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ABSTRACT 

PERIPUBERTAL DEFEMINIZA TION of HEPATIC 

CYTOCBROMES P-450 lCll and 3Al by TESfiCULAR STEROIDS 

in the ABSENCE of NEONATAL DEFEMINIZA TION 

by Jennifer Lea Avery 

We studied the ability of testicular secretions to either defeminize 

(represented as an increase in basal specific activity), or masculinize (represented as 

an ability to respond to adult testosterone administration}, the sex-specific P-450s 

2C 11 and 3A2, in the absence of neonatal defeminization. Neonatal defeminization 

of these P-450s is suspected to occur via androgen--derived estrogens. 

Defeminization was successfully prevented by subcutaneous insertion ofSilasticn.t 

capsules containing the aromatase blocker 1,4,6-androstatriene-3,17-dione (A TO), 

from day 0 (birth) to day 21 (weaning), in the male rat The testes remained in situ 

from birth to day 21, 35, 55, 70, or death. Animals castrated on day 21 or 55 received 

either testosterone therapy (2 mglkglday, s.c., in com oil) for 14 days, beginning on 

day 70, or received no testosterone therapy. All animals were killed on day 70 or 84. 

The neonatal A TO treatment blocked the normal increase in basal 

ethylmorphine demethylase (EMDM), 6~hydroxylase, 2a-hydroxylase, and 16a­

hydroxylase specific activity, seen in adulthood Although Am prevented the 

neonatal defeminization as noted by a permanent increase in basal activity, both P-

450 isozymes were responsive to testosterone in adulthood, either partially (EMDM), 

or completely (6f3-, 2a-, 16a-hydroxylase). 

The intact testes from birth to death, in the A TO-treated male, effected a 

permanent increase in the basal activities ofEMD~ as well as the 6f3-, 2a-, and 

16a-hydroxylations on testosterone. This treatment also effected a 100% recovery 

(i.e. intact male activity) ofEMDM activity, when stimulated by testosterone in 



iii 

adulthood The permanent increase in EMDM basal activity, is most likely 

completed by day 55, as there was no difference in specific activity between the day 

55 castrate, and the day 70 castrate. Of the hydroxylations of testosterone, we 

demonstrate that castration on day 55 results in significantly higher specific activities 

of these isozymes, then castration on day 70. 

We also report significant sex differences (males> fem~es) in aniline 

hydroxylase activity, cytochrome P-450 content, and cytochrome c reductase activity. 

We do not attribute the above results to differences in P-450 content or reductase 

activity. The ?a-hydroxylation of testoster!>ne (P-450 2A 1) was sexually 

differentiated (females > males). We demonstrated that the elimination of estrogens 

throughout the life of the male (A TO treated and castrated on day 21 ), prevented the 

feminization (increase in basal activity) of ?a-hydroxylase, following castration. 

These results demonstrate that puberty is a very dynamic process, resulting in 

changing characteristics of these sex-specific P-450s. Puberty is also a time when 

these basal enzyme activities, as well as the responsiveness ofBviDM to adult 

testosterone therapy, can be pennanently defeminized, in the absence of neonatal 

defeminization. 
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1.0. INTRODUCTION 

Cytochrome P-450 denotes a super-family of heme-protein enzymes that have 

been described in 31 eukaryotes (including 11 mammals and 3 plants) and 11 

prokaryotes. The name •cytochrome P-150' was actually given to a red pigment 

having, in the reduced carbon monoxide (CO )-difference spectrum~ a major band at 

the wavelength of 450 nm (Omura and Sato, 1964 ). This ubiquitous enzyme family is 

responsible for a large number of metabolic processes, including the metabolism of 

foreign compounds (xenobiotics) as well as the metabolism of compounds inherent to 

the host (i.e. steroids). In mammals, the enzyme system has been found in all tissues 

examined. 

Many P-450 isozymes 
1 

exist within a specific tissue, however each isozyme 

performs its own variety of metabolic reactions. Many isozymes may be responsible 

for one reactio~ or one isozyme may be responsible for a number of different 

reactions. Cytochromes P-450 are often described as having "broad and overlapping 

substrate specificities". 

Mammalian species host 12 families ofP-450s, of which at least six families 

include P-450 forms involved in steroidogenesis (Gonzalez, 1988; Gonzalez and 

Nebert. 1990). The 12 mammalian families have 22 subfamilies, and these 

1 any of a set of structural variants of an enzyme occurring in different tissues in a single species (from 
The Collins English Dictionary, 2nd edition) 
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subfamilies originate from clusters of tightly linked genes. Nelson eta/. (1993) 

suggested a common nomenclature for naming individual P-450 isozymes. To 

demonstrate, examine the P-450 "3AT'. The first Arabic numeral ··3", denotes the P-

450 family, the following letter ''A", designates the subfamily (if two or more exist), 

and the Arabic number ''2'', represents the indr;idua/ gene product within the 

subfamily. Genetic homology determines which isozyme belongs to which family 

and subfamily. By definition, a P-450 family will have a 40% homology in amino 

acids with all other P-450 proteins in the same family. Similarly, mammalian 

sequences within the same subfamily _are > 55% identical (Nelson et a/., 1993 ). Past 

literatme has presented the reader with a variety of nomenclature systems for 

identifying individual P-450 isozymes. For simplicity, we will follow the system 

proposed by Nelson et a/. ( 1993) as defined above. For analogous names of P-450 

isozymes given in different laboratories, see Appendix B. 

Typical P-450 monooxygenase
2 

reactions include hydroxylation, epoxidation, 

deamination and desulfuration., among many others (Sipes and Gandolfi, 1986). 

Generally, a P-450 reaction in a microsomal3 system begins with the transfer of 

electrons from NAD(P)H to NADPH-cytochrome P-450 reductase and then to 

cytochrome P-450. This reduces the molecular oxygen species, and is followed by 

the insertion of one oxygen atom into the substrate (oxidation). However P-450s can 

also reduce substrates . 

., 
~ an enzyme introducing one atom of oxygen from 0 2 into a compound while reducing the other atom 
of oxygen to water 
3 any of the small particles consisting of n'bosomes and fragments of attached endoplasmic reticulum 
that can be isolated from cells by centrifugal action 
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The following is the general stoichiometric formula for a typical P-450 

oxygenation, with 'R' representing the substrate. 

RH + <h + NADPH + H+ ROB+ H20 + NADP+ 

Generally, the substrates are lipophilic (lipid soluble), and the oxygenation 

process ultimately converts the substrate to a more hydrophilic (water soluble) state, 

so that the derivative is more readily excreted by either the kidneys or the biliary 

fecal route. This process is tenned biotransformation. Unfortunately, some inert (i.e. 

non-toxic) parent compounds may be biotransformed by P-450s to secondary 

molecules~ which are capable of causing toxic (i.e. mutagenic~ carcinogenic) damage 

to body cells, tissues, or organs. This event is termed bioactivation. As well, some 

toxic parent compounds can be rendered biologically inert by P-450 metabolism, thus 

sparing the body tissues from damage (detoxification). 

Along with the excretion of foreign compounds from the body, some of the P-

450 reactions are essential for endogenous physiological processes. For example, a 

specific group ofP-450s cany out the conversion of cholesterol to sex hormones. 

Following the hormonal action, P-450s may again be responsible for the ultimate 

deactivation and elimination of the hormone derivative. 



4 

1.1. Sex-specific hepatic P-450s 

By definition, sex-specific P-450s are those which are present and expressed 

(active) in one sex., and may be present but not expressed (inactive) in the opposite 

sex. Ofthe hepatic cytochromes P-450 found in the rat, the expression of a number 

of these, characterized in terms ofVmax 4 (maximum velocity), Km5 (Michaelis 

constant), and/or simply specific activity (nmol product formed per minute per 

milligram of microsomal protein), are sexually dimorphic. For example, the 

metabolism of the substrates ethylmorphine, hexobarbital, and aminopyrine, by rat 

hepatic micros01nes. is dimorphically characterized, males exhibiting a significantly 

greater V max and females exhibiting a significantly greater Km (Castro and Gillette, 

1967; Kato and On~ 1970; Chung. 1977; Reyes and Virgo, 1988). 

In terms of specific activity (i.e. apparent Vmax), the metabolism ofthe drug 

ethylmorphine hydrochloride, has been shown to occur 2.5 - 6 times faster in the male 

rat compared to the female (Castro and Gillette, 1967; El Defrawy El Masry et a/., 

1974; Virgo, 1991). Similarly, the metabolism ofboth hexobarbital and aminopyrine 

are 2-3 times faster in the male as opposed to the female (Schenkman et al .• 1967; 

Kato et a/., 1968; MacLeod et a/., 1972 ). Although these differences have been 

found in various rat strains (i.e. Long-Evans, Holtzman, Wistar, Sprague-Dawley), the 

4 the theoretical limit for the rate of reaction under defined conditions when the substrate concentration 
is so bigb that the active site is constantly OCQJPied by substrate 
5 the substrate conc:entration at which the actual velocity is 112 oftbe maYimum velocity with no 
product present 
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same sex differences have not necessarily been found in other species, including mice 

(Kato eta/., 1968}, rabbits (Castro and Gillette, 1967~ Kato eta/., 1968), guinea pigs 

(Castro and Gillette, 1967), and monkeys (Castro and Gillette, 1967). 

In the time since these initial discoveries, a large number of sex differences 

have been found in the metabolism of drugs, chemicals and hormones. For example. 

the sex-specific metabolism of testosterone, at various molecular positions, is 

catalyzed by a number ofP-450 isozymes. with a high degree of regio- and 

stereoselectivity. Each specific metabolic pathway can be correlated with its 

respective P-450(s). The steroid hydroxylation reactions are named according to 

which carbon (numeral), ring (letter) and face (a or fJJ, is involved in the reaction 

(W~ 1988). 

2a.-hydroxylation 
16a-hydroxylation 
6r3-hydroxylation 
?a-hydroxylation 

= 

= 

= 

a.-face on the A-ring 
ex-face on the ~ring 
r3-face on the B-ring 
a.-face on the B-ring 

We will study the metabolism of ethylmorphine hydrochloride (substrate} to 

formaldehyde {product), as well as the hydroxylation of testosterone at three 

positions, namely the 2a-, 16a.-, and 613-positions. We chose these specific 

metabolic reactions as P-450 markers because the major isozymes responsible for 

these reactions (P-450s 2Cll and 3A2) are specifically expressed in the adult male 

rat 
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The 2a-hydroxylation of testosterone is metabolized exclusively (i.e. 100%) 

by P-450 2Cll. For future reference, 2Cll will be considered specific tor the 

metabolism of testosterone at the 2a position. In other words, the specific activity of 

2a-hydroxylase will be the marker representing the amount of 2C 11 present. The 

following is compiled from Wood eta/. (1983), Ryan eta/. (1984a), and Ryan eta/. 

(1984b). 

Approximately forty-two percent ( 42%) of testosterone 16a-hydroxylations 

are catalyzed by P-450 2Cll, the balance of 16<x-hydroxylations being catalyzed by 

other P-450 isozymes (Figure l.l.A.). Thps, 2Cll is selective, but not specific, for 

the metabolism of testosterone at the 16a- position. The specific activity of 16a­

hydroxylase will only be a partial indication of the amount of2Cll present in the 

micro somes. 

Approximately fifty-seven percent (57%) of testosterone 6J3-hydroxylations 

are catalyzed by P-450 JAl, the balance of 6J3-hydroxylations being catalyzed by 

other P-450 isozymes (Figure l.l.B.). In the same conte~ JAl is only selective for 

the 6J3-hydroxylation of testosterone (57%), but is specific for the metabolism of 

ethylmorphine. Thus, ethylmorphine demethylase (EMDM) activity will give a better 

indication of the amount ofP-450 3A2 present. 

We will also be measuring the specific activity of the isozyme responsible for 

the 7a-hydroxylation of testosterone, as this reaction is fema/e-predominan~ but not 

specific to the female (Sonderfan eta/., 1987; Waxman eta/., 1989). Since the 7a­

hydroxylation of testosterone is performed in the most part, by P-450 2Al, and 7a-
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hydroxylase activity has been shown to reflect levels of2A1 (Sonderfan et al .• 1987), 

this will enable us to determine if and/or how hormonal manipulation in the male rat 

affects the activity of this isozyme. 

We will also be determining the! effects of hormonal ~anipulation on the 

metabolism of aniline (catalyzed by aniline hydroxylase), a reaction that literature 

suggests is not sexually differentiated in the adult rat (Schenkman et al., 1967; 

MacLeod eta/., 1972; El Defrawy El Masry eta/., 1974). The activity ofP-450 lEI 

will be correlated with aniline hydroxylase activity, as up to 60% of the oxidative 

metabolism of the aromatic aniline to fonn p-aminophenol, has been shown to be 

catalyzed by this P-450 isozyme (Koop and Coon, 1986~ Ko et a/., 1987). 
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Figure l.l.A. P-450 isozymes responsible for the 16a-hydroxylation of testosterone 
(Wood eta/., 1983; Ryan et al .• 1984a; Ryan et al .. 1984b). 

CJ 281 : 48% 
h<'=·- I lAl: 4% 
~ 'C7· 4°/ ~- • 10 

- 3A2: 2% 
~ 2Cll : 42% 
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Figure l.l.B. P-450 isozymes responsible for the 6!3-hydroxylation of testosterone 

(Wood eta/., 1983; Ryan eta/., 1984~~; Ryan et al., 1984b). 

(==:J 1Al: 29% 
fi;;:.:~~J lAl: 11% 
~ 3A2· S7°1o ~ • J'C 

- 2C11: 3% 
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1.2. Neonatal defeminization and adult 
masculinization of sex-specific P-450s 

Sex-specific P-450s have been classified according to how they are regulated 

and/or 'programmed' in both the adult and neonatal rat. Many deactivating and/or 

bioactivating P-450 pathways are regulated by a number of environmental and/or 

hormonal factors. Einarsson eta/. (1973) classify microsomal steroid metabolizing 

enzymes into three distinct groups: (a) en..-ymes with a basal activity level regulated 

by nongonadal factors but reversibly inducible by androgens. (b) en..-ymes 

i"eversibly "imprinted .. or "programmed" by androgens during the prepubertal 

period and reversibly stimulated by androgens postpubertally. and (c) en..-ymes 

primarily regulated by nongonadal factors and on(v slightly affocted by androgens. 

1.2.1. Ontogeny of P-450 isozymes: We examined two sex-specific P-450 

isozymes typically categorized into group (b), specifically 2C11 and 3A2. These sex-

specific P-450s are usually not dimorphically expressed until the beginning of 

puberty, and are not fully differentiated until the cessation of puberty (El Defrawy El 

Masry eta/., 1974; Waxman, 1984; Waxman eta/., 1985; Sonderfan eta/., 1987), 

puberty being defined as occu.--ring between days 21 - 56 (Gram eta/., 1969). It is 

important to point out when the expression of these P-450s emerge (puberty), as this 

thesis deals with significant events based on specific time-frames in the life of the 

male rat 
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EMDM(3A2J: El Defrawy El Masry et a/. ( 1974) showed that both the 

metabolism of ethylmorphine, and the apparent Km (substrate affinity) of its 

associated demethylase (EMDM), lacked a significant sex difference in 21-day old 

rats. At the age of 28 days, males had an increased capacity to demethylate this 

compoun~ the maximum male capacity and optimal sex difference was seen at the 

age of 49 days. EMDM Km was shown to decrease significantly from 21-35 days 

(Gram eta/., 1969), and was sexually differentiated by day 56 (male less than female) 

(El Defrawy El Masry et al .• 1974). 

68-hvdroxvlase f3A2J: The 6f3-hydroxylation of testosterone shows a 

slightly different developmental profile, reaching 72% of intact male activity by day 

28 (Waxman eta/., 1988), perhaps due to possible differences in the developmental 

expression/regulation of the additional isozymes responsible for this reaction (Figure 

l.l.B.). The sex differences in 6f3-hydroxylation are probably not due to a 

developmental induction at puberty in the male, but instead, due to a developmental 

suppression in the female (Waxman eta/., 1985). This suppression occurs between 

days 28-60 (Sonderfan et al .• 1987), ultimately leading to male activity being 20-fold 

greater than that of females (Waxman et al., 1985). 

1a-hvtlraglase and 16a-hvdraqlase f2Cl1J: The activities of 2a- and 

16a-hydroxylase, also show an age-dependent increase in male rats, beginning at day 

28 (Sonderfan eta/., 1987). At day, 35, P-45016u apoprotein 
6 

-expression in male rats 

reached 46% of the adult levels (Morgan et a/., 1985), while only 4% of the adult 

6 a protein composed in part of a polypeptide 
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activity of2a-hydroxylase was reached by day 28 (Waxman eta/., 1988). Waxman 

( 1984) demonstrated that adult activity of both the 2a- and 16a-hydroxylations of 

testosterone are reached by day 56. 

Male rats have been shown to have 20-fold more hepatic steady-state 2C 11 

mRNA expression in adulthood, as compared with the female rat (Legraverend et a/., 

1992b). The level of2Cll mRNA was not detectable at day 14 (Maeda eta/., 1984), 

and began to increase significantly around day 21, reaching adult levels by 40-54 days 

(Maeda eta/., 1984; Morgan eta/., 1985; Janeczko eta/., 1990). Waxman eta/. 

(1985) suggest a >30-fold induction of2C11 protein levels at puberty in the liver of 

males, but not females. Thus, there is a definite peri pubertal induction of 2C 11 

mRNA expression, consistent with the peripubertal induction (day 28-49) seen in 2a­

and 16a- testosterone hydroxylase activity by Waxman (1984). 

7 a-hydrtJ%VIIISI! f2AJJ: Levels of2A 1 and associated testosterone 7a-

hydroxylase activity, have been demonstrated to be present at up to 4-fold higher 

levels in adult females as compared to adult males (Waxman eta/., 1985; Sonderfan 

eta/., 1987; Waxman et al., 1989). The 7a-hydroxylation of testosterone in the 

male, was shown to be relatively high at four weeks of age (day 28 ), and then 

decreased by more than 75% by puberty {Sonderfan et a/., 1987). Levels of 2A 1 

mRNA have also been shown to be high in the immature rat, only to be suppressed 

(by up to 70%) by 56-70 days of age {Waxman eta/., 1985; Waxman et al., 1988; 

Waxman eta/., 1989). 
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Aniline hvdraxyiiiSe f1Ell: The specific activity of aniline 

hydroxylase, is not sexually-differentiated in the rat (Kato et a/., 1968; Macleod et 

a/., 1972; El Defrawy El Masry eta/., 1974; Finnen and Hassall, 1980). MacLeod et 

a/. ( 1972) found that aniline hydroxylase activity increased from birth to five weeks 

(35 days) of age, when adult activities are reached, whereas Cresteil el a/. (1986) 

indicate a peak in activity at day 15, followed by a slow decrease of SO%. Aniline 

hydroxylase V max doubles between 1-2 weeks of age, followed by a significant 

decrease occurring between day 21-56 (Gram eta/., 1969). The developmental 

profile ofP-450 2El is similar, male levels decreased by 60-75%, during weeks 2-8 

(Waxman et al., 1989). 

Microsomal P-450 content and cytochronu! c reductase: The liver 

itself undergoes significant growth spurts, especially between days 25-70 (Wilson and 

Frohman, 1974 ), essentially doubling in weight every week for the first five weeks, 

and then doubling again during puberty, between day 35-70 (MacLeod eta/., 1972). 

Microsomal protein has been shown to increase significantly between birth and day 

21-25 (MacLeod el a/., 1972; Wilson and Frohman, 1974). MacLeod eta/. (1972) 

indicated that adult levels of microsomal P-450 are reached by day 21 (males > 

females), Cresteil et a/. ( 1986) suggesting that 50% of adult levels are reached by 

day one, and up to 70-80% of adult levels are reached by day 1 S. Hepatic cytochrome 

c reductase reached adult levels of activity around day 35, with no apparent sex 

difference (MacLeod eta/., 1972). However, Wilson and Frohman (1974) 

demonstrated that cytochrome c reductase activity increases from birth to day 70. 
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l.l.l. Neonatal defeminization: The peripubertal emergence (or "activation'~) of 

sex-specific P-450s is "organized" or "imprinted" during a defined neonatal period 

(Denefand DeMoor, 1968a,b; Einarsson et al.~ 1973; Gustafsson and Stenberg, 

1974a,b; Chung. 1977; Gustafsson et al .• 1983 ). This pennanent process is often 

referred to as an organizational event, and appears to involve two distinct 

components. Neonatal imprinting of sex-specific P-450s is an event which 

pennanently increases the activity/amount of P-450 as a result of specifre neonatal 

sex-steroids and also results in a pernument ability of a P-450 to respond post­

pubertally (i.e. by an increase in specific activity) to testosterone. It is also referred 

to as defeminization. as it results in the suppression of both behavioural and 

neuroendocrine functions characteristic of the female, and consequently results in the 

expression (or programs the ability for post-pubertal expression) of male-specific P-

450s. We will subsequently refer to this neonatal imprinting process, as aeoaatal 

defeminizatioa. 

Prevention of neoiUitlll defeminimtlon: Prevention of neonatal 

defeminization (i.e. by neonatal castration) has a profound effect on the post·pubertaJ 

emergence of sexually dimorphic P-450s. For example, in the absence of neonatal 

defeminization, both the Km and V fDIIX of EMDM increased and decreased 

respectively, towards a female value (ChWl& 1977; Reyes and Virgo, 1988). The 

protein levels of2Cll and 3A2, as well as their respective metabolic reactions 

(ethylmorphine demethylation and the 16a-, 2a-, 6Ji-hydroxylations of testosterone), 

also do not attain post·pubertal adult male levels. when neonatal defeminization has 
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been prevented by castration (Finnen and Hassan, 1980; Kamataki et ai., 1983; 

Dannan eta/., 1986; Shimada eta/., 1987; Waxman et. a/., 1989; Cadario eta/., 

1992; Bandiera and Dworschak, 1992). 

Exogenous neoiUIIal defeminization: Neonatal defeminization 

can be effected however, if testosterone, estradiol, or dihydrotestosterone (DliT). are 

administered during a 'critical' time frame (Gustafsson and Stenberg, 1976; 

Gustafsson eta/., 1977; Reyes and Virgo, 1988). For example, the critical period for 

neonatal defeminization of EMDM Km is suggested to be days 2-4, whereas the V max 

of this enzyme may not be completely defeminized until day 12-14. Testosterone 

therapy administered to neonatal castrates during these specific time frames can 

effectively 'rescue' these sexually differentiated parameters of EM metabolism 

(Chung, 1977). Neonatal testosterone therapy to the non-defeminized male 

(neonatally castrated), partially restored 3A2 (EMDM or 6~-hydroxylase) activity, 

and/or 2Cll activities (Kamataki eta/., 1986; Dannan eta/., 1986; Shimada eta/., 

1987; Waxman eta/., 1989; Virgo, 1991 ). Castration at any time after dayS, 

resulted in higher basa17 activities of EMDM than castration before day S (Finnen 

and Hassall, 1980), indicating that the defeminization of basal enzyme activity 

occurred before day S. 

Neonatal castration did not affect the ultimate emergence of aniline 

hydroxylase activity (Chung eta/., 1975; Finnen and Hassall, 1980; Shimada eta/., 

1987), and may either slightly increase (Dannan et a/., 1986; Shimada eta/., 1987; 

7 not stimulated by testicular secretions 
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Waxman et al .• 1989) or have nD effect (Waxman eta/., 1985~ Cadario eta/., 1992) 

on the adult activity of 7a·hydroxylase. This suggests that these reactions are 

probably not neonatally defeminized by testicular secretions. 

P-450 resPOnsiveness to testosteroiU!: Neonatal testosterone 

therapy (exogenous defeminization), also results in an ability ofEMDM activity to be 

stimulated (masculini:ed) by testosterone in adulthood, a characteristic absent in a 

non-defeminized male (Chung et al., 1975~ Virgo, 1991 ). 

1.2.3. Adult masculinization: Whereas organi:ationa/ events are permanent 

events which occur neonatally, activational events are those which are not 

permanent, occur post-pubertally, and are reversible in the absence of specific 

hormones. This non-permanent response is also termed mascu/ini:ation, as this 

results in the enhancemelll of both the previously organized behavioul'lll and 

nearoendocrlne pattems characteristic of the male, and may ultimately lead to the 

appearance of, or itu:re~Ue in, the activity of previously organized (defeminized) P-

450 expression. For example, adult castration significantly decreases 2Cll mRNA, 

but this effect is completely reversible upon methyltrienolone (androgen) therapy 

(Janeczko et al., 1990). 

Castration in adulthood also has been shown to decrease EMDM activity by 

35-800.4 (El Deftawy El Masry and Mannering, 1974~ Kramer eta/., 197Sb~ Virgo, 

1991 ), the effect being either completely reversed by androgen therapy (El Defrawy 

El Masty and Mannering, 1974; Kramer et al., 197Sb ), or stimulated by somatostatin 
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therapy (Virgo, 1985). Adult castration has also been shown to increase EMDM Km. 

which was reversible by testosterone therapy (El Defrawy El Masry and Mannering, 

1974). Dihydrotestosterone (DHT) treatment (Kramer eta/., 1979) or 

methyltrienolone treannent (Janeczko et al .• 1990) of the adult castrate also partially 

restored EMDM activity and 2Cl 1 levels respectively, suggesting that the 

masculinization process may be androgen-mediated. This is most likely true, as 

estradiol administration to the adult castrate has been shown to decrease EMDM 

activity (Kramer eta/., 1979). 

Sex hormones have also been shown to modify P-450 activity in the intact 

male. Estradiol administration to the intact male has been shown to increase EMDM 

Km (Kramer eta/., 1979), eliminate expression of2C11 mRNA{Janecz.ko et al., 

1990), and decrease 2C1 1 content (Kamataki eta/., 1986). Diversion of portal blood 

away from the liver (which increased circulating estradiol concentrations and 

decreased testosterone concentrations), significantly decreased 2C11 and 3A2 mRNA 

expression (Jiang eta/., 1994). 

1.3. Tbe physiology of neonatal defeminization 

Neonatally castrated adult male rats, exhibit patterns of steroid and xenobiotic 

metabolism characteristic of the female (thus, they are not defeminized). The 

elimination of the source of testosterone (the testes) within 24-bours ofbirth 

ultimately prevents the peripubertal dimorphism ofP-450s. Although neonatal 
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castration abolishes sex-specific expression of certain isozymes. the administration of 

specific sex steroids (testosterone. estrogens. DHf) during the 'critical period' (day 

0-14) can effect neonatal defeminization ofthese isozymes (Gustafsson and Stenberg. 

1976; Gustafsson et al .• 1977; Reyes and Virgo. 1988). Studies by Reyes and Virgo 

(1988) supply evidence that neonatal defeminization ofP-450 3A2 most likely occurs 

through the estrogen receptor, as blocking this receptor with Nafoxidinenr resulted in 

the Km and Vmax ofEMDM decreasing and increasing respectively to values not 

different from intact females. 

1.3.1. Aromatase: Aromatase is the enzyme complex that catalyzes the 

conversion of androgens into estrogens. It is boWld to the endoplasmic reticulum of 

the cell. and is comprised of two proteins, cytochrome P-450amn and NADPH­

cytochromc P-450 reductase (Brueggemeier, 1994). Aromatase activity is very high 

in the male rat hypothalamus at day 20 of gestatio~ dropping to low levels by 

postnatal day 16-20 (George and Ojeda. 1982). Other areas ofthe neonatal rat brain 

exhibiting aromatase activity include areas of the (a) preoptic nucleus, (b) 

amygdaloid nucleus, and (c) bed nucleus of the stria terminalis (Sbinoda eta/., 1994). 

This corresponds with the appearance of estrogen formation in the hypothalamus 

(also including the preoptic area. septum, and amygdala), which increases during 

embryonic days 1 5-19 and declines thereafter (MacLusky eta/., 1985). The same 

study indicated that males demonstrated higher amounts of estrogen formation than 

females, on postnatal days 1-4 (MacLusky eta/., 1985), and this also correlated with 
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the developmental expression of the hypothalamic estrogen receptor (Pasterkamp et 

a/., 1996). Hypothalamic estradiol concentrations have been shown to increase 

dramatically between 0 hour in utero, and 1 hour after delivery, decreasing thereafter 

(Rhoda et a/., 1984 ). 

1.3.2. 1,4,6-androstatriene-3.17-dione <A TDl: The aromatase enzyme is 

particularly important to the work presented in this thesis, as this is the enzyme 

complex which we will inhibit in order to prevent the neonatal defeminization of sex­

specific P-4S0s. Reyes and Virgo ( 1988) demonstrated the ability of an aromatase 

inhibiting agent 1,4,6-androstatriene-3,17-dione (A TO) to prevent the conve~ion of 

testosterone to estradiol, and thus prevent the neonatal defeminization of EMDM (P-

450 3A2). They successfully demonstrated that blocking the aromatase enzyme, 

instead of blocking the estrogen receptor, could also prevent the testosterone 

propionate-induced neonatal programming ofEMDM, but could not prevent the 

defeminization brought about by estradiol (which does not Wldergo aromatization). It 

was speculated that testosterone does not defeminize through the androgen receptor, 

due to the observation that this hormone must first be converted to estradiol in order 

to effect defeminization. 

Due to the nature of the experiments described in this thesis, A TD (as an 

alternative to neonatal castration), was employed as an aromatase blocker to 

pharmacologically prevent neonatal defeminization of sex-specific P-450s 3A2 and 

2C 11. A TO is a mechanism-based inhibitor of aromatase, meaning that it (a) mimics 



20 

the substrate, (b) is converted by the enzyme to a reactive intermediate. and (c) 

results in the pennanent inactivation of the enzyme (Brueggemeier, 1994). ATD has 

been shown to block the testosterone-induced increase in aromatase mRNA 

concentration (in the castrated quail). and is suggested to block the synthesis of 

aromatase at the transcriptional level (Foidart et a/., 1995). 

It is extremely important to keep the hypothalamo-pituitary-gonadal axis 

intact. in order to maintain the endocrine status as •nonnal' as possible. Most 

research on P-450 defeminizationlmasculinization has been performed on neonatally 

castrated males. so our approach was unique. 

1.3.3. Defeminization of tbe male rat brain: Research has been successful in 

only correlating the ultimate expression of sex-specific P450s to the neonatally 

programmed, sexually dimorphic, rat brain. Central nervous system (CNS) 

characteristics subject to organizational effects of perinatal gonadal bonnone 

exposure include gonadotrophin release patterns (Vreeburg et al .• 1977), behaviour 

(both non-reproductive and reproductive) (Vreeburg eta/., 1977; Korenbrot et al .• 

1975), and brain morphology (Domer and Staud~ 1968; Gorski eta/., 1978; Arnold 

and Gorski, 1984; Handa eta/., 1985; Davis eta/., 1996). Estradiol and testosterone 

have both been shown to be effective at imprinting the brain as masculine (with 

respect to regulation of gonadotrophin rei~ and estrogen/progesterone-primed 

lordosis), whereas DHT (a non-aromatizable substrate) does not imprint these 

characteristics (Korenbrot et al.. 1975). 
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Sex hormone receptors: Neonatal castration of the male, has been shown 

to significantly feminize many areas of the rat brain. For example, the number of 

nuclear testosterone~binding sites in the pituitary, mediobasal hypothalamus, and the 

JR()ptic anterior hypothalam~ has been shown to decrease following neonatal 

castration (Babichev eta/., 1990). In addition. the same study indicated that the 

number of nuclear estrogen receptors decreased following neonatal castration in the 

mediobasal hypothalamus, and increased in the preoptic anterior hypothalamus. 

DonCarlos et a/. ( 1995) also demonstrated that neonatal castration increases estrogen 

receptor mRN~ to female levels, in the preoptic area, suggesting that testosterone~ 

derived estrogen down-regulates estrogen receptor mRNA in the neonatal male 

hypothalamus (preoptic area). 

Brain momhologv: The volume of a number of areas of the male rat brain, 

particularly in the hypothalamus, have also been shown to be affected (feminized) by 

neonatal castration. Neonatal castration significantly decreased (feminized) the 

volume of the sexually dimorphic nucleus of the preoptic area (SDN~POA) (Gorski et 

a/., 1978; Handa eta/., 1985; Davis eta/., 1995), and increased (feminized) both the 

volume of the hypothalamic ventromedial nucleus (Domer and Staudt, 1969) and 

anteroventral periventricular nucleus (Davis eta/., 1996), in adulthood. Neonatal 

castration also significantly increased the estrogen-primed colocalization of galanin 

and luteinizing-honnone-releasing-hormone (LHRH), in the LHRH-containing 

neurons of the male hypothalamus, to levels similar to the female (Merchenthaler et 

al., 1993). 
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BeluJvlour: Masculine behaviour is also affected by neonatal 

castratio~ as this treannent increased estrogen (and progesterone) induced tordosis, 

feminine proceptive behaviom, and decreased mounting and/or intromission 

frequency (Bloch and Mills, 1995). In response to estrogen and/or progesterone 

priming in adulthood, neonatal castration effected an increase in the release of 

luteinizing honnone (LH) and follicle-stimulating honnone (FSH) (Handa eta/., 

1985 ). Infusion of an antisense oligodeoxynucleot1de to estrogen receptor mRNA (on 

day 3 of life) to the female~ prevented testosterone-induced masculinization of sexual 

behaviour, and aiso prevented complete feminization of the volume of the SDN-POA 

(McCarthy eta/., 1993), indicating that the estrogen receptor is involved in sexual 

differentiation of these phenomena. 

1.3.4. Meebaaism of defemiaizatioa: Support for the waromatization-

defeminization" concept is presented in literature regarding the use of A TO to 

prevent behavioural defeminization of the male rat. Perinatally administered A TD 

has been shown to block testosterone propionate-, but not dihydrotestosterone (DHT)­

or estradiol benzoate-induced copulatory behaviour in sexually inexperienced 

castrated adult male rats (Morali et a/., 1977), demonstrating the requirement of the 

aromatase enzyme in the induction of masculine sexual behaviour by androgens. 

Partner preference behaviour (sexual interaction with an estrous female) and sexual 

behaviour (i.e. hopping, darting, mounting, intromission) in both gonadally intact and 

testosterone-primed castrated male rats has been altered to a nocturnally rhythmic 
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'bisexual' status by the perinatal administration of AID (Bakker et a/., 1995). 

Finally. perinatally administered A TD has been shown to inhibit sulphated 

cholecystokinin octapeptide (sCCK-8) induced lordosis in neonatally castrated males 

(Ulibarri and Micevych, 1993), and to effect •bisexual' partner preference behaviour 

in male rats (Swaab et a/., 1995). 

It is of interest that peri natally administered A TD has been shown to cause an 

increase in vasopressin-expressing neurons in the suprachiasmatic nucleus of male 

rats (Swaab eta/., 1995) suggesting that the volume dimorphism seen in the Gorski et 

a/. ( 1978) study may be programmed perinatally by the aromatization of androgens to 

estrogens. 

The observed central nervous system sex differences are relevant to our 

studies for three reasons: (a) a number of these differences have been shown to be 

neonatally defeminized by testicular steroids; (b) neonatally defeminized areas of 

the rat brain may be associated with the expression of the sexually dimorphic growth 

hormone (GH) secretion pattern in the adult rat (for review see Jansson eta/., 1985b); 

and (c) this dimorphic GH pattern may be responsible for the adult expression of 

certain neonatally defeminized sex-specific P-450s. 

1.4. Sexually dimorphic growth hormone 
secretion patterns 

The most significant brain function known with regard to sex-specific hepatic 

P-450s., is the maintenance of a sexually dimorphic growth hormone (GH) pattern, as 
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it is this dimorphism which has been suggested to ultimately regulate the sex-specific 

expression of 3A2 and 2C 11. 

OnJogenv: The GH secretory pattern has been shown to be 

episodic in both males and females at the age of 22 days, the peak levels never 

reaching adult levels in either sex (Eden, 1979). Serum GH concentrations are high 

at birth and shortly thereafter, decreasing to low levels by day 25. GH concentrations 

subsequently increase significantly (8-fold) from day 2545 in the rat, and again (5-

fold) by day 90 (Gabriel eta/., 1989). the sexual dimorphism in secretory pattern 

becoming apparent between day 30-90 (Eden, 1979). This corresponds with the 

appearance of sex-specific P450s (EI Defrawy El Masry eta/., 1974; Waxman, 

1984; Morgan et al:, 1985; Waxman eta/., 1985; Sonderfan eta/., 1987). 

Male grqwth hormone IHdtem: Males display high (200-300 nglml) 

amplitude pulses at regular 3-4 hour intervals, separated by low trough values (<5 

ngtml) (Eden. 1979). 

Fenuzle rrowth hormone pqttem: When adulthood is reached, female rats 

exhibit GH pulses that are irregular, more frequent, and of lower height than those of 

tbe male. Most importantly, the GH secretion pattern is of a continuous nature, with 

significantly higher baseline levels than the male (Eden, 1979}. 

1.4.1. GHRH and SS signaling to tbe pituitary: Literature indicates that 

there are sex-differences in the mode of somatostatin (SS)-releasing factor and 

growth bonnone releasing honnone (GHRH) signaling to the pituitary (Painson and 
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Tannenbaum~ 1991) and GH feedback in the median eminence (ME) and 

hypothalamus (Maiter et a/., 1990). Maiter et a/. ( 1990) showed that male rats have a 

higher degree of sensitivity in GH feedback to the ME and hypothalamus than female 

rats. as indicated by a decrease in GH secretion and an increase in SS secretion in the 

presence of GH. Basal GHRH gene expression in the hypothalamus is higher in 

males, and its expression in the male hypothalamus is more sensitive to feedback 

inhibition by growth hormone (Maiter et a/., 199 I ). It has also been suggested that 

there is a time-dependent difference in the response of GH somatotrophs to GHRH 

(Pa!'tSOn and Tannenbaum. 1991 ). Carlsson eta/. ( 1990) demonstrated a 3-hour 

pattern of intennittent response of GH to GHRH in the male. 

Regardless of how the differences in secretory patterns are effected at a 

physiological level. it is important to note that: (a) the dimorphism is not seen until 

the onset of puberty, and (b) like the sex-specific P-450s. certain characteristics of 

the male secretory profile appear to be neonatally defeminize~ whereas other 

characteristics appear to be directly regulated in adulthood. 

1.4.2. Neonatal defeminization of dimorphic GH secretion patterns: 

Neonatal castration (prevention of defeminization). effects a feminine pattern 

of growth hormone secretion in adulth~ i.e. a SQ.. 75% reduction in GH pulse 

height and duration (Jansson and Fro~ 1987), and a significant increase in 

baseline levels (Mode et al .• 1982~ Jansson eta/., 1985a; Jansson and Frohman, 
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1987). Neonatal gonadectomy also suppressed maximum and mean plasma GH levels 

during adult life (Jansson eta/., 198Sa). 

Prepubertal gonadectomy of the defeminized male, on the other hand, did not 

suppress maximum and/or mean plasma GH levels in adulthood (Jansson et a/., 

1985a; Carlsson eta/., 1987), but significantly increased baseline (minimum) GH 

levels (Gustafsson eta/., 1983; Carlsson eta/., 1987). Neonatal androgen 

replacement (exogenous defeminization) only partially masculinizes the adult GH 

secretion pattem It has been suggested that neonatal testosterone is sufficient to 

restore the high amplitude GH pulses (Jansson and Frohman, 1987). The pulses, 

however, were of significantly shorter duration and occurred more frequently, than 

those seen in the adult male rat. More importantly, the baseline GH levels remained 

significantly higher than that of the intact males (Jansson eta/., 1985a; Jansson and 

Frohman. 1987). 

Thus, neonatal testosterone therapy is sufficient to organize the normal post­

pubertal pulse amplitudes, but is not sufficient to restore low baseline levels. 

Both neonatal and adult testosterone therapy of the neonatal castrate, on the 

other ban~ resulted in GH patterns indistinguishable from the intact male (Jansson 

and Frohman, 1987). This suggests that adult androgens are necessary for the low 

baseline levels, as well as the pulsatile nature of the male GH secretory pattern. 

Estradiol administration to the adult male, intact or castra~ also significantly 

increased baseline GH levels (Gustafsson eta/., 1983; Carlsson eta/., 1987), in a 

dose-dependent manner (Gustafsson et a/., 1983 ). Estradiol treatment of the intact 
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male~ has also been shown to lower the magnitude of the GH peaks, and cause them 

to occur less regularly (Gustafsson et a/.~ 1983 ). 

It is of interest that adult testosterone therapy (to the non-defeminized 

neonatal castrate) was sufficient to effect a fully masculine GH secretory pattern 

(Jansson and Frohman, 1987). This suggests that neonatal androgens are effective but 

are not necessary, to defeminize/masculinize characteristics of the GH secretory 

profile. 

1.4.3. Adult regulation of dimorphic: GH patterns: Previous literature 

demonstrates that sex hormones do not directly regulate the expression of sex­

specific P-450s, but require an intact pituitary gland to exert their effects (Kramer et 

a/., 1975b; Kramer eta/.~ 1979; Kamataki eta/., 1985). This most likely occurs 

through the modulation of the growth hormone secretory profile, as manipulation of 

sex hormones has been shown to affect the pattern of growth hormone secretion 

(Mode eta/. , 1982; Gustafsson eta/., 1983; Jansson eta/., 1985a; Carlsson et a/., 

1987). For example, castration of the adult male resulted in a significant decrease in 

EMDM specific activity (Kramer eta/., 1975b), and this decrease could be reversed 

by testosterone therapy (Kramer et a/., 1975b ), or partially reversed by DHT 

administration (Kramer eta/., 1979). Estradiol administration to the non­

defeminized male, has been shown to significantly decrease EMDM specific activity 

(Kramer et a/., 1978; Kramer et a/., 1979), in a dose-dependent manner (Kramer et 

al., 1978). However, Kramer eta/. (1979) found that, in the absence of the pituitary 
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glan<L estradiol or DHT administration to the male castrated in adulthood. had no 

effect on EMDM activity. 

1.4.4. Exogenous GH and restoration of P-450 activity: 

EMDM: In castrated males, GH administration (twice daily) has been 

shown to significantly decrease EMDM activity (Kramer et a/., 1978~ Virgo, 1985), 

an effect also demonstrated in the intact male (Kramer eta/., 1975a; Kramer et. a/., 

1978). Estradiol administration to the castrated male .further decreased EMDM 

activity (Kramer and Colby, 1976; Kramer eta/., 1978), and growth hormone 

administration had the same effect (Kramer and Colby, 1976), supporting the concept 

that estradiol is affecting EMDM activity through modulation of the growth hormone 

secretory pattern. Somatostatin therapy to the castrated male rat, has also been 

shown to stimulate EMDM activity (to almost the same degree as testosterone 

administration}, and the concomitant administration of both hormones revealed a 

synergistic interaction (Virgo, 1985). 

6/J.hydroxvlase: Hypophysectomy of the adult male has been shown to 

effect a significant increase in 6P-hydroxylase activity (Yamazoe eta/., 1986b~ Kato 

et a/., 1986), as well as 6P-hydroxylase mRNA (Shimada eta/., 1989). When given 

to hypophysectomized males, either intermittent or continuous GH therapy 

significantly decreased the induction in activity/mRNA (Yamazoe eta/., 1986b; 

Shimada et a/., 1989), whereas Kato eta/. ( 1986) found that GH administration 

(twice daily) did not decrease the induction brought about by hypophysectomy, 
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ho~ver continuous infusion of GH was effective at reversing the induction. 

Coatinuous infusion of GH to the pituitary-intact male significantly decreased 613-

hydroxylase activity (Waxman eta/., 1989; Kato eta/., 1986). Shimada eta/. ( 1989) 

reported that growth hormone most likely regulates P-450 613-hydroxylase at a 

pretranslational step. 

JA1 mRNA levels: Hypophysectomy also effected a significant 

increase in hepatic immunoreactive P-450 3A2 (Waxman eta/., 1988; Waxman et 

a/., 1990). Intermittent injection of human growth hormone (hGH) to 

hypophysectomized males partially reversed the induction of3A2 (Waxman eta/., 

1981 ). Continuous infusion of hGH to the hypophysectomized male almost 

completely abolished 3A2 mRNA levels (Waxman eta/., 1990), whereas continuous 

GH completely abolished 3A2 mRNA in intact males (Waxman eta/., 1990). This 

also suggests that other pituitary factors may be required for complete supp~ion of 

P-450 3A2. 

2 a-116a-hydroxrlases: Hypophysectomy significantly decreased 

2a- and 16a-bydroxylation of testosterone, whereas intermittent injection (twice 

daily) ofGH restored intact male levels of these reactions (Yamazoe et al., 1986~b). 

Morgan eta/. (1985) also found that hypophysectomy of male rats causes a decrease 

in 16a apoprotein levels to values intermediate to those of the intact males and 

females, and continuous infusion of GH decreased 16a apoprotein levels to female 

levels. Continuous GH administration, to either the intact or hypophysectomized 

male, caused a significant decrease in 16a mRNA levels (Strom et a/., 1987). 
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Lesions of the anterior hypothalamic periventricular area (which decreased median 

eminence somatostatin content), also decreased 16a-hydroxylase activity (Norstedt er 

a/., 1983). 

2Cll expression diminished greatly after hypophysectomy of male rats and 

was markedly stimulated by intennittent GH therapy (Waxman et al .• 1989~ 

Janeczkoera/.,1990; Waxmaneta/.,1991; Legraverendeta/.,1992a). Waxmanet 

a/. (1991) found that subcutaneous GH pulses delivered six times daily, as well as by 

the less frequent, non-physiological frequencies of two and four times daily. were 

equally effective in restoring 2Cll expression. A dramatic difference (increase) was 

discovered in the responsiveness of 2C 11 to six vs. seven GH pulses per day, which 

strongly suggests that to effect a male liver response, the minimal plasma GH trough 

time needed is at least 2.S hours. Legraverend eta/. (1992b) suggest that neither the 

amplitude nor the frequency of the GH pulse is recognized as male or female by the 

hepatocyte, but the hepatocytes are responding to the prolonged suppression of 

circulating GH during the trough period. 

Sundseth et a/. ( 1992) used both untreated and hypophysectomized adult male 

rats to demonstrate that GH (either continuously infused or intermittently injected) 

regulates the sex-specific expression of the 2C 11 genes at the level of transcription 

initiation. Intermittent injection increased 2C 11 mRNA expression, infusion 

decreased it Mode et a/. ( 1989b) found that P450 16a mRNA decreases in 

hypophysectomized adult males, and is restored by intermittent hGH administration 

(twice daily), and all of these changes occur at the pretranslationallevel. Continuous 
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hGH exposure, on the other hand, caused a significant reduction in 16a mRNA levels 

to those found in the female. To clarify even further, Legraverend et al. ( 1992a} 

found that 2C 11 mRNA expression reaches the same level as that in intact males 24 

hours after the second daily injection of hGH and induces transcription of the 2C 11 

gene at a level comparable to that in nonnal males within three days. They confirm 

that sex specificity is tightly controlled at the transcriptional level and that two 

clearly distinct patterns of transcriptional regulation by GH emerge. 

Growth hormone binding/r«epton: Wells eta/. ( 1994) found that pulsatile 

(male) GH therapy lowered the percent specific binding ofGH to hepatic (lactogenic 

and somatogenic) GH receptors, and continuous GH infusion increased binding. 

Therefore, it is likely that the GH receptor is occupied more continuously in the case 

of the female, and less continuously in the case of the male. Perhaps the increased 

length of time that the GH molecule is bound to the receptor, serves to signal for an 

increase in female-specific P-450 expression, and vice-versa for the male-specific P-

450s. Growth hormone can form 1:1 or 1:2 complexes with GH receptors, and the 

1:2 complexes can be dissociated by higher concentrations ofGH (Cunningham eta/., 

1991 }. Wells et a/. ( 1994) suggest that these different complexes could mediate 

different signals over different ranges of GH concentrations. Baumbaucb and 

Bingham (1995), characterize one class ofhepatic growth hormone receptor (GHR1) 

as being sexually dimorphic, and regulated by GH. Castration of the male resulted in 

an induction of steady-state GHR1 RNA. Continuous infusion of growth hormone 

actually further increased the GHR1 levels, to levels similar to the intact female. 
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Cytochrome P-450 content: Wilson ( 1973) demonstrated that GH 

administration to the intact male, decreased total microsomal P-450 content by 46%, 

and Wilson and Frohman (1974) showed that high levels ofGH were correlated with 

low levels ofP-450 components (P-450 content and cytochrome c reductase activity). 

On the other hand. Virgo (1985) did not demonstrate any effect ofGH administration 

(twice daily) on either microsomal protein or total P-450 content. 

Cytochrome c reductase: A significant decrease was noted in cytochrome 

c reductase activity, following GH administration (twice daily) (Kramer eta/., 1978~ 

Virgo, 1985), suggesting that reductase is partially regulated by GH. Kramer et a/. 

( 1978) also fo~d that the administration of estradiol at higher doses caused a 

significant decrease in reductase activity, and Virgo (1985) found that testosterone 

and/or somatostatin administration had the reverse effect To further confirm that the 

effects of testosterone were mediated through the pituitary gland (and possible 

modulation ofGH secretion), Virgo (1991) fotmd that testosterone could not increase 

cytochrome c reductase activity in the absence of the pituitary gland, and GH infusion 

reversed the stimulation of reductase by testosterone. 

1.4.5. Summarv: Continuous infusion of GH to the intact or hypophysectomized 

male, caused a significant suppression of6~-hydroxylase (and associated 3A2 levels) 

and 16a-hydroxylase activities (Yamazoe eta/., 1986a,b; Morgan eta/., 1985; 

Waxman eta/., 1990). The absence ofGH altogether resulted in a significant 

increase in 6J3-hydroxylase activity (Yamazoe eta/., 1986b), whereas it caused a 
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decrease in EMDM ru1d 16a-12a-hydroxylases (Kramer eta/., 1975~b; Yamazoe et 

al .• 1986a). GH administration in the male pattern. has been shown to restore 2a­

/16a-hydroxylase activities and 2Cil levels (Yamazoe eta/., 1986a), provided the 

trough period is at least 2.5 hours in length (Waxman eta/., 199 t }. The male GH 

pattern decreased both EMDM and 613-hydroxylase activity (Yamazoe et a/., 1986b; 

Kramer eta/., 1978). Thus, it appears that the male expression of2Cll (and 

associated 2a-/16a-hydroxylations) is absolutely dependent on the male growth 

hormone pattern, being regulated at pretranslationallevels (Mode eta/., 1989b ). The 

adult expression of EMDM and 6(3-hydroxylase activities, on the other hand, are 

suppressed by continuously high levels of GH, but the absence of GH suppressed 

EMDM and induced 613-hydroxylase activity (Kramer eta/., 1975a.,b; Yamazoe et 

al., 1986b ). The male pattern of GH, has not been conclusively detennined to 

regulate either EMDM or 613-hydroxylase, but it appears that their regulations are 

under different control than 2C 11. 

1.5. On tbe pubertal time-frame 

The critical time frame for the imprinting of sex-specific cytochrome P-450 

3A2 (EMDM) by hormonal manipulations, is from birth to approximately day 14 

(Chung, 1977). If defeminization does not occur during this time, then exposure of 

the non-defeminized male to androgens or estrogens has been shown to have no effect 

on the activity of this isozyme (Chung el a/., 1975; Virgo, 1991 ). Suprisingly, recent 
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studies have demonstrated that in neonatally castrated males (i.e. non-defeminized), 

exposure to androgens (i.e. testosterone) during the peripubertal period (day 35-70) 

can completely masculinize both 2C11 and 3A2 (Shimada eta/., 1987; Virgo, 1991; 

Waxman eta/., 1989; Dannan eta/., 1986). This phenomenon has also been 

demonstrated in the ovariectomized female rat (Cadario eta/., 1992) 

l.S.t. Peripubertal masculinization of the male: Dannan et a/. ( 1986 ), 

present data on the effects of neonatal castration and subsequent testosterone 

treatment (day 35-70), on P-450 2C11 and 3A2 protein levels, and also on 16a­

hydro")'lase and 61}-hydroxylase specific activities, in adulthood. They found that 

testosterone administration (Silasticn.a capsules) restored intact male levels of both 

2C11 and 3A2 protein, as well as their respective hydroxylations. Testosterone 

administration on day 1 and 3 of life, only restored defeminized levels of these 

proteins and activities. 

During studies or :he persistence of neonatal androgen de feminization of P-

450s 2Cll (2a- and 16a-hydroxylases) and 3A2 {El\IDM), Shimada eta/. (1987) 

discovered that testosterone treatmen~ from day 56-63, in the neonatal castrate, 

completely restored 2a-hydroxylase activity to that of intact males, and almost 

restored the 16a-hydroxylase and EMDM activities. It seems that 6~-hydroxylase 

activity was not as responsive during puberty, as testosterone treatment during this 

time-frame resulted in a partial increase, to only -75% of intact (defeminized) male 

levels. 
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Waxman eta/. (1989) presented similar data They found that in neonatally 

gonadectomized males, testosterone-packed Silastic ru capsules implanted from day 

35-70, resulted in a 5-fold increase in 16a-hydroxylase specific activity in adulthood 

(as compared with the birth castrate control). 

Virgo (1991) subsequently studied the effects ofperipubertal (day 35-71) 

testosterone treatment in neonatally castrated males, on the specific activity ofP-450 

3A2 (EMDM) in adulthood. He found that testosterone propionate treatment of the · 

neonatal castrate. from day 35-71, increased EMDM activity to intact male levels, 

and this effect was completely reversed upon removal of the androgen. These effects 

required the presence of an intact pituitary glan~ as hypophysectomy abolished them. 

In 1992, Bandiera and Dworschak studied the effects of testosterone on the 

hepatic levels ofP-450 2Cll, in the male rat. They found that testosterone 

propionate given to the neonatal castrate, from day 56-70 (postpubertal), increased 

2C 11 content to intact male levels. They did not find any increase in males 

administered TP from days 35-49, however, assuming the animals were killed on day 

70 (as were the shams and the neonatal castrate), these males were free of serum 

testosterone at the time of death. Therefore, these results represent uninduced (i.e. 

female, non-defeminized) 2C11 levels. Virgo (1991) suggested that this pubertal 

phenomenon was a reversible process, thus it would have been of interest to 

determine the level of2C11 in the day 35-49 treated males, killed on day 50, instead 

of day 70. 
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l.S.l. Peripubertal masculinization of the female: There have been a 

number of studies performed on the ovariectomized female rat with regard to 

peripubertal "imprinting" 2Cll and 3A2 activity. Whether or not we can relate 

results from the female to that of the male is debatable, however evidence presented 

may add small pieces to the overall picture. 

In 1984, Pak el a/. found that exposure of female rats to testosterone 

enanthate during the pubertal period (day 35-50), resulted in increased sensitivity to 

androgens (testosterone enanthate) in adulthood. Ovariectomized (28 days of age) 

females responded even more in adulthood. These results indicate that androgens are 

the necessary "imprinting" factor. and estrogens were found to antagonize this effect. 

They did not find any imprinting of basal levels of aryl hydrocarbon hydroxylase 

(AHH), another male-predominant reaction (Wiebel and Gelboin, 1975), but the adult 

responsiveness to androgens was imprinted In 1985, the same laboratory ofPak el 

a/. also demonstrated that the female-specific testosterone 5-reductase (not a P-450) 

showed similar results in non- and ovariectomized (day 28) female rats e~sed to 

testosterone from day 35-50. It appeared that pubertal testosterone was important for 

the expression of testosterone responsiveness in adulthood (again. the response was 

potentiated in ovariectomized animals). 

Peripubertal testosterone treatment in the female has also been shown to 

induce male-specific P-450s. Testosterone given in both pubertal (day 35-42) and 

adult periods (day 63-70) induced male-specific acetohexamide reductase activity in 

liver microsomes of female rats, whereas treannent of the adult alone, was without 
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effect (Imamura eta/., 1994). In additio~ gonadectomy at age 25 days, followed by 

testosterone enanthate administration from days 35-59, effected a complete 

appearance and masculinization (as opposed to the non-androgenized female) ofboth 

2a- and 16a-hydroxylase in females (Cadario eta/., 1992). 

The above evidence suggests that neonatal defeminization is oot a necessary 

prerequisite for masculinization of sex-specific P-450s. It also suggests that there 

may exist a unique peripubertal time-frame in which certain sex-specific P-4S0s can 

be imprinted to specific activities not different from that of the intact adult male. 

1.6. Summary 

The isozymes responsible for the 16a(2Cll)-, 2a(2Ct 1)-, and 613(3A2}­

hydroxylation of testosterone, as well as the metabolism of ethylmorphine (3A2) are 

specifically expressed in the male rat. The isozymes are categorized as enzymes 

i"eversibly defeminized by androgens during the prepubertal period and reversibly 

stimulated by androgens postpubertal/y (Einarsson eta/., 1973). Defeminization 

occurs dming a critical time period (day 0-14) and results in a permanent increase in 

the activity/amount of P-450 present, and also may result in a permanent ability of a 

P-450 to respond postpubertally to testosterone (indicated by an increase in specific 

activity). After the critical time period bas passed, a non-defeminized male (i.e. 

castrated) will exhibit a decreased postpubertal expression of2Cll and 3A2, and will 

not respond (i.e. increase in specific activity) to testosterone (masculinization) in 
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adulthood. Postpubertal castration of a neonatally defeminized male will result in a 

partial loss of sexually dimorphic P-450 expression. 

Neonatal defeminization is most likely effected by androgen-derived 

estrogens which act through the estrogen receptor. The aromatase enzyme is 

responsible for the conversion of androgens to estrogens. 

Male-specific expression of some P-450s is regulated by a sexually dimorphic 

pattern of growth hormone secretion, this pattern is both neonatally defeminized by 

androgens/estrogens and regulated by sex-hormones in adulthood. Thus, the sex­

specific expression ofP-450s may represent an "end-point" or '"'marker" 

characterizing the sexual differentiation of this characteristic of the rat brain. 

1. 7. Hypothesis 

Although neonatal defeminization has widely been considered a necessary 

prerequisite for adult masculinization of2Cll and 3A2, data from a number of 

laboratories indicate that peripubertal administration of testosterone to the 

neonatally castrated male, effects full masculine activities of tbese enzymes in 

adulthood. 

We suggest that the presence of intact testes from days 35 to 70 can 

effectively increase the amounts and/or activities ofP-450 2Cll and 3A2 to those 

found in intact males. We also suggest that this is eith~ an acute .. masculinization" 

process (i.e. reversible after the removal of the testes) or a permanent defeminization 
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followed by masculinization (i.e. similar to neonatal defeminimtion). In other words., 

a basal level of activity is permanently imprinted., and this level can be further 

increased by testicular secretions in the adult animal. 

For our experiments. we desired that the neonatal defeminization of male­

specific cytochrome P-450 isozymes~ in particular 2Cll and 3A2, be blocked by a 

mechanism other than neonatal castration. Therefore. we would not be disrupting the 

entire hypophyseal-pituitary-gonadal axis. and would be creating conditions more 

similar to those found in an intact animal. 

We investigated the effect of intact testes during specific time frames m the 

peripubertal window, in particular days 21-35, 21-55 and 21-70. We first analysed 

the data from days 21-70 to see if the reported '"masculinization" phenomena could 

be repeat~ and followed this by looking at days 21-55 and 21-35 to further narrow 

(define) the period of any peripubertal window. By comparing various groups. we 

could subsequently examine the effects of testicular secretions on the defeminization 

and/or masculinization ofP-450 2C11 and 3A2 activities during these time frames. 

Cytochrome P-450 2E 1 activity will be measured by the formation of 4-

hydroxyaminophenol from hydroxyaniline in defined incubation systems. P-450 2El 

is apparently not neonatally defeminized or regulated in the same manner as 2C 11 or 

3A2, and thus will act as a control. The activity of the female-specific P-450 2A 1 

was also measured in every group of animals. The activity was determined by the 

?a-hydroxylation of testosterone. 
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2.0 GENERAL MEmODS 

2.1. Measuring P-450 specific activity 

Differences between males and females can easily be measured by 

determining the specific activity of a number of enzymatic reactions, employing a 

number of different substrates. As mentioned earlier, specific activity measures the 

amount (nmol) of product formed in a specific reaction system, per minute, per 

milligram of crude microsomal protein (measured as nmoVminlmg). For general 

purposes, the measured velocity (i.e. specific activity) of a sex-specific P-450 

isozyme will either represent a "masculine" value or a ·~emininen value. 

We will be monitoring the amount of cytochromes P-450 2Cll, 3A2, 2Al and 

2E 1 by measuring the specific activity of the individual isozymes, using the specified 

reactions (2a-, 16a-, 6~-. 7a-hydroxylations, ethylmorphine demethylation. aniline 

hydroxylation) as markers. We will also be measuring the total amount ofP-450 

present in our individual microsomal samples, as well as monitoring the specific 

activity of cytochrome c reductase (a cofactor in the P-450 reaction) to make sure that 

any apparent change in isozyme specific activity is not due to a change in total P-4-50 

content or reductase activity. 

The purpose of our study is to pharmacologically and/or surgically manipulate 

the endocrine status of developing male rats in such a way as to prevent the neonatal 

defeminization of certain sex-specific P-450s (2Cll and 3A2). We will then try to 
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bring about the same, or some, degree of defeminizationlmasculinization of these 

enzymes during a different (i.e. peripubertal) time-frame. We studied the 

hydroxylation of testosterone at the 2a.-, 16a-, and 6(3-positions, as well as theN­

demethylation of ethylmorphine, which are reactions catalysed by P-450s 2C ll and 

3A2, and are specific to the male rat. These end-points were chosen as proven sex­

specific markers, which will tell us whether the sex-specific P-450 is present or not 

present, and will also give us a relative indication of the working speed of the 

individual enzyme system. The results can be correlated with literature values as 

well as our own control values. We also studied the ?a-hydroxylation of testosterone 

(female-specific) and the p-hydroxylation of aniline as controls, representing P-450s 

which are not defeminized and/or regulated in the same way as the male-specific P-

450s. 

2.2. Individual treatments and groups 

We initially began by effectively "removing" the entire neonatal '4critical ... 

period (day 0-21) by blocking the aromatization of testosterone to estradiol in intact 

male rats, thus hoping to block neonatal defemini.zation. The aforementioned results 

from other laboratories (section 1.3.2.) indicated that AID would be an excellent 

choice to elicit the required effect Once the neonatal defemini.zation ofP-450s 2Cll 

and/or 3A2 were blocked, we then sought to detennine the masculinization of these 

specific P-450 enzymes as a function of having the testes present, at different time 

frames during this pubertal window. 
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Table 2.2.A. Experimental protocol for Sections One through Four. 

Group DayO Dayll Day35 Day 55 Day70 Day84 

empty/21 implant remove kill 
empty capsule/ 
capsule cast:ate 

ATD/21 implant remove kill 
AID capsule/ 

castrate 

ATD/2lff implant remove begin kill 
AID capsule/ testosterone 

castrate therapy 

ATD/35 implant remove castrate kill 
AID capsule 

ATD/55 implant remove castrate kill 
AID capsule 

ATD/55/T implant remove castrate begin kill 
ATD capsule testosterone 

therapy 

ATDno implant remove castrate kill 
ATD capsule 

ATD/intact implant remove kill 
ATD capsule 
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Table 2.2.B. Individual treannents for experimental groups of rats. 

Group Treatment 

illlllct No treatment; killed day 70-90. 

female/male 

empty/21 Empty subcutaneous SilasticTM capsule day 0-21~ castrated day 
21 ; killed day 76-79. 

ATD/21 Subcutaneous SilasticTM capsule containing AID day 0-21; 
castrated day 21; killed day 76-79. 

ATDI21n Subcutaneous Silasticnt capsule containing A TD day 0-21; 
castrated day 21; daily testosterone therapy day 70-83 (2mglkg, 
injected s.c. ); killed day 84. 

ATD/35 Subcutaneous Silasticnt capsule containing A TD day 0-21; 
castrated day 35; killed day 70. 

ATD/55 Subcutaneous Silastic nt capsule containing A TO day 0-21; 
castrated day 55; killed day 70. 

ATD/S5ff Subcutaneous Silasticnt capsule containing A TD day 0-21; 
castrated day SS; daily testosterone therapy day 70-83 (2mglkg, 
injected s.c.); killed day 84. 

ATD/70 Subcutaneous Silastic™ capsule containing A 1D day 0-21; 
castrated day 70; killed day 84 or 86. 

A TD/intact Subcutaneous Silastic nc capsule containing A TO day 0-21; 
killed day 70. 

adlllt ciiStl'tlte Castrated in adulthood (day 70-90 ); killed fifteen days later. 
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2.3. Section one 

"Does A TD block neonatal defeminization ?" 

Within the first 16 hours of life, male pups were implanted with either A TO­

filled capsules or empty sealed capsules. The A TD was delivered subcutaneously to 

the pups in a 6mm long Silasticnt capsule (Medical Grade tubing, Dow Corning, 

Michigan, U.S.A.), of interior diameter 1.56 mm and outer diameter 3.15 mm. The 

capsule was filled with 4 millimetres of A TD (as measured in capsule length), and 

sealed with Silasticnt Medical Adhesive (Silicone type A, Dow Corning, Michigan. 

U.S.A.). Numerous studies have shown subcutaneous SilasticTY capsules filled with 

crystalline A TD to be an effective delivery system for this compound in the neonatal 

rat (Swaab eta/., 1995; Vreeburg eta/., 1977; illibarri and Micevych, 1993; 

Bakker, 1995). Vreeburg et a/. ( 1977) provide data that the A TO plasma 

concentration reaches 520±70 nglml in male neonatal rats given A TO in the above 

manner, and demonstrated that A TD administration does not affect normal 

circulating adult levels of testosterone. 

On day 21 of life, the capsules were removed and both groups of animals were 

castrated (section 3.2.) to remove any source of testicular sex steroids that may, by 

virtue of being present during the peripubertal time frame, obscure any inhibition of 

neonatal defem;nization. Animals who had received A TO-filled capsules were 

further divided into two groups, i.e. those that received testosterone during adulthood 

(2 mglkglday, day 70-83 ), and those that did not The purpose of giving some of 
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these animals testosterone during adulthood was to see if the P-450 enzymes in 

question were subsequently responsive to testosterone. An increase in enzyme 

activity following exposure to testosterone could be indicative of neonatal 

programming (defeminization), or it could be due to an acute effect strictly from the 

presence of testosterone (masculinization). Animals were sacrificed on either day 70 

(ATD/2/) or day 84 (ATD/21/ n. 

2.4 Section two 

"Does the lifelong presence of the testes in the non-neonatally-defeminized 
male rat result in P-450 3A2 and 2Cll activity levels equal to 

those of the intact male?" 

Within the first 16 hours oflife, male pups were implanted with A TO-filled 

capsules for a period of 21 days, at which time the capsules were removed. On day 

70 (i.e. early adulthood), half of animals (ATD!intact) were sacrificed, and the 

remaining animals (ATDI70) were castrated. The enzymes of the castrated animals 

were therefore not under the influence of any testicular steroids upon sacrifice of the 

animal. This will help to indicate whether or not any defeminization and/or 

masculinization that occurred between days 35-70 was a permanent event, and will 

also indicate whether any basal enzyme level was defeminized during that time 

frame. The ATD/ 70 group was sacrificed on day 84. 
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2.5. Section three 

.. Peripubertal defeminization or acute masculinization?" 

This experiment utilizes most of the experimental groups of animals. 

Comparisons will be made between animals castrated on various days (ATD1 21. 

ATD/35, ATD/55, ATD/70), as well as between animals free of testicular hormones at 

the time of sacrifice (aforementioned plus adult castrate), and those receiving 

testosterone therapy (ATD/2l.IT, ATDI551T. ATD!intact). We will be determining if 

any pennanent defeminization of basal enzyme activities occurs, and we will also be 

determining if the enzymes are responsive to testosterone therapy in adulthood (two 

indications of defeminization). 

2.6. Section four 

66What length of time do the testes have to remain in 
situ for this peripubertal event to occur?" 

2.6.1. Investigation of the presence of the testes during days 21-55: Within the 

first 16 hours of life, male pups were implanted with ATD-tilled capsules for a period 

of21 days, at which time the capsules were removed. On day 55 (i.e. mid-point of 

puberiy), all animals were castrated and divided into two groups. On day 70, the 

AIDI55 group was sacrificed and the remaining animals (ATD/5511) received 

testosterone supplementation for a period of fourteen days. As the presence of the 

testes from day 21-70 did effectively masculinize P450s 2C11 and 3A2 in preliminary 
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studies, castrating the animals at day 55 will help to characterize the size of this 

peri pubertal window. Any difference found between the specific activity of either 

3A2 or 2Cll in each aforementioned group (those receiving testosterone and those 

not) would indicate whether or not this enzyme was responsive to testosterone (i.e. 

defeminized). There also exists the possibility that the rats may not be defeminized 

per se. but may acutely respond to the presence of testosterone in adulthood. 

2.6.2 Investigation oftbe presence oftbe testes during days 21-35: Within the 

first 16 hours of life, male pups were each implanted with an AID-filled capsule for 

a period of 21 days. at which time the capsule was removed. With neonatal 

defeminization blocked by the A TO, the testes remained in situ for a period of 

fomteen days (until day 35, i.e. the beginning of puberty), at which time the animals 

were castrated to remove testicular sex steroids. These animals were not exposed to 

testosterone at any point before sacrifice. It would have been ideal to have a group of 

animals castrated.at day 35 and given testosterone from days 70-84, howeyer due to a 

minimal availability of neonates we had to exclude such a group. The above group 

will be referred to as A TD/35. 
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2. 7. Other animals 

Adult males (age 70-80 days) were obtained from the Vivarium (Memorial 

University, St. John's, Newfoundland) and castrated during adulthood This group of 

animals (adult castrates) represent defeminized animals. These animals have had 

intact testes from day 0 (birth) up to and including adulthood (neonatally defeminized 

and then masculinized) and then were demasculinized by removing the testes, and 

killed fourteen days later. The male intact and female intact groups (adult males and 

females) were obtained from the Vivari~ and sacrificed at 80-100 days of age. 
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3.0. MATERJALS and METHODS 

3.1. Animals 

Sprague-Dawley females in the late stages of pregnancy were obtained from 

the Vivarium (Memorial University, St. John's, Newfoundland) and housed in 

individual plastic cages (43x22x21cm) on hardwood chip bedding (BPI Inc., Ste. 

Hyacinthe, Quebec). Food (Agway Prolab Rat/Mouse/Hamster 3000, Agway Inc., 

New York) and tap water were provided ad libitum. Animals were kept on a 12 hour 

light/dark cycle (lights on at 8:00 a.m.) at a constant room temperature of 21 oc ( 15% 

relative hwnidity), until parturition. When pregnant dams could not be obtained, 

litters with their dams were obtained from the Vivariwn (St. John's, Newfoundland) 

within 16 hours of parturition. On the day of parturition (day 0), the pups were 

separated from their dam and their sexes determined. Each male then underwent 

surgery to implant one Silasticru capsule between the scapulae (as described below) 

under hypothermic anesthesia. This was followed by a one-hour recovery period at 

which time the pups were returned to their dams and litter sizes adjusted to I 0 pups 

when possible. At 21 days of age, all pups were weaned and underwent surgery for 

removal of the capsule and some animals were castrated, as described in section 3.2 •. 

Pups were assigned to treatments across litters where possible (i.e. each litter was 

divided into two treatment groups). and were housed with three other members of 
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their treatment group until day 35, at which time they were housed in pairs to await 

further treatments. All animals were killed by decapitation between day 70 and 86. 

3.2. Surgery and treatments 

3.2.1. Neonatal surgery: Within the first 12-16 hours oflife, the pup was 

wrapped in a damp piece of gauze bandage and placed in ice for 7-10 minutes to 

induce hypothermic anesthesia (Pfeiffer, 1936). The pup was then removed from the 

ice and placed dorsal side up on an operating surface, and the skin was wiped with 

95o/o ethanol. A small sagittal incision was made in the skin of the midline of the 

head between the ears. The skin between the scapulae was then freed from the 

underlying tissues with a fme probe. One Silastic TW capsule was inserted with forceps 

subcutaneously into the intrascapular space. Some animals received empty, sealed 

capsules. The incision was closed with cyanoacrylate surgicaJ glue. 

Following surgery, the pup was left undisturbed until its body temperature 

returned to room temperature, as indicated by pinkish skin colour and increased 

activity. All pups were then placed in an incubator at 30-32°C, for at least one hour 

before replacement to their respective dams. When possible, litter sizes were 

adjusted to 10 pups with the females of the litter. This procedure minimized the 

probability of maternal neglect and ensured equal maternal treatment of each pup. 
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3.2.2. Removal of A TD caosule: On day 21 of life, the capsule was 

removed under light ether anesthesia. A small area of skin of the thoracic region of 

the back was shaved and wiped with 95% ethanol. An incision large enough to allow 

removal of the capsule was made longitudinally with a scalpel. The capsule was 

manually pushed toward the incision and removed with a pair of foreceps. The 

incision was then closed with one or two sutures of surgical thread. The animal was 

left undisturbed until it had recovered from the anesthetic, at which time it was 

returned to its cage. 

3.2.3. Castration: Castration of the rats was perfonned at four different 

ages- juvenile (21 days}, prepubertal (35 days), pubertal (55 days) and adult (70 

days). The procedure for castration at each age was essentially the same, however at 

the age of 21 days the testes are still located inside the abdominal cavity, thus the 

procedure was modified slightly. 

The rat was placed under light ether anesthesia and an area of the scrotum 

was shaved and wiped with 95% ethanol. A longitudinal incision was then made in 

the middle of the scrotum with a scalpel. In the case of the juvenile castrates, the 

undescended testes were then gently pushed through the inguinal canal, until they 

descended into the scrotal cavity. A small incision was then made through the tunica 

until a testis could be extruded to the exterior. A single ligature was placed around 

each of the internal spennatic artery and the venous complex. The testis, together 

with the epididymis, was then excised, and the remaining tissue was pushed back up 
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the inguinal canal into the abdomen with forceps. The same steps were followed for 

the other testis. The incision was closed with either one or two sutures and wiped 

with 95% ethanol. The animal was then left undisturbed until it had recovered from 

the anesthetic, at which time it was returned to its cage. 

3.2.4. Testosterone supplementation: Some adult animals previously castrated 

at either day 21 (ATD/21/T) or day 55 (ATD/55/T) received daily injections of 

testosterone at a dosage of2mglkg, for a period of fourteen days beginning on day 70. 

The testosterone was dissolved in com oil and delivered subcutaneously into the 

intrascapular space. It was injected via a 1.0 ml plastic syringe with a 27-gauge 

needle (S/8 inch in length), in a volume equal to 0.1% of the animal's body weight. 

3.3. Buffer preparation 

The buffers were prepared according to Gomori (1955). Tris-HCI (SO mM) 

pH 7.4 was used in most in vitro assays as well as for the final suspension of 

microsomal protein. Tris-HCl (50 mM) pH 7.4 containing 150 mM KCI was used in 

microsomal preparation. The cytochrome c reductase assay was carried out in 33 

mM potassium phosphate (KPi) buffer. All pH measurements were made using a 

Fisher Accumet Model 620 pH meter (Instrument Division, Fisher Scientific, 

Pittsburgh, Pennsylvania) equipped with a calomel sleeve junction reference 

electrode and a universal giass body indicating electrode, following a 2-point 

calibration. 
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Buffer preparation (continued) 

50 mM Tris-HQ: Add 50 ml of stock 0.2 M Tris (24.2g in 1000 ml H20} 
to 41.4 ml of stock 0.2 M HCl (17.25 ml in 1000 ml H20} and dilute to 200 ml with 
distilled water. Adjust the pH to 7.400 with concentrated HCI or NaOH. 

50 mM Tris-HCI 050 mM KCI): Add 11.2g KCl to 1000 ml50 mM Tris-HCI. 

100 mM KPl: Add 13 ml stock 0.2 M monobasic KPi (27.2g in 1000 ml H20) 
to 87 ml stock 0.2 M dibasic K.Pi (45.65 gin 1000 ml H20) and dilute to 200 m1 with 
distilled water. Adjust the pH to 7.6. Since 33 mM K.Pi was used in the cytochrome c 
reductase assay, simply dilute this stock solution one part solution to two parts 
distilled water. 

3.4. Preparation of microsomes 

The rat was decapitated and exsanguinated. The liver was rapidly excised and 

placed in ice-cold 50 mM Tris-HCI buffer containing 1~0 mM KCI, pH 7.4. The 

tissue was agitated with the use of forceps to remove hair, blood clots, etc. The liver 

was then blotted dry and weighed. The tissue was transferred to a beaker containing 

three volumes of fresh ice-cold Tris-KCl, and minced with small scissors. The 

beaker containing the liver was placed in a larger beaker holding ice-water, to 

maintain a constant temperature. The liver was then homogenized using a 

Brinkmann homogenizer (model PT 10/35, Brinkmann Instruments, Switzerland) in a 

cold room maintained at 4°C. The homogenization was effected by placing the 

cutting probe (120 mm outer diameter) at a 45° angle, and homogenizing the mince 

with two IS-second pulses separated by one minute, at setting 4.0. The homogenate 
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was then centrifuged at 1000 g for five minutes and at 10 000 g for 15 minutes in a 

(Sorvall RC-5B Refrigerated Supetspeed Centrifuge, Dupont Instruments, Delaware, 

U.S.A). The chamber was pre-chilled to 4°C prior to use. 

The supernatant was strained through three layers of cheesecloth into a 

centrifuge tube. Approximately 10-20 ml of this solution was divided equally into 

two separate ultracentrifuge tubes. These samples were further centrifuged at 105 

000 g (L8-70M Ultracentrifuge, Beckman Instruments Inc., California, U.S.A.) for 80 

minutes at 4°C. The supernatant was then discarded from both tubes, and each pellet 

was rinsed with 5 ml of 50 mM Tris-HCl buffer. 

Unwashed mlcrosomes: One of the microsomal pellets was then 

resuspended i,n SO mM Tris-HCl buffer, pH 7.4, by use of a glass mortar and pestle. 

The volume was equal to 30-SO% of the volume of the original sample of 10 000 g 

supernatant, giving a final protein concentration of 15-20 mglml. The protein 

concentration of this unwashed sample was then determined by the Bradford protein 

assay (Bradford, 1976) (seetioo 3.5.1.). The ethylmorphine demethylase assay 

(sectioo 3.5.2.) was then immediately performed on these samples. 

WIIShed microsomes: The other microsomal pellet was rinsed with 5 

ml of SO mM Tris-HCI buffer prior to washing. Washing of the microsome sample 

was effected by resuspending the pellet (as described above) in a volume equal to that 

of the original 10 000 g supernatant. This suspension was then centrifuged at lOS 

000 g for 60 minutes ( 4°C) as descnbed previously. The supernatant was then 

discarded and the pellet rinsed with 5 ml of SOmM Tris-HCl buffer. This step was 



55 

followed by a final resuspension in a volume of 50 mM Tris-HCI buffer equal to 30-

50% of the volume of the original 10 000 g supernatant This gave us a desired final 

protein concentration of 15-20 mglml. Glycerol was then added to a final 

concentration of 20% ( v/v) to protect the microsomes from the detrimental effects of 

freezing and thawing. The protein concentration was determined by the Bradford 

protein assay, and the microsome suspensions were frozen at -80°C for future use. 

3.5. Assays 

3.5.1. Measurement of protein concentration: Microsomal protein 

concentrations were determined using the Bradford protein assay (Bradford. 1976), 

with bovine serum albumin dissolved in 50 mM Tris-HCI, pH 7.4 as the standard. 

The stock suspension ofmicrosomes was diluted 1:2000 in 50 mM Tris-HCl, pH 7.4. 

To 800 J.d of this solutio~ 200 ~-tl of dye reagent was added. and the resultant solution 

was mixed and allowed to sit at room temperature for a minimum of 20 minutes. A 

blank consisting of800 J.L.l of buffer and 200 ~-tl dye reagent was treated similarly. 

Duplicates ofknown protein concentrations of2, 4, 6, 8 and 10 f.1]/ml were assayed 

simultaneously to produce a standard curve. Absorbancies of all samples and blanks 

were measured at 595 run in a UV-Vis spectrophotometer (DU-70, Beckman 

Instruments Inc., California). Protein concentrations were estimated from the 

resultant standard curve (Figure A. I.). 
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3.5.2. Ethylmoruhine N-demethylase assay: The N-demethylation of 

ethylmorphine was determined from the amount of fonnaldehyde produced using the 

Nash reaction as described by Cochin and Axelrod ( 1959). The incubate contained, 

in a total volume of3.0 ml, SO mM Tris-HCI (pH 7.4), 1.0 mM NADP, 3.3 mM 

glucose..6-phosphate, two units of glucose-6-phosphate dehydrogenase, 8.3 mM 

MgCh, 1.0 mM semicarbazide, 6.0 mg microsomal protein, and 7.0 mg of 

ethylmorphine hydrochloride. 

The incubate, minus the microsomal protein, was agitated for five minutes in 

a Dubnoffmetabolic shaking incubator (GCA Corporation, Chicago, Illinois), under 

air, in a 25ml Erlenmeyer flask at 37"C. The reaction was started by adding the 

microsomal protein to the incubation flask and the reaction was allowed to proceed 

for l S minutes. Reaction rates were linear with respect to time and protein 

concentration under these conditions (see Appendix). Tissue blanks were run for 

each sample and contained no ethylmorphine hydrochloride in the initial incubation 

system. To tenninate the reaction, the incubate was added to a 15 ml Corex tube 

containing 2.0 ml of20% (w/v) ZnS04• To this mixture was added 2.0 ml of 

saturated Ba(OHb. All samples were then centrifuged (Beckman GP Centrifuge) for 

10 minutes at 3000 g to precipitate the protein and the Ba2(S04h. A S ml aliquot of 

the supernatant was then pi petted into another tube and 2.0 ml of double strength 

Nash reagent were added. All samples and blanks were agitated in a water bath 

(Haake SWB-20, Fisons, West Gennany) at 60°C for 30 minutes. The absorbencies 

were then measured immediately at 413 nm, in Beckman UV-VIS spectrophotometer 
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and compared to the formaldehyde standard curve (Figure A.l. ). The specific 

activity (S.A.) was determined as follows: 

nmol formaldehyde = [ (Au3 - blank)- 0.03891] + 0.0023935 

S.A. = nmol formaldehyde+ total incubation time (minutes)+ protein (mg) 

where ~ 13 = absorbance at 413 nm 

3.5.3. NADPH cvtochrome c reductase assay: Microsomal NADPH 

cytochrome c re~uctase activity, expressed as nanomoles cytochrome c reduced per 

minute per milligram of microsomal protei~ was detennined spectrophotometrically 

at 550 nm. Incubation mixtures (3 ml) contained 33 mM KPi, pH 7.6, 44 ~ 

NADPH, 50 mM oxidized cytochrome c, 90 J,Lg microsomal protein, and 1 mM KCN. 

The blank did not contain NADPH. 

The incubation mixture minus the NADPH was prepared in a 5 ml cuvet. 

Following calibration of the Beckman UV-VIS spectrophotometer, the cuvet was 

placed in the holding cell and scanned for background interference at 550 nm. The 

NADPH was then added to the incubate and the reaction allowed to proceed for 4 

minutes while the absorbance of the reduced cytochrome c was recorded at one and 

four minutes respectively, at a wavelength of 550 run. The absorbance from 0 

minutes to one minute was not measured, as the change in absorbance is not linear 
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during this time frame (preliminary lab results). Specific activity (S.A.) was 

determined as follows: 

where: A1 =absorbance reading@ time""l.O minutes 

A2 =absorbance reading@ time=4.0 minutes 

& =molar extinction coefficient@ l9.6cm'1mM"1 

MP = microsomal protein 
volume= 3mJ 

Optimal conditions for microsomal-bound reductase activity were determined 

in another study (our laboratory), using liver microsomes prepared from intact adult 

male Sprague-Dawley rats (Memorial University, St. John's, Nfld., Canada). Optimal 

conditions were used to ensure that the reductase was operating under the conditions 

which gave optimal enzyme activity. The pH of each incubation system was varied 

between 7.5 and 8.0, and samples were run in triplicate in order to determine the 

optimal pH. To determine the optimal ionic strength for maximal specific activity, 

the same experiment was run at pH= 8.0 and the ionic strength of the KPi buffer was 

varied from 0.04 to 0.94 by adding increments ofKCI. The optimal NADPH 

concentration was determined by varying the amount ofNADPH in the incubation 

system (0.17 J,LM to 44.4 J.LM) while keeping the concentration of cytochrome c 

constant at 50 f,1M The subsequent specific activity was plotted vs. [NADPH], and 

the Km and V ma."f. determined by Eadie-Hofstee plots. The optimal concentration of 

cytochrome c was determined by varying the amount of cytochrome c in the 
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incubation system (0.62 f,1M to 158 J..LM) while keeping the concentration ofNADPH 

constant at 44 j.lM. The subsequent specific activity was plotted vs. [cytochrome c], 

and the Km and V max determined by Eadie-Hofstee plots. The concentrations of 

cytochrome c and NADPH were determined by Eadie-Hofstee plots to be enzyme 

saturating. 

3.5.4. Cvtochrome P-450 assay: Total hepatic microsomal cytochrome P-

450 content was determined from the sodium dithionite-reduced carbon monoxide 

difference spectrum using a molar extinction coefficient of91 em·• mM"1 (Omura and 

Sato, 1964 ). Microsomal suspensions of 1-2 mgtml were added to a cuvet, to which 

were added a few milligrams of sodium dithionite. The Beclanan UV-VIS 

spectrophotometer was calibrated with this suspension. Carbon monoxide was gently 

bubbled into this suspension for 30 seconds, and the absorbance of the resulting 

suspension was then measured between 400 and 490 run. The total P-450 per mg 

microsomal protein (MP) was determined by the following equation: 

X J.Lmol P-450/ml =[<~so -~90) + £] x 1000J,.Lmol/mol 

nmol P-450/mg MP = 1 OOOnmol/J..Uilol x X f.litlOl P-450/ml + microsomal proteinlml 

wlaen: E = moJar extinction coefficient of9lcm'1mM"1 

Also = absorbance at 450nm 
A$90 = absorbance at 490nm 
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3.S.S. Aniline hydronlase assay: The hydroxylation of aniline was 

determined from the amount ofhydroxyaniline (4-aminophenol) produced by 3 ml 

incubation systems containing 50 mM Tris-HCI (pH 7.4), 1.0 mM NADP, 3.3 mM 

glucose-6-phosphate, two units glucose-6-phosphate dehydrogenase, 3.0 mg 

microsomal protein, 8.3 mM magnesium chloride and 1. 1 J.d aniline. 

The incubate minus the microsomal protein, was agitated for five minutes in 

an incubator, under air, in a 25 m1 Erlenmayer flask at 37"C. The reaction was 

started by adding the microsomal protein to the incubation flask and the reaction was 

allowed to proceed for 20 minutes. Reaction rates were previously determined to be 

linear with respect to time and protein concentration. To terminate the reaction, the 

incubate was added to a 15 ml Corex tube containing 1.5 ml of20% trichloroacetic 

acid ( w/v ). All samples were then centrifuged (Beckman GP centrifuge) for l 0 

minutes at a setting of 2000 g. A 3 ml aliquot of the supernatant was then pi petted 

into another tube and 1.5 mJ of lOo/o Na2C03 (w/v) and 3 ml of0.2 M NaOH 

containing 2% phenol (w/v) was then added. The absorbance of each sample was 

then measured after full colour development (predetermined to be 25 minutes) at 630 

run and compared to the hydroxyaniline standard curve (Figure A.J.). 

3.5.6. Testosterone assay: The hydroxy lations of testosterone at the 2a-

16a- , 6~- and 7a- positions were determined from the amount of individual 

metabolites produced by 1.000 ml incubation systems containing 0.020 mJ 

testosterone (3.6 mglml of methanol), 0.180 ml ofTris buffer (50~ pH 7.4), 0.200 
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ml sucrose (85 mglml ofTris), 0.050 ml ofMgCh (12 mg MgCI2•6HOH/ml of 

water), 0.050 ml NADPH solution (1 mglml Tris) and 0.500 ml microsomal protein 

(2 mglml Tris ). 

The incubate minus the NADPH was agitated for 5 minutes in an incubator, 

under air, in a 5 ml Corex test tube at 37C. The reaction was started by adding the 

NADPH solution to the incubate, and allowed to react for exactly 10 minutes. The 

reaction was terminated by adding 6 ml of dichloromethane to the incubate. This 

solution was then vonexed for 15 seconds and centrifuged (Beckman GP centrifuge) 

for 5 minutes at 3000 g. Five millilitres of the organic phase was then pi petted to a 

conical tube and evaporated to dryness under a gentle stream ofN2 gas. 

The residue in the conical tube was the dissolved in 100 ml of solution A 

(containing an internal standard) and transferred to a sealed vial. The samples were 

then ready to be tested. 

The chromatography system (Beckm~ Toronto, Ontario) consisted of two 

liB Solvent Delivery Modules, a 507 Autosampler, a 406 Interface ModUle and a 

116 Programmable Detector. The system is computer controlled using Beckman 

System Gold software. The col~ a 150 mm 4.6 mm ID Supelcosil LC18 

(Supelco Inc., Toronto, Ontario), was preceded by a 20 mm 4.6 mm ID guard 

column of octyldecylsilane (Supelco Inc., Toronto, Ontario) and a 2 mm inlet filter 

(Rheodyne, Inc. Coati, CA). The column was eluted for 30 minutes, at a flow rate of 

1.5 ml per minute, with a concave gradient (Programme 4 of the Interface Module) 

beginning at 100% Solvent A ( 43% aqueous methanol containing 1.1% acetonitrile) 
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and finishing with 100% Solvent B (75% aqueous methanol containing 1.9% 

acetonitrile). The identity of unknown peaks was established by comparing their 

retention times, relative to androstenedione (the internal standard) (RT = 22.1 0.3 

minutes}. with the ratios for known standards. Quantification of metabolites was 

done by comparing their peak areas with plots of mass vs. peak area for known 

standards (for calibration curves, see Figures A.4. • A.7.). 

3.6. Statistical Analyses 

To detennine the significance of drug effects on the biological parameters the 

data were subjected to the student t-test using the SigmaStat 2.0 program. Data were 

analyzed in four different groups, representing Results Sections One through Four, 

and the t-test was performed on every paired compariso~ at p<O.OS and p<O.lO. 

Ideally, four different experiments would be run, each with its own set of controls. 

Due to time restraints, we ran one experiment, and analyzed the data four ways. 
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4.0. RESULTS 

4.1. Section one 

"Does ATD block neonatal defeminization!" 

The initial experiment was carried to see if A TD delivered subcutaneously in 

Silastic"" capsules from day 0-21 was effective in blocking the neonatal 

defeminization ofP450 2Cll and/or 3A2. Neonatal defeminization may be seen as a 

permanent increase in basal enzyme specific activity as compared with the intact 

female. As well, defeminization may also be characterized as a reversible 

responsiveness of the enzyme to testosterone in adulthood In other words, a non­

defeminized male will not respond to testosterone in adulthood, whereas a 

defeminized male will respond (shown by an increase in enzyme specific activity due 

to the presence of testosterone). 

We will be comparing the following groups of animals: empty/2 I, ATD'2 I 

and A TD/2 I, T against each other as well as against the control groups (intact male, 

intact female, adult castrate). The empty/2 I represents neonatally defeminized males 

who have been exposed to testicular factors only from day 0-21, and are subsequently 

castrated and sacrificed in adulthood. They will be compared to the intact male and 

intact fomale in order to determine if neonatal defeminintion is characterized by an 

increase in basal (absence of testosterone) P-450 velocities. The adult castrate male 

represents neonatally defeminized males who have been exposed to testosterone from 
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day 0-70. There may or may not exist a difference between the two neonatally 

defeminized groups ( empty·2 1, adult castrate). 

Both neonatally defeminized groups will also be compared to ATD/2 1. The 

ATDI21 presumably represent non-defeminized males who have not had their testes 

removed until day 21, but have not been exposed to the neonatal effects of 

testosterone (i.e. estradiol) during the ••critical .. neonatal period. Specific activities 

obtained from the ATD/ 21 group that are not significantly different from intact 

females may indicate that neonatal defeminization has been prevented. On the other 

hand, this may also mean that neonatal defeminization has occurred, but is not 

represented by a permanent increase in basal enzyme velocity because of the absence 

of some factor in the male. 

Since neonatal defeminization is often represented, in part, as an increased 

responsiveness of adult P-450 to circulating testosterone, the ATD/2 1/T group would 

provide information as to whether or not the specific P-450s could be .. activated" in 

adulthood, and to what extent. 

4.1.1. P-450 3Al: Etbylmorohine demethylase <Table 4.6.Al: 

Sex diffeTences. cluU'acterizetion ofdefi!mini%Jltion: The specific activity 

ofEMDM showed the expected sex differences with intact male (7.2 ± 0.47) being 

statistically greater (p<0.05) than intact female ( 1.4 ± 0.11 ). The neonatally 

defeminized group adult castrate (2.2 ± 0.15) was statistically greater (p<0.05) than 

the intact fomale, demonstrating that neonatal defeminization of EMDM is 
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characterized as an increase in basal enzyme specific activity greater than that of the 

female. On the other hand, the other group of defeminized males ( empty/21) had 

EMDM specific activities (2.9 ± 1. 14) that were not statistically different (p<0.05) 

from that of the intact females ( 1.4 ± 0.11 ). Even though the defeminized EMDM 

velocity was 2-fold greater than the intact female, there was a large variation in 

individual animal El\4DM velocities (standard deviation was ± 2.56), which led to the 

large standard error shown. 

The effect ofATD from day 0-21: When the defeminized empty'21 or adult 

castrate is compared with the alleged non-defeminized ATDI21, we do not see a 

significant change in EMDM specific activity. The ATD-'21 EMDM velocities were 

not significantly different from the intact female (1.1 ± 0.19 vs. 1.4 ± 0.11; p<0.05). 

These observations may or may not support the conclusion that neonatal 

defeminization bad been blocked by neonatal A TD treatment, larger n values would 

help clarify this concept. 

Evidence that A TD blocked neonatal defeminization is presented in the data 

from the groups of animals who were neonatally treated with A TD and were castrated 

at some point prior to adulthood (ATD/55 and ATD/ 70). The adult castrate shows 

that the velocity ofEMDM will drop to a female value upon removal of testicular 

factors. i.e. in a neonatally defemini?.ed but not masculinized male. What we found 

in the ATD/55 and A11J,70 is the velocity ofEMDM drops to a value statistically 

higher than that of the adult castrate. If these animals had been neonatally 

defeminized, it is logical that their basal enzyme velocity upon castration would not 
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be different than that of the adult castrate. This is because they would be essentially 

the same animal endocrinologically, the only difference being the absence of 

estradiol from day 0-21. 

The effect of testosterone in adulthood: The exposure of the ATD-21 ( 1. 7 

± 0.19) to testosterone in adulthood (ATD/2 l'T; 4.8 ± 0.42) resulted in statistically 

significant (p<0.05) 2. 7-fold increase in the specific activity of ElviDM. 

Unfortunately, this suggests that either neonatal defeminization had occurred in the 

presence of A TD (and the enzymes are thus responding to circulating testosterone), or 

that the enzyme is responding to circulating testosterone in the absence of neonatal 

defeminization. The latter explanation seems more reasonable as the specific activity 

ofEMDM in the ATD,2FT group was statistically less (p<0.05) than both the intact 

male and the ATDiintact activity. The literature suggests that a neonatally 

defeminized male will respond to testosterone in adulthood, with activities reaching 

full intact male values (El Defrawy El Masry and Mannering, 1974; Kramer eta/., 

1975b). 

4.1.2. P-450 JA2: 66-bydro:s:ylase <Table 4.6.Bl: 

Sex differences. characterimtion ofdefemlniZ!IIion: The specific activity 

of 613-hydroxylase showed the expected sex differences with intact male (0.28 ± 

0.062) being statistically greater (p<0.05) than intact female (0.06 ± 0.035). The 

neonatally defeminized adult castrate (0.13 ± 0.010) and empty/2/ (0.18 ± 0.086) 

were not statistically different from either the intact male (0.28 ± 0.062) or the intact 
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female (0.06 ± 0 .035). Thus it is difficult to say whether or not neonatal 

defeminization is represented by an increase in basal enzyme specific activity to 

values greater than the female. 

The effect of A TD from day 0-21: To evaluate the effects of A TD on the 

neonatal defeminization process, we compared the empty/2 I to the "non­

defeminized" ATD·21. We found that statistically there was no difference between 

the two groups, although the empty capsule121 (0.18 ± 0.086) was 89-fold greater 

than the ATD/21 (0.002 ± n.d). It is likely that the large standard deviation within 

the empty/2 I group (0.18 ± 0.172) contributed to the difficulty in characterizing a 

statistical difference between these two groups. The velocity in the ATD/21 (0.002 ± 

n.d.) was not statistically different (p<O.OS) from the intact female (0.06 ± 0.035), 

however it was significantly less (p<0.05) than the intact male (0.28 ± 0.062), the 

adult castrate (0.13 ± 0.010) and the ATDl2IT(0.34 ± 0.030). 

The effect of testosterone in tuluhhood: The exposure of the ATD/21 

(0.002 ± n.d.) to testosterone in adulthood A ID/21ff (0.34 ± 0.030) resulted in a 

statistically significant (p<0.05) increase in the velocity of6(3-hydroxylase. Unlike 

EMD~ the presence of testosterone was sufficient to fully masculinize 613-

hydroxylase velocity to intact male values (0.28 ± 0.062). 
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4.1.3. P-450 2Cll: 2a-bydronlase (fable 4.6.Cl: 

Sex differences. characteriwtion ofdefeminiZIIIion: The amount ofP-450 

2Cll can be estimated by measuring its specific activity. The specific activity ofP-

450 2Cll can be measured by the quantitating the hydroxylation of testosterone at 

the 16a- (selective) and 2a- (specific) positions. 

The specific activity of 2a-hydroxylase showed the expected sex differences 

with the intact male (1.66 ± 0.170) being statistically greater (p<O.OS) than that of the 

intact female (0.24 ± 0.044). The neonatally defeminized males (empty/2/ and adult 

castrate) gave 2a-hydroxylase activities (1.08 ± 0.468 and 1.00 ± 0.028 respectively) 

that were approximately 4.5-fold greater than the intact female (0.24 ± 0.044). Of the 

two defeminized groups, only the adult castrate was statistically significantly greater 

than that of the intact female. Again, due to the large standard deviation in the 

empty/21 group, it is difficult to carry out accurate statistics with this group. The 

defeminized adult castrate (1.00 ± 0.028) is only 65% of the intact male (1.66 ± 0.17) 

which is significant at p<O.lO. It appears as though the defeminized adult castrate 

does not belong to either the intact female or the intact male group, suggesting that 

defeminization is seen as a permanent increase in basal enzyme velocity to values 

greater than that of the female, but not reaching male values. 

The effect ofATD from day 0-21: To evaluate the effects of 

neonatal A TD exposure on neonatal defeminization, we compare the ATD/21 group 

to the defeminized groups (empty.21 and adult castrate). We found that the specific 

activity in the ATD/21 (0.32 ± 0.125) was 68% less than the adult castrate (1.00 ± 
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0.028) (p<O.OS) and 71% less than the empty'21 (1.08 ± 0.468). Again, due to the 

large standard deviation in the empty2/ (1.08 ± 0.935) and the small sample size (4), 

we cannot say that the 71% decrease was statistically significant. The velocity of the 

ATD/21 was not statistically different (p<O.OS) than the intact female (0.24 ± 0.044). 

reaffirming that neonatal A TD treatment was effective in blocking neonatal 

defeminization of 2a-hydroxylase since deferninization is seen as a pennanent 

increase in basal enzyme velocity to values greater than that of the female. 

The effect of testosterone in adulthood: The specific activity of 2a­

hydroxylase increased significantly (p<O.OS) in AID-treated males castrated on day 

21 (0.32 ± 0.125) and subsequently treated with testosterone in adulthood (ATD,21. T; 

1.44 ± 0.067). The specific activity increased 4.5-fold to 1.44 (± 0.067), which is not 

statistically different (p<O.OS) than the intact male (1.66 ± 0.170). This is suggestive 

of a complete ••masculinization" response to circulating testosterone to values not 

different from the intact male. since neonatal and/or peripubertal imprinting should 

not have occurred. 

4.1.4. P-450 lCll: 16a-bydroxvlase <Table 4.6.Dl: 

Sex differences. cluJracterl'Z/Ition ofde(eminlZil!lon: The specific activity 

of 16a-hydroxylase showed the expected sex differences with the intact male (0.98 ± 

0.149) being statistically greater (p<0.05) than the intact foma/e (0.15 ± 0.044). The 

neonatally defeminized males ( empty21 and adult castrate) gave 16a-hydroxylase 

activities (0.68 ± 0.315 and 0.48 ± 0.039 respectively) that were greater than the 
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intact female (0.15 ± 0.044 ), however only the adult castrate was statistically 

significantly greater (p<0.05). Because of the large standard deviation in the 

empty/21 group. it is difficult to say whether it belongs to the intact female group or 

the intact male group. The adult castrate on the other hand, is significantly greater 

(p<0.05) than the intact fomale and is statistically less (p<O.l 0) than the intact male 

group. Because this group of animals represents neonatally defeminized males. these 

results indicate that neonatal defeminization can be seen as an increase in uninduced 

16a-hydroxylase velocity. 

The effect ofATD from dqy 0-21: To evaluate the effects of neonatal AID 

exposure on neonatal defeminization. we compared the ATD/21 to the defeminized 

groups (empty/21 and adult castrate). The specific activity of the ATD/21 (0.16 ± 

0.040) was 66% less (p<0.05) than the adult castrate (0.48 ± 0.039) and 76% less 

than the emptyi2l (0.68 ± 0.315) (not significant due to large standard error). The 

velocity of the ATD/21 was not statistically different (p<O. 05) than the intact fomale 

(0.15 ± 0.044). reaffinning that neonatal ATD treatment was effective in blocking 

neonatal defeminization of 16a-hydroxylase. 

The effect of testosterone in adulthood: Similar to 2a-hydroxylase, the 

velocity of 16a-hydroxylase increased significantly (p<O.OS) in A TO-treated males 

castrated on day 21 (0.16 ± 0.040) and subsequently treated with testosterone in 

adulthood (ATD/2/tT; 0.88 ± 0.032). The specific activity increased 5.5-fold to 0.88 

± 0.032, which is not statistically different (p<O.OS) from the intact male (0.98 ± 

0.149). This is suggestive of an acute "masculinization" response to circulating 
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testosterone to intact male values, since neonatal defeminization and/or peri pubertal 

imprinting should not have occurred. 

4.2. Section two 

"Does the lifelong presence of the testes in the non-neonatally-defeminized male 
rat result in P-450 3A2 and 2Cll activity levels equal to those of the intact­

defeminized male?" 

4.2.1. P-450 3A2: Ethylmorphine demethylase and 66-hydroxylase <Tables 4.6.A 

and 4.6.Bl: EMDM activity levels in the ATDlintact group (8.2 ± 0.59) 

were not signifi~tly different from the intact male group (7.2 ± 0.47), thus 

indicating that the presence of the testes throughout the life of the non-neonatally 

defeminized animal results in a completely comparable "masculinization" of the 3A2 

enzyme. This concept is further supported by the increase in specific activity of 

testosterone 6~-hydroxylase in these same two groups, i.e. the ATD/intact bas a 

velocity of0.26 (± 0.143) which is not significantly different (p<0.05) than that of the 

intact male whose velocity is 0.28 ± 0.062. Thus, the lifelong presence of the testes 

in the non-defeminized male will result in full 1 00% masculinized velocity of P-450 

3A2. 
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4.2.2. P-450 2Clt: Testosterone 16a- and la-hydroxylase <Tables 4.6.B. and 

4.6.C.l: The activity of 16a-hydroxylase in the ATD ·intact group ( 1.08 ± 

0.105) was not statistically different from that of the intact males (0.98 ± 0.149), thus 

indicating that the presence of the testes throughout the life of a non-neonatally 

defeminized male will result in a complete masculinization of 16a-hydroxylase. The 

activity of 2a-hydroxylase was also completely masculinized in the non-neonatally 

defeminized male due to the presence of intact testes from day 21-70. Our data show 

that the ATD 'intact ( 1.89 ± 0.0 15) was not statistically different from the intact male 

(1.66 ± 0.170). Thus, the lifelong presence of the testes in the non-defeminized male 

will result in a 100% masculinized velocity of P-450 2C 11. 

4.3. Section three 

"Peripubertal defeminization or acute masculinization?" 

We conducted this experiment to see whether or not the peripubertal presence 

of the intact testes defeminizes 3A2 and/or 2C11 in the same way (i.e. by 

characteristic changes in specific activities) that the neonatal presence of the testes 

does. 

The basal activity levels of 3A2 and 2C 11 will be determined in males 

castrated at various peripubertal ages (day 21,35, 55, or 70) to determine if a 

permanent defeminization of an increase in basal enzyme velocities occurs. We also 

wanted to determine if testosterone was the sole necessary factor to evoke any 
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defeminization or masculinization. or if other testicular secretions are required or can 

contribute as factors. The adult responsiveness of 3A2 and 2C 11 to testosterone will 

be characterized in the ATD/2/T, ATD5JlTandATD!intact groups as they are 

compared to their respective control groups. 

4.3.1. P-450 JAl: Etbylmornhine demethylase ITable 4.6.A): 

Defeminimtion of a basal specific activity: A peripubertal 

de feminization process which lasted at least until day 84 of life, can be seen by the 

significant (p<O.OS) 1.9-fold increase in basal E'MDM specific activity imprinted 

from day 35 (2.1 ± 0.21) to day 55 (4.0 ± 0.14) in non-defeminized animals. No 

apparent increase in basal EMDM velocity occurred between day 21 ( 1. 7 ± 0. 19) and 

day 35 (2.1 ± 0.21), as there was no significant (p<0.05) increase in specific activity. 

The ATD/70 (3.9 ± 0.50) was not significantly (p<0.05) different than the ATD 55 

(4.0 ± 0.14) indicating that the extra 15 days that the testes remained in situ did not 

have any further imprinting effect on EMDM. Therefore, this peripubenal imprinting 

appears to be a permanent event which is completed by day 55. 

In Section One, we defined neonatal defeminization as an increase in basal 

en_-yme activity, over and above that of the intactfomale (adult castrate vs. intact 

female). Thus, peri pubertal defeminization appears to be similar to neonatal 

defeminization in that regard. However, the activity ofEMDM increases 3-fold over 

that of the intact female in the peripubertally defeminized animals castrated at day 55 

and/or day 70, and this increase is 2-fold (p<O.OS) greater than the neonatally 
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defeminized adult castrate. lt appears that EMDM basal enzyme activity can be 

permanently defeminized during puberty to activity levels higher than those attained 

due to neonatal defeminization. 

Response to testosterone in adulthood: The relative responsiveness of 

EMDM to circulating testosterone in adulthood can be compared between animals 

castrated on day 21 and those castrated on day 55. Non-defeminized males (ATD,21) 

respond to testosterone with a 2.8-fold increase (p<0.05) in specific activity, whereas 

males castrated on day 55 only respond by an added 1.4-fold increase (p<O.lO) in 

activity. The EMDM enzyme in the ATD12 /.Tis apparently not operating at its 

maximal specific activity, due to the fact that ATD/2//T ( 4. 8 ± 0. 4 2) is statistically 

less (p<0.05) than the ATD/intact (8.2 ± 0.59). This suggests that either neonatal 

defeminizlltion is necessary for complete adult responsiveness ofEMDM to 

testosterone, or that other testicular factors are needed to elicit the full adult 

masculinization. In the absence of neonatal or peri pubertal defeminization, 

testosterone appears to be sufficient to cause at least a partial masculinization of 

EMDM, as there was a significant difference between the ATD/2 1 ( 1. 7 ± 0.19) and 

ATDt'2/.'T(4.8 ± 0.42) groups. However, because the ATD/2l!Tgroup was 

significantly less than the intact male (7.2 ± 0.47), this leads us to believe that it may 

not be possible to fully masculinize EMDM in the absence of neonatal or peripubertal 

de feminization. 

The ATD/55/T(5.1 ± 0.79) demonstrated an EMDM specific activity that was 

not significantly different from the intact male (7.2 ± 0.47), which indicates that 



75 

testosterone is a sufficient testicular hormone required for the full peripubertal 

masculinization effect in non-neonatally-defeminized males. 

4.3.2. P-450 JAl: 66-bydroxvlase IT able 4.6.8.): 

Defeminizatlon of a basal soeciflc activity: 6~-hydroxylase specific 

activity increased 55-fold when the testes were in situ from day 21-35 (0.002 ± n.d. to 

0.11 ± 0.042). Whether or not this is a significant increase is not clear, asp= 0.082 

which is very close to significance. However, 6~-hydroxylase specific activity 

increased 2.4-fold (p<0.05) if the testes remained in situ from day 35-55 (from 0.11 ± 

0.042 to 0.27 ± 0.022). The basal specific activity of613-hydroxylase dropped back to 

day 35 levels (0.11 ± 0.042) however, if the testes remained in situ from day 21-70 

(0.07 ± 0.055). 

Response to testosterone in adulthood: Circulating testosterone in 

adulthood is effective in restoring 613-hydroxylase specific activity to intact adult 

male levels whether the non-defeminized male was castrated at age 21, 55 ·or 70 days. 

There were no statistically significant differences between the ATD/2 J.T (0.34 ± 

0.030), ATD55·"T(0.31 ± 0.046), ATD·intact (0.26 ± 0.143) and the intact male (0.28 

± 0.062). This suggests that the high degree of responsiveness of 613-hydroxylase to 

circulating testosterone in adulthood is an acute event (i.e. non-permanent), and does 

not require defeminization to be effected. 
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4.3.3. P-450 2Cll: :!a-hydroxylase (fable 4.6.C.l: 

Defeminimtlon of a btLSal soeciflc activity: A pennanent peripubertal 

defeminization of2a-hydroxylase is shown by the 2.4-fold increase (p<0.05) in the 

basal enzyme velocity, effected by the presence of intact testes from day 35 (0.55 ± 

0.192) to day 55 (1.32 ± 0.057). No significant increase is seen in the specific 

activity of 2a-hydroxylase in non-neonatally-defeminized males if the testes are in 

situ from day 21 (0.32 ± 0.125) to day 35 (0.55 ± 0.192). The presence of the testes 

from day 55-70 in non-defeminized males appears to lead to a significant drop in 2a­

hydroxylase specific activity, from 1.32 ± 0.057 to 0.96 ± 0.092. 

Remonse to testosterone in adlllthood: A significant 1.5-fold increase 

(p<0.05) in specific activity of2a-hydroxylase (from 1.32 ± 0.057 to 1.96 ± 0.165) is 

see~ due to adult exposure to testosterone from day 70-83 in these peripubertally 

defeminized males (ATD/55/T). This indicates that a masculinization has followed 

the defeminization which had occurred between day 35 and 55. It is apparent 

however, that testosterone is sufficient to masculinize the adult velocity of2a­

hydroxylase in the absence of either neonatal or peri pubertal defeminization. When 

ATDl 21 and A TD12 LT are compare<L testosterone is responsible for a significant 

(p<0.05) increase in the velocity of2a-hydroxylase to reach intact male levels. In 

this case, 2a-hydroxylation specific activity increased 4.5-fold, from 0.32 (± 0.125) to 

1.44 (± 0.067) (p<0.05). 

Because it is possible for testosterone fully masculinize the velocity of 2a­

hydroxylase in the absence of neonatal or peripubertal defeminizatio~ it is difficult 
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to determine whether any further imprinting of testosterone responsiveness occurs 

due to the peri pubertal presence of testicular secretions. In other words, this response 

to testosterone in the absence of any form of defeminization may mask any 

peripubertal defeminization that may occur. 

The fact that the ATDlintact (1.89 ± 0.015) was not significantly different 

from the intact male (p<0.05), indicates that testicular secretions are sufficient to 

cause a full masculinization of2a-hydroxylase. The observation that the ATD1551T 

(1.96 ± 0.165) and the ATD/2J,-'T(l.44 ± 0.067) were not significantly different 

(p<0.05) than the intact male (1.66 ± 0.170) regarding the specific activity of2a­

hydroxylase again indicates that testosterone itself is sufficient to cause full 

masculinization. 

4.3.4. P-450 2Cll: 16a.-bydroxvlase <Table 4.6.0.): 

DefemlnlZJJtion of a btlsal meclfic activity: A permanent peripubertal 

defeminization process can be seen as a significant (p<0.05) 2.7-fold increase in basal 

16a-hydroxylase specific activity imprinted from day 35 (0.30 ± 0.103) to 55 (0.81 ± 

0.021) in non-neonatally-defeminized males. No significant increase was seen in 

non--defeminized males whose testes remained in situ from day 21 (0.16 ± 0.040) to 

day 35 (0.30 ± 0.103). Interestingly, like that of2a-hydroxylase, the specific activity 

of 16a-hydroxylase drops significantly (p<0.05) in non-neonatally-defeminized males 

whose testes remain in situ from day 55 (0.81 ± 0.021) to day 70 (0.54 ± 0.047). 
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Response to testosterone in adulthood: Non-neonatally-defeminized 

males castrated on day 55 showed a significant increase (p<O.lO) in l6a-hydroxylase 

specific activity when exposed to testosterone in adulthood (from 0.81 ± 0.021 to 

1.15 ± 0.174 ). This suggests that a masculinization followed the peri pubertal 

defeminization, or as in the case of2a-hydroxylase, we are just seeing the 

unimprinted ability of this enzyme to respond to testosterone in adulthood. 

The fact that the ATD/intact (1.08 ± 0.105) was not significantly different 

from the intact male (0.98 ± 0.149), indicates that testicular secretions are sufficient 

to cause a full masculinization of 16a-hydroxylase. The observation that the 

ATD/55/T(l.lS ± 0.174) and the ATD12l/T(0.88 ± 0.032) were not significantly 

different (p<0.05) than the intact male (0.98 ± 0.149) indicates that testosterone itself 

is sufficient to cause this full masculinization. 

4.4. Section four 

"What length of time do the testes have to remain 
in place for this peripubertal event to occur?" 

Once we ensured that neonatal defeminization had been blocked, we then 

attempted to investigate the effects of intact testes on the defeminization of basal 

velocities of the specific P-450s during specific time frames in the peripubertal 

window (i.e. days 21-70). 
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4.4.1. P-450 3A2: Etbylmornhille demetbylase and 68-bydroxylase <Tables 

4.6.A. and 4.6.B.l: The specific activities of both EMDM and 6~-

hydroxylase were determined in animals who had neonatal defemini2ation blocked by 

neonatal AID treatment (day 0-21), and had been castrated at age 21 or 35 days. No 

significant differences in EMDM specific activity were seen between the animals 

castrated on day 21 (1.7 ± 0.19) and day 35 (2.1 ± 0.21 ). Similarly, a slight (p=0.082) 

but not significant increase was seen in 6{3-hydroxylase specific activity in animals 

castrated on day 35 (0.11 ± 0.042) as compared to those castrated on day 21 (0.002 ± 

n.d. ). This indicates that no defeminizationlmasculinization had occurred due to the 

presence of intact testes between days 2.1 and 35. 

A significant (p<0.05) 1.9-fold increase was noted in EMDM specific activity 

between animals castrated at day 35 (2.1 ± 0.21) and those castrated at day 55 (4.0 ± 

0.14 ), indicating that a defeminization process bad occ~. To determine whether 

or not this process bad been completed by day 55 or required the testes to remain in 

situ until day 70 (adulthood), the ATDI55 was compared with the ATD/70. The 

specific activity of EMDM did not change between day 55 (4.0 ± 0.14) and day 70 

(3.9 ± 0.50), indicating that the defeminization process was completed by day 55. 

A significant (p<0.05) 2.5-fold increase was noted in 6{3-hydroxylase specific 

activity between animals castrated at day 35 (0.11 ± 0.042) and those castrated at day 

55 (0.27 ± 0.022), indicating that a defeminization process had occurred The 

presence of the testes from day 55 to day 70 resulted in a decrease in 6(3-hydroxylase 

activity, from 0.27 (± 0.022) to 0.07 (± 0.055). 
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4.4.2. P-450 :ZCll: 16a-bydroxvlase. :!a-hydroxylase <Tables 4.6.C. and 4.6.D.l: 

No significant differences were seen in the specific activities of 16a­

hydroxylase or 2a-hydroxylase between animals castrated on day 21 and day 35. 

16a-hydroxylase activity increased slightly but not significantly, from 0.16 (± 0.040) 

to 0.30 (± 0.103). The same occurred with 2a-hydroxylase activity, which increased 

slightly but not significantly from 0.32 (± 0.125) to 0.55 (± 0.192). This indicated 

that no apparent defeminization bad occurred in this 14-day time-frame. Significant 

increases (p<O.OS) in specific activities were seen in both 16a- and 2a­

hydroxylations in animals castrated on day 55 as compared with day 35. The activity 

of 16a-hydroxylase increased 2.7-fold. from 0.30 (± 0.103) to 0.81 (± 0.021). 

Similarly, the activity of2a-hydroxylase increased 2.4-fold. from 0.55 (± 0.192) to 

1.32 (± 0.057). There was no significant increase in 2a-hydroxylase specific activity 

between day 55 (1.32 ± 0.057) and 70 (0.96 ± 0.092). as well as with 16a­

hydroxylation (0.81 ± 0.021 on day 55 and 0.54 ± 0.047 on day 70). Instead, there 

appears to be a significant (p<0.05) reduction in l6a- (28%) and 2a- (33%) 

hydroxylation specific activities during this time frame. 
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4.5. Tbe etJect of sex hormone manipulation on other 
P-450-related isozymes and cofactors 

4.5.1. Total hepatic P-450 content <Table 4.6.E.l: The cytochrome P-450 

content showed a slight but significant difference between males and females, with 

the intact male ( 1.03 ± 0.089) being greater than the intact female (0. 73 ± 0.070). 

The cytochrome P-450 content was not responsible for any differences seen between 

groups in this experiment, as all groups (except for the intact female) were not 

significantly different from each other or the intact male. The small difference 

between the intact female and male could not have accounted for such large sex 

differences seen in 3A2 or 2C 11. 

4.5.2. NADPH Cvtoebrome c reductase <Table 4.6.F .): There was a small but 

significant (p<0.05) difference between the intact female (44.1 ± 2.42) and the intact 

male (53 .2 ± 2. 46 ), the female being less. The non-defeminized adult castrate ( 41.3 

± 3.42) was not significantly different than that of the intact female (44.1 ± 2.42) and 

also significantly less than the intact male (53.2 ± 2.46) suggesting that a lack of 

testosterone in the adult causes a slight reduction in reductase activity. The ATD·2/ 

(65.7 ± 3.85) and the ATD/21/T (59.8 ± 5.56) were also significantly greater than the 

intact female (44.1 ± 2.42) and the adult castrate (41.3 ± 3.42). Unlike in the 

defeminized male, this suggests that the absence of testosterone in the non-

defeminized male does not cause a reduction in reductase activity. Whether or not 
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defeminization plays a role or not in ultimate adulthood reductase activity cannot be 

determined from these results. 

4.5.3. P-450 lEt: Aniline hydroxvlase (Table 4.6.G.l: Our data indicate 

that the activity of aniline hydroxylase (P-450 2E 1) is sexually differentiated, with 

female activity (0.23 ± 0.052) being statistically less than (p<O.OS) male activity (0.91 

± 0.077). This was not suprisin~ as some literature indicates a clear sex difference 

(Yamazoe eta/., 1989). This sex difference is also in agreement with Kato eta/. 

(1968), but not in agreement with Virgo (1985), Schenkman eta/. (1967), Finnen and 

Hassall ( 1980), and Shimada eta/. (1987), who did not find any sex difference in 

aniline hydroxylase activity in the adult male and female rat. Neonatal castration has 

been found to be ineffectual in changing aniline hydroxylase activity (Schenkman et 

a/., 1967; Shimada eta/., 1987), and castration at any age thereafter also had no 

effect (Finnen and Hassall, 1980). 

Our data, on the other hand, indicated that adult castration decreased aniline 

hydroxylase activity, by 33%, from (0.91 ± 0.08 to 0.57 ± 0.06), when intact males 

were castrated in adulthood (day 70), suggesting that the presence of testicular factors 

may directly/indirectly regulate this isozyme. It is probably not strictly testosterone 

that regulates aniline hydroxylase activity, as the exposure of the A TO-treated males 

to testosterone in adulthood did not significantly increase the activity of this enzyme 

(ATDI2/ = ATD'2//T; ATD/55 = ATD/55/T; ATD/70 = ATD!intact). Since the 

defeminized empty/21 was not statistically different than the non-defeminized 
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ATD/2/ (0.67 ±0.I80 vs. 0.89 ±0.07I), this indicates that neonatal ATD 

administration did not affect basal aniline hydroxylase activity. In addition, the 

activities of all A TO-treated males regardless of castration/treatment (except A TD/35 

and adult castrate), were not statistically different from that of the intact male, also 

indicating that the activity ofP-450 2EI is not imprinted and/or regulated in the same 

manner as the sex-specific P-450 3A2 and 2C II enzymes. 

Virgo ( I99I) found that testosterone propionate administration to the non­

defeminized male, from day 35-7I, did not affect aniline hydroxylase activity, which 

is in accordance with our data (ATDiintacl = intact male}. We also found that the 

presence of the testes (or testosterone} in the non-defeminized male (ATD/2// T, 

ATDI55/ T, ATD!intact), did not significantly increase aniline hydroxylase specific 

activity over that of the castrated males (ATD/2/, ATD/55. ATD/70). 

4.5.4. P-450 ZAl: 7a-bydro!)'lase <Table 4.6.8.): There was an expected 

(Kato eta/., 1986; Sonderfan eta/., 1987) significant difference between intact 

males (0.26 ± 0.073) and intact females (1.06 ± 0. 169) in the specific activity of7a­

reductase (females > males). 

Adult lfUIScullniZJition: Castration of adult intact male, resulted in a 

significant 3.1-fold increase (feminization) in ?a.-hydroxylation specific activity as 

compared with the intact male group (0.8I ± 0.0 I1 vs. 0.26 ± 0.073) (p<0.05). The 

final specific activity was not statistically different than that of the intact fomale 

group (1 .06 ± 0.169), or the empty/2/ group (0.56 ± 0.069). This indicates that the 
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presence of testicular secretions accounts either directly, or indirectly, for the 

difference in ?a-hydroxylase activity, between the neonatally defeminized male 

(adult castrate, empty/21), and the intact female . This is supported by Waxman et a/. 

( 1989), who demonstrated that adult castration increased 2A 1 levels. 

The non-defeminized male: Waxman eta/. (1989), and Shimada eta/. 

(1987), reported a significant feminization (increase in activity) of2A1 and 7a.­

hydroxylase levels/activity (respectively), in the neonatally castrated (non­

defeminized) male. Adult testosterone administration to the non-defeminized male, 

has been shown to suppress (masculinize) 7a-hydroxylation (Shimada eta/., 1987), 

which indicates that testosterone is effecting the suppression. Therefore, neonatal 

castration prevents the normal peri pubertal suppression (Sonderfan eta/., 1987) of 

7a-hydroxylase. 

Interestingly, our data showed that neonatal AID administration may have 

blocked afeminization of7a-hydroxylase. This is demonstrated in the empty,]/ vs. 

the ATD,21. We found that the male who did not receive A TD (and thus was 

exposed to estrogens), was significantly feminized (0.56 ± 0.069), whereas the A TO­

treated male (who was not exposed to estrogens), was significantly masculini=ed 

(0.28 ± 0.034). This may provide evidence that estrogens serve to feminize ?a.­

hydroxylase activity in adulthood. Why we demonstrated male 7a-hydroxylase 

activity when defeminization was blocked, and Shimada et a/. ( 1987) reported a 

feminization of7a.-hydroxylase activity in the neonatal castrate, is not known. 
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Our data showed that in the non-defeminized male, castration at 21 days 

(0.28 ± 0.034) vs. 35 days (0.68 ± 0.172), did not significantly increase (feminize) the 

7a-hydroxylase specific activity. Castration ofthe AID-treated males on day 55 

(0.62 ± 0.034) did not significantly change the specific activity from that of the day 

35 castrates (p<O.OS), however, it resulted in significantly greater (more feminine) 

activity vs. the A TD/21 (p<0.05). The large standard error in the A TD/35 made it 

difficult to fully characterize this graup. The activity of the ATD/70, was not 

statistically different from the intact male group (0.26 ± 0.073) (p<0.05). This 

indicates that, in the non-defeminized mal~. basal ?a-hydroxylase activities are 

masculine, with the exception of the day 55 castrate, who was neither feminine nor 

masculine. 

Exposure of the non-defeminized males to testosterone in adulthood, did 

result in significant decreases (p<0.05) (masculinization) in the specific activity of 

7a-hydroxylase, in the day 55 castrates (ATD/55 > ATD/55/n, and the day 70 

castrates (ATD/70 > ATD!intact). Castration of AID-treated males on day 21, 

however, and subsequent exposure to testosterone in adulthood, did not have any 

significant effect on 7a-hydroxylase activity (ATD/21 = ATD/21/1). The lack of 

statistical difference between these two groups, is probably due to the large standard 

error in the empty/21 group. These data indicate that, in the non-defeminized male, 

testosterone in adulthood serves to suppress 7a-hydroxylase activity. 

The presence of the testes throughout puberty in the non-defeminized male, 

resulted in masculine activities of7a-hydroxylase (ATD1intact; our data). This 
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corresponds with Waxman eta/. (1989), who found that pubertal testosterone 

administration to the non-defeminized male, decreased ?a-hydroxylase activity 

almost to that of the intact male (Waxman eta/., 1989). Shimada eta/. (1987) also 

found that peri pubertal testosterone administration (day 56-70) to the non­

defeminized male, resulted in masculine ?a-hydroxylase activities. 
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TABLE 4.6.A. Hepatic ethylmorphine demethylase specific activity in rats of 
varying endocrine status. See Table l.l.B. for individual treatment descriptions. 

illlllct female 

empty/21 

ATD/21 

ATD/2Jn 

ATD/35 

ATD/55 

ATD/55n 

ATD/70 

A TDr111tact 

GROUP 
(n = 4-7) 

adlllt castrate 

intact male 

a 

b 

c 

d 

e 

r 

b 

j 

k 

All data are the mean ± S.E.M. 
• p<O.lO 

EMDM specific activity 
(nmol!minimg microsomal protein) 

1. 4 ± 0.11 d.c.f.g,h.i.j.k 

1.7 ± 0.19 d.(.gb i k 

4. 7 ± 0. 46 a,c.c.ij,k 

2.1 ± 0.2l a.d.£.g.h.i.k 

8.2 ± 0.59 a,b.c.d.c.f.g,h,j 

2.2 ± 0.1 s a,dJ.g.h.i.k 

7.2 ± 0.47 a,b,c,d,c fhj 

Superscripts corresponding with treatment letter designations represent a statistically 
significant difference in specific activity between compared groups, using the student 
t-test. All p<O.OS unless otherwise noted (•). 
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TABLE 4.6.B. Hepatic 6(3-hydroxylase specific activity in rats of varying 
endocrine status. See Table l.l.B. for individual treatment descriptions. 

Dnpty/21 

ATD/21 

ATD/2ln' 

ATD/35 

A.TD/55 

ATD/55n' 

A.TD/70 

A TDimtact 

GROUP 
(n = 2-4) 

Data are the mean± S.E.M. 
• p<O.lO 

• 

b 

c 

d 

e 

f 

g 

h 

j 

k 

6P-bydros.ylase specific activity 
(nmo/lmintmg microsomal protein) 

0.06 ± 0.035 d.f,g.i•.k 

0.18 ±0.086 

0.002 ± n.d d.e•,f,g.ij,k 

0.34 ± 0.030 a.c,c,hj 

0.27 ± 0.022 a.c.c,hj 

0.31 ± 0.046 a.c.c.h,j• 

d,f,g.k• 
0.07±0.055 

0.26 ± 0.143 a•,c.f 

0.13 ± 0.010 c.d.t:g* 

0.28 ± 0.062 a..c.e•,h• 

Superscripts corresponding with treannent letter designations represent a statistically 
significant difference in specific activity between compared groups, using the student 
t-test. All p<0.05 unless otherwise noted. 
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TABLE 4.6.C. Hepatic 2a-bydroxylase specific activity in rats of varying 
endocrine status. See Table 2.2.8. for individual treatment descriptions. 

intact female 

empty/21 

ATD/21 

ATD/21/T 

ATD/35 

A.TD/55 

ATD/55/T 

ATD/70 

ATD/lntae1 

GROUP 
(n = 2-4) 

adult castrate 

a 

b 

c 

d 

e 

r 

g 

b 

i 

j 

k 

All data are the mean ± S.E.M .. 
• p<O.IO 

2a-bydroxylase speeific activity 
(nmol!min/mg microsomal protein) 

0.24 ± 0.044 d.f.g,b.ij,k 

1.08 ± 0.468 

0.32 ± 0.125 d.f.g.h.i.j.k 

1. 44 ± 0. 06 7 a.c.e.g.b,.ij 

0.55 ± 0.192 cUg,j.k 

1.32 ± 0.057 a,c.c.g,h.i.j.k* 

1.96 ± 0.165 a,c.d.cJ.hJ 

0.96 ± 0.092 a.c,cf4.ij,.k 

1.89 ± 0.015 a,c,d.cJ..h 

1.00 ± 0.028 a,c,d.f.g.b,k• 

1.66 ± 0.170 a.c.c.f*,hj* 

Superscripts corresponding with group letter designations represent statistically 
significant differences in specific activity between compared groups, using the 
student t-test All p<O.OS unless otherwise noted(*). 
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TABLE 4.6.D. Hepatic 16a-hydroxylase specific activity in rats of varying 
endocrine status. See Table 2.2.B. for individual treatment descriptions. 

inlllct fmuJle 

empty/21 

ATD/21 

ATDI2Jn 

ATD/35 

ATD/55 

ATDISSn 

ATDilO 

A TDiintllct 

GROUP 
(n = 2-4) 

atbill cllStrate 

intact male 

a 

b 

c 

d 

e 

r 

g 

h 

i 

j 

k 

All data are the mean ± S.E.M .. 
• p<O.lO 

16a-hydroxylase specific activity 
(nmolimin/mg microsomal protein) 

0. 15 ± 0. 044 d.f.g.h.i,j.k 

0.68 0.315 

0.16 ± 0.040 d,f,g.b.,i,j,k 

0.88 ± 0.032 a.c.c.b.i*j 

0.30 ± 0.103 d.f:g,i.k 

0.81 ± 0.021 a.c.c,g*,hj 

1.15 ± 0.174 a.c.cJ• .h,;• 

0.54 ± 0. 04 7 a.c.d.f.g.i.k 

1.08 ± 0.105 a.c.d*,cj.h 

0.48 ± 0.039 a.c,d.f.g•,i.k• 

0.98 ± 0.149 a.c.d,c.,hj* 

Superscripts corresponding with treaunent letter designations represent a statistically 
significant difference in specific activity between compared groups, using the student 
t-test All p<O.OS unless otherwise noted (•). 



91 

TABLE 4.6.E. Hepatic cytochrome P-450 content in rats of varying endocrine 
status. See Table l.l.B. for individual treatment descriptions. 

ill tact femal~ 

empty/21 

ATD/11 

ATD/11/T 

ATD/35 

ATD/55 

ATD/55/T 

ATDno 

GROUP 
(n = 4-7) 

adult castrate 

intact male 

Data are the mean± S.E.M. 
• p<O.lO 

a 

b 

c 

d 

e 

f 

g 

b 

i 

j 

k 

Cytochrome P-450 content 
(nmo//mg microsomal protein) 

0. 73 ± 0. 070 c.d.ij.k 

0.89 ± 0.135 

1.05 ± 0.112 a,!,g• 

1.06 ± 0.059 a,c.f.g,b 

0.86 ± 0.039 d.f*,i,i• 

0. 72 ± 0.053 c.d.e*.h*,ij.k 

0.76 ± 0.073 c•,d.i,j,k• 

0.83 ± 0.037 d.f*,i,i.k* 

1.01 ± 0.053 a.c.f,g.h 

1.05 ± 0.020 a,e.f.g.h 

1. 03 ± 0. 092 a.t:g* ,h• 

Superscripts corresponding with treatment letter designations represent a statistically 
significant difference in P-450 content between compared groups, using the student t­
test. All p<0.05 unless otherwise noted (•). 
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TABLE 4.6.F. Hepatic NADPH cytochrome c reductase specific activity in 
rats of varying endocrine status. See Table l.l.B. for individual treatment 
descriptions. 

intact female 

empty/21 

ATD/21 

ATDI2Jn 

ATD/35 

ATD/55 

ATD/55/1' 

ATD/70 

ATD/intact 

GROUP 
(n=4-7) 

adlllt castrate 

illtact male 

Data are the mean± S.E.M. 
• p<O.lO 

a 

b 

c: 

d 

e 

r 

g 

b 

j 

k 

Cytochrome c reductase specific 
activity 

(nmoVminlmg microsonud protein) 

44.1 ± 2. 4 2 c.d,e• ,f'* ,g.k 

58.8 ± 8.69 

59.8 ± 5.56 aj 

51.6±4.76c 

63.4 ± 12.92 

53.2 ± 2.46 a.cj 

Superscripts corresponding with treatment letter designations represent a statistically 
significant difference in specific activity between compared groups, using the student 
t-test. All p<0.05 unless otherwise noted (•). 
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TABLE 4.6.G. Hepatic aniline hydroxylase specific activity in rats of varying 
endocrine status. See Table 2.2.8. for individual treatment descriptions. 

mtpty/21 

ATD/21 

ATD/21/T 

ATD/35 

ATD/55 

ATD/55/T 

A.TD/70 

ATDiilltiJct 

intiJct male 

GltOUP 
(n = 4-7) 

Data are the mean± S.E.M. 
• p<O.lO 

• 

b 

c 

d 

e 

r 

I 

h 

i 

j 

k 

Aniline hydroxylase specific activity 
(nmo/;mirvmg microsomal protein) 

0.23 ± 0.052 b.t.d.cJ.g,b.ij.k 

0.67 ± 0.180 8 

0.89 ± 0.071 a,c,gj 

0.87 ± 0.094 a.c.g•j 

0.54 ± 0.056 &Ad.f.i.k 

0.76 ± 0.057 a.e,i• 

0.68 ± 0.054 a.c,d•,i•,k 

0.71 ±0.1008 

1.01 ± 0.158 a,c,g•j• 

0.91 ± 0.077 a,c,gj 

Superscripts corresponding with treatment letter designations represent a statistically 
significant difference in specific activity between compared groups, using the student 
t-test. All p<0.05 unless otherwise noted (•). 
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TABLE 4.6.H. Hepatic ?a-hydroxylase specific activity in rats of varying 
endocrine status. See Table 2.2.B. for individual treatment descriptions. 

empty/21 

ATD/11 

ATD/21/T 

ATD/35 

ATD/55 

ATD/55/T 

ATDi!O 

ATDillltact 

intllct lllllle 

GROUP 
(n = 4-7) 

Data are the mean± S.E.M. 

• 

b 

c: 

d 

e 

f 

h 

j 

k 

7a-bydroxylase specific activity 
(nmol/minlmg microsomal protein) 

1.06 ± 0.169 b.c.d (g hi k 

0.56 ± 0.069 a.c.i.k 

0.28 ± 0.064 a.b.f,.hj 

0.47 ± 0.095 a 

0.68 ±0.172 

0.62 ± 0.034 a.c.g,h,ij,k 

0.36 ± 0.062 a.fj 

0.44 ± 0.046 a.c.f,ij 

0.19 ± 0.041 a.b.f.h,j 

0.81 ± 0.011 cJ:g.b.i.k 

0.26 ± 0.073 a.b.fj 

Superscripts corresponding with treatment letter designations represent a statistically 
significant difference in specific activity between compared groups, using the student 
t-test. All p<O.OS. 
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5.0. DISCUSSION 

5.1. Our characterization of sex-spet=ific P-450s JAl and 2Cll 
(sa differences., neolllltlll defemilfization, and mascuUifizadon) 

S.l.l. Sex differences: Our results demonstrated the expected sex differences 

(males> females) in 2C11 and 3A2 specific activity. We report a (5·fold) difference 

between males and females in EMDM metabolism. This is consistent with data from 

Finnen and Hassall (1980). Shimada eta/. (1987), and Virgo (1991). We also report 

a (4.7-fold) sex difference in 6J3·hydroxylase activity, consistent with Waxman eta/. 

(1985), Waxman eta/. (1988), and Shimada eta/. (1987). Our (6.7-fold) difference 

in 16a-bydroxylase activity is consistent with Shimada eta/. (1987), Waxman eta/. 

(1989), and Waxman eta/. (1985), and our (6.9-fold) sex difference in 2a-

hydroxylase activity, corresponds with both Shimada eta/. (1987), and Waxman eta/. 

( 1988). Our 7a-hydroxylase activity sex differences (females express 4-fold greater 

activity), is consistent with data from Shimada et a/. ( 1987). 

Past literature does not demonstrate a conclusive sex difference in the adult 

specific activity of aniline hydroxylase (MacLeod eta/., 1972; Shimada eta/., 1987), 

however our data indicated a clear sex difference, males exhibiting a 4-fold higher 

enzyme activity. These results are in accordance with those from Y amazoe et a/. 

(1989) who also reported a significant sex difference in 2E1 mRNA levels (males> 

females). We also demonstrated significant sex differences in total P-450 content 
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(females are 75% of male levels). confirmed by MacLeod et a/. ( 1972 ). as well as 

total cytochrome c reductase activity (females are 83% of male levels). in accordance 

with Virgo (1985). 

5.1.2. Neonatal defeminization: Neonatal defeminization can be 

characterized in animals of three different endocrine status': (a) the prepubertal 

castrate, (b) the adult castrate, and (c) the neonatal castrate (with neonatal androgen 

treatment). We demonstrated neonatal defeminization in our empty/2/ (prepubertal 

castrate). and also in our adult castrate. Intact adult males are not an accurate 

representation of neonatal defeminization, as these males have been exposed to 

testosterone both peripubertally as well as in adulthood. 

EMDM: We suggest that neonatal defeminization is represented 

as a significant 1.~fold increase in specific activity, over that of the intact adult 

female. Statistical significance was only apparent in the male castrated in adulthood 

when compared with the female (the standard error was relatively large in our other 

group which represented neonatal defeminization, the empty/2/). Our data is 

supported by those of a number of laboratories, as the following literature indicates 

that neonatal defeminization may be characterized as an increase in EMDM specific 

activity. over that of either the neonatally castrated male or the intact female. 

Castration after the .. critical neonatal period" has been shown to result in either no 

increase (Chung eta/., 1975), or in 1.3- and 2.2-fold increases in EMDM specific 

activity (Finnen and Hassall, 1980; Virgo, 1991), over that ofthe neonatally castrated 
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male (non-defeminized). Exogenous testosterone administration to the neonatally 

castrated male resulted in the same variation, either a 2-fold increase (Shimada eta/., 

1987; Virgo, 1991), or none at all (Chung eta/., 1975). 

By definition, the intact female has been deemed the "standard", representing 

the absence of neonatal defeminization. Whether or not the female can be 

unequivocally used as a marker for the presence or absence of neonatal 

defeminization ofa..IDM, bas not been conclusively determined, although our data 

indicate that it can (ATD/21 =intact female). Shimada eta/. (1987) and Virgo (1991) 

demonstrated that the EMDM activity in the non-defeminized male, is not different 

from that of the intact female, whereas the non-defeminized male has also been 

shown to exhibit EMDM specific activities greater than that of the female (Finnen 

and Hassan, 1980; Chung et a/., 1975). The latter suggests that there may be other 

factors, aside from those arising from the testes, which may be involved in the 

neonatal defeminization process. 

6/J..hyd.roxvlllSe: We demonstrate neonatal defeminization of 6P-

hydroxylase as an increase in specific activity to a level slightly, but not significantly, 

greater than that of the female. A significant difference was noted between the 

defeminized and non-defeminized male, upon comparing the adult castrate with the 

ATDI2/. When compared with the ATD/2 1, which also was not defeminized, the 

activity in the neonatally defeminized adult castrate was significantly greater. 

We support the concept that neonatal defeminization of6l3-hydroxylase, is 

most likely shown as an increase in specific activity over that of the non-defeminized 
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male. In other laboratories, neonatal defeminization (either endogenous or 

exogenous) resulted in 6J.l-hydroxylase activity up to 13-fold greater than the non­

defeminized male (Waxman eta/., 1985; Shimada eta/., 1987; Waxman eta/., 

1988). As the non-defeminized male, the ATD/2/ in our case, demonstrated a 

specific activity not greater than that of the intact female (Shimada eta/. 1987; our 

data), it is likely that the female can also be used as a representative marker for the 

absence of neonatal defeminization in the male. 

16a-hydroxvlfiSI!: We report neonatal defeminiz.ation of l6a-

hydroxylase, as a significant increase in specific activity to levels 3-fold greater than 

the intact fomale. Other laboratories reported neonatal defeminization as an increase 

in specific activity to levels up to 5-fold greater than the non-defeminized male 

(Shimada eta/., 1987; Waxman eta/., 1989). It was also suggested that the specific 

activity of 16a-hydroxylase in the non-defeminized male is not different from the 

intact female (Shimada et a/., 1987), confirming our data, and also indicating that the 

female represents a non-defeminized male. 

2c.hydraxylase: We report neonatal defeminization of2a.-

hydroxylase as an increase in specific activity to levels 4-fold greater than those of 

the intact female. Other laboratories reported neonatal defeminization as an increase 

in specific activity to levels up to 8-fold greater than the non-defeminized male 

(Waxman eta/., 1985; Wa."mlan eta/., 1988; Shimada eta/., 1987), and suggest that 

the non-defeminized male is equivalent to the intact female (Shimada et a/., 1987). 
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This confirms our data, and also indicates that the female can be used as a marker 

indicating the absence of neonatal defeminization. 

5.1.3. Prevention of neonatal defeminization: If neonatal defeminization is 

characterized as an increase in basal enzyme activity to levels greater than that of the 

female, then we demonstrated that neonatal A TD administration is effective in 

preventing this defeminization process. 

EMDM: Researchers indicate that neonatal castration effects an 

adult activity of EMDM either equivalent to that of the intact female (Shimada et al .• 

1987; Virgo, 1991), or slightly greater than that of the intact female (Chung eta/., 

1975; Finnen and Hassan, 1980). Neonatal ATD treatment resulted in E:MDM 

specific activity that was not different than that of the female, suggesting that 

neonatal defeminization had been prevented. Two additional lines of reasoning 

which indicate that defeminization had been blocked, are (a) adult testosterone 

administration to the ATDI2/ did not restore adult activity, as Chung eta/. ( 1975) 

suggested that it should, in the defeminized male (also restoring Km and V ftW(. levels; 

Chung, 1977), and (b) neonatal A TD administration has been shown to prevent both 

the neonatal defeminization of sexual and behavioural characteristics (Morali et a/., 

1977~ Bakker et al .• 1995; Swaab et a/., 1995), and neonatal defeminization of 

EMDM (Reyes and Virgo, 1988). 

6IJ..Imlroxylllse: Our data show that AID administration 

prevented any increase in basal enzyme expression over that of the female. 6[3-
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hydroxylation in the non-defeminized male (also castrated on day 21 ), was 

significantly less than the neonatally defeminized adult castrate, also indicating that 

defeminization had been prevented. 

16a-hydraxvlase and 2a-hydroxylase: Neonatal defeminization 

of both reactions, was conclusively prevented by A TD administration. 

Defeminization was seen as an increase in 16a- and 2a-hydroxylase specific 

activities over those of the intact female and we demonstrated that neonatal A TD 

administration prevented such an increase, and thus prevented defeminization. These 

data were further supported by the observation that the specific activities exhibited by 

the A TD/21 (non-defeminized, castrated on day 21 ), were significantly less than those 

of the neonatally defeminized adult castrate. 

5.1.4. Neonatal A TD administration: We demonstrated the 

effectiveness of AID delivery in Silasticna tubing, consistent with data from Swaab et 

a/. (1995), and Vreeburg eta/. (1977). 

From our da~ we also conclude that the time-frame for administration of 

A TO (day 0 - day 21 ). was sufficient to prevent neonatal defeminization of these 

isozymes. As our animals were not castrated, the amount of time that the A TO 

capsule remained in situ was of importance, as Davis et a/. ( 1995) suggested that the 

critical period for the removal of endogenous gonadal steroids on the resultant sexual 

differentiation of the SDN-POA, did not match that for the administration of 

exogenous gonadal steroids. We kept the AID capsule in situ for 21 days, and 
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demonstrated that the 2Ct 1 and 3A2 empty/21 activity (castration at 21 days) 

equaled that of the adult castrate (castration at 70 days). Thus, it is reasonable to 

assume that the critical period for removal of endogenous steroids is enveloped in 

days 0-21. as keeping the testes intact for an additional 49 days did not result in any 

further increase in basal enzyme activity. 

5.1.5. Masculinization in the neonatally defeminized male: We report that the 

reversible masculinization process, accounts for 31% of EMDM intact male activity, 

and 46% of 613-hydroxylase activity [ 100 - (adult castrate + intact male x 1 00)]. 

Adult castration has been shown to decrease EMDM specific activity by up to 54%, 

the effects being completely reversible upon exogenous testosterone administration 

(Kramer eta/., 1979). 

We also report that the reversible masculinization process, accounts for 40% 

of2a-hydroxylase, and 51% of t6a-hydroxylase activities. Adult castration has been 

shown to significantly decrease 2Cll mRNA (16a-hydroxylase) levels (Janeczko et 

a/., 1990), the effect being completely reversed upon exogenous testosterone 

administration (Janeczko eta/., 1990), suggesting that testosterone effects reversible 

masculinizatinon. 

The mechanism by which testosterone produces this reversible response, may 

be mediated by the effects of sex hormones on the pattern of growth hormone 

secretion (section 1.4.3.). Sex hormones have been shown to directly regulate GH 

patterns, as both adult castration or estradiol treatment of the intact male, can 
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partially feminize the GH secretion pattern by increasing it's trough levels (Mode et 

a/., 1982; Carlsson et a/., 1987). The effects of castration can be reversed upon 

testosterone therapy (Mode et a/., 1982 ). Thus, the increase in trough levels 

produced by castration, could partially feminize the GH secretory pattern, and 

because low trough levels are necessary for 2Cl1 expression (Waxman eta/., 1991 ), 

2C 11 expression would subsequently decrease. 

The change in 2C11 expression may be related to the dose (i.e. mean plasma 

concentration) ofGH, as Wells eta/. (1994) found that 2Cll expression (mRNA) in 

the male rat, was modified by GH in a dose-dependent manner. In other wo~ as the 

dose ofGH increased, the amount of2Cll mRNA decreased. It is possible, then, 

that sex hormone modification of the GH secretory profile (increasing baseline 

levels), may be correlated with the ultimate expression of2Cll (i.e. very low trough 

levels cause full expression, whereas increasing trough levels cause decreasing 2C11 

expression). This is supported by Waxman eta/. (! 988), who found that exogenous 

GH therapy at a lower dose (intermittently injected), was more effective than the 

higher dose, at reversing the hypophysectomy-induced increase and decrease, in 6P­

and 2a-hydroxylase activity respectively. 

A similar dose-dependence mechanism acting on EMDM, was found in the 

Kramer et a/. ( 1978) study. They found that, in the castrated male, increasing the 

dosage of exogenous estradiol, caused a concomitant decrease in ethylmorphine 

metabolism. They also found that the increasing doses of estradiol decreased the 

activity of cytochrome c reductase. Estradiol administration, coupled with 
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continuous GH infusio~ did notfiuther decrease EMDM activity, suggesting that the 

two hormones act through the same mechanism to effect the decrease in activity. 

This indicates that estradiol is probably mediating its actions via modulation of the 

GH secretion pattern. 

5.1.6. Adult responsiveness iD the absence of neonatal defeminization: In 

the absence of neonatal defeminization (ATD/21), we report that all four reactions 

(two isozymes) are somewhat responsive to testosterone administration in adulthood 

(A TD/2/.IT). Virgo ( 1991) demonstrated that in the non-defeminized male (neonatal 

castrate), adult administration of testosterone had no effect (increase) on the velocity 

ofEMDM. In other words. the ability of testosterone to increase the EMDM Vmax. is 

absent in non-defeminized males. We demonstrated that in the non-defeminized 

male the specific activity ofEMDM increased 2.8-fold, when administered 

testosterone in adulthood, but did not reach 100% adult male activities. The 

testosterone hydroxylases, on the other hand, responded completely to adult 

testosterone administration, reaching foil male intact levels. In other words, the V max 

of each system could be regulated either directly or indirectly (perhaps through 

modulation of the growth hormone pattern) by testosterone. in the absence of 

defemin;zation. We will subsequently refer to this unique response in the absence of 

defeminizatio~ as maleness. 

The observation that 2Cll and 3A2 responded similarly to testosterone 

administration (i.e. by an increase in activity), supports the concept that testosterone 
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modulates these isozymes through the same mechanism (perhaps through the GH 

pattern). On the other hand, the observation that the EMDM responded incompletely 

(not to 100% intact male activity) to testosterone treatment, may indicate that 3A2 is 

not solely regulated by sex-steroid modulation of the GH secretory pattern. Further 

research in this area would be of great interest, for we can only speculate, as we did 

not monitor growth hormone levels during our study. 

Chung ( 1977) demonstrated that in the absence of neonatal defeminization the 

EMDM enzyme exhibits a slight (2-fold) increase in EMDM V ma.v. when stimulated 

by testosterone in adulthood. Perhaps our EMDM demonstrated this characteristic. 

The 2a- and 16a-hydroxylases are dependent on the very low trough levels of the 

male GH secretory pattern for full expression in adulthood (Waxman et al., 1991 ~ 

Legraverend et al., 1992b). Moreover, Jansson and Frohman (1987) demonstrated 

that in the absence of neonatal defeminization adult testosterone therapy could fully 

masculinize the GH secretory pattern (restoring low trough levels). Therefore, the 

ability of2Cll (2a- and 16a-hydroxylases) activity to be completely masculinized by 

adult testosterone administered in the absence of neonatal defeminization, could 

possibly be due to the complete restoration of the GH secretory profile. 

5.1.7. Summarv: Defeminized P-450 enzyme characteristics can be 

characterized as an increase in basal enzyme activity to values greater than those of 

the non-defeminized male (or intact female). Our results indicate that neonatal 

defeminization of all four reactions (two isozymes), is characterized as a permanent 
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increase in basal enzyme activity, to levels greater than either the non-defeminized 

male, or the intact female. Neonatal A TO administration was effective in preventing 

this characteristic defeminization of2Cll and 3A2. Defeminization may or may not 

be associated with a responsiveness (increase in activity) to adult testosterone 

administration (i.e. masculinization). Our results suggest that neonatal 

defeminization is not a necessary prerequisite for adult responsiveness (i.e. the ability 

of testosterone to increase the specific activity) ofEfviD~ nor 6J3-, 2a-, and 16a­

hydroxylases, as all enzymes were responsive to testosterone in adulthood, in the 

absence of defeminization (referred to as maleness). This suggests that androgen 

responsiveness is either (a) not neonatally imprinted by estrogens (i.e. may be 

imprinted by other testicular secretions which were not blocked by AID), or (b) not a 

neonatally imprinted characteristic of 3A2 or 2C 11. This indicates that not only are 

neonatal defeminization and adult masculinization not directly related, but they are 

also not imprinted/regulated by the same mechanism. 

Adult testosterone treatment in the non-defeminized male, was effective at 

restoring full intact male testosterone hydroxylase velocities, however this hormone 

was not sufficient to fully restore adult male activities ofEMDM. These data suggest 

that another hormone (possibly estrogens) may effect the defeminization of an ability 

ofEMDM to reach intact male levels following testosterone administration (as 

blocking neonatal estrogen production prevented the testosterone-stimulated 

velocity). It is likely that estrogens are responsible for defeminizing the V max of 

EMDM, as Reyes and Virgo (1988) demonstrated the ability of(a) an estrogen 
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receptor blocker, and/or (b) an aromatase inhibitor (A TD). to prevent the neonatal 

defeminization of a fully masculine EMDM V max· They also demonstrated that 

blocking the androgen receptor, dwing the neonatal critical period, did not prevent 

the imprinting of a male V ma.x· This corresponds with the theory of estrogen-

mediated defeminization of the rat brain (section 1.3.). 

5.2. Peripubertal imprinting in the absence 
of neonatal defeminization 

Previous workers have concluded that neonatal defeminization is a necessary 

prerequisite for the adult masculinization (i.e. responsiveness to testosterone) of sex-

specific P-450s, (Chung eta/., 1975, Virgo, 1991). Our results suggest that this is not 

a correct conclusion. We demonstrated that, in the absence of neonatal 

defeminizatio~ 3A2 and 2Cll were responsive to testosterone in adulthood 

(maleness). We also demonstrated that maximum intact male activities were 

obtainable following testosterone administration in adulthood, for the 6(3-, 2a-, and 

16a-hydroxylase enzymes, but not for the EMDM. The differences seen in ElviDM 

and 6(3-hydroxylase responses to hormone manipulation may be due to the additional 

isozymes responsible for the 6(3-hydroxylation of testosterone (section 1.1.). These 

isozymes may not be responsive to hormonal manipulation (i.e. not defeminized 

and/or regulated in the same manner as 3A2), and neonatal A TD administration may 

not have altered their adult activities. 
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More importantly however, in the absence of neonatal defeminization, we 

demonstrated that peripubertal testicular secretions are (a) sufficient to completely 

defeminize and masculinize (i.e. to intact male activities) 2Cll and 3A2, and (b) 

effective at imprinting (i.e. defeminizing) basal EMDM, 6~-hydroxylase, 2a­

hydroxylase, and 16a-hydroxylase activities, to levels significantly greater than that 

of the female. Our data confinn, and add to, those from Dannan et a/. ( 1986), 

Shimada eta/. ( 1987), Waxman eta/. ( 1989), Virgo ( 1991 ), and Bandiera and 

Dworschak ( 1992), who found that peripubertal administration of testosterone to the 

non-defeminized male, resulted in a complete "masculinization" ofEMDM, 6~-. 2a-, 

and 16a-hydroxylase specific activities. 

5.2.1. Our characterization of oeripubertal "ma~ulinization": Certain 

methods carried out in this study, were designed to assi~ in characterization of this 

peripubertal masculinization phenomenon. In other words, to define specific 

components of this event, and possibly give insight into the mechanisms involved. 

We describe two major characteristics ofperipubertally ··masculinized" enzymes, 

being a reversible component (masculinization), and a permanent component 

(peri pubertal defeminization ). 

Pet'1111111ent COifiDOIIenl: Data obtained in this study indicated that our 

leaving the testes intact, revealed a permanent component of the peripubertal 

.. masculinization" phenomenon. This is apparent as a permanent increase in basal 

enzyme activity. to activities significantly greater than those of the non-defeminized 
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(A TD/2 1) male and/or intact female. We will henceforth refer to this permanent 

increase in basal specific activity, as peripubertal defeminization. We 

demonstrated peripubertal defeminization ofEMDM activity, and also of6J3-, 2a-, 

and 16a-hydroxylase activity (i.e. 3A2 and 2C11 ). 

Virgo et a/. ( 1991) demonstrated that removal of the peri pubertal testosterone 

treatment in the non-defeminized male, completely reversed the effects of the 

peripubertally (35-71) administered testosterone, on EMDM metabolism (i.e. lack of 

defeminization., only masculinization). We demonstrated that removal of the testes 

on either day 55 or day 70, did not completely reverse the peripubertal 

masculinization of EMDM metabolism, and suggest that other testicular factors 

present in the intact animal ( vs. exogenously administered testosterone), may be 

responsible for the peri pubertal defeminization of basal enzyme activity. This may 

indicate that there was either (a) a significant difference in peripubertal 

defeminization of the intact male vs. the exogenous peripubertal defeminization of 

the castrate, or (b) our method ofblocking neonatal defeminization (ATD) somehow 

allowed (i.e. was a necessary prerequisite for) peripubertal defeminization to occur. 

We also demonstrated a pennanent increase (defeminization) ofbasal2a-, 

l6a-, and 613-hydroxylase activities, if the testes were removed on day 55, but 

interestingly demonstrated a reversal of the peripubertal defeminization in males 

castrated on day 70. It is interesting that only the testosterone hydroxylases 

demonstrated this increase in basal enzyme activity, when castration occurred on day 

55. The data from our study which indicated that castration of the non-defeminized 
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male on day 55, also resulted in a significant increase (femini7lltion) in ?a­

hydroxylase activity (greater than that of the day 70 castrate), introduces the concept 

that some factor may be directly regulating P-450 enzyme levels at this particular 

time, either in addition to, or instead of the "nonnaln (i.e. GH-mediated) regulatory 

mechanisms. This suggests that (a) this peripubertal imprinting process may be a 

dynamic process that changes in relation to circulating testicular hormone at any 

given time (and is reflected in correlating basal enzyme activities), (b) some other 

mechanism engaged by the testicular secretions from day 55-70, essentially overrides, 

or reverses, this peripubertal defeminization process, or (c) this increase at day 55 is a 

hormonal "overshoot" phenomenon, characteristic of negative feedback systems. 

Reversible C011UJ0nent: In the A TO-treated and pubertally defeminized 

animals, we found that the degree of responsiveness of EMDM, and the 2a- and l6a­

hydroxylases, to testosterone in adulthood, appeared to remain constant regardless of 

the age at castration. As noted earlier (section 5.1.6.), because our non-neonatally 

defeminized animal responded to testosterone in adulthood (ATD12 / /1), it is difficult 

to determine whether this responsiveness was triggered by the peripubertal 

mechanism, or whether the response simply reflects a non-defeminized characteristic 

of these enzymes (i.e. pharmacological levels oftestosterone in the non-defeminized 

male resulted in "maleness"). Our results indicate that exogenous testosterone 

administration cannot distinguish maleness ( defemini:mtion-independent) from 

masculinization (defeminization-dependent), as theATDI21/T(non-defeminized plus 

maless) was equivalent to the A1V1551T(peripubertally defeminized plus 
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masculinized). It appears however, that masculinization is greater (i.e. results in a 

higher specific activity) than maleness, as the EMDM specific activity of the intact 

male (defeminized and masculinized), was significantly larger than in the non­

defeminized but testosterone-treated male (ATD·21 T). 

The indication that the same pharmacological dose of testosterone effected 

the same magnitude of increase in specific activity (ATD;2J ·T vs. ATDl55/n in the 

2a-, and 16a-hydroxylases, may be indicative of the effects of testosterone on the GH 

pattern, and subsequent modulation of2C11 activity. For example, castration of 

these animals (on either day 21 or 55) may have increased GH trough levels (Mode et 

a/., 1982}, and subsequently decreased the activity of these isozymes. Testosterone 

therapy possibly restored the low GH trough levels (Mode eta/., 1982), and in so 

doing, may have effected an increase in 2C11 activity (Waxman eta/., 1991). It 

would have been interesting to see if there was a lesser increase in 2C 11 activity, 

following a smaller dose of testosterone, as Wells et a/. ( 1994) suggested a dose­

dependent relationship between GH and 2Cl1 . 

5.2.2. "Masculinization" vs. "Maleness": Up to this point, we have 

descnOed three characteristics of sex-specific P-450s 2C11 and 3A2: defominization, 

masculinization, and maleness. Defeminization is characterized as a permanent 

increase in basal enzyme activity (over that of the female), masculinization is 

characterized as a response (increase) to testosterone (dependent on defeminization}. 

and maleness refers to a response (increase) to testosterone in the absence of 
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defeminization.. Our data could not distinguish between maleness and 

masculinization of2Cll and 6£3-hydroxylase, as full male activities were reached in 

both the absence of neonatal defeminintion as well as in the presence of peri pubertal 

defeminization. 

We did however, observe a possible difference between maleness and 

masculinization ofEMDM We found that the resultant activity following 

peri pubertal masculinization (which by definition must follow peri pubertal 

defeminization), was greater than the activity following testosterone-stimulated 

maleness (in the non-defeminized male). Based on this observation, we suggest that 

Virgo ( 1991) demonstrated an apparent masculinization of EMDM specific activity 

following peripubertal testosterone treatment in the non-defeminized male, as the 

non-defeminized male did not demonstrate maleness. This laboratory however, 

failed to demonstrate a peripubertal defeminization ofEMDM, as the basal activity 

did not permanently increase following peripubertal testosterone treatment (but 

increased as a result of neonatal testosterone treatment). No evidence ofperipubertal 

defeminization preceding masculinization has been demonstrated, with the exception 

of our data and those from Bandiera and Dworschak ( 1992). They found that 

peripubertal testosterone treatment (day 35-49) significantly increased 2Cll protein 

levels, over those of the exogenously neonatally defeminized male. The main reason 

why peri pubertal defeminization has not been demonstrated in other laboratories, is 

most likely due to experimental design. Only our laboratory, Virgo (1991), and 

Bandiera and Dworscbak ( 1992), removed the hormonal influence prior to animal 
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sacrifice. Thus. it is difficult to determine whether peripubertal defeminization 

occurred prior to masculinization in the other laboratories~ as masculinization 

effectively "covers up,., defeminization., and can only be demonstrated upon removal 

of testosterone influence. In addition, there may also exist a confounding effect due 

to "maleness". Although masculinization implies defeminization, and defeminization 

has not been conclusively demonstrated (with the exception of our laboratory)~ we 

will refer to their peripubertal phenomenon as peripubertal masculinization, for 

discussion purposes. 

5.2.3 ... Their" characterization of oerioubertal masculinization: The 

complete peri pubertal masculinization of 2C 11 and 3A2, has been demonstrated in a 

number of laboratories, and has also been demonstrated in female as well as male rats 

(Dannan eta/.~ 1986; Shimada eta/., 1987; Waxman eta/.~ 1989; Virgo~ 1991; 

Bandiera and Dworschak. 1992; Cadario eta/., 1992; Chang et al.~ 1996; Chang 

and BellwarcL 1996 ). For comparative purposes, the characterization of the 

peri pubertal masculinization of these enzymes from other laboratories, will be related 

to the data from this study. Data from the research on the female rat (Cadario et a/., 

1992; Chang and Bell war~ 1996; Chang eta/., 1996) will be considere~ for 

discussion purposes. As well, the information gathered from the peripubertal 

defeminization of (a) other male-specific enzymes (Chung eta/.~ 1975; Pak et al., 

1984; Pak eta/., 1985; Imamura eta/., 1994) will be considered. 
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Dannan et al. (1986) reported a complete masculinization of 16a-hydroxylase 

(and corresponding 2Cll levels), and 6(3-hydroxylase activity (and corresponding 

3A2 levels), in the non-defeminized male rat. The masculinization of the testosterone 

hydroxylases corresponded with the masculinization of their respective P-450 levels, 

which indicates that the peripubertal masculinization did not modify just one aspect 

(i.e. cofactor availability) of individual hydroxylase activity. Instead, it implies an 

increase in enzyme level. 

Bandiera and Dworschak ( 1992), found that, as a percentage of total P-450, 

peripubertal (day 56-70) testosterone treaf:ment of the non-defeminized male, effected 

a complete (relative to the exogenously defeminized/masculinized) masculinization 

of2Cll levels. The administration of testosterone from day 35-49, to the 

exogenously neonatally defeminized male, and subsequent examination on day 70, 

revealed a permanent increase in 2Cll levels. Although the animal was defeminized, 

there was a significant increase over that of the defeminized male, following 

administration (and subsequent removal) of testosterone, during this time-frame. 

This observation may support our data indicating a permanent imprinting of an 

increase in basal 2C 11 activity. The data indicating that the same peri pubertal 

testosterone treannent of the neonatally castrated male failed to evoke a significant 

increase in basal enzyme levels. may support our claim that the presence of neonatal 

androgens (not estrogens), are a necessary prerequisite to effect peri pubertal 

defeminization (i.e. our method of blocking estrogen, but not androgen, production 

allows for this peripubertal imprinting, whereas neonatal castration does not). 
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Shimada et a/. (I 987), found that I 6a- and 2a-hydroxylase activities were 

almost completely restored in the non-neonatally-defeminized male, following 

testosterone administration from day 56-70. EMDM activity showed the same effect, 

although 6(3-hydroxylase did not show a complete masculinization. Waxman eta/. 

(1989), found that testosterone administration from day 35-70, to the non­

defeminized male, significantly increased 16a-hydroxylase activity, to 60% of intact 

male levels. 

5.2.4. Conclusions: We demonstrated peripubertal defeminization in males 

who bad neonatal defeminization blocked by A TD administration. Other laboratories 

demonstrated a peripubertal masculinization phenomenon in the non-neonatally­

defeminized (neonatally castrated) male (Dannan eta/., 1986~ Shimada eta/., 1987; 

Virgo, 1991; Bandiera and Dworschak, 1992). Until more data are presented which 

unequivocally reveal a pennanent component to the exogenous peripubertal 

masculinization phenomeno~ the differences seen in our study must be attributed to 

either (a) our method of inhibiting defeminization (A TD administration), or (b) our 

method of inducing peripubertal imprinting (intact testes). 

Proximllte peripubertal lfiiiSCilllnJwtipn steroid: All laboratories that 

demonstrated the peripubertal masculinization phenomenon, utilized testosterone 

propionate, administered either in a subcutaneous Silasticru capsule (Dannan et al., 

1986; Waxman eta/., 1989; Virgo, 1991), or via subcutaneous injection (Shimada et 

al., 1987; Bandiera and Dworschak, 1992). We relied on the presence of the testes 
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to effect peripubertal masculinizatio~ therefore it can be suggested that testosterone, 

is the proximate peripubertal masculinization steroid. On the other hand. the data 

indicating that the A TD!intact group= ATD.'55 T = intact males, may indicate that 

testosterone is the sole testicular factor involved in effecting masculinization and/or 

maleness, but cannot be concluded to be the proximate peri pubertal defeminization 

steroid. 

Bandiera and Dworschak (1992) found that although testosterone propionate 

administered to the non-defeminized male, during both neonatal and peri pubertal 

(day 35-49) time frames, could effect a significant increase in 2Cll protein levels, 

estrogen administered during the same time frames, did not evoke an increase. 

Dannan et a/. ( 1986), presented similar results, peri pubertal (35-70) testosterone 

administered to the non-defeminized male, effected a complete restoration of adult 

levels of2Cll and 3A2 protein (and their respective 16a- and 6l}-hydroxylations), 

but estrogen treatment during this same time frame did not evoke any increase. Thus, 

estrogen administered to the castrated male does not appear to effect peripubertal 

defeminizatio~ however, estrogen administration to the intact male appears to have 

different effects. Because we effected peri pubertal defeminization by using the intact 

testes, we must consider the possibility of hormonal interactions, which may affect 

the process of peri pubertal defeminization. 

Hormolflll interactions in the intact animtd: In the intact male, 

neonatal or pubertal administration of estrogens actually prevented the adult 

expression of2Cll levels (Bandiera and Dworschak., 1992). It is also interesting that 
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neonatal testosterone treatment, or both neonatal and pubertal testosterone treatment, 

given to the intact male, significantly decreased adult levels of 2C II (Bandiera and 

Dworsc~ 1992). These results may reflect the adult regulation of2C 11 by the 

masculine GH pattern. which can be regulated by estradiol (which increases baseline 

levels; Carlsson eta/., 1987), subsequently decreasing 2C11 activity. However, the 

question arises, if estrogen is the proximate neonatal imprinting hormone, why would 

estrogen administration to the inuu:t male prevent neonatal defeminization? 

Literature regarding peripubertal defeminization in the female rat, may assist 

in detennining the mechanism behind endogenous peripubertal defeminization, as 

data from these studies demonstrate (a) a permanent defeminization ofP-450s, and 

(b) a significant interaction between estrogens and androgens. For example, Pak et 

a/. (1984) and Pak eta/. (1985), showed that in the female, the cytochrome P-450-

dependent aryl hydrocarbon hydroxylase and 5-reductase, were not inducible by 

testosterone administration in adulthood. They found that when testosterone was 

administered during the peripubertal period (day 35-50), this resulted in a significant 

increase in testosterone sensitivity of these enzymes in adulthood. Interestingly, in 

the absence of ovary-derived estrogens (ovariectomy), the same treatment resulted in 

an even larger sensitivity (increase) to testosterone in adulthood. These results may 

indicate that during puberty, testosterone is capable of defeminizing the response of 

hepatic enzymes to subsequent testosterone exposure. 

The difference in responsiveness in the ovariectomized vs. intact females, 

may indicate that estrogens can interfere with (but not negate) this defeminization 
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process. Chang eta/. (1996) found that peripubertal testosterone administration (day 

35-49) to the intact female, did not increase basal activity of2c:x-hydroxylase, 

however combined peripubertal and adult (69-77) testosterone treatment resulted in a 

significant increase in enzyme activity (sensitization). Preventing the action of 

estrogen through the estrogen receptor (by prepubertal tamoxifen treatment). 

enhanced the sensitization of2a-hydroxylase to subsequent (adult) testosterone 

treatment, and also revealed a permanent defeminization (increase) ofbasal 2c:x­

hydroxylase activity. 

It is apparent from the above data obtained from the female, that estrogens 

may interfere with peripubertal defeminization of microsomal enzymes. The 

presence of estrogens limit the peri pubertal sensitization of these enzymes to 

subsequent testosterone treatment, and the complete absence of estrogens 

(ovariectomy) results in a greater sensitization (Pak eta/., 1984; Pak eta/., 1985). 

This phenomenon may also be true in the case of male-specific P-450s. 

Chang and Bellward (1996) reported that peripubertal testosterone treatment (day 35-

49) of the ovariectomized female rat, resulted in a significant increase in 2a­

hydroxylase activity (permanent), and subsequent testosterone exposure (day 81-89) 

completely masculinized activity of this enzyme. Cadario et a/. ( 1992) also found 

that pubertal testosterone treatment (day 35-49) sensitized 6~-hydroxylase activity, to 

subsequent adult testosterone treatment, in the ovariectomized female. Imamura et 

a/. ( 1994) found that, in the ovariectomized female rat, the male-specific 

acetohexamide reductase (not a P-450) could also be sensitized to subsequent (adult) 
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testosterone exposure, when treated with testosterone during puberty (5-6 weeks of 

age). 

5.3. Why puberty? 

5.3.1. Pbysiofogical significance: Perhaps it is possible that the massive increase 

in serum testosterone concentrations during puberty (Dobler and Wuttke, 1975), 

effects a significant increase in testosterone hydroxylase activities in order to protect 

the male from the excessive amounts of this hormone by increasing testosterone 

metabolism. In other words, neonatal and/or peripubertal defeminization(s) of 

testosterone hydroxylases are necessary to ensure higher rates of androgen (and 

possibly estrogen) elimination in the male, whether the testes are present or not. 

Adrenal gland derived testosterone increases significantly peripubertally in the 

absence of the testes, making testosterone metabolism necessary in the castrate as 

well as the intact male. 

Testosterone may directly influence P-450 activity, as Kato and Onoda (1970) 

demonstrated the ability of androgens to increase the capacity ofP-450s to interact 

with substrates, and that estrogens block this effect. Denefand DeMoor (1972) 

demonstrated that administration of an androgen receptor antagonist (cyproterone 

acetate) from birth until day 6, counteracted the masculinization of cortisol 

metabolism by exogenous testosterone administration. Therefore, it seems 

reasonable to consider a direct influence of testosterone on P-450, especially during a 
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time-frame (puberty) in which adult regulatory mechanisms (i.e. growth hormone 

secretory patterns) are only emerging (Eden, 1979). 

Regardless of why this phenomenon occurs, (which we cannot answer from 

this study), what is the significance of the peripubertal period? It appears that the 

normal development of the hormone receptor relies heavily on the (a) availability of 

the proper hormone, (b) the proper time-frame for imprinting. If peri pubertal 

defeminization is dependent on a hormone/receptor interaction, perhaps there are 

only two time-frames in which receptors are available to be permanently 

defeminized: the neonatal time-frame, and the peripubertal time-frame. 

5.3.2. Similarities between the aeonatal and peripubertal time-frames: Any 

attempt to explain why imprinting can occur during puberty, begins with an 

examination of the physiological state of the male rat, during this time-frame. 

Perhaps there is a repetition of a specljlc hormotllll environment, unique to the 

neonatal and pubertal time periods, which allows for the imprinting .. mechanism" to 

occur. This hypothesis is only plausible if the imprinting mechanism (i.e. estrogen 

through the estrogen receptor) is identical to that in the neonatal time-frame. 

Sex hormone levels: Male rats have high serum estradiol 

concentrations from day 21 of gestation, to approximately postnatal day 1 (Rhoda et 

al., 1984), and there appears to be a transient increase in serum estradiol 

concentration between day 9-23, after which time, levels drop significantly (Dobler 

and Wuttke, 1975). Estrogen receptors are abundant in a number of areas of the 
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brai~ appearing on day 19 of gestation (Pasterkamp et al., 1996), correlating with the 

high serum estradiol concentrations. Serum estradiol concentrations during puberty 

are very low (Dobler and Wuttke, 1975). 

Serum testosterone levels, on the other hand, are as high in the first 19 days of 

life as those of the adult, however the levels obtained during puberty are much greater 

than during either time-frame (neonatal or adult), rising from day 35, and peaking 

around day 50-55 (Dobler and Wuttke, 1975). There also is a reported 

testosterone/estradiol "surge'' during the first 2 hours oflife in the male rat (Rhoda et 

ai., 1984 ). Serum and hypothalamic DHT levels are undetectable in the neonate 

(Rhoda et a/., 1984), however, pituitary DHT formation was actually higher in the 

neonate, than in the adult (Denef et a/., 1974 ). Serum DHT has been shown to peak 

in the male around day 56 (Corpechot eta/., 1981). 

Although the neonatal and peripubertal endocrinology is not the same, 

perhaps the high levels ofDHf, coupled with the low levels of estradiol (opposite to 

that of the neonate), induce brain aromatase activity during puberty (i.e. the 

mechanism of defeminization is the same). These two hormones can synergistically 

induce aromatase activity (Roselli, 1991 ), and could possibly increase the local 

conversion of testosterone to estradiol. Theoretically, this combination of events 

could effect defeminization, providing peripubertal defeminization involves a similar 

mechanism to neonatal defeminization. 

It is apparent that although neonatal defeminization of ElviDM involves a 

significant increase in uninduced enzyme activity, peripubertal masculinization 
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effects a significantly larger 2.4-fold increase in specific activity. This suggests that 

either (a) neonatal defeminization and peripubertal defeminization are brought about 

by different mechanisms, or (b) the same mechanism evokes a slightly different 

response in terms of uninduced specific activity. The hydroxylations of testosterone 

show slightly different profiles, as leaving the testes in situ until day 70, resulted in 

basal activities of all three isozymes, that were significantly less than those of the day 

55 castrates. This 'trend' seems to support the concept that the peri pubertal 

defeminization process is very dynamic throughout day 35-70, i.e. the response of the 

en..j'lne system to a constant stimulus varies throughout puberty. 

5.3.3. The dynamics of puberty: Specific hormonal treatments may have 

differing effects, depending on the time-frame during which they are administer~ 

in other words, there may exist two windows of opportunity for sex hormones to be 

exposed to the pertinent target tissues, and ultimately exert their defeminizing effects. 

One window in the neonatal time-frame, and one in the peripubertal time-frame. 

Even if the imprinting mechanism does not involve the defeminization of specific 

brain characteristics, the following characteristics of the pubertal time-frame serve to 

explain the unique aspects of this period, which may render another imprinting 

mechanism available. 

Sensidvlty from birth through puberty: The sensitivity of the 

hypothalamo-pituitary axis, during different time-frames in the life of a rat, has been 

thoroughly investigated. It has been demonstrated that the administration of 
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morphine and/or its antagonist (naloxone). have differing effects on serum LH and 

prolactin levels in prepubertal males, depending on the age of the animal (Ieiri et a/., 

1979). Studies on the pituitary regulation of (insulin-like-growth-factor) IGF-I, IGF­

II. and IGF-binding protein by GHITSH, show that the juvenile rats required the intact 

pituitary for somatic growth, more so than the infant (Glasscock et al., 1991 }, 

suggesting that the infants may be more sensitive to available hormones. This is 

consistent with data from Bloch eta/. ( 1974 ), Ojeda and Ramirez ( 1973174 ), and 

Negro-Vilar et al. ( 1973b ), who suggest that the sensitivity of the hypothalamo­

pituitary-gonadal axis to sex hormone feedback, is greatest in the neonate, 

intermediate in the adult, and least in the pubertal rat This demonstrates how a 

similar hormonal treatment, may evoke different quantitative responses, depending 

on the time of hormone administration. 

5.4. Possible target sites 

5.4.1. The brain: An example of a tissue developing at different intervals within 

the pubertal time-frame, is the brain. Several regions are not permanently 

differentiated prior to puberty, and are still able to be manipulated by sex steroids 

during puberty. For example, the anteroventral periventricular nucleus (A VPv) 

volume develops between day 30-40, and the length becomes sexually differentiated 

between days 60-80 (Davis et a/., 1996). Bloch and Mills ( 1994) also demonstrated 

that the peripubertal testosterone treatment of the non-defeminized male, effectively 

defeminized the size of several sexually dimorphic components ofthe medial 
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preoptic area Peripubertal (day 15-30) testosterone treatment decreased the width of 

the periventricular preoptic area, and also decreased the volume of the anteroventral 

periventricular nucleus. 

Certain aspects of male rat reproductive behaviour and endocrinology, can 

also be defeminized peripubertally in the absence of neonatal defeminization. Bloch 

and Mills (1995) found that administration of testosterone from day 15-30, to the 

non-defeminized male, resulted in reduced lordosis and proceptive behaviours. 

increased mounting and intromission behaviours. and also reduced plasma LH and 

FSH surges (i.e. feminization). Primus and Kellogg (1990) also found that the 

pubertal secretion of androgens are necessary for the activation of environmental­

related social interaction. in the male rat. 

In certain areas of the brain~ estrogen receptor occupation (Yuan eta/., 1995), 

and content (Rainbow eta/., 1982)~ are decreased upon castration in adulthood. In 

addition, testosterone has been shown to down-regulate estrogen-receptor mRNA 

hybridization in specific regions of the male rat brain (Simerly and Young, 1991 ). and 

to restore luteinizing-hormone-releasing-hormone (LHRH) content in the medial 

basal hypothalamus (MBH) following a castration-induced decrease (Kalra and Kalra, 

1980). These results demonstrate that testosterone can still act on neural substrates 

well beyond the neonatal period to defeminize and masculinize endocrine and 

behavioural function in the male rat. Table 5.4.1. demonstrates the areas of the brain 

responsive to hormonal manipulation, their time-frame of development, as well as the 

suggested "critical period" for development. 
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Table 5.4.1. Suggested critical periods for neonatal defeminization of some 
sexually dimorphic brain areas. and respective permanence in adulthood. 

Area 

medial preoptic 
1111.cleus 
MPN (including SDN) 

preoptic area 
POAH 

ventromediiJI 1111.clt!IIS 
VMN 

arc~~ate 1111cleus 
.4RN 

SllprtlChiasmtltiC 

ru~cleus 

SCN 

medial amygdaloid 
ftiiCieas 
MAN 

periventriclllar 
IUlcleus 
PVN 

medial btlsal 
hypotlulltiiiiiiS 
MBB 

Critical period 

defeminized by day 2 
1 

synaptic density plateaus by 
3 

day 20-30 and volume 

imprinted by 14 4 

not clear 

completion of 
synaptogenesis is delayed to 

789 
the onset of puberty · • 

synapse density reaches 
12 

adult level before day 21 

synapse density reaches 
adult level before day 21

13 

volume (A VPv) develops 
14 

between day 30-91 

E and T receptor levels 
imprinted by day 7 5 

Note: For numbered references9 see Appendix D •. 

Plasticity 

adult castration does not 
affect size 2 

adult castration has no effect 

on T or E ~eceftor . 
4 

concentranon ors~ 

E in adulthood can increase 
the number of s 

6 

E can facilitate 
synaptogenesis 
peripubertally and in 
adulthood 10,11 

not clear 

not clear 

not clear 

adult castration fails to 
change E or T receptor 
levels 

5 
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5.4.2. The sensitive hormone receptor: Because receptors play a large role in the 

neonatal defeminization process (Reyes and Virgo, 1988), perhaps they also play a 

role in peripubertal defeminization. Csaba and Inczefi-Gonda (1992) suggest that in 

general, the quality of hormone receptors is genetically encode~ and the receptor 

number and affinity characteristics become established during maturation. A 

depletion or excess of adequate hormone or influence of inadequate hormone (which 

can bind to the receptor) leads to abnormal receptor development. This may help 

explain why neonatal testosterone administered to the intact male significantly 

decreased adult levels of2C11 (Bandiera and Dworschak, 1992). Perhaps the excess 

amount of testosterone damaged its own receptor, and subsequently prevented a 

nonnal feedback mechanism from occurring. 

Estrogen administered to the intact newborn male rat, has been shown to alter 

sexual development (delay both the increase in testosterone levels at puberty, and 

also the pubertal increase in the weight of the testes and seminal vesicles) (Brown­

Grant et a/., I 975). lt has also been shown to alter the developmental pattern of 

androgen receptor expressio~ in the rat prostate (Prins and Birch, 1995). Csaba and 

Inczefi-Gonda ( 1992) found that a single dose to 17~-estradiol or progesterone, 

within 24 hours after birth, led to a significant decrease in uterine estrogen-receptor 

binding capacity. Pap and Csaba (1995) found that a single perinatal allylestrenol 

treatment on its own, resulted in a doubling of serum testosterone concentration in 

adulthood, whereas allylestrenol in adulthood (beyond the critical period) had no 
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effect. Therefore, although the receptor may be present. the receptor affinity for the 

hormone, or the honnone feedback mechanism, may be permanently altered. 

In addition to data from Bandiera and Dworschak (1992) (above), exposure in 

utero, or within a few days of birth. to estrogenic or androgenic compounds bas been 

shown to result in alterations in hepatic metabolism in adult animals. Neonatal 

treatment with diethylstilbestrol (DES), resulted in decreased 3A2levels in adulthood 

(Zangar, 1993), and the weak estrogenic agent. clomiphene citrate, administered on 

day 3 of life to the male, resulted in a significant reduction in 16a-hydroxylase 

activity (active on dihydroepiandrosterone) in adulthood (Tabei and Heinrichs, 1976). 

5.4.3. The liver: As mentioned earlier, many unique physiological events occur 

during the peripubertal time-frame, which do not occur at any other time in the life of 

the rat. One such event is a massive growth spurt of various organs, including the 

liver (MacLeod eta/., 1972). Because these cells are dividing at such an enormous 

rate, and because the cell progeny are 'new' cells, perhaps these unimprinted new 

cells require a time-frame in which they, too, become imprinted with respect to 

specific hormones and receptors. Thus, the question arises, .. how are the newly 

formed cells imprinted to respond to adult regulatory mechanisms?". 

It has been demonstrated that during liver regeneration (i.e. liver growth), 

estrogen treatment had a long-lasting effect on the inducibility by phenobarbital of 

the hepatic microsomal system of the female, but not the male (Csaba eta/., 1987). 

They suggest that availability for imprinting depends on the developmental state of 
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the target cell. Therefore, perhaps the new liver cells are responsive to hormonal 

imprinting during this pubertal growth spurt It has also been demonstrated that 

androgens and low doses of estrogens affect three hepatic androgen-dependent 

microsomal enzyme activities (3a- and 313-hydroxysteroid dehydrogenase and Sa­

reductase) by acting at different levels of central regulation, whereas large doses of 

estrogens act directly on the liver via hepatic estrogen receptors (Lax et a/., 1983 ). 

S.S. Possible contributing factors 

5.5.1. P-450 protein levels: The following researchers demonstrated that the 

change in P-450 specific activity following hormonal manipulation, is not likely due 

to a change in P-450 content. Kramer et a/. ( 1979), demonstrated that adult 

castration did not have any effect on microsomal protein content or cytochrome P-

450 concentration, and Virgo ( 1985) showed that somatostatin or testosterone therapy 

to the adult castrate did not affect P-450 content. On the other hancL AI-Turk et a/. 

( 1981) presented data indicating that tamoxifen treannent (an estrogen receptor 

blocker), reduced plasma testosterone levels, and subsequently decreased microsomal 

P-450 content 

5.5.2. P-450 cofactor availability: The decrease in EMDM activity 

following adult castration (El Defrawy El Masry eta/., 1974 ), may be partially 

attributed to a slight decrease in cytochrome c reductase activity, indicating that if a 
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necessary cofactor in the P-450 enzyme system is pe~ this could affect the 

specific activity of that particular system. Virgo ( 1985 and 1991) also demonstrated 

that testosterone and/or somatostatin therapy can significantly increase cytochrome c 

reductase activity, and corresponding EMDM activity, in either the neonatal or adult 

castrate. Waxman eta/. (1989) also demonstrated that hypophysectomy reduced 

NADPH P-450 reductase activity by 63-77%, which they suggested to contribute to 

their observed changes in P-450 activity. It has been determined that cytochrome c 

reductase is the rate-limiting component in the P-450 system (Miwa et al., 1978), but 

it is unlikely that the significant changes in enzyme specific activities are strictly due 

to these slight changes in cofactor availability. Our work was performed in vitro, 

with constant concentrations of microsomal protein and NADPH. Therefore, any 

change in specific activity of the enzyme system cannot be attnbuted to changes in 

these parameters. We can only suggest increasing/decreasing amounts/activities of 

isozyme or of cytochrome c reductase. 

5.5.3. Other hormones: It is interesting that monosodium glutamate (MSG )-

treated neonatal males which had an almost complete loss of circulating GH in 

adulth~ had a significantly decreased 613-hyd.roxylase activity as adults (Waxman 

eta/., 1995). This suggests that there may be another pituitary-dependent hormone, 

which regulates this reaction. as complete removal of GH (by removing the pituitary 

gland), significantly increased 613-hydroxylase activity (Yamazoe eta/., 1986b; Kato 

et al., 1986). Waxman eta/. (1995) indicated that neonatal MSG treatment did not 
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result in a loss of IGF-1 (insulin-like growth factor), whereas Mathews et al. ( 1989) 

found that hypophysectomy significantly decreased IGF-I mRNA expression. Many 

effects of growth hormone may be indirectly mediated via this hormone (Zapf et a/.~ 

1984). 

It is possible that glucocorticoids play a role in regulation of 613-hydroxylase, 

as dexamethasone treatment of male hepatocytes (in vitro) increased activity of this 

isozyme, and GH reversed the stimulation (Vind et al., 1992). Wa."<lllan et al. ( 1990) 

found that a more complete suppression of 3A2 and 613-hydroxylase activity by GH in 

the hypophysectomized male, was effected when thyroxine (T 4) was concomitantly 

administered. In vitro studies also indicated that dexamethasone increased 2C11 

mRNA expression in hepatocytes (as well as in vivo), but concomitant 

dexamethasone and growth hormone exposure decreased 2Cl1 mRNA (Liddle eta/., 

1992). They suggest that 2Cll mRNA expression is under the primary GH 

regulation. The same study also demonstrated that L-triiodothyronine (T 3) exposure 

also decreased 2C11 mRNA expression to 46% of control. The growth hormone 

regulation of 1 513-hydroxylase~ has also been shown to be potentiated by concomitant 

administration ofT4 and cortisol in the female rat (Mode et al., 1989a). 

Because growth hormone plays such an important role in the regulation of 

2C 11 and 3A2, perhaps GH is also involved in the imprinting process, either 

neonatally~ or during puberty. Gabriel et a/. ( 1989) found that serum GH increased 

(8-fold) from day 25-45 in the rat, and again (5-fold) by day 90~ and Eden (1979) 

indicated that the sexual dimorphism in secretory pattern becomes apparent during 
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this period Somatostatin content in the hypothalamus has also been shown to 

increase significantly from day 25~95, and between day 25-35 in the median 

eminence (Gabriel et al .• 1989). 

Hepatic GH receptor mRNA (Mathews et a/., 1989) and hepatic GH binding 

(Maes eta/., 1983), are minimally expressed at birth, and rise to adult levels by day 

35-40 (peripubertally). Tiong and Herington ( 1992) report that no measurable GH 

binding activity occurred before day 20. Mathews et al. ( 1989) found that 

hypophysectomy and GH treatment did not affect hepatic GH receptor mRNA levels. 

Serum growth hormone binding protein (GHBP) activity was detectable at 10 days of 

age and rose to adult levels by day 50 (Tiong and Herington, 1992). Because no 

hepatic GH binding activity was noted before day 20 (Tiong and Herington, 1992), 

and hepatic GH receptors are probably not sexually dimorphic (changes in GH 

secretory patterns can modulate P-450s). this probably excludes any contribution of 

GH to the neonatal defeminization process. However. this does not exclude GH from 

the peripubertal defeminization process. 

5.5.4. Soecial form of adolescent imprinting: Perhaps there exists a 

special form of hormonal imprinting that occurs only during adolescence. In the 

female rat, it has been shown that nandrolone (an anabolic steroid) treatment at day 

42 and 49, results in a significant decrease in the density of thymic glucocorticoid and 

uterus soluble estrogen receptors ( Csaba and Inczefi-Gonda, 1993 ). The same 

laboratory also found that gonadotrophin hormone treatment (FSH and LH) on day 
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49, resulted in a significant reduction of thyroxine in adulthood, and a decrease in 

thyroidic response to TSH exposure (Csaba and Nagy, 1990). It is also interesting 

that neonatal exposure to dexamethasone resulted in a decrease in thymic 

glucocorticoid receptors at S6 days, and exposure at 28 days had similar effects 

(Csaba and Inczefi-Gonda, 1990). 

5.6. Summary 

In this study, we utilized two unique techniques, in order to block the neonatal 

defeminization of3A2 and 2C11, and subsequently effect a "peripubertal 

masculinization" of these enzymes. We utilized an aromatase inh.tbitor (AID), to 

block the estrogen-induced defeminization of both P-450s, and left the testes in situ 

throughout the peri pubertal period to effect peripubertal masculinization. 

l. We demonstrated that males exhibit higher velocities of ethylmorphine 

demethylase, 6l3-hydroxylase, 2a-bydroxylase, 16a-hydroxylase, and aniline 

hydroxylase, when compared to the female. This is in accordance with data from 

other laboratories, although aniline hydroxylase activity is not usually characterized 

as being sexually differentiated. The 7a-hydroxylase, was also sexually 

differentiated in our study, which was expected (females> males). We also observed 

significant sex differences in total cytochrome P-450 levels, as well as in cytochrome 

c reductase activity (males> females). The slight differences in P-4SO levels and 
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reductase activity, were not great enough to account for the large sex differences seen 

in the other enzyme activities. 

2. In our laboratory, neonatal defeminization is characterized as an increase in 

basal activities, to velocities greater than those of the female. The EfviDM, 2a­

hydroxylase, and 16a-hydroxylase behaved thus. The data on the 6Ji-hydroxylase, 

did not statistically reveal defeminization as an increase in activity over that of the 

female, although the activity was 2-3 fold greater in the defeminized males. 

3. Neonatal AID administration (day 0-21) prevented defeminization (as 

characterized as an increase in basal enzyme activity), of EMDM~ 613-hydroxylase, 

2a-hydroxylase, and 16a-hydroxylase. The method of delivery of this compound 

(subcutaneous Silasticn.t capsule), as well as the time-frame for delivery (day 0-21), 

were demonstrated as being sufficient to block defeminization. 

4. Neonatal A TD administration prevented an increase (feminization) in basal 

7a-hydroxylase activity, but did not prevent testosterone suppression in adulthood. 

Blocking estrogen production was not effective in preventing testosterone-induced 

suppression of this enzyme in adulthood. 

5. Adult masculinization (preceded by neonatal defeminization) by the testes, 

accounts for 31% ofEMDM activity, 46% of613-hydroxylase activity, 40% of2a­

hydroxylase activity, and 51% of 16a-hydroxylase activity. 
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6. In the non-neonatally-defeminized male, EMDM, 6~-hydroxylase, 2a-

hydroxylase, and 16a-hydroxylase, are responsive to testosterone in adulthood, and 

we suggest the term "maleness" to identify this response. 

7. In the non-neonatally-defeminized male, peri pubertal testicular secretions are 

sufficient to completely masculinize (implies peripubertal defeminization) EMDM, 

6(3-hydroxylase, 2a-hydroxylase, and 16a-hydroxylase. This occurs if the testes 

remain in situ, until sacrifice. 

8. In the absence of neonatal defeminization, peri pubertal testicular secretions 

are effective at defeminizing (pennanently increasing for at least 15-30 days) basal 

EMDM activity, which remained greater than the female whether castrated on day 55 

or day 70. 

9. In the absence of neonatal defeminization, peri pubertal testicular secretions 

are effective at defeminizing {pennanently increasing for at least 15 days) basa16(3-, 

2a-, and l6a-hydroxylase activities, when the testes remain in situ until day 55. 

Castration at day 55 revealed that basal enzyme activities that were significantly 

greater at this time, than at any other time (i.e. after castration at 21, 55, or 70 days). 

Castration on day 55 also revealed a significant increase in ?a-hydroxylase activity, 

which was not apparent in the day 70 or day 21 castrate. 
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10. The peripubertal defeminillltion process appe~m to be completed by day 55, 

as basal EMDM activities were not further increased when the testes remain in situ 

until day 70. In addition. leaving the testes in situ until day 70, appeared to reverse 

the defeminization of6J3-, 2a-, and 16a-hydroxylases, which was evident on day 55. 
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APPENQJXA 

Figure A.l. An example of a standard curve of the Bradford Protein Assay 
(microassay procedure) (Bradfor~ 1976). showing standard deviations and 95% 
confidence interval. The assay was run eight times to demonstrate both precision and 
accuracy. For description of the assay. see section 3.5.1 .. 
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Figure A.l. Formaldehyde standard curve with 95% confidence intervals, 
for use in the ethylmorphine demethylase assay. For description of the assay. see 
section 3.5.2 •. 
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Figure A.J. Hydroxyaniline ( 4-aminophenol) standard curve showing 
standard deviations and 95% confidence intervals. The assay was repeated six times, 
on different days, to demonstrate both precision and accuracy. For description of the 
assay, see section 3.5.5 .. 
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Figure A.4. A standard curve of the 16a-hydroxylation of testosterone. 
showing standard deviations and 95% confidence intervals. The assay was repeated 
three times. on different days. to demonstrate both precision and accuracy. For 
description of the assay, see section 3.5.6 •. 
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Figure A.5. A standard curve of the 2a-hydroxylation of testosterone, 
showing standard deviations and 95% confidence intervals. The assay was repeated 
three times, on different days, to demonstrate both precision and accuracy. For 
description of the assay, see section 3.5.6 •. 
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Figure A.6. · A standard curve of the 6P-hydroxylation of testosterone. 
showing standard deviations and 95% confidence intervals. The assay was repeated 
three times, on different days. to demonstrate both precision and accuracy. For 
description of assay, see section 3.5.6.. 
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Figure A. 7. A standard curve of the 7a-hydroxylation of testosterone, 
showing standard deviations and 95% confidence intervals. The assay was repeated 
three times, on different days, to demonstrate both precision and accuracy. For 
description of the assay, see section 3.5.6 •. 
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APPENPIX B: P-450 Nomenclatures (names given by other laboratories). 

P-450 Names Labontory 

2Cll 2c Waxman 
h Levin 
UT·A Guengerich 
RLMS Schenkman 
male Kato 
P82a Wolf 
Ml Omura 
16a Gustafsson 

JA2 2a Waxman 
PBIPCN-E Guengerich 
PCNb/c Halpert 
PS.l lmaoka 

2Al UT-F Guengerich 
PB-3 Waxman 
RLM-2b Schenkman 
a Levin 

:ZEl RLM6 Schenkman 

J Levin 

From: Guengerich eta/. (1982); Kamataki eta/. (1983); Waxman (1984); 

Ryan eta/. (1984a); Wolf(1986)~ Matsumoto eta/. (1986); Schenkman eta/., 

1987; Halpert (1988); Imaoka eta/. (1988). 
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APPENPJX C: MATERIALS 

CHEMICAL NAME CHEMICAL FORMULA SUPPLIER 

Acetonitrile Fisher Scientific Company 

Acetyl acetone CH3COCH2COCH3 Fisher Scientific Company 

Albumin, bovine 98-99% albumin. 15.8% N Sigma 

4-aminophenol hydrochloride C~,NO•HCI Sigma 

Ammonium acetate CH3COONH. Fisher Scientific Company 

Aniline c~,N Sigma 

ATD 1. 4, 6-androstatriene-3, 17 -dione Steraloids 

Barium hydroxide Ba(0Hh•8H20 J.T. Baker Chemical Company 

Carbon monoxide co Alphaga.z, Canadian Liquid Air, 
Limited 

Cytochrome c from horse heart, 99% Sigma 

Dichloromethane CH2Ch Fisher Scientific Company 

Ethyl alcohol Commercial Alcohols, Ltd. 

Ethylmorphine BDH Chemicals 

hydrochloride 

Glacial acetic acid Baxter Corporation 

Glucose-6-phosphate disodium salt • hydrate Sigma 
analytical grade, 9<J01o pure 

CJfn09PNaz 

Glucoteo+pbospbate from bakers yeast Sigma 
debydro&enase 
Glycerin (glycerol) CH20HCHOHCH20H Fisher Scientific Company 

Hydrochloric acid HCl Fisher Scientific Company 

Magnesium chloride MgCl2 Mallinkrodt Incorporated 
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Materials Table (continued) 

Methanol CH30H, HPLC grade and Fisher Scientific Company* 
analytical grade 

NADP sodium salt Sigma 
analytical grade. 990/o 

aicotinamide adeaiae C2tH2,N~t1P3Na 
dinucleotide pbospbate 

NADPH reduced form. tetrasodium salt. 
971'/o 

Sigma 

P-aicotiaamide adeaiae C21H2~70t,P3Na.. 
dinudeotide pbospbate 

Phenol C~sOH Fisher • 

Potassium chloride KCl Mallinkrodt Incorporated 

Potassium cyanide KCN Mallinkrodt Incorporated 

Potassium phosphate KH2P04 Mallinkrodt Incorporated 
(moaobuic) 

Potassium phosphate KH2HP04•3H20 Mallinkrodt Incorporated 
(dibasic) 
Semicarbazide H2NCONHNH2•HCI Aldrich Chemical Company 

hydrochloride 

Sodium carbonate Na2C03, (anhydrous) Mallinkrodt Incorporated 

Sodium dithionite Na2S204•H20 BDH Laboratory Supplies 

Sucrose Ct2H2201t Mallinkrodt Incorporated 

Testosterone ll. ~ -androsten-17~-ol-3-one Sigma 

Trichloroacetic acid CC13COOH Fisher Scientific Company 

Tris(hydroxymethyl)- C~t1N03 Sigma 
aminometbane base 
Water {Optima) H20, HPLC grade Fisher Scientific Company 

Zinc sulfate ZnS04•1H20 Fisher Scientific Company 
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Appendix C (continued) 

CHEMICAL SUPPLIER ADDRESSES 

SUPPLIER ADDRESS 

Aldrich Chemical Company Wisconsin, U.S.A. 

Alphagaz, Canadian Liquid Air, Ltd. Canada 

Ruter Corporation Toronto, Ontario, Canada 

BDH Laboratory Supplies *Englan~ 
Toronto, Ontario 

Commercial Alcohols, Ltd. 

Fisher Seieotifie Company *Nepean. Ontario, Canada: 
Fair La~ New Jersey, U.S.A. 

J.T. Baker Chemical Company New Jersey, U.S.A 

Malliokrodt Incorporated Paris, Kentucky, U.S.A. 

Sigma St. Louis, Missouri 

Steraloids Newport, Rhode Island 
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APPENDIXD 

Appendix to Table 5.4.1. 

1. Jacobsen eta/., 1981 
2. Gorski et a/., 1978 
3. Lawrence and Raisman, 1980 
4. Domer and Staudt, 1968 
5. Babichev eta/., 1990 
6. Carrer and Aoki, 1982 
7. Matsumoto and Arai, 1976 
8. Matsumoto and Arai, 1981 
9. Arai and Matsumoto, 1978 
10. Matsumoto and Arai, 1977 
11. Matsumoto and Arai, 1979 
12. LeBlond eta/., 1982 
13. Nishizuka and Arai, 1981 
14. Davis eta/., 1996 
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