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ABSTRACf 

A new method for the prediction of a ship's dynamic bending stresses at sea is 

presented and examined in this paper. The method uses a ship's heave and pitch motion 

to determine the dynamic bending moment at a point along the ship's length. This can be 

combined with the known still water bending moment, and known ship sectional 

properties to determine deck and keel stresses. A combination of mathematical 

modeling, the random decrement, and neural network techniques have been used to 

determine the relationship between ship motion and bending moment, without any prior 

knowledge of the wave excitation level. 

To test this method, two sets of model experiments have been used. One set from 

a Great Lakes bulk carrier, the other from a Canadian patrol frigate. In each experiment, 

the mean and variance of the bending moment have been successfully predicted, 

demonstrating this method as a valid approach. 
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1.0 INTRODUCfiON 

Ship safety is becoming increasingly important as larger ships are built and 

required to operate in harsher environments. Extreme wave loading conditions have been 

known to produce dynamic stresses, which could result in structural damage. Without an 

accurate means of measuring and predicting stresses at critical locations in the ship, the 

ship's captain has no information that can help him make an enlightened decision to 

change a ship's course and speed to reduce these stresses. 

Methods to predict the ship stresses are available, but normally require knowledge 

of the wave excitation level. This is extremely difficult to obtain in the open sea. 

Monitoring systems also exist, but they are expensive and can only measure stress where 

instrumentation is placed. 

A new method has been developed to predict ship stresses using the measured 

ship motions of heave and pitch. A combination of mathematical modeling, the random 

decrement, and neural network techniques has been used to determine the relationship 

between ship motion and bending moment, without any prior knowledge of the wave 

excitation level. 

To test this method, two sets of model experiments have been used. One set from 

a Great Lakes bulk carrier, the other from a Canadian patrol frigate. 
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2.0 LITERATURE SURVEY 

The relationship between ship motion and ship bending moment is clearly defined 

by Lewis [1] in Principles of Naval Architecture. There. the motion is used to determine 

the forces acting on a section of the ship that are caused by the displacement. velocity and 

acceleration of the ship at this section. However. the wave properties at that section need 

to be known. Then the force is double integrated (over the length of the ship) to obtain 

the bending moment at a particular instant in time. This has been the focus for predictive 

methods of bending moment. 

Strip theory has traditionally been used to predict bending moment in a known 

sea. This is a linear theory and the usual calculation takes the fonn of a wave spectrum 

multiplied by a bending moment response amplitude operator to produce the bending 

moment spectrum. This calculation cannot account for non-linear contributions to the 

loads. Buckley [2] discusses his recommended engineering approach to the 

determination of ship loads and motions. He states ·'The assessment of nonlinear 

behavior is regarded as a basic requirement in all aspects of the seaway environment and 

ship responses to it." 

These non-liner contributions can come from various sources. Vulovich et al [3] 

analyzed full-scale deck stress measurements taken on a large containership in rough 

seas. They concluded that foredeck stresses vary directly with the slamming forces on 

the bow flare while the stresses in the midship portion are highly influenced by the 



3 

whipping vibration caused by the same bow flare slamming. Guedes Soares and Schellin 

[ 4] applied a method of long-term formulation for the non-linear wave induced vertical 

load effects on ships. This method is based on an empirical correction factor and was 

applied to three tanker hulls of different sizes. For the larger tankers. they concluded the 

correction factor had an insignificant effect. however for the smaller tanker. significant 

non-linear values were obtained. The main difference between the tankers was the non

vertical sides present in the smaller ones. In conclusion~ they state that the non-linearity 

of ship response is caused mainly by ship·s non-vertical sides. 

Such non-linearities have been added to improve load estimating methods. Chiu 

and Fujino [5] used traditional strip theory with a non-linear component to predict the 

bending moment of a high-speed craft in waves. Strip theory was used to determine the 

ship's properties of added mass, damping and restoring coefficients as well as the 

hydrodynamic forces of a ship running in calm water. The non-linear portion of the 

forces was determined using time step calculations by computing the wave properties 

along the ship•s length. and determining the forces due to it. Chan [6] used a 3-D 

oscillating source and a 3-D translating pulsating source method to predict the wave loads 

on catamarans. Again. this was a time-step calculation that computed the wave 

properties along the length of the ship. 

The method discussed by the author accounts for any non-linearity in the system. 

The ship's heave and pitch motions are influenced by whatever wave the ship 

experiences and by the ship•s shape. Thus non-linearity effects would be included in the 



heave and pitch measurements. Also, by requiring only the heave and pitch motions to 

be measured, the wave system can be totally arbitrary and doesn't need to be known. 

This is the main difference between this method and other predictive methods. 
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The removal of the requirement to know the wave system is accomplished using a 

mean value operator known as the random decrement. The Random Decrement 

Technique is mainly used to determine a one-degree of freedom system's free vibration 

characteristics from its response to a random excitation. Haddara et al [7] extended the 

technique and successfully applied it to the non-linear roll motion of a ship, predicting 

the ship's natural frequency in roll. In this paper. the random decrement curve closely 

matched the free roll decay curve. Ibrahim [8] demonstrated that the random decrement 

could be used in multi-degree of freedom systems, assuming the measured values were 

dynamically coupled and measured simultaneously. Heave, pitch and bending moment 

satisfy these criteria. Haddara [9] also demonstrated that a hybrid approach combining 

random decrement, classical parametric identification and neural network techniques 

could be used to identify the stability parameters of a ship at sea. Haddara modeled the 

essential physics of the system and lumped the other unknown parameters into one non

linear function. He used a feed-forward neural net, with one hidden layer to evaluate the 

function. 
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3.0THEORY 

The relationship between a ship's bending moment/bending moment squared and 

between heave and pitch motions, can be determined by considering static beam theory. 

First. we consider bending moment. We assume there is no appreciable flexure in 

the structure. This would remove the need to determine any bending moment component 

due to hull whipping. Now we recognize that the bending moment at any location (x) is 

given by the following equation. 

M(x) = JJ q(xi ) dx dx 

where: 

xi goes from 0 to location x 

M(x) =Bending Moment 

q(xi) = Force at xi 

The force at each location x;. is made up of various components as follows. 

q(x) = g(x)+b(x)-w{x) 

where: 

g(x) = force due to motion and waves 

b(x) =buoyancy force at x 

w(x)= weight at x 

(3.1) 

(3.2) 
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Both the buoyancy force and weight are static variables and are determined from 

the loading condition and ship particulars. In the prediction, it is assumed that these 

forces are zero, and that bending moment due to static loading can be superimposed on 

the prediction. In other words, only the dynamic bending moment of the ship is being 

predicted. 

The force due to motion and waves can be further broken down into the 

following: see Lewis [1]. 

g(x) = z(x( c33 (x )+ :: [w; a33 (x)-im, h., (x)J) (3.3) 

+((3 -l(5 )c33(x)+((3 -1(5 )bn(x)+((3 -l(5)(m(x)+a33(x)) 

where: 

l =distance from center of buoyancy 

z(x) =wave height at x 

a33 (x ), b33 (x ), c33 (x) =added mass, damping and stiffness coefficients 

m(x)=massat x 

m 0 , m <! = wave frequency and encounter frequency 

( 3 , ( 5 =heave and pitch displacement 

( 3 , ( 5 = heave and pitch velocity 

( 3 , ( 5 =heave and pitch acceleration 

Now the relationship between bending moment and ship motion becomes 

obvious. Unfortunately, there is a calculation based on wave height along the length of 

the ship and wave frequency. Even in controlled testing conditions, neither of these is 
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accurate I y known. So the next step is to eliminate these quantities using a mean value 

operator. 

To summarize the above, 

M(x)= J(wave)+ !(displacement)+ !(velocity)+ !(acceleration) (3.4) 

The wave function is assumed to be a stationary zero mean Gaussian white noise 

random process. When a mean value operator is applied to the wave function, it becomes 

zero. As a result. we get 

where: 

H m, H v, H a =Mean Value of Heave displacement, velocity and acceleration 

Pm, Pv, Pa =Mean Value of Pitch displacement, velocity and acceleration 

Similarly, the bending moment squared is a function of the heave and pitch 

motions and the wave. Since the function will contain terms of the wave squared, the 

(3.5) 

wave effect cannot be removed using a mean value operator. However, one may assume 

that the bending moment squared is implicitly dependent on the wave condition through 



the heave and pitch motion~ and that the squared portion of the wave may be neglected. 

Thus, when applying the mean value operator, the bending moment squared becomes 
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(3.6) 

If the above functions are known, both the mean values of the bending moment 

and the bending moment squared can be predicted based purely on the ship's heave and 

pitch motion. These values can then be used to determine the probable bending moment 

being experienced by the ship. 

The Random Decrement Method is used as the mean value operator. It essentially 

filters out the randomness of a response and leaves the response's free decay curve. This 

is discussed further in section 5.2. The form of the function relating heave and pitch 

random decrement to the bending moment and bending moment squared random 

decrement can be determined by neural network. methods. This is discussed further in 

section 5.3. 
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4.0 EXPERIMENTAL DATA 

To validate the above theory, two sets of experimental data were used. The 

experiments were performed at the Institute for Marine Dynamics {IMD), St. John's, 

Newfoundland, a division of the National Research Council of Canada (NRC). Both 

experiments involved the use of a segmented model to measure the bending moment at 

multiple locations. The first model was a Great Lakes Bulk Carrier [10] tested in October 

1992 and the second was a Canadian Patrol Frigate [11] tested in May 1993. It should be 

stressed that neither of these experiments were performed for this thesis work, but werec--- 

part of a much larger test program. The author had no involvement with the Laker 

experiments, but was involved in both testing and analysis of the CPF experiments while 

employed at IMD. Details of the models and experiments are given in the following 

sections. 

4.1 Great Lakes Bulk Carrier 

4.1.1 Model Description 

The model used for this experiment is representative of a self-unloading 217 

metre bulk carrier. A summary of the principal particulars is given in Table 4.1, while a 

body plan of the ship is given in Figure 4.1. From here onward, this model is referred to 

as the Laker. 
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Full Scale Model Scale 

Length, Lap (m) 216.83 6.43 

Beam (m) 23.12 0.69 

Draught at FP (m) 10.41 0.31 

Draught at midships (m) 10.41 0.31 

Draught at AP (m) 10.41 0.31 

Trim by bow (m) 0 0 

Displacement (tonnes) 48820 1.27 

Model Scale 33.7312 

LCB (fwd midships) (m) 2.64 0.078 

Ca 0.912 0.912 

Cp 0.913 0.913 

Cw 0.956 0.956 

eM 0.999 0.999 

Table 4.1: Principal Particulars of a Great Lakes Bulk Carrier 
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Figure 4.1: Body Plan of a Great Lakes Bulk Carrier 

The model was constructed of glass reinforced plastic and segmented at stations 

2, 3.5, 5 (midships), 6.5 and 8 with the forward perpendicular being at station 0 of lO. 

Each model segment was connected to its neighbor by two aluminum bars (one pon and 

one starboard) outfitted with strain gauges for bending moment measurement. Each bar 

was outfitted with two strain gauges for a total of four strain gauges at each location. 

These four gauges were connected together to form a full Wheatstone bridge. and the 

aluminum bars horizontal axis corresponded to the neutral axis of the ship. A gap of 4 

mm was maintained between the segments and covered with thin late~ strips to maintain 

water tightness without compromising the elastic properties of the modeL A diagram of 

the setup is shown in Figure 4.2. 
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St.2 St.8 

Bending Moment BeaiiiS Stxain GAuges t.oc:a.tion 

·--- ----- ·-·---- --·-·-· ·-----·-

Figure 4.2: Bending Moment Measurement of a Great Lakes Bulk Carrier 

For the experiments, the model was ballasted to the 0.3 m waterline, its LeG from 

the AP was 3.292 m, its VcG was 0.118 m and the longitudinal radius of gyration was 

0.265 Lap (target of0.25 L8 p). The model's longitudinal weight distribution is shown in 

Figure 4.3. During the experiment, the model was self-propelled and free to heave, pitch 

and surge. Vertical guide poles restrained roll, sway and yaw motion. 
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Figure 4.3: Longitudinal Weight Distribution of a Great Lakes Bulk Carrier 
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4.1.2 Model Calibration 

Before use, the aluminum bars and strain gauges were calibrated using an in-situ 

calibration. For this calibration, the model was fully outfitted, but ballasted only to 

maintain positive transverse stability and level trim. The calibration was done for each 

station separately in the sag and hog directions by the application and movements of 

known weights to and from predefined initial locations. This would apply a known 

bending moment change to the station that could be compared to the change in the strain 

gauge output. 

4.1.3 Data Collection 

Table 4.2 lists the parameters measured during the Laker experiments. Not all of 

these measurements are required for the purpose of the current work, and those that are 

used are indicated by an *. While model speed and wave height are indicated as being 

used, their only purpose was to ensure that in the selected region of a test run, the model 

speed was constant and the wave had reached the modeL All measured data were 

recorded at 40 Hz. 

It should be noted here that the output from strain gauges located at station 3.5 

were no stable during the model experiments. A calibration check of this station after the 

experiments were over indicated a significant change in the calibration constants. The 

station is analyzed and presented, but is ignored in the discussion of the results. 
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*Model Speed mlsec 

*Wave Elevation em 
Shaft Rotation 1/sec 
Relative Motion at Station 9.75 em 
Duct Thrust N 
Propeller Thrust N 
Propeller Torque Nm 
Heave Acceleration at FP g 
Surge Acceleration at LCB g 
*Heave Acceleration at LCB g 
Heave Acceleration at AP g 
*Pitch Angle deg 
Surge Displacement em 
*Bending Moment at Station 2 Nm 
*Bending Moment at Station 3.5 Nm 
*Bending Moment at Station 5 Nm 
*Bending Moment at Station 6.5 Nm 
*Bending Moment at Station 8 Nm 

Table 4.2: Measured Parameters in the Great Lakes Bulk Carrier Experiments 

4.1.4 Experiments 

The model was tested in two Bretschneider irregular wave spectra with significant 

wave heights of3.05 and 6.10 metres full scale, and at speeds of 12.15 and 14.76 knots. 

This provides two conditions at each speed. allowing the use of one wave height for 

network training with the other for prediction and validation. For training purposes. the 

significant wave height of 6.10 metres is used. 
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4.2 Canadian Patrol Frigate 

4.2.1 Model Description 

The model for this experiment was based on the current patrol frigates used by the 

Canadian Navy. The principal particulars for this ship are given in Table 4.3 and a body 

plan is shown in Figure 4.4. From here onward. this model is referred to as the CPF. 

Full Scale Model Scale 

Length, Lsp (m) 124.5 6.225 

Beam(m) 14.8 0.740 
Draught at FP (m) 4 .988 0.249 
Draught at midships (m) 4 .970 0.248 
Draught at AP (m) 4.951 0.248 
Trim by bow (m) 0.037 0.002 
Displacement (tonnes) 4735.4 0.578 
Model Scale 20 
LCB (aft midships) (m) 2.775 0.139 
Cs 0 .490 0.490 

Cp 0.610 0.6l0 

Cw 0.772 0.772 

eM 0.801 0.801 

Table 4.3: Principal Particulars of a Canadian Patrol Frigate 
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The model was constructed from fiberglass and was segmented at stations 2.5, 5, 

7.5, 10 (midships) and 13.7 with the forward perpendicular at station 0 of20. The six 

model segments were connected together by using a single longitudinal backbone seated 

on mounts made of aluminum plating and hardwood Great care was taken to ensure the 

mounts were at the same horizontal level above the keel, making a near perfect seating of 

the backbone inside the model. As well. the neutral axis of the backbone was situated at 

the vertical neutral axis of the model (0.28 m above the keel). A gap of lO mm was 

maintained between the segments and covered with thin latex strips to maintain water 

tightness. The setup for the CPF is shown in Figure 4.5. 
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HIGH SPEED FRIGATE-TYPE HULL FORM 

SlJmTWJE-----

Figure 4.5: Bending Moment Measurement of a Canadian Patrol Frigate 

The backbone was primarily comprised of four continuous stiffeners of carbon 

fiber composite material. These stiffeners were housed in a box made of Lexan webs, 

which were attached to the stiffeners. At the six mounting points, solid hardwood 

bulkheads were added. These bulkheads were approximately located at the longitudinal 

centers of gravity of each hull segmenL It should be noted that the bulkheads and the 

Lexan webs were not longitudinally continuous, the carbon fiber stiffeners are the only 

longitudinal structural members of the model. At each segment joint, the backbone was 

outfitted wich a series of strain gauges in full Wheatstone bridge formation to measure 

venical bending, vertical shear, horizontal bending, horizontal shear, and torsion. During 
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backbone constructio~ primary attention was given to modeling the vertical bending 

stifihess, with the vertical shear, lateral bending and lateral shear stiffuess given 

secondary importance. No effort was made to model the torsional properties correctly. 

For the experiment, the model was ballasted to the 0.232 m waterline, its LeG aft 

of midships was 0.139 m, its V cG was 0.316 m, and the longitudinal pitch radius of 

gyration was 0.238 Lap (targetof0.25 Lap). The model was also ballasted so that the 

calm water bending moment distribution was reasonably accurate. The modees 

longitudinal weight distribution is shown in Figure 4.6. During the experiment, the 

model was completely self-propelled and free to move in all six degrees of freedom. The 

only connection was a set of slack lines to ensure model safety. 

35 ~,------------------------------------~ 
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25 ~ 
.-... I 

Jf 20 ! 

i 15 J 
::E ! 

wi 
51 

0*'----~------~----~----~ 
20 15 

AP 

10 

Station 

5 0 

FP 

Figure 4.6: Longitudinal Weight Distnbution of a Canadian Patrol Frigate. 
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4.2.2 Model Calibratioo 

Before use, the backbone needed to be cahorated. This was done with the 

backbone outside of the model, and simply supported on rollers. Known weights were 

applied to various locations along the backbone length, creating known bending moment 

and shear forces. These forces would be compared to the output from the strain gauge 

sets. However, due to the complexity of the backbone and the fact that creating a 

perfectly symmetrical backbone is nearly impossible, ''cross-talk'' occurred. This means 

that even when the backbone was loaded in the purely vertical direction, some small 

lateral moment or torsion would occur. This cross-talk was accounted for during the 

calibration and analysis. During cahoration, when subjected to pure loading in one 

direction, the outputs from all directions were measured. This then allowed the 

subtraction of the cross-talk component during analysis. 

4.2.3 Data Collection 

Table 4.4 lists the parameters measured during the CPF experiments. Not all of 

these measurements are required for the purpose of the current work, and those that are 

used are indicated by an *. As with the Laker, the model speed and wave height were 

only used to ensure that in the selected region of a test run, the model speed was constant 

and the wave had reached the model. The horizontal bending/shear, vertical shear and 



*Model Speed 

*Wave Elevation 
Surge Displacement 
*Pitch Angle 
Roll Angle 
Yaw Angle 
*Heave Acceleration 
Sway Acceleration 
Surge Acceleration 
Pitch Rate 
Roll Rate 
Yaw Rate 
Rudder Angle 
Port Propeller 
Stbd. Propeller 
Relative Motion at FP 
Segment l Acceleration 
Segment 2 Acceleration 
Segment 3 Acceleration 
Segment 4 Acceleration 
Segment 5 Acceleration 
Segment 6 Acceleration 

Segment joints at Stations 2.5, 5, 1.5, 10 & 13.7 
*Vertical Bending 
*Horizontal Bending 
*Vertical Shear 
*Horizontal Shear 
*Torsion 

mlsec 

em 
em 
deg 
deg 
deg 

g 
g 
g 

deg/s 
degls 
degls 

deg 
rps 
rps 
m 
g 
g 
g 
g 
g 
g 

Nm 
Nm 

N 
N 

Nm 

Table 4.4: Measured Parameters in the Canadian Patrol Frigate Experiments 

4.2.4 Experiments 

The model was tested in three Bretschneider irregular wave spectra with 

significant wave heights of 4.0, 5.0 and 6.0 metres, and at speeds of 4.1, 8.2, 13.6 and 

21 
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17.0 knots. This provides three conditions at each speed. allowing the use of one wave 

height for network training with the other two for prediction and validation. For training 

purposes, the significant wave height of 6.0 metres is used. 
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5.0 METHODOLOGY 

The following sections outline the way in which the experimental data was 

analyzed and how the random decrement method was applied. Also, the neural network 

method is discussed along with the neural network program NeuroShell2®. 

5.1 Data Analysis 

Both the Laker and CPF data analysis were done in the same way. This was 

possible since both sets of experiments included the same required measurements as was 

indicated in Tables 4.2 and 4.4. The steps are listed in point form for convenience, and 

any minor differences in analysis are indicated. At various stages, the time series were 

visually checked to ensure the programs were working properly. 

l. The data was sampled using IMDs DAS (Data Acquisition System) format. 

This had to be converted into a form that the main analysis package at IMD 

could use. This package is known as the GEDAP software suite. GEDAP is 

developed between various sections of NRC, and its components are 

thoroughly tested to ensure they work properly. 

2. Visual examinations of each run were performed, and portions where the 

model speed was constant and the model experienced waves were selected. 
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3. Runs with a common speed and wave system were spliced together. This is 

done to obtain long records of the model in a particular wave. Run lengths of 

250-300 seconds (model scale) were obtained for the Laker and lengths of 

500-600 seconds (model scale) were obtained for the CPF. 

4. CPF only. A program developed at IMD was used to remove the cross talk 

components from the backbone measurements. 

5. The pitch displacement was converted from degrees to radians using a scale 

factor of 0.0174533. 

6. The mean value was removed from the bending moment channels. This 

removed components due to still water bending. 

7. After doing a spectral analysis on the pitch and bending moment channels, 

each was filtered to remove high frequency noise. This noise was most likely 

due to motor vibration. 

8. The heave acceleration was converted from g's to m!s2 and integrated twice to 

obtain the heave displacement. During integration. the heave was also filtered 

to remove high frequency noise. 
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9. Heave and pitch displacement data were differentiated to obtain heave and 

pitch velocity and then differentiated again to obtain heave and pitch 

acceleration. This then resulted in six heave and pitch measurements and five 

bending moment measurements on which the random decrement needed to be 

applied. The heave accelerations were then compared with those measured as 

a check of the integration and differentiation steps. 

10. The random decrement of each measurement was determined, and these were 

fed into the neural network program; first for training, and then for prediction. 

As mentioned in section 4, in the case of training, the wave height of 6.1 m 

was used for the Laker, and the wave height of 6.0 m was used for the CPF. 

Prediction was performed on measurements obtained from the Laker wave 

height of 3.05 m, and CPF wave heights of 4.0 and 5.0 m. 

Both the random decrement method and the neural network deserve some 

extended discussion. This can be found in the following sections. 

5.2 Random Decrement 

As mentioned previously, the random decrement was used as a mean value 

operator. It is based on the fact that the random response of a system due to random 

input is made up of two parts; the detenninistic part and the random part. The random 

part is assumed to have a zero average. By averaging enough samples of the response, 
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the random component will average out to zero, leaving the deterministic component. 

This component is the free decay curve of a particular ship response. Here. we 

determined the decay curve of heave displacement/velocity/acceleration, pitch 

displacement/velocity/acceleration .. bending moment and bending moment squared. The 

input into this particular system was the irregular wave, and it is assumed to be a 

Gaussian excitation with zero mean. 

The calculation of the random decrement for a one-degree of freedom system is 

very simple. First, the length of the time window is chosen that would cover several zero 

crossings in the system response~ This length is usually chosen by inspection and will be 

the total time length of the resulting random decrement curve. Second. a threshold value 

is chosen, also by inspection. The idea is to make sure there are enough samples to add 

together to create a meaningful average. Third. the time series is scanned till threshold 

values are found where the curve has a positive slope. At each threshold, a section of 

data the size of the window is triggered out and saved for later use. Fourth, the entire 

time series is rescanned at the same threshold but this time at points where the curve has 

a negative slope. These sections are saved for later use. The double scan along the time 

series is to remove any potential cause of bias. Finally, all of the triggered out sections of 

data from steps three and four and added together by superposition and averaged by the 

number of sections. This produces the final random decrement curve. Since portions of 

the response are random, the superposition and averaging remove the random component. 

These sections are averaged with the others, producing the final random decrement curve. 
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When determining the random decrements of a multi-degree of freedom system 

that are dynamically coupled, care must be taken to ensure the time phase between 

random decrements is maintained. This was particularly important in this case since the 

heave and pitch responses were to be compared with the bending moment and bending 

moment squared response. In order to maintain the time phase, the random decrements 

needed to be determined a little differently. Instead of using a threshold value for each 

individual response, one response needed to be used as the master time series. The 

threshold value is applied to this response, and the time the value occurs is used for all 

other responses. This is most clearly demonstrated in Figure 5.1. 

Yz(t) 

Figure 5.1: Random Decrement Determination for a Multi-degree of Freedom System 

For this work, heave displacement was chosen as the master response. The time 

window was set at 5 seconds and the threshold was nominally chosen as 25% of the peak 

heave response. These threshold values are shown in Table 5.1, along with the number of 

sections used to determine the random decrements at each condition. 
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Model Speed (knots} WaveHt. (m} Threshold (m} Num. Sections 

LAKER 12.15 3.05 0.005 81 
6.1 0.02 83 

14.76 3.05 0.01 49 
6.1 0.025 59 

CPF 4.1 4 0.03 108 
5 0.03 208 
6 0.04 199 

8.2 4 0.02 48 
5 0.03 162 
6 0.03 198 

13.6 4 0.03 1.85 
5 0.03 169 
6 0.03 186 

17 4 0.03 98 
5 0.03 155 
6 0.03 152 

Table 5.1: Random Decrement Thresholds and Number of Sections Used 

Although a 5 second window was used, the first 1.75 seconds of the Random 

Decrements provide the information needed to see peak response and frequency. 

Therefore, for the sake of efficiency in analyses, the latter 3.25 seconds of the random 

decrements are not used. An example of the first 1.75 seconds of the displacement, 

velocity and acceleration random decrements for the Laker and CPF are presented in 

Figures 5.2 and 5.3. The complete set of random decrements can be found in Appendix 

A. These are both the input random decrements used for training, and those used for 

prediction. Note the phase lag between the various inputs can be clearly seen. The 

bending moment and bending moment squared random decrements are presented later 

during the network training and network prediction discussion. 
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Figure 5.3: Motion Random Decrements 
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5.3 Neural Network 

As mentioned above. we want to determine the relationship between the Random 

Decrement of the bending moment and the Random Decrements of the ship heave and 

pitch responses. This relationship can be determined using neural network techniques. 

The technique is similar to regression. but infinitely more flexible as one does not assume 

any final fonn of the relationship equation. 

A neural network in nature, as shown in Figure 5.4. consists of dendrites, neurons 

and axons. The dendrites feed information into each neuron through a synapse that 

controls the strength of the signal fed in. The neuron then sums up all its inputs from the 

synapses and sends a signal along the axon if it exceeds a certain threshold. 

Figure 5.4: Biological Neural Network 



An artificial network attempts to mimic this process. Consider the diagram in 

Figure 5.5. 

Figure 5.5: Artificial Neural Network Example 
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The input layer with inputs of 1, 11 and 12 feeds into a hidden layer the way the 

dendrites feed into the neurons. The synapse strength between the input and hidden layer 

is defined as a weighting value (WI) applied at each connection. Then, all of the 

summations from the hidden layer are then weighted by another value (W o) and summed 

together to form the output. The diagram shown is a simplified version of the network 

used to determine the relationship between bending moment/bending moment squared 

and the ship response. The network used has six inputs, plus a bias input of unity in the 

flrst layer, there are thirteen inputs plus bias in the hidden layer, and a single output. 
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The summed inputs in the hidden layer are processed with a squashing function as 

they pass through the neuron. The squashing function used is known as the logistic 

function and is given by 

f(x}= 1 
l+e-.r 

(5.1) 

This function simulates the firing action of neurons where information flows 

forward through the net from input to output. To update the synaptic weights and 

improve the training. a method of back-propagation is used. and numerous iterations are 

performed until an acceptable error level is reached. Thus. the neural network model is 

known as a feed-forward. back-propagation network. In mathematical form. the neural 

network model for bending moment can be given as 

13 

BM = LWotf(Hk) (5.2) 
l =l 

7 

Hk = LWljyj 
j=l 

Here. BM is the bending moment. Wok is the klh output weight from the hidden layer, Hk 

is the input to the kth. node of the hidden layer, W IJ is the weight between the input layer 

and hidden layer for inputj and node k. and Yi is the input to the J.m node. 

The training of the network was done using a commercial program called 

NeuroShell2®. It is discussed in the next section. 



34 

5.4 NeuroSheU2® 

NeuroSheU2® is a commercial program purchased by Memorial University of 

Newfoundland for general student use. It is written by Ward Systems Group~ and the 

version used here is 3.0. This program enables the user to build complex neural 

networks. Basically, one tells the program what one is trying to predict, and the program 

learns the patterns from the training data and makes its own predictions when presented 

with new data. The available options in the program are varied, and the ones used for 

this work are discussed 

The neural network used was the basic feed forward, back propagation net. It is 

the simplest form of a neural network and the easiest to train. The inputs consisted of the 

heave and pitch random decrement responses, the single hidden layer had 13 neurons, 

and the training output was bending moment and bending moment squared random 

decrements. It should be noted that the bending moment and bending moment squared 

were trained separately. Each layer is known as a slab, with the connections between the 

slabs known as links. 

Each slab has its own scaling or activation function. That is how the data within 

the slab is scaled for the neural network to use. The input slab was scaled using a linear 

function with no clipping. Basically, all inputs were scaled between 0 and l, and later 

during the prediction, values below 0 and above 1 were allowed. The hidden slab used 



the logistic activation function mentioned earlier. The output slab, like the input, had a 

linear scaling function. 
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The links between the slabs require two important values. These are the learning 

rate and the momentum. During training, the error between the calculated output and the 

actual output is determined. A percentage of this error is used to modify the weights to 

improve the prediction. This percentage is a combination of the learning rate and the 

momentum. The change in weight is given by the following equation. 

aweight =(learning rate +momentum* &weight old)* error (5.3) 

The momentum is used to prevent the oscillation of weight changes that can prevent the 

network from being properly trained. The learning rate used here was 0.05 with a 

momentum of 0.5. These values were for both links. 

Another useful part of NeuroShell2® is its ability to prevent overtraining and 

network memorization by the use of calibration. To put it simply, the program takes a 

small portion of the input and output data and doesn't use it in the regular training cycles. 

Instead, this portion is used every so many cycles to check on the training. Since it is 

outside of the training set, it is representative of other possible inputs and thus keeps the 

network training generalized. It is also a better indication of when the network has been 

trained enough for practical use. For this work, the calibration was performed every 200 

cycles and training was stopped when the average error was less than 2xl0-6 kNm or 

(kNm)2
• 
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6.0 RESULTS AND DISCUSSION 

6.1 Training 

As mentioned previously. the data used. for network training were the conditions 

in the Laker test where the wave height was 6.1 metres and the condition in the CPF test 

where the wave height was 6.0 metres. In each case. the six inputs to the neural network 

were the random decrements of heave displacement. heave velocity, heave acceleration, 

pitch displacement. pitch velocity and pitch acceleration. The outputs were the bending 

moment and the bending moment squared random decrements. It should be noted that 

these two outputs were trained independently. 

Examples of the training plots for the Laker and CPF are presented in Figures 6.1 

and 6.2. The full set of training plots can be found in Appendix B. For each, the training 

stopped when the average error reached 2-10-6 kNm for the bending moment and 2-10-6 

(leN m)2 for the bending moment squared. From each plot. it can be seen the training has 

been done very accurately. 
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For the most par4 the bending moment random decrement curves are very smooth 

and have no sharp changes in curvature. The only exception is the CPF at 17 knots, 

station 2.5 (Figure 8 11). Here, the random decrement has a sharp bend at its lower 

bound. However, the more important part of the curve, the upper bound, looks fine. 

It should be noted that the bending moment random decrement curves are slightly 

different in shape between the Laker and CPF in the forward stations. Specifically, 

looking at the Laker, (Figure B3- Station 2.0) and at the CPF, (Figure B9- Station 5.0), 

we see that the Laker curve starts lower and then increases to its peak, while the CPF 

curve starts at its maximum and decreases. This demonstrates the phase difference 

between the heave displacement and the bending moment. Generally, for the CPF, the 

maximum bending moment occuned at the point of maximum heave, while in the 

forward section of the Laker, the maximum bending moment occurred slightly after the 

maximum heave. 

The bending moment squared random decrement curves are also fairly smooth 

with no sharp changes in curvature. However, in a few cases, there is a clear double 

peale. This is especially evident in the forward sections of each ship. While no definitive 

reason has been found for this phenomenon, slamming may be a factor. The general 

shape of the random decrement curves is also highly similar between the two ships over 

the range of speeds. 
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6.2 Contribution 

Contribution factors are a part of NeuroShell2® calculations. These factors give 

a rough measure of the importance of a particular variable in predicting the network's 

output. Contribution factors can only be compared within training sets, or different 

training of the same type of data in different conditions. Here, contribution factors are 

shown along the length of the ship to try and get an indication of which factor affects the 

response most. 

Examples of contribution factors for the Laker and CPF are shown in Figures 6.3 

and 6.4. The complete set of contribution factors can be found in Appendix C. 
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Figure 6.4: Contibution Factor V s. Stati~n for Bending Moment 
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It is difficult to explain the contribution trends of the input responses to the 

bending moment and bending moment squared responses. However, broad 

generalizations based on the majority of the information are made. 
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For the most part, all six of the input responses appear to have a fairly equal 

contribution to the bending moment training. This contribution seems to fluctuate 

between 0.1 and 0.2 with a couple of exceptions. Most notably, the pitch velocity for the 

CPF at 4.1, 8.2 and 13.6 knots reaches just over a contribution of0.3 at station 13.7 

(Figures C5, C7 & C9). These higher contributions are reflected by a lower contribution 

in pitch acceleration that would appear to indicate that overall pitch response has a 

constant effect. 

Over the length of the CPF, the heave displacement, heave velocity, heave 

acceleration and pitch displacement are fairly constant. The pitch velocity on the other 

hand appears to have a more important effect toward the middle and aft sections, while 

the pitch acceleration has a lesser effect to the aft. This pitch velocity trend is seen in the 

Laker, but to a much lesser degree. Also, the Laker's heave velocity has a lower 

contribution at midships, but a higher heave acceleration contribution. Again this would 

indicate that, like pitch, the overall heave response contribution is constant. 

The same basic trends hold for the bending moment squared contribution factors. 

Overall response in pitch and heave appears to be fairly constant within a range of 0.1 to 



0.2. The pitch displacement at 13.6 and 17 knots for the CPF is an exception (Figures 

C10 & Cl2). In both. the pitch contribution increases to 0.3 at station 13.7. 

6.3 Prediction 
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To predict the bending moment and bending moment squared at a certain ship 

speed and wave height, the trained weights from the same ship speed and the trained 

wave heights are used. These trained weights are applied to the random decrements of 

the heave and pitch responses to produce the bending moment and bending moment 

squared responses. From these two predictions, the average bending moment and the 

variance of the bending moment are known. For example. to predict the bending moment 

and bending moment squared random decrements for the CPF at 4.1 knots. wave height 

4.0 m and 5.0 m, the training from 4.1 knots, 6.0 m was used. 

6.3.1 Laker 

Example predictions for the Laker are shown in Figures 6.5. The experimental 

random decrements are also shown to demonstrate the accuracy of the prediction. The 

complete set of prediction plots is given in Appendix D. 
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The predictions show a high degree of accuracy in the prediction of bending 

moment, particularly at the important maximum value. The random. decrement trend and 

frequency are maintained, and the prediction is particularly good at stations 5 to 8. This 

also demonstrates the neural networlc has not been overtrained and can generalize. 

The maximum bending moment values occurred at midships as expected, 

however there was appreciable moment in both station 2.0 and 8.0. In both cases, the 

bending moment was on the order of 25% to 50% that of the midships bending moment. 

It should also be noted the maximum and minimum values are fairly symmetrical about 

the zero value. This indicates near equal dynamic bending moment in both directions. 

The bending moment squared prediction isn't as accurate as the bending moment. 

However, the general shape of the random decrement curve is maintained, and the 

maximum value and frequency is reasonably well predicted. It is also noted, that the 

maximum value is never under-predicted with the better predictions near the midships 

area. This poorer prediction indicates the assumption of neglecting the wave squared 

term and allowing it to be implicitly present in the motion measurements may not be 

entirely accurate. 

6.3.2 CPF 

Example predictions for the CPF are presented in Figure 6.6. As with the Laker, the 

entire set of predictions can be found in Appendix D. 
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As with the Laker, these predictions show a fairly high degree of accuracy in the 

prediction of bending moment~ particularly at the lower speeds. As the speed of the ship 

increases, the predictions at the forward stations begins to get a little worse in the latter 

half of the random decrement curve. However, the important maximum value at the 

beginning of each curve is well predicted. It is suspected that ship slamming is the 

underlying cause. 

Again, similar to the Laker, the bending moment squared predictions are not as 

accurate as the bending moment. At the lower speed of 4.1 knots (Figures 06 & D8), the 

prediction is very good with both the curve trends and maximum values maintained. At 

8.2 knots, (Figures 010 & D12) the prediction is fairly good. However, the double peak 

that was trained into the forward sections is reproduced in the prediction, but doesn't 

exist in the measured random decrement. Also, the predicted maximum values at the 4-

metre wave height are about 20% off at stations 5 and 13.7. 

For the speeds of 13.6 and 17 knots, the bending moment squared prediclion is 

still generally reasonable. The curve trends are maintained, but again the double peak 

that was trained into the network at the forward sections is reproduced in the prediction. 

Interestingly enough, the maximum values are well predicted at 17 knots, but poorly 

predicted in the forward sections at 13 knots, especially at the lower wave height. This 

gives further evidence that ship slamming is the cause of the hu·ger predicted maximum 

value. 
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It is possible that, at the trained wave height of 6 m, slamming occurred, and the 

bending moment reflected the presence of slamming. At 17 knots in the lower wave 

heights. slamming still occurred, so the prediction was accurate. However. at 8.2 and 

13.6 knots, slamming in the lower wave heights may not have been as much of a factor, 

resulting in the poorer prediction. Regardless, this would tend to conservatively predict 

the bending moment, assuming the training was always done at the higher wave height. 
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7.0 Conclusions 

The bending moment has been successfully predicted from the heave and pitch 

response in a full form bulk carrier and a slender form frigate. In the prediction. no 

knowledge of the wave excitation level was required. Thus the random decrement 

method can be confidently used to monitor and predict ship stress, assuming the weights 

of the neural network are pre-known. This system could also be used to evaluate the 

historical bending moment experienced by a ship where past heave and pitch 

measurements have been made. 

From a design standpoint, the random decrement predictions could be used to 

develop bending moment distributions, along a ship's length, from predicted heave and 

pitch motion distributions. These distributions could then be used in probability failure 

analysis. 

This can be done in one of two ways. Firstly, there is what is known as the auto

correlation function. This function is exactly the same as the random decrement 

multiplied by a constant. By using a calibration, this constant could be determined. Once 

the auto-correlation function is known, its maximum value is the variance of the bending 

moment. Considering that the bending moment is a narrow band process, the variance is 

basically the square of the amplitude of a sinusoidal expression. The random decrement 

of the bending moment squared can then be used to determine the range of error in the 



expressions amplitude. The main frequency of the sinusoidal expression can be 

measured by the time difference between zero crossings in the random decrement. 

Secondly, the random decrement predictions of bending moment and bending 

moment squared could be used to determine the mean and variance of the bending 

moment by assuming a suitable distribution for the bending moment. This distribution 

would be best assumed to be similar to the heave or pitch motion distribution, since all 

are a function of the wave spectrum the vessel is experiencing. 
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The advantage of this method over others is that the wave doesn't need to be 

known for accurate results. Thus, predictions can be made on full-scale vessels in real 

time with little instrumentation. While the bending moment squared predictions were not 

as accurate as hoped, they were still within 10% of the measured values. 

It is noted that the training and predictions were done within a constant speed. 

Further work could attempt to determine the forward speed effect, which would allow 

successful cross speed predictions. 
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Appendix A: Motion Random Decrements 



LAKER 
Figure A 1: Motion Random Decrements 

Ship Speed: 12.15 knots Sig. Wave Height: 3.05 m Bretschneider Spectra 
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LAKER 
Figure A2: Motion Random Decrements 

Ship Speed: 12.15 knots Sig. Wave Height: 6.1 m Bretschneider Spectra 
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LAKER 
Figure A3: Motion Random Decrements 

Ship Speed: 14.76 knots Sig. Wave Height: 3.05 m Bretschneider Spectra 
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LAKER 
Figure A4: Motion Random Decrements 

Ship Speed: 14.76 knots Sig. Wave Height: 6.1 m Bretschneider Spectra 
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CPF 
Figure AS: Motion Random Decrements 

Ship Speed: 4.1 knots Sig. Wave Height: 4 m Bretschneider Spectra 

Heave Motion Heave Velocity Heave Acceleration 
0.04 0.15 0.5 

0,03 0.4 
0,1 

~ 0,3 
0,02 ....... 

i ] ]. 0,2 
"-" ..., 0,05 

8 8 0.01 e- 0,1 
'::I ·g 'j 0 0 0 0 ::s ~ 'H " ~ -0.01 u < -0,1 

~ 
5 -0.05 ~ -0.2 

-0,02 ::c 5 
·0.1 = -0,3 

-0.03 .0,4 

·0.04 ·0,15 -0,5 
Time (sec) Time(sec) Time (sec) 

0,03 
Pitch Motion Pitch Velocity Pitch Acceleration 

0,1 0,4 

0,011 0,3 
0,02 

0.06 ~ ....... 
] 0.2 

]' 0.01 
Ill 

] 0.04 
....... e:: 0.02 i 0.1 
8 
'::I 0 ·g 0 .G 0 0 
~ 'U 

~ -0.1 ~ ·0,01 
:> -0,02 

i5:; ~ -0.04 71 i5:; IE .o.2 
-0,02 -0,06 

-0.08 ·0.3 

.o.oo 
Time(sec) 

.Q,I 
Time (sec) 

·0.4 
Time(sec) 

lA 
OQ 



CPF 
Figure A6: Motion Random Decrements 

Ship Speed: 4.1 knots Sig. Wave Height: 5 m Bretschneider Spectra 
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CPF 
Figure A 7: Motion Random Decrements 

Ship Speed: 4.1 knots Sig. Wave Height: 6 m Bretschneider Spectra 
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CPF 
Figure A8: Motion Random Decrements 

Ship Speed: 8.2 knots Sig. Wave Height: 4 m Bretschneider Spectra 
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CPF 
Figure A9: Motion Random Decrements 

Ship Speed: 8.2 knots Sig. Wave Height: 5 m Bretschneider Spectra 
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CPF 
Figure AIO: Motion Random Decrements 

Ship Speed: 8.2 knots Sig. Wave Height: 6 m Bretschneider Spectra 
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CPF 
Figure A II : Motion Random Decrements 

Ship Speed: 13.6 knots Sig. Wave Height: 4 m Bretschneider Spectra 
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CPF 
Figure A12: Motion Random Decrements 

Ship Speed: 13.6 knots Sig. Wave Height: 5 m Bretschneider Spectra 
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CPF 
Figure A 13: Motion Random Decrements 

Ship Speed: 13.6 knots Sig. Wave Height: 6 m Bretschneider Spectra 
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CPF 
Figure Al4: Motion Random Decrements 

Ship Speed: 17 knots Sig. Wave Height: 4 m Bretschneider Spectra 
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CPF 
Figure Al5: Motion Random Decrements 

Ship Speed: 17 knots Sig. Wave Height: 5 m Bretschneider Spectra 
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Figure Al6: Motion Random Decrements 

Ship Speed: 17 knots Sig. Wave Height: 6 m Bretschneider Spectra 
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Figure B 1: Training of Bending Moment Random Decrements 

Ship Speed: 12.15 knots Sig. Wave Height: 6.1 m Bretschneider Spectra 

Station 2.0 Station 3.5 Station 5.0 
0,15 0,2 0.4 

0.15 0,3 
""" 0,1 a '8' 0.1 -a 
~ 0,05 ~ ~ 0.2 

I 0 
I 0.0: I 0.~ 

~ ~ ~ 
co i .o.OS i .o.l ~ ·0,05 

5 5 ·0.1 5 ·0.2 
1%1 .o.t ~ ~ 

-0.15 -0.3 

.Q,J5 -0.2 ·0.4 
Time(sec) Time (sec) Time (sec) 

Station 6.5 Station 8.0 
0.4 0.2 

0.3 0.15 

'6' a 0,1 ~ 0.2 ~ ~ I 0.: 9 0.05 M~!lSured Bending Moment 
c Network Training 0 0 

~ ~ i -0.1 i .o.os 
il -0.2 e .o.l 
~ ~ 

-0.3 -0.15 

·0.4 -0.2 
Time (sec) Time (sec) 

...a ,... 



0.006 

"'-a 0,005 

~ 0.004 

l 0.003 
~ f 0.002 

,:Q 0.001 

0 
0 

0.35 

~",..., 0,3 

10.25 
"\.. I 0.2 

~ 0.15 

i 0.1 
6 
~ o.os 

0 

0 

LAKER 
Figure B2: Training of Bending Moment2 Random Decrements 

Ship Speed: 12.15 knots Sig. Wave Height: 6.1 m Bretschneider Spectra 

Station 2.0 
0,07 

... ,..., 0.06 
a 
~ 0,05 

"a ~ 0.04 

~ 0.03 
t./j 

~ 0.02 

5 
~ 0,01 

0 

0.5 1 1.5 
Time (sec) 

Station 6.5 
0.18 

0.16 
"',.-, 
~ 0.14 

0.12 
"\.. I o .• 
~ 0.08 

i 0.06 

5 0.04 
~ 

0.02 

0 
0,5 I 1.5 

Time (sec) 

Station 3.5 

0 0.5 I 
Time (sec) 

1.5 

Station 8.0 

0 0.5 I 1.5 
Time (sec) 

... ,....._ 
El 0.2 

~ l 0.15 

~ 0.1 
Cll 

:9 a o.os 
,:Q 

Station 5.0 

0+-----+-----~----~~ 

0 O.S I 
Time (sec) 

l ,S 

Measured Bending Moment2 

C Network Training 



0,15 

""" 0,1 a 
~ 0,05 

J 
~ 

0 

co 
~ -0,05 

6 
~ ·0.1 

-0.15 

0,4 

0,3 

I 0.2. 

J 
0,1 

0 
~ 
~-0. 1 

-0.2 
j:Q 

·0,3 

-0.4 

LAKER 
Figure 83: Training of Bending Moment Random Decrements 

Ship Speed: 14.76 knots Sig. Wave Height: 6.1 m Bretschneider Spectra 
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Figure B4: Training of Bending Moment2 Random Decrements 

Ship Speed: 14.76 knots Sig. Wave Height: 6.1 m Bretschneider Spectra 
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Figure BS: Training of Bending Moment Random Decrements 

Ship Speed: 4.1 knots Sig. Wave Height: 6 m Bretschneider Spectra 
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Figure B6: Training of Bending Moment2 Random Decrements 
Ship Speed: 4.1 knots Sig. Wave Height: 6 m Bretschneider Spectra 
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Figure B7: Training of Bending Moment Random Decrements 

Ship Speed: 8.2 knots Sig. Wave Height: 6 m Bretschneider Spectra 
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Figure B8: Training of Bending Moment2 Random Decrements 
Ship Speed: 8.2 knots Sig. Wave Height: 6 m Bretschneider Spectra 
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Figure B9: Training of Bending Moment Random Decrements 

Ship Speed: 13.6 knots Sig. Wave Height: 6 m Bretschneider Spectra 
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Figure B 10: Training of Bending Moment2 Random Decrements 
Ship Speed: 13.6 knots Sig. Wave Height: 6 m Bretschneider Spectra 
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Figure B II: Training of Bending Moment Random Decrements 
Ship Speed: 17 knots Sig. Wave Height: 6 m Bretschneider Spectra 
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Figure B 12: Training of Bending Momene Random Decrements 
Ship Speed: 17 knots Sig. Wave Height: 6 m Bretschneider Spectra 

Station 2.5 Station 5.0 Station 7.5 
0,035 0.12 

N,-,. 0.03 NE? 0,1 a 
~ 0.025 ~ 0.08 
~ ~ 

~ 0.02 ~ 0.0() 
::a 0.015 ::a 
Cll l 0.04 ~ 0.01 
1:1 

~ 0.02 u 
~ 0.005 

0 0 
0.5 I 1.5 0 0.5 I 1.5 0 

Time(sec) Time(sec) 
0.5 I 1.5 

Time (sec) 

Station I 0.0 Station 13.7 
0.1 

0.09 .. '8 0,08 

~0,07 
t \,.. 0,06 

1 0.05 

::a 0.04 

--- Measured Bending Momene 
D Network Training 

CIJ 
~ 0.03 

a o.o2 
1:1:1 

0,01 

0 

0,5 I 
Time(sec) 

1.5 0 0.5 1 
Time (sec) 

1,5 



Appendix C: Contribution Factors 



LAKER 
Figure Cl: Contibution Factor V s. Station for Bending Moment 

Ship Speed: 12.15 knots Sig. Wave Height: 6.1 m Bretschneider Spectra 
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Figure C2: Contibution Factor V s. Station for Bending Moment 2 

Ship Speed: 12.15 knots Sig. Wave Height: 6.1 m Bretschneider Spectra 
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LAKER 
Figure C3: Contibution Factor Vs. Station for Bending Moment 

Ship Speed: 14.76 knots Sig. Wave Height: 6.1 m Bretschneider Spectra 
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LAKER 
Figure C4: Contibution Factor V s. Station for Bending Moment 2 

Ship Speed: 14.76 knots Sig. Wave Height: 6.1 m Bretschneider Spectra 
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Figure C5: Contibution Factor V s. Station for Bending Moment 
Ship Speed: 4.1 knots Sig. Wave Height: 6 m Bretschneider Spectra 
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Figure C6: Contibution Factor V s. Station for Bending Moment 2 

Ship Speed: 4.1 knots Sig. Wave Height: 6 m Bretschneider Spectra 
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Figure C7: Contibution Factor Vs. Station for Bending Moment 
Ship Speed: 8.2 knots Sig. Wave Height: 6 m Bretschneider Spectra 
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Figure C8: Contibution Factor V s. Station for Bending Moment 2 

Ship Speed: 8.2 knots Sig. Wave Height: 6 m Bretschneider Spectra 
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Figure C9: Contibution Factor V s. Station for Bending Moment 
Ship Speed: 13.6 knots Sig. Wave Height: 6 m Bretschneider Spectra 
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Figure C 10: Contibution Factor V s. Station for Bending Moment 2 

Ship Speed; 13.6 knots Sig. Wave Height 6 m Bretschneider Spectra 
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Figure C 11: Contibution Factor V s. Station for Bending Moment 

Ship Speed: 17 knots Sig. Wave Height: 6 m Bretschneider Spectra 
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Figure Cl2: Contibution Factor Vs. Station for Bending Moment 2 

Ship Speed: 17 knots Sig. Wave Height: 6 m Bretschneider Spectra 
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Appendix D: Random Decrement Prediction 
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Figure Dl: Prediction of Bending Moment Random Decrements 

Ship Speed: 12.15 knots Sig. Wave Height: 3.05 m Bretschneider Spectra 
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Figure 02: Prediction of Bending Moment2 Random Decrements 

Ship Speed: 12.15 knots Sig. Wave Height: 3.05 m Bretschneider Spectra 
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Figure 03: Prediction of Bending Moment Random Decrements 

Ship Speed: 14.76 knots Sig. Wave Height: 3.05 m Bretschneider Spectra 
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Figure 04: Prediction of Bending Moment2 Random Decrements 

Ship Speed: 14.76 knots Sig. Wave Height: 3.05 m Bretschneider Spectra 
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Figure 05: Prediction of Bending Moment Random Decrements 
Ship Speed: 4.1 knots Sig. Wave Height: 4 m Bretschneider Spectra 
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Figure 06: Prediction of Bending Moment2 Random Decrements 
Ship Speed: 4.1 knots Sig. Wave Height: 4 m Bretschneider Spectra 
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Figure 07: Prediction of Bending Moment Random Decrements 
Ship Speed: 4.1 knots Sig. Wave Height: 5 m Bretschneider Spectra 
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Figure 08: Prediction of Bending Moment2 Random Decrements 
Ship Speed: 4.1 knots Sig. Wave Height: 5 m Bretschneider Spectra 
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Figure 09: Prediction of Bending Moment Random Decrements 
Ship Speed: 8.2 knots Sig. Wave Height: 4 m Bretschneider Spectra 
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Figure 010: Prediction of Bending Moment2 Random Decrements 
Ship Speed: 8.2 knots Sig. Wave Height: 4 m Bretschneider Spectra 
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Figure D 11: Prediction of Bending Moment Random Decrements 
Ship Speed: 8.2 knots Sig. Wave Height: 5 m Bretschneider Spectra 
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Figure 012: Prediction of Bending Moment2 Random Decrements 

Ship Speed: 8.2 knots Sig. Wave Height: 5 m Bretschneider Spectra 
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Figure D 13: Prediction of Bending Moment Random Decrements 
Ship Speed: 13.6 knots Sig. Wave Height: 4 m Bretschneider Spectra 
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Figure Dl4: Prediction of Bending Moment2 Random Decrements 
Ship Speed: 13.6 knots Sig. Wave Height: 4 m Bretschneider Spectra 
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Figure 015: Prediction of Bending Moment Random Decrements 
Ship Speed: 13.6 knots Sig. Wave Height: 5 m Bretschneider Spectra 
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Figure D 16: Prediction of Bending Moment2 Random Decrements 
Ship Speed: 13.6 knots Sig. Wave Height: 5 m Bretschneider Spectra 
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Figure 017: Prediction of Bending Moment Random Decrements 

Ship Speed: 17 knots Sig. Wave Height: 4 m Bretschneider Spectra 

Station 2.5 
0,25 

0,2 

-a 0.15 

~ 0.1 

i 0.05 

0 0 
::a co -0.05 

~ -OJ 6 ' 
l:l:l -0.15 

-0.2 

Time (sec) 
·0.25 

Station 10.0 
0,4 

0,3 

i 
~ 0.2 

I 
0.1 

0 
::a i -0.1 

a .a.2 
l:l:l 

-0.3 

-0.4 
Time (sec) 

Station 5.0 

Time (sec) 

Station 13.7 

Time (sec) 

Station 7.5 
o.s ....--------------.. 
0.4 

i 0,3 

~ 0.2 

9 0.1 
0 0+-~-~--T~~-~~~ 

~-0.1 
~ ·02 6 . 
l:l:l -0.3 

-0.4 .o.s ...__ __________ --I 
Time (sec) 

Measured Bending Moment 
+ Network Prediction 



0.007 

~)..._ 0.006 a 
~ 0.005 

I'\.. I 0.004 

::s 0.003 
co 
~ 0.002 
e 
j:Q 0.001 

0 

0 

0,35 

.. ,....., 0.3 
a 
~ 0.25 

l 0,2 

~ 0,15 

i 0.1 
5 

,:Q 0.05 

0 

0 

CPF 

Figure 018: Prediction of Bending Moment2 Random Decrements 
Ship Speed: 17 knots Sig. Wave Height: 4 m Bretschneider Spectra 
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Figure 019: Prediction of Bending Moment Random Decrements 

Ship Speed: 1 7 knots Sig. Wave Height: 5 m Bretschneider Spectra 
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Figure 020: Prediction of Bending Moment2 Random Decrements 

Ship Speed; 17 knots Sig. Wave Height: 5 m Bretschneider Spectra 
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