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ABSTRACT

In this work, semiempirical interatomic potentials forsilicon, gold, silver and theiral-
lovs have been developed. based on the modified embedded atom method (MEANM)
tormalism. These potentials deseribe the elastic, thermal, structural, point defect,
and binary cluster properties as well as any other empirical potential, and exhibit
good agrecment with experimental data where available. Specifically, silicon poten-
tials have been compared to the best available first and second nearest neighbour
MEAM parameterizations, as well as the Stillinger-Weber, Tersoff, EDIP and HOEP
potentials; silver and gold have been compared to first and second nearest neigh-
bour MEAM. In the absence of experimental data, high level density functional
theorv (DFT) calculations have been used instead. Applications of these potentials
for the specific case of niicrocantilever sensor fabrication and characterization have
been outlined, including intertacial » sss and surface analyses.
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1. INTRODUCTION

Microcantilever sensors consist of a cantilever with dimensions 200-100 pim long.
30-50 pm wide and 1 pm thick, coated on one side with a receptive laver chemi-
callv engineered to bond only 1o a specific torget molecule. These sensors have
been successfully nsed as chemical sensors to detect liquid or gas-phase molecules
[1 — 4], as biosensors to observe specific enzvines, antibodies, proteins and DNA
chains [5 = 10]. to determine stress assoctated with surface adsorption [T - 131, to
examine magnetic susceptibilities [T, and to measure pH [ 15 ] In fact, microcan-
tilever sensors are amongst the onlv sensors with the ability 1o detect quantities in
the nanogram (10%), pictolive (10", femtojoule (107 and attomolar(10°™) range

with a response time on the order of milliseconds (107 | 3].

To  velop a microcantlever sensor, an intermediate tie laver is required between
the silicon substrate and the organic receptor laver, as shown in Figure 1.1, Gold is
often chosen tor this purpose as, of all the metallic elements, itis the most chenu-
cally stable [16]. Tt is well known that organic molecules termiated with a sulfur
end-group st -assemble onto gold surfaces and form strong, structurally: stable
molecular fihms [17]. However, it has been shown that the morphology of the un-
derlving gold tilm plavs an mportant role in both the sensitivity of the sensor and
the reproducibility of the vesults [18]. Further, the surface stress arising due to
mismatches in the thermal expansion coctticients between the film and substrate,
nonuniform plastic deformations, lattice mismatches, substitutional or interstitial

impurities and growth processes is directly related to the surface morphology of the
]



film [ 19]. In the case of microcantilevers, the deposition of a thin film(s) creates a
surface stress which may cause the cantilever to either bend upwards or downwards

[19-21].

Figure 1.1:  Microcantilever schematic. A Silicon microcantilever {grey) is first
coated with a metallic tie laver (vellow) to which an organic receptive laver (blue) is
adsorbed. Not to scale.

Mue  work has been done i characterizing the observed surtace stress as a func-
tion of deposition parameters (deposition rate. temperature, anncaling time, etc.).
Manv groups have modeled surface stress for single, and muluple. Glms of vary-
ing thicknesses in an attempt to estimate the necessary film parameters [22 - 317,
Nonetheless, at this tiine no group has located a set of parameters which result in a
cantilever without residual bending. Instead. researchers have focused on reducing
residual stress post-fabrication by wav ol ion implantation and/or mmpurity doping

v

paired with annealing [32 -3

The goal of this work is to develop a series of potentials which very accurately de-
scribe metallic thin films on a silicon substrate. These potentials will then be used,
amongst other things. to predict the composition of the tie laver which yields no net
interfacial stress and an atomically flat surtace Taver. For this purpose, the Modihied

Embedded Atom Method (MEAM) is chosen. The MEAM, discussed in depth in



Chapter 3, has the innate ability to treat covalent systems. such as silicon [36, 37]
and metallic svstems, such as silver and gold [38, 391 equally well. Inaddition, being
a semi-empirical potential, it offers this accuracy at a lower computational cost than

present ab initio techniques.

The silicon—gold svstem is guite complex. Distinguishing it from other noble metal-
silicon pairs, such as silicon=silver and silicon—copper, is an unusually high reaction
rate between these two species, which results in rapid diffusion across the interface,
cven at room temperature. The result of this extensive migration is an mternnxing
of silicon and gold atoms, and ¢ formation of a silicide-like allov at the mtertface.
Despite extensive rescarch. crucial features of this system remaim unresolved. For
instance. the eritical thickness necessary tor the onset of internuxing. the soructure
of the interface, the penetration depth of the gold/silicon atoms into the bulk and
the surface composition and structure of thin monolavers are vet unknown.  For
an extensive review of the current rescarch of the silicon—gold svstem, the reader is

referved to [ 10]; these results are stcunmanized schematically in Figare 1.2,

To avoid the complexities of the silicon—gold interface, itis also prudent to study
the silicon=silver—gold svsten. Tt has bheen established that the silicon—silver sys-
tem does not exhibit the high reaction rate of the silicon—gold system, and as such
should provide a more stable and predictable base tor the topmost gold Taver. Inad-
dition, the physical features of - ver  ad gold are guite comparable. For instance,
the lattice constant, bulk modulus and coctficient of linear thermal expansion are
4.09 A, 108.7 GPa, and 19.1x 10" K for silver and .08 A, T08.3 GPa and 1L 1x10°
K' for gold. respectively. Given the similarities between these two species, imterta-

cial stresses due to, for exan | e, lattice, clastic and thermal expansion misnmatches

3



should be minimal. Tlence, itis hvpothesized that the complexities of the silicon-

gold svstem mav be altogether avoided ata shight cost to mierfacial stress.

() (B)
I—
) (D)

Figure 1.2:  Schematic representation of the experimentally proposed SiAu inter-
face structures for thin (< 10 ML) gold films. Measurements are taken using: (:\)
AES-LEED an TEM [ 42]: (B) MeV ion scattenng and PAES [[13 — 5] (C) PYS
and SRPS [-16 = A8 ]: (DYNPS [ 19].

To accuratelv fit the MEAM potential, one requires an excess of experimental data.
While an abundance of data is available for the mdividual elements (Sic Ag and
Aun), the same cannot be said for the allovs SiAg, StAu and SiAgAu. None of these

compounds form a thermodynamically stable structure. As such. a high level of

theory must be used to predict values to which to fic the MIEAM potenual, Density



functional theory is chosen for this purpose: it will now be discussed i the subse-

quent chapter.

In the chapters which remain, the Modified Embedded Atom Method theory will
be presented, followed by the theoretical approaches used to correlate the MEAM
and experimental data. Finally, a discussion of the MEAM parameterization is pre-

sented, along with proposed applications for future work.

ot




2. DENSITYFUNCTIONALTHEORY

Due to the absence of experimental data tor StAu, SiAg and AgAu allovs, one must
resort Lo ab initio calculations to compute a sufficient number of properties for cach
svstem to correlate with the Modified Embedded Atom Method potentials. In this
work, Densitv Functional Theory (DFT) was chosen to complete this task. In this

chapter, a brief overview of DFT will be presented.

In order to predict the electronic and geometric structure ot a cluster, molecule, gas
orsolid (heneetorth referred to as the systens) one must compute the total gnantum
mechanical energy of the svstem and subsequently minimize this energy with respect
to its electronic and nuclear coordinates. Rather than attempt to find a single wave-
function which describes simultancously the motion of electrons and nucler, it is of-
ten sufficient to consider each svstem imdependently. There is a large difference in
mass between electrons and nuclei, but the momentum of cach particle 1s approxi-
matelv equivalent. Consequently, the electrons respond nearly instantancously 1o
the motion of the nuclei’. Thusly one mav treat the nucler adiabatically, resulting
in a decoupling of the electronic and nuclear coordinates [51]. This simplification
is known as the Born-Oppenl mer approximation [52]. The Born-Oppenheimer
approxination reduces the manv-body problem of electron-nuclei dvnamics o that
of dyvnamical electrons in some frozen contiguration of nuclel. Howevero even with

this simplification, the problenis stull formidable.

'"If the momenta, p.of electrons and nucler are equal, and the masses satistv the rela-
ton m << m it follows that v~ /;/m( > - /;/m”.
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To facilitate computation, one must further simplify the above many-body problem.
Density Functional Theory, in principle. allows an exact mapping of a strongly inter-
acting electron gas, in the presence of nuclei, onto that of asingle particle moving in
an effective nonlocal potenual. In 196 L Hohenberg and Kohn proved that the total
energy of an electron gas is a unique funcuonal of electron density [53]. Further,
thev asserted that the minimum value of the total energy finnetional (a tunction of
a function; ic. energy is a function of density, which itself 1s a function of position)
is the ground-state energy of the system, and that the electron density which vields
this minimum is the exact single —article ground-state densitv. In the following vear,
Kohmn and Sham described formally how to replace the manv-clectron problem by
an cquivalent set of self-=consistent one-clectron equations [H4]. Combined. these
two breakthroughs forn the basis of modern density functional theory, As a result,
an energy functional and a set of wavelunctions which: minimize said functional

were defined.

Consider a set of doubly occupied clectronie states, . The Kohn-Sham total-ecnergy
functional for this svstemis [H0:

h*

Im

El{u ] = f’v.’. v “urdir+ I",“”(r)n(r)(l:‘r

Y (2.h
o~ (ryn(r’ \ .

WL J.-” ' "(,l )d'r(l‘l"+ Ly [n(ry]+ L, (IR D
SR

where:

L. is the Coulomb energy associated with interactions amongst ions (or nu-

"y

clei) at positions {R .



v is the static total electron-ion potential,
¢ e
n(r) = 2Z|’l/’,| is the electron density, and
!
L, [ #(1r)] is the exchange-correlation functional.

Physically, only the minimum of this functional has meaning: at its minimum, the
Kohun-Sham energy functional equals the ground-state energy of the svstem of elec-
trons with nuclei (or ions) at positions =R,}' In order to compute its minimum, a
special set of wavetunctions, y, must be usced. These wavetunctions are the eigen-

functions of the Kohn-Sham equation [H01]:

r2 g
LV eV ()4 () + V() o) = = 0 (1) (2.9)
2m

0m

where:
y is the wavetunction of electronie state .

¢ is the Kohn-Sham eigenvalue.

J.l | 1 s the Hartree potential of the electrons, and
r—r

i /‘ﬂ/f\,(.[n(r\] . . i
Vi(r)= by is the exchange-correlation potential.

' n(r)

The Kohn-Sham equation represents a mapping ot an interacting many-clectron sys-
tem onto a system of noninteracting electrons moving in an effective potential due
to the other electrons. Presently, the only term in the above equations which is not
ex] citly known is the exchange-correlation potential, V. Should it become pos-
sible to define the exchange-correlation functional exactly, the functional derivative

8



with respect to density will produce an exchange-corre ion potential that includes
the effects of exchange and corvelation exactlv. In this case, the density funcrional
theorv result would be exact within the Born-Oppenheimer approximation. It is
important to note that the sum of the single-particle kohn-Sham eigenvalues does
not give the total electronic energv: it overcounts the etfects of electron-clectron in-
teraction in both the Hartree energy and the exchange-correlation energy. Tlence,
these cigenvalues are not stricty energies of single-particle electron states, but rath-
cr total energy derivatives with respect to the occupation numbers of these states.
Nevertheless, the cigenvalue of the highest occupied eigenstate inan atomic (or

molecular) calculation is quite nearly the ionization energy for that svstem.

In the subsequent sectious, ste - dard techniques 1o deseribe electron-clectron,
clectron-ion and ion-ion interactions will be discussed, and accordingly cach term
in the Kohn-Shaim energy functional and cquation will be detined (cf. Equations

2.1 and 2.92).

2.1 ELECTRON-F_ECTRON INTERACTIONS

In anv electronic structnre calculation, the most ditficnlt problem is posed by the
elec on-clectron interactions. Due to the Coulomb interaction between charges.
the electrons repel one another. Tenee, the Coulomb energy of a svstem of elece-
trons mav be reduced by spatially separating electrons. at the expense of increasing

kinetic energy via deformatons of the electronic wavefunctions.



As a consequence of the Panli exclusion principle. the wavelfunction ol a many-
electron system must be antissmmetric under exchange of any two electrons, This
antsvmmetry vields a spatial separation between electrons which have common
spins, resulting in areduction of the Coulomb energy of the svstem. This energy re-
duction due only to the antissmmetiy of the wavetunction is known as the exchange
energv. In atotal energy calculation. methods which compute only the exchange
energy (and ney et spatially separating oppositespin electrons) will approach an
encrgy minimum slightly higher than the true value, This imitis often referred to

as the Hartree-Fock limit.

It is possible 1o reduce the Conlomb energy ot an electronic systenn below the -
tree-Fock limit if one spatially separates opposite-spin electrons as well. Inthis case,
the Coulomb energy of the svstemis reduced while the kinetic energy is increased;
ata singnlar point the eftect of decreasing the Conlomb encrgy and increasing the
kinetic encrgy is balanced, and the true encergy mimmm is located. The energy
difference between this minimum and the Hartree-Fock limitis called the corelation
energy; itis extremely difficult to calenlate in complex systems. Hence, this energy
must be approximated (in general), and is the dominant source of discrepancy be-
tween ab initio computations and experimental results under the DFT formalism. In
many published works. the exchange, I and correlation, I/ energies are grouped

and called the exchangecorrelation enevgy, I8 o Lo+ L

1

Manv popular exchange-correlation functionals have a form appropriate for slowly
varving densities. The most basic method to deseribe the exchange-correlaton en-
crgyv of an clectronic system is known as the local density approximation (LDA)Y. In

this approximation, the exchange-correlation energy of the svstem is construeted

10



under the assumption that the exchange-corvelation energy per electron at a point
rin the clectron gas, ¢ (r).is equal to the exchange-correlation energy per electron
in a homogenecous electron gas, ¢ "™ that has the same density as the electron gas

at point r. Mathematically, one might express the LDA as [H51]:

M gy = I;"\","“(l‘)n(r)(l"' r (2.3)

True to its name, the local density approximation assunies that the exchange-cor-
relation energy functional is purelv local: 1t ignores corrections to this energy at
a point r due to nearby inhomogeneities in the electron densitv. However, this
approximation remains popular as it vields a single well-defined global minimum
for energy, allowing anv energy minimization scheme to locate the global encrgy

minimum for the svstem.

A logical improvement to the LD s to inclunde not only the electron densuy at a
point r. but also its gradient. This approximation is known as the generalized gradi-

ent approximation (GGA). In general, GGA functionals have the form[55]:

£y 1(1')]: J../'[)l(l').V)I(l‘)](l%l‘ (2.1

In comparison with the local density approximation. the generalized gradient ap-
proximation tends to improve total energies [H6]. atomization energies [56 = 58],
cnergy barriers and stractural encrgy ditferences [59. 601, Tt also tends to expand
and soften bonds 58], which mav [61] or mav not [62] improve upon the local den-
sitv approximation result.. Unsurprisingly, the genevalized gradient approximation
is better suited for svstems with highlv inhomogencous densities when compared to

the Tocal density approximation. In this work, the generalized gradient approxima-
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tion of Perdew, Burke and Ernzerhof (PBE) [55] is used exclusively m our DFT
calculations.

Once a suitable approximation for the exchange-correlation energy has been deter-
nined. one must next describe an ifinite munber of noninteracting electrons mov-
ing in a static potential of an infinite number of nuclei (orions). Two challenges
are presented in this scenario: first, as cach electron requires its own wavetunction,
an infinite number of wavefunctions are reguired o deseribe the system, and sec-
ond, as cach wavefunction extends over the entire solid, the basis set required to
expand cachis: o infinite. Careful application of Bloch's theorem simultancously

provides a solution to both problems.

Bloch's theorem states that in a periodic solid, each electronic wavefunction may be
decomposed into two constituent components, a cell-periodic term and a wave-like

term | DO]:

ey = et ) (2.5)

The cell-perio ¢ component may be expanded using a basis set of discrete plane
waves whose wave vectors ave the reciprocal lattice vectors of the crvst
/(l):Z(() (,I(L-x . R
/s ol (2.0)
.
where the ¢'s are constant cocfficients and the reciprocal Ltuee vectors, Goare
defined by:

Gel — 2mm (2.7)

12



for all Iwhere s a realspace lattice vector of the erystal and mis an integer. Com-
bining the above, each electronic wavefunction may now be expressed as a discrete
sum of plane waves:

(,'/(1‘):2((‘“(,), el (2.8)

[

Discretizing the electronic wavefunctions alters the problem of calculating an infi-
nite number of wavefuncuons to one of calenlating a fintte number of wavetfunctons
at an infinite number of points in reciprocal space (herein k-points and k-space,
respectivelv). In theory, electrons occupving states at cach k-point contribute 1o the
electronic potential in the bulk solid and so an infinite number of k-point calcula-
tons are required to compute the potental. In practice, however, the electronic
wavefunctions at k-points that are spatially nearby will be approximately equivalent:
itis possible to represent wavefunctions over a region of k=space by a single. properly
weighted wavefunction at one k-point. Therefore, onlv a finite number of k-points
are required to calculate the electronic potential (and thus the otal energy) of the
solid.  Several schemes exist for defining the k-point grid {63 — 671, In the DFT
calculations performed in this work, the Monkhorst-Pack scheme [65] was nsed

exclusively.

Finallv. one must consider the sum over reciprocal lattice vectors, G, i the Bloch
expansion of electronic wavef  ctions. Once again, the theory implies that this
sum be infinite. In practice, however, the coefficients ¢ become vanishingly small
for plane waves with large kinetic energy. Consequently, by introducing a cat-off
encergy, the plane wave basis mav be truncated 1o include contributions only from

plane waves with a kinetic energy less than the cut-oft. Thus, the nfinite basis set be-
13



comes finite. Two  roblems arise when using an energy cut-oft: first, changes in the
unit cell size and shape create discontinuities in the plane wave basis, and second,
the number of basis states change discontinuously with cut-oft energy (additionally,
for a given k-pomt set. k-point occupation changes with varving cut-off energy).
Modern techniques are used to remedy these problems by applving correction fac-
tors which account for the difference between the number of states i a basis set
with an infinitely large number of k-points and the number of k-points actually used

m the calendatnton [68].

Once all of these approximations have been made. the Kohn-Sham equations as-

sume a simple form [H50]:

T Vo (G GV (G= G4V (GG [0, = 5 000), (2.9

100

Z I |k+ G
[0

O2m

In this form, the Kinetic energy is diagonal (as indicated by o ). and the poten-
tials are all described in terms of their Fourier Transforms. The solution proceeds
by disagonalizing the Tamiltonian matrix, whose elements are given in the square
brackets above. The size of this matrix is determined by the cut-off energy and mav
be extremely Targe for svstems which contain both core and valence electrons. To
overcome this, a psendopotential approximation, as described in the next section,
is emploved. Finallv, one should note that non-periodic svstems are slightly more
complex. For a detailed treatment of nou-periodie systems, the reader is referred

to veference [50].

11



2.2 ELECTRON-ION INTERACTIONS

To perform an all-electron caleulation, an extremely large plane wave basis set is
required both to expand the tightlv-bound core orbitals, and to follow the rapid
oscillations necessary to maintain orthogonality (required by the Pauli exclusion
principle) of the (valence) electrons in the cove region. Many chemical and | vsi-
cal properties have a much greater dependence on the valence celectrons, rather
than the core clectrons. The pseudopotential approximation exploits this by re-
moving the core electrons and replacing them Gand their strong tonic potential) by
aweaker pseudopotential that acts on a set of pseudo-wavelunctions rather the - the
true valence wavefunctions. Ideally, this pseudopotential is constructed to maintain
the scattering properties and phase sl s of the jon and core electrons for the va-
lence wavefunctions, but in such a wav that the pseudo-wavetunctions have no radial
nodes in the core region, thereby eliminating oscllations. Outside of the core re-
gion, the core potential and pscudopotential are identical. and the scattering from

either mdistinguishable.

For each angular momentum component of the valence wavelunctuon, a different
1) |
phase shitt is produced by the 1on core. Similarly, scattering from a pseudopoten-
tizal must also be a functon of ancular momentum. In its most general form. the
& o
(nonlocal) pscudopotential is expressed as [H0]:

V', :Z|/n1>\',(/m| (2.10)

I

where |y ave the spherical  armonies and Vs the pseudopotential for angular

momentum L When acting on the electronic wavetunctions, this operator decom-
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poses the wavefunction into spherical harmonies, each of which is multiplied by the
relevant pseudopotential. A local pseudopotential is one which is a function only
of the distance from the nucleus; it uses the same potential for all angular momen-
tum components of the wavefunction. Conversely, a nonlocal pseudopotential s
one which has a unique potential for cach angular momentum component of the

wavefunction.

Asshownin the previous section, total energy calealations ofan electronic systemare
a function of clectrome densitv. In order for the exchange-correlation energy to be
determined accurately, itis imperative that outside of the core regions the pseudo-
wavetfunctions and real wavetunctions be identical, not only in spatial dependencies
but also in absolute magnitudes so that the two wavefunctions generate equivalent
charge densities. To accomplish this, the psendopotential must be adjusted such
that the integrals of the squared-amplitudes of the real and psendo-wavelunctions
inside the core regions are identical. Psuedopotentials which have undergone this
adjustment are known as norm conserving pseudopotentials. Modern psendopoten-
tials also have the ability to deseribe scattering due to the ion ina variety of valence

configurations, a property known as transferability.

Besides the obvious advantage of computing fewer electronic wavelunctions duae
to the removi  of core electrons, the -+ are other compelling reasons to consider
pse  lopotential caleulations over all-clectron calculations. First, as previously men-
tioned, the celectronic wavefunctuons mav be expanded using far lTess plane wave
basis states when compared to the all electron potential, as oscillations have been
climinated. This results in a rednction of the size of the Hamiltonian matrix, and

amore efficient computation. The second, and less obvious, advantage 1s that one
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requires less numerical precision in a pseudopotential calculation when compared
to the equivalent all-electron calculation. The difference between electronic ener-
gies of differentionic configurations is observed almost entively in the energy of the
valence electrons alone. The total energy of the valence electron svstem is on the
order of one-thousand times smaller than the 1otal energy of the equivalent all-clec-
tron svstem, and vet the energy differences between ionic conligurations remains
the same for either computation. Anv rounding and step-size crrors accumnlated
when summing contributions from the core electrons in an all-clectron calculation
will overshadow these small energv differences, a problem which is eliminated com-
pletely in the psendopotential regime. One should note, however that total energy
is no longer meaningful in pseudopotential calenlations; only energy differences

are significant.

To obtain the static total ionic potential, V. in a solid. one places an ionic pseu-
dopotential at the position of everv nuclet in the solid. Information regarding the
positions of ions is contained in the structure factor, which for ions of species a at

wave vector G has the value [50]:
> Ny LiGeR,
S (G) =D ¢ (2.11)
7

where the st is over the positions R of all the 1ons of species e inasingle unit cell.
The periodicity of the system restricts nonzero components of the ionic potential to
its reciprocal lattice vectors; it is necessary only to compute the structure factor at
the set of these vectors, The total ionic potential is thus obtained by summing the
product of the structure factor and the pscudopotential over cach species of 1on.
For instance, for a local potential, v,V is defined simply as [50]:

—
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Vo0 DS (Gr, (6) (2.19)

Awav from the core, anideal pseudopotential is purely Condombic. of the form Z/R,
where Zis the valence of the atom. Upon taking the Fourier Transtorm, the ideal
pseudopotential diverges as Z/G* at s wave vectors. Hence, the total ionie po-
tential at G =0 is infinite, and so the electron-ion energy s infinite. However, simi-
lar divergences are observed in the Coulomb energies due to the electron-electron
and ion-ion interactions. When combined, the total Coulomb energy at G =0 for
all three interactons cancel exactly; this must be the case as the Coulomb potential
for a charge-ncutral system at G - 0is zevo [H0]. Without loss of generality the G =0
term for cach tvpe of interaction is set to zero. One should note that tvpical pseu-
dopotentials are not purely Coulombic: corvections for the contribution to total

energy arising due to this discrepancy must be made [50].

Manv methods exist to generate pseudopotentials [69 =711, Tn this work, pseudopo-
tentials were generated using ¢ RRK] (Rappe. Rabe, Kaxiras and Joannopoulos)
method [69]. This method is unique in that it applies an additional optimization
step after generating an initial pseudopotential to set the cut-ofl energy to a desired

target.

2.3 ION—ION INTERACTIONS

The Coulomb interaction be  en ions is extremely difficult to calenlate, as it is
long-ranged in both real space and reciprocal space. Ewald developed a rapidly

converging method to perfor  Coulomb summations over periodic fattices based
18



on the dentity [501]:

(R R0}
oA st
I

oy
P

Z_ ey ﬁ’[" |R"/R"'”(l/)+i_:rzjc.
o U

v o ooy

where Lare lattice vectors, G are reciprocal lattice vectors and 2 1s the unit cell vol-
ume. With this identny itis possible to express the lattice summation for Counlomb
cnergy due to the interaction between anion positioned at R, and an array of atoms
at positions R+ At first glance. itappears thatreplacing the infinite Coulomb sam-
mation on the left-hand side of the equation by two infinite summations (one over
real space vectors, the other over reciprocal space vectors) on the right-hand side
would onlv serve to complicate things. However, with the appropriate choice of g,
the two infinite summations converge rapidlvin their respective spaces. In pracuce,
the veal and reciprocal space simmations can be computed using onlvafew vectors

in each space.

As in the previous section, the G 0 contribution must be removed to compute
the correct total energy. Unlike in the previous section, the G 0 conuribution 18
now divided between the real and reciprocal space sunmations: it is not sufficient
to only eliminate this term in the reciprocal space Ewald summation. Once the
appropriate corrections have heen made. the correct form for the total ion energy,

I s [DO):

i

('l‘fk‘(l/lR|+ [ - R._,|) 2

L = |R+1-R] J

o
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0 ‘ ITRY;
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where 7 and 7, are the valences of ions fand [respectively, and erfe is the compli-

mentary error function:
erfe(z) — —Je "t (2.15)

Note that an ion does not mteract with its own Coulomb charge, so the =0 term

must be omitted from the real space summation when /= J.

This concludes the discussion of Density Functional Theorv, In the next chapter,

the theory of the Modified Embedded Atom Method (MEAM) will be presented.,
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3. THE MODIFIED EMBEDDED
ATOM METHOD

3.1 THE EMBEDDED ATOM METHOD

Before one can properlv define the Moditied Embedded Atom Mcethod ¢ MEAND 1t
is necessary to first detine the Embedded Atom Method (EAM). The EAM uulizes
the electron density to compute the total energy of a svstem, 1o has the ability to
realistically treat impurities, defects and other complex systems, while being not
significantly more complicated to use than pair-potentials which can describe net-
ther. In the previous section, it was shown that energy is a functional of electron
densitv, and that potential is determined to within an additive constant by a svstem's
electron density. The EAM is based on a usetul corollary to the Tohenberg-Kohn
formalism by Stott and Zaremba: the energy of an impurity in a host is a lunctonal

of the clectron density of the vnperturbed (ie. without impurity) host [72]:
I“‘:‘F-/.I\'[NII] (3.1)

where n, (R) is the clectron density of the unperturbed host and Z and R are the
type and position of the impurity respectively. Thus, under this corollary, the ¢m-

bedding energy of an impurity is determined by the electron density ol the host

before the impurityis added. In the EAM, each atom ina svstem is considered to be
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an impurity in a host consisting of all the other atoms. Specifically, the embedding
energy, [ is defined to be the energy of an atom incan uniform electron gas relative

to the energy of the atom when separated from the electron gas.

The functional Fis a universal function, independent of the host. Tts exact forn s
unknown and is likelv complicated. butin the EAM asimple approximation assumes
that the embedding energy depends onlv on the environment in the immediate
vicinity of the impurity. Analogous to the Tocal density approximation in DKL cach
impurity experiences a locally uniforn electron density. With this approximation,

the per-atom energy in the EAM formalism s given by [73]:

where the functional Fis approximated by a functional, I of the clectron density
(without atom /), n, at the impurity site and a short-range electrostatic pair poten-
tial, ¢, has also been added to account for core-core repulsion between atoms 7and
Jseparated by a distance R . The total energy is mevely the sum over all mdividual
contributions |73]:

. , 1
1“101 :zl'/(”ll.:)+32‘rj(R,,) (‘;‘;)

- iy

[t is of crucial importance to note that the embedding functional, £ s not trivially
related to the functonal £ Intevms of the functional, . the energy required to
remove an atom from the solid, leaving a vacaney (and neglecting any lattice relax-

ations) is given by [71]:

1"' - ‘7_;1(1!!1 ["wli«l ( l):| (‘% l)
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where s the density of the solid including the vacaney. Ttmustalso be true that

il
the same energy be obtained by viewing the solid with the vacancey as an impurity

and the single atoms as the host so that [71]:

[‘; = ‘Fnlu( ' )]Jll)“l (1):| (‘%-.))
In terms of the embedding functional, £ the expression tor total energy (Equation
3.3) reduces to |74 ]:

I = [l*;(nf )= 1 (n, )} (3.6)

I
where the sum s over all atoms except the one removed and »is the clectronic
density at atom 7 in the solid with the vacancey. Each of the energies in Equations
3.4, 3.5 and 3.6 must be equal, and consequently the relatonship between Fand

1s nontrivial.

A final simplificanon assumes that the host electron density, H”(R). is closelv ap-
proximated by a lincar superposition of the atomic densities, 7, of the constituents

[71]:

Wy, =M, :Z”I/[(RI/) (3.7)

With this approximation. energy is simply a function of the position of the atoms,
Up to this point, all parameters in the EAM energy have been explicitdy defined.
However, the EAM is a semi-empintcal potential: the functions /7and ¢ must be

empirically determined by fitting the potential to experimental data,



3.2 THE MODIFIED EMBEDDEDATOM METHOD

In the previous section, the findamental theory of the Embedded Atom Mcthod
was discussed. The EANM has successfully been used o desceribe FCC BCC and other
nearlv-filled d-band metals, but has proven ineffective at describing covalent svstems
such as silicon and germanium [38]. The first modifications to the EAM redefined
the electron density, 7, to describe directional bonding specifically in silicon [75].
Formally, the Modified Embedded Atom was introduced as a generally applicable
potential in a paper describing its application to the silicon-germaninm svstem [ 36].

In what follows, the modifications to the EAM will be discussed.

Equation 3.3 presents the total encergy as formulated in the EAM. As defined previ-
ously, I”1s ¢ embedding functional which defines the energy required to embed
an atom of tvpe 7 into a background clectron density 7 at site i and ¢ is a pair
interaction between atoms 7and jseparated by a distince R . In the EAM. ¢ was
assumed o be entirely repulsive, but it was realized that the nonuniqueness of [
and ¢ _allows more general o ms of ¢ - Also. in the EAM the electron density, o,
is given by alinear superposition of sphericallv-=averaged atomic electron densities
(cf. Equation 3.7): in the MEAM, 7 is angmented by additional angular-dependent

terms. The energy per atom in the MEAM s defined as in the EAM, that is [38]:
A n 1
- 520 (R,) (3.8)

where, without loss of generaliry, the background density, 7, has been renormalized
by the number of nearest neighbowrs, 2, which is detined as the wference structioe
for an atom of tvpe 7 by Baskes [38]. This reference suructure is a crvstal soractare

l){l
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which contains detailed information about the behaviour of atom 7 and is usually,
but not alwavs, the equilibrium crystal structie of tvpe 7atoms. Note that while this
expression is indeed similar to the energy expression in the EAM (cf. Equation 3.2),
its constituent functions I, n and ¢ are i fact quite different. In the reference
structure for an atom of tvpe 1. the peratom energy. L7, of the reference structure

as a function of the nearest neighbour distance is expressed as [38]:

] i ﬁ“(R) Z
ER)= | = — 1+ 2.7 (R) (3.9)
=

where 7”(R) is the background electron densitv for the reference siructure of atoms
of type 7 and R is the nearest neighbour distance in this configuration. Assuming
L is known, ¢ above expression can be used to determine the pairinteraction for

type Zatoms as [IR]:
- ~1 - "1
Al T B R) - B ——— (3.10)

If the pair interaction is assumed to take this form, Equation 3.8 for a monatomic

S}'S[t‘l]] nay be rewritten as:

Physicallv. the first term in the Equation 311 represents the average ol the per
atom cnergy of the reference lattice at cach of the nearest neighbour distances.
The last two terms are forme by the difference between the embedding energy at
the background electron density actually seen by aton 7 and the average embed-
ding energy of this atom in the reference lattice at cach of the nearest neighbour

distances respectively. Essentially these two terms form a new kind of embedding
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energy where the embedding reference state is that of the reference lattice rather

than isolated atoms.

Additionally, in the BI (NaCl) structure considered for StAg, SiAu and AuAg svs-

tems, the pair interaction takes the form [10]:
> (R)= : AL (R)= (") -1 (7"
‘I“l/( )_ -(— ‘l/( )7 /(N/)_ /(”/ )) (3.12)

where 7 is the number of nearest neighbowrs in the Bl structure. and the em-
bedding encrgies. F2and ba - ground clectron densities, R are as evahuated in the

monatomic reterence structures. Equaton 3.8 then becomes:

powt o p[R) Ly i) L)
o 7z ) 29 7,

(3.13)

whose terms are analogous to those described in Equation 3.11.

As in the EAM, the MEAM Limits interactions to first nearest neighbours ondv. This
limitation introduces important questions about cut-otts and screening. There are
two basie schemes which allow one to artificially limit interactions between atoms.
The tirst scheme forces all di nee dependent functions to zero smoothly at a pre-
determined ¢ -off distance, implemented by multiplving distance dependent fune-
tions by a "cut-oft™ function which smoothly goes from unity to zero as a functon of
increasing distance. The second app oach. as used in the MEAM . is shightly more
complex.  In this scheme, a screening method between an atom and its nearest
neighbours is used which reduces the effect of interactions of any atoms which are
not nearest neighbours. This scheme takes into account the actual geometry of
the atoms under consideration, and is therefore much more robust than a simple
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cut-off function. For instance, with the screening method, planar tvpe soructures,
such as HCP and graphene, naturally interact with more distant out-of-plane atoms
even though the in-plane atoms are much nearer. Similarly, atoms approaching
free surfaces interact with the surface atoms at distances much greater than the
in-plane nearest neighbours.  In anv such case, the interactions between distant,
unscreened atoms are governed not by an arbitrary cut-oft distance, but rather by
the unscreened electron density itsell. I the MEAM, this screening function takes

the form [38, 10]:

s, =TT,
! IT " (3.1

IEIN

where

()’ (' < (‘min

| 2
o -C
v AN . > , . -
‘Sl/k - l o N (‘min < (‘ < (‘nm\ (3 l :))
NIRRT

l’ =z (‘mu\

and

"

R®, R® + R} R* - R!
L) Il " A .
22— (3.16)

RP_(Rj—R;y

In Equation 3.15. ¢ and € are adjustable parameters chosen to imit the range
of atomic interactions to first nearest neighbours. Consider the screening between
atoms /7 and £ by atom j, as shown schematcally in Figure 3.1, Suppose atoms 7and
j are nearest neighbowrs, with touching atomic spheres. If atom £ lies within the

screened cone (blue area) defined by i, jand the parameter € (typically, this cone
27






. e Q1=
n, —Zn/ (.S“) (3.17)
/
1=y

where »"" represents the atomic electron density of a tvpe jatom at a (suitably
screened) distance S“ from site 7. Note that Equations 3.7 (EAM) and 3.17 (MEAND
are identical, as expected. Equation 3.17, however. is hirther generalized by aseries
of correction electron densities that explicitly depend on the relative positions of

the neighbov 5 of atom 7 [38, 10, 76]:

1z

113

(",(”)2 :Z Z“}(,"’/;m(x,,) (3.18)
/

1+

[

ay \ - ) . l "
(2) _ a3 al2) ¢ al2) ¢ .
(n, ) = XN (b") _T; Zn/ (AS/,) (3.19)

r.s ! /
k 1xy . xy

T oy Al o R
(n‘ = Z ZA\I','AIF\;n/ (.S/,) (3.20)

.ty
Iy

where

i iy \)
”ul/J(R):nUe R, (.;_l)

are atomic electron densities with adjustable decay constant /)’/"' for atom j and

with R " being the a-component of the distance veetor between atoms jand @ The
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form of Equations 3.18. 3.19 and 3.20 are chosen such that the partial background
electron densities are invarient to both latice translation and rotation, scale with
atomic electron density for homogeneous deformation and equal zero for a cubic
lattice with a center of symmetry. It has been shown that Equations 3,18, 3.19 and
3.20 are equivalent to the three-body cos, cos” and cos’ dependences commonly
observed in many-body potentials, respectively [38]. For instance, Equation 3.18

may be expressed equivalently as [38]:

(”/m)‘i _ Z ,,’/AH(S” )nk(l'(.S‘m)cos(()”.,‘.) (3.93)

N3
IENN 3

where ()M is the angle between atoms /. 7and k. Counsidering the geometrie way that
the densities n'" are detined, one may consider cach to be related to a specitic angu-
lar momentum contribution (s.p.d and f respectively) to the background electron
density, and  at the associated atomic electron densities are related to averages of
these densities. It remains to combine the contributions of each partial electron
density to form a total density which is to be used as the argument of the embed-
ding function. As in DFT, this scalar must represent electron density throughout
all space. Linear superposition appears, at first, to be the obvious choice, but the
square root necessary to solve Equations 3,18, 3.19 and 3.20 introduces singularities
imto the resultant density (and hence, energy). Instead, the total background den-

sity is constructed by taking a weighted sum of the squares of the partial background

densities [38]:

() = il}”(nf/'): (3.24)
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where (" are adjustable weighting functions for the partial clectron densities, and
(" s, without loss of generality, unitv. Equation 3.24 mav alternatively be viewed as
a perturbative expansion of the background density about the hincar superposition

n' [38]:

3 (N~
] n
— I, , Q ur
n, = 1 + 5 \ —1“” + ... (;_))
- 1 7

where the correction terms (= 1.2.3 mav be physically thought of as adjusiments 1o
the spherical densitv due to the existence of density gradients, divergences or losses
of inversion svmmetries respectivelv. One final simphfication may be made o the
background density should the geometry of the svstem in question be known.  If
this is the case, the sum over atoms jin Equations 3,17, 3.18, 3.19 and 3.20 mav be

computed, and the final background clectron densities take the form [0 [

oy
N 4 e
L= s
_ n l+e
”I = " (3.‘_)())
n -
—“—,,l + ] L. [\g, Au
n
with
H(/)
. it / o o=
l ! :Z’/ [ (;_)/)
/ n,

where I'is the termy deseribing the angular dependence (1-0,1,2.3 corresponds to

s,p.dif symmetry respectively) n'"are the partial electron densities, and n/" 1s the

composition-dependent electron density scaling factor fov atom 1.
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The next cor sonent of interest in Equations 3.11T and 3.13 is the per atom energy,

L. To compute this value, the Rose equation of state is used |77 ]:

N ~{} l~(_x ) “ 1
E'(R)=-F l+(1~(zltt— } J(l e (3.28)
R
where att and rep are adjustable parameters, not shown in the universal equation of
state, necessary to adjust the attractive and repulsive energies in the MEAM poten-
tal to fit ab initio calculatons. The parameter ais defined as [38]:

a=oa|—-1 (3.29)

and

(3.30)

where R is the equilibrinm nearest neighbour distance and B is the bulk inodulus,
Q s the atomic volume for the solid phase, K is the diatomic torce constant for the
! I
gas phase, and " is the cohesive energy for type fatoms in the reference structure.
Near equilibrium, £ is extremely well-defined as it s computed directly from ex-
| , ) ,
perimental data. Away from equilibrium, it depends entively upon the equation of

state, which behaves reasonably for a>-1 1771,

The final con  onent of Equations 3.1 1 and 3.13is the embedding function, 1, Itis

defined to be asimple function of the electron density [38]:
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F(n)=ALE""In(n) (3.31)

where A is vet another parameter to be determined. The logarithmic dependence

was chosen as to provide the correct correlation between bond length and energy

[36].

Table 3.1: Summuauny of the parameters to be determined in the MEAM potential.

PARAM DESCRIPTION PROCEDURE
" cohesive energy dircct from experimental data
, }
R’ cquilibrium necarest neighhour distance direct from experimental data
y l 8
exponential decav factor [or rose equation of cquation 3.30 provided att and rep
¢4 . .
i state small: variational method otherwise
" composition-dependent electron density scal- unity for monatomic systems: varia-
n . - . . . . ’ .
‘ ing factor for partal clectron densities tional method otherwise
A scaling factor for embedding energy variational method
, ,
(h exponential decay factor for partial elecuron -
Jii . ! ‘ variational method
: density »
. i
i exponential decay factor for partial elecuon -
5 . o ‘ variational method
/ density 7,
o) exponential decav factor for partial electron -
/f - . (0 variatnonal method
: clensity n'
o exponential decay factor for partial eleciron -
/’f ? . e : variatnonal method
' density n
[0 weighting factor for pardal clectron densiy .
(h unin
' n
¢
welghtng factor for partal clectron density .
A ” (|“T o I vartational method
!
i
. weighting factor for pardal electron densiy o
[ ) o 8 ! variational method
’ )/
N welghting factor for partal clectron densiy .
- (‘T o ! : variadonal method
/ n-
I
att auractive adjustment for rose equation ol state  variational method
rep repulsive adjustment for rose equation of state  variational method
. adjustable parameter in screening lactor variatonal method
nin -
) adjustable parameter in screening factor vartational method
max
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A summary of the parameters required to create a tunctional MEAM potential is
provided in Table 3.1. In early applications of the MEAM, attempts were made to
define eachv known parameteras: nction of a known experimental quantity (or
quantities; see, for instance, [38]). Two problems exist with this approach. First,
several of the parameters (eg. £ 7, 7, A attand rep) appear unable to be ve-
lated directly to an experimental quantity. Second, the equations which do exist o
relate parameters to known quantities are true only in the specific case of A equal to
unity and att and rep equal to zero. Due to these limitations, and a marked increase
in computing power, modern fit techniques use a completely vartational approach
(sce, for example, [37. 39, 40, 78]). In this work, a variational method is adopted
to determine all unknown parameters. In the next chapter, the experimental data

used to characterize the MEAM potential parameterization is presented.
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4. MEAM PARAMETERIZATIOM

To determine the parameters i Table 3.1, a variety of thermoclastic, structural,
point defect and surface properties are computed theoretically and compared
divectly to their experimental values. In this chapter, the theoretical methods to
calcudate cach propertv are  seribed. To begin, the thermocelastic properties will

be discussed.

4.1 THERMOEL._STIC PROPERTIES

To compute e static structural properties, such as the lattice constant, cohesive
energy and bulk modulus of a svstem, it is sufficient to consider total energy as a
function of volume for the reference struetre. The equilibrium lattice constant is
thus defined by the volume at which the total energyis minimized: correspondingly,

the cohesive energy is this minimum energy per atom in the systen.

To detevmine the bulk modulus and its pressure derivative, one must compute en-
ergy as a function of volume and subsequently fit this data to an equation of state.
As the fit procedure is fullv automated. crroneous fit pavameters mayv be reported
it the data is discontinuous or noisv. For this reason, two equations ol state are con-
sidered which, at absolute zevo, are equivalent. These equations of state are known
as the Murnaghan equation of state [79. 80] and the Birch-Murnaghan third-order
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isothermal ¢ ation of state [81]. In the event that the parameters derived from

each curve (it differ by more than 2.5% . the MEAM parameter set is disregarded.
It the fit parameters fall within this tolerance, the datais assumed to be continuous

and the htappropriate.

The Murnaghan equation of state is based upon the assumption that the bulk mod-
ulus of asolid compressed to a finite strain with respect to pressure behaves linearly.
For a fixed mumber of particles at a temperature of absolute zero, pressure and

volume are related by the expression | 7¢

B (v
rPiy)y=-= (i] -1 1.1
() BV b
wheve
R
B=1< (1.2)
an,

/

and BV an Pare the equilibrionn bulk modulus, volume and pressure respective-
Iv. Furthermove, at absolute sero, pressure Is assuumed o be a functuon of volume
onlv [79]:

d v
Poy = —L (4.3
dl

Bv equating L1 and L3 and integrating. one obtains an expression lor energy as a

function of volume, known as the Murnaghan equation ot state [ 79]:

AR
vy =Bl _(Lj +1|+C (1D
BB 1LY

wheve Cis a constant of integration:
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It has been shown that Equation 1.1 is not well-behaved when using standard non-
linear least-squares fitting routines [80]. Hence, to facilitate curve-fitting, Equa-

tons -t and L5 mav be re-written as [R0]:

BY \ v
— B{,(IJJ{ j —1|+E, (1.6)
BB, -1) v v

As mentione  previously, a second equation of state 1s necessary 1o ensure that the

(V) =

fit parameters are appropriate. The Birch-Murnaghan equation of state is chosen

for this purpose [81]:

At absolute zero and low pressures, the parameters devived from the Murnaghan

an - Birch-Murnaghan fits should be equivalent.

Once the bu  modulus and its pressure derivative have been found. the shear elas-
tic constants, y and ', are next computed. To determine the shear elastic constants,
the method of Baskes is used [36]. In this method. the energy, £, . ol the reference
structure. periodic in all three dimensions. is calenlated. Nexto a specitic strain s

applied to the same lattice, as given in Equation 1.8 [36]:

=z forny

{?

N=xtoy, o vy

, | 1.8
=1+ 9), _\":(l'—\). "=z fory’ (1.8
+z
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where xyzare the reference lattice vectors, a7y, 27 are the strained lattice vectors
and ¢ is the strain coctficient. The atoms in the lattice arve then relaxed while the pe-
riodic vectors are fixed at the strained values to vield the relaxed energy, I, Finally,

Equation -LY is used to compute the shear elastic constants for cubic structures | 38]:

e ‘ (-£.9)

where Qs the volume of the svstem which is conserved under each set of straimed
coordinates, as shown in Figure 4.1, and the second derivative of energy with re-

spect to strain is given by [36]:

U . (-1.10)
(&N =
7
O L - L
o :( l‘ -2 () (11D

for y and y' respectively. Combining Equations -1.9 and 4.10 and 1.9 and -L11 gives
linear expressions for energy versus ¢, the slope ot which is y (L12) and y ' (4.13):

2

6(1')I ~ )= (L12)
PP ‘
LA (1.13)

The linear expressions for 3 ad p'given by Equations L 12 and L 13 are valid only
in the linear viscoelastic reg 1e; that is, they hold for small values of ¢ only. Tn tlns
work, encrgy is computed for & trom 0.5% to 1.0%, values which are large enough
to avoid significant computational errors, but small enough to remain in the linear

reglornt.






1
C= B (L17)

9
Co = B2 (1.18)

Here, (fH. (f] and (f“ form the (‘()mpl(*t(' clastic constant tensor for a v ic crvstal

svstem, which due to svimmetry has only three independent parameters [82]:

("n (“u ( 12
(‘u‘: C ( 12
("1-' ("w (“1 | ’ ’ :
C = ) ) 1.19
Y . . . (;H . . ( )
(“u
(;n.

where, for readability, the dots represent zero. Additionally, the inverse of this ma-

rix, S”‘ will be required in the subsequent analysis:

(G Gy G
D D D
_& ((‘II +(:I‘_‘) 7(1‘_’
D D D
o Co (Co+C)
S D
S, =C,'= v b (1.20)
1
("H
1
¢,
1
(‘II
with
D=C L0 e (1.2



Once 3, (.‘” and S” have been determined, an extensive thermocelastic analvsis as
performed by Maver is carried out [83]. The benefits of this analysis are two-fold.
First, addinonal parameters necessary to calculate curvatures and forces i canti-
lever systems, such as the shear modulus, Young's modulns and Poisson’s rato can
be computed divectly. In present work, these parameters are assumed equivalent
to those of the substrate: this analvsis provides an additional means to determine
the parameters in the event that the additional Tavers are comparable in thickness
to the substrate. Second, these calculations provide insight into the parameter 537
(Equation -1.2). This paramcter is difficult to measure experimentally (ef. Tables
5.5 and 5.6): in most work, the value  sed to fit B s obtained divectly from ab initio
calculations.  Tn what follows, it will be shown that B " can be related to two known
physical quantities, the Griineisen coctlicient and the lincar thermal expansion co-

efhcient, and that present estimates of ) "from «b initio calculations mayv be tHawed.

To begin the additional thermoclastic analvsis, the shear modulus, G, is computed

using |R3|:

v . l v A (9 1%
G=Gpy = ;((’\'...;,u + G ) (1.22)
with:
SGyw =G = G +3C and
5 , : o
.——:4(5” _'S[:)’L‘“u
(,an\\

Knowledge ¢ the shear and bulk moduli allows divect calculation of Poisson’s ratio,

v, and the Young's modulus, Y respectively [83]:
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B-=C
1 3
= (-1.23)
5} 1
B+ G
3
y 9B
B 10,
[+3 B (124
G

The shear and bulk moduli mav also be used 1o compute the mean sound velocity,

210,
v [83]:
7|
{2 ] 4 -
o= = =5 (-1.25)
m k% ,f'y "r
v
where:
G .
U o= [— I8 the transverse sound \'('I()Cll}‘.
P
4
B+ G
o = 3 is the longitudinal sound velocity, and
=g — A

/)

p is the density of the material,

which in turnis used to caleulate the Debyve temperature, 7)) [ 83:
|

“TAJH, (1.26)
‘ r M

]

s

h
k,

where Nis the number of atoms i the unit cell and A and k, are the reduced Planck
and Boltzmann constants, respectively. Next, the Debyve temperature is used to find

the spec ¢ heat capacity, ¢ [83]:
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Vol
n i rl‘ R ‘nl N
(T(/)::gmk“[ffj [ ———dx (1.27)

h 1l ((“*l)_

Finally, the coctlicient of lincar thermal expansion. o, may be determined [83]:

o Looal(r)
a (T)=n, (1.28)
3
where p s the Griimeisen cocicient, found by fitting energy as a function of vol-

ume to the following equation of state [83, 81]:

\ fre v l
(v , | — |- ——|+C (1.29)
e \‘u

~

il

_——n
G

6 6
and C=17 s treated as a constant during the fit. Since the cocefticient of Tinear ther-
mal expansion is expermmentally well-defined, this method provides an additional
wav to validate the Murnaghan - Birch-Murnaghan fits. Spectfically, this formalism

allows B 10 be estimated indirectly using experimental data as will be discussed in

Chapter 5.

4.2 STRUCTURAL ENERGY DIFFERENCES

The next series of data used 1o quantify the MEAM potenual parameterization
arc the structural energy differences between the reference structure and the dia-
mond. face centered cubic (FCC). body centered cubice (BCCH) simple cubie (SC)
and hexagonal close packed (HCP) structures. As in Section L1, the lattice con-
stant for cach structure is defined by the volume at which the energy is minimized.
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Additionally, the encergy difference, 11 between the reference structure and any

otherstr nre ais given by
AL, -, ——I, (-1.30)

where £ and [ are the minimized energies and N and N are the number of at-
¢ ‘ C
oms for the a structure and the reference structure, respectively. A sunmmary of the

primitive and basis vectors for each structure used in this work is given i Table L1,

4.3 POINT DEFECTS

Point defects in the form of vacancies and interstitials are next considered’. In cach
case, a reference supercell consisting of 1T0x10x10 primitive cells is constructed.
Periodic boundary conditions are not emploved®; rather, the outer five wers along
cach direction +x, =y and =z are fixed and removed from the energy calenlations 1o
simulate bulk conditions within the cell as shown schematically in Figure 1.2, The
first step in cither defect calenlation is to compute the energy, L.oof the reference

cell. After computing Iy, the atom at (0.0,0) 1s removed to ereate avacaney, and the

'Point defects are chosen due to the availability of experimental data. Further. in-
terfacial mix g (refer to Chapter 1y will create (llsnl})n()ns in the perodicity of the
bulk Lattice (s) which are observed in the form of vacancies and mterstuals.

“The choice of (ll()ll)])t‘l'i()(li(‘ boundary conditions and supercell size are not eriti-
cal. Negligible differences in energv are observed provided the sapercell is large
enough to prevent replication off the defect in the case of the periodic regimne,
and 1o spatially allow enough unfrozen atoms to permit complete relaxation of
the atoms surroundig the defect (typically, this includes the third 1o Tourth near-
est neighbours). This particular method was adopted since nonperiodic sinula-
tions are computationally more efficient than their periodic counterparts, and a
LOx 10x 10 supercell alwavs allows sufficient free atoms for complete relaxation.
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resultant system is relaxed with energy £, The relaxed vacancey formation energy,

I/, 1s thus:

(1.31)

where Vis the number of atoms in the reference supercell. The vacaney migration
energy. I s defined to be the difterence between the total energy o the system
before the migration of an atom, I7. and the saddle point energy, I, during migra-

(ion:

1’:;.'“"‘: _ 1

p

; (-1.32)

Figure 4.2:  Schematic rep entation of the 2D crosssection of the supercell con-
structed for point defect caleulations. Here, the vellow arcas represent lavers of
atoms which are frozen and 1 oved trom the energy computation, while the grey
arca represents atoms which are free to move about the cell.
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Table 4.1:  Summary of the primitive and basis vectors for the suructures consid-
ered in structural energy difterence caleulations.

No.
PRIMITIVE BasIs Basis
STRUCTURE VECTORS ATOMS VECTORS
A, = «(1,0.0)
Simple Cubic A _ _
SC) A, = a(0.1.0) 1 B = (0.,0.0)
A, = «(0.0.1)
4 = 2L
Face Centered "
Cubic A, = =00 ] B = (0.0.0)
(FCC) 2
1
A = — Lo
i, 21 1.0)
«
A - 5(71.1.1)
Bodv Centered p
Cubic A = S(I.fl.l) I B = (0.0.0)
(BCC) =
A = T LL-n
Y
A = %(0,1,1) |
- B = —( L-1 )
. B ( 8
Diamond Cubic A, ;( 1.0 1) 2 |
- B, — —(L11
L - L

a
A, = —(LLO
L= S(LL0)

A= 2 J3)
9 B =
Fexagonal !
Close Packed

a . 9 ‘
(HCP) A= (s 5o L j

A, = c(0.00)

SR NN

=
~

.- -
wllv
.
W —
S

16



Figure 4.3:  Schematic vepresentation of the method to compute the vacaney mi-
gration cnergy. In this figure, position A represents a vacancy, position B represents
a nearest neighbour atom and — osition C represents the maximmm energy (saddle
point) along the lincar path B to A

where the saddle point cnergvis co puted as follows [85]. First. in reference to
Figure 1.3, it 1s assumed that the migration of a vacancy from position A to B is
energetically equivalent to the migration of an atom from position B to A, At the
saddle point, corresponding to position G, the energy of the systen is at a maxinuum
for this particular migration route. The atomis fixed at position G, and the other at-

oms are allowed o fully relax. This energy corresponds to the saddle pomnt energy.

Finallv, the activation energy of vacancv diftusion, Q. is merely the sum of the torma-
tion and migration energies:

O O e (4.33)



To compute the energy of the interstitials, rather than remove the atom at (0,0.0),
an additional atom is inserted at a specifie coordinate as described in Table .20 As
in the vacancy calculations, the lattice with the interstitial is relaxed, vielding energy
L. The relaxed interstitial formation energy, 1:‘,’. 1s then:

N +1
AY

L, (134

DR D

Table 4.2:  Summary of the inters ial coordinates considered in this work.

Host INTERSTITIAL INTERSTITIAL
STRUCTURE NAME COORDINATE
1 13
Diaunond Cubic Tewahedral! R = [—l—l—l]
115
Dizmond Cubic Hexagonal! R = —,——,—]
8 88
Face Centered Cubice [ 100] Dumbbell” Figure 1.4
' Reference |86

9

- Reference [87]

4.4 SURFACE PROPE tTIES

To compute the surface propertes of the svstem, a 10x10x10 supercell is again con-
structed. For thisapplication. the bottom five lavers along -z are frozen and omitted
from the energy calculation to simulate the bulk material, as shown in Figare 4.5,
The svstem s eriodic in vand y but not = the top laver along +2is the free surface
Laver to be studied. The surface configurations considered in this work are sum-

marized in Table 1.3,

h
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O

Figure 4 The FCC[10C Dumbbell interstitial. The solid blue circle depicts
an atom shifted from its initial face centered position, while the solid red circle
rep  ssentsan mserted mterstitial atom.

In each configuration «, the encrgy per surface atom, £ is given by:

rbulk
atonn I,Imlk _ ‘\u [:
‘or ’

135
‘ N (135

ret
1ed

where [P and £ are the energies and N and N ave the number of atoms

in the « and reference supercells respectivelv. It is also beneticial to consider the
surface energy as a per area quantity, [ as doing so permits direct comparison

with experimental data:

AVh”IL
_n—l“‘.umu (4.3(‘))

l"'“m _
NG «
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Figure 4.5:  Schematic representation of the 2D crosssection of the supereell con-
structed for surface energy calculatons. Here, the vellow area represents lavers of
atoms which are frozen and removed from the energy computation, the grev area
represents atoms which are free to move about the celloand the blue arca represents
the free surt ¢ to be studied.

where A is the surface area of the supercell in contiguration e Fina -« the relative

plane spacing, Ad "= is defined as:

Ad” - 41{';‘)

o 12
(/l el

(1.37)

where d * and dm“ are the distancees between the surface plane and its nearest

neighbour in the a and reference supereells respectively.
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Table 4.3:  Summury of the surface configurations considered in this work.

Host SURFACE
STRUCTURE PLANE CONFIG. DESCRIPTION
) (100) . ; .
Diamond Cubic Atoms in reference configura-
) (110 Ideal ton: Fnergy computed without
Face Centered Cubic O relaxation
. {100) . .
Diamond Cubic Atoms in reference configura-
' (11m Ix1 Relaxed ton; Energy minimized thereby
Face Centered Cubic A relaxing surface atoms along @
Atoms in 2x1 conliguration
. s . (Figure  LOA)Y. Fnergy mini-
Diamond Cubic {10Mm 2x] Dimer - o2
mized thereby relaxing surlace
atoms along =
Aoms in x5 configwiration
. . N . (Figure  L.OB): Fonergy  nani-
Face Centered Cubic (100} x5 Hexagonal o . n .
mized thereby relaxing, swrface
atoms along =
Atoms in Ix2 configuration
. oy O ag (Figure  L6CH Energy mini-
Face Centered Cubic (b1 1x2 Missing Row ‘ ‘

mized thereby relaxing surface
atoms along <

4.5 ALLOYS

The alloy (SiAg, SiAu and AgAu) parameters are determined using the properties
of binary clusters, which are available expermmentally, and structwral energy differ-
ences, which wre calculated using DFIC An exhaustive literature survey indicates
that SiAg. SiAu and AgAu do not form stable allovs, and so the extensive experimen-
tal data used o fit the elements is notavailable for the allovs. Fortmnarely, there are

fewer parameters to consider in the allov fits (n,". I'j//“, «,. R,,” att,./.. rep,. (

min

PR i k) the imited properties used here are sutficient 1o deterniine them.
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Table 4.4:

ered in strnctural energy difference calculatons,

Sunimary of the primitive and basis vectors for the structures consid-

No.
PRIMITIVE BaAsis Basis
STRUCT. VECTNRS ATOMS VECTORS
Bl‘l A= S0
(NaC:D) - B = (0.0.0) (Na)
) A, Z(1.0.1) 0 I
SiAg ’ P B, = S(LLI) (D
SiAu n a 1.0)
AgAu ' 9
LI,
(CuAu) B = (0,0.0) (Au)
I :
Si,Ag A, al 0,0) B, = E(O'l’l) (Cu)
Ag St A, a(0,1.0) J ]
- B, = —(L0.1) (C
Si,Au A, a(0,0,1) ‘ 2( ) ()
S B Loy (©
AuAg b E( LO) (G
‘.\4" ,\l‘
B = (0,0,0) (Ca)
1
B, = S(LLI) (Ti)
B2, A «(1,0,0) |
(CaTiQ,) A, C1L0) 5 B, = E((),I.l) (O)
. 1 0.1 1
AgAuSi, ! ( ) B, = S(Lo01) (O)
I
B, = S(LL0) (O)
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No.

PRIMITIVE BasIs Basis
STRUCT. VECTORS ATOMS VECTORS
B = (0.0,0) (B)
B, = %(0,1,1) (A)
1
B, - ;(l,(),l) Lo
Diamond ;
Subst. A = a 00) B = S(L1O) (N
(A;B) A, = «(0.10) 8
B, = =(LLI) (A)
Si Ag . = a(0,0.1) .;( )
Si_Au B, = 11(3.3,1) (\)
]
B = —1(3,1,3) ()
oo,
B, = —l(l,.%,.i) (A)
Boo= (0,0.0) (Cr)
B, = %(1,1.1) (Fe)
| .
B, = ;(1,0.0) (Fe)
A = S . ‘
116 B, = U\(),l,()) (Fe)
(CrFe Ni) S . |
Y B, 3(0.0.1) (Fe)
AuSt A -
W L, = y —1) | .
) B, = (0 1) (ND
] .
B. = ;(l,(),l) (N1)
1
B, = V‘I,l,()) (N1)




No.

PRIMITIVE BAsIs BAsis
STRUCT. VECTORS ATOMS VECTORS
I B = (0,0,0) (AD
{
) A = —(0.L1) 1
L2, 2 B, = ;(—l,l,l) (M)
(Al(‘u\_,Mn) P ﬁ(l,(),l) |
: 2 B, = I(—l.—l,—l) (Cu)
SiAu,Ag A = ﬁ(“.()) |
‘ 2 B, = :(1,1,1) (Cn)

[ {
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5. RESULTS AND DISCUSSION

5.1 COMPUTATIONAL METHOD

5.1.1 DENSITY UNCTIONAL THEORY

DFT calenlations' were performed using the ABINIT code version 5.8.3 [83, 89]
within the GGA. The exchange-correlation functional used was that of Perdew,
Burke and 1 azerhot® [55]. A Monkhorst-Pack 1T6x16x16 k-pomt gnrd was nsed
in all computations [65]. The electronic wavefunctions were expanded e plane
waves with a kinetic energy cut-off of 25 Tartree, Inall computations, total energy
was converged to approxini v 0.1 meV with respect to k-point sampling, energy

cut-off and cell size.

Psendopotentials were gencrated using the OPIUM software version 3.1 190] and

the RRKJ optimized method [69] with a target Kinetic energy cut-off of 25 Hartree.

'Single-threaded computations were executed on ACENet chusters Placentia2, Ma-
hone2 and Glooscap. Simulation times vary on the order of one week (elements)
to one month (ternary allovs).

“In order to remain norm-conserving. the pseudopotenual is correlated to all-clee-
tron results computed with a given exchange-correlation functional. For this rea-
son, it is critical that the psendopotential generator and the DEFT package emplov
the same XC funcuonal. At present, OPTUNM, FHIPP and others cannot create pseu-
dopotentials usino advanced XC functionals, and so the PBE GGA functional com-
mon to both Ol Mand ABINIT w  chosen.
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Sciw relativistic corrections were included in the pseudopotentials for Ag and Au;
no relativistic corrections were necessary for Si. Valence and core orbitals, orbital
occupations, optimization radii and cigenvalue estimates were chosen such that
transterability was maximized (<135 meV error per configuration in ‘Table 5.1), dis-
crepancies between all-electron and pscudopotential calculations were numimized
(<2 meV)y and the resultant pseudopotential properly reproduced experimental
results (equilibrinm bond lTength, cohesive energy, bulk modulus and vacancy for-
nution energy). A sunmuuy of the electronic configurations chosen for Ag. Au and
Siis presented in Table 5.1,

Table 5.1: Electronic con rurations used in the generation of pseadopotentials.
Here, the reference electron contiguration is provided for the clements, as well
as the electronic orbitals deemed to be valence or core electrons along with their

occupations for the psendopotentials. Finallv, the valence configurations tested for
transferability are provided.

# of e REF. e PP PP TRANSF.
ELT. REF/PP CONFIG. CORE VALENCE CONFIG.
Si 14 14 ) Is” I 3spid” 3stpid”
23p” 29p" 3sp'd”
Ssp Ssp !
,\g 47 16 ls- S I fd" S
25pt 267" Ssp! SRR
Sefpid 3 phdt” L™ Hsp!
vt Ispt FA' Dslp!
A
An 70 78 147 1+ 5" Sl Gyp
23pt 2vpt Gs'p” ' Bapt
St S prd™ M Bt
b prdie I8 pretopt! Bl 6s"p!
O i Bs'pt B! G
ny!

ot
~1



5.1.2  MODIFIED EMBEDDED ATOM METHOD

MEAM computations® were completed using the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) software package versions 21-Mayv-08 (el-
ements) and 7-jul-09 (elements,/allovs) [91]. The antomated parameter fitting
procedure is as follows. An initial datacset of 1.500 entries, an example of which is
provided in Figure 5.1, 1s collected with the MEAM parameters assigned randomly
over an extreme range, as shown in Table 5.2 The minimum parameter resolu-
tion (step=size) is O0.1. The bulk modulus and clastic constants, identitied as the
critical parameters in the MEAM fit [36 = 38], arc used to decide whether or not to
compute a full data set. For the initial step, a £20% tolerance is used: should the
computed result ditfer with ¢ expernmental value by more than this, the computa-

tion is stopped and the parameter set discarded.

Table 5.2:  Inital parameter ranges for MEAM fitalgorithm,

PAramrTrr MINIMUM MAXIMUM

o 0.1 10.0
A 0.1 5.0
g -10.0 10.0
1
(o -10.0 10.0
att/rep 0.0 10.0
; 0.5 3.0
nmim
« S(! 6.0

4
mie nin

*Mult-threaded (MPICH2) computations were executed on ACENet clusters Pla-
centia2, Mahone2 and Glooscap and a local sever (Baskes). For the it procedure,
deplovment across four cores was optimal with the system sizes considered. On
Baskes. elastic constant calculations execute on the order of thirty seconds; a com-
plete data set takes on the order of hve to cight minutes to compute,
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Once the initial 1,500 entries have been computed. the datais next analvsed. The

mean-absolute error (MAE) is computed for each entry:

(5.1

EAND i \ wde et
MAL - \Z‘/ [

where /" is the caleulated MEAM value, /2" is the experimental value and Vis the
number of va - es perentry. The entries are sorted by MAE, and the ten entries with
the lowest MAE are considered. New ranges are defined tor cach MEAM param-
cter by simply considering the minimum and maximum values +5% of a particular
parameter in the tuncated dataset. An additional 500 entry data set is collected
with the redefined parameter ranges, a parameter step-size of 0.05 and a tolerance
of 5% on the  ulk modulus and elastic constants. The parameter ranges, step-sizes
and tolerances are continually refined until the desired parameterization is found.
The final, refined parameter sets are as summarized in Table 5.3, In the subsequent

sections, the parameters identified i Chapter will be examined.

5.2 ELEMENTS

To begin, the static structural properties, including the lattice constant. cohesive en-
ergy. equilibrinm volume and bulk modulus were determined for cach element by
cousidering ¢ energyvs.ve ume data. The results are saummarized in Figures 5.2
through H.4 for Si, Ag and Au respectively. Due to the inherent difficulties in con-
structing pseudopotentials voich reproduce exactly the experimental vesults, two
figures are provided for cach element: the as-obtained data for the DFand MEAM

calculadions, and an additonal graplt depicting the DFT and MEAM calculations
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putations provide the proper curvat

values for cohesive energy and lattice constant.

with a common ongin to highlight the similarity in curvatures'. The agreement
between the MEAM results and experimental data is exemplary, and the DFT com-

es and are within 2.5% of the experimental

Table 5.3: Final MEAM parameter set.
PArRAM  Si Ag Au SiAg SiAu AgAu  SiAgAu
LY 1.63 285 3.03 3.87 427 2.60
R" 2.35 9 89 28K 268 0.5 2.8
a 4.87 6.05 6.61 5.07 LO1 65.19
n' 5.35 295 1.76
A 1.007 1.078 1.03%
g +.003 4414 5436
g 3.122 3.698 180
fre 7422 6.2 1900
g 7431 2.578 3.600
(o 1 1 1
/:‘ b 4.292 4.326 1.737
e 5118 2335 1.950
(e -1.193 3.049 2.7
att 0 0 0 0.57 0.13 0.21
rep 0 0 0 0.94 1.64 0.05
- 1.70 1.60 1.50 (SESEAg): (SESiAu): (Ag.Ag.Aud: 1.06
1.50 299 1.30
(SLAg A (ShAwAu): (Ag.uAu):
1.68 1.50 1.21
(,‘II )0 2B 3.20 (SLSLAg): (Si.SiAw: (AgaAgAu): 154
3.50 948 1.20
(SLAgAg): (StAnAu): (AgaAunAu)
431 QT at
}

"This is done for displav purposes onlv: the common origin graphs have no bearing

on the MEAM fits.
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Next, the the  noelastic results for Si, Ag and Auware presented in Tables 5.1,5.5 and

H.6 respectively. The results are, in genceral, excellent. For Sicthe MAE (of. Equation
5.0 in this work is 0.9, compared to the MAE of 2.7 tor the first nearest neighbour
parameterization of Baskes [36] and 2.6 for the second nearest neighbour param-
eterization of Lee [37]. Note that these MAEs were computed using only param-
eters common o all groups with a well-defined experimental value, Similarly, for
Ag and Au, the MAE in this work are 0.3 and 0.2, compared to the second nearest

neighbour parameterization of Baskes [38] which gave a MAE in cach case of 0.1,

Itis interesting to note the Lrge disagreement with the coetficient of hinear thermal
expansion, «, for Si. As this parameter is a function of the bulk modulus, spe-
cific heat capacity, equilibrinm volume and Grineisen cocflicient, the only truly
unknown variable is the Griineisen coeflicient as the other parameters agree strong-
v with experimental values. Thus, one mav solve Equation 123 lor the Grimeisen
coefficient, assuming that « takes the experimental value of 2.6x<10" K'. The re-
sultant Grimeisen coefficient is 0.93: slightlv higher than the value presented in
literature [93]. Using this value, one may construct a theoretical set of energy vs,
volume data to which to complete a Murnaghan fic. The result.as deicted in Fig-
ure 5.0, suggests that the value of B, mayv necessarily be closer to 2.2 rather than the

4.2 suggested by ab initio calculations”.

“The bulk modulus pressure derivatve, B, and the Grimeisen ('()('('fi(i( ne yooare
ditficult to en  irically corvelate, as shown by Slater and others [95]. 7, which is a
measure of the variation of pressure with internal energy ata constant \olmn( and
B, both serve as a link between the clastic and thermal properties. In order to un-
derstand fully the implications of the adjusted B " value. one must consider higher
order elastic constants, as well as hiy pressure ‘thermal and clastic propertes in
conjunction with the low pressure valnes given in this work.
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Figure 5.2:  DFT and MEAM cnergy vs. volume curves for Si. a) Data as-obtained.
b) Data recentered to common onigin.
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Table 5.4:  Thermoelastic results for Si. Distances are given in Angstroms, en-
ergies 1 eV, clastic properties in GPa. velocities in m/s, temperatures m K. heat
capacities in J/mol-K, and thermal expansion coefficients in 10 K'. Thermal prop-
erties are computed at 293 K. Data from [37] unless otherwise noted.

For comparison with other empirical semiconductor potentials, values for the Still-
inger-Weber (SW), Tersoft (Ters), Environment-Dependent Interatomic Potential
(EDIP), Highlv Optinnized Empirical Potential (FHOEP) and first (INN) and second
(2NN) nearest neighbour MEAM are provided from literature [37]. A schematic
representation of this data is presented in Figure 5.6.

THiIS WORK

Expr/ 1NN 2NN 1NN
DFT SW Tree« ED HOEP MEAM MEAM DFT MFAM
a 5 3l 5.31 5431
Joul 1.68 1.63 1.63
B 07 108 98 99 110 98 99 96.2 99.4)
0 99
B’ 4.2 2,93 1.3 4.97 1.01 4.29
/G, e 0w T 72 7 70 7
y’ 50.5 50 50.6
C 168 162 143 175 16:4 161 165
. 65 RY 70 62 6 67 Ok
CC, 103 30 68 IR 83 100 97 101
C-C, o 15 09 6 4 -15 -1 15
G 52! 66.1
Y 185! 162
v 0.23' 0,22
v, 0.25 0.5 1.75
v 5395
v, 8930
v 8435 5891
T, 6 645
‘ 19.8' 19.8
a, 2.6 1.89

"Reference [36]
"Reference |92
‘Reference [93]
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Table 5.5:  Thermoelastic results for Ag. Distances are given in Angstroms, en-
ergies in eV, elastic propevties in GPa, velocities in m/s, temperatures in K, heat
capacities in J/mol-K, and thermal expansion coctficients in L0 K'. Thermal prop-
erties are computed at 293 K. Data from [39] unless otherwise noted.

THIS WORK
ExpT/ 1NN 2NN 1NN
DFT MEAM* MEAM DFT MEAM
o 4.00 1.08 1.09
I 285 2.80) 2.85
B“ 108.7 98.1 1085
5.87
3! 5.01 N7 4.906
" 3.76 - 6.1

y/(]” ol 6.5 511 511
)’ 16 17.1
(]” 1315 131.5 131.3
C, 97.3 97.3 97.1

¢ -G, RERY RERY

C .

[ . (“l 16.2 18
G 30! 33
} ERY R9.49
X 0.37' 0.36

20
Y, 2.2 Q77 2.3
235"
v 1772
{
38
v, 3811
o V680! 1996
T 1514 e
[“ D95 230
‘ 252 24.2
a, 191! 16.9
*Reference [38]

Reterence [81]
'Reference [92]
‘Reference [93
*Reference [0

‘Reference [95] (experimentally assessed values of B



Table 5.6:  Thermoelastic results for Au. Distances are given in Angstroms, ¢n-
ergies in eV, elastic properties in GPa. velocities in /s, temperatures in K, heal
capacities in J/mol-K, and thermal expansion coetficients in 10" K'. Thevmal prop-
erties are computed at 293 K. Data from [39] unless otherwise noted.

Baskes' Kuo? THIS WORK
Expr/ 1NN 1NN 2NN 1NN
DFT MEAM MEAM MEAM DFT MEAM
« 108 405 408
1{1“ 3.93 3.60 3.03
B, 108.3 160.9 1085
5.4
B’ 6.06 5.45H 5.32
! 3R] - 6.29
v/ C,, A5 17 60.9 15 5.4
7' 14.6 ERN! 16.1
)H 201.6 201.5 202.0
(JI‘_, 169.7 169.7 169.7
(3“-(,‘1‘_, 31.8 303
G-, 1243 1213
G 27! 30.0
} 78! R5H.2
y (.44 042
y, :j‘:;, .63
v 1216
v, 33749
v 2030" 1111
’1‘“ 163" 163
‘ 25.6' 2406
a, 14.1! 11.6

'Reference |38]
2Reterence [40]
'Reference [92]
"Reference [93]
¥Reference [91]

‘Reference [95] (expernmentally assessed values of B
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Figure 5.5:  Determunation of B“'l);lse(l on theorcucal Griineisen data.

Continuing the analvsis, the stmcnral energy differences are next summarized in
Tables 5.7 through 5.9. Again, the results are excellent. For Si, a MAE of 0.03 is ob-
served, compared with the MAE of the first and second nearest neighbour MEAM
of 0.09 aud 0.02, respectively. Similarly miniscule MAE were observed for Ag and
Au. The slightly Larger discrepancies observed in the HCP enevgy difference in Ag
and Au are attributed to the fact that the HCP rato ¢/« was held in this work at the
ideal value of 1.63, but was treated as an optinnzation parameter by other authors.

Bv optimizing both cand a, a lower total energy may be found.
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Table 5.7:  Structural energy differences for Si. Cohesive energies are given in
eV, lattice constants in Angstroms. Data from [37 ] unless otherwise noted.

THIS

WORK

EXPT/ INN 2NN 1NN

STRUCT DFT SW TERS EDIP HOEP MEAM MEAM MEAM
Dia I -163 163 63 -h6s ~4.63 ~£.63 SR -1.63
a 513 5% OB 513 5043 5003 R 543

SC Al 0.35 0.29 52 0.53 .29 0.26 (.34 0.37
a 2.53% 261 2.5 2.50) 261 262 260

BCC Al 0.53 0,30 43 59 0.72 04D 0.19 0.50
a 3.00 325 308 3.2 3.5 3.1 313

FCC AL 0.57 0.42 076 b8 0.70 0.31 0.57 {168
a 3.89 L15 300 £.O8 1.19 3.08 3.90

HCP AL .55 R 0.76 (3.93 0.67 0.31 .56 0.6
a 27 3656 276 256 2.96 Q.82 276

c/a 1.63 .88 1.63 203 2.0 1.61 1.63 1.63

The point defects are next considered and the results are summarized in Tables
5100511 and 5.12. The results are exemplary: the best agreement for the majority

of the parameters, especially Stinterstinals, are observed i this work.

Finally, the surface properties are examined, and are summarized in Tables 513
through 5.156. While, in general, the sirface energies ave consistent with expert-
mental resnlts, this work continues to highlight one of the major failings of the first
neavest neigl  our MEAM. First o erved by Baskes for the St and Ge svstems [36],
and later confirmed in genc b [38],1tis evident that the fist nearest neighbour
MEAM has ditticultes deseribing inward surface relaxations (as vrepresented by the
Ad,, values). No suitable MEAM arameters could be found i this work which
allow for inward relaxatons and vet maintain reasonable accuracy for the other it

parameters. The second nearest neighbour NMEAM. which exists to correct this flaw,
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is clearly better suited for computations of this tvpe. However, there are dithicul-

ties associated with the adopuon of the second nearest neighbour MEAM, some of

5.3 ALLOYS

For the allov parameterization, the binary cluster properties e first considered,
and are summarized in Table 5.16. Binary clusters were chosen due to the availabil-
itv of experimental data; these were the only properties tor the SiAg. StAu and AgAu
systems for which experimental data could be found. Given that the Si. Ag and Aun
clemental parameters were optimized with no consideration for the binary cluster
propertics, the vesults are impressive. In general, the bond lengths are ighly ae-

curate, white the binding energies are alwavs higher than the experimental result.

Lasthv. the structural enervgy differences are listed m Table 517, In general, three
unique behaviours ave observed.  First, in situations where the MEAM undevesti-
mates the lattice constant, «, with respect to the DFT result. the cohesive energies
and bulk moduli tend to be larger to compensate (eg. Bl structures). In this case,
the bulk moduli derivatives are approximately equivalent. Together. these features
merely deseribe a shift in origin of the energy vsovolume curves: this is not entirely
unexpecte  given Figures 5.2a through 5.4a. The second case is the converse of the
first: here, the MEAM overestimates the lattice constant, and the cohesive energies
an  bulk moduli are smaller than their DIT counterparts. In the particular case
of the L1, structures, the bulk moduli derivatives are once again approximately

equal, and so the result of these discrepancies is a shift i origin. Towever, for the
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diamond substitations (¢f. Table -1-1). the MEAM bulk moduli derivatives are alwavs
larger than those in from DFTLL Consequently, the MEAM potential wells for the dia-
mond substitutions are much more steep than those from DI Finally, there is the
scenario where the lattice constant is approximately equal between the MEAM and
DFT computations, as observed i the ternary svstems. In this case, the cohesive
energies and bulk moduli are roughly equivalent. but the bulk moduli derivatives
are larger in the MEAM. To summarize this result, there is no shift in ongin, but
the MEAM potential well is steeper than that of the DFT. To further quantfy the
implications of these discrepancies on other physical parameters, additional work is

necessary as described in Se - on 6.2.1.

Table 5.8: Structural energy differences tor Ag. Cohesive encergies are given in
eV, lattice constants in Angstroms. Data [rom [ 39] unless otherwise noted.

THIS
WORK
EXPT/ 1NN 2NN 1NN
STRUCT DFT MEAM MEAM MEAM
FCC L 235 285 285 285
a 104 £.09 104 £.09
Dia AL 0. 16 0.66 .56
1% 0.57 6.00) 6.0V
SC. AL 0.15 0.31 0.11
a 280 267 2,66
BC.(C AL ‘())‘_‘";"; 0.0 0.06 0.0
a 327 3.21 321
FICP Al 0.003 ().005 0.005 .06
“ 228 2,01
o/u 1.61 1.63

Reference [ 38|



Table 5.9:  Structural energy differences for Au. Cohesive energies are given in
eV, fattice constants in AngstrOoms, Data from [39] unless otherwise noted.

. THIS
BAskes  Kuo! WORK
EXPT/ 1NN INN 2NN INN
STRUCT DFT MEAM MEAM MEAM MEAM
FCC I -3.93 -3.93 -3.03 -3.93 -3.93
“ 108 1OR 1.08 £.0R 4.0
Dia Al (.54 0.67 0.74
p 6.33 5.93 5.98
SC Al 0.12 0.22 0.18
“ 2.79 26D 265
BCC AL (‘)).'(‘)); 0.02 0.02 0.06 0.0
“ 3.27 3.19 307
HCP AL (()'.i())(()); 0012 0.021 0.009 007
I 228 288
c/u 1.65 .63

‘Reference [306]
"Reference [10]

Table 5.10: Point defect calculations for S, All entries given i ¢V, Data from
[37] unless otherwise noted.

TH1S WORK
ExpT/ 1NN 2NN 1NN
I T SW Teps I IP HOEP MEAM MEAM DFT MEAM
L D7 -39 282 370 3.09 3.30 3.19 3.33 3.5 3.66
DR (.33 0.37 0.35
Q 3.56 1.01
o
1' 3547 5O 345 105 311 5.74 +4.68 348
(Tev)
I _ .
! 39 —44 695 461 1.16 3.91 7.1 578 1R
(Hex)

Reference | 36]



Table 5.11:  Point defect calculations for Ag.

[39] unless otherwise noted.

All entries given in eV, Data from

THis WORK
Expr/ 2NN 1NN

DFT MEAM DFT MEAM
I 1 0.94 1.21 113
Jis .67 .92 .66
Q 1.77 1.86 1.79
E 2 86 286

(100 DB)

Table 5.12: Point defect calculations for Au.

[39] unless otherwise noted.

THis WORK
Exi / 2NN 1NN
DI MEAM DFT MEAM

X 0.9 0.90 0.91 0.91

[ 0.4 .85 0.:1

Q 1.7 1.75 1.73
A

k, 904 3.37

(100 DB

All entries given in ¢\, Data from



Table 5.13:  Surface properties as computed for Si. Energies and encrgy differ-
ences are given in eV/Atom, plane spacing ratios in percent. Data from [ 37] unless
otherwise indicated.

THIS
WORK
EXPT/ 1INN 2NN 1NN
DFT SW TERS MEAM MEAM MEAM
£C100) V.5 982 93 991 V48 013
EC100) %1 Q.47 082209 1.81 047 1.90
AL(C100) I x1 -0.03 0 -0.04 -0.40 -0.01 (0.23
Ad, d 5.1 0 7.9 3.6 10.0
E(100)2x1 0.52 061 (.81 0.50 1.01
AL(100)2x1 ""’1‘(23 R0 -1.5Y 0.90 1.8 102
Add 244 K3 -15.0 15.4 9.0 1.0
ECT0) 116 1.03 1.69 1.2 1.93
[ O Ix1 .16 (.99 1.30 1.20 1.10
ALCTTO) Ix1 () 0.0 -0.39 -0.02 013
Ad Jd 0 b3 12.6 3.5 6.0
E(110) 1.56 116 1.03 1.23 062
L1111 1.39 116 0.96 1.9 1.17
ALY Ix] 017 0 0.07 0.01 145
AL/I_,,‘d =25 () 20.3 -16.0 5.0

t

~1
2



Table 5.14:  Surface properties as computed for Ag. Energies and cnergy difter-
ences are given in eV/Atom (erg/cm®), plane spacing ratios in percent. AL(100)
Hex and AL1O00) 1x2 take the form Y or N, where Y indicates the reconstruction is
energetically favoured, and N indicates the converse. Data from [39] unless other-
wise indicated.

THIS
WORK

EXPT/ 1NN 2NN 1NN
DFT MEAM MEAM MEAM

o (1320
1100 0.06:4H
0.664 0513 0.618
(100 i -

Ea0 I (9270 (983) (118
AECT00) x| 0097
A(/I d -2 -2 n.l
10O Hex N N N
L(110) 0.802

0.911 0.753 0.778
(11
£ 1 (1999)  (1010)  (1043)
AE(LT0) 1x1 0.024
Ad . d N 104 5.6
E(110) 2 N N N
FO10) 1182
‘ ] 984 0.995 0.800
LTI (1087) (842) (677)
AET 1x] 3389
Ad . d -2 -2 1.6
©

Reference | 38|



Table 5.15:  Surface properties as computed for Au. Encrgies and energy differ-
ences are given in eV/Atom (erg/ cmd), plane spacing ratios in percent. AL(100)
Hex and AE(100) 1x2 take the for Y or N, where Y indicates the reconstruction is
energetically favoured, and N indicates the converse. Data from [39] unless other-
wise indicated.

THIS
BASKES  Kuo!' WORK
EXPT/ 1NN INN 2NN 1NN
DFT MEAM MEAM MEAM MEAM
- (1540)
E(100) 0.59 1
0,544 0.592 0591 0.59 1
(100
EL00Y 1] (1043) 140) (11381 (114
AL(100) Ix1 0
At/[),‘(/ -1 -4.3 -0 1
F(100) Hex Y N Y
[(110) 0.779
, 0.897 0.695 0875 0.793
ETO X (1115) (R42)  (1179)  (988)
ALCTTOY Ix1 -0.040
Ad d 98 7.5 0.9
F(110) 12 Y N N
E(110) 181
. 1.042 0.437 1.091 0.510)
BT X (882) (372) (998) (134
ALY Ix1 1331
Au’w/u’ 907 230

Reference [38]
"Refervence [}

~1
~I



Table 5.16:  Binary cluster properties for various systems.  Energies are given in

eV/Atom, bond lengths i Angstroms.

THIS

WORK

1NN

SYySsTEM Par M. Expr. DFT MEAM
Si, L, 166! 177" 2.20)
R 2oy 208! 2.51
Ag, L, 0.825 117t 137
R Q5% L 2.56
Au, L, 116" 1155 1.81
R 27 2,52 202
SiAg L, 196
R 2.08
SiAu I, 158! L7 1.9
R 2'250 R R
Agu L, Loy L1t 1.52
R 150 9 54 2,15

'Reference [96]
‘Reference [97]
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Table 5.17:  Structwral energy differences for a variety of compounds. « are given
in Angstroms, £ ineVand B ineV/ .\

THIS WORK
1NN
SYSTEM PARAMETER DFT MEAM

131 u 5.07 318
SiAg 15 337 1.52
B, 0564 0110

B .00 5.10

Bl “ 1.94 1.5
SkAu I 127 RE IR
B, 0.773  0.775

B, 447 501

Bl “ 5.36 196
AgAu A 2,60 3.499
B, 0.601 1.071

L D45 5.65

LI, “ 3,08 110
Ag Si I RIRD 086
B, 0.661  0.341

B 5.96 6.536

l,l_, 7 3.83 145
Si Ag I3 A5 316
B, 0552 0150

B, 5.58 1.37

L1, “ 3.6 411
AnSi I L1 377
B, 0025 0.7

B, 5.04 501

11, a 378 112
SiAu I3 4.76 3.61
B, 0.611 0.631

B, 3.79 5.08

L1, a 103 3.03
AuAg I 351 370
B, 009 0.800

B 5.80 5,18
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Tais WORK
1NN

SYSTEM PARAMETER DFT MEAM

Lt “ 4.05 4.01
Ag Au I 348 3.26
B, 0.718 0.550

b, 5.55 .25

Dia. Sub. a 5.32 5.70
SiAg I .17 3.94
B, 0525 0.826

B’ 303 4.82

Dia. Sub. 14 5.26 5.7
Si_Au I 145 1.35
B, 0570 1015

B 3.86 5.4

clro « 3.90 418
AuSi Ag, I 4.05 3.85
B, (.703 0.324

B, 190 6.33

12, a 1.52 4.53
AgAusi, I 3.70 3.87
B, 0.391] 0.363

B, 3.00 7.58

1.2, a 6.29 6.14
SiAu Ag I 377 R
B, 0811 0.649

b, 5.80 6.31
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Figure 5.6:  Normalised (MAF, MAE, ) MAEs for silicon thermocelastic (TE-
las), structural (Struct), pointdett 1 (PDefect) and surtace (Surt) properties. Sub-
total vepresents the MAEs ot all properties except surtace properties: Total represents
the MAEs of all properties. vy -0 rep sents this work: bars below the yaxis repre-
sent better fits than this work. bars above the yaxis represent an improvement in
this work. a) shows the data to scale. D) shows a truncated data set 1o highlight the
minimal improvements observed in other work.
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6. CONCLUSIONS

6.1 SUMMARY

In this work, fivst nearest neighbour MEAM parameters for Si, Ag, An, SiAg, SiAn
and SiAgAu svstems have been provided. These parameter sets have been fit ac-
cording to a variety of thermocelastic. structural, point defect, surtace and cluster
properties. In each case. the setof parameters for Si, Ag, Anand SiAn demonstrate
an improvement over existing parameterizations. Finally, new parameterizations

for SiAg and SiAgAu systems are presented.

6.2 FUTURE WG ..K

6.2.1 DFT PSEUDOPOTENTIAL REFINEMENT

Perhaps the most obvious area for improvement in this work involve the DEFT pscu-
dopotentials. As shown in Figures 5.2a. 5.3a and 5.4a. the caurent psendopotentials
all shift the origin of the ene  vvs.volume graphs. Thatis, the equilibrium cohesive
cnergy and lattice coustants obtained from the DFT caleulations are not m exact
agreement with experimental values. Given that these elemental pscudopotentials
are used to describe the properties of binarvand ternary alloys, these discrepancies
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are further compounded. Tt mavalso be prudent to compute several other physical
parameters using DFT. Features such as the elastic constants, surface properties
and point defects are readilv calcu —ed, but are especially costly due to the Targe
supercells required for such a computation. Oue may surmise that improved DFT
pseudopotentials will allow for more accurate alloy properties, and thus the MEAM

fits may be enhanced.

6.2.2 SECOND NEAREST NEIGHBOUR MEAM

As described in Sectoun 5.2, the first nearest neighbour MEAM is unable to properly
describe free swface relaxations. As one of the main goals of this work is to study
the structure, morphology and composition of silicon-based systems with an atomi-
cally flat gold surface laver, it may be necessary 1o use a second nearest neighbour
approach. There are, however, several obstacles to overcome should this be the
case. Aside from the fact that the second nearest neighbour MEAM is computation-
ally more costly, the present MEAI model is unable to treat composite systems
wi iu the second uearest neighbour formalism. To that end, equations describing
the Bl structure must hrst be do ved for the second nearest neighbour MEAM
(cf. Equations 3.13 and 3 75), and these equations must then be implemented and

tested In a s¢  ware such as LAMMPS.

6.2.3 INTERFAC A . STRESS ANALYSIS

The primary goal of this work is to determine an empivical relationship for interfa-

cial stress between the substrate s con laver and the gold/silver tie Tavers which is
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dependent upon the tie laver thickness, deposition rate, temperature and anneal-
ing time. From our experimental work, we have established that the process of
depositing the tie laver(s) onto the silicon substrate results in an interfacial stress
which in turn leads to @ net curvature of the cantilever. It has been qualitatively
observed that the stress mav be tensile or compressive, and resultantly the canti-
lever may bend upwards or downwards. Thus far. experiments have been unable
to quantify, or predict, the exact nature of the mterfacial stress. i this work, a
series of simulations are proposed w - ch will determine this relationship. To begin,
the most ba - system will be studied, consisting of a long, thin silicon substrate
proportional to a cantilever, and a single gold tie laver at a temperature of 293K, as
shown sc ematically in Figure 6.1. This svstem will be periodic along x and non-
periodic along yand = By varving ¢ thickness of the gold tie Taver by introduc-
ing gold atoms at an appropriate time interval and Kinetic energy (corresponding
to deposition rate and temperature, respectively). one should be able to map the
stress response of the svstemn as a [unction of tie laver thickness. Next, the syvstem
temperature will be modified, and the preceding experiment repeated. The system
will be initially set at 293K, and a multitude of temperature increases over differing
timescales tested for a variety of thicknesses (both by increasing the kinetic energy
of the muroduced atoms to simulate increases due to deposition, and by increasing
the svstem temperature to simulate annealing). In this way, the niodel will now
account for interfacial stress as a function of both film thickness and deposition
temperature /annealing time. Finally, the above simulations will be repeated for tie
lavers of silver, and silver-gold composites. The Ainal empirical relationships will be
used to predict deposition parameters which will vield microcantilevers with no net
curvature. These will then be fabricated in the Tab to confirm the model.
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Figure 6.1:  Schematic representation of the system used in the simulations de-
scribed in Section 6.2.3. In this figure, the grev area depicts the silicon substrate,
and the vellow arca the gold tie Taver.

6.2.4 SURFACE ANALYSIS

In tandem with the simulations detailed i Section 6.2.3, the second crucial focus
of this work is to predict the composition of the tie Taver(s) which, in addition to
inducing no net carvature, allows for an atomically flat gold surface laver. The sw-
face featuves of the te laver are eritical as they determine the characteristic proper-
ties, such as the self~=assembly stacking, of the organic detection laver(s). To begin,
conligurations which mimic those produced in our lab will be studied. he initial
svstemn should approximate a 1 pm thick silicon substrate, and a 20 nm thick gold
tie Taver, which are the approxinite dimensions of the sensors presently fabricated
inour lab. Itis snggested 1l for these simualations, the silicon substrate be termi-
nated ata thickness of 20 nm and the botom Lavers frozen to simulate bulk. While
this will prevent carvatre s lies (whiclvis why Sections 6.2.5 and 6.2, 1 must be
completed conarrently) it w  allow for a larger surface area to be studied. With
a 50 nm by 50 nm surface. the resultant system would be comprised of roughly five

to six million atoms; a syste  of this size can be simulated in approximately two
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weeks with our present facilities'.  Simulations should be run by applving various
temperature gradients, as in Scction 6.2.3, to appropriately mimic anncaling condi-
tons. The resaltant surface positions mav then be used to construct psendo-STM
images, which should be comparable to STM data collected inonr lab. Specifically,
the simulations should recreate the outstandimg surface featares, such as dominant
structure, clustering, islands and terr. es, ete. Should this be the case, predictive
simulations may be executed to ascertain the tie laver(s) composition(s) which pro-
vides the flattest possible surface for tl organic receptive laver. In conjunction

with the simulations in Section 6.2.3, the final result should vield an atomically flat

surface laver with no net curvature: the ideal sensing platform.

6.2.5 OSCILLATING CANTILEVER ANALYSIS

Recent work [98] has shown the surface structure of the tie laver to be a function
of position along the length of e cantilever. That is, the surface stracture at the
stable cantlever chip surface differs from that of the cantilever tip.and at: points
in between. Untdl this discovery, it had been assumed that the surface stracture was
identical at all points along the lever. The anthors hypothesized that these discrep-
ancies may be attributed to mimute thermal oscillations of the cantilever during
deposition, which would change both the incident angle of depositing atoms as well
as their kinetic energies. As an extension to the simulatons performed in Section

6.2.3, a wivial modificaton may be made to acconnt for an oscillating substrate.

'Estimation based on the execution times to converge similarly sized svstems de-
ploved on ACENet clusters across 16 10 32 cores.
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In so doing, these resnlts mav assist to confirm the authors” original reasoning, or

imply an altevnate mechanism for the discrepancies in surface structures altogether.

6.2.6 MEAM SULFUR POTENTIAL

Once the substrate/ tie laver svstem has been sutficiently described, it remains to
study the entive cantlever plattorm. For this purpose, a MEAM potential tor Sulfonr
will necessarily be added to the preser St/ Ag/An potentials to describe the organice
thiol adsorption to the tie laver surface. Once determned, a hvbrid approach. simi-
L to ONIOM (owr own rrlavered integrated molecular erbital and molecular me-
chanics) [99] must be adopted. The ONTOM method treats a complicated system
as a discrete set of constituent components: an active part consisting of the critical
atows to be studied, a semi-active pa - consisting of those atoms which most contrib-
ute to the electronic and structural properties of the critical atoms and a non-active
part consisting of the remainder of the atoms in the svstem. In this wayv, the active
atoms may be treated with the highest level of theory at the highest con utational

cost, the semi-active atoms with the next highest level of theory and so torth.

In this work, a hvbrid approach using the MEAM and a suitable organic potential
(CIHTARMNM, Amber, ECEPP. ete.) is proposed. The MEAM potentials will be used
to describe the Silicon substrate. tie lavers and adsorbed Salfur atoms, while the
organic potential will be used 1o describe the remainder of the organic receptive
chains. It is expected that the organic potentials will provide the proper attvactive
(or repulsive) forces between receptor chains in order 1o strain the adsorbed Sulfur

atoms. In turn, the MEAM will optimize the position of the Sultur and Gold surtace
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atoms to minimize the energy of the svstem. It successful, this hybrid method will
. ow the entire cantilever platorm to be simulated. One mav then proceed 1o
optimize the substrate Ztie laver ‘receptor laver svstem until a system with no net
curvature is obtained.  This would | wide a complete cantilever sensor which
would require no calibration before use.and would be a momentous step towards

the commercial adoption of the cantilever sensor platform.
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