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Abst. act

Multiresolution and multidirection image representation has recently been an attrac-
tive research area, in v~ h multiresolution corresponds to varying scale of structure
in images, while multidirection d s with the oriented nature ° image structure.
Numerous new systems, such as the contourlet transformi, have I n developed. The
contourlet transform has the benefit of efliciently capturing the orlented geometri-
cal structures of imag  however, it has the drawback of a 4, redundancy in its
oversampling ratio. In order to eliminate the redundancy, th  thesis proposes a
progressive version of the contourlet transform which can be calculated with critical
sampling. The new propo:  ima, representation is called the nonredundant con-
tourlet transform (NRCT), which is constructed with an efficient framework of filter
banks. In addition to critical samnpling, the proposed NRCT possesses many valu-
able properties including perfect reconstruction, sparse expression, multiresolution,
and mult” ™ ection. Numerical experiments demonstrate that 1+ novel NRCT has
better peak signal-to-noise performance than the traditional contourlet transforin.

Moreover, for low ratios of retained coefficients, the NRCT out; -forms the wavelet

transform which is a standard method for the critically samp . representation of

inages.
After examining the computational complexity of the nonredundant contourlet

transform, this thesis appli  the NRCT to fingerprint image compression, since fin-




gerprint images are examples of images with oriented structures. Based on an ap-
propriately designed filter bank structure, the NRCT is easily compatible with the
wavelet transform. Hence a new transform is created called the mi-NRCT, which
takes the advantages of the directional selectivity of the NRCT 1d the lower com-
plexity of the wavelet transform. Finally, this thesis proposes a n gerprint image
compression schenme based on the scmi-NRCT. The semi-NRCT-based fingerprint
image compression is compa  with other trausforin-based con  essions, for exam-
ple the wavelet-b.  «d and the contourlet-based algorithms, and — shown to perform

favorably.
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Chapter 1

Introdu.tic..

1.1 General

Multiresolution image representation, as implied by its name, analyzes images at
multiple resolutions or ales or frequency bands. When a I -quality in e is
observed, its low resolution view can provide a rough impression of the image. When
an image is to be transmitted ; a bitstream over a bandwidth limited channel, a
coarse version can be sent first. Then the details of the image ce e enriched by the
subsequent data at higher resolutions. This is a typical example of the application

of progressive image transmission [1], which allows users to reconstruct or view the

received in  : at increasi r lutions. Moreover, multiresolution representation is
applied to many other areas as well, ch as compression id image denolsing
2, 3].

A classical multiresolution approach is evident in the wavelet  nsform, which has
been widely adopted in many fields. In contrast with the Four  transform, which
expresses an image as a sum of weighted sinusoids of various fre  ncies, the wavelet

transform describes an in : using basis funetions of limited duration which vary in
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position and frequency. In other words, the basis functions of t.  Fourier transform
are located in the frequency domain, while those of the wavelet t  1sform are located
in both the spatial and the frequency domains. If the basis ele:  nts of the wavelet
transform are classified into the le s of a mult ale pyramid according to their fre-
quency locations, then the wavelet transform can be viewed as a decorrelation in the
[requency domain, where the coarser scales describe an approxir Le rendition of the
image (corresponding to the low frequency components) and the finer scales represent
its details (corresponding to the high frequency components) {4, 5|. Due to its ad-
vantages of multiscale representation and fast transformation, the wavelet transform
is the foundation of many uscful techniques in image processing. For example, the
JPEG 2000 standard by the Joint Photographic Experts Group (JPEG) committee
is a wavelet-based image coding standard [6].

As will be seen in the following chapter, the one-dimensional (1-D) wavelet trans-
form is suitable for representing piecewise smooth signals in one dimension. However,
the two-dimensional (2-D) separable wavelet transform, which implements the 1-D
wavelet transform along one dimension, say the rows, and is then followed by the
1-D wavelet transform of the other dimension, the columns, has the limitation of
directional selectivity [7]. Consider the case when a painter inter  to draw a picture
by using “wavelet”-style brushes. The picture is refined from coarse to fine by in-

creasing resolution. However, the “wavelet”-brush strokes are rectangular or square

shaped of various sizes, since the 2-D wavelet fi 1isacor mation of the 1-D
wavelet transform in two ¢ Hence, by using such a r ted set of reet-
angular brush strokes, the printer requires 1 1y “dots” or “short-dashes™ to capture

a fine contour, as illustrated in Fig.1.1(a). Therefore, more pc >rful and cfficient
representations are required for digital image processing in many applications.

Recently, directional multiresolution image representation has  tracted worldwide
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I i
(a) Wavelets (b) Contourlets
Figure 1.1: The successive refinement. of & contour by using two ¢ “erent transforins:
(a) the wavelet transformt and (b) the contourlet transform. Suel a contour, shown
as a thick curve, may separate two smooth regions in an images.  [Modified from a

figure in [8]]

rescarch interest. Numcerous uew systems have been proposed, such as curvelets, di-
rectionlets, contourlets, ete. The curvelet transtorm [9] was initia - developed in the
countinuous domain. Thercfore. it is difficult to directly implement the curvelet trans-
form in the discrete domain, On the other hand, the directionlet transtorm [10] can
be realized using a discrete filter bank; however, it only allows two major dircetions
at cach scale. The contourlet transform [3]. which can be viewed as a discrete version
of the curvelets, can offer different and flexible numbers of directions at cach scale.
Therefore, the contourlet transforin is more suitable for tracking directional infor-
mation of digital images in the discrete domain than cither the  urvelet transform
or the directionlet transform. Consider a similar scenario, in which the painter uses
“contourlet”-style brushes instead of “wavelet”™-brushes. The * ntourlet”-brushes
can generate clongated rectangular-shaped strokes in a variety of directions. As illus-
trated in Fig.1.1(b), the contourlet transform can more effectively capture oriented
geometrical structures in ages.

This thesis focuses on the contourlet transform (CT) and its application to image

compression. The original contourlet transform by Do and Vetterli [8] has limited
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suitability for image compression because of its redundancy of  crsampling. Thus
the purpose of this thesis is to propose a nonredundant contourlet transform (NRC'T)

and implement it for image compression.

1.2 Motivation

linage representation is asys  nie “lar 1age” to express a set of basic building blocks
that can be combined to form images. In the same way that an i ecan be deseribed
in different languages, images can represented by using the Fourier transform, the
wavelet transform. the contourlet transform, or other transforms. For both = ges
and natural languages, the eff  ncy and accuracy of different - presentations can
vary widely.

For example, a French sentence might translate into a Englisl  ntence with fewer
number of words, hypothetically. In this case, English is more efficient than French
to represent this sentence. Moreover, if the original French sentence can be exactly
translated back from the English sentence, hypothetically ag ©  then English can be
viewed as a compressed expression of French with perfect reconstruetion property for
this sentence. Similarly, for a given image, its original spatial expression, its Fourier
transform, its wavelet transform, and its contourlet transform can | translated from
one to another. . .e reason for seeking images in variov  “lany ge” is that differ-
ent transforms arc suitable for di  ent image prot  ing tasks, such as denoising,
compression and enhancement. Moreover, some types of images are more suitably
expressed by one transt 1 over another. To better understar  this, an in-depth
analysis of different ima, representation techniques is necessary.

For the discrete wavelet transforim (DWT) | the multiresolution analysis by Mallat

4] can flexibly form an orthonorn — basis, which guarantees that the DW'T has the



(]

CHAPTER 1. INTRODUCTION

Wavele ™ storm

OUriginal Image Wavelet Coeflicients

(a) Wavelet transform

Original Image Contourlet Coefficients

(b) Contourlet. tranform
Figure 1.2: Examples of (a) the v elet transform and (b) the contourlet transform
on an original digital iimage “peppers”. in which small cocefficients in absolute value
are colored toward black, while and large cocflicients in absolute value are colored

toward white. [Contrast boosted for display]

same munher of coefficients as the mnmber of pixels of the original image. Fig.1.2(a)
shows an example of the wavelet transform on an image “peppers”, in which sall-
magnitude coceflicients are colored toward black. The total nunl  of the wavelet
coclficients is equal to the number of pixels of the original image. In contrast, as
mentioned before, the contourlet transform [8] has a redundancy [ oversampling,
which means that the number of cocfficients required by the contourlet transforin is
more than the mumber of pixels of the original nmage, as illustra 1 in Fig. 1.2(h).

For both the wavelet transform and the contourlet transform. there is a coarse and
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decomposed images in RGB planes might have higher correlati s with each other,
such as the same objects and/or the same contours (although  ir intensity levels
might be different). Therefore, color images can be represented more efficiently by
reducing the correlations between color planes, than implementing gray-scale image
techniques in the three RC  color planes independently. The  -relations between
RGB color planes can be  uced by converting colors from RGB format to other

forms, such as HSI (hue, saturation, intensity) format [7).

1.4 Approach to the Solution

The contourlet transform can be viewed as a combination of the Laplacian pyramid
(LP) by Burt and Adelson [1]. and the directional filter bank (  "B) by Bamberger
and Smith [18]. The systern scheme of the contourlet transform is shown in Fig.1.3, in
which the contourlet decomposition is achieved by two steps: first, the multiresolution
decomposition of images using the LP; second, the multidirect  decomposition of
the LP using the DFB. The data flow through this system is also illustrated in Fig. 1.3,
where the original image (i) is decomposed into a Laplacian pyrar [ (ii), which is then
fed to the DI'B to generate the contourlet transform (iii). The iin  : reconstruction
Is the inverse procedure of the decomposition. As illustrated in  ig.1.3, the number
of - coellicients ©  a Laplacian pyrainid is greater than the nu  Her of pixels of the
original image, which me s the L. isa 1undant image representation. Therefore,
the redundancy of the contourlet transform is inherited from the I lacian pyramid.

One method to eliminate the redundancy of the contourlet transform is to re-
place the LP with anot. - eriti Iy sampled multiresolution ex  ssion. such as the
wavelet transform. As illustrated in [Fig.1.4, the proposed system implements the

wavelet transform for multiresolution decomposition of images, followed by a nmlti-
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Image Decomposition

Original I:": N
Image v

Image Reconstructin

Multidirection > Recovered

Image

Figure 1.4: The system scheme of the proposed transfor ol

resentation techniques including mulresolution image representatic | multidirection
nnage representations, and multiresolution and multidirection iniage represent ations,
Chapter 2 reviews a variety of uniform and nonuniforin perfeet reconstruction filter
banks, whicl are adopted in our proposed svstem.

Chapter 3 proposes anm multiresolution and multidirection im - representation
with critical sampling and perfect reconstruction properties, called the nonredundant
contourlet transform (NRCT). A complete comparison of the proposed NRCT with
the wavelet transform and the traditional contourlet transform through computer
sinmlation is also included in this chapter.

The computational complexity of the nonredundant contourlet  ansform is ana-
lyzed in Chapter 4. In Chapter 5, an application of fingerprint i ge compression
using the proposed method is given. Morcover, the experimental results of the -
age compression algorithim using the NRCT against the wavelet transform and the
traditional contourlet transform are also provided.

Finally, this thesis concludes in Chapter 6 with a sunmary of its methods. results

and contributions, and a discussion of possible future work.



Chapter 2

Background

2.1 Image Representations

The purpose of image representation is to provide a suitable ¢ ression of an im-
age for subsequent image processing tasks, such as compression and denoising. Still
images (i.e. non-time-varying) are commonly described as two-  uensional signals,
hence this chapter presents various popular 2-D transformation techniques. Some 2-D
image representations, such as the separable 2-D wavelet transform, combi:  appro-
priate 1-D transformations in two dimensions. Therefore, an introduction to image

representation starts from a review of 1-D transforins.

2.1.1 1-D Fourier Trans rm and Wavelet Tr: sform

The most popular 1-D transformations are the Fourier transform and the wavelel
transform, both of which are orthonormal transformations for signals of one dimen-

sion.  Suppose a signal function f(t) is analyzed as a linear ¢ 1bination of basis

11
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functions ¥, (t), as in
Sy = cwi(t), (2.1)
k

where k is the index of the finite or infinite sum, oy are weights or coefficients, and
Yr(t) are basis functions. If all the expression functions form an orthonormal basis,

then «y can be calculated as follows:

ap = (f(1), ¥e(t)). (2.2)

The basis functions {9 (t)} for the Fourier transform are sinusoid [ ztions of various
frequencies, while the basis functi s for the wavelet transform, called wavelets, are
scaling functions and wavelet func  ns.

Different wavelet transforms are based on different wavelet basis functions. Many
canonical families of orthogonal wavelet basis functions exist, such as the Haar wavelets,
the Daubechies wavelets and the Morlet wavelets [4]. Each wavelet family consists
of various distinct sets of wa 2t basis functions. For example, the Daubechies fain-
ily wavelets are commonly denoted by “Daubechies-N", where N is the order. An
example of the Daubechies-10 prototype wavelets, which conta: a “father” wavelet
H(t) and a “mother” wavelet 1(t), is shown in Fig.2.1(b). Fr  the “father” and
“mother” wavelets, other wavelets, including scaling functions @,,,(t) and wavelet

functions ), ,(t), are generated as follows [5}:

1 t—m
Omnlt) = y ( ) , (2.3)

VT T
1 t—m ,
w"m,n(t) = = ( —) , (24)
vm m

where 1 is a positive number and defines the scale of wavelets, while n defines the
shift. Compared with the sinusoid function in Fig.2.1(a), which is smooth and sym-

metric with an infinite time duration, wavelets may be asymmetric and are fast-
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M _

Daubechies-10 fatherw Lt W (¢)

Daubechies-10 mother elet d)(l)
(a) Sinusoids (b) Wavelets

Figure 2.1: Basis functions: (a) Example of the sinusoid functions which form the
Fourier basis. (b) The Danbechi 10 prototype wavelets which are extended to form
the Daubechies-10 wavelet basis. These Daubechies-10 basis functions are generated

by using the Matlab Wavelet Toolbox.

changing with limited durations. Thercfore, wavelets can efficiently represent discon-

tinnity in a signal function f(¢).

In practice, images are usually represented in the discrete domain.  Therefore,
the continuous transforms are necessarily extended to their ¢ esponding discrete
forms. The multiresolution analysis by Mallat [4] huilds a comie  on between the
wavelets i the continuous domain and the subband decomposition in the discrete
domain. Morcover, the discrete wavelet transform can be casily hnplemented by
Mallat’s filter bank [19], which can be represented in an analysis/syuthesis form as
shown in Fig.2.2(a). A discrete signal x(n) is decomposed into two subbands yo(rn)
and y; (n) by analysis filtering and 2-fold downsampling. The analysis filters fiy(n) and
Iy () are half-band lowpass and highpass filters with the frequency responses shown,
in magnitude form only, in Fig.2.2(b). ho(n) and fiy(n) can be  octed somewhat
arbitrarily and often formally related, as discussed later. The syn  sis filters go(n)

and ¢y (n) arc the inverse of the analysis filters. In Fig.2.2(a), the 2-fold downsampling
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x(n) n) 1
= y_n('_‘ 1 —l | r [He{w)| [H (o)
i(n) .
[ . LUl
/- L o
Analysis Scction Synthesis Section 0 7 L
(a) Analysis/synthesis filter bank (b) Frequeney partition

Figure 2.2: (a) 2-channel analysis  nthesis filter bank, in which (n) and h)(n) are

analysis filters and gg(n) and g, (n) are synthesis filters. (b) The frequency parition of

the two-channel filter bank, where |Hg(w)| and |H)(w)| are the = gnitude responses

of the analysis filters.

“| 27 retains the even saniples of its input, while the 2-fold upsampling T 2" replaces
the downsampled values by zeros for subsequent interpolation to achieve the original
signal rate.

The decomposed low frequency subband yo(n) corresponds — a coarse approxi-
mation of the image, while the high frequency subband gy (1) represents the details.
If this two-band splitting is appl to the coarse scale iteratively, then the DWT

provides a multiscale expression of signals.

2.1.2 Multiresolution Representations
Image Pyramids

The most straightforward way to represent images in multiple resolutions is via a
Gaussian pyramid [1] which consists of a series of images at va s resolutions. In
a (J + 1)-level Gaussian pyramid, the finest level Gy is the original image, cach of
other levels is an approximation of its next finer level, and G is the coarsest level. A
one-level procedure to generate the Gaussian pyramid is illustra 1 in Iig.2.3, where

the input image G at level [ is lowpass filtered and 2 x 2 downsampled to produce
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Ll | LIk
LH,
j— LH,
1L, I ",
HLo HHo
(a) Original image (b) Wavelet transform (¢) Cocflicient map

Figure 2.6: An example of the separable wavelet transform on the image “barbara”.
(a) The original image. (b) The wavelet transfori of the original image, based on the
hiorthogonal wavelet transforim with the CDF “9-7” filters [20].  ontrast boosted
for display] (c) The repacking map of the wavelet cocfficient subbands, in which the

subband indices correspond to that « the frequencey partition shown in Fig.2.5(b).

and the resulting wavelet cocfficient subbands are repacked according to the pattern
shown in Fig.2.6(c). In Fig.2.6(b), the cocfficients close to zero are colored towards
black, while the coceflicients with large absolute value are colored towards white.

As shown in Fig  6(b), the wavelet transform provides a ¢ pact expression
of images resulting in the same number of cocfficients as the n ber of pixels of
original image. Morcover, the wavelet transforin is a sparse expan o of images due
to the abundant mmmber of small-absolute-value coefficients.  Therefore, the above

two features cnable the wavelet t - sform to be widely applied in hmage compression.

2.1.3 Multidirection Representation
Dircctional Filter Bank

In [18], Bamberger and Smith proposed a dircctional filter bank (DFB), which can

achicve the frequency partition illustrated in Fig.2.7(a). The DI is implemented
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e (. m) b
213/
™~ 5
6 wi
6 > b) 0
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Y3
- 7
(-1 -1t) 7 8
(a) Frequency partition of DFI3 (b) The downsampled subbands

Figure 2.7: The frequency mapping of the directional filter bank. (a) The frequency
partition, where 2 = 8 directional wedge-shaped subbands are shown as an example.
(b) Subbands are downsampled by skewing and expanding to fill in their base bands,

which are bounded by (=7, —7) and (7, 7) respectively.

by a binary tree structure consisting of two-band filter banks, hen  the speetrom is
divided into N = 2" wedge-shaped directional subbands. The first two levels of the
DFDB arc built by fan filter banks to split the spectrum into four subbands, which are
the bands nmmbered in Fig.2.7(a) as {1,2}, {3,4}, {5.6}. and {7 . Bascd on the
above decomposition, a finer directional decomposition is implemented by iterative
parallelogram filter banks (see [18, 21] for the detailed rule of filter I ik construction).
The fan and parallelogram filter banks will be investigated in Section 2.2,

An example of the DFB decomposition on the image “cameraman” is shown in
Fig 8, in which subimagc es correspond to thie subbands Fig.2.7(a). As
mentioned before, the decimation in DFB skews the frequency 1 ons of the sub-
bands to fill in the rectangular base band, hence the resulting coctlicient subbands
are rectangular in the spatial domain, as shown in Fig.2.8(b).

In addition to critical sampling and perfect reconstruction properties, the DEFI3

has the advantage of directional selectivity which is important in > applications of



CHAPTER 2. BACKGROUND 20

(a) Original image “cameraman” (h) Directional subbands
Fignre 2.8: An example of the N = 8 DFB decomposition on the iimage “cameraman’.
(a) The original image. (b) Its decomposed directional subbands. © > dynamic range
of the DFB is shifted and st ed to be [0,255], then the cocfficients are colored by

black as 0 and white as 255.

image analysis. Iowever, for most images, a major part of energy is located at the low
frequency and DC arca which is split N ways by the DFB. As a result, the dominant
low-frequency and de energy is distributed into all directional subbands. Thus the
DFB can not provide a spat  expansion of inages. This limitatic s llustrated in

Fig.2.8(b), where the DFB ¢ cients tend to occupy the entire dynamic range.

2.1.4 Multiresolution and Multidirection Representation
Contourlet Tre o

By combining the LP and the DFB, o and Vetterli proposed the contourlet trans-
form (CT) [8], which decomposes the spectrum into trapezoid-sh - d subbands, as
shown in Fig.2.10(a). The generation of the contourlet transfor is illustrated in
Iig.2.9, where a one-level LP decomposes an input iuage into a - winsampled low-

pass subband and a highpass subband, then the highpass subband is decomposed
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In [16], Lu and Do proposed a critically sampled image representation, called the
CRISP-contourlet tra: orm, to climinate the redundancey of the contourlet transforn.
The difference between the original contourlet transform and the CRISP-contourlet
transform is that the main structure of the original contourlet trau 1 uses a mul-
tiscale decomposition followed by a multidirection decomposition, ile the CRISP-
coutourlet transform adds a four-band dircctional decomposition before the multiscale
decomposition and then implements the subsequent directional division. Although
the CRISP-contourlet transform removes the redundancy of oversampling, it divides
the lowest frequency scale into four directional subbands, as shown in Fig.2.11(a).
Recall that the low frequency arca corresponds to a coarse approxi:  tion of the orig-
inal image, c.g. the upper left corner of the coc..cient configurations in Fig.1.2(1)
and Fig.2.10(h). Division of the low frequency arca splits the coarse approxination
which is important in providing a rough impression of the original iimage, which is not
expected by multiresolution representation. Thercfore, the CRISP-contourlet trans-
form is not a “truc” progressive version of the contourlet transform, sinee it can not

achieve the same frequency partition as the original contourlet transforin.

b ‘= 1) b =, )
N2
RN
uy = "o
; T~
\
V)////;\\\\\W LA TIANN
(-m, -m -y iy 1
(a) CRISP-contourlets (b) uniform "B

Figure 2.11: Frequency partitions by (a) the CRISP-contourlet transform and (b) the

uniform directional filter bank (uDF
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s(n) s(n)

R -

(a) 2-fold downsampling (b) 2-fold up mpling
Figure 2.12: Illustration of (a) the 2-fold downsampling and (b) the 2-fold upsanipling

in one dimension.

and upsampling blocks are. respectively. related to the original — wt s(n) [23]:

1
Sa(2) =5 S(22) + S(—22)], (2.6)
Su(z) =8(=%), (2.7)
where S(z) is the z-transforni of s . The common structure of the 1-D two-channel

filter bank is the analysis/synthesis form illustrated in Fig.2.2(a),  which the rela-
tionship between the reconstructed signal #(n) and the original signal .r(n) can be

obtained, by using Eq.(2.6) and Eq.(2.7):

X(3) = 5 Hy(2)Gol) + Hi(2)G1()] X (2)+

%{HU(—:)GO(:H Hy(=2) ()] X(=3). (28)

where X (—z) is an aliasing ve on of the original signal X(z). cnce the constrain

of aliasing cancellation [23] is

H() f)G()(Z) +H1(—3)G1(3\ (), (29)

which can be satisfied with the following choice of filters:
Golz) =Hi(==), (2.10)
G](C) :'—H[)(—Z). (211)

Recall that Ho(z) and H;(z) are half-band lowpass and highpass filters with desired

frequency responses in Fig.2.2(b). . .icrefore, by an appropriate relationship between
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lowpass analysis filter hg(n) only contains two samples. In fact, a  o-tap filter can not
obtain as steep slopes of frequency response as expected. However, the practical filter
hy(n) should be approximated to the ideal filter in Fig.2.2(b) as closely as possible.
On the other hand, as shown below, a IIR . filter bank can achieve both PR and QMF
properties with its frequency response approximating to the ideal filter in Fig.2.2(b).
Hence this thesis implements two-channel filter banks with the requirement of PR
and QMF properties in IIR form.

The IIR QMF bank by Smith  d Eddins [28] is a complete PR system with no
aliasing, no frequency distortion and no phase distortion. The HR QMIT bank cancels

the aliasing component in Eq.(2.8) with the following choices of  nthesis filters [29]:

Go(2) i (2.18)
S o Hi(=2) = o2 (2)] '
—2Hy(—=)
Gi(z) = . (2.19)
1(2) |Ho(2)H (—2) — Ho(—2)H,(2)]
If Hy(z) is expressed in a polyphase form [23] as follows
Ho(z) = Po(%) + =7 P (%), (2.20)
then Hi(z) can be obtained according to the QME requirement in Eq.(2.17):
Hi(z) = Pz 7'P(ZP). (2.21)

Submitting Ho(z) and Hy  to Eq.(2.18) and Eq.(2.19) leads  the polyphase ex-

pressions of Gy(z) and Gy(z):

Go(2)  20(=*) + 2Qi(2%), (2:22)

Gi(2) =Qo(%) — 2 (2%), (2.23)
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presented in 28], and here a suminary is presented for completeness.

With the restriction of the location of its zeros and poles, as illustrated in I'ig.2.14(a),
the designed IR analvsis filter Hy(z) generates the polyphase  lers Py(2). Pi(z).
Qn(z). and Q(z) without poles on the unit circle of zero-pole ©  nes. Hence these

polyphase filters can be expr  « in a general form:

Qi Q2
1)(;):1\'+T—C’ +>° b,

2.27
1 —}5,'3_1 ( ‘)

_ 1 —n,z71

J=1

where

B3] < 1 and |y;| > 1 represent poles inside and outside the unit circle, respec-
tively. The total number of p inside the unit cirele is 2, while the total number
of poles outside the unit circle is ~ . Therefore, the region of convergence of £2(z)

1 1max }/fi <z <

Jax, min  +;, which implies that P(z) is st le but not causal.
{0 P

je{lo Q)
However, the requirement of causality can be ignored in still-image processing, as a
whole image is generally available while fittering. Thercfore, t filter P(z) is de-
termined by the partial fraction expression coefficients K, (';, ,  D;. and v;. The
impulse response of P(z) is denoted by p(n).

As mentioned before, the input signal z(n) is periodically extended to yield an
infinite-length signal F(n) = r(n mod N), where *n mod N7 the modulo oper-
ation by calculating the remainder of division of n by N. IIR | ering the periodic

signal T(n) can be implemen by the convolution of (n) with the impulse response

p(1). which generates another periodic sigual g(n) as [ollows:

gn) 2} @ p(n)
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h(k) can be calculated in advance, based on the given parameters (. 4, D, and
7; of P(z), and h(n) has the same length as xr(n). Without periodically replicating

x(n), the linear convolution in Eq.(2.29) can be replaced by a circular convolution as

follows:

y(n) = Kr(n)+rn)® hn), (2.30)

where ® denotes the circular convolution and r(n) is the original diserete input signal

in finite time duration.

2.2.2 2-D Two-Channel PR Filter Banks

Some 2-D filter banks can be implemented by 1-D filter banks in two dimensions sep-
arately, e.g. the structure of the 2-D DWT in Fig.2.5(a). This type of filter banks is
called the separable filter bank, whicli, when the filters approximate ideal frequency

ective filters, could generate decomposed subbands with rectangular frequency re-
gions, such as the frequency partition of the 2-D DWT in Fig.2.5(b). In contrast,
nonscparable filter banks could achieve more complex shaped frequency decomposi-
tions. In this section, several 2-D nonseparable filter banks with p  ect reconstruction
property are introduced. As tb topic relies heavily on mathematical notations, a
preface on notation is provided before the main discussion. These notations can also

be viewed in the List of Symbols.

Notations

Veetors are denoted by bold-faced lower case letters while u es are denoted by
bold-faced upper case letters. The tations M?, M~! and M* denote the transpose,
the inverse and the conji e of a matrix M. The notation (M) denotes the

determinant of the matrix M. The symbol Ix denotes a & x & identity matrix.
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The lattice A(M) generated by a nonsingular matrix M is defined as
AM) = {Mklk € Z°} (2.31)

where Z? denotes a two-dimension integer coordinate space. Decimation with the
sampling matrix M only outputs samples on the lattice A(M).

For example, if M is one of the following quincunx matrices:

b1 1 -1 _
Q = . Q= : (2.32)
-1 1 11

then the quincunx lattice is represented by solid dots in Fig.2.15. The quincunx
downsampling only retains half the samples of the original image, duc to det(Qy) =
det(Q,) = 2. An example of the quincunx decimation on the — age “cameraman”
is illustrated in Fig.2.16, in which the decimated images are the downsampled and
rotated versions of the input image.

A discrete image is described as x(n), where n = [n,l,ngJT is the index of pixels.
The z-transform of z(n) is defined as
X(z)= N x(n)z™", (2.33)
,an T2

where z = [z, 20)7 and z™ = [ 237,

nq

Figure 2.15: The lattice generated by the guincunx matrices, in hich the solid dots

represent the samples on the lattice.
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relationships as the one-dimensional case in Eq.(2.6) and Eq.(2.7):

. Lre s v .3 5
Sa(z1.2) -5 S(zf.za) + S(—=2f, 22)| . (2.35)
Selz1 ) 3z z), (2.30)

where S(z1, 22), Sq(z1, 22) and S, (21, 22) respectively represent the z-transforins of the
input image, the D)-fold downsampled image, and the D;-fold upsampled image.
Based on the above generic relationship of the diagonal dov  samplir T up-

sampling, the input/output of the SPR-I filter bank has the follc  ng relationship:

);'(31, 32) = [H()(Zl, SQ)G()(ZI, ;'3) + H1(31, Zz)Gl(Zl, Z-z)J 4\’(31, :2) 1

1
2
1 Y v - oy 9=
2 [H(J(—31,32)60(31,32) +Hyooo, 32)(11(31.32” N(—21.22), (2.37)
where X (=21, 23) descril  the aliasing component, which can be  iminated with the

following choice of highpa filters [32]:

H](Z],Zz) :ZTIG()(—Zl,Zg), (2.38)

61(31-32) _~1Ho(—21~32)- (239)

After eliminating the aliasing component, the analysis/synthesis  Ler | ik is a tine-

invariant system with the following transfer function:

]
T(Cl‘ 32) = [Ho(ll- Cz)Go(Cl- ) + Hy(21,22)G (=1, 32)]

[H()(Zl» 32)G0(31~ 2) + »(—31- 32)(;()(‘31~ 32)] (2~4())

N — BN — N

[E(21,22) + E(=21.22)] .

where E(zy,22) = Hy(z1, 22)Go(21, 22). 1 E(z), 22) satisfies the following constraint:

E(Zl, 32) + E(—:1,22) = 2, (2—11)
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then a PR 2-chanmel filter bank is achieved. Moreover Hy(zy, z2) and Gy(zy, z2) can
be determined by factorizing E£(zy, z2). Therefore, the design of an analysis/synthesis
filter bank is reduced to thedes  of a filter E'(z1, z3) under the condition of Eq.(2.41).

FE(z), z3) can be designed using the transforr  ion of variables technigue [32] with
the following steps. . ae first step is to design a 2-D FIR lowpass  ter R(z, z9) with
a sheared-parallelogram shaped passband by windowing [33]. T impulse response

of the ideal SPR-I lowpass filter without windowing is given by [16]:

. Ty . mT .
repr_i(ny.ns) = sine (T) sine (IIﬂT + (—) , (2.42)
)

sl]l I

where sine(x) — . Thus the windowed FIR SPR-I lowpass filter is expressed as

follows:

r(ny,na) = repro(ng, ne)w(ng, ny), (2.43)

in which w(n,ny) is the window function with the following fornu:
n.
w(rg,ny)  m(ny)m (2112 + ) , (2.44)
S

where rn(n) is a common 1-D window function, such as the He ning window, the
Chebyshev window, or the Kaiser window [33]. Therefore. it can be proved that

R(z1, z2), which is the z-transform of r(ny. n2), satisfies the follc  ng constraint:
R(=z1,22) —R(z1.2). (2.15)

Proof. Given that

M T 1\

1y ' ,
r(ny, ny) = sinc (%) ne (Ilzﬂ' + %) m@n)ne 2n2+ ). (2.40)

Thus R(z1, 22} is the z-transform + r(ny, n2), as follows:

—n T, . s
(z1,22) E E (g, ng)zy ey (2.47)

ny  ng
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Since sine(x) = ﬂ; , which implies that

0 if n; = even,
r(ny,ng) = T 48)
arbitrary if n; = odd.
Therefore,

R(—z1, 23) \° Zr(nl,712)(—:1)_"‘:2_”2 = —R(z1,22) (2.49)

ni=odd mna2

After the 2-D FIR filter R(zy,z9) is generated, the second step is to produce a
QMF pair based on R(z1,2). ~ 't J = R(z1.22). find a 1-D transformation with the

form of Ep(J) =1+ arJ + agJ* + asJ® + - - -, which implies that

where Er(J) = Hp(J)Gr(J), Hr(J) and G(J) are the designed a  ysis QMF pair.
Tay and Kingsbury recommended various choices of Er(J) (i.e. Hy(J)and Gr(J))
in [32]. With the balance between the sh _ 1ess of roll-off re and the ripple

characteristics in passband and stopband, the factors of Ep(J) . chosen as follows

[32]:
1 7
Hp(J) —-=(J+1) (J — —) , (2.51)
) 2
7 ' 25
Gol)) == Ty [ 2a2s -2 (2.52)
2 3
After submitting the previo- designed 2-D . ... filter R(z1, 22) > the variable J in

Eq.(2.51) and Eq.(2.52), Hr(R(z1, 22)) and Gp(R(z1, 22)) are | designed analysis
and synthesis lowpass filters Ho(21, 22) and Go(21, 22) for the SPR type-1 filter bank.
If the length of the window function m(n) is set to be 15, then tI  lesigned Hy(z1,29)

and Gy(z1, 22) have the 2-D magnitude respor s shown in Fig.2.20.
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(a) (b)
Figure 2.20: 2-D magnitude responses of the FIR SPR-I filte (a) the analysis

lowpass filter Hy(z1,22) and (b) the synthesis lowpass filter Go(z1, 22)

The transformation of variables technique can generate two-channel filter banks
with numerous shapes of supports, but with a high computational complexity. There-
fore, the following section introduces a ladder structure filter bank, which has the ad-
vantages of flexible implementation and lower computational complexity in addition

to the perfect reconstruction property.

Ladder Structure Filter Bank

The primal ladder-structure filter bank was proposed in one din  sion by Phoong et
al [34]. The ladder structt  achieves PR property due to its str .ure. Therefore,
images can be exactly reco ‘ed from the decomposed subbar . even though the
iimpulse responses of the filters are represented in a limited preci  m. In [31]. the 1-D

ladder structure was extended to a 2-D case, which will be inve gated below.

The ladder structure comes from the polyphase representatic  of a 2-D 2-channel

filter bank which is presented in Fig.2.21, in which E(z) and /1) are analysis and
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x(n)

—

X(n)

Figure 2.21: The polyphase representation of a 2-D two-channel filter bank

synthesis polyphase processors, and can be represented in a mat . form as follows

E(z) = Eoo(@) —u(2) . R(z) = Boo(2) Hon(2) ) (2.53)

Ei(z) Eunl(z) Rig(z) Rn(z)

The condition of perfection  ‘onstruction is given by
R(z) = E7'(z). (2.54)

Comparing the analysis/synthesis system in Fig.2.17 with (I polyphase system
in Fig.2.21, the former implements decimation after filtering, while the latter down-
samples input images before filtering. In fact, the polyphase representation can he
identified with a corresponding analysis/synthesis system based on the Noble identi-
ties of decimators and int _ olators illustrated in Fig.2.22. . .e Noble identities are
valuable in multirate image processing, since they allow the moven 1t of decimators
and interpolators across linear filters.

With the help of the Noble identit the polyphase rep  entation has their

corresponding analysis and synthesis filters expressed as follows:

Hy(z) Eo(zM)  Ep(z™M) 1 (2.55)
H\(z) Eyp(zM)  En(zM) z

Roo(z™) R (zM
( Golz) Gilz) ) = ( 21 ) olz) B2 ) (g 56)
}{1()(ZM) H]](ZM)
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implemented with a generic structure in Fig.2.23.

In fact, the separable supports in Fig.2.24(a) and (b) can be implemented by the
CDF 9/7-tap filter bank, the IR QMF bank, or the ladder stru 1re. Among these
systems, the ladder structure can achieve higher order filter responses with lower
computational complexity. However, the CDF filters are adopted in many wavelet-
hased applications, while the [IR QMF bank possesses QME property. Therefore,
this thesis implements the ladder structure for the separable sup) s, except for the
comparison between the proposed NRCT and the DWT, which uses the CDE 9/7-tap

filters, and when the QMF  operty is required, by the I1R QMF bank.

2.2.3 1-D Nonuniform (2/3, 1/3) Filter Bank

The previous sections investigate various uniform two-channel PR filter banks. This
section introduces a nonuniform (2/3, 1/3) filter bank with the 1-D frequency parti-
tion shown in Fig.2.25(a), where the bandwidth of the lowpass ter Hy(w) is 27/3
and the highpass filter Hp(w)  7/3, hence its name is the nc  niform (2/3, 1/3)
filter bank [37]. Incontr. . uniform 3-channel frequency splitting is illustrated in
2.25(b), in which the lowpass, bandpass and b ipass subbands have equalt bandwidth
of 7/3.

In [38], Kovacevié and V' erli developed the design of such  eritically sampled
nonuniform (2/3, 1/3) filter I 1k with perfect reconstruction pro- ty. The procedure
is illustrated in Fig.2.26, in which the first stage is a uniform 3-ch  1et decomposition,
and the second stage combines the lowpass and bandpass outputs from the 3-channel
decomposition to form y;(n), while the highpass output constructs y,(n) directly.
w(n) and yu(n) are the two decomposed subbands by the nc form (2/3, 1/3)

filter bank. The corresponding nonuniform analy:  lowpass and highpass filters are
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parameters are optimized by minimizing error functions for H,(z) and Hy(z). defined
as the differences between the expected filter responses and t designed results.
The optimized parameters of the I nonuniform (2/3, 1/3) filt  bank with L = 5
are given in [38], as shown in Table 2.3. Although the lattice structure filter bank
requires higher design complexity to optimize the parameters, the designed system

can be easily implemented once the optimum parameters are obtained.

Table 2.3: The paramaeters of the PR nonuniform (2/3, 1/3)  lter bank [38]
fr1 | 1.848559 || 82, | -2.004359

Bro | 0.580876 || G20 | -1.752920
613 | 1.199016 || Gu5 | 2.672730

<y

64 | -1.385383 || G4 | -1.574727

f15 | 3.005676 || f,5 | 1.957543

2.2.4 Summary of Filter Lanks

Numerous PR filter banks have been introduced in this Sectic 2.2, A sununary
is presented in Table 2.4, in which “PR™ represents perfect reconstruction property,
while “CS” denotes critical sampling property. All the filter banks investigated possess
these two properties.

The last column in Table 2.4 lists some types of supports which can be realized by
the corresponding filter banks. Th  hesis considers the comprelien ¢ characteristics
of all these filter bank struetu , and then decides the optimum structure for a certain
support, as shown in the “supports” column of ..ble 2.4. Exce]  for the separable-1
and 11 supports, which can be realized by the CDF 9/7-tap filter bank, the 1R QMFE

bank or the ladder structure filter bank, this thesis implements the other supports by
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I @n t* @
Hh HH| LH IHH
]
— Hv| LL |Hv HL| LL |HL =
Hh HH| LH |HH
(-m, -m) (-7, -m) l
(a) 2-directional wavelet transform (b) Wavelet  wnsform

Figure 3.2: 2-D frequency division by (a) the 2-directional wavelet transform, and (b)

the separable wavelet transform.

Therefore, the main idea for generating the 2-directional wavelet  ansform is to first
implement the traditional wavelet transform, and then combir  the three wavelet
highpass subbands (LH, HL, HH) to form Hh and Hv.

Note that Hh and Hv split the - VT diagonal highpass subband HH, as indicated
in Fig.3.2(a) and (b). Hence the separation of HH to gener » two appropriate
subbands, called the h-v decomposition of HH, is a necessary stage of the 2-directional

wavelet transform.

h-v Decomposition of HH

Asillustrated in Fig.3.3(a). the frequency regions of HH are locat  at the four corners
of the spectrum of an input image, as indicated by the letters “a”, “b”, “¢”, and “d”.
Each corner is further divided into two parts, which are indica by the subscripts
“h™ and “v” to refer to the horizontal and vertical information  the corresponding
half-corners, respectively. If the four frequency regions ay, by, ¢, and dy, colored by

a gray gradient in Iig.3.3(a), e collected into a single subbe | Dh, then Dh can

be combined with LH to form Hh.  lu this manner, HH is « composed into two










e}
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-m} (o, 2.

Figure 3.6: The procedure for resampling Dh, with corresponding fregquency partition

maps

tial domain. In fact, the spatial rotation and compression correspond to the frequency
rotation and expansion in the frequency domain, e.g. the frequeney components of
Dh (colored by a gray gradicnt in Fig.3.3(b)) arc rotated and expanded after the
quincunx downsampling, to fill in the 27 x 27 bascband as the frec  ney representa-
tion of Dh in Fig.3.6. Hence Dh should be resampled to inverse the rotation by the
quincunx downsampling before being combined with L1

A natural choice to inverse the quincunx rotation is a quincunx upsampling with
the same sampling matrix Q,. Henee Dh first passes through a quincunx interpolator
by Qp to counteract the quincunx rotation, as illustrated in Fig. The ¢uincunx
interpolation repeats and rotates the frequency regions of Dh to fill in the baseband.
The upsampled signal is then ideal lowpass filtered and downsampled along one di-
mension to generate a signal Ry, Note that the quincunx interpolator Qp doubles
the mumber of coctticients, while the diagonal decimator Dy reduces e cocfficients
by half. There . the resampled Rhg has the saane nuber of co eients as L

On the reconstruction side of the overall system, Dh should he  <actly recovered
from Rhg. Henee the resampling procedure in Fig.3.6 is extended t 1 complete filter
bank structure in Fig.3.7(a), in which Dh is decomposed into two signals Rhy and
Rh,, and should be also exactly vecovered from them. If the IR QME bank in the

interior of Fig.3.7(a) has perfeet reconstruction, the overall filter  nk of 1ig.3.7(a)
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Rh ]
: | N Dh
w0, —

[IR QMF bank

(a) The filter bank structure of resampling

(l)) R}I.() (L) 1‘”[1
Figure 3.7: The resampling of DA and its inverse procedure. (a) & ¢ filter bank for

resampling. (b) The frequency map of Rhg. (¢) The frequency map of Rhy.

will also have perfect reconstruction. However, the critical resar  ing of D only
allows the same munber of coefficients to be retained.  Therefo  Riy should be
exactly determined by Riy.

Based on the frequency contents of Ry and iy shown in Fig.3.7(b) and (c), Il
can be obtained by frequency shifting Rhg by 7 along the w, dimension, if the lowpass
and highpass analysis filters in Fig.d  a) consist of a quadrature mirror filter (QMF)
| pair. The strict QMF requirement is that Iy(w) and [f)(w) are mirror images of

cach other, that is, in this case
][1(w1,w2):]]()(wl,wg“l—ﬂ'). (31)

Fortunately, the QMF property in Eq.(3.1) can he achieved by the TTIR QNI bank
[28] with its inputs periodically replicated. Therefore, Rhy is disca d in the analysis
section shown in Fig.3.8(a), and is reconstructed by modulating I by m along the
wy dimension in the synthesis section illustrated in Fig.3.8(b). The practical filter

bauk structures of resanpling Db and its inverse procedure are p o ented in Fig.3.8,
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Rhy I [
I I
Dh Rh, B D_/L

| [pglill |
[IR QMF | I
Joon | 1R QMF bzlx?k |
| synthesis section )

(a) Analysis scction (b) Synthesis sectis

Figure 3.8: The filter bank structure for resampling Db used in the  ractical system,

(a) The resampling from Dh to Rhy. (b) The resampling from Rhy to Dh.

in which the analysis section processes the resampling from DA to Rhy, while the

synthesis scetion resamples 1?1y back to Dh perfectly.

Combination between LH and Rhy

As illustrated in Fig.3.9, decimation in the discrete wavelet tran  wn, Le. the 1-
D 2-fold downsampling in Fig.2.5, rearranges the frequency regions of LIT and /L.

The decimated LI subband is then combined with the resaapled component Rl to

produce the 17k subband in Fig.3.2(a).

b ) b 1) b -
(e -y | R | N |
(a) Input signal (b) L1l subband (¢) 1 subband

Figure 3.9: The frequency mapping of the LII and /1L subbands. (a) The spectrum of
the inpnt signal, in which the frequeney regions of LI and 1L subbands are colored
gray. (b) The frequency contents of LIT after decimation. (¢) The frequency contents

of [1L after decimation.
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LH : 1 oﬂ 1 {
- .¢[~ { |
0 1, ] |
!
| Hh
E?—J— >
|

SIS

| Nonunifc  (2/3, 1/3) Filter Bank
(Synthesis Scction)

Figure 3.10: LIl and Rhy are combined using the synthesis section of the nonuniform
(2/3, 1/3) filter bank to produce the [{h subband, with their fi neney partition

maps. The nonuniform (2/3, 1/3) combination is illustrated in synthesis forn.

The resampled Rhyg is rectangular shaped both spatially as coeflicients and in its
frequencey domain representation. Morcover, Ry has the same number of spatial rows
as the LI subband. In frequency, Rhy and LI are meant to be directly combined
along the w, dimension. The combination procednre with the corres  nding spectrum
maps is illustrated in Fig.3.10, in which LI and Rhy are fed into t - lowpass and
Lighpass channels of the synthesis section of the nonuniform (2/3, 1/3) filter bank
[38]. respectively. to generate a combined signal [/

In Fig.3.10. the nonumiform (2/3, 1/3) filter bank is illustrated in a synthesis
form with diagonal upsamplh  matrices, one of which contains a fractional sampling
factor :f In practice, the nommiform (2/3. 1/3) filter bank can be implemented
using the lattice structure [38, 39] in Scction 2.2.3, with 3-fold upsampling and 2-

fold downsamnpling in one dimension, say the wy dimension. 191g.2.26 llustrates the
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continuous signal R.(f) with the {requency pattern illustrated in Fig.3.12(c¢)) under
the 2-D Nyquist coudition 7], then e original continuous signal ».(t), which is the
inverse 2-D Fourier tra " rm of R.(f), can be exactly reconstructed by lowpass-
filtering the discrete signal r(t).

By using a rectangular sampling lattice by Ug, r.(t) can also be  tically sampled
under the 2-D Nyquist condition to generate a discrete signal ro(t) with the frequency
pattern in Fig.3.12(e). The continuous signal r.(t) can also be int. Holated from ry(t)
without errors if r.(t) is bandwidth limited. In other words, 7 (t) and 7(t) are two
critically-sampled versions of r.(t) with different lattices determined by Uy and Uy,
respectively. Most natural images contain contents which change smoothly in the
spatial domain. Hence r(t) and ry(t) present almost the same cc  ents in the spatial
domain. Recall that s(t)  7,(t) (ie. S(f) = Ry(f)). Therefore, the proposed 2-
directional wavelet transform offers an approach to critically s ple Hh (with the
frequency pattern R,(f) in Fig.3.12(c)), while preserving its cor mts in the spatial

domain.

Results of the 2-Directional Wavelet Transform

Fig.3.13(a) shows a synthetic image “zoneplate”, in which black is 0 and white is 255.

The image “zoneplate” for a (512 x 512) sized =~ age is expres 1 by the following
2-D discrete function:

. IRAR
(y - 256)2) v (3.5)

Z

T
ol2

m 9
(ry) = o8 { == (& — 256)°
f(r,y) 09(512 (a1 56)° +

where the gray intensities have the dynamic range of [0, 255) ¢ 11 <y < 512
The image “zoneplate” is  od at examining the frequency p. ition performance
of a transform, since it provides the same distribution in both the spatial and the

frequency domains.
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al 2.4
p I
r’2
-
(a) Original image “zoncplate” (b) 2-directional wavelet transform

Figure 3.13: Example of the 2-directional wavelet transform on “zoneplate™.  (a)
The original image. (b) Its 2-dircctional wavelet transfornn, in w1 the subimages
from: up to down, from left to right are LL, i and /v subbands. For LL, small
cocefficients are colored black while large coeflicients are colored white, For [fh and
Iv, cocfficients arc shown in absolute value; the small-magnitu  coefficients are

colored towards black and the  ge-magnitude coefficients are colored towards white.

Fig.3.13(h) shows the 2-directional wavelet transform (after one iteration) on
“zoneplate”, in which the left-top corner is the LL subband, while the right-top and
right-bottom corers are the highpass subbands [Ih and v, respectively.

The critical sampling of the 2-directional wavelet trausform is also illustrated in

Fig.3.13. If ~ o1 I image is of ¢ 7 x ¢, then the decompos  LL, 1 and v
subbands are of size § x £, & % and ‘—l’ X §, respectively.  ence the total nuinber
of the 2-directional wavelet coefficients is
ree 3re e i
4+ — 4+ — =, (3.6)
4 8 8

which equals the number of pixels of the original inmtage. Note that the ratio of the arca
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(a) Original image “peppers” (b) 2-directional wavelet transform

Figure 3.14: Example of the 2-directional wavelet transfornn on a natural image. (a)
The original image “peppers”. (b) Its 2-dircetional wavelet trans 1, in which the

small cocfhicients in absolute value are colored towards black.

of cach highpass subband to the original image is g Previous rescarch considered the
maxinial decimation of such originally trapezoidal spectral arcas by any integer matrix
to be impossible [16). However, the proposed 2-dircctional wavelet transform offers
a practical structure of filter banks to rearrange trapezoid-shaped frequency regions,
for example I7h, by critical sampling with integer matrices, to one rectangular shaped

cocflicient region.

An example of the 2-directional wavelet transform on a natural image “peppers”
is presented in Fig.3.14, in which LL is an approximation of the o1 1al image, while
[Ih and Hwv, respectively, represent horizontal and vertical details around the peppers.
Except for the approximation subband in the upper left corner, the other two detail

subbands arc scaled to make their underlying structures niore visi-— .
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and 8. It is inte  ing to note that these frequencies move back automatically after
implementing the sheared-pa lelogram filter banks.

An analysis of the output from the sheared-parallelogram decomposition (the first
stage of Fig.3.17) reveals that the next stage to generate eight individual subbands is

achieved by the coope ion of SPR and parallelogram filter ba shown in the

second stage of Fig.3.17. The decimation matri  following the parallelogram filters
arc the paralleli -amm matrices Py and Py, as given by Eq.(2. ). with which the
spectrum of subbands 1, 2, 1d 8 are skewed to rectangles, as shown in Iig.3.17.
By contrast, the SPR filters only requires diagonal matrices Dy and Dy for row or
colunin downsampling.

Following the decomposition illustrated above, the proposed I CT can decom-
pose the highpass frequency scale o 2" directional subbanc The rule of the

configuration of filter banks is presented below.

Rule of the Tree Structv  Filter Bank

Note that the decomposition of Hh with the quadrant filter bank generates two out-
puts “c” and “d” with their characteristic frequ y representation. Then the sub-

sequent separation is constructed by iteratively I ng six ba:  filter bank blocks

according to the expansion rul  shown in 1ig.3.18, as follows:

e The type “a” output is followed by a SPR-I-HL filter bank, which generates one

type “d” output and one type “e” output.

e The type “b” ou 1t is followed by a Parallel-Il filter bank, which generates

one type “f” output and one type “a” output.

e The type “c¢” output is followed by a SPR-1I-HL filter b <, which generates

one type “b" output and one type “¢” output.
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3.3 Multiscale and Directional Decomposition

The previous algorithm decomposes the spectrum of an input image into one lowpass
subband (LL) and seve  directional highpass subbands. If the basic algorithm is
iterated on the coarse scale, then a multiscale and multidirection » representation
is achieved. The new image rep  >ntation is called the nonredundant contourlet
transform (NRCT).

The proposed NRCT can obtain the same {requency decomposition, illustrated in
Fig.3.20(a), as the traditional contourlet transforni. Moreover, the NRCT is a pro-
gressive version of the contourlet transformm with critical sampling. The comparison

between the traditional contourlet transform and the nonredundant contourlet. trans-

[ 3
(r, m)
L N
/ wy 10)7
‘n, m) .7
L] il w W,
e S — —
| o
// i. {-m, )
(-m,-m)
(a) Frequency Partition (b) Traditional CT (¢) NRCT

Iigure 3.20: The comparison between the traditional and the nonredundant con-
tourlet transforms. (a) A pi  ible frequency partition (with four s), which can be
achieved by both transforms. A certain directional subband with pairwise trapezoid-
shaped frequency regions is colored by a gray gradient. (b) The  omposed subband
colored in (a) by the traditional contourlet transform (CT), whose redundancy is im-
plied by the empty frequency  ions colored white. (c¢) The su d colored in (a)

1s critically sampled by the nonredundant contourlet transform.
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(¢} D15 (d) D92
(¢) T° erprint (f) Zoneplate

Figure 3.22: Test set of six gray-scale linages of size 512 x 512,

71
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3.4.2 Lossless Reconstruction Results

This section provides lossless reconstruction results as verificatic  of the perfect re-
construction property of the three transforms, i.e. the wavelet transform, the con-
tourlet transform, and the nonredundant contourlet. transform, which are realized
using non-ideal filter banks as reviewed in Section 2.2. For all the three transforms,
the multiscale decomposition is implemented by the CDF “9/7-tap” filters [20] (see
also Table 2.1).

Test images are represented by the three transforms, respectively; then the coef-
ficients of these transforms pass through their corresponding in rse procedures to
reconstruct the original images, respectively. The qualities of t  reconstructed im-
ages are evaluated by the peak signal-to-noise ratio (PSNR). For a gray-scale 8 bits
per pixel (bpp) image, the PSNR is defined as follows

255

with root mean square error (RMSE) defined as

RMET = USOS (i) - ) (3.8)

1Y
\/ i=0 j=0

where x(7,7) and r(i, j) are the original and reconstructed ima s respectively, and
N =1y X ny is the number of pixels of the original image.

In theory, all the three transforms can perfectly reconstruct the original images. 1.c.
PSNR= +o0: however, this is not achievable using precision-limit  computers. Table
3.1 illustrates the experimental PSNR comparison among the wavelet transform, the
contourlet transform, and the NRCT, when tI  original im s are reconstructed
without loss of coefficients (all programs run by Matlab). In " le 3.1, all the
reconstructed images achieve a PSNR around 270 dB, which is a very high PSNR in

practice, and as such may be considered to be perfect reconstruction.
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directionality, hence it is not a favored image for the NRCT whic  has the advantage
of tracking the directior  information in images. On the other han  the reason why
the NRCT performs worse than the wavelet transform for finger int in Fig.3.23(c¢)
is that the previous decomposition patten does not match the frequency characteristic
of fingerprint.

Examination of typical fingerprint power spectra by the I'BI showed that most
spectral energy in fingerprint images is located in the frequency  1ge from about
7/8 to 37/8 [42], as illustra Dby the gray region in Fig.3.24(:  Hence a suitable
frequency partition scheme should focus on the directional information in this fre-
quencey region. Fortwi  ely, the N 2T has directional selectivity and is compatible
with the wavelet transform. Therefore, a new transform scheme with the frequency
partition shown in Fig.3.24(a) is called the semi-NRCT, in which the  ond and the
third finest scales are implemented by the NRCT, and the remaining scales {from the
wavelet transform.

If the fingerprint image is decomposed into six scales, and the sccond and the
third finest scales are decomposed into 32 directional subbane respectively, then
the corresponding PSNR performance by the semi-NRCT is ill  rated as the solid
curve in Fig.3.24(b). The PSNR curves of the six-level wavelet transform and the
contourlet transform on the fin; print image are also prese d for comparison,
where the contourlet transform is implemented with the frequency partition shown
in Fig.3.24(a). As shown in Fig.3.24(b), the PSNR performance « the semi-NRCT
is alwavs better than the contourlet transform, and it outperforms the DWT for low
ratios M /N approximately less than 0.06. The PSNR comipari 1 among the three
transforms on finge . -int ¢ onstrates the potential of the semi-NRCT in finger-
print image compression, hence Chapter 5 proposes a fingerprint image COMPTESSIol

scherme based on the semi-NRCT.
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Figure 3.24: Nonlincar approximation of fingerprint with the semi-NRCT. (a)
The frequency partition by the semi-NRCT, in which the gray region represents the
frequency range of [7/8,37/8]. The second and the third finest se. s are decomposed
into 32 directional subbands, respectively. (h) The PSNR performance comparison

among the senmi-NRCT, the wavelet transform and the contourlet transform.

A detailed comparison of a zoomed portion of “harbara™ is presented in Fig.3.25.
Both the traditional and the nonredundant contourlet transforms preserve more de-
tails in barbara (sce the stripes on her right pant) than the wavelet transform. How-
ever, the NRCT can perfectly recover the original image for A//N =1 but the con-
tourlet transform can not.  Therefore, the NRCT, as a progressive version of the
contourlet transform without the redundancy of oversanpling, can more efficiently

represent. dirceetional structures in images than the wavelet transforn.

3.5 Summary

This chapter proposes a critically sampled contourtet transform — ith perfeet recon-
struction, namely the nonredundant contourlet transform (NRCT). The NRCT is

‘

generated by first implementing the 2-directional wavelet transform, and then divee-









Chapter 4

Computational Comp exity

The previous chapter proposed a novel image representation, n ely the nonredun-
dant contourlet transform, which can decompose an image into wltiresolution and
multidirection subbands with critical sampling and perfect reconstruction properties.
This chapter investigates the computational complexity of the M CT, and compares
it with the wavelet transforin and the traditional contourlet tra:  orm.

For an individual system, such as a filter bank and the w: let transform, the
computational complexity is e mined by the number of real mu  plications and real
additions required for each input sample, respectively, denoted by Ky and R4. If the
system has critical samplii  property, which means the numb  of output samples
is equal to the number of input samples, then the computational complexity can be
simply represented as the number of real multiplications/additions per sample.

The computational complexity can also be evaluated by the number of complex
multiplications Cys and the number of complex additions (4 for each input sample.
As a complex multiplication takes four real multiplications and two real additions,
while a complex addition needs two real additions (33], hence Cy and C'4 can be

easily transferred to Ry and R 4.

83
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4.1 Computational Complexit of Co volution

Both linear and circular convolutions are basic operations in digi”  image processing,.
As illustrated in Chapter 3, the NRCT system implements circ  ar convolution for
the IIR QMF bank [28], while lincar convolution for the remainii  blocks. Moreover,
sonie 2-D operations in the proposed systeni, such as the separ Hle filter bank, are
constructed by 1-D filters. Therefore, this section reviews the computational comn-
plexity of the 1-D and 2-D convolutions.

Time-domain convolution is more efficient. than frequency-domain convolution for
lower-order filters [33]. In the proposed system, all FIR filters except for that used
in the IIR QMF bank have their impulse responses with fewer samples. Henee the
linear convolutions with these FIR filters are implemented in the tinie domain. On the
other hand, the [IR QMF bank replaces its IIR linear convolutic — with FIR circular
convolutions (sce Eq.(2.28) and Eq.(2.30)); and the corresponding IR filter A(k) in
Eq.(2.29) has the same ler  h as the input signal. For this sp  ific case when the
input signal and the filter arc approximately with the same length, frequency-based

convolution processes more efficiently than time-based, as discusse  later.

4.1.1 1-D Convolution

The convolution of two 1-D discrete functions can be directly ¢ ulated in the time
domain, or immplemented in the frequency domain by processing the inverse Fourier

transform on the product of the Fourier transforms of these two functions.

Time-domain Linear Convolution

The direct way to implement. the convolution between an input signal r(n) and the

impulse response of a filter f(n) is to calculate the amount of « rlap between r(n)
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and a reversed ver m of f(n). Assuming that f(n) is FIR ar counsists of L real
samples, the convolution requires at most L real multiplicatio and (L — 1) real
additions for each output sample. If the additional computati complexity due
to data loading, scalii  and padding is insignificant and can be ignored, then the
computational complexity per output sample of the time-domai linear convolution

is shown as follows:
Ry =L

Ri=L-1.
FFT-based 1-D Circular Convolution

Circular convolution in the time domain is equal to the point-wise multiplication
in the frequency domain [33]. Therefore, the convolution can e implemented by
first processing the discrete Fourier transform on the real inp  signal x(n) (with
the length of ), calculating the complex multiplication of the Fourier transform
of z(n) and the transfer function of the filter f(n), and then processing the inverse
Fourier transform on the complex product. If the Fourier tr sform and inverse
Fourier transform are implemented by the fast Fourier transfor  (FFT) algorithn,
then the above frequency-domain convolution is ¢ 2d the FFT-based convolution.
In the circular convolution for the IIR QMF bank in Eq.(2.30), the size of input
signals is equal to the length of the ref” :ed FIR filters. Hence 1e FF'T operations
are implemented on resolution V.

As a typical radix-2 FFT of a complex N-point signal ! tal (% logy N) complex
multiplications and (N log, N) complex additions [33]. Moreover, the FI'T of a V-

point real signal can beimp  nented by a complex %—point FFT plus  extra complex

'The ra umber of input points should be 27, 1f A is not a power of
2, the input signal is simply padded with zeros to a length of N7 = 2lloga N
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multiplications and 2V extra complex additions (see Eq.(6.2.11) and (6.2.12) in [43]).
This implies that ther  N-point FFT takes % (log, N + 1) com  x multiplications
and & (logy, N + 3) complex  Iditions.

As mentioned before, the FIFT-based convolution requires a real N-point FI'T
on the input signal, N extra complex multiplications (assuming the FFT of f(n)
is precalculated), and a complex N-point inverse FFT. Theref . the FFT-based

convolution requires

N N ) .
, FAH :N+N—|——(|r)o.\N—|—1) 3 5
Crp = 2—— " —=7 log, N + 3
(1.2)
Nlae. N + X (1p v, N+ 3 3 3
= é’—“—):—log.,NwL—
v 2 v 2

complex multiplications and complex additions per output sample, respectively, for
each sample. Since a complex multiplication takes four real multiplications and two
real additions, while a complex ac  tion requires two real addit s, the number of
real multiplications and real additions per output sample requirc by the FEFT-based

convolution are shown as follows:

R Slog, N + 8
(4.3)

R4 = 310g)_ N 4 3.

As shown in Eq.(4.3), the complexity of the FFT-based circular convolution in-
volves the size of the input signal on a logarithmic scale, while the complexity of
the time-domain linear covolution contains the length of the impulse response (see
Eq.(4.1)). In fact, the circular convolution can be realized using the lincar convolution
by periodically extending the input  age; and the linear convolution can be imple-
mented with the circular convo — ion by padding outside of the o inal image with an

appropriate number of zeros. Therefore, the FFT-based convolution is more efficient
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than the time-domain convolution when the input signal z(n) is orter sequence,
and/or the filter f(n) is a higher or r filter. On the other hand.  the length of the
filter is much less than the length of the input signal (L < V), then e time-domain

convolution is a more efficient algorithm than the FFT-based co lution.

4.1.2 2-D Linear Convolution

The separable 2-D convolution can be easily implemented by cas ding 1-D convolu-
tions in two dimensions. ' ze our focus of the 2-D convolution  the nonscparable
linear convolution between a d tal image and the impulse response of a 2-D FIR
fitter. (The proposed NRCT only implements circular convolution for 1-D filtering in
the 11IR QMF bank, hence the 2-D circular convolution are not .vestigated in this

section. )

Spatial Linear Convolution

Assume that a discrete image of size N X Ny is convolved with a 2-D filter of size
L, % Ly. The spatial convolution is processed by moving a reversc  version of the filter
from point to peint in the ir . For each point, the sum of products of the filter
coefficients with the correspor  1g pixels under the filter is calculated. Therefore,

the spatial linear convolution re iires

Rpyp = Lils

RA = L1L2 b 1

real multiplications and real additions, respectively, for each sal
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complex multiplications and complex additions, respectively, for cach sample.

As known that a complex multiplication requires four real mul Hlications and two
real additions, and a complex additions needs two real additions, hence the nuinber
of real multiplications/additions per sample required by the FI -based 2-D linear

convolution is shown as follows, for Ny > No:

HM 610g2N1+810g2N2+8
(4.6)
Ra  3logy Ny +4log, Ny + 3.

4.2 Computational Complexity of Fili r Banks

The proposed nonredundant contourlet transform is coustructed by a framework of
filter banks. This section inv ites the computational complex  es of various filter
banks used in the NRCT. If a meral filter bank has a symmetric structure, then the
synthesis section has the same computational complexity as the  alysis section [44].
Therefore, the following investigation focuses on the computational complexity of the

analysis sections for such ¢

4.2.1 1-D CDF 9/7-i > Filter Bank

The 1-D analysis/synth filter bank is illustrated in Fig.2.2(a), in which the input
image is lowpass 1d highpass fil ed and decimated to generate two decomposed
subbands. If the downsampling and upsampling operations do not significantly in-
crease the computational complexity, then the main computatic  of this filter bank
is the two lowpass and highpass filters.

The analysis/synthesis filter bank can be constructed with the CDF 9 /T-tap filters
[20] shown in Table 2.1. In this case, according to Eq.(4.1), the CDF 9-tap lowpass

filter takes 9 real multiplications and 8 real additions for cach samp  and the CDI
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real multiplications and real additions, respectively, for cach sample.

4.2.3 2-D Analysis/Synthesis SPR Filter Bank

The framework of the 2-D analysis/synthesis filter bank is illustrated in Fig.2.17,
in which the input image is lowpass and highpass  tered and « imated to output
two decomposed subbands. The computation of the analysis scc  m is concentrated
in the two analysis filters. If the  ering is implemented based on t] FFT-based

convolution, then according to Eq.(4.6), the analysis section of the filter bank requires

Ry = 12log, Ny + 161og, Ny + 16
(1.8)

Ra  6log, Ny + 8log, Ny + 6

real multiplications and real additions, respectively, for cach sample.

On the other hand, filteri  can be proc  sed in the spatial domain as well. Re-
call that the analysis filters are designed based on the transforination of variables
technique [32]. 1If the designed filters have their passband re  ns approximating
the sheared-parallelogram (SPR) supports shown in  ig.2.18, then the corresponding
filter bank is called the SPR filter bank. For example, the analy: lowpass and high-
pass filters of the SPR t  =-I filter bank are designed as follows (sce Eq.(2.51) and

E£q.(2.52)):

H()(Zl, 22) = — 02 (R(Zl,lz) + 1) (R(Zl, 22) - 35)

3 - 2
Hi(on5) = o (Reroen) +1) (RGa s 4 157120 = ).

where R(:l,:g) = R(—z2),2) and R(zy,22) is a 2-D FIR filter. These filters can be
implemented with the efficient structures in Fig.4.1. The filter Ho(zy, 22) is composed
of two stages, and  ch st:  contains a filter R(zy, 22), a real adder and a scalar

nultiply. Note that the decimator lollowing (21, 2;) in Fig.2.17 discards half the
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l 35
(a) Ho(z1. 22)

[ e

(b) Hy(z1,22)

Figure 4.1: Efficient implementation of analysis filters (a)  o(z1,22) and (b)

Hi(zy. z2), where R(zy, z2) and 1;’(:1,:2) are 2-D FIR filters. [Modified from (30]]

samples, hence the second stage of Fig.d.1(a) only needs to calculate the samples
retained by the decimator which follows Hg(zp,22). If R(z1,22)  of size Ky X Aoy,
then filtering with Ho(z1, z2) followed by a decimator requires (1.54 K3) real multi-
plications and (1.5(K Ky — 1) + 1.5 A) real additions for eac  sample. Similarly.
filtering with H (2. 2,) and downsampling need (2.5A7 1K) real wltiplications and
(2.5(K Ky — 1) + 25K, K,) r additions for each sample. Thercfore, the total com-
plexity is (4K K3) real multiplications per sample plus (4K A;) real additions per
sample. The 2-D filter R(z.2) is of size 15 x 15 in the experii  its, hence the cor-
responding SPR filter bank takes 900 real multiplications and ¢ wal additions for
each input sample.

When the SPR analysis/synthesis filter bank is applied to an image of normal
size, say 1024 x 1024, the analysis section with the FFT-based ¢ wvolution takes 296
real multiplications and 146 real additions for each sample. according to Eq.(4.8).
However, the filter bank based on the spatial ¢ olution requi & 900 real multipli-
cations and 900 real additions for cach sample. Therefore, the SPR filter bank with

the FFT-based convolution is more efficient in practice.
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Table 4.1, in which the second and the third columns, respect ly, represent the
number of real multiplications and real additions required for ¢ 1 sample. The 2-
D analysis/synthesis filter based on the frequency-domain convolution is the most
complex system among these five filter banks, due to its nonse -able structure of
filters.

The following section will investigate the computational coniplexity of various
image representations, which are constructed with the filter banks introduced in the

present section.

4.3 Image Representations

The computational complexit  of the wavelet transform, of the traditional contourlet
transform and of the nonredundant contourlet transform is investigated in this section.
These transforms have a major procedure in common, namely the iteration of an
elementary one-level transform. If the complexity of an one-level transf 1 is ¢
operations/input sample, then the total complexity of a L-level t asform is given by
144)

. c C
C’tota] C+Z+E++4L_l

4
=C. 4.11
<3 (411)

Therefore, this section focuses on the computational complexity of one-level trans-
forms, which can be simply multiplied by a factor % to produce 1c upper bound of

complexity for the corresponding transforms with irrespective le  s.

4.3.1 Wavelet ..ansform

The wavelet transform can be constructed by a cascade of the CDF 9/7-tap filter

bank in two dimensions. Thercfore, the corresponding one-level wavelet transform
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The sheared-parallel am filter bank can be constructed with the 2-D analy-

sis/synthesis structure, hence one stage cousisting of SPR filter banks requires

3
s = — - (121logy Ny + 161ogy No + 16) = 9logy N + 121 Ny +12

4 .
3 (4.16)

s4 = — - (6log, Ny + 8log, Ny + 6) = 4.5log, N, + 6log, Ny +4.5

4

real multiplications and real additions, respectively, for each input sample. Similarly,
the parallelogram filter bank can be implemented in the ladder structure, hence if

one stage is composed of parallelogram filter banks, then this st needs

Prr = 24 = 18

.
4.17

: (117)

4

real multiplications and real additions, respectively, for each input sample. If one

| 23 =17.25
stage consists of SPR filter banks and parallelogram filter banks, then its compu-
tational complexity is the sum of the weighted complexities inc ised by these two

types of filter banks, as follows:

o mg(k) mp(k)
ra(k) = ok—1 TSM ok—1 “Pm
(4.18)
ms(k) 777.n”¢‘,)

ra(k) = o1 SAt T, T Pa
Therefore, the computational complexity R (k) an  Ra(k) are the total complexity

of the first k stages, t

k
R}u(lﬂ) = RM(Q) -+ Z’I‘M(i) for k>3

= (4.19)
Ra(k) = Ra(2) + ~ ra(%) for k>3

Table 4.2 presents the computational complexity Ras(k) and Ra(k) for & =
1,---,7, which are calcula | ba  on Eq.(4.16)-( 19). When the one-level nonre-

dundant contourlet transform  applied on ime _ 5 of size 256 x 256, 512 x 512 and
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Figure 4.2: Comparison of the computational complexity of the wavelet transform,
the contourlet transform and the NRCT. The NRCT is applied on images of size
256 x 256, 512 x 512 and 1024 x 1024. (a) The real multiplications per sample
12y (k) as a function of 2 where 2% is displayed on the scale of logy(<). (b) The real
additions per sample 724(k) as a function of 28, In fact, the wavelet transform is not

a multidirectional decomposition, henee its complexity is two constant 2y, and /¢4,

1024 x 1024, the corresponding complexity with regard to the ntwmber of highpass
directional subbands 2% is illustrated in Fig.4.2.
Assume that the computational complexity of ¢ one-level NRCT is approxi-

mately represented as two lincar functions, as follows:

Rar(K) = bag - b+ ey

(1.20)
/1)1(]\) ~ [)AA\ e + ¢ 4.
As mentioned before, mg(h) = :; SR =land mp(h) = 1; SR when A is a larger
munber. Therefore, the slopes by and b4 are approximately
2 1
bay = —say + =pay = Glog, Ny + 8log, Ny + 14
13 k; - - 4 ‘)1)
5 ) (4.2
by = is,\ + ‘;p,‘ = 3log, Ny + 4log, Ny +8.75
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for a complete procedure of decomposing an or” aal image into subbands and re-
constructing the image from the subbands are compared in Table 4.3, in which the
running time is displaved in . Hnds. Note that the simulations are executed in Mat-
lab (based on Intel Pentium 4 CPU 3.01 GHz and 2.00 G of RAM), and hence not
optimized. All the times are for the calculation of a one-level tran  rm, with the con-
tourlet transform and the NRCT decomposing the highpass scale into 2% directional
subbands, for various values of .

Three different sizes of images are examined, composing 256 x 256, 512 x 512 and
1024 x1024. The pixel resolutions of test images are similar with many popular digital
display formats, such as the Extended Graphics Array (XGA) {45 introduced in 1990
by IBM. The XGA is a display standard of 1024 x 768 pixel resolution, and is widely
used in personal computers  1d projection systems. It is clear from Table 4.3 that.
despite its relatively higher time e plexity than that of the wavelet transform and
the contourlet transform, the nonredundant contourlet transfor  can be processed
in an acceptable amount of time in practice, c.g. a one-level 16-directional-subband
NRCT of a 1024 x 1024 image only takes 13.2778 secouds in Ma b, which is not an

optimized implementation.

4.3.4 Summary of . epresentation Comy ‘xities

The computational complexities of the wavelet transforu, the contourlet transformi,
and the nonredundant contourlet transform are compared in F 4.2 and Table 1.3.
In theory, the one-level wavelet transform requires a constant number of opera-
tions/samnple, while the computational complexity of the contourlet transform and
the NRCT are approximately lincar in log, 1, where m is the number of directional

subbands in the highpass scale. Based on Table 4.3, the time complexity of the
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nonredundant contourlet t. sform  tolerable in practice.

The traditional contourlet transform and the nonredundant contourlet transform
have similar complexity for & = 2 or 4. However, when the highpass scale is de-
composed into more than 4 directional subbands, the computal  nal complexity of
the NRCT significantly re s due to its built-in sheared-paral gram filter bank.
Therefore, the computational complexity of the NRCT can be sig  ficantly reduced if

the sheared-parallell -am filter bank can be iiplemented in a morc efficient structure.

4.4 Summary of Chapter

This chapter investigates the computational complexity of vari. s filter banks and
three image representations: the wavelet transform, the contourlet transform, and
the nonredundant contourlet transform. Although the NRCT has the higher compu-
tational complexity than the wave  transform and the contourlet transform, it has
the advantage of directional selectivity compared with the wayv transform, and it
overcomes the redundant over  npling of the contourlet transform. In fact, the time
complexity of the nonredundant contourlet transform is tolerable in practice. There-
fore, the nonredundant contourlet transform has its potential in compressing images
with significant directional inforr .on, such as fingerprint im . The following
chapter will propose a fingerprint image compi ion scheme usi  the nonredundant

contourlet transform.



Chapter 5

Fingerprint Image Compre sion

In fingerprint identification systems for criminal investigation, i  rprint images must
be stored and transmitted, now usually in digital forin. Efficient immage compression
is an essential step before storing and transmitting digital fingerprint images, duce to
the increasing number of fii  rprint records.

The Federal Burcau of Investigation (FBI) has a fingerprint «  Labase of approxi-
mately 200 million inked fingerprint cards [42]. Each inked card consists of about 39
square inches which would be scanned at a resolution of 500 pixels per inch, with 8
bits per pixel |42, vieldi a  ox ately 10 megabytes of uncor  essed digital data
per card. IFurthermore, the I'BI receives 50, 000 new cards on h work day; these
records are used to check crin backgrounds [42]. Hence the FBI requires a stor:
of about 2000 terabytes d  transmission per work day of about 500 gigabytes, if
the digitized fingerprint images arc uncompressed. The wavelet, calar quantization
(WSQ) specification {25] has been developed by the FBI for the compression of its
fingerprint database. Essential cha teristics of fingerprint images are the many di-
rectional curves and delicate features. However, the 2-D wavelet transform, which

is used in the WSQ, combir  the 1-D wavelet transform in t » dimensions, and.

105
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as noted in Section 2.1.2, thus has a limitation in its ability to  iciently capture
directional structure of images.

Chapter 3 has proposed a nourcdundant contourlet transform (NRCT), which can
cfficiently track directional information in iinages. Since the NRCT  ompatible with
the wavelet transform, a new transform can be proposed by flexi' - combining the
NRCT and the wavelet transform. This new transform, called the semi-NRCT, has
the advantages of the directional selectivity of the NRCT and the lower computation
complexity of the wavelet transform. A possible frequency partition by the scmi-
NRCT is illustrated in Fig.5.1 (the same as Fig.3.24(a)), in which the frequency region
corresponding to fingerprint ridges is separated iunto various directional subbands.
Morcover, since the NRCT and the wavelet transforn possess eritical sampling and
perfect reconstruction properties, so does the semi-NRCT. I fact, these propertics
arc important in applications such as image compression. Therc e, this chapter
proposes a new fingerprint hmage compression scheme using the sc -NRCT, and
compares its performance with other transform-based compressions, including the

wavelet transform and the traditional contourlet transform.

T w2 (m, m)

-

a
R
(-7, -m) |

Figurc 5.1: A possible frequency partition by the semi-NRCT, in which most energy

of a fingerprint image is located in the frequency range of [7/8,37/8] colored by gray.
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5.1 Semi-NRCT-based Compression

Transform-based compression, for a general invertible transfor | is illustrated in
Fig.5.2. At the transform-based encoder, the source image is £ represented by a
transform, the coefficients of which are then quantized and entro coded to generate
compressed image data. The transform-based decoder reverses the above procedure
by passing the compressed data through an entropy decoder, a « juantizer, and the
inverse transform to reconstruct an approximation « the original image. In this dia-
gram, the entropy encoding is a lossless data compression, while the quantizer causes
quantization errors which lead to lossy image compression. However, the entropy can
be substantially reduced by qi  1tization, which results in a higher compression ratio

for the overall system.

Source _)‘ 1
Image Dat |

(a) Transform-based encoder Compressed
Image Data

| AU s !
Reconstructed Vm(’a]; sk,m(”f L
Image Data L |
(b) Transform-based decoder
Figure 5.2: The diagram of tra based fingerprint image compression.  (a)

transform-based encoder and (b) transform-based decoder.

If the transform block and its inve  in Fig.5.2 are the semi-NRC'T and its inverse,
respectively, and if the input /output images are of fingerprints, the correspond-
ing compression sch e is called the semi-NRCT-based fii rprint image compres-

sion. Let yx.n(i,j), where (1, j) denotes the indices of the matrix, k = 0,1,--- , L — 1.
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and m = 0,1,---, D, — 1, denote the directional multiscale subbands in the semi-
NRCT, where L is the number of scales and Dy is the number of directional subbands
at scale k.

As mentioned in Section 3.4.3, most frequency components of a ngerprint image
are located in the frequency region of [r/8, 37 /8], which is colorc by gray in Fig.5.1.
Hence an efficient representation for fingerprint images should o - implement direc-
tional decomposition on this frequency area. On the other hand, most energy of an
image could be concentrated to fewer coefficients when the image is decomposed into
more scales. However, the performance is decreased when the number of scales 1s over-
increased. Based on numerous experimental tests, the proposed s i-NRCT finger-
print image compression decomposes an original image into six s es, and the second
and the third finest sca which occupy the gray region in Fig 1, are decomposed
into 32 directional subbands respectively, that is L =5, Dy = | = Dy = D5 =3
and Dy = Dy = 32.

5.1.1 Unifc S lar Q ition

The coetlicient subbands of the semi-NRCT are quantized to reduce their entropies, as
illustrated in Fig.5.3, which is the characteristic of the uniform scalar quantizer for an
individual subband yx . (i,7). ... quantization characteristic is determined by two
crucial parameters: the width of zero-bin Zj,, and the width of other nouzero bins
Qi.m [42). Asillustrated in Fig.5.3 al coefficients lying on the z  -bin are truncated
to zero by the quantizer. In addition, real coeflic  ts falling within nonzero bins are
represented by the middle point of their corresponding bins.

The quantization at the semi-NRCT-based encoder section itputs a quantizer

bin indices matrix sg,,(7,7), which is dequantized to real numbe by the decoder
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Figure 5.3: Subband quantization characteristics. The deadzone ¢ is Zy ., and the

step size of other bins is Qg -

section. Moreover, the lossless property of the entropy encoder . 1 decoder leads to

Skanli, J) = Sk,m(@]‘)- The

ore, the mathematical expressions of quantization and

dequantization are given by [25]:

Skﬂn(ia j) -

:l)k,m(iv ]) =

\

where ] is the largest int

smaller than x.

7 k,m
2
—n
0,
NPT
Yem(ig) T
Qk,m

+ 1, Yem(iJ) >

”

- : S yk,m(iaj) g

-1 ykqm(ll?]) <

Zk,m

(Sk,1u(i~j) - 05) Qk,m + T

0,

ka

(Sk,771(iaj) + 05) Qk,m - 3 >

Sk,m(iv ]) =0

k,m

2
Z‘.m 5
G (5.1)

rr

1

Sk,m(iv ]) >0

Sk,rrl(i7_j) <9

not larger than z, and [z] is thc  nallest integer not
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5.1.2 T atropy

For an individual subband, the minimum number of bits per sample required to encode
the quantizer bin indices matrix sg (¢, 7) is equal to the entropy of its coefficient value
distribution [46]. Assume that the coefficients of sy (i, ) are wented as a set
Ag.m. Let fim(u) represents the probability of the occurrence of value w in the matrix
Skan(i, 7). Thus the entropy of this matrix is expressed as follows
Him = — Vj Team{uw) logy fim(u). (5.3)
UE A1

The minimum data rate Hy,, (bits/sample) for encoding sk, (¢, 7) can be approached
in practice by techniques such as variable-length cc : [1, 46].

If the original image has a size of N; x N3 and each decomposed subband s, (i, )
contains M ,, samples, then the total bit rate for the semi-N RC  based compressed
image is calculated as [ollows:

L—1D;-1
NTNT Hy X My, (bits/pixel). (5.4)

r=u m=u

1

H—- ——
N]XN2

The entropy of each subband is substantially reduce by quantiz  on, hence the data

rate of the overall semi-NRCT-ba . compression system is alsc :duced.

1.3 Tt Allocation

Since the minimum data rate (bits/pixel) for each subband is equal to its entropy, the
total bit budget should be allocated to subbands according to their entropies. The
entropy of each quantized coefficient subband is determined by 1e characteristic of
the corresponding subband qu izer, that is the bin widths Zi .. and Q.. There-
fore, the procedure of bit allocation is the design of the zero-bin idths Z », and the

nonzero bin widths Q,,, for =0,1,--- ,L,and m=0,1,---, ,—1
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5.2 Numerical Experiments

This section focuses on the comparison of performance of fingerpri  image compres-
sion techniques based on different transforms. As mentioned b re, the FBI WSQ
[25] is a wavelet-based standard. Moreover, the semi-NRCT 2. the NRCT) is
a progressive and critically sampled version of the traditional contourlet. transform.
Therefore, the semi-NRCT-based fingerprint compression is comm  red with compres-
sions based on the wavelet transforin and the contourlet transform, in all case with the
decomposition of the original image into six scales. Morcover, the contourlet trans-
form is calculated with the f  uency partition as the semi-NRCT. with 32 directional
subbands at the second and the third finest scales, respectively.

In the following experiments, for best results, the source image r(m,n) with a
dynarmic range of [0, 255] is preprocessed to ensure  at the stat  ical distribution of

the quantized coarsest subband has a mid-point around zero, as  llows

fobs ]
~1
—

Fem,n)  x(m,n) =128, for 0 <m,n <5l11. (5.

At the transform-based decoder section, 128 is added to the reconstructed image to

output an image with the dynamic range of about [0,255].

5.2.1 Test Set

Fig.5.4 shows four test imag v intl  ollowii experiments to examine the perfor-
mance of the proposed semi-NRCT-based fingerprint image comp  sion. fingerprint
18 a standard test image and is also used in the nonlinear approximation experiments
(sce Fig.3.22(e) in Chapter 3). £09. £14 and £23 are three example images {rom the
NIST-4 fingerprint database ], which contains 8-bit gray-sci  fingerprint images

of size 512 x 512. The NIST-4 im are examples of fingerprint iinages by scaniing
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for a given bit rate.

5.3 Sur mnary

This chapter proposes a new fingerprint image compression scheme based on the
semi-NRCT, which is a combination of the nonredundant contourlet (ransform and
the wavelet trausform. The performance of the proposed fingerprint image conipres-
sion system is evaluated by the pe = signal-to-n = : ratio of the reconstructed image
and the bit rate of the compr ed data. Both PSNR ecurve comparisons and de-
tailed visual examination of the reconstructed nnages demonstra 7 the proposed
semi-NRCT-based algorithm outperforms both wavelet-based and contourlet-based

compression, especially . lower bit rates in the range around (0, 0.2) bits/pixel.



Chapter 6

Conclusions and Futu e Work

6.1 Conclusions

This thesis has developed a new multiresolution and multidirectional image represen-
tation, namely the nonredundant contourlet transform (NRC ., and has applied it
to fingerprint image compression with favorable results.

In Chapter 2, various image representation techniques, includi the wavelet trans-
form and the contourlet transform, were reviewed from the literature. Due to its
directional selectivity, the contourlet transform can efficiently  wk oriented struc-
tures in images. Unfortunately, the contourlet transform had the drawback of a 1/3
redundancy in its oversampling ratio. In order to climinate the redundancy, Chapter
3 developed an innovative frammework of filter banks to achieve the same frequency
partition as the contourlet transfc n. The new image represc on is called the
nonredundant contourlet transform. The NRCT starts with the 2-¢  ectional wavelet
transform which was also developed in this thesis. The NRCT is generated by first
implementing the 2-directional wavelet transform, and then dir  ionally decompos-

g the higher frequency bands. If the basic NRC'T algorithmn is iterated on the coarse
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With an acceptable computational complexity, the nonredund:  contourlet trans-

form presents significant potential for image rep  entation and compression.

6.2 Future Work

Due to the binary tree structure of filter banks for the nonredundant contourlet
transform, the size of 1 1t images is restricted in this thesis to be a power of two,
such as 256 x 2566, 512 x 512. However, a generic transformation should not restrict
the size of input images. In fact, it should be possible to extend the proposed NRCT
to allow an arbitrary input image size using a method called non  Hansive symmnietric
extension [48, 49].

The efficiency of the NRCT system may be improved as well.  As mentioned
in Chapter 4, most of the computational eomplexity of the NRCT comes from the
sheared-parallelogram (SPR) filter bauk. In this thesis, the SPR filter bank is designed
based on the analysis/synthesis structure, using the transformati s of variables tech-
nique. If the SPR filter 1k can be implemented in a more efficient structure, then
the corresponding NRCT system will be speeded up.

In Chapter 5, the proposed NRCT was applied to fingerp it image compres-
sion. This thesis focus:  on the comparison of transform-based compr ions schenies
among different transforms. So the entropy coding following quantization is simpli-
fied to the ideal varial:  length coding, which assigns a bit rate  sed on the entropy
of quantized image data. In fact, 3 work could be extended to include a practical
coding scheme (e.g. with source coding and channel coding) so as to compare the
performance of the extended system with JPEG2000 and FBI WSQ standards.

As mentioned in previc  chapters, the nonredundant cont rlet transform can

be easily compatible with t  wav t transform. This thesis developed a new trans-
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form called the semi-NRCT, which is a combination of the wavel transform and the
NRCT. The semi-NRCT provides an approach to partly replace the wavelet trans-
form with the NRCT. Therefore, a combination of the semi-NRCT and the prevalent
wavelet-based techniques, such as JPEG2000 and FBI WSQ, is another possibility to

be explored.
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