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Abstract 

The scattering of high frequency (HF) radiation from rough surfaces is addressed 

with a view to developing bistatic cross sections of the ocean surface. The analysis 

starts with an expression for the normal component of the electric field in the form of a 

two-dimensional spatial convolution involving the spatially Fourier transformed source 

field and the appropriate Green 's function for the region of interest. This expression 

is reduced to integrals which are analyzed to ser.ond order in scatter. The reception 

point of the scattered field is kept general, and, initially, the good-conducting, slightly 

rough surface is chosen to be time invariant. The excitation of the assumed vertical 

dipole source is also kept general at the outset. Reduction of the resulting integrals 

is accomplished primarily via asymptotic techniques. 

The analysis leads to a first-order field component and a second-order solution 

consisting of three separate components. The latter account for (1) double scattering 

from a surface region remote from both the source and the receiver and (2) fields 

arising from single scattering near either the source or receiver which is followed or 

preceded, respectively, by a single remote scatter. These bistatic forms are shown 

to reduce to existing monostatic results with the introduction of the appropriate 

scattering configuration. 

Using the general field expressions, the source is next specified to be a vertical 

dipole with a pulsed sinusoidal excitation. This is done with a view to extending 

the analysis to obtain bistatic cross section expressions for the ocean surface when 

interrogation is carried out with a pulsed radar. Before this can be accomplished, 

time variation for the randomly rough surface is also introduced into the model. [t is 

assumed that the surface varies much less slowly than the time necessary to obtain a 

single measurement of the scattered field. 

The HF bistatic Doppler cross section of the time varying surface is effected via 

Fourier transformation of the ensemble-averaged electric field and subsequent com-
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parison with the radar range equation. This standard technique gives first- and 

second-order cross section models which are calculated and depicted by introducing 

an appropriate directional representation of the ocean spectrum. It is shown that all 

of the essential characteristics of the previous monostatic formulations are contained 

in these cross sections as a special case. 

Finally, a technique is developed for modelling the axpected pulse radar spectrum 

when signal reception is c>..'ternally noi:;e limited. It is assumed that both the ocean 

echo and noise voltage may be represented as zero-mean Gaussian random variables. 

The resulting models are shown to compare very favourably with available monostatic 

spectra. 

The bistatic cross sections and the noise model for pulsed HF radar provide a 

means of setting the appropriate specifications of particular systems which may be 

used for ocean surface parameter estimation. Additionally, the properties of the 

scattering as manifested in the theory should be relevant to further developments of 

clutter suppression schemes for use in hard-target detection. 
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Chapter 1 

Introduction 

1.1 Research Rationale 

An ever-increasing interest in marine-related enterprise is bringing with it a corre

sponding need to accurately and quickly provide comprehensive oceanographic in

formation. A detailed description of the ocean surface would require knowledge of 

such parameters as directional wave height spectra, surface currents and wind fields. 

Consumers of this information encompass (1) scientists interested in the dynamics 

of the upper ocean and in environmental concerns; (2) governments defending na

tional ocean-related interests; ( 3) search and rescue personnel; and ( 4) commercial 

and industrial users involved in navigation, renewable resource development ( eg. fish

eries operations), and non-renewable resource exploration and development (eg. the 

mining and petroleum industries). 

Conventionally, oceanographic information has been provided by a variety of in

struments including wave staffs, pressure sensors, wave buoys, current meters, and 

drogued and undrogued surface drifters. Wind data near the ocean surface has typi

cally been provided by surface buoys and ships' anemometers. With the exception of 

drifters used for surface current measurement, these devices are limited to providing 

data from very small regions of ocean - i.e., they are essentially point sensors. In 

addition to this limitation, deployment, retrieval and data transmission, especially in 

rough seas when the required information may be most useful, can be both difficult 
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and expensive. 

In recent decades, a variety of remote sensing techniques for ocean surface param

eter estimation using radar have emerged. Microwave radars, limited to line-of-sight 

measurement, have been successful in providing information on spectral shape, domi

nant wave directions, wave periods, and, to some extent, surface currents (Tucker [1], 

Chapter 8}. However, microwaves interact primarily with short ocean waves (wave

lengths < 15 em), while most of the wave energy is found in the much longer gravity 

wave portion of the spectrum (wavelengths of tens to hundreds of metres). Deter

mining the energy content of these long waves by considering their modulation of the 

short waves has proven to be a very difficult process. As a result , producing calibrated 

wave energy spectra using microwave radar has not been achieved to date. 

Over the last twenty years, high frequency (HF) radars, operating between 3 and 

30 MHz, have been used to measure ocean surface characteristics. Unlike microwave 

systems, these radars are not limited to line-of-sight operation. They have been used 

successfully in both sky wave and ground wave modes to "look" well beyond the 

horizon. They have the potential for viewing thousands of square kilometres ( eg. Gill 

et al., [2]) , even in single-site operations. The resolution of such systems when used 

in oceanic measurements is typically from a few hundred metres to a few kilometres, 

depending on the application. The wavelengths associated with HF electromagnetic 

(e-m) radiation are of the same order of magnitude as those of the ocean waves 

carrying the bulk of the spectral energy. The information mapped to the HF radar 

signal by the ocean surface therefore lends itself to interpretation more easily than is 

the case for microwaves. 

As ocean waves are moving targets, they cause Doppler shifts in any radiation 

which is scattered from them. It is well known that the chief mechanism of the inter

action between the incident e-m radiation and the ocean waves is that of Bragg scat

tering. This means that, for grazing incidence, the first-order interaction is between 
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the e-m wave and ocean waves of wavelength one-half that of the incident radiation. 

Second- and higher-order interactions also occur, but the effective mapping of the 

ocean spectrum to the radar spectrum is correspondingly more complicated. The 

nature of the scattered signal is known to depend on radar frequency, beam width, 

polarization and configuration ( monostatic or bistatic). In order to determine ocean 

surface features from the scattered radiation, the scattering mechanism itself must 

be investigated. That is, the scattering cross section at HF for the ocean must be 

developed. The scattering cross section is defined as "that area which, when multi

plied by the power flux density of the incident wave, would yield sufficient power that 

could produce by isotropic radiation, the same radiation intensity as that in a given 

direction from the scattering surface" [3J. In the case of the ocean, development of 

such a cross section is complicated by the random roughness of the surface. 

As is indicated in Section 1.2, several formulations of the HF radar cross sections 

of random. slightly rough, surfaces already exist. However, extensive treatment has 

been carried out only for the case of co-location of transmitter and receiver - i.e. a 

monostatic (or backscatter) configuration. Such cross sections, in general, yield am

biguous directional information, this problem being overcome by using two or more 

complete radar installations. The development of the bistatic cross sections will pro

vide a description of the scattering as viewed from a site remote from the source of the 

radiation (i.e. the transmitter and receiver are not co-located). For radar operation 

in a marine environment, such cross sections will provide meaningful relationships 

between the actual received signal for a bistatic configuration and the ocean surface 

conditions responsible for the scatter. This would mean that with a single transmitter 

and two widely separated receivers (one possibly at the transmit location) directional 

information could be obtained without the use of two full radar systems. Thus, an 

understanding of the bistatic scattering problem will provide a basis for facilitating 

a more economical way of measuring directional ocean surface characteristics. Ad-
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ditionally, knowledge of the bistatic interaction mechanism will be essential to the 

development of bistatic clutter suppression schemes. Such algorithms, which already 

exist for monostatic operation [4], are important in hard-target detection and track

ing when the targets being interrogated lie in regions of the radar spectrum which 

are highly contaminated with radiation scattered from the ocean surface. 

The aim of this research is to address the fundamental scattering problems asso

ciated \\ith bistatic operation of HF radars in an ocean setting. It is desired that the 

models formulated here should provide a foundation for future experimental investi

gations, not only of the ocean itself but also of targets of interest travelling on its 

surface. 

1.2 Literature Review 

The development of the radar cross-section of the ocean surface during the last two 

and one half decades has relied necessarily on existing theories of e-m scattering 

from rough surfaces. Classically, these theories have been grouped into two broad 

categories. namely, (1) perturbation and (2) the Kirchhoff (or tangent-plane) method. 

As is discussed below, combinations of these techniques have been implemented also. 

Since the 1960's, other models of e-m scatter have begun to show promising ap

plications. The most widely documented of these inciude (1) the composite-surface 

scattering or wave-facet model; (2) the full-wave technique and, most recently, (3) a 

generalized function approach, finding its roots in the work of Walsh [5]. Barrick's 

"unified modal representation" [6] has not been applied to two-dimensionally rough 

surfaces and is not addressed here. 

Valenzuela [7] has provided a concise review of the classical models as well as the 

wave-facet model. The following sections provide a brief discussion of the various 

rough-surface scattering techniques listed above. Particular emphasis is placed on 

the Walsh developments ([5], [8], [9]) on which the research in this thesis is based. 
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Application papers relating these techniques to the ocean surface are also considered. 

1.2.1 Perturbation 

1.2.1.1 Methodologies 

Perturbation scattering theory was presented by Lord Rayleigh (see Strutt, [10]) to 

investigate acoustic scattering from corrugated surfaces having a sinusoidal profile. 

This method, briefly reviewed below, was subsequently implemented by other inves

tigators in the study of the scattering of planar e-m waves from statistically ·'slightly 

rough" surfaces. The condition of being aslightly rough" dictates that the product of 

the incident e-m radiation wavenumber (k) and any surface deviation. e(x. y), from 

the mean must be very much less than unity (i.e., ke << 1). 

Rice [11} presented an extensive perturbation methodology for e-m scattering from 

non-time-varying two-dimensionally-rough surfaces. The surface randomness is intrcr 

duced by expanding a "real" twcrdimensional surface, e(x, y), periodic in both X and 

y, into a Fourier series in which the coefficients are taken to be independent random 

variables. The mean surface is taken to be planar, i.e. flat. The (x, y, z) scattered 

electric field (E) components, resulting from plane wave incidence on such surfaces. 

are also written in series form. The terms of the latter represent discrete angular 

modes for the scattered field. The problem is to determine the coefficients of these 

modes. The coefficients of the components are related through the divergence rela

tion, V · E = 0. 

In order to solve for the coefficients of the various spectral terms, the electric field 

boundary condition must be imposed. For a perfectly conducting surface, as Rice 

treats initially, the condition is simply that the tangential component, Er, of E must 

be zero on the surface. Of course, it is through the boundary condition that the 

surface and its derivatives (or slopes}, ~ and e11 , enter into the .E-field expressions. 

Rice retains only terms up to second order in ke in the equations resulting from 
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Er = 0. As is the case fork~, it is assumed that ~z, ~Y << 1. The coefficients of the 

spectral modes are expanded in a perturbational series, again up to second order. The 

first-order E:z: and Ey coefficients are seen to follow immediately from the boundary 

conditions. These results are then used to obtain the next highest order, and so on. 

Using the E:z: and Ey coefficients, the coefficients of Ez terms are obtained from the 

divergence relation. 

Rice completed the analysis up to second order for a perfectly conducting surface 

for both horizontal and vertical polarization of the incident plane wave. Determining 

first the mean and then the variance of the scattered fields, Rice provided a kind 

of "roughness" spectrum for the scatter. In addition to the results for a perfectly 

conducting surface, he explicitly presented first-order scattered fields for the case of 

a horizontally polarized plane wave incident on a rough dielectric surface. 

Wait [12] presented a perturbation technique for the case of reflection of a ver

ticaily polarized e-m plane wave from a two-dimensional periodic surface, rough in 

x only (i.e .. ~(x) rather than ~(x,y)). Initially, the angle of incidence is kept arbi

trary. Beginning with an impedance boundary condition, sometimes referred to as 

the Leontovich boundary condition (see, for example, Ishimaru [13]) in which Wait 

used a surface impedance normalized to that of free space, the Rice procedure was 

followed. That is, a series expansion of the E-field is substituted into the boundary 

condition and the coefficients, treated in a perturbational sense, are determined to 

second order. Using these coefficients, Wait also derived expressions for the "effective" 

normalized surface impedance for the case of specular reflection, with special empha

sis on near-grazing incidence. Wait's results, consistent with corresponding formulae 

obtained by Rice [11] and Barrick [14], show that, even when a sinusoidal surface is 

perfectly conducting, the effective impedance of the surface will have a non-zero real 

part when the surface wavelength is greater than half the radiation wavelength. 

The Barrick (14] analysis uses the same vein of argument as that of Rice. The 
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nature of the field is that of wave being "guided" by a rough, highly-conducting sur

face. The Rayleigh hypothesis, i.e. the assumption that the field can be represented 

in terms of only upgoing (away from the surface) waves, is invoked. Having developed 

expressions for the effective impedance, Barrick then makes application to propaga

tion across the rough sea surface, examining the increased losses in the field due to 

sea state. 

Rosich and \Vait [15] extended and generalized Wait's [12] perturbation analysis 

to include all spectral orders of the scattered field. No upper limit was imposed on 

the perturbation order. Again, the analysis was limited to vertical polarization and 

a two-dimensional periodic surface, rough in one direction. The results were shown 

to be consistent with the analysis of the special cases, i.e. specular reflection and 

grazing incidence, examined earlier. 

Mitzner (16] developed a general perturbation formulation for an arbitrarily shaped 

mean surface. as opposed to Rice's fiat mean surface. The small height and slope as

sumptions are maintained. Mitzner writes the basic e-m field equations in terms of 

dyadic Green's functions and effective currents on the mean surface. These surface 

currents are determined by substituting the surface perturbation expansion, to second 

order, into the tangential boundary conditions. Once the dyadic Green's function for 

a particular geometrical configuration is found, the perturbed fields may be calcu

lated. Mitzner gives dyadic Green's functions for the cases of an unbounded medium, 

a circular cylinder surrounded by another medium (and similarly for a sphere), and 

the half-space problem ( z < 0 filled with one medium and z > 0 filled with another) . 

While Mitzner gives the general formulation for these various cases, calculated fields 

are presented only for scattering from a cylinder with sinusoidal irregularities. 

More recently, Rodriguez and Kim [17) have presented a so-called "unified per

turbation expansion" for surface scattering. Starting with the "extinction theorem", 

a perturbation parameter is chosen such that the analysis becomes applicable to the 
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small height, small momentum transfer, and two-scale regimes (see Section 1.2.3). 

By invoking the small height approximation, the results reduce to those of the Rice 

method, and by splitting the surface into smooth and rough components, the analysis 

is shown to lead to the composite surface cross section (Section 1.2.3). The results of 

the second-order cross sections are seen to deteriorate as angle of incidence or surface 

height increases, especially for vertical polarization. 

1.2.1.2 Applications of Perturbation to E-M Scattering from the Ocean 

In principle, once the scattered fields have been calculated, radar cross sections of 

the scattering surface may be obtained. Peake [18) appears to have been the first to 

reduce Rice's [11] perturbation theory to the average scattering cross section. U
0

, for 

a slightly rough surface. The general form of this cross section is 

uo = 
4

7r average power scattered per unit solid angle per area of surface . ( 
1
.
1
) 

incident power at unit area of surface 

Peake's analysis was applied, in particular, to roadways and other random, slightly 

varying rough surfaces, as well as to surfaces with vegetation, characterized as thin 

lossy cylinders. 

Valenzuela [19], as part of his investigation of the depolarization of e-m waves 

by slightly rough surfaces, developed a HF cross section of the sea surface to second 

order assuming a Neumann spectrum (Kinsman [20]) and a cosine-squared directional 

distribution for a fully developed sea wave regime. 

Barrick [14], Part 2, on developing expressions for the effective surface impedance 

at grazing incidence, then makes application to propagation across the rough sea sur

face, examining the increased losses at HF and VHF (very high frequency) due to sea 

state. Continuing with the Rice [11] theory, Barrick (21] developed a first-order HF 

scattering cross section - the restrictions of the first-order perturbation theory are 

generally met by the sea surface when the e-m wave lies in the HF band. In carry

ing out this analysis, Barrick introduced the sea surface as a time-varying quantity 
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(i.e., ~(x, y, t) rather than simply ~(x, y)). Barrick's results verified Crombie's [22] ex

perimental deductions that Bragg scattering was the physical mechanism responsible 

for e-m scatter from the ocean surface. The effect on the received monostatic radar 

spectrum (eg., Figure 1.1) is to produce two large peaks at frequencies of ±../'2'if, 
where g is the acceleration due to gravity and k is the radio wavenumber. These 

shifts correspond uniquely with deviations which would be produced by ocean waves 

having lengths exactly one-half the radio wavelength and moving directly toward or 

away from the radar. 

First-order Peaks -CQ -25 
"C / "" -

-35 

-45 

-55 

-65 

-75 

-85 
-1.00 -O.SO 0.00 o.so 1.00 

Doppler Frequency, fd (Hz} 

Figure 1.1: Typical monostatic HF ground wave radar spectrum. Operating frequency 
is 6.75 MHz. 

Doppler spectra of e-m backscatter from the ocean, such as seen in Figure 1.1, 

invariably contain a continuum beyond and between the first-order Bragg peaks. Has

selmann (23] proposed that this continuum arises due to higher-order hydrodynamic 

and electromagnetic interactions. Then, Barrick [24}, assuming vertical polarization 

and grazing incidence, derived expressions for the average second-order backscatter 

cross section and the first-order bistatic cross section. The second-order electromag-

netic and hydrodynamic effects appeared in Barrick's second-order formulation in the 
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form of a coupling coefficient. The higher-order mechanisms are well summarized by 

Shearman [25]. Also, Kinsman [20) elaborates on the second-order terms appearing 

in the hydrodynamic equations describing the water surface height. 

Since Barrick's initial efforts in developing ocean cross sections at HF using the 

perturbation technique, he has published widely in refining and extending the work. 

Barrick [26} verified the proper use of the gravity-wave dispersion relation in the cross 

section equations. and Barrick and Lipa [27} presented the hydrodynamic coupling 

coefficient for shallow water applications. Also, Lipa and Barrick (28) have neatly 

summarized techniques to extract sea state from monostatic HF radar sea echo. Oth

ers (eg., Wyatt et al. [29). Gill and Walsh (30). Howell and Walsh (31), Hickey et al. 

[32]) have extended and modified these techniques with very good success in deter

mining non-directional ocean spectra, significant wave heights, and surface currents. 

Such favourable results stemming from the use of the monostatic cross sections lend 

credibility to the perturbation technique initially used in deriving them. 

Subsequent to Barrick's cross section work, Johnstone (33), proceeding with a 

similar perturbation analysis, developed ocean surface cross sections to second order. 

Johnstone also gave a preliminary expression for the second-order bistatic case but 

made no attempt to evaluate the resulting integrals. 

1.2.2 Physical Optics 

1.2.2.1 Methodology 

Whenever a body or surface is smooth {i.e. the radius of curvature is much greater 

than the wavelength of the incident radiation) the surface fields may be approximated 

by the fields that would be present were a conducting tangent plane introduced at 

each surface point. The technique is referred to as the Kirchhoff method or tangent

plane approximation. When the surface fields are used in the Stratton-Chu integral 

equations (Stratton (34], Section 8.14) to obtain the scattered fields, the procedure is 
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referred to as the Kirchhoff or physical optics method in scattering. As the incident 

wavelengths become vanishingly small, the physical optics method approaches geo

metrical optics, in which the e-m waves may be treated as rays, and the scattering 

reduces to specular reflection. 

Details of the physical optics method are presented by Beckmann and Spizzichino 

[35], Chapter 3. The technique assumes plane wave incidence and does not account 

for multiple scattering. As noted by Ishimaru [13], the physical optics approxima

tion, unlike the geometrical optics approximation, contains wavelength dependence 

by virtue of the same being found in the Fresnel reflection coefficients appearing in 

the former. 

1.2.2.2 Applications of Physical Optics 

The process of obtaining the radar cross sections of a perfectly conducting rough time 

invariant surface using the physical optics approach is presented by Kodis {36} . The 

integrals for the scattered field are evaluated asymptotically by the method of station

ary phase. It is shown that specular reflection makes the principal contribution to the 

cross section. Kodis ' approach appeared superior to older analyses in that the phys

ical optics integral is evaluated before averaging over an ensemble of surfaces instead 

of afterwards, thus allowing more insight into the physical mechanism responsible for 

the scatter. 

Barrick [37] generalized the Kodis analysis to the bistatic case, including finite 

surface conductivity. Also, Barrick and Bahar (38] showed that the same results 

may be obtained independent of the order of the averaging and the stationary phase 

integration processes. Their procedure, unlike the Kodis' work, explicitly accounted 

for shadowing. 

The physical optics approach has been applied to scattering from the sea surface 

( eg. Barrick [39]) and more recently has appeared in geoscience applications ( eg. 

Ulaby and Elachi (40]}. 
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While the physical optics method has proven useful for short e-m radiation (wave

lengths on the order of centimetres or smaller), its constraint on the radii of surface 

curvatures and its inability to properly account for multiple scattering precludes its 

application to HF scattering from the ocean surface. 

1.2.3 Composite Surface Scattering and Related Theory 

Some surfaces may be characterized by multiple roughness scales. Of particular inter

est is a surface which may be considered as being composed of a small-scale roughness 

(i.e. small heights and slopes) superimposed on an underlying, gently undulating (i.e. 

large-scale surface heights), unperturbed surface. That is, the total surface is com

posite in nature. Wright [41] developed a first-order microwave cross section of such 

a surface, but his results did not account for a transition between small- and large

scale effects. Brown [42J treated the scattering of e-m waves from the large-scale 

surface using the physical optics technique, while the small-scale features were an

alyzed from a perturbational viewpoint. Again, Brown's results were given to first 

order for a perfectly conducting time invariant surface, but, unlike Wright's, provided 

for a continuous transition between the near-specular physical optics and wide-angle 

tilted-plane Bragg solutions. 

Brown (43] applied the integral equation method of smoothing (IEMS) to random 

surface scattering. Plane wave incidence and perfect conductivity were assumed. 

The general approach consists of an attempt to first find the current induced on 

the surface by the incident field and then to compute the scattered field from the 

knowledge of that current. The smoothing technique involves (1) multiplying the 

surface current appearing in the magnetic field equation by an exponential factor 

involving the surface height and slopes, (2) expressing that product as the sum of an 

average value and a zer~mean fluctuating part, (3) generating and solving an integral 

equation for the fluctuating part in terms of the average and {4) using the result of 
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step (3) in the equation of step (1) to determine the indicated product, from which 

may be determined the average field scattered by the surface. While the formulation 

is mathematically exact, Brown notes that evaluation of the resulting expressions is 

formidable and stops short of a numerical study. The smoothing analysis is extended 

by Brown [44} to include perfectly conducting random rough surfaces having small 

height but large slopes, curvatures, etc .. He notes that , due to the applicability of 

the theory to large slopes, it might be possible to use it in determining when the 

Rice theory becomes invalid. However, while the general formulation is developed, 

no application is actually carried out. 

Brown's work during the 1980's appears to have led him to an extension of his 

1978 composite surface analysis (see Brown [45]) . In the latter, an approach based 

on combining normalization and the method of smoothing is developed. The normal

ization, which allows for more relaxed constraints on the surface heights and slopes. 

consists of dividing the integral equation that models the current induced on a perfect

ing conducting rough surface by a phase factor whose presence normally invalidates 

the smoothing process as surface height increases. The IEMS is then applied to this 

normalized equation with the phase factor being reintroduced subsequently by multi

plication in the spatial domain or convolution in the Fourier transform domain. The 

latter is used to determine the scattered field . Brown concludes that the method 

works best when large slopes are concentrated in a portion of the spectrum having 

small heights or when large heights corresponds to relatively small slopes. The anal

ysis is also an improvement on the Kirchhoff approximation in that it implies some 

degree of accounting for diffraction and multiple scattering from the large-scale sur

face features. Again, while the general expressions for the scatter are developed, no 

calculations are carried out and no cross sections are presented. · 
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1.2.4 Full-wave Technique 

The evaluation of the electric field integral for an e-m wave being scattered from a 

rough surface must be accomplished by approximate techniques (a concise discussion 

is found in Ishimaru (13], Chapter 15). A complete analysis leads to (1) a radiation 

field - when the observation point is a large distance from the image point of the 

source but not near the reflecting surface; (2) a surface field; and (3) a lateral wave 

resulting when the incident field impinges a boundary where the relative index of 

refraction is less than unity. When all three fields are included in the analysis, the 

method is referred to as the full-wave technique. 

Development and application of the full-wave technique to rough surface scatter 

appears to have been initiated by Bahar as early as 1972, [46]. Bahar and Rajan [47] 

used the full-wave analysis, maintaining the condition of small slope, in investigating 

e-m scattering for arbitrary incident and scatter angles. Collin [48] showed this "reg

ular:' full-wave theory to be accurate beyond the range accounted for by first-order 

perturbation theory. Bahar (49] extended his previous work to include surfaces of ar

bitrary slope in an attempt to bridge the gap between the small perturbation regime 

and the Kirchhoff regime. Subsequently, Bahar and Barrick applied this "extended" 

full-wave analysis to obtain the scattering cross sections of composite surfaces (see 

Section 1.2.3) which cannot be decomposed into a two-scale model without violating 

the conditions of either the perturbation theory or the physical optics theory. Ne

glecting the effects of multiple scattering, cross section expressions for specular and 

Bragg scattering were developed, but numerical evaluations were not pursued. Bahar 

(50} presented an analysis which, unlike his previous work, accounted for the correla

tion between rough surface heights and slopes. For one-dimensionally rough surfaces 

with small heights and slopes, the full-wave solutions again appeared to reduce to the 

Rice theory. Still, multiple scatter was not considered. Expanding Bahar's full-wave 

analysis to two-dimensionally rough surfaces, Bahar and Lee (51} presented solutions 

14 



for bistatic radar cross sections. However, in order to compare these results with 

previously published work, calculations were carried out for one-dimensionally rough 

surfaces only. Bahar found that agreement between the Rice perturbation analysis 

and the full-wave technique decreased with decreasing slope for the case of backward 

scattering. Subsequently, Bahar et al. [52), continuing with the full-wave theory, 

presented bistatic cross sections for non-time-varying rough surfaces. All of their 

examples were calculated for the visible region, albeit for different roughness scales. 

An extensive numerical evaluation and analysis of Bahar's full-wave theory was 

carried out by Collin [53}. Collin's detailed numerical results for microwave frequen

cies conclusively show that Bahar's initial assumption of uncorrelated slopes and 

heights was a very bad one, leading to physical optics cross sections up to an order 

of magnitude greater than those predicted by the Kirchhoff theory. As well, Bahar's 

1980 results [49} were shown not to conform to the perturbation theory, while his 

1991 analysis [50] did reduce to the perturbation results when rms slopes and heights 

are small. Private communication between Bahar and Collin (see Collin [53]) seems 

to indicate possible continued advancement of the full-wave theories that have been 

reported in the open literature to date. 

1.2.5 The Walsh Technique 

1.2.5.1 Methodologies 

Walsh [5] presented an analysis for e-m scattering from rough surfaces based on the 

concept of "generalized functions" . As this and subsequent works by Walsh and his 

colleagues (cited below) form the basis of the research proposed here, a somewhat 

detailed description of this approach follows. 

The two dimensional surface, z = ~(x, y) (see Figure 1.2), is assumed to be defined 

and bounded for all x and y and forms the boundary of the lower medium. Using the 
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z == ~(x,y) 1.1 = J.10 ; t = E0 ; C1 = 0 

y 

X u=u ·e=e ·cr=cr ,... ,..0, 1' 0 

Figure 1.2: Rough surface used in Walsh's analysis. Parameters are as defined in the 
text. 

Heaviside function given by 

h(z- ~(x, y)) = { 01·,· z ~ ~(x, y) 
z > ~(x,y) , 

( 1.2) 

the electrical properties of the entire space may be written as 

a= (1- h)uo (1.3) 

e = eoh + e1(l- h) (1.4) 

where it is assumed that the conductivity, a, is zero above the surface and that below 

the surface, a = ao. Above the surface, the permittivity, e, is e0 and below the surface 

f = t:1 , it being understood that e0 is the free space value of that parameter. The 

permeability is taken to be the free space value, Jl.o, above and below the surface. The 

analysis is not confined to this particular choice of e-m parameters. 

16 



Maxwell's equations for the space described above are written in point form, as

suming e}wt time ( t) dependency, w being angular frequency, as 

vx.E - -jwB (1.5) 

Vxfi - jwD + J (1.6) 

fj.§ - 0 (1.7) 

v.jj - p (1.8) 

where E is the electric field intensity, B is the magnetic flux density, fJ is the electric 

fhe< density, fi is the magnetic field intensity, J is the current density consisting of 

conduction currents (.1::) and source currents (J:) , and p is the charge density. In 

view of the parameter description above, the so-called constitutive relations may be 

simply written as 
D = [Eoh + E1(1- h)] E (a) 
L = ao(t- h)E (b) ( 1.9) 
B = J.lofj . (c) 

From equations (1.5)-(1.8), and using equations (1.9a-1.9c), Walsh writes the basic 

equation for the electric field intensity of the entire space as 

( 1.10) 

where 

• { is the same as {(x, y) and is the upper boundary of the lower medium. 

• Tl; =:.!.+~is the square of the refractive index of the lower medium. 
Eo JWEQ 

- B{ ~ a{ ~ ~ . h al C( ) . h di . f . . • n = -ax x - 8y y + z lS t e norm to z = ~ x, y m t e rect10n o mcreasmg 

z, x, y, z being the unit vectors along the respective coordinate axes. 

• c5{ ·) is the Dirac delta function. 
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• TsE = -.-
1

- [v('~·) + k2
] is known as the electrical source operator. 

JWE.o 

• 1: is an arbitrary source current, herein assumed to lie in the region z > ~(x, y). 

• £+ is the value of E immediately above the surface; i.e. 

E+ = lim E(x, y, z) = £+(x,y). 
z-~{:r,y)+ 

'Naish then decomposes the E-field as 

(1.11) 

and computes from this V'2 E + ;6E required in {1.10). The result gives three dif

ferential equations: (1) one for the field above the surface: (2) one for the field 

below the surface; and (3) an equation stipulating the conditions which E must 

satisfy at the boundary. The first two of these are reduced to integral equations 

through a three-dimensional convolution with the Green's functions appropriate to 
-jkr -i1T 

the particular spaces (i.e . .:__
4 

and .:__
4 

above and below the surface, respectively; 
1rr 1rr 

r = Jx2 + y2 + z2 and -y 2 = k2ri;). 
The basic problem of determining the scattered field reduces to finding the field, 

£+,immediately above the surface, along with the derivative of E, ~!.,with respect 

to the normal to the surface. This is facilitated by Fourier transforming the two 

integral equations referred to above. The field below the surface is transformed (with 

respect to x and y) in a horizontal plane z > ~(x, y) and the equation for the field 

above the surface is similarly transformed in a plane z < ~(x, y). The transformed 

variables are Kz and Ky, the surface wavenumber, K(= IRI), being given by K 2 = K; 

+ K; (note: K = K:rx+Kyy). The first of these equations is solved approximately on 

the assumption that the functions of the integrand are spatially band-limited and that 

the bandwidth is much less than l11rkl. This is essentially the same as the impedance 

boundary condition, Ishimaru [13]. Using this solution in the second transformed 

18 



equation results in 

- 11 [1n(x',y')l2 
e+(x',y') 

x' y' 
(1.12) 

_ ~ .R_+(x', y')] e-e(x',y')ue-j(/(zz'+K11 y')dx' dy' 

with 

\Ve note 

• E .. AKx, Ky)Z- is the free space source field (or incident field) Fourier transformed 

in the spatial sense in the plane z = z- < ~(x, y). It may be derived from the 

source current ( fs) according to 

£(Kx, Ky)z - TsE(~) * G 

- L 1, 1, T!J E ( L ( x', y', z')) G ( x - x', y - y', z - z')dx' dy' dz' 

where * denotes a spatial convolution. G is the free space Green's function as 

defined above. 

~ ~a ~a 
• vxy=Xa:r+Yay 

{ 
(J(l - k2)! . for real roots 

• u = j ( k2 - K 2)! . for imaginary roots. 

In general, a solution of (1.12) forE+ (using#.+) allows calculation of the scattering 

above, below, and on the surface. For the case of present interest, namely ground 

wave propagation and scatter I an expression for e+ is therefore necessary. During 

the last decade, a substantial effort has been expended by Walsh and his colleagues 

in seeking efficient means of generating a solution of {1.12}. The most relevant parts 

of that extensive research constitute the subject of the next few paragraphs. 

Srivastava (54} presented the first expression for the surface field which led to the 

HF cross section of the ocean surface being developed from Walsh's theory. Assum

ing the surface to be a good conductor, Srivastava reduced (1.12) to a summation 
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equation, aided by expressing the surface as a two-dimensional Fourier series. The 

equation is formally inverted in the form of a Neumann series, i.e. 

00 

(£: + T) -1 = L (-T)m = b - T + T2 - T3 + ... 
m=O 

where f: is the identity matrix and Tis a linear operator resulting, in this case, from 

converting the integral to a sum. In the analysis, £: operating on the source field 

provides the zero-order surface field. Corrections to this term are also gathered from 

relevant higher terms of the series. Similarly, T, and corresponding corrections to it 

appearing in subsequent terms, allow calculation of the first-order field, and so on. 

Srivastava takes the analysis to second order in this sense. Each of the T operators 

themselves consist of a series of matrices, and to facilitate the analysis each T is 

approximated by its first term. 

Srivastava's solution for the surface field of a two-dimensional periodic surface 

first assumes a general source. Next, the source is taken to be an elementary vertical 

dipole located close to the surface and having a pulsed sinusoidal excitation. It 

is additionally assumed that I7Jrl >> 1 and that the surface slopes, ez,ey << 1. 

Furthermore, attention is confined to the vertical component of the surface field as 

this constitutes the dominant mode of e-m propagation for antennas being close to 

a good conducting surface. The solution may be interpreted as 1) a ground wave 

propagating outward from the source, the surface impedance being modified by the 

surface roughness and 2) ground waves, again with modified surface impedances, 

propagating in different directions due to scattering. The required integral inversions 

in the spatial transform domain, along with the evaluation of the resulting convolution 

integrals, are accomplished through stationary phasejsteepest descent techniques. 

The backscattered surface field, to second order, is calculated assuming a narrow 

beam receiving antenna. It is also of significance that Srivastava's results for the 

scattered field, under the assumptions of small height and slope, reduce to those of 

Rice [ll]. 
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Walsh and Donnelly [55] extend the scattering analysis to determine the e-m field 

due to a finite current source which is located in a vacuum outside of two electrically 

different media. For the special case of rough surface scattering, where the medium 

above the surface is free space, their approach reduces to that of Srivastava [54] and 

\Valsh and Srivastava [56]. 

vValsh and Dawe [57] present a modification of the Walsh [5] and Srivastava (54] 

techniques. As already indicated, Srivastava expands the integrand of equation (1.12) 

by immediately introducing the Fourier series of the surface profile and its slopes and 

continues the analysis in the Kx, K 11 domain. In the new approach, equation (1.12) 

is presented in operator form and, upon simplification, the results are returned to the 

x. y domain before the surface profile is considered. The procedure, as briefly outlined 

below, considerably reduces some of the algebraic tedium associated with finding a 

suitable expression for the surface field. 

Using underhars (-) to denote two-dimensional (x, y) Fourier transformation. 

(1.12) may be written as 

2£:- e-= " - (liil 2 £+- ~R+)- [1nl2 £+(1 - e-~u) 

-~ fl+(1- e-~u)] 

( 1.13) 

where the arguments of the various functions have been omitted for the sake of clarity. 

Using I7Jrl >> 1, fl+ may be written as 

fl+(x, y) = - tJ ry(ii · .E+) - ik11r lnl2 Et - ik lnl2 .E:; 
1Jr 

(1.14) 

where the subscripts t and n denote tangential and normal components, respectively. 

Noting from (1.14) that R+ is a linear function of e+, equation (1.13) may be 

written as 

(1.15) 

where T1 and T2 are defined as 
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and 

R_+(E+) is defined by (1.14). Assuming that T1 has an inverse, equation (1.15) be-

comes 

(1.16} 

the general formal solution of which is 

( 1.17) 

where 

( 1.18) 

and 

(1.19) 

By virtue of (1.14) and the definition of T1, the zer~order estimate (i.e. equation 

( 1.18)) includes surface slopes but ignores the height effect, e-~u. The latter is ac

counted for in (1.19) with m = 1, 2, .... To date, equation (1.19) has not been 

addressed, while equation (1.18) has been analyzed in detail by \Valsh and Dawe [57] 

and Walsh et al. [8J. Determining the zero-order estimate in (1.18) (i.e. £+ ~ Eti) 

requires, on the basis of the definition of T1(Eci), the solution of the equation 

(1.20) 

Making the "good conductor" approximation (u+ jk17r) ~ jk17r and jk(T/r- ..!...) ~ 
'lr 

jk17r), Walsh and Dawe [57] eliminate the tangential component, Eric, and write a 

scalar equation for the normal component as 

(1.21) 
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where X: denotes 2-d (x, y) convolution, F;
1
} is the inverse Fourier transform, F(p) is 

the Sommerfeld attenuation function, and p = (x2 + y2)i is the plane polar distance 

variable. Implicit in this expression is the constraint that k~ << 1. Equation (1.21) 

may be "solved" by the method of Neumann series or "successive approximations" . 

In 1990, Walsh et al. [8} revisited equation (1.21). Writing the unit normal vector 

nas 

equation (1.21) was rewritten as 

( 1.22) 

Walsh et al. (8} then make the simplifying assumption on the surface slope that 

Jv~l « 1. which means that 

Subsequently, assuming a pulsed-dipole source, the first-, second-, and third-order 

backscattered fields (i.e. (Ed,.)t, (Ed,.)2, (Eri.,)3 monostatic formulations) from a rough 

surface are calculated via a Neumann series approach. 

1.2.5.2 Applications of Walsh's Scattering Analysis 

As intimated in the previous section, Srivastava [54], starting with equation (1.12), 

developed expressions for the backscattered surface field to second order. Initially, this 

was done for a time invariant surface. Then, a time varying, statistically rough surface 

was introduced into the equations for the backscattered field so that application could 

be made to the ocean surface. The surface randomness was effected by treating the 
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Fourier coefficients of the ocean surface as random variables after the manner of 

Rice {11]. A second-order hydrodynamic effect (arising from wave-wave interaction, 

Hasselmann {23]) was also included in the second-order solution for the backscattered 

field. Assuming a periodic pulsed sinusoid dipole source, a narrow beam receiving 

antenna. and the linear dispersion relation for deep water gravity waves (Kinsman 

[20]), Srivastava derived the first- and second-order HF monostatic cross sections of 

the ocean ~urface. Srivastava's first order is identical to that of Barrick referred to 

in Section 1.2.1.2. The second order, however, contains three portions: (1) double 

scattering occuring on the scattering patch; (2) scattering due to the interaction of 

the incident field and the surface along the path from the source to scattering patch; 

and (3) a double scattering consisting of two single scatters neither of which is on the 

patch. Srivastava shows the second term to be very pronounced at higher Doppler 

frequencies! while the third term may be neglected if a narrow beam transmitting 

antenna is used. 

Walsh and Dawe [57} reduce equation (1.21) to a Volterra type integral equation 

which could be solved for E(t. by a Neumann series. Subsequently, the first-order 

cross section of the ocean was determined under the assumption that the source was 

a time-pulsed radar. As usual, the surface was considered to be slowly varying with 

respect to the propagation times. The result differs from Srivastava's [54] first-order 

cross section by a factor dependent on the wind speed. The factor becomes smaller as 

the wind speed increases. This effect is in addition to the usual increase in first-order 

power as the sea spectrum increases. Additionally, [57] addresses the problem of 

multipathing, reaching the conclusion that this phenomenon does not add significant 

power to most of the Doppler spectrum. 

Using the fields generated by the approximation, lnl ~ 1, discussed in Section 

1.2.5.1, Walsh et al. [8] developed monostatic cross sections of the ocean surface to 

third order in slope. The first-order result reduces to that of Barrick [24] for the 
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limiting case of tl.p--+ oo where tl.p is the width of the scattering patch. The second 

order, which bears many of the properties of the Barrick result, differs from the latter 

in the form of the electromagnetic coupling coefficient (see Gill and Walsh (30]) . The 

general features of the second order conforms to those of observed radar spectra as 

well as to those of other models (Howell (58]). Results of wave data interpretation 

algorithms (see Gill and Walsh {30}, Howell and Walsh [31] and Gillet al. [2]) based on 

the 1990 cross sections of\Valsh et al. [8J have been shov.rn to compare favourably with 

data collected from in situ devices. These experimental studies have thus provided 

a significant degree of confidence in the basic scattering theory on which they are 

based. 

The 1990 analysis by 'Naish et al. [8] shows that for increasing sea state and/ or 

radar operating frequency, the third-order backscattering cross section may dominate 

the second order for large Doppler. This modelling result may partially explain why 

in reality the radar spectrum for sea echo falls off at a slower rate for increasing 

Doppler shift than is predicted by the classical first- and second-order theories alone. 

1.3 The Scope of the Thesis 

As discussed in Section 1.2.5, the primary content of this thesis is established on the 

theoretical foundations developed by Walsh over nearly two decades. The rudiments 

of the rough surface scattering technique alluded to above are used to derive the 

bistatic cross sections of the ocean surface to second order for incident radiation in 

the HF band. 

In Chapter 2, the focus is on equation (1.21). This equation is written in an 

operator form which clearly delineates the various orders of scatter from a rough, time 

invariant surface under the assumption of a vertical dipole source. The randomly 

rough surface is assumed to be representable by a twcrdimensional Fourier series 

whose coefficients are time-independent random variables. Using approximations for 
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the surface slope, the convolutions involved in the first- and second-order scattering 

are reduced to integral form. The direction from which the scattered field is observed 

is kept general. The integrals are approximated largely via the stationary phase 

method. 

In addressing the second-order field, the development of the field integrals, which 

involves dual two-dimensional spatial convolutions, may proceed in two separate, but 

equivalent ways. That is, there are two physically meaningful approaches to the order 

of convolution. It transpires that each of these processes is necessary to reveal poten

tially important features of the scattered second-order field. It is shown that the most 

interesting aspects of the second-order scatter involve ( 1) a double scattering from 

first-order surface components which are near each other on the scattering surface. 

(2) a scatter near the transmitter followed by another at a surface point which is 

remote from both the source and the point of observation and (3) a single scatter, 

again from first-order surface components, followed by a second near the observation 

position. Subsequently, the first two of these fields along with the first-order result 

are shown to reduce , in their essential characteristics, to those which exist for mono

static reception. No previous monostatic result was developed for the third aspect of 

the second-order scattering phenomenon. Also, the case of scatter at the transmitter 

presented here is seen to better represent physical reality than that derived in [54] . 

In the final sections of Chapter 2, a pulsed sinusoid is considered as the current 

excitation on a vertical dipole source. The fields, modified appropriately for this 

source, are then suitable for developing the bistatic HF cross sections of the ocean 

surface when the interrogation instrument is a pulsed Doppler radar. 

The goal in Chapter 3 is to develop the actual expressions for the bistatic HF cross 

sections of the ocean surface. This necessitates a modification of the surface to include 

a time variation. The model chosen dictates that the ocean surface be represented by a 

zero-mean stationary Gaussian random process. Only the gravity wave portion of the 
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ocean wave spectrum is considered. For analysis purposes, deep water is assumed, 

although the results are easily extendable to general depth. The surface features 

include wave-wave interaction and the derivations, in this sense, incorporate second

order surface characteristics. It is eventually shown that signal interaction with these 

so-called second-order waves gives rise to a major portion of the second-order bistatic 

cross section. Extensive use is made of the linear dispersion relationship (eg., see 

[20]) and Hasselmann's model [59] for nonlinear energy transfer in the gravity wave 

spectrum. 

With the appropriate assumptions on the time variability of the surface as com

pared to a single interrogation time by an HF signal, the electric field equations 

derived in Chapter 2 are reformulated for application to the ocean. Subsequently. 

the autc:r and cross-correlations of the various electric field components, via ensemble 

averaging, are derived with a view to developing the Doppler power spectral density 

associated with the scattered signal. Many of the approximations and important 

properties of these derivations are detailed throughout Appendices 8.1-8.6. 

Once the power spectral densities have been obtained, the remainder of Chapter 

3 is devoted to calculating the bistatic cross section components. In so doing, a 

model of the ocean surface must be chosen. Here, it is assumed that it can be 

reasonably characterized as the product of the Pierson-Moskowitz (PM) [601 non

directional spectrum and a cardioid directional parameter. It is asserted in the chapter 

and proven in Appendix 8.7 that the proper spectral form to be introduced into the 

cross section calculations when using the PM model involves a factor of ~ which is 

not used by previous investigators. Once the cross sections are derived, the effects of 

such parameters as operating frequency, bistatic angle and ocean surface conditions 

are examined in some detail. 

Cross section models presented to date have not, in detail, considered the ef

fects of noise. Chapter 4 is dedicated to this cause. External noise limitation is 
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assumed. Initially, the external noise is modelled as a single-variable zercrmean sta

tionary Gaussian process after the scheme of Pierson (61]. The proper form of this 

noise as it is interrogated by a pulsed Doppler radar is then determined, first for a 

finite number and then an infinite number of pulses. This model is seen to account 

for the aliasing of the noise signal into the limited bandwidth of the receiving system. 

For completeness, non-stationary noise is also addressed. 

Following the noise model, the proper form of the transmit power to be used in 

the radar range equation for calculating the power density of the signal (i.e. clutter) 

received from the ocean is derived. Then, again using Pierson's model (61] for a 

stationary Gaussian process, a means of estimating the Doppler power spectrum of 

the combined clutter and noise is deduced. The details of this are given in Appendix 

C.2 with illustrations and comparison with actual data being addressed in Section 

4.5. 

In Chapter 5 ~ the fundamental conclusions reached from the research presented 

in the previous three chapters are summarized. There, too, based on the many 

questions generated by the present analysis, a few obvious suggestions for future 

work are indicated. 
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Chapter 2 

The Electric Field Equations for 
Scattering From a Surface 
Representable by a Fourier Series 
Bistatic Form 

2.1 Introduction 

The starting point of this analysis is equation (1.21). As pointed out there, the work 

of Walsh and Dawe [57] which produced this equation was used by Walsh et al. [8] 

to develop monostatic cross sections of the ocean surface. Some of the simplifying 

features legitimately associated with the monostatic calculations either do not exist 

or must be used in a modified form for the more general bistatic case. 

In this chapter, we seek to analyze equation ( 1.21) to give the first- and second

order bistatic electric field when the source is a vertical dipole and the scattering 

surface is time invariant and is represented by a Fourier series. It should be noted 

that Walsh and Dawe [9] have already developed a result for the first-order case, 

but this does not appear in readily available open literature. Therefore, with some 

minor modifications in notation and procedure and more extensive referencing and 

discussion, this analysis is detailed here for readability and completeness. 

The convolutions in equation (1.21) theoretically lead to integral expressions for 

the vertical component of all orders of the scatter field, the first two of which will 

29 



be considered in this chapter. A physical interpretation of these convolutions will be 

given. 

Bearing in mind that the theory will be subsequently applied to the ocean sur

face, it will be seen that justifiable constraints on the surface slopes will lead to more 

tractable forms of the equations. The simplifications of the integrals are effected via a 

stationary phase approach. It is shown that, for second-order scattering, modification 

of this asymptotic integral e\-aluation scheme is required. ~·luch of the detail associ

ated with the theoretical framework is found in various appendices cited throughout 

the chapter. 

2.2 The Normal Component of the Surface Wave 
Field Assuming a Vertical Dipole Source 

For the sake of completeness, we: rewrite equation (1.21) for the normal component. 

Eti.,, of the surface wave, 

Eti .. + 1~ 2 · [nn · ~Y (liiiEti:.) ~ F(p) e;;;] (2.1) 

n A A -1 -: -z-u zy e - [ - -jkpl 
= liil2 · nn ·Fry (2uE11 e ) * F(p) 27rp , 

where the various symbols have been defined throughout Chapter 1. It was briefly 

noted in the previous chapter that implicit in this equation is the assumption that 

k~ « 1 -i.e., it deals with what Walsh et al. (8) refer to as "the small height analy

sis". In fact, with reference to the ocean, it has been proposed by Barrick [26), based 

on the careful analysis of monostatic HF second-order Doppler echo, that k~rms < ~ 
is a suitable cut-off condition beyond which the radar spectrum saturates. That is, 

the second-order monostatic models will overpredict the echo energy beyond a to-
1 

tal root mean square (rm.s) wave height, ~rms. of 
2
k, where k is the wavenumber of 

the transmitted radiation. For example, for a 25 MHz signal (i.e. k = 0.524 m-1 
), 

the maximum allowable ~rms is just under 1m, while for a 5.75 MHz signal (i.e. 

30 



k = 0.120 m- 1) it is approximately 4.15m. From Earle and Bishop [62] this trans

lates to significant wave heights of approximately 3.8 m and 16.5 m, respectively, or! 

correspondingly, wind speeds of approximately 15m/sand 25 m/s. These considera

tions must be borne in mind when illustrating models of the radar spectra (Chapter 

3) which are based on the formulations of this chapter. 

It is well known that for a surface F(x, y, z) = 0, ~F is the normal at any arbitrary 

surface point. Then, noting that = = ~(x, y) may be written as F(x, y, =) = = -
~(x. y) = 0, we have 

n = Z - ~~ (X, y) 

so that 
_ ii z- ~{(x,y) 
n = lnl = lnl (2.2) 

with 

(2.3) 

Substituting n from equation (2.2) into the left member of equation (2.1) and noting 

h 
__ fin 

t at nn = lnl2 • 

£+ (z- ~y~(x, y)) . [(z- ~~(x, y)) ( z- ~~(x, y)) . 6 (l-IE+) 
On + lnl3 lnl2 'lt1l n On 

": F(p) e;;;] = I~' · [~~~ · F;._1 
( 2uE. z-e_,-.) ": F(p) •;~;] . (2.4) 

Since i · ~( ·) = 0, equation (2.4), on dropping the argument of ~ to facilitate 

compactness, becomes 
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or, equivalently, in operator form 

Eri._ -1i ( Eri._) - 72 ( Eri._) = gs (2.5) 

where 

7i - l~l' · { ~; · ~ (liil·) ': F(p) •;~;} , 

y,2 - ~Y~ · { ~J~~J~ • t7 (I-I· ·) Z: F( ) e-ikp} 
liil3 liil2 Yz1/ n p 27rp 

E' = I~' · { ~~~2 • F;;,' ( 2uE, z- .-·-·) 1 F(p) •;~;} (2.6) 

Before further analysis of equation (2.5), a source field, Es, must be considered. 

We shall assume that this field is provided by a vertical dipole located at the (x, y, z) 

origin but infinitesimally elevated; that is, the dipole is at the point whose coordinates 

are (x,y,z) = (O,O,Q+) . It is well known (eg. Collin [63]) that the far field of such a 

source is given by 

E
- I 6.ik2 -ikr _ 

s = e z 
j47rWEoT 

(2.7) 

where I is the current on the dipole of length 6-P., and k, w. fo and r have been 

defined following equation (1.10). Of course the radial distance, r, may also be cast 

as r = J(Jl + z2 where p is the plane polar distance variable given by J x2 + y~. 

Spatially Fourier transforming Es and setting 

results in 

or using a plane, z-, where z < 0, 

-z 
Es (2.8) 
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Rearranging (2.8) and carrying out the spatial inverse Fourier transform, it is evident 

that 

:F;_,} ( 2uEII =- e-::-u) = C0h(x).5(y)z , (2.9) 

b(x)b(y) being the two-dimensional Dirac delta function. If the surface in the vicinity 

of the source is assumed to be flat such that ~~(x, y)Lr=y=O = 0, then, from equation 

(2.2), ii = .i there. Using this assumption and the replicating property of the delta 

function, it is readily seen that substitution from equation (2.9) into E 11 of equation 

(2.6) yields 

(2.10) 

Again. it should be noted that the arguments (p) for the field, E 11
, and (K) for the 

-::-
transformed source field, E11 , as discussed following equation ( 1.11), have been 

suppressed here. Before attempting a solution to equation (2.5) for the normal 

component of the surface wave field, the condition that surface slope is smalL i.e. 

~~~(x, y)l 2 << 1, is imposed. This procedure is carried out with a view to the fact 

that the results of the analysis are to be applied to ocean surface gravity waves. The 

validity of this assumption for that case is well documented. For example, Phillips 

(64] gives the mean square slope, in the notation here, as 

(2.11) 

where U is wind speed in m/s and g is the acceleration due to gravity. Thus, if U = 15 

mjs, for example, ~~~(x, y)l2 ~ 0.012. The imposition of this constraint in equation 

(2.3) leads to 

(2.12) 

If, it is agreed to neglect powers of ~~(x, y) which are greater than one in a single 

scatter, then, from equations (2.10) and (2.12), equation (2.5) becomes 

{ ~ } ~ - - %11 e-1 P e-1 P 
Ecj - ~~ · ~(Ecj) * F(p)-

2
- = CoF(p)-

2
-

n n rrp rrp 
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or, in operator form, 

(2.13) 

Writing (2.13) as 

£+ 
On - Elf+']; (E+) 1 o .. 

- E 11 + Ti (Elf + 7i ( Eri,.)) 

- E 11 + Ti(Eif) + ~2(EftJ 

- Elf+ Ti(Eif) + ~2 (Eif) + 1;3 (Eri,.) 

-

shows that by successive approximation (Neumann Series) the solution to equation 

(2.13) is 

(2.14) 
m=O 

From (2.10) and (2 .14) we see that the zeroth-order term, (Et.,)o = ~0(Eif) =Elf. is 

simply the expression for propagation! without scattering, over a plane whose surface 

impedance, 6 , is incorporated into the attenuation function F(p); that is, (Et., )0 is 

the "direct" wavefield. 

2.2.1 The First-order Solution for a Time Invariant Surface 

2.2.1.1 Reduction to Integral Form 

The term in equation (2.14) for which m = 1 represents a first-order scatter, (Eti,.)I; 

that is, a single scatter from the rough surface. Considering this term in conjunction 

with Ti of equations (2.6) and (2.13) and Elf of equation {2.10), 

- - e-1 P ry e-1 P 

( 

"k ) "k 

- ~~ · ~ CaF(p) 21rp * F(p) 21rp . (2.15} 

In Appendix A.l.l it is shown that, on converting~( · ) to its polar equivalent, 
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an asymptotic integral form of equation (2.15) is 

(E~h ::::: -jkCo (2~)2 l1 11 
P1 · ~IYl (~(x1, yt)) 

e-ik(Pl +P'J) 

· F(pt)F(P2) · dx1dY1 . 
P1P2 

(2.16) 

This represents a single scattering as illustrated in Figure 2.1. It should be recalled 

z 

y 

Scattering 
Point 

(x,y) 
""-. 

Observation 
Point (R) 

Figure 2.1: The geometry of the first-order scatter. 

that the source is at the origin and the scatter occurs at point (x 1, yt). Of course 

the scattered radiation travels in all directions over the scattering surface, but it 

is "observed" at position (x, y). The distances p, p1 and P2 are from source to 

reception point, from source to scatter point, and from scatter point to reception 

point, respectively. The integration limits are over the entire x- y plane. 

It is now required that the surface, ~(x, y), be characterized in some fashion, the 

choice here taking the form of a tw~dimensional Fourier series. We shall assume that 

the fundamental surface wavenumber, N, is the same in both the x and y directions. 

Thus, N = 
2
; where L is the fundamental spatial "period" , again in both directions. 
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The appropriate series is 

€(x, y) = L Pmne}N(m:z:+ny) . (2.17) 
m,n 

The indices m, n span the set of integers and Pmn is the Fourier coefficient correspond

ing to the wavenumber components Nm and Nn. The randomness of the surface is 

included by specifying the coefficients to be zero-mean Gaussian random variables. 

\Ve may, therefore, express the mnth surface wave vector component as 

Kmn = Nm:i: + Nny , 

i and [; being the usual unit vectors. Since a general planar displacement vector, p, 

on the surface may be written as 

p= XX+ yiJ' 

equation (2.17) is, equivalently, 

€(x,y) 
m,n 

(2.18) 
m,n 

where Bmn is the direction of Kmn and 8 ( = tan-1 
(;) ) is the direction of p. Writing 

equation (2.18) for the scattering point (x1, yt) of Figure 2.1 and substituting into 

equation (2.16) is shown in Appendix A.1.1 to lead to 

(Et,.)
1 
~ (k

2
C0

)
2 

LPRm .. Kmn { { cos(Bmn- 8t)F(pt)F(p2
) 

1r m,n J!ll Jz1 PtP'l 
• eJPt[Krnn<X111(9m,.-9l)-kle-ikP2 dxtdYl {2.19) 

for the first-order field. 

Equation (2.19) represents the integral form of the field observed at a general point 

(x, y) or (p, 8) when a single scatter occurs at a point (x~t yt) far from the source and 

the surface profile is not a function of time. The simplification of this expression is 

the subject of the next section. 
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2.2.1.2 A Stationary Phase Result for the First-Order Field 

King [65] has shown in his treatment of the surface field produced by an elementary 

vertical dipole on an impedance plane that an integration, whose form is similar to 

equation (2.19), may be performed by a stationary phase process (see, for example, 

Bleistein and Handelsman (66}). The stationary phase integration is most simply 

accomplished via an elliptic coordinate transformation. W!th reference to Figures 2.1 

and 2.2. the desired transformation is effected as follows: 

y' 
\ 
\ 

Yr 

lO,O) X 

0 

Figure 2.2: Coordinate transformation for analysis of the first-order scatter. 

1. the x- y coordinate system is rotated through angle 0. This gives (x11 y1) in 

terms of the new primed coordinates, (x'1,Yt), as 

I (} I • 8 Xt - x 1 cos - y1 sm 

I • (} I 8 Y1 - x1 sm + y1 cos 
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2. noting that, eventually, use will be made of the fact that radiation from a source 

at position (0,0) will be received at (x, y) simultaneously from an elliptical 

locus whose foci are at those points, the origin of the primed coordinate system 

is shifted to the centre of the line segment defined by the transmitting and 

receiving points. This gives in the new double-primed notation, 

II I 
Yt = Yt 

Transformations (1) and (2) together give 

x 1 = ( x'{ + ~) cos B - y~ sin B 

( 
II p) • Ll II 8 Y1 = x 1 + 2 sm u + y1 cos 

3. thirdly, we introduce elliptic coordinate variables IJ., {J (see, for example, Jeffrey 

[67]) and note that constant p. corresponds, in the planar sense, to a particular 

ellipse. Thus, 

II p h {J x1 = 2 cos p.cos 

y~ = ~ sinh p. sin {J 

where cosh and sinh are the usual hyperbolic cosine and sine functions , respec-

tively. Combining this step with the transformation of Step (2) yields 

x1 = ~ [(1 +cosh p. cos 6) cos 8 -sinh p.sin 8 sin B) 

Y1 = ~ [ ( 1 + cosh p. cos 6) sin 8 + sinh p. sin 8 cos 8] (2.20) 

From the obvious relationships between the distance vectors and their defining coor

dinates appearing in Figure 2.1 or 2.2 and invoking equation (2.20), it is easily shown 

that 

P1 - ~ (cosh IJ. + cos 6) 
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P2 - ~(cosh J.L- cos 8) 

81 - tan- 1 
(;:) (2.21) 

_ 1 [{1 + coshJ.L cos 8) sin 8 + sinhJ.Lsin 8 cosO] 
- tan ( 1 + cosh J.L cos 8) cos 8 - sinh J.L sin 8 sin 8 

Additionally, the Jacobian of the transformation is p1p2 so that dx1dY1 = P1P2dJ.Ld8 . 

As well, p1 cos 81 = x1 and Pl sin 81 = YI· Therefore, expanding cos( Bmn - 91) in the 

exponential of equation (2.19) and applying (2 .20) leads to, in elliptic coordinates, 

(2 .22) 

Equation (2.22) is, formally, the expression for the scattered field at the obser

vation point (p, 9). Now, with reference to Figure 2.1, it will be useful to consider 

the equation (2.22) for constant (Pl + P2) which corresponds to a fi.xed ellipse in the 

spatial sense and a fi.xed time in the temporal sense. To this end , we note from (2.21) 

that, for fixed J.l., 

(2.23) 

will yield the desired components of the received signal at a particular instant. If it 

is thus agreed to hold J.L constant , the 8-integration may be effected. To aid in the 

visualization of this process, equation {2.22) may be presented as 

(E<f..h = kCo ""P- K ei~Ctl6(8mn-8) 
(27r)2 ~ Kmn mn , 

· koo e-ikpCV6hp {fo2
7r cos(9mn- 8t)F(p1)F(p2) 

• ei~(CV6hpetl66CX11!1(8mn-8)+sinhpein6ain(Bmn-8)Jd6} dJ.L , 

from whence we write for the 6-integral 

16 = fo2
7r cos(9mn- 8I)F(pt)F(p2) 

• ei~(coabpcoa6coa(8mn-8)+einhpain6ain(8mn-B)Jdt5 . 
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Of course, it is understood from equation (2.21) that p11 P7. and 01 are functions of 

(J.L, 6). In equation (2.25), Kmn is a typical wavenumber associated with the scattering 

surface. Keeping in mind that eventually the analysis will be applied to a surface 

representative of ocean gravity waves, Kmn will be of order approximately 101 to 

w-2m- 1 (see Kinsman [20], Chapter 1). If we agree that, for bistatic operation. p 

will likely be several lO's of kilometres, then (P~mn) in the phase term of equation 

(2.25) will be a large parameter. From the plots of the attenuation functions given 

by Wait [12] it is seen that F(pt) and F(p2) are slowly varying quantities, especially 

for highly conductive surfaces such as sea water (conductivity"' 4U/m). Under these 

conditions, I, may be determined via a stationary phase integration, the details of 

which are found in Appendix A.l.2.1. The result is 

ej ~ {CUIIh ~COB 6 CU11(9mn -9)+sinh jJ. sin 6 sin(9mn -8)1 

-------------------:-1 (2.26) 
[i pK2'"" [cosh J.L cos 6 cos(Bmn - 8) +sinh f.L sin 8 sin(Omn - O)J] 2 

where, in addition to (2.21), a stationary phase condition on 8 as given by 

tan6 = tanhJ.Ltan(Bmn- 0) (2.27) 

applies. We note that f) and p (see Figure 2.1) are considered constant during the 6 

integration. This corresponds to fixed positions for the source and the receiver, and 

the integration is actually a sum over the values of 6 satisfying equation (2.27). 

In Appendix A.l.2.2, it is shown that the stationary phase condition on 6 appearing 

in equation (2.27) leads to the conclusion that at the stationary scattering point the 

surface wave vector Kmn is normal to the scattering ellipse. This is depicted in Figure 

2.3 where the ellipse of constant (p1 + P2) is shown (i.e. constant J.L) • Without loss of 

generality, the direction of pfrom the transmitter, T, (relabeled from 0 of Figure 2.2) 

to the receiver, R, has been set to zero (i.e. 8 = 0). Vectors fJ and f shown in the 
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y 

ll • constant 
/ 

Figure 2.3: Depiction of the geometry associated with the first-order stationary phase 
condition. R and T are receiver and transmitter. respectively. 

figure are the normal and the tangent vectors, respectively, at the point of scatter. 

They are used in Appendix A.l.2.2 to interpret the direction of Kmn· [t is also 

shown there that the angle between the transmitter and receiver as viewed from the 

scattering point is bisected by the ellipse normal at that point. Each portion of this 

bisection is seen in Figure 2.3 as angle ¢, hereafter referred to as the bistatic angle. 

Appendix A.l.2.2 concludes by using the ideas and results stated in this paragraph 

to write a final asymptotic form for /6 of equation (2.26) as 

with 

16 ~ .;'2;(±( Jcos ¢) F(pt)F(p2) e±iKmnP•cos.Pe=fii' 
JKmnPs 

Pt + P2 P 
Ps = = - cosh J.£ 2 2 . 

(2.28) 

Substituting /6 from (2.28) into equation (2.24), it is seen that the first-order surface 

field may now be expressed as a single integral over p. given by 

(Eri,.)t = kCo ~ P- ~ ei~·K.,.n {
00 

e-ikpcOI!hJ' 
(21r)i ~ Kmn V .t\.mn Jo 

. e=fii(±Jcos ¢) F(pt)F(P2) e±iK.,.,.p. cos.P dJ,£ . 
VPs 

(2.29) 
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Next, it is desirable to write this J.£-integral in terms of the actual bistatic parameters 

of Figure 2.3. Noting, again, that p, = ~cosh J.£, 

P ~ I (p)2 
=;. dp, = 2 v p - 1 dJL = v Pi - 2 dJJ. . 

Since Ps 1~,0 = ~, equation (2.29), in view of the intervening change of variables, 

becomes 

(Eci,.h 

(2.30) 

Equation (2.30) is the vertical component of the electric field observed at p = (p, 0°) 

after a single scatter from all points on the Fourier surface. We note that all surface 

points are included since p, = Pl ; P2 (see Figure 2.2) is the parameter over which 

the integration is being carried out. It should be reiterated also that this is the 

field for a continuously excited vertical dipole source. In Section 2.2.5 this field will 

be appropriately modified to include a pulsed or gated source and subsequently in 

Section 3.3 to include a time varying scattering surface. 

2.2.2 The Second-order Solution for a Time Invariant Sur
face - Forward Analysis 

~!any of the ideas used in the first-order problem form the basis of extending the 

analysis to obtain an expression for the second-order field, (Eri:,)2. However, as might 

be expected, this is a more complex result and several modifications to the procedures 

of Section 2.2.1 are necessitated. 

Using equation (2.14), the second-order field may be written as 

(Eri..)2 = T{(E,) = 7i[7i(E,)} (2.31) 
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which, from equation (2.15), becomes 

(Eri,.h = 7i { ~({) · ~ ( CoF(p) e;;;) X: F(p) e;;;} (2.32) 

( 
-jkp) 

Then, using the asymptotic form of~ C0F(p)-e- given in equation (A.3), along 
27rp 

with equations (2.6) and (2.12) , 

-jkCo {~({) · ~ [p · ~({)F(p) e;jkp x;: 
-TiP 

e-1"=P] ry e-jkp} 
F(p) 27rp * F(p) 27rp . (2.33) 

Equation (2.33) provides the foundation for all further discussion of the second-order 

scattering theory throughout this work. The convolutions therein may be generally 

interpreted according to Figure 2.4. The radiation from the transmitter position , 

T(O.O), scatters in all directions from a general point (x1,yt). Some of this energy 

y 

T 
(0,0) 

(x •• y.) 

X 

Figure 2.4: The geometry associated with the second-order scatter. 

scatters again at point (x2, Y2) and a portion of this is, in turn, received at R(x, y). 

the field scattering from (x11 yt) and reaching (x2 , y2) is represented by the inner 
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convolution of (2.33) . The dot product of the gradient (~y) of this convolution with 

the surface gradient (~({)) represents the scatter from (x2 , y2 ) so that the final 

convolution gives the received field at R(x, y}. At this stage of the analysis, (x1, yi) 

and (x2 , y2 ) are general points and equation (2.33) therefore includes two scatters 

from any and all points on the surface. In what follows, an examination of the most 

significant components of the second-order field at R is carried out. In the following 

subsections, the convolutions in equation (2.33) will be carried out in the order in 

which they appear and hence the term 1'Forward Analysis" in the title of this section. 

2.2.2.1 Reduction to Partial Integral Form 

Cursory examination of equation (2.33) reveals that the convolutions may be ap

proached in a variety of ways. For example, Gill and Walsh (68] presented a result 

for the components of the second-order field which arises when the two scatters occur 

near each other but far from both transmitter and receiver. In that work, the inner 

convolution was carried out before its gradient, ~~ was applied. A suitable result 

which reduced nicely to the monostatic formulation by Walsh et al. (8] was obtained. 

However, during subsequent analysis it was found that the route taken precluded the 

possibility of obtaining what could be significant second-order components. With this 

in mind, an alternate approach is taken here. 

Two important features of the convolution of functions fn(x, y) are 

~[ft (x, y) * h(x, y)] =~(!I (x, y)) * h(x, y) =!I (x, y) * ~(h(x, y)) (2.34) 

and the convolution is associative, i.e. 

ft(x, y) * h(x, y) * !J(x, y) - [ft(x, y} * h(x, y)] * h(x, y) 

- h(x, y) * [h(x, y) * !J(x, y)] . (2.35) 

From property (2.34), equation (2.33) may be written as 

(E.t,). "' -jkCo { '"i.,({) · ['"i.,({) · p (F(p)e;:;) ': '"i., (F(p)e;:;) l 
'F(p) e-ikp} . (2.36) 

27rp 
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Using the same asymptotic argument as that leading to equation (A.3), 

so that, on noting jJ · ~y(€) is a scalar, equation (2.36) may be cast as 

(Eri,.h 

{2 .37) 

The subscripted square brackets in {2.37) may again be referenced to Figure 2.4 as fol

lows: [· · ·h accounts for propagation from T along Pt and scattering at (x1, yt): [· · ·h 
similarly accounts for propagation from (xt. Y1) along P12 and scattering at (x2, Y2); 

and [· · ·h involves propagation from (x2 , y2 ) along iho to the point of reception, R. 

In the course of the analysis, we shall have cause to consider equation (2.36) 

according to the two separate groupings indicated in equation (2.35). As an initial 

approach to finding the important parts of (Eti,)2, the convolutions will be done in 

the order in which they appear, i.e. the first form in equation (2.35). 

From equation (2.37) the first convolution may be denoted by 

- e-1 P ry - e-1 P [ ~ l [ ~ l /12F = V'(€). jJF(p)-p- 1 * V'(€) . jJF(p)-p- 2 (2.38} 

where the subscript l2F indicates the forward convolution describing the scattering ex-

plained above. The first dot product of (2.38) appears as equation (A. 7} in Appendix 

A.l.l . That is, 

- JLPKmnKmnCOS(8mn-8t)· eiPtKmnCos(B,.n-Bt) {2.39) 
m,n 

where PK- , Kmn• and Bmn are the Fourier coefficient, wavenumber, and direction of 
mn 

wave vector Kmn associated with the surface at the first scattering point, (x1, yt), 

and 81 is the direction of Pt as given in Figure 2.4. In the same fashion, since jJ12• fh. 
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= cos(012 - 82) and Pt2 · B2 = sin(Ot2 - 82), it is easy to show that the second dot 

product in equation (2.38) may be characterized as 

(2.40) 

where the pq subscripts designate, at the second scattering point, (x2, Y2), the same 

kind of quantities as the mn subscripts denote at (xh yt). Note that P12 is the unit 

vector in the direction of propagation from (x1, yt) to {x2, Y2) and 812 is its direction. 

Proceeding in the same way as for the first-order convolution of equation ( 2.15), 

equation (2.38) in integral form becomes 

ft2F = - L L PR ..... KmnPKpq Kpq 11 cos(Omn- (Jt)eJ!P1Kmn cus(Omn-Btl-kpt] 
m,n p,q Zl Yl 

· cos(Bpq- Ot2)eiiP2Kpqcos(Opq-~)-ltP'l] · F(pt)F(Pt2 ) dx1dy
1 

• (2.41) 
PtPt2 

In view of equation (2.37) and the intervening analysis, the former is then 

-k2C0 xy [ e-jkpl 
(Eri,.)2::::::: (21r)3 f12F * F(p)-p-

3 
. (2.42) 

Before attempting the final convolution, we seek a stationary phase result for / 12F as 

described in the next section. 

2.2.2.2 A Stationary Phase Approach to the Second-order Field 

As in the first-order case, it is convenient to change to elliptic coordinates in order to 

seek a stationary phase approximation of I 12F in equation (2.41). This is accomplished 

in a way completely analogous to the three steps outlined in Section 2.2.1.2. Refer

encing Figure 2.4, (1) rotate the coordinate axis by 82 , (2) shift the origin halfway 

along fJ2 and (3} introduce elliptic coordinates. Corresponding to equations (2.20} 

and (2.21) we then have 

x 1 - ~ {(coshJ.L cos6 + 1) cos02- sinhJLsin 6 sin82} 

y1 - ~ { (cosh J.L cos 6 + 1) sin 82 + sinh JL sin 6 cos 82} 
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and 

Pt - Jx~ + YI = T(coshJ..L + cos6) 

P12 - J(x 2 - xl)2 + (Y2- yt)2 = ~{coshJ.t- cos6) {2.44) 

()1 -
_1 Yt _1 [{1 + coshJ.t cos 6) sin 82 + sinhJ..L sin 6 cos 82] 

tan -=tan 
x 1 { 1 + cosh J.t cos 6) cos 82 - sinh JL sin 6 sin 82 

From {2.43), dx1dY1 = PtPt2dJ.td6. Additionally, from {2.44}, Pt + P12 = P2 cosh J.t 

giving 

(2.45) 

Expanding cos(Bmn - et) in the exponential of equation (2.41), noting that Xt = 

Pt cos81 and y1 = Pt sin81 along with equations (2.43) and (2.45} then permits {2.41) 

to be written as 

it2F = -'LLPRm,.KmnPRpqKpq {
2

1f foe cos(Bmn-BI)cos(Bpq-012) 
m,n p,q 1 6=0 1 p=O 

. eJP'lKp., coa(Bpq-112) F(Pt }F(Pt2)elq.~12(J£,6} dp.d6 (2.46) 

where 

+ sinh J.t sin 6 sin ( Bmn - 82)] - 2k cosh J.t . (2.47) 

It must be emphasized that during the x 1 -y1 integration, or equivalently the J.£-6 in

tegration. P2 and 02 along with the variables subscripted by mn and pq are considered 

fixed. 

The significant contributions to / 12F in equation (2.46) are determined via a mod

ification of a two-dimensional stationary phase method, the theory of which is found 

in Bleistein and Handelsman (66], Chapter 8 or Friedman (69}, Chapter 3. According 

to this theory, the stationary points of the integral in (2.46) are the solutions to the 

simultaneous equations 
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and 

Therefore. from {2.46) the solution to the pair of transcendental equations 

K mn [sinh J.L cos 8 cos( Bmn - 82) + cosh J.L sin 8 sin ( Bmn - 82)] - 2k sinh J.L - 0 

is required. After some algebra, the solutions are found to be 

(1) J.L=O 6=0 

{2) J.L = 0 8 = ±1r {only one of the pair is distinct) 

c J K'!nn - 4k2 cos2(8mn - 82 ) 
(3) tanu = ....:....------:~-~--

2k cos( Bmn - 82) 

J K'fnn - 4k2 cos2 (8mn - fh) 
ta..'lh 11- = 2k sin(Bmn- 82) · 

(2.48) 

(2.50) 

In (3) of (2.50), the restriction 2kl cos(Omn - 82)! < Kmn < 2k obviously applies. 

Furthermore, Bmn :/= 82, 82 '# Bmn±; in the points designated by (3), but these values 

are covered by the first two stationary points. 

Prior to determining the form of I12F of (2.46) for each of the three cases in (2.50), 

it is desirable to give some physical meaning to these stationary values: 

1. Stationary Point (J.L, 6) = (0, 0) 

From the first two equations in (2.44), (p., 6) = (0, 0) means that p1 = P2 and 

p12 = 0. With reference to Figure 2.4, it is seen that this indicates a double 

scatter at (x1 , yl) (i.e.(x2 , Y2) = (xt, yi)). For reasons that will become evident 

when this analysis is applied to a pulse radar (Section 2.2.5.2), it is customary 

to refer to this phenomenon as "patch scatter". The geometry appears in Figure 

2.5a. 
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Figure 2.5: Possible occurrences of second-order scatter showing (a) both scatters on 
a remote "patch" , (b) one scatter near the transmitter followed by another on the 
remote patch and (c) two scatters off the patch. 

2. Stationary Point (J.l, 6) = (0, 1r) 

For the (0, 1r) stationary point the first two equations of (2.44) reduce to p1 = 0, 

p12 = P2· This time, Figure 2.4 indicates that point (x1, yl) has shifted to the 

transmitting sight, T, and the second scatter occurs remotely from Tat (x2, y2). 

Given that 812 = tan-1 [y2
- Yl] it is easy to show that 812 -+ 82 uniquely as 

x2- x1 

(J.l, 6) -+ (0, 1r). Thus, the (0, 1r) represents a first scatter near the transmitter 

and a second on a patch of ocean which is "viewed" from R. See Figure 2.5b. 

When using a narrow beam receiver, the second scatter must be on the same 
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"patch" as (x1 , y1 ) was above if this component is received at the same time as 

that from (1). 

3. Stationary Point From (3) in Equation (2.50) 

The restrictions on the third stationary "point" (which is really a set of points) 

stated following (2.50) make it distinct from the previous two points. Thus, the 

scatter for the third "point" must occur elsewhere than at the transmitter or at 

the remote patch whereon (x1, yt) or (x2, Y2) resides. However, to be received at 

R simultaneously with the other two components, the total scatter path length 

must be the same as for the other two points. Referring to Figure 2.5{c) it is 

clear that for this case the double scatter will always involve two single bistatic 

scatters. From Equation (2.30), it is seen from the y'cos c/J factor, that a single 

scatter will be strongest when the bistatic angle, c/J, is 0, i.e. the backscatter 

condition. This will not occur for this "off-patch" scatter, even if R is moved 

toT. Consequently, off-patch scatter will not be as strong as that represented 

by the first two stationary points for which one of the scatters can indeed be 

a backscatter. In fact, for monostatic operation, Srivastava [54] shows that, in 

relation to the other two, this third case is not significant. It will, therefore, not 

be further addressed in this thesis. As a final point in this discussion, it should 

be mentioned that the receiver will later be considered to be of the narrow beam 

type (this is implied in Figure 2.5 in that the final scatter is shown to travel 

along the direction from a distant patch point, P, to the receiver position, R). 

2.2.2.3 A Modified Stationary Phase Solution for Patch Scatter 

In the previous section, it was concluded that the stationary point (0, 0) corresponded 

to a double scatter on a surface patch remote from both the transmitter and receiver. 

With reference to Figures 2.4 and 2.5a and equations (2.43) and {2.44), the following 
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hold: 

P21 - 0 

81 - (}2 

012 - tan-1 [Y2- Y1] 
X2- Xt 

. _ 1 [ ( 1 + cosh J.1. cos 8) sin 82 - sinh p. sin 6 cos 62] 
- tan · 

( 1 + cosh J.1. cos 8) cos 82 - sinh J.L sin 8 sin 62 

(2.51) 

An extremely important matter here concerns the value of 612 at the stationary point . 

In fact. it can be shown that as (J.L, 6) -+ (0, 0), 612 is not unique, but takes a different 

value for each direction of approach towards the stationary point. The physical 

significance of this point is that radiation from the first scatter may occur in any 

direction before scattering the second time. One way to verify this is to let J.L = m6 

(to distinguish different lines of approach for different m's) in 612 given above. Using 

L'Hopital's Rule it then transpires that 

l. 0 (~) _1 [(l-m2)sin82-2mcos62] 1m 12 u =tan , 
o-o (1-m2 ) cos82 + 2msin82 

and the assertion of non-uniqueness is established. Because of this, the standard two

dimensional stationary phase technique cannot be applied directly to equation (2.46) 

since cos(Bpq - 812) found there is not unique at {J.L, 6) = (0, 0). The modification to 

the usual approach constitutes the remainder of this section. 

In finding the stationary points of the integral in equation (2.46), P2 and 82 were 

fixed. This fact, along with the p and 8 relationships of (2.51), gives for (2.46) 

_ _! "" P- K P- K e?112K,.,coa(B,.,-~> cos(8 - 82)F(n..)F(O) 2 £- £- K,..,. mn K,., pq mn ,.. • 
m,n p,q 

/12F,1 = 

· {'h {oo cos(B - 812)e?Pf-t1:r(ll.6> d1Jd6 (2.52) Jo Jo pq 

with cll12(J.I., 6) as defined in (2.47) and /12F,l being the component of / 12F considered 

at the first stationary point. The factor of ~ in front of the summations appears 
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because the stationary point (0, 0) is on the boundary of integration (see Friedman 

(69], Chapter 3). 

An approximation of the double integral in (2.52) is sought by expanding 4>12(J.L, b) 

in a double Taylor series to second order about the stationary point (0, 0). From 

equation (2.48) it is obvious that the first-order term in this expression is 0, leaving 

which is easily shown to give 

4>12(J.L, b) ::::: [2Kmn cos(Omn - 82) - 2k) 

+ ~{[Kmn cos(Omn - 82) - 2k]JL2 + 2Kmn sin(Bmn- 82)1-Lb 

(2.53) 

The first term in (2.53) is constant with respect to the integration variables and 

therefore ft2F,l of equation (2.52) may be written from (2.51) and (2.53) in the form 

(2.54) 

with 

(2.55) 

The analysis becomes algebraically intensive at this point and the details associated 

with the results given in the remainder of this section appear in Appendix A.2.1. 

As a first step, we write the double integral of (2.54) separately as 

(2.56) 
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This integration is more easily effected with a change of variables which eliminates 

the cross term (i.e. the p.6 term) of Q(p., 6) in (2.55). All of the details are in the 

appendix referred to above. Following a general procedure given in DeRusso et al. 

[70] , Section 4.9, the starting point is to cast Q(J..L, 6) as 

[ 

Kmn cos(Omn- 92) - 2k Kmn sin(9mn- 92) ] [ p. ] 
Q(p., t5) = [ /-L t5 ] 

Kmnsin(Omn- 92) -KmnCOS(9mn- 82) t5 

It can then be shown that in ('1/J, x) coordinates 

(2.57) 

(2.58) 

where -\ 1 and A2 are the eigenvalues of the large matrix in (2.57) and are given by 

and 

and 

A2 - -k- .jk2 + K~n- 2kKmn cos(Bmn- 82) 

W _ [ (At+ KmnCOs(9mn- B2))p. + (Kmnsin(Bmn- 92))6] 

[(At+ Kmn cos(8mn- 82))2 + (Kmn sin(9mn- 82))2]~ 
while 

[ 
(Kmn sin(8mn- 82))/-L + (A2- Kmn cos(8mn- 62) + 2k)6] 

X - ((A2- Kmn cos(8mn- 82) + 2k}2 + (Kmn sin(Bmn- 82))2]! 

(2.59) 

(2.60) 

In terms of t/J and x, cos(8pq- 912 ) in equation (2.56) may be written as outlined 

in Appendix A.2.1.2 (to second order in p. and 6) as 

where 
Ct - (At+ Kmn cos(8mn- 82))2 + (Kmnsin(9mn- 82))2 

c2 - [(Kmnsin(9mn- 92))2
- (At+ Kmncos(9mn- 92))2]cos(8pq- 82) 

-[(2Kmn sin(Bmn- 92))(.At + Kmn cos(9mn- 82)] sin(9pq- 82) 

CJ - -2 {(2Kmn sin(8mn- 82))(,\1 + Kmn cos(8mn- 82)] cos(8pq- 82) 

(2.61} 

+ [(Kmn sin(8mn- 82))2 - (.At+ Kmn cos(Bmn- 82))2] sin(Bpq- 82)} 
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Utilizing equations (2.58) through (2.61) and observing that the Jacobian of the 

transformation from (JJ, t5) to ('1/l, x) is unity, equation (2.56) appears in the new 

coordinates as 

(2.62) 

The exponential immediately suggests a change of variables to polar coordinates (r, v) 

so that lj_• = r cos v and x = r sin v with the Jacobian obviously given as rdrdv. 

Implementing this change, again as detailed in Appendix 2.1.3, it is shown that 

1 ,_ -4nj [ c2~ +c2k ] 
m ...... P2 Ct Jk2 + K~n - 2kKmn cos(Bmn - 02)V AtA2 . 

From the definition of the various constants in equations (2.59) and (2.61) and multi

plying Im by the factors KpqKmn cos(Omn- 82) of equation (2.54), the latter is shown 

to reduce to 

/12F.l 

where F(O) = 1 has been used and 

(2.63) 

_ {j J Kmn · (Kmn- 2kP2] + k} { (Kmn · fi2){Kpq · (Kmn- kp2)]} 
"'I El2F.1 - 2 - - ~ · ~ _ _ ~ · 

k + Kmn · [Kmn- 2kP2]Kmn · (Kmn- 2kp2) 
(2.64) 

The parameter "YE12F,l, whose subscripts have been chosen to link it to the integration 

at this first stationary point, clearly involves the interaction of the transmit wave 

vector, k, with the surface wave vectors Kpq and Kmn· It has been customary in 

other analysis, (e.g. Srivastava [54], Walsh et al. [8]), to refer to such a parameter 

as an electromagnetic coupling coefficient. Here, then, 'i'El2F,l is the electromagnetic 

coupling coefficient for "patch scatter". This quantity is examined in detail when the 

analysis is applied to the ocean surface (Section 3.6.3, note 4). Prior to applying the 

convolution indicated by equation (2.42), consider that the exponentials in equation 
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(2.63) may be written as 

(2.65) 

where K,., = IKmn + Kpql and Ors is the direction of (Kmn + Kpq)· Then, to indicate 

the contribution of the first stationary point to the E-field of (2.42), equations (2.63) 

and (2.65) may be used to v:ritc 

- o ;ry e-J P k2C [ k l (EJ"..h.F.l ~ (27t-}3 [12F.l * F(p)-p- 3 (2.66) 

That is, (Eti .. h.F,l is the contribution to the second-order field received at R (of Figure 

2.4) from a double scatter on a surface patch remote from both the transmitter, T, 

and the receiver, the analysis being executed in the forward (F) sense as mentioned 

following equation (2.38). 

Synthesizing equations (2.63), (2.65) and (2.66), 

(E+ ) ...... - kCo ~ " p p ( k ) 
On 2,F,l .....,. {27r)2 ~ ~ Km,. Kpq - "YE12F,l 

m,n p,q 

. F(p2) eiP2(K,., e011(8,..-82)-kl :r:l [F(p) e-Jkpl 
~ p 3 

(2.67) 

Noting from Figure 2.4 that the appropriate distance parameter in [· · ·h is fJ1.o, it is 

clear from Appendix A.l.1 that equation (2.67) may be written in the form 

The double integral here is seen to be of the same form as for the first-order result 

in equation (2.19). Thus, an elliptic coordinate approach may again be taken. Since 

the concepts involved are not new, the procedure as it pertains to the second-order 

scatter and the propagation along ih.o in Figure 2.4 may be summarized as follows: 

(1) rotate the coordinate axis through angle 8; (2) shift the origin halfway along if, 
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(3) write the rotated/translated coordinates in terms of the usual elliptic coordinates 

so that then 

P2 - ~(cosh J1. +cos c5) 

P?.o - ~(cosh J1. -cos c5) 

P2 + P?.o - pcosh J1. 

I2 - ~[( 1 +cosh J.L cos 6) cos() -sinh J1. sin c5 sin 8] = P2 cos 82 (2.69) 

Y2 - ~ [ ( 1 + cosh J.L cos 6) sin() + sinh J1. sin c5 cos 8] = P2 sin 82 

(}2 -
_ 1 (Y2) _ _1 [(1 +coshp.cosc5)sin0 +sinhp.sinc5cos0] 

tan - - tan ( h £) 8 . h · £ · 0 x2 1 + cos J.L cos u cos - sm J.L sm u sm 

dx2dY2 - P'2P2odp.dc5 

Consequently, equation (2.68) becomes in elliptical coordinates 

(E+ ) ....... -kCo '""''""' p p 
o .. 2,F,l "' (27r)2 L-. L-. R.,." Kp, 

m,n p,q 

. eJi(Kn ws(9ra -8)) fooo e-jkpcOflhl-' {la2rr ( -k'YE12F.d 

e}~(cueh I!Coa6coa(8 ... -9)+sinh IJ sine sin(8ra -8)) 

(2.70) 

As with the first order, it is desirable to consider equation (2.70) in terms of scatter 

at constant (p2 + P2o) since this will correspond to a fixed time when the analysis 

is taken to that domain. Again, this means that the integration will proceed over c5 

while fixing J.L ( i.e. scatter will occur from an elliptical locus as before) and p and 8 

are held constant. Since the form of the exponential term containing the hyperbolic 

functions is exactly the same as in the first-order term of (2.24), the stationary phase 

analysis and its interpretation for equation (2.70) may be written down directly using 

Appendices A.l.2.1 and A.l.2.2. Thus, comparing equations (2.70) and (A.9) we 

identify 

Z - p ~s , the "large" positive real number, 
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f( 6) - cosh p. cos 6 cos( Or$ - 8) + sinh p. sin 6 sin( Or$ - 8) , (2.71) 

F(o) - (k"'fE12F.I)F(p2)F(Pw) , 

and from equation (A.l2) the stationary points, 08 , are given by 

tan 68 = tanh J.L tan( Ors - 8) . (2.72) 

Replacing (x';.y~) of equations (A.15) through (A.16) with (x;,y;) and, without loss 

of generality, again setting(}= 0, leads for equation (A.l9) in the present case to 

(2.73) 

Furthermore, since p1 and fh., of the first order are replaced by f.i2 and ih.o respectively, 

in this second order, equation (A.22) may be written analogously as 

fJ20 · f.J = -{J2 · N . (2 .74) 

Thus the following important results have been derived: 

1. The sum of the two surface wave vectors responsible for the scattering (i.e. 

Kmn + Kpq = Kr$) is normal to the scattering ellipse at the scattering patch, 

and 

2. Krs bisects the angle, (2¢), between the transmitter (T) and receiver (R) as 

viewed from the scattering patch. These results are effectively illustrated in 

Figure 2.6, a depiction which corresponds to Figure 2.3 for the first-order scatter. 

Again, c,t> is referred to as the bistatic angle, and p'~ has exactly the same form 

as given for p'{ in equation (A.l5). 

The 6-integral of equation (2.70) is obtained similarly as equation (A.l4) and may 

therefore be written down directly as 

[6 ~ J21r( -k"YE12F,l)F(P2)F(P1,o) 
eJ ~ {aMih I' Cllll6 cos( Bm,. -B)+sinh I' sin 6 sin( Bmn -B)J 

Jie~"'[coshp.cos6cos(8mn -8) +sinhl-'sinosin(8mn- 8)] 
(2.75) 
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Figure 2.6: Depiction of the geometry associated with the second-order stationary 
phase condition. R and T are receiver and transmitter, respectively. 

which. on converting from (J.L, 6) to the natural bistatic geometry parameters P2, P2o 

and¢, becomes (according to equations (A.22) through (A.26) with pf· Kmn replaced 

by p~ · Krs) 

(2.76) 

By definition, 

(2.77) 

Equation (2.70) for the second-order patch scatter field may now be expressed as a 

single integral in the form 

( Eti._ h,F,l ~ 

(2.78) 

58 



Finally, a change of variable is invoked to write this JL-integral completely in terms of 

the bistatic parameters. From equations (2.69) and (2.77), 

Ps12.1 = ~ coshJL 
and 

dpiJt'l.l = J ~t'l.t - (~) 2 
djL. 

(2.79) 

Noting also that Ps 12•1 I~=O = ~· equation (2.78) is given by 

(E+) ..... -kCo """""' Pgm,. PKpq _;~ . .R .. , {~( k ) 
0,. 2,F,l ..... --3 ~ ~ rr;;- . e- h - 1'E12F,l 

{2tr)2 m,n p,q V Krs l 

(

F(P2)F(P2o) e=FT eiP•t'l,t (±K,., cus<t>-2k)) 
. . dp 

vcos cP 2 -'12.1 • 

Pst'l.l (pit'l.t - (~) ) 

(2.80) 

Equation (2.80) is the vertical electric field component received from a double scatter 

on an observed point of the surface. As for the first order, for the moment, the 

equation is general and this double scattering can occur from any point on the surface. 

Later (see Section 3.5) radiation observed from an elementary region of the scattering 

surface is considered - hence the terminology "patch scatter". 

2.2.2.4 Scattering at the Transmitting Antenna 

Attention is now focussed on the component of the vertical electric field corresponding 

to the second stationary point (0, 11') of equation (2.50). Referring to Figures 2.4 and 

2.5b, this point has already been interpreted in Section 2.2.2.2 as a single scatter at 

(in reality, near) the transmitting site, T, followed by a second scatter at a remote 

''patch" of surface at some arbitrary point, (x2 , y2), before reception. Considering 

equations (2.43) and (2.44) and 812 of equation (2.51), for the (0, 1r) stationary point 

we have, in summary form, 

P1 - ~ (cosh JL + cos 6) = 0 , 

P2 
P12 - 2(coshJ.&- coso)= P2, 
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(}12 - (}2 ' 

-1 r ( 1 + cosh J.1. cos 6) sin (}'l + sinh 11 sin 6 cos (}2] 
81 - tan L 1 +cosh 11 cos !5) co.s 82 -sinh 11 sin 8 sin 82 

(2.81) 

Equation (2.81) for the (0, 1r) point replaces equation (2.51) for the (0, 0) point and the 

similar format is obvious. However, the values of the various p's and fJ's are different. 

Note particularly this time that as (p., 6) --+ {0, 1r), 812 - 92 uniquely, while it can be 

shown that 81 is not unique. This last point follows the same argument as for 812 in 

Section 2.2.2.2. Here, the implication is that radiation may leave the transmitter in 

any direction and scatter nearby before travelling to the second scattering position 

on a remote patch of surface. Given (2.81), equation (2.46) may be written as 

(2.82) 

where the last subscript on l 12F,2 indicates that we are considering the second sta-

tionary point. In equation (2.82), which clearly parallels (2.52) for the first stationary 

point. the following are emphasized: 

1. fJ?. and 82 are fixed quantities during the p., 6 integration, as before. 

2. <1> 12,2 (p.6) is the same general expression as in (2.47), but must now be expanded 

to second order about the (0, 1r) stationary point. 

3. 81 is a function of p. and 6. 

4. the factor oft is required because (0, 1r) is on the boundary of integration. 

The function <1> 12 (J.J., 6) expanded in a double Taylor series about (0, 1r) to second order 

yields (analogous to (2.53)), 

<I>12,2(P., 6) ~ -2k + ~ {[-Kmn cos(Omn- 02)- 2k}J.L2 
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-[2KmnSin(8mn- 82)}JL(6- 1r) 

+[Kmn cos(Bmn- 82)(c5- 1r)2
}} (2.83) 

Changing the limits on the c5 integral from (0, 21r) to ( -1r~ 1r), noting that F(O) = 1, 

812 = 82 and factoring out the e-JP2k resulting from the zero order term in <1? 12 • 

equation (2.82) has the form 

ft2F2 = 

{2.84) 

with 

(2.85) 

Except for the 6-limits (which, incidently, could still be 0 to 27r), we see that the 

double integral of equation (2.84) along with the stipulation of (2.85) has exactly 

the same form as equations (2.55) and (2.56). The latter equation, for the first 

stationary point. was treated extensively in Appendices A.2.1.1 through A.2.1.3 and. 

while those techniques must be repeated to obtain the appropriate forms, there are 

no new insights from the analysis being applied to the stationary point now under 

consideration. Therefore, at this stage we may simply write down the new form of 

(2.84) as 

I 2 ~ ~ p p F(fJ'l) ..Jf:I.[2K cos(8 -82)-2kj 
12F,2 :;:= - 7r L- L- Kmn Kpq lln • "YE12F,2 • t:"" 2 pq P<f 

m,n p,q r~ 

(2.86) 

where it may be shown on carrying out all of the algebraic detail that the electr~ 

magnetic coupling coefficient may be given as 

rE12F,2 = 

(2.87) 
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Again, the details of this coupling coefficient will be discussed when the analysis is 

applied to the ocean in Section 3.6.4, note 4. Comparing the forms of the patch scatter 

integral of (2.63) with (2.86) we see that the latter has only one exponential factor. 

This is due to the fact that in (2.86) the first point of scatter is at the transmitter 

so that the distance parameter associated with it .._ 0. The exponential associated 

with it will therefore be unity. On the other hand, for patch scatter both scattering 

surface wave vectors are remote from the transmitter and each naturally appears in 

an exponential factor. 

Using exactly the same analysis as was used from equations (2.66) through (2.68) 

and considering that the form in equation (2.65) is replaced in this current analysis 

by elP2[Kpq cos(Opq - 02) - k] , we may write down directly 

(Eti,.hF.2 ::::: -(2kG)~ LLPRm .. PKpq r r (-k;El2F.d 
1T' m,n p,q JY"J Jz'l 

. F(P2)F(P2o) eiP'l[K,..,coa(Bpq-il2)1 • e-1(P'l+P'lo)k dx2dY2 . (2.88) 
P2P2o 

Clearly, with the exception of (Kpq, Opq) replacing (Kr4 , Or4 ), the form of equation 

(2.88) is identical to that of (2.68). The last subscript on (EtiJ has been changed 

to 2 to indicate that this is the field component due to the second stationary point. 

We note that all transformations in {2.69) will apply here as will all of the ensuing 

analysis up to and including (2.80). It is simply required that Kpq, Bpq and "fEl2F.2 

be substituted into (2.70}, (2.71}, (2.72), (2.73), (2.75), {2.76) and (2.78) in place 

of Krs, Brs, "YE12F,h respectively, where appropriate. Then, equation (2.88} may be 

transformed to get the counterpart to (2.80). That is, for first scatter near the 

transmitter and a second, before reception, at a remote point on the surface, the 

vertical electric field component may be written as 

-kCo ~~ PRm,.PR,.., · &fR,.., r. 
(Et,.h.F,2 ~ ( )! /- £- rr;:- · e. ( -k"YE12F,2) 

21T' 2 m,n p,q V Kpq 2 

F(P2)F(P2o) e=F'T eiP•t2,1 (±K,.., cos~P-2k) 

VCOS ¢ _/ 2 dpSl'l,l . 
V P!Jt2.t (~12.1 - (~) ) 

(2.89) 
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The following important facts incorporated into this component may be summa

rized as follows: 

1. the first scatter may occur in any direction from the transmitter (i.e. 81 is not 

unique); 

2. the i?pq wave vector at the distant scattering point is along the scattering ellipse 

normal at that point; 

3. Kpq bisects the angle between the receiver and transmitter as viewed from the 

second scattering point. 

These ideas are depicted in Figure 2.7. 

Y . 

... -~ t• scatter 

near transmitter 

2-' scatter 
on •patch" ""-

/[~ .. 

X 

Figure 2.7: Figure 2.5b repeated showing in more detail the geometry of the scatter 
at the transmitter (T) followed by another on the remote patch. 
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2.2.3 The Second-order Scatter for a Time Invariant Surface 
- Backward Analysis 

In Section 2.2.2.4, the double scattering consisted of a first scatter near the trans

mitter and the second at a point remote from both the receiver and transmitter. 

Intuitively, one might expect that a similar feature should manifest itself by a first 

scatter on the remote point with the second scatter occurring near the receiver before 

being received. However, this has not been previously found even in investigations 

which have presented monostatic cross sections of the ocean surface {eg. Barrick (24]. 

Srivastava (54}). It is also clear that a stationary point corresponding to this situa

tion did not arise from the "forward convolution" approach to equation (2.37) as was 

undertaken in Section 2.2.2.1. In an attempt to locate this phenomenon, equation 

(2.37) is revisited here. 

Considering property (2.35) for convolutions, equation (2.37) may be grouped as 

{2.90) 

This equation still pertains to Figure 2.4, but now the last convolution (i.e.[· · ·h z; 
[···b) will be done first. To distinguish this from the approach found in Section 2.2.2. 

it has been titled "Backward Analysis". 

2.2.3.1 A Stationary Phase Approach to the Second-order Field 

~Iuch of the analysis of the previous sections of this chapter along with the respective 

appendices is applicable here with due attention being paid to the meanings of the 

various parameters. Of course, in the first member of the second convolution in (2.90), 

~ = ~2.Y'l, the required distance parameter is p12 and its associated direction, 012• 

The distance parameter for the second member of this convolution is P2o with its 
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corresponding direction 820 • In the left member of this convolution, then, 

and this expression is found in equation (2.40). Using the technique of Appendix 

A.l.l it is easy to show that 

(2 .91) 

where the subscript on !238 indicates the order of convolution with the "B" referring 

to the fact that we are carrying out the convolutions of (2.90) in "backwards:' order 

- i.e. the last convolution is being done first. 

Evaluation of equation (2.91) may again be executed by applying a stationary 

phase method. The concepts are not different than already applied, but the initial 

elliptic coordinate transformation must be modified. 

Referring to Figure 2.8, we introduce a new vector, P4, given by 

whose direction is 

iii = (x - xi)x + (y - yi)y 

84 = tan-l (Y- Yt )) . 
x- It 

(2.92) 

(2.93) 

The first step in effecting the desired transformation is to rotate the coordinate axis 

clockwise by an amount 84 ( < 0) to give in terms of the new (primed) coordinates 

' 8 ' . 8 x2 - x 2 cos 4- y2 sm 4 

(2.94) 
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Figure 2.8: The coordinate transformation used in the Hbackward analysis" referred 
to in the text. 

Next, the (x'. y') origin is translated to the midpoint of ii4 so that we may write (in 

double primed coordinates) 

x; - x~ + p4 
- pcos(8- 84) 

2 

y~ - y~- psin(8- 84) . 

Finally, the elliptic coordinate transformation 

X'2' P4 h £ - 2 COS J.LCOSu 

Y2
" P4 . h . r - 2sm J.I.Slllu, 
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along with (2.94) and (2.95), leads to the results 

p12 = Pf[cosh~t + cos6] l __ _ h. 
B[ h f:) f => PL2 +- P.~ - P4 cos j.L P2o = 2 cos f£ - cos u 

x 2 = [~(cosh~tcos6- 1) + pcos(8- 84)] cos84 

- [~sinh~tsin6 + psin(9- 8,t)] sin84 

Y2 = [~(coshJLcos6- 1) + pcos(9- 84)] sin84 

+ [~sinh f£ sin t5 + p sin( 8 - 84)] cos 84 

(2.97) 

Using these transformations and carrying out the same procedure as in Section 2.2.2.1. 

gives for equation (2.91) 

with 

<!>23 (JL, 6) = Kpq {[cosh fL cos 6 - 1] cos( 8pq - 84) 

+(sinhJL sin 6) sin(9pq - 84 )} - 2k cosh JL 

and 

(2.98) 

(2.99) 

The form of <1>23(1-£, 6) differs from <l> 12 (JL, 6) of equation (2.47) only by a constant. 

Here "-1'' replaces the "+1" of the <l> 12 (JL, 6), and the solution of a<t>~~~ 6) = 0 and 

B<l>~~~ 6) = 0 leads to exactly the same stationary points as in (2.50}. Of course, 

Kpq, 8pq and 84 replaces Kmn 1 8mn and 82, respectively, in the third point. For the 

same reasons as discussed earlier, the first two stationary points, (0, 0) and (0, 1r), will 

be considered here. While these points are numerically the same as in (2.50) their 

interpretations are now altered: 
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1. Stationary Point (J.L, 6) = (0, 0) 

The first two equations in (2.97) give for this point 

P12 - P4 

P2o - 0. {2.100) 

From Figure 2.8, it is obvious that this implies that the second scattering point , 

lx2 , y2) has moved to R. Thus, taking equation (2.90) as a whole, it is evident 

that a component of the scatter at {x1 , yt) , as described by the left member of 

the first convolution, is scattered again at the receiving antenna before being re

ceived. 'We have therefore developed analytically what was intuitively suspected 

- that is , in addition to a double scatter on a remote patch of surface and a 

single scatter at the transmitter followed by a single "patch" scatter, there is 

also a single "patch" scatter followed by a single scatter near the receiver. The 

field associated with this stationary point is developed in Section 2.2.3.2 . 

2. Stationary Point (J.L, 6) = (0, 1r) 

The first two equations of (2.97) now yield 

P12 - 0 

P2o - P4 · (2.101) 

Again, with reference to Figure 2.8, it is evident that the point (x2, y2 ) has 

moved to (x1, yt), the position of the first scatter. Hence, this (0, rr) point 

again gives the '1Jatch scatter" condition. In Section 2.2.3.3, with reference to 

Appendix A.3.2, it is shown that for this point, the backward analysis produces 

exactly the same result as the forward analysis of Section 2.2.2.2 produced for 

the (0, 0) point. This is, of course, as it should be. 
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2.2.3.2 Scattering at the Receiving Antenna 

It is not difficult to show that as (JL, 8) - {0, 0), (}20 is not unique, 82 - (} and 

812 - 04 uniquely. This may be done rigorously using 82 = tan- 1 Y'l and 812 = 
X2 

tan- 1 (y2
- Y1

) and using the elliptic coordinate forms of the various x's and y's. 
X2- Xt 

However, these angle limits are obvious from Figure 2.8 as (x2, Y2} moves to R. Even 

though (x2 , y2 ) may approach R from any direction, in the limit the angles must be 

as stated. FUrthermore, during the (JL. 8) integration of equation (2.98), in addition 

to the pq- subscripted variables, p4 , 84 , p and 8 are fixed quantities. This means that. 

for the (0, 0) stationary point, 812 is fLxed also. Consequently, we may cast equation 

(2.98) as 

(2.102) 

Now. the double integral portion has exactly the same form as the double integrals 

in either equation (2.52) or (2.82) with one important exception: the cosine factor 

appearing explicitly in (2.102) is uniquely determined as (JL, 8) - (0, 0), while the 

corresponding factor in the other two equations depended on the direction of approach 

toward the stationary point. This uniqueness allows a direct application of a two

dimensional stationary phase solution of the double integral here. For completeness, 

the procedure is outlined in Appendix A.2.2. The result for equation (2.102) is 

1238,1 ~ j 21r L PK. Kpq cos(8pq- 812)F(P12) 
p,q P9 J K~- 2kKpq cos(Bpq- 812) 

e-ikPt2 
--eiKP'fpcoa(BP'f-8) 

P12 
(2.103) 

where the subscript "1" has been used on [238 1 to indicate that this is the result 
I 

for the first stationary point. At this stage (2.103) represents an approximation of 
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equation (2.91) so that electric field equation (2.90), for the case under consideration, 

now takes the form 

e-jkpr2 
---e1Kpqpcua(8pq-8) . 

P12 
(2.104) 

Comparing this with equation (A.4) for the first order we see that the forms are very 

similar. Then, regarding [· · ·h to be associated with the (x1, yt) surface point (see 

Figure 2.8), following the analysis of Appendix A.l.l leads immediately to 

(Eri.. hB.l ~ C2k~~ L L PKmn PKpq 1 r ( -k'YE12B.l) 
1r m,n p,q Zt }yt 

• e1KpqPC08(8pq-8)eJPtKmn(Bm .. -8t) 

. F(pl)F(Pt2) e-1k(Pt+Pt2) dxtdYt 
P1P12 

where we have defined a coupling coefficient by 

(Kmn cos(Bmn- (Jt))(Kpq cos(Bpq- 812)) 
"( El2B, 1 = ------;==::;=========:::===::::::::::::=:----J K'h- 2kKpq cos(Bpq- 812) 

(2.105) 

(2.106) 

Before proceeding, it is appropriate to compare the result in {2.105) with that for 

the second-order field when one of the two scatters occurs near the transmitter as 

described by equation (2.88). We note that, in equation (2.105), the pq wave vectors 

are associated with that part of the surface near the receiver (i.e. the second scatter 

position) and not on the remote patch. In this sense, they correspond to the mn 

wave vectors of equation (2.88). It may be further observed that in (2.105) there is 

a tJKpqpcos(flpq- B) factor due to the second scatter being a distance p from the 

transmitter. There is no corresponding Kmn term in (2.88) because the distance 

parameter is zero for that case. Additionally, noticing that the numerical subscripts 
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are different in (2.105) than in (2.88) because the scattering geometry is different, the 

two equations being referred to still have the same basic form. Because of this, the 

treatment of equation (2.105) follows directly that for (2.88). That is, referring to 

Figure 2.8 with (x2 , y2 ) having "moved" to (x, y) we effect a coordinate transformation 

this time by (1) rotating the coordinate axis counterclockwise through angle 8, (2) 

shifting the origin halfway along p and (3) converting to elliptic coordinates. Next, as 

before, a stationary phase integration is carried out on the fJ integral while J.L is fixed. 

To complete the J.L- integration, a change of variables similar to that in equation (2. 79) 

is used. None of these details presents new analytical insights so that , for the sake 

of compactness, we will simply summarize the results. Equation (2.105) becomes, on 

choosing (} = 0 as before, 

where 

Pt + P12 
p,'J.l .l = 2 

It should be noted, again by analogy with the forward analysis of Section 2.2.2.3, 

that in deriving equation (2.107) the following outcomes are observed: {1) the Kmn 

wave vector on the remote scattering patch is normal to the scattering ellipse there; 

(2) Kmn bisects the angle between the transmitter and receiver as viewed from the 

first scattering point. The field given by (2.107) is due to the scattering depicted in 

Figure 2.9, which is the same as Figure 2.7 but detailed to reflect the first stationary 

point of the "backward" analysis; and (3) 820 is not unique - i.e. the second scatter 

near the receiver can be received from any direction. 
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Figure 2.9: The geometry of the scatter at the remote patch followed by another at 
the receiver (R). Compare with Figure 2.7. 

2.2.3.3 Patch Scatter - Backward Analysis 

In Section 2.2.3.1, it. was shown that the second convolution in equation (2.90) carried 

out under a stationary phase integration produced a stationary point at (JJ, 6) = (0, 1r). 

This was interpreted to mean that a double scattering occurred on a patch of surface 

remote from both the transmitter and receiver. Calculation of the received electric 

field component for this case requires that equation (2.104) be revisited. It transpires 

that as (f.', 6) - (0, rr), 812 in the cos(Bpq- 812) factor of that equation is not unique. 

This necessitates a repetition of the modifications presented in Section 2.2.2.2 for the 

"forward" analysis of the "patch" scatter. As indicated earlier, the algebra associated 

with this process is intensive. However, no new insights result from repeating it. 

Therefore, here we will merely state the result which corresponds to the electric field 

component given in equation (2. 70) and briefly discuss the relationships between 

them. Using (Et.ah.B,2 to indicate the field component associated with the second 
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stationary point of the backward process we write 

(Eri,.h,B.2 = 

where 

k'YE12B,2 

-kCo)) P~ P~ . ei~Kr.cos(Br.-8) 
(27r):.! L....J L....J 1\mn 1\pq 

m,n p,q 

· fooo e-jkpcoshp. {la21r (k'"'fE12B,2) 

. ei~[coshp.cos6 cas(Br.-B)+sinh p.sin 6 sin(Br.-B)I 

All variables here have their usual meanings. 

(2.108) 

(2.109) 

It may be observed from either Figure 2.4 or 2.8 that as (x2,y2} ~ (xt,yd , 

ih ~ p1 . This means that F(pt) in equation (2.108) is identical to F(fJ'l) in equation 

(2.70) . Therefore, on comparing the two equations, establishing their total equiva

lence requires only that it be shown that 

where "YEt2F,l is given in equation (2.64) . Final proof of this equivalence between the 

·'forward" and "backward" analysis patch scatter is developed in Appendix A.3.2. 

2.2.4 The Monostatic Form of the Second-order Fields 

An important, and interesting, special case of the general bistatic received field occurs 

when the transmitter and receiver of Figures 2.3, 2.6, 2.7 or 2.9 are co-located. That 

is, the bistatic problem reduces to the monostatic case. Several such investigations 

have been carried out previously (Barrick [24], Srivastava (54], Walsh et al. [8]) . 

However, the analysis here includes the case of a scatter at the receiver which has not 

been presented before. Furthermore, it will be seen in the next chapter that there are 
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certain aspects of the fields in this work which better explain some of the features of 

the Doppler cross sections of the ocean surface derived from them. 

2.2.4.1 The Monostatic Form of the First-order Result 

\Vith reference to the Figure 2.3, it is seen that the following simplification occurs: 

the vectors joining the transmitter to the scattering point and vice versa are equal. 

but opposite, and the vector joining the transmitter to the receiver goes to 0 as does 

the bistatic angle. Symbolically, 

- - Pt + P2 P2 = -pl => Pt = P2 => Ps = = Pt 2 

p = 0 : cos ¢ = cos 0° = 1 . 

Substituting these values into equation (2.30) gives 

(2.110) 

The m on ( Et .. ) 1m represents the monostatic field. This agrees exactly with the 

monostatic result given by Walsh et al. [8). 

2.2.4.2 Patch Scatter 

Consider equation {2.80) for the case where the receiver and transmitter are co

located. Then, from Figure 2.6 and equation {2. 77) we have 

(1) p - ea..±eA - n,.,. 512.1 - 2 - f"'L. 

(2) ¢ = 0 => cos lP = 1 
(3) p = 0. 

Direct substitution into (2.80) then gives 

(E+) ....... On 2,F,l - -kC0 
"""""" P- P-

(2-rr)! L- L..- K,..n Kpq 
m,np,q 

foe p2 (P2) (-k"'( E12F 1 )e~lf e}P2(±K,.. - 2k) dn,.,. • 
lo (P:z)i ' ,.,L. 
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When this is compared with the monostatic result given in Walsh et al. [8], the form 

may be seen to be the same. However, in equation (2.111), ( -kT'El2F,d contains 

an extra factor when compared to the previous monostatic result. Analytically, this 

arises because of the modified stationary phase approach which was necessitated by 

the non-uniqueness of 812 (see Section 2.2.2.2) . However, it is verified in Section 

3.6.6, where the second-order cross sections of the ocean surface are calculated and 

illustrated. that this extra factor has no significant effect on the magnitude of the 

so-called coupling coefficient except at certain discrete (and physically explicable) 

points. 

2.2.4.3 Scatter at Transmitter 

Now we wish to consider equation (2.89) for monostatic operation. According to 

equation (2.77) and Figure 2.7, we again have 

( 1) PsrJ.l = P2 
(2) ¢ = 0 
(3) p = 0 . 

from which (2.89) becomes 

( E;;: h.F,2 

(2.112) 

It will again be verified that the details of the monostatic form of ( -k"(E12F,2 ) here dif

fer from Srivastava's [54] result, yet on applying equation (2.112) to the ocean surface 

it reveals the same major points of significance as does Srivastava's formulation (see 

Section 3.6.4). It should also be pointed out that the techniques applied here because 

of ambiguities were not addressed by Srivastava.. It is, therefore, not surprising that 

there are some minor discrepancies. In addition, it will be shown that (2.112) better 
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explains a larger region of the Doppler cross section than does Srivastava's analysis 

(see Appendix B.8). 

2.2.4.4 Scatter at the Receiver 

No monostatic form exists with which to compare the field equation when one of the 

two scatters involved in the second-order return occurs near the receiver. However. for 

the sake of completeness, the monostatic version of equation (2.l07) is given below. 

Referring to Figures 2.8 and 2.9 and the definition of Ps21. 1 following equation (2.107) 

the appropriate variable changes are 

(1) Ps21.1 = ~ = P1 
(2) ¢ = 0 
(3) p = 0. 

Immediately, for monostatic operation, equation (2.107) takes the form 

( E! h.B,l :::::: 

(2.113) 

Recalling that in (2.112) the Kpq wave vectors are on the remote patch, while in 

(2.113) the Km.n wave vectors are on the patch, and that P2 in the former corresponds 

to exactly the same as p1 in the latter (compare Figures 2.7 and 2.9), we see that the 

forms of the equations are the same. This is not surprising for monostatic operation 

since in each case one scatter occurs on the remote patch and the other near the 

receiver or transmitter. Again, there are small differences in the exact forms of "YE128,1 

and "YE12F,2 due to the techniques used in developing them (see Sections 2.2.2.3 and 

2.2.3.2). However, on application to the ocean surface it will be seen in Section 3.6.6 

that the differences are unimportant - that is, they do not significantly affect the 

Doppler cross sections depicted there. 
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2.2.5 The Electric Field Equations for a Pulsed Dipole 

At this stage, the vertical electric field components have been derived to second order 

in scatter. The source is an elementary dipole with arbitrary current distribution -

i.e. , the waveform of the source radiation is general. Since it is the object of this 

analysis to develop bistatic cross sections of the ocean surface for a pulsed radar, we 

shall seek the appropriate field expressions using a pulsed elementary dipole source. 

As the theory is developed, it will become evident that the cross section expressions 

will not depend explicitly on the source type. Thus, it is convenient to choose the 

simple form of the pulsed dipole. In fact, we shall choose a current excitation which 

is easily extendable to more complicated forms. 

The initial approach in seeking the pulsed dipole forms for the field components 

given in equations (2.30), (2.80), (2.89), and (2.107) is based on the convolution 

theorem - that is, multiplication in the frequency domain corresponds to convolution 

in the time domain. In all of the above equations, the parameter, C0 , is a function 

of radian frequency, w, by virtue of equation (2.7) and the definition following it. 

vVriting the source current, / , explicitly as a function of frequency, we indeed have 

kCo = k3J.(w)Ai 
JWfo 

as a factor in all of the field equations. This is easily seen to be equivalent to 

rroA£ 2 
kCo = -j--;;2w I(w) (2.114) 

where, as usual, T/o is the intrinsic impedance of free space, c ( = ~) is the speed of 

light in a vacuum, and Af. is the dipole length. From the Fourier transform property 

8"i(t) ~ (jw)n I(w) ' 
&tn ;F-1 

the inverse transform of (2.114) may be written as 

:F1 [kCo] (t) = /'lo:i (J2~~) 

77 

(2.115) 



where i(t) is the time domain current excitation which determines the waveform. 

The choice of i(t) is that of a pulsed sinusoid: 

i(t) = lo&wot[h(t) - h(t -To)] (2.116) 

where !0 is the peak current, w0 is the sinusoidal radian frequency, h(t) is the Heaviside 

function defined as 

h(t) = { 1 ' t ~ 0 
0 , t < 0 

(2.117) 

and To is the temporal length of the pulse. This complex current is physically real-

izable by "in-phase!' and ~~quadrature" components. Also, real trigonometric sines 

and cosines may be given by linear combinations of (2.116) and, since the response 

equations are linear, superposition allows the generation of more complicated current 

forms if required. 

If we agree to neglect the leading and trailing edge impulse terms in the derivative 

of (2.116) then we may write 

82 '( ) 
1 t 2 WJQt ( ] ~ = -w0Ioe? h(t) - h(t- To) 

so that {2.115) becomes 

(2.118) 

where the wavenumber of the excitation current is k0 ( = :a). This approximation 

is made with a view to simplifications in the subsequent analysis. 

Besides the kCo factor appearing in field equations (2.30), (2.80), (2.89) and 

(2.107), the integral portions all have expressions of the form 

where 

Pi+ Pi 
Pii = 

2 
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with the values of the i, j subscripts being obvious from the equations referenced. 

It should be pointed out that the attenuation functions, F, are really a function of 

frequency w, also. Therefore, strictly speaking {2.119) should be cast as 

(2.120) 

Furthermore, the exact transform of i(t) in (2.116) is ( see, for example, Hay kin ([71), 

Chapter 2)) 

I(w) = IaroSa [<w- wo) ~] 

where Sa(·] is the sampling function sin(·]/[·]. This means that w has an infinite 

number of values (i.e. the finite pulse is not band-limited). However, in the HF band, 

for any desirable pulse length, the sampling function decays very rapidly and the 

frequencies within the main lobe are given by (wo -
2

7r) ~ w ~ (wo + 27r) . If. for 
To To 

example, w0 = 207r M rad/s (i.e. fo = ;: = 10 l\J1Hz) and the pulse width is 8 JLS , 

then between the first zero crossings of the sampling function, 62.05 Mrad/s < w < 

63.62 Mradfs. Using a program developed by Dawe [72] for spherical earth rough 

surface scatter and a typical wind regime of 15m/sat 90° to a narrow beam receiver 

look direction we find that, corresponding to this variation in w, for p = 50 km, 

0.516 ~ F(p,w} :5 0.530 and for p = 100 km, 0.263 :5 F(p,w) :5 0.276. These results 

are representative of what might be expected for operation in the HF band. The 

largest variation of F(p, w) occurs when the wind is along the receive beam, but even 

then for p = 100 km in the example above, the variation is only 0.121 < F(p,w) < 

0.129. For this reason we shall approximate the expression in (2.120) as 

(2.121) 

where thew in the phase term has been left untouched because large changes in the 

phase will occur for variation of w within the first lobe of the sampling function. 

To complete the introduction to this section, we use (2.121) in approximating the 
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inverse Fourier transform of (2.119) for use in the subsections which follow: 

:F- 1 [ F(pi, w)F(pj, w)e-j2kp;J] (t) - :F- 1 [F(pi, w)F(p1 , w)e-12P~;'"'] (t) 

~ F(pi,wo)F(pj,Wo)6 (t- 2~ij) . (2.122) 

2.2.5.1 The First-order Electric Field 

On the basis of the foregoing, it is clear that ( Ea:_ h for the first-order bistatic electric 

field in equation (2.30) is a function of w. To examine the time domain behaviour 

of this field given the pulsed dipole source whose current distribution is described by 

equation (2.116), it is logical to take the inverse temporal Fourier transform of (2.30). 

Thus, using the convolution theorem, 

. e~lf eJP•(±Kmn coat~~) ( ± J COS l/J) . e -,:2!'"' dp,} (2.123) 

t 
where * refers to a time convolution and we have used (2.114), {2.120) and the 

approximation in (2.121) to write thew dependence explicitly. Noting that the first 

inverse transform above has no p, dependence, the order of the convolution and 

integration may be interchanged. The convolution portion of (2.123) involves 

;:-t { -/lo:iw'I(w)}! r' {e -·',""} 

which from (2.118) is 

-iTJo~flok5&wot{h(t)- h(t- ro)] i 6 (t- 2
:•) = -jTJo~flok~ eiwo(t-~) 

· [h (t- 2
:•) - h (t- 2

:• - r0 )] . (2.124) 

Now 

[ h ( t -
2
:•) - h ( t -

2
:• - r0)] = { ~ : c(t-TI)) < p < ~ 

2 - • - 2 
otherwise 

(2.125) 
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so that using (2.124) and replacing wo by k0 , the field equation, in time, from (2.123) 
c 

may be cast as 

To facilitate the analysis. the following are defined: 

Pos -

from which 

and 

~ + c(t-To) c(t _ !11.) 
2 2 - 2 

cro 
2 

2 - 2 

_ ~P• _ c(t-TQ) 
Pos 2 - 2 

+ ~-9. Pos 2-2. 

(2.126) 

(2.127) 

(2.128) 

For a pulse radar of pulse width r0 , the quantity t:lp. = c;o is commonly referred 

to as the patch width. That is, it is the smallest distance in range which can be 

unambiguously interrogated by the radar. Using {2.128) the field equation in (2.126) 

becomes 

(Eti..h (t) 

(2.129) 

An asymptotic form of equation (2.129), valid when Po• >> t:lp., is now sought. We 

want this asymptotic result to give the received field from a particular patch of ocean, 

and with this in mind an appropriate change of variables is pursued. We note that for 

a typical HF radar Pos is on the order of 104 to 105 m while 6.p8 is on the order of 102 

to 103 m. Initially, the phase term, p.(±Kmncos¢-2ko) is examined. In Appendix 
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A.3.1, it is shown that 

(2.130) 

where BN is the direction of the normal to the scattering ellipse discussed in Appendix 

A.l.2.2. From the interpretation of the stationary result there, the conclusion is 

reached that for a fixed Kmn surface wave vector, which is normal to the scattering 

ellipse, ON is constant during the p11 integration of equation (2.129). Applying (2.130) , 

the phase term may be expanded as 

P~~(±KmnCOS(/>- 2ko) = ±Kmn Pi- (~)
2 

sin2 0N - 2kop-'4, 

which, on defining p~ = Ps - Pos, becomes 

Ps(±Kmn COS¢- 2ko) = ±Kmn (Po~~+ rfs)2 - ( ~) 
2 

sin2 ON - 2ko(Pos + p~) 
(2.131) 

2 

= ±Kmn p[,- (~) sin2 ON+ p: + 2~PO~t- 2ko(Pos + p~). 

From the definitions in (2.127) and (2.128) it may be observed that for a particular 

. . . fixed . db c(t- To) d ct D d" receptton ttme, t, Poll 1s a quanttty centre etween 
2 

an 2 . '"or or 1-

nary, monostatic operation this would correspond to the centre of a scattering patch 

of radial extent c;o at a range determined by t. Similarly, in bistatic operation, it is 

the central value of Ps ( = Pt ; P2) (which is determined by t) over a pulse period. To . 

In this sense, tfs( = Ps - po,) is a distance parameter which varies across a particular 

patch of surface. This assertion emphasizes that, in terms of tfs, the integral limits in 

equation (2.129) vary from -~Ps to 6.;5
; i.e. 

-f:::t.p, < I < f:::t.p!l 
2 - p!l- 2 . 

In view of this discussion, (2.131) may be presented as 

p,( ±Kmn COSt/> - 2ko) = ±Kmn (d,(l - (! )' sin2 8 N) + /1 + 2p',p., 

-2ko(Pos + p:) (2.132) 
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where (2.130) has been used to write 

Cos ~- = .11 - (..i' 2 ~in2 f1,.. 
'i-"J ~ Pos ) --- - .. (2.133) 

as a representative value of the bistatic angle, ¢>, associated with Pos, the "central" 

value of Ps· Invoking the assumption that Pos >> \P~I which, for typical pulse radar 

operating parameters, will always be the case, and applying a binomial expansion, 

gives for (2.132) 

Ps(±KmnCOScjJ- 2ko)::::::: (±KmnCOS¢>o- 2ko)Pos + (±Kmn- 2ko) p~. (2 .134) 
cos ¢>o 

Before finally writing equation (2.129) as an integral over the "patch" distance pa

rameter, p~, the following may be observed: 

1. Ps = Pos + ~ by definition and Pos >> IP~I. soPs::::::: Pos 

2. Pos is a constant so dp5 = d~ 

!l.ps 6.ps . . -6.ps 1 !l.ps 
3. Po:s - 2 < Ps :5 Pos + -

2
- 1mphes -

2
- :5 Ps :5 -

2
-

-l. Over the limit range given in observation {3), the integrand factors other than 

the phase term containing ~ will vary very slowly over the integration region 

and may be safely removed from the integral. 

5. Since p1 and P2 vary only slightly over the patch they may be represented by 

Pm + Po2 
Pot and Po2 such that Poa = 

2 
. 

From equation (2.132) and the considerations above, field equation (2.129) reduces 

to 

(Eti .. h (t) 

(2.135) 
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The remaining integral in (2.135) easily reduces to 

(2.136) 

and the second sampling function is very small relative to the first for any bistatic 

radar parameters and surface wavenumbers of interest. Retracing the analysis in 

Appendix A.l.2.2 , it is clear that the first sampling function is associated with wave 

vectors Kmn = +KmnN. Thus, it is the outward pointing wave vector of the time 

invariant surface that is responsible for essentially all of the first-order received field. 

We note too that the peak occurs at Kmn = 2ko cos ¢o, a situation discussed in detail 

when application is made to the ocean (Section 3.6.2). In equation (2.135), e-Jt 

and +Jcos ¢o are quantities associated with this vector. Therefore, to a very good 

approximation, the received field is 

(2.137) 

where the second exponential was derived from 

&wot. &<-2PO.ko) _ &wo(t-~) 

_ e~(ct-2(~)) 

While time, t, does not appear explicitly in (2.137), it is there by virtue of the 

Po& parameter. That is, each Pas corresponds to a particular scattering ellipse and 

therefore to a different time for the received field. The fact that the field at any 
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instant will be of interest as it pertains to a particular scattering ellipse has been 

emphasized by setting t = t 0 • This change of variable will also be useful when a time 

varying surface (Section 3.3) is introduced. 

2.2.5.2 The Second-order "Patch" Scatter Electric Field 

Following all of the same assumptions and arguments from equations (2.114) to 

(2.121) we may write (2.80) for the second-order "patch scatter" field in the time 

domain completely analogously to what was done in equation (2.123) for the first 

order. Writing the time convolution for the inverse transform of (2 .80} explicitly 

gives 

(2.138) 

where k in eiP•Il.d-2kl has been written as ~- The convolution, this time, using 
c 

equation (2.124) with the appropriate change in distance variable from Ps to pd2,1, 

(defined in (2. 77)) is 

.r-• {-j 1Jo~i "'2 I(w)} ~ .r' { e-i2p,,,, ~} jW (£- lP•1:2 I) 

- - i1Jot::,.f.Iok5e 
0 

c 

. [h (t- 2p~2,1) - h (t- 2p~2,1 -To)] (2.139) 

so that {2.138) becomes 

-J·11nt::,.f.[, k2 p- p- ~ -
(Eri,.h,F,l(t) ~ '/U 0 0 L L Kmn Kpq ei~·Kreeiwot 

{27r)I m,n p,q ..("K;; 

[S/ (ko )F(P2,Wo)F(P2o,wo} 
. j~ 'YE12F,l ~ --;:::======= 

l COS Psl2,1 [~12,1- (~)2] 
. eiPd2.1(±K,.. cos~P-2ko) dpd2,l • {2.140) 
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Clearly, equation (2.140) has the same form as equation (2.126) for the first order. 

Now, if in equations (2.127) through (2.136), {Jo5 , Ap5 , p5 , Ps and Kmn are replaced by 

Pos12,1, APst2,l• Pst2,l• ~12, 1 and Krs. respectively, then the second-order patch scatter 

result of {2.140} may be written in the form of (2.137) as 

(2.141) 

Before further discussion on this equation, the electromagnetic coupling coefficient 

for patch scatter, with reference to (2.64}, is redefined as 

r ko"!El2F,l 
EP= · 

KrsCOSc/Jo 
{2.142) 

The purpose of this and subsequent redefinitions of the various electromagnetic cou

pling coefficients is simply that all components of the received field may be cast in 

the same form. Then, equation (2.141) gives the scatter from an elliptical surface 

region corresponding to a time t = t0 as 

. eJ{-Kr•e)ko.6p. F(fJ02, Wo)F(Po2o, Wo}e-Ji' e}Pcbt2.tKr.coatllo 

Post2,1 [rost2,1 - ( ~) 2] 

· ~p,Sa [ ~:- (c!•¢n- 2~) ]· (2.143) 

In (2.143), Aps12,1 has been set equal to Ap11 because the same patch of surface is 

involved here as for the first order. It should also be mentioned that Po2 and p020 are 

representative of "central" values of fJ2 and fJ20 with Poat2,l = Po2 ~ Po2o analogous to 

observation (5) following equation (2.134). 
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The assumptions made on the first-order field integral throughout Section 2.2.5.1 

have been used again to obtain equation (2.143) for the second order. Apart from the 

fact that there are now two wave vectors (Kmn and ~) involved in the scatter, as 

is evidenced by the presence of PRJHI, Krs( = \~ + KmnD and Er p, it is obvious that 

first- and second-order patch scatter have very similar mathematical forms. It is also 

important to note that the sampling function remaining in (2.143) has its maximum 

at Krs = 2ko cos ¢o and ~s is along the outward ellipse normal. The r~"llifications 

of this are discussed in Section 3.6.2 and Appendix B.2 in application to the ocean 

surface. 

2.2.5.3 The Second-order Electric Field with One Scatter at the Transmit
ter 

Continuing in the same vein as the previous two subsections, the time domain electric 

field component associated with a single scatter near the pulsed dipole source followed 

by another on the remote surface patch is now considered. Again, using the analysis 

of equations (2.114} through (2.121) the inverse Fourier transform of equation (2.89) 

when the source is as stated is 

dpsl2,1} . (2.144) 

Obviously, equation (2.144) is no different in form than (2.138) for the patch scatter. 

However, it is important to note that the Krs wavenumbers of the patch scatter are 

replaced by the Kpq wavenumbers here. This is due to the fact that the Kpq surface 

wave vectors are the only ones associated with the remote patch here, whereas in 
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{2.138) both Kmn and Kpq wave vectors were associated with that region. Of course 

"( El2F,2 for the equation above is not the same as its patch scatter counterpart, but 

this does not alter the way in which the convolution proceeds. These observations in 

concert with the first- and second-order patch scatter analysis lead immediately to 

the final time domain representation of (2.144), analogous to (2.143), as 

In (2 .145}, Efr is the electromagnetic coupling coefficient redefined by 

~ ( ko'"'( El2F,2) 
ElT = 

Kpqcos¢o 
(2.146) 

where "fEl2F,2 is given in equation (2.87). The second sampling function is discarded 

as being small. By virtue of this fact, the Kpq of significance is that which points 

along the outward normal of the scattering ellipse ( i.e. Kpq = Kpqfir ) and the 

remaining sampling function indicates that most of the contribution comes from 

Kpq = 2k0 cos ¢0 . It should be noticed that the "patch" indicated by the /:1p5 pa

rameter has the same mathematical meaning as before ( i.e. ~ ). However, for the 

present case, only one of the two scatters occurs remotely from both transmitter and 

receiver. In Sections 3.5-3.6 where the ocean cross sections are developed and illus

trated, this problem is treated as though all components of the field come from the 

same place - simply because there is no means of separating the different components 

in an actual radar. If the surface is homogeneous, again as will be assumed for the 

ocean, this potential difficulty is not an issue. 
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2.2.5.4 The Second-order Electric Field with One Scatter at the Receiver 

The final component of the second-order electric field we wish to investigate is that 

when the first scatter on a remote surface patch is followed by another near the 

receiver, the source being a pulsed dipole as before. To this end, the expression to 

be investigated is the inverse Fourier transform version of equation (2.107) given, as 

usual, by 

;:-t { (Et._}:z,B,l(w)} (t} 1 ;:-t { .T]otl.l 2 /( }} t 
~ -:----:-3 -)--W W * 

(27r) I c2 

{ 
P- P - ~ J? - (:JO 

;:-1 L L Km.. Kpq ei~ eiii·Kpq h (krE12B.d 
m,n p,q J Kmn l 

eJP•2l.l (±K ... n C08cfl) 
-;===~===~ e-i2Po2l . l~ 

Pa2l,l (~21,1 - (~) 2] 
dp,21,1} . (2.147) 

Invoking all of the approximations, assumptions and conventions of the previous two 

subsections, the final time domain result for this component may be written as 

(EriJ2,B,l (to) ~ 

Here, the electromagnetic coupling coefficient has been redefined as 

EfR = ( ko'YE12B,l ) 
KmnCOStPo 

(2.149) 

with /El2B, l being given by equation (2.106). It should be recalled that the Kmn wave 

vector here is associated with the surface which is distant from both transmitter and 
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receiver. Also, the discarding of the second sampling function arising from the inverse 

transform means that the remaining Kmn must point along the outward normal to 

scattering ellipse. As before, it is clear that the major contribution from this wave 

vector occurs when Kmn = 2ko cos ¢o. Its significance is addressed in Section 3.6.5 

where the corresponding ocean cross section is discussed. 

2.2.5.5 Summary of Received Field Components for a Pulsed Dipole Source 

For reference purposes. the results of the previous three subsections are summarized 

below. 

1. The First-order Field 

When a single scatter occurs on an elliptical scattering "patch", equation (2.137) 

gives the field component as 

2. Second-order Field- Two Scatters at Same Position 

Equation (2.143) gives the field component when two scatters occur near each 

other on the scattering ellipse as 

3. Second-order Field- One Scatter Near the Transmitter 

When one of the two scatters occurs near the transmitter, the other occurring on 

90 



the scattering ellipset the field component is obtained from equation (2.145). It is 

(2.152) 

4. Second-order Field- One Scatter Near the Receiver 

When one of the two scatters occurs near the receiver, equation (2.148) gives the 

appropriate field component as 

(2.153) 

Again, for easy reference, the general meanings of the various parameters may be 

summarized as follows: 

to - a fixed time corresponding to a particular 
scattering ellipse 

ko - transmitted signal wavenumber 
170 - intrinsic impedance of free space 
A f. - dipole length 
Io - dipole current magnitude 
P-'s - the Fourier surfaces coefficients _K 

the surface wave vectors (and Krs = Kmn + Kpq) K's -
Ef's - the electromagnetic coupling coefficients 
p's - various distance parameters associated with the 

scattering geometry 

Ap, - radial "patch" width ( = c;o) 

Sa(·) - sampling function ( = sin ~: ~ 

Thus, to second order in scatter, the received field from a pulsed elementary vertical 
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dipole source may be written as 

(Eri,.){to)::::: (Eti,.)t(to) + (Eri,.)2,F,l(to) + (Eri,.)2,F,2(to) + (Eri,.)2,B,I(to) 

where all of the terms on the right are given in this summary. The similarities 

in structure of equations (2.150) to (2.153) are evident and will be utilized in the 

subsequent analysis. 

2.3 General Chapter Summary 

In this chapter, the basis has been laid for the analysis throughout the remainder of 

the work. Starting with a vertical dipole source, while maintaining a general current 

excitation, the received electric field components for the case of bistatic HF radar 

operation were derived. The surface was taken to be time invariant and representable 

by a two-dimensional Fourier series. 

It was determined that there are four components of the electric field which appear 

to be worthy of more investigation. These components are (1) the field received from 

a single scatter which occurs remotely from both the transmitter and receiver- this 

is the so-called first-order component; (2) the second-order "patch" scatter in which 

a double scatter occurs far from both transmitter and receiver; (3) a second-order 

scatter in which one scatter occurs very near the transmitter and the second is at the 

remote point referred to in (1) and (2) ; and (4) a second-order scatter in which the 

first scatter occurs at the remote point and the second occurs very near the receiver. 

It was found that for the first-order scatter and the remote scatters involved in each 

of components (3) and (4) of the second order, the surface wave vector associated with 

the surface component responsible for the scatter is perpendicular to the scattering 

ellipse. By "scattering ellipse" is meant that region of surface, corresponding to a 

fixed total path length from transmitter to remote patch to receiver, of which the 

transmitter and receiver are foci. Additionally, the surface wave vector was found 
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to bisect the angle between the transmitter and receiver as viewed from the distant 

scattering point. 

Having carried out the preliminary analysis, attention was turned to the case of 

a pulsed sinusoidal excitation of the dipole. One of the important outcomes of this 

revealed that in the first-order interaction and components (3) and (4) of the second 

order, the surface wave vector on the remote patch associated with the scatter was 

not only perpendicular to the ellipse but had a magnitude of essentially 2k0 cos ¢ 0 . 

That is, the surface wavenumber was twice the product of the transmitted radiation 

wavenumber (ko) and the cosine of the bistatic angle, ¢o. It was found that for the 

apatch" scatter, the sum of the two surface wave vectors responsible for the scatter 

was perpendicular to the scattering ellipse and also had a magnitude of 2k0 cos <Po. 

These results will prove to be of paramount importance as attention is turned, in the 

next chapter, to applying the analysis to a time varying surface, of which the ocean 

is an example. 
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Chapter 3 

The Bistatic HF Radar Cross 
Sections of the Ocean Surface 

3.1 Introduction 

Having developed the expressions for the important received electric field from a 

pulsed dipole source, attention will now be focussed on applying these results to a 

time varying surface. The goal is to develop the bistatic HF radar cross sections 

of the ocean surface. The initial step in this endeavour is to characterize a random 

time varying surface as a three dimensional entity - two-dimensional in space and 

one in time. This will be accomplished by introducing a randomness into the Fourier 

coefficients of the surface along with an eiwt time dependency (w now being the 

angular frequency of a surface wave component). The fact that a real surface is being 

considered will have certain ramifications for the statistical treatment which ensues. 

Before recasting the field equations to account for the random surface, some rele

vant ocean features, such as wave-wave interaction, will also be addressed briefly. The 

assumptions on the surface characteristics which affect the way in which the analysis 

proceeds are delineated in Sections 3.2.1 and 3.2.2. 

Upon determining the proper form of the field equations given the time varying 

random surface, power spectral densities for the received signal are calculated. Ap

pealing to the bistatic geometry, the various portions of the cross section, normalized 
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to patch area, are then determined. 

The important features of the cross sections are discussed in Section 3.6. These 

bistatic cross sections will be shown to contain the features of their monostatic coun-

terparts as a special, less general, case {where such results are available). That the 

cross sections do indeed contain the monostatic results, which have been extensively 

verified, lends credibility to the new analysis. Also, unlike any previous investigations. 

the analysis here produces a cross section associated with a scatter at the receiving 

antenna, which intuitively, should be as important as scattering at the transmitter as 

developed by Srivastava [54} for monostatic operation. 

3.2 Specification of a Real Random Time Varying 
Surface 

3.2.1 General Properties of the Surface 

It will be assumed that the surface is representable by a three dimensional Fourier 

series in (x, y , t) , where x and y are spatial variables and t is a temporal quantity. 

Referencing equation (2 .17), we reformulate it to include this time variation as 

~(x y t) = ""' P, eJN(nu:+ny) eJlWt 
~ ' ' ~ m,n,l (3.1) 

m ,n,l 

27r . • 27T 
where N = L, L bemg the fundamental wavelength of the surface and W = T, T 

being the fundamental period. From the definitions of Kmn and the planar distance 

vector, p, following equation (2.17), equation (3.1) may be written more compactly 

as 

~(p, t) = L PK,w tJK·p e}c.Jt ' (3.2) 
i(,.., 

it being understood that w = lW and K = Kmn· The Fourier coefficients, PK.w' of 

the time varying surface are given by 

P.- = _1_ Jt jt (f f.(p, t)e-i<K·P+wt) dxdydt. 
K,w £2T -L -L }:T 

T T T 
(3.3) 
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The random roughness of the surface is established by considering the PK,w's to be 

zercrmean Gaussian random variables. Noticing only the summation over win (3.2), 

it is obvious that replacing P.K- and/or Pi< in the earlier electric field equations 
mn pq 

(Section 2.2.5.4) with the form 2:: PK,w e7wt will produce the field components as they 
w 

are received from the time varying random surface. 

Since we shall be investigating a real, zercrmean surface, a requirement on the 

Fourier coefficients can readily be seen to be, in our notation, (Rice, [11}) 

p ."'J = P! _,.,-wJ K,w (3.4) 

where * denotes the complex conjugate and, in particular, fl>.o = 0. Additionally, 

as is common in oceanographical treatments, (e.g. Phillips, [64]) the surface ~(p, t), 

shall be taken to be homogeneous in space and stationary in time. This condition. 

by definition, means that the surface statistics are invariant to ( 1) the addition of 

a constant vector, 6.p, to all space points and (2) the addition of a constant time. 

r. to all time points. It is easy to verify that the autocorrelation, R, of the surface 

function. denoted as 

(3.5) 

where < · > indicates an ensemble average, (see, for example, Papoulis (73), Chapter 

9), is dependent only on the shifts !:l.p and T as indicated. 

As a consequence of this fact it may be readily shown that the different Fourier 

coefficients in equation (3.2) are uncorrelated. That is to say, their ensemble average 

is 

P. P.• { < IPRwl2 >, K = K', w =w' < - - >= I 

K ,w K' ,;.~ 0 , otherwise (3.6) 

where IPR.J indicates the magnitude of the generally complex coefficient. For com-

pleteness, it may be noted that, since the PR,w's are Gaussian random variables, 

uncorrelatedness implies independence. These statements can be made in view of 
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the fact that while L and T are not strictly infinite, they may be treated as though 

they were as long as they are much greater than the dominant spatial and temporal 

periods of the surface. 

Using equations (3.3) and (3.6), the definition of Nand W, and the Fourier trans

form of f.(p, t) it is straightforward to show that a power spectral density, S(l(.w), 

for the surface may be defined according to 

< P.- p!. >= { .i'l2 ~~·s(K,w), K = K', w = w' 
K ,w K' ,w' 0 otherwise , 

(3.7) 

Thus, equation (3. 7) presents the relationship between the ensemble average of the 

zero-mean Gaussian random Fourier surface coefficients and the power spectral den-

sity when the surface is real, stationary and homogeneous. This equation, or some 

variation of it, has been used by several investigators of radar operation in an ocean 

environment (i.e. Barrick [24], Srivastava (54], Walsh et al. [8]). A modification of it, 

discussed in Section 3.2.2 below, will be used extensively in applying the analysis of 

Chapter 2 to the ocean surface. 

3.2.2 Relevant Ocean Surface Characteristics 

Several excellent texts, including Phillips [64] and Kinsman [20], have detailed the 

physics of ocean surface waves. The rudiments of such presentations, as are pertinent 

to the work at hand, will be addressed briefly in this section. 

The whole spectrum of ocean surface waves may contain components ranging in 

length from many kilometres to a few millimetres with such diverse restoring forces 

as the Coriolis "force" for the very long waves and surface tension for the very short 

ones. The waves which are the subject of this research are the so-called gravity waves, 

their primary generator being the wind and the chief restoring force being gravity. 

In general, it is this wave class which contributes most significantly to the overall 

surface wave energy. Their wavelengths vary from a few centimetres, these waves 

being termed ultragravity waves, to several hundreds of metres, the uppermost of 
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which belong to the infragravity region. Typically, an HF radar spectrum, depending 

on the operating frequency, may be significantly affected by waves ranging from a few 

metres to as much as a kilometre in length. Thus, our attention is focussed here on the 

properties of gravity waves as they are related to HF radar in a marine environment. 

3.2.2.1 The Linear Dispersion Relationship for First-order Gravity Waves 

Kinsman [20} (Chapters 2 and 3) provides an excellent overview of the hydrodynamics 

of water waves. The underlying assumptions that the supporting medium, i.e. the 

water, is incompressible, in viscid and irrotational are used to simplify the hydrody

namical equations. The latter include a statement of conservation of mass (referred 

to in the treatment of fluids as the equation of continuity), an equation of motion de

scribing the various forcing function relationships, and expressions for the behaviour 

at the fluid boundaries - i.e. the boundary conditions. From equations of continuity 

and motion, a wave equation may be developed and solved subject to the boundary 

conditions. In general, the equations as a whole are nonlinear, but the first-order or 

linear approximation to their solution for the gravity wave region may be effected 

without undue difficulty. 

It transpires that from the analysis for first-order (in slope) gravity waves, a rela

tionship between the frequency and wavelength (.Aw) of individual wave components 

becomes apparent. This is commonly referred to as the linear dispersion relation for 

gravity waves and is written as 

w = JgKtanhKd (3.8) 

where w is the angular frequency of a water wave whose wave number is K = ( ~=) 
when it travels in water of depth, d. The quantity, g, is the gravitational acceleration 

and tanh is the hyperbolic tangent. Since the phase speed of the wave is (;), 

equation (3.8) clearly indicates that waves of different lengths, >.u,, will have different 

speeds. When several such waves are travelling on the ocean surface, even though 
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they may be generated in the same region in the same time frame, the surface profile 

will change as the longer waves outrun the shorter. That is, water wave dispersion 

occurs and hence the name for equation {3.8}. 

If the water is of sufficient depth so that a component wave is not significantly 

affected by the ocean bottom, a "deep water" approximation to the dispersion rela

tionship may be given as 

(3.9) 

d 1 
That is, for deep water, defined theoretically as Au, ~ '2 and, more realistically, in 

oceanographical measurements as :w ~ ~ (see (20]), tanh(K d) ~ 1 in equation (3.8). 

Since the deep water approximation is usually valid for HF radar operation, and since, 

if desired, (3.9) may be used in the final cross section results directly (see Section 3.5) 

there is no analytical advantage in implementing the general form for the dispersion 

relation at this stage. Therefore, throughout the remainder of this work, equation 

(3.9) will be employed as required. 

Given the linear dispersion relationship, it will prove convenient to express the 

power spectral density spectrum for first-order gravity waves in generalized form as 

(3.10) 

where S1(K,w) is the first-order component of S(K,w) in equation (3.7) and 6(·) is 

the Dirac delta function. This form of sl ( K' w) will be very helpful in our examination 

of the positive and negative portions of the HF Doppler power spectral density of the 

e-m echo from the ocean found in Section 3.4 and has been similarly used by Barrick 

[21]. 

3.2.2.2 The Problem of Wave-Wave Interactions 

As mentioned in the previous section, the hydrodynamic equations of the surface 

under consideration are nonlinear. Several investigators, among the most notable in 
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recent decades Hasselmann [59] and Weber and Barrick (74], have addressed this prolr 

lem of nonlinearity in the ocean wave spectrum. Their approach has been, essentially 

to expand the velocity potential and surface displacement into a perturbational se-

ries for substitution into the governing equations. In Hasselmann's formulation, wave 

slope was used as the perturbational parameter. In addition to the velocity potential 

and displacement expansions, Weber and Barrick also included a perturbation on the 

angular frequency, ...;, but, as they note, their results reduce to those of Hassclmann 

to second order. 

Noting that equation (3.2) for the surface is really the sum of all orders of surface 

displacement, we may write it to second order as 

(3.11) 

where 1f.{ii, t) is the contribution from first-order surface features (i.e. first-order grav

ity waves here) and 2f.(p. t) accounts for second-order waves. This may be emphasized 

in the Fourier series sense by using 1PK,w and -RR ,.-~ as the coefficients for first- and 

second-order components, respectively. Then, taking (3.11) and (3.2) together we 

write 

tf.(p. t) - L P,- eJJ(.Pe}Wt 
1 K,w 

K,w 
and (3.12) 

2f.(p, t) - L .?K,w &K·pe;iwt. 
K,w 

K in the second equation is the wave vector of a second-order gravity wave. The 

perturbational analyses lead to the very important and convenient result that '1f'R . ..~ 

may be written in terms of products of first-order waves and a hydrodynamic coupling 

coefficient, 1-i', as 

'1f'K,w = L ~ lpKt,Wl tPK2.w2 
Kt+K2':il 
w--wl+W'J 
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This form emphasizes that the wavenumber of the second-order gravity wave arises 

from the sum of the wavenumbers of the two first-order components, i.e. 

(3.14) 

However, as pointed out in both investigations referred to above, K does not follow 

the linear dispersion relationship (i.e. w # jgl?) . In keeping with the notational 

change between equations (3.1) and (3.2), it is understood that in (3.13) and (3.14), 

K1 = Kmn, K2 = Kpq, and the respective angular frequencies associated with Kmn 

and Kpq are w1 and w2. 

The factor ~ in equation (3.13) accounts for the manner in which the first-order 

waves couple to give the second-order wave - hence the name hydrodynamic coupling 

coefficient. Except for some notational variation, essentially equivalent forms of this 

quantity, useful for HF radar analyses, have been derived by Weber and Barrick [74] 

and Johnstone [33]. Also, Barrick and Lipa [27] have derived Hr for the case of shallow 

water. and, more recently, Walsh et al. [8}, using Hasselmann [59], have presented 

both second- and third-order coupling coefficients for shallow water. While the forms 

appear slightly differently in the last two works, it is easy to show that for deep water 

the two are identical. The Walsh et al. (8] form for second-order interactions will be 

used here and is given, in general, by 

(3.15) 

where 

(3.16) 

and 

(3.17) 
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While it was not given explicitly in Walsh et al. (8], it is easily shown that, for the 

case of deep water, 

af = ~ {Kt + K2 + - 9
-(KtK2- Kt · K2) (9~ + ~w1 + w2~:)} 

2 WtW2 9 - Wt + W2 
(3.18} 

It is worthy of note that Hf' contains no singularities. This is due to the fac-:; that 

since the angular frequency, w( = w1 + w2) , of the second-order wave is not related 

to the corresponding wavenumber, K, via the linear dispersion relationship. in the 

denominator of the last factor, gK is never equal to (w1 + w2)2 . 

This discussion concludes what is immediately necessary for analyzing scattering 

from a random time varying surface, namely the ocean, on which nonlinear interac-

tions of the surface wave components occur. 

3.3 The Electric Field Equations for Scatter from 
a Time Varying Surface 

In Section 2.2.5.5, the received electric field components due to radiation from a ver-

tical pulsed dipole source being scattered from a rough time invariant surface were 

summarized. Having specified a model for a time varying random surface in Section 

3.2. we are now in a position to revisit these field equations and to cast them in a more 

general form which includes this time variation. In order to accomplish this without 

having to rederive a completely new set of equations from first principles, appropriate 

assumptions may be made. It has already been discussed in Section 2.2.5.1 that the 

time argument, t0 , in the electric field equations fixes an elliptical patch of ocean from 

which the scatter due to a particular pulse is received. It is legitimately assumed that 

the variation in the ocean surface profile is negligible during a single interrogation of 

such a patch. That is, even though the surface has a temporal variation, as indicated 

by the variable, t, in equation (3.2), the time necessary for a significant change in 

the ocean surface is much greater than that required to make a single measurement. 

Thus, the surface may be considered time invariant for each individual measurement. 
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The implications of these considerations are discussed further in Section 3.4. 

1. The Time Varying First-order Field 

Before addressing the first-order field expression, we note from equations (3.2), 

(3.11) and (3.12) that to second order the Fourier coefficients, PR·""' may be written 

as 

(3.19) 

where the terms on the right are defined in the previous section. Now, equation 

(2.150) for the first-order field (i.e. for a single scatter), using the new Fourier surface 

coefficient notation, becomes 

{3.20) 

Since equation (3.20) is really a prototype of all the other electric field compo

nents, it will now be discussed in detail. The first summation in (3.20) accounts for 

a single scatter of incident radiation from first-order surface waves. The double sum

mation term indicates the field due to a single scatter from a second-order surface 

component. The decision to write the double summation notation of (3.13) as an 

explicit double sum in (3.20) {i.e. L = L 2: ) has been made with a view 
R1 +K2=K K1,utt K2.w2 
""1 +""2 =WI 

to being consistent with that which appears in equation {3.24) for double scatter from 

two first-order surface waves. It is important to realize, however, that for this term 

the constraints, K1 + K2 = K and w1 + w2 = w, still apply. To this point in the 
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analysis, the term "first-order field" must thus be interpreted to mean the component 

associated with a single electromagnetic scatter, but now it is seen that even this 

order of scatter contains a higher (i.e. second) order term as indicated by the double 

sum. Strictly, then, only the first summation in (3.20) will be referred to as the first

order received electromagnetic field, and the second double sum will be appropriately 

addressed in conjunction with the second-order terms arising from double scattering. 

To later differentiate between the causes for higher-order field components, the por

tion of (3.20) associated with the double sum will be referred to as the second-order 

hydrodynamic term. 

To underscore the two distinct portions of equation (3.20), we write 

where 

(Eri.,)
11 

(to,t) - - irroAf:ok5 . L tPR .we}"'t J K cos ¢o 
(27r) R WJ 

· e;f-R e}Po·K CSJat/lo Ap.,Sa [Ap., (__.!!__ - 2ko) l 
2 cos¢o 

. F(p0l,wo)F(Po2, wo)e-Ji eJko6.p, 

Pos [PBs - ( ~) 
2

] 

(3.21) 

and 

(3.22) 

The wave vector Kin equation (3.21) is that of a first-order surface wave and is exactly 

the same as Kmn (= mNx + nNiJ) of equation (2.150). Meanwhile, Kin equation 
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(3.22) is associated with a second-order surface wave and is given by (3.14). Further

more, K1 and K2 are completely analogous to Kmn and Kpq of equation (2.151). For 

reference, the following are summarized: 

K1 = Kmn = mNx + nNfi 
i?2 = Kpq = pNx + qNfi 
K = (m + p)Nx + (n + q)Nii = K%x + K 11fl 

and 9R = tan- 1 (~) , 

(3.23) 

9R being the direction of K. Again, it is to be emphasized that in equations (3.20)-

(3.22), t0 fixes a particular scattering ellipse, while time, t, indicates that the received 

field is fluctuating because the scattering surface is time varying. 

2. The Time Varying Second-order Patch Scatter Field 

Attention is now focussed on equation (2.151) which describes the received field 

when two scatters occur at essentially the same position remote from both the trans

mitter and receiver. Introducing the time variation as for equation (3.20) above, we 

may immediately write 

(3.24) 

It may be recalled from Section 2.2.5.2 that in (2.151), Krs = Kmn+Kpq· Thus, using 

the notation of (3.23} above, K, K1 and K2 have been substituted for Krs, Kmn and 

Kpq, respectively, in equation (3.24). 

Since this analysis is being carried only to second order, equation (3.24) represents 

a double scatter from first-order surface waves. The 2f'R,~.~~ surface coefficients are not 

included here as ( 1) a double scatter from the second-order waves associated with 
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them would constitute an overall fourth-order effect (in a way completely compara

ble to a single scatter from a second-order wave producing a second-order effect in 

equation (3.22)) or {2) a scatter from a first-order wave followed by another from a 

second-order wave, or vice versa, would lead to third-order effects. 

Next, it is appropriate to compare the second-order received field arising because 

of the hydrodynamic coupling of first-order surface waves in equation (3.22) with that 

resulting from double scattering from two distinct (i.e. uncoupled, first order) waves 

on the time varying surface in equation (3.24). In order to do this, it is useful to 

consider Figures 2.3 and 2.6 for the first- and second-order patch scatter geometry, 

respectively. Replacing the various p's in these diagrams with their representative 

Po] 's as discussed for a pulsed source in Sections 2.2.5.1 and 2.2.5.2, it becomes im

mediately evident that POl, Po2 and Pos for the first order corresponds exactly to Po2 

Po:zo and Post2,t for the second-order component. This leads to the important conclu-

sion that the only difference between (3.22), which represents a single scatter from a 

wave arising due to hydrodynamic coupling, and (3.24), which describes the effect of 

two scatters from first-order surface waves, lies in the coupling coefficients, Hr and 

lifp. Therefore, equations (3.22) and (3.24) may be grouped to give the total second

order effect arising due to scattering occurring remotely from both the transmitter 

and receiver. The result, labelled as ( Et,.) 
2
P to indicate the association with the 

remote "patch" , is 

106 



where 

(3.26) 

Here, the Po2 and Po2o of equation (2.152) have been replaced by Pot and Po2, respec

tively, where the latter retain the same meaning as the former - i.e. they are the 

distances from the transmitter to the remote patch and from the remote patch to the 

receiver, respectively. This change is made so that similar features of the various field 

components may be readily observed. The former notation of Chapter 2 was useful 

in determining the various stationary points, but having done so the only distances 

for which F( ·) i= 1 are those being discussed here. In terms of this notation, 

Pot+ Po2 
Po·= 2 

(3.27) 

The relative importance of the hydrodynamic and electromagnetic effects incorpo

rated into equation (3.25) are addressed in Section 3.6.6 where the second-order patch 

cross section is discussed. 

3. The Time Varying Second-order Field- One Scatter at the Thansmitter 

Implementing exactly the same ideas as were used to write equations (3.22), (3.24), 

and (3.25), equation (2.152) representing a single scatter at the transmitter followed 

by another on the remote scattering patch may be written to second order in time 

varying form as 

(3.28) 

Here, the subscript on £t... has been changed to zr from 2,F,2 to emphasize that one 

of the scatters involved in this second-order component occurs at the transmitter, T. 
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The K1 and K2 wave vectors are associated with surface waves at the transmitter 

and remote patch, respectively. The p subscripts have been adjusted as discussed 

following equation {3.26). 

Again, as the analysis is to second order, the 'lf>R,w coefficients are not included 

here. As before, if this double scatter did indeed involve a second-order surface wave, 

it would lead to a third- or higher- order received field. 

4. The Time Varying Second-order Field- One Scatter at the Receiver 

The final portion of the electric field which must be adjusted to include the time 

varying surface features is found in equation {2.153). Taking the K1 surface wave 

vector to be associated with a scatter on the remote patch and the K2 vector to be 

associated with a scatter near the receiver, equation (2.153) may be written in time 

varying form as 

(3.29) 

Once more, Po3, Pm, and Po2 must be interpreted as previously in this section. Also, to 

emphasize second-order scattering involving a scatter near the receiver, the subscript 

on Eri.. has been changed from 2,F,2 to 2R. For reasons discussed following equation 

(3.28), the 2PR.:..~ coefficients are not considered here. The K1 and K2 are the wave 

vectors of two first-order surface wave components. 

By virtue of equations (3.21), (3.25), (3.28), and (3.29) , the total received electric 

field, ( Eri..) (to, t), to second order, including hydrodynamic effects, is given by 

(Et._) (to,t) ~ (EQ':.) 11 (to,t) + (Ec!.LP(to,t) + (Eri,.)2T(to,t) + (Eti,.)2R(to , t). 

(3.30) 
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To this point in the analysis, ( Et) (t0 , t) represents the vertical electric field comp~ 

nent from a pulsed dipole source as it is received bistatically after scattering from a 

random time varying slightly rough surface. The condition of "slightly rough" was 

imposed and discussed in Section 2.2 and entered the analysis following equation 

(2.12). The nature of the time variation mentioned briefly at the start of this section 

is used in the following section in order to develop a power spectral density for the 

received electric field. 

3.4 The Power Spectral Density of the Received 
Electric Field 

3.4.1 The General Approach 

It has already been mentioned that even though the surface has a temporal variation 

as indicated by the time variable, t, in equation (3.30), the time necessary for a 

significant change in the ocean surface is much greater than that required for a single 

measurement. For this reason, the surface is considered to be "fixed" during a single 

measurement. Then, as time progresses, a series of measurements, corresponding 

to a train of transmitted pulses, for a region corresponding to a particular t0 may 

be developed. As there will, in general, be a change in the ocean surface from one 

measurement to the next, the time variable, t, will account for the generation of a 

Doppler spectrum when the appropriate statistical analysis is carried out on equation 

(3.30). 

We have made the assumption that the ocean surface is statistically stationary 

and that its first-order Fourier coefficients (i.e. t.Pg,...J are normally distributed. As 

a result, the received electric field from such a surface is stationary and, as verified 

experimentally by Barrick and Snider [75], the first- and second-order received field 

is indeed described by a Gaussian process. Bearing in mind that the power spectral 

density of a random process may be determined as the Fourier transform of its aut~ 
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correlation, we seek the latter for the received electric field. Given stationarity, then 

at a particular, t0 , (i.e. for a given elliptical scattering patch), the autocorrelation will 

be a function only of the time shift, r. It is convenient to express the autocorrelation, 

R, of the field in (3.30) in normalized form as 

(3.31) 

where * denotes the complex conjugate, < · > indicates the statistical or ensemble 

average, TJo is the intrinsic impedance of free space and Ar is referred to as the effective 

free space aperture of the receiving antenna. Ar is given by Collin (63], for example, 

as 

(3.32) 

where Ao is the free space wavelength of the transmitted signal and Gr is the free 

space gain of the receiving antenna. The ~ in equation (3.31) indicates that rms 

values of the E-field are being used. It is easy to see that the normalization of 'R.( T) 
A 

by~ conveniently makes R(O) the average power,~. received from the particular 
-TJo 

patch of ocean for which Et._ (t0 , t) is being considered, i.e. 

(3.33) 

It should also be noted that at this point in the analysis, t0 has been suppressed 

in the argument of R( · ). Still, of course, the autocorrelation and, subsequently, the 

power spectral density derived from it will strictly correspond to a definite region of 

the scattering surface as dictated by the parameter t0 • Now, applying equation {3.31) 

to (3.30) clearly gives formally 

R(r) = ~ < [CEri;.)u(to, t + r) + (Eti:hp(to, t + r) 

+ (Et,)zr(to, t + r) + (Eri,.hn(to, t + r)] 
[ (Eri:.)i1 (to, t) + (EtiJ2p(to, t) + (EtiJZz.(to, t) + (E~.)2n(to, t)] > (3.34) 
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Since the average of the sums is the same as the sum of the averages, equation (3.34) 

may be written as the sum of sixteen terms i.e. 

'R(r) = Ar {< (Eri)u(to,t+r)(Eti)i1(to,t) > 
2~ n n 

+ < (Et._)u(to, t + r)(EtiJ2p(to, t) > + ... (3.35) 

+ < (Et._)2p(to, t + r)(Eri,.)i 1(to, t) > + < (Eti,.)2p(to, t + r)(Eti,.)2p(to, t) > + .. . 

+ < (E~JZT(to, t + -r)(Eri..)i1 (to, t) > + < (Eri,).rr(to, t + r)(EtiJ2p(to, t) > + .. . 

+ < (EriJ2R(to, t + r)(Eri,Ji1 (to, t) > + < (EtiJ2R(to, t + r)(EtiJ2p(to, t) > + ... } 

where ... represent the remaining obvious averages. It is clear that the overall 

autocorrelation, 'R.(r), contains both aut~ and cross-correlations of the individ

ual E-field components. It transpires (see Appendix B.l) that products containing 

( Eti,.) 11 ( t0 , t + r) and a second-order field component will have as factors an odd num

ber of the first-order Fourier surface coefficients, ( 1PK,w~), which have been stated to 

be zer~mean Gaussian random variables. Thomas [76], for example, has shown that 

the ensemble average of a product of odd numbers of such variables is zero. This 

immediately eliminates six terms from (3.35). Another useful result from Thomas is 

that for four random variables, V1, V2, V3, \14, which are Gaussian and zer~mean, 

(3.36) 

Using the ideas in this section, the various portions of the power spectral density may 

now be determined via the Fourier transform of 'R(r) in (3.35). Since this is a linear 

operation, the transform of the sum of the components of (3.35) is the same as the 

sum of the individual transforms. Thus, the concept of determining a power spectral 

density, 1'(wd), using {3.35) is, in principle, straightforward and may be simply stated 

as 

(3.37) 
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P(wd) is the Doppler power spectral density for reasons discussed in the first paragraph 

of this section. The quantity, wd, which is the transform variable forT is the angular 

Doppler frequency (i.e. Wd = 2-rr/d, /d being the Doppler frequency in hertz). 

In the following section, equation (3.37) is examined in detail for each component 

appearing in equation (3.35). 

3.4.2 The Doppler Power Density Spectrum 

Since the calculation of all components of the Doppler power spectral density from 

equation (3.35) follows essentially the same path, we shall detail only the first-order 

case in the body of the thesis. The other components are derived in Appendix 8 with 

the results appearing in Section 3.4.2.2. Certain characteristics of the surface and the 

scattering constraints used in simplifying some of the more complicated second-order 

effects are also discussed in the appendix. 

3.4.2.1 The First-order Doppler Spectrum 

The first term of equation (3.35} , by virtue of equation (3.21) , is the autocorrelation 

of the first-order field as received after a single scatter from first-order ocean waves. 

Thus, we define 

(3.38) 

from which, using equation (3.37), a Doppler power spectral density, P 11 (wd), may 

be found. Applying this expression to equation (3.21} gives 

'Ru(T) 

· F(pOI, wo)F(Po2,Wo)F*(p~1 , wo)?'(lfo2, wo) 

. Sa [A:, ( ~¢o - 2ko) l Sa [A:, ( c:~ -2ko)]}} (3.39) 
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where < · > and the summation have been interchanged and, as indicated, the only 

randomness is found in the first-order Fourier surface coefficients, tPR ,:..J and 1P.R, ,..r· 

From the stipulations on the 1P's for a real surface given in equation (3.4) and then 

using the first-order portion of (3. 7) for the surface power spectral density, equation 

(3.39) becomes 

'R.u( r) _ Ar { 175k~ llo~£12 (~Ps)2 
N2W L { St(K, w) 

2Tlo (27r)3 Pos [!?a .. - (~f] .R,w 

· ei'"""(K cos <Po)IF(pm, wo)F(Po2. wo)l 2 

· Sa' [ .\:- (c:¢o- 2ko)]}} . (3.40) 

If it is agreed to let the fundamental wavelength, L, and period, T, of the surface 

become very large so that N ( = 2;) and W ( = :;) become very small, then 

The summation in (3.40) may now be written as an integral. Using this idea, which 

has been similarly used by Rice [11] and others, along with the formulation of S 1 ( K, w) 

found in equation (3.10), equation (3.40) becomes 

'Ru(r) - A,. {.!. 175k~ llo~£12 (~p.,): } L lOCI 1'11' r St(mK) 
21Jo 2 (27r)3 Po .. [Paa - (~) ] m=±l -oo -'II' o 

· 6 ( w + mfiK) eiw'T' K 2 cos¢oiF(pobwo)F(Po2· wo)l 2 

. Sa2 [!::iPs ( K - 2ko)] dK dO -dw. (3.41) 
2 cos¢o K 

Thew integral in (3.41) yields immediately to the 6-function so that 

'R.u(r) 

(3.42) 
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it now being understood that 

w= -m[YK (3.43) 

Now, from Lathi (77], Chapter 1, for example, we have 

where as mentioned previously, Wd is the transform variable for T. Therefore, from 

equations (3.37) and (3.42) we may write the Doppler power spectral density, P 11 (wd), 

for the first-order electric field as 

Pu(wd) = :F ['R..u(r)l = A.-1]ok~ \Io~i\
2 

(6.p 5
): 2:: jrr laoo St(mK) 

4 (27tl Po& [PB5 - (~) ] m=±l -If 
0 

2 )l'l 2 [6.Ps ( K )] · K cos¢0 IF(pm,wo)F(po2,wo ·Sa 2 cos¢o- 2ko 

· 6 (wd + m[YK) dKdflR. (3.44) 

Noting, then, that the Dirac delta function constrains K to 

2 
K= wd 

9 

so that 

(3.44) may be written as 

Ar1]ok~ llo6.il2 (6.p&)2 

2yg(27r)
2 

Po& [P5s- (~/] 
· L j1r S1(mK)Ki cos¢oiF(pot,wo)F(Po2,wo)l2 

m=±l -II' 

· Sa2 [t:l.p, ( K - 2ko) l dB - . 
2 COS ¢a K 

(3.45) 

(3.46) 

At the moment, equation (3.46) is the power spectral density of the first-order field 

being received from an elliptical surface region of width 6.p, ( = ~0 ). The locus of this 

region is specified via the parameter Poa of equation (3.27). In Section 3.5 it is shown 

how this may be used to determine a first-order radar cross section of an elementary 

area or patch of the ocean surface. 
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3.4.2.2 The Higher-order Correlations and Doppler Spectra 

All of the results given in this sprt.1on ~rP rlerlnceci in Appendix B. 

1. The Cross Correlations and Spectra of the First- and Second-order Fields 

On the basis of equation (3.35), there are six correlations involving the first- and 

second-order fields. They may be labelled 

'Ru,2P(T) - < (Ec1Ju(to, t + T)(Eri:.)2p(to,t) > 

'Ru.:rr(T) - < (Eri:.)u(to,t + T)(Eri:.)n(to,t) > 

It transpires from Appendix 8.1 that 

(3.47) 

'Ru.2p(T) = 'Rll,2T(T) = 'Ru,2R(T) = 'R2P,ll(T) = 'R2T,ll(T) = 'R2R,u(T) = Q · 

{3.48) 

Therefore, the corresponding power spectral densities are also zero, i.e. 

(3.49) 

2. The Patch Scatter Autocorrelation and Doppler Spectrum 

The autocorrelation of the field involving both electromagnetic and hydrodynamic 

second-order effects, associated strictly with the remote scattering region is , from 

(3.35), 

In Appendix B.2, this is shown to be 

'R.2p(T) = A,. { '15k~ llo~ll2 (~p,)2 } L L 111' roc 111' f 
2TJo 2 (2·nl Paa [pg,- (l) 2] ml=±l m~=±l -tr Jo -~r o 

{ St(m1Kt)S1(m2K2)eic.rr l,fpl2 (K2 cos¢o) 

IF(Pob wo)F(Po2, wo)l 2 

· Sa2 
[ ~:- (c:¢o- 2ko)] K,} dK,d6,dKd6K. (3.51) 
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Of course the very important stipulations that {1) K = Kt + K2 and (2) w = Wt +w2 

still apply. It is understood that the wave vectors K1 and K2 are associated with the 

surface components which are essentially coincident on the remote scattering patch. 

It has already been discussed that K lies along the outward ellipse normal at all 

scattering positions, but K1 and K2 have no such restrictions. Also sfp is a symmetric 

form of the coupling coefficient as described by equations (B.lO) and (B.ll). It has 

the feature that ,.fp (1(1 , K'2) = sfp(K41 , K1). The resemblance of equation (3.51) to 

(3.42) for the first-order return is striking and the power spectral density, 'P2p(wd). 

may be written analogously to P 11 (wd) in (3.44) as 

Ar77ok~ l/o~ll 2 {~Ps) 2 11r looo !1r looo 
4 (27r)2 Po, [1'6.- (1)2

] m~±lm,~±l -• 0 -• 0 

{ St (mtKt)St(m2K2) lsfpl2 (K2 cos¢o) 

IF(Pot. Wo)F(Po2,Wo)i
2 

Sa2 
[ 
6
;• c: <Po - 2ko)] 

· 6 (wd+mt.fiK; +m2fii<.z) Kt}dKtd8R
1
dKd8R. (3.52) 

Thus, the Doppler power spectral density for an essentially coincident double 

scattering on the (elliptical) surface patch is seen to depend on the product of the 

spectra, St ( · )St ( ··), of the surface components involved in the process. Several other 

important features of (3.52) are addressed in Section 3.6 where the associated cross 

section of an elementary region or "patch" of surface is discussed. 

3. The Autocorrelation and Doppler Spectrum when One of Two Scatters Occurs 

Near the Transmitting Antenna 

In the general autocorrelation expression of equation {3.35), there is a component 

which addresses the correlation of (E(t)zr with itself. This may be written as 

'R.zr( T) = ~ < (EO'Jzr(to, t + T)(Eri;.)2r(to, t) > . (3.53) 

It is shown in detail in Appendix B.3 that while (3.53) consists of three separate 

averages, only one of these contributes significantly to the corresponding Doppler 
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power spectral density, Pzr(wd). This important piece is given by equation (B.21) so 

that we may write 

{ St(m1KdSt(m2K2) IJ'rl2 ej(w,~).,.(Ki cos¢>o) 

· IF(pm, wo)F(Po2, wo)l 2 

. Sa2 [l::&Ps (~- 2ka)] K1} dK1d8R dK2dBR . . 2 cos ¢o 1 l 
(3.54) 

Here. as usual. the wave vector K1 is associated with a scatter near the transmitter 

and K2 with a scatter on the remote elliptical scattering patch. It may be recalled 

that K2 is along the outward normal at all positions on the scattering ellipse. No 

such condition is placed explicitly on I?lt although it will be seen in Section 3.6.4 

that there is a direction of maximum contribution for this vector. As indicated by 

the limits on the 8R
1 

integral, 'Rzr(r) involves, for a particular Pos, scattering from a 

complete elliptical surface patch. 

Fourier transforming (3.54) gives the Doppler power spectral density for this com-

ponent (see equations (8.22) and (8.32)) a.s 

P2T(wd) ~ Pzr,2(wd) 

_ Ar11ok~ llot::&tl
2 

(t::&ps): I: L: /1'1' rXJ /11' roo 
8 (2·nf Poa [Paa- (~) ] m1=±I m2=±I _,.. lo -II' lo 

{ Sl(mtKL)St(m2K2) 1Ef'TI2 (Ki cos¢o) 

IF(Po~oWo)F(Po>,Wo)l2 • Sa2 
[ I:J't (a!~- 2ko) l 

b (wd+mt/ii<t +m2fii<;) K 1}dK1d8i\\dK2d8g2 • (3.55) 

Equation (3.55) represents the contribution to the Doppler power spectral density 

due to a single scatter at the transmitting antenna followed by another on a remote 
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elliptical patch whose locus is determined by the Pos parameter (see equation (3.27)) 

and whose width is determined by ~Ps· While in its present form (3.55) determines 

the power density component, Pzr(wa). for a full elliptical region of fixed Pos and ~Ps, 

it is used in Section 3.5 to determine part of the cross section of an elemental area of 

the scattering surface. 

4. The Auto Correlation and Doppler Spectrum when One of Two Scatters Occurs 

Near the Receiving Antenna 

Equation (3.35) also contains a correlation of (Eri,.hR with itself. This component, 

in which the second of two scatters occurs near the receiving antenna, is given by 

(3.56) 

[t is argued in Appendix B.4, that of the three averages arising from (3.56) only one 

is important, that being given by equation (B.35). Therefore, 

'R.2R(T) ~ 'R.2R,2(T) 

- Ar { '15k~ llo~ll 2 (~Ps)2 
} L L 1" roo !'If roo 

277o 4(27r)3Pos(Pas-(~)2] mt=±lm2=±1 -7flo -7rlo 

· { St(mtKdSt(m2K2) IEJ"RI2 eiC'"'•+w-J)r 

· (K~ cos ¢o) IF(Pot. wo)F(po2, wo)l 2 

· Sa2 [c.;- ( c:~- 2ko)] K,} dK,d8g,dK2d9K, . (3.57) 

Correspondingly, the Doppler power spectral density component is, from equations 

(8.35) and (B.41), 

'P2R(wd) :=::: 'P2R,2(wa) 

= ArTJok~ llo~ll2 (~Ps)2 L L {1r rXJ r roo 
8 (27r)2 Poa [P~s- (~) 2] mt=±l m~=±l 1-1f Jo j_1r Jo 

· { S1(m1Kt)St(m2K2) IEJ'RI2 

· (K~ cos ¢o) IF(pm, Wo)F(Poo, Wo) 12 
• Sa2 [c.;, (c: ~ -2ko)] 

6 ( Wa + m1 jgK1 + m2fii<;.) K2} dK1dfJg
1
dK2d8g

2 
• (3.58) 
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Equation (3.58) is the Doppler power spectral density due to a single scatter on the 

remote elliptical surface patch followed by another near the receiver. The similari

ties between it and equation (3.55), which involves a scatter at the transmitter, are 

striking. This time, however, the direction of K1 must be along the outward normal 

to the scattering ellipse while K2 is, in general, not so constrained. In Section 3.5 

equation (3.58) is used to determine a corresponding part of the cross section of an 

elemental surface area. 

5. The Remaining Terms of Equation (3.35) 

Besides the previous components (equations (3.47), (3.50), (3.53) and (3.56)) of equa

tion (3.35) , there remain the following: (1) the cross correlation of (El,.hP and 

(Et,,br. (2) the cross correlation of (EtiJ2P and (Eri,.hR and, finally, (3) the cross 

correlation of (El,.)2T and (El,.hR· 

[t is shown in Appendices (B.5) and (B.6) that these terms may be neglected 

because they are either identically zero. or are small in comparison to those already 

discussed. This means that , essentially, the two second-order components, arising 

when one of two scatters occurs near the transmitter or near the receiver, are uncor-

related with the field from a double scatter on a remote surface region and are also 

uncorrelated with each other. Furthermore, it may be deduced from the derivations 

of Appendix B that the only non-negligible results occur when the factors arising 

from the ensemble average of the Fourier surface coefficients (i.e. expressions of the 

form < 1 Pi< w 1 P R w . >) contain wave vectors which are coincident on the scatter-
,, l J• J 

ing surface. That is, Ki and Ri are in the same scattering neighbourhood. This, 

in turn, means that the condition of a fully homogeneous surface could have been 

relaxed to one of local homogeneity. Thus, the same results would have been derived 

had we assumed surface homogeneity near the transmitter, a (perhaps) different yet 

homogeneous surface near the receiver, and again similarly so for the remote region 

responsible for double scatter. In practice, the size of these regions would be die-
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tated by the beam widths of the transmitter and receiver and the pulse width of the 

transmitted radiation. 

On the basis of the results in this section, the overall bistatic Doppler power 

spectral density, P(wd), may be written simply as 

(3.59) 

where the four terms on the right are given by equations (3.46), (3.52), (3.55) and 

(3.58), respectively. These expressions will next be used to determine first and second 

orders of the bistatic HF radar cross section of an elementary patch of the ocean 

surface. 

3.5 Derivation of the HF Bistatic Cross Sections 
of the Ocean Surface 

Because the only surviving terms of the Doppler power spectral density for elec

tromagnetic returns from the ocean surface are those given in equation (3.59), the 

general development of all portions of the HF bistatic cross section conveniently fol

lows closely that of the first order given by Walsh and Dawe [9). To facilitate the 

presentation of the second-order effects, which contain significantly more intricacies 

than the first order, their approach is presented here. Additionally, for readability, 

some of the detail omitted in that work is included here. 

3.5.1 An Elementary Scattering Region 

It is convenient to develop an expression for an elementary area, dA, of the scatter

ing surface in terms of the bistatic scattering geometry. To this end, the following 

discussion may be referenced to Figure 3.1. From elementary analytic geometry (eg., 

Trim [78]} it is known that for a smooth curve in the x- y plane, the curvature, IC, 

defined by 

/;;{s) = l'!l 
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(-a.O) (a.O) 

(a) 

(b) 

Figure 3.1: (a) The general geometry of the first-order scatter and (b) an expanded 
view showing an elemental scattering region. 

where Tis the unit tangent at a particular point and sis the distance along the curve, 

reduces to 

K:(x) = ~~~ 3 

[ 1 + (~)2] ~ 
(3.60) 

Applying this to the ellipse of Figure 3.1a gives 

(3.61) 

Given that the radius of curvature, Pc, in Figure 3.lb is the reciprocal of X:, it is 

easily concluded from the relationships between the major and minor axes and foci, 
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( ±;, 0), of the ellipse that 

Pc -

3 

(plp-2)2 
ab 

l 

(PtP2P 
-

P~J p;- (~)2 
(3.62) 

From Section 2.2.5.1, the representative values Pm, Po2, p03 and ¢o for the various 

distance parameters and bistatic angle may be introduced here. It is easily shown 

that 

cos¢o = 
ro~- (~)2 

P01Po2 

so that using equation (3.62), the shaded region of Figure 3.lb may be approximated 

as 

(3.63) 

The remarks regarding the distance parameters of (3.63) which are found throughout 

Section 3.3 permit the above form to be used for all parts of the first- and second

order fields. It is important to recall and summarize the significance of the angle, 

flrv : 

1. for the first order and the ''double patch scatter" second order, f) N is precisely 

the direction, 8R, of the wave vector K appearing in equations (3.46) and (3.52) 

for the respective power spectral densities; 

2. for the second order involving one scatter near the transmitter and another on 

the remote patch, f}N is the direction, 81(
7

, of the remote K2 wave vector as 

discussed in conjunction with equations (3.54) and (3.55); and 
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3. for the remaining second-order effect in which one scatter occurs on the remote 

patch before another near the receiver, ON corresponds to 8f<
1 

which is the 

direction of the patch wave vector, K1 , as found in equation (3.58). 

In consequence of equation (3.63) and the nature of 9N, each of the Doppler power 

spectral densities referenced above may be observed to contain a form 

~Ps d()N _ dA 

Pos [Pfis - ( ~) 2] - (P01Po2)2 . 
( 3.6-1) 

This fact conveniently permits all components of the bistatic HF cross section per 

unit area to be developed in a single manner. 

3.5.2 The Bistatic Radar Range Equation 

Before implementing (3.64) in the relevant Doppler power spectral density equations, 

it is useful to consider the standard bistatic radar range equation. Using received 

power spectral density, P(wd), in place of received power and cross section per unit 

area (u(wd)) instead of strictly cross section, the standard bistatic radar range equa

tion (see, for example, Barton [79], Chapter 1) may be appropriately modified in 

incremental form as 

2 2 d'P(wd) _ >..oPtGtGr IF(Pol,wo)F(Po2,wo)l ( ) 
dA - (4 )3 2 2 q Wd · 7r PmP02 

(3.65) 

The new parameters, Pt and Ge, are the transmitted power and free space gain 

of the transmitting antenna, respectively. For the elementary vertical dipole source 

assumed in this analysis, the product PtGt may be ascertained from any elementary 

electromagnetics reference ( eg. Collin [63]) as 

PtGt = TJok~ llo~ll2 
87r 

(3.66) 

Also, from equation (3.32), the relationship between the receiver gain, Gr, and the 

freespace wavelength, >..o, of the transmitted signal may be written as 

G - 47rAr 
r- 2 

Ao 

123 

(3.67) 



where it will be recalled that AT is the effective free space aperture of the receiving 

antenna. Combining equations (3.65), (3.66) and (3.67), 

d'P(wd) = A,.17o~ llo~ii 2 IF(p01, wo)-f(Po2. wo) 1
2 

o-(wd) . 
dA 16(27r)3 (Po1Po2) 

(3.68) 

Given equation (3.59) for the various parts of 'P(wd), it is understood here that 

(3.69) 

where a 1 ( ·) is the component of the cross section corresponding to the appropriate 

portion of the Doppler power spectral density. 

3.5.3 The Cross Sections 

Having developed the power spectral densities and presented the radar range equation 

for bistatic radar operation, the analysis leads logically to expressions for the radar 

cross section components presented in this section. Discussion of the extensive detail 

associated with the numerical calculation of the resulting expressions is reserved for 

Section 3.6. In that section, important features of the results are also interpreted. 

1. The First-order Bistatic Cross Section, au (wd) 

Given equation (3.64) and the fact that d8N = d8R• equation (3.46) for the first-order 

power spectral density expression may be written as 

· Sa2 
[ 
6;• (c:¢o- 2ko)] 

Ar1]ok~ lloAli2IF(pol!wo)F(Po2,wo)l2 ( ) 
- 2 au Wd • 

16(27r)3 (PoiPo2) 
(3.70) 

where the last equality follows from the radar range equation, (3.68). It immediately 

follows that 

5 [ l 4 2 ... K2 cos ¢0 2 Ap. K 
o-u(wd) = 2 1rk0 L S1(mK) v'9 Ap.Sa -

2
- ( - 2ko) 

rn=± 1 9 COS 4>o 
(3.71) 
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This is the first-order component of the HF bistatic radar cross section of the ocean 

surface normalized to the scattering area. Its unit is m;, (radian/second)-1 or simply 

{radian/second)-1. It should be observed, for the purpose of distinguishing au (wd) 

from the higher-order cross section components, that K is associated with a first-order 

ocean wave in the sense discussed in Sections 3.2.2.1 and 3.2.2.2. It may be pointed 

out that here, as in all other components of the cross section, a(·) is technically a 

function not only of ;..;d, but also of ¢o . In keeping with the literature , it has been 

chosen to suppress this explicit dependence on the bistatic angle. 

2. The Second-order Cross Section- Double Scatter on Remote Patch 

Again. in equation (3.52), which characterizes the Doppler power spectral density 

when two scatters occur near each other on the remote elliptical scattering patch, 

d8R = d8N . Using equation (3.64), equations (3.52) and (3.68) lead to 

- Ar1]ok~ ~~o~il
2 

~:!J L L rX) 11f roo { St(mtKdSt(m2K2) 
4 (27r) (PoiPo2) ml=±l m2=±1 Jo -II" Jo 

· j,fpj2 
( K 2 cos ¢o) jF(pOI, wo )F(Po,, wo)i2 Sa' [ Ll.:, (c: ¢o - 2ko)] 

· 6 ( Wd + m1 j9i<; + m2.Jii<;)} dKtdBJ(
1 
dK 

Ar77ok51Io~li 2 IF(pm, wo)F(Po2, wo)l
2 

( ) 

- 16(27r)3 (Po1Po2)2 a7.p Wd . (
3.72) 

From this, the second-order "patch scatter" cross section becomes 

(3.73) 

Here, K1 and K2 are the wave vectors of first-order ocean waves while K their sum (i.e. 

K2 = K- Kl). In Section 3.6.3, a2p(wd) is further simplified and discussed in detail. 

3. The Second-order Cross Section- One of Two Scatters Near the Transmitter 

Comparison of equation (3.55) for the Doppler power spectral density involving a 
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scatter at the transmitter followed by another, remote scatter, with equation (3.52) 

for double patch scatter reveals only the following differences: (1) in (3.55) there is 

an extra factor of 2 in the denominator preceding the summations, (2) the coupling 

coefficient, .frp, in (3.52) is replaced by 9r in (3.55), and (3) the K wave vector of 

(3.52) is replaced by K2 in (3.55) so that dKdfJR is replaced by dK2dfJJ(
2

• Here, K2 

is along the outward normal to the scattering patch just as R was in (3.52). 

Considering the minor differences in detail, but not in form, a cross section com-

ponent , u2r(wd), may be written from {3.55) analogously to 112p of equation (3 .73) as 

(3.74) 

As is discussed further in Section 3.6.4, the major contribution from wavenumber K2 

in (3.74) is, due to the sampling function, confined to a small range about 2k0 cos ¢ 0 . 

This, in conjunction with the forms of the coupling coefficients, is what provides the 

major difference between equations (3.74) and (3.73). In Section 3.6, where the cross 

section components are calculated, it is seen that for most of the Wei range of interest. 

112p(wd) >> a2T(wd)· Points where this inequality is not valid are examined closely. 

4. The Second-order Cross Section - One of Two Scatters Near the Receiver 

From equations (3.58), (3.64) and (3.68), the Doppler cross section per unit area, 

112R(wd), associated with a scatter at the remote patch followed by another near the 

receiver may be written similarly as equation (3.74) with K 1 and K2 being inter

changed and 9r being replaced by DR· The result is 

221T"k5~P. L L foo rr r { St(mtKdSt(m2K2) 
m1 =:H m2=±l Jo J -1r 0 

· 1Efnl2 J4 cos 4>oSa2 [A:, ( c! ~ - 2ko)] 
· 6 ( wd + m1 /ii(; + m2Jii<;) K2} dK2dfJi(

2
dK1 . 

126 

(3.75) 



Here, it may be seen that it is now the K 1 wavenumber which is constrained to lie 

near 2k0 cos ¢0 . For an homogeneous ocean surface, it is not surprising that u2T(wd) 

and u2R(wd) are of comparable magnitudes. Small differences are noted in Section 3.6. 

3.6 Calculation and Interpretation of the Cross 
Sections 

3.6.1 The Choice of an Ocean Spectral Model 

To this point in the analysis, we have discussed only those features of the ocean 

surface that were immediately necessary to develop the electric field equations for 

scattering from a time varying surface. However, to carry out calculations of the 

cross sections derived in Section 3.5, it is necessary to specify a particular model for 

the ocean surface. 

Tucker [1] (Chapters 2, 7 and 10), discusses from an engineering perspective, 

several of the ocean spectral models in current use. All of these consist of a product 

of an omnidirectional spectrum, S1(K), and a normalized directional distribution, 

G(8R) , such that in our notation, 

with 
St(I() = S1(K,8R) = S1(K)G(fJR) 

r-~r G(9R)d6R = 1 . 
(3.76) 

One version of S1 (K), whose experimental basis and formula derivation is con-

densed by Ewing [80], is the so-called JONSWAP (Joint North Sea Wave Project) 

spectrum, SJ(K). There is an abundance of literature on the generation of wind 

waves which deals extensively with this spectrum. The JONSWAP model addresses 

the aspect of fetch-limited spectra, fetch being the term used to describe the dis

tance over which a steady wave-generating wind blows. Its general form in terms of 

wavenumber, K, is 

(3.77) 
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where SF(K) contains parameters which are functions of fetch and duration, and 

Spu(K) is the still widely used Pierson-Moskowitz [60] spectrum. It has been com

mon for illustrative purposes to ignore the fetch limitation factor and use only Sn.r(K) 

which assumes a long fetch and a fully developed sea - i.e. there is no more growth or 

decay in the spectrum. So that results presented here may be compared to those of 

other investigators, SpJI.J(K) will be used as the non-directional part of S1CK) found 

throughout the cross section expressions. Its form is 

S (K) = apM ( -~J~l:~) 
PM 2K4 e (3.78) 

where g is the acceleration due to gravity, U is wind speed in m/s as measured at a 

level of 19.5 m above the mean ocean surface, and apM is a non-dimensional parameter 

whose value is 0.0081. U is the sole variable parameter describing the spectrum and 

there is clearly no fetch or duration- i.e. time over which wind blows -dependence. 

A detail worthy of note is that Pierson's [61) definition of the surface expansion 

differs from that in (3.12) of this analysis. On the basis of a derivation by Walsh [81] , 

it is shown in Appendix 8 .7 that the difference leads to our definition of S1(K) being 

related to that of Pierson by the expression 

(3.79) 

This results in a 3 dB decrease in the first-order power spectral density, and associated 

cross section, from that which appears in the literature. Correspondingly, because the 

second-order densities contain a product of S1 ( K) 's, the magnitude of these quantities 

is 6 dB below what has been heretofore reported for monostatic operation. 

Historically, just as several forms of S1(K) have evolved, so has a variety of direc-

tiona! models, G(8g). 

The form which has become standard (Thcker, [1]) is, strictly speaking, a function 

of frequency, or equivalently wavenumber, K, as well as 8 g and is given by 

G(Bii• K) = F(s(K)) cos'C•CK)) [Bii -
2
iJ(K)] 
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where B(K) is the dominant direction of the waves whose wavenumber is K and s(K) 

is referred to as the spread function. In simulating HF radar ocean surface cross 

sections, it has been customary to replace O(K) with ii, an overall mean direction, 

typically chosen to be that of the wind responsible for spectral growth. Also, as 

Tucker [1} notes, for practical purposes it is not possible to take account of s(K) 

across the entire spectrum so a representative value, s, is employed. An excellent 

discussion of s, as it pertains to wave directional spectra obtained from radar scatter 

is presented by Tyler et al. (82]. From (1], using fixed s and B for simulation purposes. 

we may simply write the cardioid directional distribution in the form 

[
8-- 0] G(fJJ?) = F(s)cos28 

K 
2 

. 

In order to satisfy the normalization in equation (3.76), F(s) is written as 

2(2s-l)f2(s + 1) 
F(s) = rrf(2s + 1) 

where r is the usual gamma function. For integer values of s, (3.81) becomes 

s 
F(s) = F(s- 1) 

8 
_ O.S 

(3.80) 

(3.81) 

. 1 
wtth F(l) = -. A value of s = 2 has been used extensively in monostatic HF radar 

7r 

simulations (see , for example, Lipa and Barrick [28], Howell [58], Gill and Walsh [30]). 

This value will be used as required in the calculations to follow so that equation (3.81) 

reduces to 
4 

F(s) = F(2) = 
3

11" • 

Throughout the cross section expressions of Section 3.5.3 the ocean surface wave 

vector spectrum appears in the form S1(mK) with m = ±1. From equations (3.76), 

(3.78}, (3.79), (3.80) and (3.81), this quantity now becomes, when s = 2, 

S1(mi?) = [ :~ e( -;;~')] . [ 3~ cos4 ( 
9
K + !'T!•- 9)] . (3.82) 

This model for the ocean gravity wave spectrum is used as necessary throughout the 

cross section calculations. 
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3.6.2 The First-order Bistatic Cross Section 

For discussion purposes, the first-order cross section per unit area foWlu in equation 

(3.71) is repeated here as 

4 2 ~ - K! cos¢o 2 [l:l.p, ( K )] u 11 (wd) = 2 rrk0 ~ St(mK) r;; l:l.p.~Sa -
2 

,;.. - 2ko 
m=±l V g COS '#0 

(3.83) 

where S1(mK) is now given by (3.82). The following properties and specifications 

lead to a straightforward numerical calculation: 

1. From equation (3.44), 

wd = -m[9K. 

This indicates that 

m = 1 when Wd < 0 

and 

m = -1 when wd > 0 . 

2. From Figure 3.1, specification of a representative bistatic angle, ¢ 0 , fixes the 

position on a particular elliptical patch from which the scatter is received. 

3. Identifying K as the Kmn of equation (A.19) and referring to the discussion 

following equation (2.136) it has been seen already that 

with N being the unit vector along the outward ellipse normal. That is 

which means that (}R may be found from equation (2.133) when the distance, 

p, between transmitter and receiver and the distance Poa = POl ; Po2 are fixed 

(see Figure 3.1 with p1 and P7. replaced by their representative values, Pot and 

Po2, respectively.) 
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4. Finally, a radar operating frequency, w0 , and a pulse duration, r 0 , must be 

specified. These two quantities, respectively, determine operating wavenumber 

k0 ( = wo where c is the speed of light in a vacuum) and the scattering patch 
c 

cro 
width [)..ps ( = 2). 

By virtue of the Sa2
(·) function in equation (3.71) the major peaks of the cross 

section are located at 

Wd = ±)2gkocos¢o = ±wa. (3.84) 

Classically, these values of wd have been referred to as the Bragg frequencies, w8 , 

Barrick [24]. They are indicative of scatter from two ocean waves, one travelling in

ward and the other outward along a scattering ellipse normal, and their wavelength 

is ( Ao . ) where Ao is the operating wavelength. For monostatic operation. the 
2 cos C!Jo 

,\ 
bistatic angle. d>o, is zero, and these waves have a length of ...E.. As noted in Chapter 

2 

1. this phenomenon led Crombie [22] to deduce that the primary mechanism respon-

sible for HF scatter from the ocean surface is Bragg scattering. In the more general 

bistatic case, it is now obvious that the position of the first-order Bragg spectral 

peaks is dependent on the position on the scattering ellipse from which the radiation 

is observed to come - i.e. the peak positions are governed by the bistatic angle, ¢o. 

In addition to establishing sharp primary peaks, the Sa2
( ·) factor introduces a 

rapidly oscillating first-order continuum. System timing effects as well as surface 

fluctuations and noise will, in practice, provide a smoothing effect of this periodic 

behaviour. In Figures 3.2-3.3 this bas been simulated by convolving the cross section 

with a Hamming window (Harris, [83]). 

From equation (3.83) it is clear that the smaller the radial scattering patch width, 

[)..p6 , the broader will be the spectral peaks. Conversely, a large A.p, produces nar

rower but slightly higher Bragg peaks. This is depicted in Figure 3.2 for a 10 MHz 

operating frequency, patch widths of 400, 1200 and 2000 m, a bistatic angle of 30°, 
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Figure 3.2: The effect of increasing radial patch width on the first-order cross section. 
The wind is outward along the ellipse normal resulting in non-zero results for the 
negative Doppler region only. 

an ellipse normal of goo, and wind speed and direction of 15m/sand goo, respectively. 

Relative maxima just below the near-zero first-order cut off region of the cross 

section may be explained by the fact that since wd = ±v?JK, small wd implies small 

K and thus large wavelength, A, for the scattering waves. In the Pierson-Moskowitz 

model of equation (3.78), the maximum occurs well away from the Bragg wave region. 

For example, for a 10 MHz operating frequency and a wind speed of 15 m/s, the 
A 

bistatic Bragg wave for ¢0 = 30° has a wavelength of 0 ¢ :::::::: 17.3 m. However, the 
2cos 0 

Pierson-Moskowitz spectral peak is at a wavelength of :::::::: 1go m, which corresponds 

to an angular Doppler frequency of :::::::: 0.573 rad/s or a frequency of ~ O.og Hz. 

The large spectral energy of this long surface wave mitigates the rapid decrease in 
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the Sa2 ( ·) function in the near-zero Doppler cross section. As expected, no such 

phenomenon occurs in the high Doppler tails which are a result of scatter from short, 

low energy waves. Of course, the absolute maxima at the Bragg peaks are resonance 

phenomena which are very strong in spite of the relatively low energy of the ocean 

waves responsible for them. 

Figure 3.3 illustrates the effect of increasing the bistatic angle until the condition 

of forv;ard scatter (¢o = 90°) is approached. Not surprisingly, in view of equation 

(3.83), the spectral peaks rapidly reduce in power as ¢o becomes large, implying that 

essentially no forward scattering takes place. The lateral shifts of the maxima are 

required by equation {3.84). It should be observed that in Figures 3.2-3.3, it has been 

chosen to use Doppler frequency (/d) in hertz rather than angular Doppler frequency 

(wd = 27r /d). This is customary in the literature on scattering cross sections. 

Other important features of the bistatic cross section, which are not unique to 

the first-order analysis, are depicted and discussed throughout Section 3.6.6. There. 

the effects of such factors as wind speed and direction and operating frequency are 

considered in detail. 

3.6.3 The a2p(wd) Component of the Second-order Bistatic 
Cross Section 

Attention is now focussed on that part of the second-order bistatic HF radar cross 

section of the ocean surface which results from ( 1) a single scatter from a second

order ocean wave and (2) a double scatter from two first-order ocean waves. These 

first-order waves are near each other on the elliptical scattering patch. The required 

cross section, <12p(wd), which must be simplified for calculation purposes is found in 

equation (3.73) and is repeated here for reference: 
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Figure 3.3: The effect of increasing bistatic angle for the first-order cross section. The 
radial patch width is fixed at 400 m. 

A typical approach in monostatic calculations, for example in Walsh et al [8], has 

been to invoke a large radial width, tl.p5 , of the scattering region. In the strict 

mathematical sense, we may write using Lathi ( [77), Chapter 1) 

lim MSa2 [Mx) = m5(x) 
M-oe 

{3.86) 
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where c5(x) is the Dirac delta function. Applying this to the Sa2
[·] function of equation 

(3.85), we may write 

lim Sa2 
[
2 
~Ps (K- 2ko cos t/>o)] 

~--oc cos t/>o 

_ 2 cos <Po lim fl. Po Sa 2 [ tl.ps ( K - 2ko cos ¢o )] 
~Ps ~-oc 2 COS ¢a 2 COS ¢o 

2n.~ 

27r cos ¢ 0 
~ c5(K- 2k0 cos ¢o) . 

Ps 
(3.87} 

Using (3.87), equation (3.85) may now be represented as 

l72p(wd} ~ 24
7r

2k5 cos2 <Po L L 'OCl11f roc { St(mtKdSt(m2K:z) 
mt=±l m2=±1 lo -ll' lo 

· lsfpl 2 K 2c5(K- 2ko cos ¢o) 

{3.88) 

which, invoking the first delta function to do the dK integral, gives 

(3.89) 

[t is now understood that K = 2k0 cos ¢ 0 . The object, then, is to calculate a 2p(wd). 

There are several intricate details which are enumerated in the following paragraphs. 

1. The Relationship Between K 1 and K 2 

[t has been previously emphasized that K = K1 + K2. Given the approach used to 

develop {3.89), not only is .R perpendicular to the scattering ellipse, but it is also of 

magnitude ~ 2ko cos ¢o. The magnitude of K2 is easily found, from the law of cosines, 

to be 

(3.90) 

and from the bistatic geometry (see Figure 3.1, and use representative parameter 

values) 

(3.91) 
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Then, angle, (JN, of the ellipse normal is easily shown to be, using equation (2.133) 

and referring to Figure 3.1, 

{ 
± sin -l [ po1 +eoa sin (/Jo] , POl > Po2 

(JN = [P ] 
1r =t= sin -l ern ;eoa sin ¢o , Pot < Po2 

{3.92) 

where +sin -t ( ·) or 1r - sin -l ( ·) should be used when the scatter position is in the 

y > 0 half-plane and -sin-1
( · ) and 7r+sin-1

( · ) when y < 0 at the place of scatter. 

Equation (3.92) is general, but if it is agreed to use a narrow beam receiver, <Po aud 

0 N are fixed by the bistatic geometry and it is obvious from Figure 3.la that 

(3.93) 

2. Disjoint Doppler Regions Dictated by m 1 and m2 

It will now be shown that the four possible combinations of m 1 and m 2 represent 

distinct Doppler regions. For non-zero results, it is required from the argument of the 

delta function in (3.89) that 

(3.94) 

When m1 = m2, 

From the triangle inequality K 1 + K1. > K = 2kocoscf>o and since JK1K2 > 0, 

referring to equation (3.84) , 

w~ > 2gko cos¢o = ws . 

That is, Wd > wa or wd < -ws. 

Clearly, then, 

W,j < -WB, ffit = m 2 = 1 
Wd > WB, m1 = m2 = -1 }· (3.95) 
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From (3.94), when m 1 =/= m2 

WJ = gKt + gK2- 2gV K1K2 

=> WJ < 2gkocos<Po- 2gJKtK2 

=> w~ < 2gko cos f/>o = w1 . 

Therefore. -...;8 < >J.id < ...;8 when m1 ::/= m:.~ . 

Additionally, from ( 3.94) 

0 < Wd < Wb , 
ffit = -1, m2 = +1 and Kt > K2 or 
ffit = +1, m 2 = -1 and K1 < K2 

and (3.96) 

-wa < wa < 0, 
ffit = -1, m2 = +1 and Kt < K2 or 
m 1 = +1, m2 = -1 and Kt > K2 

The sign of wd in the cross section argument thus dictates whether m 1 = m2 = 1 

or m 1 = m 2 = -1 outside the Bragg peaks. Similarly, the sign of wd in conjunction 

with knowledge of the relative magnitudes of K1 and K2 dictates the values of m 1 

and m2 between the Bragg peaks. A procedure similar to this was invoked by Lipa 

and Barrick [84] for monostatic cross sections. However, symmetry conditions in their 

analysis reduced the complexity of the calculation between the Bragg peaks. 

3. Solution of the Delta Function Constraint and Related Results 

Next, a form for 6( ·) in equation (3.89) is sought such that its arguments are in terms 

of the integration variables K1 and (JR.· Adapting a technique presented by Lipa and 

Barrick (84] for monostatic cross sections, we define 

implying 

and the delta function takes the form 

6(·) = 6(wd- Dp(Y,8R
1
)) 
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where, using equation (3.90), it is readily verified that 

l 

y = - Dp(Y, f) RJ - m 2 [a2 (Y4 + 4k5 c.o.~2 tPo - 4Y2 ko cos ¢o cos(B 1(
1 

- BN))] 
4 

m1v'§ 

Then, for a given BR
1

, 

dY =I av I dDp 8Dp 8 Kt 

with the Jacobian of the transformation, using L = m 1m2, given as 

1 
- --~----------------------------~ 

Applying these transformations, allows equation (3.89) to be written as 

(3.99) 

(3.100) 

(3.101) 

It should be recognized from equation (3.99) that the limits on the Dp integral will 

depend on the values of mL and m2 under consideration. To illustrate, when m 1 = 

m2 = 1, -oo < Dp < -w8 where wa is given by equation (3.84) . Clearly, this case 

corresponds, as it should from (3.95), to Wa < -we. The other cases for the Dp limits 

similarly follow. 

In general, the delta function constraint of equation (3.102) must be "solved" 

numerically. That is, for 

(3.103) 

we seek a Y = y• such that 

(3.104) 

Any suitable scheme may be used, and here the Newton-Raphson method (eg., Jeffrey 

[67}) is employed. The technique requires a Taylor series expansion of G(Y) about 
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Y = Y* so that, to first order, 

(3.105) 

An initial guess, r:·, say, is made and a better approximation, Y:~ 1 , is calculated from 

equation (3.105) with the process repeated until (3.104) is satisfied within a specified 

tolerance. It is not difficult to show that when wd is close to wa, 

(3.106) 

It is found, numerically, that this value of y• is a suitable initial guess for all regions 

of the integral. 

There are several features of G(Y) = 0 in equation (3.103) which are significant 

aids in establishing an approach to numerically integrating the cross section of equa-

tion (3.102). Verification of these properties is not difficult and, in general , only 

the end results are presented here. A basic consideration which affects all the other 

factors associated with 

(3.107} 

is that the contours of Wd as given in the K1:r- K 1y plane (where K1 = K 1:ri + K 1y[J 

or K 1 = JK?x + K?11 and Bg
1 

= tan- 1 (~::) ) are symmetric about the lines 

{3.108) 

and 

K1y = -(Ktz- ko cos cfJo cos (JN) cot (JN + ko cos ifJo sin (JN • (3.109) 

The wd surfaces of equation (3.107) are shown in Figure 3.4a and a detailed version 

of their Ktx - K 111 contours for m 1 = m 2 = -1 in Figure 3.4b. It should be noted 

that in Figure 3.4b, K = K1 + K2 :::::: 2ko cos ifJGN as usual. The symmetry dictated by 

(3.109) ensures that if the delta function constraint is solved for K 1 < K2 it is also 

solved for the half plane where K 2 > K 1 by simply interchanging the vector magni-
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(a) 

Frequency Contours for m 1 = m2 = -1 

-0.4 -0.2 0 0.2 0.4 0.6 0.8 

Klx 

(b) 

Figure 3.4: (a) The Doppler frequency surfaces for the patch scatter cross section. 
The cases of m 1 = m 2 = -1 and m 1 = -1, m2 = 1 are shown. The m1 = m2 = 1 
and m 1 = 1, m 2 = -1 are mirror images of these (i.e. reflection in the K 1x-K1y 

plane). (b) The contours corresponding to the m 1 = m 2 case with enhancements as 
used for derivations in the text. 

140 



tudes. Furthermore, equations (3.108)-(3.109) are a help in establishing the proper 

way of partitioning the B Kt integral of (3.102). It is possible to show that the frequency 

contours for m1 = m2 split apart when WB < wd < ../2wB (or -~2wB < wd < -wB)· 

It may be verified that, when K 1 < K2, 

and 

where 

BN- 1f' ~ BR1 < BN- f3t for Kty < K1x tanBN } 

BN + i3t ~ BR
1 

< 9N + 1r for Kty > Ktx tan 9N 

Pl = { COS-
1 (2 (e)

2

) ; lwdl > v'2wB 

0; lwdl < v'2wB. 

(3.110) 

(3.111) 

Now, for every K 1, K 2 pair in the region K 1 < K 2 , there is a matching K~, K~ pair 

in the region K 1 > K 2 such that 

K~ =K2, BR~ =2BN-Bf<2 } 

K~ = K 1 , 8 R; = 28 N - B R 
1 

• 
{3.112) 

The significance of equations (3.110 - 3.112) is that (1) the delta function constraint 

needs only be "solved" for the region in which K 1 < K2 and {2) given a single 

(Kt.9i(
1
), not only is K2 established (see equation (3.90)) but 

8 _ = { BN + cos-1 !12 ~ BN- 1f' ~ BR
1 
~ON- /31 

K 2 BN- cos- 1 !h. , otherwise 
(3.113) 

where 

(3.114) 

4. Singularities in the Integrand 

The fourth, and final, major consideration in calculating the cross section of equation 

(3.102) is the singularities which may arise in the integrand. Firstly, consideration is 

given to the Jacobian of the transformation in equation (3.101), and, subsequently, 

the coupling coefficient, 5 fp, is addressed. In each case, the physical significance is 

addressed. 

It may be observed that, when Bi(
1 

=ON, Y = J1(; = Jk0cos¢o, and L = 1 

in I 8
8%P 1

9 
_ of equation (3.101), the denominator of that expression vanishes. Hence, 
Kt 
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there is a singularity at K1 = (kocos¢o,BN). Since K1 + K2 = K = 2kocos¢>oN, at 

the singular point, K2 = (k0 cos¢o, BN) also. Then, from equation (3.94), 

Wd - -m1 J gko cos if>o - m2 J gko cos ¢o 

- =t=¥2 J2gko cos ¢o 

- =t=¥2 WB. 

This means that there is a singularity when the Doppler frequency is =t=J2 times 

the first-order Bragg frequency with Kt = K2 = kocos¢o and BR
1 

= Bi(
2 

= BN· 

Thus, in bistatic operation where, in general, ¢o =/= 0, the waves responsible for the 

scattering at the singular point have a wavenumber ko cos ¢o which is half that of 

the bistatic Bragg wave. Equivalently, the wavelength, .>.., of this scatterer is twice 

that of the Bragg wave, .>.. 8 , and since the wave phase speed of first-order deep water 

waves is proportional to /X(= ..;25:; here), the Doppler shift it produces is /2w8 . 

Additionally, the same Jacobian applies to that part of the integral arising from a 

single scattering from a second-order wave. In the singular case being discussed, this 

wave has its wave vector given by K = K1 + K2 = (2kocos¢o,8N) and its wavelength 

is therefore equivalent to .>.. 8 . However, from the Hasselmann (59) second-order theory 

the speed of this wave is J2 that of a first-order wave of the same length. Thus, the 

../2w a peak in the second-order cross section may be explained as a combination of two 

first-order scatters from waves of length 2.>..8 and a single scatter from a second-order 

surface component of length .>..8 . It is obvious that for monostatic operation, where 

¢o = 0, this observation reduces to that discussed by Barrick (24) and Srivastava (54) . 

The second source of singularities is the coupling coefficient, ,rp. It may be recalled 

that this symmetricized coupling coefficient given by equations (2.64), (2.142), (3.18), 

(3.26), and (B.ll) consists of the sum of electromagnetic and hydrodynamic terms, 

Efp and~' respectively. For reference it may be written in full as 

,rp(K
1

, g
2

) = .!. { [1J ~1 · ~K1 -_2kofo2] ~ ko] . [(K1 · P:HR2_· (K1- koh)l] 
2 k0 + K1 · (K1 - 2koP2) J K1 • (K1 - 2kofo2] 
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(3.115) 

It must be emphasized here that unit vector fJ2 is associated with the P2 of Figure 2.5 

and for the present discussion is better understood as ih of Figure 3.1. 

It was discussed following equation (3.18) that nf, represented by the last term in 

(3.115), has no singularities. However it is evident that the electromagnetic portion 

will be singular whenever 

K1 · (A\- 2kop2) = o (3.116) 

(or equivalently, K2 • [.K2 - 2ko.6.2] = 0). It may be readily shown from the conditions 

that Kt + K2 = K ~ 2k0 cos¢0N and ON= 82 +¢0 (see Figure 2.6), that (3.116) is a 

circle of singularity of radius ko and centred at (ko cos( ON- ¢o), kosin( ON- ¢o)) in the 

K 1z - K 1y plane. To determine the effect of these singularities, the condition giving 

the positions where this circle is tangent to the wd contours, and thus contributory 

to the cross section integral, was sought. It is tedious, but not difficult, to show that 

the greatest effect of the singularities occurs for 

and 

.·.od = ±2~ [l±ain¢ol! 
""" COIItPo WB • 

(3.117) 

The ± in the radicand is independent of that outside. We note, importantly, that for 

monostatic operation, in which ¢o = 0, (3.117) reduces to 

3 

(wd)monoetatic = ±24 (ws )monOIItatic (3.118) 

which is the well known "comer reflector" condition discussed by Barrick [24] and 

Srivastava [54]. Mathematically, ( 3.11 7) produces four values of wd of interest because 

the centre of the circle of singularity is not, in general, on the axes of symmetry of the 

±wd contours. Physically, these singularities correspond to double specular reflections 
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from the (K1, K2 ) pairs of scattering wave vectors involved. For completeness, we note 

that directions of these wave vectors are 

8- =ON - ( 2tt>o±r) 
Kt 4 

and (3.119) 

where the ±corresponds to that in the radicand of (3.117). Further comments on 

the relative importance of these singularities is found in Section 3.6.6 as well as in 

Section 4.5.3. 

All of the features of the integrand in equation {3.102) which are important in 

calculating the second-order "patch" cross section have now been addressed. Since 

the only singularities which contribute significantly to the integral are at the wd 

values discussed above, at all other Doppler frequencies, they may be effectively 

removed from the integration process. Based on the considerations presented here, a 

FORTRAN 77 routine was developed to calculate cr2p(wd) . Plots of the outcomes are 

presented and discussed in Section 3.6.6 in conjunction with other components of the 

cross section. 

3.6.4 The u2T(wd) Component of the Second-order Bistatic 
Cross Section 

The initial treatment of equation (3.74), which gives the Doppler cross section compo

nent involving a first scatter near the transmitter followed by another on the remote 

patch, follows that of (3.85). That is, the Sa2
[·] function appearing in the cr2T(wd) 

formulation is converted to a delta function via the transformation effected through 

equations (3.86) and (3.87). The result, on using the delta function to evaluate the 

K1. integral, is 

144 



~ 257r2k~ cos4 ¢o L L 111" roo { Sl(m1Kt)Sl(m2K2) 
mt=±l m2=±l -1r Jo 

l.e!'TI2 6 ( WrJ. + m1 jii<; + m2[ii<;) K1} dK1d8R
1 

• (3.120) 

The fact that K2 ~ 2kocos¢oN is now implicit so that S1(mK2) is really the spectral 

content of only two waves of length 2ko cos ¢o and travelling, one inward and one 

outward, along the ellipse normal. For HF operating frequencies, ocean waves of 

length 2k0 cos ¢0 are usually in the high frequency ( or wavenumber) end of the energy 

spectrum. far removed from the spectral peak. This, in general, makes a:rr(wd) of 

secondary importance as compared to a 2p(wrJ.), and more discussion on this issue is 

found in Section 3.6.6. 

Following the approach of the previous section, several observations, as listed 

below. aid in the calculation of a2T(wrJ.). 

l. The Wave Vector K1 

While K2 is restricted as stated above, K 1 may take any magnitude imposed by the 

remaining delta function , 6 (wd + m1 ~ + m2..jgkocos¢o), and its direction. 8R,· 

may assume any value between -1r and 1r. 

2. Doppler Regions Dictated by m 1 and m2 

The argument of disjoint Doppler regions formed by the four combinations of m1 and 

m2 in the a2p(wd) equation cannot be made here. From the argument of the delta 

function in (3.120) it is required that 

Again, setting wa = ..j2gk0 cos ¢0 , it becomes obvious that 

m 1 = m 2 = -1 
m 1 = m 2 = +1 
m1 = -1, m2 = +1 
m1 = +1, m2 = -1 
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=> WrJ. > +wa 
=> Wd < -WB 
=> Wd > -WB 
=> WrJ. < +WB 

(3.121) 

}· (3.122) 



Clearly, then the Doppler regions dictated by m 1 and m2 overlap and care must be 

taken to consider all possible combinations of m 's for a particular wd when calculating 

3. Solution of the Delta Function Constraint and Variable Transformation 

Letting Y = .JI<;, as before, implies equation {3.98) and 

where 

with the Jacobian being 

y = -(Dr(Y) + m2wB) 

ffit../9 

This permits us to write (3.120) as 

(3.123) 

(3.124) 

(3.125) 

The solution, y•, to the delta function is trivial because of a priori knowledge of K 2 

and the result may be written simply as 

y• = -(wd + m2ws) . 
m1.,f9 

4. Singularities in the Integrand 

(3.126) 

The only factor in need of consideration when examining the possibility of singularities 

in (3.125) is the coupling coefficient, elT· From equations (2.87) and (2.146) and 

carrying out the notation change for the K's as discussed following equations (3.2) 

and (3.14), 

~ = { R. · (R. + koh) } . { -Jc5- ikoJ R. · [K1 + 2koh1} 
T JR •. (Kl + 2koh] k5 + R •. (Kt + 2kofo2] 

(3.127) 
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Here fJ2 is the unit vector associated with P2 of Figure 2.7, and, as in .,fp, it is identical 

to a p1 vector which would be identified with Pl. of Figure 3.1. Singularities occur in 

ffT when 

Thus, there is again a circle of singularity and, in this case, it is easily shown to be of 

radius k0 and to be centred at (-kocos(BN- ¢o), -kosin(BN- cl>o)) in the K1x- K1y 

plane. 

An investigation of where this circle is tangent to the Wd contours, which are 

themselves circles, leads to the important result that at such points 

K1 = 2ko and 8R
1 

= (81 + 1r) ( in Figure 3.1). (3.128) 

This means that the Doppler frequencies where the singularities will have a non-zero 

contribution to the a2T(wd) integral are given from equation (3.121) as 

Wd - -m1 j2ik"o- m2wa 

- w a (-m2 - m1 ) 
cos ¢a 

(3.129) 

When m 1 = m 2 = ±1, these Doppler frequencies are located at =fwa (1 + 1 
) , 

..jcos¢o 
respectively. When m 1 ¥= m2 there are two peaks removed from zero Doppler by 

an amount governed by cos¢o. The physical cause of these singularities, which may 

manifest themselves as peaks in the Doppler spectrum, may be deduced from (3.128}. 

The K 1 wave vector in these cases evidently lies along the direction from the patch 

to the transmitter. Such a wave, from which the first scatter occurs, can provide 

a strong backscatter toward the patch where the second scatter occurs from the 

·'bistatic" Bragg wave whose wavenumber is 2ko cos ¢o. Practically, then, if there is 

ocean behind the transmitter, this phenomenon could be expected to manifest itself. 

Further, for monostatic operation, the Doppler frequencies in equation (3.129) reduce 
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to 

( ) 
. _ { ±(2wB)monostatic , m1 = m2 = ±1 

wd monO&tatlc - 0 m _J. m 
, 1 r 2 

(3.130) 

where (wd)monostatic = J2gko. This is precisely the result obtained by Srivastava (54}, 

so that the more general result of (3.129) reduces to the proper monostatic form (i.e. 

when ¢o = 0). 

The above items contain the basic features which must be incorporated into a 

calculation of the a2T(wd) component of the cross section. As with the a2p(wd) por

tion, a2r(wd) was implemented "v;a a FORTRAN 77 routine. Plots of the results for 

a variety of operating parameters appear in Section 3.6.6. FUrther comparison with 

the existing monostatic counterpart is also carried out there. 

3.6.5 The 0'2R(wd) Component of the Second-order Bistatic 
Cross Section 

Consideration of the a2R(wd) cross section for a single scatter on the remote scattering 

patch followed by another at the receiver closely parallels that for a2T(wd) above. 

However, because this portion of the cross section does not appear in any form in the 

literature, the important parts of the integral will be summarized. 

Treating the Sa2 [·] function in the usual fashion by assuming large 
2 

l:::..p, , equa-
cos¢o 

tion (3.75) may be approximated as 

0"2R(wd) ~ 25 rr2k~ cos
4 

<Po m"f±l m"[;±l /_wrr foOCJ { St(mtk\)Sl(m2K2) 

· IEI'RI2 
8 ( wd + m1 ~ + m2[9i(.z) K2} dK2dlJJ(2 • (3.131) 

The delta function resulting from the Sa2
(·] of equation (3.75) has been utilized to 

solve the K 1 integration so it must be understood that K 1 ~ 2kocos¢0 in (3.131) . 

From previous considerations, () R l :::::::: 8 N, implying K 1 ~ 2ko cos ¢0N. 

The following notes will be seen to be analogous to those of the previous section. 

1. The Wave Vector K2 

While K1 associated with the scatter on the remote scattering ellipse, is fixed in 
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magnitude and direction, K2 , which is linked to a surface wave at the receiver, may 

assume any direction from -1r to 1r and any magnitude which complies with the 

remaining delta function, 8 ( wd + m1 J2gko cos c/Jo + m2ylg1?2). 

2. Doppler Regions Dictated by m 1 and m 2 

The delta function of (3.131) requires that 

(3.132) 

which is clearly analogous to (3.121) with m 1 and m2 reversed and K 1 replaced by 

K2 here. Therefore, the Doppler regions are not disjoint for the various combinations 

of m 's and, in particular, 

m 1 = m 2 = -1 
m 1 = m2 = +l 
m1 = -1, m2 = + 1 
m 1 = + 1, m 2 = -1 

=> wd > +wa } 
=> wd < -wa 
=> wd < +wa · 
=> wd > -wa 

(3.133) 

This is similar to (3.122) but with the m 1 and m2 interchanged, and, as before, care 

must be taken to ensure that for a given wd, (3.131) is calculated using all relevant 

combinations of m 1 and m2 • 

3. Solution of the Delta FUnction Constraint and Variable Transformation 

Using a comparable analysis to that in equations (3.123-3.126), equation (3.131) may 

be written immediately as 

where 

y - F. 
-(DR(Y) + ffitWB) 

m2V§ 
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and the delta function solution is 

y• = -(wd + mtws) . 
m2.;9 

4. Singularities in the Integrand 

{3.136) 

The source of singularities in (3.134) is the coupling coefficient EfR· From equations 

(2.106) and (2 .149) and Figures 2.9 and 3.1, this may be written as 

~ _ koK2 · fJ2 
R- JR2. [K2- 2kofJ2] 

(3.137) 

where p2 is in the direction of P2 of Figure 3.1. The circle of singularity, 

(3.138) 

has radius ko and is centred at ( -kocos((JN + ¢0 ), -k0 sin(ON + ¢0 )) in the K2z- K2y 

plane. Here, too, the wd contours are circles in this plane and the locus of {3.138) is 

tangent to these at 

(3.139) 

with 

(3.140) 

Therefore, when m 1 = m2 = ±1, there may be additional spectral peaks which 

are located at =t=ws (1 + 1 
¢ ) , respectively. For m 1 1:- m2, there are two more 

Jcos o 
peaks removed from zero Doppler by an amount dependent on cos ¢o. What has been 

deduced at this stage is that a2T(wd) and a2R(wd) have theoretical peaks in the same 

places. 

The physical significance of (3.140) is that the major contribution from the second 

scatter at the receiver for the singular points is a backscatter. That is, the four peaks 

at the wd's given by (3.139) are produced by a combination of a first-order bistatic 
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scatter on the remote patch followed by a backscatter at the receiver. Again, for the 

peaks to be in evidence, there must be ocean behind the receiver. Finally, it may 

be immediately seen from (3.139) that for monostatic operation the spectral peaks 

associated with l12R(wd) will occur at 

(
, ) . _ { ±(2ws)mon01Jtatic , m1 = m2 = ±1 
Wd manOIJtatiC - 0, ml # m2 (3.141) 

which, from (3.130), are identical to those for u2T(u;d}-

The actual manifestation of the phenomena discussed above will depend on such 

factors as the bistatic geometry parameters, the wind conditions and the operating 

frequency. Such considerations are the topics of investigation in the next section. 

3.6.6 Depiction and Description of the Cross Section Results 

This section is used to illustrate the calculations described in Sections 3.6.2-3.6.5. 

[nitially, the general features of the bistatic cross section will be compared to the 

monostatic case by setting ¢0 = 0. Then, for a fixed operating frequency, the ef

fect of wind speed (or, equivalently, sea state) will be examined. Subsequently, wind 

direction is considered. The ramifications of changing operating frequency are then 

investigated. Finally, a range of bistatic angles is surveyed to determine the influence 

this parameter has on the overall cross section. There are, of course, many permuta

tions of these parameters which could arise in practice, but here we seek to illustrate 

only the basic response of the Doppler cross sections by changing the variables in a 

simple way, one by one. 

It may be noted that, strictly speaking, the cross sections were developed without 

explicit specification of the receiving antenna beamwidth. That is, they exist as 

Doppler cross section per unit area. It is implicit in what follows, that for a particular 

bistatic angle, the receiver beamwidth is narrow enough so that there is very little 

deviation from this specific angle over the patch of surface being interrogated by the 

radar. 
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The directional ocean spectrum given by equation (3.82), which is the product of 

a Pierson-Moskowitz non-directional factor and a cardioid directional distribution, is 

used in all of the figures of this section. The wind directions, li, are given with respect 

to the positive x axis. 

For the first order, a radial patch width, ~Ps, of 2000 m corresponding to a trans

mitted pulse width, r0 , of :::::: 13 J..LS ( r0 = 
2~Ps) is used. This value has been used by 

c 
\Valsh et al. [8] in rnonostatic simulations. As for the first order, the eros::; section plots 

are given in terms of Doppler frequency, /d, in hertz and are plotted on a decibel scale. 

1. Typical Comparison of Bistatic and Monostatic Cross Section 

Figure 3.5 shows cross sections produced assuming an operating frequency, fo, of 

25 ~1Hz, a wind speed of 15 m/s and a wind direction, li, as referenced above, of 

goo to the ellipse normal direction, () N. The bistatic angle is chosen to be 30°. The 

rnonostatic cross section is similarly calculated with the wind goo to the look direction. 

() L. Figures 3.5a and 3.5b show the individual components of each cross section and 

Figure 3.5c depicts a comparison of the combined effects. 

The rnonostatic Bragg frequencies indicated by peaks F N.M and F P.M in Figure 

3.5b are located at ±0.5ogg Hz while their bistatic counterparts, FN.B· FP,B in Figure 

3.5a, are at ±0.5099 Hz x v'cos 30° = ±0.4745 Hz. Of course, the bistatic Bragg 

frequencies will always be nearer zero Doppler that those of the corresponding mono

static case. Implicit in these values is the assumption that there is no net surface 

transport due to ocean currents. The latter would cause additional shifts in the Bragg 

frequencies, and, in monostatic operation, these deviations from the theoretical values 

are an indicator of the current regime (see, for example, Hickey et al. [32]). The a8 

and aM in Figures 3.5a and 3.5b are the ( v'2 ~;) peaks discussed in Section 3.6.3. 

For the parameters above, they occur at~ ±0.6710 Hz and ±0.7210 Hz, respectively. 
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Figure 3.5a: An example of the components of the bistatic cross section. The various 
parameters and the labelled spectral peaks are discussed throughout Section 3.6.6. 
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The electromagnetic "comer reflector" peaks ei(:::::::: ±0.9489 Hz) and e2(:::::: ±0.7210 

Hz) for bistatic operation are seen to collapse to a single 2t~; (::::::: ±0.8575Hz) at e 

for the monostatic configuration. In both cases, there are two contributions to peaks 

at fa and JM due to scattering occurring at the transmitting and receiving antennas. 

For the illustration here, as dictated by equations (3.129) or (3.139) and (3.130) , 

fa ::::::: ±0.9843 Hz and fM ::::::: ±1.020 Hz. Finally, from the same equations, the split 

singularities near zero Doppler at dl and d2 (:::::::: ±0.0354 Hz) for bistatic operation 

are seen to degenerate to a single peak, d, (at 0 Hz) in Figure 5.3b. 

Figure 5.3c is simply a repetition of 5.3a and 5.3b in which all portions of the cross 

section have been combined. The relative positions of the bistatic and monostatic 

features discussed above are evident. Apart from these singularities, however, the 

cross section when the wind is perpendicular to the ellipse normal at the scattering 

patch in the bistatic model is clearly very similar to when the wind is normal to the 

look direction in monostatic operation. In each case the ocean wave energy is mapped 

to the cross section in an essentially symmetric fashion. A small deviation in this for 

the bistatic case is discussed in note 3 below. 

Implicit in the considerations above is that the monostatic radar may interrogate 

a surface region independently of the bistatic radar. Otherwise, in general, the com

parison of a wind direction relative to boresight in the former case could not have 

been compared to the same relative direction to the ellipse normal in the latter. What 

is more practical, however, is to have a transmitter (T} and receiver (R} at one radar 

site and a receiver (R) at another (see inset of Figures 3.6a and 3.6b}. These figures 

illustrate the following important observation: due to symmetry, two winds of equal 

magnitude but different direction which have identical components along the bistatic 

normal provide essentially the same bistatic cross section. However, this wind will, 

in general, have an inward component along the boresight of the monostatic radar 

(whose scatter geometry is indicated by the double-headed arrow) in one instance 
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and an outward component, which may be different in magnitude, in the other. This 

latter fact is indicated by an increase in the positive monostatic Doppler cross section 

(Figure 3.6a) when a wind component lies inward along the boresight and a simi

lar enhancement in the negative Doppler region (Figure 3.6b) when the wind has a 

component outward along the boresight. Thus, simultaneous bistatic and monostatic 

operation, which involves one transmitter but two receivers, provides a method of 

removing the directional ambiguities inherent in ::;ingle-site ob::;ervatiom; of the oceau 

surface. 

2. The Effects of \Vind Speed on the Bistatic Cross Section 

Since wind speed is the chief factor determining the gravity wave spectral energy, it is 

not surprising, as has been extensively investigated for monostatic radars. that it will 

significantly affect the magnitude of the bistatic cross sections. Figure 3. 7 indicates 

this effect for wind speeds of 5, 10 and 15 m/s. 

An initial observation is that the strength of the bistatic Bragg frequencies and the 

tails of the spectra are nearly identical for the three cases shown. For a 25 MHz signal 

and a bistatic angle of 30° the Bragg wavelength (= k 
2

7r ) is about 6.93 rn. In 
2 ocos¢o 

the Pierson-.Moskowitz spectrum, this wave appears in the high frequency end which is 

saturated for any wind speed greater than a few metres per second. Thus, increasing 

the wind speed beyond that which produces saturation in the relevant portion of 

the ocean spectrum will cause no change in the radar cross section of the surface. 

Similarly, as indicated by the delta function arguments in equations (3.94), (3.121) 

and (3.132), as the absolute Doppler frequency increases so do the wavenumbers of 

the scattering waves. Again, this dictates that the scatterers responsible for the high

Doppler tails will lie in the saturated region of the ocean spectrum and their effects 

on the Doppler spectrum will be largely independent of wind speed. Of course as 

the radar operating frequency decreases towards the lower end of the HF region, the 

Bragg waves increase in length ( eg. for / 0 = 5. 75 MHz and ¢0 = 30°, the Bragg 
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Figure 3. 7: Bistatic cross sections for various wind speeds when the transmitter (T) 
and receiver (R) geometry is as shown in Figure 3.6a. 

wavelength is 30.1 m). Still, the first-order Doppler maxima are largely unaffected 

by changing wind speed, again due to the saturation as discussed above. 

It might also be noted, that the spectral tails, while being enhanced by the azr and 

a2R portion of the cross section (see Figures 3.5a and 3.5b), fall off much more rapidly 

than the comparable azr monostatic cross section developed by Srivastava [54]. In 

fact , beyond ±2w8 , the tails of Srivastava's cross sections are nearly flat , unlike what 

is commonly observed in the portions of the monostatic radar spectra where the 
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power scattered by the ocean exceeds the noise thresholds. A brief comparison of 

Srivastava's result and that presented here is considered in Appendix B.S. 

The Doppler region of greatest importance, in an oceanographic sense, lies adja

cent to the Bragg peaks for upper HF. It may be deduced from the Doppler contours 

of Figure 3.4, that in this near-Bragg portion, at least one of the ocean waves respon

sible for the second-order patch cross section, a2p, is a long wave. At higher wind 

speeds, these waves carry a significant amount of the spectral energy. At U = 10 m/s 

in Figure 3. 7 it is seen that the peak of the region is already ::::: 10 dB below its value 

for 15 m/s winds, and at U = 5 m/s no significant amount of energy is mapped into 

this part of the radar spectrum ( or cross section). Similar observations have been 

made by others (Lipa and Barrick (84], Gill [85)). At the corner reflector and other 

peaks discussed earlier, the wind speed is not a significant factor in determining the 

cross section content for the operating frequency shown. The effect which changing 

the operating frequency has on these regions is examined in relation to Figure 3.9 

below. 

3. The Effect of Wind Direction on the Bistatic Cross Section 

Figure 3.8 portrays how the wind direction influences the cross section. In each graph 

shown, the operating frequency is 25 MHz, the bistatic angle is 30° and the normal 

to the scattering ellipse is 90°. The wind direction, B, is measured counterclockwise 

from the positive x-axis. 

One obvious feature in Figure 3.8 is the antisymmetry produced by changing the 

wind direction from ii to ii + 180° (vertical pairs of graphs). Of course, such a change 

is also equivalent to 180° change with respect to the ellipse normal. Then, what has 

been previously observed for wind direction relative to a narrow beam for a monostatic 

configuration ( eg., see Lipa and Barrick (841) translates to the effect of wind direction 

relative to the ellipse normal for bistatic operation. For example, since (JN = 90° , 

here, ii = 90° means that the wind is outward along the normal, and, as can be seen, 
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almost all of the spectral energy is in the negative Doppler region. Then, for iJ = 270°, 

the wind, and, thus the wave direction maximum, is inward along the normal and the 

positive Doppler section is enhanced. 

As well, it is clear that the relative importance of the spectral peaks depends on 

the wind direction. For example, when iJ = 270°, the wind is directly inward along 

the ellipse normal and also has a substantial component along the direction from the 

·'patch" to the receiver. The backscatter at the receiver can therefore occur from an 

relatively energetic Bragg wave and produce a substantial spectral peak near zero 

Doppler. On the other hand, when iJ = oo, the wind is 90° to the ellipse normal and 

also makes a larger angle with the line from the patch to the receiver. Thus, the 

peak near zero Doppler produced by scatter at the receiver will not be as large as for 

{) = 270°. Discussion of the other second-order peaks could similarly follow . 

At this point, it might also be observed that the spectral peaks produced near 

zero Doppler in the C1zr cross section do not appear to be the same size as their 

counterparts in a2R· This difference will be accentuated for some wind directions. 

In general, the direction which the wind makes with the line joining the transmitter 

to the patch will not be same as it is relative to the direction from the patch to 

the receiver. This would manifest itself in the radar spectrum as peaks of differing 

heights. It should also be observed, however, that the coupling coefficient in the a 2T 

expression was not derived in exactly the same way as that for C12R (see Sections 

2.2.2.3 and 2.2.3.2 and related appendices), and, while the important features are 

very similar (eg. location of peaks and overall contribution to the cross section) slight 

differences are to be expected. 

4. Comparison of Cross Sections for Differing Operating Frequency 

Figure 3.9 displays the cross sections for three values of operating frequency. The 

bistatic angle, wind speed, and the wind direction relative to the scattering ellipse 

normal are fixed at 30°, 15 m/s and -90° respectively. It is clear that the first-order 
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ma.'Cima, while shifted in Doppler, are of comparable magnitudes. Again, this is due 

to the fact, that for moderate bistatic angles, the ocean waves producing these peaks 

are generally in the high frequency, saturated region of the ocean spectrum across the 

entire HF band ( 3-30 MHz). 

Obvious and important differences occur in the second-order region of the cross 

sections. At the high end of the HF band, as illustrated by the 25 MHz result, much 

of the ocean spectral energy is mapped to the near Bragg regions. HoweveL as the 

operating frequency drops so does the energy content of these regions if the other 

parameters are unchanged. Thus, for example, in the 5.75 MHz cross section, for the 

wind speed given. much of the ocean spectral energy is mapped to Doppler outside 

the J2 singularities. It may be noted that, in the extended Doppler regions, the 

cross section integrands are highly nonlinear in wavenumber and for this reason the 

lower HF frequencies are not as practical as the higher ones for ocean wave parameter 

estimation (see Gill et al., [2]) . 

While, in general, the cross section is smaller at the lower HF frequencies, there are 

clearly regions where this is not the case. Notably, near zero Doppler where, according 

to the delta function constraints discussed earlier, long energetic ocean waves are 

involved in the scatter, the cross sections for each frequency are of comparable values. 

Also. near the singularities examined in relation to Figure 3.5a and b, the cross 

sections are similarly affected. 

It has been noted that the actual spikes due to scatter near the receiver or trans

mitter require ocean behind these radar components. Where this is not true, there 

can still be a "levelling off" effect in the cross section as the scatter occurs in directions 

other than that required for backscatter (see discussion in Sections 3.6.4 and 3.6.5). 

Figure 3.10 provides a depiction of this for actual monostatic radar measurements of 

the ocean surface. Figure 3.10a is taken from Gill et al. [2} where the operational 
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frequency was 6.75 MHz, while 3.10b, for a frequency of 5.75 MHz, was gathered 

by Northern Radar Systems Limited at Cape Race, Newfoundland during a Novem

ber, 1995 ship trial experiment under contract from Defense Research Establishment, 

Ottawa. There is, therefore, evidence that even in monostatic operation with land 

based equipment, the urr and a 2R cross section components prevent the cross section 

tails from decreasing as rapidly as dictated by the patch scatter alone, especially in 

the regions of expected singularity at ±2wB. As with the simulations, the effects are 

more noticeable in that half of the Doppler cross sections favoured by the directional 

characteristics of the ocean wave spectrum. The increase in energy at zero Doppler 

appears evident in Figure 3.10a but not in 3.10b. Further experimentation dedicated 

to examining the effects theorized here are required in order that some conclusive 

statement may be made regarding the relative importance of the scatter at the trans

mitter or receiver under a variety of operating conditions. 

5. The Consideration of Large Bistatic Angles 

\Ve have seen from the theory, the radian Bragg frequency WB = J2gk0 cos <Po so that 

as a:>o - 90°, WB - 0. Furthermore, as r1>o - 90°, the Bragg wavelength. >.. 8 --+ x . 

From these observations it is not surprising that for large ¢0 (but < 90°) the en

tire cross section (and not simply the first-order component) should be substantially 

reduced when compared to the monostatic (¢0 = 0°) case or to the case of more mod

erate bistatic angles. Figure 3.11 depicts this for an operating frequency of 25 MHz, 

wind speed of 15 m/s, an ellipse normal of goo and a wind direction of oo (i.e. -90° to 

normal). Under these stipulations each bistatic angle corresponds to scatter from a 

different position on the scattering surface which is still assumed to be homogeneous. 

At <Po = 80°, in Figure 3.11, there is a small contribution from a2p as is evidenced 

by the peaks in the continuum adjacent to the Bragg regions. These have virtually 

disappeared when ¢>o = 85°. However, there is not a significant reduction in the arr 
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and a2R levels at ¢o = 80°, 85° as compared to those for ¢a = 30° (see Figure 3.7, 

for example) . It should be remembered that in these components there is a strong 

backscatter possible at either the transmitter or receiver, but even this is overpowered 

by the cos¢o factor when ¢0 approaches 90° (see the ¢0 = 89° curve). 

It may be easily verified that the a 2p, which is the largest portion of the second

order continuum adjacent to the first-order peaks, is dominated by a single scatter 

from second-order waves as discussed in Section 3.3. This is depicted in Figure 3.12~ 

where the combined electromagnetic and hydrodynamic terms of a2p (included in 

the .,fp coupling coefficient) are compared with the a 2p when only the hydrodynamic 

coupling coefficient, E/', of equation (3.18) is used. However, it is shown in Appendix 
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8.9, that ~ -+ 0 as ¢Jo -+ 90°. This, therefore, explains why even a2p becomes very 

small as the condition of forward scatter (i.e. large bistatic angle) is approached. 

3. 7 General Chapter Summary 

This chapter has been devoted to applying the theory developed in Chapter 2 to the 

ocean surface. After a brief discussion of the relevant ocean gravity wave character

istics, the pulsed radar field equations were adjusted to account for a time varying 
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random scattering surface. Without appealing to a particular beam form for the 

transmitting antenna, the received power spectral density and, subsequently, the cross 

sections of the ocean per unit surface area were developed to second order. By virtue 

of the field equations, the total cross section contains four components consisting of: 

( 1) a first-order portion arising from a single scatter from first-order surface waves; ( 2) 

a second-order component which itself consisted of a single scatter from second-order 

surface features and two first-order scatters; (3) a second-order term due to a scatter 

near the transmitting antenna followed by another at a remote patch of ocean; and 

( -1} a final second-order expression as a consequence of a scatter at a remote patch 

followed by another near the receiving antenna. Of course these components. while 

being mathematically separate entities, can be obtained only as a combined sum at 

the receiving antenna. 

Finally, the interesting features of the bistatic cross section were explored. A 

variety of parameters impinging on the nature of the cross section were examined. 

These include operating frequency, wind speed and direction, and the bistatic angle. 

While many combinations of these parameters are possible, this chapter sought to 

delineate a representative sample of the effects which their values have upon the cross 

section. Also, comparisons verifying that the bistatic cross sections here essentially 

reduce, with the appropriate geometry, to their monostatic counterparts, where the 

latter exist, were carried out. A cursory comparison with real (monostatic) data (see 

Figure 3.10) indicates that the major spectral properties suggested by the analysis 

manifest themselves in measured radar spectra. Also, from [8) it may be noted that 

the continuum beyond the Bragg peaks in the monostatic case appears to be well 

described by the second-order theory. Consequently, third and higher order effects 

were not addressed here. 

In the following chapter, an attempt is made to quantify the effect which ambient 

noise has upon the cross section attributes discussed previously. 
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Chapter 4 

A Model for the Signal to Noise 
Ratio for Scattering from the 
Ocean Surface Assuming a Pulsed 
Radar 

4.1 Introduction 

Using the basic theory in Chapter 2, the first- and second-order cross sections of 

the ocean surface were derived and illustrated in Chapter 3. However, to this point 

in the analysis, no indication of the actual received power due to scatter from a 

remote surface patch has been given. Based on the radar range equation (3.65), 

it is clear that this quantity will depend upon the distances of the patch from the 

radar components, the frequency (or wavelength) of transmission, the gains of the 

antennas, the transmitted power, the attenuation functions and the scattering cross 

section. Still, even if these quantities are known, there is no assurance that all of the 

features described in the previous chapter will always be visible in the radar power 

spectrum. One of the major reasons for this is the fact that any received signal is 

contaminated, to some extent, by noise. 

The purpose of this chapter is to present a suitable model for the ocean clutter 

signal to noise ratio ((SNR)c) for a pulsed radar. By "ocean clutter, is meant the 

HF radiation scattered from the sea surface. This will involve characterizing first 
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the noise signal and, subsequently, its spectral density as observed in a pulsed radar 

system. The analysis proceeds on the assumption of an ideal, externally noise limited, 

system. The aliasing due to noise undersampling will flow naturally from the analysis . 

In the body of this chapter, the noise spectral density is first calculated on the basis 

of a finite number of pulses and the noise is assumed to be statistically stationary. 

The analysis is then extended to an infinite number of pulses. An alternative analysis 

for the latter, which may be used to verify the initial result, is shov.m in Appendix 

C.l. Secondly, a non-stationary noise model for both finite and infinite numbers of 

pulses is considered. 

In addition to a noise spectral density, it is necessary to derive the proper analo

gous form of the clutter power spectral density received from the ocean surface. The 

ratio of the two spectral densities so determined will then constitute a useful SNR 

model for pulsed HF radar interrogation of an ocean environment. The noise spectral 

density will be shown to be a constant for the characterization considered and. rather 

than explicitly calculating the SNR at every Doppler frequency, it is more convenient 

to graphically illustrate the simultaneous noise and clutter power spectral densities. 

Finally, to reflect what generally occurs in practice, a time domain representation 

of the combined clutter and noise is considered. The standard procedure of Fourier 

transforming this result to obtain an estimate of the total Doppler power spectral 

density due to scatter from the ocean, in the presence of external noise, is then 

conducted. The details of this are outlined in Appendix C.2 with illustrations and 

further discussions occurring in Section 4.5.3. 

4.2 Characterization of the Noise Voltage and 
Spectral Density- Stationary Noise 

In the HF band, the external noise power may arise from a combination of atmo-

spheric, galactic and man-made sources [86]. It shall be assumed, as in [86], that the 
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noise is a stationary Gaussian white process and is understood to have zero mean. 

From Pierson's model [61] for a stationary Gaussian process in one variable, the 

ambient noise voltage, na(t) , may be cast, using the complex exponential, as 

where tis time, w' is radian frequency(= 27r/'), SN(w') is the power spectral density 

of the noise, E(w') is the random phase uniformly distributed on the interval 0 to 

21T'. and h[ · J is the Heaviside function introduced to account for the fact that any 

receiving system will have a limited noise bandwidth, B. The integral limits may be 

understood to be over the entire set of real numbers, but only -1 < w' < 1 actually 

contribute to a non-zero integrand. 

4. 2.1 The Noise Power Spectral Density for a Finite Pulse 
Train 

In this section, a finite pulse train is considered. Initially, we construct a series of 

(2q + 1) pulses by gating an infinite sequence of pulses as illustrated in Figure 4.1. 

With the assumptions on the nature of the noise as given in equation (4.1), this 

truncated version may be characterized as 
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Figure 4.1: A finite pulse train containing 2q + 1 pulses. The pulse width is ro and 
the pulse repetition period is TL. 
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n(t)) - [h (t+qTL + ~)- h (t- qTL- ~)] 

· m~oo [h (t- mTL + ~) - h (t- mTL- ~)] 

· L [h (w' + ~)- h (w'- ~)] ei"''teit(w') SN(w')~ . (4.2) 

From here, an autocorrelation of n(t) is sought so that, on Fourier transforming the 

result. a power spectral density may be obtained. The randomness in ( 4.2) appears 

only in the phase exponential, and given that the ensemble average, 

the autocorrelation, RN1(t 1, t2), for a finite number of pulses is given by 

RN1 (tl,t2) = < n(tdn*(t2) >= [h (tl +qTL + ~)- h (tl- qTL- ~)] 

[ h ( t2 + qTL + ~) - h ( t2 - qTL - ~)] 

m~oonf;oo [h (tl- mTL + ~)- h (tl- mTL- ~)] 
[h (t2- nTt + ~) - h (t2- nTL- ~)] 

I ii dw' 2 eJw'(tt-tl)SN(w')-. 
-f 27r 

(4.3) 

Putting r = t1 - t2 and t2 = t and Fourier transforming with respect toT gives, after 

some algebra, the noise power spectral density expression, 'PN1(w, t), as 

= ( h ( t + qTL + ~) - h ( t - qTL - ~)] 

· nf:oo [h (t- nTL + ~) - h (t- nTL- ~)] 
B q 

· /_: L Loo [h (r + t - mTL + To) - h (r + t - mTL - To)] 
l m=-q 00 2 2 

· ei(w'-w)T SN(w')dr ~ . (4.4) 

Here, w is the transform variable and is, physically, the radian Doppler noise frequency 

and is completely analogous to Wd as discussed in Section 3.4.1. A further change of 

variables using r 1 = T + t produces 
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'PN1(w,t)- [h(t+qTL+~)-h(t-qTL-~)] 

n~~ [h (t- nTL + ~) - h (t- nTL- ~)] 

· j_~ t {i: [h (r1- mTL + ~) 
2 m=-q 

-h ( Tt - mTc. - ~)] ei<w'-w)Ttdrt} e-j(.u'-.u)t SN(w') ~ . ( 4.5) 

The r 1 integral in equation ( 4.5) may be easily shown to evaluate to 

(4.6) 

q 

Now, L eJmTL(w'-w) is a geometric progression whose first term is e-iqTr.(w'-w), whose 
rn=-q 

constant ratio is eiTd.u' -w l, and which contains ( 2q + 1} terms. This summation over 

m may therefore be reduced to 

sin [ (w' -w)(iq+l)T,] 

sin [<w'-;)r,] 

Applying (4.6) and (4.7) to equation (4.5), the power spectral density is 

P N 1 ( w, t) = [ h ( t + qTL + ~) - h ( t - qTL - ~)] 

• n;~~ [h (t- nTL + ~) - h (t- nTL- ~)] 

·To{: SN(w')e-i("-~'-w)t Sa [(w'- w) ~] 
2 

. sin [<w'-w)(~q+l)Tl. J dw' 

sin [<w'-;)T,] 27r . 

(4.7) 

(4.8) 

Equation (4.8) is, formally, the Doppler noise power spectral density when a finite 

number (i.e. 2q + 1) of pulses is sampled. It is clearly time dependent. This time 

dependency will now be considered in two ways: (1) the pulses are sampled at their 

centres and (2) the pulses are sampled in the same places relative to their leading (or 
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lagging) edges but not necessarily at the pulse centres. 

1. Sampling at the Pulse Centre 

If the sampling time occurs in the centre of a pulse at t = pTL. say, where pis an 

integer and IPI :5 q (see Figure 4.1), the first Heaviside expression reduces to unity. 

Furthermore, it may be noted that since ~ < TL, 

This immediately implies 

When sampling occurs at the pulse centre, equation (4.8) thus becomes 

'PN1 (w,pTL) = To j_~ SN(w')e-i!..I-~)PTL Sa [<w'- w) ~] 
. sin [<w'-w)(;q+l)Tz.] dJ.u' 

sin [<w'-;)Tc.] 27r . 

(4.10) 

(4.11) 

27r 
If matched filter conditions (eg. Barton, [79]) are assumed to exist, B = -. Then. 

To 
. (w'- w)ro 

by defimng a = and assuming SN(w') to be flat (i.e. white noise), it is 
2 

easy to show that 

2 .. 2 sin (atlla] 
PN1 (w,pTL)"' ,.SN(w') f cos [(:)a] Sa[a] sin f~Jdo (4.12) 

where d = ;: is, by definition, the duty cycle of the radar. The fact that B >> w 

(i.e. the radar receiver bandwidth is very much greater than the Doppler bandwidth 

of the echo from the ocean) has been used to write the integral in this form. It 

may be verified numerically that (4.12) is essentially independent of p even for a 

small number of pulses. It will be seen in Section 4.2.2 that as the number of pulses 

becomes unbounded (i.e. q ~ oo), no explicit Jrdependence remains. The chief 

determining factor on the overall multiplier on the ambient noise spectral density, 
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SN(w'), is the duty cycle, d. Figure 4.2 gives one example of this for q = 10, that 

is a pulse train consisting of 21 pulses. The similarity with the SN(w') multiplier for 

q - oo is depicted in Figure 4.4 of Section 4.2.2. 

0.00 L....---~--~ __ _...._ __ __._ __ ____. 

0.00 20 40 60 80 100 

Duty Cycle, d (%) 

Figure 4.2: The multiplier on the ambient noise power spectral density, SN(w'), as a 
function of duty cycle, d, when a sampling of 21 pulses is made. 
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2. Sampling the Pulse Off-centre 

Suppose in Figure 4.1, the pulses are sampled at a time, t, given by 

-To To 
t = pTL + x where -

2
- < x < 2 . ( 4.13) 

That is, the points of sampling are displaced by lxl from the pulse centres. Equation 

( 4.8), on including the subscript "oc" for "off-centre", then takes the form 

= [h ( (p + q) T L + x + ~) - h ( (p - q) T L + X - ~)] 

n~oo [h ( (p- n)TL +X+ ~) - h ( (p- n)TL + £- ~)] 

· r0 j_~ S N(w')e -!(..1-w)(pTL +•l Sa [ (w' - w) ~] 
. sin [<""'-w><p+LlTr.] cb..v' 

· [(w'-..,)Tr.] 21r sm 2 

To 
Now. 

2 
< TL and. in general, for a pulse radar TL ~ lxl so that 

( To) ( To) { 1, p = n h (p- n)TL + x + 2 - h (p- n)TL + x- 2 = 0, otherwise. 

(4. l4) 

(4.15} 

Therefore, in equation (4.14), the summation may be removed since for a given p only 
To 

one n gives a non-zero sum. Also, !PI :S q and lxl < 2 so that 

h((p+q)TL+x+ ~) -h((p-q)TL+X- ~) = 1. (4.16) 

Again, letting o = (w' -
2 

w)To while noting B >> w, equation (4.14) may be written 

as 

2 , i [ 2p 2x) ] sin [ ~o] 
PN,oc(w,pTL + x) = -SN(W) r cos (-d +- a Sa[a] . [ ] do. (4.17) 

1r lo To sm 2. 
d 

When x = 0, i.e. when sampling occurs in the pulse centres, equation (4.17) obviously 

reduces to ( 4.12). Before further discussion on these Doppler noise power spectral 

densities, the case of a large number of pulses, typical of HF radar operation, is 

considered. In fact, it shall be considered that the number of pulses is unbounded. 

This proves useful in facilitating the analysis and leads to simple, valid results. 
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4.2.2 The Noise Power Spectral Density Assuming Infinitely 
Many Pulses 

Here, an expression for the power spectral density, PN(w, t), given that the number 

of pulses is unbounded, is sought. To this end. we let the (2q + 1) pulses of equation 

( 4.8) be represented by 1\;f and seek a simplification of 

'PN(w. t) = .\}i~:x: [h (t + ( /v[; l) TL + ~) - h (t- ( /v[; l) TL- ~)] 

n~oo [h (t- nTL + ~) - h (t- nTL- ~)] 
B 

. To r: SN(w')e-j(w'-w)t Sa [(w' - w) To] J_l 2 

. sin [ (w'-wr·ITc.] cJw' 

sin [ !w' -; lTc. ] 21r · 
(4.18) 

We note. initially, that 

[ ( ( !vf - 1 ) To) ( ( !vf - 1 ) To ) ] .\~i~QQ h t + 2 TL + 2 - h t - 2 TL - 2 = 1 . (4.19) 

Next. it is appropriate to consider 

(4.20) 

It may be argued that the maximum contribution from this factor in the integrand 

of (4.18), for large M, will occur as 

. [(w' - w)TL] 0 s1n 
2 

---+ ; 

(w'- w)TL 
i.e. when 

2 
- m1r where m is an integer. As !vi - oo, the numerator in 

( 4.20) oscillates rapidly, but the denominator varies slowly in the neighbourhood of 

m1r. With this in view, we define 

x1 = (w'- w)%-
and 

p. = m1r- x1 => x1 = -p. + m1r. 
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Thus, as x 1 --+ m1r, J.L--+ 0 and, for the region of major contribution, (4.20) may be 

cast as 

li {sin [<'"''-";)MTL]} ...... li lim 00 {sin [Atl(J.L- m1r)}} 
Al~oo sin[<w'-;)TL] -"~M-oom~oo sin[J.L-m7r] 

(4.21) 

Here, the summation accounts for the fact that over the w' integral in ( 4.18) there 

is a major contribution from the factor under consideration each time x 1 approaches 

an integer multiple of 1r. It might be noted that the integral limits in (4.18) may be 

extended from -oo to oo by introducing a Heaviside function as is done in equation 

( 4.24) below. Now, by virtue of its definition, All is odd so that 

mAt/ = { odd i~teger, m odd, 
even mteger, m even . 

The right hand side of (4.21) may therefore be written as 

L: 1m 1m -----'.-......;....---:-.....;.___,;,. 

00 
1. t• {At/ sin( At/ J.L) cos( m7r) } 

m=-oo M-oo ~J-o At/ sm J.L cos(m1r) 

Arguing J.L in the denominator to be small, we have 

00 

1. 1. {Msin(AtfJ.t)cos(m7r)} 
1m 1m ::::::: m~oo M-oo ~J-0 Af sin J.L cos(m1r) 

From Lathi [77], Chapter 1, we have the identity 

f:, lim {All sin(N/J.L)} 
m= _

00 
M-oo l\1[ J.L 

00 

L lim At/Sa [At/ J.t)] . 
M-CXI m:=-oo 

lim At/Sa [M p.)] = 1r6(p.) 
Jl,f-oo 

(4.22) 

where 6(·) is the Dirac delta function. Using this identity, and the definitions of J.L 

and x1, to a good approximation, ( 4.22) becomes 

f: lim lim {At! sin(M J.t) cos(m1r)} = 7r f: o(m1r _ xt) 
m:=-oo M-oo 1'-0 Nf sin p.cos(m7r) _

00 

-oo 

- 1r~6[(w'-w)~L -m1r] 

-
2

7r f: 6 (w'- w- m
21r) . (4.23) 

TL -oo TL 
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The final form in (4.23) arises from the identity 

1 
o(ax) = ~6(x) . 

From (4.19) and (4.23), equation (4.18) may be written as 

or 

( 4.24) 

In the last sum, -n has been changed to +n, which is acceptable since n varies 

across the entire set of integers. Equation ( 4.24) represents the general form of a 

time dependent Doppler noise power spectral density for a pulsed radar assuming 

an external noise which is a stationary zero-mean Gaussian process. The number of 

pulses sampled is infinite. In Appendix C, equation ( 4.24) is derived in an alternate 

fashion, starting with infinitely many pulses rather than extending the finite case. 

The result is recorded in equation (C.l5) and is seen to be identical to that above. 

The time dependency will again be considered in two ways: ( 1) each pulse is 

sampled at its centre and (2) each pulse is sampled in the same place relative to the 

leading (or lagging) edge but not necessarily at the pulse centre. 
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1. Sampling at the Pulse Centre 

To impose sampling at the pulse centres, it is again required that t = pTL where 

p belongs to the integers. Of course, m is also an integer so that the exponential in 

equation (4.24) becomes 
·(m2"')t e -J "Ti: = e-121rmp = 1 . (4.25) 

It has been assumed at the outset that the ambient noise spectrum is flat (i .e. white 

noise) so that S N ( w + mT~rr) may be removed from the summations and designated as 

SN(w') . The noise spectral density for the pulsed radar then becomes, from equations 

(-1.24) and (4.25), 

it being understood that t = pTL. Next, it may be noted that since To < TL 
2 

which immediately implies 

Equation (4.26) further reduces to 

· Sa [mrr ;:] . 

p= -n 
otherwise, 

The remaining Heaviside functions ensure that for non-zero results, 

BTL BTL 
--- -wTL < m < -- -wTL 4rr - - 4rr 

(4.27) 

(4.28) 

where w is the Doppler radian frequency of the noise, which is again completely 

analogous to the wd of the previous chapter. In a typical pulse radar, the receiver 
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bandwidth, B, is on the order of kilohertz (or krad/s in terms of radian frequency) 

while w is on the order of rad/s (or Doppler frequency is on the order of hertz). 

Therefore, to a very good approximation, (4.28) becomes 

BTL BTL ---<m<--
47r - - 47r ' 

{4.29) 

and the asymmetry in the summation of (4.27) is removed. Furthermore, if match 

filter condition~ [79] are imposed <t.S before, B = 2
7r. The limits on m in ( -1.29) are 

ro 
then given by 

TL TL --<m< -. 
2To - - 2ro 

( 4.30) 

\Vith these stipulations, for sampling at the pulse centres, the Doppler noise power 

spectral density in ( 4.27) simplifies to 

G(1J) 
'PN(w,pTL) = dSN(w') L Sa[mtrd] 

m=L( --Ja) 
(4 .31) 

where the radar duty cycle, d, has replaced;:. The quantity L (- 2~) is the smallest 

integer ~ -
2
1
d, and G (

2
1d) is the greatest integer ~ 

2
1
d. The argument pTL has 

been explicitly retained only to emphasize sampling at the pulse centre. Since SN(w') 

is assumed constant, 'PN(w ,pTL) is also constant for all w. Equation (4.31) illustrates 

the very important property that the aliasing appearing by virtue of the summation 

is "buffered" by the duty cycle multiplier. That is, a low duty cycle, d, will increase 

aliasing as it increases the range of m, but at the same time this small d also multiplies 

the sum to mitigate the aliasing effect. Conversely, a higher duty cycle will reduce 

the aliasing since there will be fewer m's in the sum, but this reduction is subject 

to multiplication by a larger external factor. It may be verified numerically that for 

typical duty cycles in a pulse radar, 'PN(w, pTL) does not vary significantly from the 

ambient noise power spectral density, SN(w'). The result is illustrated in Figure 4.3. 
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Figure 4.3: The multiplier on the ambient noise power spectral density, SN(w'), for 
infinitely many pulses. 

When d > 0.5, there is, logically, only the m = 0 pulse in the summation of 

equation {4.31). For these cases, the total multiplier on SN(w') is simply d and 

the slope of the curve is unity. Finally, the effect of using only a few pulses is 

not significantly different from the case given here. To illustrate this fact, Figure 

4.4 combines the results of Figures 4.2 (for a finite number of pulses) and 4.3 (for 

infinitely many pulses). The discrepancy between the two results is always less than 

3 dB for all duty cycles. 
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Figure 4.4: The multiplier on the ambient noise power spectral density, SN(w1
), com

pared for a finite and infinite number of pulses. 

2. Sampling the Pulse Off-centre 

Suppose, next, that the pulses are sampled at a time given by equation (4.13). 

Equation (4.24), on using the subscript "oc" (for off-centre) as before, takes the form 

PNoc:(w, t) = To f: {[h (w + m2
1r +B)- h (w + m2

7r- B)] 
TL m=-oc TL 2 TL 2 

·Sa (m1r ;:] SN ( w + ~") e -i( ti' )(pT,+•I} 

· n=~oc[h((n+p)TL+x+ ~) -h((n+p)TL+X- ~)]. (4.32) 

Again, using the fact that ~ < TL and TL » lxl, 

H (p+n)TL + x + ~)- h ( (p+ n)TL +x- ~)] = { ~: 
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p= -n 
otherwise. 

(4.33) 



Therefore, 

Additionally, all that transpired in connection with L between equations (4.27) and 
m 

(-1.31) still holds for (4.32). The latter thus reduces to 

G{ .f.I) . ( rn2w(pTc +~I) 
PN,c (w. pTe. + x) = d SN(w') L Sa [m7rd]· e -J TL . ( 4.34) 

m=L{ -f;z) 

Since the sampling function in ( 4.34) is an even function of m, terms containing 

j sin(m21r(pTL +x)) as a factor will vanish over the summation. Because cos(27rmp) = 

1 and sin(27rmp) = 0, there remains for the power spectral density 

( 4.35) 

It may be observed that, given the limits on m and x as discussed previously, the 

argument in the cosine in equation ( 4.35) has the property 

. To To 121rmxl 1r Then. smce d = TL and lxl < 2, TL < 2, which means that 

(
27rmx) 0 <cos TL < 1, 

and the noise power spectral density for sampling off-centre is indeed positive as 

required. Equation (4.35) indicates that the maximum noise power spectral density 

occurs for sampling at the pulse centre and falls off according to the cosine function 

as the sampling point in time approaches the pulse edge. Finally, if lxl << ~, the 

expression in ( 4. 35) clearly reduces to that in equation ( 4.31) where sampling occurred 

at the pulse centre. 
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4.3 Non-stationary White Noise 

For the sake of completeness, it is appropriate to consider the Doppler noise power 

spectral density from the pulsed radar if the ambient noise is non-stationary, but is 

still a white Gaussian process. The analysis begins with a finite number of pulses. It 

will be seen that the Doppler noise power spectral density is, in fact, independent of 

the number of pulses for this particular specification of the noise regime- i.e. white. 

Gaussian, non-stationary noise. 

Supposing that the noise voltage, n(t), is non-stationary, the phase f appearing 

in equation ( 4.1) is a function not only of the radian frequency, w', but also of time. 

This latter fact may be accounted for, in the case of a pulse radar, by introducing 

the pulse number, m, in the argument of the phase. Thus, equation (4.2) for the 

stationary case may be altered to give for q pulses 

n ( t) = [ h ( t + qT L + ~) - h ( t - qTL - ~0 )] 

m~CQ [h (t- mTL + ~)- h (t- mTL- ~)] 
,..-----L, [h ( w' + ~) - h ( w'- ~)] ei~'teiE(~'.m) SN(w') ~ . (4.36) 

An autocorrelation of this noise voltage gives 

'RNn.(t1,t2) = < n(tt)n•(t2) >= [h (tl +qTL + ~)- h (t1- qTL- ~)] 

· [h(t2+qTL+ ~) -h(t2-qTL- ~)] 

f f [h (tl- mTL +To) -h (t1 - mTL- To)] 
m=-oo n=-CQ 2 2 

[h (t2- nTL + ~)- h (t2- nTL- ~)] 
/_~ d(~~t1-wit2) < d(lf(~,m)-€(wi,n)) > 

2 

(4.37) 
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Given that, for the random phase, the ensemble average may be specified as usual by 

< ei(£(w~.m)-£(w2,n)) >= m = n 
{ 

1, ~ = w2 = w', say 
( 4.38) 

0, otherwise 

equation ( 4.37) becomes 

'R.Nn.(tl , t2) = [h (tl +qTL + ~)- h (t1-qTL- ~)] 

· [h(t2+qTL+ ~) -h(t2-qTL- ~)] 

· m~oo[h(t1-mTL+ ~) -h(t1-mTL- ~)] 
· [ h (t2- mTL + ~) - h (t2 - mTL- ~)] 
· ~~ eiw'(tl-t'l) SN(w') cb.J

2 
. ( 4.39) 

--r 7r 

Putting, T = t 1 - t 2 and t2 = t so that t1 = T + t, equation (4.39) may be written in 

the form 

RN,..(T+t.t) = [h(T+t+qTL+ ~) -h(T+t-qTL- ~)] 

· [h (t + qTL + ~) - h (t- qTL- ~)] 

m~oo[h(T+t-mTL+ ~) -h(r+t-mTL- ~)] 

[h(t-mTL+ ~) -h(t-mTL- ~)] 

!: e!··hsN(w')dw'
2 

. {4.40) 
-2 7r 

Taking the Fourier transform of 'RNn. with respect to T, using w as the transform 

variable, yields 

F {'R.Nn.(T + t, t)} (w, t) - 'PNn.(w, t) 

- [ h ( t + qTL + ~) - h ( t - qTL - ~)] 

m~oo [h (t- mTL + ~)- h (t- mTL- ~)] 
B . L: I: [ h ( T + t + qTL + ~) - h ( T + t - qTL - ~)] 
'l 

· [ h ( T + t - mTL + ~) - h ( T + t - mTL - ~) 1 
· e}(w'-w)rSN(w') dw' dT. (4.41) 

27r 
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From the Heaviside functions in the integrand of (4.41), it becomes immediately 

apparent that their product is non-zero only in the range -q ~ m ~ q. This means 

that the summation index becomes finite, and defining r 1 = r + t, we have the time 

dependent power spectral density as 

P.v ... (w.t) = [h(t+qTL+~)-h(t-qTL-~)] 

· J.[h(t-mTL+ ~) -h(t-mTL- ~)] 
B . i: i: [ h (It - mTL + ~) - h ( Tt - mTL - ~)] 
l 

. ei<••l-<M)r,e-j( .. l-w)tSN(w') dw' drt . (4.-12) 
27r 

The r1 integral is identical to that in equation (4.5) and it therefore evaluates to 

roei<w'-w)mTc.sa [Cw'- w) ~] . 

Thus, the Doppler noise power spectral density becomes 

PN ... (w.t) = ro[h(t+qTL+ ~)-h(t-qTL- ~)] 

· mt.[h(t-mTL+ ~) -h(t-mTL- ~)] 
·li-Sa [(w'- w) To] ei<w'-w)mTc.e-j(w'-w)tSN(w')dw' . (4.43) 

_J! 2 21r 
l 

1. Sampling at the Pulse Centres 

Next, suppose that the sampling occurs at t = pTL where p is an integer. Clearly, 

[h((p+q)TL+ ~) -h((p-q)TL- ~)] { 
1. IPI ~ q 
0, otherwise 

and (4.44) 

[h ( (p- m)TL+ ~)- h ( (p- m)TL- ~)] - { ~: :the::nse. 
The last fact in (4.44) removes the phase terms in the integrand of (4.43). Therefore, 

for sampling at the pulse centres, the Doppler power spectral density for a non-

stationary white Gaussian noise reduces simply to 

1'N •• (w) = ;:. SN(w') J_~ Sa [ (w' - w) ~] W,' (4.45) 
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where the ambient noise spectral density, SN(w'), is removed from the integral since, 

by definition, it is constant across the entire bandwidth. An interesting feature of 

(4.45) is that PNn.(w) is independent of the number of pulses. Thus, for sampling 

timet= pTL, a finite or infinite number of pulses will have the same power spectral 

density when the process is white Gaussian but non-stationary. Suppose, next , that 

to aid in evaluating ( 4.45) we let 

I 

( 
I ) To ( 1 7f v.) ir 

0! = w - w - = w - w)- ~ -
2 B B 

( 4.46) 

by using the arguments similar to those surrounding equation ( 4.12). This gives 

2 .!! 

~ -SN(w1
) {

2 
Sa[a]da 

1r lo 
~ 0.873 SN(w') ( 4.47) 

so that the noise power spectral density is a constant for all radian Doppler frequen

cies. w. Again, the argument of SN( ·) has not been altered because of its constancy 

over bandwidth. 

2. Sampling Off-centre 

As was done for stationary noise, it is next assumed that the pulses may be sampled 

at times given by 

ro ro 
t = pTL + x where - "2 < x < 2 . (4.48) 

Since TL > r 0 and lxl < ~, the relationships in equation ( 4.44) are still valid. 

Consequently, equation (4.43) becomes, on using {4.48), 

(4.49) 

Using the change of variables as in (4.47), 

(4.50) 
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. To 
It may be noted that smce lxl < 2 and 0:::; a:::;~. 

(2ax) 0 < cos --:;::;;- :::; 1 • 

and the integral is everywhere positive. The result is analogous to that in equation 

( 4.35) where the outcome for sampling at the pulse centres is modified by the cosine 

factor when off-centre sampling is used. However, in ( 4.50) there is no dependence 

on the number of pulses. Figure 4.5 depicts this variation in the multiplier on SN(w') 

for the case of off-centre sampling of pulses of non-stationary noise. 
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Figure 4.5: The variation of the multiplier on the ambient non-stationary noise power 
spectral density as a function of distance from the pulse centre at which the sampling 
occurs. 
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4.4 A Form for the Ocean Clutter Power Spectral 
Density 

Implicit in the bistatic radar range equation (3.65) is the fact that the transmitter 

power Pt is the peak pulse power. This, by definition, is not the maximum instan

taneous power of a single sinusoid. Rather, it is the power averaged over the pulse 

length, r0 . For the simple pulsed sinusoid assumed here, this translated into the 

peak pulse power being one half the peak instantaneous power. The question to be 

addressed now is "What is the proper form of the Doppler power spectral density 

for the ocean clutter which is obtained for a particular patch of ocean by gating the 

received signal on and off?" This query has already been discussed for the Doppler 

noise power spectral density in Section 4.2 with the result for a large number of 

pulses being given by equations ( 4.31) or ( 4.38), depending on the sampling positions 

relative to the pulse centres. A similar analysis for the ocean clutter ensues. 

For the temporal periods, typically several minutes, used in examining HF sea 

echo, Barrick and Snider [75] have argued that the ocean surface wave field may be 

modelled as a stationary Gaussian process. This results in the echo signal being 

likewise approximately stationary and Gaussian for the same time frames. Certainly, 

in our deliberations of the previous chapter we have already imposed these conditions, 

as well as homogeneity. This means that with these assumptions the ocean clutter 

signal, ca(t), may be cast analogously to the noise voltage of equation (4.1). Thus, 

(4.51) 

Here, Be is the clutter bandwidth, W:: the radian frequency, E( ·) is the random phase 

and Sc( ·) is the peak power spectral density of the continuous clutter signal. Gating 

this signal, under the assumption of infinitely many pulses (in reality, a large number 
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of pulses) (4.51) may be modified to give 

(4.52) 

The form of the gated clutter, c(t), is obviously identical to that for the gated noise in 

equation (C.l) of AppendLx C. Therefore, the spectral density for c(t) may be written 

down immediately from that given for the noise in equation (C.l5). Using subscript 

c to indicate "clutter:• quantities, the Doppler power spectral density of the gated 

signal is 

Pc(W, t) 

(4.53) 

If, next, it is assumed that the sampling occurs at the pulse centres - i.e. t = pTL 

with p integer- equation (4.53) may be shown, as before, to reduce to 

BcTc -<>~Tc. 

Pc(w,pT) = ;o 4

,.2: Sc (w + m;L1T') Sa [m;LTo] . 
L -BcTc T 

m= 4.. -WJ c. 

(4.54) 

Typically, the Doppler clutter bandwidth is on the order of hertz while the pulse 

repetition period, TL, is in the microsecond range. This means that 

and since lwl ~ ~c , 

193 



as well. This means that the limits on the sum in equation (4.54) which trivially may 

be written as 

-BcTL BcTL T ----wTL<m<---w L 
411" - - 411" 

indicate that m = 0 is the only surviving term. Therefore, from equation ( 4.54), and 

using the fact that Pc( ·) is clearly independent of p, we may write 

( 4.55) 

Unlike the Doppler noise power spectral density, 'PN(w), there is no aliasing apparent 

in 'Pc(w). Of course, this is not surprising as adequate sampling of the clutter sig

nal was implicitly imposed by the assumptions on the summation indices following 

equation (4.54). That is, while the noise is a broadband signal and is folded into the 

narrow Doppler bandwidth, the ocean clutter is already narrowband and is therefore 

not affected in this way. The other important feature in equation (4.55) is the factor 

( ;: ) multiplying the peak spectral density. It is easily shown that this combination 

is. in fact, the average power spectral density. This means that, when considering the 

gated clutter signal, the average power, rather than the peak power, should be used 

in the radar range equation. 

This analysis in conjunction with Section 4.2 provides a basis for defining the 

ocean clutter signal to noise ratio for a pulse Doppler radar as 

(SNR) = 'Pc(w) 
c 'PN(w) · ( 4.56) 

It should be noted that Pc(w) may be identified with 'P(wd) of equation {3.65) (the 

radar range equation) as long as average transmitted power is used in place of peak 

power. 

The results of this and the preceding sections may now be used to examine the 

relative importance of the various portions of the HF cross sections of the ocean 

surface when the radar system is externally noise limited. 

194 



4.5 Calculation and Illustration of Typical Noise 
and Clutter Power Spectral Densities 

4.5.1 The Ambient Noise 

As already noted, when radio operation is carried out in the HF band, the external 

noise of significance falls into three categories: (1) atmospheric; {2) galactic and (3) 

man-made [86] . The first includes radiation from lightning discharges and emissions 

from atmospheric gases. Galactic noise is the term used to describe radiation from 

celestial radio sources, while man-made noise may originate from such things as elec-

trical machinery and power transmission lines. The relative importance of each type 

of noise depends on location, the frequency of operation, the time of day and even the 

season of the year. the Latter dependencies arising due to variable solar activity. While 

significant fluctuations may occur as these parameters vary, median noise values will 

suffice for illustrative purposes. 

In (86J, the external noise factor, fa, is defined as 

( 4.57) 

where 'Pn is the available noise power from an equivalent lossless antenna, k = 1.38 x 

w-23 J /K is Boltzmann's constant, T0 is the reference temperature which is taken as 

290 K and Bn is the noise power bandwidth of the receiving system. For a matched 

filter system, Bn may be taken as the reciprocal of the transmit pulse width, To. It is 

common to define an external noise figure, Fa, as 

Fa= 10logfa , ( 4.58) 

a median value of which may be designated as Fam· This is the quantity which is 

readily available in [86]. For a white noise process, as is assumed in Section 4.2, the 

power spectral density, SN(w'), in equation (4.31) is 

SN(w') = 2:~n . (4.59) 
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Therefore, from equations (4.57)-(4.59), 

, kTo .&m. 
SN(w) = -10 10 

27r 
(4.60) 

Then, equation (4.31) for the external Doppler noise power spectral density, PN(w) , 

becomes 
dkT. F. c(t.z) 

'PN(w) = -0 10(~) I: Sa(m1rd]. 
27r 

m=L( T,t) 
( 4.61) 

Here. the pTL argument has been dropped from the power spectral density as it 

does not enter the calculation for infinitely many pulses. It was discussed following 

equation ( 4.12) that this is also true for even a small number of pulses. 

Before carrying out an actual calculation of (4.61), the relevant operating param

eters of a typical HF radar system will be considered so that representative clutter 

spectral densities may be determined also. 

4.5.2 Ocean Clutter Power Spectral Density 

If it is assumed that observations of the pulsed HF radiation scatter from the ocean 

surface are made via a narrow beam receiving system, the radar range equation (3.65) 

may be written as 

A5 (;o) Pt Gt GriF(pOl,wo)F(po2. wo)l 2 Au(wd) 
'Pc(wd) = L (4 )3 2 2 

7r P01Po2 
( 4.62) 

It should be remarked that ( ;: Pt) is the average transmitted power as dictated by 

equation ( 4. 55) . P c ( wd) is the same as 'P c( w) and is so subscripted as to emphasize that 

it is a Doppler clutter power spectral density. The differentials of equation (3.65) have 

been removed under the assumption that the receiver beamwidth is narrow enough 

to ensure constancy of the various parameters over the area (A) being interrogated. 

For the purpose of illustration, the following radar parameters are considered 

initially: 

• operating frequency: Ia = 25 MHz (i.e. Ao = 12 m) 
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• pulse width: To = 13.3 J.I.S (chosen so that c;,o as used in simulation of the 

first-order cross section = 2000 m) 

• pulse repetition frequency: prf = 3kHz => TL = 333 J.1.S 

• peak power: Pt = 16 kW 

• transmitter gain: Gt = 2 dBi (i.e. 2 dB above isotropic) --+ Gt ~ 1.585 

• receive array: 24 element linear array with element spacing, ds, of~. operating 

in broadside mode 

• receive array beamwidth: from Collin (63), the half-power beamwidth of an 

( N + 1) element broadside array is 

Bw 2.65..\o d ( o) (..\a . ) 1 = ( N + 1 )rrds = 0.07029 ra 4.03 2 spacmg 

• receive array gain: assuming 100% efficiency, (63) gives 

Gr = 5.48(N + 1)ds = 65.76 
..\o 

CToPo2BW.1. cr0 • patch area: A = 
2 

:z where T and Po2 BW! are the radial and az-

imuthal extents of the patch, respectively 

• normalized patch cross section: a(wd} as calculated in Chapter 3 

• rough spherical earth attenuation functions: F( ·) 's are calculated from a FOR

TRAN routine devised by Dawe [72]. In monostatic operation, the angle of the 

wind with respect to the radar beam is an important parameter. In bistatic 

operation the wind directions with respect to the transmit beam and the re

ceive beam are used in determining F(p01 ) and F(Poo), respectively. The surface 

roughness is a function of wind speed. Antenna heights are chosen to be zero. 

The relative permittivity of seawater is taken as 80, and an average conductivity 

of 4U/m is used. 
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The assumption of the system being externally noise limited is still in view and, 

consequently, the noise analysis in the receiving system as a whole will not be an 

issue here. Extension to that case is a well understood process and is given in detail 

by Collin [63] . 

4.5.3 Illustrations and Discussion 

The cross sections depicted in Figures 3.6a, 3.8 and 3.9 will be used for a(u.~d) in 

equation (4.62). It should be recalled that the bistatic cross sections in those figures 

assumed a bistatic angle of 30°. For calculation purposes here, we set po1 = Po'l = 50 

km and the distance between receiver and transmitter as 100 km which indeed ensures 

that ifJo = 30°. 

For the 4% duty cycle, ( ;: ), suggested above, the summation index in the noise 

equation (4.61) ranges from -12 to 12. From [86}, the noise figure Fam may be de

termined as 22 dB, 36 dB and 42 dB, for operating frequencies of 25 :VIHz, 10 :VIHz 

and 5.75 MHz, respectively. It may be noted that the "quiet receiving site" category 

was used for the man-made noise. Also, in the case of 25 MHz, the man-made and 

atmospheric noise is negligible, while galactic contributions are relevant for all three 

frequencies. The atmospheric noise figure was chosen halfway between that which is 

exceeded 0.5% and 99.5% of the time. From Figure 4.3, the multiplier on SN(w') of 

equation ( 4.60) is not significantly different from unity for a 4% duty cycle. There

fore , in the decibel sense, the noise power spectral density of equation ( 4.61), to an 

extremely good approximation, may be given on using frequency, f, in hertz rather 

than w in radians/second as 

£am. 
('PN(f))da = 10log'PN(J) = lOlogkTo + 10log 10 10 = -204dB + Fam (4.63) 

in the simulations here. 

Figure 4.6 shows that the bistatic and monostatic results are very similar. In 

conjunction with Figure 4.7, it is clear that the observation of various spectral singu-
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Figure 4.6: The relationship of the noise floor to the clutter power spectral density 
for the cross sections of Figure 3.6a. The radar range is 50 km. 

larities is dependent on the directional nature of the wind-driven sea. In fact, at 25 

MHz, if there is a 15 dB increase in the noise floor from sources not included here, at 

a range of 50 km the increase in the spectral tails due to scatter at the transmitter 

or receiver will not be visible. However, the peaks near zero Doppler at 25 MHz may 

still exceed the noise floor and may be visible provided there is no de contribution 

from other sources. 

Figure 4.8 clearly shows the improvement in SNR as the operating frequency is 
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lowered. This is largely due to the fact that increasing noise levels are mitigated by a 

large increase in the spherical earth attenuation functions F( ·) appearing in the radar 

range equation. In relation to the overall spectrum, the peaks near zero Doppler for 

10 :\11Hz and 5.75 MHz contain very little power and may be easily masked by system 

effects. For example, even small amounts of spectral smearing due to finite system 

timing could obliterate this phenomenon. However, at these lower frequencies the 

increaEe in the spectral tails due to scatter near the transmitting and receiving sites 

is well above the noise floor. 

It must be realized that the results presented in Figures 4.6-4.8 are for an ideal

ized system. Such factors as ground losses and receiver noise, for example, are not 

included. Furthermore, and perhaps more importantly, the results all find their basis 

in the ensemble averaging of the received electric field . By definition, this presumes 

that infinitely many, statistically similar oceans are available for interrogation. Thus. 

the results discussed to this point represent an idealized scenario and no adjustment 

of system parameters may be effected to improve the (SNR)c beyond that depicted. 

A technique better reflecting reality ensues. 

In practice, the power spectral density is often estimated using the squared magni

tude of the Fourier transform of a finite time series. Pierson's model for a stationary 

Gaussian time process provides a means of simulating such a time series from the 

ideal power spectral densities obtained by ensemble averaging. From equation ( 4.1) , 

it is seen that this model accounts for a random phase at each frequency point of the 

spectral density. Appendix C.2 contains an outline of the steps which may be used 

to model a practical estimate of the power spectral density with this "magnitude

squared" of the Fourier transformed time series approach. A typical result is found 

in Figure 4.9. The ideal power spectral density used as input to Pierson's time model 

was calculated in exactly the same fashion as that for 5.75 MHz in Figure 4.8c. To 

simulate an approximation of the directional features of Figure 3.10b, a wind direction 
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of 60° to the radar look direction was used. The result of this approximation shows 

that the apparent (SNR)c for the largest Bragg peak is approximately 70 dB. In the 

real data of Figure 3.10b, this value is greater than 60 dB. Given the fact that the 

system parameters and exact wind regime for the real data are unknown, this dis

crepancy between modelled and real data is quite reasonable. Furthermore, the time 

series lengths in each case are not the same. To indicate the effect of this parameter, 

Figure 4.9a-b presents the results for 256-pt and 512-pt transforms. Figure 4.9c shows 

the effect of taking a long time series. Cursory comparison of the latter with Figure 

3.10b, which similarly uses a long time series, again serves to substantiate the model. 

Also. it must be remembered that median external noise values were employed in the 

simulations, and from [86] this could easily account for a 10 dB variation between 

measured and modelled spectra. Additionally, the time of day and season of the year 

are factors which according to [86] may significantly affect the Fa of equation ( 4.58). 

An example of an average value of Fa during summertime afternoon measurements 

at Cape Race, Newfoundland for a narrow range of operating frequencies is shown in 

Figure 4.10. At 5.75 MHz, a nominal value of Fa is just over 30 dB. The spectrum 

in Figure 3.10b. which was measured from a radar installation at Cape Race was 

obtained in late fall and could easily be subject to a different noise regime, again 

according to (86]. At the 50 km range used in Figures 3.10b and 4.9, the apparent 

noise floor is raised by the side lobes of the Blackman window (see Harris (831) which 

was used in smoothing the results. Of course, as range increases, the spherical earth 

attenuation functions, F( ·), used in the radar range equation decrease significantly, 

[72]. As a result, in the 5-6 MHz operating frequency interval, even the first-order 

clutter power will not be significantly above the noise floor when the range exceeds 

about 300 km, [32]. 

As a final note, it is obvious that the manifestation of the spectral peaks discussed 

throughout Section 3.6.6 will depend on the ocean conditions, the ambient noise 
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Figure 4.10: A plot of typical external noise figures for a small range in the lower HF 
band as measured at Cape Race, NF in July, 1998. 

regime, the range at which the measurements are made, and even the signal processing 

schemes implemented. The simulations discussed here will provide a convenient model 

in setting the parameters of future experimentation for the purpose of examining the 

details of the theory. 

4.6 General Chapter Summary 

This chapter has been devoted to developing an appropriate noise model for pulsed 

HF radar measurements in an ocean environment. The condition of external noise 

limitation has been imposed, with no attempt being made to address any system 

noise features. 

Initially, a finite number of radar pulses was considered. Later, extending this to 

infinitely many pulses, it was shown that the difference between the two cases was not 

significant. The noise model addressed the feature of the aliasing of broad band noise 

into the much narrower band Doppler echo from the ocean. Results were developed 
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for both stationary and non-stationary white Gaussian noise. 

Consideration was also given to the effect of off-centre sampling of the pulses. It 

was shown that the effect on the noise spectral density was to multiply the on-centre 

result by a cosine factor whose argument was proportional to the time difference from 

the pulse centre. 

Subsequently, it was shown that , for the pulse radar ocean clutter models devel

oped in Chapter 3, the average, rather than peak, transmit power should be utilized 

when applying the results in the radar range equation. Then, using typical values for 

a pulsed HF radar system, plots of clutter and noise spectra were simulated. Initially, 

the results from ensemble averaging were illustrated. Then, using a time model for 

the sea echo and noise, the customary procedure of implementing the magnitude

squared of a fast Fourier transform of a data time series as an estimate of the power 

density spectrum was carried out. The results were seen to compare favourably with 

available monostatic field data. 
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Chapter 5 

Conclusions 

5.1 General Synopsis and Significant Results 

The general aim of deriving a suitable model for the HF bistatic cross section of a 

good-conducting, random, time varying surface, with particular application to the 

ocean, has been accomplished. Earlier analyses by Walsh, especially [5] and [8] , pro

vided a general operator form for the various orders of scatter under the assumption 

of a vertical dipole source. These equations initially appear as tw<rdimensional spa

tial convolutions in the inverse Fourier transform (spatial) domain. The analysis 

implicitly assumes small height and small slope for the surface, the justification and 

limitations of which for ocean applications appear in Section 2.2. The small slope 

stipulation is shown from Phillips [64] to be always valid at HF for the gravity wave 

ocean spectrum. The legitimacy of the small height analysis is seen to be dependent 

on the operating frequency and ocean wave regime with the relevant condition being 

easily met for typical ocean conditions when operation occurs in the lower HF band. 

This, in fact, has been extensively verified experimentally by others (eg., Barrick (26]). 

The basic convolutions are presented in integral form to first and second order in scat

ter. After Rice (11], the surface is assumed to be representable as a Fourier series, the 

coefficients of whose terms are zer<rmean Gaussian random variables. The source is 

initially assumed to be an elementary vertical dipole with an arbitrary current distri

bution. Unlike previous investigations, the reception point for all field components is 
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kept general - i.e. the fields are assumed to be received bistatically. For scatter from 

the non-time-varying surface, the field equations are simplified primarily via station

ary phase techniques. In some cases of the second-order equations, these techniques 

required modification in order that they might produce tractable, yet meaningful, 

outcomes. The overall results are ( 1) a first-order field in which a single scatter oc

curs, in general, at a point remote from the transmitter and receiver before reception 

and (2) a second-order field arising from (a) two, essentially co-located. scatters at 

a remote point, (b) one scatter at the transmitter followed by another at a remote 

point before reception and (c) one scatter at a distance from both the transmitter 

and receiver followed by a second at the receiver immediately before reception. In 

all cases, the locus of the remote scattering region for a broad beam transmitter is 

an ellipse. any part of which may be interrogated by a narrow beam receiver if so 

desired. That this is the case is obvious since the transmit and receive positions are 

foci of an ellipse determined by the fixed sum of the distances from the transmitter 

and receiver to the remote scattering point. If the receiver is also broad beam. there 

is no way of distinguishing between the scatter from one portion of the ellipse and 

that from another as all of the scattered energy therefrom is received simultaneously. 

There is, in fact, another stationary point arising from the second-order analysis 

which shows the possibility of energy from two points, neither of which is on the 

scattering ellipse, being received along with the other components. However, it is 

argued, based on the dependence of the second-order scatter on the bistatic angle, 

that this component will be relatively weak. Srivastava [54] shows that, even for 

rnonostatic operation, this is the case. Furthermore, if narrow beam transmission 

and reception are used, this component is not sensed. 

With the final aim being the development of a model of the HF bistatic cross 

section of the ocean surface for pulsed Doppler radar, a pulsed sinusoidal current dis

tribution is assumed for the vertical dipole following the preliminary analysis. Inverse 
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Fourier transformation and time convolution are then used to take the frequency

dependent fields of the basic analysis to the time domain appropriate for the task 

at hand. In this sense, the time parameter in the field equations dictates that the 

fields for a given time are being received from a particular scattering ellipse. The 

bistatic results are shown to contain the essential characteristics of their monostatic 

counterparts (where such exist) as a special case- i.e. when the bistatic angle. ¢ 0 , is 

set to 0°. 

In order to apply the field equation results of Chapter 2 to the ocean, it is necessary 

to allow the scattering surface to become time varying. This is accomplished in 

Chapter 3 by specifying an eJwt time dependency for the surface components , thus 

allowing the Fourier surface coefficients to become time varying while maintaining 

their usual properties as zero-mean Gaussian random variables. The frequencies and 

wavenumbers of the first-order surface components are taken to be related through 

the linear deep-water dispersion relationship. Based on Hasselmann's theory [59) 

of energy transfer between constituents of the gravity wave spectrum, the Fourier 

coefficients of the second-order surface features are written in terms of products of 

the first-order coefficients and a so-called hydrodynamic coupling coefficient [8]. In this 

way, it is seen that second-order scattering actually arises from (1) single scatters from 

second-order surface elements and (2) a double scattering from first-order features. 

This compares with the standard conclusions reached in monostatic investigations 

(eg. [24, 54, 8)). 

With the appropriate features of the time varying surface being substituted into 

the field equations, two time dependencies become apparent. One of these, arising 

from considerations in Chapter 2, dictates from where on the surface the radiation 

is being received. The other accounts for field changes due to the fact that the 

surface is varying with time. The standard procedure of ensemble averaging the 

various components of the bistatically received fields leads, upon temporal Fourier 
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transformation, to a Doppler power spectral density. Comparison with the bistatic 

radar range equation then allows a Doppler cross section per unit area of scattering 

surface to be derived. 

An important feature of the first-order bistatic cross section is that its peaks 

are indicative of Bragg scatter, appropriately modified by the bistatic angle. The 

surface waves responsible for these spectral characteristics travel inward and outward 

along the scattering ellipse normal at the position(s) being interrogated and have a 

wavenumber of 2k0 cos ¢0 (i.e. a wavelength of 
2 

.Ao , where .Ao is the wavelength 
cos¢o 

of the transmitted signal). These give rise to peaks in Doppler cross sections at 

radian frequencies of ±..j2k0g cos ¢ 0, the so-called Bragg frequencies, ±we. This result 

was previously derived by Walsh and Dawe [9] and led to a convenient approach to 

development of the second-order bistatic effects presented in this work. 

In the case of the double "patch" scatter phenomenon, the magnitude of the sum 

of the two wave vectors associated with the ocean waves responsible for the scattering 

must be 2k0 cos ¢ 0 and must likewise point along a normal to the scattering ellipse. 
3 

The well known monostatic comer reflector spectral peaks which appear at ±2! w 8 
I 

3 [1 ± sin¢0]2 . . 
are seen to become ±24 WB for the b1stat1c case. Thus. there are four 

cos ct>o . 
spectral peaks, rather than two as in the monostatic case, associated with the corner 

reflector phenomenon. The relative importance of these is largely dependent on the 

ocean surface conditions. Again, it may be noted that for monostatic operation, ¢0 = 

0 and this effect properly reduces to ±2iwB. The ±v'2w8 peaks, which are familiar 

features of monostatic spectra, are again evident in the bistatic case. Of course, for 

a given frequency of operation, they will clearly appear at different frequency points 

for different modes of operation (i.e. monostatic or bistatic). 

For double scattering where only one of the scatters occurs remotely from either 

the transmitter or receiver, the wavenumber of the distant scatterer must, as for 

other cases, be 2ko cos c/Jo. Spectral peaks due to these effects appear at ±2w8 and, in 
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general, split peaks occur around zero Doppler. In the monostatic counterpart, the 

former also appear, but the latter degenerate to a single peak at zero Doppler. 

The relative importance of the spectral phenomena associated with the various 

second-order bistatic fields is highly dependent on the particular ocean surface char

acteristics at the time of data collection as well as on the radar operating frequency. 

Furthermore, the cross sections depicted in Chapter 3 were based on idealized en

semble averaging and in every case assumed a fully developed sea. This last feature 

was imposed by the inclusion of the Pierson-Moskowitz result [60] as a model for the 

non-directional ocean spectrum. 

In an attempt to more closely model what actually transpires in the collecting of 

Doppler power spectra from pulsed radars, the results of Chapter 3 for the idealized 

case were used in a time model of a stationary Gaussian process given by Pierson (61]. 

Additionally, this model was subjected to a typical noise environment as might be 

viewed by a pulse radar. External noise limitation was assumed. The noise. too, was 

modelled as a zero-mean Gaussian process. Initially, a model for stationary noise was 

developed considering finite and infinite numbers of pulses. Then, non-stationary 

noise results were derived. In all cases, the Doppler noise power spectral density 

was shown to be virtually independent of the number of pulses sampled, and this 

was exactly so for the non-stationary noise. For any duty cycle and any number of 

pulses the Doppler noise power spectral densities, when sampling occurred at the 

pulse centres, were seen to be within 3 dB of the ambient noise densities derived from 

noise figures found in (86]. This was independent of stationarity. Centre and off

centre pulse sampling were considered with the latter imposing a cosine variation, 

dependent on the sampling distance from the pulse centre, on the former. 

It was shown that, for pulse radar interrogation of the sea surface, the average 

rather than peak transmit power should be used in the radar range equation. Using 

this fact and Pierson's model [61] for stationary Gaussian processes for both the 
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clutter (i.e. sea echo) and noise, a time series of a typical bistatic return from the 

ocean, including the noise regime, was developed. To simulate the usual procedure for 

obtaining Doppler power spectra, this time series was fast Fourier transformed. The 

magnitude-squared of the result was used as an estimate of the true Doppler power 

spectral density. It was illustrated that the result modelled available monostatic 

data reasonably well (no bistatic data were available). This model also demonstrated 

that the observation of the spectral features discussed in Chapter 3 for the idealized 

representations will definitely be dependent on the operating frequency, the sea state. 

and the noise regime. Also, given that for a typical observation period the noise 

content is unlikely to change significantly, the survival of the various second-order 

peaks will clearly be dependent on the range being monitored. 

It is submitted that the main new feature of this work is the presentation of the 

various portions of the second-order bistatic HF cross sections of the ocean surface. 

Secondly, a useful theoretical basis for the introduction of noise into the cross section 

models has been derived. No dedicated experimentation has been undertaken to 

verify these models. However, it has been shown that the models do indeed collapse 

to their existing monostatic counterparts with the introduction of the appropriate 

parameter (namely, the bistatic angle set to zero). Furthermore, comparison with 

typical real monostatic data appears to validate the assertions herein. This being the 

case, a means of modelling the fields and related ocean cross sections and Doppler 

power spectral densities at HF for a general observation point is now available. 

5.2 Suggestions for Future Work 

The analyses which have culminated in this document have engendered many ideas 

and questions which could be pursued in future research. A few of the more obvious 

of these are briefly discussed here. 

At the outset, it may be noted that the results presented in the thesis are founded 
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on the so-called "small height" approximation. However, Walsh's general formulations 

[57] do indeed account for surface heights which are not small (i.e. k~ ft:. 1), and this 

fact is intimated in equation (1.19). A development of (1.19) to produce corrections to 

the "small height" field equations would certainly appear to be a legitimate endeavour. 

It seems feasible that such corrections might give further insight into the saturation 

difficulties discussed in Section 2.2. Additionally, careful experimental investigation 

of this saturation phenomenon could indicate the proper limits to be placed on the 

definition of "small height" in the context of the bistatic models. 

Also implicit in the present formulations is the assumption that the scattering 

surface is a good conductor. In fact, this condition was placed upon the developments 

by Walsh et al. [8] before imposition of the small-height constraint. While this 

considerably simplifies the ensuing analysis, it clearly restricts the class of surfaces 

which may be considered. The effects of relaxing this constraint would appear to be 

worthy of investigation. 

In addition to the fundamental problems which may be pursued, there are several 

experimental possibilities arising from this work. One aspect which clearly requires 

empirical investigation is the significance of the singularities in the bistatic second

order cross section due to scattering at the transmitting and/or receiving antennas. 

It was pointed out that these singularities at (or near) zero Doppler and ±2wB are 

likely to be enhanced when the radar components are surrounded by sea water. This 

is especially important near zero Doppler. In fact, it was shown that for bistatic 

operation a split peak occurs in that region of the spectrum. If these effects are 

significant for certain operating parameters and surface conditions, they may obscure 

slowly moving targets. 

Given that bistatic and monostatic radar operations are able to provide different 

views of the same patch of surface, it is reasonable to now assume that directional 

properties of surface phenomena ( eg. waves and currents) may be obtained by using 
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a single transmitter and two receiving antennas. Of course, the reception would have 

to be synchronized. Experimentation to explore this possibility appears appropriate. 

Finally, it is noted that the real spectra presented for comparisons with the models 

of Chapters 3 and 4 were not produced from experiments designed for validation of 

ocean clutter phenomena. Consequently, it is felt that further dedicated experimen

tation would greatly aid in model validation and acceptance in the remote sensing 

community. It is deemed that the work presented here provides a solid basis warrant

ing additional research in the context of bistatic operation of pulsed HF Doppler radar 

in the marine environment. It is expected that such exploration will prove fruitful in 

augmenting the role of HF radar as an ocean sensor as it has evolved during the last 

two decades. 
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Appendix A 

Scattering from a Tirne Invariant 
Surface 

This appendix addresses many of the details associated with obtaining the first- and 

second-order electric field components for scattering from a non-time-varying surface 

when the source is an elementary vertical dipole. Section A.l delineates the relevant 

procedures and assumptions necessary for providing a tractable form of the first-order 

bistatic component, while Section A.2 similarly treats the second-order problem. 

A.l The First-order Field 

A.l.l Asymptotic Integral Form for the First-order Field 

In order to explicitly write the convolution of equation (2.15) in integral form, it is 

advantageous to express the surface gradient Vzy in polar coordinates as 

(A. l) 

Applying this to the bracketed factor in equation (2.15), while noting the absence of 

any() dependence, gives 

V .. ( CoF(p)•;:;) - :P ( CoF(p)•;;;) p 

- ( -jkCoF(p)•;;;) ,0+ Xp (A.2) 
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where X involves the derivatives of F(p) and ( 
2
!p). It is obvious that in the 

asymptotic sense (i.e. for large distances, p) the derivative involving ( 
2
!p) will be 

much less than the leading term above. Also, Wait [87), Section 6.7, shows that for 

a highly conductive surface as is being considered here, F(p) is roughly proportional 
1 a 

to - for large p. Thus, -
8 

F(p) << F(p) for large p and equation (A.2) may be 
p p 

approximated in the asymptotic sense as 

_ ( e-jkp) ( e-ikp) 
Vzy C0F(p) 

2
-rrp ::::: -jkCoF(p) 2rrp fJ . (A.3) 

Substituting (A.3) into equation (2.15), the asymptotic form of the latter is 

(A.4) 

From Figure 2.1, it may be seen that (A.4) may be cast as the double convolution 

integral 

Recognizing, of course, that p1 = Jxr + Yf and P2 = J<x- xt)2 + (y- yt) 2 , 

which is equation (2.16). 

e-1k(Pt+P2> 

----dx1dY1, 
P1P2 
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Considering p1 • V:r 1y 1 (~(x 11 yt)) of (A.6) in conjunction with equations (2.18) and 

(A.l), we have 

i>1 · '17,,., ({(x,, y,)) - P., · {iii a~, {(x" y,) + li, ;, a~, {(x" y,)} 

8 
- -

8 
~(Xt, yt) 

P1 
- j L PKmn.Kmn cos(Bmn- Bt)eJPtK.,..,.cos{Bm,.-Bt) (A.7) 

m.n 

since p1 · 01 = 0. Using equation (A.7) in (A.6) results in 

(~G)02 L PKmn Kmn 11 cos(Bmn- Bt)F(pt}F(P2) 
1t' m,n fll :tt 

. _1_. elPl [Kmncos(Bmn- 81)- k}. e-ikP2 dx
1
dy

1 
, 

P1P2 

which is precisely equation (2.19). 

(A.8) 

A.1.2 Reduction of the First-order Field to a Single Integral 

A.1.2.1 A Stationary Phase Form for the First-order Field 

Under the conditions stated in Section 2.2.2, the 6-integral of equation (2.25) may 

be determined via a stationary phase approach. Bleistein and Handelsman [66} (or 

more recently, with application to scattering problems, Ishimaru [13L Appendix C) 

develop such an approach to a complex integral of the form 

I =I F(6)eJZf(6)rJ.E . (A.9) 

Here, Z is a large positive real number and, in general, f(8) and F(8) are complex 

functions of the complex variable 8. Furthermore, F(6) is slowly varying. The result 

of applying the stationary phase theory to (A.9) is 

I:::::: {2; F(8s) eJZf(6.) 
v z J -jl)2£:·> 

(A.lO) 

where 6 = 8s is the stationary phase point given by 

8!(8) = 0 
88 . 
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As the name implies, (A.lO) is the result of evaluating (A.9) along a contour where the 

phase of the exponential term is essentially constant, thus mitigating the oscillations 

which naturally occur in eiZf(lJ) for large Z. 

The /6 integral of equation (2.25) may now be considered in view of this stationary 

phase theory. For reference, the integral is repeated here as 

/ 0 = fo2
rr cos(Bmn- fh)F(pt)F(P2) 

. eJ~[cosh,.,.cus6coa(8mn-8)+sinh,.,.sin6sin(Bmn-6)jd6 . 

Comparing equations (A.9) with (A.ll), the following are easily identified: 

z - pKmn 
2 

f(8) - (cosh JL cos 8 cos(Bmn - B) +sinh J.L sin 8 sin(Bmn -B)] 

F(8) - cos(Bmn - Bt)F(pt)F(P2) . 

Since the stationary points are required, the solution of 

a ~~b) = -cosh J.L sin 8 cos(Bmn -B) +sinh J.L cos 8 sin(Bmn - B) = 0 

must be found. These are obviously the points, 85 , satisfying 

tan 6s = tanh J.L tan( Bmn - B) , 

(A.ll) 

(A.l2) 

which is equation (2.27) of Section 2.2.2. For use in (A.lO), it is seen that the second 

derivative of f(8) is given by 

82~~cS) = - [cosh J.L cos 8 cos( Bmn - B) +sinh J.L sin 8 sin( Bmn - B)] (A.l3) 

Therefore, from equations (A.lO), (A.ll), and (A.13), the 6-integral may be approx-

imated as 

e'~(c011hi'CC86 c:cs(9mn-9)+sinhl'sin 6 sin(Brnn-B}j 1 {A.l4) 

jP~mn (coshJ.Lcos6 cos(Bmn- B)+ sinhJ.Lsinbsin(Bmn- 8)} 
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it being understood that 8 is subject to the constraint of equation (A.l2) . Also, from 

equation (2.21), it is clear that Pt. fJ2, and 81 are functions of 6. 

A.1.2.2 Interpretation of the Stationary Phase Result in Terms of the 
Bistatic Geometry 

Since Figure 2.3 is used extensively in the analysis of this section, it is repeated here 

for reference as Figure A..l. 

y 

J.l • constant 
/ 

Figure A.l: Depiction of the geometry associated with the first-order stationary phase 
condition. Rand T are receiver and transmitter, respectively. 

With reference to Figure A.l, we will attempt to show that the surface wave vec

tor, Kmn, is perpendicular to the ellipse at the point of scatter. In Step 3 of the 

transformation to elliptical coordinates (Section 2.2.1.2), it transpired that 

x" 1 - ~ cosh J.L cos 6 

y~ - p .nh . 6 2 Sl J.'SID . 

Relating this to Figure A.l, it is seen that 

(A.l5) 
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since for the stipulation of 8 = 0, the hat (unit) vectors are the same for the x

Y system as they are for the x"-y'' system. From elementary vector analysis, the 

tangent, f, to the Jl. =constant curve at (x'{, y'{) is given by 

and since Jl. and fJ are orthogonal coordinates, the corresponding normal is 

(A.l6) 

Letting ()N be the direction of N (outward pointing), it is clear from (A.l6) that 

8 
cosh J.L sin fJ tan fJ 

tan N = ----
sinh J.L cos 6 tanh Jl. 

(A.l7} 

Also, the stationary phase condition from equation (A.l2) with 8 = 0 as specified 

gives 
tanc5 

tan8mn = h . 
tan J.L 

Thus. ( A.l8) and ( A.l7) together show that the direction of R mn is given by 

(A.l8) 

Therefore, it is established that the stationary values for fJ correspond to points (6, J.L) 

on the ellipse of constant J.L for which the surface wave vector responsible for scattering 

lies inward (-) or outward ( +) along the ellipse normal at those points; i.e., 

(A.l9) 

where N is the unit vector along the outward ellipse normal. 

Next, it will be established that N bisects the angle between the transmitter and 

receiver as viewed from the scattering point. Again, without loss of generality, 8 is 
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chosen to be zero. In addition to equation (A.l6) for the normal, N, the following 

relationships are seen to exist (see Figure A.l): 

Pt = X 1 X + Yt iJ 

ih = (p - xt) x - Yt fi . (A.20) 

Using the transformation of equation (A.20), p1 and ih may be converted to elliptic 

coordinate form. After some algebra, it is easily shown that 

- (P'l) -ih. · N = - Pt Pt · N (A.21) 

from whence 

iJ2 · N = -fJt · N (A.22) 

where the hatted vectors have their usual meaning. Equation (A.22) immediately 

implies that the angle between fJ2 and N as measured from N is 180° minus the angle 

between p1 and fir as measured from N. Thus, if in Figure A.l we label the latter 

angle ¢, then the angle between p2 and N inside the vector triangle formed by Pt. 

;h. and p must be <i> also. Therefore, equation (A.22) proves that N bisects the angle 

between the transmitter and receiver as viewed from the scattering point. 

To conclude this section, we seek a form of equation (A.l4) for the 6 integral 

which explicitly involves p11 f12, and ¢of the bistatic scattering geometry. From the 

expression for P{' in (A.l5), it is immediately obvious that [6 in (A.14) may be written 

(again, taking (} = 0) as 

(A.23) 

since 

cos(fJmn- Bt) =PI. Kmn = Pt . ±N =±cos¢. 

Also, from Figure A.l, 

_,, - ih. and _, ih. -Pt. =p~-- Pl. =--P2 
2 2 
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or 

2 _, - -Pi = Pt- P2 · (A.24) 

Therefore, 

_, - - - _, -
2Pt · N = Pt · N - P2 · N (A.25) 

which, from (A.21), becomes 

_, ~~.·, _ (Pl + P2) • 7\r Pi · ·" - 2 Pt · ~ v • (A.26) 

Combining the information in (A.26) with that in (A.l9) and noting that p1 · iv = 

cos cp , it readily follows that 

where 

Pt + P2 
p, = 2 

(A.27) 

Finally, substituting (A.27) into (A.23) while observing k = e=t=J~, the desired 

result. 

/6::::::: .Ji;(±Jcos r/>) F(pt)F(P2) e±jK"'np.cosq,e=t=1~ ' 

JKmnPs 

is reached. This is reported as equation (2.28) of Section 2.2.2. 

A.2 The Second-order Field 

(A.28) 

A.2.1 The First Stationary Point (Patch Scatter)- Forward 
Analysis 

A.2.1.1 Simplifying the Exponential in Equation (2.56) via a Change of 
Variables 

In the course of evaluating the J.l.-6 integral of equation (2.56), 

(A.29) 
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with 

Q(JJ., 6) - [Kmn cos(8mn- 82) - 2k] p.2 + [2Kmn sin(9mn- 82)] 11-6 

- [Kmn cos(8mn- 82)]62 
, (A.30) 

it would be convenient to eliminate the p.6 term. This may be accomplished through 

a variable transformation. The technique applied here is that given by DeRusso et 

al. [70], Chapter 4. 

The quantity, Q, is an example of a quadratic form, the general expression of 

which (in variables x 1, x2, . . . . Xn) is 

n n 

q = L L tlijXiXj , 
i=l j=l 

ai1 being the coefficient of xix 1. In terms of this form, 

:2 2 

Q = ~Llliixixi 
i=l j=l 

and a22 = -Kmn cos(8mn- 82). Clearly, in our case, 

(A.31) 

with 

and J;.T is the transpose of J;.. 

The desire is to change the variables to 

say. such that Q may be written as 

(A.32) 
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where A is a diagonal matrix. DeRusso et al. [70] show that the non-zero elements of 

A are simply the eigenvalues, or characteristic values, of A. In our application, then, 

the eigenvalues, A, are found in the usual manner from the characteristic equation 

where£: is the identity matrix and I · I is the determinant. Thus, here 

A- Kmn cos(Bmn - 02) - 2k 
Kmn sin(Omn- Oz) 

which has solutions 

At - -k + Jk2 + K~n- 2kKmn cos(Omn- 02) 

Az - -k- Jk2 + K~n- 2kKmnCOs(8mn- Oz). 

From (A.32) and (A.33) since A= [ ~' ~.], 

Q = At '1/Jz + AzXz . 

(A.33) 

(A.34) 

Equations (A.33) and (A.34) are reported in Section 2.2.2.2 as equations (2.59) and 

(2.58). respectively. 

Now, of course, the relationships between the 1/J-x and the !J.-6 variables must 

be established. In order to accomplish this, the normalized modal matrix, /til, must 

be examined. For the case of distinct eigenvalues such as encountered here, the 

columns of !v/ can be taken to be equal, or proportional, to any nonzero column of 

Adj [ ~!:. - A] where Adj means the adjoint matrix, which is simply the transpose 

of the matrix formed by replacing the elements of the matrix [ A4 - A] with their 

cofactors. For each .Xi, the columns of Adj [A4- A], which are eigenvectors, are 

linearly related so that each Ai specifies only one column of M. Furthermore, for 

compactness, each column vector may be normalized by its magnitude. The problem 

here is particularly simple because A is a 2 x 2 matrix. Therefore, 

Adj (.Ad - A] = [ ,\ - a2z 
- - a12 

(A.35) 
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Then, a normalized eigenvector, y 1 , associated with .A1 may be given as 

[ 
At - a22 ] 1 

l!t = a 12 . V(.Al - a22)2 + (a12)2 . 
(A.36) 

It similarly follows for .A2 that a normalized eigenvector, 1!2. is given by 

!!:! = [ A, ~1an ]· j(A2 - a1 ~)' + (a2t) 2 . 
(A.37) 

From (A.36) and (A.37), the modal matrix, Jv!, can be immediately written as 

(A.38) 

It is straightforward to verify that !vi is an orthogonal matrix, i.e. /v/- 1 = !v!T 

where !v/- 1 and NIT are the inverse and transpose, respectively. Now, in general, the 

linear transformation~= B v_, where B is an arbitrary (n x n) non-singular matri.x, 

transforms the quadratic form of (A.30) in variables J.L-6 to a quadratic form in 1/J-x., 

and. if B = Nf, the cross terms are eliminated. 

Proof of Cross Term Elimination and Verification of the (J-L, 6)-(l/J, x) Relationships 

From (A.31), 

Q - ( B Jl) T A ( B ll.) 

_ ]J_T IJ_T ~ il.ll. 

and if we set B = JM so that BT = ]1-1, 

(A.39) 

It is not difficult to show that M-1 AM is the diagonal matrix 

and, indeed, 

Q- [w xl[~· ~.][~] 
- AftP2 + .A2X2 

• 
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Therefore, we can write ~ = B 1!.. or, more particularly, 

(A.40) 

which means that 

M -1 MT 1J.== ;&.== ;r. 

Then, from equation (A.38), 

[ 
t/.1 

] = [ V(-'1 ~~~~p+(lllJ) 2 .j(-X2-a:!~2 +(a12)2 ] [ JJ. lj 
X a"' .\a -a,, fJ , 
' Jc.x2-au)2+(a21)2 J<-'2-au)'2+(a21)2 

which, from the forms of au, a 12 , a21t and a22 given previously, means that 

Also. from equations (A.38) and (A.40) along with our definitions of the aij 's. 

(..\t + Kmn cos(Omn- 82)] t/J 
J.L = 

J(,\1 + KmnCOS(Omn- 02)) 2 + (KmnSin(Omn- 82))2 

fJ _ ( Kmn sin( 9mn - 82) l t/J 
J(At + KmnCOS(9mn- 92))2 + (Kmnsin(9mn- 82))2 

[..\2- Kmn cos(9mn- 82) + 2k] X +-r==================================== 
j(..\2- Kmn cos(9mn- 82) + 2k)2 + (Kmn sin(9mn- 82))2 

(A.41) 

(A.42) 

From equation (A.42), it is easy to show that the Jacobian of the transformation is 

unity. i.e. 

J=\! !1=1. 
Therefore, dJ,~.d8 = d'l/ldx.. Also, from equation (A.41), it is clear that both integral 

limits in (A.29) will be from -oo to oo on changing to 1/J, x. coordinates. 
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A.2.1.2 Expanding the Cosine Factor in Equation (2.56) 

Another point which must be addressed in equation (A.29) is that, as seen in equation 

(2.51), 812 is a function of f.L and o. Consequently, cos(Opq- 812) must be presented 

in lb , x coordinates. To simplify the integral, we will approximate cos(8pq - 812 ) by 

expanding its constituents to second order in f.L and o about the stationary point (0, 0) 

using Taylor series. Noting that 

(A.43) 

we write from Figure 2.4 and equations (2 .43) and (2.44), after a little algebra, 

X2- Xt 
cos 81'1. = --

P12 

. Y2 - Y1 sm 012 = .;;...._____;_ 
P12 

( 1 - cosh f.L cos t5) cos 82 +sinh f.L sin fJ sin 82 
cosh f.L - cos fJ 

( 1 - cosh f.L cos t5) sin 02 - sinh f.L sin fJ cos 82 

cosh f.L - cos o 

(A.44) 

The equations in (A.44) will be approximated by expanding each of the f.L and o 
82 82 

functions separately (up to and including the 
8

f.L2 and 
862 

terms) about J.L = 0 and 

b = 0, respectively. The results are simply 

2 

cosh f.L "' 1 + .t:.. 
2 

sinh f.L "' J.L 

coso 
[J2 

"' 1--
2 

sino "' 0. 

These allow (A.44) to be written as 

cos012 ~ 
( 62 - J.L2) cos 82 + 2f,.L6 sin 82 

f.L2 + o2 

sin012 
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Substituting (A.45) into (A.43), it is easily shown that 

(A.46) 

Now, for compactness, we define the following: 

[ 
2 ')] c2 - (Kmn sin(9mn- 92)) - (,\1 + Kmn cos(9mn - 82))• cos(8pq- 62) 

- [2(Kmn sin(8mn- 62))(..\1 + Kmn cos(8mn- 82))] sin(9pq- 82) (AA7) 

From equations (A.46}, (A.42) and (A.47) it is then possible to show after some 

tedious algebra that 

(A.48) 

Taking (A.29) , (A.34) and (A.48) together, an approximation of equation (2.56) may 

be writ ten as 

(AA9) 

Thus, equation (2.62) has been derived. 

A.2.1.3 A Final Form for Equation (2.54) 

The form of the exponential in equation (A.49) suggests that the integration may be 

facilitated by a change of variables from ('1/J , x.) to polar coordinates, (r, v), say. To 

this end, 

1/J - rcosv 

X. - rsinv 

d'f/Jdx. - rdrdv, 
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which imply 

1/;2 + )(2 2 - T 

l/J2- )(2 - r 2 cos(2v) (A.50) 

1/.J)( -
r2 
"2 sin(2v) . 

If we further write 

(A.51) 

where. from (A.33), c4 = -k and c5 = Jk2 + K~n- 2kKmn cos(Omn- 82), it is not 

difficult to show that from (A.49) and (A.50) 

with 8c = 2v. The second term of the integrand, containing the sin Be, evaluates to 

0 and, using Mathematica (88} and equations (A.33) and (A.51), the remaining term 

evaluates to 

I _ -47rj c2~ + c2k 
m - P2 Cl Jk2 + K~n - 2kKmn cos(Omn - 82)../ .,\1.,\2 . 

(A.52) 

Again, after a large amount of algebraic detail, it can be shown that, on using equa-

tions (A.33), (A.47), (A.51) and (A.52), 

~ 411" { (Kmn · ~) [K~ · ( Kmn- kp2)]} 
P2 J Kmn · (Kmn- 2kfh) 

. { k+ iJ~mn · ~mn- 2k~)} 
k2 + Kmn · (Kmn- 2kp2) 

41r 
= -[El2Fl P2 . (A. 53) 

where the definition of rE12F,I is obvious. The quantity rEI2F,I will be referred to as an 

electromagnetic coupling coefficient. Later, it will become part of a larger expression 

and will be discussed in detail in Section 3.6.3. 
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Considering equation (2.54), (2.56), and (A.53), the former is clearly given by 

F(P2) 
lt2F,l = -27r L L PR,. .. PKpq "'YE12F,l 

m,n p,q P2 
. eiP"lKpqcas(9pq-9:t) . ei~[2Km.n cus(9,..,.-9,)-2kj (A.54) 

with the attenuation function F(O) = 1 in equation (2.54}. Thus, the left hand mem

ber of the convolution in equation (2.66) as applied to the "patch" scatter stationary 

point has been developed. 

A.2.2 The First Stationary Point (One Scatter Near theRe
ceiver) -Backward Analysis 

We wish to apply a two-dimensional stationary phase technique ( Bleistein and Han-

delsmann [66] or Friedman [69]) to equation (2.102) for the stationary point (0. 0). 

\Ve have 

[238 - j L pKpqKpqeiKpqpcua(Opq-8) 
p,q 

· fo2
7r fooo cos(6pq - 6t2)F(Pt2)F(P2o)ei'T"'23 (~£,Ii)dp.d6 (A.55) 

it being understood that P12, pw, and 612 are functions of p. and 6, in general. Let us 

consider the double integral separately as 

la,t = fo2
7r la'XJ cos(Opq- 6t2)F(Pt2)F(P2o)eif!t"'23 <P·

6)dp.d6 (A.56) 

where ~23 (p., 6) is defined in equation (2.99). Again, using Bleistein and Handelsmann 

[66], Section 8.4, and our notation, equation (A.56) may be structured as 

(A.57) 

where the distance parameter, l!f, is a large parameter and f(p., 6) - cos(Opq -

612)F(p12)F(P2o). For a stationary point, (J.Ls, 6.}, which lies on the boundary of 

the integration region, (A.57) may be approximated as 

1 /(J.Ls, 6.) if eiT~J(p.,6.)eifSig[<f>:z3(~£.,6.ll.-6 

la,1 ~ 2 2 

ldet [~23(JLs, 6.))1£151 
(A.58) 
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(A. 59) 

evaluated at (J..L,, 85 ) , ldet [<P23(J..L,,8,)]#-161 is the absolute value of the determinant of 

the matrix and 

sig [<P 23 (J..L,, 8,)]#-16 - (number of positive eigenvalues of matrix) 

-(number of negative eigenvalues of matrix) . (A.60) 

Since from equation (2.99) 

<P 23 (J..L , 8) = Kpq{[coshJ.Lcos8-l]cos(Opq-84 ) 

+ [sinh J.L sin 8 sin( 8pq - 84)] - 2k cosh J.L} . (A.61) 

carrying out the derivatives of (A.59) and evaluating at the (0 , 0) stationary point 

gives 

[<P (O O)] = [ Kpq cos(Opq- 04 ) - 2k Kpq sin(Opq- 84 ) l 
23 

' ~-'6 Kpqsin(Bpq- 04 ) -Kpqcos(Opq- 84) · 
(A.62) 

From (A.62) it is readily shown that 

(A.63) 

The matrix eigenvalues are 

(A.64) 

and they must be real since the discriminant, d0,0 , has the property 

Clearly, if do.o > k, the matrix has one positive and one negative eigenvalue, while if 

do.o < k, there are two negative eigenvalues. In the first case, 
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while in the second case, 

sig [cp23(0, 0)]"6 = -2 and 2kKpq cos(IJpq- 84) - K~ > 0 . 

Noting, finally, that 

eitsig[~:z3 (o,0)!,.6 = { 1.' sig( ·] = 0 
J, sig[ ·] = -2 · 

the absolute value in the e.."<pression for (A.53) may be removed and from {2.100). 

(A.61)-(A.64) and the discussion following the latter, the integral result is 

(A.65) 

Then, for the stationary point (0, 0) (indicated by the subscript, 1, on 1238,1) , equation 

(A.55) becomes 

(A.66) 

Thus, the convolution in equation (2.91) has been approximated for the case when 

the second scatter! before reception, occurs near the receiving antenna. This result 

is reported as equation (2.103). 

A.3 Application to a Pulsed Radar 

A.3.1 The Relationship Between the Bistatic Angle and the 
Scattering Ellipse Normal 

Consider Figure A.2 which is simply Figure 2.3 appropriately labelled for the task at 

hand. It will be shown that 
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y 

X 

Figure A.2: Depiction of the geometry associated with the first-order stationary phase 
condition. R and T are receiver and transmitter, respectively. 

where </J is the bistatic angle, p is the distance between the transmitter (T) and the 

receiver (R), and 

with p1 and P7. being the distances from the transmitter and receiver, respectively, 

to the scatter point. The angle, (} N, is the direction of the normal to the scattering 

ellipse at the point of scatter. 

Simply, from the law of sines, 

sin¢ 
-

~+x 

sin (JN 

P1 
(since sin (} N = sin ( 1T - B N)) 

and 

from which 

x=H::~:) 
From the second sine law expression, it then follows that 

sin 8 N yfl - cos2 </> 

P2 = ~ [1- :~~=] 
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A little algebra and substitution of Ps = PI ; P1. into the last expression readily yields 

cos .p ~ 1- (!.) \m2 BN (A.67) 

as required. This result was also derived by Walsh and Dawe [9], but in a more 

complex fashion using a transformation to elliptic coordinates and an application of 

vector algebra. 

A.3.2 Proof of Equivalence Between "Patch" Scatter Fields 
from Forward and Backward Analyses 

It was suggested in Section 2.2.3.3 that the equivalence between the 'iorward" and 

··backward" convolution process used in obtaining the electric field component as a 

result of both scatters occurring at the same position on the scattering ellipse could 

be verified by proving that 

"YE12B,2 = -"YE12F,l (A.68) 

where the 1's are defined in equations (2.109) and (2.64), respectively. 

To emphasize that a pulse radar is being used, based on the analysis in equa

tions (2.114) to (2.118), the k in the expressions for "Y may be replaced by k0 , the 

wavenumber of the pulsed dipole radiation. Rewriting (2.64) and (2.109) then gives 

-"YE12F,l 

'"'!E12B,2 
_ {iJK,.y< .. ~2koP..] +ko} 

kfi + Kpq · [Kpq + 2koP2o] 

. { (Kmn · ~) [K~ · (Kpq + koJ32o)]} 
J Kpq · [ Kpq + 2kofi2o] 
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If it can be shown that 

it is dear that the proof of equivalence is complete. 

STEP 1 The relationship between the unit vectors, P-2 and f17.0 must be established. 

Figure A.3 is the same as Figure 2.6 appropriately labelled for the discussion which 

follows. The bistatic angle ¢ 0 is of the form given in (2.133) with due regards given to 

l . . h (Po2 + Po2o) Al . h · · · - d -rep acmg Pas w1t Pos~2, 1 = 
2 

. so, smce t e vanat10n m P2 an P2o over a 

pulse length is very small compared with the magnitude of the quantities themselves, 

I 
T 

~(9to+8,) R 

-"' X 
p 

Figure A.3: Depiction of the geometry associated with the second-order stationary 
phase condition. Rand T are receiver and transmitter, respectively. 

the unit vectors Po2 and p02o are certainly adequately represented by P-2 and fJ20 • Then, 

h - x cos 82 + iJ sin 82 

N - xcos(82 + ¢o) + ysin(82 + ¢o) 

ho - -xcos(82 + 2¢o) - ysin(82 + 2¢o) (A.70) 

{JN - -.Xsin(82 + ¢o) + fjcos(82 + ¢o). 
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[t is easy to show from (A.70) that 

fJ2 = cos ¢oN - sin ¢o8 N 

and 

P2o = - cos ¢oN - sin ¢o8 N , 

from which 

(A.71) 

It was deduced in Section 2.2.5.2 that the surface wave vector Krs can be written to 

a very good approximation as 

~s ~ 2ko cos ¢oN 

A Krs 
=> N~ . 

2kocos¢o 

Then. (A.71) can be written as 

A A Krs A Kmn + Kpq 
P2o=P2--=P2-

k0 ko 
(A.72) 

it being understood that the equality suggested is restricted by the approximation on 

STEP 2 Next, ~ · [ i<pq + 2kofJ2o] is considered. Since Krs = Kmn + ~~ we have, 

using (A.72), 

Kpq · [Kpq + 2kofi2o] - ( Krs - Kmn) · [ KrtJ - Kmn + 2koP2 - 2Krs] 

- ( Kmn - Krs) · { [ Kmn - 2koP2] + KrtJ} 
- Kmn · [Kmn- 2kofi2] + Kmn · KrtJ- Krs · Kmn 

+ KrtJ · 2kofi2 - Krt~ · Krs 

- Kmn · [ Kmn - 2kofi2] + Krs · 2ko [cos ¢oN - sin ¢oB N] 

-KrtJ · Krs 

- Kmn · [Kmn- 2kofi2] + (~s · Krs)- (Krs · Krs) 

- Kmn · [Kmn- 2koiJ2] 
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where, in the second last line, we have used the fact that, essentially, 

~s = 2kocos¢oN and N · iJN = 0. 

Therefore, within the approximation on the magnitude of ~s (i.e. Krs :::::::: 2ko cos ¢o), 

it has been shown that 

STEP 3 It remains to be shown that (Rpq +2koP2o) =- (Rmn- koP2) · From (A.72) 

we have 

R,., + ""'hJ - R,., +""' (P,- ~n k: R,.,) 
- -Kmn + koP2 

- -(l(mn- koh) 

as required. 

Thus, all requirements for the equality of "'fE12B,2 and -1'El2F,l have been verified 

within the approximation Krs = 2ko cos ¢>oN. Consequently, too, the equivalence of 

electric fields obtained by forward and backward analysis of the convolution equa-

tions for two scatters at a point remote from the transmitter and receiver, has been 

established. 
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Appendix B 

Derivations Pertinent to the 
Bistatic Cross Sections of the 
Ocean Surface 

Here, a detailed analysis of the auto- and cross-correlations appearing in equation 

(3.35) is carried out. From these correlations, Doppler power spectra are derived. 

Subsequently, high frequency Doppler cross sections per unit area of surface are de

termined. Also, a few other details related to the cross section calculations and 

discussions of Chapter 3 are addressed. 

B.l The Cross-correlations and Spectra of the 
First- and Second-order Field Components 

The definitions of the cross-correlations of the first- and second-order electric field 

components are detailed in equation (3.47). They are of the form 

or (B.l) 

where, for the second-order fields, the subscript, J = P, T or R, is for double scatter 

on the remote patch, one scatter on the patch and one near the transmitter, or one 

scatter on the patch and one near the receiver, respectively. 
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In exactly the same way as < 1PR,.., 1PK'.w' >entered equation (3.39) for the auto

correlation of the first-order field, there will be in 'Ru,u(r) an average of the form 

and. in 'Ru.11 { T), one of the form 

[neither case, the averages involve the product of three zero-mean Gaussian random 

variables, and, therefore, being a special case of the product of an odd number of such 

variables, must vanish (Thomas (76]); i.e. 

'Ru,2J(T) = 'Ru,u(r) = 0. (B.2) 

This immediately implies that the Doppler power spectral densities corresponding to 

these correlations must also vanish; i.e. 

(B.3) 

Thus, equations (3.48) and (3.49) are valid and the first- and second-order fields are 

uncorrelated. 

B.2 The Autocorrelation and Spectrum for Dou
ble Scatter on the Remote Patch 

Next, the autocorrelation in equation (3.50), 

'R2p(r) = ~ < ( Eri:_)2P (to, t + r) ( EO:);P (to, t) > (B.4) 

for the so-called (elliptical) patch scatter is considered. Referencing equation (3.25) 

and noting that the randomness is associated only with the first-order surface coeffi

cients, equation (B.4) becomes 

Ar { 775k31Io~ll 2 C~p.): } E E E E rp~; 
2

77o {27r)3Po. (tro. - (i) ] R1,..,1 R~~ K<J,IAJ'l K2.""2 
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. eJfR e-j~·K' eJPo•K cuscf>oe-iPoaK' cus.Pti < 1?,- 1?,- ~-, , 1p!, > 
Kt,Wt K2,11J2 K 1 ,w1 K 2,w2 

. ei<'"'1 +w-J)(t+r)e-j(w~ +w2)(t) J K cos ¢oJ K' cos tP~ F(p01, wo)F(Po2, wo) 

· F*(p~ 1 , w0 ) F" (p'02 , wu)Sa [ t.;, ( c: ¢o - 2Ab)] Sa [ t.;, c:~ -2ko)] (B.5) 

where the primes throughout are associated with wave vectors K~ and K2. 

As a first step in analyzing (B.5), the average represented by < · > is considered. 

For zero-mean Gaussian random variables. 

Using equations (3.4} and {3.6), the first term in (B.6) becomes 

=< 1P.K- .. lp•K- > < lp_j(, -w' lp•K-' ' > 
1·-1 - '2,-1.61"2 1• I '2 ' .... '2 

0; otherwise. 

.R1 = -R2 

.R~ = -R~ 
Wt = -w2 
W'- -w' l- 2 

(B.7) 

However, in the last paragraph of Section 2.2.5.2, it was pointed out that K = K1 +K2 

(i.e. Kra = Kmn + Kpq) and that essentially all of the contribution to the second

order patch scatter occurs when K = 2/co cos ¢>0N, N being the unit vector along the 

outward ellipse normal. In equation (B.7), which is constrained such that K1 = -K2 • 

K = 6. This obviously violates the known scatter condition. Therefore, it is necessary 

to consider only the last two terms in equation (B.6), the results of which, based again 

on equations (3.4) and (3.6), reduce to 
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0; otherwise. 

K1 =I?~ 
K2=K2 
WI =W~ 

- I W2 -W2 

(8.8) 

The restrictions on (8.8) also show that K' = K~ + K~ = K1 + K2 = K. The final 

form of (B.8), then, using the first-order part of equation (3.7) is 

0; otherwise. 

K1 = R~ 
R2 = R~ 
Wt = w~ 

- I w2- w2 

(B.9) 

Conveniently, along with the other possible simplifications, (8.9) reduces all of the 

exponential factors in (B.5) to e}wT where w = Wt +w2. However, since rp = Hr + Erp. 

it is clear from equations (2.64) and (2.142), with the appropriate notation change 

on the wave vectors, that fp is not symmetric in K1 , K2 ; i.e. 

To this end, we note the identity 

~~ fp(Kt. K2) = ~~ ~ [rp(.k\,R2) + rp(K2, Kd] 
Kt K-z K1 K-z 

(8.10) 

and define a symmetric coupling coefficient as 

{B.ll) 

Then, inside the summations of equation (B.5), rprj.• may be written as l.,fpl2
. This 

reduction could be effected only via (B.ll) because the last term in (B.6) required 

that R~ = K2 and K2 = K1• Now, the autocorrelation in (B.5) becomes 
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· St(K11wi)S1(K2,w2)] eJr..rr(K cos¢o) 

. IF(POloWo)F(Po2,Wo)\
2 Sa2 [a:- (c:¢o- 2ko) l (B.l2) 

If. as following equation (3.40), the fundamental spatial and temporal periods become 

very large (i.e .. N, W--+ 0). and if S 1(·) is cast in the form of (3.10), equation (8.12) 

may be written as 

The w-integrals have been evaluated via the delta functions entering through the 

first-order part of equation (3.10). Therefore, in analogy to equation (3.43), 

WI -
w2 - (8.14) 

=>w -

Also. it is understood that 

and (B.15) 

It will be useful to convert the K2 integration to an integral over K. With the stip

ulation that K2 = K- K1 , it is easy to show that the Jacobian of the transformation 

is unity so that 

_ Ar { 175k~ IIoL\il
2 

(L\p.)
2 

} L L ~~ laaJ j~ laaJ 
2TJo 2. (27r)3po. [ro.- (~) 2] ml=±l ml=±l -rr 0 

-11' 
0 

{ Sl( m1Kt) St ( m2K2) 1.r Pl2 e3r..rr ( K 2 cos ¢o) IF(An, wo)F(Po2, wo)l2 

·Sa2 [a:- (a:¢o- 2ko) l KI}dK1 d8g, dK d8g. (B.l6) 
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The resemblance of (8.16) to equation (3.42) for the first order is clear, so that Fourier 

transforming it immediately yields the Doppler power spectral density as 

= { Ar77ok~ llo~t'l 2 (~Ps)2 
} L L !11' {00 !11' r:JO 

4 · (27r)2p0., [PBs- (~) 2] m 1=±l m 2 =±1 -~r Jo -~r Jo 

{ S1(m1Kt)S1(m2K2) l.,fpl2 (K2 cos¢o) IF(pm,wo}F(Po2,wo)l 2 

· Sa2 
[ ~;• ( c: ¢o - 2k0) 16 ( wd + m1 y'9K. + m,fgK,) Kt} 

dK1dOR
1
dKd()R. (8.17) 

Again, it is emphasized that wd is the transform variable for r and w is given in 

(B.l4}. At this stage, equation (8.17) represents the power spectral density due to 

the field being received from all double scatters occurring on a fixed elliptical patch 

of the time varying surface of width ~PJ ( = c;o). 

B.3 The Autocorrelation and Spectrum when One 
of Two Scatters Occurs Near the Transmitting 
Antenna 

The autocorrelation given by equation (3.53), 

(B.l8) 

is now considered. The appropriate electric field is given in equation (3.28) making 

(B.l8) 
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It is to be understood that K1, K~ , w1 , and w~ are associated with surface waves near 

the transmitter while K2 , K1_, w2 , and w~ are similarly the wavenumbers and frequen-

cies for the scatterers on the distant elliptical patch. As in the previous section, the 

ensemble average indicated by the angular brackets in (B.l9) must be determined. 

The initial expansion has exactly the same form as equation (B.6). 

1. The Second Term of 'R·J.T( r) and the Related Power Spectral Density 

It will be seen from what follows that the second term in (B.6) as it is applied here 

is the most significant . Thus, we consider that term firstly, and recalling equation 

(3.6) and (3.7), we define 

0; otherwise. 

R1 = R~ 
K2= K2 

- I w1- w1 
w2 = w~ 

(8.20) 

As before, equation (3.10) for S( ·) is invoked and the fundamental spatial and tem

poral periods are extended to infinity. Then, using the subscript 2 on 'R.2T( T) to 

emphasize that only the second term of the ensemble average is being considered, 

equation (8.19) becomes 

(B.21) 

In (8.21) , the differentials are formally defined by equation (B.l5). Also, the w

integrals have again yielded to the delta functions of equation (3.10) . It is also clear 

from the fact that K1 = Ki and K2 = K~ that the coupling coefficient factors, 
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EfT Er;, as defined by equations (2.87) and (2.146} {recalling Kmn = K1 and Kpq = 
K2 ), reduce to 1Efr12

. It should be recalled from Section 2.2.5.2, that to a very 

good approximation, K2 = 2k0 cos <PaN where N is the unit normal at any position 

on the scattering ellipse; that is, K2 lies along the "outward" normal to the remote 

scattering ellipse. No such constraint, either in magnitude or direction, is placed upon 

the wave vector, K1, associated with the first scatter near the transmitter. Comparing 

equation (B.21) with (B.l6), we may immediately write, by analogy with (B.17), that 

the Doppler power spectral density contribution from the second term of the average 

in (8.19) is 

= { Ar1Jok~ lloilfl
2 

(Llp!l): } L L 11f roc 11f {'X 
8 · (27r)2p08 [pa.,- (~) ] mt=±l m 2:::±1 -'If Jo -'If Jo 

{ St(mtKt)St(m2K2) 1Efrl2 (Ki cos <Po) 

( 2 2 [Llp!l ( K2 )] IF(Pot,wo)F Po2,wo)l Sa - 2- cos <Po - 2ko 

8 ( wd + m1 ~ + m2.Jii<;) K1} dKtdfJR
1
dK2dfJR

2 
• (B.22) 

Here. w1 and w2 are defined as in (B.14) and wd is the usual transform variable for 

T. Since K1 is not constrained, (B.22) represents a continuum in wd. Implications 

of the specific conditions on K2 will be discussed further when the cross section 

corresponding to this portion of the power density spectrum is developed in Sections 

3.5-3.6. 

2. The First Term of 'R2T(r) and the Related Power Spectral Density 

The first term of the ensemble average in equation (B.19) may be written as 
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K1 = -K2 
K2 = -K~ 
Wt = -w2 (B.23) 

w2=-~ 
0; otherwise. 

The ideas encountered in determining a power spectral density corresponding to this 

part of the average are important in the sense that they may be applied frequently in 

the subsequent analysis. Thus, so that direct comparison may be used to write down 

many of the later results. we proceed with some detail in this section. 

Converting the sums to integrals, as in equation (B.21), and evaluating the ...;

integrals using the delta functions appearing in equation (3.10), equation (8.19) for 

the term corresponding to (8.23) may be written 

R2T.l ( T) _ Ar { 116k~ llo~ll 2 (~Ps)2 
} 2.: 2.: Jrr k~ Jrr kaJ { 5' ( I( ) 

217o 4 · (2rr)3 Po, [P5.s- (~/] m 1=±lm1 =±l -11' 0 -11' o 
1 

ml 
2 

· St(m2K~) (Er T( -K2, P2)Er;.( -R;, fJ~)) e3o·r J K2K~ cos ¢o cos ct>o 

· F(Pot ,wo)F(Po2, wo)F*(p~1 , wo)F*(p~2 , wa)eif<R1 -K2> 

· ei"'·'K' ~..,-K; ~«>>sa [ l>.;, ( c!~ -2ko)] 
Sa [ l>.;, ( c!~- 2ko) l K2 K;} dK2d8g,dK~d8g;. (8.24} 

In writing this form, the constraint on the w's in (8.23) has been used to write the 

time exponentials in (8.19} as e)O·r. This feature has been left explicit so that the 

transition to the power density spectrum may be effected in an obvious manner. Also, 

for reference purposes, the arguments of the coupling coefficient, ErT, have been made 

explicit using equations (2.87) and (2.146) and the fact that K2 ~ 2kocos¢>0N. It 

must be realized, however, that equation (B.24) still applies to a complete elliptical 

scattering patch as emphasized by the limits on the angle integrations. This means, 

then, that here N, the unit normal to the ellipse, changes with position during the 

integration. 
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Fourier transformation of equation (B.24) gives for the Doppler power spectral 

density of this component for the entire elliptical patch 

p2T,l(wd) = { Ar7]ok~ llo.6.ll2 {.6.p,): } L L jrr looo lrr looo { St(mtK2) 
8 · {27r)2Po.s [P~s- (~) ] m1=±l m:z=±l -lf 0 -11' 0 

· S1(m2K~) (sfr(-K2,h)sfi-(-K~,p;)) JK2K2cos¢ocos¢'o 

· F(Pol, wo)F(Po2, wo)F*(p~1 ,wo)F*(p~2 ,wo)ei~·U<:z-K~) 
. eipo~(K:zcoa41Q-K;cus4J(,) Sa [6.Ps ( K2 _ 2ko),J 

2 cos¢o 

[
.6.p., ( K~ )] ) '} 'd Sa - ..... - ¢' - 2ko 8(wd K2K2 dK2d(}R dK2 BR, . 
~ cos 0 2 2 

(8.25) 

The Dirac delta function, 8(wd), implies a power spike at zero Doppler. We will now 

examine (8.25) and outline the important steps used to show that the fourth-order 

integral multiplying the delta function is practically zero. Initially, the exponential 

factors may be combined using equation (2.133) to give 

where 

!I(9;<,) - cos9R, + ( T r- sin
2

9R, 

h(9;<;) = - [cos9R; + (7) 2 - sin
2 

9R; 

(8.26) 

This allows the angle integrals in equation (8.25) to be done via the stationary phase 

technique. Theanalysisleadstostationarypointsat (BJ(
2
,B.K:) = (0,0), (O,;r), (1r,O) 

or (iT, 1r). By way of example, for the point {0, 0) it may be readily shown from equa

tions (2.87) and (2.146) that 

and 
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As well, 

and 

cos¢o =cos¢~= 1 

since K2 and K2, in this case, are in the same direction ash,. These results give for 

Here. too, we have approximated K2 and K2 by 2k0 except where such approximations 

would lead to singularities in the integrand. Additionally, in the 2~K interval of 

integration, the respective sampling functions have been approximated by unity. The 

remaining integrals were executed using Mathematica (88] with the result being 
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where Erf(·) is the error function (eg., Ambromowitz and Stegun [89], Chapter 7) of 

the form 
2 ro %2 

Erf(z0 ) = fi Jo e-T dz . 

It may be readily shown that the arguments of each pair of error functions has the form 

(a+ja) and (ja-a) with a being large by virtue of the parameter(~+ Pos). In fact, a 

does not have to be large for the real part in (B.28) to be negligible, but should be~ 10 

for the imaginary part to become small. This may be determined numerically using 

any suitable computational package such as Mathematica [88]. These observations, 

in addition to the factors containing p and p0., arising from the stationary phase 

procedure, will cause the multiplier on o(wd) to be very small compared to, say, that 

on the sampling functions which are associated with the first-order return in equation 

(3.46). 

The above procedure may be repeated for (fJJ(
2

, (}J(~) = (0. 1r), (1r, 0) or (1r. 1r) with 

essentially the same form of P2T.1(wd) resulting as in equation (B.28). The sum of 

these results is still insignificant compared with the power spectral density, 'P2T.2(wd), 

of equation (B.22). 

As a final observation, we note that if, as is typically the case in HF radar op

eration, a narrow beam receiver is used, the K2 and K~ wave vectors are essentially 

coincident on the patch of surface under interrogation. This also means that tf>o = ¢0, 
and these facts together would immediately remove the exponentials from equation 

(B.24). The resulting derivation of the power spectral density would be much less 

complicated than presented here for a general receiver, but the end result reveals that 

the power density spike at zero Doppler still has a much smaller multiplier than that 

of the first order. Consequently, further calculation associated with this minor power 

point will not be pursued here. 

255 



3. The First Term of 'R2T( r) and the Related Power Spectral Density 

Finally, in equation (B.19) we consider the term associated with 

0; otherwise. 

K2 = .R~ 
.R1 = K2 

- I w2- wl 
Ult = w2 

(B.29) 

Thus. on changing from sums to integrals and using equation (3.10), we write for the 

remaining part of (B.l9) 

(B.30) 

Here. the constraints on K's and w's have been taken from (B.29). The Fourier 

transform of (B.30) then gives the power spectral density associated with term (B.29) 

of equation (B.19) as 

1'2T,J(wd) = A,.1]o~ [lo.6ll2 (.6p,): L L / laoo jrr laoo { St (mtK2) 
8. (27r)2Pos [p~,- (~) ] mt=±l m2=±1 1-rr 0 -rr 0 

· St(m2K~) (Err(K~, P2)Er;,(K2, p~)) V K2K2 cos 4>o cos ¢f, 

· F(Pot, wo)F(Po2, wo)F.(Io1, wo)F.(p~, w0 )ei{·<K2 -K2> 

. .,i ... (K, ~ .. -K~~.j(,) Sa [a;- ( c!~ - 2ko)] 

. Sa [a:·(:~ -2ko)] o(w•+m1JYK.+m2~) K2 K;} 

dK2 d8g
2 
dK~ d6g2 • (B.31) 
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\-Vith the exception of the delta function argument, equation (B.31) has the same form 

as equation (B.25) and may, therefore, be treated in the same manner. For example, 

for the (0, 0) stationary point arising from this analysis it transpires that we may let 

K2 = K~ ~ 2k0 cos ¢0 so that the delta function gives rise to three discrete power 

spikes - one at wd = 0 and others at wd = ± J2gk0 cos t/>0 • However, the multiplier 

on these spikes may be handled in exactly the same manner as that on 8(wd) in the 

discussion following (B.25). ~·laking all of the same arguments as previously, it may be 

immediately concluded that the power spectral density associated with those discrete 

values of wd will be unimportant in comparison to other portions of the spectrum. 

Thus. this component of 'P2r(wd) will not be further considered. 

This completes the power spectral density derived from the autocorrelation of the 

second-order field arising from one scatter near the transmitter followed by a second 

on a remote elliptical patch. Given that only the second term in equation (B.6), as it 

applies to this autocorrelation, produces a result which is significantly different from 

zero, the power spectral density associated with the elliptical surface patch may be 

written from equar.ion (B.22) as 

(B.32) 

This component, unlike P2r.1 (wd) and 'P2T,3(wd) is a continuum in wd associated with 

each position on the remote scattering ellipse. It is used to determine the related 

cross section in Section 3.5. 

B.4 The Autocorrelation and Spectrum when One 
of Two Scatters Occurs Near the Receiving 
Antenna 

The autocorrelation and power spectral densities associated with second-order scat

tering involving a single scatter at the remote elliptical scattering patch preceding a 

scatter near the receiving antenna follows very closely that of Appendix B.3. This 
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time, however, it is the K1 vector which is associated with the remote scatter while K2 

is near the receiver. Thus, K1 ~ 2k0 cos¢0N, while, in general, K2 is not constrained 

in magnitude or direction. Formally, the autocorrelation is given in equation (3.56} 

as 

'R2R(1) = ~ < ( Eri,.)
2
R (to, t + r) ( Eri,.):R (to, t) > 

Using the electric field from equation (3.29) in (B.33) yields 

R.:m(r) = :r { TJ5k~ llo~fl2 (~p.,): } L L L L EIR Er~· 
-TJo (2n-)3pos [pfi_,- (~) ] Kt,o.Jt K~.w~ K2.W2 K2,oo~2 

(B.33) 

. eJi·U?1 -K~)f!Po•K 1 c011rJ>oe-jPo.K~c06</l~ < 1P,- 1P,- . 1P,-, 1p!, . , > 
Kt,Wt Kv,J'l K1 .~ K 2,w2 

. eJii·(K2-K2) ei<w1 +<..n)(t+r) e- j(w\ +r..4)(t) J K 1 cos ¢oJ K~ cos cbo 

(8.34) 

The expansion of the ensemble average, < · >,follows from equation (8.6), and these 

results are given by equations (B.20), (8.23) and (B.29) . All that was discussed with 

respect to K1, K2, K~, and K~ in AppendL"< B.3 now holds for K2, K1, K~, and I(~, 

respectively. Therefore, the various terms of the autocorrelations and their respec-

tive power spectral densities may be written immediately with reference to equations 

(B.21), (B.22). (8.24), (B.25), (B.30), and (B.31) as: 

(B.35) 

258 



The Doppler power spectral density, 'P2R,2(wd), is then given by 

P2R,2(wd) = ~T]ok~ lla6.ll2 (6.p.,): 2: 2: 11r roo l'lr roo 
8 · (21r)2Pos [P~s- (~) ] m1=±l m2=±l -1r Jo -Tr Jo 

SI(mtKdSt(m2K2) lsfRI (K1 cos¢>o) IF(pm,wo)F(Po2,wo)l { 
- - 2 2 2 

·Sa2 [ ~;• (c:~- 2ko)) 6 (wd + m,~ + m2y'9K;) K2} 
dK1 dfJ J(

1 
dK2 dB i(

2 
• (B.36) 

While the K1 vector is constrained in magnitude and direction, the K2 vector is not. 

Therefore, (8.36) represents a continuum in wd analogous to that for P2T,2(wd) in 

equation (8.22). At the moment, P2R,2(wd) is associated with the complete remote 

elliptical scattering region. It is used in Section 3.5 to determine the cross section 

associated with a single scatter on the remote elliptical patch followed by a second 

near the receiver. 

For the sake of completeness, we shall write down the autocorrelations and power 

spectral densities associated with the remaining two parts of the ensemble average as 

dictated by equations (8.23) and (8.29). It was seen that these averages provided 

essentially no content to the overall power density for a single scatter at the trans

mitter followed by a single scatter at the patch. Now the power spectral densities 

involving these averages for a single scatter at the patch followed by a single scatter 

at the receiver will be essentially zero also. 

2. Result for< tPJ( w tPR ..... >< tPR, 11PR, , >-i.e. 'R2R1(r) 
1. 1 2·-• 1 .W1 a•'""a ' 

The first term of the ensemble average in equation (B.34) may be written as 

R ·>Rt(T) = Ar { TJ6k~llo6.ll2{6.p,)2 } L L [ r0011r roo {St(mtKd 
-. 217o 4 · (21r)3p0, [p~,- (~/] m1=±lm2=±l -1rJo -1rlo 

· St(m2K~) (srR( -!?1, Pt2)sf_R( -K~, p~2)) &0·'" J KtKJ. cos <Po costf>0 

· F(pm, wo)F(Po2, wo)F*(p~1 ,w0)F*(p~2 , w0)eif·<K~ -KdeJI'O•(K1 Cll84'o-K~ CllSt/1(,) 

·Sa [ ~;• ( c! ~ -2ko)] Sa [ ~;• ( c!~ -2ko)] K1 K;} dK1 dOK, dK; dOg; (B.37) 
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with corresponding power spectral density 

A,.TJok~ llo~il2 (~Ps): 2: L 111" 100 !11" r { St(m1Kd 
8 · (27r)2p0, [P~.s- (~) ] m 1=±1 m 2 =±1 -1r 0 -11" 0 

. s 1 ( m2K~) (ErR(-K 1' PI2) ErR(- K~' p;2)) v,....K_1_K_~-c-os_¢_o_C_O_S_cf)_o 

· F(pm, wo)F(Po2, wo)F* (p~1 , wo)F* (p~2 , wo)ei~ · U<'~ -Kd 

. eJPo.(K1 cos<Po-K~ cos.P~>sa [~P.s ( K1 _ 2ko)] 
2 cos ¢o 

. Sa [~?Ps ( K~, - 2ko)]6(wd)Kt Ka dKtdBR dK~d()R, (B.38) _ cos¢
0 

1 1 

where w1 = -w2 and w~ = -w2, as dictated by the ensemble averages, have been 

used. The coupling coefficient arguments have been written explicitly using equations 

(2 .106) and (2.149) and the fact that K1 ~ 2k0 cos¢oN. Now, the similarities between 

(B.38) and (8.25) are obvious. Thus, an analysis here could follow that which led to 

equation (8.28). with the result being that the multiplier on the zer~Doppler power 

density spike would again be essentially zero. As for (B.28), therefore, this discrete 

spike is not included in the overall power density. Also, for narrow beam reception, 

the exponential factors in (B.38) would be unity, but subsequent analysis again leads 

to a negligible result. 

3. Result for < 1PR ,.,... tP.K!' , > < 1P.K- ... 1P.K!' J > - i.e. 'R.2R 3( ;) 
2 ·-· 1•..11 1.-1 2•"'2 ' 

The third term of the ensemble average in equation (B.34) may be written as 

- Ar { 775k31Io~ll 2 (~Ps)2 } L L Ill" r /7r !aoo { s ( R ) 
2TJo 4. (27r)3Pos [pg,- (~)2] m1=±1 m2=±1 -11" 0 -tr 0 1 ffit 1 

· S1(m2K~) (srR(K~ , Pt2)sfR(Kt, .0;2 )) ei<wt+w~)r j K1Ki cos ¢o cos ¢0 

· F(p01, wo)F(Po2,wo)F*(p~1 , wo)F*(p~, w0 )eif<Ri -Kl) 

• eiPo•(Kt cos<Po-K). cos.P~)Sa [~p, ( Kt - 2ko)] 
2 cos¢o 

· Sa. [ 6.;, c:~ -2ko) l K, K;} dK, d8 K, dK; d8 K; . (B.39) 

Here, the constraints on K's and w's have been taken again from (B.29). The power 
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spectral density associated with (B.39) is then 

ArT]ok~ llo~£1
2 

(~p~): L L J1r koc J1r koo { S
1
(m

1
Kt) 

8 · (27r) 2 Pos [P5s- (~) ] mt=±l m2=±l -11' 
0 

-11' 0 

· S1(m2KD (ErR(K~, Pt2)EfR(Kl, .0~2 )) JKtK} cos¢o cos <Pti 

· F(Pot. wo)F(Po2, wo)F.(p~1 , wo)F.(p~2 , wo)ei!-U<~ -Rd 

• eiPo.(Kl cos<PQ - K~ cUB4fo>sa [~Ps ( Kt - 2ko) l 
2 cos¢o 

. Sa [ 
6
;• ( c!~ -2k0)] 6 ( w, + m1 .J9K, + m2 /9K[) K1 K;} 

dKt dBR
1 
dK~ dBR~ . (B .40} 

Comparison with P2T,3(wd) of equation (B.31) shows that (B.40) exhibits the same 

features. Thus, at each position on the scattering ellipse, (B.40) will produce three 

power spikes - at wd = 0 and at wd = ± J2gko cos (/)o. Again, however, the fourth

order integral is essentially zero. For this reason, 'P2R,3(wd) will not be included further 

in the components of the overall power spectral density. We note that the analysis 

for narrow beam reception could be effected more easily than the case of a general 

receiver presented here. However, the conclusion of the insignificance of 'P2n, 1 (wd) 

and 'P2n,3(wd) would be unaltered. 

This concludes the discussion of the autocorrelation and subsequent power spectral 

density for the case of a single scatter on a remote elliptical patch being followed by 

a scatter near the receiving antenna. On the basis of the arguments given, the power 

density, 'P2n(wd), here may be written with reference to equation (B.36) as 

{B.41) 

Again it is emphasized that this power spectral density is a continuum in wd at each 

position on the scattering ellipse. The relevant cross section is discussed in Sections 

3.5-3.6. 
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B.5 The Cross-correlation of the "Patch" Field 
with Other Second-order Field Components 

From equation (3.35), and using notation similar to that in (3.47), we wish to con

sider 'R2p,zr(r), 'R2P,2R(T) , 'Rzr,2P(T), and 'R2R,2P(r). These represent the cross

correlations of the field from a double scatter at the remote elliptical scattering patch 

with fields involving a single scatter at the transmitter or receiver and another on 

the patch. In fact, it will be seen that, based on the scattering constraints and ocean 

surface features previously discussed, these terms are negligible. 

B.5.1 The Cross-correlations 'R2P,2r(r) and 'R2T.2P(T) 

Formally, the cross-correlation of the second-order field from a double scatter on the 

remote patch with that involving a scatter near the transmitter may be written as 

'R2P,2T( r) = ~ < ( Eri,.) 2P (to, t + r) ( Eri,.)~ (to, t) > (B.42) 

or 

. e~<w:~+w4 )(t+T>e-i("" 1 +w-J)(t) J K cos ¢oJ K 2 cos ¢0F(Pol! wo)F(Po2. wo) 

F. (p~1 , WolF' (p;,, wo)Sa [ ~;• ( C: 411 - 2ko)] Sa [ ~;• (c.!~ - 2ko)] . (B.43) 

ln equation (B.43), K3 and K4 represent wave vectors associated with double patch 

scatter (i.e. two scatters near each other on the remote scattering ellipse) and K1 and 

K 2 are similarly linked to surface waves at the transmitter and patch, respectively. 

The various w's are, as usual, related to the K's via the dispersion relationship of 

equation (3.9). On the basis of equation (B.6), the object to be considered here is 
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From equations (3.4) and (3.6), the first factor on the right hand side (r.h.s.) of 

(B.-14) is non-zero only if K3 = -K4 • However, K3 and K4 are associated with the 

double scatter such that, as seen in Section 2.2.5.2, 

(B.45} 

This condition is obviously violated if K3 = - K4 so that the first term on the r.h.s 

of (B.-14) must vanish. Thus, 

(B.46) 

where P2P.rr, 1(wd) is the corresponding power spectral density. 

At this point, it is useful to comment that, in addition to 'R2P.2T,I ( r) of equation 

(B.-13), there will also be an average from equation (3.35) which may be denoted by 

n2T,2P(T) = ~ < ( Et..)2T (to, t + r) ( Et..):p (to, t) > . (B.47) 

Since the process under consideration is assumed to be stationary (in fact, the less 

stringent wide sense stationary condition would suffice here (see Papoulis (73], Chap

ter 10)~ 

(B.48) 

Now, since 'R2P,2T,1(r) is identically zero, it follows that its counterpart from (B.47), 

along with the power spectral density is also zero, i.e. 

(B.49) 
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Next, the second factor of the second term on the r.h.s. of (B.44) is non-zero only 

for K3 = K 1 , w3 = w1 , K4 = K2, and W4 = w2. From (B.43), this part of the average 

gives, with the usual changes from sums to integrals, 

R'2P,2T.2(r) = :r { ~5k~ llo~fl2 (~Ps)2 
2 } L L !1f rXJ J1f_ rx; 

-flo 4. l2rr)3Pos [Pfis- (~) ] mt=±l m'2=±1 --:r Jo -.. Jo 

{ St(mtKdSt(m2K2)fp(Kt, K2)er;..(J?t, p~)J KK'i. cos¢o cos¢0 
. e1fu< -K'J) e}Po•(K CO&t/Jo-K'J coetfYa) eJ(Wt +""'l)T 

(B.50) 

where it must be understood that f( = K3 + K4 = K1 + K2 . The K 1 integration has 

been changed to a K integration with the understanding that K 1 = K- K2. Then, 

given the fact that n2T,2P,2 ( T) = 'R2P,2T,2 (- 'T)' the Doppler power spectral density 

from 'R2T.2P,2 ( T) and 'R2P,2T.2 ( r) is 

Ar11ok~ llo~fl 2 (~Ps) 2 J1f [00 11r [00 

P2P.2T.2(wd) + P2T,2P,2(wd) = [ 2] L L )
0 

)
0 4 · (2rr)2Poa PBs- (~) mt=±l m'2=±1 _,. 0 -II' 0 

{ St(mtKdSt(m2K2)Re [rp(Kt, K2)Er;(Kt, p~)eif-(R-R2 > 

• e!Po•(KCU!t/Jo-K'J c011 tflo>] J K K2 cos¢o cos¢~ 

· F(Pob wo) F(p02! wo) F* (p~ 1 , wo) F* (p~, wo) 

·Sa [ 6;• (~¢o- 2ko)] Sa [ 6;" (c!~- 2ko)] 
· 6 ( wd + m1 j"ii(; + m2[i'K;) K K2} dK dlk dK 2 dlk2 • (B.51) 

Here, both K and K2 are normal to the scattering ellipse. However, for the moment, 

the positions on the ellipse need not be the same for these two wave vectors. Further 
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comment on (B.51) is reserved until the last pieces of 'R2P,2T(r) and 'R2T,2p(r) are 

developed below. 

3. Result for < 1Pv .• 1PK! > < pK,- .. - 1P.K! > -i.e. 'R2P2T3(r) 
.n.4,-4 loiN! J,-.. 2oi/J2 ' ' 

The component of (8.43) corresponding to the final product from (8.44) may be 

written similarly to (B.50) as 

..,., ( ) _ A,. { 175k~ llo~fl 2 (~Ps) 2 
} " " Jlf laoo Jlf koo 

I'\.2P,2T,3 T - - 2] L,; L-
277o 4. (2·7T-)3pos P5,- (~) ml=±l m'l=±l -If o -If o 

{ St(mtKdSt(m2K2)fp(K2, Kt)Ef7-(Kt, p~)J K K2 cos ~o cos¢0 
. eif<R -K'l)eiPo•(K cos<Po-K2 C08.Po) ei<wt +W'J)T' F(Pot, wo)F(Po2 , Wo) 

F" (~1 , Wo )F• (~2 • "'• )Sa [A:, c: ¢o -2ko)] Sa [A:, c:~. -2ko)] K K2} 

dK d8 R dK2 d8 .R
2 

(8.52) 

where it is to be understood that K1 = K4 , w1 = w4, K2 = K3 and w 2 = w3 have 

been used. In a way similar to (8.51), the power spectral density from (8.52) and its 

counterpart, R2T,2P,J(T) , may be written as 

Ar77ok~ llo~fl 2 (~p,)2 !1f {00 !11' foe 
P2P,2T,J(wd) + P2T,2P,J(wd) = [ ( )2] L L Jo )

0 4 · (21T') 2Po4 p~, - ~ mt=±l m2"'±l -11' 
0 

-11' 0 

{ St(mtKdSt(m2K2)Re [rp(K2, Kt)Er.;(Kt.P~)eif<R-R2 > 
. eJPo.(K cos<Po-K2 CCIII/Io)] J K K2 cos <Po cos <Po 

· F(pOI, wo)F(Po2, wo)F"(p~1 ,wo)F"(p~, wo) 

·Sa [A;" (c:¢o- 2ko)] Sa [A:, ( c!~- 2ko)] 
· 6 ( wd + m1 fii(; + m2{ii(;) KK2} dKd8RdK2d8i(

2
• (B.53) 

Again, it is important to realize that K1 = K- K2 and that both K and K2 are 

normal to the scattering ellipse, howbeit not at the same positions, in general. 
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On the basis of equations (B.44), (8.51), and (B.53), the Doppler power spectral 

density arising from the cross-correlations of the second-order fields, one of which 

involves a double scatter at the remote elliptical patch and the other of which involves 

a single scatter at the transmitter and another at the patch, may be written as 

(B.54) 

It will now be shown that, in fact, this power spectral density is approximately 

zero. Consideration of equations (B.51) and (B.53) reveals that the only difference is 

that, in the former, fp(K1, K2 ) (= fp ( (K- K2 ), K2)) appears, while in the latter this 

factor is replaced by fp(K2, Kd (: fp ( K2), (K- K2 ) )). As a first step in showing the 

insignificance of the sum in (8.54) it will be verified that the electromagnetic portion 

of this coupling coefficient makes the portions of the sum containing it vanish. To do 

this. it must be shown that at the places of major contribution to the integrals here 

(B.55) 

where Efp(·) is found in equations (2.64) and (2.142). 

To begin, it may be noted that exponential factors, 

in equations (B.51) and (B.53) take the same form as in (B.25). In the latter, a 

stationary phase approach gave the angles from which most of the contribution to 

the integral resulted. Using exactly the same approach here gives the stationary 

values of the K1 and K2 directions as 

(B.56) 

Thus, the points of major contribution referred to above have been established. 
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Next, consider that to a good approximation as dictated by the sampling functions 

in (8.51) and (8.53), 

Furthermore, 

K ~ 2ko cos r/Jo 
K2 ~ 2k0 cos ¢~. 

K = K3 + K4 (from Section 2.2.2.2) 
= K 1 + K2 (from the ensemble average conditions) . 

(8.57) 

(8.58) 

\Vhen (BR,BR.J = (0.0) or (7r , 7r) , K and K2 have the same direction and by (B.57) 

they have approximately the same magnitude. From equation (8.58), this implies 

K1 ~ 0 which is not possible on the actual ocean (i.e. there are no infinitely long 

waves). Alternately, S (mt(K- K2 )) = S (m1K1) ~ S (o) = 0 in the integrands of 

(8 .51) and (8.53). 

At the remaining stationary points, (BR, BR
2

) = (0, 1r) or (1r , 0), K2 = -K ==> 

R - K2 = 2K = K1. At these points, R is in the same direction as P2 · From these 

observations, and equations (2.64) and (2.142), it easily follows that 

and (B.59) 
- - ... +3K2 ko+ ·.,f2K 

Efp(K2, K- K2) = ~ . kgi2K~ 2 
• 

However, from (B.57) and noting that, at the stationary points, <Po=¢~= 0, we have 

Thus, from (B.59), equation (B.55) is established and the contribution from the "elec

tromagnetic" portion of (8.54) vanishes. 

Next the hydrodynamic effects, entering (B.55) firstly by virtue of the hydrody-

namic coupling coefficient, Hr found in the overall coupling coefficient, rp, of the 

various power spectral densities, must be addressed. It is easy to show for the stipu

lations on the K's given above that the magnitude of H r is in fact ko, which is the 

maximum that this parameter can be. However, it must be remembered that the 

ocean spectra, S(·)'s, appear as products in each of the power density expressions. 
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For the stationary points, only S(±k0 ) and S(±2ko) appear. At HF, k0 is of sufficient 

size that the ocean waves with the same wavenumber carry very little energy in com

parison to the spectral maximum. Therefore, the contribution of the hydrodynamic 

effects to the Doppler spectral densities in (B.54) may be neglected. This argument 

could have been used for the electromagnetic portion of these spectral densities also 

as long as it could be verified that the electromagnetic coupling coefficient did not 

contain singularities at the points in question. 

On the basis of the foregoing, it is clear that from equation (B.54), 

(B.60) 

The discussion presented above was necessary because no constraints were placed 

on the receiving antenna. As usual, for a narrow beam receiver, equation (B.60) 

can be deduced very simply. For all parts of the ensemble average given in (B.44). 

narrow beam reception dictates that one of the wavevectors vanish. The first piece 

of the average leads to zero result as discussed in conjunction with equation (B.46). 

The second piece requires K4 = K2 ~ 2k0 cos 4>oN rather than 2ko cos ¢0N' when the 

receiving beam is narrow. Equation (B.45) then gives K3=K1 ~0 and S(m1Kt) = 0 

which violates the surface assumptions. Similarly, in the third piece of the average 

found in (B.44), K3 = K2 ~ 2k0 cos¢0N, and again K 1 :::::; 0, which as before is not 

physically realizable. 

On the basis of the preceding arguments, it must be concluded that, irrespective of 

the receiving system, the field due to double "patch" scatter and that due to a single 

scatter near the transmitter followed by another at the remote elliptical surface patch 

are essentially uncorrelated. 

B.5.2 The Cross-correlations 'R2P,2R(r) and 'R2R,2P(r) 

By analogy to equations (B.42) and (B.47), the cross-correlation of the field from a 

double patch scatter with that produced by a single scatter at the patch followed by 
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another at the receiver may be written as 

and (B.61) 

The wave vectors K3 and K4 may be allowed to retain their meaning as in Appendix 

B.5.1 , while K1 is taken as a surface wave vector on the remote patch and K2 is near 

the receiver. Then. equations completely analogous to the power spectral densities of 

(8.-19) . (8.51), and (B.53) may be written for the present case. The only significant 

differences in the results are that K1 replaces K2 and fR(Kt, .0'12 ) replaces fr(I~.\, p~) . 

For all of the same reasons as outline in Appendix B.5.1, it transpires that for a general 

receiving system 

(B .62) 

As before, if narrow beam reception is imposed, equation (B.62) follows more read

ily. Since no new insights manifest themselves in writing down the complete power 

spectral densities for this situation. they are omitted here. 

B.6 The Cross-correlation of the Second-order 
Fields Due to Scatter at the Transmitter 
and Receiver 

The final portions of 'R.(r) in equation (3.35) involve the second-order fields in which 

for one case one of the two scatters occurs near the transmitter and in the other case 

one of the scatters occurs near the receiver. In each instance, the other scatter occurs 

on the remote patch. In keeping with the notation throughout this appendix, we 

write 

and (B.63) 

'R2R,rr(r) = 
2
.4,. < (Eti..) (to.t+r) (E6)* (t0,t) > 

11o 2R ' " 'rr 
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If it is agreed to use K1 and K4 for the wave vectors of the scatterers near the 

transmitter and receiver, respectively, and K2 and Ka as similar quantities at the 

remote patch, equation (8.63), based on appropriately modified equations (3.28) and 

(3.29), becomes 

Ar { 116k~ lloAil
2 

(Ap,)
2 

} " " "" "" - • • - • 
R2T,2R(T) = 217o 

3 
[ (e.) 2] _f.-, _f.-, _f.-, _f.-, Efr(KI , P2)EfR(K3 , P12) 

(211') Pos PBs - 2 K1.w11 K2,o.12 K3 ,W3 K4 ,.u4 

. e}f-\K-rK3)eJP<!•\K"J..:..,.<Po-K3..:""'.Pole-jP.K4 < P,- P,- p! p! > 
1 Kl,l.lll 1 K'l.""'l I K3 ,1.1/3 1 K•,iJJ~ 

. eJ(""1 +-'2Ht+r)e-j("'l+w4 )(t) J K2 cos ¢oV K3 cos ¢ti F(Pot, wo)F(Po2, wo) 

· F" (/cn• wo) F" (p~2 • Wo)Sa [A;, ( c! ~ - 2ko)] Sa [A;, ( c!~ -2ko)] .(8.64) 

The ensemble average in this equation may be expanded as 

After the manner of Appendices (B.3)-(B.5), the three terms of equation (B.65) may 

be treated separately. The first two terms will produce power spectral densities at 

discrete values of Wd exactly as was seen in equations (B.25) and (B.31) for Prr,1(wd) 

and P2r,3(wd), respectively. In the same way as was done for those expressions, it 

may be shown that here 

and (B.66) 
P2T,2R,2(wd) + P2R,2T,2(wd) ~ 0 . 

However, the third average in (B.65) leads to a power spectral density expression 

which is different enough from the first two to warrant further comment. Implement

ing the usual procedures for obtaining Doppler power spectral densities, it transpires 

that 

- ArTJo~ lloAil
2 

(APs): L 2: [ f {1r r 
4 · (2n-)2Pos [pa,- (i) ) m 1=±1 m 2 =:1:1 -lt 0 l-1r lo 
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{ S1(m1KI)S1 (m2K2)Re [ErT(K1, P2) EfEi(Kl, Pl2)e-ip.R,] 

· Ki cos ¢o IF(pm,wo)F(Poo,Wo)i
2 

• Sa2 
[ Ll;, c:~ -2ko) l 

· 8 (wd + m1.;gi<; + m2fii<;) Kt} dK1dBR,dK2dOR
2

• (B.67) 

The integrand here is similar to that for 'P'n',2(wd) in equation (B.22). As such, the 

Doppler power spectral density here is a continuum in wc1. There are, however, two 

very important differences between (B.22) and (B.67), they being (1) the factor e-ip·K 

appearing in the latter and (2) the product of the coupling coefficients is Err ErR 

rather than 1Efrl2
. These differences cause this component of the power spectral 

density to be oscillatory and permit it to assume both positive and negative values. 

However, it may be shown numerically that these values are not significant, even at 

their maxima, when compared to the other pieces of the power spectral density. As 

well. the average power content obtained from Ld 'P(wd)W..Vd is negligible. This is true 

for both monostatic and bistatic operation and, consequently, this component is not 

pursued further here. 

B.7 The Relationship Between S1(K) and the 
Pierson-Moskowitz Spectrum 

The first-order portion of the scattering surface, 1 ~(x, y, t), was characterized in equa-

tion (3.12) as 

l~(x, y, t) = L lpK,weiK·iitJwt (B.68) 
R,..., 

where the various quantities are defined throughout Section 3.2.1. The relationship 

between the first-order Fourier coefficients, 1PK,w' and the power spectral density, 

S1(K,w), is given by equation (3.7) provided the two quantities under discussion 

are appropriately subscripted. However, in Section 3.6.1, the Pierson-l.Vloskowitz [601 

model, SPJt .. c(K), for the non-directional part of the ocean power spectrum given in 

equation (3.78) was implemented in calculating the HF Doppler cross section of the 
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ocean surface. The question as to how the general form, S1(K), used throughout the 

derivation of the cross section equations is related to SPM(K) used in the calculation 

of those cross sections must, therefore, be addressed. The basis of the relationship 

has been formulated by Walsh [81] and is repeated here to give continuity to the final 

steps of the process derived below. 

as 

At the outset, in our notation, Pierson [61] defines the random surface, 1 ~(x, y, t) , 

1 ~(x. y. t) = J.~ [.cos [ :' (x cos 8 + y sin 8) - wt + <(w, 8)] J S'n1(w, 8)dJ..;dO . 

(8.69) 

Here. the randomness is introduced through the phase term, E(w, B), which is uni

formly distributed on 0 < B < 2rr, and the surface spectrum is s~M(w, B) where 

8 = tan- 1 (~). Pierson argues that (B.69) represents a zercr-mean stationary Gaus

sian process as was also imposed in (8.68) via the definition of the Fourier surface 

coefficients in Section 3.2.1. It might be noted that Pierson's s~AI(w , 9) dw is the 

equivalent of SpM(K, 9) dK where SpM(K, B) is Pierson's spectrum expressed in terms 

of wavenumber. The aim is, then, to relate our S1(K, B) dK to SPM(K, 9) dK. 

It is not difficult to verify that, for a real surface, the Fourier surface coefficients 

in equation (8.68) may be cast as 

tPR . ..., = ~ (P.ReJE<K>oK ( w + fiK) + P_Re-jE<-R>oK ( w- fiK)] (8.70) 

with PR = Pg where * denotes the complex conjugate (i.e. PR is real}, E(K) is a 

random phase term and c5K(·) is the Kronecker delta defined such that 

~ ( r;:v) { 1, w = ":F.JiK 
u K W ± V gn = 0 th . , o erwiSe. 

Also, implicit in (8.70) is the fact that the linear dispersion relationship of equation 

(3.9) has been invoked to give this result for 1Pg·""· This expression will now be used 

to determine the relationship between the S1(K, 9) used throughout this work and 

SPM(K, B). 
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Substituting (B.70) into (B.68) and carrying out the necessary algebra leads, for 

the surface to first order, to 

~~(x, y, t) = ~ PR cos [R · p- JYKt + e(K)] 
K 

(8.71) 

Allowing the fundamental spatial period to approach infinity, as in Section 3.4.2.1 

following equation (3.40), the Fourier coefficients become 

(8.72) 

and the summation of (8.71) reduces to the integral form 

(8.73) 

it being understood that S1(K;c, Ky) is the first-order surface spectrum. Before com

paring this result to Pierson's formulation in (8.69), a change to polar coordinates is 

effected via 
dKzdKy = KdKdfJ 

p= XX+ yiJ 
K = K cos fJx + K sinfliJ. 

Then, equation (8.73) may be equivalently presented as 

1 ~(x.y,t) = Jooo j_rrrr cos [K(xcosfJ+ysinfJ)- J9Kt+e(K,8)] JS1(K:cKy)KdKd(}. 

{8.74) 

Finally. it is noted that since w = .fiK, 

dK= 2{!fdw, 

which means that 

1~(x, y, t) - J.~ [.cos [ ~ (xcos8 + ysin8)- wt + <(w, 8)] 

2Kf!fS1(K.,K.)dwd8. 
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Clearly, our representation of the surface in (B.75) agrees with Pierson's model in 

(B.69) provided 

or 

That is, from (B.72), the two models agree if our Fourier coefficients are written as 

(8 .76) 

This provides the necessary starting point for comparing our non-directional ocean 

spectrum with the Pierson-Moskowitz model. 

In the usual manner of developing the surface spectral density, the ensemble av

erage. < · >, of the Fourier coefficients is considered. Using equation (B.70), 

< 1P R . ..~IPR, ,..r > = ~ < { PR e}t(K)oK (w + /iK) + P_J? e-it(-KloK ( w- fiK)} 
· {Pi<, elE(K'>oK ( w' + j;i(t) + P_Ji,e-iE<-i<'>oK (w'- j;i(t)} > . 

and, given that the randomness lies in the phase factors, 

< IPR . ..~tPR•,..~' > = ~ { PRPi<,oK ( w + fiK) 6K ( w' + j;i(t) < eJ[t(K)-E(K'>] > 

+P_RP-R,oK ( w- /iK) OK ( w'- fiK') < e-i[E(-K)-E(-K'>] > 

+PRP-R,8K ( w + /iK) OK ( w'- fiK') < e}[t(K)+E(-K'>J > 

+ P_RPJ?,8K ( w- /iK) OK ( w' + fiK') < e-i[t(-K)+E(K'}] >} (B.77) 

As usual, (see equation (3.7)) the only non-zero contributions in (B.77) occur when 

the exponentials become unity everywhere. The last two terms cannot meet this 

stipulation leaving 
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Then, from (B.76) 

< ,PK,.,,P,?,...,. > - ~ { ~ ;!~ SpAJ(w, 8)0K ( w + fiK) 

+ ~ ;!fSPM(w,9 + >r)5K (w- fiK)} dK,dK• . {B.78) 

Using the differential form of equation (3.7), along with the last result , gives 

l { l g~ ( ( 1 - m) ) St(Kz , Ky ,w)dKrdKydw = -:- ?-3 L Sp.u W:B + 
2 

7r 
4 - K'I m=±l 

6K ( w + mfiK)} dKx:dKy . 

Since 

S (K K ) 
= St(K,8 ,w) 

1 :Z:• y,W K . 

(see. for example, Tucker [1]) and dK:::dKy = KdKdB , it follows that 

(8.79) 

Then, using equation (3.10) and the fact that 

SpAJ(w, 9) = Sp.,(K, 8): = Sp.,(K, 8) · ( 2[!{;) , 

~ m~l S,(mi?)o(w +mfiK) dJ.J = ~ {~, Sp.,(mi?)5K (w + mfiK)} 
(B.80) 

where 

St(mK) = St ( K,8 + (
1 ~ m) 1r) 

and 6( ·) on the left of (B.80) is the Dirac delta function. Invoking the identity 

we finally reach the conclusion that 

.... 1 .... 
S1(mK) = 2SPM(mK) . (B.81) 
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Given the directional spectrum characteristic of equation (3.76), the non-directional 

parts of (B.81) are related as 

(B.82) 

The significance of this result is that everywhere that S1 ( K) appears in the cross 

section expressions, 1SPM(K) should be used for illustrative purposes. It therefore 

transpires that the first-order cross section will be 3 dB lower than that appearing 

in the literature for the monostatic case ([24], [54), [8]). Similarly, the second-order 

monostatic cross section model will be 6 dB lower than previously reported since all 

of its components contain a product of S1( · ) functions (see equations (3.102) . (3.126) 

and (3.134) ). 

B.8 A Note on the High-Doppler Tails of a2r(wd), 
0"2R(wd), and Srivastava's Model 

Srivastava (54] developed a monostatic result for the second-order cross section com

ponent involving a single scatter at the transmitter followed by another on a distant 

surface patch corresponding to a2T(wd) of this work. However, the high-Doppler tails 

of Srivastava's model are very flat beyond the ±2wd singularities. While here the 

a:rr(wd) and the a2n(wd) tails also enhance the overall second-order result beyond 

that of the a2p(wd) patch scatter portion, the fall-off of the tails is much more rapid 

than in Srivastava's presentation. This difference is addressed here and may be at

tributed to the forms of the coupling coefficient. 

Using the notation presented throughout this work, the magnitude square of Sri

vastava's coupling coefficient, rs, for what corresponds to the a2T(wd) cross section 

component, may be written as 

(B.83) 
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where I.K21 = K2 = 2ka. Using 9R
1 

and OR
2 

as the directions of the wave vectors K1 

and K2 , respectively, 

lfsl2 = [2koKt cos(9R2 - 9R) + 2Knr ' 
12koKt cos(9R2 - (}R

1
) + Krl 

and this can be written as 

(8.84) 

Now. in the high-Doppler tails, K 1 increases without bound, theoretically. This means 

that lfsl 2
, as given in (B.84), similarly increases without bound; i.e. for large K 1, 

(8.85) 

The effect of this ever-increasing factor for large lwdl is mitigated by the reducing 

ocean spectrum, S1(KI), and the overall effect is to produce spectral tails which fall 

off more slowly than actual radar spectra would indicate. 

From equations (2.87) and (2.146L it is not difficult to show that, for ¢ 0 = 0 (i.e. 

the monostatic case) 

k5 [Kf + koKt cos(BR2 - 9R,)r I er rl 2 = ......,..{ =-[ -------'II...-.---~..,......;-=--~.....__ ____ _ 
Kr + 2koKt cos(9R

2
- OR

1
) • Kr + 2koKt cos(OR

2
- OR,) 

-2ko IKr + 2koKl cos(OR'l- OR,)I- ka]} 

(8.86) 

Dividing numerator and denominator of the last equation by K~, 

(B.87) 

In this form, it is easily seen that as K 1 becomes unbounded 

(B.88) 
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Thus, as K 11 and consequently Wd, increases, IEfTI2 has an upper limit unlike Srivas

tava's coefficient. The ocean spectrum is, as before, decreasing rapidly so that the 

combined effect is that the high Doppler tails of a2T(wd) should essentially follow that 

of the S1(Kt). This concludes the explanation of the difference between a2T(wd) and 

Srivastava's corresponding monostatic model. 

As a concluding remark, it may be noted that in the 0'2R(wd) cross section com

ponent of equation (3 .134), it is readily shown that, for </Jo = 0 

Clearly, from (8.88), 

so that over the whole angle integration intervals for OR
1 

and (JR,, the tails of cr:rr(wd) 

will. in our formulation, be higher than those of 0'2R(wd) . This is really a result of the 

different approximations used in determining these two portions of the cross section 

and should not be taken to have physical significance. As was depicted in Section 

3.6.6. even though this effect is evident, the differences in the a2T(wd) and O'·.m(wd) 

are minimal. 

B.9 The Hasselmann Coupling Coefficient- Near
Forward Scattering 

The hydrodynamic coupling coefficient for deep water waves arising from Hassel

mann's [59] analysis is given in equation (3.18) as 

(B.89) 

where w1 = m 1..(91?'; and w2 = m2VYK; as in equations (3.10) and (3.94). As usual, 

m1, m2 = ±1. Also, from the scatter analysis, 

(8.90) 
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Suppose that a scatter occurs very nearly on the line joining the transmitter to the 

receiver as depicted in Figure B.la. Since for this situation, ¢o --+ 90°, 

which means that the wavelength associated with K must be approaching infinity. 

-" 

K 

::;, t ~ 
• 

T R 
(a) 

(b) 

Figure B.l: (a) indicates the geometry of near-forward scattering. (b) indicates the 
relationship of typical wave vectors of the surface components responsible for the 
scatter. 

Now, the individual waves which are capable of providing significant energy to the 

Doppler cross section must be very much shorter than this- i.e. Kt and K2 must both 

be very much greater than K. Thus, as depicted in Figure B.lb, for near-forward 

scatter, to a very good approximation, 

K1 ::::::: - K2 = Kr , say, 
Kt ::::::: K2 = Kr 1 (B.91) 

and K1 · K2 ::::::: - K'; . 
Using equation (B.91) in (B.89) along with the w1 and w2 definitions, 

Hr = ~ {Kr + Kr + m1m2(K; +I<;) (g(K + (2 + 2mtm2)Kr))} 
2 fiq g(K- (2 + 2mtm2)Kr) 
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(B.92) 

Case 1: m1m2 = +1: Using the fact that Kr >> K for the forward scattering condi-

tion. 

H f ~ ~ { 2Kr + 2Kr ( ~:;r)} 
- 0. (8.93) 

Case 2: m 1m2 = -1: Now, (B.92) becomes 

Hr ~ ~ { 2Kr- 2Kr (~ ~ ~)} 
- 0. (8.94) 

Combining Case 1 artd Case 2, it is thus established that as ¢>o - 90°' H r - 0, and 

the hydrodynamic contribution to o-2p(wd) must be negligible for forward scatter. 
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Appendix C 

Alternate Considerations of the 
Noise and Clutter Power Spectral 
Density Problem 

In Section 4.2.2, the noise power spectral density for infinitely many pulses was devel

oped using the results for a finite pulse train given in Section 4.2.1 In this appendix, 

an alternate approach is presented and is shown to lead to identical results. Some 

features of this analysis are used directly in Section 4.4 to determine the proper form 

of the transmit power spectral density to be used when calculating the received power 

spectral density for sea echo (clutter). 

C.l An Alternate Approach to the Noise Power 
Spectral Density Assuming Infinitely Many 
Pulses 

The desire is to apply the expression in equation (4.1) to a pulse radar system. It is 

considered that pulse repetition period is TL while the temporal width of the pulse is 

; 0 as depicted in Figure 4.1. The pulse train is unbounded. 
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Figure C.l : An infinitely long pulse train, with pulse width To and repetition period 
TL . 

Thus , the noise. n(t), at any time sampled by the receiving system may be charac

terized, using ( 4.1 ), as 

. L, [ h ( w' + ~) - h ( w' - ~)] el~'t eJ((w') 

(C.l) 

A power spectral density for n(t) may now be sought. Keeping in mind that the 

autocorrelation, 'R.(t1, t2 ), for n(t) is given in the usual sense by 

where N(·) is the Fourier transform of n(·), we first seek N(w)- i.e. the Fourier trans

form of n(t) in (C.l). Formally, because of the Heaviside functions in the summations 
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of (C.l), 

(C.3) 

The time integral in the transform, on changing the variable tot!= t-mTL, becomes 

[&<w'-w)~ - e-j(w'-w>!f-] 
ej(w

1
-w)mTt . ...._---~----~-

j(w'- w) 

(ei(w'-wl!f- - e-j(r.o/-w)!f] 
= Toel(w'-w)mTL . ..~o.._ --=------.----L-

2] [(w'- w) ·If} 

= Toei(w'-w)mTLSa [(w'- w) ~] (C.4) 

where Sa[·} = si~][·] . Substituting (C.4) into (C.3) leads to 

N(w) = To[, [h (w' + ~)- h (w'- ~)] ei(<w'>sa [(w' -w) ~] 

00 ~/ . L ei<w'-w)mTt SN(w')- (C.5) 
m=-oc 2tr 

Lathi [77] (Chapter l) presents the identity 

(C.6) 

where 6(·) is the Dirac delta function, Tp is a fixed period and td is time. Examining 

the summation in (C.5) in view of (C.6) and identifying td as (w'- w) and Tp as ~:, 
the form of the sum is 

f: ei<w'-w)mTt = 2tr f: 6 [(w' _ w) _ m2tr] . 
m=-oc TL m=-oo TL 

The Fourier transform in equation (C.5) is then given by 

N(w) = 
2

7rro f: ( [h (w' + 8 ) - h (w'- 8
)] eit(w') 

TL m=-oc J..1 2 2 

+• -w- m;."]JsN(w')~ ·Sa [(w' -w) ~] (C.7) 
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From (C.7) and given the usual argument that 

< eiE(w~>e-i<w2) >= { 1, w~ = w~ = w', say 
0, otherwtse, 

the autocorrelation in the integrand of equation (C.2) becomes 

21r ( To ) 
2 f: f: 1 [h (w' + ~) - h (w' - ! ) ] 

TL m=-oo n=-oo ...r - -

[ 
, m27r} l: [ , n21T] 

· 6 w - w1 - TL u w - w2 - TL 

The delta function constraint immediately requires that 

so that, using one of the delta functions to evaluate the w' integral, equation (C.8) 

may be written as 

[ ( 
m27r B) ( m27r B)] 

h WI + Tr. + 2 - h WI + TL - 2 

[ 21r] [m27rTo] · 6 WI - w2 + ( m - n) TL Sa 2Tc. 

[( 
m27r) To] ( m27r) · Sa w1 - w2 + TL 2 SN WI + TL (C.9) 

Using the inverse Fourier transform expression given in equation {C.2), the autocor

relation function is 
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1 ( To ) 21 00 00 

[ ( m27r B) - - - L L: h wl+-+-
27r TL W\ m=-oo n=-oo TL 2 

( m27r B ) ] [ To ] [ To ] -h w1 + -- - - · Sa m1r- Sa n7r-
TL 2 TL TL 

(C.10) 

where the w2 integral has been executed via the delta function of (C.9). Defining 

and setting w1 = w, this autocorrelation finally appears as 

- ·- L h w+--+- -h w+----( 
To ) 

2 
1 1 [ 00 

[ ( m21r B) ( m27r B)] 
TL 27r w m=-oo TL 2 TL 2 

(C.ll) 

The noise power spectral density, 1'N(w, t), clearly follows from the Fourier transform 

of 'R.v( T + t2, t2) as 

( 
To ) 2 

00 

{ [ ( m27r B) ( m27r B)] - L h w+--+- -h w+---
TL m=-oo TL 2 TL 2 

. f: {sa (n7rTo) t~<n-m)~t}} 
n=-oo TL 

(C.l2) 

where t = t2• Therefore, as in Section 4.2.2, the power spectral density for the noise 

appears as a time dependent quantity. 
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In order to reduce the complexity of (C.12) , an alternate form is sought for the 

second summation. To this end, it is noted that a periodic train of impulses, like that 

in Figure C.l, may be written as a Fourier series in the form 

(C.13) 

where Cn are the Fourier coefficients. These are given by 

1 ;·~ -Jn~tdtdt en=- e L ' 
TL T 

which easily gives 

Cn = ;: Sa ( n1r ;: ) . (C.l4) 

From equations (C.l3) and (C.l4) , the noise power spectral density in (C.l2) simplifies 

to 

(C.l5) 

Equation (C.l5) is identical to that for infinitely many pulses given in equation (4 .16). 

The equivalence of the two procedures is thus established. As noted earlier, some of 

the approach used here is implemented in Section 4.4 for the ocean clutter to allow a 

power spectral density for that quantity to be written down directly. 

C.2 An Estimate of the Doppler Power Spectral 
Density for Sea Echo in the Presence of Noise 

Using Pierson's model [61} of a one-dimensional stationary Gaussian process for a 

time function, f(t) , of limited bandwidth, B, {4.1) may be written as 

f(t) = ( eiw'ei•<wlJF,(w)dw 
Js 21r 

(C.l6) 
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where 
B B 

-- <w<-2- - 2 

and F9 (w} is the power spectral density of f(t). Now, 

t _ { n(t), for the noise process 
f( ) - c(t), for the clutter process 

(C.l7) 

where n(t) and c(t) are defined in equations (4.2) and (4.52), respectively, and a large 

number of pulses is assumed. Similarly, 

Fs(w) = { 'PN(w) , for the noise process 
Pc(w), for the clutter process 

(C.l8) 

and sampling at the pulse centres is assumed. 'PN(w) and Pc(w) are then given by 

equations (4.31) and (4.62}, respectively. Since PN(w) and Pc(w) are developed from 

ensemble averages using ideal conditions, they represent the "true" (i.e. best possible) 

power spectral densities of the noise and clutter. 

The integral in equation (C.l6) may be represented by the limit of a partial sum 

(61] as given by 

f(t) = (C.l9} 

Equation (C.l9} is then used to approximate a time series for the noise, n(t), and the 

clutter, c(t). The time function, s(t), representing the sum of the clutter and noise 

signals received by the pulsed radar system is simply 

s(t) = c(t) + n(t) . (C.20) 

The signal, s(t), may be fast-Fourier-transformed (FFT) using any suitable algorithm 

(eg. , the nfft(·) function from MATLAB [90] was used for the plots in Section 4.5.3). 

The magnitude-squared of FFT algorithm is a normalized estimate of the power 

spectral density, S(f), and may be divided by the time series "length" to give the 

proper units of W /Hz. This is the so.called periodogram or sample spectrum. 
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