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Abstract 

Multiresolution and multidirection image representation has recently been an attrac­

t ive research area, in which multiresolution corresponds to varying scale of structure 

in images, while multidirection deals with the oriented nature of image structure. 

Numerous new systems, such as the contourlet transform, have been developed. T he 

contourlet t ransform has the benefit of efficiently capturing the oriented geometri­

cal structures of images; however , it has the drawback of a 4/3 redundancy in its 

oversampling ratio. In order to eliminate the redundancy, this thesis proposes a 

progressive version of the contourlet transform which can be calculated with cri t ical 

sampling. The new proposed image representation is called the nonredundant con­

tourlet transform (NRCT), which is constructed with an efficient framework of fil ter 

banks. In addition to critical sampling, the proposed NRCT possesses many valu­

able properties including perfect reconstruction, sparse expression, multiresolution, 

and multidirection. Numerical experiments demonstrate that the novel RCT has 

better peak signal-to-noise performance than the traditional contourlet transform. 

Moreover, for low ratios of retained coefficients, the NRCT outperforms the wavelet 

transform which is a standard method for the critically sampled representation of 

images. 

After examining the computational complexity of the nonredundant contourlet 

transform, t his thesis applies the RCT to fingerprint image compression, since fin-
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gerprint images are examples of images with oriented structures. Based on an ap­

propriately designed filter bank structure, the NRCT is easily compatible wi th the 

wavelet transform. Hence a new transform is created called the semi-NRCT , which 

takes the advantages of the directional selectivity of the NRCT and the lower com­

plexity of the wavelet transform. Finally, this thesis proposes a new fingerprint image 

compression scheme based on the semi-NRCT. The serill-NRCT-based fingerprint 

image compression is compared with other transform-based compressions, for exam­

ple the wavelet-based and the contourlet-based algorithms, and is shown to perform 

favorably. 
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Chapter 1 

Introduction 

1.1 General 

Multiresolution image representation , as implied by its name, analyzes images at 

multiple resolutions or scales or frequency bands. When a high-quality image is 

observed , its low resolution view can provide a rough impression of the image. When 

an image is to be transmitted as a bitstream over a bandwidth limi ted channel, a 

coarse version can be sent first. Then the details of the image can be enriched by the 

subsequent data at higher resolutions. This is a typical example of the application 

of progressive image t ransmission [1], which allows users to reconstruct or view the 

received image at increasing resolutions. Moreover, multiresolution representation is 

applied to many other areas as well, such as image compression and image denoising 

[2, 3]. 

A classical multiresolut ion approach is evident in the wavelet transform, which has 

been widely adopted in many fields. In contrast with the Fourier transform, which 

expresses an image as a sum of weighted sinusoids of various frequencies, the wavelet 

t ransform describes an image using basis functions of limited duration which vary in 

1 
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position and frequency. In other words, the basis functions of the Fourier transform 

are located in the frequency domain, while those of the wavelet transform are located 

in both the spatial and the frequency domains. If the basis elements of the wavelet 

transform are classified into the levels of a multiscale pyramid according to their fre­

quency locations, then the wavelet transform can be viewed as a decorrelation in the 

frequency domain, where the coarser scales describe an approximate rendition of the 

image (corresponding to the low frequency components) and the finer scales represent 

its details (corresponding to the high frequency components) [4, 5]. Due to its ad­

vantages of mult iscale representation and fast transformation, the wavelet transform 

is the foundation of many useful techniques in image processing. For example, the 

JPEG 2000 standard by the Joint Photographic Experts Group (JPEG) committee 

is a wavelet-based image coding standard [6]. 

As will be seen in the following chapter , the one-dimensional (1-D) wavelet trans­

form is suitable for representing piecewise smooth signals in one dimension. However, 

the two-dimensional (2-D) separable wavelet transform, which implements the 1-D 

wavelet transform along one dimension, say the rows, and is then followed by the 

1-D wavelet transform of the other dimension, the columns, has the limitation of 

directional selectivity [7]. Consider the case when a painter intends to draw a picture 

by using "wavelet" -style brushes. The picture is refined from coarse to fine by in­

creasing resolution. However , the "wavelet" -brush strokes are rectangular or square 

shaped of various sizes, since the 2-D wavelet transform is a combination of the 1-D 

wavelet t ransform in two dimensions. Hence, by using such a restricted set of rect­

angular brush strokes, the printer requires many "dots" or "short-dashes" to capture 

a fine contour, as illustrated in Fig.1.1 (a) . T herefore, more powerful and efficient 

representations are required for digital image processing in many applications. 

Recently, directional multiresolution image representation has attracted worldwide 
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(a) Wavelets (b) Contour lets 

Figure 1.1: The successive refinement of a contour by using two different transforms: 

(a) the wavelet transform and (b) the contourlet transform. Such a contour, showu 

as a thick curve, may separate two smooth regions in an images. [Modified from a 

figure in [8]] 

research interest. umerous new systems have been proposed, such as curvelets, di­

rectionlets, contourlets, etc. The curvelet transform [9] was initially developed in the 

continuous domain. Therefore, it is difficult to directly implement the curvelet trans­

form in the discrete domain. On the other hand, the directionlet transform [10] can 

be realized using a discrete filter bank; however, it only allows two major directions 

at each scale. The contourlet t ransform [8], which can be viewed as a discrete version 

of the curvelets, can offer different and flexible numbers of directions at each scale. 

Therefore, the contourlet transform is more suitable for tracking directional infor­

mation of digital images in the discrete domain than either the curvelet trausform 

or the directionlet transform. Consider a similar scenario, in which the painter uses 

"contour let" -style brushes instead of "wavelet" -brushes. The "contourlet" -brushe. 

can generate elongated rectangular-shaped strokes in a variety of directions. As illus­

trated in Fig. l.1 (b), the contour let transform can more effectively capture oriented 

geometrical structures in images. 

This t hesis focuses on the contourlet transform (CT ) and its application to image 

compres. ion. The original contourlet transform by Do and Vetterli [8] has limited 



CHAPTER 1. INT RODUCTION 4 

suitability for image compression because of its redundancy of oversarnpling. Thus 

the purpose of this thesis is to propose a nonredundant contourlet transform (NRCT) 

and implement it for image compression. 

1.2 Motivation 

Image representation is a systemic "language" to express a set of basic building blocks 

that can be combined to form images. In the same way that an idea can be described 

in different languages, images can be represented by using the Fourier transform, the 

wavelet transform, the contourlet transform, or other transforms. For both images 

and natural languages, the efficiency and accuracy of different representations can 

vary widely. 

For example, a French sentence might translate into a English sentence with fewer 

number of words, hypothetically. In this case, English is more efficient than French 

to represent this sentence. Moreover , if the original French sentence can be exactly 

translated back from the English sentence, hypothetically again, then English can be 

viewed as a compressed expression of French with perfect reconstruction property for 

this sentence. Similarly for a given image, its original spatial expression, its Fourier 

transform, its wavelet transform, and its contourlet transform can be translated from 

one to another. The reason for seeking images in various "language" is that differ­

ent transforms are suitable for different image processing tasks, such as denoising, 

compression and enhancement . Moreover, some types of images are more suitably 

expressed by one transform over another. To better understand this, an in-depth 

analysis of different image representation techniques is necessary. 

For the discrete wavelet t ransform (DWT) , the mult iresolutiou analysis by Mallat 

[4] can flexibly form an orthonormal basis, which guarantees that the DWT has the 



CHAPTER 1. INTRODUCTION 5 

Wavelet Trnnsfom1 

Orig inal Image Wavelet Coefficients 

(a) Wavelet transform 

Contourlct Transfonn 

Original Image Contourlet Coefficients 

(b) Contourlct tranform 

Figure 1.2: Examples of (a) the wavelet t ransform and (b) the contourlct transform 

on an original digital image "peppers", in which small coefficients in absolute value 

arc color d toward black, while and large coefficients in absol ute value arc colored 

toward white. [Contrast boosted for display] 

same number of coefficients as t he number of pixels of the original image. Fig.l.2(a) 

shows an example of the wavelet t ransform on an image "pepper~", in which small­

magnitude co fficicnts arc colored toward black. The total numb r of the wavelet 

coefficients is equal to the number of pixels of the original imag . In contrast, as 

mentioned before, the contourlct transform [8] has a redundancy of ovcrsampling, 

which means t hat the number of coeffi cients required by the contourlet transform is 

more than the number of pixels of the original image, as illustrated in Fig. l.2(b). 

For both the wavelet transform and the contomlct transform, there is a coarse and 
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downsampled rendition of the original image (seen in Fig.l.2 (a), (b) at the upper left 

corner of the coefficient configurations) . Except for this coarse approximation, the 

remaining coefficients represent the increasingly finer detail of the original image. 

Such an expression of images is known as a multiresolution representation. 

If the original image is represented in digital form by a finite number set, say 8-bit 

re olution in gray-scale, with a range of pos ible pixel values from 0 to 255, then the 

resulting wavelet transform and contourlet transform both have their dynamic range 

of coefficient values beyond [0, 255]. However, most of the coefficients are concen­

trated around zero, as colored by black in Fig.l.2, and these smaller coefficients can 

be removed without significantly degrading the quality of the reconstructed image. 

Therefore, both the wavelet transform and the contourlet transform lend themselve 

well to be a spar e expression for images with the cost of small amount of error. 

The slight degradation of the reconstructed image is usually imperceptible to human 

viewers. However, a drawback of the contourlet transform is that it uses more coeffi­

cients than the wavelet transform to express images. Therefore, in image compression, 

where nonredundant representation is a crucial requirement, the wavelet transform 

may be a preferred choice rather than the contourlet transform. 

Because of it directional selectivity, which is illustrated in the pr vious section, 

the contourlet transform is widely used in many areas, such as image denoising [11 , 12], 

image enhancement [11, 13], and feature extraction [14, 15]. However to our best 

knowledge, the application of image compre sian using the contourlet transform doe 

not exist due to its redundancy. In order to eliminate the redundancy of the con­

tourlet transform, Lu and Do proposed a critically sampled version of Lhe contourlet 

transform, namely the CRJSP-contourlet transform [16]. Despite eliminating there­

dundant oversampling of the contourlet transform, the CRISP-contourlet transform 

is not a multiresolution representation [17], since its coefficients do not provide a 
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coarse approximation of the original image. In other words, the CRISP-contourlet 

transform is not a "true" progressive rendition of the contourlet t ransform, although 

it removes the redundancy. Therefore, this thesis solves an open problem about devis­

ing a nonredundant contourlet t ransform (NRCT) , and applies the proposed method 

to image compression. Due to its advantage of directional selectivity, the nonredun­

dant contourlet transform can achieve an improved performance in image compression 

compared with the wavelet t ransform. 

1.3 Problem Definition 

The purpose of this thesis is to design a nonredundant contourlet transform (NRCT) 

with the following important properties: multiresolution, multidirection, perfect re­

construction, critical sampling, localization, and anisotropy [8]. The critical sam­

pling implies the oversampling ratio of the whole system is zero, which indicates the 

nonredundancy of this system. The proposed transform also preserves many valu­

able properties of the contourlet transform, including efficient implementation using 

tree-structure filter banks, and a flexible number of directional subbands at each scale. 

The proposed method possesses two important properties: critical sampling and 

perfect reconstruction, which are important in applications, such as image compres­

sion. Therefore, the goal of Lhis thesis is to apply the proposed NRCT to image corn­

pression with a performance comparable to or superior to both the discrete wavelet 

transform and the original contourlet transform. 

This thesis only considers image representation for gray-scale images. Since color 

can be represented as a variable combination of three primary colors, e.g. red (R), 

green (G) and blue (B) [7], color images can be decomposed into three RGB color 

planes, each of which can be processed by gray-scale image techniques. However, the 
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decomposed images in RGB planes might have higher correlat ions with each oth r , 

such as the same objects and/or the same contours (although their intensity level 

might be different). Therefore , color images can be represented more efficiently by 

reducing the correlations between color planes, than implementing gray-scale image 

techniques in the three RGB color planes independently. The correlations between 

RGB color planes can be reduced by converting colors from RGB format to other 

forms, such as HSI (hue, saturation, intensity) format [7]. 

1.4 Approach to the Solution 

The contourlet transform can be viewed as a combination of the Laplacian pyramid 

(LP) by Burt and Adelson [1], and the directional filter bank (DFB) by Bamberger 

and Smith [18]. The system scheme of the contour let transform is shown in Fig.l.3, in 

which the contourlet decomposition is achieved by two steps: first, the multiresolution 

decomposition of images using the LP; second, the multidirection decomposition of 

the LP using the DFB. The data flow through this system is also illustrated in Fig.l.3, 

where the original image (i) is decomposed into a Laplacian pyramid (ii), which is then 

fed to the DFB to generate the contourlet transform (iii) . The image reconstruction 

is the inverse procedure of the decomposition. As illustrated in Fig.l.3, the number 

of the coefficients in a Laplacian pyramid is greater than the number of pixels of the 

original image, which means the LP is a redundant image representation. Therefore, 

the redundancy of the contourlet transform is inherited from the Laplacian pyramid. 

One method to eliminate the redundancy of the contourlet transform is to re­

place the LP with another critically sampled multiresolution expression, such as the 

wavelet transform. As illustrated in Fig.l.4, the proposed system implements the 

wavelet transform for multiresolut ion decomposition of images, followed by a multi-
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Original 
Image 

lmage Decomposition Image Rcconstmctin 

Recovered 
Image 

The system scheme of the contourlct t ransform 

(i) Original image (ii) Laplacian pyramid (iii) Contourlct Transform 

9 

Figure 1.3: Overall data flow for the contourlct decomposition/ reconstruction , where 

images (i) , (ii) and (iii) arc data passing through the corresponding nodes in the 

system scheme of t he contourlct transform, with an example showing the property of 

the "peppers" image by the contourlet t ransform. 

direction decomposition. This system can be viewed as either a contourlct tran ·form 

without redundancy or an extended wavelet tran form by adding the multidircction 

decomposition/ reconstruction modules. Hence one of the contributions of our work 

is to build a connection between the wavelet t ransform and the contourlct transform. 

1.5 Outline of Thesis 

This thesis is organized as follows. The first chapter is an introduction to image rep-

rcscntations, especially the wavelet transform and the contourlct transform , which 

arc illustrated in a high level manner. After presenting an overview of image rep-
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Original 
Image 

Image Decomposition Image Rcconstmctin 

Figure 1.4: The system scheme of the proposed transformation 

10 

Recovered 
Image 

rcscntation techniques including mulrcsolution image rcprcscuta tions, multidircction 

irnag rcpr scntations, and rnultircsolution and rnultidircction image representations, 

Chapter 2 r views a variety of uniform and nonuniform perfect rccon t ruction fi lter 

banks, which arc adopted in our proposed system. 

Chapter 3 proposes a new multircsolutiou and rnultidircction image representation 

with critical sampling and perfect reconstruction properties, called the nonrcdundant 

contourlct transform (NRCT) . A complete comparison of the proposed NRCT with 

the wavelet transform and the traditional contourlct transform through computer 

simulation is a lso included in this chapter. 

The computational complexity of the nonrcdundant contourlct t ransform is ana-

lyzcd in Chapter 4. In Chapter 5, au application of fingerprint image comprcssiou 

using the proposed method is given. Moreover, t he experimental results of the im-

age compression algorithm using the NRCT against the wavelet t ransform and the 

traditional contourlct transform arc also provided. 

Fina lly, this thesis concludes in Chapter 6 with a summary of its methods, results 

and contributions, and a discussion of possible future work. 



Chapter 2 

Background 

2.1 Image Representations 

The purpose of image representation is to provide a suitable expression of an im­

age for subsequ nt image processing tasks, such as compression and denoising. Still 

images (i.e. non-time-varying) are commonly described as two-dimensional signals, 

hence this chapter presents various popular 2-D transformation techniques. Some 2-D 

image representations, such as the separable 2-D wavelet transform, combine appro­

priate 1-D transformations in two dimensions. Therefore, an introduction to image 

representation starts from a review of 1-D transforms. 

2.1.1 1-D Fourier Transform and Wave let Transform 

The most popular 1-D transformations are the Fourier transform and the waveleL 

transform, both of which are orthonormal transformations for signals of one dimen­

sion. Suppose a signal function f(t) is analyzed as a linear combination of basis 

11 
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functions 'lj;k(t), as in 

f(t) = 2::: ak'lj;k(t), (2.1) 
k 

where k is the index of the finite or infinite sum, ak are weights or coefficients, and 

'lj;k ( t) are basis functions. If all the expression functions form an orthonormal basis, 

then ak can be calculated as follows: 

(2.2) 

The basis functions { 'lj;k ( t)} for the Fourier transform are sinusoid functions of various 

frequencies , while the basis functions for the wavelet transform, called wavelets, are 

scaling functions and wavelet functions. 

Different wavelet transforms are based on different wavelet basis functions. Many 

canonical families of orthogonal wavelet basis functions exist, such as the Haar wavelets, 

the Daubechies wavelets and the Morlet wavelets [4]. Each wavelet family consists 

of various distinct sets of wavelet basis functions. For example, the Daubechie fam-

ily wavelets are commonly denoted by "Daubechies-N", where N is the order. An 

example of the Daubechies-10 prototype wavelets, which contain a "father" wavelet 

¢(t) and a "mother" wavelet 'lj;(t), is shown in Fig.2.1(b). From the "father" and 

"mother" wavelets, other wavelets, including scaling functions <Pm,n(t) and wavelet 

functions '!f;m,n ( t), are generated as follows [5]: 

1 (t- n) </Jm,n(t) = r,;;;¢ - , 
ym m 

(2.3) 

(2.4) 

where m is a positive number and defines the scale of wavelets, while n defines the 

shift. Compared with the sinusoid function in Fig.2.1(a), which is smooth and sym-

metric with an infinite time duration, wavelets may be asymmetric and are fast-
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···f\J\1\v ··· 
Daubechies-1 0 father wavelet \j/ (1) 

Daubcchics- 10 mother wavelet ~(1) 

(a) Sinusoids (b) Wavelets 

Figure 2.1 : Basis functions: (a) Example of the sinusoid functions which form the 

Fourier basis. (b) The Daubcchics-10 prototype wavelets which arc extended to forlll 

the Daubcchics-10 wavelet basis. These Daubcchics-10 basis fu u tions arc generated 

by usi ng the Matlab Wavelet Toolbox. 

changing with limited durations. Therefore, wavelets can efficiently represent discon-

tinuity in a signal function f(t). 

In practice, images arc usually represented in the discrete domain. Therefore, 

the continuous transforms arc necessarily extended to their corresponding discrete 

forms. The rnultircsolution analysis by Mallat [4] builds a connection between the 

wavelets in the continuous domain and the subband decomposition in the discrete 

domain . Moreover, the discrete wavelet transform can be easily implemented by 

Mallat's filter bank [19], which can be represented iu an analysis/synthesis form as 

shown in Fig.2.2(a) . A discrete signal x(n) is decomposed into two subbands Yo(n) 

and y1 (n) by analy is filtering and 2-fold downsampling. The analysis filters h0 (n) and 

h 1 (n) arc half-band lowpass and high pass filters with the frequency responses shown, 

in magnitude form only, in Fig.2.2(b). h0(n) and h1(n) can be selected somewhat 

arbitrarily and often formally related, as discussed later. The synthesis filters go(n) 

and g1 (n) arc the inverse of the analysis filters. In Fig.2.2(a) , th 2-fo ld downsampliug 
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x(n) 
IHo(ro)l 

x(n) 

Analysis Section Synthesis Section 0 7!12 1[ 

(a) Analysis/synthesis filter bank (b) Frequency partition 

Figure 2.2: (a) 2-channel analysis/synthesis filter bank, in which h0 (n) and h1(n) are 

analysis fil ters and g0 ( n) and g1 ( n) are synthesis filters. (b) The frequ ncy parition of 

the two-channel fil ter bank, where IH0 (w)l and IH1(w)l are the magnitude responses 

of the analysis filters. 

"1 2" retains the even samples of its input, while the 2-fold upsampling "T 2" replac s 

the downsampled values by zeros for subsequent interpolation to achieve the original 

signal rate. 

The decomposed low frequency subband y0 (n) corre ponds to a coarse approxi­

mation of the image, while the high frequency subband y1(n) represents the details. 

If this two-band splitting is applied to the coarse scale iteratively, then the DWT 

provides a multiscale expression of signals. 

2.1.2 Multiresolution Representations 

Image Pyramids 

The most straightforward way to represent images in multiple resolutions is via a 

Gaussian pyramid [1] which consists of a series of images at various resolutions. In 

a ( J + 1 )-level Gaussian pyramid, the finest level G0 is the original image, each of 

other levels is an approximation of its next finer level, and G 1 is the coar est level. A 

one-level procedure to generate the Gaussian pyramid is illustrated in Fig.2.3, where 

the input image Gi at level l is lowpass filtered and 2 x 2 downsarnpled to produce 
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Level j+1 approximation Image G
1

, 1 

Level j Input 
Image G

1 

+ 

Level j 
difference 
Image L, 

Figure 2.3: One-level structure to generate the Gaussian and the Laplacian pyramids 

an approximation GJ+1, for j = 0, · · · , J - 1. If the approximation filter in Fig.2.3 

is implemented by a Gaussian fil ter , then the corresponding pyramid is called the 

Gaussian pyramid. 

An example of the Gaussian pyramid on an image "cameraman" is shown in 

Fig.2.4(a) (Note that the original "cameraman" image is G0 ) . Since the size of the 

output from the decimator "1 2 x 2" is reduced by half in two dimensions compared 

with its input, the size of each level in the Gaussian pyramid is 1/4 of the size of its 

next finer level. If the size of the original image is M x N, then the total number of 

coefficients in a (J + 1)-level Gaussian pyramid, for J > 0, is 

MN 1+-+-+ .. ·+- =-MN 1-- <-MN. ( 
1 1 1) 4 ( 1) 4 
41 42 4J 3 4J+l - 3 

(2.5) 

The above expression demonstrates the redundant oversampling ratio of up to 4/3 

of the Gaussian pyramid. Note that the level G0 is the original image containing 

all information of the other scales. Therefore, the Gaussian pyramid is a redundant 

representation with excessive information. 

A more powerful image pyramid is the Laplacian pyramid (LP) by Burt and 

Adelson [1]. Except for the coarsest level L h which is equal to the same level of the 

Gaussian pyramid, the other Laplacian levels L j (j = 0, · · · , J - 1) are created by 

expanding t he coarser Gaussian level Gj+l to t he same size as Gj, then subtracting 

Gi by the expanded GJ+l · T he procedure to generate the Laplacian pyramid from 
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(a) Gaussian Pyramid 

(b) Laplacian Pyramid 

Lo 

Figure 2.4: An example of image pyramids: (a) The Gaussian pyramid a11cl (b) the 

Laplacian pyramid on the image "cameraman". Each Laplacian level is the difference 

between the corresponding and the barely finer levels of the Gaussian pyramid. T he 

contrast of the Laplacian pyramid is boosted for display. 

the Gaussian pyramid is illustrated in Fig.2.3. 

An example of the Laplacian pyramid on the image "cameraman" is also shown 

in Fig.2 .4(b), where the small coefficients in absolute value arc colored towards black, 

while the la rge coefficients in absolute a rc colored gray to white. Because of the abun­

dant number of small-absolute-value coefficients, the Laplacian pyramid can be easily 

applied in image compression, which is the initial purpose of designing the Laplacian 

pyramid [1]. However, t he tota l number of the coefficients in the Laplacian pyramid 
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is still greater than the number of pixels of the original image, with a redundant ratio 

of up to 4/3. Hence most of image compression applications choose a more powerful 

image representation, e.g. the wavelet transform, instead of the Laplacian pyramid. 

Wavelet Transform 

A 2-D discrete wavelet transform (DWT) can be implemented by applying 1-D DWTs 

in two dimensions separately, as illustrated in Fig.2.5(a) . This type of DWT is called 

the separable wavelet t ransform. The analysis filter bank in Fig.2.5(a) splits a dis­

crete image x(m, n) into four subbands: one coarse scale LL0 (m, n) and three fine 

scales LHo(m,n), HL0 (m,n) and HH0 (m ,n). If this analysis filter bank is iterated 

on the coarse subband, then the spectrum of the original image is divided by the 

wavelet transform as shown in Fig.2.5(b). Corresponding to this frequency partition, 

an example of a separable discrete wavelet transform, which is also a biorthogonal 

t ransform, on an image "barbara" is illustrated in Fig.2.6(b), while the original image 

"barbara" is shown in Fig.2.6(a) . The original image is decomposed into four scales, 

t ~ (1!, 1!) 

HH0 LHo HHo 

HH, LH, Ht-1 1 

~(m,n) 
~· - HL, H L, c HL1 1-11, ~ 

, ~ 

x(m,n) 

HH1 LH, HH, 

HHo LHo 1-!Ho 

a long rows along columns 
(-1!, -1!) T 

(a) 2-D DWT analysis filter bank (b) Frequency Partition of DWT 

Figure 2.5: (a) The analysis filter bank of the 2-D separable wavelet transform. (b) 

The frequency partition of the 2-D discrete wavelet transform. 
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* LH, 
. 

LH0 

I IL1 1111, 

Hlo HHo 

(a) Original image (b) Wavelet transform (c) Coefficient map 

Figure 2.6: An example of the separable wavelet t ransform on the image "barbara". 

(a) The original image. (b) The wavelet transform of the original image, based on the 

biorthogonal wavelet transform with the CDF "9-7" filters [20]. [Contrast boosted 

for display] (c) The repacking map of the wavelet coeffi cient subbands, in which the 

subband indices correspond to that of the frequency partition shown in Fig.2.5(b). 

and the resulting wavelet coefficient subbands arc repacked according to the pattern 

shown in Fig.2.6(c). In Fig.2.6(b) , the coefficients close to zero arc colored towards 

black, while the coefficients with large absolute value arc colored towards whi te. 

As shown in Fig.2.6(b) , the wavelet transform provides a compact cxpressioll 

of images resulting in the same number of coefficients as the number of pixels of 

original image. Moreover , the wavelet transform is a sparse expansion of images due 

to the abundant number of small-absolute-value coeffi cients. Therefore, the above 

two features enable the wavelet transform to be widely applied in image comprcs ion. 

2.1.3 Multidirection Representation 

Directional Filter Bank 

In [18], Bamberger and Smith proposed a directional filter bank (DFB), which can 

achieve the frequency partition illustrated in Fig.2.7(a). The DFB is implemented 
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(-rr, -rr) 

(a) Ftcqucncy partition of DFB 

~: ~[ZJW 
~~ 
~[ZJ 

(b) The downsamplcd subbands 
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Figure 2.7: The frequency mapping of the directional filter bank. (a) The frequen cy 

partition, where 23 = 8 directional wedge-shaped subbands arc shown as an example. 

(b) Su bbands arc downsamplcd by skewing and expanding to fill in their base bands, 

which arc bounded by ( - 1r, - 7T) and ( 7T, 1r) respectively. 

by a binary tree structure consisting of two-band fi lter banks, hence the spectrum is 

divided into N = 2v wedge-shaped directional subbands. The first two levels of the 

DFB arc built by fan filter banks to split the spectrum into four subbands, which arc 

the bands numbered in Fig.2.7(a) as {1 ,2}, {3 ,4} , {5,6} , and {7,8}. Based 0 11 the 

above decomposition, a finer directional decomposition is implemented by iterative 

parallelogram filter banks (sec [18, 21] fo r the detailed rule of filter bank construction) . 

The fan and parallelogram filter banks will be investigated in Section 2.2 . 

An example of the DFB decomposition on the image "cameraman" is shown in 

Fig.2.8, in which subimagc indices correspond to the subbands in Fig.2.7(a) . As 

mentioned before, the decimation in DFB skews the frequency regions of the sub-

bands to fill in the rectangular base band, hence the resulting coefficient subbancls 

arc rectangular in the spatial domain, as shown in Fig. 2.8(b). 

In addition to critical sampling and perfect reconstruction properties, the DFB 

has the advantage of directional selectivity which is important in the applications of 
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(a) Original image "cameraman" (b) Directional subbands 

Figure 2.8: An example of theN = 8 DFB decomposition on the image "cameraman" . 

(a) The original image. (b) Its decomposed directional sub bands. The dynamic range 

of the DFB is shifted and scaled to be [0, 255], then the coefficients arc colored by 

black as 0 and white as 255. 

image analysis. However , for most images, a major part of energy is located at the low 

frequency and DC area which is split N ways by the DFB. As a result, the dominant 

low-frequency and de energy is distributed into all directional subbands. Thus the 

DFB can not provide a sparse expansion of images. This limi tation is illustrated in 

Fig.2.8(b), where the DFB coefficients tend to occupy the entire dynamic range. 

2.1.4 Multiresolution and Multidirection Representation 

Contourlet Transform 

By combining the LP and the DFB, Do and Vettcrli proposed the contourlet trans­

form (CT) [8], which decomposes the spectrum into trapezoid-shaped subbands, as 

shown in Fig.2.10(a) . The generation of the contourlct transform is illustrated in 

Fig.2.9, where a one-level LP decomposes an input image into a downsamplccl low­

pass subband and a highpass subband, then the highpass subband is decomposed 
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One-level LP 

The frequency 
spectrum of an image 

D 
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One-level LP 

DFB 

Figure 2.9: Illustration of the contourlct transform in the 2-D frequency domain, 

where the LP decomposes the frequency spectrum of an original image into multi-

scales. Then each bandpass scale is decomposed illto directional subbands by the 

DFB. [Based on a figure from [8]] 

into various directional subbands by the DFB. To avoid the division of low frequency 

regions, at each stage the contourlet transform removes the low frequency compo-

ncnt from the highpass subband before implementing the DFB decomposition. If this 

procedure is iterated on the lowpass subband, then a multiscalc and multidircction 

decomposition of images is achieved. By taking the advantages of both the LP and 

the DFB, the contourlct transform can efficiently capture high frequency directional 

information in images, such as oriented edges. 

A possible frequency partition by the contourlct transform is illust rated in Fig.2.10(a) , 

by which the spectrum of an original image could be decomposed into four scales, 

which arc then divided into one, four, four, and eight directional subbands from 

coarser scales to finer scales, respectively. Based on the freq uency partition shown ill 

Fig.2.10(a) , the coefficient image resulting from the contourlct transform applied to 
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( -rr, -rr) 

(a) Frequency partition of CT (b) Contourlct transform 

Figure 2.10: Example of the contourlct transform. (a) Frequency partition, in which 

the spectrum of an image is decomposed into four pyramid levels (indicated by the 

three shades of gray and white), each of which arc decomposed into one, four, four , 

and eight directional sub bands, respectively. (b) The contourlct coefficients of the 

image "barbara". Small-absolute-value coefficients arc colored towards black while 

large-absolute-value coefficients arc towards white. [Contrast boosted for display] 

the image "barbara" is shown in Fig.2.10(b), in which the coefficients with small ab-

solute value arc colored black. Due to the abundant number of small-absolute-value 

coefficients, the contourlct transform is a sparse expression of images. 

Each subband of the contourlct transform, which consists of a pairwise trapezoid-

shaped regions symmetric to the origin in Fig.2.10(a), corresponds to an oriented 

basis function . Therefore, the contou rlet transform can offer basis functions oriented 

at 2"' different directions at each scale, where k is an arbitrary positive integer. Rich 

and flexible multiscale and oriented basis functions allow the contourlet transform 

to effectively represent smooth contours. However, the contourlet t ransform has the 

drawback of a 4/3 redundancy in its ovcrsampling ratio, which comes from the Lapla-

cian pyramid [8, 16]. 
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In [16], Lu and Do proposed a critically sampled image representation , called the 

CRISP-contourlet transform, to eliminate the redundancy of the contourlet transform. 

The difference between the original contourlet t ransform and the CRISP -contourlct 

t ransform is tha t the main structure of the original contourlet transform uses a mul­

t iscale decomposition followed by a multidirection decomposition , while the CRISP­

contourlet t ransform adds a four-band directional decompo ition before the multiscale 

decomposition and then implements the subsequent directional division. Although 

the CRISP-contourlet transform removes t he redundancy of oversampling, it d ivides 

t he lowest frequency scale into four directional subbands, as shown in Fig.2.ll(a). 

Recall that the low frequency area corresponds to a coarse approximation of the orig­

inal image, e.g. the upper left corner of t he coefficient configurations in Fig. 1.2(b) 

and F ig.2. 10(b). Division of t he low frequency area splits the coarse approximation 

which is important in providing a rough impression of the original image, which is not 

expected by multiresolution representation. Therefore, the CRISP-contourlet trans­

form i not a "true" progressive version of the contourlet transform, since it can not 

achieve the same freq uency part ition as the original contourlet transform. 

(a) CRISP-contourlets (b) uniform DFB 

Figure 2. 11 : Frequency partit ions by (a) the CRISP-contourlet transform and (b) the 

uniform directional filter bank (uDFB). 



CHAPTER 2. BACKGROUND 24 

Using the similar design method of the CRJSP-contourlet transform, Nguyen and 

Oraintara proposed a critically sampled multiresolution and multidirection transform 

called the uniform directional filter bank ( uDFB) [22], whose frequency partition is 

shown in Fig.2.ll (b). In contrast to the CRJSP-contourlet transform, the uDFB 

applies a two-band directional division before the mul tiscale decomposition. Unfor­

tunately, the CRISP-contourlet transform and the uDFB both have the problem f 

directionally dividing the coarsest scale, as shown in Fig.2.ll (a), (b). They also boLh 

leak low frequency components into high frequency directional subbands, due to their 

implementation of directional division before multiresolution decomposition [17]. In 

[22], the uDFB was extended to a nonuniform directional fi lter bank (nuDFB) to 

resolve these problems. However, the nuDFB does not preserve the perfect recon­

struction property of the uDFB. 

2.2 Perfect Reconstruction Filter Banks 

As ment ioned in the previous section, most discrete image representation system , 

such as the DWT and the DFB, are constructed by digital fil ter banks. Therefore, thi · 

section will investigate the filter banks which can achieve perfect reconstrucLion (PR) 

property; this property requires that the original image can be exactly recovered from 

its decomposed subbands without error . Moreover, all the fi.lter banks investigaLed 

in this section also achieve the critical sampling property. 

2.2.1 1-D Two-Channel PR Filter Banks 

Two basic operations in filter banks are 2-fold decimation and 2-fold interpolation , as 

shown in Fig.2.12(a) , (b) . The z-t ransforms of the outputs from the downsampling 
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(a) 2-fold downsampling 

~ 
~ 

(b) 2-fold upsampling 
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Figure 2.12: Illustration of (a) the 2-fold downsampling and (b) the 2-fold upsampling 

in one dimension. 

and upsampling blocks are, respectively, related to the original input s(n) [23]: 

Sd(z ) =~ [s(z~) + S(-z~)], 

Su(z) = S(z2
), 

(2.6) 

(2.7) 

where S(z) is the z-transform of s(n). The common structure of the 1-D two-channel 

filter bank is the analysis/synthesis form illustrated in Fig.2.2(a), in which the rela­

tionship between the reconstructed signal x(n) and the original signal x(n) can be 

obtained , by using Eq.(2.6) and Eq. (2.7): 

A 1 
X( z ) = 2 [Ho(z)Go(z) + H1(z)G1(z)] X(z )+ 

1 2 [Ho( - z)Go(z) + Ht( -z)G1(z)] X( - z) , (2. ) 

where X (- z) is an aliasing version of the original signal X ( z). Hence the constrain 

of aliasing cancellation [23] is 

Ho( - z )Go(z ) + H1(- z)G1(z) = 0, 

which can be satisfied with the following choice of filters: 

Go(z) = Ht(-z), 

G1(z) =- Ho( - z). 

(2.9) 

(2.10) 

(2.11) 

Recall that H 0 (z) and H1 (z) are half-band low pass and high pass filters with desired 

frequency responses in Fig.2.2(b). Therefore, by an appropriate relationship between 
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Ho(z) and Ht(z), which is discussed later, a two-channel filter bank without aliasing 

could be obtained by the choice of synthesis filters in Eq.(2.10) and Eq.(2.11). Thus 

the recovered signal without aliasing is expressed as follows: 

• 1 
X(z) = 2 [Ho(z)Go(z) + H1(z)G1(z)] X(z). (2.12) 

CDF 9 /7-tap Filter Bank 

The fi lters by Cohen, Daubechies and Feauveau (CDF) [20] provide a family of filters 

designed under the condition of aliasing cancellation. The CDF filters are finite 

impulse response (FIR) filters with real-valued impulse responses. Table 2.1 shows 

an example of the CDF 9/7-tap analysis filters, in which the approximate values of 

the real impulse responses are presented. The lowpass filter h0 (n) has 9 taps while 

the highpass filter h1(n) has 7 taps. 

Table 2.1: T he impulse response of the CDF 9/7-tap analysis filters [20, 24] 

n Analysis lowpass filter h0 (n) Analysis highpass filter h1 (n) 

0 0.6029490182363579 1.115087052456994 

± 1 0.2668641184428723 -0.5912717631142470 

±2 - 0.07822326652898785 -0.05754352622849957 

±3 - 0.01686411 442 7495 0.09127176311424948 

±4 0.02674875741080976 0 

The CDF analysis filters in Table 2.1 can be tran ferr d to two causal filters 

h0(n - 4) and h1(n - 3) by introducing a time delay. Based on the requirement of 

aliasing cancellation in Eq.(2 .10) and Eq.(2.11) , the impulse responses of the CDF 
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synthesis fi lters have the following relationships with the CDF analysis fil ters: 

which are simplified to be 

9o(n- 3) = ( - 1tht (n - 3) , 

g1(n- 4) =- ( - 1t ho(n- 4) , 

go(n) =- ( - 1t ht (n), 

91 (n ) =- ( - 1tho(n) , 

27 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

The analysis/synthesis fil ter bank with the CDF 9/ 7-tap filters is called the CDF 

9/ 7-tap filter bank, which can be easily implemented due to its tabulated coefficient . 

The CDF 9/ 7-tap filter bank almost has perfect reconstruction property if its real 

impulse responses are repre ented in a higher precision. Hence CDF filters are widely 

adopted in wavelet-based techniques, such as the JPEG2000 [6] and the FBI finger­

print image compression standard called wavelet/scalar quant ization (WSQ) [25]. 

IIR QMF Polyphase Structure Filter B ank 

Some applications, such as orthogonal wavelet transforms [4], require fil ter banks 

contain quadrature mirror filter (QMF) pairs. The strict QMF requirem nt is that 

H0(z) and H 1(z) are mirror images of each other [26, 27], tha t is 

(2.17) 

In general, it is easier to design FIR filters than infinite-impulse-response (IIR) 

filters. However, a two-channel FIR fil ter bank should meet all the requirements in 

Eq. (2.10), Eq. (2.11) and Eq.(2.17) in order to achieve both perfect reconstruction 

and QMF properties. In [23], the author demonstrated that a two-channel FIR filter 

bank achieves both PR and QMF propert ies if and only if the impulse response of the 
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lowpass analysis filter h0 (n) only contains two samples. In fact, a two-tap fil ter can not 

obLain as steep slopes of frequency response as expected. However , the practical fil ter 

ho(n) should be approximated to the ideal filter in Fig.2.2(b) as closely as possible. 

On the other hand, as shown below, a IIR fil ter bank can achieve both PR and QMF 

properties with its frequency response approximating to the ideal fil ter in Fig.2.2(b). 

Hence this thesis implements two-channel filter banks with the requirement of PR 

and QMF properties in IIR form. 

The IIR QMF bank by Smith and Eddins [28] is a complete PR system with no 

aliasing, no frequency distortion and no phas distortion. The IIR QMF bank cancels 

the aliasing component in Eq. (2.8) with the following choices of synthesis filters [29]: 

Go(z ) 
[Ho(z )Ht( - z)- Ho( - z )Ht(z )] ' 

-2Ho( -z) 
[Ho(z)HI ( - z ) - Ho( - z )H1 (z)] . 

If H0 (z) is expressed in a polyphase form [23] as follows 

then H 1 (z) can be obtained according to the QMF requirement in Eq.(2.17): 

(2.1 ) 

(2.19) 

(2.20) 

(2.21) 

Submitting H0(z) and H1(z) to Eq.(2.18) and Eq.(2.19) leads to the polyphase ex­

pressions of Go(z) and Gt(z): 

Go(z ) =Qo(z2
) + zQ1(z2

), 

G1(z ) = Qo(z2
)- zQ1(z2

), 

(2.22) 

(2.23) 
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x(n) 

x(n) 

Figure 2.13: Two-channel polyphase structure filter bank 

where 

(2.24) 

(2.25) 

Based on the above discussion, the IIR QMF bank can be implemented by a 

polyphase structure shown in Fig.2.13, in which fi ltering operates on downsampled 

data, and hence at a lower data rate than the original input signal. Therefore, the 

polyphase structure saves almost 50% in computational cost compared with the more 

straightforward analysis/ synthesis structure of Fig.2.2( a) [18]. 

According to Eq. (2.21)-(2.25), H 1(z), G0 (z) and G1(z) can be determined by 

H0 (z), hence only H0 (z) needs to be designed . In [28], Smith and Eddins proposed the 

design of H 0 (z) by constraining its poles on t he imaginary axis in complex conjugate 

reciprocal quads and placing its zeros at z = - 1 and on the uni t circle in complex 

conjugate pairs. For example, the 8-order IIR filter H0 (z) is expressed as follows [21]: 

H ( ) _ K (1 + z-1 )S(w1)S(w2)S(w3)S(w4 ) 

0 z - (1 + arz-2) ( 1 + ~z-2) (1 + a~z-2) ( 1 + ~z-2) ' 
(2.26) 

where S(wi) = (1 - 2 coswiz- 1 + z-2) for i = 1, 2, 3, 4. H0 (z) has nine zeros which 

±j j a 2 with a ninth pole at oo. Hence H0 (z) is a non-causal fil ter. The causality of 

filters is insignificant for still-image processing, in which images are not t ime-varying. 
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Figure 2.14: IIR QMF 8-order fil ter H 0(z): (a) its zero-pole plane, and (b) its log 

magnitude response and its phase response. [Generated from the parameters in [21]] 

The zero-pole plane of H 0 (z) is illustrated in Fig.2.14(a), where a dashed cir-

cle represents the unit circle. The parameters K , a 1 , a 2 and w i (i = 1, 2, 3, 4) are 

optimized by the modified Powell 's direction set method [30, 27]. The op timized pa­

rameters of the 8-order IIR filter bank are given in [21] as that K = 0.20146905, a 1 = 

2.24245241, 0'2 = 1.14369193, w 1 = 2.57994607, w2 = 2.21432487, w3 = 1.91248705, 

and w4 = 1.72625369. With the frequency response shown in Fig.2.14(b) , the de­

signed H0(z) can be expressed with its polyphase terms P0(z) and P1(z), with which 

the practical filter bank is implemented in the polyphase structure shown in Fig.2.13. 

IIR filtering assumes that an input image is known over an infinite time duration, 

which is not usual in practice for image processing (i.e. images are known only 

over observation windows). Fortunately, this problem can be resolved by periodically 

replicating input signals. The convolution of a periodic signal (with period N) with an 

aperiodic signal, which is the infinite impulse response in this case, is also a periodic 

signal with period N [28]. Therefore, the input signal is periodically extended, and 

only one period of the filtered signal needs to be retained. The detailed solution is 
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presented in [28], and here a summary is presented for completeness. 

With the restriction of the location of its :-~eros and poles, as illustrated in Fig.2.14( a), 

the designed IIR analysis fil ter Ho(z) generates the polyphase fil ters P0 (z), H (z) , 

Qo(z), and Q1(z) without poles on the unit circle of zero-pole planes. Hence these 

polyphase fil ters can be expressed in a general form: 

Q , C. Q2 D · 
P(z) = K + L (; _1 + L 1 

_ 1 ' 
i=l 1 - iZ j=l 1 - /jZ 

(2.27) 

where I.Bi l < 1 and lri l > 1 represent poles inside and outside the unit circle, respec­

tively. The total number of poles inside the unit circle is Q 1, while the total number 

of poles outside the unit circle is Q2 . Therefore, the region of convergence of P(z) 

is max .Bi < z < min /j, which implies t hat P(z) is stable but not causal. 
iE:{1,- ·· ,Q!} j E{1,-·· ,Q2} 

However , t he requirement of causality can be ignored in still-image processing, as a 

whole image is generally available while filtering. Therefore, the fi lter P(z) is de-

termined by the part ial fraction expression coefficients K , Ci, ,Bi, D 1, and ri . The 

impulse response of P(z) is denoted by p(n). 

As mentioned before, t he input signal x(n) is periodically extended to yield an 

infinite-length signal x(n) = x(n mod N), where "n mod N" is t he modulo oper­

a tion by calculating the remainder of division of n by N . IIR filtering the periodi 

signal x(n) can be implemented by the convolution of x(n) with the impulse respons 

p(n), which generates another periodic signal y(n) as follows: 

y(n) = x(n) ® p(n) 
N - 1 

= K x(n) + L x(n - k)h(k), 
(2.28) 

k=O 

where (see [28] for details) 

h(k) =I= ~,BfN - f DJri~:. 
i= 1 1 .Bi j=l 1 - fj 

(2.29) 
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h(k) can be calculated in advance, based on the given parameters Ci, (3i, Dj, and 

/j of P(z ), and h(n) has the same length as x(n). Without periodically replicating 

x(n), the linear convolution in Eq.(2.29) can be replaced by a circular convolution as 

follows: 

y(n) = I<x(n) + x(n) ® h(n), (2.30) 

where ® denotes the circular convolution and x(n) is the original discrete input signal 

in finite time duration. 

2.2.2 2-D Two-Channel PR Filter B anks 

Some 2-D filter banks can be implemented by 1-D filter banks in two dimensions sep­

arately, e.g. the structure of the 2-0 DWT in Fig.2.5(a). This type of filter banks is 

called the separable filter bank, which, when the filters approximate ideal frequency 

selective filters, could generate decomposed subbands with rectangular frequency re­

gions, such as the frequency partition of the 2-D DWT in Fig.2.5(b). ln contrast, 

nonseparable fil ter banks could achieve more complex shaped frequency decomposi­

tions. In this section, several 2-D nonseparable filter banks with perfect reconst ruction 

property are introduced. As this topic relies heavily on mathematical notations, a 

preface on notation is provided before the main discussion. These notations can also 

be viewed in the List of Symbols. 

Notations 

Vectors are denoted by bold-faced lower case letters while matrices are denoted by 

bold-faced upper case letters. The notations M r, M - 1 and M * denote the transpo e, 

the inverse and the conjugate of a matrix M . The notation det(M ) denotes the 

determinant of the matrix M . T he symbol Ik denotes a k x k identity matrix. 
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The lattice A(M) generated by a nonsingular matrix M is defined as 

A(M ) = {Mklk E Z2
}, (2.31) 

where Z2 denotes a two-dimensional integer coordinate space. Decimation with the 

sampling matrix M only outputs samples on the lattice A(M). 

For example, if M is one of the following quincunx matrices: 

(2.32) 

then the quincunx lattice is represented by solid dots in Fig.2. 15. The quincunx 

downsampling only retains half the samples of the original image, due to det(Q 1) = 

det(Q 2 ) = 2. An example of the quincunx decimation on the image "cameraman" 

is illustrated in Fig.2.16, in which the decimated images are the downsampled and 

rotated versions of the input image. 

A discrete image is described as x(n), where n = [n1, n2f is the index of pixels. 

The z-transform of x(n) is defined as 

X (z) = L x(n )z- n, (2.33) 
n EZ;2 

112 

• 0 • • 0 • 0 • 
0 • 0 0 • 0 • 0 

• 0 • • 0 • 0 • n, 

• 0 • • 0 • 0 • 
0 • 0 0 • 0 • 0 

Figure 2.15: The lattice generated by the quincunx matrices, in which the solid dots 

represent the samples on the lattice. 
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(a) Original image (b) Downsamplcd by Q 1 (c) Downsamplcd by Q2 

Figure 2.16: Example of quincurL'< downsampling on the image "cameraman" . (a ) 

Original image. (b) and (c) Quincunx downsamplcd image by Q 1 and Q2 , respectively. 

Analysis/Synthesis Filter Bank 

A typical two-channel analysis/synthesis fil ter bank is shown 111 Fig.2 .17, in which 

JJ0 (z) , II1 (z) a rc 2-D analysis filters and G0 (z), G 1 (z) arc 2-D synthesis filters. The 

system has perfect reconstruction property if i:(n ) = kx(n - c), ·where k is a constant 

number and c is a constant vector [31]. On the other hand , the system is critically 

sampled if the total number of samples of the decomposed coefficient images y0 (n ) 

and y1 (n) is equal to the number of pixels of the original image x(n ). 

In a general two-channel filter bank, downsampliug matrices for both the lowpass 

and the highpass channels arc usually the same, that is the matrix M in Fig.2.17. 

Therefore, y0 (n ) and y 1 (n) contain the same nuTllbcr of coefficients , which is 50% of 

the number of pixels of the original image x(n ) if this 2-channcl fi lter bank requires 

x(n) 

x(n) 

Analysis Section Synthesis Section 

Figure 2.17: Two-channel analy is/ synthesis filter bank 
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(a) SPR-I (b) SPR-II (c) SPR-III (d) SPR-IV 

Figure 2.18: Four types of 2-D SPR support configurations. H0 and H 1 indicate the 

passband regions of the ideal analysis lowpass and highpass filters , respectively. 

critical sampling. The 50% samples retained by the decimator M implies that its 

determinant equals 2 (i.e. det(M) = 2). 

A two-channel filter bank is usually defined by the supports of the analysis filters 

H0 (z), H 1(z), which are ideal bandpass fil ters, in theory, or carefully selected approx­

ima tions, in practice. In this thesis , the two-channel analysis/ synthesis structure is 

used to generate the filter bank with sheared-parallelogram (SPR) shaped supports, 

as illustrated in Fig.2.18. The gray and the white regions, respectively, represent the 

support of the ideal filters H 0(z) and H 1 (z). In common cases, the synthesis filters 

have the same supports as the analysis filters. Therefore, only the supports of the 

analysis filters are shown in Fig.2.18. In practice, the analysis and synthesis filters 

can be designed using the transformation of variables technique [32] to achieve per­

fect reconstruction property. The detailed design of the SPR type-1 filter bank will 

be described below. 

The supports of the SPR type-1 analysis filters are shown in Fig.2.18(a), in which 

the parallelogram shaped suppor ts are fixed by four vertices (w1 , w2) = ( -~,n) , 

( 2; , n), (- 2; , - n), and ( ~ , - n). The name "sheared" comes from the fact that the 

four fixing vertices are not the midpoint or the vertices of the borders of baseband. 
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(a) (b) 

Figure 2.19: Downsampling the SPR typc-1 filtered region in 2-D by the sampling 

matrix D 1 . (a) The SPR-1 lowpass filtered region H0 . (b) The region Ho after 

downsampling. Overlapping appears l>ctwccn the periodic replicas of the baseband. 

Due to the symmetry among the four SPR supports , the other three filter banks 

(SPR-11, III , IV) have similar fixing points. 

The sampling matrices in the SPR filter banks arc the diagonal ma trices as follows: 

(2.34) 

With D 1 or D 2 , images arc decimated only by rows or columns, respectively. The 

sampling matrix corresponding to the sheared-parallelogram typc-1 fi lter bank is D 1. 

The original SPR shaped region , as shown in Fig.2. 19(a), overlaps onto the periodic 

replicas of the 2n x 2n baseband after downsamplillg. As illustrated ill Fig.2.19(L>), 

the lighter gray regions represent downsamplcd frequencies which extend beyond 2n. 

Due to the 2n periodici ty of the discrete frequency space and the characteristics of 

parallelogram, the downsarnplcd signal is not distorted by overlapping. 

Since decimation by D 1 only operates downsampling in one dimcnsiou , the z-

transforms of the D 1-folcl decimation and the D 1-fold interpola tion have the similar 
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relationships as the one-dimensional case in Eq.(2.6) and Eq. (2.7): 

Sd(z1,z2) =~ [s( z f, z2)+S(-zf, z2) ] , 

Su( Zt , z2) =S( z~ , z2), 
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(2.35) 

(2.36) 

where S(z1, z2), Sd(z1, z2) and Su(z1 , z2) respectively represent the z-transforms of the 

input image, the D 1-fold downsampled image, and the D 1-fold upsampled image. 

Based on the above generic relationship of the diagonal downsarnpling and up-

sampling, the input/output of the SPR-1 filter bank has the following relationship: 

~ 1 
X (zt , z2) = 2 [Ho(zt , z2)Go(zt , z2) + H1 (zt , z2)G 1 (zt , z2)] X(zt , z2) + 

1 2 [Ho( -Zt , z2)Go(zt, z2) + Ht ( - Zt, z2)G1 (zt, z2)] X ( - z1, z2) , (2.37) 

where X( - z1 , z2) describes the aliasing component, which can be eliminated with the 

following choice of highpass filters [32] : 

(2.38) 

(2.39) 

After eliminating the aliasing component , the analysis/synthesis filter bank is a t ime-

invariant system with the following transfer function: 

1 
T(zt, z2) = 2 [Ho(zt, z2)Go(z1, z2) + Ht (Zt , z2)Gt (zt, z2)] 

1 
= 2 [Ho(zt , z2)Go(zt, z2) + Ho( - z1, z2)G0 ( -z1, z2)] (2.40) 

1 
= 2 [E(zt , z2) + E( - z1, z2 )] , 

(2.41) 
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then a PR 2-channel fil ter bank is achieved. Moreover H0(z1, z2) and G0 (z1, z2) can 

be determined by factorizing E(z1, z2). Therefore, the design of an analysis/synthesis 

filter bank is reduced to the de ign of a filter E(z1, z2) under the condition of Eq. (2.41) . 

E(z1, z2) can be designed using the t ransformation of variables technique [32] with 

the following steps. T he first step is to design a 2-D FIR lowpass filter R(z1, z2) with 

a sheared-parallelogram shaped passband by windowing [33]. T he impul e response 

of the ideal SPR-llowpass fil ter without windowing is given by [16]: 

(2.42) 

where sinc(x) = ~n~x}. Thus the windowed FIR SPR-I lowpass fil ter is expressed as 

follows: 

(2.43) 

in which w(n1, n2) is the window function wi th the following form: 

(2.44) 

where m (n ) is a common 1-D window function, such as the Hamming window, the 

Chebyshev window, or the Kaiser window [33]. T herefore, it can be proved that 

R (z1, z2), which is the z-transform of r(n1 , n2), satisfies the following constraint: 

(2.45) 

Pmof. Given that 

(2.46) 

Thus R(z1,z2) is the z-transform of r(n1,n2), as follows: 

R(z1, z2) = L .L>(nr,n2)zj""n' z2n2
• (2.47) 

n 1 n 2 
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Since sinc(x) = sin;x) , which implies that 

if n 1 =even, 
(2.48) 

if n 1 = odd. 

Therefore, 

R(-z1, z2) = L Lr(nl , n2)(-z1)- n1 z2n2 = - R (z1, z2 ) (2.49) 
nt = odd n 2 

D 

After the 2-D FIR filter R(z1 , z2 ) is generated , the second step is to produce a 

QMF pair based on R (z1, z2) . Let J = R (z1, z2 ), find a 1-D transformation with the 

form of ET( J ) = 1 + a1J + a3J3 + a5 J5 + · ·· , which implies that 

ET(J) + ET( - J ) = 2, (2.50) 

where ET( J ) = HT(J)GT( J ), HT(J) and GT(J ) are the designed analysis QMF pair. 

Tay and Kingsbury recommended various choices of ET(J ) (i.e. HT(J ) and GT( J )) 

in [32]. With the balance between the sharpness of roll-off region and the ripple 

characteristics in passband and stopband, the factors of ET(J) are chosen as follows 

[32]: 

H T ( J ) = - ~ ( J + 1) ( J - ~) , (2.51) 

3 ( 2 3 25 ) GT( J ) = -- (J + 1) J + - J -- . 
35 2 3 

(2.52) 

After submitting the previous designed 2-D FIR filter R (z1 , z2 ) to the variable J in 

Eq.(2.51) and Eq.(2.52) , HT( R (z1, z2 ) ) and GT( R (z1, z2 )) are the designed analysis 

and synthesis lowpass filters H0 (z1 , z2 ) and G0(z1 , z2 ) for the SPR type-l filter bank. 

If the length of the window function m (n ) is set to be 15, then the designed Ho (zl , z2) 

and G0(z1 , z2 ) have the 2-D magnitude responses shown in Fig.2.20. 
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Figure 2.20: 2-D magnitude responses of the FIR SPR-I fil ters: (a) the analysis 

lowpass fil ter H0 (z1 , z2 ) and (b) the synthesis lowpass filter G0 (z1 , z2 ) 

The transformation of variables technique can generate two-channel fil ter banks 

with numerous shapes of supports, but with a high computational complexity. There­

fore, the following section int roduces a ladder structure filter bank, which has t he ad­

vantages of flexible implementation and lower computational complexity in addition 

to the perfect reconstruction property. 

Ladder Structure F ilter Bank 

The primal ladder-structure fil ter bank was proposed in one dimension by Phoong et 

al [34] . The ladder structure achieves PR property due to its structure. Therefore, 

images can be exactly recovered from the decomposed subbands even though the 

impulse responses of the filters are represented in a limited precision. In [31], the 1-D 

ladder structure was extended to a 2-D case, which will be invest igated below. 

The ladder structure comes from the polyphase representation of a 2-D 2-channel 

filter bank which is presented in Fig.2.21, in which E(z) and R(z) are analysis and 
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x(n) yo(n) 

E(z) R(z) 
x(n) 

Figure 2.21: The polyphase representation of a 2-D two-channel filter bank 

synthesis polyphase processors, and can be represented in a matrix form as follows 

( 

Eoo(z) Eoi(z) ) 
E (z) = , 

E10(z) Eu(z) 

R (z) = ( Roo(z) R01(z) ) . 

R10(z) Ru (z) 
(2.53) 

The condition of perfection reconstruction is given by 

(2.54) 

Comparing the analysis/synthesis system in Fig.2.17 with the polyphase system 

in Fig.2.21, the former implements decimation after filtering, while the latter down-

samples input images before filtering. In fact, the polyphase representation can be 

identified with a corresponding analysis/synthesis system based on the Noble identi­

ties of decimators and interpolators illustrated in Fig.2.22. The Noble identities are 

valuable in multirate image processing, since they allow the movement of decimators 

and interpolators across linear filters. 

With the help of the Noble identities, the polyphase representation has their 

corresponding analysis and synthesis filters expressed as follows: 

(2.55) 

(2.56) 
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(a) Noble identity of decimators 

(b) Noble identity of interpolators 

Figure 2.22: Noble identities for multirate systems. (a) Equivalent cascades with 

decimators. (b) Equivalent cascades with interpolators 

where k1 = [1, OF' is a non-zero coset vector [35] . In general, a 2-D two-channel filter 

bank has two coset vectors k0 = [0, O]T and k 1, which are, respectively, corresponded 

to the lattice A(M) and its shifted version by 1 along one dimension (e.g. the quincunx 

lattice composed of the solid dots in Fig.2.15 and the remaining circles in Fig.2.15 

forming a shifted version of t he quincunx lattice). 

The ladder structure filter bank is a specific scenario of the polyphase representa-

tion with t he following choice of E (z) and R (z) [34, 31]: 

E (z) ~ ( -Jz-:P(z) : ) ( ~ P~z) ) 
(2.57) 

-{3(z) ) ( 1 0 ) 

1 ~z-d{J(z) ~ 
(2.58) 

It can be proved that E (z)R (z) = ~ 12 . Hence the system meets perfect reconstruction 

property regardless of {3(z) and d. According to Eq.(2.57) and Eq.(2.58), E(z) and 

R (z) can be efficiently implemented with a ladder form shown in Fig.2.23. 

With different {J(z) , d and M , the ladder structure can generate filter banks 

with numerous support configurations, such as the separable, diamond, quadrant, 

and parallelogram supports in Fig.2.24. The parameters M , {3(z) and d for different 

supports are shown in Table 2.2, in which D 1 and D 2 are the diagonal matrices in 
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x(n) 

x(n) 

Figure 2.23: The ladder structure of two-channel fil ter bank 

Table 2.2: The parameters M , (3(z) and d of numerous ladder structure fil ter banks 

I Filter Bank Name I M I (3(z) I d I 

(a) Separable-! D1 a(zi) d lO 

(b) Separable-II D2 a(z2) d Ol 

(c) Diamond Ql or Q2 a(z1)a(z2) dn 

(d) Quadrant D 1 - z21a( - zl)a( - zi) d lO 

D2 - z11a( - zl)a( - z2) d o1 

(e) Parallel-I p l 

(f) Parallel-II p 2 a(z1)a(z2) d ll 

(g) Parallel-Ill p 3 

(h) Parallel-IV p 4 

Eq.(2.34) , and Q 1 and Q 2 are the quincunx matrices in Eq.(2.32). Four parallelogram 

matrices P i (i = 1, 2, 3, 4) and three alternative vectors of d are shown as follows: 

p l = ( 2 0 ) ' p 2 = ( 2 0 ) 
- 1 1 1 1 

( 
1 1 ) ( 1 - 1 ) 

p 3 = 0 2 ' p 4 = 0 2 ' 

(2.59) 
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( -1I, -1I) 

(a) Separabl -I (b) Separable-II (c) Diamond (d) Quadrant 

(e) Parallel-! (f) Parallel-II (g) Parallel-III (h) Parallel-IV 

Figure 2.24: 2-0 analysis filter support configurations. (a)-(b) T wo types of the 

eparable filter bank (Separable-!, II). (c) The diamond filter bank. (d) The quadrant 

filter bank. (e)-(h) Four types of the parallelogram filter bank (Parallel-! , II, III , IV). 

In Table 2.2, a basic operation is the 1-D filter a(z ), which is a type II FIR lowpass 

filter. T he design of a(z) can control the frequency characteristics of the resulting 

2-D filters, including the roll-off sharpness and the ripples in passband and stopband. 

An appropriate a(z) of length 12 is recommended in [36], in which the right half of 

a(z ) is [0.6300, - 0.1930, 0.0972, - 0.0526, 0.0272, - 0.0144] and the left half is a mirror 

image of the right half. If the order of the ladder structure fil ter bank is defined by 

the length of a(z ), then the 12-order ladder structure is used in this thesis to generate 

filter banks with the supports shown in Fig.2.24. Note that all these supports can be 
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implemented with a generic structure in Fig.2.23. 

In fact, the separable supports in Fig.2.24(a) and (b) can be implemented by the 

CDF 9/ 7-tap filter bank, the IIR QMF bank, or the ladder structure. Among these 

systems, the ladder structure can achieve higher order fi lter responses with lower 

computational complexity. However , the CDF fil ters are adopted in many wavelet­

based applications, while the IIR QMF bank possesses QMF property. Therefore, 

this thesis implements the ladder structure for the separable supports, except for the 

comparison between the proposed RCT and the DWT, which uses the CDF 9/7-tap 

filters, and when the QMF property is required , by the IIR QMF bank. 

2.2.3 1-D Nonuniform (2/3, 1/3) Filter Bank 

The previous sections investigate various uniform two-channel PR fil ter banks. This 

s ction introduces a nonuniform (2/3, 1/ 3) filter bank with the 1-D frequency par-ti­

tion shown in Fig.2.25(a), where the bandwidth of the lowpass fil ter Hl(w) is 2n/ 3 

and the high pass filter Hh(w) as 1r / 3, hence its name is the nonuniform (2/ 3, 1/ 3) 

fi lter bank [37] . In contrast , a uniform 3-channel frequency split ting is illustrated in 

2.25(b), in which the lowpass, bandpass and highpass subbancls have equal bandwidth 

of 1r / 3. 

In [38], Kovacevic and Vetterli developed the design of such a cri tically sampled 

nonuniform (2/ 3, 1/ 3) filter bank with perfect reconstruction property. The procedure 

is illustrated in Fig.2.26, in which the first stage is a uniform 3-channel decomposition, 

and the second stage combines the lowpass and bandpass outputs from the 3-channel 

decomposition to form y1(n), while the highpas output constructs Yh(n) directly. 

y1(n) and Yh(n) are the two decomposed subbands by the nonuniform (2/ 3, 1/ 3) 

filter bank. The corresponding nonuniform analysis lowpass and highpass fil ters are 
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+---27t/3--++-n/3--

(a) Nonuniform (2/ 3, 1/ 3) filter bank (b) Uniform 3-channel fil ter bank 

Figure 2.25: 1-D frequency division by (a) the nonuniform (2/ 3, 1/ 3) filter bank, 

where the cutoff frequency is 27f / 3, and (b) the uniform 3-channel filter bank, in 

which the spectrum is decomposed into lowpass, bandpass and highpass subbands 

equally. 

x(n) 

I 
I 

Uniform 3-Channel Decomposition : 
I 

y,(n) 

Figure 2.26: The analysis section of the nonuniform (2/ 3, 1/ 3) filter bank 

expressed as follows: 

(2.61) 

(2.62) 

where the polyphase components of H 1(z), i.e. H10(z) and Hn (z), are the lowpass and 

the delayed bandpass filters in Fig.2.26. Hh (z ) is the analysis highpass fil ter of the 

uniform 3-channel filter bank. The uniform 3-channel fil ter bank in Fig.2.26 can be 

constructed by a lattice structure [39] to obtain the desired Hw(z ), Hn (z) and Hh (z). 
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Latt ice Structure F ilter Banks 

As illustrated in Fig.2.27, the lattice structure [39] can be viewed as a cascade of 

lossless matrices K i fori= 1, 2, · · · , £. Hence the cascaded system is lossless, which 

guarantees the perfect recon truction property of the system [39, 40] . The lossless 

matrix K i is chosen to be a sequence of planar rotations, as follow [39]: 

cos el,i sin el ,i 0 1 0 0 

K i = sin el ,i -cos el,i 0 0 cos e2,i sin e2,i (2.63) 

0 0 1 0 sin e2,i -cos e2,i 

which can be efficiently implemented by a lattice structure illustrated in Fig.2.28. 

As shown in Fig.2.27 and Fig.2.28, the uniform 3-channel lattice structure filLer 

bank is determined by the parameters el ,i and e2,i , for i = 1, 2, ... , £. These 

Yo(n) 

y,(n) 

Figure 2.27: T he analysis section of the uniform 3-channel filter bank 

cos (JI.i 

-cos fh.i 

Figure 2.28: The lattice structure of K i 
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parameters are optimized by minimizing error functions for H1(z) and Hh(z), defined 

as the differences between the expected filter responses and the designed results. 

The optimized parameters of the PR nonuniform (2/3, 1/ 3) filter bank with L = 5 

are given in [38], as shown in Table 2.3. Although the lattice structure filter bank 

requires higher design complexity to optimize the parameters, the design d sy tern 

can be easily implemented once the optimum parameters are obtained. 

Table 2.3: The parameters of the PR nonuniform (2/3, 1/3) filter bank [38] 

e1,1 1.848559 e2,1 -2.004359 

e1,2 0.580876 e2,2 -1.752920 

el,3 1.199016 e2,3 2.672730 

el,4 -1.385383 e2,4 -1.574727 

e1,s 3.005676 e2,s 1.957543 

2.2.4 Summary of Filter Banks 

umerous PR filter banks have been introduced in this Section 2.2. A summary 

is presented in Table 2.4, in which "PR" represents perfect reconstruction property, 

while "CS" denotes critical sampling property. All the filter bar1ks investigat d possess 

these two properties. 

The last column in Table 2.4 lists some types of supports which can be realized by 

the corresponding filter banks. This thesis considers the comprehensive characteristic 

of all these filter bank structures, and then decides the optimum structure for a certain 

support , as shown in the "supports" column of Table 2.4. Except for the s parable-! 

and II supports, which can be realized by the CDF 9/ 7-tap filter bank, the IIR QMF 

bank or the ladder structure filter bank, this thesis implements the other supports by 
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Table 2.4: The summary of PR filter banks 

Filter bank Dimension Properties Supports 

CDF 9/ 7-tap 1-D PR/CS Separable-I,Il 

IIR QMF polyphase 1-D PR/ CS Separable-I,ll 

Analysis/synthesis & 2-D PR/ CS SPR-1, II, III, IV 

variable transformation 

Separable-I,II , 

Ladder structure 2-D PR/ CS Diamond, Quadrant, 

Parallel-I,Il,Ill,IV 

Lattice structure 1-D PR /CS Nonuniform (2/ 3, 1/ 3) 

the given filter bank structures listed in Table 2.4. 

2.3 Summary of Chapter 

This chapter has investigated a variety of image representation techniques including 

image pyramids, the wavelet transform, the directional filter bank and the contourlet 

transform. The limitation of the contourlet transform is a 4/3 redundancy in its 

oversampling ratio. To overcome this issue, a nonredundant contourlet transform 

(NRCT) will be proposed in Chapter 3. This chapter has also investigated the design 

of numerous uniform and nonuniform filter banks with perfect recon truction and 

critical sampling properties. These filter banks are the fundamental structures for 

building the nonredundant contourlet transform. 



Chapter 3 

Nonredundant Contourlet 

Transform (NRCT) 

The motivation of this thesis is the elimination of the redundant oversampling of the 

contourlet transform. In [41], Zhang and Moloney analyzed the feasibility to elim­

inate the redundancy and proposed a redundancy reduction scheme. This chapter 

proposes a new multiresolution and multidirection image representation with perfect 

reconstruction and critical sampling properties. The proposed algorithm achieves th 

same frequency partition as the contourlet transform, while eliminating its redun­

dancy. Hence the new image representation is called the nonredundant contour! t 

transform (NRCT). 

The proposed NRCT is constructed by a framework of filter banks. Numerous 

non-ideal filter banks with perfect reconstruction and critical sampling properti s 

have been investigated in Section 2.2. This chapter focuses on the configuration of 

these filter banks to construct the NRCT system. Hence the filter banks are sim­

ply represented by block diagrams showing the ideal filter supports and decimation 

matrices. These ideal filters are realized by non-ideal filters, with passbands approxi-

50 
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(a) Diamond filter bank (b) Quadrant fil ter bank 

Figure 3.1: Examples of 2-channel filter bank (analysis section): (a) diamond filter 

bank, (b) quadrant filter bank. Ideal fil ter supports are indicated by black as passband 

and white as stopband. 

mating the suppor ts of the ideal filters used in t his chapter, designed by the methods 

presented in Section 2.2. For example, t he diamond and quadrant fil ter banks are 

illustra ted in Fig.3.1(a) and (b) , respectively, where black regions indicate the filter 

passbands and white indicates the stopbands of the ideal fil ters. Note t hat only the 

analysis sections are presented, when the synthesis sections are the inverse procedure 

of the analysis sections. The horizontal and ver t ical directions of the square filter 

spectrum, respectively, represent t he w1 and w2 directions, which are omitted in the 

illustration in Fig.3.1. 

3.1 2-Directional Wavelet Transform 

A key element in t he structure of the nonredundant contourlet t ransform is the 2-

directional wavelet t ransform, which has the frequency partition depicted in Fig.3.2(a) . 

This transform maximally decimates an input image into one lowpass subband (LL), 

one horizontal highpass subband (Hh ) and one vertical highpass subband (Hv) . By 

cont rast , the discrete wavelet transform (DWT) decomposes an image into one coarser 

scale (LL) and three finer scales (LH, HL, HH) , respectively, corresponding to the 

horizontal, vertical and diagonal directional information , as illustrated in F ig.3.2(b). 
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t ~ (n, n) 

HH LH HH 

Hv - HL LL HL ~ 

HH LH HH 

(-n, -n) ( -n, -n) I 
(a) 2-directional wavelet transform (b) Wavelet transform 

Figure 3.2: 2-D frequency division by (a) the 2-directional wavelet transform, and (b) 

the separable wavelet transform. 

Therefore, the main idea for generating the 2-directional wavelet t ransform is to first 

implement the t raditional wavelet transform, and then combine the three wavelet 

highpass subbands (LH, HL, HH ) to form Hh and Hv. 

Note that Hh and Hv split the DWT diagonal highpass subband HH, as indicated 

m Fig.3.2(a) and (b). Hence the separation of HH to generate two appropriaLe 

subbands, called the h-v decomposition of HH, is a necessary stage of the 2-directional 

wavelet t ransform. 

h-v Decomposition of HH 

As illustrated in Fig.3.3(a), the frequency regions of HH are located at the four corners 

of the spectrum of an input image, as indicated by the let ters "a", "b", "c", and "d". 

Each corner is further divided into two parts, which are indicated by the subscripts 

"h" and "v" to refer to the horizontal and vertical information in the corresponding 

half-corners, respectively. If the four frequency regions ah, bh, ch, and dh, colored by 

a gray gradient in Fig.3.3(a), are collected into a single subband Dh, then Dh can 

be combined with LH to form Hh. In this manner, HH is decomposed into Lwo 
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(a) Input image (b) HH subband 

Figure 3.3: The frequency mapping of the HH subband. (a) T he frequency regions 

of HH in the spectrum of the input image. (b) The frequency contents of HH after 

decimation as in Fig.3.5 

(a) (b) 

Figure 3.4: The identity between (a) the fan filter bank and (b) a frequency shifted 

version of the diamond filter bank along the w2 dimension by 71' . 

subbands Dh and Dv , with e.g. Dv representing the frequency components in the 

regions av, bv, c., , dv. This procedure is called t he h-v decomposition of HH. 

Decimation operations in the DWT (i.e. the 1-D 2-fold downsampling along rows 

and columns in Fig.2.5) stretch the original frequency regions of HH, as shown in 

Fig.3.3(b). Therefore, a natural choice to separate Dh from Dv is to usc a 2-channcl 

fil ter bank wit h ideal fan supports [18], as shown in Fig.3.4(a). In fact, the fan fil ter 

bank can be implemented by first modulating the input image by 7f along eit her 

the w 1 or w2 frccpiCncy dimension, and then passing t he modulated image t hrough a 
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Separab le 2-D wavelet transform : h-v decomposition of HH ! 
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Figure 3.5: The filter bank structure (analysis section) of the separable 2-D wavelet 

transform and the h-v decomposition of HH. 

diamond filter bank, as illustrated in Fig.3.4(b). The modulation along the w1 or w2 

dimension causes the reversal of the order of two channels in the resulting fan filter 

bank. Therefore, the fan filter bank can be designed using the same method as the 

diamond filter banks, which has been investigated in Section 2.2.2. The decimation 

matrix for the fan filter bank is the quincunx matrix Q1 , as shown in Eq.(2.32). 

Therefore, the h-v decomposition of HH is accomplished by the fan filter bank. 

The filter bank structure of the discrete wavelet transform followed by the h-v 

decomposition of HH is presented in Fig.3.5. The separated Dh and Dv are further 

combined, respectively, with LH and HL to form Hh and Hv, respectively. Due to 

the symmetry between Dh (LH) and Dv (HL), this thesis focuses on the combination 

of Dh with LH. 

R esampling D h 

In Fig.3.5, Dh is the output from the quincunx decimator Q1. As illustrated in 

Fig.2.16, the quincunx decimator rotates and compresses the input image in the spa-
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Figure 3.6: The procedure for re ampling Dh, with corresponding frequency partition 

maps 

tial domain. In fact, the spatial rotation and compression correspond to the frequency 

rotation and expansion in the frequency domain, e.g. the frcqucllCY omponcnts of 

Dh (colored by a gray gradient in Fig.3.3(b)) arc rotated and expanded after the 

quincunx downsampling, to fill in the 21r x 21r baseband as the frequency rcprcsenta-

tion of Dh in Fig.3.6. Hence Dh should be rcsamplcd to inver e the rotation by t he 

quincunx downsampling before being combined with LH. 

A natural choice to inverse the quincunx rotation is a quincunx upsampling with 

the same sampling matrix Q 1 . Hence Dh first passes through a quincunx interpolator 

by Q 1 to counteract the quincunx rotation, as illustrated in Fig.3.6. The quincunx 

int rpolation repeats and rotates the frequ u y regions of Dh to fill in the ba cband. 

Th upsampled signal is then ideal lowpass filtered and downsamplcd along one eli-

mcnsion to generate a signal Rh0 . Note that the quincunx interpolator Q1 doubles 

the number of coefficients, while th diagonal dccimator D 1 red u cs the coefficients 

by half. Th r fore, the rcsamplcd Rho has the same number of coefficients as Dh. 

On the reconstruction side of th overall system, Dh should b exactly recovered 

from Rh0 . Ilencc the rcsampling procedure in Fig.3.6 is extended to a omplete filter 

bank stru tu r in Fig.3.7(a), in which Dh is decomposed into two signals Rho and 

Rh1, and should be also exactly rccov red from them. If the IIR QMF bank in the 

interior of Fig.3.7(a) has perfect reconstruction, the overall filter bank of Fig.3. 7(a) 
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IIR QMF bank 

(a) The filter bank structure of rcsampling 

(b) Rho (c) Rht 

Figure 3.7: The rcsampling of Dh and its inverse procedure. (a) The filter bank for 

rcsampling. (b) The frequency map of Rh0 . (c) T he frequency map of Rh1 . 

will also have perfect reconstruction. However, the critical rcsampling of Dh Oll ly 

allows the same number of coefficients to be retained. Therefore, Rh 1 should be 

exactly determined by Rh0 . 

Based on the frequency contents of Rho and Rh1 shown in Fig.3.7(b) and (c), Rh1 

can be obtained by frequency shifti ng Rho by n along the w2 dimension, if the lowpass 

and highpass analysis filters in Fig.3.7(a) consist of a quadrature mirror filter (QMF) 

pair. The strict QMF requirement is that H0 (w) and H 1 (w) arc mirror images of 

each other, that is, in this case 

(3.1) 

Fortunately, the QMF property in Eq.(3.1) can be achieved by the IIR Q.tviF bank 

[28] with its inputs periodically replicated. Therefore, Rh1 is discarded in t he analysis 

section shown in Fig.3.8(a), and is reconstructed by modulating Rho by 1r along the 

w2 dimension in the synthesis section illustrated in Fig.3.8(b). T he practical filter 

bank structures of rcsampling Dh and its inverse procedure arc presented in Fig.3.8 , 
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JTR QMF 

(a) Analysis section 

Rho 

I 
I 
I 

jw
2
n IIR QMF bank 1 e I synthesis section I 

(b) Synthesis section 
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Figure 3.8: The filter bank structure for rcsampling Dh used in t he practical system. 

(a) The rcsampling from Dh to Rh0 . (b) The rcsampling from Rho to Dh. 

in which the analysis section processes the rcsampling from Dh to Rho, while the 

synthesis section rcsamplcs Rho back to Dh perfectly. 

Combination between LH and Rho 

As illustrated in Fig.3.9, decimation in the discrete wavelet t ransform, 1.c. the 1-

D 2-fold clownsampling in Fig.2.5, rearranges the frequency regions of LII and HL. 

The decimated LH subband is then combined with the rcsamplcd component Rho to 

produce the Hh subbancl in Fig.3.2(a). 

t"" (1l,1l) 

LH1 

- HL, HL2 ~ 

LH2 

( -1l, -J[) I 

(a) Inpu t signal 

Figure 3.9: The frequency mapping of the LH and HL subbancls. (a) The spect rum of 

the input signal, in which t he frequency regions of LH and HL subbands arc colored 

gray. (b) The frequency contents of LH after decimation. (c) The frequency contents 

of H L after decimation. 
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Figure 3.10: LH and Rho arc combined using the synthesis section of the uonuniforrn 

(2/3, 1/3) filLer bank to produce the Ifh subband , with their frequency partition 

maps. Th nonuniform (2/3, 1/3) combination is illustrated in synthesis fonn. 

The rcsamplcd Rho is rectangular shaped both spatially as coefficients and in its 

frequency domain representation. Moreover, Rho has the same number of spatial rows 

as the LJI subband. In frequency Rho and LII arc meant to be di rectly combined 

along th w1 dimension. The combination procedure with the corresponding spectrum 

maps is illustrat d in Fig.3.10 , in which LIT and Rho arc f d into t he lowpass and 

highpass channels of the synthesis section of the nonuniform (2/ 3, 1/ 3) filter bank 

[38], respectively, to generate a combined signal Hh. 

In Fig.3.10, the nonuniform (2/3 , 1/3) filter bank is illustrated 111 a synthesis 

form with diagonal upsampling rnatric s, on of which contains a fm tiona! sampling 

factor ~· lu practice, the nonuniform (2/ 3, 1/ 3) filter bank can be imp! mcntcd 

using the lattice structure [38, 39] in S ctiou 2.2.3, with 3-fol I upsautpling and 2-

fold downsampling in one dimension , say t it w1 dimension. Fig.2.26 illustrates the 
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analysis section of the nonuniform (2/3, 1/3) filter bank. Hence, the synthesis section 

in Fig.3.10 is the inverse proccd urc of t he analysis section [39]. As shown in the output 

from t he synthesis section of t he nonuniform (2/3, 1/3) filter bank in Fig.3.10, L!f 

and Rho (i.e. Dh) share the 2-D spectrum of Ilh. 

Characteristics of Hh 

The previous a lgorithm provides the procedure to generate Hh; the frequency content 

of Hh is ana lyzed next. As illustrated in Fig.3.ll(a), J-fh corresponds to two pairwise 

trapezoidal regions in the image spectrum of the original image. If the frequency 

regions of J-fh arc decimated by 2 in w2 dimension, then these two t rapezoidal regions 

map to a hexagon as illustrated in Fig.3.ll(b) . By contrast, the 2-dircctional wavelet 

transform maximally decimates the frequency of I-fh to fill the full baseband as iu 

Fig.3.11(c). Now a question a rises, whether rearranging the frequency components 

of Hh from a hexagon to a rectangle contaminates its representation in the patial 

(a) Input signal (b) Downsamplc along w2 (b) Hh sub band 

Figure 3. 11: The frequency mapping of the Hh sub band . (a) The freq uency regions of 

J/h in the spectrum of the input image. (b) The frequency regions of J-fh downsan1plcd 

by 2 along w2 dimension. (c) The frequency contents of Hh, in which the pai rwise 

hexagon-shaped frequency regions arc stretched to a rectangula r region by the 2-

dircctional wavelet transform. 
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domain? The answer is negative, as is clear from the procedure developed in Section 

3.1; the following offers a more theoretical explanation of why the frequencies are 

pre erved , although rearranged. 

Suppo e a 2-D continuous signal sc(t ), t E R 2
, has its Fourier Lran form Sc(f ) 

with the hexagon-shaped spectrum illu trated in Fig.3.12(a), where IR? indicates a 

2-D real coordinate space. If this band-limited continuous signal is ampled under 

the 2-D yquist condition [7] by a sampling lattice A(U H), to g nerate a discrete 

signal: 

s(t ) = sc(t ), (3.2) 

then the Fourier transform of this sampled signal s(t ) is the sum of the period repli­

cations of the hexagon-shaped spectrum of the original continuous signal sc( t ) [35], 

as follows 

S(f ) = d t(~ ~ Sc(f + r ), 
H) r E:A(R H) 

(3.3) 

where the matrix RH determines the periodicity lattice in the frequency domain, 

which is illu trated by the dark dots in Fig.3.12(b). The spatial and frequency lattice 

are related by their matrices U H and RH [35], with the following relationship: 

(3.4) 

As illustrated in Fig.3.1l(b) , the Hh subband compose a hexagon-shaped fre­

quency region, hence which can only be critically downsampled by the sampling 

matrix UH, with the frequency pattern S(f ) illustrated in Fig.3.12(b). However, tra-

ditional image sampling operates on a regular array of points in the spatial domain, 

which implie a rectangular periodicity lattice in the frequen y domain, based on 

Eq. (3.4). It is clear that the lattice A(RH) in Fig.3.12(b) is not a r ctangular lattice. 

Hence it is difficult to maximally decimate such a hexagon-shap d frequency region of 
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h 
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(a) Sc(f ) (b) S(f ) 

h 
h • • • 

/J 

• • • 

(c) Rc(f ) (d) Rt(f) 

Figure 3.12: Illustration of critical sampling Hh. (a) The hexagon-shaped spectrum of 

a continuous signal sc(t ). (b) The spectrum of sc(t ) critically sampled with a lattice 

of U I-I. (c) The rectangular region of the spectrum support of a continuous signal 

r"c(t ). (d) The spectrum of r"c(t) cri tically sampled with a lattice of U~:~. (e) The 

spectrum of r c( t ) critically sampled with a latt ice generated by U R-

Hh in a direct way. The proposed 2-directional wavelet transform critically downsam­

ple Hh by moving frequencies within the hexagon, with resulting frequency pattern 

R2(f) as illustrated in Fig.3.12(e). The following analysis will show why R2(f) and 

S(f ) can represent similar contents in the spatial domain. 

In the frequency view of a discrete signal, there are many possible choices for the 

baseband of a frequency lattice. For example, the spectrums of S(f ) in Fig.3.12(b) and 

R1 (f) in Fig.3.12( d) could represent the Fourier transform of a same discrete signal 

with different base bands, i.e. S(f ) = R1 (f) . If R1 (f ) is generated by downsampling a 
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continuous signal Rc(f) with the frequency pattern illustrated in Fig.3.12(c)) under 

the 2-0 Nyqui t condition [7], then t he original continuous signal r·c(t) , which is the 

inverse 2-D Fourier transform of Rc(f ), can be exactly recon tru ted by lowpass­

filtering Lhe di crete signal r 1 ( t ). 

By using a rectangular sampling lattice by U R, r c( t ) can al o be critically sampled 

under the 2-D Nyquist condition tog nerate a discrete signal r 2 (t ) with the frequency 

pattern in Fig.3.12(e). The continuous signal rc(t) can also be iuterpolated from T2 (t ) 

without errors if r'c(t ) is bandwidth limited. In other words, T 1(t ) and T2 (t) are two 

critically- am pled versions of rc( t) with different lattices determined by U H and U R , 

re pectively. Most natural images contain contents which change moothly in the 

spatial domain . Hence T1(t) and r 2 (t) present almost the same cont nts in the spatial 

domain. Recall that s(t ) = r1 (t) (i.e. S(f ) = R1(f)). Therefore, Lhe proposed 2-

directional wavelet transform offers an approach to critically sample Hh (with the 

frequency pattern R2 (f ) in Fig.3.12( )), while preserving its contents in the spatial 

domain. 

Results of the 2-Directional Wavelet Transform 

Fig.3.13(a) shows a synthetic image "zoneplate", in which bla k is 0 and white is 255. 

The image "z.oneplate" for a (512 x 512) sized image is expressed by the following 

2-0 discrete function: 

255 ( 71' 2 71' 2) 255 f(x , y) = 2 cos 
512 

(x - 256) + 
512 

(y - 256) + 2' (3.5) 

where the gray intensit ies have the dynamic range of [0, 255] and 1 ~ x, y ~ 512. 

The image "zoneplate" is good at examining the frequency partition performance 

of a transform, since it provides th same distribution in both the spatial and the 

frequency domains. 
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I 
r/2 

1 

c/2 

(a) Original image "zoncplatc" (b) 2-dircctional wave! t transform 

Figure 3.13: Example of the 2-dircctional wavelet transform 011 "zoncplatc". (a) 

The original image. (b) Its 2-dircctional wavelet transform, in which the subimagcs 

from up to down, from left to right arc LL, Hh and Hv subbands. For LL, small 

coefficients are colored black while large coefficients arc colored white. For I!h and 

Hv, coefficients arc shown in absolute value; the small-magnitude coefficients arc 

colored towards black and the large-magnitude coefficients arc colored towards white. 

Fig.3.13(b) shows the 2-dircctional wavelet transform (after one iteration) on 

"zoncplatc", in which the left-top corner is the LL subband , while the right-top and 

right-bottom corners arc the highpass subbands I!h and Hv, respectively. 

The critical sampling of the 2-dircctional wavelet transform is also illu:;tratcc.l in 

Fig.3.13. If the original image is of size T x c, then the decomposed LL, Hh and Hv 

subbands arc of size ~ x £ !: x 1£ and ;!!: x £ respectively Hence the total number 
2 2' 2 4 4 2' . 

of the 2-dircctional wavelet coefficients is 

rc 3rc 3rc 
-+-+- = TC 
4 8 8 ' 

(3.6) 

which equals the number of pixels of the original image. Note that the ratio of the area 
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(a) Original image "peppers" (b) 2-dircctional wavelet transform 

Figure 3. 14: Example of the 2-dircctional wavelet t ransform on a natural image. (a) 

The original image "peppers". (b) Its 2-dircctional wavelet transform, in which the 

small coefficients in absolute value arc colored towards black. 

of each high pass sub band to the original image is ~ . Previous research considered the 

maximal decimation of such originally t rapezoidal spectral areas by any integer matrix 

to be impossible [16]. However , the proposed 2-dircctional wavelet transform offers 

a practical structure of fi lter banks to rearrange trapezoid-shaped frequency regions, 

for example Hh, by critical sampling with integer matrices, to one rectangular shaped 

coefficient region. 

An example of the 2-dircctional wavelet transform on a natural image "peppers" 

is presented in Fig.3.14, in which LL is an approximation of t he original image, while 

Hh and Hv, respectively, represent horizontal and vert ical details around the peppers. 

Except for the approximation subband in the upper left corner, the other two detail 

subbands arc scaled to make their underlying structures more visible. 
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3.2 Finer Directional Decomposition 

The first stage of the nonredundant contourlet transform is the 2-directional wav l t 

transform proposed before. In order to obtain the desired frequency partition of Lhe 

contourlet transform, shown in Fig.2.10, the Hh and Hv subbands should be further 

directionally decomposed. Due to the symmetry between Hh and Hv, this section 

focuses on the decomposition of Hh. 

Fig.3.15(a) shows a possible frequency division by the NRCT, in which the high 

frequency scale is decomposed into 16 directional subbands. The first eight sub bands, 

colored grey in Fig.3.15(a) , are mapped to the spectrum of Hh in Fig.3.15(b). As 

illustrated in Fig.3.1l (c), the hexagon-shaped frequency region of Hh is rearranged to 

a rectangle, hence frequency shifts occur within the subbands 1 and 8, as illustrated 

in Fig.3.15(b). 

An inspection of the Hh spectrum in Fig.3.15(b) reveals that the separation of 

w, 

(a) Input signal (b) Hh subband 

Figure 3.15: The frequency mapping of the directional decomposition of the Hh sub­

band. (a) A possible frequency division of the input signal, in which the highpass 

scale is decomposed into 16 directional subbands. (b) The first eight high frequency 

directional subbands are mapped to t he spectrum of the Hh subband by t he proposed 

2-directional wavelet transform. 



CHAPTER 3. NONREDUNDANT CONT OURLET TRANSFORM (NRCT) 66 

Figure 3.16: The filter bank structure for splitting Hh into two groups {1 , 2, 3, 4} and 

{5, 6, 7, 8}, with corresponding frequency partit ion maps. 

subbands {1, 2, 3, 4} from {5, 6, 7, 8} can be achieved by a filter bank with quadrant 

support [31]. The block diagram with fr quency partition maps is illustrated in 

Fig.3.16, in which the decimation matrix following the quadrant filters is D 2 . The 

decimated signals are modulated by 1r along the w2 dimension , to output coefficient 

images with frequency partit ions more suitable to the subsequent decomposition by 

the filter banks of Fig.3.17. The decomposed spectra { 1, 2, 3, 4} represent the output 

at "c", and {5, 6, 7, 8} the output at "d", as shown in Fig.3.16. 

The next stage is to further separate components { 1, 2} from { 3, 4} in branch "c" 

and separate {5, 6} from {7, 8} in branch "d" . By using the sheared-parallelogram 

(SPR) filter bank [16], the separation is achieved by the first stage of the block diagram 

in Fig.3.17. The frequency regions of the SPR downsampled signal , e.g. the subband 

{1 , 2} , overlap onto the periodic replicas of the 27r x 27r baseband. However , these 

SPR-decomposed subbands are not distorted by overlapping, due Lo the 21r p riodicity 

of the discrete frequency space and the characteristics of parallelograms. Recall that 

the 2-directional wavelet transform rearranges the frequencies inside the subbands 1 



CHAPTER 3. NONREDUNDANT CONTOURLET TRANSFORM (NRCT) 67 

Figure 3.17: The diagram for further decomposing Hh into eight subbands. 
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and 8. It is interesting to note that t hese frequencies move back automatically after 

implementing the sheared-parallelogram filter banks. 

An analysis of the output from the sheared-parallelogram decomposit ion (the first 

stage of Fig.3.17) reveals that the next stage to generate eight individual subbands is 

achieved by the cooperation of SPR and parallelogram filter banks, as shown in th 

second stage of Fig.3.17. The decimation matrices following the parallelogram filters 

are the parallelogram matrices P 1 and P 2 , as given by Eq.(2.59), with which the 

spectrum of subbands 1, 2, 7, and 8 are skewed to rectangles, as shown in Fig.3.17. 

By contrast , the SPR filters only requires diagonal matrices D 1 and D 2 for row or 

column downsampling. 

Following the decomposit ion illustrated above, the proposed NRCT can decom­

pose the highpass frequency cale into 2n directional subbands. The rule of the 

configuration of fil ter banks is presen ted below. 

Rule of the Tree Structure Filter Bank 

Note tha t the decomposition of Hh with the quadrant filter bank generates two out­

puts "c" and "d" with their characteristic frequency representation. Then the sub­

sequent separation is constructed by iteratively linking six basic filter bank blocks 

according to the expansion rules shown in Fig.3.18, as follows: 

• The type "a" output is followed by a SPR-1-HL fil ter bank, which generates one 

type "d" output and one type "e" output. 

• The type "b" output is followed by a Parallel-II filter bank, which generaL 

one type "f" output and one type "a" output . 

• The type "c" output is followed by a SPR-11-HL fil ter bank, which generates 

one type "b" output and one type "c" output. 
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Figure 3.18: The block diagram of six basic filter banks. 

• The type "d" output is follow d by a SPR-I-LH filter bank, which generate 

one typ "d" output and one Lyp "e" output. 

• The type "e" output is followed by a Parallel-! filter bank, which generates one 

type "f" output and one type "a" output. 

• The type "f" output is followed by a SPR-II-LH filter bank, which generates 

one type 'b' output and one type "c" output . 

These six basic blocks are grouped into two classes: Lhe sheared-parallelogram 

(SPR) filter bank and the parallelogram (Parallel) filter bank. In fact , Fig.3.18 only 

has four different cases, since the SPR-I-HL fil ter bank in Fig.3.1 (a) and the SPR­

I-LH fil ter bank in Fig.3.18(d) are th same, except for the order of output channel . 

Similarly, the SPR-II-HL filter bank in Fig.3.18(c) rever es the order of output chan­

nels of the SPR-11-LH filter bank in Fig.3.1 (f). 

As an example to show how the rul is applied, the tree- tructure of filter bank 

to decompose Hh into eight individual components is shown in 1~ ig.3.19. The fi rst 

stage implem nts quincunx fil ter banks followed by modulator · Lo geuerate one type 
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Figure 3.19: The binary tree structure of filter bank to achieve the frequency decom­

position of Hh shown in Fig.3.15(a) 

"c" and one type "d" output. Then the subsequent stages append basic two-channel 

filter banks according to the above rules. Moreover, the separated eight bands can 

be further decomposed based on the output types. 

Using the techniques investigated in Section 2.2, the quadrant fil ter bank and the 

six basic filter-bank blocks can be designed to achieve critical sampling and perfect 

reconstruction properties. These properties are also possessed by the 2-directional 

wavelet transform. Therefore, the algorithm out lined above, which implements the 2-

directional wavelet t ransform, and then directionally decomposes the higher frequency 

bands, also has these two valuable properties. 
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3.3 Multiscale and Directional Decomposition 

The previous algorithm decomposes the spectrum of an input image into one lowpass 

subband (LL) and several directional highpass subbands. If the basic algorithm is 

iterated on the coarse scale, then a multiscale and multidirection image representation 

is achieved. The new image representation is called the nonredundant contourlet 

transform ( N RCT). 

The proposed NRCT can obtain the same frequency decomposition, illustrated in 

Fig.3.20(a) , as the traditional contourlet transform. Moreover, the NRCT is a pro-

gressive version of the contourlet transform with critical sampling. The comparison 

between the traditional contourlet transform and the nonredundant contourlet trans-

( -1!, -1t) 

(a) Frequency Partition (b) Traditional CT (c) NRCT 

Figure 3.20: The comparison between the t raditional and the nonredundant con­

tourlet transforms. (a) A possible frequency partition (with four scales), which can be 

achieved by both transforms. A certain directional subband with pairwise trapezoid­

shaped frequency regions is colored by a gray gradient. (b) The decomposed sub band 

colored in (a) by the traditional contourlet transform (CT), who e redundancy is im­

plied by the empty frequency regions colored white. (c) The subband colored in (a) 

is cri t ically sampled by the nonredundant contourlet transform. 
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form is illustrated in Fig.3.20, in which a certain directional subband is decimated by 

both the traditional contourlct transform and the NRCT. Recall that the traditional 

contourlct applies the directional fil ter bank on the finer levels of a Laplacian py ra­

mid. Hence, as illustrated in Fig.3.20(b) , the directional subband decomposed by the 

traditional contourlct transform leaves ~ of the frequency domain empty, in theory, 

if ideal filters a rc used to generate this subband. By contrast, the NRCT implements 

the multiscalc decomposition using the 2-dircctional wavelet transform instead of the 

Laplacian pyramid. The 2-dircctional wavelet transform is an image representation 

with the critical sampling property. Therefore, t he directional subband is maximally 

decimated by the NRCT, as illustrated in Fig.3.20(c). 

An example of the NRCT on "barbara" is shown in Fig.3.21, in which small coef­

ficients in absolute value arc colored towards black while large coefficients in absolute 

(a) Original image "barbara" (b ) N onrcdundant contourlct transform 

Figure 3.21: Example of the NRCT on the image "barbara" of size 512 x 512. (a) The 

original image. (b) Its nonrcdundant contourlct transform , in which the coefficients 

with small absolute value arc colored towards black while the coefficients with la rge 

absolute value arc colored towards white. 
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value are colored towards white. This RCT example fi ts the spectral decomposi­

tion of Fig.3.20(a) (same as Fig.2.10(a)). The total number of NRCT coefficients 

is equal to the number of pixels of the original image. By contrast , the traditional 

contourlet transform on "barbara" with the same frequency partition is presented in 

Fig.2.10(b) . It is clear that both transforms represent similar image content in the 

spectral domain , while the nonredundant contourlet transform saves almost ~ coeffi­

cients of the traditional contourlet transform. Moreover, with abundant coefficients 

with small absolute value, the proposed RCT has the potential for applications to 

image compression. 

3.4 Experimental Results 

3.4.1 Test Set 

To evaluate the performance of the proposed RCT, a test set of six gray-scale images 

as shown in Fig.3.22 is used. The names of these images are peppers, barbara, D15, 

D92, fingerprint , and zoneplate. These images are chosen as they manifest a 

range of image oriented structure. peppers is a piecewise smooth natural image with 

significant blocks of contents and barbara is a natural image with some fine texture on 

the table cloth and the barbara's pants and kerchief. Both D15 and D92 are texture 

patterns from the Brodatz collection, where D15 is a directional texture while D92 

is a texture with less directionality. fingerpri nt is a natural image consisting of 

abundant oriented ridges. zoneplate is a synthetic image with the formula given in 

Eq.(3.5). T hey are all 8-bit gray-scale images of size 512 x 512. 
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(a) Peppers (b) Barbara 

(c) D15 (d) D92 

(c) Fingerpr int (f) Zoneplat e 

Figure 3.22: Test set of six gray-scale images of size 512 x 512. 
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3.4.2 Lossless R econstruction Results 

This section provides lossless reconstruction results as verification of the perfect re-

construction property of the three transforms, i.e. the wavelet transform, the con-

tourlet transform, and the nonredundant contourlet transform, which are realized 

using non-ideal filter banks as reviewed in Section 2.2. For all the three transforms, 

the multiscale decomposition is implemented by the CDF "9 / 7-tap" filters [20] (see 

also Table 2.1). 

Test images are represented by the three transforms, respectively ; then the coef-

ficients of these transforms pass through their corresponding inverse procedures to 

reconstruct the original images, respectively. The qualities of the reconstructed im-

ages are evaluated by the peak signal-to-noise ratio (PSNR). For a gray-scale 8 bits 

per pixel (bpp) image, the PSNR is defined as follows 

255 
PSNR = 20log10 RMSE dB, 

with root mean square error (RMSE) defined as 

RMSE = 

(3.7) 

(3.8) 

where x(i,j) and r(i,j) are the original and reconstructed images respectively, and 

N = n 1 x n2 is the number of pixels of the original image. 

In theory, all the three transforms can perfectly reconstruct the original images, i.e. 

PSNR= +oo; however, this is not achievable using precision-limited computers. Table 

3.1 illustrates the experimental PSNR comparison among the wavelet transform, the 

contourlet transform, and the NRCT, when the original images are reconstructed 

without loss of any coefficients (all programs run by Matlab). In Table 3.1, all the 

reconstructed images achieve a PSNR around 270 dB, which is a very high PSNR in 

practice, and as such may be considered to be perfect reconstruction. 
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Table 3.1: PSNR comparison for three different transforms when all coefficients are 

retained to reconstruct the original images (in dB) 

peppers barbara 015 092 fingerprint zoneplate 

DWT 271.4536 271.6328 269.5848 271.0881 270.1703 270.9097 

CT 271.4939 271.6918 269.9374 271.3527 270.4156 271.5302 

RCT 271.4540 271.6345 269.5898 271.0931 270.1740 270.9230 

3.4.3 Nonlinear Approx imation 

The performance of the NRCT for image approximation is compared with that of 

the discrete wavelet transform (DWT) and the contourlet transform (CT). In the 

experiments, images are decomposed into six scales. All three transformations (the 

wavelet transform, the traditional contourlet transform and the NRCT) share the 

same directional decomposition on these scales except for the finest one. In other 

words, both the traditional and the nonredundant contourlet transforms implement 

the wavelet transform in their coarser scales, each of which is decomposed into three 

directional subbands. The difference is that the wavelet transform splits the finest 

scale into three rectangular subbands, while both the tradi tional contourlet transform 

and the NRCT separate the finest scale into 32 directional subbands. 

Nonlinear approximations are obtained by first applying each transform on the 

original image, retaining the M most-significant coefficients according to their ab­

solute value, and then reconstructing the image from these M coefficients. If the 

original image consists of N pixels, M j N measures the ratio of coefficients retained. 

The quality of the reconstructed image is evaluated by PSNR which is defined in 

Eq.(3.7) and Eq.(3.8). 

Fig.3.23 shows the PSNR comparison of the nonlinear approximation among the 
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Figure 3.23: Nonlinear approximation results on t he test images with six-level mul-

tiscale decomposition. Both the traditional and the nouredundant contourlet trans-

forms decompose the finest scale into 32 directional subbands. 
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wavelet transform, the traditional contourlet t ransform and the NRCT . First com-

pare the curves of the NRCT (solid lines) and the traditional contourlet transform 

(dotted lines) . The proposed NRCT possesses most of the important properties of 

the traditional contour let transform, including perfect reconstruction, localization 1
, 

multiresolution, directionality, and critical sampling [8], while eliminating the redun­

dant oversampling of the contourlet transform. Therefore, the PS R performance of 

the NRCT is always better t han the traditional contourlet transform, as illustrated 

in Fig.3.23. Moreover , both the DWT and the NRCT can exactly recover the original 

image for M / N = 1, but the CT can not. 

For images peppers, barbara, 015, and zoneplate, the NRCT outperforms Lhe 

wavelet transform for low ra tios M / N , which are approximately lower than 0.04 for 

peppers, 0.22 for barbara, 0.25 for 015, and 0.8 for zoneplate. Since the RCT is 

a progressive version of the traditional contourlet transform , the NRCT has a wider 

improvement range over the wavelet transform than the traditional contourlet trans-

form. The NRCT presents an outstanding performance for zonepl ate which includes 

abundant oriented circles wi th a wide frequency dynamic range. By comparing the 

NRCT with the wavelet transform, the peak enhancement value of PS R is about 

10 dB for zoneplate at M / N = 0.3. For the photographic natural images with finer 

texture, such as barbara and 015, the NRCT has an approximate 1 dB of PSNR 

enhancement compared with the wavelet transform at M / N = 0.14. Therefore, the 

experiments demonstrate the potential of the NRCT for image compression, especially 

for images with significant directional information. 

As illustra ted in Fig.3.23(d) and (e), the P S R performance of the NRCT is worse 

than the wavelet t ransform for 092 and fingerprint. 092 contains insignificant 

1 T he localization mean~ that the b~ic element~ in t he repre~entation ~hould be located in both 
~patial and frequency domain . 
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directionality, hence it is not a favored image for the NRCT which has the advantage 

of tracking the directional information in images. On the other hand, the reason why 

the RCT performs worse than the wavelet transform for fingerprint in Fig.3.23(e) 

is that the previous decomposition patten does not match the frequen y characteristic 

of fingerprint . 

Examination of typical fingerprint power spectra by th FBI showed that most 

spectral energy in fingerprint images is located in the frequency range from about 

1r /8 to 37r /8 [42], as illustrated by the gray region in Fig.3.24( a). Hence a suitable 

frequency partition scheme should focus on the directional information in this fre­

quency r gion. Fortunately, the RCT has directional selectivity and i compatible 

with the wavelet transform. Therefore, a new transform cheme with the frequency 

partition shown in Fig.3.24(a) is called the semi-NRCT, in which the second and the 

third finest scales are implemented by the NRCT, and the remaining scales from the 

wavelet transform. 

If the fingerprint image is decompo ed into six scales, and the second and Lhe 

third fine t cales are decompo ed into 32 directional subbands re pectively, then 

the corresponding PSNR performance by th semi- RCT is illustrated as the solid 

curve in Fig.3.24(b). The PSNR curves of the six-level wavelet transform and the 

contourlet transform on the fingerprint image are also presented for comparison 

where th contourlet transform is implemented with the fr quency partition shown 

in Fig.3.24(a). As shown in Fig.3.24(b) , the PS R performance of the semi-NRCT 

is always better than the contourlet transform, and it outperforms the DWT for low 

ratios M / approximately less than 0.06. The PS R comparison among the thr e 

t ransforms on fingerprint demonstrates the potential of the mi-NRCT in finger­

print image compression, hence Chapter 5 proposes a fingerprint image compression 

scheme based on the semi-N RCT. 
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Figure 3.24: onlinear approximation of fingerprint wit h the semi-NRCT . (a) 

The frequency partit ion by the semi-NRCT , in which the gray region represent s the 

frequency range of [1r /8, 37r /8]. The second and t he t hird finest scales are decomposed 

into 32 directional sub bands, respectively. (b) The PSNR performance comparison 

among t he semi-NRCT , t he wavelet transform and the contourlet transform. 

A detailed comparison of a zoomed portion of "barbara" is pre ented in Fig.3.25. 

Both the traditional and the nonredundant contourlet transforms preserve more de-

tails in barbara (sec the stripes on her right pant) t han the wavelet transform. How­

ever , the NRCT can perfect ly recover the original image for M/ N = 1 but the con-

tourlet transform can not. Therefore, t he NRCT , as a progressive version of t he 

eontourlet transform without the redundancy of oversampling, can more efficient ly 

represent directional structures in images than the wavelet transform. 

3.5 Summary 

T his chapter proposes a critically . ampled contourlet transform with perfect recon­

struct ion, namely the nonredundant contourlet transform (NRCT). The NRCT is 

generated by first implement ing the 2-direct ional wavelet t ransform, and then direc-
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(a) Original Image (b) RCT: PSNR = 25.70 dB 

(c) DWT: PSNR = 24.78 dB (d) CT: PSNR = 25.67 dB 

Figure 3.25: Detailed comparison of nonlinear approximation on "barbara". For 

each transform, the image is reconstructed from 5243 most-significant coefficients 

(M/N = 0.02). (a) The original image barbara of size 512 x 512. The reconstructed 

images by (b) the nonredundant contourlet transform, (c) the wavelet transform, and 

(d) the traditional contourlet transform, each with resulting PSNR. 
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tionally decomposing the higher frequency bands. 

The NRCT is constructed by perfect reconstruction filter banks, hence it is also a 

perfect reconstruction system. Moreover, the NRCT offers a critically sampled repre­

sentation of images by using the same number of coefficients as the number of pixels 

of the original image. In addition to these two important properties, e.g. perfect 

reconstruction and critical sampling, the NRCT possesses other useful properties in­

cluding multiresolution, directionality, localization, flexible number of directions at 

each scale, and efficient configuration of filter banks. In other words, the proposed 

RCT preserves almost all the advantages of the t raditional contourlet transform 

while eliminating its redundancy of oversampling. Therefore, the PSNR performance 

of the NRCT is always better than the traditional contourlet transform in the exper­

iments of nonlinear approximation. The NRCT obtains these advantages by paying 

a cost of higher computational complexity. Hence Chapter 4 will investigate its com­

putational complexity. 

Due to its directionality, t he NRCT outperforms the wavelet transform for lower 

ratios M /N. If M/N = 1, both the wavelet t ransform and the NRCT can exactly 

recover the original image. Moreover, the nonredundant contourlet transform is an 

extension of the DWT, based on an appropriately designed filter bank structure. 

Therefore, the NRCT is easily compatible with the prevalent wavelet-based tech­

niques. This chapter proposes a combination of the RCT and the wavelet transform, 

called the semi-NRCT. 

As mentioned before, the NRCT is suitable in tracking and efficiently coding the 

oriented texture of ridges of fingerprint images. Moreover, the semi-NRCT inherit 

the advantages of the directional selectivity of the NRCT and the lower complexity 

of the wavelet transform. Therefore, Chapter 5 will proposes a fingerprint image 

compression technique using the semi- RCT. 



Chapter 4 

Computational Complexity 

The previous chapter proposed a novel image representation, namely the nonredun­

dant contourlet transform, which can decompose an image into multiresolution and 

multidirection subbands with critical sampling and perfect reconstruction properties. 

This chapter investigates the computational complexity of the NRCT, and compares 

it with the wavelet transform and the traditional contourlet t ransform. 

For an individual system, such as a filter bank and the wavelet transform, the 

computational complexity is examined by the number of real mult iplications and real 

additions required for each input sample, respectively, denoted by RM and RA. If the 

system has crit ical sampling property, which means the number of output samples 

is equal to t he number of input samples, then the computational complexity can be 

simply represented as the number of real multiplications/additions per sample. 

The computational complexity can also be evaluated by t he number of complex 

multiplications eM and the number of complex additions eA for each input sample. 

As a complex multiplication takes four real mult iplications and two real additions, 

while a complex addition needs two real additions [33], hence eM and eA can be 

easily transferred to RM and RA. 

83 
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4.1 Computational Complexity of Convolution 

Both linear and circular convolutions are basic operations in digital image processing. 

As illustrated in Chapter 3, the NRCT system implements circular convolut ion for 

the IIR QMF bank [28], while linear convolution for the remaining blocks. Moreover, 

some 2-D operations in the proposed system, such as the separable filter bank, are 

constructed by 1-D filters. T herefore, this section reviews the computational com­

plexity of the 1-D and 2-D convolutions. 

Time-domain convolution is more efficient than frequency-domain convolution for 

lower-order filters [33]. In the proposed system, all FIR filters except for that used 

in the IIR QMF bank have their impulse responses with fewer samples. Hence Lhe 

linear convolutions with these FIR filters are implemented in the Lime domain. On the 

other hand, the IIR QMF bank replaces its IIR linear convolutions with FIR circular 

convolutions (see Eq.(2.28) and Eq.(2.30)); and the corresponding FIR filter h(k) in 

Eq.(2.29) has the same length as the input signal. For this specific case when the 

input signal and the filter are approximately with the same length, frequency-based 

convolut ion processes more efficiently than time-based, as discussed later. 

4.1.1 1-D Convolution 

The convolution of two 1-D discrete functions can be directly calculated in the time 

domain, or implemented in the frequency domain by processing the inverse Fourier 

transform on the product of the Fourier transforms of these two functions. 

Time-domain Linear Convolution 

The direct way to implement the convolution between an input signal x(n) and the 

impulse response of a filter J(n) is to calculate the amount of overlap between x(n) 
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and a reversed version of f(n). Assuming that f(n) is FIR and consists of L real 

samples, the convolution requires at most L real multiplications and (£ - 1) real 

additions for each output sample. If the additional computational complexity due 

to data loading, scaling and padding is insignificant and can be ignored, then the 

computational complexity per output sample of the time-domain linear convolution 

is shown as follows: 

( 4.1) 

FFT-based 1-D Circular Convolution 

Circular convolution in the time domain is equal to the point-wise multiplication 

in the frequency domain [33] . Therefore, the convolution can be implemented by 

first processing the discrete Fourier transform on the real input signal x(n) (with 

the length of N), calculating the complex multiplication of the Fourier transform 

of x(n) and the transfer function of the filter f(n), and then processing the inverse 

Fourier transform on the complex product. If the Fourier transform and inverse 

Fourier transform are implemented by the fast Fourier transform (FFT) algorithm, 

then the above frequency-domain convolution is called the FFT-based convolution. 

In the circular convolution for the IIR QMF bank in Eq.(2.30), the size of input 

signals is equal to the length of the replaced FIR filters. Hence t he FFT operations 

are implemented on resolution N. 

As a typical radix-2 FFT of a complex N-point signal 1 takes ( ~ log2 N) complex 

multiplications and (N log2 N) complex additions [33]. Moreover, the FFT of a N­

point real signal can be implemented by a complex ~-point FFT plus ~ extra complex 

1 The radix-2 FFT requires that the number of input points should be 2". If K is not a power of 
2, the input signal is simply padded with zeros to a length of N' = 2flog2 Nl. 
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multiplications and 2N extra complex additions (see Eq.(6.2.11) and (6.2.12) in [43]). 

This impli s that the real N -point FFT takes If (log2 N + 1) complex multiplications 

and If (log2 N + 3) complex additions. 

As ment ioned before, the FFT-based convolution requir a real -point FFT 

on the input signal, N extra complex multiplications (assuming Lhe FFT of f (n) 

is precal ula ted), and a complex N -point inverse FFT. Therefore, Lhe FFT-based 

convolution requires 

3 +-2 

(4.2) 

complex multiplications and complex additions per output sample, r pectively, for 

each sample. Sine a complex multiplication takes four real multiplications and two 

real additions, while a complex addition requires two real addi tions, Lhe number of 

real multiplications and real additions per ou tput sample required by the FFT-based 

convolut ion are shown as follows: 

(4.3) 

As shown in Eq.(4.3) , the complexi ty of the FFT-based ircular convolution in­

volves the size of the input signal on a logarithmic scale, while the complexity of 

the time-domain linear covolution contains the length of the impul e response (see 

Eq. ( 4.1)). ln fact, the circula r convolution can be realized using th linear convolution 

by periodically xtending the input image; and the linear convolution can be imple­

mented with the circular convolution by padding outside of the original image with an 

appropriate number of zeros. Therefore, the FFT-based convolution is more efficient 
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than the time-domain convolution when the input signal x(n) is a shorter sequence, 

and/ or the filter f(n) is a higher order filter. On the other hand, if the length of the 

filter is much less than the length of t he input signal (L « N), then the time-domain 

convolution is a more efficient algorithm than the FFT-based convolution. 

4.1.2 2-D Linear Convolution 

The separable 2-D convolution can be easily implemented by cascading 1-D convolu­

tions in two dimensions. Hence our focus of the 2-D convolution is the nonseparable 

linear convolution between a digital image and the impulse response of a 2-D FIR 

filter. (The proposed NRCT only implements circular convolution for 1-D fil tering in 

the IIR QMF bank, hence the 2-D circular convolution are not investigated in this 

section.) 

Spatial Linear Convolution 

Assume that a discrete image of size N1 x N2 is convolved with a 2-D filter of size 

L1 x L 2 . The spatial convolut ion is processed by moving a reversed version of the fil ter 

from point to point in the image. For each point, the sum of products of the filter 

coefficients with the corresponding pixels under the filter is calculated. T herefore, 

the spatial linear convolution requires 

R M = LlL2 
(4.4) 

RA = LlL2- 1 

real multiplications and real additions, respectively, for each sample. 
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FFT-based 2-D Linear Convolution 

The 2-D linear convolution can be implemented in the frequency domain as well. 

First, the input image is transferred to its discrete Fourier transform, which is then 

multiplied with the transfer function of the 2-D filter. After that, the inverse Fouri r 

transform of the product is calculated to output the filtered image. Both the Fourier 

transform and its inverse can be implemented by the 2-D FFT algorithm. If the si<~e 

N1 x N2 of the input image is much greater than the size L 1 x £2 of the 2-D filter, 

that is N1 » L1 and N2 » £ 2, then the 2-D FFT operations are implemented on 

resolution (N1 + £ 1 - 1) x (N2 + £2- 1), approximated to N1 x N2. 

The 2-D FFT of a complex signal of size N1 x N2 can be implemented by N1 1-D 

complex N2-point FFTs in one dimension, and N2 1-D complex N1-point FFTs in an­

other dimension. Therefore, the complex (N1 xN2)-point FFT takes ( N 1
.['

2 log2(N1N2)) 

complex multiplications and (N1N2log2(N1N2)) complex additions. 

When the input image is real, the 2-D FFT can be implemented by 1-D real FFT · 

in one dimension followed by 1-0 complex FFTs in another dimension . Assume that 

N1 ~ N2, a more efficient way for the real (N1 x N2)-point FFT is N2 1-D real Nl­

point FFTs plus N1 1-0 complex N2-point FFTs, which takes N 1
:

2 (log2(N1Ni) + 1) 

complex multiplications and N,.['2 (log2(N1Ni) + 3) complex additions. Therefor , 

the 2-0 FFT-based linear convolution requires a real (N1 x N2)-point FFT, (N1N2) 

extra complex multiplications, and a complex (N1 x N2)-point FFT, which takes 

(4.5) 
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complex multiplications and complex additions, respectively, for each sample. 

As known that a complex multiplication requires four real multiplications and two 

real additions, and a complex additions needs two real additions, hence the number 

of real multiplications/additions per sample required by the FFT-based 2-D linear 

convolution is shown as follows, for N 1 2 N2 : 

RM = 6log2 N1 + 8log2 N2 + 8 

RA = 3log2 N1 + 4log2 N2 + 3. 

4.2 Computational Complexity of Filter Banks 

(4.6) 

The proposed nonredundant contourlet transform is constructed by a framework of 

filter banks. This section investigates the computational complexities of various filter 

banks used in the NRCT. If a general filter bank has a symmetric structure, then the 

synthesis section has the same computational complexity as the analysis section [44] . 

Therefore, the following investigation focuses on the computational complexity of the 

analysis sections for such case. 

4 .2.1 1-D CDF 9/7-tap Filter Bank 

The 1-D analysis/synthesis filter bank is illustrated in Fig.2.2(a), in which the input 

image is lowpass and highpass filtered and decimated to generate two decomposed 

subbands. If the downsampling and upsampling operations do not significantly in­

crease the computational complexity, then the main computation of this filter bank 

is the two lowpass and highpass filters. 

The analysis/synthesis filter bank can be constructed with the CDF 9/7-tap filters 

[20] shown in Table 2.1. In this case, according to Eq.(4.1), the CDF 9-tap lowpass 

filter takes 9 real multiplications and 8 real additions for each sample, and the CDF 
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7-tap highpass filter reqmres 7 real multiplications and 6 real addit ions for each 

sample. Therefore, the two analysis filters requires 16 real multiplications and 14 

real additions for each input sample. However, the decimators followed by these two 

filters discard half the filtered samples, which need not be calculated in the previous 

filtering procedure. Therefore, the analysis section of the CDF 9/ 7-tap filter bank 

takes 8 real multiplications and 7 real additions for each input sample. 

4 .2.2 1-D IIR Polyphase Filter Bank 

The configuration of the polyphase filter bank is illustrated in Fig.2.13, in which the 

original signal of length N is separated into two half-length signals before passing 

through filters. Hence the filtering operations are implemented at lower data rates, 

which saves approximately 50% of the computations compared with the corresponding 

analysis/synthesis structure [18]. 

In order to achieve a quadrature mirror filter bank, the filters in the polyphase 

structure should be IIR filters [23] . As mentioned in Section 2.2.1, IIR filtering a 

signal can be implemented by the circular convolution of the signal with a corre­

sponding FIR filter which has the same size as the original signal, as illustrated in 

Eq.(2.30) . Therefore, IIR filtering a ~-sample signal requires a ~-point FFT-based 

convolution plus ~ extra real additions (see Eq.(2.30)). This takes ~(6log2 ~ + 8) 

real multiplications and ( ~(3 log2 ~ + 3) + ~) real additions. 

The analysis section of the polyphase filter bank contains two IIR fil tering oper­

ations with ~-point signals and 2 · ~ extra real additions. Therefore, the analysis 

section of the 1-D IIR polyphase filter bank takes 

2 · ~ ( 6log2 N + 2) 
RM = N = 6log2 N +2 

2 · ~(3 log2 N + 1) + N 
RA = N = 3log2 N + 2 

(4.7) 
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real multiplications and real additions, respectively, for each sample. 

4.2.3 2-D Analysis/Synthesis SPR Filter Bank 

The framework of the 2-D analysis/synthesis filter bank is illustrated in Fig.2.17, 

in which the input image is lowpass and highpass filtered and decimated to output 

two d compo ed subbands. The computation of the analysis section i concentrated 

in the two analysis filters. If the filtering is implemented based on Lhe FFT -based 

convolution, then according to Eq.(4.6) , the analysis section of Lhe filt r bank requires 

( 4. ) 

real multiplications and real additions, respectively, for each sample. 

On the other hand, filtering can be processed in the spatial domain as well. Re­

call that the analysis filters are design d based on the transformation of variables 

technique [32] . If the designed fi lters have their passband regions approximating 

the sheared-parallelogram (SPR) upports shown in Fig.2.1 , then the corresponding 

filter bank i called the SPR filter bank. For example, the analysi lowpass and high­

pass fi lters of the SPR type-! fi lter bank are designed as follows (see Eq.(2.51) and 

Eq.(2.52)): 

(4.9) 

wher R(z1,z2) = R(-z1,z2 ) and R(z1 ,z2 ) is a 2-D FIR filter. The fil ters can be 

implement d with the efficient structures in Fig.4.1. The filter Ho(z1 , z2) is composed 

of two stages, and each stage contains a filter R(z1 , z2), a r al adder and a scalar 

multiply. Note that the decimator following H0 (z1 , z2 ) in Fig.2.17 discards half the 
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-3135 

(b) H1 (z1, z2) 

Figure 4.1: Efficient implementation of analysis filters (a) H0 (z1 , z2) and (b) 

H1 (z1, z2), where R(z1,z2) and R(z1,z2) are 2-D FIR filters. [Modified from [30]] 

sample , hence the second stage of Fig.4.1(a) only needs to calculate the samples 

retained by the decimator which follows H0 (z1 , z2). If R (z1 , z2) is of siz;e K 1 x K2, 

then filtering with Ho(z1 , z2) followed by a decimator requir (1.5Ktf(2) real multi­

plications and (1.5(K 1K2 - 1) + 1.5K1K2) real additions for each ample. Similarly, 

fil tering with H 1 (z1, z2) and down ampling need (2.5K 1K2) real multiplications and 

(2.5(K 1K2 - 1) + 2.5K1K2) real additions for each sample. Therefore, th total com­

plexity is (4K1K2) real mult iplication per sample plus (4K1K2) real additions per 

sample. The 2-D filter R(zb z2) is of siz;e 15 x 15 in the exp riments, hence the cor­

responding SPR filter bank takes 900 r al multiplications and 900 real additions for 

each input sample. 

When th SPR analysis/synthesis fil ter bank is applied Lo an image of normal 

size, say 1024 x 1024 the analysis section with the FFT-based convolution takes 296 

real multiplications and 146 real additions for each sample, ac ording to Eq.(4. ). 

However, the filter bank based on the spatial convolution requir s 900 real multipli­

cations and 900 real additions for each ample. Therefore, the SPR filter bank with 

the FFT-based convolution is more efficient in practice. 



CHAPTER 4 . COMPUTAT IONAL COMPLEXIT Y 93 

4.2.4 2-D Ladder St ructure Filter Bank 

The generic ladder structure is illustrated in Fig.2.23, in which the input image is 2-D 

decimated and filtered with a ladder structure of filters. The key block in the ladder 

strucutre is the filter (3(z), which is a cascade of 1-D fil ters a(z) in two dimensions. If 

a(z) is a FIR fil ter with length L , then fil tering wit h (3(z) takes 2L real multiplications 

and 2(L - 1) real additions for each sample. 

The decimated images with N1,J'2 samples are fed to the ladder structure, which 

consists of two filters (3(z) and (2 · N 1,J'2 ) ext ra real additions. Therefore, the analysis 

section of the ladder-structure fil ter bank takes 

(4.10) 

real multiplications and real additions, respectively, for each input sample. 

In the experiments, a(z) is a 1-D FIR type II filter with 12 samples. Therefore, 

the corresponding ladder-structure fi lter bank takes 24 real multiplications and 23 

real additions for each input sample. 

4.2.5 1-D Nonuniform (2/3, 1/3) Lattice Filter B ank 

The block diagram of the analysis section of nonuniform (2/3, 1/3) fil ter bank is 

illustrated in Fig.2.26, in which the lowpass and bandpass outputs from the uniform 

3-channel filter bank are combined to form the nonuniform lowpass sub band, while the 

highpass output from the uniform 3-channel filter bank directly constructs the nonuni­

form highpass subband. The procedure to combine the uniform lowpass and bandpass 

subbands involves two interpolators, one delay operation, and one multiplexer , all of 
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which do not significantly increase the computational complexity. Therefore, the com-

putational complexity of the nonuniform (2/3, 1/3) filter bank approximately equals 

that of the uniform 3-channel filter bank. 

Fig.2.27 illustrates the configuration of the uniform 3-channel filter bank, in which 

the lossless matrice Ki, i = 1, · · · , L, constitute the main computation of the filter 

bank. As shown in Fig.2.28, each Ki is applied in a lattice structure, which contains 

two stages, and each stage needs four real multiplications and two real addit ions. 

Therefore, for every three input samples, the analysis section requires ( 4 · 2 · L) real 

multiplications and (2 · 2 · L ) real additions. This implies that the analysis section 

requires 8:f real multiplications and 4
3L real additions for each input ample. 

In the experiments of this thesis, the nonuniform (2/3, 1/3) lattice-structure fil ter 

bank contains 5 levels of lo sless matrices with parameters shown in Table 2.3. In 

this case, the filter bank requires ~ real multiplications and 2~ real additions for each 

input sample. 

4.2.6 Summary 

The computational complexity of these five types of filter banks is summarized in 

Table 4.1: Summary of the computational complexity of the filter banks in this thesi 

I Filter Banks I RM I RA I 
1-D CDF 9/7-tap 8 7 

1-D IIR polyphase 6log2 N + 2 3log2 N + 2 

2-D analysis/synthesis 12log2 N1 + 16 log2 N 2 + 16 6log2 N1 + 8 log2 N 2 + 6 

2-D ladder structure 24 23 

1-D lattice structure 40 20 
3 3 
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Table 4.1 , in which the second and the third columns, respectively, represent the 

number of real multiplications and real additions required for each sample. The 2-

D analysis/synthesis filter based on the frequency-domain convolution is the most 

complex system among these five filter banks, due to its nonseparable structure of 

filters. 

The following section will investigate the computational complexity of various 

image representations, which are constructed with the fil ter banks introduced in the 

present secbon. 

4.3 Image Representations 

T he computational complexit ies of the wavelet transform, of the traditional contourlet 

t ransform and of the nonredundant contour let transform is investigated in this section. 

These transforms have a major procedure in common, namely the iteration of an 

elementary one-level transform. If the complexity of an one-level transform is C 

operations/input sample, then the total complexity of a L-level transform is given by 

[44] 

c c c 4 
Ctotal = C + 4 + 42 + . . . + 4L-l < 3C. (4.11) 

Therefore, this section focuses on the computational complexity of one-level trans­

forms, which can be simply multiplied by a factor 1 to produce the upper bound of 

complexity for the corresponding transforms with irrespective levels. 

4.3.1 Wavelet Transform 

The wavelet transform can be constructed by a cascade of the CDF 9/7-tap filter 

bank in two dimensions. Therefore, the corresponding one-level wavelet transform 
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requires 

(4.12) 

real multiplications and real additions, respectively, for each input sample. 

4.3.2 Contourlet Transform 

In the one-1 vel contourlet transform, the original image i decomposed into a down-

sampled lowpass scale and a highpass scale using the Laplacian pyramid [1] , then 

the highpas scale is further separated into multiple directional subbands by the di­

rectional filter bank (DFB) [18] . Since the Laplacian pyramid and the DFB are 

two independent stages, their computational complexities add to produce the total 

complexity of the one-level contourlet tran form. 

The one-level structure of the Laplacian pyramid is illustrat d in Fig.2.3, which 

consist of three stages: first, derive an approximation of th original image; then 

predict the original image based on the approximation· and finally calculate the dif­

ference between the original image and the prediction. Actually, the LL subband of 

the wavelet transform is an approximated version of the original image, hence the first 

stage can b implemented using the same procedure as the gen ration of LL in the 

wavelet tran form. As shown in Fig.2.5(a), LL is generaLed by lowpass filtering and 

down ampling the original image in two dim nsion separately. If the lowpass filter i 

the CDF 9-tap filter, then the generation of LL takes (~ + ~ = 6.75) real multiplica­

tions and (~ + ~ = 6) real additions for each input sample. In the second stage, the 

approximation is upsampled and filter d with the CDF 7-tap lowpass filter to pro­

duce a predictive version of the original image. This stage requires G + ~ = 5.25) real 
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multiplications and (£ + ~ = 4.5) real additions for each output sample. Moreover, 

the last stage calculating the difference between the original image and the predic­

tion takes 1 extra real addition for each sample. Therefore , the one-level Laplacian 

pyramid r quires (6.75 + 5.25 = 12) real multiplications and (6 + 4.5 + 1 = 11.5) real 

additions for each input sample. 

The difference image from the Laplacian pyramid is further decomposed using the 

directional filter bank. The DFB is constructed with a tre structure of the diamond 

filter bank and the parallelogram filter bank, both of which can be applied in the 

ladder structure. Therefore, the 2k-band DFB, which is a k-stage tree of filter banks, 

requires 24k real multiplications and 23k real additions for each input sample. 

Combining the Laplacian pyramid and the DFB, the one-level contourlet trans­

form with 2k directional subbands in its highpass scale requires the number of real 

multiplications/additions for each sample as follows: 

RM(k) = 12 + 24k 
( 4.13) 

RA(k) = 11.5 + 23k 

4 .3 .3 Nonredundant Contourlet Transform 

The purpose of this section is to investigate the computational complexity of the one­

level nonredundant contourlet transform. The complexity is recorded by two functions 

RM(k) and RA(k) , which, respectively, represent the number of real multiplications 

and real additions per input sample required by the one-level NRCT with 2k highpas 

directional subbands. 

The first stage of the nonredundant contourlet transform is the 2-directional 

wavelet transform, which is the specific case of the NRCT wiih k = 1. Assume 

that an original image has a size of N 1 x N2 . The original image is first decomposed 

into LL, LH, HL, and HH subbands using the wavelet transform, then the HH sub-
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band of size £:? x tf is further separated into two components Dh and Dv using the 

ladder-structure fan filter bank. After that, Dh and Dv pass through the quincunx in-

terpolator and the IIR QMF polyphase filter bank to produce two resampled signals. 

Due to the quincunx upsampling, the images fed to the IIR polyphase filter bank 

are of size £:? x tf. The resampled signals are further combined , respectively, with 

LH and HL to generate Hh and Hv, respectively, using the synthesis section of the 

nonuniform (2/ 3, 1/ 3) filter bank. Note that the total number of samples of Hh and 

Hv is 3N!N2 . Therefore, the one-level 2-directional wavelet transform, which can be 

viewed as the one-level contourlet transform with 21 highpass directional subbands, 

has the computational complexity as follows: 

N N ·16 + N l N2 . 24 + NlN2 . [(61og !Yl + 2) + (6log & + 2) ] + 3NlN2. 40 
RM(1) = 1 2 4 4 2 2 2 2 4 3 

N1 N 2 

N N · 14 + N1 N2 · 23 + N 1N 2 • [(3 1og & + 2) + (3 log ~ + 2) ] + 3N 1N 2 · ~0 RA ( 1) = 1 2 4 4 2 2 2 2 4 3 

N1 N 2 

(4.14) 

In the second stage, the Hh and Hv subbands are further decomposed by the 

quadrant filter bank, as illustrated in Fig.3.16. The quadrant fil ter bank can be 

implemented in the ladder structure. As mentioned before, the total number of 

samples of Hh and Hv is ~ of the number of pixels of the original image. Therefore, 

the one-level NRCT with 22 highpass directional subbands requires t he number of 

real multiplications/additions per sample as follows: 

(4.15) 
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Table 4 2· The computational complexity of the one-level NRCT . . 

k ms(k) mp(k) 2k Computational Complexity RM(k) and RA(k) 

1 2 RM(1) = 1.5log2 N1 + 1.5log2 N2 + 30 

RA(1) = 0.75log2 N1 + 0.75log2 N2 + 24.25 

2 4 RM (2) = 1.5log2 N1 + 1.5 log2 N2 + 48 

RA (2) = 0. 75 log2 N1 + 0. 75log2 N2 + 41.5 

3 4 0 8 RM (3) = 10.5log2 Nt + 13.5 log2 N2 + 60 

RA(3) = 5.25log2 N1 + 6.75log2 N2 + 46 

4 4 4 16 RM ( 4) = 15log2 N1 + 19.5log2 N2 + 75 

RA ( 4) = 7.5log2 N1 + 9. 75 log2 N2 + 56.88 

5 12 4 32 RM (5) = 21. 75log2 N1 + 28.5 log2 N2 + 88.5 

RA(5) = 10.88log2 N1 + 14.25log2 N2 + 64.56 

6 20 12 64 RM(6) = 27.38log2 N 1 + 36log2 N2 + 102.75 

RA(6) = 13.69log2 N1 + 18 log2 N2 + 73.84 

7 44 20 128 RM(7) = 33.56log2 N1 + 44.25log2 N2 + 116.63 

RA (7) = 16. 78log2 N1 + 22.13log2 N2 + 82.33 

The following stages double the number of directional subbands using the sheared­

parallelogram (SPR) and parallelogram filter banks. Let ms(k) and mp(k), respec­

tively, denote the number of SPR filter banks and parallelogram filter banks contained 

in stage-k, fork ~ 3. Table 4.2 presents ms(k) and mp(k) fork = 3, · · · , 7. For each 

stage, ms(k) + mp(k) = 2k- l, since 2k- L two-channel filter banks can output 2k de­

composed subbands. ote that the six basic filter banks in Fig.3.1 , including four 

SPR filter banks and two parallelogram filter banks, share equal po sibili ty to con­

struct the stage-k when k is a larger number. Therefore, ms(k) approximately equals 

(~ · 2k- l) and mp(k) is almost (l · 2k- l) for a larger number of k. 
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The sheared-parallelogram filter bank can be constructed with the 2-0 analy-

sis/synthesis structure, hence one stage consisting of SPR fil ter banks requires 

3 
SM = 4 · (12log2 N1 + 16log2 N2 + 16) = 9log2 N1 + 12log2 N2 + 12 

3 
SA= 4 · (6 log2 N1 + 8log2 N2 + 6) = 4.5 log2 N1 + 6 log2 N2 + 4.5 

(4.16) 

real multiplications and real additions, respectively, for each input sample. Similarly, 

the parallelogram filter bank can be implemented in the ladder structure, hence if 

one stage is composed of parallelogram filter banks, then this stage needs 

3 
PM = 4 · 24 = 18 

3 
PA = 4 · 23 = 17.25 

( 4.17) 

real multiplications and real additions, respectively, for each input sample. If one 

stage consists of SPR filter banks and parallelogram filter banks, then its compu­

tational complexity is the sum of the weighted complexities increased by these two 

types of filter banks, as follows: 

ms(k) mp(k) 
rM(k) = 2k - l · SM + 2k- l ·PM 

(4.18) 

ms(k) mp(k) 
r A(k) = 2k - l ·SA + 2k - l · PA 

T herefore, t he computational complexity RM(k) and RA(k) are the total complexity 

of the first k stages, that is 

k 

RM(k) = RM(2) + L r M(i) fork 2 3 
i=3 (4.19) 
k 

RA(k) = RA(2) + L r A(i) fork 2 3 
i=3 

Table 4.2 presents the computational complexity RM(k) and RA(k) for k = 

1, · · · , 7, which are calculated based on Eq.(4.16)-(4.19) . When the one-level nonre­

dundant contourlet t ransform is applied on images of size 256 x 256, 512 x 512 and 
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Figure 4.2: Comparison of the computational complexity of t he wavelet transform, 

the contourlet t ransform and the NRCT. The NRCT is applied on images of size 

256 x 256, 512 x 512 and 1024 x 1024. (a) The real multiplications per sample 

RM ( k) as a function of 2k, where 2k is displayed on t he scale of log2 (-). (b) The real 

additions per sample RA ( k) as a function of 2k . In fact, the wavelet transform is not 

a multidirectional decomposit ion, hence its complexity is two constant R111 and R.A. 

1024 x 1024, the corresponding complexity with regard to the number of highpass 

directional subbands 2k is illustrated in Fig.4.2. 

Assume that the computational complexity of the one-level NRCT is approxi-

mately represented as two linear functions, as follows: 

(4.20) 

As mentioned before, ms(k) = ~ · 2k- l and mp(k) = ~ · 2k- L when k is a larger 

number. Therefore, the slopes bi\1 and bA arc approximately 

2 1 
bAt = 3sM + 3PM = 6 log2 N1 + 8 log2 N2 + 14 

2 1 
bA = 3sA + 3PA = 3 log2 N1 + 4log2 N2 + 8.75 

(4.21) 
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According to Eq.(4.20) and Eq.(4.21), the number of real multiplications/additions 

per sample required by the one-level NRCT is approximately linear in k, as illustrated 

in Fig.4.2. Hence if the NRCT decomposes the high pass cale of an original image into 

m = 2k directional subbands, then the computational complexity (i.e. the number of 

operations per input sample) of this procedur has an upper bound O(log2 m). 

These three transforms, the wavelet tran form, the contourlet transform and Lhe 

nonredundant contourlet transform, are simulated in Matlab. Their running time · 

Table 4.3: Comparison of running-times (in seconds) for Matlab implementation of 

the th f "th h ree one- eve trans orms, WI t ree sizes o Images 

2k 256 X 256 512 X 512 1024 X 1024 

Wavelet Transform 0.0642 0.2979 1.2291 

2 0.1135 0.7001 3.1026 

4 0.1301 0.8265 4.0951 

0.1 1 0.971 5.1325 

ontourlet Transform 16 0.2172 1.0909 5.9662 

32 0.2737 1.2402 6.5740 

64 0.3646 1.4454 7.4687 

128 0.5117 1.7475 8.1259 

2 0.1463 0.7142 4.2459 

4 0.172 0.8181 5.0841 

onredundant Contourlet 8 0.5626 2.1232 10.42 7 

Transform (NRCT) 16 0.8064 2.8576 13.2778 

32 1.2076 4.0551 17.1 92 

64 1.6892 5.2323 21.0139 

128 2.5055 6.9063 25.7591 
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for a complete procedure of decomposing an original image into subbands and re­

constructing the image from the subbands are compared in Table 4.3, in which the 

running time is displayed in seconds. ote that the simulations are executed in Mat­

lab (based on Intel Pentium 4 CPU 3.01 GHz and 2.00 G of RAM), and hence not 

optimized. All the times are for the calcula tion of a one-level transform, with the con­

tourlet transform and the RCT decomposing the highpass scale into 2k directional 

subbands, for various values of k . 

Three different sizes of images are examined, composing 256 x 256, 512 x 512 and 

1024 x 1024. The pixel resolutions of test images are similar wit h many popular digital 

display formats, such as the Extended Graphics Array (XGA) [45] introduced in 1990 

by IBM. The XGA is a display standard of 1024 x 768 pixel resolution, and is widely 

u ed in personal computers and projection systems. It is clear from Table 4.3 that, 

despite its relatively higher time complexity than that of the wavelet transform and 

the contourlet transform, the nonredundant contourlet transform can be processed 

in an acceptable amount of time in practice, e.g. a one-level 16-directional-subband 

NRCT of a 1024 x 1024 image only takes 13.2778 seconds in Matlab, which is not an 

opt imized implementation. 

4.3.4 Summary of Image Representation Complexities 

The computational complexities of the wavelet t ransform, the contourlet transform, 

and the nonredundant contourlet transform are compared in Fig.4.2 and Table 4.3. 

In theory, the one-level wavelet transform requires a onstant number of opera­

tions/sample, while the computational complexity of the contourlet t ran form and 

the NRCT are approximately linear in log2 m, where m is the number of directional 

subbands in the highpass scale. Based on Table 4.3, the time complexity of the 
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nonredundant contourlet transform is tolerable in practice. 

The traditional contourlet transform and the nonredundanL contourlet t ransform 

have similar complexity for k = 2 or 4. However, when the highpas scale is de­

compos d into more than 4 directional subbands, the computational complexity of 

the NRCT significantly increases due to its built-in sheared-parallelogram fil ter bank. 

Therefor , t he computational compl xity of the NRCT can be significantly reduced if 

the sheared-parallelogram filter bank can be implemented in a more efficient structure. 

4.4 Summary of Chapter 

This chapter investigates the computational complexity of various filter banks and 

three image representations: the wavelet t ransform, the contourlet transform, and 

the nonredundant contourlet transform. Although the NRCT has the higher compu­

tational complexity than the wavelet t ransform and the contourlet transform, it has 

the advantage of directional selectivity compared with th wavelet t ransform, and it 

ov rcomes the redundant oversampling of the contourlet t ransform. In fact, the t ime 

complexity of the nonredundant contourlet transform is tolerable in practice. There­

fore, the nonredundant contourlet transform has its potential in compressing images 

with significant directional information, such as fingerprint images. The following 

chapter will propose a fingerprint imag compression scheme using th nonredundant 

contourlet t ran form. 



Chapter 5 

Fingerprint Image Compression 

ln fingerprint identification systems for criminal investigation , fingerprint images must 

be stored and transmitted, now usually in digital form. Efficient image compression 

is an essential step before storing and transmitting digital fingerprint images, due to 

the increasing number of fingerprint records. 

The Federal Bureau of Investigation (FBI) has a fingerprint database of approxi­

mately 200 million inked fingerprint cards [42] . Each inked card consists of about 39 

square inches which would be scanned at a resolution of 500 pixels per inch, with 8 

bits per pixel [42], yielding approximately 10 megabytes of uncompressed digital data 

per card. l<urthermore, the FBI receives 50, 000 new cards on each work day; these 

records are used to check criminal backgrounds [42]. Hence the FBI requires a storage 

of about 2000 terabytes and a transmission per work day of about 500 gigabytes, if 

t he digitized fingerprint images are uncompressed . The wavelet/scalar quantization 

(WSQ) specification [25] has been developed by the FBI for the compression of its 

fingerprint database. Essential characteristics of fingerprint image are the many di­

rectional curves and delicate features. However, the 2-D wavelet t ransform, which 

is used in the WSQ, combines the 1-D wavelet t ransform in two dimensions , and , 
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as noted in Section 2.1.2, thus has a limi tation in its abili ty to efficiently capture 

directional structure of images. 

Chapter 3 has proposed a nonrcdundant contourlct t ransform (NRCT) , which can 

efficiently track directional information in images. Since the NRCT is compatible with 

the wavelet transform, a new transform can be proposed by flexibly combining the 

RCT and the wavelet t ransform. This new transform, called the scmi-NRCT, has 

the advantages of the directional selectivity of the NRCT and the lower computation 

complexity of the wavelet transform. A possible frequency partition by the semi-

NRCT is illustrated in Fig.5.1 (the same as Fig.3.24(a)), in which t he frequency region 

corresponding to fingerprint ridges is separated into various directional subbands. 

Moreover , since the RCT and the wavelet transform possess cri tical sampling and 

perfect reconstruction properties, so docs the scmi-NRCT. Iu fact , these properties 

arc important in applications such as image compression. Therefore, this chapter 

proposes a new fingerprint image compression scheme using the scmi-NRCT, and 

compares its performance with other transform-based compressions, including the 

wavelet transform and the traditional contourlet transform. 

w2 
(n, n) 

~\ ~ 
~ /./.. w, 

IW \\ 
V/.t 

(-n, -n) 

Figure 5.1: A possible frequency partit ion by the scmi-NRCT, in which most energy 

of a fingerprint image is located in the frequency range of [1r / 8, 37r /8] colored by gray. 
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5.1 Semi-NRCT-based Compression 

Transform-based compression, for a general invertible transform, i · illustrated in 

Fig.5.2. At the transform-based encoder, the source image is first repre ented by a 

transform, the coefficients of which are then quantized and entropy coded to generate 

compressed image data. The transform-based decoder rev rses the above procedure 

by passing the compressed data through an entropy decoder, a dequantizer, and the 

inverse transform to reconstruct an approximation of the original image. In this dia-

gram, the entropy encoding is a lossless data compression, while the quantizer causes 

quantization errors which lead to lossy image compression . However, the entropy can 

be substantially reduced by quantization, which results in a higher compression ratio 

for the overall system. 

Source 
Image Data 

Reconstructed 
Image Data 

(a) Transform-based encoder 

(b) Transfom1-based decoder 

Compressed 
Image Data 

Figure 5.2: Th diagram of transform-based fingerprint image compr ssion. (a) 

transform-based encoder and (b) transform-based decoder. 

lf the transform block and its inverse in Fig.5.2 are the semi-NH.CT and its inverse, 

respectively, and if the input/output images are of fingerprints , then the correspond­

ing compression scheme is called the semi-NH.CT-based fingerprint image compres­

sion. Let Yk,m(i, j), where (i, j) denotes the indices of the matrix, k = 0, 1, · · · , L - 1, 
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and m = 0, 1, · · · , Dk - 1, denote the directional multiscale subbands in the semi­

NRCT, where Lis the number of scales and Dk is the number of directional subbands 

at scale k . 

As mentioned in Section 3.4.3, most frequency components of a fingerprint image 

are located in the frequency region of [1r /8, 37r /8], which is colored by gray in Fig.5.1. 

Hence an efficient representation for fingerprint images should only implement direc­

t ional decomposition on this frequency area. On the other hand, most energy of an 

image could be concentrated to fewer coefficients when the image is decomposed into 

more scales. However, the performance is decreased when the number of scales is over­

increased . Based on numerous experimental tests, the proposed semi-NRCT finger­

print image compression decomposes an original image into six scales, and the second 

and the third finest scales, which occupy the gray region in Fig.5.1, are decomposed 

into 32 directional subbands respectively, that is L = 5, Do = D1 = D2 = Ds = 3 

and D3 = D4 = 32. 

5.1.1 Uniform Scalar Quantization 

The coefficient subbands of the semi-NRCT are quantized to reduce their entropies, as 

illustrated in Fig.5.3, which is the characteristic of the uniform scalar quantiz.er for an 

individual subband Yk,m(i, j ). The quantization characteristic is determined by two 

crucial parameters: the widt h of zero-bin Zk,m and the width of other nonzero bins 

Qk,m [42]. As illustrated in Fig.5.3, real coefficients lying on the zero-bin are truncated 

to zero by the quantizer. In addit ion , real coefficients falling within nonzero bins are 

represented by the middle point of their corresponding bins. 

The quantization at the semi-NRCT-based encoder section outputs a quantizer 

bin indices matrix sk,m( i, j), which is dequantized to real numbers by the decoder 
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o.szk,m + 2.5Qk,m 

0.5Zk,m + 1.5Qk,m 

o.szk,m + 0.5Qk,m 

0.5Zk,m 
- o.szk,m- 0.5Qk,m 

- 0.5Zk,m- 1.5Qk,m 

- 0.5Zk,m - 2.5Qk,m 
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Figure 5.3: Sub band quantization characteristics. The deadzone size is Zk,m, and the 

step size of other bins is Qk,m· 

section. Moreover, the lossless property of the entropy encoder and decoder leads to 

sk,m(i, j ) = sk,m(i,j) . Therefore, the mathematical expressions of quantization and 

dequantization are given by [25]: 

lYk,m(i,j) - ¥ J + 1, ( · ·) Zk"' 
Q Yk ,m 1,, J > -2-' 

k,m 

Sk,m(i,j) = 0, _ Zk,m < y (i J. ) < Zk,. 
2 - k,m ' - 2 

(5.1) 

I Yk,m(i,j)+¥ l - 1 I Qk,m 

(sk,m(i,j)- 0.5) Qk,m + z;.,, Sk,rn (i,j) > 0 

0, Sk,m(i,j) = 0 (5.2) 

(sk ,m(i,j) + 0.5) Qk,m - z;.,, Sk,rn(i,j) < 0 

where l x J is the largest integer not larger than x, and [ x l is the smallest integer not 

smaller than x . 
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5.1.2 Entropy 

For an individual sub band, the minimum number of bits per sample required to encode 

the quantizer bin indices matrix sk,m( i, j ) is equal to the entropy of its coefficient value 

distribution [46]. Assume that the coefficients of sk,m(i, j) are represented as a set 

Ak,m· Let !k,m( u ) represents the probability of the occurrence of value 'U in the matrix 

sk,m( i, j ). Thus the entropy of this matrix is expressed as follows 

Hk,m =- L fk.m (u) log2 f k,m(u). (5.3) 
uEAk,m 

The minimum data rate Hk,m (bits/sample) for encoding sk,m(i,j) can be approached 

in practice by techniques such as variable-length code [1, 46]. 

If the original image has a size of N 1 x N2 and each decomposed subband sk,m(i,j) 

contains Mk,m samples, then the total bit rate for the semi-NRCT-based compressed 

image is calculated as follows: 

1 
L - 1 Dk - 1 

H = ~ ~ Hkm X Mkm (bits/pixel). 
N1 xN2 ~ ~ ' ' 

k=O rn=O 

(5.4) 

The entropy of each subband is substant ially reduced by quantization, hence the data 

rate of the overall semi-NRCT-based compression system is also reduced . 

5.1.3 Bit Allocation 

Since the minimum data rate (bits/pixel) for each subband is equal to its ent ropy, the 

total bit budget should be allocated to subbands according to their entropies. The 

entropy of each quantized coefficient subband is determined by the characteristic of 

the corresponding subband quantizer , that is the bin widths Zk,m and Qk,m· There­

fore, the procedure of bit allocation is the design of t he zero-bin widths Zk,m and the 

nonzero bin widths Qk,m, fork = 0, 1, · · · , L , and m = 0, 1, · · · , Dk- 1. 
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In order to enhance the t ransmission efficiency, the finest diagonal subband (k = 

L - 1, rn = 2) is discarded when the compressed data are transmitted , since this band 

contains lit tle information for most fingerprint images [25]. Therefore, the bin width 

Q L-1,2 is set to zero to signify that all the elements in this subband are quantized to 

zero. Based on the adapt ive bit allocation 1 method developed by the FBI [25], the 

zero-bin width Z k,m and the nonzero bin width Qk,m are chosen as follows: 

Qk,m = 

_! 
"( 

10 

0 

k = O 

k = 1, · · · , L - 2 and k = L- 1, m = 0, 1 

k= L - 1,m = 2 

(5.5) 

(5.6) 

where a~,m is the variance of the (k, m)-subband. 'Y = QO,~, is the reciprocal of the 

step size of the quantizer for the coarsest scale. For other scales, Qk,m is proportionate 

to Qo,m with a weight dependent on the variance a~,m· Moreover, the zero-bin width 

Zk,m is chosen in terms of Q k,m· As shown in Eq.(5.5) and Eq.(5.6), Qk,m and Zk,m are 

determined by a single parameter T Therefore, the performance of the overall system, 

including the bit rate and the quality of reconstructed images, is also controlled by 

the parameter 'Y. 

1ln t he original adaptive bit allocation method by the FBI, the second branch of Eq.(5.5) is given 

by 10/ ( /Ak ,m In ( cr~ ,m) ), where Ak,m is an adjustmen t constant. In the WSQ standard , Ak,m are 

chosen to be 1 for most of subbands, except for the finest scale (k = L - 1), in which Ak,m arc set 
to be 1.08 ~ 1.42. In the experiments of this t hesis, t he adjustment parameters Ak,m are chosen to 
1 for all subbands, hence they are ignored in Eq.(5.5). 
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5.2 Numerical Experiments 

This section focuses on the comparison of performance of fingerprint image compres­

sion techniques based on different transforms. As mentioned before, the FBI WSQ 

[25] is a wavelet-based standard. Moreover , the semi-NRCT (i.e. the NRCT ) is 

a progressive and critically ampled version of the t raditional contourlet transform. 

Therefore, the semi-NRCT-based fingerprint compression is compared with compres­

sions based on the wavelet transform and the contourlet transform , in all case with the 

decomposit ion of the original image into six scales. Moreover, the contourlet traitS­

form is calculated with the frequency partition as the semi-NRCT , with 32 directional 

subbands at the second and the third finest scales, respectively. 

In the following experiments, for best results, the source image x(m, n) with a 

dynamic range of [0, 255] is preprocessed to ensure that the stati tical distribution of 

the quantized coarsest subband has a mid-point around zero, as follows 

x(m, n) = x(m, n) - 128, for 0::; m, n ::; 511. (5.7) 

At the transform-based decoder section, 128 is added to the reconstructed image to 

output an image with the dynamic range of about [0, 255]. 

5.2.1 Test Set 

Fig.5.4 shows four test images used in the following experiments to examine the perfor­

mance of the proposed semi- RCT-based fingerprint image compression. fingerpri nt 

is a standard test image and is also used in the nonlinear approximation experim nts 

(see Fig.3.22(e) in Chapter 3). f09 , f 14 and f23 are three example images from Lhe 

NIST-4 fingerprint database [47], which contains 8-bit gray-scale fingerprint images 

of size 512 x 512. The IST-4 images are examples of fingerprint images by scanning 
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and d igi tizing F BI inked cards at a resolution of 500 pixels/ inch. Each fingerprint 

image for NIST-4 has a white region of 32 rows at the bottom of the image. Note 

that fingerprint identification requires clear ridge endings and ridge bifurcations in 

fingerprint images [42] . 

(a) Fingerprint (b) £09 

(c) £14 (d) £23 

Figure 5.4: Test gray-scale test images of size 512 x 512. (a) Fingerprint . (b)-(d) 

Fingerprint image samples from NIST-4 database, each of which has 32 rows of white 

space at the bottom of the image. 
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5.2.2 Test Results 

PSNR and Bit Rate as Functions of 'Y 

As mentioned in Section 5.1.3 (see Eq.(5.5) and Eq.(5.6)), the parameter 'Y controls the 

quality of the reconstructed image and t he bit rate H (bits/pixel) of the compressed 

data. The image quality can be numerically evaluated by its peak signal-to-noise ratio 

(PSNR), which is defined in Eq.(3.7) and Eq.(3.8). Therefore, the PSNR aud bit rate 

performances of the scmi-NRCT-based compression scheme can be represented as two 

functions of 'Y. 

Fig.5.5(a) shows t he comparison of the PSNR performance based on 'Y for the 

test image fingerprint. In Fig.5.5(a), the semi-NRCT has the same PSNR vs. 

'Y performance as the traditional contourlet transform, which implies that the same 

quantization characteristic results in the same quantization errors for both transforms. 

Moreover, for lower"/, the wavelet t ransform has lower PSNR than the scmi-NRCT 

and the contourlet transform in the range of 'Y < 0.005. Recall t hat 'Y is the reciprocal 

of the step size of t he coarsest-scale quantizer, hence lower values of 'Y is equivalent 
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(b) Bit rate vs. 'Y 

Figure 5.5: The curves of (a) the PS Rand (b) bit rate performances based on the 

parameter 'Y for the test image fingerprint . 
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to larger bin widths of the subband quant izers. 

The comparison of the bit ra te performance according to-y is shown in Fig.5.5(b). 

With the 4/ 3 redundancy in its oversampling ratio, the contourlet transform signif­

icantly increases the bit rate, compared with the wavel t transform and the semi­

NRCT. Moreover, the semi-NRCT can more efficiently represent the abundant del­

icate curves of the ridges of fingerprint images than can the wavelet transform, due 

to the directional selectivity of the semi-NRCT. Therefore, the semi-NRCT has the 

lowest bit rate among the three t ransforms. The patterns of PSNR and bit rate curves 

related to -y for the other test images are similar to those for fingerprint images, as 

shown in Fig.5.5, and are not shown in Fig.5.5. 

Curves of PSNR vs. Bit Rate 

The direct relationship between PSNR and bit rate is more important in practice 

in evaluating a compression system, where PSNR indicates the quality of t he re­

constructed images and bit rate represents the efficiency of compression. Fig.5.6 

shows the PSNR curves based on bit rate for the four test images and for the thre 

t ransform-based systems. The semi-NRCT always has higher PSNR performance 

than the contourlet transform for a given bit rate, since as shown in Fig.5.5, the semi­

NRCT requires a lower bit rate than the contourlet transform to achieve the same 

PS R for a given -y. The PS R improvement of the semi- RCT-based compression 

scheme over the contourlet-based one derives from the fundamental fact that NRCT 

is a progressive and crit ical sampled version of the contourlet transform without the 

redundancy of oversampling. 

In addition, as shown in Fig.5.6, the semi-NRCT-based fingerprint imag compr s­

sion outperforms the wavelet-based one for lower bit rates approximately in the range 

of (0, 0.2) bits/pixel. In fact, all the three transform-based compression schemes can 
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obtain reconstructed images close to the original imag for higher bit rates. There-

fore, compression at lower bit rates attracts more research interests, and at such rates 

some compression schemes can cause significant corruption in reconstructed images. 
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Figure 5.6: The comparison of PSNR vs. bit rate curves for the four test images and 

for the three transform-based compression systems. 

Reconstructed Images 

Detailed comparisons of the transform-based fingerprint image compressions on the 

test image fingerprint are shown in Fig.5.7. The original image fingerprint is 

illustrated in Fig.5.7(a). The wavelet transform, the tradit ional contourlct trans-
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(a) Original image fingerprint (b) Semi-NRCT: PSNR = 22 .32 dB 

(c) DWT: PSNR = 22.04 dB (d) CT: PSNR = 21.62 dB 

Figure 5. 7: Comparison of reconstructed images generated from transform-based fin­

gerprint image compressions. (a) The original image fingerprint , which i · to be 

compressed at the bit rate of 0.12 bits/ pixel. Reconstructed images by (b) the semi­

NRCT-based , (c) t he wavelet-based , and (d) the contourlet-based fingerprint image 

compressions, each with its resultant PSNR. 
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form and the semi-nonredundant contourlet transform are computed for this image, 

then the coefficient images are respectively quantized to achieve the data rate of 0.12 

bits/pixel. This specific bit rate is chosen to obtain good RCT results with ac­

ceptable quality for image identification. Note that the bit rates for the following 

experiments in Fig.5.8-Fig.5.10 are chosen differently to ensure their corresponding 

NRCT results with lowest acceptable qualities for fingerprint idenfitication. 

The reconstructed images based on the three different transforms are shown in 

Fig.5.7(b)-(d). The semi-NRCT-based compressed image in Fig.5.7(b) has the high­

est PSNR among the three transforms, and it provides acceptable image quality with 

little degradation compared with the original image. With the same data rate of 0.12 

bits/pixel, the wavelet-based compressed image in Fig.5.7(c) has significant corrup­

tion in some areas, such as the area at right-bottom corner. The contourlet-based 

compressed image in Fig.5.7(d) has a lower PSNR than the other two transforms; 

however, it presents more oriented details than the wavelet transform due to its di­

rectional selectivity. However, due to its improvement in sampling over the contourlet 

transform, the semi-NRCT-based compression shows a slight enhancement in there­

constructed image over that for the contourlet-based compression (see the lower right 

corners in Fig.5.7(b) and (d)). 

A zoom of the center of the test image f09 is shown in Fig.5.8(a) . Fig.5.8 illustrates 

a detailed comparison of the zoomed portion of "f09" at the bit rate of 0.2 bits/pixel. 

The semi-NRCT-based reconstructed image in Fig.5.8(b) preserve more oriented 

details when compared with the wavelet-based and the contourlet-based reconstructed 

images in Fig.5.8(c) and (d) . The wavelet-based compressed image in Fig.5.8(c) 

contains some blocking artifacts and is significantly blurred in the middle-right area. 

Moreover, the contourlet-based compressed image includes some artificial dots around 

the right-top corner of Fig.5.8(d). Due to its oversampling, the contourlet transform 
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(a) Original image £09 (b) Semi-NRCT: PSNR = 27.45 dB 

(c) DWT: PS R = 26.96 dB (d ) CT: PS R = 26.39 dB 

Figure 5.8: Detailed comparison of the transform-based fingerprint image compres­

sions at the bit rate of 0.2 bits/ pixel. (a) A zoom-in area of t he original image "f09" . 

The reconstructed images by (b) the semi-NRCT-based compression preserves more 

detailed features of fingerprint ridges than that by (c) the wavelet transform, and (d) 

the t raditional contourlet transform. 
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(a) Original image f 14 (b) Semi-NRCT: PSNR = 28.26 dB 

(c) DWT: PSNR. = 28.51 dB (d) CT: PSNR. = 27.17 dB 

Figure 5.9: Image compression of the test image f 14 at the data rate of 0.25 bits/ pixel. 

(a) A zoomed area of the original image f14. (b) The semi-NR.CT-based compressed 

image is close to the original one. (c) The wavelet-based compressed image has 

noticeable blurring, although it has the highest PS R. among the three transforms. 

(d) The conto urlct-basecl compressed image has li ttle degradation compared with the 

semi-NR.CT-based image. 
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has more coefficients than the semi-NRCT and the wavelet transform. This implies 

that the number of bits allocated to each contourlet coefficient is lower than that 

of the other two t ransforms, if the total bit rate is fixed. Therefore, the contourleL 

tran form has the lowest PSNR among the three transforms in Fig.5.8. However , 

the contourlet transform has the advantage of directional selectivity compared with 

the wavelet transform. Therefore, the image compressed by the contourlet transform 

retains more directional deta ils than does the wavelet compressed image (compare 

the middle-right areas of Fig.5.8(c) and (d)) . 

A comparison of these t ransform-based compressions on a zoom of the test image 

f14 is illustrated in Fig.5.9, where images are compressed at the bit rate of 0.25 

bits/pixel. A zoomed portion of f14 is shown in Fig.5.9(a). By being compared with 

the semi-NRCT-based compressed image in Fig.5.9(b), the wavelet-based compressed 

image has a slight blurring in the middle-left area in Fig.5.9(c). Note that the semi­

NRCT-based reconstructed image has lower PSNR, but provides finer ridge details, 

than the wavelet-based one. The contourlet-based compressed image in Fig.5.9(d) has 

little degradation with lower PSNR compared with the semi-NRCT-based compressed 

image. 

Fig.5.10 illustrates the comparison of the transform-based fingerprint image com­

pressions on the test image f23 at the data rate of 0.23 bits/pixels. A zoom-in 

area of f23 is shown in Fig.5.10(a). The semi-NRCT-based reconstructed image 

in Fig.5.10(b) is very close to the original image, while the wavelet-based and the 

contourlet-based compressed images have slight blurring around the middle-left areas 

in Fig.5.10(c) and (d). 

The experimental results in Fig.5.7 through Fig.5.10 demonstrate visually that 

the semi-NRCT-based image compression can preserve more directional details in 

reconstructed fingerprint images when compared with other two t ransform-based ones 
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(a) Original image £23 

(c) DWT: PSNR = 30.92 dB (d) CT: PSNR = 29.92 dB 

Figure 5.10: The detailed comparison of a zoom of the test image £23 at the data 

rate of 0.23 bits/pixel. (a) A zoomed area of the original image £23. I econstructed 

images by the fingerprint image compression schemes based on (b) the semi-NRCT, 

(c) the wavelet t ransfonn, and (d) the traditional contourlct transform . 
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for a given bit rate. 

5.3 Summary 

This chapter proposes a new fingerprint image compression scheme based on the 

semi-NRCT, which is a combination of the nonredundant contourlet transform and 

the wavelet transform. The performance of the proposed fingerprint image compres­

sion system is evaluated by the peak signal-to-noise ratio of the reconstructed image 

and the bit rate of the compressed data. Both PSNR curve comparisons and de­

tailed visual examination of the reconstructed images demonstrate that the proposed 

semi-NRCT-based algorithm outperforms both wavelet-based and contourlet-based 

compression, especially at lower bit rates in the range around (0, 0.2) bits/ pixel. 



Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

This thesis has developed a new multiresolution and multidirectional image represen­

tation, namely the nonredundant contourlet transform (NRCT), and has applied it 

to fingerprint image compression with favorable results . 

In Chapter 2 various image representation techniques, including the wavelet trans­

form and the contourlet transform, were reviewed from the literature. Due to its 

directional selectivity, the contourlet transform can efficiently track oriented struc­

tures in images. Unfortunately, the contourlet transform had the drawback of a 4/ 3 

redundancy in its oversampling ratio. In order to eliminate the redundancy, Chapter 

3 developed an innovative framework of filter banks to achieve the same frequency 

partition as the contourlet transform. The new image representation is called the 

nonredundant contourlet transform. The NRCT starts with the 2-directional wavelet 

transform which was also developed in this thesis. The NRCT is generat d by first 

implementing the 2-directional wavelet transform , and then directionally decompos­

ing the higher frequency bands. If the basic RCT algorithm is iterated on the coar 'e 

124 
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scale, then a multiscale and multidirection image representation is achieved . 

The proposed nonredundant contourlet transform possesses various valuable prop­

erties, including sparse expression, critical sampling, perfect reconstruction, multires­

olution , and multidirection. These properties reveal that the NRCT can efficiently 

track the oriented structure of images. In the nonlinear approximation experiments 

in Chapter 3, the NRCT was shown to outperform the wavelet transform when low 

ratios of coefficients to original pixels are ret ained. Moreover, the NRCT has better 

peak signal-to-noise performance than the traditional contourlet transform. 

Chapter 4 investigated the computational complexity of the NRCT, and compared 

it with the wavelet transform and the contourlet transform. The one-level NRCT , 

with m directional subbands in the highpass scale, has the computational complexity 

with an upper bound CJ(log2 m). The examination of running time in Matlab shows 

tha t the time complexity of the nonredundant contourlet transform is tolerable for 

standard images, such as of size 512 x 512. 

Based on an appropriately designed filter bank structure, the NRCT is an exten­

sion of the discrete wavelet transform, hence it is easily compatible with the DWT. 

Chapter 3 developed a new transform called the semi-NRCT , which is a combina­

tion of the NRCT and the wavelet t ransform. The semi-NRCT has its potential to 

capture the directional ridge structure of fingerprint images, while saving the com­

putational complexity of the NRCT. Therefore, Chapter 5 applied the semi-NRCT 

in a transform-based compression scheme. The experiments in Chapter 5 demon­

strate that the semi-NRCT-based fingerprint image compression has enhanced p r­

formance, especially at lower bit rates, when compared with the wavelet-based and the 

contourlet-based compressions, with the same transform-based compression scheme. 

This thesis contributes a progressive version of the contourlet transform with 

critical sampling, and hence extends its applications to image compression field. 
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With an acceptable computational complexity, the nonredundant contourlet trans­

form presents significant potential for image representation and compression. 

6.2 Future Work 

Due to the binary tree structure of filter banks for the nonredundant contourlet 

transform, the size of input images is restricted in this thesis to be a power of Lwo, 

such as 256 x 256, 512 x 512. However, a generic transformation should not restrict 

the size of input images. In fact, it should be possible to extend the proposed NRCT 

to allow an arbitrary input image size using a method called nonexpansive symmetric 

extension [48, 49]. 

The efficiency of the NRCT system may be improved as well. As mentioned 

in Chapter 4, most of the computational complexity of the NRCT comes from the 

sheared-parallelogram (SPR) filter bank. In this thesis, the SPR filter bank is designed 

based on the analysis/synthesis structure, using the transformations of variables tech­

nique. If the SPR filter bank can be implemented in a more efficient structure, then 

the corresponding NRCT system will be speeded up. 

In Chapter 5, the proposed NRCT was applied to fingerprint image compres­

sion. This thesis focuses on the comparison of transform-based compressions schemes 

among different transforms. So the entropy coding following quantization is simpli­

fied to the ideal variable-length coding, which assigns a bit rate based on the entropy 

of quantized image data. In fact, the work could be extended to include a practical 

coding scheme (e.g. with source coding and channel coding) so as to compare the 

performance of the extended system with JPEG2000 and FBI WSQ standards. 

As mentioned in previous chapters, the nonredundant contourlet transform can 

be easily compatible with the wavelet transform. This thesis developed a new trans-
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form called the semi-NRCT , which is a combination of the wavelet transform and the 

NRCT. The semi-NRCT provides an approach to partly replace the wavelet trans­

form with the NRCT. Therefore, a combination of the semi-NRCT and the prevalent 

wavelet-based techniques, such as JPEG2000 and FBI WSQ, is another possibili ty to 

be explored. 
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