






SIMULATION STUDY OF A COLLOIDAL SYSTEM UNDER THE 
INFLUENCE OF AN EXTERNAL ELECTRIC FIELD. 

by: 

Ahmad Mustafa Almudallal 

B.Sc. Physics, Yarmouk University, 2000 

M.Sc. Physics, Yarmouk University, 2004 

A thesis submitted to the School of Graduate Studies in partial fulfillment 
of the requirements for the degree of Master of Science. 

Department of Physics and Physical Oceanography 

Memorial University of Newfoundland. 

January 27, 2010 

ST. JOHN'S NEWFOUNDLAND 



---------------------------- ------- --- -- -

Dedication 

First of all, I would like to dedicate my thesis to my native home "PALES­

TINE" 

Also, I would like to dedicate this thesis to my wonderful parents, Mustafa 

and Amneh, who gave me unconditional love, guidance and support. 

Also, I would like to dedicate this t hesis to my sister and my brothers and 

others in my family. 

Finally, I dedicate my thesis to Memorial University of Newfoundland, es­

pecially the Department of Physics and Physical Oceanography, for giving m e 

this unique opportunity to study in Canada and to do this work. 

ii 



------·-------~~------- -- --

Acknowledgment 

I would like to thank Dr. Saika-Voivod for giving me this unique opportunity to do 

t his exciting work. He patiently guided this work, and he has been excellent supervisor, 

giving me support, encouragement and help. 

Also, I would like to thank the examiners for their critical reading and for their 

comments and suggestions. 

I also would like to thank Dr. Yethiraj for providing me very useful information 

through group meetings. Special thanks to Mr. Jason Mercer from the Computer Science 

Department for helping me in computer and software questions. 

I express my absolute thankfulness to my father, mother, sister, brothers and others 

in my family for their support and encouragement in this work. 

I would like also to thank my friends in Jordan and Canada and every person who 

enlightened me. 

I hope I did not forget any one, so thanks to all. 

Ahmad M. Almudallal, December, 2009. 

Ill 



Contents 

1 Introduction 

1.1 Colloids . 

1.1 .1 Overview 

1.1. 2 Interactions in a Colloidal System . 

1.2 Computer Simulation . 

1.2.1 Short History . 

1.2.2 Computer Simulation: applications and motivations 

1.3 Electrorheological (ER) Fluid 

1.4 Motivation . . . . . . . . . . 

1.5 Short Outline of the Thesis 

2 Theoretical Model 

2.1 Electror heological Fluid and Colloids 

2.2 Types of dipolar interaction .... 

2.2.1 Stacked Dipolar Interaction 

2.2.2 Staggered Dipolar Interaction 

2.3 Energetics of Clustering. . . . 

2.4 Monte Carlo Simulation (MC) 

IV 

1 

2 

2 

4 

13 

13 

15 

15 

18 

21 

23 

23 

27 

27 

30 

32 

34 



2.4.1 Periodic Boundary Conditions 

2.4.2 Potential Truncation . . 

2.4.3 The Metropolis Method 

2.5 Structural Quantities . . ... . 

2.5.1 Pair Correlation Function 

2.5.2 Structure Factor 

2.5.3 Percolation . . . 

2.5.4 Cluster Size Distribution 

2.5.5 Mean Square Displacement (MSD) 

35 

35 

38 

40 

40 

44 

45 

46 

47 

3 Structural Properties of a 2D Dipolar System (Phase Diagrams) 49 

3.1 Model and Simulation Details 49 

3.2 Computer Simulation Results 52 

3.2.1 Energy and Mean Square Displacement . 

3.2.2 Pair Correlation Function and Structure Factor 

3.2.3 Potential Energy along Isochores 

3.2.4 2-State Model 

3.2.5 Pressure 

3.3 Phase Diagram 

3.4 Isochoric Data . 

4 The Void Phase 

4.1 The Experimental Void Phase 

4.2 Simulating Physical Potentials 

4.3 Simulating Mathematical Potentials . 

v 

52 

55 

58 

60 

61 

62 

67 

85 

85 

86 

90 



-----------------

5 Discussion, Conclusions and Future Work 

50001 Phase Diagram 

500 02 Void Phase 0 

50003 Future Work 0 

A Verlet List 

B 2-State Model 

vi 

99 

100 

103 

103 

108 

111 



List of Figures 

1.1 Attaching grafted polymers on the colloid surface as adapted from Ref. 

[4]. As the colloids get closed to each other, the polymer concentration 

between the colloids increases and leads to a repulsive force. . . . . . . . 11 

1.2 The depletion interaction as adapted from Ref. [4]. The small spheres 

are the polymer coils or the dissolved polymers. The grey spheres are 

the original colloids of radius R, while the white shell is the associated 

depletion region of thickness a. 13 

1.3 The connection between experiments, theory, and computer simulation, as 

adapted from Ref. [10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

1.4 Formation of cellular patterns (or voids) in the plane perpendicular to the 

fi ld direction. (a) is the void pattern obtained by using pure dipole-dipole 

interaction as Kumar et al. assumed in their work, while (b) is the void 

pattern obtained as a result of a total potential that includes long range 

repulsion and short range attraction as Agarwal et al. assumed . . . . . . 18 

1.5 Fig. (a) and (b) are bet structures obtained in silica/water-glycerol and 

PMMA spheresjcyclo-heptyl bromide systems at volume fraction that equal 

15% and 25%, respectively. (c) shows fluid-bet coexistence for silica solved 

in water:dimethyl sulfoxide under an external electric field effect at <P = 4.4%. 20 

Vll 



2.1 The interaction potential between two dipole moments, P1 and P2 , sepa­

rated by a distance ffl. () is the angle between the dipole moment and the 

separation vector f. . . . . . . . . . . . . . . . . . . . 

2.2 Radial component of the force between two dipoles. The interaction is 

attractive in the range [0°, 54.73°] and [125.27°, 180°], while it is repulsive 

25 

in the range [54.74°, 125.26°]. . . . . . . . . . . . . . . . . . . . . . . . . 26 

2.3 Two interacting chains via stacked dipolar interaction at the closest dis-

tance d = <J, where <J is the colloid's diameter. . . . . . . . . . . . . . . . 28 

2.4 The interaction between two chains separated by a distance d via stacked 

dipolar interaction. P's are the dipole moments, lfl is the separation dis­

tance between two dipole moments in two different chains, and () is the 

angle between the dipole moment and the separation distance lfl , and l is 

the height of a specific dipole Po from the bottom. . . . . . . . . . . . . . 28 

2.5 The stacked dipolar interaction potential for different values of L, where 

L is the number of particles in each chain. This interaction potential has 

a small repulsion at large distances d, and significantly high repulsion at 

short distances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 

2.6 Two interacting chains via staggered dipolar interaction at the closest dis-

tance d = 0.866 <J, where <J is the colloid's diameter. . . . . . . . . . . . . 31 

2. 7 The interaction between two chains separated by a distance d via stag­

gered dipolar interaction. P's are the dipole moments, lf1 is the separation 

distance between two dipole moments in two different chains, ()is the angle 

between the dipole moment and the separation distance lfl, and l is the 

height of a specific dipole P0 from the bottom. . . . . . . . . . . . . . . . 31 

viii 



2.8 Th taggered dipolar interaction potential for different valu of L , where 

L i the number of particles in each chain. This interaction potential has 

a small r pulsion at large distances d, and significantly high attraction at 

hart distanc s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

2.9 The potential energy for clusters of size n * m at zero temperature. 34 

2.10 An xample of a 2D boundary y t m as adapted from [10]. Each object 

can enter and leave any box across on of the four walls . . . . . . . . . . 36 

2.11 The minimum image convention for a 2D system, as adapted from [10]. The 

dashed square repre ents the new box constructed for object on using the 

minimum image convention. Th n w box contains the am number of 

objects as the original box. The dashed circle represents a potential cutoff. 37 

2.12 The grey r gion R represents th region where the object i can mov in 

one step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

2.13 Ace pting and r jecting rules in MC, as adapted from [10]. The motion 

will be accepted when at 8V1i < 0, or if xp( - /3 8V1i) > RA F (DUMMY). 39 

3.1 The coexistence of stacked and staggered dipolar interactions in a dipolar 

system. Chain 1 and chain 2 (as well as chain 2 and chain 3) interact via 

the stagg r d dipolar interactions while chain 1 interacts wit h chain 3 via 

stacked dipolar interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

3.2 The e disks represent the arne chains as in F ig. 3.1 viewed along z-axis. 50 

3.3 Each x ign in this figure represents a computer simulation experiment at 

specific value of temperature and area fraction. . . . . . . . . . . . . . . 53 

ix 



3.4 Fig. (a) and Fig. (b) repre ent the energy behaviour and m an quare 

displac ment as functions of MC steps at equilibrium for an area fraction 

that quals 70% and different values of temperature. 

3.5 Fig. (a) shows the height of the fir t four peaks of g(r) at area fraction 

equal to 70o/c, and (b) is a geometric figure to explain the po ition of the 

54 

first four p aks. Fig. (c) shows g(r) extended to further di tanc s . .. 0 • 56 

3.6 The structur factors calculated at equilibrium for an ar a fraction that 

equals 70% and a wide range of temperature ... 0 •• 0 ••• •••• • 0 0 57 

3. 7 The black curves in this figure represent the potential energy that measured 

during the simulations while the r d curves represent the pot ntial nergy 

as calculated from g(r) data at area fractions (a) A= 1%, (b) A= lO%, (c) 

A= 20%, (d) A= 30%, (e) A= 40%, (f) A= 50%, (g) A= 60%, , (h) A= 70%. 59 

3.8 Fitting the computer simulation data of both potential energy and pecific 

heat at ar a fraction that equals 1% with Eqns. B.5 and B.6. . . .... 0 62 

3.9 shows pressure behaviour as a fun tion of area fraction for different ischoric 

syst m ........ .......... . 0 • • • ••• 0 • • • • • • • • • • 63 

3.10 shows th phase diagram for dipolar rods system as a function of area 

fraction and temperature as obtained by Hynninen et al. adapted from [8] . 64 

3.11 shows th phase diagram as adapted from [33] for a colloidal system with 

short-rang d pletion attraction and long-range electro tati repulsion. . 64 

3.12 Phase diagram for dipolar rod system as a function of ar a fra tion and 

temperatur as obtained from our simulation data. 65 

3.13 The p rcolation ratio as a function of area fraction at temperature (a) 

T = l. , (b) T = 2.0, (c) T=2.3, (d) T = 2.5, (e) T = 3.0, (f) T= 4.0 (g) T = 5.0. 66 

X 



3.14 Stable configurations for an isochoric system of an area fraction that equals 

A = 1% and temperatures (a) T = 5.0, (b) T = 3.0, (c) T = 2.0, (d) T = 

1.8, (e) T = 1.5, (f) T = 1.4, (g) T = 1.0 and (h) T = 0.6. One quarter of 

the simulation box is shown for visibility. . . . . . . . . . . . . . . . . . . 69 

3.15 Fig. (a) shows g(r) for an area fraction that equals A= 1%, while Fig. 

(b) shows the height of the first few peaks. Fig. (c) shows the structure 

factor for the same area fraction, and Fig. (d) shows the work done on the 

system to form clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 

3.16 Stable configurations for an isochoric system of an area fraction that equals 

A= 10% and temperatures (a) T = 5.0, (b) T = 4.0, (c) T = 3.0, (d) T 

= 2.5, (e) T = 2.3, (f) T = 2.0, (g) T = 1.8 and (h) T = 1.5. One half of 

the simulation box is shown for visibility. . . . . . . . . . . . . . . . . . . 71 

3.17 Fig. (a) shows g(r) for an area fraction that equals A= 10%, while Fig. 

(b) shows the height of the first few peaks. Fig. (c) shows the structure 

factor for the same area fraction, and Fig. (d) shows the work done on the 

system to form clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 

3.18 Stable configurations for an isochoric system of an area fraction that equals 

A= 20% and temperatures (a) T = 5.0, (b) T = 4.0, (c) T = 3.0, (d) T 

= 2.5, (e) T = 2.3, (f) T = 2.0, (g) T = 1.8 and (h) T = 1.6. . . . . . . . 73 

3.19 Fig. (a) shows g(r) for an area fraction that equals A = 20%, while Fig. 

(b) shows the height of the first few peaks. Fig. (c) shows the structure 

factor for the same area fraction, and Fig. (d) shows the work done on the 

system to form clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 

xi 



3.20 Stable configurations for an isochoric system of an area fraction that equals 

A = 30% and temperatures (a) T = 5.0, (b) T = 4.0, (c) T = 3.0, (d) T 

= 2.5, (e) T = 2.3, (f) T = 2.0, (g) T = 1.8 and (h) T = 1.6. . . . . . . . 75 

3.21 Fig. (a) shows g(r) for an area fraction that equals A = 30%, while Fig. 

(b) shows the height of the first few peaks. Fig. (c) shows the structure 

factor for the same area fraction, and Fig. (d) shows the work done on the 

system to form clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 

3.22 Stable configurations for an isochoric system of an area fraction that equals 

A = 40% and temperatures (a) T = 5.0, (b) T = 4.0, (c) T = 3.0, (d) T 

= 2.5, (e) T = 2.3, (f) T = 2.0 and (g) T = 1.8. . . . . . . . . . . . . . . 77 

3.23 Fig. (a) shows g(r) for an area fraction that equals A = 40%, while Fig. 

(b) shows the height of the first few peaks. Fig. (c) shows the structure 

factor for the same area fraction, and Fig. (d) shows the work done on the 

system to form clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 

3.24 Stable configurations for an isochoric system of an area fraction that equals 

A = 50% and temperatures (a) T = 5.0, (b) T = 4.0, (c) T = 3.0, (d) T 

= 2.5, (e) T = 2.3, (f) T = 2.0 and (g) T = 1.8. . . . . . . . . . . . . . . 79 

3.25 Fig. (a) shows g(r) for an area fraction that equals A =50%, while Fig. 

(b) shows the height of the first few peaks. Fig. (c) shows the structure 

factor for the same area fraction. . . . . . . . . . . . . . . . . . . . . . . 80 

3.26 Stable configurations for an isochoric system of an area fraction that equals 

A = 60% and temperatures (a) T = 5.0, (b) T = 4.0, (c) T = 3.0, (d) T 

= 2.5, (e) T = 2.3, (f) T = 2.0, (g) T = 1.8 and (h) T = 1.6. . . . . . . . 81 

xii 



3.27 Fig. (a) shows g(r) for an area fraction that equals A = 60%, while Fig. 

(b) shows the height of the first few peaks. Fig. (c) shows the structure 

factor for the same area fraction. . . . . . . . . . . . . . . . . . . . . . . 82 

3.28 Stable configurations for an isochoric system of an area fraction that equals 

A= 70% and temperatures (a) T = 5.0, (b) T = 4.0, (c) T = 3.0, (d) T 

= 2.5, (e) T = 2.3, (f) T = 2.0 and (g) T = 1.8. . . . . . . . . . . . . . . 83 

3.29 Fig. (a) shows g(r) for an area fraction that equals A = 70%, while Fig. 

(b) shows the height of the first few peaks. Fig. (c) shows the structure 

factor for the same area fraction. . . . . . . . . . . . . . . . . . . . . . . 84 

4.1 Formation of cellular patterns (or voids) in the plane perpendicular to 

the field direction as a result of pure dipolar interaction as Kumar et al. 

assumed in their work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 

4.2 Formation of cellular patterns (or voids) in the plane perpendicular to 

the field direction. Agarwal et al. expect that all of dipolar interaction, 

Yukawa interaction, and van der Waals interaction could be behind the 

void phase. 

4.3 A total interacting potential includes three different potentials, dipolar, 

87 

Yukawa, and van der Waals ( -v' jr2
) interactions. . . . . . . . . . . . . . 89 

4.4 Unstable void phase obtained by simulating dipolar, Yukawa, and van der 

Waals ( -v' jr2 ) interactions together. . . . . . . . . . . . . . . . . . . . . 89 

X Ill 



---------------------------~---------------

4.5 Fig. (a) is the first mathematical function that estimated for the void 

potential. It includes a strong attractive part at short distances, and a 

weak repulsive part at long distances. A relatively strong repulsive part is 

located in between the two parts. While Fig. (b) is the diffusive cluster 

phase obtained as a result of simulating the first mathematical function 

presented in Fig. (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 

4.6 The second mathematical function that estimated for the void potential. 

It includes only a repulsive part that extends from 1 O" to 70 O" . • • • . . . 92 

4.7 Fig. (a) is the configuration obtained by using the mathematical function 

shown in Fig. 4.6 at (A ~ 0.05), while Fig. (b) is the configuration 

obtained at (A ~ 0.06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 

4.8 Fig. (a) is the third mathematical function of two repulsive parts that 

estimated for the void potential. The first part extends from r = 1 O" to 

r = A O" , while the second part extends from r = A O" to r = 70 O". Fig. 

(b) is the void phase obtained by simulating the mathematical function, 

presented in Fig. (a), at A = 6, B = 5, and C = 0.2. . . . . . . . . . . . 94 

4.9 An improved shape for the third mathematical function after adding a 

weak attractive potential at a short distance. . . . . . . . . . . . . . . . . 95 

4.10 Fig. (a) is the fourth mathematical function of two repulsive parts that 

estimated for the void potential. The first part extends from r = 1 O" to 

r = A O" , while the second part decays linearly from r = A O" to reach zero 

at r = 70 O". Fig. (b) is the configuration obtained by using the fourth 

mathematical function at (B ~ 0.6) , while Fig. (c) is the configuration 

obtained at (B ~ 0.8) . . . .. .. . . ..... . 

xiv 

96 



4.11 The fifth mathematical funct ion of two repulsive parts estimated for the 

void potential. The first part extends from r = 1 0' to r = A 0' , while the 

second one is decaying as 1/r from r = A 0' to reach zero at r = 70 0'. . . 97 

4.12 Fig. (a) is the configuration obtained by using the fifth mathematical 

function, shown in Fig. 4.11 , at A = 4 and B = 3. Fig. (b) is the 

configuration obtained at A = 10 and B = 2. Finally, Fig. (c) is the 

configuration obtained at A = 10 and B = 5 .. . 

A.1 Illustration of Verlet list and cutoff potential sphere. Verlet list contains all the par-

tides inside the outer sphere. Just particles inside the inner sphere contribute in the 

interaction calculations. 

XV 

98 

109 



List of Tables 

1.1 The various types of Colloidal Dispersion with some common examples [3]. 3 

xvi 



Abstract 

We perform Monte Carlo simulations to study an electrorheological fluid that consists 

of spherical dielectric particles in a solution of low dielectric constant under the influence 

of an external electric field. The electric field induces dipole moments in the colloids that 

align along to the electric field direction. At a sufficiently high electric field, the dipoles 

attract each other to form long chains along the electric field direction. The system can 

then be modeled as a 2D system of interacting disks, where each disk represents a chain 

of hard sphere dipolar part icles viewed along the field axis. The disk-disk interaction 

varies with chain length, but has the general feature of strong short range attraction and 

weak long range repulsion. We perform simulations of the 2D fluid across a wide range 

of temperature and area fraction to study its structural properties and phase behaviour. 

Our model reproduces the clustered structures seen experimentally 

In addition, a novel void phase has been seen by two experimental groups in a low 

volume fraction regime ( < 1%). The simulations of our model indicate that dipolar hard 

spheres, even wit h the addit ion of Yukawa and van der Waals interactions, do not produce 

the void phase. Further investigations employing toy potent ials reveal qualitat ive features 

of the potential that can give rise to voids, but physical mechanisms that may produce 

these features remain speculative. 

Key Words: Colloids, Dipolar Rods, Monte Carlo Simulation. 
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Chapter 1 

Introduction 

Colloidal suspensions, small particles dispersed within a second medium, are common in 

everyday life with examples ranging from toothpaste to paint, from milk to quicksand. 

From these examples we see that colloidal suspensions can exhibit both solid-like and 

liquid-like behaviour, i.e. support a weak shear on short timescales, while flowing on 

longer timescales, and therefore fall into the realm of soft condensed matter. From a 

materials perspective, colloidal suspensions offer a gateway to producing novel materials 

as the interaction between colloidal particles can often be tuned or manipulated. One 

recent advance in controlling colloids involves the application of an external electric field 

that induces a dipolar interaction between the colloidal particles. The interesting phase 

behaviour of such so-called electrorheological (ER) fluids is the subject of this thesis. In 

particular, we wish to see to what extent a simple model based on dipolar interaction can 

qualitatively reproduce the phases seen experimentally. 

In this chapter we give a general overview of colloidal suspensions, including a de­

script ion of some of the interactions that play an important role in dictating the material 

properties of colloids, as well some of the phenomenology motivating our work. We 
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conclude this chapter with an overview of the rest of the thesis. 

1.1 Colloids 

1 .1.1 Overv iew 

The first person who recognized the existence of colloidal particles and defined their 

common propert ies was Francesco Selmi in 1845. In the 1850s, Michael Faraday exten­

sively st udied a colloidal system which contained solid particles in water. Faraday, in 

his experiments, found that colloidal systems are thermodynamically unstable, since the 

coagulation process in t hese systems is irreversible. Also, he concluded that these sys­

tems must be stabilized kinetically since they can exist for many years after preparation. 

Although Selmi and Faraday were the discoverers of colloids, the word "colloid" was 

still unused at that time. In 1861, Thomas Graham gave the name "Colloid" to these 

particles [1 , 2] . He also deduced the size of colloids from their motion in the solut ion. 

He emphasized t he low diffusion rates of colloidal particles, and then concluded that the 

particles are fairly large (larger t han 1 nm). On the other hand, the lack of sedimentation 

of the particles under the influence of gravity implied that these part icles had an upper 

size limit of a few micrometers [1]. 

The colloidal system consists of two phases. The first phase includes suspended parti­

cles distributed in a medium, which is the second phase. Usually, the first phase is called 

the discontinuous phase or disperse, while the second one is called the continuous phase 

or dispersion medium. Since the first phase is dispersed in the second phase, the colloidal 

system may also be called colloidal dispersion or colloidal suspension. However, these 

two phases could be gas, liquid or solid [3], although some researchers prefer to not call 
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the system of solid dispersion medium as a colloidal suspension because the suspended 

particles will not be affected by the Brownian motion. The table below presents various 

types of colloidal dispersion with some common examples [3]. In addition, colloidal sus­

pensions or colloidal materials are commonly used in daily life, e.g. milk, soap, paints, 

glue and others are all colloidal suspensions. 

Table 1.1: The various types of Colloidal Dispersion with some common examples [3]. 

Disperse Phase Dispersion Medium Technical N arne Common Name 

Solid Gas Aerosol Smoke, dust 

Liquid Gas Aerosol Fog 

Solid Liquid Sol or colloidal sol Suspension, slurry, jelly 

Liquid Liquid Emulsion Emulsion 

Gas Liquid Foam Foam, froth 

Solid Solid Solid dispersion Some alloys and glasses 

Liquid Solid Solid emulsion 

Gas Solid Solid foam 

Basically, colloidal science is a branch of soft condensed matter science. The term 

"soft condensed matter" is a name for materials which are neither simple liquids nor 

crystalline solids . Instead, soft materials have properties common to both liquid and 

solid materials [4]. These common properties lead to the soft materials gaining a new 

property which is viscoelasticity [4, 5] . The term viscoelasticity is a compound name 

from two concepts. The first one is viscosity, associated with liquids, and the second one 

is elasticity, which is associated with solids. The viscous property in soft materials is 

dominant at long time scales, on which the materials behave as liquids, while elasticity 
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is dominant at short t ime scales, during which the materials behave like solids. 

1.1.2 Interactions in a Colloidal System 

The definition of a colloidal system or colloidal dispersion can be concluded from section 

( 1.1) as a heterogeneous system of particles of a size around 10 p,m or less that are dispersed 

in a solution. T he colloidal dispersion is considered stable whenever the particles are 

suspended in the solut ion and are not aggregated, and maintaining stability is often 

a primary concern in colloidal science [4] . Common forces in colloidal suspensions that 

tend to destabilize the suspension are gravity, Van der Waals interactions, while Brownian 

motion, and electrostatic forces and polymer stabilization tend to improve stability. In 

addition to these forces, we will discuss drag forces and depletion interactions [1, 2, 4]. 

Gravity and Brownian Motion 

Particles immersed in a fluid feel a buoyant force in the presence of gravity. This is 

no different for colloidal particles in a suspension. If the particles are less dense than 

the solut ion, they will tend to rise; denser particles will sink. When the sedimentation 

process is not the object of study, a stable suspension requires that the density of the 

continuous phase closely match the density of the discontinuous phase. While precise 

density matching may not always be achievable, Brownian motion tends to work against 

the sedimenting affects of gravity and makes the system more homogeneous. Brown­

ian motion results from effectively random collisions between solut ion molecules and the 

colloidal part icles, and gives rise to the tendency for particles to diffuse throughout the 

suspension. The strength of the Brownian motion depends inversely on the particle's 

size. If the dispersed particles are small enough, Brownian motion can overcome the 
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gravitational force and effectively prevent sedimentation. On the other hand, Brown-

ian motion promotes collisions between colloidal particles themselves. In the presence 

of strong, but short-range attractions, this will aid in the aggregation of particles into 

clusters, destabilizing the suspension. To summarize, Brownian motion and gravitat ional 

forces must be considered together when discussing colloidal dispersion stability with 

respect to sedimentation, but other forces may lead to aggregation [2, 4]. 

Drag Force 

At the same time, drag force plays a significant role against the gravitational force to 

keep the system stabilized. Dropping spherical, denser particles into a solution drives 

these particles to accelerate down under the gravitational force. If the solution is viscous, 

an upward frictional force affects these spherical particles. This frictional force is called 

the Stokes force, and it was derived by George Stokes from solving the avier-Stokes 

equation in 1851. The Stokes force for one colloid is given by [2, 4], 

(1.1) 

where F8 , TJ , a and v are drag force, viscosity, colloid's radius and the colloid's velocity 

in the solution, respectively. Falling particles will reach a terminal velocity Vt, where 

gravitational and drag forces balance [4]. The gravitational force for a single colloid in a 

solution is given by, 

(1.2) 

where f),p is the density difference between the colloids and the solution, and g is the 

constant acceleration due to gravity. The terminal velocity can be found from Eq. 1.1 

and Eq. 1.2, and is given by, 

(1.3) 
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Van der Waals Interaction 

One common interaction in colloidal suspensions is the van der Waals interaction. This 

interaction is attractive and it always operates between molecules. It arises from electron 

motion around the nuclei that allows for molecules to induce dipole moments within each 

other. The van der Waals force is quantum mechanical in nature, and it appears ven 

if the atoms have no permanent dipole moment. The resultant interaction varies as the 

inverse sixth power of the separation r , as given by, 

3 ( 1 )2 0:2 V(r) = -- - -Jiw , 
4 47rEo r6 (1.4) 

where Eo, a and 1iw are dielectric constant of free space, polarizability, and ionization 

energy, respectively [1, 4]. 

For macroscopic bodies, the van der Waals interaction is the sum of all the induced-

dipole - induced-dipole interactions between constituent atoms of each body. The total 

interaction energy becomes a function of the distance h between two bodies and is ob-

tained by integrating over all interacting atomic pairs, 

(1.5) 

where we have assumed for simplicity two identical bodies composed of the same atomic 

species, Pi is the (atomic) number density of, fi is the position within, and dVi a volume 

element of body i. The prefactor C is constant for the material given by 

(1.6) 

For two macroscopic spherical bodies of radii R1 and R2 and large separation, the van 

der Waals potential in Eq. 1.5 can be simplified to the following formula , 

(1.7) 
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where A = 1r
2 p1p2C is called the Hamaker constant with dimensions of energy, and h 

is the closest surface to surface distance between the spheres. At very short distances 

(h << R 1 , R2 ), the van der Waals interaction becomes more significant and it varies as 

the inverse power of h, as given by [1] , 

(1.8) 

In general, the Hamaker constant is a material property, and it has a value about 

10- 19 J for most materials. For two colloidal particles, the presence of the dispersion 

medium effectively changes the Hamaker constant, although the force remains attractive 

for two bodies of the same material. Indeed, the strength of the van der Waals interaction 

is directly proportional to the difference in the refraction index between the colloids and 

the solution, as seen in the following formula [6], 

U(h)~-3kaTV3hv (n~ -n;) 2 R6 
4 ( n~ + 2n;) 3/ 2 r-6 

(1.9) 

where h is the Planck's constant, v is the absorption frequency of the medium, np and 

n 8 are the refraction indices of the particles and the solution, respectively. R is the 

particles ' radius, and r is the distance between any two particles in the system. Usually, 

experimentalists reduce the van der Waals interaction by matching the refraction index 

of the solution and colloids [6, 7]. Although fairly weak, especially at larger ranges, the 

van der Waals interaction is the primary cause of aggregation. 

E lectrostatic Interaction (Yukawa Interaction) 

In solution, a colloidal particle's surface may become charged as surface chemical groups 

become ionized. These charged surfaces introduce an electrostatic interaction between 

colloids. The Coulomb interaction between the colloids is screened by free ions in solution. 
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T he charged surfaces attract t he free ions from the solution to form a layer of counter-

ions near the charged surface. In part icular, an electrost atic force will arise between the 

colloids and the screening counter-ions. In the following, we introduce this interaction in 

detail for one dimension for simplicity, and then quote results for three dimensions. 

In the beginning, we need to determine the net charge of t he counter-ions p(x) at 

a distance x from the colloid's surface [4], which for this calculation is modeled as an 

infinite plane. Actually, p(x) can be found by solving Poisson equation, which is given in 

Eq. 1.10 for the counter-ions at a distance x from the colloid's surface, 

( 
c{2'lj;(x) ) 

p(x) = -Er Eo dx2 , (1.10) 

where Er and Eo are relative dielectric permittivity of the solution and the permittivity 

of free space, respectively, and 'lj;(x) is the electrostatic potential at a distance x away 

from the surface. On the other hand, the net charge of the counter-ions at a distance x 

from the surface can be determined from the Boltzmann distribut ion for counter-ions in 

solution n(x), as follows, 

(
-ze 'lj;(x) ) 

p(x) = n(x) ze = n0 ze exp kB T , (1.11) 

where n0 and ze are the ionic concentration in the bulk solution without colloids and the 

charge of the ions, respectively, and kB and T are Boltzmann constant and temperature 

respectively. The ionic solut ion is also known as an electrolyte, where the counter-ions 

include both positive and negative ions. Hence, the ionic concentration for the two kinds 

of charges can be expressed as, 

(1.12) 

T he net charge density of the counter-ions for the positive and negative ions is given by, 

(1.13) 
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Combining Eq. 1.10 and Eq. 1.13 gives the Poisson-Boltzmann equat ion for the 

potential, 

( no ze ) [exp ( ze '1/J(x) ) _ exp ( -ze '1/J (x)) ] 
Er Eo kBT kBT 

2n0 ze. h(ze'ljJ(x) ) _....:....__sm . 
E Eo kBT 

(1.14) 

The Debye-Huckel approximation supposes that the potential '1/J(x) is small, and then 

sinh(ze 'l/J (x)jk8 T) ~ (ze 'lfJ(x)jk8 T). So, Eq. 1.14 can be written as, 

cP'ljJ(x) 
dx2 

where k-1 is called Debye screening length, and k has the value, 

(1.15) 

(1.16) 

Eq. 1.15 is a second order differential equation, and it has simple solut ion as follows, 

'1/J(x) = Aexp( -kx) + B exp(kx). (1.17) 

Using the fact that '1/J(x) and d'ljJ(x)jdx go to zero as x goes to infinity will reduce Eq. 

1.17 to the following equation, 

'1/J(x) '1/Jo exp( -kx) 

(1.18) 

This potential arises in the system as as a result of the interaction between the colloids 

and the free ions in the bulk solution (counter-ions) . We can conclude from the boundary 

conditions that t his potential is a short range one. Since the size of the colloid is much 

bigger t han the counter ion size, the colloid will behave as an infinite plate in y z plane. 
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Therefore, the contribution from both y and z components will be very small, and x is 

the only component that significantly creates the potential. In this case, this potential 

seems as a 1D formula, where x represents the separation distance between the surfaces. 

For a spherical colloid in three dimensions, the potential interaction has the following 

formula [1], 

'lj;(r) = ~ exp [-k(r- o"/2)] 
47rErEo r(1 + kCJ / 2) ' 

(1.19) 

where r is the radial distance from the center of the colloid and CJ is its diameter. The 

energy between two identical colloidal particles is called Yukawa potential energy and is 

often seen in the literature in the form [8] , 

( ) 
exp [-k(r- CJ)] 

Uy r = E , 
r 

(1.20) 

where E = z2e2 /[47rErEo(1 + kCJ /2)2] gives the overall strength of the interaction. 

As seen in Eq. 1.18 or Eq. 1.19 this potential energy is always repulsive, and it 

depends inversely on k- 1 . At the same t ime, k- 1 depends on the free ionic concentration 

in addition to the temperature. In other words, this repulsive potential can be enhanced 

be reducing the Debye screening length, which can be done either by removing the salt 

from the system or by increasing the temperature. Thus, salt concentration plays an 

important role in stability of the colloidal suspension against aggregation. 

Polymer Stabilization 

In this method, grafted polymers are added to the colloidal system in order to disperse 

the colloids away from each other. The basic idea behind this method is that the polymer 

chains are attached at one end to the colloid surface and stick out into the solution as 

shown in Fig. 1.1. As one of these colloids approaches another colloid, the concentration 

of the grafted polymers increases in the region between the two colloids. Accordingly, 
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the osmotic pressure increases and leads to a repulsive force that prevents the forming of 

aggregations or clusters [2, 4]. 

Figure 1.1: Attaching grafted polymers on the colloid surface as adapted from Ref. [4]. As the 
colloids get closed to each other, the polymer concentration between the colloids increases and 
leads to a repulsive force. 

Three principle points must be taken into account regarding polymer stabilization. 

Firstly, some grafted polymers have an attractive interaction between the segments, which 

could drive the colloids to aggregate with each other. For that, a good solvent must be 

used in order to lower the attraction energy between the segments. Secondly, the range 

of the repulsive force can be controlled by the length of the polymer chain. Obviously, 

longer chains increase the repulsive force interaction. Thirdly, the grafted polymer chains 

attach to the colloids by either physical or chemical bonds. Regardless of the type of bond, 

the strength of the bond must be greater than the thermal energy kBT. Otherwise, the 

grafted polymers will separate from the surfaces of the colloids. 
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Depletion Interactions 

This interaction appears when particles of intermediate size between the colloids and the 

solvent molecule, are added to the colloidal system. Typically, the intermediate particles 

are dissolved polymers that do not attach on the colloid surface; instead, they form 

globules that move freely inside the solution. Modeling the polymers as spheres of radius 

a, there consequent ly arises a depletion zone around each colloid, into which no polymer 

center can enter. In Fig. 1.2, the grey spheres are the original colloids, while the white 

skin around the colloids is the depletion zones of thickness a. The small particles are 

the dissolved polymers depicted as spheres. When any two colloids get close enough, 

their depletion zones will overlap. Consequently, the polymer concentration in the area 

between these two colloids will be much less than the polymer concentration elsewhere 

around t he colloids. This makes the osmotic pressure in the solution bigger than that in 

the overlapping region, pushing the two colloids together. So, the depletion interaction 

is attractive in contrast with electrostatics and polymer stabilization [4]. 

The total (attractive) depletion interaction potential can be expressed as, 

(1.21) 

where P osm is the osmotic pressure that can be approximated from the ideal gas law for 

N polymer particles in a solution of volume V , 

(1.22) 

while V dep is the depletion volume, which represents the total overlapping volume in the 

depletion region between colloids. Vdep for two overlapping spherical colloids is given by, 

47r 3 ( 3r r
3 

) 
Vdep=3(a + L) 1-4(a+L) + 16(a+L)3 ' (1.23) 
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Figure 1.2: The depletion interaction as adapted from Ref. [4]. The small spheres are the 
polymer coils or the dissolved polymers. The grey spheres are the original colloids of radius R, 
while the white shell is the associated depletion region of thickness a. 

where r is the center to center separation, applicable for the case 2R + a ::; r ::; 2R + 2a. 

The magnitude of the depletion interaction increases with polymer concentration, while 

the range of attraction is controlled by a. Adding polymer can tune the attraction to be 

comparable to, or even much stronger t han the thermal energy (kBT). 

1.2 Computer Simulation 

1.2.1 Short History 

Much of the history of computer simulation started during and after the Second World 

War in t he development of nuclear weapons. At the t ime, "electronic computer machines" 

were very large but rather simple machines restricted to the military, where they were 

used to perform very heavy computation. In the 1950s, the electronic computing machines 

spread to nonmilitary usage, and this was the starting point for computer simulation 

studies. The first computer simulation, or numerical experiment, was done in 1953 at 

Los Alamos National Laboratory in the United States by Metropolis, Rosenbluth and 
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Teller. They used the most powerful computer of that time, called MANIAC, in order to 

study liquid structures [9, 10]. 

In 1953, Metropolis and coworkers employed a new technique which they called Monte 

Carlo (MC) Simulation, and which is still widely used today. The name aptly connects the 

dependence of MC on random numbers to one of the great gambling capitals of the world 

[9, 10, 11]. While today MC refers broadly to techniques based on the acceptance and 

rejection of randomly generated states, we employ in this thesis the original "Metropolis 

algorithm" to generate an ensemble of states in the canonical ensemble of our model. 

Until 1957, MC was used to simulate ideal model systems, e.g. treating molecules 

as hard spheres. The results obtained by these early simulations were not directly com­

parable with experimental results on atomic or molecular liquids. In 1957, Wood and 

P arker were the first to carry out simulations with the Lennard-Janes interaction poten­

tial. These simulations were comparable to experiments on systems such as liquid argon 

[10]. 

MC is a powerful technique for obtaining structural and thermal properties of model 

systems interacting through some potential. On the other hand, MC is not used to solve 

equations of motion for the particles of a model system, and therefore dynamic properties 

are not accessible. This pushed Alder and Wainwright, starting in 1957, to design a 

new technique called Molecular Dynamics (MD) that does solve Newton's equations of 

motion. In 1964, Rahman used MD to study systems of Lennard-Janes particles. While 

there have been many developments in MC and MD since those pioneering t imes, the 

same basic ideas are behind today's simulations of simple fluids, biological molecules and 

other materials of varying degrees of complexity [10] . 
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1.2.2 Computer Simulation: applications and motivations 

Computer simulation experiments are useful for modeling natural systems in Physics, 

Chemistry, Biology, and Engineering. In Physics, few problems can be solv d analytically, 

and often approximations are employed to make a problem more tractable. On the other 

hand most probl ms, pecifically in statistical m chanics, are neither soluble exactly nor 

treated adequately with approximations. Particularly difficult problems involve a large 

number of interacting particles. Therefore, computer simulation ha become a very useful 

tool for solving many-body problems [10]. 

Computer simulations have a valuable rol in providing essentially xact results for 

problems in statistical mechanics which would otherwise only be olubl by approximate 

methods. Computer imulations provide a way of testing theories in a virtual laboratory 

where all interaction are explicitly known. Also, computer simulation results can b 

compared with the real experimental results in order to support the experim ntal expla­

nations and to assist in the interpretation of n w results. Computer imulation aims to 

be a bridge betwe n mod ls and theoretical pr dictions on the one hand, and between 

models and experimental results on the other as illustrated in Fig. 1.3 for a liquid system 

[10]. Indeed, the theoretical predictions can be compared with experimental results by 

using directly a sp cific model, but definitely computer simulation allow you test the 

model itself. 

1.3 Electrorheological (ER) Fluid 

An electrorh ological (ER) fluid is a kind of colloidal system, which i composed of non­

conducting particle in an electrically in ulating fluid and responds to an external electric 
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Figure 1.3: Th connection between experiments, theory, and computer imulation , as adapted 
from Ref. [10]. 

field [12, 13, 14, 15]. As a result , the rheological properties of an ER fluid uch as viscosity, 

shear stress and shear modulus can change several orders of magnitude with the applied 

electric field str ngth. This change dep nds basically on the physical prop rties of both 

t he dispersed particle and dispersing m dium [16]. 

Due to the fact that the mechanical propertie of an ER fluid can b ontrolled over 

a wide range, ER fluid can be used in variou industrial applications. Typically, ER 

fluids can be u d as an electric and mechanical interface, for exampl , clutches, brakes, 

hydraulic valves, displays, and damping system [17, 18, 19]. Al o, ER fluids can b 

used to fabricate advanced functional material such as photonic ry tals, smart inks, 
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and heterogeneous polymer composites [16]. 

In the class of ER fluids with which we are concerned, the mismatch in dielectric 

constants between the colloidal particles and surrounding fluid results in what can ef­

fectively be described by a system of hard sphere particles interacting through induced 

dipole moments. 

Electrorheological structures have been studied experimentally [7, 20, 21 , 22], theoret­

ically and using computer simulation [8, 23, 24, 25, 26]. In Ref [23], Tao and Sun proved 

using MC simulation that the ground state structure of a particular ER fluid in a strong 

electric field is a body centered tetragonal (bet) structure. Tao proved theoretically that 

above a certain critical field strength, the ER fluid experiences a phase transition t o a 

solid state whose ideal structure is body centered tetragonal (bet) [24] . In Ref. [8], Hyn­

ninen et al. used MC simulation to study the phase behaviour of hard and soft spheres by 

changing the packing fraction and external field strength. Martin et al. in Ref [26] studied 

the structures obtained by applying two different types of external electric field: uniaxial 

and biaxial external electric fields. Kumar et al. in Ref. [21] reported experimentally a 

new phase at low volume fraction ( 1%) due to a pure dipolar interaction, and that new 

phase is called "void phase" . Agarwal et al. in Ref. [22] also reproduce the void phase 

experimentally by applying an external electric field on a colloidal system allow volume 

fractions. They assume that the total interaction that could produce this phase must 

consists of long range repulsion and short range at t raction, but they did not determine 

the exact interactions. More details about this phase behaviour will be presented in the 

next chapters. 
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1.4 Motivation 

In 2005, a new phase of a cellular pattern consisting of particle-free domains enclosed 

completely by particle-rich walls was discovered by Kumar et al. [21]. Kumar et al. 

produced this phase by applying an external electric field on a colloidal system at very 

low volume fraction ( < 1%) as shown in Fig. 1.4(a). When the external electric field is 

applied, the colloids start to interact with each other via a dipole-dipole interaction and 

tend to form rod-like structures. After that, these dipolar rods attract and repel each 

other to form this phase. Kumar et al. assumed that all the effects of other competing 

Figure 1.4: Formation of cellular patterns (or voids) in the plane perpendicular to the field 
direction. (a) is the void pattern obtained by using pure dipole-dipole interaction as Kumar et 
al. assumed in their work, while (b) is the void pattern obtained as a result of a total potential 
that includes long range repulsion and short range attraction as Agarwal et al. assumed. 

forces were suppressed, implying that the dipole-dipole interaction is solely responsible for 

producing this phase. In fact , Kumar et al. were studying particles that were lOOp,m in 

size, so theirs was not a true Brownian system but a granular system (from the standpoint 

of theory they are probing energetics and not the free energy) . So one could not call their 

structure a thermodynamic phase. Likewise, Agarwal et al. reproduced this interesting 
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phase at very low volume fraction but acknowledged that other forces may play a role, 

and they called this phase as the "void phase". They commented on the importance of 

long range repulsion and short range attraction for producing this phase, but they did not 

determine the exact interactions. The obtained void phase is presented in Fig. 1.4(b). 

On the other hand, Ref [27] is a real-space study of structure formation in a colloidal 

suspension of silica and PMMA spheres under an external electric field at higher volume 

fractions. In this work, the authors reported bet (body centered tetragonal) crystallites in 

two systems, silica/water-glycerol at ¢ = 15% and PMMA spheres/cyclo-heptyl bromide 

at ¢ = 25%, as shown respectively in Figs. 1.5(a) and 1.5(b). Also, Fig. 1.5(c) is un­

published work by A. Agarwal and A. Yethiraj that shows a structure of silica suspended 

in water:dimethyl sulfoxide under an external electric field at volume ¢ = 4.4%. One of 

our targets in this thesis is to reproduce these structures, using computer simulation of 

our simplified model, at area fractions equivalent to the volume fractions used in that 

experimental work. 

In addition, Hynninen et al. in Ref. [8] used MC simulation to study the phase 

behaviour of an ER fluid under the influence of an external electric or magnetic field. 

Two different cases were considered by Hynninen et al.. In the first case, the particles 

in the colloidal system interact with each other via the dipole-dipole interaction alone 

(dipolar hard spheres) , while in the second case the particles interact with each other via 

a pair potential that is a sum of the Yukawa interaction and the dipole-dipole interaction 

(dipolar soft spheres). Indeed, the dipole-dipole interaction is an anisotropic interaction 

that forms long chains along the direction of the applied electric field. It gives rise to 

long range attraction between the chains or between particles along the field axis, and it 

can be controlled by changing the external electric field. The Yukawa interaction gives 
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Figure 1.5: Fig. (a) and (b) are bet structures obtained in silica/ water-glycerol and PMMA 
spheres/cyclo-heptyl bromide systems at volume fraction that equal15% and 25%, respectively. 
(c) shows fluid-bet coexistence for silica solved in water:dimethyl sulfoxide under an external 
electric field effect at ¢ = 4.4%. 

rise to a medium range repulsion interaction and it can be controlled by adding and 

removing salt from the solution. The phase diagrams depends basically on both dipole 

moment strength 'Y and packing fraction ry. The phase diagram of dipolar hard spheres 

shows fluid , face-centered-cubic (fcc) , hexagonal-close-packed(hcp), and body-centered-

tetragonal (bet) phases. The phase diagram of dipolar soft spheres shows, in addit ion to 

the above mentioned phases, a body-centered-orthorhombic (bco). 
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In this thesis, we present a simplified model in which we assume a system in which 

chains of some fixed length are well formed, and consider interactions only between chains. 

Our simplified model, therefore, is essentially a two-dimensional one. We wish to see 

whether the simple physics of interacting dipolar chains can account for the structure 

typical of the experimental system, and in particular whether the void phase is recovered 

at low packing fraction. We also explore how other interactions that may be presented 

in experiments, such as Yukawa and van der Waals forces , affect the system. 

1.5 Short Outline of the Thesis 

In chapter 2, we discuss in detail the effect of an external electric field on a colloidal 

system. Then, we introduce the dipole-dipole interaction, and how it can be used to derive 

exact formulas for stacked and staggered dipolar interactions. After that, we describe 

Monte Carlo (MC) simulation technique, and how we use it to model the dipolar system. 

Finally, we introduce and discuss some structural quantities and theories that are useful 

in analyzing our data. 

In chapter 3, we present data from MC simulations of our model over a broad range 

of temperature and area fraction. After that, we present the phase diagram obtained for 

the dipolar system as a function of temperature and area fraction, and we show different 

structures obtained in the phase diagram. We also use different tools, such as the two 

state model, structure factor and pressure calculations in order to check whether there is 

a phase transition. Finally, we compare our results with previous simulation studies on 

dipolar hard spheres and other interacting colloids. 

In chapter 4, we introduce the void phase produced by two experimental groups, Ku­

mar et al. and Agarwal et al., at low volume fraction ( < _1%). After that, we discuss 

some physical interactions that could produce the void phase, such as the dipolar interac-
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tion, Yukawa interaction, and van der Waals interaction. Then, we introduce some 'toy" 

potentials that we have simulated in order to try to gain a qualitative understanding of 

the features of inter-chain interactions that may give rise to a void phase. Finally, we 

discuss our results and conclusions in Chapter 5. 
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Chapter 2 

Theoretical Model 

In this chapter , we introduce the dipole-dipole interaction and our reduction of a three 

dimensional system to a simplified two dimensional model. Then, we describe how we 

realize the model using Monte Carlo (MC) computer simulation. Finally, we discuss some 

structural quantities such as the pair correlation function, structure factor , fraction of 

percolating clusters, cluster size distribution, and mean square displacement. 

2.1 Electrorheological Fluid and Colloids 

An electrorheological (ER) fluid can be defined as a suspension of non-conduct ing par­

t icles of about a few micrometers in size in an electrically insulating fluid that responds 

to an external electric field [12, 13, 14, 15]. Applying an external electric field to a col­

loidal suspension induces dipole moments in the colloids that align with the field. If the 

dielectric constant of the particles is larger than the dielectric constant of the solution, 

the dipole moments will be parallel to the external electric field direction; if the dielectric 

constant of t he particles is smaller than that of the solution, the dipole moments will 

be anti-parallel to the field. In either case, the particles will interact through a dipole­

dipole interaction [8, 22, 24, 23]. In principle, when the field of neighbouring dipoles is 

included, the total field becomes spatially non-uniform. In a spatially non-uniform there 

is in principle also a dielectrophoretic force, which also is ignored in this study. 
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In this work, we consider a colloidal suspension under the influence of an external 

electric field. The colloidal system can be modeled as a system of dipole moments that 

are always pointing in the same direction, with each moment at the center of a hard 

sphere. The dipole-dipole interaction for two dipole moments, P1 and P2 , is presented in 

Eq. 2.1, where Eo is the permittivity of the free space and f' is separation vector between 

the two dipole moments [28, 29], 

1 ( ~ ~ ~ ~ ) U(f) = --
3 

P1 · P2- 3(PI · f)(P2 · f) . 
47rEor 

(2.1) 

In our case, all the colloids in the colloidal suspension are identical and point in the 

same direction as the external electric field direction, which defines our z-axis. Hence, 

(P1 = P2 ) , and then Eq. 2.1 can be written as in Eq. 2.2, 

U(f) p2 ( • • ) 
-- 1- 3(P1 · f)( P1 ·f) 
47rEor3 

U(r,B) ~~ ( 1 - 3 cos2 t9) , (2.2) 

where (;I is the angle between the dipole moment direct ion and f', as illustrated in Fig. 

2.1, and AD is called the dipolar strength that equals, 

p2 
AD=--. 

47rEo 
(2.3) 

In terms of the material properties of the colloidal suspension and the applied field, 

(2.4) 

where a is the polarizability of the particles, O" is the colloid's diameter, Es is the dielec-

tric constant of the solvent, and IElocl = IEextl + IEdipl where Edip is the field due to 

neighbouring dipoles. For our simple model, we neglect the effect of Edip as is done in [8] 
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Figure 2.1: The interaction potential between two dipole moments, P1 and P2, separated by a 
distance lf1 . ()is the angle between the dipole moment and the separation vector r. 

The radial force component between the two dipole moments can be found as follows, 

(2.5) 

Obviously, r in Eq. 2.5 determines the strength of the interaction, while e determines 

whether the force is repulsive or attractive. In Fig. 2.2, we observe that when the 

angle between the two dipole moments is in the range [54.74°, 125.26°], t he interaction is 

repulsive; otherwise the interaction is attractive. Therefore, the dipole-dipole interaction 

in the colloidal system induces anisotropic interactions, either attractive or repulsive 

depending on e, as illustrated in Fig. 2.2. 

In this interaction, the potential energy is minimized at either angle 0° or 180° . There-

fore , in the presence of a strong external field, the colloids will arrange themselves into 

long chains along the external electric field direction. Experimentally, when the external 

electric field is sufficient ly large, the system becomes one composed of such chains. In 
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F igure 2.2: Radial component of the force between two dipoles. The interaction is attractive in 
the range [0°, 54. 73°] and [125.27°, 180°], while it is repulsive in the range [54. 7 4°, 125.26°]. 

the work of Agarwal et al., the length of the chains is roughly 50 particles on average. In 

this regime, the system effectively becomes two-dimensional when viewed down the field 

axis, and the chains appear as disks in a plane. As we explain below, the chains/disks 

tend to attract at very short distances and pack with square symmetry. Further, the 

chains tend to repel at larger range. This combination of short range attraction and long 

range repulsion between disks is made explicit by the reduction in dimension (i.e. this is 

not obvious on the level of individual particles, but becomes apparent when considering 

chains), and is responsible for the appearance of stable clusters in the system. While the 

paradigm of short range attraction and long range repulsion leading to finite clustering 

has emerged as an important concept in other colloidal systems, it has not been fully 

appreciated in the literature for the system we are modeling presently. 

Furthermore, the novel "void" phase seen now by two experimental groups exists in the 

regime when chains are well formed and the system becomes essentially two-dimensional. 

It is one of the goals of this work to determine whether a system of dipolar colloids ar-

ranged in chains can form this void phase, or whether additional interactions are required. 
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2.2 Types of dipolar interaction 

The interaction potential between any two dipol chains can be divided into two principl 

types. Typically, this division depends on how th dipoles in each hain ncounter the 

other dipoles in the econd chain. If the dipol s in the first chain encounter the opposite 

dipoles in the second chain "face to face" as shown in Fig. 2.3 we call this "stacked' . 

On the other hand, if the particles in the s cond chain are shifted a distance of C/ /2 in 

the z-direction, as shown in Fig. 2.6, they ar "staggered" . In this work, w study 

the structures obtained from the interaction between the chains that are either staggered 

or stacked with resp ct to each other. In the following two sections, we deal with each 

dipolar interaction. 

2.2.1 Stacked Dipolar Interaction 

In this type of interaction, the angle () between any two dipoles at th sam height but 

in different chain i 90° , and the closest distance between the chains is C/ , as shown in 

Fig. 2.3. The final formula of the dipolar interaction potential betwe n any two chain 

can be obtained by summing all individual interactions of each dipole in the first chain 

with the other dipoles in the second chain. In th re t of this section, we will explain th 

derivation of the tacked dipolar interaction potential between two chains starting from 

the basic dipole-dipole interaction between two dipoles [29], 

(2 .6) 

where r 12 = lfd is the distance between the two dipoles, and fJ12 is the angle made 

between f'12 and z-axis. 
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Figure 2.3: Two interacting chains via stacked dipolar interaction at th clo st distanced= a , 
where a is the colloid's diameter. 

From Fig. 2.4, the total stacked dipolar interaction potential between the dipole P0 

and the other dipoles in the second chain can b written as 

Uo(d) = Ao t. [1-3 ~os2 Bon] , 
n = l ron 

(2.7) 

where d is the distance between the two chain , n is the particle's rank in the second 

chain, and L repre ents the total number of dipoles in that chain. Al o from Fig. 2.4, 

we can obtain the following relations, 

0 
I 

Po 

l 

Figure 2.4: The interaction between two chains separated by a distance d via stacked dipolar 
interaction. P 's are the dipole moments, lf1 is the paration distance betw n two dipole mo­
ments in two diff rent chains, and () is the angle between the dipole mom nt and the separation 
distance lf1 , and l is the height of a specific dipole Po from the bottom. 
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r ( 
2 2) 1/2 (l- (n- 1)17) + d (2.8) 

cos () = l-(n-1)17 l -(n-1)17 
=------~----~--~1~/2" 

((l- (n- 1)17)2 + d2) r 
(2.9) 

Using Eqs. 2. and 2.9, and assuming that all the dipole moments have the sam 

magnitude, we can rewrite Eq. 2.7 as follows, 

U, (d) =A ~ [ d
2

- 2 (l - (n- 1)17)
2

] 
0 D L ( )5/2 · 

n=1 (l- (n- 1)17)2 + d2 
(2.10) 

By considering all dipoles in the left chain in Fig. 2.4 and substituting l = (m- 1) 17 

in Eq. 2.10, the total interaction potential b tw en two stacked chains is, 

(2.11) 

Obviously the stacked interaction depends on both the distanced b tween the chains 

and the total number of particles in each chain (L). We plot the total potential energy 

between two interacting chains of different values of L at a range of distances from 0 

to 10 17 in Fig. 2.5. We observe from Fig. 2.5 that this interaction is repulsive at any 

distance d and for any L. In general, this interaction potential dep nds only weakly on 

L at large distances ( d > 417), and for large L becomes roughly proportional to L at 

d = 17. Therefor , increasing the repulsion interaction at short range can be done by 

just increasing the number of particles L in each chain. The inset in Fig. 2.5 shows th 

expanded region from 17 = 1 to 17 = 5 in order to highlight the cliff rene s b tween th 

curves for different L. 
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d/o 
Figure 2.5: Th stack d dipolar interaction potential for different valu s of L , where L is the 
number of particles in each chain. This interaction potential has a small repulsion at larg 
distances d, and signifi antly high repulsion at short distances. 

2.2.2 Staggered Dipolar Interaction 

In the staggered configuration, the angle b twe n any two adjacent dipol in two different 

chains is 60° or 120°, and the closest distance between any two adjacent chains is VS/2a- ~ 

0.866 a- as shown in Fig. 2.6. The final formula of the staggered interaction potent ial 

between two stagg r d chains can be obtained by summing all individual int ractions of 

each dipole in a chain with other dipoles in the second chain, as seen in Fig .2. 7. From 

this figure, we can obtain the following relations 

r (2.12) 

l - (n - l )a- l -(n - -
2
1 )a-

2 - --------~--=-----~ 

( (l - (n - ~)a-f + cF Y/2 . 
r 

(2.13) cas e 

Using Eqs. 2.12 and 2.13, and assuming the same dipole moment for all dipoles, the 
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interaction potential b tween the dipole Po and th second chain is given by th following 

equation, 

Figure 2.6: Two intera ting chains via taggered dipolar interaction at th closest distance 
d = 0.866 a, wh r a is the colloid 's diamet r. 

0 

Figure 2. 7: Th int raction between two chains separated by a distanced via taggered dipolar 
interaction. P 's are the dipole moments, lf1 i the eparation distance betwe n two dipol 
moments in two different chains, B is the angl betw en the dipole moment and the eparation 
distance lf1 , and l is the height of a specific dipole Po from the bottom. 

L [ J2- 2 (z - (n- ~)a/ l 
U(d) = AD L 5/ 2 

n = l ((z-(n-~)af+d2) 
(2.14) 
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By considering all dipoles and substituting l =mer in Eq. 2.14, the total interaction 

potential betwe n two staggered chain is, 

L L [ d
2 

- 2 ( m - ( n - ~) r cr2 1 
Ug(d) =AD L L 5/ 2 

n=lm=l (d2 + (m - (n-~)fcr2) 
(2.15) 

As with the stacked case, the staggered dipolar interaction depends on both the dis-

tance d between the chains and the total numb r of particles in each chain L. We plot 

the total potential en rgy between two interacting chains of different values of L at a 

range of distances from 0 to 10 cr in Fig. 2. . We observe from the figure that this 

interaction for any L i repulsive at large distances and attractive at hort di tances. The 

repulsive barrier peaks near 1.5cr, although this distance increases with L. The differenc 

between the interaction potentials for different values of L is most appar nt at short dis-

tances ( d < 4cr) . Accordingly, increasing th attractive interaction can b done simply 

by increasing th numb r of particle L in each chain. The inset in Fig. 2. shows th 

expanded region from cr = 1 to cr = 5 in order to highlight the differ nces between th 

curves for different L. 

2.3 Energetics of Clustering. 

The short range attraction and long range repulsion of the stagger d pair potential com-

plete in such a way as to give rise to finite clustering rather than to a homogeneous 

condensed phas . To understand this qualitatively, consider an xi ting compact cluster 

composed of several di ks. Another disk brought into contact with th cluster will feel 

a strong attraction from its nearest neighbours, but will feel a small repulsion from the 

rest of the disks in the cluster. Whether th addition of the disk lowers th nergy of 

the cluster depends on the strength of nearest neighbour bonds relativ to numerous 
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F igure 2.8: The staggered dipolar interaction potential for different values of L , where L is 
t he number of particles in each chain. This interaction potential has a small repulsion at large 
distances d, and significantly high attraction at short distances. 

unfavorable interactions with the rest of the cluster. 

Although clusters wit hin the system are not isolated (but rather interact with other 

parts of the system), and furthermore are subject to thermal fluctuations and entropy 

considerations, it is nevertheless useful to examine isolated clusters at zero temperature 

to gain a perspective on what structures may be expected to occur in the system. To 

this end we calculate the energy of rectangular clusters m particles wide and n part icles 

long with all nearest neighbours at contact (0.866o-). In Fig. 2.9 we plot the potential 

energy as a function of n for a few values of m . We observe that for narrow structures 

(m = 1, 2, 3), the energy keeps decreasing with increasing length. For more compact 

structures ( m = 4, 5, 6) , we find a length beyond which it is energetically unfavorable to 

grow. For m x m square clusters, the energy increase beyond m = 7. Thus, we should 

not be surprised to see in our system long quasi-one-dimensional structures as well as 
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fairly small compact clusters. 
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Figure 2.9: The potential energy for clusters of size n * m at zero temperature. 

2.4 Monte Carlo Simulation (MC) 

We perform MC simulation to model the dipolar system as a 2D system of 2500 interacting 

disks, where each disk represents a chain composed of 50 particles directed along th 

would be z-axis. In the simulations, each pair of chains must interact with each other 

via one of two possible potentials. A hard sphere potential at r = 1 CJ followed by a 

stacked dipolar interaction, or a hard sphere at r = 0.866 CJ followed by a staggered 

dipolar interaction. Formally, we report all quantit ies in reduced units, e.g. the reduced 

temperature is k8 TCJ3 I Av, reduced pressure is P CJ6 I Av. For simplicity, we set CJ = 1 

k8 = 1, and Av = 1. For the rest of this section, we describe MC simulation in general, 

and we will be referring to the disk as an object . We employ a square simulation box 

of length L8 . As is commonly done, we implement periodic boundary condit ions in the 

system to eliminate the surface effects. 
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2.4.1 Periodic Boundary Conditions 

Periodic boundary conditions simply mean that if a particle steps outside of simulation 

box, it is made to re-enter the box from the other side. The following provides a more 

careful way of thinking about it. The simulation box is replicated throughout space to 

create an infinite array of identical boxes. As an object moves in the original box, its 

image in each of the neighbouring boxes moves in the same way. As one of the objects 

leaves the original box, its image will enter the original box from the opposite face. By 

this method, the walls are removed, and there are no surface objects. In Fig. 2.10, the 

grey box is the original box of length L 3 , while the white boxes around the central one 

are images for the original one in all directions. As an object leaves the central box, its 

images move across their corresponding boundaries. As a result, the number of objects 

will be the same in each box, and the number density in the central box is conserved. 

On the other hand, using the periodic boundary conditions does not require storing the 

coordinates of all images during the simulation [9, 10]. 

2.4.2 Potential Truncation 

In MC, calculating the total potential energy requires calculating all the pairwise distances 

between the objects in the system. This must include the interaction between each object 

and the images located in the surrounding boxes. In this case, the total number of pairwise 

distances is infinite, and of course is difficult to calculate in practice. Therefore, we create 

a region which has the same size and shape as the basic simulation box. This new box 

is constructed via the "minimum image convention", where the first object is located at 

the center of this box, as shown in Fig. 2.11. Then, the first object will interact with the 

other (N- 1) objects and images whose centers are located within this box. Again, this 
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Figure 2.10: An example of a 2D boundary system as adapted from [10]. Each object can enter 
and leave any box across one of the four walls 

strategy will be applied for each object in the original box. Finally, using the minimum 

image convention in MC involves ~N(N -1) terms due to the pairwise interactions [9, 10]. 

Although, using the minimum image convention reduces the infinite number of inter-

actions to ~N(N- 1) interactions, this number is still too large. For a system of 2500 

objects, we need to calculate the potential around 3 million times in each step. Due to 

the fact that the largest contribution to the potential comes from the closest neighbours 

to the object of interest, we can apply radial cutoff. This means that the potential is 

zero for r ::::: r c, where r c is the cutoff distance or cutoff sphere's radius. One restriction 

must be considered when we determine the cutoff distance, which is (rc ~ LB/ 2). In Fig. 

2.11, the dashed circle represents the cutoff circle, so the objects 3 and 5B contribute to 

the potential of object 1 because their centers are located within the cutoff circle. While 

objects 2E and 4E do not contribute because their centers are located outside the cutoff 
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Figure 2.11: The minimum image convention for a 2D system, as adapted from [10]. The 
dashed square represents the new box constructed for object one using the minimum image 
convention. The new box contains the same number of objects as the original box. The dashed 
circle represents a potential cutoff. 

circle. 

In fact, even if we use potential cutoff, we would still need to compute all ~N(N - 1) 

pair distances to decide which pairs can interact. Therefore , the potential cutoff is not so 

helpful for systems of large number of objects, like (N > 1000). As a result, we still need 

an efficient method to speed up the calculations and to save the CPU time. Basically, 

there are two main techniques to save the CPU time, Verlet List and Cell List techniqu s. 

In this work, we use the Verlet List techniques, and it is described in detail in appendix 

A. 

Our potentials behave as 1/ r 3 at large distances (a fairly long range interaction) , and 

so to calculate the system energy accurately, one would be better served using a technique 

like the Ewald summation method. Therefore, although we set rc = LB / 2, we can not 
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guarantee that we have not suppressed any phase from emerging (particularly one with 

periodic, anisotropic order) or introduced any artifacts. However, the experimental work 

on this system shows that the phases are isotropic on longer length scales, and the local 

structural length scales in the system to be considerably smaller than our cutoff. 

2.4.3 The Metropolis Method 

The Metropolis method is the heart of MC simulation. We start this m thod by moving 

the first object a uniform random displacement along each of the coordinate axes. The 

maximum displacement that the object can move is 8r max in either x and y directions, as 

represented in Fig. 2.12, and it equals 0.15 CJ for most of the simulations in this thesis, 

where CJ is the object's diameter. The new position of the first object is obtained by 

using 8rmax and RANF(DUMMY) as in Eq. 2.16, where RANF(DUMMY) is a library 

function for generating uniform random numbers on (0,1) [10], 

RXNEW 

RYNEW 

RZNEW 

RX(I) + (2.0 *RAN F(DU M MY)- 1.0) * 8rmax 

RY(J) + (2.0 *RAN F(DU M MY)- 1.0) * c5rmax 

RZ(I) + (2.0 * RANF(DUMMY)- 1.0) * c5rmax (2.16) 

where RXNEW, RYNEW and RZNEW are the new proposed coordinates of the 

object I , while RX(I), RY(I) and RZ(I) are the old coordinates. 

Then , we calculate the total interaction energy for both the initial configurat ion (Vi) 

and the new configuration after moving the first object one step (VJ ). At this t ime, we 

must use the energy test to decide if the first object's move is acceptable or not. There are 

two possible cases. First, if (8Vfi = Vf- Vi ~ 0), we accept the motion. If (c5Vfi > 0), the 

motion can be accepted with a probability exp( -{3 c5V1i), where ({3 = 1/T) . In fact, this 

ratio also represents the Boltzmann factor of the energy difference, and it has a value in 
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Figure 2.12: The grey region R represents the region where the object i can move in one step. 

the range (0, 1). We compare the Boltzmann factor with the generated random number 

RANF(DUMMY). If exp( -,8 6V1i) > RANF(DUMMY), the motion will be accepted, 

otherwise, the motion will be rejected. This procedure of accepting or rejecting the 

motion is illustrated in Fig. 2.13 [10]. 

exp( - ,6 8V) . .. ·. ·. 
1 ',, 

Always 
accept 

0 

··... Reject ... ··. 
Accept 

.... ... 

8V 

Figure 2.13: Accepting and rejecting rules in MC, as adapted from [10]. The motion will be 
accepted when at 8Vfi < 0, or if exp( - ,6 b"VJi ) > RANF(DUMMY). 

As a result, if the motion of the object of interest has been accepted, the new con-

figuration will be considered again as an initial configuration. In contrast, if the motion 

of the object of interest has been rejected, the object remains at its old position and the 

old configuration is recounted as a new configuration. 

In our 2D model of the colloidal system, our potential consists of two parts, the dipolar 

contribution and the hard-sphere potential. The hard sphere potential is zero for non-
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overlapping spher , and is infinite in th case of overlaps. Thus, any att mpted move 

which gen rat an ov rlap is simply rejected and no energy crit rion need be t sted. 

However, the parameter 6rmax, which d tennines the size of the move of each object, 

should be an adju tabl parameter during th imulation. If this parameter i too small, 

most of t he objects' moves will be accept d, but the phase space will b explored slowly. 

Alternatively, if 6r max is too large, mo t of th moves will be r j ct d and again the 

phase space will be explored slowly. Therefore, 6rmax is typically adjusted during the 

simulation so that about half the moves are ace pted. We, however, us a criterion based 

on the mean squar displacement (discu sed below) to increase the efficiency with which 

we explore configuration space. 

2.5 Structural Quantities 

On goal of MC or MD simulations is to start from unstable configurations and end up 

with equilibrium configurations. The s t of equilibrium configura tion , i. . coordinate of 

a ll the particles in th system, in t urn is used to generate several quantit ies that describ 

the structure of th sy tern. The structural quant ities that we calculate are the pair cor­

relation function (radial distribution function), structure factor, fraction of percolation, 

and cluster siz di tribution. We also ke p track of the mean squar displacement, a 

measure of the dynamic . 

2 .5.1 Pair Correlation Function 

P air correlation function g(r) is defined as th probability of finding a pair of par ticles at 

distance r apart , relative to the probability exp cted for a completely random distribution 

(ideal gas state) at th same density. With this definition, g(r) = 1 for an ideal gas, 

and so any deviation of g(r) from unity reflects correlations b tw n th particles. The 
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theoretical formula of g(r), as given in Eq. 2.17, can be found for the canonical ensemble 

by integrating the configurational distribution function over the positions of all particles 

in the system except two [10]. 

(2 .17) 

In this equation, N is the total number of particles, p is t he number density, and 

ZNvT is the canonical partition function. For numerical calculations, Eq. 2.17 can be 

written in a discrete formula by taking the ensemble average over pairs, as follows , 

g(r) = 
1
2 I 2::: 2::: 6(fi) 8(r-;- f)) = v2 I 2::: 2::: 5(f- riJ)). 

P\ i#i N\i#i 
(2.18) 

g(r) is a very useful structural quantity for experimentalists, since neutron and X-rays 

scattering experiments on the fluids and light scattering experiments on the colloidal sus-

pension give information about g(r). Also, it is useful for theorists and simulators, where 

the theoretical predictions can be compared with numerical solut ions to test theories. 

The pair correlation function can also be used for calculating some thermodynamic 

quantities, such as energy and pressure for a system of interacting particles through Eq. 

2.19 for a 3D system or Eq. 2.20 for a 2D system [10], 

1 100 -N p a(r)g(r)47rr2dr, 
2 0 

(2.19) 

1 100 -N p a(r)g(r)21rrdr. 
2 0 

(2.20) 

Since our model is a 2D one, all the next details are written for a 2D system. The 

total energy (E) of a pairwise additive system includes two contributions: one comes 

from the ideal gas energy and second comes from the interaction potential u(r) , 
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E = NkBT + 1rN p fooo ru(r)g(r)dr. (2.21) 

In our simulation, the interaction potential is divided into three different parts, hard 

sphere, pairwise interaction, and the long range correct ion potentials. The hard sphere 

potential contributes nothing to the potential energy since there are no overlaps, but does 

contribute to the pressure. For radial distance between hard sphere contact rmin and rc 

(half the box) , g( r) is also calculated explicitly. Beyond r c, the potential is known but 

g(r) is not. The contribution from r > rc is important and is often used to correct the 

energy calculated directly from particles in the simulation box. Eq. 2.21 can then be 

written as [9, 10, 30], 

(2.22) 

udip is either stacked ( u8 ) or staggered ( u9 ) dipolar potential as presented in Eqs. 2.11 and 

2.15. At large distances between the disks, there assumed to be no correlations between 

t he disks and 9r>rcut(r ) = 1, and then Eq. 2.22 can be writ ten as, 

(lrcut 1 rcv.t 100 ) E = NkBT + 1rN p ru8 (r)g8 (r)dr + ru9 (r)g9 (r)dr + rudip(r)dr . 
a 0.866a rcut 

(2.23) 

Eq. 2.23 offers a way of checking consistency of results. The potential energy calcu-

lated directly from simulation should match that obtained through g(r) . 

The pressure can also be calculated from g(r). We begin with the following equation 

for the total pressure in a 2D system, 
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(2.24) 

W is called the 'internal virial', and it is related with the intermolecular pair virial 

function w(r) and the interaction potential u( r) according to the following relation, 

1 1 du(r) 
W = --w(r) = --r--. 

2 2 dr 
(2.25) 

Using Eq. 2.20, the total pressure is, 

p _N_k_B_T - (~) wp N ( )() rw(r)g(r)dr 
V 2 V lo 

pkBT- (~) wp2 fooo r2 d~~) g(r)dr 

(1) ( (00 dUh s(r ) 1Tcttt dUdi (r) ) 
pkBT- 2 7rp2 Jo r2 dr g(r)dr + rmi n r2 d~ g(r)dr 

1 2100 
2 dudip ( r) d -1rp r r 

2 rcut dr 
(2.26) 

This equation is called either the pressure equation or the virial equation. The second 

term in this equation comes from the hard sphere contribution, and it is difficult to 

calculate directly from the integration. To simplify solving the hard sphere contribution, 

we introduce a new function called y(r) as [30], 

y(r) = exp[u(r) / kBT]g(r), (2.27) 

and the second term of Eq. 2.26 can then be written as, 

(2.28) 
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------- -----------------------

The function exp(u(r)/kBT ) is a unit step function for the hard sphere model, there-

fore, the derivative of this function is a 5-function, and then P2 equals, 

P2 (~) kBT1rp2 loco r2y(r)5(r - Tmin)dT 

(~) kBT1rp2 lim T2y(T ) 
2 r -+r+. 

m m 

(~) kBT 7rp2T?"nin9(Tmin) , (2.29) 

and the total pressure equals [10, 30], 

p 

1 2100 
2 dudip(T)d - 1rp T T 

2 rcut dr 
(2.30) 

2.5.2 Structure Factor 

Basically, structure factor (or geometrical structure factor) is a mathematical quant ity 

t hat describes how the material scatters incident waves . It is a very useful quant ity to 

study the material structure for neutron and X-rays scat tering. T he structure factor can 

be derived by using both of Bragg and Laue condit ions, and the final formula is given by 

[10, 31], 

- 1 \~ - ~ - ) S(K ) = - L.. exp(iK .rj ) L.. exp( - iK .rj) . 
N j = l j=l 

(2.31) 
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In this equation, K is the wave vector in the reciprocal lattice and equals K = k- i2 

that happens in a case of constructive interference. k is the wave vector associated 

with the incident light, while i2 is the wave vector associated with the scattered light. 

Moreover, structure factor also represents a Fourier transformation of pair correlation 

function , where (IKI = 2 7r/lf1). In fact , both structure factor and pair correlation 

function have the same data about the material structure, but each one is calculated in a 

different space. Therefore, it is easy to predict the shape of structure factor if you already 

know the shape of pair correlation function and vice versa. In computer simulation, there 

is one restriction about calculating the structure factor: K must equal a whole number 

of 27r / L in each direction as follows [10], 

(2.32) 

L 8 is the simulation box length, and nx, ny, nz are integers. 

2.5.3 Percolation 

A system is called percolated when we have at least one cluster that spans the entire 

system. Percolation is an important feature in colloidal suspension because it has an 

effect on some physical properties such as viscosity, mean cluster size, and shear modulus 

[4]. As the system approaches percolation, the viscosity and mean cluster size increase 

rapidly. In the percolation regime, the system spanning cluster confers a finite shear 

modulus to the system [4]. 

The impact of percolation depends on the strength of the bonds between particles. 

Predicting when percolation will occur in a given model using analytical methods is not 

an easy task, and is often given over to computer simulation. However, using computer 

simulation requires determining the maximum distance between any two particles to be 
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considered neighbours. The following relation is commonly used: d = cr(l +E), where d 

is the distance between any two particles, cr is the particle's diameter, and E is a small 

number chosen to account for numerical calculations. If the distance between any two 

particles is less than d, the two particles are considered in the same cluster; otherwise, they 

are not [26]. After that, we duplicate the simulation box in all directions. If the largest 

cluster connects with its copy and the duplicated system, the configurations is considered 

to be percolated , otherwise, the configuration is considered to not be percolated [32]. In 

our model we choose d to be the location of the maximum in u9 (r) . 

Moreover, percolation is a sensitive quantity to parameters in the system such as vol­

ume fraction, temperature, and the bonds between the particles. There are some studies 

about the effect of these parameters on the percolation. One of these studies involves 

finding the critical volume fraction ¢c, where the percolation starts in the system. Then, 

c/Yc can be used in someway to calculate some physical quantities such as conductivity, 

capacity, and permittivity [26] . 

2 .5.4 Cluster Size Distribution 

The cluster size distribution is a statistical quantity that gives the average number of 

clusters n8 of size s (containing s particles). Through statistical mechanics, n8 is related 

to the work of forming a cluster of size s through, 

(2.33) 

where n 1 is simply the number of single part icles or monomers. b.F tells us about the 

appearance of new phase, and is, for example, a central quantity in classical nucleation 

theory. In this thesis, we use the appearance of a local minimum in b.F at s > 0 to 

indicate the appearance of a new phase. This method was used in Ref. [33] to detect the 
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appearance of the cluster phase in a cluster-forming colloidal suspension. 

2.5.5 Mean Square Displacement (MSD) 

The mean square displacement ( (~r(t)2)) is an important quantity since it gives an 

idea about the dynamical motion of the particles in the system. Actually, mean square 

displacement (MSD) is difficult to calculate experimentally or theoretically, instead it 

can be calculated only using computer simulation. However, MSD is a good indicator of 

the material structure. For example, if the system is solid, the MSD saturates to a finite 

value, while if the system is liquid, the MSD grows linearly with time. In general, MSD 

can be expressed as follows [9], 

(2 .34) 

In molecular dynamic simulation, MSD can be used to find the diffusion coefficient D 

[9], where 

D = lim I_ I ~r(t) 2). 
hoo 6t \ 

(2.35) 

In Monte Carlo simulation, MSD only determines if the system is diffusive or not, 

and we can not find the diffusion coefficient because we do not deal with a real t ime. In 

addition, MSD gives an idea about changing the diffusion by increasing or decreasing the 

temperature or volume fraction. In MC and MD simulations, the system is considered a 

diffusive fluid if we can get a linear region of a length at least one diameter. Otherwise, 

we can not consider the system as a diffusive fluid , instead it could be solid or solid-like 

material. 

We also use t he MSD to roughly optimize or max, doing so by simulating a handful of 

state points spanning our isochores. We simulate each of the state points using a range of 
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<5rmax, and select the <5rmax that gives the longest MSD for a given number of MC st eps. 

Generally, the opt imal <5r max is not a strong function of T or area fraction . As a result , 

we fix <5rmax to be 0.15a. 
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Chapter 3 

Structural Properties of a 2D 
Dipolar System (Phase Diagrams) 

In this chapter, we present our simulations of our 2D model for dipolar system, where we 

account for the cases of chains being stacked or staggered with respect to each other. We 

present data over a range of temperature and area fraction in the context of possible phase 

diagrams proposed for similar systems in the literature. We explain the determination 

of the boundaries in the phase diagram by using different models such as the two state 

model, structure factor calculations, and cluster distribution. 

3.1 Model and Simulation Details 

In the previous chapter, we introduce both stacked and staggered dipolar interactions. 

We also show that the staggered dipolar interaction is attractive at short distances and 

repulsive at large distances, while the stacked dipolar interaction is repulsive at any 

distance. We simplify t he motion of chains in the z - direction by allowing chains to 

either be level with the bottom, or displaced up by half a diameter. The staggered 

interaction is the energetically preferred arrangement, while the stacked naturally arises 

for second nearest neighbours as illustrated in Fig. 3.1. From this figure, chain 1 and 

chain 2 (as well as chain 2 and chain 3) interact via the staggered dipolar interaction. As 

a result, chain 1 will interact with chain 3 via stacked dipolar interaction. 
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Figure 3.1: The coexistence of stacked and staggered dipolar interactions in a dipolar sys­
tem . Chain 1 and chain 2 (as well as chain 2 and chain 3) interact via the staggered dipolar 
interactions, while chain 1 interacts with chain 3 via stacked dipolar interaction. 

In our work, we assume that all colloids in each chain are fixed, so each chain moves in 

the system as one unit. In other words, the x and y positions are the same for all colloids 

in a single chain. Also, we assume that all the chains have the same length. Therefore, 

the system can be modeled as a 2D system of interacting hard disks, where each disk 

represents a chain of dipolar particles viewed along z-axis. Thus, the chains in Fig. 3.1 

are exactly the same disks shown in Fig. 3.2. 

Figure 3.2: These disks represent t he same chains as in Fig. 3.1 viewed along z-axis. 
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In our model, we identify the stacked and staggered dipolar interactions by labeling 

each disk by either 1 or - 1. In the initial configuration, 50% of disks are labeled by 1 and 

t he other 50% are labeled by -1 . Before calculating the potential energy between any two 

disks in the system, we multiply each of the two labels together. If the product equals 1, 

t he two disks interact via the stacked dipolar interaction, whereas if the result equals - 1, 

the two disks interact via the staggered dipolar interaction. As a result , around half of 

t he dipolar interactions in the system will be stacked and the other half will be staggered. 

Permanently, fixing t he label of each disk is not very helpful. For example, if a bunch 

of disks met together and they have the same label, they will not attract each other as it 

happens in the real system. Instead, they will repel each other due to the stacked dipolar 

interaction. In order to avoid this problem, during every trial MC displacement we give 

a 50% probability that the disk will also switch identity. The calculation of the energy of 

the trial configuration takes into account the proposed identity. In this way, our model 

will capture the local structure presented in the real system. 

We perform MC simulation of N = 2500 disks. We start simulations at different values 

of area fractions (A = 1%, 10%, 20%, 30%,40%, 50%,60%, 70%) and a high temperature 

(kBT = 5), where kB = 1, where A= (NnCJ2) / (4L~). We initialize particle positions by 

placing them on a square lattice, which results in an unstable, high-energy configuration. 

The total number of MC steps per particle is different from one system to another, but 

it is in the range of [106 , 107] . During the simulation, we save the value of the potent ial 

energy and the configuration after each 1000 MC steps per particle. 

In the beginning of the simulation, the potential energy drops significantly, then it 

decays more slowly. After sufficient time, it fluctuates about a constant equilibrium 

energy value. At this stage, the system is considered a stable system at equilibrium, where 
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each disk can still move, generating a set of equilibrium configuration. From this set, we 

calculate structural quantities such as the pair correlation function, structure factor , 

cluster size distribut ion, fraction of percolating clusters, and mean square displacement . 

The calculation process is done by choosing 1000 different configurations for the same 

system at equilibrium, and t hen calculating the structural quantities averaged over these 

configurations. An additional requirement for establishing equilibrium is that the mean 

square displacement must exceed lcr2, starting from a t ime after initial transients seen in 

the potential energy subside. Otherwise we must keep the simulation running in order to 

give the disks a chance to move more. 

Once the results are accepted, we consider the final configuration at T = 5 as the initial 

configuration for a new simulation at T = 4. Again, we wait for the new equilibrium state 

in order to calculate the structural quantities. As the temperature decreases, and hence 

t he thermal energy available to break bonds decreases, the number of MC steps required 

to reach equilibrium increases. We continue the process of decreasing the temperature 

and re-equilibrating for all area fractions until it takes longer than about two weeks to 

equilibrate. Fig. 3.3 presents all equilibrating state points. The lowest temperature 

that we studied is different from one isochoric system to another depending on speed of 

equilibration. For example, Tmin(A = 0.01) = 0.4, while 'l;nin(A = 0.7) = 1.8. 

3.2 C om puter Simulation Results 

3.2.1 Energy and Mean Square Displacement 

Fig. 3.4(a) shows the potential energy at equilibrium for area fraction 70%. From this 

figure, we obviously observe that the potential energy is constant at equilibrium, and it 

decreases by decreasing the temperature. 

On the other hand, the MSD represents the exploration of configuration space, or 
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Figure 3.3: Each x sign in this figure represents a computer simulation experiment at specific 
values of temperature and area fraction. 

structural relaxation. A the temperature d reases, the relaxation become lower. Fig. 

3.4(b) shows the MSD behaviour as a function of the number of MC st ps per particle 

at different valu s of temperature and at area fraction equal to 70%. The orange lines 

represent the MSD behaviour for an ideal diffusive fluid. We observe from the figure 

that this behaviour is roughly linear with slope one at temperatur s T = 5 and 4 which 

means that the yst m at these temperature i diffusive. As the temperature decreases, 

the slope of MSD decreases, which means that the diffusion of th particles decreases 

and the relaxation of the structure becomes lower. It is worthwhil mentioning that at 

very low temperatures, such as T = 1.8, or 2, most disks are trapped within clusters. 

Therefore, it is difficult for any disk to leave the cluster because th disk do not have 

enough thermal energy to overcome the attractiv potential. At th am time, our model 
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Figure 3.4: Fig. (a) and Fig. (b) represent the energy behaviour and mean square displacement 
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of temperature. 
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does not allow for the cluster to move as a one unit , instead, it deals with each disk alone. 

It would be worthwhile finding more advanced MC schemes that would overcome the rate 

limiting step of bond breaking and would allow faster equilibration. 

3 .2.2 P air Correlation Function and Structure Factor 

Fig. 3.5(a) shows the pair correlation function (g(r) ) for an isochoric system of 70% 

area fraction. In this figure, the first peak reflects the correlation between first nearest 

neighbours at r / CJ = 0.866, as presented by the red line in Fig. 3.5(b). The second peak 

reflects the correlation for the second nearest neighbour at r / CJ = 1.225, as presented in 

the green line in Fig. 3.5(b). The third and fourth peaks are belong to the correlation 

between the disks at r/CJ = 1.732 and 2.5, as illustrated by the blue and orange lines, re­

spectively, in Fig. 3.5(b). We observe from Fig. 3.5( c) that as the temperature decreases, 

g(r) progressively develops peaks at r /CJ corresponds to the nearest neighbours' rank. 

We conclude from the figure t hat there is no significant long-range correlation between 

the disks for 2.3 < T < 5.0, i.e. the system is an isotropic fluid. At T = 2.0, we observe 

little peaks at further distances which means that the disks acquire greater long range 

order, i.e . have periodic order for longer distances. A further significant increase in peak 

heights happens when we decrease the temperature to T = 1.8, which means that at this 

temperature the disks become more and more correlated through the bonds formation. 

The significant difference in peak height over a fairly small range in T may occur as a 

result of a phase transition, but may simply be a continuous change. In the rest of this 

section, we introduce some possible methods to check whether or not there is a phase 

transition. 

While g(r) is very well suited to understanding particle correlations on the scale of a 

few particle diameters, the structure factor S(q) more readily sheds light on longer scale 
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structuring of the fluid. We use S(q) as a qualitative measure of cluster formation and 

to study the correlation between the clusters. 
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Figure 3.5: Fig. (a) shows the height of the first four peaks of g(r) at area fraction equal to 
70%, and (b) is a geometric figure to explain the position of the first four peaks. Fig. (c) shows 
g(r) extended to further distances. 

56 



T = I.S 
T= 2.0 
T=2.3 
T=2.5 

4 T = 3.0 
T=4.0 
T = S.O 

3 

2 

4 
qo 

5 6 7 8 

Figure 3. 6: The structure factors calculated at equilibrium for an area fraction that equals 70% 
and a wide range of temperature. 

Fig. 3.6 shows S(q) for several T at 70% area fraction. We observe from the figure 

that S(q) progressively develops a peak at wave vectors q associated with distances in 

real space, where q = 21f jr. In fact , obtaining a peak at small wave vectors ( qa = 

1) is a strong confirmation of clustering in the system. Mainly, this peak reflects the 

nearest neighbour cluster-cluster distance. We can conclude from the figure that there 

is only weak clustering, or rather only weak cluster correlation at temperatures T E 

[2.3, 5] . At T = 2.0, the peak becomes notable, which means that the clusters are more 

regularly spaced. At T = 1.8, the height of the peak increases significantly, and this 

supports the possibility of having a phase transition near this temperature. However, for 

a system at constant volume (or area) the phase change proceeds in general through a 
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region of coexistence. Therefore, to distinguish between a continuous change and a phase 

t ransit ion, more evidence must be gathered. 

The second peak in S(q), at (qCJ ::;:j 7), provides information about the local structure 

of the cluster. At T > 2.3, there are short , rounded, peaks belonging to the string fluid 

structure before forming the clusters. At T = 2.0, the amplitude of the peak increases 

significantly, and the peak shows strong local ordering. At T < 2.0 the system continues 

to be more periodic on the length scale of nearest neighbours. The jaggedness of the 

curves at low T is a reflection of the difficulty of sampling independent configurations, 

i.e. of equilibrating the system. 

3.2.3 Potential Energy along Isochores 

We plot in Fig. 3. 7 the potent ial energy as a function of T for our eight isochores. Fig. 

3.7(a) shows the data for A= 1%, which exemplifies the behaviour we might expect: an 

increasing slope as t he liquid is cooled from the high T limit , and then a nearly linear 

regime at the lowest T as the system forms well separated ordered clusters. The linear 

behaviour arises because most part icles will be participating in a harmonic solid, for which 

U = N k8 T . How the potential energy makes this change may give some indication of 

t he nature of the transformation . 

As T is lowered, if there is a first order t ransition with little or no hysteresis, the 

potential energy will be that of the pure fluid until the temperature reaches the upper T 

limit for coexistence. At this point there is a break in slope and the potential energy is a 

combination of liquid and solid energies weighted according to the amount each of which 

should be present. At the lower coexistence T , there should again be a break in slope as 

t he potential energy follows that of the solid. Hysteresis will only serve t o make changes 

in energy more visible. If there is a second order transition, there should be a break in 
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lope at a singl temp rature. For fini t sy terns this transition will be moothed out, 

and may appear as in the third scenario of a smooth change in th liquid' properties. 

For A = 1%, th re s ems to be no break in slope. For higher area fraction up to and 

including 50%, th r also appears to be no break in slope, even though we hav probed 

deeply enough in T to e quite well-form d lustering, as we will s e later. There may 

b evidence for a break in slope at A = 70%. Th lowest thre data points seem to 

be roughly lin ar, at variance with the higher T behaviour, but this interpretation i 

tenuous. 

Fig. 3. 7 plots both the potential n rgy obtain d directly from th pair potential 

during the simulation (plus tail correction), as w 11 as indirectly from g(r). In general, 

t he agreement i rath r good, and the di r pancy between the two methods can b 

used as an uncertainty estimate. The only place where there i a larg discrepancy is 

for A = 1% at low T. The difficulty here is obtaining g(r) with good sampling at all 

length scales. H r , w would treat the direct simulation data as tru tworthy and work 

to improve g(r) for the future. 

3.2.4 2-State Model 

In order to gain a better understanding of the nature of the clustering s n in our system, 

we use a simpl two- tate model [34]. Basically, th re are two states available to a ystem 

with an energy difference tlE, and the relative degeneracy of the higher en rgy state i 

n. As appli d to our system, the lower energy, lower degeneracy state is a bond formed 

between two di k , while the higher stat corresponds to broken or unfilled bond. The 

prediction of the model for the potential energy is 

U = N E
1 
+ Nk8 06.E xp ( -(3 tlE) 

1 + n exp (-f3 tlE) 
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while the heat capacity is given by 

Nk8 D{J2 b.E2 

Cv = 2 
(1 + n exp ( -{3b.E)) 

(3.2) 

(see Appendix B for a derivation). A peak in h at capacity is predicted by the model, 

but the model, for example, does not predict the energy behaviour of a finite I ing model. 

We therefore consider it as a way to differentiate a continuous chang and a second order 

transition in a finit system. 

A Fit to Eq. 3.1 is shown in Fig. 3.8(a), and appears to be rather good. Fig. 3.8(b) 

shows the resulting Cv using Eq. 3.2, but using the fit parameter obtained from Eq. 3.1. 

The discrepancy at low T (below the Cv peak) can be accounted for by con idering the 

fact that clusters b have to a first approximation as a harmonic solid. For a 2D harmonic 

solid , Cv/Nks = 1, which we see hold for our system (see Fig. 3.8) . Th fact that 

the two-state model captures the energetic of clustering is evidenc that th clustering 

doe not occur through a phase transition, but rather is a cont inuous proc s , at least at 

A= 1%. 

3 .2.5 Pressure 

MC simulations provides only configurational information, and it is therefore necessary 

to use g(CJ+) and g(0.866CJ+) in eq 2.30 to calculate the hard sphere contribution to th 

pressure. It i there essential that we have established that we recover th energy using 

g( r). Calculating the pressure for our system i crucial in the en e that in a region of 

coexistence, th pressure along an isotherm i constant. 

In Fig. 3.9, we plot the pressure as a function of area fraction for various isotherms. 

We see that th pres ure is no where constant, this re ult is incon i tent with the phase 

coexistence report d in [8], at least in the usual en e of bulk phas separation. What w 
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Figure 3.8: Fitting the computer simulation data of both potential energy and specific heat at 
area fraction that equals 1% with Eqns. B.5 and B.6. 

see instead is an inflection (indicating a compressibility maximum) , or possible break in 

slope, near A = 40%. W see later that this f ature coincides with the per olation line. 

3.3 Phase Diagram 

Fig. 3.10 shows the phase diagram for a 3D dipolar system conv rt d to a 2D one 

that depends on temperature and area fraction , as obtained by Hynninen et al. [8]. 

The conversion factor from volume fraction to an area fraction for a dipolar y tern that 

composed of chains spanning from top to bottom equal to 3/ 2, and hence A = 3/2¢, where 
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Figure 3.9: shows pressur behaviour as a function of area fraction for different ischoric sy terns. 

A and ¢ are the area and volume fractions, respectively. We observe from this figure that 

the structure is a string (fluid) at A < 70% and T > 0.3. Decreasing the temperature 

below T = 0.3 do not change the fluid structure until it reaches the blu line where th 

fluid switches to a fluid-bet coexistence. We also observe that the gen ral structure at a 

high packing fraction is a bet structure with 1 ss dependence on temperature. 

Fig. 3.11 shows the phase diagram for a cluster-forming colloidal sy tern affected by 

two competing interactions, depletion attraction and electrostatic repul ion, as obtained 

by Toledano et al. [33]. We observe from th figure that the general t ructur at high 

temperature and low area fraction is a fluid. Decreasing the temperatur until it reache 

the blue line switch s the structure to a clust r phase. We can conclude from the blue 

line that the app arance of the cluster phas depends on the ar a fraction appearing 

at higher T for higher area fraction. We also observe from th figur that increasing 
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Figure 3.10: shows th phase diagram for dipolar rods system as a function of ar a fraction and 
temperature as obtained by Hynninen et al. adapted from [8] . 
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Figure 3.11: shows th phase diagram as adapted from [33] for a colloidal system with short­
range depletion attraction and long-range electrostatic repulsion. 
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the area fraction until it reaches the gre n lin witches both the fluid and the clust r 

phase to a percolating structure. The percolation line in this figure d pends al o on th 

temperature. 

Fig. 3.12 show our phase diagram for dipolar rod ystem as a function of temperature 

and area fraction. The olid blue line i a border that separates the fluid and clu ter phase 

regions. Following R f. [33], the line is d fin d along each isochor by the T at which 

F(n) (the work of forming a cluster of size n) has at least a local minimum at some n > 1. 

The uncertainti s in the figure are actually bounds on this temperature. Th data for 

F(n) are shown in th next section. The green line is the percolation lin that is defined 

by state points that have a 50% probability of containing a spanning clu ter , see Fig. 

3.13. The dashed green line represents a reminder that the percolation lin extends to 

lower temperatures, and separates the clu ter phase region from the p r olation network. 
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F igure 3.12: Phase diagram for dipolar rods yst m as a function of area fraction and temper­
ature as obtained from our imulation data. 
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The two phas diagrams from the literature provide an intere ting basi for compari­

son. Qualitativ ly, our model differ from and shares common featur with those behind 

the other phase diagrams. The difference betw en ours and that of Hynninen is that our 

is 2D with chains always formed whil their i a 3D model with chains only formed at 

low T. In other word , the ystem at high temp rature could be either disp r d colloid 

or system of very short chains. In our mod 1, we perform the simulation with 50 particle 

in each chain even at very high temperature. Therefore, we exp ct to see the cluster 

phase and the fluid-bet coexistence at temperatures much higher than those tempera­

tures recorded in Fig. 3.10. On the other hand, the phase diagram pre ented in Fig. 

3.11 is not for a dipolar sy tern. However, in the regime where chain are well formed , 

both models should yield very similar results. That is, if their interpretation is correct, 

we should also see phase coexistence at low to mod rate area fraction once crystallit 

become common. 

The model behind Fig. 3.11 is one of competing attraction and repul ion re ulting in 

clustering. The clusters they we see, however, are not crystallite (but thi fa t alone is not 

sufficient to abandon the idea of coexistence ince the coexistence could be one between 

liquid and gas). It is not clear what kind of transition the cluster phase line represents, or 

whether it is simply the case of an unambiguous convenient thermodynamic demarcation 

separating the fluid into two regions with qualitativ ly different limiting b haviours. 

3.4 Isochoric D ata 

We present isochoric data in Figs. 3.14-3.29, including snapshot configurations, g(r) , 

S(q) and F(n) where appropriate. At area fractions 1%, the configuration changes from a 

string fluid to compact cluster phase of size four , where the system become one composed 

of only clu ter at T = 1.0. g(r) at this area fraction does not show long range correlations 
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between the disks. At area fraction 10%, the ystem behaves similar to the system of 1% 

area fraction except that the cluster size i bigger here and the dust r phase appears at 

higher temperature. g( r) also shows longer range correlation between the disks. 

The clusters at area fractions 20% and 30% tend to grow in one dim nsion with thick­

ness about 2 or 3 disks. Here we also can distinguish the appearance of th cluster phase 

from F(n). g(r-) how longer range correlation between the disks by ith r incr asing the 

area fraction or deer asing the temperature. S(q) haws the correlation b tw en the clus­

ters and how th dust rs become mor equally spaced by decreasing the t mperature. At 

area fractions from 40% to 70%, g(r) shows long rand longer range carr lation between 

the disks, and the s cond peak of S(q) at qO' ~ 7 b comes higher which mean that th 

local structur of the clusters becomes more compact. F(n) at high area fractions does 

not capture the cluster phase because the clu ters will be percolating, and th system 

becomes one composed of only very big clu ter . 

Here we bri fly point out some features worth noticing. Snapshots from A = 30o/c 

and A = 40o/c bear the lowest T at a strong re emblance to the pictures in Figs. 1.5(a) 

and 1.5(b), r spectively (nominally 23% and 38% area fractions), although we do not 

perform quantitative comparison. Also notable are the large peaks in g(r) and S(q) 

corresponding to nearest neighbour separation indicating crystallite structure. However, 

the trong peaks s m to bear no impact on the moothne s of the potential energy curves 

in Fig. 3.7. Phase separation is accompanied by a large peak in S(q) at q = 0. In our 

case, we see a p ak at finite q, a hallmark of clustering. 
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Figure 3.14: Stable configurations for an isochoric system of an area fraction that equals A = 1% 
and temperatures (a) T = 5.0, (b) T = 3.0, (c) T = 2.0 (d) T = 1. , ( ) T = 1.5 (f) T = 1.4, 
(g) T = 1.0 and (h) T = 0.6. One quarter of the simulation box is shown for visibility. 
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Figure 3.15: Fig. (a) shows g(r) for an area fraction that equals A = 1%, while Fig. (b) shows 
the height of the first few peaks. Fig. (c) shows the structure factor for the sam area fraction, 
and F ig. (d) shows the work done on the sy tern to form clusters. 
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Figure 3.16: Stable configurations for an i ochori y tern of an area fraction that equals A 
lOo/c and temp ratur s (a) T = 5.0, (b) T = 4.0, (c) T = 3.0, (d) T = 2.5, (e) T = 2.3, (f) T 
= 2.0, (g) T = 1. and (h) T = 1.5. One half of the imulation box is shown for visibility. 
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Figure 3.17: F ig. (a) shows g(r) for an area fraction that equals A= 10%, while Fig. (b) shows 
the height of the first few peaks. Fig. (c) shows the structure factor for the same area fraction , 
and Fig. (d) shows the work done on the system to form clusters. 
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Figure 3.18: Stable configurations for an isochoric system of an area fraction that equals A = 
20% and temperatures (a) T = 5.0, (b) T = 4.0, (c) T = 3.0, (d) T = 2.5, (e) T = 2.3, (f) T 
= 2.0, (g) T = 1.8 and (h) T = 1.6. 
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Figure 3.19: Fig. (a) hows g(r) for an area fra tion that equals A = 20% while Fig. (b) shows 
the height of the fir t few peaks. Fig. (c) show th structure factor for the sam area fraction, 
and F ig. (d) shows the work done on the system to form cluster . 
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Figure 3.20: Stabl configurations for an isochoric y tern of an area fra tion that equals A = 
30% and temperatures (a) T = 5.0, (b) T = 4.0, (c) T = 3.0, (d) T = 2.5, (e) T = 2.3, (f) T 
= 2.0, (g) T = 1. and (h) T = 1.6. 
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F igure 3.21: Fig. (a) shows g(r) for an area fraction that equals A = 30o/c , while Fig. (b) show 
the height of the first few peaks. Fig. (c) show the structure factor for the same area fraction , 
and Fig. (d) shows th work done on the system to form clusters. 
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Figure 3.22: Stable configmations for an isochoric system of an area fraction that equals A = 
40% and temperatmes (a) T = 5.0, (b) T = 4.0, (c) T = 3.0, (d) T = 2.5, (e) T = 2.3, (f) T 
= 2.0 and (g) T = 1.8. 
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Figure 3.23: Fig. (a) shows g(r) for an area fraction that equals A = 40%, whil Fig. (b) shows 
the height of the first few peaks. Fig. (c) show the structure factor for the arne area fraction , 
and Fig. (d) shows th work done on the system to form clusters. 
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Figure 3.24: Stable configurations for an isochoric system of an area fraction that equals A = 
50% and temperatures (a) T = 5.0, (b) T = 4.0, (c) T = 3.0, (d) T = 2.5, (e) T = 2.3, (f) T 
= 2.0 and (g) T = 1.8. 
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Figure 3.25: Fig. (a) hows g(r) for an area fraction that equals A = 50%, while Fig. (b) shows 
the height of the first £ w peaks. Fig. (c) show the structure factor for the am area fraction. 
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Figure 3.26: Stable configmations for an isochoric system of an area fraction that equals A = 
60% and temperatures (a) T = 5.0, (b) T = 4.0, (c) T = 3.0, (d) T = 2.5, (e) T = 2.3, (f ) T 
= 2.0, (g) T = 1.8 and (h) T = 1.6. 
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Figure 3.27: Fig. (a) shows g(r) for an area fraction that equals A = 60%, while Fig. (b) shows 
the height of the fir t few peaks. Fig. (c) show the structure factor for th same area fraction. 
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Figure 3.2 : Stable onfigurations for an isochoric system of an area fra tion that equals A = 
70% and temp rature (a) T = 5.0, (b) T = 4.0, ( ) T = 3.0, (d) T = 2.5, (e) T = 2.3, (f) T 
= 2.0 and (g) T = 1. . 
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Figure 3.29: Fig. (a) shows g(T) for an area fraction that equals A = 70%, while Fig. (b) shows 
the height of th fir t few peaks. Fig. (c) show the structure factor for th am ar a fraction. 
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Chapter 4 

The Void Phase 

In this chapter, we will introduce the void phase produced by two xperimental groups, 

Kumar et al. and Agarwal et al. , at low volume fraction ( < 1 %). After that, we will 

discuss some physical interactions that could be r sponsible for producing th void phase, 

such as dipolar interaction, Yukawa int ra tion, and van der Waals interaction. Then 

we will introduc orne "toy" mathematical potentials that we simulate in order to gain 

a qualitative understanding for the features of t he potential that gives rise to the void 

phase. At th am time, we will present differ nt results obtained from simulating each 

physical or mathematical potential. 

4.1 T he Experimental Void Phase 

In 2005, Kumar et al. reported the discovery of a new phase, called the void phase, by 

applying an external lectric field on a colloidal suspension at very low volum fraction 

( < 1%) as shown in Fig. 4.1. At the b ginning, the colloids int ra t with each other 

via dipole-dipol interaction to form ani otropic structure called dipolar rods. These 

dipolar rods are simply chains of colloids conn ct d head-to-tail with each other along 

the external el ctric field direction. 

At the sam tim , Kumar et al. assumed that all the other force and potentials 

85 



Figure 4.1: Formation of cellular patterns (or voids) in the plane perpendicular to the field 
direction as a result of pure dipolar interaction as Kumar et al. assum d in th ir work. 

are suppressed in the syst m. This means that the dipole-dipole interaction is the only 

potential neces ary to produce this phase. On the other hand Agarwal et al. r produced 

the void phase al o at a very low volume fra tion, as shown in Fig. 4.2. In contrast, 

they did not assume the absence of other fore s and interactions in the y tern. Agarwal 

et al. expect that both repulsions (e.g. the Yukawa interaction) and attractions (arising 

from van der Waals interactions) , in addition to the dipolar interaction, may play a rol 

in producing th void phase, and not nece arily the dipolar interaction alone. 

4.2 Simulating P hysical Potentials 

We perform MC simulation to model a 2D dipolar system of 2500 disks, where each disk 

represents a chain of 50 particles directed along the external electric field. As in Chapter 

3, both stack d and staggered dipolar interactions are identified in th dipolar system. 
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Figure 4.2: Formation of cellular patterns (or voids) in the plane perpendicular to the field 
direction. Agarwal et al. expect that all of dipolar interaction, Yukawa interaction, and van 
der Waals interaction could be behind the void phase. 

We perform the fir t MC simulation at a volum fraction equal to 0.66% and using only 

the dipolar interaction, which is given in the following equation that is equivalent to th 

t reatment of th dipolar interaction given previously, 

U(r, e) = (~) 3 (1 - 3 2 a) 
kBT a r cos u , (4.1) 

where a is call d the dipolar strength, and k8 T is called the thermal en rgy, we t 

a to be equal to 1. The strength of th dipolar interaction is relativ to the thermal 

energy. Many simulations were done using the dipole-dipole interaction controlled by a 

a t different valu s of a, but we did not g t th void phase using this potential at any value 

of a . Essentially, extending the results of Chapt r 3 to a slightly low r ar a fraction, we 

obtain a homogeneous fluid at low a , and a continuously changing to a bet cluster gas 
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at high a . At this point, we confirm that using the dipolar interaction i not enough 

to produc th void phase, but is only respon ible for forming cluster d dipolar rods. 

Therefore, we added both of Yukawa (Uy(r)) and van der Waals (Uv(r)) interactions to 

the dipolar interaction. Yukawa interaction, giv n in Eq. 4.2, is a repul ive potential and 

it arises in the dipolar system as a result of harg d colloids. In contrast, van der Waal 

interaction, given in Eq. 4.3 is an attractive pot ntial and it arises normally between all 

particles as a result of the electrons' motion around the nuclei. 

Uy(r) 
kaT 

Uv(r) 
kaT 

xp[-l);(r- O")] 
E __c:.....::....____.:c....__.:..!_ 

v 
- r6· 

r/O" 
(4.2) 

(4.3) 

where Eis a constant prefactor that depends on the colloidal charge numb r Z, 1);- l is th 

Debye screening length, and it equals 16- 1 as measured by Agarwal et al., v is a constant 

prefactor that dep nds on the colloid ' den ity, radius, and mat rial omposition. Many 

simulations were done at different values of a, E, and v . The general r sults are not 

very different from using the pure dipolar int raction where the re ultant t ructures ar 

either homogeneous, heterogeneous, or bet cluster gas, rather than void phase, similar to 

Fig. 3.14. Perhaps of interest is a t of imulations where we use a van der Waals-like 

attraction of -v' fr2 , i.e. a much longer range attraction. Although w can not motivate 

this form for th attraction on physical grounds, we do find that the y tern exhibits a 

void-like structure while it is equilibrating. At a = 10, E = 100, and v' = 0.015, th 

total interaction potential presented in Fig. 4.3 creates unstable void , a appears in 

Fig. 4.4. Unstabl voids means that this phas can be seen a t an earlier time of the 

simulation. After everal thousand MC st ps, th void phase evolve to a cluster phase. 

T hese intermittent voids bring up the po ibility that the phase may ari as an arrested 
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Having unsuccessfully searched for parameters that may yield a void phase, we make a 

departure from t he physically realistic potentials and seek to gain a broader understanding 

of what may give rise to voids by ut ilizing toy potentials in the next section. 

4 .3 Simulating Mathematical Potentials 

In the previous experimental results, the void can be described as a part icle-free domain 

enclosed completely by particle-rich walls. Al o, the walls are diffusive, where we can see 

some small clusters a few chains in size, and many separated chains. On the other hand, 

t he wall 's thickness is estimated to be about 10 CJ , while the void size is about 50 CJ to 

70 CJ, where CJ is the colloid 's diameter. Therefore, we expect that the void potential could 

have a short range attractive part that extends to few CJ 's in order to allow the forming 

of small clusters. Then, it is followed by a repulsive part that extends to a distance of 

about 10 CJ or 15 CJ in order to form walls of this size. The last part of the void potent ial 

is a weak r pulsive part that extends to a distance of about 70 CJ to mak the walls this 

distance apart. Fig. 4.5(a) shows our prediction for the mathematical void potential, 

We observe from Fig. 4.5(a) that there are five parameters that can change both the 

strength and the range of each part in the mathematical function. The parameters A, 

D , and E determine the strength of each part in the mathematical function, while B 

and C determine the range of the 1st and 2nd part in the mathematical function. The 

range of the last part is fixed and it equals 70 CJ. The total number of simulations using 

t his function was 243. Indeed, we did not get t he void phase by using this mathematical 

function. Instead , we got a stable diffusive cluster phase for all simulations as presented 

in Fig. 4.5(b). These clusters are arranged periodically in the space, and this result is 

not reported in any previous work. Interestingly, the characteristic size of the e clusters 
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F igure 4.5: Fig. (a) is the first mathematical function that estimated for the void potential. It 
includes a strong attractive part at short distance , and a weak repulsive part at long distances. 
A relatively strong repulsive part is located in between the two parts. Whil Fig. (b) is 
the diffusive clu t r phas obtained as a r sult of simulat ing the first math matical function 
presented in Fig. (a). 
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scales with the strong middle range repul ion, while the spacing b tw en the cluster 

scales with the weak long range repulsion. 

We observe from Fig. 4.5(b) that there are small clusters produced as a result of th 

attractive part of the mathematical function at hart distances. The av rage distance 

between the clusters is about 70 fJ , which is produced as a result of the weak repulsive 

part. The average iz of the cluster i about 10 fJ , which is produced a a result of the 

relatively strong repulsive part. 

At this point, we become very sure that the void phase can be obtain d as a result 

of a repulsive potential, while the attractive potential has only a role in forming small 

compact clusters inside the walls. Therefore, w create a new math matical function of 

only a repulsive interaction as shown in Fig. 4.6 

A 0.01, 0.02, ... 0.2 

-1(1--
Figure 4.6: Th s cond mathematical function that estimated for th void pot ntial. It include 
only a repulsive part that extends from 1 fJ to 70 a. 

In this mathematical function, the repulsive interaction extend from r 1 fJ to 
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r = 70 a. The parameter A changes from 0.01 to 0.2, and it controls the strength of 

the repulsive interaction. Also using this mathematical function, we do not get the void 

phase, but rather a fluid for A ::; 0.05, as in Fig. 4.7(a) , and for A ~ 0.06 a diffusive 

cluster phase, with clouds of particles separated by a distance about 70 a , as in Fig. 

4. 7(b) . The formation of loose clusters in the absence of attraction is interesting. The 

mechanism for its arising can be explained by considering that the system consists of soft 

disks of diameter 70 that can overlap if sufficiently compressed. In Fig. 4. 7(b) we see 

that it only takes about 10 such disks to occupy most of the available space. Any disk 

added to the system can lower the number of overlaps it creates by locating itself very 

near to a disk, overlapping with that disk only. Thus, the clustering in Fig. 4.7(b) results 

from the system reducing overlaps, and not from any attraction. 
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Figure 4. 7: Fig. (a) is the configuration obtained by using the mathematical function shown in 
Fig. 4.6 at (A ~ 0.05), while Fig. (b) is the configuration obtained at (A 2': 0.06) . 

The third mathematical function that we simulate includes two repulsive parts, as 

shown in Fig. 4.8(a). The first part is a strong short range that varies from r = 1 a to 

r = A a , where A = 3, 6, 9, 12, or 15, while the second part is a weak long range that 

varies from r = A a to r = 70 a. The strength of the first part also is varied from B = 1 
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to B = 5 whil the strength of the second part is varied from C = 0.1 to C = 0.5. 
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Figure 4.8: Fig. (a) is the third mathemati al function of two repulsiv part that estimated 
for the void potential. The first part extends from r = 1 a to 7' = A a, whil th econd part 
extends from r = A a to r = 70 a. Fig. (b) i the void phase obtained by imula ting the 
mathematical function , presented in Fig. (a) , at A = 6, B = 5, and C = 0.2. 

T he rational for introducing an additional shorter range repulsion is that we wish to 
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somehow spread out the particles within the clu tered area in Fig. 4.7(b) affording the 

clouds the opportunity to contact and thus form diffu ive walls as s en in experiment. 

Simulating the third math matical function gives different kinds of structures at different 

values of A, B, and C. The most interesting result was at A = 6, B = 5, and C = 0.2, 

where we see a stabl void phase. This i presented in Fig. 4. (b). From this figure, 

we can ob erve void of diameter about 50 e5, which is very clo e to the r ults reported 

by Kumar et al. and Agarwal et al .. The only difference is that the wall thickness in 

our simulation is about 40 e5 to 50 e5 , which i much bigger than th results obtained 

experimentally. 

Subsequently, we add a very weak attractive potential at a short distanc into the 

third mathematical function, as shown in Fig. 4.9, in an attempt to compr ss the walls. 

Unfortunately, w do not get good re ults, in tead we lose the void phase at all values 

of the new parameters D and E , and the system reverts to being either homog neous or 

comprised of compact clusters. 

A 

A=6. 
B =5. 
c = 0.2. 
D = 1, 2, 3, 4 , 5. 
E = 1, 2, 3 , 4. 

8 

- - - - 7(1..- - - -- - ria-

Figure 4.9: An improved hape for the third math matical function after adding a weak attrac­
tive potential at a short distance. 

95 



The fourth mathematical function that we imulate also includes two repulsive parts, 

as shown in Fig. 4.10(a) . The first part extends from r = 1 CJ to r = A CJ , where A 

changes from 1 to 10. The second part decays linearly from r = A CJ to r ach zero at 

r = 70 CJ. The strength of the first part changes from B = 0.4 to B = 1.0. We expect 

that the first repulsion will form walls of thicknes A CJ , while the econd repulsion will 

make the wall about 70 CJ apart. 
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F igure 4.10: Fig. (a) i the fourth mathematical function of two repulsive parts that estimated 
for the void pot ntial. The first part extend from r- = 1 u to r- = A u, whil th second par t 
decays linearly from r- = A u to reach zer-o at r- = 70 u. Fig. (b) is the configuration obtained 
by using the fourth mathematical function at (B ~ 0.6) while Fig. (c) i the configuration 
obtained at (B 2:: 0. ). 
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In fact , the r sults are not what we expect. We found that the param ter A does not 

play a significant role in the resultant structure, while the parameter B i th important 

one. The resultant structures using the fourth mathematical function can be divided into 

two main categories. The first one is a heterogeneous structure obtained at any of the 

values chosen for A and B ::; 0.6, as we ee in Fig. 4.10(b), whereas the s cond one is a 

diffusive clu t r phas obtained at any of the values chosen for A and B ~ 0. , as we see 

in Fig. 4.10(c) . A qualitatively, new feature is the anisotropy of the shape of the diffusive 

clusters. 

The fifth mathematical function is very similar to the previous on , but we replace 

t he linearly decaying par t by 1/ r decaying part , as shown in Fig. 4.11 

-

t 
I .s 
'f 

A 

A 
B 

0, 1, ... , 10. 
1, 2, 3 , 4,5 . 

- - - -7~ - - - -· rlu 

F igure 4.11: The fifth mathematical function of two repulsive par ts stimat d for the void 
potential. The first part extends from r = 1 a tor = A a , while the second on is decaying as 
1/r from r = A a to reach zero at r = 70 a. 

Here also, we did not get the void phase. Instead, the resultant structure can be 

divided into thr main groups. The first one is obtained at low values of A , where th 

structure is a homogen ous fluid , as we see in Fig. 4.12(a). These ond one is obtained 

at high values of A and low values of B where the structure is a het rog n ous fluid , as 
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we see m Fig. 4.12(b) . Finally, the third on obtained at high valu of A and high 

values of B , where the tructure is a homogeneou diffusive cluster cry tal, as we see in 

Fig. 4.12(c). 
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Figure 4_12: Fig. (a) is the configuration obtained by using the fifth mathematical function, 
hown in Fig. 4.11, at A = 4 and B = 3. Fig. (b) is th configuration obtained at A = 10 and 

B = 2. Finally, Fig. ( ) is the configuration obtain d at A = 10 and B = 5. 
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Chapter 5 

Discussion, Conclusions and Future 
Work 

An electrorheological fluid is a suspension of non-conducting particle of few micrometers 

size in an electrically insulating fluid and responds to an external electric field. Th 

electric field induces dipole moments in the colloid that align parall 1 to the field if 

Ep > E5 , or anti-parall 1 to the field if Ep < E5 . In either case, the particl interact with 

each other through a dipole-dipole interaction for which dipole moments are the same. 

In the presence of a strong external electric fi ld, the colloids will attract and repel each 

other in such a way as to form long chain along the external electri field direction. 

Experimentally, wh n the external electric field is sufficiently large, the system becomes 

one composed of su h chains. 

However, a cumulative interaction arise between the chains as a summation of all 

dipole-dipole interactions between all particl in each two chains. This resultant chain-

chain dipolar int raction can be divided into two main types. Fir t, the stacked interac-

tion arise when the particles of any chain ncounter the particles in another chain "face 

to face" . Thi interaction has a feature of a strong short range r pulsion and a weak 

long rang repulsion (see Figs. 2.3 and 2.5). Th second interaction is the staggered case 

that arises when the particles in the econd chain are shifted a dis tan of CJ /2 in the 

z - direction and it has a feature of strong short range attraction and w ak long range 
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repulsion (see Figs. 2.6 and 2.8). The competing attractive and r pulsive interactions 

lead to finite clustering, an effect that has importance in other colloidal systems. 

This thesis d als mainly with using Monte Carlo simulation to understand a dipolar 

ystem und r th influence of an external el ctric field. In this regim , the y t m effec­

tively becomes two dimensional when viewed down the field axis, and the chains appear 

as disks in a plane. These disks tend to attract at short distances and r pel at larger 

distances, leading to the formation of finite clusters of square symmetry packing. The 

first goal in this thesis is studying th structural properties of the 2D fluid across a wide 

range of area fraction and temperature. The second goal is to determine whether the 

dipolar interaction can produce the void phase at low volume fraction, or wh ther addi­

tional interaction ar required. On the oth r hand , several classes of toy mathematical 

potentials are simulated at low volume fraction to gain a better understanding of what 

may drive the formation of the void phase. 

5.0.1 Phase Diagram 

With regards to th phase behaviour of the system, Ref. [8] reports that most of the 

fluid region (low to middle values of packing fraction) at high fields (low T) is occupied 

by phase coexistence between the bet crystal and a very low den ity fluid or gas, as 

hown in Fig. 3.10. However unlike typical bulk phase coexistence, the solid phase i 

not contiguou , but rather broken up into clu t r . 

A difficulty in this picture is revealed when we consider the intera t ion b tw n chain , 

and see that the short range attraction and long range repulsion lead dir tly to clustering. 

Even if all the disks representing the chain were locally crystalline, th sample as a whole 

would be inhomogen ous, with crystallites r pelling one another and tending not to form 

a single body. 
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In more concrete terms, in a region of phase coexistence the equilibrium pre sure is 

a constant, i.e. the pressure along an isotherm do s not change with packing fraction . 

We clearly se that the pressure increases with increasing packing fraction, presumably 

because of th cluster-cluster repulsion (see Fig. 3.9). Therefore, we di agr e with the 

picture of phase coexistence. 

Additionally, the change-over from th high T fluid at 1% area fraction to a gas of 

clusters of mostly size four , is well described by a simple two-state model ( ee Fig. 3.8). 

o recourse to a phase transition is required. We do not have sufficient low T data to 

examine this scenario at higher packing fractions, but in principle the two-state model 

may not do a good job as clusters interact more strongly. We see at 1% that the two-state 

model does not captur the harmonic solid behaviour of clusters. 

On the other hand, the free energy of cluster formation does seem to indicate some first 

order character to clustering. Already at area fraction 30%, we see a separate minimum 

developing in ~F(n) at n > 1, indicating a fr energy barrier between small, fluid-like 

clusters and larg ron . At lower packing fraction, the free energy curve seem to make 

a continuous chang from having a minimum at zero cluster size to having a minimum 

at finite cluster ize. 

Thus, there app ars to be some difficulty in d scribing phase coexistence in clustering 

ystems in term of the usual framework of, ay, bulk phase separation b tw en gas and 

crystal at constant volume. 

In the literatur for colloidal systems that exhibit clustering, th re exi ts a simpler 

framework in which th fluid is carved into three regions: a percolated fluid , a cluster 

fluid, and a simpler fluid , as shown in Fig. 3.11. The cluster fluid i defined as one 

having a local minimum in ~F(n) at n > 1, but not having a percolating cluster. Any 
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formal phase coexistence between the fluid and the eventual crystal phase at high packing 

fraction would occur in the percolated region, where it is perhaps less difficult to think 

of coexistence as occurring in the usual sense. 

We present our results within this second framework. Our pressures do show either 

an inflection (implying a compressibility maximum) or a discontinuous change in slope 

near the percolation line, where the presence of a spanning cluster has an impact on the 

properties of the system, and so this framework does have practical, physical meaning 

(see Fig. 3.9) . If we stretch the interpretation of the kink in the pressure to be the fiat 

region expected during phase coexistence, then we can at least conclude that the region 

of coexistence occurs at significantly higher packing fraction than that suggested by Ref. 

[8]. 

We do acknowledge that using the pressure to directly test for coexistence is somewhat 

problematic in that the system is finite in size and obtaining true equilibrium may be 

challenging in simulation. Finite size systems tend to smooth out any apparent transition, 

and the interfacial energy between two phases may be non-negligible. However, the 

system seems to quite easily form crystallites, and obtaining equilibrium between clusters 

and a rare fluid should not be a problem, i.e. it should be fairly easy for the cluster 

fluid to equilibrate. Where the problem may likely occur is at higher area fractions, 

where we see something more like crystallites coexisting with a dense fluid . In this case, 

fully equilibrating the system might result in bulk phase separation between clustered 

crystallites and a clustered fluid , see e.g. Fig. 3.28(f). 

Therefore, we conclude that at least the portion of the phase diagram covered by our 

cluster fluid , the system is not described by bulk phase coexistence in the usual sense. 
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5.0.2 Void Phase 

It is quite apparent that chains of dipolar hard pheres do not yield a void phase. Adding 

van der Waals or Yukawa interactions can change the bonding en rgy relative to the 

repulsive barrier and change to some degree the location of the peak of the repulsive 

barrier. However , nothing in our systematic varying of parameters yi lds the void phas . 

Using simpler toy potentials, we can partially recover the void phase. Loo e clustering 

of particles can be achieved with repulsions only. An additional repulsion at short range 

causes the particles within loose clusters to be further from each other. An appropriate 

balance between these two repulsions gives a void phase (see Fig. 4.8(b)) . 

If indeed the experimentally seen void phase does arise in part from some additional 

intermediate range repulsion, it is difficult to see what could be physically causing it. 

Perhaps dielectric forces may play a role, e.g. the liquid may be attracted to the regions 

occupied by colloids because of the difference in the electric field caused by the presence 

of the colloids, but this is speculation. 

We also note the possibility of the void phase arising from non-equilibrium effects. 

Initial void structures driven by, say, some non-equilibrium hydrodynami effect may 

become kinetically trapped. Whatever the cause, it must not play a significant role 

at higher packing fractions because there simple dipolar chains do reproduce, at least 

qualitatively, th structures seen experimentally. 

5.0.3 Future Work 

The low T behaviour of the model is of interest. The anomalous pressure behaviour near 

percolation, as well as the expected heat capacity peaks will help sort out questions about 

t he nature of the cluster fluid and whether there is coexistence between the crystal and 

the dense fluid. 
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To study low t mperatures, it would b worthwhile to implement om MC scheme 

that incorporates trial moves other than ju t mall, single particl displacement. The 

hope is to reduce or avoid the time required for particles to break free of th ir bonds in 

order to explore configuration space. 

Since the repulsion decays as 1/ r 3 for large r·, i.e. slowly, it would b prudent imple­

ment a sp cialized technique, such as Ewald ums, to more accurately determining the 

energy - at least as a check to make sure w are not artificially suppressing qualitative 

changes in phas behaviour. 

With regards to the void phase, a finer study of the toy potentials that do recover 

something clos to th void phase is worthwhile. Determining the relationship between 

potential parameters and features of the structur s een , or even wh n transitions tak 

place, would help in elucidating properti s of th ingredients that will produce the void 

phase and that are missing from the current model. 

We also need to explore ideas behind additional forces in the system , like dielec­

t rophoresis, or po sible non-equilibrium effects that may be important to the formation 

of voids. 

To confirm the presence or lack of a first order transition, we also wish to study the 

ystem in a constant pressure ensemble. If free energy barriers to transformation are 

low as they appear to be here, we should se any phase transition o cur with very littl 

hysteresis. 
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Appendix A 

Verlet List 

In computer imulation work, most of the time is consumed in calculating the distances 

between the particl s and the interaction potential in the case of Monte arlo simulation 

(MC) or the fore calculation in the case of Mol cular Dynamic simulation (MD). For 

simulation work with pairwise additive interactions, we calculate the distances between 

each particle and all other particles in the syst m. Assuming that th system contains 

N particles, this m ans that we need to compute N(N- 1) / 2 pair di tances in addition 

to the same number of interaction calculations if the interaction is not truncated. Even 

if the system i truncated, we still need to calculate N(N- 1) / 2 pair di tance . As a 

summary, the tim needed for any MC or MD imulations scales as N 2 r gardles if the 

system is truncated or not [9, 10] . 

In fact , there is an :fficient technique in terms of short-range int raction in order to 

speed up the calculation of interactions and to ave the CPU time. In this technique 

the potential cutoff sph re of radius rc for each particle on the yst m i urrounded by 

another sph re of radius rv. At the beginning of the simulation, all of the particles that 

are confined in id the outer sphere are listed in an array to be the neighboring list or 

the "Verlet list" for th central molecule. In this case, each particle in th system has 

its own list. The time needed to construct the Verlet list for each parti le cales as N 2
, 

and obviously no time was saved until this stage. In the subsequent stages, th di tance 
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between tho e particl s in the list with the central particle are just tak n into account. 

All other interaction with those particles out of the list are excluded b caus they do 

not contribute in the energy or force calculations. This last operation scales as N, and 

t he same lists would still be considered for a large number of steps. As soon as one of 

the particles di placed more than (rv - rc)/2, the list must be updated. Updating the 

list scales again as N 2
, and another bunch of steps will be consid red again using the 

updated list, which scale as N. 

Figure A.l: Illustration of Verlet list and cutoff potential sphere. Verlet list contains all t h particles 
inside t he outer sphere. Just particles inside the inner spher contribute in th int ract ion calculations. 

Although all particles confined inside the outer sphere are considered to the neigh-

boring list, those particles inside the inner sph re just contribute in th interaction cal-

culations. One point must be considered that the layer between the two ph res should 

be thick enough in order to guarantee that no particle can penetrate through the layer 

to enter insid th inner sphere before updating the list. In more detail , Particles 2, 3, 

4, 5, 6 and 7 in Fig. (A.l) are on the list of particle 1. However, ju t particles 2 and 3 

will contribute in the interaction calculations b cause they are inside th cutoff potential 

sphere. As the time goes on, particles 4, 5, 6 and 7 have a chance to nter in ide the inner 
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sphere before updating the list and to hare th interaction calculation . On the other 

hand, particle is outside the list and it absolutely has no chance to join the interaction 

calculations with particle 1 before updating the list. In fact, particle 8 could nt r inside 

the outer sph r before updating the list, but it can not enter insid th inn r sphere. 

This is due to the fact that the layer i thick enough to make sure that list will be updated 

before penetrating th particle 8 through this layer. 

As a conclusion, the time needed to finish the simulation work s ales as N 2
. While, 

the time ne ded for th simulation work using the Verlet list scales as N for most stages 

of the work exc pt updating the list which scales as N 2
. Optimizing both of rc and rv 

will make the computing time scales as N 312 or 5/ 3 rather than 2 
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Appendix B 

2-State Model 

Consider a system with two energy states. The first state has an energy E 1 and d generacy 

S11 , while the s cond state has an energy and degeneracy E2 and S12 , respectively. The 

partition function ( Q1) for one disk is, 

n=2 

Ql = Sli L xp ( -f3Ei) 
i=l 

where S1 = S12/ S11, and D..E = (E2 - E 1). The disks in the dipolar system are con idered 

distinguishable particles because the po ition of each disk can be determined with infinit 

precision. As are ult, the partition function for N-disks can be expre s d as, 

(B.2) 

The Helmholtz fr energy for this system can be determined as follow , 

-NksT [In (S11 exp ( -,6EI)) + ln (1 + S1 exp ( -/3 D..E))] (B.3) 

The entropy of th system can then b found as, 
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s 8F 
8T 

Nks ln (fh) + N ks ln (1 + 0 exp ( - (3 t:.E)) 

+ Nks0f3 t:.E exp ( -(3 t:.E) 
1 + n exp ( - (3 t:.E) 

and the internal energy of the system equals, 

U F+TS 

N E
1 
+ NksOt:.E exp ( -(3 t:.E) 

1 + n exp ( -(3 t:.E) 

Finally, the specific energy of the system can be found as follows, 

Cv 

( 1 + n exp (-(3 t:.E)) 2 
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(B.4) 

(B.5) 

(B.6) 








