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Abstract 

To study the critical behavior of the quasi-one-dimensional antiferromagnet CsNiCl3 

near the phase transitions, its elastic constants are investigated using high-resolution 

ultrasonic velocity measurements as function of temperature and magnetic field ap-

plied along the c-direction. The experimental data we present with respect to th 

longitudinal mode, t:;.cC33
, and the t ransverse modes, 6.cC44 and t:;.cC66 , generate a phase 

U « H 

diagram in good agreement with published results by showing two zero-field t ran

sitions a t TN1 ~ 4.75 K, TN2 ~ 4.35 K, and multicritical point at (Tm ~ 4.50 K, 

Hm ~ 2.29 T ). Moreover , the critical exponent f3 extrapolated from the tempera

ture dependence of t:;.cC66 shows XY criticality with a constant value 0.35 ± 0.02 for 
66 

H < Hm. How ver, field dependent behavior is observed for H > Hm. This is the 

first experimental evidence that the high-field phase transition as o ia ted with the 

120° spin configuration is weakly first-order and experimentally re olves the cont ra-

versy about the true crit icality of th high-field phase boundary. T his result is al o 

strengthened by the step-like variation d monstrated by temp rature dependence of 

6.cC44 at fields high r than the multicritical field (Hm ~ 2.29 T ) and hysteresi phe-
44 

nomena observed in field dependence of t:;.cC44 at T = 5.00 K umerical predictions 
44 

are made based on the Landau model. The elastic constants of Cs iC13 in differ-

ent phases ar calculated using the total free energy, which is derived according to 

the Landau free-energy, the elastic en rgy, and the magnetoelastic coupling terms 

Vl 



invariant under the symmetry operation of the hexagonal group P63/mmc. Mean

while, the non-mean-field order parameter and quadratic-quadratic ( q-q) couplings 

are considered to optimize the numerical prediction and achieve a good reproduction 

of the experimental data . Furthermore, by studying the numerical predicted elastic 

constants and strains, a decrease of the spin structure symmetry, from hexagonal to 

orthorhombic, is proved in the elliptical phase. 
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Chapter 1 

Introduction 

In the past forty years, the class of antiferromagnetic mat rials with the ABX3 com

position hav be n widely investigated due to their particular magnetic properties[11. 

In this chemical formula, A is an alkali metal such as Cs or Rb while B stands for a 

transition metal such as i, Cu, Co, Fe[21 or Mn[31 which acts as magnetic ion, and X 

represents a halogen element. Published research works[4J- [ll] hav revealed that the 

unusual behavior of these quasi-one-dimensional hexagonal antiferromagnetic systems 

is due to the geometric frustration caus d by the triangular lattice structure. 

To form the lowest energy state, every magnetic moment att mpts to align an

tiparallel with its nearest neighbors. However, on a triangular lattice, as shown in 

Fig. 1.1(a) , the spin on lattice 3 cannot be simultaneously antiparallel with spins 1 

and 2. In order to lift this magnetic frustration , the three magnetic moments adopt 

a 120° configuration as shown in Fig. l.l(b) and Fig. l.l(c). According to the special 

120° spin structure, left-handed (Fig. 1.1 (b)) and right-handed (Fig. 1.1 (c)) domains 

are possible. The existence of these two chiral domains leads to an extra degeneracy 

which makes these systems particularly int resting. 

As commented upon by Roderich Moessner and Arthur P. Ramirez[121 people's 

1 



CHAPTER 1. INTRODUCTION 2 

Figure 1.1: Schematic of the two degenerate chiral states of the 120° spin structure. (a) 

shows that the spin on lattice 3 cannot be arranged antiparallel with spins on lattic 

1 and 2. Thus the three spins form a 120° configuration with the possibility of (b) 

left-handed and (c) right-handed chiral domains. 

aroused interest in the instabiliti s exhibited by frustrated magnets leads to an ex

ploration of both the real nature of different materials and the principle that can 

explain the observed variety of behaviors. Twenty years ago, based on symmetry 

arguments and Monte Carlo simulations, Kawamura1131-1161 claim d that frustrated 

stacked-triangular antiferromagnets (STA) belong to a new universality class. In 

Table 1.1, we present a series of critical expon nts associat d with these new univer

sality clas es obtained by Monte Carlo calculations1171 for both XY and Heisenberg 

STA. Here n r fers to the number of dimensions of the model, while a, (3, 1 and v 

are critical exponents with respect to specific heat, order parameter, sus eptibility, 

and correlation length, respectively. Corresponding expon nts for the non-frustrated 

systems1181 ar also listed in Table 1.1 for comparison. The difference between both 

sets of critical exponents illustrates the notion proposed by Kawamura. Thus, based 

on Kawamura' argument, the occurrence of a second-order tran ition associated with 
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Model a (3 "( l/ 

(n = 2 Chiral) Chiral XY 0.34±0.06 0.25±0.01 1.13±0.05 0.54±0.02 

(n = 3 Chiral) Chiral Heisenberg 0.24±0.08 0.30±0.02 1.17 ±0.07 0.59±0.02 

(n = 1) Ising 0.110±o.oo3 0.325±0.001 1.240±0.001 0.630±0.001 

(n = 2) XY - 0. 008±0.003 0.346±0.001 1.316±0.001 0.669±0.001 

(n = 3) Heisenberg - 0.116±0.004 0.365±0.001 1.387 ±0.001 0. 705±0.001 

Table 1.1: Critical exponents for vanous universality classes from Monte Carlo 

simulationsl171. 

a 120° spin configuration is expected. However, an alternative theoretical analysis by 

Azaria et al.l191 appeared around 1990 questioning the existenc of the new universal

ity class. According to this analysis, Azaria predicts that the 120° phase transition 

line should rather be characterized by a weakly first-order type. In the past ten years , 

further theoretical studies and numerical imulationsl201-l261 have b en done to sup

port this statement. Although thermal expansion data on the helimagnet Hol271 can 

be employed to support the idea of a weakly first-order transition, no experimental 

results on systems with the 120° structure have been found to be first-order. 

The debate about the true nature of the phase transition of geometric frustrated 

systems is still ongoing. More recently, Kawamura et al. l161 predicted, based on a 

scaling theory and renormalization-group analysis, that the phase transition from the 

paramagnetic phase to the 120° phase is second-order and that th criticality should 

correspond to the new n = 2 chiral universality class. However, results obtained by 

Delamotte et al.l231 and go et al. l261 show a nonuniversal scaling behavior or a weakly 

first-order character. Thus, these new numerical works suggest that the 120° phase 
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transition of the frustrated systems is "most probably of very weak first-order" 1231. 

Therefore, to solve this controversy, more experimental investigation of the 120° phase 

transition of ABX3 systems are needed. 

Depending on the type of magnetic anisotropy, the magnetic ordering of ABX3 

compounds may be classified into two categories, easy-plane anisotropy such as CsMnBr3128l, 

and easy-axis anisotropy such as CsNiClgl29l. Schematics of the phase diagrams of 

these two hexagonal compounds, for a magnetic field oriented along the c-direction , 

are shown in Fig. 1.2. For the typical easy-plane anisotropy compound CsMnBr3130l, 

CsMnBr3 (easy-plane) Cs~iCI3 (easy-alds) H//c 
H H 

no·spin structure 
phase 

120~spin structure 
~ phase 
~ 

paramagnetic <;:) 
paramagnetic ~ phase phase 

Elliptical phase 

T 
(b) 

Figure 1.2: Magnetic phase diagram of (a) the easy-plane anisot ropy compound 

CsMnBr3 and (b) the easy-axis anisotropy compound CsNiCl3 for magnetic field 

applied along the c-direction. 

only one ordered phase exists. The 120° phase is separated from paramagnetic phase 

by a phase boundary as shown in Fig. 1.2(a). For the easy-axis anisot ropy system, we 

take one of the most famous ABX3 compounds CsNiCl3 as an example, which is shown 
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in Fig. 1.2(b)l161. Compared with easy-plane type compounds, Cs iCl3 has demon

strated more novel magnetic properties. At zero field, two ordered phases, the linear 

phase and the elliptical phase are observed below TNl ~ 4.85 K and TN2 ~ 4.40 K , 

respectively. A field induced spin-flop phas transition from elliptical to the particular 

120° phase is also observed at H ~ 2.00 T. A multicritical point, which is of n = 3 

criticalityl161, is observed at (Tm ~ 4.60 K, Hm ~ 2.29 T ). Although both of these 

syst ems show a 120° phase transition, in our work we choose to inv stigate CsNiCl3 

because of its richer phase diagram. 

High-resolution ultrasonic velocity measurements have been used to determine the 

phase diagram of ABX3 compounds141,1311- 1331. Other magnetic properties of CsNiCl3 , 

such as the spin-fluctuation under external magnetic field1341 and the crossover behav

ior near the multicritical point1351 have also bee detected using this m thod. However , 

detailed analysis of the observed critical behavior still needs to be developed. Thus, 

our work is aimed at obtaining sufficient experimental evidence in order to determin 

the true natur of the phase transition b tween the paramagn tic phase and the 120° 

phase of CsNiCis. For that purpose, th critical behavior close to phase boundaries 

under magnetic fields up to 10 Tesla have been investigated. In particular, different 

acoustic modes, propagating along different crystallographic directions, have been 

used to investigate the critical behavior of the elastic constants. 

The elastic properties of CsNiCl3 are also analyzed using a Landau approach, 

which adequately describes the variation of the elastic properties in terms of an or

der param ter. This model takes into account the symmetry chang s at the phase 

transitions and th behavior of thermodynamic potential in the vicinity of t he critical 

pointsl361. Based on a Landau model derived by Plumer et al.1111, the nature of the 

magnetic ordering of Cs iCl3 for diff rent phases are explained. This model is then 

expanded in order to account for the temperature and magn tic field dependence 



CHAPTER 1. INTRODUCTION 6 

of the elastic properties of CsNiCls . Most coefficients in the model are adjusted by 

fitting the magnetic phase diagram and thermal expansion data. on-mean-field tem

perature dependent order parameters are also employed to optimize the agreement 

with the experimental data. 

The r mainder of this thesis is organized as follows. Some fundamental terms 

of magnetism are briefly introduced in Chapter 2. The rystal structure and low

temperature magnetic properties of CsNiCls are presented in Chapt r 3. The high

resolution ultrasonic velocity measurements are described in Chapter 4 followed by 

the introduction of some important concepts for crystalline elasticity in Chapter 5. 

After presenting the experimental results obtained by ultrasonic measurements in 

Chapter 6, in Chapters 7, 8, and 9, we derive the model for Cs iCls for the case of 

magnetic field applied along the c-dir ction based on Landau theory. In Chapter 7 

the basic ideas of Landau theory for phase transition are briefly introduced. In 

Chapter 8 the Landau free-energy for Cs iCl3 is presented for convenience and in 

Chapter 9 th total free energy, which includes Landau free-en rgy, elastic energy 

and magnetoelastic coupling terms is derived. Based on the model, the theoretical 

elastic constants are calculated in Chapter 10 together with the discussion of the 

symmetry breaking phenomenon. In Chapter 11, according to the experim ntal data, 

the critical behavior of Cs iCl3 near the phase transitions is discuss d and the nature 

of the phas transition between th paramagnetic phase and the 120° phase is verified. 

The numerical prediction of the temperature and magnetic field dep ndence of th 

relative varia tion of elastic constants C33 and C66 are presented in Chapter 12 to show 

the agreem nt between our theoretical and experimental results. Chapt r 13 contains 

a summary and conclusions. 



Chapter 2 

Magnetism 

In this chapter, some fundamental terms of magnetism, such as magnetic moment, 

magnetization, and magnetic susceptibility are summarizedl371-1401. The classification 

of magnetic material is also presented relative to the temperature dependence of their 

magnetic susceptibility. Based on this classification, the various types of magnetic 

ordering and exchange interaction between magnetic moments are briefly described 

to show the characteristic features of antiferromagnetic systems. Simplest cas s of 

antiferromagn tic spin configuration, due to the geometrical frustra tion , are also pre

sented. The last part of this chapter is a brief d scription of the techniques used to 

measure the magnetic ordering in solids. 

2.1 Magnetic moment and magnetization 

According to the classical electromagnetism, a current I circulating around an in

finitesimal area dA can generate a magnetic moment corresponding to 

dp, = IdA, (2.1) 

7 
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where d/.L is perpendicular to the current loop in a right-hand-rule direction. Under 

an external magnetic field H , the energy of a magnetic moment is 

E = - J.to /.L · H = - J.top,H cos(}, (2.2) 

where p,0 i the permeability of free space and (} is the angle between 11 and H . 

According to Eq. 2.2, the lowest energy configuration of the magnetic moment is to 

align itself with H . In fact , magn tic moment is also associated with the orbital 

motion of the charges in the current loops. Therefore, rather than pointing towards 

H , the direction of 11 is precessing around H . 

The magnetization M , is defined as the quantity of magnetic moment per unit 

volume as 

(2.3) 

where N is th numb r of the magnetic moment in the sampl of volumn V. To 

describe the response of a system as a function of an external magnetic field H , th 

magnetic induction B in a solid is defined as 

B = p,0 (H + M ), (2.4) 

while in free space there is no magn tization and B is related to H as 

B = J.toH . (2.5) 

2.2 Weak magnetism in solids 

In magnetic materials, the principal sources of the magnetization are: the electron's 

intrinsic magnetic moment (spin) , the electron's orbital angular momentum about 

the nucleus, and the change in the orbital moment induced by an external magnetic 
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field . The paramagnetic contribution to the magnetization comes from the first two 

sources, while the diamagnetic contribution originates from the third effect. 

The relation between the magnetization M and the external magnetic field H can 

b written as 

M = xH, (2.6) 

where x is defined as the magnetic susceptibility. oticing the definition of magneti-

zation given by Eq. 2.3, x is dimensionless, representing the the magnetic moments 

induced by H per unit volume. The magnetic susceptibility can also be described in 

terms of molar susceptibility, Xmol, and mass susceptibility Xmass, where 

X 
Xmass = - . 

p 

(2.7a) 

(2. 7b) 

Vmol is the molar volume while p refers to the density. Substances with a negative 

magnetic susceptibility are called diamagnetic, while that with a positive magnetic 

susceptibility are called paramagnetic. 

2. 2.1 Diamagnetism 

Diamagnetism is the property of substances that have only non magnetic atoms. The 

magnetization, which is induced by the external field, is very weak and opposite to 

the applied field . The diamagnetic molar susceptibility is very small, usually of the 

order of 10-5 cm3·mol- 1 , and independent of both field and temperature. 

2.2.2 Paramagnetism 

The magnetism of paramagnetic substances mainly originates from the permanent 

magnetic moment of the atoms or ions. Besides this, in metals, conduction electrons 
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also exhibit paramagnetic behaviors, which is much weaker t han that of the atoms or 

lOllS. 

Curie paramagnetism 

In the absence of an external field , as shown in Fig. 2.1(a) , magnetic moments of atoms 

can orient themselves freely in all directions due to the negligible interactions with 

each other. When an external field is applied , the average alignm ntis modified . With 

the increasing of the field , the number of magnetic moments pointing along the field 

direction increases. Therefore, a small magnetization is induced in the direction of 

the external field. As shown in Fig. 2.1 (b), the paramagnetic magnetization increases 

~ ~ " 
M T t< T2 <T3 

(TJ) 
X 

' " ....... (T2) 

~ ..... ~ 
(TJ) 

(a) (b) H 
(c) T 

Figure 2.1: Magnetic moment orientation (a), field and temperature dependence of 

magn tization (b), and temperature dependence of the susceptibility (c) for par am-

agnet ism systems. 

with the ext rnal field and becomes more linear at higher temperatures. According 

to Eq. 2.4 and Eq. 2.6, for small fields, where x « 1 and therefore B ~ p,0H x can 

be calculated as 

P,oM x= --B . (2.8) 
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Here the magnetization, M , according to Eq. 2.3, can be written using 

M = n(J.Lz), (2.9) 

where n = ~ and (J.tz) is deriv d as s't:~l37l representing the average mom nt along 

B. Hence, the volume magnetic susceptibility for small fields is obtained as 

nJ.tw2 
X= 3ksT. (2.10) 

This is known as the Curie's Law showing that the susceptibility is inversely propor-

tional to th temperature. Curie's Law is often presented as 

Ccurie x=--
T 

(2.11) 

with C curie being the Curie's constant. Also shown in Fig. 2.1(c) , this susceptibility 

is positive at low field and becomes infinite at the absolute z ro temperature. At 

room temperature, the paramagnetic molar susceptibility is of the order of 10- 3 to 

10- 2 cm3·mol- 1 . 

Pauli paramagnetism 

In metals, conduction electrons also contribute to the paramagnetism when an exter-

nal field is applied. At low fields, the density of states for the free electrons is divided 

into two parts: electrons having their magnetic moments parallel or antiparallel to 

the external field . With the incr asing of the field, the energy of th electrons with 

magnetic moments antiparallel to the filed is increased, while that of th other part 

of electrons is decreased. In order to maintain the constant Fermi level, a shift of 

energy is required. The electrons with magnetic moments antiparallel to the field 

have to lower their energy by flipping their spins. This leads to an excess of the 

magnetic moments parallel to the field and therefore, gives rise to a paramagnetic 

magnetization. 
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For small fields, Pauli susceptibility, XP, can also be calculated using Eq. 2.8. As 

free electrons hav a spin of ~ and g = 2, the magnetization can be obtained by 

(2.12) 

where nr - n1 gives the difference of th number of electron with their magnetic 

moments parallel ad antiparallel to the field. In this case, assuming that the energy 

shifts are n gligible, we have that 

(2.13) 

Hence, the Pauli magnetic susceptibility is given by 

(2.14) 

where n is the number of magnetic moment per unit volume and EF is the Fermi 

energy. Make use of EF = k8 TF , Eq. 2.14 can be written in a Curie-like form as 

(2.15) 

where T F is the Fermi temperature. Actually, Pauli paramagnetism is a very weak 

effect compared with the paramagnetism observed due to the Curie's Law. 

2.3 Magnetic ordering 

The paramagnetic behaviors described so far ignore the possible interaction between 

magnetic moments. In case of significant interaction between moments, the Curie 

law is renormalized . Moreover, spontaneous magnetic ordering in the absence of an 

applied magnetic field can also be observed. Three types of magnetic ordering are 

commonly observed: ferromagnetic, antiferromagnetic, and ferrimagnetic. 
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2.3.1 Ferromagnetism 

Ferromagnetic ordering originates from the parallel arrangement of the magnetic mo-

ments, as shown in Fig. 2.2(a). However, this spontaneous ordering vanishes when 

the temperature increased to Tc, the Curie temperature. This temperature sepa

rates the ferromagnetic phase for T < Tc from the disordered paramagnetic phase 

o:::) for T > Tc. In the paramagnetic phase, the field dependence of the magnetization 

is the same as that of the paramagnetic substances as presented by curves T = T2 

H 
(a) (b) 

0 Tc 
(c) 

T 0 Tc 
(d) 

Figure 2.2: Ferromagnetism: (a) Spin lattice; (b) Field dependence of the magneti

zation (T1 < Tc ~ T2 < T3 ); ( c)Temperature dependence of the susceptibility; (d) 

Temperature dependence of the spontaneous magnetization. 

and T = T3 in Fig. 2.2(b). However, forT < Tc, as shown by Fig. 2.2(d), a sponta-

neous magnetization, M 8 , appears at zero field and reaches its maximum value at zero 

Kelvin. Moreover, as illustrated in Fig. 2.2(c), instead of diverging at zero K lvin for 

paramagnetic materials, the ferromagnetic susceptibility is given by the Curie-Weiss 

law, 
c 

(T > Tc), (2.16) x=T-Tc 

and shows a singularity at T = Tc. 
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2.3.2 Antiferromagnetism 

A rather different situation is observed for antiferromagnetic ordering. As shown in 

Fig. 2.3( a), for a simple antiferromagnetic order the magnetic moments are distributed 

into two sublattices, their magnetization are equal in magnitude but opposite in di

rection. Therefore, no net magnetization is observed at zero field. As illustrated in 

Fig. 2.3( c), the temperature dependence of the susceptibility exhibits a maximum at 

-+- -+- ..... 
.,x 
I \ 
I 
I .... ....... ....... I 

-+- -+- ..... .... ....... ....... 
I 

(TJ) I 
I 

(a) 
H --fJ 0 TN T 

(b) (c) 

Figure 2.3: Antiferromagnetism: (a) Spin latt ice; (b) Field dependence of the mag

netization; ( c )Temperature dependence of the susceptibility. 

the so called Neel temperature TN. This is due to the antiferromagnetic to paramag-

netic transition at T =TN. When the temperature is lower than TN, the susceptibility 

decreases. Above TN, as shown in Fig. 2.3(b) and Fig. 2.3(c), a paramagnetic behavior 

is observed from both the field dependence of the magnetization and the tempera

ture dependence of the susceptibility. The susceptibility in the paramagnetic region 

T > TN is obtained as 
c 

x=T+8 (2.17) 

where () is an experimental factor and often be studied experimentally in the form of 

0 
TN' 

Besides the simplest case shown in Fig. 2.3(a), there exist many antiferromagnetic 
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substances with complex magnetic structures, especially geometrically frustrated sy -

tems. The simplest example is that of three magnetic moments on a triangular lattice 

shown in Fig. 1.1. Among these three magnetic moments, a 120° configuration is 

adopted and then the magnetic frustration is formed. Other types of geometrically 

frustrated lattice structures are shown in Fig. 2.4. 

a b c 

Figure 2.4: Frustrated latticesl121. (a) The kagome lattice consists of vertex-sharing 

triangles. (b) The pyrochlore lattice i a net work of vertex-sharing t trahedra. (c) 

Hexagonal ice consists of protons (small spheres) that reside on the bonds between 

two oxygen atoms (large spheres). 

2.3.3 Ferrimagnetism 

The ferrimagnetic ordering can be treated as a mixture between the antiferromagnetic 

and ferromagnetic cases. As shown in Fig. 2.5(a) , there exist antiferromagnetic or

dering between magnetic moments of different lattices, while ferromagn tic ordering 

between magnetic moments of the same lattice. This actually leads to a spontaneous 

magnetization for temperature below the Curie temperature Tc. In other words, as 

shown in Fig. 2.5(b) and Fig. 2.5(d) , the behavior of the magnetization forT < Tc is 

close to that of a ferromagnet , except that there exists a compensation temperature 
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M 
T l <Tc<T2 

A .... ..... ..... 
B -o- -o- -o-..... ..... ..... 

-o- -o- -o-

(a) (b) 

IIX 

(TI) 

(Tc) 

(T2) 

H 0 Tc 
(c) 
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T 0 TcT 
(d) 

Figure 2.5: Ferrimagnetism: (a) Spin lattice; (b) Field dependence of the magnetiza

tion; ( c)Temperature dependence of the susceptibility; (d) Temperature dependence 

of the spontaneous magnetization. 

q at which the spontaneous magnetization can be canceled due to the exact compen

sation of both sublattices. Furthermore, as presented in Fig. 2.5(c), the temperature 

dependence of susceptibility is almost linear at higher temperature. However , when 

approaching Tc, it obviously shift away from a linear behavior. 

2.4 Exchange interaction 

The long-range order of magnetic moments in solids is generally attributed to the 

short range interaction with each other. Besides the magnetic dipolar interaction, 

which is too weak to account for the ordering of most magnetic materials, the exchang 

interactions play the most important role in producing the long-range magnetic order. 

The exchange interaction can be described by the exchange constant (or exchange 

integral) J . For a two electrons system, 

1 = Es- ET 
2 ' 

(2.18) 

where Es and ET are energies of singlet state and triplet state, respectively, and the 
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Hamiltonian for this simple case is 

For a many-body system, Eq. 2.19 can be rewritten as 

il = - 2::: J ij s i · s j 

ij 

17 

(2.19) 

(2.20) 

showing that interactions exist between all neighboring spins. Here, Jij is the ex

change constant between the ith and yth spins. For £ rromagn ts, J ij is posit ive to 

ensure the ferromagnetic alignment , while for antiferromagnets, J ij is negative to 

favor that nearest neighbor magnetic moments are antiparallel to each other. 

In some antiferromagnets, there exists an ant isymmetric exchange interaction 

which is related to the overlap of electron distributions on neighboring ions. Th 

magnetization generated from this interaction is directed along the certain crystallo-

graphic axes. Therefore, this exchange energy can be described as 

(2.21) 

To minimize ilDM' sl and sl are expected to be perpendicular to each other and in 

an plane that p rpendicular to the vector D to ensure that 'HDM is negativ . Actually, 

in antiferromagnets, with both negative xchange interaction J ij and D , the nearest 

two magnetic moments form an angle by canting instead of being exactly antiparallel 

to each other. 

2.5 Measurement of magnetic order 

An obvious experiment method to detect the magnetic order is to measure the magne-

tization. One of the most sensitive techniques commonly used is the sup rconducting 
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quantum interference device (SQUID)f37l. A superconducting ring, which acts like a 

very sensitive quantum interferometer , is adopted in this method. When the sample 

passing through the ring, an induced persistent current, which is proportional to the 

magnetization in the sample, is obtained. Therefore, the magnetization in t he sample 

can be determined by measuring the current. 

A way to study the nature of a magnetic order is to analyze the magnetic sus

ceptibility. Given that the magnetic susceptibility is given by ~, magnetization 

techniques, for example the SQUID, can be used. A measurement used to determine 

small magnetic suscept ibilities is called Gouy balance. By using this method, the 

weight change of the sample due to the application of a magnetic field is measured. 

This change of weight directly corresponds to the amount of unpaired electrons in 

the solid, and therefore can be used to extract the susceptibility. 

In addition, the magnetic structure and dynamics can be studied using neutron 

scattering. This method is outstanding in gathering direct information on the con

figuration of the magnetic moments in the sample. 

Many other techniques, such as nuclear magnetic resonance (NMR), Mossbauer, 

and p,-SR experiments, are also used to effectively investigate the magnetism for 

materials. In our experiment, the ult rasonic velocity measurement is employed to 

study the nature of the magnetic phase diagram of the antiferromagnet CsNiCl3. 



Chapter 3 

Crystal structure and magnetic 

properties of CsNiCl3 

CsNiCb is one of the most studied antiferromagnetic compounds because of its novel 

properties at low temperatures. In order to better describe the magn tic properties 

of CsNiCb, in this chapter we present its crystal structure and its low-temperature 

magnetic phase diagram. A description of the different phase transitions, along with 

the spin configurations, are also includ d. 

3.1 Crystal structure 

CsNiCb is a spin-1 hexagonal insulator with a P63/ mmc (D~h) space group symmetry. 

The lattice constants of this compound are a = b = 7.14 A and c = 5.96 A at 

T = 4.20 Kl411. As shown in Fig. 3.1(a), there are two formula units per unit cell. 

Both of the lattices formed by Cs+ and Cl- ions are hexagonal and the magnetic Ni2+ 

ions, each surrounded by a trigonally distorted Cl-octahedron, are arranged in chains 

along the c-direction. Also shown in Fig. 3.1 (b), which represents th top view of the 

19 
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-Cs e-Ni Cl 

c 

P6immc 

(a) 

\__ 
a-bplane 

(b) 

Figure 3.1: Crystal structure of CsNiC13 (a) and its projection onto the basal plane 

(b). Magnetic Ni2+ moments are coupled along the c-direction via Ni-Cl-Ni paths (see 

(a)) and via Ni-Cl-Cl- i paths in the basal plane (see (b)). 
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crystal structure projected onto the basal plane, Ni2+ moments are located on sites 

forming stacked layers of triangular plan s. 

3.2 Magnetic phase diagram 

As shown in Fig. 3.1, in the basal plane, the i2+ ions are coupled via a i-Cl

Cl-Ni path while along the c-direction the antiferromagnetic coupling is mediated 

through the i-Cl-Ni path. Therefore, the spin-spin interaction is mediated via the 

superexchange, the strong antiferromagnetic coupling between two magnetic nearest 

neighbor ions through a non-magn tic anion , between th i2+ ions along the c-

direction through Cl- anions while no such superexchange exists in the basal plane. 

This leads to a stronger interaction between i2+ ions along the chain ( c-direction) 

~ relative to the basal plane exchangel1l. This anisotropy in the magnetic interaction is 

well accounted for by the spin Hamiltonian142l 

c::) 

chain plane 

1-l = - J 11 L si· s i+l -h. Lsi· Sj- D L (st? + 9J.LsH ·Lsi, (3.1) 
i=fj 

where sis the spin of magnetic ion, J11 and JJ. represent the exchange integral along 

the c-direction and in the basal plane, respectively. According to early works (see Ta-

Experimental method J11/ka(K ) JJ./ka(K) D/ks(K) 

Susceptibility143l - 12.1 

Optical absorptionl44l, neutron diffractionl45l - 13"' - 16 - 0.3"' - 0.4 0.11 "' 0.14 

Spin flop field 141 ~ 0.035 

Polarized neutron inelastic scattering146l - 16.6 0.1 ~ 0.035 

Table 3.1: Microscopic parameters as determined by different experimental methods. 
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ble 3.1), both couplings are antiferromagnetic with J11 almost two orders of magnitude 

larger than h .. For this reason, Cs iCh i a good archetype for quasi-one dimen

sional antiferromagnets. As the single ion anisotropy D is also small compared with 

the exchange integrals 111 and h . Cs iC13 can also be treated as a nearly isotropic 

Heisenberg antiferromagnet. The last term in Eq. 3.1 is the Zeeman energy. For a 

magnetic field applied along c-direction, this term can be simplified to gp,sH L st, 
i 

where H represents the applied magnetic field. 

The magnetic phase diagram of Cs iC13 for a field applied along the c-direction i 

shown in Fig. 3.21161. A paramagnetic phase and three ordered phases are separated 

by four phase transition lines emanating from a multicritical point at (Tm ~ 4.60 K, 

Hm ~ 2.29 T) , which is also called a tetracritical point. As illustrated in the phase 

diagram, two econd-order phase transitions are observed at low fi lds and the criti-

cality along these phase boundaries is expected to belong to the XY universal class. 

At zero field the transitions happen at TNl ~ 4.85 K and TN2 ~ 4.40 K, respectively. 

In the intermediate phase (for TN2 < T < TN1 ) , one-third of the spins are aligned 

parallel to the c-direction with the oth r spins pointing in the opposite c-direction 

and canting at an angle e. As only the component parallel with c-direction is ordered, 

this state is normally referred as the linear phase. In other words, only the parallel 

components of the other two-thirds spins are ordered. With a further decrease in 

temperature, in-plane ordering become stronger and the spin onfiguration changes 

into an elliptical order. Here, the components in the basal plane are also aligned 

antiparall l. Both of these two states can be characterized as a period-3 basal-plane 

modulation with an additional simple period-2 antiferromagnetic alignment along th 

c-direction111l. These spin configurations have been confirmed by neutron scattering, 

ESR, and MR measurementsl47l- 152l. 

The most unusual phase happens with an external magnetic field applied along 
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H ct 

120° spin structure phase 

t Elliptical 
phase 

'~ 
second - order 

XY universality class ~ 

H // C 

weakly first - order 

OR ? 
second - order • 
Chiral X¥ universality class 

fixed point 
Chiral Heisenberg universality class 

second - order 
~ XY universality class 

Paramagnetic 
phase 

T 

Figure 3.2: Magnetic phase diagram of Cs iCh for a magnetic field oriented along 

the c-direction. T he spin configurations, described in the text, are also illustrated . 



CHAPTER 3. CRYSTAL STRUCTURE AND M AGNETIC PROPERT I ES OF CsNICL3 24 

the c-direction a t low temperatures. As shown in the phase diagram, a t T < T N2, a 

first-order spin-flop phase transition at H ~ 2.00 T leads to a 120° pin configuration . 

In this phase, the spins are aligned almost in the basal plane with a small canting 

angle relative to the basal plane. As the field is increased , the canting angle increases, 

resulting into a larger net magnetization along the c-direction. Th spin basal plan 

components form a 120° structure as in the case of easy-plane anisotropy. The phase 

transition b tween the 120° phase and paramagnetic phase is predicted to be cont in

uous and should belong to the chiral XY universality classi131- [I BJ . However , other 

theoretical studies and numerical simulations120l- 126l support an alt rnative statement 

that the 120° phase transition line should rather be characterized by a weakly first

order type. 



Chapter 4 

Experimental setup 

The elastic constants, which are thermodynamic propert ies susceptible to the spin 

configurations in the cryst al through magnetoelastic coupling, can be determin d 

from ultrasonic velocity measurem ntsl531. Therefore, ult rasonic velocity measure

ments as function of both temperature and magnetic field can be used to probe th 

magnetic phase diagram. In addition , to detect the crit ical behavior close to a phase 

transition, a high-precision method i required. Thus, for our investigation , high

resolution ultrasonic velocity measurements, which can achieve resolutions as high 

as 1 part per million (lppm), are used to examine the elastic properties of CsNiCl3 . 

To obtain this type of resolution , t he acoustic interferometer technique is used to 

measure the relative sound velocity ~v inst ad of the absolute velocity. 

In this chapter, we first int roduce the CsNiC13 sample and transducers mployed 

in our experiments. Then, the high-resolut ion ultrasonic velocity measurements are 

described in detail. 

25 
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4.1 CsNiCl3 sample crystal and piezoelectric trans

ducers 

The Cs iCl3 single crystal used in our experiment was grown by the Bridgman 

method. Thi method involves heating polycrystalline material in a container above 

its melting point and cooling it from one end where a seed crystal is located. Then 

single crystal material can be progressively formed along the l ngth of the container. 

Our sample crystal has approximately the shape of rectangular solid with a length 

of 8.9 mm along the c-direction and an area of 2.5 mm x 2.5 mm in the basal plane. 

Longitudinal or transverse elastic waves are produced by piezo le tric transducers 

mounted on one surface in the reflection configuration (see Fig. 4.2(a)), or two par

alleled surfaces in the t ransmission configuration (see Fig. 4. 2 (b)). 

In conventional applications, the upper limit of the ultrasonic frequ ncy range is 

about 10 MHz. However, in some applications, the frequency can b as high as 5 GHz. 

In our experiment, the ultrasonic velocity i measured with th standard pulse-echo 

method at a fr quency of about 30 MHz. As shown in Fig. 4. 1, a transducer is a 

piezoelectric crystal with two gold electrodes evaporated on the crystal extremities. 

Thus, the RF signal applied to these electrodes is converted into mechanical vibrations 

by the piezoelectric crystal. In our experiment the transducers are bonded on the 

sample by a glue which works well at low temp ratures. B cau e of the piezoelectric 

effect , the transducer vibrates at the same frequency as that of the o cillating electrical 

field applied to the electrodes (see Fig. 4. 2 (a)). In the reflection configuration, the 

transducer bonded to one of th two parallel faces of the crystal acts as the emitter 

and receiver. The mechanical vibration of the transducer generates a ound wave that 

propagates in the sample. Reflected by th extremities, the sound wave travels back 

and forth in the crystal. Due to th inv r piezoelectric effect, ach t ime the sound 
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Piezoelectric 
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Figure 4.1: Transducer-Bond-Sample arrangement. 
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wave returns to the transducer , a small fraction of the mechanical energy is converted 

into an electrical signal which is detected, as shown by Fig. 4.3. In the transmission 

configuration, Fig. 4.2(b) , the transmission and reception stag s are d coupled using 

two transducers. In both cases, in order to determine the time of flight of the acoustic 

wave between th transmitter and receiver , 1 1-lS RF pulses ar typically used. 

4.2 Low-temperature and high magnetic field sys-

tern 

A helium bath cryostat containing a superconducting magnet has b en used for this 

investigation. By using liquid helium as the cryogen , the temperature of t he system 

~ can be as low as 2 K , at which the superconducting magnet is able to gen rate variabl 

magnetic field up to 15 Tesla. These conditions are indispensable for the investigation 

of the low-temperature phase transitions observed in CsNiCh. 

As shown in Fig. 4.4, before transferring liquid helium in the reservoir, the ins rt 

and sample chamber of the system must be evacuated to avoid th blockage of cap-

illary due to the frozen air or nitrog n. The outer chamber is also under vacuum to 
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(b) Transmission Configuration 

Figure 4.2: Schematic of the propagating of the sound wave in the crystal for both 

reflection (a) and transmission (b) configurations. For the reflection configuration, 

the tran ducer acts as both the emitter and receiver. For the transmission configu-

ration, the transducers bonded on the top and bottom surfaces act as mitter and 

receiver , re pectiv ly. Here th piston is used to improve th coupling between th 

transducer and the crystal by producing a gentle force on the transducer due to a 

small compressed pring. 

a superinsulation status. This helps to reduce the heat flow from the outsid wall 

of the cryostat which is at room t mperature. After the liquid helium transfer, th 

lower part of the helium reservoir is cooled down to 4.2 K by the liquid h lium bath. 

Meanwhile, the cold gas that evaporates from the liquid helium is used to cool the 

radiation baffles in the higher part of the inn r chamber. This vapor shield, again, 

protects the helium reservoir from the room t mperature radiation heat. The CsNiC13 

crystal is mounted on the sampl holder , which is attached on a long probe insid 
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Initial RF pulse 1st echo 2nd echo 

1 J-LS 6-t = time of flight 

Figure 4.3: Consecutive echoes det cted by the receiver. Th d cr ase of the am

plitude with the time of flight is due to the acoustic attenuation as the sound wave 

propagates in the rystal. 

the sample chamber. To cool down the Cs iCl3 sample, we need to adjust the cap

illary to let the helium flow into th sample chamber. At the same time, the safety 

pressure relief is opened to keep the positive pressure, which can maintain a proper 

flow of liquid helium from the reservoir into the sample chamber. As the helium gas 

flows into the sampl chamber , Cs iCl3 sample is cooled down. The temperature 

regulation is achieved by adjusting the power input of the heater inside the sampl 

chamb r. Furthermore, by decreasing the pressure inside the sample chamber, the 

boiling point of helium is decreased and a temperature of about 2 K can be achieved 

around the sample holder. 

The superconducting magnet in this system is a solenoid with a bore radius of 

52 mm. This type of magnet works well normally at 4.2 K up to a magnetic field 

to 13 T. However, lower temperatures can be used to enhance the performance of 

the magnet, esp cially for generating magnetic fields up to 15 T. Lambda refrigera

tors are designed to cool the magnet to about 2.2 K and maintain this temperature 

continuouslyf54l. In our system, as shown by the lower part of Fig. 4.4, the lambda 
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refrigerator consists of a lambda plate, a liquid helium flow valve, and a chamber with 

a pumping line. Liquid helium is continuously supplied to the lambda chamber via 

a valve and pumped to a low pressure in order to reduce the temp rature inside the 

chamber attached to the lambda plat . As th liquid helium below th lambda plate 

is cooler and d nser it sinks and induces th convection currents. This convection 

of the liquid helium maintains the temperature of t he superconducting magnet a t 

around 2.2 K, which improves the magnet performance. 

4.3 Ultrasonic velocity measurements and acous-

tic interferometer 

In the past few decades remarkable progress has been made in the techniques of high-

resolution sound velocity measurements. In the reflection configuration , the absolute 

sound velocity can be determined using 

2£ 
v = 6.t ' (4.1) 

where 6.t is the measured time of flight for an acoustic wave that t ravels a total 

distance of 2£, L being the sample l ngth. 

'l For higher r solution measurement , an acoustic interferometer is normally used. 

With this method th r lative change in the velocity, ~v is m asured instead of 

the absolute velocity. As shown in Fig. 4.5 , the principle of thi approach is to 

detect the phas diff renee between a reference signal and an echo oming from th 

sample. As shown in the diagram, th continuous RF signal produc d by a frequency 

synthesizer is divided into two parts by the power split ter. Th first branch is used as 

our reference signal. Using Gate 1, the econd branch is reshaped to form a rv 1 !lS 

RF pulse signal, which is then amplified by a 1 Watt broadband power amplifier. 
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The power used during the experiment is set by a variable attenuator. Then, the 

attenuated signal is directed to the sample via a circulator , which prevents any large 

signal from being reflected back to the synthesizer. The RF pulse signal that reaches 

to the transducer mounted on the crystal is then converted into an acoustic wave via 

the piezoelectric effect. The acoustic cho then travels between the extremities of the 

sample. Every time the wave reaches the transducer, a small fraction of the energy is 

.... -, converted back into a RF signal, via the inverse piezoelectric effect. This RF multi-

. , 

echo pattern then passes through the circulator again via position 2 to position 3 and 

flows to Gate 2, which is used to filter out the initial pulse from the echo pattern 

to prevent th saturation of the low noise RF amplifier. Finally, the phase of the 

RF echo is compared to that of the reference signal using the phase detector, which 

gives a signal proportional to the phase difference. Under normal conditions, the 

relative phase of many echoes are observed on the oscilloscope as shown in Fig. 4.6. 

For th n-th echo, given that the period of the RF signal is T and the time of flight 

corresponds to 6.tn = 2~£ , the phase difference <I>n is simply given as 

<I>n = 21f 6.tn = 21f f2nL = 41fnLf. 
T v v 

So the relative phase change of the n-th echo can be derived as 

6.<I>n 6.f 6.L 6.v -- =-+ - - -
<I>n J L V . 

(4.2) 

(4.3) 

During th experiment, a boxcar is used to measure the phase of one specific echo. 

The boxcar is also part of a retroaction loop where a computer is used to maintain 

the phase difference to zero by changing the frequency of the RF signal. Under this 

condition, Eq. 4.3 reduces to 
6.v 6.f 6.L 
-=-+-
v f L ' 

(4.4) 

which relates the relative velocity ~v to the sample's expansion tl.LL . In general, the 

sample's thermal expansionf55l and magnetostrictionf6l , as a function of temperature 
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Figure 4.6: A typical multi-echo pattern showing the relative phase hift of four echoes 

obs rved on the oscilloscope for the case of the reflection configuration. The time of 

flight tlt between the first and second echo is the time for an acou tic wave to travel 

a distance 2£ from the top surface to the bottom then back to the top. The tim 

ntlt is the time between the first and the n-th echo. 

or magnetic field , are orders of magnitude smaller than the variation of the velocity 

~v. As a result , if we neglect the sampl 's expansion, the relative change in velocity 

can be expressed as 
tlv ~ tlf 
v f. (4.5) 

Thus, by measuring the relative variation of the frequency, we directly obtain the 

relative change in the sound velocity. 



Chapter 5 

Crystalline elasticity 

The goal of this chapter is to introduce some fundamental background knowledge 

about crystalline properties[56l . Both stati and dynamic elasticity ar presented in the 

following sections. The definitions of strain and stress are illustrated in Sections 5.1 

and 5.2, while their linear relationship, represented by elastic constants, are given 

in Section 5.3. Then, based on the theory of plane wave propagation, the dynamic 

elastic properties are described in Section 5.4. In this section , the Christoffel equation 

is used to derive the velocity of the plane waves propagating along high symmetry 

ax1s . 

5.1 Static elasticity - strain 

Generally speaking strain e is a concept u ed to describe the d formation of the solid. 

Inst ead of dealing with a complex r al three-dimensional case, h re we describe the 

definition of strain e with a simple one-dimensional string. As shown in Fig. 5.1, the 

length of a string of length L increases under an external force F. Given the original 

and new length of the string as L and L' , t he relative deformation is L'LL. Because 

35 
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Figure 5.1: Deformation of a string. 

it is not necessary that every point on the string be stretched in the same way, we 

should first define the deformation of a small element and then expand to the vicinity. 

Therefore, as sketched in Fig. 5.1, points M and N are used to define a small port ion 

~x. Before the application of the force, M and N are described by x and x + ~x. 

When the force is applied , these two points move to M ' and N ' , r spectively. If 

u( x ) and u ( x + ~x) represent the local deformations, the relative deformation of the 

section M N can be rewritten as 

NFfii' - MN u (x + ~x) - u (x) 

MN ~x 
(5.1) 

Taking the limit ~ ~ 0, the strain e reduces to 

e = lim u(x + ~x)- ·u(x) = du 
~x-+0 ~X dx' 

(5.2) 

q which is dimensionless. 

The deformation for a three-dimensional solid is more complex. For the one-

dimensional system, every two points on the string are displaced in the same direction. 
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However , for a real solid, neighboring points might be stretched in different directions. 

Thus , in this case the displacements are described by il(x) with 

d- fJu d 
U=~ Xi· 

UXi 
(5.3) 

Given this relation, the deformation in the direction i corresponds to 

(5.4) 

Generalizing Eq. 5.2 to a three-dimension solid, the strain must be represented by a 

second-rank tensor with the elements given by 

(5.5) 

which can be rewritten into a symmetric and an antisymmetric components as 

dui = ~( fJui + fJuj) + ~( fJui _ fJuJ ). 
dxJ 2 fJxJ fJxi 2 fJxJ fJxi 

(5.6) 

The first part on the right hand side of Eq. 5.6 represents the strain 

(5.7) 

while the second part corresponds to a rigid-body rotation. As the strain tensor is 

~ symmetric relative to the index permutation, 

(5.8) 

the strain tensor 

e= (5.9) 

e 1,3 e2,3 e3,3 

has a maximum of 6 independent components. Here, the components with i i= j in-

volve shear deformations while the diagonal elements are associated with longitudinal 

deformations. 
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5.2 Static elasticity - stress 

The stress is defined as the force acting on a unit area in the solid. In the case 

of or thonormal reference frame, as shown in Fig. 5.2, the stress components Ti,k is 

I 
I ~ 
I #' 
I ,/ 
I ~ 

I ~' 
I #' 

'I ,~ 
- -----------------~ 

Figure 5.2: Force acting on an surface element 6.S2 , which is or thogonal to x2 axis 

in a co-ordinate system. 

defined as 

(5. 10) 

wh re 6.Fi is the i-th component of the force 6.F exerted on the surface element 6.Sk· 

~ So ~,k represents the i-th component of the force exerted on a unit urface, which is 

perpendicular to the k-axis. Given that i and k both run from 1 to 3 (orthonormal 

reference frame) , the stress tensor T has 9 components. As the net force and torque 



------------------------

CHAPTER 5. CRYSTALLINE ELASTICITY 39 

for the whol system must be zero, this imposes that 

(5.11) 

which shows that the stress tensor is also symmetric. Only 6 independent el ments x-

ist and the elements with i =I= j correspond to shear stress whil diagonal components 

represent longitudinal stress. 

5.3 Static elasticity - elastic constants 

In one-dimension, the d formation x of an elastic material is describ d by the Hooke's 

law as 

F = kx, (5.12) 

where F is the applied force and k is the "spring constant" . When working with 

a three-dimensional crystal156l, for small deformations, the stress T is directly pro-

portional to the strain e. The static Hooke's law for a three-dim nsion body can be 

rewritten as 

T.· · - G · k tek l 't,J- t,J, l ' ' 
i,j,k, l = 1,2,3, (5.13) 

where Ti,j represents a force applied along the i-direction acting on a unit area normal 

to the j-dir ction, ek,l is the deformation per unit length ~'and Ci,j,k,l corresponds 

to the elastic constants. 

The 4th-order tensor Ci,j,k,l includes 81 components. Knowing that the internal 

energy variation can be described as 

dU = ~ kdei k + TdS, 
' ' 

Where Tis the absolute temperature and S is the entropy, we have that 

au 
~.k = ( -{} )s-

ei,k 

(5.14) 

(5.15) 
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According to Eq. 5.12, we obtain 

G . . = ( 8Ti,j) = ( [)2U ) = C .. 
t,J,k,l .(;) .(;) .(;) s k ,l ,t ,J. 

u ek,l u ei,j Uek,l 
(5. 16) 

As the stress and strain tensors are symmetric and due to Eq. 5.16 we must have 

that 

G ·kt- C · · kt t,),.., - J ,t, ' ' C. ·kt-C. · tk t,J , ' - t,J , ' ' C. ·kt-Ckt ·· t,J , 1 - .. , ,t,J ' (5. 17) 

which reduces the number of the elements in the elastic stiffness tensor to 21. Based 

on this symmetry, we can label these independent elastic constants using the Voigt 

notation in the following way: 

1 i-t (1, 1) 2 i-t (2 , 2) 3 i-t (3, 3) 

4 i-t (2, 3) = (3, 2) 5 i-t (1 , 3) = (3, 1) 6 i-t (1, 2) = (2, 1). (5. 18) 

Accordingly, the 21 elastic constants can be represented as a 6 x 6 matrix 

Cn c12 C13 C14 C1s C16 

c12 c22 c23 c24 C2s C26 

C= 
C13 c23 C33 c34 c3s c36 

(5. 19) 
C14 C24 c34 c44 c4s c46 

C1s C2s c3s c4s Css Cs6 

C16 C26 c36 c46 Cs6 c66 

where Caf3 = C i,j ,k ,t with a i-t (i, j) and (3 i-t (k , l) . 

The elastic energy described by this elastic tensor must be invariant under the 

particular symmetry operations for a certain system. In other words, the number of 

the independent elastic constants might b maller than 21. For xample, the main 

symmetry operations of the hexagonal system are C6z (6-fold rotation with respect to 

z-axis) , C2y (2-fold rotation with respect toy-axis) , and I (inv r ion) and the matrix 
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of these symmetry operations are 

a2y = 

a!= 

1 J3 0 
2 2 

-~ 
2 

1 
2 0 

0 0 1 

-1 0 0 

0 1 0 

0 0 -1 

-1 0 0 

0 -1 0 

0 0 -1 

In order to satisfy the invariant requirement, 

C l - m n p qc - c 
· · k l - a · a · ak a 1 m n p q - i 3· k l 'L,J , ' 1. J ' ) ' l , l ' 
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(5.20) 

(5.21) 

(5.22) 

(5.23) 

only 5 independent elements are non-zero. So the elastic tensor for this case is rewrit-

ten as 

Cu c12 C13 0 0 0 

c12 Cu C13 0 0 0 

C13 C13 c33 0 0 0 
C= (5.24) 

0 0 0 c44 0 0 

0 0 0 0 c44 0 

0 0 0 0 0 ~(Cu- C12) 

5.4 Dynamic elasticity - plane wave propagation 

To describe the propagation of acoustic waves in solid, we need to start from the 

equation of motion which is related to Newton's law and Hooke's law. The force 
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density for material under stress is d fin d as 

f . - O'Ii,j 
t- OXj . 

According to ewton's second law the force density fi can be expressed as 

82ui 
f i = p [)t2 ' 

42 

(5 .25) 

(5.26) 

where p is the density, a;t~i stand for the acceleration and ui r presents the i-th 

component of the displacement u. Combining Eq. 5.25 and Eq. 5.26, the equation of 

motion for the elastic medium can be written as 

82u · 81'.· · t t ,J p-=-8t2 OX · . 
J 

Together with Hooke's law, Eq. 5.13, we rewrite this equation of motion as 

8
2
ui = C. . 8

2
ut 

p 8t2 t,J,k,l OXjOXk. 

For plane waves, solution for this equation can be represented as 

U . _ U ·e i (k-r-wt) 
t- Ot i = 1, 2 3, 

(5.27) 

(5.28) 

(5.29) 

where uoi = <5ilu01 is the wave polarization (i.e. the particle displacement direction) 

while k and w are the wave vector and the frequency, respectively. So Eq. 5.28 can 

be rewritten as 

(5 .30) 

Dividing both sides of Eq. 5.30 by k2 , we obtain the well-known Christoffel equation 

(5.31) 

where v = I, the phase velocity, while nj and nk represent the cosine dir ction of 

the wave vector relative to a coordinate system associated with the prop r axis of the 

crystal. If we define a second-rank tensor as 

(5.32) 
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the Christoffel equation can be written as, 

(5.33) 

The velocity of the sound waves can be obtained by solving the secular equation 

(5.34) 

For every direction of propagation, three different waves, one longitudinal mode and 

two transverse modes, with orthogonal polarizations, can be obtained. Longitudinal 

waves are polarized along the direction of propagation while t ransverse modes are 

polarized perpendicular to the direction of propagation. Thus, according to Eq. 5.34, 

the velocities depend directly on the elastic tensor. In the case of Cs iCl3 , based on 

the symmetry properties of the hexagonal system, only 5 independent components 

are necessary and the elastic tensor C reduces to 

(5 .35) 

(5.36) 

where Cef 1 represents the relevant combination of the independent elastic constants 

Caf3 given in Eq. 5.35. For example, if the direction of propagation is along the z

direction, we have n 1 = 0, n2 = 0 and n3 = 1 and accordingly ril = C i ,3,3,l · In this 
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case, the tensor ril is 

C755 (745 (735 

r = C745 C744 C734 

(735 (734 (733 

44 

(5.37) 

As C734 = (735 = (745 = 0 and C755 = C744 for a hexagonal system, th tensor reduces to 

(744 0 0 

r = o C744 o (5.38) 

0 0 (733 

Hence, the eigenvalues correspond to 

(5.39) 

and the solutions for Eq. 5.34 are obtained as 

v, = v3 = ff· (5.40) 

The polarizations are given by the eigenvectors in Eq. 5.33 and corr spond to 

)'1 : u 1 ---+ [0, 0, 1] ; >.2 : u2 ---+ [0 , 1, 0] ; A3 : u3---+ [1, 0, 0] . (5.41) 

Given that the direction of propagation is [0 ,0,1], the solution u1 represents a longi

tudinal mode while u2 and u3 are associated with t ransverse modes. 

For this investigation, measurements along the [100] and [001] direction have been 

made. The relations between the elastic constants and the sound velocit ies along the 

principal crystallographic directions are listed in Table 5. 1. 
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Direction Mode pv2 

.. Lx Cu 

[100] Tz c44 

.. Ty Css 

.. Ly Cu 

[010] Tz c44 

.. Tx Css 

.. Lz c33 

[001] Tx c44 

.. Ty c44 

Table 5.1: Relations among wave vectors, propagation modes, and elastic constants in 

hexagonal crystal, where Li is used for longitudinal waves and TJ represents transverse 

waves with a polarization along the j-th axis. 
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Experimental data 

According to Eq. 5.36, the effective elastic constant Cef f associated with an acoustic 

mode can be determined from velocity measurements using the u ual relation 

(6.1) 

where p represents the density. For Cs iC13 , given an estimated density of p = 

3700 kg/m3 , the elastic constants have been obtained previously at room temperature 

as shown in Table 6.1 [571. According to Eq. 6.1 , for small variation, the normalized 

Sound Velocities (± 20 mjs) Elastic Constants (±0.05 x 1010 Njm2 ) 

v£[100] = 6140 Cu = 13.90 

V£[001] = 4080 C33 = 6.16 

vr. [100] = 2500 C44 = 2.31 

VT.lz [100] = 3100 c66 = 3.56 

(C12 = Cu- 2C66) c12 = 6.78 

Table 6.1: Sound velocities and elastic constants measurements for Cs iCh obtained 

at room temperature[57l. 

46 
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change of the elastic constant can be simply evaluated using 

b.Ceff = 2L\v . 
Ceff V 

(6.2) 

For that reason, the temperature and magnetic field dependence of the relative vari

ation of elastic constant, e:.cceu, can be investigated by using the ultrasonic velocity 
eff 

measurements. 

In our experiments, considering that the crystal symmetry of CsNiCh is hexagonal, 

the behavior of C33 and C44 have been obtained using longitudinal (Lz) and transverse 

(Tx or Ty) waves propagating along the main symmetry axis, [001]. For C66 , transverse 

modes (Tx along the [010] or Ty along the [100]) with the directions of propagation and 

polarization both perpendicular to the [001] direction had to be used. The transduc rs 

used for longitudinal modes C33 and transverse modes C44 are mounted on faces 

perpendicular to the [001] direction. For t ransverse modes C66 , the transducers are 

mounted on faces perpendicular to the [010] or [100] direction. 

In this chapter, we first present the zero field temperature scan, while data as 

a function of temperature and magnetic field for e:.cc33
, e:.cc44 and e:.cc66 are reported 

33 44 66 

in the second section. Finally, based on our experimental results, the experimental 

magnetic phase diagram of CsNiCb is derived. 

6.1 Temperature dependence at H = 0 

The temperature dependence of e:.cc33 , e:.cc66 , and e:.cc44 for H = 0, are presented in 
33 66 44 

Fig. 6.1. According to the data, two phase transitions are observed with TN1 ~ 

4.75 K and TN2 ~ 4.35 K. At TN2 ~ 4.35 K, the phase transition between the linear 

phase and the elliptical phase (L-E phase transition) is clearly visible on all three 

curves. Meanwhile, at TN1 ~ 4.75 K, we easily see the phase transition between 
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Figure 6.1: Temperature dependence of the relative variation of the elastic constants 

a) C33, b) C66, and c) C44 at H = 0. The phases corresponding to T < 4.35 K, 

4.35 K~ T ~ 4.75 K, and T > 4.75 K are elliptical, linear, and paramagnetic phases, 

respectively. 
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the paramagnetic phase and the linear phase (P-1 phase transition) from the data 

associated with t:.cc33 and t:.cc44 • For t:.cc66 , the transition is also visible, however, the 
33 44 66 

anomaly is barely noticeable. We also notice that, forT < TN2, all three curves show 

a power law temperature dependence close to the critical temperature. However, the 

sign of the temperature dependence for C33 is opposite to those of C44 and C66· The 

temperature dependence is analyzed in more details in Chapter 10. 
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6.2 Temperature and magnetic fie ld dependence 

The t mp rature dependence of t;
0
°33 t;

0
°44

, and t;0°66
, for a magn tic field appli d 

33 44 66 

along the c-dire tion, are shown in Fig. 6.2 - 6.4 respectiv ly. Data obtained for 

magnetic fi Ids lower than th multicritical field Hm = 2.29 T ar pr ented by 

broken lin , while for higher field continuous lines are used for clarity. At lower fields 

(H < Hm), data for t;
0
°33 (Fig. 6.2) and t;c 44 (Fig. 6.3) show anomali corresponding 
33 44 

to the P-L and L-E phase transitions. However, from t;c,C66 (Fig. 6.4), only the anomaly 
66 

corr spending to th L-E phase transition i clearly visible. At higher magnetic fields, 

all data how one phase tran ition that can be associat d with th 120° phase. 
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Figure 6.2: Relative variation of the elastic constant C33 as a function of temp rature 

at different magnetic fields. Phase transitions between paramagnetic phase and linear 

phase are indicated by the small arrows. The continuous and broken lines represent 

data obtained above and below the multicrit ical field (Hm = 2.29 T ) respectively. 
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Figure 6.3: Relative variation of the elastic constant C44 as a function of temperature 

at different magnetic fields. The continuous and broken lines represent data obtained 

above and below the multicrit ical field (Hm = 2.29 T) , respectively. 
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Figure 6.4: Relative variation of the elastic constant C66 as a function of temperature 

at different magnetic fields. The continuous and broken lines represent data obtained 

above and below the multicritical field (Hm = 2.29 T), respectively. 
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The experim ntal results of the magnetic field dependence of 6
0°33

, 
6
0°44

, and 
33 44 

6
0°66 are presented in Fig. 6.5- 6.7, respectively. The data obtained for temperatures 

66 

lower than the multicritical temperature (Tm = 4.50 K) are presented by broken lines, 

while for higher temperatures continuous lines are used for clarity. Based on these 

experimental data forT < Tm, a well defined minimum in the velocity observed at 

H ~ 2.00 T can be associated with a spin-flop phenomena. Meanwhile, for T > Tm, 

anomalies typical of a phase transition are observed at the boundary of the 120° pin 

structure. For these experimentally obtained curves, the critical fields at different 

tempera tures are located by finding th positions with t he largest slopes. 
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Figure 6.5: Relative variation of th lasti constant C33 as a function of magn tic 

field. Th ontinuous and broken lin s repr ent data obtain d abov and below th 

multicritical point (Tm = 4.50 K), r sp ctively. 
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Figure 6.6: Relative variation of the elastic constant C44 as a function of magnetic 

field. The continuous and broken lines represent data obtained above and below the 

multicritical point (T m = 4.50 K) , respectively. 
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Figure 6. 7: Relative variation of the elastic constant C66 as a function of magnetic 

field. The continuous and broken lines represent data obtained above and below the 

mult icritical point (T m = 4.50 K), respectively. 
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6.3 Experimental magnetic phase diagram of CsNiCl3 

The temperature and magnetic field dependence of e,.0°33
, e,.0°44

, and e,.0°66 have been 
33 44 66 

used to derive the low temperature magnetic phase diagram of CsNiC13 shown in 

Fig. 6.8. These data are consistent with results obtained by other groups!41. 
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0::, Figure 6.8: Experimental magnetic phase diagram of CsNiCl3 for H/ jc derived from 

the sound velocity measurements. Different colors are used to illustrate th source of 

data. 



Chapter 7 

Landau theory for phase transition 

Landau theory is a phenomenological model that describes phase transitions with

out giving any information about the microscopic causes of the transition158l . Th 

explanatory power of the theory is to establish the overall consistency of the global 

characteristics of the transition (space symmetry and structural changes etc ... ) with 

experimental results of various relevant macroscopic quantities such as thermal ex

pansion dielectric properties, and elasti constants. The most important concepts in 

Landau theory are the order parameter and the free energy. The free energy, which 

is a function of the order parameters, is successfully used to describe second-order 

phase transitions and most first-order phase transitions. 

7.1 Order paramet ers and free energy 

To put it simply, the order parameter is a variable used to d scrib th d gree of 

order for temperatures lower than the transition temperature, also referr d as the 

critical temperature, Tc. In a continuous phase transition the order parameter goes 

continuously to zero as the crit ical temperature is approached from below. Different 

59 
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phases have their own characteristic order parameter. The usual mean-field Landau 

free-energy is expressed as a Taylor expansion in powers of the order parameter which 

characterizes a specific phasel11l. Moreover this free energy must b invariant under 

the symmetry transformations associated with the high-temperatur phase. In our 

case, as the spin polarization S is chosen as the order parameter the free energy must 

be invariant und r the inversion and time-reversal symmetry operation. To satisfy 

these invariant requirements, only even powers are allowed in the Landau free-energy. 

Expand d to a sixth order in S the Landau fr e-energy for isot ropic systems can be 

constructed as 

(7.1) 

In a conventional Landau free-energy, A is temperature dependent and defined as 

A = a(T- T0 ) , (7.2) 

where a> 0. 

7.2 The second-order phase transition 

In general , the second-order phase transitions are successfully described with the first 

two terms of Eq. 7.1, hence, 

(7.3) 

Given that A = a(T - T0 ), the co fficient B must be positive in ord r to have a 

minimum in the free energy. Then the equation of state can be derived as 

(7.4) 

which has two solutions: 

5= 0, (7.5) 
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and 

S = CA = J - a(T - T0 ) v-s B · (7.6) 

For the paramagnetic phase, where S = 0, the stability condition requires that 

(7.7) 

This indicate that S = 0 for the temp rature region with T ~ T0 and accordingly 

that the phas transition corresponds to Tc = T0 . For S =/=- 0, we hav 

(7.8) 

Inserting S from Eq. 7.6, we obtain 

(7.9) 

This can be satisfied as long as T ~ Tc. 

FL as function of S described by Eq. 7.3 is shown in Fig. 7.1. Here the solid lines 

represent the stable states for T > Tc and T < Tc, while the dashed line represents 

the free energy at T = Tc. According to Fig. 7.1 , forT ~ Tc, FL is stable at S = 0, 

however when T < Tc, the minimum in the free energy FL is observed at S =/=- 0. The 

temperature dependence of the order parameter, given by Eq. 7.6, is illustrated in 

Fig. 7.2. As shown, the magnitude of the order parameter changes continuously at the 

transition temperature. This denotes a second-order phase transit ion or cont inuous 

phase transition. In general, the temperature dependence of the order parameter S 

for the ordered phase can be described in terms of a critical exponent {3 as 

S CX: T (3 
' 

(7.10) 

where T is the reduced temperature, T = 1 - f . Thus, according to the Landau 

theory, the mean-field value of the critical exponent is /3 = 0.5. 
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······ 

T> Tc 

.. 

T= Tc 

. 

........ .. .. 
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s 

Figure 7.1: Landau free-energy as function of the order parameter for a second-order 

phase transition. 

s 

T 

Figure 7.2: Order parameter as function of temperature for a s cond-order phase 

transition. 
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As mentioned in Chapter 3 (see Fig.3.2) , the criticality for Cs iC13 along the 

phase boundaries associated with TN 1 and TN2 is predicted to belong to the XY uni

versal class and th multicritical point is expected to belong to the chiral Heisenberg 

universality classl161. Therefore the expected values of {3 at low magn tic fields should 

be 0.346 (see Table 1.1). For the high magnetic field phase transition, according to 

Kawamura1131-1161, the value of the critical exponent {3 should correspond to that of 

the chiral XY universal class as {3 = 0.25. However, if the true natur of this phase 

transition is w akly first-order , there is no critical exponent associated with the phase 

transition. 

7.3 The first-order phase transition 

To describe a first-order phase transition, the sixth ord r t rm i taken into account 

and the Landau free-energy can be written as 

Here A is also defined as 

F - As2 Bs4 cs6 
L-- +- +- . 

2 4 6 

A= a(T- To). 

In order to have a minimum in FL, we must set B < 0 and C > 0. 

(7.11) 

(7.12) 

The r lation between FL and S in different temperature regions is illustrated in 

Fig. 7.3. As hown in Fig. 7.3, when T ~ T2 (curves 1 and 2) FL is stable at S = 0. 

As the temperature is decreased, FL i still stabilized at the local minimum S = 0 

until temperatur reaches Tc. This situation is caused by the pot ntial barrier be-

tween both local minimums when Tc < T < T2 (curves 3, 4 and 5). Only when the 

potential barrier disappears, can the stable state change to the other local minimum 

where S =!= 0, minimizing the energy at the same time (curves 6 and 7). The same 



CHAPTER 7. LANDA THEORY FOR PHASE TRANSITION 64 

s 

Figure 7.3: Landau free-energy as function of the order parameter for a first-order 

phase transition. 

s 

T 

Figure 7.4: Order parameter as function of temperature for a fir t-order phase tran-

sition. 
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process happens when we increase the temperature. When T ~ Tc (curve 6 and 7), 

FL is stable at the local minimum where 8 =!= 0. This state do sn't change until the 

temperature reaches T2 , where the potential barrier disappears. At T = T2 (curve 2), 

FL slips back to the other stable state and 8 suddenly chang s back to zero. Based 

on Fig. 7.3, th behavior of 8 as function of temperature for the first-order phas 

transition is summarized in Fig. 7.4. We notice that the phase transition happens 

at different critical temperatures dep nding whether the temp rature increases or 

decreases. Thi ph nomena is defined as hysteresis. Moreover, at the phase bound-

ary 8 change suddenly between zero and nonzero value, which, tog ther with the 

hysteresis, characterizes the first-order phase transition. 

To determine Tc, T1 and T2 , we need to start from the equation of state 8Jf = 0 

and the stability condition a;~L ;;?: 0. To meet the requirement impos d by 8Jf = 0, 

we obtain 8 = 0 or A+ B82 + C84 = 0. The solution with 8 = 0 stands for the 

paramagnetic phase, while A+ B 8 2 + C 8 4 = 0 represents the solution for the ordered 

phase. Solving for 8 2
, we obtain 

82 = - B ± JB2 - 4AC 
2C ' 

(7.13) 

in the ordered phase. Given that A is a temperature dependent coefficient, we need 

to consider different cases. 

(1) B 2
- 4AC < 0 

In this cas , A > :~. Given that A= a(T - T0 ) , we obtain that 

B2 
T > -

0 
+To. 

4a 
(7.14) 

When Eq. 7.14 is satisfied, there is no solution for Eq. 7.13 and FL can only be 

minimized at 8 = 0. This again describes th paramagnetic phase where 8;{f ;;?: 0 is 

also satisfied. 
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If B 2 - 4AC = 0, we have 

and 

This describes the situation of curve 2. 

The critical temperature Tc can be obtained using that 

EP FL I --
2 

= A = a(Tc -To) = 0 
as s=o 

showing that 

Tc =To. 

To determine T1 , as shown by curve 4, we need to solve both 

and 

F - A s2 B s4 c s6 - o L-- +- +- -
2 4 6 

Then T1 = 136!~ + Tc is obtained. 
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(7.15) 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

(7.20) 



Chapter 8 

Landau Model for CsNiCl3 

At low temperatures Cs iCl3 has a v ry rich phase diagram associated with differ nt 

spin configurations. In other words, with the variation of tempera ture and magnetic 

field, the symmetry of t he system changes. The problem wear facing is that we need a 

theoretical model t hat accounts for t he observed symmetry change and the measured 

thermodynamics properties of Cs iCl3. As discussed in Chapter 1, a solution to 

this problem can be obtained by using a Landau type model, which express s the 

behavior of free energy in terms of t hermodynamic variables in th vicinity of a critical 

point136l. As shown by Plumer et al. [l1],[30l,I31LI57l-162l, Landau models have been used 

successfully to describe the magnetic properties of ABX3 systems. In part icular, t he 

magnetic phase diagram of Cs iCh is well accounted for by th Landau fr e-energy 

derived by Plumer et al.111l. 

67 
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8.1 Landau free-energy and order parameters for 

CsNiCh 

In this section, the derivation of Landau free-energy for Cs iC13, based on Plumer's 

work111l, is reproduced for convenience. Bas don this free energy, we show how the 

magnetic phase diagram of CsNiC13 can be accounted for using only a few experimen

tal critical temperatures and magnetic fields. In order to describe the temperature 

and magnetic field dependence of th phase boundaries, the temperature and mag

netic field dependence of the magnetization mz is also needed. 

8.1.1 Invariant terms and the Ham ilt onian 

When a phase transition happens, the symmetry of the system normally changesl58l. 

If the symm try properties of the high and low temperature phases belong to the 

groups G0 and G, respectively, the group theory indicates that G must be a subgroup 

of G0 in the case of a continuou phase tran ition. Thus, if a system remains invariant 

under the symmetry operations associated with G0 , it will automatically be invariant 

with respect to any operations belonging to G. Accordingly w can employ the group 

G0 to specify the form of the free energy, which must be invariant under all symmetry 

properties associated with that groupi22LI58l. 

For example, most hexagonal ABX3 compounds belong to the symmetry group 

P63/ mmc, including 24 symmetry operations163l. However, as all these operations 

can be obtained using the generators, C6z (6-fold rotation with r spect to z-axis), C2y 

(2-fold rotation with respect toy-axis), and I (inversion), it is sufficient to consider 

these three operations in order to derive the invariant form of the free energy. As 

shown in the published work of Plumer et al.111l, the form of the phenomenological 
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Landau free-energy of ABX3 systems can be determined by formulating the relevant 

microscopic Hamiltonian. The Hamiltonian for two interacting spins sa and sb is 

a,b=x, y, z, (8.1) 

where l ab is the exchange coefficient. This Hamiltonian must be invariant with re-

spect to inversion I , time-reversal , C6z, and C2y operations. Under these symmetry 

operations, the element of the second-rank tensor l transforms as 

(8.2) 

where af and a~ are the components of the 3 x 3 a-matrix 

a= (8.3) 

For crystals with a hexagonal group symmetry, the a-matrices for the generators are 

-1 0 0 1 v'3 0 -1 0 0 2 2 

a!= 0 -1 0 a6z = -~ 1 0 a2y = 0 1 0 2 2 

0 0 -1 0 0 1 0 0 -1 
(8.4) 

As mentioned previously, the tensor l must be invariant under the transformations 

associated with the generators, leading to llj = l ij. Thus, the possible terms reduce 

to 

lxx 0 0 

lab= 0 l xx 0 (8.5) 

0 0 l zz 

which indicates that the Hamiltonian for two interacting spins for crystals with a 

hexagonal structure can be written in terms of two independent exchange coefficient 
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as 

(8.6) 

Expressed in terms of s · s and s;, Eq. 8.6 cru1 be represented as 

(8.7) 

where Jxx stands for the isotropic exchange coefficient, while D = (Jzz- Jxx ) can be 

treated as an anisotropic exchange contribution. Based on Eq. .7, the Hamiltonian 

for magnetic compounds with a hexagonal symmetry can be rewritten as 

chain plane 

1i = Ju Lsi· si+l + J1_ Lsi· s1 - D L (s;?- H ·Lsi· (8.8) 
if'j 

The isotropic exchange between n ru· t neighbor magnetic ion is described by the 

first two terms where J 11 is the exchange interaction along th c-dir ction while the 

basal plane interaction is accounted for by the exchange coefficient J1_ . The anisotropy 

exchange of th system can be represented as L ii-J(Jzz- Jxx)SizSjz, however if one 

consider the dominant cont ribution, where i = j, it reduces to the usual on-site cas 

corresponding to the third term of Eq. 8.8 with D being the single-ion anisotropy 

coefficient. Finally, the last term repre ents the usual Zeeman contribution associated 

with the application of an external magnetic field H. As the spin configuration must 

minimize the energy, the sign and magnitude of D determines the ori ntation of the 

spin relative to the crystal axes. The pure Heisenberg model i d fin d when D = 0 

as no re triction on the spin orientation is imposed. If D < 0, to minimize the 

anisotropy en rgy, spins are confined to the basal plane and ar described using XY 

models. When D > 0, the anisotropy terms is supposed to be minimized by aligning 

the spins parallel to the c-direction, but in fact the spin configuration is determined 

by the competition between the first three terms of Eq. 8.8. The very large D leads to 

an Ising mod l. For Cs iC13 , based on the experimental results given in Chapter 3, 
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~ » 1 with J 11 » D , consequently Cs iC13 is considered to be a typical example of 

a quasi-one dimensional nearly isotropic Heisenberg antiferromagnet. 

8 .1.2 Landau free-energy 

The derivation of the Landau free-energy in this section is based on Plumer's approach[ll],[ll] 

where the integral form of the Landau free- nergy for Cs iCl3 can be constructed to 

a fourth order in spin as 

F[s(r)] = j dr1dr2A(T)s (r i) · s (r 2) 

+ ~ j dr 1dr2dr3dr4B(r1, r2; r 3, r 4)s (r1) · s (r 2)s (r3) · s (r4) 

+ ~D J dr [sz(r)f- H · J drs(r ), (8.9) 

with T = r 1- r 2 and H being the applied magnetic field. The first part of this equation, 

J dr1dr2A(T)s (r i) · s(r2), comes from the isotropic term of Eq. 8.8 while the t hird 

part, ~D J dr [ z(r )J2, is the integral form of the anisotropy contribution. In ABX3 

systems, as the spins are localized on the lattice sites of i2+, which is the magnetic 

ions, the local spin density can be defined as 

s (r ) = (V/N) L p (r )6(r - R ), (8.10) 
R 

where R represents the lattice position of the magnetic ion . Th non-local spin 

density p(r ) characterizes the long range order of the system as 

p(r ) = m + SeiQ·r + S*e- iQ·r , (8. 11) 

where m is th uniform magnetization induced by the field H , while S and Q ar 

the polarization and wave vector, respectively. Using this spin d nsity expression 
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Plumer et al.[l1],[22l has shown that th Landau free-energy Eq. 8.9 is given by 

FL(S, Sz) = AQS2
- AziSzl2 + BtS4 + ~B2 I S · Sl2 

1 -2 1 2 1 4 2 22 
+ 2 Aom - 2Azom z + 4B3m + 2B4Im · S l + B5m S 

- m · H , ( .12) 

where 52 = S · S* and AQ depends on temperature as 

(8. 13) 

The polarization vector S can be written in terms of real vectors as 

(8. 14) 

where the imaginary part is employed to describe the changes of angl between neigh

boring spins. Here, S1 and S2 ar given by 

St = S cos ,B[sin e Pt +cos e z]; (8.15a) 

(8.15b) 

where p1 , p2 are unit orthogonal vectors lying in the basal plane, while z is along the 

c-axis. Together with Eq. 8.14 and 8.15, the Landau free-energy can be rewritten as 

FL(S, ,8, 8) = CsS2
- C0S 2 co 2 e + C13S2 sin2 ,B + 2B2S 4 sin4 ,B + ~BS4 

1 2 1 4 + 2 Aomz + 4 B3mz - m zH, (8.16) 

where Cs = AQ + B5m;, Co = Az - 2B4m;, C13 = Co cos2 e - 2B2S2, and A0 = A0 -

Azo = a(T- T0 ). Here S and ,B are zero field order parameters while e characterize 

the phase transition under an applied magnetic field. otice that S sin ,B is the basal 

plane component of S , thus for convenien we define S1. = S sin ,Bas the polarization 

perpendicular to c-axis. Meanwhile, we also define ( = cos e in order to characterize 
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the spin-flop phase transition observed under the magnetic field. H nc , using this 

notation the Landau free-energy, Eq. 8.16, can be rewritten as 

FL(S Sj_, () = (AQ - Az( 2)S2 + ~BS4 + Az( 2Sl + 2B2Sf - 2B2S2Sl 

+ ~Aom; + ~B3m! + B5m;S2 + 2B4(2(S2 - Sl )m;- mzH . (8.17) 

All four phases in the phase diagram Fig.1.2(b) are associated with different val

ues for these three order parameters S, Sj_ and (as listed in Table 8.1. Given that 

Phase s s l. ( 

Paramagnetic 0 0 1 

Linear s 0 1 

Elliptical s sj_ 1 

120° spin structure s sj_ 0 

Table 8.1: Order parameters in different phases. 

the order param ters are defined to describe the degree of order in a phase below its 

transition temperature, in the paramagnetic phase S and S1. must be set to zero. In 

the linear phase, we need a nonzero order parameter S to des rib th spin configu-

ration. Furthermore, given that the spins are aligned along the c-direction the basal 

plane component of the spin polarization , Sj_, is still zero. With further decrease in 

temperature, pin canting appears with resp ct to c-axis in th lliptical phase. Thus, 

both S and Sj_ are nonzero. As the spin-flop phase transition happens due to the 

application of a magnetic field along the c-axis, t he spins suddenly flip into the basal 

plane, with a small component along the c-axis. Therefore, in th 120° spin structure, 

both Sand Sj_ remain nonzero. Thus, th spin-flop phas transit ion is related to the 
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discontinuous change of the order parameter ( from the value 1 in the low magnetic 

field phases to 0 in the 120° phase. 

8.1.3 Temperature and magnetic field dependence of the or-

der parameters and magnetization 

One of the main ideas of the Landau theory is that ther xist order parameters 

that minimize the energy. In other words, the first derivative of fre energy FL with 

respect to the order parameter S or Sj_ should be zero. This also applies to mz. In 

the following section, the temperature and magnetic field dep nd nee of the order 

parameters are derived for each phase separately. 

For clarity, the subscript "p", "l", "e", and "120" are used to identify the paramag

netic, linear, elliptical and 120° phase, respectively. Based on this Landau free-energy, 

the phase diagram of Cs iClg is derived. 

Paramagnetic phase 

As discussed above, as S and Sj_ are set to zero, the Landau fr e-energy reduces 

to its simplest form 

(8.18) 

and m z can be solved by minimizing FL(p) with respect to m z. According to Eq. 8.1 , 

we have 

(8.19) 

Solving for m z, we obtain 

m (A H) = (2/3)~Ao +(9B~H +\1'3J4AgB5 + 27BgH2)~ ( ) 
z p 

0
' (9BjH + \1'3J4AgB5 + 27B~H2)~ 18! B3 ' 

8
·
20 

where A0 = a(T - T0 ) accounts for the temperature dependence. Because expressions 

for m z in ordered states are too long, we only show the actual solution of mz in the 



CHAPTER 8. LANDAU MODEL FOR C sNICL3 75 

paramagnetic phase. 

Linear phase 

In the linear phase, where S j_ = 0 and ( 1, the Landau free-energy can be 

rewritten in terms of S, ( = 1, and m z as 

Thus, the temperature and magnetic field dependence of S and mz can be determined 

according to Eq. 8.21 by solving 

(8.22) 

and 

(8.23) 

Solving Eq. 8.22, we obtain S as 

S (A ) _ . f - AQ + Az- (2B4 + B5)m;1 
l Q, ffizl - y B , (8.24) 

where AQ = a(T - TQ ) accounts for the temperature cont ributions. With t he help of 

Eq. 8.24, the order parameter S in Eq. 8.23 is eliminated and then the temperature 

and magnetic field dependence of m z can be solved. As t his analytical solution is 

long, we will refer to it as mzl · Substituting m zl in Eq. 8.24, the temperature and 

magnetic field dependence of S can be calculated . At zero magnetic field, as S and 

m zl are both null at the paramagnetic-linear phase boundary, where the temperature 

is defined as TNl . Hence, at T = TNl and mzl = 0, based on Eq. 8.24, 

(8.25) 

we obtain that 

(8.26) 
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Elliptical phase 

In the elliptical phase, both S and S 1.. remain nonzero and ( = 1. Hence, the 

Landau free-energy is 

FL(e) = (Aq- A z)S2 + ~BS4 + A zSi + 2B2S.i- 2B2S2Sl 

1 21 4 22 (2 2 2 + 2Aomz + 4B3mz + BsmzS + 2B4 S - Sl.. )mz - mzH. (8.27) 

The temperature and magnetic field dependence of S , S1.. , and m z can be solved by 

minimizing FL(e) with respect to s, s l.. , and m z using that 

and 

Solving the first two equations simultaneously, we obtain 

and 

-2Aq + Az - 2(B4 + Bs)m~e 

2(B- B2) 

(8.28) 

(8.29) 

(8.30) 

(8.31) 

-Az(B- 2B2)- 2AqB2 + 2((B- B2)B4- B2(B4 + Bs))m~e 

4B2(B- B2) 
(8.32) 

where Aq = a(T- Tq) accounts for the temperature contributions. Here, m ze rep

resents the temperature and magnetic field dependence of the magnetization in the 

elliptical phase. Considering that S1.. and m ze are zero at TN2, we obtain 

(8 .33) 
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120° phase 

In the 120° phase, (changes to 0 in order to describe the spin-flop phase transition. 

Therefore , the Landau free-energy in terms of S , S1_, and m z is 

F£(120) = AQS2 + ~BS4 + 2B2S_i- 2B2S2Sl 

1 2 1 4 2 2 + 2 Aomz + 4 B3mz + B5mzS - m zH. 

Using the same method, we have that 

oFL(120l = 2A S- 4B S2 S + 2B m 2S + 2BS3 = 0 as Q 2 j_ 5 z , 

8FL(120) = -4B S2 S + 8B S3 = 0 asl_ 2 j_ 2 j_ , 

and 

According to Eq. 8.36, we immediately obtain 

while 
- AQ - B5m;12o 

2(B- B2 ) 

where AQ = a(T- TQ) accounts for the temperature contributions. 

(8.34) 

(8.35) 

(8.36) 

(8.37) 

(8.38) 

(8.39) 

With the help of all these solutions, the temperature and magnetic field depen-

dence of the order parameters and the magnetization and the expressions for the 

phase boundaries can be obtained. The theoretical prediction of the phase diagram 

of CsNiC13 is shown in the following section. 

8.2 Landau prediction of the phase diagram 

To determine the phase diagram, we need to solve for the temperature dependence of 

the critical magnetic field. Therefore, we can use the fact that the magnetization mz 
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must be continuous at the phase boundaries. For example, on the phase boundary 

between the paramagnetic phase and the linear phase, the order parameter S = 0 

and the magnetization is continuous. We can set S = 0 in Eq. 8.22 and solve for m z 

which gives the temperature dependence of m z on this phase boundary as 

(8.40) 

where AQ = a(T- TQ) and "(p-1)" is used to indicate that this is the solution at the 

boundary betwe n the paramagnetic and linear phase. Substituting m z(p- l) back into 

Eq. 8.23, we obtain the temperature dependence of the critical magnetic field H on 

this phase boundary corresponding to 

(8.41) 

Using the same method, the temperature dependence of the critical magnetic field at 

other phase boundaries are 

H<t-e) (Ao, AQ) = Ao 

+ 

Az(B - 2B2) + 2AQB2 
2(BB4- B2(2B4 + Bs)) 

Az(B- 2B2) + 2AQB2 2 
2(BB

4 
_ B2(2B4 + Bs))3 (AQ(B2B3 - 2B4Bs - 4B4 ) 

(8.42) 

(8.43) 

(8.44) 

For the phas transitions associated with the 120° spin configuration, even if th 

phase transition i first-order, for convenience, we consider the behavior of the order 

parameters to be continuous. This consideration is based on th fact that, in our 

case the discontinuities are relatively small and can be ignored. 
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The temperature and magnetic field of the multicritical point are defined as T m 

and Hm. Based on the fact that all four phase transition lines interc pt at this point, 

analytical solutions for Tm and Hm can b obtained using Eq. .41 - Eq. 8.44. To 

recapitulate, analytical solutions for all critical points are given by 

(8.45a) 

(8.45b) 

(8.45c) 

(8.45d) 

Cons qu ntly, the experimental critical points listed in Table 8.2 can be used to 

determine the values of the Landau model parameters. The value of TQ has been 

obtain by extrapolating the H(p- 120) phase boundary down to zero field, according 

to our experimental data TQ = 4.20 K. umerical values of all Landau coefficients 

TQ 4.20 K 

To - 34.80 K 

TNl 4.75 K 

TN2 4.35 K 

Tm 4.50 K 

Hm 2.29 T 

Hc(Tc = 6.14 K) 10.00 T 

Table 8.2: The experimental values of the critical points used to obtain the magnetic 

phase diagram. 
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a 400 

Az/a 0.55 

B /a 6.960 

B2/a 4.785 

B3ja 3.462 

B4 ja 0.169 

B5ja - 0.185 

Table 8.3: Coefficients used to obtain the magnetic phas diagram of Cs iC13 . 

obtained h re are given in Table 8.3. With these coefficients, the temperature and 

magnetic field dependence of the phase boundaries can be calculated using Eq. 8.41 -

Eq. 8.44 in order to reproduce the magnetic phase diagram of CsNiC13. We compare 

in Fig. 8.1, the calculated phase diagram with our experimental phase diagram of 

Cs iC13 for a magnetic field applied along the c-direction. We notic that the obtained 

theoretical prediction reproduces well all four phase boundaries. The small departure 

close to the multicritical point (T m, Hm) is due to the difficulty to pinpoint the 

experimental critical value in that range. This is principally associated with the fact 

that the amplitude of the anomaly on the velocity curves becomes very small. Finally, 

let us point out that the analytical results presented in this chapter are consistent 

with that of th work published by Plumer et al. [111. 
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Figure 8. 1: Magnetic phase diagram of CsNiCl3 for H/ jc. Filled circles correspond to 

experimental data obtained from our ultrasonic velocity measurements, and the lines 

represent the results of the Landau theory. 



Chapter 9 

Total free energy 

In our work, the total free energy is composed of the Landau free-energy, the elastic 

energy and the magnetoelastic coupling terms. The magnetoelastic coupling effect, 

which relates strains and the order parameters, is proved to be very useful in order to 

describe th magnetic properties and the elastic propert ies of quasi-one-dimensional 

antiferromagnet , e pecially for Cs iCl3. Consequently, the total fre energy needs to 

be expressed as 

Ftatal = FL(rJ) + Fel(e) + Fc(e, rJ) , (9.1) 

where rJ represents the order parameter and e stands for strains. 

In this chapter we will present the derivation of the total free energy which tak s 

into account the Landau free-energy FL(rJ ) as derived in Chapter 8, the elastic energy 

Fe1(e), and the magnetoelastic energy Fc (e rJ). From this model, rela tions between 

elastic constants , strains and order parameters are obtained. Although Landau theory 

is a mean-field theoretical model, these phenomenological relations can still be used 

in order to analyze experimental data, where a non-mean-field critical exponent f3 is 

assumed for the temperature dependence of the order parameter. 

82 
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9.1 Elastic energy of CsNiCl3 

The second part of the total energy Eq. 9.1 is the elastic energy which is caused 

by small elastic distortions. According to the Hooke's law, using the Voigt notation 

(a, {3 = 1, 2, 3, 4, 5, 6), the elastic energy can be written as 

(9.2) 

where Caf3 represents the elastic constants while ea stands for the strain . The strain 

components ea are related to their cartesian representation using the correspondences 

(9.3) 

Thus, based on the 5 independent elastic constants as shown in Eq. 5.35, the elastic 

energy for CsNiC13 can be expressed as 

1 2 2 1 2 
Fet(e) = 2Cu(e1,1 + e2,2) + 2C33e3,3 

+ C12e1,1e2,2 + C13(e1,1 + e2,2 )e3,3 + 2C44(ei,3 + e~,3 ) + 2C66ei,2. (9.4) 

9.2 Magnetoelastic coupling terms 

Magnetoelastic contributions to the free energy account for uniform strain-spin cou

pling. In our studyf59l, we restrict our discussion on the linear-quadratic (1-q) and 

quadratic-quadratic ( q-q) terms. All these terms must also be invariant with respect 

to hexagonal symmetry operations. Using cartesian notation , we can express the 

magnetoelastic coupling terms as 
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where K i,j ,k,l and Vm,n,p,q,r,s are elements of the tensors K and V representing coeffi

cients for 1-q and q-q coupling. The invariant elements are d termin d by applying 

the main symmetry operations associated with the generator of hexagonal group, 

C2y, C6z, and inversion I on the tensors. 

9.2.1 1-q magnetoelastic coupling terms 

For 1-q terms, given that SkSl = S1Sk and ei,J = eJ,i, the 4th-order tensor can b 

written as a 2nd-order tensor. Using the symmetry operations, the invariant elements 

correspond to 

K1 ,1,1,1 K1,1,2,2 Kl,1,3,3 0 0 0 

K1 ,1,2,2 K1,1,1,1 Kl ,1,3,3 0 0 0 

K3,3,1 ,1 K3,3,1,1 K 0 0 0 
K= 

3,3,3,3 
(9.6) 

0 0 0 K 2,3,2,3 0 0 

0 0 0 0 K 2,3,2,3 0 

0 0 0 0 0 K1,2,1,2 

where K1 ,2,1,2 = HKl,l ,l ,l - K1 ,1,2,2). Thus, the 1-q coupling terms can be expressed 

as 

(9.7) 
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For uniform deformations, these terms can be evaluated using the integral form as 

'L.i,j,k,l K i,j,k,lei,jSkSl = j dr 1 j dr2 j dr3Ki,j,k,l(r 1; r2- r 3)ei,j(r 1)Sk(r 2)St(r 3). 

(9.8) 

For example, terms associated with K1,1,1,1 can be represented as 

(9.9) 

and the integral form that relates to e1,1SxSx is 

(9.10) 

Using the spin density (Eq. 8. 10), we obtain 

(9.11) 

where R and R' represent the lattice positions correspond to r 2 and r 3, respectively. 

For a uniform deformation, J dreij ( r) = ei,j above expression is simplified to 

(9.12) 

Employing the definition of spin density (Eq. 8.11), this becomes 

(9. 13) 

which can be rewritten as 

e1,1 ( ~ )2L_RL_R,Kl,l ,l,l (R - R') 

(s s eiQ (R + R') + s S* eiQ (R - R ' ) + s eiQRm + S* s eiQ (R ' - R ) 
XX Xx X X XX 

+ S * S *e-iQ (R + R ') + S *e-iQRm + S eiQR'm + S *e-iQR'm + m 2 ) 
XX X X X X X X X " (9.14) 
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Defining T = R' - R , Expression 9.14 becomes 

v 
e 1,1 ( N )

2
:l::R:l::-rK1,1,1,1 ( r ) 

(s s e iQ (-r+ 2R ) + s S *e-iQ'T + s eiQRm + S*S eiQ-r + S * S *e-iQ (-r+2R ) 
XX XX X X xX XX 

(9.15) 

According to the Landau model, the ordered spin structure is characterized by the 

wave vector Q with using the nth Fourier component of the spin density to define 

the order parameterf91. Here for the case of CsNiC13, all the ordered phases have a 

periodicity of 3, hence, n is 3 and 3Q is equivalent to a reciprocal lattice vector G . 

Based on this discussion, we have 3Q = G and then 

I_~ e±i2QR _ A _ 0 
N L-R - Ll2Q ,G - (9. 16) 

and 

I_~ e±iQR = ,6.Q G = 0 
NL-R , ) (9.17) 

where .6.n Q ,G is Kronecker S function, which is 

~nQ,G = { ~ if n Q = G , 
(9. 18) 

otherwise, 

so that Expression 9.15 becomes 

V ~ K ( )(S S * -iQ-r + S * S iQ-r + 2 ) e 1,1 N L--r 1,1,1,1 T X xe X xe m x . (9. 19) 

Defining 

K - V ~ K ( r ) e±iQ-r 1,1,±Q - N L--r 1,1,1,1 , (9.20) 

and 
v 

K - -~ K (r ) 1,1,0 - N L--r 1,1,1,1 , (9.21) 
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Expression 9.19 can be rewritten as 

(9.22) 

Using the same approach, the invariant terms for the 1-q coupling can be obtained 

as 

Fc(l - q) = K1,1 ,Qe1 ,1(SxS~ + S~Sx ) + K1,1,oel,lm; 

+ K1,1,Qe2,2(SyS; + S~Sy) + K1 ,1 ,oe2,2m~ 

+ 2Kl,l ,Qe1 ,2(SxS~ + s ; Sy) + 2K1,1,oe1,2mxmy 

+ K1 ,2,Qe1 , 1(SyS~ + S~Sy) + K1 ,2 ,oe1,1m~ 

+ K1,2,Qe2,2(Sxs ; + s ; Sx) + K1,2,oe2,2m; 

- 2K1,2,Qe1,2(SxS~ + s ; Sy)- 2K1,2,oe1,2mxmy 

+ K1,3,Q(el ,l + e2,2)(SzS; + s ; s z) + K1 ,3,o(el ,l + e2,2)m~ 

+ K3,1,Qe3,3(SyS; + S~Sy) + K3, 1,oe3,3m~ 

+ K3,3,Qe3,3(Szs ; + s ; s z) + K3,3,oe3 ,3m~ 

where the coefficients are defined as 

K - V " K · · (• )e±iQ-r a ,{3,Q - N ~-r t ,J ,k ,l , 

v 
K 13 0 =-" K · ·kl(• ) a, , N~' t,J , , · 

(9.23) 

(9.24a) 

(9.24b) 

Here, a and {3 are Voigt indexes associated with the invariant elements K i ,j,k,l· 

As ment ioned in Section 8.1.2, the polarization vector can be written in terms of 

real vectors as 

(9.25) 
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and for the case of the magnetic field applied along the c-direction (z-axis), 8 1 and 

82 are given by 

81 = s cos ,B[sin e P1 +cos e z], 

8 2 = S sin ,B P2· 

(9.26a) 

(9.26b) 

Here, p1 and p2 are two perpendicular unit vectors lying in the basal plane. Thus, we 

define p1 and p2 in terms of the in-plane unit vectors x and y as 

P1 = cos ¢ x + sin ¢ y, 

p2 = - sin¢ x + cos¢ y, 

(9.27a) 

(9.27b) 

where ¢ is the phase angle measured relative to an arbitrary x-direction. Therefore, 

81 and 82 can be rewritten in terms of x, y and z as 

81 = S cos ,B[sin B( cos¢ x +sin¢ y) +cos (;I z], 

8 2 = Ssin ,B(-sin ¢ x+cos¢ [;) . 

(9.28a) 

(9.28b) 

For H/ /z, where mx = my = 0, making use of the Voigt notation for the strains 

(Eq. 9.3), the 1-q magnetoelastic coupling terms can be simplified as 

Fc(l - q) = 2(Kl,l ,Qel + K1,2,Qe2 + K 3 ,1,Qe3 )S2
( cos2 ,B sin2 

(;I cos2 ¢ + sin2 ,B sin2 ¢) 

+ 2(Kl,l,Qe2 + K1,2,Qe1 + K3,1 ,Qe3)S2
( cos2 ,B sin2 

(;I sin2 ¢ + sin2 ,B cos2 ¢) 

+ 2(K1,3,Q(el + e2) + K3,3,Qe3)S2 cos2 ,B cos2 
(;I 

+ 2Ks,s,Qe4S2 sin 2(;1 cos2 ,B sin¢ 

+ 2Ks,s,Qe5S 2 sin 2(;1 cos2 ,B cos¢ 

+ ( K1,1,Q - K1,2,Q )e6S2 sin 2¢( cos2 ,B sin2 
(;I - sin2 ,B) 

+ (K1,3,o(el + e2) + K3,3,oe3)m;. (9.29) 
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Again, using the definition of the parameters Sj_ s sin /3 and ( = cos 0' the 1-

q magnetoelastic coupling terms can be furthermore simplified. We notice that, 

sin 20 = 2 sin 0 cos 0 = ( j1=(2. Thus, for ( = 1 and ( = 0, sin 20 = 0. Therefore, 

we can simply drop all terms proportional to sin 20, and Eq. 9.29 reduces to 

Fccz-q)(e,S, Sj_, () = 

2(Kl,l,Qel + K1,2,Qe2 + K3,1,Qe3)[(S2 - Si)(l- ( 2) cos2 ¢ + Si sin2 ¢] 

+ 2(Kl,l,Qe2 + K1,2,Qe1 + K3,l,Qe3)[(S2 - 51_)(1- (2) sin2 
</> + Si cos2 

</>] 

+ 2(K1,3,Q(el + e2) + K3,3,Qe3)(S2 - 51_)(2 

+ (K1,1,Q- K1,2,Q)eB[(S2 - Si)(1- ( 2)- 51_] sin 2¢ 

(9.30) 

9.2.2 q-q magnetoelastic coupling terms 

Quadratic-quadratic ( q-q) magnetoelastic coupling term , l:m,n,p,q,r,s Vm,n,p,q,r,sem,nep,qSrSs, 

can be determined using the same approach. First, we find that there are 17 indepen-

dent coupling terms V m,n,p,q,r,s allowed by symmetry, where indexes m, n, p, q, r and s 

run from 1 to 3. After evaluating each integrals, the coupling coefficients are defined 

as 

V - V "' V (r )e±iQT 
o:,{3,"(,Q - N ~T o:,/3,"( ' 

v 
V - "' V (r ) o:,{3,"(,0 - N ~T o:,/3,"( ' 

where a, {3, 1 = 1, 2, 3, 4, 5, 6. 

(9.31a) 

(9.31b) 

The q-q coupling terms are listed in Table 9.1. All these q-q magnetoelastic 

coupling terms can be simplified with the spin relations. For a magnetic field applied 

along c-direction (mx = my = 0) , the nonzero q-q magnetoelastic coupling terms 

are listed in Table 9.2. As discussed in the previous section, any coupling terms 
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Coefficients Associated terms 

vl,l ,l ,Q !<3•~. 1 + •bJ(S r s ; + s ; s ,) + i<2•~ .2 + ·~.2 + e 1.1 e2 ,2HSu S~ + S~Sv ) + !•L.2e2,2(Sr S~ + s; sv) 

V1,1,2,Q ~(3e~.2 + •bHSxs ; + s ; s ,) + !<3•~. 1 + 2e~.2 + ·~.2 - 2e,, , e2,2)(S vs ; + s ; s .) - !•1,2e2,2(s , s ; + s ; s v) 

vl,l,3 ,Q (e~. 1 + ·~.2 + 2e~.2 )(s. s; + s ; s . ) 

V1 ,2,1,Q -2(e~. 2 - eue>,2)(S r s ; + s ; s r) - 2(•~ .2 - e,,,e2 ,2)(S us ; + s; sy) 

vl,2,3,Q -2(e~,2 - e , , , e2,2)(s . s ; + s ; s . ) 

vl ,3,l ,Q 2e t ,l es,s(Sxs ;, + s;,sx) + 2e2,2es,s(S ys ; + S~ Sv) + 4e1,2es,s(s , s ; + s;,Sv) 

Vl ,3,2,Q 2e2,2es,s(S £s ;, + s ;, s x) + 2el , t es,s(S 11 S ; + S~ Sy) - 4et ,2es , s(Sx S~ + s; Sy) 

Vl ,3,3,Q 2(et,t + e2,2)es, s (S , s ; + s ; s .) 

vl ,4,4,Q - 8(e1,2e2,3- e , ,se2,2 )(Sx s ; + s ; s . ) - 8(e 1,2e1.s - e , , , e2,s)(S ys ; + s~ s.) 

v1 ,5,5,Q S(e, , , e , ,s + e , ,2e2,sl<Sr s ; + s ; s .) + 8(et ,2•t ,3 + e2,2•2.s)(S ys ; + s ; s .) 

V1 ,6,6,Q !(3e~ .2 - •bHSxs ;, + s ; s x) + 4<•~ . 2 - •~ . 2 - 2e,,,e2,2l<S us ; + s; sv) + J(3e t , t • t ,2 - et,2•2,2lCS x s ; + s; s 11 ) 

v3,3,l ,Q e~ ,3 (Srs; + s; sx) + eb(S11 s ; + s; sy) 

V3 ,3,3,Q ·~ .3 (s. s; + s ; s .) 

v3,5,5,Q 8et ,3es,s(S xs ; + s ;, s ,) + 8e2.ses,s(S yS ; + s ; s , ) 

V5,5,1,Q 4eL(s , s ; + s; sx) + 4eb(s 11 s ; + s ; s 11 ) + se , ,se2,3(S xs ; + s ; s 11 ) 

V5,5,2,Q 4eb(s r s ; + s; sx) + 4e~ . 3 (S11 s; + s; s11 ) - se, ,se2 ,s(S xs ; + s ;, s ,) 

% ,5,3,Q 4(et3 + •t3)(s . s ; + s ; s .) 

v1,1,1,o !C3et1 + e~,2)m~ + !{2e~,2 + e~ ,2 + e 1 , 1 e2,2)m~ + ~e1,2e2 ,2 'n:r.my 

v1,1,2,o i(3e~,2 + eb)m; + !C3•L + 2e?,2 + eb - 2et , 1 e2 , 2)m~ - !e1,2e2 ,2mxmy 

V1 ,1,3,o (e~ . t + e~.2 + 2e?,2)m~ 

v1,2,1,o -2(e~ , 2 - et,1e2 ,2)m~ - 2(e~,2 - e,,,e2 ,2)m~ 

v1,2,3,o -2(e~.2 - e1, 1 e2 , 2)m~ 

v1,3,l,o 2e1,1e3, 3fl'1.; + 2e2,2e3 ,3m~ + 4et,2e3,3m.r.m11 

V1,3,2,o 2e2 ,2e3,3m; + 2e1 , 1 e3 ,3m~ - 4e t ,2e3 ,3m.rmy 

vl ,3,3,o 2(e t ,I + e2 ,2Jes,sm; 

v1 ,4,4,o - 8(et ,2e2,3 - e 1 ,3e2 ,2)mxn1.~ - 8(e1 ,2 e 1 ,3 - e t , l e2 ,3)mymz 

v1,5,5,o 8(e t , l et ,3 + e1 .2•2 ,3)mxm• + 8(et,2e t ,3 + e2,2e2 ,3}mym• 

V1,6,6,o !C3e~ .2 - e~,2lm; + 4<•~ . 2 - e~ , 2 - 2e t , t e2 ,2)m~ + !C3et , t • t ,2 - e t ,2e2 ,2)mrmy 

V3,3,1,o e~ . 3m~ + e~ .3m~ 

V3,3,3,o e~ , 3m; 

V3,5,5,o Be 1 ,3e3, 3ffixffiz + 8e2 ,3e3 ,3mym.r. 

V5,5,1,o 4e~ .3m~ + 4 e~,3m~ + 8e 1 ,3e2 ,3)mxm11 

v 5,5,2,o 4e~ , 3m~ + 4 e~ ,3m~ - Be t ,3e2,3)mxm11 

v 5,5,3,o 4(e~ . 3 + e~ .3 )m~ 

Table 9.1: Quadratic-quadratic magnetoelastic coupling terms sorted by the coeffi

cients. These coefficients are defined in Eq. 9.31. 
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Coefficients Associated terms 

~(3e~ + e~)[(52 - 5l) (J - ( 2) cos2 <1> + 5l sin2 <1>1 

vl ,l,l ,Q +~(2e~ + e~ + 2e 1e2)[(S2 - 5l)( l - ( 2) sin2 <I>+ Sl cos2 <1>1 

+ ! •2•o sin 2¢[(52 - 5l )( J - ( 2) - Sl] 

t(4e~ + 3e~)[(S2 - Sl)( l - ( 2) cos2 <1> + Sl sin2 <I>] 

v1 ,1,2,Q +~(6e~ + 2e~ + e8- 4e l e2)[(52 - 5l)(l - ( 2) sln2 <I>+ 5l cos2 <I>] 

- ! •••osin 2ci>[(S2 - 5l)( 1 - ( 2) - Sl] 

v1,1,3,Q (2e~ + 2e~ + •a)(52
- siJ<2 

V1 ,2,1,Q 
(4e t e2 - e~)[(S2 - 5l)( i - ( 2) cos2 <I>+ si s in2 <1>1 

+(4e l e2 - ea )[(52 - 5l)(l - ( 2) s in 2 <I>+ 5l cos2 <I>] 

v1 ,2,3,Q (4e l e2 - e~)(52 - 5l)<2 

4e l ea[(S2 - 5l){l - ( 2) cos2 <1> + 5l s in2 <I>] 

v1 ,3,l ,Q + 4e2ea[(52 - si )( 1 - ( 2) s in2 <I>+ si cos2 <I>] 

+ 2ea ea sin 2ci>[(S2 - Sl )( 1 - ( 2) - 5l] 

4e,ea [(52 - 5l){l - ( 2) cos2 <1> + 5l s in2 <1>1 

vl ,3,2,Q He1 ea1(52 - 5l )(J - ( 2
) sin2 <1> + 5l cos2 <1>1 

- 2ea eo s in 2<1>1(52 
- 5l)(l - ( 2) - 5 l] 

Vt ,3,3,Q 4(e i + e2)ea(52 - 5ll<2 

~ (3e~ - 4e~ )[(52 - 5l)(l - ( 2)cos2 <I>+ 5l s in2 <I>] 

V1 ,6,6,Q +4(2e~- e~ - 4e i e2)[(S2 - Sl)( l - ( 2) s in2 <I>+ Sl cos2 <1>1 

+!(3e l eG- e2eo)sin 2</>I(S2 - Sl)(J- ( 2) - 5l] 

v3,3,1,Q 
2e~I(S2 - 5l)( l - ( 2) cos2 <I> + 5l s in2 <I>] 

+2e~ I(S2 - 5 l)(1 - ( 2 ) s in2 q, + 5l cos2 <PI 

v3,3,3,Q 2e~ (S2 - 5l)<2 

2e~[(52 - 5l)( l - ( 2) cos2 <1> + 5l s in2 <1>1 

Vs,s,l ,Q +2e~ l(52 - 5l)(l - ( 2) s in2 4> + 5l cos2 ¢ ] 

+2•• •s s in 2</>1(52 - 5l)( l - ( 2)- 5ll 

2e~ [(52 - Sl)( l - ( 2) cos2 <I>+ 5l sin2 <1>1 

Vs,s,2,Q +2e~[(52 - Sl)(1 - ( 2) s in2 4> + Sl cos2 <1>1 

- 2e4e5 s in 2</>[(S2 
- Sl)( 1 - ( 2) - Sll 

Vs,s,3,Q 2(e~ + e~)(S2 - 5iJ<2 

V1,1,3,o ~(2e~ + 2e~ + •alm~ 

v1,2,3,o ~(4e, e, - •alm~ 

vl ,3,3,o 2(et + e2)e3m~ 

V3,3,3,o e~m~ 

Vs,s,3,o (e~ + e~)m~ 

Table 9.2: onzero quadratic-quadrati magnetoelastic coupling terms represented in 

terms of the ord r parameters. 
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proportional to sin 20 vanish. Moreover, because mx =my = 0, only terms with m~ 

remam. 

For the linear phase, as spins align parallel to the c-direction , strains only couple 

with S. For the elliptical phase, both spin components (basal plane and parallel to 

the c-direction are ordered) , so we have both Sl. and s; = S2
- Sl. in the coupling 

terms. For the magnetic field induced 120° phase, the spins are almost aligned in 

the basal plane, with a small component along the c-axis. Therefore, both S and S1. 

remain nonzero in this phase. Furthermore, as derived by Eq. 8.38, S = .../2S1. . 

So far the elastic energy, F el , and magnetoelastic coupling terms, Fc(e, 7J ), of 

Cs iC13 are derived . Together with the Landau free-energy of CsNiC13 , FL('fJ) , which 

is obtained by Plumer et al. ln],[ll], the total free energy of Cs iC13 , F total , can be 

written out according to Eq. 9.1. Based on this total free energy, the elastic constants 

can be calculated in all the four phases. This will be discussed in the next chapter. 



Chapter 10 

Elastic constants of CsNiCl3 

The elastic constants c:nn in the low temperature phases can be calculated according 

to the total free energy F total by using164l 

(10.1) 

where em and en represent strain components and fJ is the order parameter. Given 

that the total free energy, F total, is expressed in terms of the ord r parameters ( S, S 1.. 

and() , the magn tization (mz), and the strains (em) , the calculated elastic constants 

are also written as functions of these parameters. The temperature and magnetic field 

dependence of the order parameters and magnetization have already been obtained 

in Section 8.1.3, while that of the strains are derived in this chapter. Based on these 

results, the temperature and magnetic field dependence of the elastic constants can 

be obtained in all four phases. These theoretical results are used to reproduce the 

behavior of the elastic constants as a function of the temperature and the magnetic 

field . 

We notice that the total free energy is also function of an unsp cified angle, ¢. As 

a matter of fact, rjJ plays an important role in describing the symmetry properties of 

93 
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CsNiC13. Therefore, the value of¢ is determined first in this chapter . 

10.1 Discussion of ¢ = 0 

For the case of a magnetic field applied along the c-direction, as shown in Eq. 9.25 

and Eq. 9.26, the polarization vector S is expressed in terms of orthogonal unit 

vectors z, p1 and P2· Here z is along the c-direction while p1 and P2 lie in the 

basal plane. In Eq. 9.27, the angle ¢ is employed to define the orientation of p1 

and p2 relative to the lattice basis vectors. As shown in Fig. 10.1, for the hexagonal 

antiferromagnet CsNiC13 , the in-plane positions of the magnetic i2+ ions with respect 

to the hexagonal lattice are 

(10.2) 

where a and b are the primitive Bravais-lattices vectors in the basal plane and ni are 

integers. 

According to the MR observation110l and X. Zhu's th oretical calculation19l, the 

basal-plane component of magnetic moment is found to be perpendicular to one of 

the in-plan primitive reciprocal-lattice vectors. As a result , as shown in Fig .10.1, 

for example, if the magnetic moment is perpendicular to ii*, it must be aligned along 

y-axis. This also indicates that there are six equivalent magnetic domains rotated by 

60° relativ to each other. Hence, as the x and y directions can be interchanged, one 

of the domains corresponds to ¢ = 0. This is also supported by neutron-diffraction 

studiesl65l. Therefore, in the following calculation , ¢ = 0 is used to determine the 

temperature and magnetic field dependence of the strains and the elastic constants. 
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y 

• 

b • 

• 

X 

Figure 10.1: Positions of Ni2+ magnetic ions in the basal plane, where a and b are 

primitive Bravais-lattice vectors while a* and b* are primitive reciprocal-lattice vee-

tors. 

10.2 Temperature and magnetic field dependence 

of strain 

Minimizing the free energy with respect to the strains, we can solve for t he temper-

ature and magnetic field dependence of strains. With only 1-q coupling terms, the 

total free energy has the form of 

Ftotat(t- q) = FL(S, S1. , () + Fet(e) + Fc(t- q)(e, S, S1. , () . (10.3) 

The full expressions of FL(S, S1., () , Fet(e) and F c(l - q)(e, S, S1. , ()are shown by Eq. 8. 17, 

Eq. 9.4 and Eq. 9.30. Minimizing Ftotal(l- q) with respect to the strains, 

OFtotal(l- q) = O 
Oen ' 

(10.4) 

solutions for each strain components, as function of order parameters (S and S1. ) 

and magnetization (mz), are obtained. To be consistent with the experimental data 
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of thermal expansion coefficient in the basal plane obtained by Rayne et all55l, th 

elastic constant C13 has been set to zero. 

In the linear phase, where S1. = 0 and ( = 1, we obtain that 

e
1 

= _ 2Kt,3,QS2 + Kt,3,om~ 
Cn + C12 ' 

e
2 

= _ 2Kt,3,QS2 + Kt ,3,om~ 
Cu + C12 ' 

e __ 2K3,3,QS2 + K3,3,om~ 
3- c ) 

33 

e5 = 0, 

(10.5a) 

(10.5b) 

(10.5c) 

(10.5d) 

(10.5e) 

(10.5f) 

We notice that, e4 = e5 = e6 = 0, which shows that no shear deformation exist, 

and e1 = e2 , which indicates that in the basal plane the deformations along x and y 

directions are equivalent. Furthermore, all the strains are independent of the phase 

angle¢. 

In the elliptical phase, given both S1. and S are nonzero and ( = 1, the corre-

sponding strains are 

e5 = 0, 

(10.6a) 

(10.6b) 

(10.6c) 

(10.6d) 

(10.6e) 
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e 
_ (KI,l,Q- K1 ,2,Q)Si sin 2¢ 

6 - c66 · 
(10.6f) 

Based on these results, for an arbitrary angle ¢, the shear deformation e6 would 

drive the crystal symmetry into a monoclinic structure. However, a discus ed in 

Section 10.1, one of the six domains for CsNiC13 corresponds to¢ is zero. Therefore, 

for a mono-domain with¢= 0, the above quations can be rewritten as 

e5 = 0, 

e6 = 0. 

(10.7a) 

(10.7b) 

(10.7c) 

(10.7d) 

(10.7e) 

(10.7f) 

We notice that e1 and e2 are no longer equal to each other. This actually leads to a 

symmetry change, which will be discussed later in this chapter. 

For the 120° phase, where S = V'iS1_ and ( = 0, the strains giv 

e
1 

= _ 2(Kl,l,Q + K1 ,2,Q)Si + K1,3,om~ 
Cu + C12 ' 

e
2 

= _ 2(KI,l ,Q + Kl ,2,Q)Si + K1,3,0m~ 
Cu + C12 ' 

e __ 4K3,l ,QSi + K3,3,om~ 
3- c , 

33 

es = 0, 

e6 = 0. 

(10.8a) 

(10.8b) 

(10.8c) 

(10.8d) 

(10.8e) 

(10.8f) 

In this phase, as in the linear phase, the strains are independent of ¢ and e1 = e2 . 
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For each phase, the temperature and magnetic field dependence of order parame

ters S and S1. and magnetization m z are given in Section 8.1.3. Using these results, 

the temperature and field dependence of the strains in each phase can be calculated. 

Coefficients a, Az, TQ, Band B2 are given in Table 8.2 and Table 8.3 while the elastic 

constants C11 , C12 and C33 are given in Table 6.1. The coefficients Ki,j ,Q, which are 

listed in Table 12.1 and Table A.1, can be determined by comparing the experimental 

data and the model predictions. Given the temperature dependence of e1 and e3, it is 

possible to calculate the thermal expansion coefficients a 1 = ~ and a3 = W¥. Our 

predictions are compared to the temperature dependence of the thermal expansion 

coefficients a 1 = ~ and a 3 = W¥ obtained by Rayne et aZl55l. To reproduce the ex

perimental data, the non-mean-field order parameters, with (3 ~ 0.35, has been used. 

The comparison between the numerical and experimental data is shown in Fig. 10.2. 
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Figure 10.2: Temperature dependence of (a) a 1 = ~ (thermal expansion coefficient 

in basal plane) and (b) a 3 = f!J! (thermal expansion coefficient along the c-axis) at 

zero field of CsNiCh. The solid lines and the dots are the model predictions and 

experimental data obtained by Rayne et all551, respectively. 
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10.3 Temperature and magnetic field dependence 

of the elastic constants 

The goal here is to obtain t he temperature and magnetic field dependence of the 

elastic constants of Cs iC13 for the case of a magnet ic field appli d along the c-

direction. Therefore, in this section, th 9 nonzero elastic constants are calculated 

based on the total free energy derived in Chapter 9. 

As hown in Section 8.1.2 and Chapter 9 the total fr nergy is written in 

terms of the order parameters (S S1. and () , magnetization (mz) , and strains (em) · 

According to Table 8.1 , rJ stands for the order parameter in asp cific phase. Therefore, 

the calculation of the elastic constants c:nn is treated separately with respect to each 

phase. Furthermore, to address the magnetic field dependence of the lastic constants, 

we expand the g neral form of c:nn as 

where Ftotal is th total free energy derived in Chapter 9. 

We notice that, after inspection of the linear-quadratic (1-q) magnetoelastic cou-

pling terms derived in Chapter 9, only couplings with e1 , e2 and e3 are allowed. 

Therefore, in order to fully account for the temperature and field dep ndence of th 

elastic constants, in particularly for c44 and c66 , quadratic-quadratic ( q-q) coupling 

terms are also required. 

Paramagnetic phase 

In the paramagnetic phase, the order parameters S and S 1. are both zero while 

( = 1. In oth r word , the second part of Eq. 10.9 is irrelevant in this case. Therefor , 
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Eq. 10.9 can be simplified to the form of 

C* = fJ2 F total(p) _ []2 F total(p) ( 82 
Ftotal(p) tl 82 

F total(p) 

mn(p) 8em8en 8mz8em 8m; 8en8mz . 
(10.10) 

The exact analytical solut ion is too complicated to write here. However, a good 

approximation can be obtained by treating the 1-q and q-q contribution separat ly. 

Minimizing the free energy relative to the magnetization, we have 

where Ftotal(p)(l-q) is the total free energy in the paramagnetic phase which only in

cludes the 1-q magnetoelastic coupling terms and then A0 can be rewritten as 

(10.12) 

The second derivation of F total(p)(l-q) with respect to the magnetization in the second 

part of Eq. 10.10 is calculated as 

fJ2 F total(p)(l-q) A 3B 3 2K ( ) K 
fJm2 = o + 3mz + 1,3,0 e1 + e2 + 2 3,3,0 3· 

z 

(10.13) 

Making use of the result from Eq. 10.12, 
82 Fto;;l(~)(l-q) can be implified as 

m, 

(10.14) 

Using the approach describe above, the nonzero elastic constants in the paramagnetic 

state are 

(10.15a) 

(10.15b) 

(10.15c) 

(10.15d) 
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c:4(p) = Css + 2Vs,s,3,om~, 

c;s(p) = Css + 2V5,s,3,om;, 

c;B(p) = C66 + (Vl,l ,3,o- Yl,2,3,o)m~. 

102 

(10.15e) 

(10.15£) 

(10.15g) 

(10.15h) 

(10.15i) 

Here, the results show that, in the paramagnetic phase, the change in the elastic 

constants is only due to the magnetic fi ld. 

Linear phase 

Compared with the calculation in the paramagnetic phase, calculations in the 

linear phase also involve a contribution from the order parameter. In the linear 

phase, S =/= 0, S1_ = 0 and ( = 1. Th refore 1J in Eq. 10.9 r pres nts the order 

parameter S. According to Eq. 9.30 and Table 9.2, the elastic constants calculated 

in the linear phase correspond to 

• 4I<f,3,Q 2 2 4(I<l,3,o- 2B6I<l,3,Q)2m~ 
C11(l) = C11 - B + 4Vl,l,3,QS + 2Vl ,l ,3,omz + 2(2BBg _ B3)m~ _ H • 

• 4I<f,3,Q 2 2 4(Kl ,3,o - 2B6Kl ,3,Q)2m~ 
C12(t) = C12- B + 4Vl ,2,3,QS + 2V1,2,3,omz + 2(2BBg _ B3)m~ _ H ' 

c· _ c 4I<l,3,QI<3,3,Q + 4v: 2 
13(1) - 13 - B 1,3,3,Q 

2V 2 4(Kl,3,o - 2B6Kl,3,Q)(I<3,3,o - 2B6I<3,s ,Q)m~ 
+ 1,3,3,omz + 2(2BBg - B3)m~ - H , 

• 4Kf,3,Q 2 2 4(Kl,3,o - 2B6Kl,3,Q)2m~ 
C22(t) = C 11 - B + 4V1,1,3,QS + 2V1,1,3,omz + 2(2BBg _ B3)m~ _ H , 

C* _ C _ 4K1,3,QK3,3,Q + 4V S2 
23(!) - 13 B 1,3,3,Q 

2
V 2 4(I<l ,3,o - 2B6Kl,3,Q)(K3,3,o - 2B6K3,3 ,Q)m~ 

+ 1,3,3,omz + 2(2BBg - B3)m~ - H , 

• _ 4K;,3,Q 2 2 4(K3,3,o - 2B6K3,3,Q)2m~ 
C33(t) - C33 - B + 4V3,3,3,QS + 2V3,3,s,omz + 2(2BBg _ B3)m~ _ H , 

C;4 (t) = Css + 4Vs,s,3,QS
2 + 2Vs,s,s,om;, 

c;s(t) = Css + 4Vs,s,3,QS2 + 2Vs,s,3,om;, 

(10.16a) 

(10.16b) 

(10.16c) 

(10.16d) 

(10.16e) 

(10.16f) 

(10.16g) 

(10.16h) 
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(10.16i) 

where B6 = 28 4
:

85
. We immediately notice that the q-q coupling terms between the 

strains and the order parameter lead to a S2 dependence. Secondly, in compari on 

with results obtained in the paramagnetic phase, the magnetization dependenc is 

in general more omplex. However, for C4'4(1), c;s(t)' and C66(t)' th magnetization 

dependence remains the same. As shown by Eq. 10.9, the calculations of C4'4(t), c;s(t) 

and C66(L) are directly related with strains e4 , e5 , and e6 , which appear in the q-q 

coupling terms. Finally, we also notic that a constant term appears for the first 6 

nonzero elastic constants. This is due to the 1-q coupling term betw en the strains 

and the order parameter. 

Elliptical phase 

In the elliptical phase, both Sand S1. are nonzero, ( = 1, and ¢ is set to zero in 

Eq. 9.30 and Table 9.2. Consequently, we obtain for the elliptical phase the results 

listed in Eq. 10.17. 

C* _ C _ (K1,2,Q + E 7Kl ,3,Q)
2 

ll(e) - 11 Es 

+ 4 V S2 + 4(V v; )S2 
1,1,3,Q 1,1,2,Q - 1,1,3,Q .L 

2
v 2 (E gK 1,2,Q + 2Kt ,3,o + EwK1,3 ,Q)2m~ 

+ 1,1,3,om z + (En - 2E3)m~ - H , (10.17a) 

C* _ C _ (Kl ,l ,Q + E 7Kl,3,Q)(K l,2,Q + E7K1 ,3,Q) 
12(e) - 12 Es 

2 2 2 + 4 Vl ,2,3,QS + 3 (2Vl ,t ,t ,Q - 2Vl ,1,2,Q + 6V1 ,2,1,Q - 6V1 ,2,3,Q - 8V1,6,6,Q )S .L 

2
V 2 (E gK 1,1,Q + 2K t ,3,o + Ewl<l ,3,Q)(Egl<1,2,Q + 2K t,3,o + El0Kt,3,Q)m~ 

+ 1,2,3,omz + (En _ 2E3)m~ - H ' 

(10.17b) 

C* _ C (K1 ,2,Q + E 7Kt,3,Q ) (K 3,t ,Q + E7K3,3,Q) 
13(e) - 13 - Es 

+ 4V1,3,3,QS
2 + 4(V1,3,2,Q- Vt,3,3,Q)Sl 

V 2 (E gK1 ,2,Q + 2Kl ,3,o + ElOKt ,3,Q)(EgK 3,l,Q + 2K3,3,o + ElOK3,3,Q)m~ 
+ 2 1,3,3,omz + (Bu - 2B3)m~ - H , 

(10.17c) 
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C* _ C _ (K1,1 ,Q + Ed<I,3 ,Q)
2 

22(e)- ll Es 

2 2 2 + 4VI,l,3,QS + "3 ( 4(VI,l ,l,Q + 2Vl ,1,2,Q - 6V1,1,3,Q + 8V1,6,6,Q)S 1. 

+ 
2
y 2 + (EgK1,1 ,Q + 2K1,3,o + EwKl,3,Q)2m; 

1
'
1

'
3

'
0
mz (Ell - 2E3)m~ - H ' 

(10.17d) 

C* _ C _ (Kl,l,Q + E7Kl,3,Q)(K3,l,Q + E7K3,3,Q) 
23(e) - 13 Es 

+ 4Vl ,3,3,QS
2 + 4(V1,3,l,Q- Vl,3 ,3,Q)Si 

2
V 2 (EgKl,l,Q + 2Kl ,3,o + EwKI,3,Q)(EgK3,l,Q + 2K3,3,o + EwK3,3,Q)m ; 

+ 1,3,3,omz + (Ell - 2E3)m~ - H , 

C* _ C _ (K3,l,Q + E1K3,3,Q)
2 

33(e)- 33 Es 

+ 4V3,3,3,QS
2 + 4(V3,3,l,Q- V3,3,3,Q)Si 

2
v 2 (EgK3,l,Q + 2K3,3,o + EwK3,3,Q)2m ; 

+ 3,3,3,omz + (En - 2E3)m~ - H , 

C;4(e) = C55 + 4V5,5,3,QS2 + 4(V5,5,l ,Q- V5,5,3,Q)Si + 2V5,5,3,om;, 

c;5(e) = C55 + 4V5,5,3,QS
2 + 4(%,5,2,Q- V5,5,3,Q)Si + 2V5,5,3,om;, 

c~6Cel = c66 + 2(Vl ,l ,3,Q- vl,2,3 ,Q)S
2 

1 ) 2 + "3(4Vl,l,l ,Q + 2Vl,l,2,Q- 6Vl ,l,3,Q- 6V1,2,1,Q + 6Vl ,2,3,Q- 4Vl,6,6,Q S 1. 

+ (V V )m2 
1,1,3,0 - 1,2,3,0 z > 

where 

(10.17e) 

(10.17f) 

(10.17g) 

(10.17h) 

(10.17i) 

(10.18a) 

(10.18b) 

(10.18c) 

(10.18d) 

(10.18e) 
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120° phase 

In the 120° phase, S and S1. are still nonzero, however, ( becomes zero. This 

accounts for the first-order phase transition between the elliptical and the 120° phase. 

In this phase, we choose S 1. as the phase order parameter and use that 

(10.19) 

The elastic constants in the 120° phase are listed in Eq. 10.20. 

c· _ c CI<1,1,Q + I<1,2,Q)
2 

11{120) - 11 - B _ B
2 

+ 4(V1,1,1,Q + V1 ,1,2,Q)Si 

4(B (I< + I< ) + I< )2m3 + 2v 2 + 12 1,1,Q 1,2,Q 1,3,o z 
1'1'3'0m z -2(2B5B12 + B3)m~ - H ' 

(10.20a) 

c· _ c CI<1,1,Q + I<1 ,2,Q)
2 

12{120) - 12 - B _ B
2 

4 2 + 3" CVt,1 ,1,Q - V1,1,2,Q + 6V1,2,1,Q - 4 V1 ,6,6,Q )S _1_ 

+ 
2
v 2 + 4(B12(K1,l ,Q + I<1,2 ,Q) + I<1 ,3,0 ) 2m~ 

1'2'3'0m z -2(2B5B12 + B3)m~- H ' 
(10.20b) 

c· _ c 2(I<1,1.Q + I<1,2,Q)I<3,1,Q 
13{120) - 13 - B _ B

2 

+ 4(Vt,3,t ,Q + V1 ,3,2,Q)Si 

2 4(Bl2(I<1,1,Q + I<1 ,2,Q) + I<t,3,o)(2Bl2K3,1,Q + K3,3,o)m~ 
+ 2Vt,3,3,omz + - 2(2B5B12 + B3)m~ - H , (10.20c) 

c· c (I<1 ,1,Q + I<1 ,2,Q)
2 

22(t2o) = u - B _ B
2 

+ 4(Vl ,t ,t ,Q + V1,t ,2,Q)Si 

2 4(B12(K1,1,Q + I<1 ,2,Q) + I<1 ,3,o)2m~ 
+ 2V1'1'3'0m z + - 2(2B5B12 + B3)m~ - H ' 

(10.20d) 

c· _ c 2(I<l,1 ,Q + I<1 ,2,Q)I<3,1,Q 
23{120) - 13 - B _ B

2 

+ 4(V1,3,1,Q + Vt,3,2,Q)Si 

+ 
2
v; 2 + 4(Bt2(I<t,I,Q + I<1,2,Q) + I<1 ,3,o)(2Bt2I<3,I,Q + I<3,3 ,o)m~ 

1'3'3'0m z -2(2B5B12 + B3)m~ - H ' 
(10.20e) 

4/(2 
C* C 3

'
1

'Q + 8V 8 2 
33{120) = 33 - B _ B

2 
3,3,t ,Q _1_ 

V 2 4(2Bt2I<3,l ,Q + I<3,3,o) 2m~ 
+ 2 3'3'3'0m z + -2(2B5B12 + B3)m~ - H ' 

(10.20f) 
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c;4c12o) = C 55 + 4(V5,5,l,Q + V5,5,2,Q)Sl + 2V5,5,3,om;, 

C;5c12o) = C55 + 4(V5,5,l ,Q + V5,5,2,Q)Sl + 2V5,5,3,om;, 

C~6(120) = C66 + ~(Vl,1,1,Q + 2v1,1,2,Q- 3Vl,2, l,Q + 2V1,6,6,Q)Sl 

+ (V, V )m2 
1,1,3,0- 1,2,3,0 z> 

with B12 = 8 :!.8 . 

10.4 Broken symmetry 

106 

(10.20g) 

(10.20h) 

(10.20i) 

According to Table 10.1[561, strains and elastic constants can be used to d termine the 

symmetry of a crystal in different pha es. As discussed in Section 10.1, we oriented the 

spins along the x-axis and therefore <P = 0. This is used to determin the xpress10ns 

of th strains and elastic constants of CsNiC13 in all the four phases. 

According to Eq. 10.5 and Eq. 10. 7, no shear deformation exists in the lower 

field ordered phas s and the basal plane deformations e1 and e2 are equivalent in the 

linear phase. Hence, according to our calculation, the strain matrices for the linear 

and elliptical phases correspond to 

el 0 0 

e(l) = 0 el 0 (10.21) 

0 0 e3 

and 

e1 0 0 

e(e) = 0 e2 0 (10.22) 

0 0 e3 

Referring to Table 10.1, we notice that the symmetry of the strain tensor is still 

consistent with that of the hexagonal tructure in the linear phas . In the elliptical 
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X 
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HEXAGONAL 
42m 4/mmm 
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Mi 
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3 3 ::: z : ~ · ~ ~· 1 0 ... ~ ~ . 3 . ...... 1 0 ..... . .. . . . 2 . ..... ... 2 2 
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1 1 

Table 10.1: Table of the matrices for elastic constants (the 6 x 6 ten or), piezoelectric 

constants (th 3 x 6 and 6 x 3 ten or) and dielectric con tants (strains the 3 x 3 

tensor). The solid and empty circles r pr sent the nonzero el m nts in these tensors. 

The solid circles joined by the lines are equal to each other while the empty circle 

has opposite sign with the solid cir le on the other end of the line. The small cross 

appears at the C66 position denotes the r lation of C66 = ~(C11 - 0 12 ). 
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phase, the hexagonal symmetry, e1 = 2 , is broken. This indi ates, that from the lin

ear phase to the elliptical phase, the spin structure of CsNiC13 reduces the symmetry 

to a lower space group. This is also upported by our elastic constant calculations. In 

the paramagnetic phase and the linear phase, as shown by Eq. 10.15 and Eq. 10.16 

we obtain C11 = C22, C13 = C23, C44 = Css, and C66 = ~(Cu - C12) . This is in 

agreement with the features of the P 63/mmc hexagonal elastic constants tensor 

Cu c12 C13 0 0 0 

c12 Cu C13 0 0 0 

c13 C13 C33 0 0 0 
C hexagonal = (10.23) 

0 0 0 c44 0 0 

0 0 0 0 c44 0 

0 0 0 0 0 c66 

where C 66 = ~(Cn - C12) . However , in the elliptical phase, ac ording to Eq. 10.17, 

the number of ind p ndent elastic constants increases to 9 and th n w symmetry 

corresponds to that of the orthorhombic structure with 

Cu c12 C13 0 0 0 

c12 c22 C23 0 0 0 

C13 c23 C33 0 0 0 
Carthorhombic = (10.24) 

0 0 0 c44 0 0 

0 0 0 0 Css 0 

0 0 0 0 0 c66 

where c 66 = H Cu - c l2) is not required. 

In the magnetic field induced 120° phase, according to Eq. 10.8, the strain tensor 
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can be expressed by 

e1 0 0 

e (120) = 0 e1 0 (10.25) 

0 0 e3 

Compared with the strain tensors in the linear and elliptical phases, here given e1 = 

e2 , we may suppose that the symmetry changes back to hexagonal when crossing the 

first-order phase boundary between the elliptical and the 120° phase. This is again 

confirm d by th elastic constants calculation. As shown by Eq. 10.20, in the 120° 

phase, all th f atur s, Cu = c22 , cl3 = c 23, c44 = Css, and c66 = HCu- Ct2) , 

appear again indicating a hexagonal symmetry property which is the same as that in 

the linear phase. 

In summary, based on the symmetry properties of both strains and elastic con

stants matrices in t he three order d phases, the hexagonal symmetry is broken only 

in t he elliptical phase. 



Chapter 11 

Critical behavior of CsNiCl3 near 

phase transitions 

As a frustrat d Heisenberg antiferromagnet CsNiCl3 shows a novel type of multicriti

cal behavior. As shown in Fig. 11.1, according to Kawamura141, the criticality of both 

phase transitions at lower magnetic fields (H < Hm) belong to th XY type with a 

predicted order parameter exponent {3 ~ 0.35. These two second-order phase t ran

sition lines merge at the multicritical point (Tm ~ 4.50 K, Hm ~ 2.29 T) , which is 

described by Kawamura as a new chiral H isenberg fixed point with {3 ~ 0.28. These 

predictions are supported by some experim ntal results shown in Table 11.1. 

The criticality along the high magnetic field crit ical line, which is associated with 

the field-induced 120° spin structure, is predicted by Kawamura to belong to a n w 

XY(n = 2) chirality class with {3 ~ 0.25. However, claims1201- 1261 have also been 

made recently pointing out that the character of this phase transition should rather 

be weakly first-ord r. In order to resolve this controversy, t he data presented in this 

section focus on the evolution of th critical behavior as a function of the magnetic 

field. 

110 
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120"spin structure phase 
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{J- 0.35 
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T 

Figure 11.1: Magnetic phase diagram of CsNiCl3 for field oriented along the c-

direction. 
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T heoretical value[l 8J 
Exponent Experimental value 

Chiral XY Chiral Heisenberg XY Heisenberg 

(31 0.32±0.03 [291 0 .25±0.01 0 .30±0.02 0.346±0.001 0.365±0.001 

0.30±0.02 [661 

0.35±0.02 [591 

!32 0.32±0.03 [291 0.25±0.01 0 .30±0.02 0.346±0.001 0.365±0.001 

0.30±0.02 [661 

0.35±0.02 [591 

fJM 0.28±0.03 [671 0 .25±0.01 0 .30±0.02 0.346±0.001 0 .365±0.001 

0.25±0.02[591 

(Jp 0.243 ±o.oos[67] 0.25±0.01 0 .30±0.02 0.346±0.001 0 .365±0.001 

Table 11.1: Comparison of experimental critical exponents (3 for CsNiC13 

(NMR measurement129l, neutron measurement166l ,[67l 
' 

and ultrasonic velocity 

measurement159l) and the predicted values of (3 for various universality classesl18l, 

where (31, (32 , (3M, and (3 F represent the critical exponents at T Nl, T N 2 , the mul ticri t i

cal point (Tm, Hm), and between the paramagnetic phase and 120° phase, respectively. 
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As mentioned in Chapter 9, according to the non-mean-field theory, the temp r-

ature dependence of the spin order parameter can be expressed as 

(11.1) 

where TN is the critical temperature, and (3 is the crit ical exponent associated with 

a phase transition. Together with the relations between the elasti constants and 

the order parameters obtained in Chapter 10, the value of critical exponent (3 can be 

determined. 

In Section 11.1 the critical behavior observed on c:,cc66 is analyzed near different 
66 

phase transitions. The results are compared wit h theoretical predictions. Based on 

these results, the nature of the high-field phase transition is discussed. A series of 

experimental results for c:,g!4 are also presented in order to confirm our findings. 

11.1 Field dependence of the critical exponent {3 

As shown in Chapter 10, the value of the critical exponent (3 can be extracted by 

fitting the temperature dependence of the elastic constants measured in this work. 

In this section the behavior of c:,cc66 near the high-field phas boundary is studied at 
66 

different fields. From the paramagnetic phase to the 120° phase, with the decreasing of 

the temperature, the relative variation of C66 can be calculated according to Relation 

10.15 and 10.20 as 

CG6(120) - CG6(p) - v: 52 
C* - 66S.i .L. 

66(p) 
(11.2) 

Eq. 11.2 shows that the relative variation of the elastic constant at constant field is 

proportional to the square of the order parameter. Hence the temperature depen-

dence of the order parameter can be obtained from the experimental result presented 
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in Chapter 6. According to the definition given by Eq. 11.1, the critical exponent near 

the high-field phase boundary can be extracted by fit ting the temperature dependence 

of the order parameter S 1_ using a power law close to the transition temperature. 

In F ig. 11.2 we present a log-log plot of Sl as function of the reduced temperature 

T = 1 - TT obtained using the experimental data of t:.cc66 pr ent d in Fig. 6.4. We 
N ~ 

Slope = 2P 

D H = O 
D H=l.OO T 
o H = 1.75 T 
D B = 1.85 T 

T 

H = 4.00T 
o H = 5.00 T 
o B = 7.00 T 

B = 9.00 T 

Figure 11.2: Squ are of the order parameter Sl as a function of the reduced tempera

ture T = 1 - TT on a log-log plot extrapolated from experimental data t:.cc66 for fields 
N · 66 

applied along the c-direction. 

notice tha t , for fields lower than Hm = 2.29 T (near the 1 -E phase boundary), the 

slopes are almost the same. This indicates that the value of /32 (the value of f3 n ar 

the 1 -E phase boundary) is constant within the uncertainties. However, at higher 

field (near th P-120 phase boundary) , a change in the value of the slope is obvious. 

This is the evidenc that f3F is field dependent. 
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~ 

~ 0.25 ..... ...... 
· ~ 
u 

0.20 0 1.0 

f 
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9.0 10.0 

Magnetic Field (T) 

Figure 11.3: Magnetic field dependenc of the critical exponents f3 xtrapolated from 

the temperature dependence of 6.cC66 at different magnetic fields. Theoretical pr dic-
66 

tion of f3 for both XY type and n = 2 chirality modelsl16l are illustrated with solid 

lines for a comparison. 

T h magnetic field dependence of f3 is summarized in Fig. 11.3. For H < Hm, 

we obtain f3 = 0.35 ± 0.02, which is consi tent with the prediction for the XY class. 

This close agreement indicates that w can trust the data obtained using ultrasonic 

velocity measurements. At field close to Hm, /3 suddenly decreases to a minimum 

value of 0.25 ± 0.02. This value agrees with Kawamura 's prediction116l for the n = 2 

chiral universality cia s associated with the 120° spin configuration. However , at high 

fields, the value of f3 increases and d viate significantly from Kawamura 's prediction . 

As discuss d abov , the inconsi tency b tw en Kawamura 's prediction and our data 
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at high fields cannot be attributed to the experimental approach. The fact that 

the value of {3 is field dependent indicates that the phase transition associated with 

the 120° spin configuration does not belong to the new chirality class proposed by 

Kawamuraf161. The field dependence of the order parameter rath r suggests that the 

transition is weakly first-order. 

11.2 Discontinuities in the t emperature dependence 

To confirm the nature of the phase transition at high field, we also investigate the 

temperature dependence of e:.cc44 at different fields. For H < Hm, as shown in Fig. 6.3, 
44 

a unique scaling is observed and a critical exponent with value {3 = 0.35 ± 0.02 can be 

extracted. This validates the second-order nature of the phase transition between the 

linear and elliptical phases. However, at high fields where H > Hm, no well defined 

power law near the phase boundary is observed . Again this contradicts Kawamura's 

prediction for the 120° phase. Moreover, in Fig. 6.3 we observe step-like anomalies 

which are not predicted by Eq. 10.20g. These discontinuities in the temperature 

dependence of e:.cc44 provide further evidences for a weakly first-order phase transit ion. 
44 

11.3 Thermal hysteresis 

Another feature associated with discontinuous phase transition is the observation 

of thermal hysteresis phenomena. By performing a cooling-heating thermal cycle, 

we explore the possibility of thermal hysteresis. As shown in Fig. 11.4, at T = 

5.00 K, which is higher than Tm , obvious differences between the heating and cooling 

curves are observed . In other words, the phase transition is discontinuous on the 
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Figure 11.4: The behaviors of .6.cC44 as function of magnetic field at T = 5.00 K in 
44 

both warming up and cooling down processes are compared to show the possibility 

of thermal hysteresis. 
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phase boundary between the paramagnetic and 120° spin structure phase. This again 

confirms our conclusion that the phase transition at higher magnetic fields is weakly 

first-order. 

In summary, based on the low fields data from t:.cc44 and t:.cc66
, the value of the 

44 66 

critical exponent is {3 = 0.35 ± 0.02. This is consistent with the prediction for a XY 

system and confirm that the phase transition is second-order. For the phase transition 

between the paramagnetic and the 120° phase above H = 2.00 T in CsNiCh, we 

observe step-like anomalies, thermal hysteresis, and no well defined single critical 

exponent. All these results show the evidence of a weakly first-order phase transition 

between the paramagnetic and the 120° phases. This agrees with the recent discussion 

presented by Thanh Ngo and Diep[26l that phase transition associated with frustrated 

spin systems should be first-order. 



Chapter 12 

Numerical predictions of the 

elastic constants 

The goal here is to present sufficient experimental data to test the model described in 

Chapter 8 and Chapter 9. In this work, the experimental results obtained by ultra-

sonic measurements for a magnetic field applied along the c-direction are analyzed. 

As shown in Section 8.2, many of the model coefficients can be determined from the 

magnetic phase diagram (see Table 8.2 and Table 8.3). The remaining coefficients can 

be adjusted using the temperature and field dependence of a few elastic constants. In 

this chapter, some of the experimental results presented in Section 6.2 are compared 

to the predictions based on the model derived in Section 10.3. In order to reproduce 

the experimental results, a non-mean-field temperature dependence has been used 

for the order parameters. The values of the critical exponent (3 used in this chapter 

correspond to those determined in Section 11.1. In particular, the relative variation 

of elastic constants c:,.cc33 and c:,.cc66
, as function of temperature or magnetic field, are 

33 66 

presented separately in Section 12.1 and Section 12.2. 

119 
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12.1 Temperature and magnetic field dependence 

For clarity, we li t the theoretical results for C33 in the different ordered phases: 

* 2 4K§,3,om~ 
C 33(p) = C33 + 2V3,3,3,omz - 2B3m~ + H , (12.1a) 

* 4I<§,3,Q 2 2 4(K 3,3,o - 2B6Ks,3 ,Q)2m~ 
C 33(t) = C33 - B + 4V3,3,3,QS + 2V3,3,3,omz + 2(2BBg _ B3)m~ _ H • (12.lb) 

(I< + B I< q)2 
C* C 3,1,Q 7 3,3, + 4V S2 + 4(V V )S2 33(e) = 33 - Bs · 3,3,3,Q 3,3,1,Q - 3,3,3,Q .L 

2
y 2 (BgK3,1,Q + 2K3,3,o + B10I<3,3,q) 2m~ 

+ 3,3,3,omz + (B 2B ) 3 H • 
11 - 3 m z-

(12.lc) 

* 4I<§,l ,Q 2 2 4(2Bl2K3,l ,Q + K3,3 ,o) 2m~ 
C 33c120) = C33- B _ B

2 
+ 8V3,3,1,QS.L + 2V3,3,3,omz- 2(2B

5
B

12 
+ B3)m~ + H · (12.ld) 

According to these results, 6 coefficients remain to be fixed . We notice that K 3,3 ,0 

and V3,3,3,0 are coupling coefficients associated with magnetization and need to be 

solved by analyzing the field dependence of c:,.cc33 at different temperatures in the 
33 

paramagneti phase. The other coefficients can be adjust d using data obtained at 

zero fi ld. For the case of H = 0, according to Eq. 12.1a and 12.1b, the change of 

t:;.Caa from the paramagnetic state to linear phase is -
4I<~,a ,q + 4 v3

'
3

'
3

•
982

. Here K 3,3,Q 
~ B~ ~ 

determines the sudden decrease in c 33 at TNl (see Fig. 12.1). Also s en in Fig. 12.1 

is that the xp rimental data barely depends on S 2 in the linear phase; therefore 

V3,3,3,Q is set to 0. The coefficients K 3,1,Q and V3,3 ,1,Q can be adju ted using the data 

obtained in the elliptical phase. The remaining coefficients necessary for our analysis 

of C33 ar given in Table 12.1. 

We notice that , in the elliptical phas , the temperature dependence of c:,.cc33 is 
33 

mostly accounted for by V3 ,3,1,Q, which comes from th q-q magn to lastic coupling 

term. This indicates that q-q coupling terms are necessary in describing the behavior 

of elastic constants at lower temperatures. The theoretical predictions based on the 

free energy with and without the q-q coupling terms are both plotted in Fig. 12.1. 



CHAPTER 12. NUMERICAL PREDICTIONS OF THE ELAST IC CONSTANTS 121 

K 3,1,Q - 1.1952 X 105 

K 3,3,Q 4.1306 X 104 

K 3,3,o 4.7297 X 104 

v 3,3,1,Q 8.1810 X 106 

v 3,3,3,Q 0 

v3,3,3 ,o - 3.1621 X 106 

Table 12.1: Coefficients extrapolated from experimental data for c:,.cc33 of Cs iC13 . 
33 

Furthermore, we also present the prediction obtained using a non-mean-field temper-

ature dependence for the order pararn ter. As shown by the solid lines in Fig. 12.1, a 

mean-field criti al exponent (3 = 0.5leads to a linearly temperature d pend nee below 

TN2. This fails to reproduce the behavior of c:,.cc33 in the elliptical phase. However , 
33 

with a non-mean-fi ld critical exponent (3 ~ 0.35, the theoretical prediction for 6c033 

33 

reproduces the experimental data successfully in the small temperature range close 

Using the analytical solution of the magnetization, the temperature dependence of 

c:,.cc33 , measured at different magn tic fields, can also be reproduced . The omparison 
33 

between the experimental data and the numerical predictions are shown in Fig. 12.2 

(for H < Hm) and Fig. 12.3 (for H > Hm)· For the higher fields as shown by 

Fig. 12.3, the numerical predicted variation on the phase boundary is approximately 

twice that of the experimental data. However , in general, by employing a non-mean-

field temperature dependence for th ord r parameters, th agre m nt between the 

numerical pr dictions with the experimental data is improved , except for H = 2.00 T. 

According to the phase diagram, the temperature scan at H = 2.00 Tis likely accom-
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Figure 12.1: Temperature dependence of t:>.cCaa of Cs iCh at H = 0. The numbered 
33 

blue solid lines are the model predictions corresponding to: CD without q-q magnetoe-

lastic coupling, @with q-q magnetoelastic coupling and mean-field critical exponent 

{3 = 0.5, @ with q-q magnetoelastic coupling and non-mean-field critical exponent 

{3 = 0.35. 



--- -- --- -------

CHAPTER 12. NUMERICAL PREDICTIONS OF THE ELASTIC CONSTANTS 123 

panied by first-order contribution, not taken into account in the present model. This 

explains the significant disagreement between the data and the theoretical prediction 

for field ranging from 1 T to 3 T. 

In Fig. 12.4, we present the numerical predictions for the magnetic field dep n

dence of e:,.cc33 at T = 5.60 K. Our theoretical re ults successfully predict the step-like 
33 

anomaly on the phase boundary and the behavior of e:,.cc33 at lower fields. However, 
33 

our model fails to reproduce the amplitude of the steps. Given that the phase bound

ary has been proved to be of weakly first-order , it's difficult to predict the behavior 

of the elastic constants right on this boundary. 
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H/ jc. The blue solid line and the red points are the model prediction and experi-

mental data, respect ively. 
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12.2 Temperature and magnetic field dependence 

The behavior of the relative variation of elastic constant C66 IS presented in this 

section. Based on the calculation in Section 10.3, we have: 

c~6(p) = c66 + v1 ,3,om ;, 

C~6(t) = C66 + V1 ,3,QS
2 + V1 ,3,om ;, 

C~6(e) = C66 + V1 ,3,qS
2 + V1 ,6,QSi + V1 ,3,om;, 

c~6(12Dl = c66 + V2,6,Qsl + vl,3,om;. 

(12.2a) 

(12.2b) 

(12.2c) 

(12.2d) 

We notice that the field and temperature dependence of C66 are exclusively associated 

with q-q magnetoelastic coupling terms. This again shows the necessity to consider 

the q-q terms in the model. Here V1,3,0 determines the field dependence while the 

others are associated with the order parameters. According to Fig. 6.1, at H = 0, 

we barely observed any change on .c:,g:6 at TNI , therefore, Vl ,3,Q can be set to 0. 

Moreover , based on the experimental data presented in Fig. 6.4, we notice that the 

temperature dependence of .c:,cc66 in the 120° phase (for H > Hm) has the oppo ite 
66 

tendency as that observed in the ellipt ical phase (for H < Hm)· Hence, Vl,6,Q and 

V2,6 ,Q must have opposite signs. The coefficients used for our numerical predictions 

are listed in Table 12.2. 

vl ,3,o - 1.9334 X 107 

VI,3,Q 0 

Vl ,6,Q -8.7075 X 108 

V2 ,6,Q 2.2690 X 108 

Table 12.2: Coefficients extrapolated from experimental data for .c:,cc66 of Cs iCh. 
66 
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The numerical predictions for the temperature dependence are presented in Fig. 12.5 

(for H < Hm) and Fig. 12.6 (for H > Hm)· Experimental results are also presented 

for comparison. At lower magnetic fields, numerical results agree well with the exper-

imental dat a, except for H = 2.00 T due to the first-order phase t ransition. At higher 

magnetic fields, the theoretical and experimental results overlap with each other well 

close to the critical temperature. Thus, the change of 6.cC66 with temperature, for 
66 

fields of H > Hm and H < Hm, are reproduced successfully. 

The magnetic field dependence of 6.cc66 at different temperatures are shown in 
66 

Fig. 12.7. For T < Tm, for example, at T = 2.50 K, the behavior of 6.cC66 in the 
66 

elliptical phase is well reproduced , however , due to the first-order phase transition, 

we failed to predict t he magnitude of the sudden decrease on the phas boundary. 

ForT > Tm, for example, at T = 5.60 K, it 's hard to reproduce the crit ical behavior 

of 6.CC66 close to the phase boundary. However, the magnit ude of the decrease from 
66 

zero field is predictable. This might due to the weakly first-order nature of the high 

field phase boundary. 
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Conclusions 

Du to its interesting magnetic propert ies, the frustra ted easy-axis antiferromagnet 

CsNiCl3 has b en studied in our work. As a quasi-one-dimensional hexagonal com

pound, CsNiCl3 has a geometrically frustrated spin configuration on the triangular 

lattice. Thi leads to the novel magnetic properties in the field indue d 120° spin 

structure. Our ultrasonic measurements reveal the features of the phase transition 

associat d with this special phase. Moreover, to explain the critical behavior near th 

phase transitions, a Landau model for CsNiCh is tested using experimental data . 

For our investigation, high-resolut ion ul trasonic velocity measurements have be n 

used to examine the temperature and magnetic field dependence of the elastic con

stants of Cs iCl3 . A low-temperature and high magnetic field system has been used 

in order t o obtain t he variation of longitudinal ( c33) and transv rse ( c44 and c66) 

elastic constants for a magnetic field applied along the c-dir ction of th crystal. As 

presented in Chapter 6, at H = 0 (see Fig. 6.1) the temperature dependence of C33 , 

C44 , and C 66 all show a clear anomaly at T ~ 4.35 K indicating th onset of the 

linear to elliptical phase transition. At T ~ 4.75 K, the phase transition between 

the paramagnetic and the linear phase an be easily observed on c33 and c44, how-

132 
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ever, the anomaly on C66 is barely noticeable. Similar anomalies are also observed 

on the temperature dependence of these elastic constants at different magnetic fields 

(see Fig. 6.2 - Fig. 6.4) . Meanwhile, anomalies observed at fields larger than the 

tetracritical field (Hm ~ 2.29 T) ar associated with the phase transition b twe nth 

paramagn tic phase and the 120° spin configuration phase. The phase boundaries are 

clearly illustrated by the shifting of the critical temperature with the increasing of 

the magnetic field. Furthermore, our data for the magnetic field dependence of 0 33 , 

0 44 , and 0 66 (se Fig. 6.5 - Fig. 6. 7) present evidence of critical behavior. The ob-

served critical temperatures and magnetic fields are summarized in the experimental 

phase diagram shown in Fig. 6.8, which is in good agreement with the phase diagram 

presented in previous pu blications[161. 

A detailed study of the critical behavior of CsNiCh has also been realized espe

cially for the 120° phase. Data of the temperature dependence of b.cc66 has been used 
66 

to obtain the value of the critical exponent {3, as shown in Fig. 11.2. Our results show 

that the critical exponent {3 is constant for H < Hm , however it is field depend nt 

above Hm. As pre ented in Fig. 11.3, near the phase boundary between th linear and 

the elliptical phase {3 = 0.35 ± 0.02, which is consistent with the pr diction for a XY 

classf41. Near the multicritical point, {3 suddenly decreases to 0.25 ± 0.02. However, 

with increasing field, the value of {3 increases significantly. The field dependence of 

{3 indicates that the phase transition associated with the 120° phase doesn't belong 

to the new chirality lass proposed by Kawamuraf161. To verify our conclusion, we 

also investigated the behavior of b.cC44 n ar the high field phas boundary. Step-like 
44 

anomalies are clearly observed and no well defined power law can be determined. 

This confirms that the phase transition at higher field is discontinuous. Furthermore, 

by performing a cooling-heating thermal cycle, we observed thermal hysteresis (s e 

Fig. 11.4) , confirming that the phase transition between the paramagnetic and the 
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120° phase is weakly first-order. Our data supports the results obtained by Delam

otte et al.123l and go et al.126l and solve the controversy about the true nature of the 

phase transition at high field. 

The elastic constants of Cs iCl3 have also been analyzed using a Landau model, 

which has been successfully used to describe the magnetic properties of ABX3 systems. 

Based on the Landau free-energy derived by Plumer et al.111l, invariant terms, under 

the main symmetry operations for hexagonal compounds (C6z, C2y, and I) have been 

identified. The Landau free-energy for a magnetic field applied along the c-direction 

are presented in Eq. 8.17. Based on this Landau free-energy, the phase diagram 

is obtained using the temperature dependence of the magnetization. As shown in 

Fig. 8.1, this Landau model reproduces successfully all four phases and agrees with 

our experimental phase diagram. The Landau free-energy is also modified to account 

for the relations among strains, order parameters, and elastic constants of CsNiCl3 . 

For the magnetoelastic couplings, only linear-quadratic (1-q) and quadratic-quadratic 

( q-q) couplings have been considered. The elastic constants and strains are calculated 

using the total free energy according to Eq. 10.1 and Eq. 10.4 with ¢ = 0. As 

shown by Eq. 10.8, we notice that in the elliptical phase, e1 =/= e2. This indicates 

that in the elliptical phase the spin structure reduces the symmetry from hexagonal 

to orthorhombic. This reduction in th symmetry can also be observed from the 

calculated elastic constants. In the elliptical phase, the number of ind pendent elastic 

constants increases to 9, which corr sponds to an orthorhombic structure. 

The temperature and magnetic field dependence of the elastic constants C33 and 

C66 , obtained using the calculated results based on the Landau model, are compared 

to the experimental results. As shown in Fig. 12.1, a non-mean-field order parameter 

and q-q magnetoelastic couplings are necessary in order to obtain a good agreement. 

Even so, the critical behavior can only be reproduced in a small temperature range 



-----------

CHAPTER 13. CONCLUSIONS 135 

close to the phase boundary. For e:,.cc33
, as shown in Fig. 12.2, for H < Hm the 

33 

variations at TN1 and TN2 are well reproduced. However , with increasing field, it 

becomes harder to reproduce the magnitude of the variation in the linear phase. This 

is due to the the first-order boundary close to H = 2.00 T , which is not considered 

in our Landau model. For H > Hm, as presented in Fig. 12.3 the critical behavior of 

e:,.cc33 close to the phase boundary is well reproduced using a field dependent critical 
33 

exponent {3. This is also observed on the temperature dependence of e:,.cc66 as shown 
66 

in Fig. 12.5 and Fig. 12.6. 

The agreement between our experimental data and the model prediction shown 

in this work is a powerful confirmation that high-resolution ultrasonic velocity mea

surements are effective tools for studying the nature of CsNiCl3 . Therefore, further 

investigation of the low-temperature behaviors with respect to other frustrated quasi-

one-dimensional antiferromagnets are desirable. 



Appendix A 

Temperature dependence of 6.cfn at 
11 

H 0 

Based on the calculation in Section 10.3, the temperature dependence of C11 of 

CsNiC13 in different phases at H = 0 corresponds to 

(A.la) 

4K2 

C* c l ,s ,Q + 4V S2 
11(t) = 11 - B t,t ,3 ,Q , (A.lb) 

(K + B K )2 

C• C t,2,Q 7 t ,s ,Q + 4V S 2 + 4(V v; )S2 U(e ) = 11 - Bs 1,1,3,Q 1,1,2,Q - 1,1,3,Q j_ . (A.lc) 

According to the experimental data presented in Fig. A.1 , no obvious variation is 

observed at TNl, hence, K 1,3,Q can be set to 0. Meanwhile, K1,2,Q and Vl ,1,3,Q can be 

determined using the behavior of .6.g~ ~ in the elliptical phase. The fixed coefficients 

are listed in Table A.1 , where K1,1,Q is extrapolated from the experimental data of 

the thermal expansion coefficient along the c-axisf55l. The numerical prediction of the 

temperature dependence of .6.0°11 at H = 0 are presented in Fig. A.1 together with the 
11 

experimental results. By using a non-mean-field order parameter, our model agrees 

with the experimental result well. 
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K1,1,Q -4.8246 X 105 

K 1,2,Q 1.2895 X 105 

Kl ,3,Q 0 

v, 1,1,2,Q 4.6838 X 107 

vl,l ,3,Q -5.1783 X 106 

Table A .1: Coefficients extrapolated from experimental data for D.cCu of CsNiC13 . 
11 
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Figure A.1: Temperature dependence of D.cCn of CsNiC13 at H = 0 for the case of 
11 

H/ j c. The blue solid line and the red points are the model prediction and experi-

mental data, respectively. 
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