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. -Abstract_‘ :

The problem of stress corrosion crackmg in natural gas pipelines in Central and Western
Canada has led to a need for quick,‘:éﬁcieht metl:_odS of evaluating pipeline integrity
based on component geometry and opétating parameiers. The use of high toughness
materials in modern engineering éractice reqmres the application of elastic-plastic
fracture mechanics, or limit type analysis, to evaluate defects. This thesis demonstrates
the application of two robust finite element techniques, the Gloss R-node method and the
m_-method, to finding limit loads for cracked components. Each of the methods relies on
linear elastic finite element solutions in conjunction with a modulus adjustment scheme
to provide a simple, systematié means for determining failure loads. The techniques are
initially applied to standard fracture specimens to gage their effectiveness in analyzing
crack geometries. The analysis is then directed to pipe geometries containing
longitudinal defects (internal and external) of varying depths and culminates in the
analysis of multiple defects typical of stress corrosion crack colonies. The robust limit
Ioad results are compared to traditional nonlinear finite element analysis results and
analytical solutions, where applicable. The robust techniques consistently provide
conservative results which compare well to both nonlinear finite element analysis and

analytical solutions.
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CHAPTER1

INTRODUCTION

1.1 Background

In recent years, buried pipelines in western and central Canada have been afflicted with
stress corrosion cracking (SCC) problems which have led to failure in many instances.
Several incidents in Ontario between January 1991 and July 1992 reported in a
Transportation Safety Board of Canada (TSB), Courmodity Pipeline Occurrence Report
(Transportation, 1992) and more recerrtly near Vermilion Bay, Ontario (Dec. 1996) are all
examples of recent failures which; fortunately, have resulted in minimal damage to
people and property -Th“e inr:idents diécussed in the TSﬁ report have all been attributed
to stress corrosion cracking and, in all lxkehhood, the Vermilion Bay failure will be

determined to be 'SCC related as well.



The problem of stress corrosion cracking wasfirst identified in the early twentieth century

with the crackmg of Brass‘ in ammonia environments. This problem also became apparent
during both world wars with the failure of brass cartridge cases. In general, SCC requires
three conditions to occur simultaneously: a critical environment, a suséepﬁble alloy and

some component of tensile stress (Jones, 1992).

Failures in natural gas pipelines in the United States have been attributed to inter-granular
stress corrosion cracking (IGSCC) for mofe than twenty years. Extensive research has
been carried out in the field and the crack mechanism for this process is reasonably well
understood. In the mid 1980's, TransCanada Piéelines Ltd. (TCPL) experienced buried
high pressure gas pipeline failures at three Ontario locations which were attributed to
SCC. However, unlike the American case, these fatlures occurred as a result of
transgranular stress corrosion cracking (TGSCC) for which the crack mechanism is not so
well understood (Transportation, 1992). More recent failures, as mentioned earlier, have

also been attributed to TGSCC.

The nature of these cracks is such that crack colonies form on the outside surface of the
pipe and are oriented parallel to the pipes’ longitudinal axis. Much work is Being carried
out in an attempt to.determine the electrochemical mechanism responsible for the
development of these cracks in order to mitigate the problem. However, until that goal is
achieved there is an urgent need to:

i)  Develop effective methods of crack detection and sizing.



ii.) 'De\_relop accurate methods for assessing fracture parameters based on

crack dimensions.

From this, reliable failure assessment models can be developed to improve the safety
and integrity of problem pipelines. The focus of this thesis is in the second goal; the

assessment of fracture parameters once the crack data has been obtained.

In particular, the assessment of robust finite element techniques are explored for their
economy in preparation and computing time as compared to traditional nonlinear finite

element analysis.
1.2 Failure of Cracked Components

Depending on material properties and loading conditions, cracked components will most

likely fail in one of two ways:

1. Toughness dependent fracture.

2. Failure due to unconstrained plastic flow across the uncracked ligament

(net section. collapse)- :

Toughness dependent ﬁ'acture falls mto two domams , linear elastic ﬁactute mechamcs

(LEFM) and nonlmear (elastlc-plasuc) fracture mechamcs LEFM is vahd for matenals



with Iow tougbness for whxch bmtle fracture is the govermng failure mechanism. At
lngher toughness Ievcls the: failure mechamsmbecomes ductlle in nature and LEFM is no
longer apphcable and nonlmear (elasnc-plasnc) fracture mechamcs 1s required to address
the problem- Net section collapse of a component across the uncracked ligament is the
failure mechanism prevalent in lugh~toughness materials. If toughness is sufficiently
high, fracture mechanics becomes io'ele&;ant to the problem as the failure stress is
insensitive to toughness. In this'case, a limit load analysis is required to predict the -

failure stress.

The majority of engineering materials in use today are relatively high toughness steels
and problems involving cracked components must be addressed using nonlinear fracture
mechanics or alimit typerah'alysis.‘ «In tetmé of developing a failure assessment model,
each failure mechamsm mustbe addresscd in order to predict which type of failure is
most likely to occur. Safe operatmg parameters and remaining life estimates may then be
determined. The use of nonlinear finite element analysis is well suited to this application,
but, at the cost of.‘substantial preparation and processing time which can be quite
expensivo. [nhght of this, the develooment of accurate robust techm’qués. based on linear
2-D finite element ioohoiques, can be verj'r.adv'antageous. Several robust techniques are
in current use for colculating failure loads and J-integrals for various componeats. This
thesis will examinei the applicatioo‘ of these techniques to the problem of cracked

components; in particular, the case of linepipe containing measurable flaws.



1.3 Organization jif the Thesis

A review of related literature is presented in Chapter 2. An examination of two robust
linear elastic finite element techniques for determining limit loads is presented in Chapter
3. These are the Gloss R-node method and the m -method. Chapter 4 is a guideline for
the practical application of these two techniques in order to obtain satisfactory results.
Numerical examples that demonstrate the applicability of these techniques to cracked
components are presented and compared with traditional analysis methods. Chapter 5
investigates the application of the robust techniques to the problem of longitudinal
surface cracks in linepipe. Included in the analysis is the problem of .multiplcv defects in
the form of crack colonies, typical of TGSCC afflicted pipelines. The concluding

chapter, Chapter 6, contains a summary of the thesis and a discussion on future research.

The key aspects of the research presented in this thesis are:
1. It applies robust limit load estimation techniques to cracked components.
2. It introduces an improved r-node identification scheme.
3. It outlines a practical guide for applying robust limit load determination
techniques.
4. It advances the use of robust analysis to complex geometries including
multiple defects in linepipe.
The following chapters elaborate on these aspects and provide the reader with some

guidance on the use of robust analysis techniqﬁes.

s



CHAPTER 2

REVIEW OF LITERATURE

2.1 Theoretical Limit Load Solutions for Axially Flawed Cylinders

The classical theorems of limit analysis are the upper and lower bound theorems. The
upper bound theorem states that if an estimate of plastic collapse load of a structure is
made by equating the internal rate of energy dissipation to the rate at which the external
forces do work in any kinerpaﬁcally admissible deformation field, then the estimate will
be higher, or at best, equal to the actual collapse load (Calladine, 1969). The upper bound
estimates are useful for metal forming or other processes where a higher than correct limit

load prediction is appropriate for estimating power and drive requirements.

The lower bound theorem: states that if an assumed stress distribution satisfies

equilibrium with externally applied surface tractions, and is below yield everywhere

‘



within the structure; then the limit load calculated using this stress field would be lower

- than the exact limit load. ‘Lower bound lnmt Ioadsare appropriate for use in safédesign _

" of mechanical coiﬂPOnéﬁtS and structures. The classical lswcr bound limit load for an
arbitrary load, P, given that thcmaxnnumeqmvalent stress corresponding to an assumed
statically admissible stress d.i’stribtﬁt_iqqis_ (0 may be expressed as

it

P =P . 21
' ;L £G:)M : ( - )

The classical limit load solution for a circular cylinder subjected to internal pressure for

instance is given by the equation

P, = =0, if?) @2

where o, is the matérial yield stress while b ancia are the outer and inner diameters of the
cylinder respectively. Inoue et al. (Inoue et al., 1977) derive this solution and use a linear
combination of particular solutions to obtain a lower boﬁnd limit load for the case of a
thick cylinder subjected to internal pressure loading and shéar; The authors also show
that the action of shgar along the boundaries lowers the ibv?er bounds to the collapse load
of the cylinder. ,Et.;‘ixation2‘.2 may be used for the case of part through axial c;'acks in
pipes as a rough approximation of the limit load by omitting the cracked portion of the
wall thickness v?hét; performing the calculation. This may then be used as a quick check

on the results obtaine'd”by robust analysis.



Krasovshiet al. (I(rasovsk;ietal,l990) prl)pose a hmlt Ioad solution for an axially
cracked pipe subjected to an mtemal ﬁiessm loadmg The model is developed based on
an analysis of the forces acting in the vicinity of thectackplane The auihbrs consider
first hthe‘ caﬁse of ductile failure of ;1 leixider subjected to:int'emal pressixre with no defect.
For this, the equilibrium of forces in the radial direction is considered for which the

forces of interest are the circumferential force N, and the transverse forces O, and Q4

Figure 2.1 - Axial surface crack in a cylinder (Krasovskii, et al., 1990).

acting in their respective directions (Figure 2.1). With no flaws, the transverse forces are
zero and the internal pressure is balanced by the hoop s&ess resulting from the
circumferential force, N, The presence of an axial flaw causes an imbalance between the
circumferential stress and the Vintemal pressure which must be balanced by the transverse
forces to maintain ecjuilibrimh. The transversc forces induce bending moments. The

cylinder passes into a limit state when'the bending moments reach a critical value

s.f




corresponding to the chosen yield condition. Considering the case of an axial part-

through crack (Figure 2.1) and the associated equilibrium equations the authors
determined the forces of importance in this analysis to be thg circumferentiall force N, the
transverse force @,, bending >moment M_and the longitudinal force N,. The resulting
solution of the differential equations of equilibrium gives an equation which essentially
states that the bending moment ihduced due to the local discontinuity in the pipe must be
balanced by the response of the pipe wall to maintain equilibrium. This leads to a limit
state that is attained when M, at the points x =0 and x = [; assume the extreme negative
and positive values respectively. The limit load, P,, is then calculated from the following

determinant equation

AM, = [M,(x = 0)]- [M x = 1] @3)

where the extreme values of the bending moments are maximum.

The authors make use of the Tresca yield criterion for which the extreme values of the
moment depend on the longitudinal force N_ and the thickness of the effective section to
obtain the critical values of the bending moments at x =0 and x = /,. For the case where

x =0, the value of M, is given as:
[, = 0] = Lot (1~ 20f 2ft - 8 - S -5 - 22)]

where: B= N,Id,t : relative intensity of longitudinal force

,(x) =t - d(x) : thickness of uncracked ligament

9




H()=0fort<0 - -  Heaviside function
Ifort>0

At the point x =1, the critical value of M, is given as:
1
[Mx(x = lz)] = —Eautz[l —(1 - 2[3)1] .5)

Using these results, the authors derive the following implicit solution for P, for the case

of a cylinder with a part-through, rectangular shaped axial defect:

leg(a —i)

- (1-2f «(1-p-2fH1-p-2)

where: A =(YRe)'? relative crack length

« #BLIGJ © coefficient of strength reduction
This formula was verified by comparison with published experimental results and found
to give rea;c;nable -estimates for the failure load of cylinders having the particular crack

geometry described above.

Orynyak and Borodii (Orynyak et al., 1994) extended the work of the previous authors by
using the same analysis scheme to derive an expression for the limit load of a part-

through, semi-elliptical shaped axial defect. Their solution may be expressed as:

ki v e e

l -

t-(t-28F+(1-B- —)2 o

xH(l—B-—)

10



The pararneters A and & areaspreviously deﬁne‘d. Thls'solution, as well as that obtained

by Krasovskii et al., are known 1o’ overcstlmate t.helrmn load for i mcwasmg values of the
,relatrve wall thrckness t/R (r €. the solutrons are conservanve for thm-Walled cylmders
but, the solutions become non-conservatrve for thrckcr walled structures) Orynyak and.
Borodii address this problem by proposing an ernpmcal procedure for calculating the
stress degradation factor, «, for thick-walled cylmders The proposed solution makes use
of the original calculation of a to give a new factor, :_;‘zj__ -whrch may be expressed as:
1!1( 1+ it
- R |
& =— 2.8)
S

This parameter may be used in place of « for mick-nraﬂed cylinders cOntaining either
rectangular or semi-elliptical shaped cracks. 'l’l:e dlftérence in the solutlons for thick and
thin walled cylinders is due to the prcscnce'o_f radralstresses acting m the through-
thickness direction. As the t[uckness increases, theso stresses become increasingly
important and tend to decrease the load bearlng capacrty of the defected cylinder. Hence,

the overestimation of the limit load when using the thin-walled solution.

Orynyak (Orynyak, 1993) proposes a shghtly dxfferent approacn to the limit load solution
for axially flawed cylinders which the author refers to as the opumrzauon method. This
approach allows for the prescnce of addmonal bendmg moments developed by positive

and negative axial stresses. This solutr_on was developed as a result of the author noting

PR




that the solution.tiy Krasovsl&i etal. undetesnmatesthe hmit load for smaller values of
the parameter B (B'= N/o.1). Orynyak addresses this problem by caﬁsideﬁng,:he
additional moments induced by the axial stresses £0,. 'fhe inténsity of these stresses is
defined as z = 0,/0,. Using these results, the limit ioad solution for the rectangular shaped

axial crack may be given as:

222(2 - z)(a - <)

13

-t-(t-2f ~(1-p-)a(r -5 - 29)

+(1-Bf-(1-B-2:f

l-e-<

where: t=(t-a)t (ais the crack depth)
Z = optimization parameter
This expression gives the maximum possible value for the limit load and, hence, may be

taken as an upper bound estimate. This, however, is not useful for design or evaluation

purposes.

A recent paper by Orynyak, Torop and Borodii (Orynyak et al., 1996) combines the
results of the previously mentioned works to develop an algorithm that accounts for the
three-dimensional state of stress as well as the three-dimensional geometry parameters
(i.c. length, depth and breadth) describing the defect. The final algorithm makes direct
use of the solutions previously diéggssed'and (:om_bines this with further analysis to arrive
at a limit load solution for part-throughﬂaws of sig;xiﬁcéntbreadth. The aim of this

approach is to develop htheo:qﬁéalﬁSOlution to compare.with experimental results for



pipes with machmed defects where the breadth of the machined notch may influence the

pr'edicted results of previous solutions for sharp, closed cracks.

The purpose of the aforementioned algorithm in relating theoretical solutions to
experimenta_l results is one which poses a continual‘ problem for researchers. In this case,
there are several assumptions and approximations made in determining the theoretical
solution such: that the result is reallSr just an empirical estimate of the experimental
results. In essencé, the theoretical solution is derived based on the experimental results

and as such cannot truly be used as an independent comparison of the experimental work.
2.2 Experimental Limit Load Solutions for Defected Cylinders

Much experimental work has been carried out to determine the burst or collapse pressures
for various types of defects in circular cylinders. Kiefner et al. (Kiefner et al., 1973)
conducted numerous tests on varying sizes of linepipe having both artificial and natural
defects in which collapse pressures were determined. These collapse pressures are
defined as the stress leﬁéls» reqmred to cause defect propagation through the remaining
ligamént;for part-through defects. The failure results in leakage or rupture of the pipe.
The work"was perfomied’.-}at Battelle’s Col_m_ﬁbus Lalédtatbﬁes. A total of 140
experiments involving ‘single, longimdniany-oriemq defects (both through-wall and part-
through) were ﬁerformed. Analysis of the results aqd‘ét;;;i&eraﬁoh of theoretical fracture

mechanics have resulted in the development of selhi-empirica.l equations for predicting

13




the failure stress of flawed linepipe:

. For the case ofpatt-thmugh wall flaws, two modes of failure are considéré& flow-stress
dependent failure and toughness dependent failure. In either case, the equations account
for both crack length and crack depth, as well as bulging of the crack flanks. For flow-

stress dependent failures, the equation is expressed as:

1 -4
o = T, - ; ' (2.10)
Mot ‘
where, 0  =hoop stress level at failure (psi)

Ow =flow stress (defined.as Y, + 10000 psi for typical linepipe steels)

d  =crack depth (in)

t  =pipe wall thickness (in)
and M, is the Folias correction factor. The Folias correction accounts for stress
amplification at the ends of the flaw resulting from the outward radial deflection along
the flaw which is unique to pressurized pipe. This factor is calculated based on defect
geometry factors which include the pipe thickness and diameter, as well as, defect length

and depth.

For toughness dependent failures the derived equation is much more complex and is |

expressed as,
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where C, = Charpy shelf energy (ft-Ib)

c = flaw length (in)

0 = flow stress (psi)

o, = collapse pressure (psi)

M, = the inverse of equation (2.10) for flow-stress dependent failure
The basis of this equation is a combination of exberimental results and earlier equation
development for predicting collapse loads for bﬁttle materials utilizing unstable crack
propagation theory. Theexberimental results indicate that brittle fracture is not the
predominant mode of failure. Therefofe, the equations used to predict the failure
pressures must in some way account for the ductility of the material. The use of the Folias
correction t‘acto;' in the above equation provides 2 means to predict collapse loads for
ductile materials which undergo a toughness dependent mode of failure. In addition to
the solutions presented above for part-thi'ough wall defects, the authors also provide

solutions for through-wa]l axial defects.

The equations presented by Kiefner et al. account for internal pressure loading only. The
presence of other loading behavior will make the use of these solutions invalid. In

practice, loading conditions are rarely such that only internal pressure loading may be
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consxdered. Even in the case of exnerunental work where condmons are controlled, 1t is
extremely dxfﬁcult to avoxd the | presence of axra.[ stresses resultmg from the use of capped '
pipes in the expe_nmental setup. As a-result, the-solunons presented by Kiefneret al. may
provide area'son_ab‘le con:rparison to the..expen’men.tal data preeented, but the solutions

would be of little value in predicting faflure loads for practical pipeline applications.

Lancaster and Palmer (Lancaster et al., 1996) have conducted research to determine the
collapse pressure for pipes conraining dents-and gouges. The research looked at the effect
on burst pressure of three different situations; a &ent'_only on the pipe surface, a gouge
only on the pipe surface, and a combined dent and gouge. For the dent only case, the
authors found that the presence of a dent, even of considerable size, has little effect on the
collapse pressure. This is true for cases where the dent does not significantly alter the
curvature of the pipe resulting in a stress concentration. The size of the pipe relative to
the shane and orientation of the dent will determine the extent to which the defect affects
the failure pressure. However, dents in the vicinity of ‘welds or which induce sharp
changes in curvature require a detailed assessment as the presence of high localized
stresses may significantly reduce the load beanng capaclty of the pipe. The research has
shown that the collapse pressure for the case of gougee.only (local loss in pipe'wall
thickness rvithout change in the shape of the pipe) Aisdépendent on the axial length of the
gouge, the loss in wall thickness and the marenal properties of the pipe. Fanlure pressures
estimated using the solutions of Klefner et al. are in good agreement thh the

experimental results obtained by the authors The combmanon of a dent and gouge
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showed the most serious reductton m coll’apse pmsute K ouges located near the high

strain reglons of the dent (typxcally at theends of the long axxs) fail at much lower
pressure levels than gouges located w1tl'un t.he dent area but remote from the high strain
regions. This 1sdue to the‘ very htgh locahzed stresses ans_mg from the combined effect
ofa sharp curvéture change due to: the tleht ancl theinherent'stress concentration resulting
from the local loss in wall thlckness "For gouges ln ateas othet than the high strain

region, the failure pressure is well predu:ted usmg the»Battel]e model of Kiefner et al.

Jaske, Beavers and Harle (Jaske et al 1996) of Cortest Columbus Technologies Inc.,
have developed empirical equations derived from experimental results, in a manner
similar to that of the Battelle model.. Unlike the Battelle"model which considers only
hoop stresses, the Cortest Columbus model accounts. for both axnal and hoop stress in
flaw evaluation. The Cortest Columbus and Battelle mode]s both consider that failure
may occur in either a flow-stress dependent mode or_;i:‘ tl‘ucture-toughness dependent
mode. An effective-flaw approach is used topredict.;‘ﬂo;w#suess dependent failure

stresses. The equation for flow-stress dependent failire is similar to that of the Battelle

model and is given by: )
_a ]
it = Fptow —1 —= @.12)
'ﬁ'
where: Oy = flow strength of material (0, = g, + 68.95 MPa for typical pipe
steels) R |




A - area ofthe flaw in the through thlclmess direction ( )

A ﬂaw length x wal[ thlckness (m’)

M = Folias correction factor
The failure pressure, p,,;, for the pipe is computed by equatmg the faxlure Stress, O, th
the hoop stress, o,. This accounts for hoop stresses only. The expression for the failure

pressure is given as:

lc S

Puit = O, ( e y) | (2.13) |
The parameters D and ¢ are defined as the pipe outside diameter and the pipe wall
thickness respectively. - The parameter, y, is taken as either 0.4 for temperatures below the
creep range or O for D/2t > 10. The latter is typically used fhr linepipe steels. To account
for the presence of axial stresses, the factor [ (1 -AIA,;) / (1 -A/MA,) ] in equation (2.12)
is computed for both the length and the width of the axial defect. The lowest of the two
values is then used in the calculation of the failure pressure. For the case of both axial
and hoop stresses, the stresses are combined using the von Mises equivalent stress (0,,)
for plane stress conditions and compared with the failure stress calculated using equation
(2.12) to see if failure is predicted for the combination of stresses. Calculation of the

failure pressure for the combined stresses requires an iterative calculation until o,, = ;.

For toughness-dependent failure, the Cortest Columbus model uses an inelastic fracture

mechanics approach to predict failure stresses. An empirical equation for the elastic-
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plastic J-integral is given as:

.az‘nza

I = QfF,f'[ - f3(n)aepo] 2.14)

where: Q,= elliptical shape factor (assumes elliptical shaped defect)

F .= free-surface factor |

o =local stress

a =crack depth

E = elastic modulus

fi(n) = strain hardening factor

n = strain hardening exponent

€, = plastic strain
Expressions for the parameters Q, F, and f;(n) are found in (Jaske et al., 1996). The
values for E and n are material dependent and readily available while the plastic strain, €,
is computed from the local stress, o, using a power law 0-¢, relationship. The local stress
includes the Folias correction and is obtained by multiplying the nominal stress by the
Folias correction factor. The toughness-dependent failure stress is téken as the nominal
stress value that corresponds to the computed value of the elastic-plastic J-integral that
equals the critical J-integral for the material. Calculation of the J-integral values requires
an iterative approach. The actual fallute stress for a pipe containing a defect is the lower
of the two failure stressespred-i.cted usiné »both the flow-stress dgpendént and the fracture-

toughnes;s dependent failure models. Cortest Columbus Technologies Inc. have
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developed a computer program called CorLAS (Corvosion Life Assessment Software)

based on the two models described.

The methodology and results obtained by Jaske et al. are much improved over that
obtained by Kiefner et al. Jaske has included the presence of axial stresses in his
equations and uses an elastic-plastic fracture mechanics approach when dealing with
toughness dependent modes of failure. However, the solutions provided are still based on
controlled experimental results which in most cases d'q not give an accurate
representation of in service operating conditions. Having said this, the approach adopted
by Jaske et al. does provide one of the better failure estﬁﬁation procedures currently

available.

2.3 Numerical Limit Load Solutions for Defected Cylinders

The use of finite element analysis fechniqués in determining limit load solutions is
common in the stress analysis field. Typical approaches utilize non-linear finite element

analysis which usually requires more 'c_:b'o“mplex models and extensive computing time.

Zarrabi (Zarrabi, 1994) used non-linear finite element aﬁal’y_ﬁs to determine the collapse
pfessure ofa cylindr_ical pressure vessel containing a part-through thickness defect. The
analygis #ssumcs~elasﬁc¥p¢rfecdy plastic material ﬁehavior;hd obeys the von Mises yield:
criterion. The material was also assumedto be ~‘I;OI‘n:c:p.gg‘,nc_)l.is and isotropi; and to remain
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so during plastic deformation. The vessel loadmgwasumform internal pressure with the
vessel ends experiencing uniformly dxsm'butedpressure. The defect type chosen for the
analysis was a part-through recmngular‘slot extending around the circumference of the
cylinder. The model results were conservati;{é‘when compared to experimental éollapse
pressures, wﬁch indicate that the numerical results are acceptable for design or integrity
analysis. The processing time required for a simple model is quite extensive with 3000 s
on a SUN 3 platform needed for 2 model having only 163 elements and a maximum
wavefront of 150. The use of elaborate numeﬂéal methods provides a powerful tool for
designers in terms of design optimization and analysis. The ability to create a numerical
model of a proposed design and subject it to various loading conditions enables the
designer to see how a pﬁm‘cular component or strﬁcture will behave under simulated
conditions before being entered into service. As a result, manj possible problems can be
addressed in the design office before they arise in operation thereby increasing safety and

reliability while reducing costs.

C_héung and Wu (Cheung et al., 1993) propose the use of an incompatible axisymmetric
elem;:nt to replace the isoparametﬁc axisymmetric elements nofmally used in fracture
analysis. The authors argue that th? isoparametric _qlementé have large deformation
constraints induced at the onset of plasticity such thét the stress/strain fields in the
vicinity of the crack tip“al_e not accurately approximated. That is, the isoparametric |
'elaséic elements become incompressible ‘plastic elements after reaching the yield stress.

| Siliééithe clements éﬂow no compresSive deformation, the édﬁ;plex stress/strain field
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near the c-ra;:l; tip is unable to be accurately modeled-due o the rigid constraint imposed
by the -plastic_: elements. Refining the element mesh in the crack tip fegion isnota

~ solution as it tends to farther increase the constraints. The iﬁcompatible element
sugg-ested‘by the aut‘horsvavoids the plastic deformatic;n constraints of the isoparametric
element by addiﬁg a set of incompatible dis_placcments to the existing element. The
mathematical theory is co#éred in the p;pér. The end result is an element which may be
used in both the elastic and plastic regions surrounding the crack tip without the strong
cons&aints inherent i_n exfsting isoparametric elements. However, there is a danger that
the incompatible disélacgfﬁénts may destroy the convergence of discrete solutions. The
element has been used to model a circulét cylindér‘ with a circumferential defect loaded in
tension and has provided good limit load predictions as well as accurate mode I stress

intensity factor solutions.

The use of the incompatible axisymmetric element leads to improved accuracy in
determining elastic-plastic parameters and limit load results for ihe given problem.
However, existing isoparametric elements provide limit load rgsults that while not quite
as accurate as the proposed element pﬁdvide consistently coﬁservativc results which are
ideal for design and evaluation purposes Therefore, the use of staxidard isoparametric
elements in determining plasti'c collapSe loads for cracked components will provide

‘acceptable resuits with an inherent factor of safety.

Attempts arebemg made to develop robust numerical techmques for detemﬁning limit
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loads that wﬂl mgmficantly reduce model complexny and computet processmg time. As

shown i in the wodc of Zarrab: significant processmg time was required for a very sxmple»
model when performmg a non-linear analysns. Seshadri (Seshadri, 1991) proposed a
robust method known as Generalized Local 'Stress Straln (GLOSS) analysis. GLOSS
analysis is a simple and systematic method fof carrymg out inelastic evaluations of
mechanical components and structures on the basié 6f two linear elastic finite element
analysis. This technique has been used for a wide range of analyses including the
determination of multiaxial stress relaxaﬁon, follow-up, creep damage, inelastic strain
concentrations, low-cycle fatigue estimates, hmlt analysis and stress-classification issues.
With regard to limit analysis, GLOSS analysis can be used in conjunction with the
concept of redistribution nodés to determine limit-loads. The technique requires the use
of no more than two linear elastic finite element analysis to determine limit load
estimates. This technique is one of two robust finite element analysis techniques used in

this thesis and is-discussed in detail in the following chapter.

Mackenzie and Boyle (Mackenzie et al., 1993) have developed a limit load estimation
technique along lines similar to that of Seshadri using an iterative elastic analysis which
they refer to as the elastic compensation technique. This method utilizes a sequence of
elastic finite element analyses and the lower bound theorem. The aim is to generate an
admissible stress field, corr;tSponding. to the highest possible load such that derived
stresses are in equilibrium and do not violate the yield condition. For a given load, the

admissible stress field is obtained by a sequence of élasﬁc calculations where the elastic
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moduli of selected elem'ents‘ are modified to reduce stress levels below yield. The elastic

modulus of the elements are modified using the equation,

E =E_ - | 2.15)

for the: " iteration where g, is the maximum nodal equivalent stress in the élement based
on the previous finite element solution. The value of 6, is arbitrary, but the authors
generally take the value as one half or two-thirds of the yield stress. After several
iterations, the maximum stress level decreases until a limit value is reached. This
provides an admissible stress field for the given load which may then be scaled to obtain

a limit load estimate, P,, using the following equation:

P, =P,-L (2.16)
The parameters P, and o are defined as the applied load and the limit stress value
respectively. This procedure may be extended to account for combined loadings. The
authors have used the elastic compensation method with slight improvements to obtain

limit load estimates for such pressure components as flush nozzles (Nadarajah,

Mackenzie and Boyle, 1993) and torispherical heads (Shi,.Mackenzie and Boyle, 1993).

24

Y



CHAPTER 3

ROBUST LIMIT LOAD ESTIMATION
TECHNIQUES

3.1 Limit Load Predictions

As discussed in Chapter 2, many different approximations are available in the literature
for the estimation of npper and lower bound limit loads based on particular geometries
and loading conditions. In this thesls,- two robust limit load prediction techniques have
been chosen to esﬁinate Limit loads for sevetal crack geometries. Both the Gloss R-node
method and the m —method predlct limit load solutlons based on ! Do more than two linear
elastic ﬁmte element analyses The apphcatlon of these methods to uncracked geometries
has provided excc]lent predlcnons when compared to nonlmeat finite element results.
The application of | these methods to cracked geometnes would sngmﬁcant.ly reduce the

time required: foriana,lys_u_s., anch of, t_he two method’s’ls.‘dl_!:cussed in the following sections
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of this chapter. Their iljii)lementaﬁon intoa ﬁnitéi’é[emeﬁt'qpalysis scheme is also

addressed.
3.2 GLOSS R-node Method

The ASME Codes explicitly récognize load and deformation controlled effects.
Deférmation controlled stresses larise in a structure as é tésuIt of statically indeterminate
actions. Load conﬂoll:d stresses, however, are statically determinate in that they are
induced within a structure to maintain equilibrium with ‘ext'emally applied loads (Seshadri
et al., 1992). With the onset of inelastic action such as creep or plasticity, the statically
indeterminaie stresses and strains undergo a redistribution Mu@out the structure.
However, no redistribution occurs at the statically determinate locations which are

essentially load-controlled. These locations are known as redistribution nodes (r-nodes).

Given the load controlled nature of the stresses at the r-nodes, equilibrium requirements
dictate that these stresses be linearly prbportional to the externally applied load, P, or
load combination, < P, M >. This may be expressed as

'or;nadz = C'l P

3.1
-.ar_m’k =C,<P,M>

The constants C, and C, are scaling parameters that are dependent on the loading
conditions, geometry of the structure and material properties. Taking.the simpliﬁed case
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of elastic-perfectly plastic material behaviour, when t‘hé{e’quiVaIent x-node-‘cﬂ'ectiiie stress,
(0.)r.note» approaches the yield stress as given by the vbti Mises yield criterion, the
externally applied load will c':orrespon& to the limit load. The von Mises et;uivalent stress

is given by,

[(0'[ - 0'2)2 + (0'2 - 03)2.+ (03 - o[)z]uz | (3.2)

) "
S~

where o, 0, and 0, are principal stresses. '.When (0.),..0a. approaches yield, P corresponds

to P,. Therefore, equation (3.1) may be written as

o =CPF
(3.3)
o, = C,<P,M>,
Combining equations (3.1) and (3.3) gives an expression for the limit load as
B o h
P, = | —2X—|P
- (oe)r-node'
: . (G4
c
<P.M> =|—X—|<P,.M>
- (oe)r-node- -

The equivalent r-node effective suesé, (0.),.node> 18 l0ad contro_lled; Therefore, the
equivalent stresses at these points are directly proportional to the external loads
irrespective 6f the material coﬁsﬁfutive’ relations.‘ Asa resﬁlt, anf two stress distributions
satisfying equi]ib’rium_ with the éxtemall)_r_ applied» ffactidns will intersect at the r-nodes.

Given the ioad controlled nature of these pdints and assuming an elastic-perfectly plastic
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Figure 3.1 - R-node concepts (CT 'Spocimen)

material, when the r-node stress reaches yield, uncontrolled plastic ﬂow occurs resulting
in the formation of a plastic hinge and collapse of the structute 'I'he occurrence of a
single r-node across the thickness of a componont or structure is indicative of a load
controlled membrane mode of collapse and mny be represented by a one bar model as
shown in Figure 3.1 (Seshadri, 1992). In the case of a cracked component, failure will
generally occur as a net section collapse of the uncracked [igament rather than an overall
plastic collapse of the structure. This usually results in the formation of a single r-node
along tlus ligamient. MultIple r-nodes are also possible and are dlscussed later. Seshadri

and Femando 1992 and Seshadn 1995 give models for multlple r-node cases.




3.2.1 Determination of the r-node stress for cracked components

GLOSS analysis can be used to determine the r-node st_reés in the following manner:
i) A linear elastic finite element analysis is performed.

ii.) The elastic moduli of all elements are modified by the equation

- @), } ‘
s (O' ¢) 0 ( 5)
where (@,); is the equivalent stress at a particular location within the structure
(Seshadri, 1995) and o, is the elemental equivalent stress. For cracked
components, this location is commonly chosen along the uncracked ligament. The
choice of location is arbitrary provided thaf (a,); is nonzero and the resulting stress

distribution satisfies equilibrium with externally applied loads.

The modification of elemental stiffness is used to force the stress distribution to
that of a limit type distribution. Examination of equation (3.5) indicates that the
elemental stiffness values are changed in suc;h. a manner that elements with
eﬁuivalent stress vﬁlues- greater than (6,); are séfténed while those with equiw‘/alent
stress values less than (0,); are stiffened.

iii.) A second linear elastic analysis is performed and the equivalent stress
distribution along the symmetry plane (uncracked ligament for cracked |

components) is plotted for each analysis.
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Figure 3.2 shows.a"typlcat stress drstributron for‘a,cy

_‘:;‘; oaded by internal pressure

and the resultmg stress dlstribunon that can beexpected usmg the stiffness modrﬁcatron
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Figure 3.2 - Typical Stress Distributions

equation (3.5). The intersection of the two plots' glves the r-node stress. Since the r-node

stress is load-controlled, it is linearly proportional to 'Ethe externally applied tractions.

Plastic collapse occurs when the r-node stress reaches yield. Therefore the limit load can

be expressed as

B =P G6)

<\




| This value gives a lower bound estimate of the limit [oéd for the given component or
structure if certain criten’a-are satisfied. The GLOSS R-node method has also been used
to provide a robust estimate of inelastic fracture parameters for standard fracture
specimens such as the compact tension specimen. The estinizlltes are made by scaling the
load point displacements, based upon the results of the two linear elastic finite element
analyses, to obtain a strain parameter from which the elastic-plastic J-integral is

calculated (Seshadri et al., 1995).

3.3 The m,-Method

3.3.1 Theorem of nesting surfaces

Consider a structure of volume, V, bounded by the surface, S, and acted upon by a system

of generalized loads Q, (k=1, 2, ... ) as shown in Figure 3.3. Within the structure, there

Figure 3.3 - Body with applied point loads.
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is a stress field o; and a corresponding steady s&ainfrate field ¢;,. The problem is
restricted to that of siéady isothermai creep in which the material behavior of the structure

is govenied by the constitutive equation

& = Bo" €X)

The “generalized effective stress” for this structure is given by

i

Ce 2[%‘ oLV 338)
v .

where, o,, is the effective stress assdc_iated with the actual stress field inside the structure.

Based on the work of Calladine and Drucker (Calladine et al.,1962), the theorem of

nesting surfaces may be stated as follows:

If the hypersurfaces Qg (0;) = ;:onstant. in a stress space is considered and O is
strictly monotonic, then for increasing values of n these hypersurfaces must “nest”
inside each other. That is to say, 0:l.. < 0: < 1 ;. They are bounded on the
outside by the surface n = 1 wjhich_‘isvaha_logous to lmear elastic?ty and on the
 inside by the limit surface fd’r; f--é, '.v'v"hi_c;h'i‘s. fhe yxeld surface in terms of fhe

generalized forces constructed on the assumptionlthat the condition of plasticity is

givenby O, = constant.
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Both bars have length L and
cross-sectional ares A.

Figure 3.4 - Two-bar structure with associated nesting surfaces (Boyle, 1982).

3.3.2 Mura’s variational formulation

In a limit analysis, it is well established that a statically admissible stress field cannot lie
outside the hypersurface defined by the yield criterion. As well, the stress field obtained
from a kinematically acceptable strain-rate field should lie on the hypersurface. The
introduction of the “integral mean of yield” concept by Mura and associates (Mura et al.,
1963) into‘ a yariatiopal formulation has made it possible to bypass the previously

mentioned requirements.

Mura and Lee (Mura et al., 1963) showed that for a state of impending plastic flow, the

funictional, F, becomes stationary with the safety factor being the stationary value of the
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functional. The functional is éxp:essed as follows: -

F- f’ff';'("fa‘ * "fi)‘iV * [ob-,.jv,.jdv - th'VidS
v v 5
(3.9

- m(fT,.v,.ds - 1) - fp[f(s,.j)‘+ $*1dv

5 v
with the constraint condition u > 0. The arguments of the functional are the independent
variables; velocity v}, the deviatoric stress tens'oi' S as well as the Lagrangian multipliers.
The Lagrangian muitipliérs include the mean stress 6, the surface reaction R, the safety
factor m, the pcisitiVé scalar of proportionality u, and the yield parameter ¢. Other
parameters include the given surface traction, T, defined on a part of the boundary

surface denoted by S (the remaining boundary is denoted S,), the Kronecker delta §; and

the function f{s;), which is the yield criterion. The yield criterion is expressed as

2
fisp) = %s,.js,.j - k%= %s‘.js,.j - % (3.10)

The variables s;,, 6, m, u, and ¢ all correspond to a state of impending plastic flow.

y

Taking the variation of (3.9) and equating it to zero yields several natural conditions, one

of which includes the plastic potential flow law given by

(Vi + V) = ui (3.11)

€. =
as‘.j

if

0O |

Other important conditions yielded are the equilibrium conditions, which may be
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cxpressedas" -

(s; +8,0);,=0  inV |
(s; + 8,00m; =mT, onS; ' (3.12)
(s + 8,0)n; = R; on S,

We now introduce the arbitrary argumen;fs

v, = v, + 6v‘.

S§ =S * bs;

g+ 80

RS = R, + GRf (3.13)
m° =m + &m ‘

Ho =p + Jp

& = ¢ + 50

%
I

in which v, s, 0, ... denote the stationary set of arguments of equation (3.9) and 6v,, 8s;,
etc., denote the variations. In the above set of equations, s7, is the statically admissible
deviatoric stress tensor corresponding to impending plastic collapse, where s‘,’, =07 - 6,0°.
The parameter 6% represents a statically admissible stress field, 0° = 0{,/3 and §; is the

Kronecker delta.

Substituting the arguments of ‘(3.13) into eqiihﬁbn (3.9) using the equilibrium conditions

(3.12) and the'ad,ditional conditions

(5780 =0~ mV
(57 8,8y =m°T, o S; .. o®

(S,; . Gudo)njz R’ on S,




exptesswn (3 .9) can be mampulated to glve

F=m f 53 6s (5([))2 f&p f(s;) + (¢°)? } (3.15)

Mura and Lee also showed that integrating equation (3.9) with arbitrary arguments (3.13)

and using the constraint conditions (3.14), the functional, F, can be expressed as

F=m° -fu”{ﬂs,-,f’) * («b")’}dV (3.16)
5 |

Furthermore, the parameters m°, u" and ¢° may be determined by réndering the above

functional, F, stationary which leads to the following set of equations |

OF _o OF _o OF _, .17
om® ap° a¢° '

Using equations (3.15) and (3.16) along with the additional condition, f(s3) + (¢°)> =0 in

V, yields the extended lower bound theorem.

Mura’s extended lower bound theorem (Mura et al., 1965) may be expressed as

mo
max{fis)) + @P} B )
22 |

for any set of 5%,

o’, m’, p° and ¢° which satisfy the conditions,
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6f +807,=0. " mV

U . 3.19
. (s,:,.” +6,.I.o")nj-=m"1',.: - on S; G-19)

and the integraij_m_éan of yie[d criterion givén by
f {ft * (4’")2}‘“’ 0 (3.20)

Since the right side of equation (3.18) is the saféty factor, the left side gives the lower

bound for the safety factor.

3.3.3 Finite element implementation of Mura’s formulation

Seshadri and Mangalaramanan (Seshadri et al., 1996) implement Mura’s formulation into
a finite element scheme, whereby the improved lower bound multiplier may be
determined from the results of a linear elastic finite element analysis. The linear elastic
stress distribution, s7;, corresponds to the applied traction, m°P.- Given a second statically
admissible stress distribution, §7, corresponding to an applied traction P, then m’ §;

would correspond to m°P. Therefore, the following relationship holds

s; = m°§; 3.21

Substituting equation (3.21) into (3.16) yieldé the following expression for the functional,
F,
37
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The von Mises equivalent stress for the case of a uniaxial state of stress can be expressed

as

Leosy = & 623)

2 070 3

Substituting equation (3.23) into (3.22) gives

S T PR

|4

If we now apply equations (3.17) to the above result, we arrive at the following

expressions for ¢° and m°

o = 0
o _ OWT—' :
mt == = (3.25)
J E (OZQZAVI:
k=1

The parameter o2, is the equivalent von Mises stress and AV, is the volume of respective
elements in the FEA discretization scheme. If we now consider Mura’s extended lower
bound theorém, we can use equation (3.25) to simplify (3.18) to give (Seshadri et al.,

1996),
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m’ = <m (32
@) + (m (o)},

where m’ is the lower bound multiplier. Equations (3.25) and (3.26) are easily obtained
from a linear elastic finite element analysis. The quantity (02),, is the maximum
equivalent stress in the structure for a given load P. Therefore, the lower bound limit

load may be expressed as

P, =m'P L)

Calladinc and Drucker (Calladine et al., 1962) and Boyle (Boyle, 1982) have developed
an equation based on the average surfaces of dissipation that is similar to equation (3.25).
Therefore, the parameter m” may be regarded as a multiplier for an upper bound limit
load. It follows that thé exact limit load for a given structure is bounded by the upper and
lower multipliers, i.e. m “< m < m°. The challenge is to reduce the range between these
values in order to focus on the actual limit load value. For the purpose of design and
failure analysis, the lower bound value introduces a conservative estimate of the limit

load with an inherent factor of safety that is desirable for this type of work.
-3.3.4 Analysis of cracked components - Local plastic collapse

Based on Mura’s formulation, the pafémeter m’ i:or_respor_lds to the upper bound

multiplier and is found from equation (3.25). The quantities o2, and AV, represent the
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For the case when B =1, equation (3.28) d}egenetat&é: to the classical lower bound value

given by m° =o/0¢,.

Next, consider an iterative linear elastic FEA process, similar to that of the GLOSS R-

node approach, where the element stiffness values of the individual elements are altered

m*'(Vy m*(V): upper bounds
m’'(V): lower bounds
(VesVsVy)

m*(V)

\ m'(V)
m'(Vy)

Number of Iterations

Multiplier

Multipler, m

Figure 3.6 - Variation of m° and m’ with iterations.

in the second and subsequent iterations to obtain a flatter stress distribution which
approaches a limit type distribution. If m° is evaluated on the basis of the total volume
Vr, then it will decrease with increasing iterations, giving a flatter distribution of stress
with increasing iterations. Of course, if m° increases with increasing iterations, the
theorem of nesting surfaces will be violated. If m® is evaluated on the basis of the
reference volume V,, and the various mmﬁons are carried out in the following

sequence,
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(077 AV, > (0,)*AV, > >0 )* AV, (3.29)

[1

then for some reference volume, where AV, < V; < V;, the multiplier m” obtained from
the first and second linear elastic FEA will be equal, i.e. (m7 = m3). That is to say that the
theorem of nesting surfaces is just satisfied. A schematic of the variation of the upper

and lower bound multipliers with the number of iterations is shown in Figure 3.6.

Seshadri and Mangalaramanan (Sesh‘adri‘ et al.,1996) use the concept of reference volume
in conjunction with Mura’s variational approach to develop an improved lower bound
limit load estimate known as the m,-niethod. This method makes use of a stiffness
adjustment scheme similar to that of the GLOSS R-node method in which two linear
elastic FEA are performed. The first is a conventional analysis, while the sécond analysis

is based on a modification of the elemental stiffness values using the following equation:

o q
E), =[ = | E, (3:30)
(oe)k

where 0,, is any arbitrary, nonzero su'és's \_?alue7 o? is the elemental centroidal equivalent
stress, E_ is the modified element elastic. modulus and E, is the original elastic modulus.
The‘subscript Ic‘refers to the element numbers and varies from k=1 to k=N. The
parameter q is the sf.iffness adjustment inde:; and is used to moderate the degree of
modification for “sensitive” structures. For thé majority of ‘_analyses, the value of q is set

to unity.
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Based‘; on théresults of the twb linear elastic-FBA, 'and_ makmg usé of the expression for

Mura’s upper bound mulnpher, ” (equation 3.25), the values m{ and mj may be
determined. The theorem of nesting surfaces assens tbat mj > m; xm, whlch is shown in

Figure 3.6. The variation of m° with volume is also shown in Flgure 36.

Seshadri and Mangalaramanan mtroduce an iteration variable- C such that infinitesimal
variations in the elemental sufﬁless in the second linear elastic FEA resultina
corresponding change A(, the magmtudc of which depends on the nature of the stiffness
adjustxneﬁf. Therefore, as { mcreases w:th successive linear-elastic iterations beyond two,
the upper and lower multipliers converge to the actual sréfet)‘rffvactor(Figure 3.6). Mura’s

lower bound multiplier may now be expressed in terms of the iteration variable, as

2m°(Q)o’ |
m'@Q) = — m Q0 (331)
o? + [m QF [o3OP

where 0;({) is the maximum equivalent stress for a given iteration “/”. The quantities
m’, m” and 0, are all functions of the iteration variable. Differentiating both sides of
equation 3.31 with respect to {, gives

dm’ - om’ dm?° . om’ d":i
dg dme dC a0y, dg

3.32)

Equation (3.32) is valid for any given iteration, however, only two are required for the

m,-method. This equation may also be written in terms of finite differences, as follows:

43



/ ' 3 ’ )
Am’ = Om L @m) + a“"oL @) (3.33)
==c'.‘ . '

Using equations (3.31), (3.33) and the following defined quantities

r _ - [ S
Am’ =m, - m;

0o - o
Am m, - m; (.34)

O
o y _ o
M

Seshadri and Mangalaramanan arrived at a quadratic equation for m,, which may be

expressed as:

Am] + Bm_ + C =0 (3.35)

where the coefficients A, B and C are given by

A =My @) + 4m Y@ - 1
B = -8 (miﬂ)3 (a:{i)z (3.36)
C=4 (mr_a);; ('(-IM‘-)

These coefficients can be obtained from the results of any linear elastic FEA. Real roots
are ensured for equation (3.35) by insisting that the discriminant be greater than zero, i.e.
(Mm@ < (1 +v2). Although it is possible to calculate m, based on a single linear
elastic FEA, provided the given condition is met, the use of the reference volume along

with two linear elastic FEA’s gives improved estimates of m,. In addition, the use of the
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reference vo[dnieSeti(es to reduce the sptead between the upper and lower bound
maltipliers, thereby focusing much more closely on the actual multiplicr, m, which is

bounded by m® éind m,
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CHAPTER 4
ANALYSIS OF STANDARD FRACTURE
SPECIMENS

In the following chapter, three standard fracture specimens are used as a benchmark for
application of both the Gloss R-node and m,-methods of robust analysis to determine
limit loads fof cracked components. The three specimens included in the analysis include
the compact fension (CT), single edge notched bend (SENB) and the single edge notched
tension (SENT) specimens which are shown in Figure 4.1. The figure outlines the
important geometry parameters for each specimen and indicgtes the applied loading
condition. Four independent limit load solutions will be calculated for each specimen for
the purpose of comfarison. These solutions will include both the Gloss R-node and m,,
solutions as well as a nonlinear ﬁnit‘e‘élemeﬁt sél’ution and analytical solutioﬁs wbich are
avmlable for these panmular geometnes The robust lumt load results will be compared
to the nonlmear finite element analyms and the analyucal solutmn to gage the accuracy of

the robust esllmates
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Figure 4.1 - Standard fracture specimens.

Table .l - Sténdard Fracture Specimen Dimensions

4.1 Finite Element Modeling Considerations

All of the finite element analyses dlscussed in this thesis have been performed using the
ANSYS Version 5.2 software package from Swanson Analysis Systems. This program
has been used for both linear and non-ﬁﬁgar‘analysis.
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For the two dimensional linear elastic analyses, it is hecwsary to model the 1T

singﬁlarity of the strain field at the crack tip. Based on work by Barsoum, this is most
effécﬁQely achieved by using an iSoparatﬁetric six—noded triangular element with the
midside nodes moved to the quarter point (Barsoum, 1976). This element exhibits strain
singularity along the element boundaries as well as in the interior, and has a finite strain
energy and stiffness at all points within the element. The singular elements are used only
around the cr;ac'kitip and allow a coarser mesh in this region than would be possible with
ordinary elements. In the ANSYS software the recommended element for two
dimensional fracture models is known as the PLANE2 element and is used exclusively in
modeling the three specimens. In all cases the crack tip is modeled using nine elements
with the radius of the first array of crack elements at the crack tip equal to 1 mm (see

Appendix B). The ratio of the size of the second row of elements to the first row is 0.5.

Material behavior is assumed to be elastic perfectly-plastic for simplicity. However,
modeling of strain-hardening behavior may be easily approximated using a flow stress
approach in the analysis. The flow stﬁess for typical pipe steels is defined in the literature
in one of two ways; i) 0,,,, = 0, + 69 MPa or ii) 0,,, = (d_, + 0,)/2 where o, is the ultimate
tensile strength of the particular material. In either case, the yield stress value of the
material is extended to account .f(')t the effect of strain-hardening in the analysis. For
elastic perfectly-plastic material bghaviqr, Ri_ce anci Rosengren have shown the crack tip
strain singularity to be of the ordef lft (Rlce etal., 1968). This is achieved using

isoparametric eight-nodéd quadrilateral elements that are degenerated to triangles with the -
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mid;side nodes moved to the quarter point. Again, these elements are only used around
the crack tip to effécti\‘rely model the strain singularity. Matériai’ properties are viSottopic
with the following values of material constants used; Young’s Modulus = 211 GPa,
Poisson’s ratio =0.3 and yield stress = 488 MPa. Each of the three problems are
modelled as plane stress with specified thickness. ANSYS code necessary to generate
and solve these and subsequent models may be found in Appendix A as is all macro code

used in postprocessing. Typical mesh plots are illustrated in Appendix B.
4.2 Compact Tension (CT) Specimen

An illustration of the CT specimen is shown in Figure 4.1, along with the applicable
geometry parameters. A half model is used to avail of symmetry in the geometry and
loading conditions, which allows for faster model generation and shorter solution times.
The relevant dimensions of the specimen are given in Table 4.1. For the linear elastic
analyses an arbitrary tensile load of 1300 N was applied to the specimen which is

modelled as a plane stress problem with a specified thickness.

An analytical limit load solution is available for the CT geometry and is given as

(Anderson, 1991) :

1.072nBba,

=) “D

P,

n
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. The paramétérs'B, b and o, arethe thickness, uncracked Iigérn‘eht jength and the yield
stress respectively. The results of the robust méthods will be compared to the analytical

and nonlinear ﬁnite element solutions. -
4.3 Single Edge Notched Bend (SENB) Specimen

'I'he SﬁNB specimen is shown in ngre 4.1 w1th pertinent dimensions Iisteci in 'fable 4.1.
As in the case of the CT specimen, a-.half-model is lised to avail of symmetry. An
arbitrary load of 600 N is ¢;|pplied‘ to the model for the linear elasﬁc analyses. The
problem is modeled as plane stress with specified thickness. The analytical solution for

the SENB specimen may be expressed as (Anderson, 1991):

1.072Bb%c |
= __-S_._..!. 4.2

where B is the thickness, b is the uncracked ligament length, § is the length and o, is the
‘yield strength. The results are discussed in section 4.5.

44 . Sih'gle Edge Notched Tension ,(SENI)»‘Panel

Asin the prevxous two cases, the SENT panel is such that the half-model may be used on.
- the basm of symmetry The relevant model dunensxons are found in Table 4.1 The

: arbltrary apphed tensue load forthe lmear elasnc analyses was 500 N. The specxmen is,




again, modelcd as.a plane stress problem with specified thickness. The analytical limit

load solution for the SENT specifnen is given as tAnd’erson, 1991):

P, = 1.0721Bbo,
. ¥ o 4.3)
L L v iy

where, B, b and o, are the thickness, uncracked ligament length and the yield stress

respectively. Limit load estimation results are given in the'following section.
4.5 Limit Load Results Using The Gloss R-node Method

The Gloss R-node analysis requires the determination of the r-node stress based on two
elastic finite element analyses. For the three fracture specimens under consideration,
failure occurs as a result of net section yielding along the uncracked ligament. Therefore,
the most likely locations for r-nodes will be located along this ligament. R-nodes are
identified as locations in the structure where the equivalent stress distributions for the
first and second linear analyses intersect. For the two dimensional fracture models
considered, this is most easily obtained by plotting the distributions along the remaining
ligament, as collapse will occur along this section. Using the ANSYS software, the path
is defined by specifying nodes at the beginning and the end of the desired path.
Intermediate nodes may also be used in the definition of the path to increase the number
of data points in the distribution. The FEA software calculates fifty data points between

each two nodes defined in-the path, with the data points obtained by interpolation
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between known iiodaI_vaIues as necéSéary. The stress distributions are based on nodal
stress values for elements located along the symmetry plane, with stress. values averaged

across the elements. Plots of the equivalent stress distributions along the ligament are

R-Node Stress Determination
CT Specimen
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Figure 4.2 - CT Specimen Stress Distribution Along Symmetry Plane

given for each specimen and the relevant R-node stresses are determined. Plots
illustrating the finite element mesh and other inodel data are located in Appendix B.
Figure 4.2 shows the equivalent stress distribution for the CT specimen after the first and
second linear elastic analyses. The distributions are plotted from the crack tip (position of
0 m) to the end of the uncracked ligament. Althbugh difficult to see, there is only one

intersection of the two distributions at a location near the crack tip. This indicates the
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presencé of one r-node for this problem and the r-node stress isthe equivalent stress value

corresponding to the intersection point. At a position: of 0.03 m; there appears to be an

R-Node Stress Determination
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Figure 4.3 - SENB Specimen Stress Distribution Along Symmetry Plane

overlap in the two stress distributions. However, there is no clear intersection. As a
result, this cannot be taken as an r-node. In all likelihodd, the apparent intersection is the
result of interpolation errors in calculating the element céﬁuqic}al stresses. The same may
be said for the apparent intersection at“tl‘ié far end of the plot (position of 0.052 m). It can
be showﬁ that these apparent intersecéﬁbnS‘ progressively vanish as the modified elastic _
stress distribution approaches limit type(Seshadn, 1996). However, this would require -

multiple elastic iterations, which would defeat the purpose of attaining good limit load
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esttmates usmg only two elastic 1terauons. The actual r-node eqmvalent stress value

taken from the plot is 52 MPa which corresponds to a hmlt load value for the C'I'

specimen of 12 182 N.
R-N ode Stress Determmatlon
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Figure 4.4 - SENT Specimen Stress Distribution Along Symmetry Plane.

Similar stress distribution plots for the first and éeé;)nd linear analyses along the
uncracked ligaments are givén in Figures 4.3 and 4.4 fdr the SENB and SENT specimens
respectively. In each case, the distribution is plotted from the crack tip along the extent of
the uncracked ligament. The plot for the bend speciliién shows two possible intérsections
at either end of the plot, with an overlapping region;dt the center. The first intersection at

the left hand side of the plot is a clear distinct intei'secﬁon in the vicinity of the crack tip
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and as such must be consxdered an r-node. The overlappmg sectxon at tbe center of the

plot does not show a clear d:stmct mtersectlon between the two distributions. Therefore,
thisisa vmual r-node. The mtersectlon ax the right hand s1de of t.he plot also appears to
be clear and dlstmct which mdlcates an r-node locanon. The loading configuration of the |
SENB ‘spec.unen is such that tensile and compressive stresses are present along the
remaim’hg ligament due to the bending moment. Plotting the von Mises equivalent
stresses, the resulting stress distribution across the ligament is u-shaped. Asa result, it is
possible for this dismbutfon to yield two r-node locations with similar stress values. This
is the case for the SENB specimen. Since there are two r—oodes indicated in Figure 4.3,
the r-node equivalent stress used invth‘e evaluation of the limit load is the arithmetic mean
of the two r-node stresses shown in the figure. If unsure about the validity of multiple r-
nodes for more complex sirﬁctures,f use the highes; r-node equivalent stress value to
calculate the limit load to eosure a'conservative estimate. The equivalent stress value in

this case is 34 MPa which gives a limit load for the SENB specimen of 8508 N.

The stress distribution plot for the SENT specimen is sm:ular to that of the CT specimen,
as the loading conditions are similar. In this case, the plot shows a single, well defined
intersection at a position oﬁapproximately 0.005 m along the symmetry plane.

As well, there is an opparent overlap towards the center of the plot characteristic of the
'preVious two specimens. This overlap is again considered a virtual r-node and therefore
does not play arole in the collapse mechamsm, Based on the plot, the r-node equivalent

stress for th1s geometry is 28 MPa wh1ch corresponds to a limit load of 8 589 N.
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There are several problems associated with determining r-nodes using the stress

distn"bution along the uncracked ligament. The previous discussion outlines the

difficulties in determining what criteria constitute an r-node based on the plots shown.

This method is satisfactory for the simple, two-dimensional fracture models given.

However, for more complex geometries and crack configurations the method outlined

needs development. Cases involving complex cracks and three-dimensional geometries

make this approach a challenge:
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Figure 4.5 - Improved R-node Visualization Scheme

An improved method of visualizing r-node locations and stress values has recently been

used with good success. The improved meihod involves calculating r-nodes for every

combination of adjacent elements in the entire model (Mangalaramanan, 1997). The
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method may be used for both two and three dimensional models and provides a visual | |
representation of all the r-n(")de's‘ wnthm a structure. The r-nodes are determined by
plotting the element cen&oidéi equivalent stress values of adjacént elemenfs from both -
the first and second linear analy_ses.- A linear relaﬁonship is assumed between the values
of the first and second mﬂyses and the lines plotted for each element. An r-node is
identified if the lines intersect and the r-node stress value is taken as the intersection
value. Figure 4.5 illustrates this method. Three tnangular elements are depicted in thev
figure with element centroidai equivalent stresses plotted for the two pairs of adjacent
elements. The plot in the upper right comef shows two intersecting lines which indicates
an r-node at this location. The r-node equivalent stress is taken as the stress value at
which the lines intersect. The lower plot shows the stress.values for both the first and
second linear analyses which.do not intersect. In this case, there is no r-node present.
This calculation is performed for all adjacent elements within the model to determine r-

node locations and their associated stress values.

Having identified all the r-nodes within the structure, the next task is to identify the
peaks. If we consider all the r-nodes within the structure and plot them based on their
equivalent stress values, an r-node stress contour can.bé depicted within the structure.
Plastic collapse will occur in the area where the r-node suess-v.alues are highest (as these
areas will reach the yield stress sooner) which may beéasi_ly. idépﬁﬁed from the r-node
stress c’oﬁtour.. A recent paper by Seshadri lists s’eve;ral basic rules for‘i-dentifying‘

legitimate r-node peaks which may be used for this approach (Seshadri, 1996). The r-
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node dxagrams tefened to in Seshadn 3 paper are: two dfmensxonal plots of r-nodes along

a path consistent w1tb the model geometry. However the same. peak visualization and

identification rules may be applied to the prescribed method and extended into three

d_imenéions. It is important to note that proper identification of r-node peaks requires

substantial experience and that the rules which are given should only be used as

guidelines.
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Figure 4.6 - CT Specimen R-node Plot

The unproved r-node visualization scheme is used to determine the r-node peaks for the

three standard fracture specimens discussed prevmusly and the results are compared to

those obtained earlier. The r-node plot for the CT specimen is shown in Figure 4.6. The
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n'umberéd values inside the model outline mdicatc ranges of stress values for the r-nodes

and are given in descending order of stréss (i.e. one represents the highest stress value

while ten indicates the lowest stress vaiue)‘. The range of r-node equivalent stress values
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SENB Specimen - R-node Piot

Figure 4.7 - SENB Specimen R-node Plot

is broken into ten contour divisions for this particular model, as well as the others
discussed here. The number of confour divisions may be increased or decreased as
desired. The r-node contours showanlgure 4.6 cigarly indicate the presence of one
significant r-node peak'for this model. Thepeak is 1ocat'ed along the uncracked ligament
near the crack tip and is indicated by the :ééﬁtou; v;.luc of §qe as }shown in the plot. All

the r-nodes surrounding these have contoqf val_ueé 1e$sl than one indicating a decreasing




contour. A second peal: may be consndered at the top of the figure where there is a clusfer
of r-nodes with the contour value of six with all surrounding r-nodes having lesser values.
Howew{er, based onithe rules outlined by Seshadri, this is identified as a virtual peak as it
is nof distinct and is located away ﬁnm a critical region of the structure. The real peak is
consistent with the r-node peak identified mFlgure 4.2, based on the stress distribution
plot along the ligament. The equivalent stress value at the peak location for the CT

model is 103 MPa which corresponds to a limit load value of 12 341 N.

The r-node plot for the SENB speCiinen is shown in Figure 4.7. This plot is similar to
that of the CT specimen in that there is only one clear r-node peak present. This differs
significantly from the resnlt obtained from the equivalent stress plot along the uncracked
ligament, shown in Figure 4.3. Based on the results of Figure 4.3, two r-node peaks were
identified, whereas the full r-node plot of the structure indicates only one relevant peak.
It is difficult to see the contour numbers near the crack tip in the r-node plot above due to
the fine mesh in this area and a significant number of r-nodes. The contour numbers

- overlap in this region.. However, this is indeed.‘the location of the r-node peak which
occurs near the crack tip,. as was the case with the CT specimen desribed previously. The
peak r-node equivalent stress value for this geometry is 35 MPa which corresponds to a

limit load value for the SENB specimen of 8 336 N.

The method in which r-nodes are determmed by the mpmved r-node visualization

‘ 'scheme is dependent on element sxze Element centroxda.l eqmvalent stress values, which




are computed based on the nodal: stress values for apanmular element, are used in this

mcthod. If the- element sizeis: reIanvcly large, a sxgmﬁcant dlﬂ'emnce in nodal stress

values could occurover the extent of the elemcnt. Tlns is parttcularly true for smaller

regions in a structure havmg stress concentranons or other locahzed behavxour Asa
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Figure 4.8 - SENT Specimen R-node Plot

result, the important activity in a localized region may be shadowed by the limitations
imposed by using only the centroidal stress value for a large element. This is likely the
casé for the SENB specimen for which the improved identification scheme dées not
identify the second r-node as did thé- plot of thé stress distributions across the uncracked

ligament (Figul-'e' 4.3). The stress plot along a particular path obtained from the ANSYS
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software ave_r_agS stress values across the eleméﬁis_;ipd will always give fifty data points

between everyupaill’f of nodes used in the path deﬁ'nrition'.' Depending on the mesh density
along the path (eléﬁient sue), several data points are interpolated across an element,
based on the no‘dai‘ values, leadmg to'a more accurate distribution of stress across an
element. Using element centroidal stress values does not give a clear representation of
how stress values are changing across the element. Therefore, there may be inaccuracies
in identifying all the r-nodes when using the improved r-node visualization scheme. This
inaccuracy is clearly seen in the SENB model. The improved scheme gives a clear
representation of what occurs in the entire structure, as opposed to one particular region.
In addition, the improved scheme eliminates the need to identify an appropriate path
along which to plot the stress distribution. Although this is not a problem for the
examples given, it would create a signi.ﬁcanf problem for more complex geometries. In
any case, if there is some doubt as to the identification of legitimate r-node peaks always
choose the highest equivalent stress value in determining the limit load in order to ensure

a conservative estimate.

The results of the r-node plot for the SENT specimen (Figure 4.8) are similar to those of
the CT specimen. One relevant r-node peak is identified and corresponds quite well to
the stress plot along the ligament shown in Figure 4.4. Again, the r-node peak is located
in the vicinity of the crack tip. A lesser peak appears to exist at the top of the model.
However, this is due to the manner in which the load is applied along the upper surface.

Applying the rules for r-node peak identification given by Seshadri, the second peak
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would be consxdered a vn:mal peak and. would not be usedwhen determining the Ilmlt
load. The r-node peak stress. value for the SENT spec1men is 29 MPa which corresponds

toa hm1t load value of 8 477 N
4.6 Limit Load Results Using The m_-method

The m,- method for determining limit Ioads was abplied to the three standard specimens.
The results from this approach providé f-or both hupper and lqwer bound values of the
actuai limit load. The lowef bound &stunate is the t;;g of primary concern for failure
analysis. HoweQer, the upper bound result has practical applications in the areas of metal
forming and cutting. A detailed explaﬁation of the theoretical foundation for this method
is found in Chapter 3. A practical guide for obtaining m, results is given below, in a-step
by step approach.

1.) Create model geometry and perform the first lingat elastic analysis.

2.) Adjust the elastic moduli of the elethents and perform the second linear elastic

analysis. The mod‘uli_ are modified as per equation (3.30), with any arbitrary stress

value used for 0,,;. o :

3.) Obtain the equivalent stress and vol@e from the first analysis for each

element in the model and perfo’rm-tbe caiculation: of,AK:_ oﬁzAVz; .. 05,AV, for

all n elements. | | _- | ‘

4) Arrange the data in descending order, bascdonthe résults of the calculation

- performed in step 3.




5".)  Sort the stress and volume listing from the second anaIys_isﬂ corresponding to

the ordered listing of the first analysis. | Ne_it, perform the calculation described in

step 3 using the results obtained from the second analysis. The final data listing

should contain a list of matching element numbers with correspdnding elemental

equivalent stress values, element volumes and step 3 calculation results for each

analysis as shown below:

First Linear Elastic Analysis™ Second Linear Analysis
Elem Stress | Volume | 02AV Elcln . Stress | Volume | oAV
No. No. .

89 |1.2e406 | 1.2¢-03 | 1440 | 89 | 1.1e+06 | 1.2¢-03 | 1320
5 |1.0e+06 | 1.4c03 | 14007] 5 | 9.2e+05 | 1.4e-03 | 1288
67 |9.7e+05 | 9.0e-04 | 873 | 67 | 9.9e+04 | 9.0e-04 | 89.1

6.) Based on the element order establishéd in:the previous step calculate the

energy dissipation summation as follows:

First Linear Elastic Analysis Second Linear Elastic Analysis
Element | Dissipation Element Dissipation
89 OsAVey 89 Ol
5 0398 Vs +03,AV 5 0752V +0LAV
67 | 0%AVy+03AV, +02AVe | 67 | 0%,AVe 402AV, + a2 AV, |

7) To sansfy the theorem of nestmg surfaces, the condmon mj > m; > 2m?

must be met. Here, m)

mj is based on. the summanon of the first lmear finite element




B analysxs and m; is based on the sininmatipﬁ of thesecondlmearﬁmte element
| - @wis '(refc'n—'- tosectxons 323 and 3.2.4jf6r‘ﬁ;rther exblanation)- Theréforc,
‘based on the e_nergf dissipétibn summation (step 6), the reference volume may be
determined by fdehﬁfying the point at which the summation for the first analysis
becomes less than that of the second analysis. The upper bound muttipti, based
on the reference volﬁme, is then éalculatédiusing eciﬁatio;i (3.25).
" 8.) Finally, the improved lower mound multiplier, m,, may be calcalated using

equations (3.35) and (3.36).

When following this proceduﬁ to determine limit loads, three important checks are
necessary to ensure a valid limit lt;ad estimate. These are: |
i.) Following modulus modification, the maximum equivalent stress value for
5oth~the first and second analysis should occur in the same element. For the case
of cracked components wiﬁ requirements for modeling the crack tip singularity,
this check may be relaxed if the maximum stresS occurs in different elements.
However, this may only be considered if ;he elcménts in question are in close
pl‘Olelty to one another in the model.
ii.) The maxxmum equivalent s;tress for the first analysis must be greater than that
of tﬁe second analysis. Iftﬁis is not true then m; < m; and the theorem of nesting
" surfaces w1ll be violated.
m) To-cnsﬁre real roots, the dxscmmnant for the- qMaﬁc equation (3.35) must

be greater than zero (i.e. the value for m, must not be imaginary).
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If any of the three checks are negative, the analysis must be repeated-with a slightly

different modulus adjustment. For the three fracture specimens discussed, at least three
different modulus- aﬂjﬁsnnent.vaiues were used in each case to ensure a valid pair of
results with whiéh td “cal;:ulate a limit load. It isiﬁ:pqrtant to note that while only two
linear analysis are required to calculat:e the m,mdﬁpﬁcr, more than one modulus
adjustment may be required to obtain a valid distribution to sati#fy the three checks given
above. The macros required to perfdrm the modulus modification, as well as the mz,

calculation, are included in Appendix A.

The limit load results obtained fon_- the three fracture specimens using the m, method are
as follows: CT specimen, P, = 13 910N, SENB specimen,’PLé 8 591 N and SENT
specimen, P, = 9 085 N. The following section discusses and compares the robust limit
load estimates with those of the nonlinear finite element analysis and the analytical limit

load equations given previously.
4.7 Summary and Discussion of Results

Robust limit load estimations for the three standard fracture specimens were given in the
two preceding sections. - These fe_sults are now compared to resuits obfained through
nonlinear finite element analysis as well as to results obtained from analytical limit load
solutions available for these geometries. Table4.1 lists all ]mnt load results for the three

- specimens. A ;iementag¢ error calculation fbr__ each robust limit load estimate based on




the nonlinear finite element analysis result is also given in Table 4.1. The error
calculation is based on the nonlinear FEA solution to ,pi'bvide a consistent basis of
comparison with components for which analytical solutions are unavailable.

Table 4.2 - Limit Load Estimation Results

Gloss R-Node
P, % Error

12182 N
‘12341 N
8508 N
8336 N

8589 N
8477TN

197% |13910N| 83% | IS170N | 14801N

19.1% | 8591 N 10523 N

145% | 9085N | 9. 10049 N

Note: The lower value in,the Gloss R-node columns is the result obtained using the
improved r-node identification scheme.

For the rﬁost part, the robust estimates compére quite well fo the nonlinear FEA and
analytical solutions. Both robust téchm’ques provided reasonably good results for the CT
and SENB specimens. Calculation of a limit load for the SENT specimen using the m,-
method posed problems when using a modulus modification ihdex, q= 1. This can be
attributed to the extreme depth of the crack used in this model. The crack depth in this
case is 60% of the total specimen width, leaving a sm-alildligament to support the applied
load. The stress redism'bution in thls area is exténsive and provides quite a wide range of
stress values in a limited reference volume for this specnmen Asa result, one of the three
criterion requiréd t'or a satisfactory soﬁtion was vi'olavt;id. ‘The modulus modification
index was‘teduceci to;'@,vallvllé.of 0.5 which provic_i‘ed.,t’hé-necessary conditions to 6Btain a
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CHAPTER 5

ANALYSIS OF AXIAL PIPE DEFECTS

The following chapter extends the use of robust finite element analysis to the practical
problem of axial pipe defects typical of stress corrosion cracking (SCC). The analysis of
these geometries 1s simplified to that of loading by internal pressure only in order to gage
the effectiveness of the robust techniques in limit load determination. The analysis
includes single defects of varying depths as well as multiple defect geometries typical of
crack colonies prevalent in SCC cases. Furthermore, all cracks are assumed to be

infinitely long with uniform depth.
5.1 Finite Element Modelling Considerations

The pipe models used in the analysis are based on typical, Class 1 grade, natural gas

transmission pipelines. Class 1 lines are those that are laid in regions with little or no
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humanpopulation as outhned in existing industry standards The finite element models
developed here are bM‘ on 2914 mm O.D. linepipe having a wall thickness of 10 mm.
The maximum allowable operatiné préssure for this particular linepipe is in the vicinity
of 7 MPa (T r;n;ponaﬁon; 1992). These paramctets are typical of the common American

Petroleum Institute (APT) pipe grade, X-65.

The finite element modeling is performed with the ANSYS Version 5.2 software package
developed by Swansor Analysis Systems. ANSYS is used for both the linear and non-
linear analyses. The pipe is modeled in two dimensions with defects running in the axial
direction. Both the pipe and the defect are assumed to be infinitely long with internal
presshre loading only. Therefore, the pipe is modeled using PLANE2 elements with the
plane strain opﬁon-,. the details of which are given in Chapter 4. The crack tip singularity
is simulated by moving the midside nodes of the triangular PLANE? elements to the
quarter point (Barsoum, 1976). Material behaviour in the non-linear case is assumed to
be elastic, perfectly-plastic. The analysis is based on the incremental theory of plasticity
for which the total load is applied in gradual increments. Newton-Raphson iterations are

performed for each substep in order to obtain a converged solution.
5.2 Single Axial Defects

In this study, a 914 mm O.D. pipe model having a single axial defect is considered. The

analysis is performed for various 6mck_depths in the radial direction, with all defects
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being continuous: and brealrmg on the externaI surface of the pxpe. Three different crack
geometnes are consxdered (1 L. smgle axial defects havmg depths of 2,3and 4 mm) The
finite element model for each geometry is generated usmg the ANSYS software with
only the symmetric half of the component being consxdered Slx-noded 1s0parametr1c
elements are used for the bulk of the mesh, with the smgulanty at the crack tip being -
modeled using nine crack tip elements. The radmsof the first array of crack tip elements
is 0.5 mm, with the ratio of the second row of elementsf to the first row being one.
Maten'al properties used for modelling pltrposes- include an elastic modulus of 211 GPa

and a yield stress of 488.43 MPa.

The limit loads for each of the thre¢ models is evaluated using the Gloss r-node and m,
robust methods, as well as traditional non-linear finite element analysis. The non-linear
analysis is used as a benchmark for.comparison with the robust estimates. The loading

for all robust analysis runs is uniform internal pressure of magnitude, P =2 MPa.
S.2.1 Gloss r-node limit load estimates

The r-node stress for each model i§"obtained by plotting the stress distributions of the first
and second. lmear elasnc analyses along the uncracked ligament and determining the
pomts of i mtersectlon as detalled in Chapter 4 The through thickness: stress distribution
for_.a. (_lefectgﬁ_ee pipe is compareq w;th t_hat of ¢ a pxpe contalmng an externali axial defect

in Figure 5.1. The defect-free distribution showsthe maxmlum stress developlng at the




| inside surface of the pipe anddecreasing towards theoutside surface. When an external
_ defect is mtroduced the dlstribunon changes consxderab[y. The maximum stress now
 occurs at the crack tlp, where tbere isa smgu]anty in the tesnltmg stress field. The
presence of a str_e_ss field smgulanty in combmatlon witha thm pipe wall thickness
introdi;ceé a number of problems when determining effective r-node stress values for

these models.

Figure 5.1 - Typical stress distributions for uncracked and cracked pipe.

Figure 5.1 indicates a U-shaped stress distribution for the defective pipe and a
corresponding peak stress at the crack tip. The singularity caused by the presence of the
defect results in a wider range of stress values over the remammg ligament and, as a

result, stress redistribution over this region is mo_re éxtensivg. For the pipe models here,
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the uncracked ‘ligame'nt'is_ relauvely small and the redistribution of stress must occur over

a very small legion. A typical modulus modification creates a relatively large change in
the resulting s’t:ess ﬁéld, Thlschange is too drastlc for structures which have small
regions in which stress rudisun'buﬁon can ol:(:nr. As aresult, several iterations are
required to achieve a pmuer stress r‘edist.r‘ibution‘.': 'l'hus, itis necessary to muuipulate the
modulus modification scheme used for the Gloss r-node technique such that the
redistribution of stress may oceur properly in the limited regjon available. This is
accomplished by introducing a moduluS-softeniug index, g, to equation (3.5) to give the

following modulus modification equation,

. (o‘ L
E = [-(0—'3] E, 5.1)

The modulus¥softening indl:x serves the same purpose in the Gloss r-node scheme as it

. does in the m, scheme. It moderateu the change in the resulting stress field brought about
by the elemental moduli modification; so redistribution can properly occur within the
space availal:lg. To‘ achieve tlnsthe value of q.iu reduced from one to a value of 0.25, or

lower, as necessary.

The pipe models considered in this section are the three described carlier, having crack
depths of 2,3 and 4 mm. In each case, the modulus-softening index, g, was reduced to a
value of 0.10 to give reasonable resultsfor the Gloss r-node analysis. The stress

dist.ﬁbutions'oblaiued from the first and second linear analyses for the pipe containing the _




2 mm defect are presented in Figure 5.2. As shown, the two distributions appear to be
almost coincident over the length of the ligament. This indicates that modification of the
original stress distribution due to changes in the elemental moduli has been slight. This is

Stress Distribution - 2 mm Defect
Softening Exponent q = 0.1
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Figure 5.2 - Stress distributions along the uncracked ligament.

the behaviour intended by introducing a modulus-softening index, ¢ < 1. As shown,
Figure 5.2 is of little help in determining r-node local;ions or stress values. Therefore, the
next step is to focus on the area of the plot where one would ekpect to find a clear
intersection of the two distributions, which indicates the presence of an r-node. A point
of interest in Figure 5.2is ‘thc»shape- of the stréss distribution curve. The expected U-

shape is hot géident in this’ particulaf model and in fact, the lowest equivalent stress
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'occnrs atthe msrde wall of the prpe. Thrs result 1s due to’ the very thin wall thickness and

_ the presence ofa stress smgulanty at the crack trp The mﬂuence of the crack is

extendmg along the entire hgament in such a way as to reduce the stress level at the inner |
surface of the pipe. In uncrackeclreglons of the prpe, remote from the defect, the stress
distribution is typical of an uncracked cylrrrder wr_th tl_laxrmum stress occurring at the
inner surface and reducing to a mmimum at the outer surface.

Stress Distribution - 2 mm Defect
Softening Exponentq=0.1
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Figure 5.3 - Stress drsm'butrgrr__s ncar the crack tip (2 mm defect).

Intmtrvely, the ongm of plastlcrty leadmg to plastrc collapse of the structure will occur at
or near the crack tlp, where stress levels are hrghest Therefore a closer look at the stress
drstn'butrons in this area is likely to reveal the locatlon of an r-node Flgure 5.3 shows a

plot of the stress distributions from the first and second hnear analyses in the region of
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the ligaﬁlent adjacent to the crack up Itis a_ppareﬁtﬁ'om this figure that the sliéht |
perturbation in the stréss field due to the ﬁodiﬁéaﬁdn of the elemental moduli has made
very little change to the stress d.istri‘buti(.)n'alo.ng th:é uncracked ligamenﬁ However, the
change is enough to identify an intersectfon of the two distributions at a distance of
aﬁproxixh‘étely 7.7 mm. The r-node stress corresponding to this intersection is
approximately 120 MPa, which corresponds to a limit pressure of 8.14 MPa. There-
appears to be a region at the left side of Figure 5.3 where the two distributions are
coincident, however, closer examination reveals this to be untrue. Although not visible in
Figure 52, closer examination of the stress distributions over the entire ligament shows
an intersection in the vicinity of the inner surface of the pipe (left side of plot). This point
of intersection corresponds to an effective r-node stress of approximately 65 MPa. If this
r-node is considered togethér with the r-node near the cf<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>