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Abstract 

The Newfoundland and Labrador Real Time Water Quality (RTWQ) network was 

established by the Water Resources Management Division (WRMD) of the Newfoundland 

and Labrador Department of Environment and Conservation in 2001. Digital sensors 

continuously record water temperature, pH, specific conductance, dissolved oxygen and 

stage level for the rivers and streams in the network. This technology is still a relatively 

new and unfamiliar approach to collecting water quality data in the province. This thesis 

presents the complete findings of research and development carried out to further 

enhance the WRMD's capability to work with the RTWQ data in new and innovative ways. 

Statistical regression models for predicting water temperature and dissolved oxygen 

levels are developed for RTWQ stations owned and operated by the WRMD: Humber 

River, Peter's River, Leary's Brook and Waterford River. A logistic S-shaped model using 

air temperature can accurately predict water temperature. An exponential model using 

water temperature can accurately predict dissolved oxygen. Investigations are also carried 

out into developing statistical regression models using RTWQ data as a surrogate for grab 

sample chemical concentrations (alkalinity, chloride, etc.). There is more potential to 

develop these grab sample regression models for urban rivers than there is for rural rivers. 

Investigations are made into designing statistical process control charts for 

monitoring the RTWQ data. Modifications to the traditional process control chart need to 

be made so that it can monitor the highly autocorrelated RTWQ data. 
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Chapter One 

An Introduction to this Research 



1.1 Aim 

This thesis focuses on three different areas of research: (1) development of regression 

models for predicting water temperature and dissolved oxygen for stations in the 

Newfoundland real time water quality monitoring network, (2) determination of the potential 

for using real time measurements of water quality as a surrogate for water quality 

measurements obtained through manual grab sample collection, and (3) determination of 

the potential for implementing statistical process control charts for monitoring data 

collected by the real time network. 

1.2 Scope 

This first chapter provides background information on the history of water quality 

monitoring for resource management. The transition from manual collection monitoring 

programs to real time monitoring programs is provided in great detail. A discussion of the 

need to carry out new and innovative research in the areas of regression modeling and 

statistical process control conclude the chapter. 

1.3 What is Water Quality Monitoring? 

Freshwater is essential for the survival of humanity and the natural environment around us. 

Unfortunately, aquatic ecosystems world-wide are threatened by rapid human population 

growth and increased industrialization. Even here in Canada, a country largely considered 

to be unspoiled by the negative effects of today's industrialized society, some of our once 

pristine water bodies are now unfit even for recreational purposes. Fortunately, the urgent 
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need to implement effective water quality monitoring programs across the country has 

been recognized in recent years. 

The phrase "water quality monitoring" refers to the process of collecting samples, 

taking measurements and recording various physical, chemical and biological 

characteristics of a water body so that the suitability of the water for sustaining various 

uses can be assessed. This suitability for a particular use is determined by comparing the 

collected data against a set of requirements for the physical, chemical and biological 

characteristics of the water - i.e. restrictions on the range of pH levels for a river, lake or 

stream supporting invertebrate communities (Bartram and Ballance, 1996). 

The quality of a water body can be affected by a wide range of influences - both 

natural (geological, hydrological and climatic) and anthropic (population growth and 

industry). Water quality monitoring programs are designed to use a variety of data 

collection methods to bring together enough data so that a complete understanding of the 

health of the water body being studied is achieved. 

The data collected in water quality monitoring programs is normally grouped under 

four different categories: (1) physical and chemical parameters, (2) major ions, (3) nutrients, 

and (4) trace elements and metals. A list of some of the more commonly sampled 

indicators of water quality in each of these categories is shown in Table 1 .1 . 
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Table 1.1 - Commonly Sampled Indicators of Water Quality 

Physical and Chemical Major Ions Nutrients Trace Elements and Metals 
Parameters 

Turbidity Calcium Nitrogen Aluminum Lead 

Color Sodium Nitrate and Nitrite Arsenic Manganese 

Dissolved Oxygen Magnesium Phosphorus Barium Mercury 

pH Potassium Silica Beryllium Molybdenum 

Conductivity Sulphate Dissolved Organic Cadmium Selenium 
Carbon 

Chloride Cobalt Strontium 

Flouride Chromium Zinc 

Copper Vanadium 

Iron 

Source: Department of Environment and Conservation (2003) 

1.4 The Technology Used for Water Quality Monitoring 

The technology used for collecting water quality data has gone through a great deal of 

change over the past 60 years. Prior to the 1950s, researchers in search of water quality 

data were forced to carry a vast array of analogue measurement tools and sample 

collection equipment out to a field site. Once at the site they were free to use the 

equipment to make a few measurements and collect samples but at the end of the day 

everything needed to be gathered up and carried back out. Time and labor costs 

associated with this type of data collection were high and monitoring efforts were usually 

limited to infrequent measurements of easy to reach water bodies. The biggest downfall of 

this type of monitoring was the inability to collect enough useful data to provide a complete 
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understanding of the site being studied on both spatial and temporal scales (Glasgow et 

al., 2004). Although it was possible to use the collected data to gain insight into water 

quality, it was not possible to use the data to identify trends in water quality over time or 

determine the environmental conditions that trigger events that caused poor water quality. 

In the late 1950s the digital era gained momentum and the opportunity to 

incorporate digital technology into monitoring programs was widely embraced. The older 

analogue instruments were shelved and replaced by more accurate in-stream sensors with 

the capability of digitally measuring multiple water quality parameters at the same time. 

Advances in data storage technologies made it possible to connect the new digital 

equipment to data loggers that could be programmed to collect and store repeat 

measurements made at time inteNals small enough that the resulting dataset would 

represent a continuous record of water quality over a deployment period (Teillet et al., 

2002). Once this continuous record was downloaded from the data loggers it could be 

used to investigate trends and examine how water quality at a site changes over time. For 

the first time, it was possible to look at an important water quality indicator and see how it 

might change from one day to the next. 

Even with those new digital advances researchers were still forced to personally 

travel out to the rivers and streams to retrieve the data from the data loggers. In the mid 

1970s a push was made by researchers at the United States Geological SuNey (USGS) to 

reduce the amount of man power needed to collect the water quality data when a series of 

studies were carried out exploring the viability of 3 different data-relay systems for 9 

monitoring stations in Florida. Streamflow and rainfall data were remotely collected at the 
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monitoring stations using digital in-stream sensors and the collected data was relayed 

back to USGS offices using three different methods: (1) telephone landlines, (2) the 

Landsat-1 satellite operated by the National Aeronautics and Space Administration, and (3) 

the GOES-1 satellite operated by the United States National Oceanic and Atmospheric 

Administration. This relayed data was then compared to data downloaded on site in terms 

of quality and accuracy. Although the data relayed using the telephone landlines was 

disappointingly inaccurate, the use of satellites did show some considerable promise for 

monitoring (Turner and Woodham, 1980). 

When the Landsat-1 satellite was launched in 1972 it was equipped with a data 

collection system that could retrieve information from remote individually equipped ground 

stations and then relay the data to central acquisition stations. Rainfall from the field 

stations in Florida was monitored over a period of seventeen months and Landsat-1 was 

used to transmit the data at three minute intervals. The data that was transmitted 

successfully was available within twelve hours after transmission from the field stations. 

Similar to the telephone landline system, there were problems relaying the data using 

Landsat-1 - satellite orbit effects and hardware malfunction onboard the satellite severely 

limited the usefulness of the data (Turner and Woodham, 1980). 

When GOES-1 was launched in 1975 it was outfitted with a data collection system 

capable of relaying the rainfall data collected at the stations in Florida. Unlike the 

Landsat-1, the GOES-1 satellite's data collection system was based on a convertible data 

collection platform that stored the data in an on-board memory and then transmitted the 

data at three hour intervals. USGS researchers could then obtain this data from the 
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satellite about eight hours after the initial time of transmission. GOES-1 proved to be 

much more successful in relaying the data then Landsat-1 as the only data lost was due to 

malfunctions in hardware at the monitoring stations that could easily be fixed. 

In the late 1980s, the USGS built on the success of their previous research and 

established the first real time water quality monitoring network in the United States - the 

USGS Water Quality Watch. At that point in time monitoring and communications 

technology had advanced far enough that in-stream sensors could be used to obtain a 

continuous record of water quality and orbiting satellites could be used to retrieve the data 

from the sensors without having to visit the site in person. The network grew to 

prominence in the 1990s to the point where over one thousand stations are in operation 

today (USGS, 2008). The use of real time technology gained in popularity during the 

1990s - to the point where the technology is now being used in countries like Canada, 

India, Haiti, and Egypt {Khan, et al., 2008) to only name a few. 

1.5 Water Quality Monitoring in Newfoundland 

The province of Newfoundland and Labrador is located on the Atlantic coast of 

northeastern North America. The total population of the province is approximately five 

hundred thousand - with the majority of people living in the province settled on the island 

of Newfoundland. The people of Newfoundland are surrounded by a considerably large 

supply of freshwater but some sources of freshwater have been threatened in recent years 

as urban centers have grown in size. The pressing need for the implementation of a water 

quality monitoring program for the protection of Newfoundland and Labrador's freshwater 
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resources was officially recognized on April 29, 1986 when the Canada-Newfoundland 

Water Quality Monitoring Agreement was signed between the Canadian federal 

government and the provincial government. Under this agreement, federal and provincial 

water quality monitoring activities in the province are coordinated. This coordination of 

activities has ensured the assessment of the suitability of water for various beneficial water 

uses and has helped resource managers develop effective pollution control regulations, 

water quality guidelines and objectives (Department of Environment and Conservation, 

2009a). 

The Water Resources Management Division (WRMD) of the Newfoundland and 

Labrador Department of Environment and Conservation established a real time water 

quality monitoring pilot station on Leary's Brook in the capital city, St. John's, in late 2001. 

The WRMD use this station to test the feasibility of acquiring water quality information in 

the province using equipment similar to that used in the United States. The tests carried 

out at the pilot station site showed there was a great deal of potential for using real time 

technology for monitoring water bodies in the province. In 2003 real time monitoring 

equipment was deployed in the waters of four other rivers across the province and the 

Newfoundland and Labrador Real Time Water Quality (RTWQ) monitoring network has 

since grown to include more than 15 stations. Table 1 .2 presents a list of the stations 

currently in operation and the location of these stations are shown in Figure 1 .1 . 
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Table 1.2- Newfoundland and Labrador R1WQ Monitoring Stations 

Network 

Provincial 

Station 
Number 

Station Name 

base stations for research managed solely by the WRMD 

NF02YL0012 Humber River at Humber Village Bridge 

NF02Y00121 Peters River near Botwood 

NF02ZM0178 Leary's Brook at Prince Philip Drive 

NF02ZM0009 Waterford River at Kilbride 

Federal-Provincial 
partnership between the WRMD and Environment Canada 

NF02ZE0033 Southwest Brook Below Southwest Pond 

NF02YG0009 Main River at Paradise Pool 

Industry 
partnership between the WRMD, Environment Canada and Local Industry 

NF03NE0008 Voisey's Bay Well After Tailings Dam 

NF03NE0009 Reid Brook at Outlet of Reid Pond 

NF03NE0010 Camp Pond Brook Below Camp Pond 

NF03NE0011 Lower Reid Brook Below Tributary 

NF03NE0012 Tributary to Reid Brook 

NF02ZK0023 Rattling Brook Below Bridge 

NF02Y00190 Tributary to Gills Pond Brook 

NF02Y00192 East Pond Brook 

NF02Y00193 Well After Tailings Dam - Duck Pond 

NF030D0013 Churchill River Below Metchin River 

NF030E0030 Minipi River Below Minipi Lake 

NF030E0050 Churchill River Below Lower Muskrat Falls 

NF030E0051 Churchill River Below Grizzle Rapids 

NF02ZH0009 Come by Chance River near Goobies 
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Figure 1. 1 Google Earth Image of Newfoundland and Labrador RTWQ Network Stations 

Author's note - the location of the RTWQ stations can be found using the Google Earth 

software. The number of stations in operation does change over the years - so please 

refer to the WRMD website for a list of stations that are in operation: 

http://www. env. gov.nl. ca/wrmd!BTWOIRTWQ Stations. asp 

Stations in the network are classified under three headings: (1) Provincial, (2) 

Federal-Provincial and (3) Industry. The provincial network consisting of base stations for 

research managed solely by the WRMD. The federal-provincial network is managed under 

the joint partnership between the WRMD and Environment Canada. The industry network 
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is managed under joint partnerships between the WRMD, Environment Canada and local 

industry in the province. 

The R1WQ network gives WRMD resource managers the ability to monitor in real 

time the health of select aquatic ecosystems in the province, identify trends in water quality 

over time and determine the timing of specific events that threaten water quality. 

Implementation of the network is considered to have been a great success and other 

provinces have looked to the WRMD for assistance in bringing real time water quality 

monitoring to the rest of Canada. 

1.6 The Need for New Research 

Real time water quality monitoring is still relatively new and unfamiliar to the resource 

managers in the WRMD and there is a great deal to be learned about drawing out 

important information from the data collected by the network. In late 2007 the WRMD 

recognized the need for new research and development in the areas of regression 

modeling for predicting water quality parameters and the implementation of statistical 

process control techniques for real time water quality data. 

Can regression models be developed for water temperature & dissolved oxygen? 

Researchers outside of Newfoundland have found success in using historical records of air 

temperature and water quality data for developing statistical regression models that can 

predict important indicators of water quality like water temperature and dissolved oxygen 

(Crisp and Howson, 1982; Webb, 1987; Stefan and Preud'homme, 1993; Pilgrim and 

Stefan, 1995; Mohseni et al., 1998; Pilgrim et al., 1998; Webb et al, 2003). However, the 
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same type of models have never been developed for stations in the provincial RTWQ 

network. The regression models presented in this thesis for predicting water temperature 

and dissolved oxygen represent the first successful models developed using data collected 

by stations in the Newfoundland RTWQ network. These models should prove to be a 

useful resource for the WRMD in that they can be used to understand the influence the 

surrounding environment has on water quality at the stations. 

Can regression models be developed for predicting grab sample water quality? 

Researchers within the USGS have had success developing regression models that use 

real time water quality to predict data water quality data that is normally obtained through 

the manual collection of water quality grab samples (Christensen et al., 2000; Christensen, 

2001 ). Although the WRMD has experimented with developing similar models for stations 

in the Newfoundland network, they have had limited success and no work has been made 

public. It was hoped that the potential for developing grab sample regression models 

could be determined as these kinds of models would not only save the WRMD time and 

money but would also give resource managers a more accurate idea of chemical loading 

levels in a river or stream at any point of time. The regression models presented in this 

thesis for predicting data collected through grab sampling represent the first time any 

successful models have been developed for the RTWQ network. 
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Can control charts be used for monitoring real time water quality data? 

The statistical process control chart has been used for many years in the processing and 

manufacturing industries for quality control purposes. The chart is basically a time series 

plot of the observations with lines drawn that help managers and engineers identify when 

any unwanted changes occur in a unit or product. There has been interest in recent years 

in using these charts for monitoring environmental data (Manly, 1994; MacNally and Hart, 

1997; Smeti et al., 2007), but this environmental data tends to be highly autocorrelated . 

This autocorrelation violates the statistical foundation of the traditional control chart (which 

were designed only to study independent observations collected from a process) and 

complicates the design process. 

There has been no published work looking at using these control charts for 

monitoring water quality data of the type collected by the R1WQ network. The sensors 

collect measurements every 15 minutes or every hour (depending on the location) and this 

record of data tends to be autocorrelated and rather overwhelming. A historical record for 

a R1WQ station over the course of a year would contain thousands of lines of water quality 

data and it is not easy to quickly look at the data line by line to see where water quality 

might have gone outside of a safe range defined by the water quality guidelines. Various 

methods of implementing control charts for studying the water quality data are presented 

in this research. 
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1. 7 Thesis Structure 

This thesis has been divided into eight distinct chapters. With background information on 

water quality monitoring now covered, the following chapter will provide an in-depth look at 

the four RTWQ monitoring stations studied in this thesis - Humber River, Peter's River, 

Leary's Brook and Waterford River. An overview of the historical records of data available 

for these stations is presented. 

Chapter three presents the results of developing regression models for predicting 

mean, maximum and minimum water temperatures for the four real time stations at the 

daily, weekly and monthly time-scales. 

The success of the developed regression models for water temperature is built 

upon in the fourth chapter - where regression models that use water temperature as an 

explanatory variable for predicting dissolved oxygen are the main focus. 

The fifth chapter focuses on developing regression models that link real time water 

quality data to measurements of water quality collected through manually collected grab 

samples. The potential for developing regression models for predicting various physical 

properties, elements, major ions, metals and nutrients at each station is discussed. 

Chapter six shifts the focus away from regression modeling and over to examining 

the potential for implementing statistical process control techniques for monitoring the real 

time data collected by the network. Background information on how statistical process 

control techniques are used for monitoring data in the manufacturing industry is first 
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presented. This is followed by a literature review of recent research into using these 

techniques on environmental data. Results from investigations into the implementation of 

seven different control chart techniques are presented. 

The seventh and eighth chapters conclude this thesis with a review of the major 

findings in this research and a note on ways to make future work carried out by the Water 

Resources Management Division in the areas of regression analysis and control charts as 

straightforward as possible. 
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Chapter Two 

An Overview of the RlWO Stations 
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2.1 Scope 

This chapter presents an in-depth look at the real time monitoring network in 

Newfoundland. A description of the setup of the network, the kinds of equipment used for 

collecting data and the historical records of data collected at each station is provided. 

2.2 Setup of the Network 

The R1WQ network has been designed around the same framework used for real time 

monitoring in the United States - where sensors in the water collect the data, the data is 

relayed to an orbiting satellite, and the data is then retrieved by resource managers from a 

central repository. Figure 2.1 illustrates the sequence of events that transpire from the time 

the sensor collects the data to when the data is retrieved by the WRMD for analysis. 

2 

1 3 

Figure 2. 1 How the RTWQ Network Collects Water Quality Data 
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In stage one a real time sensor installed in the water to obtain measurements of 

important indicators of water quality like water temperature, pH, specific conductance, 

dissolved oxygen and turbidity. Sensors have been installed by the WRMD in rivers and 

streams across the province so that a representative sample of water quality can be 

obtained. The number of measurements collected by the sensor varies depending on the 

location of the water body. For rural stations the sensor will collect one measurement 

every hour, while sensors installed in rivers near urban centers will collect one 

measurement every fifteen minutes. 

In stage two the communication at the monitoring station transmits the water 

quality every three hours to the GOES satellite. 

In stage three the GOES satellite relays the water quality data to a central 

depository located in Maryland, USA- known as the National Environmental Satellite Data 

Information System. This central depository is owned and operated by the United States 

National Oceanic and Atmospheric Administration. 

In stage four the water quality data stored at the central depository is automatically 

downloaded, processed and distributed using an Automatic Data Retrieval System (ADRS) 

designed by the Department of Environment and Conservation. This ADRS software is 

setup to automatically upload the data to the WRMD internet site so the general public, 

resource managers and industry representatives can go on-line to view real time plots of 

water quality parameters. 
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2.3 Data Collected by the Network 

The water quality data collected at each monitoring station in the RTWQ network is 

classified under one of four headings: 

1. Real time measurements of water temperature, pH, specific conductance, dissolved 

oxygen and turbidity obtained using the Hydrolab Datasonde real time sensor 

2. Real time measurements of stage and streamflow obtained from nearby hydrometric 

monitoring stations operated by Environment Canada 

3. Real time measurements of air temperature obtained from nearby weather monitoring 

stations operated by Environment Canada 

4. Grab samples of water quality parameters manually collected by the WRMD 

Data Type 1 - Real time measurements obtained using the Hydrolab Oatasonde Sensor 

There are many different types of real time sensors currently on the market with sensors 

ranging in price, reliability, and measurement capabilities. The WRMD uses a companion 

pair of sensors known as the Hydrolab Multiprobe Series 4a Datasonde and the Hydrolab 

Minisonde for collecting real time water quality data (Figure 2.2). Part (a) of the figure 

shows the Minisonde on the left and the Datasonde on the right. Part (b) and (c) of the 

figure show a closer view of the Datasonde. 
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Figure 2.2 Hydrolab Multiprobe Datasonde Series 4a and Hydrolab Minisonde 

The Hydrolab Datasonde is known to provide accurate readings of water quality 

indicators in real time. It is designed to be easily portable - with an outer diameter of 8.9 

centimeters, a total length of 58.4 centimeters and a weight of 7.4 pounds. This makes it 

an ideal size for deployment in both large and small rivers and streams. It has a built in 

memory capacity of 120,000 measurements and can reliably operate in temperatures 

ranging from -5 to as high as +50 °C (Campbell Scientific, 2009). The version of the 

sensor used by the WRMD can record water temperature, pH, specific conductance, 

dissolved oxygen and turbidity. 

The Datasonde can record water temperature from -5 to 50 oc with an accuracy of 

± 0.10 oc at a resolution of 0.01 oc (Campbell Scientific, 2009). Water temperature is a 

measure of the amount of heat present in water and is one of the most important 

indicators of overall water quality. Not only does water temperature regulate the 
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metabolism and growth rates of aquatic plants and animals but it also largely influences 

many chemical processes (Department of Environment and Conservation, 2009b). A 

number of previous studies have shown that when water temperatures go outside of a 

normal range in a river there will be consequences for the aquatic inhabitants. A study 

carried out by Hodgson and Quinn (2002) found that the spawning period of sockeye 

salmon in rivers in the North western United States are interrupted when water 

temperatures reach 19 oc as the salmon are forced to seek refuge from the higher than 

normal water temperatures. Lund et al. (2002) found that high water temperatures will 

induce a heat-shock response in juvenile salmonoids. Water temperature is known to be 

influenced by a number of factors - i.e. temperature of source water, industrial use of the 

water, and the heat exchange between the air and water interface. 

The Datasonde can collect pH data in the range of 0 to 14 pH units with an 

accuracy of± 0.2 units at a resolution of 0.01 units (Campbell Scientific, 2009). The pH of 

water is a measure of the hydrogen ion activity in a system and proper pH is essential for 

the survival of plant and animal species. The Canadian Council of Ministers of the 

Environment (CCME) specifies that pH should fall within the range of 6.5 to 9 pH units for 

the protection of aquatic life (Environment Canada, 2002). Not only can pH influence 

aquatic life but it can also change physical characteristics like water color, odor and taste. 

The pH in a river is known to be strongly influenced by daily biological and geological 

activities, which are in turn directly affected by the water temperature (Department of 

Environment and Conservation, 2009b). 
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The Datasonde can collect specific conductance data in the range of 0 to 100,000 

IJS/cm with an accuracy of± 1 1JS/cm at a four digit resolution (Campbell Scientific, 2009). 

Conductance is a measure of the ability of water to pass an electrical current. When this 

measure of conductivity is corrected to 25 oc it is referred to as specific conductance. 

Collecting specific conductance measurements is useful in that it can be used to provide 

an indirect measure of the amount of dissolved substances (salts) in an aquatic system. 

Pure water has a specific conductance of 0 to 200 1JS/cm and bigger rivers tend to have 

values from 200 to 1000 IJS/cm. Specific conductance levels above 1000 1JS/cm 

represent quite saline conditions (Department of Environment and Conservation, 2008b). 

The WRMD use the specific conductance measurements collected by the sensor to obtain 

an estimate of the total dissolved solids (TDS) in the river or stream being monitored using 

the equation TDS (g/L) = specific conductance [IJS/cm] * 0.00064. TDS is used a 

measure of the organic and inorganic solids in the water and is a general indicator of 

salinity. Water with large dissolved solids concentrations can produce scaly deposits and 

cause corrosion of pipes (Department of Environment and Conservation, 2008b). 

The Datasonde can collect dissolved oxygen data in the range of 0 to 50 mg/L with 

an accuracy of ± 0.2 mg/L at a resolution of 0.01 mg/L (Campbell Scientific, 2009). Like 

water temperature, dissolved oxygen is considered to me one of the more important 

indicators of the health of aquatic ecosystems. Dissolved oxygen is a measure of the 

amount of oxygen dissolved in water and is controlled by a number of factors including 

oxygen consumption by aquatic organisms, the flow and depth of water and water 

temperature. The health of the system can be determined by considering three separate 
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DO levels- low (0-8 mg/L, high oxygen demand which can lead to fish kills), medium (8-12 

mg/L, a healthy system) and high (12-20 mg/L which can lead to excessive algal growth). 

The WRMD uses the dissolved oxygen measurements collected by the sensor to obtain an 

estimate of the percent saturation of the river or stream being monitored. Percent 

saturation refers to the amount of dissolved oxygen contained in the water compared tot 

he amount that could potentially be there at the same temperature. Water can become 

supersaturated from excessive aeration (i.e. waterfalls) and have a percent saturation 

greater than 100%. Percent saturation levels below 60% or above 125% are undesirable 

(Department of Environment and Conservation, 2008b). 

The Datasonde can also record turbidity levels in the water in real time. Turbidity 

readings for the stations in Newfoundland are known to be rather unreliable and cannot at 

this time be used to gain any reliable insight into actual turbidity levels in Newfoundland 

rivers and streams. 

The Hydrolab Minisonde is similar to the Datasonde in that it can record water 

quality data in real time but it is not designed to be left in the water for long deployment 

periods and does not have the same capacity to record as many parameters as the 

Datasonde. The Minisonde is normally used by the WRMD for calibration purposes or as a 

temporary stand-in sensor for damaged Datasondes. 

Historical records of real time measurements made by the real time sensors can be 

downloaded from the ADRS for every station in the network. The ADRS software is setup 

so that a user defines a period of interest and the desired record of real time data is then 

automatically retrieved. The system saves the records as Microsoft Excel files that contain 
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the date and time of measurement, water temperature, pH, specific conductance, 

dissolved oxygen, and stage. The WRMD goes through a process of removing periods of 

time from the dataset where the sensor was not operating effectively and modifies the 

records to account for drift of the sensor measurements over time. The WRMD has come 

to find that measurements collected by the sensor tend to be less accurate the longer the 

sensor is left in the water. At the start of the deployment period the sensor will have been 

recently calibrated and will take accurate measurements of water quality parameters. Over 

the next few weeks this calibration will be lost and the measurements taken by the sensor 

will slowly drift away from the true value. The WRMD can gain an estimate of the size of 

this drift by sending personnel out to the sampling station with a recently calibrated 

Hydrolab Minisonde to take a companion set of measurements. The accurate readings 

taken by the Minisonde can be compared to the final Datasonde readings to see how they 

differ and changes can be made to the Datasonde readings to account for this difference. 

The product of making modifications for missing values and for sensor drift is referred to as 

a Drift Corrected Historical Record of sensor data for the station. It is the aim of the 

WRMD to keep these corrected records current but at this point in time, corrected records 

are not available past 2008. 

Author's Note - Refer to Appendix A for a detailed description of how the ADRS records 

are modified to account for drift. 
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Data Type 2 - Real Time Measurements of Stage 

Each of the RTWQ monitoring stations in the network are located in conjunction with 

nearby hydrometric monitoring stations operated by Environment Canada that record 

stage and streamflow in real time. Take for example real time station NF02YL0012 where 

the RTWQ sensor is installed across the river from hydrometric station 02YL003 (Figure 

2.3). The real time stage data for each station is posted on the same Department of 

Environment and Conservation webpage as the RWTQ data. Historical records of the 

stage and streamflow can be obtained directly from Environment Canada. 

At the time of carrying out this research it proved difficult to obtain complete 

records of streamflow for the RTWQ stations. It is unknown why records of stage level for 

the stations were complete but the corresponding streamflow in the same file for the first 

years of operation of the stations would be incomplete. Records from recent years of 

monitoring have improved and now usually include stage and streamflow. 

F02YL0012 - Humber River at Humber Village Bridge 

Figure 2.3 RTWQ Stations are Located in Conjunction With Hydrometric Stations 
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Data Type 3 - Nearby Measurements of Air Temperature 

Although the RTWQ stations are not outfitted to record air temperature at this point in time, 

an estimate of air temperature at the station can be obtained using real time 

measurements made at nearby Environment Canada weather monitoring stations. 

Data Type 4 - Grab Samples of Water Quality 

The WRMD manually collects grab samples of water quality at the RTWQ stations at 

throughout the year. Once collected these samples are sent to Environment Canada 

laboratories for chemical analysis. Although grab samples only give an indication of water 

quality at the time of sample collection, they can provide information on the following water 

quality parameters that cannot be recorded by the RTWQ sensors: 

- (1) Physical Properties, solids, and sediment values: alkalinity, color, conductivity, 

hardness, pH, total dissolved solids, total suspended solids, turbidity, and water 

temperature 

- (2) Major ions and metals: boron, bromide, calcium, chloride, flouride, potassium, 

sodium, sulphate, ammonia, aluminum, antimony, arsenic, barium, cadmium, chromium, 

copper, iron, lead, magnesium, mercury, nickel, selenium, uranium and zinc. 

- (3) Nutrient levels: dissolved organic carbon, nitrate, nitrite, kjeldahl nitrogen, and total 

phosphorus. 

The historical record of grab sample data collected for each station in the network does 

tend to vary. Some of the older stations have the results of over 20 grab samples available 

for analysis while some of the newer stations have less than 1 0. 
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2.4 The RTWQ Stations Studied in This Thesis 

The following four R1WQ stations are studied in this thesis: 

- NF02YL0012 Humber River at Humber Village Bridge (west coast of Newfoundland), 

- NF02Y00121 Peter's River near Botwood (central Newfoundland and no longer in 

operation), 

- NF02ZM0178 Leary's Brook at Clinch Crescent (east coast of Newfoundland), and 

- NF02ZM0009 Waterford River at Kilbride (east coast of Newfoundland). 

All four of these R1WQ stations are part of the provincial network solely operated by the 

WRMD (Figure 2.4) and have the longest and most accurate monitoring records available 

for analysis. Although R1WQ records exist for the federal-provincial and industry network 

stations, the records available for analysis are and not as extensive as those available for 

the four provincial network stations and they have been excluded from analysis as a result. 

Author's Note - as the records of the federal-provincial and industry RTWQ network 

stations are expanded over time it will be possible to include these stations into regression 

model development. 
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Figure 2. 4 Google Earth Image of the RTWQ Stations Studied in this Thesis 
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NF02YL0012 - Humber River at Humber Village Bridge 

Figure 2. 5 RTWQ Station NF02YLOO 12 Humber River 

Figure 2. 6 Proximity of Air Temperature Measurements to NF02YLOO 12 
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The Humber River is the second largest river system on the island of Newfoundland. The 

headwaters of the river flow all the way from the highlands of the Long Range Mountains 

on the West coast through the deep and heavily forested river valley into a wide marshy 

flood plane where the river drains the surrounding mountainous areas. The drainage area 

of the river is over 7000 square kilometers with forest comprising the largest chunk of this 

area (62.59%) followed by lakes (12.47%) wetlands (9.69%), barren land (7.23%), 

vegetation (6.88%) and other (1 .13%). Monitoring the water quality of the Humber River is 

important as there is a a great deal of development pressure in the region. Not only are 

the waters of the river used for hydroelectric power and municipal consumption, but they 

are used for recreational purposes as well. There are two solid waste disposal sites and 

over fifty commercial farms in the area. Highways and access roads run along the river 

with and there are a number of bridges that cross the river (Department of Environment 

and Conservation, 2009c). 

RTWQ station NF02YL0012 - Humber River at Humber Village Bridge (Figure 2.5) is 

located 12.5 kilometers from the outlet of the Humber River into the Bay of Islands. 

Corrected hourly measurements of water temperature, pH, specific conductance and 

dissolved oxygen are available for December 2003 to April 2008. Hourly measurements of 

real time stage were recorded at Environment Canada hydrometric station 02YL003. 

Hourly measurements of air temperature are recorded in the nearby city of Corner Brook 

(approximately 15 kilometers away - refer to Figure 2.6). 37 grab samples of water quality 

were collected at the station from May 2004 to August 2008. 
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NF02Y00121 -Peter's River near Botwood 

Figure 2. 7 WRMD Personnel Installing a Hydrolab Datasonde in Peter's River 

Figure 2.8 Proximity of Air Temperature Measurements to NF02Y00121 
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The Peter's River Basin is located in the central lowlands on the island of Newfoundland. 

The basin is approximately 80% forest, 14% lowlands, 3% lake and 3% barren land. The 

protected water supply area for the river is approximately 224 square kilometers (Acres 

International Limited, 2005). 

A number of public roads, resource roads, abandoned railway lines and old trails 

allow access to almost all areas of the Peter's River Basin. The watershed area is currently 

used extensively for quarrying and recreational activity. A 1995 consultant's study found 

that all land use in this particular region of the province had the potential to deliver 

pollutants to the watercourse (Acres International Limited, 2005). The river used to supply 

drinking water for the nearby towns of Botwood and Peterview but this was no longer the 

case after 2006, when those towns began relying on another nearby source of water. 

Real time monitoring station NF02Y00121 - Peter's River near Botwood (Figure 2. 7) 

was first brought online in 2005 but was taken permanently offline three years later in 

2008. Drift corrected hourly measurements of real time water temperature, pH, specific 

conductance and dissolved oxygen are available for the period June 2005 to February 

2008. Hourly measurements of real time stage recorded at Environment Canada 

hydrometric station 02Y0006 are available from June 2005 to February 2008. Hourly 

measurements of air temperature were recorded in the nearby town of Badger 

(approximately 50 kilometers away- Figure 2.8). 18 grab samples of water quality at the 

station were collected from June 2005 to February 2008. 
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NF02ZM0178- Leary's Brook at Clinch Crescent in St. John's 

Figure 2.9 RTWQ Station NF02ZM0178 Leary's Brook 

Figure 2. 10 Proximity of Air Temperature Measurements to NF02ZM0178 
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Leary's Brook is an urban water system that runs through a developed section in the 

capital city of St. John's. The total drainage area for Leary's Brook is 19.6 square 

kilometers. Forest makes up 7 4.36% of this total drainage area while barren land 

(12.31 %), wetland (6.67%), vegetation (6.15%) and lakes (0.51 %) make up the rest 

(Department of Environment and Conservation, 2009d). 

Real time station NF02ZM0178 - Leary's Brook at Clinch Crescent in St. John's 

(Figure 2.9) is the main testing station for real time technology for the WRMD. It was the 

first station brought online in the real time network and real time data for the station dates 

back to 2002. Unfortunately, the equipment at the station is removed quite often for re

calibration and testing and the historical record for the station is quite erratic as a result. 

Drift corrected measurements of real time water temperature, pH, specific 

conductance and dissolved oxygen collected at 15 minute intervals were available from 

September 2004 to December 2007. Measurements of real time stage were recorded at 

15 minute intervals at Environment Canada hydrometric station 02ZM020. Hourly 

measurements of air temperature were recorded from September 2004 to December 2007 

at the St. John's international airport (approximately 5 kilometers away - refer to Figure 

2.1 0). 20 grab samples of water quality were collected at the station from April 2005 to 

September 2008. 
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NF02ZM0009 - Waterford River at Kilbride in St. Johns 

Figure 2. 11 RTWQ Station NF02ZM0009 Waterford River 

Figure 2. 12 Proximity of Air Temperature Measurements to NF02ZM0009 
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The headwaters of the Waterford River are located in the town of Paradise, Newfoundland. 

From Paradise the river flows through to the capital city of St. John's until it reaches its 

outlet in the city harbor. The total drainage area for the river is roughly 52 square 

kilometers. Forest makes up 57.89% of this drainage area, barren land (19.36%), wetland 

(11 .09%), vegetation (1 0. 71 %), lakes (0. 75%) and other (0.19%) make up the remainder 

(Department of Environment and Conservation, 2009e). 

Development pressure around the Waterford River is considered to be moderate 

with the majority of development in the basin located in two industrial parks. Highways, 

city streets and a number of access roads are dispersed throughout the basin. About 25% 

of the basin is dedicated to urban and sub-urban development (residential, commercial 

and industrial areas). 

Real time station NF02ZM0009 - Waterford River at Kilbride (Figure 2.11) is located 

roughly thirteen kilometers from the headwaters of the river and was first brought on-line in 

2005. Drift corrected hourly measurements of real time water temperature, pH, specific 

conductance and dissolved oxygen were available for July 2005 to March 2008. Hourly 

measurements of real time stage were recorded at Environment Canada hydrometric 

station 030E003. Hourly measurements of air temperature were recorded from July 2005 

to March 2008 at the St. John's international airport (approximately 10 kilometers away -

refer to Figure 2.12). 20 grab samples of water quality were collected at the station from 

August 2005 to September 2008. 
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2.5 Summary of the Data Available for Analysis 

A general statistical summary of the real time data collected at the stations is presented in 

Table 2.1. The Humber River station has the longest drift corrected record, the lowest 

overall mean water temperature, specific conductance and air temperature. It also has the 

highest overall mean dissolved oxygen and stage levels. Overall mean dissolved oxygen 

levels at the stations are all above the CCME minimum guideline for the protection of 

aquatic life (5.5 mg/L). Overall mean pH for each of the stations falls within the CCME 

guideline (6.5 to 9 pH units). In terms of stage levels, Leary's Brook and Waterford River 

are similar in size, with Peter's River being the medium sized station of the group. Overall 

mean specific conductance levels are much higher at the stations located in the capital city 

of St. John's (Leary 's Brook and Waterford River) than they are at Peter's River and 

Humber River. 

Table 2.1 - Overall Mean Values of Real Time Data Available for Analysis 

Station Name Date Mean Mean pH Mean Mean DO Mean Mean 
WT (pH unit) sc (mg/L) Stage AT 
(oC) (IJS/cm) (m) rc> 

NF02YL001 2 Dec. 2003- 6.56 6.82 36.14 12.19 2.1 4.19 
Humber River Apr. 2008 

NF02Y00121 Jun. 2005 - 8.53 6.65 43.51 10.91 1.15 4.55 
Peter's River Feb. 2008 

NF02ZM0178 Sept. 2004 7.91 6.67 432.95 11.26 0.76 5.67 
Leary's Brook - Dec. 2007 

NF02ZM0009 Jul. 2005- 8.1 6 6.69 515.46 10.92 0.56 6.15 
Waterford River Mar. 2008 
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Comparisons among the stations beyond the overall mean can be made by 

examining each of the parameters on a month by month basis. Figure 2.13 illustrates the 

monthly mean water temperature for each of the four stations. As is to be expected, water 

temperatures are the coldest in the fall and winter months and warmest in the spring and 

summer months. Water temperatures in summer tend to be the highest in Peter's River 

and temperatures in winter can get quite cold there as well. Note that water temperature 

recorded by the sensors never drop far below zero degrees - even in the coldest months 

of the air. Water temperatures in the Humber River do not tend to be as warm as the other 

stations in the summer months which is perhaps due to the larger size of the river (as 

larger rivers contain more water and take longer to heat up). 

A comparison of the monthly mean air temperatures at each of the stations is made 

in Figure 2.14. Air temperatures at the stations is coldest in the fall and winter and 

warmest in the spring and summer. The coldest air temperatures are recorded at the 

Peter's River station. Monthly air temperatures at Leary's Brook and Waterford River are 

very similar which is to be expected as air temperature for both stations is recorded at the 

same Environment Canada weather station in St. John's. The highest monthly air 

temperatures can be found at the Humber River station. Note that monthly mean air 

temperatures in Newfoundland are not high - with daytime air temperatures in summer 

rarely going above 25 degrees Celsius. 
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Figure 2.15 illustrates the monthly mean stage levels at the four stations in the 

network. This plot shows that stage levels throughout the year can be ranked from the 

highest to lowest as follows: Humber River, Peter's River, Leary's Brook and Waterford 

River. Stage levels at the Humber River station are the highest in the spring months (likely 

due to snowmelt) and lowest in the warmer summer months. Mean monthly stage levels at 

the Peter's River, Leary's Brook and Waterford River stations tend to be highest in the 

winter and spring. 

Figure 2.16 compares the monthly mean pH levels at the four provincial stations. 

From the plot it can be noted that throughout the inter to spring months pH levels at the 

four stations are either close to or fall outside of the safe range of pH (6.5 to 9) as specified 

by the Canadian Council of Ministers of the Environment guidelines for the protection of 

aquatic life. The monthly mean pH levels tend to increase for all stations during the 

summer months and never go above 8 pH units. 
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Figure 2.17 compares the monthly mean specific conductance at the four provincial 

stations. It can be noted from the plot that monthly mean specific conductance levels at 

the Leary's Brook and Waterford River stations can get rather high during winter and spring 

months (where specific conductance outside of 1 000 J,JS/cm represents quite saline 

conditions). The high levels in winter are likely due to heavy road salting of the roads in 

the capital city of St. John's - when this salt washes off the roads and into the rivers the 

specific conductance levels will spike. Pure water tends to have specific conductance 

levels under 200 J,JS/cm so monthly mean levels at the Humber River and Peter's Station 

are quite low. 

Figure 2.18 illustrates the monthly mean dissolved oxygen levels at the four 

stations. Monthly mean dissolved oxygen levels at the stations do tend to be lower in the 

warmer summer months - with levels at the Peter's River, Leary's Brook and Waterford 

River dropping below the 8 mg/L in July and August. When dissolved oxygen levels drop 

below 8 mg/L the health of the aquatic ecosystem can be threatened, but the monthly 

mean levels at the stations even at their lowest points are still rather close to the safe level. 

A closer look at the variations in some of these parameters will be carried out in the 

next chapter when regression models are developed for linking the daily, weekly and 

monthly measurements of air temperature and stage to water temperature. In the fourth 

chapter a closer look at the variations in dissolved oxygen will be carried out when water 

temperature and stage are used to predict dissolved oxygen at the real time stations. 
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Chapter Three 

Development of Regression Models 

for Water Temperature 
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3.1 Scope 

Regression models for predicting water temperature at the real time stations are the main 

focus of this third chapter. A literature review of published works relevant to this kind of 

research is presented. A description of the methodology used in developing regression 

models follows. Models for predicting mean, maximum, and minimum water temperature 

at monthly, weekly and daily time scales are presented for each station. The models are 

tested using historical datasets specifically reserved for this purpose. A discussion of the 

results will be carried out at the end of the chapter. 

3.2 Background Information and Literature Review 

3.2. 1 Background Information on Regression Modeling 

Most often regression models are developed to learn something about the relationship that 

exists between variables of interest (i.e. water temperature and air temperature). The 

simplest type of regression model is referred to as the linear regression model, where just 

one explanatory variable is used to predict one response variable of interest. The linear 

regression model takes the form of: 

Equation 3.1 

where Yi is the ith observation of the response variable, Xi is the ith observation of the 

explanatory variable, ~o is the intercept, ~1 is the slope, Ei is the random error or residual 

for the ith observation, and n is the size of the sample. The error around the linear model Ei 

is a random variable with a mean of zero and a constant variance that does not depend on 

the value of the explanatory variable. Developing linear regression models between two 
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variables that are at least somewhat linearly related can be quite easy these days as most 

pieces of statistical software will do most of the harder statistical calculations and work for 

the user. The goodness of fit and the appropriateness of the model can be determined 

using the statistical software output, but this will be discussed in more detail a little later in 

this chapter. 

When dealing with water resources data it is quite often the case that more than 

one explanatory variable will need to be used for explaining variation the response variable. 

In these type of situations an extension of simple linear regression known as multiple 

regression can be used to develop a relationship that explains the relationship between the 

response variable and the two (or more) explanatory variables. This multiple regression 

model takes the form: 

Equation 3 .2 

where y is the response variable, ~o is the intercept, ~1 is the slope coefficient for the first 

explanatory variable, ~2 is the slope coefficient for the second explanatory variable, ~K is 

the slope coefficient for the kth explanatory variable, and E is the remaining unexplained 

noise in the data. For this model, there are k explanatory variables, some of which may be 

correlated to each other. Sometimes picking the appropriate explanatory variables to 

include in the multiple regression model will be easy while at other times it can get quite 

difficult. Either way, a good model aims to explain as much of the variance of the response 

variable with the fewest number of explanatory variables (Helsel and Hirsch, 2002). 
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Sometimes water resources data will follow a linear relationship but it often 

nonlinear relationships exist between the explanatory variable(s) and the response variable. 

In those cases nonlinear regression models are developed for explaining the relationship 

between the explanatory variable (or variables) and the response variable of interest. The 

approach taken to developing these nonlinear models is the same as the linear models. 

Nonlinear models can get somewhat complex but fortunately the right types of statistical 

software can be used to make searching for the best fitting models easier. 

3.2.2 Literature Review 

A number of researchers have developed statistical regression models linking 

measurements of air temperature, streamflow and water temperature. Some of the earliest 

published work in this field was carried out by Johnson (1971) who studied six streams in 

New Zealand. In his research he found that monthly mean water temperatures and air 

temperatures at the streams could be described by a positive linear relationship. In a 

similar piece of research Song et al. (1973) studied streams in the state of Minnesota and 

found the relationship between monthly mean water temperature and air temperature to 

also be linear. 

Smith (1979) went beyond mean measurements of water temperature and 

describes how linear regression models can also be fit to daily maximum and minimum 

water temperature and air temperature. Smith found that the regression models 

developed for daily minimum values tend to be more scattered and less reliable than those 

for daily mean or maximum values - due to the fact that the higher thermal capacity of the 
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water will prevent development of the low night time minima characteristic of air 

temperature. In a later piece of work, Smith (1981) revisits the linear model and finds that 

the models are more accurate when working with data collected on larger time scales (i.e. 

months) rather than shorter time scales (i.e. days). 

Stefan and Preud'homme (1993) developed linear regression models for predicting 

daily and weekly mean water temperature using data collected at 11 streams in the central 

United States. The air temperature data used in the study was obtained using weather 

stations that were from 0 to 144 miles away from the streams. The relationship between 

water and air temperature was less scattered when weekly means were studied and more 

scattered when daily means were studied. The authors found that the equations 

developed for shallower streams gave lower standard deviations than those developed for 

the larger and deeper streams. 

Pilgrim and Stefan (1995) and Pilgrim et al. (1998) present linear regression models 

for predicting daily, weekly, monthly air temperature using water temperature data collected 

at 39 streams in the state of Minnesota in the United States. The air temperature data was 

obtained from weather stations on average 37.5 km away from the stream. The weekly 

and monthly models were more reliable for prediction purposes than the daily models. The 

authors attempted to lump the data from all streams in the area into one larger dataset to 

obtain a general linear regression model for the region but the resulting regression models 

was not as accurate as the models developed for individual streams. 
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The improved accuracy of models developed using longer time scales was also 

found in a study carried out by Webb and Nobilis (1997) where monthly mean models 

were more accurate than weekly mean models. The authors did find however that it was 

quite difficult to develop accurate models when working with an annual mean dataset 

(most likely due to the accuracy problems inherent in the dataset itselfj. 

A number of authors have investigated the potential influence of streamflow on 

water temperature. Crisp and Howson (1982) developed a linear model for predicting 5-

day and 7 -day mean water temperatures from 8 streams in England using air temperature 

data recorded from monitoring stations up to 50 kilometers away. The authors found that 

a multiple regression model incorporating streamflow provided a negligible improvement of 

the linear model for prediction purposes. Hockey et al. (1982) developed regression 

models for predicting daily stream temperature using daily maximum air temperature and 

flow rate for a river in New Zealand. Their regression model showed that both flow rate 

and maximum air temperature influenced water temperatures in the river under natural flow 

conditions but there was a great deal of scatter in the relationship and more data would 

need to be collected if an accurate model was to be developed. 

Webb (1987) used historical records of water temperature and air temperature to 

develop linear regression models for streams in the United Kingdom. In a similar piece of 

work Webb et al. (2003) develop linear regression models for streams in the United 

Kingdom (Figure 3.1) but also develop a multiple regression model that includes both air 

temperature and streamflow as explanatory variables for water temperature. Hourly, daily 
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and weekly data collected from catchments in the United Kingdom were studied and 

streamflow was found to be significant only when the shorter time scales (i.e. hourly 

measurements) were studied. When larger time scales were of interest (i.e. daily and 

weekly means) streamflow was no longer of importance and a simple linear regression 

model was found to be appropriate. The strength of the linear relationship between water 

temperature and air temperature was found to increase as the time base being studied 

increased from hourly means to weekly means. The authors also studied the presence of 

hysteresis in the data and found that accounting for hysteresis in hourly data improved the 

fit of the regression models. The weekly mean data was grouped into 3 month periods 

(January-March, April-June, July-September, and October-December) but hysteresis was 

not found to be significant. 
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Figure 3. 1 Linear Regression Model used by Webb eta/. (2003) 
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Langan et al. (2001) studied a 30 year record of stream temperature collected at a 

stream in Scotland and found that the linear relationship between air and water 

temperature was stronger during summer than it was during the colder winter months. 

The assumption that the relationship between water temperature and air 

temperature is best described by a linear equation was first brought into question when 

Mohseni et al. (1998) developed a nonlinear logistic function to describe the nonlinear S

shaped relationship that was observed in weekly maximum water temperature and air 

temperature data recorded at 584 streams in the United States. In this study air 

temperatures were obtained from weather stations that were 1.4 to 244 km away from the 

streams. The S-shaped relationship was found to be more accurate than a simple linear 

relationship for making predictions of weekly maximum stream temperatures. In the same 

study, the authors note that for some rivers the weekly and monthly stream temperature 

data showed signs of hysteresis due to snowmelt which kept water temperature close to 

zero in the spring even though air temperatures were rising. For rivers showing signs of 

hysteresis, one regression model was developed for the warming season and another for 

the cooling season to account for the heat storage effects (Figure 3.2). 
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(Image source- Mohseni et at., 1998) 

Mohseni and Stefan (1999) discuss why the relationship between air temperature 

and water temperature should no longer be considered a linear one as the nonlinear S-

shaped relationship better describes the physical relationship exists between the two 

parameters. Their research has shown that when air temperatures are high enough, the 

slope of the relationship between water and air temperature will level off despite further 

increases in air temperature. This leveling off above air temperature greater than 25 

degrees Celsius is a result of evaporative cooling and back radiation from water surfaces. 

As air temperature continues to increase the capacity of the atmosphere to hold moisture 

increases and the rate of evaporative cooling increases as well. As the river or stream 

increasingly loses heat, the water temperature no longer increases linearly with the 
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increase in air temperature and the relationship will taper off. When air temperatures drop 

below 0 oc the linear relationship also changes and the relationship levels off. Quite often 

groundwater inflow to a stream will directly affect the minimum stream temperature and 

even though temperatures continue to drop, the stream will reach some minimum 

temperature above zero degrees. The authors also note that streams in colder climatic 

zones may not always show a significant change in the slope of the relationship at higher 

air temperatures as air temperatures do not rise high enough to show the water 

temperature limiting the effect of evaporative cooling. Mohseni et al. (2002) revisit their 

work with the streams in the United States and add an additional parameter to their 

original S-shaped relationship so that boundaries for the relationship between weekly air 

temperature and stream temperature are put in place. 

Caissie et al. (2001) modeled maximum daily stream temperature and maximum 

daily air temperature for a small stream in New Brunswick, Canada using the S-shaped 

regression model. The daily data was far too scattered to provide reliable models to logistic 

models were only developed using the weekly data. Stochastic models that broke the data 

into seasonal components were also developed. The simpler regression models 

compared quite favorably in terms of performance and were much easier to develop. 

Neumann et al. (2003) compare the fit between a linear regression model and an S

shaped logistic model for predicting daily maximum stream temperatures using streamflow 

and air temperature data collected from 1993 to 1998 for the Truckee River in the state of 

Nevada. Linear models were found to work well for prediction purposes while the S-
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shaped model was also accurate but offered not major improvement over the linear model 

for that particular river. Morrill et al. (2005) compared the fit of the more commonly used 

linear regression model and the nonlinear S-shaped model developed by Mohseni et al. 

(1998) for evaluating the relationship between weekly mean values of air temperature and 

stream temperature values for 43 sites in the United States and internationally. The 

nonlinear S-shaped relationship was found to produce a better fit than the linear model. 

Lagergaard Pedersen and Sand-Jensen (2007) used linear and nonlinear S-shaped 

regression models to study seasonal variations in daily water temperature for streams in 

Denmark. The nonlinear model was found to be more accurate than the linear one for the 

daily data and was then further used for examining the impact of a global warming 

scenario on streams in Denmark. 

Not all of the published literature looking at the relationship between air temperature 

and water temperature has been devoted to developing statistical regression models as a 

number of authors have sought to describe the relationship between these two 

parameters using mathematic models that describe the physics of heat exchange between 

a river and the surrounding environment (Morin and Couillard, 1990; St. Hilaire et al. , 

2000). These other models require a great deal of input (meteorology, hydrology, stream 

geometry) if they are to be effective. For simplicity most authors and resource managers 

prefer to work with regression models for prediction in that are usually much easier to 

understand and use readily obtainable data. Benyaha et al. (2007) discusses the 

advantages and disadvantages of all the different modeling approaches. 
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3.3 Methodology Used for Developing Water Temperature Models 

A four step methodology was used to develop regression models for water temperature at 

the real time stations: (1) get familiar with the commonly used models, (2) obtain the 

datasets necessary for regression, (3) use statistical software to determine the best fitting 

models, and (4) test out the best models for the purposes of predicting water temperature. 

3.3. 1 Step One - Get Familiar With the Most Commonly Used Models 

The four most commonly used regression models for predicting water temperature found 

in the literature were: (1) linear regression using air temperature as an explanatory variable, 

(2) multiple regression using both air temperature and streamflow, (3) the first logistic S

shaped model proposed by Mohseni that uses air temperature, and (4) a follow-up S

shaped model proposed by Mohseni with an additional parameter for minimum water 

temperature. Table 3.1 presents the form of each of these models and lists some brief 

notes on each of them. Author's Note - stage has been used instead of streamflow in this 

research as stage records are much more reliable for the RTWQ stations. 

The literature review has shown that the trend in recent years has been towards 

abandoning the traditional linear relationship between water temperature and air 

temperature in favor for the nonlinear logistic S-shaped relationship. However, not all 

authors have made the switch as some have found that the more complicated logistic 

model does not always offer up any major improvement. As for the multiple regression 

equation with stage, some authors have streamflow to be significant for some rivers but 

only at some time scales while others never find streamflow to be significant. 
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Table 3.1 The Most Commonly Used Regression Models for Water Temperature 

Model 

Linear 
Equation 3.3 

Form Parameters 

- Tw is water temperature for a time period 

- Ta is air temperature for the same time period 

- ao and a, are the regression coefficients 

- 8 is the error term. 

-Strength of the relationship depends on the time interval being studied. 
- Relationship is usually much stronger when examining monthly mean or maximum temperatures but is 

more scattered when daily means or maximums are used. 
- Smith (1979) notes that regression models for minimum water temperatures tend to be more scattered 

than for mean and maximum water temperatures. 
- Regression models are rarely developed for hourly water temperatures as it tends to be too scattered. 

Logistic 1 

Equation 3.4 
a 

Tw = ----,--------,-
1 + er(f3-Ta) 

- Tw is the estimated water temperature 

- Ta is the measured air temperature 

- oc represents the maximum stream temperature 

_ y measure of the steepest slope of the function 

- ~ is the air temperature at the inflection point. 

- Original form of the non-linear logistic equation proposed by Mohseni and Stefan (1998). 
- Some researchers have found this model is a great improvement over the linear model while others have 

found negligible improvement and tend to go with the linear model for simplicity. 
- Hysteresis in the data may make it necessary to develop two models (one high and one low) 

Logistic 2 

Equation 3.5 
a-J..l 

Tw = f..l + -1--r....,...(/3:----Ta-:-) 
+e 

- additional parameter 1J added to represent the 
estimated minimum stream temperature. 

Notes: Modified form of the original Logistic 1 model proposed by Mohseni and Stefan (1998) 

MLR 

Equation 3.6 

- variable added for the influence of stage (ST) 

- Other researchers have used streamflow as an additionally explanatory variable for water temperature. 
- Stage has been used instead of streamflow in this research 

56 



3.3.2 Step Two - Develop the Necessary Datasets 

The historical records of drift corrected Datasonde real time data, Environment Canada 

stage data and air temperature data were used to develop mean, maximum and minimum 

datasets at the daily, weekly and monthly time scales for the four real time stations. 

Although the air temperature data being used in this research is collected at 

Environment Canada weather stations and not at the exact location of the RTWQ stations, 

it needs to be assumed that the Environment Canada data is a close approximation of the 

air temperature at the provincial network RTWQ stations. In this research the distances 

from the RTWQ stations to the weather stations are as follows: Humber River 

(approximately 15 kilometers), Peter's River (approximately 50 kilometers), Leary's Brook 

(approximately 5 kilometers), and Waterford River (approximately 1 0 kilometers). These 

distances are comparable to the work carried out by other authors: Crisp and Howson 

(1982) worked with air temperature data collected up to 50 kilometers away from their 

streams, Stefan and Preud'homme (1995) worked data collected from 0 to 144 miles away 

from their streams, and Pilgrim and Stefan (1995) worked with distances on average of 

37.5 kilometers. Although it is possible that the meteorological data obtained at the 

stations may not match with what might be recorded at the RTWQ stations, there is 

currently no air temperature data collected at the RTWQ stations available for comparison. 

In the future the WRMD is looking to install air temperature equipment at the stations. With 

this new equipment in place it would be possible to quantitatively determine the impact of 

relying on the weather station air temperature when developing water temperature 

regression models. Until this equipment is installed, it will be necessary to assume air 
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temperature data collected from reasonably close weather stations (i.e. 50 kilometers away 

or less) to be a good approximation of R1WQ station air temperature. 

Most authors use streamflow as an additional explanatory variable for water 

temperature and not stage level (Crisp and Howson, 1982; Webb, 1987). In this research 

streamflow could not be used as it was not possible to obtain a complete record of 

streamflow for the R1WQ stations (determined after speaking with an Environment Canada 

representative in the early stages of research who noted that getting the missing hourly 

streamflow data would take a significant amount of effort, and the resulting dataset if 

developed would be in a rather unusable form). Although it would have been useful to 

compare models developed using streamflow and those using stage, that will not be 

possible until more extensive streamflow datasets are available in the future. Until more 

complete streamflow datasets are made available, stage can be considered as a substitute 

explanatory variable for streamflow as the two were found to be highly correlated using 

Minitab Statistical Software (Release 14) - with a correlation p-value of 0.00 obtained 

between stage and streamflow for each station. 
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These historical records contain over 25,000 rows of data and sorting through all 

these rows find the daily, weekly and monthly values would be a very time consuming 

process. Take for example finding daily mean values for the real time measurements 

collected at the Humber River station. Over the period of 2003 to 2008 there were over 

30,000 measurements collected for each water quality parameter. Although it would 

entirely be possible to scroll down through 24 rows of data in Excel (each containing an 

hourly measurement) and then insert a row below this data so that an equation to find an 

average value for those 24 rows could be entered, this would get rather exhausting when 

done the required 1 500 times. 

In this thesis, macros were written for Minitab that sort through the rows of data 

and then automatically output the values a user was searching for (i.e. weekly mean values 

of water temperature for all of 2005). An overview of how these macros operate is given in 

Figure 3.3. 

Author's note - the complete code for each of the macros can be found in Appendix B. 
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Macros written to search out the mean, maximum and minimum values 
One macro written for handling Datasonde hourly RlWQ measurements 

One macro written for handling Environment Canada stage level 
One macro written for handling Environment Canada air temperature 

After the drift corrected historical records are copied from Microsoft Excel into Minitab the macro can 
be run to find the values of interest 

1ITB > ~Monthly 
Executing from file : C: \ Progr8lll Files\IUNITAB 14\MACROS\Monthly. f!AC 
macro is used to get the mon thl y mean max and min val ues for real 
time data 
Author - Richard Harvey - February 2009 
cl has the date and time 
c2 has the water temperature 
c3 has the pH 
c4 has the specific conductance 
cS has the dissolved solids 
c6 has is the percent saturation 
c7 has the dissolved oxygen 
c8 has the turbidity (but leave this out of calculations) 
Set desired year and months (i . e. 2004 1 12) 
DATA> 2004 1 12 

C2 3 .. 5 

WT pH OS 
1209 212612004 1 :50:00 AM 0.18 6.85 34.20 0.0220 

1210 2/2612004 2:50:00 AM 0.18 6.86 33.90 0.0218 

1)11 ?I?RI?flfl4 :l!1n·m AM n 1g R RR 14 ?fl n m ?n 

Macro will then find and store the desired data 

PS 
98.01 

97.52 
g? g::~ 

a 
DO 
14.18 

14.10 

14 1R 

__ .. __ -- .. - - . - - - - - -- - - . . - --- -- . ----
ill NF02YL0012 •-

-4 '15 16 17 18 19 C20 :21 C22 C2 

ea1 Month Me, n WT Max WT Min WT Me ~n !lH Max pH Min pH Me all 

1 2004 1 2.9353 4.01 2.22 6.76431 6.93 6.44 33.S 

2 2004 2 0 4284 1.13 -0.10 6.95429 7.24 6.51 33.:: 

3 2004 3 0.3838 1.53 -0.10 6.82224 7.07 6.27 36.4 

... 2004 4 1.2579 2.46 0.33 6.77868 6 .91 6.50 37.:;: 

5 2004 5 3.8283 6.65 1.86 6.74578 6 95 6.42 36.7 

6 2004 6 7.3241 10.62 5.43 6.76471 6 .93 6.65 35.S 

7 2004 7 14.1083 17.51 10.21 6.68086 7 .06 6.26 38.( 

R ?nn.d R 17 R..dJ:\.d ?n ~=>7 11 .d? 1=1 qn1~=>t:; 711 1=1 t:;R 1R c 

Figure 3. 3 Minitab Macros Seek Out the Mean, Maximum and Minimum Values 

60 



Once the mean, maximum and minimum values for the daily, weekly and monthly time 

scales were developed, each of the larger datasets were split into two separate datasets -

a longer one for developing the regression models and another shorter one consisting of 

the last year of real time measurements in this historical record. Some stations have a 

rather short length of time covered by their drift corrected historical record and it was not 

always possible to have a full year of real time measurements available for model testing 

purposes without cutting significantly into the amount of data available for developing the 

regression models (i.e. Peter's River with a short drift corrected dataset ranging only from 

July 2005 to May 2007). For these shorter datasets the first priority was developing a 

longer dataset for regression modelling and then leaving some data left over for testing. 

For longer datasets like Humber River it was much easier to have multiple years for 

regression modelling and then at least a full year left over for testing purposes. 

Table 3.2 presents a general statistical summary of the datasets for developing 

regression models using mean monthly, weekly and daily data. A more detailed statistical 

summary of the datasets can be found in Appendix C. 

Initial investigations into the correlation between water temperature, air temperature 

and stage were carried out once the regression datasets were developed. The relationship 

between water temperature and air temperature was found to be strongly positive while 

the relationship between stage and water temperature was negative. Scatterplots of the 

mean, maximum and minimum air-water relationship showed the strong positive 

relationship between the two parameters. Figure 3.4 presents one of these scatterplots for 

the Peter's River station. Plots for the other stations can be found in Appendix D. 
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Table 3.2 Statistical Summary of the Regression Modeling Datasets 

Time Periods Covered by the Datasets 

For Developing Regression Models For testing Regression Models 

Humber River - Dec 2003 to Dec 2006 Humber River - Jan 2007 to Apr 2008 
Peter's River - July 2005 to May 2007 Peter's River - July 2007 to Feb 2008 
Leary's Brook - Sept 2004 to Dec 2006 Leary's Brook - May 2007 to Dec 2007 
Waterford River - July 2005 to Mar 2007 Waterford River - Apr 2007 to Mar 2008 

Water Air Temperature Stage Dissolved Oxygen 
Temperature (0C) (OC) (m) (mg/L) 

Dataset Obs Avg Min Max Avg Max Min Avg Min Max Avg Min Max 

Monthly Mean Models for Regression 

Humber River 37 7.07 0.38 17.85 4.89 -8.99 18.07 2.12 1.52 3.30 12.09 8.60 19.48 

Peter's River 23 8.07 -0.10 20.58 4.28 -8.95 17.86 1.14 0.94 1.48 11.00 7.66 13.76 

Leary's Brook 16 6.93 0.71 16.58 5.12 -3.65 16.98 0.79 0.63 0.95 11 .64 6.45 13.87 

Waterford River 21 8.09 0.22 17.71 5.94 -5.74 17.11 0.56 0.42 0.91 11 .09 6.59 14.22 

Weekly Mean Models for Regression 

Humber River 149 7.11 0.25 18.53 5.14 -12.94 20.51 2.13 1.39 3.66 12.05 8.56 19.61 

Peter's River 91 8.34 -0.13 22.53 4.40 -13.76 20.82 1.16 0.93 1.84 10.95 6.99 14.26 

Leary's Brook 57 6.92 0.27 17.50 4.98 -6.40 18.74 0.80 0.59 1.18 11.51 5.24 14.93 

Waterford River 90 8.10 -0.17 18.73 5.92 -9.27 18.74 0.56 0.40 1.05 II. I 0 5.95 14.90 

Daily Mean Models for Regression 

Humber River 986 7.25 0.02 20.12 5.39 -16.56 23.03 2.14 1.34 3.83 11.98 8.50 19.94 

Peter's River 595 8.45 -0.29 27.88 4.61 -19.08 25.46 1.14 0.88 2.27 11 .22 7.13 14.96 

Leary's Brook 347 6.79 0.07 19.13 4.94 -10.87 2 1.22 0.81 0.57 1.35 10.82 8.74 13.14 

Waterford River 587 8.12 -0.19 22.46 5.92 -13.46 21.22 0.56 0.39 1.43 11.07 5.23 15.53 
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3.3.3 Step Three - Find the Best Fitting Models 

Minitab Statistical Software (Release 14) and Datafit Curve Fitting Software (Release 

8.0.32) were used together for fitting potential regression models and then determining the 

best fitting model overall. Minitab was used for quickly plotting the data, determining 

correlations between the observed data and for working with the mean, maximum and 

minimum datasets (i.e. finding unusual observations). Datafit was used for determining 

regression model parameters and determining the overall goodness of fit of the models. 

The goodness of fit for the models was based on the following statistics: R2, 

adjusted R2 , residual sum of squares (RSS - also referred to as SSE), and the standard 

error (the standard deviation of the residuals). The dimensionless measure, R2 which is the 

fraction of the variance explained by regression, can be used as a dimensionless measure 

of fitting yon x. R2 is calculated using equation 3.7 while RSS (or SSE) is calculated using 

Equation 3.8. 

R2 = l-(SSEJ 
SSy 

n 2 

SSy = L(Yi- y) 
i = l 

Equation 3.7 

Equation 3.8 

Equation 3.9 

where y represents the mean of the response variable y and R2 will range from 0 to 1 . 
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Helsel and Hirsch (2002) note that the weakness in using R2 as an indicator of the 

goodness of fit is that must increase, and the SSE decrease when any additional variable 

is added to the regression and this will happen no matter how little explanatory power that 

variable has. Another statistical measure available in the overall approach is the adjusted 

R2 which is an R2 value adjusted for the number of explanatory variables in the model. 

Adjusted R2 is calculated as follows: 

R2 = 1 _ ( n - 1) SSE = 1 _ MSE 
a ( n - p) SSy ( SSy I ( n - 1)) 

Equation 3.1 0 

The model with the highest R2a is identical to the one with the smallest standard error - or 

its square the MSE. MSE is calculated using: 

Equation 3.11 
MSE = ..:..:i='-'--1 ----

n - 2 

where Y; represents the value of the response variable at the ith data point, E(y;) 

represents the estimated value of the response variable at the ith data point, and n is the 

total number of samples being studied. 

Either R2a should be maximized or MSE should be minimized as an overall measure 

of the quality of the model. Using software like Datafit to calculate all of these indicators of 

the goodness of fit allows the user to focus on which of the models is best for modeling 

the response variable being studied. Appendix E contains a brief summary note on points 

to remember when using curve fitting software like Datafit for seeking out the best fitting 
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regression models. There is a tendency for some user to use the software blindly without 

ever checking to make sure the resulting models are both valid and meaningful. 

Author's Note - one aspect of fitting regression models for measurements of water quality 

collected over time that is rarely mentioned in the literature is how to handle significant 

autocorrelation (the dependence or correlation of measurements in time) in the collected 

data. One of the main assumptions of regression is that the residuals are independent and 

any significant autocorrelation in the data will violate this assumption. 

For the purposes of developing regression models for both water temperature and 

dissolved oxygen, the problem of high levels of autocorrelation was avoided by taking a 

random sample (without replacement) of the available data to interrupt any sequential time 

period in the data. Taking the Humber River station as an example, a random sample of 

the 64 monthly measurements (water temperature, air temperature, etc.) from 2003 to 

2007 gives a new dataset of 194 observations in no particular time sequence. 
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3.4 A Note on Handling Hysteresis in the Data 

Initial investigations into developing regression models for water temperature for the RTWQ 

stations proved to be successful for Peter's River, Leary's Brook and Waterford River but 

the models for Humber River were rather poor (with an adjusted R2 values for the monthly 

mean first logistic model equal to 0. 771 ). 

Investigation into the Humber River data showed that a division should be made in 

the original dataset to account for hysteresis in the data (similar to the situation 

encountered in the work carried out by Mohseni et al., 1998). Water temperatures at the 

Humber River station tend to keep close to zero from February to July even though air 

temperatures during this time are rising. Figures 3.5 and 3.6 clearly shows the difference 

in mean water temperatures during the warming season (February to July - when water 

temperatures are lower) and the cooling season (August to January - when water 

temperatures are higher). Warming and cooling seasons were also observed in the 

maximum and minimum water temperature datasets. 

Perhaps this hysteresis is due to snowmelt in the region which keeps water 

temperatures low but at this time it is not known for sure what the cause is in Humber 

River. To account for the hysteresis, separate models were developed for the warming 

season and the cooling season at the Humber River station. 

The other three stations were investigated for the presence of hysteresis in the data 

but no clear division between a warming and cooling season could be identified for those 

sites and the regression datasets were kept whole as a result. 
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Humber River- Monthly Mean Water Temperature 
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Figure 3. 5 - Hysteresis in the Humber River Monthly Mean Dataset 

Humber River - Weekly Mean Water Temperature 
High Months- August to January (Black) and Low Months- February to July (Red) 
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Figure 3. 6 Hysteresis in the Humber River Weekly Mean Dataset 
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3.5 Regression Modeling Results for Water Temperature 

Table 3.3 presents the curve fitting results for the first logistic model. Figure 3.7 and 3.8 

present the regression models for mean monthly water temperatures. The complete set of 

curve fitting results for the water temperature regression models (linear, logistic 1 , logistic 2 

and multiple regression with stage) are contained in Appendix F. 

Table 3.3 First Logistic Water Temperature Regression Models 

Mean Datasets Maximum Datasets Minimum Datasets 

Monthly Weekly Daily Monthly Weekly Daily Monthly Weekly Daily 

Humber River Cooling Season - High Water Temperature Months (August to January) 
(19 Monthly Observations, 76 Weekly Observations and 500 Daily Observations) 

Logistic 1 Model: Tw = a/(1 +exp(b*(c-Ta))) 

a 21.4 1 20.3 1 20.50 27.87 27.54 22.06 37.65 18.26 18.85 

b 0.15 0.15 0.13 0.15 0.11 0.11 0.11 0.16 0.15 

c 7.20 6.56 6.78 2 1.25 19.74 11 .57 11.11 -0.51 2. 17 

RSS 5.13 147.35 2150.71 69.37 361.24 2693.80 32.99 187.45 2349.29 

R2 Adj 0.99 0.93 0.84 0.88 0.84 0.81 0.90 0.89 0.82 

Standard Error 0.57 1.42 2.08 2.08 2.22 2.33 1.44 1.60 2. 17 

Humber River Warming Season - Low Water Temperature Months (February to July) 
(18 Monthly Observations, 73 Weekly Observations and 486 Daily Observations) 

Logistic 1 Model: Tw = a/(1 +exp(b*(c-Ta))) 

a 21.56 15.68 15.77 366.91 32.80 18.90 11.11 11.39 13.10 

b 0.19 0.24 0.22 0.13 0.14 0.15 0.30 0.33 0.30 

c 14.96 11.48 11.81 51.47 28.95 19.06 1.92 2.29 5.35 

RSS 9.68 143.42 191 1.98 12.75 384.49 2886.83 10.04 110.13 1756.1 7 

R2 Adj 0.97 0.91 0.83 0.98 0.81 0.77 0.95 0.90 0.83 

Standard Error 0.80 1.43 1.99 0.92 2.34 2.44 0.82 1.25 1.91 
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Table 3.3 continued - First Logistic Water Temperature Regression Models 

Mean Datasets Maximum Datasets Minimum Datasets 

Monthly Weekly Daily Monthly Weekly Daily Monthly Weekly Daily 

Peter's River 
(23 Monthly Observations, 91 Weekly Observations, 595 Daily Observations) 

Logistic 1 Model: Tw = a/(1 +exp(b*(c-Ta))) 

a 21.13 22.89 23.16 43.07 34.59 28. 19 68.64 18.19 19.52 

b 0.24 0.21 0.20 0.14 0.14 0.15 0. 16 0.22 0.21 

c 7.63 8.73 9. 15 27.12 22.04 15.46 9.08 -1.56 3.06 

RSS 31.03 237.02 3962.91 97.50 599. 18 5386.46 52. 19 612.91 6495.23 

R2 Adj 0.97 0.95 0.88 0.95 0.92 0.87 0.91 0.8 L 0.75 

Standard Error 1.25 1.64 2.59 2.21 2.6 1 3.02 1.62 2.64 3.31 

Leary's Brook 
(16 Monthly Observations, 57 Weekly Observations, 347 Daily Observations) 

Logistic 1 Model: Tw = a/{1 +exp(b*(c-Ta))) 

a 18.28 18.41 19.06 1181.08 41.12 24.22 16.28 14.69 16.49 

b 0.24 0.23 0.21 0.08 0.11 0.15 0.28 0.35 0.27 

c 7.74 7.75 8.72 76.55 25.47 14.77 1.78 1.30 4.80 

RSS 15.17 76. 14 873.54 72.09 220.36 1523.39 17.57 108.29 1024.05 

R2 Adj 0.96 0.95 0.92 0.84 0.89 0.88 0.93 0.92 0.89 

Standard Error 0.96 1.19 1.59 2.35 2.02 2. 10 1.16 1.42 1.73 

Waterford River 
{21 Monthly Observations, 90 Weekly Observations, 587 Daily Observations) 

Logistic 1 Model: Tw = a/(1 +exp(b*(c-Ta})) 

a 18.47 18.95 19.56 70.24 32.34 22.82 9.90 16.34 17.44 

b 0.25 0.25 0.23 0. 11 0.14 0.18 2.44 0.25 0.26 

c 7.41 7.77 8.36 32. 13 19.94 12.24 -0.44 3.66 5.41 

RSS 8.68 83.73 1596.62 77. 11 433 .75 2709.58 141.23 294.36 1705.3 1 

R2 Adj 0.99 0.98 0.94 0.93 0.92 0.91 0.95* 0.90 0.92 

Standard Error 0.69 0.98 1.65 2.07 2.23 2.15 2.80 1.84 1.71 
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3.6 Discussion 

3.6. 1 Linearity Versus Nonlinearity 

The logistic models were found to best describe the S-shaped relationship between air 

temperature and water temperature at the stations. In all cases the level of explained 

variance of the first logistic model is equal to or higher than that of the linear model. For 

daily mean datasets, the first logistic function provided a significant increase in adjusted R2 

values - ranging from 3% for Waterford River to 9% for the Humber River warming season. 

For weekly mean datasets the increase in the level of explained variance ranges are in the 

range of 1 to 11%. The increase in explained variance at the monthly time scale is less 

significant - with no difference in the level of explained variance between the linear and first 

logistic model at the Waterford River station and a 1% increase at Leary's Brook and the 

Humber River cooling season. During the Humber River warming season though there is a 

significant increase in adjusted A-squared of 9%. It is interesting that when dealing with 

the mean water temperature datasets the logistic models often do not level off at higher 

water temperatures. 

The first logistic model is a significant improvement over the linear model when 

dealing with the maximum and minimum water temperature datasets. Unlike the mean 

datasets, there is a bigger increase in adjusted A-squared at the monthly time scale for 

these datasets- where for maximum monthly water temperature the increase ranges from 

5% at Peter's River to 15% for Humber River Warming season. 
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When working with the Waterford River monthly minimum water temperature data it 

was necessary to remove one outlier - September 2006 with the minimum water 

temperature of 0.01 oc and minimum air temperature of 5.8°C (indicated in Table 3.3 with 

the asterisk). On the date of September 12, 2006 the water temperature in the historical 

drift corrected dataset drops from 13.92°C to 0.01°C and then within an hour rises back 

up to 12.09°C. There is no record of this drop on the maintenance forms for the station. It 

is highly likely that the drop is the result of communication problems with the monitoring 

equipment and it should not be considered an accurate measurement of water 

temperature. Once this outlier is removed from the dataset the adjusted R2 for the first 

logistic model value for monthly minimum water temperature is 0.95 (up from 0.72 when 

the outlier was included in he original dataset). 

From working with the data it was noted that the second logistic model never 

provides a substantial improvement in residual sum of squares or the amount of explained 

variation over the first logistic model. As a result, for the sake of prediction purposes for 

rivers in the provincial RTWQ network it is better to use the simpler first logistic model 

when modeling water temperature. 
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3.6.2 The Influence of Time-scale 

The strength of the water temperature and air temperature relationship was strongest at all 

stations as the time scale was extended from daily mean observations to monthly mean 

observations. Figure 3.9 presents a comparison plot of the decrease in adjusted A

squared values as time scale is extended in the mean water temperature datasets. 

Excessive scatter in the daily mean observations kept adjusted A-squared values 

lower and residual sum of square values for the daily first logistic models were rather high 

(from 873.54 for Leary's Brook to 3962.91 at Peter's River where at the monthly time scale 

it ranged from 5.13 for Humber River cooling season to 31.03 at Peter's River). 

Scatter at the weekly time scales is not as high as at the daily time scale and 

adjusted A-squared values for the first logistic models are still quite higher. Increased 

scatter in the smaller time scale datasets drives the residual sum of squares term quite 

high and also increases the standard error term (as shown in Figure 3.1 0). It is often easier 

to see the S-shaped relationships in the data at the weekly time scale than it is at the 

monthly time scale (where both models tend to fit equally well). 
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An important aspect of checking the validity of the models involves examining 

residual plots developed by Datafit (or Minitab). The residual plots for the monthly models 

presented in this thesis were all valid for checks of residual normality and constant 

variance. The residual plots of the weekly models were adequate for the normality 

assumption but an interesting pattern began to emerge on the variance plot - where at 

lower air temperatures there is smaller scatter in the residuals than at the higher air 

temperatures. For the most part, the lack of constant variance for the weekly models is 

slight but is even more visible in the residual plots developed for the daily models. There is 

no way to modify the daily models to get constant variance in these plots. 

Residual scatter is smaller at the lower air temperatures as water temperature 

cannot drop far below 0 OC- i.e. scatter is more one sided. Water temperatures can take 

on a greater ranger of values at the higher air temperatures - i.e. scatter is two sided. For 

the purposes of developing regression models for prediction it is best that all the 

assumptions are valid. There is already a great deal of scatter in the daily models and the 

residual plots for the daily models are an indicator that the daily models will likely be not 

useful for accurately predicting water temperatures at the stations. 

Figure 3.11 presents a comparison of the different residual plots for the Waterford 

River first logistic model for the warming season. It can be noted that at the daily 

timescale there is a distinct reverse funnel shape to the residual scatter, indicating variance 

in the data is larger at the higher air temperatures. Even though the daily models do 

violate the assumption of constant variance they have still been tested for prediction 

purposes later in this chapter. 

77 



ro 
~ 

Waterford River - Monthly Mean WT - Residuals for Logistic 1 Model 
1.5 .!!2 2.0 ,-------------, 

0.8 f--

. . 
• 

• 

.. 
I 

.. 
ro 
~ 

"0 ·u; 1.0 
Q) 

0::: 
"0 0.0 
Q) 

.!::! 
E -1 .o 
~ 

.. . 

. . . . 

0 z -2 . 0 IL..L...Jc....J......L__l_.L-L....I....i....L.J--'--L....L....L...I..-l-.J....J......l -1.5 I 

-10.0 -2.5 5.0 12.5 20.0 -2.0 -1.0 0.0 1.0 2.0 

X:Mean AT Normal Quantiles 

Waterford River - Weekly Mean WT - Residuals for Logistic 1 
2.5 .--------------, 

. . . . . 
·~ . . . . .. .. . . . ., .. 

.!!2 3.0 .....------------, 
ro 
~ 

~ 
rJ) 
Q) 

; . 
/ 

~ 00 rJ) • 1-o 
. .. . . 

•• •• • • 
· ... . 0::: 

"0 0.0 
Q) Q) 

0::: 

ro 
~ 

~ 
rJ) 
Q) 

0::: 

-1.3 f--

•• • • . : 
•• # .... 

•: . .. . 
. . ·.· . . . ... .. 

-2 . 5 L..J_J........&....&.....L..l......L....l-.L-L...L.....JI__.__.._,_I...J......J....~ 
-10.0 -2 .5 5 .0 12.5 20.0 

X:Mean AT 

.!::! 
E -1.5 
~ 

0 z -3 . 0 l....l.-'---'-l.__l_.I_...J......J....-'-'-.L....I....JL....L..l.--'-'-...J....1....l 

-3.0 -1.5 0.0 1.5 3.0 

Normal Quantiles 

Waterford River - Daily Mean WT - Residuals for Logistic 1 
6.0 

2.0 

-2.0 

-6.0 

-1 0. 0 l...L..J.-'-'-.I......J.....L....L...J-.I......J.....L....L...J-..L..l....J....J......L...J 

-15.0 -5.0 5.0 15.0 25.0 

X:Mean AT 

~ 4.0 .-------------. 
~ 

"0 
·u; 1.8 

Q) 

0::: 
"0 -0 5 Q) • 

.!::! 
E -2.8 
~ 

0 z -5 . 0 LJ.____j~__l_.L...I..-l-.1.....L..J'--'--.1.....1....L-L....I....J....J......J 
0.0 2.0 4.0 -4.0 -2.0 

Normal Quantiles 

Figure 3. 11 - Time Scale Residual Plots for the Waterford River Monthly, Weekly and Daily 

Mean Water Temperature Models 
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3.6.3 The Influence of Stage 

The combined influence of stage and air temperature on water temperature was 

investigated through the use of multiple regression analysis. For the Humber River cooling 

season and Peter's River, stage was not a significant explanatory variable at the weekly 

and monthly time scales. Although stage is often a significant explanatory variable at the 

daily time scale, the multiple regression model never provides a significant improvement 

over the first logistic model. The loss of importance of stage at the extended time scales is 

a similar result as that found when other models developed models using streamflow at 

varying timescales (Crisp and Howson, 1982; Webb, 1987). Stage is never a significant 

explanatory variable at the Leary's Brook station. 

Stage is an important explanatory variable at all time scales for the Humber River 

station during the warming season and at the Waterford River station. Adjusted R2 values 

for the multiple regression for the mean water temperature datasets are quite high at the 

Waterford River station (ranging from 0.93 daily to 0.99 monthly) but the multiple 

regression model does not provide a better fit than the logistic models - refer to Table 3.4 

for a comparison. Figure 3.12 presents the multiple regression model with stage and air 

temperature for daily mean water temperature for the Humber River warming and cooling 

seasons. 
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Table 3.4 - MLR Modeling Results for Water Temperature Models 

Mean Datasets Maximum Datasets Minimum Datasets 

Monthly Weekly Daily Monthly Weekly Daily Monthly Weekly Daily 

Humber River Cooling Season - High Water Temperature Months (August to January) 
(19 Monthly Observations, 76 Weekly Observations and 500 Daily Observations) 

Multiple Regression Model: Tw = a + b*Ta + c*Stage 

a 

b 

c 

RSS 

R2 Adj 

NS NS 8.24 NS NS 7.06 NS NS 

0.54 0.50 

-0.76 -0.83 

2291.78 2755.01 

0.83 0.81 

Humber River Wanning Season - Low Water Temperature Months (February to July) 
(18 Monthly Observations, 73 Weekly Observations and 486 Daily Observations) 

Multiple Regression Model: Tw = a + b*Ta + c*Stage 

a 7.88 6.38 5.98 0.75 3.75 4.84 9.13 8.86 

b 0.57 0.53 0.50 0.72 0.54 0.46 0.33 0.39 

c -2.81 -2.02 -1.77 -2.57 -2.57 -1.96 -2.34 -1.92 

10.00 

0.55 

-0.80 

2568.66 

0.80 

7.42 

0.47 

-1.55 

RSS 13.66 212.09 2340.63 44.84 374.05 2882.28 41.13 226.80 2709.59 

R2 Adj 0.96 0.87 0.80 0.92 0.81 0.77 0.80 0.80 0.74 

Peter's River 
(23 Monthly Observations, 91 Weekly Observations, 595 Daily Observations) 

Multiple Regression Model: Tw = a + b*Ta + c*Stage 

a NS NS 8.58 NS NS 6.85 NS 21.23 12.78 

b 0.70 0.74 0.45 0.54 

c -2.97 -3.63 -10.84 -4.24 

RSS 5752.56 6167.02 849.88 8662.33 

R2 Adj 0.82 0.85 0.74 0.67 
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Table 3.4 continued - MLR Modeling Results for Water Temperature Models 

Mean Datasets Maximum Datasets Minimum Datasets 

Monthly Weekly Daily Monthly Weekly Daily Monthly Weekly Daily 

Leary's Brook 
(16 Monthly Observations, 57 Weekly Observations, 347 Daily Observations) 

Multiple Regression Model: Tw = a + b*Ta + c*Stage 

a NS NS NS NS NS NS NS NS NS 

b 

c 

RSS 

R2 Adj 

Waterford River 
(21 Monthly Observations, 90 Weekly Observations, 587 Daily Observations) 

Multiple Regression Model: Tw = a+ b*Ta + c*Stage 

a 6.33 6.38 7.13 0.20 2.28 5.44 NS 10.46 9.26 

b 0.79 0.77 0.73 0.92 0.82 0.73 0.60 0.67 

c -5.24 -5.06 -5.93 -2.80 -3. 17 -4.76 -8.98 -7.75 

RSS 5.04 I 08.07 1766.77 125.12 485.64 2498.05 391.20 2324.47 

R2 Adj 0.99 0.97 0.93 0.89 0.91 0.92 0.87 0.89 
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Humber River - Cooling Season 
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Figure 3. 12 - Humber River Daily Mean Water Temperature Models With Stage and Air 
Temperature 
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3.6.4 An Alternative Approach to Handling Hysteresis in the Data 

An alternative approach to developing separate regression models for the warming and 

cooling seasons at the Humber River station is to add an explanatory variable to the 

regression models that accounts for the time of the year the sample of water quality was 

taken. Curve fitting results for these alternative models were quite similar to the regression 

models developed for the warming and cooling seasons (with adjusted R2 equal to 0.946, 

0.904 and 0812 for monthly, weekly and daily mean water temperature modified logistic 1 

models). The curve fitting results for this alternative approach can be found in Appendix G. 

3.6.5 Using the Best Models for Prediction 

The first logistic model was deemed to be the best option for modeling mean, maximum 

and minimum water temperature at the daily, weekly and monthly time scales. The first 

logistic model always has an adjusted R-squared value greater than or equal to that of the 

linear model and the residual sum of squares term of the first logistic model is generally 

lower than that of the linear model. The curve fitting results showed that there is little 

benefit in using the more complex second logistic model as the first logistic model can 

achieve comparable adjusted R-squared values. Stage is rarely a significant explanatory 

variable, and when it is significant the multiple regression model does not outperform the 

first logistic model. Although the first logistic model can be considered the best overall 

option for modeling, it is not advisable to develop one general logistic model for the 

stations as the models developed for each station are unique. A comparison between first 

logistic mean water temperature models is shown in Figure 3.13. This figure shows the 
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two different curves for Humber River (warming and cooling), the steeper Peter's River 

curve, and the close similarity between the Waterford River and Leary's Brook (the two 

smallest rivers in the provincial network). 

Monthly Mean Water Temperature Models - Logistic 1 
20 Variable 

- • WT - Humber River Cooling 

u • WT - Humber River Warming 

1:1) WT - Peters River 
41 

10 .to. WT - Learys Brook 
"'C 

WT - Waterford River -~ 
~ 

0 
-10 0 10 20 30 

Weekly Mean Water Temperature Models - Logistic 1 

20 
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• WT - Humber River Cooling - • WT - Humber River Warming u 
1:1) WT - Peters River 

41 .to. WT - Learys Brook 
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Daily Mean Water Temperature Models - Logistic 1 
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Figure 3. 13 A Comparison of First Logistic Mean Water Temperature Models 
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The datasets reserved for prediction purposes were used to test the capability of 

the first logistic models for predicting water temperature at the real time stations. Model 

testing results for the mean water temperature models are shown in Table 3.5. When 

scatterplots of the observed versus predicted values were developed it was noted that 

there is less scatter in the monthly data and as a result the monthly models tend to 

perform better for predicting water temperature. One of these scatterplots is attached as 

Figure 3.14. Increased scatter at the weekly and daily time scales makes it more difficult to 

be as exact in prediction. It should be noted that there is a gap in the available observed 

the air temperature dataset for the Humber River - where there are no monthly mean 

measurements in the 5 to 13 oc range. This is solely the result of there being a limited 

dataset available for prediction purposes. As more air temperature and water temperature 

measurements are made available in the future it will be possible to test the accuracy of 

the developed water temperature models for the Humber River station for the full range of 

air temperatures that are experienced at the station. 

The tables show both the absolute value of the difference between observed and 

predicted values and the absolute value of the percent error of the predictions. It should 

be noted that percent error has been calculated by subtracting the observed value from 

the predicted and then dividing by the predicted value. For low air temperatures the 

regression models will predict low water temperatures and sometimes these low water 

temperatures will inflate the size of the percent error - i.e. if the observed value of water 

temperature is 0.80 oc and the logistic model predicts a value of 0.10 oc then the percent 
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error will be 700% even though the difference between the values is only 0.70 °C. 

Author's Note - the complete testing results for the maximum and minimum water 

temperature models can be found in Appendix H. 

Table 3.5 Using the Logistic 1 Model for Predicting Water Temperature 

Adj 
R2 

0.989 

0.975 

0.93 

0.91 

0.84 

0.83 

Obs. 

5 

Absolute Value of Difference 
Abs[Pred - Obs] 

Mean Max Min StDev 

Humber River 

Absolute Value of % Error 
Abs[(Pred - Obs)/Pred]*1 00% 

Mean Max Min StDev 

Cooling Season Monthly Mean WT = 21.41/{1 +exp(0.15*(7.20- Mean AT))) 

0.85 1.61 0.29 0.67 19.9 59.8 1.86 22.91 

Warming Season Monthly Mean WT = 21.56/(1 +exp(0.19*(14.96- Mean AT))) 

9 0.25 0.54 0.003 0.2 26.6 78.9 0.03 25.95 

Cooling Season Weekly Mean WT = 20.31/{1+exp(0.15*(6.56- Mean AT))) 

25 1.14 3.25 0.44 0.67 33.46 111.4 2.6 27.75 

Warming Season Weekly Mean WT = 15.68/(1+exp(0.24*(11.48- Mean AT))) 

38 0.634 4.66 0.011 0.8 86.24 557.92 1.73 122.31 

Cooling Season Daily Mean WT = 20.50{1+exp(0.13*(6.79- Mean AT))) 

130 1.786 5.53 0.012 1.35 37.92 126.3 0.34 28.59 

Warming Season Daily Mean WT = 15. 78(1 +exp(0.22*(11.81 - Mean AT))) 

268 1.04 7.77 3.82 1.43 79.39 837.4 0.02 125.87 
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Table 3.5 continued - Using the Logistic 1 Model for Predicting Water Temperature 

Absolute Value of Difference Absolute Value of % Error 
Abs[Pred - Obs] Abs[(Pred- Obs)/Pred]*100% 

Adj 
Obs. Mean Max Min StDev Mean Max Min StDev R2 

Leary's Brook 

Monthly Mean WT = 18.281(1+exp(0.24*(7.74- Mean AT))) 

0.96 8 1.168 2.682 0.191 0.83 26.687 131.3 1.422 43.23 

Weekly Mean WT = 18.41/(1+exp(0.23*(7.75- Mean AT))) 

0.95 23 0.843 2.34 0.014 0.73 11.15 37.5 0.1 12.55 

Daily Mean WT = 19.06/(1+exp(0.21*(8.72- Mean AT))) 

0.92 136 1.639 5.01 0.01 1.19 25.54 140.3 0.14 28.31 

Waterford River 

Monthly Mean WT = 18.47/(1+exp(0.25*(7.41- Mean AT))) 

0.99 12 0.497 1.244 0.026 0.36 14.45 39.62 0.191 12.03 

Weekly Mean WT = 18.95/(1 +exp(0.25*(7. 77- Mean AT))) 

0.98 48 0.803 2.49 0.03 0.61 22.09 138 0.4 26.09 

Daily Mean WT = 19.561(1 +exp(0.23*(8.36- Mean AT))) 

0.94 306 1.36 6.87 0.01 1.22 32.4 204.4 0.05 33.61 

Peter's River 

Monthly Mean WT = 21.13/(1+exp(0.24*(7.63- Mean AT))) 

0.97 8 0.874 3.202 0.044 1.03 57.63 144 0.239 66.15 

Weekly Mean WT = 22.891(1 +exp(0.2 1*(8. 73- Mean AT))) 

0.95 32 1.213 6.61 0.021 1.42 63.42 252.5 0.27 69.03 

Daily Mean WT = 23. 161(1 +exp(0.20*(9. 15- Mean AT))) 

0.88 196 1.923 10.8 0.024 1.82 78.41 662.94 0.12 98.42 
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Figure 3. 14 Scatterplot of Observed and Predicted Humber River Mean WT 
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Chapter Four 

Development of Dissolved Oxygen 

Regression Models 
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4.1 Scope 

Regression models for predicting dissolved oxygen at the real time stations are the main 

focus of this fourth chapter. A brief literature review of regression models for dissolved 

oxygen is first presented. The curve fitting results for dissolved oxygen models will be 

presented in detail. A unique curve plotting approach for relating air temperature to 

dissolved oxygen levels is presented. The chapter concludes with a discussion of results 

and a look at ways to make carrying out this kind of research in the future easier. 

4.2 Literature Review 

Dissolved oxygen levels in rivers and streams are known to be influenced by a number of 

factors such as oxygen consumption by aquatic organisms, depth of water and water 

temperature, where rising water temperatures cause dissolved oxygen levels to decrease. 

Most researchers have focused their regression modeling efforts for dissolved oxygen 

using measurements of water temperature. 

Saffran and Anderson (1996) examined the linear relationship between minimum 

dissolved oxygen and maximum water temperatures for two monitoring sites along the 

Red Deer River in Alberta. From their research they found that during the summer months 

there was good correlation between dissolved oxygen and water temperature. There was 

good potential for developing regression models for predicting dissolved oxygen based on 

water temperature. Minimum dissolved oxygen levels in the river were negatively correlated 

with air temperature and water temperature, where the strongest correlation for dissolved 

oxygen was with maximum water temperature. Saffran and Anderson note that the 
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relationship between minimum dissolved oxygen and maximum air temperature was 

linearly related but they lacked sufficient data at the time to fully examine the relationship 

and develop accurate regression models. 

Although the focus in Morrill et al. (2005) was on developing regression models for 

predicting water temperature using air temperature measures, the authors also examined 

the impact of increasing water temperatures on dissolved oxygen levels in streams where 

dissolved oxygen levels were already close to critically low levels for many species Future 

dissolved oxygen levels are not predicted using regression models but were calculated by 

subtracting the monthly mean dissolved oxygen deficit in the streams from the mean 

saturated value. The high and low stream temperatures were then used to calculate the 

upper and lower saturated levels which were then used for calculating the stream 

dissolved oxygen levels. 

Most of the published literature dealing with predicting dissolved oxygen levels goes 

outside of developing regression models into the realm of more statistically complex 

models. Rounds (2002) developed an artificial neural network model to predict dissolved 

oxygen concentrations in a river using air temperature, solar radiation, rainfall and 

streamflow as inputs. Gelda et al. (2001) develop a dynamic two-dimensional mass 

balance model for dissolved oxygen levels for rivers. Abdui-Aziz et al. (2007) use an 

extended stochastic harmonic analysis algorithm approach for predicting dissolved oxygen 

levels. In order for these more complex models to be effective in prediction they usually 

require a large number of inputs, and obtaining the necessary data for these inputs can be 
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quite difficult. In this research, the aim was to determine if the available data being 

collected by the RTWQ network could be directly used for estimating dissolved oxygen 

without having to rely on a statistically complex model with a large number of inputs. In 

the same way that air temperature was used for predicting water temperature through 

regression modeling, it was hoped that the same regression modeling approach would 

work for predicting dissolved oxygen. 

4.3 Methodology Used for Developing Dissolved Oxygen Models 

The same methodology used for developing regression models for water temperature was 

used for developing models for dissolved oxygen. 

4.3. 1 Step One - Get Familiar With the Most Commonly Used Models 

For this study three different regression models for dissolved oxygen were studied: simple 

linear regression (using water temperature - Equation 4.1) multiple regression (using water 

temperature and stage - Equation 4.2) and a nonlinear exponential decay model (using 

water temperature- Equation 4.3). 

DO = a0 +~Tw+e 
Equation 4.1 

Equation 4.2 

Equation 4.3 
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4.3.2 Step Two - Develop the Necessary Datasets 

The Minitab macros used for obtaining datasets for the water temperature regression 

models were written to also find mean, maximum and minimum dissolved oxygen values 

at the monthly, weekly and daily time scales. The same periods of time used for defining 

the model development and model prediction datasets for the water temperature datasets 

were used for the dissolved oxygen datasets. Table 3.2 in the previous chapter presented 

a general statistical summary of the datasets for developing dissolved oxygen regression 

models using mean monthly, weekly and daily data. A more detailed statistical summary of 

the datasets can be found in Appendix I. 

Initial investigations into the correlation between dissolved oxygen, water 

temperature and stage were carried out once the regression datasets were developed. 

The relationship between dissolved oxygen and water temperature was found to be 

strongly negative (i.e. as water temperatures increased the dissolved oxygen levels 

decreased). The relationship between dissolved oxygen and stage was found to be 

positive (i.e. dissolved oxygen levels tended to be higher when the stage level was higher). 

Due to the negative correlation between water temperature and dissolved oxygen and the 

positive correlation between stage and dissolved oxygen the following datasets were 

investigated: (1) mean dissolved oxygen, stage and water temperature, (2) minimum 

dissolved oxygen, minimum stage and maximum water temperature and (3) maximum 

dissolved oxygen, maximum stage and minimum water temperature. Scatterplots of water 

temperature and dissolved oxygen showed the strong negative relationship between the 
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two parameters. Figure 4.1 presents one of these scatterplots for the Humber River 

station. Plots for the other stations can be found in Appendix J. 

Mean DO* Mean WT Dataset 
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10 •• 
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Water Temperature 

Figure 4. 1 Humber River Dissolved Oxygen-Water Temperature Relationship Before the 

Removal of Unusually High Observations 

Correcting Issues with the Dissolved Oxygen Datasets 

The Hydrolab Datasonde sensor has the capability to detect dissolved oxygen levels in the 

range of 0 to 50 mg/L but analysis of the developed dissolved oxygen datasets showed 

that measurements recorded by the sensor do go outside of this range. There might be a 

number of reasons as to why dissolved oxygen values might go outside the measurement 

range - including, but not limited to, malfunction of the dissolved oxygen sensor probe, 

94 



communication errors between the sensor and the data logger, and calibration error. 

Values of dissolved oxygen outside of the 0 to 50 mg/L range were removed from the 

dataset and were not considered in analysis. The same problem was not observed for the 

other measured parameters during the same problematic dissolved oxygen periods. As a 

result it was not necessary to remove these other parameters from the dataset used for 

analysis. 

Initial explorations with the Humber River dissolved oxygen dataset showed that at 

lower water temperatures there was a wide range of recorded daily mean dissolved 

oxygen level (refer to Figure 4.2). The scatterplot shows that when air temperatures drop 

below 2.5 °C the dissolved oxygen levels will range from 12.5 to 20 mg/L. Although those 

levels are not high enough to interfere with aquatic health, the variation in the data posed a 

problem for regression modeling. 
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5 10 
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Figure 4. 2 Unusually High DO Levels at Low WT in the Humber River Daily Mean Dataset 
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When this range of values was investigated it was determined that the majority of the 

higher observations were recorded during a stretch of Datasonde readings dating from 

February 16, 2006 to April 11 , 2006. The drift corrected hourly observations for the period 

showed that until January 6, dissolved oxygen levels were around 13 mg/L. The sensor 

was taken offline until February 16 and when it came back online dissolved oxygen levels 

were some of the highest they had been since the sensor was first installed at the station. 

The sensor was taken offline again on March 17 when the levels were still high (Figure 4.3). 

Deployment records for the station showed that the high levels were not due to changes in 

the physical conditions in the river but were due to sensor malfunction. During this period 

in time the default time delay for the Datasonde was not allowing the sensor to warm-up 

enough to accurately read the dissolved oxygen concentrations. A field visit on April 11 

allowed WRMD personnel to reset the time delay and after that period dissolved oxygen 

values return to normal. Once the high measurements were removed from the Dataset, 

the relationship between water temperature and dissolved oxygen station looked to be 

more reasonable (Figure 4.4). At the daily time scale there still was a considerable amount 

of scatter in the range of the dissolved oxygen measurements. 

There were no sets of unusually large dissolved oxygen measurements recorded at 

the other stations and only those measurements outside of the 0 to 50 mg/L range were 

removed for regression modeling. Although there does tend to be a fair amount of scatter 

in the dissolved oxygen datasets (i.e. at a mean water temperature of 15 °C dissolved 

oxygen might be anywhere from 8 to 13 mg/L) no warming and cooling seasons could be 

determined and regression was carried out using datasets without seasonal division. 

96 



Humber River - Hourly RTWQ DO - Jan 06 to April 06 
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Figure 4.3 Hourly Observations of DO Collected January to April2006- Humber River 
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4.3.3 Step Three - Find the Best Fitting Models 

Minitab and Datafit were used to find the best fitting dissolved oxygen models. Like the 

water temperature datasets in Chapter Three, the dissolved oxygen datasets were 

randomized to remove correlation. 

4.4 Regression Modeling Results for Dissolved Oxygen 

Table 4.1 presents the curve fitting results for the linear and exponential models and 

Figure 4.5 presents the regression models for mean monthly dissolved oxygen. The 

complete set of curve fitting results for the dissolved oxygen regression models (linear, 

exponential and multiple regression with stage are contained in Appendix K. 

4.5 Discussion 

4.5. 1 Linearity Versus Nonlinearity 

The goodness of fit of the linear and exponential decay models were found to be quite 

similar where in most cases there is very little difference in the shape of the two models. 

When dealing with mean dissolved oxygen, both models have high adjusted R2 values at 

all time scales - with the exception of Leary's Brook where the models are only good for 

monthly and weekly observations and at the daily time scale the exponential model drops 

off to an adjusted A-squared of 0.68 and the linear model has an adjusted A-squared of 

0.71. There is a considerably large amount of scatter in the dissolved oxygen values at the 

lowest and highest water temperatures in the Leary's Brook dataset (Figure 4.6). It is 

unknown at this time why this scatter is so high - potentially it is the result of this being a 

smaller stream so changes in air temperature are quick to influence dissolved oxygen. 
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Whatever the cause might be, the daily model for this station is quite unreliable and can 

only be used to gain a general idea of what daily dissolved oxygen might be at that station. 

4.5.2 The Effect of Time Scale 

Similar to the water temperature models, the goodness of fit of the dissolved oxygen 

models are better at the monthly time scale than they are at the weekly and daily time 

scale. As the time scale is shortened, the adjusted R2 values tend to decrease, although 

when dealing with the mean dissolved oxygen data this decrease is usually less than 5%. 

High amounts of scatter in the daily observations force the residual sum of squares to be 

quite high for the daily models. The residual plots for the models were checked to ensure 

the assumptions of regression modeling were not violated. There was only a slight 

difference in the residual plots for the different time scales for the dissolved oxygen 

models. Figure 4. 7 presents a plot of the residual plots for the Humber River monthly 

mean dissolved oxygen models. For this particular station there is slightly larger variation 

in the dissolved oxygen levels at the lower water temperature than there is at higher water 

temperatures at the daily time scale. 
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Table 4.1 Linear and Exponential Dissolved Oxygen Regression Models 

Mean Datasets Minimum Datasets Maximum Datasets 
Mean Dissolved Oxygen Minimum Dissolved Oxygen Maximum Dissolved Oxygen 
Mean Water Temperature Maximum Water Temperature Minimum Water Temperature 

Mean Stage Minimum Stage Maximum Stage 

Monthly Weekly Daily Monthly Weekly Daily Monthly Weekly Daily 

Humber River 
(37 Monthly Observations, 149 Weekly Observations and 986 Daily Observations) 

Linear Model: DO= a*Tw + b 

a -0.291 -0.291 -0.288 -0.258 -0.277 -0.277 -0.347 -0.305 -0.290 

b 13.871 13.900 13.857 13.489 13.740 13.740 14.268 13.992 13.867 

RSS 9.05 47.07 342.93 9.16 50.50 50.50 10.44 48.44 341.22 

R2 Adj 0.90 0.88 0.87 0.90 0.88 0.88 0.88 0.87 0.87 

Exponential Decay Model: DO= exp(a + b*Tw) 

a 2.643 2.644 2.642 2.620 2.636 2.636 2.668 2.649 2.641 

b -0.026 -0.026 -0.026 -0.024 -0.025 -0.025 -0.029 -0.026 -0.026 

RSS 8.26 43.61 317.68 8.29 46.45 46.45 9.42 45.38 316.88 

R2 Adj 0.91 0.89 0.88 0.91 0.89 0.89 0.90 0.88 0.88 

Peter's River 
(23 Monthly Observations, 91 Weekly Observations, 595 Daily Observations) 

Linear Model: DO= a*Tw + b 

a -0.271 -0.270 -0.270 -0.216 -0.230 -0.245 -0.330 -0.303 -0.286 

b 13.189 13.208 13.214 12.498 12.811 13.030 13.887 13.615 13.346 

RSS 4.92 27.51 220.58 12.23 46.61 365.03 5.96 27.01 203.54 

R2 Adj 0.94 0.93 0.91 0.88 0.89 0.87 0.92 0.92 0.91 

Exponential Decay Model: DO = exp(a + b*Tw) 

a 2.588 2.591 2.591 2.545 2.566 2.581 2.634 2.618 2.599 

b -0.025 -0.026 -0.026 -0.023 -0.023 -0.024 -0.028 -0.027 -0.026 

RSS 5.42 28.56 224.11 13.34 52.68 37 4.09 5.76 25.25 198.11 

R2 Adj 0.94 0.92 0.91 0.87 0.88 0.87 0.92 0.92 0.92 
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Table 4.1 continued - Unear and Exponential Dissolved Oxygen Regression Models 

Mean Datasets Minimum Datasets Maximum Datasets 
Mean Dissolved Oxygen Minimum Dissolved Oxygen Maximum Dissolved Oxygen 
Mean Water Temperature Maximum Water Temperature Minimum Water Temperature 

Mean Stage Minimum Stage Maximum Stage 

Monthly Weekly Daily Monthly Weekly Daily Monthly Weekly Daily 

Leary's Brook 
(16 Monthly Observations, 57 Weekly Observations, 347 Daily Observations) 

Linear Model: DO= a*Tw + b 

a -0.347 -0.407 -0.398 -0.341 -0.355 -0.351 -0.442 -0.418 -0.402 

b 14.207 14.328 14.199 12.626 12.757 13.401 15.895 15.302 14.689 

ASS 15.05 63.15 687.79 118.71 238.54 1 093.6f 11.26 48.52 2130.05 

R2 Adj 0.83 0.81 0 .71 0.41 0.51 0.59 0.82 0.84 0.42 

Exponential Decay Model: DO= exp(a + b*Tw) 

a 2.666 2.673 2.662 2.567 2.557 2.607 2.772 2.734 2.691 

b -0.030 -0.036 -0.035 -0.037 -0.035 -0.033 -0.034 -0.033 -0.033 

ASS 17.28 76.56 770.17 126.67 265.69 1180.3~ 10.93 51.53 2209.88 

R2 Adj 0.80 0.77 0.68 0.37 0.46 0.55 0.82 0.83 0.40 

Waterford River 
{21 Monthly Observations, 90 Weekly Observations, 587 Daily Observations) 

Linear Model: DO = a*Tw + b 

a -0.378 -0.371 -0.373 -0.335 -0.330 -0.349 -0.409 -0.397 -0.383 

b 14.148 14.097 14.098 12.649 13.412 13.828 14.791 14.496 14.249 

ASS 15.13 120.07 886.03 102.32 229.78 1132.2L 15.77 104.83 851.31 

R2 Adj 0.88 0.81 0.80 0.55 0.71 0.77 0.84 0.81 0.79 

Exponential Decay Model: DO = exp(a + b*Tw) 

a 2.667 2.663 2.663 2.617 2.631 2.651 2.697 2.680 2.668 

b -0.035 -0.035 -0.035 -0.043 -0.035 -0.035 -0.033 -0.030 -0.035 

ASS 14.73 116.89 861.44 96.34 226.17 1 090.6E 15.33 101.64 825.25 

R2 Adj 0.89 0.82 0.81 0.58 0.72 0.78 0.85 0.82 0.80 
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4.5.3 Maximum and Minimum Datasets 

For the two smallest rivers in the network, the fit of the models to minimum dissolved 

oxygen data is rather poor. For monthly minimum dissolved oxygen the adjusted R2 value 

for the exponential model is quite low for both (0.37 for Leary's Brook and 0.58 for 

Waterford River). These models are of little use to modeling monthly values. The models 

remain poor for Leary's Brook at the weekly and daily time scales, but rather surprisingly 

the models improve slightly at the Waterford River station as the time scale is shortened 

(adjusted R2 of 0.72 and 0.78 for weekly and daily minimum dissolved oxygen). For the 

two larger rivers in the network, the fit of the models to the minimum dissolved oxygen 

data is good, with adjusted R2 values for Humber River and Peter's River equal to 0.90 and 

0.88. Overall the models tend to fit better to minimum dissolved oxygen data collected at 

the larger rivers than at the smaller rivers. The models fit quite well to the maximum 

dissolved oxygen datasets, with adjusted R2 values above 0.80- except for Leary's Brook 

where the adjusted R2 for the daily maximum dissolved oxygen drops to 0.40 (likely due to 

high levels of scatter at this station that was previously discussed). 

4.5.4 The Influence of Stage 

Stage was only a significant explanatory variable for dissolved oxygen at the daily time 

scale and was as a result the curve fitting results for the multiple regression model were 

excluded from Table 4.2 for this reason. Although the multiple regression model at the 

daily time scale had high adjusted R2 values, the model is not a better choice than the 

linear and exponential models. 
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4.5.5 Similarities in the Exponential Models 

Figure 4.8 presents a graphical summary of all the exponential decay models developed 

for modeling dissolved oxygen at the station. For the two larger rivers- Humber River and 

Peter's River, there is very little difference between the mean, maximum and minimum 

dissolved oxygen models. The only noticeable difference comes at the lower water 

temperatures, where the maximum dissolved oxygen models would tend to predict higher 

dissolved oxygen concentrations which is to be expected. 

The exponential models Leary's Brook and Waterford River are only slightly different 

depending on the dataset being used, with minimum dissolved oxygen models predicting 

lower dissolved oxygen values and maximum dissolved oxygen models predicting higher 

values. It should be noted that the monthly and weekly minimum models for these two 

stations show a concern for low dissolved oxygen (i.e. less than 6.0 mg/L) when dealing 

with higher water temperatures (i.e. greater than 20° C). The daily minimum dissolved 

oxygen models do not show such a significant drop in dissolved oxygen at these same 

levels - but levels do still drop below 7.0 mg/L at those high water temperatures. High 

water temperatures appear to have a more significant impact on the minimum recorded 

dissolved oxygen levels at these two smaller water bodies. With this being said, there is a 

great need to carefully monitor dissolved oxygen levels at the Leary's Brook and Waterford 

River stations during the summer months to ensure levels do not stay low for long periods 

of time. 
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Figure 4.8 Similarities Between the Exponential Dissolved Oxygen Models 

4.5.6 Using the Best Models for Prediction 

All the developed regression models were tested using the dissolved oxygen datasets 

reserved for prediction purposes. The exponential decay model was deemed the best 

overall choice for modeling dissolved oxygen levels at the stations as it tended to perform 

better than the linear model for handling lower dissolved oxygen levels recorded at higher 

water temperatures. A summary of the model testing results for the mean dissolved 

oxygen models are shown in Table 4.2. A scatterplot of the Humber River monthly, 

weekly and daily observed versus predicted mean dissolved oxygen levels is shown in 
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Figure 4.9. Figures 4.10 and 4.11 contain a comparison of the mean and standard 

deviation of the difference between observed and predicted values for the models 

developed for all the stations. The complete testing results for the maximum and minimum 

dissolved oxygen models can be found in Appendix L. 

Author's note - like the datasets that were reserved for testing the water temperature 

regression models, the gap in the gap in the available observed dissolved oxygen dataset 

is the result of having a limited dataset available for testing the models developed for this 

station. As more data is made available it will be possible to test the monthly and weekly 

models for accuracy over the 5 to 7 oc range. The daily mean values available for testing 

do give an idea of the accuracy of the daily model over this water temperature range for 

this station. 

Table 4.2 - Using the Logistic 1 Model for Predicting Dissolved Oxygen 

Absolute Value of Difference Absolute Value of % Error 
Abs[Pred - Obs] Abs[(Pred - Obs)/Pred]*1 00% 

Adj 
Obs. Mean Max Min StDev Mean Max Min StDev R2 

Humber River 

Monthly Mean DO = exp(2. 643 - 0. 0258 Mean W7J 

0.91 14 0.76 1.77 0.04 0.53 6.51 16.11 0.3 5.02 

Weekly Mean DO = exp(2. 644 - 0. 0258 *Mean W7J 

0.89 63 0.74 2.9 0.01 0.59 6.18 21.48 0.04 5.05 

Daily Mean DO = exp(2.642- 0.0256 * Mean W7J 

0.88 398 0.76 2.97 0 0.59 6.36 22.21 0 5 

107 



Table 4.2 continued- Using the Logistic 1 Model for Predicting Dissolved Oxygen 

Absolute Value of Difference Absolute Value of % Error 
Abs[Pred - Obs] Abs[(Pred - Obs)/Pred]*1 00% 

Adj 
Obs. Mean Max Min StDev Mean Max Min StDev R2 

Peter's River 

Monthly Mean DO= exp(2.588- 0.0255 Mean W7) 

0.940 8.000 0.720 1.420 0.020 0.500 6.690 10.770 0.140 4.140 

Weekly Mean DO = exp(2.591 - 0.0256 Mean W7) 

0.92 32 0.68 1.94 0.02 0.58 6.38 21 .87 0.1 7 5.75 

Daily Mean DO= exp(2.591 - 0.0256 Mean W7) 

0.91 196 0.72 2.32 0 0.59 6.78 24.7 0.02 5.82 

Leary's Brook 

Monthly Mean DO = exp(2.666 - 0.0302 Mean W7) 

0.8 8 0.37 0.86 0.1 0.26 3.78 9.03 0.82 2.91 

Weekly Mean DO = exp(2.673 - 0.0357 * Mean W7) 

0.77 23 0.84 1.71 0.21 0.39 8.85 19.44 1.58 4.92 

Daily Mean DO = exp(2.662 - 0.0351 * Mean W7) 

0.68 132 0.88 1.83 0.05 0.41 9.51 22.09 0.37 5.2 

Waterford River 

Monthly Mean DO = exp(2.667- 0.0353 Mean W7) 

0.89 10 1.49 3.09 0.05 1.17 13.88 36.8 0.5 11 

Weekly Mean DO = exp(2 .663 - 0.034 7 Mean W7) 

0.82 42 1.71 4.09 0.07 1.15 16.3 41 .81 0.65 11 .22 

Daily Mean DO = exp(2. 663 - 0. 0351 Mean W7) 

0.81 272 1.7 8.14 0 1.25 16.28 74 0.01 12.35 
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4.5. 7 Visually Linking Air Temperature to Dissolved Oxygen 

Regression models were developed in Chapter 3 to link nearby measurement of air 

temperature to water temperature at the RTWQ stations. In this chapter regression 

models were developed to link water temperature to dissolved oxygen levels at the RTWQ 

stations. A Minitab macro was written to let the user visually link these two regression 

models. The macro is designed so that a user can define their own logistic model for air-

water temperature and their own exponential decay model for water temperature-

dissolved oxygen. Once both models are defined the user then enters a value for air 

temperature that will be visually displayed on the plot as a reference point. The complete 

code for the macro can be found in Appendix M. Figures 4.12 to 4.16 present the plots 

developed for monthly mean models for each of the real time stations. 
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Chapter Five 

Development of Regression Models 

for Grab Samples 
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5.1 Scope 

This chapter presents an in-depth look at a process used for developing regression 

equations that link real time measurements of water quality to manually collected grab 

samples of water quality. The chapter begins with a review of relevant literature. This is 

followed by a summary of the approach the USGS has taken for modeling grab sample 

data using real time measurements. The models developed for each of the four provincial 

stations using an approach similar to that of the USGS are presented and future directions 

for this research are discussed. 

5.2 Literature Review 

Clifton and Gilliam (1989) developed relationships for predicting dissolved solids and 

selenium using data collected in the San Joaquin River in California from 1985 to 1987. 

The authors found that both dissolved solids and selenium levels at the site could be 

estimated using continuously recorded streamflow and specific conductance 

measurements. Hill and Gilliam (1993) followed up this work with an investigation of an 

expanded 1985 to 1988 San Joaquin River dataset. They found that dissolved solids, 

boron and selenium concentrations in the river were positively correlated with each other 

and negatively related to streamflow. 

The United States Geological Survey can be considered to be at the forefront of 

using regression models to link real time and grab sample measurements of water quality. 

Christensen et al. (2000) first used real time water quality monitoring and grab samples 

collected at two USGS stations in Kansas from 1995 to 1998 to develop regression 
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equations for estimating alkalinity, dissolved solids, total suspended solids, chloride, 

sulfate, atrazine and fecal coliform bacteria concentrations. 2 years of grab sample data 

(35 to 55 samples) were found to be sufficient enough to develop a good relation between 

the surrogate (real time) and constituent (grab sample chemical). The developed equations 

were tested using data collected in 1999 at the sites and were found to give good 

estimates of the grab sample observations. 

Christensen (2001) discusses the approach used by the USGS for developing 

regression models for estimating grab sample measurements for Rattlesnake Creek near 

Zenith, Kansas- in the Ouivira National Wildlife Refuge. A real time sensor was installed at 

the USGS streamflow station on Rattlesnake Creek in 1998 and real time measurements of 

specific conductance, pH, water temperature, dissolved oxygen and turbidity were 

collected at hourly intervals from December 1998 to June 2001 . USGS personnel made 

visits to this station every two weeks to keep the sensor calibrated and ensure the station 

was properly maintained. Along with the collected real time data, the USGS also manually 

collected water quality samples at the station. Four quarterly samples, five event samples 

and one quality-assurance sample were collected every year at the station and analyzed 

for physical properties, solids, sediment, major ions, nutrients, and bacteria. The first step 

in the USGS methodology for developing regression models for estimating daily and 

annual mass loads of chemicals of concern at the station was to plot each of the possible 

explanatory variables against the response variable to identify patterns in the data. Once 

the data has been plotted, a stepwise procedure and an overall method were used to 
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identify the explanatory variable(s) to include in the regression model for the chemicals of 

concern. The stepwise procedure involves adding each of the explanatory variables (pH, 

specific conductance, water temperature, dissolved oxygen and turbidity) to the regression 

equation one at a time to determine if there was a statistically significant correlation. 

Explanatory variables were considered to be of significance if the probability value was less 

than 0.05. If several models showed themselves to be acceptable, Christensen selected 

the one with the lowest PRESS statistics, where the Prediction Sum of Squares (PRESS) is 

the sum of the squares of the prediction error. By minimizing PRESS, the model with the 

least error in the prediction of future observations in selected. Additionally, only 

explanatory variables with a physical basis for their inclusion into the regression models 

were considered in modeling. Christensen goes beyond the PRESS statistics and used 

an additional four diagnostic statistics to evaluate potential regression models - the mean 

square error (MSE), the coefficient of determination (R2), the relative mean absolute error 

(RMAE) and the relative percentage difference (RPD). RMAE is expressed as a percentage 

and is calculated using the equation: 

1 n 

- LIA - Bi 
RMAE = n i - l x 100 

Equation 5.1 

MB 

where A is the estimated concentration, B is the measured concentration, and Ms is the 

average of all the measured concentration. 
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RPD is the relative percentage differences between the measured and estimated chemical 

concentrations and was calculated using the equation: 

RPD = [IB- AI I (A)] X 100 Equation 5.2 

where A is the measured chemical concentration, and B is the estimated chemical 

concentration. 

The USGS used graphical plots to examine the linearity of the developed relation 

between the explanatory and the response variables and it is sometimes necessary to 

transform certain variables to eliminate curvature in the data and convert the models to 

linear equations. Christensen (2001) used a graphical approach to identify outliers in the 

data but did not remove any outliers in the datasets used in the report. In the end, 

regression equations for estimating alkalinity, dissolved solids, total suspended solids, 

sediment, chloride, flouride, sulfate, nitrate, total organic nitrogen, total phosphorus and 

fecal coliform bacteria were developed for the river. The number of samples used to 

develop the regression equations was small. ranging from only nine to a maximum of 

twenty samples. A summary of the models developed in Christensen (2001) is presented 

in Table 5.1 . 
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Table 5.1 -Regression Models for Grab Samples in Christensen (2001) 

Chemical or Regression Equation n Concentration R2 
Property 

Alkalinity log10 ALK = -0.000368Q- 0.000148Wf2 + 2.36 18 ALK 91-224 0.71 
Q 3.6-840 
WT 3.4-31 .5 

Dissolved Solids DS = 0.549SC + 14.3 18 OS 264-5460 0.999 
sc 453-9930 

Total Suspended log10 TSS = 0.818log10 NTU + 0.348 18 TSS 14-270 0.825 
Solids NTU 5-270 

Suspended log10 sse= 0.926log10 NTU + 0.438 9 sse 14.3-1820 0.926 
Sediment NTU 5-480 

Sodium Na = 0.203SC + 0.0938Q -117 18 Na 50-1880 0.998 
sc 453-9930 
Q 3.6-840 

Chloride Cl = 0.319SC + 0.113Q -172 18 Cl67-3000 0.999 
sc 453-9930 
Q 3.6-840 

Flouride log10 F = -0.000255Q + 0.162log10 SC- 0.892 18 F 0.2-0.6 0.826 
Q 3.6-840 
sc 453-9930 

Sulfate S04 = o.o268sc + 13.17 18 S04 12-269 0.983 
sc 453-9930 

Nitrate log10 N03 = -0.000442SC + 2.60 log10 SC 20 N03 0.014-2.13 0.829 

-0.000998WT2 
- 7.37 

sc 453-9930 

Total Organic TN= 0.00317NTU +0.0234Wf- 0 .0000655SC 20 TN 0.050-2.5 0.806 
Nitrogen NTU 5-480 

+0.469 WT 3.4-3.15 
sc 453-9930 

Total Phosphorus TP = 0.00103NTU- 02271og10 SC + 0.0057WT + 0.776 20 TP 0.025-0.755 0.96 
NTU 5-480 
sc 453-9930 
WT 3.4-31.5 

Fecal coliform log10 FCB =-3.401og10 WT +0.4321og10 NTU +653 18 FCB 90-20000 0.661 
bacteria WT9.3-32.2 

NTU 5-480 
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5.3 Methodology Used for Grab Sample Regression Models 

The USGS approach to developing regression models for grab samples was used as a 

framework for the approach taken in this research to developing similar kinds of models for 

the Newfoundland provincial real time network. 

5.3. 1 Develop Real Time-Grab Sample Datasets 

The WRMD routinely collects grab samples of water quality and then send these samples 

to a laboratory for analysis. Once the samples are back from the laboratory, the results are 

entered into a historical record of samples that have been collected over the years. These 

historical records contain the grab sample number, the date of collection, and the physical 

and chemical properties of the samples. Unfortunately, the historical records of grab 

samples maintained by the WRMD currently do not contain the exact hour the samples 

were collected and only contain the day. 

The time of day of grab sample collection is an essential piece of information for 

linking the grab sample data to the real time pH, specific conductance, dissolved oxygen, 

water temperature, turbidity and stage level data recorded by the real time sensors. The 

only way to identify the grab sample collection time is to refer to maintenance forms for the 

sites. Every time a grab sample is collected, WRMD personnel fill out a corresponding 

maintenance form that contains the deployment period of the sensor, the Hydrolab 

minisonde calibration readings for the sensor, the name of the sampler, and most 

importantly for this research, the time of grab sample collection and whether or note the 

sample was taken upon removal or reinstallation of the real time sensor. Once the time of 
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collection for the grab sample is determined it is then possible to refer to the historical 

records of real time water quality to find Hydrolab sensor measurements taken at the same 

time. 

Under ideal circumstances, models would be developed by linking grab samples 

taken upon reinstallation of the Hydrolab datasonde to the accurate real time 

measurements of water quality made by the re-calibrated sensor at that time. 

Unfortunately, the grab sample datasets developed for the stations in the network are 

rather small and usually consist of measurements taken both when the sensor is reinstalled 

and when the sensor is removed (i.e. when the sensor measurements have drifted over 

time away from the actual value). It has always been WRMD standard practice to only 

collect grab samples upon reinstallation, but over the years removal grab samples have 

worked their way into the historical records. 

In this research regression models have been developed using two datasets for 

each station: (1) only reinstallation samples and (2) removal and reinstallation samples. 

Grab samples without matching real time data (i.e. the sensor was for whatever reason not 

recording or transmitting measurements at that point in time) have not been included in the 

datasets. 

5.3.2 Use Statistical Software to Identify the Best Models 

The USGS used a combination of plotting the variables, implementing a stepwise variable 

selection approach, and implementing an overall approach for model selection using 

PRESS, MSE, and R2 to identify the best overall model. For this thesis, relationships 
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between explanatory variable(s) and the response variable of interest were first investigated 

using graphical scatter plots of the variables in Minitab. These plots provided an idea of 

what variables might warrant consideration for inclusion in the developed model. 

After these plots were investigated, an All Subsets approach in the Datafit curve 

fitting software was used for selecting the best model from the available explanatory 

variables. The all subsets procedure is an exhaustive examination of every possible 

combination of independent variables being in and out of the model. Oatafit computes all 

the possible combinations for one independent variable, then moves on to two 

independent variables, then three, etc. Once the computations are finished, the software 

returns the best models for each possible number of independent variables based on the 

following statistics: R2, residual sum of squares, standard error (the standard deviation of 

the residuals), and Mallow's Cp. Mallow's Cp is a statistic designed to achieve a good 

compromise between the need to explain as much of the variation in the response variable 

as possible by including all the relevant variables while also minimizing the variance of the 

resulting estimates (minimizing the standard error) by keeping the number of coefficients 

small (Helsel and Hirsch, 2002). Mallow's Cp is defined by the following equation: 

( n- p) X ( S~ - a 2

) 

Cp= p+ ~2 
Equation 5.3 

a 

where n is the number of observations, p is the number of explanatory variables plus 1 , Sp2 

~2 

is the mean square error of this p-coefficient model, and a is the best estimate of the true 
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error (usually taken to be the minimum MSE among all the possible models). The best 

model will be the one with the lowest Cp value. 

Often times search procedures like the All Subsets procedure in Datafit wi ll 

recommend a number of different models if the explanatory variables shows signs of 

multicollinearity (the existence of linear relationships between the variables). 

Multicollinearity can result in inaccurate estimates of the regression coefficients, deflation of 

the probabi lity values for the regression coefficients and can make it difficult to draw 

appropriate conclusions from the search results presented by the software. There are a 

number of different sources of multicollinearity - including explanatory variables which are 

inherently related to each other like water temperature and dissolved oxygen, extreme 

outliers and including additional variables that are generated from existing ones like 

dissolved oxygen and percent saturation. The Data fit software gives two different sets of 

statistics to help identify multicollinearity: the correlation matrix and variance inflation 

factors (VIF) . 

The correlation matrix is an array of the correlation coefficients that are calculated 

from all the possible pairings between the explanatory and response variables. The 

correlation matrix lets the user identify which variables correlate with each of the other 

variables. A perfect correlation of 1.0 would indicate a perfect linear relationship while a 

correlation of 0.0 would indicate no relationship was present. 

The second measure for detecting multicollinearity in Datafit is the variance inflation 

factor (VIF) which indicates how well each independent variable can be predicted from all 

the other independent variables. VIF is calculated using the following equation: 
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1.0 
VIF=l.O-Rf Equation 5.4 

where R,2 represents the individual R2 and is not the same as the overall R2 of the 

regression model. It is better for the overall R2 of the model to be high and the individual 

R2 to be low (meaning that there was low collinearity between variables). If an individual R2 

is high then the VIF will end up being greater than 1 .0 while a low individual R2 will result in 

a VIF that approaches 1.0. When looking at the VIF values in the software output it should 

be kept in mind that (1) if the VIF is high for one or more variables (greater than 1 0.0) than 

multicollinearity can be assumed to be a problem, (2) if the VIF is greater than 4.0 for one 

or more variables than multicollinearity may be a problem and (3) if VIF is less than 4.0, 

multicollinearity is likely not a problem. 

A sample All Subsets parameter selection output in Datafit is presented in Figure 

5.1. Note that X1 is the water temperature, X2 is pH, X3 is specific conductance, X4 is 

dissolved oxygen, X5 is stage level andY is alkalinity recorded in the grab samples. The 

real time measurements of turbidity has not been included as an explanatory variable as 

the sensors tend to provide an unreliable estimate of the turbidity levels at the station. The 

correlation matrix shows that water temperature is highly correlated with dissolved oxygen 

and as a result probably only one of them should be used in regression. All the VIF values 

are less than 4.0 so in this case multicollinearity should not be a problem. The all subsets 

results shows that the best model would only include variable X5 (stage) as an explanatory 

variable but the goodness of fit of the model is quite low (R2 of only 19% which is very 

low). 
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Figure 5. 1 Datafit All Subsets Output for Humber River Alkalinity 

In this particular case although there are no problems with high levels of multicollinearity, 

there is likely going to be no model that will be useful for predicting alkalinity at the Humber 

River station. This lack of a useful model was a situation that was encountered many 

times for most of the Humber River grab sample water quality parameters and for many of 

the grab sample parameters for the other stations - but more on this will be mentioned 

later in this chapter after the modeling results are presented. 
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Once the All Subsets results in Datafit have been analyzed its then possible to use 

Datafit for identifying the best fitting regression models in Datafit. Unlike the regression 

models for water temperature and dissolved oxygen where specific models were being 

solved (i.e. logistic with air temperature), in this case the form of the model is unknown. 

Datafit can solve either every possible model for the explanatory variables or solving 

groups of models. When Datafit is used to solve every possible model often times the best 

fitting models will be tenth and ninth order polynomials which are rather useless for WRMD 

modeling purposes. 

A better approach for finding more reasonable regression models is to use Datafit to 

solve smaller groups of models (i.e. single term intercept, polynomial, inverse polynomial, 

user defined models, etc.) to find more reasonable regression models. 

The model fitting results presented by Datafit will present statistics like residual sum 

of squares, the standard error of the estimate, the probability values for the independent 

variables, R2 and adjusted R2 . Unlike the USGS approach, in this research the adjusted R2 

has been used instead of R2 for identifying the best fitting models. 
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5.4 Taking a First Look at the Grab Sample Datasets 

Table 5.2 presents a general statistical summary of the grab sample datasets developed 

for each of the real time stations. The largest historical record of grab samples with 

matching real time data belonged to the Humber River station (31 samples), while Peter's 

River only had 18 samples with matching real time data. There is rarely a balance in the 

number of samples available for analysis from each year of collection - where for some 

years there might be 8 samples with real time data while the next there might only be 

three. 

Table 5.3 on the following page presents the range of physical properties, major 

ions, elements, metals and nutrients recorded in the grab samples. The last column in the 

table presents the water quality guidelines established by the CCME for those parameters. 

Table 5.2 Overview of the Grab Sample Datasets 

Dataset # of Samples with #per Parameters Not Detected 
matching RTWQ data year 

Humber River 31 6 in 2004 bromide antimony copper nickel 
12 special 5 in 2005 flouride arsenic lead selenium 

19 reinstallation 20 in 2006 potassium cadmium mercury uranium 
(original) zinc 

Peter's River 18 6 in 2005 bromide antimony lead nickel 
15 reinstallation 3 in 2006 arsenic mercury selenium 

3 removal 8 in 2007 cadmium 
1 in 2008 

Leary's Brook 20 4 in 2005 bromide mercury nickel 
8 reinstallation 9 in 2006 selenium 

12 removal 3 in 2007 
4 in 2008 

Waterford River 20 2 in 2005 antimony mercury nickel 
1 0 reinstallation 9 in 2006 arsenic selenium 

10 removal 5 in 2007 cadmium uranium 
4 in 2008 
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Table 5.3 Range of the Grab Sample Measurements and CCME Guidelines 

Parameter Humber River Peter's River Leary's Brook Waterford River CCME 
(31) (18) (20) (20) Guideline 

(mg/L) 

Real Time Measurements 

Wf(DC) 0.63-18.8 -0.2-28.7 0.6-17.3 0.5-20.4 

pH (pH units) 6.7- 7.6 4.9-8.1 5.3-14.0 5.8-11.2 6.5-9.0 

SC (IJS/cm) 24.0-42.9 34 - 84.9 167-1329 235-1060 

DO (mg/L) 8.6-19.3 7.5-14.3 9.3-16.3 7.1 -24.7 > 5.5 mg/L 

Stage (m) 1.5-3.5 0.9-1.5 0.6-0.9 0.4-1.2 

Grab Sample Measurements 

Alkalinity 
10-20 8-34 0-13.0 6-21 

(mg/L CaC03) 

Color (TCU) 22-112 15-74 0-24.0 8-26 

Cond. (uS/em) 39-56 41 -89 210-2400 219-1200 

Hardness 
7-17 16-33 10.0-53.0 17-52 

(mg/L CaC03) 

pH (pH units) 6.6-7.6 6.5-7.6 6.1 -7.1 6.6-7.4 6.5-9.0 

TDS (mg/L) 25-36 25-58 107-959 142-625 

TSS (mg/L) Not recorded in the grab samples 

Turbidity (NTU) 0.4-4.2 0.4-0.7 0.3-19.2 0.5-3.8 

Boron (mg/ L} 0-0.03 0-0.02 0-0.1 0-0.03 

Bromide (mg/L) ND ND ND 0-1.1 

Calcium (mg/L) 3-5 4.8-10 4-18 5-17 

Chloride (mg/L) 3-5 2-6 50-510 51 -360 

Flouride (mg/L} 0-0.11 0-0.1 0-0.1 0-0.5 

Potassium(mg/L} ND 0-0.3 0-5 1-2.6 

Sodium (mg/L) 0-3 0-3.5 32-390 33-210 

Sulphate (mg/L) 3-4 0-4 7-27 7-18 
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Table 5.3 continued - Range of the Grab Sample Measurements and CCME Guidelines 

Parameter Humber River Peter's River Leary's Brook Waterford River CCME 
(31) (18) (20) (20) Guideline 

(mg/L) 

Total 10.3 
Ammonia (mg/L) 0-0.24 0-0.1 0-0.3 0-0.2 pH = 7.0 

WT = 10.3 

DOC 0.8-14.0 3.8-1 1 1.4-5.6 2.2-7.8 

Nitrate(ite) (mg/L) 0-0.13 0-1.4 0.2-0.6 0.5-1.2 2.9 nitrate 

Kjeldahl N (mg/ L) 0-0.37 0.1-0.4 0.1-0.4 0-0.6 

Total Phosphorus 
0-0.09 0-0.1 0-0.1 0-0.3 

(mg/L) 

Aluminum (mg/L) 0.05-0.17 0-0.1 0-0.5 0-0.17 0.005- 0.1 

Antimony (mg/L) NO NO NO NO 

Arsenic (mg/ L) NO NO NO NO 0 .005 

Barium (mg/L) 0-0.01 0-0 .012 0-0.1 0-0.036 

Cadmium (mg/L) NO NO NO NO 0.000017 

Chrom. (mg/L) 0-0.001 0-0.005 NO 0-0.017 0.0089 

Copper (mg/L) NO 0-0.003 0-0.006 0-0.004 0.002-0.004 

Iron (mg/ L) 0.04-0.13 0.1-0.3 0.14-1.3 0.1 -0.4 0 

Lead (mg/L) NO NO 0-0.0093 0-0.0008 0.001 -0.007 

Magnes.(mg/L) 0-1.0 1-2 0-2 1-2.5 

Mangan. (mg/L) 0-0.03 0-0.023 0-0.3 0-0.2 

Mercury (mg/L) NO NO NO NO 0.00026 

Nickel (mg/ L) NO NO NO NO 0.025-0.1 5 

Selenium (mg/L) NO NO NO NO 0.001 

Uranium (mg/L) NO NO 0-0.0001 NO 

Zinc (mg/ L) NO 0-0.009 0-0.086 0-0.03 0.03 

NO - parameter not detected in the grab sample measurements with matching real time data 
CCME guidelines are for the protection of aquatic life - freshwater 
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5.4. 1 The Humber River Grab Sample Dataset 

The historical record of grab samples collected at the Humber River real time station 

contained 44 grab samples of water quality collected from May 19, 2004 to August 11, 

2008. 23 of the samples either had no matching maintenance forms to use as a reference 

n for collection time or the maintenance form for that sample failed to indicate the time of 

day the sample was collected. The WRMD was contacted about the missing forms and 

they were able to locate the log books of the staff members who had collected the 

samples at the station. With the help of the log books, the time of collection was 

determined for 11 of those samples while 12 of the samples were identified as being part 

of a special sample collection program at the station carried out in 2006. Unlike normal 

grab samples of water quality collected upon the reinstallation of the sensor, these special 

samples were collected while the sensor was still in the water. After consultation with the 

WRMD it was determined that these special samples could be included in the regression 

analysis dataset- leaving a total of 37 samples available for analysis. 

31 of the samples collected from May 2004 to December 2006 were originally used 

to develop regression models for grab sample water quality at the station while 6 of the 

samples were reserved for model testing. Poor model fitting results called for follow up 

attempts at modeling with new datasets - one containing all 37 samples and another 

containing only the 25 samples taken upon reinstallation of the sensor. Of the available five 

real time measurements of water quality for use as potential explanatory variables, water 

temperature was highly correlated with dissolved oxygen (a correlation p-value of 0.000 for 
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the 31 samples) and dissolved oxygen was removed from the set of potential surrogates 

for the grab sample data to simplify modeling efforts. Water temperature and stage were 

also closely correlated for the 31 samples (p-value 0.035) but both measurements were left 

in the set of potential surrogates. 13 of the of the 38 measured physical and chemical 

properties were never detected in the grab samples collected at the Humber River station -

bromide, flouride, potassium, antimony, arsenic, cadmium, copper, lead, mercury, nickel, 

selenium, uranium and zinc. 

5.4.2 The Peter's River Grab Sample Dataset 

The original historical record of grab samples collected at the Peter's River station showed 

25 samples were collected from December 2004 to February 2008. 18 of these samples 

were paired with real time measurements - 3 of these samples were taken upon removal of 

the sensor. The removal samples appeared to be unreliable and were not included in the 

regression datasets - leaving only 15 samples available for regression. Due to the small 

number of samples both reinstallation and removal samples were combined for use in 

regression modeling and no samples were reserved for model testing purposes. The 

Peter's River station is now offline so its likely that no more grab samples will be collected 

for this station. Nine of the measured physical and chemical properties were never 

detected in the Peter's River grab samples - bromide, antimony, arsenic, cadmium, lead, 

mercury, nickel, selenium, and uranium. 
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5.4.3 The Leary's Brook Grab Sample Dataset 

The historical record of grab samples collected at the Leary's Brook station contained 33 

samples collected from May 2004 to September 2008- with almost half of these samples 

collected in 2006. Only 20 of these samples could be matched to real time data and 12 of 

these samples were taken upon removal of the sensor. Both removal and reinstallation 

samples were combined into one regression modeling dataset. Due to the small number 

of samples it was not possible to set any samples aside for model testing purposes. The 

collection of grab samples is an ongoing process at the real time stations and it is 

expected that as new samples are collected they can either be used to test the models or 

can be added to the existing datasets to determine if better models can be identified. 

Although only four of the measured physical and chemical properties were never 

detected at the station - bromide, mercury, nickel and selenium, there were a number of 

other chemicals whose measured levels were quite low - boron, flouride, total phosphorus, 

antimony, arsenic, barium, cadmium, chromium, copper, lead, uranium and zinc. 

5.4.4 The Waterford River Grab Sample Dataset 

The historical record of grab samples for the Waterford River station contained 22 samples 

were collected from August 2005 to September 2008. 20 of these samples could be 

matched to real time data but half of these samples were taken upon removal of the 

sensor. Again, small sample size forced the combination of the removal and reinstallation 

samples into one dataset - with no samples kept aside for model testing. Antimony, 

arsenic, cadmium, mercury, nickel, selenium and uranium were never detected in the 
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samples collected at the station and levels of boron, total phosphorus, barium, chromium, 

copper and lead were very low. Author's Note - Appendix N contains a more detailed 

statistical overview of the grab sample datasets for the real time stations. 

5.5 Regression Modeling Results for Grab Samples 

The developed grab sample datasets were used to develop regression models for the 

following categories of grab sample measurements: 

-Physical Properties, Solids and Sediment: alkalinity, conductivity, hardness, pH, total 

dissolved solids, turbidity and water temperature). 

-Major Ions, Elements and Metals: boron, bromide, calcium, chloride, flouride, potassium, 

sodium, sulphate, ammonia, aluminum, antimony, arsenic, barium, cadmium, chromium, 

copper, iron, lead, magnesium, mercury, nickel, selenium, uranium, and zinc. 

-Nutrients: dissolved organic carbon (DOC), nitrate(ite), kjeldahl nitrogen, and total 

phosphorus. 

Table 5.4 (physical properties, solids and sediment), Table 5.5 (major ions, elements and 

metals) and Table 5.6 (nutrients) contain the regression modeling results for these 

categories of grab sample measurements. Only those models with an adjusted R2 value 

greater than 0.40 have been included in the tables - unless the measured grab sample 

parameter is of particular interest. A discussion of the developed grab sample regression 

models follows directly after the tables. 
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Table 5.4 Models for Grab Sample Physical Properties, Solids and Sediment 

Station Parameter Regression Model n Range Adj R2 

Peter's Alkalinity ALK = 0.313SC + 5.33 15 ALK 8-34 0.514 

Waterford Alkalinity Log(ALK) = 3.8- 0.001 SC- 1.44ST 20 ALK 6-21 0.799 

No significant equations: Humber (ALK 1 0-20) and Leary's (ALK 0-13) 

Leary's Color Color = 16.12 + 0.49WT- 0.01SC 19 Color 0-24 0.635 

No significant equations: Humber (color 22- 112}, Peter's (color 15-7 4) and Leary's (color 0-24) 

Peter's Conductivity Conductivity= 0.78SC + 19.78 15 Cond 41-89 0.809 

Leary's Conductivity Conductivity = 1 .23SC - 66.80 19 Cond 210-2100 0.904 

Waterford Conductivity Conductivity = 1.07SC- 21.0 20 Cond 219-1200 0.95 

No significant equations with real time specific conductance: Humber (cond. 39-56) 

Peter's Hardness Hardness = 35.3 + 0.2WT -636.7SC 15 Hard. 16-33 0.664 

Leary's Hardness Hardness= 4.18 + 0.61WT + 0.03SC 19 Hard. 10-53 0.848 

Waterford Hardness Hardness= 12.35 + 0.03SC- 12.11 ST 20 Hard. 17-52 0.799 

No significant equations: Humber (hardness 7-17) 

Peter's pH grab pH Grab= 0.26pH +5.42 15 pHgrab 6.5-7.7 0.403 

Waterford pH grab pH Grab = 0.10pH + 6.29 20 pHgrab 6.6-7.4 0.9 

No significant equations with real time pH: Humber (pH grab 6. 6-7. 6) and Leary's (pH grab 6. 1-7. 1) 

Humber TDS TDS = 26.28 -0.26WT + 1.98ST 31 TDS 25-36 0.55 

Peter's TDS TDS = 0.56SC + 9.20 15 TDS 25-58 0.831 

Leary's TDS TDS = 0.66SC- 7.17 19 TDS 107-959 0.848 

Waterford TDS TDS = 0.56SC + 10.34 20 TDS 142-625 0.901 

Peter's Turbidity Turb = 1.26 -0.01WT- 3.94pH 15 Turb 0.4-0. 7 0.392 

No significant equations: Humber (turb 0.4-4.2), Leary's (turb 0.3-19.2) and Waterford (turb 05-3.8) 

Humber GrabWT Grab water temperature = 0.99WT + 0.31 16 GrabWT 0.8-16 0.999 

Grab sample water temperature recorded only 6 times in Peter's and never in Leary's and Waterford 
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Table 5.5 Regression Models for Grab Sample Major Ions and Metals 

Station Parameter Regression Model n Range Adj R2 

Humber Calcium (mg/L) Ca =-0.05WT + 4.51 31 Ca 3.0-5.0 0.235 

Peter's Calcium (mg/L) Ca = 0.09SC + 2.86 15 Ca 4.8-10.0 0.62 

Leary's Calcium (mg/L) Ca = 0.10SC + 3.45 19 Ca 4.0-18.0 0.804 

Waterford Calcium (mg/L) Ca = 0.30 + 0.01SC + 2.51ST 20 Ca 5.0- 17.0 0.87 

Humber Chloride (mg/L) Cl- = 5.3- 0.04WT- 37.54SC 31 Cl- 3.0-5.0 0.291 

Peter's Chloride (mg/L) Cl- = 0.04SC + 1.93 15 Cl- 2.0-6.0 0.245 

Leary's Chloride (mg/L) Cl- = 0.35SC -28.01 19 Cl- 50-510 0.954 

Waterford Chloride (mg/ L) Cl- = 0.33SC- 36.00 20 Cl- 51 - 360 0.903 

Leary's Potassium (mg/L) K = 0.003SC - 0.045 19 K 0.0-5.0 0.736 

Waterford Potassium (mg/ L) K = 0.002SC + 0.66 20 K 1.0-2.6 0.487 

No significant models: Humber (K 0-0.4) and Peter's (K 0-0.3) 

Leary's Sodium (mg/L) Na = 0.23SC - 20.78 19 Na 32.0-390.0 0.895 

Waterford Sodium (mg/L) 
Na = 0.227SC- 26.213 

19 Na 33.0-210.0 0.975 
(One removed Feb 8/06, Na = 161) 

No significant models: Humber (Na 0-3.2) and Peter's (Na 0-3.5) 

Leary's Sulphate (mg/L) S042- = 0.014SC + 4.37 19 S042- 7.0 - 27.0 0.835 

Waterford Sulphate (mg/L) S042- = 0.01 SC + 6.59 20 S042- 7 - 18 0.747 

No significant models: Humber (SO,!- 0-4.0) and Peter's (S042- 0-4.0) 

Waterford Aluminum (mg/L) AI =0.15 +0.11 logST 20 AI 0.03- 0.17 0.62 

No significant models: Humber (AI 0.05-0. 17) and Peter's (AI 0.04-0.11), and Leary's (AI 0.04-0.48) 

Leary's Barium (mg/L) Ba = 3.21 SC + 0.0005 19 Ba 0.0-0.05 0.81 7 

Waterford Barium (mg/L) Ba = 3.12SC - 0.003 20 Ba0 -0.036 0.664 

No significant models : Humber (Ba 0-0.01} and Peter's (0-0.012) 
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Table 5.5 continued- Regression Models for RlWQ Station Grab Sample Major Elements and Ions 

Peter's Iron (mg/L) Fe= - 0.003SC + 0.28 15 Fe 0.05-0.26 0.535 

No significant models: Humber (Fe 0.04-0.13) ), Leary's (Fe 0. 1- 1.3) and Waterford (Fe 0.08-0.39) 

Peter's Magnesium (mg/L) Mg = 0.019SC + 0.42 15 Mg 1.0-2.0 0.506 

Leary's Magnesium (mg/L) Mg = 0.001 SC + 0 .31 19 Mg 0 - 2.0 0.576 

Waterford Magnesium (mg/L) Mg = 1.77- 251 .5/SC + 0.38/ST 20 Mg 1.0-2.5 0.587 

No significant models: Humber (Mg 0 -1. 0) 

Waterford Manganese (mg/L) Mn = 0.05 - 0.003WT + 0.0001 SC 20 Mn 0-0.20 0.680 

No significant models: Humber (Mn 0-0.03), Peter's (Mn 0-0.023) and Leary's (Mn 0.03-0.31) 

Leary's Zinc (mg/L) Zn = 4.60SC + 0.0002 19 Zn 0-0.09 0 .684 

Waterford Zinc (mg/L) Zn = -0.07 + 0.021og(SC)- 0.02/ST 20 Zn 0-0.03 0.612 

No significant models: Humber (Zn not detected) and Peter's (Zn 0-0.009) 

Never detected at the stations - bromide, antimony, arsenic, cadmium, mercury, nickel and selenium. 
No significant models (with adjusted R2 above 0.40) could be developed for - boron, flouride, ammonia, 
chromium, copper, lead, and uranium. 

Table 5.6 Models for Grab Sample Nutrients 

Station Parameter Regression Model n Range Adj R2 

Humber Nitrate(ite) mg/L N03- = -0.005WT + 0.08 31 No3- o-0.13 0.249 

Peter's Nitrate(ite) mg/L 
N03- = 0.03 - 0.01 WT + 0.005SC 

14 N03-: 0 - 0.4 0.696 
(Remove one outlier N03-= 1 .4) 

Waterford Nitrate(ite) mg/L N03- = -0.02WT + 1.0 20 N03- 0.5- 1.2 0.402 

No significant models: Leary's (N03- 0.19-0.59) 

Peter's DOC DOC =25.85 -4.91 *log(SC) 15 DOC 3.8-11 0.54 

No significant models: Humber (DOC 0.8-6.6), Leary's (DOC 1.4-5.6) and Waterford (2.2-7.8) 

No significant models (with adjusted R2 above 0.40) could be developed for kjeldahl nitrogen and total 
phosphorus recorded at any of the stations. 
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5.6 Discussion 

5.6. 1 Models for Grab Sample Physical Properties, Solids and Sediment 

Regression models were investigated for grab sample physical properties, solids and 

sediment- these being alkalinity, conductivity, hardness, pH, total dissolved solids, turbidity 

and water temperature. 

Alkalinity 

Alkalinity is the capacity for solutes in water to react with and neutralize acid. It is an 

important indicator of water quality as it represents the capacity for a body of water to 

neutralize acidic pollution from rainfall or wastewater. When rivers and streams have low 

alkalinity they can be adversely affected by acidic inputs and the corresponding drop in pH 

of the water can harm acid-intolerant forms of aquatic life - where fish are particularly 

susceptible to harm from low pH (U.S. Environmental Protection Agency, 1999). Alkalinity 

at the stations are for the most part in the 0 to 25 mg/L CaC03 range - with levels at 

Peter's River being the highest and levels at Leary's Brook the lowest (Figure 5.2). 
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Figure 5.2 Comparing Alkalinity at the RTWQ Stations 
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No statistically significant equations could be developed using the available datasets for 

predicting alkalinity at the Humber River and Leary's Brook stations. At Peter's River, 

specific conductance was used as a surrogate to define a linear relationship to alkalinity -

but the model has a low adjusted R2 of 0.514. At the Waterford River station, 20 samples 

of specific conductance and stage were used as surrogates for alkalinity and adjusted R2 

was equal to 0. 799. The goodness of fit of this model is similar to that developed by 

Christensen et al. (2002) - where streamflow and water temperature were used as 

surrogates for logarithmically transformed alkalinity with an R2 of 0. 710. 

WaterColor 

No statistically significant relationships could be developed linking the real time 

measurements and grab sample measurements of water color. A relationship was 

developed for Leary's Brook using water temperature and specific conductance, but with 

an adjusted R2 of 0.635 the model would not be very useful for making predictions. 

pH Level 

Regression models using real time measurements of pH as a surrogate for grab sample 

pH were investigated primarily for comparing how real time measurements and grab 

sample measurements of the same parameter match up together. Real time and grab 

sample pH measurements were not correlated at the Humber River and Leary's Brook 

stations, and were only slightly correlated at the Peter's River station. This is not 

surprising, as field experience has shown that often times when the sample is removed 

from the water the pH tends to change from what the true value would be. A linear 

relationship was developed for the Waterford River station (adjusted R2 of 0.90). 
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-------------------------------------------------------------

Specific Conductance 

Regression models using real time sensor specific conductance as a surrogate for grab 

sample conductivity were investigated. Except for Humber River, close linear relationships 

were developed between the two measurements (with adjusted R2 being above 0.80). 

Scatterplots of real time specific conductance and grab sample conductance are shown in 

Figure 5.3. There is a complete lack of a relationship between the Humber River real time 

and grab sample conductance. Perhaps if the range of values in Humber River was larger 

it would be easier to define a relationship but the current grab sample measurements 

cannot be paired with real time specific conductance. The linear relationship between the 

two parameters is strongest for the two smaller rivers - where conductance levels recorded 

by the grab samples are much higher than the levels recorded at Humber River and Peter's 

River. 
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Figure 5.3 Grab Sample Conductance Versus Real Time Specific Conductance 
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Water Hardness 

According to Hem (1992), its possible to use parameters like specific conductance and 

stage to establish a relationship with water hardness (which is alkalinity as CaC03). 

Specific conductance, water temperature and stage were used as surrogates for hardness 

at the two smaller stations in the network - where water temperature and specific 

conductance were used for Leary's Brook (adjusted R2 of 0.848) and specific conductance 

and stage were used for Waterford River (adjusted R2 of 0. 799). No statistically significant 

regression model could be developed for Humber River water hardness. For Peter's River, 

water temperature and specific conductance were used as surrogates for hardness but 

the adjusted R2 was only 0.664. The range of hardness measurements in the grab 

samples collected at Leary's Brook and Waterford River is much wider than at Peter's River 

and Humber River (refer to Figure 5.4). The variation in the Humber River data in particular 

is rather small - with 18 of the 31 measurements having a hardness of 10. 
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Figure 5.4 - Comparing Water Hardness at the RTWQ Stations 
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Total Dissolved Solids 

Dissolved solids are the organic and inorganic material dissolved in a sample of water 

(Bates and Jackson, 1984). Water with high concentrations of dissolved solids tends to 

be salty while water with low concentrations of dissolved solids tends to be fresh. 

Dissolved solid levels in a water body can fluctuate as a result of pollution- i.e. wastewater 

discharges high in salts, irrigation, the clearing of land near a stream or the spreading of 

road salt during icy winter conditions (Texas State, 2009). Total dissolved solids levels in 

the grab samples collected at Leary's Brook and Waterford River are much higher than 

they are at Peter's River and Humber River. Large spikes in total dissolved solids occur 

during the winter months at the two urban streams - likely the result of road salt being 

washed into the rivers (Figure 5.5). 
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According to Hem (1992) dissolved solid levels are usually related to the specific 

conductance of water but the strength of the relationship will depend on the ions present 

in the water. Some water bodies can be characterized by strong relationships between 

dissolved solids and specific conductance and at these locations chemical constituents 

(i.e. chloride) can usually be predicted with great accuracy - although during periods of 

high streamflow where a large portion of the streamflow is the result of large amounts of 

rain, the relationship can change. Rainfall was not investigated as a potential surrogate in 

this research so its influence on the development of total dissolved solids models at this 

point in time is unknown. The use of stage as a surrogate did not result in the 

development of a significant total dissolved solids model for any of the stations. 

Grab sample measurements of total dissolved solids at the Humber River station 

were poorly related to the real time data. Specific conductance and total dissolved solids 

at the station were not significantly related to each other (refer to Figure 5.6). The best 

fitting model for the station did not use specific conductance but used water temperature 

and stage as surrogates for a model with an adjusted R2 of 0.550. 

The total dissolved solids models for the other three stations are more useful, with 

specific conductance acting as a surrogate in a linear regression model for each station 

(Figure 5.6). Adjusted R2 values for the models are all above 0.80. 
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Figure 5. 6 Relationship Between Real Time SC and Grab Sample TDS 
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The WRMD currently has developed an equation for using specific conductance 

recorded by the real time sensors to estimate total dissolved solids: 

TDS(g I L) = Specific Conductance(,uS I em) x 0.00064 Equation 5.5 

A comparison can be made between the total dissolved solids levels predicted by these 

equations (converted to mg/L) and the grab sample total dissolved solids - Figure 5.7 on 

the previous page. The scatterplot shows that the prediction equation is fairly accurate for 

Leary's Brook and Waterford River (with values falling along the 45° line). The equation 

tends to overestimate TDS at the Peter's River station while there is little correspondence 

between calculated and grab sample TDS at the Humber River station. 

Turbidity 

Regression models for grab sample turbidity were investigated for the stations but no 

significant models could be developed using the real time measurements as a surrogate. 

It would be useful if the turbidity levels recorded by the real time sensor could be brought 

on-line so that grab sample turbidity and real time turbidity could be compared. 

Grab Sample Water Temperature 

Regression models using real time sensor water temperature as a surrogate for grab 

sample water temperature were investigated for the Humber River station. A near perfect 

linear relationship was found for the two parameters {adjusted R2 of 0.999). 

Measurements of grab sample water temperature are not recorded for the Leary's Brook 

and Waterford River stations and were only recorded six times a the Peter's River station. 
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5.6.2 Models for Grab Sample Major Elements, Ions and Metals 

Statistically significant regression models were developed for the following major elements, 

ions and metals - calcium, chloride, potassium, sodium, sulphate, magnesium, 

manganese, aluminum, barium, iron and zinc. No statistically significant regression models 

could be developed for boron, flouride, ammonia, chromium, copper, lead, and uranium. 

Bromide, antimony, arsenic, cadmium, mercury, nickel and selenium were never detected 

at the stations. 

Calcium 

When the concentration of a charged ionic species increases the conductivity of a solution 

will also increase. For this reason, specific conductance should be close correlated to ionic 

species at the stations (Hem, 1992). Statistically significant regression models using 

specific conductance as a surrogate for calcium were developed for Leary's Brook and 

Waterford River where the highest calcium levels were recorded (4 - 18 mg/L). No 

signifiant equations could be developed for Peter's River and Humber River (Figure 5.8). 

Calcium is one of the most important contributors to water hardness (where 

hardness in the grab samples is measured in mg/L CaCOs). The close relationship 

between the two parameters at the Leary's Brook station is shown in Figure 5.9. Calcium 

levels at the Humber River station remained rather constant being primarily in the 4.0- 5.0 

mg/L range, and no significant regression model could be found relating specific 

conductance to calcium. Being such a large river it is likely that outside inputs into the 

river are highly diluted and do little to change the natural levels of the river - unlike a smaller 
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water body like Leary's Brook where inputs into the stream are not diluted to the same 

extent and cause variation in the natural levels of the water. Without any large variation in 

the levels of calcium the lack of a model is not of concern - as the current dataset shows 

that calcium levels at the station will always be in the 3.0 to 5.0 mg/L. 
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Figure 5. 9 - Relationship Between Grab Sample Calcium and Water Hardness 

Chloride 

A close linearly relationship was found to exist between chloride and real time specific 

conductance measurements at the Leary's Brook and Waterford River stations. No 

statistically significant relationship could be defined for Peter's River and Humber River but 

the models for those two stations are included in the Table 5.5 for comparison. Like the 

calcium data, chloride measurements at the Humber River station were all in the 3.0 - 5.0 

mg/L range. 

Sodium and Sulphate 

Grab sample measurements of charged ionic species like sodium and sulphate are lower 

and less spread out in the larger rivers (Humber River and Peter's River) than at Leary's 

Brook and Waterford River. Take for example the spread of the sodium measurements 

shown in Figure 5.1 0. At Humber River and Waterford River sodium is in the 0 - 3.5 mg/L 

and no significant relationship can be defined. The range of sodium levels at the Leary's 

Brook and Waterford River stations is from 32.0 -390.0 mg/L and it was much easier to 

define a clear linear relationship with specific conductance measurements (Figure 5.11 ). 
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Magnesium, Manganese, Iron and Barium 

Although most of the regression models developed for magnesium, manganese, iron, and 

barium had adjusted R2 values less than 0.70, one regression model using specific 

conductance as a surrogate for Leary's Brook grab sample Barium had an adjusted R2 of 

0.817 (Figure 5.12). It should be noted though although Barium levels at this station are 

the highest of the four stations, these barium levels should not pose an ecological threat. 

Here in Canada there is no CCME guideline for barium, but in the United States a 1.0 mg/L 

allowable limit for barium has been set for any freshwater that is to be used for domestic 

supply. 
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Figure 5. 12 Regression Model for Leary's Brook grab sample barium 

149 



Zinc 

Zinc is known to be very toxic to microscopic organisms in aquatic environments and the 

CCME has established a maximum allowable zinc concentration of 0.03 mg/L. Although 

the grab samples collected at Humber River, Peter's River and Waterford River never go 

outside of this limit, five of the Leary's Brook grab samples are above the limit (Zn 0.036, 

0.04, 0.05, 0.079, and 0.086 mg/L). All five of these measurements occur during the 

winter months of February and March - Figure 5.13. During the winter months specific 

conductance at the station is also very high. 

Unfortunately there is a fair amount of scatter in the grab sample zinc 

measurements (Figure 5.14) and the best regression model that could be developed for 

the Leary's Brook dataset has a low adjusted R2 of 0.684. It is recommended that more 

grab samples of water quality be collected during these winter months to gain a better 

idea of how often zinc levels at the station are above the CCME and to hopefully improve 

the fit of the regression model. 

Author's Note - the 0. 036 grab sample measurement cannot be paired with a specific 

conductance measurement from the same day due to problem with the sensor. As a 

result the regression model was developed using only 19 of the 20 grab samples. 
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Aluminum 

Aluminum is one of the most abundant elements in the earth's crust but the presence of 

aluminum ions in water is usually the result of industrial waste. Aluminum is a concern for 

water quality as high concentrations of aluminum can become toxic to aquatic life if the pH 

is lowered (Kentucky Watershed Watch, 2009). A previous study of water quality carried 

out in Newfoundland noted that aluminum levels in most rivers in the province are the 

result of natural sources and should not pose a threat (CCME, 2004), four observations at 

the Waterford River station go above the CCME limit of 0.1 mg/L four times (0.14, 0.14 , 

0.16 and 0.17 where these values come from both winter and summer grab sample 

measurements). Although all R1WQ data was examined as being a potential surrogate, 

the only reasonably well-fitting model was developed using logarithmically transformed 

stage - with an adjusted R2 of 0.62 (Figure 5.15). Aluminum levels tends to be highest 

during the highest stage levels at the station. 
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Figure 5. 15 Waterford River Aluminum Model 
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5.6.3 Models for Grab Sample Nutrients 

Its important to monitor nutrient levels at the stations as excessive nutrient levels can be 

harmful to aquatic organisms (Mueller and Helsel, 1996). The potential for developing 

regression models for nitrate(ite), kjeldahl nitrogen, dissolved organic carbon and total 

phosphorus was examined. There was very little success in finding real time surrogates for 

nutrient levels at the stations. No models could be developed for kjeldahl nitrogen and 

total phosphorus with adjusted R2 values above 0.40. There is a small chance that models 

for nitrate(ite) might be possible, but at this point no models could be developed with 

adjusted R2 values above 0.70. 

Nitrogen and Kje/dahl Nitrogen 

Nitrogen can take several forms in rivers and streams - elemental nitrogen, ammonia, 

nitrate and nitrite. The grab sample results for the real time stations contain one combined 

measurement for nitrate(ite). The nitrate(ite) measurements at the stations are not outside 

of the CCME guideline limit of 2.9 mg/L for nitrate. The USGS had some success using 

specific conductance and water temperature as surrogates in their research (adjusted R2 of 

0.829 for twenty measurements - Christensen et al., 2002) but the levels of nitrate in that 

stream were in the 0.014-2.13 mg/L range while the levels at the R1WQ stations are only 

in the 0-1.2 mg/L range. 

No regression model could be developed for Leary's Brook nitrate(ite) with an 

adjusted R2 above 0.1 0 and regression models developed for Humber River and Waterford 

River using water temperature as a surrogate for nitrate(ite) were poor (adjusted R2 of 
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0.249 and 0.402, respectively). Water temperature and specific conductance were used as 

surrogates for Peter's River nitrate(ite) but adjusted R2 was only 0.696. One outlier of 

nitrate(ite) 1.4 mg/L was removed from the Peter's River dataset for this model. 

Kjeldahl nitrogen is calculated by taking the sum of the organic nitrogen, ammonia 

and ammonia levels in the grab sample. No statistically significant regression models could 

be developed for kjeldahl nitrogen at the stations. 

Phosphorus 

Phosphorus is a key element necessary for the overall health of aquatic ecosystems but in 

its elemental form it can be quite toxic to aquatic organisms. There are no CCME 

guidelines for phosphorus in freshwater but the United States Environmental Protection 

Agency suggests phosphorus levels should be no more than 0.1 mg/L for streams that do 

not empty into reservoirs (USEPA, 1986). Total phosphorus levels at Humber River, Peter's 

River, and Leary's Brook were all below this cutoff, but two grab samples collected at 

Waterford River violate this limit (0.11 and 0.31 mg/L). No surrogates could be determined 

for modeling phosphorus using the available datasets for the real time stations. 

The USGS used turbidity, specific conductance and water temperature as 

surrogates for phosphorus measured in the 0.025-0.755 mg/L range. The RTWQ grab 

sample datasets cannot be paired with real time measurements of turbidity (as these 

measurements are currently unreliable) so it is unknown if turbidity is the missing link in 

developing these regression models. 
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Dissolved Organic Carbon 

Dissolved organic carbon (DOC) can be used as an indictor of organic loadings in rivers 

and streams. The range of DOC grab sample measurements at Humber River, Leary's 

Brook and Waterford River was quite small and no statistically regression model could be 

developed for these stations. The range of DOC values at Peter's River were broader and 

a first order logarithmic model was developed for the station using specific conductance 

as a surrogate. Unfortunately the fit of this model was poor (adjusted R2 of 0.54). 

5.6.4 Further Investigations into the Humber River Grab Sample Models 

There was great difficulty in developing regression models for the grab samples collected 

at the Humber River station. Major ion levels recorded in the grab samples collected at the 

station tend to be low and show little variation. It is quite likely that being the largest river 

in the provincial RTWQ network, all inputs into the river are diluted. When inputs are 

diluted they will not change the natural levels in the river. With that being said, there is little 

need to develop models for the Humber River station if the levels remain as constantly low 

as the available grab sample datasets indicate. 

A comparison in the levels of grab sample measurements between a large river like 

the Humber River and a smaller stream like Leary's Brook is shown in Figure 5.11 . The 

variation in grab sample sodium levels at the Humber River station was very small -

specific conductance could range anywhere from 25 to 35 j.JS/cm and sodium would take 

on a value of 0, 2 or 3 mg/L). Sodium levels at Leary's Brook were spread over a much 

broader range (32.0-390 mg/L) for specific conductance anywhere from 200 to 1400 j.JS/ 
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em. The higher sodium levels at the Leary's Brook station occur during winter when large 

amounts of road salt being washed into the water after winter storms and during periods 

of heavy rainfall and snowmelt. Although these investigations into grab sample regression 

model development did not consider rainfall and snowmelt as potential surrogates, their 

inclusion for future model development would be quite useful for grab sample prediction. 

If possible a large portion of the future Humber River grab sampling effort should be 

focused around collecting samples near significant events (i .e. sever rainfall, road salting 

during winter, etc.) to try to determine if ion, metal and nutrients concentrations at the 

station go outside of the ranges indicated by the current historical grab sample dataset. If 

higher observations of major elements and ions like sodium and chloride can be added to 

the historical dataset then there should be a greater chance of developing models for 

these stations. 
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Chapter Six 

Investigations into the Use of Control Charts for 

Handling Real Time Water Quality Data 
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6.1 Scope 

This chapter takes an investigative look into the use of statistical process control charts for 

monitoring water quality data collected by the Newfoundland RTWQ network. This 

chapter will be of most interest to those looking to take the control chart traditionally used 

for monitoring industrial manufacturing processes and use it for monitoring data that is 

highly autocorrelated in time. A literature review of the origins of statistical control charts 

and how they have been used in the field of environmental engineering is presented. This 

is followed by a look into the different approaches for implementing control charts for the 

RTWQ network that were investigated in this research. 

6.2 Literature Review 

The origins of the field of statistical quality control date back to the early 1920s and the 

work of Dr. Walter A. Shewhart who at the time was employed as a member of the 

technical staff at Bell Labs in the United States. Managers at the company relied on 

written reports for determining the quality of products being manufactured by the company 

and within these reports were charts showing the month to month performance of a 

quality characteristic. Most managers at Bell Labs found the charts difficult to interpret 

and as a result the managers were not able to easily distinguish variations in quality of the 

manufactured products that were due to chance (as most processes have some natural 

inherent variabil ity) from variations that were the result of some actual change in the 

performance of the manufacturing equipment. In 1924, Shewhart drew limit lines around 

the historical average performance of the quality characteristic shown on these charts -
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developing what is now called the Shewhart Control Chart (Figure 6.1 ). Shewhart's lines 

were set up so that points plotted outside of the lines had a low probability of occurring 

solely as a result of chance- i.e. points outside of the lines could only occur due chance 

5% of the time. With these limit lines added to the charts, managers quickly see that 

points outside of the lines had 20 to 1 odds of being the result of some real change in the 

process. When a number of points in a row plotted outside these lines it was likely that the 

process had reached an out of control state and action would need to be taken to correct 

the problem. 
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Figure 6. 1 The Traditional Shewhart Control Chart 

Shewhart knew from experience that even the best designed and well maintained 

processes would show some natural variability or background noise. If this background 

noise was small then there was no reason for inspection managers to be concerned. 

Occaisionally there are other kinds of variability present that will be much larger then the 

usual background noise on its own and are the result of some assignable cause. When a 
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process operates in the presence of one of these assignable causes the process enters 

into an out of control state. It is not an unusual situation for a process to operate in a state 

of statistical control for a period of time but then an assignable cause will shift the process 

to an out of control state. Shewhart's control charts were designed so that managers 

could quickly detect the presence of these assignable causes and make the required 

change in the process to fix the problem. 

Unfortunately Shewhart's control charts didn't catch on with the inspection 

managers working at Bell Labs - they were more concerned with sticking to production 

schedules than dealing with inferior products. It took about three decades after the charts 

were first developed before they were adapted by other manufacturing companies (Juran, 

1997). Their popularity grew during the 1950s to the point that the Shewhart control chart 

(and variations of the original chart) is now recognized as being one of the more essential 

tools for handling variations in manufacturing and processing industry data. 

Typically industrial and manufacturing measurements are independent over time 

with a constant mean and variance. Wardell et al. (1992) noted that quite often industrial 

process data is not independent but is actually autocorrelated - meaning that the value at 

one point in time is influenced by either the previous or following values. In these 

situations, using a traditionally designed control chart for monitoring the correlated data will 

lead to big problems. Vander Wiel (1996) examined the applicability of Shewhart 

individuals charts, cumulative sum charts, exponentially weighted moving averages and 

likelihood ratio schemes for monitoring data that is correlated over time. Signaling 
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probabilities and average run lengths were used in his research to show that the 

cumulative sum chart can usually be designed to perform better than the other charts. The 

traditional Shewhart control chart in particular was found to be a poor choice for 

monitoring this correlated data. One of the more popular approaches for using control 

charts for handling correlated data is to first model the collected data using a Box and 

Jenkins Autoregressive Integrated Moving Average (ARIMA) time series model (Box and 

Jenkins, 1976) and then use control charts on the residuals of the data. 

The idea of fitting a time series model to environmental data for statistical process 

control was first explored in the late 1970s and early 1980s. Berthouex, Hunter and 

Pallesen (1976, 1978) studied effluent from two sewage treatment plants and found that 

the standard Shewhart control chart could not effectively be used for monitoring the 

environmental data as the assumptions of constant mean, normal distribution and 

independence were violated. They took the approach of fitting an ARIMA time series 

model to the daily samples of the sewage treatment plant data and then used control 

charts on the residuals of the data so that the assumptions for the control charts would 

not be violated. In their research, the authors remind their readers that quite often the 

state of a particular monitoring operation may not require such high levels of statistical 

sophistication. Fitting ARIMA models can be quite difficult and it takes a great deal of 

experience to know what kinds of models will work best for the data being collected. In 

some scenarios it would likely be better to avoid spending unnecessary time modeling the 

data and just plot the raw data and use a simple control chart without any limit lines. The 
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human eye is remarkably sensitive to changes in these kinds of plots and usually resource 

managers will be served well enough with the simpler plots. 

Yourstone and Montgomery (1989) note how the majority of the time series 

approaches for environmental data at the time only focused on using a smaller sample of 

all available data to determine if a process was out of control in the past. In their work they 

propose a real time approach that allows the user to develop ARIMA models for the data 

being studied in real time and then use the residuals of this model fitting to determine if the 

process is in control. At that point in their research their work was still in the theoretical 

stage and only simulated data is used for evaluating the data and no real world results are 

discussed. 

Alwan and Roberts (1988) modeled the systematic nonrandom behavior in data 

using ARIMA models proposed by Box and Jenkins (1976) and then developed two charts 

instead of one standard control chart for monitoring the data. The Common-Cause Chart

a chart of the fitted values from the ARIMA models was used to gain a better 

understanding of the process being studied, while the Special-Cause Chart - a chart of the 

residuals from the ARIMA models was used to detect any special causes. Although they 

do not explicitly work with environmental data, their approach is useful in that it can deal 

with correlation in the data and the SCC chart can be used to determine when a process 

goes out of control. 

Wardell et al. (1992) found that traditional Shewhart control charts couldn't 

adequately handle autocorrelation in data but another control chart, the exponential 
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weighted moving average control chart was adequate for detecting small shifts in the data 

if autocorrelation was not excessively high. The authors also investigated the Alwan and 

Roberts (1988) approach for developing control charts for autocorrelated data. The Alwan 

and Roberts approach was found to be a better option for reliably being able to detect 

large shifts in the data. Lu and Reynolds (2001) looked at using cumulative sum control 

charts for monitoring a process that could be modeled by an AR(1) time series. When 

autocorrelation was high the CUSUM charts worked better on the residuals from the time 

series model than they did on the original data. 

MacNally and Hart (1997) were two of the first authors to publish research using 

control charts on actual water quality data. They studied the usefulness of cumulative sum 

(CUSUM) control charts for monitoring water quality trends within large storages like water 

reservoirs. The CUSUM approach was found to be effective for detecting changes in 

nutrient levels that were simulated for a water reservoir but the effectiveness of the 

approach hinged upon three important assumptions. First, the variance of the water quality 

parameter being studied had to remain constant over time and it had to be easily 

estimated. Second, there could be no serial autocorrelation within the time sequence of 

the data. Finally, there could not be any strong seasonal variation in the data and the 

samples being used had to be randomly selected. The authors spend a considerable 

amount of time in their paper discussing the importance of satisfying the assumption of no 

autocorrelation in the data- as CUSUM charts used on strongly correlated data resulted in 

an unacceptably high probability of making a Type-1 error (a so called false alarm where 
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what looks to be a statistically significant change or problem on the control chart is not 

really a problem at all). A note is made in their paper that CUSUM charts will likely not be 

useful for handling seasonal or pulsed patterns in the data. 

Smeti et al. (2007) found that typical SPC charts were of no use for dealing with 

highly autocorrelated daily toxicity data collected from treated-water tanks in Greece. They 

found that the approach of Alwan and Roberts (1988) was able to eliminate the 

autocorrelation in the daily toxicity data. 

Manly (1994) proposed an adaptation of the CUSUM method for detecting 

systematic changes in one or more monitored variables at more than one site. All other 

previous research at that point had dealt with data collected only at one site but Manly 

looked into the situation of monitoring being preformed at a number of independent sites 

with data being collected at regular time intervals. His method of developing CUSUM 

charts was illustrated using water quality data collected from 48 Norwegian lakes over a 4 

year period that was first presented in Mohn and Volden (1985). There was no 

autocorrelation or spatial correlation in the data. A procedure was developed for obtaining 

independent observations of water quality at each site by randomizing the observations so 

that there were no underlying systematic changes present in the data. This randomized 

data can then be compared to the observed data so that conclusions can be drawn 

regarding the presence of a systematic change. The CUSUM plots can then be used to 

determine the types of changes that might have occurred. Manly (1997) describes these 

randomization tests in greater detail. 
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Manly and MacKenzie (2000) build on the first work carried out in Manly (1994). 

Their approach is illustrated using a dataset consisting of dissolved reactive phosphorus 

measurements collected in 25 New Zealand rivers once every December from 1989 to 

1996. Their CUSUM approach was effective for detecting changes in the distribution of a 

water quality variable but only for low levels of serial autocorrelation. When high levels of 

autocorrelation were present in the data for the individual sites the method needed to be 

modified. Manly (2002) developed a free piece of software known as the CUSUM Analysis 

Tool (or CAT 2.2) for implementing the CUSUM method proposed in Manly and MacKenzie 

(2000). The software is setup so that a user can enter in water quality data for a number of 

sites each year and then develop CUSUM charts for those years. 

Manly and MacKenzie (2003) build on the CUSUM method described in Manly and 

MacKenzie (2000). Their original method is modified so that it can handle serial correlation 

at individual sites and moderate spatial correlation between sites. An algorithm is 

proposed that can be used to find a set of sites within a dataset that have negligible spatial 

correlation. Three examples are used to illustrate their new method. The first uses the 

dissolved reactive phosphorus dataset used in their previous work. Using the algorithm 

they reduce the dataset to include only 15 out of the 25 rivers. A follow up example uses 

data from Mohn and Volden (1985) - calcium and nitrate measurements taken from 48 

lakes in southern Norway in 1976, 1977, 1978 and 1981. When analyzing calcium spatial 

correlation was high and only 3 out of the 48 lakes on the edges of the study area could 

be used for analysis. This limited dataset isn't very useful for monitoring purposes and 
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their CUSUM method lost the majority of its effectiveness. For the nitrate measurements 

spatial correlation was lower and all 48 lakes could be used for analysis. Their CUSUM 

method was more effective for this larger dataset. 

6.3 An Overview of the Most Commonly Used Types of Control Charts 

Minitab can be used to develop a variety of statistical process control charts, from the 

simple Shewhart chart to the more complex exponential weighted moving average 

(EWMA) chart. These charts either plot individual observations or show subgroups of the 

data (i.e. combining 24 hourly measurements into one daily observation). Four of the most 

commonly used types of control charts were investigated in this research for monitoring 

the R1WQ data - (1) the traditional shewhart chart, (2) the cumulative sum chart, (3) the 

moving average chart, and (4) the exponentially weight moving average chart. 

6.3.1 The Shewhart Chart (X-bar chart) 

The Shewhart chart, also known as the X-bar chart in Minitab, is the simplest type of 

control chart for detecting a change in the level of a process. Berthouex and Brown (2002) 

note that the Shewhart chart does not indicate a change in the variability of a process but 

can be combined with a range chart so that the precision of the observations can be 

checked. Using these two charts together allows a user to track the process level and the 

process variation at the same time and detect the presence of special causes. The points 

plotted on the Shewhart chart at each recording interval is an average of the subgroup of n 

observations made at time t to calculate: 
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- 1 n 

~ =y, =-LYt 
n i = t 

Equation 6.1 

The acceptable amount of variation in the process level and the precision are defined on 

the charts by control limits that bind a specified percentage of all the results expected as 

long as the process remains in control (i.e. 99.7% of the values would be inside the limits if 

the process was in control). The control limits are only valid when the variation is randomly 

distributed above and below the average level of the process. The equations for the X-bar 

and Range control chart limits are defined as follows: 

X chart CentraJ Line = X Equation 6.2 

Control Limits = X ± k1 R 

R chart Central Line = R Equation 6.3 

Upper Control Limit= k2 R 

where X is the overall mean for the sample means (the average of the X used to make the 

chart), R is the mean sample range (the average of the ranges used to make the chart), 

and n is the number of replicates used to compute the average and the range at each 

sampling interval. R is the absolute difference between the largest and smallest values in 

the subset of n measured values at a defined sampling interval. The coefficients k1 and k2 

depend on the size of the subsample used to calculate the overall mean and the mean 

sample range. If instead of subgroups of data the user decides to use only one 

observation at timet then: 
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Equation 6.4 

and this is referred to as an individual observation chart or X-chart. Although an X-chart 

can be interpreted much like a Shewhart chart, using only one observation at each 

sampling time reduces the power of the chart to detected shifts in the performance 

(Berthouex and Hunter, 2002) and these charts are only useful for detecting large shifts in 

the process mean. 

6.3.2 The Cumulative Sum Chart (CUSUM) 

The CUSUM chart was first proposed by Page (1954) as an effective alternative to the 

Shewhart control chart. One of the biggest disadvantages of the Shewhart control chart is 

its inability to detect small shifts in the process and the CUSUM chart was designed to 

quickly detect small departures from the mean level (i.e. in fewer sampling intervals than 

the Shewhart chart) . The CUSUM is known to be one of the best available charts for 

monitoring changes in the process level (Berthouex and Brown, 2002). The basic idea 

behind the chart is to plot the cumulative deviations from T, the mean or target level. The 

deviation at timet is y,- T while at time t- 1 the deviation is y,_1 - T and so on. All of these 

deviations are summed from time t=1 to the current timet to give the cumulative sum: 

I 

~ = L(y,- T) Equation 6.5 

1= 1 

Processes that are stable will show deviations that randomly vary around zero and the sum 

of the deviations from the target level will average zero. If the mean process performance 
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shifts upwards over time then the deviations will tend to show more positive values and the 

cumulative sum values plotted on the chart will show an upwards trends, while the reverse 

is true for mean process performance that shifts downward. Unlike the Shewhart chart, 

control lines on the CUSUM chart are not parallel. One of the methods of adding these 

lines to the CUSUM chart is to use a procedure referred to as V-mask- where if all points 

fall within the arms of the V-mask then the process is in a state of statistical control. 

6.3.3 The Moving Average Chart (MA) 

The MA chart is a useful control chart for situations when single observations are used 

instead of subgroups of observations. A moving average gives equal weight to a sequence 

of the past values, where the weight will depend on how many of the past values are to be 

remembered. The time over which a moving average is to be calculated can be adjusted 

by the user in Minitab to represent the memory of the environmental system being studied 

as it responds to pollutants. The moving average is calculated by taking an average of the 

k most recent data points, or: 

I I 

v, =- I y, 
k t- (k - 1) 

Equation 6.6 

Thus a daily moving average would use the latest 24 hourly observations made at the 

observation station. The moving average is useful for smoothing out random fluctuations 

in the data and can help the user focus on trends in the data. 
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6.3.4 The Exponential Weighted Moving Average Chart (EWMA) 

The exponentially weighted moving average places more weight on the most recent 

obseNations than it does on older obseNations. The EWMA is calculated as: 

~ =(1 - A)LA;Yt-i Equation 6. 7 
i= O 

where A is a constant between 0 and 1 that determines the length of the EWMA memory. 

As A increases from 0 to 1 the smoothing of the obseNations increases and trends in the 

data tend to stand out more clearly. When A is kept small the memory of the EWMA is 

short and the weight given to older obseNations shrinks towards zero. When A is larger, 

the EWMA has a long memory, but usually the EWMA is still dominated by the last four to 

six obseNations. 

6.3.5 A Quick Summary of the Charts 

The Shewhart chart ( X chart) plots the average of a subsample and gives equal weight to 

all previous obseNations. It is a useful chart for checking shifts in the process that are 

relatively large compared with the variability in the process. This chart has become so 

popular as it is a direct plot of the data that lets the user visually inspect the obseNations. 

The Individuals (X chart) is similar to the Shewhart chart but plots individual samples 

instead of subsamples. It also tends to be insensitive to small shifts in the process. 

The cumulative sum (CUSUM) chart gives equal weight to all previous obseNations 

but is much quicker at detecting small departures from the mean level than the Shewhart 
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chart. The CUSUM chart serves the same purpose as the Shewhart chart but by plotting 

the cumulative change from the target level it is much quicker at detecting small changes 

in the observations and is a powerful improvement over the Shewhart chart. A potential 

downside of the CUSUM chart though is that it does not show the actual values of the 

observations. 

The moving average (MA) chart gives equal weight to the k most recent 

observations and gives no weight to every other observation. Unlike the Shewhart chart 

which uses subsamples, the MA chart can be used for studying individual observations. 

The exponentially weighted moving average (EWMA) chart gives the most weight to the 

most recent observations. It is a particularly useful chart for taking into account any serial 

correlation and drift in data being studied. 
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6.4 What Charts Might Work Best for Water Quality Data? 

A common approach for using control charts for process monitoring is to first develop a 

Shewhart chart for the data and then if necessary use additional charts (i.e. CUSUM, 

EWMA) to learn more about the process. By first plotting the observations on the 

Shewhart chart the user gets to visually inspect the data collected over time and identify 

any changes in the process. However, the Shewhart chart will not always provide useful 

information to the user (i.e. changes in the process might be too small for the chart to 

detect anything). In those cases follow-up charts let the user make further investigations 

into the collected data. Control charts for process monitoring will only provide the user 

with useful insights into the process if the underlying statistical conditions of the charts are 

satisfied - independence of the observations, constant variance and normally distributed 

variations). Water quality observations rarely satisfy the set of control chart conditions as 

observations of parameters like dissolved oxygen recorded over time will show signs of 

serial correlation and seasonality. 

When water quality data is collected sequentially over time, there is a high tendency 

for those samples taken close together to be more similar than those taken farther apart. 

For example, dissolved oxygen might change a great deal over the course of a month but 

measurements made one hour apart will usually be very similar. This tendency for 

neighboring observations to be related to each other is referred to as autocorrelation. The 

autocorrelation function is the fundamental tool used by statisticians for diagnosing the 

structure of a time series and determining the amount of autocorrelation in a set of data. 
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The correlation of two variables (x and y) is defined by the correlation coefficient: 

Equation 6.8 

where the denominator in the equation is used to scale the correlation coefficient so that 

-1 ~ r(x,y) ~I. Adjacent and nearby time series observations are correlated - i.e. Z1 and 

Z1_k are correlated (where k is the lag distance, which is measured as the number of 

sampling intervals between the observations). The sample autocorrelation at lag of k is: 

I ( zl - ~)( zl- k - ~) 
r _ .!..::1-~k+...!...I ____ _ 

k - n 
2 

I(z~ - ~) 
Equation 6.9 

1= 1 

where n is the total number of observations recorded in the time series. This sample 

autocorrelation (rk) is used to estimated the autocorrelation of the population (pk ). The 

denominator is used to scale the correlation coefficient so that -1 ~ rk ~ 1 (Berthouex and 

Brown, 2002). The inherent problems with using a control chart to investigate 

observations of real time data taken over a longer period of time (i.e. one deployment 

period of the sensor) is shown in Figure 6.2. 
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Figure 6.2 presents a Shewhart control chart (subgroup size = 2) developed for hourly 

measurements of dissolved oxygen collected at the Humber River station from January 14 

to March 1 0, 2005 (one randomly selected deployment period of the sensor). Although 

the chart is useful in that it shows how the measurements of dissolved oxygen in the 

month increase from 13 to 15 mg/L over the course of the deployment period, the control 

lines (developed using three standard deviations from the mean) are so close to the overall 

process mean that virtually every observation is out of control. At first glance, the Shewhart 

chart makes it seem that there are major problems with dissolved oxygen at the station, 

but in terms of water quality, dissolved oxygen is still quite safe (never drops below the 

CCME guideline of 5.5 mg/L). The real problem here is that measurements of dissolved 

oxygen, unlike measurements of the weight of an auto part or a box of light bulbs, will vary 

over time (due to changes in water temperature and stage) and each sample of dissolved 

oxygen taken close together tends to be highly related. The autocorrelation function (ACF) 

shown in Figure 6.3 is the collection of the sample autocorrelation rk 's for 

lag= 0,1,2, ... ,(n I 4) developed for the hourly dissolved oxygen observations. The two red 

dash lines represent confidence intervals for an independent series of data. Data with no 

autocorrelation would have coefficients that plot inside of the confidence intervals. This 

collection of hourly dissolved oxygen observations plots outside of these confidence bands 

so we know that autocorrelation cannot be ignored. It is not until a lag time of about one 

hundred hours Gust over four days) that observations start to lose this high correlation. 
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6.5 Implementing Control Charts for the RTWQ Network - Results 

Fortunately there are ways to implement control charts even when autocorrelation is high in 

the observations. Seven different approaches were investigated in this research: 

- (1) Use control charts for detecting large shifts in the process over short periods of time 

- (2) Develop charts using larger subgroups 

- (3) Use control charts for monitoring monthly mean values 

- (4) Use control charts to study the uncorrelated residuals from ARIMA models 

- (5) Use control charts to study uncorrelated residuals from harmonic analysis of the data 

- (6) Use the Manly and Mackenzie (2003) approach to compare measurements of water 

quality collected at different stations in the RTWQ Network. 

- (7) Modify control chart limits to represent useful water quality limits 

6.5. 1 Approach 1 - Use Charts to Detect Large Shifts Over Short Periods of Time 

Autocorrelation in short RTWQ datasets (i.e. 24 hourly measurements) tends to be much 

less than it is in longer RTWQ datasets (i.e. a complete set of hourly measurements for one 

month) and control charts like the EWMA chart can be useful for detecting large shifts in 

the real time measurements. Take for example one randomly selected day of real time 

observations in the Humber River dataset - September 30, 2006 (Figure 6.4). 
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All the 24 hourly measurements of water quality collected that day fall within safe levels 

and tend to remain fairly constant. The amount of autocorrelation in the dissolved oxygen 

values not as high as it was for the larger (but lag one still shows significant 

autocorrelation). An EWMA chart (with a subgroup size of 1 for each observation and a 

weight of 0.95 so that the EWMA has a longer memory) will show all the points as being in 

a state of statistical control- Figure 6.6. 

A CUSUM chart (with a subgroup size of 2) developed for the same hourly 

observations will show all the observations as being out of control (Figure 6. 7 presents the 

CUSUM chart for dissolved oxygen). The CUSUM chart tends to be too sensitive to the 

small variations in the hour to hour measurements recorded by the sensors. 

The original dataset was modified to include one large shift in the levels of the real 

time observations (shown in Figure 6.4 as the modified datapoint). The same EWMA chart 

(subgroup = 1 and EWMA weighting of 0.95) will easily capture this out of control 

datapoint for all the real time parameters (Figures 6.8 - presents the plots for modified 

water temperature, pH, dissolved oxygen and pH). 
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Figure 6.8 EWMA Chart (Subgroup = 1, EWMA = 0.95) for Modified Data 

Experience in using EWMA charts for studying short time periods of RlWQ data has 

shown that the charts work best for identifying large shifts in RlWQ levels over short 

periods of time. If the charts are developed for studying a larger number of observations 

(i.e. one month of hourly observations), autocorrelation in the data tends to be higher and 

the observations tend to show trends (i.e. dissolved oxygen levels in July will start to drop 

as water temperature over the month rise). As a result the terms of the control chart are 

violated and an unrepresentative number of observations will show up as being out of 

control, even though these observations might only represent small shifts away from the 

overall mean of the process. 
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6.5.2 Approach 2 - Develop Charts Using Larger Subgroups 

Increasing the size of the subgroups used in the control charts can increase the power of 

the chart to detect shifts in performance. A second approach to implementing the control 

charts sought to increase the size of the subgroups used in the control charts. The EWMA 

(subgroup= 1, EWMA = 0.95) developed for the 24 hourly measurements collected at the 

Humber River station was useful in that it could pick up on large shifts in the levels of the 

RlWQ parameters. However for one week and one month of hourly measurements, the 

same EWMA tended to show both large shifts and a number of smaller shifts as being out 

of control. 

Figure 6.9 presents a EWMA (subgroup= 1, EWMA = 0.95) for one week of hourly 

measurements of dissolved oxygen collected at the Humber River station from September 

30 to October 6, 2006. The chart flags 76 observations as being out of control 

(approximately 45% of the total number of hourly observations collected over the week) as 

being out of control. Increasing the subgroup size to 1 2 (Figure 6.1 0) is a little easier to 

work with but still roughly half of the observations are shown as being out of control. The 

increased autocorrelation and variation in the dissolved oxygen measurements over the 

course of the week have reduced the usefulness of the plot for monitoring the hourly 

measurements. 

The benefit of increasing the subgroup size is only truly apparent when there is a 

large shift in the observations at the station. The same week of hourly measurements 

recorded at the Humber River station was modified to include a dissolved oxygen reading 
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significantly lower then the rest (the original range of the data was in the 8.7 to 9.1 mg/L 

range and a value of 6.50 mg/L was added). Figure 6.11 presents an EWMA chart with a 

subgroup size of 1 - the large shift can be identified but there are a number of other points 

that are being flagged by the chart as being out of control. Figure 6.12 presents an EWMA 

chart with a subgroup size of 12 - it would be much easier to work with this chart to note 

that somewhere in the first subgroup there is an observation that is unusually low for the 

week and it should be investigated further. Although increasing the size of the subgroups 

also provides the advantage of decreasing the amount of clutter on the plots there is a 

downside to this design approach - with larger subgroup sizes, the points plotted on the 

charts out of control will be detected as a subgroup which may contain individual 

observations that are still in control. This mixing of in and out of control observations into 

large subgroups will result in difficulty when picking up individual abnormal observations of 

water quality and will require extra monitoring effort on behalf of the user to look through 

the raw data to further investigate the subgroup observations. 

Investigations were made into using larger subgroups for studying monthly sets of 

hourly observations and even full deployments periods of hourly observations, but control 

charts did not work well for handling the variation in the water quality measurements over 

these longer periods of time (with over 75% of the observations showing as being out of 

control). Although traditional control charts could potentially be used to identify large shifts 

in the data, any chart developed for an ordinary dataset (with no large shifts in the levels 

and only day to day variations in the levels) will show 
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Figure 6. 12 - EMWA Chart (Subgroup = 12, EWMA = 0.95) For Modified Week of Hourly 
Measurements 
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6.5.3 Approach 3 - Use Charts to Study Uncorrelated Monthly Mean Values 

One approach to using the control charts to study longer stretches of real time data is to 

increase the time scale of the observations being studied - i.e. instead of using the charts 

for highly correlated hourly observations use them for studying monthly mean values that 

are much less autocorrelated. 

Investigations into daily mean observations of real time data showed that 

autocorrelation is still significant enough to pose a major problem for the control charts. It 

is only somewhat significant for weekly mean datasets and only slightly significant for 

monthly mean datasets. A comparison of the autocorrelation functions for mean weekly 

and monthly dissolved oxygen recorded at Humber River is shown in Figure 6.13 - where 

for the weekly mean data, autocorrelation is no longer significant after a lag of seven 

weeks while for the monthly mean data autocorrelation is no longer significant after a one 

month. Shewhart control charts can be developed for the weekly and monthly 

observations - Figure 6.14 shows the monthly Shewhart chart (subgroup size of 2 months) 

developed for a dataset consisting of monthly mean dissolved oxygen values recorded at 

the Humber River station during 2006. 
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Figure 6. 14 Shewhart Chart (Subgroup = 2) for Monthly Mean DO (2006) 

The Shewhart chart shows none of the monthly mean dissolved oxygen levels over the 

year were out of statistical control. 
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A CUSUM chart for the data tends to be too sensitive to the variations in the 

dissolved oxygen levels (Figure 6.15) and also provides the challenge of needing to define 

a target level for the measured observations. For water quality parameters that change as 

the seasons pass, CUSUM charts developed over long periods of time will be of little use 

for monitoring purposes and will tend to show the majority of observations as being out of 

control. An EWMA chart developed for the same monthly data with a subgroup size of 2 

and an EWMA of 0.95 (Figure 6.16) is similar to the Shewhart chart in that all observations 

are shown as being in control. picks up on five of the monthly means as being out of 

control. When the EWMA is lowered to a range of 0.2 to 0.3 more observations are likely 

to show up as being out of control as the memory of the chart is quite short. It does need 

to be noted though that the chart is being developed for a dataset consisting of 

observations that vary throughout the year and are not constant - so technically the terms 

of that make the control chart valid are being violated. 

Control charts can also be developed for studying the weekly mean observations 

for Humber River in 2006 (Figure 6.17). The problem with any charts developed for the 

weekly data though is that autocorrelation in the dataset is more significant than it was for 

the monthly data and it is likely that the control limits being plotted on the charts are being 

affected by the autocorrelation - an unrepresentative number of points might be showing 

up as being out of control . 
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Figure 6.15 - CUSUM Chart (Subgroup = 2, Target= 10.0) for Monthly Mean DO (2006) 
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Figure 6. 16 - EWMA Chart (Subgroup = 2, EWMA = 0. 95) for Monthly Mean DO (2006) 
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6.5.4 Approach 4 - Use Charts to Study Uncorrelated Residuals from ARIMA 

The Alwan and Roberts (1988) approach for using control charts for highly autocorrelated 

data involves first fitting an autoregressive integrated moving average (ARIMA) time series 

model to the observations and then using control charts to study the residuals from the fit 

of the model. ARIMA is used to describe a family of models that can tend to be quite 

complicated. The simplest of the models use the autoregressive (AR) part to describe a 

stationary time series whose values fluctuate about a fixed level. Other simple models use 

only the moving average (MA) part to describe a non-stationary process that drifts over 

time and that does not have a fixed mean. The more complicated models can end up 

using both the AR and MA parts together and can include additional features that account 

for seasonality, drift and trends in the data. 
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The Box-Jenkins methodology is used to fit ARIMA models to environmental data 

where the type of model to be used is first identified, the parameters are estimated, and 

residuals from the fitting are checked for normality, constant variance and independence 

(Box et al. , 1994). Although the steps of the approach appear to be rather straightforward, 

the analysis of time series data tends to be a frustrating and mysterious subject that most 

textbooks tend to avoid. The fitting of appropriate ARIMA models takes a considerable 

amount of experience working with time series data. This is not to say that ARIMA models 

cannot be developed for the R1WQ network data as when levels of autocorrelation are low 

(i.e. for monthly mean observations) it is possible to use Minitab to fit models and then use 

control charts on the residuals to identify points of interest. When autocorrelation is higher 

(i.e. for daily means or longer stretches of hourly observations) it becomes extremely 

difficult to fit models to the data - in fact entire research papers are often dedicated fitting 

ARIMA models to just one highly autocorrelated dataset. This is perhaps the biggest 

downside of the Alwan and Roberts approach - for every set of data to be studied using 

this approach it is necessary to go through the process of developing an ARIMA model 

and then analyzing the residuals to find unusual points. As a result this approach is 

probably of more use to the WRMD for research purposes then it is for day to day 

monitoring of the stations. An example of how to use the approach for studying slightly 

autocorrelated data is given below. 
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Fitting ARIMA Models to Monthly Observations - An Example 

A dataset consisting of monthly mean pH levels recorded at the Humber River station is 

shown in Figure 6.18. The first step in fitting an ARIMA model to this data is to use Minitab 

to look for any linear trend in the observations over time (Figure 6.19). The plot shows that 

there is a slight upward trends at the station but in this case it is not necessary to account 

for the trend in the model. Minitab next needs to be used to check for normality of the 

data (Figure 6.20). In this case the monthly mean pH values are normal as the probability 

value is greater than 0.05. Autocorrelation in the data is checked using the autocorrelation 

function and partial autocorrelation function plots in Minitab (Figure 6.21 ). The plots tells 

us that autocorrelation at lag one is important, while lag one and lag four is important for 

partial autocorrelation. 
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Figure 6. 18 Time Series Plot of Monthly Mean pH Levels at Humber River - 2003 to 2006 
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Figure 6.21 ACF and PACF for the Monthly Mean pH Levels 
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With linear trend, normality, autocorrelation and partial autocorrelation examined its 

then possible to start fitting ARIMA models to the data in Minitab (Figure 6.22). In this 

particular case a first order autoregressive model, AR(1 ), is the best choice for the monthly 

mean pH observations. Note - in some cases there may be a number of models that work 

well and the model with the fewest number of parameters should be used (principle of 

parsimony). 

Final Estimates of Parameters 

Type Coef SE Coef T p 

AR 1 o. 4719 0 . 1490 3.17 0 . 003 
Constant 3 . 61111 0 . 04129 87 . 47 0 . 000 
11:ean 6 . 83771 0 . 07817 

Number of observations : 37 
Residuals : SS = 2 . 20631 (backforecasts excluded) 

H5 = 0 . 06304 DF = 35 

Figure 6.22 Minitab Output for AR(1) Model Parameters 

Once the parameters for the model are determined then the residuals need to be checked 

for normality, constant variance, and independence (Figure 6.23) autocorrelation and partial 

autocorrelation (Figure 6.24). The plots show that the diagnostics for the fitting are all fine 

and that there is no major autocorrelation in the residuals. 
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Figure 6. 23 Checking Residuals for the AR(1) Model for Monthly Mean pH 
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- - ----------------------------- ---

It is now finally possible to go ahead and fit a control chart to the data. Figure 6.25 

presents a Shewhart chart with a subsample size of 2 for the residuals. The control chart 

shows that subsample 13 is out of control. Looking back at the original data this 

subsample represents an average monthly mean in December 2005 and January 2006 of 

6.03 pH units. 
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Figure 6.25 Shewhart Chart for the Residuals of AR(1) Model 

It is also possible to use the ARIMA approach for control charts for handling 

observations with seasonality - i.e. monthly observations of dissolved oxygen. Appendix Z 

includes the results of fitting an AR(1) model with a seasonality component to Humber 

River monthly mean dissolved oxygen. 
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The Difficulties in Fitting ARIMA Models to Daily Observations - A Brief Example 

The difficulties in fitting an ARIMA model to observations with high amounts of 

autocorrelation periods can be demonstrated by quickly looking at a set of mean daily pH 

levels at the Humber River station collected during one sensor deployment period (Figure 

6.26). Analysis of the data in Minitab showed that these daily mean observations show a 

significant downward linear trend, the data is significantly not normal (with a p-value in the 

normal plot less than 0.005), autocorrelation is significant up to a lag four and partial 

autocorrelation is significant at lag one. Fitting a model to this data proved much too 

difficult for the purposes of the WRMD (i.e. the simple AR or MA models will no longer 

work and something more complex needs to be developed). Eliminating autocorrelation in 

the residuals proved to be just as difficult. Trying to fit models that would show high 

autocorrelation along with seasonal or daily variation (i.e. water temperature) would be next 

to impossible. 
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Figure 6.26 Fitting ARIMA Models to the Autocorrelated Daily Mean pH is Difficult 
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6.5.5 Approach 5 - Use Charts to Study Residuals from Harmonic Analysis 

Harmonic analysis can be used in a similar manner to the ARIMA approach for finding 

uncorrelated residuals that can be examined using control charts. Like the ARIMA 

approach, spectral analysis of time series data is a rather complex subject. This approach 

proved to be useful for studying observations with low levels of autocorrelation but was not 

useful for studying hourly and daily observations collected over longer deployment periods 

with high levels of autocorrelation. 

An Example of Using Harmonic for Low Levels of Autocorrelation 

The time series plot of monthly mean water temperature presented in Figure 6.27 shows a 

smooth periodic function that repeats itself every year with no major trend over time. From 

everyday experience, its already known that the time period for water temperature will 

follow a 12 month (yearly) cycle. This periodicity in the data is due to the revolution of the 

Earth around the sun and is quite common for many hydrological parameters. 

Author's Note - for those cases when the time period for a set of observations is not 

already known, it is possible to use a technique known as spectral analysis to identify the 

time period of a set of data. Appendix P illustrates how Minitab can be used to carry out 

spectral analysis to find the time period for a dataset. 
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Figure 6.27- Humber River Monthly Mean Water Temperature December 2003 to 2006 

These monthly means can be represented by a parametric function with sine and 

cosine terms, a technique known as Fourier Harmonic Analysis. A periodic time series z, 

with no trends over time can be represented by: 

z, = a+ .Bo sin(2nft) + ,81 cos(2nft) + ,82 sin( 4nft) + ,83 cos( 4nft) + ... Equation 6.10 

where 2nf is a constant that depends on the frequency of the observations being studied. 

In this case the frequency of the data is 1/12 therefore 2nf is equal to 0.5236. The number 

of pairs of sine and cosine terms that need to be used to find a good overall fit to the 

observations can be determined using Minitab. A Minitab worksheet can be setup with 
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the time of collection in the first column and water temperature (Zt) in the second column 

of the worksheet. A constant term k1 =2nl12=0.523 is defined and the pairs of cosine and 

sine can be calculated. A Minitab screenshot is attached in Figure 6.28 for reference. 

Once the sine and cosine pairs have been calculated it is possible to perform a 

regression of Zt versus the sine and cosine terms. The fit between the original values and 

fitted values with the sine and cosine terms is quite close (Figure 6.29 - where PFIT1 are 

the fitted observations for a model with one pair of sine and cosine terms, PFIT2 has two 

pairs, and PFIT3 has the first pair of sine and cosine and the second cosine term). 

Regression analysis showed that the best fit could be found using sin1, cos1 and cos2 

(with an adjusted R2 of 98.5%): 

z, = 7.15 + l.38cos 1- 7 .63sin 1 - 1.57 cos2 Equation 6.11 

The residuals from the fit of the model to the observed values can be stored and analyzed 

for autocorrelation (Figure 6.30). The autocorrelation function shows that no autocorrelation 

in the residuals is of significance. Once autocorrelation in the dataset has been removed it 

is then possible to use a control chart to study the dataset. The CUSUM chart was used 
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to detect small shifts in the process level (i.e. shifts away from the time series model), but 

no points were flagged as being of significance in this case (Figure 6.31) . 
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Figure 6.28- Screenshot of Using Minitab to Find Cosine and Sine Terms 
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Figure 6. 29 - Comparing Observed and Fitted Water Temperature Values 
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Figure 6. 30 No Autocorrelation in the Residuals for the Harmonic Model 
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Figure 6.31 CUSUM Chart Shows No Points of Concern 
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~----------------------------------------

6.5.6 Approach 6 - The Manly and MacKenzie Approach 

Manly and MacKenzie (2000) used a CUSUM control chart to compare levels of dissolved 

reactive phosphorus recorded at 25 rivers in New Zealand every December from 1989 to 

1996. Manly developed a free piece of software (the CUSUM Analysis Tool) to help other 

researchers carry out similar analysis on their own data. Investigations were made into 

using this software to compare monthly measurements of water quality collected at the 

four provincial network RTWQ stations. For example, the potential for the software to 

identify differences in monthly mean specific conductance collected every February at the 

four stations from 2004 to 2007. Unfortunately the limited size of the dataset posed a 

problem for the software and no meaningful control charts could be developed. 

Although the Manly and MacKenzie approach is different from the usual approach 

of using control charts to study observations made at one station, it could prove to be a 

useful technique for the WRMD once the size of the historical water quality datasets is 

bigger - comparing monthly mean specific conductance recorded every February at every 

station in the network over five consecutive years. 
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6.5. 7 Approach 7 - Modify Control Charts to Show More Useful Limits 

The previous approaches have demonstrated the potential for using control charts in 

Minitab to monitor the real time data but the developed charts do not always provide 

information that would be useful to resource managers. When Minitab is used to develop 

these charts for the data (either individual observations, observations made at larger time 

scales, or subsets of observations) the limit lines on the chart are drawn to show when the 

process is out of statistical control. Take the Shewhart Chart for example, where limits 

lines are set three standard deviations away from the process mean. Points on the chart 

are flagged as being out of control when they plot outside these limits. A more useful 

control chart for resource managers would define limit lines based on water quality 

guidelines for the parameter being studied. A series of modified control charts were 

developed that allow the user to work with hourly observations of RTWQ data. 

The Modified One-sided Control Chart for Dissolved Oxygen 

The CCME recommended minimum dissolved oxygen level for the protection of aquatic life 

is 5.5 mg/L. A minitab macro was written that would plot each hourly observation of 

dissolved oxygen for a time period and flag points that were below this minimum. Two of 

these one-sided control charts are shown in Figure 6.32 (for the hourly measurements at 

Humber River recorded from January to March 2006) and Figure 6.33 (the same dataset 

randomly modified to include unsafe dissolved oxygen levels). The low dissolved oxygen 

levels shown in Figure 6.33 are not actual observations, but were manually inserted in the 

raw data to represent some imaginary threat to water quality at the station. 
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Modified Control Chart for DO - Jan to Mar 2005 
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Figure 6. 32 Modified One-sided Control Chart for Hourly Dissolved Oxygen 
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Figure 6. 33 Modified One-sided Control Chart for a Modified Dissolved Oxygen Dataset 
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Figure 6.32 and 6.33 show how particularly useful this type of modified control chart is for 

identifying dissolved oxygen levels that pose a threat over long periods of RlWQ 

observations (i.e. a full deployment period of the sensor). Whenever values are above the 

CCME guideline of 5.5 mg/L the points plot in black and whenever they drop below the 

specified minimum they are flagged in red. 

The Modified One-sided Control Chart for Water Temperature 

Water temperature at the real time stations will never drop far below zero degrees and 

although cold air temperatures in Newfoundland tend to keep the temperatures in the 

rivers low throughout the year, it is useful to have a modified control chart that can flag 

points that pass an upper threshold (i.e. 18 °C). A modified one sided control chart was 

developed that would flag points above a user specified upper threshold (Figure 6.34). 

This upper one-sided control chart would also be useful for studying specific conductance 

levels at the stations. 

The Modified Two-Sided Control Chart for pH Level 

The CCME guideline for pH for the protection of aquatic life is from 6.5 to 9. A modified 

control chart with these two sided safe pH limits was developed - as shown in Figure 6.35. 

The chart is designed to flag any point outside of these thresholds. 

Author's Note - a copy of the macros used for developing these control charts is included 

in Appendix Q. 
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Humber River - August 2006 to August 2007 
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Figure 6.35 Modified Two-sided Control Chart for pH 
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6.6 Discussion 

Investigations into the use of control charts for monitoring R1WQ data have shown that 

there is potential for implementing these charts but only in certain ways. The biggest 

obstacle that needs to be overcome in using the charts is finding a way to deal with 

autocorrelation in the observations. 

The first approach (using the charts to detect large shifts over short periods of time) 

showed potential for using the EWMA chart to flag large shifts in performance in datasets 

consisting of hourly observations taken over the course of 24 hours. Autocorrelation in the 

datasets tended to increase when longer sets of data were analyzed and the charts 

became less useful for identifying shifts. The second approach (use of larger subgroups 

for the control charts) worked well for detecting large shifts in the data over longer periods 

of time then the first approach. However, if no large shift in the data was present then 

autocorrelation in the longer datasets tended to make the control chart limits less useful. 

The third approach investigated the use of the charts for uncorrelated monthly 

means and found that as long as autocorrelation is low, charts like the Shewhart chart and 

EWMA chart will work well for identifying unusual shifts in the R1WQ levels. The biggest 

downfall of this approach is that it will only work for means taken on longer time scales and 

will not work as well for studying daily and weekly means. Furthermore the WRMD would 

not be able to use the charts to study individual observations of water quality or 

observations close to each other in time. 
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The fourth and fifth approaches worked with the residuals from ARIMA and 

harmonic models. Fitting these models to water quality data takes a considerable amount 

of previous experience working with time series datasets- even for datasets with low levels 

of autocorrelation. Fitting ARIMA models to water quality data with high levels of 

autocorrelation like that recorded by the real time sensors tends to be incredibly complex 

and mystifying. With this being said, it was still possible to fit ARIMA and harmonic models 

to monthly mean observations of water quality collected by the sensors and then use 

control charts to study the residuals and identify points of interest. It is not feasible to use 

the same approach for observations with high levels of autocorrelation (hourly, daily mean). 

Overall this approach is very statistically complex and is likely not the best option out of the 

seven approaches for the WRMD. 

The Manly and MacKenzie approach for comparing observations between stations 

might eventually be useful for the WRMD but at this point the historical datasets of the 

stations are not long enough for the CUSUM analysis software to work properly. 

The seventh approach of using Minitab to develop modified control charts would 

provide resource managers with a tool to identify observations that threaten water quality. 

Although these modified control charts are only time series plots with horizontal reference 

lines they are quite easy to develop (with the aid of the macros) and they avoid the inherent 

problems with autocorrelation and variance in the data that plagued the other attempts. 

Resource managers can use these charts to take a quick look at the data being collected 

and identify the timing of any problems at the stations through visual inspection alone. 
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Chapter Seven 

Summary of Results 
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7.1 Scope 

This chapter provides a summarizing discussion of the observations and conclusions that 

were presented in the previous chapters. This includes the results from regression 

modeling of water temperature, dissolved oxygen, and grab samples as well as the 

investigations into developing control charts for monitoring RTWQ data. This chapter also 

presents a brief discussion of ways the WRMD can modify historical records of RTWQ 

data so that future work in these research areas can be carried out successfully. 

7.2 Summary of Results 

7.2. 1 Regression Models for Water Temperature 

Regression models were developed for modeling daily, weekly and monthly mean, 

maximum and minimum water temperatures at four RTWQ monitoring stations in 

Newfoundland. The curve fitting results presented in Chapter 3 have shown that the 

relationship between water temperature and air temperature at the RTWQ stations is more 

S-shaped than it is linear. Both logistic models were fit to the data at the stations but the 

first logistic model is a better choice in terms of simplicity. It was noted that the S-shaped 

relationship often did not level off as much at higher temperatures as was expected. 

Perhaps this is because air temperatures in Newfoundland never reach warm enough 

levels - Mohseni and Stefan (1999) note the logistic model will behave in this manner for 

rivers in colder climates. 

Although adjusted R2 values were usually higher for monthly mean models than 

they were for weekly mean models, the S-shaped relationship was easier to see at the 
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weekly time scale. This is likely the result of the differences between the high levels of 

water temperature contained in the two datasets - where the weekly mean datasets 

contain all the highest water temperatures during the summer months, while the monthly 

mean dataset sometimes misses out on the higher values. For example, if water 

temperature during four weeks in August are 19, 22, 25, 20 °C the average value for the 

month will only be 21 .5°C. By using the weekly water temperatures, higher mean values 

are included in the dataset and the logistic model gets the opportunity to level off. At the 

daily time scale there is a considerable amount of scatter in the data and the models are 

less suited for prediction purposes. There is a considerable difference in the amount of 

variation in the observations of water temperature at low air temperatures than there is in 

water temperature at higher air temperatures. 

Each of the stations were investigated for signs of hysteresis in the data but only the 

Humber River station (the largest river in the network) needed to be subdivided to account 

for warming and cooling seasons. There are two different approaches to handling 

hysteresis. The first involves splitting the dataset into two seasons and developing 

separate regression models for the datasets. The second involves adding an additional 

explanatory variable model to the existing regression models to account for the time of 

year the sample was collected. Both approaches resulted in good models, but the first 

approach makes it easier to compare the shape and fit of the models to those developed 

for other stations. 
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Stage level at the stations is usually only significant at the daily time scale and loses 

significance as the time scale is extended. Even when stage is significant the goodness of 

fit of the multiple regression model is never better than the logistic model. It would have 

been useful to obtain real time streamflow observations for the stations as most of the 

published work in this area of research deals with streamflow and not stage. 

Overall curve fitting results for water temperature at the RlWQ stations can be 

considered a success. With successful models developed linking air temperature to water 

temperature it was expected that similar success could be found linking water temperature 

to dissolved oxygen levels at the stations. 

7.2.2 Regression Models for Dissolved Oxygen 

When modeling dissolved oxygen at the real time stations in the provincial network the 

relationship between dissolved oxygen and water temperature follows an exponential 

decay model more so than a linear model. The advantage in using the exponential decay 

model over the linear model is more apparent at higher water temperatures than it is at 

lower water temperatures. As water temperature increases the exponential model begins 

to level off while the linear model keeps dropping. Water temperatures at the stations are 

rarely high enough to force mean dissolved oxygen levels on the monthly and weekly time 

scale below 5 mg/L, but if water temperatures could reach these levels I believe the 

exponential model would be better at identifying the lower dissolved oxygen level. 

The exponential regression model tends to perform better for handling mean 

dissolved oxygen then it does for maximum and minimum dissolved oxygen. The 
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maximum and minimum datasets showed a considerable amount more variation in 

observations. The mean datasets are better at avoiding major outliers (i.e. mean weekly 

measurement might be 12 mg/L while the maximum value recorded that week might be 

26 mg/L). There can be a great deal of variation in daily measurements, where for either 

physical or sensor-related reasons the dissolved oxygen level will often randomly jump for 

one particular measurement. These jumps will be captured in the maximum and minimum 

datasets but will be smoothed out by the mean datasets. There is a considerable amount 

of scatter in the daily mean observations of dissolved oxygen. This scatter makes it 

difficult to reliably predict daily dissolved oxygen levels at the stations. 

7.2.3 Regression Models for Grab Samples 

Investigations into regression models for grab samples have shown that there is potential 

for relating real time measurements to select grab sample measurements at select real 

time stations. An approach similar to that taken by the USGS works well for identifying for 

developing models for grab samples of major ions at urban stations like Leary's Brook and 

Waterford River. It tends to be easier to use real time parameters like specific 

conductance as surrogates for grab sample data when the grab sample measurements of 

ions, elements, metals and nutrients vary over the course of a year. The models presented 

in this thesis are not definitive in that they have not yet been tested for validity using new 

observations. In order for accurate regression models to be developed for the stations it 

will be necessary to expand the datasets with grab sample observations that can be 

paired with real time data and are taken upon reinstallation of the real time measurements. 
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Unfortunately, the datasets available for regression modeling in this research were small 

and it was not possible to set aside any of the grab samples for model testing. This model 

testing will be a necessary component of the model development process in the coming 

years. 

There was considerable difficulty developing statistically significant regression 

models for the Humber River monitoring station. Levels of major ions, metals and nutrients 

at the station tend to be lower than the other stations and this may be one reason why 

there was such difficulty in modeling. Comparisons between the grab sample data and 

real time data have shown that measurements of water quality that should match do not 

always match at this station. Grab sample conductance in particular is not correlated to 

real time conductance and this is suspicious. Further investigations with new grab 

samples collected at the station should provide further insight into the problem. 

Once the grab sample datasets are expanded and new models are developed 

these regression models should be quite useful for resource managers for optimizing the 

number of costly site visits and for gaining a better understanding of concentrations of 

major ions in the real time network rivers. At this point, the framework for modeling at this 

has been explored and expectations are high for reliable models to be developed for the 

RTWQ network. 
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7.2.4 Control Charts for Monitoring RTWQ Data 

Seven different approaches for using control charts to monitor RlWQ data were 

investigated in Chapter 6. Although it is possible to use control charts on certain smaller 

groups of data (i.e. 24 hourly measurements), autocorrelation in the data can become 

significant for larger periods of time and the underlying statistical conditions for the chart s 

will be violated. Although it is possible to model the RlWQ data using ARIMA models and 

then use control charts to study the uncorrelated residuals, this approach is only useful 

when working with small amount of autocorrelation and is not possible for studying a full 

deployment period of hourly RlWQ measurements. Furthermore the developed control 

charts will only show when the obseNations go out of a state of statistical control and will 

specifically flag points that threaten water quality. 

A modified form of a control chart was developed to sidestep the problems of 

autocorrelation in the data. These modified charts are nothing more than simple time

series plots of the data with reference lines added to represent healthy water quality limits. 

Although these limits are not defined in any statistical manner they will likely prove to be 

more useful to the resource managers at the WRMD. 
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Chapter Eight 

Recommendations 
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8.1 Scope 

This chapter presents a brief list of the different ways the WRMD can modify historical 

records of RTWQ data so that future work in the research areas examined in this thesis 

can be carried out successfully. Some points to consider when designing an effective 

control chart for the RTWQ network are are also presented. 

8.2 Recommendations 

8.2. 1 Regression Modeling of WT and DO 

- Develop Models for Other Stations in the Network: Regression models for dissolved 

oxygen and water temperature have only been developed for the RTWQ provincial 

network stations in this thesis. There are a number of other stations in operation in the 

province (i.e. those belonging to the Federal-Provincial network) and the potential exists 

for developing regression models similar to those developed in this thesis. 

-Use the Models to Study the Influence of Global Warming: There is potential to use the 

water temperature and dissolved oxygen models to gain a further understanding of the 

potential impact of climate change on water quality. Most climate change models 

developed in recent years make predictions of how air temperature will change in the 

future. Regression models that use air temperature to predict water temperature can be 

used to determine the impact of rising air temperature on water quality. Those climate 

change induced changes in water temperature can then be related to dissolved oxygen 

levels in the rivers. For example, Lagergaard, Pedersen and Sand-Jensen (2007) used 

linear and nonlinear S-shaped regression models to study seasonal variations in daily 
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water temperature for streams in Denmark and then used the S-shaped model to 

examine the impact of a global warming scenario on the streams. The Minitab macro 

developed for plotting both the water temperature and the dissolved oxygen regression 

models on the one plot should prove to be useful for this research. 

- Improve the Historical Records: There are a few changes that should be made to the 

historical records if future regression models for water temperature and dissolved oxygen 

are to be developed for other stations or if the models developed in this research are to 

be modified as larger datasets become available with time. 

- Keep the Historical Oatasets Maintained and Up to Date: Working with the datasets 

retrieved from the ADRS will take a fair amount of preprocessing time before they can be 

used for analysis (removing blanks, changing the order of parameters in the columns, 

matching column headings). If future work is to be carried out analyzing the historical 

data it would be useful to make improvements to the records to reduce this 

preprocessing time. This would entail keeping a record on file at the WRMD that 

contains an easy to use record of the measured parameters at the station - with notes 

added to the records to explain any unusual measurements of water quality. The drift 

corrected datasets used in this thesis were only available up to early 2008. All real time 

observations collected after that point had not been corrected for drift and could not be 

used for regression analysis as a result. In speaking with personnel at the WRMD it was 

determined that it would be useful to have these drift corrected datasets updated after 

every deployment period of the sensor is complete. It is the tendency for a number of 
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deployment periods to pass by before the datasets are updated. In some cases a 

member of the WRMD staff has updated the datasets but this member was not always 

familiar with the station being monitored or what happened over the deployment period. 

In those cases there is the good chance that data will be added to the historical record of 

drift corrected observations that should not be there (i.e. high dissolved oxygen values at 

the Humber River station that were obtained when the sensor was not operating 

correctly). 

-Add complete records of Streamflow to the Historical Datasets: It is not always easy to 

obtain a historical record of streamflow at the real time stations. It took a considerable 

amount of time in this research to track down records of stage level recorded at the 

Environment Canada hydrometric stations. Quite often the records of stage would have 

some measurements of streamflow but these were usually incomplete. As a result 

streamflow could not be used as a potential explanatory variable for regression. For 

future work in this area it would be useful to obtain a complete record of stage and 

streamflow recorded at the stations on file at the WRMO. 

-Collect Air Temperature Measurements at the Stations: In this thesis regression models 

were developed linking real time water temperature measurements to air temperature 

measurements made at nearby weather monitoring stations. This approach of using 

nearby recorded air temperatures when air temperature is not recorded at the station is 

used by the USGS in their work. It would be better for developing regression models if air 

temperature was recorded at the station in real time. 
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8.2.2 Regression Modeling of Grab Samples 

The collection of grab samples of water quality is an ongoing process at the real time 

stations. The ability to develop statistically significant regression models that are known to 

be reliable will increase with the addition of these new collected grab samples. There are a 

few changes that can be made to the way grab samples are collected and the way 

historical records are maintained to make future investigations in this field of research 

straightforward. 

- Collect grab samples taken upon reinstallation of the sensor and not upon removal: If 

new grab samples are to be added to the historical records used for developing 

regression models they should only be collected upon reinstallation of the re-calibrated 

real time sensor. In this research, smaller datasets have forced regression models to be 

developed using both removal and reinstallation grab samples (knowing that the removal 

samples are not as accurate). At this point its unknown how much the use of these 

removal samples is affecting the regression modeling results. It also advisable to replace 

the older removal samples in the datasets with new reinstallation samples as more 

samples are collected in the coming years. 

- Collect grab samples that can be easily matched to real time data: Grab samples 

collected with the purpose of being used for developing regression models should be 

easily matched with real time sensor data. At the start of this research, the historical 

records of grab samples for each station was quite large, but once those samples with 

no matching real time data were removed from the dataset, the number of useable 
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samples for regression decreased significantly (i.e. an initial 26 Peter's River samples was 

cut down to only 18 samples). It should be the aim of the WRMD to have at collect at 

least four samples a year that can be paired to real time data. It would also be useful to 

have at least one sample per season. Currently the number of grab samples can vary 

significantly each year in the historical records. An approach of taking four periodic 

samples along with collecting samples after significant events (i.e. rainstorms, heavy 

snowfall) giving an average of about 5-7 samples a year would be useful for regression 

modeling. 

- Bring real time measurements of turbidity on-line The current real time sensors tend to 

provide rather unreliable measurements of turbidity and turbidity real time measurements 

could not be used for regression modeling. Real time turbidity was used by the USGS as 

a surrogate for grab sample measurements for total suspended solids, total organic 

nitrogen and phosphorus. There was little success in developing regression models for 

phosphorus in the Newfoundland rivers, but perhaps this might change if reliable real 

time turbidity measurements can be brought on-line and paired to the grab sample data. 

- Carry out testing of the models once more samples become available: Once the grab 

sample datasets are large enough (i.e. over 25 samples) set aside some of the newer 

measurements to test the developed regression models. In this research there were not 

enough samples available for testing the models. This is an essential component of 

developing regression models that needs to be incorporated in future work so that 

reliable models are developed. 
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- Ensure accurate information is recorded on the maintenance forms: The maintenance 

form used by the WRMD for calibration has changed a fair amount over the years. The 

maintenance forms have recently been modified so that they are now much more 

accurate and there is less chance for them to be misinterpreted. For instance, the older 

maintenance forms did not specify how date was to be recorded and quite often a 

sample would appear to be made in February (i.e. 2/7 /2005) but would be recorded as 

being collected some other month (i.e. July - 7 /2/2005). The incorrect sample date 

would then be stored in the historical records of grab samples kept on file for the station. 

There were a number of times in this research where a considerable amount of time was 

spent tracking down the correct time of sample collection. It is to be hoped that new 

changes to the forms will make this problem a thing of the past. 

- Include the time of collection on the historical records of grab samples: The historical 

records of grab samples currently kept by the WRMD do not contain the time of day the 

sample was taken but only only the day of collections. The files should be modified to 

include a column for entering the time of collection. 

8.2.3 Using Control Charts for RTWQ Data 

The following points should be remembered If traditional statistical control charts are to be 

used for monitoring the data collected at the stations: 

- What Chart to Use? The Shewhart, CUSUM, MA and EWMA charts can be used for 

determining when the RTWQ data goes out of a state of statistical control but all of these 

charts are sensitive to autocorrelation in the data. If small amounts of autocorrelation are 
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present in the data then it is recommended to use the Shewhart and EWMA charts to 

study the data as the CUSUM chart tends to be too sensitive to small shifts in the data 

and will not be overly useful for studying observations that vary over time due to seasonal 

changes. 

- How to Deal With Autocorrelation: if there are low levels of autocorrelation in the data 

then it is possible to use control charts to study the residuals from ARIMA models or 

harmonic analysis. If high amounts of autocorrelation are present in the data then the 

statistical terms of the traditional control charts will be violated and the charts themselves 

will be useful. It is not practical to try to model highly autocorrelated RlWQ data with the 

ARIMA and harmonic models. If autocorrelation levels are high, avoid using the 

traditional forms of the control chart and use the modified control chart that plots the 

observations and uses control chart limits that are meaningful for aquatic health. These 

modified charts are the only control charts that allow the user to ignore autocorrelation on 

the data and focus solely on identifying events that threaten water quality. 
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Appendix A 

Formatting the ADRS Records and 

Accounting for Sensor Drift 



The Excel files of historical water quality downloaded from the ADRS contain the date and 

time of measurement, water temperature, pH, specific conductance, dissolved oxygen, 

and stage but there is a great deal of formatting that needs to be done to them before the 

information necessary for carrying out the research in this thesis can be obtained. 

Take for example the partial screenshot of the historical record shown in Figure A.1 

for real time station NF02YL0012 - Humber River at Humber Village Bridge. In its original 

form the Excel file contains thousands of rows of water quality data but will also contain 

blank rows (periods of time when the sensor was not in operation) and rows containing 

zeroes for all parameters (periods of time when the sensor was not operating effectively). 

On a routine basis the sensors are taken out of the water for maintenance and 

calibration and during those periods the historical record will contain blank rows for the 

water quality parameters. It is possible to scroll down through the record and remove the 

blank rows manually - but the records are generally 30,000 rows long and this would take 

a considerable amount of time. A much more time efficient option is to use the column 

filter function in Excel to remove the blank rows - as Figure A.1 demonstrates. 

11 37 
)(J 4: 0 034~ 00~19 1 JS 
1" 1 114? 41 7 1? 0 0144 0 077 flfl"i 11 14 
32 1 83-1 41 717 0 03·15 0 0221 88 7 11 3& 
)) 1 8~5 41 717 0 OJ~u 0 0~~~ 08 5 11)) 
3~ 

3'i 
)[, 

Jl 1:'f11t;•tuJ 1 1 4 •.u 1 'llll· '" II'• II 11141> IJJJ;:•J llllh 11 11 
1A 1~/11/.'lJOlll ~IJ I 'IIIL 4 r 11' n 0144 no~~ ee .' II Ill 

l'J 1~/llt:·nn 1 1 ~~~ I RAI• 4< 71~ flllH-1 1111.~. Ril 1111.' 

I 
29 
30 1 837 4 ~ 0 034~ 0 02" 9 II :s 
31 1:'/711::'0011 <[ I~~~~ 41 I? n 0144 no~:' 9~ r:; II '~ 
32 1~/2 1 /2003 2 sc 1 8:?4 4 I 7 17 0 0345 0 022' 98 7 II :E 

JJ 1~(.'1/200) I rr 1 o~r 4 I 7 17 0 0)4, no~~~ G~ r, II J 
37 1:'/11(.'0011 I rr 1 ~fF 7 11 ooHr, o O:':'" ~h II II 

38 1 c/1 l(cUU J I J 'L I 'JLl 4 J I I J U UJ44 u u··~ ~ .. II 1 
39 1 ~/111200 l 1 ~ r;c ISH n 7 I~ 0 U344 u 0~~ 877 11 [. 

Figure A. 1 Using a Column Filter in Excel to Remove Blank Rows of Data 



The identification and removal of the zeroes in the historical record takes much 

more effort. The identification of the location of the zeroes in the dataset can be achieved 

by reviewing maintenance and calibration records kept on the Department of Environment 

and Conservation webpage for each of the stations (http://www.env.gov.nl.ca/wrmd/ 

BTWO/CalibratjonSchedule.asp). Each of these records contain the dates the Hydrolab 

sensor was removed from the monitoring site and when the sensor was reinstalled. 

Although a rather time consuming process, removing these zeroes is an essential 

correction step as these zeroes will throw off statistical properties like the mean. Take for 

example the historical record of the Humber River station where the mean value of the 

dissolved oxygen values from the original unformatted historical record for the month of 

January, 2004 is 4.75 mg/L. Once the zeroes have been picked out and removed the 

mean value for dissolved oxygen increases to 11.78 mg/L - a much safer level for aquatic 

health and a better indicator of what the true value was for that month. 

Once the blank rows and zeroes have been removed from the historical record it is 

then possible to correct the data for drift over time. The WBMD has come to find that 

measurements taken by the sensor tend to be less accurate the longer the sensor is left in 

the water. At the start of the deployment period the sensor will have been recently 

calibrated and will take accurate measurements of water quality parameters. Over the next 

few weeks this calibration will be lost and the measurements taken by the sensor will 

slowly drift away from the true value. The WBMD can gain an estimate of the size of this 

drift by sending personnel out to the sampling station with a recently calibrated Hydrolab 

Minisonde to take a companion set of measurements. The accurate readings taken by the 

Minisonde can be compared to the final Datasonde readings to see how they differ (i.e. the 

Minisonde records dissolved oxygen as 11 .55 mg/L and the last Datasonde readings 

show dissolved oxygen as 11.10 mg/L- therefore the difference between the two is 0.45 

mg/L). The WRMD has setup an Excel spreadsheet that can correct the Datasonde 

measurements over the previous deployment period according to equation A.1 : 

{ } 
rank 

Corrected Value= (DS value) + (Field MS value) - (Field OS value) * -
n 

where OS stands for Datasonde and MS stands for Minisonde. 

Equation A.1 

The Datasonde 

measurements are ranked according to time (i.e. the first measurement in the deployment 



period has a ranking of 1, and the final measurement has a ranking of say 1200) so that 

the first measurements receive a minimal correction and the last measurements are 

brought closer to what the true value was likely to have been. All of this drift correction 

work is carried out by WRMD staff as it is necessary to use firsthand knowledge of the 

station to determine if the drift corrections being made are appropriate for that station. 

The final product of making modifications for missing values and for sensor drift is 

referred to as a Drift Corrected Historical Record of sensor data for the station. It is the 

aim of the WRMD to keep these corrected records as recent as possible but at this point 

in time, corrected records are not available past 2008. 



Appendix B 

Minitab Macros for Obtaining 

Mean, Max1mum and Mlnlmum Values 



Minitab Macros were written to find mean, maximum and minimum values of water quality 

at the monthly, weekly and daily time scales. The complete code for each of these macros 

is attached on the following pages. 

In order for the macros to work properly it is necessary that the RTWQ data is setup in 

Minitab as follows: 

- Column 1 has the date and time of the sample 

- Column 2 has the water temperature 

- Column 3 has the pH 

- Column 4 has the specific conductance 

- Column 5 has the dissolved solids 

- Column 6 has the percent saturation 

- Column 7 has the dissolved oxygen 

- Column 8 has the turbidity 

Separate macros were written for stage and air temperature. Similar code to the ones for 

the real time sensor measurement were used but for the sake of space these will not be 

included in this appendix. It's possible to recreate the macros for stage and air 

temperature by copying out sections of the attached macros (i.e. have the date and time in 

column 1, the stage in column 2 and only use the parts of the macro that work with 

column 2 to find the mean, maximum and minimum). 

In order for the macros to work properly it is necessary that the historical record of real 

time data has a value for every day of the year (if not the macro will stop unexpectedly). 

The historical records are known to have large gaps and for any days that are missing 

insert a * for the missing entry. For example if 12/6/2003 is missing put an entry in column 

one for 12/6/2003 0:00:00 and enter a * for water temperature (column 2), pH (column 3), 

and so on. 

Macros are designed to account for leap years in 2003 and 2009 (29 days in aFebruary). 



Macro for Daily Mean, Maximum and Minimum RTWQ Data 

The macro will ask the user to enter the month and the year. May 2004 would be entered 

as 5 2004. The macro will then go and find all the daily mean, maximum, and minimum 

values for that particular month. Once the macro is finished, proceed to the next month of 

interest. The macro is rather lengthy - only way to handle the different number of days in 

each month. 

(PAGE 1) (PAGE 2) (PAGE 3) 

gmacro Let k1 = mean(c100) Where "'Month' = k50 And 'Year'= 
Daily Let k2 = max(c100) 1<51 AND 'Day' = k1 00" . 

ERASE k1 -k1 000 Let k3 = min(c1 00) Let k10 = mean (c103) 
ERASE c10-c1000 Let c18(k1 00) = k1 Let k11 = max(c103) 
Note Set Month and the Year Let c19(k1 00) = k2 Let k12 = min(c103) 

SETc50; Let c20(k1 00) = k3 Let c27(k100) = k1 0 
File "terminal" ; Name c18 'Mean WT' Let c28(k100) = k11 
NOBS2. Name c19 'Max WT' Let c29(k1 00) = k1 2 
Copy c50 k50 k51 Name c20 'Min WT' Name c27 'Mean OS' 
Rle •terminal" ; Copy c3 c1 01 ; Name c28 'Max DS' 

NOBS2. Include; Name c29 'Min OS' 

Copy c50 k50 k51 V\lhere "'Month' = k50 And 'Year' = Copy c6 c1 04; 
NUMERIC 'Date' c10; k51 AND 'Day' = k100". Include; 
Year; Name c101 'Copied pH' Where "'Month' = k50 And 'Year' = 
FourDigit. Let k4 = mean(c101) k51 AND 'Day'= k100". 

Name c1 0 'Year' Let k5 = max(c101} Let k13 = mean(c104} 
NUMERIC 'Date' c11; Let k6 = min(c101) Let k14 = max(c1 04) 
Month. Let c21(k100} = k4 Let k15 = min(c104} 

Name c11 'Month' Let c22(k1 00} = k5 Let c30(k100) = k13 
NUMERIC 'Date' c12; Let c23(k1 00} = k6 Let c31 (1<100} = k14 

Day. Name c21 'Mean pH' Let c32(k100) = k1 5 
Name c12 'Day' Name c22 'Max pH' Name c30 'Mean PS' 

Name c23 'Min pH' Name c31 'Max PS' 

If k50= 1 OR k50=2 OR k50=3 OR Copy c4 c102; Name c32 'Min PS' 
K50=5 OR k50= 7 OR k50=8 OR Include; Copy c7 c1 05; 

k50= 10 OR k50= 12 Where "'Month' = k50 And 'Year'= Include; 
do k100 = 1:31 k51 AND 'Day' = k100" . Where "'Month' = k50 And 'Year' = 
Let c15(k100)=k51 Let k7 = mean(c102) k51 AND 'Day' = k100". 

Namec15 'Y' Let k8 = max(c102) Let k16 = mean(c105) 
Let c16(k100)=k50 Let k9 = min(c102) Let k17 = max(c105) 

Namec16 'M' Let c24(k100) = k7 Let k18 = min(c105) 
Let c17(k1 OO)=k1 00 Let c25(k1 00) = k8 Let c33(k1 00) = k16 
Namec17 'D' Let c26(k100) = k9 Let c34(k100) = k17 

Copy c2 c100; Name c24 'Mean SC' Let c35(k100) = k18 
Include; Name c25 'Max SC' Name c33 'Mean DO' 

Where "'Month' = k50 And 'Year' = Name c26 'Min SC' Name c34 'Max DO' 
k51 AND 'Day' = k1 00". Copy c5 c1 03; Name c35 'Min DO' 
Name c1 00 'Copied Wf' Include; enddo 



(Page 4) (Page 5) (Page 6) 
ELSEIF k50=4 OR k50=6 OR Let k8 = max(c102) ELSEIF k50 = 2 AND K51 =2003 

k50=9 OR k50= 11 Let k9 = min(c102) do k100 = 1:29 

do k100 = 1:30 Let c24(k1 00) = k7 Let c15(k100)=k51 

Let c 15(k 1 OO)=k51 Let c25(k1 00) = k8 Namec15 'Y' 

Name c15 'Y' Let c26(k100) = k9 
Let c16(k100)=k50 
Namec16 'M' 

Let c16(k1 OO)=k50 Name c24 'Mean SC' Let c17(k100)=k100 
Namec16 'M' Name c25 'Max SC' Namec17 'D' 
Let c17(k100)=k100 Name c26 'Min SC' Copy c2 c1 00; 
Namec17 '0' Copyc5 c103; Include; 
Copy c2 c100; Include; Where "'Month' = k50 And 'Year' = 
Include; Where "'Month'= k50 And 'Year' k51 AND 'Day'= k100•. 

Where '"Month'= k50 And 'Year' = k51 AND 'Day'= k100". Name c100 'Copied WT' 

= k51 AND 'Day'= k100" . Let k1 0 = mean (c1 03) Let k1 = mean(c100) 

Name c100 'Copied Wf' Let k11 = max(c1 03) Let k2 = max(c100) 

Let k1 = mean(c1 00) Let k12 = min(c1 03) Let k3 = min(c100) 

Let k2 = max(c100) Let c27(k1 00) = k1 0 
Let c18(k100) = k1 

Let k3 = min(c100) Let c28(k1 00) = k11 
Let c19(k100) = k2 
Let c20(k1 00) = k3 

Let c18(k100) = k1 Let c29(k100) = k12 Name c18 'Mean WT' 
Let c1 9(k1 00) = k2 Name c27 'Mean OS' Name c19 'Max WT' 
Let c20(k1 00) = k3 Name c28 'Max OS' Name c20 'Min WT' 
Name c18 'Mean WT' Name c29 'Min OS' Copy c3 c1 01 ; 
Name c19 'Max WT' Copy c6 c1 04; Include; 

Name c20 'Min WT' Include; Where "'Month' = k50 And 'Year' = 

Copy c3 c1 01; Where "'Month'= k50 And 'Year' k51 AND 'Day'= k100". 

Include; = k51 AND 'Day'= k100". Name c101 'Copied pH' 

Where "'Month' = k50 And 'Year' Let k13 = mean(c1 04) Let k4 = mean(c101) 

= k51 AND 'Day'= k100". Let k14 = max(c1 04} 
Let k5 = max(c101) 

Name c1 01 'Copied pH' Let k15 = min(c1 04) 
Let k6 = min(c101) 
Let c21(k100) = k4 

Let k4 = mean(c101) Let c30(k1 00) = k13 Let c22(k100) = k5 
Let k5 = max(c1 01) let c31(k100) = k14 Let c23(k100) = k6 
Let k6 = min(c101) Let c32(k1 00) = k15 Name c21 'Mean pH' 
Let c21(k100) = k4 Name c30 'Mean PS' Name c22 'Max pH' 
Let c22(k100) = k5 Name c31 'Max PS' Name c23 'Min pH' 

Let c23(k 1 00) = k6 Name c32 'Min PS' Copy c4 c1 02; 

Name c21 'Mean pH' Copy c7 c1 05; Include; 

Name c22 'Max pH' Include; Where "'Month'= k50 And 'Year'= 

Name c23 'Min pH' Where "'Month'= k50 And 'Year' k51 AND 'Day'= k100". 

Copy c4 c102; = k51 AND 'Day'= k100". 
Let k7 = mean(c1 02) 

Include; Let k16 = mean(c1 05) 
Let k8 = max(c102) 
Let k9 = min(c102) 

Where "'Month'= k50 And 'Year' Let k17 = max(c105} Let c24(k100) = k? 
= k51 AND 'Day'= k100". Let k18 = min(c1 05) Let c25(k1 00) = k8 
Let k? = mean(c102) Let c33(k1 00) = k16 Let c26(k1 00) = k9 

Let c34(k1 00) = k17 Name c24 'Mean SC' 
Let c35(k1 00) = k18 Name c25 'Max SC' 
Name c33 'Mean DO' Name c26 'Min SC' 

Name c34 'Max DO' 
Name c35 'Min DO' 
enddo 



(Page 7) (Page 8) (Page9) 
Copy c5 c1 03; ELSEIF k50 = 2 AND K51 =2008 Copy c5 c103; 
Include; do k100 = 1:29 Include; 
Where "'Month' = k50 And 'Year' = Let c15(k1 OO)=k51 Where "'Month' = k50 And 'Year'= 
k51 AND 'Day' = k1 oo•. Namec15 'Y' k51 AND 'Day' = k1 oo·. 
Let k10 =mean (c103) Let c16(k100)=k50 Let k10 = mean (c103) 
Let k11 = max(c103) Namec16 'M' Let k11 = max(c103) 
Let k12 = min(c1 03) Let c17(k1 OO)=k1 00 Let k12 = min(c103) 
Let c27(k100) = k10 Namec17 'D' Let c27(k100) = k10 
Let c28(k100) = k11 Copy c2 c100; Let c28(k1 00) = k11 
Let c29(k1 00) = 1<12 Include; Let c29(k1 00) = 1<12 
Name c27 'Mean OS' Where "'Month' = k50 And 'Year' = Name c27 'Mean OS' 
Name c28 'Max OS' 1<51 AND 'Day' = k100". Name c28 'Max OS' 
Name c29 'Min OS' Name c100 'Copied wr· Name c29 'Min OS' 
Copy c6 c104; Let k1 = mean(c100) Copy c6 c104; 
Include; Let k2 = max(c1 00) Include; 
Where "'Month'= k50 And 'Year'= Let k3 = min(c100) Where .. Month' = k50 And 'Year ' = 
k51 AND 'Day' = k100". Letc18(k100) = k1 k51 AND 'Day' = k1 00". 
Let 1<13 = mean(c104) Let c19(k100) = k2 Let k13 = mean(c104) 
Let k14 = max(c1 04) Let c20(k100) = k3 Let k14 = max(c104) 
Let 1<15 = min(c1 04) Name c18 'Mean Wf' Let k15 = mln(c104) 
Let c30(k100) = k13 Name c19 'Max wr· Let c30(k1 00) = k1 3 
Let c31 (1<1 00} = k14 Name c20 'Min wr· Let c31(k100) = k1 4 
Let c32(k100) = 1<15 Copyc3c101; Let c32(k1 00) = k15 
Name c30 'Mean PS' lndude; Name c30 'Mean PS' 
Name c31 'Max PS' Where "'Month' = k50 And 'Year' = Name c31 'Max PS' 
Name c32 'Min PS' k51 AND 'Day' = k100". Name c32 'Min PS' 
Copy c7 c105; Name c101 'Copied pH' Copy c7 c105; 

Include; Let k4 = mean(c101) Include; 
Where "'Month'= k50 And 'Year' = Let k5 = max(c101} Where "'Month' = k50 And 'Year' = 
k51 AND 'Day' = k100" . Let k6 = min(c101) k51 AND 'Day' = k100". 

Let k16 = mean(c105) Let c21(k100) = k4 Let k16 = mean(c105) 
Let 1<17 = max(c105) Let c22(1<100) = k5 Let k17 = max(c105) 
Let k18 = min(c1 05) Let c23(k1 00) = k6 Let k18 = min(c105) 
Let c33(k100) = k16 Name c21 'Mean pH' Let c33(k1 00) = k16 
Let c34(k1 00) = k17 Name c22 'Max pH' Let c34(k1 00) = k17 
Let c35(k1 00) = k18 Name c23 'Min pH' Let c35(\<1 00) = k1 8 
Name c33 'Mean DO' Copy c4 c102; Name c33 'Mean DO' 
Name c34 'Max DO' Include; Name c34 'Max DO' 
Name c35 'Min DO' Where "'Month' = k50 And 'Year' = Namec35 'Min DO' 
enddo k51 AND 'Day' = k100" . end do 

Let k7 = mean(c102) 
Let k8 = max(c102) 
Let k9 = min(c1 02) 
Let c24(\<1 00) = k7 
Let c25(k1 00) = k8 
Let c26(\<1 00) = k9 
Name c24 'Mean SC' 
Name c25 'Max sc· 
Name c26 'Min sc· 



(Page 10) (Page 11) (Page 12) 
ELSE Copy c4 c102; Copy c7 c1 05; 
do k100 = 1:28 Include; Include; 
Let c15(k100)=k51 Where "'Month' = k50 And 'Year' = Where "'Month' = k50 And 'Year' = 
Name c15 •y• k51 AND 'Day'= k100*. k51 AND 'Day' = k1 oo·. 
Let c16(k100)=k50 Let k7 = mean(c1 02) Let k16 = mean(c105) 
Namec16 'M' Let k8 = max(c102) Let k17 = max(c105) 
Let c17(k1 OO)=k1 00 Let k9 = min(c102) Let k18 = min(c105) 
Name c17 ·o· Let c24(k100) = k7 Let c33(k1 00) = k16 
Copy c2 c100; Let c25(k1 00) = k8 Let c34(k1 00) = k1 7 

Include; Let c26(k1 00) = k9 Let c35(k1 00) = k18 
Where "'Month' = k50 And 'Year' = Name c24 'Mean SC' Name c33 'Mean DO' 
k51 AND 'Day' = k1 oo•. Name c25 'Max SC' Name c34 'Max DO' 
Name c100 'Copied WT' Name c26 'Min sc· Name c35 'Min DO' 
Let 1<1 = mean(c100) Copy c5 c1 03; 
Let k2 = max(c1 00) Include; enddo 
Let k3 = min(c100) Where "'Month' = k50 And 'Year'= endif 
Let c18(k100) = k1 k51 AND 'Day' = k100" . endmacro. 

Let c19(k100) = k2 Let k10 = mean (c103) 
Let c20(k100) = k3 Let k11 = max(c103) 
Name c18 'Mean wr Let k12 = min(c1 03) 
Namec19 'MaxWT' Let c27(k1 00) = k1 0 
Name c20 'Min WT' Let c28(1<1 00) = k11 
Copy c3 c101; Let c29(k1 00) = k12 
Include; Name c27 'Mean OS' 
Where "'Month' = k50 And 'Year' = Name c28 'Max OS' 
k51 AND 'Day'= k100". Name c29 'Min OS' 
Name c101 'Copied pH' Copy c6 c104; 
Let k4 = mean(c101) Include; 
Let k5 = max(c101} Where "'Month' = k50 And 'Year' = 
Let k6 = min(c101) k51 AND 'Day' = k100" . 
Let c21(k100) = k4 Let k13 = mean(c104) 
Let c22(k100) = k5 Let k14 = max(c1 04) 
Let c23(k1 00) = k6 Let k15 = min(c1 04) 
Name c21 'Mean pH' Let c30(k1 00) = k13 
Name c22 'Max pH' Let c31(k100} = k14 
Name c23 'Min pH' Let c32(k1 00) = k15 

Name c30 'Mean PS' 
Name c31 'Max PS' 
Name c32 'Min PS' 



Macro for Weekly Mean, Maximum and Minimum RTWQ Data 

The macro will ask the user to enter desired year and the weeks of interest. If you wanted 

every week in 2004 you would enter 2004 1 53 in Minitab. Minitab uses 53 weeks in a 

year (where the last week is made up of left over days). Once the macro is finished, 

proceed to the next year of interest. 

(Page 1) (Page 2) (Page 3) 

gmacro Copy c2 c1 00; Copy c5 c103; 
weekly Include; Include; 
ERASE k1-k1 000 Where "Y=k50 And W=k100" . Where "Y=k50 and W=k100". 

ERASE c1 0-c 1000 Let k1 = mean(c100) Let k10 =mean (c103) 
Note Set desired year and weeks ~.e. Let k2 = max(c100) Let k11 = max(c1 03) 

20041 53) Let k3 = min(c100) Let k12 = min(c103) 

Set c50; Let c17(k1 00) = k1 Let c26(k1 00) = k1 0 
File •terminal"; Let c18(k1 00) = k2 Let c27(\<100) = k11 
Nobs3. Let c19(k100) = k3 Let c28(k1 00) = k12 

Copy c50 k50 k51 k52 Name c17 'Mean WT' Name c26 'Mean DS' 
do k100 = k51 :k52 Name c18 'Max WT' Name c27 'Max DS' 

Name c19 'Min WT' Name c28 'Min DS' 
NUMERIC 'Date' c1 0; 
Year; Copy c3 c101 ; Copyc6c104; 
FourDigit. Include; Include; 

Namec10 'Y' Where "Y=k50 And W=k100" . Where "Y=k50 and W=k100". 
NUMERIC 'Date' c11 ; Let k4 = mean(c101) Let k13 = mean(c104) 

Week. Let k5 = max(c101) Let k14 = max(c104) 

Namec11 'W' Let k6 = min(c101) Let k15 = min{c104) 
NUMERIC 'DA1E' c12; Let c20(k1 00) = k4 Let c29(k1 00) = k13 

Month. Let c21 (\<1 00) = k5 Let c30(k1 00) = k14 

Namec12 'M' Let c22(\<1 00) = k6 Let c31(\<100) = k15 
Name c20 'Mean pH' Name c29 'Mean PS' 

Let c14(\<100) = k50 Name c21 'Max pH' Name c30 'Max PS' 

Name c14 'Year' Name c22 'Min pH' Name c31 'Min PS' 

Copy 'M' c99; 
Include; Copy c4 c102; Copy c7' c105; 

Where ·Y=k50 and W=k100" . tnctude; Include; 

Let k200 = mean(c99) Where "Y=k50 And W=k100". Where "Y=k50 And W=k100". 

Let c15{k100) = 1<200 Let k7 = mean(c102) Let k16 = mean(c105) 
Name c15 'Month' Let kB = max(c102) Let k17 = max(c105} 

Let c16(k1 00) = k1 00 Let k9 = min(c1 02) Let k18 = min(c1 05) 

Name c16 'Week' Let c23(\<1 00) = k7 Let c32(k1 00) = k16 
Let c24(k1 00) = k8 Let c33(k1 00) = k17 
Let c25(k1 00) = k9 Let c34(k1 00) = k18 
Name c23 'Mean SC' Name c32 'Mean DO' 
Name c24 'Max SC' Name c33 'Max DO' 
Name c25 'Min SC' Name c34 'Min DO' 

enddo 
endmacro. 



Macro for Monthly Mean, Maximum and Minimum RTWQ Data 

The macro will ask the user to enter desired year and the months of interest. If you wanted 

every month in 2004 you would enter 2004 1 12 in Minitab. Once the macro is finished, 

proceed to the next year of interest. 

(Page 1) (Page 2) (Page 3) 
gmacro Copy c3 c1 01; Copy c6 c1 04; 

Monthly Include; Include; 
ERASE k1-k1 000 Where 'Y=k50 And M=k100'. Where 'Y=k50 and M=k100" . 

ERASE c9-c1 000 Let k4 = mean(c101) Let k13 = mean(c104) 

Nota Sat desired year and months Let k5 = max(c101) Let k14 = max(c1 04) 

Q.e. 2004 1 12) Let k6 = min{c101) Let k15 = min(c104) 

Satc50; Let c20(k1 00) = k4 Let c29(k1 00) = k13 
Rle "terminal"; Let c21 (k1 00) = k5 Let c30(k100) = k14 
Nobs3. Let c22(k1 00) = k6 Let c31 (k1 00) = k15 

Copy c50 k50 k51 k52 Name c20 'Mean pH' Name c29 'Mean PS' 
Name c21 'Max pH' Name c30 'Max PS' 

do k100 = k51:k52 Name c22 'Min pH' Name c31 'Mtn PS' 
NUMERIC 'Date' c10; 
Year; Copy c4 c1 02; Copy c7 c105; 

FourDigit. Include; Include; 

Namec10 'Y' Where "Y=k50 And M=k100'. -~ "Y=k50 And M=k100". 

NUMERIC 'Date' c11; Let k7 = mean(c1 02) Let k16 = mean(c105) 

Month. Let k8 = max(c102) Let k17 = max(c105) 

Namec11 'M' Let k9 = min(c1 02) Let k18 = min(c1 05) 

Let c15(k100) = k50 Let c23(k100) = k7 Let c32(k100) = k16 

Name c15 'Year' Let c24(k100) = k8 Let c33(k1 00) = k17 

Let c16(k100) = k100 Let c25(k100) = k9 Let c34{k100) = k18 
Name c16 'Month' Name c23 'Mean SC' Name c32 'Mean DO' 

Name c24 'Max SC' Name c33 'Max DO' 

Copy c2 c100; Name c25 'Min SC' Name c34 'Min DO' 

Include; 
Where "Y=k50 And M=k100". Copy c5 c103; end do 
Let k1 = mean(c100) Include; endmacro. 
Let k2 = max(c1 00) Where "Y=k50 and M=k100". 
Let k3 = min(c1 00) Let k10 =mean (c103) 
Let c17(k1 00) = k1 Let k11 = max(c103) 
Let c18(k100) = k2 Let 1<'12 = min(c1 03) 
Let c19(k100) = k3 Let c26(k1 00) = k1 o 
Name c17 'Mean WT' Let c27{k100) = k11 
Name c18 'Max WT' Let c28(k1 00) = k12 
Name c19 'Min WT' Name c26 'Mean OS' 

Name c27 'Max OS' 
Name c28 'Min OS' 



Appendix C 

Statistical Overview of the Oatasets Used for 

Water Temperature Regression 



---------~----------------

Tables and plots are attached in this appendix to provide a more complete statistical 

overview of the datasets developed for developing regression models for water 

temperature at the RTWQ stations. 

- Figure C.1 presents a side by side comparison of water temperature over time at the 

RTWQ stations. Note how mean daily water temperatures are highest during the 

summer months - with mean values going up over 20 degrees Celsius in July and 

August. Note that mean daily water temperature at the stations never really gets overly 

high as Newfoundland does have a rather colder climate. 

- Figure C.2 presents a side by side comparison of air temperature over time at the RTWQ 

stations. Note how During the summer months mean daily air temperature at each 

station can get up to around 20 degrees Celsius but these periods of time are usually not 

much longer than one month. There are no gaps in the data plotted in this figure 

because the historical record of air temperature used for the stations is continuous (unlike 

the real time sensors, the weather monitoring stations are rarely taken offline). 

- Figure C.3 presents a comparison of mean daily stage levels recorded at the RTWQ 

stations. Note how mean daily stage at Humber River is significantly higher than the 

other three -with an overall mean level for the entire dataset of 2.11 meters. The mean 

daily stage levels at Peter's River are the next highest (overall mean of the entire dataset 

of 1.14 meters). Leary's Brook and Waterford River are the smallest of the four (overall 

mean of 0.76 and 0.56, respectively). 

- Tables C.1 to C.6 present a detailed statistical overview of the mean, maximum and 

minimum water temperature, air temperature and stage levels at the stations. 

- Table C.7 presents the Pearson's correlation coefficients for the mean water temperature, 

air temperature and stage at the RTWQ stations. 



Mean Daily Water Temperature Over Time at the RTWQ Stations 

Humber River 
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Figure C.1 - Comparison of mean daily water temperature at the R1WQ stations 
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Figure C.2 - Comparison of mean daily air temperature at the RTWQ stations 
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Figure C.3 Comparison of mean daily stage at the RlWO stations 



Table C.1 - General Overview of the Datasets Developed for NF02YL0012 - Humber River 

Water Temperature Air Temperature Stage 

Dataset Obs. Mean Min Max Mean Min Max Mean Min Max 

Monthly Models - For Regression (Dec 03 to Dec 06) 

Mean Monthly 37 7.068 0.384 17.845 4.89 -8.99 18.07 2.123 1.521 3.297 

Max Monthly 37 9.06 1.11 20.67 17.75 2 29.1 2.617 1.768 3.867 

Min Monthly 37 5.004 -0 .1 16.1 -5.73 -21 7.9 1.784 1.331 2.557 

Monthly Models - For Prediction (Jan 07 to April 08) 

Mean Monthly 16 5.05 0.336 17.14 2.16 -7.75 18.02 2.0556 1.7026 2.995 

Max Monthly 16 6.89 1.18 20.27 15.91 1.7 31.5 2.417 1.82 3.723 

Min Monthly 16 2.23 -0.08 15.34 -9.48 -20.3 7.3 1.7115 1.399 2.15 

Weekly Models - For Regression (Dec 03 to Dec 06) 

Mean Weekly 149 7.106 0.253 18.529 5.141 -12.94 20.508 2.133 1.388 3.658 

Max Weekly 149 7.97 0.57 20.67 14.101 -3 29.1 2.2831 1.435 3.867 

Min Weekly 149 6.149 -0.1 17.34 -2.564 -21 14.3 1.9904 1.331 3.584 

Weekly Models - For Prediction (Jan 07 to April 08) 

Mean Weekly 74 4.564 0.18 18.377 1.83 -12.29 20.77 2.0598 1.5612 3.4516 

Max Weekly 74 5.405 0.57 20.27 11 .21 -4.9 31 .5 2.2009 1.665 3.723 

Min Weekly 74 3.389 -0.08 16.58 -6.41 -20.3 13 1.9372 1.399 3.118 

Daily Models - For Regression (Dec 03 to Dec 06) 

Mean Daily 986 7.253 0.0233 20.124 5.385 -16.56 23.033 2.1413 1.3367 3.8299 

Max Daily 986 7.577 0.19 20.67 9.563 -1 5 29.1 2.1721 1.344 3.867 

Min Daily 986 6.935 -0.1 19.77 1.263 -21 20 2.1104 1.331 3.807 

Daily Models - For Prediction (Jan 07 to April 08) 

Mean Daily 484 4.663 -0.026 19.401 2.19 -1 6.32 24.729 2.0545 1.4335 3.6953 

Max Daily 484 5.002 0.12 20.27 6.286 -14.3 31 .5 2.0821 1.458 3.723 

Min Daily 484 4.3 -0.08 19.25 -1.864 -20.3 19.7 2.0273 1.399 3.67 

Note - the maximum value of the max monthly, max weekly and max daily datasets will match each other,. The 
minimum value of the datasets will not (as the minimum value for max monthly will be determined from 12 values while 
the minimum value for max weekly will be determined from 53 values (Minitab counts 53 weeks in the year). The 
same logic applies to the minimum value of the min monthly, min weekly and min daily datasets being equal but the 
max value is not. 



Table C.2 - Statistical Summary of the Humber River Warming and Cooling Season Datasets 

Cooling season - August to January and Warming season - February to July 

Dataset Obs. Mean Min Max Mean Min AT Max Mean Min Max 
WT WT WT AT AT Stage Stage Stage 

Monthly (December 2003 to December 2006) 

Cooling Mean 19 9.06 1.21 17.85 4.44 -8.99 17.69 2.1123 1.5732 2.5696 

Warming Mean 18 4.97 0.384 14.11 5.36 -6.33 18.07 2.134 1.521 3.297 

Cooling Max 19 10.93 2.71 20.67 17.46 2 27.9 2.641 1.812 3.421 

Warming Max 18 7.08 1.11 17.51 18.06 3.2 29.1 2.592 1.768 3.867 

Cooling Min 19 6.89 -0.05 16.1 -5.35 -20.2 6.7 1.8076 1.331 2.213 

Warming Min 18 3.014 -0.1 10.77 -6.12 -21 7.9 1.7594 1.347 2.557 

Weei<Jy (December 2003 to December 2006) 

Cooling Mean 76 9.454 0.302 18.529 5.253 -12.94 19.161 2.1066 1.4815 2.908 

Warming Mean 73 4.662 0.253 15.353 5.024 -9.947 20.508 2.1618 1.3882 3.658 

Cooling Max 76 10.181 0.67 20.67 13.747 -3 29 2.2629 1.533 3.412 

Warming Max 73 5.667 0.57 17.42 14.47 -2.8 29.1 2.3042 1.435 3.867 

Cooling Min 76 8.51 -0.05 17.34 -1.842 -20.2 12.7 1.9634 1.331 2.574 

Warming Min 73 3.69 -0.1 14.03 -3.32 -21 14.3 2.018 1.347 3.584 

Daily (December 2003 to December 2006) 

Cooling Mean 500 9.504 0.0233 20.124 5.233 -16.56 21.446 2.1108 1.3367 3.393 

Warming Mean 486 4.938 0.0346 16.907 5.541 -15.55 23.033 2.1731 1.3626 3.83 

Cooling Max 500 9.747 0.25 20.67 8.877 -15 27.9 2.1414 1.344 3.412 

Warming Max 486 5.345 0.19 17.51 10.27 -12.4 29.1 2.2039 1.378 3.867 

Cooling Min 500 9.246 -0.05 19.77 1.644 -20.2 19.9 2.0806 1.331 3.324 

Warming Min 486 4.558 -0.1 16.6 0.871 -21 20 2.1414 1.347 3.807 



Table C.3- Statistical Properties of the Warming and Cooling Datasets Used for Prediction 

Humber River - High and Low Season Datasets developed for predicting maximum water temperature 

Dataset Obs. Mean Min Max Mean Min AT Max Mean Min Max 
WT WT WT AT AT Stage Stage Stage 

Monthly Models for Prediction (Jan 07 to April 08) 

Cooling Season - August to January 

Mean Monthly 5 7.93 17.14 1.08 2.14 16.1 -6.1 2.0174 2.319 1.703 

Max Monthly 5 
9.628 20.27 1.98 14.94 25.5 7.6 2.3478 2.72 1.82 

Min Monthly 5 3.3~6 15.34 0 -8.92 7.3 -20.3 1.6652 2.043 1.399 

Warming Season - February to July 

Mean Monthly 9 3.44556 13.52 0.34 1.62222 18 -7.8 2.04022 2.995 1.73 

Max Monthly 9 5.36889 18.92 1.18 15.7889 31 .5 1.7 2.446 3.723 1.976 

Min Monthly 9 1.63 8.36 -0.08 -10.6 5.7 -19.3 1.66733 2.15 1.495 

Weekly Models for Prediction (Jan 07 to April 08) 

Cooling Season - August to January 

Mean Weekly 25 6.4056 18.38 0.35 0.152 18.7 -12.3 1.97016 2.642 1.561 

Max Weekly 25 7.0812 20.27 0.73 8.064 25.5 -4.9 2.09192 2.72 1.665 

Min Weekly 25 4.808 16.58 0 -7.72 11.1 -20.3 1.858 2.49 1.399 

Warming Season - February to July 

Mean Weekly 38 3.35184 14.63 0.18 1.76579 20.8 -11.7 2.06489 3.452 1.635 

Max Weekly 38 4.30158 17.57 0.57 11.9211 31.5 -3.9 2.22997 3.761 1.694 

Min Weekly 38 2.45553 11 .85 -0.08 -7.0895 13 -19.3 1.92929 3.118 1.495 

Daily Models for Prediction (Jan 07 to April 08) 

Cooling Season - August to January 

Mean Daily 130 7.07646 19.4 0.26 1.30923 19.9 -16.3 1.96398 2.71 1.433 

Max Daily 130 7.31623 20.27 0.42 4.74769 25.5 -13.3 1.99091 2.72 1.458 

Min Daily 130 6.66046 19.25 0 -2.1808 15.9 -20.3 1.93615 2.692 1.399 

Warming Season - February to July 

Mean Daily 268 3.49295 18.3 -0.03 1.71642 24.7 -14.9 2.03859 3.695 1.504 

Max Daily 268 3.87948 18.92 0.12 6.24254 31.5 -12.9 2.06802 3.723 1.517 

Min Daily 268 3.15478 17.71 -0.08 -2.7892 19.7 -19.3 2.00994 3.67 1.495 



Table c.{~ General Overview of the Datasets Developed for NF02Y00121 - Peters River 

Water Temperature Air Temperature Stage 

Dataset Obs. Mean Min Max Mean Min Max Mean Min Max 

Monthly Models - For Regression (July 2005 to May 2007} 

Mean Monthly 23 8.07 -0.099 20.58 4.28 -8.95 17.86 1.1415 0.9352 1.4796 

Max Monthly 23 13.11 -0.045 30.19 18.92 3.2 33.6 1.4357 0.995 2.454 

Min Monthly 23 5.14 -0.603 14.53 -12.13 -31.6 0.7 0.9841 0.884 1.075 

Monthly Models - For Prediction (July 2007 to February 2008) 

Mean Monthly 8 8.69 -0.208 20.59 3.4 -8.61 17.31 1.2045 1.0399 1.4287 

Max Monthly 8 12.17 -0.149 27.88 17.93 4.6 34 1.4941 1.184 1.717 

Min Monthly 8 5.84 -0.23 15.86 -13.51 -32.6 2.6 1.0375 0.917 1.332 

Weekly Models - For Regression (Week 28, 2005 - July to Week 20, 2007 - May) 

Mean Weekly 91 8.341 -0.133 22.527 4.401 -13.76 20.82 1.1636 0.9286 1.8396 

Max Weekly 91 11.197 -0.089 30.194 14.51 -3.6 33.6 1.2965 0.953 2.454 

Min Weekly 91 6.558 -0.603 18.33 -7.19 -31 .6 12.2 1.0548 0.884 1.4 

Weekly Models - For Prediction (Week 28, 2007 - July to Week 6, 2008 - February) 

Mean Weekly 32 8.76 -0.206 21 .06 3.75 -15.84 20.48 1.2016 0.9821 1.5588 

Max Weekly 32 10.88 -0.197 27.88 13.64 -2.7 34 1.322 0.995 1.717 

Min Weekly 32 7.35 -0.23 18.2 -8.4 -32.6 11 .1 1.1128 0.961 1.431 

Daily Models - For Regression (July 1 , 2005 to May 15, 2007) 

Mean Daily 595 8.448 -0.287 27.876 4.609 -19.08 25.458 1.1445 0.884 2.2744 

Max Daily 595 9.819 -0.162 30.194 9.713 -14.1 33.6 1.1722 0.884 2.454 

Min Daily 595 7.434 -0.603 23.871 -1.223 -31 .6 21 1.1185 0.884 2.014 

Daily Models - For Prediction (July 10, 2007 to February 5, 2008) 

Mean Daily 196 8.764 -0.22 23.622 4.325 -23.87 25.183 1.1895 0.9639 1.6967 

Max Daily 196 9.734 -0.219 27.88 9.421 -13.8 34 1.2128 0.967 1.717 

Min Daily 196 8.023 -0.23 21 .86 -1.467 -32.6 18.5 1.1665 0.961 1.684 



Table C.5 - GenerQI Overview of the DQtasets Developed for NF02ZM0178 Leary's Brook 

Water Temperature Air Temperature Stage 

Dataset Obs. Mean Min Max Mean Min Max MEan Min Max 

Monthly Models - For Regression (September 2004 to December 2006) 

Mean Monthly 16 6.93 0.705 16.58 5.12 -3.65 16.98 0.789 0.6317 0.9535 

Max Monthly 16 11.04 2.73 20.94 16.75 2.9 25.7 1.45 0.897 2.121 

Min Monthly 16 3.94 -0.161 14.02 -4.77 -13.5 8.9 0.6528 0.564 0.73 

Monthly Models - For Prediction (May 2007 to December 2007) 

Mean Monthly 8 10.52 2.75 17.02 8.73 -3.64 17.09 0.71 45 0.5777 0.8542 

Max Monthly 8 14.65 4.16 19.7 20.91 8.4 29.6 1.21 0.892 1.949 

Min Monthly 8 7.23 1.67 14.9 -0.663 -14.5 8.7 0.5931 0.542 0.646 

Weekly Models - For Regression (Week 37, 2004 - September to Week 51 , 2006 - December) 

Mean Weekly 57 6.923 0.268 17.498 4.981 -6.403 18.744 0.8008 0.5935 1.1827 

Max Weekly 57 9.491 1.248 20.936 13.107 -1 .8 25.7 1.1166 0.669 2.121 

Min Weekly 57 5.071 -0.161 14.62 -1.765 -13.5 13.2 0.696 0.564 1.012 

Weekly Models - For Prediction (Week 19, 2007 - May to Week 49, 2007 - December) 

Mean Weekly 23 10.464 2.629 17.146 10.292 -0.212 19.453 0.7025 0.5505 0.9458 

Max Weekly 23 13.705 3.763 19.699 19.58 3.9 29.6 1.015 0.558 1.949 

Min Weekly 23 7.911 1.673 14.899 3.465 -5.4 13.8 0.6316 0.542 0.821 

Daily Models - For Regression (September 11 , 2004 to December 19, 2006) 

Mean Daily 347 6.789 0.0738 19.131 4.944 -10.87 21.221 0.8075 0.5741 1.3517 

Max Daily 347 7.928 0.263 20.936 8.518 -8.9 25.7 0.8855 0.577 2.121 

Min Daily 347 5.834 -0.161 17.997 1.574 -13.5 18.7 0.7582 0.565 1.211 

Daily Models - For Prediction (May 11 , 2007 to December 6, 2007) 

Mean Daily 136 10.643 2.332 17.318 10.523 -3.2 23.233 0.6969 0.5432 1.3797 

Max Daily 136 12.174 2.832 19.699 14.558 -0.8 29.6 0.7623 0.544 1.949 

Min Daily 136 9.34 1.673 16.498 6.667 -4.7 20 0.66 0.542 1.012 



Table C.6 General Overview of the Datasets Developed for NF02ZM0009 - Waterford River 

Water Temperature Air Temperature Stage 

Dataset Obs. Mean Min Max Mean Min Max Mean Min Max 

Monthly Models - For Regression (July 2005 to March 2007) 

Mean Monthly 21 8.09 0.221 17.71 5.94 -5.74 17.11 0.5635 0.4156 0.9088 

Max Monthly 21 12.83 1.26 24.05 17.1 2.9 27.4 1.102 0.607 1.977 

Min Monthly 21 4.06 -0.26 13.73 -4.33 -16.6 8.9 0.4388 0.386 0.579 

Monthly Models - For Prediction (April 2007 to March 2008) 

Mean Monthly 12 7.57 0 .665 16.58 4.95 -3.62 17.09 0.5671 0.412 0.765 

Max Monthly 12 12.43 2.2 24.3 17.39 7.9 29.6 1.048 0.513 1.956 

Min Monthly 12 4.14 -0.13 11.99 -4.66 -16.2 8.7 0.4473 0.38 0.537 

Weekly Models - For Regression rNeek 28, 2005 - July to Week 13, 2007 - March) 

Mean Weekly 90 8.1 -0.168 18.733 5.917 -9.265 18.744 0.5617 0.4049 1.0525 

Max Weekly 90 11 .05 0.04 24.05 13.759 -2.1 27.4 0.7911 0.429 1.977 

Min Weekly 90 5.709 -0.26 15.94 -0 .733 -16.6 13.6 0.4789 0.386 0.93 

Weekly Models - For Prediction fYVeek 14, 2007 - April to Week 13, 2008 - March) 

Mean Weekly 48 7.997 0.235 18.456 4.88 -8.24 19.45 0.5708 0.3924 0.9339 

Max Weekly 48 11 .28 0.93 24.3 13.8 0.8 29.6 0.7999 0.403 1.956 

Min Weekly 48 5.597 -0 .13 16.29 -1.95 -16.2 13.8 0.49 0 .38 0.769 

Daily Models - For Regression (July 6, 2005 to March 31, 2007) 

Mean Daily 587 8.121 -0.185 22.46 5.924 -13.46 21 .221 0.5588 0.3938 1.4346 

Max Daily 587 9.356 -0.17 24.05 9.275 -10.6 27.4 0.607 0.396 1.977 

Min Daily 587 7.062 -0.26 20.51 2.764 -16.6 18.7 0.522 0.386 1.236 

Daily Models - For Prediction (April 1, 2007 to March 27, 2008) 

Mean Daily 306 8.217 -0.061 20.913 5.076 -13.4 23.233 0.5866 0.381 7 1.2778 

Max Daily 306 9.74 -0.05 24.3 8.703 -11.8 29.6 0.616 0.383 1.956 

Min Daily 306 7 -0 .13 19.16 1.647 -16.2 20 0.5319 0.38 1.033 



Table C.7- Pearson Correlation and P-Value for RTWQ Stations - wr, AT and Stage 

Humber River Peter's River Leary's Brook Waterford River 

Monthly 

Mean Mean Mean Mean Mean Mean Mean Mean 
wr AT wr AT wr AT wr AT 

Mean 0.874 Mean 0 .973 Mean 0.976 Mean 0 .994 

AT 0.000 AT 0 .000 AT 0 .000 AT 0.000 

Mean -0.175 0.012 Mean -0 .547 -0.538 Mean -0_629 -0.740 Mean -0.641 ·0 .584 

Stage 0 .300 0.942 Stage 0.007 0.008 Stage 0 .070 0.023 Stage 0.002 0.005 

Weekly 

Mean Mean Mean Mean Mean Mean Mean Mean 

wr AT wr AT wr AT wr AT 

Mean 0.841 Mean 0.948 Mean 0.970 Mean 0 .981 

AT 0 .000 AT 0.000 AT 0 .000 AT 0.000 

Mean -0.190 -0.009 Mean ·0.434 -0 .398 Mean -0.595 -0.569 Mean -0 .502 -0 .424 

Stage 0.020 0.910 Stage 0.000 0.000 Stage 0.001 0.002 Stage 0 .000 0.000 

Daily 

Mean Mean Mean Mean Mean Mean Mean Mean 

wr AT wr AT wr AT wr AT 

Mean 0.801 Mean 0.909 Mean 0 .945 Mean 0.956 

AT 0.000 AT 0.000 AT 0 .000 AT 0 .000 

Mean -0.207 -0.028 Mean -0.447 -0 .399 Mean -0.469 -0.391 Mean -0.413 -0 .298 

Stage 0 .000 0.378 Stage 0.000 0.000 Stage 0.000 0.000 Stage 0.000 0.000 



Appendtx 0 

Graphical Plots of Water Temperature and 

Air Temperature 
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Appendlx E 

Points to Remember When Using 

Curve Fitting Software 



When working with the curve fitting software (like Minitab or Datafit) for determining the 

goodness of fit of the model and the appropriates of the model for predicting water 

temperature, there are a number points that should be considered: 

1 . Look at the residual scatter plot output in Datafit and make sure the residuals are 

randomly scattered around zero and show no discernable pattern. If there are groupings 

of residuals with similar signs, or if the increase (or decrease) of the residuals is a factor 

of the size of the independent variable then it is likely that another functional 

approximation probably exists to better describe the data. 

2. Check the normality of residual plots in Datafit to ensure the residuals are normally 

distributed This plot show a plot of the normalized residuals on the vertical axis and the 

normal quantiles on the horizontal axis). If the residuals are normally distributed around 

zero then the plot will be a straight line with a 45 degree slope that passes through the 

origin. 

3. Check the plot of the regression model and the data points - the data points should be 

randomly scattered above and below the curve. 

4. Check to see how well the developed regression model describes the data. This can be 

done be observing the following calculated parameters: 

a. R2 which is a measure of variation in the data points Yi that the regression model 

explains. An R2 value equal to 1 would mean that the developed curve passes 

through every data point while an R2 value equal to 0 would mean that the regression 

model does not describe the data any better than a horizontal line that passes 

through the average of all data points. 

b. The Residual Sum of Squares (RSS) which is the sum of the squares of the 

differences between the data that was entered and the curve generated by fitting the 

regression model. A model that perfectly fits the data would have an RSS value 

equal to 0. 

c. The Standard Error of the Estimate is the standard deviation of the differences 

between the entered data and the curve generated from the fitted model. The 

standard error gives an idea about how scattered the residuals are around the 

average. As the standard error approaches zero then its possible to be reasonably 

certain that the model accurately describes the data. A perfectly fit model would 

have a standard error equal to zero. 



Appendix F 

Curve Fitting Results for Water Temperature 

Regression Models 



Table F.1 - Regression Models for Predicting Humber River Cooling Season Water Temperature 

Mean Datasets Maximum Datasets Minimum Datasets 

Monthly Weekly Daily Monthly Weekly Daily Monthly Weekly Daily 

Humber River Cooling Season - High Water Temperature Months (August to January) 
(19 Monthly Observations, 76 Weekly Observations and 500 Daily Observations) 

Linear Model: Tw = a*Ta + b 

a 0.64 0.61 0.55 0.78 0.59 0.51 0.50 0.55 0.56 

b 6.20 6.27 6.62 -2.67 2.09 5.23 9.54 9.53 8.33 

RSS 10.09 181.77 2336.13 109.51 430.71 2811.90 46.32 224.35 2615.68 

R2 Adj 0.98 0.91 0.83 0.82 0.81 0.80 0.87 0.87 0.80 

Logistic 1 Model: Tw = a/(1 +exp(b*(c-Ta))) 

a 21.41 20.31 20.50 27.87 27.54 22.06 37.65 18.26 18.85 

b 0.15 0.15 0.13 0.15 0.11 0.11 0.11 0.16 0.15 

c 7.20 6.56 6.78 21.25 19.74 11.57 11.11 -0.51 2.17 

RSS 5.13 147.35 2150.71 69.37 361.24 2693.80 32.99 187.45 2349.29 

R2 Adj 0.99 0.93 0.84 0.88 0.84 0.81 0.90 0.89 0.82 

Logistic 2 Model: Tw = d + (a-d)/(1 + exp (b*(c-Ta))) 

a 21.45 19.34 19.88 18.44 21.05 22.28 258.07 17.43 17.90 

b 0.15 0.17 0.14 1.01 0.20 0. 11 0.07 0.18 0.18 

c 7.20 6.59 6.73 18.60 17.37 11.61 47.35 -0.47 2.27 

d -0.03 0.99 0.55 5.24 3.09 -0.18 -1.90 0.85 1.05 

RSS 5.13 145.99 2148.62 44.02 344.91 2693 .69 32.46 186.09 2337.03 

R2 Adj 0.99 0.93 0.84 0.92 0.85 0.81 0.90 0.89 0.82 

Multiple Regression Model: Tw = a + b*Ta + c*Stage 

a NS NS 8.24 NS NS 7.06 NS NS 10.00 

b 0.54 0.50 0.55 

c -0.76 -0.83 -0.80 

RSS 2291.78 2755.01 2568.66 

R2 Adj 0.83 0.81 0.80 



Table F.2 - Regression Models for Predicting Humber River Warming Season Water Temperature 

Mean Datasets Maximum Datasets Minimum Datasets 

Monthly Weekly Daily Monthly Weekly Daily Monthly Weekly Daily 

Humber River Warming Season - Low Water Temperature Months (February to July) 
(18 Monthly Observations, 73 Weekly Observations and 486 Daily Observations) 

Linear Model: Tw = a*Ta + b 

a 0.55 0.51 0.48 0.64 0.50 0.44 0.32 0.37 0.45 

b 2.02 2.12 2.30 -4.51 -1.54 0.81 4.98 4.93 4.17 

RSS 49.60 313.56 2989.49 102.28 582.41 3707.99 53.65 296.85 3190.17 

R2 Adj 0.88 0.80 0.74 0.83 0.71 0.70 0.75 0.74 0.70 

Logistic 1 Model: Tw = a/(1 +exp(b*(c-Ta))) 

a 21.56 15.68 15.77 366.91 32.80 18.90 11.11 11.39 13.10 

b 0.19 0.24 0.22 0.13 0.14 0. 15 0.30 0.33 0.30 

c 14.96 11.48 11.81 51.47 28.95 19.06 1.92 2.29 5.35 

RSS 9.68 14.3.42 1911.98 12.75 384.49 2886.83 10.04 110.13 1756.17 

R2 Adj 0.97 0.91 0.83 0.98 0.81 0.77 0.95 0.90 0.83 

Logistic 2 Model: Tw = d + (a-d)/(1 + exp (b*(c-Ta))) 

a 21.56 14.87 15.22 29.61 26.70 17.96 11.07 11.30 12.91 

b 0.19 0.28 0.24 0.24 0.16 0.17 0.31 0.35 0.33 

c 14.96 11.29 11.67 27.82 26.41 18.56 1.91 2.38 5.45 

d 0.00 0.47 0.34 1.24 0.40 0.29 0.02 0.22 0.32 

RSS 9.68 140.38 1904.27 10.63 383.78 2883.77 10.04 108.99 1745.67 

R2 Adj 0.97 0.91 0.84 0.98 0.80 0.77 0.95 0.90 0.83 

Multiple Regression Model: Tw =a+ b*Ta + c*Stage 

a 7.88 6.38 5.98 0.75 3.75 4.84 9.13 8.86 7.42 

b 0.57 0.53 0.50 0.72 0.54 0.46 0.33 0.39 0.47 

c -2.81 -2.02 -1.77 -2.57 -2.57 -1.96 -2.34 -1.92 -1.55 

RSS 13.66 212.09 2340.63 44.84 374.05 2882.28 41.13 226.80 2709.59 

R2 Adj 0.96 0.87 0.80 0.92 0.81 0.77 0.80 0.80 0.74 



Table F.3 - Regression Models for Predicting Peter's River Water Temperature 

Mean Datasets Maximum Datasets Minimum Datasets 

Monthly Weekly Daily Monthly Weekly Daily Monthly Weekly Daily 

Peters River 
(23 Monthly Observations, 91 Weekly Observations, 595 Daily Observations) 

Linear Model: Tw = a*Ta + b 

a 0.83 0.78 0.72 1.00 0.84 0.76 0.42 0.49 0.55 

b 4.52 4.91 5.15 -5.78 -0.99 2.43 10.25 10.07 8.11 

RSS 61 .89 477.92 5976.11 197.43 819.56 6549.54 154.47 950.50 9067.82 

R2 Adj 0.94 0.90 0.81 0.90 0.89 0.84 0.75 0.71 0.65 

Logistic 1 Model: Tw = a/{1 +exp(b*(c-Ta))) 

a 21.13 22.89 23.16 43.07 34.59 28.19 68.64 18.19 19.52 

b 0.24 0.21 0.20 0.14 0.14 0.15 0.16 0.22 0.21 

c 7.63 8.73 9.15 27.12 22.04 15.46 9.08 -1.56 3.06 

RSS 31.03 237.02 3962.91 97.50 599.18 5386.46 52.19 612.91 6495.23 

R2 Adj 0.97 0.95 0.88 0.95 0.92 0.87 0.91 0.81 0.75 

Logistic 2 Model: Tw = d + (a-d)/{1 + exp {b*(c-Ta))) 

a 21.74 23.26 23.54 37.24 35.99 29.59 335.26 17.24 19.23 

b 0.22 020 0.19 0.17 0.13 0.14 0.14 0.27 0.22 

c 7.71 8.79 9.18 25.52 22.46 15.67 23.37 -1.66 3.05 

d -0.48 -0.27 -0.32 1.43 -0.51 -1.01 -0.38 0.72 0.27 

RSS 30.66 236.49 3957.73 95.46 598.49 5361.10 51 .69 605.70 6489.75 

R2 Adj 0.97 0.95 0.88 0.95 0.91 0.87 0.91 0.81 0.75 

Multiple Regression Model: Tw = a + b*Ta + c*Stage 

a NS NS 8.58 NS NS 6.85 NS 21.23 12.78 

b 0.70 0.74 0.45 0.54 

c -2.97 -3.63 -10.84 -4.24 

RSS 5752.56 6167.02 849.88 8662.33 

R2 Adj 0.82 0.85 0.74 0.67 



Table F.4- Regression Models for Predicting Leary's Brook Water Temperature 

Mean Datasets Maximum Datasets Minimum Datasets 

Monthly Weekly Daily Monthly Weekly Daily Monthly Weekly Daily 

Leaty'S Brook 
(16 Monthly Observations, 57 Weekly Observations, 347 Daily Observations) 

Linear Model: Tw = a*Ta + b 

a 0.81 0.79 0.73 0.77 0.75 0.68 0.60 0.69 0.71 

b 2.78 2.97 3.18 -1.79 -0.34 2.12 6.78 6.30 4.72 

RSS 18.87 99.31 1153.85 105.07 286.74 1706.74 42.49 210.46 1510.14 

R2 Adj 0.95 0.94 0.89 0.78 0.86 0.86 0.84 0.85 0.84 

Logistic 1 Model: Tw = a/(1 +exp(b*(c-Ta))) 

a 18.28 18.41 19.06 1181.08 41.12 24.22 16.28 14.69 16.49 

b 0.24 0.23 0.21 0.08 0.11 0.15 0.28 0.35 0.27 

c 7.74 7.75 8.72 76.55 25.47 14.77 1.78 1.30 4.80 

RSS 15.17 76.14 873.54 72.09 220.36 1523.39 17.57 108.29 1024.05 

R2 Adj 0.96 0.95 0.92 0.84 0.89 0.88 0.93 0.92 0.89 

Logistic 2 Model: Tw = d + (a-d)/(1 + exp (b*(c-Ta))) 

a 18.75 19.43 19.57 921.62 74.62 28.39 16.30 14.58 16.56 

b 0.22 0.20 0.20 0.10 0.08 0.11 0.28 0.36 0.26 

c 7.75 7.76 8.80 66.23 36.30 16.31 1.79 1.33 4.80 

d -0.47 -1.06 -0.40 1.79 -2.10 -1 .81 -0.01 0.17 -0.08 

RSS 15.11 74.48 871.40 71.36 219.48 1510.48 17.57 108.05 1023.90 

R2 Adj 0.95 0.95 0.92 0.82 0.89 0.88 0.93 0.92 0.89 

Multiple Regression Model: Tw = a + b*Ta + c*Stage 

a NS NS NS NS NS NS NS NS NS 

b 

c 

RSS 

R2 Adj 



Table F.5 - Regression Models for Predicting Waterford River Water Temperature 

Mean Datasets Maximum Datasets Minimum Datasets 

Monthly Weekly Daily Monthly Weekly Daily Monthly Weekly Daily 

Waterford River 
(21 Monthly Observations, 90 Weekly Observations, 587 Daily Observations) 

Linear Model: Tw = a*Ta + b 

a 0.84 0.81 0.76 0.97 0.85 0.76 0.57 0.63 0.71 

b 3.12 3.32 3.62 -3.69 -0.63 2.34 7.02 6.17 5.10 

RSS 9.55 142.43 2225.48 146.26 575.65 3103.96 94.32 437.63 2765.96 

R2 Adj 0.99 0.96 0.91 0.88 0.89 0.90 0.81 0.85 0.88 

Logistic 1 Model: Tw = a/(1 +exp(b*(c-Ta))) 

a 18.47 18.95 19.56 70.24 32.34 22.82 11.97 16.34 17.44 

b 0.25 0.25 0.23 0.11 0.14 0.18 1.64 0.25 0.26 

c 7.41 7.77 8.36 32. 13 19.94 12.24 -0.20 3.66 5.41 

RSS 8.68 83.73 1596.62 77.11 433.75 2709.58 23.22 294.36 1705.31 

R2 Adj 0.99 0.98 0.94 0.93 0.92 0.91 0.95 0.90 0.92 

Logistic 2 Model: Tw = d + (a-d)/(1 + exp (b*(c-Ta))) 

a 22.22 20.27 20.85 39.32 38.11 25.13 11.96 17.56 18.06 

b 0.15 0.20 0.19 0.17 0.12 0.14 1.69 0.21 0.23 

c 7.75 7.73 8.37 24.46 21.97 12.46 -0.18 3.83 5.35 

d -3.23 -1.41 -1 .27 2.38 -1.35 -1.94 0.21 -0.92 -0.71 

RSS 5.55 75.57 1546.69 75.30 431.50 2648.92 22.71 286.34 1678.33 

R2 Adj 0.99 0.98 0.94 0.93 0.92 0.91 0.95 0.90 0.92 

Multiple Regression Model: Tw = a + b*Ta + c*Stage 

a 6.33 6.38 7.13 0.20 2.28 5.44 NS 10.46 9.26 

b 0.79 0.77 0.73 0.92 0.82 0.73 0.60 0.67 

c -5.24 -5.06 -5.93 -2.80 -3.17 -4.76 -8.98 -7.75 

RSS 5.04 108.07 1766.77 125.1 2 485.64 2498.05 39 1.20 2324.47 

R2 Adj 0.99 0.97 0.93 0.89 0.91 0.92 0.87 0.89 
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Appendix G 

An Alternative Approach to Handling Hysteresis 



An alternative approach to developing separate regression models for the warming and 

cooling seasons is to add an additional explanatory variable to the regression models to 

account for the time of the year the sample of water quality was taken. 

Table G.1 presents the curve fitting results for these modified models. Note that the 

additional variable X in each model is set equal to 1 for data collected during August to 

January and is set to 0 for data collected during February to July. The modified logistic 

models provide a better fit to the data than the modified linear - with only a slight difference 

between logistic 1 and 2. 

Similar to the models developed for the separated seasonal datasets the modified 

models fit best to the monthly datasets but high scatter in the daily datasets drives up the 

residual sum of squares term and lowers the adjusted R2 values. 

The curve fitting results for these models are similar to those found for the 

seasonally divided datasets in that the logistic model best describes the relationship 

between air temperature and water temperature. The fit of the model is best at longer time 

scales (monthly) and poorer at shorter time scales (daily) 

Figure G.1 presents a model plot for the modified first logistic model for the Humber 

River mean water temperature models. 



Table G. I- Modified Regression Models for Handling Hysteresis in Humber River Datasets 

Linear Models for Predicting Mean Water Temperature: WT =a* AT+ bX + c 
(where X =1 for August to january and X= 0 for February to July) 

Dataset a b c St. Error RSS R2 R2 Adj 

Monthly Mean WT 0.608 4.728 1.637 1.336 55.358 0.944 0.941 

Weekly Mean WT 0.567 4.719 1.755 1.866 476.7 0.886 0.884 

Daily Mean WT 0.53 4.417 2.233 2.514 5865.7 0.791 0.79 

Monthly Max WT 0.714 4.382 -5.92 2.604 210.281 0.831 0.821 

Weekly Max WT 0.559 5.022 -2.521 2.667 974.4 0.793 0.79 

Daily Max WT 0.49 4.766 0.557 2.778 7163.7 0.754 0.753 

Monthly Min WT 0.418 3.62 5.51 1.464 62.15 0.908 0.896 

Weekly Min WT 0.47 4.169 5.207 1.999 547.6 0.843 0.848 

Daily Min WT 0.51 0.133 6.37 3.245 9776.9 0.636 0.635 

Logistic 1 Models for Predicting Mean Water Temperature: WT = al(l+exp(b*(c-AT))) +dX 
(where X =1 for August to january and X= 0 for February to July) 

a b c d St. Error RSS R2 R2 Adj 

Monthly Mean WT 15.23 0.248 10.08 4.282 1.276 48.86 0.951 0.946 

Weekly Mean WT 14.23 0.259 9.622 4.428 1.697 391.5 0.906 0.904 

Daily Mean WT 14.79 0.223 9.839 4.156 2.38 5252 0.812 0.812 

Monthly Max WT 21.79 0.2297 24.08 5.218 1.892 107.354 0.914 0.905 

Weekly Max WT 16.81 0.214 19.8 4.867 2.445 812.8 0.828 0.824 

DailyMaxWT 15.69 0.181 14.96 4.445 2.73 6908.2 0.762 0.762 

Monthly Min WT 11.71 0.2833 1.026 3.333 1.552 72.243 0.894 0.883 

Weekly Min WT 11.69 0.31 1.533 4.039 1.68 383.9 0.89 0.888 

Daily Min WT 16.35 0. 184 3.896 0.177 3.065 8710 0.675 0.674 



Table G. / Continued 

Logistic 2 Models for Predicting Mean Water Temperature: WT = d + (a-d)/(l+exp(b*(c-AT))) +eX Where 

a b c d e St. Error RSS R2 

Monthly Mean WT 28.75 0.101 16.32 -4.325 4.807 1.108 35.594 0.96 

Weekly Mean WT 15.76 0.186 9.701 -1.65 4.734 1.646 365.8 0.91 

Daily Mean WT 16.64 0.16 10.05 -1.82 4.46 2.342 5078.8 0.82 

Monthly Max WT 24.31 0.198 24.93 -0.721 5.352 1.911 105.91 0.92 

Weekly Max WT 19.57 0.1589 20.85 -1.401 5.105 2.43 797.32 0.83 

Daily Max WT 20.24 0.108 16.56 -2.96 4.79 2.686 6678.6 0.77 

Monthly Min WT 14.15 0.193 2.204 -1.466 3.906 1.464 62.149 0.91 

Weekly Min WT 19.57 0.1589 20.85 -1.40 I 5.105 2.43 797.32 0.83 

Daily Min WT 15.45 0.232 4.017 1.148 0.051 3.054 8638.2 0.68 

Humber River- Modified First Logistic Model - Monthly Mean WT 

~ 120 

c 100 ..l.---

ro Q) 80 , __ _ 

~ 
>- 60 

•o 

R2 Adj 

0.959 

0.91 

0.818 

0.903 

0.826 

0.769 

0.896 

0.826 

0.677 

160 

uo 

120 ~ 
100 c 

ro 
60 Q) 

~ 
60 :;;...: 

•o 

20 

Figure G. 1 Modified First Logistic Model for Humber River Monthly Mean WT 



Appendix H 

Model Testing Results for Water Temperature 



The first logistic models were tested using the water temperature datasets reserved for 

model testing purposes. The following tables and plots are contained in this appendix: 

-Table H.1 - Using the Logistic 1 Model for Predicting Humber River Mean Water 

Temperature. Model testing results are presented for the original (before hysteresis was 

accounted for), warming and cooling Humber River datasets 

-Table H.2 - Using the Logistic 1 Model for Predicting Humber River Maximum Water 

Temperature 

-Table H.3 - Using the Logistic 1 Model for Predicting Humber River Minimum Water 

Temperature 

-Table H.4- Using the Logistic 1 Model for Predicting Peter's River Water Temperature 

-Table H.5 - Using the Logistic 1 Model for Predicting Leary's Brook Water Temperature 

-Table H.6- Using the Logistic 1 Model for Predicting Waterford River Water Temperature 

Another way to compare the ability of the models to predict water temperature is to 

examine the absolute value of the differences between observed and model predicted 

values. Figure H.1 presents a boxplot comparison of the absolute value of the differences 

for each of the RTWQ stations. At the monthly time scale the spread of the difference in 

the Humber River warming season data (when water temperatures are lower) and 

Waterford River are quite small. 



Table H.l - Using the Logistic I Model for Predicting Humber River Mean Water Temperature 

Absolute Value of Difference 
Abs[Pred- Obsl 

Absolute Value of% Error 
AbsJ(Pred- Obs)/Predl*lOO% 

Adj R2 Obs. Mean Max Min StDev Mean Max Min 

Original Dataset Monthly Mean WT = 20.05/(1 +exp(0.154*(10.275- Mean AT))) 

0.771 14 1.95 4.5 0.42 1.23 50.49 97.8 11.98 

Cooling Season Monthly Mean WT = 21.4135/(l+exp(O.l46*(7.19713- Mean AT))) 

0.989 5 0.85 1.61 0.29 0.67 19.9 59.8 1.86 

Warming Season Monthly Mean WT = 21.56393/(l+exp(O.I915*(14.9611- Mean AT))) 

0.975 9 0.25 0.54 0.003 0.2 26.6 78.9 0 .03 

Original Weekly Mean WT = 19.208/(1 +exp(0.159*(9.817- Mean AT))) 

0.734 63 1.85 7.09 0.04 1.35 57.6 325.3 7.2 

Cooling Season Weekly Mean WT = 20.3125/( I +exp(0.148653 *(6.56463- Mean AT))) 

0.93 25 1.14 3.25 0.44 0.67 33.46 111.4 2.6 

Warming Season Weekly Mean WT = 15.67955/( I +exp(0.243939*(11.4797- Mean AT))) 

0.91 38 0.634 4.66 0.011 0.8 86.24 557.92 1.73 

Original Daily Mean WT = 18.518/(l+exp(0.1497*(9.538- Mean AT))) 

0.67 398 2.11 9.58 0.007 1.72 55.84 410.34 0.05 1 

Cooling Season Daily Mean WT = 20.50325/(l+exp(0.13209*(6.78741- Mean AT))) 

0.84 130 1.786 5.53 0.012 1.35 37.92 126.3 0.34 

Warming Season Daily Mean WT = 15.77483(l+exp(0.21703*(11.8132- Mean AT))) 

0.83 268 1.04 7.77 3.82 1.43 79.39 837.4 0.02 



Table H.2- Using the Logistic l Model for Predicting Humber River Maximum Water Temperature 

Absolute Value of Difference 
Abs[Pred - Obs] 

Absolute Value of% Error 
Abs[(Pred - Obs)/Pred]* 100% 

Adj R2 Obs. Mean Max Min St Dev Mean Max Min 

Original Dataset Monthly Max WT = 28.547/(l +exp(O. I34*(24.893- Max AT))) 

0.746 14 2.606 6.21 0. 12 1.79 41.75 95.49 6.39 

Cooling Season Monthly Max WT = 27.86925/(l +exp(O. 147781 *(21.2548- Max AT))) 

0.989 5 1.22 2.1 0.13 0.85 23.31 52.91 2.93 

Warming Season Monthly Max WT = 366.9056/( I +exp(0. 132958*(5 1.44699- Max AT))) 

0.977 9 I .241 5.175 0.1626 1.57 38.88 173.5 7.99 

Original Dataset Weekly Max WT = 24.045/( l+exp(O.I23*(21.414- Max AT))) 

0.653 63 2.42 8.69 0.03 2.06 53.97 280.2 0.209 

Cooling Season Weekly Max WT = 27.54347/(1 +exp(0.109373*(19.7377- Max AT))) 

0.84 25 1.55 5.45 0.05 1.26 32.52 106.8 2.2 

Warming Season Weekly Max WT = 32. 79584/( l +exp(0.140317*(28.9461- Max AT))) 

0.81 38 1.29 7.11 0.01 1.48 38.28 162.7 0.47 

Original Dataset Daily Max WT = 19.909/(l +exp(O.II8*(14.933- Max AT))) 

0.609 398 2.52 9.39 0.007 1.93 52.11 231.8 0.48 

Cooling Season Daily Max WT = 22.0563/(1 +exp(O. 1 0974*(11.569- Max AT))) 

0.81 130 2.05 8.5 0.006 1.57 36.63 93.09 0.043 

Warming Season Daily Max WT = 18.89737(1 +exp(O.I5429l *(19.0636- Max AT))) 

0.77 268 1.31 8.03 0.005 1.69 46.82 399.16 0.77 



Table H.3 - Using the Logistic 1 Model for Predicting Humber River Minimum Water Temperature 

Absolute Value of Difference 
Abs(Pred- Obs] 

Absolute Value of% Error 
Abs((Pred- Obs)/Pred]*lOO% 

Adj R2 Obs. Mean Max Min St Dev Mean Max Min 

Original Dataset Monthly Min WT = 15.365/(l+exp(0.1771*(1.0168- Min AT))) 

0.71 14 1.84 9.19 0.047 2.53 66.98 113.9 8.32 

Cooling Season Monthly Min WT = 37.64699/(l+exp(O.l05106*(11.1109- Min AT))) 

0.9 5 3.204 11 .67 0.24 4.76 71.73 100 1.57 

Warming Season Monthly Min WT = 11.10682/(J+exp(0.304584*(1.92339- Min AT))) 

0.95 9 0.455 1.6 0.043 0.62 229.9 688.5 

Original Dataset Weekly Min WT = l5.5146/(l+exp(O.I894*(1.1589- Min AT))) 

0.71 1.7 9.4 0.003 1.64 72.58 552.61 0.02 

Cooling Season Weekly Min WT = 18.25805/(1 +exp(O.I56347*(-0.508- Min AT))) 

0.89 1.4 11.81 0.022 2.3 1 45.59 131.95 0.692 

Warming Season Weekly Min WT = ll.39423/(1+exp(0.33499*(2.2864- Min AT))) 

0.9 0.58 2.31 O.oi 0.63 489.4 4877.2 1.67 

Original Dataset Daily Min WT = 16.269/(l+exp(0.195*(3.888- Min AT))) 

0.69 1.88 10.84 0.02 1.7 71.51 1123.1 0.6 

Cooling Season Daily Min WT = 18.85133/(1 +exp(O.I52521 *(2.17453- Min AT))) 

0.82 1.98 12.93 0.077 1.75 46.87 244.59 0.481 

Warming Season Daily Min Min WT = 13.0989/(1+exp(0.30 1678*(5.35169- Min AT))) 

0.83 0.%9 6.32 0.005 1.27 272.31 5216.2 0.14 



Table H.4 - Using the Logistic I Model for Predicting Peter's River Water Temperature 

Absolute Value of Difference Absolute Value of% Error 
Abs(Pred- ObsJ Abs((Pred- Obs)/PredJ*lOO% 

Adj R2 Obs. Mean Max Min STDev Mean Max Min 

Monthly Mean Mean WT = 21.13/(l+exp(0.24*(7.63- Mean AT))) 

0.97 8 0.874 3.202 0.044 1.03 57.63 144 0.239 

Weekly Mean WT = 22.89/(l+exp(0.21 *(8.73- Mean An)) 

0.95 32 1.213 6.61 0.021 1.42 63.42 252.5 0.27 

Daily Mean WT = 23.16/(l+exp(0.20*(9.15- Mean An)) 

0.88 196 1.923 10.8 0.024 1.82 78.41 662.94 0.12 

Monthly Max WT = 43.07/(l+exp(O.I4*(27.12- Max An)) 

0.95 8 2.017 3.79 0.36 1.21 40.95 107.18 3.91 

Weekly Max WT = 34.59/(l+exp(O.I4*(22.04- Max AT))) 

0.92 32 1.923 8.72 0.153 1.61 50.37 125.8 0.62 

Daily Max WT = 28.19/(l+exp(0.15*(15.46- Max AT))) 

0.87 196 2.186 7.99 0.06 1.79 58.31 197.71 0.32 

Monthly Min WT = 68.64/(1 +exp(0.16*(9.08- Min AT))) 

0.91 8 0.836 1.91 0.21 0.63 121.45 366.6 1.34 

Weekly Min WT = 18.19/(1 +exp(0.22*(-1.56- Min AT))) 

0.81 32 1.74 5.49 0.15 1.5 200.86 1365.5 2.3 

Daily Min WT = 19.52/(l+exp(0.21 *(3.06- Min AT))) 

0.75 196 2.37 12.03 0.04 2.2 142.9 2136.7 0.22 



Table H5- Using the Logistic I Mode/for Predicting Leary's Brook Water Temperature 

Absolute Value of Difference Absolute Value of% Error 
Abs(Pred- ObsJ Abs((Pred- Obs)/PredJ*lOO% 

Adj R2 Obs. Mean Max Min St Dev Mean Max Min 

Monthly Mean WT = 18.28/(l+exp(0.24*(7.74- Mean An)) 

0.96 8 1.168 2.682 0.191 0.83 26.687 131.3 1.422 

Weekly Mean WT = 18.41/(l+exp(0.23*(7.75- Mean An)) 

0.95 23 0.843 2.34 0.014 0.73 11.15 37.5 0.1 

Daily Mean WT = 19.06/(l+exp(0.21*(8.72- Mean An)) 

0.92 136 1.639 5.01 0.01 1.19 25.54 140.3 0.14 

Monthly Max WT = 1181.08/(1 +exp(0.08*(76.55- Max An)) 

0.84 8 3.099 8.38 0.532 2.63 21.29 31.23 2.63 

Weekly Max WT = 41.12/(1 +exp(O. I1 *(25.47- Max AT))) 

0.89 23 1.564 6.15 0.01 1.44 15.99 110.9 0.05 

Daily Max WT = 24.22/(1+exp(0.15*(14.77- Max AT))) 

0.88 136 2.06 7.22 0.02 1.61 28.04 133.8 0.09 

Monthly Min WT = 16.28/{l+exp(0.28*(1.78- Min An)) 

0.93 8 1.37 3.19 0.1 0.98 123.9 828.6 1.63 

Weekly Min WT = 14.69/(l+exp(0.35*(1.30- Min AT))) 

0.92 23 1.27 2.92 0.27 0.73 21.15 72.4 3.96 

Daily Min WT = 16.49/(l+exp(0.27*(4.80- Min AT))) 

0.89 136 1.55 5 0.01 1.13 29.1 155.3 0.08 



Table H.6- Using the Logistic I Mode/for Predicting Waterford River Water Temperature 

Absolute Value of Difference Absolute Value of% Error 
Abs[Pred- Obsl Absi(Pred- Obs)!Predl*lOO% 

Adj R2 Obs. Mean Max Min St Oev Mean Max Min 

Monthly Mean WT = 18.47/(l+exp(0.25*(7.4q- Mean AT))) 

0.99 12 0.497 1.244 0.026 0.36 14.45 39.62 0.191 

Weekly Mean WT = 18.95/(1+exp(0.25*(7.77- Mean AT))) 

0.98 48 0.803 2.49 0.03 0.61 22.09 138 0.4 

Daily Mean WT = 19.56/(J+exp(0.23*(8.36- Mean AT))) 

0.94 306 1.36 6.87 0.01 1.22 32.4 204.4 0.05 

Monthly Max WT = 70.24/(1 +exp(0.11*(32.13- Max AT))) 

0.93 12 2.091 5.78 0.21 1.64 20.95 56.18 1.33 

Weekly Max WT = 32.34/(l+exp(0.14*(19.94- Max AT))) 

0.92 48 1.712 5.7 0.02 1.26 26.91 133.5 0.19 

Daily Max WT = 22.82/(l+exp(0.18*(12.24- Max AT))) 

0.91 306 1.8 9.61 0 1.66 32.84 231.04 0 

Monthly Min WT = 9.90/(J +exp(2.44*(-0.44- Min AT))) 

0.72 12 1.172 4.3 0.01 1.57 

Weekly Min WT = 16.34/(l +exp(O.l4*(19.94- Min AT))) 

0.9 48 0.8 2.01 0.01 0.54 41.9 145.2 

Daily Min WT = 17.44/(1 +exp(0.26*(5.42- Min AT))) 

0.92 306 1.29 6.15 0 l.l4 42.69 223 0.14 
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Appendix I 

Statistical Overview of the Datasets Used for 

Dissolved Oxygen Regression 



Tables and plots are attached in this appendix to provide a more complete statistical 

overview of the datasets developed for developing regression models for dissolved oxygen 

at the RTWQ stations. 

- Tables 1.1 to 1.4 present a detailed statistical overview of the mean, maximum and 

minimum dissolved oxygen, water temperature and stage levels at the stations. 

- Table 1.5 presents the Pearson's correlation coefficients for the mean dissolved oxygen, 

water temperature and stage at the RTWQ stations. 



Table I./- General Overview of the Dissolved Oxygen Datasets Developed for NF02YL00/2- Humber River 

Water Temperature Stage Dissolved Oxygen 

Dataset Obs. Mean Min Max Mean Min Max Mean Min Max 

Monthly Models- For Regression (Dec 03 to Dec 06) 

Mean Monthly 37 7.068 0.384 17.845 2.123 1.521 3.297 12.092 8.603 19.481 

Max Monthly 37 9.06 1.11 20.67 2.617 1.768 3.867 12.897 8.81 20.01 

Min Monthly 37 5.004 -0.1 16.1 1.784 1.331 2.557 11.359 8.43 18.56 

Monthly Models- For Prediction (Jan 07 to April 08) 

Mean Monthly 14 5.05 0.336 17.14 2.0556 1.7026 2.995 12.662 10.205 14.558 

Max Monthly 14 6.89 1.18 20.27 2.417 1.82 3.723 13.379 10.66 14.82 

Min Monthly 14 2.23 -0.08 15.34 1.7115 1.399 2.15 11.912 9.41 14.39 

Weekly Models- For Regression (Dec 03 to Dec 06) 

Mean Weekly 149 7.106 0.253 18.529 2.133 1.388 3.658 12.054 8.556 19.606 

Max Weekly 149 7.97 0.57 20.67 2.2831 1.435 3.867 12.364 8.68 20.01 

Min Weekly 149 6.149 -0.1 17.34 1.9904 1.33 1 3.584 11.725 8.43 19.19 

Weekly Models- For Prediction (Jan 07 to April 08) 

Mean Weekly 63 4.564 0.18 18.377 2.0598 1.5612 3.4516 12.683 9.878 14.614 

Max Weekly 63 5.405 0.57 20.27 2.2009 1.665 3.761 12.975 10.34 14.82 

Min Weekly 63 3.389 -0.08 16.58 1.9372 1.399 3. 118 12.379 9.41 14.47 

Daily Models - For Regression (Dec 03 to Dec 06) 

Mean Daily 986 7.253 0.0233 20.124 2.1413 1.3367 3.8299 11.983 8.497 19.942 

Max Daily 986 7.577 0.19 20.67 2.1721 1.344 3.867 12.077 8.57 20.0 1 

Min Daily 986 6.935 -0.1 19.77 2.1104 1.331 3.807 11 .883 8.43 19.85 

Daily Models- For Prediction (Jan 07 to April 08) 

Mean Daily 398 4.663 -0.026 19.401 2.0545 1.4335 3.6953 12.732 9.583 14.713 

Max Daily 398 5.002 0.12 20.27 2.0821 1.458 3.723 12.81 3 9.65 14.82 

Min Daily 398 4.3 -0.08 19.25 2.0273 1.399 3.67 12.64 9.41 14.61 

Note- the maximum value of the max monthly, max weelcJy and max daily datasets will maJch each other. The 
minimum value of the datasets will not (as the minimum value for max monthly will be determined/rom 12 
values while the minimum value for max weelcJy will be determined from 53 values (Mini tab counts 53 weeks in 
the year). The same logic applies to the minimum value of the min monthly, min weekly and min daily datasets 
being equal hut the max value is not. 



Table 1.2- General Overview of the Dissolved Oxygen Datasets Developed for NF02Y00121- Peters River 

Water Temperature Stage Dissolved Oxygen 

Dataset Obs. Mean Min Max Mean Min ' Max Mean Min Max 

Monthly Models - For Regression (July 2005 to May 2007) 

Mean Monthly 23 8.07 -0.099 20.58 1.1415 0.9352 1.4796 11.001 7.658 13.762 

Max Monthly 23 13.11 -0.045 30.19 1.4357 0.995 2.454 12.195 8.996 14.957 

Min Monthly 23 5.14 -0.603 14.53 0.9841 0.884 1.075 9.368 1.282 12.9 

Monthly Models- For Prediction (July 2007 to February 2008) 

Mean Monthly 8 8.69 -0.208 20.59 1.2045 1.0399 1.4287 10.82 8.719 12.995 

Max Monthly 8 12.17 -0.149 27.88 1.4941 1.184 1.717 12.05 9.696 14.249 

Min Monthly 8 5.84 -0.23 15.86 1.0375 0.917 1.332 9.706 7.267 11 .898 

Weekly Models- For Regression (Week 28, 2005- July to Week 20, 2007 - May) 

Mean Weekly 91 8.341 -0.133 22.527 1.1636 0.9286 1.8396 10.953 6.988 14.258 

Max Weekly 91 11.197 -0.089 30.194 1.2965 0.953 2.454 11.624 8.134 14.957 

Min Weekly 91 6.558 -0.603 18.33 1.0548 0.908 1.4 10.155 1.282 13.812 

Weekly Models- For Prediction (Week 28, 2007 - July to Week 6, 2008- February) 

Mean Weekly 32 8.76 -0.206 21.06 1.2016 0.9821 1.5588 10.85 8.172 13.584 

Max Weekly 32 10.88 -0.197 27.88 1.322 0.995 1.717 11.445 8.626 14.249 

Min Weekly 32 7.35 -0.23 18.2 1.1128 0.961 1.431 10.202 7.267 12.516 

Daily Models- For Regression (July I, 2005 to May 15, 2007) 

Mean Daily 595 8.448 -0.287 27.876 1.1445 0.884 2.2744 10.936 6.699 14.441 

Max Daily 595 9.819 -0.162 30.194 1.1722 0.884 2.454 11.218 7.133 14.957 

Min Daily 595 7.434 -0.603 23.871 1.1185 0.884 2.014 10.624 1.282 14.248 

Daily Models- For Prediction (July 10, 2007 to February 5, 2008) 

Mean Daily 196 8.764 -0.22 23.622 1.1895 0.9639 1.6967 10.87 7.751 14.037 

Max Daily 196 9.734 -0.219 27.88 1.2128 0.967 1.717 11.135 8.272 14.249 

Min Daily 196 8.023 -0.23 21.86 1.1665 0.961 1.684 10.605 7.267 13.954 



~-- ------------------------------------------ -------

Table I. 3- General Overview of the Dissolved Oxygen Datasets Developed for NF02ZMO 17 8 Leary :S Brook 

Water Temperature Stage Dissolved Oxygen 

Dataset Obs. Mean Min Max Mean Min Max Mean Min Max 

Monthly Models - For Regression (September 2004 to December 2006) 

Mean Monthly 16 6.93 0.705 16.58 0.789 0.6317 0.9535 11.642 6.448 13.866 

Max Monthly 16 11 .04 2.73 20.94 1.45 0.897 2.121 16.67 10.25 52.82 

Min Monthly 16 3.94 -0.161 14.02 0.6528 0.564 0.73 8.094 0.682* 12.145 

Monthly Models- For Prediction (May 2007 to December 2007) 

Mean Monthly 8 10.52 2.75 17.02 0.7145 0.5777 0.8542 10.868 9.147 12.965 

Max Monthly 8 14.65 4.16 19.7 1.21 0.892 1.949 11.933 9.899 13.335 

Min Monthly 8 7.23 1.67 14.9 0.5931 0.542 0.646 9.165 7.592 12.533 

Weekly Models- For Regression (Week 37, 2004- September to Week 51, 2006- December) 

Mean Weekly 57 6.923 0.268 17.5 0.8008 0.5935 1.1827 11 .51 5.235 14.929 

Max Weekly 57 9.491 1.248 20.94 1.1166 0.669 2.121 13.897 8.287 52.821 

Min Weekly 57 5.071 -0.161 14.62 0.696 0.564 1.012 9.388 2536 14.048 

Weekly Models- For Prediction (Week 19, 2007- May to Week 49, 2007- December) 

Mean Weekly 23 10.464 2.629 17.15 0.7025 0.5505 0.9458 10.87 9.136 12.976 

Max Weekly 23 13.705 3.763 19.7 1.015 0.558 1.949 11.731 9.899 13.335 

Min Weekly 23 7.911 1.673 14.9 0.6316 0.542 0.821 9.59 7.592 12.533 

Daily Models- For Regression (September II, 2004to December 19, 2006) 

Mean Daily 347 6.789 0.0738 19.13 0.8075 0.5741 1.3517 11.494 2.848 16.708 

Max Daily 347 7.928 0.263 20.94 0.8855 0.577 1.853 12.461 3.3 52.821 

Min Daily 347 5.834 -0.161 18 0.7582 0.564 1.2 11 10.619 2.536 15.77 

Daily Models - For Prediction (May 11, 2007 to December 6, 2007) 

Mean Daily 136 10.643 2.332 17.32 0.6969 0.5432 1.3797 10.816 8.735 13.144 

Max Daily 136 12.174 2.832 19.7 0.7623 0.544 1.949 11.299 9.294 13.335 

Min Daily 136 9.34 1.673 16.5 0.66 0.542 1.012 10.17 7.592 12.992 

Historical records for dissolved oxygen at Leary :S Brook can be odd in that dissolved oxygen levels are recorded 
but no water temperature, pH, and specific oxygen data are recorded. The monthly minimum value of0.682 is 
taken from a day where this occurred. 



~- ------------------------------ - -----------

Table 1.4 General Overview of the Dissolved Oxygen Datasets Developed for NF02ZM0009- Waterford River 

Water Temperature Stage Dissolved Oxygen 

Dataset Obs. Mean Min Max Mean Min Max Mean Min Max 

Monthly Models- For Regression (July 2005 to March 2007) 

Mean Monthly 21 8.09 0.221 17.71 0.5635 0.4156 0.9088 11.09 6.593 14.217 

Max Monthly 2 1 12.83 1.26 24.05 1.102 0.607 1.977 15.25 8.05 59.31 

Min Monthly 21 4.06 -0.26 13.73 0.4388 0.386 0.579 8.351 0.36 12.87 

Monthly Models- For Prediction (April 2007 to March 2008) 

Mean Monthly 12 7.57 0.665 16.58 0.5671 0.412 0.765 10.82 2.49 17.15 

Max Monthly 12 12.43 2.2 24.3 1.048 0.513 1.956 15.84 11.35 24.64 

Min Monthly 12 4.14 -0.13 11.99 0.4473 0.38 0.537 7.46 -0.53* 15.39 

Weekly Models- For Regression (Week 28, 2005- July to Week 13, 2007 - March) 

Mean Weekly 90 8.1 -0.168 18.733 0.5617 0.4049 1.0525 11.095 5.953 14.896 

Max Weekly 90 11.05 0.04 24.05 0.7911 0.429 1.977 12.727 6.77 59.31 

Min Weekly 90 5.709 -0.26 15.94 0.4789 0.386 0.93 9.766 0.36 13.54 

Weekly Models- For Prediction (Week 14, 2007 - April to Week /3, 2008- March) 

Mean Weekly 48 7.997 0.235 18.456 0.5708 0.3924 0.9339 11.024 1.053 17.967 

Max Weekly 48 11.28 0.93 24.3 0.7999 0.403 1.956 13.166 3.14 24.64 

Min Weekly 48 5.597 -0.13 16.29 0.49 0.38 0.769 9.159 -0.53* 17.23 

Daily Models- For Regression (July 6, 2005 to March 31, 2007) 

Mean Daily 587 8.121 -0.185 22.46 0.5588 0.3938 1.4346 11.071 5.23 15.528 

Max Daily 587 9.356 -0.17 24.05 0.607 0.396 1.977 11 .626 5.63 59.31 

Min Daily 587 7.062 -0.26 20.51 0.522 0.386 1.236 10.564 0.36 15.33 

Daily Models - For Prediction (April I, 2007 to March 27, 2008) 

Mean Daily 306 8.217 -0.061 20.913 0.5866 0.3817 1.2778 10.763 -0.34 19.14 

Max Daily 306 9.74 -0.05 24.3 0.616 0.383 1.956 11.514 -0.12 24.6 

Min Daily 306 7 -0.13 19.16 0.5319 0.38 1.033 10.017 -0.53* 18.34 

In February and March of2008 there were unusually low dissolved oxygen values. ANy values that dropped 
below 0 mg/L were removed from the Prediction Dataset. 



Table 1.5- Pearson Correlation and P-Valuefor RTWQ Stations- WT, DO and Stage 

Humber River Peter's River Leary's Brook Waterford River 

Monthly 

Mean Mean Mean Mean Mean Mean Mean Mean 
WT DO WT DO WT DO WT DO 

Mean -0.950 Mean -0.972 Mean -0.924 Mean -0.943 
DO 0.000 DO 0.000 DO 0.000 DO 0.000 

Mean -0.196 0.139 Mean -0.547 0.506 Mean -0.629 0.686 Mean -0.641 0.604 
Stage 0.267 0.434 Stage 0.007 0.014 Stage 0.070 0.041 Stage 0.002 0.004 

Weekly 

Mean Mean Mean Mean Mean Mean Mean Mean 
WT DO WT DO WT DO WT DO 

Mean -0.939 Mean -0.962 Mean -0.903 Mean -0.903 
DO 0.000 DO 0.000 DO 0.000 DO 0.000 

Mean -0.230 0.187 Mean -0.434 0.399 Mean -0.595 0.643 Mean -0.502 0.469 
Stage 0.006 0.027 Stage 0.000 0.000 Stage 0.001 0.000 Stage 0.000 0.000 

Daily 

Mean Mean Mean Mean Mean Mean Mean Mean 
WT DO WT DO WT DO WT DO 

Mean -0.933 Mean -0.956 Mean -0.845 Mean -0.895 
DO 0.000 DO 0.000 DO 0.000 DO 0.000 

Mean -0.243 0.194 Mean -0.447 0.383 Mean -0.469 0.544 Mean -0.413 0.410 
Stage 0.000 0.000 Stage 0.000 0.000 Stage 0.000 0.000 Stage 0.000 0.000 



Appendix J 

Graphical Plots of Dissolved Oxygen and 

Water Temperature 
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Figure J. 1 Humber River Water Temperature and Dissolved Oxygen 
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Figure J. 3 Leary's Brook Water Temperature and Dissolved Oxygen 
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Figure J.4 Waterford River Water Temperature and Dissolved Oxygen 



Appendix K 

Curve Fitting Results for Dissolved Oxygen 

Regression Models 



Table K.1 - Regression Models for Predicting Humber River Dissolved Oxygen 

Mean Datasets 
Mean Dissolved Oxygen 
Mean Water Temperature 

Mean Stage 

Monthly Weekly Daily 

Minimum Datasets 
Minimum Dissolved Oxygen 

Maximum Water Temperature 
Minimum Stage 

Maximum Datasets 
Maximum Dissolved Oxygen 
Minimum Water Temperature 

Maximum Stage 

Monthly Weekly Daily Monthly Weekly Daily 

Humber River 
(37 Monthly Observations, 149 Weekly Observations and 986 Daily Observations) 

Linear Model: DO= a*Tw + b 

a -0.291 -0.291 -0.288 -0.258 -0.277 -0.277 -0.347 -0.305 -0.290 

b 13.871 13.900 13.857 13.489 13.740 13.740 14.268 13.992 13.867 

RSS 9.05 47.07 342.93 9.16 50.50 50.50 10.44 48.44 341 .22 

R2 Adj 0.90 0.88 0.87 0.90 0.88 0.88 0.88 0.87 0.87 

Exponential Decay Model: DO = exp(a + b*Tw) 

a 2.643 2.644 2.642 2.620 2.636 2.636 2.668 2.649 2.641 

b -0.026 -0.026 -0.026 -0.024 -0.025 -0.025 -0.029 -0.026 -0.026 

RSS 8.26 43.61 317.68 8.29 46.45 46.45 9.42 45.38 316.88 

R2 Adj 0.91 0.89 0.88 0.91 0.89 0.89 0.90 0.88 0.88 

MLR with Stage: DO = a + b*Tw + c*ST 

a NS NS 14.12 NS NS 14.10 NS NS 14.14 

b -0.29 -0.29 -0.29 

c -0.11 -0.11 -0.12 

RSS 339.78 347.21 337.79 

R2 Adj 0.87 0.87 0.87 



Table K.2- Regression Models for Predicting Peter's River Dissolved Oxygen 

Mean Datasets 
Mean Dissolved Oxygen 
Mean Water Temperature 

Mean Stage 

Minimum Datasets 
Minimum Dissolved Oxygen 

Maximum Water Temperature 
Minimum Stage 

Maximum Datasets 
Maximum Dissolved Oxygen 
Minimum Water Temperature 

Maximum Stage 

Monthly Weekly Daily Monthly Weekly Daily Monthly Weekly Daily 

Peter's River 
(23 Monthly Observations, 91 Weekly Observations, 595 Daily Observations) 

Linear Model: DO= a*Tw + b 

a -0.271 -0.270 -0.270 -0.216 -0.230 -0.245 -0.330 -0.303 -0.286 

b 13.189 13.208 13.214 12.498 12.811 13.030 13.887 13.615 13.346 

ASS 4.92 27.51 220.58 12.23 46.61 365.03 5.96 27.01 203.54 

R2 Adj 0.94 0.93 0.91 0.88 0.89 0.87 0.92 0.92 0.91 

Exponential Decay Model: DO = exp(a + b*Tw) 

a 2.588 2.591 2.591 2.545 2.566 2.581 2.634 2.618 2.599 

b -0.025 -0.026 -0.026 -0.023 -0.023 -0.024 -0.028 -0.027 -0.026 

RSS 5.42 28.56 224.11 13.34 52.68 374.09 5.76 25.25 198.11 

R2 Adj 0.94 0.92 0.91 0.87 0.88 0.87 0.92 0.92 0.92 

MLR with Stage: DO = a + b*Tw + c*ST 

a NS NS 13.73 NS NS 13.45 NS NS 13.81 

b -0.27 -0.25 -0.29 

c -0.43 -0.36 -0.37 

RSS 216.13 362.36 199.50 

R2 Adj 0.92 0.87 0.91 



Table K.3- Regression Models for Predicting Leary's Brook Dissolved Oxygen 

Mean Datasets 
Mean Dissolved Oxygen 
Mean Water Temperature 

Mean Stage 

Monthly Weekly Daily 

Minimum Datasets 
Minimum Dissolved Oxygen 

Maximum Water Temperature 
Minimum Stage 

Maximum Datasets 
Maximum Dissolved Oxygen 
Minimum Water Temperature 

Maximum Stage 

Monthly Weekly Daily Monthly Weekly Daily 

Leaty'S Brook 
(16 Monthly Observations, 57 Weekly Observations, 347 Daily Observations) 

Linear Model: DO = a*Tw + b 

a -0.347 -0.407 -0.398 -0.341 -0.355 -0.351 -0.442 -0.418 -0.402 

b 14.207 14.328 14.199 12.626 12.757 13.401 15.895 15.302 14.689 

ASS 15.05 63.15 687.79 118.71 238.54 1093.68 11 .26 48.52 2130.05 

A2 Adj 0.83 0.81 0.71 0.41 0.51 0.59 0.82 0.84 0.42 

Exponential Decay Model: DO = exp(a + b*Tw} 

a 2.666 2.673 2.662 2.567 2.557 2.607 2.772 2.734 2.691 

b -0.030 -0.036 -0.035 -0.037 -0.035 -0.033 -0 .034 -0 .033 -0 .033 

ASS 17.28 76.56 770.17 126.67 265.69 1180.39 10.93 51 .53 2209.88 

A2 Adj 0.80 0.77 0.68 0.37 0.46 0.55 0.82 0.83 0.40 

MLR with Stage: DO = a + b*Tw + c*ST 

a NS NS 14.05 NS NS 13.23 NS NS 14.52 

b -0.41 -0.36 -0.41 

c 0.66 0.81 0.91 

ASS 662.87 1061.50 3782.27 

A2 Adj 0.72 0.60 0.29 



Table K.4- Regression Models for Predicting Waterford River Dissolved Oxygen 

Mean Datasets 
Mean Dissolved Oxygen 
Mean Water Temperature 

Mean Stage 

Monthly Weekly Daily 

Minimum Datasets 
Minimum Dissolved Oxygen 

Maximum Water Temperature 
Minimum Stage 

Maximum Datasets 
Maximum Dissolved Oxygen 
Minimum Water Temperature 

Maximum Stage 

Monthly Weekly Daily Monthly Weekly Daily 

Waterford River 
(21 Monthly Observations, 90 Weekly Observations, 587 Daily Observations) 

Linear Model: DO = a*Tw + b 

a -0.378 -0.371 -0.373 -0.335 -0.330 -0.349 -0.409 -0.397 -0.383 

b 14.148 14.097 14.098 12.649 13.412 13.828 14.791 14.496 14.249 

RSS 15.13 120.07 886.03 102.32 229.78 1132.2L 15.77 104.83 851.31 

R2 Adj 0.88 0.81 0.80 0.55 0.71 0.77 0.84 0.81 0.79 

Exponential Decay Model: DO = exp(a + b*Tw) 

a 2.667 2.663 2.663 2.617 2.631 2.651 2.697 2.680 2.668 

b -0.035 -0.035 -0.035 -0.043 -0.035 -0.035 -0.033 -0.030 -0.035 

RSS 14.73 116.89 861.44 96.34 226.17 1090.6£ 15.33 101.64 825.25 

R2 Adj 0.89 0.82 0.81 0.58 0.72 0.78 0.85 0.82 0.80 

MLR with Stage: DO = a+ b*Tw + c*ST 

a NS NS 0.81 NS NS 12.69 NS NS 13.33 

b -0.36 -0.33 -0.36 

c 0.87 1.92 1.33 

RSS 877.14 1107.6L 3283.55 

R2 Adj 0.80 0.77 0.48 



Humber River - Monthly Mean DO 
15.0 r----------;:::======:::;--1 
13.9 •• 

g 12.7 

c 11.6 
ro 
~ 10.4 

~ 9.3 

8 .1 

• 
• 

Input Data • 
a•x+b 
Exponential 1 -

7.0 [_._._...........J~..........J..~.......L ..................................... ~ ............ __,__._.......__.__, 

0.0 3.6 7.1 10.7 14.3 17.9 21.4 25.0 

X:Mean WT 

Leary's Brook- Monthly Mean DO 
15.0 r-------;::::======~ 
13.9 

0 12.8 • • 
0 11 .6 • 
c 
ro 10.5 
Q) 

:2 9.4 
~ 8.3 

• 
Input Data • 
a•x+b 
Exponential 1 -

• 

Peter's River - Monthly Mean DO 
15.0 t---------;=:::=:::=:::=;-~ 

13.9 

g 12.7 

c 11.6 
ro 
~ 10.4 

~ 9.3 

8.1 

Input Data • 
a•x+b 
Exponential 1 -

7 . 0 '--'-'--'--'-..L..L.._..__._._.__,_...._._.........__._._._.........._..__._. ......................... .._.._, 

0.0 4.2 8.3 12.5 16.7 20.8 25.0 

X:Mean WT 

Waterford River - Monthly Mean DO 
15.0,.---------------, 
14.0 • 

0 13.0 
0 12.0 
c 11.0 
ro 
Q) 10.0 
2 . . 9.0 
>- 8.0 

Input Data • 
a'x+b 
Exponential 1 -

• 

• 
7.1 7.0 • • 6. 0 6 . 0 w.............J.~~ .................................... .u..... ............. __,__._ ....................... _._.__. 

0.0 3.6 7.1 10.7 14.3 17.9 21.4 25.0 0.0 3.6 7.1 10.7 14.3 17.9 21.4 25.0 

X:Mean WT X:Mean WT 

15 

14 

; 13 
0\ 
~12 
0

11 "C 

~ 10 
0 ., 9 
.!!! 
c 8 

7 

6 

Monthly Mean Dissolved Oxygen Models 

0 

Exponential Decay Model 
Variable 

• DO - Humber River 
• DO - Peters River 

DO - Learys Brook 

A DO - Waterford River 

5 10 15 20 25 
Water Temperature 



Humber River - Monthly Min DO 
14.0 ~· ---------;:======;--] 13.0 

12.0 
11.0 

Peter's River - Monthly Min DO 

13.0 • 

g 12.0 

.!:: 11.0 
~ 
;>.: 10.0 

9.0 

• 

Input Data • 
a 'x+b 
Exponential 1 -

• 

• 

0 
0 10.0 
c 9.0 
~ 8.0 
>-

7.0 
6 .0 

Input Data • 
a'x+b 
Exponential 1 -

• 
8 0 0 ~.........._,........_'-'-'-......__._._._.....__._~........_._,_._-'--'..l..~-'-'--' 5.0 t.......................L...__._._.w..... ............. ..L...................J.~........L...~...L..................J 

-5.0 0.7 6.4 12.1 17.9 23.6 29.3 35.0 0.0 3.6 7.1 10.7 14.3 17.9 21.4 25.0 

14.0 

12.0 

0 10.0 
0 8.0 • 
c 
~ 6.0 

>- 4.0 

2.0 

0.0 
2.0 

X:MaxWT X:MaxWT 

Leary's Brook - Monthly Min DO Waterford River - Monthly Min DO 
14.0 r---------;=========:::::::;-1 

• Input Data • 
a'x+b • • • • •• Exponential 1 -

• • 

• • 

• 
• 

12.0 

0 10.0 
0 8.0 
c 
~ 6.0 

>- 4.0 

2.0 

• 

• 

Input Data • 
a'x+b 
Exponential 1 -

• 

• 

4 .9 7.7 1o.6 13.4 16.3 19.1 22.0 °·%.o 5.0 10.0 15~o 20.0 25.0 

X: Max WT X:Max WT 

Monthly Min Dissolved Oxygen Models 
Ex onential Deca Model 

14 r---~~~~~~========~ 
Variable 

13 • DO - Humber River 
• DO - Peters River 

~ 12 DO - learys Brook 
0, .6. DO - Waterford River 

~11 
0 10 "'C 

~ 9 -
~ 8 
U) ·-c 7 

6 

5 ~--~---~--~--~--~ 
0 5 10 15 20 25 

Water Temperature 



Humber River - Monthly Max DO 
16.0 .,.------------_____.:._ ___ __, 

15.0 
• 

0 14.0 •• 
0 13.0 

~ 12.0 
~ 11.0 
>- 10.0 

9.0 

Input Data • 
a•x+b 
Exponential 1 -

• 

8 . 0 t.......................i_,_,__.___.__L_.~...L....... ............ .L.....o.__..__._j--'-'-'.......L. ........... 0 

0.0 2.6 5.1 7.7 10.3 12.9 15.4 18.0 

X:Min WT 

Leary's Brook - Monthly Max DO 
18.0 .,-----~-------=------, 

• 
16.8 • 

0 15.5 
0 14.3 

~ 13.0 
~ 11.8 
>- 10.5 

9 .3 

Input Data 
a•x+b 
Exponential1 -

16.0 

14.7 

g 13.3 

~ 12.0 
~ 

Peter's River - Monthly Max DO 

Input Data • 
a•x+b 
Exponential 1 -

;>-: 10.7 

9.3 

8.0 L........_,_.__jL....................J. ............ ........J..~.......J.....~....J....o. ............ ....L......~ 

0.0 2.6 5.1 7.7 10.3 12.9 15.4 18.0 

X:MinWT 

Waterford River - Monthly Max DO 
17.0 E------;::=====~1 

Input Data • 16.0 
• 15.0 • 

g 14.0 
X 13.0 
~ 12.0 
;>-: 11.0 

10.0 
9.0 

a•x+b 
Exponential 1 -

• 
• 

8.0 8 .0 w...............L~...w.....~ ............. .......t...o. ........... .L....o...-...J............._.w.......~ 

0.0 2.6 5.1 7.7 10.312.9 15.4 18.0 0.0 2.3 4.5 6.8 9.011 .313.515.818.0 

X:Min WT X:Min WT 

Monthly Max Dissolved Oxygen Models 
Ex onential Deca Model 

16 Variable 

c 
"14 0\ 
> >< 
0 12 , 
Ql 

> 
~10 
U) 

Q 
8 

6 
0 

• DO - Humber River 

• DO - Peters River 
DO - l.earys Brook 

A DO - Waterford River 

5 10 15 20 25 
Water Temperature 



Humber River - Exponential Decay Models Peter's River Exponential Decay Models 

c 

15 

14 

8,13 
> 
~ 12 

"Z 11 
> 
0 10 
Ill 

iS 9 
8 

7 

0 5 10 15 20 25 
Water Temperature 

14 

c13 
Ql 
0112 
> 
~11 
-g 10 
> 
0 9 Ill 
Ill 
Q 8 

7 

6 
0 5 10 15 20 25 

Leary's Brook Exponential Decay Models 

Water Temperature 

Waterford River Exponential Decay Models 

17.5 

; 15.0 
c:n 
> 
~ 12.5 
"0 ., 
> 0 10.0 
Ill 
Ill 

Q 7.5 

0 

15.0 

c 
~ 12.5 
> 
X 
0 
-g 10.0 
> 
0 
Ill 
Ill 7.5 
Q 

5 .0 

5 10 15 20 25 0 
Water Temperature 

Variable 
• Monthly Mean 
• Weekly Mean 

Daily Mean 
• Monthly Min 

Weekly Min 
• Daily Min 
... Monthly Max 
+ Weekly Max 

Daily Max 

5 10 15 20 25 
Water Temperature 



Appendix L 

Model Testing Results for Dissolved Oxygen 



The exponential decay models were tested using the dissolved oxygen datasets reserved 

for model testing purposes. The following tables and plots are contained in this appendix: 

-Table L.1 -Using the Exponential Model for Predicting Humber River Dissolved Oxygen. 

-Table L.2- Using the Exponential Model for Predicting Peter's River Dissolved Oxygen 

-Table L.3- Using the Exponential Model for Predicting Leary's Brook Dissolved Oxygen 

-Table L.4- Using the Exponential Model for Predicting Waterford River Dissolved Oxygen 

- Figure L.1 Presents a boxplot of the absolute value of the observed mean dissolved 

oxygen minus the predicted mean dissolved oxygen found using the exponential model. 



Table L.1 - Using the Logistic 1 Model for Predicting Dissolved Oxygen - Humber River 

Absolute Value of Difference Absolute Value of % Error 
Abs[Pred- Obs] Abs[(Pred - Obs)/Pred]*1 00% 

Adj 
Obs. Mean Max Min StDev Mean Max Min StDev R2 

Humber River 

Mean Dissolved Oxygen Models 

Monthly Mean DO = exp(2.643 - 0.0258 Mean W7J 

0.91 14 0.76 1.77 0.04 0.53 6.51 16.11 0.3 5.02 

Weekly Mean DO = exp(2.644- 0.0258 * Mean W7J 

0.89 63 0.74 2.9 0.01 0.59 6.18 21.48 0.04 5.05 

Daily Mean DO = exp(2.642 - 0.0256 * Mean W7J 

0.88 398 0.76 2.97 0 0.59 6.36 22.21 0 5 

Minimum Dissolved Oxygen Models 

Monthly Min DO = exp(2.620- 0.024 Max W7J 

0.91 14 0.859 2.245 0.007 0.629 7.57 17.84 0.058 5.308 

Weekly Min DO = exp(2. 6236 - 0. 025 Max W7J 

0.89 63 0.792 2.83 0.013 0.602 6.728 21.47 0.102 5.08 

Daily Min DO = exp(2. 636 - 0. 025 Max W7J 

0.89 398 0.761 2.983 0.00002 0.602 6.425 22.24 0.0001 5.14 

Maximum Dissolved Oxygen Models 

Monthly Max DO = exp(2. 668 - 0. 029 Min W7J 

0.9 14 0.804 2.664 89 0.726 6.182 18.82 0.631 5.729 

Weekly Max DO = exp(2. 649 - 0. 026 Min W7J 

0.88 63 0.782 2.914 0.008 0.606 6.223 20.898 0.058 4.817 

Daily Max DO = exp(2. 641 - 0. 026 Min W7J 

0.88 398 0.767 3 0.001 0.592 6.329 22.34 0.011 4.947 



Table L.2- Using the Logistic 1 Model for Predicting Dissolved Oxygen- Peter's River 

Absolute Value of Difference Absolute Value of % Error 
Abs[Pred - Obs] Abs[(Pred- Obs)/Pred]*100% 

Adj 
Obs. Mean Max Min StOev Mean Max Min StDev R2 

Peter's River 

Mean Dissolved Oxygen Models 

Monthly Mean DO = exp(2.588- 0.0255 Mean W7) 

0.940 8 0.720 1.420 0.020 0.500 6.690 10.770 0.140 4.140 

Weekly Mean DO = exp(2.591 - 0.0256 Mean W7) 

0.92 32 0.68 1.94 0.02 0.58 6.38 21.87 0.17 5.75 

Daily Mean DO = exp(2.591 -0.0256 Mean W7) 

0.91 196 0.72 2.32 0 0.59 6.78 24.7 0.02 5.82 

Minimum Dissolved Oxygen Models 

Monthly Min DO = exp(2.545- 0.023 Max W7) 

0.87 8 0.699 1.77 0.121 0.538 6.86 13.82 1.15 4.29 

Weekly Min DO = exp(2.566- 0.023 Max W7) 

0.88 31 0.712 2.04 0.0004 0.615 7.05 26.68 0.004 6.687 

Daily Min DO = exp(2.581 - 0.024 Max W7) 

0.87 196 0.728 2.252 0.004 0.565 6.947 27.71 0.042 5.66 

Maximum Dissolved Oxygen Models 

Monthly Max DO = exp(2.634 - 0.028 Min W7) 

0.92 8 0.791 1.902 0.206 0.638 6.825 16.21 1.47 5.53 

Weekly Max DO = exp(2.618- 0.027 Min W7) 

0.92 32 0.759 2.1 0.026 0.583 6.806 20.28 0.28 5.64 

Daily Max DO = exp(2.599- 0.026 Min W7) 

0.92 196 0.756 2.32 0.013 0.605 7.08 27.74 0.103 6.07 



Table l.3- Using the Logistic 1 Model for Predicting Dissolved Oxygen- Leary's Brook 

Absolute Value of Difference Absolute Value of % Error 
Abs[Pred - Obs] Abs[(Pred - Obs)/Pred]*1 00% 

Adj 
Obs. Mean Max Min StDev Mean Max Min StDev R2 

Leary's Brook 

Mean Dissolved Oxygen Models 

Monthly Mean DO = exp(2. 666 - 0. 0302 Mean W7) 

0.8 8 0.37 0.86 0.1 0.26 3.78 9.03 0.82 2.91 

Weekly Mean DO = exp(2.673- 0.0357 * Mean W7) 

0.77 23 0.84 1.71 0.21 0.39 8.85 19.44 1.58 4.92 

Daily Mean DO = exp(2.662 - 0.0351 *Mean W7) 

0.68 132 0.88 1.83 0.05 0.41 9.51 22.09 0.37 5.2 

Minimum Dissolved Oxygen Models 

Monthly Min DO = exp(2.567- 0.037 Max W7) 

0.37 8 1.44 1.95 0.33 0.58 19.27 31.07 4.44 8.8 

Weekly Min DO = exp(2.557- 0.035 Max W7) 

0.46 23 1.56 2.52 0.16 0.56 19.98 39.08 2.14 8.48 

Daily Min DO = exp(2.607- 0.033 Max W7) 

0.55 132 1.05 2.12 0.04 0.46 12.04 28.67 0.49 6.48 

Maximum Dissolved Oxygen Models 

Monthly Max DO = exp(2. 772 - 0.034 Min W7) 

0.82 8 0.83 1.87 0.23 0.56 6.19 12.37 2.19 3.52 

Weekly Max DO = exp(2. 734 - 0. 033 Min W7) 

0.83 23 0.42 1.32 0.027 0.3 3.41 9.03 0.25 2.24 

Daily Max DO = exp(2. 691 - 0. 033 Min W7) 

0.4 132 0.87 2.02 0.02 0.5 8.89 22.88 0.143 5.67 



Table L.4- Using the Logistic 1 Model for Predicting Dissolved Oxygen- Waterford River 

Absolute Value of Difference Absolute Value of % Error 
Abs[Pred - Obs] Abs[(Pred - Obs}/Pred]*1 00% 

Adj 
Obs. Mean Max Min StDev Mean Max Min StDev R2 

Waterford River 

Mean Dissolved Oxygen Models 

Monthly Mean DO = exp(2.667 - 0.0353 Mean W7) 

0.89 10 1.49 3.09 0.05 1.17 13.88 36.8 0.5 11 

Weekly Mean DO = exp(2. 663 - 0. 034 7 Mean W7) 

0.82 42 1.71 4.09 0.07 1.15 16.3 41.81 0.65 11.22 

Daily Mean DO = exp(2.663 - 0.0351 Mean W7) 

0.81 272 1.7 8.14 0 1.25 16.28 74 0.01 12.35 

Minimum Dissolved Oxygen Models 

Monthly Min DO = exp(2.617- 0.043 Max W7) 

0.58 10 1.24 2.93 0.02 15.57 35.78 0.36 11.61 

Weekly Min DO= exp(2.631 - 0.035 Max W7) 

0.72 42 1.57 3.95 0.03 1.22 17.3 48.64 0.51 14.18 

Daily Min DO= exp(2.651 - 0.035 Max W7) 

0.78 272 1.69 10.72 0.004 1.28 17.25 81.46 0.04 13.11 

Maximum Dissolved Oxygen Models 

Monthly Max DO = exp(2.697 - 0.033 Min W7) 

0.85 10 2.66 11 .35 0.06 3.3 20.49 85.36 0.47 24.67 

Weekly Max DO = exp(2.680 - 0.030 Min W7) 

0.82 42 2.21 12.08 0.03 1.98 18.75 96.22 0.23 16.24 

Daily Max DO = exp(2. 668 - 0. 035 Min W7) 

0.8 272 1.8 13.5 0.002 1.41 16.35 121 .18 0.02 13.05 
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Appendix M 

Minitab Macro for Plotting Air Temperature) Water 

Temperature and Dissolved Oxygen 



{Page 1) 
gmacro 
A1WTDO 
Note Author - Richard Harvey 

Erase c1-c100 
Erase 1<1-1<1 00 

Note macro uses logistic model for WT 
and AT 
Note i.e. Tw = 20.92/ 
(1 +exp{0.26*(6.97-Ta))) 
Note or Tw = a/1 +exp(b*(c-Ta))) 
Note enter a, b, and c below Q.e. 20.92 
0.266.97) 
Set cSO; 
Rle "terminal"; 
Nobs3. 
Copy c50 k50 k51 k52. 

Note macro uses exponential model for 
WTand DO 
Note i.e. DO = exp(a + b*Tw) 
Note or DO = exp(d + e*Tw) 
Note enter d and e below Q.e. 2.64 and 
-0 .026) 
set c51; 
Rle "terminal"; 
Nobs 2. 
Copy c51 k53 k54. 

Note enter a value for air temperature 
(i.e. 10) 
Set c52; 
Rle "terminal"; 
Nabs 1. 
Copy c52 k55. 

Name c1 'Air Temperature' 
Set c1 
-5:25/0.1 
End 

Name c2 'Water Temperature' 
Let c2= 1<50/(1 +exp(k5l*(k52-c1))) 
Name c3 'Dissolved Oxygen' 
Let c3 = exp(k53 + k54*c2) 
Let c100 = 1<50/(1 +exp(k51*(k52-k55))) 
Copy c1 00 k1 . 
Let c101 = exp{k53 + k54*k1) 
Copy c101 k2. 
Name c5 'Plot Line Left WT1' 
Setc5 
0:1<110.01 
End 

{Page 2)) 
Let k60 = count(c5) 
Name c6 'Plot Line Left AT1' 
Setc6 
k60{k55) 
ENd 

Name c? 'Plot Line Left AT2' 
Setc? 
1<55:25/0.01 
End 
Let k61 = count(c 7) 
Name c8 'Plot Line Left WT2' 
Setc8 
k61{k1) 
End 

Name c9 'Plot Line Right WT1 • 
Setc9 
0:1<1/0.01 
End 
Let 1<62 = count{c9) 
Name c10 'Plot Line Right 001' 
Set c10 
k62{k2) 
End 

Name c11 'Plot Line Right 002' 
Set c11 
0:1<2/0.01 
End 
Let k63 = count{c11) 
Name c12 'Plot Line Right WT2' 
Set c12 
k63{k1) 
End 

Layout; 
Title "Using AT to find WT & WT to 
findoo·. 
Plot 'Water Temperature' * & 
'Air Temperature' 'Plot Line Left 
WT1' *& 
'Plot Line Left AT1' & 
'Plot Line Left WT2' "' & 
'Plot Line Left AT2'; 
Scale 1; 
Tick-5o 5 10 15 20 25; 
Min -5; 
Max 25; 
Scale2; 
TICk 0 2.5 5 7.51012.51517.5 
20; 
MinO; 

{Page 3) 
AxLabel1 "Air Temperature"; 
ADisplay 1; 
AxLabel2 "Water Temperature"; 
ADisplay 1; 
NoLegend; 
Overlay; 
NoJitter; 
Symbol; 
Type 6 6 6 20 23 26 29 2 3 4; 
Color 16 66 66 74 42 86 84; 
Size 11 1; 
Grid 1; 
MGrid 1; 
Grid 2; 
MGrid 2; 
Footnote; 
FPanel; 
Trtle "Use AT to Rnd WT"; 
NoD Title; 
Rgure 0 0 .53 0 .02 0 .98. 

Plot ·water Temperature' • & 
'Dissolved Oxygen' 'Plot Line Right 
WT1'& 
• 'Plot Line Right 001 ' & 
'Plot Line Right WT2' * & 
'Plot Line Right 002'; 
Scale 1; 
MinO; 
Tick02 46810 1214; 
Scale 2; 
Tick 0 2.5 5 7.5 10 12.515 17.5 20; 
MinO; 
AxLabe11 "Dissolved Oxygen•; 
ADisplay 1; 
AxLabe12 •water Temperature"; 
ADisplay 1; 
NoLegend; 
Overlay; 
NoJitter; 
Symbol; 
Type 6 6 6 20 23 26 29 2 3 4; 
Color 16 66 66 74 42 86 84; 

Size111 ; 
Grid 1; 
MGrid 1; 
Grid2; 
MGrid2; 
Footnote; 
FPanel; 
Title • Use WT to Rnd DO"; 
NoD Title; 
Rgure 0 .5 1 0.02 0.98. 
Endlayout. 

end macro 
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}ITB > tsATIJTDO 
Executinq from file : C: \Proqram files\MINITAB 14\MACROS\ATldTDO . MAC 
Author - R~chard Harvey - July 2009 
macro is used to develop a three way plot 
Step 1 - use air temperature to find water temperature 
Step 2 - use water ceaperacure to find dissolved oxyqen 
In this macro enter a value for AT then the macro will find DO for you 
macro uses loqistic aodel for water temperature and air temperature 
i.e . Tw = 20.92/(l+exp(0.26~(6 . 97-Ta))) 

or Tw = a/l+exp(b~(c-Ta))) 
please enter val ues for a , b , and c below (i . e . 20 . 92 0 . 26 6 . 97) 
DATA> 20 . 92 0 . 26 6 . 97 
macro uses the exponential model for water temperature and dissolved oxyqen 
i . e . DO = exp(a + b~Tw) 
or DO = exp(d + e~Tw) 
plese enter values for d and e below (i . e . 2 . 64 and -0 . 026) 
DATA> 2 . 64 - 0 . 026 
please enter a value for air temperature (i . e. 10) 
DATA> 12 

Using AT to find WT & WT to find DO 
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Appendix N 

Statistical Overview of the Grab Sample Datasets 



Table N-1 - Statistical Properties of the Humber River Grab Sample Dataset 

#of Minimum Maximum Mean Median Zeroes 
Samples 

Real Time Measurements 

Water Temperature (OC) 31 0.627 18.799 7.610 6.806 * 

pH (pH units) 31 6.669 7.557 7.039 6.950 * 

Specific conductance (~S/cm) 31 24.010 42.898 35.720 37.499 * 

Dissolved Oxygen (mg/L) 31 8.585 19.299 12.231 11.440 * 

Stage (m) 31 1.482 3.499 2.206 2.236 * 

Grab Sample Measurements 

Alkalinity (mg/L CaC03) 31 10.0 20.0 13.226 13.000 0.000 

Color(TCU) 31 22.0 112.0 37.710 38.000 0.000 

Conductivity (uS/em) 31 39.0 56.0 43.903 43.000 0 .000 

Hardness (mg/L CaC03) 31 7.0 17.0 10.839 10.000 0.000 

pH (pH units) 31 6.6 7.6 6.880 6 .840 0.000 

lDS(mg/L) 31 25.0 36.0 28.548 28.000 0.000 

TSS (mg/L) * * * * * 

Turbidity (NTU) 31 0.400 4.200 0.777 0.600 0.000 

Boron (mg/L) 31 0.000 0.030 0.002 0.000 29.000 

Bromide (mg/L) 31 0.000 0.000 0.000 0.000 31 .000 

Calcium (mg/L) 31 3.000 5.000 4.097 4.000 0.000 

Chloride (mg/L) 31 3.000 5.000 3.903 4.000 0.000 

Flouride (mg/L) 31 0.000 0.110 0.004 0.000 30.000 

Potassium (mg/L) 31 0.000 0.000 0.000 0.000 31 .000 

Sodium (mg/L) 31 0.000 3.000 1.387 2.000 11 .000 

Sulphate (mg/L) 31 3.000 4.000 3.226 3.000 0.000 

Ammonia (mg/L) 31 0.000 0.240 0.025 0.000 19.000 

DOC 31 0.800 14.000 5.194 4.900 0.000 

Nitrate(ite) (mg/L) 31 0.000 0.130 0.042 0 .000 15.000 



Table N-1 - continued 

#of Minimum Maximum Mean Median Zeroes 
Samples 

Kjeldahl Nitrogen (mg/L) 31 0.000 0.370 0.152 0.130 1.000 

Total Phosphorus (mg/L) 31 0.000 0.090 0.019 0.010 11.000 

Aluminum (mg/L) 31 0.050 0.170 0.073 0.070 0.000 

Antimony (mg/L) 31 0.000 0.000 0.000 0.000 31.000 

Arsenic (mg/L) 31 0.000 0.000 0.000 0.000 31.000 

Barium (mg/L) 31 0.000 0.010 0.000 0.000 30.000 

Cadmium (mg/L) 31 0.000 0.000 0.000 0 .000 31 .000 

Chromium (mg/L) 31 0.000 0.001 0.000 0.000 30.000 

Copper (mg/L) 31 0.000 0.000 0.000 0 .000 31.000 

Iron (mg/L) 31 0.040 0.130 0.073 0.070 0.000 

Lead (mg/L) 31 0.000 0.000 0.000 0 .000 31.000 

Magnesium (mg/L) 31 0.000 1.000 0.161 0.000 27.000 

Manganese (mg/L) 31 0.000 0.030 0.001 0.000 30.000 

Mercury (mg/L) 31 0.000 0.000 0.000 0.000 31.000 

Nickel (mg/L) 31 0.000 0.000 0.000 0.000 31 .000 

Selenium (mg/L) 31 0.000 0.000 0.000 0.000 31.000 

Uranium (mg/L) 31 0.000 0.000 0.000 0.000 31 .000 

Zinc (mg/L) 31 0.000 0.000 0.000 0.000 31 .000 

Source Water Temperature (<'C) 16 0.770 16.300 6.599 4.250 * 



Table N.2- Statistical Properties of the Peter's River Grab Sample Dataset (Only reinstallation) 

#of Minimum Maximum Mean Median Zeroes 
Samples 

Real Time Measurements 

* Water Temperature (0 C) 15 -0.2 28.7 9.5 5.1 

* pH (pH units) 15 4.9 8.1 6.7 6.8 

* Specific conductance (pS/cm) 
15 34.0 84.9 49.0 43.0 

* Dissolved Oxygen (mg/L) 15 7.5 14.3 11.0 11 .9 

Stage (m) 15 0.9 1.5 1.1 1.1 

Grab Sample Measurements 

Alkalinity (mg/L CaC03) 15 8.000 34.000 20.700 20.000 0 

Color (TCU) 15 15.000 74.000 41 .900 39.000 0 

Conductivity (uS/em) 15 41 .000 89.000 58.100 56.000 0 

Hardness (mg/L CaC03) 15 16.000 33.000 23.200 23.000 0 

pH (pH units) 15 6.500 7.600 7.200 7.100 0 

IDS(mg/L) 15 25.000 58.000 36.500 33.000 0 

TSS (mg/L) ** * * * * 

Turbidity (NTU) 15 0.400 0.700 0.600 0.600 0 

Boron (mg/L} 15 0.000 0.00000000 0-0.02 0 .000 7 

Bromide (mg/L) 15 0.000 0.000 0.000 0.000 15 

Calcium (mg/L) 15 4.800 10.000 7.100 7.000 0 

Chloride (mg/L) 15 2.000 6.000 3.700 4.000 0 

Flouride (mg/L) 15 0.000 0.000 0.000 0.000 14 

Potassium (mg/L} 15 0.000 0.300 0.100 0.000 8 

Sodium (mg/L) 15 0.000 3.500 2.000 2.600 4 

Sulphate (mg/L) 15 0.000 4.000 1.600 2.000 7 

Ammonia (mg/L) 15 0.000 0.100 0.000 0.000 11 

DOC 15 3.800 11.000 7.000 6.100 0 

Nitrate(ite) (mg/L) 15 0.000 1.400 0 .200 0 .200 1 



Table N.2 Continued 

#of Minimum Maximum Mean Median Zeroes 
Samples 

Kjeldahl Nitrogen (mg/L) 15 0.100 0.400 0.200 0.200 3 

Total Phosphorus (mg/L) 15 0.000 0.100 0.000 0.000 10 

Aluminum (mg/L) 15 0.000 0.100 0.100 0.100 0 

Antimony (mg/L) 15 0.000 0.000 0.000 0 .000 15 

Arsenic (mg/L) 15 0.000 0.000 0.000 0.000 15 

Barium (mg/L) 15 0.000 0.000 0.000 0.000 3 

Cadmium (mg/L) 15 0.000 0.000 0.000 0.000 15 

Chromium (mg/L) 15 0.000 0.000 0.000 0.000 12 

Copper (mg/L) 15 0.000 0.000 0.000 0.000 14 

Iron (mg/L) 15 0.100 0.300 0.200 0.200 0 

Lead (mg/L) 15 0.000 0.000 0.000 0.000 15 

Magnesium (mg/L) 15 1.000 2.000 1.300 1.300 0 

Manganese (mg/L) 15 0.000 0.000 0.000 0.000 2 

Mercury (mg/L) 15 0.000 0.000 0.000 0.000 15 

Nickel (mg/L) 15 0.000 0.000 0.000 0.000 15 

Selenium (mg/L) 15 0.000 0.000 0.000 0.000 15 

Uranium (mg/L) 15 0 .000 0.000 0.000 0.000 15 

Zinc (mg/L) 15 0.000 0.000 0.000 0.000 11 

Source Water Temperature ("C) 6 -0.200 19.300 6.000 0.500 * 



Table N.3- Statistical Properties of the Leary's Brook Grab Sample Dataset 

#of Minimum Maximum Mean Median Zeroes 
Samples 

Real Time Measurements 

Water Temperature (OC) 20 0.6 17.3 5.7 3.8 

* pH (pH units) 20 5.3 14.0 6.8 6.4 

* Specific conductance (~S/cm) 
19 167.0 1329.0 589.7 416.0 

* Dissolved Oxygen (mg/L) 20 9.3 16.3 12.5 12.9 

* Stage (m) 10 0.6 0 .9 0.7 0.8 

Grab Sample Measurements 

Alkalinity (mg/L CaC03) 20 0.0 13.0 5.2 6.0 8.000 

Color (TCU) 20 0.0 24.0 12.8 12.5 0.000 

Conductivity (uS/em) 20 210.0 2100.0 656.0 465.0 0.000 

Hardness (mg/L CaC03) 20 10.0 53.0 27.7 28.0 0 .000 

pH (pH units) 20 6.1 7.1 6.6 6.6 0 .000 

TDS(mg/L) 20 107.0 959.0 375.1 236.5 0.000 

TSS (mg/L) * * * * * * 

Turbidity (NTU) 20 0.3 19.2 3.0 1.7 0.000 

Boron (mg/L) 20 0.0 -0.100 0.0 0.0 10.000 

Bromide (mg/L) 20 0.0 0.0 0.0 0.0 20.000 

Calcium (mg/L) 20 4.0 18.0 9.1 9.3 0.000 

Chloride (mg/L) 20 50.0 510.0 174.9 109.5 0.000 

Flouride (mg/L) 20 0.0 0.1 0.0 0.0 15.000 

Potassium (mg/ L) 20 0.0 5.0 1.3 1.0 7.000 

Sodium (mg/L) 20 32.0 390.0 115.5 80.5 0 .000 

Sulphate (mg/L) 20 7.0 27.0 12.4 9.5 0.000 

Ammonia (mg/L) 20 0.0 0.3 0.1 0.0 5.000 

DOC 20 1.4 5.6 3.1 3.0 0.000 

Nitrate(ite) (mg/L) 20 0.2 0.6 0.4 0.4 0.000 



Table N.3 Continued 

#of Minimum Maximum Mean Median Zeroes 
Samples 

Kjetdahl Nitrogen (mg/L) 19 0.1 0.4 0.2 0.2 1.000 

Total Phosphorus (mg/L) 20 0.0 0.1 0.0 0.0 8.000 

Aluminum (mg/L) 20 0.0 0.5 0.2 0.1 0.000 

Antimony (mg/L) 20 0.0 0.000000 0.00000 0.0 20.000 

Arsenic (mg/L) 20 0.0 0.0 0.0 0.0 20.000 

Barium (mg/L) 20 0.0 0.1 0.0 0.0 2.000 

Cadmium (mg/L) 20 0.0 0.0 0.0 0.0 20.000 

Chromium (mg/L) 20 0.0 0.0 0.0 0.0 20.000 

Copper (mg/L) 20 0.0 0.000 0.0000 0.0 1.000 

Iron (mg/L) 20 0.1 1.3 0.4 0.3 0.000 

Lead (mg/L) 20 0.0000 0.0093 0.0000 0.0000 11 .000 

Magnesium (mg/L) 20 0.0 0-0.00 1.1 1.0 4.000 

Manganese (mg/L) 20 0.0 0 .3 0.1 0.1 0 .000 

Mercury (mg/L) 20 0.0 0.0 0.0 0.0 20.000 

Nickel (mg/L) 20 0.0 0.0 0.0 0.0 20.000 

Selenium (mg/L) 20 0.0 0.0 0.0 0.0 20.000 

Uranium (mg/L) 20 0.0 0.0 0.0 0.0 19.000 

Zinc (mg/L) 20 0.0 0.1 0.0 0.0 0.000 

Source Water Temperature fC) Source water temperature not recorded in the grab samples 



Table N.4- Statistical Properties of the Waterford River Grab Sample Dataset 

#of Minimum Maximum Mean Median Zeroes 
Samples 

Real Time Measurements 

* Water Temperature (OC) 20 0.5 20.4 9.2 10.0 

pH (pH units) 20 5.8 11.2 7.1 6.9 

* Specific conductance (pS/cm) 
20 235.0 1060.0 504.3 429.5 

* Dissolved Oxygen (mg/L) 20 7.1 24.7 12.2 10.9 

* Stage (m) 20 0.4 1.2 0.6 0.5 

Grab Sample Measurements 

Alkalinity (mg/L CaC03) 20 6.0 21.0 13.7 14.5 0 .000 

Color (TCU) 20 8.0 26.0 15.9 15.0 0.000 

Conductivity (uS/em) 20 219.0 1200.0 517.0 447.0 0 .000 

Hardness (mg/L CaC03) 20 17.0 52.0 34.2 33.0 0.000 

pH (pH units) 20 6.6 7.4 7.0 7.0 0.000 

TDS (mg/L) 20 142.0 625.0 295.0 255.5 0.000 

TSS (mg/L) * * * * * 

Turbidity (NTU) 20 0.5 3.8 1.7 1.6 0.000 

Boron (mg/L) 20 0.0 0 .0 0.0 0.0 7.000 

Bromide (mg/L) 20 0.0 1 .1 0.1 0.0 17.000 

Calcium (mg/L) 20 5.0 17.0 10.5 10.0 0.000 

Chloride (mg/L) 20 51.0 360.0 132.3 110.0 0.000 

Flouride (mg/L) 20 0.0 0.5 0.0 0.0 17.000 

Potassium (mg/L) 20 1.0 2.6 1.5 1.4 0.000 

Sodium (mg/L) 20 33.0 210.0 85.8 66.5 0 .000 

Sulphate (mg/L) 20 7.0 18.0 11.5 11 .0 0.000 

Ammonia (mg/L) 20 0.0 0 .2 0.1 0.1 0.000 

DOC 20 2.2 7.8 3.6 3.3 0.000 

Nitrate(ite) (mg/L) 20 0.5 1.2 0.8 0.7 0.000 



Table N.4 Continued 

#of Minimum Maximum Mean Median Zeroes 
Samples 

Kjeldahl Nitrogen (mg/L) 18 0.0 0.6 0.3 0.3 2.000 

Total Phosphorus (mg/L) 20 0.0 0.3 0.0 0.0 9 .000 

Aluminum (mg/L) 20 0.0 0 .2 0.1 0.1 0.000 

Antimony (mg/L) 20 0.0 0.0 0.0 0.0 20.000 

Arsenic (mg/L) 20 0.0 0.0 0.0 0.0 20.000 

Barium (mg/L) 20 0.0 0.0 0.0 0.0 4.000 

Cadmium (mg/L) 20 0.0 0.0 0.0 0.0 20.000 

Chromium (mg/L) 20 0.0 0 .0 0.0 0.0 17.000 

Copper (mg/L) 20 0.0 0 .0 0.0 0.0 4.000 

Iron (mg/L) 20 0.1 0.4 0.2 0.2 0.000 

Lead (mg/L) 20 0.00 0.00 0.00 0.00 13.000 

Magnesium (mg/L) 20 1.0 2.5 1.9 2.0 0.000 

Manganese (mg/L) 20 0.0 0 .2 0.1 0.1 0.000 

Mercury (mg/L) 20 0.0 0.0 0.0 0.0 20.000 

Nickel (mg/L) 20 0.0 0.0 0.0 0.0 20.000 

Selenium (mg/L) 20 0.0 0.0 0.0 0.0 20.000 

Uranium (mg/L) 20 0.0 0.0 0.0 0.0 20.000 

Zinc (mg/L) 20 0.00 0.03 0.0127 0.01 8.000 

Source Water Temperature (<C) 
0* * * * 



Appendix 0 

Using the ARIMA Approach for Developing 

Control Charts for Observat1ons w1th Seasonality 



Overview 
The ARIMA model fitting approach for control chart work will also work well for seasonal 

data that does not show large amounts of autocorrelation - i.e. monthly mean dissolved 

oxygen levels recorded at the RTWQ stations. The following figure presents a scatterplot 

of the monthly mean dissolved oxygen levels at the Humber River station - note the twelve 

month time period in the data. 
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Figure 0. 1 - Scatterplot of the Monthly Mean DO 

Minitab was used to check the monthly mean observations for linear trends (no major 

trends) and normality (significantly normal). The ACF plot for the observations showed lag 

1 and lag 6 to be important. The PACF plot for the observations showed lag 1 had a 

significant positive partial autocorrelation coefficient while lag 2 had a significant negative 

partial autocorrelation coefficient. 

Minitab was used to check the various available models - the AR(1) model with a seasonal 

component was found to fit well to the data. 

Type Coef SE Coef T p 

AR 1 0.4791 0 .1553 3 .08 0. 004 
SAR 12 1 . 0068 0.1802 5.59 0. 000 
Constant -0.0377264 - 0. 2243473 0.17 0. 867 
1·lean 10.68 63 .53 



Once the seasonal AR(1) model was fit to the data it was then possible to use a control 

chart to examine the data. The Shewhart control chart (subgroup size of 2) shows that 

subsample 14 (February and March 2006) had an out of control dissolved oxygen level. 

Referring. 
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Figure 0.3- Shewhart Chart for Seasonal AR(1) Residuals 



Appendix P 

Using Spectral Analysis to Find the Time Period 

of a Dataset 



Overview 

Although everyday experience tells us that monthly mean water temperature should follow 

a twelve month cycle, we can use a technique known as spectral analysis to identify the 

time period of the Humber River monthly mean water temperature observations. 

A minitab macro (spectrum.mac- author Dr. Leonard Lye of Memorial University) can be 

used to carry out this spectral analysis. In order for the macro to work properly the water 

temperature needs to be in column one while the time of the observation needs to be in 

column two of the Minitab worksheet. 

The macro will ask for the number of time lags - if we use 24 it will be easy to see the 12 

month cycles in the data. The macro will also develop a plot of the spectral density 

function - it is pretty broad as we are only using 24 lags. Note that a frequency of 1/12 or 

0.083 stands out from the rest, 

The results from the spectral analysis of the mean monthly water temperature can be 

compared with 1 000 randomly generated values using a normal distribution. Using the 

spectral analysis with 1 00 lags we find that the scatterplot shows that the random data is 

all over the place - which is different than what was found with the water temperature data 

where one particular frequency stuck out from the others. 



Spectrum.mac Minitab macro 

GMACRO 
spectrum 
Note Macro performs spectral analysis of the data 
Note Author - Dr . Leonard Lye , Memorial University 
erase c3- cl0 
Note 
Note Data in Cl and Index or Year in C2 . 
Note 
name c3 1 r(k} 1 c4 1 k 1 c5 1 W(k) 1 c6 1 f 1 c7 1 r x w' 
name c8 ' rwcos 1 c9 ' sdf ' clO ' period ' 
Note : Enter number of lags to use . E.g. 24 
set c50 ; 
file " terminal"; 
nobs 1. 
let k2=c50 ( 1} 
acf k2 cl c3 
set c4 
l:k2 
end 
let c5=0 . 5*(l+cos(3 . 14159*c4/~2}} 

let c6=c4/(2*k2} 
let c7=c5*c3 
let cl0=1/c6 
do kl=l : k2 

let c8=c7*cos(2*3 . 14159*c6(kl}*c4) 
let c9(kl}=2*(1+2*sum(c8}) 
enddo 

let cll=loge (c9} 
name ell ' logsdf ' 
let k5=8*n(cl}/(3*k2} 
invcdf 0 . 025 k6; 
chisquare k5 . 
invcdf 0 . 975 k7; 
chisquare k5. 
let cl4=c9*k5/k6 
let cl5=c9*k5/k7 
name cl4 1 UC 1 cl5 ' LC ' 
Let cl2=cll+loge(k5/k6) 
let cl3=cll+loge(k5/k7} 
name cl2 ' UCL 1 cl3 ' LCL 1 

set cl6 
k2 (2} 
end 
name cl6 1 WN 1 

let cl7= loge(cl6) 
Plot 1 Sdf 1 * ' period ' ' UC ' * 1 period ' ' LC 1 * 1 period 1 ' WN ' * ' period '; 

Connect ; 
Overlay . 

Plot ' sdf ' *c6 1 UC ' *c6 ' LC ' *c6 ' WN'*c6 ; 
Connect; 
Overlay . 

name cl7 ' logWN ' 
Plot ' logsdf 1 * ' f ' 1 UCL ' * ' f 1 ' LCL ' * ' f ' ' logWN ' * 1 f '; 

Connect; 
Overlay . 

ENDMACRO 
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Appendix 0 

Macros for Modified Control Charts 



Overview of the Macros 

Macro for Modified Dissolved Oxygen Control Chart - Limit on Lower Side 

Macro is used to plot up a modified control chart with limits on the lower side. c1 contains 

the date and time, c2 contains the water temperature, c3 contains the pH, c4 contains 

specific conductance, c5 contains dissolved solids, c6 contains percent saturation, c7 

contains dissolved oxygen and c8 contains turbidity. The green line plotted on the chart is 

the mean of the dataset. The desired limits are defined by the user. 

Macro for Modified Water Temperature Control Chart - Limit on Higher Side 

Macro is similar to the one written for dissolved oxygen but instead flags points outside of 

a user defined threshold. 

Macro for Modified pH Control Chart - Two-Sided Limits 

Macro is used to to plot a control chart with limits on two sides. Points outside of these 

lines are flagged in red. 



Macro for Modified Dissolved Oxygen Control Chart - Limit on Lower Side 

(Page 1) (Page 2) (Page3) 
gmacro Type 1; NoDTitle. 
Control DO Color 53; Else 
Note Author - R.Harvey Size 5; Copy c1 c7 c1 0 c11; 
Note Set The desired lower limit ~.e. MODEL 1; Include; 
5 and 5.5) Footnote; Where "c7 <= k50"; 

FPanel; Varnames. 
Erase c9-c100 Title "Modified Control Chart for Copy c1 c7 c13 c14; 
Erase k1 -k1 00 Dissolved Oxygen"; Include; 
Set c50; NoD Title. Where "c7 <= k51 "; 
Rle "terminal"; Bseif k1 > k50 AND k1 <= k51 Varnames. 
Nobs2. Copy c1 c7 c10 c11; Plotc7*c1 c11 *c10c14*c13; 
Copy c50 k50 k51 Include; Axlabel1 "Ttme"; 

Let k1 = min(c7) Where "c7 <= k51"; ADisplay 1; 
Let k2 = max(c 7) Vamames. Axlabel 2 "Dissolved Oxygen"; 

Let k3 = mean(c7) Plot c7*c1 c11*c1 0; ADisplay 1; 

If (1<1 > k51) Axlabel1 "Ttme"; NoLegend; 
Plot c7*c1 ; ADisplay 1; Overlay; 
Axlabel 1 "Ttme"; Axlabel2 "Dissolved Oxygen"; NoJitter; 
ADisplay 1; ADisplay 1; Symbol; 
Axlabel 2 "Dissolved Oxygen"; NoLegend; Type 616 16 20 23 26 29 2 3 4; 
ADisplay 1; Overlay; Color 16 25 25 74 42 86 84; 
NoLegend; NoJitter; Size111; 
NoJitter; Symbol; Grid 1; 
Symbol; Type 61616 20 23 26 29 2 3 4; Grid2; 
Type6; Color 16 25 52 74 42 86 84; Reference 2 k50; 
Color 16; Size 1 1; Type 1; 
Size 1; Grid 1; COlor 17; 
Grid 1; Grid 2; Type 1 ; Size5; 
Grid 2; Color 17; MODEL 1; 
Reference 2 k50; Size 5; Reference 2 k51 ; 
Type 1; MODEL 1; Type 1; 

COlor 17; Reference 2 k51 ; Color 17; 
Size 5; Type 1; Size5; 
MODEL 1; Color 17; MODEL 1; 

Reference 2 1<51 ; Size 5; Reference 2 k3; 
Type 1; MODEL 1; Type 1; 
Color 17; Reference 2 k3; Color 53; 
SizeS; Type 1; Size 5; 
MODEL 1; Color 53; MODEL 1; 
Reference 2 1<3; Size 5; Footnote; 

MODEL 1; FPanel; 
Tttle "Modified Chart for Title "Modified Chart for DO"; 

DO";Footnote; NoDTitle. 
FPanel; END IF 

endmacro 



Macro for Modified Water Temperature Control Chart - Limit on Higher Side 

gmacro Title "Modified Control Chart for Include; 
ControiWT Water Temperature"; Where "c2 >= k50"; 
Note - Author - R. Harvey NoDTitle. Vamames. 
Note Set The desired upper Plot c2*c1 c11*c1 0; 
limit Q.e. 18 and 20) ELSEIF k2>=k51 AND k1 < k50 Axlabel 1 "Time"; 

ADisplay 1; 

Erase c9-c100 Copy c1 c2 c1 0 c11; Axlabel2 •water Temperature"; 

Erase k1-k1 00 Include; ADisplay 1; 
Where "c2 >= k50"; NoLegend; 

Set c50; Varnames. Overlay; 
Rle "terminal"; Plot c2"c1 c11*c1 0; NoJitter; 
Nobs 2. Axlabel1 "Time"; Symbol; 

Copy c50 k50 k51 ADisplay 1; Type 6 16 16 20 23 26 29 2 3 4; 
Axlabel 2 •water Color 16 25 52 74 42 86 84; 

Let k1 = min(c2) Temperature"; Size 1 1; Grid 1 ; Grid 2; Reference 2 k50; 

Let k2 = max(c2) ADisplay 1; Type 1; Color 17; Size 5; MODEL 1; 

Let k3 = mean(c2) NoLegend; Reference 2 k51 ; 
Overlay; Type 1; 

lfk1 >= k51 OR k1 >=k50 NoJitter; Color 17; 
Plot c2*c1; Symbol; SizeS; 
Axlabel1 "Time"; Type 6 1616 20 23 26 29 2 3 MODEL 1; 
ADisplay 1; 4· 

' 
Reference 2 k3; 

AxLabel 2 "Water Color 16 25 52 74 42 86 84; Type 1; 

Temperature"; Size 11; Color 53;Size 5; 
ADisplay 1; Grid 1; MODEL 1; 
NoLegend; Grid2; Title "Modified Control Chart for Water 
NoJitter; Reference 2 k50; Temperature"; 
Symbol; Type 1; Footnote; 
Type 16; Color 17; FPanel; 
Color 25; Size 5; NoD Title. 
Size 1; MODEL 1; ELSEIF k2<k50 
Grid 1; Reference 2 k51 ; Plot c2*c1; 
Grid 2; Type 1; AxLabel 1 "Time"; 
Reference 2 k50; Color 17; ADisplay 1; 
Type 1; SizeS; Axl.abel2 "Water Temperature"; 
COlor 17; MODEL 1; ADisplay 1; 
Size 5; Reference 2 k3; NoLegend; 
MODEL 1; Type 1; NoJitter; 
Reference 2 k51 ; Color 53; Symbol; 

Type 1; SizeS; Type 6; Color 16; Size 1; Grid 1 ;Grid 2; 
Color 17; MODEL 1; Reference 2 k50; Type 1; Color 17; Size 5; 
SizeS; Title "Modified Control Chart for MODEL 1; 
MODEL 1; Water Temperature"; Reference 2 k51; Type 1; Color 17;Size 5; 

Reference 2 k3; Footnote; MODEL 1; 
Type 1; FPanel; Reference 2 k3; 

Color 53; NoDTrtle. Type 1; 
Size 5; Color 53; 
MODEL 1; ELSEIF k2 >=k50 AND k1 <= Size5; 
Footnote; k50 MODEL 1; 
FPanel; Copy c1 c2 c1 0 c11 ; Footnote; 

FPanel; 
Title "Modified Control Chart for WT"; 
NoD Title. 

END IF 
endmacro 



Macro for Modified pH Control Chart - Two--Sided Limits 

gmacro Elseif k1 >= k51 OR k2 <= k50 Elseif k2 >= k51 AND k1 <= k51 
Control pH AND k1 > k50 
Note Author- R. Harvey Plot c3*c1; 
Note Set The desired lower and AxLabel1 "Time"; Copy c1 c3 c10 c11; 
upper limit (i.e. 6 and 8) ADisplay 1; Include; 

Axlabel2 "pH Level"; Where "c3 >=k51 "; 
Erase c9-c1 00 ADisplay 1; Varnames. 
Erase k1 -k1 00 NoJitter; Plot c3*c1 c11*c1 0; 

Symbol; Axlabel1 "Time"; ADisplay 1; 
Set c50; Type 6 ; Color 25;Size 1 ;Grid 1; AxLabel2 "pH Level"; ADisplay 1; 
File "terminal"; Grid 2;Reference 2 k50; Type 1; NoLegend; Overlay; NoJitter; 
Nobs 2. Color 17; Size 5; MODEL 1; Symbol; 
Copy c50 k50 k51 Reference 2 k51 ; Type 1 ;Color 17; Type 6 16 16 20 23 26 29 2 3 4; 

Size5; Color 16 25 52 74 42 86 84; 
Let k1 = min(c3) MODEL 1; Size 1 1; Grid 1; Grid 2; 
Let k2 = max(c3) Reference 2 k3; Type 1 ;Color 53; Reference 2 k50; Type 1; Color 17; 
Let k3 = mean(c3) Size5; Size 5; MODEL 1 ; 

MODEL 1; Reference 2 k51; Type 1; Color 17; 
If k1 > k50 AND k2 < k51 Footnote; Size 5; MODEL 1 ; 

Plot c3*c1; FPanel; Reference 2 k3; Type 1 ; Color 53; 
Axlabel 1 "Time"; Title "Modified Chart for pH"; Size 5; MODEL 1; 
ADisplay 1; NoDTitle. Footnote; FPanel; 
AxLabel2 "pH Level"; Title "Modified Chart for pH"; 
ADisplay 1; Elseif k2 > k50 AND k2 < k51 AND NoDTitle. 
NoLegend; k1 <= k50 
NoJitter; Elseif k2 >=k51 AND k1 <=k50 
Symbol; Copy c1 c3 c10 c11; Copy c1 c3 c1 0 c11; Include; 
Type 6;Color 16; Include; Where "c3 >=k51 "; Varnames. 
Size 1 ; Grid 1 ; Where "c3 <= k50"; Copy c1 c3 c13 c14; 
Grid 2;Reference 2 k50; Type 1; Varnames. Include; Where "c3 <= k50"; 

COlor 17; Size 5; MODEL 1; Plot c3*c1 c11 *c1 0; Varnames. 
Reference 2 k51 ; Type 1; Axlabel1 "Time"; ADisplay 1; Plot c3*c1 c11*c1 0 c14*c13; 
Color 17; Axlabel2 "pH Level"; Axlabel1 "Time"; ADisplay 1; 
Size 5; MODEL 1; ADisplay 1; NoLegend; Axlabel 2 "pH Level"; ADisplay 1; 
Reference 2 k3;Type 1 ;Color 53; Size Overlay; NoJitter; NoLegend; Overlay; NoJitter; 
5; Symbol; Symbol; 
MODEL 1; Type 6 16 16 20 23 26 29 2 3 4; Type 6 16 16 20 23 26 29 2 3 4; 

Footnote; Color 16 25 52 74 42 86 84; Color 16 25 25 74 42 86 84; 
FPanel; Size 1 1; Grid 1; Grid 2; Size 1 1; Grid 1; Grid 2; 
Title "Modified Control Chart for Reference 2 k50; Type 1; Reterence 2 k50·, Type 1·, Color 17; 

pH"; Color 17; Size 5; Size 5; MODEL 1; 
NoDTitle. MODEL 1; Reference 2 k51 ;Type 1; Color 17; 

Reference 2 k51 ; Type 1; Color 17; Size 5; MODEL 1 ; 
Size5; Reference 2 k3;Type 1 ; Color 53; 

MODEL 1; Size 5;MODEL 1; 
Reference 2 k3; Footnote; 
Type 1; FPanel; 
Color 53; Title "Modified Control Chart for 
Size5; pH"; 
MODEL 1; NoDTitle. 
Footnote; 
FPanel; END IF 
Title "Modified Control Chart for endmacro 

pH"; 
NoDTitle. 












