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Abstract 

This study examined the composition (moisture, lipid content, ash content, 

nitrogen content, amylose content, and starch damage), granule morphology, 

physicochemical characteristics (X-ray diffraction pattern, degree of crystallinity, 

degree of swelling, amylose leaching, gelatinization parameters), and the 

average degree of polymerization (DP) of cereal starches (normal maize, waxy 

maize, amylomaize V, and VII, rice and oat) in their native state and after acid 

hydrolysis (2.2N HCI at 35°C). 

The moisture contents of the cereals starches were in the range 10.4-12.2% (dry 

basis). The total lipid content in normal maize, waxy maize, amylomaize V, 

amylomaize VII, rice and oat starches was 0.86, 0.01, 1.21, 1.49, 1.01, and 

1.13%, respectively. The surface (unbound) lipids constituted 0.06%, 0.01%, 

0.04%, 0.11%, 0.03% and 0.11% of the total lipid in normal maize, waxy maize, 

amylomaize V, amylomaize VII, rice and oat starches, respectively. The bound 

lipid content in normal maize, amylomaize V, amylomaize VII, rice and oat 

starches was 0.78%, 1.18%, 1.33%, 0.98%, and 1.01%, respectively. However, 

waxy maize was devoid of bound lipid. The ash and nitrogen contents of the 

cereal starches were in the range 0.09- 0.45% and 0.01 - 0.05% respectively. 

The apparent amylose content was 23. 7%, 1.1 %, 49.0%, 66.9%, 15.2%, and 

20.9% in normal maize, waxy maize, amylomaize V, amylomaize VII, rice, and 

oat starches, respectively. The total amylose content was 26.5%, 1.1%, 61.9%, 

78.4%, 20.6%, and 29.3%, . respectively, in normal maize, waxy maize, 

amylomaize V, amylomaize VII, rice and oat starches. The percentage of totat 



amylose complexed by native lipids was 10.6%, 20.8°,{,, 14.7°/o, 26.2%, and 

28. 7%, in normal maize, waxy maize, amylomaize V, amylomaize VII, rice and 

oat respectively. The extent of starch damage was low in all starches (0.3 -

0.7o/o). 

The average granule diameter of native normal maize, waxy maize, amylomaize 

V. amylomaize VII, rice and oat starches ranged from 7-8, 5-15, 4-16. 6-13, 2-7. 

and 5-12 J.lm respectively. Granules of native rice and oat starches were 

polygonal to irregular in shape. Maize starches granule were polygonal to 

irregular in shape. Except for native oat starch, the surface of other native cereal 

starch granules were covered with fissures or pores of varying diameter. 

The average degree of polymerization (OP) in native normal maize, waxy maize, 

amylomaize V. amylomaize VII, rice and oat starches were, 813, 685, 1247, 

1285, 1389, and 708, respectively. 

Native normal maize, waxy maize, rice, and oat starches, exhibited the typical 

'A'-type X-ray spectrum of cereal starches. Amylomaize V and VII starches 

exhibited a 'B' -type X-ray spectrum. The relative crystallinity of the native 

starches followed the order. waxy maize (49%) > rice (36%) > normal maize 

(34o/o) >oat (32)> amylomaize (19o/o)> amylomaize VII (16%). 

The swelling factor (SF) of native starches followed the order. waxy maize> 

normal maize> oat> rice> amylomaize V> amylomaize VII. Amylose leaching 
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(AML) of native starches followed the order: rice:::a- normal maize> oat> 

amylomaize VII> amylomaize V. 

The gelatinization transition temperatures range (T c-To) for native starches 

followed the order; amylomaize VII> amylomaize V> rice> waxy maize> normal 

maize> oat. The gelatinization enthalpy (AH) of the native starches followed the 

order: waxy maize> rice> nonnal maize> amytomaize VII> amylomaize V> oat. 

All starches exhibited a two stage hydrolysis pattem. A relatively high rate was 

observed during the first 6 days, followed by a slower rate thereafter. At the end 

of the 8111 day of hydrolysis {corresponding mainly to the degradation of the 

amorphous region of the granule), normal maize, amytomaize V, amylomaize VII, 

waxy maize, rice and oat starches were hydrolyzed to the extent of 61.1, 32.6, 

28.5, 68.1, 62.0, and 64.4% respectively. Between the 9"' and 15.... day 

(corresponding mainly to the degradation of starch crystallites) the increase in 

the extent of hydrolysis was more pronounced in normal maize (9.3%) than in oat 

(8.3%), rice (8.1 o/o), waxy maize (7 .2%), amylomaize V (3.0%), and amylomaize 

VII (3.1%) starches. At the end of the 15"' day, normal maize, amylomaize V, 

amylomaize VII, waxy maize, rice and oat starches were hydrolyzed to the extent 

of 73.4, 37.0, 32.3, n.3, 75.3, and 72.9%, respectively. 

In all starches, the number and size of pores on the granule surface increased 

after acid hydrolysis. In addition, granules were either deformed or fragmented. 
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In all acid treated starches, DP decreased rapidly during the first 48h. The extent 

of decrease in DP beyond 48h, followed the order. amylomaize VII> amylomaize 

V > normal maize > rice - waxy maize > oat. 

Acid hydrolysis increased X-ray intensities, but had no influence on the X-ray 

diffraction pattem. Acid treatment decreased (7.4o/o) the relative crystallinity (RC) 

of waxy maize starch, but increased (7.7-8.9°/o) RC of the other starches. 

Granule swelling was monitored by changes in swelling factor (SF). Acid 

hydrolysis for 24h increased the SF (rice> amylomaize V> amylomaize VII> oat> 

normal maize). However, granule swelling was not detectable in waxy maize 

starch. A decrease in SF occurred after 2 days hydrolysis in oat and rice 

starches, but after 3 days for maize starches. Granular swelling was not 

detectable in oat, rice and normal maize starches after the 4th. 5"'. and 8th. day of 

hydrolysis, respectively. However, amylomaize V, and VII showed measurable 

SF even after the 8th day of hydrolysis. Hydrolysis for 24h, increased amylose 

leaching (AML) in all starches (oat> normal maize> amylomaize V> amylomaize 

VII> rice). Thereafter, AML decreased gradually. The extent of this decrease 

followed the order. oat> normal maize> rice> amylomaize V> amylomaize VII. 

In all starches, To (onset temperature of gelatinization) decreased, but Tp (mid­

point temperature of gelatinization), Tc (conclusion temperature of gelatinization) 

and Tc-To (gelatinization temperature range) increased with acid hydrolysis. The 

extent of increase in T c-T 0 (after 24h hydrolysis) followed the order: waxy maize> 

amylomaize V> normal maize> oat> rice. The extent of increase in .1\H (enthalpy 
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of gelatinization) after 24h hydrolysis. followed the order: amylomaize V> rice> 

oat> normal maize> waxy maize. 
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Chapter1 

1. Introduction 

Acid hydrolysis has been used to modify starch granule structure and produce 

.. soluble· starch for many years (Kirchoff, 1811 ). Treatment of native potato 

starch in water with 15°Al ( 1. 7M) sulfuric acid for 30 days at room temperature 

results in an acid-resistant fraction (Nageli amylodextrin) that is readily soluble in 

hot water (Nageli, 1874). Nageli amylodextrin has been shown to be a mixture of 

low molecular, linear, and branched dextrins, with an average degree of 

polymerization (DP) of 25-30 (Nageli, 1874). However, treatment of starch with 

2.2N HCI at elevated temperatures (30° -40°C) produces lintnerized starch 

(Lintner. 1886). Untnerized starch as been shown to consist of the following 

factions: A) linear amylose chains with a degree of polymerization (DP) between 

13-15 (Biliaderis eta/., 1981, Robin et al., 1975, Watanabe and French, 1980); B) 

singly branched amylose chains [DP 25] (Biliaderis et al .• 1981, Robin et a/., 

1975, Watanabe and French, 1980); C) multiply branched chain whose 

branching ratio and DP are functions of hydrolysis rate (Watanabe and French, 

1980, Jacobs eta/., 1998); D) retrograded amylose (Morrison eta/., 19938), and 

E) amylose-lipid complexes [only in lipid containing starches] (Morrison et al., 

1993a). Hydrolysis of potato starch by 2.2N HCI has been shown to consist of 

two stages (Robin eta/., 1974, 1975): an initial fast step (due to hydrolysis of the 

amorphous regions of the granule) followed by a second slower rate [due to 

hydrolysis of the crystalline regions] (Robin et al .• 1974. 1975). Similar pattems 

of hydrolysis has also been observed for cereal and legume starches (Maningat 
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and Juliano, 1979, Biliaderis eta/., 1981, Muhr eta/., 1984, lnouchi eta/., 1987, 

Shi and Seib, 1992, Hoover and Vasanthan, 1994b, Vasanthan and Bhatty, 

1996, Jane et a/., 1997, Jacobs et a/., 1998, Shi et a/., 1998). Evidence to 

suggest a preferential attack on amorphous domains within the granule comes 

from transmission electron microscopy observations of acid hydrolyzed starches 

(Mussulmam and Wagner, 1968). These authors (Mussulmam and Wagner 

1968) observed a preferential etching of amorphous growth rings from normal 

and waxy maize starches treated with 7o/o HCI at room temperature for 35 days. 

To account for the slower hydrolysis rate of the crystalline domains of the starch 

granule, two hypothesis (Kainuma and French, 1971, French, 1984) have been 

proposed. Firstly, the dense packing of starch chains within the starch 

crystallites does not readily allow the penetration H3o• into the regions. 

Secondly, the chair_. half chair transformation (required for hydrolysis of the 

glucosidic bond) occurs very slowly due to immobilization of the sugar 

conformation within the starch crystallites). 

The differences in the rate and extent of hydrolysis among and between cereal, 

tuber and legume starches has been attributed to differences in granule size 

(Jane eta/., 1997, Vasanthan and Bhatty, 1996, Singh and Ali, 2000), extent of 

starch chain interadions (Hoover et a/., 1993) within the amorphous and 

crystalline domains of the granule, extent of phosphorylation (Jane eta/., 1997), 

amount of a (1-+6) linkages (lnouchi et a/., 1987), lipid-complexed amylose 

chains (Morrison eta/., 1993a) and the extent of distribution of a (1-+6) linkages 

between the amorphous and crystalline domains (Jane et a/., 1997). It is also 
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likely, that acid hydrolysis could be influenced by the number and size of pores 

on the granular surface. However, this aspect has not been investigated. Most 

of the reported data on acid treated starches have been on the solubilization 

pattern and on the structure of the acid treated residues of potato and wheat 

starches (Jacobs eta/., 1998, Morrison et al., 1993a, Jane et al .• 1997, Hoover 

and Vasanthan, 1994b, lnouchi et al., 1987, Vasanthan and Bhatty, 1996). 

Furthermore, none of the earlier researchers have attempted to explain in detail 

the solubilization profiles of native starches and the physicochemical properties 

(granular swelling, amylose leaching, gelatinization parameters, X-ray pattern 

and relative crysalinity) of the acid treated residues. Moreover, there is a dearth 

of information on changes to the average degree of polymerization (OP) and to 

the granule surface during the time course of acid hydrolysis. 

The objective of this study was three fold: 1 ) To investigate the granule 

morphology and the physicochemical properties such as average degree of 

polymerization (DP), swelling factor, amylose leaching, X-ray diffraction pattem, 

relative crystallinity and gelatinization parameters of native normal maize, waxy 

maize, amylomaize V, amylomaize VII, rice and oat starches; 2) To investigate 

the susceptibility of the above native starches towards hydrolysis by 2.2N HCI at 

35°C and 3) To investigate how morphological and physicochemical properties 

change at different time periods of acid hydrolysis. 
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Chapter2 

2. Review of Literature 

2.1 Starch • General Introduction 

Starch is nature's chief way to store energy as carbohydrate in green plants. It is 

the major storage polysaccharide of edible parts of plants, for example in cereal 

grains (maize, rice, oat, millet, sorghum, barley, wheat) tubers (potatoes, coco 

yam, diascorea spp.), roots (sweet potatoes, cassava, arrowroots,) pulses (peas, 

beans), stem (sago) and plantains (Sanchez-Castillo et a/. 2000, Swinkels, 

1985a). Starch is among the most abundant bio-polymers on the earth, second 

only to cellulose (Jane eta/, 1994 and Jane, 1997, Hizukuri, 1996, Hancock and 

Tarbet 2000). It is a major source of energy for humans many species of animals, 

and microorganisms. In higher plants, starch is synthesized in amyloplast and 

stored in the form of granules in various parts of the plant such as seeds, grains, 

roots, tuber, rhizomes, bulbs, stem (pith), leaves, fruit (banana), pollen, woody 

tissues, flowers, pericarp, cotyledons, and embryo (Shannon and Garwood, 

1984, lineback, 1984, Hizukuri, 1996). Starch is also found in lower plants such 

as mosses, fems, algae, baderia and protozoa (Badenhuizen, 1965, Shannon 

and Garwood, 1984 ). The physicochemical charaderistics, granular size and 

morphology are essentially typical to the biological origin of the starch (Swinkels, 

1985a, Badenhuizen, 1963). 
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2.2 Uses of starches 

It has been estimated that by the year 2000 more than 900 million metric tonnes 

of starch will be produced worldwide from cereals alone (Zobel, 1992). Starch 

from high-amylose genotypes containing the amylose-extender allele (ae) could 

be used as an important source of resistant starch that serves as dietary fiber 

(Vue and Waring, 1998, Garcia-Aionso eta/., 1998). High-amylose starch can 

also be used in food coatings, where it forms a barrier to prevent moisture loss 

and fat uptake during frying (Van Patten and Freck, 1972). In addition, 

genotypes containing various combinations of the recessive alleles such as dull 

(du), horny (h), sugary-2 (su2), and amylose-extender (ae) are useful in the 

production of starch jelly candy because cooking temperatures can be reduced to 

116°C from the conventional cooking temperature of 170°C (Furcsik and Mauro, 

1990). Starch's main use is as a thickener, but it also functions as an adhesive, 

binder, encapsulating agent, film former. filler (surimi gel). and gelling agent, with 

numerous other applications both in the food and non-food applications (Mauro, 

1996). 

In its native granular form. starch has few uses. To release the polymer 

properties, granule disruption and sometimes also modification are necessary. 

These can be achieved by chemical (acid modified e.g. glucose syrup) and/or 

physical processes (pyroconvertion e.g. British gum). Starches from maize. rice, 

potato, wheat. cassava (tapioca or yucca), sago palm. sorghum, barely, and 

other grains and roots serve as raw materials for the manufacture of hydrolystate 

products world wide (Roller, 1996}. It has been estimated that about 70% of the 
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world production of maize starch is converted into glucose-containing sweeteners 

such as glucose syrups (Schenck and Hebeda. 1992, Howling, 1992). Starch has 

been subjected to acid treatment in order to produce sweet materials ( .. soluble 

starch") since 1811 (Kirchoff), which finally led to the commercial production of 

dextrose (0-glucose) (BeMiller, 1965, Wurzburg, 1987, Robyt et a/., 1996). 

Glucose syrups are largely composed of dextrose and have a dextrose 

equivalent (DE) values between 20 and 80 (Howling, 1992). Dextrose equivalent 

is a measure of the percentage of glucosidic bonds that are hydrolyzed. Syrups 

can be made with acid hydrolysis alone. However, at about 40 DE, side 

reactions start to be important and dark-coloured (undesirable) syrups are 

obtained (Hoseney, 1994). 

Low-DE syrups, called dextrins. Dextrins are made with acid or a combination of 

acid and a-amylase (Hoseney, 1994). Dextrins are bland and nonsweet 

carbohydrates, and their gel-forming capacity mimics the texture and mouthfeel 

of fat (Chun et al., 1997). Maize starch (com starch) maltodextrin, tapioca 

dextrin, potato starch maltodextrin, p-glucan amylodextrin from oat, and potato­

based modified starch are widely used as fat replacers in food products such as 

margarines, salad dressing, frozen desserts, and bakery products {Haumann, 

1986, Hudnall et al., 1991, Sobczynska and Setser, 1991, Alexander 1992, 

Niemann and Whistler, 1992, Chronakis, 1998). Furthermore, maltodextrins are 

applied, as spray-drying aids for flavors and seasonings, carriers for synthetic 

sweeteners, flavor enhances, and bulking agents (Wang and Wang, 2000). The 

small granule rice starch and the small size of wheat starch are also capable of 
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forming similar highly absorbent starch aggregates (Alexander, 1996). Chun et 

a/., ( 1997) have shown that rice amylodextrins prepared by hydrolyzing rice 

starch in acidic (4% HCI) alcohol (70%) solutions at 78-80°C was readily 

solubilized with warm water (50°C). Emulsion prepared by replacing a pc)rtion of 

the oil (used in the formulation of a mayonnaise-type emulsion) with rice 

amylodextrin, exhibited small and uniform droplets and displayed high viscosity 

and stability. This suggests that amylodextrins could be used as fat replacers 

(Chun eta/., 1997). 

To produce high·DE syrups, glucoamylase must be used. Glucoamylase 

produces glucose from the nonreducing end of the starch chain and can 

hydro~ both a· (1~) and a- (1~) bonds. High-DE syrups do contain high 

levels of glucose and thus are relatively sweet (Hoseney, 1994). 

2.2.1 Acid modified starch• 

During the process of acid modification, the acid hydrolyzes the glucosidic 

linkages, shortening the chain length. Acid modified starches are produced as 

shown below (Wurzburg 1987, Howling, 1992). 

Starch slurry (38-40% solid) 

4CJ.60"CJ 1-~ 1 ~ineral acid/agitation 

Neutralization (at proper viscosity ) 

Filter/ centrifugation 1 Washing/drying 

Acid modifeed starch 
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Acid modification alters a number of physicochemical properties of starch. The 

primary objective in acid modification is to reduce the hot paste viscosity of 

starch. The hot pastes of acid-modified starches are relatively clear fluids, more 

Newtonian in behavior and less thixtropic (Wurzburg, 1987). For instance, acid 

converted waxy maize starches are widely used as adhesives in the production 

of remoistening gum tapes. The low viscosity starches may be desirable as 

textile warp sizing agents to increase yam strength and abrasion resistance in 

the weaving operation, paper surface sizing, paper coating, and detergents 

(Solarek, 1987). Acid-modified starches substituted with cationic and sulfa­

succinate groups yield improved performance in high alum paper stock systems 

(Solarek, 1987). Some other industrial uses of acid treated starches are as 

follows: (a) as a premodification stage for the production of cationic and 

amphoteric starches (Solarek, 1987); (b) for preparation of starch gum candies 

(Solarek, 1987) (d) for manufacture of gypsum board for dry wall construction 

(Solarek, 1987). 

Nonfood interest in starches is also growing, especially for high-amylose starch 

which are used increasingly in the production of biodegradable packaging 

materials (Fergason, 1994a). The use of starch as a replacement for carbon 

black has been studied in detail (Otey and Doane, 1984 ). Cross-Unked starch 

xanthate has been incorporated into rubber to provide reinforcement to the same 

extent as medium grades of carbon black {Otey and Doane, 1984 ). Ethanol 

produced by fermentation of starch hydrolyzates may be used as a motor fuel 

when blended with gasoline at a level of 10% {Watson, 1984). It has been 
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reported that the total substitution potential of starchy produds for detergents lies 

around 50-60% and 65-75o/o of powder and liquid, respectively (Koch et a/., 

1993). 

2.3 Starch granule morphology 

All starches are distributed in plants in the form of granules, these differ in size 

and shape according to botanical source in which they are assembled, and many 

different forms are found in nature [Jane et a/., 1994] (Table 2.1 ). The size of 

starch granules, vary from 0.5 to 175 f.lm in diameter (Zobel, 1988a, Zobel, 1992, 

Biliaderis, 1998). Leaf starches, which are produced directly by photosynthesis, 

are generally the smallest (less than 1 f.lm) whereas the root starches may be as 

large as 175 f.lm (Hizukuri, 1986, Biliaderis,1998). 

Oat starch displays small irregularly shaped, polygonal granules, having an 

average granule diameter of 2-15f.lm and are aggregated in the native state 

(Hoover and Vasanthan, 1992, Jane et a/., 1994). These granules are 

charaderized by a smooth surface (Hoover and Vasanthan, 1992). Oat starch 

granules are not embedded in a continuous protein matrix (Zhou et a/., 1998). 

Oat starch has little commercial value since starch granules cannot easily be 

separated from the other components of the grain {Zhou eta/., 1998). 

Rice starch has the smallest granules of all commercially available starches 

(Swinkels 1985b, Jayakody, 1991 ). Rice starch occurs as compound granules 

tightly bound in a protein matrix. The granule is very small with diameter of 
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Table 2.1 Granular shapes and sizes of starches from various botanical sources 

Source of starch Granule shape Granule size tum) Reference 

c ..... 

Normal maize 5-20 Jane eta/., 1994 
Normal maize round or polyhedral 15 Lineback, 1984, Hoseney, 1994 
Normal maize (wild) round or polyhedral 30 Buleon et al. 1998 
Normal maize round or polyhedral 3-26 Blanshard 1987 
Normal maize round, polygonal 2-30 Swinkels 1985b 

Amylomaize V 10-15 Jane et at., 1994 
Amylomaize V round irregular sausage shaped 25 Lineback 1984 

Amylomaize VII 6-15 Jane et al., 1994 
Amylomaize VII highly elongated irregular filament 5-25 Buleon et al. 1998 

Waxy maize 5-18 Jane et a/., 1994 
Waxy maize round, polygonal 2-30 Swinkels, 1985b 
Waxy maize round 15 Hoseney, 1994 
Waxy maize 12-15 Mussulman and Wagner, 1968 

Rice (mature) polyhedral 3-5 Champagne, 1996 
Rice (individual granule) polygonal 2-13 Hoseney, 1994 
Rice (individual granule) polygonal 3-8 Jane et al., 1994, linrback 1984 

Oat (individual granule) polyhedral (sometimes ovoid/hemispherical) 3-10 Linrback, 1984, Hoseney, 1994 
Oat compound 2-15 Jane el al., '1994 
Oat compound 15 Buleon eta/. 1998 
Oat polyhedral to irregular 6-10 Hoover and Vasanthan, 1992 
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Cont., 

Sorghum round 35 lineback, 1984 

Wheat lenticular or round 20-35 Hoseney, 1994 

Barley round or elliptical 20-25 lineback, 1984 

Root and tuber 

Potato nonnal (wild) large oval 40 Buleon eta/. 1998 
Potato large oval 40 lineback, 1984 
Tapioca truncated, spherical, oval 5-25 Jane eta/., 1994 

Legume 

Pea RR (wild) oval 30 Buleon et a/. 1998 
Pea" compound 50 Buleon eta/. 1998 
Pea tbtb round 20 Buleon et a/. 1998 
Pea"tbtb compound Buleon et a/., 1998 

Chick pea spherical, oval 10-27 Jane eta/., 1994 

Cowpae spherical, oval 10-35 Jane et al., 1994 

Mung bean oval, irregular 10-27 Jane et al., 1994 

Lentil ellipsoidal 10-20 Jane et al., 1994 



3-8 J.IIY1, polygonal and irregularly shaped (Swinkels, 1985b, Hoseney, 1994, 

Jane eta/., 1994, Champagne, 1996). The amyloplast contains 20-60 of the 

small granules forming a spherical to ellipsoidal cluster, varying from 7 to 39 Jlm 

in diameter (Champagne, 1996). 

Normal maize has irregularly shaped granules with a number of faces 

(polyhedric) and relatively sharp edges. The granules vary in size between 3 and 

26J.IIY1 (Swinkels. 1985b, Jane et a/., 1994). Maize starch granules can be 

categorized by morphology into four groups: spherical angular, dimpled, and 

irregular (Fannon et a/., 1992). The amylose extender (ae) allele genes in 

amylomaize has been shown to result in both greatly elongated granules and 

granules with protrusions. The number of protrusions increases with the ae gene 

dosage (Katz eta/., 1993). As the amount of amylose increases (amylose 27-

70%) in the maize starches, the granules loose their polygonal shapes. 

Amytomaize starches (amytomaize-V and -VII) have relatively smooth irregularly 

shaped granules (Jane eta/., 1994). Waxy maize starch has irregularly shaped 

granules similar to the granules of normal maize starch but with a varied 

polygonal appearance in which the individual faces are not as specific and have 

rough surfaces (Jane eta/., 1994). 

2.3.1 Po,.. and flaaurea on atarch granul• 

The small openings which are randomly distributed over the surface of starch 

granules are called •holes·, •pin holes·. ·microscopic pores· or "cavities· 

(Fannon et a/., 1992, Baldwin, 1994). These features were first reported using 
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scanning electron microscopy (SEM) by Hall and Sayre (1970). Fannon et al., 

(1992, 1993) have observed (using transmission electron microscopy and SEM) 

surface pores and interior channels in maize, sorghum, and millet starches. 

Furthermore surface pores have also been observed along the equatorial groove 

of wheat, rye and barley starch granules (Evers and McDermott, 1970. Evers et 

a/., 1971, Oronzek et al .• 1972, Hood and Liboff, 1983). The surface pores and 

interior channels are believed to be naturally occurring features of the starch 

granule structure, with the pores being the extemal openings of the interior 

channels. The interior channels in the starch granule were reported to be 

.. serpentine" i.e. to have a tortuous path, and to be roughly in the radial direction 

(Fannon eta/., 1993). The presence of these holes may affect the properties of 

the starch and has implications for the intemal structure of the starch granule 

(Whistler et al., 1959, Fannon eta/., 1992). Whistler eta/., (1959) and Whistler 

and Spencer ( 1960) further reported that the chemical reactivity of maize starch 

granules is greatest at the granular surface and at the surface of cavities, . 

indicating that both holes and surfaces could be important sites of chemical and 

enzymic attack. Furthermore. it has been postulated that these cavities may 

connect with the interior granule hole and allow macromolecules, including 

enzymes, direct access to the granule interior (Whistler et a/., 1955, Whistler and 

Spencer, 1960, Gallant et al., 1972, Fannon eta/., 1992). Cavities have been 

observed in normal maize and waxy maize starch granules (Huber and BeMiller, 

1997). Water and ions can enter granules so easily that maize starch gives a 

complete exchange of all hydroxyl groups within approximately 60 minutes after 
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being placed in deuterium oxide (020) (Taylor et a/., 1961). Pores on maize 

starch are usually observed on smooth spherical granules and often occur in 

clusters (Fannon eta/., 1992). 

Surface pores or fissures have been observed over the entire granular surface of 

maize starches (Fannon eta/., 1992). Huber and BeMiller (1997) showed the 

presence of an internal cavity at the hilum of normal maize and waxy maize 

starch. Channels connect these cavities to the granular surface. However, 

surface pores or fissures have been not reported on the surface of oats starches 

(Fannon eta/., 1992, Hoover and Vasanthan, 1992, Jane eta/., 1994). Cavities 

were also shown to be present at the hilum of rice starch (Baldwin et a/.,1994 ). 

Fannon et al., (1993) have postulated that all starch granules contain pores and 

channels that are unobserved either because they are covered over with sputter 

coating materials or because they are too small to be observed by the electron 

microscope, yet large enough for passage for water, reagents, and 

macromolecules. Whistler (1959) reported that the percentage of cavitated 

granules was consistent, regardless of the drying method used, including freeze­

drying, which indicates that pores and channels into the granule are not an 

artifact of drying, although they could be altered or enlarged by drying. However, 

the biological origin of the canals is not known. 

2.3.2 Growth rlnp or ahell 

The amyloplast grows by apposition (centrifugal deposition of successive layers). 

There is now conclusive evidence that starch granules do not arise as a 
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coacervate by rapid crystallization, but that they grow over an extended period of 

time (May and Buttrose1959) by apposition (Badenhuizen and Dutton, 1956). 

The new ring (layer or shell) deposited on the outside of the previous ring varies 

in thickness, depending upon the amount of carbohydrate available at that time. 

These rings represent concentric shells or layers of alternating high and low 

refractive index, density, crystallinity and resistance or susceptibility to chemical 

and enzymatic attack. The regions between the dense rings are apparently more 

amorphous and are more evident after treatment of the starch with dilute acid or 

enzymes (lineback, 1984. Hoseney, 1994). However, Buttrose (1960) pointed 

out that some endogenous rhythm may regulate transport of carbohydrate 

substrate to starch-synthesizing tissue, resulting in fluctuations in density of 

packing of molecules. 

2.3.3 Structure of starch granule 

The botanical point of origin of the starch granule is known as the hilum (Jane et 

al .• 1994, Hancock and Tarbet, 2000). Starch granules from various botanical 

sources may have very similar basic chemical compositions yet still exhibit wide 

differences in physicochemical properties, due not only to factors such as the 

amylopectin-to-amylose ratio, but perhaps equally important, the arrangement of 

these components in the amorphous and crystalline domains of the granules 

(Villwock et a/.,1999). 

Differences have been reported between the exterior and interior of granules 

which would indicate that the relatively inert nature of native starch is most likely 
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to be due to a different arrangement of the polysaccharide at the granule surface 

to the interior (Evers et al., 1971). Polarization optic studies show it to be a 

spherocrystal with the chains of glucose residues oriented radially, the radial 

orientation being confirmed by X-ray analysis (Kreger, 1951). The visibility of 

rings, referred to above, has been shown to be due to a regular decrease in 

refractive index from the inside to the outside of each shell, with a sudden 

discontinuous rise at the boundary of the next outer shell. Distinct knowledge of 

how the branched and unbranched molecules are distributed and crystallized is 

tacking. 

2.4 Structure of atan:h and components 

2.4.1 Major components 

2.4.1.1 Amylou 

Amylose is found with molecular weights ranging from 1 x 105 to 2x1 06 g/mol and 

with the number of glucose residues per molecule (DP) ranging from 930 to 4920 

(Young, 1984, Galliard and Bowler, 1987, Hoover, 1995). Chemical and 

biochemical evidence have indicated that the amylose chains of starch are 

composed of D-glucose units, linked by a-(1-.4) bonds (Figunt 2-1). Most 

commercial starches contain about 25% amylose, but the amylose content of 

starch granules varies with the botanical source (Table 2.2). Amylose is 

considered to be essentially linear. but it also contains a few branches. this has 

been confirmed by p-amylase and gel-permeation chromatography and high­

performance size-exclusion chromatography of many starches from sources 

(Hizukuri et al., 1981, Takeda et al., 1984). The incomplete enzymic hydrolysis 
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Figure 2-1 Schematic diagram of a-D glucose and linear-chain structure of 
amylose 
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Table 2.2 Amylose content of starches from different botanical sources 

Starch source 

Cereal 

Normal maize 
Normal maize 
Normal maize 
Normal maize 
Normal maize 
Normal maize 
Normal maize 
Maize 

Amylomaize V 
Amylomaize V 
Amylomaize V 
Amylomaize V 
Amylomaize V 

Amylomaize VII 
Amylomaize VII 
Amylomaize VII 
High amylomaize 
Newly developed low amylopectin starch 

Waxy maize (Amioca) 
Waxy maize 
Waxy maize 
Waxy maize 

Amylose(%) 

26.2 
26.5-27.5 
28.0 
28.6 
29.4 
29.9 
30.0 
40.0 

52.0 
56.0 
56.4-57.2 
65.5 
65.0 

60.0-73.0 
68.0 
69.4~72.6 

84.0 
87.7-92.1 

0.2-1.2 
0.5 
0.8 
1.2 

17 

Reference 

Tester, 1997a 
Shi et al., 1998 
Cheetham and Tao, 1988 
Qian et al, 1998 
Jane et al., 1999 
Hoover and Manuel, 1996 
Morrison et al .,1993a 
Cheetham and Tao, 1988 

Jane et al, 1999 
Cheetham and Tao, 1988 
Shi et al., 1998 
Hoover and Manuel, 1996 
Cheetham and Tao, 1988 

Buleon eta/., 1998 
Jane et a/, 1999 
Shi et al .• 1998 
Cheetham and Tao, 1988 
Shi et a/., 1998 

Shi et a/ .• 1998 
Buleon et al., 1998 
Tester, 1997a 
Hoover and Manuel, 1996 



Cont., 

Rice (waxy) 0.3-1.1 Morrison and Azudin, 1987 
Rice (non waxy) 6.6-28.6 Morrison and Azudin, 1987 
Rice 17.30 Tester, 1997a 
Rice (soft) 18.4-22.5 Ong and Blanshard, 1995 
Rice 20.0 Morrison et a/. 1993a 
Rice 21.3 Biliaderis and Tonogni, 1991 
Rice (hard) 22.4-29.5 Ong and Blanshard, 1995 
Rice 25.0 Tester, 1997a 

Oat 19.4 Hoover and Vasanthan, 1992, 1994a,b 
Oat 25-29 Morrison et al., 1984 
Oat 27-29 Gudmundsson and Eliasson, 1989 
Oat 27-30 Tester and Karkalas, 1996 
Oat 29.2 Shamekh eta/., 1994 
Oat 30.3-33.6 Hartunian-Sowa and White, 1992 

Root and tuber 

Potato (wild) 18-21 Buleon eta/., 1998 
Potato 21.1-25.1 Vasanthan eta/., 1999 
Potato 24.7 Hoover et a/., 1994 

Legume 

Pea RR (wild) 33-46 Buleon et a/., 1998 
Pea rr 66-76 Buleon eta/., 1998 

Lentil 38.0 Hoover and Vasanthan, 1994a 



indicates that a certain degree of branching is present in amylose. Amylases 

from different sources contain, on average, 2-8 branch points per molecule, the 

side chains ranging in length from 4 to> 100 glucose units (Hizukuri et al. , 1981, 

Takeda eta/., 1984). The extent of branching depends on the origin of amylose 

(Takeda et al.. 1987) and increases with the molecular size of amylose from a 

particular source (Greenwood and Thompson, 1959, Banks and Greenwood, 

1975). In spite of its slight branching, amylose chains behave essentially like a 

linear polymer, forming films and complexes with ligands (Biliaderis, 1998). The 

conformation of amylose in solution has been the subject of controversy. The 

conformation has been shown to vary from helical to an interrupted helix to a 

random coil. In alkaline solution (KOH), and in dimethylsulfoxide (MezSO) 

amylose probably has an expanded coil conformation, while in water and neutral 

aqueous potassium chloride solutions it is a random coil with short, loose helical 

segments (Banks and Greenwood, 1971). Jane and Robyt (1985) identified 

(using 13C NMR) expanded and compact helical conformations in aqueous 

amylose solutions in the absence and presence of complexing agents, 

respectively. 

2.4.1.1.1 Genotype variation and environmental effect on amylose content 

The amylose content of the starch granules varies with the botanical source of 

the starch, physiological maturity, and climatic, and ~il conditions during grain 

development (Morrison et al., 1984, Asaoka et al., 1985, Morrison and Azudin, 

1987, Campbell et al., 1994, 1995). For instance high temperatures decrease 

the amylose content of rice, whereas cool temperatures have the opposite effect 
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(Champagne, 1996). Amylose concentration in starch granules reportedly 

increases with increasing physiological maturity of the amyloplast from normal 

maize, amylomaize and many other varieties. except waxy (wx) genotypes 

(Boyer et a/., 1976, Yun and Matheson, 1992). Yun and Matheson (1992) 

reported that amylose molecular size increases with maturation of normal maize 

starch, but decreases with that of amylose extender genotypes (ae) maize. 

Furthermore, it has been reported that amylose extender (ae) containing 

genotypes had reduced granule size when compared to normal or to waxy ( wx) 

maize starches (Katz eta/., 1993). 

2.4.1.1.2 Location of amyloae and co-c,.talllzatlon of amylose 

Comparison of the amylose content in starch, at different stages of maturity has 

shown that amylose is more concentrated at the periphery of the granule (Boyer 

eta/., 1978). Jane eta/., (1992) have shown (by cross-linking studies on com 

and potato starches) that amylose is interspersed among amylopectin molecules. 

The effects of varying amylose content on the intemal granular structure of 

normal, waxy and amylomaize starches were studied by Jenkins and Donald 

(1995). They showed that in each case although the amylopectin cluster size 

remained constant. increasing the amylose content had the effect of increasing 

the size of the crystalline portion of the cluster (Figurw 2-2). The above authors 

postulated that amylose acts to disrupts the packing of amylopectin chains within 

the crystalline lameUae (Figurw 2-3). Supporting evidence for this hypothesis 

was provided by the apparent reduction in crystalline lamella electron density 

with increasing amylose content. 
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Figura 2-2 Effect of varying amylose content on the electron-density profiles 
representing the intemal structure of maize starches (Jenkins and 
Donald. 1997, reproduced with permission) 

20 





Figure 2-3 A possible mechanism to explain the disruption of amylopectin 
double helical packing by amylose. (a) Arnylopedin structure with 
no amylose present. Small crystalline lamellar size (b) Co­
crystallinity between amylose and amylopectin pulls a number of 
the amylopectin chains out of register (Jenkins and Donald, 1995, 
reproduced with permission) 
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The above authors put forward two mechanisms to explain the disruptive effect of 

amylose: 1) a co-crystallinity between amylose and amylopectin; 2) penetration 

of amylose into the amorphous regions of the cluster where the branch points are 

located). At present, insufficient evidence is available to discriminate between 

the two mechanisms. 

2.4.1.1.3 Amylose inclusion complexes 

The formation of inclusion complexes between starch chains and a hydrophobic 

guest molecule has long been reported (Mikus et a/., 1946). The long linear 

nature of amylose gives it some unique properties. such as the ability to form 

complexes with iodine, organic alcohols, or acids. Such complexes are called 

clathrates or helical inclusion compounds (Hoseney. 1994 ). 

2.4.1.1.3.1 Amylose-lipid complex 

Amylose in the single helical (V) conformation has 6 glucosyl residues per tum 

(with bulky ligands there are 7 or 8), stabilized by hydrogen bonds between the 

hydroxyl groups of adjacent glucosyl residues, 2-0H-3' -OH interturn hydrogen 

bonds 2-0H -6' OH and numerous intra- and intermolecular Van der Waals 

contacts located on the outer surface of the helix {Banks and Greenwood, 1975, 

Rappenecker and Zugenmaier, 1981, Blanshard, 1987, Biliaderis, 1998), and the 

helix cavity is effectively a hydrophobic channel. The hydrocarbon chains of the 

fatty acid or lipid lies inside the hydrophobic channel of the amylose helix (Figure 

2-4) and is stabilized by Van der Waals contacts with adjacent C (5)- hydrogen of 

mylose, but the polar ends of the lipids are not inside the helix cavity 

(Godet et at .• 1993 ). 
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Figure 2-4 Schematic illustration of amylose-lipid complex (Adapted from 
Carlson et a/., 1979) 
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The 'V'- X-ray pattern of amylose-lipid complexes is found in high-amylose 

starches, and in starches from plants containing genes such as amylose 

extender and in dull or sugary starches (Zobel, 1988a). Proof that amylose-lipid 

inclusion complexes do exist in native starch granules and that they are not 

artifacts formed during starch isolation was obtained by 13C CP/MAS-NMR 

spectroscopy (Morrison et a/., 1993a; Morrison et a/., 1993b; Morrison et al., 

1993c). 

Monoacyl lipids will induce the formation of amylose-lipid complexes during 

gelatinization and also restrict granular swelling (Buleon et al., 1998). 

Furthermore, hydrocarbon chains of internal lipids suppress hydration of the 

starch granule amorphous regions and thereby influence granule swelling, 

amylose leaching, and gelatinization of starches (lorenz, 1976, Maningat and 

Juliano, 1980, Goshima eta/., 1985, Tester and Morrison, 1990a, Vasantahan 

and Hoover, 1992a). 

2.4.1.1.3.2 Amylose-iodine complex 

The reaction between amylose and iodine has been known for over a century. 

Rundle and Baldwin ( 1943) proposed that the iodine component of the complex 

is present in a unidimensional array within any amylose helix with six glucose 

residue per tum. Teitelbaum et a/., (1978, 1980) studied the structure of the 

amylose-iodine complex using Raman and Mossbauer spectroscopy and 

postulated that the principal chromophore was the pentaiodide anion (Is.). 
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2.4.1.2 Amylopectin 

Amylopectin is one of the largest biomolecules found in nature (Falk eta/., 1996). 

The molecular mass of amylopectin has been reported to be several hundred 

thousand to as high as 109 Dalton (Shannon and Garwood, 1984. Colonna and 

Mercier.1984, Kirby, 1987, Yalpani, 1988, Hoseney, 1994, Buleon eta/., 1998. 

Hancock and Tarbet, 2000). Amylopectin molecules grow from the hilum 

(Hancock and Tarbet. 2000). 

2.4.1.2.1 Branch linkages of amylopectin 

The schematic representation of amylopectin is shown in Figure 2-5. Figure 2-5 

illustrates the a-(1--.4) backbone. a-(1-+6) linked branch points, and the 

relatively short a-(1-+4) branches that characterize this molecule. Amylopectin is 

a highly branched molecule and the major component of most starches. Its fine 

structure plays a critical role in the physicochemical properties of starch (Tester, 

1997a, Jane et al .• 1999). The glucose units with a-(1~6) linkages are the 

branching points of the amylopectin molecule and make up to 4-5°k of the total 

glucose units in amylopectin (Swinkels, 1985b, Kirby, 1987, Manners. 1989, Cura 

and Krisman 1990, Eliasson and Larsson, 1993, Jane, 1997, Buleon eta/., 1998, 

Biliaderis. 1998). 

2.4.1.2.2 Branch chain of amylopectin and chain length 

Amylopectin has three types of chains (Figure 2-5): A chains are unbranched 

and composed of glucose linked a1-+4; branched B.-chains, composed of 

glucose linked a 1--.4 and u.1-;.6; and C-chains, made up similar to B-chains but 
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Figure 2-5 Schematic diagram of amylopectin with a branch point at the 1 --.6 
position 
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contains the only reducing group (unbound C-1) in the molecule. The branched 

nature of amylopectin explains why it does not form threads or films and is 

unable to retrograde (Guthrie and Honeyman, 1968, Eliasson and Larsson, 1993, 

Yuan et a/., 1993). The outer A branches of the amylopectin molecules form 

double helices that are arranged in crystalline domains (Sarko and Wu, 1978). 

Branching points are arranged in clusters which are not distributed randomly 

throughout the macromolecule. The currently accepted amylopectin structure 

involves short amylopectin chains forming double helices and associating into 

clusters (Robin et a/., 1974)(Figure 2-6). These clusters pack together to 

produce a strudure of alternating crystalline and amorphous lamellar 

composition. The ratio of A to 8 chains ranges from 4:1 to 9:1. The a (1-+6) 

linkage is present at the branch points of the amorphous lamellae (Hoseney, 

1994, Kirby, 1987, Eliasson and Larsson, 1993. Jenkins and Donald, 1995, 

Buleon eta/., 1998). The A-: 8-chains ratio, which is also called the degree of 

multiple branching, is an important parameter . It has been reported, that during 

acid hydrolysis, H3o• ions preferentially attack the long 8 chains of amylopectin 

(lnouchi et a/., 1987). 

2.4.1.2.3 Amylopectin lnclualon complexa 

The ability to form inclusion complexes in amylopectin is much less pronounced 

than in amylose (Eiiasson and Larsson, 1993). However, Jane et a/., (1999) 

pointed out that long chains of amylopectin have the capability of forming a 

helical complex with iodine. However, amylopectin is unable to form stable 

complex with iodine because of the short length of the unit chains. 
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Figure 2-6 Currently accepted model of amylopectin with chain clusters defined 
in terms of glucose residues individual chains (DP) and cluster size 
an Angstroms (Robin et al., 1974, reproduced with permission) 
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Only a small amount of iodine (<0.6%) is bound forming a red-brown colour 

complex (A.m.. 530-540nm). 

2.4.2 lntarmedlata component of starch 

Some starches contain a fraction that is neither amylose nor amylopectin known 

as the intermediate component (Lansky et a/., 1949, Banks and Greenwood, 

1975, Eliasson and Larson, 1993, Jane et al., 1999). The intermediate 

component is a blend of the two major fractions (Shannon and Garwood, 1984). 

There is some confusion regarding the structure of this fraction-whether it should 

be described as an anomalous amylopectin or an anomalous amylose (Banks 

and Greenwood, 1975,1968). In any case, its branching pattern differs from that 

of its •normal" counterpart (Manners. 1985). The criteria for classification of this 

component are the degree of branching and the molecular weight (Hizukuri, 

1996). However, the intermediate component seems to cover a broad range in 

the degree of branching and molecular size, and accordingly it is difficult to 

fractionate (Hizukuri, 1996). 

2.4.2.1 Location and amount of lntltnnedlate material in different botanial 
aourca 

Jane and Shen (1993) reported that the intermediate component was primarily 

located at the periphery of the granule, indicating that the intermediate 

component could be amylopectin molecules whose biosynthesis had been 

prematurely terminated. 
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The intermediate material amounts to about 5-10% in most cereal starches 

(Greenwood, 1976. Lineback. 1984). Based on indirect evidence from iodine 

affinities. Lansky et a/., (1949) suggested that 5-7% of normal maize starch 

consists of intermediate material between the strictly linear and highly branched 

fractions. Oat starches were also reported to have around 9°/0 intermediate 

materials with less highly branched and longer branch lengths than that of 

amylopectin (Banks and Greenwood, 1975, Wang and White. 1994a,b). 

The anomalous amylopectin of amylomaize starch was shown to be a mixture of 

short linear amylose (DP-1 00) and normal amylopectin (average chain length 

25) (Banks and Greenwood, 1968, Banks et a/., 1974). Baba et a/., (1987) 

showed that amylomaize starch contains approximately 55% intermediate 

material, 20% amylomaize-specific amylopectin. and 25% amylose. However, 

they could not properly separate and identify the structures of the intermediate 

material and amylomaize-specific amylopectin. Therefore, the amylopectin 

fraction of amylomaize starches was suggested to be a heterogeneous mixture of 

several kinds of molecular species. mainly intermediate materials, with minor 

amount of amylopectin, and branched and linear amylose with low degree of 

polymerization (Banks and Greenwood, 1968, Banks eta/., 1974, Baba eta/., 

1987). 

2.4.3 Minor components 

The components present in minor quantities such as lipids, proteins, 

phosphorous and minerals, are generally known as minor components (Eliassen 
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and Gudmundsson, 1996). These are deposited in the starch granule during 

development of the grain or are introduced during grain processing as 

contaminants (Swinkels 1985a). The minor components of starch are present 

either as surface materials on the granules or as internal components within the 

granule matrix. However, even though they are present in minor quantities, they 

have a dramatic effect on the physicochemical properties. Minor components 

associated with starches correspond to three categories, according their location 

(i) particulate material, composed mainly of cell-wall fragments; (ii) surface 

components composed mainly of enzymes, amino acids and nucleic acids; and 

(iii) internal components composed of lipids (Galliard and Bowler 1987, Buleon 

eta/., 1998). The exact ratio of each of the components depends on the botanical 

source. However, the protein and lipid are always by far the most abundant of the 

minor components (Table 2.3). Incomplete removal of contaminating substances 

and the presence of minor components on the surface, or within, starch granules 

may well be of major significance in determining the quality and functional 

properties of starches. 

2.4.3.1 Proteins 

Generally, nitrogen exists in starch granule in the form of real protein or other 

related forms such as peptides, amides, amino acids, enzymes and nucleic acids 

(Swinkels 1985a, Lineback and Rasper, 1988). The amount of protein content 

present in purified starch is a good indicator of starch purity. Alkali extraction 

appears is very effective in solubilizing protein. Therefore, careful washing of 
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Table 2.3 Composition (%) of some minor components of starches from \iarious botanical sources 

Starch source Total lipids Nitrogen Ash Phosphorus Reference 

Cereal 
Norma maize 0.70 0.10-0.13 0.10 0.02 Swinkels, 1985a 
Normal maize 0.73 0.02 0.03 Hoover and Manuel, 1996 
Normal maize 0.27 0.03 0.09 Qian eta/., 1998 
Normal maize 0.63 0.03 0.07 Vasanthan et al., 1997 

Amylomaize V 0.95 0.03 0.02 Hoover and Manuel,1996 

Waxy maize 0.15 0.04 0.10 0.01 Swinkels, 1985a 
Waxy maize 0.22 0.02 0.02 Hoover and Manuel, 1996 

Oat 1.13 0.05 0.03 Hoover and Vasanthan, 1992, 1994b 
Oat 1.1-1.7 0.04-0.06 0.06-0.07 Gibinski et al., 1993 
Oat 2.1-2.5 0.14-0.15 0.15-0.19 Hartunian-Sowa and White, 1992 

Wheat 0.80 0.07 0.20 0.06 Swinkels, 1985a 
Wheat 0.70 0.04 0.02 Hoover et al., 1994b 
Wheat 0.32 0.03 0.13 Qian et a/., 1988 

Root and tuber 
Potato 0.11 0.03 0.05 Hoover et a/., 1994b 
Potato 0.05 0.01 0.40 0.08 Swinkels, 1985a 

Tapioca 0.10 0.02 0.20 0.01 Swinkels, 1985a 

Yam 0.09 0.03 0.02 Hoover and Vasanthan, 1994b 

Legume 
Lentil 0.14 0.02 0.03 Hoover and Vasanthan, 1994b 
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crude starch with diluted alkali can reduce protein values in purified cereal 

starches. However, a serious problem with any starch purification procedure is 

selective loss of small starch granules in discarded protein and cell debris 

(Morrison, 1988). Approximately 1 0°.4 of the starch proteins appeared to be 

associated with the granule surface (Galliard and Bowler, 1987). Maize and waxy 

maize starches contain a considerable amount of proteins (0.25-0.8%) compared 

to tuber and root starches (potato 0.06°k, and tapioca [cassava] starch 0.01% 

respectively)[Swinkels, 1985a, Buleon et a/., 1998] (Table 2.3). In rice starch 

protein may be found on the periphery of the starch or embedded inside the 

granule (Yonezaki and Oshima, 1975). The high amount of proteins in the cereal 

starches may have the following disadvantages: form building and color 

formation in hydrolysates, formation of mealy flavors (Swinkels, 1985a, Galliard 

and Bowler, 1987), formation of Maillard products during conversion of starch to 

hydrolysis products (e.g. sugar syrups) (Galliard and Bowler, 1987). However, 

nitrogenous materials in starch hydrolysate& may be unimportant, or even 

beneficial, if these syrups are used as fermentation substrates. 

2.4.3.2 Ash (mineral) 

Mineral are not distributed evenly in the grain. Most of the minerals are 

concentrated in the aleurone layer (Hosee1ey, 1994). Native starches contain 

mainly calcium, potassium, magnesium and sodium (Swinkles, 1985a, Galliard 

and Bowler, 1987, Buleon et a/., 1998). Cereal starches contain phosphorus, 

which is mainly in the form of phospholipids. Potato starch has a exceptionally 
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high content of ash because of the presence of phosphate monoesters. Table 

2.3 shows the ash content of various native starches. 

2.4.3.3 Upida 

Lipid content of different starches are presented in Table 2.3. Lipids associated 

with cereal starch granules have been found to occur on the surface as well as 

inside the granules (Monison, 1981, Morrison et al., 1993b). It has been 

suggested that all lipids found on the surface of starch granules have to be 

considered as surface lipids (Galliard and Bowler, 1987). However, the location 

of the lipids at the surface of starch granule is still unknown (Buleon et al., 1998). 

The surface lipids are mainly triglycerides, with some amount of free fatty acids, 

glycolipids and phospholipids (Morrison, 1981, Buleon eta/., 1998 ). The internal 

lipids of cereal starches are predominantly monoacyl lipids, with the major 

components being lysophospholipids and mixtures of free fatty acids (Hargin and 

Morrison, 1980, Morrison, 1981, Morrison, 1988, Swinkles. 1985a). 

Lysophosphatidylcholine is the major phospholipid found in maize starch. The 

amount of free fatty acids varies from 1/3 to 112 of the total lipids in maize and 

rice starch (Morrison, 1988). 

It is likely that both surface and internal lipids may be present in the free state as 

well as bound to starch components, either in the fonn of amylose inclusion 

complexes (Acker, 19n) or linked via ionic or hydrogen bonding to hydroxyl 

groups of the starch components (Hoover and Vasanthan, 1992). 
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Most cereal starches are of the A-type and have more lipid (around 1 °A. ) than 

starches of the B- and C-types (0.1%) (Hizukuri et a/.,1980). Maize starch 

contains 0.8% of lipid (free fatty acid and lysolecithin, 0.62. 0.18 respectively) 

(Hizukuri et a/., 1980). Amylomaize starch has been found to contain more lipid 

than nonnal maize starch (Buleon eta/., 1998). The reason for the presence of 

starch lipids is not known. Hizukuri eta/. (1980) reported the high amylomaize 

starch is capable of including more lipid and thus of lowering the lipid level inside 

the amyloplast membrane. Hizukuri et a/., ( 1980) suggested that lipid may play 

an effective role in the polymorph shift (towards the A-type from the B-type) 

under certain conditions. In most cereal starches there is a strong correlation 

between the amylose content and the lipid content. Most waxy starches have 

comparatively low amount of lipids (Table 2.3). Both lysophospholipid and 

amylose content increase with maturity of maize starches (Morrison and Gadan, 

1987, Buleon et a/., 1998). The lipid content of oat starch has been found to be 

negatively correlated with average granule size and amylose content (Wang and 

White, 19948). However, oat is unusual among cereals, in that most of the oil is 

located in the endosperm (Morrison, 1978). Swinkels (1985a) summarized the 

effects of starch lipids as: (i) reducing the water·binding capacity, swelling and 

solubilization of starches; (ii) giving rise to undesirable flavours by oxidation of 

unsaturated lipids (presumably this must be due to surface lipids, because 

intemal, amylose-bound lipids are remarkably resistant to oxidation); (iii) forming 

'inert• complexes with amylose in starch pastes and films, hence preventing part 

of the amylose from contributing to the thickening pcwver of gelatinized starch; (iv) 
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giving rise to cloudy or opaque starch paste and films, due to the presence of 

relatively insoluble starch-lipid complexes. 

Starch damage has been reported to occur mainly during isolation of cereal 

starches (Evers eta/., 1984, Vasanthan and Bhatty, 1996). The type of damage 

may extend from cracks, pits, cuts and other abrasions on the surface to 

cleavage of amylose and amylopectin (Vasanthan and Hoover. 1992a). 

Therefore, there is a greater possibility that cross-contamination of surface (free 

and bound) with internal (free and bound ) lipids, and vice versa, could occur 

respectively during cold and hot solvent extractions (Vasanthan and Hoover. 

1992a). 

2.4.4 Amorphous and crystalline ntglo,. of starch granul• 

A model of the arrangement of the amorphous and crystalline regions of starch 

granules is schematically shown in Figure 2-7a. Regions of amylopectin double 

helix formation fall within the crystalline lamellae, whilst the amylopectin branch 

points lie in the amorphous lamellae (Jenkins et at., 1994, Jane eta/., 1997). 

These crystalline lamellae exist in the granule alternately with amorphous 

lamellae (Figure 2-7b). The combined thickness of crystalline plus amorphous 

lamellae is 9nm and 9.2nm for A-type starches and B-type starches respectively 

(Jenkins eta/., 1993, Jane, 1997). Jenkins eta/., (1994) postulated that most of 

the amylose is deposited in amorphous growth rings which represents the 

amorphous background. It has been shown that the clusters of amylopectin short 

chains are the crystalline domains of the molecule (Yamaguchi eta/., 1979). 
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Figure 2-7 Schematic diagram of starch granule structure. (a) a single granule, 
comprising concentric rings of alternating amorphous and semi­
crystalline composition. (b) Expanded view of the internal structure. 
The semi-crystalline growth ring contains stacks of amorphous and 
crystalline lamellae. (c) The currently accepted cluster structure for 
amylopectin within the semi-crystalline growth ring. A-chain sections 
of amylopectin form double helices, which are regularly packed into 
crystalline lamellae. 8-chains of amylopectin provide intercluster 
connections. Branching points for both A and B chains are 
predominantly located within the amorphous lamellae. (Jenkins et a/., 
1994, reproduced with permission) 
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Furthermore, these clusters could well be the origin of the concentric layers of 

crystalline, relatively acid-resistant material, that have been observed in 

transmission electron microscopy (Coultate, 1984). However, the amorphous 

region of the starch granule has received scant attention, though it accounts for -

70% of the granule (Oostergetel and Van Bruggen, 1993). It has been pointed 

out that the amorphous regions are loosely packed and, thus, more susceptible 

to chemical and enzyme attack (Biliaderis, 1982). 

2.4.5 Crptalllnlty 

The fad that starch is a semicrystalline material has been clear since the classic 

work of Katz and Vanltallie (1930). The crystalline nature of the starch granule is 

mainly due to the branched amylopectin rather than the linear amylose (Meyer 

and Bemfeld, 1940. Montgomery and Senti, 1958, Jenkins and Donald, 1995). 

Native starch granules shows birefringence due to crystallinity within the 

molecule (Swinkels, 1985b. Kirby, 1987). The crystalline nature of amylopectin is 

remarkably important for efficient packing of the starch in the granule (Hancock 

and Tarbet. 2000). Different techniques have been used to determine the 

absolute crystallinity of native starches. However, the values obtained vary 

depending on the technique used for calculation of crystallinity (Khairy et a/., 

1966} and the level of moisture content [Sterling, 1960, Cheetam and Tao. 1998] 

(Table 2.4). 
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Table 2.4 The relationship between amylose content, degree of crystallinity crystalline type, and hydration levels of starches from 
various botanical sources 

% fnstallin~ at moimure Crystalline 
Starch source Amylose% • .... 10% -20% -3QOA, tvpe Reference 

Cereal 

Normal maize 39.0 A Hizukuri, 1996 
Normal maize 28.0 30.3 51.6 A Cheetham and Tao, 1998 
Normal maize 27.0 40.0 A Zobel, 1988a 
Normal maize 27.0 A Cooke and Gidley, 1992 
Normal maize 39.0 A Nara et al., 1978 
Maize 40.0 21.8 47.9 c Cheetham and Tao, 1998 

Amylomaize V 58.0 19.5 43.7 B Cheetham and Tao, 1998 
Amylomaize V 65.0 17.6 42.7 B Cheetham and Tao, 1998 

Amylomaize VII 84.0 17.2 41.3 8 Cheetham and Tao, 1998 
Amylomaize VII 55-75 15-22 B Zobel, 1988a 
Amylomaize VII 19-24 B Hizukuri, 1996 
Amylomaize VII 24.0 B Khairy et a/., 1966 

Waxy maize 0 41.8 74.6 A Cheetham and Tao, 1998 
Waxy maize 0 40.0 A Zobel, 1988a 
Waxy maize 0 28.0 A Cooke and Gidley, 1992 

Rice 17.0 38.0 38.0 A Zobel, 1988a, 
Rice 38.0 A Hizukuri, 1996 
Rice 38.0 A Nara eta/ .• 1978 
Rice (soft) 18.4-22.5 32.5-39.3 A Ong and Blanshard, 1995 
Rice (hard) 22.4-29.5 29.2-35.4 A Ong and Blanshard, 1995 
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Cont., 

Oat 23.0 33.0 A Zobel, 1988a 
Oat 28.2 A Chun et al., 1997 

Wheat 23.0 36.0 A Hizukuri1996,Zobel1988a 

Root and tuber 

Potato 22.0 28.0 8 Zobel,1988a 
Potato 25 B Nara et al., 1978 

Sweet potato 20.0 38.0 c Zobel, 1988a 
Sweet potato 37 c Nara et al., 1978 

Cassava 18.0 . 38.0 c Zobel, 1988a 
Cassava 28.8 39.5 Atichokudomchai ef al., 2000 

• Moisture content not available 



2.4.5.1 Degree of Crysmlllnity 

Starch is biosynthesized as semi-crystalline granules with varying polymorphic 

types and degrees of crystallinity. However, determination of the degree of 

crystallinity in native starches is difficult because of small crystal size (Lineback, 

1984) and the extent of hydration (Buleon eta/., 1998). Typically, native starch 

granules range in degree of crystallinity from about 15% to 45% (Zoble, 1988b). 

However, Lineback (1984) reported the degree of crystallinity ranges from 0 to 

60%. Furthermore, in cereal starches, the sharpness of X-ray diffraction bands 

increases only between 9% and 25% moisture content [dry basis) (Guilbot et a/ .• 

1961). High-amylomaize starches reveal poorer crystallinity and are less 

birefringent than normal or waxy maize starches (Banks et a/., 197 4, Lineback, 

1984, Zobel, 1988a). 

There is considerable evidence that water molecules play an important role in 

maintaining the crystal structure. It has been reported that there is a significance 

increase in peak resolution and intensity upon hydration (Hizukuri eta/., 1964, 

Nara et al., 1978, Buleon eta/., 1982, Veregin et al., 1986, Buleon et al., 1987, 

Hibi et al., 1993). The positions of the water molecules do have a significant 

effect especially upon the 5.5° and 25.5° 28 peaks (Bianshard, 1987). The 

crystallinity of starch granules can be destroyed by mechanical disruptions such 

as ball milling, washing or subjecting to high pressure starch at room temperature 

will eventually completely destroy both the optical birefringence and the X-ray 

patterns (Lineback, 1984, Baldwin et sl., 1994). 
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2.4.5.2 A-, B-. and C- type X-ray diffraction (polymorphic) patterns 

Native starch granules contain crystalline regions as shown by their unique X-ray 

powder diffraction pattems (XRD). Therefore granular crystallinity can be studied 

with X-ray diffraction techniques. Four distinct X-ray patterns have been 

described; 1) The 'A'-pattem (Figure 2-8)[cereal starches, except high amylose 

varieties] (Zobel, 1988a, Cheetham and Tao, 1998); 2) The '8'-pattem [tuber, 

root, stem (pith), banana (Lineback, 1984), high amylose varieties (Cheetham 

and Tao, 1998), and retrograded starches (Kodama eta/., 1978, Zobel, 1988a, 

Gidley, 1989, 8iliaderis, 1991, Morrison et al., 1993a); 3) The 'C'-pattem (a 

mixture of 'A' & '8' pattern), characteristics to 40°/o amylose containing maize 

starches, legume, rhizome, sweet potato, tapioca starches (Zobel, 1988a, Gemat 

et al., 1990, Hizukuri 1996, Cheetham and Tao, 1998); and 4) 'V'-pattem 

characteristic of crystalline amylose helical inclusion compounds (Eiiasson and 

Gudmundsson, 1996, Blanshard, 1987). The A-and 8-types polymorph differ 

clearly, but the C-type appears to be a mixture of the A- and 8-types in various 

proportions (Sarko and Wu, 1978, Hizukuri et al., 1980, Lineback, 1984). Figure 

2-9 shows the X-ray diffractograms of maize starches of differing amylose 

content. 

2.4.5.2.1 Factors that influence polymorpic pattama 

Polymorphism of the a-glucans is one of the main characteristics of the 

crystalline parts in starch granules. Hizukuri et al., (1980) reported that both the 

environmental temperature (growth and soil temperature) and the physiological 
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Figure 2~8 X~ray diffraction patterns of A-, 8-, C-type starches with their 
characteristic d-spacing (adapted from Zobel, 1988b). A-type 
pattern. with strong peaks at 29 15.2-r' or with a intercrystalline 
spacing d=5.8 Angstrom (A) and 23.40° {d=3.8A). and an incomplete 
doublet at 29 17°.05 (d=5.2 A)and, 18.1° (ct--4.9 A) (Zobel, 1988b). 
The d-spacing at 4.4A is characteristic of amylose-lipid complex 
(Vasanthan and Bhatty, 1996). 8-type shows a peak at 29 5.6-5.52 
(d=15.8-16.0A), a broad medium intensity peak at 29 15.01 
(d=5.9A), the strongest peak at 29 17.05 (d=5.2A) and medium 
intensity peaks at 28 19.72 (ct--4.5 A) , 22.22 (ct--4.0 A) and 24.04 
(d=3.7A). There is a peak at 29 5° (d=17.7A) which is characteristic 
of the B pattern. C-type is the same as A-type except for the 
addition of the medium to strong peak at about 29 5.52(d=16.0 
A)(Zobel, 1988b, Shi and Seib, 1992, Cheetham and Tao, 1998) 
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Figure 2-9 Wide angle X-ray powder diffraction spectra for maize starches with 
different amylose contents (Cheetham and Tao, 1998, reproduced 
with permission) 
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conditons inside cells influence the type of polymorph. Studies have also shown 

that the polymorphic forms of starch crystalline structures depend on numerous 

factors such as a-0(1-+4) glucan chain length (Robin et al., 1974, Hizukuri eta/., 

1983, Hizukuri, 1985, Hanashiro et al., 1996, Pfannemuller, 1987, Gidley, 1987, 

Gidley and Bulpin, 1987), concentration of starch solution (Gidley, 1987, Gidley 

and Bulpin, 1987, Hizukuri, 1960) temperature (Hizukuri, 1961, Gidley 1987, 

Whittam et a/., 1990), and the presence of other solutes and solvents (Hizukuri et 

a/., 1960, Hizukuri eta/., 1980, Ring eta/., 1987b) and organic molecules (Gidley, 

1987). 

2.4.5.2.2 Chain length and polymorphic patterns 

Starches with amylopectins of relatively short average branch chain lengths (DP 

23-29), such as waxy maize, normal maize, and rice display the A-type X-ray 

diffraction pattem. The long amylopectin branch-chain lengths (DP 30-44 ), such 

as high amylomaize starches show the B-type X-ray pattern (Gemat et a/., 1993) 

and intermediate chain length is associated with C-type crystallinity (Hizukuri, 

1985, Hizukuri et a/., 1983, Jenkins and Donald, 1995, Hanashiro and Hizukuri, 

1996, Jane, eta/., 1997). The difference in the average chain length between the 

A-type and 8-type starches can be as little as one glucose unit (Hanashiro et a/. 

1998). These are probably due to mixtures of A- and 8-type crystallites, either 

within individual granules or as mixtures of A-and B-type granules (lineback, 

1984). The intermediate amylopectin branch-chain lengths (DP 26-36) display 

the C-type X-ray patterns (Hizukuri eta/., 1983 and Hizukuri, 1985). 
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2.4.5.2.3 Arrangement of water molecules in A· and B· type polymorph 

A-and 8-amylose helices are right-handed (Singh et a/., 1993). The double 

helices of A-and 8- structures differ in the crystalline packing of the helices and 

the water content (Wu and Sarko, 1978a,b). The unit cell of 8-amylose has much 

more space available for water than the A-amylose unit cell (Gidley and 8ociek, 

1985). The A-amylose and 8-amylose crystallizes in orthogonal 8 and hexagonal 

36 water molecules per unit cell respectively (Figure 2-10). The lateral distance 

between the helices are nearly identical in both A-and 8-amylose which suggest 

a possibility of interconversion of the two structures (Sarka and Wu, 1978, Wu 

and Sarka, 1978a,b). However, Kainuma and French (1972) reported that water 

is not a integral constituent of 8-starch crystals. 

2.5 Starch properties 

2.5.1 Granular swelling 

Granule swelling is an important physical parameter which has been extensively 

studied because of its influence on physicochemical properties of starches 

(Leach et al., 1959). Most starches are insoluble in cold water and undergo a 

limited reversible (on drying) swelling due to diffusion and absorption of small 

amounts of water into the amorphous regions (an exothermic process) (Collison, 

1968). When water is added to a starch granule water enters the amorphous 

domains of the starch more readily than the crystalline domains (Hancock and 

Tarbet, 2000). The sequence of events during swelling of potato starch is 

presented in Figure 2-11. Granular swelling has been shown to be influenced by 

granular siZe (Vasanthan and Bhatty, 1996), amylose content (Eiiasson, 1985, 
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Figura 2-10 Double helix packing arrangement in A- and B·type unit cells 
(Adapted from Wu and Sarko, 1978a,b) 
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Figure 2-11 Granular swelling of potato starch in hot water (Hancock and Tarbet 
2000, reproduced with permission) 
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Colonna and Mercier, 1985, Tester and Morrison, 1990a, 1992, Morrison eta/., 

1993b, Wang and Seib, 1996), starch damage (Aisberg, 1938, Karkalas et al., 

1992, Tester et a/., 1994, Tester and Morrison, 1994, Morrison et a/., 1994, 

Morrison and Tester, 1994), temperature (Colonna and Mercier, 1985, 

Gudmundsson and Eliasson, 1989, Ellis et a/., 1989), bound lipid content 

(Gudmundsson and Eliasson, 1989, Tester, 1997a), and crystallinity (Robin et 

a/., 1975). The extent of swelling of some starches are presented in Figure 2-12. 

Jenkins et al., (1994) showed that the initial absorption of water and the location 

of swelling occur primarily within the amorphous growth ring rather than the 

amorphous lamellae. Consequently, ordered amylopectin double helices within 

the semicrystalline growth ring are destabilized leading to a complete loss of 

crystallinity. 

2.5.2 Gelatinization 

Gelatinization has been defined as an irreversible change of granular swelling 

and melting of starch crystallites when native starch is heated in water under 

specific temperature ranges and certain moisture levels (Donovan 1979, French 

1984, Biliaderis, 1990, Cooke and Gidley 1992, Colonna et al., 1992, Eliasson 

and Gudmundsson 1996, Jacobs and Delcour 1998). There are actually two 

processes occurring during the gelatinization phase transition: first, the melting of 

the starch crystallites, which is an endothermic process, and second, the 

formation of the amylose-lipid complexes, which is an exothermic process 

(Biliaderis et al., 1986b, Eliasson and Gudmundsson 1996). This phase 

transition is associated with the diffusion of water into the granule, water uptake 
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Figure 2-12 Swelling patterns of smooth pea (A), wrinkled pea <•. normal 
maize (0), and high amylose maize (V) starches [expressed as g of 
water per g of dry starch in the sediment] (Colonna and Mercier, 1985, 
reproduced with permission) 
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by the amorphous background region, hydration and radial swelling of the starch 

granules, leaching of amylose into the solution, increase in viscosity, loss of 

optical birefringence, loss of crystalline order, unraveling and dissociation of 

double helices (in the crystalline regions) and starch solubilization (Stevens and 

Elton, 1971, Lelievre and Mitchell, 1975, Donovan, 1979, Biliaderis et at., 1980, 

Hoover and Hadziyev, 1981, Donovan et al., 1983, Swinkels, 1985b, Atwell et al., 

1988, Biliaderis, 1991, Evans and Haismann, 1982, Jenkins, 1994, Biliaderis 

1998). Jenkins (1994) showed by means of small angle neutron scattering 

studies, that the mechanisms proposed by Evans and Haismann (1982), 

Blanshard (1987), Biliaderis eta/., (1986b) were not compatible with his results, 

but were in broad agreement with gelatinization mechanism proposed by 

Donovan (1979). Jenkins (1994) has postulated that in excess water 

gelatinization is a primarily swelling driven process. Water uptake by the 

amorphous background regions is accompanied by swelling within these region. 

This swelling acts to destabilize the amylopectin crystallites within the crystalline 

lamellae, which are ripped apart. This process occurs rapidly for an individual 

crystallite, but over a wide range for the whole granule. Smaller crystallites are 

less soluble and destroyed first. In conditions of limiting water, initial crystallite 

disruption occurs by the same swelling driven mechanism. However. these is 

insufficient water for this process to proceed to completion. At higher 

temperatures the remaining crystallites slowly melt. 

Many methods are presently available for the determination of starch 

gelatiniZation, such as Kofler hot-stage microscope (Watson, 1964}, DSC 
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(Stevens and Elton. 1971). small angle X-ray scattering (Jenkins, 1994), pulsed 

nuclear magnetic resonance (Lelievre and Mitchell. 1975), and enzymic methods 

(Zobel, 1984). Because gelatinization is an endothermic process. thermal 

analysis methods, and differential scanning calorimetry in particular, have 

attracted most interest in studies of phase transitions of phenomena (Biliaderis et 

a/., 1986a). DSC measures the gelatinization transition temperatures [(onset [To], 

midpoint [Tp]. conclusion [Tc] and the enthalpy (AH) of gelatinization (Table 2.5) 

Many factors influence the gelatinization temperature 1) water content, 2) starch 

source, 3) lipid, 4) damage starch, 5) environmental condition during growth, and 

6) the presence of ions and solutes (Tester eta/., 1991, Shi et al .• 1994, Morrison 

1995, Eliasson and Gudmundsson 1996). Perhaps the most fundamental 

influence is the influence of water. However. Noda eta/., (1996) have postulated 

that OSC parameters (To, Tp, Tc, ~H) are influenced by the molecular 

architecture of the crystalline region, which corresponds to the distribution of 

amylopectin short chains (DP 6-11) and not by the proportion of crystalline region 

which corresponds to the amylose to amylopectin ratio. Tester (1997b) has 

postulated that the extent of crystalline perfection is reflected in the gelatinization 

temperature. Cooke and Gidley (1992) have shown (13C.CP MAS-NMR and X­

ray diffraction) that the enthalpic transition is primarily due to the loss of double 

helical order rather than the loss of crystallinity. However, Tester and Morrison 

(1990a) have postulated that AH reflects the overall crystallinity (quality and 

amount of starch crystallites) of amylopectin. Gemat eta/., (1993) have stated 

that the amount of double-helical order in native starches should be strongly 
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Table 2.5. Gelatinization parameters of native cereal starches 

Tem91rature ~C} 
Starch source To Tp Tc To-Te AH (J/gl Reference 

Normal maize 62.9 70.5 81.1 18.2 12.6 Tester et at., 2000 
Normal maize 66.1 70.7 75.2 9.1 13.2 McPherson eta/., 2000 
Normal maize 61.0 66.0 72.0 11.0 15.1 lnouchi et al., 1991 
Normal maize 63.7 70.6 12.1 Campbell & Glover, 1996 
Normal maize 70.0 78.0 89.0 19.0 18.0 Wootton & Bamunuarachchi 1979 
Normal maize 60.0 70.0 82.0 12.0 11.4 Tester, 1997a 
Normal maize 64.1 69.4 74.9 10.8 12.3 Jane et at., 1999 
Normal maize 59.0 70.5 85.0 26.0 12.2 Morrison et al., 1994 
Normal maize 64.7 69.9 79.2 10.4 11.3 Qian eta/., 1998 
Normal maize 68.0 71.0 13.8 lnouchi & Glover 1984 
Normal maize 60.0 67.0 89.0 29.0 13.8 Biliaderis, 1980 
Normal maize 59.0 68.0 73.0 14.0 14.0 Hoover & Manual, 1996 

Amylomaize V 63.0 76.0 82.0 19.0 6.3 Hoover & Manuel, 1996 
Arnylomaize V 67.7 91.0 104.8 37.1 17.7 Tester et at., 2000 
Amylomaize V 71.0 81.3 112.6 41.6 19.5 Jane et al., 1999 
Amylomaize V 70.1 75.6 8.6 Knutson, 1990 
Amylomaize V 11.9 Fergason, 1994b 
Amylomaize V 20.6 Klucinec & Thompson, 1999 
Amylomaize V 71.0 82.0 114.0 43.0 17.6 Biliaderis, 1980 

Amylomaize VII 50.0 133.0 83.0 31 .8 Wootton & Bamunuarachchi 1979 
Amylomaize VII 86.4 94.0 10.6 Knutson, 1990 
Amylomaize VII 70.6 129.4 58.8 16.2 Jane et at., 1999 
Amylomaize VII 22.7 Klucinec & Thompson, 1999 
Amylomaize VII 9.7 Fergason, 1994b 
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Cont., 

Waxy maize 62.6 72.6 84.4 21.8 15.6 Tester et a/ .• 2000 
Waxy maize 66-70 73-74 71-82 5-12 15.5-16.3 lnouchi et a/ .• 1995 
Waxy maize 62.0 69.0 81.0 19.0 19.3 lnouchi et a/., 1991 
Waxy maize 15.0 Fergason, 1994b 
Waxy maize 68.0 79.0 90.0 22.0 19.7 Wootton & Bamunuarachchi 1979 
Waxy maize 60.0 72.5 87.0 17.0 15.2 Tester, 1997a 
Waxy maize 64.2 69.2 74.6 10.4 15.4 Jane et al .• 1999 
Waxy maize 73.0 16.0 Kugimiya & Donovan, 1981 
Waxy maize 67.0 75.0 15.5 lnouchi & Glover, 1984 
Waxy maize 67.2 72.8 15.6 Knutson, 1990 
Waxy maize 64.0 71.0 97.0 33.0 16.6 Biliaderis. 1980 
Waxy maize 65.0 73.0 82.0 17.0 16.0 Hoover & Manuel, 1986 

Rice 59.7 67.8 82.6 22.9 13.0 Jacobs eta/., 1996 
Rice 58.0 74.6 88.4 30.4 15.3 Chatakanonda eta/., 2000 
Rice 73.2 13.8 Biliaderis & Tonogai, 1991 
Rice 66.0 82.0 100.0 34.0 14.2 Stevens & Elton, 1971 
Rice 68.0 79.0 108.0 40.0 16.3 Stevens & Elton, 1971 
Rice 56.0 69.3 83.5 27.5 13.1 Tester. 1997a 
Rice 70.3 76.2 80.2 9.9 13.2 Jane et al .• 1999 
Rice (IR 480-5-9) 53.0 61.9 87.0 34.0 11.5 Paton, 1987 
Rice (IR 5) 61.0 73.1 95.0 34.0 13.3 Paton, 1987 
Rice (soft) 62.1-73.7 66.7-78.2 75.3-84.6 13.2-10.9 10.5-14.2 Ong and Blanshard, 1995 
Rice (hard} 59.8-73.8 63.8-78 68.0-84.3 8.2-10.5 12.6-18.0 Ong and Blanshard, 1995 

Oat 54.0 59.0 70.0 16.0 10.5 Shamekh, 1994 
Oat 60.0 66.0 71.0 11.5 Hoover et al .• 1994 
Oat 60.0 64.0 70.0 10.0 10.5 Hoover & Vasanthan, 1994b 
Oat 61.0 66.0 73.0 12.0 10.4 Hoover & Vasanthan, 1992 
Oat 61.1 66.8 82.0 20.9 9.1 Paton, 1987 
Oat 60.4 64.1 70.0 9.6 10.1 Hoover & Vasanthan. 1994a 



correlated to the amylopectin content, and granule crystallinity increases 

amylopectin content. Gelatinization enthalpies of native cereal starches are 

generally in the range of 9-23 J/g (Table 2.5). 

2.5.3 Retrogradation 

Retrogradation is generally defined as reassociation of gelatinized starch (gel) 

via chain aggregation by hydrogen bonding and recrystallization on storage 

(O'Dell, 1979, Swinkels, 1985b, Biliaderis, 1998). · During this process squeezing 

of water out of the gel is called 'syneresis' (Hoseny, 1994, Biliaderis, 1998). 

Starch retrogradation is the main factor in staling of bread and other baked 

products (Eliassen and Gudmundsson, 1996). It has been recognized that 

retrogradation consists of two separable processes: (a) gelation of amylose 

solubilized during gelatinization, and (b) recrystallization of amylopectin within the 

gelatinized granules (Miles et a/., 1985a,b). Retrograded starch, as well as 

retrograded amylose, exhibits the 8-type X-ray diffraction pattern (Young, 1984). 

Retrogradation is a complex phenomenon and it is favored by many factors, such 

as sources of starch, starch concentration, absence of branching, storage 

temperature, storage period, relatively low degrees of polymerization, neutral pH, 

low degrees of polydispersity, presence of solutes (lipids, electrolytes, sugars), 

presence of other dehydrating substances (Young, 1984, Swinkels, 1985b, 

Eliasson and Larsson, 1993). The water content together with the storage 

temperature are very important because they control the rate and the extent of 

retrogradation (Eiiasson and Gudmundsson. 1996). The time-dependent 

increase in enthalpy of retrograded starch shows that starch crystallization 
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occurs at a faster rate and to a greater extent when a lower single storage 

temperature is employed within the range ·1° and -43°C (Biliaderis, 1990). 

Retrogradation has a significant influence on texture, digestibility, and consumer 

acceptability of starch-based products (Ring et a/., 1987 a, Biliaderis, 1998 ). 

During the storage of a starch gel the rigidity continues to increase with time. 

This increase is reversible to some extent: the part related to the crystallization of 

amylopectin can be reversed by heating (Eiiasson and Gudmundsson, 1996). 

2.6 Acid hydrolysis 

In general, enzymatic and acidic attack on starch are similar since they both 

involve hydrolysis of the bonds in the starch polymers. In more precise terms 

however, significant differences exist between the two types of attack with 

respect to bond specificity, mechanism of attack and extent of starch polymer 

degradation (Pianchot, 1993, Zherebtsov et al., 1995). Hydrolysis is a common 

processing approach which uses acids to etch away regions of the granule. This 

type of processing may be divided into two types, according to the acid used. 

Immersion in sulfuric acid (typically at a concentration of 15% (1.7M) at room 

temperature produces Nageli amylodextrins (Nageli, 1874). By contrast treatment 

with 2.2M HCI at elevated temperatures (typically 30-40°C) produces lintnerised 

starch (Lintner, 1886). When starch granules are subjected to controlled acid 

hydrolysis (2.2N HCI)(Iintnerization), below the gelatinization temperature, the 

initial attack by acid is on the relatively unprotected amorphous regions between 

the clusters of short chains making up the crystalline areas (Lineback, 1984 ). The 

amorphous region is hydrolyzed much faster (whether it be at the surface or in 
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the interior) than the crystalline domains (Aisberg, 1938, Cowie and Grenwood, 

1957, Buttrose, 1963, Kainuma and French, 1971, Robin eta/., 1974, Nara et al., 

1983, Biliaderis eta/., 1981, French, 1984, Blanshard, 1987, Pessa eta/., 1992, 

Jacobs et al., 1998, Manelius et al., 2000, Hoover. 2000). The far smaller size of 

the acid molecule (e.g. HCI compared to the enzyme) allows acidic attack to 

occur on a much greater scale than enzymic attack (Gallant et al., 1997). 

To account for the heterogeneous hydrolysis rate of the starch granule, three 

hypotheses have been proposed (Kainuma and French, 1971). First, the 

compact packing of starch chains within the starch crystallites does not readily 

permit the penetration of H3o• into the regions. The amorphous domains of the 

starch molecule are easily accessible to penetration of hydrated protons and 

hydrolyze much faster. However, the crystalline domains would only be 

hydrolyzed at the exterior of the crystallites or at its junction with an amorphous 

domain. Second, acid hydrolysis of a glucosidic bond may require a change in 

conformation (chair-. half chair) of the 0-glucopyranosyl unit (BeMiller, 1967). As 

long as the glucose units are held in a crystalline domain, chair-. half chair 

conformational change would require a very high energy of activation (Figure 

2-13). Obviously, if the crystalline structure immobilizes the sugar conformation 

then chair-. half chair transition would be sterically impossible (Hoover, 2000). 

Third, although it has not been confirmed, there is a possibility that the starch 

chains may aggregate in some form that is intrinsically resistant to acidic 

hydrolysis. However, this aggregation would not induce a greater perfection of 

crystallinity (Kainuma and French, 1971). 
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Flgu,. 2-13 Conformational change during the chair-+half chair transformation 

S6 



10 

' 

Half 
chair 

5. 5 kcallrnole 

7.1 kcallmole 

--------~ ... ~ ... ------ -----.-~--



2.6.1 Mechanism of acid hydrolysis 

In acid hydrolysis, hydronium ions (H30+) carry out an electrophilic attack on the 

oxygen atoms of the a· (1-+4) glucosidic bonds in starch molecules. The 

mechanism of cleavage of a· (1-+4) glucosidic bonds is illustrated by Figure 2· 

14a. The scheme (Figure 2-14a) explains the electrophilic attack of hydronium 

ion on the oxygen atom (glucosidic oxygen) of the a· (1-+4) glucosidic bond in 

starch molecule. In the next step (Figure 2-14b ), because of a significantly 

greater negative induction effect, the glucosidic oxygen atom of the a· (1-+4) 

glucosidic bond has a higher electron density than the anomeric carbon (C1 ), as 

a result the electrons in one of the carbon-oxygen bonds move onto the 

glucosidic oxygen atom to generate an unstable, high-energy carbocation 

intermediate (Figure 2-14c). The reduced density of the electron cloud near 

anomeric carbon (C1) is also caused by an induction effect of the glucose 

pyranose ring oxygen. This causes the electrophilic attack of a proton on the 

glucosidic oxygen atom and breaks the c,-0 bond. The carbocation intermediate 

is a Lewis acid, so it subsequenUy reacts with water (Lewis base) in the reaction 

mixture (Figure 2-14d), leading to regeneration of a hydroxyl group (OH-) 

(figure 2-14e) (Hoover, 2000). A similar mechanism works in the case of 

cleavage of the a· (1-+6) glucosidic bond of amylopectin molecules (Zherebtsov 

eta/., 1995). 

2.6.2 Susceptibility of a-(1~4), and a-(1_.6) linkages 

Wolfrom eta/., (1963) concluded that the a·D linkage is more prone to hydrolysis 

than the P·D linkage. The susceptibility of a-(1-+4) and of a-(1-+6) linkages to 
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Figure 2-14 Mechanism of acid hydrolysis of starch (Hoover 2000, reproduced 
with permission) 
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acid hydrolysis is an controversial issue. Levine et al., {1942) postulated that the 

a·(1-+6) glucosidic bond hydrolyzes at a rate at least as great as that of the a· 

(1--.4) linkage. Swanson and Cori (1948}, Jones eta/., (1955), Wolfrom eta/., 

(1963) have shown that a-(1~) linkage has been found to be approximately 

four times more susceptible to acid hydrolysis than the a-(1-+6) linkage. 

However, Robin eta/., (1974) and Singh and Ali (2000) have postulated that 

a-1 ,6 linkages are more acid susceptible. 

Jane et a/., (1997) have shown that the a-(1--+6) branch linkages of A·type 

starches are scattered in between amorphous and crystalline domains (Figure 

2-15). The above authors have postulated that some of the a-(1-+6) linkages of 

the A·type starch are found within the crystalline domains, whereas others are in 

the amorphous domains. However, a-(1~6) branch linkages of the 8-type 

starch present mainly in the amorphous lamellae and are thus more susceptible 

to H30+ (Jane, 1997). 

2.6.3 Structural studies on acid-treated starches 

2.6.3.1 Effect of amylose-lipid complexes on acid hydrolysis 

Morrison et al., (1993a) reported from studies on barley starches that lipid­

complexed segments of single chain V s-amylose helices are resistant to acid 

hydrolysis. However, lnouchi eta/., (1987) and Vasanthan and Hoover (1992a) 

showed that lipid removal (n-propanol-water 3:1 v/v) from wheat, com, and 

cassava starches does not cause any significant changes to the extent of acid 

hydrolysis. 
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Figure 2-15 Proposed models for A- (for waxy maize) and 8- (from potato) type 
amylopectin branching pattems (Adapted from Jane, 1997) 
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2.6.3.2 Effect of acid hydrolysis on gelatinization parameters 

Acid hydrolysis has been shown to have marked effect on gelatinization 

parameters. The gelatinization transition temperatures and the breadth of the 

gelatinization endotherm has been shown to increase on acid hydrolysis (Figure 

2-16)(Shi and Seib, 1992). However, the influence of acid hydrolysis on 

gelatinization enthalpy has been reported to vary with botanical source. 

hydrolysis condition and duration (Biliaderis et al., 1981, Muhr et al .. 1984, 

Komiya and Nara, 1986, Morrison et al .• 1993b, Jane eta/., 1997, Jenkins and 

Donald, 1997, Jacobs et al., 1998) [Table 2.6]. Since acid hydrolysis 

preferentially attacks the amorphous domains in the granule (Kainuma and 

French, 1971, Robin et al., 1974, Biliaderis eta/., 1981), the crystallites are 

decoupled from and no longer destabilized by the amorphous regions. 

Consequently. the starch crystallites of the acid-treated starches melt at a higher 

temperature than their native counterpart (Hoover, 2000). Morrison et a/., 

(1993a) suggested from studies on normal and waxy barley starch acid treated 

residues that the higher transition temperatures might be due to longer 

amylopectin double helices than in the unhydrolyzed amylopectin molecule, 

where the branch points might reduce the length of helix forming segments of the 

A and B chains. 

2.&.3.3 Effect of acid hydrolysis on X-ray diffraction patterns and 
crystallinity 

Several researchers have shown that starches retain their original X-ray 

diffraction pattern even after prolonged acid treatment. For instance waxy maize 
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Figure 2-16 DSC thermograms of native and acid treated (2.2M HCI at 30°C) 
waxy rice (IR 29) starch (Shi and Seib, 1992, reproduced with 
permission) 
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Table 2.8 Gelatinization enthalpy of native and acid treated starches 

Starcb source 

Cereal 

Wheat 

Native 

Lintnerized 

Barley (non-waxy) 

Native 

Lintnerized 

Barley (waxy) 

Native 

Lintnerized 

Root and tuber 

Potato 

Native 

Lintnerized 

AH (J/g) 

11.8 

11.5 

8.4-10.4 

20-25 

12-13.5 

17-19 

18.7 

23.0 

Conditions 

2.2M HCI35°CI 24h 

2M HCI 35°CI 140h 

2M HCI35°C1 140h 

2.2M HCI35°C, 24h 
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Reference 

Jacobs et al. I 1998 

Morrison et al. I 1993b 

Morrison et a/. I 1993b 

Jacobs et a/. I 1998 



Cont., 

Lintnerized 18.6 2.2M HCI 35°C, 7 days 

Lintnerized 13.7 2.2M HCI 35°C, 20 days 

Potato Komiya and Nara 1986 

Native 17.7 

Acid treated 17.54 1N H2SO~ 30% ethanoi45°C, 2days 

Acid treated 17.38 1 N H2SO~ 30% ethanoi45°C, 6days 

Acid treated 13.82 1N H2SO~ 30% ethanoi45°C, 10 days 

Legume 

Pea Jacobs et al .• 1998 

Native 12.6 

Lintnerized 13.0 2.2M HCI35°C, 24h 



(Kainuma and French, 1971). potato (Kainuma and French 1971), rice (Maningat 

and Juliano, 1979), and legumes (Biliaderis eta/., 1981) and some cultivars of 

barley starches (Morrison et al.. 1993c) showed unchanged X-ray diffraction 

patterns after acid hydrolysis. Maningat and Juliano (1979), Muhr eta/., (1984). 

and Komiya et al .• (1987) showed that the X-ray diffraction intensities increase 

with progress of acid hydrolysis. Furthermore, several other researchers have 

also shown, by wide angle powder X-ray diffraction studies on acid treated 

starches, that the intensities of the major peaks centered in the region 18-23°. 29 

increases and becomes sharper on acid hydrolysis (Kainuma and French, 1971 , 

French, 1972, Robin eta/., 1974, Robin eta/., 1975, Buleon eta/., 1987, Jane et 

a/., 1997, Jenkins and Donald, 1997). For instance crystallinity of potato (Muhr et 

a/.,1984, Komiya and Nara, 1986), maize (Komiya et a/., 1987) and non waxy 

barley starches {Morrison eta/., 1993c) have been shown to increase on acid 

hydrolysis. This suggests preferential hydrolysis of the amorphous regions of the 

starch granule (Hoover, 2000). However, acid treated residues of waxy barley 

starches showed loss of crystallinity (Morrison et a/., 1993c). Furthermore, 

Jenkins and Donald ( 1997) have shown by small angle X-ray scattering that, as 

hydrolysis time increases, the small-angle peak loses definition. This result was 

in contradiction with the observation of increase in crystallinity with hydrolysis 

time (Muhr et a/.,1984, Komiya et a/., 1987). However, using model-fitting 

techniques, Jenkins and Donald (1997) showed that, as starch is hydrolyzed, 

there is a decrease in the electron densities of the amorphous lamella and of the 

amorphous background. This decrease (due to etching away of the amorphous 
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region) was more pronounced in the latter. This was attributed to the greater 

accessibility of the amorphous background to the hydrated protons. However, a 

dearth of information still exists on the X-ray pattern and crystallinity of acid 

treated starch residues at different time intervals during acid hydrolysis. 
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3. Materials and Methods 

3.1 Mat.riala 

Normal maize (C.Gel 3420), amylomaize V (C.Gel 03001), amylomaize VII 

(C.Gel 03003), and waxy maize (C.Gel 4230) starches were obtained from 

Cerestar., Hammond, Ind., USA. Rice starch was obtained from Sigma Chemical 

Co., St. Louis, MO, USA. Oat grains (Avena sativa L.) was obtained from the 

Plant Research Center at Ottawa, Canada. Chemicals and solvents were 

analytical grade. 

3.2 Methoda 

3.2.1 Oat starch isolation and purification 

Oat grains were divided into two lots representing whole samples. Each lot was 

further subdivided into three equal sub samples and the starch was extracted 

and purified from each sub sample according to the following procedure: 

Oat grains (300g) were cleaned and steeped in distilled water at room 

temperature over night. A ratio of 1 part soaked grains to 3 parts distilled water 

was mixed and ground at low and high speed, 35 and Ssec. respectively, in a 

Waring blender (Waring Model 33 BL 73, New Hartford, USA). The suspension 

was filtered under vacuum through a double layer cheese-cloth. The crude 

starch {filtrate) was collected and allowed to settle for 6h. The upper viscous 

layer was removed by siphoning and the sediment was suspended in excess 

0.02% NaOH. Further purification was done by repeated suspension in distilled 



water and 0.02% NaOH (alternatively) until disappearance of the amber colour of 

the supernatant. Then the sediment was filtered through a 701! polypropylene 

screen (Spectra/Mesh. Macroporous filters, Spectrum Laboratory Products, 

California, USA). The filtrate was neutralized to pH 7.0 with dilute HCI. The final 

sediment was filtered through a 20J.L polypropylene screen under vacuum and 

thoroughly washed on the filter with distilled water until no chloride reaction was 

observed with AgN03. The purified starch was dried for 24h at 30°C in a forced 

air oven (fisher Scientific, lsotemp 615G, USA) to a moisture content of -10°At. 

3.2.2 Acid hydrolysis 

Acid-treated (lintnerized ) starch samples were prepared by immersing granules 

(1.0g, dry basis/40ml of 2.2N HCI) in 250ml conical flask, in triplicate at 35°C. 

The starch slurries were shaken by hand daily to resuspend the starch granules. 

The amount of solubilized carbohydrate was measured after intervals of Oh, and 

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, and 15 days. The insoluble (acid treated} residues 

(1, 2, 3, 5, and 8 days) were recovered for subsequent analysis by centrifugation 

(IEC- Model HN-811, Centrifuge, USA) at 2500 rpm for 10-15min. The residues 

were washed with deionized water until a pH of 4.0-5.0 was reached. 

Suspension were then neutralized with 0.1 N NaOH. The residues were carefully 

washed repeatedly four times with deionized water to remove NaCI, the drained 

water was tested until no chloride reaction was observed with AgN03. The 

residues were freeze dried (LABCONC08 Freeze Dryer 5, Model75050, Kansas 

City, USA) overnight and kept in airtight containers at room temperature for 

subsequent analysis. The extent of acid hydrolysis was determined by measuring 
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total soluble carbohydrates (Dubois et at., 1956) in the original supernatant before 

washing. The percentage hydrolysis was calculated from the following equation 

(Komiya and Nara, 1986): 

Hydrolysis (0/o) =The amount of total glucose formed x 0.9 x 100 
The weight of original starch 

The assay was performed by diluting an appropriate volume of the supernatant 

with distilled water. The mean values and the standard deviations were 

computed for each determination. 

3.2.2.1 Det8rrnination of total soluble carbohydrates (Duboia et al., 1956) 

1 mL of 5°/o (w/v) phenol solution was added into appropriately diluted 2ml of 

carbohydrate solution. Then SmL of concentrated sulfuric acid was added directly 

onto the solution surface and mixture was allowed to stand at ambient 

temperature for 10 min. The tubes were transferred into a 30°C water bath after 

mixing. After 15min, the absorbance was read against a reagent blank at 

490nm. A standard series was prepared with known amounts of maltose [Fisher 

Scientific Fair Lawn, NJ. USA] (FiguNI-1 in Appendix I). 

3.2.3 Chemical compoaltlon of stllrch 

3.2.3.1 MoistuN cont.nt 

The moisture contents of the native and acid treated starches were quantitatively 

determined according to AACC procedures {1984). The starch samples (3 

±0.01g) were weighed and heated in an air forced oven (Fisher Scientific, 

lsotemp 615G, USA) at 130 ± 1 °C for 1h. The samples were then removed and 
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cooled in a desiccator. The moisture content was calculated as the percentage 

weight loss of the sample. 

Moisture content(%)= WrWz x 100 
W,-Wo 

Where: w, = weight of dish and sample before drying (g) 
W2 = weight of dish and sample after drying (g) 
Wo = weight of empty dish (g) 

3.2.3.2 Nitrogen content 

Nitrogen content was determined by the Micro Kjeldahl method. Samples (0.3 g 

dry basis) were weighed on nitrogen-free papers and placed in digestion tubes 

on a Buchi 430 digester (Buchi Laboratoriums - Technik AG, FlawilUSchweiz, 

Switzerland). The catalyst {two Kjeltabs M pellets) and 20ml of concentrated 

H2SO" acid were digested until a clear yellow solution was obtained. The 

digested samples were then cooled, diluted with 50ml of distilled water, 1 OOmL 

of 40% (wlv) NaOH was added, and the released ammonia was steam distilled 

into 50ml of 4% boric acid (H3BO,) containing 12 drops of end point indicator (N­

point indicator, EM Science, NJ. USA) using a Buchi 321 distillation unit until 

150ml of distillate was collected. The amount of ammonia in the distillate was 

determined by titrating it against 0.05N H2so •. The percentage nitrogen was 

calculated from the following equation (American Association of Cereal Chemists, 

1984). 

%Nitrogen= QU-Vzl x N x 14.0067 x 100 
w 
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Where: 

v, =volume (ml) H2SO• to titrate sample 
V2 =volume (ml) H2SO• to titrate blank 
N = normality of H2so. acid 
W = sample weight (rng ,dry basis) 

3.2.3.3 Ash cont.nt 

Pre-weighed (5.0±0.01g) samples were transferred into clean, dry porcelain 

ashing crucibles, and ignited over a flame until thoroughly carbonized. They 

were then placed in a pre-heated (525°C) muffle furnace (Lab Heat-Blue M 

model M30A-1C, Blue M Electric Co., Blue Island, IL, USA) and left until the 

samples was free from carbonaceou~ matter (-5h). The sample was cooled to 

room temperature in a desiccator and weighed. The percentage ash was 

calculated from the following equation (American Association of Cereal Chemists 

1984). 

Where: 

%Ash= WrW1 x 100 
WrW1 

w, = weight of empty crucible with cover (g) 
W2 = weight of crucible, cover and sample added (g) 
W3 = weight of crucible, cover and ash (g) 

3.2.3.4 Starch lipids 

3.2.3.4.1 Surface lipids 

Surface lipids were extraded at ambient temperature (25-2'PC) by mixing native 

starch (5g,dry basis) with 100ml of chloroform-methanol 2:1 vlv under vigorous 

agitation in a wrist action shaker for 1h. The solution was then carefully filtered 

(Whatmann No. 4 filter paper) into a 250ml round bottom flask and the residue 

was washed thoroughly with small amounts of chloroform-methanol solution. 
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The solution was then evaporated to dryness using a rotary evaporator 

(Rotavpor-R 11 0 ,Buchi Laboratorimus-Technik AG. Flawiii/Schweiz, Switzerland). 

The crude lipid extracts were purified by the method of Bligh & Oyer (1959) 

before quantification. The starch residue was saved for bound lipid extraction. 

3.2.3.4.2 Bound lipids 

Bound lipids were extracted using the residues left from surface lipid extraction. 

The residue was refluxed with n-propanol-water 3:1 v/v in a soxhlet apparatus at 

elevated temperatures (90-100°C) for 7h (Vasanthan and Hoover, 1992b). The 

solvent was evaporated to dryness using in a rotary evaporator (Rotavapor-

R11 0, Buchi Laboratorimus-Technik AG, Flawiii/Schweiz, Switzerland). The 

crude extract was purified by the Bligh and Oyer ( 1959) procedure before 

quantification. 

3.2.3.4.3 Total lipids 

Total starch lipid was determined by hydrolyzing native starch (2g, dry basis) with 

25ml of 24o/o HCI at 70-80°C for 30 min, and extracting the hydrolyzate three 

times with n-hexane. The mixture was evaporated to dryness in a rotary 

evaporator. The crude total lipid extract were purified by Bligh and Dyer (1959) 

method before quantification. 

3.2.3.4.4 Crude lipid purification (Bligh and Dyer, 1959, Vasanthan and 
Hoover, 1992a) 

The crude lipids from the above extracts were purified by extractions with 

chloroform/ methanol/water (1 :2:0.8v/v/v) and by forming a biphasic system 
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[chloroform/methanol/water (1 :1 :0.9v/v/v)] by the addition of chloroform and 

water at room temperature in a separatory funnel. The chloroform layer was then 

diluted with benzene and brought to dryness in a rotary evaporator followed by 

dryness at 60°C for 1 h in a forced air oven. The dried lipids were cooled to room 

temperature in a desiccator. Then the heavy bottom layer was withdrawn into a 

pre-weighed 25mL round bottom flask and evaporated to dryness in the rotary 

evaporator. The samples were then removed and dried at 60°C in an air forced 

oven (Fisher Scientific, lsotemp 615G, USA), and cooled in a desiccator. 

The lipids content was calculated using the following equation: 

Where: 

%Lipid= w2-w, x 100 
Wo 

W1 =weight of empty flask (g) 
W2 = weight of flask and lipid after drying (g) 
Wo = weight of the sample (g) 

3.2.3.5 Amylose 

Apparent and total amylose contents of cereal starches were determined as 

described by Hoover and Ratnayake (2001 ). 

3.2.3.5.1 Apparent amylose content 

Starch (20mg, dry basis) was weighed into a round bottom screw cap tube lined 

with a Teflon face rubber liner in the cap. This was followed by the addition of 

SmL of 90% dimethylsulfoxide (Me2SO). The contents were vigorously mixed for 

2min using a vortex mixture followed by heating in a water bath (PolyScience, 

Model 2L-M PolyScience Niles, IL, USA) at 85°C for 15min with intennittent 

shaking. The tubes were then allowed to cool to room temperature (-45min) and 
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diluted to 25ml in a volumetric flask. 1 ml of the diluted solution was mixed with 

water (40ml) Sml of 12/KI solution (0.0025M l2 and 0.0065M Kl mixture) was 

added and the final volume was adjusted to 50ml in a volumetric flask. After 15 

min (for colour development), the absorbance was measured at 600nm using a 

UV-visible spectrophotometer (LKB Novospec Model4029. LKB Biochrom, Ltd., 

Cambridge, UK). In order to correct for over-estimation of amylose content (due 

to complex formation between l2 and long outer branches of amylopectin), 

amylose content was calculated from a standard curve prepared using mixtures 

of pure potato amylose and amylopectin (over the range 0-1 00°/o amylose and 

amylopectin 100-0% amylopectin) [Figure 1-2 in Appendix 1]. 

3.2.3.5.2 Total amylose content 

Starch samples were defatted by extracting in a soxhlet extraction (85°C) with 3:1 

(vlv) n-propanol-water for 7h prior to the determination of total amylose content 

by the above procedure. 

3.2.3.8 Starch damage 

Starch damage was estimated following the standard AACC (1984) procedures. 

Starch samples (1g, dry basis) were digested with fungal (1-amylase from 

Aspergillus oryzae (12,500 Sigma units) having specific activity of 50-100 

units/mg. in a water bath (30°C) for 15min. At the end of incubation. the enzyme 

action was terminated by adding 3.68N H2S04 (3ml) and 12% (wlv) sodium 

tungstate (Na2wo •. 2H20) (2ml), respectively. The mixtures were allowed to 

stand for 2 min and then filtered through Whatman No 4 filter paper. The amount 
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of reducing sugars in the filtrate was determined by the procedure outlined by 

Bruner ( 1964 ). 

3.2.3.6.1 Bruner method for determination of reducing sugars 

Aliquots (1 ml) of the filtrate were mixed with 2ml chilled 3,5-dinitrosalycylic acid 

and diluted to 4ml with distilled water. The diluted samples were heated in a 

boiling water bath for 5min. The reaction mixture was chilled using an ice bath 

(10min). and diluted with 8ml distilled water. The absorbance was measured at 

540 or 590nm against a reagent blank. Calibration curves (Figures 1-3A and 1-

38 in Appendix I) were established with maltose (to calculate the maltose 

equivalents in the digest) and the percentage starch damage was calculated 

using the following equation: 

o/o starch damage= [Mx1.64]/[W x 1.05] x 100 

Where: 

M =maltose equivalents in the digest (mg) 
W =starch weight (mg, dry basis) 

1.64= the reciprocal of the mean percentage maltose yield from 
gelatinized starch (an empirical factor which assumes that 
under the experimental conditions, maximum hydrolysis is 
61%) 

1.05 = molecular weight conversion of starch to maltose 

3.2.4 Degree of polymerization of native and acid treated starches 

Native and lintnerized samples (0.09g dry basis) were mixed with 10ml of pure 

dimethylsulfoxide (M92SO). The solutions were heated (occasionally vortexed) to 

60°C (in a water bath) until completely dissolved. The resulting solutions were 

cooled to room temperature. The solutions were divided into two equat parts and 
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total carbohydrate was determined by the method of Dubois et al. (1956) and the 

reducing sugar content was measured by the method of Bruner ( 1964) by diluting 

an appropriate volume of the sample with distilled water. A series of maltose 

(anhydrous) solutions were used to plot the standard curve for both analysis 

(Figure 1-3A, 1-38 and 1-3C in Appendix 1). 

The average degree of polymerization (DP) values were calculated using the 

equation shown bellow (Jane and Robyt, 1984): 

DP =Total carbohydrate Cas ua maltose> x 2 
Reducing sugar (as IJg maltose) 

3.2.5 Granular morphology of native and acid treated starches 

Granule morphology of native and acid treated (0,1,5, and 8 day) starches were 

studied by scanning electron microscopy. Starch samples were mounted on 

circular aluminum stubs with double sichd sticky tape and then coated with gold 

(20nm) and examined and photographed in a Hitachi, S 570 scanning electron 

microscope (Nissei Sangyo Inc .• Rexdale. ON, Canada) at an accelerating 

voltage of SkV. 

3.2.8 X-ray dltrractometry 

X-ray diffractograms were obtained with a Rigaku powder diffradometer 

[horizontal goneometer system) (Rigaku ,RU200R Rigaku-Denki Co., Tokyo, 

Japan). The operating conditions were as follows: target voltage 40 kV, target 

current 100mA, step time, step inteNal 0.15°, Soller and divergence slit with 1°, 

receiving slit width 0.6°, scatter slit width 1mm and scanning speed 2.000°/min. 

75 



The moisture content of all samples used for X-ray studies was approximately 

15%. 

3.2.8.1 Relative crystallinity 

Relative crystallinity was determined by the procedure outlined by Nara et a/., 

(1978) using the peak fitting software Origin-Version 6.0 (Microcal Inc., 

Northampton, MA, USA) Figure 11-1 in Appendix II. Amorphous starch was 

prepared by heating a 1 0°At starch solution at 95°C for 30 min with continuos 

agitation and then drying it at 1 00°C for 24h. The dried sample was ground into 

a free flowing powder using a RP 202 Pulaerit communicator (Geoscience 

Instruments Corp., New York, NY, USA) with denatured alcohol as the solvent. 

The ground sample was air dried for 24h and passed through a 250f.lm sieve. 

3.2.7 Determination of starch propertl• 

3.2.7.1 Swelling factor (SF) 

The swelling factor of native and Iintner starches, heated at 80°C in excess 

water, was measured according to the method of Tester and Morrison (1990a). 

Starch samples (50mg, dry basis) were weighed into 10ml screw-capped tubes, 

5ml of distilled water was added and heated at 80°C in constant temperature 

water bath for 30min (the tubes were shaken by hand every 5min to resuspend 

the starch slurry). The tubes were then cooled rapidly to 20°C, 0.5ml of blue 

dextran (Pharmacia, MW 2x101, 5mg/ml) was added and mixed well. The tubes 

were then centrifuged at 2,000g for Smin and the absorbance of the supernatant 

(Aa) was measured at 620nm using a UV-visible spectrophotometer (LKB 
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Novospec Model 4029. LKB Biochrom, Cambridge, UK) against a reference 

without starch. The method measures only intragranular water and hence the 

true swelling factor at the given temperature. Results used for calculation were 

means of triplicate measurements. 

The swelling factor (SF) is reported as the ratio of the volume of swollen starch 

granule to the volume of the dry starch (Tester and Morrison. 1990a). Calculation 

of swelling factor (SF) was based on starch weight corrected to 12°.4 moisture, 

assuming a density of 1.4g/ml. 

Where: 

Where: 

Where: 

Where: 

FW = 5.5 (~/As) -0.5 (1) 

FW= free or interstitial (ml) + supernatant water (ml) 
As = absorbance of supernatant of the sample (nm) 
At. = absorbance of reference sample (nm) 

Vo =W/1,400 

Vo= volume of the starch (ml) 
W = starch weight (mg) 

V1= 5.0- FW 

(2) 

(3) 

V1= volume of absorbed intragranular water (ml) 

(4) 

V2 = volume of the swollen starch granules (ml) 
SF= V~V1 (according to definition) (5) 

This can also be expressed as follows: 

SF= 1 + {(7, 700JW)[As-AR)I As } (6) 
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3.2. 7.2 Amyloae leaching 

Native and acid treated starch (20mg, dry basis) in water (10ml) were heated 

(80°C) in volume calibrated sealed tubes for 30 min (tubes were shaken by hand 

every 5min to resuspend the starch slurry). The tubes were then cOoled to 

ambient temperature (25°C) and centrifuged at 2000g for 1Om in. The 

supernatant liquid (1 ml) was withdrawn and amylose content determined by the 

method of Hoover and Ratnayake (2001 ). Percentage amylose leaching was 

expressed as rng amylose leached per 100g of dry starch. Results .used for 

calculation were means of triplicate measurements. 

3.2.7 .3 Differential acannlng calorimetry (DSC) 

DSC parameters were measured using a Seiko DSC 210 (Seiko Instruments 

Inc., Chiba, Japan) differential scanning calorimeter equipped with a thermal 

analysis data station. Heat flow and temperature calibrations were periodically 

performed using pure indium with a heat of fusion of 28.4J/g and a melting 

temperature of 156.66°C. 

Native and Iintner (0, 12, and 24h) starch samples (3.0mg, dry basis) of known 

moisture content. (weighed to an accuracy of± 0.01mg) were added to aluminum 

DSC pan (PERKIN-ELMER, Kit. No. 0219-0082). Deionized water (11 J&L) was 

carefully added to the pan by a microsyringe (MICROLITERe, •102. Hamilton 

Co. Reno, Nevada, USA), and the pans were hermetically sealed. A starch-to­

water ratio of 1:3 was used in all DSC runs. The pans were kept at ambient 

temperature for 24h. reweighed and then scanned from 20 to 130°C at a heating 
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rate of 10°/min. An empty aluminum pan was used as the reference (to balance 

the heat capacity of the sample pan). During the scans, the space surrounding 

the sample chamber was flushed with dry nitrogen at rate of 1 OOmUmin to avoid 

condensation on the outside of the cells. For each thermogram, gelatinization 

transition temperatures [onset (To). mid-point (T p), and conclusion (T c) 

temperatures] and enthalpy of gelatinization (4H, J/g) were measured using a 

DSC software (SSC 5300 Work Station, version 2.71U, 1996). The gelatinization 

transition temperatures and areas taken for calculating 4H are shown Figure 11-2 

in Appendix II. The enthalpy AH was calculated by drawing a base-line between 

To and Tc and integrating the area between the thermogram and the base-line 

under the peak and was expressed in terms of Joules per unit weight of dry 

starch (J/g). All DSC experiments were replicated at least thrice. 

3.2.8 Statistical analysis 

All determinations were replicated three times and mean values and standard 

deviations reported. Analyses of variance were performed and the mean 

separations were done by Tukey's HSD test at p<0.05 using SigmaStat (Version 

2.0, 1995) (Jandel Scientific Inc., IL, USA). 
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4. Results and Dlacu•ion 

4.1 Proximabl compoeitlon 

Chapt.r4 

The proximate analysis of the native cereal starches are presented in Table. 4.1. 

The purity of the starches was judged on the basis of composition (low nitrogen 

and low ash content) and microscopic observation (absence of any adhering 

protein). All starches were of high purity ( <0.05% nitrogen). The low nitrogen 

content indicated the absence of non-starch lipids (lipids associated with 

endosperm protein). Therefore, the total lipid (obtained by acid hydrolysis with 

24% HCI for 30 min at 70-80°C) in normal maize (0.86%), waxy (0.01°A.), 

amylomaize V (1.21%), amylomaize VII (1.49%), rice (1.01%), and oat (1.13%) 

starches mainly represent free and bound starch lipids Pipids complexed with 

amylose chains and/or lipids trapped between starch chains] (Hoover and 

Vasanthan, 1994b). The free (surface/unbound) lipids (obtained by extraction 

with chloroform-methanol 2:1vlv at 25-2-r'C) constituted 0.06%, 0.01%, 0.04%, 

0.11 o/o, 0.03% and 0.11% of the total lipid in normal maize, waxy maize, 

amylomaize V, amylomaize VII, rice and oat starches, respectively. The bound 

lipid content (obtained by extraction of the chloroform-methanol residue with hot 

n-propanol-water 3:1 vlv, for 7h at 90-100°C) in normal maize, amylomaize V, 

amytomaize VII, rice and oat starches was 0.76%, 1.16%, 1.33%, 0.98%, and 

1.01%, respectively. However, waxy maize was devoid of bound lipid. The 

apparent amylose content (determined by l2 binding before removal of bound 

lipids) was 23. 7%, 1.1 %, 49.0%, 66.9%, 15.2%, and 20.9% in normal maize, 
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Table 4.1 Chemical composition and some of the properties of normal maize, amylomaize V, amylomaize VII, waxy maize, oat, and rice 
starches 

~blmcterletlca fen:e!!lt 
Normal maize Amylomaize v Waxy maize Amylomaize VII Rice Oat 

Moisture 12.0±0.031 12.17 ± 0.03b 10.08 ± o.osc 11.68±0.W 11.66 ± 0.03d 10.43 ± 0.13. 

Ash 0.13 :t 0.00' o.os :t o.Olt 0.05±0.01c 0.10 ± 0.02b 0.45 ±0.02d 0.16± 0.011 

Nitrogen 0.01 :t 0.00' o.o2 ± o.Olt 0.02 ± o.ooc 0.03±0.00d 0.05±0.001 0.01 ± 0.00' 

Lipid 

Solvent extraded 

Chloroform-methanol1 0.08 :t 0.011 0.043 ± 0.03e,b 0.01 ±0.01b 0.11 ± 0.04c: o.o3 ± o.o2•·b 0.11 ± 0.02c,d 

n-propanol-wat~ 0.78 :t 0.011 1.18±0.W 0.03±0.0~ 1.33 ± 0.01 11 o.98±o.oo• 1.01 ± 0.011 

Acid hydrolyzect 0.86 :t 0.041 1.21 :t 0.1411 0.05 ± 0.01c 1.49± 0.01d 1.01 ± 0.121 1.13 ± 0.0311
·' 

Amylose content 

Total6 28.52 :t 0.131 81.95 ± 0.04b 0.08 :t 0.01c: 78.37 ± 0.03cl 20.63 ± 0.07' 29.29 ± 0.00' 

Apparent' 23.10 :t o.oo- 49.02 ± 0.29" 0.01 ± 0.01c 86.95 ± 0.04d 15.20 ± 0.111 20.92 ± 0.001 

Amylose complexed by lipids' 10.83 :t 0.041 20.87 ± 0.11b 87.5±0.01c 14.57 ± 0.02d 26.32 ± o.o2• 28.58 ± 0.001 

Starch damage 0.47± 0.111 0.39±0.24 1 0.32 ± 0.12 1 0.36 ± 0.14 l,b 0.53 ± 0.32. 0.86 f 0.13I,C 

Range of granular 
7-18 4-16 7-12 6-13 2-7 5-9 sizes (diameters) ~m 

'AI dltt repoftld an dry blllllnd reprnenl the me1n of three repllc:atn 1nd the values followed by the ume s~ in etch raw are not slgnlficanlly different (P<0.05) by Tukey's HSD test 
\.., obtained from n111ve lllrch by chloroform.n'tlthanol2: 1 (vlv) It 251C (mtlnly unbound ..,.._,, 
\lp6d ,_.,ldld by hat n-proptnol Wiler 3:1 (vlv) from the residue left lfter chlorafunn.methtnoleldrldion (mlinly bound ~Ids). 

. \lpld obtained by ldd h~rotylis (24% HCI) of native ltlrch (lot.! lipids). 
'fotaltm-determined by iodine binding lftet f'lmOVII of free lnd bound lipids. 
1Applrent 1mylole ... nnlned by iodine binding without removal of free •nd bound lipids. 
'IsUIIDJvlou • 1111D811!11 mw~ou • 1 oo 81 
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waxy maize, amylomaize V, amylomaize VII, rice, and oat starches, respectively. 

The total amylose content (determined by l2 binding after removal of bound 

lipids) was 26.5%, 1.1 %, 61.9%, 78.4%, 20.6%, and 29.3%, respectively in 

normal maize, waxy maize, amylomaize V, amylomaize VII, rice and oat 

starches. The difference between total and apparent amylose reflects the 

amount of amylose complexed with native lipids. The results showed that in 

normal maize, amylomaize V, amylomaize VII, rice and oat starches, the 

percentage of total amylose complexed by native lipids was 10.6°/o, 20.8%, 

14. 7o/o, 26.2o/o, and 28. 7o/o, respectively. The extent of starch damage during 

isolation was low in all starches (0.3-0. 7o/o) (Table 4.1 ). This suggests that starch 

damage is unlikely to have any influence on the physicochemical properties of 

the cereal starches used in this study. 

4.2 Granular morphology of native starches 

The granule morphology and the specific surface features of native starch 

granules are presented in Figures 4-1 and 4-2. Oat starch granules tend to exist 

in clusters of individual granules (Figure 4-1a). The granules ranged from 

polygonal to irregular in shape with a range of granule sizes (diameters) of 5-

12~Jm. The surface appeared to be smooth with no evidence of indentations, 

fissures or pores (Figure 4-1 b). Rice starch granules also tend to exist in clusters 

(Figure 4-1e). The granules were small, irregular to polygonal in shape with a 

range of granule sizes (diameters) of 2-7J.lm. The surface of many rice starch 

granules were covered with pores of varying diameter (Figure 4-1f). Normal 
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Figure 4-1 Scanning electron micrographs of native and acid treated (2.2N HCI, 
35°C for 8 days} oat and rice starches: (A} native oat (3,000X); (B) 
native oat (10,000X); (C) acid treated oat (3.000X); (D) acid treated 
oat (10,000X); (E) native rice (3,000X); (F) native rice (10,000X); (G) 
acid treated rice (3,000X); (H) acid treated rice (10,000) 
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Figure 4-2 Scanning electron micrographs of native maize starches: (A) normal 
maize (3,000X); (B) normal maize (10,000X); (C) waxy maize 
(3.000X); (D) waxy maize (1 O,OOOX); (E) amylomaize V (3,000X); (F) 
amylomaize V (10,000X); (G) amylomaize VII (3,000X); (H) 
amylomaize VII (10,000) 
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maize starch granules were angular, to spherical to irregular in shape with a 

range of granule sizes (diameters) of 7-18f.lm. Pores were present only on some 

granules (Figures 4-2a,b ). Granules of waxy maize were irregular in shape 

(Figures 4-2c,d). Furthermore, many granules of waxy maize were smaller 

(range of granule sizes (diameters) 5-15f.lm) and contained less pores (Figure. 

4-2c,d) than those present in normal maize (Figures 4-2a,b). Some granules of 

waxy maize were devoid of surface pores (Figure 4-2c). The granules (range of 

granule sizes (diameters) of 4-161Jm) of amylomaize V ranged from oval, to 

spherical to irregular to rod shaped (Figure 4-2e ). The surface of many of these 

granules were rough with pores and fissures (Figure 4-2f). The granules of 

amylomaize VII had the same shape (Figure 4-2g) as those of amylomaize V 

(Figure 4-2e). However, granules of amylomaize VII were smaller (6-13f.1m), and 

the granule surface was smooth with no evidence of fissures or indentations 

(Figure 4-2h). Pores on granule surfaces have been shown to be real 

anatomical features of the native granule structure and not artifacts of starch 

isolation, drying, specimen preparation or observation techniques (Fannon eta/., 

1992). Surface pores on granules of maize, sorghum, and millet are openings to 

channels that penetrate in a radial direction through the granule (Fannon et a/., 

1993, Baldwin et a/., 1994, Huber and Bemiller, 1997). Several researchers 

(Gallant et a/., 1973, Fuwa et al., 1977) have postulated that pores on the 

granule surface increases the accessibility of a-amylase into the granule interior. 

This suggests, that the concentration of H3o• inside the granule interior may also 

be influenced by granule porosity. 
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4.3 Solubility patterns 

The solubilization patterns of native starches are presented in Figure 4-3. Similar 

curves have been reported using HCI (Robin eta/., 1975. Maningat and Juliano. 

1979, Biliaderis eta/., 1981, Muhr eta/., 1984, Shi and Seib, 1992, Vasanthan 

and Bhatty, 1996, Jane et a/., 1997, Jacobs et a/., 1998, Shi et a/., 1998). A 

relatively high rate was observed during the first 6 days, followed by a slower rate 

there after. At the end of the 8th day of hydrolysis (corresponding mainly to the 

degradation of the amorphous region of the granule), normal maize, amylomaize 

V, amylomaize VII, waxy maize, oat, and rice starches were hydrolyzed to the 

extent of 61.1, 32.6, 28.5, 68.1, 64.4, and 62o/o, respectively (Table 4.2). 

Between the gth and 15th day (corresponding mainly to the degradation of starch 

crystallites), the increase in the extent of hydrolysis was more pronounced in 

normal maize (9.3%) than in oat (8.3o/o), rice (8.1o/o), waxy maize (7.2o/o), 

amylomaize V (3.0%): and amylomaiZe VII {3.1 %) starches. At the end of the 

15th day, normal maize, amylomaize V, amylomaize VII, waxy maize, rice and oat 

starches were hydrolyzed to the extent of 73.4, 37.0 32.3, 77 .3, 75.3, and 

72.9%, respectively. Differences in the extent and rate of hydrolysis between the 

starches during the initial stages (1-8 days) of hydrolysis has been attributed 

mainly to differences in: (1 ). granule size, (smaller granules are hydrolyzed faster 

than larger granules (Vasanthan and Bhatty. 1996); (2) amount of lipid 

complexed chains (lipid complexed amylose chains have been shown to resist 

degradation by acids) pnouchi et a/., 1987, Morrison et a/., 1993a]; and (3) 

extensive interaction between starch chains within the amorphous domains of the 
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Figure 4-3 Acid hydrolysis (2.2N HCI, 35°C) profiles of cereal starches 
(solubilized carbohydrates as a function of time of native cereal 
starches) 
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Table 4.2 °/o Hydrolysis (2.2N HCI, 35°C) of native cereal starches* 

~umar g( did 
0 1 2 3 4 5 6 7 8 9 11 13 15 

Starch source % 

Nonnlt maize 0.0 ±0.0 10.o±o.o1• 24.80 to.rYl 34.50± 0.141 42.80 ±a.o1• 41.10±0.11• 53.30±0.031 57.60±0.101 81.1o±o.191 .,. . . . 
64.01±0.0 88.06to.10 70.15±0.00 73.40±0.14 

Am.-.v 0.0 :tO.O 7.1±0.11. 13.13±0.13. 11.25!0.0111 23. ti±0.03b 28.10±0.08.. 29.10!0.02. 30.90±0.01 .. 32.80±0.01 11 34.01±o.02b 35.80:t0.03b 36.32±0.01b 37.02±0.01 11 

Amylomalze VII 0.0±0.0 8.0iO.Ot' '1.30±0.02' 18.20±0.00° 20.30±0. 15° 23.30±0.01° 25.80±0.11° 27.20±0.01° 28.50±0.03c 29.20±0.13° 30.50±0.06° 31.1o±o.20° 32.30±0.04° 

Waxy maize 0.0!0.0 ' 11.8:to.02 35. 7&to.oe• 41.40±0.02. 58.80±0.01' 80.30±0.00' 83.60±0.01' 66.20±0.12' d d d d 
68.1o±o.11 70.07±0.04 72.7o±o.18 75.10±0.00 n .so±o.rsd 

Ra 0.0±0.0 12.2±0.13
1 

25.40±0.1f 37.50±0.051 48.60±0.03
1 

52.50±0.181 57.52±0.011 euo:to.oo' 84.40±0.19
1 

87.20±o.131 70.20±0.101 72.10±0.011 75.30±0.111 

Oil 0.0!0.0 10.2±0.051 23.1o:to.OO' 35.20±0.12. 43.40±0.001 
50.20±0.10

1 
55.1o±o.15

1 
59.3010.011 e2.oo±o.ot' 84.60±0 02

1 f f 
87.11±0.01 88.80±0.21 12.t2±0.oo' 

•Results are the means of the at least four replicates. The values of % hydrolysis followed by the same superscript in the same column are not significantly different 
(P<0.05) by Tukey's HSD test. 
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granule (interaction between starch chains will hinder the conformational 

transformation (Figure 2-13) required for protonation of the glycosidic oxygens) 

[Wu and Sarka, 1978b, Hoover and Manuel, 1996, Jacobs et al., 1998]. It is 

likely, that pores on the granule surface may allow direct access of H3o• into the 

granule interior, and thus, should also be considered as a factor influencing the 

rate and extent of acid hydrolysis. 

In this study, the observed extent of hydrolysis during the initial stages (1-8 days) 

of hydrolysis cannot be explained solely on the basis of the amount of lipid 

complexed amylose chains (oat> rice> amylomaize V> amylomaize VII> normal 

maize (Table 4.1 ), granule size (normal maize > amylomaize V > waxy maize > 

amylomaize VII> oat> rice (Table 4.1), presence of pores (Figura 4$.1 and 4$.2) 

on the granule surface (rice > amylomaize V > normal maize > waxy maize) or 

amylose content (amylomaize VII > amylomaize V > oat > normal maize > rice 

(Table 4.1 ). It is likely, that the interplay of the above factors must be considered 

when explaining the rate and extent of starch hydrolysis. For instance, if the 

amount of lipid complexed amylose chains was the sole factor influencing acid 

hydrolysis, then amylomaize V should have been hydrolyzed to a lower extent 

[due to its higher content of lipid complexed amylose chains (Table 4.1 )] than 

amylomaize VII. However, the observed trend in hydrolysis (Figur. 4$.3) suggest 

that the presence of surface pores (Figure 4$.21) and the lower amylose content 

of amylomaize V (Table 4.1 ), may have negated the influence of lipid complexed 

amylose chains on acid hydrolysis. The difference in acid hydrolysis between 

waxy maize and the other starches (during the first 9 days) reflects the absence 
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of lipid complexed amylose chains in waxy maize and the greater degree of 

accessibility of H3o• [due to the presence of pores (Figure 4-2d) and absence of 

amylose chains) into the amorphous regions of waxy maize starch. The 

difference in hydrolysis between rice and normal maize starches (Figure 4-1) 

can be attributed to differences in granular size (Table 4.1) [normal maize> rice) 

and to the amount of pores on the granule surface (Figures 4-1f and 4-2b) [rice> 

normal maize]. The results indicate that the combination of the above two factors 

negate the influence of lipid complexed amylose chains (rice> nonnal maize) 

[Table 4.1] on hydrolysis. Difference in hydrolysis between the starches beyond 

the gill day can be attributed to the interplay of the following factors: (1) the extent 

of distribution of the a ( 1-.6) branches between the crystalline and amorphous 

regions of amylopectin; (2) amylopectin content and (3) degree of packing of the 

double helices within the crystalline region. 

Recently it was shown (Jane et al., 1997) that in A-type starches, the branch 

a(1-.6) linkages are located within the crystalline and amorphous areas, 

whereas in B-type starches, the branches are located solely within the 

amorphous area (Figure 2-15). The above authors have also shown that branch 

linkages inside the crystalline area are protected from acid hydrolysis. On this 

basis, the 8-type starches (amylomaize V and amylomaize VII) should have been 

hydrolyzed to a greater extent than the A-type (normal maize, waxy maize, rice 

and oat) starches. However, the difference in hydrolysis (after the gill day) 

[Figure 4-1) between and among A- and B-types starches, suggests that the 

susceptibility of the crystalline regions of these starches towards H3o• is more 
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likely influenced by differences in the packing arrangement of the double helices 

within the crystallite, rather than by the mode of distribution of the a (1-+6) 

branches between the amorphous and crystalline regions. It is likely, than in B­

type starches, double helices in crystallites are formed to a larger extent, by the 

interwining of linear amylose chains (due to their high amylose content) [Table 

4.1). Whereas, in A-type starches (lower amylose content [Table 4.1) double 

helices in crystallites are formed mainly by the interwining of the outer branches 

of amylopectin. Thus, double helices in the 8-type starches would be more tightly 

packed due to strong interactions (via hydrogen bonding and Van der Waals 

forces) between linear amylose chains than those present in A-type starches. 

Strong interactions within and between double helices could reduce chain 

flexibility, thereby rendering the conformational transformation (chair--.half chair) 

extremely difficult. This could then explain the difference in hydrolysis (beyond 

the 8th day) between the A and B type starches and between the B-type starches 

(Figure 4-1 ). The difference in hydrolysis between the A-type starches (Figure 4-

1) during the above time period, can be attributed to differences in their 

amylopectin content (waxy maize> rice> normal maize> oat [Table 4.1 ). The 

greater susceptibility of waxy maize starch to hydrolysis, suggests the presence 

of loosely packed double helices (which are mostly formed by interwining of the 

outer branches of amylopectin) within the crystallites. 

4.4 Granular morphology of acid treated starches 

The external morphology of the starch granules after 8 days of hydrolysis are 

presented in Figures 4-2 and 4-4. In oat starch, many granules were deformed 
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Figure 4-4 Scanning electron micrographs of acid treated (2.2N HCI, 35°C for 8 
days) maize starches: (A) normal maize (3,000X); (B) normal maize 
(10,000X); (C) waxy maize (3.000X); (D) waxy maize (10,000X); (E) 
amylomaize V (3,000X); (F) amylomaize V (10,000X); (G) 
amylomaize VII (3,000X); (H) amylomaize VII (1 0.000) 
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and their surfaces were completely covered with numerous small pores (Figures 

4-2c, d). In contrast. rice starch was devoid of granular form (Figure 4-2g} and 

contained many fragmented granules (Figure 4-2h). Pores were absent on 

fragmented granules. In normal maize starch (Figure 4-4a), granular form was 

still discernible in many granules. Furtherrr.ore. granule deformation was less 

than in rice (Figure 4-2g) and oat (Figure 4-2c) starches. The surface of normal 

maize starch was completely eroded with numerous craters and pores of varying 

dimensions (Figure 4-4b). In contrast, waxy maize starch exhibited a total loss 

of granular shape (Figure 4-4c), and the whole mass was covered with 

numerous pores and cracks (Figure 4-4d). However, granule shape was clearty 

discemible in both amylomaize V (Figure 4-4e) and amylomaize VII (Figure 4-41) 

starches. However. their external appearance was entirely different. The 

surface of some amylomaize V granules was extensively corroded with 

numerous pores and cracks (Figu,.. 4-4e,f). Whereas, the surface of 

amytomaize VII granules were wrinkled and devoid of cracks (Figurea 4-4g,h). 

Very few pores were present on the granules surface of amylomaize VII (Figures 

4-4g,h) starch. 

4.5 Starch structure 

4.5.1 Molecular structure 

4.5.1.1 Average degrH of polymerization (DP) 

The change in the average degree of polymerization (DP) of the native starches 

during the first 8 days of hydrolysis is presented in Figure 4-5 and Table 4.3. In 

ail starches, OP decreased rapidly during the first 48h, followed by a slower 
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Figura 4-5 A-H Changes to the average degree of polymerization (DP) of cereal 
starches with time course of hydrolysis 
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Tabla 4.3 Average degree of polymerization (OP) of native and acid treated starches with time course of hydrolysis 

Type Oat starch Rice starch Normal maize Amylomaize V Amylomaize VII Waxy maize 

Native starch 708 ± 111 1389 ± 166 813 ± 1-r: 1247 ± 14d 1285 ± 101 685 ± 181 

Day1 51 ±41 139 ± 9c 49±61 58± 91 'b aa±P 69±0b 

Day2 17 ±31 16±21 27 ± 3b,c 31 ±6c 54 to• 21 ±41 'b 

Day3 16±21 12 ±31 24 ± 5b,c 27±4c 39±21 19 ± 71 'b 

Day5 12 ± 21 'b 8± 1b 16 f 3I,C 21 ± 2c,d 28± a• 17 ± 4f,c 

DayS 11 ± 1l,b,g 8±2b 13 ±4I,C 16 ±Oc,d 22 ± 11 13 ± 3c,d,f,g 

Results are the means of the replicates. The values of DP followed by the same superscript in the same row are not significantly different (P<0.05) by Tukey's 
HSDtest. 
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decrease thereafter (Figure 4-5). The extent of this decrease was fairly similar 

for all starches. The extent of decrease in DP beyond 48h followed the order: 

amytomaize VII> amylomaize V> normal maize> rice - waxy maize> oat (Figure 

4-5). In oat (Figure 4-Sf) and rice (Figure 4-5e) starches, DP reached a 

constant limiting value after 72h. However, DP continued to decrease even 

beyond 72h in normal maize (Figure 4-5a) waxy maize, (Figure 4-5d), 

amylomaize V (Figure 4-Sb) and amylomaize VII (Figure 4-5c) starches. The 

limiting DP observed in rice (Figure 4-5e) and oat starches (Figure 4-Sf) 

suggests the presence of insoluble double helical strudures formed by 

interaction between fragmented chains of DP 8-12, which are released after 72h 

hydrolysis. The absence of a limit DP during the time course of hydrolysis for 

normal maize (Figure 4-Sa), amylomaize V (Figure 4-Sb), and amylomaize VII 

(Figure 4-5c) and waxy maize (Figure 4-5d) starches suggests that the 

fragmented chains are too long for rapid formation of double helices. This seems 

plausible, since the extent of decrease in DP beyond 72h (amylomaize VII> 

amylomaize V> normal maize> waxy maize) paralleled the DP of their 

fragmented chains (Figure 4-5). 

4.5.2 Crpalllne structure 

4.5.2.1 X-ray diffraction pattema of native starches 

The X-ray diffractograms of native and acid treated normal maize, amylomaize V, 

VII, waxy maize, rice and oat starches are presented in Figure 4-6. Native 

normal maize, waxy maize, rice, and oat starches, exhibited the typical A-type X­

ray spectrum of cereal starches (Figura 4-6a,d,e,f). Whereas, lhe amylomaize 
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Figure 4-6 A-H X-ray diffraction spectrum and relative crystallinity {RC) of native 
and acid treated cereal starches (Intensity: counts per second = 
CPS) 
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(-V and -VII) starches exhibited a B-type X-ray spectrum (Figures 4-6b,c). For 

the A-type spectrum, the most intense peaks corresponded to Bragg angles (29): 

9.9° , 15°,1P, 18.1°, and 23.5°. The 8-type spectrum was marked by an 

additional peak at 5.6° (29) Bragg angle, a decrease in the intensity of the peak 

at 15°, a single peak at 1 P (instead of the doublet at 17° and 18° as in the A-type 

starches), and a splitting of the peak at 23.5° into two individual reflections at 22° 

and 23° (29) (Figure 4-6b,c). The relative crystallinity of the native starches 

followed the order: waxy maize (49%) >rice (36°/o) >normal maiZe (34°/o) >oat 

(32)> amylomaize (19%)> amylomaize VII (16°/o) (Figu,.. 4-6a, f). 

Crystallinity arises from ordered linear segments of amylopectin that are present 

in the form of double helices with a length of approximately 5nm. These double 

helices are crystallized into their (-5 nm) lamellar regions. In A-type starches, 

the amylopectin has a closer packing arrangement than that of 8-type starches, 

and is characterized by amylopectin chains (DP 23-29) which are shorter than in 

8-type starches (Hizukuri. 1985, 1988) (DP 30-44). The extent of crystallinity is 

influenced by: (1) the amount of double helices that are organized into a 

crystalline array, (2) crystallites size and (3) amylose content. Small angle X-ray 

scattering studies on normal maize, waxy-maize and high amylose maize 

starches, have shown that amylose acts to disrupt the packing of the amylopectin 

double helices within the crystalline lamella (Jenkins and Donald, 1995). A 

reduction in crystalline lamella was observed with increase in amylose content 

{Jenkins and Donald 1995). It was suggested {Jenkins and Donald, 1995), that 

the disrupting effect of amylose on amylopectin could be due to co-crystallization 
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between amylose and amylopectin or to penetration of amylose into the 

amorphous region (where the a ( 1 ..... 6) branch points are located). It was 

interesting to obseNe that the relative crystallinity of native starches decreased 

with an increase in their amylose content (amylomaize VII> amylomaize V> oat> 

normal maize> rice> waxy maize [Table 4.1]. 

4.5.2.2 X-ray diffraction patterns of acid treated starch• 

The X-ray pattern of all starches remained unchanged on acid hydrolysis 

(Figures 4-6a-f). However, relative crystallinity decreased (7.4%) in waxy maize 

starch (Figure 4-6d) but increased (7.7-8.7%) in all other starches (Figures 4-

6a-c,e,f). The extent of increase in relative crystallinity on hydrolysis followed the 

order: normal maize - rice - amylomaize VII> oat> amylomaize V. In 

amylomaize starches ftJ and VII), the intensity of the peak at 5.6 (28), increased 

with hydrolysis (Figura 4-6b,c). The increase in X-ray crystallinity on acid 

hydrolysis has been attributed to preferential hydrolysis of the amorphous lamella 

and of the amorphous background (Jenkins, 1994). The extent of hydrolysis 

being greater in the latter. In waxy maize starch, crystallites would be readily 

accessible to H3o• due to the presence of only trace quantities of amylose. Thus, 

starch chains within crystallites would be hydrolyzed faster and to a greater 

extent in waxy maize than in the other starches. This would then explain the 

decrease in relative crystallinity (Figure 4-6d) and the high initial extent of 

hydrolysis (Figure 4-1) for waxy maize starch. 
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4.8 Starch propertl• 

4.8.1 Swelling factor (SF) 

4.6.1.1 Swelling factor of native atarch• 

The swelling factor [which is an index of the swelling power of starches (Tester et 

al., 1993] of native and acid treated starches at 80°C are illustrated in Figure 4-7 

and Table 4.4. The SF of native starches followed the order: waxy maize> 

normal maize> oat> rice> amytomaize V> amytomaize VII. The above difference 

in SF can be attributed to the interplay of the following factors: ( 1) the level of 

lipid complexed amylose chains (Table 4.1) [lipid complexed amylose chains 

have been shown to inhibit granular swelling (Lorenz, 1976, Maningat and 

Juliano, 1980, Goshima et a/., 1985, Tester Morrison, 1990a, Vasanthan and 

Hoover, 1992, Morrison eta/., 1993b)] ; (2) molar proportion of amylopectin unit 

chains of DP 6-24 (oat> rice> waxy maize> normal maize> amylomaize V> 

amylomaize VII) pncreased proportion of unit chains with DP S-24 in single 

clusters corresponds to an increased number of branched points as well as 

number of chains, and results in a high molecular weight of interconnected non­

crystalline branched regions next to crystallites. The increased effective 

molecular weight would decrease the mobility of chains in the amorphous phase 

and thereby restrict granular swelling (Shi and Seib, 1992)]; (3) amylose content 

(Table 4.1) [swelling power has been shown to decrease with increase in 

amylose content (Sasaki and Matsuki. 1998)] : (4) extent of interaction between 

starch chains within the amorphous and crystalline domains (Hoover and 

Manuel, 1996) (hydrogen bonding between starch chains could decrease the 
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Figure 4-7 Swelling factor of native and acid treated cereal starches at 80°C 
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T•ble ~.~ Swelling factor of native and acid treated starches as a fundion of the time of hydrolysis by 2.2N HCI at 80°C 

Starch source Oat starch Rice starch Normal maize Amylomaize V Amylomaize VII Waxy maize 

Native starch 11.4 ± o.o• 1o.6 ± o.o6 11.9 ± o.oc 6.7±0.0d 4.2±0.21 10.0 ± o.s' 

Day 1 16.3 ± 0.21 30.8±0.0b 14.7 ± o.oc 15.9 ± 0.1d 13. o ± o.o• 

Day2 27.0 ± 0.11 39.6±0.0b 19.2 ± o.oc 26.1 ± 0.2d 23.5 ± 0.11 

Day3 12.6 ± 0.11 22.a ± o.ob 21.3± 0.2c 32.7±0.2d 30.3±0.2' 

Day4 1.2±0.01 11.5 ± 0.1b 

DayS 1.5 ± o.o• 12.4 ± 0.1b 27.4 ± 0.1c 25.5 ± 0.1d 

Day6 8.3±0.2 

Day7 4.5±0.0 

DayS 0.2 ± 0.091 20.3 ± 0.3b 16.3± 0.1c 

Results are the means of replicates. The values of SF followed by the same superscript in the same raw are not significanUy different (P<0.05) by Tukey's 
HSDtest. 
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number of hydroxyl groups available for interaction with water. (5} crystallinity 

(Robin et a/., 1975) [very high or very low crystallinity could inhibit granular 

swelling]. 

4.6.1.2 Swelling factor of acid treated starch• 

After 24h hydrolysis, SF was completely lost in waxy maize starch, but increased 

in the other starches (rice> amylomaize V> amylomaize VII> oat> normal maize) 

[Figure 4-7]. A decrease in SF occurred after 2 days hydrolysis in oat and rice 

starches, but after 3 days for normal maize and amylomaize starches (V and VII) 

(Figure 4-7). SF was not detectable in oat, rice and normal maize starches after 

the 4th, 5ttt, and 8th day of hydrolysis, respectively. However, the amyfomaize 

starches (V and VII) showed measurable SF even after the 8th day of hydrolysis 

(Figure 4·7). The complete loss of granular swelling in waxy maize starch 24h 

hydrolysis, suggests that both the a. (1~} branches within the amorphous 

region and the double helical chains forming the starch crystallites are 

extensively hydrolyzed during this time period. The extent of SF increase during 

the initial stages of hydrolysis of rice, oat, normal maize and amylomaize 

starches (V and VII) reflects interaction of hydrolyzed amylose chains (remaining 

within the granule) with water molecules. (These chains were originally 

associated with each other in the native granule, and with each other in the 

native granule, and thus unable to interact with water). The progressive 

decrease in SF with time of hydrolysis, reflects the continued erosion of the 

amorphous regions. 
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4.6.2 Amylose leaching (AML) 

The extent of amylose leaching of native and acid treated starches at 80°C is 

presented in Figure 4-8 and T•ble 4.5. The AML of native starches followed the 

order. rice> normal maize> oat> amylomaize VII> amylomaize V. Thereafter, 

AML decreased gradually (oat> normal maize> rice> amylomaize VII). However, 

in amylomaize v. this decrease occurred only after 72h (Figure 4-8). The initial 

increase in AML could be attributed to leaching of hydrolyzed amylose chains. 

As discussed earlier. starch chains released by hydrolysis rapidly associate 

forming double helical structures. The extent of this association would be 

influenced by the; 1) chain length of hydrolyzed amylose chains; 2) extent of 

packing of the amylose chains within the amorphous regions; and by 3) the 

amount of lipid complexed amylose chains (lipid complexed amylose chains will 

inhibit starch chain association). This would then explain the decrease in AML 

beyond 24h (Figure 4-8). 

4.6.3 Gelatinization parameters 

4.8.3.1 Gelatinization of native starches 

The gelatinization transition temperatures [onset (To). mid-point (T p), conclusion 

(T c). and gelatinization enthalpy {4H) of native and acid treated starches are 

presented in Table 4.8. The gelatinization transition temperatures range (T c-To) 

for native starches followed the order; amylomaize VII> amylomaize V> rice> 

waxy maize> normal maize> oat. The enthalpy of gelatinization (4H) of the 

native starches followed the order: waxy maize> rice> normal maize> 

amylomaize VII> amylomaize V> oat. In all starches, To decreased, but Tp,Tc. 
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Figure 4-8 Extent of amylose leaching of native and acid treated starches at 
80°C 
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Table 4.5 Amylose leaching (at 80°C) of native and acid treated starches 

Type Oat starch Rice starch Normal maize Amylomaize V Amylomaize VII 

Native starch 3.2 ± 0.18 6.4±0.16 4.4±0.1c 2.4±0.1d 2.6±0.1' 

Day1 23.0 ± 0.1• 17.7 ± 0.2b 19.5 ± o.oc 17.1 ±O.Od 16.5 ± 0.31 

Day2 18.7 ± o.5• 16.0 ± 0.1b 16.6 ± 0.1c 15.9 ± 0.1d 15.4±0.2d 

Day3 16.4±0.58 13.7 ± 0.3b,d 14.3 ± 0.1c,d 14.7 ± 0.1c 13.3 ± 0.1b 

Day5 14.0 ± 0.11 11.4 ± 0.2b 11.4 ± 0.1d 12.8 ± 0.38 11.5 ± 0.1b,c,d 

Day8 10.8 ± 0.4• 9.9±0.1b 9.3±0.1c 10.5±0.28 8.9±0.~ 

Results are the means of replicates. The vaJues of AML followed by the same superscript in the same raN are not significantly different (P<0.05) by 
Tukey's HSD test. 
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Table •·• Gelatinization parameters' of native and acid treated starches2 

Stlrdleoua Hydfolysts " Imo1ition ltmoeraiY!J! e.c~' 
Hm!fh) Hydrolylil Tl L L T,-T9

4 11Hg5 (J/gl 
NonniiMIIze 
Native 0 0.0 84.8± 0.1· 72.6 ±0.1. 79.7 ± o.o• 14.91 12.1 ± o.o• 
Acid treated 12 4.8 58.2±0.3 .. 72.9 :t o.:t 81.1 ± 0.1 .. 22.9' 13.3 :t 0.41 

Acid treated 24 10.0 56.9±0.4c 74.6 ±0.1c 94.4 ±0.2G 37.5c 14.1 :t 0.3' 

Amylonlllze v 
Native 0 0.0 65.1 ±O.sf 86.9 ±0.7 103.4 :t 0.91 38.3. 10.5 ± 0.41 

Add treated 12 3.3 58.1 :t 0.3111 107.3 :t 0.5111 51.2 .. 14.4 :t 0.5 .. 
Acid ~rated 24 7.1 51.6±0.5c 115.0±0.~ 63.4c 16.5 ± 0.2c 

Alnyloml11aW 
Nltive 0 0.0 67.1 + 0.5 98.5±0.6 108.9±0.3 39.8 12.5 :t 0.2 
Acid trelted 12 2.6 .. e • e e . . . 
Acid treated 24 6.0 e • • • e . .., ..... 
Native 0 0.0 85.8±0.21 71.1 ±0.11 82.3 :t 0.21 16.51 15.8 ± o.o• 
Acid treated 12 9.1 52.7±0.311 74.3±0.2111 91.9 ±0.5 .. 39.2111 16.2 ± 0.1 .. 
Acid treated 24 18.6 49.9 :t 0.3c 78.4±0.6c 96.2 ± 0.1c 46.3c: 17.0 ± 0.2c: 

Rice 
Native 0 0.0 58.2 ± 0.11 78.0 :t 0.31 88.1 ±0.11 29.s- 13.0 :t 0.11 

Acid treated 12 5.9 56.7±0.3 .. 79.1 ± 0.1 111 90.0±0.3 .. 33.3 .. 14.3 ± 0.2111 

Acid treated 24 12.2 55.3±0.~ 81.9 :t 0.6c 92.3± 0.2c 37.0e 15.7 ± 0.4c 

Oat 
Native 0 0.0 58.1 ± 0.11 62.9± 0.11 71.5 ±0.41 13.41 10.2 ± o.o• 
Acid treated 12 5.0 56.4±0.3111 65.3±0.2111 74.2 ±0.3' 17.8' 11.0 ± 0.3111 

Ackl treated 24 10.2 52.2 ± 0.2c 67.5 ± 0.5c 77.7 ± 0.1c 25.5c: 12.6 ± o.oc 

'Starch:water (1:3 wlw, dry basis) 
2 The ltirch were hydrolyzed with 2.2N HCI at 35°C . 
'r 01 T ,, lnd T0 Indicate the temperatures of the onset, midpoint and end of gelatinization respectively . 
.,-c· T • indicates the gelatinization temperature range. 
1AHo Indicates the enthalpy of A81attnlzation 
1 The endotherm& were too broad for an accurate estimation of T o• T P and T c: 
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and T c-To increased with hydrolysis (Table 4.6). This result is in agreement with 

earlier studies (Chun eta/., 1997, Donovan and Mapes, 1980). The increase in 

T c-To (after 24h hydrolysis) followed the order: waxy maize> . amytomaize V> 

normal maize> oat> rice. 

In all starches, ~H increased with hydrolysis (Table 4-6). The extent of increase 

in ~H (after 24h hydrolysis) followed the order: amylomaize V> rice> oat> normal 

maize> waxy maize. This was in agreement with those reported for barley 

(Morrison et al., 1993c), potato (Jacobs eta/., 1998, Muhr and Blanshard, 1984), 

and pea (Jacobs eta/., 1998) starches. 

Gelatinization is primarily a swelling driven process (Donovan and Mapes, 1980, 

Cooke and Gidley, 1992). Water uptake by the amorphous growth ring is 

accompanied by swelling within this region (Donovan, 1979). This swelling 

imposes a stress upon the amylopectin crystallites which causes the amylopectin 

double helices within the crystallites to dissociate. This process occurs rapidly for 

an individual crystallite, but over a wide temperature range for the whole granule. 

Smaller crystallites are less stable and are destroyed first (Jenkins 1994). This 

swelling driven crystallite disruption is associated with the low temperature 

narrow endothenn for the native starches (Table 4.6). The difference in Tc-To 

among native starches (Table 4.6) reflect variations in crystallite shape, 

crystallite size, degree of crystal perfection and on the type of starch chain 

interwining [amylose-amylose (AM-AM}, amylose-amylopectin (AM-AMP), 

amylopectin-amylopectin (AMP-AMP), that produce the double helical chains of 

starch crystallites. In starches containing a very high amylose content 

108 



(amylomaize V and VII). crystallites would originate not only from AMP-AMP 

interactions; but also from interaction between AM-AM and AM-AMP (co­

crystallization between amylose and amylopectin). Consequently, variations in 

crystallites stability in the amylomaize starches ~ and VII) would be much 

greater than in the other starches. This would then explain the broader 

endotherm (Table 4.6) of native amytomaize starches~ and VII). 

Gelatinization enthalpy (~H) has been shown to reflect the loss of molecular 

(double helical) order rather than the loss of crystalline register (Cooke and 

Gidley, 1992). The differences in ~H among native starches (Table 4.6) reflect 

the interplay of: (1) differences in long branch chain lengths of amylopectin 

(amylomaize VII> amylomaize V> normal maize> waxy maize> rice> oat) (large 

amount of energy (41H) would be required to gelatinize crystallites of long chain 

lengths ]; (2) amount of free lipids (amylomaize VII - oat> normal maize> 

amylomaize V> rice> waxy maize). [interaction of free lipids with amylose during 

gelatinization is an exothennic process (Biliaderis et al., 1988b). A net 

endothennic process is determined by DSC, and the net energy (4H) required to 

form this endotherm is less when free lipids are present in the starch-water 

system] ; and (3) amount of lipid complexecl amylose chains (Table 4.1) [melting 

of the V-single helix amylose-lipid complexes (-104°C) has been shown to 

decrease ~H (Billiaderis et al.. 1985). 
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4.8.3.2 Gelatinization of acid treated starchn 

In all starches. To decreased, but Tp. and Tc-To increased with hydrolysis (Table 

4.6). This result is in agreement with earlier studies (Robin et al .• 1975, Biliaderis 

eta/., 1981). The increase in extent of Tc-To (after 24h hydrolysis) followed the 

order: waxy maize > amylomaize V > normal maize > oat > rice. In all starches, 

.AH increased with hydrolysis (Table 4.6). The extent of increase in .AH (after 24h 

hydrolysis) followed the order: amylomaize V > rice > oat > normal maize > waxy 

maiZe. This was in agreement with those reported for barley (Morrison et al .• 

1993a), potato (Jacobs et al., 1998, Muhr et a/.,1984), and pea (Jacobs eta/., 

1998), starches. 

As discussed earlier, crystallite disorganization during gelatinization of native 

starches in excess water results in a narrow endotherm, due to swelling of the 

amorphous regions (bulk and intercrystalline) which exert a destabilizing effect 

on the crystallites. This is made possible due to close interaction between the 

amorphous regions and crystallites. However, the destruction of the amorphous 

regions on acid hydrolysis, will decrease their destabilizing effect on crystallites. 

Consequently, in all starches, crystallinity is lost over a wider temperature range, 

and Tc-To is observed to broaden (Table 4.6). Studies on normal and waxy 

barley starch acid residues (Morrison et al., 1993a), led to the suggestion, that 

higher transition temperatures might be due to longer amylopectin double helices 

than in the unhydrolyzed amylopectin molecule, where the branch points a (1-+6) 

linkages might reduce the length of helix forming segments of the A and B 
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chains. This would then explain the increase in Tc-To observed for normal 

maize, waxy maize, rice and oat starches (Table 4.6). However. the high Tc-To 

observed for hydrolyzed amylomaize V starches (Table 4.6) cannot be 

satisfactorily explained on this basis, (due to their lower content of a (1-.6) 

linkages). It is likely, that in amylomaiZe V, the broad Tc-To mainly represents 

the disordering of those double helices that are formed by interwining of 

hydrolyzed lipid free amylose chains. 

The increase in ~H on acid hydrolysis (Table 4.6) reflects the increase in thermal 

energy required to unravel and melt iong amylopectin double helices, and double 

helices formed by interaction between amylose-amylose and amylose­

amylopectin chains during acid hydrolysis. It is highly unlikely, that £\H 

represents changes within the crystalline domain, since the DSC endotherms 

represent hydrolysis within a 24h period. The pronounced increase in AH on 

hydrolysis of waxy maize starch represents the dissociation and melting of those 

double helices that were fanned within the amorphous regions (resulting from 

hydrolysis of a (1 ~) linkages). 
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ChapterS 

Most significant findings 

The susceptibility of cereal starches (normal maize, waxy maize, amylomaize V 

and VII. rice and oat) towards hydrolysis by 2.2N HCI at 35°C for 15 days, and 

the physicochemical characteristics (granule morphology, degree of swelling, 

amylose leaching, x-ray pattern, crystallinity, average degree of polymerization 

and gelatinization parameters) of the lintnerized residues (at different time 

periods of hydrolysis) were examined. The difference in the extent of hydrolysis 

at the end of the 8th day (waxy maize > oat > rice > normal maize > amylomaizeV 

> amylomaizeVII) was influenced by the interplay between: 1) mode of 

distribution of a (1-6) branches between the amorphous and crystalline regions; 

2) amylopectin content, and 3) degree of packing of the double helices within the 

crystallites. Granule morphology. x-ray crystallinity. average degree of 

polymerization, swelling factor, amylose leaching, enthalpy of gelatinization and 

the gelatinization temperature range were altered on acid hydrolysis. The extent 

of these changes differed among the starch sources. However, the x-ray pattern 

remained unchanged in all starches. 
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Chapter& 

Directions for future research 

1) There is a dearth of information on the influence of hydrothermal treatment (at 

different time-temperature-moisture combinations) on the rate and extent of acid 

hydrolysis of starches with different crystalline polymorphic forms (A,B and C). 

Hydrothermal treatment such as heat-moisture treatment and annealing have 

been shown to cause structural rearrangement of starch chains and lor crystallite 

disruption. Thus, comparative studies on: (a) the rate and extent of acid 

hydrolysis of native, heat-moisture treated and annealed starches and b) the 

structure and properties of the acid hydrolyzed residues (obtained at different 

times of acid hydrolysis) from native and hydrothermally treated starches may 

provide a deeper insight into how starch chain organization within the amorphous 

and crystalline domains influence the accessibility of the hydronium ion into the 

granule interior. 

2) A much-debated issue. in need of further research, concerns the influence of 

lipids on acid hydrolysis. A systematic study on the influence of potato starch­

monoglyceride (of different chain length) complexes on the kinetics of acid 

hydrolysis may resolve this issue. 

113 



Bibliography 

Acker, L., (1977). Die lipide der starken-ein forschungsgebiet zwischen 
kohlenhydraten und lipiden. Fette. Seifen. Anstrichmittel., 79, 1-9. 

Alsberg, C.L., (1938). Structure of the starch granule. Plant Physiol., 13, 295-
330. 

Alexander, R.J., (1992). Carbohydrates used as fat replacers. In: Developments 
in Carbohydrate Chemistry. Alexander, R.J., and Zobel, H.F., (Eds.), pp 343-370, 
American Association of Cereal Chemists, St. Paul, Minnesota. 

Alexander, R.J., (1996). New starches for food application. Cereal Food World, 
41(10), 796-798. 

American Association of Cereal Chemists. (1983). Approved Methods of the 
AACC, 8th ed., American Association of Cereal Chemists, St. Paul, Minnesota. 

Asaoka, M., Okuno, K., and Fuwa, H., (1985). Effect of environmental 
temperature at the milky stage on amylose content and fine structure of 
amylopectin of waxy and non-waxy endosperm starches of rice ( Oryza sativa L. ). 
Agric. Bioi. Chem., 49(2), 373-379. 

Atichokudomchai, N., Shobsngob, S., and Varavinit, S., (2000). Morphological 
properties of acid·modified tapioca starch. Starch, 52(8-9), 283-289. 

Atwell, W.A., Hood. LF., Lineback, D.R., Varriano-Marston, E., and Zobel, H.F., 
(1998). The terminology and methodology associated with basic starch 
phenomena. Cereal Foods World, 33, 306-311. 

Baba, T., Uemura, R., Hiroto, M., and Arai, Y .• (1987). Structural features of 
amylomaize starch: Components of amylon 70 starch, J. Jpn. Soc. Starch Sci., 
34(3), 213-217. 

Badenhuizen, N.P., (1963). Formation and distribution of amylose and 
amylopectin in the starch granule, Nature, 197(4866), 464-467. 

Badenhuizen, N.P., (1965). Occurrence and development of starch in plants. In: 
Starch Chemistry and Technology, Whistler, P., (Ed.), pp 65-103, Academic 
Press Inc., New York. 

Badenhuizen N.P., and Dutton, R.W .• (1956). Growth of 14C-Iabelled starch 
granules in potato tubers as revealed by autoradiographs protoplasm. 
Protoplasms. 47, 156-163. 

114 



Baldwin. P.M., and Adler, J., Davies, M.C., and Melia C.D., (1994). Holes in 
starch granules: confocal, SEM and light microscopy studies of starch granule 
structure. Starch, 46(9), 341-346. 

Banks, W., and Greenwood, C.T., (1971). The conformation of amylose in dilute 
solution. Starch, 23, 300-303. 

Banks, W ., and Greenwood, C.T., (1975). Starch and its components, pp 52-66, 
Edinburgh University Press, Edinburgh. 

Banks, W., and Greenwood, C.T., {1968). Studies on starches of high amylose­
content. IX. The detection of linear material in the anomalous amylopectin from 
amylomaize starch. Carbohydr. Res., 6, 241-244. 

Banks, W., Greenwood, C.T., and Muir, D.O., (1974). Studies on starches of 
high amylose content. 17. A review of current concept, Starch, 26(9), 289-328. 

BeMiller, J.N., (1965). Acid hydrolysis and other lytic reactions of starch. In: 
Starch Chemistry and Technology. Whistler, P., (Ed.), Vol. 1, pp 495-520, 
Academic Press, New York. 

BeMiller, J.N., (1967). Acid-catalyzed hydrolysis of glycosides. Advances in 
Carbohydrate Chemistry. 22, 25-108. 

Biliaderis, C.G., (1980). Starch gelatinization phenomena studied by differential 
scanning calorimetry. J. Food Sci., 45. 1669-1674. 

Biliaderis, C.G., (1982). Physical characteristics, enzyme digestibility, and 
structure of chemically modified smooth pea and waxy maize starches. J. Agric. 
Food Chem., 30,925-930. 

Biliaderis, e.G., (1990). Thermal analysis of food carbohydrates. In: Thermal 
Analysis of Food . Harwalkar, V.R., and Ma, C.-Y., (Eds.), pp 168-220, Elsevier 
Applied Sciences, London. 

Biliaderis, e.G., (1991 ). The structure and interactions of starch with food 
constituents. Can. J. Physiol. Pharmacal., 69, 60-78. 

Biliaderis, C.G., (1998). Structures and phase transitions of starch polymers. In: 
Polysaccharide Association Structures in Food. Walter, R.H. (Ed.), pp 57-168, 
Marcel Dekker, Inc., New York. 

Biliaderis, C. G., Grant, D.R., and Vose, J.R., (1981 ). Structure characterization 
of legume starches. II. Studies on acid-treated starches. Cereal Chem., 58(6), 
502-507. 

115 



Biliaderis, e.G., Maurice, T.J., and Vose, J.R., (1980). Starch gelatinization 
phenomena studied by differential scanning calorimetry. J. Food Sci., 45, 1669-
1680. 

Biliaderis, e.G., Page, C. M., and Maurice, T.J., (1986a). On the multiple melting 
transitions of starch/monoglyceride systems. Food Chem., 22, 279-295. 

Biliaderis, C.G., Page, C. M., Maurice, T.J., and Juliano, 8.0., (1986b). Thermal 
characterization of rice starches. A polymeric approach to phase transitions of 
granular starch. J. Agric. Food Chem., 34, 6-14. 

Biliaderis, C.G., Page, C. M., Slade, L., and Sirett, R.R., (1985). Thermal 
behavior of amylose-lipid complexes. Carbohydr. Polymers, 5, 367-389. 

Biliaderis, e.G., and Tonogai, J.R., (1991 ). Influence of lipids on the thermal and 
mechanical properties of concentrated starch gels. J. Agric. Food Chem., 39, 
833-840. 

Blanshard, J.M.V.,(1987). Starch granule structure and function: A 
physicochemical approach. In: Starch Properties and Potential. T. Galliard. (Ed.), 
pp16-54, Critical Reports in Applied Chemistry. Society for Chemistry and 
Industry, London. 

Bligh , E,G., and Oyer, W.J., (1959). A rapid method of total lipid extraction and 
purification. Can. J. Biochem. Physiol., 37(8), 911-917. 

Bruner, R.L., (1964 ). Determination of reducing value. In: Methods in 
Carbohydrate Chemistry, Vol. IV, Starch, Whistler, R.L. (Ed.), pp 67-71. 
Academic Press, New York. 

Boyer, C.D., Shannon, J.C., Garwood, O.L., and Greech, R.G., (1976). Changes 
in starch granule size and amylose percentage during kernel development in 
several Zea mays L. genotypes. Cereal Chem., 53(3), 327-337. 

Buleon, A., Bizot, H., Delage, M.M., and Multon J.L., (1982). Evaluation of 
crystallinity and specific gravity of potato starch versus water and desorption. 
Starch, 34(11}, 361-366. 

Buleon, A., Bizot, H., Delage, M.M., and Pontoire, B., (1987). Comparison of X­
ray diffraction patterns and sorption properties of the hydrolyzed starches of 
potato, wrinkled and smooth pea, broad bean and wheat. Carbohydr. Polymers, 
7, 461-482. 

Buleon, A., Colonna, P., Planchet, V., and Ball. S., (1998). Starch granules: 
structure and biosynthesis (Mini review), Int. J Bioi. Macromol., 23, 85-112. 

116 



Buttrose, M.S., (1960). Submicroscopic development and structure of starch 
granules in cereal endosperms. J. Ultrastruct. Res .• 4, 231-257. 

Buttrose, M.S., (1963). Electron-microscopy of acid-degraded starch granules. 
Starch, 15(3), 85-92. 

Campbell, M.R., and Glover, D.V., (1996). Interaction of two sugary-1 alleles 
(su1 and su1 5

t ) with sugary·2(su2) on characteristics of maize starch. Starch, 
48(11112), 391·395. 

Campbell, M.R., White, P,J., and Pollack, L.M., (1994). Dosage effect at the 
sugary-2 locus on maize starch structure and function. Cereal Chem., 71(5), 
464-468. 

Campbell, M.R., White, P,J., and Pollack, L.M., (1995). Properties of sugary-2 
maize starch: Influence of exotic background. Cereal Chem., 72(4), 389-392. 

Carlson, T.L.G., Larsson, 0., Dinh·Nguyen, N., and Krog, K., (1979). A study of 
the amylose-monoglyceride complex by Raman spectroscopy. Starch, 31(5), 
222-244. 

Champagne, E.T., (1996). Rice starch composition and characteristics. Cereal 
Food World, 41 (11 ), 833-838. 

Chatakanonda, P., Varavinit, S., and Chinachoti, P., (2000). Relationship of 
gelatinization and recrystallization of cross-linked rice to glass transition 
temperature. Cereal Chem., 77(3), 320-325. 

Cheetham, N.W .H., and Tao, L., (1998). Variation in crystalline type with 
amylose content in maize starch granules: an X-ray powder diffraction study. 
Carbohydr. Polymers, 36, 277-284. 

Chronakis, I.S., (1998). On the molecular characteristics, compositional 
properties, and structural functional mechanisms of maltodextrins: A review. Cri. 
Rev. Food Sci., 38(7), 599-637. 

Chun, J., Lim, S., Takeda, Y., and Shoki, M., (1997). Properties of high­
crystalline rice amylodextrins prepared in acid-alcohol media as fat replacers. 
Cereal Food World, 42(10), 813-819. 

Collison R., (1968). Swelling and gelation of starch. In: Starch and its derivatives. 
Radley, J.A., (Ed.). 4th ed., pp168-193, Chapman and Hall Ltd., London. 

Colonna, Lelopu, V., and Buleon, A., (1992). Limiting factors of starch 
hydrolysis. Eur. J. Clnic. Nutr., 46{Suppl. 2), S17 -532. 

117 



Colonna, P., and Mercier, C., {1984). Macromolecular structure of wrinkled- and 
smooth- pea starch components. Carbohydr. Res., 126, 233-247. 

Colonna, P., and Mercier, C., (1985). Gelatiniztion and melting of maize and pea 
starches with normal and high amylose genotypes. Phytochemistry, 24(8), 1667-
1674. 

Cooke, D., and Gidley, M.J., {1992). Loss of crystalline and molecular order 
during starch gelatinization: origin of the enthalpic transition. Carbohydr. Res., 
227, 103-112. 

Coultate, T.P., {1984). Food • the chemistry of its components, pp 26-32, The 
Royal Society of Chemistry, London. 

Cowie, J.M.G., and Greenwood, C.T., {1957). Physicochemical studies on 
starches. Part V. The effect of acid on potato starch granule. J. Chem. Soc., 
Part II, 2658-2665. 

Cura, J. A., and Krisman, C.R., (1990). Cereal grains: a study of their a- 1 ,4-a-
1,6 glucopolysaccharide composition. Starch, 42(5), 171-175. 

Dronzek, B.L.. Hwang, P., and Bushuk, W., (1972). Scanning electron 
microscopy of starch from sprouted wheat. Cereal Chem., 49, 232-239. 

Donovan, J.W., (1979). Phase transitions of the starch-water system. 
Biopolymers, 18, 263-275. 

Donovan, J.W., and Mapes, C.J., (1980). Multiple phase transitions of starches 
and Nageli amylodextims. Starch, 32(6), 190-193. 

Donovan, J, W., Lorenz, K., and Kulp, K., (1983). Differential scanning 
calorimetry of heat-moisture treated wheat and potato starches. Cereal Chem., 
60, 381-387. 

Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F., (1956). 
Colorimetric method for determination of sugars and related substances. Anal. 
Chem., 28(3), 350-356. 

Eliassen, A.-C. (1985). Starch gelatinization in the presence of emulsifiers. A 
morphological study of wheat starch. Starch, 37(11), 411-415. 

Eliassen, A.-C., and Gudmundsson, M., (1996). Starch: Physicochemical and 
functional aspects. In: Carbohydrates in Foods. A.-C. Eliasson (Ed.), pp 431-503. 
Marcel Dekker, Inc., New York. 

118 



Eliasson, A.-C., and Larsson K., (1993). Physicochemical behavior of the 
components of wheat flour. In: Cereal in breadmaking. pp 102-109, Marcel 
Dekker. Inc., New York. 

Ellis, H.S., Ring, S.G., and Whittam, M.A., (1989). A comparison of the viscous 
behavior of wheat and maize starch pastes. J. Cereal Sci., 10, 33-44. 

Evans, I.D., and Haisman, D.R., (1982). The effects of solutes on the 
gelatinization temperature range of potato starch. Starch, 34(6), 224-231. 

Evers, A.D., Baker, G.J., and Stevens, D.J., (1984). Production and 
measurement of starch damage in flour. Part 2. Damage produced by 
unconventional methods. Starch, 38(10), 350-355. 

Evers, A.D., Gough, S.M., and Pybus, J.N., (1971 ). Scanning electron 
microscopy of wheat starch. IV. Digestion of large granules by glucoamylase of 
fungal (Aspergillus niger) origin. Starch. 23(1), 16-18. 

Evers. A.D., and McDermott, E.E.. (1970). Scanning electron microscopy of 
wheat starch. II. Structure of granules modified by alpha-amytosis-preliminary 
report. Starch. 22(1 ), 23-26. 

Falk, H., Micura, R., Stanek, M., and Wutka, R .• (1996~. Structural aspects of 
native and acid or enzyme degraded amylopectins -A 3C NMR study. Starch, 
48(9), 344-346. 

Fannon. J.F .• Hauber, R.J .• and BeMillar. J.N., (1992). Surface pores of starch 
granules. Cereal Chem .• 69. 284-288. 

Fannon. J.F., Shull, J.M .• and BeMillar. J.N .• (1993). Interior channels of starch 
granules. Cereal Chem .• 70.611-613. 

Fergason, V .• (1994a). High amylose and waxy coms. In: Specialty Corns. 
Hallauer, A., (Ed.), p 55-78, CRC Press, Boca Raton, Orlando. 

Fergason. V., (1994b). U.S. Patent 5,3000,145. 

French. D., (1972). Fine structure of starch and its relationship to the 
organization of starch granules. J. Jpn. Soc. Starch Sci., 19, 8-33. 

French, D., (1984). Organization of starch granules. In: Starch Chemistry and 
Technology. Whistler, R.L., BeMiller, J.N., and Paschal, E.F .• (Eds.), 2"0 ed., 
pp183-247, Academic Press, Orlando. 

Furcsik, S., and Mauro, D .• (1990). Starch jelly candy. U.S. patent 5,035,912. 

119 



Fuwa, H., Nakajima, M .• Hamada, A., and Glover, D.V., (1977). Comparative 
susceptibility to amylases of starches from different plant species and several 
single endosperm mutants and their double-mutant combinations with opaque-2 
inbred Oh43 maize. Cereal Chem., 54(2), 230-237 

Gallant, D. J., Bouchet, B., and Baldwin, P, M., (1997). Microscopy of starch: 
evidence of a new level of granule organization. Carbohydr. Polymers, 32, 177-
191. 

Gallant, D. J., Derrien A., Aumaitre, A., and Guilbot, A., (1973). In vitro 
degradation of starch. Studies by transmission and scanning electron 
microscopy. Starch, 25(2). 56-64. 

Gallant, D. J .• Mercier, C., and Guilbot, A., (1972). Electron microscopy of starch 
granules modified by bacterial a-amylase. Cereal Chem., 49, 354-365. 

Galliard, T., and Bowler, P., (1987). Morphology and composition of starch. In : 
Starch properties and potential. Vol. 13. Galliard T., (Ed.) pp 55-87, John Wiley & 
Sons, New York. 

Garcia-Aionso, A., Saur-Calixto, F., and Delcour, J.A., (1998). Influence of 
botanical source and processing on formation of resistant starch type Ill. Cereal 
Chem., 75(6), 802-804. 

Gemat, C., Radosta. S., Anger, H., Damaschun, G., and Schierbaum, F., (1990). 
Supermolecular structure of legume starches revealed by X-ray scattering. 
Starch. 42(5), 175-187. 

Gemat, C., Radosta, S., Anger, H., and Damaschun, G., (1993). Crystalline parts 
of three different conformations detected in native and enzymatically degraded 
starches. Starch, 45(9), 309-314. 

Gibinski, M., Palasinski, M., and Tomasik, P., (1993). Physicochemical 
properties of defatted oat starch. Starch, 45(1 0), 354-357. 

Gidley, M.J., (1987). Factors affecting the crystalline type (A-C) of native 
starches and model compounds a rationalisation of observed effects in terms of 
polymorphic structure. Carbohydr. Res., 161, 301-304. 

Gidley, M.J., {1989). Aggregation of amylose in aqueous systems: the effect of 
chain length on phase behavior an aggregation kinetics. Macromolecules, 22. 
341-346. 

Gidley, M.J .• and Bociek, S.M., (1985). Molecular organization in starches: A 13C 
CP/MAS NMR study. J. Am. Chem. Soc., 107(24), 7040-7044. 

120 



Gidley, M.J., and Bulpin, P.V. (1987). Crystallization of malto-oligosaccharides 
as models of the crystalline forms of starch: minimum chain-length requirement 
for the fonnation of double helices. Carbohydr. Res., 161, 291-300. 

Godet, M. C., Tran, V., Delage, M.M., and Buleon, A., (1993). Molecular 
modeling of the specific interactions involved in the amylose complexation by 
fatty acid. Int. J.Biol. Macromol., 15, 11-16. 

Goshima, G., Abe, M., Sato., N., Ohashi, K., and Tsuge, H., (1985). 
Amylographic reproducibility of defatted potato starch by re-introduction of lipids. 
Starch, 37(1 ), 1 0-14. 

Greenwood, C.T., (1976). Starch, In: Advances in cereal science and technology, 
Vol. I, Pomeranz (Ed.), p 119, American Association of Cereal Chemists, St. 
Paul, Minnesota, 

Greenwood, C.T., and Thomson, J., (1959). A comparison of the starches from 
barley and malted barley. J lnst. Brew., 65, 346-353. 

Gudmundsson, M., and Eliassen, A.-C., (1989). Some physico-chemical 
properties of oat starches extracted from varieties with different oil content. Acta 
Agric. Scand., 39, 101-111. 

Guilbot, A., Charbonniere, R., and Drapron, R., (1961 ). Sur Ia contribution de 
I'Eau a I' organisation des chaines mcaromoleculaires. Starch, 13(8), 204-207. 

Guthrie, R.D., and Honeyman J., (1968). An introduction to the chemistry of 
carbohydrates. 3rd ed, p 121-125, Oxford University Press, London. 

Hall, D.M., and Sayre, J.G., (1970). A scanning electron-microscope study of 
starches. II: Cereal starches. Text. Res. J., 40(3), 256-266. 

Hanashiro, 1., Abe, J., and Hizukuri, S., (1996). A periodic distribution of the 
chain length of amylopectin as revealed by high-performance anion-exchange 
chromatography. Carbohydr. Res., 283, 151-159. 

Hancock, R.B., and Tarbet, B.J., (2000). The other double helix-the fascinating 
chemistry of starch. J. Chem. Ed., 77(8), 988-992. 

Hargin, K. 0., and Morrison, W.R., (1980). The distribution of acyl lipids in the 
germ, aleurone, starch and non-starch endosperm of four wheat varieties. J. Sci. 
Food Agric., 31, 877-888. 

Hartunian-Sowa, M., and White, P.J., (1992). Characterisation of starch isolated 
from oat groats with different amount of lipid. Cereal Chem., 69(5), 521-527. 

121 



Haumann, B.F., (1986). Getting the fat out: Researchers seek substitutes for full­
fat. JAOCS, 63(3), 278-288. 

Hibi, Y., Matsumoto, T., and Hagiwara, S., (1993). Effect of high pressure on the 
crystalline structure of various starch granules. Cereal Cham., 70(6), 671-676. 

Hizukuri, S., (1961). X-ray diffractometric studies on starches Part VI. Crystalline 
types of amylodextrin and effect of temperature and concentration of mother 
liquor on crystalline type. Agric. Bioi. Chem., 25, 4549. 

Hizukuri, S., (1985). Relationship between the distribution of the chain length of 
amylopectin and crystalline structure of starch granules. Carbohydr. Res., 141, 
295-306. 

Hizukuri, S., (1986). Polymodal distribution of the chain lengths of amylopectins, 
and its significance. Carbohydr. Res., 147, 342-347. 

Hizukuri, S., (1996) Starch: analytical aspects. In: Carbohydrates in Foods. A.-C. 
Eliasson (Ed.), pp 347-430. Marcel Dekker. Inc., New York. 

Hizukuri, S., Kakuta, M., and Nikuni, Z., {1964). X-ray diffractometric studies on 
starches. Part VII. On the submicroscopic structure of the granule by means of X­
ray small angle scattering method. J. Agric. Chem. Soc. Jpn., 38(11 ). 520-524. 

Hizukuri, S .• Kaneko, T., and Takeda, Y., (1983). Measurement of the chain 
length of amylopectin and its relevance to the origin of crystalline polymorphism 
of starch granules. Biochem. Biophys. Acta, 760, 188-191. 

Hizukuri, S .• Fuji, M .• and Nikuni, Z., (1961). The effect of inorganic ions on the 
crystallization of amylodextrin. Biochim. Biophys. Acta, 40, 346-348. 

Hizukuri, S., Takeda, Y., Usami, S., and Takase, Y., (1980). Effect of aliphatic 
hydrocarbon groups on the crystallization of amylodextrin : model experiments 
for starch crystallization. Carbohydr. Res., 83, 193-199. 

Hizukuri, S., Takeda, Y., Yasuda, M., and Suzuki, A., (1981). Multibranched 
nature of amylose and the action of debranching enzymes. Carbohydr. Res., 94, 
205-213. 

Hood, L.F., and Liboff, M., (1983). Starch ultrasturcture. In: New Frontiers in 
Food Microstructure, Bechtel, 0.8., (Ed.), pp 341-370, American Association of 
Cereal Chemists Inc., St. Paul, Minnesota. 

Hoseney. R.C., (1994). Principles of cereal science and technology, 2nd ed., pp 
29-62, America Association of Cereal Chemists Inc. St. Paul, Minnesota. 

122 



Hoover, R., (1995). Starch retrogradation. Food Rev. Int., 11(2}, 331-346. 

Hoover, R., (2000). Acid-treated starches. Food Rev. Int., 18(3), 369-392. 

Hoover, R., and Hadziyev, D., {1981 ). Characterization of potato starch and its 
monoglyceride complexes. Starch, 33 (5), 290-300. 

Hoover, R., and Manuel, H., (1996). The effect of heat-moisture treatment on the 
structure and physicochemical properties of normal maize waxy maize, dull waxy 
maize and amylomaize V starches. J. Cereal Sci., 23(2), 153-162. 

Hoover, R., Swamidas, G., and Vasanthan, T., (1993). Studies on the 
physicochemical properties of native, defatted and heat-moisture treated pigeon 
pea (Cajanus cajan L) starch. Carbohydr. Res., 246, 185-203. 

Hoover, R., and Ratnayake, W ., (2001 ). Determination of total amylose content 
In: Current Protocols of Food Analytical Chemistry. John Wiley and Sons, USA 
(in press). 

Hoover, R., and Vasanthan, T., (1992). Studies on isolation and characterization 
of starch from oat {Avena nuda) grains. Carbohydr. Polymers, 19, 285-297. 

Hoover, R., and Vasanthan, T., (1994a). The effect of annealing on the 
physicochemical properties of wheat, oat, potato and lentil starches. J. Food 
Biochem., 17. 303-325. 

Hoover, R., and Vasanthan, T. (1994b). The effect of heat-moisture treatment on 
the structure and physicochemical properties of cereal, legume, and tuber 
starches. Carbohydr. Res., 252, 33-53. 

Hoover, R., Vasanthan, T., Senanayake, N.J., and Martin, A.M., (1994). The 
effects of defatting and heat-moisture treatment on the retrogradation of starch 
gels from wheat, oat, potato, and lentil. Carbohydr. Res., 261, 13-24. 

Howling, D., (1992). Glucose syrup: Production, properties and application. In: 
Starch Hydrolysis Products, Schenk, F. W., and Hebeda, R. E., (Eds.}, pp 277-
317. VCH Publishers, New York. 

Huber, K.C., and Bemiller J.N., (1997). Visualization of channels and cavities of 
com and sorghum starch granules. Cereal Chem., 74(5), 537-541. 

Hudnall, M.J., Connor, S.L., and Connor, W.E., (1991). Position of the American 
diet. Dietetic Association fat replacements. J. Am. Diet. Assoc., 91, 1285·1286 

lnouchi. N .• Glover, D.V., and Fuwa, H .• (1987). Properties of residual maize 
starches following acid hydrolysis. Starch, 39(8), 284-288. 

123 



lnouchi, N., Glover, D.V., and Fuwa, H., (1995). Structure and physicochemical 
properties of endosperm starches of a waxy allelic series and their respective 
normal counterparts in the inbred oh43 maize background. Starch, 47(11), 421-
426. 

lnouchi, N., Glover, O.V., Sugimoto, Y., and Fuwa, H., (1984). Development 
changes in starch properties of several endosperm mutants of maize. Starch, 
36(1), 8-12. 

lnouchi, N., Glover, O.V., Sugimoto, Y., and Fuwa, H., (1991). OSC 
characteristics of gelatinization of starches of single- double- and triple-, mutants 
and their normal counterpart in the inbred oh 43 maize (Zea mays. L.) 
background. Starch, 43(12}, 486-472. 

Jacobs, H., and Delcour, J.A., (1998). Hydrothermal modifications of granular 
starch, with retention of the granular structure: A review. J. Agric. Food Chem., 
46(8), 2895-2905. 

Jacobs, H., Eertingen, R.C., and Delcour, J.A., (1996). Factors affecting the 
visco-amylograph and rapid visco·analyzer evaluation of the impact of annealing 
on starch pasting properties. Starch, 48(7/8), 266-270. 

Jacobs, H., Eerlingen, R.C., Rouseu, N., Colonna, P., and Delcour, J.A., (1998). 
Acid hydrolysis of native and annealed wheat, potato and pea starches -OSC 
melting features and chain length distributions of lintnerised starches. Carbohydr. 
Res., 308, 359-371. 

Jane, J., (1997). Structural aspects of starch granule. In: Starch 96'-the book, 
Perspectives for a versatile raw material on the threshold of a new millennium,. 
Doren H.V and Swaaij N.V., (Eds.) pp 37-46, Zestec bv/Carbohydrate Research 
Foundation, The Netherlands. 

Jane, J., Xu, A., Radosavljevic, M., and Seib, P.A., (1992). Location of amylose 
in normal starch granule. I. Susceptibility of amylose and amylopectin to cross­
linking reagents. Cereal Chem., 69(4), 405-409. 

Jane, J., Chen, Y.Y., Lee, L.F., McPherson, A.E., Wong, K.S., Radosavljevic, M., 
and Kasemsuwan, T., (1999). Effect of amylopectin branch chain length and 
amylose content on the gelatinization and pasting properties of starch. Cereal. 
Chem., 76(5), 629-637. 

Jane, J., Kasemuwan T., Leas, S., Zobel, H., and Robyt, J.F., (1994). Anthology 
of starch granule morphology by scanning electron microscopy. Starch, 46(4), 
121-129. 

124 



Jane. J., and Robyt, J.F., (1984). Structure studies of amytose-V complexes and 
retrograded amylose by action of alpha amylases, and a new method for 
preparing amytodextrins. Carbohydr. Res .• 132, 10&-118. 

Jane, J., and Robyt, J.F., (1985). 13C N.M.R. study of the conformation of helical 
complexes of amylodextrin and of amylose in solution. Carbohydr. Res., 140, 
21·35. 

Jane, J., and Shen, J.J., (1993). Internal structure of the potato starch granule 
revealed by chemical gelatinization. Carbohydr. Res., 247, 279-290. 

Jane, J., Wong, K.S., and McPherson, A.E., (1997). Branch-structure difference 
in starches of A- and B-type X-ray patterns revealed by their Naegeli dextrins. 
Carhohydr. Res., 300, 219-227. 

Jayakody, J.A.L.P., (1991 ). A preliminary study on the hydrolysis of rice flour 
using microbial enzymes. B.Sc. Thesis, University of Peradeniya, Sri Lanka. 

Jenkins, P., ( 1994 ). X-ray and neutron scattering studies of starch granule 
structure. Ph.D. Thesis, University of Cambridge, U.K. 

Jenkins, P.J .• Cameron, R.E., and Donald, A.M., (1993). A universal feature in 
the structure of starch granules from different botanical sources. Starch, 45(12), 
417-420. 

Jenkins, P.J., Cameron, R.E., Donald, A.M., Bras, W ., Derbyshire, G.E., Mant, 
G.R .• and Ryan, A.J., (1994). In situ simultaneous small and wide angle X-ray 
scattering: A new technique to study starch gelatinization. J. Po/ym. Sci., Part 8: 
Polym. Phys .• 32(8), 1579-1583. 

Jenkins, P.J., and Donald, A.M .• (1995). The influence of amylose on starch 
granule structure. Int. J. Bioi. Macromol., 17(6), 31&-321. 

Jenkins, P.J., and Donald, A.M .• (1997). The effect of acid hydrolyis on native 
starch granule structure. Starch, 49(7/8). 262-267. 

Jones, R.W .• Dimler, R.J., and Rist, C. E., (1955). Kinetics of hydrolysis of 
isomaltotriose and isomaltoriitol. J. Am. Soc., 77, 1659-1663. 

Kainuma • K .• and French, D., (1971 ). Nageli amytodextim and its relationship to 
starch granule structure. I. Preparation and properties of amytodextrins from 
various starch types. Biopolymers. 10. 1673-1680. 

Kainuma , K .• and French, D., (1972). Naegeli amylodextrin and its relationships 
to starch granule structure. II. Role of water in crystallization of B-starch, 
Biopolymers, 11, 2241-2250. 

125 



Karkalas, J., Tester, R.F., and Morrison, W.R., (1992). Properties of damaged 
starch granules. I. Comparison of a micromethod for the enzymic determination 
of damaged starch with the standard AACC and Farrand methods. J. Cereal Sci., 
16(3), 237-251. 

Katz, F.R .• Furcsik, S.L., Tenbarge, F.l., Hauber, R.J., and Friedman R,B., 
(1993). Behavior of starches derived from varieties of maize containing different 
genetic mutations: effects of starch genotype on granular morphology. 
Carbohydr. Polymers, 21, 133-136. 

Katz, J.R. and Vanltallie, T.B., (1930). Abhandlungen zur physikalischen chemie 
der starke und eler brotbereitung. V . Aile starkearten haben das gleiche. 
Retrogradationspektrum. Z. Physik. Chem., A150, 90-99. 

Khairy, M., Morsi, S., and Sterign, C., (1966). Accessibility of starch by 
deuteration. Carbohydr. Res., 3, 97-101. 

Kirchoff, G.S.C., ( 1811 ). Observations, experiences, et notices interessantes, 
faites et communiques a I' Academia, Academia Imperiale des Sciences de St. 
Petersbourg. Memories, 4, 27. 

Kirby, K.W .. (1987). Textile industry, In: Modified Starches: Properties and Uses, 
Wurzburg 0.8. (Ed.), p 230. CRC Press Inc., Florida. 

Klucinec, J.D., and Thompson, O.B., (1999). Amylose and amylopectin interact 
in retrogradation of dispersed high-amylose starches. Cereal Cham., 76(2), 282-
291. 

Knutson, C.A., (1990). Annealing of maize starches at elevated temperatures. 
Cereal Chem., 67(4), 376-384. 

Koch, H., Beck, R., and Roper, H., (1993). Starch-derived products for 
detergents. Starch, 45(1), 2-7. 

Kodama, M., Noda, H., and Kamata, T., (1978). Conformation of amylose in 
water. I. light scattering and sedimentation-equilibrium measurements. 
Biopolymers, 17(4), 985-1002. 

Komiya, T., and Nara, Sh., (1986). Changes in crystallinity and gelatinization 
phenomena of potato starch by acid treatment. Starch, 38(1 ), 9-13. 

Komiya, T., Yamada, T., and Nara, S., (1987). Crystallinity of acid treated com 
starch. Starch, 39(9), 308-311. 

126 



Kreger, D.R., (1951 ). The configuration and packing of the chain molecule of 
native starch as derived from X-ray diffraction of part of a single starch grain. 
Biochim. Biophys. Acta, 6, 406-425. 

Kugimiya, M., and Donovan, J.W., (1981 ). Colorimetric determination of the 
amylose content of starches based on formation and melting of the amylose­
lysolecthin complex. J. Food. Sci, 46, 768-777. 

Lansky, S., Kooi, M .• and Schoch, T.J .• (1949). Properties of the fractions and 
linear subtractions from various starches. J. Am. Chem. Soc .• 71, 4066-4075. 

Leach, H.W., McCowen, L.D., and Schoch, T.J., (1959). Structure of the starch 
granule. I. Swelling and solubility pattems of various starches. Cereal Chern. 36, 
534-544. 

Lelievre, J., and Mitchell, J., (1975). A pulsed NMR study of some aspeds of 
starch gelatinization. Starch, 27(4),113-115. 

Levine, M., Foster, J.F., and Hixon, R.M., (1942). Structure of dextrins isolated 
from com syrup. J. Am. Chem. Soc., 64, 2331-2337. 

Lineback, D. R .• (1984). T~e starch granule: Organization and properties. 
Baker's Dig., 58 (2), 16-21. 

Lineback. D.R., and Rasper, V.F., (1988). Wheat carbohydrates. In: Wheat 
Chemistry and Technology. Pomeranz. Y .• (Ed.). pp 277-372, American 
Association of Cereal Chemists, St. Paul, Minnesota. 

Lintner, C.J., (1886). Studien uber diastase, J. Prakt. Chem., 34, 378-386. 

Lorenz, K., (1976). Physicochemical properties of lipid free cereal starches. J. 
Food Sci. 41, 1357-1359. 

Manelius, R., Nurmi, K., and Bertoft, E .• (2000). Enzymatic and acidic hydrolysis 
of cationized waxy maize starch granules. Cereal Chem., 77(3), 345-353. 

Maningat, C. C., and Juliano, 8.0., (1979). Properties of lintnerized starch 
granules from rices differing in amylose content and gelatinization temperature. 
Starch, 31(1), 5-10. 

Maningat, C. C., and Juliano, 8.0., (1980). Starch lipids and their effect on rice 
starch properties. Starch, 32(2), 76-82. 

Manners, D. J., (1985). Some aspects of the structure of starch, Cereal Foods 
World, 30,461-467. 

127 



Manners. D.J., (1989). Recent development in our understanding of amylopectin 
structure. Carohydr. Polymers. 11. 87-112. 

Mauro. D.J .• (1996). An update on starch. Cereal Food World, 41(10), 776-780. 

May, L.H .• and Buttrose, M. S .• (1959). Physiology of cereal grain. Australian J 
.Bio/1. Sci .• 12, 146-159. 

McPherson, A.E., Bailey, T.B .• and Jane, J .• (2000). Extrusion of cross-linked 
hydroxypropylated com starches. I. Pasting properties. Cereal Chem .• 77(3), 
320-325. 

Meyer, K.H .• Brentano. W., and Bemfeld. P. (1940). Starch II. Nonhomogenity of 
starch, Helv. Chim. Acta, 23.845-853. 

Mikus, F., Hixon, R .• and Rundle, R., (1946). The complexes of fatty acids with 
amylose. J. Am. Chem. Soc., 68, 1115-1123. 

Miles, M.J., Morris. V.J., Orford, P.O., and Ring, S.G., (1985a). The roles of 
amylose and amylopectin in the gelation and retrogradation of starch. 
Carbohydr. Res., 135. 271-281. 

Miles, M.J.. Morris, V.J., and Ring, S.G., (1985b). Gelation of amylose. 
Carbohydr. Res., 135, 257-281. 

Montgomery, E.M., and Senti, F.R., (1958). Separation of amylose from 
amylopectin of starch by and extraction-sedimentation procedure. J. Polym. Sci., 
28, 1-9. 

Morrision, W.R., (1978). Cereal lipids. In : Advances in Cereal Science and 
Technology, Vol.1 . Y Pomeranz (Ed.), pp 221-348, American Association of 
Cereal Chemists. St. Paul. Minnesota. 

Morrison, W.R. (1981). Starch lipids: A reappraisal. Starch, 33(11), 408-410. 

Morrison, W.R .• (1988). Lipids in cereal starches: A review. J. Cereal Sci., 8, 1-5. 

Morrison, W.R., (1995). Starch lipids and how they relate to starch granule 
structure and functionality. Cereal Food World, 40(6), 437-446. 

Morrison, W.R., and Azudin, N., (1987). Variation in the amylose and lipid 
contents and some physical properties of rice starches. J. Cereal Sci., 5(1), 35-
44. 

Morrison, W.R., and Gadan, H., (1987). The amylose and lipid contents of starch 
granules in developing wheat endosperm. J. Cereal Sci., 5. 263-275. 

128 



Morrison. W.R., Law. R.V .• and Snape, C.E .• (1993a). Evidence for inclusion 
complexes of lipid with V-amylose in maize, rice and oat starches. J. Cereal. 
Sci., 18, 107·111. 

Morrison. W.R., Milligan, T.P., and Azudin, M.N., (1984). A relationship between 
the amylose and lipid contents of starches from diploid cereals. J. Cereal Sci., 
2(4), 257-271. 

Morrison, W. R., Tester. R. F., Gidley, M.J., and Karkalas, J., (1993b). 
Resistance to acid hydrolysis of lipid-complexed amylose and lipid·free amylose 
in lintnerised waxy and non-waxy barley starches. Carbohydr. Res., 245, 289-
302. 

Morrison, W. R., Tester, R. F., and Gidley, M.J .• (1994). Properties of damaged 
starch granules. II. Crystallinity, molecular order and gelatinisation of ball-milled 
starches. J. Cereal Sci., 19(3), 209-217. 

Morrison. W. R., and Tester, R. F., (1994). Properties of damaged starch 
granule IV. Composition of ball-milled wheat starches and of fractions obtained 
on hydration. J. Cereal Sci .• 20(1), 69-77. 

Morrison, W. R., Tester, R. F., Snape, C. E .• Law, R, and Gidley, M.J .• (1993c). 
Swelling and gelatinization of cereal starches. IV. Some effects of lipid­
complexed amylose and free amylose in waxy and normal barley starches. 
Cereal Chem., 70(4),385-391. 

Muhr, A.H.. Blanshard, J.M.V.. and Bates, D.R.. (1984). The effect of 
lintnerisation on wheat and potato starch granules. Carbohydr. Polymers, 4, 399-
425. 

Mussulmam, W .C., and Wagner. J.A., (1968). Electron microscopy of 
unmodified and acid-modified com starches. Cereal Chem., 45, 162·171 

Nageli, C.W., (1874). Beitrage zur naheren kenntniss der starkegrupe. Ann. 
Chem., 173, 218-227. 

Nara, Sh., Mori, A., and Komiya., (1978). Study on relative crystallinity of moist 
potato starch. Starch, 30(4), 111-114. 

Nara, Sh., Sakakura, M., and Komiya, T.. (1983). On the acid resistance of 
starch granules. Starch, 35(8), 266-270. 

Niemann, C., and Whistler, R.L., (1992). Effect of acid hydrolysis and ball milling 
on porous com starch. Starch, 44(11}, 409-414. 

129 



Noda, T.. Takahata, Y.. Sato. T.. lkoma, H., and Mochida, H.. (1996). 
Physicochemical properties of starches from purple and orange fleshed sweet 
potato roots at two levels of fertilizer. Starch, 48(11), 395-399. 

O'Dell, J., (1979). The use of modified starch in the food industry. In: 
Polysaccharides in food. Blanshard, J.M.V., and Mitchell, J.R., (Eds.), p 171, 
Butterworth & Co. (Publishers), Ltd., London. 

Ong. M.H., and Blanshard, M.V .• (1995). Texture determinants of cooked 
parboiled rice II. Physicochemical properties and leaching behavior of rice. J. 
Cereal Sci., 21(3), 261-269. 

Oostergetel, G.T .• and Van Bruggen, E.F.J., (1993). The crystalline domains in 
potato starch granules are arranged in a helical fashion. Carbohydr. Polymers, 
21,7-12. 

Otey, F, H., and Doane, W.M .• (1984). Chemicals from starch. In: Starch 
Chemistry and Technology. Whistler, R.L., BeMiller, J.N., and Paschal, E.F., 
(Eds.). 2"0 ed., pp 389-416, Academic Press, Orlando, Florida. 

Paton, D.,{1987). Differential scanning of oat calorimetry starch pastes. Cereal 
Chem., 64(6). 394-399 . 

• 

Pessa. E., Suortti, T .• Autio, K .• and Poutanen. K., (1992}. Molecular weight 
characterization and gelling properties of acid-modified maize starches. Starch, 
44(2), 64-69. 

Pfannemuller B. (1987). Influence of chain length of short monodisperse 
amylases on the formation of A- and 8-type X-ray diffraction patterns. Int. J. Bioi. 
Macromol., 9, 105-108. 

Planchet, V., (1993). alpha-Amylases d'Aspergi/lus fumigatus. Mechanismes 
d'action en phase heterogene. Ph.D. Thesis, University of Nantes, France. 

Qian, J., Rayas-Duarte, P .• and Grant, L.. (1998). Partial characterization of 
buckwheat (Fagopyrum esculentum) starch. Cereal Chem, 75(3), 365-373. 

Rappenecker, C.R., and Zugenmaier, P., (1981 ). Detailed refinement of the 
crystal structure of Vrt·amytose. Carbohyc:Jr. Res., 89,11-19. 

Ring. S.G., Colona, P., I'Anson, K.J., Kalichevsky, M.T., Miles, M.J., Morris, V.J .• 
and Orford, P.O., (1987a). The gelation and crystallization of amylopectin. 
Carbohydr. Res .• 162, 277-293. 

130 



Ring, S.G.. Miles, M.J., Morris, V.J. Turner, R., and Colonna. P. (1987b). 
Spherulitic crystallization of short chain amylose. Int. J. Bioi. Macromol., 9, 158-
160. 

Robin, J.P., Mercier, C., Charbonniere, R., and Guilbot, A .• (1974). Litnerized 
starches. Gel filtration and enzymatic studies of insoluble residues from 
prolonged acid treatment of potato starch. Cereal Chem., 51,389-406. 

Robin, J.P .• Mercier, C., Duprat. F., and Guilbot, A., (1975). Lintnerized starches. 
Chromatographic and enzymatic studies of insoluble residues from acid 
hydrolysis of various cereal starches, particularly waxy maize starch. Starch, 
27(2), 36-45. 

Robyt, J.F .• Choe, J., Hahn, R.S., and Fuchs, E.B., (1996). Acid modification of 
starch granules in alcohols: effects of temperature, acid concentration, and 
starch concentration. Carbohydr. Res., 281, 203-218. 

Roller, S., (1996). Starch: derived fat mimetics: maltodextrins. In: Starch 
Hydrolysis Products. Schenk, F. W .• and Hebeda, R. E .• (Eds.), pp 99-118. VCH 
Pubishers, New York. 

Rundle, R.E., and Baldwin, R.J., (1943). The configuration of starch and the 
starch-iodine complex. I. The dischroism of flow of starch-iodine solutions. J. Am. 
Chem. Soc., 65(1 ), 544-558. 

Sanchez-Castillo C.P., Dewey, P.J.S., Lara J.J., Henderson D.L.. Solano M .• and 
James, W.P.T., (2000). The starch and sugar content of some Mexican cereals, 
cereal products, pulses, snack foods, fruits and vegetables. J. Food Compos. 
Anal .• 13,157-170. 

Sarka A., and Wu, H.-C. H .• (1978). The crystal structures of A-, 8-, and C­
polymorphs of amylose and starch, Starch, 30(3), 73-78. 

Sasaki, T., and Matsuki, J., (1998). Effect of wheat starch structure on swelling 
power. Cereal Chem., 74(4), 525-529. 

Schenck, F.W., and Hebeda, R .E., (1992). Starch hydrolysis products: An 
introduction and history, In: Starch Hydrolysis Products, Schenk, F. W., and 
Hebeda, R. E .• (Eds.), p 1-21. VCH Publishers, New York. 

Shamekh, S., Forssell, P., and Poutanen, K., (1994). Solubility pattern and 
recrystallization behavior of oat starch. Starch, 46(4). 129-133. 

131 



Shannon J.C., and Garwood, D.L., (1984). Genetics and physiology of starch 
development. In: Starch Chemistry and Technology, Whistler, R.L., BeMiller, 
J.N., Paschall, E.F .• (Eds.). pp 25-86, 2nd ed, Academic Press, Inc .• Orlando, 
Florida. 

Shi, Y.·C, Capitani, T., Trzaska, P., and Jeffcoat, R., (1998). Molecular structure 
of a low-amylopectin starch and other high-amylose maize starches. J. Cereal 
Sci., 27(3), 289-299. 

Shi,Y.·C., and Seib, P.A., (1992). The structure of four waxy starches related to 
gelatinization and retrogradation. Carbohydr. Res., 227, 131·145. 

Shi,Y.·C .• Seib, P.A., and Bernardin, J.E., (1994). Effects of temperature during 
grain-filling on starches from six wheat cultivars. Cereal Chem., 71 (4), 369-383. 

Singh, V., and Ali, S,Z., (2000). Acid degradation of starch. The effect of acid 
and starch type. Carbohydr. Polymers, 41, 191-195. 

Singh, V .• Ali, S.Z., and Divakar, S., (1993). ' 3C CP/MAS NMR spectroscopy of 
native and acid modified starches. Starch, 45(2), 59-62. 

Sobczynska, D., and Setser, C.S., (1991 ). Replacements of shortening by 
maltodextrin-emulsifier combinations in chocolate layer cakes. Cereal Food 
World, 38(12), 1017-1026. 

Solarek, 0.8., (1987). Hydroxypropylated starches. In: Modified starches: 
properties and uses. Wurzburg 0.8. (Ed.), pp 97-112. CRC Press Inc., Florida. 

Sterling, C., (1960). Crystallinity of potato starch. Starch, 12(8), 182-185. 

Sterling, C., (1974). Fibrillar structure of starch. Starch, 28(4), 105-110 

Stevens, D.J., and Elton, G.A.H., (1971 ). Thermal properties of the starch/water 
system. Starch, 23(1), 8-11. 

Swanson, M.A., and Cori, C.F., (1948). Studies on the structure of 
polysaccharides I. Acid hydrolysis of starch-like polysaccharides. J. Bioi. Chem., 
172, 797-804. 

Swinkels, J.J.M., (1985a). Composition and properties of commercial native 
starches. Starch, 37(1), 1-5. 

Swinkels, J.J.M., (1985b). Sources of starch, its chemistry and physics. In: 
Starch Conversion Technology, Van Beynum, G.M.A., and Roels, J.A. (Eds.), 
pp15-46, Marcel Dekker, Inc., New York. 

132 



Takeda, Y., Shirasaka, K., and Hizukuri, S., (1984). Examination of the purity 
and structure of amylose by gel-permeation chromatography. Carbohydr. Res .• 
132,83-92. 

Takeda, Y., Hizukuri, S .• Takeda, C., and Suzuki. A., (1987). Structures of 
branched molecules of amyloses of various origins and molar fractions of 
branched and unbranched molecules. Carbohydr. Res., 185, 139-145. 

Taylor, N.W., Zobel, H.F., White, M., and Senti, F.R., (1961 ). Deuterium 
exchange in starches and amylose. J. Phys. Chem., 65, 1816-1820. 

Teitelbaum, R.C., Ruby, S.L., and Marks, T.J., (1978). On the structure of 
starch-iodide. J. Am. Chem. Soc., 100(10), 3215-3217. 

Teitelbaum, R.C., Ruby, S.L., and Marks, T.J., (1980). A resonance 
Raman/iodine Mossbauer investigation of the starch-iodine structure. Aqueous 
solution and iodine vapor preparations. J. Am. Chem. Soc., 1 02(1 0), 3322·3328. 

Tester, R.F., (1997a). Properties of damaged starch granules: composition and 
swelling properties of maize, rice, pea, and potato starch fractions in water at 
various temperatures. Food Hydrocolloids, 11 (3), 293-301. 

Tester, R.F., (1997b). Starch: The polysaccharide fractions. In: Starch, Structure 
and Functionality, Frazier, P.L., Richmond, P., and Donald, A.M., (Eds.,), pp 163-
171 , Royal Society of Chemistry. London. 

Tester, R.F., Debon, S.J.J., and Sommerville, M.,D., (2000). Annealing of maize 
starch. Carbohydr. Polymers, 42, 287-299. 

Tester, R.F .• and Karkalas. J., (1996). Swelling and gelatinization of oat starches. 
Cereal Chem., 73(2), 271-273. 

Tester, R.F., and Morrison, W.R., (1990a). Swelling and gelatinization of cereal 
starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem., 67(6), 
551-557. 

Tester, R.F., and Morrison, W.R., (1990b). Swelling and gelatinization of cereal 
starches. 11. Waxy rice starch. Cereal Cham., 67(6), 558-563. 

Tester, R.F., and Morrison, W.R., (1992). Swelling and gelatinization of cereal 
starches. Ill. Some properties of waxy and normal nonwaxy barley starches. 
Cereal Chem., 69(6), 654...S58. 

Tester, R.F., and Morrison, W.R., (1994). Properties of damaged starch 
granules. V. Composition and swelling of fractions of wheat starch in water at 
various temperatures. J. Cereal Sci., 20(2), 175-181. 

133 



Tester. R.F .• Morrison. W.R .• Gidley. M.J., Kirkland, M., and Karkalas, J .• (1994). 
Properties of damaged starch granules. Ill. Microscopy and particle size analysis 
of undamaged granules and remnants. J. Cereal Sci., 20(1), 59-67. 

Tester, R.F.. Morrison, W.R., and Schulman, A.H., (1993). Swelling and 
gelatinization of cereal starches. V. Riso mutants of Bomi and Carlsberg 2 barley 
cultivars. J. Cereal Sci., 17(1), 1-9. 

Tester, R.F., South, J.B., Morrison, W.R., and Ellis, R.P .• (1991 ). The effects of 
ambient temperature during the grain-filling period on the composition and 
properties of starch from four barley genotypes. J. Cereal Sci .• 13(2), 113-127. 

Van Patten, E .• and Freck, J. (1972). Method of coating food products with 
ungelatinized unmodified high amylose starch prior to deep fat frying. U.S. 
patent 3,751 ,268. 

Vasanthan, T .• Bergthaller. W., Driedger, 0., Yeung, J., and Spoms, P., (1999). 
Starch from Alberta potatoes: wet-isolation and some physicochemical 
properties. Food Res. Int .• 32, 355-365. 

Vasanthan, T and Bhatty, R.S., (1996). Physicochemical properties of small-and 
large-granule starches of waxy, regular. and high-amylose barleys. Cereal 
Chem., 73(2), 199-207. 

Vasanthan. T., Bhatty, R.S., Tyler, R.T .• and Chang. P .• (1997). Isolation and 
cationization of barley starches at laboratory and pilot scale. Cereal Chem., 
74(1). 25-28. 

Vasanthan, T., and Hoover, R., (1992a). Effect of defatting on starch structure 
and physicochemical properties. Food Chem., 45, 337-347. 

Vasanthan, T., and Hoover, R., (1992b). A comparative study of the composition 
of lipids associated with starch granules from various botanical sources. Food 
Chem., 43, 19-27. 

Veregin, R.P.. Fyte, C.A., Marchessault, R.H., and Taylor, M.G., (1986). 
Characterization of the crystalline A and B starch polymorphs and investigation of 
starch crystallization by high-resolution 13C CPIMAS NMR. Macromolecules, 
19(4), 1030-1034. 

Villwock, V.K., Eliassen A.-C., Silverio, J., and BeMiller N., (1999). Starch-lipid 
interactions in common, waxy, ae du, and ae su2 maize starches examined by 
differential scanning calorimetry. Cereal Chem., 76(2), 292-298. 

134 



Wakelin, J., Virgin, H., and Crystal, E., (1959). Development and comparison of 
two X-ray methods for determining the crystallinity of cotton cellulose. J. Appl. 
Phys., 30(11 ), 1654-1662. 

Wang, L., and Seib, P.A., (1996). Australian salt-noodles flours and their 
starches compared to U.S. wheat flours and their starches. Cereal Chem., 73(2), 
167-175. 

Wang, Y.-J., and Wang, L .• (2000). Structures and properties of commercial 
maltodextrins from com, potato, and rice starches. Starch, 52(8·9), 296-304. 

Wang, L.Z., and White, P.J., (1994a). Structure and physicochemical properties 
of starches from oats with different lipid contents. Cereal Chem., 71(5), 443-450. 

Wang, L.Z., and White, P.J., (1994b). Structure and properties of amylose, 
amylopectin, and intermediate materials of oat starches . Cereal Chem., 71(3), 
263-268. 

Watanabe, T., and French, D., (1980). Structural features of nageli amylodextrin 
as indicated by enzymic degradation. Carbohydr. Res., 84, 115-123. 

Watson, S.A., (1964). Determination of starch gelatinization temperature. In: 
Methods in Carbohydrate Chemistry. Whistler, R.L., (Ed.,), pp 240-242, Vol. 4, 
Academic Press, New York. 

Watson, S.A., (1984 ). Com and sorghum starches: production. In: Starch 
Chemistry and Technology. Whistler, R.L., BeMiller, J.N., and Paschal, E.F ., 
(Eds.), 2"d ed., pp 417-468, Academic Press, Orlando, Florida. 

Whistler, R.L., Byrd, J.D., and Thornburg, W.L.. (1955). Surface structures of 
starch granules. Biochim. Biophys. Acta, 18, 146-147. 

Whistler, R.L., Goatley, J.L., and Spencer, W.W., (1959). Effect of drying on the 
physical properties and chemical reactivity of com starch granules. Cereal 
Chem., 36, 84-90. 

Whistler, R.L., and Spencer, W.W., (1960). Distribution of substituents in com 
starch granules with low degrees of substitution. Arch. Biochem. Biophys., 87, 
137-139. 

Whittam, M.A., Noel, T.R., and Ring, S.G., (1990). Melting behavior of A-type 
and 8-type crystalline starch. Int. J. Bioi. Chem., 12, 359-362. 

Wolff, I.A., Hofreister, B.T., Watson, P.R., Deatherage, W.L., and MacMaster, 
M.M., (1955). The structure of a new starch of high amylose content, J. Am. 
Chem. Soc., 77,1654-1659. 

135 



Wolrom, M.L., Thompson, A., and Timbertake, C.E., (1963). Comparative 
hydrolysis rates of the reducing disaccharides of 0-glucopyranose. Cereal 
Chem., 40, 82-86. 

Wootton, M., and Bamunuarachchi, A .• (1979). Application of differential 
scanning calorimetry to starch gelatinization. Commercial native and modified 
starches. Starch, 31(6), 201-204. 

Wurzburg, O.B., (1987). Converted starches. In: Modified starches: properties 
and uses. Wurzburg O.B. (Ed.), pp 17-40. CRC Press Inc., Florida. 

Wu, H.·C. H., and Sarko. A. (1978a). The double-helical molecular structure of 
crystalline B·amylose. Carbohydr. Res., 61, 7-25. 

Wu, H.-C. H., and Sarko, A. (1978b). The double-helical molecular structure of 
crystalline A-amylose. Carbohydr. Res., 61, 27-40. 

Yalpani, M., (1988). Polysaccharides, syntheses, modifications and 
structure/property relations. Studies in organic chemistry 36, pp14, Elsevier 
Publishing company Inc., New York. 

Yamaguchi, M., Kainuma, K., and French, D.J., (1979). Electron microscopy 
observation of waxy maize starch. J. Ultrastr. Res., 69, 249-261 . 

Yonezaki, H., and Oshima. Y .• (1975). Properties of rice suitable for sake 
making. V. Location of protein in rice kemel. J. Soc. Brew. Jpn.., 70(2), 127-131. 

Young, A.H., (1984). Fractionation of starch. In: Starch Chemistry and 
Technology, Whistler, R.L., BeMiller, J.N., and Paschal, E.F (Eds.). 2"d Ed., pp 
249-283, Academic Press, Ortando, Florida. 

Yuan, R.C.. Thompson, 0.8., and Boyer, C.D., (1993). Fine structure of 
amylopectin in relation to gelatinization and retrogradation behavior of maize 
starches from three wx-containing genotypes in two inbred lines. Cereal Chem., 
70(1), 81-89. 

Vue, P ., and Waring, S., (1998). Resistant starch in food application. Cereal 
Food World, 43, 690-695. 

Yun, S.-H., and Matheson, N.K., (1992). Structure changes during development 
in the amylose and amylopectin fractions (separated by precipitation with 
concanavalin A) of starches from maize genotypes. Carbohydr. Res., 227,85-
101. 

136 



Zherebtsov. N.A., Ruadze, 1.0 .• and Yakovlev, A.N .• {1995). Mechanism of acid­
catalyzed and enzymatic hydrolysis of starch. App. Biochem. Microbilo., 31(&). 
511-514. 

Zhou. M .• Robards, K .• Glennie-Holmes, M., and Halliwell, S., (1998). Structure 
and pasting properties of oat starch. Cereal Chem., 75(3), 273-281. 

Zobel, H.F., (1984). Gelatinization of starch and mechanical properties of starch 
pastes. In: Starch Chemistry and Technology. Whistler, R.L, BeMiller, J.N .• and 
Paschal, E.F., (Eds.), pp 285-309, 2nd ed., Academic Press. Orlando. 

Zobel, H.F .• (1988a). Molecules to granules: A comprehensive starch review. 
Starch, 40(1), 44-50. 

Zobel, H.F., (1988b). Starch crystal transformations and their industrial 
importance. Starch, 40(1), 1-7. 

Zobel, H.F., (1992). Starch: sources, production and properties, In: Starch 
Hydrolysis Products, Schenk, F. W., and Hebeda, R. E .• (Eds.), pp 23-44. VCH 
Publishers, New York. 

137 



Appendix I 

138 



Figure 1-1 Standard curve for determination of total carbohydrate as glucose 
(Dubois et a/ .• 1956) 
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Figure 1-2 Standard curve for determination of amylose (Hoover and Ratnayake 
2001) 
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Figure 1-3 A&B Standard curves for determination of reducing sugars as maltose 
(Bruner, 1964) 
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Figure 1-3C Standard curves for determination of total carbohydrate as maltose 
(Dubois et al., 1956) 
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II. Detennination of physicochemical properties of native and cereal 
starches 

11.1 Detennination of relative cryatalllnity 

Because both background and peak intensities vary with hydration (HiZukuri et 
a/.. 1964, Nara et a/.. 1978, Buleon et al.. 1982, Veregin et al., 1986, Buleon et 
al., 1987, Hibi et al., 1993), the usual method of Wakelin et a/., (1959) is not 
appropriate calculation of starch crystallinity. However, the method of Nara eta/., 
(1978) is an appropriate method to measure intensities, where the amorphous 
background curve is drawn through the minima of all peaks. Thus. apparent 
crystallinities are judged by reference (quartz) to intensities and sharpness of 
peaks. Therefore, the degree of crystallinity of samples was quantitatively 
estimated following the method of Nara et a/., ( 1978). 

To measure the relative crystallinity of starch in the X·ray diffractogram. the 
baseline (C) joining background scattering points was drawn (Figure 11-1 ). A 
smooth curve was then computer-plotted between the low-and high-angle points 
of intensity at 29 of 3° and 35° for all starches. The upper region, above this 
curve (A), represented X-ray scattering of the crystalline fraction, and the lower 
part (B) represented that of the amorphous fraction. The upper diffraction peak 
area and total diffraction area over the diffraction angle 3° ·35° 29 were integrated 
on Origin 6.0 software (Microcallnc., Northampton, MA, USA). The amorphous 
fraction was subtracted form the total area above the base line in order to obtain 
the crystalline fraction. A percent relative crystallinity of native and lintneiized 
starch was then determined by the ratio of the total upper integrated peak area 
(A) observed in the X-ray diffraction pattern of starches to that of quarts, over the 
total angular range from 3-35°C (29] (Nara ela/., 1978). 



Figure 11·1 Determination of relative crystallinity of starch in the X·ray 
diffractogram. A: crystalline area, B: amorphous area, C: baseline 
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Figure 11-2 Schematic representation of a DSC thennogram. The gelatinization 
enthalpy (L1H)is evaluated as the area under the peak. 
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