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Single-Platform Stimulated Simulators (SPSS) 

by 

Corey White 

Abstract 

Simulating a process control system during the design phase is a key step in ensuring 

the system is designed correctly and meets the clesigu specificatious. There are several 

methods that are commonly used in industry to simulate process control systems, each 

selected based on the level of detail of the simula tion and the cost . Many Engineering 

firms will choose a simulation method based on cost rather than level of detail because 

cost has a higher priority. 

This thesis will look at some of the ways industry currently simulates process 

control systems and will compare them on Cost, Fidelity (level of detail of the sim­

ulation), Implementation and Conversion. As well, an alternate simulation method 

will be presented t hat will strike a balance between cost and fi delity. 
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Chapter 1 

Introduction 

Many industrie , ·uch as oil and gas and pow r generation, demand control system 

with a high d gr of afety and reliability. To meet this demand many compani s u 

simulation to thoroughly test and debug their process control quipment b fore plant 

commissioning. There are many ways top rform thes simulations. Methods involv­

ing everything from simple tie-back logic to pow rful third party s ftware packages 

have been impl m nt din industry. Each method has it 's b nefits and di advantages 

for the u er in t rms of cost and simulation re ults. 

1.1 Problem Statement 

The Instrum ntation Control and Automation (INCA) research gr up at Memorial 

niversity is looking into the curT nL method of simulation and inv t igating alt r­

natives to the e m thods. The simulator Lh y are trying to develop will s rve thre 

main functions. The first and most important function is to enable control ngineers 

and oth r interested parties to thoroughly test and d bug th ir onLrol equipm nt, 

i.e. software, programmable logic onLrollers (PLCs) and communi ation n tworks, 

without u ·ing any process equipment. Thi simulation will be performed prior to th 

installation of th system. Secondly, the simulator will provid a means by whi h 
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the syst m operator can be tra ined on how Lo u e the sy t m and how to deal with 

problems that an occur during the operation of the plant. The third function will 

be to provide per onn l with a means to "r create" a fault thaL o curr d within the 

process to d termine exactly what cau ed th fault. 

CONTROLLER PROCESS 

SOF T'.'• ~RE ~ SOFTI'I >.RE 

0 0 

B 
SPSS 

Hl.ll PLC'OCS ~ 

lnST~LLED SYSTEI.I 

Figure 1-1: Graphic Representation of Simula tion Methods 

The propo d m thod assume LhaL the theoretical analysi of the cont rol sy -

t em has b en omplet d and thaL th haracteristics of the individual compon nL. 

that mak up th proc ss are understood . In order to achieve the above mention d 

functions, all of the variables, such as ommunication loop delays and logic executi n 

time, need to b included in the imulation. T his will bring th imulation as clo 

to the real proces as possible. 
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1.2 Analysis of Typical Simulation Methods 

Th r are typically thr e ways in which control syst ms an be simulated: Software 

- Software, Hard war - Software, Hardware - Hard ware. A control yst ms dev lop r 

can choose any method and us it exclusively during the design proce s or they may 

wish to progress to the different modes of simulation as the design process evolves. 

Figure 1-1 is a graphical representation of th se simulation methods and how they 

relate. 

In Chapter 2 t hese simulation methods will be discus ed with examples of how 

they are used in industry today. These methods will be evaluated on the following 

criteria: 

• Cost 

• Fidelity 

• Implementation 

• Conversion 

The cost analysis will look at what equipment (computers, control quipm nt, soft­

ware), real estate and human resources ar required to implement Lhe simulation. 

The analysis will not provide an exact value for the cost of each method rather it will 

rate each method relative to the others . For xample, simulation A may get a rate of 

$1 because it only r quires one computer where as simulation B may get a value of 

$5 because it requires thre computers, seven controllers aud a large office. 

T ile fi uclit.y aua.ly~in will look a.t. l10w rca.liiltic the ~imulatiou i~ . It. wi ll look R.t 

how clos ly the simulation matches the real process and assign a p rc ntage to it. 

A simulation that can provide process trends that match the t rends from the r al 

process will get a value of 100%. Simulations Lhat just trigger the inputs individually 

will get a value of 5%. 
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---- -- -----~---------------------~ 

The implementat ion analysis will look at the level of difficulty in setting up the 

simulation. Each simulation method will be given a rating of one to ten, one being 

easy and ten being difficult. For example, a simulation that takes one person a couple 

of hours to set up will be given a score of one and a simulatiou t hat takes five people 

three weeks to set up will be given a score of ten . 

The conversion analysis will look at the level of difficulty in converting the control 

logic from the simulat ion environment to the plant control system. An easy conver­

sion, e.g. transferring the logic directly from the simulation to the control equipm nt, 

will get a value of one. A difficult conversion, e.g. having to rewrite the logic from 

scratch in the control equipment, will get a value of ten. 

Chapters 4, 5 and 6 will provide an alternate method of simulation referred to 

as Single-Platform Stimulated Simulation (SPSS). F inally, Chapter 7 will summarize 

the simulation analysis and provide some options for indus try. 

The main focus of this thesis is process control simulation methods currently being 

used in industry. Therefore the background information came from company web sites 

and marketing materials and from my experience from working in the automaLion 

industry for the past five years. 
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Chapter 2 

Current Industrial Practice 

2.1 Software to Software 

The fir ' t imulation method mentioned in hapter 1 is Software to Software simu­

lation . With this m thod, both the ontrol logic and the proccs are modelled in 

P C bas d softwar packages. T here are numerous softwar packages on the market 

that do Lhis type of simulation . Some package like Hyprot ch 's Hysys and Kongs­

berg Simrad ' ASSETT are able to simulate both the pro es and th control logi . 

The e programs are pecifically d signed to imulate engineering processe , such as 

petrochemi al pro esses. As a r sult of this very detailed math maLi al equation are 

used to model equipment and physical prop r t ies, such as chemi al reactions, result­

ing in highly reali ti simulations. Oth r packages like All n Bradley's Emulate and 

Modicon's Con pt provide a simulation of Lh ir PLC's that logi an b loaded int . 

Inputs can th n be manually trigger d to simulate proces changes. This provide a 

very qui k and asy way to check the logic for errors. 

The Software to Software simulation method is strictly a P bas d m thod mean­

ing that th only apital requirem nts arc a PC and the simulation software. T hi 

makes this m thod very useful during all stages of development for a proj ct because 

the softwar can be resident on the d ign engineer's computer and b accessible at 
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all times_ Th re are six main phase that make up the life of an ngin ering proc ss: 

1. Design 

2. Construction 

3. Commi sioning 

4. Start-up 

5. Op ration 

6. Maint nan / pgrades 

Within thi lij: cycle there are several k"y points at whi h an engine ring firm may 

want to run a proce simulation . The point are shown in Figur 2-1 [2]. Many im-

Process 
Design 
Pnase 

Figure 2-1: Pro css Simulation Phase 

Post Start-l.l) 
Maintenance 
and Tralnng 

ulation oftwar developers, uch as Kongsberg Simrad have designed their softwar 

packages with the goal in mind that one simulation packag can b u ed for ev ry 

stage of the project life cycle, thus reducing osts during plant start-up and commi -

sioning and during the plant 's operational life [2]. Figure 2-2 [3] is a marketing image 

from Kong berg showing that ASSETT i a Life Cycle simulator. 

Since the Software to Software method i P C based, it i abl to take advantage 

of the computational power of PC . Even the most basi P can olv ompl x 

mathematical equations that are virtually impossible to olv any other way. Thi 

means that pro ess with compl x mathematical models, such as thre phase piping 

and reactors, can be simulated on a P making the overall simulation much more 

realistic. 
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Malee It Right First nme 

Figur 2-2: Lif Cycle Simulation 

There are several advantages to using the Software to Software method: 

1. It i economical. Compared to other methods of simulation, thi method is eco­

nomical because the only capital requirem nts are the oftwar and a computer. 

2. No specialized equipm nt required. Since thi is a PC based simulation method, 

there is no pecialized equipment, such as control equipm nt requir d to run 

the simulation. 

3. Easy to set up. Again, sine this is a P C based simulation, th only s t up 

that i required is installing the software and creating the plant model. In some 

comm rcially available software packages creating the plant mod 1 is as impl 

as connecting together pipes and tanks and valves. This can b s en in th 

HYSYS screen shot in Figure 2-3 

The lisad vantages to this method of imulation are: 
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Figure 2-3: HYSYS Screen Shot 

1. T here ar some system performance characteristics that ar difficult to model. 

For exampl , communication loop timings and logic ex cution tim and priority 

are hard to model because they dep nd on the type of control quipment u ed, 

siz of logic and communi ·ation netw rk configuration. 

2. Tim onsuming to convert control logic. Any logic develop d for the simulation 

cannot be dire t ly loaded into the control equipment. It first has to be con­

vert d to th language that the equipm nt under tands. Sin this language i 

propri tary, th re are no oftware conv rsion tools available that convert logi 

from the simulation software into the control manufacturer's oftware. This 

means all logic will have to be reatcd from scratch in the c ntroller software, 

which is v ry time consuming and i open to errors. 

2.2 Hardware to Software 

The second method listed is the Hardwar to Software method. With this method , 

the control logic is executed in the control equipment, such as a PLC or DCS, and 

the process is mod lled in a PC based oftware program, similar to the type use I in 



the previou method . As with th pr v1ou method, the oftware provides a highly 

accurate math matical model of the proc ss. Input Output data is passed betwe n 

the PC and the control equipment via a custom communication n Lwork. 

The advantages of the Hard war to Softwar method are: 

1. Thi method is more realistic becau e it uses the sam Lyp of equipment LhaL 

will b u d to control the actual proc . This allow the chara teri t ics u h 

a communi ation loop delays and logic xecution Lim to b in orporated inLo 

the simulation. 

2. All control logic created for the imulation is already in Lhe language that th 

control quipment understands. Therefore no logic conv rsion i r quired. 

3. Easy to s L up. Since the same ofLware used to model Lh planL in th Softwar 

to Softwar method is used in thi method, the ease of set up would b the same. 

The m thod al o has some disadvantages: 

1. Depeudiug on the equipment being used , there may be som significant real 

staLe required to house the simulation. 

2. Establishiug communication b twe n these two items can be a difficult. and 

cosLly process because typically onLrol networks are lo eel, propri tary net­

works. Th y require special equipment or programming Lo allow devices, oLher 

than those used to control the proces , to acce s the n Lwork. 

Incorporating the control equipment into the simulation mak thi method id a! 

for operator training. It allows the imulator to be et up like th a Lual plant control 

room and allow Lhe op rators to not only g t familiar with th op raLor console , buL 

with all Lhe ontrol quipment and how it all interacts. Thi method is al o us ful for 

post startup logic and HMI updates for 'ystems, such as offshore oil and gas platforms 

where having someone on site for updaL s i a very costly proce . This simulation 
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method allows update to be fully tested on shore and then sent to quali fied persou nel 

on site to load . 

T he Hardware to Software simulation method was the method used by th ~ rra 

Nova Allianc to train operators for the Terra ova Floating Produ Lion, Storag and 

Offioading (FPSO) v ssel. 

2.3 Hardware to Hardware 

The final simulatiou met hod mentioned abov' is the Hard war to Hard. ware method. 

With this method both the plant model and the control logi ar executed in control 

equipment. Two of Lhe way this type of simulation is b ing don in indu try ar : 

• lave controll r contains a discr L s t of data, such as sequ nee of events data 

or I / 0 data from a similar pro c .·, that triggers the input in the control logic. 

Resulting output determine next set of inputs. 

• Input r place I in th logic with switch blocks (for digital inputs) and con tant 

block (for analog inpu ts). Th witch blocks are then manually turned on and 

off to simulate chaugiug digital iuputs aud the value iu th constant blocks ar " 

hang d to simulate changing analog inputs. 

Thi~ mC't.hod i~ a low fideli ty Himulat.ion method bccauHC' the data set. HSC'O t.o t rigger 

the inputs i eli cret . T his m ans that Lhe accuracy of the simulation depends on th 

sample rat of the data. For exampl data that i sampled every millisecond w uld 

provide a more accurate imulation than data sampled every s ond b a use there is 

a greater chanc of d t cting transient and pikes with the higher ample rat an I 

having Lran ients and spikes in the imulaLion provides gr ater inf rmaLion on system 

performance. 

Engineers and t echnicians at Bailey SEA (Nfl.d .) Limited and EA S st ms Lim­

ited usc both types of Hardware to Hardwar imulation to simulate logic and HMI 
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updates for the Hibernia offshore oil platform and the Terra ova FPSO. They use 

the slave controller method to simulate the Fire and Gas (FGS) Em rgency Shut 

Down (ESD) control systems for Hibernia and they u the second type, typically 

referred to as the "Tie Back" method , for all other system updates. 

The main use for the Hardware to Hardware simulation method is during control 

logi and operator int rface d velopment and upgrading. Since all the input values 

have to be changed manually in the tie back method, it is too time consuming and 

inefficient to use this type of simulation for op rator training. Also, by manually 

changing th input values one at a time, you only observe how a small section of th 

control system reacts to input changes and you are unable to see how Lhe sysLem 

acts as a whole to input changes. For example, a steam flow control valve f r a 

boiler is being simulated to determine PID tuning value . A constant block is us d 

to simulate the steam flow and is manually adjusted to simulate changes in flow rate 

and allow tuning values to be determined. This process assumes a constant steam 

flow. However, in reality steam flow is never constant and changes in steam flow 

cause changes in pre sure upstream of th valve. Since the steam boiler is a control 

process as well, changes in outlet pressure and flow will cause the controller to adj ust 

coml>u::;tiou and water flow to bring t!J pre~~ure ami flow back to the setpoint .. These 

adjustments cause fluctuations in steam flow which affect the flow control valve. 

By tuning the valve l>~ed ou constaut flow the valve may not re~poml proper!. to 

fluctuations caused by the boiler control syst m. 

As can be seen in the above discussion and in the example in Chapter 5, ea h 

simulation method is best suited for on particular type of simulation. For example 

the Software to Software method is ideal for high level process d sign and optimization 

simulations but is overkill for basic logic update testing. These types of simulation 

are considered "Fit For Purpos " simulations meaning a simulation method is chosen 

based on what the simulation is to achi ve. Figure 2-4 illustrates this idea. If the 

main purpose of the simulation is operator training, the designer may want to choo e 
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Figure 2-4: Fit for Purpose Simulation 

y 

Levels 1 or 2 where the proces and control are assumed to be id al and the outpu t is 

the r feren e, or setpoint, multiplied by a constant. If the simulation was to b u d 

for logic update testing, then Level 3, where a non-ideal controller is controlling an 

ideal process, would be more applicable. Finally, if the purpose of the simulation i 

to analyze the process to determine ar as for optimization, then Lev 1 4 simulation 

could be used. Here, all process equipm nt, tanks, valv s, pipes, are mod lled in th 

simulation to provid th most realistic simulation possible. 

To add another option to th above list of simulation methods, this thesis proposes 

to u the control equipment to simulate both the process and the control logi . 

This method would be called Single-Platform Stimulat d Simulation and would fall 

between the Hardwar to Software and Hardware to Hardware methods It would 

implement t he mathematical model of the plant within the control quipment, similar 

to th models used in th Software to Software methods. The id a of this method i to 

provide a more realistic simulation like in the software to software method while saving 

the user the cost of purchasing a third party software package and communications 
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link. As well, as with the hardware to hardware method, this meLhod would save 

significant engineering time because all th logic for the simulation is created in the 

same programming environm nt that will be used for th actual plant. 
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Chapter 3 

A Framework for SPSS 

In the previous chapter the difFerent methods used to simulate a control system were 

discus eel . This chapter will discuss how a pla nL model is developed and some of Lhe 

options available to simulate th mod l. 

3.1 Control System Definition 

Any d vice or group of devices that manipulate one or more variables of a sy Lem 

to achieve a desired result is called a control system [4. p.4]. More specifically, if 

these devices monitor the actual result and manipulate the variables based on Lhe 

diff reuce b tween the actual and de ired results , t hey form a Closed Loop Control 

System. Feedback is the process of monitoring the actual result and comparing it 

to the desir d result [4, p.IO]. One example of a clos d loop antral system would 

be driving in a car. The desired result would b car position d in the middle of Lhe 

road. The driver visually monitors the curren t position of the car beLwe n th lines 

on th road and , based on the current position and where he/ he want the car to 

be, adjusts th steering wheel to chang t he car 's position [4, p.5]. 

The object or objects being cantrall d is g nerally referred to as t h plan t. The 

desired result is called the setpoint. The means by which resul ts are monitored are 
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called sen or . The devices that moni tor and manipulate system variables are r [ rred 

to as controllers. Th devices u ed to manipulate variables are called actuators [5, 

p.2]. In the example of the driv r above, the car is the plant, Lh driver i th 

control! r , the driver yes ar the ensors, the position of the car in Lhe middl of th 

road is the s t point and the drivers arms ar the actuators. One control syst m, or 

loop in an industrial boiler maintains the level of water in the tank. The s nsor is a 

level transmitter which convert the level to an electrical signal (input). This ignal 

is then read by the cont roller which is typically a Distribut d Control y tern (D ) 

or a Programmable Logic Controller (PLC). The cont roller will subtract the setpoint 

from the 1 vel and apply a control algori thm, such as proport ional int gral derivativ 

(PID), to the value to generate the actuator adjustment value (output) . The actuator 

is a valv on the water supply side. The output value will either increa e or decrease 

the valve opening to adjust the flow of water to the tank and keep th " lev 1 constant . 

Figure 3-1 is a typical graphical r presentation of a closed loop control ystem. 

SP 

' £.... G: G• 
c 

c~ 

H 

Figure 3-1: Graphic Representation of System Transfer FuncLion 

A control system is designed on two levels: abstract and physical. The purpo 

of the abstract level d sign is to obtain an appropriate ontrol straL gy and en ur 

the system will perform as out lin d in the specifications. T h purpos of the physical 

level design is to obtain the appropriate hardware and software required to impl m nt 

the control strategy [5, pp.4,5]. 
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In order to implement the abstract level design, a model of the plant must be 

develop d. One way to develop this model would be through fundamental principles. 

With this method , key components of the plant are identified and mathematical 

equations that describe thes components are written, along with the equations t hat 

link the components together [5 , p.6]. For example, the level of a liquid in a tank 

with an inlet pipe and an outlet pipe connected to the bottom is described by the 

following equations: 

h1(t) = ~ j qnetdt + h1 (0) 

qnet = qin - q12 

Where: h(t) = level in tank at timet 

h 1 = level in tank 1 

h2 = level in tank 2 

qin = flow rate into tank 

q0 ut = flow ra te out of the tank 

q 12 = flow rate between ta.uk:>, iu t his case between ta.uk 1 and ta.uk 2 

A = Cross sectional area of tank 

c,( = valve codficieut 

p = density of water 

g = gravi ta.tiona.l accelera tion 

Another way to dev lop the plant model is to look at the plant as a. black box. With 

this method, the model starts out as a. simple first order transfer function and, based 

on observations of the inputs and outputs of a. similar process, adjustments ar made 

to the transfer function to match the observations [5 , p.6]. 
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3.2 Simulation Options 

W ith the mathematical model of the p lant and control logic determined, there ar a 

number of options that can be used to test and analyze th performanc of the control 

system. Figure 3-2 lists the different opt ions that can be used. They are based on 

wheth r the plant and controller are analytical, simulation or real. 

Controller 
Plant 

Analytical Simulation Real 

1 
"Text-book" 2 3 

Design/ana lysis 
Analytical Bode Plot, Root H ysis/Si mu link SPSS 

Locus, State-
Space 

4 5 6 

Simulation H ysis/Si mul ink H ysis/Si mu link 
Stimulated 
Simu lation 

7 8 9 
Real N/A N/A Online 

Figure 3-2: Simulation Matrix 

Box 1 represents t he "text book" analysis of the control system, wh r both the 

plant and the controller are analytical. The model for this analysis is usua lly th 

system Lransfer function. Variables such ass nsor noise, a t uator nois pump outpuL, 

etc. are assumed to be some constant value to make the analysis simp] r. Exampl 

of typical "text book" methods to analyze these transfer functions ar bode ploLs 

and root locus for single-input , single-output ystems, commonly known as classical 

design and state-space models for mult i-variabl systems [5, p.231]. 
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The "text book" analysis is usually done during the design phase of a project. 

Engineers, using computer programs such as Matlab and Simulink, would be able 

to generate graphs of the system transfer function and determine the performanc 

characteristics. Al o, by varying parameter uch as the loop gain or sensor nois , th 

system response can be observed. This can lead to a et of performance characteri ti s 

that can guide the design of the physical control system. 

The system analysis for Boxes 2 and 4 in Figure 3-2 has one component analyLical 

and one component simulation. Th equations for the analytical component would be 

similar to the analytical equations used in the "text book" method. The simulation 

component would be a collection of the mathematical equations that describ ca h 

piece of the component being simulated. For example, a plant containing a pipe that 

feeds liquid to a tank through a control valve is the compon nt b ing simulated. Th 

model would consist of the result of the mathematical equation that describes th 

flow rate of the liquid through the pipe. modified by the equation for the couLrol 

valve, being used in the equation describing Lhe level in th tank. 

Simulations that are done to study and optimize the process fall into box 4. As dis­

cus ed in Section 2.1 , programs lik Hy is, ASSETT and D-Spice are used to gen rate 

detailed mathematical representations of the plant by connecting together graphical 

representations of th equipment used in the process. The program then solves th 

mathematical equatiou::> to generate vrocess parameter::> ::>uch a::> flows pres::>ure::> aml 

levels which are checked by system design rs to ensure th process is functioning 

withiu the ::;pecificatious. At this stage the control equipmeuL characLeristics are uoL 

critical to the analysis so simple control equations are used. 

Simulations p rform d during the design pha e of new control equipment or during 

control logic design would fall into box 2. Here the controller is simulated and th 

plant is analytical. Control equipment manufactur rs such as Modicon and Rockwell 

Automation provide a controller simulation program as part of their logi development 

software packages. Th se simulation programs execute the control logic the am 
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way and at th same rate as th real ontrollers do. They also allow Lhe user Lo 

change inpuL , obs rv outputs and moniLor program execuLion. Th se controll r 

simulation programs can also be modified by control equipment manufacturers to 

test new controll r architectures. 

Simulat ion that would fall into box 5 ar similar to tho Lhat fall into box 

4. The main diHerence is that th particular operating characteristic of the contr I 

equipmenL are Laken into account. Most control equipment hav a tri t way in whi h 

to execute logic. First the controller CPU will execute the logi fr m start to finish 

then it will take care of data manag menL, such as reading inputs, wriLing ouLpuL 

data and communicating with other ontrollers on a communi ation neLwork. This 

process occur continuously while Lhe conLroller is running. The Lim it tak s for a 

controll r to compl te one cycle through Lh logic and data manag ment is called Lh 

processor an tim . Figure 3-3 illustrate how an Allen-Bradley PLC 5 performs 

this proce. · [6]. This scan time is dependanL on the amounL of ontrol logic and the 
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F igure 3-3: All n-Bradley PLC 5 Program Scan 
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amount of data that the controller has to manage. If t he scan time is known or can be 

estimated, time delays can be added into the controller simulation to delay wh n data 

gets transferred to the plant model or when certain sections of logic get executed . 

Box 6 simulations have the real control equipment connected to a PC running the 

same simulation software that is used in simulations covered by box 4 and box 5. 

These simulations would come under the Hardware to Software simulation method 

discussed in Section 2.2. 

Single-platform stimulated simulation falls into box 3. Here analytical models of 

the plant, similar to those used in the 'text book" analysis, are loaded into control 

equipment similar to the equipment being used in the real plant. Depending on 

the configuration of the control system, several controllers can be networked together 

with some controllers sharing the plant model and other controllers sharing the control 

logic. This allows for real controller scan t imes and communication loop delays to 

part of the simulation. 

The following three chapters will develop SPSS simulations. In Chapter 4 will 

define a plant model to be simulated and it will show how the model is used in an 

SPSS simulation in a PLC. Chapter 5 will show how this same simulation can be done 

in a DCS. Finally, Chapter 6 will show the simulation of a typical pulp and paper 

mill process. 
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Chapter 4 

PLC Simulation 

Ov r th past numb r of year , Lh omputing power of th programmable logi 

controller has made ignificant advancements. \Vhen the fir t PLC was develop •d 

in the late 1960 s, early 1970 s it contained 1 kilobyte of m mory [7]. Today an 

Allen Brad! y PLC an can be pur has d with m gabytes of memory and a math 

coprocessor for p ~rforming fioating-poiut calculations [8]. T he P LC has gone from 

containing small ladder logic programs that turn motors on and off and open and close 

valves to large fun t ion block bas d programs that control ompl x, a£ ty criLical 

systems such a oil and gas proce sing [9]. 

In Chapter 2, it was discussed that the most eflective ' imulatiou method was 

to use a third party softwar package that contained a math matical model of the 

plant. Since most PLC and DCS programming environment · contain all the funcLion 

blocks required to build mathematical models, the idea for this r arch project wa 

to develop a ingle-Platform Stimulat d Simulator (SPSS) u ing tandard indusLrial 

control quipm nt. T he hope for thi project is that thi method will make th 

simulations •asier to develop and more fi ~xible because th r no need for the us r 

to learn a t hi rd programming language and it may be easier to modify the plant 

model to provide a more realistic simulation. For example, this m thod may make 

it easier to incorporate multiple controll r into the simulation to bring the t iming 
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characteri ti s of the imulation clo er to th Liming characteri ti of Lhe real syst m. 

Figure 4-1: Diagram of Three Tank Proc ss 

4.1 Plant Model 

The firsL stage of the project was to determine a ·imple process Lo simulate aud the 

equations required to simulate it. To make Lh modelling part of the imulation eas­

ier , a proc ss that consisted of three tanks containing water was reaLcd. The water 

is able to flow from tank 1, through tank 2, to tank 3 via piping that connects each 

of the tanks aL th bottom. A contrail r monitors the lev 1 in tank 2. Once t he 1 vel 

drops below a set point, the control! r opens a control valv allowing water to flow 

into tank 1. Once Lhe level in tank 2 go s above the set level th ontroller loses Lh 

control valv allowing the level in Lank 2 to drop. A diagram f Lhi sy Lem is shown 

in Figur 4-1. This process can be d s ribed by the following equation : 

Tank 1: 
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Qnet = Qin - Q12 

Tank 2: 

Qnet = Q12 - Q23 

Q23 = Cv J pgh2 - pgh3 

Tank 3: 

Where: h (L) = level in tank 

Qin = flow rate into tank 

Qout = fl ow rate out of th tank 

q12 = flow rate between tanks, i11 t his case between tauk 1 a11d tank 2 

A = ro s sectional area of tank 

Cv = valve coefficient = 55 

p = d nsi ty of water = 1000 

g = gravitational ace 1 ration 
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Each tank was et to be lm high wiLh a radius of 25cm. The pip joining the tanks 

were set Lo b 25cm long with a radius of 1.27cm. This pipe radius meanL that th 

valve coefficient . Cv, for the manual valves between the Lanks was 55. The tank 

cross sectional ar a (1r-r2) was 0.1963495 m 2. This process was conLrolled uch that 

when the water l v l in tank 2 fell b low 0.45m, the controll r would pen the source 

control valve, allowing water to flow into th system and bring t h wat r I vels back 

up. On e Lhe wat r 1 vel in tank 2 ro above 0.55m the controller would lose the 

source control valve allowing the water l vel to drop. 

To ensure th r sui ts from th PL simulation are corr cL, the simulation was run 

in Simulink. T h code for this simulation is shown in Figur 4-2. This simulation 

provided a graphical plot of the change in tank height with respe t to time (Figur 4-3) 

Ready IHJO% 

Figure 4-2: Sirnulink Code 
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that was used as a omparison for th simulator that was cr aLed during thi project. 

If the r ults from the imulator cr aL d for this project match d th imulink r sults 

then it will b assumed that the new simulator is correct as well. 

ag OHO O•o o •:oo o o o o ooo;oo ooooOOO o; O O O OOO OOO ~o o oo O oOo .. tO 
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01 ... ............ .... ...... ; .......... ; .......... ; .... . 

100 200 ~ 400 500 I50J 1'IXI 800 900 1000 

Figure 4-3: Graph of Water Level v Time 

4.2 Control Equipment 

Once a ref rene t of results was e Lablished , the plant mod l was r cr ated in the 

PLC programming nvironm nt. Th control equipment that was u d for this part 

of the project was a Modicon Momentum PLC, Concept programming sofLwar and 

Factory Link operator interface softwar . All of this equipment was purchas d from 

Schneider El tric. T he reason this syst m was chosen was becau of it om pact size 

and Concept was based on the IEC 1131 standard for PLC programming. IEC 1131 

is an international standard that specifie ' five different languages f r programming 
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PLCs. Th e languages a re Ladd r Diagram, Function Block Diagram Structur d 

Text, Sequ nLial Function Chart and ln tru t ion List [10]. Thi imulation uses Lhe 

Function Block Diagram languag becau e Lo the user , this languag i very similar to 

Simulink and D-SPICE, wher mathemaLi a l equations ar gen raLed by connecting 

the appropriat fun ctions together. A ' well , many DCS systems, su h as ABB Infi 

90 system, u function block ba d languages. sing a language that i common to 

a number of v ndors means the simulaLion i not limited to on vendor. 

Figure 4-4 show the simulation logic t hat was created iu on ept. As t his fig-

ure show , the logic was split up into six sections, with each Lion representing a 

compon nL of the system, such as a Lank. The reason for creaLing t h logic in thi 

fashion was to how that compon nL function block can be cr at d to repres nt a 

particular pi c of equipment . The blocks would mask th a tual logic r quired to 

model the piece of equipment, so that the simulation logic resembles a process and 

instrumentation drawing instead of a omplex mathematical mod I. Thi also mak s 

t he ConcepL simulation more like the commercially available imulation software. 

An iniLial simulation was run u ing the 16-bit PLC simulator Lhat was included 

with Concept. This was a very us ful first step because it show d how the variabl · 

values chang d during the simulation. A well, it provided a m ans Lo ensur thaL 

the code wa writt n correctly and that it did not contain any rror . Wh n the tank 

simulaLion was initia lly created sev ral function blocks w r I lac d in the wrong 

order. Wh n this code was run in th - simulaLor , an error mes ag was dis played and 

some of th variable values were shown as AN (not a real number). Thes two piec 

of information uggested that th error was due to attempting to Lak Lh squar root 

of a negative numl>er in t he calculat ion of the flow rate b ·t.w ·eu t he tauks. 

After t his rror was carr cted , Lhe imulation ran with no rror . While th 

simula tion was running, it was observ d Lhat the variabl values w re changing as 

expect d. Upon initial startup the ource control valve was open and Lhe level values 

were increasing. When the Level2 variabl (water level in tank 2) r ached 0.55, the 
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source control valve closed and the water lev ls dropped until Level2 reached 0.45 

when the control valve opened again and the levels star ted to increas . 

4.3 Graphical Display 

Although using the 16-bit PLC simulator was useful in proving that the Con ept 

code was correct and tha t the variable values changed as expected, i. e. increased to 

0.55 and t hen dropped to 0.45, there was no indication of how closely th simulation 

matched the Simulink results. Concept does not provide a way to plot variable values 

on a graph. As well there was no way to te t the operator interface. To mak the 

simulation a li ttle more realistic and more useful to th user, the imulation was 

downloaded and run on a PLC and Factory Link was used to display the re ul t . 

Figure 4-5 is a creen shot of the Factory Link application created for this proj ct. 

Factory Link was configured to read the water levels from registers wi thin the P LC, 

read th controller state (on or off) , read t he state of t he tank 3 out let valve ( ope11 or 

closed). The water levels were displayed in three different ways . First the changing 

levels were displayed in the form of the animation of water levels rising and falling 

in tanks. Secondly, the changing levels were indicated on the bar graphs below the 

tanks. Thirdly, each level was plotted on a trend chart on another s reen. T h 

controller state was indicated by a digital light near the source control valve. Wh n 

the cont roller was on, the light was green and when t he controller was off th light was 

red. The tank 3 valve position was indicated in a similar fashion using the manual 

valve graphic on the outlet of tank 3. Additionally, the source conLrol valve could b 

turned on and off by clicking the control valve graphic on the Factory Link screen. 

T he Factory Link application worked exactly as expected. All values w re dis­

played as expected and the configured alarms worked properly. However the level 

trend did not plot t he level values as expected. It was hoped that the t r nd would 

produce a plot of water level versus time, for each tank, similar to the Simulink plots. 

28 



• APPUCA TION 1!!1~ EJ 

Overview Area1 Area2 Area3 Trendlvl Shutdown System I _!j 

Infinite Source 
~ ..... . 

()q 
(::::: .., 
(1) 

..,.. 
I 

c.n 

~ 
(j 
M-
0 .., 
'< 

~ 
tv =:l 
CD ~ 

(f) 
(j ...., 
(1) 10 (1) 

=:l 

0' .., 
(f) s· 
(::::: 

p; 
M-o· 
=:l 

0 0 0 
Level1 : 0.705735 Level2: 0.473551 Level 3:0.266747 



This did not occur. Although the level trend did plot the changing water level , the 

scale was not big enough to provide an overall picture of how the system was per­

forming. As well there wasn't an easy way to print the trend r suits. Since Factory 

Link automatically generates a file containing all the values used in a trend , it was 

decided tha t t his fi le would be imported into Microsoft Excel and the values would 

be plotted th re. Thi plot is shown in Figur 4-6. 

A close comparison of th Simulink results and the Factory Link result shows 

that the two imulations match very closely. Except for a difierence in scale ' , th 

two simulations are identical. This leads to the conclusion that i t is possible to u e 

Concept to create both the simulation and the control and have the code run within 

a PLC. 

4.4 System Timing 

One of the most important issues in any control system is timing. Most industrial 

processes today have a centrally located controller communicating with numerous 

remote input/output racks located throughout th plant. Figure 4-7 is an example of 

such a PLC n twork used at a Pulp and Paper mill [11]. In this particular setup, each 

major component of the paper making process has it' own controller communicating 

with several remote I/ 0 racks as well as the DCS system. To tart and top motors, 

commands come from the operator interface through the DCS to the PL . The tart 

command is a pulse from zero to one and the top is a pulse from one to zero. The 

PLCs interpret t hese pulses and turn the appropriate outputs, in the I/ 0 racks, on and 

off. T he question for logic d signers is how long should these pulse b . If the puls 

is too short, the PLC would not see it or would not have time to nergize the output. 

If it i too long it may interf r with m rgency stop logic in th PLC. Being abl 

to simulate the entire system with communication tim d lays will provide engine rs 

with the ability to determine the appropriate pulse lengths prior to commissioning. 
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With several thousand motors in a plant, this would save significant commissioniug 

time. As well, it also gives designers more confidence that the system will work as 

designed . 

In order to incorporate these issues into simulations using PLCs, the control logic 

and plant model can be split up b tween s veral controllers connect d to a common 

communication network. One controller would contain th control logic while th oth­

ers would contain the plant model, for exampl one controller for every field I/ 0 rack. 

This ensures that the control logic will execute at the same rate as it will when con­

trolling the live plant (no plant model logic to execute) and it allow communication 

network characteristics to be par t of the simulation . 

The above mentioned three tank example was split between two Mom ntum P LCs 

to test thi idea. Data was passed back and forth between the PLCs via a Modbus 

Plus network. Figure 4-8 is a picture of the PLC setup used for this simulation. 

Figure 4-8: PLC Simulation Equipment 

Figure 4-9 shows the water level vs tim tr nd for the simulation. This trend 

has the same basic shape as the one PLC simulation trend , however the time span is 

longer and the maximum level of Tank 1 is not as high as in the one PLC simulation. 
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In the one PLC simulation the level reached 0. 1129 meters whereas in th two PLC 

simulation it only reached 0.79931 meter . The increased time pan is a result of Lh 

time delay introduced by the communication network, it took longer for the operator 

interface to read the same number of poiuts from the plant model PLC. The diHereuc ~ 

in tank levels is a result of the control logic executing faster than in the one PLC 

simulation. Since the control logic PLC only had three function blocks to xe ute, 

as opposed to eighteen in the one PL simulation, it was able to react to Lank level 

changes faster. Figure 4-10 combines all thre imulation results. 
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Chapter 5 

DCS Simulation 

5.1 Terra Nova Simulator 

As mention d in Chapter 2, the Terra Nova Alliance u ed the Hardwar -Software 

method to simulate their Floating Production, Storage and Offioading (FPSO) vessel. 

Developed by Fabcon Canada beLw en SepLember of 1998 and February of 2000, this 

simulator has four main components: 

• Op raLor Interface Stations (OIS) and Engineering WorksLaLion (EWS) 

• Pro es antral nits (P C 

• The simulation computer 

The OIS, EWS and PCUs are part of the ABB INFI90 Di tribuLed antral System 

(DCS). The simulation computer i a standard Pentium based P running specialized 

simulation sofLwar , to be discu ed later. The simulation omput r communicates 

with the P s via thernet and Univer al Simulation Modules ( SM). The SM i 

specialized add-on to the INFI90 D S that acts as a bridge b Lw en th Eth rn L 

based simulaLion n twork and th Controlway, as shown in Figur 5-l. During sim­

ulation, the USM redirects the inpuL/outpuL data from th I/ 0 modules in the DCS 

to the simulation oftware. 
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Figure 5-l: Simulator Layout Using ABB Universal Simulation Modules [1] 

Physically, these modules are located in the PCUs next to t he process controllers. 

Typically, there is one USM per process controller. Figure 5-2 shows how the modules 

are laid out in each of the PCUs used for this simulator. The simulation PC runs a 

software package called Dynamic Simulator for Process Instrumentation and Control 

Engineering (D-SPICE) . D-SPICE was developed by Fan toft Process Technologies 

AS, parent company of Fabcon Canada, for the purpose of simulating process systems, 

such as oil and gas production [12, p.2]. Models are created in this software by 

simply connecting together component function blocks, shown in Figure 5-3. The 

components themselves are modelled by mathematical equations written in C/C++. 

This code is hidden from the user, however , D-SPICE does allow for the user to create 

his or her own function blocks [12, p.4] . 
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Ther are ertain systems such as th rmodynamic system , who mathematical 

models are compl x and require large amounts of computational power. Simulating 

thes syst m u ing their mathematical m dels would slow down th simulation to 

the poiut of making it unusable. Iu D-SPI E simplified version of these systems are 

modelled using look-up tables and regr sion . The data r quir d for the e mod ls is 

usually generated by dedicated oftware, such as Peng-Robinson for th rmodynamic 

systems and i specific to the particul r 'ystem being model! d [12, p.4]. 

5.2 Hibernia Simulator 

Chapt r 2 also meution a Hardware to Hardware ' imulation that Bailey SEA (Nftd .) 

Ltd. and SEA Sy tern Ltd. use to test Hibernia's Fire and Gas (FGS) Em rgen y 

Shut Down (ESD) control system. T he control y tern containing the logic to be 

tested is an ABB I FI 90 DCS, similar to the one used for th Terra Nova simulator 

mentioned above. The slave controller i a Triconix PLC. I/ 0 data is passed back 

and forth betw n the systems via th lNFI 90's General Purpo Interface (GPI). 

The GPI is a component of the ABB D S that allows the D S to communicat 

with a variety of PLC brands. The software is designed such that the GPI can b 

reconfigured to communicate with a vari •ty f different PLC brands. Figure 5-4 shows 

the layout for this syst m. 

The PLC has two serial ports. On port i onnected to the GPI and the other is 

connected to imulation computer. The imulation operates as follows: 

• The omputer feeds input value to the PLC 

• Based on th e values and the s quen e of events logic, th PL write appro­

priate data to it 's memory registers 

• These registers ar then read by th DCS and dealt with ac ordingly, i.e. alarms 

are triggered, equipment is turned on or off, etc. 
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Figure 5-4: Blo k Diagram Layout for Simula t r 

• PL r gis ters are updated wi th output data 

• Output da ta is ent to comput r t d tcrmine next set of data 

) REGISTER 3108 6 
BAS 0Q 

) REGISTER 3108 7 

) REGISTER 31088 

) REGISTER 31089 

< igur 5-5: Logic Requir d t Read PLC Memor R gi Ler 

F igure 5-5 show part of the l gi r quir d to access xt -rnal data via the GPI. 

The BASROQ function block (fun Lion od 137) is t he blo k tha t read th data 

from the PLC and makes it availabl to re L f the control logi . The oval on the 

right hand id of Figure 5-5 are cro r f rene blocks that link this piece of logic to 
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other par ts of the control logic. Each BASROQ block can read a maximum of four 

blocks of PLC memory called registers. These registers can contain analog data such 

as tank levels or 16 digital data points, such as valve open/ lo e commands. 

In order for the DCS logic to access the individual digital data points (bits), th y 

must be separated using the RDEM X function block. Figure 5-6 shows how thi 

done for register 310 7. Each bit i attached to it's own cross reference so that th 

rest of th logic can use them. Figur 5-7 is an example of how the control system 

would act on the GPI data and then update the PLC register . 

Staff at Bailey SEA ( fld.) aud SEA Systems have also used the second type of 

Hardware to Hardware simulation method mentioned above in Chapter 2. Typically 

referred to as th tie back method , this type of simulation is used to tc t logic and 

HMI update for both Hibernia and Terra ova. In the ABB system there are 

certain function blocks that are linked to input data. Figure 5- shows a typical 

piece of control logic that is used to bring digital input values into the controller. 

The DIGRP function block (function code 4) is required by the INFI90 sy tern and 

it acts as th link between the I/ 0 termination blocks and t he rest of the control 

network. 

To do simula tion using "tie back logic", function block 84 is replaced by the 

ON / OFF function block (function code 50), as shown in Figure 5-9. These blo ks 

are tlwu turued 0 11 aud off manually accordiug to a predetenniued data ::;et, ::;uch a::; a 

sequence of events table, and chang s in the system states and outputs are observed 

to ensure correct operation of the logi . 

5.3 Simulator Flexibility 

Any simulation method developed has to be flexible enough to work on any type of 

control syst m made by any manufacturer. There are two restrictions inherent to the 

proposed imula tion method that limi t th types of control systems that can be used. 
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Figure 5-6: Logic Used to Extract Bits From GPI Data 
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These restrictions are: the system must support function block programming and the 

system must have the ability to have several controllers communicating tog ther over 

a common communication network. However, most of the controls equipment used 

in industry either have this capability now or will have it in the near future. 

To test the flexibility of the proposed simulation method. the same three tank 

process was run in an ABB Infi90 DCS and programmed using Composer Engineer­

ing Work Station software. Figure 5-10 shows a typical Infinet layout [13]. This 

simulation used two PCUs and one EWS. The Control PCU, shown in Figure 5-

11 , contained an Infi90 Multi Function Processor (MFP02) and executed the control 

logic. The Plant PCU, shown in Figur 5-11, contained a Harmony Bridge Controller 

(BRC100) and executed the process logic. Data was passed between the two pro­

ct.:ssors and t lw EWS via tht.: Iufinet network . In Composer , logic is generated on 

"logic documents", or "CAD sheets". Typically, logic is laid out in such a way that 

all the logic associated with a particular sub process, e.g. temperature control loop , 

is contained in one CAD sheet . This simulation had four CAD sheets, one for each 

tank and connecting pipe and one for the control logic. Figure 5-12 shows the logic 

generated for Tank 1 and the pipe joining tanks 1 and 2. This logic could be brok n 

down even further to have each pipe on it's own CAD sheet . As with t he PLC sim­

ulation, having the logic separated by equipment type makes it easier to reuse the 

logic in future simulations. 

Figure 5-13 shows the control logic for this simulation. As with the PLC simu­

lation, as the level in Tank 2 rose above 0.55 the input valve would close. Once the 
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level dropped below 0.45 the input valve would open. In the Infi 90 system data is 

transferred to the communication network by Exception Report blocks. Block 104 

(function code 45) in the control logic transfers the valve command (open/close) over 

the network and block 121 (function code 30) transfers the Tank 1level. On th other 

side, block 200 (function code 122) and block 150 (function code 121) allow data to 

be read from the network. 

Figure 5-14 is the level tend obtained from the simulation. As can be seen, this 

treud has the same shape as the PLC and Simulink simulations. The only differeuc ', 

which can be easily seen in the Tank 1 level, is the levels go higher and lower in 

the DCS simulation than in the other two simulations. The reason for this is the 

time delay cau ed by the communication network. The control logic i looking at Lh 

communication network for th Tank 2 level da ta and the plant model logic looks to 

the network for the valve command. As a result of the network time delay, the level 

in Tank 2 actually goes up to 0.5 before the valve is commanded to close and the 

level tart to go down. In comparison, Tank 2's level in th PLC simulation only 

goes up to 0.55081. Table 5.3 shows a talle of the minimum and maximum Lank 

levels for the Simulink, one PLC, two PLC and DCS simulations. 

At th beginning of this section it was stated that there are two restrictions inher­

ent Lo the proposed simulation method that limit the types of control systems that 

can be used. The first restriction is the system must support function block program­

ming. This is because most indu trial control equipment, eith r PLC or DCS, can be 

programmed using function block diagram language and it 's easier Lo convert from 

one platform to another if they are programmed using a common method. For xam­

ple, it took a couple of days to develop the three tank simulation in the PLC using 

function blocks. Since the ABB DCS also understands function block programming 

it only took half a day to develop the simulation in the DCS. This is because the 

majority of the time taken to develop the PLC simulation was used in determining 

which function block to use, how to lay them out on the screen, how to connect 
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them togeth r and testing to mak ure t he simulation work 1 rop rly. When Lh 

simulation was created in the DCS, th a rne function block Lypc and layout could 

be reused which reduced the time r quir d to develop th simulaLion. 

The second r striction is Lhe sysLcm must have the abiliLy Lo have several c n­

trollers ommuni a ting together over a ommon communication ncLwork . Th reason 

for this re t ri tion i Lhat in order for Lh imulation to be as r ali Li as possibl , th 

cont rol equipm nt has to be operating at as close to the sam rat as it would b in 

the real process as p o sible. As m nLioned inS ction 3.2, the can t im of a conLroller 

depends on th amount of logic iL has Lo execute and the amounL of data it has Lo 

manage. Ther fore, in order to make Lhe imulation as real as po ·ible, any cont roller 

that would onLain cont rol logic in the real process should contain only control logic 

in the imulation. T he plan t mod l would then be contained in oLh r cont rollers and 

communicat wi th the controllogi conLroller via a communicaLi n ncLwork. 
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Control Logic PCU Plant Model PCU 

Figure 5-11: Plant and Control Logic PCUs 
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Figure 5-12: DCS Logic for Tank 1 
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Figure 5-13: Simulation Control Logic 

Tank 1 Level Tank 2 Level Tank 3 Level 
Simulation Min Max Min Max Min Max 
Simulink 0.5 0.81 0.44 0.55 0.25 0.32 
One PLC 0.49873 0.81129 0.42893 0.55081 0.24485 0.32339 
Two PLCs 0.48833 0.79931 0.42032 0.54125 0.24132 0.31851 
DCS 0.479513 0.822411 0.414521 0.561542 0.23259 0.334067 

Tabl 5. 1: Simulation Results Table 
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Chapter 6 

Real Life Example 

To illustrate how SPSS can be used to simulate a typical industrial process, this 

chapter will take a typical industrial process, a hotwell tank, and develop a simulaLion 

of it in the ABB DCS. Figure 6-1 is the P &ID for the hotwell tank used for this 

simulation [14]. 

6.1 Process Description 

The hotwell tank is an important part of the steam gen ration process aL a pulp 

and paper mill . Ideally, all steam generation processes are closed loop systems. This 

means that all the steam that is sent to the various parts of the mill is returned to the 

boiler as wa ter , called condensate. In reality, however , small amounts of waLer and 

steam are lost due to leaks in the system. The hotwell tank acts as a buffer between 

the boiler feed water system and the various mill processes. 

The condensate flows into the hotwell which is kept at a set level, say 50%. From 

here the condensate is fed to the Condensate Storage tank, which is also kept at a 

set level. F inally, the condensate enters the Deaerator tank where it gets mixed with 

steam to remove dissolved gasses, such as carbon dioxide and oxygen, before it is fed 

to the boiler . 
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Under steady state operating conditions, the amount of condensate returned is 

sufficient enough to keep all tank levels constant and require a small amount of 

fresh , chemically treated water to make up for the losses. However, during paper 

machine or TMP star tups and shutdowns ther are large swings in steam demand and 

condensate return and the three tanks (hotwell, condensate storage and deaeraLor) 

serve to smooth out these transitions so that t he boiler always sees a steady flow of 

feedwater. For example, when a paper machine starts up, there is a large amount of 

steam being generated but not a simila rly large amount of condensate b ing returned. 

At this poiut , the water level iu the tanks will drop but there is sufficient capacity 

to provide the required condensate wi thout the tanks going dry. The opposite is 

true during a paper machine shut down. In this case there is a large amount of 

condensate being returned but the amount of steam being genera ted is reduced. The 

tanks will start to fill above their normal operating level but not to the point where 

they overflow. 

In this system the hotwelllevel is controlled by the outlet control valve (LCV280) 

and the redundant pair of transfer pumps. As the level in the tank increases, th 

control valve opens and as the level decreases the valve closes. One pump is selected 

to run by the operator and will run as long as the tank level remains above the low low 

level cutoff point. If the running pump fails. the second pump will start . Figure 6-2 

is a trend of t he actual hotwelllevel and valve position during steady state operation. 

6.2 Plant Model 

As in the example used in chapters 4 and 5 the level in the tank is modelled with 

the following integral equations: 

h(t) = ~l J qnetdt + h(O) 
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Where: h(t) = level in tank 

qin = flow rate into tank 

qout = flow rate out of the tank 

A = cross sectional area of tank 

Cv = valve coefficient 

P1 = pressure on the outlet side of the valve 

P2 = pressure on the inlet side of the valve 

In ord r to simplify the simulation , several ideal assumptions were made. First, the 

hotwell tank is cylindrical shaped , laying on it's side, which means the cross sectional 

area changes as the level changes. For this simulation , the cross sectional area was 

kept constant at 3.2516m2 (cross sectional area for a tank level of 0.763m). This 

assumption was considered to be acceptable because the water level did not change 

that much and at the minimum level the area was 3.1887m2 and at th maximum 

level the area was 3.1239m2 . Th se small changes in area would not have a huge 

effect on the simulation results. Secondly, t here was no information available for the 

control valve outlet pressure so it was assumed to be zero. Finally, t he control valve 

was assumed to be a linear valve, meaning that if the control logic output to the 

valve was 50%, the valve was open 50% and if the output was 75% then the valv was 

open 75%. As shown in Figure 6-1 , the control valve has a 7.62cm diameter which 

corresponds to a Cv of 108. The pressure of the inlet side of the control valve was 

kept constant at 41.57574psi. 

Figure 6-3 is a t rend of the valve position, t ank level and inlet flow for the simu­

lation. T he bottom line is the inlet flow trend ticalecl clown by 10%. Since the inlet 

flow was very erratic, it was impossible to model with a mathematical formula. The 

betit way to model t he inlet flow would be to feed the data obtained from the actual 
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hotwell tank trend into the simulation . However, due to hardware limiLaLions this 

option was not possible. In tead, a Manual Set Constant (function code 2) block 

provided the inlet flow value. This block provided a constant value for the input flow 

but could be changed at any time during the simulation, simulating step changes in 

flow. The other two lines show how the valve position and level reacted to the st p 

changes. As can be seen in the trend, the valve position lags the tank level. This 

is the expected result for a closed-loop feedback control system , as the lag is caused 

by the controller sampling the level, performing it's calculations and changing the 

output valve position. 

The control for this tank was provided by a PID block (function code 18) but only 

the proportional gain was used. The setpoint was set at 0.762m (30 on the trend). 

As can be seen on the trend, the tank level is always slight ly above the setpoint. 

This is because there is no integral gain in the PID block and with only proportional 

gain, there is always a large error signal (setpoint minus measured value). Also, the 

trend shows a high number of ·oscilla tions in the valve position after a step change 

in the inlet flow. Thi~ i~ a re~ult of the controller "hunting" to try and find the 

uew valve position for the new inlet flow. T his phenomenon is a result of low or uo 

derivative gain in the PID block. In this case there was no derivative gain . Running 

thi simulation longer and with proper PID tuning, the trend would look more lik 

Figure 6-2. 

61 



Chapter 7 

Conclusions 

7.1 Simulation M ethod Comparison 

Most of today's industries, whether it be pulp and paper , oil and gas, power generation 

or food manufacturing, have complex control sy terns con i Ling of multiple con troll r 

communicating with multiple inputs and outputs and with each other. Having the 

ability to fully test the control system during all phases of development will save 

time and money during commissioning and start-up. This thesis look d at some of 

the methods that industry is currently using Lo simulate their control systems and 

introduced an alternate method called Single-Platform Stimulated Simulator (SPSS). 

These methods were compared based on cost , fidelity, implementation and conversion. 

The result of this comparison are shown in Tabl 7.1. 

Cost Fidelity Implementation Conversion 
Software-Software $2 70% 2 10 
Hard ware-Software $10 95% 7 1 
Hard ware-Hard ware $6 10% 3 4 

SPSS $7 85% 3 1 

Table 7.1: Simulation Method Compari on Table 

The Software-Software simulation method has the lowest cost of th four method 

because all that is required is a computer, the simulation software and mall office. 
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The amount of time required to develop the simulation would vary dep n ling on th 

process being simulated and the software used . However, with a package like HYSI , 

a complex plant mod 1 could be generated quite quickly because of it's graphical 

interface. This is also why it has the lowe t implementation score because all that 

is required to set up the simulation is install the software and build the model. Be­

ing able to calculate the t heoretical mathematical equations that describe the real 

process provides the most realistic simulations. However, all of the software pa k­

ages re arched had basic control functions and did not take into account time delays 

added into the system by control equipment. Therefore the Software-Software simu­

lation method scored a 70% for fidelity. This simulation method is the most difficult 

to convert because the control logic has to be rewritten from cratch in the contr 1 

system programming software. 

The Hardware-Software m thod is the mo t expensive of the four methods because 

along with the simulation software and computer you also require control equipment 

and equipment to connect the two. In the case of the Terra Nova simulator where 

it was used to train operator , twi e the amount of control equipment has to be 

purchased , one for the plant and one for the simulator. lf a DCS control system, 

similar to the ones pictured in Figure 5-11, i used for t he simulat ion then a lot of 

space will b requir d to house it . This method provides Lhe most r alistic simulaLi n 

becau e the control system is added in which allows it's characteristics Lo be model d 

as well. The biggest challenge in implementing this type of simulation is g tting th 

control equipment Lo talk to the simulation software. Most control equipment will 

requir extra components to make the link between the two. Th r is v ry little fiort 

required to convert the control logic to th real process because it is already wriLt n 

for the control equipment. The most time consuming part would be r directing th 

input output logic to the appropriate field devir<'s. 

The Hardware-Hardware method would be slightly cheaper than Lhe 

Hardware-Software method because the simulation software and interface equipment 
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are not required . Also, since there is n plant model to develop th amount of time 

required to s t up the simulation would b less. This method cor d the lowe t on 

fideli ty because manually forcing individual inputs only indicate~ how small port.ious 

of the logi will r act and doesn 't ·how the whole picture. Also, this method doesn't 

take into a count ystem time delay . The implementation of thi type of simulation 

is a litt l mor difficult than t he oftware-Software met hod because all the input 

points hav ' to be modified to add constaut blocks to them. In a system with a lot 

of inputs, this could be very time consuming. This also mean that the conv rsion 

is a bit more Lime con uming then Lh Hardware-Software m Lhod because all the 

constant blo ks will have to be removed and the input · will have to b redirected 

to their appr priat fie ld address. This process can introd uce IT rs, such as blocks 

being mis eel and inputs pointed at th wrong adlre , whi h would hav to be dealt 

with during ommissioning, cau ing unn ce sary delay . 

SPSS, as xpected, falls between Lh Softwar -Software and the Hardware-SofLwar 

methods. Th ost is less than the Hard ware-Software method b cause, like the 

Hardware-Hardwar method, there i no third party software packag or interfa c 

equipment required. However th c st to develop the plant mod 1 is increased be­

cause all of Lh mathematical equations that describe the plant would have Lo b 

recreated . The fideli ty of SPSS fall in between the Softwarc-Softwar' and Hardware­

Software methods because SPSS takes in to account the chara L risLic of the control 

equipment but it is not able to perform ertain compl x math matical operations. 

An exa1uple of thi::; woulu be the !llatrix algebra required to do multi-phase flow cal­

culations us d in oil and gas processing imulations. Industrial ontrollers ar not 

desigu('d tu ha,ndlc matrices. This method would be a little utore difficult to imple­

ment than the Software-Software m thod becaus of th fa t that ea h mathemati a! 

equation would have to be created in the logic. Having component function blo k 

available would d crease the implementation t ime. As with the Hardwar -Software 

method , SPSS is very easy to conv rt be ause the logic is a lready created in th 
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language that the cont rollers understand. All that is requir d to convert th logic is 

readdress the inputs and outputs to their appropriate I/ 0 modules. 
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7.2 Future Work 

As mentioned in Chapter 2, all of the simulation methods discussed are "Fit for Pur­

pose". The Hardware-Hardware method is best suited Lo logic functionali ty testing 

wher as the Software-Software method is best sui ted to proces Le t ing and opti­

mization. Single-Platform Stimulated Simulation will not replace any of the existing 

methods. Rather , it is meant as another simula tion option tha t would allow engine r­

ing finm; that would normally use only ::;imple ::;imulation methods, like ti back logic 

the ability to create high fide lity simulations. In my opinion, the main reason why the 

Software-Software and Hardware-Software methods are not widely used, specially in 

the PLC market, i cost . The co t of the software, the cost of the hardware the ost 

of the manpower to set up the simulation and the cost of the real estate to hous 

the simulation. Managers find it hard to ju tify the these costs unless required by a 

particular project. 

This cost can be reduced in a couple of ways. One way would be the control equip­

ment manufacturers create equipment function blocks that contain th mathematical 

equations so that the model generation would be similar to th SofLware-SofLwar 

method. A second way to red uce the development cost would be for ngincering 

firms to develop their own equipment function blocks that they can reuse ou other 

projects. From this work, the be t way to achieve the above goal i to have a li­

brary of u er developed function blocks available in th control system programming 

softwar that would contain the theoretical equations that d scribe a piece of equip­

ment , Hk a tank or a piece of pipe. With this library, plant models would be creaL d 

by connecting together equipm nt function blocks, similar Lo the SofLware-Softwar 

method. There are a couple of ways that this library can be created . First , the 

research community can work with local engin ering fi rms to help them d velop sim­

ulations for projects they are working on and build up their function block library. 

The research community has acce s to the theoretical mathematical equations and 

they can briug this knowledge and equations to the engineering firms. Secoudly, the 
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control equipment manufacturers, again working with the research community, can 

develop the function blocks and offer them to their customers as an add-on package 

to their software. 

For fur ther research in the area of process control simulation please refer to the 

thesis by Paul Handrigan titled "Distributed Systems, Hardware-in-the-Loop Simula­

tion, and Applications in Control Systems" . This thesis focuses on simulations using 

the Hardware-Software method . 
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