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" ootract

To study the critical behavior of the quasi-one-dimensional antiferromagnet CsNiClj
near the phase transitions, its ¢ 1c constants are investigated using high-resolution
ultrasonic velocity measurements as function of temperature and magnetic field ap-
plied along the c-direction. The perimental data we present with respect to the
longitudinal mode, —?’1 and the transverse modes, (—(H and —_‘%‘* generate a phase
diagram in good agreement with published results by showing two zcro-field tran-
sitions at Ty = 4.75 K, Tho = 1.30 K, and multicritical point at (75, =~ 4.50 K.
H,, = 2.29 T). Morcover, the critical exponent .3 extrapolated from the tempera-
ture dependence of —(—bﬁ shows XY criticality with a constant value 0.35 & 0.02 for
H < H,,. However, field de; dent hehavior is observed for H > H,,. This is the
first experimental cvidence that the high-ficld phase transition associated with the
120” spin configuration v h rder and experimmentally resolves the contr

versy about the true eriti 1ty of the high-field phase boundary. This result is also
strengthened by the step-like variation demonstrated by teniperature dependence of
AT(_L*‘* at fields higher than the multieritical field (H,, ~ 2.29 T) and hysteresis phe-
nomena. observed in field dependence of —ii at T = 5.00 K. Numerical predictions
are made based on the Lanc 1 model. The elastic constants of CsNiCly in differ-

ent phases are calculated using the total free energy. which is derived according to

the Landau free-energy, the elastic energy. and the magnetoelastic coupling terms

vi




invariant under the symme _ operation of the hexagonal group P63/mme. Mean-
while, the non-mean-field o1 1 parameter and quadratic-quadratic (q-q) couplings
are considered to optimize the numerical prediction aud achieve a good reproduction
of the experimental data. Furthermore, by studying the numerical predicted elastic
constants and strains, a dec  se of the spin structure symmetry, from hexagonal to

orthorhombic, is proved in t! elliptical phase.
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Chapter 1

Introductic n

In the past forty vears, the cla  of antiferromagnetic materials with the ABX3 com-
position have been widely in - igated due to their particular magnetic properties!!.
In this chemical formula, A is an |kali metal such as Cs or Rb while B stands for a
transition metal such as Ni. Cu, Co., Fe or MnP! which acts as magnetic ion, and X
represents a halogen element. Published research works!!!=1"l have revealed that the
unusual behavior of these quasi-one-dimensional hexagonal antiferromagnetic systeins
is due to the geometric frustration caused by the triangular lattice structure.

To form the lowest energy state, every magnetic motnent attempts to align an-
tiparallel with its nearest ne  bors. However, on a triangular lattice, as shown in
Fig. 1.1(a), the spin on lattice 3 cannot be simultaneously antiparallel with spins 1
and 2. In order to lift this magnetic frustration. the three magnetic moments adopt
a 120° configuration as shown in ig. 1.1(b) and Fig. 1.1(¢). According to the special
120° spin structure, left-hanc  (Fig. 1.1(b)) and right-handed (Fig. 1.1(c)) domains
are possible. The existen  of tl two chiral domains leads to an extra degeneracy
which makes these systems = ticularly interesting.

As commented upon by Roderich Moessner and Arthur P. Ramirez!", people’s


















Chapter 2

Magnetism

In this chapter, some fundamental terms of magnetisnm, such as magnetic moment,
maguetization, and magr  csus Otibility are summarized®71-11 The classification
of magnetic material is also presented relative to the temperature dependence of their
magnetic susceptibility.  sed on this classification, the various types of magnetic
ordering and exchange intel between magnetic moments are briefly described
to show the characteristic features of antiferromagnetic svstems. Simplest cases of
antiferromagnetic spin conf” ration, due to the geometrical frustration, are also pre-

sented. The last part of this chap s a brief deseription of the techniques used to

measure the magnetic ore in Hlids.

2.1 Magnetic: m at and magnet’ ation

According to the classical elee  magnetism, a current [ circulating around an in-

finitesimal area dA can generate 1nagnetic moment corresponding to

dp = IdA. (2.1)
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where dp is perpendicular to the current loop in a right-hand-rule direction. Under

an external magnetic field H, the energy of a magnetic moment is
E = —pop - H= —popuH cosd. (2.2)

where 1 is the permeability of free space and € is the angle between g and H.
According to Eq. 2.2, the lowest energy configuration of the magnetic moment is to
align itself with H. In  t. magnetic moment is also associated with the orbital
motion of the charges in the ¢ nt loops. Therefore. rather than pointing towards
H, the direction of g is prec  ing around H.

The magnetization. M, is defined as the quantity of magnetic moment per unit

volume as

N

where N is the number of the  agnetic moment in the sample of volumn V. To
describe the response of a system as a function of an external magnetic field H, the

magnetic induction B in a solid is defined as
_ = /l()(H + M), (24)
while in free space there is no magnetization and B is related to H as

B = /l(]H. (25)

2.2 Weak magn _:i in solids

In magnetic materials, the principal sources of the magnetization are: the electron’s
intrinsic magnetic moment i), the electron’s orbital angular momentum about

the nucleus, and the char  in the orbital moment induced by an external magnetic
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ficld. The paramagnetic contribution to the magnetization comes fron the first two
sources, while the diamagnetic contribution originates from the third effect.
The relation between the magnetization M and the external magnetic field H can

be written as

M = \H, (2.6)

where 3 is defined as the magnetic susceptibility. Noticing the definition of magneti-
zation given by Eq. 2.3, x is dimensionless, representing the the magnetic moments
induced by H per unit volume. The magnetic susceptibility can also be described in

terms of molar susceptibility, o, and mass susceptibility Ximass, Where

X mol XI' I3 (27&)

v . N (2.7b)
)

Vinot 1s the molar volume while p refers to the density. Substances with a negative
magnetic susceptibility are called diamagnetic, while that with a positive magnetic

susceptibility are called param etic.

2.2.1 Diamagnetism

Diamagnetismn is the property of substances that have only non magnetic atoms. The
magnetization, which is induced by the external field. is very weak and opposite to
the applied field. The diamagnetic molar susceptibility is very small, usually of the

order of 107 em3-mol~!. and independent of both field and temperature.

2.2.2 Paramagnetism

The magnetism of paramagnetic substances mainly originates from the permanent

magnetic moment of the atoms or ions. Besides this, in metals, conduction electrons
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Here the magnetization, M, according to Eq. 2.3, can be written using

M = n{u.). (2.9)
. . 213 (a7 .
where n = ‘ﬂ and (y,) is derived as .-h['”] representing the average moment along

B. Hence, the volumne magnetic susceptibility for small fields is obtained as

2
N o1

\ = . 2.10
JATBT ( )

This is known as the Curle’s Law showing that the susceptibility is inversely propor-

tional to the temperature. Curie’s Law is often presented as

- C('uri('

= (2.11)

\

with Ceyrie being the Curie's constant. Also shown in Fig. 2.1(c¢), this susceptibility
is positive at low field and becomes infinite at the absolute zero temperature. At
room temperature, the param: ctic molar susceptibility is of the order of 107 to

1072 e omol .

Pauli paramagnetism

In metals, conduction electrons also contribute to the paraimagnetism when an exter-
nal field is applied. At low fields, the density of states for the free electrons is divided
into two parts: clectrons having their magnetic moments parallel or antiparallel to
the external field. With the increasing of the ficld. the energy of the clectrons with
magnetic moments antiparallel to the filed is increased. while that of the other part
of electrons is decreased. In order to maintain the constant Ferini level, a shift of
energy is required. The electroi th maguetic moments antiparallel to the field
have to lower their ener by flipping their spins. This leads to an excess of the
magnetic moments parallel to the field and. therefore, gives rise to a paramagnetic

magnetization.
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For small ficlds, Pauli susceptibility, \p, can also be calculated using Eq. 2.8, As

free clectrons have a spin of % and g = 2, the magnetization can be obtained by
M= ypg(ny —ny). (2.12)

where n; — n| gives the difference of the number of electrons with their magnetic
moments parallel ad antiparallel to the field. In this case, assuining that the energy

shifts are negligible, we have that
1 ‘
np=n| = 5_(](E[<')/13B. (2.13)

Hence, the Pauli magnetic susceptibility is given by

. 2
3nyiofty

o, (2.14)

\p = tonpy(Er) =

where n is the number of m  1etic moment per unit volume and Ep is the Fermi

energy. Make use of Ep = kgTr, Eq. 2.14 can be written in a Curie-like form as

B Snpiop’

\p = hpTe (2.15)

where Ty is the Fermi temper e, Actually, Pauli paramagnetisim is a very weak

effect compared with the param: ietisin observed due to the Curie'’s Law.

2.3 Magnetic .1 ing

The paramagnetic behaviors described so far ignore the possible interaction between
magnetic moments. In cé  of significant interaction between moments, the Curie
law is renormalized. Morcover, spontanecous magnetic ordering in the absence of an
applied magnetic field can also be observed. Three tvpes of magnetic ordering are

commonly observed: ferrom. etic, antiferromagnetic, and ferrimagnetic.
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the c-direction at low temperatures. As shown in the phase diagram, at T < Tyq, a
first-order spin-flop phase transition at H &~ 2.00 T leads to a 120° spin configuration.
In this phase, the spins are aligned alimost in the basal plane with a small canting
angle relative to the basal plane. As the field is increased, the canting angle increases,
resulting into a larger net m etization along the c-direction. The spin basal plan
components form a 120° structure as in the case of easy-planc anisotropy. The phase
transition between the 1207 ph 1d paramagnetic phase 1s predicted to be contin-
(16)

uous and should belong to the chiral XY universality class!'*-1'6], However, other

theoretical studies and numerical simulations% -2 support an alternative statement
O “, . . . .
that the 120" phase transition line should rather be characterized by a weakly first-

order type.
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4.1 CsNiClys ple crystal and piezoelectric trans-
ducers

The CsNiCly single crvstal used in our experiment was grown by the Bridgman
method. This method involves b ing polvervstalline material in a container above
its melting point and cooling it from one end where a seed crvstal is located. Then,
single crystal material can be progressively formed along the length of the container.
Our sample crystal has approximately the shape of rectangular solid with a length
of 8.9 mum along the c-direction and an area of 2.5 mm x2.5 mm in the basal planc.
Longitudinal or transverse elastic waves are produced by piezoclectric transducers
mounted on one surface in the r  ection configuration (sce Fig. 4.2(a)), or two par-
alleled surfaces in the transmission coufiguration (see Fig. 4.2(h)).

In conventional applic ions, the upper limit of the ultrasonic frequency range is
about 10 MHz. However. insc ¢ applications, the frequency cau be as high as 5 GHz.
In our experiment. the u mic  ocity is measured with the standard pulse-echo
method at a frequency of about 30 MHz.  As shown in Fig. 4.1, a transducer is a
piezoclectric crystal with two gold cleetrodes evaporated on the crystal extreniities.
Thus, the RF signal applied to these electrodes is converted into mechanical vibrations
by the piezoelectric crystal. In our experiment the transducers are bonded on the
sample by a glue which wo I low temperatures. DBecause of the piezoelectric
effect. the transducer vibrates at the same frequency as that of the oscillating electrical
field applied to the electrodes (see Fig. 4.2(a)). In the reflection configuration, the
transducer bonded to one of the » parallel faces of the crystal aets as the emitter
and receiver. The mechanical vibration of the transducer generates a sound wave that
propagates in the sample. I lected by 1e extremities. the sound wave travels back

and forth in the crystal. Due to the inverse piezoelectrie effeet, cacli time the sound



























Chapter 5

Crystalline elasticity

The goal of this chapter  to introduce some fundamental background knowledge
about crystalline properties!®l, Both static and dynamic elasticity are presented in the
following sections. The ¢ initions of strain and stress are illustrated in Sections 5.1
and 5.2, while their line: 1 tiouship, represented by elastic constants, are given
in Section 5.3. Then. based on the theory of plane wave propagation, the dyvnamic
elastic properties are described in Section 5.4. In this section, the Christotfel equation

is used to derive the velocity of the planc waves propagating along high symmetry

axis.

5.1 Static elas cit-" - strain

Generally speaking, strain e is a concept used to deseribe the deformation of the solid.
Instead of dealing with a complex real three-dimensional case, here we deseribe the
definition of strain ¢ with  simiple one-dimensional string. As shown in Fig. 5.1, the
length of a string of length L increases under an external force F. Given the original
L

. ' - . . —
and new length of the string as L and L . the relative deformation is 1—’ Because
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According to Eq. 5.12. we obtain

IT; ; QU R
L) = e = Chdij- (5.16)

Cijaa = ( =
R dery 0(’,;_,-()6;\21 ”

As the stress and strain tensors are svinmetrie, and due to Eq. 5.16, we must have
that

Cijwt = Ciainls Cijwd = Cijike Cijnt = Crpij (5.17)

which reduces the nuinber of the elements in the elastic stiffness tensor to 21. Based
on this symmetry. we can label these independent elastic constants using the Voigt

notation in the following way:

1o (1,1) 2 (2.2) 3o (3,3)

4 (2.3)=(3,2) 5 (1.3) = (3.1) 6 (1.2) = (2. 1). (5.18)

Accordingly, the 21 elastic constants can be represented as a 6 x 6 matrix

Cll Cl” Cl.‘i CI»J Cl;’) Clﬁ
~ 12 C‘.Z‘.Z C‘Z.‘i C‘ll CZ') C‘Z()'

C: : 2: 3 o 36 ’ (519)

Cl(i C‘Z(i C.‘i(i ClG C56 CG(S)

where Co3 = Cijpg with a « (i, j) and 3« (k. 1).

The clastic energy described by this elastic tensor must be invariant under the
particular syminetry operations for a certain system. In other words, the number of
the independent clastic cons  ts might be smaller than 21. For example, the main
svinmetry operations of the hexi  mal system are (. (6-fold rotation with respect to

z-axis), C'yy (2-fold rotation with  pect to y-axis), and I (inversion) and the matrix




CHAPTER 5. CRYSTALLINE ELASTICITY

of these symmetry operations are

\/T

Log
g, = _\/T—i % 0
0 0 1

-1 0 0

Qgy = 0 1 0
0 0 —1

-1 0 0

ayp = 0 -1 0
0 0 -1

In order to satisfy the invar 1t requirenient,

’ _.m, n, P _q
Ci.j,k,l =y aj Q) Cn‘z,n,p.q

= Ci,j,k.1~

41

(5.21)

(5.23)

only 5 independent elements are non-zero. So the elastic tenusor for this case is rewrit-

ten as

C Cpp Ciy 00
Cp Cn Ci3 0 0
( Cis Cyz 0 0
0 0 0 Cy O
0 0 0 0 Cu

0 0 0 0 0

0

0

0
5(Cii = Ch2)

(5.24)

5.4 Dynamic el--ticity - plane wave propagation

To describe the propagation of oustic wav in solid, we need to s

t from the

equation of motion which is related to Newton's law and Hooke's law. The force
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density for material under stress is defined as

. OT;;
fi=== (5.25)
()J'j
According to Newton's second law, the force density f; can be expressed as
f A2 (5.26)
=) J.
fi=p .

where p is the density, t gtands for the acceleration and w; represents the i-th
component of the displacen 1t v. Combining Eq. 5.25 and Eq. 5.26, the equation of

motion for the elastic medium can be written as

02111 ()T‘IJ .
()f" ().I'j
Together with Hooke's law, Eq. 5.13, we rewrite this equation of motion as
A C 521/( (r 28)
/ = Uikl T J.
" Orjoxy
For plane waves, solution rth equation can be represented as
up = ugi T =1.2.3 (5.29)

where wg; = d;;ug is the wave polarization (i.e. the particle displacement direction)
while k and w are the wave vector and the frequency, respectively. So Eq. 5.28 can
he rewritten as

(pu?6it — Ci jaahihi)ug = 0. (5.30)
Dividing both sides of Eq. 5.30 by &%, we obtain the well-known Christoffel equation

(/)l'g(si[ - C,'J'/\-‘[Iljllk)llo[ = (), (531)

where v = ¥, the phase velocity, while n; and ny represent the cosine direction of
the wave vector relative to a coordinate system associated with the proper axis of the

crystal. If we define a sccond-rank tensor as

Ly = Cijranjn. (5.32)
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the Christoffel equation can be written as,
(Ty — pr?d ) ug = 0. (5.33)
The velocity of the sound waves can be obtained by solving the secular equation
Ty — pv2dy) = 0. (5.34)

For every direction of propagation, three different waves, one longitudinal mode and
two transverse modes, with orthogonal polarizations. can be obtained. Longitudinal
waves are polarized along the direction of propagation while transverse modes are
polarized perpendicular to the direction of propagation. Thus, accor¢™ ; to Eq. 5.34,
the velocities depend directly on the elastic tensor. In the case of CsNiCly, based on
the symmetry properties of the hexagonal system, ounly 5 independent components

are necessary and the ela ¢ tensor (" reduces to

Ch Cip Ci3 00 0
012 C] 1 C] 3 0 () O
Ciz Ci3 O3 0 0 0
Chemagonal s (535)
0 0 0 Cyu O 0

0 0 0 0 Cyu 0

O 0 0 0 0 Cg

where Cgg = %(CH — ("12). The sound velocity can always be wri  °n as

1O s
(5.36)
P

Y

where Ceyy represents the rele 1t combination of the independent elastic constants
Cus given in Eq. 5.35. For example, if the direction of propagation is along the z-

direction, we have n; = 0, ny, 0 and ny = 1 and accordingly I'y; = C;55,. In this
1 ) 3.3,
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| Direction | Mode | pv?
L. |Cn

[100] T, | Cu

T, Ces

L, |C

[010] T. | Cu

T, | Coes

L. | Cs;

[001] T, |Cu

i T, | Cu

Table 5.1: Relations amo1 wave vectors, propagation modes, and elastic constants in
hexagonal crystal, where L;  1sed for longitudinal waves and T represents transverse

waves with a polarization along the j-th axis.



Chapter 6

Experimen al “ata

According to Eq. 5.36. the effective clastic constant Cesy associated with an acoustic

mode can be determined from velocity measurements using the usual relation

Copp = pr’,

(6.1)

where p represents the density. For CsNiCly, given an estimated density of p =

3700 kg/m?, the elastic ¢ ita s have been obtained previously at room temperature

as shown in Table 6.157. Accor

Sound Velocities

vr,[100] = 6140
o001 = 30
v, [100] = 2500

v, ,[100] = 3100

Table 6.1: Sound velocities anc

at room temperaturel7.

12 to Eq. 0.1, for small variation, the norm

Elastic Constants (+0.05 x 1010 N/m?)

Chi = 13.90
(33 = 6.16
Ciy =231
Ce6 = 3.56

Cip = 6.78

zed

astic constants measurements for CsNiCly obtained
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change of the elastic constant can be simply evaluated using
— =2—. (6.2)

For that reason, the temperature and magnetic field dependence of the relative vari-
ation of elastic constant, ATSH can be investigated by using the ultrasonic velocity
nieasurements.

In our experiments, considering that the crystal symmetry of CsNiClj is hexagonal,
the behavior of Cyy and Cyy have been obtained using longitudinal (L) and transverse
(T, or T,) waves propagating along the main symmetry axis, [001]. For Cgs, transverse
modes (T along the [010] or T,, along the [100]) with the directions of propagation and
polarization both perpendicular to the [001] direction had to be used. The transducers
used for longitudinal modes C33 and transverse modes 'y are mounted on faces
perpendicular to the [001] dii  tion. For transverse modes Cgg, the transducers are
mounted on faces perpendicular to the [010] or [100] direction.

In this chapter, we first present the zero ficld temperature scan, while data as
a function of temperature and m etic field for l:)ii, A(—Sii and %Eﬁ are reported

in the second section. Finally, based on our experimental results, the experimental

magnetic phase diagram of CsNiCly is derived.

6.1 Temperat___ __, __dence .t H =0

The temperature dependence « %-;Ll, A(—((};ﬁ and -‘1 - for H = (), are presented in
Fig. 6.1. According to the data, two phase transitions are observed with Ty, ~
4.75 K and Tno &~ 4.35 K. At Tho =~ 4.35 K, the phase transition between the linear

phase and the elliptical | e ~ E phase transition) is clearly visible on all three

curves. Meanwhile, at Th; =~ 4.75 K, we easily see the phase transition between






CHAPTER 6. EXPERIMENTAL DATA 49

the paramagnetic phase and the linear phase (P-L phase transition) from the data

ith 2% and & - A0 the transition is al .

associated with oot and For T the transition is also visible, however, the
EE} o]

anomaly is barely noticeable. We also notice that, for T' < Ty, all three curves show

a power law temperature dependence close to the critical temperature. However, the

sign of the temperature dependence for C's3 is opposite to those of C'yy and (gs. The

temperature dependence is analyzed in more details in Chapter 10.
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6.2 Temperat -e and magnetic field dependence

The temperature dependence of “\(—(;’:i A(_(;l.i and %gﬁ for a magnetic field applied
along the c-direction, are shown in Fig. 6.2 - 6.4, respectively. Data obtained for
magnetic ficlds lower than the multicritical field H,, = 2.29 T are presented by
broken lines, while for higher fields continuous lines are used for clarity. At lower fields
(H < H,,), data for A(—(jl (Fig. 6.2) and A(_(x]u (Fig. 6.3) show anonalies corresponding
to the P-L and L-E phase transitions. However. from A?CD‘GLQ (Fig. 6.4). only the anomaly

corresponding to the L-E phi  trausition is clearly visible. At higher magnetic fields,

all data sets show one ph +t  sition that can be associated with the 120° phase.
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The experimental results of the magnetic field dependence of %ﬁi, A(—Cﬁi and
A?igﬁ are presented in Fig. 6.5 - 6.7, respectively. The data obtained for temperatures
lower than the multieritical — aperature (T,, = 4.50 K) are presented by broken lines,
while for higher temperatures continuous lines are used for clarity. Based on these
experimental data. for T < T,,,, a well defined minimum in the velocity observed at
H ~ 2.00 T can be associated with a spin-flop phenomena. Meanwhile, for T > T,,.
anomalies typical of a phase transition arc observed at the boundary of the 120° spin

structure. For these experimentally obtained curves. the critical fields at different

temperatures are located by finding the positions with the largest slopes.
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(2) B2 —4AC =0

If B2 —4AC = (), we have

RQ
T2 = + T()
1aC
and
. -B
SUT)) = —.
(Ty) = 5=

This describes the situation of curve 2.

(3)T="T,

The critical temperature 7. can be obtaiued using that

=A=a(T.—Tp) =0

showing that

4 T=T1

To determine T;, as shown by curve 4, we need to solve both

_4 , B, & 6
Fz,—AS 4S+65 =
and
oFy, )
95 + BS5-+C8S 0

B 2 . .
Then T} = % + T, is obtained.

66

(7.17)

(7.18)

(7.19)

(7.20)
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8.1 Landau fi e-ei 2rgy and order parameters for

In this section. the derivation of Landau frec-energy for CsNiCly. based on Plumer’s
work!!!]is reproduced for convenience. Based on this free encrgy, we show how the
magnetic phase diagram «  CUsNiCly can be accounted for using only a few experimen-
tal critical temperatures and ¢ ectic fields. In order to describe the temmperature
and magnetic field dependence of the phase boundaries. the temperature and mag-

netic field dependence of the n tization m. 1s also needed.

8.1.1 Invariant ter 3 nd the Hamiltonian

When a phase transition happens. the symmetry of the system normally changes!®®).

If the symmetry properties of the high and low temperature phases belong to the
groups Gy and G, respectively, the group theory indicates that G must be a subgroup
of Gy in the case of a continuous phase transition. . aus. if a system remains invariant
under the symmetry operations . ociated with Gy, it will automatically be invariant
with respect to any operations belonging to (. Accordingly. we can employ the group
G to specify the form of the free energy. which must be invariant under all symmetry
propertics associated with that group!?2h,

For example, most hexagonal ABX3 compounds belong to the symmetry group
P63/mme, including 24 synunetry operations®!. However. as all these operations
can be obtained using the generators, Cg, (6-fold rotation with respect to z-axis), Cy,
(2-fold rotation with respect toy  3), and I (inversion), it is sufficient to consider

these three operations in order to derive the invariant form of the free energy. As

shown in the published work of Plumer ot al.''). the form of the phenomenological
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Landau free-energy of ABXj3 ems can be determined by formulating the relevant
microscopic Hamiltonian. The Hamiltonian for two interacting spins s, and s; is

= N\ T 4SaSh, a.b=ury, z, (8.1)

ab

where Jg is the exchange coefficient. This Hamiltonian must be invariant with re-
spect to inversion I, time-re l. Cs.. and Cyy operations. Under these symmetry

operations, the element of the second-rank tensor .J transforms as

Ji; = afalJu. (8.2)

i

where ¥ and aé— are the components of the 3 X 3 a-matrix

o of of
o o o o3 |- (8.3)
ay a3 af

-1 0 0 5 .0 -10 0
ar=| 0 -1 0 |, e=| - L 0], oay=| 0 1 0
0 0 -1 0 0 1 0 0 -1

(8.4)

As mentioned previously, the te  r J must be invariant under the transformations

associated with the generators. ing to Ji; = J;;. Thus. the possible terms reduce
to
Jow 0 0
Jap = 0 Jo O (8.5)
0 0 J
which indicates that the F ni an for two interacting spins for crystals with a

hexagonal structure can be w t in terms of two independent exchange coefficients
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%'— > 1 with Jy > D, consequently CsNiCly is considered to be a typical example of

a quasi-one dimensional nearly isotropic Heisenberg antiferromaguet.

8.1.2 Landau free-ener vy

The derivation of the Lar 1 free-energy in this section is based on Plumer’s approach!! 11
where the integral form of the dau free-energy for CsNiCly can be constructed to

a fourth order in spin as
Flse) = [ dndsA(r) =) s(r)
+ %/(1r1drgdr3d: 3(ry.rair3.ry)s(ry) - s(ry)s(rz) - s(ry)
+ %D/ dr[s.(r)]* — H- / drs(r). (8.9)

with 7=r;—ry and H bei1 the Hplied magnetic field. The first part of this equation,
[ drydra A(7)s(ry) - 8(re). con  from the isotropic term of Eq. 8.8 while the third
part. %D[ dr[s.(r)]?. is the integ = form of the anisotropy contribution. In ABXj
systems, as the spins are localized on the lattice sites of Ni?*, which is the magnetic

ions, the local spin density can be defined as

s (V/N)Y_ p(r)i(r —R). (8.10)
R

where R represents the lattice o tion of the magnetic 1ons. The non-local spin

density p(r) characterizes the long range order of the svstem as
p(r) m+ S¢'QT 4 Sk QT (8.11)

where m Is the uniform m: etization induced by the field H, while S and Q are

the polarization and wave vector. respectively. Using this spin density expression,
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discontinuous change of the order parameter ¢ from the value 1 in the low magnetic

field phases to 0 in the 120° phase.

8.1.3 Temperatu and magnetic field dependence of the or-

der parameters and magnetization

One of the main ideas of the Landau theory is that there exist order parameters
that minimize the energy. In otl  words, the first derivative of free energy Fj, with
respect to the order paramet S or S| should be zero. This also applies to m.. In
the following scction, the temperature and magnetic field dependence of the order
parameters are derived for . h pl > separately.

For clarity, thie subscript “p™, “1”, “e”, and *120" are used to identify the paramag-
netic, linear, clliptical and 1 ’ pl e, respectively. Based on this Landau free-energy,

the phase diagram of CsNiCly = ¢ ived.

Paramagnetic phase

As discussed above, as S a S are set to zero, the Landau free-energy reduces

to its simplest form

1 , 1

Frp = §Aom‘§ + IB;;mg —m.H, (8.18)
and m, can be solved by n mizit (n With respect to m,. According to Eq. 8.18,
we have

OFy, , :

# T+ Agms + Bym® = 0. (8.19)
Solving for m.,, we obtain

Map(Ao, ) = I G + (B3I + V3 IATBT + ATBIH?)E (8.20)
e (9B2H + V3, 31712) 18% 1y ’

where Ay = a(T —Tj) accounts for the temperature dependence. Because expressions

for ., in ordered states are too long, we onlv show the actual solution of m, in the
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a 400

A./a| 0.55

B/a | 6.960

Byfa | 1785

Bafa | 3.462

Bi/a | 0.169

Bs/a | —0.185

Table 8.3: Coefficients used to obtain the magnetic phase diagram of CsNiClj.

obtained herc are given in Ta' " 8.3. With these coeflicients, the temperature and
magnetic field dependence of the p - se boundaries ean be calculated using Eq. 8.41 -
Eq. 8.44 in order to reproduce t.  magnetic phase diagram of CsNiCl;. We compare
in Fig. 8.1, the calculated phase diag m with our experimental phase diagram of
CsNiClj for a magnetic field i Hslied  ong the e-direction. We notice that the obtained
theoretical prediction reprodu [l all four phase boundaries. The small departure
close to the multicritical point (T,,, H,,) is due to the difficulty to pinpoint the
experimental critical value in t  range. This is principally associated with the fact
that the amplitude of the anomaly on the velocity curves becomes very small. Finally,
let us point out that the a1 vtical results presented in this chapter are consistent

with that of the work published by Plumer et al.l'll.
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where K jx; and Vip 005 are elements of the tensors A and V7 representing coefhi-
cients for I-q and ¢-q co'  ing. ..e invariant elements are determined by applying
the main symmetry operations associated with the generators of hexagonal group,

Cyy, Cs:. and inversion f on the tensors.

9.2.1 1-q magnetoelastic coupling terms

For l-q terms, given that S5 5S¢ and e;; = €;,. the 4th-order tensor can be
written as a 2nd-order tensor. U ng the symmetry operations, the invariant elements

correspond to

Kiraia Kuipo Kiags 0 0 0 \
Kiioo Kinan RKiiss 0 0 0
I Ragia Ksszin Kigass 0 0 0 (9.6)
0 0 0 Kosss O 0
0 0 0 0 Kozoa 0
0 0 0 0 0 Risis

where K90 = %(]\'1‘],1‘1 — Iy 122). Thus, the l-q coupling terms can be expressed

as

Feu—q = Kia1,1(c118:5: + €225,S, + 2¢125,5,)
+ K102(0105,Sy + 22525, — 2€125:5,)
Aiaaalcn m2)S.S:
K331.1633(5:5: + 5,5y)
+ A3y 10335.9:

+ ]\'1;;,]‘;;(4(’]‘351-5: + 4(’2‘;;55153). (97)
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Expression 9.19 can be rewritten as
]"I,I,QC],I(SJ‘S:- + S};Sr) + ]\'1‘1'0(’1‘1711;37. (922)
Using the same approach. the invariant terms for the l-¢ coupling can be obtained
as
Feu-q = Ki11.06€1.1(S:S; +8:S;) + K].l,Oﬁ.lmi
+ ]\’1'].Q€2‘2(SyS; + S;Sy> + ]\—1‘1‘06’2‘27713
+ 2K 1.10012(8.S;, + 818,) + 2K 1061 2mem,
+ I\'I,Q,Qel,l(sysz + S;SU) + I\'lyg‘o(’lvﬂnz
+ [\'1‘5 )Q‘Q(S“ ; + S;SI) + I\’lwgyof’gw‘gﬂ)g
— 2]\'1‘2,(361‘2(818; +S3S,) — 2K 20€1 2m,m0,
+ Kigo(ern  €22)(8:S7+8S%S.) + Kizolern + 62,2)7773
+ I\’3‘1,Q€3‘3(SIS; + S:SI) + ]\'3‘1v0("3V3771:‘i
+ ]X’3~1iQ03‘3(SyS; + S;SU) + ]\73’]1)6‘3‘3771:5
+ K330€33(S.S, +SIS.) + 1\'3,3,0?3.3'nr'§
+ 4]\’5'5 ’1,3(8182 + S;S:) + 4]\’5‘5'06]‘3lnr771:

+4Ks550c230 S, +S;S.) + 4K5 5 0e2 3mym., (9.23)

where the coeflicients are defined

. vV .
Kaopg = NX Jka(T)eHAT, (9.24a)
v
Ropo= | Dperijii(T). (9.24b)
Here, o and 3 are Voigt index ciated with the invariant elements K, ; x ;.

As mentioned in Section 8.1.2, the polarization vector can be written in terins of

real vectors as

S =8, +iS,. (9.25)
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and for the case of the magnetic field applied along the c-direction (z-axis), S; and

S, are given by

S; = Scos 3sinf gy + cosh 2. (9.26a)

S, = Ssin.Jj po. (9.26h)

Here, p; and py are two perpendicular unit vectors lying in the basal plane. Thus, we

define gy and gy in terms of the in-plane unit vectors & and y as

P =cosd I+ sing y, (9.27a)

P = —sing I+ cose §. (9.27h)

where ¢ is the phase angle measu  relative to an arbitrary x-direction. Therefore,

S, and S, can be rewritten 1n sof I, yand £ as
S, = Scos J[sinf(cos @ &+ sing §) + cosf 2], (9.28a)
S, = Ssinfg(—sing  +coso y). (9.28h)

For H//z, where m, = m, = 0. making use of the Voigt notation for the strains

(Eq. 9.3), the l-q magnetoelastic coupling terms can be simmplified as

Fou—q = 2(K11 061 + K€ Kg,l‘Qeg)SQ(ms2 3sin’? @ cos? ¢ + sin® Fsin® o)
+ 2(Ry1 062+ Riper + I\'g‘]vafg)SQ((‘OS‘Z Fsin? fsin® ¢ + sin® 3 cos? @)
+2(Ky130(er =) + Ksgz.063)S” cos® Jcos’ 0
+ 2[\'5,5,(36452 sir ¢ fdsing
+ 2K 506557 sit 1 cos® 3 cos ¢
+ (K10 — K2 “e6:5° sin 2¢(cos® Bsin® @ — sin® 3)

+ (R1so0(er + e2) + Kagoes)m?. (9.29)
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proportional to sin 26 vanish. Moreover, because m, = m, = 0. only terms with m?
remain.

For the linear phase, as spins align parallel to the c-direction, strains only couple
with S. For the elliptical phase, both spin components (basal plane and parallel to
the c-direction are ordered), so* have both $? and $? = §? — $? in the coupling
terms. For the magnetic field induced 120° phase, the spins are almost aligned in
the basal plane, with a small cor _ »nent along the c-axis. Therefore, both S and S
remain nonzero in this ph: . Furthermore, as derived by Eq. 8.38, S = v/25,.

So far the elastic en - F,;, and magnetoelastic coupling terms, Fe(e,n), of
CsNiCls are derived. Together with the Landau free-energy of CsNiCls, Fy (7)), which
is obtained by Plumer et al.''"[ | the total free energy of CsNiCly. Fjoq, can be
written out according to Eq. 9.1. Based on this total free energy, the elastic constants

can be calculated in all t. four phases. This will be discussed in the next chapter.
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For each phase, the temperature and magnetic field dependence of order parame-
ters S and S| and magneti ion m. are given in Section 8.1.3. Using these results,
the temperature and field d  :ndence of the strains in each phase can be calculated.
Coefficients a, A,, Tg, B and By are given in Table 8.2 and Table 8.3 while the clastic
constants Cyy, Cy and Cyz are given in Table 6.1. The coeflicients K ; o, which are
listed in Table 12.1 and Table A.1, can be determined by comparing the experimental

data and the model predictions. Given the temperature dependence of ¢; and e3, it is

possible to calculate the al expansion coeflicients o) = %eTl and a3 = %‘7@ Our

predictions are commpared to the temperature dependence of the thermal expansion

55]

coefficients oq = 2% and s = obtained by Rayne et all®l. To reproduce the ex-

9T
perimental data, the non-mean-field order parameters, with /3 ~ 0.35, has been used.

The comparison between the nur  ical and experimental data is shown in Fig. 10.2.
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Cligzoy = Cos +4(Vss1.0 + Vo520)5T + 2Vasa0m?, (10.20g)
Cisizo) = Css +1(Vs5.0.0 + Va5.2.0)5T +2V5550m7. (10.20h)
Ceei120) = Cos + %(Vl.m.cg +2V7 20— 3Vione +2Vi66.0)ST

+ (Virao — Viaso)m?. (10.20i)

with B]2 = HB—%

10.4 Broken s Ty

According to Table 10.15] s andl elastic constants can be used to determine the
symuetry of a crvstal in diffe  t phases. As discussed in Section 10.1. we orient  the
spins along the x-axis and therefore @ = 0. This is used to determine the expressions
of the strains and elastic constants of CsNiCly in all the four phases.

According to Eq. 10.5 and Eq. 10.7, no shear deformation exists in the lower
field ordered phases and the basal plane deformations e; and ¢4 are equivalent in the
linear phase. Hence. accord”  to our calculation. the strain matrices for the linear

and elliptical phases corrr  ond to

ep 00
ecny=1 0 e 0 |- (10.21)
0 0 3
and
cp 00
€(e) 0 e 0 |- (10.22)
0 0 ey

Referring to Table 10.1. we ti  that the svinmetry of the strain tensor is still

consistent with that of the he  onal structure in the linear phase. In the elliptical
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phase, the hexagonal syn  2try, e = ¢4, is broken. This indicates, that from the lin-
car phase to the elliptical pt . ¢ spin structure of CsNiCl; reduces the symmetry
to a lower space group. Thisisa  supported by our elastic constant caleulations. In
the paramagnetic phase and the lincar phase. as shown by Eq. 10.15 and Eq. 10.16,
we obtain €y = Cpy. Ci3 = Cyz. Cyy = Css. and Ceg = %(Cn — ('y2). This is in

agreement with the featt s of the PG3/mmic hexagonal elastic constants tensor

Cll C]Q Cl;; () 0 0
Crz Cl | C]:; 0 0 0
Ciy Cig Caz 0 0 0
Ch().ragonal = \ (1023)
0 0 0 Cy 0 0

0 () () 0 Cyu 0

0 0 0 0 0 Ces

where Cgs = 2(C11 — Ch2). However, in the clliptical phase, according to Eq. 10.17,
the number of independent eli ic constants increases to 9 and the new symmetry

corresponds to that of the orthorhombic structure with

Chy Cn Ciy 0 0 0
Cio Coo Co3 0 0 0
Cig Cy Oy 0 0 0
Corthor'hombic = N (102—1)
0 0 0 Cy 0 0

0 0 0 0 Cs 0

0 0 0 0 0 Ces /

where Cﬁ(,‘ = %(C]l - Clg) is not uired.

In the mmagnetic field = uee )* phase. according to Eq. 10.8. the strain tensor
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can be expressed by

Cq 0 0
€(120) 0 e 0 |- (10.25)
0 0 e3

Compared with the strain tensors in the linear and elliptical phases, here given e =
€9, we may suppose that the symmetry changes back to hexagonal when crossing the
first-order phase boundary between the elliptical and the 120° phase. This is again
confirmed by the clastic cot  an  calculation. As shown by Eq. 10.20. in the 120°
phase, all the foaturos. Cll = CQQ, Cl;; = CQ:;. CJ_] = C’,r) and C(,(; = %(C]l — Clg),
appear again indicating a he n  svimetry property which is the same as that in
the linear phase.

In summary, based on the syunnetry properties of both strains and clastic con-
stants matrices in the three ordc 1 plases. the hexagonal symmetry is broken only

in the elliptical phase.



Chapter 11

Critical be or of CsNiCl3s near

phase tran it ns

As a frustrated Heisenberg antiferromagnet CsNiCly shows a novel type of multicriti-
cal behavior. As shown in Fig. 11.1. according to Kawamural¥, the criticality of both
phase transitions at lower ietic fields (H < H,,) belong to the XY type with a
predicted order parameter exponent .3 ~ (.35. Tliese two second-order phase tran-

sition lines merge at the multi  ical point (T, = 4.50 K, H,, = 2.29 T), which is

described by Kawainura : new chiral Heisenberg fixed point with /3 &~ 0.28. These
predictions are supported by s experimental results shown in Table 11.1.
The criticalitv along the gnetic field critical line. which is associated with

the field-induced 120 spin structure, is predicted by Kawamura to belong to a new
XY (n = 2) chirality class 1 3 =~ 0.25. However, claims?-[26] have also been
made recently pointing out that the character of this phase transition should rather
be weakly first-order. In er to resolve this controversy. the data presented in this
section focus on the evoli on of the critical behavior as a function of the magnetice

field.

110
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. o . . .
phase boundary between 2 paramagnetic and 120" spin structure phase. This again
confirms our conclusion that the phase transition at higher magnetic fields is weakly

first-order.

In summary, based on the low fields data from A(ij‘* and A(—f‘f:;ﬁ, the value of the
critical exponent is (3 = 0.35 £ 0.02. This is consistent with the prediction for a XY
system and confirm that the phase transition is second-order. For the phase transition
between the paramagnetic and tl 120° phase above H = 2.00 T in CsNiCls, we
observe step-like anomal thermal hysteresis, and no well defined single critical
exponent. All these results 1 the evidence of a weakly first-order phase transition
between the paramagnetic and the 120° phascs. This agrees with the recent discussion

presented by Thanh Ngo and that pliase transition associated with frustrated

spin systems should be first-order.
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12.1 Temperature and magnetic field dependence

f
o Cn

For clarity, we list the theoretical results for Cj; in the different ordered phases:

12 ~m*

12.12
)H';m + ” ( )

('i'l(p) - (‘53 + 2V; 130777

W 330 — 2BeK3.3.¢)*m?
22BBE - By)ym3 - 11

AK2, o .
Clay = Cay — %ﬁ +4V333.05% + 2Vas30m: + ) (12.1b)

(1\’3~1,Q 4+ R-Koos )2

. + V333097 + 4(Vag10 ~ Vas3.)51

"ﬂ(r = (33 —
2550+ Brolssg)*m?
(o - 2Bym3 - H

153, Q s A@2B1aKsa g + Kazo)?m?
Claan = O = T + BV + Mo = S g S S

+ 2Vy g 30ms + ( , (12.1¢)

(12.1d)

According to these results, 6 ¢ Adcients remain to be fixed. We notice that K44
and V3330 are coupling coefficients associated with magnetization and need to be
solved by analyzing the ld d endence of A(—(gi at different temperatures in the
paramagnetic phase. The other coefficients can be adjusted using data obtained at

zero field. For the case of H 0, according to Eq. 12.1a and 12.1b, the change of

AC U : , e O zsq HSSJQ o I
(—331 from the paramagnetic ate to lincar phase is — e + . Here K30

determines the sudden decrease in Cyy at Ty (see Fig. 12.1). Also seen in Fig. 12.1
is that the experimental data ! elv depends on S? in the linear phase; therefore
V33,0 is set to 0. The coefficients ;) ¢ and V33 ¢ can be adjusted using the data
obtained in the elliptical pha  The reinaining coefficients necessary for our analysis
of ("33 are given in Table 12.1.

We notice that, in the elliptical plhase, the temperature dependence of ATCE& is
mostly accounted for by V331 ¢, which comnes from the g-q magnetoelastic coupling
terni. This indicates that g-q coupling terins are necessary in d — ribing the behavior
of elastic constants at lower tem] tures. The theoretical predictions based on the

free energy with and without the ¢-¢ coupling terms are both plotted in Fig. 12.1.
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Ko | —1.1952 x 10°

1{3‘3‘(‘? 14.1306 x 104

1\23.3,() 4.7297 x 104

V{ 210 8.1810 x 106

V;,:LB.Q 0

‘/?;,3'3'() —-3.1621 x 1()6

Table 12.1: Cocfficients extrapolated from experimental data for %(;fi of CsNiCl;.

Furthermore, we also present the prediction obtained using a non-inecan-field temper-
ature dependence for the order parameter. As shown by the solid lines in Fig. 12.1, a
mean-field critical exponer /3 0.5 leads to a linearly temperature dependence below
Tno. This fails to reprod ¢ the behavior of A(—:jl in the elliptical phase. However,
with a non-mean-field critic ¢ Honent .3 = (.35, the theoretical prediction for %j-‘
reproduces the experimental data successfully in the small temperature range close
to TN‘Z-

Using the analytical solution of the magnetization, the temperature dependence of
%31, measured at different magnetic fields, can also be reproduced. The comparison
between the experimental data and the numerical predictions are shown in Fig. 12.2
(for H < H,,) aund Fig. 12.3 (for H > H,,). For the higher fields. as shown by
Fig. 12.3, the numnerical p  licted variation on the phase boundary is approximately
twice that of the experin  tal data. However, in general, by employing a non-mean-
field temperature dependence for the order parameters. the agrecment hetween the

numerical predictions with the experiniental data is improved, exeept for H = 2.00 T.

According to the phase di  am, the temperature scan at H = 2.00 T is likely accom-
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close to the phase houndary. For “ , as shown in Fig. 12.2, for H < H,, the
variations at Txn; and Tno a  well reproduced. However, with increasing field, it
becomes harder to reproduce the magnitude of the variation in the linear phase. This
is due to the the first-order boundary close to H = 2.00 T, which is not considered
in our Landau model. For > H,,, as presented in Fig. 12.3 the critical behavior of
%(‘;2-3 close to the phase bound:  is well reproduced using a field dependent, critical
exponent 3. This is also ob [ on the temperature dependence of %;,Q as shown
in Fig. 12.5 and Fig. 12.6.

The agreement, betw our srimental data and the model prediction shown
in this work is a powerful ¢ rmation that high-resolution ultrasonic velocity mea-
surements are effective tools for studying the nature of CsNiCl;. Therefore, further

investigation of the low-t  p » behaviors with respect to other frustrated quasi-

one-dimensional antiferroma e desirable.
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