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Abstract 

In this thesis, we develop relative coincidence theory on the complement and equivariant 

coincidence theory. For two maps f and g from one pair of manifolds (X, A) to another 

(}'.B), a )Helsen number N(f, g; X-.-\) is introduced which serves as a homotopy invariant 

lower bound for the number of coincidence points of f and g on X - A. \Ve provide a 

method for computing the :"·Helsen numbers N(f. g) and N(f, g: _\"- .-l) when 9rr is onto and 

frr(7Tt(X)) C J(f). These results are also generalized to manifolds with boundary. 

To estimate the number of coincidence points for equivariant maps, some :"J'ielsen type 

invariants are developed. These invariants are introduced for the general cases first. and then 

explored further for the special case. when the fixed point set of the action is nonempty . 

. -\ method is provided to compute these numbers and give an estimate of the number of 

coincidence points of a pair of equivariant maps. Finally. minimality is discussed for both 

relative and equivariant cases and we prove in some cases that these numbers are attainable 

within the appropriate homotopy classes. 

ii 



Acknowledgement 

I am deeply indebted to my supervisor, Dr. Philip Heath; without his encouragement , 

advice, and assistance this work could not have been completed within these three years . His 

advice and critical comments formed a very useful part of my training. I am also grateful 

to him for providing me with the opportunity and the means to attend a conference during 

the course of my studies. 

I would like to thank Drs. Edgar Goodaire and Bruce \Vatson who. during my stay, both 

served as Head of the Department of Mathematics and Statistics, for providing me with the 

facilities that I needed for the degree work. 

I would like to thank the Department of :\Iathematics and Statistics and School of Grad

uate Studies for financial support during the three years of my program. 

Finally, I would like to thank my wife Chaoying and my son Siyi for their understanding 

and encouragement. 

iii 



Contents 

Abstract 

Acknowledgement 

Introduction 

1 Preliminaries 

1.1 Reidemeister and coincidence classes 

1.2 An alternative description of Reidemeister classes 

1.3 The index of a coincidence class and the Nielsen number 

1.-l Computation of the ~Helsen number . 

1.5 Relative coincidence theory 

1.6 Minimality .. .. . . . . . . 

2 Coincidence Points on the Complement 

2.1 

2.2 

Definitions and basic properties . . . . . 

The Reidemeister number and the Nielsen number . 

IV 

ii 

iii 

1 

4 

5 

8 

12 

18 

20 

21 

28 

30 

42 



2.3 The computation of the Reidemeister and Nielsen numbers over the complement 54 

2.4 Manifolds with boundary . 57 

The minimum theorem . . 66 

3 A Local and Relative Version of a Brooks' Theorem 70 

3.1 Definition of bundle triads . . . . . . . . 

3.2 Properties of quasi-trivial bundle triads . 81 

3.3 Relative homotopy and quasi-trivial bundle triads 85 

4 Equivariant Coincidence Theory 91 

-!.1 Group Actions . . . . . . . . . . 93 

-!.1.1 Definition of group action 93 

4.1.2 Actions on complexes and manifolds 97 

-!.2 Equivariant coincidence classes 99 

4.3 Computation of equivariant ~·Helsen numbers 106 

~lore equivariant ~ielsen type invariants 116 

-!.5 Computations 126 

-!.6 ~'Iinimality .. 138 

References 148 

v 



1 

Introduction 

Let X , y be manifolds with the same dimension and r g : X ---t y maps . A point X in 

X is called a coincidence point off and g if f(x) = g(x) . The goal of coincidence theory is 

to find a reasonable lower bound for the minimum number of coincidence points within the 

homotopy classes of a given pair of maps. 

~ielsen fi."<ed point theory can be thought of as a special case of coincidence theory 

though, of course. ='Iielsen fixed point theory came first. It is the case where X = Y and g is 

identity. ='Iielsen theory was developed by Nielsen in the 1920's. In the past two decades. it 

has experienced a rapid new development . The famous Lefschetz fixed point theorem allows 

us to deduce that if the Lefschetz number of a map is non-zero. then the map has at least 

one fixed point. ~ielsen fixed point theory goes further. It ensures not only the existence 

of fixed points but also gives a reasonable estimate of the number of fixed points within 

the homotopy class of the map. The Nielsen number .V(f) of a selfmap f : X ---t .Y of a 

compact connected ANR X, gives a lower bound for this number. However, for a long time, 

the Nielsen number could be computed only for two special cases, namely when X is simply 

connected, or when f is the identity. In 1962, Jiang in [JBl] gave for the first time a method 

to compute the Nielsen number in some nontrivial cases. A subgroup of the fundamental 

group of the space was introduced, called Jiang subgroup. It was proved that if the Jiang 

subgroup of the map f is equal to the fundamental group of the space X, then N(J) is 

computable. 

Though, under mild conditions, the number N (f) is a sharp lower bound for the number 
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of fi.xed points of f, this is not true in general. In particular it is known that for homeomor

phisms with boundary the ordinary Nielsen number may be a poor lower bound. A relative 

~Helsen number for a selfmap of a pair of spaces (X, .-t) was introduced in [SH2]. This proved 

to be a better lower bound than the ordinary ~'Iielsen number when one considered maps 

of pairs and in particular maps of manifolds with boundary. In [Z], Zhao considered the 

uumber uf fixed points on the complement X - .-l for a selfmap uf a pair uf spat:es (.\, .-t). 

Zhao's results provide the necessary background, for the introduction in [\VP3] , of invariants 

for an equivariant version of Nielsen theory. 

).lost concepts and results in fixed point theory can be generalized to coincidence theory. 

Cnlike :"·Helsen fixed point theory. coincidence theory involves two spaces and two maps. 

Therefore the index of a coincidence point set is more difficult to define for arbitrary spaces. 

For this reason, most of the work in coincidence theory is on manifolds. 

The index of an isolated coincidence point and the )J'ielsen number ~V(f. g) of a pair of 

maps (/, g) was first introduced in [SHl]. If the dimension is greater than 2, the Nielsen 

number is a sharp lower bound of the minimal number of coincidence points within the 

homotopy classes of (J, g). The development of the theory was continued in [BRl]; a Reide

meister number for a pair of maps, which is relatively easier to compute in some cases was 

introduced. and the relationship between the Reidemeister number and the Nielsen number 

was established. Recently relative coincidence Nielsen numbers were introduced [JJ] and 

[JL}. Our work, which in may ways generalizes Zhao's work, bears the same relationship to 

relative coincidence theory as Zhao's does to relative fi.xed point theory. 
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FL~ed point theory has been generalized in another direction namely to equivariant fi..xed 

point theory. The idea is to restrict attention to 'G-spaces', 'G-maps' and ~ G-homotopies' for 

some fixed group G . . -\s with any restricted Nielsen theory we are often able to detect more 

fi..~ed points within the G-homotopy classes of a G-map. The Equivariant coincidence theory 

that we study here is a generalization of equivariant fixed point theory. :\ recent paper [FP] 

has made some progress in this direction. \Ve will hmvever consider general equivariant maps 

instead of the highly restrictive category of G-compactly coincident maps as in [FPJ. \Ve 

will discuss this further in Chapter -1. 

The thesis is arranged as follows. [n chapter 1. we present known results and techniques 

which we use later. In chapter 2. we introduce the Nielsen number on the complement in order 

to estimate the number of coincidence points on the complement. \Ve also give a new method 

for computing the ~ielsen number in some special cases. In chapter 3. we generalize a result 

of Brooks, which says that coincidence points can be coalesced. or removed by deforming 

only one of the maps involved. Our generalization is a relative version of Brooks' result. 

In addition, a local version of Brooks' theorem is proved. These results make the relative 

coincidence theory and the equivariant coincidence theory, which we develop, include the 

corresponding fixed point theories as a special cases. In chapter 4, we introduce equivariant 

coincidence theory. We first give several Nielsen type invariants, which are related to the 

isotropy subgroups of the action group. Finally we discuss the computation of the invariants 

and minimality. 



Chapter 1 

Preliminaries 

In this chapter. we will introduce the basic concepts and results in coincidence theory, which 

can be found in [BRl], (JJ] and [SHl] etc.. In section 1. we define Reidemeister and co

incidence classes for a pair of maps (J, g) : X ~ Y. vVe use the universal covering space 

approach. In section 2, we describe Reidemeister classes using the fundamental group ap

proach. \Ve also prove that the two approaches are equivalent. In section 3, we introduce the 

concept of an index of a coincidence class when both the domain and the range of the maps 

are manifolds with the same dimension. In section -L the computation of the coincidence 

Nielsen number is discussed. In section 5, relative coincidence theory is introduced. Finally, 

in section 6, we give the minimal theorem. 

4 
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1.1 Reidemeister and coincidence classes 

Let X and Y be connected topological spaces, and f : X --+- Y and g : X ~ Y be maps. 

\Ve will use (/, g) to represent the pair of maps f and g. A coincidence point of(/, g) is a 

point x EX such that f(x) = g(x). The set of all coincidence points of(/, g) is denoted by 

ru, g) . 

Let Px : .Y --+ X and P't' : f· -+ Y be the projections from the universal covering spaces 

of X and Y respectively. A lifting f of a map f : X ~ }" is a map f : .\" ~ f· such that 

f o Px = P't' o]. :\ pair of maps (],g) is called a lifting of(/, g) iff: .Y ~ f· is a lifting of 

f and g : .Y -t f· a lifting of g . Let O(X) denote the group of the covering transformations 

of Px : .Y ~X, and O(Y) the group of covering transformations of py : }· ~ }". 

Definition 1.1.1 Two liftings (j, g) and (]', g') of (/.g) are said to be conjugate if there 

are elements ..:yx E II(X) and ..:yY E Il(Y) such that 

It is easy to see that conjugacy is an equivalent relation. A conjugacy class is called 

a Reidemeister class of (f, g). \Ve denote the class containing (],g) by [(J, g)]. Note that 

[({g)) = { -yY (j, g)(-f<)- 111x E II(X), -yY E Il(Y)}. The set of all Reidemeister classes is 

called the Reidemeister set of (/,g) and is denoted by n1,9 • The number of Reidemeister 

classes is called the Reidemeister number of (!,g) and is denoted by R(f, g). 
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Proposition 1.1.2 Let (!,g) be a pair of maps from X to Y, we have 

(i) f(f, g) = Ua.9> Px r(j, g). 

(ii) Pxr(],g) = Pxf(]'.g'), if[(],g)] = [(]',g')]. 

(ii·i) pxf(].g) n Pxf(]',g') = 0, if [(] , g)]¥= [(]',g')]. 

6 

Proof: (i) Assume .ro E f(f. g) and Yo = f(.ro) = g(xo). choose io E Px1 (.ro) and choose 

liftings j of f and g of g. Then we have ](i0 ), g(i0 ) E py1 (y0 ) and there is an element 

a E rr(Y) such that ](i0 ) = et o g(£0 ). Hence .r0 E Pxf(], a o g). Since a o g is also a lifting 

of g. xo E U(j.y)Pxf(],g). This shows f(f,g) c U(j,g)Pxf(j.g). U(j.g)Pxf(],g) c f(f,g) 

is trivial. 

(ii) Assume (]',g') = f"(].g)(-yx)- 1, and x0 E pxf(],g). i.e. there is i 0 E (px)- 1(x0 ) 

with ](io) = g(ia). Then we have ]'(~r'(io)) = -yl-· o J o (ix)- 1(ix(i0 )) = i~· o j(i0 ) = 

~~· og(io)) =~~\'·ago (~x)- 1 (ix(io)) = g'('Yx(io)). i.e. Xo =Pxhx(io)) E Pxf(]',g'). 

(iii) If xo E pxf(].g) npxr(]'.g'), there are i0 ,i~ E (px)- 1 (x0 ) such that £0 E f(].g) 

and i~ E f(]'. g'). Suppose i~ = ~r\ (£0 ). Since p·'t'(](i0 )) = Pl·(]'(i~)), There is i~' E fl(Y) 

such that ]'(i~)) = -yY ](i0 )). Thus g'(i~) = iy o g(i~) as well so that by Theorem 6.1 in 

[GH], which says that maps with equal projections that agree on a single point are identical. 

0 

Definition 1.1.3 The subset Pxf(], g) of f(f, g) is called the coincidence class of (/,g) 

determined by the Reidemeister class [(],g)]. 

Proposition 1.1.4 f(/, g) splits into a disjoint union of coincidence classes. 0 
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The set of nonempty coincidence classes will be denoted by f'(J,g). \Ve have an injective 

map P'R.,.g from f'(f, g) to 'R1,9 , which sends a coincidence class S to the Reidemeister class 

[(].g)} if s = Px r(}. g). 

Proposition 1.1.5 Two coincidence points x0 , x 1 are in the same coincidence class if and 

only if there is a path a from x0 to Xt such that g o a and f o o are homotopic relative to 

endpoints. which will be denoted by g o o "' f o o. 

Proof: => ): Assume that x0 , It are in the same coincidence class. Then there is a 

lifting (j, g) of (f, g) such that Io, It E Px r(}, g). Equivalently there are points io E 

(px)- 1(Io) n r(/gL it E (px)- 1(xt) n r(].g). Let Q be a path from io to it, then j OQ 

and g o ci have the same beginning and end points and hence their projections py o (g o ci) 

and P\·· o (] o ci) homotopic. Since P't· o g = go py and P\' o j = 1 o P't·. this means that with 

o = px o it then f o a and g o a are homotopic as needed. 

{::): Let o be a path from x0 to x 1 with the property goo""' f o a. Let i 0 E (px )-t(xo) 

be a coincidence point of (}.g). Let it be a lifting of o starting at i 0 , ci( 1) E (px) -t (x!) ~ 

then j o ci and g o o are liftings of 1 o a and g o a respectively. Since g o o "' f o a, and 

(g 0 ci)(O) = Xo = ci 0 ci)(O), we have g(o(l)) = }(a(l)): but Px(a(l)) = o(l) =It- So Xo 

and x 1 are in the same class. 0 

Note 1.1.6 Proposition 1.1.5 is actually Brooks' definition of coincidence class [BRl}. Thus 

our definition is equivalent to Brooks' when the class is nonempty. 

Proposition 1.1. 7 If X is locally path-connected and Y is semilocally s·imply-connected, 

then each coincidence class is open in r(j, g). 
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Proof: Let x0 be a coincidence point of (f, g). \Ve want to find a neighbourhood U of x0 

such that any coincidence point x 1 E U is in the same class as x 0 • 

Let \-" be a neighbourhood of f(x0 ) = g(x0 ) such that every loop in ~ · at f(x0 ) is trivial 

in Y . Let U be a path-connected neighbourhood of x 0 such that U c f- 1(\") n g- 1(\."). Let 

x 1 E U be a coincidence point of (/ , g), and let c be a path in U from x 0 to It. vVe have 

f o c ,.._, 9 o c since f o c and 9 o c are both in \. · and have the same end points. Thus ..c:0 and 

.r t are in the same class. 0 

1.2 An alternative description of Reidemeister classes 

In this section. we will redefine the Reidemeister number using the fundamental group, which 

is used in [BRl], and then we prove that this definition is equivalent to the one defined in 

the last section. 

Let Xo E X and Yo E }' be given, and Wf and w9 be paths from Yo to f(x 0 } and g(x0 ) 

respectively. Define homomorphisms !':' : 1ft (X. x 0 ) ~ Jrt(}", y0 ) and g~g : 1rt(X, x 0 ) ~ 

rrt(Y, y0 ) by f~1 (o:) = WJ · (f o o:) · (w1)-t and g~g(o:) = w9 ·(goo:)· (w9 )-
1 respectively, by 

confusing a path and a class in fundamental groups. vVhen y0 = f(x0 ) and w1 is a constant 

path at Yo, we use frr to denote !':1 • 

Definition 1.2.1 Two elements a 1, a 2 E 1r1 (Y, y0 ) are said to be !':1 , g~g·congruent if there 

is an element 'Y E 7rl (X I Xo) such that Q:2 = g~g ( 'Y )a I (J': I (1')) -l. vVe denote this relation by 

Ot = a 2 mod (:1 , g~9 , or more briefly by, et1 = a 2 . 
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Proposition 1.2.2 J:/1 , 9~9 -congruence is an equivalence relation. 

Proof: See Proposition 2 on p.28 in [BRl]. 0 

Definition 1.2.3 The set of all !':1 • g~9-congruence classes is denoted by \JU. g; xo, y0 , u..'/! w9 ). 

\Ve will use \l(J, g ; xo) to denote\J{f, g; xo , Yo, ..u I • w9 ) when Yo = f(x0 ) = g(xo) . and:..;/ and 

..u9 are constant paths at y0 . An element in \J{f.g;xo , Yo·"""'f · ..u9 ) containing a: E rrdY.uo) 

will be denoted by a:. 

Definition 1.2.4 Let (j,g) be a lifting of (f , g) and i 0 a point on (px)- 1(x0 ) . Let ik a 

path in f· from g(io) to f(io). Define 81.~ : R1.9 ~ \l(].g;xo,Yo , ;...'f •"'-'g) by 8J,9 ([(j ,g)]) = 

[w9 • (py o &) · w!lJ. 

Proposition 1.2.5 shows that the definition of 8 /.9 ([(f. g)]) does not depends on the choice 

of (j , g) , i 0 and &. 

Proposition 1.2.5 8 1,9 is well defined and is a bijection. 

Proof: It is obvious that e1.9 ([(j,g)}) does not depend on the choice of ci . vVe have to 

prove that it does not depend on the choices of i 0 and (j, g). 

Let i~ E (px)- 1(x0 ) , and ij be a path in .x- from .i0 to i~, then (pxoij] = [TJ] is an element 

in 7r1(X, Xo) . Let n' be a path from g(i~) to i(x~), then G""' (goij) ·ii. (j oij- 1). So we have 

(w9 • (pyon) •W/ 
1
] = (w9 • (py o ((goij) · n' · (j ory-1))) ·W/

1
] = (w9 • (pl'· o (gory)) ·w; 1 ·w9 • (py oa') · 

wf 1·w /' (py(j oij- 1)) ·W/
1
] = [w9 · (py 0 (.goij)) ·w; 1][w9 · (py 0 a') ·W.f 

1 ](w /' (py o (j o Tj- 1)) · W/
1
] 

= g~9(17)[Wg. (py oa') ·w.f
1]f:1 (17-l ). This shows that [wg. (pyon) ·wtl and [wg . (pyoa') ·w/1

] 

are in the same ]': 1 , g~g -congruence class. 
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Suppose (f', g') is another lifting of (f, g) in the class [(],g)], i.e. there are "(\ E IT(X) 

and "fy E ll(Y) such that(]',[/)= "'Y(j,g)("tx)-1. Let x~ = "'x(i0), then ,.Yo a is a path 

from g'(i~) to ]'(i~), and it is obvious that Wg. (py 0 a) . ;..;! 1 
"';..)9. (p-y· 0 -?· 0 a). wt. So, 

e f ,g is well defined. 

\Ve show next that 8 1,9 is injective: Suppose (].g) and (j' ,f/) are liftings of (f, g) such 

that 8t,9 ([(].y)]) = e,,9 ([(j',y')]). Let io E p:\_-1(..co),a be a path from g(io) to f(xo) , and 

G:' a path from g'(io) to ]'(io). Then we have [wg. (py 0 a). W/
1

] = [wg. (P\' 0 a') . .JJ'/ 1
), i.e. 

there is a [.8] E 1r1(X.x0 ) such that g~!1([p])[w9 ·(pyoa')·w! 1 lf;'1 ([.:J]- 1 ) = [w9 ·(pFoii)·w!l 

This implies (go 3) · (p-y· o Ci') · (f o J- 1) ,.._, P'r' o Ci. Let i3 be a lift of .3 ending at i 0 . Since 

J is a loop. ](O) E p:\_-1(.r0 ) and g' o J(O) E pY.1(g(x0 )). So there is a "'Y E IT(}') such that 

ry og'oJ(O) = g(i0 ). Nmv a" = ,.,? o( (g'o.J)·c/ ·(]' o.B- 1) is a lifting of (god)· (pyoci') ·(f o.d- 1 ), 

which is homotopic to py o a. and o"(O) = "11' o g' o .B(O) = g(io} = G:(O). This implies 

o"(l) = a(l) = ](i0 ). However. n"(l) = "'yo j' o J- 1(1) = ,.,/· o j' o .J(O}. So we have 

-?· o f' o J(O} = ](i0 ) as well. Let T' E IT{X) such that ,-' (J(O)) = i 0 • Then we have 

-?· o 9' o (,-')- 1(i0 ) = g(i0 ). By the uniqueness of liftings, we have --,Yo 9' o (y'}- 1 =g. 

Similarly, we have T'Y o ]' o (!'-')- 1 = j. So [(],g)]= [(f',g')] and e1.9 is injective. 

Finally, we show that 81,9 is surjective: Assume that (a] is an element in rr1(Y. y0 ), and 

let c1 be a lifting of a. Let w9 be a lifting of w9 starting at a(O), and w1 be a lifting of WJ 

starting at a(l}. Then w9 (1) E py. 1(g(x0 )) and WJ(l) E py. 1(f(x0 )). By Theorem 6.1 in (GH], 

there are lifting g and j of g and f respectively, such that g(i0 ) = w9 (1) and ](io) = wt(l). 

It is easy to see that w; 1·a·w1 is a path from g(i0 ) to ](i0 ) and w9 ·pyo(w;1 ·ii·w1) ·wj 1 ,.._,a. 
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Therefore, we have 8 /,9 ([(], g)]) = [a] i.e. 8 1,9 is surjective. Hence, 8 1,9 is bijective. D 

Define Pvf,g : r(f,g)---+ v(f,g;xo,yo,Wj,wg) as follows. Let X be a coincidence point, 

and G: I---+ X be a path from Xo to x, then Wg. g 0 G 0 (! 0 G)- 1
. wj1 is a loop at Yo· Define 

Pv,,
9
([x]) = [w9 ·goG·(! o G)-1 · wj1

]. The definition of Pv,,
9 

is independent of the choices 

of G and x . Let G' be another path from x0 to x and (3 = G' · G-1 , then (3 is a loop at x0 and 

we have Wg 0 goG'.(! oG')-1·wj1 '"'"'Wg. goG'· goG- 1 · goG.(! oG)-1· foG.(! oG')-1 ·wt 

'"'"'Wg. go (G'· G-1). goG.(! oG)-1· f 0 (c. (G')- 1) ·wj1 '"'"'Wg. go(3. goG 0 (! oG)-1· f of3-1 ·wj1 

'"'"' (w9 ·go (3 · w;1) · (w9 ·goG· (! o G)-1 · wj1) · (w1 · f o (3-1 · wj1). In other words, 

[w9 -goG'·(foG')-1 ·wj1
] = g~g ([f3])[w9 ·goG·(foG)-1·wj1]!;1 ([(3]- 1 ), so [w9 ·goG· (foG)-1·wj1

] 

and [w9 ·goG'·(! o G')-1 
· wj1] are in the same class. Let x' be another coincidence point of 

(!,g) in the same class as x and and a : I---+ X a path from x to x' such that f o a rv go a. 

Let G1 = G . a, then G1 is a path from Xo to x' and we have Wg . g 0 G1 . (! 0 Gl)-1 
. wj1 

'"'"'Wg. g 0 G. g 0 a. (! 0 a)- 1 
. (! 0 G)-l . wj1 '"'"'Wg. g 0 G. (! 0 G)-1 . wj1. The last '"'"' holds 

because go a'"'"' f o a. This means Pv1,
9
([x]) = Pv1,

9
([xi]). 

goG f(x) 

Yo f(xo) 

Figure 1.1: 

Lemma 1.2.6 The diagram 
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n,,g 

et ,g 

tu, g) __ P\l..:....:':..:.::.·9---

is comm1ttativP. . 

Proof: Let .r be a coincidence point. .-\ssume (],g) is a lifting of (f, g) such that .r E 

px(f(j, g)). Then Pn.1.
9
([x]) = [(j, g)] . Let i E p:\-1(.r) be a coincidence point of (j,g) and 

io E p:\-1 (x0 }. Let a be a path from io to i , then g(O:)j(a- 1 ) is a path from g(io) to j(io), 

so e,,g([(f,g)]) = [wg. P'r·(g(a)). py(j(0:- 1)) . ..vj 1
] . Since Px(O:) is a path from Xo to .r. 

P\l r.ll ([x]) = [w9 ·g(px(a)) · f (Px (a- 1
)) ·wj 1

] , which is equal to [w9 ·py(g(n)} ·py(j(a- 1
)) ·wj 1]= 

e1.9 ([(j,_q)]). o 

1.3 The index of a coincidence class and the Nielsen 

number 

In this section, we assume that X, Yare orientable closed manifolds with the same dimension 

n. Suppose that U is an open set of X , such that U n r(J, g) is compact. Let \t,. be an open 

set containing U n f(/, g) such that V C U. The inclusion j : (U, U- \/) ~ (X, X - \/) 

is an excision. Define (J,g): U ~ Y x Y by (f , g)(x) = (f(x),g(x)} and let ~(Y) be the 

diagonal in Y x Y . Consider the composition 
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Hn(X) ~ Hn(X, X-V) i~ Hn(U, U- F) U~- Hn(Y x Y, Y x Y- ~(Y)):: Z 

Definition 1.3.1 Let J-L E Hn(X) be the fundamental class of X. The index off and g on U 

is defined to be I(U; f, g)=< 6·, (f, g).j; 1i.(p.) > E Z, where ~Y E Hn(Y x Y, Y x Y -~(Y)) 

is the Thorn class of } ·, and <. > is the Kronecker index. ( cf. p.l 77 in [V]) 

Lemma 1.3.2 The ·index is well defined. 

Proof: See p.177 in [V}. 0 

If[,. = U1 u C2 u ... u U~c is disjoint union of open sets, and ri denotes the compact set 

r(f, g) n Uj, and fi and 9i the restrictions of j and g to (Ji, then we have 

Lemma 1.3.3 The coincidence index is additive. that is I(U:f.g) = L:7= 1 I(Ui:fi.gi), 

Proof: See Lemma 6.1 in [V]. 0 

Lemma 1.3.4 (Existence of coincidences) If U n r(j. g) = 0, then I(U: j. g) = 0. In other 

words. if J([J; f. g) ¥ 0. then the pair (f, g) has at least one coincidence point ·in U. 

Proof: See Corollary 6.3 in [V]. 0 

Lemma 1.3.5 The coincidence index is a homotopy invariant. In particular, if ft and 

9t : U--+- Y, 0 :5 t :5 1, are homotopies and D = U nUt r(ft, gt) is compact, then 

I(U; fo, go) = I(U; it, gt). 

Proof: See Lemma 6.4 of [V]. 0 
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Definition 1.3.6 Let N be a compact and open set of f(f,g). The index of (f,g) on N is 

defined by 

l(N; f, g) = I(U; f, g), 

where U is an open set of X such that U n f(f,g) = N. 

Lemma 1.3.7 /(N: f, g) ·is independent to the choice of U. 

Proof: See Exercise 1 on p.l77 in [V]. 0 

Notation: \Ve often use ind(N;f,g) to denote l(N;f.g). \Vhen f,g are clear, we use 

ind(N). 

:'\ow assume that x E X is an isolated coincidence point of (f, g). Let F be a neighbor

hood of x in X with f(f, g) n U = x and V a neighborhood of y = f(x) in y· such that there 

are orientation-preserving homeomorphisms h: (U.x) ~ (Dn.0) and k: (\/, y) ~ (Dn,o), 

where Dn is the unit ball of Rn, and f(U),g(U) c \.-' . Define <tJ: sn-t _,. sn-t to be the 

corn posit ion 

where F(x, y) = ~(y- x) and 1r denotes radial projection. 

Lemma 1.3.8 l(x; f. g) = degree of¢>. 

Proof: The proof is similar to the proof of Proposition 6.9 of [V]. 0 

This shows that the index defined here is the same as defined in [SHl] when the coinci

dence point is an isolated one. 



CHAPTER 1. PRELI!viiNARIES 15 

Definition 1.3.9 A coincidence class N is said to be essential if I ( N; J, g) =I= 0. It is said 

to be inessential if I(N; f, g) = 0. 

The number of essential coincidence classes is called the :."rielsen number of (f, g) , and is 

denoted by N(J,g). 

By the definition of ~V(j,g), we have that the Nielsen number of (!,g) is a lower bound 

of the number of coincidence points of (J, g). 

Theorem 1.3.10 (Lower Bound) #f(f,g) ~ N(f,g). 0 

In fact. we have #f(f,g) ~ N(f, g). Since there is an injective map P'Rt.y: [(f,g) ~ 

Rf.y• \Ve have 

Theorem 1.3.11 R(f, g) ;::: N(f. g). 0 

Definition 1.3.12 Suppose F : X x I -t }-· is a homotopy and C : I ~ X is a path in X. 

Then < F, C > is the path in Y defined by 

< F, C > (t) = F(C(t), t), "it E I. 

Definition 1.3.13 Suppose F, G : U x I -t Y are homotopies of f and g respectively, 

and that Xo E r(f, g), Xt E f(F(·, 1) , G(·, 1)). If there is path 0: : I -t X such that 

a(O) = xa,a(1) = x 1 and if< F , o: >"""< G,a >relative to {0, 1}, then x0 ,x1 are said to be 

F, G-related. 

Lemma 1.3.14 Suppose x0 , x 1 are F, G-related and x: are in the same equivalence class as 

Xi fori= 0, 1, then x~ is F, G -related to x'1 . 
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Proof: See Proposition 15 on p.19 in (BR1]. 0 

By Lemma 1.3.1-1, the relation F, G-related can be extended to coincidence classes. 

Definition 1.3.15 Suppose F, G : X x I -+ Y are homotopies. :\. coincidence class Go E 

f(F(·, 0), G( ·, 0)} is F, G-related to a coincidence class a 1 E f(F( ·, 1), G( ·, 1)) if and only if 

some point Io E a 0 is F. G-related to some point x 1 E G 1. 

Proposition 1.3.16 Suppose F and G are homotopies. Each eta E f(F( ·. 0), G(·, 0)) is 

F.G-related to at most one et 1 E f(F(·.1}.G( ·, 1)) . Each G 1 E f(F(· , 1),G(· , 1)) has at 

most one ao E f(F(· , O),G(· , O)) to which it is F,G-related. 

Proof: See Proposition 20 on p.24 in [BRl]. 0 

Proposition 1.3.17 Let F.G: X xI~ F be maps. Assume a:0 E f(F( ·.O).G(·,O)) is 

F, G-related to Gt E f(F(· , 1 ), G( · , 1) ). Then the ·index of Go ·is eq·ual to that of G 1. In 

particular, if there is no a: 1 E f(F(·.l) , G(· , 1)) to which Go is F, G-related to. then the index 

of Go is zero. 

Proof: See Theorem 24 on p.81 in [BRl] . 0 

Corollary 1.3.18 Let F, G : X x I~ Y be maps. If Go E f(F(·, 0), G(· , 0)) is essential, 

then there is o 1 E f(F(·, 1) , G(· , 1)) such that eta is F, G-related to a:1 . 0 

Theorem 1.3.19 (Homotopy Invariance) If!' "' f and g' "'g , then N(f', g') = N(f, g). 

Proof: This follows from definition of the Nielsen number, Proposition 1.3.16 and 1.3.17. 

0 
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Let X,}" be closed connected oriented manifolds. '\Ve denote the Poincare duality iso-

maps J,g: X -t Y. define Bq(f, g) : Hq(X) ~ Hq(Y") to be the composite 

The Lefschet:; coincidence number L(f, g) of j and g is defined by 

n 

L(J,g) = L(-l)qtrOq 
q::O 

where tr denotes the trace. 

Theorem 1.3.20 (LEFSCHETZ COINCIDENCE THEOREM) Assume X and Y 

are orientable closed manifolds with the same dimenS'ion. The coincidence index of the pair 

(f . g) on X is equal to the Lefschetz n·u.mber of(!, g) ; that is 

I(!, g)= L(f, g) , 

and hence we have 

L(f, g) = L l(N; f , g). 
N 

where the sum is taken over the collection N of coincidence classes. 

Proof: See 6.13 in [V] for the first equality. The second one is from the definition of 

l(N; f . g), Proposition 1.1.4 , Lemma 1.3.3 and the first equality of the theorem. D 
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1.4 Computation of the Nielsen number 

Definition 1.4.1 Let f : X --+ Y be a map. A. homotopy F : X x I --+ } • is said to be a 

loop at f if F(·,O) = f = F(·~ 1). 

Definition 1.4.2 Let J, g : X --+ }" be maps, Xo E r(f, g) and Yo = f(xo). Suppose 

F , G: X'< I---+}" are loops at f and g respecti\'ely. Then < G . .ru >< F . .r~; >-Lis a 

loop in Y at y0 , and therefore [< G,.r0 >< F,xo >-L] E rrt(Y,y0 ) . The set of all such 

elements of rr 1 (Y. y0 ) for all such loops F and G is denoted by T(f. g, x0 ). The set of all 

J-:1
, g;'11 -congruence classes of 7rt (Y, y0 ) that have representatives in T(f. g, xo) is denoted 

by T(f. g, .r0). In other words. T(f. g, x0 ) is the image of T(J, g, xo) in \](f. g; xo, Yo, >AJt, i..iJ9 ) 

under projection from 1rt (Y, Yo) to \](!, g; xo, yo, "-''!• >AJ9 ). 

Theorem 1.4.3 If x 0 is in an essential coincidence class. then N(f, g) ~ #T(f, g, x 0 ). 

Proof: See Theorem 26 on p.51 in [BR1}. 

Brooks actually proves the following 

0 

Theorem 1.4.4 If x0 is in an essential coincidence class, then there are at least #T(J, g, x0 ) 

essential coincidence classes of(/, g) each with index equal to the 'index of [x0 ]. 

Proof: Suppose [ad E T(J, g, x0 ), where O:t E T(j, g, x0 ). By Definition 1.4.2, there are 

loops F : X x I --+ Y at f and G : X x I --+ Y at g such that 
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Since [xo] is essential, there is a coincidence point x 1 of (f, g) such that [x0 ] is F- 1
, c- 1

-

related to [xt] by Corollary 1.3.18. By Lemma 1.3.14, there is a path C from x0 to x 1 in X 

such that 

< F- 1
, C >"" < G - 1

, C > . 

Then we have 

= [< G.xo >< F- 1 .C >< F.C- 1 >< F.x0 >- 1] 

= [< G,xo >< c- 1 .C >< F,C- 1 >< F,xo >- 1
] 

= [< g,C >< F,C- 1 >< F- 1,xo >] 

= [< g,C >< j.C- 1 >] 

= [(go C)· (f o C)- 1]. 

This shows that [at] is the image of [xd under p'V 1.
9 

by definition . Since [xt] is F. G-

related to x0 , the index of [xd is equal to the one of [x0 ]. Therefore. any element of T(f, g, x0 ) 

is an image of an element in f(f, g) with the same index as [x0 ] under p'i7
1
.
9 

and we have the 

result. 0 

A topological space X is a Jiang space if for any x0 E X, the set consisting of [ < F . x0 >] 

is equal to the fundamental group 1rt(X, x0 }, where F is a loop at idx. 

\Vhen }" is a Jiang space, T(J, g, x0 ) is equal to 7rt (Y, -y0 ) and therefore T(f, g, xo) -

(f.g,xo , yo,WJ,~g) = #Coker(g.- f.), where J,.,g .. : Ht(X)--+ H 1(Y) are the homomor-

phisms induced by f and g respectively on the first homology groups of X andY. 

Theorem 1.4.5 Suppose Y is a Jiang space. If L(f, g) =F 0, then N(J, g) = #Coker(!. -
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g.); if L(f,g) = 0, then N(J,g) = 0. 

Proof: See Corollary 37 on p.56 in [BRl]. 0 

1.5 Relative coincidence theory 

The results in this section are those of (JJ] and (JL]. 

Let (X, .-\.), ( Y, B) be pairs of manifolds with dim X = dim } ·. and dim .-\ = dim B. and 

let f. g : (X . .-\.) ---7 (Y, B) be maps. Denote the restrictions off and g on .-\ by fl.-t and gj_4 

respectively. 

Lemma 1.5.1 Let o E f(f, g) and o_4 E f(j].4 , gi.-t), then we have either 

(i) o.-\ Co. or 

(i·i) a:-A no = 0. 0 

Definition 1.5.2 An essential coincidence class o E f(f, g) is called a common essential 

coincidence class of (!,g) if there is an essential class O:t E f'UI.-t, gl..t) such that oA C o. 

The number of common essential classes is denoted by N(f, g; !1.-t, 9IA)· 

Definition 1.5.3 The relative coincidence Nielsen number of a pair of maps(/, g) is defined 

to be 

N(f, g; X, .4) = N(f, g) + N(fl.-t, 91.-t) - N(f, g; /1.-t, 91.-t). 

Definition 1.5.4 A pair of maps (f, g') : (X, .-1) ---7 (Y, B) is homotopic to (/,g) if there 

are homotopies F : (X, .4) x I -t (Y, B) and G : (X, A) x I-t (Y, B) such that F(·, 0) = 

/, F(·, 1) = f' and G(·,O) = g,G(·, 1) = g'. 
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Theorem 1.5.5 (Lower Bound) Any pair of maps (f' , g') homotopic to (f , g) : (X, A.) ~ 

(Y, B) has at least N(f, g ; X , A.) coincidence points. 

1.6 Minimality 

Lemma 1.6.1 .-lssume g : Dd ~ Rn and f : Sd-t ~ Rn are maps with the properties: 

( 1} #f(f, 9ls<~- t ) is finite. 

(2) d(f. 9lsa-t) < E. 

Then there is an extension 1 of f to Dd such that 

( 1} if ru, 9ls.t-l) # 0 or d < n , then r(J, 9lsa-t} = r(f, g). 

0 

(2) if d = n and ru, glsd-1) = 0, there is at most one co·incidence point of(/. g) m 

int(Dn). 

(3) d(f. g) < E. 

Proof: :\ proof can be found in [FP]. However we give here a sketch of a different proof. 

The proof can be found in [SH1J for the case when f(f, gls..t-1) = 0 . So we consider only 

the case that ru, 9lsct- 1) # 0. 

Case 1: First , assume that #f(f, gls<~-t) = 1 and that x0 is the single coincidence point. 

Then any point x in Dd can be represented as 

X= txo + (1- t)x', for some t E I and x' E sd-l . 

Then the desired map is defined by f(x) = g(x) + (1- t)(f(x')- g(x')) . 
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Case 2: assume #f(f, glsd-t) = 2, and Io and I 1 are the coincidence points. \Ve can 

decompose Dd to be Dd = Dg u Dt such that Dg and Dt are both d-disks, ng-t = Dg n Dt 

is an d - 1-disk and Io E Dd - Dt' It E Dd - ng. Since there is no coincidence point of 

(f, g) on ang-t, there is an extension of f over ng-t such that f(f, g) n Dg-t is empty. 

:_\;ow on ang there is no coincidence point of (f. g), so by Case L f can be extended to 

D8 with uu coiucitle11<.:e point::; in int ( Dg). Similarly, we can extend f over Df such that 

there is no coincidence point in int(Df). Therefore. we have an extension of f such that 

f(f.g) = {x0 ,.rt}. \Ve proceed by induction on the number of points in f(f.gl 5 d-t). 0 

Lemma 1.6.2 Let .\, F be closed manifolds of the same dimension , .-l C .\, B C Y sub

manifolds of the same dimension ·in_\" andY, respectively, and f, g: (X . .-\.) -t (Y, B) maps 

with #f(fl..b gl,.t} finite. Then there is a map f' : (X, .-l) -t (}·.B) s·uch that f' "' f rel .-\. 

and r (f'. g) is a finite set. 

Proof: The proof is similar to the one of Theorem 2 of [SHlj. except we use Lemma 1.6.1 

\Yhen the simplex we consider intersects with .-l. This lemma can also be thought of a special 

case of Theorem -1.6.5. 0 

Lemma 1.6.3 Let Io, x 1 E X be points in a manifold with dimension greater than 2, and o 

be a path from x 0 to x 1, then there exist an arc ci homotopic to a and a neighbourhood U of 

a'' which is homeomorphic to an via a homeomorphism <P such that ¢(a') is a segment. 

Proof: See Lemma 7 in [SHl]. 0 

The ideas contained in the next lemma come from the proof of Theorem 2.4 in (JJ]. \Ve 

need to state these ideas explicitly in order to show firstly that all the changes are local, that 
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is that all changes are restricted within a neighborhood of an arc connecting the two given 

coincidence points. Secondly we need to see that the change to one of the maps is away from 

one end of the given arc. 

Lemma 1.6.4 Let X, Y be manifolds with dimensions greater then or equal to 3 and let 

(f. g) : X -+ Y be a pair of maps with a finite numbe·r of co·incidence po·ints. Let x 0 • It E 

f(f, 9) and o be an arc from x 0 to It such that f o o "" 9 o o and o( (0. 1)) n r(j. 9) = 0. Let 

u be a neighbourhood of o((O, 1]) such that u"' Dn and Xo E au. Then there are h and 9t 

such that h ""f rel X-U and 9 1 "'g rei X-U', and such that f(/2, gt) = f(j, g)- {.rt}. 

where U' C F' CU. 

Proof: Let 3 be an arc in Y from f(x0 ) to f(.rt) such that p ""' f o a rel {0, 1} and ~· a 

neighbourhood ofB homeomorphic toRn. Since f(x0 ) = g(x0 ) and f(xd = g(xt) E ~-, th~re 

is ant> 0 such that both f(o([O. £J)L f(o([1-E, 1]) C ~-.and also g(o([O, £]) ), 9(o([1-t, lJ) c 

\ ·. Let H1 be a homotopy from f o o( to a path in \.-" and H2 be a homotopy from go of to 

another path in \.-". where of is the path defined by oE(t) = o(t(1 -E) + {1 - t)t) (i.e. nf is 

the part of n from t to 1 - E). Since the dimension of Y is greater than or equal to 3, we 

may assume that H1 and H2 have no coincidence points. This is equivalent to saying that 

the image of the map (H1, H2 ) : I x I-+ Y x Y does not intersect with the diagonal 6Y of 

the product Y x Y. Since the co dimension of 6 Y in }" x Y is at least 3 and the dimension 

of I x I is 2, we may deform (H1, H2 ) to a map whose image does not intersect with the 

diagonal 6 Y. 

By Lemma 1.6.3, we can assume that o((O, 1]) = {(0, 0, ... , tn) E Rnl - 1 ~ tn ~ 2} = 
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S[-t,2J, that U is an open set containing a((O, 1]) , and that / , g are maps from Rn to Y. 

\Ve may assume further that a([O, f]) = { (0 , 0, ... , 0, tn) E Rnl - 1 ~ tn ~ 0} = S(-l,O]· 

a([€, 1 - fj) = { (0, 0, ... , 0, tn) E RniO :5 tn :5 1} = S[o,lJ and n([l - € , 1]) = { (0 , 0, ... , 0, tn) E 

Rnll ~ tn :5 2} = S[t,2J · Since Sro.1J c U, there is an 11 > 0 such that U" = {t = 

(tt. t 2, •••• tn) E Rnid(t , S[o,q) < TJ} satisfies the property that U11 c U11 c U. Since there are 

no coincidence points of (f. g) on S[o,q , we may also assume that there are no coincidence 

points of (f , g) on U'l. 

L [ . _ [ ·"' 1 •n 1 rm h r ;t _ { _ ( ) Rn 1 )'n 2 < 0} et ' 'I - · 11 U LJ'I U v 17 , w ere v'l- t- t1 , t2 , .•.• tn E ....... i=lti :5 1] , -1] _ tn :5 , 

f' 11 
: C~' -+ Y as follows: 

{ 

/((~- l)t) 
J'(t) = 'I 

Ht(O, 1- ~) 

if ltl ~ ~ ·ry , 

if itl ::; ~TJ 

{ 

/((~- 1)t' , tn) if t = (t' , tn), and it'l ~ ~T] , 
!" (t) = '1 

H1 (tn , 1 - ~) if t = (t' , tn) , and It' I ~ ~TJ 

where en= (0, ... , 0, 1) ERn. 
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Define f 1 : U ~ Y by 

f(x) if t fl. u,, 

f'(x) if t E U~ , 
!1 (t) = 

!" (x) if t E U~ , 

f"'(x) if t E U~' , 

\Ve claim that f "' ft rei X - U, , but so as not to interrupt the flow of the proof we 

postpone the verification of the claim until the very end of the proof. 

);ext using the same procedure as above, but replacing H1 by H2 , we obtain 9I "' g 

rel X - C:,. It can be checked case by case that !I and g1 have no coincidence points 

on UTI . For example, if t E U~ and ltl ~ ~TJ , then according the definitions of !I and 9I , 

ft(t) = f((~- l)t) and 9I(t) = g((~- 1)t). However, (~- 1)t is in u~ and there are 

no coincidence points of (f,g) on U~ , so we have !I(t) # 9I(t) . The other cases are similar. 

Since !1 and 91 differ from f and g respectively only on UTI , we have ru. g) = rul ' gt). 

Now both ft and g1 map o((O, 1]) into V , so we can find a neighborhood L\ C U of 

o( (0, 1]) such that U 1 :::: D" , / 1 ( U 1), g 1 ( U t) C V and x 0 = o(O) is the only coincidence point 

of (JI.gt) on 8U1• By Lemma 1.6.1, we have an extension Jr : Ut ~\.- . of ftlau
1 

such that 

.r0 is the only coincidence point of Ur , Ytiu
1

) on U t · Since both the images of fdu
1 

and Jr 

are in\ .. , which is homeomorphic toRn , we have fdv
1 
"'Jr rel 8U 1• Define h: U ~}' by 

{ 

ft(x) 
h(t) = 

Jr(x) 

\Ve have / 2 "' f 1 rel X - U1 and f(h, gt) = f(ft, gt) - {xt} = f(/ , g) - {xt}. Note that 

g "'g1 rel X - U'1, so we have the result by setting U' = U'1. 
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Finally we prove the claim mentioned earlier. \Ve define a homotopy fs from f to f 1 as 

follows: 

fs(t) = 
f~(x) if t E U~ , 

J;'(x) if t e u;, 
J;" (.r) if t E [;; ' . 

where J;. J;' . f~" are defined as follows: 

{ 

f((:lli!- s)t) if ltl ~ 1s1J, 
J;(t) = ,, 

Hl (0 . s- ~) if ltl ::; ~ST] 

if t = (t' . tn). and lt'l ~ ~s·ry, 

if t = (t', tnL and jt'l ~ ~S"IJ 

{ 

f((
21

t.-'7en! - . s)(t- En)+ en) 
f~" (t) = 

Hl ( 1. 8 _ ·zit~e,. l ) 

0 

Lemma 1.6.5 If xo is an isolated coincidence point of (f , g) with index zero and U ·is a 

neighbourhood of Io , then there is an f' ~ f rel X-U such that f(J'.g) = f(f,g)- {xo} . 

Proof: See the proof of Lemma 2 in [SHl] . 0 

Theorem 1.6.6 Let X , Y be manifolds with the same dimension and dim X~ 3. Then for 

any pa~r of maps (f, g) : X --+ Y , there is a pair (f', g') with (f', g') ~ (J, g), and such that 

#f(f',g') = N(J, g) . 
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Proof: By Lemma 1.6.2, we may assume that r(j, g) is finite. Then applying Lemma 1.6.4, 

we can coalesce all the coincidence points in the same class to a single one and by Lemma 1.6.5, 

those inessential classes can be removed. 0 

Definition 1.6. 7 (Definition 5.1 of (SH2]) :\ subspace A of a topological space X can be 

bypassed if every path in X with end points in X - .-\. is homotopic to a path in X - .-\. 

keeping end points fixed. 

Theorem 1.6.8 If dim A. ~ 3 and.-\. can be bypassed in X. then for any pair of maps (f , g) : 

(X . .-l) --+ (Y. B) , there is a pair (f' , g') with (J' , g') ~ (f , g) and such that #f(f' . g') = 

.V(J, g; X , .-\.) . 

Proof: See Theorem 2.4 in [JJ] . 0 



Chapter 2 

Coincidence Points on the 

Complement 

As stated in the introduction, relative Nielsen theory, which concerns a selfrnap f : (X . .-\.) -+ 

(X .. -\) of a pair of spaces, was developed in [SH2]. \Vhen such a map is considered, the 

ordinary ;\Helsen number may be a poor lower bound for the number of fixed points. The 

relative :"-Helsen number gives a better lower bound in this case. Zhao's work ([Z]) goes 

further, in that not only is the number of fixed points of a selfmap of a pair of spaces 

considered, but also the location of the fi.xed points. \Vhile for ordinary fixed point theory 

the location of fixed points does not affect the number of fixed points, in the equivariant 

case which is discussed in [\VP3] there may be a difference. 

Relative fixed point theory is generalized to relative coincidence theory in [JJ] and [JL]. 

In this chapter we generalize Zhao's work on the complement to coincidence theory. Some 

28 
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of the techniques and results developed here will be used in Chapter 4. 

In this chapter then, we consider the coincidence points of a pair of maps (f. g) : (X, A.) --+ 

(F, B) that are located in the complement X -.-1. Here X andY are manifolds with dimension 

n and .-\and Bare submanifolds of X and }" respectively with dimension k. In the absolute 

case (A= B::::: 0), it is not hard, using homotopies. to move a coincidence point to any given 

point in X. However. \Vhen we restrict to maps ], y of pairs mauifokls. this is uo longer 

true. ~lore explicitly. if we consider maps f. g : (X . .4.) -+ o·. B) of pairs, then it may not 

be possible to move all of the coincidence points in X - A to .-L \-Ve will discuss which 

coincidence points may be moved to .·L and give a low~r bound of the number of coincidence 

points on X - .4. that cannot be so moved . 

.-\fter this thesis was submitted. the paper [L] came to our attention. The paper sketches 

some of the results of section 2.1 and 2.3 (for example, Theorem 2.1.15. 2.1.16 and 2.3.2). 

However minimum theorem is not discussed there and the applications of our new Jiang 

type condition are absent. In addition, the result of Theorem 3.5 in [LJ is incorrect when 

the subspace is not connected. There are no examples in [L]. 

This chapter is arranged as follows. In section 1, we introduce the concept of a coincidence 

Nielsen number of a pair of maps on the complement and give some basic properties of this 

number. In section 2, we develop a method to compute the Nielsen number when 9rr is onto, 

and !:r(rrt(X, x0 )) C J(f, "-lf, xo, Yo) ( while Y is not necessarily a Jiang space ). Then in 

section 3, we use the results of section 2 to give both some estimations of the Nielsen number 

on the complement, and also of the relative Nielsen number defined in [JJ) for manifolds. In 
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section -l, we prove the minimum theorem and show how to create a coincidence point in the 

subspace .4 that is Nielsen equivalent to a coincidence point in X- A. \Ve also show how to 

coalesce a coincidence point on X - A to a coincidence point in A. These results are useful 

for equivariant coincidence theory which we will discuss in chapter -l. 

2.1 Definitions and basic properties 

Let j , g : (X . .-1) ~ (Y, B) be maps of pairs of spaces. Let -~ = u~= 1 Ak be the disjoint union 

of all components Ak of .-1 which are mapped by f and g into the same component Bs of B . 

\Ve shall write fkl 9k : .-lk ~ Bs for the restrictions of t g to .·h respectively. 

Rh •. 9,. . Suppose now that /k.9k map .-lk into the sa111e component B 11 of B. \Ve will define 

maps i~,~ .. 9,. : f(fk!gk) -t f(f, g) and i}:,9~< : Rf~c,g~c ~ Rf,g such that the following diagram is 

commutative. 

tuk . 9k) 
Mlflc·fk 1?../J.,g,. 

.!. ·f z!J. , g~c 
.!. ·R. 

L J~c ,glc 

tu, g) 
P"R.f ,f 

RJ,g· 

\Ve start with the general case. By analogy with Proposition 1.5 in [JB2], we have the 

following lemma. 

Lemma 2.1.1 Let Xi and }j be connected, i = 1, 2, and let j 1 : X 1 ~ Y 1, h : X2 ~ Y2 , 
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hx : X1 --+ X2 and hy : Y 1 --+ Y2 be maps such that the following diagram is commutat·ive 

Xt 4 Yt 

-I. hx -I. hr· 

x2 f .. 
~ r2. 

Given a lifting A of ft· a lifting hx of hx and a lifting h'r· of h't·. there is a unique lifting 

h of h such that the digram 

is commutative. 

Proof: see the proof of Proposition 1.5 of [JB2]. 0 

Corollary 2.1.2 (cf. [JB2]) Consider a commutat·ive diagram 

idx 1 Xt --+ Xt 

-I. h -I. h 

Then each lifting h of h defines a map from II(Xt) to II(X2 ). The map will be denoted by 

Proof: This follows from Lemma 2.1.1. 0 
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Definition 2.1.3 Let ft, 9t : Xt ~ Yt, f2, g2 : X2 ~ t2, hx : Xt --+ X2, hy : Yt ~ r2 be 

maps such that the diagram 

Xt /~1 Yt 

-J..hx _J..hy 

x2 '-=42 r2 

is commutative. ~Ve define a map Jhx,h't· : nft,gl ~ n,M'2 as follows. If we have a comm·u

tative diagram 

sl ~~~ f·l 

-I- hx -I- hy 

.Y2 ~~'2 f;, 

where ji, gi are liftings of fi. gi respect·ively for i = 1. 2. hx. hy are liftings of hx, h'r· respec

t-ively. define )hx .hy([(jt,gd]) = [(j2,g2)]). 

Lemma 2.1.4 )hx,hy is well defined. 

Proof: First )hx ,hy is defined on all the elements in R /1.91 by Lemma 2.1.1. 

\Ve first prove that the definition of Jhx,hy is independent of the choice of (j1• gd. Let 

U' 1, g1 
1) = i Y1 (jt. 91) ( ;;r'( 1 ) -

1 where j~ and g~ are liftings of f and g respectively such that 

the following diagram is commutative. 

.. Y1 ~~~ Yt 

-1-hx -I- hy 

.. x-2 i~; f2 . 
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_yl 
iX t 

_yl Yt 
·Yt 

}"l ~ 4 

,!. hx ,J.. hx ,!. hy· ,!. hy· 

_y2 ix2 _y2 f; 
. ~-., 

f; .., -
~ -+ 

are commutative. Therefore. we have the following commutative diagram 

~ext \ve show jhx ,hy does not depend on the choices of hx and h\·· Assume h~'( = ·~r'2 hx 

and h~- = i \·~h.,· . Let f~ and g~ be liftings of h and 92 respectively such that f~ii~'\ = h~- ]1 

does not depend on the choices of hx and hy. 0 

For connected subspaces .-\ C X and B C y· there are inclusion maps i.4 : .-\ -+ X and 
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i 8 : B-+ Y", and the following diagram are commutative. 

Y. 

Then we have the map )iA ,iB : n!A.9A --+ RJ,g defined in Definition 2.1.3. 

Notation: vVe will use the notation if,,gA : 'RJA.9A --+ 'RJ,g to denote Ji.-\.ia· 

By the definition of iJ.-\·9.-\, if an element [(].g)] E n,,g is in the image of i"t.9A , then 

there is a lifting (/4 , 9 .. d of (f.-t, 9.4 ) such that the diagram 

is commutative. 

For any connected subspace.-! of X. we have a inclusion map i~A.YA: f(J..~.,9.-t)--+ f(f.9), 

which induces a map iL,
9

A : f(/A,9.-t)-+ f(f,g). 

Lemma 2.1.5 The diagram 

tu.-\, 9 . .~.) P'Rf.-t•fA 
n,,,,gA 

.!,. ·t 
.l f.A,9A 

.!,. ·R 
l fA,9A 

t(J, g) P'R f.f n,,g 

is commutative. 

Proof: Let x be a coincidence point on A.. We use [x]1A.YA to denote the coincidence class 

of (! . .~.. 9.-t) containing x and use [x] 1,9 to denote the coincidence class of (f, g) containing 
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x. Then iL .gA ([x]JA ,9A) = [x]J,g· Assume that PR1.9 ([x],,9 ) = [(]!g)], where J and g are 

liftings of f and g respectively such that for some x E p:\-1 (x), ](x) = g(x). Let .-l 1 be 

the component of p:\-1(.-!) containing i and let B1 be the component of Px1(B) containing 

](i). Let J.-tcx : ..i --7 .-l1 Oscx : B --7 Bt respectively) be a lifting of the inclusion 

maps i.-t : .-1. Y X (is : B Y Y respectively) from the universal covering space .-l (B 

respec.:tively) uf .-1. (B resiJec.:tively) to .-l1 (B1 respec.:tively). ~ute that J.-tcx and ]sex are 

actually covering projections. Let (f4 , 9.-d be a lifting of (]l..\
1

, .91..\
1

) with a coincidence 

point on J.~~ .d£). It is easy to check that (f-t. 9.-t) is a lifting of (f.-t, 9.-t), Pn.,A·'Jrt ([x]JA.YA) = 

[(/.-t . .9.-d] and i~·YA ([(/.-t , .9.-t)] = [(],g)]. So the diagram is commutative. 0 

~ow we assume .-l = UAA: and B = UB$, where Ak and B:~ are components of .-1. and B 

respectively. 'We choose base points x0 E X and y0 E r·, and for each component Bs of B we 

choose a base point bs E B:~. Similarly for each component .-!A: of .-1. , we choose a base point 

ak and a path uk in X from x0 to ak. If .-1.k is mapped into Bs by both fk and 9b then we 

choose paths w'J,, and w9~< in B:f from b$ to JA:(ak) and 9A:(aA:) respectively. ( Note that there 

may be more than one component of .-1. mapped into the same Bs, therefore there may be 

more than one wh.'s for each 8 5 .) 

Definition 2.1.6 .-\ class [x] E f(f, g) is called a weakly common coincidence class if 

Pn.1.
9 
([x]) is in the image of ·iR.11c.

9
1c for some k. If [x] is essential, it is called an essential 

weakly common coincidence class. The number of essential weakly common coincidence 

classes off and g is denoted by E(f, g; /.4 , 9A)· 

From section 1.2 in Chapter 1, we have alternative description of the Reidemeister sets 
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nfk,gk and nf,g as v(fk,gk,ak,bs,Wfk,Wgk) and v(f,g,xo,Yo,Wj,Wg)· This alternative de

scription allows for an alternative description of a weakly common coincidence point. There 

is a map from v(fk, 9k, ak, bs, Wfk' Wgk) to v(J, g, Xo, Yo, Wf, wg) defined as follows. 

Definition 2.1.7 Define Vfk,Bk: 7rl(Bs,bs)---+ 1r1(Y,yo) by 

Vfk>Bk(a) = w9 ·(go uk). w-;,.1 . a. Wfk. (J o uk"1
). wj1. 

and define Vfk,9k(a) = Vfk>Bk(a). (where a is the /:h,g~9k-congruence class of a. See 

Definition 1.2.3.) 

Figure 2.1: 

Lemma 2.1.8 The Vfk>Bk is well defined. 

Proof: Suppose that a, {3 E 1r1 (Bs, bs) are in the same Reidemeister class, i.e. there is an 

element 1 E 1r1 (Ak, ak) such that 
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. (j-u-l) .-1 . (J-u) '! . ...,--t) (J - u-h . -!1 'wj,, ' u k 'wf ' ..vf ' '-' k · ~ kOJ I · ""k )'wf 1 = 

9rr ( i • ("I) ) V f k ,g 1c ( Q) f.rr ( i • ( "() ) - 1 
• 

This proves that ufs. ,g~c(a) and u1~c .g~c(f3) are in the same class of 'R1,9. 0 

Lemma 2.1.9 Assume A. c X and B c r·. J, g : (X,.-\) ~ (Y, B) are maps. and a E . ..t 

and b E B are basepoints of A and B respectively. Let J-L be a path from x 0 to a. Then the 

d·iagram 

'Rf..t ,9A 
e,.#A 

\l(f.-t, 9.-t ; a, b,;,.) fA ' -.;9A) 

.!. ·R. 
lf-l,9A .l,. VfA .9A 

'Rf,g ~ \l(f, g; Xo • Yo,..;!· ..V9 ) 

is commutative. 

Proof: Assume that [(J-t , 9.-t)] E 'RtA .YA. Let [(j, g)] = i_t,9) [(f.4, 9.-t)]) , then we have the 

commutative diagram 

.-l iA.!J¢ B 

.l..J.-tcx .l..JscY 

.X' j,g) f· 
' 
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where J.-tcx and JBc't" are liftings ofi.-t: .4--+ X and ia: B--+ Y respectively. Let ii E p::\ 1(a) 

and a.-t be a path from 9.-t(ii) to f-t(ii). Denote P.-t o a.-t by 0.-t· Then 8 f.-~.,9 -t ([(/-t, 9.-t)J) = 

[..u9.-~. · o .. t · "'-'f..J Let jj. be a lifting of J.L with the end at ii and denote ji(O) by i 0 . It is obvious 

that io E p X 1 
( Xo) and (g 0 ji.) . a_-\ . (] 0 j]. - 1) is a path from g( io) to j ( io). By the definition. 

we have 

e t .g([(], .9)}) 

= [w9 · Px o ((go jj.) · a.-t · (] o ,J- 1)) · -"'tl 

= (w9 ·(go J.L) · O.-t • (f o J.L- 1). wj 1
] 

Lemma 2.1.10 The d-iagram 

r-(f ) p'il f~t·fic 
b9k 

tu, g) p'il,., 

is commutative. 

0 

Proof: The proof follows from the commutativity of the diagrams in Lemma 2.1.5, 2.1.9 

and 1.2.6. 0 

Corollary 2.1.11 A cla3s [x] E f'(f, g) is a weakly common coincidence class if and only ·if 

p'VJ.g ([x]) is in the image of v/".9" for some k. 

Proof: The result follows from Lemma 1.2.6, 2.1.5, 2.1.9 and 2.1.10. 0 

The next result generalizes Lemma 2.3 of [Z]. 
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Lemma 2.1.12 A. coincidence point x E f(J,g) belongs to a weakly common coincidence 

class if and only ·if there is a path o: : (I , 0, 1) ~ (X, x! A) from x to A such that f o o: ,..., 

go a : (I, 0, 1) -t (Y! f(x), B). 

Proof: . ..\ssume that x is in a weakly common coincidence class. By Corollary 2.1.11. 

there is a path c: I~ X from Io to X, such that [wg. (g 0 C). (f 0 c- 1
) . ...:j 1

] E CJc,g;.([,J}) 

for some element LJ] E tr1 (Bs, bs) and k, where both f and g send .-lk to Bj. In other words. 

there is an element ~~ E rr 1 (X. x 0 ) such that 

or 

From above. we have 

or more briefly, 

~ate that the right hand side is contained in Bs, and if we set o: = c- 1 • ~~- 1 • uk, then we 

have goo:,..._, f o a: (I, 0, 1) ~ (Y, f(x), B). 

On the other hand, assume that there is a path a: (I, 0, 1) ~ (X, x, A) from x to A. such 

that goo:,..._, f o a: (I, 0, 1) ~ (Y, f(x), B) and a(1) =a E Ak, a component of .4, and such 

that both f(.4.k), g(.4k) C Bs. Let C : I -t X be a path from x0 to x, we have to find an 
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element [.B] E 1rt(Bs, bs) such that VfA,gk{[j1J) = g.,.('-y)[wg. (g 0 C). (f 0 c- 1
). ~.r 1 1f.,.('-y- 1 ) for 

some"' E 1r1 (X, X a)-

Let Ca be a path from a~c to a. Let l = F(l , ·), a path from goo(l) to foo(l) in Bs. 

Set"'= 'Uk ·Ca. o- 1
. c- 1 and .B = Wgl<. (gk oCa) ·l· (ik oC; 1

) ·wh,1
• 

By assumption. we have (goo)· l · (f o o-1) ""0, or 

VJc,g~c([pJ) - [w9 ·(go uk) · w;,.1.Bwfk · (f o u; 1
) • ~tl 

- [(-.4lg. (g 0 u~c). w;,.1)(w9k. (gk. Ca) .[. (f~c 0 C.;- 1
). w.fk1)(...;fk. (f 0 u; 1

). W/
1

)] 

= [w9 ·(go u~c) · (gk · Ca) -l· U~c o C; 1
) · (f o u; 1

) · wj 1
] 

= [wy. (g 0 uk). (9k. Ca). (g 0 o- 1
). (f 0 o). (f~c 0 c; 1). (f 0 u; 1). W/ 1] 

- [wg. g 0 (uk. Ca. a- 1
). f 0 (a. C.;- 1 . u; 1) . W/ 1] 

- [wg. g 0 (uk. Ca. a- 1
). ((g 0 c- 1

). w; 1
• Wg. (g 0 C)). 

((f o c- 1
) • u.-·/ 1 

· ...;1 · (f o C))·! o (a· C; 1 
• u; 1

) • wtJ 

- [(w9 ·go (uk · Ca · a- 1
) ·(go c-1

) • .._,;
1

) • (w9 ·(go C))· (f o c- 1
) · wt) · 

(WJ. (J 0 C). f 0 (a. c; 1
. u; 1

). w/ 1
)] 

- g.,.('-y)[wg. (g 0 C). (f 0 c-1). w/1]f.,.('Y-l). 0 

Corollary 2.1.13 A coincidence class of (f, g) containing a coincidence point on .4. ·is a 

weakly common coincidence class. 0 

Definition 2.1.14 The number of essential coincidence classes of J, g : X ~ Y, which 
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are not weakly common coincidence classes is called the Nielsen number of f, g on the 

complementary space X -.-land is denoted by N(J,g; X -.-l). In other words, N(f, g; X -.-1) 

is equal to N(f, g) - E(f, g; f.-t, 9A) (see Definition 2.1.6). 

Theorem 2.1.15 .4ny pair of maps f, g (X . . -l) -+ (Y, B) has at least N(f, g; X - .-1) 

coincidence po·ints on X - .-l. 

Proof: :\'ote that each essential coincidence class has at least one coincidence point. If this 

point is in _-! .• by Corollary 2 .1.13, the class is a weakly common coincidence class. Therefore. 

for each essential non weakly common coincidence class there is at least one coincidence point 

in X - .-l, and there are N(f, g : X - .-!.) such classes by the definition. 0 

Theorem 2.1.16 N(f, g; X - .-l) is a homotopy ·invariant. 

Proof: Assume F : f ,.... f' : (X, .-l) -+ (Y, B) and G : g ,.... g' : (X. A) -+ (Y, B) are 

homotopies. vVe know that N(f , g) = ~vu', g'), so we only need to prove that if X E ru. g) 

and .x' E f(J', g') are F. G-related and x is in a weakly common coincidence class, then x' is 

too. 

Assume that a is a path from x to x' such that < F. a >-< G, a>. Let a be the path 

in X x I defined by a(t) = {a(t), t), then F o a=< F, a >""'< G, a >=Go a. Let F and G 

be liftings ofF and G respectively such that F(!i, 0) = G(.i, 0) for some .X E Px1 (x). Then 

F(i:', 1) = G(i', 1) for some i' E Px1(x') since a is a path from (x, 0) to (x', 1) and the lift 

of Foa(Goa respectively) is Foa(Goa respectively). So .on.1.
9

([x]) = [(F(·,O),G{·,O))] 

and fJ'R.,,_
9

, ([x']) = [(F(·, 1), G(·, 1))]. 
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if,.,91c ([(jk, 9k)]) = [(F(· , 0), G(·, 0))] , then the diagram 

-~k j~lc 8~ 

.!. lk .!. ls 

.Y F( ·,O), G( ·,O) 
-t f· 

is commutative. Let .Fb Gk be liftings of Fk. Gk starting from jb Yk respectively. By the 

unique lifting property of covering spaces, we have the following commutative diagram 

This implies the diagram 

jk X I F~c.G~c 
~ Bs 

.!.Lk X id .!. is 

. Y X I F_f f· . 

I F~t( · , l),G~c( · , l) B-
."1k -t s 

.Y F{-,t),G(·,ll 
-t 

is commutative. which means f1R., 
9

, ([(Fk(·, 1), Gk(· , 1))]) = [(F(· , 1) , G(·, 1))] . 
,.. 1c 

0 

2.2 The Reidemeister number and the Nielsen number 

In this section, we give conditions under which the Reidemeister numbers and Nielsen num-

bers can be computed easily. Let Bx : 1r1 (X, x0 ) -t H 1 (X) and 8y : 71'1 (Y, Yo) -t H1 (Y) be the 

abelianizing homomorphisms, and 1JY: H1(Y) -t Coker(g.- f.) the projection map, where 

/. and g. are the homomorphisms from H 1 (X) to H 1 (Y) induced by f and g respectively. 
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Lemma 2.2.1 If a "' ci in \l(J,g;x 0 , y0 ,w,,w9 ) , then T]}·Oy(a) = ryy8y(a') . Therefore 

ryy o 8y induces a map from \J(f.g;x0 , y0 ,w, ,w9 ) to Coker(g.- f.). We will denote this 

map by 

Proof: \Ve have to prove that when a....., c/ in v(f. g ; Io, Yo , .;.), . '""''g) , then O·do') -8y(o) is 

in the image of g. - j •. Assume that a "'a' , i.e. there is an element r E rr 1 (X. x 0 ) such that 

c/ = Yrr("i)o:f:rb- 1
) . Since B"t· is a homomorphism and Br· is natural , we have by applying B'r· 

to both sides that Br·(o') =By o 9rrh) +8y(o)- Or' o frr(~t) =g. o8x h ) +By(o)- f. o Ox(r) 

. So By(o:')- 8y(a} =g. o Ox h)- f. o Ox h)= (g.- j.)(Ox b )) , i.e O;·(a')- B'r·(a) E [m 

(g. - j.) as required. 0 

Theorem 2.2.2 The following two conditions are equivalent. 

(i) J-:1 • g~<J -congruence classes are independent of the choice of w 1 (respectively ...,;9 ) , or 

more precisely. if ;.,..'! and ;..Jf are paths from Yo to f ( Xo) , then the ]rr 1 • g~g -congruence class 

..;' 
containing a and the frr 1 , g";g -congruence class containing o are the same. 

{i·i) For any .3 E 7rt(Y, yo) , if a"' o' in \l({g;xo , Yo , "'-'J ,w9 ) , then a p ....., o:' .3 (respectively 

The following three conditions are equivalent. 

(v) The composition T]y o(Jy: rr1(Y, y0 ) --t Coker(g.- j.) of 8y and TJy sends elements in 

different /:1 , g~!l-congruence classes to different elements ofCoker(g.- j.), and hence TJyoOy 
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'induces a one-to-one correspondence between \J(J,g;x0 ,y0 ,;.uf,w9 ) and Coker(g.- j.). 

In addition, {iii), (iv) and (v) together imply {i) and {ii), and when 9rr is onto, all 

formulations of the five statements are equivalent. 

Proof: (i)::::>(ii): Suppose o =[a] ,o' =[a'] are elements in 7rt(Y, y0 } and o"' o', i.e. there 

.JJ "t . Assume that ,d = [ b] is another element in tr t(} ·, Yo). Let \.J.Jf = 3 · ...JJ 1. :\s Reiderneister 

classes are not dependent on the choice of wj, there is an element ~/ = [r'] E rr 1 (X. x 0 ) , such 

aJ"' c/ 3. The proof is analogous for independence with respect to o,J)9 • 

(ii)=>(i): Suppose o = [a], o' = [a'] E rr 1(Y, y0 ) are in the same Reidemeister class, i.e. 

there is an element ",r E 7rt(X.xo) such that ci = 9rrb)o/rr("Y- 1
). Let wj be another path 

from y0 to f(x0 ). and J = [b] = [w/ · (w1)-
1)]. By (ii), op "" o';3, therefore there is an 

element r' = (r'] E rrt(X.xo) such that c/.8 = 9rrh')oPfrr((r')- 1
}, or a'· b"' w9 ·(go r') ·u.•; 1

• 

a · b · :..v 1 · (f o ( r') - 1 
) • w I 1 

, then 

I ( ') -1 b (f ( ') -1) -1 b-1 a "-'Wg· gor ·w9 ·a· ·w1· or ·~JJ1 · = 

( ') -1 (I -l) (f ( 1)-1) -1 ( ( 1)-1) w9 • gor ·>JJ9 ·a· w1 -w1 ·w1 · or ·w1 · WJ· w1 = 

w' 
:..v9 ·(go r') · w; 1 ·a· w/ · (f o (r')- 1) · (wj)- 1, that is ex.' = 9rrb')cx.frr 1 (("/)- 1). So the 

Reidemeister classes are independent to the choice of w/. The equality for {3cx. and {3o' 

implying independence of w9 is analogous. 
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(iii)=>(v): vVe have to prove that if 11Y olJy(o) = 71Y oOy(d), then o"' o' . vVe divide the 

proof into three steps. 

(1). For any commutator [o, 3] = er;3o- 1J- 1 and Af in rr1(X, x 0 ), then by (iii), 

(2). If Bvh) = O.,·h'). then A("'-/. 

In fact, in this case. Ar'r- 1 E K erO'r·· the commutator subgroup. Therefore, 

for some o,, Ji. 

Repeating ( 1), \Ve have Ar' "' At. 

(3) Now assume that 17"t' o Oy(o) = l]y o Oy(o'). By the definition of 'l'r·· there is an 

element c E H 1(X) such that O"t'(o') - Oy(o) = g .. (c) - / .. (c). Let c = Ox(:), \vhere 

~~ E rrt(X, .ro), then g.(c) = g.(Bxb)) = 0y(g11'('y)) and /.(c)= lJy(J.rb)). Hence, Oy(o') = 

O'r·(o) + O'r·(g1r(·y))- O'r·CJrrb)) = Oy(g'lr("y)ofrrh- 1
), and by (2), o' "'g1r(r)of1r(r- 1) "'o. 

(v)=>{iii): .\s 0y(oi3Ar) = fJy(pOAf), we have l]"t· o 9'r·(oJ"'t) = l]y o O"t·(,Jo··y). By (v), we 

have o ,d"'f "' .BoT 

The proof that (iv)~(v) is similar to the proof of (iii)¢:}(v). 

(v)=>(ii): Assume that o"' o', then llYBy(o) = 'lYOv(d). So, 17'r·8y(o!3) = ryylJy(o) + 

71YB'r·(J3) = TJyfJy(o') + 7]ylJy({3) = TJ"'r·lJy(o'/3). By (v), we have o{3"' o'/3. 

Assume that g11' is onto. (ii)=>(iii): Assume o, !3 E rr1 (Y, y0 ) and 91r(a) = o, g1r(b) = (3, 

where a,b E rr1 (X,x0 ). Then we have o "'g1r(a- 1 )of1r(a) = /rr(a) and /3 "'g1r(b- 1 )/3/1r(b) 

= J1r(b). o/3"' g1r((ab)- 1 )o/3J1r(ab) = !1r(ab) = !1r(a)j1r(b). By (ii), !1r(a)J1r(b) "'ofrr(b) 
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,.,_, g1r(b)af1r(b)f.,..(b- 1 ) = g'lr(b)a = ,Bo. Therefore, we have a(3 "' {3a . By (ii) again, af31 

0 

Corollary 2.2.3 If conditions (iii), (iv) or {v) in 2.2.2 hold true, or 9rr is onto and condi-

tions ('i) or (ii) in Theorem 2.2.2 hold true, we have 

R(J, g) = #Coker(g.-- /.) . 

In partic-ular, if 11' 1 ( Y. y0 ) is abelian , then 

R(f. g)= #Coker(g .. - /.) . 0 

Definition 2.2.4 A pair of maps (/, g) : X ~ Y is said to be R-commutative if 

Lemma 2.2.5 The property of being R-commutative is independent of the choices of w 1, ""'9 , x 0 

and Yo · 

Proof: By 2.2.2 ( ('iii) => (i) and (ii)}, so R-commutativity does not depend on the 

choices of w 1 and w9 • \Ve have to prove that R-commutativity does not depend on the 

choices of ro and Yo · 

Let x 1 be another point in X, and C be a path from x0 to x 1 • Let w/ = WJ · /(C) , 

w~ = w9 · g( C). \Ve only need to prove that if a, /3 are J~1 , g~9 -congruent, then they are 

Suppose that a, ;3 E 7l'1(Y, Yo) are /~1 , ~9-congruent , i.e. there is an element bl E 
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w' w' 
.3 are f 1r 

1 , g1r 9 -congruent as required. 

The argument that R-cornmutativity does not depend on the choices of Yo is similar. 0 

:\rote that \l(f.g , x 0 , y0 , ;.;Jf.;.;J9 ) is actually an partition of 1r1(Y,y0 ), so we can compare 

an element a in \JU, g, x0 , y0 , "-'!· ;;J9 ) with an element ci in \JU. g, x0, Yo. ;;J/, ..u~). If a and 

a' contain the same elements of1r1(Y,y0 ), we can say a= o.'. If \J(/,g,xo,Yo,;.;JJ,w9 ) and 

\7(/, g, x~, yo , w/ . ..v~) represent the same partition of 1r1 (Y, Yo) , we say \J(/. g, Xo, Yo , ..v !• ....:9 ) = 

\7(/, g, x~ , Yo. w/, ..v~). 

Proposition 2.2.6 If(/, g) ·is R-commutative! then \l(J, g, x 0 , y0 , Wf, w9 )= \l(J, g, x~. Yo, w/. ~.~.J~) 

and 

R(f, g) = #Coker(g. - /.). 

Proof: The first statement follows from the proof of Theorem 2.2.2 ((iii) => (v)). The 

second one follows from Corollary 2.2.3. 0 

Definition 2.2. 7 ( cf. Definition 1.4.2) Let x0 E X ( not necessarily a coincidence point 

of (/, g)). Define T(j,g;xo,yo ,wf,;..:9 ) = {w9 < G,xo > ..v; 1 
·Wf < F,xo >- 1 w.f 1\F: f ,..,_ 

J, G : g ,..,_ g} C 7rt(Y, Yo), and T(f, g; xo, Yo, Wf , w9 ) to be the image of T(J, g; xo, Yo, Wf, w9 } 

Definition 2.2.8 Let (/,g) be R-cornmutative, then the number of elements in the set 

T(f, g;x0 ,y0 ,vJf,w9 ) is called the Nielsen orbit length of (/,g). It is denoted by NL(f,g). 
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The following lemma shows that N L(f, g) is well defined. From Proposition 2.2.6, we 

know that when (f,g) is R-commutative, \j(f, g,xo,yo,UJJ,Wg)= \J(f, g.x~ , y0 ,w/,:..:~), so we 

can compare its two subsets T(r g; x0 , y0 , ~,, ~9 ) and T(f, g ; x~, y0 , ~~, ..u~). 

Lemma 2.2.9 Let Xo, x~ E X, Wf and w/ be paths from y0 to f(x0 ) and f(x~) respectively. 

and w9 and w~ be paths from Yo to g(x0 ) and g(x~) respectively. If (f. g) ·is R-commutative, 

then T(f,g ;xo,yo,;..;t.w9 ) = T(f,g ; x~ , yo , ~'t,w~). 

Proof: By Proposition 2.2.6, we know that \l(J, g, xo, Yo, Wf , w9 )= \J{f, g , .r~, yo, w/, ;..;~), 

so T(f.g;xo , Yo,i.llf,w9 ) and T(J, g , x~,y0 ,:..:/,..AJ~) are both subsets of \j(f.g,.ro, Yo,wf.i.l19 ). 

\Ve divide the proof into two steps. 

( i) The set T(f. g; xo, Yo· ..AJ 1 , ~9 ) is independent of the choices of ..AJ 1 a.nd :..:9 • Let OJ.Jf and 

..AJ~ be paths from Yo to f(.ro) and g(x0 ) respectively. \Ve want to show that if an element 

a of \](f.g,xo.yo,wt,w9 ) is in T(f , g;x0 ,y0 ,wt .w9 L then it is in T(j.g;x0 ,y0 , w't,w~). Let 

F and G be loops at f and g respectively, such that w9 < G, x0 > w; 1 
• i.llf < F, xo > i.ll't 

represents a. :'-row w~ < G, x0 > (w~)- 1 
• w/ < F. x0 > (w/ )- 1 represents an element in 

T(J, g; .ro, Yo, w/. w~). However, w~ < G. x0 > (w~)- 1 
· w{ < F, x0 > (w/ )- 1 "'w~ · (w; 1 

· w9 )· < 

G, x 0 > ·(w; 1 
• w9 ) • (w~)- 1 

• w{ · (wj 1 
• w1 )· < F, x 0 > ·(wj 1 

• w1) · (w't)- 1 "' (w~ · w; 1
) • (w9 • < 

G, x0 > ·1,4,·; 1
) · (w9 • (w~)- 1 ) · (w/ · wj 1

) • (wr < F,x0 > ·wj 1
) · (w1 · (w/)- 1). Since (f,g) 

is R-commutative, [w~ < G, x 0 > (w~)- 1 ·w/ < F,x 0 > (w/)- 1
] = [w~ ·..J; 1][w9 • < G, x0 > 

·w; 1][w9 • (w~)- 1 ][w/ · wj 1][wr < F,x0 > ·wj1][w, · (w/)- 1
] = [w~ · w; 11[w9 • < G,x0 > 

·w; 1][w9 ·(w~)- 1 ][w/·wj 1][wr(w/)- 1][wr < F,x0 > ·wj 1
] = [w~·w; 1 ][w9 • < G,x0 > ·w; 1][w9 · 

(w~)- 1][wr < F, x0 > ·w/ 1
] = [w~ · w; 1][w9 • (w~)- 1 ][w9 • < G, xo > ·w; 1][wr < F, Xo > ·W/1] 
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= [w9 • < G, x0 > ·w;1][wr < F, x0 > ·wt]. This shows that [w~ < G , xo > (w~)- 1 
• w/ < 

F, x0 > (w/)- 1
] represents o too, and therefore T(f,g;xo,Yo ,Wt ,w9 ) ~ T(f,g,xo,Yo,w/,...;~). 

Similarly, we have T(J, g, Xo, Yo. w/. w~) ~ T(f, g; Io, Yo,wt· w 9 ). 

(ii) Now let x~ be another point in X , and w/ and w~ be paths from y0 to f(x~) and g(x~) 

respectively. Let C : I -7 X be a path from x0 to x~ , and w'j = w 1 · f o C and ...;; = w9 ·go C. 

By (i). \Ve only need to prove that T(f ,g;.r0 .y0 ,..ut,....;9 ) = T(f.y , .r~.yo . ..v'J.w;). Lt:t F 

and G be loops at f and g respectively. Since < F. Io >- f 0 c < F. I~ > f 0 c- 1 

rel {0, 1} and < G.x0 >- go C < G, x~ > go c- 1 rel {0.1} , we have....~; < G. x~ > 

("'-';)-
1 

• wJ < F, x~ >- 1 (w'j)- 1 = (w9 ·go C) < G.x~ > (go C- 1 
· ...;_;-

1
) • (wJ · f o 

C) < F, I~ >- 1 (f 0 c- 1 
. ...;"t) "' ;;.)9 < G, Xo > ;;.); 1 

• Wf < F, .Io > .,/j 1
. So we 

actually have T(f.g:x0 ,y0 , ...JJ.:...19 ) = T(f. g , x~,y0 .wJ , w;) and therefore their projections 

T(f, g; xo, Yo , ..v, , w9 ) and T(f , g , x~, Yo , w'j , w;) in \j(f, g, xo , Yo , Wf , ...v9 )= '\](!, g, x~ , Yo, w'j , w;) 

are the same. D 

So without ambiguity, when (f,g) is R-commutative. T(f,g;xo , y0 , ""'·f , w9 ) can be written 

as T(f. g, Yo). 

Lemma 2.2.10 Let Xo E X , Yo , y1 E }', Wf and w9 be paths from Yo to f(xo) and g(xo) 

respectively, and w/ and w~ be paths from y1 to f(x 0 ) and g(xo) respectively. If (!,g) is 

R-commutative, there is a one to one correspondence between the pair 

(\J(f, g; Xo, Yo, Wf, w9 ), T(f, g, Xo, Yo, Wf , w9 )) and (\l(f, g; Xo, Yt , w/, w~), T(J, g, xo, Y1, w/, w~)). 

Proof: Let C : I-+ Y be a path from y1 to Yo· Let Wf and w9 be paths from Yo to f(xo) 

and g(xo) respectively, and define w't = c. Wf and w~ = c . Wg· Then c# : 7rl(Y, Yo) -+ 
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0 

Theorem 2.2.11 If (f , g) is R-commutative and has at least one essential coincidence class, 

then there are at least N L(f, g) essential coincidence classes with the same index and hence 

.V(f, g) ~ .VL(j.g) . 

Proof: Choose .r0 E f(j, g) and y0 = f(x0 ) , and choose .,;1 and ...Jg be constant loops, then 

we have the results by Theorem 1.-1..1 and the invariance theorems 2.2.9 and 2.2.10 proved 

above. 0 

Corollary 2.2.12 If L(f, g) # 0, then N(f, g) ~ N L(f, g). 0 

Corollary 2.2.13 If N L(f, g) is infinite, then N(f . g) = 0. 

Proof: Otherwise. N(f , g) is finite and N(f,g) ~ NL(f , g) by Theorem 2.2.11. 0 

Corollary 2.2.14 IfNL(j.g) = R(f, g) orequivalentlyT(f, g;xo,Yo ,WJ.w9 ) = \l(f, g;x0 ,y0 , .,;/ , .vg), 

then 

N(f , g) = { 0 

R(f,g) 

if L(f, g)= 0 

if L(f, g) 1:. 0 

Proof: By Theorem 1.4.4, all the coincidence classes have the same index. So L(f, g) = 0 

implies all the classes have index 0 whereas L(j, g) :1 0 implies they are all essential. 0 

In practice T(f, g; x0 , Yo , c..'! • wg) and R(r g) are difficult to compute. In what follows we 

give conditions under which T(f, g; x0 , y0 , w1, w9 ) = R(f, g) = Coker(g. -f.). This last set 

is the homology cokernel. 
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Definition 2.2.15 Define J(f, w, , Xo, Yo) C T(f , g; Xo, Yo , Wf , w9 ) to be the set 

{[wf < F , x0 > w! 1JIF is a loop at f}. 

Definition 2.2.16 A pair of maps (/,g) : X -+ Y is said to have the weak Jiang property 

if 

(i) {f. g) is R-commutative: 

Theorem 2.2.17 If (f. g) has the weak J·iang property, then 

.V(f, g)= 
{ 

0 

#Coker(g. -f.) 

if L(f. g) = 0 

if L(f, g) =I= 0 

Corollary 2.2.1-1. we have 

N(J,g) = { 0 

R(j. g) 

if L(f, g) = 0 

if L (f, g) # 0 . 

However, {f , g) is R-commutative, so we have R(f, g) = #Coker(g. - f.), by Proposi-

tion 2.2 .6 and we have proved the theorem. 

Corollary 2.2.18 (Brooks [Corollary 37 of [BRll]) If Y is a Jiang space, then 

{ 

0 
N(J,g) = 

#Coker(g.- j.) 

if L(j, g) = 0 

if L(J, g)# 0 

0 

Proof: When Y is Jiang space, 1r1 (Y, y0 ) is commutative and hence is R-commutative, 

and J(f, w, , xo, Yo) = 1r1 (Y, Yo), so (!,g) has the weak Jiang property. 0 
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Lemma 2.2.19 If g~9 is onto , then every element in \l(J, g; x0 , Yo. w ! • ;.;9 ) has a represen-

tative in j;'1 (7rt(X,xo)). 

Proof: vVe will prove that for any a E 1T't (Y, Yo) , there is ~~ E 1rt (X, Xo) such that 

a "" r:'(r). Since g~g is onto, there is "'f E rr 1{X.x0 ) such that g:;:9 b) = n. :-.;ow 

Lemma 2.2.20 If 9-rr is onto and f-rr(rr 1(X, .ro)) C J(f , .JJ, , Xo , YoL then (f , g) has the weak 

Jiang property. 

On the other hand. I~(rr 1 (X . .ro)) C J(j, .JJJ. x 0 • y0 ) implies that /:r( rrt(X . .r0 )) is abelian . \Ve 

have to prove that for any a , 3 , "f E rr 1(Y, yo), aJ"'t"' Ba~r , i.e. (f , g) is R-commutative. 

Since 9-rr is onto, we can choose a. b, r E rr 1(X, .r0 ) such that g1T(a) = a . g-rr(b) = 3 and 

Therefore, (/,g) has the weak Jiang property. 0 

Note 2.2.21 vVe note that the hypotheses in 2.2.20 is equivalent to saying that T(J, g, Xo , Yo , w,, Wg} 

is all ofv(f, g, x 0 , y0 ,wf ,w9 ) . However this is not as easy to verify. 

Corollary 2.2.22 If 9:r is onto and /:r(rr1(X,yo)) C J(f ,w,,x0 , y0 ) , then 

{ 

0 
N(J, g) = 

#Coker(g.- j.) 

ifL(f,g)=O 

if L(f, g) i= 0 
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Proof: By Lemma 2.2.20 and Theorem 2.2.17. 0 

Example 2.2.23 Let T = S 1 x S 1
, and let a and b be the circles S 1 x 0 and 0 x S 1 

respectively. The paths a and b are called the standard basis ofT. Then let T2 = T#T be 

the connected sum of two copies ofT. It has a standard basis at , bt corresponding to one 

copy of T and a2 , b2 corresponding to the other. ~lore generally, let Tn be the connected 

sum of n copies ofT with standard basis at , bt . . .. . an , bn. Now let X = T 1• Y = T1 . Define 

f : X ~ }" as follows: First define ft : X -+ T by sending the first factor of T in X to T . 

and squeezing everything else to a single point. 

~ext define h: T-+ st to be the projection to the first factor, finally define h: S 1 -+ 1· 

to be the map which sends S 1 to the inverse of at. 

Let f = / 3 o h o ] 1. Then f projects the first factor ofT of X to a1 1 and sends all other 

points to a single point. 

\Ve define g as follows : The map g sends the first two factors of X to r· by the identity, 

and sends the other two factors to a single point . 

Then grr is onto, frr(7rt(X.xo)} =< a1 >and J(f.wf , Xo,Yo) :::>< a1 > , and L(f.g) = 

1- ( -1} + 0 = 2, where x0 , y0 and...;/ can be chosen arbitrarily. So by Corollary 2.2.22. we 

have N(f, g) = Rf,g = #Coker(g.- j.) = 2. 

Example 2.2.24 Let X = Y = T2 , and a1 , bt. a2 , b2 be the standard basis. Define f : 

X -+ Y as in the example above, and define g similar to f except that g sends b1 to b1. 

Then we have j,..(rr1 (X, xo)) C J(J,w, , xo , Yo) and L(J,g) = 1, N(j,g) = 1. However, the 

image of g.- f. : H 1(X) -+ Ht(Y) is the subgroup generated by a 1 and b1 and therefore 
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#Coker(g.- /.) is infinite. Since R(f, g) ~ #Coker(g.- f.), R(f, g) is infinite. This shows 

that the hypothesis that 91r is onto is necessary in Corollary 2.2.22. 

2.3 The computation of the Reidemeister and Nielsen 

numbers over the complement 

In this section, we generalize the results in section -1 of [Z]. 

For each component Ak of.-\. such that fk, 9k map A.k into the same component Bl of B. 

there is a commutative diagram 

rr 1(Y, bl) ~ Ht(Y) ~ Coker(g.- j.: H 1(X) -t Ht(l")) , 

where i~ and jk are induced by the inclusion maps. Define ~lk = :.;9 · gouk ·w;lc 1 ~·/J, · f ou; 1 ·w"t , 
and define J.Lk : Ht(B,) -t Ht(Y) by J.Lk(c) = i,(c) + Oy(:k)· Then J.i.k induces a map 

fi.k : Coker((gk)• - (fk).) -t Coker(g.- /.), and we have 

Lemma 2.3.1 The following diagram 

is commutative. 

TfY08y 
~ Coker(g. -f.) 
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Proof: vVe only need to prove that the following diagram is commutative. 

(B b ) 
68

•) Ht(B.) 1rt ,, , ~ 

= o + ~~ + tk = o + '"'lk =a+ '"'fk = ji.k o Oa. ([o]). 0 

Theorem 2.3.2 Let f. g : (X. A) ~ (Y, B) be maps. Suppose (f. g) has the weak Jiang 

property. If L(f, g) = 0, then .V(J, g; X- A) = 0; if L(J. g) =F 0. then 

Proof: If L(J. g) = 0, then by Theorem 2.2.1 i. all the coincidence classes have zero index. 

So .V(f, g; X - :-l) = 0. 

[f L (J, g) =F 0, all the coincidence classes will have nonzero index and TJr· o o.,.. in-

duces an one-to-one correspondence between '\7(/, g; x0 , y0 , w I• w9 ) and Coker(g. - f.) by 

Theorem 2.2.2 since (/,g) has the weak Jiang property and hence is R-commutative. By 

Lemma 2.3.1. an element in Coker(g. - f.) corresponds to a weakly common coincidence 

class if and only if it is in the image of ji.i for some i and the result follows. 0 

Corollary 2.3.3 If either Y is a Jiang space or if g1r is onto and f11"(1rt(X, xo)) C J(f, Wf, xo, YoL 

then the formula in Theorem 2.3.2 holds. 0 
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Corollary 2.3.4 Suppose A. is connected and either}·· is a Jiang space, or g1r is onto and 

f:r(rrL(X, .ro)) C J(f,'-llf , Xo,Yo). If L(f, g) = 0, then N(J, g;X- A)= 0; if L(f, g;) =/= 0. 

then 

~v(f. g; X - .-1) = #Coker(g. -f.) -#(is ).Coker((g.~). - (f.~).) 

Proof: Cnder the hypothesis, (J , g) has the weak Jiang property. If L(f. g) = 0. then 

.V(f, g: X - A) = 0 by Theorem 2.2.1 i. If L(f, g) =I 0, then all ~ielsen classes are es-

sential. Since the property of being R-commutative is independent of the choice of ;.U 1, 

...,•9 , .r0 and y0 , \Ve may assume x 0 E A. Yo E B and ..JJt , v.19 C B , and we have that 

T"f}-· oOy : v(f. g , .ro , yo , ..JJt , u.Jg)---+ Coker(g.- f.) is bijective. ~ow we can choose a= Xo , 

b = Yo , u.'f.-t = ..JJ 1 and ..A.l9 ,.~ = ...J9 and the map ji. is equal to i •. 0 

Theorem 2.3.5 Let (J, g) : (X. A.) ~ (Y, B) be a pair of maps with _.{ = Uf=t Ai , such 

that (f , g) and (fi , gi) have the weak Jiang property for all components Ai of .4. If L(J. g) · 

.V(f, g: X , A)= N(f , g)+ N(f.4 , gA)- N(J, g; fA , g.~) 

m 

= #Coker(g.- f.)+ L #Coke·r((gi).- (Ji).) 
i=L 

Proof: By Theorem 2.2.17, we have N(J, g) = #Coker(g. - f.) and N(f.4, g.~) = 

essential coincidence class if and only if it contains a coincidence class of (Ji, gi) for some 
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1 ~ i ~ m since each coincidence class of (j, g) and (fi, g;.) with 1 ~ ·i ~ m is essential. 

and none of (j,, g1) with m < i ~ k is essential. By Lemma 2.1.10 and 2.3.1, such a class 

corresponds to an element of {Uf,; 1{L,Coker((gi).- (j,).)} and the result follows. D 

Corollary 2.3.6 Suppose A i.s connected and L(j. g) · L(f.-t , g_.t) ¥= 0, then if the one the 

following is valid, 

(i) }. and B are Jiang spaces. 

(ii) }"is a J-iang space and (g .. t)ll' is onto and (f..d11'(7rt(A, a)) C J(f.-\,;.;;f , Xo , Yo) . 

(iii) gll' is onto and j11'(1r 1 (X, .r0 )) C J(f, Wf, .ro, Yo) and B is a Jiang space. 

(iv) gll' and (g_-t)~r are onto , and /:r(7rt{X, .ro)) E J(J , ;.;;! , Xo , Yo) and U .-d:r(7rt{A, .ro)) C 

J U.-t · w 1 , .r o , Yo ) · 

then we have 

N(J , g; X, .-1) = #Coker(g.- j.) + #Coker((g .. ,J.- U.-t).) 

-#i.Coker( (g.4 ). - (f.4 ). ). 

Proof: As in the proof of Corollary 2.3.-!. we may assume that .ro E A, y0 E B and 

..JJ1, w9 C B. The result then follows from Theorem 2.3.5. 0 

2.4 Manifolds with boundary 

In this section, we will extend our results to the manifolds with boundary. Unlike the fixed 

point case the extension of the coincidence index to manifolds with boundary is not entirely 

straightforward. The method used here is based on (BS] . 
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We will first give a brief description of the definition of the index of a coincidence point 

set in [BS] and give an extension of Theorem 5.8 in [BS], then we introduce a new invariant 

for a pair of maps from a manifold with boundary to another one preserving boundaries. 

Let X and Y be oriented manifolds with boundaries 8X and a1. respectively. Assume 

that J : X --+ Y and g : (X, aX) --+ (Y, 8Y) are maps. Note that we do not require 

j(DX) C Dl" here. Let (-X) be a copy of X with opposite orientation. For each point x E X 

we denote the corresponding element in (-X) by -x. The double 2X of X is the oriented 

manifold without boundary obtained from X u (-X) by identifying each X E ax with 

-x E ( -8X) . Let ir-c2Y : F --+ 2Y be the inclusion of}" into its double. Let rx : 2X --+ X 

be the retraction defined by r(x) = r( -x) = x . Define J = i·y-c2 'r· frx : 2.\ --+ 2Y and 

2g : 2X --+ 2}" by 2g(x) = g(x) and 2g( -..r) = -g(..r). Now j and 2g are maps from a 

manifold without boundary to another one and therefore the ,:\lielsen number can be defined 

for (j, 2g). It is proved in [BS] that the coincidence classes of (f , g) are identical to those of 

(/, 2g). Hence the index of a class a of(/, g) is defined to be the index of the corresponding 

class of(/. 2g) and the Nielsen number N(f, g) of (f , g) is defined to be N(/, 2g). 

Let Dq(X) : Hn-q(X) --+ Hq(X , aX) be the Lefschetz duality isomorphism. Let {Jn-q(f , g) : 

Hn-q(X) --+ Hn-q(X) be the composition 

Hn-q(X) Dq(-~) Hq(X, 8X) ~ Hq(Y, 8Y) D(Y)l
1 

Hn-q(Y) L Hn-q(X) 

and the B-Lefschetz coincidence number L 8 (f , g) be 

LB(f, g) = E~=o( -lt-qTr[tJn-q(f, g)]. 

It is proven that Ls(f, g) = L(/, 2g) and l(X; f, g) = Ls(f, g) (cf. [BS]). 
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Before we extend Theorem 5.8 in (BS} , we first show that R1,9 can be considered as a 

subset of 'Rj,
29

, in other words, we have an injective map from 'Rt,9 to 'Rj ,"lg induced by the 

inclusion map. Let x0 E X, y0 E Y be the base points. The inclusion map i : Y ---7 2Y induces 

a homomorphism {i\'c2Y )7T from 1rt ('F, Yo) to 7rt (2Y. Yo) . If we choose ;;J i =...; 1 and :...;29 = ...;9 , 

we have a natural map induced by irr from \](f,g;xo , Yo,i.I.Jf,.J.Jg) to \l(j,2g;:l'o,Yo·:..Jj,:....'2g), 

\vhich we \vill denote by CiFc:n· )'i7. 

Proof: It is easy to see that (iro'l-· )rr : ;rt(Y. y0) ---7 rrL(2}·. Yo) is one to one. since there is 

a retraction r'r' : 2}' ---7 }' such that r'r· o ·iyc2 'r· = id'~-' . 

.-\ssume the elements o, 3 E rr 1 (Y. y0 ) are mapped into the same Reidemeister class of 

(j, 2g). \Ve want to prove that o and ;3 are in the same Reidemeister class of (f. g) too. 

By assumption. there is an element [ E rr1(2X.x0 ) such that o = (2g) .~~'(l) · J · irrh- 1
), or 

n- 1 • (2g):r("'!) · J.j~~'h- 1 )= 1. Applying (ry)rr to both sides, we have 

:,\jote (r..,.·)7Tojrr = frro(rx)rr and (r..,.·)rro(2g)7T = g7To(rx)7r, and (r..,.·)lf(o) = 0!, (ry)rr(P) = ,J , 

since o , ,3 are both in Y. Hence, we have 

or 
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Since (rx):rh) E 1r1(X,xo), we proved the lemma. 0 

The following theorem is an extension of Theorem 5.8 in [BS]. 

Theorem 2.4.2 Suppose f: X -+ F and g: (X, 8X) -+ (Y, 8Y) are maps of manifolds with 

boundary. Suppose that g1r ·is onto, and flr(7rt(X,xo)) C J(/,..Jf,Xo,Yo). If Ls(f,g) = 0, 

then N(f,g) = 0; 'if Ls(f,g) # 0, then N(f,g) = #Coker(g.- f~). 

Proof: \Ve \Vill prove that there are only two cases. namely La(/. g)= 0 and ..V(f, g)= 0. 

and La(/, g) # 0 and N(f, g) = #Coker(g., -f.). 

If there is no essential class, then L 8 (f, g) = 0 and N(f, g) = 0. 

Otherwise. assume that x0 is in an essential class a of(/, g) and w1 and w9 are constant 

loops at Yo= f(xo). It is obvious that (iYC2't·)rr(J(f,;.uf.Xo,Yo)) C J(j,..JJJ,Io,yo). Then 

f(j. 2g. xo) :> p( J(j, ..v f• Xo, Yo))::> p( ('iY C 2l")rr(J(f, w f• Xo, Yo))) :> C'iYcn,. )"( \](f, g, Xo, Yo. w f• ...v9)), 

where pis the projection from 1r1(Y,y0 ) to \](f,g;x0 ,y0 ,...vf,w9 ). The last inclusion is due to 

Lemma 2.2.19. By Theorem 1.-!.3, :V(j. 2g) ~ #T(j, 2g, x 0) ~ #(i. (\](! , g, Xo, y0, WJ, ..J9)) ). 

Since i~ is injective. we have N(j, 2g) ?: R(f, g) ?: Coker(g. - f.). By Lemma 5.1 of 

[BS], we have N(f, g) ~ #Coker(].- g.). However, N(f, g) ~ R(f. g) is always true and by 

Lemma 2.2.20 and 2.2.6, R(f, g) =#Coker (f.- g.). So we have N(f, g) =#Coker(!.- g.). 

Since each class bas the same index, we have L s (f, g) =/= 0. 0 

Note 2.4.3 For closed manifolds Corollary 2.2.22 is symmetric in f and g. However, as we 

show in the following example, Theorem 2.4.2 is not symmetric in f and g. 

Example 2.4.4 Let X = }" = S 1 x S 1 - D2 , and let a, b be the standard basis of 1r1(X). 

Let f be the identity. Define map g as follows: 
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Define 91 : X -t S 1 X S 1 vI by squeezing a collar of the boundary to I; 92 : S1 X S 1 vI -t 

S 1 vI by projecting T to the second factor and sending I to I by identity. 93 : S 1 vI -t 1· 

by sending S 1 to -b and send I to an arc from 8Y to b. Let g = g3 o g2 o g1, then f rr is onto, 

grr(7rt(X)) C J(g), La(!. g)= 1 and N(f!g) = 1 (the set of coincidence pointsconsistsofthe 

arc from ar· to band another point in b with index 1. Those coincidence points on the arc can 

be removed by deforming f along with the arc). However. R(J, g) 2: #Coka(g. - /.} = 2. 

So ~vu, g) i= R(f, g). 

As before, let X and Y be manifolds with boundary. Now however we assume that 

/. g : (X, 8X) -t (Y. 8Y) are maps. i.e. both f and g are boundary preserving. 

Lemma 2.4.5 ~V(2f, g; 2X, ax) = N(2g, I 2X. 8X). 

Proof: vVithout loss of generality, we may assume that f is transversal to the bound

ary BY of Y. and that there are only finite number of coincidence points of (f. g). Let 

St ..... ,St.SI+l• ... ,SP be the non-empty ~ielsen classes of (8f,8g) . such that S1, ..... S1 are 

essential and St+l· .... Sp are inessential. Let Nt, ... , N:J, .Vs+t• ... Nt. Nt+l· ... , Nk be the non

empty ~ielsen classes of(/, g). arranged in an order such that (i) each Ni in Nt. ... , Ns does 

not contain any S1, i.e. it is contained in int(X); and (ii) each Ni of Ns+ 1, ... Nt contains 

at least one class of S1 , ... ,St, i.e. contains an essential classes of (8j,8g); and (iii) each 

of Nt+l• ... Nk contains at least one class of S1+1, ... , Sk, i.e. contains an inessential class of 

(8/, 8g) and does not contain any of S1, ••• ,St. So the relative Nielsen number is the sum of l, 

the number of essential classes in Ntt ... N 8 , and the number of essential classes in Nt+l, ... Nk. 
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Since for 1 < i ~ s, Ni is contained in int(X), by the definition of index and Lemma 5.16 

of [V], ind(N1; j, 2g) = ( -l)nind(Ni; g, 2!). That is, (as far as the essentiality is concerned), 

the two ways defining the index of Ni are the same. Since each Ns+ 1, ••• ~vt contains an 

essential class of (a f, 8g), these classes do not contribute anything to the relative Nielsen 

number. So we only need to prove the essentiality of each Ni in the list .Vt+b ...• Nk is the 

same when \Ve use (j, 2g), and when we use (g, 21). 

~ow let .Vi = .-l U B be a ~ielsen class with t + 1 ~ i ~ k, where A is in int(X), 

and B is in ax . .-\s above. ind(.-l:j.2g) = (-l)nind(A;g.2f). and we will prove that 

ind(B: j. 2g) = ( -l)nind(B: g. 2!). so that ind(.Vi: j. 2g) = ( -l)"ind(Ni: g. 2f). 

Assume that B = {x 1, •••• Iu, }, and let vk =ind(xk; 8!. 8g). By the assumption on ~vi, 

L.~~ 1 VJ = L.j'~ 1 ind(x1 ; 8], 8g)=O. Consider an Ik with 1 ~ k ~ ui. For simplicity, we 

assume that Ik is the origin of R", and j,g, 2], 2g are maps from R" toR" such that f and 

g map R~ = {(a 1 , ...• an) I an?: 0} toR~. Let 

j- 2g g- 2] 
ht = . and h2 = 

1

. ·J !I, If- 2gl g--

we have commutative diagrams 

In the diagrams, i. sends the generator 1 to (1,1}, and 8 sends (.A, '1) to .A- TJ. Note 
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that ind(xk; j, 2g) is equal to the degree of h 1, ind (xk; g, 2f) is equal to the degree of h2 , 

ind(xk; 8f, 8g) is equal to the degree of 8h1, and ind (xk; 8g, 8!) is equal to the degree of 8h2. 

Because of the definition of j and 2g on D~-l and the commutativity of the diagram, all the 

points in D~-l are sent to D~-l and hence (hi). sends (0 , 1) to ( -vk. 0) by the commutativity 

of the right square of the diagram. Let (ht).((l, 0)) = (1Jk , /\k) . Then by the commutativity 

of the right square of the diagram, we have that >..k = 1/k - vk The commutativity of the left 

square says that i.(ht).(1) = ( deg(ht) , deg(hd) is equal to (ht).(l. 1} = ('7k! .Ak)+( -vk! 0) = 

('lk - uk, .Ak), so deg(ht) = /\k. ~ote that (h2 ). sends (0, 1) to (-vi, 0) , for the same reason 

is because that on Hn_ 1 (D~-t , S"-2 ) , (h2 ). = (a). a (ht)., where a : S"- 1 -+ sn- 1 is the 

antipodal map defined by a(x1, .... In)= (-x 1, ... , -In) . and (a).((a, b))= (( -l}nb, (-1)"a) 

"u, ' d · d(B· · ')j) - "u, ' d( · · · •Jj) "u, ( l)n "'u, (( 1)"' ) L...J==l /'J an m , g,- - L...j=lm I 1 , g, _ = L...j==l - TJi = l-]= 1 - Aj - v1 -

Lj~ 1 ( -l)n Aj - 2:j~ 1 Uj = l:j~ 1 ( -1}n /\j = ( -l)nind{B; ] , 2g) since l:j;, 1 Vj = 0. 0 

The theorem allows us to define N(J, g; X , 8X) = N(j , 2g ; 2X, 8X) . The definition 

of N(f, g; X - 8X) is the same as before. 'With these definitions, most of the results in 

Section 2.3 are still valid. As an example, we have the following. 

Theorem 2.4.6 Let X , Y be manifolds with boundary with the same dimension, and 8X 

and 8Y connected. Let J, g : (X, aX) -+ (Y, 8Y) be maps. Suppose 9rr is onto , and 

f1T(rrt(X, Xo)) c J(f, w,, Xo , Yo) . If Ls(J, g)= 0, then N(J, g; X- ax) = 0; if Ls(J, g) # 0, 
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then N(f, g; X- oX) = #Coker(g. - j.) - #(iavcY ).Coker((8g).- (8!).). 

Proof: Since ax is connected, we may assume Io E ax and Yo E 8Y, and that 

w,, w9 are constant paths. If L8 (j, g) = 0, then N(f, g) = 0 by Theorem 2.-1.2. Since 

~V(f, g; X- ax) ~ N(j, g), we have N(f, g; X- 8X) = 0. If La(f, g) t 0, from the proof 

of Theorem 2.-1.2, we can see that there are #Coker(g. - j.) essential ~Helsen classes of 

(f,g) that correspond to elements in (i-.·c2'r·hJ(V'(J.g,x0 ,y0 ,wf,;.t..'g)) . The weakly com

mon essential classes correspond to elements in (iavc2'r·)"il(\1(8j,8g,x0 , y0 ,;.Jf,w9 )). So 

N(f, g: X -8X) = #(ivc2Y )'\1(\l(f, g, Xo, Yo.;;.) f• ;.Jg)) -#('ia't'c2Y )'\1(\1(8 f, og, Xo, Yo, w,. ;;)g)). 

Since (iaYC2't')\i' is injective by Lemma 2.-1.1. we have #(i't' C2't·)"il(\l(f,g,xo,yo,wf,Wg)) = 

# \1 (f,g,xo,yo,Wf,w9 ) and 

#(iaYc2Y )'\1(\l(Oj, Og, Xo, Yo. Wf, w9 )) = #('iYc2Y )'\7 o (ia\'CY )'\7( \l(Oj, Og, Xo, Yo, Wf, W 9 )) = 

#(iayo·· )'\1(\l(aj, ag, Xo, Yo. j,),, ..Vg)). under the assumptions of the theorem, we have # \1 

(f,g,xo,Yo,_.;f·;.Jg) = #Coker(g.- f.), and #Cia'r·cv)"il(\l(aj,8g,xo,Yo,WJ,..,;g)) = 

#(iavcy).Coker((ag).- (8!).). and the result follows. 0 

Similarly, we have 

Theorem 2.4. 7 Let X, Y be manifolds with boundary, and ax and aY connected. Let 

f, g : (X, aX) ~ (Y, BY) be maps. Suppose that L 8 (f. g) f 0, £(8/, og) = 0 and (8/, ag) 

has the weak Jiang properly. If J(J,w,,x0 ,y0 ) = 7rl(Y,y0 ), then N(J,g;X,o.X) = Rt,g· If 

(!,g) has the weak Jiang properly, then N(f,g;.X,a.X) = #Coker(g.- j.). 0 

Note: In 2.4.7, we can not change the condition J(f, x 0 , y0 , WJ) = 1rl (Y, y0 ) to T(J, g, Xo, Yo, 

;.Jf,w9 ) = 1T't(Y y0 ). The following example illustrates this. 



CHAPTER 2. COINCIDENCE POINTS ON THE COMPLEMENT 65 

Example 2.4.8 Let X = Y = S 1 x S 1 - D 2 , and let a and b be the bases. Define h : X --+ 

S 1 
X S 1 v I by squeezing a collar of the boundary to I. Let h : S 1 

X S 1 v I --+ S 1 v I be 

the map which projects S 1 x S 1 to the first factor, and g1 : S 1 x S 1 VI--+ S 1 VI be the one 

which projects S 1 x S 1 to the second factor. Let h : S 1 VI --+ Y send S 1 to a and I to a 

path from the boundary to a, and let g2 : S 1 V I --+ Y send S 1 to b and I to a path from the 

boundary to b. Now define f = h o j 1 o hand g = g2 o g1 o h. 

h 

Figure 2.2: 

It is easy to see that N(f, g; X, BX) = 1 (one coincidence point with index 1), and 

N(Bj,Bg) = 0. However, R(f,g) 2: 2. To see this, first note that 1r1 (Y,y0 ) is a free group 

of rank 2 of which a and b are the generators, and J1r(a) = a, J1r(b) = 0, g1r(a) = 0, and 

g1r(b) =b. We claim that ab and ba are in different J1r, g1r-congruence classes. Otherwise, we 

have ba = g1r(l)abf1r(l-1 )=bsabat for some integers s and t. Then we have bs-1abat-l = 0, 
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which contradicts rr 1 (Y, y0 ) being a free group. 

2.5 The minimum theorem 

Lemma 2.5.1 Let X. Y be manifolds , ..l C X , B C Y submanifolds, and f,g : (X, ..l) ~ 

( Y . B) maps. A.ssume that .-l can be bypassed ·in X (see Definition 1.6. 7). then a coincidence 

po·int IE f(f, g) belongs to a weakly common co·incidence class if and only if there is a path 

a: (I.O,I- {1} , 1)--+ (X, x ,X- .·LA) from I to A. such that f o a"' go a : (/.0.1)--+ 

(F. f(I) , B) . Aforeover, when f , g have only finite n·umber of coincidence points, we may 

choose e·ither that a( 1) (j f(f, g) or that the homotopy has the form go a "' f o o : (I , 0, 1) --+ 

(\", f(x) . f o a(1)) . 

Proof: The proof is similar to the proof of Lemma 3.5 in (Z]. 0 

Lemma 2.5.2 Suppose the dimension of :·h ·is greater than or equal to 2. For I E r(f, g) . 

if there is a path C: (I , 0, 1) --+ (X. x , Ak) from x to A.k such that go C!!. f o C : (I. 0, 1) --+ 

(Y. f(x) , B) , then for any point a E ..lk - f(f, g) , there exist maps f' and g' with !' "" f 

and g' "' g relative to X - U (a) , where U (a) is a neighbourhood of a in X , and such that 

f(f',g') = f(f , g) U {a}, and x , a are in the same class. 

Proof: Let l = H(1, ·), then l is a path from go C(l) to f o C(1) in B. vVe may assume 

without loss of generality that C(l) =a. If a# C(l) , let o :I~ Akbe a path from C(l) to 

a. Then since (goC)·(goo.)·(goa- 1) · l·(foa-1)·(foa) · (foC- 1)"" (goC)·l·(JoC- 1) "'0 

and (go a- 1) ·l· (f o a) C B , we can replace C by C ·a. Let a 1, a 2 be paths in B such that 
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a 1(0) =go C(1), a 2 (0) = f o C(1), a 1 (1) = a 2 (1) and Ckt · a2 1 "'l rel {0~ 1}, then it is easy 

to check that (go C) · a 1 ,....._ (f o C) · a2 rel {0, 1 }. Since dim A.k ?: 2, we may assume that 

for any t # 1, a 1(t) # a2(t) . Let U(a) be a neighbourhood of a in X such that there is a 

homeomorphism ¢ : ( U (a) , U (a) n .-\k) ~ ( Dn, Dm} , where Dn, Dm are the closed unit balls 

in Rn and Rm C Rn with n equal to the dimension of X and m equal to the dimension of 

--h. and L-T(a) n ru. g) = 0. Then we can label each poiut .: ~ C(u) by .: = (t! .c) , where 

t E I and x E 8U(a). Note that .: = (x , 0) represents the center of the ball, for any x . 

Define 

f(z) if z EX- U(a) 

f'(z) = /((2t- l.x)) if z = (t , x) E U(a) and t?: 1/2 

if z = (t, x) E U(a) and t :5 1/2 

Define g' similarly by replacing f by g and o2 by a 1. Obviously, f' ,....._ f. In fact , we can 

define the homotopy F as follows: 

F(s, .:) = 

f ( z) if z E X - U (a) 

/((~=~:);~,x)) if z = (t,x) and t?: s/2 

o 2(s- 2t) if z = (t , x) and t :5 s/2 . 

. \nd using this homotopy, we find that f' o C "' f o (C · a 2) rel {0, 1 }. To see this, let 

C0 (t) = (C(t), 0), C 1(t) = (C(t), 1), Cr(t) = (x, 1- t}, Ca(t) =(a, t) for paths in X x /, then 

C 1 ""Cr ·Co· Ca, therefore f' o C = F oCt "" F o (Cx ·Co· Ca) = ef(:r) · (F o Co)· (F o Ca)"" 

(F o C0 ) · (F o Ca) "" (f o C) · o2, where ef{r) is the constant path at f(x). 

\Vith the same argument, we have g' o C ""go C · ar1• Therefore, f' o C ""g' o C~ i.e. x 

and a are in the same coincidence class of !', g'. 0 
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X 
0 

Figure 2.3: 

Theorem 2.5.3 Let A c X be a submanifold such that A can be bypassed in X (cf. Defi

nition 1. 6. 7), B C Y be a submanifold, and f, g : (X, A) -+ (Y, B) be maps. If dim(X) ~ 3 

and dim( A) ~ 2, then there are maps f' and g', from (X, A) to (Y, B), such that f' rv f, 

g' rv g and(!', g') has N(f, g; X- A) coincidence points on X- A. 

Proof: By Lemma 1.6.2, we can assume that there are only finite number of coincidence 

points on X. Since A can be bypassed in X, we can coalesce the coincidence points on 

X- A, which are in the same classes, by Lemma 1.6.4. We may therefore assume that each 

class contains at most one coincidence point on X -A, and each of them has non-zero index 

by Lemma 1.6.5. ow let x 1 E X- A be a coincident point, which is in a weekly common 

coincidence class. If there is a coincidence point a E Ab such that x 1 rv a, let f3 be an 

arc from a to x 1 , which demonstrates the equivalence, such that [3((0, 1]) c X- A, and U 

be a neighborhood of [3((0, 1]) such that U c X- A and U n r(f, g) = a. Since A is a 
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submanifold of X such arc exists. By Lemma 1.6.-1, we have f' "' f and g' ""' g relative to 

X - U such that f(J', g') = f(J. g)- {x 1 } . If there is no such coincident point a, by 2.5.1. 

there is a path o from x 1 to Ak , a component of .4, n: (I, 0, I- {1}, 1)-+ (X, I 1, X- .-l, .-lk) 

with f o o "' goo. Let at = o(1) , then by Lemma 2.5.2 , there is an ft "" f . such that 

f(ft , g) = r(J, g) u {at}. Therefore. \Ve have a coincidence point alE A such that It and 

lLt are in the same dass. Then \Ve can finJ an arc J frum u 1 tu .Ct anJ a neighborhood [_." 

of J((O, 1}) as above, and by Lemma 1.6.-l. we can get maps f' '""" ft and g' ""' g such that 

f(f' , g') n (X- .-t) = f(J, g) n (X- .-l)- {xt}· 0 

Theorem 2.5.4 If d·im .-l ~ 3, and .-\ can be bypassed in X . then there are maps f' "" f 

and g' "' g , such that (f. g) has N(J, g: X . .-l) coincidence points in X and .V(f, g: X - .-l) 

coincidence points on X -A. 

Proof: By Theorem 2.-l of [JJ], we can assume that (f, g) has N(f , g; X , .-l) coincidence 

points. By Theorem 2.5.3. we can move any coincidence point x E X - .-l in a weakly 

common coincidence class to .-l . 0 



Chapter 3 

A Local and Relative Version of a 

Brooks' Theorem 

From the previous chapter, we see that in a sense, coincidence theory is more flexible than 

fixed point theory. In particular when we proved the minimum theorem, we were allowed 

to deform both f and g. Because of this, the minimum theorem in the fixed point theory 

is not in general a special case of coincidence theory. Brooks' theorem (see (BR2]) partially 

remedies this deficit. It says that if Y is a manifold and /, g : X --t Y are maps, then for 

any J',g': X --t Y with!'"" J and g' ...... g, there is an!",...._! such that r(J",g) = r(J',g'). 

This makes the coincidence theory a "real" generalization of the fi.xed point theory when Y 

is a manifold. 

In this chapter, we will give a local and relative version of the Brooks' theorem. This 

result will enable us to see that the results in the previous chapter, and results in the next 

70 
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chapter are a generalization of the corresponding results in fi.xed point theory. 

We consider first the main idea in Brooks, paper [BR2]. A map from X toY is equivalent 

to a graph in X x }". If we view Px : X x Y -t X as a (trivial) bundle over X , this 

graph can be Yiewed as a section to this bundle. If f and g are maps from X to Y , then 

r(f, g) = Px(graph(J) n graph(g)). :\ homotopy off and g corresponds to a section of 

the bundle Px x 1 : X x I x } · __, X x I. ~ow suppose that F. G are homotopies from f 

and g respectively. Let F 1 : X x I -t Y be a homotopy defined by F1(x , t) = F(x , 1). 

It is obvious that f(F( · .1), G(·.l)) = Px xr(graph(FI) n graph(Gd) n X x {t} for any t 

if we identify X x { t} with X . If we can find an isomorphism (h. id), i.e. h is a fibre 

preserving homeomorphism over identity, from the bundle Px x 1 : X x I x Y -t X x I 

to itself such that h(graph( G 1)) = graph( G), then h(graph( F 1)) is a section too. Let 

F' be a map from X x I x Y to itself such that g·raph(F') = h(graph(Ft)) . It is easy 

to see that Px xr(graph(F') n graph(G)) = PX xl(graph(Ft) n graph(Gt)) and therefore. 

f(F'( ·, 0) , G(· , O)) = Px xr(graph(F')ngraph(G))nX x {0} = PxxT(graph(Ft)ngraph(Gt))n 

X x {0} = f(F(·.l), G(·, 1)). It should be clear from this discussion why we need to discuss 

bundles. Since we will consider a homotopy from one pair of spaces to another, we introduce 

the concept of bundle triads. 

This chapter is divided into three sections. In section 1, we introduce the concepts of 

bundle triads and give some basic properties. In section 2, we study a special case of bundle 

triads, namely the case where the total space is a product of the base space and the fiber 

space. In section 3, we prove the main theorem of this chapter. 
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3.1 Definition of bundle triads 

Definition 3.1.1 A bundle triad over a pair of spaces (B , Bt) with B 1 c B is a triple 

(p : E ~ B,p0 : Eo ~ B , p1 : Et ~ Bt) of maps such that Eo , Et C E and Po : E0 ~ B 

and p 1 : E1 ~ B 1 are the restrictions of p on Eo and £ 1 respectively. vVe denote the bundle 

triad by~ - and we use£(~) . Eo(~) and E1 (~) to denote E. E0 and E 1 respectively. 

Eo 

E 

1 
p 

B 
B, 

Figure 3.1 : 

Example 3.1.2 Let B and F be topological spaces, 8 1 and F1 subspaces of B and F 

respectively, and fo E Fa point. Let E = B x F, E0 = B x {!o} and E 1 = B 1 x F 1, and let 

p: E ~ B , p0 : £ 0 ~Band Pt: £ 1 ~ B1 be the obvious projections. Then (p, p0 ,p1) is a 

bundle triad. 

Example 3.1.3 Let AI be am-dimensional smooth manifold, .4. C l'vl be an-dimensional 

submanifold. Let 

E = TAJ, the tangent space of AI; 



CHA.PTER 3. A LOCA.L AND REL.4..TNE VERSION OF A BROOKS' THEORE!vi 73 

Eo= (TA-1)0 , the zero section of TAl ; 

£ 1 = TA , the tangent space of A.; 

And let p : E-+ .iVI be the projection, and p0 = Pl£0 , Pt = Pl£1 • Then (p, po,pt) is a bundle 

triad. 

Definition 3.1.4 .\ bundle triad morphism from one bundle triad ~ = (p : E -+ B , p0 : 

Eo -t B. p1 : E 1 -+ B 1) to another ~, = (p' : E' -+ B'. p~ : E~ -+ B', p'1 : E~ -+ B~) is a pair 

of maps: f: (B , Bt) -+ (B'. B~) and j : (£, £ 0 , Et) -+ (E'. E~, E~) such that p' o j =fop. 

The morphism is denoted by (j , J). If (B , Bt) = (B' , B~) and f = id , then (j , j) is called a 

(B. Bt)-morphism. 

Two bundle triads~ and ~, over (B. Bt) are said to be (B, Bt)-isomorphic if there is a 

homeomorphism h : E -+ E' such that (h, id} is a (B. Bt}-morphism, and h(£0 ) = E~ and 

h(Et) = E~ . 

Example 3.1.5 Let (B , Bt) = (D2 ,51). E = BxD3
• Eo= Bx{(O,O, O)} and £ 1 = B1 xD2 . 

Let p: E-+ B. Po :Eo -+ Band Pt : £ 1 -+ B1 be the projections. then~= (p,po , pd is a 

bundle triad. Using polar coordinates, a point in D3 can be represented by a triple (r , (}, ¢), 

and a point in D 2 can be represented by a pair (r, B). Define h : E -+ E by 

It is easy to check that his a homeomorphism, h(E0 ) C £ 0 , h(Et) C £ 1 and ph= idsp. So 

(h, id8 ) is a (B , Bt)-isomorphism. 
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Definition 3.1.6 Let (B, Bt) be a pair of spaces and~= (p: E --+ B ,p0 : £ 0 --+ B ,p1 : 

£ 1 --+ 8 1) be a bundle triad over (B , BI). Let (.-l , A.t) C (B, Bt) , with .4.1 = An 8 1• The 

restriction bundle triad of~ over (.-\ , .-l.t) , which will be denoted by ~1( .-t ,Atl • is defined to be 

the triple (p': E'-+ .-\,p~ : E~--+ A,p'1 : E~--+ A.t) , where E' = p- 1 (.4.). E~ = p01(:-l) and 

E~ = p1 1 (A. d, and p', p~ and p'1 are the restrictions of p over E', E~ and E~ respectively. 

Definition 3.1.7 Let ~ = (p : E -+ B .p0 : E0 -+ B.p1 : E 1 --+ Bt) be a bundle triad 

over (B , 8 1 ) , and 1 : (B' , B~) --+ (B , 8 1 ) a map. The induced bundle triad of~ under 1, 

denoted by r((). is the bundle triad (p' : E' --+ B' , p~ : £~ --+ B', p'1 : £~ -+ B~) , where 

E' = {(b'.e) E B' x E I 1(b') = p(e)} , E~ = {(b' , e) E B' x El1(b') = p(e) and e E £ 0 } 

and E~ = { (b' , e) E B' x El1(b') = p(e) and b' E B~ . e E £ 1 } , and p' is the restriction of the 

projection from B' x E to B'. 

Let ~ be a bundle triad over (B. Bt) and 1 : (B', B~) --+ (B, Bt) a map. Define 1e : 

£(]•(~))-+ E(~) by 1~(b, x) = x. Then (/f. , f) : 1•(€)-+ ~is a morphism which will call the 

canonical morphism from 1· (~) to ~ . 

The proof of the following proposition is similar to the analogous one for bundles (see 

Proposition 5.5 of (HD]) . 

Proposition 3.1.8 If (ff. , f) : t•(~) --+ ~ is the canonical morphism from j•(~) to~. where 

f: (B', B~) -+ (B , 8 1 ) is a map, then for each b' E B' the restriction 
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'is a homeomorphism, and if b' E B~, then the restriction 

is a homeomorphism. ivforeover, if (v, f) : '7 -t ~ is any bundle triad mo·rphism, there exists 

a (B', BD-morphism w : 11 -t j*(EJ such that fE.w = v. With respect to this property, the 

morphism w is unique. 

Proof: The fibre (p')- 1(b') C {b'} x E is the subspace of points (b' . .r) E b' x E such 

that p(.r) = f(b'). or equivalently it is {b'} x p- 1(j(b')). Therefore. fE.: {b'} x p- 1(f(b')) -t 

p- 1(j(b')) is a homeomorphism. By the definition of (p~)- 1 (b') and (p'd- 1 (b') , it is easy to 

see that /E,((p~)- 1 (b')) = (p0 )- 1(j(b')), and f£.((p'1)-
1(b')) = (pt)- 1(f(b')) if b' E B~. 

To verify the second statement. define w(y) = (p'l(y), v(y)). Since (v. f) is a morphism, 

/(p'l(y)) = p(v(y)), and since for any y E £ 0 (ry) respectively E 1(ry). u(y) E £ 0 respectively 

£ 1 , we have w(y) E £~respectively E~. Thus. w is a (B', Bt)-morphism. The property that 

ff.'w = v and uniqueness are easily checked. 0 

Proposition 3.1.9 Let 9 : (B", B~') -t (8', B~) and f : (B' , B~) -t (B, Bt) be maps, and 

let~ be a bundle triad over (B, Bt), then 1"(~) and~ are (B, BL)-isomorphic, and g"(f*(~)) 

and (f g)· ( ~) are ( B", Bn -isomorphic. 

Proof: Define ·u : ~ -t 1*(~) by the relation u(x) = (p(x), x), then u is the inverse 

of the canonical morphism from 1" ( ~) to ~. Let v : (f 9)" ( ~) -t g" (!" ( ~)) be defined by 

v(b",x) = (b", (9(b"),x)). The composition of canonical rnorphisms from 9"(/*(~)) to j*(~) 

and from j*(~) to~ is a morphism from g*(j*(~)) to~· So by Proposition 3.1.8, there is a 
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unique morphism h from g*(j*(~)) to (!g)*(~). It is easy to check that his the inverse of v. 

0 

Note 3.1.10 Let (B , Bt) be a pair of spaces and ~ be a bundle triad over (B, Bt) . Let 

(.-l, Ad C (B. Bd and i : (.-L At)~ (B , Bd be the inclusion map. Then i*(~) is isomorphic 

to ~k-t..-tt l · The proof is the same as Proposition 3.1.9. 

(The following corollary will be used when we consider a bundle triad over ( B, B 1) x I.) 

Corollary 3.1.11 Let (B ,Bd and (B'.B~) be pairs of spaces. and let~ be a bundle triad 

over (B. Bt). Assume .-l c B and A' c B' . let A 1 = An B1, A'1 = A' n B~ a.nd / : 

(B' , B~ . A') ~ (B. Bt , A) be a map. Let g = /I(N .A'
1
J : (A' . .-l'd ~ (.-l. At) , then g"(~l t A.Al)) 

is (A' , .-1'1)-isomorphic to /*{~)l(..t' .A'1 ) · 

Proof: Let i : ( .-l. At) ~ (B. B t) and i' : ( .-l', .-!'1) ~ ( B' , B~) be inclusion maps, then 

i o g = f o i'. By the above note and Proposition 3.1.9, we have 

0 

Proposition 3.1.12 Let f : (B' , BD ~ (B, Bt) be a map, and '7 and~ be bundle triads over 

(B . Bt) . If TJ and~ are (B , Bt)-isomorphic, then f*(TJ) and!*(~) are (B' , BD-isomorphic. 

Proof: Let h : E(TJ) ~ E(~) be a homeomorphism such that p~ · h = pTI. Then id8 , x 

h : B' x E('TJ) ~ B' x E(~) is a homeomorphism. This restricts to E(f*(q)) to give a 

homeomorphism from E(j*(TJ)) to E(f*(~)), which demostrates the required isomorphism. 

0 
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Definition 3.1.13 .4 bundle triad~= (p: E ~ B,po : Eo ~ B , p1 : £1 ~ Bd is locally 

trivial if there is an open covering { U a} aEA of B, and for each a E .\ there is topological 

space Fa and a subspace Foa C Fa, and a homeomorphism <I> a such that the diagram 

p '::l 

comm·utes, where 7Ta : Ua X Fa ~ Ua is the projection. If u~ = Ua n Bt =f:. 0, then <I>a can be 

regarded as a triad map and the commutative diagram becomes 

The cover is called a trivializing cover and <Pa is a trivialization over U0 • Note that p: E ~ B 

is a bundle. 

Example 3.1.14 The bundle triads in examples 3.1.2 and 3.1.3 are locally trivial. 

Proof: vVe will discuss example 3.1.3 only, since it is obvious that the bundle triad in 

example 3.1.2 is locally trivial since it is globally trivial. For any point x E At£, there is a 

neighbourhood U, and a diffeomorphism 1/J : U ~ R m. If x E A., ·1/J can be chosen such 

that t/J(U n .4) = Rn C Rm. By Theorem 4.8 of [HS], (8(;,)1, O(:rh, ... ,a(~) ... ) is a basis of 
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T::: !vf , and (8(;zh , a(:rh , ... , a(:z)n) is a basis of T.xA. for any x E A.. Therefore, it is easy to 

contruct a trivialization over U. In this example, each of F0 , F00 , and F 10 is homeomorphic 

to (respectively) Rm. a singleton. and R 11
• 0 

Definition 3.1.15 An open covering {U0 ja E .4.} of a space B is said to be numerable if it 

is locally finite and has a partition of unity subordinate to it. A bundle triad is numerable 

if its base has a numerable trivializing cover. 

It is easy to see that every locally trivial bundle triad over a paracompact space is 

numerable. 

Theorem 3.1.16 Assume that ~ = (p : E ~ B, p0 : £ 0 ~ B , Pt : £1 ~ Bt) is a bundle 

tr'iad, and f : (B'. B~) ~ (B, Bt) is a map. If~ ·is locally trivial (respectively numerable) , 

then r(~) is locally trivial (respect·ively numerable) . 

Proof: Let~'= r(~) and (JE. , f) be the canonical morphism from~' to~ · Assume that ~l u, 

is trivial, where {Uihe .4 is an open covering of B. Let hi: (p- 1(Ui) , p0
1(Ui).p\ 1(UinBt)) ~ 

(Ui X Fi ! ui X Foi , ui n Bt X Fli) be the trivialization. By Corollary 3.1.11. r(~)IJ-l(U,) is 

isomorphic to g·(~lu,) ! where g = fiJ-l(U;)· Therefore, by Proposition 3.1.12, we only need 

to prove that the induced bundle triad, of a trivial bundle triad, is trivial. 

Since ~ is trivial , we have E = B x F for some F . Note that the projection P(B' ,F) : 

B' x B x F ~ B' x F and the map i1 : B' x F ~ B' x B x F defined by it(b' , l) = (b', f(b') , l) 

are continuous, and that the restriction of P(B',F) on £(!•(~)) is the inverse of i 1 . Hence, 

f* (~) is trivial. 



CHAPTER 3. .-\ LOCAL AND RELATIVE l/ERSION OF A BROOKSr THEORE!vi 79 

\Vhen {Udte.-l is locally finite , {f-1 (Ui) he.-t is locally finite. So if~ is numerable, then 

~, is numerable. 0 

Proposition 3.1.17 Let~ and~, be locally trivial bundle triads over (B, 81), and (], id) : 

~' -7 ~ a morphism. If flEa(~'): Eo(~') -7 Eo(~) and fiE,(~') : Et(~') -7 Et(~) are onto , and 

for each bE B, fl(p')-'(b) : (p')- 1(b) -7 p- 1(b) is a homeomorphism, and (p')- 1(b} is locally 

connected and locally compact Hausdorff. then (], id) is a (B , Br)-isomorph·ism. 

Proof: Obviously the map j : E(~') -7 E(~) is a one-to-one correspondence, and 

](Eo(~')} = Eo(~), and ](£1 (~')) = £ 1 (0. Thus we only need to prove that j is locally a 

homeomorphism. For each b E B , there is a neighbourhood Ub such that 

(a). both ~'lub and ~lub are trivial: 

(b) . there is a morphism iiE(~'I ub) : ub X Fb -7 ub X Fb, which will be denoted by fu,; 

(c). for each b' E Ub , the restriction fuo lv xFo : b' x Fb -7 b' x Fb is a homeomorphism. 

By the proof of Lemma 2.2.1 of [PR] , fuo is a homeomorphism. Since E(~'luo) is open, J 

is locally a homeomorphism. 0 

Proposition 3.1.18 Let~ and f.' be locally trivial bundle triads over (B. Bt) and (B' , BD 

respectively. Assume that for each point b' E B' , (p')- 1(b') is locally connected and locally 

compact Hausdorff. If there is a morphism (], f) from €' to f. such that for each point b' E B' , 

fl(p'J-l(b') : (p')- 1(b') -7 p- 1 (J(b')) is a homeomorphism with ]((p~)- 1 (b')) = p01(J(b')} and 

]((p'1)- 1(b')) = p1 1(J(b')), then~, is (B' , B~)-isomorphic to the induced bundle triad of f. 

under the map f, and the isomorphism is given by h(x') = (p'(x'), j(x')). 
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Proof: By Proposition 3.1.8, there is a morphism (h , id) : E.' ~ r(E.) such that IF. o 

h = j. Since on each fibre (p')- 1(b'} and (ph)- 1(b') , j and fF. are homeomorphisms with 

fF.(((Prdt)- 1(b')) = p"t 1(/(b')) respectively, we have that hl(p'J-IWJ is a homeomorphism 

By Proposition 3.1.17. (h. iJ) is a (B'. B~ )-isunwrphism. 

Lemma 3.1.19 Let (.-\, .-\t) be a pair of spaces, and (B , Bt) = (.-\,At) x [a, b] for some 

'interval [a. b], and let E. be a bundle triad over (B , Bt) . If for some c E [a. b], f.l(.-tx(a.c! ,.-t 1 x[a ,cj) 

and f.l<.-t x (c,b] ,.-\ 1 x(c,b]) are trivial, then E. is trivial. 

Proof: Let (B' , B~) = (.4 , .-\ 1) x [a. c] and (B" , B?) = (.-\ .. -\ 1) x [c. d] . Assume that E. = (p : 

E ~ B , po: Eo -t B.pt: Et -t Bt) , f.ltB' , B~l = (p': E' -t B',p~: E~ -t B',p~: E~ ~ B~), 

and f.I(B".Bn = (p" : £" -7 B" . p~: £~ -7 B".p~ : Er -7 an. Let u': (B' X F', B' X F~ , B~ X 

F{) -t (E1 , E~ , ED and u": (B" x F" , B" x F~1 , B? x F~1 ) -t (E",E~ , En be trivializations. 

L ,I I I d " . II I Th h ( ") -1 I • et V = ·u (.-\x{c}xF',A 1x {c}xF{) an V = U (.-\x{c}xF",.-t 1 x{c} x Fn· en = V 0 V lS 

an(.-\ x {c} , .-\ 1 x {c})-isomorphism. Assume that h has the form h(a, c, x) = (a , c,ha(x)), 

where ha is a homeomorphism from F' to F". Define u: B x F' = .-\ x [a, d] x F' -7 E by 

{ 

u'(a, t , x) 
u(a, t , x) = 

u"(a, t, ha(x)) 

Then u is a tri v;alization of E.. 

if a~ t ~ c; 

if c ~ t ~ d; 

0 
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Lemma 3.1.20 Let~ be a numerable bundle triad over (B, Bd xi , where B is a paracompact 

space. Then there is a numerable covering {UJ Les of B. such that ~l(ui ,u1 nB1) x i is trivial 

for each j E S. 

Proof: For each b E B and t E /~ there are open neighbourhoods Ub(t) of b in B, and 

\ b(t) oft in I. such that ~l(ub(t)x~i,(t) ,(Ub(t)nBt)x\i,(t)) is trivial. Therefore, by the compactness 

of [0, 1]. there exists a finite sequence of numbers 0 = t0 < t 1 < · · · < tn = 1. and for each 

0 ~ i ~ n, there exists an open neighbourhood Ui of b in B such that ~I(U.,U,nBtl x [t,_L,t,J is 

trivial for 0 ~ i ~ n. Let u = nl~i~nU,, then the bundle ~l(u,UnBL)x [O.l] is trivial by n- 1 

applications of Lemma 3.1.19. Therefore. there is an open covering { UJ bes of B such that 

~I(U1 ,u1 nB)xl is trivial. Since B is paracompact. we have the result. 0 

3.2 Properties of quasi-trivial bundle triads 

In accordance with our purpose, we now restrict attention to the bundle triads (p : E ~ 

B,p : Eo ~ B,p1 : E1 ~ Bt), where E == B x F, Et = B 1 x F1, and where F is a locally 

connected and locally compact Hausdorff space and F1 C F. 

Definition 3.2.1 A bundle triad~= (p: E ~ B~Po: E0 ~ B,p1 : E 1 ~ Bt) is said to be 

quasi-trivial, if E = B x F, E 1 = B 1 x F1, and if pis the projection to the first factor B. 

Definition 3.2.2 An envelope of unity on the space X is a family { ui} JEJ of non-negative 

maps ui :X~ R, such that for each x EX, maxieJ{ ui(x)} = 1 and the set {j E J I ui(x) =I= 

0} is finite. If { Ui heJ is a point-finite open covering of X, i.e. for each x E X, there are only 
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a finite number of Uj's containing x, with the property that for each j E J, u_;-I(O, 1] E U1, 

then {ui he1 is said to be subordinate to { U1 }iEJ· 

If { U1 bEJ is a point-finite open covering, and { rri} iEJ is a partition of unity subordinate 

to {U1 he1 , then the non-negative function u: X~ R. given by 

u(x) = ma'<jo:=J{rrj{.r)}. 

is continuous. It is easy to check that {u i };EJ is an envelope subordinate to { [:1 } iEJ. where 

rrJ(x) 
u---

3 - u(x) 

(see (JI] p.205) . 

Definition 3.2.3 Let~ = (p : E ~ B,po : Eo ~ Bo,Pt : £1 ~ Bd be a bundle triad 

over (B. Bl). The bundle triad ~ x I over (B , Bl) x I is defined to be the bundle triad 

(p x id : E x I ~ B x I , p0 x id : £ 0 x I ~ B x I , p1 x id : E 1 x I ~ B 1 x I). 

\Ve will identify B x I x F with B x F x I by the homeomorphism T(b, x. t) = (b, t. x) 

forb E B.x E F, and t E I . Let r: (B,Bd xI~ (B.BI) x {1} be the projection map 

r(b~ t) = (b , 1). 

Lemma 3.2.4 If~ is a locally trivial bundle triad over (8, Bt) xI, and each fiber is locally 

connected and locally compact Hausdorff, then ~I(B,B!)x{l} xI is isomorphic to r·(~I(B,B!)x{l}) 

by the function which sends (l, t) to ((p(l), t) , L) . If~ is quasi-trivial, the isomorphism sends 

((b, 1, x) , t) to ((b, t), (b, 1, x)). 
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Proof: Let r : E(~I(B,Bdx{t} x I) -t E(~l(s,st)x{l}) be defined by r((l , t)) = l. It is 

obvious that ( r, r) is a morphism, and on each fibre f is a homeomorphism. The result 

follows from Proposition 3.1.18. D 

Lemma 3.2.5 If~ is a locally trivial bundle triad over (B, Bt) x I, and B is paracompact, 

then there is a morphism (g,r) : ~ -t ~I(B . Bt)x{l}· Furthermore , if~ is a quas·i-trivial 

bundle triad. and ·if there is a closed set C C B S1J.ch that over (B - C. B 1 - C) x I, 

p0
1(B- C xI)= p0

1((B- C) x {1}) xI. then for any neighbourhood U ojC, there is a 

rno·rphism (u , r) : ~ --7 ~l(s.s 1 )x{l} with the property that u is a projection on ~i<a-u,s 1 -U)xl· 

Proof: By Lemma 3.1.20, there exists a locally finite open covering { U,} ses of B such 

that ~l(u •. u.na1 )x/ is trivial. Let {1Js },es be an envelope of unity subordinate to the open 

covering {Us}sES· Let hi : (Ui X I X Fj, ui X I X Foi, (Ui n Bt) X I X Ftd --7 (p- 1(Ui X 

I). (po)- 1(Ui x /) , (pt)- 1((Ui n Br) xI)) be a trivialization. 

Define (u, , r5 ): ~ --7 ~as follows. Firstly, r 5 (b, t) = (b, max(ry,(b), t)) for each (b, t) E U, x 

I. Secondly, ·u, is the identity outside p- 1(Us x /),and Us(hs(b. t, x)) = hs(b, max(1Js(b), t), x) 

for each (b, t, x) E Us x I x Fs. vVe well order the set S. For each b E B , there is an open 

neighbourhood U(b) of b such that Usn U(b) is nonempty only for s E S(b) , where S(b) is a 

finite subset of S. On U(b) xI, we definer= Ts(n)o· · ·OT3 (t)• the composition ofrs(n) • · · ·, rs(l)• 

and on p- 1(U(b) x I), we define u = u,(n) o · · · o U 3 (t), when~ S(b) = {s(l), ... , s(n)} and 

s(l) < s(2) < · · · < s(n). Since for s fl. s(b), r, on U(b) x I and u 3 on p- 1(U(b) x /) are 

identities, the maps r and u are infinite composition of maps where all but a finite number 

of terms are identities near a point. Since each u, is a homeomorphism on each fibre, the 
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composition ·u is a homeomorphism on each fibre. 

Now we assume that ~ is quasi-trivial and on (B - C, B1 - C) x I, ~'l<a-c,a 1 -c)x/ = 

~l(a-c,a 1 -c)x{l} x I. Then the open covering {Us}ses can be chosen such that if Usn C # 

0, then Us C U, and for any Us n C == 0, we can choose the trivialization hs : (Us x 

I X Fs, Us X I X Fos. (Usn Bd X I X Fts) -7 (p- 1 (Us X I), (po)- 1(U.s X I), (pt)- 1((Fs il 

Bt) x I)) such that h 5 (u, t, .r) = (u, t, ku,s(x)), where ku,s is a self-homeomorphism of Fs. 

So the map u5 can be defined by u5 (b,t.x) = U 5 (h 5 (h; 1(b,t,x))) = Us(h,(b,t,k~.;(x))) = 

hs(b, max(ry5 (b), t). k~,;(x)) = (b. max(ry5 (b), t), ku,s(k~.;(x)) = (b, maX(TJ_,(b), t), .r). Now for 

any point bE B-U. u((b,t.x)) = (b, l.x). 0 

Lemma 3.2.6 If~ is a locally trivial bundle triad over (B, Bt) x I, with B paracompact, 

and if the fibre F is a locally connected. locally compact Hausdorff space, then~ is isomorphic 

to (~l(B.Bl)x {1}) x I. Furthermore, ·if~ -is quasi-trivial with the hypotheses of Lemma 3.2.5, 

then the isomorphism can be chosen to be a pair (G. id) : ~ -t (~I(B ,Bt)x{L}) x I with the 

restriction of G over (B - U, B 1 - U) x I given by G(b, t. x) = ((b. 1, x), t). 

Proof: From Proposition 3.1.18, Lemma 3.2.4 and 3.2.5, we know that~ is isomorphic to 

(~I{B,Btlx{L}) xI. \Vhen ~is quasi-trivial, and over (B- C, Bt- C) xI, p01((B- C) xI) = 

p- 1((B- C) x {1}) xI, we have, by Lemma 3.2.4 and 3.2.5, that the isomorphism has the 

desired property. 0 



CHAPTER 3. A LOCAL A.ND RELA.TIVE VERSION OF .t\ BROOKS' THEORENI 85 

3.3 Relative homotopy and quasi-trivial bundle triads 

In this section. we will prove the following main theorem of this chapter, namely: 

Theorem 3.3.1 Suppose J, g : (X, .-\.) ---t (Y, B) are maps of a pair of paracompact topo

logical spaces (X . .-\.) to a pair of manifolds (}', B) , and let f' and g' be homotopic to f 

and g rPspPrti-udy. Then thPre is a map f" homotopic to f' (and therefo·re to f) such that 

f(f" , g) = f(f'.g') . Furthermore. given any homotopy {gtlt E I} from g tog'. there is a 

homotopy {ftlt E I} beginn-ing at f' such that f(f1-t , gd = f(f',g') for all t E I. Finally, if 

there is a closed subset X 1 C X, such that on X- X 1, 9t(x) = g0 (x), then for any open set 

U :J .\1, ft.9t can be chosen to be stationary outside of U. i.e. ft(x) = f 0 (x),gt(x) = 9o(x) 

on(.\"- U). 

Let Y be a topological space. and Y1 C Y a subspace. Let q : Y x }' ---t }' be the 

projection to the first factor, and q0 : D( Y) = { (y, y) E Y x Y} ~ r· , and q1 : Y1 x Y1 ----t } "1 

the restrictions of q. Then (q, q0 , qt) is a bundle triad. The following Proposition gives a 

condition on Y under which (q, q0 , qt) is locally trivial. 

Proposition 3.3.2 If there exists an open covering {Ua}aeA of Y, such that for each a 

and for each pair (x , y) E U0 x U0 , there is a homeomorphism </Jory : Y ---t Y such that 

</Jory(x) = y, and ·if both x and y are in f"t , then for any z E Y1, <Poxy(z) E Y 11 and 

considering <Pary(z) E Y as a function in x , y and z then <Pary(z) is continuous with respect 

to (x, y, z) . Then (q, q0 , qt) is a locally trivial bundle triad. 
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Proof: Suppose {Ua}aEA is a covering of Y satisfying the conditions of the proposition. 

For each a: E .\, choose Ua E Ua, such that if UQ n Yt # 0, then Ua E Ua n yl· Let Fa = Y, 

Then h,.. is a homeomorphism. ~ote that if x E } ·1 . then <Z>azu ... (Yl) = } "1• so h0 is actually 

C'a x F00 and hence ha is a trivialization. 0 

Proposition 3.3.3 If Y is a smooth manifold of dimension n. and Y1 C Y is a submanifold 

of d·imension k, then (q : }" x Y ---? Y, qo : D(Y) ~ Y. q1 : }"1 x Y1 ~ Yt) is a numerable 

bundle triad. 

Proof: Let {0a: Ua-+ R"Jo E.\} be charts for Y with the property {Ua} is numerable 

and if Uta = Ua n Yt # 0, then ¢a(U10 ) == Rk C Rn (such charts exist as Y1 is a submanifold 

of Y). Define 

{ 

z if z E Y- Ua 
<Pazy(z) = 

,,,-L(,iJ (z) + tila(y)-tPa(z) ) if Z E Ua 
'+-'a 'yo l+ltJia(:)-tPa(xJI ' 

then </>ary satisfies the hypothesis of Proposition 3.3.2, and therefore we have the result. 0 

Lemma 3.3.4 Suppose that {gt : (X, A) ---? (Y, B) It E I} is a homotopy, where (Y, B) is a 

pair of manifolds. Then there is a isotopy {ht : (X x Y, .4 x B) ~ (X x Y, Ax B)Jt E I} 
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such that 

ht(x, 9t(x)) = (x , go(x)) 

for all r E X and t E I. Furthermore, if there is a closed subset X 1 C X. such that on 

X - X 1, 9t ( x) = 9o ( x) , then for any open set U ~ X 1, ht can be chosen to be stationary 

outside of U, that is ht(x, y) = (x, y) on (X-U) x Y. 

r .Jof: Define G : (.\X I , A X I) --+ (}··,B) by G(x. t) = 9t(I) for all (x, t) E X X I. Let p: 

X xI x Y --+ X xI be the projection. and p0 :Graph( G) --+ X xI and p 1 : Ax I x B --+ .-\xI be 

the restriction of p on Graph (G) and A x I x B respectively. Then ~ = (p, p0 , p1 ) is a pullback 

under G of (q: Y x Y --+ F, q0 : D(Y) --+ Y , q1 : B x B --+B). To see this define G: (X xI x Y , 

Graph( G), A. x I x B) --+ (Y x Y. D(Y) , B x B) by G(x , t, y) = (G(x, t) , y). Then for any 

(x0 , t 0 ) E X x I, G is a homeomorphism from { (x0 , t0 )} x }·· to { G(x0 , t0 )} x }·. Obviously 

G sends Graph(G) to D(Y). If (xo , to) E .4. x I , then G( {(x0 , to)} x B) = { G(x0 , t0 )} x B. 

Thus G is a morphism of bundle triads and q o G = Gop and therefore by Proposition 3.1.18, 

~ is a pullback under G. Now (q, q0 , q!) is locally trivial by Proposition 3.3.3, thus (p, p0 , pi) 

is locally trivial by Theorem 3.1.16. Since ~ is quasi-trivial and X x I x Y is paracompact, 

by Lemma 3.2.6, we have the homeomorphism H 1 :X x I x 1-·--+ (X x {0} x Y) x I such 

that HI(A xI x B) c (Ax {0} x B) xI, and H 1(Graph(G)) C Graph(g0 x idr) and on 

(X-U) xI x Y , H 1(x , t.y) = ((x,O,y),t). Define H2 : (X x {0} x Y) xI--+ X xI x Y 

by H 2 ((x , 0, y), t) = (x , t, y) , and let H be the compositin of H 1 and H 2 , then H is a 

homeomorphism, H(A. xI x B) CA. xI x B, and H 1(Graph(G)) C Graph(g0 x id1 ) and on 

(X-U) x I x t ", H is the identity. Let ht(x, y) be the projection of H(x , t, y) in X x Y, 
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then ht is the desired isotopy. 0 

vVe are now ready to prove the main theorem. 

Proof of Theorem 3.3.1: Assume that f' , g' : (X~ .A.) --+ (Y, B) are homotopic to 

f. g : (X, A) --+ (1·, B) respectively. Let {gtlt E I} be the homotopy from g tog'. vVe must 

find a homotopy {/t} : (X. A) --+ (1·. B) beginning at f' such that f(ft! 9t-t) = f(f'. g') for 

all t E I. 

Let {ht : (X x Y, .-l x B) --+ (X x }·, .-l x B)} be the isotopy given in Lemma 3.3.-!, such 

that on (X -C) x }·, ht is the identity. Let ;r : (X x Y , A x B) --+ (Y. B) be the projection. 

Then we define ft : (X .. -l) --+ (Y. B) by 

for every .r E X and t E I . If x E .-l , then f'(x) E B , so (x. f'(x)) E .-t x B. :"row 

h1 1(.r , f'(x)) E Ax B => h1-t o hl 1(x . f'(x)) E Ax B => rr o h1-t o h1 1(x.f'(x)) E B. So 

ft is a homotopy from / 0 : (X, .-l) --+ (}·,B) to / 1 : (X . . -l) --+ (Y, B) . If x E X - U, then 

ft(x) = rr o h 1_t o h1 1(x , f'(x)) = rr o h1-t(x, f'(x))= rr(x. f'(x)) = f'(x). This is because 

on (X-U) x Y , ht is identity. It remains to show that f(ft , 9L-t) = f(f0 , gt) = f(J' , g'). 

The proof is exactly the same as in [BR2], but for completeness, we give the proof here. Let 
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t E I, and suppose first that x E f(ft, g1-t), so ft(x) = g1-t(x). Then 

fo(x) - 1r o h1 o h"L~t o h1-t o h1 1(x, fo(x)) 

- 1r o h1 o h"t~t(x, !t(x)) 

- 1r o ht o h"L~t(x. g1-t(x)) 

- 11" 0 h 1 (I , 90 (I) ) 

- 11(x, 9t(x)) 

- 9t(X), 

so X E ruo, gt). Conversely, suppose X E ruo, gt) so fo(x) = g1 (x). Then 

ft(I) - rr o h 1_t o h"L 1(x. f'(x)) 

- rr o ht-t o h1 1(x, fo(x)) 

- 7f o h1-t o h1 1(x. g1(x)) 

- rr o h1-t(x. 9o(x)) 

- 1r(x, gt-t(x)) 

- gt-t(x), 

so X E f(ft. 9t-d · 0 

Applying Theorem 3.3.1, Lemma 1.6.4 can be restated as following. 

Lemma 3.3.5 Let X, }'" be manifolds with dimensions greater than or equal to 3 and let 

(f. g) : X ~ Y be a pair of maps with a finite number of coincidence points. Let x 0 , x 1 E 

f{f, g) and Ck be an arc from Xo to X1 SUch that f 0 Q "' g 0 Q and or( (Q, 1)) n f(j, g) = 0. 

Let u be a neighbourhood of a((O, 1]) such that u"' D" and Xo E au. Then there is!' such 

that f' "'f rel X-U, and with f(f',g) = f(J,g)- {xt}. 
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Proof: By Lemma 1.6.4, we have f""' f rel X-U and g' ,...., g rel X -U1 with U1 C U 1 C U 

and f(f" , g') = f(j, g) -{xi} . Let V" be an open set such that U 1 C F c F c U. Since on 

X- Ut, the homotopy from g tog' is constant tog, then by Theorem 3.3.1 , we have an f' 

with !' "' !" rel X - v such that r (f' , g) :::: r (f" ' g') = r (f! g) - {XL} . It is obvious that 

f' "' f rel X - C since "\/ c U . 0 



Chapter 4 

Equivariant Coincidence Theory 

Let n· be a group, X andY be H·-spaces (see -1.1.-l) , and f: X~}. and g: X~}. be ~V

maps (see -1.1.6) . Then we actually have a sequence of pairs of maps { (Jfl, gH)}. one for each 

isotropy group H on X. Here jH and gH are the restrictions of f. g respectively to the fixed 

point set Xfl. If a point IE X is a coincidence point of (f, g), the orbit ~V .r = { wx I wE Ir} 

of I under the group action consists entirely of coincidence points since f, g are both ~V

maps. Because of this, it is natural to estimate the number of coincidence orbits instead of 

the number of coincidence points. Since the length of an orbit is dependent on the location 

of the orbit, we will employ the techniques of chapter 2 to locate those orbits. In order to 

do this, it is necessary to consider each isotropy group individually. 

Two distinct categories are considered in equivariant fixed point theory. In [\.YP2], a class 

of ~t--·-maps, called lV-compactly fixed maps, is discussed. A t--V-map f : \/ ~ X from an 

open invariant subset \/ of a l--V -manifold X to X is called a ~V -compactly fixed map if for any 

91 
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isotropy group H on v· , the fi.xed point set FLx !His compact, where !H = fl v·n : Vif ~ XH 

is the restriction off on v·H (see section 4.1.1 for the definition of VH ). A k-tuple is defined 

for a nr -compactly fixed map, which is a ~V -compactly homotopy invariant( as opposed to a 

~V-homotopy invariant) , where k is the number of the isotropy types of~- . [FPJ generalizes 

this work to coincidence theory. In [\VP3] , on the other hand, general ~V-maps are studied. 

The fixed points in X H that can be moved to X K for some H C K are characterized, a111.l the 

minimal number of fixed points on X H estimated (This is not an issue in the previous category 

since coincidence points in X H can not be moved to X K with H C K via a ~~·-compactly 

fixed homotopy) . Thus the theories in these two categories develop along very different 

lines. In addition, in [\VP3] some methods of computation are given. These are absent 

from the corresponding theory in [vVP2], and hence from the generalization of it in [FP]. In 

this chapter, we generalize the ideas in the latter category to equivariant coincidence theory. 

However, we use a different approach from [WP3J when we discuss computation. Throughout 

this chapter, except section -l.L we assume that H' is a finite group; f . g : X ~ Y are ~r

maps; X andY are closed orientable smooth ~V-manifolds such that dim XH =dim yH for 

any subgroup H of n:. 

This chapter is arranged as follows. In section 1, we give the necessary preparation for 

the chapter. In particular, we introduce the concepts of a group action on a topological 

space, a complex and a manifold, and also the concept of equivariant maps. In addition, we 

discuss the homotopy properties of equivariant maps. In section 2, we introduce equivariant 

coincidence classes and equivariant Reidemeister classes through a covering space approach. 
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\Ve then define an equivariant Nielsen number of a pair of equivariant maps (/,g) : X -t Y, 

which is a lower bound of the number of coincidence point orbits of a pair of equivariant 

maps. In addition, we describe the relationship between an equivariant coincidence class 

and an ordinary coincidence class and give some basic properties of the Nielsen number. In 

section 3, we discuss the computation of the equivariant Nielsen number introduced in section 

2 auJ give an alternative Jescription of the equivariant Reidemeister da.ss using fundamental 

group approach. This allows us to compute the equivariant Reidemeister number in some 

special cases. In section 4, we introduce additional :"Jielsen type invariants for each isotropy 

group of the group. In section 5, \Ve discuss the computation of the Nielsen type invariants 

defined in section -t \Vhen the fixed point set of the group action is nonempty and some 

other conditions are satisfied, these invariants are computable in terms of homology groups. 

This approach is different from the one given in (\VP3]. Finally, Minirnality is discussed in 

section 6. 

4.1 Group Actions 

4.1.1 Definition of group action 

Definition 4.1.1 Let vV be a group and X be a set. By a ~V-action on X we mean a map 

¢: vV x x -t x 

such that: 

(1) ¢(e, x) =X for all X E X, where e is the identity of vV; 
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(X,¢) is called a ~V -set. \Ve shall denote the vV -set (X,¢) just by X. 

For a w E H/, let 

<l>w: X -+X 

be the map defined by d>w(I) = ti>(tL'. x). rPw is called the action of w. For simplity, we often 

use the notation w · I or wx for ct>(w. x). 

Notation and Basic Properties: The following definitions, notations and results can 

be found in [KK] and [tD]. 

(1) For a subset A C X, ~V.-\. is the subset {wx E Xlx E A, wE ~V}. In particular. ~Vx 

is called the orbit of x. where xis an element of X. The number of elements in fVx is called 

the length of the orbit of x. If for any I E X, ~V x = { x}, we say that the H" -action is trivial. 

(2) For X E X' the set vV.r = {w E H/lwx = X} is called the isotropy group at X. 

(3) For a subgroup H of tV, the set _yH = {x E Xlhx = x for all h E H} = {x E 

X I H'.t' ::> H} is called the H-fixed point set X. XH = {.r E X]lV.t' = H}. It is obvious 

( -1) For subgroups H 1 and H2 of 1--V , recall that H 1 and H2 are called conjugate in -w· 

if there exists w E n: such that H2 = w- 1 H1w. "vVe denote this equivalence relation by "V 

and write H1 "" H2. The conjugacy class containing H is denoted by (H). If H 1 "" H2 and 

H2 C H, we say that H 1 is subconjugate to H, denoted by (Ht) ~ (H), or (HI) < (H) if 

H2 #H. For a subgroup H of ~V, X(H) = {x E XI~V:r"" H}; .X(H) = {x E Xl(vV.r) > (H)}. 

If H is an isotropy group at x for some x E X, then (H) is called an isotropy type. 
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(5) If (HI), (H2), ... , (Hn) are a finite number of isotropy types, then we can give them 

an ordering :::; such that 

such an arrangement is called an admissible ordering on { (Hi)}. 

(6) For a subgroup H of ~v. _y>H = XH - XH = UHcK.K;tH XK. .\lso x>(H) -

H K) xt ' - x<H> = U<H><<~<> X\ . 

Definition 4.1.2 A set H" is called a topological group if n· satisfies the following condi-

tions. 

(1) i-l" is a Hausdorff space. 

(2) ~V is a group. 

(3) The composition map a : H/ X n: ~ n: and inverse map .J : ~v ~ n· defined by 

a(wt. w2) = U:tW2 and J(w) = w-L respectively are continuous. 

Example 4.1.3 A discrete group~ for example a finite group, is a topological group with 

the discrete topology, i.e. every element subset is an open set . 

Definition 4.1.4 Let tV be a topological group and (X, 4>) be a ~V-set. If X is a topological 

space and 4> is continuous, (X,¢>) is called a ~V-space. (Note that in this case. 4>w :X -+X 

is a homeomorphism for each w E ~V. X is called a W -space. ) 

A ~V -action is said to be free if (the isotropy subgroup) l-V.~: is trivial (i.e. , l-VJ: = { e}) 

for any x E X. An action is said to be semifree if for each x E X , nrJ: = { e} or ~Vx = vV. 

If vV -action is not free and H is a isotropy group, vV usually does not act on X H because 
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XH is not necessarily ~V-invariant. Let N H be the normalizer of H, i.e. N H - { w E 

~V I w- 1 Hw = H}, we have 

Lemma 4.1.5 X" is NH-invari.ant. Hence if His a normal subgroup of Hl, then _yH ts 

n· -invariant. 

Proof: See Lemma 1.50 of [KK]. 0 

\Ve denote the group N H / H by ~V H. It is called the \Veyl group of H. Since H acts 

trivially on X H. there is a natural action of ~V H on X 11 . :"rote that H · H acts freely on X H. 

Definition 4.1.6 Let X and l. be ~V -spaces, a map f : X ----t } • is called a n ·-map if for any 

.r E X and wE n·. f(wx) = wf(x). :\homotopy F: X X I___, y is called a iV-Hornotopy 

if it is a ~V-map, where ~V acts on I trivially. \Ve note that, for each t E I, F(·,t) is a 

n·-map. If two it-'-maps f and g are homotopic via a t'V-homotopy, we say that f and g are 

n·-homotopic and write f '""'W g. 

The proof of the next two results are trivial. 

Proposition 4.1. 7 Let t--V be a gro·up, X and Y be rv -spaces and f and g : X ----t Y be 

H,. -maps. If x E X is a coincidence point, then so is each y E ~V x. 0 

Proposition 4.1.8 Iff : X -7 Y is a ~V -map~ then for any subgroup H of vV , f(XH) c 

Y". The restriction off on _yH will be denoted by JH: _yH ----t yH_ 0 

Let X be a v'JI' -space, and Px : _y -7 X is a universal covering space of X and II(X) be 

the group of covering transformations. Define 

~Vx = {i I i: .Y ----t .Y is a homeomorphism and Pxi = 'YPx for some"! E ~V}, 
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Thus ~v.~ consists of all the tiftings of w : X ---t X for all w E ~V. It is easy to see il(X) C t-t-·x 

and that the sequence 

is exact. 

Example 4.1.9 Let X = st . n· = Z/2 =< a: > and an action of n· on X be determined 

by 

o:(.r, y) = (x, -y). 

~i.·x consists of all the liftings of the identity map, which is the transformation group, and 

all the liftings of n. So 

~t·x = {ci>n: R ---t R I <D71 (.r) = x + n. n E Z} 

u{ Wn : R ~ R I 'IL!n(x) = -X+ n, n E Z} 

4.1.2 Actions on complexes and manifolds 

Definition 4.1.10 :\simplicial complex K is called a ~·V-complex, if there is a ~V-action on 

the set of the vertices of K, such that if (x0• It , ... , Xn) is a simplex of K, then (wx0, WXt, ..•• wx11 ) 

is a simplex of K for any w E ~V. 

Suppose ~V acts on K . Let w E ~V and ~ = (x0 , x 1, .•• , Xn) be a simplex of K, then w 

induces a map from ~ tow~ as follows: 

and hence w induces a continuous map from IKI to itself, where IKI denotes the polyhedron 

of K. By abuse of notation we also denote this map by w. 
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Consider the following property concerning a ~V-complex K. 

Definition 4.1.11 (see [KK] p.229) Let K be a vV-complex, if for any any wE l-V and any 

simplex s of K, w leaves s n ws pointwise fixed, we say that K possesses property (Pt). 

Suppose H/ acts on K, and K' denote the barycentric subdivision of K. Then the action of 

n· on K induces an action of tV on K' as follow: if a is the barycenter of a simplex (r0 , .. . , .r;.;) 

and wE vV. then w(a) is defined to be the barycenter of the simplex (w(xo), ... , w(xk)). 

Lemma 4.1.12 (p.229 in [KK]) Let K be a vi--· -complex having the property (P1) and s = 

(.ro, ... , xk) be a simplex of K. If there exists a wE n· with wxi = x1 for some i and j, then 

we have i = j. 0 

Lemma 4.1.13 (p.230 in [KK]) If K ·is a vV -complex. then the -induced tV -action on the 

barycentric subdivision K' possesses Property (P1). 0 

Lemma 4.1.14 Let K be a l-V -complex. and K 1 is an invariant subcomplex of K. Then the 

inclusion i : IKtl -+ IKI has homotopy extension property fo·r all vV -maps f : IKI ---+ }" and 

<i>: IKtl x l-+ }" with c,i>(a, O) = f(a) for all a E IKd. This means that given f and c,i>, there 

exists a tV -map tp: IKI x I---+ Y such that ¢11Ktlxl = c/> and 1/J(x. 0) = f(x) for all x E IKI. 

Proof: See exercise 3 on p.103 in [tD], or p.32 in [HP]. 0 

Let 1.\tl be a smooth manifold, vV a Lie group. If W acts on Af and the action <P : 

vV x AI -+ .:.VI is smooth, the action is called a smooth tV -action, and Al is called a smooth 

vV -manifold or simply a W -manifold. 
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Theorem 4.1.15 ([KK], Theorem 4.14 and Lemma 4.15) Let H' act smoothly on !vi, then 

for any subgroup H of ~V , the fixed po·int set AI" of H is a closed submanifold of AI. In 

addition, AI" is a smooth ~VH-manifold, and Jiy 'is an open set of AI" . 0 

Definition 4.1.16 A ~l"-triangulation (K, ¢) of a n ··-manifold :li consists of a ~}'-complex 

Kanda ~}"-homeomorphism cf>: IKI ~AI , where IKI is given the ~V-action induced by the 

lV -action on K . 

Theorem 4.1.17 (see [IS]) If Hl is a fin-ite group and Jl is a n· -manifold, then :.\1 has a 

~~·-triangulation . 0 

Theorem 4.1.18 (p.305 in (BG]) If ~v· is a finite group and J! is a ~·V -manifold. then .\! 

has a n· -invariant riemannian metric. 0 

4.2 Equivariant coincidence classes 

In this section. we will introduce the concepts of equivariant coincidence classes. the essen

tiality of such classes and also an equivariant Nielsen number of a pair of equivariant maps. 

As in the ordinary case, we use liftings of (/, 9) : X ~ r· to define coincidence classes. 

However , since we consider coincidence point orbits, we use ¥Vx and vVy (see section 4.1.1 ) 

instead of IT( X) and II(Y) to classify these liftings. 

Definition 4.2.1 Let X and Y be orientable vV -manifolds, and f and 9 : X ~ Y a pair 

of t-V-maps. Two liftings (j,g) and (j',g') of (/,g) are said to be vV-conjugate if there are 
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-yx E ~V'-" and -yY E ~~-Y such that (/, g)='YY(j',[/)(i·x)- 1. It is obvious that conjugacy is an 

equivalence relation. Denote the ~V-conjugacyclassof(/,g) by [(/,.9)h~· = {(/',.9')1(/',g') = 

i'r"(/,g)(ix)- 1, for some iy E ~i·y , and ix E ~t·x}-

A lV-conjugacy class is called a ~·V-Reidemeister class of (J , g), and the set of all n··

Reidemeister classes are called the n·-Reidemeister set and denoted by R.1,9 (H"). The number 

of tl"-Reidemeister classes is calleJ. the ~r-Reidemeister number. awl deuuted by Rw(f, y) . 

Note 4.2.2 Generally, i't. (/, g)(ix)- 1 is not necessarily a Lifting of (J, g) for elements )'x E 

Jt·x and .yr· E ~i·r· · since ix and ir· may be Liftings of different elements w1, w2 E lV. So 

[(f, g)] is not the set {11' (/,g)(ix)- 11-'lr· E li·r. , ix E li".x}. (cf. Definition 1.1.1) 

Proposition 4.2.3 A lV -Reidemeister class cons·ists of a union of ordinary Reidemeister 

classes. 

Proof: Since IT( X) is a subset of li:x and IT(Y) is a subset of ~t·y , if two liftings (j, g) 

and(/'. g') of (f, g) are conjugate then they are lV-conjugate. So each ordinary Reidemeister 

class is entirely contained in a n: -Reidemeister class: that is R. 1,9 ( H/ ) is a quotient of R. 1.9 . 

0 

The next proposition generalizes Proposition 2.2 of [vVP3]. 

Proposition 4.2.4 Let (J, g) :X ~ Y be a pair oJW -maps and(/, g) and(/' , g') be liftings 

of (f, g), then we have 

{1) If[(/, g)]w = [(/', g')]w , then tV(px(f(j, g))) = lV(px(f(j', 9'))). 

(2) lf[(/,g)]w # [(]' ,g')]w, then lV(px(f(f,g))) n lV(px(f(/',g'))) = 0. 
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Proof: (1) Suppose(]',?/)= --?•'(],g)(-:yx)- 1 for some .:yx E lrirx and~~\'· E t.t~y. vVe only 

need to prove VV(pxf(],g)) <; ~V(pxf(]',g')), or pxf(],g) <; H·'(p.-xT(]',g')) as the right 

hand side is closed under the action of H'. 

Let I E Px r(], g)), and i E r(j, g) be in the fiber over X. Then ]'( -yx (i)) = -yY 0 

](-yx)- 1(-)·x (i)) = 1Y o ](i) = -yv a g(i) = :yv o 9(ix)- 1( -f< (i)) = g'(ix (i)). i.e. -yx (i) E 

[(}',!/). );ute that Px(ix(i)) = !(px(i")) = ";(.L') fur some r E n·. Therefore. !(X) E 

Pxf(]',g') and x E ~F(pxf(J',9')). 

(2) vVe prove that if X E a-·(px(f(},g))) n ~V(px(f(j',g'))) for some X EX, then (],g) 

and (]'. 9') are conjugate. Let ""fl, "t2 E ~V such that It = "tdx) E Px f(], g) and I 2 = 12(I) E 

pxf(]'.[/). Let i 1 be in the fiber over It and in r(]. g), and i2 in the fiber over x 2 and in 

f(]',g'). Let i{ and :Y2' be liftingsof"tt and "t2 respectively such that ii' o(i2')-t(i2) =it. 

Let i3' = ii' o ( 12') -t. There is an element -yr· E ~l·\' such that i 1}i3' = ]'. Then 

1'r' (], 9)1{ has i 2 as a coincident point. Since i·1 is also a coincidence point of(]', 9') and 

i'r}ij' =]'.we have g'(i2) = }'(i2) = iy J~tj'((i2) = :yvgi{(i2). Since both 9' and ~?-gi3' 

are liftings of g, g' = iy g,:Yj'\ by uniqueness. This shows ((], g)]w = [(]', 9')]n:. 0 

Proposition 4.2.4 allows us to define a ~V -coincidence class in the same way we define 

classes in ordinary coincidence theory. 

Definition 4.2 .5 Let (J, g) be a pair of ~V -maps from X to Y and (],g) be a lifting of 

(f, g). The H,.-subset ~V(pxf(], g)) of f(J, g) is called the W-coincidence class determined 

by the conjugacy class[(], g)]w (or briefly the ~V-class). The set of non-empty W-classes is 
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denoted by fw(/, g) . vVe have an injective map 

IV - -PR-
1

,
9 

: fw(/, g) --+ R1,9 (W ), 

which sends a ~V-coincidence class S to the ~V-Reidemeister class [(j, g)]n.· if H,.(pxf(j , g)) = 

s. 

Proposition 4.2.6 Two coincidence points x0 , x 1 E X are in the same lr -class if and only 

if 

{1) x 1 = wxo for some wE ~V , or 

(2) there exists a path a : (0, 1] --+ .\ such that a(O) = x0 , a(l) = wi 1 for some wE H' 

and f o a,.,... go a rel {0,1} . 

Hence. each ~V -class is the n: -orbit of some ordinary coincidence classes and there are 

finitely many non-empty n: -classes. 

Proof: Suppose Io and x 1 are in the same ~V-class, then there is a lifting (j, g) of (f. g) 

such that Io,Xt E ~V(pxf(j.g)). and there are Wt , w2 En: and x~,x'1 E Pxf(],g) such that 

(wtw01)xo . so (1) is satisfied; if x~ # x'1, then there is a path ci from x~ to x'1 such that 

and f o a"" go a rel {0, 1} since f and g are equivariant. So in this case (2) is satisfied. 

For the converse, suppose that x0 , It E f(f, g) and either (1) or (2) is satisfied. Suppose 

Xo E Pxr(f,g) for some lifting (f,g) of (f , g). If x 1 = wx0 for some wE lV, then x 1 E 

w(pxf(},g)) C ¥V(px(f(], g)), i.e. x0 , x 1 are in the same ~V-class. If there is a path a from 
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x0 to WXt such that f o o ~goo rel {0, 1}, then Io , and WXt are in the same Nielsen class, 

i.e. WXt E pxf(], g). Therefore, It E w-t(pxf(],g)), and so Xo and It are in the same 

IV -class as required. 

Finally from (2) , it is easy to see that if a coincidence point is in a ~r -class, then the 

whole Nielsen class that contains it is in that same ~V -class. Since there is only a finite 

numbhcr of non-empty ~iclscn classes, the number of non-empty lf -classes is finite. ,....., 
I...J 

Definition 4.2.7 Suppose that N~'y' is a H"-class of (f. g) . Choose an ordinary Nielsen class 

N C Nw. Then Nw is essential if and only if ~v is essential in the ordinary sense. This is 

well defined by Proposition 4.2.9. 

Note 4.2.8 For convenience. we will identify the elements in fn,·(f, g) with some of the 

elements in R.1,9 (~V) , by means of the injective map p~1. 9 : t~.,.(j , g) ~ Rt.9 (lV) (see Defi-

nition -1.2.5). \Ve will call an element (} E R.1.9 (H' ) essential if it is an image of an essential 

- ~v element of f w (f, g) under Pn.
1

.
9

• 

Proposition 4.2.9 Suppose that two ordinary Nielsen classes Nt and N2 of (f, g) belong to 

a common lV-class. Then lind(Nt)l = lind(N2)1. Thus, the essentiality of a lV-ciass is well 

defined. 

Proof: Since Nt and N 2 belong to the same ~V class, then Nt = wN2 for some w E ~V. 

Let U be an open set such that Unr(f, g)= N2 , and ·v open set such that N2 c v· c V cU. 
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Let wU, w \/ be the images of U and l/ under w, the following diagram 

Hn(X) !.; 
·-1 

Hn(X, X- F) 1~ Hn(U, U- \/ ) u~. Hn(Y X Y, F X}"- ~(Y)) 

w • .).. w • .).. w • .).. w • .).. 

Hn(X) !.; 
· -1 

H ( C C.: V) (f,g). Hn(X. X- wV) 1~ nW '. lL' -w ~ Hn(Y X Y, Y X Y- ~(}")) 

is commutative, where w. is the isomorphism induced by w. In particular, the index ind(u.:N2 ) 

of wN2 is either ind(N2) or ( -1) · -ind(N2 ) . 0 

Definition 4.2.10 The number of essential n-· -classes is called the n ·-Nielsen number of 

({g) , and is denoted by Nw(f, g) . 

Proposition 4.2.11 Let X , 1-· ben· -manifolds with the same d·imension. and J, g: X ~ Y 

~V -maps. Then on X , there are at least .Vw(f, g) orbits of coincidence points of (J, g). 

Proof: Assume that Nw is an essential ~V -class and N c ~v~"· is an ordinary Nielsen 

class. By definition . .V is essential and therefore contains at least one coincidence point. 

This implies that Nw contains at least one coincidence orbit. 0 

Note 4.2.12 Unfortunately since the number of points in the various orbits may vary we 

cannot always use Nw(f. g) to give a good estimate of the number of coincidence points of 

(! ,g). 

Proposition 4.2.13 Iff "'W !'and g "'W g', then Nw(f , g) = Nw(J' , g') . 

Proof: A pair of homotopies ( F , G) : X x I -t Y from (f, g) to (!', g') induces a one 

to one correspondence between the Nielsen classes of (f, g) and those of (f', g'). Since F 
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and G are ~V -maps, the one to one correspondence induces a one to one correspondence 

between 'R.1,9 (vV) and 'Rf',g'(vV). Let Nw be an essential vV-class of(!, g), and N c Nw is 

an ordinary Nielsen class contained in Nw. Suppose that N corresponds to N', an ordinary 

~.J"ielsen class of (!', g'), then ~V' is essential. This implies the vV -class containing N' is 

essential. Therefore each essential H; -class of 'R.1,9 ( vV) corresponds to an essential vV -class 

0 

The following simple example illustrates that .Vw (f, g) is not a homotopy invariant, 

although it is an equivariant homotopy invariant as shown in Proposition -1.2.13. Since we 

choose one of the maps be identity. this example shows that the corresponding number in 

fixed point theory is not a homotopy invariant either. 

Example 4.2.14 Let X and vv· be the same as in Example 4.1.9, and r· =X. 

Let f : X --+ } • be defined by 

f(.r, y) = (x , -yL 

!1 : X --+ Y be defined by 

!1(x,y) = (-x,y), 

and g = g1 : X --+ Y be the identity. 'vVe claim that Nw(f, g) = 2 and Nw(ft, gl) = 1 even 

though f ""' f 1 and g = g1 . However f and h are not vV -homotopic. 

(1) Nw(f, g) = 2: there are two coincidence points, (1, 0) and ( -1, 0), and both have 

non-zero indices. Since they are not ordinary Nielsen equivalent and they are fixed by the 

nr, they are not in the same vV-class. So Nw(J, g) = 2. 
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(2) N~t,-(!1 , gt) = 1: there are two coincidence points, (0, 1) and {0, -1), both have 

non-zero indices. Since they are in the same ~V-orbit. they are in the same ~V-class. So 

N~vUt,gd = 1. 

The next propostion shows that just as in the ordinary case N(f,g) $ R(f,g), so the 

lV-Reiderneister number is an upper bound for the H··-Nielsen number. 

Proposition 4.2.15 Nw(f. g) ::; Rw(J, g) . 

Proof: The set of essential ~V -classes is a subset of f' w (f, g) , and there is an injection 

from fw(f. g) to R 1.9 nV). So we have N~v(J. g) $ Ru:(f, g). o 

4.3 Computation of equivariant Nielsen numbers 

The computation of the Nielsen numbers in any :"Helsen theory is always difficult. The 

computation in the equivariant cases is worse since 'RJ,g(~V) is much more complicated than 

R.f,y, and Rw(f.g) is not even a homotopy invariant as we saw in Example -1.2.1-l. The usual 

way to compute a Reidemeister number is to relate the Reidemeister set to the fundamental 

group. vVhile this does not pose a problem in ordinary coincidence theory, it is more difficult 

in the equivariant case in general. vVhen xw is nonempty, however, it is possible to represent 

coincidence classes by means of the fundamental group of Y. 

In this section, we will, first of all, relate Nw(J, g) to Rw(f, g), then we will describe the 

equivariant coincidence classes in terms of the fundamental group in cases where xw f. 0, 
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and both f and g send some component of xw to the same component of yn.:. Finally, we 

establish conditions under which Nw(f , g) and Rw(f, g) may be computed easily. 

The following theorem generalizes from the equivariant fixed point case, and improves 

upon the result of Theorem 4.10 in [vVP3]. 

Theorem 4.3.1 Let X and }. be ~V -manifolds, xo and Yo be basepoints of X and Y re

spectively, and j , g be ~V -maps. If T(f, g: x 0 , y0 , w,, ..u9 } = Rt.9 (see Definition 2.2.7 for the 

definition of T(f, g; x 0 , y0 , w1, JJ9 )) . then 

{1) L(f, g) = 0 ==> l'v.w(J,g) = 0, and 

{2} L(f,g) =/:- 0 ==> Nnr(f , g) = Rnr(f , g). 

Proof: By Corollary 2.2.14. the hypothesis guarantees that each ordinary coincidence 

class has the same index. If L(f, g) = 0, then every Nielsen class has index 0 by The

orem 1.3.20. By Proposition 4.2.6, each ~V -class is the union of several ordinary Nielsen 

classes and therefore its index is zero too. If L(f. g) i=- 0, then each ordinary Nielsen class 

has nonzero index. Thus each IV -class must contain some ordinary Nielsen class with nonzero 

index, so it is essential by its definition. D 

For the rest of this section, we will assume that xw i=- 0, yw i=- 0, x 0 E xw, y0 E yw , 

and f(x0 ) and g(x0 ) are in the same component of yw as y0 • There is a l-V-action over 

rr 1 (Y, y0 ) defined by w(O!] = [wO!] for each w E ~V and any loop 0! : (I, {0, 1}) ~ (Y, y0 ) in Y, 

where WO! is a path defined by wO!(t) = w(a(t)). 

Let w9 ,wt be two paths from Yo to g(xa) and f(xo) respectively in yw, and let g~9 , /;1 

be the corresponding homomorphisms from rr1 (X, x0 ) to rr1 (Y, y0 ) defined using conjugation 
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by w9 ,w1 respectively. The fact that j and g are equivariant means that g';g and !':1 are 

invariant with respect to this action on 7rt(Y, y0} and a similar action on 7rt(X, x0 ) •• -\. t.-l-: 

action on \l(/,g;x 0 ,yo , w9 ,wf) (see Definition 1.2.3} is defined by w!3 = w.B for any wE ~V 

and 3 E 7rt(Y. Yo). The class of \7(!, g: xo , Yo ,w9 ,wt)fHl containing ( E \l(f. g: xo . Yo , ~.JJ9 , wt) 

will be denoted as H" ( . 

Lemma 4.3.2 The action defined above is well defined. 

Prove: Suppose J- .J' , then by definition there is an element 1 E 7rt(X, .ro) such 

that J' = g~1 b)3J-:1 (r- L ). Then w;3' = w(g~'t~t ) .Jf;;''(r-L)) = g;9 (w~t )wJj-:1 (w: -L), and 

therefore, w'iJ = w/3 = w.r3' = w.t3'. 0 

Recall Definition 1.2.-l that there is a map e J,g from n,.g to \1(/, g; Xo , Yo. I.JJg , I.JJf) and note 

that 'Rt.9 (\V) is actually a quotient set of'R.J,g· \Ve define 8}~9 : n,.9 (~V) ~ \7(1. g; Xo , Yo, ..Vf , ~.JJ9 )/~V 

by 

Theorem 4.3.3 8}~9 is well defined and is a bijection. 

Proof: \Ve first prove that 8}~~ is well defined. Assume that [(j,g)]w = [(j' ,g')]n,, that 

is there are ~r"' E ~Yx and ·~?- E ~'Vy , such that (j',g') = '7Y(j,g)('7x)-L. We have to prove 

that e1,9 ([(i' , .9')] E n,.e,,9 ([(j, _g)]). 

Let p x : .X' ~ X and py : Y ~ Y be universal covering spaces of X and Y respectively, 

io E PxL(xo) and ·yo E Py1 (yo). Let 0 : I ~ Y from g(io) to j(xo), then 8 t.9 ([(j, g)]) = 

[w9 • (py o 0) · w!lJ. Let ij : I~ X is a path from x0 to (i'x)-1(i0 ). Since Px o (i'x)- 1(.i0 ) = 
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("Yx)- 1 o Px(x0 ) = ( ... r~)- 1 (x0 ) = x0 since x0 E xw, we know that Px o -~ must be a loop 

at x0 • \Ve denote it by .. fJ. Note that (go ij- 1) • 8 · (] o ~) is a path from go (1x)-1(i0 ) to 

]o()'x)-1(.io) and i'r'((goij- 1)·B·(]oij)) is a path from iYgo(;yx)-1(.i0) to -~?}o(-yx)- 1 (.i0 ), 

i.e. a path from g'(i0 ) to j'(i0 ). So 

e,,g([(j' . .9')]) 

=[~g. (py· .:; ~~-((g 0 ~-l). {J. (] u 1]))) . ~.rlJ 

= [w9 • ("YY o py((g o ~-L) · 0. (] o ij))) · wtl 

= hY(w9 • (py((g o ry- 1) • B · (j o ry))) · wt)] 

= (:Y(w9 . (go ry-1). (p'r· o B)·(! o TJ)) • wt)J 

= !Y[w9 ·(go fJ- 1) • w; 1 • w9 • (py o B)· ..u't · w1(j o fJ)) · wj 1
] 

= -y'r·g~9 ([n- 1 ])(w9 • (py o B)· w.f 1lf;1 ([7J]). 

This proves that (!'r')- 1(8J,g([(J',g')])) = e,,9 ([(j,g)]), or equivalently, e1,9 ([(]',g')}) E 

l'FE> /. 9 ([(] , g)]) and hence E>'j~~ is well defined. 

Since 8 J,g is surjective, the surjectivity of 8/~9 follows from the following commutative 

diagram 

'RJ,g a/.~ \l(f, g; Xo, Yo, W f• w9 ) 

.!. .j.. 

aw 
'R.J,g(H') --4 \j(J, g; Xo, Yo, w f• w9 )j\V, 

where the vertical maps are projections. 

To prove that 87,'
9 

is injective, let (],g) and (]', 9') be liftings of (f, g) such that 

87,9 ([(]. g)]w) = 8}~9 (((]'', g')]w ). vVe want to prove that [(j, g)]w = [(]', g')]w. Let B: I~ 

f· be a path from g(xo) to ](x0 ), and B' : I ~ Y be a path from g'(x0 ) to /'(x0 ). Then 
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~V[wg. (py 0 0) . (w, )-1] = e}~g([(J, g)]w) = er.g([(j', g')]w) = ~V[wg . (py 0 B') . (w, )-1], or 

equivalently, there is a ~I E nr and a (,8] E rrt(X, xo) such that 

Let ~('( : .Y ~ .Y be a lifting of ~~ : X ~ X such that there is a lifting /3 of /3 starting 

with ('~X)- 1 (i0) and ending with i 0 . (Such ;yx exists. it can be chosen as follows: since 

-y (x0 ) = x0 and there is a lifting :y' of 1 such that -y'(io) = i 0 , let <f> be a lifting of identity 

such that the lifting .J of .8 starting at ct>- 1(i 0 ) ends at i 0 , then the composition of ct> and i' 

is the required i .) By the same argument , we can find a lifting .:yY : f· ~}·of r : F ~ Y 

such that ..:yl'"g(i'x)-1(£0) = g'(i0 ). So ..:yFg(..:yx)- 1 = g'. Now i'Y((g o .3) · B · (j o ,6-1)) is 

a path in }·starting at g'(i0) and ending at .:yY hix)- 1(i0 ) . Since py o B' is homotopic to 

'"'t((go .B)·(pyoB) ·(f o.a- 1) ) , then B' and .:yY ( (goiJ)·B· (j o.J-t)) have the same end point , namely 

j'(x0) = .:yY J(i'x)- 1(io) . This proves f' = .:yY j(..:yx)-1 and hence [(j,g)]w = [(J' , g')]w. D 

In order to make the computation practical, we compare the Reidemeister classes with 

Coker(g. - J.). This is because homology is much simpler than the fundamental group. 

Let X be a ~V-space , then there is a natural tV-action on HdX) defined as follows. Let 

cr : I ~ X be a simplex. For any w E ~V , define w · cr : I ~ X by (w · a}(t) = w · a(t) . 

For a chain EaaCTcr E St(X) , we define w · (Eaaua) = Euaa(w · cr). This gives a ~V-action on 

S1(X). Let [z] E H 1(X) and w E ~V, we define a tV-action on Ht(X) by w · [z] = [w · z]. 

This is well defined since the action of w commutes with the boundary operator. This 

action induces an action on Coker(g. - J.) defined by w · {[z]} = {w · [z]} , where {[z]} 

be the element of Coker(g. - /.) containing [z]. It is easy to check that this action is 
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well defined since both f and g are ltV-maps. The class of Coker(g. - f.)/Hr containing 

~ E Coker(g. -f.) is denoted by ~V~ . \Vith this action on Coker(g. -f.), we can define 

a map hw: \l(f,g;xo,Yo , w9 ,..uJ)f~'r"--+ Coker(g.- f.)/VV by hw("t.V(} = ll'h(() , where 

h : v(f, g; Xo, Yo , Wg , w f) -7 Coker(g. -f.) is defined in Lemma 2.2 .1. 

Proposition 4.3.4 The function hw is well defined and hw is bijective when h is. 

Proof: \Ve first prove that hw is well defined. To do this, we only need to show that h is a 

~r-map. Let (be an element ofv(f,g;.r0 , y0 ,..u,,w9 ). which is represented by a E rr1(Y, y0 ) . 

Then h(() = h(a) = {Bx(o)} = {[a]}, and for any w E ~V, h(w() = h(wli) = h(wo) = 

{Bx(wa)} = {[wo]} = {w[o]} = w{[a]} = wh((). 

Since h.,v is induced by h, then h~·.- is surjective when h is. Next we prove that hw 

is injective when h is. Assume that ( 1, ( 2 are elements of \J{f, g; x 0 , y0 , Wf, w9 ) such that 

hw(~V(t) = hw(JV(2 ). This implies that h{(d E vVh((2 } , or explicitly, there is a w E ~r 

such that h((t) = wh((2 } = h(w(2 }. Since h is one to one, ( 1 = w(2 • This shows that 

0 

Theorem 4.3.5 Let X and Y be ~t" -manifolds, and (! , g) a pair of ~V -maps from X to 

Y . Suppose that xw is nonempty and f , g map some component of xw into the same 

component of yw. Then if Y is a Jiang space or if (f, g) has the weak Jiang property (see 

Definition 2.2.16), then 

{1} L(f, g) = 0 => Nw(f, g) = 0, and 

{2} L(f,g) =/= 0 => Nw(f,g) = Rw(f,g) = #(Coker(g.- f.)jVl). 



CHAPTER 4. EQUT\J:4.RL4.NT COINCIDENCE THEORY 112 

Proof: Under the assumptions of the theorem, we have either Nw = 0 or Nw(J, g) = 

Rw(f, g) by Theorem 4.3.1. By Theorem 4.3.3 and Proposition 4.3.4, Rw(J, g) = #(Coker(g.-

f.)/V'l) since h is bijective in this case from Proposition 2.2 .6. 0 

vVhen H is an isotropy subgroup of ~r ' we have vVH -manifolds X H , y H by Theo

rem -1.1.15. In addition, fH and gH are ~VH-maps , and so the above theorem can be 

applied to {f H , yH) : X H ---+ } • H to give the following c..:orollary. 

Corollary 4.3.6 Let X and 1-· be ~V -manifolds, and (f , g) a pair of vV -maps from X to r·. 

Suppose xw is nonempty and r g map some component of xw into the same component of 

}·w. Then if yH is a Jiang space or (fH.gH) has the weak Jiang properly for an isotropy 

subgroup H of H' , then 

( 1) L(Jll. gH) = 0 => NwHUH , gH) = 0, and 

(2) L(JH,gH) =/= 0 => NwH(JH , gH) = RwHU" , gH) = #(Coker(g~- f.H)jlVH) . 0 

Example 4.3. 7 Let X = }. = 5 1 x 5 1 x S 2
• ~\t· = Z /2 =< a > be the cyclic group of order 

2. \Ve denote a point in 52 by a cylindrical coordinate. Let the action of ~V on X be 

n. (ei01 , ei62 , (r, 9, .:) ) = (e'02. eiOt , (r, 8, -z) ). 

Then xw = { (ei8 , ei6 , (r, 8, 0))} ~ 5 1 x 5 1 is not empty. 

Define f : X ~ X to be 

and define g : X ~ X to be 

g((eiol,eio'l , (r ,O,z))) = (eiBt,eio'l,(r, 38 , z)), 
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Then the set of coincidence points of j and g is f(J, g) = {(m, m2 , (1, fJ, 0)) I m 3 = 1; (} = 

0.7r/2,7r,37r/2}. Now N(J,g) = 3. 

Note from the Kunneth formula for homology (see p.108 in [V]) that H 1(X) = H 1(St x 

st x 52 ) ~ H 1(St x S 1 ) ::: H1(St) x Ht(St}. Let at and a2 be generators of the first and 

second factors respectively. So Ht (X) =< ab a2 >=< a1 - 2a2, a 1 - a2 >. The H"-action on 

H 1 (X) is Jefined as follows: a · at = u2 and 0: • a2 = t..Lt-

The homomorphism j .. induced by f is defined by ].(at) = 2a2 and /.(a2 } = 2at, the 

homomorphism g. induced by g is defined by g.(at) =at and g.(a2 ) = a2 • It is easy to see 

that Im (g.-/.) =< a1 - 2a2, a2- 2a1 >=< a 1 - 2a'.'!, 3(a 1 - a2) >. So Coker(g. - J.) =< 

at - 2a2, a1 - a2 > / < a1 - 2a2, 3(at - a2) >= {[OJ, [at - a2], [2(a 1 - a 2 )]}. To find 

Coker(g.- J.)/Vl. we need to know the H,.-action on Coker(g.- /.). \Ve have o([a1 - a2}) = 

[a:(at - a2)] = [a2 - at] = [a2 - a1 + 3(at - a2)] = [2(at - a2)] and o([O]) = [0]. So 

Coker(g.- j.)jn· = {[O]w. [at - a2Jw }. 

'rVe find the Lefschetz number L(J, g) as follows (we would like to thank Ross Geoghegan 

for helpful conversations about this calculation, many of the details of what follows may be 

found in chapter 5 sections 3 and 6 of [SE]). We write X = Xt X x2 = (5 1 X 5 1) X 5 2 , 

and f = It x h. g = g1 x 92 in the obvious way. Note, again from the Kunneth formula 

for homology, that H0 (X) "' Z; that Ht (X) "' H1 (Xt) f"V Z + Z; that H2 (X) ::: H2 (.Xt) + 

H2(X2)"' Z+Z; that H3(X) f"V Ht(Xt)®H2(X2) f"V Z+Z; and H4(X)::: Z. Let U1 and U2 be 

the fundamental classes of X 1 and X2 respectively, and ao E Ho(Xt), a 11 , a12 E Ht(Xt) and 

a 2 E H2 (Xt) be generators. Let a0 E H 0(Xt), a 11 , a 12 E H 1(Xt) and a2 E H 2 (Xt) be such 
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that Do(Xt)(a0
) = U1na0 = a2, Dt(Xt)(a11

) = Utnau =au, Dt(Xt)(a12) = Utna12 = a12, 

and D2(Xt)(a2 ) = U1 n a2 = a0 , where the Di are the Poincare duality isomorphisms, and 

n is the cap product. Let b0 E H0 (X2 ) and b2 E H2(X2) be generators, and b0 E H 0 (X2 ) 

and b2 E H 2(X2) be such that Do(X2)(b0 ) = U2 n b0 = ~~ and D2(X2)(b2 ) = U2 n b2 = b0 • 

Then the (homology) cross product a0 x b0 is a generator of Ho(X), au x bo and a12 x b0 are 

generators of Ht(X), a2 x bo a11<..l a.0 x ~ are generators of H2(X) , a 11 x b2 and a 12 x b2 are 

genrators of H3 (X), and a2 x b2 is a generator of H4 (X). 

Let Ut Xu.}. be the (homology) cross product of the fundamental classes Ut and u2 given 

above. Then Ut X u2 is defined in terms of tensor products (see Chapter 5.3 of [SE}). Since xl 

and X2 are orientable manifolds, the Eilenberg-Zilber Theorem, and the Kunneth Formula 

allow us to deduce in the top dimensions of the both manifold factors that that (up to sign) 

the (homology) cross product of fundamental classes is a fundamental class. In this way up to 

sign Ut X u2 in H-t(X), can be regarded as the fundamental class. Now for any 0 $ p, q $ 2, 

Dp+q(X)(aP x bq) = (-l)"(U1 xU.~) n (aP x bq) = (-l)5 (-l)P<2-ql((U1 naP) x (U2 n bq)) 

= ( -1 )"( -1 )P<2-ql (a2_p x b2 _q) = ( -l)HP(2-q) (a 2_p x b2-q), where s = 0 or 1. Let k(s, p, q) = 

s + p(2- q), then we have Dp+q(X)(aP x bq) = ( -l)k(.,,p,ql(a2_P x ~-q). Since Dp+q(X) is an 

isomorphism, we have n;~q(X)(a2-p X IJ.z-q) = ( -l)k(s,p,q)(aP X bq). Applying this result to 

the calculation of 00 (j, g)(a0 x b0 ), we have 
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Oo(/, g)(ao x bo) = D~(X)g• D4 1(X)J.(ao x bo) 

Similarly, we have 

= D~(X)g" D4 1(X)((jl). x (h).)(ao x bo) 

= D~(X)g• D4 1(X)((ft).(ao) x (h) .. (bo)) 

= D~(X)g• D.t 1(X)(ao x bo) 

= D4(X)g"((-1)k(~.o.u) (a2 x b2 )) 

= ( -l)k(s,O,O) D-t(X)(gi X g:i)(a:z X b'l) 

= (-l)k(s,O,OJD4(X)(gi(a:z) x g2(b2)) 

= ( -1)k(s,O,O) D~(X)(a2 X 3b2) 

= ( -1)k(s,O,Ol3D-t(X)(a2 x b2) 

= ( -1 )k(s.O.O) 3( -1 )k(s.O.O) ( ao X bo) 

= 3(ao x bo) . 

Ot(f,g)(au x bo) = a12 x ba; and Ot(f,g)(a12 x bo) =au x bo; 

02 (f. g)( a2 x ba) = (-12 )( a2 x bo); and 02 (f, g)( ao x b2) = ao x b2; 

03 (f,g)(a 11 x ~) = a12 x ~;and OJ(/, g)(a12 x ~)=au x b2; 

and 04 (!, g)(a2 x ~) = ( -4)(a2 x b2); 
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So the Lefschetz number L(f,g) = L!=0 (-1)qtr0q(f,g) = 3 + 0- 11-r 0-4 = -12 =!= 

0. Since X is a Jiang space and xw is not empty, Theorem 4.3.5 can be applied, and 

Nw(f , g) = #(Coker(g. - j.)/VI-' ) = 2. However at this point we can say very little about 

orbit length. In order to do this we need some other invariants. 
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4.4 More equivariant Nielsen type invariants 

In order to determine the number of coincidence points of a pair of vV-maps (J, g): X~ Y , 

we need to know both the number of coincidence point orbits and the length of each orbit. 

However, the length of an orbit may vary dependent on the location of the orbit. If a 

coincidence point .r of(/, g) is in Xu for some isotropy subgroup H, then the length of the 

orbit ~v· x is [H. : H], but if we deform f and g, this coincidence point may move to X K 

with K ::J H , as a consequence, the length of this new orbit is [H. : K]. So in order to 

find the minimum number of coincidence points, we have to distinguish those coincidence 

points from the others. Recall in chapter 2, in order to define the Nielsen number on the 

complement, we first defined maps ){,.,9,. : 'R1~c .9 ,. ~ R 1,9 , and then introduced the concept 

of weakly common coincidence class. These ideas will be used in this section. Each pair of 

~V-maps f, g : X ~ Y induces a pair of maps (Ju. gu) from xu to yu for each isotropy 

subgroup H. If an isotropy subgroup H is a subgroup of another isotropy subgroup I<, 

we have X K C Xu. and there is a map from the ~V K -classes of (f K, gK) in X K to the 

~VH-classes of (fu,gu) in xu (see Definition -1.4.5). 

~ote that if two isotropy subgroups H 1 and H2 are in the same isotropy type (H), then 

there is a w E ~V such that the action of w induces a homeomorphism from xu• to xu'].. 

This allows us to define a one to one correspondence between vV H 1-classes and vV H2-classes, 

and then subsequently to define the vV -orbit of a vV H 1-class. To see if a coincidence point 

orbit vVx in X(H) can be moved to some x<K>, we have to determine if the Hr'-orbit of the 

~V H-class that contains vVx, includes any vV-orbit of a vV K-class for some K ::> H. It may 
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happen that two different '-''V-orbits of vV H-classes may contain the same w·-orbit of a vV K-

class. This is different from the relative case where for a pair of maps (J, 9) : (X, A) -t (Y, B) , 

a coincidence class of U.-t, 9.-t) on a subspace is contained in a unique coincidence class of 

(f , g) . 

\Ve first define a map from the set of n· H 1-classes to the set of H" H2-classes when H 1 

and H2 are conjugate. Let n· be a finite group, and X and }'be compact n·-manifulus. \Ve 

will use the symbol I so( X) to denote the set of isotropy types of X. 

For ~V-maps f,g: X -t Y, and each HE lso(X) , we have the restrictions f" , gH 

X" -t yH off and g respectively on X". which are n·H-maps. 

From now on. we will assume that X H and Y H are connected and orientable manifolds 

for each (H) E I so( X). Suppose J, g : X -t }·' are l-'V-maps and H is an isotropy subgroup 

of n··. For each w E ~V , let H' = wHw-L (H' could be equal to H) . Then we have 

homeomorphisms l H • : X H -7 X H' and l H . : }' H -7 }' H' defined bv L H • (x) = wx for anv w .. '\ w,'l' • w .• '\ • 

.r E X", and l{t,y(y) = wy for any y E }·'" · Let lft.x and lft.Y be liftings of Lt,:,x and L;t,Y 

respectively. Then for each lift (f",gll) of (f",gH) , there is a (unique) lifting (]H',g"') of 

U"', gH') such that the following diagram is commutative. 
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where the bottom square is commutative because f and g are n· -maps. 

Definition 4.4.1 Define <I>H.H': 'R1H,911(H/H)-+ 'R1H',gH'(~lt-H') by <I>H,H'([(jH.glf)]wH) = 

[(jfl'._gH')]wH, where [(jH,_gH)]wH is the ~VH-class containing (jH,gH). 

Lemma 4.4.2 ¢ H.H' is well defined and is bijective. Furthermore, if H' = w' H w'- 1 and 

H" "H' ,_ 1 th . . "" = W W . en <!JH,fl" = (/)H'.H" o '¥-'H,H' · 

Proof: Voie have to prove that [(j11', gH')] is independent of the choice of w E Hl (and, 

· -H -H hence, the chmce of lw,x and lw,r·). 

• - H' - H' .. 
Assume w' E ~V 1s another element such that H' = w' H w'- 1, and (!' , g' ) the hftmg 

of (JH',gH') such that (}'H',g,H') = [!,,y(}H,_gH)(f~.x)- 1 . Then we have (jtH',g,H') = 

sents an element in vVH'. So w'w-1 is an action of an element in WH' on yH'; w'w-1 is an 

action of an element in »"'H' on X H'; [~ , y ( l~. y) - 1 is an action of an element in WH' -y H' ; 
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l[t, ,x(l;t,x )- 1 is an action of an element in }VH'.X'H'. By Definition 4.2.1, [(J"', _gH' )]w H' is 

- H' - H' 
equal to [(!' , g' )]wH'· 

tPH,H' is bijective since it has an inverse defined using w- 1
• 

Now Assume that H' = w' Hw'- 1 and H" = w" H' w"- 1
• Then H" = w"w' Hw'- 1w"- 1 = 

( II ')H( II ')- 1 It . b.· h t [H' l" [H [H' l" l" d W W W W . 15 0 \ilOUS t a w",X 0 w',X = (w"w') ,X• w".\'" 0 w',l'· = (w"w'),\'" an 

therefore I:;,· .. x v l:;,,x, i:;,:,l'. o l[t,,Y are liftings of l(w"w'),X and l~"w').'t" respectively. If 

([( -H -H)] ) [(j-H' -H')] d · [( -H' -H')] ( -H" -H")] <!JH,H' f ,g ~1/H = ,g WH' an lf>H' ,H"( f ,g ~Vfl') = (f ,g WH", then 

cl"',_gH') = l:t,,y(j",g")(i[t, ,x)- 1 and (f"",gH") = l;t:.,y(j"'.gfl')(l{t,' •. x)- 1• Therefore. 

(j"". gfl") = l~:.,\'.J:t. ,Y(jH, gH)([~ ,x) - 1 (l;t: .. x )- 1 = (l;t,: .Yi{t, ,Y )(j H. g8 )(i;:,: ,xl[t, ,x) - 1• This 

shows lf>H.H"([(jH, gH)h\-"H) = [(j"". g"")]wH" = tPH',H" o ¢u.w([(j" , gH)]wH) and therefore 

<Pff,H" = ¢H'.H" o ¢H.EI'· 0 

Definition 4.4.3 Let H be an isotropy subgroup of }V , and() a l--VH-class in n,H ,gH (l--VH). 

The }V-orbit of() is the set {¢Ff.H'(O)}we(H)t and is denoted by vV8. If a lifting (jH. 9") 

of U", g") is in 8, we say (jH, 9") represents }V(), and denote ~V() by { (jH, 98 )}. The set 

of all vV-orbits of lVH-classes is denoted by Ht"'RJH,gH(H-'H). Define incl: n,H,gH(H-'H) --7 

Proposition 4.4.4 incl: n,H,gH(l--VH) --7 vV'RJH,gH(WH) is bijective. 

Proof: It is sufficient to show that different vVH -classes are in different vV -orbits. By 

Lemma 4.4.2, we only need to show that if cf>H,H([(j", gH)]wH) = [(j(i, g{f)]wH then [(J", 9")]wu 

= [(f1",9f)hvH· Assume (]",9") and (j(i,gf) are two liftings of (f",g") such that 
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¢>H.H([(jH,_gH)]wH) = [(]f,gfl))wH, then there is awE W such that the diagram 

-H X 
(jH ,gH) 
~ yH 

-1. Ltf.x i Ltf.Y 
"H H -H u. ,gt ) f·H X 

is commutative. Since H = wHw-1, L:f.'r· is in ~VH, and (jH , _gH) and (](l,gfl) are in the 

same ~VH -class. 0 

.-\ssume that H c K are isotropy subgroups of ~V. For any lifting (jK' , gK') of (JK', gK'), 

where K' E (K), there isH' E (H) and a lifting (]H', gH') of (JH', g8') such that the following 

diagram is commutative. 
"K1 K 1 

- K' (/ ~) "f·K' X 

-;\" 
i lifrcK' 

-:y 
..!.. ·tH'cK' 

- H' X 
(jH',gH') 
~ f·H'' 

where i~'cK' is a map from _'(K' to a component of pfi~(XH') and i~'cK' is a map from }·K' 

to a component of pfi~ (Y H'). 

The example which follows illustrates that T(H)<(K) can be a multivalued map when 

~V is not commutative, and not necessarily singlevalued as stated in [WP3] (however, the 

results in (\VP3] are not affected). So T(H)<(K)( {(]K', _gK')}) is a set and we also use the 

notation {(]H':_gH')} E T(H)<lK)({(jK',_gK')}) and denote UweewR.1K.gK(WK)T(H)${K)(vVO) 

by 1m T(H}$(K). 
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Example 4.4.6 Let X = 5 1 X 5 1 X 5 1 X 5 1
' ~v = s .. the symmetric group of degree 4. 

The vV-action on X is defined as follows: if (it, i2) is a 2-cycle, then it acts on an element 

of X by exchanging the i 1-th and i 2-nd coordinates. For example, (1 , 2)(x 1,x2 ,x3 ,x.t) = 

(x2 , xt.x3 , x-t) . Note that xw = {(x , x , x , x) I x E S1} =~(51 x 5 1 x S1 x 5 1 ) is not empty. 

Let < (1. 2) >be the subgroup generated by (1 , 2). < (3, -!) >be the subgroup generated 

by {3 , -!) and < (1, 2), (3 , -!) > be the 5ubgroup generated by (1. 2) and (3, -!). Then 

x<tJ.-t)> = {(x1 . x2 , .r . .r) 1 x,xt.x2 E S1}:::: S1 x 5 1 x ~(5 1 x 5 1); 

x<< 1·2),(J.-!)> = {(.r.x, .r' . .x') I x , x' E 5 1},...._ ~(5 1 X 5 1) X ~(S 1 X 5 1). 

~ote x<< 1•2 l·< 3·-'>> c _y<<L2l> n x<<3·-'>> . Note also that < (1 , 2) > and < (3, -!) > have 

the same normalizer, < (1 , 2) , (3 , -!) >. So the vVeyl-group ~V < (1 , 2) > of < (1 , 2) > is 

< [(3. -!)] > and the \Veyl-group vV < (3, 4) > of < (3, -!) > is < [(1 , 2)] >. The vVeyl-group 

H' < (1. 2), (3, 4) > of< (1, 2) , (3.4) > contains [(2, 3)(1, 4)] . 

~ow let Y = X and f = g = id and x0 = (1. 1, 1, 1) . Since xw is non-empty, we can 

identify 'R1,9 (~V) with \l(J, g; x0 , x0 , w / • w9 )fvV. We know that for this pair f and g each 

ordinary Reidemeister class contains one element of 71" 1 (Y, y0 ). Let a be the loop represented 

by ~(S1 X 5 1) X 1 X 1 and f3 the loop represented by 1 X 1 X ~(S 1 X S 1 
). Let [o]w<( l ,2)> and 

[.B1w<(t,2)> E R1w<(l.ll> ,gW<(I.ll> (vV < (1 , 2) >) be the ~V < (1 , 2) >-classes containing a and 

j3 respectively and let [o]w<(t,2),(3,4)> and [.B]w<(l,2),(3,4)> E R1w<(1.2J ,(3.-t J> ,gw<(l .lJ.<M>> (vV < 

(1, 2) , (3, 4) >) be the vV < (1, 2) , (3, 4) >-classes containing ct and j3 respectively. Then 
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[ohv<(l,2)> =/= [,Bhv<(I,2)> since -w· < (1 , 2) >=< [(3, 4)] > and (3, 4)a =/= (3. So the classes 

containing [o]w<(l,2)> and [.B]w<(l,2)> in H-" Rfw<<t.:t)> ,9w<o .z>> {R" < (1 , 2) >) are not the 

same by Proposition 4.-1.4. On the other hand, [o]w<(t,2),(J,-t)> = [.B)w<(l,2),(J.4)> since 

~V < (1, 2) , (3, 4) > contains [(2 , 3)(1, 4)] and (2. 3){1, 4)a = .3. Therefore the image of 

[o]w<(L2),(J,t)> under T(<{l ,2)>)<(<(l,2),(3,-t)>) has at least two elements containing [a]u...-<{l ,2)> 

anJ LJiw<(l ,2)> respectively. Thil:i show~ that r is nut singlevalue<..l iu general. 

Definition 4.4. 7 .-\. finite set Q C U(H)~(K) Hl 'Rn: K (JK, gK) is said to be an essential basis 

of (JH , g8 ) over x<H), if for any essential ~VK'-class N' with (H) ::; (K') there is a n ... 'K-class 

.V E Q such that ~nV' E rcK'>~<K> (H 'N). 

Definition 4.4.8 Let j , g : X --t r· be ~~·-maps. For each H E I so( X) define 

NOwUn.gu) =#{essential ~VH-classes N of (jH,gH)IH7\f ~ u(H)<(K) Im T(H)<(K)} 

NOw(/H , gH)=min{#WIW is an essential basis of (JH ,gH) over x<Hl} 

Proposition 4.4.9 (~V -Homotopy Invariance) f ,..,.w f', g ,..,.~l-' g' , then 

( 1) iVOw(fu, 9u) = NOw(fk, g'u ). 

(2) NOw(JH. gH) = NOw(J'H, g'H) . 

for every (H) E I so(X). 

Proof: {1) Note that NOw(JH, 9H) is equal to Nwu(JH, gH) minus the number of essen

tial classes which are in Im (r(H)<(K)) for some K :J H. So to prove (1), we only need to 

prove that if a "'"H-class NWH of (! 8 , g8 ) corresponds to a WH-class N'wH of (f'H, g'H) 

under a pair of homotopies ( F, G), then NWH is in Im ( T(H)<(K)) if and only if N'WH is in 

Im (r(H)<(K)). 
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Assume that (]8 ,g8 ) is a lifting of (f",g8 ) and NWH - lVH(px(f(j8 ,gH))) and 

4yK (jK ,gK) 
----=-1> f·K 

-:y 
..l.tifcK 

-y 
.j.iHcK 

}(H (jH,gH) 
---+ }•H 

is commutative. 

Assume that (F, G) is a R"-homotopy from (f.g) to (f'.g'). Let (F" ,G") be a lifting of 

such that (FK , (;K)Ix x{O} = (jK ,gK). Then we have the following commutative diagram. 

.\"K X I 
{f'K aK) 
~ f·K 

-\' .!. iifcK X id 
-1~ 

.!.iHcK 

.\"" X I 
(FH ,C;H) 

---+ f·H 

Since N'WH corresponds to N~~·H under homotopies (F, G), we have 

tWH • - H - H N = H' H(px(f(F 1.\x{l}• G lx x{l}))). 

This shows that N'WH is in Im T(H)<(K). By running the homotopy backward we can show 

that if N'WH E Im(r(H)<{K)) then NWH E Im(T(H)<(K)) · 

(2) Assume g is an essential basis of U" , g8) over x<H>. Under the pair of homotopies 

(F, G), it corresponds to a set Q' c u(H)~(K) vV'RwKU'K ' g'K) . We will prove that Q' is an 

essential basis of (f'" ,g'8) over x<H>. Then we have NOw(f'8 ,g'") ~ NOw(f8 ,g8) by 

the definition of NOw since Q and Q' have the same number of elements. \Vith the same 

argument, we have NOw(f8 , g8 ) ~ NOw(f'8 , g'8 ), and hence the equality. 
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Let N'wK be an essential W K-class of (f'K, g'K), where (H) ~ (K), and NWK be the 

essential vV K-class of (JK, gK) corresponding to N'wK under the homotopy (F, G). So N~'r'K 

is essential. By the choice of Q, there is an isotropy subgroup K 1 ~ K and a vV K L -class 

is commutative. As we saw in Theorem 2.1.16. this diagram leads to the commutative 

diagram 

- • - K - K - K1 - K1 
[(Jf\ 1 ,gK1 )]wK1 =(}respectively. Hence [(f' ,g' )]wK = N'wK. and vV[(f' ,g' )] E Q'. 

The diagram shows that ~V N'w K E '(K)<(Kd (v~"[(i'K1 , g'K1 
)]). 0 

Definition 4.4.10 Let J, g : X ~ Y be ~V -maps, define 

A-!Ow(J(H), g<Hl)=min{# coincidence ~V-orbits of (cp, l/J) on X( H) lcp "'W j, t/J "'W g} , 

1Vfw(f(H) 1 9(H)) =min{# coincidences of (cp, t/J) on X(H)I'P ""W J,l/J ""W g}: 
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Alw(J<H>,g<H>) =min{# coincidences of (~P , l/J) on X(H}I'P "'w f, l/J ""'w g} . 

Theorem 4.4.11 (Lower Bound) Let X , Y be ~~,.-manifolds with the same dimension and 

f,g : X ---t Y lV-maps. A.ssume for any (H) E Iso(X), dim _yH =dim }"H, then we have 

(2}. Aln; (f<Hb 9(H)) ~ [H' : H] · NOw(f ff, 9H). 

(3) . ~\Iw(f<H> , g<H>) ~ L(H)S(K)[~V : K] · NOnl (fK ,9K)· 

[(j,g) and {wxi}weW n {wxj}we'W = 0 for i -:j:. j, i.e. {u:xi}'s are the only orbits On _y(H} 

and any two of them are distinct. 

For each i let J( be the largest subgroup such that .xi E X K,. and let Ni be the element 

in RJ"·.
9

K, containing x i. We will prove that PVNi} is an essential basis over XlH) _ Assume 

.V' is an essential ~V K' -class with H c K ' . then ~v' contains at least one coincidence point, 

say x' E XK'. Since u:=l{wxdweW = x<H>nr(f,g) , X 1 E {wxi}weW for some i, orx' = WiXi 

Since Ki is the largest subgroup such that Xi E x«•, we have K" C K i. It is not hard to see 

there are liftings (jK•,gK') of (JK• ,gK•) and (jK" , gK") of (JK" , gK") such that the diagram 

.Y:K, (jK; ,g;i) }-.,.K, 

-=x-
.J,. tf<"cK, 

-=x-
..J.. lf<"cK, 

- K'' X 
(jK" ,gK") 

--t yK" 
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is commutative. Just choose lifts to both have coincidences which project down to a set 

containing xi· This shows that the tV-orbit of N' is in T(K,)c(K")(~VNi ) and F 'V.Ni} is an 

essential basis over X". This proves (1). 

(2). Assume that N is an essential ~VH-class, then N contains at least one coincidence 

point. If ~r.v ft. u ( H)<(K) Im T(H)<(K) · then all the coincidence points in N lie in XH· So 

there are at least XOw(fH , 9H) coin<.:iJenl:e points ou XH . By Propo::~itiuu -l..l..! , any two 

classes in NOw (f H, g H) have coincidence points which are in different ~F -orbits. ='I ate that 

the length of each ~V-orbit is [~V : H], so we have the inequality. 

(3) follows from (2). 0 

Let H =< 1 > in Theorem -1.-1.11 , we have 

Corollary 4.4.12 

is a lower bound for the number of coincidence points of (f' , g') , for any pair of ltV -maps 

!' "'w f and g' "'w g. 0 

4.5 Computations 

In this section, we will discuss the computation of NOw(JH , 9H) and NOw(!" , g"). As we 

pointed out in the last section, in order to estimate the number of coincidence points of a 

pair of W -maps (f, g), we have to find not only the number of coincidence point orbits, but 

also the location of each orbit so that we can know the length of that orbit. For each orbit in 
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Xu , its length is [H' : H] and hence the number [~V: H] · NOw(fH, 9H) is a lower bound for 

the number of coincidence points of (f, g) on x(H) (Theorem -1.4.11). Though the technique 

used in Theorem 4.14 in [vVP3] can be used here~ we take a different approach. vVe make use 

of the results and discussion in Section 4.3, and the results in the relative case to compute 

.VO-._,.r (f H. g8 ) under certain conditions. The relationship between the minimal number of 

coincidence points of (J,y) anti XOw(JH.yH) is very cumplic..:ateJ~ and the cumputatiou uf 

NOu.:(f 8 .g") is generally more difficult than the that of NOw(JH,9H). However in some 

special cases, it can be reduced to the computation of NOw(fu, gH ), which in turn can be 

reduced to the computation of R ... v H (f H, g H) or of#( Coker( (g H). - (f H).) ;rv). Throughout 

this section and the next section, we assume that X" and yH are connected and oriented 

manifolds for each H E I so( X). 

Theorem 4.5.1 Let X, Y be ~V -manifolds, and (f, g) a pair of W -maps from X to Y. If 

Y 11 is a Jiang space or (f", g") has the weak Jiang property for some -isotropy subgroup H 

of ~V. then either 

{1} L(f",g") = 0 => NOw(fu.gu) = 0, or 

{2) L(f" , g") =F 0 => NOw(fu,9H) = #~r'R1H,9H(~VH)- #(U<H)<(K) Im r<H><<K)) 

Proof: ( 1) is obvious since when L (f H, g") = 0, there are no essential elements in 

'R fH ,gH (~VH). 

To show (2}: we only need to note that all ~VH-classes are essential, and, by Proposi-

tion 4.4.4, that 'R fH ,gH (WH) is in one to one correspondence with W'R JH ,9 H (W.H). 0 
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From Section 4.3, we know that if the assumptions of Theorem 4.5.1 are satisfied and 

if xwH t= 0, then 'RwH(f", g") is equal to Coker(g!f - f.")fv'lH. Thus to compute 

.VOw(fH,gH), we only need to know what #(U(H)<(Kl Irn '<Hl<(K)) is. \Ve take the next few 

pages to discuss the computation of #(U(H)<(Kl Irn r(H)<(KJ), or more precisely, to identify 

the subset of Coke.r(g. - /.)/vV H corresponding to (U(H)<(K) Im '<HJ<(KJ)· 

Throughout this section, we will assume that _ytl/ I 0, and for each isotropy subgroup H, 

.\:. 8 is connected. \Ve choose x 0 E xn· , y0 E }-n: and wt.w9 E }·w. Since for each isotropy 

subgroup H \Ve have _yw c X" , we can choose x0 and y0 as base points of _yH and r·H 

respectively and set w1H = ...v1 and i.JJ9H = w9. \Ve denote the inclusion map from _yK to X" 

by iHcK: XK ~ _yH if H C K . The homomorphism induced by iHcK from 1r 1(XK, x 0 ) to 

iT1 (X", .ro) will be also denoted by iHcK · Since XK is connected and xw C X K c X" , iHcK 

induces a map from \l(JK,gK:x0 , yo,u.Jt,w9 ) to \l(J" , g" :xo , Yo , i.JJt ,w9 ) , which is defined in 

Definition 2.1.7 (in this case, the basepoints r 0 , y0 and the paths from y0 to g(x0 ) and f(x0 ) 

are all the same), and we will denote it by IHcK· 

\Ve will first identify the subset of'R fH ,gH (H·· H) that corresponds to (U(Hl<(K) lm T(H)<(K)), 

and then identify the corresponding subset in \7 (J H , g"; x 0 , y0 , w f , w9 ). 

Define E,ll ,gH(vVH) = {vVH-class ()I weE u(H)<(K) Im T(H)<(K)} c R,H ,gH(vVH). 

Lemma 4.5.2 Let (X, .4) and (Y, B) be pairs of manifolds with A. and B connected, and 

f , g: (X,A) -7 (Y,B) be maps. Let (j,g) be a lifting of (J,g) .. then the following two 

statements are equivalent. 
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{1} there is a lifting (i.t. .9.-t) of U.-t , g.-t) such that the diagram 

.-i lt.9¢ 8 

-!. t.-tcx .!. tacY 

.X" i .fl) f·. 

is commutative. where z.-\CX is a lifting of inclusion map i.-tcx : A ~ X ; 

(2} j andg map some component ofp"X1(A) to the same component ofp)-1(8). 

Proof: (1)=>(2): ~ate that i.-tcx(.-i) is a component of Px1(A). Since the diagram is 

commutative. it is sent to the same component iao·(B) of p}-1(8). 

(2)=>(1) : Assume .-i 1 is a component of Px1(A) which is sent to the same component B1, 

of Px1(B), by j and g. Let I.-tcx be the lifting of the inclusion map i.-tcx : A ~ X which 

sends . ..\. to .41, and let zacY be the lifting of the inclusion map iac...- : B ~ Y which sends 

B to B1• It is easy to see that .-i is a covering space of .-i1, and that iJ is a covering space of 

B1. Let f-t and 9~\ be liftings of j l,.h and .91.-il· It is easy to check that J.-~. and fJ.J. are liftings 

of 1.-t and 9.4 respectively, and that the diagram 

.-i ltllf 13 

tiAcx tzacY 

.. x- j ,!J) y. 

is commutative. 0 

Lemma 4.5.3 An element {(jH,_qH)} E 'R1H,9H is in EJH,9H if and only if there is an 

isotropy subgroup K ::> H, and a lifting (jK , gK) of (JK, gK) such that the diagram 
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-K X 
(jK ,gK) 
~ f·K 

.t.11;cK -y 
,!.iHCK 

-H (jH,gH) f·H X ----=+ ! 

is commutative. 

Proof: By Lemma -1.5.2, we only need to prove that if an element {(jH,_gH)} E n1H,gH 

is in E1H ,gH, iff there is an isotropy subgroup K :::>Hand a component .'<f c (PxH)- 1(XK) 

such that jH and _gH map .Yf to the same component f·r c (pyH )- 1(YK). 

By the definitions of E1H ,9 H and T(H)<(K)• there are isotropy subgroups H' E (H) and 

K' :::> H' and liftings (jH'._gH') of (JH',gH'). and (jK',jK') of (JK'.gK') such that the 

diagrams 
-1\1 1\1 

- K' (/~) f•K' X 

::\" 
,!. tH'CK' 

-y 
.1. iH'CK' 

_yH' (jH' gH') 
~ f·H'. 

and 

_yH' (jH' gH') 
~ f·H' 

,!. [H' 
w,X 

,!. jH' 
w,Y 

-H X 
{jH gH) 
~ 

-u Y, 

are commutative, where w E ~'V and H = wH'w- 1• By Lemma 4.5.2, there is a component 

S::f' c (PxH' )- 1(XK') such that jH' and _gH' map xr to the same component f·lK' c 

that w induces homeomorphisms from x"' to X", XK' to xK, yH' to yH and yK' to 



CHAPTER 4. EQUIVA.RL-\NT COINCIDENCE THEORY 131 

yK, so (PxH' )-1(XK') is mapped to (pxu )-1(XK) by f:t:x and (pyH' )-1(}'·K') is mapped to 

(p't·H)- 1(YK) by I:t:y. Assume that .t[<' is mapped to a component .Y[< E (PxH}- 1(XK) 

by L:J.x, and f·1K' is mapped to a component f·1K E (pyH )- 1(YK) by itt.~·· From the second 

commutative diagram, we have that ... Y [< is mapped to f·1K. 0 

Lemma 4.5.4 The map incl defined in Definition 4.4.:1 induces a one to one co1Tespondence 

between E1u ,9 u (H" H) and Uul)<(K) Im T(H)<(K). 

Proof: I~ is obvious from the definition of E JH .gH (~V H) that u(H)<(K) Im T(H)<(Ki is the 

image of E1H,9H(VVH) under incl. By Proposition 4.-1.4, incl is injective. So we have the 

result. 0 

By Lemma -1.5.4, we have #~V'R.1 11 ,9 u (H'H)-#(U(H)<(K) Im i(Hl~(Kl) = #('R.1H •9 u (P/ H)

E1H,9n(lV H)). By Theorem -1.3.3, 8/"u~911 is a one toone correspondence between 'R.1H,9n(~V H) 

and 'VUH, gH; xo, Yo, Wf! w9)/~V H. So to calculate #~V'R1H ,9n (H-'H)-#(U(H)<(Kl Im T(ff)~(K) ), 

\ve need to know the image of Etu.9u (~V H) in \j(JH, gH; .ro, Yo, ol.)f, u..•9 )jHl H under 8~~~9u. 

Lemma 4.5.5 An element() E 'R1H,9u(VVH) is in E1n.9n(~VH) if and only if for any 

a E 9/"~~n(O), the f';1 ,g~9 -congru.ence class containing a is inUHcK Im ZHcK, where IHcK 

is induced by the inclusion map iHcK : XK --+ .XH if H C K. 

Proof: Let (jH,gH) be a lifting of (JH,gH), x0 E (Px")-1(x0 ), and a be a path from 

gH(io) to jH(io), then e~l~n([(jH,gH)]wH) = ~VH[wg. (pxwH 0 a). w.f1]. By the proof of 

Proposition 1.2.5, we know that any a E \J(/H,gH;xo,y0,w9,wt)f'W.H has this form. Now 

assume() E E1n,
9
H(WH). By Lemma 4.5.3, there is a lifting (jH,gH) of (JH,gH) in fJ, and 
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a lifting (/K, [JK) of (f K, gK) for some isotropy subgroup K :::> H such that the diagram 

_yK (jK ,g;) f·K 

-=~ .J,.ZflcK 
-y 

.J,.iHCK 

-H X 
(jH ,gH) 
~ }'"H 

is commutative. Let i~ E (1~cK)- 1 (i0 ) C _'\;_K and {3 be a path from _gK(x~) to jK(x~). 

is J1r,g,.-congruent to a. However, i.l19 · (pxwH o I~cK(.J)) · w"t is a loop in XK , so o is in 

UHcK Im IHcK · 

Now assume that (jH, _gH) E 0, and [w9 · PxH(o:j,fJ) · w1l is in Im IHcK for some isotropy 

subgroup J( ~ H. By Proposition 1.2.5 and Lemma 2.1.9, (jH , !JH) is in Im l.fK ,gK , so there 

is a commutative diagram 

_';K (jK gK) 
~ f·K 

-=~ .J..tflcK 
-:y 

.l,.lHcK 

.H 
X 

(jH ,gH) 
~ f·H. 

This shows () is in E JH ,gH ( n,· H) by Lemma 4.5.3. 0 

Lemma 4.5.6 Assume xw =I= 0 and H is an isotropy subgroup of n:. If an element 

in UHcK Im lHcK· 

Proof: Assume that K 1 is an isotropy subgroup of ~V such that H c K 1 and [o:] E 

Im tHcKt· Then there is an element [ad E 7T't (YKt) such that [a] = lHcKt ([ot]) = [iHcKt o 

at]. Now for an element w E ltV H, wHw- 1 = H and let K 2 = wK1w- 1, then we have 
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0 

Lemma 4.5.6 shows that UHcK Im lHcK is closed under the action of nr H on 

Proposition 4.5. 7 Assume _yW # 0. Then ej~~gH induces a one to one correspondence be-

Proof: It is sufficient to observe that e,~~u H induces a one to one correspondence between ,g 

E1H,9H(~VH) and UucK Im lHcK/~VH . By Lemmas -1.5.5 and 4.5.6. an element 0 is in 

0 

Theorem 4.5.8 Let X , Y be n· -manifolds, (f. g) a pair of ~V -maps from X to r·. Suppose 

X w is nonempty, and for every isotropy subgroup H, that X H is connected. Then if Y fl is 

a Jiang space, or if (JH , gH) has the weak Jiang property for some ·isotropy subgroup H of 

H', then either 

{1) L(JH,gH) = 0 => NOv.-·(/H,gu) = 0, or 

(2) L(JH,gH) =f. 0 => NOw(fH,gH) = #((Coker(g!f- f!f)- UHcK lm [l.HcK)/H'H). 

Proof: (1) follows as in Theorem 4.5.1. So we assume that L(JH, g8 ) =f. 0. Since every 

~VH-class is essential, by Lemma 4.5.4, 4.5.6, 4.3.4 and 2.3.1, we have that NOw(fa,9H) = 

= #((Coker(g!f- J!f)- UHcK lm [l.HcK)fvVH). 0 
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Note 4.5.9 Unlike Theorem 4.14 in [WP3] , Theorem 4.5.8 does not require that ~V be 

abelian and that for any a E 7r 1(X") , Twy(a) C 7rt(X") ( where TwH(a) = {i E 

H;-H I :Ya¢w ( :y) -l = a} ~ and rv H is the set of liftings of rv H and <l>w H is a map from 

t~;-H to itself such that ¢wH(i)J = j:y for a given lifting j off: X--? X and i E Ht'H. See 

[vVP3] for details). Hmvever, it does require that x~\,. be nonempty (this is not required in 

Theorem -tl-! in [\VP3j .) 

Theorem 4.5.10 Let X , r· be ~V -man-ifolds , and (J, g) a pair of n: -maps from X to Y. 

Suppose that _yw is nonempty and for every isotropy subgroup H , that X H is connected. 

Then if r·H ·is a Jiang space. or if U", g") has the weak Jiang property for every isotropy 

subgroup H of n· ' and ITHEI:~o(.'()L(f" . g") # 0. then 

Proof: For each isotropy type (K) ~ (H) , choose an isotropy subgroup K ~ H and 

the maximal set gK of NOwK(fK , gK) ~V'K-class such that for each OK E gf< , ~reF< fl. 

T(K)<(K')(Hl (JK') for any isotropy subgroup K C K' and any element (JK' E 'Rf"' .g~<'. Then 

U(H)$(K) gl< is an essential basis over _y(H). For any essential tt• K-class OK , if ~l/OK fl. 

T(K)<(K')(Hl (JK,) for any isotropy subgroup K c K', then OK E u(H)~(K) gf(. Let WOK E 

T(K)<(K')(~VOK') for some isotropy subgroup K C K', and let K 1 be the smallest isotropy 

subgroup such that there is a lV K 1-class 81 satisfying WBK E T(K)<(Kl)(rV81). Then 81 is in 

U(H)$(K) gf< , otherwise, there is a contradiction to the assumption that K 1 is smallest such 

isotropy subgroup. From the definition of u(H)$(K) g K ' it is minimal. 0 
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Example 4.5.11 Let us now compute NOw(fH, 9H) and NOw(fH, gH) for the pair of maps 

(f , g) in Example 4.3.7. 

There are only two subgroups of ltV, the trivial group < 1 > and ~V itself. Vv'e already 

discussed the homology of X and the homomorphisms induced by f and gin Example 4.3.7. 

So we give the homology of X"v here and the homomorphisms induced by fw and g~'-'· . 

xw = (ei8 .~iO.(x , y , O))} .... st X 5 1, where the first factor st is the diagonal of 5 1 X 5 1• 

and the second factor S 1 is the equator of 51. . So H 1 (Xw) "' H 1 (S 1 x S1) ~ Z $ Z. Let a 

and b be the generators of first and second factors respectively. Then the homomorphism i. 

induced by inclusion map i<t>CW : xw -+X is as follows: i.(a) = a 1 + a2 and i.(b) = O(see 

Example 4.3.7 for the definition of a 1 and a2 ) . The homomorphisms induced by fw and gw 

are as follows: J!". (a) = 2a, J!'v' (b) = -b and g!v (a) = a. g;~· (b) = 3b. 

(1) NOw(fw , gw) = 4. Since ~Vis the action group, NOw(Jw,gw} = Nt-,·(fr."·.gw) = 

N(jw , gw). Since xw is a Jiang space and L(fw , ll') = 4, N(fw, g~r.·) = Coker(g!v -

f!v) . Since Im (g. - f.) =< a. -lb >, we have Coker(g. - f.) = {[OL [b], (2b], (3bJ}. So 

.VOw(fw.gw) = N(fw , gw) = -l. 

(2) To compute NOw(/< 1>, 9< 1>), we need to find the image of Coker(g!v - f':"') -

{[OJ, [b], (2bJ, (3b]} under Jl< 1>cW in Coker(g.- f.)/~V. Since i.(a) = a 1 + a2 and i.(b) = 0, 

and (at + a2 ] = [a 1 + a2 + (a1 - 2a2) + (a2 - 2at)] = [0}, we have Im jj. = {[OJ} . Hence 

NOw(f<l>• 9<t>) = #(Coker(g.- f.)- Im M/~V = #{[at]w}::: 1. 

So we have NOw(J<l> , g< 1>) = NOw(!, g) = 1 + 4 = 5. Since the length of an orbit 

in X<t> is 2, by Theorem 4.4.11, 2 · NOw(f<t>•9<t>) + NOw(Jw,gw) = 2 · 1 + 4 = 6 is 
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a lower bound of the number of coincidence points of (!', g') for any ~V -maps f' ,..._,w f and 

g' '""'W g. On the other hand the ordinary coincidence Nielsen number is 3. 

The following example is presented in [vVP3} by an alternative method. \Ve use our 

method to calculate the equivariant Nielsen number, and point out some errors made in 

[\VP3]. 

Example 4.5.12 Let X = y = 5 1 
X 5 1 

X 5 1 
X 5 1 

X 5 1 
X 5 2 and ~v = z6 =< (} > X < 3 > 

where Z2 =<a >, Z3 =< .3 >. Let ltV act on X via 

a . (ei6 1 , •••• ei65, (x. y, z)) = (ei82. eiBt, eiBJ, e'B-t, eiB~, (x, y, -z)), 

j3. (eiBt, ... , eiBs, (x. y, .:) ) = (eiBt, ei62, eiBs, ei63, ei6", (x, y, z)). 

Then x<Q>= { (e16
' e'6 , e183 ' ei84 , e185 , (x, y, 0) n~ T 5 • and 

x<;:l>= {ei6t,ei8\ei6,ei6,ei8,(x,y,z))}~ T3 X 52, 

xw = (eiBt, eiBt, ei82, ei82, ei62, (x, y, 0))} ~ Tl. 

Let g: X~ Y be the identity, and f: X~ Y the ~V-map defined by 

f(eiOt, ... , e'Bs, (x, y, .:))= (ei20:z, ei2Bt, ei2B3, ei26-~., ei28~, (x, -y, -z)). 

All the conditions in Theorems 4.5.10 and 4.5.8 are satisfied, so we can use these theorems 

to compute NOw(fH, gH). 

(1) NOwU<t>•9<t>) = 0. 

Let Xt =51 X 5 1, and /I: xl ~ xl be defined by !I(eifh,ei82 ) = (e'202 ,ei281). 

Let X2 = 5 1 xS1 xS1
, and h : X2 ~ X 2 be defined by J2 (ei81 , ei62 , ei93 ) = (e120

1, e'26
'l, e'20

3 ). 

Let X3 =52
, and h: X3 ~ X3 be defined by ]J(x, y, z) = (x, -y, -z). 
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Then X= X 1 x X2 x .XJ and f = ft x h x fa, and there is a one to one correspondence 

between Coker(!- f.) and Coker(l- ft.) x Coker(!- h.) x Coker(! - /J.). 

Let a1,a2 E H 1(Xt) be generators represented by 5 1 x {x0 } and {x0 } x S1 respectively. 

Then Coker( I- ft.) = {[0], [at], [2at]}. It is easy to see that Coker(!- h.) = {[0]} and 

Coker(! - /J.) = {[0]} 

L v1 ( i8 i9 _i8) ~ v Th v·<iJ> v . . ,,, v J 1 · 1 .· - · ·d et .\. 2 = e . e , t:: c .\. 2 . en .\. .:::: .q "" .\.2 x .\.3 an t te tnc u:stun t = t x1 .x 

i2 X idxJ from x<J> to X 1 where i2 is the inclusion from X~ to x2. The image of P<l>C<J> 

is equal to Im {1. 1 x lm P2 x lm jj3 . Now it is easy to see that il< l>C<:3> is onto since Pi is 

onto fori= 1. 2. and 3. Therefore. we have NOw(f<l>· 9<t>) = 0. ( Note that we do not 

need to consider the images of P<t>c<o> and fl<t>cw ). 

(2) Similarly, we have NOwU<o>· 9<o>) = 0. 

(3) :.VOw(fn',9'-'l) = N(fn.:,9n:) = 2. 

(-1) NOu:U<:J>,9<tJ>) = 1. 

As in (1), we have Coker( I- f;P>) =Coker( I- f'(-.13>) x Coker( I- f 2<_d>) x Coker( I-

f~8>) and Coker(! - f'(-.rJ>) = {[0], [ad, [2at]}, Coker( I - f;-..13>) = {(0]} and Coker(l -

f~J>) = {[0]}. So Coker(! - f; 13>) = {([0], [0], (0]), ([ad, [0], (0]), ([2at}, [OL [0]) }. 

v~V ,..,. VI v1 VI h VI _ {( iS i8) E v } VI _ {( i8 i8 i8) E v } d .\. ....... \. 1 x -'- 2 x ·'-a• were .. " 1 - e ,e -'- 1 , -'- 2 - e ,e ,e .'\. 2 , an 

X3 = {(x, y, 0) E X 3 }. The image of fl<tJ>cW is {([0], [OJ, [0]) }. The calculation is similar 

to Example 4.5.11. So Coker(! - f;f3>) - ImjL</J>cW consists of two elements, namely 

((ad, (0], (0]) and ((2al], [0], [0]). To prove that NOw(! <f3>, 9<13>) = 1, we only need to 

show that the action of the Weyl group of < .B >, W < /3 >"'< a >, on Coker(! -
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J:-8>)- Im iL<;3>cW is nontrivial. In fact , o· ([at] , (0], [OJ) = ([a2}, [0], [0]), but ([a2], (0], [0]) = 

([2ar], [0], [0}) since [a2} = [a2+(l- j<i3>t. )( -a2)] = [2at] . So we have NOwU< fJ>, 9<B>) = 1. 

Finally, we have that 

~<t>c(K)[n·: K]NOw(fK·YK) 

= 6 · NOwU<t>• 9<t>) + 3 · NOw(f<o>•Y<a>) + 2 · NOw(fa, ga) + 1 · NO,.o,:(J~v. gw) 

=6·0-i-3·0+2 · 1+1 · 2=-t 

So 4 is a lower bound of the number of coincidence points of (f' , g') for any n· -maps 

!'"'I-I.: f and g' ""w g by Theorem -1.4.11. 

Note 4.5.13 There some errors in the computation of Example 3.9 of [vVP3J, where the 

spaces and maps are the same as in Example 4.5.12. In particular, Nc(J <;J>) = 2, not 4 as 

stated in [vVP3]. In fact , the fixed points (m, m2 , 1, 1, 1, (L 0, 0)) and (m, m2 , 1. 1, 1, (-1, 0, 0)) 

are in the same class. To see this let a : I -1- 5 2 be a path from ( 1, 0, 0} to ( -1, 0, 0), and let C 

be the path in X defined by C(t) = (m, m2 , 1, 1, l.a(t)) , then Cis a path between these two 

points and f o C ,.._,C. So by Theorem 3.7 in [vVP3j, NOc(f<i3>) = NcU<B>)fvl/ < (3 >= 

2/2 = 1 instead of 2. This causes incorret results in the computation of NOc(f) and me (f), 

which are the same as NOa(J<I>, id< 1>) and the minimal number of fixed points of maps in 

the G-homotopy class off respectively, and the correct results should be NOc(J) = 3 and 

mc(f) = 4. As a consequence #f(j) is not the minimal number of fi."'{ed points of G-maps 

in the vV-homotopic class of j, as claimed in [vVP3] (see p.163 in (WP3] for detail). 
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4.6 Minimality 

In this section, we will prove that in some cases the lower bounds NOw(JH, 9H) and 

j\lOn·(JH, gH) on the number of orbits can be attained. First, we will give an analog of 

Schirmer's method to obtain a pair of maps (J' , g'), which is ~V-homotopic (f ,g), and in 

which #f(f', g') is finite. Then we will coalesce the coincidence point orbits in the same 

~ l/ -class to a single orbit. 

Lemma 4.6.1 For any n· -space X and E > 0, there is a c5 > 0 such that, if f . g : X -+ Y 

are equivariant maps and d(f(x) , g(x)) < c5 for all x EX , then f and g are equivariantly 

E-homotopic through a homotopy constant on the coincidence set off and g. 

Proof: See Corollary 2.3 of [\ND]. 0 

In [SHl], in order to prove the minimal theorem, a sequence of numbers { EDf=o are 

introduced. vVe give the definition here. Let y be a vV -manifold of dimension n, E > 0 be 

arbitrary, with corresponding 6 given by Lemma -1.6.1, and U = {Ui}~=l be an open covering 

of r· such that for each 1 ~ i :::; l there is a homeomorphism ¢i : Ui -+ B", where B" is a 

unit n-disk. Let c5' > 0 be the Lebesque number ofU and 6" = min{6',c5}. 

1 I 1c511 · fn+l = 4 · 

2. Suppose <i+l is defined. There is a c5j+l such that 0 < 6j+ 1 = 6j+ 1 (Ej+l) < ~. and such 
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Set c:j = Min (c:j+1, "Yj+d· 

Then after n + 1 steps, we have 0 < €a :5 ~1 :::;, •.. , < c:~ :5 e~+l = ~611 • 

The following lemma is an equivariant version of a generalization of Lemma 1 in [SH1]. 

Lemma 4.6.2 Let K be a simpl-icial ~V -complex with property ( Pt) (see Definition 4.1.11), 

0 :5 d < n and K 1 be an invariant subcomplex of K such that Kd- 1 C K 1 . Let g : K ~ Y 

be a H' -map with the property: 

{1) dy(g(am)) < tc:~ for all am E K. 

Let f : K 1 -+ }·· be a H' -map with properties: 

(2) #f(f, 9IK1 ) is finite. 

(:1) If- gl < c:~ on K: . 
Then there is a ~V -extension f' : K 1 u Kd ~ Y off such that: 

{2)' f(f',giK1uKd) = f(r9!Kl). 

{:1)' If'- gi < c:~ on (Kt U Kd)i. 

Proof: vVe will prove the lemma by induction on the number ld of the d-simplices in 

K-Kt. 

If ld = 1~ let ad the singled simplex. Since dy(g(ad)) < ~E~ by (1) and on 8ad, dy(f, g) < 

f~_ 1 , dy(g(ad) U f(8ad) is less than 6', the Lebesque number of the given open covering U 

of Y, and therefore, g(ad) U f(8ad) is contained in some Ui E U . By the choice of f'd_ 1, we 

have !<Pi of- <Pi o gj < &~. By Lemma 1.6.1, we have an extension ¢i of' of cPi of such 

that I<Pi of' - cPi o gj < 6~ and f(¢i o J', cPi o g) = f(¢i o /laad, rPi o Ylaad) since d < n. By 
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composing ¢i1 with ¢i of', we get an extension f' off over K 1 uad with the properties that 

d(f', g) <~don ad {by the choice of c5d) , and f(f', 9[K1uad) = f(f, g[K1 ). 

Assume the lemma is proven for ld ~ k. Now assume Ld = k + 1. Let ad bead-simplex in 

K- K 1. :\s above, we can extend f over K 1 uad. Since K has property (Pt), we can extend 

f over Kt U (Uw wad) by applying the ~V-action. Now let K2 = Kt U {wad} , then K 2 is an 

invariant subcomplex of K with the same properties as K 1, and the uumoer of d-simplices 

in K - K 2 is less than or equal to ld. By the induction hypothesis, f can be extended to 

K 2 U Kd with the desired properties. 0 

The next lemma is for the case when n = d. 

Lemma 4.6.3 Let K be a simplicial ~V -complex with property (Pt) and K 1 an invariant 

subcomplex of K. Let g K ---t }. be a ~t-' -map with the property that dy(g(am)) < ~€~ 

for all am E K. Let f Kt U Kn-t --+ Y be a H' -map such that [f - g[ < E~_ 1 and 

f(f' , g[Kn-tuK1 ) C K 1 , then there is a ~V -extension!' : Kn ---t Y off such that lf'- g[ < E~ 

and for any n-simplex an, if f(j', 9[Kn-tuK1 ) naan # 0, then f(j', 9IK"-tuKJ n (int an)= 0; 

iff(J' , g[Kn-luKJ naan = 0, then f{f',g[Kn-tuK1 ) n (int an) is at most one point. 

Proof: Similar to the proof of Lemma 4.6.2. 0 

Corollary 4.6.4 Let K be a ~V -complex of dimension n and K 1 be an invariant subcomplex 

of K, g : IKI --+ Y and f : [Kt[ --+ Y be ~V-maps such that dy(f,g) < E~ on [Kt[, and 

f(j, g[K1 ) a finite set. Then there is a W-extension f': IKI--+ Y such that dy(f',g) < ~n 

and #f(f', g) is finite. 
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Proof: By Theorem 4.1.18, we may assume that the t--V-action is isometric. Subdividing 

Kif necessary, we can assume that dr·(g(am)) < Eo · Applying Lemmas 4.6.2 and -l.6.3 several 

times, we have the corollary. 0 

Theorem 4.6.5 For any pair of ~V -maps (f, g) : X --+ Y, there is an f' ""w f such that 

#f(j',g) is finite. 

Proof: By Theorem 4.1.18, we may assume that the ~V-action is isometric. Let (Ht), (H2 ) , . •• , 

(Hk) = {1} be an admissible ordering on {(H1)} with the property that (Hi)~ (Hi) implies 

j ~ ·i. 

Consider the t--~·H,-space pair (X"• , x>"·), and assume that on x<H1l the number of 

coincidence points of (f, g) is finite for any j < i. This implies that the number of co

incidence points of (f,g) on x>H; is finite. By Theorem -l.l.17, we may choose a trian

gulation (KH,,K>H,) for (X"·,X>"·) such that for any ad E K"i' dr·(f(ad)) < ~fa and 

d~, (g(ad)) < ~fa· By Lemma 4.1.13, we may assume that (KH, , K>H,) has property (P1). 

Let At = {ad E K H,l3d1 ~ d and ad1 E KH, , such that ad C ad1 and lad' In f(f, g) # 0}, 

and A; = {ad E KH, I lad In f(j, g) = 0}. It is easy to check that both At and A.; are 

invariant subcomplex of KH,, and .4t u A.j = KH,· Let A>r: = (At n K>HJ u (At n Aj), 

then A>r: is an invariant subcomplex of A.r:. In addition, A>i has the following properties: 

{1) d(f(x), g(x)) < Eo for all x E IA>d: in fact, for any x E .. 4>r:, there exist a E At 

and x' E a, such that x E a and f(x') = g(x'). So we have d(f(x),g(x)) ~ d(f(x),j(x')) + 

d(f(x'), g(x')) + d(g(x'), g(x)) < dy(f(a)) + 0 + dy(g(a)) < ~~ + ~EQ = <· 
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(2) There are finite number of coincidence points of (f, g) on A.>i: there are finite number 

of coincidence points on At n K>Hi by induction hypothesis, and there are no coincidence 

points on .47 n A.; by the definition of Ai. 

By Lemmas -1.6.2 and 4.6.3. !1.-t>• can be extended to a ltV Hi-map !'11.-t;l such that for 

Define f'lxH, : XH; --;. yH. to be 

if X~ IAtl 

if X E ].-171 

It is obvious that f'lxH, is continuous, and is a n-· Hi-map since both At and . ..t; are 

invariant complex of KH, and on At n .4;, f(x) = f'1
1
•4;

1
(x). Since d(flxu,, f'lxu,) < c5, we 

have flxn; "'WHt f'lxH; by Lemma -1.6.1. 

Applying the vV -action, we get a vV -map f'lx<H,) : X(H,) -+ y(H,)' which is homotopic 

to fl.'<tll;> and has the property #f(f'lx(H,>, 9lx(H,>) is finite. By Lemma -1.1.14, f'lxtn,> 

can be extended to a ltV-map f' : X -+ Y, such that f' ""W f with the property that 

Applying this procedure to (X Ht, 0) first, we get the result by induction. 0 

Standard Hypotheses : Let W be a finite group and X a smooth compact vV -manifold. 

For each HE Iso(X), we assume that X" is connected, dim X" 2:: 3 and dim XH -dim 

Note 4.6.6 : Under the standard hypotheses, for each H E I so( X), XH - XH can be 

bypassed in X H. 
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Lemma 4.6. 7 Assume the standard hypotheses. Suppose that /, g : X ---+ Y are vll -maps; 

80 and 81 are two distinct isolated vVH -coincidence orbits belonging to the same vVH -class 

of (JH,gH), for some HE Iso(X). A.ssume both 80 and 81 are in XH. Then there exists a 

TrV-homotopy {!t} relative to x>H such that fo = f and f(f[I,gH) = r(JH,gH)- Bl. 

Proof: Let x 0 E 80 , x 1 E 81 and a : [0, 1] ---+ XH be a path from x 0 to x 1 such that 

f o u- go a rel {0, 1}. Since dim XH- dim (XH- XH) ~ 2, we can assume that a is in 

XH . As in Lemma 5.4 in (\VP2], we can find an arc o from x 0 to x 1 homotopic to a and a 

neighborhood U of o such that U- Dn and for any w E H"H, wUnU = 0. By Lemma 3.3.5, 

we have f'- f rel X -[J such that f((J')H,gH) = f(jH.gH)-{xt}. Applying the vl-''-action. 

we have It -w f with f((Jt)H,gH) = f(JH,gH)- {Bt}. 0 

Lemma 4.6.8 Assume the standard hypotheses. Suppose that J, g : X ---+ F are lV -maps; 

80 and 81 are two distinct isolated vVH coincidence orbits belonging to the same vVH -class of 

(JH,gH), for some HE Iso(X). Furthermore, we assume that 80 C XK, 81 C XH for some 

K E I so( X) with H c K. Then there exists a vV -homotopy {ft} relative to X>H such that 

fo = f and f(f[I,gH) = f(jH,gH)- 81• 

Proof: Let Xo E Bo, Xt E (Jl and (] : [0, 1} ---+ xH be a path from Xo to Xt such that 

go a,.._, f o a rel {0, 1}. As in Theorem 1.1 in [WP1}, we can find an arc o- a from x0 to 

x 1 such that o([O, 1)) c XH and a neighborhood U of o([O, 1)) such that U"' Dn and for 

wE vVH, wU n U = 0. By Lemma 3.3.5, we have f'"' f rel X-U such that f((J')H , gH) = 

ruH,gH)- {xt}. Applying theW-action, we have It "'W f with r(f[I,gH) = f(jH,gH)

{Bt}· 0 
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Lemma 4.6.9 Let 6 C XH be an isolated I-VH -coincidence orbit of (JH , gH) for some HE 

I so( X). Assume x E () and ind (x) = 0, then there exists a Y..Y -homotopy {It} relative to 

_y>H such that fo = J and f(Jf,gH) = f(JH , gH)- 8. 

Proof: Let U be a neighborhood of x such that for any w E ~V H wU n U = 0. By 

Lemma 1.6.5, we have f' "' f rel X-U such that f((f')H,gH) = f(JH , gH)- {xt}. 

Applying the Y.V-action, we have It "'W f with r(f[i , gH) = f(JH , gH}- {Ot} . 0 

Theorem 4.6.10 Assume the Standard Hypotheses. For any pair of n· -maps (f , g) : X~ 

Y , we have Afw(/(H)•9(H)) = [Hl: H] · N0w(JH,9H) for all HE lso(X). 

Proof: By Lemma -1.6.7, we may assume that each ~VH-class has at most one coincidence 

orbit . Assume { wx }weWH is an orbit of coincidence points. If x E X H and [x] E Im T(H)<(n) 

for some isotropy subgroup K , we may create a coincidence orbit, which is in the same class 

with (x], and then , by Lemma 4.6.8, coalesce { wx} to it. Applying the ~V -action, we get 

the pair of maps with NOw(fH ,9H) coincidence orbits in X(H) and the total number of 

coincidence points is [H,. : H] · NOw (J H , g H). 0 

Theorem 4.6.11 Assume the Standard Hypotheses. For any pair of V{l" -maps (f, g) :X ---t 

}', we have A10w(J<H>,g<H>) = NOw(JH,gH) for all HE /so(X). 

Proof: Assume {Oi}~=l is an essential basis over X(H). \Ve will prove that there are 

homotopies !' "'W I and g' "'W g such that f(j', g') n X(H) = u:=l { wxi}wew . where 

{ wxi}wew corresponds to ()i· Applying this to an essential basis Q with NOw(fH, gH) 

number of elements, we prove the theorem. 
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Let (H0 ), (Ht), .. . , (Hk) be an admissible ordering on {(K) I (K) ~ (H)} . vVe will use 

induction on the number of the elements in {(K) I (K) > (H)}, which we will denote by 

I H. If I H is 1, we can assume that in each essential vtl H -class there is a unique coincidence 

point orbit and there are no other coincidence points since the dimension of X H is greater 

than 2. Assume(}= [(J" I 9")] is an element of Q and is inessential. Let a E 1f t (Y, y0 ) be in 

e,H.gH([(j" ,9")]). Let IE X"- r(f, g) be any point and let 3 be a path from .r to .Loin 

X"- r(f, g) . Let t1 and l9 be arcs in Y" such that L1(0) = f(x) , l9 (0) = g(x), L1(l) = l9 (1) 

and L9 • l! 1 
"' (g o (3 ) · w; 1 • a · w1 · (J o {3 - 1 

) . As in the proof of Lemma 2.5.2, we can 

change J" and g" in a small neighborhood of x , such that f(f'" , g'") = f(J" , g") U {x}. 

By using the ~V H -action on f' , g', we can assume that f'" 1 g'" are H'" H -maps from X H to 

yu. Repeating this procedure, we can get a pair of ~VH-maps (J'" , g'") from X" to yH 

homotopic to (J" , g") such that for each element fJi there is a unique ~v·H-orbit {wxdweWH 

corresponding to it and there are no more coincidence points in X H. By Theorem 4.1.1 7, X 

has a ~V-triangulation and by Lemma -l.l.l4, f'H and g'" can be extended to W-maps f' 

and g'. 

vVe proceed by induction on the cardinality of Iff. Suppose that for any H the statement 

is true for IH < k. Let In= k. It is easy to see that if g is an essential basis of (J" , g") 

over x<H>, then for any (Hi)> (H), QnU(Hd~(K) ~V'RwK(JK,gK) is an essential basis of 

U"', gH') over x<H.> . So we can assume that for any fJ E QnU(H)<(K) W'RwK(JK,gK), there 

is a coincidence point orbit { WX} in U(H)<(Hi) X(Ht) that 8 COrresponds to, and that there 

are no other coincidence points on U(H)<(H;) )((Hi) . Suppose that each W H-class contains at 
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most one coincidence point orbit on X(H). Assume that { wx} is a coincidence orbit, there 

are three cases: 

(i) xis equivalent to some coincidence point x 1 in U(H)<(H;) x<Hd. As we did in Lemma 4.6.8~ 

we can coalesce the two orbits into { WXt }. 

(ii) [x]wH is essential. but X is not equivalent to any coincidence point in U(H)<(H,) X(H,J. 

This must mean that [x l w H is in g. 

(iii) [x]wH is inessential. In this case [xh\.'H can be removed by Lemma 4.6.9 if it does 

not correspond to any () E Q. 

Finally. if there is a () E Q which corresponds no coincidence point orbit. we can create 

one in X H as in the case I H = 1 since X fl - X H can be bypassed in X H ( as indicated in 

~ate 4.6.6). 

This proves the statement and hence the theorem. 0 
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