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Abstract 

Precipitation of calcium carbonate from supersaturated solutions of CaC~ with 

K2C03, N~C03 and (NH4) 2(C03) was studied in detail. In the course of our studies on the 

natural and synthetic vaterite forms of calcium carbonate, it has been possible to prepare, 

isolate and characterize the calcite, vaterite and aragonite forms of CaC03, as weU as the 

hydrates, CaC03·6H20 and CaC03·lH20. The precipitation reactions were found to be 

unexpectedly compte~ with a number of different possible products. This is in contrast to the 

fact that calcite is the only thermodynamically stable solid in equilibrium with the saturated 

solution under ambient conditions. 

The existence of each fonn was confirmed by various analytical and spectroscopic 

techniques. The crystalline forms, calcite, vaterite and aragonite, were characterized by such 

methods as differential scanning calorimetry (DSC), micro-Raman spectroscopy, Fourier

transform infrared spectroscopy (FT -IR), scanning electron microscopy (SEM), 

thermogravimetry with evolved gas analysis (TG-EGA) and powder X-ray diffraction (XRD), 

whereas the hydrated forms, CaC03 ·6H20 and CaC03 ·l H20, were only characterized by DSC 

and Raman. It was also found that the various forms could be distinguished visually by the 

appearance of the solutions upon mixing and by the crystal habits observed under the 

microscope. 

Optimum precipitation conditions were detennined for the formation of each 
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polycrystalline fonn. The tendency for the metastable phases to precipitate from various 

aqueous, supersaturated solutions was dependent upon factors such as the temperature, 

concentration of reactants, duration of precipitation, as weU as the stirring rate. However, it 

has been determined through the course of several repeated experiments that these kinetically

controlled precipitations were mainly dependent upon the temperature and the initial 

concentrations of the reactants. 

Raman and infrared spectroscopic studies of natural and synthetic vaterite indicate an 

extremely complicated crystal structure in which the carbonate ions appear to occupy a 

number of different crystallographic sites. The spectroscopic results are consistent with the 

structure reported by Meyer (1969). However, we suggest that the disordered stacking 

sequence is not random over the 12 carbonates of the unit cell. but rather follows a pattern 

characteristic to that of an incommensurate phase. A detailed unit ceU group analysis was not 

possible because the vibrational spectrum is further complicated by intermolecular coupling 

of carbonate ions on different lattice sites. Raman and infrared spectra for the regions of the 

internal modes of the carbonate ions indicate that the different sites fall into three major 

groups with differing occupancies. For example, in the v 1 region, three peaks were observed 

at 1 075 .0, 1081.4 and 1 090.9 cm·1 with relative intensities 0.40:0.19: 1.00. These multiple site 

effects were confinned by studies of 180 and 13C carbonate impurities. It would appear that 

the vaterite structure is similar to the incommensurate phase of y-Ne!:!C03• Trace amounts 

of water were detected in the freshly prepared vaterite, but are not believed to be necessary 

for kinetic stability. Laser fluorescence measurements were also employed to estimate the 
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concentration of manganese(ll) impurities in the precipitates. 

This research has permitted clarification of previous studies and has led to a more in

depth understanding of the mechanism of metastable crystal growth. 
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Chapter 1 

Introduction 

Calcium carbonate is a very commo~ but important mineral. It is the principle 

chemical component of limestone and exists in small amounts in most rocks. Surface CaC03 

is one of the more dynamic minerals since it dissolves and reforms in normal weathering 

reactions. Different polymorphic modifications are fonned naturally as the minerals vaterite 

and aragonite, as well various hydrates may precipitate under appropriate conditions 

(Blackburn and Denne~ 1994; Putnis, 1992). With the ever increasing levels ofC02 in the 

atmosphere, there is the hope that CaC03 may act as a natural sink to immobilize atmospheric 

C02 (Maciejewski eta/., 1994). Formation ofCaC03 by living organisms is a major source 

of calcite and aragonite forms of limestone. Calcium carbonate in different modifications has 

been identified in human gallston~ otoconia of sharks, otoliths of fish, avian eggsheUs and 

mollusk shells (Chakraborty et al., 1994; Gauldie, 1993; Gauldie1
, 1996; Gauldie2

, 1996; 

Gauldie et al., 1997; Nassrallah-Aboukais et a/., 1998). The commercial importance of 

CaC03 is also well-known as it is a basic raw material in the manufacture of paints, textiles, 

rubbers, mortars and concretes (Chakraborty et al., 1994). In industrial boilers and water 

cooling systems, the deposition of CaC03, conunonly known as scale formatio~ leads to 

decreased system efficiencies and an increased need for the frequency of chemical cleaning 

(Brooks eta!., 1950; Simpson, 1998). In order to achieve effective scale inhibition, chemical 
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additives are required and considerable research bas to be undertaken to elucidate the 

mechanism of the formation, growth and stability of the various forms ofCaC03• 

In the present wor~ the solubility, precipitation and stability of the several forms of 

calcium carbonate were investigated. The DSC analyses and vibrational spectra of the hydrates 

encountered in the precipitation reactions were also studied, as well as a detailed 

spectroscopic analysis of vaterite. 

1.1 The Phases of Calcium Carbonate aad its Hydrates 

Calcium carbonate exhibits polymorphism. At ordinary temperatures and pressures, 

it occurs in three distinct, anhydrous crystalline forms. The two most well-known forms are 

calcite and aragonite, but there is also a less common form known as vaterite, or J1-CaC03• 

All three exist in nature as naturally occurring minerals, but calcite and aragonite have 

received much more extensive research than has vaterite. Even though vaterite has been 

c Iassified as a distinct form of calcium carbonate that is easily prepared in the laboratory, there 

is little information available on the factors governing its precipitation in pure fo~ without 

calcite impurities (Maciejewski et al., 1994). 

At temperatures near 0 °C, calcium carbonate hexahydrate occurs in the form of well

defined hexagonal crystals. For CaC03·6H20, information on its properties has already been 

established in the literature such as the crystallographic data (Johnston eta/., 1916), powder 

X-ray diffraction pattern (Brooks et al., 1950) and the density (Mackenzie, 1923). 

Calcium carbonate monohydrate, or amorphous calcium carbonate {Brooks et al., 

1950), exists at temperatures below 25 °C and occurs in the form of relatively distorted 
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hexagonal crystals. Even though the X-ray powder pattern (Brooks et al., 1950) has already 

been determined, there is still much confusion as to the crystal structure and properties. 

Two other possible hydrates, CaC03 • 5H20, or hydrocalcite, and CaC03• 3H20, or sub

hydrocalcite, have been proposed (Copisarow, 1923), but no microscopic or visible evidence, 

or spectroscopic or X-ray data were reported. 

1.2 Problems with tbe Preparation and Analysis oftbe Several Forms 

A number of methods for the preparation ofthe various forms of calcium carbonate 

have been proposed. Some methods involved the addition of chemical reagents such as calgon 

(Brooks et al .• 1951 ), a glassy fonn of sodium phosphate, while others involved the addition 

of compounds such as KOH, MgC~·6H20 and NaCI (Johnston eta/., 1916), HCl and NaOH 

(Kralj et a/., 1997), sucrose (Mackenzie, 1923) and amino or carboxyl group organic 

derivatives (Matsushita eta/., 1996). Unfortunately, these methods tended to be unreliable 

and have led to inconsistent results because of the complexity caused by the effects of 

additives on the precipitation process. 

The fonn ofCaC03 that precipitates from aqueous solutions ofCa2 ... and C03
2" ions 

depends on many factors. Not only are the temperature, pressure and concentrations of the 

reactants important, but there are other contnbuting factors such as the stirring rate, Oswald 

ripening and filtration speed, absorbed and trapped surface impurities, and humidity. The form 

that precipitates initially is detennined by the first crystal to nucleate. Therefore, the formation 

of each nucleus will be determined by a set of unique parameters from those listed above. 

The inconsistency and unreliability of these methods is also evident in the analysis of 
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the calcium carbonate forms. In particular, the XRD patterns of vaterite obtained by these 

methods had been very difficult to analyse because the diffiaction peaks of impurities, such 

as calcite (Perle et al., 1996) and calgon (Brooks eta/., 1950), have appeared along with the 

di.tlraction peaks of the vaterite. 

In the majority of experiments, large crystals are preferred. However, the size of the 

precipitated crystal is dependent upon the degree of supersaturation at the time precipitation 

begins. The greater the extent of supersaturation the smaller the crystals. Consequently, the 

concentrations of the reactants, Oswald ripening and filtration speed and stirring rate can 

affect the size of the resulting crystals. This problem of the formation of small crystals is 

evident in the isolation of vaterite. In order to obtain vaterite in pure foi'ITl, without other 

calcium carbonate phase impurities, the precipitation must be relatively fast because the longer 

the vaterite nuclei are in contact with the aqueous medium, then the greater is the probability 

of obtaining unwanted nuclei such as calcite. Growth ofvaterite crystals of sufficient size for 

single crystal X·ray analysis is experimentally precluded. 

As a result of the inconsistent results reported, it is evident that reliable methods of 

preparation need to be established, together with an assessment of the factors that affect the 

precipitation of each phase of calcium carbonate in relatively pure form. 

1.3 Advances in Spectroscopic Techniques as Related to Vaterite 

Raman and infrared spectroscopic studies are very useful in the analysis of alkaline 

earth metal carbonates because the carbonate ion is able to serve as a very sensitive probe for 

the nature of the various cationic environments. From previous studies of the different CaC03 

4 



phases, it has been observed that the carbonate ion is uniquely perturbed by the different 

cationic environments and different cation coordination numbers. As a consequence of this 

perturbation, the vibrational bands of the free carbonate ion were found to be shifted and/or 

broadened, the degeneracy of the doubly-degenerate E' modes lifted and bands of other non-

degenerate modes often showed multi-peak and/or asymmetric features. 

Raman and infrared are complementary methods used to obtain the vibrational 

frequencies of normal modes of molecules and crystals. The selection rules are different 

because Raman activity is dependent on the change in the polarizability of the molecule 
,. 

(a a I a qi ), while infrared activity is dependent on the change in the dipole moment 
-+ 

(a ll I a qi ). These differences are weU-descn"bed in many texts (Farmer, 1974; Iqbal, 1984; 

Laserna, 1996; TurrelL 1972). In the majority of instances. the use of Raman spectroscopy 

is now preferred over the use of infrared for several reasons. Raman-active bands tend to be 

narrower than those in the infrared. Raman microprobe spectrometers permit the collection 

of spectra faster than with FT -IR spectrometers. which proved to be essential in the 

determination and identification of the relatively short-lived metastable forms observed in this 

work. Raman spectroscopy is also a non-destructive technique that permits collection of 

spectra from samples that have been sealed in glass vessels such as capillary tubes, thus 

preventing air sensitive compounds from decomposing. 

Advances in optical Raman microscopy now permit its use as a complementary too~ 

along with other spectroscopic and microscopic techniques. for the identification and 

determination of materials in their different phases from precipitation reactions. Stable and 
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metastable forms may be differentiated by simply comparing the characteristic spectra from 

each phase, and information such as the kinetic and structural properties of each 

polycrystalline form may also be deduced from the spectra. 

In the past~ spectroscopic studies on vaterite have been inconclusive and confusion 

exists as to the assignment of the vibrational bands. For example, in the v1 region ofvaterite. 

it has been suggested that the observed doublet is either due to correlation field splitting 

effects (Anderso~ 1996) or multiple site effects (Behrens eta/., 1995), but neither group was 

able to provide spectroscopic evidence to support their assignments. Recent advances in 

Raman spectroscopic techniques have made it possible to reinvestigate this system with much 

higher signal-to-noise to clarify the assignments of the vibrational spectra ofvaterite. 

1.4 The Possible ln~ommensurate Phase of Calcium Carbonate 

Raman and infrared spectroscopic studies of natural and synthetic vaterite indicate an 

extremely complicated crystal structure where it appears the carbonate ions occupy a number 

of crystallographically distinct sites. The structure reported by Meyer ( 1969), an extension 

ofKamhi·s research (1963), appears to be consistent with the work presented in this paper. 

but with our suggestion that the disordered stacking sequence is not random over the 12 

carbonate sites, but rather follows that of an incommensurate phase similar to that of y

N~C03. 

An inconunensurate phase is one in which there is a superposition of two independent 

periodicities with the ratio of the periods usually an irrational number, with the result that 

there is no simple relationship between the incommensurate phase and some normal phase of 
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the compound (Levanyuk, 1986). The ratio of the periods cannot be expressed as a simple 

ratio of two integers because the periods are not fixed, but rather are continuously dependent 

on temperature and other external conditions (Section 4.6). 
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Cbapter2 

Experimental 

Solutions ofCaC~ (Baker·analysed reagent, 95.5% assay), K2C03 (BDH Chemicals 

analytical reagent, 99.9% assay)~ N~C03 (Mallinckrodt analytical reagent) and (NH4) 2C03 

(Aldrich Chemical Company) were prepared with nanopure water of high quality. These 

solutions were purified by adding charcoal activated powder (American Chemicals, Ltd.) and 

were filtered through a fine# 5 Whatman filter paper. Ammonium carbonate was the usual 

choice as the source ofC03 
2
• ions except for in the 180 study ofvaterite where N~C03 was 

used. 

All of the resulting precipitates were collected using a suction fihration apparatus 

equipped with a# 2 qualitative medium speed filter paper. The crystals were washed with 

high quality, nanopure water, anhydrous ethanol (Commercial Alcohols, Inc.) and acetone 

(Caledon, 99.5% assay). All of the reagents used in the washing procedure were cooled in 

an ice-water bath before addition to the precipitates. For vaterite and CaC03·6H20, rapid 

filtration was essential because the stability depended on minimal water contact. It was also 

important to maintain the CaCl2 and (NH4) 2C03 solutions at the required temperatures before 

and during the precipitation. Furthermore, the crystals were constantly spread out evenly over 

the filter paper to allow the maximum area for surface washing. 
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2.1 The Preparation of CaCOJ·6H20 

Calcium carbonate hexahydrate crystals were prepared by adding 2 mL of a 1.0 M 

solution ofCaC12 to 2 mL of a 1.0 M solutionof(NH4) 2C03• Using a 1 mL syringe and under 

vigorous stirring conditions, the addition rate of the CaCl2 solution was 1 drop every 2·3 

seconds at temperatures below 3 °C. The resulting suspension was milk-like. The suspension 

was then immediately filtered. The washing consisted of three quick 5 mL washes with water 

and three 1 0 mL washes with each of ethanol and acetone. After the washes were completed. 

the CaC03 ·6H20 crystals remained under suction for an additional 5 minutes to ensure the 

removal of all of the water, ethanol and acetone. 

2.2 The Preparation of CaCOJ· I H20 

Impure calcium carbonate monohydrate crystals were prepared by adding 1 mL of a 

1.5 M solutionofCaC12 to 2 mL ofa2.0 M solutionof(NH4) 2C03• Using a 1 mL syringe and 

under vigorous stirring conditions, the addition rate of the CaC12 solution was 1 drop every 

2-3 seconds at a temperature between 3-10 °C. The resuhing thixotropic suspension was 

immediately filtered. The washes were the same as for CaC03·6H20, but with the only 

exception that the suction was broken upon the addition of wash water. The CaC03·1H20 

crystals were also kept under suction for an additional 5 minutes to dry. 

The above procedure resuhed in mainly calcium carbonate roonohydrate, but with 

varying amounts of calcite and vaterite impurities. However, pure CaC03 ·1 H20 crystals were 

produced by dehydration ofCaC03·6H20 at a temperature of 120 °C for 1 hour. 
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2.3 The Preparation of Calcite 

Calcite crystals were prepared by adding l mL of a 1.5 M solution ofCaCI2 to 2 mL 

of a 2.0 M solution of(NH4hC03• Using a l mL syringe and under relatively slow stirring 

conditions, the addition rate of the CaCI2 solution was 1 drop every 5-6 seconds at a 

temperature between 1 5-25 °C. The resulting milk-like suspension was allowed to stand for 

24 hours. The remainder of the procedure was the same as for the first preparation of 

CaC03·1H:P· 

2.4 The Preparation of Vaterite 

Vaterite crystals were prepared by adding 1 mL of a 1.5 M solution ofCaC~ to 2 mL 

of a 2.0 M solution of (NfL)2C03• Using a l mL syringe and under vigorous stirring 

conditions. the addition rate of the CaC12 solution was 1 drop every 2-3 seconds at a 

temperature between 25-40 °C. The resulting milk-like suspension was immediately filtered. 

The remainder of the procedure was the same as for CaC03·6H20. 

In the 180 study of vaterite, a sample of 180-enriched vaterite was prepared. The 

procedure was the same as above except for the fact that 12 mol% of70% 180-enriched 

NazC03 was added to the initial natural NazC03 solution. The vaterite crystals prepared in this 

manner were approximately 8 % 180-enriched. 

2.5 The Preparation of Angoaite 

Aragonite crystals were prepared by adding 2 mL of a 1.0 M solution of CaCl2 to 2 

mL of a 1.0 M solution of (NH4) 2C03• Using a l mL syringe and under vigorous stirring 

conditions. the addition rate of the CaC12 solution was l drop every 2-3 seconds at a 
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temperature between 60-90 °C. The resulting milk-like suspension was immediately fihered. 

The remainder of the procedure was the same as for vaterite. 

2.6 Raman Spectroscopic Measurements 

The Raman equipment was a Renishaw Raman imaging microscope (System 1000) 

consisting of a single spectrograph (0.25 m focal length) containing a holographic grating 

( 1800 grooves/nun) and a notch fiher, an Olympus BH-2 microscope equipped with lOx., 20x 

and SOx objective lenses, and a Peltier-cooled CCD detector ( 600 x 400 pixels). The majority 

of samples were excited with 514.5 nm radiation from a 35 mW air-cooled argon ion laser 

(Spectra-Physics, Model#: 163-A42) and the laser beam was focussed on the sample by a 

SOx objective lens to give a spot size of ca. 1 tJm. The spectral resolution was about 2 em·•. 

In order to obtain the low wavenumber spectral range, samples were also studied with the 

632.8 nm excitation line from a 12 mW air-cooled He-Ne laser (Jodon Laser, Model#: HN-

20X) because of the difference in sensitivity between the two notch filters. All the samples 

were studied on a microscope slide immediately after preparation. The exposure times ranged 

from 30 to 200 seconds and the accumulations were between 1 and 30 depending on the 

signal-to-noise ratios (SIN) and on the scattering quality of the sample. 

Curve resolving was performed with Galactica Grams/386 and Jandel Scientific Sigma 

Plot 2.0 software for the purpose of determining the nwnber of components contained in each 

region, as well as their respective frequencies and full widths at half height (FWHH). A 

Gaussian-Lorentzian line shape was assumed in all the curve analyses. 

The effect of temperature on the Raman spectrum ofvaterite was investigated using 

11 



a Coderg PHO Raman spectrometer with the standard 90° scattering geometry. The 488.0 

nm line of the argon ion laser was used as the source of excitation with a power level of about 

300 mW. The slits were 0.25 cm·1
, the scanning rate was 10 cm-1/minute and eight data points 

were collected per wavenumber. The scattering light was detected by a photo-multiplier tube 

(PMT) cooled to -20 °C. The sample was placed in a capillary tube and cooled to 77 K on the 

cold finger of a liquid nitrogen vacuum glass cryostat. 

Raman spectra were cahbrated with the Hg emission line from a mercury lamp ( 1122.7 

cm" 1
) and solid silicon (520.2 cm·1

). 

2. 7 Infrared Spedroscopic Measurements 

For infrared analysis, each sample was ground with KBr to a sufficiently fine powder 

using a mortar and pestle in a MBraun Lab Master 130 nitrogen glove box (Model #: MB-

130-BG) to give spectra with relatively symmetrical absorption bands, minimally distorted by 

the Christiansen filter effect (Brooker, 1992). All measurements were made as pellets with 

a KBr diluent (ca. 290 mg of spectroscopically pure, infrared grade KBr (Fisher Scientific) 

+ 4 mg sample) that was first dried at 135 °C for 1 hour. The mixtures were then pressed at 

reduced pressure using a K.Br Die MK3 (Research and Industrial Instnunents Company) and 

a hydraulic press (Fred S. Carver Inc., Model #: 19205-25) to a maximum pressure of ca. 

15.000 pounds per square inch. 

Absorbance spectra of the anhydrous carbonate samples were collected over the 

spectral range 4000-500 em·', at 2 em·' spectral resolution, using a Mattson Polaris IT-IR 

spectrometer. The number of accumulations for both sample and background scans was set 
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at 32. 

As was the case with the Raman spec~ curve resolving was performed on the 

infrared spectra with Galactica Grams/386 and Jandel Scientific Sigma Plot 2.0 software for 

the purpose of determining the number of components contained in each regio~ as well as 

their respective frequencies and full widths at half height. A Gaussian-Lorentzian line shape 

was assumed in all curve analyses. 

Infrared spectra were calibrated with an infrared-active vibration of C02 which is 

observed in the infrared at ca. 667.8 cm·1
• 

2.8 Morphological Investigations 

For the scanning electron microscopic imaging, each sample was suspended in 

absolute ethanol and then mounted on an Al metal stub. After drying at room temperature. 

the samples were coated with gold using an Edwards S 150A sputter coater equipped with an 

argon gas supply for purging purposes. 

The majority of the morphological studies of the calcium carbonate phases were 

carried out with a Hitachi 8570 scanning electron microscope operating at an accelerating 

voltage of20 keY. Micrographs were produced by secondary electrons. The microscopic 

working distances ranged between 1 S and 23 mm, with magnifications up to ll,OOOx. 

depending on the height and quality of the cry~ as well on the efficiency of the gold

coating. 

Scanning electron micrographs of the solids in their different phases were recorded 

on a Polaroid type 665 positive/negative film using a Polaroid camera which was attached to 
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the scanning electron microscope. 

The remainder of the morphological studies were carried out with a Sony CCD-IRIS 

colour video camera (Model#: 111048), a Sony camera adaptor CMA-02 and a Play Inc. 

Snappy 3.0 image capturing device which were coupled to the Renisbaw Raman imaging 

microscope assembly. The ranges for the microscope working distances and magnifications 

were 1 to 7 mm and 50 to lOx respectively. 

2.9 Thermoanalytical Measuremeats 

Phase transformations were followed by differential scanning calorimetry (DSC). The 

DSC analyses were carried out under non-isothermal conditions in a nitrogen flow with a 

Seiko Instruments SSC5300 DSC thermal analysis system. The measurements were 

performed in the temperature interval from 295 to 823 K, with heating rates of 10 and 20 

Klmin. and a sampling rate of 1 point/second. The rate of nitrogen flow was 100 crrt/min and 

the masses of the samples ranged from 1.69 to 17.29 mg. The temperature was limited to 823 

K by the characteristics of the aluminum sample holder pans. 

The vaterite samples were also analysed using thermogravimetry with evolved gas 

analysis (TG-EGA). The instrument used was a TG Plus consisting of a Dupont 900 

thermogravimeter (TG) connected to a BO"MEM MB100 interferometer (Ff-IR) via a 16-

pass gas cell. The vaterite samples were heated from 303 to 11 73 K with heating rates of 10 

and 20 Klminute. Gases released (i.e. CO, C02 and H20) from the vaterite samples being 

heated in the TG were swept into the gas cell by the heliwn purge gas flowing at 882 

mL/minute. During the scans, infrared spectra of these gases were taken every 0.3 minutes 
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with the weight of the vaterite sample and the temperature being constantly monitored and 

recorded. Results are expressed as a percentage of the initial sample weight. 

2.10 Structural Investigations 

Vaterite samples for X-ray diffiaction (XRD) studies were mixed with Si-metal 

standard and lightly crushed in a mortar and pestle with a sample to silicon mixture ratio of 

80:20. The mixtures were then immersed in acetone, spread on a glass slide and then allowed 

to dry for ca. 24 hours. 

Powder XRD patterns of the solids were coUected using a Rigaku RU -200 automated 

diffractometer using Cu-Ka radiation generated with an accelerating voltage of 40 keV and 

a filament current of 100 rnA. 
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Cbapter3 

Theory 

The formation and transformation of minerals is a complex and important aspect of 

geochemistry. The understanding of these changes requires an in-depth appreciation of the 

structure of the reactants and products. Minerals represent a collection of atoms whose 

aggregation depends on factors such as the composition, pressure and temperature of the 

natural environment in which they were formed (Putnis, 1992). 

3.1 Phase Transformations 

Many materials can exist with different crystal structures under different conditions. 

It is often possible to convert between these phases. Phase transitions can be classified or 

described on a number of different criteria and these have been reviewed by a number of 

authors (Visintin, 1996; Brooker and Wang, 1993; Bruce and Cowley, 1981; Levy eta/., 

1982). 

3.1.1 Thermodyaamic/Ma&:roscopi&: Concepts: Transformation Orden 

Thermodynamically, phase transformations are characterized by their order. The order 

of the transformation is defined by the order of the derivative of the Gibbs free energy (G) 

that displays a discontinuity. There are three major kindsoftransformationorders: first-order. 

second-order and lambda-order. 
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3.1.1.1 First·Onler Tnasformatioas 

At a particular temperature and pressure at which a phase transformation occ~ the 

free energies of the two polymorphs are equal. Consequently, there will be no discontinuity 

in the free energy on passing from one form to the other. However, in first.arder 

transformations the first derivatives ofG, (aG/anP and (aG/aPh, exhibit discontinuities. 

Since. 

(3.1) 

and 

(3.2) 

first-order transformations are characterized by discontinuities in the entropy (S) and the 

molar volume (V) at the transformation temperature. Similarly. there is a discontinuity in the 

enthalpy (H), since. at the transformation temperature, Cp approaches infinity due to the heat 

used to convert one phase to the other (i.e. latent heat) (Blackburn and Dennen, 1994; Laidler 

and Meiser, 1995; Putnis, 1992). 

3.1.1.2 Secoad-Order Tnnsformatioas 

In second-order transformations, G and its first derivatives are continuous, but its 

second derivatives, 

(3.3) 
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(&GtaTaP) = V[(IN)(av/Of)p] = va. = (avtanp (3.5) 

aU exhibit discontinuities across the transformation. SD:e the enthalpy change is continuous 

there is no latent heat associated with second-order phase transformatio~ a point of 

difference from first-order phase transformations (Blackburn and Dennen. 1994; Laidler and 

Meiser, 1995; Putnis, 1992; Yukhnovskii, 1987). 

Second-order phase transformations are usually difficult to establish and are often 

described as A-transitions (Brooker and Wang, 1993). 

3.1.1.3 Lambda-Order Transformations 

Lambda-order transformations are characterized by the shape of the Cp-versus-T 

curve which resembles the Greek letter A. In these types of transformations. Cp approaches 

infinity at the transformation temperature, which is conunonly referred to as the lambda-point 

temperature (T l.)· The area under the Cp-versus-T curve (i.e. the enthalpy) is a finite value and 

hence, is a continuous function. Even though there is no true latent heat~ the change in the 

enthalpy is defined as the &H of the transformation. The molar volume is also continuous at 

T,., but its slope ( av /aT)p is infinite at this temperature (Blackburn and Dennen, 1994; Laidler 

and Meiser, 1995; Putnis, 1992). 

3.1.2 Structural/Mi~roscopie Considerations 

Polymorphism can also be discussed in tenns of differences in crystal structures. 

Crystal structures for many different phases of the same chemical compound have been 

established by X-ray diffraction patterns (WeDs, 1975). The rate of change from one 

polymorph to another may be very slow or extremely rapid, depending on the degree of 
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reconstruction of the structure. 

3.1.2.1 Displacive Phase Transformations 

Displacive phase transformations involve slight displacements of the structural units 

in such a way as to change the symmetry, without disrupting any of the chemical bonds. 

Thermodynamically, these transitions may be first-order or second-order. Under a unique set 

of physical conditions, the transformation tends to be rapid due to the relatively low activation 

energy barrier. This relatively low activation energy barrier reflects only the energy required 

to rotate the bond angles and is indicative of the relatively small energy difference between 

the two polymorphs. As a result, displacive transformations are generally faster than 

reconstructive transformations (Section 3.1.2.2) (Blackburn and Dennen. 1994; Bruce and 

Cowley, 1981; Putnis, 1992). The cx-P phase transformation in cristobalite is an example of 

a displacive phase transformation where the Si-0-Si bond angle merely undergoes a slight 

rotational displacement (Schmahl et al., 1992). 

3.1.2.2 Reconstructive Phase Transformations 

Reconstructive phase transformations involve two major processes. The initial process 

is one of bond breaking which is followed by bond formation and reconstruction. 

Thermodynamically, these transitions are always first-order and result in large discontinuities 

in the enthalpy, entropy and roolar volume. In the majority of cases, they require the presence 

of a catalyst because the two polymorphic fonns are separated by a relatively large activation 

energy barrier. This activation energy barrier is relatively high because it reflects the energy 

required to break the specific bonds and, as a consequence, these transformations are 
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kinetically slower than displacive phase transformations (Adams, 1974; Blackburn and 

Denne~ 1994; Putnis, 1992). The aragonite-calcite phase transformation in the CaC03 

system is an example of a reconstructive phase transformations since bonds between the Ca2
-

and C032
- ions are broken and then reformed (Blackburn and Dennen, 1994). 

3.1.2.3 Order-Disorder Phase Transformations 

Order·disorder phase transformations involve the transition from an ordered state to 

a disordered state (Sections 3.2.1.1 and 3.2.1.2 respectively). Order-disorder phase 

transformations may either be sluggish or rapid depending on whether the disorder is 

substitutional, as in the Si and Al substitution in sanidine (Blackburn and Dennen, 1994 ), or 

orientational. as is the case ofNaN03 (Adams, 1974). Thennodynamically, these types of 

transformations may be first-order or second-order (Bruce and Cowley, 1981; Laidler and 

Meiser, 1995). 

3.1.3 Kinetic Theory of Phase Transformations 

A complex mineral may fail to transform to the thermodynamically most stable state 

and it may undergo a structurally easier transformation to some intermediate metastable 

phase. Although not thermodynamically stable under the given set of conditions, the 

metastable phase may be kinetically more accessible. The persistence of metastable phases and 

their preservation over geological time is a consequence of the sluggish kinetics of such 

phases under ambient conditions. Metastable phases are often formed from quenching 

processes (Schmahl eta/., 1992). 
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3.1.3.1 Thermodynamics of Metastable Phases 

The intennediate states through which a system passes during its transformation are 

of particular importance because the kinetics are not solely governed by the changes in the 

Gibbs free energy (i.e. ~G). 

When a system passes from an initial, metastable state to a final, thermodynamically 

more stable state which has a lower free energy, it passes through an activated transition 

complex and/or an intermediate state (Figure 3.1). The driving force for the transformation 

is the reduction in the free energy, but in order to initially achieve this state the system must 

first overcome 40., the free energy of activation. 

The free energy of activation depends on the pathway of the reaction, with the lowest 

.1Ga being favoured. In order for a transformation to occur at an appreciable rate, it is 

necessary that a sufficient number of atoms have enough energy to reach the transition 

maximum. At any temperature above 0 ~ the vibrations of the atoms about their structural 

sites provide a large contnbution to the energy of the system. Thermal motions result in 

relatively large differences in the instantaneous positions of individual atoms. The end result 

is that some of these atoms will have sufficient energy to overcome the activation energy 

barrier and jump to another site. 

The concept of an activation energy barrier is very useful in a qualitative explanation 

of a number of aspects encountered in mineral reactions. It accounts for the persistence of 

metastable states when insufficient energy is available to initiate the transformation. It shows 

the effects of addition of catalysts on the value of 4G. for a particular reaction. That is, a 
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catalyst provides an alternate reaction mechanism which effectively lowers the activation 

energy barrier. Finally, it helps to explain the slow rate of many transformations due to the 

small number of atoms, at any one time, with sufficient free energy to overcome the ~G. 

barrier (Laidler and Meiser, 1995; Putnis, 1992). 

3.1.3.2 Precipitation of Metastable Phases 

Metastable solids can form from aqueous solutions. The CaC03 precipitation system 

represents an excellent example (Kralj eta/., 1997). The product of precipitation of calcium 

carbonate is dependent upon two processes, nucleation and crystal growth (Tarits et al., 

1990). The nucleation process is controlled by the supersaturation state of the solution (S) 

which determines the resulting precipitation species. The supersaturation state is expressed 

as the saturation ratio (Kralj et a/., 1997), 

S = Q/~P = ([Ca2 .. )·[CO/']·y2/~P)"'• (3.6) 

where Q is the supersaturation activity product, Ksp is the solubility product of calcite and 

y is the mean activity coefficient of the divalent ions. In these particular systems, the 

precipitation from aqueous solutions can lead to the production and isolation of a number of 

different solid phases. In the majority of cases, kinetic factors govem and even dominate, the 

precipitation processes. As a result, thermodynamically metastable phases are produced which 

have thermodynamic properties that are associated with slight differences in solubility under 

a given set of conditions. 

Metastable phases can be differentiated by their slight differences in solubility and their 

occurrence can be explained with Ostwald's Law of Stages (Brooks et al., 1951; Kralj eta/., 
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1997). According to this law, a metastable precipitate will subsequently transform to the more 

stable form given sufficient time. There are two possible mechanisms by which the 

transformation from the less stable phase to the more stable phase will take place: solid-state 

transformation or solution-mediated transformation (Kralj et a/., 1997). In a solid-state 

transformation, the crystal structure undergoes internal rearrangement. However. in a 

solution-mediated transformation, there is an initial dissolution of the unstable solid phase 

which eventually leads to the nucleation and crystal growth of a more stable modification for 

the given conditions. 

In the calcium carbonate precipitation system, when the solubility quotient 

a ~. ·a ,_ has reached K-'-'--, then calcite will begin to precipitate from aqueous solutions. ca- COJ- ...,.;no:: 

but only if there are nuclei of calcite present or some isomorphous species, such as MgC03, 

which exhibits the same crystal structure. However, in the absence of a proper nucleating site. 

the solubility quotient will continue to increase until a value characteristic of one or more of 

the other unstable phases is reached. Hence, it would be possible to simultaneously attain any. 

or all, of the phases which exhibit a solubility quotient equal to, or lower, than the solubility 

quotient present at the time precipitation occurs (Johnston et a/., 1916). Once dry the 

metastable solids may exist for a long period of time. 

3.1.4 Experimental Methods Used to Study Phase Transformations 

The differences in bonding, chemistry and structure between the initial and final forms 

of a structural phase transformation allow for easy detection with a variety of techniques. 

These techniques may include thermal investigations such as DSC and TG-EGA (Maciejewski 
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eta/., 1994; Perle eta/., 1996), spectroscopic studies such as Raman and FT -IR (Farmer, 

1974; Lasema., 1996), and diffiaction studies such as SEM and powder XRD (Ladd and 

Palmer, 1993; Stout and Jensen, 1968). A number of electrical and visual methods which rely 

on changes to mechanical properties (i.e. conductivity, dielectric constant, dilatometry, etc.) 

have also been used (Hume, 1925; Johnston eta/., 1916; Mackenzie, 1923). 

3.1.4.1 Thermal Investigations 

The heat capacity of a sample can be measured directly with a calorimeter along with 

thermodynamic properties such as the enthalpy and entropy changes. In our studies, the 

choice was DSC. 

3.1.4.2 Spectroscopic Studies 

The interatomic forces between bonded atoms determine the exact frequency of the 

individual vibrations. In principle, every phase of every compound will have a different set of 

vibrational frequencies. 

3.1.4.3 Diffraction Studies 

As is the case with spectroscopic studies, crystals of different phases of a system \\<ill 

have unique diffiaction patterns because of differences in atomic positions. 

3.1.4.4 Mechanical Methods 

Phase transfonnations are often accompanied by slight differences in appearances and 

densities. The variations in appearance can be distinguished by optical microscopy. The 

density changes can be measured directly by dilatometry and often indirectly by conductivity. 
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3.2 Crystal Structures 

The atoms of a crystal are held in fixed positions by chemical bonds. The grouping of 

atoms in a regular pattern along with their bonding arrangements in 3-dimensional space. 

constitutes the crystalline structure, and the geometrical framework which relates the elements 

within the structure is termed the lattice (Adams, 1974). These positions are generally sites 

of regular pattern and spacing. However, thermal agitation, as well as rapid nucleation and 

crystal growth, result in the random occupancies of some sites by certain atoms. This leads 

to patterns of irregularity. There are three major types of crystal structures: ordered, 

disordered and incommensurate. 

3.2.1 Ordered Crystals 

Ordered phases exhibit perfect 3-dimensional translational periodicity and the regular 

pattern of the atoms provide the lowest free energy for the structure. 

3.2.2 Disordered Crystals 

Disordered phases partially, or completely, lack translational symmetry because ofthe 

irregular arrangement of the ions and vacancies within the structure. A structure exhibiting 

completely random arrangements is considered to be amorphous or glass-like (Brooker and 

Papatheodorou, 1983), and all intermediate stages between complete order and complete 

disorder are possible. There are two different types of disorder: dynamic and static (Adams, 

1974). Dynamic disorder is dependent upon the motions oftbe ions. That is, the atoms move 

among different lattice sites. Static disorder is solely dependent upon the equilibrium positions 

of atoms. That is, the atoms can randomly occupy two or more similar lattice sites. 
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3.2.3 Incommensurate Crystals 

In recent years, a new type of disorder has been recognized and crystals with this type 

of disorder are classified as incommensurate. The literal meaning is "not in proportion to". 

This name has been chosen because there are two independent periodicities of translational 

symmetry. the ratio of which is not a rational number. A more detailed description of the 

incommensurate phase will be presented since the concept is relatively new. Furthermore, it 

will be shown that this type of phase may explain the unusual features found in the Raman, 

infrared and X-ray diffraction spectra for vaterite. 

In most cases, the atomic position is chosen as the local property which is modulated 

with a particular periodicity of a crystal. In incommensurate phases, at least one atomic 

position is not exactly repeated from one unit cell to another and, consequently, the 

translational symmetry of the crystal is lost in at least one direction, although approximate 

long-range order persists. However, the translational lattice periodicity is usually restored at 

lower temperatures at what is known as a "lock-in" phase transition where the lattice 

modulation changes from incommensurate to commensurate (Toledano and Toledano, 1987). 

For incommensurate phases, two important phenomena are observed: namely solid

state chaos and the devil's staircase (De Wolff and T~ 1986). Solid-state chaos simply 

refers to the loss of the translational symmetry in at least one direction. The devil's staircase 

refers to the presence of a propagating wave vector of the superstructure which is considered 

to be rational, consisting of an infinite number of rational numbers (De Wolff and T~ 

1986). 
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Unlike an "ordinary" cry~ the incommensurate system bas no exact translational 

symmetry, but does exhibit some approximate long-range ordering. 1be size of the unit cell 

along the modulation axis can be equal to the crystal size ~ consequently, the unit cell will 

be comprised of a large numberofatoms.ln various light scattering techniques from ordered 

crystals, such as Raman and infrared, the number of spectral lines is no more than triple the 

total number of atoms, ions, or molecules in the unit cell, along with the number of formula 

units also present in the unit cell. Hence, it could be expected that the total number of normal 

modes exhibited by an incommensurate phase would be infinite since we are dealing with a 

continuous range of nonnal modes (i.e. glass-like). However, in actual fact, even in 

incommensurate phases a relatively small number of well-defined lines is usually observed. 

This can be accounted for by the Landau theory of phase transitions which states that the 

symmetry of the high-symmetry phase is the most important, not that ofthe low-symmetry 

phase. Consequently, XRD patterns for incommensurate crystals will often give satellite 

reflections, or super-lattice reflections (De Wolff and T~ 1986; Iqbal, 1984; Levanyuk, 

1986; Toledano and Toledano, 1987). 

3.2.3.1 Mathematical Defiaitioa 

From Landau's theory, incommensurate phase transitions can be thought of as 

continuous structural transitions to a high-symmetry crystalline phase. This arises from the 

fact that the wave vector k fulfills the requirement that at least one qi is irrational. This is 

exemplified by the following wave vector equation (Tolednno and Toledano, 1987), 

k=l','t·~· (3.7) 
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where qi is a particular temperature-based coordinate and ~ • is a reciprocal lattice translation 

point coherent in the high-symmetry phase. 

As seen in Figure 3.2, there is a sequence of three distinct phases which are separated 

by two phase transitions, the lower one, T Lock-in , being the lock-in phase transition and the 

upper one, T INC , being the inconunensurate phase transition. In the region just below T INc , 

the situation is essentially that of an ordinary structural transition because the structural and 

physical properties of the low-symmetry phase can be associated to a single, irreducible 

representation of the high-symmetry phase whose wave vector has temperature independent 

components (Toledano and Toledano, 1987). However, since the low-symmetry phase 

exhibits non-crystallinity, it cannot be identified by one of the 3-dimensional space groups 

because of the irrational qi component(s). Hence, even though there is distortion present in 

the low-symmetry phase, it is still a perfectly ordered phase in that it has a Fourier-transform 

which displays both the three elementary periods, ~ •, as weU as a limited number of additional 

periods which are linked to qi . The Fourier components relative to the elementary periods are 

termed as the principal components and the Fourier components relative to the limited number 

of additional components are classified as the satellite components (Totedano and Toledano, 

1987). The satellite components are only a small modulation of the density of the particles in 

the actual system and they reflect bow the principal structure is modified. However, the vast 

majority of the density bas a 3-dimensional periodicity which is essentially defined by the ~ • 

(Toh~dano and Toledano, 1987). 

In the simplest situation, the diffraction wave vector k can be represented by the 

28 



following equation (Aalst et al.~ 1976), 

k = ha• + kb• + lc• + mq (3.8) 

where h, k and I are integers in a Miller inde~ m is an integer~ a, band care unit cell edge 

lengths and a •, b• and c• are reciprocal point translations corresponding to a, b and c 

respectively. Hence, from the previous equatio~ the main XRD reflections will have m = 0 

and the satellites will have m # 0. The interpretation of this equation is that there is a 

deviation from some perfect periodic structure, such that it leads to the deviation exhibiting 

a periodicity. When this occurs in a particular system, there is no 3-dimensional space group 

symmetry and, hence~ no exact translational symmetry (De Wolff and Tuinstra, 1986.) 

Figure 3.2 shows three main distinguishing features of an incommensurate system 

which are portrayed in the low-symmetry phase region: namely the region between T Loc:k-lll and 

TrNc (Toledano and Toledano, 1987). Firstly, the temperature range between TLact-111 and T INc 

is considered to be the stability range of the incommensurate system (Toledano and Toledano. 

1987). Secondly, in the region just below T Loc:k-in ~ the connnensurate phase becomes the stable 

phase and, like the incommensurate phase, it consists of a structural distortion of the high

symmetry phase. However, unlike the incommensurate phase, the wave vector of the 

commensurate phase has temperature-independent components. Below T Loc:k-ll1 , the 

commensurate phase can be identified by a 3·dimensional space group involving primitive 

translations which are derived from the high-symmetry phase. The lock-in temperature arises 

from the fact that the lowering of the temperature results in the locking of the all the 

fundamental periods in the system. Hence~ the lowering of the symmetry involved in the 
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structural transition from the high-symmetry phase to the commensurate phase results in the 

production of a finite number of energetically equivalent, commensurate states which are 

related to each other by space symmetry operations. These energetically equivalent~ 

commensurate states are believed to co-exist in a given incommensurate system in the form 

of domains (Toledano and Toledano, 1987). Thirdly, in the region near the lock-in 

temperature~ the incommensurate phase can essentially be regarded as a periodic array of 

commensurate domains separated by small discommensurations or domain walls (Iqbal. 1984; 

Toledano and Toledano, 1987). The resulting periods of the commensurate domains are 

determined by the differences in the incommensurate components of the wave vector at the 

specific temperature and at the lock-in temperature. Consequently, the differences tend to be 

very minute as the temperature is lowered near T Lock·in because the size of the individual 

commensurate domains tend to become larger as the structure of the incommensurate phase 

approaches that ofthe commensurate phase (Toledano and Toledano, 1987). 

3.2.2 Lattice Dynamics 

The spectroscopy of ordered molecular crystals is defined by matter waves of 

vibrating atoms called phonons. Phonons are quanta of vibrational energy that can be looked 

upon as elementary particles. Consequently, the vibrational displacements of the atoms and 

ions in the lattice may be described as simple motions parallel to the ~ y or z axis. These 

vibrational displacements give rise to two distinct types of modes: acoustic and optic. 

Acoustic modes, of which there are three (Le. one longitudinal and two transverse), are 

travelling sound waves of low frequency ( < 2 cm-1
). However, optic modes are standing 
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waves of higher frequency(::: 10-4000 cm-1
) (Laidler and Meiser, 1995). 

3.2.2.1 Normal Modes of Vibratioa 

In the k = 0 approximation, only vibrations of atoms in phase, vibrating in different unit 

cells, are active and the selection rules state that these atoms of a unit cell are sufficient for 

determining the totalnumberofnormalmodesofVIbration(Fateleyet a/., 1972; Iqbal, 1984). 

Because the molecules within a unit cell are loosely coupled together, they VIbrate 

similar to that of a giant molecule. The number of normal modes of VIbration ( Eq. 3.9) are 

governed by the symmetry of the unit cell: 

#of normal modes of VIbration= 3NZ-3 (3.9) 

where N is the number of atoms, Z is the number of formula units present in the unit cell, NZ 

is the total number of atoms in the unit cell and -3 is for the three acoustic modes which are 

denoted as T'<. TY and T, in the character table for the crystal symmetry. Hence, there will be 

3NZ different combinations of motions with eachofthese combinations having its own unique 

frequency (v) for a given wave vector. For any single wave. each atom will move with the 

same frequency and wave vector, with the interatomic forces determining the direction of the 

wave motion in any atom. However, the amplitude of the wave motion is determined by the 

temperature and the frequency of the wave (Fateley eta/., 1972; Laidler and Meiser, 1995; 

Turrell, 1972). 

Molecular crystals have a unique feature in that there is a large difference between the 

two kinds of optic modes: external and internal modes. External modes involve the rotational 

and translational motions of whole molecules. For these modes, the centre of mass of the 
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molecules move, but the centre of mass of the unit cell remains constant with respect to 

neighbouring unit cells. Internal modes, or covalent modes, involve the modes of discrete 

molecules or molecular ions. They are largely dependent on site splitting and on correlation 

field splitting, with a relatively weak dependence on the wave vector. Unlike external modes, 

internal modes do not result in the movement ofthe centre of mass of the molecule. 

In addition to correlation field coupling (i.e. dynamic) effects, there are also static field 

effects. Dynamic field effects are dependent upon the coupling of the intermolecular motions 

of ions, whereas static field effects, also known as site or local splitting, are dependent on the 

symmetry of the field at a site. The latter are represented by static potentials which require 

a potential of lower symmetry in order to remove a particular degeneracy. 

If a crystal has a particular symmetry the lattice vibrations cannot have symmetry 

higher than that of the unit ceU. That is, they must be of equal or lower symmetry. Since each 

vibrational mode is assigned a unique symmetry which corresponds to a single irreducible 

representation of the point group of the particular wave vector, then different modes will have 

different effects on the symmetry of the structure (Fateley et al., 1972). 

3.2.2.2 Correlatioa Field Coupliag 

Correlation field coupling of the VIbrational modes of identical molecules in the unit 

cell is known by a variety of names such as Davydov, factor group and intermolecular 

coupling. It occurs wben VIbrations of two or more ions of the same type present in a unit ceU 

are couple~ either in pbase or with opposite pbases, resulting in both vibrations appearing 

in the vibrational spectra. However, this effect arises only wben the selection rules for the 
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given unit cell symmetry permit it. The possibility for additional bands due to correlation field 

coupling increases with an increase in the number of atoms in the unit cell (Turrell. 1972). 

3.2.2.2.1 Origins 

There are two proposed theories as to the origin of correlation field coupling (Dec ius 

and Hexter, 1977). Firstly, Dows has proposed that the splitting is due to the repulsive forces 

between molecules which are by their nature of short-range (i.e. r-6, where r is the equilibrium 

bond length). Secondly, Decius and Hexter have proposed that the splitting is due to the 

dipole moment of a molecule which fluctuates during the course of a particular vibration. 

Hence, it is of long-range order (i.e. r"3
). The latter is a result of dipole-transition dipole-

transition coupling and, consequently, the degree of separation of the molecules is directly 

proportional to (a J.L I a qi )2 which is also a measure of the band intensity in infrared spectra 

(Brooker and Bates, 1971 ). The preferred theory is that proposed by Decius and Hexter. 

3.2.2.2.2 Unit Cell Group Analysis Method 

The unit cell group analysis method involves the use of tables which show the effect 

on an atom or molecule of either raising or lowering the symmetry within the structure. The 

correlations are represented by solid lines on the tables which connect the modes of the point 

group to the modes ofthe crystallographic site group and, finally, to the modes of the factor, 

or unit cell group. This is the case for discrete molecules, or molecular ions. However, for 

simple correlations, such as individual ions, it is only necessary to correlate the 

crystallographic site symmetry of the ion to the symmetry of the unit cell (Fateley et al., 1972; 

Turrell. 1972). 
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The unit cell group analysis method requires that the crystal structure be established 

and that there be a relatively small number of formula units contained in the unit cell. 

Consequently, the unit cell group analysis method is not applicable to vaterite because of the 

lack of crystals of sufficient size for singJe crystal analysis. In favourable cases, Raman and 

infrared spectroscopy may be used to predict the crystal structure of a powdered sample if 

their spectra are similar to that of an isomorphic sample whose crystal structure has already 

been established. Raman and infrared spectroscopy may also be used to confirm the number 

of formula units present in a unit cell. The unit cell group analysis method for aragonite and 

calcite will be presented as an example. 

3.2.2.2.3 Appli(:atioa to Aragoaite aad Calcite 

Aragonite exhibits orthorhombic symmetry, D~~, with four fonnuJa units (i.e. Z = 4) 

contained in the unit cell. Since each CaC03 unit contains five atoms (ie. N = 5), the total 

number of normal modes of vibrations (i.e. 3NZ) for the orthorhombic unit cell is 60 (Gillet 

et al .• 1993). 

The acoustic modes from the D~~ character table (Table 3.1) are B1u, ~u and B3u, 

and the selection rules forbid the activity of the Au mode in the Raman and infrared spectra 

(Fateley eta/., 1972). 

Since the calcium ion can be looked upon as having a completely spherical structure, 

it is only necessary to examine the external vibrational modes. From XRD studies, the 

crystallographic site symmetry of the calcium ions is C5 , Wyckoff notation 4c. 

The table used to correlate the site symmetry of the calcium ions to the symmetry of 
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the unit cell is given in Table 3.2 (Fateley eta/., 1972). This gives the external VIbrational 

modes of the calcium ions (Figure 3.3). 

Since the carbonate ion is a discrete molecular ion, it is necessary to examine both the 

external and internal vibrational modes. The point group symmetry of the free carbonate ion 

is denoted as D3h • From XRD studies, the crystallographic site symmetry of the carbonate 

ions is C5 , Wyckoff notation 4c. 

The tables used to correlate the point group synunetry ofthe free carbonate ions to 

their site symmetry and, subsequently, to the symmetry of the unit cell are given in Tables 3.3 

and 3.2 respectively (Fateley eta/., 1972). This gives the external (rotatory and translatory) 

and internal vibrational modes of the carbonate ions (Figures 3.4 and 3.5 respectively). 

Calcite exhibits hexagonal symmetry and belongs to space group Dts. with two 

formula units contained in the rhombohedral unit cell. Since each molecule ofCaC03 contains 

five atoms, the total number of normal modes of vibrations for the rhombohedral unit cell is 

30 (Gillet eta/., 1993). 

The acoustic modes from the D~d character table (Table 3.4) are A1u and Eu, and the 

selection rules forbid the activity of the A 1u mode in the Raman and infrared spectrum(Fateley 

eta/., 1972). 

From XRD studies, the crystallographic site symmetry of the calcium ions is S6, 

Wyckoff notation 2b. 

The table used to correlate the site synunetry of the calcium ions to the symmetry of 

the unit cell is given in Table 3.5 (Fateley eta/., 1972). This gives the external VIbrational 
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modes of the calcium ions (Figure 3.6). 

From XRD studies, the crystallographic site symmetry of the carbonate ions is 0 3, 

Wyckoff notation 2a. 

The tables used to correlate the point group synunetry of the free carbonate ions to 

their site symmetry and, subsequently, to the symmetry of the unit cell are given in Tables 3.6 

and 3. 7 respectively (Fate ley eta/., 1972). This gives the external (rotatory and translatory) 

and internal vibrational modes of the carbonate ions (Figures 3. 7 and 3.8 respectively). 
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Table 3.1 Character table for the D~~ space group of aragonite. 

D/6 
2h E C2(z) Cz(y) Cz(x) I 01)' olll 0,: 

A, 1 1 l 1 1 1 1 1 Cl0 , UYY' Clrz 

Btg 1 1 -1 -1 1 1 -1 -1 ~ u1)' 

B2g 1 -1 1 -1 1 -1 1 -1 R, UIZ 

Bl& 1 -1 -I 1 1 -1 -1 1 ~ ~ 

Au 1 1 1 1 -1 -1 -1 -1 

Btu 1 1 -I -1 -1 -1 1 1 T, 

B2u 1 -1 1 -1 -1 1 -1 I TY 

BJu 1 -1 -I 1 -1 1 1 -l TK 
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Table 3.2 

D2h 

Ag 

Bag 

82tt 

B;tg 

Au 

Bau 

82u 

Blu 

Table used to correlate the site symmetry of the calcium ions (Cs). as well as 
the carbonate ions (Cs). to the symmetry of the unit cell (D2J in aragonite. 

Cs/arz 

A' 

A" 

A" 

A' 

A" 

A' 

A' 

A" 
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Table 3.3 

DJh 

A' I 

Az' 

E' 

A" I 

A" z 

E" 

Table used to correlate the point group symmetry of the free carbonate ions 
(D3J to their site symmetry (C5) in aragonite. 

Csla,.,. 

A' 

A" 

A'+A'' 

A" 

A' 

A'+A" 
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Table 3.4 Character table for the D~d space group of calcite. 

D~d E 2C1 3C1 I 2S6 3od 

A,K 1 1 1 1 1 1 u .. +u, uu 

A2g 1 1 -1 1 I -1 ~ 

Eg 2 -1 0 2 -1 0 <R., Ry) (Uu- Uyy. u_,), (uu' 
uyz) 

Alu 1 1 l -1 -1 -1 

Azu 1 1 -1 -1 -1 l Tz 

~u 2 -1 0 -2 I 0 (T., Ty) 
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Table 3.5 

DJd 

At~~: 

Az~~: 

Eg 

Alu 

Azu 

Eu 

s6 

~ 

Ag 

Eg 

Au 

Au 

Eu 

Table used to correlate the site symmetry of the calcium ions (S6) to the 
symme~ry of the unit cen (D~ in calcite. 
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Table 3.6 

DJh 

A' I 

A' 2 

E' 

A" l 

A" 2 

E" 

OJ 

AI 

A2 

E 

AI 

A2 

E 

Table used to correlate the point group symmetry of the free carbonate ions 
(D3J to their site symmetry (03) in calcite. 
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Table 3.7 

DJd 

A,g 

Alg 

E~t 

Alu 

Alu 

Eu 

Dl 

AI 

A2 

E 

AI 

A~ 

E 

Table used to correlate the site symmetry of the carbonate ions (D3) to the 
symmetry of the unit ceU (D3J in calcite. 
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Figure 3.1 

I nil iaJ Slate - Rc:aclanl!( s) 

Fire! State - Producl(s) 

Reaction Coordinate 

Reaction profile diagram showing how the potential energy of the 
reactant(s) change during the course of a chemical reaction. 
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Figure 3.2 Schematic representation (Adapted from Toledano and Toledano, 1987) of 
the distinguishing features of an incommensurate phase. 
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Figure 3.3 

Site Symmetry 
ofthe Ca2

• ions 
Cs 

Factor Group/Unit 
Cell Symmetry 

D2b 

Correlation between the site symmetry of the calcium ions (C5) and the 
symmetry of the unit cell (D2J in aragonite. 
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Point Group Symmetry 
of the free col:-ions 

Site Symmetry 
of the col:. ions 

Factor Group/Unit 
Cell Symmetry 

Figure 3.4 

Dlh Cs D"h 
B.ll 

A.. 811 A"'---------A" 

E' -------A" 

Correlation (external vibrational modes only) between the point group 
symmetry of the free carbonate ions (D3J, their site symmetry (C5) and the 
symmetry of the unit cell (DnJ in aragonite. 
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Site Symmetry 
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Cell Symmetry 

D2h 

B 

Figure 3.5 Correlation (internal vibrational modes only) between the point group 
symmetry of the free carbonate ions (D3J, their site symmetry (C5) and the 
symmetry of the unit cell (D:nJ in aragonite. 
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Figure 3.6 

Site Symmetry 
ofthe Ca2

• ions ---JI• 
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Factor Group/Unit 
Cell Symmetry 

old 

Correlation between the site symmetry of the calcium ions (S15 ) and the 
symmetry of the unit cell (D3J in calcite. 
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Figure 3.7 Correlation (external vtbrational modes only) between the point group 
symmetry of the free carbonate ions (D3J, their site symmetry (03) and the 
symmetry of the unit cell (D3J in calcite. 
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Point Group Symmetry Site Symmetry Factor Group/Unit 
of the free col!· ions of the col!· ions Cell Symmetry 

Figure 3.8 
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Correlation (internal vibrational modes only) between the point group 
symmetry of the free carbonate ions (D3J, their site symmetry (03) and the 
symmetry of the unit cell (DJJ in calcite. 
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Chapter 4 

Results and Discussion 

4.1 Caltium Carbonate Heubydrate 

4.1.1 Preparation 

Calcium carbonate hexahydrate is unstable with respect to calcite at all temperatures 

above 0 °C. However, at temperatures below 3 °C, slow precipitation of calcium carbonate 

leads to the fonnation of a milk-like suspension. Upon the immediate filtration of this milk

like suspension, crystals ofCaC03·6H10 may be isolated. These precipitates were found to 

be almost pure CaC03·6H10 by optical microscopy and Raman spectroscopy. 

4.1.2 Morphological Studies 

The CaC03·6H10 prepared in this manner consists of weU-defined tablets of 

"hexagonally-shaped" crystals. Photomicrographs presented in Figures 4.1 and 4.2 show these 

"hexagonally-shaped" tablets of CaC03·6H20, 7-45 j.lm in length, immediately after the 

precipitation. 

4.1.3 Raman Spectroscopic Data 

The Raman spectrum of CaC03·6H10 has not been previously established in the 

literature. This is probably due to its relative instability and short life-span. However, the X

ray diffraction pattern is known (Brooks et al., 1950) and its crystal structure is believed to 

be that of a well-ordered crystal (Adams, 1974). 

52 



The Raman spectrum of the external lattice mode region and v4 internal vibrational 

mode region of CaC03·6H20 is presented in Figure 4.3. The presence of an external 

vibrational mode at 269.1 em-• is indicative of the order within the crystal structure since 

disordered structures have only a broad Rayleigh line. The v4 bending mode at 721.4 em·' has 

a relatively small FWHH of9.5 em-• which is also indicative of structural order (Figure 4.3a 

and Table 4.1 ). Two other peaks are also present at 587.1 and 643.3 em·•, but are believed 

to be due to wagging vtbrations of water. 

The Raman spectrum is dominated by the v1 symmetric stretching vtbration of the 

CO/" ion in the 1000-1150 em·• region (Figure 4.4). The single peak observed for v1 at 

1071.0 em·•. with a FWHH of 5.5 em·•, suggests well-defined structural order within the 

CaC03·6H20 crystal (Figure 4.4a). 

The next region of the spectrum contains the v3 antisynunetric stretching region and 

the 2v2 overtone region of the carbonate ion, as well as the v2 region of water (Figure 4.5). 

The v3 vtbrational mode is present as a single, sharp band with a maximum at 1415.1 em·'. 

The relatively small FWilll observed for the v3 band at 53.lcm-• is also indicative of 

structural order (Figure 4.5a and Table 4.1 ). However, the 2v2 overtone region is broad and 

consists of two components, 1610.9 and 1730.8 em·• (Figure 4.5a and Table 4.1). The v2 of 

water is Raman-active at = 1650 em-•, but may be lower (i.e. 1610.9 em·') due to hydrogen 

bonding to the C03 
2
• ion. The v2 ofC03

2
• is infrared-active at :::860 em·' and this may give rise 

to the 2v2 ofCO/· observed at 1730.8 em·•. 

An overview spectrum is presented in Figure 4.6 which displays the region from 1 000-
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4000 em·•. The O·H stretching region ofH20 at 3400 em·• consists of two major components 

which. upon curve fitting, were fitted to five distinct bands, 3180.0, 3262.6, 3346.0, 3436.9 

and 3473.9 em·• (Figures 4.6a and 4.6b, and Table 4.1). The presence of these well~efined 

peaks may be due to intennolecular coupling or Fermi resonance with 2v2, but nothing 

definite can be said. Regardless of the origin of these two well·defined bands, they are still 

indicative of the structural order within CaC03·6H20 (Buanam·Om-Danvirutai and Luck, 

1987). 

4.1.4 Thermoanalytical Measurements 

The following dehydration reactio~ CaC03·6H20 - CaC03·lH20, was studied by 

DSC (Figure 4. 7). The hexahydrate was heated from 25-120 °C at a rate of 10 °C/rninute. The 

dehydration reaction was found to be endothermic (4H = 1336 J·g·•; T = 35.2 °C). Raman 

spectroscopy performed before and after heating was used to identifY the initial and final 

products of the dehydration reaction. Mass measurements (Table 4.2) were also employed 

to determine the number of included waters lost during the dehydration reaction. 

4.2 Calcium Carbonate Monohydnte 

4.2.1 Preparatioa 

At temperatures between 3-l 0 °C, precipitation of calcium carbonate leads to the 

formation of a unique thixotropic suspension. Immediate filtration of this thixotropic 

suspension yields damp crystals of amorphous calcium carbonate monohydrate. The 

CaC03·1H20 crystals prepared in this manner were found to be highly contaminated with 

other phases such as CaC03·6H20, calcite and vaterite. These impurities were detected by 
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optical microscopy and Raman spectroscopy. 

In order to obtain relatively pure crystals ofCaC03·1H20, it was necessary to allow 

pure crystals ofCaC03·6H20 to stand for a period of24 hours. The slow dehydration process 

produced a relatively pure CaC03·1H20 crystals. 

4.2.2 Morphological Studies 

The CaC03·lH20 prepared from the spontaneous dehydration of CaC03·6H20 

consisted of distorted tablets of "hexagonally-shaped" crystals. These crystals had a cloudy 

appearance which was probably due to the dehydration reaction of the hexahydrate. A 

photomicrograph is presented in Figure 4.8 to show these distorted, "hexagonally-shaped" 

tablets of CaC03·lH20, 3-25 J.1M in len~ immediately after dehydration. The distorted 

shape of these crystals is believed to be a consequence of the dehydration process. 

4.2.3 Raman SpedroKopic Data 

As was the case with CaC03 ·6H20, the Raman spectrum ofCaC03 ·1 H20 has also not 

been previously reported in the literature. It has been suggested that the crystal structure of 

the monohydrate is of a disordered nature because of the presence ofbroad X-ray diffraction 

peaks of relatively low intensities (Brooks eta/., 1950). 

By definition, disordered crystals lack translational symmetry, either partially or 

completely. Consequently, the lack of external vibrational modes in the Raman spectrum of 

the monohydrate (Figure 4.9) suggests structural disorder within the crystal lattice. Figure 4.9 

also shows the presence of a broad ~ consisting of at least two components, 696.8 and 

727.3 em·' (Figure 4.9a and Table 4.3), in the v4 region. This region is analogous to the 
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Raman spectrum of the v4 region of molten and solid Li2C03 which are known to exhibit 

partial disorder of the C032
- ion sublattice (Bates et al., 1972). 

The synunetric stretching vtbrational mode region presented in Figure 4.10 shows a 

single broad band at 1081.7 em·• with a relatively large FWHH of29.9 em·• (Figure 4.10aand 

Table 4.3 ). The large half width suggests structural disorder because the v1 mode is extremely 

sensitive to changes in the structural environment. 

The next region of the spectrum contains the v3 antisymmetric stretching region and 

the 2v2 overtone region of the carbonate ion, as well as the v2 region of water (Figure 4.11 ). 

The v3 bending mode is very broad and consists of at least three components, 1412.0, 1482.3 

and 1544.1 em·• (Figure 4.11 a and Table 4.3). As was the case with the v_. region of 

CaC03·1 H20, the v3 region also shows features similar to those found in the Raman spectrum 

of the v 3 region of molten and solid L~C03 (Bates eta/., 1972). The lack of a single, well

defined band in the v3 region suggests some structural disorder. The 2v2 overtone region is 

also broad and consists of two components, 1649.6 and I 737.4 em·• (Figure 4.1 Ia and Table 

4.3). The v2 of water is Raman-active at= 1650 em·• which may correspond to the 1649.6 

em·• band. The v2 of CO/" is infrared·active at =860 em·• and this may give rise to the 2v2 

ofC03 
2- at approximately 1737.4 em·•. Unlike the 2v2 region in CaC03·6H20, the 2v2 region 

in CaC03·l H20 is not as complicated because there are five fewer water molecules in the 

formula of the monohydrate. 

An overview spectrum is presented in Figure 4.12 which displays the region from 

1000-4000 em·•. The 0-H stretching region of H20 does not consist of well-defined distinct 
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bands as in CaC03·6H20, but rather consists of three relatively broad bands, 3008.1, 3217.4 

and 3447.6 cm·1 (Figures 4.12a and 4.12b, and Table 4.3). These observations also suggest 

that the crystal structure of the monohydrate is not as well-ordered as the hexahydrate. 

4.2.4 Thennoanalytical Measurements 

The transformation reaction of CaC03 ·1 H20 was found to be very complex and 

depended on the presence of impurity seed crystals of calcite and vaterite. All of the different 

preparations reacted in the same manner. The majority of the time, vaterite seed crystals co

precipitated with the monohydrate, thus, favouring the transformation to vaterite. However, 

in some instances, calcite co-precipitated with the monohydrate ~ as a result, the 

transformation led to mainly calcite crystals. Raman spectroscopy performed before and after 

heating was used to identifY the initial and final products of the transformation reaction. Mass 

measurements (Table 4.4) were also employed to detennine the number of included waters 

lost during the transformation reaction. 

4.3 Calcite 

4.3.1 Preparation 

Calcite is the thermodynamically stable form of CaC03 under ambient conditions to 

which all other phases transform given sufficient time. At temperatures between 15-25 °C, 

precipitation of calcium carbonate leads to the formation of a milk-like suspension. After a 

time period of24 hours, filtration of this milk-like suspension yields crystals of calcite. These 

precipitates were found to be relatively pure by optical microscopy and Raman spectroscopy. 
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4.3.2 Morphological Studies 

The calcite prepared using the above procedure consists of well-defined 

rhombohedral-shaped crystals. A scanning electron micrograph is presented in Figure 4.13 

showing these rhombohedral crystals of calcite, 6-8 !Jm in length, immediately after the 

precipitation. 

Calcite was also prepared by the transformation reactions, CaC03·6H20 -

CaC03 ·1 H20 - calcite at 25 °C. In this case, well-defined tablets of "hexagonally-shaped" 

crystals of calcite were obtained. However, the transformation rates may be slow (i.e. 1-3 

months) and seem to depend upon the humidity and temperature. A scanning electron 

micrograph is presented in Figure 4.14 showing these distorted, "hexagonally-shaped" tablets 

of calcite, 7-45 !Jm in length, immediately after the transfonnation reactions had occurred. 

The hexagonal shape of these crystals, compared to the normal rhombs, appears to be a 

suitable way to establish the origin of the calcite. 

4.3.3 Raman Spectroscopic: Data 

The Raman spectrum of calcite is well-known at ambient conditions. Calcite belongs 

to the space group D~d and symmetry analysis reveals that there are 30 normal modes of 

vibration for the rhombohedral unit ceU. Detailed spectroscopic analyses of calcite have been 

reported (Anderson, 1996; Gillet eta/., 1993; Gillet eta/., 1996; White, 1974). The Raman 

spectra of natural calcite are presented for comparative purposes with the other phases. 

Overview spectra are presented in Figures 4.1 5 and 4.16 which display the regions from 100-

1150 em·• and 1300-2000 em-• respectively. The presence of well-defined external (100-300 
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em·') and internal vtbrational bands(v4 = 713.9 em·', v1 = 1086.6 em·'. v3 = 1435.8 cm·1 and 

2v1 = 1748.7 cm-1
) with relatively small FWllli's suggest a well-ordered crystal structure. 

The observed Raman band frequencies for calcite are compared with literature values in Table 

4.5. 

4.4 Vaterite 

4.4.1 Preparation 

Vaterite is the least stable and most soluble of the anhydrous calcium carbonate 

polymorphs. At temperatures between 25-40 °C, precipitation of calcium carbonate leads to 

the fonnation of a milk-like suspension. The immediate filtration of this milk-like suspension 

yields a relatively pure powder of vaterite. Since no calcite could be detected by optical 

microscopy, Raman spectroscopy or XRD, it can be concluded that the purity ofthe vaterite 

was better than 99 %. Although other methods of preparation have been reported (Section 

1.2), this is the only known method for preparing pure precipitates of vaterite without 

impurity phases. 

The transformation reaction, CaC03·lH20- CaC03 also gives crystals ofvaterite in 

some cases. The endothermic reaction rate for the dehydration ofCaC03·lH20 was found to 

be extremely sensitive to temperature, and to the inclusion of small quantities of water and 

other CaC03 phases which co-precipitated with the original CaC03·6H20. However. 

depending on the humidity and temperature, the transformation rates may be slow (i.e. 1-3 

months). Usually, the vaterite crystals prepared in the latter manner were found to be 

relatively pure. However, in some instances, 1-2% calcite was found. This was confinned 
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using optical microscopy, Raman spectroscopy and XRD. 

4.4.2 Morphological Studies 

These preparations both result in the formation of spherical aggregates of crystals 

known as spherulites (Brooks eta/., 1950; Maciejewski eta/., 1994). Figures 4.17-4.18 and 

4.19-4.20 are photomicrographs and scanning electron micrographs of the vaterite spherulites 

respectively. The aggregated vaterite crystals are oflength 2-12 !Jm. 

4.4.3 Raman Spectroscopic Data 

A definitive crystal structure determination ofvaterite has not been established. This 

is probably due to the lack of crystals of sufficient size and purity required for single crystal 

studies. However, a number of possible hexagonal crystal structures have been proposed 

which differ in the number of formula units and in the coordination of the C03 
2
- sublattice in 

the vaterite unit cell: [1] o: with z = 6 (Bradley et al., 1966), [2] o:h with z = 6 ~ 

1963; McConnell, 1960; White, 1974) and [3] D~h with Z = 12 (Kamhi, 1963; Meyer, 

1969). 

Overview spectra are presented in Figures 4.21 and 4.22 which display the regions 

from 100-1150 cm·1 and 1300-2000 em·' respectively. In the external vibrational mode region 

( 100-400 cm-1
}, at least nine Raman bands were observed for vaterite compared to only two 

bands for calcite. The presence of a relatively large number of lattice bands in vaterite appears 

to be consistent with the structure proposed by Meyer, in which Z = 12. This differs greatly 

from the relatively small number of formula units in the unit cell of calcite (Z = 2). Because 

vaterite gives rise to distinct bands in both the external and internal vibrational mode regions, 
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it can easily be distinguished from the other forms ofCaC03 using Raman spectroscopy. A 

detailed spectroscopic analysis ofvaterite will be given in Section 4.6. 

4.4.4 Thermoanalytical Measurements 

The polymorphic transfonnation ofvaterite into calcite has been reported in several 

papers (Chakraborty eta/., 1994; Kralj eta/., 1997; Maciejewski eta/., 1994; Northwood and 

Lewis, 1968; Peric eta/., 1996; Tarits eta/. , 1990). From our DSC studies (Figure 4.23), 

determined from experiments performed under non-isothennal conditions, the enthalpy of the 

polymorphic transformation (~HJ ofvaterite at T = 442.7 °C was found to be -20.147 J-g·1
• 

This is in good agreement to the value detennined by Perle et a/. ( 1996) for the exothermic 

reaction, d~ = -21.2 Jog·1
• 

One unexpected result of this study was the identification of water in the vaterite. 

DSC and mass loss analyses have shown a total loss of0.129 moles of water corresponding 

to the loss of absorbed and trapped water (0.026 and 0.103 moles respectively). TG-EGA 

analyses have also shown a loss of mass corresponding to about 2 %. Mass measurements 

(Table 4.6) and Raman spectroscopy (Figure 4.24) performed before and after heating were 

also used to confinn the loss of included water. 

4.5 Aragonite 

4.5.1 Preparation 

Aragonite is thermodynamically favoured at low temperatures and high pressures. 

Under ambient conditions, it only differs slightly from calcite in terms of thermodynamic 

stability (Blackburn and ~ 1994 ). At temperatures between 60-90 °C, precipitation of 
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calcium carbonate leads to the formation of a milk-like suspension. The irrunediate filtration 

of this milk-like suspension yields crystals of aragonite. These precipitates were also found 

to be relatively pure as confirmed by optical microscopy and Raman spectroscopy. 

4.5.2 Morphological Studies 

The above preparation results in the fonnation of"needle-like" crystals of aragonite. 

Photomicrographs presented in Figures 4.25 and 4.26 show these "needle-like" crystals of 

aragonite, l 0-60 ~m in len~ immediately after the precipitation. 

4.5.3 Raman Spectroscopic Data 

As is the case with calcite, the Raman spectrum of aragonite is also weD-known at 

ambient conditions. Aragonite belongs to the space group D~~ and synunetry analysis reveals 

that there are 60 normal modes of vibration for the orthorhombic unit ceU. Detailed 

spectroscopic analyses of aragonite have been reponed (Anderson, 1996; Gillet et al., 1993; 

Gauldie eta/., 1997; White, 1974). The Raman spectra of natural aragonite are presented for 

comparative purposes with the other phases. Overview spectra are presented in Figures 4.27 

and 4.28 which display the regions from 100-1150 cm·1 and 1300-2000 cm·' respectively.ln 

aragonite. the site symmetry of the COt ion is reduced to C5 • This alters the selection rules 

permitting the activity of the v 1 vibrational mode and results in the splitting of the two doubly

degenerate modes, v3 and V4 , into pairs of non-degenerate modes. The observed Raman band 

frequencies for aragonite are compared with literature values in Table 4. 7. 

4.6 A Detailed Spectroscopic Analysis ofVaterite 

Vaterite has received much attention in the literature because it is a rare form of 
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calcium carbonate and because of its unusual crystal structure. Due to the presence of a small 

number of weak superstructure reflections in the XRD pattern of vaterite indicating some 

degree of long-range ordering. Kamhi (1963) has proposed a hexagonal cell with twelve 

formula units of CaC03• Meyer's (1969) proposed structure for vaterite agrees in general 

with Kamhi's proposal, but suggests a disordered stacking sequence of the cot ion 

sublattice. Based on the limited crystal structure informatio~ and on the nature of the Raman 

and infrared spectra, we suggest the possibility that vaterite is an incommensurate phase. 

Raman and infrared VIbrational frequencie~ half widths and assignments for vaterite 

are collected in Tables 4.8 and 4.9 respectively, along with literature values for comparative 

purposes. In general, the present results are in good agreement with previous Raman spectra, 

but the improved signal-to-noise suggests a very complicated structure. Raman spectra have 

been measured at 77 K and 298 K. The Raman and infrared spectra of vaterite were found 

to be similar to those obtained for y-Na:zC03 (Brooker and Bates, 1971). These new spectra 

ofvaterite have allowed the detection ofbands. not previously obtained, that provide further 

evidence to support our proposed crystal structure. 

4.6.1 External Lattice Modes 

The external lattice mode regions of the anhydrous calcium carbonates are remarkably 

different. Unlike calcite and aragonite, vaterite exhibits a relatively large number of broad 

bands in the 100-400 em·' region of the Raman spectrum (Figures 4.29 and 4.29a). The 

density of states observed for this region of vaterite is rather large at about 250 em·'. The 

unique lattice bands ofvaterite, 116.6, 130.3, 151.5, 172.9. 190.0, 208.4, 266.4, 301.7 and 
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332.5 em·', are less intense and much broader than those of calcite and aragonite. Both of 

these findings suggest a more disrupted crystal lattice for vaterite. u: as proposed by Meyer, 

the structure is fully disordered, it would lead to overlapping features in the external 

vibrational mode region and possibly a single broad peak. The effects of a fully-disordered 

crystal structure would be similar to that observed for CaC03 • 1 H20 which has no discrete 

external lattice bands. However, our results suggest that vaterite is not fully disordered, but 

has partial disordering of the C03 
2
" ions. This is indicative of an incommensurate crystal 

structure. 

4.6.2 Internal Vibrational Modes 

The unperturbed C03
2
" ion has D3h symmetry and would result in the foUowing 

assignments and relative frequencies respectively: V4 (E') infrared- and Raman-active, 

antisymmetric bend at 700 em·'; v2 (A2'') infrared-active, out-of-plane deformation at 860 

em·'; v1 (A1 ') Raman-active, symmetric stretch at 1090 cm·1
; v3 (E') infrared- and Raman

active, antisymmetric stretch at 1400 em·' (Brooker and Bates, 1971 ). In the vibrational 

spectra 0 f vaterite, significant deviations from the free col 2" ion approximation method are 

observed. 

4.6.2.1 v4 - Antisymmetrie Bend 

In the region of the v 4 VIbrational mode, the Raman spectrum presented in Figure 4.30 

shows a removal of the degeneracy. This results in two regions, about 675 and 750 em·', with 

differing intensities, over a very large density of states of about 100 em·'. Each of these 

regions also contains three components (667.2, 674.0 and 684.8 cm"1
, and 738.4, 743.5 and 
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751.3 cm·1 respectively) as presented in Figure 4.30a It is believed these three components 

correspond to at least three different groups of carbonate ions in the unit cell of vaterite. 

The infrared spectra of the v 4 region presented in Figures 4.31 and 4.32 show features 

similar to those found in the V4 regionofthe Raman spectrum ofvaterite. There is a removal 

of the degeneracy giving two distinct regions (670 and 745 cm·1 respectively) with an 

observed density of states of about 100 cm·1
• The lower wavenumber region consists of four 

components, 660.2, 666.5, 673.8 and 680.8 cm·1
, and the higher wavenumber region consists 

of three components, 739.0, 744.1 and 749.5 cm·1 (Figures 4.31a and 4.32a respectively). 

The coincidence of frequencies of all of the components of the V4 band in the Raman 

and infrared spectra ofvaterite suggest that the centrosymmetric crystal structures proposed 

cannot be correct (~ 1963; Meyer, 1969). It seems more likely the crystal structure of 

vaterite is non-centrosymmetric as proposed by Lippmann ( 1973). 

4.6.2.2 v2 - Out-of-Plane Deformation 

The Raman spectrum of the v2 vibrational mode regio~ presented in Figure 4.33, 

shows the presence of a previously unreported band at about 875 cm·1
• Figure 4.33a shows 

the presence of at least three components in this relatively low intensity band, 881.0, 877.6 

and 873.7 cm·1
• The observed density of states for this band is about 20 cm·1

• 

The infrared spectrum of the v2 regio~ presented in Figure 4.34, also shows three 

components, 871.2, 876.9 and 883.7 em·'. However, the v2 region is much more pronounced 

in the infrared and has a density of states of about 30 cm·1 (Figure 4.34a). Furthermore, the 

coincidence of Raman and infrared frequencies for the v2 bands also suggests a non-
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centrosymmetric crystal structure. 

Additional bands in the regions of non-degenerate modes, such as v2 and v1, can only 

result from the coupling ofidentical nonnal modes of VIbration of different molecules in the 

unit cell (i.e. correlation field coupling), or the ordered distnbution of molecules over sets of 

non-equivalent sites. The latter gives rise to a number of bands equal to the number of 

different occupied sites (Brooker and Bates, 1971 ). 

When the peak of the dilute isotopomer is shifted outside the density of states of the 

host crystal. the VIbration of the isotopomer will be decoupled from the analogous VIbration 

of the crystal and correlation field effects will be absent (Brooker and Che~ 1991; Gillet et 

al .• 1996). Static field effects such as multiple site occupancy will remain (Brooker and Wang, 

1992). 

A number of bands were observed in the 13C region of the infrared spectrum of the v2 

vibrational mode. The 13C isotopic substitution effects for the v2 region are presented in 

Figure 4.35. Five distinct bands were observed for the uncoupled 13CO/" species, 844.2, 

849.3, 851.0, 855.0and 859.8cm·'. The presenceofmore than one band in this region reveals 

that there is little or no correlation field splitting. Hence, the five 13C03 
2
" bands must be the 

result of at least five distinct sets of non-equivalent carbonate ion sites. This suggests vaterite 

to have a relatively large unit cell comprised of at least five CaC03 • 

4.6.2.3 v1 - Symmetri~ Stret~b 

The Raman spectrum of the v1 VIbrational mode region is presented in Figure 4.36. 

Figure 4.36a shows the presence of three peaks at 1075.0, 1081.4 and 1090.9 em·•. with 
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relative intensities 0.40:0.19: 1.00 and a density of states of about 30 em·•. Behrens et al. 

( 1995) have assigned the middle band at 1081.4 em·• to a calcite impurity. Behrens eta/. also 

suggested that the peaks at 1075.0 and 1090.9 em·' were due to two different sites. Anderson 

( 1996) argued on the basis of a unit cell group analysis and that the results could also be 

explained by correlation field coupling. Our results indicate that all three components are due 

to vaterite and indicate at least three distinct sites. 

Our experimental results indicate that the band at 1081.4 em·• is due to vaterite. I fit 

were a calcite impurity, there should be some evidence of a calcite peak in the v2 region at 

713.9 em·•. well-separated from the v2 bands ofvaterite. Also, the v1 mode of our calcite 

occurs at 1 086.6 em·• which is appreciably higher than the observed band at 1081.4 em·•. 

Furthermore. vaterite with a calcite impurity is observed to have an additional sharp band at 

I 086.6 em·•. In addition, the v 1 of vaterite in the infrared exlubits the same three component 

pattern as found in the Raman (Figures 4.37 and 4.37a) with the same relative intensities and 

frequencies as those found in the Raman spectrum. The v1 of calcite is forbidden and not 

observed in the infrared. 

Another possible explanation is that the 1081.4 em·' component may be due to a 

CaC03 ·1 H20 impurity. This is a plausible explanation given the frequency of the v 1 Raman 

band ofCaC03·1H20 and the observation of water within the vaterite crystals. However, 

upon heating the vaterite crystals to 220 °C, the water was removed from the Raman 

spectrum (Figures 4.24 arxl 4.24a), but the 1081.4 em·• component still remained. Hence, the 

three components of v 1 must be genuine and, therefore, cannot be due to the presence of 
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other carbonate impurities. 

To prove that the three components ofv1 were due to static field effects, a sample of 

180-enriched vaterite was prepared as descnbed in the experimental (Section 2.4). The 

splitting of the v1 of the isotopomers confirmed that the three bands are from three different 

static sites. Figure 4.38 shows the Raman spectrum of 110-enriched vaterite in the v1 

vibrational mode region. The observed pattern is consistent with the calculated pattern (i.e. 

substituting an 180 atom for an 160 atom on a COl· ion approximately results in a 20 cm·1 

decrease in the frequency for the dilute isotopomer) (Gillet eta/., 1996). There are three 

peaks at 1036.9, 1041.2, and 1050.2 em·' whichconespond to the v1 modes of carbonate ions 

substituted with two 180 atoms (i.e. CaC 160 180J. There are also three peaks at 1015.5, 

1021.5 and 1029.2 cm·1 which conespond to the fully substituted 180 carbonate ions. 

CaC 180 3• However, no peaks were observed for the monosubstituted carbonate ions, 

CaC 160 2
180. This is due to the large density of states ofCaC 160 3 which overlaps with the 

monosubstituted v 1 region. 

Correlation field coupling would have resulted in only one peak for each of the 180-

substituted C03
2
• ions, all of which would have frequency shifts from the mean value (i.e. 

1083.0 cm- 1
) for the three components. Hence, the three peaks observed for isolated 

CaC 160 180 2 and CaC180 3 in the vaterite matrix suggest a multi-site effect. 

From the infrared spectrum ofthe v2 region ofCa13C03 presented in Figure 4.35, 

there appear to be at least five formula units ofCaC03 per unit cell ofvaterite (844.2, 849.3, 

851.0, 855.0 and 859.8 cm'1). This also suggestsamulti-siteetfect, complementing the results 
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obtained in the Raman spectrum for the v1 vibrational mode region of the 110-substituted 

C032
- ions. 

In order to determine the nature of the splitting, the v1 region was studied at 77 K. At 

77 K, there was no significant reduction in the half-width of the v1 band. This suggests the 

splitting is not dependent on the motions of the C03 
2
- ions (i.e. dynamic splitting), but rather 

on the positional average (i.e. static splitting). 

4.6.2.4 v3 • Antisymmetrie Streteh 

In the v3 vibrational mode region, the Raman spectrum presented in Figure 4.39 shows 

a removal of the degeneracy. Six distinct bands were identified, 1421.1, 1440.9, 1459.9. 

1480.4. 1555.0 and 1542.3 em·', over a density of states of about 160 em·' (Figure 4.39a). 

The infrared spectrum of the v3 region presented in Figure 4.40 also shows removal 

ofthe degeneracy. This also results in six distinct bands, 1402.1, 1415.0, 1442.1, 1466.8, 

1492.0 and 1558.1 em·' (Figure 4.40a). However, because of the strong infrared absorption 

ofthe V3 mode ofthe COt ion, the density of states appears tO be larger at about 200 em·'. 

The coincidence of Raman and infrared frequencies for the v3 bands, combined with 

the number of components observed in each of these regions, both suggest long-range 

ordering over a number of non-equivalent C03 
2
- ion sites within the non-centrosymmetric unit 

cell of vaterite. 

4.6.2.5 2v1 ·Overtone of The Out-of-Plane Deformation Mode (vJ 

The Raman spectrum of the 2v2 overtone region is presented in Figure 4.41. The free 

ion selection rules in spectroscopy limit the 2v2 vibrational mode to being Raman-active only. 
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As was the case with the v2 and v1 VIbrational modes, the 2v2 mode also shows a number of 

components. The 2v2 region consists of three components, 1745.6, 1754.4 and 1757.5 em·•, 

with a density of states of about 30 em·• (Figure 4.41 a). Since these bands correspond to the 

overtones of the three v2 bands found in the Raman spec~ it suggests the three bands in 

the fundamental are genuine and correspond to at least three distinct groups 0 f col 2" ions 

within the unit cell of vaterite. 

4.6.2.6 [v4 + v1) -Combination Band 

The infrared spectrumofthe (v4 + v1] combination band region is presented in Figure 

4.42. The selection rules for the free ion limit the activity of the [v4 + v1] vibrational mode to 

being infrared-active only. As was the case with the v4 and v3 VIbrational modes, the [v4 + v1] 

mode is also degenerate. However, this band is also split into two regions, 1755 and 1825 

em·'. with a density of states of about 120 em·•. Each of these regions also consists of three 

components (1738.7, 1747.3 and 1765.5 em·•, and 1814.2, 1821.8 and 1836.1 em·• 

respectively) which show the same intensity patterns as those found in the v4 region of the 

Raman (Figures 4.42a-4.42d). These findings all suggest a panially disrupted crystal lattice 

for vaterite characteristic of the static disorder found in incommensurate phase crystals. 

4.6.2.7 Water and Manganese(ll) Impurities 

Previous studies on vaterite grown from solution have confirmed the presence of 

1.28 % water (Perle et a/., 1996). The absorbed and trapped water are believed to be a result 

of the fast precipitation required and is also believed to be a consequence of the relatively 

open crystal structure ofvaterite. Our spectroscopic results have confirmed the presence of 
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water (Figures 4.23, 4.24, and 4.43, and Table 4.6), as did our DSC and TG·EGA results. 

Other studies on CaC03 have indicated the presence of manganese{ll) impurities 

(Mason. 1998). In some of these studies, Raman spectroscopy has been used to suggest these 

manganese(ll) impurities occur as hydrated species, Mn(H20)6 :!· (Nassrallah·Aboukais el al .• 

1998). However, even though our Raman spectroscopic results have confirmed the presence 

of manganese( II) impurities (i.e. comparison of fluorescence level intensities in our calcite and 

vaterite Raman spectra with Raman spectra of calcite containing known concentrations of 

manganese( II) impurities suggests our manganese(Il) content to be approximately 0.08 ppm) 

within the vaterite crystal structure, it cannot account for all of the water present. 

Furthermore, the presence of these water and manganese(ll) impurities are not 

believed to be necessary for the kinetic stability of vaterite. This was confirmed when upon 

heating the vaterite crystals to 220 °C (figures 4.24 and 4.24a), the Raman vibrational 

spectrum ofvaterite was unchanged except that the band of water was removed. However. 

the fluorescence level did increase confirming the initial presence of manganese( II) impurities. 

Since the manganese(II) fluorescence increased for the dried sample, it suggests the water is 

not essential for the stability ofvaterite and anhydrous manganese(D) impurities in defects will 

also give rise to the fluorescence. Hence, the presence of these impurities may simply be due 

to the relatively open structure of vaterite which is able to accommodate and incorporate 

them (Mason, 1998). 

It can be inferred from the above that the calcite formed from vaterite also contained 

about 2 % water and approximately 0.08 ppm of manganese(ll) impurities. This was 
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confirmed by Raman spectroscopy (Figure 4.44). 
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Table 4.1 

Vibrational Frequency in F.UWidt.at 
Mode Waveaumben HalfHeigllt 

Region [(m·'l (em·' I 

External 269.1 32.1 

587.1 22.1 
v~ 643.3 23.7 

721.4 9.5 

vl not observed not observed 

v. 1071.0 5.5 

vJ 1415.1 53. 1 

2v1 1610.9 245.5 
I 730.8 108.9 

3180.0 159.8 
0-H 3262.6 93.3 

Stretch of 3346.0 137.4 
Water 3436.9 63.3 

3473.9 201. I 
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Table 4.2 DSC analysis results for the dehydration reaction: 
CaC03·6H20- CaC03·lH10 . 

Temperature Mass Mus laitial Moles Fiaal Moles Moles of 
Interval Before After oflac:lllded oflach.ted lad .ted 

Heatiag Heatiag Water Water Water Loat 
[mg) [mg) [IIIOies) [IIIOies) [moles) 

2>130 °C 3.43 1.96 5.92 1.00 4.92 
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Table 4.3 Observed Raman vibrational frequencies (cm-1
) for CaC03·1H20 at 25 °C. 

Vibrational Frequency in F.UWidthat 
Mode Wavenamben HalfBeicbt 
Region (em·' I (em·' I 

External absent absent 

v~ 696.8 26.5 
727.3 33.6 

v2 not observed not observed 

v, 1081.7 29.9 

1412.0 92.4 
Vl 1482.3 60.1 

1544.1 79.9 

2v2 1649.6 75.2 
1737.4 52.7 

0-H 3008.1 394.8 
Stretch of 3217.4 260.6 

Water 3447.6 301.9 
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Table 4.4 DSC analysis results for the transformation reaction: 
CaC03 ·1 H20 - vaterite. 

Temperature Mass Mass laitbll Moles Fiaal Moles Moles of 
Interval Before After oflacl_.ed or l~~elllded lacl_.ed 

Heating Hatillg Water Water Water Lost 
(mg] lmal [moles I (moles] (moles] 

2>200 °C 1.96 1.69 1.00 0.0969 0.90 
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Table 4.5 

Vibrational 
Mode 

Region 

External 

v~ 

vl 

v, 

vl 

2v1 

Observed Raman vibrational frequencies (cm-1
) for calcite at 25 °C and 

comparison with literature. 

Frequency FaUWiddt Litera tare Litera hire Litera hire 
ia at Half (Bellreasel (GWetn (White, 

Waveaumben Heigbt ill., 1995) ill., 1993) 1974) 
[c:m·'l [em-') [em·' I [em·' I [em·' I 

156.6 7.5 ISS 156 156 
184. 1 (He-Ne 2.1 282 281 283 
plasma line} 10.3 

283.0 

713.9 5.6 711 711 714 

inactive inactive inactive inactive inactive 

1086.6 3.0 1085 1085 1088 

1435.8 5.9 N/A 1434 1432 

1748.7 8.3 N/A 1748 N/A 
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Table 4.6 

Temperature 
laterval 

25-120 °C 

120-300 °C 

J00-5S0°C 

DSC analysis results for the polymorphic transformation reaction: 
vaterite - calcite. 

Mass MMS laitial Moles Fiaal Moles Moles of 
Before After or laclacled oflacladed lacl.cled 

Heating Heating Water Water Water Lost 

I IIIII (IIIII (moles I (moles I (moles I 

17.29 17.21 0. 129 0. 103 0.026 
(physically 
absorbed) 

17.21 16.98 0.103 0.027 0.076 
(chemically 

trapped) 

16.98 16.90 0.027 0.000 0.027 
(chemically 

trapped) 
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Table 4.7 

Vibratioaal 
Mode 

Regioa 

External 

v~ 

V: 

v, 

Vl 

2v1 

Observed Raman vibrational frequencies (cm"1
) for aragonite at 25 °C and 

comparison with literature. 

Frequeacy Fall Widdl Literature Uterahlre Litera hire 
ia at Half (Gauldie ~~ (Bellreun (Wbite~ 

Waveaumben Height til., 1997) (1/., 1995) 1974) 
(em·' I (cm·1J (cm·•t (cm"1) (cm·•t 

115.7 9.3 113 142 113 
131.9 10.4 142 152 146 
144.3 5.0 153 179 155 
154.3 8.1 180 189 183 
166.8 18.7 190 205 193 
182.1 7.4 206 213 208 
192.4 9.9 242 273 217 
207.8 6.5 261 282 222 
216.2 11.8 284 250 
262.5 65.6 263 

276 
287 

702.0 1.9 701 701 703 
706.5 2.9 705 705 
717.8 2.4 

N/A NIA N/A N/A N/A 

1085.7 2.6 1085 1085 1087 

1462.5 6.2 1462 N/A 1464 
1574.7 9.0 1574 1466 

1709.2 9.2 N/A N/A NIA 
1736.8 56.4 
1793.5 40.4 
1814.4 9.5 
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Table 4.8 

Vibratioaal 
Mode 

Region 

External 

v4 

Vz 

v, 

Vl 

2v1 

Observed Raman vibrational frequencies (cm"1
) for vaterite at 25 °C and 

comparison with literature. 

Frequency F.UWldtb Literatve Literatare Literatwre 
in at H•lf (G•aldieet (Bellreu et (WIIite, 

Waveawaben Heilllt al., 1997) a/., 1995) 1974) 
[em·' I [em·') [em·' I [em"' I [em·' I 

116.6 10.0 106 105 NIA 
130.3 19. 1 116 114 
151.5 16.2 ISO 177 
172.9 21.1 178 209 
190.0 10.5 210 267 
208.4 48.0 266 300 
266.4 35.4 302 
301.7 22.2 330 
332.5 31.3 

667.2 8.4 685 740 752 
674.0 9.7 740 750 
684.8 6.4 743 
738.4 7.9 751 
743.5 7.3 
751.3 8.7 

881.0 8.5 N/A N/A 845 
877.6 2.5 
873.7 5.5 

1075.0 7.0 1075 1074 1066 
1081.4 9.7 1081 1090 1090 
1090.9 6.6 1090 

1421.1 21.1 N/A N/A 1416 
1440.9 16.7 1466 
1459.9 26.8 
1480.4 31.4 
1542.3 35.1 
1555.0 5.6 

1745.6 7.3 N/A N/A N/A 
1754.4 12.7 
1757.5 11.3 
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Table 4.9 

Vibrational 
Mode 

Regioa 

v4 

Vz 

v. 

VJ 

fv~ + v.J 

Observed infrared vibrational frequencies (em·') for vaterite at 25 °C and 
comparison with literature. 

Freqaeacy ia Fall Wklda at Literature Literatue 
Waveaumben HalfHeiabt (J011es aad (Wbite, 

(em·• I [car1J Jacksoa. 1993) 1974) 
[cm·•1 [cm·•J 

660.2 7.7 668 750 
666.5 2.5 745 
673.8 7.7 
680.8 3.6 
739.0 5.7 
744.1 5.2 
749.5 7.0 

871 .2 11.8 877 870 
876.9 12.9 
883.7 3.1 

1075.3 10.2 1089 1070 
1081.1 5.7 1085 
1088.4 7.1 

1402. 1 55.1 1408 1420 
1415.0 22.0 1432 1490 
1442. 1 35.2 1489 
1466.8 13.8 
1492.0 61.8 
1558.1 12.5 

1738.7 6.6 1743 N/A 
1747.3 10.7 1765 
1765.5 14.6 1836 
1814.2 8.0 
1821.8 6.8 
1836.1 17.1 
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Figure 4.1 Photomicrograph (lOx magnification) ofCaC03·6H20 collected 
immediately after the precipitation showing the hexagonal shape of the 
crystals. 
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Figure 4.2 Photomicrograph (SOx magnification) ofCaC03·6H20 collected 
immediately after the precipitation showing the hexagonal shape of the 
crystals. 
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Figure 4.3 

300 400 500 800 100 1100 

WlMIIU'nber (atr') 

Raman spectrum ofthe external lattice mode region and v,. internal 
vibrational mode region ofCaC03·6H20 at 25 °C. 
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Figure 4.3a Curve fit of the Raman spectrum of the wagging VIbrations of water and 
the v4 internal vibrational mode region ofCaC03·6H:!O at 25 °C. 
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Figure 4.4 

1020 1060 10110 1100 1120 1140 
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Raman spectrum of the v1 internal vibrational mode region ofCaC03·6H20 
at 25 °C. 
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Figure 4.4a Curve tit of the Raman spectrum of the v, internal vibrational mode region 
ofCaC03·6H20 at 25 °C. 
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Figure 4.5 

1200 1300 1400 1500 1600 1700 1800 1900 2000 

Raman spectrum of the v3 internal vtbrational mode region and 2v:! 
overtone region ofCaC03·6H20~ as well as the v2 region of water, at 25 
oc. 
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Figure 4.5a Curve fit of the Raman spectrum of the v3 internal vibrational mode region 
and 2v2 overtone region ofCaC03·6H20, as well as the v2 region of water, 
at 25 °C. 
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Figure 4.6 

1000 1500 2000 2500 

Overview Raman spectrum ofCaC01·6H20 at 25 °C displaying the region 
from 1000-4000 em·•. 
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Figure 4.6a Raman spectrum of the 0-H stretching region ofCaC03·6H20 at 25 °C. 
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Figure 4.6b Curve fit of the Raman spectrum of the 0-H stretching region of 
CaC03·6H20 at 25 °C. 
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Figure 4.7 DSC spectrum for the dehydration reactio~ CaC03·6H20- CaC03·lH20, 
from 25-120 °C at a rate of 10 °C/minute. 
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Figure 4.8 

31 J.lffi 

Photomicrograph (20x magnification) ofCaC03·1H20 produced by 
dehydration of CaC03 ·6H20 showing the cloudy appearance and distorted, 
hexagonal shape ofthe crystals. 
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Figure 4.9 

300 400 500 600 700 800 

WIWlfUI'1ber [atr't 

Raman spectrum ofthe external lattice mode region and v,. internal 
vibrational roode region of CaC03 ·1 H20 at 25 °C. 
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Figure 4.9a Curve fit of the Raman spectrum of the v"' internal vtbrational mode region 
ofCaC03·1H20 at 25 °C. 
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Figure 4.10 Raman spectrum of the v, internal vibrational mode region ofCaC03·l H20 
at 25 °C. 
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Figure 4.l0a Curve fit ofthe Raman spectrum ofthe v1 internal VIbrational mode region 
ofCaC03·1H20 at 25 °C. 
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Figure 4.11 

1200 1300 1500 1600 1700 1800 1900 2000 

Raman spectrum of the v3 internal vtbrational mode region and 2v2 

overtone region ofCaC03·lH20~ as well as the v2 region of water, at 25 
oc. 
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Figure 4.lla Curve fit ofthe Raman spectrum ofthe v3 internal vtbrational mode region 
and 2v2 overtone region ofCaC03·lH20, as well as the v2 region of water, 
at 25 °C. 
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Figure 4. 12 Overview Raman spectrum of CaC03 ·l H20 at 25 °C displaying the region 
from 1000-4000 em·•. 
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Figure 4.12a Raman spectrum of the 0-H stretching region ofCaC03·lH20 at 25 °C. 
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Figure 4.12b Curve fit ofthe Raman spectrum ofthe 0-H stretching region of 
CaC03 ·1 H20 at 25 °C. 
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Figure 4.13 SEM micrograph of CaC03 collected 24 hours after the precipitation, 
showing calcite rhombs associated with spherulites of vaterite. 
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Figure 4.14 SEM micrograph of calcite prepared by the transformation reactions, 
CaC03 ·6H20 -+ CaC03 ·1 H20 -+ calcite, showing the well-defined, 
hexagonal shape of the crystals. 
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Figure 4.15 Overview Raman spectrum of natural calcite at 25 °C displaying the region 
from l 00-1150 em-•. 
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Figure 4. 16 Raman spectrum of the v3 internal vibrational mode region and 2v2 
overtone region of natural calcite at 25 °C. 
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Figure 4.17 Photomicrograph (20x magnification) ofvaterite removed immediately 
after the precipitation showing the spherical shape of the aggregated 
crystals. 
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Figure 4.18 Photomicrograph (50x magnification) ofvaterite removed immediately 
after the precipitation showing the spherical shape of the aggregated 
crystals. 
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Figure 4.19 SEM micrograph (low magnification) ofvaterite removed immediately 
after the precipitation showing the spherical shape of the aggregated 
crystals. 
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Figure 4.20 SEM micrograph (high magnification) ofvaterite removed immediately 
after the precipitation showing the spherical shape of the aggregated 
crystals. 
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Figure 4.21 Overview Raman spectrum of vaterite at 25 °C displaying the region from 
100-1150 cm·1

• 
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Figure 4.22 Raman spectrum of the v3 internal VIbrational mode region and 2v2 
overtone region ofvaterite at 25 °C. 
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Figure 4.23 DSC analysis spectrum for the polymorphic transformation reaction., 
vaterite- calcite, from 25-550 °C at a rate of 10 °C/minute. 
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Figure 4.24 Overview Raman spectra ofvaterite performed before [a] (note the 
presence of the water band at ==3400 em·') and after [b] heating to 220 °C, 
showing the removal of water and the increase in fluorescence due to 
manganese(ll) impurities. 
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Figure 4.24a Raman spectra of the v1 internal vibrational mode region ofvaterite 
performed before [a] and after (b] heating to 220 °C. 
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Figure 4.25 Photomicrograph (20x magnification) of aragonite removed immediately 
after the precipitation showing the "needle-like" shape of the crystals. 
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Figure 4.26 Photomicrograph (50x magnification) of aragonite removed immediately 
after the precipitation showing the "needle-like" shape of the crystals. 
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Figure 4.27 Overview Raman spectrum of natural aragonite at 25 °C displaying the 
region from l 00-1150 em-• . 

119 



1300 1400 1500 1600 1700 11100 1900 

W8V8fU1'1b8r [an·• I 

Figure 4.28 Raman spectrum of the v3 internal vtbrational mode region and 2v2 

overtone region of natural aragonite at 25 °C. 
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Figure 4.29 Raman spectrum of the external lattice mode region ofvaterite at 25 °C. 
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Figure 4.29a Curve fit of the Raman spectrwn of the external lattice mode region of 
vaterite at 25 °C. 
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Figure 4.30 Raman spectrum of the v4 internal vtbrational mode region ofvaterite at 25 
oc. 
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Figure 4.30a Curve fit of the Raman spectrum of the v,. internal VIbrational mode region 
of vaterite at 25 °C. 
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Figure 4.31 
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Infrared spectrum of the v4 internal vibrational mode region (lower cm-1 

region) of vaterite at 25 °C. 
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Figure 4.3la Curve fit of the infrared spectrum of the v4 internal vtbrational mode region 
(lower em·' region) ofvaterite at 25 °C. 
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Figure 4.32 Infrared spectrum of the v4 internal vtbrational mode region (higher em·• 
region) ofvaterite at 25 °C. 
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Figure 4.32a Curve fit of the infrared spectrum of the v4 internal vtbrational mode region 
(higher em·• region) ofvaterite at 25 °C. 
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Figure 4.33 Raman spectrum of the v2 internal vibrational mode region ofvaterite at 25 
oc. 
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Figure 4.33a Curve fit of the Raman spectrum of the v2 internal vibrational mode region 
ofvaterite at 25 °C. 
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Figure 4.34 Infrared spectrum of the v2 internal vibrational mode region ofvaterite at 
25 °C. 
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Figure 4.34a Curve fit of the infrared spectrum of the v2 internal vtbrational mode region 
ofvaterite at 25 °C. 
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Figure 4.35 Infrared spectrum of the 13C region of the v2 internal vibrational mode of 
vaterite at 25 °C. 
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Figure 4.36 Raman spectrum of the v, internal vtbrational mode region ofvaterite at 25 
oc. 
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Figure 4.36a Curve fit of the Raman spectrum of the v1 internal vibrational mode region 
ofvaterite at 25 °C. 
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Figure 4.37 Infrared spectrum of the v1 internal vtbrational mode region ofvaterite at 
25 °C. 
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Figure 4.37a Curve fit of the infrared spectrum of the v1 internal vibrational mode region 
ofvaterite at 25 °C. 
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Figure 4.38 
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Raman spectrum of the 180 region of the v1 internal vibrational mode of 
vaterite at 25 °C. 
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Figure 4.39 
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Raman spectrum of the v3 internal vibrational mode region ofvaterite at 25 
oc. 
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Figure 4.39a Curve fit of the Raman spectrum of the v3 internal vibrational mode region 
ofvaterite at 25 °C. 
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Figure 4.40 Infrared spectrum of the v3 internal vtbrational mode region ofvaterite at 
25 °C. 
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Figure 4.40a Curve fit of the infrared spectrum of the v3 internal vtbrational mode region 
ofvaterite at 25 °C. 
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Figure 4.41 Raman spectrum of the 2v2 overtone region ofvaterite at 25 °C. 
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Figure 4.4la Curve fit ofthe Raman spectrum of the 2v2 overtone region ofvaterite at 
25 °C. 
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Figure 4.42 Infrared spectrum of the [v4+v1] combination band region ofvaterite at 25 
oc. 
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Figure 4.42a Infrared spectrum of the [v4+v1] combination band region (lower em·' 
region) ofvaterite at 25 °C. 
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Figure 4.42b Curve fit of the infrared spectrum of the [v4+vtl combination band region 
(lower em·' region) ofvaterite at 25 °C. 
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Figure 4.42c Infrared spectrum of the [v4+v1] combination band region (higher cm-1 

region) of vaterite at 25 °C. 
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Figure 4.42d Curve tit of the infrared spectrum of the (v_.+v1] combination band region 
(higher cm·1 region) ofvaterite at 25 °C. 
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Figure 4.43 Infrared spectra of spectroscopically pure KBr alone [a], and in 
combination with vaterite [b), showing the presence and relative amount of 
water impurities. 
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Figure 4.44 Overview Raman spectra of calcite performed before [a] (note the presence 
of the water band at =3400 cm-1

) and after (b] heating to 220 °C, showing 
the removal of water and the increase in fluorescence due to 
manganese(ll)impurities. 
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Chapter 5 

Conclusions 

The precipitation of CaC03 has been studied using a variety of techniques. Under 

suitable experimental conditions~ it has been found possible to promote the formation of 

metastable phases of CaC03 either as single phases or as mixtures. The growth of these 

metastable phases is governed predominantly by the kinetics of the reactions which can be 

controlled by differences in reactant concentrations and temperature. The preparations were 

relatively simple, only involving variations in the temperature, pressure, concentrations of 

reactants, stirring rates and duration of precipitation. Previous methods tended to be much 

more complex as they required the use of chemical additives in order to promote the growth 

of metastable phases. 

A DSC analysis ofCaC03 ·6H20 has been obtained for the first time. The dehydration 

product was found to be exclusively CaC03·1H20 which subsequently dehydrates to either 

calcite or vaterite. The endothermic reaction rate for the dehydration of CaC03 ·1 H20 was 

found to be extremely sensitive to temperature~ and to the inclusion of small quantities of 

water and other CaC03 phases which co-precipitated with the original CaC03 ·6H20. Raman 

spectra ofCaC03·6H20 have also been obtained for the first time. The presence of an external 

lattice mode. together with well-defined bands in both the internal vibrational mode regions 

and 0-H stretching region with relatively small FWHH~ s~ all suggest an ordered crystal 
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structure. These results are in agreement with the well-ordered crystal structure proposed by 

Adams (Adams, 1974). 

Raman spectra ofCaC03 ·1 H20 have also been obtained for the first time. The absence 

of external lattice modes, together with broad bands in both the internal vibrational mode 

regions and 0-H stretching region with relatively large FWllli's, all suggest a disordered 

crystal structure. The dehydration product usually consisted mainly of vaterite with small 

traces of calcite impurities. The reaction rate was found to be largely dependent on the 

presence of trace impurities of other CaC03 phases which co-precipitated with the 

CaC03 ·l H20. 

Previous studies on vaterite have been inconclusive due to the lack of crystals of 

sufficient size and purity needed for single crystal analysis (i.e. Raman and infrared 

spectroscopy, and XRD). Our experimental conditions have led to the formation ofvaterite 

crystals of sufficient size and purity which were subsequently used in obtaining high quality 

Raman and infrared vibrational spectra with outstanding signal-to-noise ratios. Raman and 

infrared spectra are reported for vaterite at 77 and 298 K. The presence of nine well-defined, 

distinct bands in the external lattice mode region of the Raman spectrum is consistent with 

the large number of formula units proposed for the unit cell of vaterite (Z = 12) (Meyer, 

1969). An 180 isotopic study of the v1 internal vibrational mode ofthe Raman spectrum of 

vaterite has confirmed the three components of v 1 to be genuine and correspond to at least 

three distinct symmetric stretching modes. A 13C isotopic study of the v2 internal vtbrational 

mode of the infrared spectrum ofvaterite has shown there to be at least five distinct out-of-
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plane deformation modes and, accordingly, at least five formula units within the unit ceU. 

Furthermore. the structure was found to be non-centrosymmetric, as proposed by Lippmann 

( 1973 ), due to the coincidence of band frequencies in the Raman and infrared vibrational 

spectra. Trace amounts of water and manganese(In impurities detected within the vaterite 

crystals are proposed to be a result of the fast precipitation required and its relatively open 

structure. 

The vibrational spectra of vaterite show features similar to those found in the 

vibrational spectra of y-N~C03 • To date, y-N~C03 is the only known incommensl!Iate phase 

of the alkali-metal carbonates, but the similarity in vibrational spectra with y-N~C03, 

combined with the relatively open structure observed for vaterite and the proposed number 

of formula units within the unit ceU (Z = 12), all suggest that vaterite is also an 

incommensurate phase. 

Micro-Raman spectroscopy has been found to be sufficiently sensitive and efficient 

in the identification of short-lived metastable phases, and in the determination of their relative 

purities. In conjuction with other methods, such as DSC, FT-IR. TG-EGA and XRD, it acts 

as an exceUent analytical tool in the field of combinatorial chemistry. 
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