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Abstract

In this thesis, we develop relative coincidence theory on the complement and equivariant
coincidence theory. For two maps f and g from one pair of manifolds (X, A) to another
(Y. B). a Nielsen number :V(f, g; X — A) is introduced which serves as a homotopy invariant
lower bound for the number of coincidence points of f and g on X — 4. We provide a
method for computing the Nielsen numbers N(f.g) and NV(f.,g:.X — 4) when g, is onto and
Sr(m (X)) C J(f). These results are also generalized to manifolds with boundary.

To estimate the number of coincidence points for equivariant maps. some Nielsen type
invariants are developed. These invariants are introduced for the general cases first. and then
explored further for the special case. when the fixed point set of the action is nonempty.
A method is provided to compute these numbers and give an estimate of the number of
coincidence points of a pair of equivariant maps. Finally, minimality is discussed for both

relative and equivariant cases and we prove in some cases that these numbers are attainable

within the appropriate homotopy classes.
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Introduction

Let X,Y be manifolds with the same dimension and f,g: X — Y maps. A point r in
X is called a coincidence point of f and g if f(x) = g(z). The goal of coincidence theory is
to find a reasonable lower bound for the minimum number of coincidence points within the
homotopy classes of a given pair of maps.

Nielsen fixed point theory can be thought of as a special case of coincidence theory
though. of course. Nielsen fixed point theory came first. It is the case where X =Y and g is
identity. Nielsen theory was developed by Nielsen in the 1920’s. In the past two decades, it
has experienced a rapid new development. The famous Lefschetz fixed point theorem allows
us to deduce that if the Lefschetz number of a map is non-zero. then the map has at least
one fixed point. Nielsen fixed point theory goes further. It ensures not only the existence
of fixed points but also gives a reasonable estimate of the number of fixed points within
the homotopy class of the map. The Nielsen number .V{f) of a selfmap f : X — X of a
compact connected ANR X, gives a lower bound for this number. However, for a long time,
the Nielsen number could be computed only for two special cases. namely when X is simply
connected, or when f is the identity. In 1962, Jiang in [JB1] gave for the first time a method
to compute the Nielsen number in some nontrivial cases. A subgroup of the fundamental
group of the space was introduced, called Jiang subgroup. It was proved that if the Jiang
subgroup of the map f is equal to the fundamental group of the space X, then N(f) is

computable.

Though, under mild conditions, the number N(f) is a sharp lower bound for the number



[SV)

of fixed points of f, this is not true in general. In particular it is known that for homeomor-
phisms with boundary the ordinary Nielsen number may be a poor lower bound. A relative
Nielsen number for a selfmap of a pair of spaces (X, .4) was introduced in [SH2]. This proved
to be a better lower bound than the ordinarv Nielsen number when one considered maps
of pairs and in particular maps of manifolds with boundary. In [Z], Zhao considered the
nuinber of fixed points on the complement X — 4 for a selfmap of a pair of spaces (X, 4).
Zhao's results provide the necessary background, for the introduction in [WP3], of invariants
for an equivariant version of Nielsen theory.

Most concepts and results in fixed point theory can be generalized to coincidence theory.
Unlike Nielsen fixed point theory. coincidence theory involves two spaces and two maps.
Therefore the index of a coincidence point set is more difficult to define for arbitrary spaces.
For this reason, most of the work in coincidence theory is on manifolds.

The index of an isolated coincidence point and the Nielsen number V(f. g) of a pair of
maps (f,g) was first introduced in [SH1|. If the dimension is greater than 2, the Nielsen
number is a sharp lower bound of the minimal number of coincidence points within the
homotopy classes of (f, g). The development of the theory was continued in [BR1]; a Reide-
meister number for a pair of maps, which is relatively easier to compute in some cases was
introduced, and the relationship between the Reidemeister number and the Nielsen number
was established. Recently relative coincidence Nielsen numbers were introduced [JJ] and
[JL]. Our work, which in may ways generalizes Zhao’s work, bears the same relationship to

relative coincidence theory as Zhao's does to relative fixed point theory.



Fixed point theory has been generalized in another direction namely to equivariant fixed
point theory. The idea is to restrict attention to ‘G-spaces’, ‘G-maps’ and ‘G-homotopies’ for
some fixed group G. As with any restricted Nielsen theory we are often able to detect more
fixed points within the G-homotopy classes of a G-map. The Equivariant coincidence theory
that we study here is a generalization of equivariant fixed point theory. A recent paper [FP|
has made some progress in this direction. We will however consider general equivariant maps
instead of the highly restrictive category of G-compactly coincident maps as in [FP]. We
will discuss this further in Chapter 4.

The thesis is arranged as follows. [n chapter 1, we present known results and techniques
which we use later. In chapter 2, we introduce the Nielsen number on the complement in order
to estimate the number of coincidence points on the complement. We also give a new method
for computing the Nielsen number in some special cases. In chapter 3. we generalize a result
of Brooks, which says that coincidence points can be coalesced. or removed by deforming
only one of the maps involved. Our generalization is a relative version of Brooks’ result.
In addition, a local version of Brooks’ theorem is proved. These results make the relative
coincidence theory and the equivariant coincidence theory, which we develop, include the
corresponding fixed point theories as a special cases. In chapter 4, we introduce equivariant
coincidence theory. We first give several Nielsen type invariants, which are related to the

isotropy subgroups of the action group. Finally we discuss the computation of the invariants

and minimality.



Chapter 1

Preliminaries

[n this chapter. we will introduce the basic concepts and results in coincidence theory, which
can be found in [BR1], {JJ] and [SH1] etc.. In section 1. we define Reidemeister and co-
incidence classes for a pair of maps (f,g) : X — Y. We use the universal covering space
approach. In section 2, we describe Reidemeister classes using the fundamental group ap-
proach. We also prove that the two approaches are equivalent. In section 3, we introduce the
concept of an index of a coincidence class when both the domain and the range of the maps
are manifolds with the same dimension. In section 4. the computation of the coincidence

Nielsen number is discussed. In section 3, relative coincidence theory is introduced. Finally,

in section 6, we give the minimal theorem.
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1.1 Reidemeister and coincidence classes

Let X and Y be connected topological spaces, and f : X — Y and g : X — Y be maps.
We will use (f,g) to represent the pair of maps f and g. A coincidence point of (f,g) is a
point r € .X such that f(r) = g(r). The set of all coincidence points of (f. g) is denoted by
L(f.9).

Let px : X — X and py : ¥ — Y be the projections from the universal covering spaces
of X and Y respectively. A lifting f ofamap f: X = Y isamap f: X — Y such that
fopx =pyof. A pair of maps (f.§) is called a lifting of (f,g) if f: X — ¥ is a lifting of
fand §: X — Y a lifting of ¢g. Let [1(.X') denote the group of the covering transformations

-

of px : X = X, and II(Y’) the group of covering transformations of py : ¥ — Y.

Definition 1.1.1 Two liftings (f, §) and (f’,§) of (f.g) are said to be conjugate if there

are elements ¥ € I1(X) and 7Y € II(Y) such that
(f.d) =G o fe(3) 5 0 go (3.
For simplicity we denote (7¥ o f o (¥)71,3" 0 go (3%)7") by ¥ (£, §)(5%)~".
It is easy to see that conjugacy is an equivalent relation. A conjugacy class is called
a Reidemeister class of (f,g). We denote the class containing (f, ) by [( f, §)]- Note that
[(f.8)] = (3¥ (£, 9)F)YF¥ € II(X),5Y € TI(Y)}. The set of all Reidemeister classes is

called the Reidemeister set of (f,g) and is denoted by Ry,. The number of Reidemeister

classes is called the Reidemeister number of (f,g) and is denoted by R(f, g)-
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Proposition 1.1.2 Let (f, g) be a pair of maps from X to Y. we have
(i) T(f.9) = U3 pxT(f.3)-
(i) pxT(f.§) = pxT(f. 3, f [(f. )] = (. §))-
(iii) pxT(f.3) N pxT(f. &) =0, if [(f.3)] # [(f.3)].

Proof: (i) Assume rq € ['(f.g) and yo = f(zy) = g(xo). choose &y € p3'(ro) and choose
liftings f of f and § of g. Then we have f(&).§(&0) € py'(yo) and there is an element
a € (Y such that f(%) =ao 9(Z9). Hence 4 € p_\-['(f-, @ o g). Since a0 g is also a lifting
of . zo € Uyj 5 PxT(f.§). This shows I'(f,g) C Uz pxT(f.3)- UigpxT(f.8) CT(f.9)
is trivial.

(ii) Assume (f'.3) = 7(f.§)(3¥)"", and zo € px[(f. 3). i.e. there is Zo € (px)~'(z0o)
with f(Zo) = §(Z0). Then we have f(3%(%0)) = 4" o f o ()~ (¥¥(%0)) = 7" o f(Z0) =
7Y 0 §(Fo)) = 7Y 0§ o (3%) T (3¥(&0)) = §(5¥ (&0)). ie. o = px(v¥(E0)) € pxT (. §).

(iii) If 2o € pxT(f. §) N pxT(f'.§). there are Zq, #h € (px)~'(zq) such that 7 € T'(f.3)
and & € ['(f'.§'). Suppose £ = 7¥(Z0). Since py(f(Fo)) = py (f'(£})), There is ¥ € [I(Y)
such that f'(Z})) = 3¥ f(Z,)). Thus §(Zh) = 7Y 0 g(Z;) as well so that by Theorem 6.1 in
[GH], which says that maps with equal projections that agree on a single point are identical,

we have that (f',§) = 7Y (f,5)(3)"! as needed. a

Definition 1.1.3 The subset px['(f,§) of [(f,g) is called the coincidence class of (f,g)

determined by the Reidemeister class [(f, §)].

Proposition 1.1.4 ['(f, g) splits into a disjoint union of coincidence classes. a
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The set of nonempty coincidence classes will be denoted by ['(f, g). We have an injective
map pr,, from T(f.g) to R f.9: Which sends a coincidence class S to the Reidemeister class
[(f.9)] if S = pxT(£.3).

Proposition 1.1.5 Two coincidence points o, I, are in the same coincidence class if and

only if there is a path a from x4 to x| such that g o a end f o a are homotopic relative to

endpoints, which will be denoted by goa ~ foa.

Proof: =>): Assume that rq,xr, are in the same coincidence class. Then there is a
lifting (f,g) of (f,g) such that rg,z, € pxT(f, g). Equivalently there are points Iy €
(px) ™" (2o) NT(£.§). £1 € (px)~}(x1) NT(f.§). Let & be a path from I to I, then fod
and § o & have the same beginning and end points and hence their projections py o (g o &)
and py o (f o &) homotopic. Since py 0§ = go py and py o f = f o py-, this means that with
a = pyx o & then f o a and g o o are homotopic as needed.

<=): Let a be a path from g to r, with the property goa ~ foa. Let Iy € (px) ' (x0)
be a coincidence point of (f. g). Let & be a lifting of o starting at Iy, a(1) € (px) " Hz1) ,
then f o & and §o & are liftings of f o @ and g o a respectively. Since goa ~ f o e, and
(§°&)(0) = Zo = (f 2 &)(0), we have §(&(1)) = f(&(1)), but px(&(1)) = a(1) = 1. So zo

and z, are in the same class. a

Note 1.1.6 Proposition 1.1.5 is actually Brooks’ definition of coincidence class [BR1]. Thus

our definition is equivalent to Brooks’ when the class is nonempty.

Proposition 1.1.7 If X is locally path-connected and Y is semilocally simply-connected,

then each coincidence class is open in ['(f,g).
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Proof: Let x4 be a coincidence point of (f, g). We want to find a neighbourhood U of z,
such that any coincidence point z, € U is in the same class as z;.

Let V" be a neighbourhood of f{xg) = g(ro) such that every loop in V" at f(zq) is trivial
in Y. Let U be a path-connected neighbourhood of z4 such that U € f~}(V)Ng (V). Let
I, € U be a coincidence point of (f,g). and let ¢ be a path in U from x; to r;. We have
foc~gocsince foc and g oc are both in V7 and have the same end points. Thus £ and

ry are in the same class. a

1.2 An alternative description of Reidemeister classes

In this section. we will redefine the Reidemeister number using the fundamental group, which
is used in [BR1], and then we prove that this definition is equivalent to the one defined in
the last section.

Let zo € X and yp € ¥ be given, and w; and w, be paths from yo to f(zo)} and g(zo)
respectively. Define homomorphisms fi’ : 7, (X.xq) = m(Y.y%) and g2 : m (X, z9) =
m(Y.yo) by fr'(a) = wy - (foa)- (wy)™" and g57(a) = wy - (g0 a) - (wy) " respectively, by
confusing a path and a class in fundamental groups. When yq = f(zy) and wy is a constant

path at yo, we use fr to denote fr”.

Definition 1.2.1 Two elements a1, s € 7 (Y, yo) are said to be fr', g“s-congruent if there

is an element v € m;(.X, Zo) such that as = ¢ (y)a (f=’ (7))~!. We denote this relation by

a; = as mod fr’, g, or more briefly by, a; = as.
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Proposition 1.2.2 fr’, g¥s-congruence is an equivalence relation.
Proof: See Proposition 2 on p.28 in [BR1]. a

Definition 1.2.3 The set of all fz”. g¥s-congruence classes is denoted by 7 (f. g; Zo, Yo, w's: wg)-
We will use 7(f. g; ro) to denotesy(f, g; Lo, Yo, s, wg) When yo = f(xq) = g(z0). and wy and

we are constant paths at yg. An element in 7(f. g; ro. Yo. wf.wy) containing a € m(Y" yo)

will be denoted by @.

Definition 1.2.4 Let (f,3) be a lifting of (f,g) and Zg a point on (pyx)~'(xo). Let & a

path in ¥ from (%) to f(Zo). Define O, : Rrg = V(f. g; Lo. Yo. s wy) by O, (((f. §)]) =

[we - (py 0 &) - wi'].
Proposition 1.2.5 shows that the definition of @f'y([(f. 3)]) does not depends on the choice

of (f,§), %o and a.
Proposition 1.2.5 ©y, is well defined and is a bijection.

Proof: It is obvious that 6,,9([(f, §)]) does not depend on the choice of @. We have to
prove that it does not depend on the choices of Iy and ( f, 3).

Let I}, € (px)~'(zo), and 77 be a path in X from Z, to £y, then [px o7 = [n] is an element
in 7, (X, Zo). Let & be a path from §(£}) to f(Z,), then & ~ (§o7j)-& - (fo7i~!). So we have
w(pyo@)-wf'] = [we- (pyo((God)-& - (foi™)))-wi'] = [we- (Pyo(§on))-wy ' -we- (py 0d)-
witewp oy (Foi™))-wr'l = [wy- (v o (Goi))-wy lwg (py 0 &) -wi llwyp- (pyo (foi ™)) -wi']
= g3*(n)[wy-(py o &) -w;'|fz’ (n™"). This shows that [wy-(py 0&)-w}'] and [wy- (py 0&') -wy ]

are in the same fr’, g¥s-congruence class.
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Suppose (f'.§') is another lifting of (f, g) in the class [( ',g)], i.e. there are v & II(.Y)
and v¥ € I(Y) such that (f',3) = vY(f,3)(v*)". Let 5 = v¥(&), then ¥ 0 & is a path
from §'(£}) to f'(Z)), and it is obvious that wg - (py © &) -;..J}‘l ~wy - (pyovyyoa)- u)f—l. So,
Oy is well defined.

We show next that @y, is injective: Suppose ( f.§) and (f'.§') are liftings of (f. g) such

that Gf’y({(f,g)]) = @,'9([(f°',g')1). Let Zg € py'(£o), @ be a path from §{d,) to F(Zo), and

& a path from §' (o) to f'(%0). Then we have [wg - (py 0 &) -w;l] ={wy (pyod)- .u,—l], ie.
there is a [3] € 71 (X, zo) such that g5 ([3])[w,- (py 0 &) -wi'|f’ ([8]7!) = [wy- (py0&)-wf'].
This implies (go 3) - (py 0 &) - (f 0 37!) ~ py 0 &. Let 3 be a lift of 3 ending at . Since
J is a loop. 3(0) € p3(ro) and § o 3(0) € py'(g(zq)). So there is a v¥ € II(Y) such that
vY03'03(0) = §(&0). Now & = vYo((§03)-&'-(f'03~') is a lifting of (go3)- (pyod)-(fod™').
which is homotopic to py o @&, and &"(0) = ¥ o §' o 3(0) = §(%,) = @(0). This implies
a"(1) = a(1) = f(Z,). However, ¢"(1) = v¥ o f' 0 371(1) = v¥ o f' 0 3(0). So we have
+Y o f0.3(0) = f(&o) as well. Let v* € I(.X) such that ¥¥(3(0)) = Zo. Then we have
v¥ 0 §' o (v¥)"YZg) = §(£o). By the uniqueness of liftings, we have ¥ 0 §' o (%)~ ! = 3.
Similarly, we have v¥ o f' o (v¥)~' = f. So [(f, §)] = [(f',§")] and O}, is injective.

Finally, we show that Oy, is surjective: Assume that [o] is an element in 7 (Y’ yo), and
let & be a lifting of a. Let @4 be a lifting of w, starting at &(0), and @y be a lifting of wy
starting at G(1). Then (1) € p7*(g(z0)) and &7(1) € p7*(f(zo)). By Theorem 6.1 in [GH],
there are lifting § and f of g and f respectively, such that §(,) = Wq(1) and f(Zo) = @f(1).

It is easy to see that cIJg"' -0-ay is a path from §(Zo) to f(Zo) and wg-pyo(&g“ »&-&;)-w}‘l ~ Q.
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= pvl.s

V(f. g To, Yo, wy. wy)

13 commutative.

Proof: Let r be a coincidence point. Assume (f.§) is a lifting of (f.g) such that r €
px(T(f.§)). Then pr,,([z]) = [( f,§)]. Let £ € py'(z) be a coincidence point of (f,J) and

Iy € py'(xg). Let & be a path from %, to £, then §(a) f(a~") is a path from §(Zo) to f(Fo).

SO ef'g([(f,g)]) = [wg - Dy (g(a)) - py (f(@&=1)) -uf‘l]. Since pyx(a) is a path from g to .
0o, ([z]) = [wy-9(px(&))-f(px(&7"))-w} '], which is equal to [wy-py (§(a))-pv (f(a™"))-wf']=
Oy([(f.8)])- 8

1.3 The index of a coincidence class and the Nielsen

number

In this section, we assume that X, Y are orientable closed manifolds with the same dimension
n. Suppose that U is an open set of X, such that U N['(f, g) is compact. Let V" be an open
set containing U' N ['(f, g) such that V c U. The inclusion j : (U, U -V) = (X, X - V)

is an excision. Define (f,g) : U = Y x Y by {f,g9)(z) = (f(z),g(z)) and let A(Y) be the

diagonal in Y’ x Y. Consider the composition
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Ho(X) 5 Ho(X, X = V)5 Hy(UU - V)9 Ho (Y x VY xY = A(Y) = Z

Definition 1.3.1 Let p € H,(.X) be the fundamental class of X. The index of f and g on U
is defined tobe I(U; f, g) = < &, (f. g).J . () > € Z, where & € H*(Y xY, Y xY = A(Y))

is the Thom class of ¥", and <. > is the Kronecker index. (cf. p.177 in [V])
Lemma 1.3.2 The index is well defined.

Proof: See p.177 in [V]. O

IfU =0,ul’>U..Ul} is disjoint union of open sets, and I'; denotes the compact set

T(f,g)NU; and f; and g; the restrictions of f and g to {7, then we have
Lemma 1.3.3 The coincidence indez is additive. that is I(U: f.g) = 5, I{U:: fi.g:).
Proof: See Lemma 6.1 in [V]. o

Lemma 1.3.4 (Existence of coincidences) If UNT(f.g) =0, then I(U: f.g) = 0. In other

words. if [(U; f.g) # 0. then the pair (f,g) has at least one coincidence point in U.

Proof: See Corollary 6.3 in [V]. @)

Lemma 1.3.5 The coincidence inder is a homotopy invaeriant. In particular, if f, and

ge:U—Y,0<t<1, are homotopies and D = U N, '(f:. ge) is compact, then

I(U; fo, 90) = I(U; f1, ¢1)-

Proof: See Lemma 6.4 of [V]. m|
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Definition 1.3.6 Let NV be a compact and open set of I'(f, g). The index of (f,g) on V is

defined by
I{N; f.g)=I(U: f,9),

where U is an open set of X such that UNIC(f,g) = N.
Lemma 1.3.7 I(.N: f.g) is independent to the choice of U.

Proof: See Exercise 1 on p.177 in [V]. O

Notation: We often use ind(.V; f, g) to denote I(V; f.g). When f.g are clear, we use

ind(V).

Now assume that r € X is an isolated coincidence point of (f,g). Let L be a neighbor-
hood of z in .X with ['(f,g) NU = r and V" a neighborhood of y = f(z) in ¥ such that there
are orientation-preserving homeomorphisms k : (U, z) = (D".0) and & : (V.y) = (D",0),
where D" is the unit ball of R", and f(U),g(U) C V. Define o : S™! — S™~! to be the

composition
SLAL AT YA T« V- A(V) &4 D x D* — A(D™) 55 D* — 0 =5 57!
where F(z,y) = 3(y — x) and = denotes radial projection.
Lemma 1.3.8 I(z; f.g) = degree of ¢.

Proof: The proof is similar to the proof of Proposition 6.9 of [V]. a

This shows that the index defined here is the same as defined in [SH1] when the coinci-

dence point is an isolated one.
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Definition 1.3.9 A coincidence class N is said to be essential if I(V; f,g) # 0. It is said

to be inessential if I(V; f,g) = 0.

The number of essential coincidence classes is called the Nielsen number of (f, g}, and is

denoted by N(f,g).

By the definition of V(f, g), we have that the Nielsen number of (f, g) is a lower bound

of the number of coincidence points of (f.g).

Theorem 1.3.10 (Lower Bound) #[(f,g) > NV(f.g). O

In fact. we have #I'(f,g) > N(f,g). Since there is an injective map PR, ' L(f g) —

Ryy. we have
Theorem 1.3.11 R(f,g) > N(f.g). )

Definition 1.3.12 Suppose F : X x I = Y is a homotopy and C : [ — X is a path in .X.

Then < F,C > is the path in Y™ defined by
< F.C > (t) = F(C(t),t),Vt e I.

Definition 1.3.13 Suppose F,G : U x I — Y are homotopies of f and g respectively,
and that ro € I'(f,9),z; € '(F(-,1),G(-,1)). If there is path a : I — X such that

a(0) = z¢, (1) = 7, and if < F,a >~< G, a > relative to {0, 1}, then zq, z, are said to be

F, G-related.

Lemma 1.3.14 Suppose zq,z, are F,G-related and :c'i are in the same equivalence class as

z; for i = 0,1, then x;, is F,G-related to 1:'1.
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Proof: See Proposition 15 on p.19 in [BR1}. a

By Lemma 1.3.14, the relation F, G-related can be extended to coincidence classes.

Definition 1.3.15 Suppose F,.G : X x [ — Y are homotopies. A coincidence class ag €
[(F(-,0),G(-,0)) is F,G-related to a coincidence class o, € ['(F(-,1),G(-,1)) if and only if

some point ry € ¢ is F. G-related to some point r; € a;.

Proposition 1.3.16 Suppose F and G are homotopies. Each ag € [(F(-.0),G(-.0)) is
F.G-related to at most one a, € [(F(-.1).G(-,1)) . Each a; € [(F(-.1),G(-,1)) has at

most one ag € T(F(-,0),G(-,0)) to which it is F,G-related.
Proof: See Proposition 20 on p.24 in [BR1}. 0

Proposition 1.3.17 Let F.G : X x [ — Y be maps. Assume ag € [(F(-.0).G(-,0)) is
F,G-related to a; € T(F(-,1),G(-,1)). Then the indez of aq is equal to that of a,. In

particular, if there is no a; € T(F(-.1),G(-. 1)) to which aq is F.G-related to. then the indez

of ag is zero.
Proof: See Theorem 24 on p.81 in [BR1]. 0

Corollary 1.3.18 Let F,G : X x I — Y be maps. If ag € [(F(-,0), G(-.0)) is essential,

then there is ay € T(F(-,1),G(-, 1)) such that aqg is F,G-related to ;. a
Theorem 1.3.19 (Homotopy Invariance) If f' ~ f and ¢' ~ g, then N(f'.g') = N(f,9).

Proof: This follows from definition of the Nielsen number, Proposition 1.3.16 and 1.3.17.
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Let X, Y be closed connected oriented manifolds. We denote the Poincaré duality iso-
morphisms by D (X) : H*9(X) = Hy(X) and D,(Y) : H* YY) —» H,(Y). Given two

maps f.g:.X = Y. define 8,(f, g) : Hy(X) = Hy(Y') to be the composite
-1 - -
Hy(X) & Hy(v) "2 By S B P8 B ().

The Lefschetz coincidence number L(f, g) of f and g is defined by

n

L(f.9) = _(-1)tré,

g=0

where fr denotes the trace.

Theorem 1.3.20 (LEFSCHETZ COINCIDENCE THEOREM) Adssume X and Y
are orientable closed manifolds with the same dimension. The coincidence indez of the pair

(f.g) on X s equal to the Lefschetz number of (f,g); that is

I(f.9) = L(f.g),
and hence we have
L(f.9) =d_I(N; f,g).
N

where the sum is taken over the collection N of coincidence classes.

Proof: See 6.13 in [V] for the first equality. The second one is from the definition of

I(N; f.g), Proposition 1.1.4 , Lemma 1.3.3 and the first equality of the theorem. O
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1.4 Computation of the Nielsen number

Definition 1.4.1 Let f : X — Y be a map. A homotopy F : X xI — Y is said to be a

loop at f if F(-,0) = f = F(-.1).

Definition 1.4.2 Let f.g : X — Y be maps, 2o € I'(f.g) and yo = f(zo). Suppose
F.G: X xI — Y are loops at f and g respectively. Then < G.ry >< F.ryg > lisa
loop in Y at yo, and therefore (< G,ry >< F,zq >7!] € m(Y.y). The set of all such
elements of m (Y. yg) for all such loops F and G is denoted by T(f.g,xo)- The set of all
f#!, g2s-congruence classes of m,(Y’ yo) that have representatives in T(f.g.zo) is denoted
by T(f. g, Iq). In other words. T(f. g. o) is the image of T(f, g, zo) in 7(f. g: X0, Yo, wy. wg)

under projection from 7 (Y, yo) to 7(f. g Lo, Yo, g, wg).
Theorem 1.4.3 If rqy is in an essential coincidence class, then N(f.g) > #T(f, g.Zo).

Proof: See Theorem 26 on p.51 in [BR1]. 0

Brooks actually proves the following

Theorem 1.4.4 If 1y is in an essential coincidence class, then there are at least #T( £, 9, zo)

essential coincidence classes of (f,g) each with indezx equal to the indezr of [z].

Proof: Suppose [o] € ’f‘(f,g,ro), where oy € T(f,g,zo). By Definition 1.4.2, there are

loops F: X xI =Y at fand G: X x I = Y at g such that

[< G,z0 >< F 20 >7 '] = a.
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Since [zo] is essential, there is a coincidence point z; of (f,g) such that [ry] is F~!,G™!-
related to [z,] by Corollary 1.3.18. By Lemma 1.3.14, there is a path C from zg to z; in X
such that

< Fl'C>~<G'C>.

Then we have

a; =I<G.rg>< F.rg >
=[<G.2g >< FT',C>< F.C7' >< F.xg >71
=[<G.xg>< G '.C>< F,C™'>< F.rg >7'
=[<¢,C>< F,C~!' >< F~', 15 >]
=[<g,C >< f.C7! >]

=[(goC) - (fo O)7L].
This shows that [a,] is the image of [z;] under pg,, by definition. Since [z,] is F.G-

related to z¢, the index of [x,] is equal to the one of [x5]. Therefore, any element of T(f, ¢, xq)
is an image of an element in [(f, g) with the same index as [zo0] under p,, and we have the
result. a

A topological space X is a Jiang space if for any ry € .X, the set consisting of [< F, xy >]
is equal to the fundamental group m,(.X, zy). where F is a loop at idy.

When Y is a Jiang space, T(f,g,zo) is equal to m (Y, o) and therefore T(f, g, £o) =
V{(f.9:Zo, Yo, wr,wg). In addition, m(Y,ye) is abelian, so 7 (Y.y) = H(Y) and # V¥
(f. 9,0, Yo, wp wy) = #Coker(g. — f.), where f,,g. : H (X) — H,(Y) are the homomor-

phisms induced by f and g respectively on the first homology groups of X and Y.

Theorem 1.4.5 Suppose Y is a Jiang space. If L(f,g) # 0, then N(f,g) = #Coker(f. —



CHAPTER 1. PRELIMINARIES 20

g.); f L(f.g) =0, then N(f,g) =0.

Proof: See Corollary 37 on p.36 in [BR1]. m

1.5 Relative coincidence theory

The results in this section are those of [JJ] and [JL}.
Let (X, A4), (Y, B) be pairs of manifolds with dim X' = dim }". and dim A = dim B. and

let f.g:(X.A) — (Y. B) be maps. Denote the restrictions of f and g on 4 by f|, and g},

respectively.

Lemma 1.5.1 Let a € [(f.g) and a4 € [(fl4, 9]4), then we have either

(i) ay C a, or

(i) axNa=0. m)

Definition 1.5.2 An essential coincidence class @ € [(f,g) is called a common essential
coincidence class of (f,g) if there is an essential class ay € [(f|4,g]4) such that ay C a.

The number of common essential classes is denoted by N(f, g; fi1, 9la)-

Definition 1.5.3 The relative coincidence Nielsen number of a pair of maps (f, g) is defined

to be
N(f, g X,4) = N(f,9) + N(fla,914) — N(f, 9 fla.9l)-

Definition 1.5.4 A pair of maps (f',¢’) : (X,4) — (Y, B) is homotopic to (f, g) if there
are homotopies F : (X, d) x I = (Y,B) and G : (X, 4) x I = (Y, B) such that F(-,0) =

f) F(” 1) =f' and G("O) =ng('v 1) =g’°
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Theorem 1.5.5 (Lower Bound) Any pair of maps (f',g') homotopic to (f.g) : (X.A) —

(Y, B) has at least N(f, g: X, A) coincidence points. a

1.6 Minimality

Lemma 1.6.1 Assume g: D% — R and f : S ' — R™ are maps with the properties:

(1) #U(f, glsa-1) s finite.

(2) d(f.glse-1) <e.

Then there is an extension f of f to D? such that

(1) if T(f,glsa-1) # 0 or d < n, then T(f. glser) = [(F, 9).

(2) ifd = n and T(f,glsa-1) = O, there is at most one coincidence point of (f.g) in
int(D").

(3) d(f.g) <.

Proof: A proof can be found in [FP]. However we give here a sketch of a different proof.
The proof can be found in [SH1} for the case when ['(f.g|ls«-1) =@ . So we consider only

the case that ['(f, glge-1) # 0.

Case 1: First, assume that #[(f, g|s¢-1) = 1 and that z, is the single coincidence point.

Then any point z in D? can be represented as
T =txg+ (1 —t)z', for some t € [ and ' € S¢-L.

Then the desired map is defined by f(z) = g(z) + (1 — t)(f(z') — g(z").
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Case 2: assume #I'(f,glse-1) = 2, and o and z, are the coincidence points. We can
decompose D9 to be D% = D U D% such that D¢ and D¢ are both d-disks, D§~! = D¢ n D¢
is an d — 1-disk and o € D® — D%, 1, € D¢ — Dg. Since there is no coincidence point of
(f.g) on AD%!, there is an extension of f over D3~! such that I'(f,g) N D§! is empty.
Now on dD¢ there is no coincidence point of (f,g), so by Case 1. f can be extended to
D¢ with no cuincidence points in int(Dg). Similarly, we can extend f over D¢ such that
there is no coincidence point in int(D¢). Therefore. we have an extension of f such that

L(f.g) = {xo, r,}. We proceed by induction on the number of points in I'(f. g|sa-1). O

Lemma 1.6.2 Let X,Y be closed manifolds of the same dimension, A C X, B C Y sub-
manifolds of the same dimension in X and Y, respectively, and f,g : (X. ) — (Y, B) maps
with #U(f|4,9l4) finite. Then there is a map f': (X, 4) = (Y. B) such that f' ~ f rel A

and U'(f'. g) is a finite set.

Proof: The proof is similar to the one of Theorem 2 of [SH1]|, except we use Lemma 1.6.1

when the simplex we counsider intersects with A. This lemma can also be thought of a special

case of Theorem 4.6.5. a

Lemma 1.6.3 Let zo,z; € X be points in a manifold with dimension greater than 2, and o

be a path from x4 to x,, then there ezist an arc a' homotopic to o and a neighbourhood U of

o, which is homeomorphic to R™ via a homeomorphism ¢ such that ¢(c') is a segment.
Proof: See Lemma 7 in [SH1]. a

The ideas contained in the next lemma come from the proof of Theorem 2.4 in [JJ]. We

need to state these ideas explicitly in order to show firstly that all the changes are local, that
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is that all changes are restricted within a neighborhood of an arc connecting the two given

coincidence points. Secondly we need to see that the change to one of the maps is away from

one end of the given arc.

Lemma 1.6.4 Let X,Y be manifolds with dimensions greater then or equal to 3 and let
(f.g) : X = Y be a pair of maps with a finite number of coincidence points. Let ry.x, €
[(f.g) eand a be an arc from xy to ry such that foa ~ goa and a((0.1))NT(f,g) = 0. Let
U be a neighbourhood of a((0,1]) such that U = D™ and ry € U. Then there are f5 and g,

such that fo~ f rel X —U and g, ~ g rel X = U’, and such that T(f2, 1) = [(f,g) - {xr}.

where U cU' C U.

Proof: Let J be an arc in Y from f(x) to f(z;) such that 3~ foarel {0,1} and V" a
neighbourhood of 3 homeomorphic to R". Since f(xq) = g(zo) and f(z,) = g(zx,) € V', there
is an € > 0 such that both f(a([0.€])). f(a([l—e. 1]) C V', and also g(a([0, €])), g(a([1—¢. 1]) C
V. Let H, be a homotopy from f o a, to a path in V" and H, be a homotopy from g o o, to
another path in V". where a. is the path defined by a.(t) = a(t(1 — ¢) + (1 — t)¢) (i.e. ais
the part of a from € to 1 — ¢€). Since the dimension of Y is greater than or equal to 3, we
may assume that H, and H, have no coincidence points. This is equivalent to saying that
the image of the map (H;,H,): I x I = Y x Y does not intersect with the diagonal AY of
the product ¥ x Y. Since the codimension of AY in Y x Y is at least 3 and the dimension
of I x I is 2, we may deform (H,, H;) to a map whose image does not intersect with the
diagonal AY'.

By Lemma 1.6.3, we can assume that «([0,1]) = {(0,0,...,t,) e R*| -1 <t, <2} =
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S{-12], that U is an open set containing a((0, 1]), and that f, g are maps from R" to Y.
We may assume further that «([0,¢]) = {(0,0....,0,t,) € R*| -1 < t, < 0} = Si_1q).
a(fe.1—¢]) ={(0,0,...,0,t,) € R*"0 < t, < 1} = Spyj and a([l —¢,1]) = {(0,0,...,0,t,) €
R*1 < t, £ 2} = S 9. Since Sy C U, there is an n > 0 such that U, = {t =
(L1, ta. ... tn) € R™|d(t, So,1]) < n} satisfies the property that U, C F,, C U. Since there are
no coincidence points of (f.g) on S 1. we may also assume that there are no coincidence
points of (f.g) on L7,

Let Uy = U Uy UlY, where U} = {t = (t1.ta,....tn) € R*EL ] < . —n < t, <0},
Up = {t = (tity, ... tn) € RYMZE2 < 0,0 <ty < 1} and U = {t = (t1.ta,....ta) €
RYZISM2 + (ta — 1) < n1 <ty < 1+ n}. Define f/ : U} = Y, f': U7 — Y and

1R 'f::’ﬁ — Y as follows:

FICE -1 il 2§,
HOE
H (0.1 2y ifjt} < in

) = FUEE -1t ty)  ift=(¢,t,), and [¢| > in,

Hi(to,1 -2y ift = (t.tn), and [t'| < §n

fey FUE=l —1)(t—en) +en)  if [t —ea| > in,
’"t —

Hy(1,1 - 3=eal) if |t — en| < i

where e, = (0,...,0,1) € R™.



CHAPTER 1. PRELIMINARIES 25

Define f, : U = Y by

4

flz) it g Uy,

fi(x) iftel?,
fi(t)

—

f'(z) iftetr,

| /@) iftely

We claim that f ~ f, rel X — U, but so as not to interrupt the flow of the proof we
postpone the verification of the claim until the very end of the proof.

Next using the same procedure as above, but replacing A, by H,, we obtain ¢ ~ g
rel \' —U),. It can be checked case by case that f, and g, have no coincidence points
on U;. For example, if t € U,’, and |t| > %r;, then according the definitions of f, and g,
A(t) = FI(2 - 1)t) and gi(t) = g((2 — 1)¢). However, (3! — 1)t is in U and there are
no coincidence points of (f.g) on U, so we have f,(t) # q1(t). The other cases are similar.
Since f; and g, differ from f and g respectively only on U,. we have ['(f.g) = I'(f1,91).

Now both f; and g, map a([0, 1]) into V", so we can find a neighborhood U}, C U of
a((0,1]) such that U, = D", f,(T),q1(U)) € V" and o = a(0) is the only coincidence point
of (fi.g1) on 8T,. By Lemma 1.6.1, we have an extension f] : I’y = V" of fi|y7, such that
Ig is the only coincidence point of (f],g:lz,) on U,. Since both the images of f, |z, and fi

are in V", which is homeomorphic to R", we have fi|z, ~ f] rel dU,. Define f,: U =» Y by

filz) iftgl,
fa(t) =
fiz) iftel,
We have fo ~ fi rel X — U, and I'(f2, 1) = U (f1,91) — {z:1} = T(f,g) — {z:}. Note that

g~ g, rel X —U,, so we have the result by setting U’ = U,
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Finally we prove the claim mentioned earlier. We define a homotopy f; from f to f, as

follows:
f(z) iftglh,
f(z) iftely,

fs(t) = 9
fir) ifteu,

PASEIY G

where f., f!'. f are defined as follows:
FICH —5)t) i ft] 2 bm,

fie) =
H(0.s =3 if |t <

ol

N

FICEL ~ ), t,)  ift = (£.ta), and || > Lsn,

ft)y=
Hi(tn,s - '-’—',‘,—'1) if t = (¢.t5). and |t'| < Lsn
0 f((gﬂ;ﬂl—s)(t—en)+en) if |t —en} > %sn.
H(l.s - 3"‘%‘-) if |t —en| < 357
a

Lemma 1.6.5 If 1o is an isolated coincidence point of (f,g) with index zero and U is a

netghbourhood of ry, then there is an f' ~ f rel X — U such that I'(f'.g) =T(f,g) — {zo}-
O

Proof: See the proof of Lemma 2 in {SH1].
Theorem 1.6.6 Let X, Y be manifolds with the same dimension and dim X > 3. Then for

any parr of maps (f.g) : X = Y, there is a pair (f', g') with (f',g') ~ (f, g), and such that

#L(f'¢') = N(/.9)-



CHAPTER 1. PRELIMINARIES

9
~

Proof: By Lemma 1.6.2, we may assume that ['( f, ¢) is finite. Then applying Lemma 1.6.4,
we can coalesce all the coincidence points in the same class to a single one and by Lemma 1.6.5,

those inessential classes can be removed. O

Definition 1.6.7 (Definition 5.1 of [SH2|) A subspace A of a topological space .X can be
bypassed if every path in .X' with end points in .X' — 4 is homotopic to a path in X - 4

keeping end points fixed.

Theorem 1.6.8 If dim A > 3 and A can be bypassed in X. then for any pair of maps (f,g) :

(X.A) = (Y.B), there is a pair (f'.g') with (f'.g") ~ (f,g) end such that #I(f'.g') =

N{f.g: X, 4).

Proof: See Theorem 2.4 in [JJ]. O
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Coincidence Points on the

Complement

As stated in the introduction, relative Nielsen theory, which concerns a selfmap f : (. 4) —
(.X. A) of a pair of spaces, was developed in [SH2|. When such a map is considered, the
ordinary Nielsen number may be a poor lower bound for the number of fixed points. The
relative Nielsen number gives a better lower bound in this case. Zhao's work ([Z]) goes
further, in that not only is the number of fixed points of a selfmap of a pair of spaces
considered, but also the location of the fixed points. While for ordinary fixed point theory
the location of fixed points does not affect the number of fixed points, in the equivariant
case which is discussed in [WP3] there may be a difference.

Relative fixed point theory is generalized to relative coincidence theory in [JJ] and [JL].

In this chapter we generalize Zhao’s work on the complement to coincidence theory. Some

28
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of the techniques and results developed here will be used in Chapter 4.

In this chapter then, we consider the coincidence points of a pair of maps (f.g) : (X.4) —
(Y, B) that are located in the complement X' —.4. Here X and Y are manifolds with dimension
n and A and B are submanifolds of .X and Y  respectively with dimension k. In the absolute
case (4 = B =), it is not hard, using homotopies. to move a coincidence point to any given
point in X'. However. when we restrict to maps f,g¢ of pairs maunifolds, this is no longer
true. More explicitly. if we consider maps f.g : (X.A) — (Y. B) of pairs. then it may not
be possible to move all of the coincidence points in X — 4 to 4. We will discuss which
coincidence points may be moved to . and give a lower bound of the number of coincidence
points on .X' — A that cannot be so moved.

After this thesis was submitted. the paper [L] came to our attention. The paper sketches
some of the results of section 2.1 and 2.3 (for example, Theorem 2.1.15. 2.1.16 and 2.3.2).
However minimum theorem is not discussed there and the applications of our new Jiang
type condition are absent. In addition, the result of Theorem 3.5 in [L] is incorrect when
the subspace is not connected. There are no examples in [L].

This chapter is arranged as follows. In section 1. we introduce the concept of a coincidence
Nielsen number of a pair of maps on the complement and give some basic properties of this
number. In section 2, we develop a method to compute the Nielsen number when g, is onto,
and fr(71(X,z0)) C J(f,wys,To,y0) { while ¥ is not necessarily a Jiang space ). Then in
section 3, we use the results of section 2 to give both some estimations of the Nielsen number

on the complement, and also of the relative Nielsen number defined in [JJ] for manifolds. In
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section 4, we prove the minimum theorem and show how to create a coincidence point in the
subspace A that is Nielsen equivalent to a coincidence point in .X — 4. We also show how to
coalesce a coincidence point on .X — A4 to a coincidence point in 4. These results are useful

for equivariant coincidence theory which we will discuss in chapter 4.

2.1 Definitions and basic properties

Let f.g:(X.4) = (Y, B) be maps of pairs of spaces. Let 4 = Ué_,Ax be the disjoint union
of all components 4, of 4 which are mapped by f and g into the same component B, of B.

We shall write fi,gx : Ax — B, for the restrictions of f, g to A, respectively.
For each i, we have the sets Ry, ,, T'(fe, %), and also inclusions PRy g T(fe. gx) —
Rj. ... Suppose now that fi,gx map Ag into the same component B, of B. We will define

maps ii‘gk : T(fe.gx) = [(f. ) and i% o Rpuge = Ryg such that the following diagram is

comiInutative.

- R
T(fe.ge) 23 Ry,

P p
J' ljk'gk i Lﬁ:gk
- PR,
[(f.e) = Ry
We start with the general case. By analogy with Proposition 1.5 in [JB2], we have the

following lemma.

Lemma 2.1.1 Let X; and Y; be connected, i = 1,2, end let f; : X; = Y, fo: X5 = Y5,
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hx : Xi = X5 and hy : Y|, — Y5 be maps such that the following diagram is commutative

x, &4 v
Lhyx 1 hy
n 5o

Given a lifting fi of fi. a lifting hy of hy and a lifting hy of hy. there is a unique lifting

f of fo such that the digram

bR
L hy L hy
AR S 4
is commutative.
Proof: see the proof of Proposition 1.5 of [JB2]. 0

Corollary 2.1.2 (cf. [JB2|) Consider a commutative diagram

idx,

“\F[ — -Yl
Lh LA
X, % X,

Then each lifting h of h defines a map from M(X,) to [1(X2). The map will be denoted by

h : (LX) = T1(X,).

Proof: This follows from Lemma 2.1.1. a
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Definition 2.1.3 Let fl,gl : .-\'1 — Yl, fg,gg

maps such that the diagram

x,
L hx
X, ¢

COINCIDENCE POINTS ON THE COMPLEMENT

: _\’2 - Yg, hx : .Yl - 4\"2, hy

32

1Y > Y, be

Y
1 hy

Y5

is commutative. We define @ map jhyny : Rfi gy = Ripag. as follows. If we have a commu-

tative diagram

fﬂx

A
Lhy
%,

where f;, §; are liftings of fi. g respectively for i = 1.2, hy.hy are liftings of hx, hy respec-

tively. define ja ny ((f1.31)]) = [(f2. 2)))-

Lemma 2.1.4 jh, ., is well defined.

Proof: First j,, a, is defined on all the elements in Ry, ,, by Lemma 2.1.1.

We first prove that the definition of ja, 4, is independent of the choice of ( fl, g1). Let

(f'l,é'l) = AN (f1.§)(5¥) ! where fé and §, are liftings of f and g respectively such that

the following diagram is commutative.

% i
L hx
x,
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Let 32 = (hx)n(7**) and (3"2) = (hy)u(¥"), then the diagrams

X, O x TR
L hy Lhy 1 hy Lh
- 2X2 - 32 -
_Yg - .\2 }2 e }2

- g .
.Yl }[
N X
F".\' - -lfgl ~
Xi - Y
5, 35 | hv
2, G2 i

So (f; fh .gh) = 3% fa, 32)(3¥2) 7!, and thus Jhy ny does not depend on the choice of (f,

"m
Sl

Next we show jx, 4, does not depend on the choices of Ay and hy. Assume h'y = 3V 2hy

-~

and 7} = 7¥*hy. Let f} and § 1R = Ry fo

» be liftings of f, and go respectively such that

and §;fz'x = h{§,. This means that (5%2)~!f13 Nahe = hy fi and (F2)"'337 2Ry = hy-g.

By uniqueness, we have f, = (7'2)"1f43** and §, = (5'2)"! . This proves that j x,

does not depend on the choices of hx and hy. a

For connected subspaces A C X and B C Y there are inclusion maps iy : 4 —» X and
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ig : B —> Y, and the following diagram are commutative.

4 a4 B
dia {ig
x 9 vy

34

Then we have the map ji, .z : Rf, . = Ry defined in Definition 2.1.3.

Notation: We will use the notation if, , : Ry, 4, = Rjg to denote j;, i

By the definition of iF, , . if an element {(f.3)] € Ry, is in the image of P

there is a lifting (f.4.§.4) of (fa.g4) such that the diagram

i 43
i lis
RO B s

IS commutative.

For any connected subspace 4 of .X. we have a inclusion map i? 9

which induces a map if , : [(fa,94) = C(f.4).

Lemma 2.1.5 The diagram

ts commultative.

:D(fa,94) = T(f.9).

Proof: Let  be a coincidence point on 4. We use [z];, 4, to denote the coincidence class

of (f1,94) containing = and use [z];, to denote the coincidence class of {f,g) containing
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r. Then ii,g,‘([a:]h,g,‘) = [z]fq. Assume that pg, ([z]se) = [(f.§)], where f and § are
liftings of f and g respectively such that for some # € py'(r), f(%) = §(&). Let 4, be
the component of p3'(A) containing # and let B, be the component of p3'(B) containing
f (£). Let jacy : A - 4 (jeex : B — B respectively) be a lifting of the inclusion
maps iy : A < X (ig : B — Y respectively) from the universal covering space 4 (B
respectively) of A (B respectively) to 4, (Bl respectively). Note that j_.\cx and jgcy are
actually covering projections. Let (f4,§.) be a lifting of (fljl,g[jl) with a coincidence
point on j’;éx (£). It is easy to check that (fA, ga) is a lifting of (f4, g4). pR!A.“([x]fA,w) =
[(fa.3.4)] and i}‘,‘.“([(ﬁ.gh)] = [(f. )] So the diagram is commutative. 0

Now we assume 4 = UA; and B = UB,, where 4; and B, are components of A and B
respectively. We choose base points ry € .X and yy € Y, and for each component B, of B we
choose a base point b; € B,. Similarly for each component 4, of A. we choose a base point
ar and a path ug in X from zy to a,. If Ax is mapped into B; by both f. and g, then we
choose paths wy, and wg, in B, from b to fi(ax) and gic(ax) respectively. ( Note that there
may be more than one component of 4 mapped into the same B,, therefore there may be

more than one wy,’s for each B,.)

Definition 2.1.6 A class [z] € [(f,g) is called a weakly common coincidence class if
pr;,([z]) is in the image of ig, . for some k. If [z] is essential, it is called an essential
weakly common coincidence class. The number of essential weakly common coincidence

classes of f and g is denoted by E(f,9; f1.94).

From section 1.2 in Chapter 1, we have alternative description of the Reidemeister sets
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Then vy, . ([8]) =
lwy - (goue) ~wil -8 wp - (foup')-wil] =
[w - (gouk) - wil - (ge)=lv) - - (fi)e(v™)) -wp - (foup) - wf'] =
[w - (gome) - wi! -wy, - (geo ) ~wyl arwp - (feov™) rwplwy - (foug!)-wp'] =
[wg - (gouk) - (geo) - (goug') - wi'-wy-(gour) - wy! -
wro(Foug) - wit - (Fou) - {feor ™) - (Fough - wfll =
ge (1 (7))e g gi (@) flia (7)) 7"

This proves that vy, ., (o) and vy, 4, (J) are in the same class of Ry,. o

Lemma 2.1.9 Assume A C X and B C Y. f,g: (X.A) = (Y,B) are maps. and a € A

and b € B are basepoints of A and B respectively. Let u be a path from xo to a. Then the
diagram

ef,p?,{

Rpuga 27 V(fagasa.bwy,, wy,)

R ;
’L Lfaga B

o
Rrg 2 V(.9 To. Yo, wy. wy)

15 commutative.

Proof: Assume that [(f1,34)] € Ry, 4.- Let (£, 3)] = i}ﬁ‘“([(f},gA)]), then we have the

commutative diagram

i Iadg
Ljacx L JBcy

' 13,y

b
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where jscx and jpcy are liftingsof iy : A = X and ig : B = Y respectively. Let @ € p3'(a)

and &4 be a path from §4(a) to f4(a@). Denote pyo G4 by as. Then O, .. ([(f1.34)]) =

[wgy -4 -wy,]. Let 2 be alifting of 4 with the end at @ and denote j1(0) by Zo. It is obvious
that £ € py (o) and (§o i) &4 - (foa™!) is a path from §(Zg) to f(&). By the definition,

we have

Ol f. )]

=[wy-pxo((§oi) G- (foi) wf]

={uy-(gom) e (fou™) vyl

= [wy (g0 n) - wylllwe, - ea-wplwr, - (fon™t) -wr]
= U, ga([wg, - s ""’f—,‘l])- o
Lemma 2.1.10 The diagram

- P

D(ferge) 285 0 (fer Gk, ks bys iy 0g,)
'L i?‘“gk ‘L ‘kavgk

- P

r(fvg) ﬂ.{ V(fvgal‘o,yo,wf,uig)

is cornmutative.

Proof: The proof follows from the commutativity of the diagrams in Lemma 2.1.5, 2.1.9

and 1.2.6. 0O

Corollary 2.1.11 A class [z] € T(f, g) is a weakly common coincidence class if and only if

py,,([z]) is in the image of Uy, g, for some k.

Proof: The result follows from Lemma 1.2.6, 2.1.5, 2.1.9 and 2.1.10. |

The next result generalizes Lemma 2.3 of {Z].



CHAPTER 2. COINCIDENCE POINTS ON THE COMPLEMENT 39

Lemma 2.1.12 4 coincidence point £ € ['(f,g) belongs to a weakly common coincidence
class if and only if there is a path o : (I,0,1) = (X, x,4) from x to A such that foa ~

goa:(1,0,1) = (Y, f(z). B).

Proof: Assume that r is in a weakly common coincidence class. By Corollary 2.1.11,

there is a path C: I — X from x4 to . such that [wy- (g0 C) - (fo C71) - wf'] € &y, g ([I])
for some element (3] € m (B, bs) and k, where both f and g send A, to B,. In other words.
there is an element v € 7 (.X. £o) such that

gﬂ('/)[wg : (g Q@ C) : (f ° C-l) : w]-l]f:r(”f“l) = Ufk.gk([‘j.])!

Qor

[wy(go7)-wg ' wy(90C)(foC ™) wi wyp-(for 1) wr '] = [wy(gour) wy,' 3wy, (foug ) wi']:

From above. we have

(goug')-(go7)-(goC) - (Fo ™) - (fory™") - (fou) ~w,' 3 wp,
or more briefly,
go(ug'-v-C)-fo(CTh vt up) ~wg! - 3wy,
Note that the right hand side is contained in B,, and if we set @ = C~!-~47! - y;, then we
have goa ~ foa: ({,0,1) — (Y, f(z), B).
On the other hand, assume that there is a path & : (1,0,1) — (X, z, 4) from z to A such

that goa~ foa:(1,0,1) = (Y, f(z), B) and (1) = a € 4, a component of 4, and such

that both f(Ax),g(Ax) C Bs. Let C : I = X be a path from ry to z, we have to find an
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element [3] € m,(B,, bs) such that vy, ¢ ([3]) = 9= (V)[wg - (g0 C) - (fo C1) -w,—l]f,(‘y") for

some vy € m (X, o).

Let C, be a path from a; to a. Let [ = F(1,-), a path from goa(l) to foa(l) in B,.
Set'y=.uk.Ca.a—l .C—l andﬁzwgk‘(gkoca)'l'(kaC;l)~wﬂl.

By assumption. we have (goa)-[-(foa"')~ 0, or

I~(goa™) - (foa)

Vs ([B]) = [wg- (90 we) -wy'Buwp - (Foug') wy']

= [(wy (goue) wp')we - (g6 Ca) L+ (feo C7Y) - wi)wpe - (foug) - wi)]

= [wg-(goue) (95 Ca)- - (feoCT') - (fougt) - wf']

= fwg-(gour) (g Ca)-(goa™)-(foa) (feoCTY) (foug!) wf!]

= [wyg-go(ux-Ca-a)-fola-Co'-ug') - wj'l

= [wy-g0(uk-Ca-a™)-((g0C™") -wy' - wy- (g0 C))-
(foC™) wil-wr-(foC)) - fola-Cot-ug')-wi'l

= [(wy-go(uk-Cara™)-(g0C™H)-wih) - (wg-(g2C))- (foC)-wih):
(W (foC)-fola-Cot ui')-wih))

= g:(MNlwy- (90 C)- (foC™) - Wi fxlr™). o

Corollary 2.1.13 A coincidence class of (f,g) containing a coincidence point on A is a

weakly common coincidence class. a

Definition 2.1.14 The number of essential coincidence classes of f,g : X — Y, which
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are not weakly common coincidence classes is called the Nielsen number of f,g on the
complementary space X — 4 and is denoted by N(f, g; X —4). In other words, V(f, g; X— 1)

is equal to N(f.g) — E(f.g: f1,94) (see Definition 2.1.6).

Theorem 2.1.15 Any pair of maps f.g : (X.4) = (Y, B) has at least N(f,g; X — 4)

coincidence points on X — A.

Proof: Note that each essential coincidence class has at least one coincidence point. If this
point is in 4. by Corollary 2.1.13, the class is a weakly common coincidence class. Therefore.
for each essential non weakly common coincidence class there is at least one coincidence point

in X — 4, and there are .V(f, g : X — 1) such classes by the definition. a

Theorem 2.1.16 N(f, g;.X — ) is a homotopy invariant.

Proof: Assume F : f ~ f' : (X, d) = (Y B)and G : g ~ ¢ : (X.4) = (Y.B) are
homotopies. We know that .V(f, g) = N(f',¢’), so we only need to prove that if r € T'(f, g)
and ' € ['(f', g') are F.G-related and r is in a weakly common coincidence class, then z’ is
too.

Assume that o is a path from r to 2’ such that < F.a >~< G,a >. Let @ be the path
in .X x I defined by a&(t) = (a(t),t), then Foa =< F,a >~< G,a >=Goa. Let F and G
be liftings of F and G respectively such that F(,0) = G(%,0) for some Z € px'(z). Then
F(#,1) = G(#,1) for some # € p3'(z') since & is a path from (z,0) to (z’,1) and the lift
of F o &(G o a respectively) is F o &(G o & respectively). So pr;,([z]) = [(F(-,0),G(-, 0))]

and P‘Rf..g; ([I’]) = [(F‘(v 1)’ é('! 1))]'
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Now let Fy = F|a,xs and Gy = G|, s and let (fi, dk) be lifting of (fx. gx) such that

i o ([(fe 301 = [(F(-.0), G(-.0))], then the diagram

RPREC L B,
J' zk 'L zs
r F“ 'vo ‘G. ‘,0 e

X Feogto g

is commutative. Let F, G be liftings of F, Gy starting from fk, gx respectivelv. By the

unique lifting property of covering spaces, we have the following commutative diagram

-

A x [ F"—'C;:" B,
Lik x id L,
X x I Y.
This implies the diagram
g Peagen g
Lik L
o fengen g

is commutative, which means iﬁyyi([(Fk(" 1), Ge(-- 1)) = [(F(-, 1), G(-, 1))]. )

2.2 The Reidemeister number and the Nielsen number

In this section, we give conditions under which the Reidemeister numbers and Nielsen num-
bers can be computed easily. Let 8x : m(X,z9) = H (X)) and 8y : m (Y, y) = H (YY) be the
abelianizing homomorphisms, and 7y : H,(Y') — Coker(g. — f.) the projection map, where

f. and g, are the homomorphisms from H,(X) to H;(Y") induced by f and g respectively.
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Lemma 2.2.1 If a ~ o in 7(f,9; Zo, Yo, Wy, wyg), then nyOy(a) = nyby(a’). Therefore
Ny o By induces a map from <7(f.g; xq, Yo, wy, wy) to Coker(g. — f.). We will denote this

map by

h:7(f.9; Zo. Yo.wy.wg) = Coker(g. — f.).

Proof: We have to prove that when a ~ o' in 7 (f. g; Zq, Yo, wy. wg), then by () — Oy (a) is
in the image of g. — f.. Assume that « ~ ¢/, i.e. there is an element v € 7(X.1y) such that
o = g(7)af:(7"'). Since 8y is a homomorphism and 8y is natural, we have by applying 6y
to both sides that 8y (@) = 0y 0 g,(7) + 0y (a) — Oy o fr(v) = g. 00x (%) + Oy () — f.00x(7)
- So 8y (/) — by (a) = g. 0 Ox(7) — f.obOx(7) = (9. — f)(Ox(7)), i.e Oy (c) — by(a) € Im

(9. — f.) as required. a

Theorem 2.2.2 The following two conditions are equivalent.

(i) fx'.g7s-congruence classes are independent of the choice of w; (respectively w, ). or
more precisely. if w; and &} are paths from yo to f(zo), then the f=!. g¥s-congruence class
containing o and the fr ”. g9 -congruence class containing o are the same.

(i) For any 3 € m((Y, y0), if a ~ &' in Y(f. g: Zo, Yo, wy.wy), then a3 ~ '3 (respectively
Ja~ 3 ) in 7(f. g To, Yo. Wy, wy).

The following three conditions are equivalent.

(1) For any a, B,y € m (Y, o), aBy ~ Bav in 7 (f, g; To, Yo, wy, wy).

(iv) For any a. 3,7 € m (Y, yo), vaB ~ vBa in G (f, g; T, Yo, Wy, wg)-

(v) The composition ny o8By : (Y, yo) = Coker(g. — f.) of 8y and ny sends elements in

different fz', g¥s-congruence classes to different elements of Coker(g.— f.), and hence nyofy
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induces a one-to-one correspondence between <7(f, 9; To, Yo, Wy, wy) and Coker(g. — f.).
In addition, (iti), (iv) and (v) together imply (i) end (ii), and when g, is onto, all

formulations of the five statements are equivalent.

Proof: (i)=(ii): Suppose a = {a] ,&' = [a'] are elements in 7, (Y yg) and a ~ ¢/, i.e. there
isay = [r] € m (X, o) such that &' = g, (v)af.(v7}),ora’ ~ wy-(gor) cwrtd-wp-(for)™t
uf"l. Assume that 3 = [b] is another element in m(}’ yo). Let Wy = 3-wys As Reidemeister
classes are not dependent on the choice of w}, there is an element v’ = [r'] € 7,(.X. xq), such
that o' = g,,(w')af:”('y’)“, orad ~wg-(gor) -wilt-a-b-wp (for)! ~u.vf“ -b7!, so we
have @’ -b~ wy - (gor') - wyl a-b-wy-(for)! -w;‘, or &'3 = g (v")adf(+')"!. Then
ad ~ o'3. The proof is analogous for independence with respect to w,.

(ii)=>(i): Suppose a = [a], &’ = [a’] € (Y, yo) are in the same Reidemeister class, i.e.
there is an element v € 7, (X, 1o) such that o’ = g.(7v)af-(77"). Let wy be another path
from yo to f(xo). and 3 = [b] = [w} - (wy)™")]. By (ii), ad ~ '3, therefore there is an
element 7' = [r'] € m,(.X, xo) such that o/3 = g.(v)aBf-((¥)"'), or @' -b ~wy-(gor)-w;t-

a-b-wsp-(fo(r')) -wf'l, then

d~wy-(gor)-wytea-b-wp (fo(r)!) wit-b7t =

wye(gor) wila (W wpt)-wp-(fo(r)™) wp' - (wy- (wp)™h) =
we-(gor) -wit-a-wh-(fo(r)")- (w’,)_‘, that is o' = g,,('y’)af:”(('/’)“'). So the
Reidemeister classes are independent to the choice of wy. The equality for Ja and 3c/

implying independence of w, is analogous.
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(iii)=(v): We have to prove that if ny o0y (a) = 7y 0y ('), then a ~ o'. We divide the

proof into three steps.

(1). For any commutator [a. 3] = a3a~'37! and v in 7, (X, zy), then by (iii),
[, 81y = aB(a™'37') ~ Jafa™'571r) = 7.

(2). If By(“f) = Hy(“/'). then ~ ~ ~/.

In fact, in this case. v'¥~! € Ker6y-. the commutator subgroup. Therefore,

“/' = [al, .311 N [ak, Jk]“,' for some g, ,3,'.

Repeating (1), we have v ~ ~.

(3) Now assume that ny o Oy (a) = ny o 6y(ca’). By the definition of -, there is an
element ¢ € H,(X) such that Oy (a') — Oy(a) = g.(c) — fu(c). Let ¢ = Ox(v), where
v € m (X, Zo), then g.(c) = g.(0x (7)) = by (gx(7)) and fu(c) = Oy (fz(7)). Hence, Oy (a') =
Oy (@) + Oy (gr (7)) — Oy (f2(7)) = Oy (gx(V)fr(v™"). and by (2), @' ~ gx(v)afa(v7!) ~ c.

(v)=>(iii): As Oy (ady) = Oy (Jav), we have ny o Oy (ady) = ny o 8y (Javy). By (v), we
have ady ~ Ja~.

The proof that (iv)<>(v) is similar to the proof of (iii)<>(v).

(v)=>(ii): Assume that a ~ o/, then npyfy(a) = nvly(a’). So, nyOy(al) = nyby(a) +
Oy (8) = nyby () + vy (8) = nyby(a’3). By (v), we have af ~ o'3.

Assume that g, is onto. (ii)=(iii): Assume o, 3 € m (Y, yo) and g.(a) = «, g.(b) = 5,
where a,b € m(X,z9). Then we have a ~ gr(a~')afr(a) = fr(a) and 8 ~ gx(b~1)3fx(b)

= fx(b). aB ~ gx((ab)~")aBfx(ab) = fr(ab) = frx(a)fx(b). By (ii), fx(a)fr(b) ~ afs(b)
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~ ge(B)afz(B) fr(b7!) = gx(b)a = Ba. Therefore, we have o3 ~ 3a. By (ii) again, a8y

~ Bary. )

Corollary 2.2.3 If conditions (iii), (iv) or (v) in 2.2.2 hold true, or g, is onto and condi-

tions (i) or (ii) in Theorem 2.2.2 hold true, we have

R(f.gq) = #Coker(g. — f.).

In particular, if T, (Y. yo) is abelian, then
R(f.g) = #Coker(g. — f.).

Definition 2.2.4 A pair of maps (f,g) : X — Y is said to be R-commutative if

For any a. 3.7 € m (Y, ), a3y & 3av mod fz'. gs.

Lemma 2.2.5 The property of being R-commutative is independent of the choices of wy, wgy, To

and yo.

choices of w; and w,. We have to prove that R-commutativity does not depend on the
choices of ry and y,.

Let r, be another point in .X, and C be a path from z4 to z;. Let w} = wy- f(C),
wy = wy - g(C). We only need to prove that if a, 3 are fr!, g¥s-congruent, then they are
fr ' , g:l’-congruent.

Suppose that a,3 € m(Y,yo) are fr’ ,g¥s-congruent, i.e. there is an element [y] €

m(X, o) such that 3 = g¥([v])afs’([v]™'). However, g“s([v]) = [wy - (g o) wil] =
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[wg-(g0C)-(go(CH7-C))-(goC™Y) -wit] = [wy- (9o (C-v-C)) - (wg) '] = g7 (C([P)-
Similarly, we bave f3/([7]) = £ (Ca([). s0 8 = g5 (Cx([¥))afs! (Ca (7] ™). and @ and
3 are f:lf, gf’-congruent as required.

The argument that R-commutativity does not depend on the choices of yp is similar. O

Note that 7(f. g, Zo, Yo, wf.w,) is actually an partition of m,(}’ y), so we can compare
an element a in (. g, Lo, Yo, ws. wg) With an element o’ in 7(f. g. Iy, Yo, . wy). If a and
o’ contain the same elements of 7 (Y, yo), we can say a = o'. If (f. 9, xo. Yo, wf, wy) and
Z(f, 9. x5, Yo, wh. w,) represent the same partition of m (Y’ yo), we say V(f. 9, Zo, Yo, wy. wg) =

V(f' g. J:E)v Yo, ‘“"’f, “J;)

Proposition 2.2.6 If(f,g) is R-commutative, then 7 (f, 9. Zo, Yo, wyr.wg)= V(f, 9, Lg. Yo, Wy

and

R(f! g) = #COkCT(g. - ft)

o

second one follows from Corollary 2.2.3. a

Definition 2.2.7 (cf. Definition 1.4.2) Let zo € .X ( not necessarily a coincidence point
of (f.9)). Define T(f.g;To,yo,wys.wy) = {wy < G,Za > w;' - wy < Forg > willF: f ~
va g~ g} - ﬁl(}'v yﬂ)? and T(f, g; Zo, y01wf!wg) to be the image of T(f1 g; IOyy(Jawfawg)

in 7(f, 9, Zo, Yo, wys, wq) under projection from 7 (Y, yo) to V(/, 9, To, Yo, wy, wy)-

Definition 2.2.8 Let (f,g) be R-commutative, then the number of elements in the set

f’(f, g; o, Yo, wf, wg) is called the Nielsen orbit length of (f, g). It is denoted by NL(f,g).

‘“‘9
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The following lemma shows that NL(f,g) is well defined. From Proposition 2.2.6, we
know that when (f, g) is R-commutative, 7(f, g, Zo, Yo, ws,wg)= ([, g. Tg, yo. W}, &), SO we

can compare its two subsets T(f,g; Lq, Yo, Wy, wg) and T(f, g; g Yo, Wi, wy).

Lemma 2.2.9 Let 19,25 € X, wy and W} be paths from yo to f(zo) and f(zy) respectively.
and wy and w, be paths from yy to g(zo) and g(zy) respectively. If (f.g) is R-commutative,

then T(f, g To. yo,wy.wg) = T(f. 9: Th, yo, . ).

Proof: By Proposition 2.2.6, we krow that 7(f, g, To, Yo, wy, wg)= V(f. 9. Lo Yo, W}, wy),
SO T(f.g;xo,yo,uf,wg) and T(_f,g, Iy, yg,u’,,.u’g) are both subsets of 7(f. g, Zo, Yo, wy.wy).
We divide the proof into two steps.

(i) The set T(f.g; Lo, Yo.ws,wg) is independent of the choices of wy and w,. Let w}y and
w, be paths from yo to f(zo) and g(rg) respectively. We want to show that if an element
& of 7(f. g, To. yo. wy.wy) is in T(f. g: To, Yo, Wf ), then it is in T(f,g;.ro,yo,w’,,w'y). Let
F and G be loops at f and g respectively, such that wy, < G, zg > ;uy‘l cwp < Forg > w,‘l
represents & Now wy < G,zo > (W) - wf < F.zo > (w})~! represents an element in
T(f. g; o, Yo,y wy). However, w) < G,xq > (wp) ™" -wi < F oz > (w)) ™' ~ wh - (wy ! wy) <
G, 2o > -(w;' - wg) - (wh) ™t W (wrtrwy) < Fizo > (witwyp) - (W)~ (W wgt) s (wer <
G.zo > wj') - (wg - (wh)™h) - (W) wfl): (wyr < Fozo > -wfl) - (wy - (w))7h). Since (f,9)
is R-commutative, [wy < G,z¢ > (W)™} < Fizp > (W))7'] = fwy -wg'll[wg’ < G,zq >
wy Nwg - (W) Hlw) - witllws < Fizo > wp'llwy - (W)Y = (W) - wylwe < Gz >
wy i () w7 ooy - @)y < Frzo > 07'] = [y w7 e < Gz > 0wy

(W) Nwy < F,zo > -w;l] = (W) - wylwg - (wg) T Mlwe < Gz > willws < Fozo > ‘wyr']
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= [wg < G,z0 > w'|[wyr < F,zo > -wj']. This shows that [w) < G,z¢ > (w))™' -} <
F,zo > (w})™'] represents @ too, and therefore T(f.g; Zo, Yo, wy,wg) € T(f, g, To, Yo, Wi, ).
Similarly, we have T'(f, g, Lo, Yo. Wi wy) € T(f. g Iq, Yo, Wf.Wyg)-

(ii) Now let zj be another point in .X, and w} and w; be paths from y, to f(z3) and g(zg)
respectively. Let C : I — X be a path from ro to g, and wy = wy- foC and wy = wy -go(C.
By (i). we only nced to prove that T(f,g;];u,yo,d,,.‘.;_,,) = T(f,y,xa.yo.u';.wg). Let F
and G be loops at f and g respectively. Since < F.rg >~ foC < F.ry > foC™!

rel {0.1} and < G.rg >~ goC < G.1y > go C7! rel {0.1}, we have W’ < G.zh >
0 g 0

II)—[

(wq

cwf < Forg >7' (W) = (wg-90C) < Goxg > (goCt-wit) - (wp - fo
C) < Firy > ' (foC' - wi) ~ wy, < Gizg > ;' -wy < Forg > wj'. So we
actually have T(f,g: o, Y0, wys.wg) = T(f.g, g, yo.w}, wy) and therefore their projections
T(f.g: Zo, Yo, wy. wg) and T(f. g, f, yo, w},wh) in V(f. g: To: Yo, wy, we)= V(f- 9, Ly Yo, f, )

are the same. O

So without ambiguity, when ( f, g) is R-commutative. T(f, g: Zo, Yo. /. w,) can be written

T(f* g yO)

Lemma 2.2.10 Let 79 € X, yo,y1 € Y, wy and wy be paths from yo to f(ze) and g(xo)
respectively, and W and w; be paths from y, to f(zo) and g(ze) respectively. If (f.g) is
R-commutative, there is a one to one correspondence between the pair

(V(fv g; X, yO?“Jf?wg)’ T(fv g, Zo, yvafvwg)) and (V(fv g; Lo, ylvwlf’w;)vf(fv g, Zg, ylyw}zw'g))'

Proof: Let C : I — Y be a path from y, to yo. Let wy and wy be paths from yg to f(zo)

and g(zo) respectively, and define w; = C - wy and wy = C - wy. Then Cy : m(Y,y0) —
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m (Y, ) induces a bijective map from 7(f, g; Zq, yo,wy,wy) to 7(f. g; To, Yo, wy,wy), which

Sends T(fr g, Zg, Yo, Wy, wg) onto T(f' a8, Zo, L. w,]’ w;) 0

Theorem 2.2.11 If(f,g) is R-commutative and has at least one essential coincidence class,

then there are at least NL(f,g) essential coincidence classes with the same indez and hence

N(f.9) = NL(f.4g).

Proof: Choose rq € ['(f, g) and yo = f(z¢), and choose w; and w, be constant loops, then

we have the results by Theorem 1.4.1 and the invariance theorems 2.2.9 and 2.2.10 proved

above. [}

Corollary 2.2.12 If L(f,g) #0, then N(f,g) > NL(f.g). a
Corollary 2.2.13 If NL(f.g) is infinite, then N(f.g) = 0.
Proof: Otherwise. :V(f.g) is finite and N(f.g) > .VNL(f,g) by Theorem 2.2.11. 0

Corollary 2.2.14 If NL(f.g) = R(f,g) or equivalently T(f, g; To. Yo, wrowg) = V(f. 9 Zos Yo, Wy Jg):
then
0 if L(f.9) =0

R(f,g) ¥ L(f9)#0

N(f.g} =

Proof: By Theorem 1.4.4, all the coincidence classes have the same index. So L(f,g) =0
implies all the classes have index 0 whereas L(f, g) # 0 implies they are all essential. a
In practice T(f, g; Tg, Yo, wy. w,) and R(f, g) are difficult to compute. In what follows we

give conditions under which T'(f, g; 2o, Yo, wy, wy) = R(f,g) = Coker(g. — f.). This last set

is the homology cokernel.
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Definition 2.2.15 Define J(f,wy, zo, %) C T(f, g; Za, Yo, Wy, wg) to be the set

{lws < F,zq > w;']|F is a loop at f}.

Definition 2.2.16 A pair of maps (f,g) : X — Y is said to have the weak Jiang property
if
(i) (f.g) is R-commutative:

(ii) the restriction of p: m (Y, yo) = ([, g: xo, Yo, wy. wg) o0 J(f,wy. ro. yo) is onto.
Theorem 2.2.17 If (f.g) has the weak Jiang property, then

0 if L(f.g) =0
N(f.g) =

#Coker(g. — f.) #f L(f.g) #0

Proof: Since T(f-.g,l‘o,yo,wf-wg) D p(J(fixa yo.wy)) = (S, g Lo, Yo, wy,wy), from

Corollary 2.2.14. we have

] 0 if L(f.g) =0
N(f.9) =
R(f.g) ifL(f.g)#0.
However, (f,g) is R-commutative, so we have R(f,g) = #Coker(g. — f.), by Proposi-

tion 2.2.6 and we have proved the theorem. mi

Corollary 2.2.18 (Brooks [Corollary 37 of (BR1]]) If Y is a Jiang space, then

0 if L(f.g) =0

#Coker(g. — f.) if L(f,g) #0

N(f,g) =

Proof: When Y is Jiang space, m(Y, yo) is commutative and hence is R-commutative,

and J(f,wy, Zo, %) = (Y, yo), so (f,g) has the weak Jiang property. c
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[9])
[(V]

Lemma 2.2.19 If g¥s is onto, then every element in \7(f, g: To, Yo, wy, wq) has a represen-

tative in fz! (m (X, z0)).

Proof: We will prove that for any a € m (Y, yo), there is v € m(X,xg) such that
a ~ fi'(v). Since g¥ is onto. there is v € m(.X.ro) such that g#(v) = a. Now

a~gs(v Vafd(v) = (7). a

Lemma 2.2.20 If g, is onto and fr(7\(X.xo)) C J(f,wys, Lo, Y0), then (f.g) has the weak

Jiang property.

Proof: From 2.2.19, we see that p(J(f.wy. ro, y0)) 2 p(fx(m1(X. £q)))} = T(f. g: Lo, Yo. wy. wy).
On the other hand. f.(m(X.xq)) C J(f.w;. Lo. yo) implies that fr(m (.X.r)) is abelian. We
have to prove that for any «, d,v € n (Y, yo), ady ~ Za~v, i.e. (f,g) is R-commutative,
Since g, is onto, we can choose a.b,r € m(.X,ro) such that g.(a) = a.g.(b) = 3 and
gr(r) = 7. Then we have ady ~ gn((abr)™'}(adv)fz(abr) = fz(abr) = fr(a)fz(b)fz(r) =
f2(0) fx(a) fx(r) = fr(bar) ~ gx(bar) fx(bar) fx((bar)~!) = gx(bar) = gx(b)gx(a)g(r) = Jar.

Therefore, (f. g) has the weak Jiang property. 0

Note 2.2.21 We note that the hypotheses in 2.2.20 is equivalent to saying that T'(f, ¢, Zo, Yo, w £y W)

is all of 7(f, g. xo, Yo, wy,wy). However this is not as easy to verify.

Corollary 2.2.22 If g, is onto and fr(m(.X,y0)) C J(f.wy, To, Yo), then

0 if L(f,9) =0

#Coker(g. — f.) if L(f,g) #0

N(f,g)=
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Proof: By Lemma 2.2.20 and Theorem 2.2.17. Q

Example 2.2.23 Let T = S! x S', and let a and b be the circles S! x 0 and 0 x S!
respectively. The paths a and b are called the standard basis of T. Then let T; = T#T be
the connected sum of two copies of T. It has a standard basis a,, b, corresponding to one
copy of T and a,, b, corresponding to the other. More generally, let T, be the connected
sum of n copies of T with standard basis ay,b;..... Qn, bp. Now let X =Ty, Y =T,. Define
f: X — Y as follows: First define f, : X — T by sending the first factor of T in X to T.
and squeezing everything else to a single point.

Next define f, : T — S! to be the projection to the first factor, finally define f3 : S' — ¥
to be the map which sends S! to the inverse of a,.

Let f = fy0 fao f;. Then f projects the first factor of T of X to a' and sends all other
points to a single point.

We define g as follows: The map g sends the first two factors of X to Y™ by the identity,
and sends the other two factors to a single point.

Then g, is onto. fr(m(.X.xo)) =< a1 > and J(f.wy.z0.40) DO< a1 >, and L(f.g) =
1 — (—1) + 0 =2, where zq, yo and wy can be chosen arbitrarily. So by Corollary 2.2.22. we

have N(f,g) = Ry, = #Coker(g. — f.) = 2.

Example 2.2.24 Let X = Y = T;, and a;,b,,a3,b, be the standard basis. Define f :
X — Y as in the example above, and define g similar to f except that ¢ sends b, to b;.
Then we have fr(m (X, zo0)) C J(f,wys, To, %) and L(f,g) = 1, N(f,g) = 1. However, the

image of g, — f. : H\(X) — H,(Y) is the subgroup generated by a, and b, and therefore
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#Coker(g. — f.) is infinite. Since R(f, g) > #Coker(g. — f.), R(f. g) is infinite. This shows

that the hypothesis that g, is onto is necessary in Corollary 2.2.22.

2.3 The computation of the Reidemeister and Nielsen

numbers over the complement

[n this section, we generalize the results in section 1 of [Z].
For each component Ay of A such that fi, g« map A, into the same component B, of B.
there is a commutative diagram

85,

m(By,by) 5 Hy(B) % Coker((ge). — (fe) : Hi(Ax) = Hi(B.))
L dis Ik
m(Y.h) 25 H(Y) % Coker(g. — f.: Hi(X) = H\(Y)),
where i, and ji are induced by the inclusion maps. Define v = wg~gouk-w;‘wf,‘ -fo-u.,:l -w;l,

and define ux : H\(B;) — H\(Y) by pk(c) = is(c) + 0y(). Then ux induces a map

bk : Coker((gx)s — (fx)«) = Coker(g. — f.), and we have

Lemma 2.3.1 The following diagram

n8, 98,

V(fki 9k, Lo, Yo, wfkvwgg) — COkET((gk). - (fk)‘)

1 ﬁfhgk b ik
od
V(£ 9, T Yo wp,wg) ¥

is commutative.
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Proof: We only need to prove that the following diagram is commutative.

0B,

Wl(st bs) — Hl(-Bs)

1 Ufe.9 1 pe

m(Y.y) 25 H(Y)

Let v =w,-goue-wy' and v =wy, - foug' -wy'. Then for each [a] € 7((B,.b,). we have

Oy ovrglle]) =b0vlvi-a- %) =7 - W =n+ta+%

=a+ Y+ =0T =8+7 = i 0s,(a]). =

Theorem 2.3.2 Let f.g : (X.A) = (Y,B) be maps. Suppose (f.g) has the weak Jiang

property. If L(f,g) =0, then N(f,g; X — A) =0, if L(f.g) # 0. then
N(f.g: X — A) = #Coker(g. — f.) — #{UL mCoker((g:). — (fi).)}

Proof: If L(f.g) = 0, then by Theorem 2.2.17. all the coincidence classes have zero index.
So N(f.g: X - 4) =0.
If L(f,g) # 0. all the coincidence classes will have nonzero index and 7y o 8y in-

duces an one-to-one correspondence between 7(f, g; Zq, Yo, wy,wy) and Coker(g. — f.) by

Lemma 2.3.1. an element in Coker(g. — f.) corresponds to a weakly common coincidence

class if and only if it is in the image of 4; for some ¢ and the result follows. 0

Corollary 2.3.3 Ifeither Y is a Jiang space or if g, is onto and fr(m (X. o)) C J(f,wy, To, Ya),

then the formula in Theoremn 2.3.2 holds. |
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Corollary 2.3.4 Suppose A is connected and either Y is a Jiang space, or g, is onto and
fx(m (X, x0)) C J(f,wp,xo,40). If L(f,g) = 0, then N(f,¢; X — 4) = 0; if L(f.9;) # 0.

then

N(f.g; X — A) = #Coker(g. - f.) — #(ip).Coker((g4). — (fa).)

Proof: Under the hypothesis. (f.g) has the weak Jiang property. If L(f.g) = 0. then
N(f.g:X — 4) = 0 by Theorem 2.2.17. If L(f,g) # 0, then all Nielsen classes are es-
sential. Since the property of being R-commutative is independent of the choice of wy,
W, Ig and yo, we may assume ro € A. y € B and wy.w, C B, and we have that
Ny © 8y : J(f. 9, Lo, Yo. wr.wg) = Coker(g. — f.) is bijective. Now we can choose a = 1y,

b = yo, vy, = wy and wg, = wy and the map i is equal to i.. O

Theorem 2.3.5 Let (f,g) : (X.A) = (Y,B) be a pair of maps with 4 = Uk Ay, such
that (f.g) and (fi, g;) have the weak Jiang property for all components 4; of A IfL(f.g)-

L%\ L(fi.g:i) # 0 and L(fi,g:) =0 for m < i < k. then
N(fig: X, A) = N(f.9) + N(fa,94) — N(f, 95 fa.94)

= #Coker(g. — f.) + )_ #Coker((g:). — (fi))
i=1
-#{U @ Coker((g:). — (fi).)}-
Proof: By Theorem 2.2.17, we have N(f,g) = #Coker(g. — f.) and N(f4,94) =

YRIN(fivg) = X, #Coker((gi)« — (fi)s). A coincidence class of (f,g) is a common

essential coincidence class if and only if it contains a coincidence class of (f;, g;) for some
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1 < i < m since each coincidence class of (f,g) and (f;, g;) with 1 < ¢ < m is essential,
and none of (f;. g;) with m < i < k is essential. By Lemma 2.1.10 and 2.3.1, such a class

corresponds to an element of {UM a;Coker((g:). — (fi).)} and the result follows. |

Corollary 2.3.6 Suppose A is connected and L(f,g) - L(f41,94) # 0, then if the one the
following is valid,

(i) Y and B are Jiang spaces.

(i1) Y is a Jiang space and {g1)x is onto and (fi)x(71(A,a)) C J(fa.wy, Lo, Yo)-

(1ii) gx is onto and fr(m (X, xo)) C J(f,wy. Lo, Ye) and B is a Jiang space.

(iv) 9= and (g.1). are onto, and f(m(X,xo)) € J(f,wy,To, yo) and (fa)z(m(A.xo)) C
J(f.-h“’fv-rO»UO)-

then we have

N(f,g9: X, A) = #Coker(g. — f.) + #Coker((ga). — (fa).)
~#i,Coker((ga)e = (fa)s)-

Proof: As in the proof of Corollary 2.3.4, we may assume that ry € 4, yo € B and

Jf,wg C B. The result then follows from Theorem 2.3.5. m]

2.4 Manifolds with boundary

In this section, we will extend our results to the manifolds with boundary. Unlike the fixed
point case the extension of the coincidence index to manifolds with boundary is not entirely

straightforward. The method used here is based on [BS].
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We will first give a brief description of the definition of the index of a coincidence point
set in [BS] and give an extension of Theorem 5.8 in [BS], then we introduce a new invariant
for a pair of maps from a manifold with boundary to another one preserving boundaries.

Let X and Y be oriented manifolds with boundaries .X and 9} respectively. Assume
that f : X — Y and g : (X,0X) — (Y,0Y) are maps. Note that we do not require
f(OX) C OY here. Let (—X) be a copy of X with opposite orientation. For each point z € X
we denote the corresponding element in (~.X) by —x. The double 2.X of X is the oriented
manifold without boundary obtained from X U (—X) by identifving each r € 90X with
—r € (—0X). Let iycay : ¥ — 2Y be the inclusion of ¥ into its double. Let ryx : 2X — X
be the retraction defined by r(z) = r(—z) = r. Define f = iycay fry + 2X — 2Y and
29 : 2X — 2Y by 2¢(z) = g(z) and 2g(—r) = —g(xr). Now f and 2g are maps from a
manifold without boundary to another one and therefore the Nielsen number can be defined
for (f,2g). It is proved in [BS] that the coincidence classes of (f, g) are identical to those of
(f, 2g). Hence the index of a class « of (f, g) is defined to be the index of the corresponding
class of (f. 2g) and the Nielsen number N(f,g) of (f, g) is defined to be N (/f, 2g).

Let D(X) : H*9(X) — H,(X,3X) be the Lefschetz duality isomorphism. Let §*~9(f, g) :
H™X) = H*9(X) be the composition

1

H(X) 2% (X, 0X) 2 H,(Y,0Y) P95 Broo(y) £ Hrme(x)

and the B-Lefschetz coincidence number Lg(f,g) be
Lg(f,9) = Tioo(=1)" "Tx[6"~%(f, 9)]-

It is proven that Lg(f, g) = L(f,2g) and I(X; f,g) = Lg(f, g) (cf. [BS]).
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Before we extend Theorem 5.8 in [BS], we first show that Ry, can be considered as a
subset of R;,,, in other words, we have an injective map from Ry, to R;,, induced by the
inclusion map. Let ry € X, yg € Y be the base points. The inclusion map i : ¥ — 2} induces
a homomorphism (iycay ) from m, (Y, yo) to 7 (2" yo) . If we choose Wi =y and wyy = wy,
we have a natural map induced by i, from 7(f.g; xo. yo. wy,wy) to v(f, QQ;Io,yo.w'f,u.’gg),

which we will denote by (iycay)g-
Lemma 2.4.1 (ivcayv)g : V(f, 95 Zo, Yo, wy.wg) = V(f. 295 2o, yo, wj. way) is injective.
Proof: It is easy to see that (iycay)r @ (Y. yo) = 71 (2Y yo) is one to one. since there is

a retraction ry : 2} — Y such that ry o iy oy = idy.

Assume the elements «, 3 € 7 (Y yo) are mapped into the same Reidemeister class of
(f.2g). We want to prove that a and J are in the same Reidemeister class of (f.g) too.
By assumption. there is an element v € m,(2.X. o) such that a = (2¢).(7v) - 3 f=(7"}), or

a™t-(29)-(v)- J'frr(‘,r"l)z 1. Applying (ry), to both sides, we have
(ryv ) (@ ) (ry) 2 ((29)x (M) ()2 (B) (ry )2 (f(7)) = 1.

Note (rY')w°fx = fro(rx)r and (ry)z©(29)x = gz o (rx)x, and (ry)x(a) = a, (rv)(3) = 4.

since «, 3 are both in Y. Hence, we have

a” (@) ((rx)=(MBF(((rx)=(1))™) = 1,
or

a = (g)u((rx‘m("f‘r)ﬁfx(((T‘v)w(‘f))-l)-
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Since (rx)~(v) € m (X, zo), we proved the lemma. 0O

The following theorem is an extension of Theorem 5.8 in [BS].

Theorem 2.4.2 Suppose f : X = Y andg: (X,0X) — (Y,3Y) are maps of manifolds with
boundary. Suppose that g is onto, and fr(m(X,xo)) C J(f.ws. To,40).- If La(f,g) =0,

then N(f.g) =0; if Lg(f,g) #0, then N(f,g) = #Coker(g. — f.).

Proof: We will prove that there are only two cases. namely Lg(f.g) = 0and .V(f.g) = 0.
and Lg(f,g) # 0 and N(f, g) = #Coker(g. — f.)-

If there is no essential class, then Lg(f.g) = 0 and N(f, g) =0.

Otherwise, assume that r, is in an essential class a of {f, ¢g) and w; and w, are constant
loops at yg = f(z¢). It is obvious that (iycay)«(J(f.wy.To. o)) C J(f, <f, To: Yo). Then
T(f.2g.x0) D p(J(f.wr» 2o, 40)) D P(EY C 2Y) o (J(frwy, Lo, ¥0))) D (iveay ) o (T (S 9y Loy You wrrg)),
where p is the projection from (Y, yp) to 7 (f, g: Zo, Yo, wy,wy). The last inclusion is due to
Lemma 2.2.19. By Theorem 1.4.3, .V(f.?g) > #f’(f,?g,.ro) > #(i(V(f 9. T0, Yo, Wy, wy)))-
Since (. is injective. we have .-\"(f. 2g9) > R(f,g) > Coker(g. — f.). By Lemma 5.1 of
[BS], we have N(f,g) > #Coker(f.— g.). However, N(f,g) < R(f.g) is always true and by
Lemma 2.2.20 and 2.2.6, R(f,g) = #Coker(f.—g.). So we have .N(f, g) = #Coker(f.—g.).

Since each class has the same index, we have Lg(f,g) # 0. a

Note 2.4.3 For closed manifolds Corollary 2.2.22 is symmetric in f and g. However, as we

show in the following example, Theorem 2.4.2 is not symmetric in f and g.

Example 2.4.4 Let X =Y = S! x §! ~ D2, and let a,b be the standard basis of m (X).

Let f be the identity. Define map ¢ as follows:
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Define g, : X — S! x S' VI by squeezing a collar of the boundary to I; g, : St x S'VI —
S v I by projecting T to the second factor and sending I to I by identity. g3 : S'VI —> Y
by sending S! to —b and send [ to an arc from Y to b. Let g = g30 gy 04, then f, is onto,
g (m (X)) € J(g), Lg(f.g) =1 and N(f.g) = 1 ( the set of coincidence points consists of the
arc from 9Y to b and another point in b with index 1. Those coincidence points on the arc can
be removed by deforming f along with the arc). However. R(f, g) > #Coker(g, — f.) = 2.

So N(f.g9) # R(f. 9).

As before, let X and Y be manifolds with boundary. Now however we assume that

fi9:(X.,0X) = (Y.0Y) are maps. i.e. both f and g are boundary preserving.
Lemma 2.4.5 N(2f.§:2X,0.X) = N(2g, f:2X.8X).

Proof: Without loss of generality, we may assume that f is transversal to the bound-
ary 9Y of Y. and that there are only finite number of coincidence points of (f,g). Let
Sty S1.St41s - Sp be the non-empty Nielsen classes of (Jf,dg). such that Sy,..... S are
essential and Si;..... S, are inessential. Let Ny, ..., Ny, Voi1, ...V, Nigy, ..., Nk be the non-
empty Nielsen classes of (f, g). arranged in an order such that (i) each .V; in Ny, ..., N, does
not contain any Sj, i.e. it is contained in int(.X); and (ii) each V; of V,;,....V; contains
at least one class of Sy,..., 5, i.e. contains an essential classes of (9f,dg); and (iii) each
of N4y, ...Np contains at least one class of S;,4, ..., Sk, i.e. contains an inessential class of
(0f,3¢g) and does not contain any of Si, ..., S;. So the relative Nielsen number is the sum of [,

the number of essential classes in V|, ....Ny, and the number of essential classes in Ny, 1, ... Nk.
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Since for 1 < i < s, iV; is contained in int(.X'), by the definition of index and Lemma 5.16
of [V], ind(V;; f,2g) = (—1)™ind(V;; §, 2f). That is, (as far as the essentiality is concerned),
the two ways defining the index of V; are the same. Since each N,,,.....V; contains an
essential class of (8f,3dg), these classes do not contribute anything to the relative Nielsen
number. So we only need to prove the essentiality of each .V; in the list V;;{,.... Vi is the
same when we use ( f ,2g), and when we use (g,2f).

Now let .V; = 4 U B be a Nielsen class with t + 1 < i < k, where A is in int(.X),
and B is in dX. As above. ind(A: f.2g) = (=1)"ind(A:§.2f). and we will prove that
ind(B: f.2g) = (—1)"ind(B: §.2f). so that ind(.V;: f.2g) = (=1)"ind(:Vi: §. 2f).

Assume that B = {z,,....z,}, and let vy =ind(zs;df,3g). By the assumption on .V;.
Yinu = jriind(z;;0f.89)=0. Consider an r; with 1 < k < u;. For simplicity, we
assume that rg is the origin of R", and f ,9,2f,2g are maps from R” to R” such that f and

g map R = {(a,,....an) | @, >0} to R%. Let

_f-2% g -2f

h.l = and h2 =

|f — 2¢| lg — 2f|

and note that H,_(S"~', 5" %) = H,_ (D"}, S" )@ H,_(D*"'.5""2). Then for j = 1,2,
we have commutative diagrams

H, (S"Y) S H,_(D¥'.S"2) @ H,_,(D*1,5%2) 3 H,_,(S*?)

4 (hy). 4+ (hy), 1 8(h;).

Hooo(SP1) S Hooo(DP1,S™2) @ Haoo(DP, 572 & H,_o(S772) .

In the diagrams, i, sends the generator 1 to (1,1), and 8 sends (X, ) to A — 7. Note
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that ind(zx; f, 2g) is equal to the degree of h,, ind (xx; §,2f) is equal to the degree of hy,
ind(z,; df, dg) is equal to the degree of 8h,, and ind (z; g, 3f) is equal to the degree of dhs.

Because of the definition of f and 2g on D*~! and the commutativity of the diagram, all the

points in D*~! are sent to D?~! and hence (h;), sends (0, 1) to (~ vk, 0) by the commutativity

of the right square of the diagram. Let (hy)_((1,0)) = (7. A\x). Then by the commutativity

of the right square of the diagram, we have that Ay = i — vx The commutativity of the left

square says that i,(k,).(1) = ( deg(h,), deg(h,)) is equal to (k) ,(1,1) = (P, M) +(—vk. 0) =

(M — vk, Ax), so deg(hi) = A\g. Note that (hy), sends (0, 1) to (—v;,0), for the same reason

—v—

that (h,), does. Since on D"~'. h; = (=1)hy. (ha), sends (1.0) to ((—=1)" Ak, (—=1)"m) ( this

is because that on H,_;(D*"!,5""2), (hs). = (a). o (h1)., where & : S"~!' = S™~! is the
antipodal map defined by a(z,,....2,) = (=), .... —Zn), and (a).((a,bd)) = ((=1)"b, (—1)"a)
for any (a.b) € Hn((D?7',S™"2) @ H,i(D*'.S"2)). Also. we have that (—1)"n
(=1)*\x — vx and the degree of hs is (~1)*nx. Now ind(B; f.2g) = }“:lind(rj;f, 2g9) =

YAy and ind(B:g,2f) = Xitind(x,;4,2f) = Tin (=)™ = TiL (1) — b)) =
Yini(m1)"A = Tk v = T (1)), = (=1)"ind(B; f.2g) since Yitiu; =0 -
The theorem allows us to define N(f.g;X,8X) = N(f.29:2X.8X). The definition

of N(f,g: X — 0X) is the same as before. With these definitions, most of the results in

Section 2.3 are still valid. As an example, we have the following.

Theorem 2.4.6 Let X, Y be manifolds with boundary with the same dimension, and 0.X
and 0Y connected. Let f,g : {(X,0X) — (Y,0Y) be maps. Suppose g. is onto, and

fx(m (X, z9)) C J(f,wy,Zo,40)- If Le(f,g) =0, then N(f,g: X —0X) =0; if Lg(f,g) #0,
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then N(f,g; X — 8X) = #Coker(g. — f.) — #(iavcy).Coker((dg). — (8f).)-

Proof: Since 0.X is connected, we may assume 1y € 9.X and yo € 9Y, and that
wy,wy are constant paths. If Lg(f,g) = 0, then N(f,g) = 0 by Theorem 2.4.2. Since
N(f,9:X —0X) < N(f,g9), we have N(f.9; X —-0X) =0. If Lg(f,g) # 0, from the proof
of Theorem 2.4.2, we can see that there are #Coker(g, — f.) essential Nielsen classes of
(f.g) that correspond to elements in (iycay)o(V(f. 9, Lo, Yo, wy, wy)). The weakly com-
mon essential classes correspond to elements in (lgycoy)o(V(9f, 89, xo, Yo, wy, wg)). So
N(f.9: X=0X) = #(ivcay) o (V(f, g, To, Yo, Wy, we)) —#(lav cav ) o (V(Of, 09, Tg, Yo, wy. wy)).
Since (igycor)g is injective by Lemma 2.4.1. we have #(iycayv)o(V(f. 9. Lo, Yo. wy,wy)) =
# v (f.9, X0, Yo, ws, wy) and
#(laycay ) o(V(0f, 09, o, Yo, wy, wy)) = #(ivcav)g © (lavcy)g(V(Of, 09, Xo, Yo, wy.wy)) =
#(lavcy)o(V(9f. 09, o, Yo, Wy, wy)). Under the assumptions of the theorem. we have # ¢
(f: 9. 0. Yo, wy. wy) = #Coker(g. — f.), and #(igvcy)o(V(9f. 89, Lo, Yo. Wy, wy)) =
#(laycy).Coker((dg). — (0f).). and the result follows. O

Similarly, we have

Theorem 2.4.7 Let X,Y be manifolds with boundary, and 3X end 0Y connected. Let
f,9 :(X,0X) = (Y,0Y) be maps. Suppose that Lg(f,g) # 0, L(3f,0g) = 0 and (9f,09)
has the weak Jiang property. If J(f,wys, xo,y0) = mi(Y, yo), then N(f,g; X,0X) = Ryq. If

(f,g) has the weak Jiang property, then N(f,g;X,8X) = #Coker(g. — f.). O

Note: In 2.4.7, we can not change the condition J(f, 2o, yo, ws)} = m1 (Y, y0) to T(f, 9, Zo, Yo.

wr,wy) = T1(Y. yo). The following example illustrates this.
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which contradicts m; (Y, yo) being a free group.

2.5 The minimum theorem

Lemma 2.5.1 Let X.Y be manifolds. A C X, B C Y submanifolds, and f,g: (\,4) —
(Y. B) maps. Assume that A can be bypassed in X (see Definition 1.6.7). then a coincidence
point £ € T'(f,g) belongs to a weakly common coincidence class if and only if there is a path
a: (1.0,]-{1}1) > (X, z,X — 4. ) from r to A such that foa ~ goa:({.0.1) —
(Y. f(r).B). Moreover, when f,g have only finite number of coincidence points, we may

choose either that a(1) € T'(f, g) or that the homotopy has the form goa ~ foa: (1.0,1) —

(Y. f(x). foa(l)).
Proof: The proof is similar to the proof of Lemma 3.5 in [Z]. a

Lemma 2.5.2 Suppose the dimension of Ay is greater than or equal to 2. For z € T'(f,g).
if there is a path C : (I,0,1) = (X.x. k) from r to A such that go C d foC:(1.0.1) =
(Y, f(z). B), then for any point a € A, — ['(f,g), there exist maps f' and ¢’ with f' ~ f
and g’ ~ g relative to X — U(a), where U(a) is a neighbourhood of a in X, and such that

C(f',¢)=T(f,g9) U {a}, and z,a are in the same class.

Proof: Let { = H(1,-), then [ is a path from go C(1) to f o C(1) in B. We may assume
without loss of generality that C(1) = a. If a # C(1), let @ : I — Aibe a path from C(1) to
a. Then since (goC)-(goa)-(goa™!)-l-(foa™"}-(foa) - (foC™!) ~ (goC)-l-(foC~ ')~ 0

and (goa~'})-!-(foa) C B, we can replace C by C -a. Let ay, as be paths in B such that
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a;(0) = go C(1),a(0) = fo C(1),e(1) = a2(1) and oy - a5' ~ I rel {0, 1}, then it is easy
to check that (go C)-a; ~ (foC) - a;y rel {0,1}. Since dim A; > 2, we may assume that

for any t # 1, a;(t) # az(t). Let U(a) be a neighbourhood of a in X such that there is a

homeomorphism ¢ : (U(a),U(a) N Ag) — (D™, D™), where D™, D™ are the closed unit balls
in R® and R™ C R™ with n equal to the dimension of X and m equal to the dimension of

Ak, and U{a) 7 T(f.g) = 0. Then we can label each point z € U(e) by z = (¢, r), where

—————

t € [ and r € 3U(a). Note that z = (r,0) represents the center of the ball, for any z.
Define

¢

f(2) ifze X -Ula)

fi(2Y=9 f((2t-1.x)) ifz=(t.2)€U(a)andt>1/2

as(l —2t) ifz=(t,r) € U(a) and t < 1/2

\

Define ¢’ similarly by replacing f by ¢ and as by «;. Obviously, f' ~ f. In fact, we can

define the homotopy F as follows:

,

f(z)ifze X =U(a)

F(s,2) =9 f((E¥3, 1)) if z = (t,2) and t > 5/2

L ax(s—2t)if z = (¢t,z) and t < s/2.

And using this homotopy, we find that f'oC ~ f o (C - a;) rel {0,1}. To see this, let
Cuo(t) = (C(t),0),Cy(t) = (C(t),1),C(t) = (2.1 —t),C4(t) = (a,t) for paths in X x I, then
Cy ~C-Cy-C,, therefore f'oC = FoCy~ Fo(Cy-Cy-Cq) =€fiz)- (FoCy)  (FolCp) ~
(FoCy)-(FoC,) ~ (foC)-ag, where ey is the constant path at f(z).

With the same argument, we have ¢c C ~ go C - o). Therefore, ffoC ~ g'oC,1e.

and a are in the same coincidence class of f’, g'. a
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submanifold of X such arc exists. By Lemma 1.6.4, we have f' ~ f and g’ ~ g relative to
X — U such that T'(f', ¢') =T(f.g) — {z1}. If there is no such coincident point a, by 2.5.1.
there is a path o from r, to Ak, a component of 4, a: (1,0,7—{1},1) = (X, 2, X — A, 4;)
with foa ~ go . Let a; = a(l), then by Lemma 2.5.2, there is an f; ~ f, such that
L(fi.g) =T(f.g9) U{a1}. Therefore. we have a coincidence point a; € A such that r, and
¢y are in the same class. Then we can find an arc J from u, to £, and a neighborhood U
of 3((0,1]) as above, and by Lemma 1.6.4. we can get maps f' ~ f, and g’ ~ g such that

(. g) N (X = A) = T(£,9) N (X = 4) - {z1}. 0

Theorem 2.5.4 If dim A > 3, and A can be bypassed in X, then there are maps f' ~ f

and g' ~ g, such that (f.g) has N(f.g: X. ) coincidence points in X and N(f.g: X — A)

cotncidence points on .X — A.

Proof: By Theorem 2.4 of [JJ], we can assume that (f,g) has N(f,g; X, 4) coincidence
points. By Theorem 2.5.3. we can move any coincidence point r € X — 4 in a weakly

common coincidence class to A. a



Chapter 3

A Local and Relative Version of a

Brooks’ Theorem

From the previous chapter, we see that in a sense, coincidence theory is more flexible than
fixed point theory. In particular when we proved the minimum theorem, we were allowed
to deform both f and g. Because of this, the minimum theorem in the fixed point theory
is not in general a special case of coincidence theory. Brooks’ theorem (see [BR2]) partially
remedies this deficit. It says that if Y is a manifold and f,g : X — Y are maps, then for
any f',¢': X = Y with f' ~ f and ¢’ ~ g, there is an f" ~ f such that I'(f”,g) = '(f'. ).
This makes the coincidence theory a “real” generalization of the fixed point theory when Y
is a manifold.

In this chapter, we will give a local and relative version of the Brooks’ theorem. This

result will enable us to see that the results in the previous chapter, and results in the next

70
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chapter are a generalization of the corresponding results in fixed point theory.

We consider first the main idea in Brooks' paper [BR2]. A map from X to Y is equivalent
to a graph in X x ¥. If we view py : X x Y — X as a (trivial) bundle over X, this
graph can be viewed as a section to this bundle. If f and g are maps from X to Y, then
[(f,9) = px(graph(f) N graph(g)). A homotopy of f and g corresponds to a section of
the bundle pxx; : X x I x Y — X x I. Now suppose that F.G are homotopies from f
and g respectively. Let F} : X x I — Y be a homotopy defined by F\(z.t) = F(r,1).
It is obvious that ['(F(-.1),G(-.1)) = pxxr(graph(F1) N graph{G,)) N X x {t} for any t
if we identify X x {t} with X. If we can find an isomorphism (h.:id), i.e. h is a fibre
preserving homeomorphism over identity, from the bundle pxy; : X x I xY¥Y =5 X x [
to itself such that h(graph(G,)) = graph(G). then h{graph(f))) is a section too. Let
F' be a map from X x I x Y to itself such that graph(F') = h(graph(F})). It is easy
to see that py./{graph(F') N graph(G)) = pxxi(graph(F}) N graph(G,)) and therefore.
L(F'(-,0),G(-. 0)) = pxxi(graph(F')Ngraph(G))NX x {0} = px«i(graph(Fi)Ngraph(Gi))N
X x {0} =T(F(-.1),G(-,1)). It should be clear from this discussion why we need to discuss
bundles. Since we will consider a homotopy from one pair of spaces to another, we introduce
the concept of bundle triads.

This chapter is divided into three sections. In section 1, we introduce the concepts of
bundle triads and give some basic properties. In section 2, we study a special case of bundle
triads, namely the case where the total space is a product of the base space and the fiber

space. In section 3, we prove the main theorem of this chapter.
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3.1 Definition of bundle triads

Definition 3.1.1 A bundle triad over a pair of spaces (B, B,) with By C B is a triple
(p: E— B,py: Ey = B,p, : E; > B;) of maps such that Eo,E} C E and py: E;g — B
and p; : E; — B, are the restrictions of p on Ey and E, respectively. We denote the bundle

triad by £. and we use E(£). Ey(§) and E,|(£) to denote E. Ey and E| respectively.

Figure 3.1:

Example 3.1.2 Let B and F be topological spaces, B, and F) subspaces of B and F
respectively, and fq € F a point. Let E =B x F, E; = B x {fo} and E|, = B x F}, and let
p:E — B, py: Ey —» B and p, : E| — B, be the obvious projections. Then (p, pg,p1) is a

bundle triad.

Example 3.1.3 Let M be a m-dimensional smooth manifold, .4 C M be a n-dimensional

submanifold. Let

E =TM,the tangent space of M;
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Ey = (T M)y, the zero section of TM;
E, = T4, the tangent space of A;

And let p: E — M be the projection, and py = p|g,, p1 = plg,- Then (p, po,p1) is a bundle

triad.

Definition 3.1.4 A bundle triad morphism from one bundle triad £ = (p: £ - B,pg :
Ey - B.py: Ey = By) to another ¢ = (p': E' - B'.py : Ej — B'.p\ : E| — B}) is a pair
of maps: f:(B,B,) = (B'.B}) and f : (E,Eo, E\) = (E'. E}, E!) such that p'o f = fop.
The morphism is denoted by (f, f). If (B, B,) = (B'. B}) and f = id, then (f. f) is called a
(B. B|)-morphism.

Two bundle triads £ and &' over (B, B,) are said to be (B, B,)—isomorphic if there is a

homeomorphism h : E — E’ such that (h,id) is a (B, By)-morphism, and h(E,) = Ej and

h(E,) = E}.

Example 3.1.5 Let (B, B,) = (D%.S'). E = BxD* Ey = Bx{(0,0,0)} and E, = B, x D?.
Let p: £ — B, po: Ey — B and p, : E; — B, be the projections. then £ = (p, pg, p1) is a
bundle triad. Using polar coordinates, a point in D? can be represented by a triple (r,6, ¢),

and a point in D? can be represented by a pair (r,8). Define h: E — E by

h’((rh 91)1 (T'g, 0‘2|¢)) = ((rlv 91)7 (Tz, 0‘2 + T, ¢))

It is easy to check that h is a homeomorphism, A(Ey) C Ey, h(E,) C E, and ph = idgp. So

(h,idg) is a (B, B,)-isomorphism.
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Definition 3.1.6 Let (B, B;) be a pair of spaces and £ = (p: E — B,py : £¢ — B,p; :
E, — B,) be a bundle triad over (B, B;). Let (4,4,) C (B, By), with 4) = AN B,. The
restriction bundle triad of £ over (4, 4,), which will be denoted by &|(4,4,). is defined to be
the triple (p' : E' — A,py: Ej = A,p) : E] = 4)), where E' = p~'(4). Ej = p5'(4) and

E} = pr'(4,), and p', p and p| are the restrictions of p over E’, E} and E! respectively.

Definition 3.1.7 Let £ = (p: £ — B.pg: Eg —» B.p, : £, — B)) be a bundle triad
over (B,B,), and f : (B'.B{) — (B, B,) a map. The induced bundle triad of £ under f.
denoted by f*(£). is the bundle triad (p' : E' — B'.pj : Ef — B'.p| : E| — BY}), where
E'={(t.e) € B x E | f(¥/) = ple)}, Ey = {(V.e) € B' x E|f(§') = ple) and e € Eo}

and E| = {(b\.e) € B' x E|f(b') = p(e) and &' € Bl,e € E\|}, and p’ is the restriction of the

projection from B’ x E to B'.

Let £ be a bundle triad over (B.B,) and f : (B',B{) — (B, B)) a map. Define f; :

E(f*(€)) = E(&) by fe(b,x) = x. Then (fe, f) : f7(€) — £ is a morphism which will call the

canonical morphism from f*(§) to &.

The proof of the following proposition is similar to the analogous one for bundles (see

Proposition 3.5 of [HD]).

Proposition 3.1.8 If (fe, f) : f*(§) — € is the canonical morphism from f*(£) to &, where

f:(B',B}) = (B, B,) is a map, then for each b’ € B' the restriction

fe: () H (), (00) 7' (8)) = (7H(F(8), pg " (£ (B)))
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is a homeomorphism, and if b’ € B}, then the restriction
fe (@)1, (o) 1Y), (1) 71 (B)) = (PTHY), g (S (1)), TS ()

is a homeomorphism. Moreover, if (v, f): n — & is any bundle triad morphism, there exists
a (B'. B})-morphism w : n — f*(§) such that few = v. With respect to this property, the

morphism w is unique.

Proof: The fibre (p')~'(d') C {#'} x E is the subspace of points (¥'.r) € &' x E such
that p(z) = f(¥'). or equivalently it is {¥'} x p~t(f(}')). Therefore, f¢: {8’} x p~L(f(})) —
p ' (f(¥)) is a homeomorphism. By the definition of (pj)~!(4') and (p})~(¥). it is easy to
see that fe((pp) ~'(b')) = (po) ™' (f(¥)), and fe((p})~' (V) = (p) ™' (F(¥)) if ¥ € By.

To verify the second statement, define w(y) = (py(y),v(y)). Since (v, f} is a morphism,
f{pn(y)) = p(v(y))}, and since for any y € Eg(n) respectively E\(n), v(y) € Eq respectively
E, we have w(y) € Ej respectively E|. Thus, w is a (B’. B;)-morphism. The property that

few = v and uniqueness are easily checked. O

Proposition 3.1.9 Let g : (B",BY) — (B',B}) and f : (B'.B}) — (B, B,) be maps, and
let & be a bundle triad over (B, B,), then 1*(§) and £ are (B, B, )-isomorphic, and g*(f*(£))

and (fg)*(§) are (B”, BY)-isomorphic.

Proof: Define u : £ — 1*(€) by the relation u(z) = (p(z),x), then u is the inverse
of the canonical morphism from 1*(§) to £&. Let v : (fg)*(§) — ¢*(f*(€)) be defined by
v(b’,z) = (b, (g(b"),z)). The composition of canonical morphisms from ¢*(f*(£)) to f*(&)

and from f*(£) to £ is a morphism from g*(f*(€)) to €. So by Proposition 3.1.8, there is a
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unique morphism h from ¢*(f*(£)) to (fg)*(€). It is easy to check that h is the inverse of v.

O

Note 3.1.10 Let (B, B,) be a pair of spaces and £ be a bundle triad over (B, B,). Let
(A, A)) C(B.By) and i : (A.4,) = (B, By) be the inclusion map. Then i*(£) is isomorphic

to £|(a.4,)- The proof is the same as Proposition 3.1.9.
(The following corollary will be used when we consider a bundle triad over (B, B,) x I.)

Corollary 3.1.11 Let (B.B,) and (B'. B}) be pairs of spaces. and let £ be a bundle triad
over (B.B,). Assume 4 C Band A' C B', let 4, = ANB, 4] = A'NBj and f :

(B, Bl.A") = (B. By, A) be a map. Let g = fla 4y (A A)) = (A 4)), then g°(&](a.ay)

is (A', A})-isomorphic to f*(§)|.v. -

Proof: Let i : (A.4,) — (B.B;) and ' : ({A'. 4]) — (B'. B}) be inclusion maps, then

iog= foi. By the above note and Proposition 3.1.9, we have
F @ 2 E)FE) = (foi)(§) = (i0g)(€) = g7i"(§) = g (€liv.ay) O

Proposition 3.1.12 Let f : (B, B}) — (B, B,) be a map, and n and § be bundle triads over

(B.By). Ifn and & are (B, B,)—isomorphic, then f*(n) and f*(§) are (B', B})—isomorphic.

Proof: Let h : E(n) — E(§) be a homeomorphism such that p¢ - A = p,. Then idg x
h: B x E(n) - B' x E(£) is a homeomorphism. This restricts to E(f*(n)) to give a

homeomorphism from E(f*(n)) to E(f*(§)), which demostrates the required isomorphism.

a
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Definition 3.1.13 A bundle triad € = (p: E — B,po: Ey — B,p, : E; = By) is locally
trivial if there is an open covering {U,y}taca of B, and for each a € \ there is topological

space F, and a subspace Fyq C F,, and a homeomorphism ¢, such that the diagram

(P Ua) 25 (Ua)) B (Us x Fa.Us x Fyq)

*_

Py Ta
(Va. la)
commutes, where m, : Uy X Fy — U, is the projection. If Ul =U,N B, # 0, then o, can be
regarded as a triad map and the commutative diagram becomes

(P™'(Ua). P5 " (Ua), pTH(L3) 23 (L X Fay Ua % Foa, U} X Fia)

P\ Ta
(Uar Ua, UL).

The cover is called a trivializing cover and ¢, is a trivialization over U,. Note thatp: E — B

1s a bundle.

Example 3.1.14 The bundle triads in examples 3.1.2 and 3.1.3 are locally trivial.

Proof: We will discuss example 3.1.3 only, since it is obvious that the bundle triad in
example 3.1.2 is locally trivial since it is globally trivial. For any point £ € M, there is a
neighbourhood U, and a diffeomorphism 3 : U — R™. If £ € 4, ¥ can be chosen such

that ¥ (U N 4) = R® ¢ R™. By Theorem 4.8 of [HS], (a(fz)l, 3(3:)2’ ey a(w‘z)m) is a basis of




CHAPTER 3. A LOCAL AND RELATIVE VERSION OF A BROOKS’' THEOREM 78

T:M, and ( a(fz)l, a(vi)g yaees awi)n) is a basis of T A for any r € A. Therefore, it is easy to

contruct a trivialization over U. In this example, each of F,, Fys, and F), is homeomorphic

to (respectively) R™, a singleton, and R". m|

Definition 3.1.15 An open covering {U,|a € A} of a space B is said to be numerable if it
is locally finite and has a partition of unity subordinate to it. A bundle triad is numerable

if its base has a numerable trivializing cover.

It is easy to see that every locally trivial bundle triad over a paracompact space is

numerable.

Theorem 3.1.16 Assume that § = (p: E — B.po: Eq = B.p : E, = By) is a bundle
triad, and f : (B'.B}) = (B, By) is a map. If £ is locally trivial (respectively numerable),

then f*(&) is locally trivial (respectively numerable).

Proof: Let &' = f*(§) and ( fe, f) be the canonical morphism from £’ to §. Assume that |y,
is trivial, where {U;}ic1 is an open covering of B. Let h; : (p~"(U:), ps "(U). pr H(U: O B,)) —
(Ui x Fi,Ui x Foi, Uy 0 By x Fy;) be the trivialization. By Corollary 3.1.11. f*(&)|f-1¢,) is
isomorphic to g*(§|v,). where g = fls-1(y,). Therefore, by Proposition 3.1.12, we only need
to prove that the induced bundle triad, of a trivial bundle triad, is trivial.

Since £ is trivial, we have £ = B x F for some F. Note that the projection pg r) :
B'xBxF — B'x F and the map iy : B’ x F — B’ x B x F defined by i;(V/,l) = (¥, f(V').!)

are continuous, and that the restriction of pia sy on E(f*(§)) is the inverse of i;. Hence,

£(€) is trivial.
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When {U;}ica is locally finite, {f~!(U;)}ica is locally finite. So if € is numerable, then

&' is numerable. m)

Proposition 3.1.17 Let £ and £ be locally trivial bundle triads over (B, B,), and (f,id) :
& — £ a morphism. If f|5-0(g) s Ey(&') = Ey(§) and f|gl(£:) : E\(&') — E\(&) are onto, and
for each b € B, f|(p,)-x(b) : (p)1(b) — p~'(b) is a homeomorphism, and (p')~'(b) is locally

connected and locally compact Hausdorff. then ( f ,id) is a (B, B,)-isomorphism.

Proof: Obviously the map f : E(€') — FE(£) is a one-to-one correspondence, and
f(Eo(é')) = Ey(§), and f(El(E’)) = E;(£). Thus we only need to prove that f is locally a
homeomorphism. For each b € B, there is a neighbourhood U, such that

(a). both €|y, and €|y, are trivial;

(b). there is a morphism flg(gwb) : Uy X Fy = Uy x Fy, which will be denoted by fy,;

(c). for each &' € U}, the restriction fy,|yxg, : ' X Fy = &' x F}, is a homeomorphism.

By the proof of Lemma 2.2.1 of [PR], fy, is a homeomorphism. Since E(£'|y,) is open, f

is locally a homeomorphism. 0

Proposition 3.1.18 Let £ and &' be locally trivial bundle trieds over (B, B,) and (B', B})
respectively. Assume that for each point ¥ € B', (p')~'(¥') is locally connected and locally
compact Hausdorff. If there is a morphism (f, f) from & to € such that for each point¥ € B,
flgr-rw) = (@)1 (¥) = p~H(f(¥)) is @ homeomorphism with f((py)™' (%) = pg'(f(V')) and
f((p’l)“(b’)) = p{'(f(¥')), then € is (B', B})—isomorphic to the induced bundle triad of €

under the map f, and the isomorphism is given by h(z') = (p'(2"), f)).
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Proof: By Proposition 3.1.8, there is a morphism (h,id) : & — f*(€) such that fe o
h = f. Since on each fibre (p')~'(¥) and (pge) "' (), f and fe are homeomorphisms with
F(@) 1) = pa " (F(¥)), FIEN)T'E) = pr' (b)) and fe(((pr-e)o) " (¥)) = B3 (F(B)),
Fe(((pr-)) M (¥)) = Pr'(F(t)) respectively, we have that Algy-1(y) is a homeomorphism

from (p) = (6') to (pre) " (¥') with h((p) "' (¥')) = ((ps-¢)o) ™' (b') and R((p}) ™' (¥)) = ((ps-)1) ™ (V).

By Proposition 3.1.17. (h, id) is a (B'. B{)-isomorphism. a

Lemma 3.1.19 Let (A, A,) be a pair of spaces, and (B, B;) = (4,4,) x [a,b] for some
interval [a.b], and let £ be a bundle triad over (B, B,). If for some ¢ € [a.}], £|(ax{a.c|. A1 x{acc))

and &|(ax(cb). 4, x[c.b]) are trivial, then £ is trivial.

Proof: Let (B, B}) = (A, 4;)x[a.c] and (B", BY) = (4. 4;) x[e.d]. Assume that§ = (p:
E - B,py: Ey = B.pr: E\ = B\). §|w8y) =0 : E' = B'.py : E5 = B',p| : E|\ = B}),
and &|(gwpyy = (p" : E" = B".pg : E§ — B".p{ : E{ — BY). Let v’ : (B' x F', B' x Fy, B} x
F}) = (E',E}, E}) and u" : (B" x F",B" x F§. B} x F{') = (E", Ej, E}) be trivializations.
Let v/ = @|(ax{cyxF . arxfe}xF) and 0" = u"|(qx(c}xFr A x(c}xFr)- Then h = (v")7' ot is
an (A x {c}, 4, x {c})—isomorphism. Assume that h has the form h(a,c, ) = (a,c, ha(x)),

where h, is a homeomorphism from F’ to F”. Define u: B x F' = A x [a.d] x F' = E by

u'(a,t, z) ifa<t<g
u(a,t,z) =

u'(a,t, ho(z)) ifc<t<d;

Then u is a trivialization of &. a
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Lemma 3.1.20 Let £ be a numerable bundle triad over (B, B,)x I, where B is a paracompact

space. Then there is a numerable covering {U;};es of B. such that §|, v,nB,)x1 is trivial

for each j € §S.

Proof: For each b € B and t € I, there are open neighbourhoods U,(t) of b in B, and
Va(t) of t in [, such that &|(w,e)xvi(e).(Lse)nBy)x Vi ey 1S trivial. Therefore, by the compactness
of [0, 1]. there exists a finite sequence of numbers 0 = t5 < ¢} < --- < t, = 1., and for each
0 < i < n, there exists an open neighbourhood L’; of b in B such that &|y, v,nBy)x(t_, .t 1S
trivial for 0 < i < n. Let U = Ni¢i<nli, then the bundle §|(vvna, ), is trivial by n — 1
applications of Lemma 3.1.19. Therefore, there is an open covering {U,},cs of B such that

&lv,.r,nB)x1 is trivial. Since B is paracompact. we have the result. a

3.2 Properties of quasi-trivial bundle triads

In accordance with our purpose, we now restrict attention to the bundle triads (p : £ —
B,p: Ey —» B,p,: E, = B,), where E = B x F, E\ = B, x F|, and where F is a locally

connected and locally compact Hausdorff space and F; C F.

Definition 3.2.1 A bundle triad E =(p: E — B,pe: Ey — B,p, : E; = B,) is said to be

quasi-trivial, if £ = B x F, E, = By x F}, and if p is the projection to the first factor B.

Definition 3.2.2 An envelope of unity on the space X is a family {u;};c; of non-negative
maps u; : .X = R, such that for each z € X, max;es{u;(z)} = 1and theset {j € J | ui(z) #

0} is finite. If {U;};es is a point-finite open covering of X, i.e. for each z € X, there are only
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a finite number of U;’s containing x, with the property that for each j € J, uJ-"I(O, 1] e Uj,

then {u;};e, is said to be subordinate to {U;};e-

If {U;},ey is a point-finite open covering, and {7;},cs is a partition of unity subordinate

to {Uj};es, then the non-negative function u : X — R. given by
ulz) = max;e s {m;(z)}.

is continuous. It is easy to check that {u;} e, is an envelope subordinate to {L’,};c;. where

()

RTE)

(see [JI] p.205).

Definition 3.2.3 Let £ = (p: £ — B,pg : Eo — Bg,p1 : Ey — B,) be a bundle triad
over (B, B,). The bundle triad £ x I over (B, B,) x I is defined to be the bundle triad

(pxid: ExI—>Bx[,pgxid:EgxI —>BxI[.pyxid: E, x[ — B, xI).

We will identify B x [ x F with B x F' x I by the homeomorphism T'(b, z.t) = (b, ¢.z)

forbe€ B.x€ F.andt € [. Let r: (B,B)) x I = (B.B)) x {1} be the projection map

r(b.t) = (b,1).

Lemma 3.2.4 If§ is a locally trivial bundle triad over (B, B,) x I, and each fiber is locally
connected and locally compact Hausdorff, then §l(s,8,yx (1} X I is isomorphic to r*(§|(s,8,)x(1})

by the function which sends (L,t) to ((p(l),t),l). If € is quasi-trivial, the isomorphism sends

({6, 1,2),1) to ((b,2), (b, 1,7)).



CHAPTER 3. A LOCAL AND RELATIVE VERSION OF A BROOKS' THEOREM 83

Proof: Let 7 : E(EI(B.E;)X{I} x I) — E(f'(g‘gl)x{l}) be defined by F(({,t)) = (. It is
obvious that (,r) is a morphism, and on each fibre 7 is a homeomorphism. The result

follows from Proposition 3.1.18. Q

Lemma 3.2.5 If £ is a locally trivial bundle triad over (B, B,) x I, and B is paracompact,
then there is a morphism (g,r) : £€ — &|(8.B)x{1}- Furthermore, if § is a quasi-trivial
bundle triad, and if there is a closed set C C B such that over (B - C.B, — C) x I,
pg"(B—C x I) = pg'((B = C) x {1}) x I. then for any neighbourhood U of C, there is a

morphism (u,r) : § = £|(p.B.yx {1} Wwith the property that u is a projection on §|(g-v.B,-v)x1I-

Proof: By Lemma 3.1.20, there exists a locally finite open covering {U,}es of B such
that &\, r,nBy)x1 is trivial. Let {ns},es be an envelope of unity subordinate to the open
covering {U,}ses. Let h; : (Ui x I x Fj, Uy x I x Fy,,(Uin By) x I x Fy;) = (p~4(U; x
D). (po)~YU; x I, (p1)~"((U; N By) x I)) be a trivialization.

Define (u,, ry) : £ — £ as follows. Firstly, ry(b.t) = (b, maz(n,(b),t)) for each (b,t) € U, x
I. Secondly, u, is the identity outside p=' (U, x I), and u,(hs(b.t, r)) = h,(b. maz(n,(b).1), x)
for each (b,t,r) € Uy x I x F,. We well order the set S. For each b € B, there is an open
neighbourhood U(b) of b such that U, N U'(b) is nonempty only for s € S(b), where S(b) is a
finite subset of S. On U() x I, we define r = ry,)0- - -ory(y), the composition of ry(n), - -, T5(1).
and on p~Y(U(b) x I}, we define u = uypn) o - - - © uy), where S(b) = {s(1),...,s(n)} and
s(1) < s(2) < --- < s(n). Since for s & s(b), ry on U(b) x I and u, on p~t(U(b) x I) are
identities, the maps r and u are infinite composition of maps where all but a finite number

of terms are identities near a point. Since each u, is a homeomorphism on each fibre, the
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composition u is a homeomorphism on each fibre.

Now we assume that £ is quasi-trivial and on (B — C,B, — C) x I, &|(g-c,B-C)x1 =
€l(g-c.Bi-c)xq1y X 1. Then the open covering {U,}scs can be chosen such that if U, N C #
@, then U, C U, and for any U; N C = 0, we can choose the trivialization hy : (U, x
I x Fy, U x I x Fo,,(Us N By) x I x Fiy) = (p~"(Us x I),(po)~ Y (L x I), (p0)~"((Ls N
B\) x I)) such that hg(u.t,r) = (u.t,Kkys{2)), where k,, is a self-homeomorphism of Fj.
So the map u, can be defined by us(b t.x) = u,(hs(h;'(b.t,x))) = us(hy(b.t k3L (z))) =
(b, maz(n,(b). ). kzL(x)) = (b maz(ns(b). t), kus(kzL(£)) = (b, maz(na(8),t),z). Now for

any point b€ B —U, u((b,t.z)) = (b.1.1). O

Lemma 3.2.6 If £ is a locally trivial bundle tried over (B, B,) x I, with B paracompact,
and if the fibre F is a locally connected. locally compact Hausdorff space, then £ is isomorphic
to (§l(.B)x{1}) X I. Furthermore, if £ is quasi-trivial with the hypotheses of Lemma 3.2.5,
then the isomorphism can be chosen to be a pair (G.id) : § — (§|(B.B1)x(1}) X I with the

restriction of G over (B —~ U, By — U') x [ given by G(b, t. 1) = ({b.1,x),t).

Proof: From Proposition 3.1.18, Lemma 3.2.4 and 3.2.5, we know that £ is isomorphic to
(§m.By)x1}) X I. When £ is quasi-trivial, and over (B—C,B,—C) x I, pg'((B-C) x I) =
p~'((B —C) x {1}) x I, we have, by Lemma 3.2.4 and 3.2.5, that the isomorphism has the

desired property. O
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3.3 Relative homotopy and quasi-trivial bundle triads

In this section, we will prove the following main theorem of this chapter, namely:

Theorem 3.3.1 Suppose f,g : (X,d) — (Y. B) are maps of a pair of paracompact topo-
logical spaces (X, ) to a pair of manifolds (Y, B), and let f' and ¢' be homotopic to f
and g respectively. Then there is « map f" homotopic to f' {and therefore to f) such that
C(f",g) =T(f'.¢'). Furthermore. given any homotopy {g:|t € I} from g to ¢'. there is a
homotopy { fi|t € I} beginning at f' such that T(fi_., ) = T(f',¢') for all t € I. Finally, if
there is a closed subset X, C X. such that on X — X, gi(x) = go(z). then for any open set

U D X1, fi,g can be chosen to be stationary outside of U, i.e. fi(r) = fo(x). gi(£) = go(x)

on (X -=10).

Let ¥ be a topological space, and ¥} C Y a subspace. Let ¢ : ¥ x ¥ — Y be the
projection to the first factor. and ¢ : D(Y) ={(y,y) €Y x Y} > Y, and q : }1 x ¥ - Y]

the restrictions of q. Then (g, gg,q,) is a bundle triad. The following Proposition gives a

condition on Y under which (q, qq, q) is locally trivial.

Proposition 3.3.2 If there erists an open covering {Uas}aer of Y, such that for each o
and for each pair (r.y) € Us x U,, there is a homeomorphism ¢azy : Y — Y such that
Pazy(T) = y, and if both  and y are in Y\, then for any z € Y, @azy(z) € Y1, and
considering Poy(2) € Y as a function in z, y and z then @qzy(2) is continuous with respect

to (z,y,z). Then (q,90,q1) s a locally trivial bundle triad.
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Proof: Suppose {Ua, }aca is a covering of Y satisfying the conditions of the proposition.
For each a € \, choose u, € U,, such that if U, NY} # 0, then uga € U, NY;. Let F, =Y,

Foa = {ua} and Fi, =Y]. Define h, : ¢ Y (Uy) = Us x F, by

h-a(-rs y) = (Is Pazua (y))

Then h, is a homeomorphism. Note that if r € Y. then 04, (¥)) = Y7. so h, is actually
a homeomorphism of pairs of spaces (g7'(L%).¢7 ' (LaN Y1) = (Ua x V.U NY X ¥7) to
(Ua X FaUag NY] X Fla). Since ho(z,I) = (£, Oazua (2)) = (I.ua). then hy(gy'(Us)) =

U, x Fy, and hence h, is a trivialization. m|

Proposition 3.3.3 If Y is a smooth manifold of dimension n. and Y| C Y is a submanifold
of dimension k, then (¢: Y xY =5 Y.q : D(Y) — Y.q : Y| x Y}, = Y}) is a numerable

bundle triad.

Proof: Let {¢, : Uy = R"|a € \} be charts for }¥" with the property {l’,} is numerable
and if Uy, = U, NY] # 0. then ¢, (U1q) = RF C R™ (such charts exist as Y] is a submanifold
of Y'). Define

| : ifzeV - U,
(Dozy(z) =
—1¢.,; wagyz-u’os-t! H
Ya (¥a(2) + mla=vem): fz€la

then ¢, satisfies the hypothesis of Proposition 3.3.2, and therefore we have the result. O

Lemma 3.3.4 Suppose that {g;. : (X,A) = (Y, B)|t € I} is a homotopy, where (Y,B) is a

pair of manifolds. Then there is a isotopy {h, : (X x Y, A x B) = (X x Y, A x B)|t € I}
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such that
he(z, ge(z)) = (z, go(x))

for all r € X and t € I. Furthermore, if there is a closed subset X, C X. such that on

X - X, gz} = go(x), then for any open set U O X, h, can be chosen to be stationary

outside of U, that is hy(x,y) = (r,y) on (X =U) x Y.

F.oof: Define G : (X x I, AxI) = (Y.B) by G(z.t) = g(x) forall (r.t) € X x[. Letp:
XxIxY — X x/[ be the projection, and pg :Graph(G) = Xxlandp, : AxIxB — Ax[ be
the restriction of p on Graph(G) and A x [ x B respectively. Then & = (p, po, p1) is a pullback
under Gof (¢: Y xY = Y.qo: D(Y) = Y.q, : BxB — B). To see this define G : (XxIxY,
Graph(G), A x I x B) - (Y x Y. D(Y),B x B) by é(.r,t,y) = (G{(zx,t).y). Then for any
(zo.to) € X x I. G is a homeomorphism from {(zo,t0)} x ¥ to {G(ze,to)} x ¥. Obviously
G sends Graph(G) to D(Y). If (xo,%5) € A x [, then G({(xq,%0)} x B) = {G(z0o,t0)} x B.
Thus G is a morphism of bundle triads and goG = Gop and therefore by Proposition 3.1.18,
& is a pullback under G. Now (q, qo, q1) is locally trivial by Proposition 3.3.3, thus (p, po, p1)
is locally trivial by Theorem 3.1.16. Since £ is quasi-trivial and .X x I x Y is paracompact,
by Lemma 3.2.6, we have the homeomorphism H; : X x I x Y — (X x {0} x Y) x I such
that Hy(A x I x B) C (4 x {0} x B) x I, and H,(Graph(G)) C Graph(ge x id;) and on
(X-U)xIxY, H(z,t.y) =((z,0,y),t). Define Hy : (X x {0} xY)x [ =5 X xIxY
by Hy((z,0,y),t) = (z,t,y), and let H be the compositin of H; and H,, then H is a
homeomorphism, H(A x I x B) C A x I x B, and H,(Graph(G)) C Graph(go x id;) and on

(X -U) xIxY, H is the identity. Let h¢(z,y) be the projection of H(z,t,y) in X x Y,
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then h; is the desired isotopy. a

We are now ready to prove the main theorem.

Proof of Theorem 3.3.1: Assume that f', ¢’ : (X.Ad) — (Y, B) are homotopic to
f.g:(X.4) = (Y, B) respectively. Let {g|t € I} be the homotopy from g to g’. We must
find a homotopy {f:} : (X.A) — (Y. B) beginning at f' such that ['(f,.g:-.) = ['(f'.¢’) for
allte I.

Let {he: (Y x Y, A x B) = (X x Y, A x B)} be the isotopy given in Lemma 3.3.4, such
that on (X — U') x Y, h, is the identity. Let 7 : (X x Y. 4 x B) — (Y. B) be the projection.

Then we define f, : (X.4) — (Y, B) by
filz) =mohiohyi(x. f(z))

for everv r € X andt € I. If r € 4, then f'(z) € B, so (z. f'(x)) € A x B. Now
hi'(z, f'(z)) € A x B = hi_soh{'(z. f'(2)) € A x B = mohi_oh7'(x. f(z)) € B. So
ft 1s a homotopy from fg : (X, 4d) = (Y.B) to f; : (X.4d) = (}Y,B). If r € X - U, then
filx) = mohi_ohil(z, f'(x)) = 7o hi_(z, f'(z))= =(z. f'(z)) = f'(z). This is because
on (X - U) x Y, h, is identity. It remains to show that I'(fi,g1—.} = ['(fo,q1) = L(f'.¢").

The proof is exactly the same as in [BR2], but for completeness, we give the proof here. Let
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t € I, and suppose first that = € ['(f,, g1-¢), so fi(z) = g1—¢(z). Then

folz) = mohiohi}ohi_ ohT!(z, fo(z))
= moh,ohil(z, fi(z))
= mohyohil(z.g1-:(x))
= mo hy(z.go(r))
= 7(z.q(z))
= qi(z),

so T € ['(fo, g1). Conversely, suppose r € ['(fo, ¢1) so fo(z) = g1(z). Then

filr) = mohi,ohT!(z. f(z))
= mohi_ 0h'(x. folz))
= mohi_ohi'(z.91(z))
= 7wohi_(r.g(z))
= 7(r, g1-(2))
= Gi-t(2),
so r € I'(fi,g1-¢)- .

Applying Theorem 3.3.1, Lemma 1.6.4 can be restated as following.

Lemma 3.3.5 Let X,Y be manifolds with dimensions greater than or equal to 3 and let
(f.g9) : X = Y be a pair of maps with a finite number of coincidence points. Let xo,x, €
['(f,g9) and a be an arc from xy to x, such that foa ~ goa aend «((0,1)) NT(f,g) = 0.

Let U be a neighbourhood of a((0,1]) such that U = D™ and o € OU. Then there is f' such

that f' ~ f rel X — U, and with L(f',9) =T(f,9) — {z.}.
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Proof: By Lemma 1.6.4, we have f” ~ frel X—Uand g’ ~ gret X-U, with U, cU, Cc U
and T(f",g") = T(f,g) — {z:}. Let V" be an open set such that U; C V" ¢ V" C U. Since on
X —U,, the homotopy from g to g’ is constant to g, then by Theorem 3.3.1, we have an f”
with f' ~ f” rel X — V" such that T'(f',g) = U(f",¢") = ['(f,g) — {r,}. It is obvious that

f'~frel X —U since V CU. o



Chapter 4

Equivariant Coincidence Theory

Let 11" be a group, .\ and Y be W -spaces (see 4.1.4).and f: X — Y andg: X — } bell-
maps (see 4.1.6). Then we actually have a sequence of pairs of maps {(f*.g")}. one for each
isotropy group H on X. Here f# and g/ are the restrictions of f.g respectively to the fixed
point set X, Ifa point r € X is a coincidence point of (f, g}, the orbit Wr = {wz | w € IV}
of r under the group action consists entirely of coincidence points since f.g are both -
maps. Because of this, it is natural to estimate the number of coincidence orbits instead of
the number of coincidence points. Since the length of an orbit is dependent on the location
of the orbit, we will employ the techniques of chapter 2 to locate those orbits. In order to
do this, it is necessary to consider each isotropy group individually.

Two distinct categories are considered in equivariant fixed point theory. In [WP2], a class
of W-maps, called W-compactly fixed maps, is discussed. A W-map f : VV — X from an

open invariant subset V" of a W -manifold X to X is called a W-compactly fixed map if for any

91
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isotropy group H on V', the fixed point set Fix fg is compact, where fyg = fli, : Vg - X¥
is the restriction ol f on Vy (see section 4.1.1 for the definition of Vj). A k-tuple is defined
for a IV-compactly fixed map, which is a IV -compactly homotopy invariant(as opposed to a
1¥’-homotopy invariant), where k is the number of the isotropy types of V. [FP] generalizes
this work to coincidence theory. In [WP3], on the other hand, general ¥"-maps are studied.
The fixed points in X'¥ that can be moved to X¥ for some H C R are characterized, and the
minimal number of fixed points on .\'y4 estimated (This is not an issue in the previous category
since coincidence points in Xy can not be moved to Xx with A C A via a W -compactly
fixed homotopy). Thus the theories in these two categories develop along very different
lines. In addition, in [WP3] some methods of computation are given. These are absent
from the corresponding theory in [WP2], and hence from the generalization of it in [FP]. In
this chapter, we generalize the ideas in the latter category to equivariant coincidence theory.
However, we use a different approach from [WP3] when we discuss computation. Throughout
this chapter, except section 4.1, we assume that IV is a finite group; f.g: X — Y are ¥1'-
maps; .X and Y are closed orientable smooth ¥'-manifolds such that dim .X¥ = dim Y'# for
any subgroup H of V.

This chapter is arranged as follows. In section 1, we give the necessary preparation for
the chapter. In particular, we introduce the concepts of a group action on a topological
space, a complex and a manifold, and also the concept of equivariant maps. In addition, we
discuss the homotopy properties of equivariant maps. In section 2, we introduce equivariant

coincidence classes and equivariant Reidemeister classes through a covering space approach.
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We then define an equivariant Nielsen number of a pair of equivariant maps (f,g): X = Y,
which is 2 lower bound of the number of coincidence point orbits of a pair of equivariant
maps. In addition, we describe the relationship between an equivariant coincidence class
and an ordinary coincidence class and give some basic properties of the Nielsen number. In
section 3, we discuss the computation of the equivariant Nielsen number introduced in section
2 and give an alternative description of the equivariant Reidemeister class using fundamental
group approach. This allows us to compute the equivariant Reidemeister number in some
special cases. In section 4, we introduce additional Nielsen type invariants for each isotropy
group of the group. In section 5, we discuss the computation of the Nielsen type invariants
defined in section 4. When the fixed point set of the group action is nonempty and some
other conditions are satisfied, these invariants are computable in terms of homology groups.

This approach is different from the one given in [WP3|. Finally, Minimality is discussed in

section 6.

4.1 Group Actions

4.1.1 Definition of group action
Definition 4.1.1 Let W be a group and .X be a set. By a IV-action on .X we mean a map

o:WxX—-2X

such that:

(1) ¢(e,z) = z for all z € X, where e is the identity of W,
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(2) ¢(wa, @(wy, 1)) = ¢(wawy, z) for all wy,ws € W and z € X.

(X, ¢) is called a IW-set. We shall denote the W-set (X, @) just by X.

Foraw e W, let
dw: XN 2 X

be the map defined by ¢,(x) = @(w.zx). ¢, is called the action of w. For simplity, we often

use the notation w - z or wzr for o(w. ).

Notation and Basic Properties: The following definitions, notations and results can
be found in [KK] and [tD].

(1) For a subset 4 C X, WA is the subset {wzr € X|zr € A,w € W}. In particular, Wz
is called the orbit of z. where r is an element of .X. The number of elements in W'z is called
the length of the orbit of z. If for anv r € X, Wz = {r}, we say that the W -action is trivial.

(2) For r € X, the set W, = {w € Wlwz = z} is called the isotropy group at r.

(3) For a subgroup H of W, theset X# = {z € X|hz = rforallh € H} = {r €
X | W, D H} is called the H-fixed point set X. Xy = {r € X|W, = H}. It is obvious
Xy C XH.

(4) For subgroups H; and H, of W, recall that H, and H, are called conjugate in W
if there exists w € W such that H; = w™!H,w. We denote this equivalence relation by ~
and write H; ~ H,. The conjugacy class containing H is denoted by (H). If H; ~ H, and
H, C H, we say that H, is subconjugate to H, denoted by (H;) < (H), or (H,) < (H) if
H, # H. For a subgroup H of W, Xy = {z € X|W, ~ H}; X) = {z € X|(W,) > (H)}.

If H is an isotropy group at z for some z € X, then (H) is called an isotropy type.
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(3) If (H,),(Ha), ..., (H,) are a finite number of isotropy types, then we can give them

an ordering < such that
(Hj) < (Hi)=>i< )

such an arrangement is called an admissible ordering on {(H;)}.
(6) For a subgroup H of W, X># = X# — Xy = Uycppen XF. Also X>H) =

XY — Xy = U<y X0

Definition 4.1.2 A set ¥’ is called a topological group if IV satisfies the following condi-

tions.

(1) W is a Hausdorff space.
(2) W is a group.
(3) The composition map « : W x V" — IV and inverse map 3 : W — W defined by
afw,. wy) = wywy and 3(w) = w™! respectively are continuous.
Example 4.1.3 A discrete group, for example a finite group, is a topological group with

the discrete topology, i.e. every element subset is an open set.

Definition 4.1.4 Let W be a topological group and (X, ¢) be a W-set. If X is a topological
space and ¢ is continuous, (.X, ¢) is called a ¥ -space. (Note that in this case. ¢, : X = X

is a homeomorphism for each w € W. X is called a W-space. )

A W-action is said to be free if (the isotropy subgroup) W, is trivial (i.e., W, = {e})
for any = € X. An action is said to be semifree if foreach z € X , W, = {e} or W, = W.

If W -action is not free and H is a isotropy group, W usually does not act on X# because
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XH is not necessarily W-invariant. Let NH be the normalizer of H, i.e. NH = {w €

W | w!Hw = H}, we have

Lemma 4.1.5 X¥ is NH-invariant. Hence if H is a normal subgroup of W, then XH is

W -invariant.

Proof: See Lemma 1.50 of [KK]. 0

We denote the group NH/H by WH. It is called the Weyl group of H. Since H acts

trivially on X' ¥, there is a natural action of WH on X#. Note that IV'H acts freely on Xy.

Definition 4.1.6 Let .X and Y be I"-spaces. a map f : X — Y is called a W' -map if for any
re€ Xand we W, f(wz) = wf(z). A homotopy F : X x 1 — Y is called a W -Homotopy
if it is a WW-map, where W acts on [ trivially. We note that, for each t € I, F(-,t) is a

W-map. [f two WW-maps f and g are homotopic via a W-homotopy, we say that f and g are

IV"-homotopic and write f ~yy g.
The proof of the next two results are trivial.

Proposition 4.1.7 Let W be a group, X and Y be W-spaces and f and g : X — Y be

W-maps. If £ € X is a coincidence point, then so is each y € Wx. O

Proposition 4.1.8 If f : X — Y is a W-map, then for any subgroup H of W, f(X¥) C

Y# . The restriction of f on X" will be denoted by f# : XH - YH, O

Let X be a W-space, and px : X — X is a universal covering space of X and II(X) be

the group of covering transformations. Define

Wy = {(¥17%: X — X is 2 homeomorphism and px#¥ = ypx for some v € W},
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Thus Wy counsists of all the liftings of w : X — X forallw € W. It is easy to see [I(X) C Wy

and that the sequence
1 -2X) =Wy oW o1
is exact.

Example 4.1.9 Let X = S'. W =Z/2 =< a > and an action of W on X' be determined

bv

o

Q(J.', y) = (Iv “y)'

W consists of all the liftings of the identity map. which is the transformation group, and

all the liftings of a. So
Wy ={6on:R>R|on(z)=z+nneZ}
U{un : R R | Un(z)=-z+n,n€Z}
4.1.2 Actions on complexes and manifolds

Definition 4.1.10 A simplicial complex K is called a W-complex, if there is a IV -action on

the set of the vertices of K, such that if (zq, z,. ..., z,) is a simplex of K, then (wz,, wz,,....wz,)

is a simplex of K for any w € W.

Suppose W acts on K. Let w € W and A = (zo,zy,...,2,) be a simplex of K, then w

induces a map from A to wA as follows:

w(z a‘-x,-) = z a.-(wa:i),

and hence w induces a continuous map from | K] to itself, where |K| denotes the polyhedron

of K. By abuse of notation we also denote this map by w.
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Consider the following property concerning a W-complex K.

Definition 4.1.11 (see [KK] p.229) Let K be a W-complex, if for any any w € W and any

simplex s of K, w leaves s N ws pointwise fixed, we say that K possesses property (P).

Suppose W acts on K, and K’ denote the barycentric subdivision of K. Then the action of
IV on K induces an action of W on K’ as follow: if a is the barvcenter of a simplex (rg. ..., ry)

and w € . then w(a) is defined to be the barycenter of the simplex (w(xy). .... w(z)).

Lemma 4.1.12 (p.229 in [KK]) Let K be ¢ W -complez having the property (P,) and s =
(Lo, -... Tx) be a simplez of K. If there exists ¢ w € W with wx; = x, for some i and j, then

we have i = j. a

Lemma 4.1.13 (p.230 in [KK]) If K is a W-complez. then the induced W -action on the

barycentric subdivision K' possesses Property (P,). a

Lemma 4.1.14 Let K be a W-complez, and K, is an tnvariant subcomplex of K. Then the
inclusion i : |K,| — |K| has homotopy extension property for all W-maps f : |K| = Y and
@ :|Ky| x I =Y with ¢(a,0) = f(a) for all a € |K,|. This means that given f and ¢, there

ezists a W-map v : |K| x I =Y such that ¥||x,x1 = ¢ and Y(z.0) = f(z) for all x € |K|.

Proof: See exercise 3 on p.103 in [tD], or p.32 in [HP). 0
Let M be a smooth manifold, W a Lie group. If W acts on M and the action ¢ :

W x M — M is smooth, the action is called a smooth W-action, and M is called a smooth

W -manifold or simply a W-manifold.
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Theorem 4.1.15 ([KK], Theorem 4.14 and Lemma 4.15) Let W act smoothly on M, then

for any subgroup H of W, the fized point set M¥ of H is a closed submanifold of M. In

addition, M¥ is a smooth W H -manifold, and My is an open set of M¥ . a

Definition 4.1.16 A W -triangulation (A, @) of a W -manifold M consists of a IW-complex

K and a W-homeomorphism ¢ : |K| — M, where |KR} is given the IV -action induced by the

W-action on K.

Theorem 4.1.17 (see [IS]) If W is a finite group and M is a W -manifold, then M has a

W -triangulation. m!

Theorem 4.1.18 (p.305 in {BG]) If W is a finite group and M is a W -manifold. then M

has a VW -invariant riemannian metric. =]

4.2 Equivariant coincidence classes

In this section, we will introduce the concepts of equivariant coincidence classes. the essen-
tiality of such classes and also an equivariant Nielsen number of a pair of equivariant maps.
As in the ordinary case, we use liftings of (f.g) : X — Y to define coincidence classes.
However, since we consider coincidence point orbits, we use Wy and Wy (see section 4.1.1 )

instead of I1(.X') and [I(Y") to classify these liftings.

Definition 4.2.1 Let X and Y be orientable IV-manifolds, and f and g : X — Y a pair

of W-maps. Two liftings (f, §) and {(f,§') of (f, g) are said to be W-conjugate if there are
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%X € Wy and 7Y € Wy such that (f, §)=%"(f'.§)(5¥)". It is obvious that conjugacy is an
equivalence relation. Denote the W-conjugacy class of (f, §) by ((f, Nlw = {( fLLlf.5) =
FY(f,§)(3¥)"L, for some 7Y € Wy, and 3¥ € W}.

A W-conjugacy class is called a WW-Reidemeister class of (f,g). and the set of all W'-
Reidemeister classes are called the }"-Reidemeister set and denoted by R ,(1}1"). The number

of W-Reidemeister classes is called the 1} -Reidemeister number. and denoted by Rw-{f, g).

Note 4.2.2 Generally, 3 (f, §)(3¥)~" is not necessarily a lifting of (f, ) for elements 3~ €
Wy and #¥ € Wy since ¥ and 7Y may be liftings of different elements w,. w, € W. So

[(f,3)] is not the set {F¥(f.§)(3¥)"Y57¥ € Wy.%Y € Wy}. (¢f. Definition 1.1.1)

Proposition 4.2.3 A4 V-Reidemeister class consists of a union of ordinary Reidemeister

classes.

Proof: Since I1(.X) is a subset of Wy and II(Y') is a subset of Wy, if two liftings (f, §)
and ( f '.@") of (f, g) are conjugate then they are IV -conjugate. So each ordinary Reidemeister
class is entirely contained in a I¥'-Reidemeister class: that is Ry 4(W') is a quotient of Ry,,.

O

The next proposition generalizes Proposition 2.2 of {WP3].

Proposition 4.2.4 Let (f,g): X — Y be a pair of W-maps and (f, §) and (f', §') be liftings
of (f,g), then we have

(1) IF((F.9)lw = [(f, §)]w, then W(px(T(f, ) = W(px(T(f, §)))-

2) I [(f,@)lw # [(f', @)]w, then W(px(T(f,))) N W (px(C(f,7))) = 0.
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Proof: (1) Suppose (f',§') =¥ (f.3)(3%)! for some X € Wy and 3* € Wy. We only
need to prove W (pxT'(f.9)) € W(pxT(f',3)), or pxT(£.9) € W(pxT'(f'.4") as the right
hand side is closed under the action of I¥.

Let r € px[(f.§)). and £ € ['(f,§) be in the fiber over . Then f'(3¥(z)) = 7' o
FENTUEY @) =Y 0 f(2) = 7Y 0§(F) = 7Y 0 g3 (FY(E)) = 3V (). ie. 7¥(2) €
C(f".§"). Nuote that px(3Y(F)) = vpx(F)) = ~(«) for some v € W. Therefore. ¥(z) €
pxT(f.§) and z € W(pxL(f.9").

(2) We prove that if z € W (px([(£.3))) N W (px(C(f, ")) for some r € X, then (f, §)
and (f'. §') are conjugate. Let v, v, € W such that r, = v (z) € px[(f, 3) and ry = 1o(z) €
px F(f’ g'). Let I, be in the fiber over r, and in F(f g). and I, in the fiber over r, and in
L'(f".g"). Let % and %' be liftings of v, and v, respectively such that ¥ o ()~'(Z,) = Z1.
Let ¥ = 3 o (3¥)~!. There is an element 5¥ € WY such that ¥ f3 = f. Then
3¥(f,3)3" has Z, as a coincident point. Since F, is also a coincidence point of (f*,§') and
7Y [ = f'. we have §'(2) = f'(Z2) = 7 f3 (£2) = V375 (£2). Since both ¢ and 753
are liftings of g, § = 7Y §7;° by uniqueness. This shows ((f, )lw = [(f'. 3")]w- a

Proposition 4.2.4 allows us to define a W -coincidence class in the same way we define

classes in ordinary coincidence theory.

Definition 4.2.5 Let (f,g) be a pair of W-maps from X to Y and (f,3) be a lifting of

-

(f,g). The W-subset W (pxI'(f,d)) of ['(f,g) is called the W-coincidence class determined

by the conjugacy class ( f, §)lw (or briefly the W-class). The set of non-empty W-classes is
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denoted by Ty (f, g). We have an injective map

pr,,  Tw(f.g) = Ryg(W),

which sends a I/'-coincidence class S to the W-Reidemeister class [( f Nw W (pxT(f,3)) =

S.

Proposition 4.2.6 Two coincidence points ro,xy € X are tn the same W -class if and only
if

(1) x\ = wxqy for some w € W, or

(2) there exists a path a : [0,1] = X such that a(0) = o, a(l) = wr, for some w € W
and foa~goa rel {0,1}.

Hence, each VW -class is the W -orbit of some ordinary coincidence classes and there are

finitely many non-empty W -classes.

Proof: Suppose zy and z; are in the same W-class, then there is a lifting (f,g) of (f.9g)
such that . x, € W(pxT(f.§)). and there are w,. w, € W and Ty, Iy € pxT(f, @) such that
Tg = weIy, and r; = wyz|. Now if 1§ = z{, then 1, = wz| = wizy = (Wywywezh =
(wiwg ')ze. so (1) is satisfied; if zf, # z/, then there is a path o' from z{ to z} such that
foa' ~goa'. Let a = wya!, then « is a path from z¢ to wez| = (wew")w |, = (wewi ")z,
and foa ~ goa rel {0, 1} since f and g are equivariant. So in this case (2) is satisfied.

For the converse, suppose that zg, x; € ['( f, ¢) and either (1) or (2) is satisfied. Suppose

zo € px[(f,§) for some lifting (f,§) of (f,g). If z, = wxg for some w € W, then z, €

w(pxT(f,§)) € W(px(T(f,§)), i.e. zo,x, are in the same W-class. If there is a path a from
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Iy to wz, such that foa ~ goa rel {0,1}, then z4, and wz, are in the same Nielsen class,
ie. wr, € p_\—['(f, §). Therefore, z;, € w™'(pxT(f,3)), and so zo and z, are in the same
IV-class as required.

Finally from (2), it is easy to see that if a coincidence point is in a 1} '-class. then the
whole Nielsen class that contains it is in that same W -class. Since there is only a finite

numbher of non-empty Niclsen classes, the number of non-empty 1V -classes is finite. c

=}

Definition 4.2.7 Suppose that N' is a I¥"-class of (f. g). Choose an ordinary Nielsen class

N C N%. Then NW is essential if and only if \V is essential in the ordinary sense. This is

well defined by Proposition 4.2.9.

Note 4.2.8 For convenience. we will identify the elements in [ (f, g) with some of the
elements in Ry 4(V), by means of the injective map ply e Tw(f.g) — Ryq(W) (see Defi-
nition 4.2.3). We will call an element § € R;,(W') essential if it is an image of an essential

element of [y (f, g) under p¥¥ -

Proposition 4.2.9 Suppose that two ordinary Nielsen classes N| and N,y of (f, g) belong to

a common W-class. Then |ind(N))| = |ind(N,)|. Thus, the essentiality of a W -class is well

defined.

Proof: Since V) and .V, belong to the same W class, then N, = wN, for some w € W.

Let U be an open set such that UNT(f,g) = NV, and V" openset suchthat N c V CcV c U.
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Let wU, wV" be the images of ' and V" under w, the following diagram
HoX) S H (X, X-V)D  HWUU-V)" H (Y x V.Y x ¥ — A(Y))
w. | w, 4 w, w, |
Ho(X) S Ho(X.X —wl)S HawlU.ouwl —uwl) Y3 H (¥ x V.Y x Y — A(Y))
is commutative, where w, is the isomorphism induced by w. In particular, the index ind(w.V,)

of wN, is either ind(:Vs) or (—1) - ind(:V,). )

Definition 4.2.10 The number of essential ¥V -classes is called the I1'-Nielsen number of

(f.9), and is denoted by Ny (f, g).

Proposition 4.2.11 Let X', Y be IV -manifolds with the same dimension. and f,g: X\ = Y

W-maps. Then on X, there are at least Ny (f, g) orbits of coincidence points of (f,g).

Proof: Assume that N' is an essential I¥'-class and .V ¢ V% is an ordinary Nielsen
class. By definition. .V is essential and therefore contains at least one coincidence point.

This implies that N% contains at least one coincidence orbit. |

Note 4.2.12 Unfortunately since the number of points in the various orbits may vary we

cannot always use Ny (f.g) to give a good estimate of the number of coincidence points of

(f9)
Proposition 4.2.13 If f ~w f' and g ~w ¢', then Ny (f,9) = Nw (f'. ¢).

Proof: A pair of homotopies (F,G) : X x I — Y from (f,g) to (f',g’') induces a one

to one correspondence between the Nielsen classes of (f,g) and those of (f/,¢'). Since F



CHAPTER 4. EQUIVARIANT COINCIDENCE THEORY 105

and G are W-maps, the one to one correspondence induces a one to one correspondence
between R;4(W) and Ry »(W). Let N¥ be an essential W-class of (f.g), and N C NV is
an ordinary Nielsen class contained in N*. Suppose that .V corresponds to N, an ordinary
Nielsen class of (f’,g'), then .N' is essential. This implies the W'-class containing N’ is
essential. Therefore each essential ¥-class of Ry ,(V}") corresponds to an essential 1} -class
of Rp o (V). O

The following simple example illustrates that Vi (f,g) is not a homotopy invariant,
although it is an equivariant homotopy invariant as shown in Proposition 4.2.13. Since we

choose one of the maps be identity. this example shows that the corresponding number in

fixed point theory is not a homotopy invariant either.

Example 4.2.14 Let X and W be the same as in Example 4.1.9, and }¥ = .X.

Let f: X — Y be defined by

f(r,y) = (z,-y).
fi : X = Y be defined by

filz.y) = (-I,y),
and g = g, : X — Y be the identity. We claim that Ny (f, g) = 2 and Ny (f1,91) = 1 even
though f ~ f, and g = ¢,. However f and f, are not W-homotopic.

(1) Nw(f,g) = 2: there are two coincidence points, (1,0) and (-1,0), and both have

non-zero indices. Since they are not ordinary Nielsen equivalent and they are fixed by the

W, they are not in the same W-class. So Nw (f,g) = 2.
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(2) Mw(fi,91) = 1. there are two coincidence points, (0,1) and (0,—1), both have

non-zero indices. Since they are in the same W-orbit, they are in the same W-class. So

Nw(fi,q) = 1.

The next propostion shows that just as in the ordinary case N(f,g) < R(f,g), so the

I} -Reidemeister number is an upper bound for the I}V'-Nielsen number.

Proposition 4.2.15 Ny (f.g) < Rw(f.9g).

Proof: The set of essential 1} '-classes is a subset of f‘w( f.g), and there is an injection

from [y (f. g) to R;o(WW). So we have Vi (f.g) £ Rw(f,9). 0

4.3 Computation of equivariant Nielsen numbers

The computation of the Nielsen numbers in any Nielsen theory is always difficult. The
computation in the equivariant cases is worse since Ry 4(}¥’) is much more complicated than
Ry4. and Ry (f, g) is not even a homotopy invariant as we saw in Example 4.2.14. The usual
way to compute a Reidemeister number is to relate the Reidemeister set to the fundamental
group. While this does not pose a problem in ordinary coincidence theory, it is more difficult
in the equivariant case in general. When X'V is nonempty, however, it is possible to represent
coincidence classes by means of the fundamental group of Y.

In this section, we will, first of all, relate Nw(f, g) to Rw(f, g), then we will describe the

equivariant coincidence classes in terms of the fundamental group in cases where X%V # 0,
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and both f and g send some component of X" to the same component of Y. Finally, we
establish conditions under which Ny (f, g) and Ry (f, g) may be computed easily.

The following theorem generalizes from the equivariant fixed point case, and improves

upon the result of Theorem 4.10 in [WP3|.

Theorem 4.3.1 Let X and Y be W -manifolds, rq and yo be basepoints of X and Y re-
spectively, and f,g be W -maps. If T(f,g;;ro,yo,u)f,ug) = Ry g4 ( see Definition 2.2.7 for the
definition of T(f, g; Zo, Yo. s, we) ). then

(1) L(f.g) =0 = Nw(f.g) =0, and

(2) L(fvg) # 0= -"Vlvl/'(fvg) = RW(f'g)

Proof: By Corollary 2.2.14. the hypothesis guarantees that each ordinary coincidence
class has the same index. If L(f,g) = 0., then every Nielsen class has index 0 by The-
orem 1.3.20. By Proposition 1.2.6. each IV'-class is the union of several ordinary Nielsen
classes and therefore its index is zero too. If L(f.g) # 0, then each ordinary Nielsen class
has nonzero index. Thus each W -class must contain some ordinary Nielsen class with nonzero
index, so it is essential by its definition. a

For the rest of this section, we will assume that XW # 0, YV #0, zo € XV, yp € YV,
and f(zo) and g(zy) are in the same component of Y" as yo. There is a W-action over
m (Y, yo) defined by w[a] = {wa] for each w € W and any loop a : (1, {0,1}) = (Y,y) in Y,
where wa is a path defined by wa(t) = w(a(t)).

Let w,,ws be two paths from yg to g(zo) and f(zo) respectively in YV, and let g¥s, fx'

be the corresponding homomorphisms from 7 (X, zg) to 71 (Y, yo) defined using conjugation
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by wg,w; respectively. The fact that f and g are equivariant means that g2 and fz’ are
invariant with respect to this action on 7 (Y, y) and a similar action on m (X, zp). A W-
action on 7(f, g; Zo, Yo, we, wy) (see Definition 1.2.3) is defined by w3 = w3 for any w € W

and 3 € m (Y. yo). The class of 7(f, g: Zo. yo, wq. wy)/W containing ¢ € 7(f. g: To, Yo, g, wys)

will be denoted as W¢.
Lemma 4.3.2 The action defined above is well defined.

Prove: Suppose 3 = J', then by definition there is an element v € m(.X.rg) such
that 3’ = g7/ (7)3f7'(v~!). Then wd' = w(ga’(7)3fx' (v7")) = g2 (wv)ws fx’ (w~~"). and
therefore, w3 = wl = wd = wd'. 0

Recall Definition 1.2.4 that there is a map ©;,, from R, to 7 (f, g; Lo, Yo, wq,w¢) and note
that R 4(WV) is actually a quotient set of R; 4. We define O, : R4(W) = (f. g; To, Yo, vy, wg) /W

by

OF,((f, 9)lw) = WO (((f. 7))

Theorem 4.3.3 O, is well defined and is a bijection.

Proof: We first prove that ©%, is well defined. Assume that [(f,§)lw = [(f",§')]w, that
is there are ¥ € Wy and 7Y € Wy, such that (f*,§") = ¥ (f, §)(3¥)~!. We have to prove
that ©,(((F', 3)] € W ,(((.9))-

Let px : X — X and py : ¥ = Y be universal covering spaces of X and Y respectively,

Zo € px'(z0) and Jo € py'(ye). Let 8 : I — Y from §(Zo) to f(%), then Oy ([(f,d)]) =

[wy - (py 0 8) - wr']. Let 7j : I — X is a path from Zg to (%) ~'(Z). Since px o (7%)~Y (&) =
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(¥5) o px(Fo) = (v¥)"Hzg) = xo since g € XYW, we know that pyx o 7j must be a loop
at £o. We denote it by 7. Note that (o 77") -8 - (f o 7) is a path from § o (%) (Z,) to
fo(3)!(%0) and 7¥ ((goii™*)-6-(foi)) is a path from 3V §o (5%) ! (£0) to 7 fo(¥*) ! (%),
i.e. a path from §'(Z,) to f’(;fo). So

O14(((f"- )

=fwg oy 27V ((§2 77 -0-(fo i) - wf']

=[wg- (7Y opy({(§oii™h) - 8- (Foi) -wf'

= [ (wg- (oy((Fo A1) -6 (Fo i) -wih)]

=[W(wg-(gon=Y) - (pyo8) - (fon) wf')]

— ,./Y[wg . (g o n—l) .ug"‘l . wg . (PY o 0-) . ._d!-l . “)!(f [o) f])) . w;l]

Wy

= 7Y g2 ([ Dlwg - (pv 0 8) - w7 | £ (0]
This proves that (v¥)'(€74([(f'.§)])) = Oye(I(f,9)]). or equivalently, ©,,([(f.§)]) €
WO,,(((f,§)]) and hence O, is well defined.
Since Oy, is surjective, the surjectivity of 6}"’9 follows from the following commutative
diagram
Rt 218 (£, g; 7o, yor s wy)
l $

eW
Rro(W) L3 (£, 9 To, Yo, wy, wy)/W.

where the vertical maps are projections.
To prove that 6}"'9 is injective, let (f, §) and (f, §') be liftings of (f, g) such that
O%,(((f.9)lw) = OF,([(f" §)lw). We want to prove that [(f, §)lw = ((f',§)]lw- Let6: [ —

Y be a path from §(zo) to f(zo), and & : I — Y be a path from §(z) to f'(z). Then
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Wlwg - (py 08) - (wy)~'] = OF,(I(f, 9)lw) = %, ([(F, §)lw) = Wlwg - (py 08) - (w))~1}, or

equivalently, there is a v € W and a [3] € (X, z¢) such that
wy- (Py 0 &) - (wp)™" ~ 1925 ((B)lwg - (py ©6) - (wy) "] f2r (18]

Let ¥¥ : X — X be a lifting of v : X — X such that there is a lifting 3 of 3 starting
with (3¥)~!(Z¢) and ending with ;. (Such ¥ exists. it can be chosen as follows: since
~(x9) = Iy and there is a lifting 7' of v such that 3'(Z) = I, let o be a lifting of identity
such that the lifting 3 of 3 starting at ¢~!(&,) ends at Ig, then the composition of ¢ and 7'
is the required 4.) By the same argument, we can find a lifting 3¥ : ¥ > Y of y: ¥ > ¥V
such that 7¥§(3¥)~! (&) = §'(Z1). So ¥§(3*)™' = §. Now 3¥((§o 3)-6-(fo3!)) is
a path in ¥ starting at §’(Zp) and ending at 7 f( Y)=1(Ze). Since py o 8" is homotopic to
~((goB)-(pyo8)-(fod™1)), then & and 7¥ ((§oB)-8-(fo3™")) have the same end point, namely
f'(Z0) = 4 f(3¥)~"(&o). This proves f' = 3 f(3¥)~! and hence [(f,§)lw = [(/,§)lw. O
In order to make the computation practical, we compare the Reidemeister classes with
Coker(g. — f.). This is because homology is much simpler than the fundamental group.
Let X be a IV -space, then there is a natural W-action on H,(.X) defined as follows. Let
o : I — X be asimplex. For any w € W, define w-o : I = X by (w-o)(t) = w- a(t).
For a chain X,a,0 € S\(.X), we define w - (£,a,0) = X a,(w - o). This gives a W-action on
S1(X). Let [z] € H1(X) and w € W, we define a W-action on H,(X) by w- [z] = [w- 2].
This is well defined since the action of w commutes with the boundary operator. This
action induces an action on Coker(g, — f.) defined by w - {[z]} = {w - {2]}, where {[z]}

be the element of Coker(g. — f.) containing [z]. It is easy to check that this action is
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well defined since both f and g are W-maps. The class of Coker(g. — f.)/W containing
£ € Coker(g, — f.) is denoted by W¢. With this action on Coker(g. — f.), we can define
a map hw : ([, g: To, Yo, wy, wy)/W — Coker(g. — f.}/W by hw (W) = Wh((), where

h: 7(f, g; o, Yo, wg,ws) = Coker(g. — f.) is defined in Lemma 2.2.1.
Proposition 4.3.4 The function hy is well defined and hy is bijective when h is.

Proof: We first prove that hy- is well defined. To do this, we only need to show that hisa
W-map. Let { be an element of 7(f, g; Zo. Yo, wy, wg). Which is represented by a € m (Y’ yo).
Then h{(¢) = h(z) = {0x(a)} = {[a]}, and for any w € W, h(w() = h(w@&) = h(Ta) =
{0x(wa)} = {fwal} = {wlal} = w{ja]} = wh().

Since hyy is induced by h, then hy is surjective when h is. Next we prove that hyy
is injective when h is. Assume that (;,(; are elements of 7(f, g; Zo, Yo, wy,wg) such that
hw(W¢) = hw(W¢,). This implies that h(¢;) € Wh((2), or explicitly, there is a w € W
such that h(¢;) = wh((a) = h(w¢,). Since h is one to one, {, = w(. This shows that

W’Cl = ‘v’VCQ. 0

Theorem 4.3.5 Let X and Y be W -manifolds, and (f,g) a pair of W-maps from X to
Y. Suppose that X" is nonempty and f,g map some component of XV into the same

component of YW . Then if Y is a Jiang space or if (f, g) has the weak Jiang property (see

Definition 2.2.16), then
(1) L(f,g) =0 = Nw(f.g) =0, and

(2) L(f,9) # 0 = Nw(f,9) = Rw(f,g) = #(Coker(g. — f.)/W).
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Proof: Under the assumptions of the theorem, we have either Ny = 0 or Nw(f,g) =
Rw(f,g) by Theorem 4.3.1. By Theorem 4.3.3 and Proposition 4.3.4, Rw (f, g} = #(Coker(g.—
f.)/W) since h is bijective in this case from Proposition 2.2.6. O

When H is an isotropy subgroup of W, we have WH-manifolds X#,Y# by Theo-
rem 4.1.15. In addition, f¥ and g” are WH-maps , and so the above theorem can be

applied to (F¥,¢") : X# — Y'H to give the following corollary.

Corollary 4.3.6 Let .\ and Y be W -manifolds, and (f, g) a pair of W-maps from X to Y.
Suppose X" is nonempty and f,g map some component of X" into the same component of

YW, Then if Y¥ is a Jiang space or (f¥.g") has the weak Jiang property for an isotropy

subgroup H of W, then
(1) L(f¥.g%) = 0= Nwu(f¥,¢") =0, and

(2) L(f7, %) #0 = Nwa(f¥.9") = Rwu(f¥, g") = #(Coker(gf — fH)/WH). m]

Example 4.3.7 Let Y =Y = S!'x S' x §%. W = Z/2 =< a > be the cyclic group of order

2. We denote a point in S? by a cylindrical coordinate. Let the action of WV on X be
a- (e, e (r0,:z) = ("%, (r6,-2)).

Then X% = {(ew,ew, (r,6,0))} = S!' x S! is not empty.

Define f : X — X to be

f(e, €2, (r,6,2))) = (", (r, -0, —2)),

and define g : X — X to be

g((e', e, (r,0,2))) = (e, €2, (r, 36, 2)),
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Then the set of coincidence points of f and g is T'(f,g) = {(m.m?,(1,8,0)) | m® = 1;8 =
0.7/2,7,3x/2}. Now N(f,g) =3.

Note from the Kunneth formula for homology (see p.108 in [V]) that H;(X) = H,(S! x
S! x §%) = H\(S' x S') = H\(S') x H\(S'). Let a, and a, be generators of the first and
second factors respectively. So H,(.X) =< a1, a3 >=< a, — 2as,a; — a3 >. The W-action on
H,(X) is defined as follows: a-a), =4y and a - a4y = ¢,.

The homomorphism f, induced by f is defined by f.(a1) = 2a, and f.(a;) = 2a,, the
homomorphism g. induced by g is defined by g.(a,) = a, and g.(a2) = a». It is easy to see
that Im (g. — f.) =< a; — 2a3,a7 — 2a; >=< a; — 2a,,3(a, — a2) >. So Coker(g, — f.) =<
a; — 20,0, —ay; > [/ < a; — 2a;,3(e; —az) >= {[0],[a1 - a2],[2(e\ - a)]}. To find
Coker(g.— f.)/W. we need to know the W-action on Coker(g. — f.). We have a([a; —a,]) =
la(a, — a2)] = {a2 — @1] = {a2 — a1 + 3(a1 — a2)] = [2(a; — a@2)] and a([0]) = [0]. So
Coker(g. - f.)/W = {[0]w. a1 — a2]w}

We find the Lefschetz number L(f, g) as follows (we would like to thank Ross Geoghegan
for helpful conversations about this calculation, many of the details of what follows may be
found in chapter 5 sections 3 and 6 of [SE]). We write X = X; x X; = (§! x §!) x §2,
and f = f; X fa, g = g1 X g in the obvious way. Note, again from the Kunneth formula
for homology, that Ho(X) = Z: that H,(.X) = H((X,) = Z + Z; that Ho(X) = Hy(X)) +
Hy(X3) = Z+7Z; that H3(X) = H\(X)®H2(X2) = Z+7Z; and Hy(X) = Z. Let U, and U, be
the fundamental classes of X, and X respectively, and aq € Ho(X), a11,a12 € H((X,) and

as € Hy(X,) be generators. Let a® € H°(X,), a'*,a'® € H'(X)) and a? € H?(X,) be such
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that Do(X,)(a®) = U,Na® = ay, D,(X1)(a!) = UiNa'! = ay,, D(X,)(a'?) = U;Na'? = ay,,
and D,(X;)(e?) = U, N a® = aq, where the D; are the Poincaré duality isomorphisms, and
N is the cap product. Let by € Hy(X3) and b, € H,o(X3) be generators, and §° € H?(X,)
and b? € H%(X,) be such that Dg(X5)(6°) = Uy N8° = by, and Do(X3)(6?) = Ua N b = by.
Then the (homology) cross product ag x by is a generator of Hy(.X), 2, x by and a5 x by are
generators of H (X}, aa x by and g x by are generators of Ha(Y), ay; x by and ayp x b, are
genrators of H3(.X'), and a, x b, is a generator of H,(.X).

Let U, x U, be the (homology) cross product of the fundamental classes U/, and U, given
above. Then Uy x U is defined in terms of tensor products (see Chapter 3.3 of [SE]). Since .X,
and .\, are orientable manifolds, the Eilenberg-Zilber Theorem, and the Kunneth Formula
allow us to deduce in the top dimensions of the both manifold factors that that (up to sign)
the (homology) cross product of fundamental classes is a fundamental class. In this way up to
sign U} x U, in H(.X), can be regarded as the fundamental class. Now for any 0 < p,q < 2,
Dp.y(X)(@® x ¥7) = (=1)*(Uy x U2) N (@ x b7) = (=1)*(=1)P*=9((U, N a®) x (U2 N b))
= (=1)*(=1)P?"N(ag—p X ba—q) = (=1)**P?*~9(ay_, x ba_,), where s = Qor 1. Let k(s,p,q) =
s +p(2—q), then we have Dp,,(X)(a? x b7) = (—1)¥*P9)(ay_, x by_,). Since D,4q(X) is an
isomorphism, we have D! (X)(az2—p X by_q) = (—1)¥*P9(a? x b7). Applying this result to

the calculation of 6y(f, g)(a¢ % ), we have
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Bo(f,9)(a0 x bo) = Dy(X)g"Di"(X)f.(ao x bo)
= Dy(X)g* Dy (X)((f1)- x (fa).)(ao x bo)
= Dy(X)g" D7 (X){((f1)-(ao) x (f2)«(bo))
= Dy(X)g* Dy (X)(ao x bo)
= Dy(X)g"((—1)*29(a® x b%))
= (=1)M00Dy(X)(g7 x g5)(a® x b°)
= (=109 D (X)(gi(a®) x g5(b%))
= (—1)KE00 D (X)(a? x 3b?)
= (=1)K093D,(X)(a? x b?)
= (= 1)ks0.003(_1)k(5:90) (g x b)
= 3(ao x bo).
Similarly, we have
8.(f. 9)(ay x bg) = ara x bo: and 8,(f, g)(arz x bo) = a1, x bo:
82(f.g)(aa x bg) = (—12)(as x bg); and 82(f, g)(@g X ba) = ag % by;
83(f, g)(an1 X ba) = a1z X by; and 03(f, g)(ar2 X b2) = any x ba;
and 64(f, g)(az2 x b2) = (—4)(az2 X by);
So the Lefschetz number L(f,g) = Ti_o(—1)%rfy(f,9) =3+0—-11+0-4 = -12 #
0. Since X is a Jiang space and X" is not empty, Theorem 4.3.5 can be applied, and

My (f, g) = #(Coker(g. — f.)/W) = 2. However at this point we can say very little about

orbit length. In order to do this we need some other invariants.
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4.4 More equivariant Nielsen type invariants

In order to determine the number of coincidence points of a pair of W-maps (f,g9): X = Y,
we need to know both the number of coincidence point orbits and the length of each orbit.
However, the length of an orbit may vary dependent on the location of the orbit. If a
coincidence point z of (f, g) is in Xy for some isotropy subgroup H, then the length of the
orbit Wz is [W : H], but if we deform f and g, this coincidence point may move to X¥
with K D H. as a consequence, the length of this new orbit is [} : K|. So in order to
find the minimum number of coincidence points, we have to distinguish those coincidence
points from the others. Recall in chapter 2, in order to define the Nielsen number on the
complement, we first defined maps jj, 4. : Ry.9. = Ry, and then introduced the concept
of weakly common coincidence class. These ideas will be used in this section. Each pair of
W-maps f,g : X = Y induces a pair of maps (f#.g") from X to Y¥ for each isotropy
subgroup H. If an isotropy subgroup H is a subgroup of another isotropy subgroup K,
we have XX C X, and there is a map from the W K-classes of (f¥, g¥) in X¥ to the
W H-classes of (f¥,g") in X# (see Definition 4.4.5).

Note that if two isotropy subgroups H, and H, are in the same isotropy type (H), then
there is a w € W such that the action of w induces a homeomorphism from X#' to Xz,
This allows us to define a one to one correspondence between W H,-classes and W Hj-classes,
and then subsequently to define the W-orbit of a W Hj-class. To see if a coincidence point
orbit Wz in X#) can be moved to some X(¥) we have to determine if the W-orbit of the

W H-class that contains Wz, includes any W-orbit of a W K-class for some K D H. It may
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happen that two different W -orbits of W H-classes may contain the same W-orbit of a W K-
class. This is different from the relative case where for a pair of maps ( f, g) : (X, 4) = (Y, B),
a coincidence class of (f4,9.4) on a subspace is contained in a unique coincidence class of
(f.9)

We first define a map from the set of V" H,-classes to the set of W H,-classes when H,
and H, are conjugate. Let 11" be a finite group, and X and " be compact W -manifolds. We
will use the symbol [so(X) to denote the set of isotropy types of .X.

For W-maps f,g : X — Y, and each H € [s0(X), we have the restrictions f#, g :
X# 5 YH of f and g respectively on X#. which are WH-maps.

From now on. we will assume that X and Y'¥ are connected and orientable manifolds
for each (H) € Iso(.X). Suppose f,g:.\ = Y are W-maps and H is an isotropy subgroup
of W. Foreach w € W, let H = wHw™' (H' could be equal to H). Then we have
homeomorphisms (¥ . : X# — X# and I, : Y'# — YH' defined by I¥ (x) = wz for any
r€ XH# and Iff,(y) = wy for any y € Y'H. Let I and I¥, be liftings of I¥ y and ¥,
respectively. Then for each lift (f¥#,§) of (f¥, g¥), there is a (unique) lifting (f¥', §%') of

(fH¥', g™') such that the following diagram is commutative.
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FH =H
gL g
e |
H FH' =H’
px -~ f 1g -
rH' ,HI
X l o Y
fH H by
XH — YH

Px 1y | Bt
LN '
w. X '

XH—gg——F Y

ff.g

where the bottom square is commutative because f and g are V/"-maps.

Definition 4.4.1 Define Oy H 'R.fnvgu(‘fVH) - anf‘gu'(“"H') by an'H'([(f-”.g”)]WH) =

((F¥. 37 ) wu, where [(fH,3%)|ws is the WH-class containing (f¥,§).

Lemma 4.4.2 ¢y is well defined and is bijective. Furthermore, if H' = w'Hw'™' and

H" = w"H'w""". then OH . = Ofr v © OH.H'-

Proof: We have to prove that [(f#',§#)] is independent of the choice of w € W (and,

hence, the choice of I x and f wy)-

Assume w’ € W is another element such that H' = w'Hw'™!, and ( f’H’, §'H’) the lifting

- K
H

of (fH',g#') such that (f" ,g ol

-~ H’
) =1y fH.g") s x)"!. Then we have (f' ,¢'"" ) =
15 (5 )R, §HOIE (I8 )~ Note that H' = w'w~'H'ww'~!, therefore, w'w™" repre-
sents an element in WH’. So w'w™! is an action of an element in WH' on Y¥'; w/'w™! is an

action of an element in WH' on X#'; lf,, L y)”! is an action of an element in WH' pr;
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if, (I ¢)~" is an action of an element in WH'¢sr. By Definition 4.2.1, [(f¥',§7)lwa is
equal to [(f" g™ )war.

@ i is bijective since it has an inverse defined using w™".

Now Assume that H' = w'Hw'™! and H” = w"H'w"~'. Then H" = w"w'Hw' 'w"! =
(w"w')H(w"w')~". It is obvious that ¥, v olf, « =1, . . 14 olfl, =i, . . and

therefore [, X ° lw, e lw,.., o l.f,,'y are liftings of {(yw) x and l{,’”,, y respectively. If

w'),
onm ([(FH. 3 wr) = [(F¥. 3" ) ww and ou o ((F¥, 57 Vwar) = [(F¥".37")wan. then
(fH.g") = I, (F7.g")(I8 x)7" and (F#".gH") = IH,  (F*.3"")(I% <)~ Therefore,
(fH. ") = B Ll (F7. 3"V ) U )7 = (@ 18 (P g™ w1 x) ™" This

shows og e ([(f¥,3)lwr) = [(F7". 67w = orr um o ommw([(f¥, ) wa) and therefore

OH.H" = OH' H" © PH.H' a

Definition 4.4.3 Let H be an isotropy subgroup of W, and 6 a WH-class in Ryn gn (WH).
The W-orbit of 8 is the set {¢m.a(68)} e, and is denoted by W4. If a lifting (f¥. g¥)
of (FH,gH) is in 8, we say (f¥.G") represents W6, and denote W8 by {(f¥,§)}. The set
of all W-orbits of WH-classes is denoted by WRu .« (WH). Define incl : Ryu ju (WH) —

WRyn gu(WH) by incl() = W.
Proposition 4.4.4 incl : Ryu gn (WH) = WRyn ju (WH) is bijective.

Proof: It is sufficient to show that different WH-classes are in different W-orbits. By
Lemma 4.4.2, we only need to show that if oy & ([(f7, 7)) lwu) = [(FF,3¥)|lwa then [(F7, ) |wa

= [(fH,3")wu. Assume (f¥,5¥) and (fH,§H) are two liftings of (f#,g#) such that



CHAPTER 4. EQUIVARIANT COINCIDENCE THEORY 120

ora(((FH, 30 wa) = [(f¥,37))wn. then there is a w € W such that the diagram

- FH =H ~
x# UE) pu

Lhx iy
o D pu
is commutative. Since H = wHw™", [, is in WH, and (f¥,3%) and (f#,3¥) are in the
same WH-class. O
Assume that H C K are isotropy subgroups of W'. For any lifting (f¥", §%') of (', g%"),
where K’ € (K), thereis H' € (H) and alifting (f#', §7') of (f#'. g’} such that the following

diagram is commutative.

CK' (fF' K" VK
Tx Ty
-L l}!ICKI i c‘F‘I’CA”
“pe? gt
T (fH gt v

where i} 5 is 2 map from X* to a component of p3!(X#') and i} 4 is 2 map from Y ¥’

to a component of pgr (Y ).

Definition 4.4.5 Define T(H)<(K) * "V’R,,K 'gh'(‘fVK) - I’VRIH L (I’VH) by T(H)<(K)({(fh.l,§[‘")})
={(/*.3")}.

The example which follows illustrates that 7 gy<(x) can be a multivalued map when
W is not commutative, and not necessarily singlevalued as stated in [WP3] (however, the
results in [WP3] are not affected). So T(my<(x)({(f¥',§%')}) is a set and we also use the

notation {(f%',3%)} € Tm<u)({(F¥,§%)}) and denote Uweewr, i« wi) Tean <) (W)

by Im 7(sy<(x)-
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Example 4.4.6 Let X = S! x S! x §! x S, W = S the symmetric group of degree 4.
The W-action on X is defined as follows: if (i1,72) is a 2-cycle, then it acts on an element
of X by exchanging the i,-th and i,-nd coordinates. For example, (1,2)(z;, 2,3, 24) =
(ry,T,,T3,74). Note that XW = {(z,r,7,.z) | £ € S'} = A(S! x S! x S! x S!) is not empty.

Let < (1.2) > be the subgroup generated by (1,2), < (3,4) > be the subgroup generated

by (3.4} and < (1,2),(3,4) > be the subgroup generated by (1.2) and (3,4). Then
N<URA> = {(p 2 23, 14) | 7,23, 74 € ST} = A(S' x S!) x St x S

XG> = {(2),22,2.2) | 2.2,,22 € S'} = S x §' x A(S' x S*);
X<UDEN> = f(p 2 ) | 2,2 € ST} 2 A(S x SY) x A(S! x §Y).

Note X<(1DBH>  y<(1.2> n x<B4)>  Note also that < (1,2) > and < (3,4) > have
the same normalizer, < (1,2),(3,4) >. So the Weyl-group W < (1,2) > of < (1,2) > is
< [(3.4)] > and the Weyl-group W< (3,4) > of < (3.4) > is < [(1,2)] >. The Weyl-group
W< (1.2),(3,4) > of < (1,2),(3.4) > contains [(2,3)(1,4)].

Now let ¥ = X and f = g = id and o = (1.1,1,1). Since X' is non-empty, we can
identify Ry (W) with 7(f, g; Zq, To,wy, wy)/W. We know that for this pair f and g each
ordinary Reidemeister class contains one element of m;(}’, yg). Let « be the loop represented
by A(S! x S') x 1 x 1 and 3 the loop represented by 1 x 1 x A(S! x S*). Let [a]w«q,2)> and
[Blw<(2)> € Ryw<aas> gweans> (W < (1,2) >) be the W < (1,2) >-classes containing « and
B respectively and let [ofwe(1,2),34> and [Blive(1,2),3.4)> € Rpw<amncas gweaneas (W <

(1,2),(3,4) >) be the W < (1,2),(3,4) >-classes containing a and 3 respectively. Then
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{alwe2y> # [Blw<@,2)> since W < (1,2) >=< [(3,4)] > and (3,4)a # 3. So the classes
containing [afw<(1,2)> and [Blive2)> in W Rpw<as gweaas (W < (1,2) >) are not the
same by Proposition 4.4.4. On the other hand, [o]w<u2)@a> = [Flw<n2).a.4> since
W < (1,2),(3,4) > contains [(2,3)(1,4)] and (2.3)(1,4)a = 3. Therefore the image of
[alw<.2).3,4> under T« .2)>)<(<(1.2),3,4)>) has at least two elements containing [@]w<(1,2)>

and [Jw<(1.2)> respectively. This shows that 7 is not singlevalued in general.

Definition 4.4.7 A finite set § C Uyny<x) WRwr (¥, g¥) is said to be an essential basis
of (f¥, g¥) over X#)_if for any essential WK'-class V' with (H) < (K') there is a WK -class

Ve g such that WWN' € T(K")<(K) (‘V‘N’).

Definition 4.4.8 Let f,g: X — Y be W-maps. For each H € Iso(.X) define
NOw(fu,gu) = #{essential WH-classes .V of (fH,g")|WN ¢ Ueen<(x) Im T(H)<(K) }

NOw (fH, g )=min{#W|W is an essential basis of (f#, g) over X(#)}

Proposition 4.4.9 (W -Homotopy Invariance) f ~w f', g ~w ¢', then
(1) NOw{fu,9u1) = NOw(fy.g%)-
(2) NOw(f¥.g%) = NOw(f¥,g'").

for every (H) € Iso(X).

Proof: (1) Note that NOw (fu, gx) is equal to Nwg(f¥, g*) minus the number of essen-
tial classes which are in Im (7(4)<(x)) for some K D H. So to prove (1), we only need to
prove that if a WH-class NV of (f#, g") corresponds to a WH-class N"WH of (f'# ¢'H)
under a pair of homotopies (F,G), then N%H is in Im (7(s<(x)) if and only if N'W# is in

Im (7()<(x))-
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Assume that (fH, ") is a lifting of (F#,g¥) and N"H = WH(px(T(fH, 3¥))) and

(fK, %) is a lifting of (f¥, g¥) such that the diagram

K UIED p

7 ;Y
Lidek dihck
o ULED p

I$ commurtative,
Assume that (F, G) is a W-homotopy from (f.g) to (f'.g'). Let (F¥.GH) be a lifting of
(FH,GH) such that (FH,G¥)|xx(0p = (f¥. %), and let (FX G¥) be a lifting of (FK, G¥)

such that (FK,G¥)|xx{o} = (f¥.3%). Then we have the following commutative diagram.

Kxxp P89 e
{ i'}ICK x id i ":}HCK
RExp  FIED g

Since N""¥ corresponds to N*Y# under homotopies (F,G), we have
N = WH (px (D(F ¥l xqny, G lxxp))-

This shows that N""H is in Im 7(g<(x). By running the homotopy backward we can show
that if N'WH € Im(7(m)<(k)) then NV € Im(1(a)<(x))-

(2) Assume G is an essential basis of (f¥,gf) over X{¥). Under the pair of homotopies
(F,G), it corresponds to a set G’ C Uy<(x) WRwk( f'¥,g'%). We will prove that G’ is an
essential basis of (f'#,g'f) over X'#). Then we have NOw(f'#,g'") < NOw(f¥,g") by
the definition of NOw since ¢ and G’ have the same number of elements. With the same

argument, we have NOw (f¥, ¢) < NOw(f'#, ¢'"), and hence the equality.



CHAPTER 4. EQUIVARIANT COINCIDENCE THEORY 124

Let N'WK be an essential W K-class of (f'%, ¢'X), where (H) < (K), and NW¥ be the
essential W K -class of (f¥, g*) corresponding to N’ X under the homotopy (F,G). So NWK
is essential. By the choice of G, there is an isotropy subgroup K; O K and a W K -class
6. € Rk, (f5,9%) N G such that WNWK € rgyc(k,)(W8,). More explicitly there are
liftings (fX, g¥) of (f¥.gK), and (¥, 35) of (fK1, gX1), such that VW& = {(fK, 3X)]. and
0y = {(f¥*,3%")]. The diagram

VK. (FRrghy =

251y
X cy
Vikek, iger,
- FK =K -

is commutative. As we saw in Theorem 2.1.16. this diagram leads to the commutative

diagram
Ky 4K -
VK (frotg™h) VK
- .
d ke, Vikek,
QK =K
XK )y

>

where [(f’K,g-’K)]wK and [(f’Kl,j’K‘)];VKl correspond to [(f¥, §%))lwx = N"¥ and
(5, §%)|wk, = 0 respectively. Hence [(f"K,g_’K)]WK = N'WK and PV’[(f’Kl,é’Kl)] €g.

The diagram shows that WN'WK ¢ T(KK(K”(W[(f’Kl : §'Kl)]). 0

Definition 4.4.10 Let f,g: X — Y be W-maps, define
MOw (f¥), g )=min{# coincidence W-orbits of (¢, %) on XF|p ~w f, 0@ ~w g},

Mw (fumy, 9wy) =min{# coincidences of (¢, ¥) on Xmlp ~w f, ¥ ~w g},
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My (fU, ') =min{# coincidences of (¢, %) on XHp ~y f, ¥ ~w g}.

Theorem 4.4.11 (Lower Bound) Let X, Y be \V-manifolds with the same dimension and
f.9: X =Y W-maps. Assume for any (H) € Iso(X), dim X¥ = dim Y¥, then we have
(1). MOw(fH). gt > NOw(f¥, g%).
(2). Mw(fy, 9en) 2 [W: H- NOw(fu, gu)-

(3). Mw(f,¢¥) > ¥ ey [W : K]- NOw(fk. gk).

Proof: (1). Assume that {z,.1s,....z,} € T(f¥.g") such that U, {wz, }uew = X N
[(f.9) and {wz;}wew N {wz;}uwew = 0 for i # j, i.e. {wz;}’s are the only orbits on .X'f)
and any two of them are distinct.

For each i let K; be the largest subgroup such that r; € X*: and let .V; be the element
in Rk, ,«, containing r,. We will prove that {IV.V;} is an essential basis over X Assume
V' is an essential W K'-class with H C K’. then .V’ contains at least one coincidence point,
say ' € X*'. Since UL, {wzZi}wew = X''NT(f,g), ' € {wr;}wew for some i, or ' = w;z;
for some i and w; € W. Let K" = w7 'K'w;, then z; = w7 'z’ € X*" and z; € T(f*", g%").
Since K; is the largest subgroup such that z; € X¥:, we have K” C K;. It is not hard to see
there are liftings (X, §5%) of (f¢, g¥+) and (fX", §X") of (fX", gX") such that the diagram

Xk UZEY oy

X ;X
.L I'K"CK.' L lK"CK.‘

vK” (FE" g5y VK"
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is commutative. Just choose lifts to both have coincidences which project down to a set
containing z;. This shows that the W-orbit of N’ is in 7(k,)c(x") (W N;) and {WN;} is an
essential basis over X#. This proves (1).

(2). Assume that NV is an essential WH-class, then .V contains at least one coincidence
point. If WN & Uay<xy Im 7)<k, then all the coincidence points in .V lie in .Yg. So
there are at least NOw(fu,gn) coincidence points on Xg. By Proposition 4.4.4, any two
classes in NOw (fy, gn) have coincidence points which are in different V¥ -orbits. Note that
the length of each W-orbit is [W : H], so we have the inequality.

(3) follows from (2). 0O

Let H =<1 > in Theorem 4.4.11, we have

Corollary 4.4.12
S W : KINOw(fk, 9k)

is a lower bound for the number of coincidence points of (f’,q’), for any pair of W-maps

f'~w fand ¢ ~w g. O

4.5 Computations

In this section, we will discuss the computation of NOw (fy, g&) and NOw (f¥, gf). As we
pointed out in the last section, in order to estimate the number of coincidence points of a
pair of W-maps (f, g), we have to find not only the number of coincidence point orbits, but

also the location of each orbit so that we can know the length of that orbit. For each orbit in
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Xy, its length is [ : H] and hence the number {W : H}- NOw( fg, gu) is a lower bound for
the number of coincidence points of (f, g) on Xz (Theorem 4.4.11). Though the technique
used in Theorem 4.14 in [WP3] can be used here, we take a different approach. We make use
of the results and discussion in Section 4.3, and the results in the relative case to compute
NOw (fy.gu) under certain conditions. The relationship between the minimal number of
coincidence points of (f, ¢) and NOw (fH. ¢") is very complicated, and the computation of
NOw (f¥.g"") is generally more difficult than the that of NOw (fy,gn). However in some
special cases, it can be reduced to the computation of NOw (fy.gy), which in turn can be
reduced to the computation of Ry g (fy.gx) or of #(Coker((gx). — (fu).)/W). Throughout

this section and the next section, we assume that X and Y¥ are connected and oriented

manifolds for each H € Iso(.X).

Theorem 4.5.1 Let X,Y be W-manifolds, and (f,g) a pair of W-maps from X to Y. If

Y'H is a Jiang space or (f,g") has the weak Jiang property for some isotropy subgroup H

of W, then either
(1) L(f#,¢%) =0= NOw(fy.gu) =0, or

(2) L(fH",g") # 0= NOw (fu,gu) = #WRyn gn (WH) — #(Uin <y Im mimy<x))

Proof: (1) is obvious since when L(f¥,g¥) = 0, there are no essential elements in
Ryn g (WH).
To show (2), we only need to note that all WH-classes are essential, and, by Proposi-

tion 4.4.4, that R w .4 (WH) is in one to one correspondence with WRu oo (WH). a
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From Section 4.3, we know that if the assumptions of Theorem 4.5.1 are satisfied and
if XWH £ 0, then Ry (f¥,g") is equal to Coker(¢gf — fH)/WH. Thus to compute
NOw (fu,gu), we only need to know what #(Uyy<(x) Im T(ay<(x)) is. We take the next few
pages to discuss the computation of #(Um<(x) Im 7(#)<(k)), or more precisely, to identify
the subset of Coker(g. — f.)/W H corresponding to (U ay<(xy Im T(ay<(x))-

Throughout this section, we will assume that X" # @, and for each isotropy subgroup H,
X* is connected. We choose 1o € X", y € YW and wy,wy € Y'Y, Since for each isotropy
subgroup H we have X" c X, we can choose zy and y as base points of X# and Y ¥
respectively and set wyn = wy and wyr = w,. We denote the inclusion map from X¥ to X¥
by igcr : X¥ =5 X# if H ¢ K. The homomorphism induced by iycg from m (XX, zy) to
71 (X ¥, ry) will be also denoted by iycp . Since X* isconnected and XW ¢ X¥ ¢ X¥ igck
induces a map from (¥, g¥: zq, yo, wy, wy) to V(fH, 9%: xq, Yo, wy,w,), which is defined in
Definition 2.1.7 (in this case, the basepoints rg, yo and the paths from y to g(zg) and f(xg)
are all the same), and we will denote it by igck.

We will first identify the subset of R pn ,u (W H) that corresponds to (U g<(x) Im 7<),
and then identify the corresponding subset in 7(f¥, g*; zq, yo, wy, w,)-

Define EfH'gH (‘VH) = {WH-cIass 0 l Wo e U(H)<(K) Im T(H)<(K)} C RIH‘QH("VH).

Lemma 4.5.2 Let (X, d) and (Y, B) be pairs of manifolds with A and B connected, and

f.g : (X.4) = (Y,B) be maps. Let (f,g) be a lifting of (f,g), then the following two

statements are equivalent.
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(1) there is a lifting (fa,.4) of (fa.94) such that the diagram

i k% op
diacx Vipey
X EENES

is commutative, where 13cx is a lifting of inclusion map iycx : A = X;

(2) f and § map some component of p'(A) to the same component of py'(B).

Proof: (1)=>(2): Note that iscx(A) is a component of pg!(A). Since the diagram is
commutative,. it is sent to the same component facy(é) of py' (B).

(2)=(1): Assume A, is a component of p%'(A) which is sent to the same component Bi,
of p3'(B), by f and §. Let i,cx be the lifting of the inclusion map isycyx : 4 = X which
sends A to A, and let igcy be the lifting of the inclusion map igcy : B = Y which sends
B to B Itis easy to see that disa covering space of A,, and that Bisa covering space of
B,. Let f, and g, be liftings of fl,i, and g|;, . [t is easy to check that fa and g4 are liftings

of f4 and g4 respectively, and that the diagram

e
dlacx discy
X 438, v

is commutative. g

Lemma 4.5.3 An element {(f¥,3%)} € Ryu gu is in Epu gn if and only if there is an

isotropy subgroup K D H, and a lifting (f¥,5%) of (fX,g¥) such that the diagram
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gk UIED gk
X Y

diger Y ibek

o UIED pa

?

is commutative.

Proof: By Lemma 4.5.2, we only need to prove that if an element {(f",_(}”)} € Ryn g
is in Eu 4u, iff there is an isotropy subgroup K D H and a component X§ C (pyn) ' (X¥)
such that f# and §¥ map XX to the same component Y\X C (pyn) (Y ¥).

By the definitions of Ejn 4#¢ and 71(y)<(k), there are isotropy subgroups H' € (H) and

R' D H' and liftings (f¥'.§%') of (f¥,g"). and (FX', f¥') of (f¥'.¢*") such that the

diagrams
g FH re
L ek Lieks
(’H' (fH gH" yH
and

g VI8
are commutative, where w € W and H = wH'w™!. By Lemma 4.5.2, there is a component
XK' (pgw)"'(XX') such that f¥ and §7 map XK' to the same component YX' C
(Pyar ) HYX). Let K = wK'w™!, then H C K, X¥ c X#, and YX Cc YH#. Note

that w induces homeomorphisms from X% to XH, XK' to XK, Y¥ to YH and Y¥' to
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YK, s0 (pyar) ™ (XX') is mapped to (pxx) H(X¥) by %'y and (pyw ) (YX') is mapped to
(py#)~H(YX) by IF',. Assume that X[’ is mapped to a component X € (pyr)~'(X¥)
by IH ., and Y{¥' is mapped to a component YX € (pyx)"'(YX) by [¥,.. From the second

commutative diagram, we have that XX is mapped to Y/X. a

Lemma 4.5.4 The map incl defined in Definition 4.4.8 induces a one to one correspondence

between Eff{‘gl{ (LVH) and U(H)<(K) Im T(H)<(K) .

Proof: I* is obvious from the definition of Ea ov (W H) that U gy<(x) Im T(ary<(n) is the
image of E;n o (W H) under incl. By Proposition 4.4.4, incl is injective. So we have the
result. a

By Lemma 4.5.4, we have #W R u oo (WH)—#(Um<(xy Im Tany<(k)) = #(Rpu gu (W H)—
Efu gu (W H)). By Theorem 1.3.3, 6}‘;&“ is a one to one correspondence between Ra gu (W H)
and 7(f¥, g": zo, yo, wy,wy) /W H. So to calculate #WR pu on (WH)—# (U i<y Im Ten<(k))s

we need to know the image of Eyun ou (W H) in 7(f¥, g": xo, Yo, wy, wy) /W H under O%F 4.

Lemma 4.5.5 An element 8 € Rpu gu(WH) is in Egn on(WH) if and only if for any
a € O} 4(0), the fx!, gs-congruence class containing a is in Ugcx Im inck, where inck

is induced by the inclusion map iycx : XX - X# if HC K.

Proof: Let (fH#,G") be a lifting of (f¥,g¥), o € (pxx)~'(z0), and & be a path from

" (Zo) to fH(Zo), then O 4 ((F¥,5M)lwa) = WH]w, - (pxws 0 &) - w}']. By the proof of
Proposition 1.2.5, we know that any « € v (f¥, ¢%; 20, yo, wq, wy)/W H has this form. Now

assume @ € E;un ju(WH). By Lemma 4.5.3, there is a lifting (f#, %) of (f¥,¢") in 6, and
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a lifting (f¥,§%) of (f¥, g¥) for some isotropy subgroup X O H such that the diagram

K (F¥ §%) VK

—
Liger ‘L iﬁCK
o VIED yw

is commutative. Let £ € (ifcx) "(£0) € XX and 3 be a path from §¥(z}) to fX(Z}).

Then i}« (3) is a path from §(Z) to f#(Zo). So we have [wy - (pxwa 0 ihcx(3) - w'
iS fr, gr-congruent to a. However, w, - (pxwe 0 iic g (3)) -wy'is a loop in X¥, so@is in

UHCK Im ’:HCK'

Now assume that (f¥, §") € 6, and [w, -pxu(ajz) -wylisin Im iyck for some isotropy
subgroup K O H. By Proposition 1.2.5 and Lemma 2.1.9, (f¥.§¥) is in Im Z?K,g"" so there

is a commutative diagram

gk VIBD pe
Lifiex U
e VIR g
This shows @ is in Egu gu (W H) by Lemma 4.5.3. O

Lemma 4.5.6 Assume X" # 0 and H is an isotropy subgroup of W. If an element

[a] of 7(FH, g% x0, yo, wen,wpn) is in Upyck Imiuck, then for any w € WH, wla] is

in UHCK Im iﬂcf{.

Proof: Assume that K is an isotropy subgroup of W such that # C K, and [¢] €
Im igck,. Then there is an element [a;] € m (Y /) such that [a] = igck, ([a1]) = [inck, ©

a;]. Now for an element w € WH, wHw™ = H and let K; = wK,;w™!, then we have
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wla] = [wai] is in m(Y*?) and wle] = (wa] = ([w(inck, © )] = [inck. © (wa)] =

thcK, [wan)- =
Lemma 1.5.6 shows that Uy-x Im igck is closed under the action of WH on

V(f¥. g% 20, yo,wyn . wyn). Therefore, (¥, g%; zo, Yo, wyn.win)—Upcr Im iack is closed

too. So V(f¥. 9% za, yo,wys . wsn )/WH can be split into Ugcx Im tpcn/WH and

(Z(F¥, g% xo, yﬂv‘ug”’“‘)f”) - Unck Im ZHCK)/“"H-

Proposition 4.5.7 Assume X" # 0. Then O}ifL, induces a one to one correspondence be-
tween Ryu gu (WH)— Epu o0 (WH) and (V(f¥, 9% 20, o, woer . wyn) —Uncr Im incw)/WH
Proof: It is sufficient to observe that O}/ , induces a one to one correspondence between

Epn gn(WH) and Uycx Im igcx/WH . By Lemmas 4.5.5 and 4.5.6. an element 6 is in

EfH‘gH(W'H) if and only if @w;{(e) is in UHCK Im ZHC;\'/“VH . O

Theorem 4.5.8 Let X, Y be W-manifolds, (f.g) a pair of W-maps from X to Y. Suppose
XYW is nonempty, and for every isotropy subgroup H, that X¥ is connected. Then if Y¥ is

a Jiang space, or if (f,g"") has the weak Jiang property for some isotropy subgroup H of

W, then either
(1) L(f¥.g") = 0= NOw(fu,gn) =0, or
(2) L(f¥,g") # 0 = NOw(fu,gu) = #((Coker(gll — f¥) — Unck Im pnuck)/WH).
Proof: (1) follows as in Theorem 4.5.1. So we assume that L(f¥, ¢g*) # 0. Since every
WH-class is essential, by Lemma 4.5.4, 4.5.6, 4.3.4 and 2.3.1, we have that NOw/(fy,9x) =

#(RI",Q”("VH) - Ef”,g”(‘lVH)) = #((V(thgH;Im inwg”: w]”) - UHCK Im EHCI\')/I’VFI)

= #((Coker(gf — fI) — Unck Im fuck)/WH). 0
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Note 4.5.9 Unlike Theorem 4.14 in [WP3|, Theorem 4.5.8 does not require that W be
abelian and that for any ¢ € m(X"), Twr(o) € m(X¥) ( where Tiwu(c) = {7 €
WH | yoow ()" = o}. and WH is the set of liftings of WH and éwgy is a map from
W H to itself such that ¢wx (%) f = f# for a given lifting fof f: X > X and 5 € WH. See
[WP3] for details). However, it does require that X'V be nonempty (this is not required in

Theorem: 4.14 in (WP3].)

Theorem 4.5.10 Let X,Y be W-manifolds, and (f,g) a pair of W-maps from X to Y.
Suppose that X" is nonempty and for every isotropy subgroup H, that X¥ is connected.

Then if YH is a Jiang space. or if (f¥.g") has the weak Jiang property for every isotropy

subgroup H of W, and Myecrsox)L(f7.g%) # 0, then
NOw(f#.g") = i<y NOw( fx. 9k)

Proof: For each isotropy type (K) > (H), choose an isotropy subgroup K O H and
the maximal set Gx of NOwk(f¥,g%) WK-class such that for each 8x € Gk, Wlg &
T(k)<(k")(W0k) for any isotropy subgroup K C K’ and any element fx: € R« . Then
Ucan<(x) Gk is an essential basis over X#¥). For any essential W K-class 6k, if Wk ¢
T(k)<(k")(W8g) for any isotropy subgroup K C K’, then 0x € Uiy<k)Gx. Let Wlk €
T(k)<(k")(W0k) for some isotropy subgroup K C K’, and let K, be the smallest isotropy
subgroup such that there is a W K -class 8, satisfying W0k € 7(x)<(x,)(W61). Then 6, is in
Ui < (k) 9k, otherwise, there is a contradiction to the assumption that K, is smallest such

isotropy subgroup. From the definition of Uy)<(x) 9k , it is minimal. O
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Example 4.5.11 Let us now compute NOw (fx, 95) and NOw(f¥, g¥) for the pair of maps
(f,g) in Example 4.3.7.

There are only two subgroups of W, the trivial group < 1 > and WV itself. We already
discussed the homology of .X and the homomorphisms induced by f and g in Example 4.3.7.
So we give the homology of X" here and the homomorphisms induced by f* and g''.
AW = (e®.¢?. (r,y.0))} = S' x S', where the first factor S* is the diagonal of 5! x S!,
and the second factor S! is the equator of S?. So H,(X") =2 H|(S' xS\ =Z® Z. Leta
and b be the generators of first and second factors respectively. Then the homomorphism i,
induced by inclusion map i<;5cw : X" — X is as follows: i.(a) = a, + a» and i,(b) = O(see
Example 4.3.7 for the definition of a; and a;). The homomorphisms induced by f** and g"
are as follows: f¥(a) = 2a, fV(b) = ~b and g" (a) = a. g'¥(b) = 3b.

(1) NOw(fw.gw) = 4. Since W is the action group, NOw (fiv.g9w) = Nw{f"V.g") =
N(fY,¢"). Since XW is a Jiang space and L(fW,g") = 4, N(fV,g¢") = Coker(g!? -
f¥). Since Im (9. — f.) =< a.1b >, we have Coker(g. — f.) = {[0],[b], [20],(3b]}. So
NOw(f¥.g") = N(JW, g¥) = 4,

(2) To compute NOw(f<1>,9<1>), we need to find the image of Coker(g!¥ — f¥) =
{[0], (6], [2b], [3b]} under fici>cw in Coker(g, — f.)/W. Since i.(a) = a; + a2 and i, (b) = 0,
and [a; + a2} = [a1 + a2 + (a1 — 28;) + (@2 — 2a,)] = (0], we have Im 2 = {[0]}. Hence
NOw(fa> 9«15) = #(Coker(g. — f.) — Im g)/W = #{{ai]lw} = 1.

So we have NOw (f<'>,9<!">) = NOw(f,g9) = 1 +4 = 5. Since the length of an orbit

in X¢)5 is 2, by Theorem 4.4.11, 2 - NOw (f<1>,9<1>) + NOw(fw.gw) =2-1+4 =6 is
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a lower bound of the number of coincidence points of (f’, ¢') for any W-maps f' ~w f and

g’ ~w g. On the other hand the ordinary coincidence Nielsen number is 3.

The following example is presented in [WP3] by an alternative method. We use our

method to calculate the equivariant Nielsen number, and point out some errors made in

[WP3).

Example 4.5.12 Let Y =Y =S'xS5'x5' xS'xS'xS?and W =Zg=<a>x < 3>
where Z, =< a >, Z3 =< 3 >. Let W act on X via

a- (ewl’ ews, (I, Y, z)) — (eiog, ew.’ew;, e.‘o;’ ews’ (J:, v, —z)),

B (e, ... e (z.y,z2)) = (e, e, eifs i3 eifs (1 y 2)).

Then X<*>= {(e",e', &%, e e (z,y,0))}= T°. and

X<B>= (et eif2 ¢if eif e (1 y 7))} T3 x S?,

XW = (e, ¢ifs i ¢if2 gif2 (7 4 0))} ~ T

Let g : .X — Y be the identity, and f : X — Y the IW-map defined by

Fle®r, .. e (z,y,2))= (22, e &% i 20 (z _y 2.

All the conditions in Theorems 4.5.10 and 4.5.8 are satisfied, so we can use these theorems

to compute NOw (f, g¥).
(1) NOw(f<1>,9<1>) =0.
Let X; = S' x S', and f, : X; = X be defined by f (&', e'f?) = (e"202, ¢201),
Let Xo = S'xS'xS!, and f, : X; = X, be defined by f3(e', 2, ei%3) = (1201, £202 1203}

Let X3 = 5%, and f;: X3 = X; be defined by fi(z,v, z) = (z, -y, —2).
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Then X = X, x X3 x X3 and f = f, x fo X f3, and there is a one to one correspondence
between Coker(l — f.) and Coker(1l — fi.) x Coker(l — f»,) x Coker(l — f3.).

Let a;,ap € H,(X,) be generators represented by S' x {20} and {zo} x S! respectively.
Then Coker(1 — fi.) = {[0], [a1].[2a,]}. It is easy to see that Coker(l — f5.) = {(0]} and
Coker(l — fi.) = {[0]}

Let X5 = (€.€",¢) € X,. Then X<%> =~ X x X} x X5 and the inclusion i = idy, x
iy x idy, from X<?> to X, where i» is the inclusion from X to .X5. The image of fic;>c<3>
is equal to Im 2, x Im [ x Im 3. Now it is easy to see that Z.;5c<g> IS onto since j; is
onto for i = 1.2. and 3. Therefore. we have NOw (f<i>.9<1>) = 0. ( Note that we do not
need to consider the images of ici>c<a> and Z<is>cw)-

(2) Similarly, we have NOw (f<e>.g<a>) = 0.

(3) NOw(fw.gw) = N(fw,gw) = 2.

(4) VOw (f<s>.9<38>) = 1.

Asin (1), we have Coker(1 — f<7>) = Coker(1 — f3°) x Coker(1 — f5°>) x Coker(1 —

2.
39>) and Coker(1 — f5°>) = {[0],[a1],[2e1]}. Coker(1 — £3°>) = {[0]} and Coker(l —
£52) = {[0]}. So Coker(1 — f=#>) = {([0}, (0}, (0]}, ([a}, [0, [0]). ({2au], [0]. [0])}-

XV ~ X| x Xj x X3, where X| = {(e,€) € X}, X} = {(e¥, €, ¢e¥) € X}, and
X; = {(z,y,0) € X;3}. The image of f<g>cw is {([0],[0],{0])}. The calculation is similar
to Example 4.5.11. So Coker(l — f<%>) — Imjficgscw consists of two elements, namely

([a1],[0],{0]) and ([2a,],[0],{0]). To prove that NOw(f<s>,9<s>) = 1, we only need to

show that the action of the Weyl group of < 8 >, W < § >=< «a >, on Coker(l —
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F552)— Im ficg>cw is nontrivial. In fact, a-([ay], [0}, [0]) = ([a2], [0], [0]), but ([a2], [0], [0]) =
([2a,], [0], [0]) since {a3] = [@a+ (1 — f<F>'-)(—~ay)] = [2a;]. So we have NOw(fcs>, ge<g>) = L.
Finally, we have that

E<1>C(K)[W' : K]NOW(fK~ 9k)

=6 - NOw(fc1>.9<15) +3- VNOw(f<a>.9<a>) +2- NOw(f3,93) + 1 - NOw (fw. gw)

=6-0+3-0+2-1+1-

(]

=4
So 4 is a lower bound of the number of coincidence points of (f’, g’') for any W -maps

f' ~w f and ¢’ ~w g by Theorem 4.4.11.

Note 4.5.13 There some errors in the computation of Example 3.9 of [WP3}, where the
spaces and maps are the same as in Example 4.5.12. In particular, Ng{f<ss) = 2, not 4 as
stated in [WP3|. In fact, the fixed points (m, m?,1,1,1,(1,0,0)) and (m,m?,1. 1,1, (-1,0,0))
are in the same class. To see this let a : / — $? be a path from (1,0,0) to (-1,0.0), and let C
be the path in .X defined by C(t) = {m,m? 1,1,1.a(t)), then C is a path between these two
points and f o C ~ C. So by Theorem 3.7 in [WP3], NOg(f<s>) = Ng(f<ps)/W < 8 >=
2/2 =1 instead of 2. This causes incorret results in the computation of NOg(f) and mg(f),
which are the same as NOg(f<!>, id<'>) and the minimal number of fixed points of maps in
the G-homotopy class of f respectively, and the correct results should be NOg(f) = 3 and
mg(f) = 4. As a consequence #I'(f) is not the minimal number of fixed points of G-maps

in the W-homotopic class of f, as claimed in [WP3] (see p.163 in [WP3] for detail).
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4.6 Minimality

In this section, we will prove that in some cases the lower bounds NOw/(fg,gx) and
NOw(f¥,g*) on the number of orbits can be attained. First, we will give an analog of
Schirmer’s method to obtain a pair of maps (f’, ¢’), which is W-homotopic (f, g), and in

which #I'(f',¢") is finite. Then we will coalesce the coincidence point orbits in the same

IV-class to a single orbit.

Lemma 4.6.1 For any W-space X and ¢ > 0, there is a 8 > 0 such that, if f,g: X = Y

are equivariant maps and d(f(z),g(x)) < é for all £ € X, then f and g are equivariantly

e-homotopic through a homotopy constant on the coincidence set of f and g.

Proof: See Corollary 2.3 of [WD)]. 0

In [SH1}, in order to prove the minimal theorem, a sequence of numbers {€;}, are
introduced. We give the definition here. Let }" be a WW-manifold of dimension n, ¢ > 0 be
arbitrary, with corresponding & given by Lemma 1.6.1, and & = {U;}!_, be an open covering
of Y such that for each 1 < ¢ <[ there is a homeomorphism ¢; : U; — B™, where B" is a
unit n-disk. Let &' > 0 be the Lebesque number of & and §" = min{é',}.

1. €, =10"

2. Suppose €}, is defined. There is a &}, such that 0 < &}, = &},,(€/,,) < }, and such
that for each y1,y2 € Ui, if |¢i(11) — @i(y2)| < 67,1, then d(y1, y2) < €4y, (i = 1,..0).

There is a v}, such that 0 < ’7;+1 = '7;+1(5;+1) < %, and such that for each y,,y2 € U;,

if d(ylyy2) < 7_;-4-11 then [¢3(yl) - ¢t(y2)| < 5;‘-{.11 (7' = 11 sy l)a
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Set €; = Min (€1, ¥i41)-

Then after n + 1 steps, we have 0 < ¢y < €] <,...,< €, < €, = ;6"

The following lemma is an equivariant version of a generalization of Lemma 1 in [SH1].
Lemma 4.6.2 Let K be a simplicial W -complez with property (P,) (see Definition 4.1.11),
0 <d < n and K, be an invariant subcompler of K such that K¢™' C K,. Letg: K - Y
be a W-map with the property:

(1) dy(g(a™)) < ;€5 for alla™ € K.

Let f: Ky = Y be a W-map with properties:

(2) #U(f, glx,) is finite.

(3) |f — gl < € on K}.

Then there is a W -extension f': K\, U K% = Y of f such that:

(2)' T{f', glkuke) = T(f. glk,)-

(3)'\f' - gl < € on (KLU K9).

Proof: We will prove the lemma by induction on the number /; of the d-simplices in
K - K.

If I = 1, let a? the single d simplex. Since dy(g(a?)) < i€ by (1) and on da?, dy(f,g) <
€1, dy(g(a®) U f(0a?) is less than &', the Lebesque number of the given open covering U
of Y, and therefore, g(a?) U f(8a?) is contained in some U; € U. By the choice of €,_,, we
have |p; 0 f — ¢; 0 g| < ;. By Lemma 1.6.1, we have an extension ¢; o f' of ¢; o f such

that |¢; 0 f' — ¢; 09| < 65 and ['(@; 0 f',0i 0 g) = ['(@; © f|ga¢, i © glaed) since d < n. By
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composing ¢; ' with ¢;o f’, we get an extension f’ of f over K| Ua? with the properties that
d(f',g) < €; on a? (by the choice of &}), and T(f, 9| k,uad) = TS, 9lk,)-

Assume the lemma is proven for [y < k. Now assume {g = k + 1. Let a? be a d-simplex in
K — K. As above, we can extend f over K, Ua?. Since K has property (P,), we can extend
f over KU (U, wa?) by applying the W-action. Now let K; = K, U {wa®}, then K} is an
invariant subcomplex of K with the same properties as &'}, and the number of d-simnplices

in K — K, is less than or equal to /4. By the induction hypothesis, f can be extended to

K, U K? with the desired properties. a

The next lemma is for the case when n =d.

Lemma 4.6.3 Let K be a simplicial W -complez with property (P,) and K| an invariant
subcompler of K. Let g : K — Y be a W-map with the property that dy(g(a™)) < fe{,
for alla™ € K. Let f : Ky, UK"! - Y be a W-map such that |f — g| < €,_, and
L(f', glkn-1wur,) C K\, then there is a W-eztension f' : K™ = Y of f such that |f' —g| < €,
and for any n-simplez a™, if T(f’, g|gn-10k,) N3a™ # 0, then T(f’, glgn-tuk,) N (int a™) = O;

if T(f', glkn-1uk,) NOa™ = 0, then T'(f', glgn-1uk,) N (int a™) is at most one point.

Proof: Similar to the proof of Lemma 4.6.2. a

Corollary 4.6.4 Let K be a W-complez of dimension n and K| be an invariant subcomplez
of K, g:|K| =Y and f : |[K\| = Y be W-maps such that dy(f,g) < €, on |K,|, and
['(f,g9lk,) a finite set. Then there is a W-ertension f': |[K| = Y such that dy(f',g) < €,

and #I'(f', g) is finite.
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Proof: By Theorem 4.1.18, we may assume that the W-action is isometric. Subdividing

K if necessary, we can assume that dy(g(e™)) < €. Applying Lemmas 4.6.2 and 4.6.3 several

times, we have the corollary. O

Theorem 4.6.5 For any pair of W-maps (f,g) : X = Y, there is an f' ~yw f such that

#L(f,g) is finite.

Proof: By Theorem 4.1.18, we may assume that the I -action is isometric. Let (H,), (H,), ...,
(Hg) = {1} be an admissible ordering on {(H;)} with the property that (H;) < (H;) implies
7.

Consider the W H;-space pair (.X?, X>#), and assume that on X#) the number of
coincidence points of (f,g) is finite for any j < i. This implies that the number of co-
incidence points of (f,g) on X>#: is finite. By Theorem 4.1.17, we may choose a trian-
gulation (Kg,, K>5g,) for ((X#:, X>H) such that for any a® € Ky,, dy(f(a?)) < i€, and
dy(g(a?)) < %eg. By Lemma 4.1.13, we may assume that (Kg,, K5 x,) has property (P1).

Let A7 = {a% € Ky,|3d, > d and a™* € Ky,, such that a? C a®* and |a®|NT(f, g) # 0},
and 47 = {a € Kpy,| |a?|NT(f,g) = 0}. It is easy to check that both A} and 4] are
invariant subcomplex of Ky, and A7 U A7 = Ky, Let As; = (A7 N Kupy ) U (AF 0 A]),
then A5, is an invariant subcomplex of A4;. In addition, As; has the following properties:

(1) d(f(z),9(x)) < € for all z € |A5;|: in fact, for any r € A,;, there exist a € A}

and ' € @, such that £ € a and f(z') = g(2’). So we have d(f(z), g(z)) < d(f(z), f(z")) +

d(f(z'), g(z")) + d(g(z"), 9(2)) < dy(f(a)) + 0+ dy(g(a)) < 3€ + 36 = €.
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(2) There are finite number of coincidence points of (f, g) on A,;: there are finite number
of coincidence points on A} N K5y, by induction hypothesis, and there are no coincidence
points on A N A7 by the definition of A; .

By Lemmas 4.6.2 and 4.6.3. f|.,, can be extended to a W H;-map f'||.4:‘| such that for
any r € A, d(f’||_4‘.+1(17)19(17)) < ¢ and #F(f'h,-\j'|vg|g.4‘.+|) is finite.

Define f'|yn, : X¥ — Y to be

f(z) if z & | A7)
flxni(z) =
f'||.4|+1(1-') if r € |A]]

[t is obvious that f’|\w, is continuous, and is a W H;-map since both A and A are
invariant complex of Ky, and on A7 N A7, f(z) = f’||A‘+|(a:). Since d(flxn,., f'lxn) < &, we
have f|y#, ~wn, f'|x# by Lemma 1.6.1.

Applying the W-action, we get a W-map f'| v,y : X#) - YH) | which is homotopic
to flxw, and has the property #I'(f'|xw,,glxwy) is finite. By Lemma 4.1.14, f'| i,
can be extended to a W-map f' : X — Y, such that f' ~w f with the property that
#L(f'| xns glxwn) is finite.

Applying this procedure to (X#t,0) first, we get the result by induction. a

Standard Hypotheses : Let W be a finite group and X a smooth compact W-manifold.

For each H € Iso(X), we assume that X¥ is connected, dim X# > 3 and dim X# - dim

(XH - Xyg)>2.

Note 4.6.6 : Under the standard hypotheses, for each H € Iso(X), X¥ — Xy can be

bypassed in X¥.
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Lemma 4.6.7 Assume the standard hypotheses. Suppose that f,g : X — Y are W-maps;
8y and 8, are two distinct isolated WH -coincidence orbits belonging to the same WH -class
of (f¥,g"), for some H € Iso(X). Assume both 6 and 8, are in Xy. Then there erists a

W -homotopy {f.} relative to X>¥ such that fo = f and T(fH,g%) =T(f#, g") —6,.

Proof: Let zo € 6y, £, € 6, and o : [0,1] — X be a path from z, to z; such that
foog ~goaorel {0,1}. Since dim X¥ - dim (X¥ — Xg) > 2, we can assume that ¢ is in
Xyg. Asin Lemma 5.4 in [WP2|, we can find an arc a from z, to r, homotopic to ¢ and a
neighborhood U of a such that U & D" and for any w € WH, wUNU = 0. By Lemma 3.3.5,
we have f' ~ f rel XY —U such that T((f)¥.¢) =T (f¥.g")—{z.}. Applying the W-action,

we have fi ~y f with T((f1))¥.g") =T(f¥,g") - {6,}. a

Lemma 4.6.8 Assume the standard hypotheses. Suppose that f,g : X — Y are W-maps;
6y and 8, are two distinct isolated WH coincidence orbits belonging to the same WH-class of
(f¥.g"), for some H € [s0(X). Furthermore, we assume that 8, C Xk, 8, C Xy for some
K € Iso(X) with H C K. Then there ezists a W-homotopy {f,} relative to X>H such that

fo=f and T(ff, g") =T(f#,g%) — 6:.

Proof: Let zo € 6y, z; € 6, and o : [0,1] — X be a path from z4 to z; such that
goo~ foorel {0,1}. Asin Theorem 1.1 in [WP1], we can find an arc a ~ o from z; to
r, such that «([0,1)) C Xy and a neighborhood U of «([0,1)) such that U = D" and for
w € WH, wUNU = 0. By Lemma 3.3.5, we have f’ ~ f rel X —U such that T'((f")?,¢%) =
C(f4,¢") — {z.}. Applying the W-action, we have f; ~yw f with [(fH, ") = [(fH, g¢¥) -

{6:}. |
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Lemma 4.6.9 Let § C Xy be an isolated WH -coincidence orbit of (f¥, g") for some H €

Iso(X). Assume z € 8 and ind (z) = 0, then there erists a W -homotopy {f:} relative to

X>H such that fo = f and T(fH,g") = T(f¥,g") - 6.

Proof: Let U be a neighborhood of z such that for any w € WH wUNU = 0. By
Lemma 1.6.3, we have f' ~ f rel X — U such that T((f)#.g") = T(f¥,¢") — {z.}.

Applying the W-action, we have f; ~y f with [(f#, g} = T(f¥, ¢") - {6,}. m

Theorem 4.6.10 Assume the Standard Hypotheses. For any pair of W-maps (f,g) : X —

Y', we have Mw(f(m,g(g)) = [”/' : H] . lVOw(fH,gy) fOT ell H € ISO(.Y).

Proof: By Lemma 4.6.7, we may assume that each WH-class has at most one coincidence
orbit. Assume {wz}uewx is an orbit of coincidence points. If z € Xy and [z] € Im Tg)<(x)
for some isotropy subgroup K, we may create a coincidence orbit, which is in the same class
with [z], and then, by Lemma 4.6.8, coalesce {wr} to it. Applying the W-action, we get

the pair of maps with NOw(fu,gu) coincidence orbits in X4y and the total number of

coincidence points is (W : H]- NOw(fu, gr). m|

Theorem 4.6.11 Assume the Standard Hypotheses. For any pair of W-maps (f,g) : X —

Y, we have MOw (f), gty = NOw (f¥,g*) for all H € Iso(X).

Proof: Assume {6;}%, is an essential basis over .X(#). We will prove that there are
homotopies f' ~w f and g’ ~w g such that T(f’,¢') N X = U5 {wr;}yew, where
{wz;}wew corresponds to 6;. Applying this to an essential basis § with NOw (f¥,g")

number of elements, we prove the theorem.
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Let (Ho), (H1), ..., (Hi) be an admissible ordering on {(K) | (K) > (H)}. We will use
induction on the number of the elements in {(K) | (K) > (H)}, which we will denote by
Iy. If Iy is 1, we can assume that in each essential W H-class there is a unique coincidence
point orbit and there are no other coincidence points since the dimension of X¥ is greater
than 2. Assume 8 = [(f”,g")] is an element of G and is inessential. Let a € m (Y, yo) be in
Qsu gu([(f¥,37)]). Let £ € X¥ ~T(f,g) be any point and let 3 be a path from x to 2o in

—T[(f.g)- Let I; and I, be arcs in Y'# such that [;(0) = f(z), {4(0) = g(z), {(1) = {,(1)
and g ~(goB) w;t-a-wp-(foB3"'). Asin the proof of Lemma 2.5.2, we can
change f and g” in a small neighborhood of z. such that T'(f'#.¢'f) = T(fH#,¢") L {z}.
By using the W H-action on f’, g’, we can assume that f'¥ ¢’ are W H-maps from X to
YH. Repeating this procedure, we can get a pair of W H-maps (f'¥, ¢'?) from X¥ to Y'#
homotopic to (f#, gf) such that for each element 6; there is a unique W H-orbit {wz;}uewn
corresponding to it and there are no more coincidence points in X#. By Theorem 4.1.17, X
has a W-triangulation and by Lemma 4.1.14, f'# and g’# can be extended to W-maps f
and ¢'.

We proceed by induction on the cardinality of /. Suppose that for any H the statement
is true for Iy < k. Let Iy = k. It is easy to see that if G is an essential basis of (f¥, g/)
over X!), then for any (H;) > (H), G NUy<x) WRwi(F¥, g¥) is an essential basis of
(fHs, g"t) over X'#). So we can assume that for any 8 € GNUgy<(x) WRwr (¥, %), there
is a coincidence point orbit {wz} in Ugy<a,) X#:) that @ corresponds to, and that there

are no other coincidence points on Uggy<(xr;) X'#*). Suppose that each W H-class contains at



CHAPTER 4. EQUIVARIANT COINCIDENCE THEORY 147

most one coincidence point orbit on X(g). Assume that {wz} is a coincidence orbit, there

are three cases:

(i) z is equivalent to some coincidence point z; in U gy<x,) X ). As wedid in Lemma 4.6.8,
we can coalesce the two orbits into {wz,}.

(ii) {z]wn is essential, but r is not equivalent to any coincidence point in Uy gy<(s,) X%
This must mean that {z}wy is in G.

(iii) [z]we is inessential. In this case [z]w gy can be removed by Lemma 4.6.9 if it does

not correspond to any 8 € G.
Finally. if there is a # € G which corresponds no coincidence point orbit. we can create

one in Xy as in the case Iy = 1 since X¥ — X can be bypassed in X ( as indicated in

Note 4.6.6).

This proves the statement and hence the theorem. O
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