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ABSTRACT 

The role that food supply may play in determining patterns of biodiversity of shallow-water 

benthic macrofauna! communities is not well understood. This work tests the hypotheses that 

different types, diversity, and amount of phytodetrital material will attract different species and 

diversity of colonizing fauna. In situ experimental enrichment patches were created on the muddy 

seafloor at 20 m depth in a small cove in Bonne Bay, Newfoundland. Separate experiments tested 

the importance of different types and amounts of phytodetritus by gently syringing material onto 

otherwise undisturbed sediment. Push core samples were collected by divers I week and 5 weeks 

after enrichment and the experiments were repeated during the summer and the fall to test the 

importance of different seasons. Ambient fauna were also sampled with push cores at 

approximately two-week intervals through the summer and early fall. A strong seasonal signal 

was detected within the macrofauna! community with significant abundance increases during the 

study period, and there was also evidence of a strong recruitment event. Nonetheless, the 

composition of the phytodetrital food pulses tested had little effect on macrofauna! community 

diversity, structure and species composition at this site. Varying amounts of phytodetrital pulse 

showed reduced species diversity with increased enrichment, but this response was rapid and 

quickly disappeared, suggesting that food patches are rapidly utilized and short lived. The rapid 

utilization of phytodetrital patches may be characteristic of productive Newfoundland waters, and 

the absence of a specialized response to phytodetritus by Bonne Bay macrofauna! communities 

suggests they may be less food limited than many other benthic environments. 
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INTRODUCTION AND OVERVIEW 

Interest in regulation of benthic biodiversity has increased in recent years (Snelgrove et 

al., 2000; 2004), driven in part by the observation that species richness in deep-sea 

sediments may rival diversity of tropical rainforests (Grassle & Maciolek, 1992). It has 

been argued that shallow-water and deep-sea sediments may not differ in terms of 

diversity (Gray, 1994 ), and although this argument is not universally accepted (Gage 

1996; Snelgrove and Smith, 2002) the debate raises the question of which factors 

contribute to and maintain the diversity in sedimentary habitats given their relatively 

homogenous landscape? 

Maintenance of biodiversity in the deep-sea has generated considerable debate, and many 

theories have been put forth to explain the paradox of deep-sea sedimentary biodiversity 

(reviewed in Snelgrove & Smith, 2002). Indeed, the theoretical and experimental 

frameworks for studies on biodiversity are actually greater for deep-sea systems than for 

shallow-water communities. In coastal areas it is thought that habitat heterogeneity, 

seasonality, predation, productivity, historical effects and nearshore disturbances such as 

storms and prolonged winds, to mention a few, can contribute to biodiversity patterns 

(Snelgrove, 2001 ). Generally studies are lacking, however, as to what effect the 

composition and diversity of food supply have on the maintenance of sedimentary 

biodiversity. 



Benthic organisms are important for many reasons; some species are themselves the 

target of lucrative fisheries (a significant amount of the protein consumed by humans 

comes from the sea) (Hixon et a!., 2001 ), and other benthic organisms are key prey 

species for significant commercial species such as cod (Gadus morhua), redfish (Sebastes 

spp.), and flatfish (e.g. Pleuronectidae) (Snelgrove, 2001). Apart from the direct benefits 

of harvesting benthic organisms, sedimentary fauna also provide ecosystem services. An 

ecosystem service is a benefit that humans derive from natural proceses that occur within 

an ecosystem (Daily et a!., 1997). Ecosystem services associated with sedimentary fauna 

include nutrient cycling, sediment stabilization, filtration, gas and climate regulation, 

leisure and recreation, and regulation of pollutant dynamics (Daily eta!., 1997; Snelgrove 

et a!. 1997; Hixon et a!., 2001; Levin et a!., 2001; Beaumont et a!., 2007). 

It is believed that much of the food supply for subtidal benthic organisms is derived from 

the overlying water column (Josefson & Conley, 1997); at temperate latitudes a 

significant part of this material may originate from the spring phytoplankton bloom 

(Graf, 1992; Smith et a!., 2001; Snelgrove eta!., 2000 and references therein). Multiple 

studies have observed a marked pulse in labile organic matter shortly after the spring 

bloom both in shallow (e.g. Graf et a!., 1982; Grebmeier & Barry, 1991 ; Bertuzzi et a!., 

1996; Parrish, 1998; Beaulieu, 2002) and deep-sea (e.g. Billett eta!. 1983) areas. In some 

cases the sunken phytodetritus forms a green "carpet" along the bottom (Smetacek, 

1984). Measurements ofheat production, oxygen demand and temperature show a strong 

benthic response during and after a sinking bloom in Kiel Bight (Graf eta!., 1982) but the 
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study did not include a biodiversity component. Except for pollution studies there are few 

species-level studies on macrofauna! response to food inputs. 

Bonne Bay is a fjord located on the west coast of Newfoundland, Canada within the 

boundaries of Gros Mome National Park. Its outer region splits into two inner arms, the 

East Arm which is a relatively deep basin (230 m) and the South Arm, which is much 

shallower (80 m). A shallow (12 - 15 m) sill located at the mouth of the East Arm 

impedes circulation to the deep basin, however, the South Arm is relatively open to the 

Gulf of St. Lawrence. Bonne Bay is an area of regionally high biodiversity because it is 

an ecotone between temperate and subarctic assemblages (Hooper, 1975). There is a wide 

range of benthic substrates, from large boulder and vertical bedrock walls, kelp beds, 

cobble and sands to fine silts and clays. This study focuses on communities associated 

with medium to fine sand. 

This work is divided into four chapters. Chapter I is an exploratory chapter that examines 

seasonal changes in ambient fauna and environmental conditions. Chapters 2 and 3 report 

on in situ experimental manipulations designed to investigate sinking food supply as a 

factor that may influence benthic community structure and biodiversity. The objectives of 

Chapter 2 are to determine the effect of the composition and diversity of sinking food 

supply; while Chapter 3 examines the importance ofthe quantity of food supply, to 

determine if these factors influence benthic community structure. Chapter 4 summarizes 

the general findings and conclusions from the first 3 chapters. 
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CHAPTER 1 
BENTHIC COMMUNITY TEMPORAL DYNAMICS WITHIN A SHALLOW­

WATER SUB-ARCTIC SEDIMENTARY COMMUNITY 

1.1 INTRODUCTION 

Traditional views on regions of high biodiversity (i.e. species richness) such as tropical 

rain forests, and corals reefs, attribute the high diversity to high habitat complexity or 

heterogeneity (Grassle & Marse-Porteous, 1987; Archambault & Bourget, 1996; 

Snelgrove & Smith, 2002). Sedimentary communities, though seemingly homogeneous, 

are dynamic systems with respect to time and space, and can be quite heterogeneous on 

small spatial and temporal scales (Morrisey, et al. , 1992; Thrush et al. , 2001) and may 

be characterized by high diversity (Gray, 1997). 

Seasonal changes within sedimentary benthic macrofauna communities have been 

widely documented from shallow-water habitats (Dollar et al., 1991 ; Trueblood et al. , 

1994; Kelaher & Levinton, 2003) to the deep-sea (Lampitt, 1985; Josefson, 1986; Graf, 

1992). Despite commonalities in each study, results from one area and community may 

not apply to a similar community in a different location. In strongly seasonal 

environments such as the northwest Atlantic, seasonal changes in water temperature and 

changes in phytoplankton production associated with the spring bloom may be 

particularly important for subsequent benthic species recruitment and community 

dynamics. Recent work (Levin et al. , 2001; Snelgrove, 2001) underscores the issue of 

marine biodiversity as an area where the role of environmental variability is not well 
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understood. In particular the key factors that regulate marine sedimentary diversity 

remain unresolved (Snelgrove eta!., 1996). 

Shallow-water ecosystems rely on input from terrestrial (Frouin, 2000) and intertidal 

ecosystems (Levin et a!. 2001 ), endogenous production by benthic microalgae (Gould & 

Gallagher, 1990), and sinking phytodetritus (Grebmeier eta!., 1988; Parrish, 1998; and 

Stead & Thompson, 2003). All of these inputs have the potential to create patch mosaics 

akin to those proposed as key microhabitats for deep-sea ecosystems (Grassle & Sanders, 

1973). In shallow-water habitats the patchy distribution of benthic infaunal communities 

has long been recognized (McCall, 1977; Morrisey eta!., 1992, and references therein). 

Indeed, faunal abundances and composition may vary on scales of metres. Small scale 

patchiness, however produced, further emphasize the importance of local larval and 

juvenile colonization as elements for setting pattern (Snelgrove et a!., 200 1 ). 

In high latitudes, major factors that influence benthic community structure include 

sediment heterogeneity, presence of seagrass (Orth et a!. , 1984 and Heck et a!. , 1995) 

temperature and food supply, where food supply can have a direct positive influence on 

biomass (Grebmeier eta!., 1989). From this research in the Bering and Chukchi Seas, it 

was hypothesized that at high latitudes in areas where sediments are homogeneous, food 

is limiting and is especially important in regulating faunal diversity and abundance 

(Grebmeier et al., 1989). In southern Newfoundland, sediment chlorophyll-a levels and 

sedimentary organic carbon are the most important predictors of in faunal abundance 
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(Ramey & Snelgrove, 2003). In another Newfoundland bay, Parrish (1998) found that 

planktonic lipids sink with very little alteration through the water column and can then 

become incorporated into the benthic food chain. This finding also has ramifications for 

the quality of food that reaches the benthos; lipids have a high energy value and are thus 

an important fuel in marine ecosystems (Parrish, 1998). 

Food supply is not the only variable thought to influence biodiversity and abundance in 

shallow-water communities, and other studies have demonstrated the importance of 

bioturbation (Widdicombe et al., 2000), predation (Schneider, 1978; Quijon & 

Snelgrove, 2005) bottom currents (Snelgrove & Butman, 1994; Bradbury & Snelgrove 

2001 and references therein), larval supply (Snelgrove et al., 1999) disturbance 

(Widdicombe & Austen, 200 I), seasonality (Trueblood et al., 1994) and physical 

processes such as storms and prolonged winds (Norkko et al., 2002). In all likelihood all 

these factors, or some combinations thereof, work collectively (e.g. Widdicombe & 

Austen, 200 I) to influence biodiversity patterns. This study focuses on food supply as a 

potential factor driving biodiversity pattern. 

Arguably the important food-related event for sedimentary fauna in temperate waters is 

the spring phytoplankton bloom. Smetacek ( 1984) argues that sediments can receive the 

majority of annual organic matter input during the spring bloom. This sedimentation of 

organic matter has been shown to stimulate benthic metabolism (Graf et al., 1982), and 

in areas of intense sedimentation, sinking phytodetritus can be seen on the bottom as a 
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thick "carpet" that can be visible for several days (Smetacek, 1984; Lampitt, 1985). At 

temperate and sub-arctic latitudes such as in Newfoundland and Labrador, surface-water 

production peaks during the spring bloom (late April - May), declines dramatically 

during the summer months, increases again in the fall (late August - September), and 

then decreases to very low levels over the late fall and winter (September to March) 

(Tian eta!., 2001). The bloom is made up chiefly of diatoms (~98%) where cell densities 

in surface waters peak at concentrations on the order of 105 cells L-1 (McKenzie, 1994). 

The objectives of this chapter are to gain an understanding of benthic community 

dynamics with respect to the seasonal changes in organic flux. I hypothesize that 

changes in abundance, composition and diversity within the benthic community will 

occur after an important food pulse (such as the spring bloom) reaches the sediment. I 

also measure parameters to better understand the state of the food supply to the sediment. 

This chapter, by describing natural, seasonal variation in Bonne Bay subtidal 

sedimentary communities provides a framework for the subsequent experimental 

chapters. 
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1.2 MATERIALS AND METHODS 

The majority of the fieldwork involved with this project was carried out by SCUBA 

divers. To carry out this research safely, a depth of 20 m (60 feet) was chosen. This 

depth provides a relatively stable bottom environment, not effected by waves, where 

working time is reasonable without necessitating decompression or special gas mixes. 

1.2.1 Sampling Site 

Bonne Bay is a fjord located on the west coast of Newfoundland, Canada within Gras 

Marne National Park. The bay consists of two deep basins, the East Arm (max. depth 

230m), which has restricted flow as a result of a 15-m sill located at the mouth of the 

basin; and the South Arm (max. depth 100 m), which has more open exchange with the 

Gulf of St. Lawrence (Hooper, 1975). "Small Cove" is located within South Arm (Figure 

1.1 ). Several factors contributed to the selection of the study site. Although the site is 

located near several small coastal communities, the cove itself in uninhabited and is 

distant from any significant sources of anthropogenic inputs of organic matter. This site 

had the highest biodiversity of a handful of sites surveyed in Bonne Bay (Quijon 2001 , 

pers. comm.). This site is also well sheltered, with relatively low boat traffic, which 

proved helpful in terms of logistics associated with sampling and maintaining the 

integrity of the experiments described in Chapters 2 and 3. 
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1.2.2 Field Sampling 

Sediment cores were taken throughout the spring, summer, and fall of 2002 within ~5 m 

of a surface marker (49°28.872' N, 57°54.551' W) anchored in the cove. Four replicate 

cores (6.5 em diameter, 20 em length) were collected on each of nine sampling dates 

(total of 36 cores) by divers who pushed the cores into the sediment to ~ I 0 em depth. 

Cores were corked and transported upright to the laboratory where they were sectioned 

into 0-2 em, 2-5 em, and 5-10 em strata, prior to washing with filtered seawater over a 

300 ~m sieve. Samples were placed in glass sample jars and fixed in I 0% buffered 

formalin solution for at least 24 hours, before rinsing them with fresh water and 

transferring them to 70% alcohol with Rose Bengal stain. The upper two fractions (top 5 

em) of all samples were sorted and organisms were identified to the lowest possible 

taxonomic level, which was usually species. For the purposes of this study a juvenile 

was described as recognizable to family or genus but too small to be identified to species 

using a conventional light microscope (max. magnification 1 OOOx). 

Qualitative phytoplankton samples were taken using a Sea-Gear® ring net with 20 ~m 

mesh and a 30 em diameter mouth. The net was towed just below the surface for I 

minute; towing speed was variable to maintain minimum tension on the net. Samples 

were fixed using Lugol 's Iodine, to give the 'weak-tea' colour, and then preserved in 2% 

buffered formalin solution. A 1 or 2 ml aliquot of each sample was placed in a well on a 

large slide, filtered seawater was added to fill the well. Slides were then observed under 

an inverted phase-contrast microscope and observations were recorded. 
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Water samples for chlorophyll and phaeopigment analysis were collected using a 2 L 

Niskin bottle. Samples were collected in duplicate at the surface and at 1 m above 

bottom. A 1 00-ml aliquot from each sample was filtered on a Whatman GF/F filter, the 

filter was then transferred to 10 ml of acetone and placed in the freezer, in the dark, until 

analysis in a TO Model 10 fluorometer. 

Mini-cores (60 ml syringes with tip removed) were transported to the bottom by divers 

and pushed several centimetres into the sediment to sample sediment for CHN analysis. 

A single core was collected each for sediment CHN analysis, and sediment chlorophyll 

and phaeopigment analysis on each fauna sampling day. For sediment CHN analysis the 

top l em was removed from each core, and frozen until analysis. Samples were then 

freeze-dried at -60°C and analyzed in duplicate (2 replications per sampling date) using a 

CHN Analyzer (Perkin-Elmer Model 2400) (Ramey & Snelgrove, 2003). Samples for 

sediment chlorophyll and phaeopigments were collected in the same manner. Sediment 

samples for pigment analysis were kept frozen in the dark until processing. Chlorophyll 

and phaeopigments were extracted using acetone and measured in a fluorometer as 

described above. 

1.2.3 Data Analysis 

Environmental variables (Sediment CHN and pigments, and water pigments) were 

compared using one-way ANOV A with date as factor. For cases where AN OVA 

assumptions were not met; data were log transformed. If assumptions were sti ll not 

satisfied, p-values were obtained by a randomization test with one-way ANOV A; 
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calculated p-values were compared with p-values calculated by randomly generated F­

values (500 iterations with replacement) to determine the reliability of the calculated p­

value. Linear regression analysis was used to predict abundance (N) and benthic species 

richness (S) as a function of environmental variables. Examination of residuals revealed 

that assumptions of normality, heterogeneity and independence were met in all cases. In 

several cases sampling dates for fauna and for environmental data did not coincide; in 

those cases the incomplete sampling dates were omitted from analysis. Phytoplankton 

data were analyzed qualitatively and observations were recorded on numerically­

dominant species and species richness. 

Community composition was compared among sampling dates using CNESS (Chord­

Normalized Expected Species Shared), which is discussed in Trueblood et al. (1994). 

CNESS is a dissimilarity index related to Orloci's (1978) chord distance and Grassle and 

Smith's (1976) NESS (Normalized Expected Species Shared). The CNESS index was 

chosen because of its ability to cope with both rare and abundant species (Grassle & 

Smith, 1976). The sample x species matrix was transformed to a normalized 

hypergeometric probability matrix (H); this probability matrix was used in a principal 

components analysis ofhypergeometric probabilities (PCA-H). Since this matrix is a 

metric scaling, Gabriel biplots (Gabriel, 1971) can be overlaid to identify species that are 

important with respect to variation of CNESS and therefore drive community pattern 

(see Ramey & Snelgrove, 2003; Quijon & Snelgrove, 2005; and Trueblood et al., 1994 

for further details). Preliminary analysis indicated that two samples (one from September 
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and one from October) had substantially lower abundances and species richness relative 

to all other samples and represented outliers; these two samples were omitted for the 

remainder of the analyses. Primer v.5 was used to cluster the samples based on Bray­

Curtis similarity. Several combinations of data analysis with transformed and 

untransformed data were examined and produced similar patterns; the result presented 

here is untransformed data with complete linkages. 

Univariate measures based on abundance (N), species richness (S), evenness (J), 

Shannon-Weiner Index (H'), Margalef's Index (D), and ES[30] (Expected species shared 

based on a random draw of 30 individuals) as well as rarefaction curves were generated 

using Primer v.5. Means and 95% confidence intervals were plotted and each measure 

was compared by one-way ANOV A with date as factor. Where residuals did not meet 

assumptions of ANOV A, the randomization technique described above was used. In the 

case of ES[30], samples that had low abundance (i.e. fewer than 30 individuals) were not 

included in the analysis (this occurred only for one of the September replicates). For 

rarefaction curves, means and 95% confidence intervals were calculated for multiples of 

5 individuals. 

1.3 RESULTS 

1.3.1 Environmental Observations 

Qualitative phytoplankton samples indicate that the overlying water column changed 

considerably during the sampling period with respect to community composition. 

Samples taken in early June (June 6) were dominated by the diatoms Detonula 
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confervacea and Bacterosira bathyomphala; however, species richness was high at this 

time compared to subsequent sampling dates and included several species of 

Chaetoceros sp., Thalassissiora sp. and Protoperidinium sp., Skeletonema sp., Pseudo­

nitzschia sp., Thalasionema nitzschioides, Dactyliosolen fragilissismus, Dinophysis cf 

acuminata, Dictyocha speculum, Navicula sp. and Leptocylindrus danicus. Later in the 

same month (June 19) the dominant species were the Chrysophtye Dinobryon belgacea 

and Dinobryon balticum whereas the diatoms Chaetoceros debilis, and Pseudo-nitzschia 

sp. most likely contained most of the chlorophyll in the sample. Species richness in the 

plankton had decreased, and other common taxa included Protoperidinium curtipes 

(which is a smaller species than the Protoperidinium sp. seen in the June 6111 samples) 

and Dinophysis norvegica. By late July (July 22) the phytoplankton was dominated by 

the diatom Ceratium arcticum and phytoplankton species richness was low compared to 

previous and subsequent sampling dates. Some tintinnids were present, and zooplankton 

and zooplankton faecal pellets were quite common. In late August (August 28), 

Ceratium sp. were again dominant, however, at this time Ceratium Jus us was 

approximately 4 times more abundant than Ceratium arcticum. Some common 

organisms included several species of Protoperidinium sp., Dinophysis norvegica and 

zooplankton. Samples from mid-September (September 19) indicated a bloom of 

Skeletonema costatum, and the presence of Navicula sp. and Thalassionema sp .. By the 

end of the sampling period the phytoplankton was dominated by Ceratium spp. (C. fusus 

and C. arcticum). Protoperidinium sp. were present but was not abundant, and there 
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were very few zooplankton. Images of representative phytoplankton species are provided 

in Appendix A. 

Water column measurements of chi-a and phaeopigments show high levels of pigment in 

the water column both at surface and at depth in May and then decreasing levels through 

July. Levels of pigment increased again in August and decreased to the lowest levels 

observed during the sampling period in October (Figure 1.2). A similar seasonal pattern 

was observed in the sedimentary organic carbon data described below. On May 21 the 

highest values for both chi-a and phaeopigments were in near-bottom samples, which 

may be indicative of a sinking food pulse and resuspension. It further highlights the 

patchy nature of food availability in time. Pigments were significantly different (p < 

0.05) over the sampling period (Table 1.1) with the exception of surface chi-a (F(7.S) = 

2.35; p = 0.127). With a few exceptions (June 19, and August 28) there was no 

significant difference between surface and near-bottom pigment concentrations. 

Analysis of sediment C and N levels shows that sediment carbon and nitrogen levels 

changed significantly over the sampling period (Table 1.1 ). Carbon and nitrogen levels 

were quite high in early spring (May 8111
) and then decreased through to July 23rd. Carbon 

and nitrogen were higher on August 6111 and then carbon decreased until October 141
\ 

nitrogen levels remained consistently high during that period (Figure 1.3a). Sediment 

C!N ratios were relatively constant (ca 15) throughout the sampling period, however the 

lowest values were observed on July 23rd which coincided with the lowest values for 
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sedimentary carbon and nitrogen; and in the fall (September 21 51 and October 11th) when 

carbon levels dropped and nitrogen levels remained high (Figure 1.3b). 

Sediment chl-a analysis revealed that chi-a input was quite variable in the early part of 

the year, but a pulse of phytoplankton biomass reached the sediment between May 8 and 

May 21 prior to stabilizing to a consistent, lower level towards late summer- fall (Figure 

1.3c). Sediment phaeopigments were consistently higher (by an order of magnitude) than 

chi-a for the entire sampling period. Phaeopigments were also variable but were higher 

during the first half of the sampling period prior to decreasing to lower levels towards 

the late summer and fall (Figure 1.3c). Table 1.1 shows that changes between sampling 

date for sediment phaeopigments were significant whereas changes for chi-a were not. 

1.3.2 Overview: Ambient Fauna 

A total of 2649 individuals were collected from 36 cores for a total of 86 species of 

polychaetes, molluscs, crustaceans, nemerteans, echinoderms, hydrozoans, anthozoans 

and sipunculids. Many of the species were low in abundance and several only occurred 

once; only 2 taxa were present in every sample at each sampling date. The most 

abundant group by far were the polychaetes comprising 58 species and 53% of the total 

fauna. Bivalves and crustaceans/other comprised 33% and 14% of totals respectively. 

The fauna was highly uneven, in that the polychaetes Paradoneis lyra, Prionospio 

steenstrupi, Pholoe tecta; the bivalve Astarte sp., and the cumacean Diastylis lucifere 

made up 45% of the total fauna. The most abundant species (Figure 1.4, Table 1.3) was 
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the bivalve Astarte sp., which comprised 48% of the bivalves and 16% of the total fauna. 

The polychaetes Prionospio steenstrupi ( 16 % of polychaetes, 8% of total fauna), Pholoe 

tecta ( 14% of polychaetes, 7% of total fauna) and Paradoneis lyra ( 13% of polychaetes, 

7% of total fauna) were the next most abundant taxa (Figure 1.4). 

1.3.3 Species Abundance and Diversity 

The most abundant species, Astarte sp., Prionospio steenstrupi, and Paradoneis lyra 

were abundant throughout the sampling period. The exception was Pholoe tecta, which 

increased in abundance (Figure 1.4, Table 1.3) later in the sampling period (Sept. and 

Oct.). With the exception of Diastylis lucifera, the abundances of all other dominant 

species increased towards the late summer and fall as did the variance (Figure 1.4). 

During the spring and early summer there was a low abundance of adult Pholoe (likely 

P. tecta) present, but a summer recruitment event resulted in an abundance of juveniles 

followed by a late summer I fall significant increase in the adult population of Pholoe 

tecta (Figure 1.4). There are two species of Pholoe in the study site, but Pholoe minuta 

(not shown in Figure 1.4) was unimportant in the PCA analysis (see below) and was 

generally much less abundant. 

Univariate community measures (S, N, D, J, H' and ES[30]) (Figure 1.5) were not 

significantly different (p > 0.05) among sampling dates (Table 1.4 ), except for 

abundance which increased from spring through fall (Fcs.27l = 2.01 , p = 0.026). The same 

data were then grouped into "seasons", based on CHN data, and were analysed using 
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one-way ANOV A with season as factor. This additional analysis confirmed the original 

conclusion that only abundance changed significantly (F(3,3o) = 5.17; p = 0.005) over the 

sampling period (Table 1.4). Mean rarefaction curves for each sample (Figure 1.6) 

showed variability within the sampling period but no temporal changes were significant 

when means and 95% confidence intervals were compared. 

Regression analyses for environmental variables as predictors of macrofauna abundance 

and species richness revealed that sedimentary phaeopigments predicted abundance (r2 
= 

64.2, p = 0.030) but not species richness (r2 
= 43, p = 0.11 0). No other variables, 

including sedimentary C, N, C/N and Chl-a, and water column variables, Chi-a and 

phaeopigments both surface and from depth were significant predictors of abundance 

and species richness (all p > 0.05) (Table 1.2). 

1.3.4 Multivariate Analysis 

In PCA analysis (Figure 1.7), the first two axes describe 25% of the variance, indicating 

high variability in faunal composition. For this analysis the two outlier samples (S 17 and 

014) were included. Gabriel biplots indicate which species contribute to the pattern and 

to what extent. The May 8 sample grouping is strongly characterized by the cumacean 

Diastylis lucifera. The June and July groups are characterized by the bivalve Astarte sp., 

and the fall group is characterized by the polychaete Pholoe tecta. A line has been added 

to the plot to indicate the seasonal progression of samples (Trueblood et al. , 1994; 

Kelaher & Levinton, 2003). 
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Cluster analysis was consistent with PCA analysis in that spring samples (May 8 and 

May 21) were quite distinct from other samples. The samples from June (6th, 1 ih, and 

28th) also clustered together though less distinctly suggesting that, this month may 

represent a transition phase into the remaining sampling period. Samples taken during 

July (23rd) formed the tightest group, this date represents the first significant increase in 

overall abundance (Figure 1.5). There is high variability in samples from August (28th), 

September ( 1 ih), and October (14th) which cluster together in mixed groups (Figure 1.8) 

suggesting spatial patchiness was more important than temporal changes during the late 

summer and fall. 

1.4 DISCUSSION 

Opportunism, variability in life-history characteristics, disturbances, detritus inputs, and 

recruitment events have been invoked to explain seasonal changes within benthic 

communities (Trueblood et al., 1994 and references therein; Kelaher & Levinton, 2003). 

Given the high! y variable nature of species composition of nearshore benthic 

communities (McCall, 1977; Morrisey et al., 1992) and the variability of many 

environmental factors it is often hard to decipher which variable(s) contribute to 

observed changes. 

Environmental variables examined here included sediment, water column pigments, and 

sediment CHN. Collectively they indicate moderate levels of food available to the 
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benthos in Bonne Bay (Figures 1.2 and 1.3). Traditional views of CIN ratios indicate that 

the food quality present varies from good to marginal (i.e. a ratio of 17 or higher is 

considered poor quality whereas 17 or lower is considered to be better quality (Hatcher, 

1994 and references therein). C/N ratios in this study ranged between 8.02 and 16.4; 

which were slightly higher than those reported for another Newfoundland Bay (Ramey 

and Snelgrove, 2003). Stead and Thompson (2003) report sediment chlorophyll-a and 

phaeopigments in the range of 10-20 ng/mg and 30-60 ng/mg respectively in the deep 

depositional area (250-270 m) of Conception Bay, Newfoundland; the numbers from my 

study are considerably lower (0.0007-0.17 ng/mg and 0.6-1.5 ng/mg). Several factors 

may be responsible for the discrepancy. Export could be reduced by zooplankton 

grazing, especially in July and August when divers in the area have observed high 

numbers of visible gelatinous zooplankton (i.e. Aurelia sp., Cyanea sp., and ctenophores, 

pers. obs.). Organisms living in the sediment may process phytodetritus as quickly as it 

is deposited. Given the high abundance of deposit feeders , pigments may have been 

either consumed or reworked below the l-1.5 em mark where pigment samples were 

taken. It has previously been shown that the fate of sinking phytodetritus is strongly 

dependant on the macrofauna! community in the underlying sediment (Josefson et a!. , 

2002), supporting the hypothesis that part of the sinking spring bloom is buried in the 

sediment before it is remineralized, digital pictures of experimental cores also support 

this hypothesis (pers. obs.). Furthermore, the cold temperatures (mean temperature was -

0.63 °C) in the Conception Bay study (Stead & Thompson, 2003) likely result in slow 

bacterial decomposition rates, resulting in longer persistence of sinking production 

21 



(Pomeroy & Diebel, 1986) than in the comparatively warm bottom water in Bonne Bay 

(2 oc to 14 °C, pers. obs.). 

Multivariate analysis has become a powerful analytical method for large data sets, which 

are the norm for benthic ecology, where numbers of species can be in the hundreds (Ellis 

eta!., 2000; and Ellis, 2003). A combination of multivariate analyses identified 4 faunal 

groups that were present during the sampling period; a May group, a June Group, a July 

group and a fall group. The May group is distinguished by the cumacean Diastylis 

lucifera, which has an abundance pattern that is quite distinct from most other species 

sampled. D. lucifera were most abundant during the spring and the fall, with low 

abundance in the summer months (Figure 1.4). This pattern is in contrast with most of 

the other species that are important in describing sample differences, such as Pholoe 

tecta and Prionospio steenstrupi. Diastylis lucifera is poorly studied but the congener, D. 

rathkei, displays a similar pattern in the Western Baltic Sea, albeit at higher abundances 

(Valentin & Anger, 1977). D. rathkei is thought to have declined from August to 

October because it is a major component of the diet of demersal fishes (Valentin & 

Anger, 1977). This explanation could apply here given that the abundance of demersal 

fishes (Pseudopleuronectes americanus and Tautogolabrus adspersus) greatly increased 

over the summer through the fall before declining toward the end of the sampling period 

(pers. obs.). Both species reduce feeding during the winter months (Scott & Scott, 1988); 

this reduction in predation pressure coupled with the abundance of phytoplankton as 

food (Yang, 1998) may explain high spring abundance of D. lucifera. In contrast both P. 
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tecta and P. steenstrupi occur in low abundance during the spring but increase in number 

over the summer through the fall (Figure 1.4). The predatory species, P. tecta, may 

increase when infaunal prey is abundant, and recruit into the system accordingly; P. tecta 

is known as an important infaunal predator in this arm of the bay (Quijon & Snelgrove, 

2005). 

The June group (comprised ofn = 3 sampling dates) likely represents a transitional fauna 

between the spring group described above and the July group, which had the highest 

values of diversity (H ') and the second highest abundances. This group was not strongly 

structured by any one species as indicated in the PCA analysis. The numerically 

dominant species, Astarte sp., Paradoneis lyra, and Prioniospio steenstrupi were 

dominant for all sampling dates and therefore did not contribute to variability among 

samples. P. lyra and P. steenstrupi are common species in sediments around 

Newfoundland and have been reported from shallow areas to depths of2500-3000 m. P. 

steenstrupi has been reported as the numerically dominant taxon in several Atlantic 

benthic macrofauna) studies (Pocklington, unpublished). Both species belong to similar 

feeding guilds. P. lyra is a burrowing or surface deposit feeder, whereas P. steenstrupi is 

thought to be a surface deposit feeder. It is noteworthy, however, that members of this 

family (Spionidae) display a wide array of feeding strategies (Fauchald & Jumars, 1979) 

this may hinder ananylsis of feeding guilds. The other dominant species of this group is 

the bivalve Astarte sp., which is a suspension feeder that lives near the sediment surface 

with part of its shell protruding into the water column (Widdicombe et al. , 2004). 
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The July group is characterized by the bivalve Astarte sp. and a Pholoe sp. recruitment 

event (Figure 1.4); this was one of the few sampling dates where juveniles of this species 

were found. There was a significant difference in abundance in this group relative to 

previous sampling dates (Figure 1.5 and Table 1.4). Overall average abundance more 

than doubled from the previous two sampling times and then remained relatively 

constant for the remainder of the study period. This increase in abundance coincided 

with low levels of sedimentary carbon and nitrogen as well as low C/N ratios (Figures 

1.2 and 1.3) that indicate higher food quality. 

The fall group contained samples from August, September and October. This group is 

characterized by the polychaete P. tecta, which likely recruited to the cove in relatively 

high numbers in July. There is high variability within this sample group with respect to 

all univariate measures (Figure 1.5). Overall abundance peaked and then began to 

decline towards the end of the sampling period; a decline was also seen in all measures 

of biodiversity (H' , S, D, and ES[30]: Figure 1.5). The numerically dominant species 

included the polychaetes P. ly ra, P. steenstrupi, and the bivalves Astarte sp. and 

Crenella sp. {Table 1.3). This group is similar in composition to the June group based on 

distribution of individuals among species but not in terms of abundances, which were 

consistently lower in June. 
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Univariate measures including Shannon-Weiner diversity, species richness and evenness 

were similar in value to those reported in another benthic study from Newfoundland 

(Ramey & Snelgrove, 2003). My results show that abundance increased significantly 

(Figure 1.5; Table 1.4) between the early months (May and June) and the later months 

(late July through October). This increase in abundance is primarily because of 

recruitment of P. tecta and D. lucifera. Throughout the sampling period, changes in 

diversity measures were not significant, although Shannon-Weiner diversity index, 

Margalef's Index, and species richness all peaked in July (Figure 1.5) and declined 

through the fall. This pattern suggests that abundance and diversity peak at the same 

time, when sedimentary carbon and nitrogen are at some of their lowest levels but food 

quality (as seen in the C/N ratio) was comparatively high. The following period (August) 

had the highest C/N ratio, indicating a poorer quality food source. Thistle (1981) 

suggested that as food quality declines, species composition may shift to species better 

adapted to lower organic carbon concentrations. This explanation is consistent with the 

change in faunal composition observed in late summer. 

The data generally support the hypothesis that benthic communities change in response 

to variations food supply. The sediment pigment, carbon and nitrogen analysis indicate 

that there was a food pulse early in the sampling period, but the response was subtle and 

somewhat delayed. Biodiversity measures did not change significantly and abundance 

increases occurred months after the food pulse was detected. If recruits keyed in on this 

pulse it is possible that a 300 ~Lm sieve may have missed initial recruits until they grew 
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large enough to be retained on the sieve (e.g. Schlacher & Wooldridge, 1996). A second 

food pulse was detected in early August, at a time when benthic faunal abundance was 

already high, in contrast with the arrival of the first food pulse. The response to this later 

food pulse was harder to interpret given that abundances were already high. Organisms 

that were already present could easily take advantage of this second pulse, particularly 

given the high quality of the organic matter (lower C/N ratios) and ready availability. 
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Table 1.1: Comparisons of environmental variables from sediments and water 
column by one-way ANOVA with date as factor. 

Environment Dependent Variable ANOVA's sources ofYariation 

Water column Fu.s) p 

Chi-a Surface 2.35 0.127 

Chi-a Depth3 37.79 0.001 

Phaeopigments surface 4.49 0.026 

Phaeopigments deptha 41.22 0.001 

Sediment F(9.52) p 

Carbona 4.91 0.001 

Nitrogen a 3.32 0.003 

C/Na 4.64 0.001 

Chi-a 0.805c 0.584 

Phaeopigments 12.61 b 0.001 

a Data log transformed. 
b Degrees of freedom (6,14). 
c P-value was calculated from randomly generated F-values (RF) with 500 iterations. 
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Table 1.2: Regression analysis of sedimentary and water column variables as 
predictors of abundance (N) and species richness (S) for each sampling date (n = 7). 
CHN Sampling did not occur on Sep. 21 and Jun. 28 and abundance data for those 
dates were therefore not included. 

Environment Dependent Regression A nalysis 

Variable 

Abundance (N) Species Richness (S) 

r p r p 

Water Columna Chi-a Surface 0.2 0.915 1.4 0.778 

Chi-a Depthb 7. 1 0.563 8.3 0.530 

Phaeopigrnents 8.0 0.497 2.5 0.708 

Surface 

Phaeopigrnents 14.9 0.393 16.0 0.374 

Depthb 

Sediment Carbon I 0.9 0.470 2.5 0.734 

Nitrogen 7. 1 0.723 1. 1 0.823 

CIN 8 0.318 0.9 0.839 

Chi-a 14.9 0.359 41.3 0. 120 

Phaeopigrnents 64.2 0.030 43 0. 110 

a Water sampling occurred on Sep. 21 therefore n = 8 for water analysis. 
b Outlier (May 21) was removed from analysis. 
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Table 1.3: Mean abundance (organisms I 38.5 cm2
) ± 95% confidence intervals of numericaUy dominant fauna per sampling date 

sorted by month (May, n = 8; June, n = 12; July, August, n = 4; Se~tember and October, n = 3}. 
Rank Taxa and densities (!er sam(!ling date (!er montb 

Ma~ June Jul~ August Se(!tember October 
Diasty/is 8.13 Astarte sp. 14.25 Astarte sp. 15.25 Pholoe tecta 13.8 Astarte sp. 23 ± Astarte sp. 15.3 
lucifera ± ± 4.6 ± 7.6 ± 16.04 ± 

3.89 7.64 7.1 
2 Paradoneis 5.13 Paradoneis 5.3 ± Prionospio 12.8 Astarte sp. 12.8 Crenella sp. 13.6 Pholoe tecta 14.6 

lyra ± lyra 1.1 steenstrupi ± ± ± ± 
2.04 3.78 4.69 8.34 7.7 

3 Prionospio 4.25 Prionospio 5.2 ± Pholoe 12.3 Prionospio 9.75 Pholoe 12.6 Paradoneis ly ra 8± 
steenstrupi ± steenstntpi 1.7 juvenile ± steenstrupi ± tecta ± 5. 18 

2.18 12.0 4.95 8.49 
4 Astarte sp. 3.5 ± Crenella sp. 4.9 ± Pholoe tecta 6.75 Diasty/is 8± Prionospio 9.3 ± Prionospio 6.3 

0.97 2. 1 ± lucifera 7.33 steenstntpi 8.49 steenstrupi ± 
4.89 4.57 

5 Macoma sp. 2± Thyasira sp. 1.9 ± Crenella sp. 5.5 ± Cerastoderma 5.75 Asebellides 7.6 ± Cerastoderma sp. 5.6 
1.43 0.97 2.46 sp. ± linea/a 12.2 ± 

6.26 4.7 
6 Cerastoderma 1.88 Pho/oe tecta 1.75 Amphaertidae 5 ± Paradoneis 5.5 Paradoneis 6.3 ± Tharp ; sp. 4.33 

sp. ± ± juvenile, 8.54 lyra ± ly ra 3.97 ± 
0.86 0.84 0.97 7.53 

7 Crenella sp. 1.63 Cerastodemw 1.6 ± Macoma sp. 3 ± Crenella sp. 5 ± Diastylis 4.6 ± Chone duneri 3.33 
± sp. 0.77 0.8 3.2 lucifera 5.1 ± 

1.04 1.72 
8 Pygospio 1.25 Chone duneri 1.4 ± Pectinaria 2.75 Macoma sp. 4.75 Chone 3.6 ± Diasty lis lucifera 2.66 

elegans ± 0.65 granulata ± ± duneri 0.65 ± 
1.44 1.67 2.44 1.3 

9 Chone duneri 1. 13 Barhymedon 1.25 Phyllodoce 2.5 ± Diastylis 4.5 Scoloplos 3.33 Diasty lis sculpta 2.0 
± sp. ± mucosa 2.3 sculpta ± am1iger ± ± 

0.78 0.93 4.04 2.35 2.99 
10 Aricidea I ± Euchone 1.1± Asabellides 2.25 Asabellides 4.25 Euchone 2.66 Strongylocentrows 1.66 

catherinae 0.74 papillosa 0.53 lineata ± lineata ± papillosa ± droebachiensis ± 
2.57 1.85 1.13 2.35 

Totals May 46.13 June 47 ± July 108± August 99.5 September 123.3 October 95 
± 6.13 19.22 ± ± ± 

6.48 30.6 59.7 38.6 
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Table 1.4: Analysis of univariate benthic community parameters by one-way 
ANOVAs with sampling date and season as factors. 

Dependent Variable ANOVA's sources of variation 

Sampling Date (n = 9) Season (n = 4) 

F<8.27J p F(3,30J p 

Abundance (Nt 2.01 b 0.026 5.17 0.005 

Species Richness (S) 2.02 0.080 1.02 0.399 

Evenness (J) 1.21 0.330 0.48 0.701 

ES(30) 1.34 0.458 1.10 0.363 

Shannon-Weiner (H') 1.02b 0.436 0.21 0.886 

Margalefs Index (D) 1.58 0.178 0.35 0.791 

a Abundance data for season analysis was log transformed. 
b P-values were calculated from randomly generated F-values with 500 iterations. 
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Figure 1.1: Location of Bonne Bay, Newfoundland (top). Layout of Bonne Bay, 
including East and South Arms as well as Small Cove (sampling site - star; bottom). 
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Figure 1.2: Water column chlorophyll-a and phaeopigments concentrations (means 
and 95% confidence intervals) for each sampling date. Samples from 
depth were collected at ca. 19m. M8 = May 8; M21 = May 21; J6 = June 6; 
J19 = June 19; Jl22 =July 22; A28 = August 28; S21 = September 21 ; and 
013 = October 13. 
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Figure 1.3: Sediment parameters (means and 95% confidence intervals): A) Carbon and 
nitrogen values; B) C/N ratio (by weight), where n = 2, except for August 6th, September 21, 
and October 11th, where n = 16; C) Chlorophyll-a and phaeopigments, where n = 3; for 
each sampling date. 
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replicates) and 95% confidence intervals for numerically dominant and important 
species identified from PCA-H analysis for each sampling date. See Fig. 1.2 for 
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CHAPTER2 
IMPORTANCE OF COMPOSITION AND DIVERSITY OF PHYTODETRITAL 

FOOD SUPPLY FOR BENTHIC SEDIMENTARY MACROFAUNAL 
COMMUNITIES IN A NEWFOUNDLAND FJORD 

This chapter has been submitted and conditionally accepted by Marine Ecology Progress 
Series. It will be resubmitted with edits in the upcoming months. 

2.1 INTRODUCTION 
Our understanding of biodiversity in marine sediments is limited in many respects 

mainly because of undersampling of one of the Earth 's largest ecosystems, and the 

myriad variables that influence benthic sedimentary communities (Snelgrove & Butman 

1994). In coastal areas, habitat heterogeneity (Grassle & Grassle 1992), historical effects 

(Gray 2002) and nearshore disturbances such as storms (Norkko eta!. 2002) and winds 

(Commito eta!. 1995) are among the variables that can contribute to biodiversity 

patterns. Studies are lacking, however, on the effect that diversity of food supply has on 

the maintenance or promotion of sedimentary biodiversity in shallow-water sedimentary 

communities. 

Much of the food supply for subtidal benthic organisms is derived from the overlying 

water column (Billett eta!. 1983; Graf 1992; Josefson & Conley 1997; Parrish 1998); at 

temperate latitudes a significant part of this material may originate from the spring 

phytoplankton bloom (Smith et a!. 200 I). Multiple studies have documented marked 

pulses in labile organic matter shortly after the spring bloom both in shallow (e.g. Graf et 

a!. 1982; Bertuzzi et al. 1996) and deep-sea (e.g. Billett et al. 1983) areas. In some cases 

the sunken phytodetritus can form a greenish "carpet" at the sediment-water interface 
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(Smetacek 1984). Measurements ofheat production, oxygen demand and temperature 

show a strong benthic response during and after a sinking bloom in Kiel Bight (Graf et 

al. 1982), but effects of natural bloom events on sedimentary biodiversity are poorly 

known. Given that not all organic matter that reaches the bottom is immediately 

available to benthic macrofauna, and that food supply is an important factor in regulation 

of some benthic communities, how does the composition of the food supply influence 

benthic community structure? 

In order to understand how food supply might influence benthic community structure, 

the composition of sinking organic material must be understood. Sinking particles in the 

ocean have been well studied (e.g. Billett et al. 1983; 1985; Fowler & Knauer 1986; 

Alldredge & Silver 1988; Grebmeier & McRoy 1989; Parrish 1998; Smith et al. 2001 ). 

Sinking material can comprise both living and dead organisms, parts of organisms, or 

waste products from animals. These small individual components can sink separately or 

form tiny(> 500 Jlm) aggregations of marine snow that are important microhabitats for 

pelagic bacteria and protists (Alldredge & Silver 1988). The quality of sinking material 

as a food source for benthic organisms depends on its composition. For example, in 

temperate and sub-arctic ecosystems, the spring bloom is composed primarily of 

diatoms, which can sink to the seafloor as intact cells. For shallow-water environments 

in particular, these intact cells provide a high-quality food source that is readily 

incorporated into benthic food webs (Graf 1992; Parrish 1998). This availability is in 

contrast with structurally complex plant material such as leaf litter that has high cellulose 
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and lignin content, which is of limited nutritional value and consequently a poorer 

quality food source (Kendall et al. 1995). Intact phytodetritus cells can easily be 

incorporated directly into the food chain through ingestion, or they may be quickly 

mixed below the sediment-water interface for later use (Josefson et al. 2002; Witte et al. 

2003). Levin et al. (1999) found that on the North Carolina continental slope that 

phytodetritus is consumed quickly by protozoans and metazoans, in hours to days, or 

alternatively it may be buried, cached or worked into the sediment by animal activities, 

in particular large bioturbators. Within the same study it was found that surface deposit 

feeders consistently showed higher loads of tracer, indicating that a significant portion of 

feeding takes place at the sediment surface (Levin et al. 1999). 

A few studies have focused on the response of shallow-water macrofauna to supply of 

phytodetrital organic matter (Kendall et al. 1995; Josefson & Conley 1997; Stocks & 

Grassle 200 I ; Kelaher & Levinton 2003). In most cases the faunal response has been 

quick (days to months: Kelaher & Levinton 2003). Most of these studies have focused on 

intertidal mudflats or saltmarsh ecosystems and comparatively little is known for 

shallow-water subtidal communities (Stocks & Grassle 200 I ; Quijon et al., 2008). 

One method of evaluating response to organic material is to enrich sediment within an 

experimental tray containing sediments, which is then deployed onto/into the seafloor; 

after some period of time the tray is recovered (e.g. Snelgrove et al. 1992; Kline & 

Stekoll 2001). Tray experiments have the advantage of simplifying interacting variables 
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such as predation and adult-larval interactions that could influence faunal response to 

sediment enrichments but biases can be introduced by altering bottom flow (Snelgrove et 

a!. 1992), excluding horizontal colonizers, and altering sediment geochemistry (Smith & 

Brumsickle 1989). A more natural experimental approach would be to enrich the natural 

seafloor, and thereby mimic phytodetritus flux to the seafloor. Very few studies have 

attempted in situ enrichment of intact sediments (deep-sea e.g. Witte eta!. 2003). In situ 

benthic enrichment experiments add realism by encompassing the complexity of the 

natural ecological interactions within the community (Grassle et a!. 1980), sediment 

geochemistry is not disrupted, and more species are included within the species pool 

(Kline & Stekoll 2001). The disadvantages of in situ experiments include complex 

logistics; except for submersibles and related technologies, sub-tidal habitats are only 

accessible by divers and are therefore limited to relatively small scales. The complexity 

of ecological interactions tends to produce large variation within the results, 

necessitating large numbers of replicates (Kline & Stekoll 200 I). 

Few studies have examined the role of organic composition on faunal response, and the 

studies that have examined this question have focused primarily on the deep-sea 

(Snelgrove eta!. 1992; 1996). Similar studies are lacking for shallow-water systems. In 

this study, in situ experiments are used in an attempt to examine the potential effect of 

the composition and diversity of sinking food supply (phytodetritus) on a shallow-water 

soft-sediment community. Specifically, I ask whether different types of phytodetritus 

attract different suites of species and diversity of colonizing species, and does a diverse 
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food source attract a greater diversity of colonizers and therefore higher abundances of 

different species when compared with relatively homogeneous food sources? 

2.2 MATERIALS AND METHODS 

2.2.1 Sampling Site 

Experiments were deployed in "Small Cove", in the South Arm of Bonne Bay, 

Newfoundland (Figure 1.1 ). Bonne Bay is a fjord on the Northwest coast of 

Newfoundland (the study site is further described in the thesis introduction as well as 

Quijon & Snelgrove 2005). Experiments were carried out in the summer and fall of 2002 

along two transect lines within the cove at a depth of ~20m. The summer transect line 

ran between 49°28.872 N 57°54.551 Wand 49°28.837 N 57°54.481 Wand the fall 

transect line ran between 49°28.840 N 57°54.485 Wand 49°28.798 N 57°54.472 W. 

2.2.2 Establishing Artificial Patches 

Artificial patches were created by gently placing an inverted (open bottom) clear plastic 

container (38 em x 26 em x 13 em high) on the sediment surface by divers for a period of 

24 hours at a depth of 20 m. The chambers were not pushed into sediment to avoid 

creating a "footprint" which could disturb flow over the patch during the experiment; the 

chambers were weighted to prevent them from floating away. Prior to deployment small 

0.5 em holes were drilled in the top and high on the sides of the container to act as vents. 

ln addition, a 0.75 em hole was drilled in the sides of the container and hollow plastic 

tubing was glued to the hole and across the inside of the container. Multiple tiny holes 

were drilled into the tubing along its length to create a "spray bar" that would disperse 
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the algal treatment throughout the interior of the container. Assembled containers were 

soaked on site for at least 24 hours before deployment on the sediment. 

Algal treatments (Instant-Algae® from Reed Mariculture) were transported to the bottom 

in pre-calibrated syringes that were attached to the spray-bar prior to gently injecting the 

algae into the chamber. The syringe was reloaded with ambient seawater and again 

injected to flush any remaining treatment from the syringe and spray bar. For control 

treatments, ambient seawater only was injected into chambers instead of algae. The 

chamber was left in place for an additional 24 hours to allow the algae to settle on the 

sediment before it was gently removed and experiments were initiated. 

2.2.3 Experiments 

For each experiment (summer and fall) 20 artificial patches were created along two 

transect lines using 5 different treatments: (I) A monoculture of Thalassiosira 

weissjlogii (Bacillariophyceae, a large centric diatom hereafter Thalassiosira) (2) A 

monoculture of Chaetoceros gracilis (Bacillariophyceae, a chain-forming diatom 

hereafter Chaetoceros) (3) A monoculture of Nannochloropsis sp. (Eustigmatophyceae, 

a small green algae, hereafter Nannoch/oropsis) (4) A mixture of Thalassiosira, 

Chaetoceros, and Nannochloropsis (5) No enrichment (seawater only). 

Each treatment was replicated 4 times along the transect line and treatments were 

haphazardly interspersed at I - 3 m intervals. 
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The amount of algae added for each treatment was equivalent to carbon accumulation for 

35 days (the approximate duration of the experiment) at peak spring bloom levels as 

measured in three Newfoundland bays: Trinity Bay (Parrish 1998) Conception Bay 

(Redden 1994), and Bonne Bay (Tian et al. 200 I). This amount was estimated to be 

18.55 g m-2 of organic material or 1.81 g when scaled to patch size. The volume of each 

culture to be delivered was determined based on dry weight, as well as the assumption 

that organic material was 30% carbon, so that 6.04 g of carbon was added for each 

treatment. Because the dry weights of each culture differed, 31 to 127 ml of culture was 

necessary to deliver the desired amount of carbon. For the mixture treatment, 6.04 g C 

was apportioned among the 3 algal species, and the appropriate proportions were mixed 

together in a large beaker prior to loading into syringes. Algal cultures were refrigerated 

at 5 °C (for a period not exceeding 2 weeks) until the day they were measured and 

loaded into syringes. Treatment 5 (no enrichment) served as a control for syringing and 

container effects. Each patch was sampled approximately one week after enrichment 

with a single sediment core (diameter of 6.5 em, pushed to a depth of approximately I 0 

em), then again approximately four weeks later (5 weeks after enrichment) for a total of 

40 cores per experiment. Cores were sectioned into 0-2 em, 2-5 em, and 5-l 0 em strata. 

The sections were sieved on a 300-f.lm sieve, washed with filtered seawater, placed into 

glass sample jars and fixed in I 0% buffered formalin solution for at least 24 hours. They 

were subsequently rinsed back into glass jars with 70% alcohol and stained with Rose 

Bengal. Samples (top 5 em) were sorted and organisms were identified to the lowest 

possible taxon, which was usually species. Juveniles were individuals that were 
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recognizable as smaller than adults, but lacked distinguishing characteristics to be 

positively identified as an adult or to genus and species. Therefore juveniles were only 

identified to the lowest possible taxon. Representative samples from the 5-10 em 

sediment strata were also sorted, but because 99.5% of organisms were found in the top 

5 em, the remaining samples from the 5-10 em fraction were not sorted and the fraction 

was not included in analyses. This entire experiment was carried out once during the 

summer and once during the fall of2002. The first experimental enrichment (summer, 40 

cores) began June 20th' and was sampled on June 30th and again on July 26th. The second 

experiment (fall, 40 cores) began on Aug 24th, and was sampled on September 8111 and 

again on October 9th 2002. Because the Chaetoceros algal culture was unavailable, 

Tetraselmis sp. (Chlamydomonadaceae, a large green flagellate hereafter Tetraselmis) 

was substituted for the fall experiment. The resulting treatments for the fall experiment 

were as follows: (1) A monoculture of Thalassiosira (2) A monoculture of Tetraselmis 

(3) A monoculture of Nannochloropsis (4) A mixture of Thalassiosira, Tetraselmis, and 

Nannochloropsis and (5) No enrichment. 

In a few instances during the fall experiment, one of the plastic containers was missing 

upon return to the site to inject algal treatments. In these instances, the affected patches 

were prepared again, following the same protocol; each patch was sampled within the 

same time frame as those originally enriched except that they were offset by several 

days. For this reason I included the data from these patches with the original patches for 

data analysis. 
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2.2.4 CHN Sampling 

Mini-cores (60 ml syringes with tip removed) were pushed 2-3 centimetres into the 

sediment to sample sediment for CHN analysis. The top 1 em was removed from each 

core, and frozen until analysis. Samples were then freeze-dried at -60 °C and analyzed in 

duplicate using a Perkin-Elmer Model 2400 CHN Analyzer. Samples were taken during 

the July 261
\ September 81

\ and October 91
h sampling dates for a total of 60 samples. 

2.2.5 Data Analysis. 

Because the algal treatments differed between experiments, and a strong seasonal signal 

in the ambient fauna was present (Chapter I) it was inappropriate to analyze the data 

from both experiments in one analysis. Data from each experiment were therefore 

analysed separately using univariate and multivariate methods. 

Primer v5 was used to generate univariate community measures, abundance (N), species 

richness (S), Margalefs biodiversity index (D), evenness (J), Shannon-Weiner diversity 

index (H'), and Expected Species (based on 30 individuals) ES[30]. Means and 95% 

confidence intervals were plotted for each measure. For statistical comparison, the 

residuals of these measures were first analysed for normality using a Ryan-Joiner 

Normality test and homogeneity of variance was tested using Levene's test of equality of 

error variances. If the assumptions were met then data were analysed using two-way 

ANOV A with time and treatment as factors. Where data did not meet these assumptions, 

the data were log transformed. If transformation did not resolve the problem, F-values 
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were generated by means of randomization with 500 iterations with replacement. From 

these random F-values, p-values were calculated. 

Hurlbert rarefaction curves (Hurlbert, 1971) were generated using Primer v5; curves 

were plotted using means of rep! icates and 95% confidence intervals for each treatment 

and sampling period. Rarefaction curves were further analysed by means of ANCOV A 

with week and treatment as factors and number of individuals as a covariate. In all cases 

a polynomial regression transformation was used to ensure assumptions of ANCOV A 

were met. 

Chord Normalized Expected Species Shared (CNESS), with m = I 0 individuals was used 

to compare similarity of communities for each sampling week (20 cores), as well as for 

all ofthe samples in a given experiment (40 cores). CNESS was selected because of its 

ability to deal with rare species. Principal Components Analysis (PCA) based on the 

CNESS similarity matrix was overlaid with Gabriel biplots that identified those species 

driving similarity patterns. 

CHN measurements were plotted and compared by means and 95% confidence intervals 

as well as by one-way-ANOV A with treatment as factor. Time could not be tested 

because sediments for CHN were only sampled in week 5 for the summer experiment. 

CHN data for the fall experiment was compared using a two-way ANOV A with 

treatment and time as factors. One replicate measurement of carbon was highly 
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anomalous within the fall experiment and was therefore discarded, resulting in an 

unbalanced ANOV A. To compensate for this missing value, the average of the 

remaining 3 replicates was substituted, and one degree of freedom was subtracted from 

the overall error (Underwood 1996). 

2.3 RESULTS 

2.3.1 Experimental Fauna Overview 

A total of2364 and 2751 individuals were recorded from the summer and fall 

experiments respectively; total abundance for each sampling week ranged from 967 to 

1401 individuals. Ofthe 106 taxa identified, polychaetes were the dominant group 

ranging from 55% to 64% of the total individuals for a given sampling period; other 

groups included molluscs, anthozoans, hydrozoans, crustaceans, nemerteans, sipunculids 

and echinoderms. Bivalve molluscs made up 21 % and 29% of the total individuals from 

the summer and fall experiments respectively; all other groups combined made up 18% 

and 14% respectively. The fauna exhibited a relatively high level of dominance. For 

example, the top 5 taxa for any given sampling week generally made up 50% of the total 

abundance; the most abundant taxa included the polychaetes Paradoneis lyra, 

Prionospio steenstrupi, Pholoe tecta, the cumacean Diastylis lucifera, the bivalves 

Astarte sp. , Crenella sp. Cerastoderma sp., and the amphipod Bathymedon sp. (Tables 

2.1 a and b). Juvenile P. tecta polychaetes and juvenile cumaceans were among the most 

abundant taxa for week 5 of the summer experiment, however, juveniles were not 

encountered in any other sampling period. 
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2.3.2 Diversity Measures 

Two-way analysis of variance of either species richness (S), abundance (N), Margalefs 

Index (D), evenness (J), or Shannon-Weiner diversity index (H') were compared with 

treatment and time as factors revealed different results for the different experiments. The 

only measure that was significantly different among treatments was evenness (J) for the 

fall experiment (F(4•30l = 3.051; p = 0.03); where the Tetraselmis treatment was 

significantly different from the Nannochloropsis treatment. For the summer experiment 

species richness (S; F(l ,3o) = 8.534, p = 0.007), abundance (N; F(I.30) = 4.074, p = 0.038) 

and Margalefs index (0; F(l .3o) = 7.816, p = 0.009) were significantly higher for week 5 

of the experiment, but none differed with respect to treatment. In the fall experiment, no 

measures were significantly different with respect to time. Interaction terms were not 

significant for any measure in either experiment. 

Although no differences were observed in Expected Species for n = 30 individuals (p > 

0 .05; for both experiments, all treatments, weeks and interaction terms), in the summer 

experiment rarefaction curves for the treatments and the control intermingled for week l , 

however by week 5 the control and the algal treatments diverged, this is significant 

(F(4.74l = 14.953, p < 0.001) indicating higher diversity values for the algal treatments 

during the later summer (Figure 2. 1 a and b) relative to controls. To some extent this 

trend was reversed in the fall experiment; rarefaction curves for week 1 treatments were 

slightly elevated relative to controls, but by week 5 the curves were intermingled (Figure 
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2.1 c and d) no significant differences were detected by AN COY A analysis (F(4.90l = 

0.509, p = 0.729). 

2.3.3 Multivariate Analysis 

Principal Components Analysis (PCA) of the summer experiment clearly distinguished 

the two sampling weeks along the PCl axis, however, there was no pattern with respect 

to experimental treatments. Three of 4 control (X) replicates for both sampling weeks 

consistently grouped together, but in both cases these control samples clustered with the 

mixture treatments. A similar analysis for the fall experiment did not clearly distinguish 

between sampling weeks, and nor did any treatments group together consistently (Figure 

2.2). In separate analyses of each week of each experiment, during week 1 of the 

summer experiment the Thalassiosira treatment separated from the other algal 

treatments and control treatment, along the PC2 axis. This pattern did not persist to the 

fifth week, when the separation of the Thalassiosira treatments was no longer observed 

(Figure 2.3 ). For the fall experiment during week 1, the PC2 axis again separated the 

Thalassiosira treatments from the other treatments and controls. [n this instance the 

polychaete Phy llodoce mucosa contributed strongly to the pattern. By the fifth week, this 

separation was no longer apparent, although the polychaete P. mucosa continued to drive 

community pattern, though not just Thalassiosira treatments. During this sampling week, 

the algal mixture treatment (M) formed a tight grouping driven primarily by the bivalve 

Crenella sp. (Figure 2.3). 
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2.3.4 Carbon and Nitrogen Analysis 

Analysis of variance for carbon and nitrogen variables indicated no significant 

differences between treatments for week 5 of the summer experiment for carbon ( x = 

170.6 llglmg; F(4,15) = 1.94; p = 0.156), nitrogen (x = 11.2 llglmg; F(4.15) = 1.54; p = 

0.240) and C/N ratio (x = 17.1; F<4.15l = 0.254; p = 0.903) (Figure 2.4). For the fall 

experiment, no significant differences were found between treatments (C, x = 89.8 

llglmg; F<4.29J = 1.02; p = 0.476; N, x = 9.1 llglmg; F<4.29J = 0.556; p = 0.697; C/N, x = 

10.5 11glmg; F<4.29l = 0.664; p = 0.622). However, because sampling for carbon and 

nitrogen was carried out for both sampling weeks, differences were significant with time 

as a factor for N (F(I .29) = 28.991 p = 0.000) and C/N (F(I.29) = 13.822 p = 0.001). 

Nitrogen values were higher during week 1 whereas C/N values were higher in week 5 

(Figure 2.4). Carbon levels (F(2.44l = 10.869, p < 0.001) as well as C/N ratios (F(2.43l = 

19.998, p < 0.001) were significantly higher in the summer experiment than during either 

week of the fall experiment (Figure 2.4). 

2.4 DISCUSSION 

The objectives of this chapter were to determine if changes in available food supply can 

elicit different community patterns within the benthic macrofauna. To do this I created 

artificial patches on the seafloor in hopes of mimicking patchy settled phytodetritus of 

different species and a mixture of species. The species chosen were had slightly different 

attributes. There were two diatoms (Chaetoceros and Thalassiosira) that differ in size but 

are common phytoplankton species in the area, whereas Nannochloropsis and 

56 



Tetraselmis are both green flagellate species that are not normally found in this area and 

were also different sizes. 

The results from both the summer and fall experiments, although different, indicate that 

the composition of a substantial pulse of organic matter did not significantly influence 

community structure or diversity within the Bonne Bay sedimentary community. No 

pattern was apparent with respect to treatment from PCA analyses of species 

composition or community descriptors such as species richness, H', or abundance. 

During different time periods (summer, fall) there appeared to be slight effects of algal 

composition on infaunal response. ANCOV A analysis revealed that during the summer 

experiment by week 5 the enrichment treatments combined showed higher expected 

species shared than controls (Figure 2.1); this pattern was not evident during the fall 

experiments, which suggests that influence of food supply may only apply to specific 

periods of the year. Since this is the only analysis to reveal significant difference in 

biodiversity it is thought that this is a relatively weak response. Evenness also showed an 

effect, which will be discussed below. What is apparent from the data is the presence of 

a strong seasonal signal. 

Abundance patterns of fauna changed during the sampling period. The first sampling 

week of the summer experiment had the fewest individuals, whereas the last week of 

sampling of the fall experiment had the greatest number of individuals (Table 2.1 ). 

Seasonal changes in abundance have been reported in numerous studies (e.g. McCall 

1977; Trueblood, et a!. 1994; and Kelaher & Levin ton 2003) and increases in abundance 
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have been attributed to the availability of food resources (Kelaher & Levin ton 2003) and 

recruitment events (Renaud et al. 1999) in relation to reproductive strategy (Trueblood et 

al. 1994). A major recruitment event is probably the reason for the significant increase in 

abundance in week 5 of the summer experiment; this was the only sampling week where 

juveniles were abundant (P. tecta, and cumaceans, probably Diastylis sp.). The 

cumacean D. sculpta has been found to release young in mid-July (Corey 1976); whereas 

P. tecta at slope depths offNorth Carolina, is thought to recruit year round (Blake 1993), 

but whether this pattern applies to higher latitudes requires further study. P. tecta was 

found to be an important infaunal predator within the cove (Quijon & Snelgrove 2005) 

and may have recruited to the cove in response to abundant prey. P. tecta growth rates 

are thought to be rapid and individuals can double their body size in 2 months 

(Heffernan 1985). At this growth rate, juveniles that recruited in mid-July would be large 

enough to be identified as adults by mid-September when sampling for the fall 

experiment occurred, which is presumably why no juveniles were found at that time. 

Abundance influences species richness and Margalef's Index which were also 

significantly higher in week 5 of the summer experiment. Given that samples containing 

more individuals typically support more species (e.g. , Clark & Warwick 200 I), it is not 

surprising that these two abundance-based indices were also significantly higher in week 

5. These results are consistent with the seasonal trend in the an1bient fauna (Chapter 1 ). 
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Evenness, which describes how evenly individuals are distributed among different 

species, was significantly higher for the Nannochloropsis treatments than the Tetraselmis 

treatments during week 1 of the fall experiment (F(3.3o) = 3.05; p = 0.032). For the 

Nannochloropsis treatments, abundance, species richness and Shannon-Weiner diversity 

were higher, though not significantly, than in Tetraselmis treatments. In pollution 

studies, such as sediment contamination by oil, species are often more evenly distributed 

compared to uncontaminated sites, which is usually attributable to the decrease in 

abundance of dominant species and elimination of rare species (Schratzberger et a!. 

2003). In Tetraselmis and Nannochloropsis treatments Astarte sp., Crenella sp., and P. 

tecta, were the most abundant taxa; in each case abundance was at least two times 

greater in Tetraselmis treatments. 

One concern with this experimental design is that the treatment could be resuspended 

and swept away from the artificial patches before any faunal response could occur. 

Several lines of evidence suggest this was not a problem. The protected nature of the 

cove results in very little bottom current, and any sediment resuspended by divers was 

still clearly visible in the water column at the end of the dive 45 minutes later. Digital 

photographs of cores taken from treatment patches after week I of the summer 

experiment clearly show algal treatments mixed into the sediment to a depth of approx. 

1.5 em. Aside from the photographic evidence, several studies attest to the rapid 

processing of freshly settled phytodetritus. ln a laboratory study involving the polychaete 

Nereis diversicolor, cores treated with 14C labelled Fucus serratus exhibited no visible 
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signs of treatments after just 3 days (Kristensen & Mikkelsen 2003). An in situ study off 

the Carolina margin, using 13C labelled diatoms as the treatment, showed that 

agglutinated protozoans and surface-deposit feeding polychaetes rapidly consumed the 

labelled treatment in 1 to 1.5 days (Levin et a!., 1999). Many of the species that are 

numerically dominant in this study, are surface-feeding deposit feeders (e.g. 

Ampharetidae, Spionidae, and Sabellidae); Paraonid polychaetes are thought to be 

selective diatom feeders (Fauchald & Jumars 1979), and two genera from this family 

(Paradoneis and Aricidea) are well represented in this study (Tables 2.1 ). With high 

abundances of surface-feeding deposit feeders, it is likely that any added organic 

material would have been consumed quickly or mixed deeper into the sediment. Either 

scenario would have prevented my detection of the enrichments by (1) removing the 

organic matter from the sediment by ingesting it before I sampled and (2) diluting and 

burying the treatment below the sediment horizon sampled for CHN (~ I - I. 5 em). 

Fall experiments offer further evidence that treatments were not swept away from 

patches. Significant differences were observed in C/N ratios from week 1 to week 5, and 

the lower C/N ratios for week 1 (Figure 2.4) could be indicative of phytodetritus input. 

Ambient C/N levels declined through the fall , however CHN sampling for week 1 

occurred before the trend began (Chapter 1 ). 

Carbon to nitrogen ratios (C/N) provide a general indicator of food quality, and C/N 

ratios ranged between 5.05 and 19.44 over the duration of all experiments. This range 
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indicates that food quality ranged from excellent (-4) to relatively good (- 20) 

(Blackburn et a!. 1996; Kendall et a!. 1995). Quijon and Snelgrove (2005) reported mean 

C!N ratios of 15.9 for ambient sedimentary habitats 5 m shallower at the same site and 

also noted that quality varies substantially from site to site within Bonne Bay. A study by 

Parrish (1998) in Trinity Bay, Newfoundland found that planktonic lipids passed through 

the water column virtually unaltered, and were incorporated quickly into the benthic 

food webs. These values indicate that the sediments around Newfoundland typically 

contain organic carbon of high quality that would be readily available to the benthic food 

web, especially during the spring and summer months. 

Two other experimental design issues to be considered are the adequacy of patch size 

and the timing of experiments. Levinton & Kelaher (2004) found that small food-rich 

patches - 63 cm2 were colonized at the same frequency as similar-sized, food-poor 

patches. From these data they suggested that larvae could detect larger patches more 

predictably; the patch size used in this experiment (998 cm2
) was considerably larger 

than 63 cm2
, but was smaller than their suggested patch size (ca. l m2

, Levinton & 

Kelaher 2004); which would have been impractical using my methods. Smith and 

Brumsickle ( 1989) found that patch size influenced colonization; larger patches were 

colonized predominately by larvae whereas smaller patches were colonized by postlarval 

stages. They suggested that a patch size between 50 cm2 and 1750 cm2 might represent a 

balance between colonization modes. Visual observations at the Bonne Bay site also 

supported the suitability of the patch size used in that lobster (Homarus americanus) 
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feeding pits were noted near the transect lines and were similar in size to the 

experimental patches. In slightly shallower areas adjacent to the sampling site, variably­

sized patches ofbenthic diatoms were observed and high variation in ambient C and N 

values (Chapter l) further emphasizes the patchy distribution of organic matter at this 

site. 

Timing of experiments would have been less than optimal had no recruitment events 

been detected, or had no changes been observed in the ambient community. If no larval 

recruitment had occurred, then the only means of colonization would have been by post­

larval immigration, which would have been difficult to detect given that patches were 

created over ambient sediment (containing intact communities) on the seafloor. Because 

juveniles of P. tecta polychaetes and cumaceans in particular were abundant at times and 

were identified as being important by PCA analysis, there was clearly an opportunity for 

a faunal response to the patches other than adult immigration. Evidence of a strong 

seasonal signal is evident in algal treatments (e.g. significant changes with time as factor; 

see Chapter 1 ). Thus, timing of these experiments was appropriate to capture both 

potential colonization and immigration; but it is possible that a stronger response might 

be observed in other taxa at other times of the year. 

To provide a more comprehensive understanding of colonization, more natural, in situ 

experiments are essential. The advantages of in situ experiments include unaltered 

sediment geochemistry (Smith and Brumsickle 1989), unaltered bottom flow conditions 
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(Snelgrove et al. 1992) as well as the realism associated with conducting experiments in 

the field (Grassle et al. 1980). In situ studies with minimal manipulation are less 

susceptible to methodological biases and artefacts that can be introduced in other cases. 

There are disadvantages to using in situ experiments. Logistics generally limit such 

experiments to small scales and low precision (Worm et al. 2000). Predation, which is a 

major influence in this area (Quijon & Snelgrove 2005) and elsewhere (Schneider, 1978; 

Schneider 1992; Ambrose 1984), as well as other ecological interactions (Kline & 

Stekoll 2001) confound any simple interpretation of results. A commonly listed 

shortcoming of in situ enrichment experiments is the lack of measurement of the 

enrichment (Worm et al. 2000). In the current study, the relatively low frequency of 

sampling for carbon and nitrogen (e.g. one sampling period for the summer experiment 

and two sampling periods for the fall experiment) represented a trade-off between the 

relatively small size of the experimental patch (998 cm2
) , the logistics of working at 20 

m depth, and the desire to minimize disturbance at the site. Unfortunately the fate of the 

carbon and the time scale involved could therefore not be resolved unambiguously. 

Newfoundland waters are productive with a seasonal abundance of high-quality food 

resources (Parrish 1998), as a result this system may be less carbon limited than others 

and pulses of enrichment represent a weak input relative to ambient availability. 

It may be possible that the food sources used were not different enough from each other 

to elicit different responses. For this experiment 3 different species of phytoplankton 
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were used as enrichment species to simulate sinking food supply. Although beyond the 

scope of this study on phytodetritus as a food resource, further work could incorporate 

more strongly contrasting sources of organic matter (e.g., Snelgrove et al. 1992), such as 

Laminaria sp., or Fucus sp., which are abundant within the bay, as an alternative food 

source; or base the food supply on their respective fatty acid profiles. Nonetheless, it 

appears that the composition or diversity of a pulsed phytodetrital source does not 

significantly influence the benthic community dynamics within this ecosystem, at least 

for the range of organic input types that were tested. 
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Table 2.1a: Mean density (individuals 38.5 cm-2
) and 95% confidence intervals for numerically dominant species for 

the summer experiment. 

Taxa and densities per treatment 
Week Rank T c N M X 
Wk I I Prionospio 9.5 ± 6.3 Astane sp. 8.5 ± 3.8 Astarte sp. 7.25 ± 8.4 Astarte sp. 9.5 ± 4.8 Bathy medon sp. 9.5 ± 6.5 

steenstrupi 
2 Paradoneis 8.5 ± 1.3 Bathy medon 5.25 ± 5.7 Crenella sp. 4.75 ± 5.7 Prionospio 7 ± 2.7 Paradoneis lyra 6.5 ± 3.0 

lyra sp. steenstrupi 
3 Bathymedon 5 ± 5.5 Crenella sp. 4.75 ± 2.8 Paradoneis lyra 4.25 ± 1.9 Paradoneis lyra 5.75 ± 4.2 Prionospio 4.25 ± 3.2 

sp. steenstrupi 
4 Astarte sp. 4 ± 3. 1 Paradoneis 4.25 ± 2.6 Diastylis 4 ± 4 .2 Aricidea 4.5 ± 4.7 Astarte sp. 4 ± 1.8 

ly ra lucifera catherinae 
5 Pholoe tecta 3.5 ± 2.6 Prionspio 4 ± 1.1 Bathymedon sp. 3.5 ± 2.5 Ba~hymedon sp. 4 .25 ± 2.6 Diastylis 2.25 ± 2.0 

steenstrupi lucifera 
Total 51.5± 14.7 Total 47 ± 16.5 Total 45.5 ± 30.7 Total 54.8 ± 20.3 Total 43 ± 13 .3 

Wk5 Prionospio 9.5 ± 3.3 Astarte sp. 9.25 ± 4.8 Prionospio 12 ± 5.7 Prionospio 10.25 ± 3.5 Cumacean 34 ± 66.6 
steenstrupi steenstrupi steenstrupi juvenile 

2 Paradoneis 7±4.9 Prionospio 8 ± 5.1 Crenella sp. 5 ± 4 .5 Astarle sp. 5 ± 3.8 Pholoe j uvenile II ± 7. 1 
lyra steenstrupi 

3 Astarte sp. 6.75 ± 5.6 Plwloe 6.5 ± 6.7 Astarte sp. 4 .25 ± 3.2 Pholoe juvenile 4 .5 ± 7.6 Prionospio 9.25 ± 4.5 
juvenile s teenstrupi 

4 Pholoe 4 ± 2. 1 Crenella sp. 6±2. 1 Pholoe juvenile 3.75 ± 3.4 Paradoneis (vra 4.25 ± 2.6 Astarte sp. 7± 6.5 
juvenile 

5 Chane duneri 3.25 ± 3.8 Diasty/is 5.25 ± 5 Paradoneis lyra 3.5 ± 2.6 Diastylis 3.75 ± 7.3 Paradoneis lyra 3.75 ± 0.94 
lucifera lucifera 

Total 69 ± 6 .5 Total 76 ± 24.8 Total 57.8 ± 23.5 Total 5 1 ± 27.8 Total 95.5 ± 83 .0 
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Table 2.1b: FaU experiment. 

Taxa and densities l!er treatment 
Week Rank T Te M X 
Wkl I Astarte sp. 7± 3.2 Pholoe tecta 12.75 ± Diastylis 6.75 ± 4.0 Pholoe tecta 12± 9.4 Pholoe tecta 8.5 ± 7.3 

6.8 lucifera 
2 Pholoe tecta 6.75 ± 5.7 Diasty/is luficera 11.5 ± 8.4 Astarte sp. 6.25 ± 3.3 Astarte sp. 7.75 ± Diastylis lucifera 6.5 ± 3.3 

11.4 
3 Paradoneis lyra 5.5 ± 2.5 Astarte sp. 10.75 ± Prionospio 5.25 ± 3.1 Prionospio 7.25 ± 2.2 Astarte sp. 6.25 ± 5.8 

11.9 steenstrupi steenstrupi, 
4 Phyllodoce mucosa 4 ±2.9 Crenella sp. 7.5 ± 12. 1 Crenella sp. 4.75 ± 5.6 Paradoneis ly ra 6.5 ± 3.6 Cerastoderma sp. 4.5 ± 5.3 

5 Prionospio 3.75 ± 0.5 Paradoneis lyra 6.25 ± 3.2 Pholoe tecta 4.25 ± 2.8 Crenella sp. 5 ± 5.8 Paradoneis lyra 3.75 ± 0.5 
steenstntpi 

Total 53.3 ± 6.1 Total 87.8 ± Total 6 1.5 ± Total 80.8± Total 54.3 ± 
32.7 30.8 30.0 40.7 

Wk5 Astarte sp. 9.75 ± 5.2 Astarte sp. 19 ± 13.8 Astarte sp. 7.5 ± 7.3 Pholoe tecta 13.75 ± Paradoneis (vra 5.75 ± 3.8 
11.9 

2 Pholoe tecta 7.5 ± 6.9 Crenella sp. 15.25 ± Crenella sp. 7 ± 7.3 Astarte sp. 9.75 ± 8.3 Pholoe tecta 5.25 ± 3.7 
15.7 

3 Diastylis lucifera 6.25 ± 1.5 Pholoe tecta 11 ± 6 Pholoe tecta 5.5 ± 6.3 Crenella sp. 5.25 ± 3.5 Astarte p. 4 .75 ± 3.9 

4 Paradoneis zvra 6 ± 2.5 Cerastoderma sp. 5 ± 1.6 Diastylis 5.25 ± 1.5 Paradoneis lyra 4.75 ± 1.7 Diastylis lucifera 4.5 ± 3.6 
lucifera 

5 Crenella sp. 3.75 ± 2.0 Paradoneis lyra 4.75 ± 3.4 Prionospio 4.5 ± 3.3 Prionospio 4.5 ± 2.5 Cerastoderma sp. 2 .75 ± 2.2 
steenstrupi steens1111pi 

Total 63.8 ± Total 103 ± 61.6 Total 54.3 ± Total 78.8 ± Total 50.5 ± 
28.7 32.3 35.2 26.7 
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and fall (bottom) experiments. Gabriel Biplot vectors show which species contribute 
most to pattern. Subscripts denote sampling week (A = Week 1, B = Week 5). For 
treatment symbols see Figure 2.1. 
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CHAPTER3 
DOES THE QUANTITY OF SINKING PHYTODETRITAL FOOD SUPPLY 

INFLUENCE SHALLOW-WATER BENTHIC COMMUNITY STRUCTURE? 

Data and text from this chapter appears in: 

Quijon PA, Kelly MC, Snelgrove PVR (2008) The role of sinking phytodetritus in 
structuring shallow-water benthic communities. J Exp Mar Bioi. 366:134-145 

3.1 INTRODUCTION 

With increased consumption of fossil fuels and subsequent atmospheric emissions of 

carbon dioxide, the fate of carbon in the global ecosystem has become a major 

environmental issue (Hopkinson & Vallino, 2005). As much as one hundred million tons 

of carbon in the fom1 of carbon dioxide is produced by primary production in the worlds 

oceans each day, and most of this is sequestered into the marine ecosystem by sinking 

particles (Behrenfeld et al. , 2006). As increased amounts of carbon dioxide are absorbed 

by the ocean the impacts on the functioning of this massive ecosystem are at risk of 

major changes (Buesseler et al., 2007; Schmittner, 2005). 

This sinking production serves as a high quality food source for many oceanic 

communities, including the benthic sedimentary community (Parrish, 1998; Widbom & 

Frithsen, 1995). Food supply as a structuring mechanism for benthic communities has 

been investigated in several studies (Graf, 1987; Josefson & Conley, 1997; Galeron et 

al. , 2000). The significance of food supply as an influence on macrofauna! communities 

ranges from very important (Grebmeier et al. , 1988; Gould & Gallagher, 1990; Stocks & 

Grassle, 2001 ), where food could be a limiting resource or have a direct effect on 
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biomass, to less important, with little or no effect on variables such as polychaete 

recruitment (Ambrose & Renaud, 1997) or abundance or diversity (Chapter 2). 

The organic matter that the benthos receives can have very different effects depending 

on amounts and timing of delivery (Widbom & Frithsen, 1995; Widdicombe & Austen, 

2001). Too much organic matter can have an adverse effect on benthic communities; for 

example, high organic loads combined with low physical disturbance yielded lower than 

expected diversity (Widdicombe & Austen, 2001). Numerous eutrophication studies 

consistently show that high levels of organic enrichment, carbon or other nutrients such 

as nitrogen or phosphorous generally lead to increases in a few opportunistic species, 

while decreasing overall diversity and abundance of other less opportunistic species 

(Oviatt eta!. 1986; Widbom & Frithsen, 1995). In more extreme cases, eutrophication 

can cause such intense oxygen stress that macrofauna can be almost wiped out entirely 

during warm summer months (Rabalais, 2004); these areas then undergo large 

recolonization events during the winter (Tagliapietra eta!., 1998). Examples of food 

limitation are rare in shallow temperate areas where the seafloor lies within the photic 

zone and therefore supports high local primary production (Josefson & Rasmussen, 

2000). At the other extreme, deep-sea sedimentary communities are kilometers below the 

depth of light penetration and generally depend on organic matter sinking down from 

surface waters. In these cases, studies have shown that community diversity and 

abundance is often set by food availability and or related disturbances (Grassle & Marse­

Porteous, 1987· Snelgrove et a!. I 994; Snelgrove & Smith, 2002). The role that sinking 
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phytodetritus can play in structuring shallow-water communities has been inferred from 

observation data (see Chapter 1) but experimental studies on the importance of quantity 

of sinking material are few. 

In this experiment I use in situ experiments to determine if the quantity of sinking 

organic matter source (phytodetritus) has an effect on community structure. More 

specifically, if patches of natural sedimentary communities receive high concentrations 

of high-quality phytodetritus, will this food resource influence the composition, 

abundance, or diversity of sedimentary fauna in comparison with similar patches that 

receive less (i.e. half the level) or effectively no (i.e. ambient control sediment) 

enrichment? 

3.2 MA TERJALS AND METHODS 

3.2.1 Sampling Site 

Experiments were carried out along a 20-m isobath in Small Cove, Bonne Bay N L 

(Figure l.l ). The artificial patches were oriented along the same two transect lines as the 

experiments described in Chapter 2 (summer transect line between 49°28.872 N 

57°54.551 Wand 49°28.837 N 57°54.481 W; fall transect line 49°28.840 N 57°54.485 

Wand 49°28.798 N 57°54.472 W). For a further description of the sampling site refer to 

the introduction and overview as well as Chapters 1 and 2. 
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3.2.2 Establishing Artificial Patches 

Artificial patches were created by scuba divers using the same protocol as described in 

chapter 2, and is described here only briefly. For this experiment, treatments consisted of 

algal paste (Instant-Algae® from Reed Mariculture) that was consistent in composition 

among treatments but differed in amount. The treatments were injected with a syringe 

through a spray bar into the inverted (open bottom) clear plastic (38 em x 26 em x 13 em 

high) enrichment chamber that had been placed on the seafloor; the spray bar was then 

flushed with ambient seawater to ensure all of the algae was deployed into the chamber, 

which was left in place for 24 hours prior to careful removal that minimized sediment 

disturbance. For controls, ambient seawater only was injected into the chambers but 

methodologies were otherwise identical. 

3.2.3 Experiments 

For each experiment (summer and fall) 12 artificial patches were created along a transect 

line using 3 different treatments of 4 rep) icates each of low, high, and ambient algal 

concentration (see below). The composition of the treatment for each set of experiments 

remained constant, a mixture treatment of 3 algal species consisting of Thalassiosira 

weissjlogii, Chaetoceros gracilis and Nannochloropsis. The treatments for the fall 

experiment were slightly different from those used in the summer in that the algal 

species Tetraselmis was substituted for Chaetoceros gracilis. 
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The amount of algae added for the high treatment was equivalent to predicted carbon 

accumulation over a 35 day period (the length of the experiment) at peak spring bloom 

levels; the low treatment was equivalent to carbon accumulation for 35 days at low mid­

summer levels as measured at other coastal sites in Newfoundland: Trinity Bay (Parrish, 

1998), Conception Bay (Redden, 1994), and Bonne Bay (Tian eta!., 2001). Treatment 3 

was an unenriched control treatment which was injected with ambient seawater only. 

Each patch was sampled as per the sampling regime described in detail in chapter 2, but 

in brief entailed diver-collected acrylic cores (6.5 em diameter, 20 em length) pushed l 0 

em into the sediment prior to capping, retrieval, and processing over a 300 J..Lm sieve. 

(see Chapter I). This entire experiment was carried out twice. The first round (summer-

24 cores) was enriched on June 20th, sampled initially on June 30th, and then sampled 

again on July 26th. The second round (fall - 24 cores) was enriched on August 24th, and 

then sampled on September 8th and again on October 9th 2002. 

Several patches were disturbed before enrichment, in that the chamber was not present 

when divers returned to apply the enrichment. These patches were prepared again, 

following the exact same protocol; each patch was sampled within the same time frame 

as those originally enriched except that they were staggered by one day. For this reason I 

included the data from these patches with the original patches in a ingle data analysis. 
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3.2.4. CHN Sampling 

Samples for CHN analysis were taken from each patch using a modified syringe (60 ml 

syringes with tip removed, see Chapter I). Samples were taken from each of the replicate 

patches during the July 26th, September 8th, and October 9th sampling dates for a total of 

36 samples. CHN samples were analysed in a CHN analyzer (Perkin-Elmer Model 2400) 

as outlined in Chapter 1. 

3. 2. 5. Data Analysis 

Data from each experiment were analysed separately using both univariate and 

multivariate methods as described in Chapters 1 and 2. Because environmental 

conditions in the summer and fall were known to be quite different (see Chapter I) the 

two sets of experiments were analyzed separately. CHN samples were analyzed by one­

and two-way ANOV As with treatment or time and treatment as factors, and are 

presented as plots of means and 95% confidence intervals. For analysis of the 

macrofauna! data, Primer v5 was used to calculate the univariate measures abundance 

(N), species richness (S), Margalef's biodiversity index (D), evenness (J), Shannon­

Weiner diversity index (H'), and Expected Species Shared based on a sample of30 

individuals (ES[30]). These measures were compared by two-way ANOV A with 

treatment and time as factors. Plots of means and 95% confidence intervals were also 

generated for each measure. Assumptions for ANOV A were checked in each case, where 

assumptions were not met, data was either transformed, or p-values were calculated by 

randomization. 
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Hurlbert rarefaction curves (Hurlbert, 1971) were generated using Primer v5; curves 

were plotted using means and 95% confidence intervals for each treatment for each 

sampling week. These curves were also analyzed by ANCOV A as described in Chapter 

2. 

In order to compare community composition, I used the similarity measure CNESS 

(Chord-Normalized Expected Species Shared, see Chapter I), based on a random draw 

of 10 individuals (m = I 0). As with other analyses, the summer and fall experiments 

were analyzed separately. All of the samples in a given experiment (i.e. both weeks) 

were initially included in a single analysis (24 cores), however, there was some 

indication that time was important and comparisons were subsequently done separately 

for each sampling week ( 12 cores) to ensure that any treatment effect was not swamped 

by temporal differences. Principal Components Analysis (PCA) of the CNESS 

probability matrix provided a graphical representation of station similarity, over which 

Gabriel Biplots were overlaid to indicate which species were important in creating the 

observed patterns. For a further description of CNESS see Chapter I. 
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3.3 RESULTS 

3.3.1 Experimental Fauna Overview 

A total of 3300 individuals were collected over the course of the two experiments, 

including 1489 from 24 cores in the summer experiment and 181 1 individuals from 24 

cores in the fall experiment. Number of individuals per sampling week ranged from 589 

in the summer experiment to 963 in the fall experiment. Total species number was 

slightly higher in the summer experiment (89 taxa) than in the fall experiment (79 taxa). 

The broad taxonomic composition of organisms was generally consistent among 

experiments and sampling weeks, in that polychaetes were always the most abundant 

group (59-61% of total individuals), with bivalves next (23-25%) and then all other taxa 

( ~ 16%). The numerically dominant species for each treatment and week of each 

experiment are shown in Table 3.1. 

3.3.2 Diversity Measures 

Two-way ANOV As compared abundance (N), species richness (S), evenness (J), 

Margalefs Index (D), Shannon-Weiner Index (H'), and Expected Species Shared 

(Es[30]) with treatment (low, high, control), and time (week) and their interaction as 

factors. For the fall experiment this analysis indicated no significant differences in 

treatment, time, or their interaction (Table 3.2). 

For the summer experiment, abundance was significantly higher in week 5 than in week 

l , and there were also significant time by treatment interaction terms for species richness 
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(F(2.I&l = 5.85; p = 0.011) and Margalefs Index (D) (F(2.ts) = 4.95; p = 0.019) showing 

that these latter variables should be analyzed separately for each week of the experiment. 

For sampling week 1, analyses indicate that enrichment treatments (low and high) had 

significantly lower species richness (S) (F(2.9) = 8.83; p = 0.008) than controls; this is 

also apparent in rarefaction curves (Figure 3.1 - see below). Results for Margalefs 

Index (D) were slightly different in that the high enrichment treatment was significantly 

lower than the control and the low enrichment treatment (F(2.9) = 5.53; p = 0.027); no 

significant differences in these variables were detected in week 5 of the summer 

experiment. 

Rarefaction curves plotted for treatment means show that during the summer experiment, 

after 1 week the high enrichment treatments were somewhat lower in diversity than 

either the control or the low enrichment treatments; however, this pattern did not persist 

through week 5 of the experiment. Rarefaction curves for the fall experiment show no 

notable treatment differences for the first week; however, the high enrichment treatment 

has slightly lower diversity in week 5 (Figure 3.1). ANCOVA analysis of these curves 

reveals that these differences were not significant; summer Fcs.s4) = 0.300, p = 0.911 ; fall 

F(2.4&l = 0.017, p = 0.984. 

3.3.3 Multivariate analysis 

Principal components analysis (PCA) of the summer experiment generally separated the 

two sampling weeks along PCl axis (Figure 3.2). This pattern was driven by several 
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species, in that polychaetes (Pectinaria granulata, Asebellides lineata, Pholoe juveniles 

and Prionospio steenstrupi) were important in describing samples from week 5, whereas 

bivalve molluscs (Crenella sp. and Astarte sp.), amphipods (Monoculodes sp.) and other 

polychaetes (Paradoneis ly ra and Pygospio elegans) were important in describing 

samples from week 1. Aside from the differences in sampling weeks, enrichment and 

control samples were intermingled and indicated no discernable pattern. Separate 

analysis of each week ofthe experiments showed no pattern for week I ofthe summer 

experiment, however, by week 5, the low enrichment treatments separated along the PCl 

axis, driven largely by adult Pholoe tecta; control and high enrichment treatments 

grouped together with no obvious separation (Figure 3.3b). 

PCA for the fall experiment showed no discernable patterns with respect to sampling 

week although there was some separation of control and enrichment cores (high or low) 

but no separation of low and high enrichments (Figure 3.2). [n separate analysis of each 

of the weeks of the fall experiment, no pattern was obvious for week I, however by 

week 5 three of four control treatments separated from enrichment treatments along both 

axes, driven primarily by the cumacean Diastlyis /ucifera. Enrichment treatments 1 and 2 

(low and high) tended to group together (Figure 3.3d), with no clear pattern. 

3.3.4 Carbon and Nitrogen analysis 

Analysis of sedimentary carbon and nitrogen, as well as C/N ratios for week 5 of the 

summer experiment (no CHN samples were taken for week I of the summer experiment) 
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revealed no significant differences among treatments (Table 3.3; Figure 3.4). For the fall 

experiment, two-way ANOV A again indicated no significant differences among 

treatments or between weeks (Table 3.3; Figure 3.4). 

3.4 DISCUSSION 

Food supply has a variable influence on benthic community structure, however, in 

temperate northern systems where high-quality phytodetrital food is generally accessible, 

albeit at varying concentration, food supply can bring a high degree of stability where 

other biotic factors such as predation (Quijon & Snelgrove, 2005) and abiotic factors 

such as grain size (McCarthy et al. , 2000) also play an important structuring role. Studies 

from the Bering and Chukchi Seas reported sediment heterogeneity, food supply, and 

temperature as major regulating factors for benthic community structure (Grebmeier et 

al., 1989), but the specific role of food supply remains elusive in descriptive studies 

because other variables often confound interpretation. ln these experiments, different 

quantities of a high quality, diverse food supply appear to play a very minor role in 

structuring benthic communities at this Bonne Bay location. Indeed, timing appears to 

play a greater role, even over time scales of weeks. PCA analysis indicated juveniles 

(Pholoe sp. and cumaceans) as important species driving community pattern, this 

suggests that recruitment events may play an important reole in community dynamics. 

There were significant differences between weeks for abundance and species richness 

(Table 3.2) as well as sample similarity as shown in PCA analysis for the summer 

experiment (Figure 3 .2), reinforcing the strong seasonal signal shown in both previous 

chapters. Seasonal signals within macrofauna) communities are widely reported for 
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temperate latitudes (Dollar eta!., 1991; Trueblood eta!., 1994; Kelaher & Levinton, 

2003; Reiss & Kroncke, 2005), but not at tropical latitudes (McCarthy eta!., 2000). In 

Bonne Bay, organic matter is available for much of the year, but is significantly higher in 

abundance during and after the spring bloom (Chapter 1). 

For the summer experiment, significantly lower species richness (S) and Margalef's 

Index (D) were observed in enrichment treatments than in controls; for Margalef's Index 

the high-enrichment treatment was significantly lower than the control and the low 

enrichment treatment after one week (Table 3.2). In both cases this pattern did not persist 

until week 5. This pattern suggests that enrichment initially resulted in decreased 

diversity, but that the effect was relatively short-lived and was not apparent only one 

month later. This rapid reaction provides further evidence that the response to organic 

input is quick and easily missed, at least in relatively productive environments where 

organic matter is abundant (see also Chapter 2). Macrofauna can process fresh detritus at 

the sediment surface very quickly, on the order of several days (Kristensen & Mikkelsen 

2003 ; Levin et al., 1999). In a mesocosm study, enriched treatments showed a marked 

increase in a few species that were able to quickly take advantage of fresh phytodetritus 

and rapidly increased their abundance by fast reproduction and recruitment of juveniles 

(Widbom & Frithsen, 1995). Although there was no diversity component reported in this 

mesocosm study, it is likely that a large increase in abundance of a few species will llmit 

the ability of other less opportunistic and reproductively adaptable species to be 
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successful within the same spatial scale. A similar pattern was not detected for the fall 

experiment. 

Weiking & Kroncke (2005) found that in shallow areas of the North Sea, there were 

changes in trophic structure within the benthic community depending on the quality and 

quantity of food supply. Areas with high amounts of organic material were characterized 

by high abundances of interface feeders and "sand-Iickers" such as amphipods. Interface 

feeders also dominated areas with high amounts of intermediate quality food. Other areas 

of the bank where food input was variable were inhabited by the highest diversity of 

feeding types (Weiking & Kroncke, 2005). The feeding strategies of important species 

during week I of the summer experiment included species that were capable of 

suspension feeding (Crenella sp., and Astarte sp., Wlodarska-Kowalczuk, 2007, 

Monoculodes sp., P. lyra, P. elegans) or surface deposit feeding (P. lyra and P. elegans; 

Fauchald & Jumars, 1979) (Table 3.1 and Figures 3.2 and 3.3). The species that were 

important in describing samples at week 5 were all polychaetes, and included P. 

granulata, A. lineata, Pholoe juveniles and P. steenstrupi (Table 3.1 and Figures 3.2 and 

3.3) that encompassed a broad range of feeding strategies including subsurface deposit 

feeding (P. granulata and P. steenstrupi; Whitlatch, 1974; Fauchald & Jumars, 1979) 

surface deposit feeding (A. lineata; Fauchald & Jumars, 1979) and predation (Pholoe 

juveniles; Fauchald & Jumars, 1979; Josefson, 1987; Quijon & Snelgrove, 2005). This 

pattern suggests that the species that were best able to respond rapidly to phytodetritus 

input, namely surface deposit feeders and suspension feeders, were present within a 
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week of delivery of the enrichment. After the pulse of enrichment was processed, either 

consumed directly or worked deeper into the sediment, a broader range of feeding 

strategies (sub-surface deposit feeders, surface deposit feeders and predators) was most 

important in driving community pattern. 

Results show high levels of variance in almost all variables measured, which is 

consistent with previous studies of shallow water benthic communities (e.g. McCall, 

1977). This variance can make detection of any weak effects, and thus interpretation of 

results, difficult pa11icularly given that the highest levels of abundance in the ambient 

community and the highest variances occurred in the fall during the sampling periods for 

the fall experiment (see Chapter 1 ). One approach to reducing experimental variance is 

to increase the number of samples (e.g. increasing the number of replicates per 

treatment: Bartlett et al. , 2001 ), which is impractical in this intensive field experiment 

because of the limited bottom time available to divers at this working depth. 

Although the enrichments in this experiment were not detected in measurements of 

carbon and nitrogen taken during the summer or fall experiment (Figure 3.4), there are 

several lines of evidence that phytodetritus persisted at the field site beyond the initial 

deployment (i.e. it was not resuspended). As discussed in Chapter 2, the phytodetritus 

was still visible in some replicates after the first week. Moreover, the significant changes 

observed in species richness and diversity in enrichments suggests it persisted long 

enough for organisms to respond. That phytodetritus was either quickly consumed or 
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worked deeper into the sediment beyond the sampling depth is substantiated by the 

observation of significant effects (species richness, diversity, abundance) after one week 

but no detectable response after 5 weeks (Table 3.2). These results point to a dynamic 

benthic fauna, capable of reacting to disturbances on a very short time scale. 

These experiments show that the amount of food reaching the benthic community in this 

study site had a very modest effect on structuring the abundance or diversity of the 

sedimentary fauna. While some significant results with respect to diversity measures in 

the first week of the summer experiment indicate that a pulse of food may initially 

decrease diversity (Table 3.2), this reaction is short-lived, lasting from days to a few 

weeks. In boreal , highly productive, shallow-water sites, food availability may not be 

particularly limiting, and the quantity of sinking food supply may therefore play a very 

minor role in structuring benthic abundance or diversity. 
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Table 3.1: Mean densities (individuals•38.5-2) and 95% confidence intervals for the five numerically dominant species. 
Season Week Rank Taxa and densities per treatment 

Low High Control 

Summer Wk I Paradoneis lyra 7.25 ± 5.3 Astarte sp. 7.75 ± 5.6 Astarte sp. 12.25 ± 10.2 

2 Astarte sp. 4.25-3.0 Paradoneis lyra 5.5 ±4. 1 Crenella!Monoculodes sp. 5.5 ± 5.6 

3 Prionospio steenstrupi 2.50 ± 1.7 Crenel/a sp. 3.5 ± 3.4 Prionospio steenstrupi 5 ± 4.5 

4 Cerastoderma sp. 2.25 ± 2.0 Monoculodes sp. 2.25 ± 3.2 Paradoneis lyra 4 ± 2.8 

5 Monoculodes sp. 1.75 ± 1.2 Prionospio steenstrupi 2± 1.8 ThaJyx sp.l D. lucifera 2.5 ± 1.3 

Total 37.5 ± 5.21 Total 40.5± 13.4 Total 69.25 ± 26.4 

Wk5 Prionospio steenscrupi 9.5 ±6. 1 Cumacean juvenile 23.25 ± 45.6 Prionospio steenstrupi 12.5 ± 5.2 

2 Paradoneis lyra 6.25 ± 1.5 Prionospio steenstrupi 7 ± 4.2 Astarte sp. 7.5 ± 10.2 

3 Pholoe tecta 4.5 ± 3.6 Astarte sp. 5.75 ± 3.7 Pholoe juvenile 7± 2.4 

4 Astarte sp. 4.25 ± 2.8 Pholoe juvenile 5 ± 2.5 Crenella 4.5 ± 5.1 

5 Asebellides /ineata 3.25 ± 1.7 Paradoneis lyra 4.75 ± 3.3 Paradoneis lyra 4.25 ± 3.5 

Total 60.5 ± 9.8 Total 91.25 ± 48.6 Total 73.25 ± 31 .2 

Fall Wkl Pholoe tecta 14.25 ± 5.9 Pholoe tecta 12.5 ± 4.3 Diastylis lucifera 14.5 ± 7.7 

2 Astarte sp. 10.5 ± 5.7 Astarte sp. 11.5 ± 6.0 Astarte sp. 9 .5 ± 7.1 

3 Diasrylis lucifera 8.75 ± 6 .4 Prionospio steenstrupi 9.0 ± 9.4 Pholoe tecta 6.5 ± 6.2 

4 Paradoneis lyra 6.5 ± 1.9 Diasty lis lucifera 7.5 ± 1.3 Cerastoderma sp. 4.75 ± 0.9 

5 Cerastoderma sp. 6 ±2.3 Crenella sp. 7.25 ± 5.3 Prionospio steenstrupi 4.5 ± 2.3 

Total 84 ± 18.6 Total 85 ± 30.9 Total 7 1 ± 8.6 

Wk5 Pholoe tecta 17.25± 10.0 Pholoe tecta 12.5 ± 8.5 Diastylis lucifera 9.5 ± 3.7 

2 Astarte sp. 7.75 ± 2.8 Astarte sp. 10.5 ± 5.1 Pholoe tecta 5.0 ± 3.9 

3 Cerastoderma sp. 5.75 ± 1.5 Prionospio steenstrupi 8.25 ± 2.9 Chane duneri 4.75 ± 2.44 

4 Paradoneis lyra: 5.25 ± 1.2; ± Paradoneis lyra 6.75 ± 3.7 Prionospio steenstntpi 4.25 ± 0.5 

5 Diastylis lucifera 4 .75 ± 2.4 Crenel/a sp. 5.75 ±6.7 Paradoneis lyra: Astarte sp. 3.75 ± 2.2; ± 

Total 79.25 ± 14.5 Total 78 ± 28.9 Total 54.75 ± 9.3 
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Table 3.2: Results of two-way ANOV A comparisons of diversity measures for the Summer and Fall experiments. 

Season Dependent ANOVA's sources of variation 
variable Treatment Week Interaction 

F<2.I8> p Fo.Is> p F(2. I8> p 

Summer s 1.711 0.209 7.795 0.012 5.853 0.011 
N 1.434* 0.252 5.359* 0.032 1.470* 0.262 

D 0.903 0.423 3.016 0.100 4.948 0.019 

J 0.849* 0.051 0.881 * 0.416 0.185* 0.878 

H ' 1.094 0.356 0.439 0.516 1.229 0.316 

ES(30) 0.860 0.441 0.005 0.945 1.244 0.313 

Fall s 2.062 0.156 0.256 0.619 0.256 0.777 

N 2.182* 0.162 1.265* 0.270 0.156* 0.842 

D 1.598 0.230 0.025 0.877 0.735 0.494 

J 0.102 0.904 1.303 0.269 1.258 0.308 

H' 1.083 0.360 0. 101 0.755 1.533 0.243 

ES(30) 0.680 0.519 0.714 0.409 3.016 0.074 

* P-values were calculated from randomly generated F-values with 500 iterations. 
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Table 3.3: Results of one-way (Summer) and two-way (Fall) ANOV A comparisons of Carbon, Nitrogen, and CIN 
ratios. NA: Not applicable. 

Season Dependent ANOVA's sources ofvariation 
variable Treatment Week Interaction 

F 2,8 p F U 8 p F 2 18 p 

Summer c 0.602 0.571 NA NA NA NA 
N 0.178 0.840 NA NA NA NA 

CIN 0.387* 0.402 NA NA NA NA 

Fall c 0.467* 0.634 0.052* 0.808 0.219* 0.836 
N 2.189* 0.164 3.278* 0.080 0.076* 0.946 

CIN 0.136 0.874 2.300 0.147 0.174 0.842 

* P-values were calculated from randomly generated F-values with 500 iterations. 

96 



en 
<1> 

TS 
<1> 
c.. 
en -0 
'-
<1> 
.0 
E 
:::J 
c:: 

"'0 
<1> ....... 
(.) 

<1> 
c.. 
X 
w 

25 

20 

15 

10 

5 

25 

20 

15 

10 

5 

0 

Summer -Week 1 Fall- Week 1 

--o- Low 
-b- High 
-Control 

Summer- Week 5 Fall-Week 5 

10 20 30 40 50 0 10 20 30 

Number of Individuals 
Figure 3.1: Mean Rarefaction curves and 95% confidence intervals for the summer (a & b) and fall (c & d) 
experiments. 

97 

c) 

d) 

40 50 



Summer 2A 
0.5 Paradoneis lyra 

28 
Pygospio elegans 

......... 
~ 0 ~A C\J ..-- A 
C\J x8 XA 
(/) 0 P. granulata 11A ·x 

<( A. lineata x8 2AXA 
Pholoe Juvenile Monoculodes sp. 

x8 
Prionospio steenstrupi 

Crenella sp. 2A 
Astarte sp. 

-0.5 XA 
-0.5 Axis 1 (18%) 0.5 

0.5 
Fall x8 

Astarte sp. Tharyx s2p. 

2 8 A 
......... Phyllodoce mucosa 
~ 0 Diastylis "<t ..-- lucifera 
C\J 
(/) 0 
~ 28 

XA 

-0.5 Axis1(17%) 0.5 
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CHAPTER4 
SUMMARY AND GENERAL CONCLUSIONS 

This thesis encompassed three elements that are either new to this type of investigation, 

or represent an underutilized approach. The first of these elements was the in situ 

experimental approach to address responses to food inputs (Quijon et a!. , 2008). 

Although several studies have manipulated fresh, natural sites to investigate sedimentary 

biodiversity, most have involved mesocosm, flume, or laboratory manipulations (Oviatt 

et a!., 1984; Smith & Brumsickle, 1989; Snelgrove eta!., 1992; Widbom & Frithsen, 

1995; Stocks & Grassle, 2001; Widdicombe & Austen, 2001 ). Studies that take place 

directly on the sea floor in the same capacity as this work are less common, in large part 

because the logistical challenges are significant, requiring divers or submersibles. This 

approach offers a far more natural experimental approach to understanding biodiversity 

patterns in sedimentary communities because the degree of disturbance to the 

community is minimized and the environment is as realistic as possible. The same 

realism that makes such an approach more appealing also creates problems in that the 

environment cannot be controlled and is more variable than in controlled laboratory 

experiments. A second novel element was experimental manipulation offood supply. 

Although food supply is crucial to all sedimentary communities, and is certainly 

considered to be one of the main factors that influences sedimentary biodiversity patterns 

(e.g. Grassle & Marse-Porteous, 1987; Graf, 1989; Snelgrove eta!., 1992), quality and 

quantity of food supply is relatively poorly studied for shallow water sedimentary 

communities (Quijon eta!. , 2008 and references therein). The other novel element of this 
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work is the enrichment approach itself. To date, addition of fresh phytodetritus to natural 

sediments has been rarely used (though see Levin et al. 1999 for a deep-sea application). 

My findings indicate that this method of enrichment can be completed reliably (i.e. there 

are visible signs of phytodetritus persistence and mixing in the sediment column up to-

1.5 em) and with minimal disturbance to the resident infauna. This approach opens up an 

array of potential possibilities for future research. 

The sections below further discuss this approach, the findings of this work, and address 

important questions related to food supply and its role in structuring benthic 

communities. As a final part of this chapter, I propose a few further potential research 

directions derived from the studies conducted for this thesis. 

4.1 Seasonal variation 

Chapter 1 explored natural variation in sedimentary fauna, phytoplankton and pigment 

concentrations, as well as sedimentary carbon and nitrogen levels from May to October, 

2002 in a small cove in Bonne Bay, Newfoundland. Samples were collected at roughly 

two-week intervals during the sampling period to provide a context and control samples 

for the experimental chapters that followed. By collecting data from the ambient 

community, I was able to evaluate natural community dynamics in the absence of 

manipulation, and to understand changes in the fauna within experimental manipulations 

but in the context of ambient community dynamics. 
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Analysis of chlorophyll and phaeopigments in the water column showed high pigment 

levels both in surface and near-bottom waters in May which then decreased through July 

before spiking in August and declining to the lowest observed levels in October 

coinciding with the shortest day lengths of the observation period. Qualitative 

observations of the phytoplankton community showed strong fluctuations in abundance 

and composition of phytoplankton through the course of the study period. Sediment 

pigment analysis indicated that a pulse of phytodetritus reached the sediment between 

the May sampling dates, and sedimentary phaeopigments were a significant predictor of 

macrofauna! abundance. Thus, macrofauna! abundance was strongly seasonal in that 

total abundance increased significantly over time and with "season" as a factor. Several 

types of multivariate analyses, as well as CHN data, suggested that sampling 

encompassed four periods that included a May group (two May sampling dates), a June 

group (three sampling dates), a July group (one sampling date) and a fall group (three 

sampling dates from August to October). The sharpest increase in abundance occurred 

between the June and July periods when abundance more than doubled, suggesting that 

recruitment around that time was quite high. One of the key species during the fall 

period was the polychaete Pholoe tecta, which is a predatory species that may have been 

recruited to the cove in response to increased abundances of prey species. This 

recruitment event might also underline the importance of recruitment events in this study 

area and how they might contribute to community pattern. The data from this chapter 

show a very strong seasonality of macrofauna abundance within the cove from May to 

October; it also suggests that abundance and diversity of macrofauna peak when food 
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levels are relatively low, likely reflecting a short Jag between increased food supply and 

recruitment. 

4.2 The contribution of food composition and diversity to biodiversity patterns 

Chapter 2 reports on the first of two related but separate experiments. In this chapter l 

hypothesized that composition and diversity of sinking phytodetritus would influence 

macrofauna] pattern specifically, do different types of phytodetritus attract different 

colonizers or groups of colonizers? Does a diverse food source attract a more diverse 

fauna, or higher abundance of different species than a more homogeneous food source? 

To test this hypothesis I conducted in situ manipulative experiments in Bonne Bay where 

I deposited fresh phytodetritus to the natural sedimentary sea floor at 20 m depth, but 

where patches varied in composition and diversity. As characterized in Chapter I, a 

strong seasonal signal was also evident in the macrofauna! community in experimental 

patches. Abundance was significantly higher in week 5 of the summer experiment 

compared to week I, and multivariate analysis also indicated differences in faunal 

composition. There was also evidence of a strong recruitment event between weeks l 

and 5 of the summer experiment juveniles, where the polychaete P. tecta and the 

cumacean Diastylis sp. were numerically dominant. This recruitment event was 

primarily responsible for the significant difference in abundance, and may likely have 

contributed to differences in species richness and Margalefs Index between week I and 

week 5 of the summer experiment. Despite these dynamic "background" events, the 

composition of the phytodetrital food pulses tested had little effect on macrofauna! 
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community diversity, structure, or species composition at this site. There was an increase 

in Hurlburt diversity (ES[30]) in enrichment versus non-enrichment treatments in the 

summer experiment over 5 weeks, but the effect was modest and was unrelated to 

phytodetrital composition. Newfoundland waters are highly productive, and shallow­

water Bonne Bay macrofauna! communities may be less food limited than many other 

benthic environments. Indeed, it has been suggested that alteration of systems like 

coastal Newfoundland through large-scale removal of pelagic and demersal fishes has 

resulted in increased energy flow to the benthos (Worm and Myers, 2003). Large pulses 

of phytodetritus may therefore have little effect on community diversity and structure. 

Composition of phytodetritus did not influence sedimentary community response, 

although it is possible that other sources of organic material could play a role in habitat 

partitioning. This possibility represents an avenue for future research. 

4.3 The quantity of food supply as a contributor to biodiversity patterns 

Chapter 3 addressed the importance of quantity of sinking phytodetritus from surface 

waters, which is thought to represent a prime source of high quality food supply for 

marine benthic organisms. In situ enriched patches were created using the same 

protocols as used for the experiments in Chapter 2 with high and low levels of 

phytodetrital enrichment. After one week and five weeks, macrofauna in the patches 

were sampled and compared with ambient sediments where no phytodetritus had been 

added. The experiment was conducted during the summer and then repeated in the fall in 

order to evaluate how seasonal variation in available colonizers might influence infaunal 
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response. Despite significant temporal changes in macrofauna! abundance and 

composition within and between experiments, the only response that could be attributed 

to the phytodetritus addition was a rapid response during the first week of the summer 

experiment. Multiple measures of diversity (species richness, rarefaction, Margalefs 

index) indicated reduced diversity with phytodetritus addition, but these responses did 

not persist through the five weeks of the summer experiment and were not observed at 

all during the fall experiment. These results suggest that the effect of food supply is short 

term and strongly dependent on seasonal timing. In both experiments, the organic 

material was largely undetectable even after one week. The rapid utilization of 

phytodetrital patches in shallow-water environments, in concert with higher background 

levels of phytodetrital flux, may represent a key difference in structuring of shallow­

water and deep-sea sedimentary communities. Experiments in deep-sea environments 

have indicated much clearer and persistent effects (see Snelgrove and Smith, 2002) 

4.4 Further analyses and suggestions for further research 

Several parallel analyses were conducted along with those reported in Chapters l-3 . The 

data analyzed and the results and implications are discussed below. 

Analysis of abundance between preserved fractions, several deep fractions (5 - 10 em) 

of randomly chosen sediment cores were picked and enumerated. These fractions 

showed significantly lower abundance and in terms of contributing to community pattern 

was deemed unimportant, this decision saved countless hours of sample processing. 
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Nonetheless, one avenue that could be further explored for experimental sediment is the 

vertical distribution of organisms within the sediment. It is possible that ifbioturbators 

quickly bury fresh phytodetritus (Widdicombe et al., 2000) this could affect the vertical 

distribution of species, as different feeding guilds react to the input of detritus. Given the 

major declines in abundance noted here between the 0-5 em and 5-l 0 em fractions, such 

an analysis would likely need to focus on subdivisions of the upper sediment layers (e.g., 

0-1 em, 1-2 em etc.) 

Body size analysis for Prionospio steenstrupi, a numerically dominant species seen in 

virtually all samples, was carried out for several cores from chapter I and chapter 2 data. 

Total body length was measured and frequency distributions were plotted. No trends 

could be found relating body size to treatment or to sampling date. This analysis did 

reveal that small worms ( < 5 mm) were much more abundant than larger worms (> 5 

mm), and that there was a large amount of variation in body size within each data set. 

Because this analysis did not reveal any trends in body size in relation to treatment, these 

data were not repeated for Chapter 3. Nonetheless, further analyses could consider other 

taxa in order to investigate body size differences in other species and to test for 

community-level differences. In such an analysis care should be taken to choose species 

that are well represented across all treatments. Species that are identified by multivariate 

analysis as important contributors to pattern and that are well represented across the 

treatments would be the ideal candidates. 
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Post-hoc power analysis was carried out for several experiments to calculate the 

necessary sample size to detect significant differences in several of the univariate 

measures. In most cases, power analysis indicated the need for greater numbers of 

samples in order to detect significant changes within the population because the data 

were so variable. Nonetheless, several authors have argued that post-hoc power analysis 

is fundamentally flawed and should not be used (Lewis, 2006; Steidl & Thomas, 2001 ). 

Moreover, additional macrofauna! samples were not obtainable within these protocols 

because of the size of the experimental patches; any more than 2 sediment cores per 

patch (1 for week I , and 1 for week 5) would have completely obliterated the patch. 

Enlarging the patches would have been very complicated given the logistics of diver 

working time limitations at 20 m depth. Based on the high variances reported for nearly 

every measure in this experiment, the "ideal" number of samples indicated by power 

analysis, would have been very large and therefore logistically impossible to achieve. 

Given the need for large numbers of samples in order to detect an effect, it is clear that 

any possible effect of phytodetrital enrichment is not strong and raises the question of 

whether such an effect would be ecologically important at the spatial and temporal scales 

studied here. 

An analysis of feeding guilds was carried out for each experiment. Nine different feeding 

guilds were identified from the experimental species including; surface deposit feeders, 

general deposit feeders, carnivores/predators, subsurface deposit feeders, non-selective 

deposit feeders, selective deposit feeders, filter feeders, herbivores, and suspension 
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feeders. For each of the four experiments the samples were analyzed using ANOVA to 

test for differences in abundances of different feeding guilds with week and treatment as 

factors. 

For every experiment, surface deposit feeders numerically dominated the fauna ranging 

from 26- 35% of the total abundance, while carnivores/predators were always next 

ranging between 18 - 24% of the total abundance. In terms of numbers, the other feeding 

guilds did not show any consistent pattern, and were scattered in their ranking. Although 

the result is not significant, the abundance of filter feeders (namely Astarte sp.) were 

consistently higher during the fall experiments as opposed to the summer experiments, 

since Astarte sp. is thought to be a relatively long-lived species (to 20 years) and slow­

growing (Trutschler & Samtleben, 1988) it is unlikely they are new recruits that 

responded to the experimental enrichments. 

For the summer experiment of Chapter 2 (quality and diversity experiments) there were 

several significant results. Surface deposit feeders were significantly higher during week 

5 of the experiment compared to week 1 (F(I .Jo) = 6.34); as surface deposit feeders were 

the dominant feeding group for the entire sampling period, it follows that their numbers 

would increase significantly during the same period as the ambient fauna significantly 

increased (Table 1.4; Figure 1.5). The only significant result with treatment as a factor 

were the general deposit feeders (Ft4.27) = 5. 71 ). This result is anomalous, general deposit 

feeders were relatively few in number during this study, numbering only 240 individuals. 
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The result is significant because of a recruitment event involving juvenile cumaceans. A 

single sample from the week 5 control samples contained 137 individual juvenile 

cumaceans, accounting for over half of the total general deposit feeders for the entire 

experiment. 

The summer experiment of Chapter 3 (quantity experiments) had significant results for 

surface deposit feeders (F(I .I7) = 18.78); carnivores/predators (F(l ,I7) = 10.22) and 

selective deposit feeders (F{I ,I7l = 7.86) with week as factor; no results were significant 

with treatment as factor. Total abundance for the summer experiment of chapter 3 was 

significantly higher during week 5 (Table 3.2); this significant increase in abundance 

explains the significant results for both surface deposit feeders as well as camivores, 

which together made up 53% of the total individuals for the entire experiment. Selective 

deposit feeders showed a four-fold increase in abundance between week l and week 5 

which was mostly attributed to the polychaete Pectinaria gracilis and Pectinaria 

juveniles. P. gracilis was only represented by a single individual during week l of the 

experiment, while several juvenile individuals were counted; during week 5, the number 

of P. gracilis was 35 and no juveniles were observed. Pectinariids are selective deposit 

feeders that feed below the sediment water interface in the head down position (Fauchald 

& Jumars, 1979). Members ofthe genus Pectinaria are known to be highly selective in 

their feeding practices (Whitlatch, 1974), and it is possible that these polychaetes are 

feeding on organic matter which had been buried by bioturbators. Because there was no 
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significant effect with treatment as factor it is not possible to comment on whether these 

worms are feeding on the experimental additions. 

For both fall experiments (chapter 2 - quality and diversity and chapter 3 - quantity) 

there were no significant differences between feeding guilds for either factor; treatment 

or week. 

The results of the feeding guild analysis support the general conclusion that food supply 

to the macrofauna! community at this tudy ite had relatively little structuring effect on 

the community at the temporal and spatial scales that were tested. 

In studies that focus on community dynamics, often the biology of individual species is 

necessarily overlooked. In a study that contains hundreds of species, it is impossible to 

fully evaluate the biology of each individual species. This thesis consistently identified 

several species that made important contributions to community patterns. In future 

studies it may be worthwhile to identify which species make such contributions and 

study them in a controlled laboratory setting to further understand their individual 

biology, ecology, and nutrition on a much reduced scale. 

1 I I 



4.5 Literature Cited 

Fauchald K, Jumars P (1979) The diet of worms: A study of polychaete feeding guilds. 
Oceanogr Mar Bioi Annu Rev 17: 193-284 

Graf G (1989) Benthic-pelagic coupling in a deep-sea benthic community. Nature 
341 :437-439 

Grassle JF, Morse-Porteous LS ( 1987) Macrofauna! colonization of disturbed deep-sea 
environments and the structure of deep-sea benthic communities. Deep-Sea Res 
34:1911-1950 

Levin LA, Blair NE, Martin CM, DeMaster OJ, Plaia G, Thomas CJ ( 1999) Macrofauna) 
processing of phytodetritus at two sites on the Carolina margin: in situ 
experiments using 13C labeled diatoms. Mar Ecol Prog Ser 182:37-54 

Lewis KP (2006) Statistical power, sample sizes, and the software to calculate them 
easily. Bioscience 56:607-612 

Oviatt CA, Pilson MEQ, Nixon SW, Frithsen JB, Rudnick DT, Kelly JR, Grassle JF, 
Grassle JP (1984) Recovery of a polluted estuarine system: a mesocosm 
experiment. Mar Ecol Prog Ser 16:203-217 

Quijon PA, Kelly MC, Snelgrove PVR (2008) The role of sinking phytodetritus in 
structuring shallow-water benthic communities. J Exp Mar Bioi Ecol. Vol 366. 
No. 1-2. pp. 134-145 

Smith CR, Brumsickle SJ (1989) The effects of patch size and substrate isolation on 
colonization modes and rates in an intertidal sediment. Limnol Oceanogr 34: 
1263-1277 

Snelgrove PYR, Grassle JF, Petrecca RF ( 1992) The role of food patches in maintaining 
high deep-sea diversity: field experiments with hydrodynamically unbiased 
colonization trays. Limnol Oceanogr 37:1543-1550 

Snelgrove, P.V.R. & C.R. Smith (2002) A riot of species in an environmental calm: the 
paradox of the species-rich deep-sea floor. Oceanogr Mar Bio1 Annu Rev 40:311-
342. 

Stocks KI, Grassle JF (2001) Effects of microalgae and food limitation on the 
recolonization of benthic macrofauna into in situ saltmarsh-pond mesocosms. Mar 
Ecol Prog Ser 221 :93-104 

112 



Steidl RJ, Thomas L (2001) Power analysis and experimental design. Pp 14-36 In 
Scheiner SM, Gurevitch (Eds) Design and analysis of ecological experiments 2nd 

Edition. Oxford University Press, New York 

Trutschler K, Samtleben C (1998) Shell growth of Astarte elliptica (Bivalvia) from Kiel 
Bay (Western Baltic Sea). Mar Ecol Prog Ser. 42:155-162. 

Whitlatch RB ( 1974) Food-resource partitioning in the deposit feeding polychaete 
Pectinaria gouidii. Bioi Bull 147:227-235 

Widbom B, Frithsen JB (1995) Structuring factors in a marine soft bottom community 
during eutrophication - an experiment with radio-labelled phytodetritus. 
Oecologia I 01: 156-168 

Widdicombe S, Austen MC, Kendall MA, Warwick RM, Jones MB (2000) Bioturbation 
as a mechanism for setting and maintaining levels of diversity in subtidal 
macrobenthic communities. Hydrobiologia 440:369-377 

Widdicombe S, Austen MC (2001) The interaction between physical disturbance and 
organic enrichment: An important element in structuring benthic communities. 
Limnol Oceanogr 46: 1720-1733 

Worm B, Myers RA (2003) Meta-analysis of cod-shrimp interactions reveals top-down 
control in oceanic food webs. Ecology 84: 162-173 

113 



Appendix A 

Micrographs of representative phytoplankton species. Size bars are I 0 11m except for 
Ceratium longipes, Chaetoceros contortus, Chaetoceros debilis, Dinobryon belagacea & 
D. balticum, Dinophysis roundata, Dinophysis norvegica, Protoperidinium depressum, 
and Thalassiosira anguste-linea where the bar is 20 f.lffi. 
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(bloom) 

A3 



Thalassiosira nordenskioldii 
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Appendix 8 

Species counts for ambient and experimental fauna 
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Table B-1: S_Qecies codes 
Code Organism Code Organism 
Aalbtr Aricidea albatrossae Laonci Laonice cirrata 
Acathr Aricidea cathrinae Leitfr Leitoscoloplos fragilis 
Am lind Arnpharete lindstroerni Lyslov Lysilla loveni 
Aglneo Aglaopharnus neotenus Maldae Maldanidae 
Ampacu Arnpharete acutifrons Medamb Mediornastus arnbiseta 
Anolan Aricidea no/ani Mthabe Micropthalrnus aberrans 
Ampdae A rnphaeritidae Mthspp Micropthalmus Sp. 
Aricsp Aricidea species Nepcil Nephthys ciliata 
Ampjuv Amphaeritidae juvenile Nepinc Nephthys incisa 
As line Asebellides lineata Niclum Nicomanche lumbricalis 
A tetra Aricidea tetrabranchiata Oligoc Oligocheate 
Capspp Capitellidae species Ophacu Ophelina acuminata 
Capjuv Capitellidae juvenile Ophjuv Ophelidae juvenile 
Chodun Chane duneri Oprull Ophelia rul/ieri 
Chonjv Chane juvenile OrbJuv Orbinidae juvenile 
Cirdae Cirritulatidae Orbspp Orbinidae species 
Clypol Clymenelfa polaris Palyra Paradoneis lyra 
Dorvjv Dorvellidae juvenile Parads Paradoneis species 
Dorrud Dorvellia rudolphi Pcirrf Prionospio cirrifera 
Dfimbr Dorvellia Sp. Pconch Polydora concharum 
Etolon Eteone longa Pecgra Pectinaria granulata 
Etonsp Eteone species Pectjv Pectinaria juvenile 
Etohet Eteone heteropoda Pecspp Pectinaria species 
Eucjuv Euchone juvenile Pelias Parougia eliasoni 
Eucpap Euchone papillosa Pheraf Pherusa a.ffinis 
Echspp Euchone species Phomin Pholoe minuta 
Eucinc Euchone inca/or Phtect Pholoe tecta 
Exodis Exogone dispar Pholjv Pholoe juvenile 
Faffin Flabelligera ajfinis Phospp Pholoe species 
Glycap Glycera capitata Phygro Phy llodoce groenlandica 
Glydae Glyceridae Phymac Phy llodoce maculata 
Glyjuv Glyceridae juvenile Phymuc Phy llodoce mucosa 
Gonjuv Goniadidae juvenile Pistcr Pista cristata 
Gonmac Goniada maculata Polcau Polydora caulferyi 
Gonspp Goniadidae species Polcir Polydora ciliata 
Hmoore Hartmania moorei PolSpp Polydora species 
Lumbfr Lurnbrinereis ji-agilis Praxpr Praxillel/a praeterrnissa 
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Code Organism Code Organism 
Pquadr Polydora quadrilobata CrMega Crab megalope 
Psteen Prionospio steenstrupi Oialuc Diastylis lucifera 
Pwebst Polydora websteri Diapol Diastylis polita 
Pygele Pygospio elegans Diaqua Diastylis quadrispinosa 
Rhogra Rhodine gracilor Diascu Diastylis sculpta 
Rhospp Rhodine Sp. Diassp Diastylis species 
Rhlove Rhodine loveni Dulisp Dulichia Sp. 
SabNew Sabellidae new Echpar Echinarachinus parma 
Scab de Seal i bregrnati dae Euphau Euphausiid 
Scoarm Scoloplos armiger Hal ira Halirages Sp. 
Sfilic Spio filicornis Hipser Hippomedon serratus 
Sjapon Syllides japonica Hydroz Hydrozoan 
Slongi Sphaerosyllis longicaudata Isopod Isopod 
Spions Spio species Isopo 1 Isopod 1 
Spiosp Spiophanes species Isopo2 Isopod 2 
Swigly Spiophanes wigleyi Lam qua Lamprops quadriplicatus 
Terebe Terebellidae Lepamp Leptostylis ampullacea 
ThxSpp Tharyx species Met ape Metapella species 
UnkPol Unknown Polychaete Monspp Monoculodes Sp. 
A start Astarte species Munfab Munna fabricii 
Cerast Cerastoderma species Mysids Mysid 
Crenel Crenella species Nemert Nemertean 
Macoma Macoma species Ophiop Ophiopholis species 
Mytilu Mytilus species Phoxce Phoxocephalus holbilli 
Littor Littorina species Plepan Pleustes panoplus 
Thyasi Thyasira species Strongylocentrotus 
Tricho Trichotropis species Strdro droebachiensis 
UniDBv Unidentified Bivalve Seaane Sea anenome 
Yoldia Yoldia species Sipunc Sipunculid 
AmphiA Amphipod A UnkAmp Unknown Amphipod 
AmphiB Amphipod B UnkCru Unknown crustacean 
Anthoz Anthozoan Unknow Unknown 
Asteri Asterias species 
Bathym Bathymedon species 
Caprel Caprella species 
Chiton Chiton 
Coroph Corophium species 
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Appendix B-1: Species counts (raw data) for ambient faunal cores (Chapter 1) 

Sample Aalbtr Acathr Amlmd Ampdae AmpJlN Anolan Ancsp As line Atetra Chodun ChonJV Dfimbr Etonsp EUCJlN Eucpap Exod1s Faffin Glycap GlyjlN 
fv18A 1 1 1 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 
fv18B 0 1 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 
fv18C 1 3 0 0 0 1 0 1 2 3 0 0 0 0 0 0 0 0 0 
fv18D 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
M21A 0 2 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 
M21B 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 
M21C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
M21D 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 
..liA 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
..liB 0 0 0 0 1 1 0 1 2 0 0 0 0 1 0 0 0 0 
..liC 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 
..liD 0 0 0 0 0 0 1 0 2 0 0 0 0 2 1 0 0 0 
J17A 0 0 0 0 0 0 1 1 1 0 0 0 0 2 0 0 0 0 
J17B 2 0 0 0 0 0 2 0 1 0 0 0 0 1 0 0 0 0 
J17C 0 1 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 
J17D 0 0 0 0 0 0 0 0 2 4 0 0 0 0 2 0 0 0 0 
J28A 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 
J28B 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 
J28C 0 0 0 0 0 1 0 3 2 1 1 0 0 0 2 0 0 0 0 
J28D 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 
JI23A 1 0 0 1 0 0 0 2 0 0 3 0 0 0 6 0 1 1 0 
JI23B 0 0 1 3 18 0 0 6 0 0 5 0 0 1 1 1 0 0 0 
JI23C 1 3 0 0 0 0 0 1 0 2 0 0 0 0 2 0 0 0 0 
JI23D 0 1 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
A28A 0 0 0 0 2 0 1 3 0 3 0 0 0 0 2 0 1 0 0 
A28B 0 0 0 0 0 1 0 3 0 2 0 0 0 0 0 0 1 0 0 
A28C 0 0 4 0 0 0 0 7 0 8 0 0 0 0 1 0 0 1 1 
A28D 0 0 1 0 0 0 0 4 0 3 0 0 0 0 0 0 0 0 0 
S17A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
S17B 0 0 0 0 0 0 0 0 0 4 0 0 0 0 1 1 0 1 0 
S17C 0 0 0 0 1 0 0 20 0 4 1 0 0 0 5 0 0 0 0 
S17D 2 0 0 0 0 3 2 3 0 0 0 0 2 0 1 0 0 
014A 1 1 1 0 0 0 1 3 0 3 0 0 0 0 0 0 0 0 0 
0148 0 0 0 0 0 0 0 3 0 2 0 0 0 0 3 0 0 0 0 
01 4C 0 1 0 0 0 0 0 0 0 5 0 0 0 0 0 0 1 0 0 
0140 0 0 0 0 0 0 0 0 1 3 0 0 0 0 2 0 0 0 0 
Totals 8 22 12 4 23 6 4 64 13 69 10 43 3 5 4 
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Appendix B 1 Continued 

Sample GonJUV Gonmac Hmoore Maldae Medamb Mthabe Mthspp Nepc1l Nep~nc Oligoc Ophacu Oprull OrbJuv Palyra Parads Pconch Pecgra Pectsp Pehas 
M3A 0 0 1 0 0 0 1 1 0 1 0 0 0 2 0 0 0 0 0 
~8 1 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 
~c 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 
MJO 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 
M21A 0 0 0 0 0 0 0 0 0 0 0 0 0 B 0 0 0 0 0 
M218 0 0 0 0 0 0 0 0 0 2 0 0 0 7 0 0 0 0 0 
M21C 0 0 0 0 0 1 0 0 1 0 0 0 0 5 0 3 0 0 0 
M210 0 0 0 0 1 0 0 0 0 0 0 0 0 10 0 0 0 0 0 
£A 0 0 0 0 0 0 1 1 0 0 0 0 0 4 1 0 0 0 0 
£8 0 1 0 0 1 0 0 0 0 1 0 1 0 6 2 1 0 0 0 
£C 0 1 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 
£0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 2 0 0 0 
J17A 0 0 0 0 1 0 0 0 0 1 0 4 0 4 0 1 0 0 0 
J178 0 0 0 0 2 0 0 0 0 0 0 0 0 6 0 0 0 0 0 
J1 7C 0 1 0 0 1 0 0 0 0 2 0 0 0 6 0 0 0 0 0 
J170 0 0 0 0 0 0 0 0 0 0 0 0 5 0 2 0 0 1 
J2BA 0 0 0 0 0 0 0 1 0 0 1 0 0 3 0 0 0 0 0 
J288 0 0 0 0 0 0 0 0 0 0 0 0 0 B 1 0 0 0 
J2BC 0 1 0 0 0 0 0 0 0 1 0 0 0 7 0 1 0 0 0 
J2BO 0 0 0 0 0 0 0 0 0 2 2 1 0 B 0 0 0 0 
JI23A 0 0 0 0 1 0 0 0 0 2 0 0 0 7 0 0 3 0 
Jl238 0 0 0 0 0 0 0 0 0 2 1 0 1 3 0 1 2 1 0 
JI23C 0 0 1 0 2 0 1 0 2 2 0 0 5 0 0 5 0 0 
Jl230 0 0 0 0 0 0 0 0 2 0 4 1 5 1 2 1 2 0 
A2BA 0 0 0 0 2 0 0 0 0 0 0 0 7 0 0 ,- 0 0 
A288 0 1 0 0 1 0 0 0 0 0 0 0 0 5 0 0 0 0 0 
A2BC 0 1 1 0 0 1 0 0 0 0 0 0 5 0 0 0 0 
A2BO 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 1 0 0 
S17A 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 
5178 0 0 0 0 1 0 0 0 0 1 0 0 0 6 0 0 2 0 0 
S17C 0 0 0 0 2 1 0 0 0 0 0 1 0 3 1 0 0 0 
5170 0 0 0 1 2 0 0 0 0 0 0 0 0 10 0 0 4 0 0 
0 14A 0 0 0 0 0 0 0 0 0 0 1 0 0 9 0 0 2 0 0 
0148 0 0 0 0 0 3 0 0 0 0 0 0 0 12 1 0 0 0 0 
01 4C 0 1 0 0 3 0 0 0 0 2 1 0 0 3 2 0 1 0 0 
0140 0 0 0 0 0 0 0 0 0 1 0 0 0 3 0 0 0 0 0 
Totals 7 3 23 10 2 5 23 B 13 2 194 11 14 24 5 
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Appendix B 1 Continued 

Sample Pholjv Phomm Phospp Phtect Phygro Phymac Phymuc Polcir Pquadr Psteen Pwebst Pygele Rhospp Scoarm Sfilic Sjapon Slong1 Sp10ns SWigly 
MBA 0 2 0 0 0 0 2 0 0 6 0 0 1 0 0 0 0 0 
MBB 0 0 1 0 0 0 0 0 6 0 0 0 0 1 0 1 0 0 
MBC 0 1 0 0 0 1 0 0 B 0 0 0 0 0 2 0 0 
MBD 0 1 0 0 0 0 0 0 5 0 0 1 0 0 4 0 0 
M21A 0 0 0 1 0 1 2 0 0 7 2 0 0 1 0 0 0 0 0 
M21 8 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 
M21C 0 0 0 0 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 
M21D 0 3 0 0 0 0 1 0 0 2 0 5 0 0 0 0 0 0 
JJA 0 0 0 2 0 0 0 0 0 4 0 2 0 0 0 0 0 0 
-liB 0 1 0 1 0 0 1 0 0 0 1 2 0 0 0 0 1 0 0 
JJC 0 0 0 0 0 0 0 0 0 3 0 2 0 1 0 0 0 0 0 
-liD 0 0 1 1 0 0 0 0 1 3 0 0 1 0 1 0 0 0 
J17A 0 0 0 0 0 0 0 0 0 4 0 2 0 0 2 0 0 
J178 0 5 0 5 0 2 0 0 0 4 0 0 1 0 0 5 0 0 
J17C 0 0 0 1 0 0 0 0 3 5 1 1 0 0 1 0 0 0 0 
J17D 0 2 0 4 0 0 0 0 1 5 0 0 1 0 0 0 0 1 0 
J2BA 3 2 0 2 0 1 0 0 0 5 0 3 0 0 1 0 2 0 0 
J2BB 0 2 0 2 1 0 2 0 0 10 1 3 0 0 0 0 0 0 0 
J2BC 3 1 0 2 0 1 1 0 0 9 0 0 0 0 0 2 2 0 0 
J2BD 0 0 0 1 0 0 0 0 4 10 0 2 0 1 0 2 1 0 0 
Jl23A :}) 1 0 6 0 0 0 0 1 11 1 0 0 0 0 2 2 0 0 
Jl238 10 0 0 0 0 0 5 0 0 13 0 1 2 0 0 0 0 0 0 
Jl23C 2 2 0 10 0 0 0 0 9 0 4 0 4 0 0 3 0 0 
Jl23D 7 0 0 11 0 0 4 0 0 18 0 0 0 0 0 1 0 0 1 
A2BA 0 1 0 7 0 0 2 1 0 B 0 0 0 0 0 0 1 0 0 
A2BB 0 0 0 11 0 0 5 0 0 4 0 0 1 1 0 0 1 0 0 
A2BC 0 1 25 0 1 1 0 0 11 0 3 0 3 0 1 1 0 1 
A2BD 0 1 0 12 0 0 2 0 0 16 0 0 0 3 0 2 0 0 0 
S17A 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5178 0 0 0 5 0 0 0 0 1 2 0 0 2 1 0 0 3 0 0 
S17C 0 3 0 13 0 3 2 0 0 17 0 1 1 5 0 0 1 0 0 
S17D 0 1 0 20 0 0 1 0 0 9 0 0 0 4 0 0 1 0 0 
014A 0 0 0 20 1 0 1 0 0 11 0 3 0 6 0 0 0 0 0 
0148 0 1 0 17 0 0 0 0 0 4 0 1 0 2 0 1 0 0 0 
0 14C 0 1 0 7 0 0 5 0 0 4 0 0 0 0 0 0 0 0 0 
0140 0 0 0 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Totals 55 33 2 204 3 10 39 1 12 233 6 40 12 36 3 14 36 3 
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Appendix B 1 Continued 

Sample ThxSpp Astart Cerast Crenel Macoma Myt1lu Thyasi Tncho Yold1a D1aluc D1aqua Diascu Bathym Mono co Met ape Phoxce AmphiA AmphiB Caprel 
MBA 2 3 3 0 0 0 0 0 0 13 0 0 1 0 0 0 0 0 0 
MBB 2 3 3 0 0 0 0 15 0 0 0 0 0 0 0 0 0 
MBC 3 6 2 1 2 2 1 0 1 6 0 0 0 0 0 0 0 0 
MBD 0 2 3 3 2 0 0 0 0 5 2 4 0 0 0 1 0 0 0 
M21A 0 2 0 1 0 0 0 0 2 0 0 1 0 0 0 0 0 0 
M21B 2 3 2 3 0 0 0 0 0 0 0 3 2 0 1 0 0 0 
M21C 1 5 0 0 4 1 2 0 0 11 1 2 0 0 0 1 0 0 0 
M21D 0 4 2 4 6 0 2 2 0 13 0 0 0 0 0 0 0 0 0 
.EA 0 25 2 2 3 0 2 0 0 0 0 2 0 0 0 0 0 0 0 
.EB 1 15 2 3 3 0 2 0 1 0 0 1 2 0 0 0 0 0 0 
.EC 1 7 5 4 4 0 1 0 0 2 0 3 1 0 0 0 0 0 0 
.ED 0 22 3 11 0 0 4 0 0 3 0 0 0 1 0 1 0 0 0 
J17A 2 10 1 2 2 0 4 0 0 1 0 0 1 0 0 0 0 0 0 
J17B 1 23 1 9 2 5 5 0 0 3 0 1 0 0 1 0 0 0 0 
J17C 0 3 2 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 
J17D 0 19 1 8 0 1 1 0 0 3 0 0 0 0 0 1 0 0 0 
J28A 1 6 0 11 2 0 0 0 0 3 0 0 4 0 0 0 0 0 0 
J28B 1 16 1 3 3 0 0 2 0 2 0 0 1 0 0 0 0 0 0 
J28C 0 3 2 1 0 0 3 0 0 2 0 1 1 0 0 0 0 0 0 
J28D 0 22 0 4 0 0 0 0 0 0 0 0 5 0 0 1 0 0 0 
JI23A 0 15 0 6 2 0 4 0 0 2 0 0 0 0 0 0 0 0 
JI23B 0 25 1 6 3 1 3 0 1 0 0 0 1 0 1 2 0 0 0 
JI23C 1 15 0 8 3 1 2 0 0 1 0 0 0 0 0 0 0 0 0 
JI23D 0 6 0 2 4 2 2 0 1 0 0 0 2 0 0 0 0 0 
A28A 0 9 2 5 5 0 1 0 0 0 0 8 0 0 0 0 0 0 
A28B 0 9 5 5 2 0 1 0 0 8 0 0 0 0 1 1 1 0 0 
A28C 0 19 1 1 4 0 1 0 0 6 0 2 4 0 1 3 0 0 0 
A28D 1 14 15 9 8 0 0 1 0 18 0 8 0 0 0 3 0 0 0 
S17A 0 0 0 0 0 0 2 0 0 11 0 0 0 0 0 1 0 0 0 
S17B 2 12 6 8 4 0 1 0 0 0 0 0 0 0 2 0 0 0 0 
S17C 0 39 15 11 2 0 3 0 0 9 0 0 0 0 1 1 0 0 1 
5170 1 18 7 22 5 0 2 0 0 5 0 0 0 0 1 2 0 1 0 
014A 12 19 7 11 3 0 1 0 0 4 0 5 0 0 0 0 0 0 0 
0148 0 19 9 10 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 
014C 1 8 1 3 3 0 1 0 0 2 0 0 0 0 0 0 0 0 
0140 0 6 2 0 0 0 0 0 5 0 0 0 0 1 1 0 0 
Totals 35 427 110 181 B6 13 52 5 5 158 3 41 28 3 8 22 2 1 
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Appendix B 1 Continued 

Sample Strdro Asteri Isopod Ch1ton Mysids Oph10p Nemer! S1punc Seaane Unknow Totals 
MBA 1 0 0 0 0 0 0 0 0 48 
MBB 0 0 0 0 0 0 0 0 0 46 
MBC 0 0 0 0 0 0 0 0 0 57 
MBD 1 0 0 1 0 0 0 0 0 0 44 
M21A 0 0 2 0 0 0 0 0 0 0 37 
M21B 0 0 0 0 0 0 0 0 0 0 33 
M21C 0 0 0 0 0 0 0 0 0 0 43 
M21D 2 1 0 0 0 0 0 0 0 0 61 
J6A 0 0 0 0 0 0 0 2 0 0 55 
J6B 1 0 0 0 0 0 0 1 0 0 59 
J6C 0 0 0 0 0 0 2 0 0 0 45 
J6D 2 0 0 0 3 0 0 0 0 0 74 
J17A 0 0 0 0 0 0 0 1 0 0 51 
J17B 2 0 0 0 0 0 0 1 1 0 93 
J17C 0 0 0 0 0 0 0 0 0 0 36 
J17D 5 1 0 0 0 0 0 1 0 0 72 
J28A 2 0 0 0 0 1 0 0 0 0 56 
J28B 0 0 0 0 0 0 0 0 0 0 63 
J2BC 1 1 0 0 0 0 0 0 1 1 58 
J28D 1 0 0 0 0 0 0 1 0 0 73 
JI23A 2 0 0 0 0 0 4 1 0 0 120 
JI23B 4 0 1 0 0 0 1 1 0 0 129 
JI23C 1 0 0 0 0 0 0 0 0 0 95 
JI23D 1 1 0 0 0 0 0 1 0 0 88 
A28A 0 0 0 0 0 0 0 0 0 0 74 
A28B 0 0 0 0 0 0 0 0 0 71 
A28C 0 0 0 0 0 0 1 0 0 125 
A28D 1 0 0 0 0 0 0 0 0 0 128 
S17A 0 0 0 0 0 0 0 0 0 0 22 
S17B 0 0 0 0 0 0 0 0 0 0 66 
S17C 0 0 0 0 0 0 0 1 0 1 170 
S17D 0 0 0 0 0 0 1 0 0 134 
01 4A 0 0 0 0 0 0 0 0 0 127 
01 48 4 0 0 0 0 2 0 1 0 0 99 
01 4C 0 0 0 0 0 2 0 0 0 0 59 
01 40 3 0 0 0 0 0 1 0 0 0 38 
Totals 40 5 3 1 3 5 8 14 2 2 2649 
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Appendix B-2a: Species counts summer experiment chapter 2 diversity/composition experiment 

Sample Aalbtr Acathr Aglneo Amlind Ampdae Anolan As line Aletra CapJLN Chodun Eucpap Exodis Faffin Glycap Glyjuv Gonjuv Gonmac Hmoore Le1tfr 
1A-1 0 1 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 
18-1 0 3 0 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 
1C·1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 
10-1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2A-1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 
28-1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2C-1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
20·1 0 1 0 0 0 0 0 1 0 1 2 3 0 0 0 0 0 0 0 
3A-1 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
38-1 2 2 0 0 0 1 1 0 2 0 0 0 0 0 0 0 0 0 
3C-1 0 0 0 0 3 1 0 0 0 3 7 0 0 0 0 0 0 0 0 
3().1 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
4A-1 0 10 0 0 1 1 0 0 0 2 1 0 0 0 1 0 1 0 0 
48-1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 
4C·1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 
40-1 0 7 0 0 0 2 0 1 0 1 0 0 0 0 0 0 0 1 0 
5A-1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
58-1 0 0 0 0 0 0 0 1 0 0 2 0 0 0 1 0 0 0 0 
5C-1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 
5().1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1A-5 0 3 0 0 1 0 3 2 0 1 0 0 1 0 0 0 0 0 
18-5 0 2 0 0 0 2 4 0 0 1 1 0 0 0 1 0 0 0 0 
1C-5 0 3 0 0 0 0 0 0 2 9 2 0 0 1 0 0 0 0 0 
10-5 0 3 0 0 0 1 2 0 0 2 1 0 0 0 0 0 0 1 0 
2A-5 0 0 0 0 0 0 3 0 0 0 3 1 1 0 0 0 0 1 0 
28-5 0 0 0 0 2 0 0 3 5 0 0 1 0 0 0 0 0 
2C-5 0 4 0 0 2 4 0 0 0 0 0 1 0 0 0 0 0 0 
20-5 0 0 0 4 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 
3A-5 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
38-5 0 2 0 3 0 0 1 0 0 0 3 0 0 0 0 1 1 0 0 
3C-5 0 2 0 2 0 2 2 0 0 0 2 2 0 0 0 0 0 0 0 
30·5 0 1 0 0 0 1 1 0 0 0 2 0 0 0 0 0 0 0 0 
4A-5 1 2 0 2 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 
48-5 0 1 0 0 0 1 2 0 0 0 4 0 0 0 0 0 0 0 0 
4C-5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 
40-5 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 
5A-5 0 0 0 0 0 0 0 0 0 2 3 0 0 1 0 0 0 0 0 
58-5 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 
5C-5 0 3 0 4 0 0 3 0 0 1 2 0 0 0 1 0 0 1 0 
5().5 0 0 0 2 0 2 8 0 0 0 1 0 2 0 0 0 0 1 0 
Totals 6 63 20 5 20 41 8 2 30 59 8 6 5 5 2 3 9 
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Appendix B 2a Continued 

Sample Lumbfr Maldae Medamb Mthabe Mthspp Nepc1l N1clum Oligoc Ophacu OphJU~ Oprull OrbJuv Palyra Parads Pc1rrf Pconch Pecgra Pectsp PhOIJV 
1A-1 0 0 0 0 0 0 1 0 0 0 0 0 10 0 0 0 0 0 0 
18-1 1 0 0 0 0 0 0 1 0 0 0 0 8 0 0 0 0 0 0 
1C·1 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 
10-1 0 0 0 1 0 0 0 0 2 0 0 0 7 0 0 0 0 0 
2A-1 0 0 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 
28-1 0 0 0 0 0 0 0 1 0 0 0 0 8 1 0 0 0 1 0 
2C-1 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 
20-1 0 0 0 2 0 1 0 0 0 0 0 0 4 0 1 0 0 0 0 
JA-1 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 
38-1 0 1 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 
3C-1 1 0 2 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 
30-1 0 0 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 
4A-1 0 0 4 0 0 0 0 0 0 1 0 11 0 1 0 0 1 0 
48-1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 
4C-1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 
40-1 0 0 0 4 0 0 0 0 0 0 0 0 7 0 0 1 0 0 0 
5A-1 0 0 3 0 0 0 0 1 0 0 0 0 10 0 0 0 0 0 0 
58-1 0 0 3 0 0 0 0 0 0 0 1 0 8 0 0 0 0 0 0 
5C-1 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 
50-1 0 0 2 1 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 

1A-5 0 0 2 0 0 0 0 0 0 0 0 1 12 0 0 0 5 1 7 
18-5 0 0 0 0 0 0 0 0 1 0 0 0 10 0 0 0 1 1 4 
1C-5 0 0 2 2 0 0 0 0 0 0 0 0 1 0 0 0 2 0 2 
10-5 0 0 3 0 0 1 0 0 0 0 1 0 5 0 0 0 3 0 3 
2A-5 0 1 4 1 0 1 0 0 0 0 1 0 6 0 0 0 8 0 16 
28-5 0 0 1 0 0 0 0 0 0 0 0 0 4 0 0 0 2 0 4 
2C-5 0 0 2 0 0 1 0 0 0 0 0 0 4 0 0 0 0 6 
20-5 0 0 1 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 
3A-5 0 0 3 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 2 
38-5 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 2 0 8 
3C-5 0 0 2 3 1 0 0 1 1 0 1 0 7 0 0 0 0 0 0 
30-5 0 0 1 0 0 1 0 0 0 0 0 0 2 0 0 0 2 0 5 
4A-5 0 0 2 0 0 0 0 0 0 0 0 0 8 0 0 0 2 0 0 
48-5 0 0 2 2 0 0 0 1 0 1 0 0 3 0 0 1 5 0 16 
4C-5 0 0 1 0 0 0 0 0 0 1 0 4 0 0 0 0 0 2 
40-5 0 0 1 0 0 0 0 1 1 0 0 0 2 0 0 0 2 0 0 
SA-5 0 0 0 1 0 0 0 0 0 0 0 0 4 0 0 0 2 0 2 
58-5 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 1 0 16 
5C-5 0 0 0 0 1 0 0 0 0 1 0 3 0 0 0 3 0 7 
50-5 0 0 1 1 0 0 0 0 0 0 0 0 5 0 0 1 0 0 19 
Totals 2 2 45 24 6 7 7 7 1 207 3 4 5 43 4 119 
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Appendix B 2a Continued 

Sample Phom1n Phtect Phymac Phymuc Polcir Pquadr Praxpr Psteen Pwebst Pygele Rhospp Scabde Scoarm Sfihc Sjapon Slongi SWigly Terebe ThxSpp 
1A-1 0 3 1 0 0 0 0 7 1 1 0 0 0 0 0 2 0 0 2 
1 B-1 0 5 0 0 0 0 0 5 2 0 0 0 0 0 0 1 0 0 1 
1C-1 0 6 0 1 0 0 0 7 1 0 0 0 0 0 0 0 0 0 
10-1 0 0 0 0 0 0 0 19 0 0 0 0 0 1 1 0 1 0 3 
2A-1 0 1 0 0 0 1 0 5 1 0 0 0 0 0 0 1 0 0 1 
28-1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 3 
2C-1 0 2 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 
20-1 1 2 1 1 0 0 0 3 0 3 1 0 0 0 5 2 0 0 0 
3A-1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 
38-1 0 0 0 0 0 0 0 8 1 1 0 0 3 0 0 2 0 0 0 
3C-1 2 6 0 1 0 0 0 1 0 0 0 0 0 0 1 3 0 0 0 
30-1 1 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 
4A-1 0 1 0 0 0 0 0 11 0 0 0 0 0 0 2 2 0 0 
48-1 0 0 1 0 0 0 6 0 1 0 0 0 1 1 3 0 0 1 
4C-1 2 1 0 0 0 0 6 0 0 0 0 0 0 5 4 0 0 0 
40-1 1 1 0 0 0 0 0 5 0 0 0 0 1 0 0 1 0 0 0 
SA-1 0 1 0 0 0 1 0 8 0 0 0 0 0 0 1 0 0 0 1 
58-1 0 0 0 0 0 0 0 1 1 2 0 0 0 0 0 2 1 1 0 
5C-1 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 
50-1 0 0 0 0 0 6 0 0 0 0 0 0 0 1 

1A-5 0 5 0 1 0 0 0 8 0 0 0 0 0 0 2 0 0 0 0 
18-5 0 2 0 6 0 0 0 6 0 4 0 0 1 0 5 2 0 0 3 
1C-5 0 2 0 1 1 1 0 10 0 4 2 1 1 0 0 0 0 0 
10-5 0 1 0 2 0 0 0 14 0 0 0 0 0 0 1 1 1 0 4 
2A-5 0 3 0 3 0 0 0 12 0 0 0 0 0 0 0 3 1 0 0 
28-5 5 1 1 2 0 0 0 4 0 0 1 0 0 0 4 0 0 1 
2C-5 0 3 0 1 0 0 0 3 0 0 0 0 1 0 2 3 0 0 3 
20-5 2 0 0 0 0 0 1 13 0 0 0 0 0 1 0 1 0 0 2 
3A-5 0 0 0 1 0 0 0 6 0 0 0 0 0 0 0 0 0 0 3 
38-5 1 1 0 4 0 1 0 11 0 2 0 0 0 0 1 2 0 0 1 
3C-5 0 1 0 3 0 0 0 20 0 1 0 0 0 1 1 0 0 0 0 
30-5 1 2 0 1 0 0 11 0 0 0 0 1 0 0 1 1 0 0 
4A-5 0 1 2 3 0 1 0 13 0 0 0 0 0 1 0 2 0 0 2 
48-5 1 0 0 2 0 0 0 11 0 3 0 0 0 0 0 0 0 0 0 
4C-5 0 0 0 2 0 0 0 12 0 0 0 0 0 0 0 0 0 0 
40-5 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 1 1 0 
SA-5 0 0 0 0 0 0 7 0 0 1 0 0 0 2 0 3 0 1 
58-5 1 0 0 1 0 0 0 4 0 0 2 0 1 0 0 5 0 0 0 
5C-5 0 0 0 2 0 3 0 12 0 0 2 0 2 0 0 4 0 0 1 
50-5 0 0 0 0 0 1 0 14 0 0 0 0 0 0 3 3 1 0 3 
Totals 19 54 7 40 12 307 7 23 9 1 14 6 34 55 10 1 45 
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Appendix B 2a Continued 

Sample Astart Cerast Crenel Macoma Thyas1 Tncho Unl08v Yoldia 0 lucif O.polita Juvcum 8athym Monaco Met ape Phoxoce Caprella Corophium S. droe Aster1as 
1A-1 8 0 5 3 6 0 0 0 1 1 0 13 0 1 0 0 0 0 
18-1 5 1 3 1 0 0 0 1 0 0 0 0 0 0 1 0 0 
1C-1 1 0 2 2 0 0 0 0 0 0 3 1 0 0 0 0 0 1 
10-1 2 2 0 0 0 0 0 1 0 0 4 0 0 0 0 0 0 0 
2A-1 13 0 4 2 5 0 0 0 1 0 0 2 0 0 0 0 0 1 0 
28-1 7 3 3 1 0 0 0 0 4 0 0 14 2 0 0 0 0 0 0 
2C-1 4 0 3 0 0 0 0 0 2 0 0 3 0 0 0 0 0 0 0 
20-1 10 1 9 0 1 0 0 0 3 0 0 2 0 1 1 0 0 0 0 
3A-1 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 
38-1 17 1 7 0 0 2 0 0 10 0 0 7 0 0 0 0 0 1 0 
3C-1 12 1 12 0 0 0 0 1 4 0 0 3 0 0 0 0 0 0 0 
30-1 0 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 
4A-1 15 0 1 0 0 0 0 4 2 0 7 0 0 0 0 1 0 0 
48-1 4 0 3 1 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 
4C-1 12 2 6 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 
40-1 7 0 2 3 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 
5A-1 5 0 3 1 2 1 0 0 2 0 0 19 0 0 0 0 0 0 0 
58-1 6 0 1 0 3 0 0 0 0 0 0 4 1 0 0 0 0 2 0 
5C-1 3 0 1 0 0 0 0 0 2 0 0 9 0 0 0 0 0 0 0 
50-1 2 2 0 0 0 0 0 5 0 0 6 0 0 0 0 0 0 

1A-5 14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 5 0 
18-5 0 0 1 0 1 0 0 0 0 0 0 0 2 0 0 0 0 
1C-5 7 1 3 0 2 0 1 0 0 0 4 0 0 0 0 2 0 1 
10-5 6 0 1 0 1 0 0 0 1 0 0 2 0 0 0 0 3 0 0 
2A-5 14 2 7 1 3 0 4 0 6 2 0 1 0 1 0 0 0 0 0 
28-5 5 0 6 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 
2C-5 5 1 3 0 0 0 0 3 0 0 0 0 1 0 0 1 0 0 
20-5 13 3 8 1 1 0 6 0 12 0 0 2 0 0 0 0 0 1 0 
3A-5 1 0 1 0 0 0 0 0 6 1 0 1 0 0 0 0 0 0 0 
38-5 8 1 11 2 1 0 0 0 0 0 1 0 1 0 0 0 0 0 
3C-5 6 2 6 2 1 1 0 0 1 0 0 1 0 0 0 0 0 2 0 
30-5 2 0 2 0 0 1 0 0 0 0 0 6 0 1 0 0 0 0 0 
4A-5 3 0 1 0 0 0 0 0 15 0 0 3 0 0 1 0 0 2 0 
48-5 10 1 2 1 2 0 1 0 0 0 0 1 0 1 0 0 0 0 0 
4C-5 6 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
40-5 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
SA-5 8 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
58-5 3 0 0 2 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 
5C-5 16 1 3 0 0 0 3 0 0 1 136 2 0 0 0 0 0 1 0 
50-5 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Totals 262 26 124 28 36 5 16 89 7 136 139 7 8 3 9 15 4 
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Appendix B 2a Continued 

Sample Ophiop Hydrozoan Anthozoan lsopods Sipunculid Nemertear UnknownC Totals 
1A-1 0 0 0 0 0 1 0 73 
18-1 0 0 0 0 1 0 0 47 
1C-1 0 0 0 0 0 0 0 38 
10-1 0 0 0 0 0 D. 0 48 
2A-1 0 0 0 0 0 0 0 47 
28-1 0 0 0 0 0 0 0 53 
2C-1 0 1 0 0 0 0 0 24 
20-1 0 0 0 0 0 1 0 64 
3A-1 0 0 0 0 0 0 0 15 
38-1 0 0 0 0 0 0 0 74 
3C-1 0 0 0 0 0 0 0 71 
30-1 0 0 0 1 0 0 0 22 
4A-1 0 0 0 0 0 0 0 84 
48-1 0 0 0 0 0 0 0 35 
4C-1 0 0 0 0 0 0 0 49 
40-1 0 0 0 0 0 0 0 51 
5A-1 0 0 0 0 0 0 0 61 
58-1 0 0 1 0 0 0 0 42 
5C-1 0 0 0 1 0 0 0 28 
50-1 0 0 0 0 0 0 41 

1A-5 0 0 0 0 0 0 0 77 
18-5 0 0 0 0 0 0 0 63 
1C-5 0 0 0 0 0 0 0 72 
10-5 0 0 0 0 0 0 0 64 
2A-5 1 0 0 0 0 0 0 111 
28-5 0 0 0 0 0 0 0 57 
2C-5 1 0 0 0 0 0 0 58 
20-5 0 0 0 0 0 0 0 78 
3A-5 0 0 0 0 0 0 0 29 
38-5 0 1 0 0 0 0 0 77 
3C-5 0 0 0 0 0 1 0 78 
30-5 0 0 0 0 0 0 0 47 
4A-5 0 0 0 0 0 1 0 72 
48-5 0 0 2 0 0 1 0 78 
4C-5 0 0 0 0 0 0 0 34 
40-5 0 0 0 0 0 0 0 20 
5A-5 0 0 0 0 0 0 0 41 
58-5 0 0 0 0 0 1 0 48 
5C-5 0 0 0 0 0 0 1 221 
50-5 0 0 0 0 0 1 0 72 
Totals 2 2 3 2 2 7 2364 
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Appendix B -2b: Chapter 2 faU experiment diversity/composition 

Sample Aalbtr Acathr Aglneo Amhnd Ampdae An alan Ancsp Aslme Aletra Chodun Clypol Etolon Etonsp Eucpap Echspp Exod1s Faffin Glydae GonJlN 
1A-1 0 0 0 0 1 0 0 1 0 2 0 0 0 0 0 1 0 0 0 
18-1 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 
1C-1 0 0 0 0 0 0 1 1 0 3 0 0 0 2 0 0 0 1 
10-1 0 0 0 1 0 0 0 2 1 4 0 0 0 0 0 0 1 0 0 
2A-1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
28-1 0 0 0 3 0 0 0 0 2 3 0 0 0 2 0 1 0 0 0 
2C-1 0 3 0 0 0 0 0 6 1 5 0 0 0 2 0 0 0 0 0 
20-1 0 0 0 2 0 0 0 8 0 3 0 0 0 2 0 1 0 0 0 
3A-1 0 0 0 2 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 
38-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
3C-1 0 1 0 1 0 0 1 1 0 5 0 0 0 2 0 3 0 0 0 
30-1 0 0 0 0 0 0 0 1 0 3 0 0 0 2 0 0 0 0 0 
4A-1 0 2 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 
48-1 0 0 0 2 0 0 0 6 0 0 0 0 3 3 0 0 1 1 0 
4C-1 0 0 0 0 0 0 4 0 1 0 0 0 1 0 0 0 0 0 
40-1 0 0 0 0 0 0 0 0 4 0 0 0 2 0 0 0 0 0 
5A-1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
58-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5C-1 0 4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
50-1 0 0 0 0 0 0 5 0 4 0 0 0 0 0 0 0 

1A-5 0 0 0 2 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 
18-5 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
1C-5 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
10-5 0 0 1 0 0 0 0 3 0 5 0 0 0 1 0 1 2 0 0 
2A-5 0 2 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 
28-5 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2C-5 0 1 0 2 0 0 0 7 0 5 0 1 0 4 0 1 1 0 0 
20-5 0 1 0 1 0 0 0 6 0 3 1 0 0 5 0 2 0 0 0 
3A-5 0 1 0 2 0 0 0 2 0 2 0 0 0 0 0 1 0 0 0 
38-5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
3C-5 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 
30-5 0 3 0 1 0 0 0 3 1 3 0 0 0 0 0 0 0 0 0 
4A-5 0 3 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 
48-5 0 1 0 1 0 0 0 7 0 2 0 0 0 3 1 0 1 0 0 
4C-5 0 2 0 0 0 0 0 3 1 3 0 0 0 3 0 2 0 0 0 
40-5 0 1 0 0 0 2 0 3 0 5 0 0 0 4 0 0 1 0 0 
5A-5 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 
58-5 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 
5C-5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 
50-5 0 4 0 0 0 0 0 2 0 2 0 1 0 3 0 0 0 0 0 
Totals 41 2 20 5 3 82 8 81 2 4 48 15 10 
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Appendix B-2b: Continued 

Sample Gonmac Hmoore Laonc1 Lumbfr Lyslov Maldae Medamb Mthabe Mthspp Nepc1l Nep1nc Ohgoc Ophacu OphJUV Oprull OrbJuv Palyra Pconch Pecgra 
1A-1 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 2 0 0 
18-1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 6 0 0 
1C-1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 6 0 0 
1 D-1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 8 0 0 
2A-1 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 4 0 0 
28-1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 1 0 
2C-1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 8 1 1 
2D-1 0 1 0 0 0 1 3 0 0 0 0 4 1 0 0 0 3 0 0 
3A-1 0 0 0 0 0 0 0 0 0 0 2 2 0 1 0 4 0 0 
38-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 
3C-1 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 5 0 1 
30-1 0 0 0 0 0 0 2 2 3 0 0 0 0 0 0 0 3 0 
4A-1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 3 0 1 
48-1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 4 0 3 
4C-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 
40-1 1 0 0 0 0 0 4 0 0 0 0 4 4 0 1 0 11 0 1 
5A-1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 0 0 
58-1 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 4 0 0 
5C-1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 4 0 0 
5D-1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 4 0 

1A-5 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 9 0 0 
18-5 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 3 0 0 
1C-5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 
1D-5 0 0 0 0 0 0 2 0 0 0 0 0 2 2 0 0 7 0 0 
2A-5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
28-5 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 3 0 1 
2C-5 0 0 0 0 1 0 3 0 0 0 0 3 0 0 0 0 6 0 4 
2D-5 0 1 0 0 1 0 2 0 0 0 0 2 0 1 0 0 9 1 3 
3A-5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 
38-5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 
3C-5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 0 0 
30-5 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 5 0 0 
4A-5 0 0 0 0 0 0 2 1 0 1 0 0 0 0 0 0 3 0 0 
48-5 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 5 0 1 
4C-5 0 0 0 0 0 0 5 0 0 0 0 2 0 0 0 0 7 0 0 
4D-5 0 0 1 0 0 0 2 1 0 0 0 2 1 0 0 0 4 0 1 
SA-5 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 6 0 0 
58-5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 1 
5C-5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 2 0 0 
50-5 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 11 0 1 
Totals 4 7 3 2 46 5 5 2 2 37 18 5 206 3 21 
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Appendix B-2b: Continued 

Sample Pectsp Pehas Pheraf Phol)'l Phom1n Phtect Phymac Phymuc P1stcr Pquadr Psteen Pwebst Pygele Rhogra Rhlove Rhospp SabNew Scoarm Sfilic 
1A-1 0 1 0 0 0 14 0 1 0 0 3 0 0 0 0 0 0 0 0 
1 B-1 0 0 0 0 1 9 0 6 0 0 4 0 0 0 0 0 0 1 0 
1C-1 1 0 0 0 0 2 0 7 0 0 4 0 0 0 0 0 0 0 0 
10-1 0 0 0 0 1 2 0 2 0 0 4 0 0 0 0 0 0 2 0 
2A-1 0 0 0 0 2 7 0 1 0 0 0 0 0 0 0 0 0 0 0 
28-1 0 0 0 0 1 16 0 3 0 0 4 0 0 0 0 0 0 1 0 
2C-1 0 0 0 0 2 21 0 4 0 0 6 0 0 0 0 0 0 0 0 
20-1 0 0 0 0 7 1 2 0 0 7 0 0 0 1 0 1 0 
3A-1 0 0 0 0 1 5 0 4 0 0 4 0 0 0 1 0 0 0 0 
38-1 0 0 0 0 0 2 0 3 0 0 3 0 0 0 0 0 0 1 0 
3C-1 0 0 0 0 3 8 0 1 0 1 10 1 3 0 2 0 0 2 0 
30-1 0 0 0 0 1 2 0 1 0 0 4 0 0 0 0 0 0 0 0 
4A-1 0 0 0 0 1 8 0 0 0 0 4 0 0 0 0 0 0 2 0 
48-1 0 0 0 0 3 1 0 0 0 0 8 0 1 0 1 0 0 1 0 
4C-1 0 0 0 1 0 16 0 0 0 0 8 0 3 0 0 2 0 0 0 
40-1 0 0 0 0 0 23 0 1 0 0 9 0 0 0 0 0 0 3 0 
5A-1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 
58-1 0 0 0 0 0 7 0 1 0 0 3 0 2 0 0 0 0 1 0 
5C-1 0 0 0 1 0 9 0 0 0 0 0 0 3 0 0 0 0 0 0 
50-1 0 0 0 0 4 18 0 2 0 0 7 0 0 0 0 0 0 

1A-5 0 0 0 0 4 12 0 6 0 0 5 0 0 1 0 1 0 2 0 
18-5 0 0 0 0 2 2 0 3 0 0 2 1 0 0 0 0 0 0 0 
1C-5 0 0 0 0 0 1 0 2 0 0 2 0 1 0 0 0 0 0 
10-5 0 0 0 0 0 15 0 2 0 0 6 0 0 0 0 0 0 1 0 
2A-5 0 0 0 0 0 3 0 3 0 0 1 0 0 0 0 0 0 1 0 
28-5 0 0 0 0 2 11 0 0 0 0 0 0 0 0 0 0 0 3 0 
2C-5 0 0 0 1 2 12 3 2 0 0 10 0 0 0 0 0 0 0 1 
20-5 0 0 0 0 0 18 2 3 0 0 6 0 2 0 0 0 0 0 0 
3A-5 0 0 0 0 0 0 0 4 0 0 2 0 0 0 0 0 0 1 0 
38-5 0 0 0 0 1 7 0 1 0 0 5 0 0 0 0 0 0 2 0 
3C-5 0 0 0 0 1 1 3 0 0 2 0 0 0 0 2 0 0 0 
30-5 0 0 0 0 1 14 0 3 0 0 9 0 3 0 0 2 0 1 1 
4A-5 0 0 0 0 0 3 0 0 0 4 0 0 0 0 0 0 0 0 
48-5 0 0 1 0 2 6 0 0 0 4 0 0 0 0 1 0 2 0 
4C-5 0 0 0 0 2 30 1 1 1 0 8 0 0 0 0 0 1 2 0 
40-5 0 0 0 0 2 16 0 2 0 0 2 0 0 0 0 0 0 2 0 
5A-5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
58-5 0 0 0 0 1 4 0 1 0 0 3 0 0 0 0 0 0 0 0 
5C-5 0 0 0 0 3 10 0 5 0 0 1 0 2 0 0 0 0 0 0 
50-5 0 0 0 0 2 6 0 2 0 0 14 0 1 1 0 0 0 1 0 
Totals 1 1 3 46 349 8 85 1 183 2 23 2 4 9 1 35 2 
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Appendix B-2b: Continued 

Sample Sjapon Slongi Sptosp Terebe ThxSpp Astart Cerast Crenel L1ttor Macoma Myttlu Thyasi Tncho Unl08~ Yoldta O.IUCif Osculp Oiassp AmphtA 
1A-1 0 2 0 0 0 7 3 3 0 1 0 0 0 1 0 2 0 0 1 
18-1 0 1 0 0 3 7 0 4 0 1 0 1 0 0 0 0 0 0 0 
1C-1 0 0 0 0 2 3 2 0 0 1 0 0 0 0 3 0 0 0 
10-1 0 1 0 0 3 11 1 3 0 0 0 2 0 0 0 B 0 0 0 
2A-1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 21 0 0 0 
28-1 1 3 0 0 1 6 9 2 0 1 1 0 1 0 0 15 0 0 0 
2C-1 0 0 0 0 4 9 3 2 0 0 0 0 0 0 0 9 0 0 0 
2D-1 3 0 0 0 4 28 3 26 0 0 0 0 0 0 0 1 0 0 0 
3A-1 0 0 0 0 0 3 4 1 1 0 0 0 0 0 0 12 0 1 0 
38-1 0 0 0 0 0 5 3 0 0 0 0 1 0 0 0 2 0 0 0 
3C-1 2 0 0 0 1 11 B 13 0 0 0 2 0 1 0 6 0 0 0 
3D-1 1 3 0 0 0 6 4 5 0 0 0 3 0 0 0 7 0 0 0 
4A-1 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 5 0 0 0 
48-1 1 1 0 0 1 2 14 6 1 1 0 0 0 0 0 2 0 0 0 
4C-1 5 1 0 0 4 25 7 13 0 0 1 1 0 0 1 0 0 0 0 
40-1 1 0 0 0 2 4 2 1 0 0 0 3 0 0 0 10 0 0 0 
SA-1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 0 0 0 
58-1 2 0 0 0 0 4 0 0 0 0 0 0 0 0 0 5 1 0 0 
5C-1 0 0 0 0 7 7 3 0 0 0 0 0 0 0 7 0 0 0 
5D-1 0 0 0 2 14 11 11 0 0 0 0 0 0 0 11 0 0 0 

1A-5 0 0 0 0 1 14 3 6 0 0 0 1 0 0 0 5 0 0 0 
18-5 0 1 0 0 0 2 2 1 0 0 0 2 0 0 0 5 1 0 0 
1C-5 0 0 0 0 0 12 1 4 0 0 0 0 0 0 0 7 0 0 
1D-5 2 0 0 0 2 11 5 4 0 0 1 2 0 0 0 B 0 1 
2A-5 1 1 0 1 1 6 7 1 0 0 1 2 0 0 0 2 0 0 
28-5 0 1 0 0 0 B 5 2 0 0 0 2 0 0 0 5 0 0 
2C-5 2 3 0 0 7 28 5 26 0 0 0 7 0 0 0 7 1 0 0 
20-5 2 0 0 0 3 34 3 32 0 0 0 0 0 0 0 4 0 0 0 
3A-5 0 0 0 0 0 4 0 0 0 0 0 1 0 0 0 4 0 0 0 
38-5 0 1 0 0 3 1 0 3 0 0 0 1 0 0 0 4 0 0 0 
3C-5 0 0 0 0 1 7 4 B 0 0 0 0 0 0 0 7 0 0 0 
3D-5 1 0 0 0 0 18 1 17 0 3 0 1 0 0 0 6 0 0 0 
4A-5 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 2 1 0 0 
48-5 0 2 0 0 7 5 6 0 0 0 1 0 0 0 0 0 0 0 
4C-5 3 1 0 20 2 10 0 0 0 1 0 0 0 0 0 0 
40-5 3 1 0 0 4 12 4 3 0 0 0 1 0 0 0 1 1 0 0 
SA-5 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 5 0 0 0 
58-5 1 0 0 1 3 2 2 0 0 0 0 0 0 0 0 0 0 0 
5C-5 0 0 0 0 B 6 1 0 1 0 1 0 2 0 9 0 0 0 
5D-5 1 1 0 0 3 B 2 7 1 0 0 0 0 0 0 4 0 0 0 
Totals 34 26 59 355 147 230 3 B 5 36 4 1 215 9 2 
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Appendix B-2b: Continued 

Sample Amphi8 8athym Metape Phoxoce Coroph1um UnkAmp Euphau lsopod1 lsopod2 S.droe Astenas Oph10p Sipuncul1d Nemer! ear Echpar CrMega Chiton Lrttor Totals 
1A-1 0 0 0 1 0 0 0 0 0 1 0 1 0 2 0 0 0 0 54 
1 B-1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 54 
1C·1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 45 
10-1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 
2A·1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41 
28-1 0 0 0 2 1 0 0 1 0 0 0 1 0 0 0 0 0 94 
2C-1 0 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 96 
20·1 0 0 0 0 0 1 0 0 0 0 1 0 2 0 0 0 0 120 
3A-1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 56 
38-1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 
3C-1 0 1 0 0 0 0 0 0 0 1 0 3 0 1 0 0 0 0 104 
3[).1 0 0 0 2 0 0 0 0 0 1 0 0 0 1 0 0 0 0 58 
4A·1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 41 
48-1 0 2 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 74 
4C-1 0 3 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 111 
40-1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 97 
5A·1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 17 
58-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 
5C-1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 51 
50-1 0 0 0 0 0 0 0 0 2 0 0 0 0 113 

1A-5 0 0 2 0 0 1 0 0 3 0 0 0 0 0 0 0 86 
18-5 0 0 0 1 0 0 0 0 0 3 1 0 0 0 0 0 0 0 37 
1C-5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 
10·5 0 0 0 0 0 0 0 0 0 4 0 0 0 0 1 0 0 0 92 
2A-5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 41 
28-5 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 57 
2C-5 0 0 3 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 163 
20-5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 151 
3A-5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 27 
38-5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 
3C-5 0 0 0 1 0 0 0 0 0 2 1 0 0 0 0 0 0 0 48 
30-5 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 102 
4A-5 0 0 0 0 0 0 0 0 0 2 1 0 2 0 0 0 0 0 35 
48-5 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 1 69 
4C-5 0 0 2 1 0 0 0 0 0 2 0 1 0 0 0 0 0 0 120 
40-5 1 0 1 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 91 
5A·5 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 26 
58-5 0 1 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 30 
5C-5 1 1 0 4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 63 
50-5 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 83 
Totals 2 14 12 23 5 2 2 4 6 34 6 19 6 14 2 3 2751 
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Appendix B-la: Chapter 3 summer experiment (quantity) 

Sample Aalbtr Acathr Ampacu Amlmd Ampdae Anolan Aricsp Asl ine Atetra Chodun Cirdae OOIVJV Dorrud Etohet Eucpap Eucmc Exod1s Faffin GlyjLN 
1A-1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 
18-1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1C-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
10-1 0 2 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
2A-1 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
28 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2C-1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
20-1 1 0 0 0 0 5 0 0 0 0 0 1 0 0 0 0 0 0 0 
3A-1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
38-1 2 5 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 
3C-1 0 0 0 1 0 0 0 0 0 2 0 0 0 0 3 0 0 0 0 
30-1 0 0 0 0 0 0 3 0 0 0 0 2 0 0 0 0 

1A-5 0 3 0 1 0 1 0 3 0 0 0 0 0 0 3 0 0 1 0 
18-5 0 2 0 0 0 0 0 1 0 2 0 0 0 0 2 0 0 0 0 
1C-5 0 3 0 0 0 1 0 4 0 3 0 1 0 0 1 0 0 0 0 
10-5 0 0 0 0 0 0 0 5 0 4 0 0 0 0 2 0 0 0 0 
2A-5 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 
28-5 0 0 0 0 0 0 5 1 7 0 0 0 1 7 0 4 0 0 
2C-5 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
20-5 0 0 0 3 0 2 1 2 0 0 0 0 0 0 0 0 0 0 
3A-5 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 
38-5 0 1 0 0 0 0 0 4 0 0 0 0 0 0 3 0 0 0 1 
3C-5 0 3 0 0 0 0 0 7 1 2 0 0 0 0 0 0 0 0 0 
30-5 0 2 0 0 0 0 0 3 0 1 0 0 0 0 2 0 0 0 0 
Totals 5 28 6 1 12 2 35 5 27 2 1 30 1 4 1 

B19 



Appendix B-3a Continued 

Sample GonJUV Gonmac Hmoore Lumbfr Maldae Medamb Mthabe Mthspp Nepc1l Ollgoc Ophacu Ophjuv Oprull OrbJuv Palyra Pcirrf Pconch Pecgra PeclJV 
1A-1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 7 0 0 0 0 
1B-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 
1C-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 
10-1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 4 0 0 0 0 
2A-1 0 0 0 0 0 1 0 0 0 4 0 0 0 0 10 0 0 0 0 
28-1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 8 0 1 0 2 
2C-1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 3 0 0 0 0 
20-1 0 0 0 0 0 5 0 0 0 0 0 0 0 1 0 0 0 1 
3A-1 0 0 0 0 0 2 0 1 0 0 1 3 0 6 0 0 0 0 
3B-1 0 0 0 0 0 0 0 0 2 0 0 0 1 0 4 0 0 1 0 
3C-1 0 0 0 0 0 1 6 0 0 0 0 0 2 0 0 0 1 0 4 
30-1 0 0 0 2 1 0 0 0 0 0 0 6 0 0 0 

1A-5 0 0 0 0 1 0 0 0 1 0 0 0 0 4 0 0 2 0 
1B-5 0 0 0 0 0 2 1 0 0 0 0 0 0 0 7 0 0 
1C-5 0 0 1 0 0 1 0 0 0 0 0 0 0 0 7 0 4 0 
10-5 0 0 1 0 0 0 0 0 0 0 0 0 0 7 0 1 0 
2A-5 0 0 1 0 1 1 1 0 0 0 0 0 0 9 0 0 1 0 
28-5 0 1 0 0 0 0 0 0 0 1 0 0 2 0 3 0 1 8 0 
2C-5 0 0 1 1 0 3 0 0 1 2 0 0 0 0 6 0 0 2 0 
20-5 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 
3A-5 0 0 0 0 0 0 0 0 0 0 0 0 2 9 0 0 2 0 
38-5 0 0 0 0 0 12 0 0 0 2 0 1 0 2 0 0 6 0 
3C-5 0 0 1 0 0 1 0 0 0 0 1 0 0 3 5 0 0 4 0 
30-5 0 0 3 0 0 0 0 0 0 0 0 0 0 3 1 0 1 3 0 
Totals 3 11 2 2 18 30 5 12 3 10 8 128 7 36 7 
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Appendix B-3a: Continued 

Sample PhoiJ'I Phomm Phospp Phtect Phymac Phymuc Pole au PoiSpp Pquadr Psteen Pwebst Pygele Rhogra Rhlove Rhospp Scoanm Sfilic SJapon Slongi 
1A-1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 2 0 2 
18-1 2 1 0 1 0 1 0 0 1 1 4 0 0 0 0 0 1 0 
1C-1 0 0 0 0 0 1 0 0 2 4 0 0 0 0 0 1 0 0 2 
10-1 1 1 0 1 0 0 0 0 1 4 1 0 0 0 0 0 1 2 0 
2A-1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 
2B-1 0 1 0 2 0 1 0 0 0 3 0 1 0 0 0 0 0 0 
2C-1 0 0 0 0 0 0 1 0 1 0 4 0 0 0 0 0 0 0 
20-1 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 1 
3A-1 0 1 0 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
38-1 1 2 0 1 0 0 1 0 0 2 2 4 0 3 0 0 0 0 0 
3C-1 1 2 0 4 0 0 0 0 2 11 0 0 0 0 0 0 0 
30-1 0 0 2 0 1 0 0 0 6 0 0 0 0 0 

1A-5 0 2 0 10 0 0 0 0 0 4 0 0 0 0 0 0 0 0 4 
18-5 0 2 0 3 1 1 0 0 0 6 0 8 0 0 1 2 0 2 1 
1C-5 0 5 0 3 0 2 0 0 0 18 0 0 0 0 0 4 0 0 0 
10-5 4 1 0 2 0 2 0 0 0 10 0 0 0 0 0 0 0 0 1 
2A-5 2 0 0 0 0 3 0 0 0 3 0 4 0 0 0 2 0 0 1 
2B-5 8 0 0 3 0 0 0 0 1 9 0 0 0 1 0 0 0 3 4 
2C-5 4 0 0 0 0 3 0 0 0 4 0 0 0 0 0 0 0 1 0 
20-5 6 0 0 0 0 3 0 0 0 12 1 0 0 0 0 0 0 0 1 
3A-5 4 0 0 1 0 3 0 0 0 16 0 0 0 0 0 0 0 1 0 
3B-5 10 1 2 0 0 1 0 0 1 7 0 10 0 0 0 0 0 2 4 
3C-5 7 0 0 0 1 0 0 0 1 9 0 1 0 0 0 0 0 2 0 
30-5 7 0 0 0 0 2 0 0 0 18 0 0 0 0 0 2 0 0 1 
Totals 58 21 2 36 2 26 2 1 11 154 5 38 5 13 3 17 23 
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Appendix B-3a: Continued 

Sample Terebe ThxSpp UnkPol Nemert Astart Cerast Crenel Litter Macoma Mytilu Thyas1 Tncho Unl08~ urchin lepamp d1aluc diascu chrton ophiop 
1A-1 0 0 0 0 4 2 1 0 2 0 2 0 0 1 0 0 0 0 0 
18-1 0 0 0 0 7 0 2 0 0 0 0 0 0 0 0 0 0 0 
1C-1 0 0 0 0 6 2 1 0 1 0 1 0 0 1 1 3 0 0 0 
10-1 0 0 0 0 0 5 2 0 0 0 0 0 0 0 0 1 0 3 1 
2A-1 0 2 0 0 11 1 1 0 0 1 0 0 0 0 0 1 0 0 2 
28-1 0 0 0 0 13 0 6 1 0 0 0 0 0 0 0 1 0 0 0 
2C-1 0 0 0 0 0 0 0 0 0 1 3 0 0 0 0 3 0 0 0 
2D-1 0 3 0 0 7 3 7 0 0 0 1 0 0 0 0 2 1 0 0 
3A-1 0 2 0 0 12 0 3 0 0 1 2 0 0 0 0 0 0 0 0 
38-1 0 0 0 6 2 3 0 1 0 2 1 0 0 0 7 0 0 0 
3C-1 0 4 0 0 27 3 14 1 0 2 0 0 0 0 0 3 0 0 1 
30-1 0 3 0 0 4 3 2 0 2 0 0 0 0 0 0 0 0 0 

1A-5 0 2 0 0 8 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
18-5 0 1 3 0 2 0 2 0 0 1 4 0 0 0 0 0 0 0 0 
1C-5 0 3 0 0 2 1 0 1 0 0 0 0 1 0 0 0 1 0 0 
10-5 1 2 0 0 5 3 0 0 0 0 0 0 0 0 0 1 0 0 0 
2A-5 0 1 0 1 7 0 3 0 0 0 1 1 0 0 0 2 0 0 0 
28-5 0 0 0 0 10 1 5 2 0 1 2 0 1 3 0 0 0 0 4 
2C-5 0 4 0 0 1 1 0 0 0 3 0 9 1 0 2 0 0 0 
20-5 0 3 0 1 5 3 7 0 0 1 1 0 3 0 0 1 0 0 
3A-5 0 0 0 0 4 0 4 0 0 0 1 0 0 1 0 1 0 0 0 
38-5 0 2 0 0 23 1 12 0 3 0 2 0 5 0 0 0 0 0 0 
3C-5 0 1 0 0 2 0 1 0 0 0 0 0 0 1 0 0 0 0 0 
30-5 0 2 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 
Totals 1 36 3 2 167 31 77 5 9 9 29 2 19 8 28 3 3 8 
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Appendix B-3a: Continued 

Sample hal ira sipunc plepan caprel metape asteri cumjuv seaane munfab coroph monspp phoxhol . hipser Totals 
1A-1 0 0 0 0 0 0 0 0 0 0 3 2 1 37 
1 8-1 0 1 0 0 0 0 0 0 0 0 2 0 0 44 
1 C-1 0 0 0 0 0 0 0 0 0 0 2 0 0 31 
1 0-1 1 0 0 0 0 0 0 0 0 0 0 0 0 38 
2A-1 0 0 0 0 0 0 0 0 0 0 0 0 0 41 
28-1 0 1 0 0 0 0 0 0 0 0 7 0 0 51 
2C-1 1 0 0 0 0 0 0 0 0 0 0 0 0 21 
20-1 0 0 1 0 0 0 0 0 0 0 2 0 0 49 
3A-1 0 0 0 1 0 0 0 0 0 2 6 1 0 51 
38-1 0 1 0 0 0 0 0 0 0 0 10 0 0 67 
3C-1 0 0 0 2 3 0 0 0 0 0 6 0 0 108 
30-1 0 0 0 0 0 0 0 0 0 0 0 0 51 

1A-5 0 0 0 0 0 0 0 0 0 0 0 0 0 52 
18-5 0 0 0 0 1 0 0 1 0 1 0 0 0 62 
1C-5 0 0 0 0 0 1 3 0 0 0 1 0 1 74 
10-5 0 0 0 0 0 0 0 0 0 0 0 0 0 54 
2A-5 0 0 0 0 0 0 0 0 0 0 0 0 0 50 
28-5 0 0 0 0 0 1 0 0 1 1 0 1 0 104 
2C-5 0 1 0 0 1 0 0 0 0 0 0 0 0 55 
20-5 0 1 0 0 0 0 93 0 0 0 0 0 0 156 
3A-5 0 0 0 1 1 0 0 1 1 0 0 0 0 57 
38-5 0 0 0 0 0 0 0 0 0 1 1 0 0 121 
3C-5 0 0 0 0 0 0 0 1 0 1 0 0 0 56 
30-5 1 1 0 0 0 0 0 0 0 0 3 0 0 59 
Totals 4 6 1 4 6 2 96 3 2 6 43 4 2 1489 
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Appendix B -3b: Chapter 3 Fall experiment (quantity) 

Sample Acathr Amlind Anolan Ancsp Asline Atetra Capspp Chodun Etolon Eucpap Exodts Faffin Glycap Gonmac Gonspp Hmoore Lumbfr Maldae Medamb 
1A-1 2 0 1 0 2 1 0 0 0 1 1 0 0 0 0 0 0 0 0 
18-1 3 0 0 0 3 0 0 4 0 0 0 1 0 0 0 0 0 0 1 
1C-1 0 0 0 0 9 0 0 3 0 0 0 2 1 1 0 0 0 0 3 
1D-1 0 1 0 0 2 0 0 3 0 2 0 0 0 1 0 1 0 0 
2A-1 1 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 1 
28-1 4 0 2 0 0 2 0 0 1 3 0 0 0 0 0 0 0 0 
2C-1 1 0 3 0 9 2 0 4 0 5 0 0 0 0 0 0 0 1 
2D-1 2 0 0 0 0 1 0 2 0 0 1 0 0 0 1 0 0 0 0 
3A-1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
38-1 3 0 1 0 2 0 0 7 0 1 0 0 0 0 0 0 0 0 0 
3C-1 1 0 0 0 2 1 0 2 1 2 0 1 0 0 0 0 0 0 0 
3D-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1A-5 1 0 0 0 5 0 0 4 0 0 0 0 0 0 0 0 0 0 1 
18-5 0 1 1 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 2 
1C-5 1 0 0 0 5 0 0 2 0 0 0 0 0 0 0 0 0 2 1 
1D-5 0 2 1 0 2 0 0 2 0 0 0 0 0 0 0 0 1 0 4 
2A-5 0 0 0 0 1 0 0 4 0 2 0 0 0 0 0 0 0 0 1 
28-5 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 1 0 0 
2C-5 4 0 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 
2D-5 1 0 2 0 10 1 0 5 0 1 0 1 0 1 0 0 0 0 2 
3A-5 0 1 1 0 2 0 0 5 0 2 0 0 0 0 0 0 0 0 0 
38-5 0 1 0 0 0 0 0 2 0 2 0 0 0 0 0 0 1 0 1 
3C-5 2 0 0 0 1 0 0 4 1 2 0 0 0 1 0 0 0 0 0 
3D-5 1 2 0 1 1 0 0 8 0 0 2 0 0 0 0 0 0 0 2 
Totals 29 9 13 56 9 73 3 26 6 5 1 6 1 1 3 2 21 
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Appendix B-3b: Continued 

Sample Mthabe Mthspp Nepc1l Ollgoc Ophacu OphJUV Oprull Orbspp Palyra Parads Pconch Pecgra Pecspp Phomin Phtect Phymac Phymuc PoiSpp Pquadr 
1A-1 0 0 0 0 2 0 0 0 4 0 0 0 0 0 21 1 0 0 0 
18-1 0 0 0 2 0 0 0 0 8 0 0 1 0 0 7 0 4 0 1 
1C-1 0 0 0 0 0 0 1 0 6 0 0 0 0 12 0 2 0 0 
10-1 0 0 0 3 0 0 0 0 8 0 0 1 0 1 17 0 1 0 0 
2A-1 0 0 0 0 0 0 2 0 3 0 0 0 0 0 9 0 2 0 0 
28-1 1 0 0 1 0 1 0 7 0 0 1 0 1 9 0 1 0 0 
2C-1 0 0 0 0 1 0 0 0 3 0 0 0 0 18 1 2 0 0 
20-1 1 0 0 0 0 0 0 0 7 0 0 1 0 2 14 0 1 1 0 
3A-1 0 0 0 0 0 0 0 0 6 0 1 0 0 0 3 0 5 0 0 
38-1 0 0 0 1 2 0 0 0 1 0 0 2 0 0 3 0 6 0 0 
3C-1 0 0 0 2 3 0 0 0 5 0 0 0 2 16 0 1 0 0 
30-1 0 0 0 0 0 0 0 0 5 0 0 0 2 4 0 3 0 0 

1A-5 0 0 0 1 1 1 0 0 4 0 0 1 0 0 31 0 5 0 0 
18-5 0 0 0 0 0 2 0 0 5 0 2 0 0 2 9 1 2 0 0 
1C-5 0 0 0 1 2 0 0 0 5 0 0 2 0 0 19 0 2 0 0 
10-5 0 0 0 0 0 0 0 0 7 0 0 0 1 0 10 0 1 0 0 
2A-5 0 0 0 0 0 0 0 0 4 0 0 1 0 2 12 0 0 0 0 
28-5 0 0 0 0 1 0 0 0 12 0 0 0 0 1 11 1 2 0 0 
2C-5 0 0 1 0 0 0 1 7 1 0 1 0 0 3 0 3 0 0 
20-5 3 0 1 1 0 1 0 0 4 0 0 0 0 0 24 0 1 0 0 
3A-5 0 0 0 0 0 0 0 0 2 0 0 0 0 1 11 0 2 0 0 
38-5 0 0 0 0 1 0 0 0 3 0 0 0 0 0 3 0 3 0 0 
3C-5 1 1 0 1 0 0 0 0 7 0 0 0 0 1 3 0 3 0 0 
30-5 0 0 0 0 0 0 0 0 3 0 0 1 0 2 3 0 2 0 0 
Totals 6 2 14 14 4 4 1 126 1 3 15 1 18 272 4 54 1 
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Appendix B-3b: Continued 

Sample Psteen Pygele Rhogra Rhospp SabNew Scoarm SJapon Slong1 Terebe ThxSpp As tart Cerast Crenel Lrttor Mac om a Myt1lu Thyasi Tricho UniD8v 
1A-1 3 0 0 0 0 0 1 0 0 0 3 8 1 0 0 1 0 0 0 
18-1 1 0 0 0 0 1 0 0 1 1 12 4 3 0 0 0 0 1 
1C-1 15 5 1 0 0 0 1 0 2 17 8 4 0 1 1 2 0 0 
10-1 3 0 0 0 0 0 2 0 2 10 4 5 0 0 1 0 0 1 
2A-1 2 0 0 0 0 1 0 0 2 3 0 4 0 0 0 3 0 0 
28-1 7 0 0 1 0 3 0 0 11 1 9 0 0 0 0 0 0 
2C-1 23 1 0 0 0 0 0 1 0 1 16 6 14 0 0 1 2 0 0 
20-1 4 0 0 0 0 2 2 3 0 1 16 4 2 0 0 0 0 0 2 
3A-1 7 0 0 2 0 0 0 1 0 0 1 4 0 0 0 0 0 0 0 
38-1 6 0 1 0 0 0 0 0 0 7 5 2 0 0 0 0 0 0 
3C-1 3 0 0 0 0 1 1 2 0 2 12 6 2 0 0 0 2 0 0 
30-1 2 0 0 0 5 2 0 2 18 4 7 0 0 0 0 0 

1A-5 6 1 0 0 0 0 0 1 0 0 6 4 4 1 0 0 1 0 
18-5 2 0 0 0 0 1 0 0 0 0 12 5 3 0 0 3 0 0 
1C-5 10 1 0 0 0 3 1 4 0 1 6 7 2 0 0 0 0 2 
10-5 3 0 0 0 0 1 0 5 0 0 7 7 5 0 0 0 0 0 
2A-5 9 0 0 0 0 1 0 0 0 3 6 0 2 1 0 0 4 0 0 
28-5 4 0 0 0 0 0 0 0 0 0 6 7 2 0 1 0 2 0 0 
2C-5 9 0 0 0 0 1 0 0 0 0 15 0 3 0 0 0 1 0 0 
20-5 11 0 0 1 0 0 0 0 1 15 5 16 0 1 0 3 0 0 
3A-5 4 0 0 0 0 0 0 1 0 0 0 3 3 0 0 0 2 0 0 
38-5 5 0 0 0 1 0 0 0 0 0 3 2 2 0 0 0 0 0 0 
3C-5 4 0 0 0 0 0 0 1 0 0 3 1 1 0 1 0 0 0 0 
30-5 4 0 0 1 0 2 0 0 0 7 9 1 3 0 0 0 2 0 0 
Totals 147 9 2 5 1 23 9 26 26 214 96 99 2 9 4 27 1 6 
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---------------------------- ----------

Appendix B-3b: Continued 

Somple urch1n d1aluc d1ascu d1ospp lam qua ophiop hahra s1punc met ape asten seaane munfab nemert dul1sp euphau isopod h1pser phxhol monspp plepon coroph caprel Totals 
1A-1 1 18 0 2 0 0 0 1 0 0 0 0 0 0 0 0 1 2 0 1 0 81 
16-1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 0 0 0 0 68 
1C-1 6 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 112 
10-1 6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 78 
2A-1 7 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 49 
26-1 9 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 B2 
2C-1 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 126 
20-1 0 6 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 83 
3A-1 0 25 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 62 
36-1 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65 
3C-1 0 6 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 79 
30-1 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76 

1A-5 1 8 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 94 
16-5 2 4 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 67 
1C-5 0 5 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 90 
10-5 0 2 0 0 1 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 66 
2A-5 3 6 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 65 
26-5 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 59 
2C-5 1 6 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 66 
20-5 2 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 122 
3A-5 0 12 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 55 
36-5 0 10 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 44 
3C-5 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53 
30-5 1 4 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 67 
Totals 15 197 3 3 2 6 3 3 10 7 9 3 12 5 1611 
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