocorrelation functions. 

Figure 7.4 shows the results of the undamaged condition by comparing the original 

autocorrelation function and the predicted curve obtained using the neural network 

technique. Excellent matching is obtained between them. This indicates that the neural 

network technique also has a capability to predict the numerical autocorrelation function. 

Hence, the technique is used to calculate the predicted autocorrelation functions and the 
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values of function F(x.,t) for the damaged cases at different lengths and locations of the 

crack. The value of the function F{x,i) of the undamaged model would be used as the 

starting point for all analyses. 

A comparison between the numerical autocorrelation functions and their predicted 

curves for the model with the crack length of 0.40 inch, 0.80 inch, and 1.20 inch for the 

location of crack at the heavy transverse member, called .. center" hereafter, is shown in 

Figures 7.5.a- 7.5.c. The input and output weights are tabulated in Table E.3. Figures 7.5 

show that the predicted curves match closely with the original autocorrelation functions for 

all crack lengths. Moreover, Table E.3 also shows the difference in values between the 

undamaged and damaged cases. 
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A comparison between the values of the functions .F{x,i) for all cases is plotted in 

Figure 7.6 as a function of time. Comparing with Figures 7.4 and 7.5. Figure 7.6 is 

completely different; even the values of the function F(x,i) depend on the values of x and% 

as shown in Equation (7 .3). The reason for this difference is that the input ( W1) and output 

( W0 ) weights have similar. large. and negative values. see Table E.3. Funhermore. the 

function F(x,i) has different amplitudes for the undamaged and damaged cases. However. 

the amplitude difference involved is not evident from looking at these graphs due to the 

magnitude of F(x,i) and its variation. The difference involved becomes clear from Figure 

7. 7. wherein the maximum positive values of the function are plotted for various crack 

lengths. 
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Figure 7.7: The Peak Values of Function F(x,i) for each Crack Length (Numerical, Crack 
at Center) 
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Figure 7.7 shows the variation of the peak value of the function F(r~) as a function 

of crack length for the crack located at the center. It can be observed from this plot that the 

function F(r~) has a maximum value for the undamaged condition. The value decreases 

when the crack is introduced. It reaches a minimum value when the crack length is around 

0.60 inch. The value of F{r~) gets increased as the crack length increases. However, 

comparing Figures 7.3 and 7. 7, we notice a change in the values of the function F(r~) and 

also a change in the trend. This is mainly due to the fact that the values of the experimental 

and numerical autocorrelation functions used for the training the network are different, and 

the neural network technique is sensitive to small variations in the input. In addition, Figure 

7.3 is for a crack located at 0.90 inch from the center, whereas Figure 7.7 is for a crack 

located at the center. 

Based on the above results, the neural network technique is applied for calculating 

the predicted numerical autocorrelation functions and the values of the function JOtr,i) for 

the damaged model with different location of the crack. The crack locations are at distances 

of 0.45 inch, 0.90 inch, 1.35 inch, ............. , 3.60 inch, and 4.05 inch from the center of the 

heavy transverse member, respectively. They are denoted as the 0.45 inch, the 0.90 inch, the 

1.35 inch, ........ ,the 3.60 inch, and the 4.05 inch "away from the center crack", hereafter. 

Figures 7.8.a-7.8.c and 7.9.a -7.9.c show a comparison between them forthe0.45 inch and 

the 4.05 inch ·away from the center crack" location. 

From these Figures, it could be observed that the original autocorrelation functions 

137 



have similar shapes, even though the location of cracks are at or faraway from center of the 

heavy transverse member, and the crack lengths are 0.40 inch, 0.80 inch, or 1.20 inch, 

respectively. The agreement between the autocorrelation functions and their predicted curves 

is excellent for all conditions. An excellent agreement between the predicted and the original 

curves is also obtained for the 0.90 inch, 1.35 inch, .......... , the 3.15 inch, and the 3.60 inch 

·'away from the center crack". The results are presented in Appendix E. 

The input and output weights used for obtaining the predicted autocorrelation 

functions and the function F(x,i) for each crack location are tabulated in Tables E.4 to E.l3. 

For three different crack lengths at nine different locations, it could be observed from Tables 

E.4 - E.l3 that the magnitudes of the undamaged and damaged cases are all different. 
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Figure 7.9: Comparison between the Autoconelation Functions and Predicted Curves 
obtained using the Neural Network (Numerical, Damaged. Crack at 4.05 inch away from 
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Next. the conelation functions JOtx,i). for various crack locations. are plotted (as 

function of time) in Figures 7.lO.a - 7.10.i. respectively. Similar to the center case. the 

functions F(x~) also have different values for all damaged cases. The difference involved 

is not evident from looking at these graphs because of the plotting scale. However. the 

difference involved becomes clear from Figures 7.ll.a - 7.ll.i. 
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Figure 7.10: Comparison of the Function F(x.;t) for the Undamaged and Damaged 
Conditions 

For the 0.45 inch ''away from the center crack" result shown in Figure 7.ll.a, the 

function F(x.;i) has a similar shape as that of the center crack (see Figure 7. 7). However, the 

value of the function F(x.;t) has increased slightly for the crack length of 1.20 inch. The 

value of the function F(x.;t) gets decreased and the location of its minimum moves from the 

crack length of 0.60 inch (Figure 7 .ll.a) to that of 0.40 inch for the 0.90 inch "away from 

the center crack" as shown in Figure 7 .11. B. Nevertheless, the shape is still similar to that 

of the 0.45 inch "away from the center crack". 

The similarity of shape is also obtained in Figure 7 .11.c, i.e., for the 1.35 inch "away 

from the center crack". However, the function F(x.;t) has its minimum value, when the crack 
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length is 0.80 inch. Figure 7 .ll.d shows that the trend of the function Jft.r,.t) for the 1.80 inch 

"'away from the center crack" is similar to that for the 1.35 inch "away from the center crack" 

shown in Figure 7 .ll.c. However, the minimum value of the function .F{.r,.t) occurs when 

the crack length is 0.75 inch. Similar shape for the function .F{.r,.t) is also obtained for the 

2.25 inch "away from the center crack" as shown in Figure 7 .ll.e. 

The shape of the function .F{.r,i) for the 2. 70 inch .. away from the center crack" is 

shown in Figure 7.ll.f. Comparing with Figures 7.ll.a -7.ll.e, Figure 7.11.fis completely 

different. The maximum value of the function F(.r,i) is not at the undamaged condition or 

at the crack length of 1.20 inch, but at the crack length of approximately 0.30 inch. The 

minimum value of the function Jft.r,i) is at a crack length of 0.80 inch. Similar shapes for 

functions F(.r,.t) can be seen from Figures 7 .ll.g, h. and i, respectively. This means that the 

2. 70 inch "away from the center crack" is the starting point for the change of the shape of the 

function F(.r,i). 

From all these figures of correlation between the values of the function Jft.r,i) and 

crack lengths, at ten different crack locations, it can be seen that the function .F(.r,i) has two 

different shapes. The function F(.r,i) has similar shapes when the location of the crack is 

between center and the 2. 70 inch "away from the center crack". The slight difference 

between them, especially for the 0.90 inch and the 1.35 inch ••away from the center crack", 

might be due to the fact that the model and its supports are unsymmetric, see Chapter 5. The 

function F(x,i) starts to change its shape when the location of the crack is at 2. 70 inch "away 
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from the center crack. Thereafter, the function F(x,i) has a similar shape until the 4.05 inch 

"away from the center crack,. location is reached. 

In order to use the function F(x,i) for damage identification, the values of function F(x.;i) 

for six different locations. shown in Figures 7. 7 and 7 .ll.a - 7 .I I.e, are drawn together and 

plotted in Figure 7.12. To complement Figures 7.7. 7.ll, and 7.12. Figures 7.13.a -7.13.d 

and 7.14 show a plot of the maximum values of the function F(x.;i} as the function of the 

location of crack. The reason for using the values of the function F(x,i) at six different 

locations of the crack only is that only for these values the crack appears and grows at the 

faceplate of the longitudinal around the heavy transverse member. The procedure for using 

Figures 7.12 and 7.14 for damage identification is as follows: 
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Figure 7.11: The Peak Values of Function F(r.;i) for each Crack Length 
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Figure 7.12: The Peak Values of Function F(x,.i) vs.the Crack Length (Numerical) 
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Figure 7.13: The Peak Values of Function F{:r.;i) for each Crack Location 
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Figure 7.14: The Peak Values of Function F(x,x) vs. the Crack Location (Numerical) 
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The damage is assumed to be present at a cenain location of the longitudinal 

faceplate of the model. At periodic instants of time. the random response of the model is 

acquired, and the autocorrelation function is calculated. The autocorrelation function, its first 

derivative. and the frequency are used to train the neural network for predicting the value of 

the function F(x,i). The value is then compared with that of the 'healthy" model for 

indicating the presence of damage. A change in the value of the function F(x,i) indicates the 

occurrence of damage. In addition to this method. the change in the form of the 

crosscorrelation functions as stated in Chapter 6 can also be used for detecting damage. 

In order to identify the extent and the location of crack, the value of the function 

F(x.;i) is compared with the values in Figures 7.12 and/ or 7 .14. Three methods can be used 

to identify the extent and the location of the damage using Figures 7.12 or/ and 7 .l4. 

The first method is that if the value of the function F(x.,t) crosses one curve in 

Figures 7.12 or 7.14 at one location only. For example: let us say that the value of the 

function F(x.;i) obtained is 1.83E+05. In Figures 7.12 or 7 .11.a. this value crosses the curve 

of the 0.45 inch "away from the center crack". From this curve a crack length of 

approximately 1.16 inch (=1.20 inch) is obtained. 

The second method is used if the value of the function F(x.,t) crosses one curve in 

Figures 7.12 or 7.14 at two locations or more. For example: let us say that 1.75E+05 is the 

value of the function F{%,;i) obtained from measurement. The curve of the 0.90 inch ''away 

from the center crack'• in Figures 7.12 of 7 .11.b is crossed by the value 1. 75E+OS at the crack 
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lengths of 0.27 inch and 0.52 inch. By averaging these two values, the crack length of 

approximate I y 0.40 inch is obtained. Similar results can also be obtained by feeding the value 

of the function F(x,i) to Figure 7.14 or 7.13.b. In Figures 7.14 or 7.13.b, the value of 

1. 75E+05 crosses the curve of the 0 .40 inch crack at the crack locations of0.69 inch and 1.03 

inch, respectively. By averaging these two values, the crack location of 0.85 inch (= 0.90 

inch) is obtained. This result is similar to that obtained using Figures 7.12 or 7.1l.b. 

In order to verify that the second method can give the correct result, the value of the 

function F(x,i) of 1.83E+05 used in an earlier part of the study is used again to obtain the 

extent and the location of crack using Figure 7.14 or 7.13.d. In Figures 7.14 or 7.13.d, the 

value of the function F(x,i) crosses the curve of 1.20 inch at the location of 0.31 inch and 

.0.62 inch. The crack location of approximately 0.46 inch (= 0.45 inch) is obtained by 

averaging the two results. The result is similar to that obtained using Figure 7.12 or 7.1l.a. 

The third method is for cases where the value of the function F(x,i) crosses more 

than one curve in Figures 7.12 and 7.14, at one or more locations. Supposing the value of 

1.77E+05 is the output of the network. The value crosses four curves in Figures 7.12 or 

7.ll.a, b, c, d, and two curves in Figures 7.14or7.13.b, c. The results are tabulated in Tables 

7 .l and 7 .2. In order to obtain the extent and the location of the crack, the results in Tables 

7.1 and 7.2 are compared. Similar results are obtained from two tables, i.e., a crack length 

of0.70 inch (=0.8 inch) at the 1.80 inch is obtained from Table 7.1, and from Table 7.2 a the 

crack length of 0.80 inch at the 1.84 inch (=1.80 inch) is obtained. 
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The slight difference between the results obtained using the three methods is mainly 

due to the fact that the number of data used for creating curves in Figures 7.7. 7.11, 7.12, 

7.13 and 7.14 are limited. However, this difference can be accepted. The damage 

identification method explored in the present study can also be used to identify the damage 

occurrence in similar structures. For a different structure, results from a FE model of the 

structure is needed to estimate the value of the function .F{x,i) for the undamaged and the 

damaged conditions. 

Table 7.1: The Length and the Location of Crack obtained from Figures 7.1l.a, b, c, d, or 
7.12 for an output of 1. 77E+05 from the function F{x,i) 

Identification Crack Location Crack Length (inches) 

No (inches) 1 2 Average 

1 
0.45 

0.58 0.62 0.55 
(Fig. 7.1 La) 

2 
0.90 

0.14 0.65 0.40 
(Fig.7.1l.b) 

3 
1.35 

0.65 0.95 0.80 
(Fig7.ll.c) 

4 1.80 0.46 0.94 0.70 
(Fig. 7.1 Ld) 
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Table 7.2: The Length and the Location of Crack obtained from Figures 7 .13.b, c. or 7.14 
for an output of 1. 77E-+05 from the function ftx,i) 

Identification Crack Crack Location (inches) 

No 
Length 

3 4 Average (inches) 1 2 

1 
0.40 

0.44 1.16 1.77 1.90 1.32 
(Fig. 7.13.b) 

2 0.80 1.19 2.08 2.25 - 1.84 
(Fig. 7.13.c) 

7.4Summary 

The neural network technique was used for identifying the crack location and size utilizing 

autocorrelation functions of the model; experimental and numerically generated data of 

Model #l were used in the study. Experimentally, the technique was used to identify the 

presence and the extent of damage in Model #l at a location 0.90 inch from center of the 

heavy transverse member. The output showed that the technique was able to discriminate 

between cracks of different lengths. 

In order to identify the presence and the extent of damage at other locations. a FE 

model of Model # 1 was developed for ten different locations of cracks. It was observed from 

the results that the analytical autocorrelation functions were in excellent agreement with their 

predicted curves obtained using the technique. As the output from the neural network, values 

of the function F(z,i) for various crack lengths and locations were obtained. Two curves, 
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i.e .• the function F{x.;t) vs. the crack length and the function F(x.;t) vs. the crack location. 

were plotted. 

These curves were used to identify the extent and the location of the damage at the 

faceplate of the longitudinal when the value of the function F(x,i) at a certain time was 

known. The results indicated that the technique was successful in identifying not only the 

presence of the damage but also its extent and location. 
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Chapter 8 

Conclusions, Contributions, and 
Recommendations 

8.1 Conclusions 

The main objective of the present study is to develop a technique that can be used for 

identifying the occurrence of damage, the location of damage and its extent in the side shell 

of a ship's structure. Four different methods were tested. These methods are based on the use 

of the frequency response function, the randomdec signature, the auto- and cross-correlation 

functions, and the neural network technique. Based on the systematic study of the dynamic 

behavior of the undamaged and the damaged structure using four stiffened plate models, the 

following conclusions have been made: 

1. The randomdec technique can be used to determine the free vibration response of the 

structure from its stationary random response. 

2. The autocorrelation function can be use to represent the free vibration response of the 
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structure. 

3. The presence of water can be modeled as a lumped added mass factor. It results in 

the decrease of the natural frequency. However, the shape of the random signatures 

or free vibration response remained the same as those in air. The increase of water 

depth also caused a decrease in the natural frequency. 

4. Damage produces a shift in the natural frequencies that can be detected from the 

frequency response function. However, this shift is usually small and does not appear 

in all modes. From the models used in the present study, the significant shift only 

took place in connection with the fourth mode. This is the bending mode of the 

longitudinal. 

5. It is very difficult to detect the changes in the natural frequencies due to damage 

occurrence using the randomdec signatures, the autocorrelation or the cross 

correlation functions. 

6. Damage occurrence can be detected by monitoring the qualitative ch~ges in the 

form of the crosscorrelation function. 

7. The technique developed in the present study which uses a function F{%,i) as a 

criterion for damage occurrence is successful. The use of the neural networks 

technique to determine the magnitude of the function F{%,i) provides a tool which 

is consistent, robust, and unambiguous for detecting damage occurrence and its 

extent. 

8. The technique also shows potential for the identifying the location of the damage. 
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However, more work needs to be done in this area. 

8.2 Contributions 

The main contribution of the present study is the development of a robust method for 

identifying damage occurrence as well as its extent and location. The use of neural network 

technique along with the randomdec signature and autocorrelation function produces an 

ambiguous method for the identification of damage. 

8.3 Recommendations 

The present study has demonstrated the capability of the neural network technique for 

identifying the damage occurrence in the stiffened plate model. In order to get the best 

results, the following suggestions are recommended for future studies: 

(a) In order to ensure that the method developed in the present study can be generalized, 

models with different configurations should be tested. 

(b) In order to ensure that the dynamic response of a ship's structure due to wave 

excitation can be analyzed using the developed approach, a full scale model testing 

should be conducted in a towing tank using wave excitations from the sea. 

(c) Identification of critical points on a ship's structure and the feasibility of using the 
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developed technique as a part of a general response monitoring system should be 

investigated. 

(d) A neural network technique which can identify the map from the autocorrelation 

function or the function F(.r,.i) as input to the crack length or the crack location as 

output should be developed. The output is used to identify the extent or the location 

of the crack using Figures 7.12 or 7.14. 
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Appendix A 

Finite Element (FE) Analysis 

A.l Introduction 

The finite element analysis is a numerical method for solving problems of the engineering 

and mathematical physics problems. The basic idea behind the finite element analysis is to 

divide the structure, body, or region being analyzed into a large number of finite elements, 

or simple elements, and then tbese elements are con~ together by nodes_ These elements 

may be one, two, or three dimensional. FE analysis has been applied to the .,lutioa of plane 

stress problems, also to analysis of axisymmetric solids, plate bendiag, axisymmetric shell, 

and thin shell problems. In the following section, the equilibrium equation for dynamic 

analysis is introduced, and its application for me thin shell element is also discussed. 
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A.2 General Equation for Dynamic Analysis 

The FE analysis dynamic equilibrium equation is derived using Hamilton principle 

(Krishnarnoorthy, 1987) . The Lagrangian Lis defined as: 

L=T-ll (A.l) 

where L and ll are the kinetic and potential energy, respectively. 

The kinetic energy of an element of volume. dY is given as: 

(A.2) 

where the overdot denotes the derivative with respect to time. 

The total potential energy is defined as the sum of the internal work (the strain energy 

due to internal stresses) and the potential of the body forces and the surface tractions. It is 

expressed as: 

n = f f f dU(u,v,w) - J J f (Xu + Yv + Zw) dY- f f (Tzu + Tyv + Tzw> dSI (A.3) 

Y Y sl 

where S1 is the surface of the body on which surface tractions are prescribed. dU(u, v, w) 

denotes the strain energy per unit volume. The last two integrals represent the work done by 

the constant external forces. that is the body forces. X. Y, Z, and surface tractions. T", T Y' Tz. 
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If the strain energy in Equation (A.3) is defined as: 

(A.4) 

hence the total potential becomes: 

n = ~ J J J ( {E}T[C]{E}- 2{u}T{X}) dV- J f {u}T(T} dS1 (A.5) 

y ~ 

where: 

{u}r = [11 Y w) 

Therefore, the energy functional in Equation (A.l) can be expressed in a matrix form 

for a linear elastic body as: 

L = ~ J J J ( p{li}r{li} - {E}r[C]{E} + 2{u}r{X}) dV + J J {u}T{T} dS1 (A.6) 
y ~ 

If the displacement model is defined as: 

{11} = [N]{y} (A.7) 

177 



and the strain displacement relation is: 

{e} = [B]{y} (A.8) 

Equation (A.6) can be expressed in the fonn: 

L = ~ f [,!( {y}r(B]r(C](B]{y} - p{Y}r[Nf[N){Y} - 2{y}r[N)r{X}) dV 

-f f {y}r[Nf{T} dS1 (A.9) 

s. 

Hamilton's principle states that the variation of the Lagrangian during any time 

interval t 1 and t2 must be equal to zero, i.e.: 

(A.lO) 

Substituting Equation (A.9) and applying the variational principle to Equation (A.IO), 

results in the following: 

tz f ( {~y}T fff(£B]T(C](B]dY{y}- {6j}Tfffp£NJT(NjdV{j} 

'• Jo' Jo' 

- {6y}T f f f (N)T{X} dY- {6y}T f f (NJT(f} dSl ) t/t = 0 (A.ll) 

Jo' ~ 
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Integration of the second term ofEquation (A.ll) by parts with respect to time gives: 

~ 

- f {tly}rfff p[NjT[N]dY{j} dt (A.l2) 
,, y 

According to Hamilton's principle, the tentative displacement configuration must 

satisfy given conditions at times t 1 and t2 , i.e., {6.){t1)} = {6y(t2)} = {0}. Therefore, the 

first term on the right-hand side of Equation (A.l2) vanishes. Substituting the remaining term 

into Equation (A. II), yields: 

~ 

f {t>y}Tfffp£N]T[N]dY{j} + fff£BJT[CJ[B]dV{y} 
II y y 

-f f f £Nt£XJ dY- f f [N)T(TJ dSt )dt = 0 (A.l3) 
y s. 

Since the variation of the modal displacements, {6y}, are arbitrary, the expression 

in parentheses mush vanish. Therefore, the equation of motion for the element is: 

[m]{Y} + [k]{y} = {Q} (A.l4) 

where: 
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[m] = J J J p[Nf[NJ dY (A.l5) 
y 

[k] = f f f [Bf[C][B] dY (A.l6) 
y 

[Q) = f f f [NJT[X] tJV + f f (N]T{T} dSl (A.l7) 

In practice, the system has a mechanism for energy dissipation through the form of 

viscous damping assumed proportional to the velocity. Hence, the dynamic equilibrium 

equation for damped system can be expressed as: 

[m]{j} + [c]{j} + [k]{y} = {Q} (A.l8) 

Equation (A. IS) is the same as that given in Equation (3.1). 

Determination of the finite element damping matrix is quite difficult, if not 

impossible. In most cases, the damping is assumed to be proportional to the mass and the 

stiffness of the system as shown in Equation (3.1). The damping matrix is constructed using 

the mass matrix and the stiffness matrix, together with experimental results. 

A.3 Thin SheD Theory 

A thin shell is a three dimensional continuous medium for which one dimension, the 

thickness, is small with respect to the two others. It can be derived from a thin plate by 
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initially forming the midsurface to a singly or doubly curved surface; therefore. thin shell 

theory can be derived based on Love-Kirchhoff plate theory. This theory assumes that as the 

shell deforms and the midsurface stretches and bends, the fibres of the shell initially straight 

and normal to the midsurface, remain straight and normal to the surface. It also assumes that 

the stress perpendicular to the midsurface through the thickness is zero. 

A.4 Eight Noded Shell Element 

The eight noded shell element is used for modeling the stiffened plate. The element which 

is based on the degeneration concept and numerical integration technique is adopted for 

evaluation of the integral across the thickness. Figure A.l shows atypical curved shell 

element with eight nodes on the midsurface and an additional node at the center of the 

midsurface. The basic expressions to define the shell characteristics and necessary Equations 

leading to formulation of the stiffness matrix as shown in Equations (A.l8) is explained in 

this section. 

A.4.1 Shape Functions 

The shape functions of the eight noded shell elements are treated as a two dimensional 

isoparametric element in (1', s) coordinates, and are given below: 
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1 

Figure A.l: The Eight Noded Shell Element 

For nodes 1, 2, 3, and 4: 

For nodes 5 and 7: 

For nodes 6 and 8: 

N1 = .!. (1 - r~l + ssJ 
2 
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(A.l9) 

(A.20) 



(A.21) 

For node 9: 

(A.22) 

Assuming the line joining the top and bottom nodes to be straight. the shape of 

element is defined by the eight nodal values: 

• z, z, 

y, +t • 
Yt (A.23) 

z, • 
Z; 

In Equation (A.23). xl'yl' z; are the global coordinates of the midsurface node i that are 

computed by taking the average of the top and bottom node coordinates. Also. x1 •, y;, z,· 

are the global coordinates of the point (rl' s,., 1) with respect to the nodes (rl' s" 0) as shown 

in Figure A.2. They are obtained by dividing the differences between the top and bottom 

node coordinates by 2. 
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Figure A.2: Local Coordinates of Top and Midsurface 

A.4.2 Displacement Field 

Using the shape functions obtained in the previous section, the displacement field within the 

element is given by: 

• u, u, 

"t +t • v, (A.24) 

w, • w, 

where u1, v1, w1 arethedisplacementsofthenode i inthez,y, z directions respectively, and 

u; ,y;, w,· are the relative global displacements at point i caused by the rotation of the 

normal. As N9 vanishes at r, s = + 1, inter element compatibility is unaffected. 
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In order to specify the displacements in tenns of the nodal displacements and 

rotations, the relative displacements u; , y; and w; are expressed in terms of the rotations 111 

and J} 1 at the node i . If II; and JS 1 are defined as the rotations of the normal about the axes a 

and 1i, which lie in the midsurface as shown in Figure A.3, the two vectors a and b are 

obtained as follows: 

Figure A.3: Global and Rotational Axis 

Let i ,] , k be the unit vector in the x ,y and z directions, respectively, as shown in 

Figure A.3. Vector ii is defined by the input data so that this vector is nonnal to the 

midsurface, i.e. the top and bottom nodes, and x • ,y •, z • are the coordinates of a vector 
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along n' i.e.: 

(A.25) 

Therefore, a is defined as a vector perpendicular ton and also to venical I, i.e.: 

a=lxn 
= k X (% • f + Y •] + Z • k) 

(A.26) 

and b is defined as a vector perpendicular to both ;; and a, i.e.: 

= (x•i + y•] + z•t) x ( -y•i + x·]) 

= -x•z•i-y•x•]+(y•y• +x•x•)t (A.27) 

It can be seen from Equations (A.26 ) and (A.27 ) that when k and ;; coincide, the 

vectors a and b are not specific. In this case they are defined as: 

a=j and b=f (A.28) 

By normalizing the vectors a and b , the direction cosines of these vectors with 
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respect to .r, y, and z directions can be obtained. 

Furthermore, let a1, ~, ~ be the direction cosines of a with respect to .r, y, and z 

axis. respectively, and b1, b2, b3 be the direction cosines of b with respect to .r, y, and z 

axis, respectively. Since ex and p rotate with respect to a and b, respectively, the 

displacement at t = I is h ( bcz + tip ) , where h is the thickness at the point. Therefore. the 
2 

relative displacements at i in the global directions are given by: 

(A.29) 

Substituting Equation (A.29) into Equation (A.24), the following equation is 

obtained: 

II; bl at 

"t 
thp.l 

b2 
th/J; 

~ --- +-
2 2 

(A.30) 

W; b3 a3 

A.4.3 Jacobian Matrix 

It can be seen from section 3.3.3.1 that the shape functions are functions of r and s alone; 
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therefore, the Jacobian matrix may be computed as: 

I aN, I aN, I aN, 
E (z1 + tz;) E{y, + ty;) E(z

1 
+ tz

1
•) 

l • l ar l•l ar I• I ar 
I aN, I aN1 

I aN; 
[Jj = E (z; +a;·) E{y, + ty;) E(z1 + tz;) - (A.31) , ... as j:( as I• I as 

I I • E N,z; EN1y1 
• E N,z; 

I • I 1•1 , ... 

By inverting the matrix [.I], the derivatives with respect to global coordinate can be obtained. 

A.4.4 Strain Displacement Matrix 

If e is the vector of strains at any point inside element, the element strd.ins and the nodal 

displacement are related as given by Equation (A.8): 

{e} = [B] {y} 

where: 
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au 
az 

e% av -ay 
eY aw -e= az 

{e} = = 
y%)' au av 

-+-

Yr. 
ay az 
av ow 

Yrx -+-az ay 
011 
-+ 

ow 
az 0% 

and 

[B] is the strain-displacement matrix and will be function of the derivative of shape function 

[N]. 

In order to establish the strain-displacement relation. first. the derivatives of 

displacements with respect to local coordinates must be obtained by differentiating Equation 

(A.30) with respect to r, s and t . Hence: 

au av ow 
a~ aN, - -ar a,. or th-a,. I 01' 

au av ow 9 I 9 - - =E oN1 [ u1 v1 w1] - - E 11 aN, Cl1 ( b I b2 b3 ) 1 as as as 1•1 2 l•l t-as I OS 
au av ow - - - 0 h1N1 at at at 
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aN, 
th

t ar 

By using the Jacobian inverse and Equation (A.33) .. . 

au av aw all 
0% ax ax Jl; J.. 

u J.; ar 
au av aw J;l J.. J.. 011 - - - = -ay ay ay u 23 as 
au av aw JJ; JJ; JJ; all -az az az at 

(A.32) 

av aw 
or ar 
av aw 

(A.33) -as as 
av aw - -at at J 

the derivatives with respect to the global coordinates are found. and the strain displacement 

matrix [B] can be obtained. 

A.4.5 Stress Displacement Matrix: 

In order to obtain stress displacement matrix [C] , it is necessary to know the relation 

between the vector of the stress {a} to that of the strain { e} . For linear elastic material. 

which obeys Hooke's law, the relation is given by: 

{a} = [C] {e} (A.34) 
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For linear elastic isotropic material of which every plane is a plane of symmetry of 

the material's behavior, only two constants, (i.e. Young's Modulus E and Poisson' s 

Ratio ll ), are required to describe the constitutive relation. Therefore, the following relation 

is obtained for stress-strain relation in z 1, y 1
, z1 coordinates: 

{o'} = [q {e'} (A.35) 

or: 

1 ~ 0 0 0 0 

az' ll 1 0 0 0 0 Ez' 

ay' 0 0 0 0 0 0 Ey' 

az' E 0 0 0 1-~& 0 0 Ez' 
= 2 (A.36) 

't z'y' 1 - 1'1 
Cl (1 - ~) 

Y z'y' 

0 0 0 0 0 
'ty'z' 2 Yy':' 

't z'.r:' 0 0 0 0 0 Cl (1 - 1-') Y z'.r:' 

2 

where ex is a factor used to account for a better representation of shear defonnation when a 

constant strain is assumed across the thickness, rather than the correct quadratic. [C] 

obtained using Equation (A.36) along with [B) is then used to obtain element stiffness [k] 

in Equation (A.18). 
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AppendixB 

Modal Analysis 

B.l Theory 

Theory of modal analysis refers to that portion of the classical vibration theory that explains 

tht: existence of natural frequencies, damping factors, and mode shapes for linear systems. 

It starts with a description of the structure's physical characteristics, usually in tenns of its 

mass, stiffness, and damping properties. Theory of modal analysis is then applied, and the 

structure's behaviors such as the natural frequencies and the mode shapes are detennined. 

Finally, the frequency response functions and the impulse responses are obtained. 

By applying Laplace transform to Equation (3.1): 

5f([M]{ji(t)} + [C]{)(t)} + [K]{y(t)}) = 5f(l{t)}) (B.l) 

one obtains: 
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[B(s)]{y(s)} = {f{s)} + ( [M] s + [CJ ){y(O)} + [M]{Y(O)} (B.2) 

where: 

[B(s)] = [M] s 2 + [CJ s + [K] (B.3) 

Rearrangement of the above equation leads to: 

{y(s)} = [H(s)]({f{s)} + ( [M]s + [C] ){y(O)} + (MJ{Y(O)}) (B.4) 

where: 

[H(s)] = [B(s)r1
. 

Assuming Equation (B.4) has zero initial conditions, then: 

{y(s)} = [ll(s)]{j{s)} 

Let the Fourier variable be s = jw • then: 

[ll(iw >1 = [B(i6» >r • = at!i£B(i6» >1 
det[B{i6» )] 

(B.5) 

(B.6) 

In Equation (B.6), [H(iw )] is Frequency Response Function, called FRF hereafter, 

[B(jw)] = (MJ (&)
2 + j(&) [CJ + [K]. atQ[B{j(l))] is the adjoint matrix of [B(jw)], and 
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dct[B(j(a) )] is the determinant of [B(j(l) )] . 

Since both the adjoint matrix of [B{i(l) )] and the determinant of [B(i(l) )] are 

polynomial in j6> , the element of [H(i(l) )] is a rational fraction in j(a) ; therefore, it is 

possible to represent any element of the [H(f(a) )] in a partial fraction form: 

[H(fw )] = t [ . [A,] + [A,.·] ] 
, .. 1 J(a) - (a), jw -(a); 

(B.7) 

where [A,] that reflects the corresponding mode shape; (a),. is the r,. complex frequency, 

whose imaginary part gives the damped natural frequency and whose real part give the 

damping coefficient. And A • designates the corresponding complex conjugate. 

For a homogeneous solution, Equation (B.2) leads to: 

(B.8) 

and the characteristic polynomial equation is obtained from: 

det[B(;w )] = 0 (B.9) 

The roots (a) 1 of the characteristic equation are called eigenvalues or complex 

frequencies. Substituting the eigenvalues into the Equation (8.8), solving for {)(j(a))} , and 

nonnalizing {)'(j(a))} to unity yields the eigenvector U1 corresponding to the eigenvalue (a) 
1

• 
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The FRF has many fonns in terms of input (excitation) and output (response). The 

most common forms of FRF are: 

a. Receptance, in the form of displacement/force, where displacement is the output. 

b. Mobility, in the form of velocity/force, where velocity is the output. 

c. Inertance, in the form of acceleration/force, where the acceleration is the output. 

The output from the experimental and numerical study were accelerations; therefore, 

the present study utilized the inenance FRF. 

B.2 Experiment 

Experimental modal analysis is carried out to verify or correct the results of the analytical 

approach and to obtain information on the systems, which cannot be numerically modeled. 

It is started with the measurement ofFRF to describe the response properties of the structure. 

Theory of modal analysis described in the above section is then performed, and the 

structure's behaviors such as natural frequencies and mode shapes are determined in term of 

a modal model. Finally, the structural model is obtained. 

Equation (B. 7) is the general matrix form that is used in experimental modal analysis. 

Since the continuous systems have an infinite number of degree-of-freedoms, a finite number 

of modes must be chosen so that they can be used to represent the dynamic behavior of the 
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system. In the frequency range of interest. Equation (B.7) can be written as: 

(B.IO) 

In Equation (B.lO), the lower residual QtJjw) is the residual inertia that represents the 

inertia of the lower modes and is an inverse function of the frequency squared; and the upper 

residual P ii(jw) is the residual flexibility, which represents the flexibility of the upper modes 

and is constant with frequency. 

The experimental modal analysis comprises of two phases. the measurement ofFRFs 

and the estimation of modal parameters. The measurement of the FRFs is the most important 

phase. since it is used as inputs to estimate modal parameters of the system such as natural 

frequencies, damping ratios, and mode shapes. 

In order to measure FRFs. there are four different configurations of modal testing that 

can be considered. Those are: 

- Single input/ single output (SISO) 

- Single input/ multiple outputs (SIMO) 

- Multiple input/ single output (MISO) 

- Multiple inputs/ multiple outputs (MIMO) 
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These different testing conditions are largely a function of the number of acquisition 

channels or excitation sources. The present study used a single input/ single output (SISO) 

functions to measure the acceleration FRF of the stiffened plate models at six different 

locations. 

The FRFs are estimated using the least squares or the total least squares techniques. 

the auto-power spectra. and the cross power spectra. Least squares methods minimize the 

square of the magnitude error and thus compute the best estimate of the magnitude of the 

FRFs. Three algorithms. referred to as H1, H2 and H, algorithms. are available for 

estimating the FRFs. 

H 1 assumes that noise exists in the output and the input is free of noise. Hence: 

(B.ll) 

H2 algorithm considers the noise to be present in the input and to be absent in the 

output: 

(B.12) 

H, assumes the noise to exists both in the input and output signals. consequently: 

[H,]{{X}- {v} = {Y}- {q} (B.l3) 
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While the excitation could be single or multiple. the equation derived for single 

excitation is given as: 

where: 

Gyy = t yty; 
i;l 

G 
H.=~ 

1 G 
.IX 

G 
H. = _!!!_ z G 

'P 

(B.l4) 

(B.l5) 

In any actual measurement situation. the noise occurs both in output and input; 

therefore. the above numerical model can be represented in block diagram fonn as shown in 

Figure B.l. 

In Figure B. I. an apostrophe denotes the true measured input/output; therefore, H1 

and H2 are defined as: 
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where: 

X' 
H 

n f' 
-·=·3-~-o~---·· 

A 
I 

y I 

Figure 8.1: System with Noise 

(B.16) 

(B.17) 

From the above equations, it can be observed that H 1 is the lower bound and H2 is the upper 

bound of H. 
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In addition to the attractiveness of H1, H, and H. in tenns of the minimization of 

the error. the availability of auto- and cross-power spectra allows the determination of 

another imponant function, called the ordinary coherence function. It is frequency dependent 

and computed as follows: 

(B.l8) 

y 2 is real valued and varies from 0 to 1. The coherence function is used to measure the 

degree of noise in measurement. Zero value of coherence function means that the response 

is generated by the noise or a source other than the measured input. When the coherence is 

equal to 1 at any specific frequency, the measurement is perfect, i.e., the output is caused 

totally by the measured input. Error such as leakage can cause the coherent function to be 

less than one. By increasing the number of averages, the variance of the coherence will be 

less. 

There are a number of features of digital Fourier analysis that will give rise to 

erroneous results of FRFs, if they are not properly treated. These are the results of the 

discretization approximation and of the need to limit the length of the time history. The 

specific features of aliassing, leakage, windowing, zooming and averaging will be discussed 

in the subsequent sections. 
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8.2.1 Aliasing 

Aliasing is an effect introduced by the sampling of the time signal, whereby, after sampling. 

high frequencies appear as lower ones. Aliasing occurs when the sample rate is less than 

twice the highest frequency in the data. The frequencies above half the sampling frequency 

will be folded back into the frequencies below half the sampling frequency, producing 

erroneous results. Hence, aliasing error may be avoided by using sampling rate which is at 

least twice that of the highest significant frequency component in the signal. 

8.2.2 Leakage and Windowing 

The need to take only a finite length of time history coupled with the assumption of 

periodically causes leakage that is discontinuous in magnitude and slope at the ends of the 

sample analyzed. The discontinuity in magnitude and slope will cause additional frequency 

components to be calculated in order to account for the signal discontinuity that occurs at its 

ends. The use of a weighting function or of data windows can solve the problem. 

Windowing involves the imposition of a prescribed profile on the time signal prior 

to performing the Fourier Transform. There are many fonns of windowing such as 

Rectangular, Transient, Exponential, Hanning, Flat Top and Kaiser Bessel. For stationary 

signals, the use of the Hanning window is suggested by Allemang (1996). 
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B.2.3 Averaging 

Averaging is the process involving several individual time records. or samples, before a 

result is obtained which can be used with confidence. The number of averaging required are 

determined by two major considerations: the desired accuracy and statistical reliability, and 

the noise level in signals. There are two types of averaging: sequential and overlap. The 

overlap process in intended to enhance the measured data by including consecutive history 

data before the previous data are complete. 

There are several time averaging methods, such as Linear, Exponential, and Peak 

Averaging. These can be performed with or without the overlapping of the time record. The 

analyzer used in the present study provides 50%, 75%, and 85% degree of overlap. 

B.2.4 Zoom 

Zoom means the reduction in the frequency span of measurement, which automatically 

requires a longer time history record. When the frequency response function peak in the 

frequency narrower than the resolution then error occurs. One way to increase the frequency 

resolution while maintaining baseband frequency range is to increase the data window length 

by an integer factor while using the same sample frequency. In addition, increase of the 

frequency resolution minimizes the leakage error. 
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Appendix C 

Instrumentation and Calibrations 

C.l Signal Generators 

There are many different signals which can be used to excite the structure for modal testing, 

and several of these are in widespread use. Basically, they can be divided into two types: 

transient and continuous signals. The transient signal is basically a discontinuous signal such 

as an impact test, which is generated using a hammer. It is a relatively simple means of 

exciting the model to generate vibration motion. However, the transient signal is limited in 

its usefulness for performing tests, which require high precision and accuracy. 

On the other hand, the continuous signal can provide sufficient power into the system 

to ex. cite as many frequencies as required. It has a good signal to noise ratio, since the exciter 

is fixed at a certain point and has a good repeatability. For the excitation forcing function, 

normally two type of continuous signals are used: a random and a fast sine sweep. In the 

present study, both signals were used. The fast sine sweep signal was used to obtain the 
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acceleration responses in which the combination of them will produce the acceleration FRFs. 

The random signal was used to produce the acceleration random responses. 

There are three types of the random signals: a true random, a pseudo random, and a 

periodic random signals in which the samples are shown in Figure C.L The advantages of 

the random signals are that the signals cover a wide range of natural frequencies, and 

represent the realistic service environment. The random signals used in the present study 

were the pseudo random signals with unknown magnitude. 

The pseudo random signals were generated by a Wavetex modell32 noise generator. 

This generator is a source of analog and digital noise, as well as precision source of sine, 

triangle, and square wavefonns. Noise outputs, or waveforms can be used individually, or 

combined to provide selectable, calibrated signal-to-noise and noise-to-signal ratios to 

+60dB. Wavefonns can be varied over a frequency range of 0.2 Hz to 2.0 MHz in 6 decade 

ranges. 

The fast sine sweep signal, for which the sample is shown in Figure C.2, is a 

sinusoidal signal with a constant amplitude, which continuously increases in frequency from 

a small value to the specified maximum value. The advantages of this signal include: reduced 

noise, high signal to noise ratio, and minimized signal leakage. However, this signal does not 

represent the realistic service environment. 
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Figure C.l: Samples of Random Signal 
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In the present study, the fast sine sweep signal was generated by aHP 3314A function 

generator. This generator was a multi-mode HP-m programmable function generator 

featuring sine, square, and triangular functions ranges from 0.001 Hz to 19.99 MHz. It had 

sophisticated implementation of the operating modes plus precision control of the trigger 

signal. 

--·-··· 
Figure C.2: Sample of Fast Sine Sweep Signal 

C.2 Exciter 

There are three types of ex.citer, or vibrator, or shaker: mechanical (out-of-balance rotating 

masses), electromagnetic (moving coil in magnetic field), and electrohydraulic [Ewins, 

1996]. The most common type of ex.citer used for the modal testing is the electromagnetic 

or electrodynamic, in which the supplied input signal is converted to an alternating magnetic 

field in which a coil is placed which is attached to the drive part of the device, and to the 

structure. 

A B&K type 4801 ex.citer body along with a type 4812 ex.citer head were used in the 
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present study to excite the stiffened plate models. The exciter is sttong enough to handle a 

variety of sizes and weights of test objects and fixtures, even in the horizontal position. The 

maximum force rating was 445 Newtons (100 lbs) for vibrating specimens at frequencies 

ranging from 10 Hz up to 20 kHz. 

C.3 Transducer 

Transducer is device for measuring the excitation forces and the various responses of 

interest. The most popular and widely-used means of measuring the parameters of interest 

in modal testing is the piezoelectric type of transducer. There are three types of piezoelectric 

transducer available for mobility measurement: force gauges, accelerometers and impedance 

heads. The basic principle of operation makes use of the fact that an element of piezoelectric 

material generates an electrical charge across its end faces when subjected to a mechanical 

stress. 

In the present study, STRUCTCEL model no. 330A accelerometers were used for 

measuring the acceleration FR.Fs and the acceleration random responses. Each accelerometer 

has 2.0 grams of weight. These accelerometers were encased in a plastic cup and have 

measuring device with a 3-pin transistor-header configuration. The specifications of these 

accelerometers are listed in Table C.l. 

The accelerometers could be used measuring the responses in air and in water. When 

the experiment in water was carried out, the accelerometers and all their submerged wire 

207 



connections were made water-tight using petroleum-jelly. 

Table C.1: Specification of STRUCfCEL Accelerometers 

Sensitivity (mV/g) 200 

Range (± 10V) (g) 10 

Resolution (g) 0.001 

Frequency range(± 5% sens. dev.) (Hz) 1-1000 

Resonant frequency (Hz) 3000 

Excitation (± VDC) 15 

Temperature range ("F) 0-130 

Shock (max) (g) 5000 

Weight(gm) 2 

Connector (pin) 3 

C.4 Load Cell 

A load cell or a force transducer is the simplest type of piezoelectric transducer. A Kistler 

model 912 SIN 2010 quart dynamic load cell was used in the present study. It measured 

compression forces from less than lib. to 5000 lbs and tension forces from 0 lb. to 100 lbs. 

This load cell model was rigid and had a very high sensitivity, near infinite resolution and 

fast response. It was attached to the exciter through a connecting rod, to transmit the force 

signal to the stiffened plate models. The load cell was screwed directly onto the side shell of 

208 



the stiffened plate models and the connecting rod from the exciter. 

C.S Analyzer 

An analyzer is used to measure the specific parameters of interest: force and response levels. 

In principle, each analyzer is a form of voltmeter. Although, the signal processing required 

to extract the necessary infonnation concerning magnitude and phase of each parameter 

requires some very complex, and sophisticated devices. 

There are three of these in current use: tracking filters, frequency responses analyzers, 

and spectrum analyzers. In the present study, two analyzers were used for data acquisition. 

One was a B & K 2034 dual channel signal analyzer, and the other was Keithley 570 data 

acquisition system. 

A B&K dual channel signal analyzer type 2034 can be used for measuring FRFs, 

coherence, for both auto- and cross-spectra, for both auto- and cross-correlation, impulse 

response, signal-to-noise ratio, sound intensity, orbits, and probability density/ distribution 

functions. In the present study, this device was used to measure the acceleration FRFs and 

the coherence. This analyzer was a flexible, easy-to-use, and fully self-contained two channel 

FFf analysis system with 801 lines of resolution. It had a built-in digital zoom to 25.6 kHz. 

A Keithly 570 is a 12 bit data acquisition system that can acquire up to 32 channels. 

It takes only several nano-seconds to switch between channels. The digital interval between 

each sample in each channel in the experimental measurement was 10 milliseconds; hence 
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the data acquired by these channels are assumed to be independent, simultaneous, and 

continuous. In the present study, this device was used to digitize the measured random 

responses so that the random response could be analyzed using other software packages. 

C.6 STAR Software 

The STAR System is a series of software products for testing and analyzing the dynamics of 

mechanical structures. STAR is an acronym for Structural Testing, Analysis and Reporting 

which described the general capabilities of the system (Spectral Dynamics, Inc., 1994). The 

STAR System can be used for three related types of dynamic analyses such as time domain 

analysis, operating deflection shapes analysis, and modal analysis. The STAR System has 

four various products such as STAR Base~, STAR View~, STAR Modal® , and STAR 

Struct®, which are able to share the same data base. 

In the present study, the STAR Struct15, which contains all the capabilities of STAR 

View® and STAR Modal® plus extended analysis capabilities, was used to acquire the 

measurements from a B&K analyzer through the General Purpose Interface Board (GPffi) 

interface. This software uses the acceleration FRFs to identify the modal parameters of the 

stiffened plate models such as natural frequencies and damping ratios. 
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C. 7 Connecting Rod 

In addition to the instruments explained in the previous subsection, there were also an 

important components that influenced the process of the experiment. These were the 

connecting rods, which transmitted the signal from the exciter to the load celL There were 

two types of the connecting rods, made of mild steels. used in the present study. The type 1 

was used to connect the exciter to the long steel rod part. The type 2 was designed to connect 

the long steel rod part to the load cell, and to protect the instruments from overloading in 

which it would be yielding when the exciting force became large. 

C.8 Calibration 

In order for measured experimental data has accurate results. all the transducers used in the 

experiments were carefully calibrated. The calibration was carried out in two steps. The first 

step involved the calibration of the excitation channel that includes the force transducer and 

the dual mode amplifier. The second step involved the calibration of the response channel 

that includes the accelerometers, the differential amplifier and the oscilloscope. The details 

of the calibration are as follows: 

C.8.1 Load CeO 

The calibration of the model912 SIN 2010 load cell was done using the standard weight, 
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dual mode amplifier. and an oscilloscope. The setup for the load cell's calibration is shown 

in Figure C.3. The standard weight excited the load cell. and the response was amplified by 

the dual mode amplifier. which was properly set so that the expected channel sensitivity of 

1 V llb was obtainecl An oscilloscope was used to measure the response. 

I 
I 
I 

Standard -"' Kistler 912-2010 ... 
weight 

, 
Load cell 

Figure C.3: Calibration Setup for Load Cell 

C.8.2 Accelerometers 

The calibration of six accelerometers model PCB 330A were done using the hand-held 

calibrator model PCB 394805 and an oscilloscope. The setup for the accelerometer's 

calibration is shown in Figure C.4. 

I 
PC8394BOS ""' PCB JJOA ....J T922 

I 
Calibrator - accelerometer -I Oscilloscope 

I 

Figure C.4. Calibration Setup for Accelerometer 
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Each accelerometer to be calibrated was attached to the socket of the calibrator, 

which was then vibrated. The output of the calibrator was a constant level of 1g (RMS). The 

output was sent to an oscilloscope to calculate the calibration factor of each accelerometer. 

Each accelerometer was calibrated one by one. The results are tabulated in Table C.2. 

Table C.2: Calibration Factors of Accelerometers 

Channel No. 1 2 3 4 5 6 

Accelerometer 20093 20403 20505 20502 20397 19944 
series (SIN) 

Calibration 1.3 1.5 1.5 1.4 1.6 1.6 
Factor (V/g) 
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AppendixD 

Dynamic Response of Models #2, #3, and #4 

D.l Model#2 

Model #2 was investigated for each 0.20 inch of crack length. This crack length was shorter 

than the crack length that was investigated in Model 11, i.e., 0.40 inch. However, the 

maximum crack length to be identified was remained same, i.e., 1.20 inch. Also, the location 

of the crack for both models was the same, i.e., at the faceplate of longitudinal (at a distance 

of 0.90 inch from the heavy transverse member). The reason to change the crack length was 

to check the sensitivity of the techniques on the crack length. Moreover. in addition to in air, 

the experiment of Model #2 was also conducted in water for identifying the effect of the 

presence of water on the dynamic responses of the model. 

Since Models 11 and 12 have similar dimensions and characteristics, their 

experimental and numerical acceleration FR.Fs also have similar shape for both undamaged 

and damaged conditions. The difference between them is for the values of frequencies only. 
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Based on this consideration. only a comparison between the numerical free vibration 

responses and the experimental randomdec signatures along with their frequencies is 

presented and discussed in the following sections. 

D.l.l In air 

Figure D.l.a shows a comparison between the numerical free vibration response and the 

experimental randomdec signature for the undamaged model. whereas Figures D.l .b- D.l.g 

show a comparison for the damaged model with crack lengths of 0.20 inch. 0.40 inch. 0.60 

inch. 0.80 inch. 1.00 inch. and 1.20 inch. respectively. A comparison of their frequencies is 

tabulated together in Table D. I. 

It can be observed from Figures D.l.a- D.Lg and Table D.l that the experimental 

randomdec signatures and the numerical free vibration responses are in good agreement for 

both the undamaged and the damaged conditions. For crack length of 0.20 inch. the results 

are similar to the undamaged ones for both the frequency and the responses. The difference 

in the results appeared when the crack length increased. Similar to Model #1. Figures D.l 

also show the difference in magnitudes between experimental and numerical results. 

215 



-Numerical Free Vibration Response -••.•. . Experimental Ralldomdec Signatl.ft 

c: O.OOE+OO 
.2 e 
a> 
(j) 
0 
0 
< 

or:-
0 
Q) 
</) --~ 
0 
§. 
c: 
0 

~ 
G; 
~ 
(,) 

ii. 

·3.00E+03 

~-00E+03+--------------------------~ .................... --~ ......................... ~ .................... ~ 
0 0.002 0.004 

t (sec) 

D.l.a: Undamaged 

0.006 0.008 

---Numerical Free \llbration Response -.-- ••. Elcperimental Randomdec Signature 

6.00E+03 

3.00E+03 

O.OOE+OO 

-3.00E+03 
.. 

-6.00E+03 

0 0.002 0.004 0.006 0.008 

t (sec) 

D.l.b: Crack length= 0.20 inch 

216 



--Numerical Free \4bration Response •.••••. Ellperimental Random dec Signature 

6.00E+03 

.;;-
0 
Q) 

3.00E+03 (I) 

~ 
0 

~ 
c: O.OOE+OO 
0 

~ 
Q) 

-3.00E+03 Q) 
0 
0 
~ 

-6.00E+03 

0 0.002 0.004 

t (sec) 

D. Lc: Crack length = 0.40 inch 

0.006 0 .008 

--Numerical Free \1bration Response ••••••. Ellperimental Random dec Signature 

6.00E+03 

.;;-
0 
Q) 3.00E+03 .!!! 
~ 
0 
:§. 
c: 
0 

O.OOE+OO 

~ ... 
Q) 
Q) -3.00E+03 
0 
0 
~ 

·6.00E+03 

0 0.002 0.004 

t (sec) 

,-, . ' . 

D.l.d: Crack length = 0.60 inch 

217 

0.006 

. . 

0.008 



---Numerical Free "'bration Response ------.~rim ental Random dec Signature 

C' 
0 
Q) 

~ 
~ 
0 .=. 
c 
0 
cu .... 
Q) 
Q) 

8 
< 

6.00E+03 

3.00E+03 

O.OOE+OO 

-3.00E+03 

-6.00E+03 

0 0.002 0.004 

t(sec) 

D.l.e: Crack Jength = 0.80 inch 

0.006 0.008 

-Numerical Free Vibration Response ••••••. Experimental Ralldomdec Signature 

6.00E+03 -"' 0 
Q) 
rn -~ 3.00E+03 
0 .=. 
c:: O.OOE+OO 
0 

:;:: 
~ 
Q) -3.00E+03 Q) 
0 
0 
< 

~-00E+03 

0 0.002 

,.. .... 

0.004 

t (sec) 

D.l.f: Crack length == 1.00 inch 

218 

0.006 0.008 



-Numerical Free Vibration Response •••.... Experimental Randomdec Signature 

6.00E+OO~------------------------------------------~ -"' 0 
a> 
~ 3.00E+03 
0 
~ -=
~ O.OOE+OO 
.2 
i 
: ·3.00E+OO 
0 
0 
< 

. . 
' , ... ~ 

~.OOE+OO+---------~----------~--------~--~------~ 

0 0.002 0.004 

t (sec) 

D.l.g: Crack length= 1.20 inch 

0.006 0.008 

Figure D.l: Comparison between Experimental Randomdec Signatures and Numerical 
Free Vibration Responses of Model 12 in Air 

Table 0.1: Comparison of Experimental Randomdec Signature and Numerical Free 
Vibration Response Frequencies of Model #2 in Air (Hz) 

No 
Crack length Exp. Randomdec Num. Free Vibration 

(Inches) Signature Response 

1 0.00 421.59 421.74 

2 0.20 421.20 421.20 

3 0.40 420.67 420.17 

4 0.60 417.94 417.99 

5 0.80 415.66 415.56 

6 1.00 413.44 412.67 

7 1.20 410.87 410.50 
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However, the results in Table 0.1 indicate that the frequencies of Model #2 are 

slightly higher than those of Model #1. see Table 5.4 for comparison. The cause is that the 

thicknesses of each model were slightly different as discussed in Chapter 4. Also, in order 

to carry out the experiment in water. Model #2 was submerged in water for both the 

undamaged and the damaged conditions. 

The experiment in air was conducted after the experiment in water was carried out. 

Moreover, due to the difficulty in installing. the load on the bolts for clamping Model #2 

might be slightly different from that for Model4n. Therefore. the boundary conditions for 

both models might also be slightly different. 

--E~(Mxtltl) ••• • ···I'Un(Mcx:iUl) • • • ·E~(MoaU2) --N..m (.Moc.l:l 12) 

N'420 
::L ->- 415 u c 
~ 410 
CT e 
LL 405 

~+---------~----------~----------~--------~ 
0.00 0.00 0.60 0.90 1.20 

~k length (inches) 

Figure 0.2: Comparison between Frequencies of Models #1 and #2 in Air 

220 



Nevertheless, Figure 0.2 indicates that the frequencies for both Models #1 and ##2 

decreased with a similar trend when the crack length is appeared and increased. Based on the 

above results, it is evident that the randomdec technique as well as the FE model could be 

applied for identifying the dynamic behavior of the undamaged Model ##2 and Model ##2 with 

several damaged lengths; hence they would be used to identify the dynamic behavior of the 

undamaged and damaged of Model ##2 in water. 

D.1.21n Water 

In order to carry out the experiment in water, Model ##2 was submerged in two different 

conditions. One was in partial submergence, and the other was in full submergence. The 

reason is that, in the present study, the stiffened plate model represents the inner side shell 

of double hull tankers in which one of its function is to separate a cargo hold and a side wall 

tank. The.partial submergence condition represents the cargo hold is full loaded, and the side 

wall tank is an empty. The full submergence condition represents the cargo hold and the side 

wall tank are full loaded. 

0.1.2.1 Partial Submergence 

Experimentally, the partial submergence means that the longitudinal and the heavy ttansverse 

member are full submerged in water, and the side shell is submerged at one side only, i.e., 

the side with the longitudinal and the heavy transverse member. Numerically, the partial 
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submergence means that the mass of Modell2 is added with the mass of water surround 

Model #2 using Equation 3.16. A comparison between the numerical free vibration responses 

and the experimental randomdec signatures for the undamaged and the damaged conditions 

is presented separately in Figure D.3.a - D.3.g. For comparison, their frequencies for the 

fourth mode are given in Table 0.2. 

It is found from Figures 0 .3 and Table 0.2 that the numerical free vibration responses 

and the experimental randomdec signatures have a relatively good agreement for the 

undamaged model and the model with several crack lengths. Comparing with the undamaged 

results, the results for the crack with the length of 0.20 inch are almost the same. Similar to 

the results for Models~ 1 and #2 in air, Figures 0 .3 also show the difference in the magnitude 

between the numerical free vibration responses and the experimental randomdec signatures. 

However, Figures 0.3 do not show discernible change in the shapes, when they are 

compared with those of Figures D.l. This means that the presence of water did not influence 

the dynamic behavior of Model #2. Also, for t = 0.008 seconds, the number of cycles 

obtained from Figures D.3 is slightly less than those obtained from Figures D.l for both the 

undamaged and the damaged conditions. The following comments may explain the causes. 
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Figure D.3: Comparison between Experimental Randomdec Signatures and Numerical 
Free Vibration Responses of Model #2 in Water (Partial Submergence) 

Table D.2: Comparison of Experimental Randomdec Signature and Numerical Free 
Vibration Response Frequencies of Model #2 in Water (Partial Submergence) (Hz) 

No 
Crack length Ex.p. Randomdec Num. Free Vibration 

(Inches) Signature Response 

1 0.00 381.45 381.48 

2 0.20 381.10 381.09 

3 0.40 380.34 380.16 

4 0.60 378.64 378.58 

5 0.80 376.64 376.60 

6 1.00 373.56 373.51 

7 1.20 370.17 370.11 
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In the experiments, the stiffened plate model was placed symmetrically in the tank 

for both in the x and y directions. Therefore, the presence of water did not change the 

symmetry of the system, it only increased the density and damping ratios of the model. In the 

numerical study, the water effect was modeled as an added mass and the increase in damping 

ratios; however, the stiffness remain the same as that in air. Because of this, it could be 

observed from Table 0.2 that, the presence of water caused the frequencies of vibrating 

undamaged and damaged stiffened plate model decreased. In Figures 0.3, this was 

represented by shifting the crest and the trough of signatures and responses to the right side. 

--6cp. (in water) ••••••. run (in water) • • • • &p. (in ai') --~ (in air) 

500~--------------------------------------------~ 

"N 450 
~ -

~+----------,----------~--------~--------~ 
0.00 0.30 0.60 0.90 1.20 

Cra;k length Qnches) 

Figure 0.4.: Comparison of the Frequencies of Model #2 in Air and Water (Partial 
Submregence) 
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In order to ensure that the effect of water only caused the decrease of frequencies. the 

frequencies in water were compared with those in air. and the results are plotted together in 

Figure D.4. It can be seen from Figure 0.4 that the frequencies in water also decrease when 

the crack length increased. Moreover. the decrease of frequencies in water has a similar 

pattern with those in air for both the numerical free vibration responses and the experimental 

randomdec signatures. 

Based on the above results. the randomdec technique and the FE model could also 

be used to identify the dynamic behavior of Model *2 in water/ partial; therefore, they were 

applied to identify the dynamic behavior of the undamaged and the damaged Model *2 , 

which was full submerged in water. 

D.1.2.2 Full Submergence 

The full submergence means that all members of Model *2. i.e., the longitudinal, the heavy 

transverse member, and the side shell, are full submerged in water. Therefore, for analyzing 

using the FE analysis, the mass of water was added to Model #2 in this condition was heavier 

than that was added to Model #2 in the paitial submergence. The depth of water above the 

side shell was 4.00 inch. This was due to in the fact that the height of the tank was limited. 

In fact, the increase of the depth of submergence causes the increase of an added mass and 

damping ratio of the model as proven by Haddara and Cao (1996). However, they have also 

proven that the added mass and damping ratio approached to limiting values with the 

increase in the depth of submergence. 
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The experimental randomdec signatures were compared with the numerical free 

vibration responses, and the results are drawn together in Figure D.5.a- D.5.g for both the 

undamaged and the damaged conditions. Table 0.3 shows a comparison between their 

frequencies at the fourth mode. As observed from Figures 0.5, the agreement between the 

experimental randomdec signatures and the numerical free vibration responses are in a good 

condition for both the undamaged and the damaged ones. Table 0.3 also shows the good 

agreement between their frequencies, and the decrease in frequencies with the increase of the 

damage length. However, whencomparedwiththeresultsshown inFiguresD.3,FiguresD.5 

did not show the significant change in signatures and responses for both the undamaged and 

the damaged conditions. Similar to the panial submergence, this means that an additional 

water above the side shell also did not influence the behavior of Model #2. 
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Figure 0.5: Comparison between Experimental Randomdec Signatures and Numerical 
Free Vibration Responses of Model #2 in Water (Full Submergence) 
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Table 0.3: Comparison of Experimental Randomdec Signature and Numerical Free 
Vibration Response Frequencies of Model #2 in Water (Full Submergence) (Hz) 

No 
Crack length Exp. Randomdec Num. Free Vibration 

(Inches) Signature Response 

1 0.00 367.42 367.59 

2 0.20 367.17 367.23 

3 0.40 366.13 366.21 

4 0.60 364.80 364.80 

5 0.80 362.15 362.68 

6 1.00 360.52 360.43 

7 1.20 356.78 356.92 

--ecp. {nair) ••••••. tUn (il air) --Bcp. (il water/partial) 

• • • ·tun (in waterlpar'tia) --ecp. (il waler/hJ) • • • tUn (n waterlfl.t) 

~T-------------------------------------------~ -N 
J: 410 -

0.40 0.80 1.20 

OcD ~h Or~:hes) 

Figure 0.6: Comparison of Frequencies of Model #2 in Air and Water (Partial and Full 
Submergence Conditions) 
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The differences between them could only be shown from the comparison of their 

frequencies as shown in Figure 0.6. It can be seen from Figure 0.6 that the increase of the 

water depth above the side shell causes the decrease of frequencies. However, Figure 0.6 

indicates that the decrease in frequencies from the partial submergence to the ful! 

submergence is smaller than from in air to the partial submergence for both the undamaged 

and the damaged conditions. This is due to in fact that the partial submergence condition 

needed water with the depth of 15.00 inch for submerging the longitudinal. the heavy 

transverse member. and one side of the side shell of Model #2. 

The full submergence condition only needed an additional water with the depth of 

4.00 inch above the side shell from the partial submergence condition for submerging the 

whole model. The added mass of water. in the term of mass density, was then distributed to 

the whole parts of Model #2. From Figure 5.5, It could be seen that the mode shape for the 

fourth mode was the venical vibration in which the bending mode of the side shell and the 

longitudinal was dominant. This also caused the change in frequencies from in air to the 

partial submergence was more dominant than that from the partial submergence to the full 

submergence. Nevertheless, the most important thing that could be observed from FigureD .6 

is that the presence of water for both partial and full submergence conditions, did not 

influence the behavior of Model #2, it only decreased the frequencies. Therefore, the 

decrease in frequency in air and water has similarly trends for both the undamaged and the 

damaged conditions. 

From the results obtained from Models #land #2, it could be concluded that the 
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randomdec technique as well as the FE model has accurately identified the dynamic behavior 

of the undamaged model and the model with several damaged lengths in air and water. 

Hence, they were applied to investigate the other models, i.e., Models #3 and #4, in air and 

water. The crack location of Model 13 and #4 was different from that of Model # 1 and #2. 

The effect of the crack location on the experimental randomdec signatures, the numerical free 

vibration responses. and their frequencies are studied. 

D.2Model#3 

In order to verify the capability of the randomdec technique and the FE model for identifying 

the effect of the crack location on the dynamics behavior of the stiffened plate model, Model 

#3, which also had similar dimensions and characteristics to Models #1 and #2, was 

investigated. The crack was also made at the face of the longitudinal; however, the location 

of the crack was 1.35 inch from the heavy transverse member or0.45 inch far away from the 

location of the crack of Models # 1 and #2. As in the case of Model #2, the analysis was also 

investigated for each 0.20 crack length in air and water, partial and full submergences. 

D.2.lln air 

The numerical free vibration responses along with the experimental randomdec signatures 

for the undamaged and the damaged model were compared, and the results were presented 

together in Figures D.7 .a- D.7.g. Their frequencies for the fourth mode were calculated 
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from Figures 0 .7. and the results were tabulated together in Table 0 .4. 

It can be analyzed from Figures D. 7 and Table 0.4 that the experimental randomdec 

signatures match closely to the numerical free vibration responses. especially for the first 

cycle and their frequencies. However. the results shown in Figures 0.7 and Table 0.4 are 

different from those shown in Figures D.l and Table 0.2. i.e .• the frequencies of Model #3 

were higher than those of Model #2. This might be also be due to the similar problems that 

were faced by Model #2. 
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Figure 0.7: Comparison between Experimental Randomdec Signatures and Numerical 
Free Vibration Responses of Model #3 in Air 
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Table 0.4: Comparison of Experimental Randomdec Signature and Numerical Free 
Vibration Response Frequencies of Model*3 in Air (Hz) 

No 
Crack length Exp. Randomdec Num. Free Vibration 

(Inches) Signature Response 

l 0.00 453.34 453.13 

2 0.20 452.40 452.49 

3 0.40 451.66 451.88 

4 0.60 450.77 450.90 

5 0.80 449.24 449.35 

6 l.OO 446.97 447.11 

7 1.20 444.86 444.84 

The original thicknesses of Model #3 were slightly different from Models# 1 and #2. 

Model #3 was also submerged in water for identifying its dynamic responses due to the 

presence of water. However, the experimental studies of Models #2 and #3 in air and water 

were conducted in different seasons, in which the temperature of water was different. The 

experiment of Model #2 was carried out in the Fall 1999 (November - December 1999). 

whereas Model #3 was in the Winter 2000 (January- February 2000). These might be caused 

the thicknesses of Models #2 and #3 were different. 

Because of this reason, the results obtained from Models #2 and #3 could not be 

compared each others for analyzing the effect of the crack location on the frequencies. The 

only solution could be used for solving this problem is that by comparing the trend of the 

decrease in their frequencies and the percentages. Figure 0.8 shows a comparison between 
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the experimental and numerical frequencies of Models #2 and #3 in air for both the 

undamaged and the damaged conditions. For convenience, the percentage decrease in 

frequencies is also tabulated together in Table 0 .5. 

From Figure 0.8, it can be seen that the decrease in frequencies of Models #2 and #3 

is almost the same for the small cracks (S 0.40 inch). When the crack: length becomes longer, 

the decrease in frequency of Model #3 is slightly lower than that of Model #2. However, the 

percentage difference in the results for each crack lengths are very small, i.e., the maximum 

difference is less than 2.00% for the crack length of 1.20 inch as shown in Table 0.5. The 

cause is that the crack location of Model #3 was only 0.45 inch from that of Model #2, and 

the length of Models #2 and #3 was 22.00 inch. This means that the difference distance 

between the two crack locations was only 2.05 % of the total length. 

The reason for choosing this distance is that the crack always appears at the location 

which has the high stress concentration such as the location near the heavy transverse 

member, as discussed in Chapter 2. Also, it can be observed from the mode shape of the 

fourth mode in Figure 5.8.d that the location of the maximum deflection of the longitudinal 

was at the center near the heavy transverse member. This means that the maximum bending 

moment that caused the crack was also at the center. Therefore, the more far the crack 

location from the center, the change in frequency is decreased. 
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Figure 0.8: Comparison of the Decrease in Frequencies of Models lt2 and #3 in Air 

Table 0.5: Percentage Decrease in Frequencies of Models #2 and #3 in Air 

Numerical Free Vibration Response Experimental Randomdec Signature 
Crack 

Model#2 Model#3 Model#2 Model#3 length 
(inches) Freq. 

% 
Freq. 

% 
Freq. 

% 
Freq. 

% 
(Hz) (Hz) (Hz) (Hz) 

0.00 421.74 100 453.13 100 421.59 100 453.34 100 

0.20 421.20 99.872 452.49 99.859 421.20 99.907 452.40 99.792 

0.40 420.17 99.628 451.98 99.746 420.67 99.781 451.66 99.629 

0.60 417.99 99.111 450.90 99.508 417.94 99.134 450.77 99.431 

0.80 415.56 98.535 449.35 99.166 415.66 98.593 449.24 99.095 

1.00 412.67 97.849 447.11 98.671 413.44 98.067 446.97 98.594 

1.20 410.50 97.335 444.84 98.171 410.87 97.457 444.86 98.129 
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Based on the above results, it C311 be concluded that the randomdec technique as well 

as the FE model could be used to analyze the effect of the crack location on the dynamics 

behavior of the stiffened plate model in air. In order to ensure that the methods could be also 

used to observe the model submerged in water, they were used again to identify the dynamic 

behavior of Model #3 in water for both in partial and full submergence conditions. 

D.2.2 In Water 

D.2.2.1 Partial Submergence 

Figures 0.9.a -D.9.g show the comparison between the experimental randomdec signatures 

and the free vibration responses for the undamaged and the damaged conditions. Table 0.6 

tabulates the comparison between their frequencies obtained from Figures D.9. It can be 

observed from Figures 0.9 that the experimental randomdec signatures and the numerical 

free vibration responses are in a good agreement, especially for the first cycle and their 

frequencies. Furthermore, Table 0.6 also indicates that the comparison between the 

experimental and numerical frequencies are an excellent. 
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Figure 0.9: Comparison between Experimental Randomdec Signatures and Numerical 
Free Vibration Responses of Model #3 in Water (Partial Submergence) 

Table 0.6: Comparison of Experimental Randomdec Signature and Numeric~ Free 
Vibration Response Frequencies of Model #3 in Water (Partial Submergence) (Hz) 

No Crack length Exp. Randomdec Num. Free Vibration 
(Inches) Signature Response 

l 0.00 371.60 371.61 

2 0.20 371.42 371.01 

3 0.40 370.86 370.61 

4 0.60 370.02 369.76 

5 0.80 368.31 368.09 

6 1.00 366.53 366.46 

7 1.20 364.89 364.70 
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Unlike the frequencies in air in which the frequencies of Model #3 were higher than 

those of Model #2, the frequencies of Model #3 in water, partial submergence, tabulated in 

Table 0.6 were lower than those tabulated in Table 0.2. Moreover, the decrease percentage 

in frequencies between Models #2 and #3 due to the presence of water was also different. 

The frequencies of Model# 2 were decreased approximately by 13.00%, whereas those of 

Model #3 were decreased approximately by 19.00 %. This might also be caused by the 

difference between the temperature of water. 

In order to check the effect of the crack location in water on the decrease in 

frequencies, the percentage decrease in frequencies of Models #2 and #3 due to the presence 

of water were drawn and tabulated together in Figure 0.10 and Table 0.7, respectively. 

--&p. (M:xiell2) ••••••. tun Mldell2) 

--ecp. (MJdel 13) • • • • run (Mldel 13) 

-~ 378 -

~+-------------~------------~------------~ 
0.00 0.40 0.80 1.20 

Crack L.englh (Inches) 

Figure 0.10: Comparison of Frequencies of Models #2 and #3 in Water (Partial 
Submergence) 
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Table 0.7: Percentage Decrease in Frequencies of Models #2 and #3 in Water (Partial 
Submergence) 

Numerical Free Vibration Response Experimental Randomdec Signature 
Crack 

Model#2 Model#3 Model#2 Model#3 
length 

(inches) Freq. 
% 

Freq. 
% 

Freq. 
% 

Freq. 
% 

(Hz) (Hz) (Hz) (Hz) 

0.00 381.48 100 371.61 100 381.45 100 371.60 100 

0.20 381.09 99.898 371.01 99.838 381.10 99.908 371.42 99.951 

0.40 380.16 99.654 370.61 99.731 380.34 99.709 370.86 99.801 

0.60 378.58 99.240 369.76 99.502 378.64 99.263 370.02 99.575 

0.80 376.60 98.721 368.09 99.053 376.64 98.739 368.31 99.115 

1.00 373.51 97.911 366.46 98.614 373.56 97.931 366.53 98.636 

1.20 370.ll 97.020 364.70 98.141 370.17 97.043 364.89 98.194 

From Figure 0.10 and Table 0.7, it could be determined that the frequencies of 

Models #2 and #3 in water decreased with the similar pattern for the small cracks ($ 0.60 

inch). When the crack length increased, the decrease in frequencies of Model #3 was not as 

sharp as Model #2. Furthermore, the results in Table 0.7 had similarity with the results in 

Table 0.2, i.e., the decrease percentage for each crack lengths were very small and the 

maximum difference was less than 2.00 % for the crack of 1.20 inch. This similarity means 

that the presence of water only caused the decrease in frequencies only, not the signatures. 

Based on the above results, the randomdec technique and the fE model were used for 

identifying the dynamic behavior of Model 13 that was full submerged in water in the 

following section. 
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0.2.2.2 Full Submergence 

The experimental randomdec signatures and the numerical free vibration responses in full 

submergence conditions for the undamaged and the damaged conditions were compared each 

others. and the results are drawn in Figures D.ll.a- D.ll.g. Table D.8 gives the comparison 

of their frequencies obtained from Figures D.ll. It was found from Figures D.ll that the 

agreement between the numerical free vibration responses and the experimental randomdec 

signatures was seen to be good for both the undamaged and the damaged conditions. The 

signatures and responses shown in Figure D.ll were similar to Figures D.9. The comparison 

of their frequencies shown in Table 0.9 was also excellent in all cases. 
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Figure 0.11: Comparison between Experimental Randomdec Signatures and Numerical 
Free Vibration Responses of Model #3 in Water (Full Submergence) 
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Table 0.8: Comparison of Experimental Randomdec Signature and Numerical Free 
Vibration Response Frequencies of Model #3 in Water (Full Submergence) (Hz) 

No 
Crack length Exp. Randomdec Num. Free Vibration 

(Inches) Signature Response 

1 0.00 366.83 366.71 

2 0.20 366.37 366.58 

3 0.40 365.68 365.92 

4 0.60 364.78 364.93 

5 0.80 363.48 363.52 

6 1.00 361.60 361.46 

7 1.20 359.83 359.84 

However, the environmental condition, i.e., the temperature of water, is still the cause 

of the difference in the results. Figure 0.12 and Table 0.9 show the effect of the 

environmental condition on the change in frequencies. For the cracks with the length less 

than 0.60 inch. Figure 0.12 and Table 0.9 present that the frequencies of Models #2 and #3 

decreased with the similar pattern. With the increase of the crack lengths, the decrease in 

frequencies of Model #3 was slightly lower than that of Model #2. The results shown in 

Figures 0.12 and Table 0.9 had similarity to those shown in Tables 0.4 and 0.7, i.e., the 

decrease percentage for each crack lengths were very small and the maximum difference was 

Jess than 2.00 % for the crack length of 1.20 inch. 

Funhermore, Figure D.l2 shows that the frequencies of Models #2 and #3 in full 

submergence are almost the same, whereas in partial submergence (see Figure D.6) they are 
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different. This might be also due to the difference of the environmental condition. 

Nevertheless, there is the similarity in the decrease percentage between the results in Figure 

0 .6 andD.l2. This means that the randomdec signature as well as the FE model accurately 

analyzed the dynamic responses of the stiffened plate model for both in air and water. 

In order to get the large difference between frequencies due to the difference of the 

crack location, the randomdec technique and the FE model were then used for identifying 

Model #4 which has different location of the crack. 

--E:xp. (Mldall2) ••••••• run (Mldell2) 

--E:xp. (Mldall3) • • • • PUn (Mldel #3) 

~+--------------r------------~--------------~ 
0.00 0.40 0.80 1.20 

Crack Length (Inches) 

Figure 0.12: Comparison of Frequencies of Models #2 and #3 in Water (Full 
Submergence) 
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Table 0.9: Percentage Decrease in Frequencies of Models #2 and#3 in Water (Full 
Submergence) 

Numerical Free Vibration Response Experimental Randomdec Signature 
Crack 

Model#2 Model#3 Model#2 Model#3 
length 

(inches) Freq. 
% 

Freq. 
% 

Freq. 
% 

Freq. 
% 

(Hz) (Hz) (Hz) (Hz) 

0.00 367.59 100 366.71 100 367.42 100 366.83 100 

0.20 367.23 99.902 366.58 99.965 367.17 99.931 366.37 99.875 

0.40 366.21 99.625 365.92 99.785 366.13 99.649 365.68 99.687 

0.60 364.80 99.241 364.93 99.515 364.80 99.287 364.78 99.441 

0.80 362.68 98.664 363.52 99.130 362.15 98.566 363.48 99.087 

1.00 360.43 98.052 361.46 98.568 360.52 98.122 361.60 98.574 

1.20 356.92 97.()97 359.84 98.127 356.78 97.104 359.83 98.092 

D.3 Model#4 

The dimensions and characteristics of Model #4 were also slightly different to those of 

Models #1, #2, and #3. The crack was made at the distance of 1.80 inch from the heavy 

transverse member or 0.90 inch far away from the location of the crack of Models #1 and #2 

or 0.45 inch far away from the crack location of Model #3. The reasons for choosing this 

distance are the same as that was explained for Model #3. Similar to Models #2 and #3, the 

investigation of the dynamic behavior of Model #4 was also carried out for each 0.20 crack 

length in air and water, panial and full submergences. 
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D.3.1 In air 

The experimental randomdec signatures are compared with the numerical free vibration 

responses for both the undamaged and the damaged conditions, and the results are drawn 

together in Figures 0.13.a - 0.13.g. The frequencies obtained from these figures for the 

fourth mode are tabulated in Table 0.10. Figures 0.13 and Table 0.10 indicate that the 

experimental and numerical results are closed each others for both signatures and 

frequencies. The change in signatures and the decrease in frequencies due to the occurrence 

of the damage could be also seen from Figures 0.13 and Table 0.10. The signatures shown 

in Figures 0.13 are similar to those shown in Figure 5.11, D.l and 0.7; however. the 

frequencies shown in Table D.lO were different from those shown in Tables 5.4, 0.1 and 

0.4, respectively. 

In addition to the problem of thickness and model installation, the difference time for 

carrying out the experiment for Models #3 and~ caused the results between them are also 

different. Like Model #3, the experiment of Model #4 was also carried out in the winter 

2000. However, Model~ was tested during March and April2000 in which the temperature 

was lower than February and March 2000. Hence the results obtained from Model~ could 

not be also compared with those obtained from Models #2 or #3 for checking the effect of 

the crack location on the signature and frequency. 

257 



-Numerical Free Vibration Response ------.Experimental Randomdec Signatln 

-3.00E+03 

~.00E+03+---------------------~----------------------~----------------------~--------------~ 

0 0.002 0.004 

t (sec) 

D.l3.a: Undamaged 

0.006 0.008 

--Numerical Free 'v1bration Response ------. ~erimental Random dec Signature 

N" 
0 

~ 3.00E+03 
~ 
(.J 

:§. 
c: O.OOE+OO 
0 

~ 
CD 

] -3.00E+03 

-6.00E+03 +-------.---------.------~-------4 

0 0.002 0.004 

t {sec) 

D.l3.b: Crack length ::: 0.20 inch 

258 

0.006 0.008 



---Numerical Free 'Jibration Response ---- -• . Elc:Jerimental Random dec Signature 

.:;-

~ 3.00E+03 
.s= 
C,) 
c: 

::;:::. 
c: O.OOE+OO 
.Q 
! 
CD 

~ -3.00E+03 

oc( 

-6.00E+03 -+-------:-------.------~-------i 

0 0.002 0.004 

t(sec) 

D.l3.c: Crack length= 0.40 inch 

0.006 0.008 

---Numerical Free 'Jibration Response ••••••. ~erimental Randomdec Signature 

.:;-

~ 3.00E+03 
.s= 

~ 
~ O.OOE+OO 

! 
~ -3.00E+03 

:1. 
-6.00E+03 +--------,---------.------"T""""- - ----; 

0 0.002 0.004 

t(sec) 

D.l3.d: Crack length = 0.60 inch 

259 

0.006 0.008 



--Numerical Free \1bralion Response ------- EJperimental Random dec Signaa..re 

N" 
0 
Q) 

-!!! 
~ 
0 
§_ 
c:: 
.Q 
i;j 
~ 

Cl) 

~ 
0 
0 
<( 

6.00E+03 

3.00E+03 

O.OOE+OO 

-3.00E+03 

-6.00E+03 

0 0.002 0.004 

t(sec) 

D.13.e: Crack length= 0.80 inch 

0.006 0.008 

-Numerical Frae Vibration Response .• . ••.. Experimental Ralldomdac Signature 

-C\1 
0 

~ 3.00E+03 
~ 
0 
c: 

:.::.-
c O.OOE+OO 
0 

-e 
Q) 

~ 
0 
<( 

-3.00E+03 

~.00E+03+--------------------~----------------~--------------~----------------~ 

0 0.002 0.004 

t (sec) 

D.l3.f: Crack length= 1.00 inch . 

260 

0.006 0.008 



--Numerical Free \1bra1ion Response ------ -Elcperimental Random dec Signature 

6.00E+03 

N"' 
0 
Q) 3.00E+03 ~ =. 
0 
:§. 
c: 
0 

O.OOE+OO 

76 ... 
Q) 

-3.00E+03 Qj 
0 

:i. 
-6.00E+03 

0 0.002 0 .004 

t (sec) 

0.13.g: Crack length= 1.20 inch 

0.006 0.008 

Figure 0.13: Comparison between E"perimental Randomdec Signatures and Numerical 
Free Vibration Responses of Model *4 in Air 

Table 0.10: Comparison ofE"perimental Randomdec Signature and Numerical Free 
Vibration Response Frequencies for Model *4 in Air (Hz) 

No 
Crack length E"P· Randomdec Num. Free Vibration 

(Inches) Signature Response 

1 0.00 442.22 441.90 

2 0.20 442.19 441.59 

3 0.40 441.03 440.82 

4 0.60 440.07 439.88 

5 0.80 438.17 438.66 

6 1.00 436.55 436.76 

7 1.20 434.08 434.40 
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In order to check the effect of the crack location to the frequencies, the trend of the 

decrease in the frequencies and the percentages for Models #2, #3, and #4 in air for both 

experimental and numerical results are compared, and the results are drawn together in 

Figure 0.14, and tabulated in Table D.ll. For the crack length less than 0.40 inch, Figure 

D.l4 and Table D.ll show that the decrease in frequencies of Models #2, #3, and #4 is 

almost the same. The decrease in frequencies of Model #4 is slightly lower than those of 

Models #2 and #3 when the crack length became longer. These results indicated that, for the 

same crack length, the different in crack location caused the percentage of decrease in 

frequencies was also different. 
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Figure 0.14: Comparison of Frequencies of Models #2, #3, and #4 in Air 
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Table D.ll: Percentage Decrease in Frequencies of Models #2, #3, and #4 in Air 

Numerical Free Vibration Response Experimental Randomdec Signature 
Crack 

Model##2 Model ##3 Model ##4 Model ##2 Model #3 Model #4 
length 

(inches) Freq. 
% 

Freq. 
% 

Freq 
% 

Freq. 
% 

Freq. 
% 

Freq 
% 

(Hz) (Hz) (Hz) (Hz) (Hz) (Hz) 

0.00 421.74 100 453.13 100 441.90 100 421.59 100 453.34 100 442.22 100 

0.20 421.20 99.872 452.49 99.859 441.59 99.930 421.20 99.907 452.40 99.792 442.19 99.993 

0.40 420.17 99.628 451.98 99.746 440.82 99.756 420.67 99.781 451.66 99.629 441.03 99.731 

0.60 417.99 99.111 450.90 99.508 439.88 99.543 417.94 99.134 450.77 99.431 440.07 99.514 

0.80 415.56 98.535 449.35 99.166 438.66 99.267 415.66 98.593 449.24 99.095 438.17 99.084 

1.00 412.67 97.849 447.11 98.671 436.76 98.837 413.44 98.067 446.97 98.594 436.55 98.718 

1.20 410.50 97.335 444.84 98.171 434.40 98.303 410.87 97.457 444.86 98.129 434.08 98.159 
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Similar to Models #2 and #3, Table 0.11 also shows that the difference in the results 

for each crack lengths were also very small for the crack length of 1.20 inch, i.e., the 

maximum difference was less than 2.00 %. This was also due to in the fact that the distance 

of the crack of Model #4 was only 0.45 inch from Model #3 or 0.99 inch from Model #2, or 

1.35 inch from the heavy transverse member. 

It can be concluded from the results obtained from Models #2, #3, and #4 vibrated 

in air that the randomdec technique as well as the FE model could identify the effect of the 

crack location on the dynamics behavior of the stiffened plate model in air. In order to ensure 

that the methods could be also used to observe Model #4 submerged in water, they were used 

again to identify the dynamic behavior of Model #4 in water, partial and full submergence. 

0.3.2 In Water 

D.3.2.1 Partial Submergence 

Figures D.l5.a, b, c, d, e, f, and g show a comparison between the experimental randomdec 

signatures and the numerical free vibration responses for undamaged and damaged model . 

with crack lengths 0.20 inch, 0.40 inch, 0.60 inch, 0.80 inch, 1.00 inch, and 1.20 inch, 

respectively. For comparison, the frequencies obtained from Figure D.l5.a through D.l5.g 

are tabulated in Table D.l2. 
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Figure 0 .15: Comparison between Experimental Randomdec Signatures and Numerical 
Free Vibration Responses of Model #4 in Water (Partial Submergence) 

Table 0.12: Comparison of Experimental Randomdec Signature and Numerical Free 
Vibration Response Frequencies of Model #4 in Water (Partial Submergence) (Hz) 

No Crack length Exp. Randomdec Num. Free Vibration 
(Inches) Signature Response 

1 0.00 370.31 370.34 

2 0.20 370.08 370.14 

3 0.40 369.61 369.58 

4 0.60 368.51 368.40 

5 0.80 367.09 367.12 

6 1.00 365.24 365.12 

7 1.20 363.23 363.25 
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Similar to the dynamic behaviorofModel #4in air, Figures 0.15 and Table0.12 also 

show a good agreement between the experimental and the numerical results for both 

signatures and frequencies. Also. the decrease percentage in frequencies of Model #4 due to 

the presence of water was different from those of Models #2 and #3. The frequencies of 

Model # 4 were decreased approximately by 12.00 %. whereas those of Models #2 and #3 

were decreased approximately by 13.00% and 19.00%, respectively. The difference between 

the temperature of water might cause this difference. 
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Figure 0.16: Comparison of Frequencies of Models #2, #3, and #4 in Water (Partial 
Submergence) 
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Table 0.13: Percentage Decrease in Frequencies of Models #2, #3, and #4 in Water (Partial Submergence) 

Numerical Free Vibration Response Experimental Randomdec Signature 
Crack 

Model #2 Model #3 Model #4 Model #2 Model #3 Model#4 
length 

(inches) Freq. 
% 

Freq. 
% 

Freq. 
% 

Freq. % Freq. % Freq. 
% 

(Hz) (Hz) (Hz) (Hz) (Hz) (Hz) 

0.00 381.48 100 371.61 100 370.34 100 381 .45 100 371.60 100 370.31 100 

0.20 381.09 99.898 371.01 99.838 370.14 99.946 381.10 99.908 371.42 99.951 370.08 99.937 

0.40 380.16 99.654 370.61 99.731 369.58 99.795 380.34 99.709 370.86 99.801 369.62 99,814 

0.60 378.58 99.240 369.76 99.502 368.40 99.476 378.64 99.263 370.02 99.575 368.51 99.514 

0.80 376.60 98.721 368.09 99.053 367.12 99.131 376.64 98.739 368.31 99.115 367.09 99.130 

1.00 373.51 97.911 366.46 98.614 365.28 98.634 373.56 97.931 366.53 98.636 365.24 99.631 

1.20 370.11 97.020 364.70 98.141 363.25 98.086 370.17 97.043 364.89 98.194 363.23 98.088 
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Furthennore, the effect of the crack location on the frequencies for Models #2, #3, 

and#4 are plotted and tabulated together in Figure 0.16 and Table 0.13, respectively. It can 

be seen from Figure 0.16 and Table 0.13 that the decrease in frequencies of Models #2, #3, 

and #4 is almost the same. When the crack length increases, the decrease in frequencies of 

Models #2 and #3 is slightly higher than those of Model #4. The maximum decrease 

percentage shown in Table 0.13 is also very small, i.e., less than 2.00% for the crack length 

of 1.20 inch. 

Based on the above results, finally, the dynamic behavior of Model #4 full submerged 

in water· was also identified using the randomdec technique and the FE modeL 

D.3.2.2 Full Submergence 

The experimental randomdec signatures and the numerical free vibration responses for both 

the •Jndarnaged and the damaged conditions are drawn together in Figure 0.17.a- 0 .17.g. 

A comparison between their frequencies at the fourth mode is tabulated in Table 0.14. As 

observed from Figures 0.17. the experimental randomdec signatures and the numerical free 

vibration responses are in a good agreement. The good agreement between their frequencies 

was showed by Table 0.14. Table 0.14 also showed the decrease in frequencies when the 

damage length increased. 
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-Numerical Free Vibration Response • - --- • . Experimental Ralldomdac Signatunt 
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Figure 0.17: Comparison between Experimental Randomdec Signatures and Numerical 
Free Vibration Responses of Model #4 in Water (Full Submergence) 

Table 0.14: Comparison of Experimental Randomdec Signature and Numerical Free 
Vibration Response Frequencies of Model #4 in Water (Full Submergence) (Hz) 

No Crack length Exp. Randomdec Num. Free Vibration 
(Inches) Signature Response 

1 0.00 361.57 361.56 

2 0.20 361.37 361.37 

3 0.40 360.76 360.76 

4 0.60 359.71 359.74 

5 0.80 358.42 358.43 

6 1.00 356.86 356.90 

7 1.20 354.50 354.50 
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Figure 0.18: Comparison of Frequencies of Models #2, #3, and #4 in Water (Full 
Submergence) 

Figure 0.18 shows a comparison between the experimental and numerical 

frequencies of Models #2, #3 and #4 for both the undamaged and the damaged conditions. 

For convenience, the percentage decrease in frequencies is also tabulated together in Table 

0 .15. From Figure 0.18, it can be seen that the decrease in frequencies of Models #2, #3, and 

#4 is almost the same for the small cracks ~ 0.4 inch). However, the increase of the crack 

length caused the decrease in frequency of Model #4 was slightly lower than that of Models 

#2 and #3. Moreover, Table 0.15 indicated that the percentage difference in the results for 

each crack lengths Wete also very small. 
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Table D.l5: Percentage Decrease in Frequencies of Models #2,#3, and #4 in Water (Full Submergence) 

Numerical Free Vibration Response Experimental Randomdec Signature 
Crack 

Model #2 Model #3 Model #4 Model 12 Model #3 Model #4 
length 

(Inches) Freq. 
% 

Freq. 
% 

Freq. 
% 

Freq. 
% 

Freq. 
% 

Freq. 
% 

(Hz) (Hz) (Hz) (Hz) (Hz) (Hz) 

0.00 367.59 100 366.71 100 361.56 100 367.42 100 366.83 100 361.57 100 

0.20 367.23 99.902 366.58 99.965 361.37 99.947 367.17 99.931 366,37 99.875 361.37 99.945 

0.40 366.21 99.625 365.92 99.785 360.76 99.779 366.13 99.649 365.68 99.687 360.76 99.776 

0.60 364.80 99.241 364.93 99.515 359.74 99.497 364.80 99.287 364.78 99.441 359.71 99.486 

0.80 362.68 98.664 363.52 99.130 358.43 99.134 362.15 98.566 363.48 99.087 358.42 99.129 

1.00 360.43 98.052 361 .46 98.568 356.90 98.711 360.52 98.122 361.60 98.574 356.86 98.697 

1.20 356.92 97.097 359.84 98.127 354.50 98.047 356.78 97.104 359.83 98.092 354.50 98.045 
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AppendixE 

Tables and Figures (Chapter 7) 

Table E.l: The Input (W1) and Output OV0 ) Weights of the Model•! (Experiment) 

Wi 
Undamaged 0.40 inch 0.80 inch 1.20 inch 

-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
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Table E.1 (Continue) 

W1 (Continue) 

Undamaged 0.40 inch 0.80 inch 1.20 inch 

-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 

Wo 

Undamaged 0.40 inch 0.80inch 1.20 inch 

-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
-6930 -10220.4 -14763.6 -14983.2 
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Table E.2: The Experimental Damping and Non Linear Part of the Restoring Force 

t (sec) Undamaged 0.40 inch t (sec) 0.80 inch L20inch 

0.000000 -83138 -122623 0.000000 -177142 -179777 
0.000143 -83138 -122623 0.000111 -177142 -179777 
0.000286 -83138 -122623 0.000222 -177142 -179777 
0.000429 -83138 -122623 0.000333 -177142 -179777 
0.000571 -83138 -122623 0.000444 -177142 -179777 
0.000714 -83138 -122623 0.000556 -177142 -179777 
0.000857 -83138 -122623 0.000667 -177142 -179777 
0.001000 -83138 -122623 0.000778 -177142 -179777 
0.001143 69282 102186 0.000889 -177142 -179777 
0.001286 69282 102186 0.001000 -177142 -179777 
0.001429 69282 102186 0.001111 -177142 -179777 
0.001571 69282 102186 0.001222 147618 149814 
0.001714 69282 102186 0.001333 147618 149814 
0.001857 69282 102186 0.001444 147618 149814 
0.00200 69282 102186 0.001556 147618 149814 

0.002143 69282 102186 0.001667 147618 149814 
0.002286 -83138 102186 0.001778 147618 149814 
0.002429 -83138 -122623 0.001889 147618 149814 
0.002571 -83138 -122623 0.002000 147618 149814 
0.002714 -83138 -122623 0.002111 147618 149814 
0.002857 -83138 -122623 0.002222 147618 149814 
0.00300 -83138 -122623 0.002333 147618 149814 
0.003143 -83138 -122623 0.002444 -177142 -179777 
0.003286 -83138 -122623 0.002556 -177142 -179777 
0.003429 -83138 -122623 0.002667 -177142 -179777 
0.003571 69282 102186 0.002778 -177142 -179777 
0.003714 69282 102186 0.002889 -177142 -179777 
0.003857 69282 102186 0.003000 -177142 -179777 
0.004000 69282 102186 0.003111 -177142 -179777 
0.004143 69282 102186 0.003222 -177142 -179777 
0.004286 69282 102186 0.003333 -177142 -179777 
0.004429 69282 102186 0.003444 -177142 -179777 
0.004571 69282 102186 0.003556 -177142 -179777 
0.004714 -83138 102186 0.003667 147618 149814 
0.004857 -83138 -122623 0.003778 147618 149814 
0.005000 -83138 -122623 0.003889 147618 149814 

280 



Table E.2 (Continue) 

t (sec) Undamaged 0.40 inch t (sec) 0.80 inch 1.20 inch 

0.004000 147618 149814 
0.004111 147618 149814 
0.004222 147618 149814 
0.004333 147618 149814 
0.004444 147618 149814 
0.004556 147618 149814 
0.004667 147618 149814 
0.004778 147618 149814 
0.004889 -177142 -179777 
0.005000 -177142 -179777 
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Table E.3: The Input (W'
1

) and Output ( W0 ) Weights (Numerical, Center) 

WI 

Undamaged 0.40 inch 0.80 inch 1.20 inch 

-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 

-17906.4 -17744.4 -17744.4 -17910 

-17906.4 -17744.4 -17744.4 -17910 

-17906.4 -17744.4 -17744.4 -17910 

-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 

-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
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Table E.3 (Continue) 

wo 
Undamaged 0.40 inch 0.80 inch 1.20 inch 

-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
-17906.4 -17744.4 -17744.4 -17910 
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Table E.4: The Input ( W1) and Output ( JV0 ) Weights (Numerical. 0.45 inch) 

WI 
Undamaged 0.40 inch 0.80 inch 1.20 inch 

-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 ~17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
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Table E.4 (Continue) 

Wo 

Undamaged 0.40 inch 0.80 inch 1.20 inch 

-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
-17906.4 -17726.4 -17771.4 -18356.4 
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Table E.S: The Input ( JVr) and Output ( JV0 ) Weights (Numerical, 0.90 inch) 

WJ 
Undamaged 0.40 inch 0.80 inch 1.20 inch 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 
-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 
-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 
-17906.4 -17418.6 -17901 -17991 

-17906.4 -17418.6 -17901 -17991 
-17906.4 -17418.6 -17901 -17991 
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Table E.5 (Continue) 

JVO 

Undamaged 0.40 inch 0.80 inch 1.20 inch 

-17906.4 -17418.6 -17901 -17991 
-17906.4 -17418.6 -17901 -17991 
-17906.4 -17418.6 -17901 -17991 
-17906.4 -17418.6 -17901 -17991 
-17906.4 -17418.6 -17901 -17991 
-17906.4 -17418.6 -17901 -17991 
-17906.4 -17418.6 -17901 -17991 
-17906.4 -17418.6 -17901 -17991 
-17906.4 -17418.6 -17901 -17991 
-17906.4 -17418.6 -17901 -17991 
-17906.4 -17418.6 -17901 -17991 
-17906.4 -17418.6 -17901 -17991 

287 



Table E.6: The Input ( Fr) and Output ( JV0 ) Weights (Numerical. 1.35 inch) 

~ 

Undamaged 0.40 inch 0.80 inch 1.20 inch 

-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 

-17906.4 -17881.2 -17636.4 -17929.8 

-17906.4 -17881.2 -17636.4 -17929.8 

-17906.4 -17881.2 -17636.4 -17929.8 

-17906.4 -17881.2 -17636.4 -17929.8 

-17906.4 -17881.2 -17636.4 -17929.8 

-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
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Table E.6 (Continue) 

wo 

Undamaged 0.40 inch 0.80 inch 1.20 inch 

-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
-17906.4 -17881.2 -17636.4 -17929.8 
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Table E.7: The Input ( ~) and Output ( W0 ) Weights (Numerical, 1.80 inch) 

WI 

Undamaged 0.40 inch 0.80 inch L20 inch 

-17906.4 -17721 -17613 -17307 

-17906.4 -17721 -17613 -17307 

-17906.4 -17721 -17613 -17307 

-17906.4 -17721 -17613 -17307 

-17906.4 -17721 -17613 -17307 

-17906.4 -17721 -17613 -17307 

-17906.4 -17721 -17613 -17307 

-17906.4 -17721 -17613 -17307 

-17906.4 -17721 -17613 -17307 

-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 

-17906.4 -17721 -17613 -17307 

-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 

-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
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Table E. 7 (Continue) 

wo 
Undamaged 0 .40 inch 0.80inch 1.20 inch 

-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
-17906.4 -17721 -17613 -17307 
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Table E.8: The Input (W1) and Output (W0 ) Weights (Numerical. 2.25 inch) 

"' Undamaged 0.40 inch 0.80 inch 1.20 inch 

-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
- 17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
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Table E.8 (Continue) 

Wo 

Undamaged 0.40 inch 0.80 inch l.20inch 

-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
-17906.4 -17793 -17733.6 -18064.8 
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Table E.9: The Input (WI) and Output ( W0 ) Weights (Numerical, 2.70 inch) 

WI 

Undamaged 0.40 inch 0.80 inch 1.20 inch 

-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
- 17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
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Table E.9 (Continue) 

JYO 

Undamaged 0.40 inch 0.80 inch 1.20 inch 

-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
-17906.4 -17890.2 -17326.8 -17667 
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Table E.10: The Input ( Jtj) and Output (W0 ) Weights (Numerical, 3.15 inch) 

WI 

Undamaged 0.40 inch 0.80inch 1.20inch 

-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
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Table E.IO (Continue) 

Wo 

Undamaged 0.40 inch 0.80 inch 1.20 inch 

-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -l7539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
-17906.4 -17298 -17679.6 -17539.2 
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Table E.ll: The Input (JY1) and Output (JY0 ) Weights (Numerical. 3.60 inch) 

JfJ 
Undamaged 0.40 inch 0.80 inch 1.20 inch 

-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
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Table E.ll (Continue) 

Wo 

Undamaged 0.40 inch 0.80 inch 1.20 inch 

-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
- 17906.4 -17395.2 -17904.6 -17667 
-17906.4 -17395.2 -17904.6 -17667 
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Table E.12: The Input ( W1) and Output ( W0 ) Weights (Numerical. 4.05 inch) 

WI 

Undamaged 0.40 inch 0.80inch L20inch 

-17906.4 -17299.8 -17928 -17373.6 

-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 

-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 

-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -l7373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
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Table E.12 (Continue) 

JYO 

Undamaged 0.40 inch 0.80 inch 1.20 inch 

-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
-17906.4 -17299.8 -17928 -17373.6 
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• Numerical -Predicted 
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Figure E.l: Comparison between the Autocorrelation Functions and Predicted Curves 
obtained using the Neural Network: (Numerical. Damaged. Crack at 0.90 inch away from 

the center) 
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Figure E.2: Comparison between the Autocorrelation Functions and Predicted Curves 
obtained using the Neural Network (Numerical, Damaged, Crack at 1.35 inch away from 

the center) 
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Figure E.3: Comparison between the Autocorrelation Functions and Predicted Curves 
obtained using the Neural Network (Numerical, Damaged, Crack at 1.80 inch away from 

the center) 
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Figure E.4: Comparison between the Autocorrelation Functions and Predicted Curves 
obtained using the Neural Network (Numerical, Damaged. Crack at 2.25 inch away from 

the center) 
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• Numerical -Predicted 

6.25E.01 

-i O.OOE+OO 

-6.25E.01 

-1.25E+OO +------"T------~------r--------1 
0 0.0015 0.003 

t (sec) 

E.S.c: Crack length = 1.20 inch 

0.0045 0.006 

Figure E.5: Comparison between the Autocorrelation Functions and Predicted Curves 
obtained using the Neural Network (Numerical. Damaged. Crack at 2.70 inch away from 

the center) 
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Figure E.6: Comparison between the Autocorrelation Functions and Predicted Curves 
obtained using the Neural Network (Numerical. Damaged. Crack at 3.15 inch away from 

the center) 
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Figure E. 7: Comparison between the Autoconelation Functions and Predicted Curves 
obtained using the Neural Network (Numerical. Damaged. Crack at 3.60 inch away from 

the center) 
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