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ABSTRACf

The speciation of trace metals in natural waters is important in detennining their

bioavailability and toxicity. For instance. inorganically bound (often referred to as labile)

copper in natural waters is toxic to most phytOplankton species but complexation by natural

organic ligands considerably reduces or eliminates this toxicity. In order to be able to

understand the effects oftrace metals., it is important to determine the amoWit oflabile metals

and degree of metal complexation (types and strengths ofsuch complexation).

labile zinc, cadmium and lead in freshwater samples from the Bonavista Peninsula

acea of Newfoundland were analyzed by differential pulse anodic stripping voltammeuy

(DPASV) and labile copper was detennined by adsorptive-athodic stripping voltammetry

with 8-hydroxyquinoline (oxine) (ACSY or oxine-eS¥). The Qxine-CSV method used to

determine labile copper in seawater has been modified for use in freshwater. Trace metal

results reflected industrial and residential impacts on the watersheds even though

concentrations of labile metals were within the typical range afthe metals in freshwater.

Copper complexation was investigated by complexing capacity titrations using the

oxine-CSV method to detennine concentrations ofnatural coppercomplexing ligands and

their conditional stability constants. The effect of the adsorption potential on the

detennmation ofcopper complexation was also studied at three potentials of -0.1 5 V. -O.7V



and ·1.1 Y. It was found that the detected complexing Ligand concentrations decreased 6.7

-69.4 % when the potential used was more negative than -O.ISY. The d~rease was more

severe at more negative potential and lower detection windows. Detailed measurements of

copper complexation in freshwater were carried out at lhree detection windows by varying

the oxine concentrations from 7.3 to 36.7 IJ.M and confirmed the presence of several

complexing ligands. The detected complexing Ligand concentrations were found to d~rease

with increasing detection window, whereas the conditional stability constants were found to

increase.
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CHAPTER I

INTRODUCTION

1.1 Tnu Metals in Fresbwater

1.1.1 Complexity of an Aquatic System

Natural aquatic systems are highly complex. Most of the elements of the periodic

table may be present including a vast number of organic compounds with concentrations

often at J.lg/L or lesser levels. In addition, the compounds in natural water have a continuum

ofsizes ranging from I x 1~ em to a few em. Diameter classifications were based 00 lhe

distinction between (Figun 1.1):

• particulates and dissolved components, or

- inorganic components, non-living organic components and living organisms.

The dissolved compounds are operationally defined as compounds which can pass

through a 0.45 J.1m membrane filter. The filtration step arbitrarily separates dissolved

components from particulates since the size distribution ofsome chemical species covers a

broad range as shown in Figure 1.1. Similarly, there is no clear cutoff between organic and

inorganic components: for example, particles such as hydrous Fe (llI) oxides are usually

considered to be inorganic, even though their surfaces are actually often covered with

adsorbed organic components such as hwnic acid.
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Figure 1.1 Schematic classification. by size, of imponant organic and inorganic water
components (Buffie, 1988)



1.1.2 Trace Metab in Freshwater

It is known that trace metals in natwal aquatic systems play important roles as eilher

essential or toxic elements to aquatic organisms and humans. A trace metal, which is

essential to a normal body function at lower concentrations, may be highly toxic when

present at higher concentrations (Florence, 1982). Moore and Ramamoorthy (1984) discussed

a range of trace metals in natural waters from an environmental point ofview.

Zinc is an essential element to life because it mediates a variety ofmetalloenzymes

and the biosynthesis of nucleic acids. The toxicity ofzinc to aquatic organisms, under most

conditions, is lower than mercury, copper, cadmium, nickel and arsenic. Zinc is always

present in natwal waters and most species can tolerate relatively high zinc levels.

Cadmium is acutely toxic to humans wilh as little as one gram being lethal as a single

dose. At low concentration, humans are protected by complexation of Cd2
• with a protein

which is subsequently eliminated in the urine. Higher levels are accumulated in the liver and

kidneys with a lifetime of several decades (Hutchinson and Meema, 1987). However,

cadmium is less toxic to aquatic life than to humans. This toxicity varies with species and

environmental factors such as temperature and pH.

Lead is not very toxic to adults in low concentrations but is toxic to fetuSes and

children under age seven as it interferes with their brain development (Hutchinson and

Meema, 1987). Accumulated lead in a mother's body can be passed to her newborn baby

through her breast milk, while lead in tap water can also be harmful when the tap water is

used to prepare fonnula for bottle·fed babies. The toxicity of lead to aquatic organisms is less



than that ofmercury, but is similar to that ofcadmium (Moore and Ramamoorthy, 1984).

Copper is not acutely toxic to humans but very toxic to most aquatic microorganisms

even in very low concentrations (Moore and Ramamoorthy, 1984).

Four metals ofprime environmental concern, Zinc, Cadmium., lead and Copper, are

studied in this work because: (i) they are important to both aquatic organisms and humans;

(ii) their labile fractions, which are usually considered to be the bioavailablel ll fractions, can

be determined directly and simultaneously (section 1.2.2).

Figure 1.2 shows the typical range and average values of the total concentrations

(labile and non-labile) ofsome metal ions in freshwater. The total concentrations of metals

can vary significantly from one water system to another. Even though the total concentrations

of a trace metal may be similar in two water systems, the physico-chemical forms of that

metal (i.e. speciation) may be quite different. The different forms in which a metal ion (M)

may be found in an aquatic system are swnmarized in Figure 1.3 and some examples are

given in Table 1.1. Variations in the chemical forms of trace metals can significantly change

their bioavailability and toxicity. For environmental reasons, determination of the

bioavailabile fraction of trace metals has gained more attention than total metal

detennination since the total metal determination provides little information about its

bioavailability.

[1] Bioavailable means that the metal can be taken in and used by organisms.
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Figure 1.2 Range (-) and average values (:0:) aCthe total concentrations ofsome metal
ions in freshwater (Filella et aJ., 1995)
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Table 1.1 Possible physico-chemical fonns ofsome metals in natural waters
(Pickering, 1995)

Physico-cbemical form

Particulate
Precipitates
Mineral particles
Metals absorbed by
organisms

CoUoidal
Adsorbed on inorganic colloids
Adsorbed on organic colloids
Adsorbed on mixed colloids

Soluble
Simple hydrated metal ionsl']
Simple inorganic complexes
Simple organic complexes
Stable inorganic compoWlds
Stable organic complexes

[1) also called free metals.

Example

PbCOJ

PbS
Metals in algae

Cu"-Fe,O,
Pb2

+ ·humic acid
Cu2+.F~O)

Ihwnicacid

Cd(H,OJ."
Pb(H20).CI2

Cu-glycinate
PbS, ZnCO)
Cu-fuIvate

Approximate diameter, nm

>450

10-5000

<5
0.8
1
1-2
1-2
1-2

Two distinctly different techniques: computer modelling and experimental

measurement have been used for the study of trace metal speciation in natural waters.

The computer modelling method involves the use of known thermodynamic

equilibrium stability constant data and concentrations of various components, in the water

to compute the equilibrium concentrations of the different metal species (Jenne, 1979).

Computer modelling is a powerful technique and makes a significant contribution IOwards



an understanding ofspeciation in natural waters. The limitations of the method are that the

concentrations of natural organic ligands are usually not available and the interactions of

metals with sucb natural ligands and with the colloidal particles present in natwaJ waters are

usually not clear (Buffle. 1988).

The experimental techniques for the study oftraee metal speciation in natural waters

include anodic stripping voltammetIy (ASY) (Whitfield, 1975; Donat and Bruland, 1994),

cathodic stripping volwnmetIy (CSV) (van den Berg ef al., 1990; Abolloi el a/.• 1991), ion­

exchange (Florence, 1977; Florence and Batley, 1980), ultrafiltration (Hart and Davies, 1978)

and bioassay (Hoover, 1978).

ASV and CSV, two electrochemical approaches. determine the electrochemical

labile fraction of the total metal. Labile metal is operationally defined as the fraction of the

total metal which can be detected under experimental conditions. For instance. the ASV­

labile metal is the fraction ofthe total metal that can be measured under a defined set ofASV

and solution conditions (see section 1.2.2). The theory and applications ofASV and CSV to

trace metal speciation measuremenf.S are discussed in section 1.2. Ion-cxchange technique

uses a chelating resin such as Chelex·IOO to separate trace metals into different groups of

....ery labile", "moderately labile", "slowly labile" and "inert" due to the different rates of

transfer to the resin. Ultrafiltration involves the use of ultrafiltration membranes to

differentiate metal species by size, shape and charge characteristics rather than by molecular

weight (Guy and Chakraban.i, 1975). The Chelex column technique and the Chelex batch

technique are two commonly used ion-exchange approaches. The ultrafiltration technique,



when combined with characterization of the metal species in each size fraction by

electrochemical and ion-exchange leChniques. provides a more comprehensive picture of the

metal speciation (Chakrabati ~t aI., 1993). Bioassay is a biological technique which involves

the use ofaquatic animals to determine the bioavailable fraction oftrace metals based on the

determination of trace metals taken up by the animals (Florence ~t aI., 1983; Morel ~t a/.•

1991).

The speciation ofsome metals in freshwater by both computer modelling and anodic

stripping voltammetry (ASV) are summ.arized in Table 1.2. The computer modelling results

are reported as particular fonns of the total inorganic metal. whereas experimental results

are reported as the ASV-Iabile fraction of the total metal.

For Zn, computer modelling indicates that the dominant inorganic forms are free ion

(50%) and zinc carbonate (38%). Experimental results indicate that 50 % of Zn is ASV­

labile.

For Cd, computer modelling indicates lhat the main inorganic forms are free Cd ion

and Cd carbonat~.A high proportion (700/o) ofCd is ASV labile.

For Pb, computer modelling suggests that carbonato species, such as Pb carbonate

and Pb dihydroxycarbonale are the main inorganic Pb species, while little ASV-Iabile Pb is

found in freshwater.

For Cll, computer modelling predicts that more than 90 % of inorganic Cu should be

present as copper carbonate, although a small amount is likely to be associated with colloidal

particles, such as hydrated. iron oxide. Most freshwater streams also have little ASV-Iabile



Cu, and the percentage oforganically bound Cu is usually high.

Table 1.2 Speciation for Zn.. Cd, Pb and Cu in freshwater

Metal Computer modelling, Experimental measurement, Reference
particular fonn I ASV-labile fraction of
the total inorganic metal. % the total metal, %

Zn Zn2'(SO%) 50% Florence. 1980,
ZnCO,"l (38 %) 1982

Nonlstrom, 1979

Cd Cd1',CdCOPl 70% Florence, 1977

Pb PbCO, + Little ASV labile Pb Florence, 1980,
Pb~(OH)lCO)[ll (90 %) 1982

Cu CuCO,+ -Little ASV labile Cu Florence, 1980,
Cu1'-FCt°J ·Highly o<ganically 1982,1977
(colloidal particles)(9O%) complexed

[1) may have low ASV lability.
[2] depending on pH.

1.2 Stripping Voltammetric Analysis

Among several analytical techniques available at present, stripping voltammetric

analysis appears to be the most suitable for the study of trace metal speciation. The

advantages ofvoltammetric analysis include:

• Determination of the labile fraction of metal which is believed, under certain

conditions, to correlate well with the bioavailable fraction of metal (Florence. 1986).
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.. Simultaneous determination of four metals, Zn, Cd, Ph and Cll, with excellent

sensitivity.

.. Minimal sample preparation. less potential contamination and low cost of

instrumentation.

1.2.1 Theory or Stripping Voltammetric ADalysis

Stripping voltammetry is a two-step technique. During the first step, analyte is

deposited (preconcentrated) into or onto the surface of an electrode (usually mercury) by

controlled potential electrolysis. In the second step the deposited analyte is removed

("stripped") from the electrode by a potential scan and the resulting current peaks are used

to determine the concentration ofeach analyte species in the sample.

There are twO typeS ofsaipping voltammetry: anodic stripping voltammetry (ASY)

and cathodic saipping voltammetry (CSY). Anodic saipping voltammetry (ASY) is used

primarily for the determination of heavy metals. In this technique preconcentration is

accomplished by the reduction of metal ions to the elemental state, and the stripping step

is accomplished by a positive pmential scan that gives an anodic current when the

preconcentrated metals are oxidized (Figure 1.4). During deposition, an amalgam is

fonned by the elemental metal and the mercury on the electrode. Therefore, ASV can only

be used to determine those metals that exhibit appreciable solubility in mercury. Examples

of mecal ions which have been determined by ASV at a mercury electrode are Bi l •• Cdl .,

euh , GaH , Inl ., Nih, Pb1 ... , Sbl +, SOl., Tl·, and Znl<'.

II



Deposition: Applied potential more negative
lhan Em of M··

M" + ..-_ M(Hg)
sample solution

Stripping: Scan in the positive direction,
peak currenl is proportional to
the concentration of M

M(Hg) _ M" + ..­
sample solution

Figure 1.4 Anodic stripping vohammeay

Cathodic stripping voltammetry (CSV) involves preconcentration by oxidation

followed by stripping via a negative potential scan. Anions may be detennined by

deposition as an insoluble mercury sal[ on [be electrode surface. The negative potential

scan causes the reduction of lbe saIt to Hg and X·, giving a cathodic current peak (Figure

1.5). CSV has been applied to the determination ofCI', Br', 1", SZ-, ~, CrO~l., wot,

MoO/", VOl"' and 50/". The determination of certain metals such as ci· , TT ,Md· ,

and Fe2~ is performed by cathodically stripping a film of insoluble M(OH). deposited on

a graphite electrode (Bond, 1980).

The remarkable sensitivity ofstripping voltammetry is attributable to the deposition

(preconcenrration) step. In essence, a significant fraction of the analyte ions are

electrochemically elCtl'acled from the sample solution as metal atoms into a mercwy electrode

(or as a salt onto the electrode surface). Since the volume of the mercwy electrode is

12



considerably less lhan the volwne ofsample solution being analyzed. the resulting ·solution·

ofmetal atoms in the liquid mercury is much more concentrated than the solution ofmetal

ions being determined.

Deposition: At a relatively positive potential
where Hg/" ions can be produced:

Hg11+ + (2In) X-- ..... Hgl~
(insoluble film)

Stripping: Scan in the negative direction,
peak: current is proportional to
the concentration of X'"

Hg,x... + 2e" _ 2Hg +(210) Je>

Fieure I.S Cathodic stripping volrammetry

There are several types of stripping techniques such as linear potential sweep

stripping vol1anunetry, differential pulse stripping voltammetry and square wave stripping

voltammetry. The differential pulse and square wave stripping techniques have higher signal

to noise ratios than linear potential sweep stripping voltammetry and therefore., lower

detection limits.

1.2.2 Differential Pulse Anodic Stripping Voltammetry (DPASV)

DPASV is the most widely applicable electrochemical technique for the study ofttace

13



metal speciation in waters, because of its ability to determine the labile fraction of the total

metal concentration whicb can be correlated to the bioavailable fraction. Florence (1986)

compared the similarity of the mechanics ofdissociation ofmetal complexes at an electrode

and at a biomembrane (Figure 1.6).

Cell exterior Membrane Cell interior

Electrode /of (Hg)

Diffusion Mr- + LJ.

layer

--L--
ML

(A)

I. Facilitated

diffusion

2. Lipid Solubility
ML+----+OML

(B)

Figure 1.6 Comparison of mechanisms ofdissociation ofmetal complexes at an electrode
(A) and at a biomembrane (8); P: a protein

In Figure 1.6A., the metal deposited on the mercury electrode surface is due to the

reduction of M2
• ions dissociated from the metal complex, ML. This fraction of metal is

called the ASV·labile metal which consists of Cree metal ion and metal that can dissociate

14



in the double layer from complexes (usually inorganic complexes) or colloidal particles. In

Fipre 1.6B. one of the metal uptake mechanisms (shown as # I in Figure 1.68) is a

complexing agent (e. g. a protein) in the cell membrane binding the metal ion on the outer

membrane surface. followed by the metal-protein complex diffusing to the interior of the

membrane and releasing the metal ion into the cell interior. This mew uptake mechanism

occurs when the metal complex is dissociated at a membrane surface. This fraction of mew

is equivalent to the bioavailabile fraction which includes free metal ions and metal

complexed with weak ligands. Since both the process of metal accumulation in an organism

and metal deposition inla mcn:ury electrode involve the dissociation ofmetal complexes. the

ASV-Iabile metal might therefore be used to monilar the toxic fraction ofa mew.

lntensive studies (Florence, 1986) have been carried out to correlate the ASV-labile

metal with its toxicity. Aor-ence el oJ. (1983) found a good correlation between ASV-labile

Cu and toxicity towards the marine diatom Nitzschia closlerium (Table 1.3).

Table 1.3 Correlation between ASV-Iabile and toxic fractions ofcopper in seawater using
the marine diatom Nitzschia clOSlerium (Florence el aJ., 1983).

ASV-labile fractionlil• %
Ligand Conc.(M) Copper wM) .:....M..Y :.Ll.Y T~

Fulvic acid 1)( IW
Tannic acid 6 )( 10.1

Iron-humic 1.0 +
acid colloidr'! 5.3 mg/L

32
32
32

1.5
5.5
70

2.9
\0.5
74

7.5
12.5
60

[1] pH 8.2. with deposition potential of -0.6 V and -1.3 V.
[2] Fraction ofadded eu appearing toxic compared with ligand-free solution.
[3] 1.0 mgIL ofFe+ 5.3 mg/L of humic acid.
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1.2.3 Adsorptive-Catbodic StrippiDg Voltammttry (ACSV)

As discussed in section 1.2.1, differential pulse cathodic stripping voltammetry

(OPCSV) involves preconcentration by formation of an insoluble film on the mercury

surface with subsequent stripping by a negative potential scan. This method has been applied

to the determination of many anions and certain metals (M(OH). as the insoluble film)

(Vydra et aJ., 1976). DPCSV has not been widely applied to trace metal speciation

determination until recently with the development of adsorptive-CSV (ACSV). The

adsorptive-CSV method involves the use ofa surfact;·active reagent (complexing ligand) to

complex the metal through which the metal-complex is selectively adsorbed onto the

mercury electrode as a film and determined by cathodic stripping voltammetry as for

example ACSV ofCu (Figure 1.7).

CuI<- + 2
("ll

!adsorption

90""::::::.... I ..-.: + Cu
N

OH (aq)

CSVscan­2W

Figure 1.7 Adsorptive-cathodic stripping volammeny ofCu with mcine as the added ligand
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The ACSV method has been applied to speciation studies ofmany elements in narural

waters. such as copper speciation in estuarine waters (van den Berg el aI., 1990), selenium

in seawater (van den Berg and Khan., 1990) and iron in lake water (Abolloi el aI., 1991).

Different metals usually require different complexing ligands; therefore, recent applications

have involved the use ofadsorbed films ofeatechol forCu, Fe, U and V (vanden Berg, 1984

a and b; van den Berg el al., 1984 a-c), ammoniwn tetra-methylene dithiocarbamate for Zn

(van den Berg, 1984 c) and 8·hydroxyqumoline for Mo (van den Berg, 1985) and Cu (van

den Berg, 1986). The discrimination of labilefmert species is based on their reactivity with

the added organic ligand. Compared to DPASV, the adsorptive·CSV technique improves

peak. shape (sharper, flatter baseline) and provides lower detection limits.

Since the ASV peak. for eu is very close to the oxidation peak. of mercury, there has

been a need to further develop ACSV, resulting in the study of a great number oforganic

complexmg ligands for Cu determination by ACSV crable 1.4).

Oxine was chosen in this study for Cu detennination in freshwater because of the

lower detection limit for Cu.
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T_ble 1.4 Summary of ligands for ACSV determination ofCu

Ligand Sample Detection Buffer
limit (PH)

Reference

River water
Seawater
Sea water
River water
Freshwater

xd lJ Sea water
SAlll Sea water
Thiocyanate NAS5-4flll,

ion sea water
Phenll} Sea water
TAC:~I Sea water
DASAlfl Sea water
2,7·PADA161 Tea, hair
Beryllon [ll1.71 Hair, d.W.1121

Tropolone Sea water
TAN, TAC, Freshwater
TAR. TAMl'J
Imidazole

WuetaJ.,I99S
CampoHlal.,1994
Yokoi el al., 1994

Tanaka et aJ., 1990 a
Quentel et at., 1990

Tanaka et a'., 1990 b
Bobrowski, 1998
van den Berg, 1986
van den Berg, 1984 a
van den Berg etat.,I990
Jones et aJ., 1989

Ertas el at., 1991Hydrogen
cari>onate(8.5)
Nitric acid (2)
Hydrochloric
Acid (2.5)
Ammonia (9.0)
Ammonia (9.2)
IlEPES (7.7)
HEPES (7.8)

Acetate (6.0)

Acetate (5.0)
0.1 nM/lmin Borate (8.35)
0.4 nMllmin Hydrochloric

Acid (2.5)
0.5 nMl20min HCI and NaOH (7.0) Culjaketat.,I994
0.8 nMllOmin Acetate (3.6) Farias et at., 1993
0.3 nMllmin Borate (8.2) Quentel et at., 1994
8.0 nMllmin Ammonia (9.8) Zhang etat., 1993
0.5 nM 1- Acetate Zhao et aJ., 1992
0.6nM11min Borate(8.3S) DonatetaJ.,I992
0.8 nMlSmin Acetate (3.7) Farias et aI., 1992

4nMflmin
0.9 nM/lmin

2 nMl3min

SO nM/lmin
7 nMllmin
0.2 nMllmin
0.3 nMllmin

RockSATPI9
'

1,10­
phenanthroline
PADPAll0J

Nioximate
Oxine
Catechol

[I] Xylenol orange [11] North Atlantic seawater standard
[2J Salicylaldoxime [12] Distilled water
[3] I, IO-pbenanthroline
[4J 2-(2'-thiazolylazo)-p-<:resol
[S] 1,2·0ibydroxyanthraquinone-3-su1fonic acid
[6] 1-(2-pyridylazo)-2,7-<1il>ydroxynaphtha1ene
[7] 4-[(4-diethylamino-2-hydroxyphenly) azo)-S-bydroxynaphthalene-Z,7-disulphonic acid
[8) }.{Z-thiazolylazo)-Z·naphtbol, TAN; Z-(Z-thiazolylazo)-4·methylphenol, TAC; 4-(2-

thiazolylazo)-resorcinol, TAR; and 2·(2-thiazolylazo)-5-dimethylaminophenol, TAM
[9] Salicylideneamino-2-thiophenol
[1O]2-(S-Bromo-Z-pyridylazo)-S-diethylaminophenol
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1.2.4 Applications in Water Analysis

DPASV and ACSVbave been used extensively for the determination of trace metals in

natural waters. Representative applications are shown in Table 1.5.

Table 1.S Typical applications ofstripping voltammetty in natura! water analysis

Place of Sampling

Seas
Australian
Barents
Japanese
(near Japan)
Gulfof Mexico
Antarctic

Lake water
Switzerland
(Gteifen)

Estuarine water
Great Britain
(famar)

Drinking water
Gennany (Rube)
Japan (Tokyo)
(Kobe)

Raiawater
Gennany (Rube)
Belgium (Brussels)

Wastewater
Great Britain

Metals determined

Pb,Cd
Cd. Pb.Cu,Ni
Zn.Cll, Pb, Cd

Zn.Cd,Cu
Cd. Cll, Fe. Ni. Zn

Cu

Cu

Pb. Cu
Sb
Cd

Zn.Cd, Pb, Cu
Zn. Cd, Pb, Cll,
Mn, Co, Ni, Se

In. Cd, Cr, Ni

Stripping type

DPASV
DPASV
DPASV

DPASV
ACSV

ACSV

ACSV

DPASV
DPASV
DPAVS

DPASV
DPASV

DPASV

19

Reference

Florence, 1986
Man et af., 1981
Miwa and Mizuike. 1977

Florence, 1986
Abollino et af.• 1995

Xue and Sigg, 1993

van den Berg et af.• 1990

Arrs el af., 1984
Florence, 1986
Florence, 1986

Numberg, 1984
Florence. 1986

Clark et at., 1988



1.3 Copper Complexation in Fresbwater

Speciation studies ofcopper in natura.I waters have shown that > 90 % ofdissolved Cu

occurs complexed by natural organic material (Buckley ~t aL. 1986; Coale ~t oJ.• 1988). 11lis

complexation considerably reduces its toxicity (Gachter et aI., 1978; swaUow~t af.• 1978; Sunda

and Ferguson, 1983) to algae. Thus. the study ofcopper-organic interactions in freshwater is of

interest. Among the severalteehniques for the determination ofcopper complexation (ASV, ion·

exchange, liquid·liquid extraction and Mn02-CSV). the DPCSV with an added organic reagent

as a competitive ligand (discussed in section 1.2.3) is preferred due to the sensitivity, versatility

and simplicity of this technique (van den Berg ~t aI., 1990; van den Berg, 1984 d). The oxine­

CSV method was used in this study to determine the concentrations of copper complexing

ligands and their conditional stability constants in freshwater.

1.3.1 Theory of Ligand Competition Between Oxine and Natural Organic Complexing

Ligands

The theory ofme de1ermination ofcopper complexation by ACSV using oxine is directly

analogous to that described for ACSV using catechol (van den Berg, 1984 d). In the presence of

oxine, the total copper concentration in freshwater is distributed as follows:

[Cul... ~[Cul.. + [Cu-exineJ +[CuLJ (I-I)

Where [ CU JICI&I = the total copper concentration; [Cu ] ino. - the concentration of inorganic

copper; [ Cu-oxine ] - the concentration of copper complexed by oxine; and ( CuLJ - the

concentration ofcopper complexed by natural organic complexing ligands.
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The CSV method determines the concentration of labile eu which includes inorganic

copper and copper complexed by oxine as shown in equation (I· 2):

(Cu Jlabile - {Cu li_ + (Cu-oxine]

therefore, the equation (1·1) can be rewritten as:

[Cu J_- [Cu)..... +[ Cu L,.)

(I -2)

( 1-3)

In addition, there are the following relationships with the free metal ion concentration, (Cu2.]:

(Cu]..... -[Cu2
.] (Ie. +[ ctt·] a: eo-

(I -4)

Where ( Cu2
• ] = the concentration of free copper ion; a: Cu "" the a:.coefficient (Ringbom and

Still, 1972) for copper, which corrects for inorganic side reactions of Cu2
• in freshwater; and

a: c_ ,. the «.coefficient ofcopper with oxine. which corrects for all occurring side reactions

on the main reaction ofcopper with oxine.

a.c. and a:c... were calculated in a similar manner described by van den Berg (1984 d):

(1-5)

Where K"; (i=l, 2. 3, ...) is the stepwise stability constant for the complex ofCu:' with ligand Lj

(CI·, CO/'. SO/o); [LJ is the concentration of the ligand; and K" .. I (i=1 and 2) is the stepwise

acidity constant ofcul· (for example. Cw + H20 - Cu(OHr + H" K·.. l , Cu(OHr + H~O ­

Cu(OHh + tr IC.. z). The «cu can be calculated at pH 706 and ionic strength 0.1 with the

constants given in Table 1.6 and values of average concentrations of the ligands present in

freshwater(Twnerelal,1981).
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Table 1.6 Stability constants used to calculate ex. c. in freshwater (values are valid at an ionic
strength oCO.O or O.IM)

Complex LogK" Reference

cuer 0.' Smith and Martell. 1976
CuCO] 6.75 Smith and Martell. 1976
Cu(CO])z!- 9.92 Smith and Manell, 1976
CuSO~ 2.36 Turner el ai., 1981
Cu(OH)" -&.00 Twnereloi., 1981
Cu(OH), -17.30 Tumerelai., 1981

According to the definition of«-coefficient (Ringbom and Still. 19n), the «-coefficient

ofcopper with oxine can be expressed as follow:

(I -6)

The «-coefficient ofoxine, (lOll , which corrects for side reactions ofoxine, is computed from:

( 1-7)

Where [ox'] is the concentration of oxine not complexed by Cu; K" c-. and ~"Coo.<2 are the

conditional stability constants for monomeric and dimeric complexes ofCo; the constants K"'l'

K·,! and K"l are stoichiometric constants as indicated in Table 1.7. KC_ and It-..z can be

calculated. for the present experimental conditions (ionic strength 0.1 M and pH 7.6 ) from the

stoichiometric concentration constants ofcopper-oxine complex as follows:

(1- &)

(I -9)

Values for the stoichiometric concentration constants listed in Table 1.7 are valid at an ionic

22



strength of0.1 M.

Table 1.7 Stability constants used to calculate a:... K' e-and p'e-2(values are valid at an ionic
strength ofO.lM)(Smithand Martell. 1989)

Complex (L=oxine) LogK
O

-9.65
-4.97
12.0
22.9

Type ofconstant

In the absence ofoxine. the following relationship exists between [ Cu1o
], [ Cu Lx]. [LJ

and K'OoU<:

K'"" - [CuI.,. JI ([ Cu'l [L'J)

[L'.l- [LJ - [CuI.,.]

[Cu'V [CuI.,.] - [Cu'V [LJ + 11 (K'"" [LJ)

(I-tO)

(1-11)

(1 - 12)

( 1 - 13)

Where L,. is the organic complexing ligand; [ L'x1is the concentration of Lx not comptexed by

copper, [LJ is the concentration of total organic complexing ligand; and ~...... is the

conditional stability constant of the copper-complex of the natural organic ligand,

Combined with equation (I ·4), equation (I • 13) can be rewritten as:

[Cul lobitc I[CuLJ"" [Cu]1&IIi1o: I [LJ+(cr:eu+a:e->/(K'cw... [LJ) (1- 14)

Equation (1 - 14) indicates that a plot of[ CU]1abi1o I [CuLJ against [Cu ]lmile is a straight line

with a slope which is 11 [LJ and an V-intercept (cr: c. + cr: c-J/(K·c...... [LJ).
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The calculated values ofac.. <l. and (l e-with experimental conditions of ionic strength

0.1 M, pH 7.6 and various concentrations ofoxine are summarized in Table 1.8.

Table 1.8 The calculated values of ac... a,. and (Ie- with experimental conditions of ionic
strength 0.1 M, pH 7.6 and various concentrations ofoxine in freshwater.

[oxJ. oM "'" Log .. Loga:e-

1.5 6.25 2.15 6.95
7.3 6.25 2.15 8.33
36.7 6.25 2.15 9.73
73.4 6.25 2.15 10.33

In practice, incrementally increasing amounts ofCu are added to aliquots ofa freshwater

sample to which oxine has been added as the competitive ligand. The added Cu is allowed to

equilibrate with the natural ligands and the added oxine for 19·21 h. The Cu complexed by oxine

(dominant) and by the major anions of the freshwater sample (minor) is measured by ACSV

(equation (1-2». A titration curve of the peak. cum:nt (i,) against the added Cu concentration is

obtained (Figure 1.8 A). The peak. current increases IlOn·linearly at low added Cu concentration

and linearly at high added Cu concentration when all the ligands are saturated with Cu.. The slope

of the upper portion of the titration curve is identical with the slope of the titration curve

obtained in a UV-irradiated aliquot of the freshwater sample in which no natwal ligand is

present. A plot ofequation (1-14) gives the transfonned line of me titration data (Figure 1.8 8),

from which the concentration of the natural ligand [LJ and conditional stability constant K·c.u.

are calculated.
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1.3.2 Applications of ACSV in Copper Complexation Studies

The adsorptive-CSV method. based on competition between natural organic ligands and

an added complexing Iigaod, bas been applied to the study ofcopper complexation (Tlble 1.9).

Van den Berg (1984 d) first applied the ACSV method to study Cu complexation in

seawater using catechol as the added ligand. He discmsed the fundamental aspect oflbe method

and compared two techniques for the treatment ofme titration data. In 1990. Apte er oJ. (1990)

employed the cateehol-CSV method to assess the range ofdifferent types of natural complexing

ligands occurring in seawater. estuarine water and freshwater. The great advantage ofACSV is

that the concentration ofthe added catechol can be varied so as to compete at different degrees

with natural ligands. allowing determination of ligands with various strengths. Arriving at the

same result., van den Berg (I 990) used two different ligands with different complexing strengths.

oxine and catechol. to study Cu complexation in estuarine water.

The concept of"detection window" in relation to CSV was discussed in both papers by

ApteeraJ. (1990) and vanden Berg (1990). The detection window ofACSV was calculated from

the complexing ability of the added ligand and expressed as logaAL (the «-coefficient tor

complexation ofCu by the added competing ligand). Van den Berg (1992) found that there is an

excellent correlation between the detection window for a particular technique and the detected

degree ofcomplexation. This correlation was fwther confirmed by the work of Donat and van

den Berg (1992) using catechol and tropolone as the competing ligands in seawater and the work

of Campos er aJ. (1994) using salicylaldoxime. oxine and catechol in seawater.
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Figure 1.8 (A) Schematic representation ofcopper titration
curve using oxine-CSV; (B) The transformed line of the titration
data; FW: freshwater, UV-FW: UV-treated freshwater

26



Table 1.9 Applications ofACSV to copper complexation in natural waters.

Sample Added ligand [ligand] Reference

Sea_or catechol 25 !!M van den Berg. 1984 d

Seawoter catechol I!!M-2.5mM Apteetal., 1990
and freshwater

Estuannewater oxine O.oImM-\ mM van den Berg et al., 1990
catechol

Seawater catechol 0.158mM Donat and van deo Berg, 1992
tropolone -O.324mM

Seawater oJ<ine 0.83 I'M van den Berg and Donat, 1992
catechol -0.702mM
tropolone

Lake water catechol 10 !!M-80!!M Xue and Sigg, 1993

Seawater SAIII I!!M-IOO!!M Campos e/ ai., 1994
oxine
catechol

[IJ Salicylaldoxime

1." Objectives

The Bonavista Peninsula ofNewfoundland was chosen as the study area which includes

three locations: Bonavista., Random Island and Come-By-Chance. Bonavista is a town on a major

beadland which had depended 00 the fishery for many generations. Random Island was selected.
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because information on freshwater was to be compared with data collected for the adjacent

marine system. Come-By..cbance was examined to assess the impact of the local oil refinery on

the water system.

This project is a sub-project ofan interdisciplinary program called "the Tri-Council Eco­

Research" program which was proposed during the collapse ofme Newfoundland fisheries. The

program entitled "Sustainability in a Changing Cold Ocean Coastal Environment", is funded by

Environment Canada through the Green Plan and is admininstered at arms length by the three

academic funding councils - the Medical Research Council (MRC), the Natural. Sciences and

Engineering Research Council (NSERC) and the Social Sciences and Humanities Research

Council ofCanada (SSHRCC). The principal objective of the Eco-Rc:search was to "identify the

central components required to achieve sustainabiLity for cold coastal communities" (Gmmer el

aL, 1993). The objective of the sub-project was to "collect and analyze scientific data which will

determine natural changes in diver.;ity, biomass and food webs along the length of the

watersheds" (Gmmer el at., 1993). The objective of this project was to measure trace metals and

their complexation in the freshwater systems in the study area in order to determine the

concentration of the bioavailable form and the ability of the water to complex added melais.

To accomplish the objective of this project, DPASV was employed to detennine the

ASV·labile concentrations of Zn, Cd and Pb and the oxine-CSV method using oxine as a

competitive ligand to measure the CSV-labile concentration ofCu. Total concentrations ofZn,

Cd, Pb and Cu in freshwater were determined by inductively coupled plasma-mass spectrometty

(ICP-MS) andtor inductively coupled plasma-atomic emission spectrometry (lCP-AES) and/or
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ASV. Determinations of both labile and total concentrations were used to estimate the labile

fraction of total metal.

Copper complexation in freshwater was studied by complexing capacity titrations using

oxine-CSV. The concentration of the natural organic complexing ligand and its conditional

stability constant were then calculated. Different strengths of the natural organic complexing

ligands were measured by varying the concentration of oxine (i.e. changing the detection

window). These results were used to evaluate the ability of freshwater to complex copper.
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CHAPTER 2

EXPERIMENTAL

2.1 Materials

2.1.1 Reagents

Potassium chloride (Suprapur) used as electrolyte was pW"Chased from SOH Inc.

Concentrated bydrochloric acid. nitric acid and ammonia used for the preparation of

solutions and for final rinsings were Seastar double sub-boiling distilled in quartz (referred

to as Q-gradc). Fisher Scientific trace metal grade nitric acid was used for cleaning sample

bottles. Standard solutiollS ofzinc, cadmium. lead and copper were prepared by dilution of

1000 mgIL atomic absorption spectrometry standard solutions (Fisher Scientific). Water

used (referred to as Nano-pure water) for dilution and rinsing was distilled and then

deionised with a NANOpme [I syslem (Barnstead). Other reagents. 8-hydroxyquinoline

(commonly referred to as exine, Fisher Scientific), glacial acetic acid (BOH), sodium acetate

(trihydrate. BDH). 4-(2-hydroxyethy}-l-piperazineethanesulfonic acid (HEPES. 99%,

Aldrich Chemical Company, Inc.) and sodium hydroxide (BOH) were ACS analytical grade.

The I M acetic acid/sodium acetate (HAcJNaAc) buffer was purified by ion-excbange and

the HEPES buffer(l M HEPES in 0.$ M NaOH) by Mn~adsorption (van den Berg, 1986)

before use (see section 2.1.2). In addition., 4-5 M ultra-pure: hydrochloric acid for rinsing cells

between measurements was prepared by isothennal distillation (EO & 0 PAR Model 303A

Static Mercury Drop Electrode Instruction Manual. p 17).
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Reagents and standards used for DPASV and ACSV experiments are listed in Table

2.1 and Table 2.2.

2.1.2 Purification of HAc:lNaAe, HErES and HO

PUTijiCJllion ofHAdNaAc Buffo

8-hy<iroxyquinoline (8HQ) is a well-<:haracterized chelating agent which forms

complexes with more than 60 mew ions (Sh1cgeon et at., 1981). Immobilization of the

chelating agent onto a solid support, such as Fractogel 15K, broadens its application in ion-

exchange (Landing et at., 1986). The Fractogel TSK-immobilized 8~hydroxyquinoline (TSK-

8HQ) was synthesized[ll using Landing's procedure (1986) and was utilized to remove

contaminating metal ions from the 1 M HAclNaAc buffer.

After acid and water cleaning, 2 mL ora TSK·8HQ gel slurry was pipetted onto a

polyethylene column fined with a porous polyethylene lilt. Prior to use. the column loaded

with 2 mL ofTSK-8HQ, was rinsed by passing through five I mL portions on.o M HCIJU.l

M HNO) (ultra-pure) acid mixtuceand 1()..20 mL ofwater until the pH of the eluent from the

column was about 6. Then an aliquot of 1M HAclNaAc buffer solution (7 mL) was passed

through the column. The concentrations of zinc, cadmium, lead and copper in the purified

buffer were determined by ASV. The regeneration of the TSK-8HQ was performed by the

passage oftive 2 mL portions ofme acid mixnHe followed by 20-30 mL ofwater.

[l] We thank Mr. James Farrell for preparing this material.
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T.blc 2.1 Reagents used for DPASV and ACSV experiments

Reagent Grade Used for Procedure Purification Storage

IMKCI Suprapur DPASV 4.47 gofKCI was dissolved in 59.95 mL None Clean bench
ofNano-pure waler

2MKCI Supropur ACSV 5.05 g ofKCI was dissolved in 33.86 mL None Clean bench
ofNano-pure water

IMHAci Analytical DPASV 13.61 g ofNaAc'3H~Oand 5.72 mL HAc lon-exchange Clean bench
IMNaAc (glacial) were diluted to 100 mt. pH

range 4.50 - 4.60

1 M HEPES Analytical ACSV 9.54 g of HEPES was dissolved in 40 mL MnO! Clean bench
buffer of 0.5 M NaOH solution. pH range adsorption

7.45 -7.55

0.1 M oxine Analytical ACSV 0.29 g ofoxine was dissolved in 20 mL None Prepared monthly;
of 0.2 M HCI solution Clean bench

1.6mM Analytical ACSV 250 J.iL of 0.1 M oxine was diluted with None Prepared monthly;
oxine 15.37 mL ofNano-pure water Clean bench

8.0mM Analytical ACSV 1.25 mL of 0.1 M oxine was diluted with None Prepared monthly,
oxine 14.38 mL Nano-pure water Clean bench

0.33mM Analytical ACSV 100 J.iL of 0.1 M oxine was diluted with None Prepared monthly,
oxine 30.20 mL of Nano-pure water Clean bench

~

32



Table 2.2 Standards used for OPASV and ACSV experiments

Standard (STD) Used for Procedure Storage

10 mgIL metal sm Dilution 5oo}ll of 1000 mgIL STD wasdituted with Clean bench
(Zn, Cd, Pb and Cu) 49.50 ml ofNano-pure water

0.1 mglL Zn, Cd, DPASV 100 IJl of 10 mg/L Zn, Cd, Pb and Cu respectively Prepared daily;
Pb and Cu STO was diluted with 9.60 rol ofNano-pure water Clean bench

0,4 mgIL Zn, 0.1 mgIL DPASV 400 IJlof 10 mgfl. Zn and 100 fJl of10 ppm Cd, Prepared daily;
Cd, Pb and Cu STO Pb and Cu was diluted with 9.30 rol of water Clean bench

0.1 mgIL Cu sm ACSV 100 .,al of 10 mgfL Cu STO was diluted with Prepared daily;
9.90 mL Nano-pure water Clean bench

0.2 mgIL Cu sm ACSV 200 pL or 10 mgIL Cu sm was diluted with Prepared daily;
9.80 mL Nano-pure water Clean bench

0,4 mgIL Cu sm ACSV 400 .,alof 10 mg/lCu STO was diluted with Prepared daily;
9.60 mL Nano-pure water Clean bench

1,2,3 and 4 mgIL ACSV I, 2, 3 and 4 roL of 10 mgIL Cu STO was diluted Prepared daily;
cusm to 10.00 mL with Nano-oure water resocctivelv Clean bench
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Purijicdiion of HEPES Buffer

The preparation of40 mL of the HEPES buffer is listed in Table 2.1. About 0.1 g of

manganese(IV) oxide was added to the 40 mL of buffer. The solution was stirred (overnight)

using a magnetic stirrer and then filtered through a 0.45 ,.un Millipore filter. The trace copper

in the purified buffer was determined by ACSV.

Purylaltion ofHel

Ultra-pure HCI used for rinsing cells and electrodes was prepared by isothermal

distillation. A 500 mL beaker filled with concentrated ACS grade HCI and a 500 mL wide

mouth polyethylene bottle half-filled with water were placed in an acid cleaned desiccator.

The desiccator was kept on a clean bench for 3 - 4 weeks. During this period, the volatile

HCI transferred to the water in the polyethylene bottle. At the end of this time, the

polyethylene bottle half-filled with purified acid was taken out from the desiccator. The

concentration of the acid was detennined by sodium hydroxide titration and the

concentrations of the trace metals were detennined by DPASV.

2.1.3 Filters

A 25 rom or 47 nun 0.45 j.lffi Millipore filter membrane (HA type, Millipore

Corporation) was used to remove particles from freshwater samples.

Filter holder A which held the 25 m.m membrane was used with a 10 mL syringe to

filter small amounts ofsample before analysis. When a large amount ofsample was required,

for instance 500 mL ofsarnples, filter holder B (Nalgene, Cat. No. 300-4000, 4050, 4100)
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which held the 47 mm membrane was used with a receiver. This was operated under vacuwn.

2.1.4 eluDing

Trace metal analysis requires an extremely careful and lengthy cleaning process,

because minute amoWlts of impurities from a variety ofsources may contaminate samples.

Only plastic-ware made ofpolyethylene. polypropylene or Teflon was used. All the plastic­

ware was subjected. to a thorough cleaning procedure. depending on the chemical resistance

of the particular plastic and the individual container. There were three major steps in the

cleaning process: pre-cleaning, reagent grade acid cleaning and trace metal grade acid

cleaning. Nano-pure water was used for rinsing between each step.

Bottles for sample and reagent storage were cleaned in the following way. Fiest, they

were rinsed with ACS reagent grade acetone to remove organic impurities. then placed in a

5% micro detergent (Cole-Parmer lnstrument Company) bath for 24 hours. Next, they were

filled with 6 M reagent grade HCI and soaked in a 2 M reagent grade HCI bath for two

weeks. Finally, lhey were filled with 0.1 M trace metal grade HNOl , double-bagged in new

Ziplock storage bags and stored in a plastic bucket for at least another two weeks. Bottles to

be used with extremely low concentration samples were filled with 0.1 M Q-HCI instead of

trace metal grade HN03• Before use, bottles were rinsed five times with Nano-pure water on

the clean bench.

Small items, such as disposable tips. filter holders, syringes and teflon cells, were

cleaned in a similar manner. After the detergent wash. items were placed in a hot (about
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60"C) 3 M reagent grade HCl bath for 48 hours., followed. by soaking in a hot (60 0c) 7.5 M

trace metal grade IiNO) bath for 24 hours. Disposable tips were then rinsed with and soaked

in Nano-pure water until use. Filter holders, syringes and Teflon cells were further cleaned

in a I M Q-HCl bath and rinsed well with Nano-pure water and allowed to dry in the

circulation ofclean air on the clean bench.

The Millipore filter membranes were soaked in a 2 M Q-HCl bath for at least three

weeks. Before use, they were rinsed well with a squirt bottle ofNano-pure water and placed

in filter holders and then further rinsed by passing through large amounts of Nano-pure

water. Containers which were to be used for different purposes, for instance the same

voltanunetric cell for different samples, were rinsed well with Nano-pure water, soaked in

0.1 M ultra-pure grade HCl, followed by final water rinsing.

2.2 Instruments

2.2.1 Mercury Electrode and Polarographic Analyzer

A EG&G Princeton Applied Research (PAR) Model 174A Polarographic Analyzer

was interfaced with a PAR mode1303A Static Mercury Drop Electrode (SMDE). The 303A

SMDE was operated in the hanging mercury drop mode with the drop size on "large". The

reference electrode was AgfAgCI, saturated KCI and the counter electrode was a platinum

wire. A mechanism for deaeration of the sample solution by purging with high purity

nitrogen was incorporated in the electrode system. Prior to purging, the nitrogen was pre­

saturated with Nano·pure water in order to prevent evaporative losses, by passing through
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a scrubbing tower contained Naoo-pwe water. A Teflon voltammetric cell (Fisher Scientific)

with a Teflon coated staHhapcd stirring bar ( Fisher Scientific) was used to contain the

sample. A magnetic stiner was employed to stir the sample solution during the deposition

stcpand a BBC SE 780x-yrccordcrtorecordlhcvoltammogram.. The 303A SMDEaod the

stirrer were operated on the dean bench.

1.2.2 The Cleaa Beach

As mentioned earlier, minute amounts of impurities from a variety ofsources may

contaminate samples. Thus, in order to prevent sample contamination from airborne dust, all

sample filtration, handling and analysis were carried out on the clean bench. The clean bench

consisted ofa one side open wooden frame with a Lexan interior and a Class-IOa' 11high

efficiency particle air (HEPA) filter (EACr, model ## MAC to) mounted on the top. The

HEPA filter oat only removed particles whose diameters were larger than 0.5~ from air,

but also provided laminar flow with a positive pressure to prevent dust from entering the

clean area The working swfacc of the clean bench was made ofhigb density polyethylene.

When the bench was not in usc, the open side of the clean bench was covered by a plastic

sheet, but the HEPA filter blower was never turned off.

All personnel working on the clean bench wore powder-free polyethylene gloves

which were replaced daily, or more frequently ifcompromised by touching non-trace metal

[1] Class 100 is defined by USA Federal Standard 2090 as 100 or less particles greater than
0.5 (.lm permissible per cubic foot (0.0283 m l ) ofair.
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clean objects. The working area of the clean bench was rinsed with Nano-pure water every

morning and wiped with Kimwipes. All the disposable tips were replaced daily.

2.2.3 VV-irradiation System

The borne-built UV-irTadiation apparatus[ll was a modified version of that described

by Vega et al.(l994). A 125 W medium pressure mercury lamp was inserted into a double-

layered tube with the lower part made ofquartz. The double walled tube allowed cooling

water running through to prevent a temperature increase during UV-irradiation. A 80 mL

quartz sample tube (diameter 2 cm) with a Teflon stopper was placed 2 cm away from the

lamp. To increase the radiation efficiency, the sample tube and the lamp were surrounded

by aluminium. foil. The system was operated in a regular fume hood with the aluminium

covered window down.

2.2.4 pH Meters, Conductivity Meter and Pipettes

A Chemtrix pH meter (type 60A) with a glass elecrrode (Broadley James

Corporation) was employed to measure the pH of all samples in laboratory. The pH meter

was calibrated daily using (WI) standard buffer solutions, pH = 8.68 and pH '= 4.01. For

sample collection. a portable pH meter (Model 290A, Orion) was used to measure pH on site.

The pH meter was calibrated before each field trip using the same standard buffer solutions.

[1] We thank Dr. Chet Jablonski for providing this apparatus.
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A hand-held conductivity/temperature meter (model 122 and 123. Orion) was used

to measure the conductivity and temperature on site when the sample was coUected.

An EppendorfMaxipettor pipette 4720 and Maxitip S Kit (barrel and piston) made

of polypropylene were used to transfer sample aliquots on the clean bench. Three different

volumes (50 J.l.L. 100 j.l.L. 250 JJ.L) ofEppendorfStandard Pipettes 3130 were used to transfer

small volumes of solution accurately. All the pipettes were purchased from Brinkman

lnstruments, Inc.

2.3 Methods

2.3.1 Sample CoUectioD, Filtration and Storage

The freshwater samples were collected from the Booavista Peninsula area of

Newfoundland. Sample sites # I - 8 are located at Bonavista. sites # 9 - 13 on Random lsland

and sites # 14 - 17 atCome-By-Chance (see the map on the following page). Samples from

each site (16 sites in total) were collected in field trips carried out in May and July 1995 and

samples from selected sites were taken in April and July 1996 (Table 2.3).

Low density polyethylene (LOPE) bottles (500 and 1000 roL) were used for samples

taken in 1995. LOPE and fluorinated-high density polyethylene (FLPE) bottles were used for

samples taken in 1996.

Before field trips, bottles were rinsed with Nano-pure water and double-bagged in

Ziploc storage bags. Polyethylene gloves were used on-site when handling sample bottles

which were submerged, rinsed (3 times) and filled with the sample water. At least two
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Figure 2.1 Map of the study area (detailed sample site locations are shown as an appendix)
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samples. one in a SOO mL bottle and the other one in a 1000 mL boale, were taken from each

site. Temperature, pH and conductivity of the water were measured on site and general site

observations were made.

Samples were stored and transported in coolers during the field trips and from the

field to the laboratory. The 1()()() mL samples were placed in a refrigerator at 4 0(:, wbite the

500 mL samples were deep frozen to store for later studies.

Table 2.3 Sampling Locations in 1995 and 1996

Site # Location

Bonavista

9
10
It Random Island
12
13

14
15
16 Come·By~Chance

17

May 1995 July 1995 April 1996 July 1996

y Y Y Y
Y Y
Y Y
Y
Y Y Y Y
Y Y Y Y
Y Y

Y Y
Y Y Y Y
Y Y
Y
Y Y Y Y

Y Y Y Y
Y Y
Y Y
Y Y

All samples, except samples collected in July 1996, were filtered through 0.45 IJm

41



Millipore membranes using filter holder A (see Section 2.U) before sample analyses.

Samples taken in July 1996 were fihered using filler bolder B within 5 days after sample

collection. For each site, one aliquot of the filtered sample was kept in the refrigerator, one

in a deep freezer and another was acidified to a pH ofabout 2 by adding concentrated ultra

pure Hel (Seastar) (2 mU500 mL sample). The acidified samples were also stored in the

refrigerator for total metal analyses.

2.3.2 Determination of Labile Zinc, Cadmium, Lead and Copper by DPASV

An aliquot (10 mL} oftbe filtered sample was pipetted into a Teflon cell. HAdNaAc

(250 ~L, I M) was added to adjust the pH of the sample to 4.5 • 4.6 and KCI (250 JJL, I M)

to act as electrolyte. The solution was purged with nitrogen while stirred at a speed of

Table 2.4 Parameters ofpolarographic analyzer for DPASV and ACSV

Parameters

Potential scan rate
Scan direction
Potential scan range
Initial potential
Modulation Amplitude
Operating Mode
Current range dial
Current range switch
Drop time
Output offset
Display direction
Low pass filter

DPASV

5mVls

1.5 V
-12V
25mV
Differential pulse
1-5

!'A
0.5 s
Off

Off
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ACSV

5 mYls

1.5V
-l.lV
25mV
Differential pulse
1-5

!'A
0.5 s
Off
+
Off



700 rev/min for 8 min. A deposition potential of -1.2 V was then applied for 10 min with

stirriog. lbe solution was left. to rest for 30 s, then an anodic scan (in a positive direction)

initiated at -1.2 V was started and a voltammogram recorded. The parameters for the

analysis are listed in Table 2.4. The initial sample solution was scanned at least twice, while

the standard additions were scanned once. In between scans, three mercury drops were

discarded, whilst a fresh drop was used for each scan. Between two consecutive

measurements, a deaeration time of 0.5 min was applied. A purge time of2 min was used

after the addition ofstandard solutions. The sensitivity was calibrated by lhree point standard

addition to the sample and the initial metal concentrations were calculated by extrapolation.

2.3.3 Determinatioa of Copper Cooc:eatratioD by ACSV

Determination ofCopper in Seawater Reference Standard CASS~l

A method of cathodic stripping voltammetry with 8-hydroxyquinoline as a

competitive ligand to determine labile copper in seawater has been reported by van den Berg

(1986). Before the method was modified for freshwater analysis, it was first applied to

detennine the copper concentration in the seawater reference standard CASS-2 (National

Research Council Canada). An aliquot (10 mL) ofCASS-2 was neutralized with 0.2 mL of

1.2 M NHJ in a Teflon cell, then 100 jll of 1 M HEPES and SO j.l.l of4 mM oxine (final

concentration 20 JJM) were added. The adsorption potential was set to -1.1 V and the

solution was stirred for I to 3 min. After a 10 s quiescent period, the potential was switched

to ..0,2 V within lOs while the " hold" key on the polarographic analyzer was pressed down.
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TIle DPCSV scan ( in a negative direction) was initiated 20 s later. Other parameters were

the same as described above for DPASV measurement (Table 2.4).

OptimiVltion ofth~ Oxine-ACSVMnhod alld Det~rm;naJion of Lab;/~ Copp~r

The oxine·ACSV method for labile copper determination in seawater (van den Berg,

1986) was modified for freshwater. The optimization experiment was performed using 10

mL of Nano-pure water with 750 ~L of 2 M KCI and 1 M HEPES buffer added. The

experiment was designed by varying one parameter at a time. 1be parameters are pH. oxine

concentration, deposition potential and deposition times.

The determination of labile copper in freshwater by oxine·ACSV was carried out in

the following way. An aliquot ( 10 mL) of filtered sample was transferred into a ceU.

HEPES buffer (100~ I M) was added to the sample to adjust the pH to 7.5·7.6. KCI (750

p.L, 2 M) and oxine (50 ~L, 1.6 mM) (final concentration was 7.3 J-lM) were also added.

After the solution was purged and stirred for 8 min, the deposition was carried out at

potential-I. I V for 3 • 10 min depending on copper concentrations of individual samples.

2. 3.4 Determination of Copper Complexing Ligand Conceotrations

Copper complexing capacity titrations used to determine copper complexing ligands

in sea water have been reported (van den Berg, 1984 d; Donat ~l al., 1992; Campos eral.,

1994). Using such information. a modified procedure was designed for freshwater. Aliquots

(10 mL) of filtered samples were pipened into to Teflon cells along with 100 f.LL of the

HEPES buffer, 750 J.lL of2 M KCI and oxine ( 1.5 p.M.. 7.3 ~M and. 36.5 J.lM). Copper
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stock solutions (0.1 ppm - 4 ppm) were pipetted into 9 of the 10 cells to final concentrations

ofbetwa:n 0 and 20 nM in equal increments. The solutions. covered with acid cleaned Pyrex

Petri dishes. were allowed to equilibrate: for 19 to 21 b.. whereafter the labile copper

concentration in each ceU was determined using the oxine-ACSV method. A deaeration time

of6 min and a deposition time of I min were used. The sensitivity was calculaled from the

linear portion of lhe titration curve wh~ aJiligands were saturated with copper.

2.3.5 Determination oCTot.1 MetalJ

A 70 mL aliquot of acidified (pH - 2) sample was transferred into an acid cleaned

quartz tube. The sample was lhen UV-irradiated for 17 h using me IN-irradiation apparatus.

An aliquot of 10 mL UV-irradiated sample was pipetted into the: Teflon cell. Concentrated

and 1:5 (VN) ammonia were used to approximalely neutralize the pH aCme sample. The

sample was then prepared for analysis by DPASV (see section 2.3.2) to determine me lotal

dissolved zinc, cadmium., lead and copper. Another aliquot was prepared for ACSV analysis

( see section 2.3.3) to delermine tola! dissolved copper only if copper peaks were not

observed for certain samples by lhe DPASV method. A deposition time of I min was

sufficient for ACSV detennination of total dissolved copper in lhe UV-imidiated sample.

Samples collected in May and July 1995 were analyzed by Inductively Coupled

Plasma-Atomic Emission Spectrometry(ICP-AES) and Inductively Coupled Plasma-Mass

Spectrometry (ICP-MS) to detennine a range of total metals in the samples, while ICP-MS

and DPASV and ACSV methods were used for samples collected in April andJu.ty 1996.
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CBAl'TER3

OPTIMIZATION OF THE ADSORPTIVE CAmODlC STRIPPING

VOLTAMMETRY METHOD

3.1 Analysis ofCASS-2 Standard

3.1.1 Cathodic Strippiag Voltammetry in the Presence olOxiae

A near-shore seawater reference material, CASS·2. was analyzed by the oxine-CSV

method to test accuracy and precision. A well-defined peak: appeared at - 0.4 V after a

DPCSV scan (Figure 3.1). TIle increase (the upper three scans) with increasing copper

concentration. indicated that this peak was due to the reduction ofCu(II). Similar results (eu

peak at - 0.45 V, pH = 7.7) were observed by van den Berg (1986). No other peak was found

when the scan was continued to potentials more negative than - 0.40 V.

Oxine complexes labile copper in solution. The copper(D}oxine complex is adsorbed

on the mercury drop surface at a potential of - 1.1 V [0 form a film. At this potential, the

copper(Il) in the adsorbed complex is reduced to metallic copper, which dissolves into the

mercury drop as an amalgam. After the combined adsorption/reduction step. the pOlcntiaJ

was switched to - 0.2 or - 0.1 V for 20 s to allow the metallic copper in the mercury drop

to migrate to the drop surface to be oxidized to copper(Il). which complexes again with the

oxine adsorbed in the mercury drop surface. When the potential was scanned in a more

negative direction. the copper(U)-oxine complex underwent reduction at a potential of
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c.

-0.20 -0.30 -0."0 -0.50 -0.60 -0.70 -a.eo -0.90 -1.0 .1.1 .1.2

potential (v)

Figure 3.1 DPCSV voltammograms obtained for the seawater reference material CASS-2
in the presc:nc:e ofoxine. The lower two scans: 10 mL sample containing 0.024 M NH). 0.01
M HEPES and 20 J.lM oxine; the upper three scans: addition oreu 0.48, 0.96, 1.43 J.1g/L
respectively. TIle adsorption time was I min and adsorption potential was -1.1 V.
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- 0.4 V. As discussed in Cbapter I. the peak: height is proportional to the amount ofcopper

(II) in the film which is proportional to the copper concentration in the sample. whereas the

peak: potential is related to the characteristic reduction ofcopper(II}-oxine complexes.

3.1.2 Results of Copper DetermiaatioD of CAS8-2 by tbe Os:iDe-CSV Method

The results of the copper determinations for CASS-2 are given in Table 3.1. The

average copper concentration from eight determinations was 0.69 ± 0.06 j.1g1L, which is in

agreement with the certified value of0.675 ± 0.039 j.1gIL within experimental error.

Table 3.1 Copper determination in CASS-2 seawater reference material

1# of measurement

ICul (J'g/L)
Result (X ± SO)
RSD(%)

Certified value

0.63 0.73 0.69 0.73 0.65 0.77 0.75 0.59
0.69 ±0.06
9.2

0.675 ± 0.039

The reagent blank value of0.05 j.1gIL is the average of four detenninations obtained

for 10 mLofNano-pure water with 250 ~Lof 1M KCI, 100 j.1Lof 1 M HEPES and 50 j.1L

of4 mM orine.
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3.1.3 Test oftbe LiaUlrity oftbe Differential Pulse CatboditStrippmg Voltammetry

(DPCSV) RespoDse witb Adsorption Time

The DPCSV response (current iJ will genenilly increase: with increasing adsorption

time until saturation is reached on the swface of the mercwy drop. We tested this for a

CASS-2 sample by varying the adsorption time from I - 12 min. The results are shown in

Table 3.2 and Figure 3.2.

At a copper coocentration of0.69 j.Lg!L. the DPCSV response increased linearly with

the adsorption time up to 6 min in CASS-2 seawater, between 7 and 10 min it increased

linearly but at a slower rate and finally after 10 to 12 min it did not increase. The results

indicate that the saturation process occurred gradually on the mercury drop surface with

increasing adsorption time.

3.2 Optimization of tbe Orioe-CSV Method

3.2.1 Effect of pH

The DPCSV peak current ",,-as measured as a function of pH in Nano-pure water as

shown in Figure 3.3. The experiment was performed in two ways. One was to prepare seven

aLiquotsofsample in seven cells with different pH (range from 6.68 to 7.96). Sample pH was

varied by additions ofdilute HCI (1:6 VN) or NH} (1:5 VN) to the aqueous solution and

measured after each CSV determination. The other way was to pipette 2 aliquots of sample

into 2 cells. Sample pH was varied by additions ofequal amount ofdilute HCI or NH] (range

from 6.78 to 823). At each addition, one sample was analyzed by CSV, while the other was
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Table 3.2 Effect ofadsorption time on the DPCSV peak height for
CASS-2 seawater

1.2.

:<
~0.8 -

! 0.8­

i 0.4 -

0.2 ..

Time (min)
1
2
3
4
5
6
7
8
9

10
12

...'

Peak (I'A)
0.19
0.33
0.47
0.58
0.68
0.76
0.83
0.91
1.00
1.01
t.lO

0--------------o .. 6 8 10 12
Adsorption time (min)

Figure 3.2 Effect ofadsorption time on the DPCSV peak height obtained
for CASS~2 containing 0.76 j.1gIL Cu., 20 uM oxineand 0.01 M HEPES at an
adsorption potential of ~ Ll V
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used to monitor sample pH.

1be results obtained in the two ways revealed a similar trend but a slight difference

in the maximum current. It was found that the peak current gradually increased with

increasing pH up to 7.6 or 7.8, whereafter the peak current decreased with increasing pH. The

maximum peak current obtained at pH 7.6 or 7.8 was approximately twice that at pH 6.7 or

6.8. 1be peak. potential was shifted toward a more negative potential with increasing pH at

approximately 0.1 VIpH unit at pH values between 6.7 and 8.2 crable 3.3). The increase in

the peak current as well as the negative shift in the peak potential with increasing pH may

be the result of increased stability of the copper complexes with Q)eine, whereas the decrease

in the peak current at pH value above 7.6 or 7.8 may be caused by copper hydrolysis which

increasingly affected the formation ofCu.-oxine complexes.

Table 3.3 Effect of pH on the DPCSV peak potential

Measured in same aliquot
pH Peak Potential (-V)

Measured in separate aliquots
pH Peak Potential (.V)

6.78
7.05
720
7.57
7.75
7.90
8.23

0.28
0.32
0.36
0.39
0.40
0.42
0.43

6.78
7.05
7.37
7.57
7.75
7.76

0.27
0.32
0.36
0.38
0.39
0.4\

Even though the peak currents obtained by this method were sufficiently sensitive to

allow the labile copper determination to be perfonned at any pH between 6.1 and 8.2. the pH
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-.- measured in separate a1iquots
____ measured in same aliquot

0.40

0.35

0.30

~

I 0.25

£
0.20

0.15

0.10
6.9 7.2 7.5

pH

7.8 8.1

Figure 3.3 Effea ofpH on the DPCSV peak height obtained for Nano-pure water
containing 2 x 10.5 M mone. 11!g!L Cu and 0.15 M Ket. The adsorption
potential was -1.1 V and the adsorption time was I min.
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range 7.4 to 7.6 was chosen to be the optimal pH condition. Since [his is close to the pH

value offresnwater. it is possible to minimize the change ofcopper speciation with pH.

In order [0 understand the effect ofpH on the DPCSV peak current, the distribution

of three species in an oxine solution as a function of pH is shown in Figure 3.4. The

distributions of these species were calculated using the thennodynamic equilibrium stability

constants given by Smith and Martell (1989). The suuctures of the three species ace

presented in Figure 3.5.

W
I~

'" /.

W
OR

+W-
HI.

-w-

Figure 3.5 Structures of the three species in an oxine solution
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The thermodynamic stability coastants for oxine at 25 "C and an ionic strength of0.1

M are given below:

log Kr ""' 4.97

log Kr = 9.65

(3 - 1)

(3 - 2)

Therefore, the dissociation constants ofH2L' and 1-il. are:

H2 l·-H"+HL. K,=lIK•. -LOn x 10" (3-3)

HL-H"+L' K2= lfK7 ""'2.239 x 10.10 (3-4)

The distribution equations (3 - 5) and (3 - 7) of the three: species are derived in a similar

manner as described by Harris (1987).

[H,L' )/( oxine j s [H-j'l ([ W]'+[H'j K, + K, K,) (3 - S)

[HL] I [oxine] -K, [W] I ([Wj'+[Wj K, +K, K,l (3 -6)

[L·j/[oxine) -K,K,I ([W]'+[W]K,+K,K,) (3-7)

The distribution diagram for oxine (Fipre 3.4) is a graph ofequations (3 - 5) and

(3 -1). The diagram shows that the dominant species (99%) is HL at the studied pH range

6.7 to 8.2, thus thc fonnation equation ofcopper-oxine complex can be wrinen as:

Cu2'+2 HI.. - CuL:z+2H' (3 - 8)

Equation (3 - 8) indicates that the copper-oxine complex is more stable at low W

concentration (high pH). 1bis increasing stability of copper-oxine complex results in

increasing DPCSV peak height with increasing pH.

The negative shift ofDPCSV peak potential with increasing pH can be explained by

equation (3 - 9) which is the reactiOD that occurs during the scan step. The adsorbed copper-
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oxine complexes (CuI..z) llIe more stable to reduction as the pH value increases, thus

producing DPCSV peak. at a more negative potentiaL

C~+2e+2 fr· Cu+2 Ill.. (3 -9)

3.2,2 Effect of Oxine CODt=eotratioD

1be effect ofoxine concentration on DPCSV peak. height is shown in Figure 3.6. The

two lines in Figure 3.6 show the results obtained by varying the concentration ofoxine in

Nano-purewater and NF-GI(May, 1995) freshwater containing 0.01 M HEPES (pH ""7.6),

l ~gfL Cu and 0.15 M KCI. The experimental conditions were lIle same as in Figure 3.3.

A peak was observed in the Nano-pure water sample even when lIle oxine

concentration was only 1.0 x 10-' M. No peak was detected in the NF·GI (May, 1995)

freshwater sample until the oxine concentration was at least 6.3 x 10·' M. The necessity for

higher oxine concentration for the freshwater sample may be due to the natural. organic

ligands present in the freshwater. In both samples., the peak height increased with increasing

oxine concentrations up to 7.3 x 10·' M and decreased at oxine concentration Iligher than 7.3

x 10-' M. Thus, an mcine concentration of 7.3 x 10 ·'M was then used for the remaining

optimization experiments and determinations of labile and total copper in freshwater.

It was aJso found that the peak potential shifted in a negative direction with

increasing oxine concentration (T_ble 3.3). The increase ofpeak current and negative shift

in peak potentiaJ with increasing oxine concentration were caused by increased stability of

the adsorptive copper~xinecomplex (see equations (3 - 8) and (3 - 9». A similar discussion
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Figure 3.6 Effect of Olcine concentrations on DPCSV peak height obtained in samples
containing 0.01 M HEPES (pH"" 7.6), IIJg/L Cu and O.IS MKCI. The experimental
conditions were the same as in Figure 3.3
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was given in section 3.2.1 for the effect. ofpH on the DPCSV pea.k- The decIease ofpeak

current at oxine concentration higher than 7.3 x 10 -6 M was presumably caused by

competitive adsorption of oxine onto the mercury surface.

Table 3.4 Effect ofoxine concentrations on DPCSV peak. potential

-Log [oxine]

8.0
7.3
7.0
6.7
6.2
5.7
5.1
4.7
4.4
4.0

Nano-pure Water
Peak Potential (-V)

0.320
0.330
0.340
0.360
0.380
0.420
0.435
0.445
0.450
0.460

NF-Q I Sample
Peak Potential (-V)

0.370
0.415
0.435
0.435
0.440
0.450

In order to gain further information about the type of copper-oxine complexes

adsorbed by the mercury drop, the distribution of the three speciesC~ CuL', and Cu2
- in

a copper-oxine solution at pH 7.s as a function of the oxine concentration is presented in

Figure 3.7. Hydrolysis ofcopper was ignored in the distribution diagram as the sample pH

was controUed at 7.4 - 7.6. Values for the conditional stability constants, Kc... and Kc.u (at

temperature 25 "C, ionic strength 0.1M). are from Smith and MarteU (1989) and are listed

in equation (3 - 10) and (3 - II). In a similar manner used for the derivation ofequation (3

-5) and (3 - 7), the fractional composition equations for the copper-oxine system are given
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in equations (3 - 12) and (3 - 14).

CU1~ + HI.. - CuL~ + Ir

cue+m..-CuL:z +Ir

1£ [1ll.]1[ Ii"] =[F]. then

[CuL,] I [Cu]_ =K, K,[ F]'I( 1+K, [F] + K, K,[ F]')

[CuL']I[Cu]_=K, [FJI(I+KdFJ+K, K,[F]')

[Cu"]I[CuJ_= 11( 1 +K, [FJ+K, K,[F]'l

(3 - 10)

(3 - 11)

(3 -12 l

(3 -13 l

(3 - 14 l

Figure 3.7 shows that CuI..: is the dominant species in copper-oxine system at an

oxine concentration higher than 1.0 x 10 _7 M.. Therefore, the copper peak observed at -0.4

V for freshwater is caused by the reduction ofCu.L: complexes rather than CuL.

3.2.3 Effect of Adsorption Potcntial

In the DPCSV method, the potential applied on I.h.e HMDE affects the efficiency of

the adsorption during the adsorption step as a result of coulombic effects and competitive

adsorption (Donat and ....an den Berg, 1992; Campos and van den Berg, 1994). Thus, the

applied potential range between - 0.1 V and - 1.3 V was tested (Figure 3.8).

The copper accumulation onto the mercury drop is most efficient at a potential of

- 1.1 V. The increasing reduction current with more negative adsorption potentials may be

due to bol.h. adsorption of copper-oxine complexes and reduction of copper to form an

amalgam with I.h.e mercury electrode. In addition, competitive adsorption ofcomplexes with

metals such as uranium which do Dot fonn an amalgam is presumably prevented at a
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Figure 3.8 Effect of adsorption potential on DPCSV peak height obtained for Nano-pure water
containing 0.01 M HEPES, I ~g/L Cu. 0.15 M KCI and 7.3 x to -6 M oxine.
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negative potential of - t.l V (van den Berg. 1986). The decrease of the reduction current at

potentials more negative than - 1.1 V is probably caused by hydrogen generation from water.

3.2.4 Effect of AcborptioD Time

The effect on metal accumulation ofincreasing the adsorption time is given in Figure

3.9. It was found that the peak height increased linearly with a time of up [Q 5 min. A longer

adsorption time will cause saturation of the drop surface or competitive adsorption ofsome

other metal-oxine complexes., therefore, adsorption times of I to 5 min were used depending

on the metal concentration in different water samples.

The optimal analytical conditions for Cu determination in freshwater (this stUdy) and

in seawater (van den Berg, 1986) are compared in Table 3.5.

Table 3.5 Comparison of the optimal conditions for Cu determination in freshwater and
seawater

Sample pH [oxine]
(M)

Tune Adsorption Initial (KClj
(min) potential M potential (V) (M)

Freshwater 7.5-7.7 8 x 1O~ 1-5 -l.l -<).\ 0.15

Seawater 7.7 1-12.5 -1.1
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Figure 3.9 Effe<:t ofadsorption time on the DPCSV peak height obtained for Nano-pure water
containing 1 J.lg/LofCu at an adsorption potential of· 1.1 V. Other parameters were the same as
previous optimal experiments.
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CHAPTER 4

ANALYSIS OF FRESHWATER SAMPLES

4.1 Trace Metal Analysis

4.1.1 DettrmiD.tioD oCLabile Trace Metals by DPASV aad ACSV

A typical DPASV voltammogram for a freshwater sample, NF-Gl (May,I996) is

shown in Figure 4.1. The first two lines are sample scans and the top three are standard

additions. The peaks of Zn, Cd and Ph are very well separated, but no eu peak appeared

at - 0.1 V even after standard additions. TIlls may be due to eu complexation with natural

organic complexing ligands present in freshwater. The oxine-CSV method was, therefore,

applied to determine the labile eu concentration in freshwater samples, because the added

stroog oxine ligand can compete with natural organic ligands and results in more eu

available for CSV determination. Voltammograms obtained for freshwater samples were

similar to that obtained for CASS-2 (see Figure 3.1 in section 3.1.1).

Freshwater samples ohlained in May and July, 1995 and April and July, 1996 were

analyzed by ASV to determine labile Zn. Cd and Ph and by the oxine-CSY method to

determine ell. The results shown in Table 4.1 and Figure 4.2, Table 4.2 and Figure 4.3 are

the averages of three or two determinations.

The amounts of labile Cd in most of the freshwater samples collected in 1995 and

1996 wen: below the detection limit, the exceptions being sites 7, 8 and 14 in the July, 1995

samples (Table 4.1), site 7 in April, 1996 (Table 4.1 A) and site 14 in July, 1996 (Table 4.2
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B). Similarly, the concentrations of labile Pb in most of the samples in the two years were

undetectable except for sites I and 7 in July, 1995 (Table 4.2 B). Measwable amounlSof

labile Cu were found in all samples except for sites 3, 6, 1 and 14 in July, 1995 (fable 4.1

B) and sites 13 and 14 in July, 1996 (Table 4.2 B). Relatively high levels of labile Zn

(compared [0 Cu) were observed in all samples (Figura 4.2 and 4.3).

The highest concentrations oflabile Zn and Cu were obtained in the Booavista area

(sites # 1- 8) which is the most populated area among the three (Bonavista, Random Island

and Come-By-Chance). The higher Zn level at site I (Hospital Pond) may be due to

corrosion of storm pipes beneath the road and runoff from the nearby shopping center

parlci.ng lot The two occurrences of Cd in the site 14 samples (fable 4.1 B and Table 4.2

8) are interesting in view of its location which is close to the refinery in the Come-By­

Chance watershed.

In general, concentrations of labile trace metals in the study area were at ~gIL level

in the range from undetectable up to 0.01 for Cd. 0.18 for Pb, 0.61 for Cu (by oxine-CSV)

and range from 0.05 to 4.73 for Zn. These values were within the typical range of trace

metals in freshwater systems reported in the literature {Florence, 1986}.

65



·1.2 -1.1 ·1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0

potential (V)

Figure 4.1 A voltammogram of ASV determination ofa freshwater sample.
The lower two scans are sample while the upper scans are for successive standand
additioons.
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T.ble 4.1 Labile melal concenlrations (J.lg!L, mean:t: S.D., n - 3) in filtered freshwater samples collected in May (A) and July (B),
1995
(A)

SiteH Cd Pb Cn Zn Temp.("C) pH Cond.(J.lS/cm2)

I N.D.1I1 N.D. 0.IH0.02 2.75' 0.23 12.0 6JS 68.5
2 N.D. N.D. 0.16'0.06 2.43' 0.43 8.9 6.13 52.2
3 N.D. N.D. 0.18.0.02 1.45'0.30 10.0 6.01 44.2
5 N.D. N.D. 0.20' 0.01 0.7HO.09 11.2 5.55 39.7
6 N.D. N.D. 0.13' 0.03 0.21' 0.07 13.1 7.35 62.2
7 N.D. N.D. 0.15'0.04 1.28'0.13 10.1 5.80 46.4
8 N.D. N.D. 0.14:t:0.04 0.76:t: 0.1 1 11.3 5.35 41.9
9 N.D. N.D. 0.18.0.04 0.20.0.04 12.5 7.20 91.5
10 N.D. N.D. 0.12± 0.05 0,11:t: 0.03 11.8 6.86 106.0
II N.D. N.D. 0.15±0.02 0.06± 0.02 11.1 7.08 84.2
12 N.D. N.D. 0.11±0.02 0.56 ± 0.04 N.API N.A. N.A.
13 N.D. N.D. 0.06' 0.03 0.40'0.11 9.9 6.97 34.2
14 N.D. N.D. 0.03' 0.01 OJ3 '0.08 11.9 6.82 28.2
IS N.D. N.D. 0.05' 0.03 0.32' 0.08 11.6 6.82 49.1
16 N.D. N.D. 0.07' 0.02 0.22' 0.03 11.3 6.7 32.7
17 N.D. N.D. 0.06' 0.02 0.17'0.03 11.7 6.76 39.4

f1) Not detectable
[2] Not Avalaible
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Table 4.1 (continued)
(B)

Site # Cd Pb Cn Zn Tcmp.('C) pH Cond.(lls/cm2)

N.D. 0.18'0.01 0.34< 0.01 3.33< 0.28 21.0 6.72 83.02
N.D. N.D. 0.36' 0.05 1.44< 0.22 20.0 5.60 55.9

3 N.D. N.D. N.D. 4.73< 0.63 19.0 5.42 49.0
5 NA
6 N.D. N.D. N.D. 1.22.0.07 22.0 5.87 49.7
7 0.03< 0.01 0.10' 0.01 N.D. 3.49%0.13 19.0 5.71 52.7
8 0.03< 0.01 N.D. 0.24< 0.09 0.8U 0.06 24.0 5.43 46.3
9 N.D. N.D. 0.30' 0.04 0.56' 0.06 19.0 7.33 89.6
10 N.D. N.D. 0.32' 0.04 0.09' 0.02 12.0 6.56 87.0
II N.D. N.D. 0.31 :!::O.03 0.07:!:: 0.02 19.0 7.14 80.5
12 N.A.
13 N.D. N.D. 0.14<0.03 0.28' 0.02 19.0 6.70 39.7
14 0.07< 0.001 N.D. N.D. 1.22.0.16 16.0 5.33 35.5
15 N.D. N.D. 0.OUO.03 0.78.0.03 17.0 6.10 43.7
16 N.D. N.D. O.OU 0.03 0.66' 0.08 18.0 6.04 38.0
17 N.D. N.D. 0.13<0.05 0.71' 0.24 17.0 6.06 45.4
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Fieun 4.2 labile metals in freshwater samples collected in May (A)
and July (B). 1995
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Table 4.2 Labile metal concentrations (lJglL, mean ± S.D., n - 2) in filtered freshwater samples collected in April (A) and July
(B),1996
(A)

Site # Cd Pb Cn Zn Temp.('C) pH Cond.(~slcm')

1 N.D. N.D. 0.09< 0.04 3.42<0.16 3.0 6.5 80.0
6 N.D. N.D. 0.61<0.13 0.98 ± 0.09 2.0 6.5 65.0
7 0.04 ± 0.00 N.D. 0.42 ± 0.05 2.77<0.14 3.0 6.1 60.0
10 N.A
13 N.D. N.D. 0.13<0.06 0.62<0.12 6.0 7.8 48.0
14 N.D. N.D. 0.25 <0.04 0.89<0.20 8.0 6.8 45.0

(B)

SiteN Cd Pb Cn Zn Temp.('C) pH Cond.(....slcm1)

1 N.D. N.D. 0.17<0.04 0.62<0.09 20.8 6.19 104.1
6 N.D. N.D. 0.04 < 0.03 0.24<0.02 19.8 6.5 65.0
7 N.D. N.D. 0.17<0.08 0.66<0.02 20.7 6.1 60.0
10 N.D. N.D. 0.04<0.06 0.0s. 0.01 23.9 7.06 80.4
13 N.D. N.D. N.D. 0.2S.0.08 22.7 6.67 44.0
14 0.04 < 0.01 N.D. N.D. 0.91<0.12 19.8 6.10 35.5
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Ficure 4.3 Labile metals in freshwater samples collected in April (A) and
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Figure 4.4 shows comparisons of the May and July samples (1995) forlabiJe Zn and

eu coacenttations and Figure 4.5 shows comparisons oCthe April and July samples (1996).

Some seasonal variations were observed in the 1995 samples (Figure 4.4) with July

concentrations being generally higber than May. This pattern seems reversed in the 1996

samples where April concentrations were generally higher than July (Figure 4.5). These

observations are consistent with differences in water volume. For example, lbe volume of

water was noticeably higber in July lban it was in May, 1995, while lhe water level was

higher in April than it was in July, 1996. [fthe higher water level was caused by rain, the

higher concentrations with higher water volwne might be explained as a result ofacid rain.

The average pH of rain samples collected between May and August, 1995 in Bonavista was

4.9 (Evans, 1996), which is lower than the average pH of freshwater which was 6.5. The

lower pH ofacid rain may cause the desorption and release of metal from lake sediment and

surrounding soil and cause more of the metal ion to convert to lhe free form, such as hydrated

metal ion.. making it ASV labile (Florence. 1982).
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Figure 4.4 Comparisons of labile metal concentrations in samples collected
in May and July, 1995: Zn (A) and Cu (B)
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4.1.2 Total Metal Determination

Results of the total metal concentrations in the freshwater samples determined by

ICP-AES and ICP-MS are listed in Table 4.3. Total concentrations ofCd and Pb in most of

the freshwater samples collected in May. 1995 (fable 4.3 A) were below the detection

limits, except at sites 1.8 and 14 for Pb (1.4, 0.6 and 2.8 IlgfL) detennined by ICP-AES.

Total amounts of Cu were in the range of 2 to 22 1J.g/L measured by ICP-AES. but

undetectable by ICP-MS. For total ln, ICP-AES results ranged from 1.50 to 19.30 1J.g/L,

while ICP-MS results ranged from 0.91 to 3.15 J.1g/L. Overall. the ICP-AES results were

generally higher than the ICP-MS results (fable 4.3A and B). They could be due to sample

contaminations in ICP-AES analysis and/or metal loss to storage bottles in lCP-MS analysis.

The ICP-AES analysis were carried out on samples taken in plastic bottles, which were not

acid cleaned, and sample handling and analysis were not conducted in our laboratory.

For 1996 samples, the total metal concentrations were determined by DPASV or

ACSV after samples were acidified and then tN-irradiated to destroy nanual organic ligands

present in freshwater. Results ofthose detenninations and ICP-MS determinations are shown

in Table 4.4. Total Cu concentrations determined by ACSV and DPASV were reasonably

close with some exceptions, total Zn concentrations were different with most of ICP-MS

results being higher. The discrepancies may be due to the incomplete dissociation of

complexes of metals with natural organic ligands during the tN-irradiation prior to DPASV

analysis.

Seasonal variations for total Zn and eu concentrations (Tables 4.3 and 4.4) revealed
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the same pattern as the labile metal concentrations (Figure 4.4): July concentrations were

higher than May in 1995, while April concentrations were higher than July in 1996.

Figure 4.6 A and B show comparisons oflabile and total Cu and Zn in July 1996

samples. It was found that the concentration of labile Cu ranged from 0 to L1.49 % of the

total meta! (with one exception at site I) while Labile Zn concentrations ranged from 14 to

69 %. Apparently Cu is highly complexed by narural organic ligands present in freshwater.

Similar results have been reported by other researchers (Florence, 1986).

4.1.3 Reagent Blanks and Detection Limits

The reagent blank was determined by gradually increasing the amount of reagents

added to 10 mL Nanc-pure water and calculated by linear regression. The results are listed

in Table 4.5.

The detection limits were calculated in three different ways: from 3 x the standard

deviation of9 repeated detenninations ofa spiked freshwater sample (van den Berg, 1986;

Campos and van den Berg, L994); from 3 x the standard deviation of9 determinations of

a blank sample (WU and Batley, 1995) and from 2 x noise. eu results presented in Table 4.6

were obtained at an adsorption potential of - 1.1 V in the presence of 7.3 x 10-0 M oxine.

Comparison ofTabLes 4.6 A and B shows that higher detection Limits were obtained when

higher initial concentrations were used for determinations. The detection limits estimated

from noise (Table 4.6 C) were lowest for In, Cd and Cu.
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4.1.4 Sample Storage

The adsorption oft:race metals by storage bottles were tested by placing a freshwater

sample in different types of bottles (polyethylene or Fluorinated Polyethylene) with the

sample stored after it was filtered or not filtered. Zn loss to storage bottles was observed for

all cases with no obvious difference with different methods of storage (Figure 4.7).

Controversy over the adsorption oftrace metals by storage bottles has been noted in

the literature (Florence and Batley, 1980; Florence, t982). Florence (1982) compared the

disagreement and concluded that metal adsorption was observed when synthetic solutions

were studied, while metal absorption was negligible when natural seawater and freshwater

were tested. In this study, however. Zn adsorption by storage bottles was obvious in a natural

freshwater sample even in an acidified condition.
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Table4.3 Total metal concenlrations (llgIL) in freshwater samples collected in May (A) and July (B), 1995

(A)

Cd Cd Pb Pb Cu Cu Zn Zn
Site # ICp·AES ICP-MS ICP-AES ICp·MS ICp·AES ICp·MS ICP-AES ICp·MS

I <0.1 <0.11 1.4 <0.07 2 <1.38 5.2 3.15
2 <0.1 <0.11 <0.2 <0.07 2 <1.38 5.0 5.20
3 <0.1 <0.11 <0.2 <0.07 3 <1.38 4.2 2.09
5 <0.1 <0.11 <0.2 <0.07 2 <1.38 2.6 1.34
6 <0.1 <0.11 <0.2 <0.07 2 <1.38 2.1 2.02
7 <0.1 <0.11 <0.2 <0.07 8 <1.38 403 <0.91
8 <0.1 <0.11 0.60 <0.07 5 <1.38 303 2.1 I
9 <0.1 <0.11 <0.2 <0.07 6 <1.38 2.6 <0.91

10 <0.1 <0.11 <0.2 <0.07 II <1.38 2.2 <0.91
II <0.1 <0.11 <0.2 <0.07 2 <1.38 1.5 <0.91
12 <0.1 <0.11 <0.2 <0.07 N.A. <1.38 N.A. <0.91
13 <0.1 N.A. <0.2 N.A. 2 N.A. 1.5 <0.9\
14 <0.1 N.A. 2.8 N.A. 22 N.A. 19.3 N.A.
15 <0.1 N.A. <0.2 N.A. 2 N.A. 1.8 N.A.
16 <0.1 N.A. <0.2 N.A. 2 N.A. 1.9 N.A.
17 <0.1 N.A. <0.2 N.A. 3 N.A. 1.8 N.A.
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Table 4.3 (continued)

(8)

Cd Cd Pb Pb Cu Cu Zn Zn
Site # ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

I <0.1 N.A. <0.2 N.A. 12 N.A. 6.6 N.A.
2 <0.1 N.A. <0,2 N.A. II N.A. 6.7 N.A.
3 <0.1 N.A. <0.2 N.A. 27 N.A. 13.9 N.A.
5 <0.1 N.A, <0.2 N.A. N.A. N.A. N.A. N.A.
6 <0.1 <0.02 <0.2 0.11 23 <0.27 11.5 1.71
7 <0.1 <0.02 <0.2 0.29 14 <0.27 6.6 4.59
8 <0,1 0.03 <0.2 0.13 II <0.27 8.1 1.25
9 <0.1 0.05 <0.2 0.04 7 <0.27 3 1.20

10 <0.1 N.A. <0.2 N.A. 8 N.A. 3.4 N.A.
II <0.1 N.A, <0.2 N.A. 5 N.A. 1.5 N.A.
12 <0,) N.A. <0.2 N.A. N.A. N.A. N.A. N.A.
13 <0.1 N.A, <0.2 N.A. 5 N.A. 1 N,A.
14 <0.1 N.A. <0.2 N.A. N.A. N.A. N.A. N.A.
15 <0.1 N.A. <0.2 N.A. 7 N.A. 7.6 N.A.
16 <0.1 N.A. <0.2 N.A. 6 N.A. 5.6 N.A.
17 <0.1 N.A. <0.2 N.A. 9 N.A. 9.5 N.A.
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T.ble4.4 TOial metal concentrations (Jlg/L) in fillcrcd samples collccted in April (A) and July (8), 1996

(A)
Cd Cd Pb Pb C, C, Z, Z,

Site II ASV ICP-MS ASV ICP-MS CSV ICP-MS ASV ICP-MS
I N.A. <0,06 N.A. <0.05 N.A. <2.33 N.A. 3.87
6 N.A. <0.06 N.A. <0.05 N.A. <2.33 N.A. 0,93
7 N.A. <0.06 N.A. <0.05 N.A. <2.33 N.A. 2.86

10 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
13 N.A. <0.06 N.A. <0.05 N.A. <2.33 NA. 0.64
14 N.A. <0.06 N.A. <0.05 N.A. <2.33 N.A. 0.64

(8)
Cd Cd Pb Pb C, C, C, Z, Z,

SilCN ASV ICp·MS ASV ICP-MS CSV ASV ICp·MS ASV ICp·MS
I N.D. 0.28 N.D. <0.05 0.45 0.79 <0,70 1.24 <2.75
6 N.D. 0.08 N.D. <0.05 0.81 N.A. <0.70 0.60 1.78
7 N.D. 0.54 N.D. <0.05 1.48 1.47 1.10 1.17 1.37

10 N.D. <0.06 N.D. <0.05 0.42 N.A. <0.70 0.34 0.8S
13 N,D. <0.06 N.D. <0.05 0.48 0.72 <0.70 0.36 <0.64
14 0.01 <0.06 0.11 0.09 0.93 1.01 LSI 1.41 0.70
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Zn(ASV)
Cd(ASV)
Pb(ASV)
Cu(CSV}

Table 4.5 Reagent blanks

Cone. (~gIL)
0.021
0.000
0.022
0.032

S.D.
0.015

0.0005
0.0000

0.010

Table 4.6 Detection limits of Zo. Cd. Pb and CU

(A)
Conc.(J.lgIL) S.D. D.L.(J.lglLJ Dep. time(min)

Zn 0.76 0.09 0.28 10
Cd 0.89 0.05 0.15 10
Pb 0.62 0.09 0.2. 10
Cu (CSV) 1.93 0.12 0.)7 I

(8)
Zn 0.15 0.05 0.14 10
Cd 0.00 0.01 0.03 10
Pb 0.01 0.03 0.09 10
Cu (CSV) 0.05 0.00 0.01 3

(C)
Zn 0.Q1
Cd 0.02
Pb 0.12
Cu (CSV) 0.007

(A) calculated from 3 x the S.D. of9 detenninations ofa spiked fresh.water sample;
(8) calculated from 3 x the S.D. of9 detenninationsofa blank sample;
(C) estimated from noise.
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4.2 Dt':termiDatioll of Copper CompluatioD

4.2.1 Copper ComplnatioD Titration Using ACSV

The resu.ltsofthe copper complexation titration of the NF-G6 (July, 1995) freshwater

sample are given in Table 4.7. A tilIal:ion curve which is a plot ofpeak current as a function

oftbe total Cu concentrations is shown in Figuft 4.8 A.In addition. a titration line obtained.

for an UV-imldiated aliquot of the freshwater sample is given in Figure 4.8 B. Compared

to the UV-treated freshwater, all data points in the untreated freshwater show reduced

concentrations of labile Cu as a result of competition by natural complexing ligands. The

curved portion of the titration curve in Figure 4.8 A is due to excess natural organic

complexing ligands present in the freshwater, while the straight portion is a result of

saturation ofthe natural ligands with high concentrationsofCu. The slope ofthe straight line

used to calculate the sensitivity is identical with the slope for the UV-sample. The linear

transformation plot for the titration data is shown in Fipre 4.8 C.

The technique used for the treatment ofthe titration data is based on the single-ligand

model. This simple model assumes that over the range ofcopper concentrations studied. only

one class of natural complexing ligands with similar stability constants form copper

complexes having I: 1 stoichiometry. A straight line in the transformation plot indicates the

validity of the model, while cwvature would indicate the presence of two or more ligands

with different stability constants (van den Berg, 1984 d; Apte et al., 1988). Thus, a two­

ligand model can be applied for the treabDent of the titration data (van den Berg. 1984 d;

Coale and Bruland, 1988,1990; MotfettetaJ. 1990; Sundaand Hunt.sman. 1991). However,
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Table 4.7 Copper complexation titration of the NF-G6 (July, 1995) freshwater sample

Cell # Total [Cu] (oM) Peak: current ~ (J.LA)

1 2.90'11 0.000
2 3.81 0.000
3 4.72 0.010
4 5.62 0.029
5 7.47 0.180
6 9.23 0.248
7 12.03 0.401
8 14.61 0.476
9 17.44 0.530
10 21.16 0.639

[I] This value was the total concentration of copper initially present in the NF-G6 (July,
1995) sample and obtained for UV~treated sample by ACSV.

the two-ligand model is likely to be subject to greater uncertainty (Apte el al., 1988; van den

Berg et al., 1990) because this involves calculation of two parameters per ligand (van den

Berg, 1984 d). In addition. the titration data can usually be transformed to give a straight line

since one class of ligand is predominant over the concentration range of titrated copper.

Therefore, the single-ligand model has been used in recent studies (Donat and van den Berg,

1992; van den Berg and Donat, 1992; Campos and vanden Berg, 1994).

The values for copper complexing ligand concentrations (CLl< ) and conditional

stability constants (log K·~ detennined for five freshwater samples are listed in Table 4.8.

Good reproducibility ofthe titration is demonstrated by duplicate titrations of two samples.

The ligands detected in the five freshwater samples had concentrations between 0.75 and

3.22 nM and formed strong copper complexes with conditional stability constants of 1016
,06
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Figure 4.8 (A) Titration curve for filtered NF-G6 (July, 1995) sample
containing 0.01 M HEPES, 0.15 M KCI and 7.3 uM oxine; (B) Titration line
for lN~itradiated NF-G6 sample; (e) The uansfonnc:d line oftitratioo A
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Table 4.8 Natural ligand concentrations and conditional stability coastants for copper
complexes in freshwater determined by ACSV at an adsorption potential of -1.1 V

Sample"l (oxine) Lag_ Total[Cu) C. LogK"OL.
(I'M) (oM) (oM)

NF-G6(95M) 1.3 g.33 2.oP1 3.12 17.97

NF-G6(951) 1.3 8.33 2.90'" 3.15 17.99

NF-G15 (951) 1.5 6.95 7'" 2.37 16.00
1.5 6.95 1 4.07 16.11

Avg. 3.22 16.06
NF-G6(96A) 1.3 833 0.79l41 0.15 18.72

NF-G14(961) 1.3 8.33 1.00 f4J 1.64 18.52
1.3 8.33 1.01 1.14 18.08

Avg. 1.39 18.30

(I] Samples are named NF-G-site # (time when collected);
The total Cu concentrations were obtained by: [2] ICP-AES; [3J ACSV; [4] DPASV

It has been realized that natural waters are likely to contain a broad range of

complexing ligands with different stability constants. The values derived from the simplified

model represent a summation of these different ligands or binding sites with similar stability

constants. In addition,. these ligand concentrations and stability constants are conditional and

dependent on the methods used, the freshwater composition (pH, ionic strength etc.) and the

treatment ofdata. In the case of the oxine-CSV method, the results obtained are also affected

by factors such as the adsorption potential applied (section 4.2.2), the concentration ofadded

oxine (section 4.2.3) and the total copper concentration detennined. For instance, an

overestimation of the total concentration of Cu leads [0 an overestimation of the ligand
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concentrations. The values of the total Cu concentrations used for complexation calculatioas

were determined by either ICP-AES or stripping voltammetry. As discussed in section 4.1.2,

the total concentrations determined by [CP-AES were usually higher than the DPASV or

ACSV results. In the case oflCP-AES, sample contamination may be one of the reasons for

higher values of total Cu resulting in higher ligand concenttations. The low ligand

concenttations from DPASV or ACSV may be due to an existence ofstrong organic ligands

remaining complexed with Cu even after UV-irradiation.

4.2.2 Effect of Adsorption Potential

The optimal adsorption potential -1.1 V was used for detennination ofboth the labile

and total Cu concentrations in freshwater samples. The same potential was employed for the

detennination of organic complexation of Cu crable 4.8}. However, there bas been

discussion focusing on the possible effect of such a negative potential on dissociation of

nanual complexes ofcopper (Donat and van den Berg, 1992; van den Berg. 1992). In order

to study the effect of adsorption potential on natural complexing ligand determination by

oxine-CSV, adsorption potentials of ..Q.1S V, -0.7 V and -I.IV were used in five titrations

of three freshwater samples. A potential of ..Q.I 5 V was selected to avoid the oxidation of

mercury, -1.1 Vas the optimal potential and -0.7 Vasa value in between. The determined

ligand concentrations and the conditional stability constants of the samples are listed in

Tahle 4.9.

[t was found that the detected ligand concentrations in the samples decreased with
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increasingly negative potential, while the values for the conditional stability constants, at a

fixed logllc- value (Le. a fixed detection window), showed no obvious difference at each

potential. indicating that the same class of ligands was detected.

Table 4.9 Effect ofadsorption potential on ligand coocentrations, Ct.:. (nM), and conditional
stability constants. logK'C\ILV for copper complexes in freshwater determined by ACSV

~ ,JJ;DL oLl..Y
Samplelll Lo8ac_ c... LogK'o.u c... Lo8IC.,.. c... l.cgJ('...

NF-G 6.95 10.18 16.81 4.69 16.34 2.31 16.00
-15(95J) 6.95 10.30 16.50 5.02 16.94 4.01 16.11

8.33 9.23 11.28 8.84 18.20 7,97 19.53

NF-G 8.33 1.44 18.73 1.19 18.12 0.75 18.12
-6 (96A)

NF-G 8.33 1.41 18.18 1.26 18.48 1.39 18.30
-14 (96))

The results from Table 4.9 are rearranged in Table 4.10 which shows an average

ligand concentration afolle class of ligands with an average conditional stability constant at

two different detection windows. At a detection window of6.95. ligands with an average

conditional stability constant, 101
6.-46. were detected and an average ligand concentration of

10.54 oM was obtained at a potential of -0,15 V. which changed. to 4.86 nM at -0.7 V and

3.22 nMat-I,1 V. The ligand concentrations decreased by 53.80 % at -0,7 V and by 69.45

% at -1.1 V compared with the concentration at -0.1 5 V, The decrease in concentrations can

be explained as a result ofdissociation of the natural complexes, CuI.... at the more negative
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potential since only ligands remaining complexed with Cu are determined by the titration.

When the detection window was increased to 8.33, the same trend was observed (Figure 4.9)

but the ligand concentrations decreased by only 6.70 % at -0.7 V and 16.38 % at ~I.IV. The

slower rate ofdecrease in concentrations at a higher detection window might be because a

negative potential bas less effect on the dissociation of the more stable complexes, Cur....

with a higher conditional stability constant of 1011
.
53

• The results are consistent with the

values reported by van den Berg (1992). At detection windows of 2.5 and 3.0, an

underestimation ofthe ligand concentration by an average of61 % was observed at potential

-0.7 V compared with -0.15 V for seawater using tropo(one-CSV. The value, 61 %, is higher

than the value obtained in this study (53.80 %) because of the lower detection window used

by van den Berg.

Table 4.10 Effect ofadsorption potential on average ligand concentrations and conditional
stability constants for copper complexes in freshwat.er detennined by ACSV

Average Average ligand concentration
Logac""" LogK'cuU< ~0.15 V ~0.7 V :..L.!...Y

6.95 16.46 10.54 4.87 3.22
53.80 69.45 Decrease, %

8.33 18.53 4.03 3.76 3.37
6.70 16.38 Decrease, %

Since a more negative potential caused the dissociation of natural complexes thereby

underestimating the concentrations of natural ligands, the more positive potential of -0.15
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v was then used for the detennination ofcopper complexation (Table 4.11). The determined

ligand concentrations ranged from 1.41 to 10.78 nM and values of conditional stability

constants ranged from 10 15-
61 to 1011

_
17

.

Table 4.11 Natural ligand concentrations and conditional stability constants for copper
complexes in freshwater determined by ACSV at an adsorption potential of -0.15 V

Sample!ll (OlOne] LoS"c_ Tota1(Cu] C" LogK"Cui..o<
(.M) (nM) (nM)

NF-G6(95M) l.S 6.95 2.()I21 4.66 15.68
7.3 8.33 2.0 3.34 17.57
36.7 9.73 2.0 2.04 18.30

NF-GI5 (95M) 1.5 6.95 2(21 6.25 17.26
7.3 8.33 2 3.34 17.97
36.7 9.73 2 2.06 18.28

NF-GI5 (95J) l.S 6.95 7
0

' 10.78 16.87
1.5 6.95 7 10.30 16.50
7.3 8.33 7 9.23 17.28
36.7 9.73 7 3.12 18.25

NF-G6(96A) 7.3 8.33 0.79[·1 1.44 18.73

NF-GI4196J) 7.3 8.33 1.0lPI (AI 18.78

[1], (2) and [4) are the same as in Table 4.8.
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4.2.3 Dettttioa Windows

The ligand concentrations obtained in this study were low and the conditional

stability constants were high compared with values reported for seawater in the literature

(fable 4.U). The differences are probably becawc a great variety of ligands exist in natural

water and because different analytical techniques, baving different detection windows,

determine organic complexing ligands of different strengths. Hence, any technique at any

single detection window may detect only some of the complexing ligands in natural water.

As discussed in section 1.3.2, the detection window in ACSV is calculated from

CXc..Av which is the centre of the detection window. It has been reported that natural organic

ligands with ac.... values, (where «CulJl is the «·coefficient of copper with the natural

ligands), approximately 1-2 orders higher or lower than CXcllAL can be accurately measured

using the detection window of~ (Buckley and van den Berg, 1986; van den Berg and

Dona~ 1992).

To obtain a more meaningful picture of the complexation ofcopper in narural water,

it is important to select analytical techniques that cover a range ofdetection windows. The

ACSV method meets this requirement because the center of the detection window,~

can be varied over several orders ofmagnitude by changing the concentrations of the added

ligands and by selecting different ligands with different stability constants.

In this study, three values of lXcvAt. (6.95,8.33,9.73) were used to determine copper

complexation by using various levels ofadded oxine. It can be seen (Table 4.13) that the

93



Table 4.12 Literature values of natural ligand concentrations and conditional stability
constants for copper complexes in seawater determined by ACSV at different detection
windows

Sample added ligand LogUcIlAL C" (nM) LogK"c.u Ref.

Mediterranean IJ.lMSA 3.61 14.4 13.08
2J.lMSA 3.99 10.5 13.16
1 }.1M oxine 5.02 3.2 14.26

Atlantic Ocean 0.3 !1MSA 3.03 12.8 12.2
0.5 "MSA 3.27 8.1 12.7
2J.lMSA 3.99 4.9 13.1

North sea 0.324mM 3.12 16.2 12.4
troplolone
O.83JJ.M 4.85 4.0 14.2
oxine
0.193mM 6.24 7.82 15.6
catechol

Indian ocean 0.158mM 4.13 12.6
troplolone

Channel sea O.OlmM 6.95 6.0 15.10
oxine

Sargasso sea 0.70mM 3.75 3.5 12.4
tropolone
4.71 j.lM 6.36 2.0 15.9
m(ine

I. Campos and van den Berg, 1994.
2. Donat and van den Berg, 1992.
3. Van den Berg and Donat, 1992.
4. Vanden Bergetal., 1990.
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detennined Ligand concentrations decreased with increasing «c- . whereas the values of

conditional stability constants increased.. This result indicates that several natura.I Ligands

were present in the samples and stronger Ligands or complexmg sites detected at higher

detection windows (greater ae- )were present at lower coocentrations. Similar results were

obtained previously for seawater and estuarine waters (van den Berg el a/., 1990; van den

Berg and Donat, 1992; Campos and van den Berg, (994).

Table 4.13 Natural ligand concentrations and conditional stability constants determined by
ACSV at different detection windows using an adsorption potential of -0.15 V

Sample [oxine] Lo8"c_ Cu LogK·a.u Lo8"c,u
("M) (nM)

NF-G6(95M) 1.5 6.95 4.66 15.68 7.35
7.3 8.J3 3.34 17.57 9.09
36.7 9.73 2.04 18.30 9.61

NF-G15 (95M) 1.5 6.95 6.25 17.26 9.06
7.3 8.J3 3.34 17.97 9.49
36.7 9.73 2.06 18.28 9.59

NF-G15 (951) 1.5 6.95 10.54 16.87 8.70
7.3 8.33 9.23 1728 9.24
36.7 9.73 3.12 1825 9.74

Linear regressions: logaou - A lagUe- + B

Sample

NF-G6(95M)
NF-GI5 (95M)
NF-GI5 (951)

A

0.81
0.19
0.37

95

B

1.91
7.79
6.23

R'

0.91
0.88
0.85



The overall stability (as expressed by «c..t..:.. being calculated from ClJ< K'clll.x) of the

complexes ofcopper with natural ligands, r... . increased. with increasing ac""" (Table 4.13).

A good linear relation between 10glXclll.x and log«c""" was demonstrated in Table 4.7 and

Figure 4.10). The various slopes of the regression lines for different samples suggests that

variation of the detection window bas different effects on the observed organic copper

complexation in different samples. All three slopes were not equal to unity, indicating that

the observed complexing ligands present in the samples did not follow a continuous range

ofcomplex stabilities.
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CHAPTERS

CONCLUSION

[t is known that concentrations of labile metal and DOt the total metal provide

information about the biological availability oftraee metals in terms ofnutrient limitation

and toxicity. Therefore, the concentrations of labile Zn. Cd and Pb in the freshwater samples

collected from the study area were determined using differential pulse anodic stripping

voltammetry and the labile concentrations of Cu were determined by the adsorption-CSV

method using oxine as the competing ligand.

Befort the oxine-CSV method was applied to the determination of labile eu in

freshwater. analytical conditions were optimized by varying such parameters as pH, exine

concentration. adsorption potential and adsorption time. The optimal conditions were at pH

7.4-7.6. oxine concentration 7.3 J.LM. adsorption potential-l.lV and adsorption time 1-7min.

Coocentrations of labile metals in the freshwater of the study area were comparable

with the reponed literature values. Metals of interest in order of increasing concentrations

in freshwater were Cd. Pb, eu and Zn. The highest concentrations of labile Zn and Cu

obtained in the Bonavista area indicated a residential impact on the water system, while the

two occurrences of Cd in the refinery watershed suggested the possible impact of industry,

although the concentration did not exceed that allowable by Canada Drinking Water

Standards (Henry and Heinke, 1996). Seasonal variations observed in the 1995 and 1996

samples were consistent with the effect ofacid rain on metal speciation in freshwater.
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Total metal concentrations were measured by ICP-AES and/or ICP-MS and/or

DPASV and/or ACSV. Comparisons of the labile and total metal concentrations in the July

1996 samples revealed that labile Cu ranged from 0 to 11.490/0 ofme total metal while Zn

ranged from 14 to 69%.

Copper complexation in freshwater was studied. by competitive complexing tiuation

using ACSV to detennine the concentrations of natural organic ligands and conditional

stability constants. Very strong complexing ligands in the samples were detected under the

conditions used in this stUdy. rt was also found that more negative potential (-0.7 V.·1.1 V)

caused the detected ligand concentrations to be underestimated due to the dissociation of

natural complexes ofcopper. Fwthermore, the underestimation was more severe at more

negative potential and lower detection windows. Thus a relative positive potential of -0.1 SV

is suitable for copper complexation titration to avoid the dissociation of natural complexes

ofcopper.

The effects of the detection window on copper complexation determination were also

discussed. It was found that the detected ligand concentrations decreased with increasingiy

higher detection windows. whereas the values ofthe conditional stability constants increased.

These findings confirmed that a spectrum ofnatural complexing ligands exist in freshwater

with weaker ligands being determined at lower detection windows and stronger ligands being

detemtined at higher detection windows. A good linear relation was found between 10g«C1lLlt

and log«c__.
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As mentioned in section 1.4. this study is part of an interdisciplinary research

program. The results oblained in this study will be linked to the other natural sciences results

and then considem:l with the bealth and social sciences. In order to obtain an overall picture

of the water chemisby. the labile metal results will be compared with the full range of total

metals determined by ICP-MS and ICP-AFS, then compared with the results on atmospheric

inputs of both trace metals and acid and finally compared with the trace metal analysis of

sediments and lichens. The picture will be merged with results from Biology and Nursing.

Combining all scientific results with those of the social sciences may provide a better picture

of the sustainability of the communities.

More studies on trace metals and metal complexation in the watersheds would be

usefuL For example, the determination of trace metal concentrations in coastal water could

be perfonned in order to obtain information on the fate and speciation changes of the metals

when they enter the marine environmenL Water samples taken throughout the year should

be determined for trace metal speciation to gain a bener undemanding on seasonal

variations. In addition. determination ofcopper complexation at different detection windows

by using different competing ligands other than oxine could be carried out to measure a

whole range ofstrengths of natural ligands.

99



REFERENCES

Abollino, D., Aceto, M. Sacchero, G. Sarzanini. C. and Meotasti. E. (1995) Determination

of copper, cadmium. iron., manganese, nickel and zinc in Antarctic sea water.

Comparison ofelectrochemical and spectroscopic procedures; Anal. Chim. Acta, 305,

200-206.

Abollino, 0., Mentasti, E., Sar.z.anini. C.• Porta, V. and van den Berg, C. M. (1991)

Speciation afimn in antarctic lake water by adsorptive stripping voltammetry; Anal.

Proc., 28, n-73.

Apte, S. C., Gardner, M.l., Ravenscroft, J. E. and Tltrell, I. A. (1990) Examination aCme

range ofcoppercomplexing ligands in natural waters using a combination ofcalhodic

stripping voltammctry and computer simulation; Anal. Chim. Acta, 235,287-297.

Apte, S. C., Gardner. M. J. t Ravenscroft, J. E. (1988) An evaluation ofvoltammettic titration

procedures for the determination oftrace metal complexation in natural waters by use

ofcomputer simuJation; AnaL Chim. Acta, 212, t-21.

Arts. W., BteilSCboeider, H., and Rickert. B. (1984) Differential pulse stripping voltammetry

forroutine heavy-metal analysis ofdrinking wa[tt(AnalyticaI Abstract, 7H47. 1985);

Fr. Z Anal. Chem., 319, 501-505.

Bobrowski, A. (1989) Adsorptive voltammetric determination of copper as its nioximate

complex; Talanta, 36, No. 11, 1123-112&.

100



Bood.. A. M. (1980) Modern Polarographic Melhods in Analytical Chemislry; Dekker, M.,

New York.

Buckley, P. J. M. and van den Berg, C. M. (1986) Copper complexation profiles in the

Atlantic ocean. A comparative study using electrochemical and ion exchange

techniques; Mar. Chem.. 19,281·296.

BufJle, J. (1988) Complexalion Reaclions in Aquatic Syslems. An AnalYlical Approach;

Ellis Horwood, Chicbester, pp 1-18.

Campos. M. LA. M and van den Berg, C. M. (1994) Determination ofcopper complexation

in sea water by eatbodic stripping voltammetry and ligand competition with

salicylaIdoxime; Anal. Chim. ACla, 284, 481- 496.

Chakrabarti, C. L. Lu, Y. and Chen. J. (1993) Studies on metal speciation in the natural

environment; Anal. Chim. Acta, 276,47·64.

Clark, B. R., Depaoli, D. W., Mctaggart, D. R. and Pallon, B. D. (1988) An on·line

voltammetric analyzer for trace metals in wastewater, Anal. Chim. Acta, 21S, 13-20.

Coale, K.. H. and BruIand, K. W. (1988) Copper complexation in the Northeast Pacific

Limno!' Oceanogr.,33, 1084· 1I01.

Coale, K. H. and Bruland, K. W. (1990) Spatial and temporal variability in copper

complexation in the North Pacific; Deep-Sea Res., 37, 317·336.

Culjak, I., Mlakar, M. And Branica, M. (1995) Cathodic stripping voltammetry of the

\01



copper-I, Io-pbenanthroline complex; Electroanalysis, 7, No. I.

Donat, 1. R., Lao, K. A. and Bruland, K.. W. (1994) SpeciatioDofdissolved copper-and nickel

in South San Fraocisco Bay: a multi-metbod approach; Anal. Chim. Acta, 284, 547­

571.

DoD8t, 1. R. and van den Berg, C. M. (1992) A new cathodic stripping voltammetric

method for detennining organic copper complexatioD in seawater; Marine Chem.

38,69-90.

Ertas, F. N., Moreira, J. C. and Fogg, A. G. (1991) Adsorptive stripping voltammetric

behaviour ofcopper (U) at a hanging mercury drop electrode in the presence ofexcess

of imidazole; Analyst, 116, 369-372.

Evans, D. G. (1996) Characterizing Atmospheric Sulphur using Lichens and Rain in Eastern

Newfoundland: Unpublished, BSc. thesis, Memorial University of Newfoundland.

065.

Farias, P. A. M., Obara, A. K and Takase. I. (1993) Adsorptive preconcentralion for

voltammetric mea.surements of trace levels ofvanadium in the presentt ofcopper,

Anal. Chim. Acta, 271, 209-215.

Farias, P. A. M., Ferreira, S.l. C. and Obara, A. K. (1992) Adsorptive stripping

voltammetric behaviour of copper complexes of some heterocyclic azo

compounds; Talanta. 39. No. 10, 1245-1253.

Filella., M., Town, R. and Buffle, J. (1995) Chemical Speciation in the Environment;

102



Edited byUre. A M. and Davidson, C. M.; Chapman & HaJJ; pp 169-193.

Florence, T. M. and Batley, G. E. (1980) Chemical speciation in oatunl waters; eRC Cril.

R€Vs. Anal. Chern., 9. 219-296.

Florence. T. M. (1982) The speciation of trace elements in waters; Talanta, 29, 345-364.

Florence, T. M. (1977) Trace metal species in fresh waters; Waler Res., 11, 681·687.

Florence. T. M. (1986) Electrochemical approaches to trace element speciation in waters;

Analyst. 111,489-505.

Florence, T. M., Lumsden. B. G. and Fardy, J. J. (1983) Evaluation of some physico­

chemical techniques for the determination ofthe fraction ofdissolved copper toxic

to the marine diatom Nitzshiaclosteriunr Anal. Chim. Acla, 151. 281.

Gachter, R., Davis, J. S. and Mares, A., (1978) Regulation of copper availability to

phytoplankton by macromolecules in lake water; Environ. Sci. Technal., 12,1416-­

1421.

Guy, R. D. and Cbalaabarti, C. L in Hutchinson, T. C. (Ed.), Procudings ofInternalionaI

Conftrence on Heavy Melals in Environmenl, Toronto, October 21-31, p275.

Harris, D. C. (1987) Quantilalive Chemical Analysis; second edition, Freeman,. W. H., New

York., pp258·259.

Hart, B. T. and Davies, S. H. (1978) A Study oflhe Physica-Chemical Forms afTrace metals

103



in Natural Waters and Wasttwaters, Australian water resources Council technical

PaperNo. 35.

Henry. O. G. and Heinke., G. W. (1996) EnvironmenJal Science and Engineering; 2nd

Edition, Prentice Hall, New Jersey.

Howard. A. G. and Statham, P. J. (1993) Inorganic Trace Analysis. Philosophy and Practice;

New York,Jobn Wiley & Sons, ppI3-31.

Hoover. T. B. (1978) Inorganic S/Mcies in Water. US Environmental Protection Agency

Report EPA-6OOI3-78-064, July.

Hutebimon, T. C.and Meema, K.. M.(l987} eds..; Lead. Mercury, Cadmium and Arsenic in

the Environment; New York, John Wiley & Sons.

Jenne, E. A. (1979) in Chemical Modeling in Aqueous Systems, Jenne, E. A. (ed.), ACS

Symposium Series 93, p3, American Chemical Society, Washington D. C.

Jones, M. J. and Hart, B. T. (1989) Coppercomplexing capacity in fresh-waters using the

catechol-cathodic stripping voltammenic method; Chem.. Speciation and

Bioavailability. 2, 59--63.

Landing, W. M., Haraldsson, C. and Paxeus. N. (1986) Vinyl polymer agglomerate based

transition metal cation chelating ion-exchange resin containing the 8-

hydroxyquinoline function group; Anal. Chern., 58, 3031·3035.

Mart, L., Numberg, H. W.and Dyrssen., D. (1981) in Trace Metals in Sea Water, Pmc.

104



NATO Adv. Res.1nsL Erice, 30 March-3 April 1981, New York.

Miwa, T., Mizuike, A. (1977) Differential pulse anodic-stripping voltammeuy of trace

amounts of heavy metals in water (Analytical Abstract, 4H16, 1978); Bunseki

Kogaku 26,588-592.

Moffett, J. W., Zika. R. G. and Brand., L. E. (1990) Distribution and potential sources and

sinks ofcopper chelators in the Sargasso Sea; Deep-Sea Res., 37, 27-36.

Moore, James W. And Ramamoorthy, S. (1984) Heavy Metals in Natural Waters.

Applied Monitoring and Impact Assessment; Springer-Verlag, New York; pp 28­

200.

Morel, F. M. M., Hudson, R. J. and Price, N. M. (1991) Limitation of productivity hy uace

metals in the sea; Limnol. Oceanogr., 36(8),1742-1755.

Nordstrom, D. K. (1979) in Jenne, E. A., Editor, Chemical Modelling in Aqueous

Systems; ACS Symposiwn Series No. 93, American Chemical Society.

Washington, DC, p 857.

Numberg, H. W. (1984) The voltammemc approach in trace metal chemistry of natural

waters and abnospheric precipitation; Anal. Chim. Acta, 164, 1-21.

Ommer, R. E. et aJ. (I 993) Sustaitulbi/ity in a Changing Cold Ocean Coastal Emironment.

A proposal Submitted to the Tri-Council Eco-Research program October 1993;

Memorial University of Newfoundland.

105



Pickering, W. F. (1995) Chemical Speciation in lhe Environment; Edited by Ute. A. M. and

Davidson, C. M.; Chapman & Hall; pp 9-32.

Quentel, F.• Elleouet, C. and Madec., C. (1994) Determination of copper in seawater by

adsorptive voltammetry with I, 2-dihydroxyanthraquinone-3-sulfonic acid;

Electroanalysis, 6. 683-688.

Quentel, F. and Madec, C. (1990) Voltammetric study oftbe copper-I,lo-phenanthroline

complex; Anal. Chim. Acta, 230, 83-90.

Ringbom. A. and Still, E. (1972) The calculation and use of ct coefficients; Anal. Chim.

Acta.59,143-146.

Smith. M. R. and Martell. A. E. (1976) Critical Stability Constants; Plenum Press, New

York; Vol. 4.

Smith, M. R. and Martell, A. E. (1989) Critical Stability Constants: Plenum Press, New

York; Vol. 6; pp 273-274.

Sn.ugeon. R. E.• Berman. S. S.• Wille, S. N. and Desaulners, A. H. (1981) Preconcentration

of trace elements from seawater with silica-immobilized g-hydroxyquinoline; Anal.

Chern., 53, 2337-2340.

Sunda, W. G. and Ferguson, R. L., (1983) Sensitivity of natural bacterial communities to

additions ofcopper and to cupric ion activity: a bioassay ofcopper complexation in

seawater. In: C. S. Wang, E. Boyle, K. W. Bru.land, J. D. Burton and E. O. Goldberg

(Editors), Trace Metals in Sea Water; Proc. NATO Adv. Res. Inst. Symp., Erice,

106



Sicily, 1981; Plenum Press, £.oDdon; pp.871·896.

Sunda. W. G. and Huntsman. S. A (1991) The use of chemiluminescence and ligand

competition with EDTA to measure copper concentration and speciation in seawater;

Mar. Chem., 36, 137·163.

Swallow, K. c., Westall, J. C., McKnight, D. M., Morel, N. M. L. and Morel, M. M. (1978)

Potentiometric determination of copper complexation by phytoplankton exudates;

Limnol. Oceanogr.. 23,538-542.

Tanak~ 5.• Sugawara, K.. and Taga M. (1990 a) Adsorptive accumulation voltammenyof

copper(U} using complex formation reaction with salicylideneamin~2·thiopbenol;

Fresenius J Anal Chem, 338, 898·901.

Tanaka, 5.• Sugawara, K. and Taga M. (1990 b) Adsorptive voltammetry of the copper (II)

2·(5·bromo·2-pyridylazo)-5..<fiethylaminophenol complex; Talanta, 37, No. 10.

1001-1005.

Turner, N. R.. Whiffield, M. and Dickson. A. G. (1981) The equilibrium speciation of

dissolved components in freshwater and seawater at 25 -c and 1 atm pressure;

Geochim.Cosmochim. Acta.4S, 855-881.

van den Berg. C. M. (1984 a) Determination of copper in sea water by cathodic stripping

voltammeny ofcomplexes with catechol; Anal. Chim. Acta, 164. 195·207.

van den Berg, C. M. (1984 b) Determing trace concentrations ofcopper in water by cathodic

film stripping voltammeny with adsorptive collection (Analytical Abstract,

107



IOH48, 1985); Anal. Ult., 17,2141-2157.

van den Berg, C. M. (1984 c) Direct determination ofsub-nanomolar levels ofzinc in sea­

water by cathodic stripping voltammet:ry; Talanta, 31, 1069-1073.

van den Berg, C. M. (l984 d) Determination of the complexing capacity and conditional

stability constants of complexes of copper(lI} with natural organic ligands in

seawater by ca1bodic stripping voltammeny ofcopper-eatecbol complex ions; Mar.

Chern. IS, 1-18.

vanden Berg, C. M. (1984 e) Organic inorganic speciation ofcopper in the Irish sea: Mar.

Chern., 14, 201-212.

van den Berg, C. M. and Huang, Z. Q. (1984 a) Determination of iron in sea water using

cathodic stripping vohammeuy preceded by adsorptive coUection with the hanging

mercury drop electrode; J. EJectroanal. Chem., 177, 269 - 280.

van den Berg, C. M. and Huang, Z. Q. (1984 b) Determination of uranium(Vl} in seawater

by cathodic stripping voltammeny of complexes with catechol; Anal. Chirn.Acta,

164. 209-222.

van den Berg, C. M. and Huang, Z. Q. (1984 c) Direct electrochemical determination of

dissolved vanadium in seawater by cathodic stripping voltammetry with the hanging

mercury drop electrode; Anal. Chim.Acta. 56, 2383.

van den Berg. C. M. (1985) Direct detennination ofmolybdenwn in sea-water by adsorption

voltammetry (Analytical Abstract, 5H46, 1986); Anal. Chem., 57,1532-1536.

108



van den Berg. C. M. (1986) Determination of copper, cadmium and lead in seawater by

cathodic stripping vohammetty of complexes with 8-hydroxyquinoline; J.

Electroanol. Chem., 215,111-121.

van den 8erg., C. M., Nimmo, M. and Daly, P. (1990) Effects of the detection window on the

determination of organic copper speciation in estuarine waters; Anal. Chim. Acta,

232,149-\59.

van den Berg, C. M. and Donat, J. (1992) Determination and data evaluation of copper

complexation by organic ligands in sea water using cathodic stripping vo[tammetry

at varying detection windows; Anal. Chim. Acta, 257, 281-291.

van den Berg, C. M. (1992) Effect of the deposition potential on the voltammetric

determination ofcompiexing ligand concentrations in seawater; Analyst, 117, 589­

593.

van den Berg. C. M. and Khan., S. H. (1990) Determination ofseleniwn in sea water by

adsorptive cathodic stripping voltammetry; Anal Chim. Acta. 231, 221-229.

Vega., M... Pardo. R.. Bamdo. E.. de 130 Fuente. M. A. and del Valle, J. L. (1994) Application

of the Taguchi experimental design to the optimisation of a photo-oxidation

procedure for trace metal analysis in freshwater; Fresenius J. Anal. Chem.• 350, 139-

144.

Vydra, F. Stulik, K. and Julakova, E. (1976) Electrochemical Stripping Analysis, Halsted

Press, New York.

\09



Whitfield, M. (l915) in Chemical Oceanography, J. P. Riley and Skinow, G. (cds.) 2nd Ed.,

Academic Press, London., 1975.

Wu, Q. and Batley, G. E. (l995) Determination of sub-nanomolar concentrations of

lead in seawa1er by adsorptive stripping voltammetry with xylenol orange; Anal.

Chim. Acta, 309, 95-101.

Xue, H. B. and Sigg, L. (1993) Free cupric ion concentration and Cu (IT) speciation in a

eutrophic lake; Limnol. Oceanogr.• 38 (6),1200-1213.

Yokoi, K., Todo, Mild and Koide, T. (1994) Cathodic stripping voltammetry for the

detection of copper with thiocyanate ion in acidic solution; J ElectrQana/. Chern.,

367,247- 250.

Zhang, Z. Q., Chan, S. Z., lin, H. M. and Zhang, H. (1993) Simultaneous determination of

copper, nickel, lead, cobalt and cadmium by adsorptive voltammetry; Anal. Chim­

Acta, 2n, 227-232.

Zhao, J. Z. and Suo D. Z. (1992) Adsorption vohammeny of the copper4[(4­

diethylamino-2-hydroxyphenyl) azo]-5-hydroxynaphthalene-2,1-disulphonic acid

(BeryUon OJ) system; Anal. Chim. Acla, 268, 293-299.

110



figure A.I Sample sites # 1 - 8 in Bonavista area
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Figu re A.2 Sample sites # 9 - J3 in Random Island
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Figure A. 3 Sample sites 1# 14 . 17 in Come By Chance
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