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ABSTRACT 

In this work, emiempi1ical interatomic pot ntials for ilicon, gold, silver and their al­
loys hav been developed, based on the modified embedded atom m thod (MEAM) 
formalism. These potentials de cribe th elastic, thermal, structural, point defect, 
and binary luster properties as well as an other empiri al potential, and exhibit 
good agreement with experimental data where avai lable. Sp cifically, silicon poten­
tials have been compared to the best avai lable first and second nearest neighbour 
MEAM param terizations, as well as the tillinger-Weber, Tersoff, EDlP and HOEP 
potentials; si lver and gold have been compared to first and second neare t neigh­
bour MEAM. In the absence of experimental data, high level den ity functional 
theory (DFT) calculations have b en us din tead. Application of the e potential 
for the pecific ca e of microcantilever en or fabrication and haracte1·ization have 
been outlined, including interfacial tress and surface analyses. 
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1. INTRODUCTION 

Microcantilever sensors consist of a cantilever with dimensions 200-400 pm long, 

30-50 pm wid and 1 pm thick, coated on one side with a receptive layer chemi-

cally engineered to bond only to a specific target molecule. These sensors hav 

been successful ly used as chemical sensors to detect liquid or gas-phase molecules 

[1 - 4], as biosensors to observe spe ific enzymes, antibodies, proteins and DNA 

chain [5 -10], to d termine stress associated with surface adsorption [11- 13], to 

examine magnetic susceptibilities [14], and to measure pH [ 15]. In fact, microcan-

tilever sensors are amongst the only sensors with the abi lity to detect quantities in 

the nanogram (lO·Y), pictolitre (10· 1 ~) , femtqjou le (1()·1!>) and allomolar(J()-IH) range 

with a respons tim on the order or milliseconds oo-:l) [3]. 

To develop a microcantilever sensor, an intermediate tie Ia er is required between 

the si licon substrate and the organic receptor layer, as shown in Figure l.l. Gold is 

often chosen for this purpose as, of all the metallic elements, it is the most chemi-

cally stable [] 6J. It is well known that organic molecules terminated with a sulfur 

end-group self-as emble onto gold surfaces and form strong, stru turally stable 

molecular fi lms [17]. However, it has been shown that the morphology of the un-

derlying gold fi lm plays an important role in both the sensitivity of the sensor and 

the reproducibility of the results [ 18] . Further, the surface stress arising due to 

mismatches in the thermal expansion coefficients between the film and substrate, 

nonuniform plastic deformations, lattice mismatches, ubstitutional or interstitial 

impurities and growth processes is directly related to the surfac morphology of the 
I 



fi lm [19]. In the case ofmicrocantilevers, the deposition ofa thin ftlm(s) creates a 

surface stress which may cause the cantilever to either bend upwards or downwards 

[19-21]. 

Figure 1.1: Microcantilever schematic. A Silicon microcantilever (grey) is first 
coated with a metallic tie layer (yellow) to which an organic receptive layer (blue) is 
adsorbed. Not to scale. 

Much work has been done in characterizing the observed surface stress as a func-

tion of deposition parameters (deposition rate, temperature, annealing time, etc.). 

Many groups have modeled surface stress for single, and multiple, films of vary­

ing thicknesses in an attempt to estimate the necessary film parameters [22 - 31]. 

onetheless, at this time no group has located a set of parameters which result in a 

cantilever without residual bending. Instead, researchers have focused on reducing 

residual stress post-fabrication by way of ion implantation and/ or impurity doping 

paired with annealing [32- 35] . 

The goal of this work is to develop a series of potentials which very accurately de-

scribe metallic thin fi lms on a silicon substrate. These potentials will then be used, 

amongst other things, to predict the composition of the tie layer which yields no net 

interfacial stress and an atomically flat surface layer. For this purpose, the Modified 

Embedded Atom Method (MEAM) is chosen. The MEAM, discussed in depth in 
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Chapter 3, has the innate abi li ty to treat covalent systems, such as sili con [36, 37] 

and me tallic systems, such as si lver and gold [38, 39] equally well. In addition, be ing 

a semi-empirical potential, it offers this accuracy at a lower computational cost than 

present ab initio techniques. 

The si licon-gold system is quite complex. Distinguishing it from other noble metal­

silicon pairs, such as silicon-si lver and si licon-copper, is an unusually high reaction 

rate between these two species, wh ich results in rapid diffusion across the interface, 

even at room temp rature. The result of this extensive migration is an intermixing 

of ilicon and gold atoms, and th formation of a si licide-like a lloy at the interface. 

Despit ext nsive research, crucial featu re of th is system remain unresolved. For 

instance, the critical thickness necessary for the onset of in termixing, the structure 

of the inte rfa e, the penetration depth of the gold/ silicon atoms into th e bulk and 

the surfa e composition and structure of thin monolayers are yet unknown. For 

an extensive r vi ' of the current re earch of the si licon-gold system, the reader i 

referred to [ 40]; these results are summarized schematically in Figure 1.2. 

To avoid the complexities of the si licon-gold interface, it is al. o prudent to study 

the sili con-silver-gold system. It has been established that the ilicon-silve r sys­

tem doe not xhibit the high reaction rate of the silicon-gold system, and as such 

should pnwide a mor tabl and predictable base for the topmost gold layer. In ad­

dition, the physical features of silver and gold are quite comparabl . For instance 

the lattice constant, bulk modulus and coefficient of linear thermal expansion are 

4.09 A, 108.7 CPa, and 19. l x10-o K 1 for silver and 4.08 A, 108.3 CPa and 14. 1x10-1' 

K 1 for gold , resp ctively. Given the similarities between these two species, interfa­

cial stre s s due to, for example, lattice, elastic and thermal expan ' ion mismatches 
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should be minimal. Hence, it is hypothesized that the complexitie. of the silicon-

gold sy tern may be a ltogether avoided at a slight cost to interfacial stress. 

Au 

(A) (B) 

(C) (D ) 

Figure 1.2: Schematic repre entation of the experimentally proposed SiAu inter­
face structures for thin (:S 10 ML) gold films. Measurements a re taken using: (A) 
AES-LEED and TEM [41, 42]; (B) MeV ion scattering and PAE [4~- 45]; (C) PY 
and SRP [ 46- 48]; (D)XPS [ 49]. 

To accurate ly fit the MEAM potential, one requires an excess of experime ntal data. 

While an abundance of data is avai lable for the individual ele m enL<> ( i, g and 

Au), the same cannot be said for the alloys iAg, SiAu and SiAgAu. o ne of these 

compounds form a thermodynami ally stable structure. A<> such, a high level of 

theory must be u d to predict values to which to fit the MEAM potential. Densi ty 
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functional theory is chosen for this purpose; it will now be discussed in the subse­

quent chapter. 

In the chapters which remain, the Modified Embedded Atom Method theory will 

be presented, followed by the theoretical approaches used to correlate the MEAM 

and experimental data. Finally, a discussion of the MEAM parameterization is pre­

sented, along with proposed applications for future work. 
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2. DENSITYFUNCTIONAL THEORY 

Due to the ab ence of experimental data for Si u, SiAg and gAu alloys, one must 

resort to ab initio calculations to compute a sufficient number of properties for each 

system to correlate with the Modified Embedded Atom Method pot ntials. In thi 

work, Density Functional Theory (DIT) was chosen to complete this task. In this 

chapter, a brief overview of DIT wi ll be pr en ted. 

In order to predict the electronic and g ometric structure of a clu. ter, molecule, gas 

or solid (he nceforth referred to as the .~)'Slnn) one must compute the total quantum 

mechanical ene rgy of the system and subsequently minimize this energy with respect 

to its e lectronic and nuclear coordinates. Rather than attempt to find a single wave-

function which d cribes simultaneously the motion of electrons and nuclei, it is of-

ten sufficient to consider each system independently. There is a large difference in 

mass between e lectrons and nuclei, but the momentum of each particle is approxi-

ma te ly equivale nt. Consequen tly, the e lectrons respond nearly instantaneously to 

the motion of the nuclei 1• T hu ly, one may treat the nuclei adiabatically, resulting 

in a decoupling of the electronic and nuclear coordinates [5 1]. This simplification 

is known as th Born-Oppenheimer approximation [52]. T he Born-Oppenheim r 

approximation r duces the many-body problem of electron-nuclei dynamic to that 

of dyna mical el ctrons in some frozen configuration of nucl i. However, even with 

this simplification , the problem is sti ll formidable. 

1lfthe morTrenta, p, of electrons and nuclei are equal, and the mass ~s satisfy the rela­
tion m, << m~ , it follows that v~ = jJ/m~ >> v, = jJ/ m". 
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To facilitat computation, one must further simplify the above many-body problem. 

Density Functional Theory, in principle, allows an exact mapping of a strongly inter-

acting electron gas, in the presence of nuclei, onto that of a single particle moving in 

an effective non local potential. In 1964, Hohenberg and Kohn proved that the total 

energy of an electron gas is a unique fun tiona\ of electron density [53]. Further, 

they asserted that the minimum value of the total energy functional (a function of 

a function; ie. energy is a function of density, which it~elf is a function of position) 

is the ground-state energy of the system, and that the electron density which yields 

this minimum is th exact single-particle ground-state density. In the follm ... ~ng year, 

Kohn and Sham described formally how to replace the many- ~ I ctron problem by 

an equivalents t of self-consistent on e-el ctron equations [54]. Combined, these 

two breakthroughs form the basis of modern density functional theory. As a result, 

an energy functional and a set of wavefunctions which minimize said functional 

were d fined. 

Consider a set of doubly occupied electronic states, If/( The Kohn-Sham total-energy 

functional for this sy tem is [50]: 

+ e'l f n(r)n(r') d :\d:lr'+ £ .[n(r)] + E ({ R }) 
2 lr- r'l X(. IIIII I 

(2.1) 

where: 

E is the Coulomb energy associated with interactions amongst ions (or nu-
lon 

clei) at po i tions I R,l, 
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V is the static total e lectron-ion potential, 
1011 

n(r) = 2l}PJ is the electron density, and 

E,
1

.[ n(r)] is the exchange-correlation functional. 

Physically, only the minimum of this functio nal has meaning; at its minimum, the 

Kohn-Sham energy functional equals the ground-state e nergy of the system of elec-

trons with nuclei (or ions) at positions !R). In order to compute its min imum, a 

special set of wavefunctions, lfli, must be used. T hese wavefunctions a re the eigen-

functions of the Kohn-Sham equation [50]: 

(2.2) 

where: 

lfli is the wavefunction of electronic state i, 

6)s the Kohn-Sham eigenvalue, 

2J n(r ') ~ ' . . 
VH (r) = e lr - r 'l d r IS the Hartree potential of th e electrons, and 

V .(r) = OE:a;[n(r) ] is the exchanp-be-correlation potential. 
XC On(r) , 

The Kohn-Sham equation represents a mapping of an in teracting many-electron sys-

tem onto a syste m of noninteracting electrons moving in an effective potential due 

to the other electrons. Presently, the only term in the above equations which is not 

explicitly known is the exchange-correlation potential, Vw.· Should it become pos-

sible to d efine the exchange-correlation functional exactly, the functional derivative 
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with respect to density will produce an exchange-correlation potential that includes 

the e ffects of xchange and correlation exactly. ln this case, the density functional 

theory result would be exact within the Born-Oppenheimer approximation. It is 

important to not that the sum of the single-particle Kohn- ham eigen\'alues does 

not g ive the total lectronic energy: it overcounts the effect<; of electron-electron in­

teraction in both the Hartree energy and the exchange-correlation energy. Hence, 

these e igenvalues are not strictly energies of single-particle electron states, but rath­

e r total energy derivatives with respect to the occupation number · of the e tate . 

Neverth le s, the eigenvalue of the highest occupied eigenstate in an atomic (or 

molecular) calculation is quite nearly the ionization en rgy for that s stem. 

In the subsequent sections, standard techniques to describe electron-electron, 

electron-ion and ion-ion interactions will be discussed, and accord ingly each term 

in the Kohn- ham energy functional and equation will be d fined (cf. Equations 

2.1 and 2.2). 

2.1 ELECTRON-ELECTRON INTERACTIONS 

In any e lectron ic structure calculation , the mo t difficult problem is po 'ed by th 

e lectron-electron interactions. Due to the Coulomb interaction between charge , 

the e lectrons rep I one another. Hence, the Coulomb energy of a system of elec­

trons may be reduced by spatially separating electrons, at the expense of increasing 

kinetic e nergy via deformations of the e lectronic wavefunction . 
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As a consequence of the Pauli exclusion principle, the wavefunction of a many­

e lectron system must be antisymmetric under exchange of any two e lectrons. Thi 

antisymmetr yi Ids a spatial separation between electrons which have common 

spin , resulting in a reduction of the Coulomb energy of the syst m. This energy re­

duction due o nl to the anti ymmetry of the wa\'efunction is known as the exdwnge 

ene rgy. In a total energy calculation , methods which compute only the exchange 

e nergy (and neglect spatially separating opposite-spin electrons) will approach an 

energy minimum slightly higher than the true value. This limit is often referred to 

as the Hartree-Fock limit. 

It i po sible to reduce the Coulomb energy of an electronics stem below the Har­

tree-Fock limit if o ne spatially separates op1 osite-spin e lectrons as well. In this cas , 

the Coulomb e n rgy of the system is reduced while the kinetic e nerf.,'J' is increased; 

at a singula r point the effect of decreasing the Coulomb energy and increasing th 

kinetic en rgy is balanced, and the true nergy minimum is located. The energy 

differe nce betwe n thi minimum and the Hartree-Fock limit is called the correlation 

e nergy; it i extremely difficult to calculate in complex systems. Henc , th is energy 

must be approxima ted (in general), and i the dominant sourc of discrepancy be­

tween ab initio amputations a nd xperimental results under the OFT formalism . In 

many publi hed works, the exchange, E_,, and correlation, E,. energi s are grouped 

and called the exrlumgt'-conelalion energy, E,, = E, + £, . 

Many popular exchange-correlation functionals have a form appropriate for slow! 

varying de nsities. The most basic method to describe the ex hange-correlation en­

e rgy of an e lectronic system is known as the local density approximation (LOA). In 

this approximation, the exchange-correlation energy of the system is constructed 

10 



under the assumption that the exchange-correlation energy pe r electron at a point 

r in the Iectron gas, c:xr.(r ), is equal to the exchange-corr lation energy pe r electron 

in a homogeneou el ctron gas, cxc1
""

11
, that ha the same densi ty a the e lectron ga,· 

at point r . Mathematically, one might express the LDA as [55]: 

E LO,\ [ ( ) ] f hum ( ) ( ) d :l \'c n r = Exr r n r r (2.3) 

True to its name, the local density approximation as umes that the exchange-cor-

relation nergy functional is purely local; it ignore corrections to this en ergy at 

a point r clue to nearby inhomogeneities in the electron density. However, this 

approximation remain popular as it yields a single w 11-defined global minimum 

for e nergy, allowing an energy minimization sche me to locate th global energy 

minimum for the system. 

logical improvement to the LD is to include no t on ly the electron density at a 

point r, but also its gradient. This approximation is known as the generalized gradi-

e nt approximation ( GGA). In general, GGA fu nctionals have the form [55]: 

(2.4) 

In comparison with the local density approximation , the generalized g radient ap-

proximation tends to improve total nergies [56], atomization energies [56- 58], 

e ne rgy barrie r and structural energy differences [59, 60]. It also tends to expand 

and soften bonds [58] , which may [61] or may not [62] improve upon the local den-

sity approximation result. nsurprisingly, the generalized gradie nt approximation 

is bette r suited for syst ms with highly inhomogeneous densities when compared to 

the loca l density approximation. ln this work, the generalized gradient approxima-
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tion of Perdew, Burke and Ernzerhof (PBE) l55] is used exclusively in our OFT 

calculations. 

Once a suitabl approximation for the exchange-correlation energy has been deter-

mined, one must next describe an infinite number of noninteracting electrons mov-

ing in a static potential of an infinite number of nuclei (or ions). Two challenges 

are presented in this scenario: first, as each electron requires its own wavefunction, 

an infinite number of wavefunclions are required to describe the system, and sec-

ond, as each wavefunction extends over the entire solid, the basis sel required to 

expand each is also infinite. Careful application of Bloch's theorem imultaneousl 

provides a solution to both problems. 

Bloch's theorem states that in a periodic solid, each electronic wavefunction may be 

decomposed into two constituent component'i, a cell-periodic term and a wave-like 

term [50]: 

V'; (r) = e ' '"' j,(r) (2.5) 

The cell-periodic component may be xpanded using a basis set of discrete plane 

waves whose wave vectors are the reciprocal lattice vectors of the crystal: 

j,(r) = I<ct;), e'c., 
(; 

(2.6) 

where the r ,'s are constant coefficients and the reciprocal lattice vectors, G, ar 

defined by: 

G•l = 2mn (2.7) 
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for all l where lis a real-space lattice vector of the crystal and 111 is an integer. Com-

bining the above, each electronic wavefunction may now be expressed as a discrete 

sum of plan waves: 

1/-•, (r) = 2)ck tC), e'(~+G)• r 
(; 

(2.8) 

Discretizing the electronic wavefunctions alters the problem of alcu lating an inn-

nite number ofwavefunctions to one of calculating a finite number ofwavefunctions 

at an infinite number of points in reciprocal space (herein k-points and k-space, 

respectively). In theory, electrons occupying states at each k-poi nt contribute to the 

electronic potential in the bulk solid and so an infinite number of k-point calcula-

tions are required to compute the potential. ln practice, however, the e lectron ic 

wavefunctions at k-points that are spatially nearby will be approximately equivale nt; 

it is possible to represent wavefunction over a region ofk-space by a single, properly 

weighted wavefunction at one k-point. Therefore, only a finite number of k-points 

are required to calculate the electronic potential (and thus the total energy) of the 

solid. Several schemes exist for defining the k-point grid [6:3- 67]. In the OFT 

calculations performed in this work, the Monkhorst-Pack scheme [65] was used 

exclusively. 

Finally, one must consider the sum over reciprocal lattice vectors, G. in the Bloch 

expansion of ele tronic wavefunctions. Once again , the theory implies that this 

sum be infinite. In practice, however, the coefficients c, become vanishingly small 

for plane waves with large kinetic energy. Consequently, by introducing a cut-off 

energy, the plane wave basis may be truncated to include contribu tions only from 

plane waves with a kinetic energy less than the cut-off. Thus, the infinite basis set be-
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comes finite. Two problems arise when using an energy cut-off: first, changes in the 

unit cell size and shape create discontinuities in the plane wave basis, and second, 

the number of basis states change discontinuously with cut-off enerhry (additionally, 

for a given k-point set, k-point occupation changes with varying cut-off energy). 

Modern te hniques are used to r medy these problems by applying correction fac-

tors which a count for the differen e between the number of states in a basis set 

with an infinitely large number of k-points and the number of k-points actually used 

in the cal ulation [68]. 

Once all of these approximations have been made, the Kohn- ham equations as-

sume a simpl form [50]: 

In this form, th kinetic energy is diagonal (as indicated by bc;c;·), and the poten­

tials are a ll de cribed in terms of their Fourier Transforms. The solution proceeds 

by disagonalizing the Hamiltonian matrix, whose elements ar given in the square 

brackets above. The size of this matrix is determined by the cut-orr energy and may 

be extrem ly large for systems which contain both core and valence lectrons. To 

overcome this, a pseudopotential approximation, as described in the next section, 

is employed. Finally, one should note that non-pe1iodic systems are slightly more 

complex. For a d tailed treatment of non-periodic ystems, the reader is referred 

to reference [50]. 
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2.2 ELECTRON-ION I NTERACTIONS 

To perform an all-electron calculation, an extremely large plane wave basis set is 

required both to expand the tightly-bound core orbitals, and to follow the rapid 

oscillations necessar to maintain orthogonality (required by the Pauli exclu ion 

principle) of th (valence) electrons in the core region . Many chemical and physi-

cal properties have a much greater dependence on the valence electrons, rather 

than the ore electrons. The pseudopoten tial approximation exploits this by re-

moving the core electrons and replacing them (and their strong ionic potential ) by 

a weaker pseudopotential that acts on a set of pseudo-wavefunctions rather than the 

true valence wavefunctions. Ideally, this pseudopotential is constructed to maintain 

the scattering properties and phase shifts of the ion and cor electrons for the va-

lence wavefun tions, but in such a way that the pseudo-wavefunctions have no radial 

nodes in the core region, thereby eliminating oscillations. utsid of the core re-

gion, the core potential and pseudopotential a re identical, and the scattering from 

either indistinguishable. 

For each angular momentum component of the valence wavefunction , a different 

phase shift is produced by the ion core. Similarly, scattering from a pseudopoten-

tial must also be a function of angular momentum. In its most general form , the 

(non local) ps udopotential is expressed as [50]: 

v"'· = Iltm)"" (tmi 
lm 

(2.10) 

where Jlm) are the spherical harmonics and ~is the pseudopotential for angular 

momentum l. When acting on th electronic wavefunctions, this operator decom-
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poses the wav function into spherical harmonics, each of which is multiplied by the 

relevant pseudopote ntial. A lvml pseudopotential is one which is a function only 

of the distance from the nucleus; it uses the same potential for all angu lar momen­

tum components of the wavefun tion . Conversely, a nonlvml pseudopotential is 

one which has a unique potential for each angular momentum component of the 

wavefunction. 

As shown in the previous section, total e nergy calculations of an electron ic system a re 

a function of el ctronic density. In order for the exchange-correlation nergy to b 

de termined accurate ly, it is imperative that outside of the core regions the pseudo­

wavefunctions and real wavefunction be ide ntical, not only in spatial dependencies 

but also in absolute magnitudes so that the two wavefunctions g nerate equivalen t 

charge de nsities. To accomplish this, the pseudopotential must be adjusted such 

that the integrals of the squared-ampli tudes of the real and pseudo-wavefunctions 

inside the core regions are identical. Psuedopotentials which have undergone this 

adj ustment a re known as norm consfrving ps udopotential . Modern pseudopoten­

tials also have the ability to describe scattering due to the ion in a variety of valence 

configurations, a property known as lmnsfmtbilit_y. 

Besides the obvious advantage of omputing fewer electronic wavefunctions due 

to the removal of core electrons, there are other compelling reason. to consider 

pseudopote ntia l alculations over all-electron calculations. First, as previously men­

tioned, the e lectronic wavefunctions may be expanded using far less plane wave 

basis states when compared to the a ll e lectron potential, as oscillations have been 

e liminated. This results in a reduction of the size of the Hamiltonian matrix, and 

a more effici nt computation. The second and less obvious, advantage is that one 
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requires less numerical precision in a pseudopotential calculation when compared 

to the eq uiva lent a ll-electron calculation. The difference between electronic ener-

gies of different ionic configurations is observed almost entirely in the energy of the 

valence el ctrons alone. The total energy of the valenc electron system is on th 

order of one-thousand times smaller than the total energy of the equivalent all-elec-

tron syst m, and yet the energy differences between ionic configurations remains 

the same for either computation. Any rounding and step-size errors accumulated 

when summing contributions from the core electrons in an all-electron calculation 

will over hadow these small energy differences, a problem which is eliminated com-

pletely in the pseudopotential regime. One should note, however, that total energy 

is no long r m aningful in pseudopotential calculations; only energy differences 

are sign ifi cant. 

To obtain the static total ionic potential, V , in a solid, one IJlaces an ionic pseu-
um 

dopotential at th position of every nu lei in the olid. Information regarding the 

positions of ions i contained in the structure factor, which for ions of species a at 

wave vector G has the value [50]: 

So(G) =I e'e-R, 
I 

(2.11) 

where the um is over the positions R, or all the ions of spe ies a in a single unit cell. 

The periodicity of the system restricts nonzero component<; of the ionic potential to 

its reciprocal lattice vectors; it is necessary only to compute th structure factor at 

the set of these vectors. The total ioni potential is thus obtained by summing the 

product of the structure factor and the pseudopotential over ea h species of ion. 

For instanc , for a local potential, v , \! is defined simp! as [50]: a wn 
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(2.] 2) 
" 

Away from the core, an ideal pseudopoten tial is purely Coulombi , of the form Z/R, 

where Z is the valence of the atom. pon taking the Fourier Transform, the ideal 

pseudopotential diverges as ZIG~ at small wave vectors. Hence, the total ionic po-

tential at G = 0 is infinite, and so the electron-ion energy is infinit . However, simi-

Jar divergen es are observed in the Coulomb energies due to the electron-electron 

and ion-ion interactions. When combined, the total Coulomb energy at G = 0 for 

all three intera tions cancel exactly; this must be the case as the Coulomb potential 

for a charge-n utral system at G = 0 is zero [50]. Without loss of generality, the G = 0 

term for ea h type of interaction is set to zero. One should note that typical pseu-

dopotentials are not purely Coulombic; corrections for the contribution to total 

energy arising due to this discrepancy must be made [50]. 

Many methods exi t to generate pseudopoten tials [69- 71]. In this work, pseudopo-

tentials were g nerated using the RRKJ (Rappe, Rabe, Kaxira and Joannopoulos) 

method [69]. This method is uniqu in that it applies an additional optimization 

step after generating an initial pseudopotential to set the cut-off energy to a desired 

target. 

2.3 ION-ION I NTERACTIONS 

The Coulomb interaction between ions is extremely difficult to calculate, as it is 

long-ranged in both real space and r ciprocal space. Ewald developed a rapidly 

convergmg m thod to perform Coulomb summations over periodic lattices based 
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on the identity [50]: 

(2. 13) 

where l are !attic vectors, G are reciprocal lattice vectors and fl i. the unit cell vol-

ume. With this identity, it is possible to express the lattice summation for Coulomb 

e nergy due to the inte raction between an ion positioned at ~ and a n array of atoms 

at positions R
1
+l. At first glance, it appears that replacing the infinite Coulomb sum-

mation on the left-hand side of the equation by two infinite summations (one over 

real space vectors, the other over reciprocal space vectors) on the right-hand side 

would on ly serve to complicate things. However, with the appropriate choice of Yf, 

the two infinite summations converge rapidly in their respective spaces. In practice, 

the real and reciprocal space summations can be com put d using on ly a few vectors 

in each space. 

As in the previous section , the G = 0 contribution must be removed to compute 

the correct total energy. nlike in the previous section, the G = 0 contribution is 

now divided between the real and reciprocal space summations; it is not sufficient 

to only eliminate this term in the reciprocal space Ewald summation. Once the 

appropriat corrections have been made, the correct form for the total ion energy, 

E , is [50]: 
lOll 

(2. 14) 
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where z, and z
1 
are the valences of ions I and J respectively, and erfc is the compli­

mentary error function: 

2 L; 

e rfc(z) = 1 J e- •" cit 
"1f ~ 

(2.1 5) 

ote that an ion does not interacl with its own Coulomb charge, so the I= 0 term 

must be omitted from the real space summation when I= J. 

This concludes th discussion of Density Functional Theory. In the next chapte r, 

the theory of the Modified Embedded tom Method (MEAM) will be presented. 
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3· THE MODIFIED EMBEDDED 

ATOM METHOD 

3·1 THE EMBEDDED ATOM METHOD 

Before one can properly define the Modified Embedded Atom Method (MEAM), it 

is necessary to first define the Embedded tom Method ( AM). The EAM utilizes 

the e lectron density to compute the total energy of a system. It has the abili ty to 

realistically treat impurities, defects and other complex systems, while being not 

significantly more complicated to use than pair-potentials which can describe nei­

ther. In the previous section, it was shown that energy is a functional of electron 

density, and that potential is determined to within an additive constant by a system 

electron density. The EAM is based on a useful corollary to the Hohenberg-Kohn 

formalism by Stott and Zaremba: the energy of an impurity in a host is a functional 

of the e lectron density of the unperturbed (ie. without impurity) host [72]: 

E = F1 .11 [ n 11 J (3.1) 

where n
11

(R) is the electron density of the unperturbed host and Z and R are the 

type and position of the impurity respectively. Thus, under this corol lary, the em­

bedding energy of an impurity is determined by the e lectron density of the host 

before the impurity is added. In the EAM, ea h atom in a system is considered to be 
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an impurity in a host consisting of a ll the other atoms. Specifically, the embedding 

energy,}_~ i defin d to be the ene rgy or an atom in an uniform electron gas re lative 

to the en rgy of the atom when separated from the electron gas. 

The functional F is a universal function, independent of the host. ll'i exact form is 

unknown and is likely complicated , but in the EAM a simple approximation assumes 

that the embedding energy d epends only on the environment in the immediate 

vicinity of the impurity. Analogous to the local de nsity approximation in OFT, each 

impurity experiences a locally uniform electron d e nsity. With this approximation, 

the per-atom e nergy in the EAM formalism is given by [73]: 

E, = J·; ( n, ) + i I tp ( R ii ) 
I 

(3.2) 

where the functional F is approximated by a functional , /·~ of the electron de nsity 

(without atom i), n,, at the impurity site and a short-range electrostatic pair pote n-

tial , ¢,has a lso been added to ac ount for core-core repulsion between atom i a nd 

j separated by a distance R,,· The total e ne rgy is m erely the sum over all individual 

contributi ns [73]: 

~'" = I 1~ ( n" ·' ) + i I VJ ( R ii ) 
I t.j 

(3.3) 

It is of crucial importance to note that the e mbedding functional, /·~ is not trivially 

related to the function al F. In terms or the functional , F, the e ne rgy req uire d to 

remove an a tom from the solid, leaving a vacancy (and n g lecting any lattice re lax-

ations) is given by [74]: 

(3.4) 

22 



where n 
1
.

1 
is the d nsity of the solid including the vacancy. It must also be true that 

'(I I ( ~ 

the same en e rgy be obtained by viewing the solid with the vacancy as an impurity 

and the single atoms as the host so that [74]: 

E = .t=: .. li<l [ n .ttom ( r)] (3 .5) 

ln terms of the embedding functional , 1·~ the expression for total energy (Equation 

3.3) reduces to [74]: 

E = L [ 1·~ ( n; ) - 1·~ ( n1 ) J (3 .6) 
I 

where the um is over all atoms except the one removed and 11
1 

is the e lectroni 

density at atom i in the solid with the vacancy. Each of the ene rgies in Equations 

3.4, 3.5 and 3.6 must be equal, and consequently the relationship between :F and F 

is nontrivial. 

A final simplification assumes that the host electron de nsity, n
11

(R ), i clo ely ap-

proximated by a linear superposition of the atomic densities, n", of th constituents 

[74]: 

n11 = n. = '"' n" (R) 
.I I L.... I If 

I 
(3.7) 

I"J 

With this approxima tion, energy is simply a function of th po ition of the atom . 

Up to this point, a ll parameters in the EAM ene rgy have been explicitly defin d. 

However, the EAM is a semi-empirical potential; the functions F and ¢ must be 

e mpirically dete rmined by fitting the potential to expe rimental data. 
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3·2 THEMODIFIEDEMBEDDEDATOMMETHOD 

In the previous section, the fundame ntal theory of the Embedded tom Method 

was discussed. The EAM has successfully been u eel to describe FCC, BCC and other 

nearly-filled d-band metals, but has proven ineffective at describing covalent sy te rns 

such as si licon and ge rmanium [38]. The first modifications to the EAM redefined 

the e lectron d nsity, ni, to describe directional bonding specifically in si licon [751. 

Formally, the Modified Embedded Atom was in troduced as a generally applicable 

potential in a paper describing its application to the silicon-german ium system [36] . 

In what fo llows, the modifications to the EAM , .. ~ 11 be discuss d. 

Equation 3.3 presents the total energy as formul ated in theE M. As defined previ­

ously, F, is the e mbedding functional which defi nes the e ne rgy required to embed 

an atom of tyt e i into a background electron density n, at site i and ¢,, is a pair 

interaction between atoms i and j separated by a distance R,/ In the E M, ¢,, wa 

assumed to be ntirely repulsive, but it was realized that th nonuniqueness ofF, 

and¢ . allows more general forms of¢ . lso, in the EAM the electron density, n,, 
q q 

is given by a linear superposition of spheri cally-averaged atomic electron de nsiti es 

(cf. Equation 3.7); in the MEAM, n, is augmented by additional angu lar-dependent 

terms. The energy per atom in the MEAM is defined as in the EAM, that is [38]: 

E - r ( n, l I ~ (R ) 
I- ·, Z, +2 ~<fJ;; IJ (3.8) 

'*I 

where, without loss of generali ty, the background density, n,, has been renormalized 

by the number of nearest neighbours, z,, which is defined as the nfamce structure 

for an atom of type i by Baskes [38]. T his reference structure is a crystal tructure 
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which contains detail ed information about the beha,~our of atom i and is usually, 

but not always, the equilibrium crystal structure of type i atoms. Note that while this 

expression is indeed similar to the energy expression in th EAM (cf. Equation 3.2), 

its constituent functions F, n and ~ ar in fact quite different. In the reference 
I I IJ 

structure for an atom of type i, the per atom energy, E,", of th reference tructur 

as a function of the nearest neighbour distance is expressed as [38]: 

E," ( R) = r; [ n,''t) ) + i ~ >P,, ( R) (3.9) 

'*I 

where n,0 (R ) is the background electron density for the referen e , tructure of atoms 

of type i and R is the nearest neighbour eli tance in this configuration . Assuming 

E," is known , the above expression can be used to determine the pair interaction for 

type i atoms as [38]: 

(3.10) 

If the pair interaction is assumed to take this form, Equation 3.8 for a monatomic 

system may b rewritten as: 

E = _!_" E" ( R ) + F ( n, )- _!_. ". F [ n,o ( R ,, ) J 
' Z~' '' 'Z Z~' Z 

I I I :..Jl J I 
;~, ,~ , 

(3.11) 

Physically, the fir t term in the Equation 3.1 1 represents the average of the per 

atom e nergy f the reference lattice at each of the nearest neighbour distances. 

The last two terms are formed by the difference between the mbedding energy at 

the background e lectron density actually seen by atom i and the average embed-

ding energy of this atom in the reference lattice at each of th n arest neighbour 

distance respectively. Essentially, these two terms form a new kind of embedding 
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energy where the e mbedding re fe re nce stat is that of the re fe re nce latti ce ra the r 

than isolated atoms. 

Additionally, in the B1 (NaCI ) tructure conside red for SiAg, iAu a nd uAg sys­

tems, the pair inte raction takes the fo rm [ 40]: 

l{);i ( R) = ; ( 2 E,;' ( R) - F, ( n;) ) - Fi ( n,0 
) ) 

I} 

(3.12) 

whe re Z is the numbe r of nearest ne ighbo urs in the B1 structure, and the e m-
'' 

bedding ene rgies, 1': and background e lectro n de nsities, n°, a re as evalua ted in the 

monatomic reference structures. Equati on 3.8 the n becomes: 

E" ( R) ( - ) 1 F ( n° ) + F ( n° ) E = L IJ +F 3._ --L I I I I 

' 1 . z ;, ' z, 2 j z ij 

'"' '"' 

(3.1 3) 

whose te rms are analogous to those described in Equation 3.11 . 

As in the EAM , the MEAM limits interactions to first nearest neig hbours o nly. This 

limita tion introduces important qu stions about cut-offs and scr ening . The re a r 

1:\.vo basic s hemes wh ich a llow o ne to artificially limit inte ractio ns between atoms. 

The first sche me forces a ll distance de pende nt functions to ze ro smoothly at a pre-

d ete rmined cut-off distance, implemented by multiplying distance d ependent fun c-

tions by a "cut-off' fun ctio n which smoothly goes from unity to zero as a function of 

increasing distance. The second approach , as used in the ME M, is slig htly mo re 

complex. In th is scheme, a screening method between an a to m and its near st 

neig hbours is used which reduces the effect of inte ractions of any atoms wh ich a re 

not nearest neighbours. T his sche me takes into account the actual geometry of 

the a toms unde r consideration, and is the refore much more robust than a simple 

26 



cut-off function. For instance, with the screening method, planar type structures, 

such as H CP and graphene, naturally interact with more distant out-of-plane atoms 

even though the in-plane atoms are much nearer. Similarly, atoms approaching 

free surfaces inte ract with the surface atoms at distances much greater than the 

in-plane nearest ne ighbours. In any such case, the interactions between distant, 

unscreened atoms are governed not by an arbitrary cu t-off distance, but rather by 

the unscree ned electron density itself. In the MEAM, this screen ing function takes 

the form [38, 40]: 

whe re 

and 

0, 

1, 

s i" = I1 sii'' 
I 
i"'i.h 

c:::;cmin 

~ ~ 2 ~ 4 R , R + R, R - R . 
C= l +2 I'' )I II Jl ')I' 

·I ( 2 2 )-R ii- R i"- R hi 

(3.1 4) 

(3. 15) 

(3.1 6) 

In Equation 3. 15, C and C . are adjustable parameters chosen to limit the range 
max nun · 

of atomic inte ractions to first nearest neighbours. Consider the screening between 

atoms i and k by atom j, as shown schematically in Figure 3.1. Suppose atoms i and 

j are nearest neighbours, with touching atomic spheres. If atom 1?. lies within the 

screened cone (blue area) defined by i, ,·and the parameter C . (typically, this cone 
' 111111 
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angle is on the order of 30°), it may be considered completely screened from atom 

i. Simi la rly, if atom k lies in the red region defined by by i, j and the parameters C",;" 

and cmax (typically, the larger cone angle is on the order of60°) it may be considered 

partially screened from atom i, the amount of which depends on both the distance 

and the angle between the atoms. Finally, if atom k lies beyond the region defined 

by C,mL' (green area), it is considered completely unscreened by atom j. 

Figure 1: Schematic representation of the screening function, S;
11

• 

With a suitably defined screening function, one may now discuss in detail the com­

ponents of Equations 3. 11 and 3.13. To begin, one must first decide how to compute 

the background electron density. As discussed previously, the EAM computes the 

background electron density as a linear superposition of the spherically averaged 

electron densities of the constituent atoms. In the MEAM, this component is the 

dominant contribution to a series of partial electron densities, the first of which is 

[38, 40]: 
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n(ol = ""n"(o) (s ) 
I L.. I I' 

I ;., i 

(3. 17) 

where no(OJ represents the atomic electron density of a type j atom at a (suitably 
I 

screened) distanceS from site i. Note that Equations 3.7 (EAM) and 3.17 (MEAM) 
I' 

are ide ntical, as expected. Equation 3.1 7, howeve r, is further generalized by a series 

of correction electron densities that explicitly depend on the relative positions of 

the neighbours of atom i [38, 40, 76]: 

(3. 18) 

(3. 19) 

(3.20) 

where 

(3.21) 

are atomic electron de nsities with adjustable decay constant fJ/1) for atom j, and 

R~ 
Q 'I x .. = -
'1 R .. 

'I 

(3.22) 

with R;," be ing the a-component of the distance vector between atoms j and i. The 

29 



form of Equations 3.18, 3.19 and ~.20 are chosen such that the partial background 

electron densities are invarient to both lattice translation and rotation, scale with 

atomic electron density for homogeneous deformation and equal zero for a cubic 

lattice with a center of symmetry. It has been shown that Equations 3.18, 3.19 and 

3.20 are equivalent to the three-body cos, cos~ and cos~ dependences commonly 

observed in many-body potentials, respectively [38]. For instance, Equation 3.18 

may be expressed equivalently as [~8]: 

~ 

( 
(1)) "\' ,( I) (s )n"( l) (s ) (e ) 

n i = ~ n i ii '' ih cos ii" 
iJi 

(3.23 ) 
j," i·" 

where Oii" is the angle between atoms j, i and k. Considering the geometric way that 

the densiti es n ,({) are defined, one may consider each to be related to a specific angu­

lar momentum contribution (s, p,d and f respectively) to the background electron 

density, and that the associated atomic electron densities are related to averages of 

these densities. It remains to combine the contributions of each partial electron 

density to form a total density which is to be used as the argument of the embed-

ding function. As in DFT, this scala r must represent electron density throughout 

all space. Linear superposition appears, at first, to be the obvious choice, but the 

square root necessary to solve Equations 3.18, 3.19 and 3.20 introduces singularities 

into the resultant density (and hence, energy). Instead, the total background den-

sity is constructed by taking a weighted sum of the squares of the partial background 

densities [38]: 

:1 <) 

(- )2 - I (!) ( (!) )-n - t n 
I I I 

1=0 

(3.24) 
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where l ,({) ar adjustable weighting functions for the partial electron densities, and 

t/0 l is, without loss of generality, unity. Equation 3.24 may alternatively be viewed as 

a pe rturbative xpansion of the background density about the linear supe rposition 

n (o> [38]: 
I 

[ 

1 'I ( (I) :2 J _ _ (O) · (t ) n, 
n, - n, 1 +- L l, (0)" + .. . 

2 t= l n ; 
(3.25) 

where th correction terms l= 1 ,2,3 may be physically thought of as aqjustments to 

the spherical den ity due to the exist nee of density gradients, divergences or losses 

of inve rsion symmetries respectively. One final simplification may be made to the 

background density should the geometry of the system in question be known. If 

this is the case, the sum over atomsj in Equations 3.17, 3. 18, 3. 19 and 3.20 may be 

computed, and the final background electron densities take the form [ 40]: 

with 

n ­;-

(0 ) 2 n, 
n:1 1+ e-r ' 

(0) 

Si 

n;(, .Jl+f:, 
n, 

Ag,Au 

( (/)) {I) n, r , = L:t; (0)" 
1 n, 

(3.26) 

(3.27) 

where r , is the term describing the angu lar dependence (/=0, I ,2,3 corresponds to 

s,p,d,f symmetry respectively) n/11 are the partial e lectron densities, and n/1 is the 

composition-dependent electron density scaling factor for ato m i. 
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The next component of interest in Equations 3.11 and 3.13 is the per atom energy, 

£,". To compute this value, the Rose equation of state is used [77]: 

E/1 

(R) = - E:' [1 +a-( att- ri Ja~ ]e-" (3.28) 

whe re att and rep are adjustable parameters, not shown in the universal eq uation of 

state, necessary to adjust the attractive and repulsive energies in the MEAM poten-

tial to fit ab initio calculations. The pa rameter a is defined as [38]: 

a= a . (~- 1: 
I R (l 

I 

(3.29) 

and 

= 
(3.30) 

where R/1 is the equilibrium n earest neighbour distance and B; is the bulk modulus, 

.Q is the atomic volume for the solid phase, K is the d iatomic force constant for the 
I I 

gas phase, a nd £,0 is the cohesive e nergy for type i atoms in the reference structure . 

Near equilibrium, £," is extremely well-defined as it is computed d irectly from ex-

perime ntal data. Away from equilibrium, it depends entire ly upon the equation of 

state, which behaves reasonably for a>-1 [77]. 

The final component of Equations 3. 11 and 3.1 3 is the embedding function , F;. I t is 

defined to be a simple function of the electron density [38]: 
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(3.31) 

where A; is yet another parameter to be determined. The logarithmic dependence 

was chosen as to provide the correct correlation between bond length and energy 

[36] 0 

Table 3.1: Summary of the parameters to be determined in the MEAM potential. 

PARAM DESCRIPTION PROCEDURE 

£0 
I 

R o 
I 

(J. 
I 

A 
I 

/, ( 0 ) 
I 

/, ( I ) 
I 

l ( ~) 
I 

l (:~ ) 
I 

att 

rep 

C . 
1111 11 

c 
Ill it:\ 

cohesive e nergy 

equilibrium nearest neighbour distance 

exponential decay factor for rose equation of 
s tate 

com position-dependent electron density scal­
ing factor for partial electron densities 

scaling factor for embedding energy 

exponential decay factor for partial electron 
density n/0

) 

exponential decay factor for partial clecu·on 
density n/1

) 

exponential decay factor for partial elecu·on 
density n;'~) 

exponenLial decay factor for partial elecu·on 
density n;'~) 

weigh Ling factor for partial e lecu·on density 
n .<o) 

I 

weighting factor for partial e lecu·on density 
n t l l 

I 

weigh Ling factor for partial e lecu·on density 
( ~) n. 

I 

weighting factor for partial elecu·on density 
n ell 

I 

a tu·active adjustment for rose equation of state 

repulsive adjustrnent for rose equation of state 

acUustablc parameter in screening factor 

acUustable parameter in screening factor 

33 

direct from experimental data 

direct from experimental data 

equation 3.30 provided att and rep 
small ; variational method otherwise 

unity for monatomic systems; varia­
tional method otherwise 

variational method 

variational method 

variational method 

varia tional method 

variational method 

unity 

variatio nal method 

variational method 

variational method 

variational method 

variational method 

variational method 

variational method 



~-~~~-----·-----------------------

A summary of the parameters required to create a functional MEAM potential is 

provided in Table 3.1. In early applications of the MEAM, attempts were made to 

defi ne each unknown parameter as a functio n of a known experimental quantity (or 

quantities; see, for instance, [38]). Two problems exist with th is approach. First, 

several of the parameters ( eg. fJ,(I l, fJ/'!.l, fJ/'~ l , A;, att and rep) appear unable to be re­

lated directly to an experimental quantity. Second, the equatio ns which do exist to 

relate parameters to known quantities are true only in the specific case of A; equal to 

unity and att and rep equal to zero. Due to these limitations, and a marked increase 

in computing power, modern fit techniques use a completely variational approach 

(see, for example, [37, 39, 40, 78] ). In this work, a variational method is adopted 

to dete rmine all unknown parameters. In the next chapte r, the experi mental data 

used to characterize the MEAM potential parameterization is presented. 
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4· MEAM PARAMETERIZATION 

To determine the parameters in Table 3.1, a variety of th rmoelastic, structural, 

point defect and surface properties are computed theoretically and compared 

directly to their experimental values. In this chapter, the theoretical methods to 

calculate each property are described. To begin, the thermoelastic properties will 

be discuss d. 

4.1 THERMOELASTIC PROPERTIES 

To compute the static tructural properties, such as the latti e constant, cohe iv 

energy and bulk modulus of a system, it is sufficient to consider total e nergy a a 

function of volume for the reference structure. The equi librium lattice constant is 

thus defined by the volume at which the total energy is minimized; correspondingly, 

the cohesive energy is this minimum energy per atom in th system. 

To determine the bulk modulus and it'l pressure derivative, one must compute en­

ergy as a function of volume and subsequ ntly fit this data to an equation of state. 

As the fit procedure is fully automated, erroneous fit parameters may be reported 

if the data is discontinuous or noisy. For this reason, two equations or state are con­

sidered which, at absolute zero, are equivalent. These equations of state are known 

as the Murnaghan equation of state [79, 80] and the Birch-Murnaghan third-order 
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isothe rmal equa tion of sta te [R l ]. In the event that the parame te rs d erived fro m 

each curve fit differ by more than 2.5%, the MEAM pa rame te r set is disregarded . 

If the fit parame ters fall withi n th is tolerance, the data is assumed to be continuo us 

and the fi t appropria te. 

The Murnaghan equation of state is based u pon the assumptio n that the bulk m od-

ulus of a solid compressed to a fin ite strain with respect to pressure behaves linearly. 

For a fixed numbe r of particles a t a temperature of absolu te zero, p ressure and 

volume are rela ted by the expression [79]: 

( 4.1 ) 

whe re 

B' -(8Bo) II -

8?11 ·r 
(4.2) 

and 8
11

, ~~and /~1 are the eq uilibrium bul k modulus, volume and p res ure re pecti\ e-

ly. Furthe rmore, a t ab olute zero, p ressure is assumed to be a fun tion of volum 

only [79] : 

P(V) = 
d E(V) 

d V 
(4.3) 

By equating 4. 1 and 4.3 and integrating, one obtains an expression f(>r e nergy as a 

functio n of volume, known as the 1urnaghan equatio n of state [791: 

E(V) = Bu; [-,-1-( \/;, ) II;,+ 1] + C 
811 /30 - 1 V 

(4.4) 

where C is a consta nt of in tegration: 
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c - F - Bn~~ 
- ·n B' - 1 

II 

(4.5) 

It has bee n shown that Equation 4.4- is not well-behaved when using standard non­

linear least-squares fitting routines [80] . Hence, to facilitat curve-fitti ng, Equa-

tions 4.4- and 4.5 m ay be re-written as [80]: 

E(V) = BoV [B' (l-~~)+(~~)n;,- 1]+£ 
B' (B' - 1) 0 V V 0 

0 (I 

(4.6) 

As mentioned previously, a second eq uation of state is necessary to ensure that the 

fit parame te rs ar appropriate. The Birch-Murnagha n equation of state is chosen 

for this purpose [81]: 

At absolute zero and low pressures, the para meters d e rived from the Murnaghan 

and Birch-Murnaghan fits should be equivale nt. 

Once the bulk modulus and its pressure d erivative have bee n found, the shear elas-

tic constants, y andy', are next computed . To de te rmine the shear e lastic consta.nts, 

the method of Baskes is used [36] . In this method, the e ne rgy, 1~~ 1 , of the reference 

structure, pe riodic in all three dimensions, is calculated. ext, a specific strain is 

applied to the same la ttice, as given in Equation 4.8 [36]: 

x' = x+ Ey, y' = y, 
, 

z = z for 1' 

x' = (l + c:; )x, 
, y 

y = (1 +E )' 
, 

z = z 
( 4.8) 
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where x,y,z are the reference lattice vectors, x' ,y' ,z' are the strained lattice vectors 

and£ is the strain coefficient. The atoms in the lattice are then relaxed while the pe­

riodic vectors are fixed at the strained values to yield the relaxed energy, £
1

• Finally, 

Equation 4.9 is used to compute the shear elastic constants for cubic structures [38]: 

(4.9) 

where .Q is the volume of the system which is conserved under each set of strained 

coordinates, as shown in Figure 4.1 , and the second derivative of energy with re-

spect to strain is given by [36]: 

[a
2E: 

a ') 
c ' 

"( 

( 4.10) 

( 4. 11) 

for y andy' respectively. Combining Equations 4.9 and 4.10 and 4.9 and 4.11 gives 

linear expressions for energy versus £2
, the slope of which is y ( 4. 12) and y ' ( 4.13): 

2 ( ~ ) 2 -E - E = c'V [2 I () I 

1 ( ) 2 , - E - E =c 'V 
20 

I 0 I 

( 4.12) 

(4.13) 

The linear expressions for y and y 1 given by Equations 4.12 and 4. 13 are valid only 

in the linear viscoelastic regime; that is, they hold for small values of £ only. In this 

work, energy is computed for c· from 0.5% to 1.0%, values which are large enough 

to avoid significant computational errors, but small enough to remain in the linear 

regiOn. 
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A B 

EX 

---..~ x 

Figure 4.1: ch matic cross-section of the volume conserving strains y ( ) and y' 
(B). In ea h figure, the blue region is representative of the unstrain d lattice, whil 
the red region is representative of the strained lattice. 

The shear e lasti c constants, y and y', are related to the e lastic constants, C11 , C1:l and 

(4.1 4) 

( 4.1 5) 

To separate e
11 

and e
12 

in Equation 4. 15, an additional eq uation relating B, e
11 

and 

cl ':! is required [82]: 

( 4.16) 

Combining Equations 4. 15 and 4.16, and solving for e
11 

and C1 ~ gives: 
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4 e,, = B +- '"'! ' 
3 

e 2 , 
\., = B --'"'( 
- 3 

( 4.1 7) 

(4.18) 

H ere, C
11

, C,~ and e,
4 

form the complete elastic constant tensor for a cubic crystal 

system, which due to symmetry has only three independent parameters [82] : 

ell e,~ e,~ 

e,~ ell e,~ 

e = 
e,~ e,~ ell 

( 4.19) 
I) e4c\ 

eH 

where, for readability, the dots represent zero. Additionally, the inverse of this ma-

trix, S, wi ll be r quired in the subsequent analysis: 
'I 

(ell + e,~) e,~ e,~ 

D D D 

e,2 (ell + e,2) c,2 
D n D 

e,2 c,~ (ell + e,2) 

S,; = e,~' = 
D /) D 

(4.20) 

c" 

with 

(4.21) 
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Once 8, C . and S have been determined, an extensive thermoelastic analysis as 
'I IJ 

performed by Mayer is carried out [83]. The benefits of this analysis are two-fold. 

First, add itional parameters necessary to calculate curvatures and forces in canti-

lever system , such as the shear modulus, Young's modulus and Poisson's ratio can 

be computed directly. In present work, these parameters are assumed equivalent 

to those of the substrate; this analysis provides an additional means to determine 

the parameters in the event that the additional layers are comparable in thickness 

to the substrate. econd, these calculations provide insight into the parameter 80
1 

(Equation 4.2). Thi parameter is difficult to measure experimentally (cf. Tables 

5.5 and 5.6); in mo t work, the value used to fit B
0

1 is obtained directly from ab initio 

calculations. In what follows, it will be shown that B
0 

1 can be related to two known 

physical quantities, the Grtineisen coefficient and the linear thermal expansion co-

efficien t, and that present estimates of 8
0

' from ab initio calculations may be flawed. 

To begin the additional thermoelastic analysis, the shear modulus, G, is computed 

using [83]: 

c = c ~ · ~~ = _!_(c\, . + cR ) I 1 2 o1g-t eus..; ( 4.22) 

with: 

Knowledge of the shear and bulk moduli allows direct calculation of Poisson 's ratio, 

v, and the Young's modulus, Y, respectively [83]: 
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u= 

2 
8 --G 

l 3 
2 8 +_!_G 

3 

y = 98 
B 

1+3-c 

(4.23) 

(4.24) 

The shear ·:md bulk moduli may also be used to compute the mean .sound velocity, 

v [83]: 
Ill 

I 

[ 
L ( 2 1 Jl :~ 

v, = 3 v~ + v;~ 
( 4.25) 

whe re: 

v, =!! is the transverse sound velocity, 

p i the d ensity of the material. 

which in turn is used to calculate the Debye temperature, 7~) [83]: 

I 

n ( 61r~ ]'~ T ---- v 
/) - I V "' 

ln o 

(4 .26) 

where is the number of atoms in the unit cell and nand k
11 

arc the reduced Pla nck 

and Bo ltzmann consta nts, respectively. Next, the Debye temp rature is used to find 

the specific heat capacity, c1, [83]: 
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( 4.27) 

Finally, the coefficient of linear thermal expansion , a~_ , may be determined [83]: 

(4.28) 

where Yr. is the Grtineisen coefficient, found by fitting energy as a function of vol-

ume to the following equatio n of state [83, 84]: 

E(V)=5B~, (~ J~--y,, r ln (~ J -5 1 1+C 
-- "V () () -- "V 6 I ( ; 6 I ( ; 

(4.29) 

and C= t~ is treated as a constant during the fit. Since the coeffi ient oflinear ther­

mal expansion is experimenta lly well-defined, this me thod provides an additional 

way to validate th Murnaghan/ Birch-Murnaghan fits. Specifically, this forma lisrTI 

allov.rs B
0

' to be estimated indirectly using experimental data as wi ll be discussed in 

Chapter 5. 

4·2 STRUCTURAL ENERGY DIFFERENCES 

The next ene of data used to quantify the MEANl pot ntial parameterization 

are the stru tural energy differences b tween the reference stru tur and the d ia-

mond, face centered cubi c (FCC), body centered cubic (BCC) , simple cubic (SC) 

and hexagonal close packed (HCP) structures. As in ection 4.1, the lattice con-

stant for each tructure is defined by the volume at which the energy is minimized. 

43 



Additionall y, the e ne rgy difference, LJh~,, between the reference structure and any 

other structure a is given by: 

!:::.£ = E - N" E . 
o o N rei 

rd 

(4.30) 

where E and E r are the minimized energies and N and N rare the number of at-
a rc r1. rl! 

oms for the a structure and the reference structure, respectively. A summary of the 

primitive and basis vectors for each structure used in this work is given in Table 4. 1. 

4· 3 POINT D EFECTS 

Point d efects in the form of vacancies and interstitia ls are next considered 1
• In each 

case, a reference supercell consisting of lOxlOxlO primitive cells is constructed. 

Periodic boundary conditions are not employed~; rather, the outer five layers along 

each direction ±x, ±y and ±z are fixed and removed from the energy calculations to 

simulate bu lk conditions within the cell as shown schematically in Figure 4.2. The 

first step in e ither defect calculation is to compute the ene rgy, E;
1
, of the reference 

cell. Mter computing ~1 , the atom at (0,0,0) is removed to create a vacancy, and the 

1Point d efects are chosen due to the availabi li ty of experimental data. Furth er in­
terfacial mixing (refer to Chapter L) wi ll create disruptions in the periodicity of the 
bulk lattice(s) which are observed in the form of vacancies and in terstitials. 

~Th e choice of (non) periodic boundary conditions and sup rcell size are not criti­
cal. Negligible differences in energy are observed provided the supercell is large 
e nough to prevent replication of the defect in the case of the periodic regime, 
and to spatially allow enough unfrozen atoms to permit complete relaxatio n of 
the ato ms surrounding the defect (typically, th is includes the third to fourth near­
est neighbours). This particular method was adopted since non periodic simula­
tions are computationally more e fficie nt than their periodic counterparts, and a 
IOxJOxlO supercell always allows sufficient free atoms for complete relaxatio n. 
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resul tant system is relaxed with e ne rgy E
1

• The relaxed vacancy formation e nergy, 

E I, is thus: 
v 

N - 1 
£ 1 = E - --E ,, I II ( 4.31) 

where is th number of atoms in the re ference supercell. The vacancy migration 

e nergy, E,"•ig, is defined to be the difference between the total energy of the system 

before the migration of an atom, E
1

, and the saddle point e ne rgy, 1~~ 1, during migra-

tion: 

E"'ig = E - E ,, r 1 (4.32) 

z 

t_;y 
X 

Figure 4.2: Schematic representation o f the 20 cross-section of the supe rcell con­
structed for p int defect calculations. Here, the yellow a reas represent layers of 
atoms which ar frozen and removed from the nergy computation, while the grey 
area represents atoms which are free to move about the cell. 
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Table 4.1: Summary of the primitive and basis vectors for the structures consid-
e red in structural e nergy difference calculations. 

No. 

PRIMITIVE BASIS BASIS 

STRUCTURE VECTORS ATOMS VECTORS 

AI = a( 1, 0,0) 
Simple Cubic 

~ = a(O, l,O) Bl = (0,0,0) (SC) 
A~ = a(O,O,l) 

AI = ~(0 11) 
2 ' ' 

Face Centered 
~(I 0 1) Cubic ~ = Bl = (0,0,0) 

(FCC) 2 ' ' 

~ = ~(1 1 0) 
2 ' ' 

AI = ~(-111) 
2 ' ' 

Body Cente red 
~ ~(l -11) Bl (0,0,0) Cubic = = 

(BCC) 2 ' ' 

~ = ~(11 - 1) 
2 ' ' 

AI = ~(0 1 1) 
2 ' ' 1 

Bl = -(- 1 - 1 - 1) 
Diamond Cubic ~ ~(1 0 1) 2 

8 ' ' 
= 2 ' ' l 

B'2 = -(1,1,1) 

~ ~(1 1 0) 8 
= 2 ' ' 

AI = ~ (1 -J3 o) c 2 1 ) Hexagonal 
2 ' ' Bl = 

3'3 '4 
Close Packed 

~ ~(I , J3, o) 2 

(f·i·!) (H CP) = 
8'2 = 

~ c(0,0, 1) 
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Figure 4.3: chematic re presentation of the method to compllle the vacancy mi­
g ration ene rgy. In this figure, position represents a vacancy, position B represents 
a nearest ne ighbour atom and position C repre e nts the maximum energy (saddle 
point) along the linear path B to A. 

where the saddle point en ergy is computed a, fo llows [85]. First, in reference to 

Figure 4.3, it is assumed that the migration of a vacancy from position A to B is 

energetically equivalent to the migration of an atom from position B to A. t th 

saddle point, corresponding to position C, the ene rgy of the syste m is at a maximum 

for this particular migration route . The atom is fixed at position C , and the other at-

oms are allowed to fully relax. This energy corresponds to the saddle point energy. 

Finally, the activation energy of vacancy diffusion , ~is merely the sum of the forma-

tion and migration energies: 

(4.33) 
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To compute the e nergy of the in terstitials, rather than re move the a to m a t (0,0,0), 

an additional a tom is inse rted at a specific coordinate as d escribed in Table 4.2. As 

in the vacancy calcula tions, the la ttice with the inte rstitial is relaxed , yielding energy 

£
1

• The re laxed intersti tial formatio n energy,£/, is the n: 

( 4.34) 

Table 4.2: Summary of the in terstitial coordina tes conside red in this work. 

HOST 

STRUCTURE 

Diam ond Cubic 

Diamond Cubic 

Face Cente red Cubic 

INTERSTITIAL 

NAME 

TcLrahedral1 

Hexagonal' 

[ l 00] Dum bbcll~ 

Reference [86] 
Refere nce [87] 

4·4 SURFACE PROPERTIES 

INTERSTITIAL 

COORDINATE 

To compute the surface properties of the system, a 1 Ox I Ox 10 supercell is again con-

structed . For this a pplicatio n , the bottom five layers along -z are frozen and o mitted 

from the ene rgy calculation to simulate the bulk n1ate rial, as shown in Figure 4.5. 

The system is pe riodic in x and y b ut not z; the top layer along +z is the free surface 

layer to be studi ed . T he surface configurations conside red in this work are sum-

marized in Ta ble 4.3. 
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0 

0 
0 0 

o e 

0 0 
0 

0 

Figure 4.4: The FCC [100] Dumbbell interstitial. The solid b lue circle d epicts 
an atom shifted from its initial face centered positio n, whi le the solid red circle 
represe nts an ins rt d interstitia l atom. 

In each configuration a. the energy per surface atom E ·""111 is given by: 
(.. ' ' {( ' (. 

( 4.35) 

where E bull- and t.: are the energies and N hull- and N,.,.
1 

are the number of atom s 
a rl'f l a ~ 

in the a. and refere nce supercells respectively. It is also beneficial to consider the 

surface en rgy as a per area quantity, }~~;'"'",as doing so permits direct comparison 

with expe rimental data: 

(4.36) 
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Figure 4.5: Schematic representation of the 2D cross-section of the supercell con­
structed for surf~1ce energy calculations. Here, the yellow area represents layers of 
atoms which are frozen and removed from the energy computation, the grey area 
represents atoms which are free to move about the cell , and the blue area repre ents 
the free surface to be studied. 

where A, is th surface area of the supercell in configuration o... Finally, the relative 

plane spacing, !:J.d"1
'.!, is defined as: 

(4.37) 

where d I'.! and d r l '.! are the distances between the surface plane and its nearest 
a rc 

neig hbour in the o.. and reference supercells respectively. 
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Table 4.3: Summary of the surface configura tions conside red in this work. 

HOST SURFACE 

STRUCTURE PLANE CONFIG. DESCRIPTION 

Diamond Cubic 
(l 00) Ato ms 111 refe re nce co nllgura-
( 11 0) Ideal tion ; Ene rgy com puted witho ut 

Face Cente red Cubic 
( Ill ) relaxa Lion 

Diamond Cubic 
( 100) Ato ms in re ference conllgura-
( 11 0) l x I Re laxed Lio n ; Ene rgy minimized the reby 

Face Ce nte red C ubic 
( I I I) relaxing surf~1ce atoms along z 

Atoms in ~x i configura tion 

Diamond Cubic ( 100) 2x I Dimer 
(Figure 4.6A); Energy mini-
mized the reby re laxing surface 
atoms along z 

Ato ms 111 I x5 configura tio n 

Face Ce ntered Cubic ( 100) 1 x5 Hexagon al 
(Figure 4.6B); Energy 1111111-

mized thereby relaxing surface 
atoms alo ng z 

Atoms in I x2 configura tio n 

Face Ce ntered Cubic ( 11 0) I x2 Missing Row 
(Figure 4.6C): Energy 111111 1-

mized the reby re laxing surface 
atoms a lon · z 

4·5 ALLOYS 

The alloy (SiAg, SiAu and AgAu) pa ram eters a re dete rmined using the prope rties 

of bina ry cluste rs, which are available experimentally, and structural e nergy diffe r-

ences, which are calculated using OFT. An exha u tive lite ra tu re survey indicates 

that SiAg, SiAu and AgAu d o not fo rm stable alloys, and so the exte nsive expe rime n-

tal d ata used to fit the ele ments is not available fo t· the alloys. Fortunately, the re a re 

fewer parame te rs to conside r in th e a lloy fi ts ( n°, E 0
, a. .. , R 0 atL, rep .. , C . ( i,y·,h) and 

I 1/ If If I) I) 111 11 1 

C,m,Ji,j, k)); the limited prope rties used he re a re sufficient to de te rmine them. 
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A B c 

Figure 4.6: Diamond cubic (1 00)2xl reconstructio n (A), FCC (100) 1x5 recon­
structio n (B), and FCC (110) 1 x2 reco nstruction (C) . In each figure, the top image 
represents the ideal configuration, while the bottom image de picts the reconfigw-ed 
surface. Additiona lly, darker shaded a to m s a re closer to the surface than ligh te r 
ones. 

For th e bina ry cluste rs, the b inding e ne rgy per atom , £
11

, a nd the equ ilibrium bo nd 

le ng th , Rc1"", are considered . To begin , en ergy is minimized by a~justi ng th e bond 

leng th, and the len gth which correspo nds to the en ergy minimum is Rr1
" " . En is th en 

simply: 

E - _!_(E - E - E) IJ - 2 S\'S i j (4.38) 

whe re E"'' is the minimized total e ne rgy of the binary system and ~and Ei are the 

e ne rgies of the consti tu en t atoms in the cluster. 

For the structural e nergy differences, a variety of standard bina ry an d te rn ary crys-

tal lographic structures are u tilized , as summari zed in Ta ble 4.4. Com p utational 

d e ta ils a re exac tly as d escribed in Sectio n 4.1 . 
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Table 4.4: Summary of the primitive and basis vectors for the structures consid-
ered in structural e nergy difference calculations. 

No. 

PRIMITIVE BASIS BASIS 

STRUCT. VECTORS ATOMS VECTORS 

Bl 
AI ~(011) = 

(NaCl) 2 ' ' 
81 (0,0,0) (Na) = 

A~ = ~(1 0 1) 2 1 
SiAg 2 ' ' B~ = -(1,1, 1) (Cl) 

SiAu 2 
a 

~ = -(1,1,0) 
AgAu 2 

Ll ~ 
(Cu~Au ) 81 = (0,0,0) (Au ) 

1 
SL1Ag AI a(1,0,0) 82 = 2(0,1,1) (Cu) = 

Ag:1Si A~ = a(O,l ,O) 1 
Si ~Au a(0,0,1) 

8~ = -(1,0, 1) (Cu) 
A~ = 2 

Au~Si 1 
B4 = - (1,1,0) (Cu) 

Au:~Ag 2 
(T u 

Bl = (0,0,0) (Ca) 

1 
82 = -(1,1,1) (Ti) 

E2
1 

2 
AI = a( l,O,O) 1 

(CaTiO.) a(O,l ,O) 8~ = -(0,1,1) (0) 
~ = 5 2 

A~ = a(0,0,1) 1 
AgAuSi:1 8.1 = -(1,0,1) (0) 

2 

1 
B, = - (1,1,0) (0) 

2 
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No. 

PRIMITIVE BASIS BASIS 

STRUCT. VECTORS ATOMS VECTORS 

Bl = (0,0,0) (B) 

1 
B~ = -(0,1,1) (A) 

2 
1 

B~ = -(1,0,1) (A) 
Diamond 2 

Subst. 
1 

AI = a(1, 0, 0) B.l = -(1, 1, 0) (A) 
(A_B) 2 

I ~ = a(O,l,O) 8 1 
a(O,O,l) B"' = -(1,1,1) (A) 

Si A~ = 4 
I 

g 
Si.Au 1 

Br, = -(3,3,1) (A) I 

4 
1 

~ = -(3,1,3) (A) 
4 
1 

BH = -(1,3,3) (A) 
4 

Bl = (0,0,0) (Cr) 

1 
B~ = -(1,1,1) (Fe) 

2 
I 

B~ = -(1,0,0) (Fe) 
2 

AI = ~(-111) 1 
cll6 2 '' B.l = -(0,1,0) (Fe) 

(CrFe 1Ni:~) 
2 

~ = ~(1 - 1 1) I 2 ' ' B"' = -(0,0,1) (Fe) 

AuSi.1 g:l 
2 

~ = ~(11 - 1) 1 2 ' ' Br, = - (0,1,1) (Ni) 
2 
1 

B7 -(1,0,1) (Ni) 
2 
1 

BH = 2(1,1,0) (Ni) 
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No. 

PRIMITIVE BASIS BASIS 

STRUCT. VECTORS ATOMS VECTORS 

Bl = (0,0,0) (AI) 

AI = ~( 0 1 1) 1 
L2

1 
2 ' ' B2 = - (- 111) (Mn ) 

2 ' ' 
(AI Cu

2
Mn ) a 

A2 = -(1,0,1) 4 1 
2 B~ = - (- 1 - 1 - 1) (Cu ) 

4 ' ' 
SiAu

2
Ag 

A~ = ~(11 0) 1 2 ' ' B4 = -(1,1,1) (Cu ) 
4 
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5· RESULTS AND DISCUSSION 

5.1 COMPUTATIONAL METHOD 

5·1.1 DENSITY FUNCTIONAL THEORY 

OFT calculations1 were performed usi ng the Bl IT cod e version 5 .8.3 [88, 89] 

within the GGA. The exch an ge-corre lation functional used was that of Pe rdew, 

Burke and Ernzerhof~ [55] . A Monkhorst-Pack 16x i6x16 k-point g rid was used 

in a ll computations [65]. The e lectronic wavefunctions were expanded in plane 

waves with a kin e ti energy cut-off of' 25 Ha rtree. In all computations, total energy 

was converged to a pproximate ly 0.1 m e\' with respect to k-point sampling, e n ergy 

cut-off and cell size . 

Pseudopotentials we re generated using the OPIUM software version ~.4 [90] and 

the RRKJ optimized method [69] with a target kinetic e n e rgy cut-off of 25 H a rtree. 

1Single-thread ed computations were executed on ACE e t clusters Placentia2, Ma­
hone2 and Glooscap. Simulation times vary o n the order of one week (elements) 
to one month (ternary a lloys). 

~ In orde r to re main norm-conserving, the pseudopotential is orrelated to all-elec­
tron resul ts computed with a given exchange-correlation functional. For this rea­
son, it is crilical that the pseudopot ntial gen e ra tor and th e OFT package e mploy 
the same XC fun tional. At present, OPIUM, FHIPP and others cannot c reate pse u­
dopote ntials u ing advanced XC hmctionals, a nd so the PBE GG function a l com­
mon to both OPIUM and ABINIT was chose n . 
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Scalar relativistic corrections were included in the pseudopotentials for g and Au; 

no relativistic corrections were nece ·ary for Si. Valence and core orbitals, orbital 

occupations, optimization radii and e ige nvalue estimates were chosen such that 

transferabi lity was maximized ( <135 me\' error per configuration in Table 5.1 ), dis-

crepancies bel:\-veen all-electron and pseudopotential calculations were minimized 

(<2 meV) and the resultant pseudopotential properly reprodu ced experime ntal 

results (equilibrium bond length , cohesive e nergy, bulk modulus and vacancy for-

mation energy) . A summary of the electronic configurations chosen for Ag, Au and 

Si is presented in Table 5.1. 

Table 5.1: Electronic configurations used in the generation of pseudopotentials. 
H e re, the reference e lectron configuration is provided for the elements, as well 
as the e lectronic orbitals d eemed to be valence o r core e lectrons a long with their 
occupations for the pseudopotentia ls. Finally, the vale nce configurations tested for 
transferability a re provided. 

# ofe· REF. e· pp pp ThANSF. 

ELT. REF/ PP CO NFI G. CORE VALENCE CO NFI G. 

Si 14/ 14 I ., s- l ., s· 3s~p~d" 3s 1 p~d" 

<) :! h _s p 2s~p" 3s~p 1 d11 

3s~p~ 3s~p:'d11 

g 47/ 46 l s~ I ., s· -~diU -ld" 5s11p11 

2s~p" 2s~p" 5s"p11 4d 111 5s1p0 

3s~p"d 111 3s~p"d"' -kl 111 5s11p1 

4s~phd"' -~s~ph 4d"1 5s1p 1 

5s1 

Au 79/ 78 1 ., s- l s~ 5cP' 5d" 6s"p" 

2s2p" 2 :!ph 6s1p11 5d 111 6s"p11 

3s~p"d "' 3s~p"d "' 5d"' 6s 1p11 

4s~p"d 1"r 1 4s~p"d 1 "r 1 5dw (islip I 

5s~p'id lo 5s~p'; 5d 111 6s1p 1 

61 s 
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MODIFIED EMBEDDED ATOM METHOD 

MEAM computations:1 were completed us1ng the Large-scale Atomic/ Molecular 

Massively Parallel Simulator (LAMMPS) software package versions 21-May-08 (el­

ements) and 7:Jul-09 (elements/ alloys) [91]. The automated parameter fitting 

procedure is as follows. An initial data set of 1,500 entries, an example of which is 

provided in Figure 5.1 , is collected v.rith the MEAM parameters assigned randomly 

over an extreme range, as shown in Table 5.2. The minimum parameter resolu-

tion (step-size) is 0.1. The bulk modulus and elastic constants, identified as the 

critical parameters in the MEAM fit [36- 38] , are used to decide whether or not to 

compute a full data set. For the initial step, a ±20% tolerance is used: should the 

computed result differ with the experimental value by more than this, the computa-

tion is stopped and the parameter set discarded. 

Table 5.2: Initial parameter ranges for MEAM fit algorithm. 

PARAMETER MINIMUM MAXIMUM 

a . 0.1 10.0 
I 

A. 0. 1 5.0 
I 

fJ (/) -10.0 10.0 
I 

t ({) -I 0.0 10.0 
I 

att/ rep 0.0 10.0 

C . 0.5 3.0 
llllll 

c >C . 6.0 
lllit' In Ill 

:
1Multi-threaded (MPICH2) computations were executed on ACENet clusters Pla­
centia2, Mahone2 and Glooscap and a local sever (Baskes). For the fit procedure, 
deployment across four cores was optimal with the system sizes considered. On 
Baskes, elastic constant calculations execute on the order of thirty seconds; a com­
plete data set takes on the order of five to eight minutes to compute. 
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# --------------------------------------------------------------------
# STEP 1: 1/1500 
# --------------------------------------------------------------------
# alpha,asub,t1,t2,t3,bO,b1,b2,b3,cmax,cmin ,delr ,rc,att,rep 
# 6.05,1.082,4.319,2 .331,3.049,4 .41,3.701,6.248,2.588,2.5,1.58 ,0 .0,0.0 
@ --------------------------------------------------------------------

LC 4.0871 4.09 
EN 2.85 2.85 
mBM 0.6772 0.678443 
gBM 0.6786 0.678443 
BMD 4.9576 ? 
gGAM 2.341 ? 
G 0.3187 0.318936 
GP 0.1067 ? 
G/GP 2.9881 ? 
Cll 0.8194 0.82075 
C12 0.6061 0.60729 
rBCC 3.2152 3.282 
rHCP 4.1832 ? 
rSC 2.6607 2.812 
rDIA 6.0242 6.402 
eBCC 0.0465 0.04 
eHCP 2.1436 0.003 
eSC 0 .1361 0.31 
eDIA 0.5576 0 .66 
vFE 1.165 1.1 
vfDE 1. 6317 1.77 
vME 0.4667 0.67 
E- 100-ID 0.6431 ? 
E-100-1xl 0.6161 -0.7 
D-100- 1x1 2.1501 2.006 
E-100-HEX 72.0125 GT_1x1 
D-100-HEX 2.045 ? 
E-110-ID 0.7995 ? 
E-110-1x1 0. 7758 -0 .7 
D-110-1x1 1. 3947 2.574-2.690 
E-110-1x2 0.9524 GT_1x1 
D-110-1x2 1. 2878 ? 
E-111-ID 4.1864 ? 
E-111-1x1 0.7973 -0.7 
D-111-1x1 2.399 2.314-2.361 
(100)DB 2.7559 2.86 

Figure 5.1: Sample MEAM data entry. 
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O nce the initial 1,500 entries have been computed , the data is next analysed . The 

mea n-absolute e rror (MAE) is computed for each entry: 

(5.1) 

whe re.f.·'1' is th calculated MEAM value,J,'"'P' is the expe rimental value and 1 is the 

numbe r of values pe r entry. The e ntries a re sorted by MAE, and the ten e ntries with 

th e lowest MAE are considered . New ranges a re de fin ed for each MEAM pa ra m-

e te r by simply consid e ring the minimum and maximum values ±5% of a pa rti cu la r 

pa rame te r in the truncated data set. n additional 500 ntry data set is collected 

with the r d e fin ed pa rame ter ranges, a pa rame te r ste p-size of 0.05 a nd a to lerance 

of 5% on the bulk modulus and elastic constants. The paramete r ranges, ste p-sizes 

and tolerances are continually re fin ed until the d esired param te riz.a tion is found . 

The final, re fin ed paramete r sets a re as summarized in Table 5.3. In the subseque nt 

sections, the pa ram eters ide nti fied in Cha pter 4 will be examined . 

5·2 ELEMENTS 

To begin , the stati c structural pro pe rties, including the la ttice constant, cohesive e n-

e rgy, equilibrium volume a nd bulk modulus were de termined for each e lement by 

conside ring the energy vs. volume data. T he resul ts a re summarized in Figures 5.2 

th rough 5.4 for Si , Ag and Au respectively. Due to the inhe rent difficulties in con-

structing pseudopo tentials which reproduce exactly the expe rimental resul ts, two 

figu res are provided for each element: the as-obtained da ta fo r th e OFT a nd MEAM 

calcula tio ns, and an addi tional graph depicting the OFT and MEAM calculatio ns 
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with a common origin to highlight the simila ri ty in curvatu res' . The agreement 

be tween the MEAM results and expe rimenta l data is exemplary, and the OFT com-

puta tions provide the proper curvatures and a re within 2.5% of the experimen tal 

values for cohesive energy and lattice constant. 

Table 5.3: Final MEAM parameter set. 

PARAM Si Ag Au SiAg SiAu AgAu SiAgAu 
£0 4.63 2.85 3.93 3.37 4.27 2.60 

I 

R o 2.35 2.89 2.88 2.68 2.54 2.48 
I 

a 4.87 6.05 6.61 5.07 4.9 1 6. 19 
I 

no 5.35 2.25 1.76 
I 

A. 1.007 1.078 1.038 
I 

fJ/0) 4.003 4.414 5.436 

fJ;' I ) 3.1 22 3.698 4. 180 

fJ /'1) 7.422 6.244 4.,900 

fJ (:1) 7.434 2.578 3.600 
I 

{ ( 0 ) 
I 

t< I ) 4.292 4.326 1.737 
I 

l ( 'l ) 5.1] 8 2.335 1.950 
I 

l(~) -1.193 3.049 2.729 
I 

att 0 0 0 0.57 0. 13 0.2 1 

rep 0 0 0 0.94 1.64 0.05 

C . 1.70 1.60 1.50 (Si ,Si.Ag): (Si,Si.Au): (Ag,Ag,Au): 1.06 
Ill I ll 

1.50 2.29 1.30 

(Si ,Ag,Ag): (Si.Au.Au): (Ag,Au.Au ): 

1.68 1.50 1.21 

c 4.00 2.52 3.26 (Si.Si.Ag): (Si ,Si,Au ): (Ag,Ag,Au): 4.54 
Il l (I X 

3.50 2.48 4.20 

(Si ,Ag.Ag): (Si,Au,Au): (Ag,Au,Au): 

-L31 3.72 4.9 1 

·'Th is is clone for display purposes o nly; the rommon origin graphs have no bearing 
o n the MEAM fits. 
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Next, the thermoelastic results for i, Ag and Au are presented in Tables 5.4, 5.5 and 

5.6 respectively. The results are, in general, excellent. For Si, the MAE (cf. Equation 

5.1) in this work is 0.9, compared to the MAE of 2.7 for the first nearest neighbour 

parameterization of Baskes [36] and 2.6 for the second neare t neighbour param-

eterization of Lee [37]. Note that these MAEs were computed using only param-

eters common to a ll groups with a well-defined experimental value. imilarly, for 

Ag and Au, the MAE in this work are 0.3 and 0.2, compared to the second nearest 

neighbour parameterization of Baske [38] which gave a MAE in each case of 0.1. 

It is interesting to note the large disagreement with the coeffi ient of linear thermal 

expansion, a, for i. As this parameter is a function of the bulk modulus, spe-

cific heat capacity, equilibrium volume and Criineisen oefficient, the only truly 

unknown variable is the Crl.ineisen coefficient as the other parameters agree strong-

ly with experimental values. Thus, one may solve Equation 4.28 for the Grl.ineis n 

coefficient, assuming that a takes the experimental \'alue of 2.6x I 0·6 K 1
. The re-

sultant Gri.ineisen coefficient is 0.93; slightly higher than the value presented in 

literature [93]. Using this value, one may construct a theoretical set or energy vs. 

volume data to which to complete a Murnaghan fit. The result, as depicted in Fig-

ure 5.5, suggests that the value of B
11 

'may necessarily be closer to 2.2 rathe r than the 

4.2 suggested by ab initio calculations''. 

"The bulk modulus pressure derivativ , B
0 

1
, and the Cri.ineisen co fficient, Yv are 

difficult to empirically correlate, as shown by Slater and others [95]. Yv which i a 
measure of the variation of pressure with internal energy at a constant volume, and 
B

1 
1 both set-ve as a link between the elastic and thermal properties. In order to un­

d~rstand fully the implications of the a~justed B
0 

1 value, one must consider higher 
order elastic onstants, as well as high pressure thermal and elastic properties in 
conjunction with the low pressure values given in this work. 
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Figure 5.2: OFT and MEAM energy vs. volume curves for Si. a) Data as-obtained. 
b) Data recentered to common origin. 
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Figure 5.3: DFT and MEAM energyvs. volume curves for Ag. a) Data as-obtai ned. 
b ) Data recente red to common origin. 
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Figure 5.4: OFT and MEAM energy vs. volume curves for Au. a) Data as-obtained. 
b ) Data recentered to common origin . 
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Table 5.4: Thermoelastic results for Si. Distances are given in Angstroms, e n­
e rgies in eV, e lastic properties in CPa, velocities in m / s, temperatures in K, heat 
capacities inj / mol·K, and thermal expansion coefficients in 10·6 K 1

• Thermal prop­
e rti es a re computed at 293 K Data from [37] unless otherwise noted. 

For comparison with other empirical semiconductor potentials, values for the Still­
inger-Webe r (SW), Tersoff (Ters), Environment-Dependent Interatomic Potential 
(EDIP) , Highly Optimized Empirical Potential (HOEP) and first (1 NN) and second 
(2NN) nea rest ne ighbour MEAM are provided from li terature [37]. A schematic 
representation of this data is presented in Figure 5.6. 

THIS WORK 

EXPT/ INN 2NN INN 

DFT sw TERS EDIP HOEP MEAM MEAM DFT MEAM 

a 5.431 5.3 1 5.43 1 

£.11 4.63 4.63 4.63 
I 

Bo 
97.7' 

108 98 99 110 98 99 96.2 99.0 
99 

Bo' 4.2 2.93 4.3 4.27 4.01 4.22 

y/ CJ.I 
79.3' 

60 69 71 72 79 79 79 
80 

y' 50.5 50 50.6 

ell 168 ] 62 143 175 I 64 164 165 

c~ ~ 65 82 75 62 64 67 64 

CII-CI~ 103 80 68 11 3 83 100 97 101 

cll-c44 -15 22 6 -9 - 15 -12 -15 

G 521 66.1 

y 1851 162 

v 0.281 0.22 

y (; 0.25T 2.52 1.75 

v, 5325 

VI 8930 

v 84331 5894 
Ill 

Tn 6461 645 

r, . 19.81 19.8 

0. 2.61 4.89 

"Reference [36] 
t Reference [92] 
: Reference [93] 
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Table 5.5: T hermoelastic resul ts fo r Ag. Distances a re give n in Angstro ms, en­
e rgies in eV, elastic properties in C Pa, velocities in m/ s, temperatures in K, heat 
capacities in j / mol·K, and thermal expansion coeffi cients in lQ·fi K 1

• T he rmal prop­
e rties a re computed at 293 K. Data fro m [39] unless otherwise noted. 

EXPT/ 

DFT 
(l 4.09 

£11 2.85 
I 

Bo 108.7 

5.87 
Bo' 

3. 76- 6.12' 

y/ ~H 5 l.l 

y' 

c,, 131.5 

c, ~ 97.3 

c, ,-c,~ 

C11-C+1 

c 301 

y 831 

v 0.371 

2.4 

Yc 2.2' 
2.35# 

VI 

v, 
v 26801 

II/ 

T,> 2251 

c, . 25.2 1 

a. 19.1 1 

+Refe re nce [38] 
*Refe ren ce [841 
t Reference [92] 
! Refe rence [93] 
#Refe rence [94] 

THIS WORK 

INN 2NN INN 
MEAM+ MEAM DFT MEAM 

4.08 4.09 

2.80 2.85 

98. 1 108.5 

5.61 5.57 4.96 

46.5 5 1.1 5 1. 1 

16 17. 1 

131.5 13 1.3 

97.3 97.1 

34.2 34 .2 

46.2 46 

33 

89.9 

0.36 

2.77 2.34 

1772 

3811 

1996 

230 

24.2 

16.9 

! Refe rence [95] (experimentally assessed values of B
11 

') 
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Table 5.6: Thermoelastic results for Au. Distances are given in Angstroms, e n­
ergies in eV, elastic properties in CPa, velocities in m/ s, temperatures in K, heat 
capacities inj/ moi·K, and thermal expansion coefficients in 1 o·fi K 1

• Thermal prop­
erties are computed at 293 K. Data from [39] unless otherwise noted . 

EXPT/ 

DFf 

a 4.08 

£.0 3.93 
I 

Bo 108.3 

5.9 
Bo ' 

3.81 - 6.29' 

y/ C~.~ 45.4 

y' 

ell 201.6 

cl'.! 169.7 

CII-CI2 

CII-C·H 

G 271 

y 781 

v 0.441 

2.85: 
Yc 2.91 # 

v 
I 

v, 
v 2030t 

m 

7~) 165 1 

Cl, 25.61 

(J. 14.1 t 

1 Reference [38] 
2 Reference [ 40] 
t Refere nce [92] 
t Reference [93] 
#Reference [94] 

BASKES' Kuo2 THIS WORK 

tNN tNN 2NN tNN 

MEAM MEAM MEAM DFf MEAM 
4.05 4.08 

3.60 3.93 

I 60.9 108.5 

6.06 5.95 5.32 

41.7 60.9 45.4 45.4 

14.6 23.1 16. 1 

20 1.5 202.0 

169.7 169.7 

31.8 32.3 

124.3 124.3 

30.0 

85.2 

0.42 

2.63 

1246 

3379 

1414 

163 

24.6 

11.6 

: Reference [95] (experime ntally assessed values of B
11 

') 
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Figure 5.5: Determination of B
0

' based on theoretical Griineisen data. 

Continuing the analysis, the structural energy differences are next summarized in 

Tables 5.7 through 5.9. Again , the results are excellent. For Si, a MAE of0.03 is ob­

served, compared with the MAE of the first and second nearest neighbour MEAM 

of 0.09 and 0.02, respectively. Similarly miniscule MAE were observed for Ag and 

Au. The slightly larger discrepancies observed in the HCP energy difference in Ag 

and Au are attributed to the fact that the HCP ratio c/ a was held in this work at the 

ideal value of 1.63, but was treated as an optimization parameter by other authors. 

By optimizing both c and a, a lower total energy may be found. 
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---------------------------------------------------------------------------------------------~ 

Table 5.7: Structural ene rgy differences for Si. Cohesive ene rgies are given In 

eV, lattice constants in Angstroms. Data from [37] unless otherwise noted . 

THIS 
WORK 

EXPT/ INN 2NN INN 
STRUCT DFT sw TERS EDIP HOEP MEAM MEAM MEAM 

Dia !-.~ -4.63 -4.63 -4.63 -4.63 -4.63 -4.63 -4.63 -4.63 

(I 5.43 5.43 5.43 5.43 5.43 5.•13 5.43 5.43 

sc l'lt.~ 0.35 0.29 0.32 0.53 0.29 0.26 0.:14 0.:17 

(/ 2.53 2.61 2.5<-1 2.50 2.61 2.62 2.60 

BCC s 0.53 0.:10 OA3 1.59 0.72 0.45 0.49 0.55 

(/ 3.09 3.25 :1.08 :1.24 3.25 3.14 3. 13 

FCC M.: 0.57 0.42 0.76 UN 0.70 0.34 0.57 0.68 

(/ 3.89 4.15 :1.90 4.08 4. 19 :1.98 3.90 

HCP E, 0.55 0.:12 0.76 0.9:1 0.67 O.:I..J 0.56 0.68 

(/ 2.74 3.65 2.76 2.56 2.96 2.82 2.76 

r/ a 1.6:1 0.88 1.6:1 2.13 2.04 1.64 1.6:1 1.63 

The point d efects are next considered and the results are summarized in Tables 

5.10, 5. 11 and 5.12. The results are exemplary; the best agreement for the majority 

of the param e te rs, especially Si interstitials, are observed in this work. 

Finally, the surface properties are examined, and are summarized in Tables 5. 13 

through 5.15. While, in general, the surface energies are consistent with expe ri­

mental results, this work continues to highlight one of the major failings of the fit·st 

nearest ne ighbour MEAM. First observed by Baskes fo r the Si and Ge systems [36], 

and late r confirmed in general [38], it is evident that the first nearest neighbour 

MEAM has difficulties describing inward surface relaxations (as represented by the 

f..d
1

'2 values). o suitable MEAM parameters could be found in this work which 

allow for inward relaxations and yet maintain reasonable accuracy for the other fit 

pa ramete rs. The second nearest neighbou r MEAM, which exists to correct this flaw, 
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is clearly better suited for computations of this type. However, there are difficul-

ties associated with the adoption of the second nearest neighbour MEAM, some of 

which are described in Section 6.2.2. 

5·3 ALLOYS 

For the a ll oy parameterization , the binary cluster properties are first considered, 

and are summarized in Table 5. 16. Binary clusters were chosen due to the availabil-

ity of experimental data; these were the only properties for the SiAg, SiAu and AgAu 

systems for wh ich experimental data could be found. Given that the Si , Ag and Au 

elemental pa rameters were optimized with no consideration for the binary cluster 

properties, the results are impressive. In general, the bond lengths are high ly ac-

curate, whi le the binding energies are always higher than the experimental result. 

Lastly, the structural energy differences a re li sted in Table 5.1 7. In general, three 

unique behaviours are observed. First, in situations where the MEAM underesti-

mates the lattice constant, a, with respect to the DFT resu lt, the cohesive energies 

and bulk moduli tend to be larger to compensate ( eg. B l structures). In this case, 

the bulk moduli derivatives are approximately equivalent. Together, these features 

merely des ribe a sh ift in origin of the energy vs. volume curves; this is not entirely 

unexpected given Figures 5.2a through 5.4a. The second case is the converse of the 

first: here, the MEAM overestimates the lattice constant, and the cohesive energies 

and bulk moduli are smaller than their DFT counterparts. ln the particular case 

of the Ll:~ structures, the bulk moduli derivatives are once again approximately 

equal, and so the result of these discrepancies is a shift in origin. However, for the 
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diamond substitutions (cf. Table 4.4), the MEAM bulk moduli de riva tives are always 

larger tha n those in from OFT. Conseque ntly, the MEAM pote ntia l wells fo r the dia-

mond substitu tions a re much more steep tha n those from OFT. Fina lly, th e re is the 

scen ar io whe r the la ttice constan t is a pproxima te ly equal betwe n the MEAM a nd 

OFT computations, as o bserved in the te rna r)' systems. In this case, the coh e ive 

e ne rgies a nd bu lk moduli a re roughly equivale nt, bu t the bu lk moduli d e rivatives 

are la rger in the MEAM. To summarize this result, the re is no shift in o rigin , but 

th e MEAM pote nti al well is steq e r tha n that o f th e OFT. To furthe r quan tify the 

implication of these discre pan cies o n o th e r ph ysical pa ra me te rs, additio n al work is 

necessary as d scribed in Sectio n 6.2. 1. 

Table 5 .8: truc tural e n e rgy d iff re nces fo r Ag. Cohesive en e rgies a re given in 
eV, la ttice co nsta nts in An gstro ms. Data f'n )m [39] un less othe rwise note d. 

THIS 
WORK 

EXPT/ INN 2NN INN 
STRUCT DFT MEAM * MEAM MEAM 

FCC E, -2.R5 -2.85 -2.85 -2.85 

a --1.09 "L09 --1.09 4.09 

Dia 111~ 0.<16 0.66 0.56 

n 6.37 6.00 6.02 

sc 11£, 0. 15 0.3 1 ().1 "I 

n 2.80 2.67 2.66 

BCC M.~ 
0.03 ().()3 0.06 0.0--1 
0.04 

n 3.27 3.2 1 3.2 1 

HCP M.~ 0.003 0.005 0.005 0.06 

a 2.28 2.91 

c/a 1.64 1.63 

• Refe re nce [38] 

72 



.-------------------------------------~------- -

Table 5.9: Structural ene rgy diffe re nces for Au. Cohesive e ne rgies are give n in 
eV, lattice constants in Angstroms. Data from [39] unless otherwise noted. 

EXPT/ 
STRUCT DFT 

FCC E, -3.93 

(I -1.08 

Dia I'll:.~ 

a 

sc (',£ 
r 

(/ 

BCC I'>E, 
0.04 
0.07 

a 

HCP I'>E, 
0.003 
0.005 

a 

c/a 

*Reference [36] 
t Reference [ 40] 

BASKES" 
INN 

MEAM 

-3.93 

-1.08 

0.59 

6.33 

0. 12 

2.79 

0.02 

3.27 

O.Q12 

THIS 
Kuot WORK 
INN 2NN INN 

MEAM MEAM MEAM 

-3.93 -3.93 -3.93 

-1.08 4.08 4.08 

0.67 0.74 

5.93 5.98 

0.22 0. 18 

2.65 2.65 

0.02 0.06 0.0'-1 

3. 19 3. 17 

0.021 0.009 0.07 

2.28 2.8S 

1.65 1.63 

Table 5.10: Point defect calculations for Si. All entries given in eV. Data from 
[37] unless otherwise noted. 

THIS WORK 

EXPT/ INN 2NN INN 

DFT sw TERS EDIP HOEP MEAM MEAM DFT MEAM 

E,! 2.7-3.9 2.82 3.70 3.22 3.30 3.19 3.33 3.54 3.66 

£mig 

" 
0.33' 0.37 0.35 

Q 3.56 4.01 

£ 1 
3.5-4.7 5.25 3.45 -1.05 3.1 I 5.74 4.68 3.48 I 

(Tc t) 

£ 1 
3.2-4.4 6.95 -1.61 -1.16 3.21 7.14 5.78 4.84 I 

(Hex) 

*Reference [36] 
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Table 5.11: Poin t d efect calculations fo r Ag. All e n tries given in eV. Data fro m 
[39] unless otherwise noted . 

THIS WORK 

EXPT/ 2NN INN 

DFT MEAM DFT MEAM 
E,,l 1. 1 0.94 1.21 1.1 3 

E,.'lli~ 0.67 0.92 0.66 

Q 1.77 1.86 1.79 

£ 1 
2.86 2.86 I 

(100 D H) 

Table 5.1 2: Point d efect calculatio ns for Au . All en tries given in eV. Data f ro m 
[39] unless o therwise noted. 

THIS WORK 

EXPT/ 2NN INN 

DFT MEAM DFT MEAM 
E,,l 0.9 0.90 0.91 0.91 

£•mg 0.8 0.85 0.81 ,, 

Q 1.7 I. 75 1.73 

£ 1 
2.93 3.37 I 

(100 DB) 
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Table 5.13: Surface properties as computed for Si. Energies and energy differ-
ences are given in eV I Atom, plane spacing ratios in percent. Data from [37] unless 
othe rwise indicated. 

THIS 
WORK 

EXPT/ INN 2NN INN 
DFT sw TERS MEAM MEAM MEAM 

£(100) 2.5 2.32 2.13 2.21 2.48 2.13 

£(100) 1 x1 2.47 2.32 2.09 1.81 2.47 1.90 

~£( 100) l xl -0.03 0 -0.04 -0.40 -0.0 1 -0.23 

~dl/d -5. 1 0 7.2 -3.6 10.0 

E(100)2x1 0.52 0.61 0.81 0.50 1.01 

~£(100)2x 1 
-2.06 

-1.80 -1.52 -0.90 -1.98 -1.12 
-1.5 

dl / d -24.4 -8.3 -15.6 15.4 -9.0 -1.0 

E( 11 0) 1.16 1.03 1.69 1.22 1.23 

E(l 10) 1xl 1.16 0.99 1.30 1.20 l.lO 
~£( 11 0)l x l 0 -0.04 -0.39 -0.02 -0.13 

d j d 0 -4.3 12.6 -3.5 6.0 

£( 110) 1.56 1.16 1.03 1.23 2.62 

E(J 11 ) 1 X I 1.39 1.16 0.96 1.22 1.1 7 

~£( 111 ) I xl -0.17 0 -0.07 -0.01 -1.45 

~djd -25 0 -20.3 -16.0 -5.0 
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Table 5.14: Surface properties as computed for Ag. Energies and energy differ­
e nces a re given in eV I Atom (erg/em~), plane spacing ratios in percent. L'l£(100) 
Hex and L'l£(1 00) 1 x2 take the form Y or N , where Y indicates the reconstruction is 
energetically favoured , and N indicates the converse. Data fro m [39] unless other­
wise indicated. 

THIS 
WORK 

EXPT/ INN 2NN INN 
DFT MEAM * MEAM MEAM 

E 
pol\ 

( 13~0 ) 

£( 100) 0.645 

E(l00) 1x l 
0.664 0.513 0.618 
( 1271) (983) ( 1184) 

L'l£(100) l x1 -0.027 

L'ldl / d -~ -2.4 5. 1 

E(lOO) Hex N N N 

£(110) 0.802 

E(l l O)lxl 
0.911 0.753 0.778 
(1222) (1010) (1043) 

L'lE( 110) 1x l -0.024 

L'ldl / d 
-7 

-10.4 -5.6 
-I I 

£( llO)lx2 N N N 

£(1 10) 4.1 82 

£(11 1 )I xl 
1.284 0.995 0.800 

( 1087) (842) (677) 

L'l£( 111 ) I x l -3.382 

L'ldl/d -~ -2.1 1.6 
2 

'' Refe rence [38] 
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Table 5.15: Surface properties as computed for Au. Energies and energy differ­
ences a re given in eV I Atom (erg/ em~), plane spacing ratios in percent. ~E(l 00) 
H ex and ~E( 100) 1 x2 take the form Y or N, where Y indicates the reconstruction is 
energetically favoured, and N indicates the converse. Data from [39] un less other­
wise indicated . 

THIS 
BASKES* Kuo1 WORK 

EXPT/ INN INN 2NN INN 
DFT MEAM MEAM MEAM MEAM 

E p<Jh 
(1540) 

£(100) 0.594 

£( I 00) 1 X I 
0.544 0.592 0 .591 0.594 
(1 048) ( 11 40) ( ll 38) ( 1143) 

t.£(1 00) 1 X I 0 

t.dj d -1 -4.3 -0.] 

£( 100)Hex y N y 

E(l 10) 0.779 

E(l lO) l xl 
0.827 0.625 0.875 0.733 
(ll 15) (842) ( 1 179) (988 ) 

6£(1} 0) 1 X ] -0.046 

t.dj d -9.8 -17.5 -10.2 

£( 110)lx2 y N N 

£(1 10) 1.841 

E( lll ) l xl 
1.042 0.437 l.091 0.5 10 
(882) (372) (928) (434) 

t.E( Ill ) 1 X 1 -1.331 

t.dj d -2.7 -3.0 

· Reference [38] 
t Reference [ 40] 
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Table 5.16: Bi nary cluster properties for various systems. Energies are given 111 

eV I Atom, bond lengths in Angstroms. 

THIS 
WORK 

INN 
SYSTEM P AR AM. E X PT. DFT MEAM 

Si~ ~~~~ 1.66t 1.77' 2.20 
R tlu,l 2.2...1 1 2.281 2.5 1 

Ag~ ~~II 0.825 ~ J.l7l 1.::17 
R tlu,l 2.5~ ~ 2.52: 2.56 

ll~ E11 1. 161 1.1 551 1.8 1 

R 'lu,l 2....171 2.52t 2.42 

SiAg /:"11 1.96 
R t1u,1 2.58 

SiAu L~~ 1.581 I. 711 1.99 

Rdu .. l 2.251 2.4::1 

AgAu L.n 1.0...11 1.11! 1.52 
R th,, l 2.50 ~ 2.5..J.t 2.45 

1 Refer nee [96] 
' Reference [97] 
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Table 5.17: tru tural energy differ nces for a variety of corn pounds. a are given 
in Angstroms, E, in eV and B11 in eV I :1 

THIS WORK 

INN 

SYSTEM PARAMETER DFT MEAM 
Bl (/ 5.07 3.18 

SiAg "~ 3.37 4.52 

Bu 0.564 0.4<10 

/JII I 5.00 5. 1 () 

Bl (/ 4.94 4.5<1 

SiAu ~~~ 4.27 2.62 

B" 0.773 0.775 

Bo' 4.47 5. 11 

Bl a 5.36 4.96 

AgAu ~~~ 2.60 3.93 

1111 0.601 1.071 

B" ' 5.45 5.65 

Ll ~ a 3.98 4.10 

Ag~Si ~~~ 3.38 2.86 

Bll 0.664 0.344 

B.,' 5.26 6.36 

Ll ~ a 3.83 4.45 

Si g ~~~ 4.45 3. 16 

811 0.552 0. 150 

B., ' 5.58 4.37 

Ll ~ (/ 3.96 4.11 

Au~Si ~~~ 4.14 3.77 

811 0.925 0.744 

B.,' 5.0<1 5. 11 

Ll ~ (l 3.78 ·1.12 

Si
1
Au ~~~ 4.76 3.61 

Bll 0.61 1 0.631 

B., ' 3.79 5.08 

Ll ~ (l 4.03 3.93 

Au:1Ag ~~~ 3.5 1 3.70 

811 0.926 0.895 

B ' 5.80 5.18 
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r-------------------------------------------- ----------

THIS WORK 

INN 

SYSTEM PARAMETER DFT MEAM 
Ll ~ a 4.05 4.01 

Ag~Au 1~: 3.48 3.26 

B .. 0.748 0.550 

Bo ' 5.55 5.25 

Dia. Sub. (I 5.32 5.70 

Si,Ag E, 4. 17 3.94 

B .. 0.525 0.826 

Bo ' 3.93 4.82 

Dia . Sub. a 5.26 5.57 

Si,Au E, -1-.45 4.35 

Bll 0.570 1.015 

Bo ' 3.86 5.44 

cl l 6 a 3.90 4.18 

AuSi,Ag1 E, 4.05 3.85 

B" 0.70~ 0.324 

B" ' 4.90 6.33 

E2, a 4.52 4.53 

AgAuSi:, E, 3.70 3.87 

B" 0.39 1 0.363 

Bo ' 3.00 7.58 

L2
1 

a 6.29 6.1 4 

SiAu~Ag E, 3.77 3.77 

B" 0.811 0.649 

B ' 5.80 6.31 
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Figure 5.6: Normalised (MAE,/MA£
1111

, """k) MAEs for silicon thermoelastic (TE­
Ias), structural (Struct), point defect (PDefect) and surface (Surf) properties. Sub­
to ta l represe nts the MAEs of all properties t'Xa'fJlsu rface properties; Total represents 
the MAEs of all properties. y =0 represen ts this work: bars below they-axis repre­
sent be tte r fits than this work, bars above the _)raxis represen t a n improvemen t in 
this work. a) shows the data to scale. b) shows a truncated data set to highligh t the 
minimal improvem ents observed in other work. 
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6. CONCLUSIONS 

6.1 SUMMARY 

In this work, first nearest neighbour MEAM parameters for Si, Ag, Au, SiAg, SiAu 

and SiAgAu systems have been provided. These parameter sets have been fit ac­

cording to a variety of thermoelastic, structural, point defect, surface and cluster 

prope rties. In each case, the set of parameters for Si, Ag, Au a nd SiAu demonstrate 

an improvement over existing parameterizations. Finally, new parameterizations 

for SiAg and SiAgAu systems are presented. 

6.2 FUTURE WORK 

6.2.1 DFf PSEUDOPOTENTIAL REFINEMENT 

Perhaps the most obvious area for improvement in this work involve the OFT pseu­

dopotentials. As shown in Figures 5.2a, 5.3a and 5.4a, the current pseudopotentials 

all shift the orig in of the energy vs. volume graphs. That is, the equilibrium cohesive 

e nergy and lattice constants obtained from the OFT calculations are not in exact 

agreement with experimental values. Given that these elemental pseudopotentials 

are used to describe the properties of binary and ternary alloys, these discrepancies 
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are further compounded. It may also be prudent to compute several other physical 

parameters using DFT. Features such as the e lastic constants, surface properties 

and point defects are readily calculated, but are especially costly due to the large 

supercells required for such a computation. One may surmise that improved DFT 

pseudopote ntials will allow for more accurate alloy properties, and thus the MEAM 

fits may be e nhanced . 

SECOND NEAREST NEIGHBOUR MEAM 

As d escribed in Section 5.2, the first nearest neighbour MEAM is unable to properly 

describe free surface relaxations. As one of the mai n goals of this work is to study 

the structure, morphology and composition of silicon-based systems with an atomi­

cally flat gold surface layer, it may be necessary to use a second nearest neighbour 

approach. The re are, however, several obstacles to overcome should this be the 

case. Aside from the fact that the second nearest neighbour MEAM is computation­

ally more costly, the presen t MEAM model is unable to treat composite systems 

within the second n earest neighbour formalism. To that end, equations describing 

the Bl structure must first be derived for the second nearest neighbour MEAM 

(cf. Equations 3.13 and 3.26), and these equations must then be implemen ted and 

tested in a software such as LAMMPS. 

6.2.3 INTERFACIAL STRESS ANALYSIS 

The primary goal of this work is to determine an empirical relationship for interfa­

cial stress between the substrate silicon layer and the gold/silver tie layers which is 
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dependent upon the tie layer thickness, deposition rate, temperature and anneal­

ing time. From our experimental work, we have established that the process of 

depositing the tie layer(s) onto the si licon substrate results in an interfacial stress 

which in turn leads to a net curvature of the cantilever. l t has been qualitatively 

observed that the stress may be tensile or compressive, and resultantly the canti­

lever may bend upwards or downwards. Thus far, experiments have been unable 

to quantify, or predict, the exact nature of the interfacia l stress. In this work, a 

series of simulations are proposed which will determine this relationship. To begin, 

the most basic system will be studied, consisting of a long, thin sili con substrate 

proportional to a cantilever, and a single gold tie layer at a temperature of 293K, as 

shown schematically in Figure 6.1. This system will be periodic along x, and non­

periodic along y and z. By varying the thickness of the gold tie layer by introduc­

ing gold atoms at an appropriate time interval and kinetic energy (corresponding 

to deposition rate and temperature, respectively), one should be able to map the 

stress response of the system as a function of tie layer thickness. Next, the system 

temperature will be modified, and the preceding experi ment repeated. The system 

will be initially set at 293K, and a multitude of temperature increases over differing 

timescales tested for a variety of thicknesses (both by increasing the kinetic energy 

of the introduced atoms to simulate increases due to deposition, and by increasing 

the system temperature to simulate annealing). In this way, the model will now 

account for interfacial stress as a function of both film thickness and deposition 

temperan .. u-e / annealing time. Finally, the above simulations will be repeated for tie 

layers of silver, and silver-gold composites. The final empirical relationships will be 

used to predict deposition parameters which will yield microcantilevers with no net 

curvature. These will then be fabricated in the lab to confirm the model. 
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Figure 6.1: S hematic representation of the ystem used in the simulations de­
scribed in Se tion 6.2.3. In this figure, the grey area depicts the silicon substrate, 
and the yellow area the gold tie layer. 

6.2.4 S URFACE ANALYSIS 

In tande m with the simulations detailed in Section 6.2.3, the s ~ ond crucial focus 

of this work is to predict the composition of the tie layer(s) which , in addition to 

inducing no net curvature, allows for an atomically flat gold surface layer. The sur-

face features of the tie layer are critical as they determine the chara teristic proper-

ties, such a the self·a 'sembly stacking, of the organic detection layer(s). To begin , 

configurations which mimic those produced in our lab will b studied. The initial 

system should approximate a 1 1-1111 thick silicon substrate, and a 20 nm thick gold 

ti e layer, which a re the approximate dimensions of the sensors presently fabricated 

in our lab. It is suggested that for these simulations, the silicon substrate be tenni-

nated at a thi kness of 20 nm and the bottom layers frozen to simulate bulk. While 

this will prevent curvature studies (which is why Sections 6.2.3 and 6.2.4 must be 

completed concurr ntly), it will a llow for a larger surface area to be studied. With 

a 50 nm by 50 nm surface, the resultant system would be comprised of roughly five 

to six million atoms; a system of this size can be simulated in approximately two 
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weeks with our pr sent faci li ties 1
• Simulations should be run by applying various 

temperattu-e gradie nts, as in Section 6.2.~. to appwpriately mimi annealing condi-

tions. T he resu ltant surface positions may then be used to construct pseudo-STM 

images, which should be comparable to STM data collected in our lab. pecifically, 

the simulations should recreate the ou tsta nding surface features, such as dominant 

structure, cluste ring, islands and terraces, e tc. Should this be the case, predictive 

simulations may be executed to ascertain the tie layer(s) composition (s) wh ich pro-

vides the flattest possible surface for the o rganic receptive layer. In conjunction 

with the simulations in Section 6.2.3, the fina l result should yield an atomically fla t 

surface layer with no ne t curvature: the ideal sensing pla tform. 

6.2.5 OSCILLATING CANTILEVER ANALYSIS 

Recent work [98] has sh own the surface structure of the tie Ia er to be a function 

of position along the length of the cantilever. That i , the surface ·tructure at the 

stable cantilever chip surface differ from that of the cantil ev r tip, a nd at all points 

in between. Until this discovery, it had been assumed that the surface structure was 

ide ntical at a ll points along the lever. The authors hypothesized tha t these discrep-

ancies may be a ttributed to minute thermal oscillations of the cantilever during 

deposition , which would change both the incident angle of depositing atoms as well 

as their kin e tic e n rgies. an extension to the imulatio ns performed in Section 

6.2.3, a trivial modification may be made to account for an os illating sub tra te . 

1Estima tion based on the execution times to converge simila rly sized systems d -
played on ACE Net clusters across 1 6 to 32 cores. 

86 



In so doing, these results may assist to confirm the authors' original reasoning, or 

imply an a lternate mechanism f(x the discrepancies in surface structures a ltogethe r. 

6.2.6 MEAM SULFUR POTENTIAL 

Once the substrate/ tie layer system has been sufficiently described, it re mains to 

study the entire cantilever pla tform. For this purpose, a MEAM potential for Sulfur 

will necessarily be added to the present Si / Ag/ Au potentials to describe the organic 

thiol adsorption to the tie layer surface. Once determined, a hybrid approach, simi­

lar to 0 JOM (our own n-layered integrated molecular orbital a nd molecular me­

chanics) [99] must be ad opted. The 0 IOM method treats a complicated syste m 

as a discrete set of constituent components: an active pan consisting of the critical 

atoms to be studied, a semi-active part consisting of those a toms which most contrib­

ute to the electronic and structural properties of the critical atoms and a no n-active 

part consisting of the remainder of the a tom. in the syste m. In this way, the active 

atoms may be treated with the high sL level of theory at the highest computational 

cost, the semi-active atoms with the next highest level of theory a nd so forth. 

[n this work, a hybrid approach using the MEAM and a suitable organic potential 

(CHARMM, mbe r, ECEPP, e tc.) is proposed. The MEAM pot ntials will be used 

to d escribe the ilicon substrate, tie laye rs and adsorbed Sulfur atoms, while the 

organic pote ntial will be used to describe the remainder of the organic receptive 

chains. It is expected that the organic potentials will provide the 1 roper attractive 

(or repulsive) forces between receptor cha ins in order to strain the adsorbed Sulfur 

atoms. In turn , the MEAM will optimize th e position of the Sulfur and Gold surface 
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atoms to minimize the e ne rgy of the syste m. If successful , this hybrid m ethod will 

allow the e ntire cantilever platform to be simula ted . One may then proceed to 

optimize the substra te/ tie layer/ receptor layer system until a system with no net 

curvature is obtained . This would provide a complete cantilever sensor which 

would require no calibra ti o n before use, and would be a mom ntous step towards 

the comme rcial adoption of the canti lever sensor platform. 
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