MAPPING OF SALMON HABITAT PARAMETERS USING DIGITAL AIRBORNE IMAGERY

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY MAY BE XEROXED

(Without Author's Permission)

THOMAS PUESTOW

Mapping of Salmon Habitat Parameters Using Digital Airborne Imagery

by

Thomas Puestow

A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science

Department of Geography Memorial University of Newfoundland 1998

St. John's

Newfoundland

Abstract

This study focuses on the application of airborne remote sensing and image elassification to the mapping of bottom substrate, channel pattern and land cover as important freshwater habitat parameters for Atlantic salmon. A Compact Airborne Spectrometric Imager (CASI) was used to collect multispectral image data with approximately 20 nm wide bands centred at wavelengths of 510, 590, 660 and 730 nm. Image preprocessing included a first order atmospheric correction for path radiance and geometric registration to the UTM reference system. Numerical transforms on the imagery included principal component transformations on original and logarithmized spectral bands, as well as the derivation of a normalized difference vegetation index (NDVI). Ancillary information consisted of valley gradient and stream width. Valley gradient was derived from elevation data contained in a 1:50,000 digital map sheet. Stream width was extracted from the image data. The river course was divided in sections of approximately equal length (30 m), and the average width of each segment was calculated from its length and area. The importance of individual predictor variables for the extraction of the habitat parameters was established using the mean response for each predictor variable, standardized distance matrices and plots of group variability. Separate image classifications were carried out for substrate type, channel pattern and land cover using a hierarchical decision tree algorithm. The end nodes of the final classification trees were implemented as classification rules in a FORTRAN program. Classification accuracy was assessed using an independently collected test sample. The observed overall classification accuracies were 66.87 %, 38.11 % and 84.91 % for

substrate type, channel pattern and land cover, respectively. Overall accuracy was significantly improved for the habitat parameters substrate type and channel pattern by combining categories of these variables according to their significance in designating suitable spawning habitat. The revised overall accuracy values for these habitat parameters were 73.76 % and 64.47 %, respectively. Finally, substrate type and channel pattern were combined to create composite maps of spawning habitat suitability. The resulting stratification of salmon spawning habitats corresponds well with the findings of earlier investigations. Therefore, the value of the methodology developed in this study for the management and protection of freshwater salmon habitat was successfully demonstrated.

Acknowledgments

I would like to thank my supervisor Dr. Elizabeth L. Simms for her continued advice and support throughout this program. Many thanks also to my co-supervisors. Dr. Alvin Simms and Ms. Karyn Butler for valuable input and suggestions. Financial support for this research was obtained from Department of Fisheries and Oceans Canada. In addition, financial assistance was provided by the School of Graduate Studies and GEOIDAL. Memorial University of Newfoundland. All analysis was carried out using the facilities provided by GEOIDAL.

Table of Contents

Abstract	
Acknowledgments	•
List of Tables	11
List of Figures	¢
Chapter 1.0 Introduction	
1.1 Introduction	
1.2 Research Objectives	
1.3 Thesis Organization	
Chapter 2.0 Background	
2.1 Introduction	
2.2 Variables Characterizing Freshwater Habitat of Atlantic Salmon)
2.3 Remote Sensing Approaches to Riverine Habitat Mapping	•
2.3.1 Air Photo Interpretation	\$
2.3.2 Multispectral Remote Sensing)
2.4 Automated Classification of Multispectral Imagery 1	1
Chapter 3.0 Study Area and Data	21
3.1 Study Area	21
3.2 Data	24
3.2.1 Field Data	24
3.2.2 Aerial Photography	26
3.2.3 Multispectral Image Data	27
3.2.4 Ancillary Data	29
Chapter 4.0 Methodology	31
4.1 Introduction	31
4.2 Pre-Processing	31

Appendix B Decision Rules for the Classification of Habitat Parameters	
Appendix A Group Variability and Standardized Distances	11
Data Sources	11
- References	
Chapter 7.0 Conclusion	
6.4 Suitability Mapping	
6.3 Land Cover Classification	
6.2 Channel Pattern Classification	94
6.1 Substrate Classification	
Chapter 6.0 Discussion	
5.5 Suitability Mapping	28
5.4.3 Land Cover	<u>ک</u> ھ جو
5.1.2 Channel Porter	
5.4 Classification of Habitat Parameters	
5.3.3 Land Cover	
5.3.2 Channel Pattern	
5.3.1 Substrate Type	57
5.3 Selection of Predictor Variables	
5.2.2 Image Corrections and Transforms	
5.2.1 Substrate Data	
5.2 Pre-Processing	
5.1 Introduction	
hapter 5.0 Results	
4.7 Suitability Mapping	
4.6 Accuracy Assessment	45
4.5 Classification of Habitat Parameters	
4.4 Selection of Predictor Variables	
4.3 Training and Test Area Generation	
4.2.3 Image Data	
4.2.2 Ancillary Data	
4.2.1 Field Survey Data	

List of Tables

Table 2-1: Characteristics of Stream Habitats (after Frissell et al., 1986)	6
Table 2-2: Spectral Band Configuration Used by Zaccharias et al. (1992)	11
Table 2-3: Spectral Band Configuration Used by MacLeod et al. (1992)	12
Table 2-4: Spectral Band Configuration Used by Lyon et al. (1992)	12
Table 2-5: Spectral Band Configuration Used by Acornley et al. (1995)	13
Table 2-6: Selected Remote Sensing Applications of Substrate Mapping	14
Table 3-1: Field Data	
Table 3-2: Definition of Channel Pattern (after Scruton et al., 1992)	25
Table 3-3: Definition of Grain Size Classes	25
Table 3-4: Characteristics of Aerial Photography	26
Table 3-5: Land Cover Characteristics (after Scruton et al., 1992)	27
Table 3-6: Habitat Parameter Categories	27
Table 3-7: Spectral Characteristics of the CASI Sensor	28
Table 4-1: Atmospheric Conditions (after Chavez, 1988)	37
Table 4-2: Potential Predictor Variables	41
Table 4-3: Schematic Contingency Table	46
Table 4.4: Measures of Accuracy	46
Table 4-5: Suitability Values for Substrate Type and Channel Pattern	48
Table 4-6: Salmon Spawning Habitats (after Dubois and Gosselin, 1989)	48
Table 5-1: Cluster Centers of Median and K-Means Methods	51
Table 5-2: Cross-Tabulation of Median and K-Means Clustering Results	52
Table 5-3: DN Values Equivalent to Path Radiance and Time of Acquisition	53
Table 5-4: Comparison of High and Low Reflectance Areas	53
Table 5-5: Image Registration Characteristics	54
Table 5-6: Characteristics of PCA Applied to Original Spectral Bands	

Table 5-7: Characteristics of PCA Applied to In-Transformed Spectral Bands	55
Table 5-8: Characteristic of PCA Using Land Cover Training Data	56
Table 5-9: Standardized Distances between Substrate Category Means.	63
Table 5-10: Bivariate Correlations between Predictor Variables	63
Table 5-11: Standardized Distances between Channel Pattern Category Means	70
Table 5-12: Bivariate Correlations between Predictor Variables	70
Table 5-13: Standardized Distances between Land Cover Category Means	76
Table 5-14: Bivariate Correlations between Predictor Variables	76
Table 5-15: Error Matrix for Substrate Classification - Original Categories	80
Table 5-16: Error Matrix for Substrate Classification - Collapsed Categories	81
Table 5-17: Error Matrix for Channel Pattern Classification - Original Categories	84
Table 5-18: Error Matrix for Channel Pattern Classification - Collapsed Categories	85
Table 5-19: Error Matrix for Land Cover Classification	87
Table 5-20: Areal Extent of Spawning Habitat Classes	88

List of Figures

Figure 2-1: Decision Tree for Mineral Mapping (after Reddy and Bonham-Carter, 19	3 91)19
Figure 3-1: Study Area Location	
Figure 3-2: Come By Chance River Study Area	23
Figure 3-3: False Colour Composite Image and Aerial Photograph of Sub-Area	
Figure 4-1: Methodology	
Figure 5-1: Cluster Solutions of Median Method	
Figure 5-2: Group Means and Standard Deviations of Substrate Categories	58
Figure 5-3: Group Means and Standard Deviations of Channel Pattern Categories	66
Figure 5-4: Group Means and Standard Deviations of Substrate Categories	72
Figure 5-5: Decision Tree for Substrate Classification	
Figure 5-6: Decision Tree for Channel Pattern Classification	83
Figure 5-7: Decision Tree for Land Cover Classification	
Figure 5-8: Spawning Habitat Suitability	
Figure 5-9: Land Cover Classification	91

Chapter 1.0: Introduction

1.1 Introduction

In recent years, worldwide concern has been voiced regarding the observed decline of Atlantic salmon (*Salmo salar*) throughout its habitat range. Among the most important factors responsible for this decline is the rapid decrease in suitable freshwater habitat (Gibson, 1993). Freshwater habitats fulfill important ecological functions pertinent to spawning and overwintering, usually involving a main river with tributaries and ponds. While young salmon are most sensitive to environmental disturbances during their first year after emergence from eggs, it is the availability and quality of spawning habitat that has the greatest impact on their production rate (Shearer, 1992). Any physical disturbance in the watershed such as increased erosion or artificial obstructions that limit access to upstream areas, may have a severe impact on the quality and availability of salmon habitat.

With increasing pressure from natural resource based industrial activities (e.g. forestry and mining), and the expansion of urban development into formerly pristine areas, effective management strategies have to be developed to ensure the protection of the endangered habitat. These strategies should be based on quantitative inventories and support repeated applications. This would permit the integration of relevant information in digital data bases and facilitate efficient resource management through research into the relationships between Atlantic salmon and its habitat parameters (Edgington *et al.*, 1987; Scruton *et al.*, 1992).

Traditionally, resource inventories of freshwater salmon habitat have been carried out with a substantial amount of ground based data collection. While offering the highest degree of accuracy, the cost and time effort required to conduct field surveys increases with the area covered and may not be viable for large and remote areas. Alternatively, air-photo interpretation has been successfully used fc cost and time efficient salmon habitat inventories and mapping (Dubois and Clavet, 1979; Amiro, 1983; Edgington *et al.*, 1987). In this case, the quality of the results generally depends on the experience and knowledge of the interpreter. Therefore, potentially severe limitations of this method exist for the objective reproduction of interpretation results.

Information about land cover and water bodies pertinent to habitat inventories can be derived in a quantitative, objective manner from remotely sensed, multispectral imagery (Lyzenga, 1978; Richards, 1987; Rimmer *et al.*, 1987; Dekker *et al.*, 1992; Bierwirth *et al.*, 1993). These images are digital representations of reflected or emitted radiation of the earth's surface. Typically, radiance is recorded at the sensor for several regions of the electromagnetic spectrum, or spectral bands. Presently, remotely sensed data are available with spatial resolution ranging from a few meters for airborne sensors to 20 or 30 m for satellite platforms. The number of optical spectral bands and spectral resolution available varies across different sensors. Generally, spectrometric airborne imagery offers a greater choice of spectral bands and higher spectral and spatial resolution.

Recently, researchers have discovered the benefits of using airborne remote sensing data in research questions related to the management of freshwater resources, such as the extraction of bottom substrate as an indicator of spawning habitat suitability (e.g. MacLeod *et al.*, 1992; Acornley *et al.*, 1995). Given previous research, it is the purpose of this study to contribute to a better understanding of the potential of multispectral remote sensing for the inventory and management of freshwater salmon habitats.

1.2 Research Objectives

The principal objective of this study is to explore the potential of multispectral remote sensing and digital ancillary data as a tool for the inventory and mapping of freshwater habitat parameters of Atlantic salmon (*Salmo salar*). Secondary objectives are as follows:

- I. Identify important freshwater habitat parameters
- II. Define an appropriate set of predictor variables for each parameter
- III. Select an appropriate classification method and assess classification accuracy
- IV. Combine individual parameters to model spawning habitat suitability

In order to achieve the principal objective it is necessary to review past and current research on relationships between Atlantic salmon and freshwater habitat components. The results of this review are used in the identification of habitat parameters to be predicted. While spectral information and its derivatives form the central data component, an effort is made to identify and incorporate relevant non-spectral information into the analysis. A set of potential predictor variables is selected for each habitat parameter, and an appropriate classification method identified. An assessment of classification accuracy is carried out for each habitat parameter. Individual habitat parameters are combined to yield composite maps of habitat suitability.

1.3 Thesis Organization

Basic concepts of the freshwater ecology of Atlantic salmon are introduced in Chapter 2.0. Important freshwater habitat parameters are identified, and the use of remote sensing data pertaining to the extraction of these parameters is examined. Special consideration is given to image classification techniques and the extraction of features submerged in water. Chapter 3.0 introduces the study area and contains an account of data collection procedures. Methods and procedures followed in this study are presented in Chapter 4.0. Chapter 5.0 describes processing results and statistical characteristics of all variables used in this analysis. The selection of predictor variables is explained and the classification of each habitat parameter is presented. Furthermore, this chapter contains an evaluation of the performance of the developed methodology. Finally, an example is given of how the results of this investigation is presented in Chapter 6.0. Error sources are identified for each habitat parameter and their impact on the classification accuracy is assessed. Chapter 7.0 contains a summary of results and recommendations for future research.

Chapter 2.0 Background

2.1 Introduction

As an anadromous species, Atlantic salmon spend part of their life cycle in freshwater and part in the ocean. In general, young salmon migrate into the ocean after a freshwater stage of one to five years. In most cases, they return to the location of their emergence after one winter at sea to spawn, although some fish spend two or more winters at sea. The majority of returned salmon do not survive spawning, but a certain proportion will migrate back into the ocean (Shearer, 1992).

Freshwater habitats of Atlantic salmon are determined by water velocity and depth, substrate size and the amount of cover, either in-stream (e.g. boulders and logs) or along the banks (vegetation) (Heller and Hohler, 1981; Hawkins *et al.*, 1993). The distribution of salmon of various age groups throughout these habitats varies considerably. Generally, fry (age < 1 year) occupy the spawning areas whereas part (age > 1 year) migrate toward deeper, wider stream sections (Gibson, 1993). In the case of insular Newfoundland, habitat utilization is especially flexible due to the absence of many competing species. As a result, inter-species competition is comparatively low, and Atlantic salmon occupies ecological niches that are usually characterized by different species in mainland Atlantic Canada. Rivers and streams form the rearing habitat for Atlantic salmon during the freshwater stage. However, with respect to reproduction and, ultimately, survival of the population, their most important function is in providing suitable spawning grounds (Shearer, 1992; Gibson, 1993).

2.2 Variables Characterizing Freshwater Habitat of Atlantic Salmon

Barila et al. (1981) examined the relationship between biological parameters (i.e. number of species, number of individuals, diversity index) and selected geomorphological variables such as stream order, width, gradient and water depth. It was found that species diversity was highly correlated with stream order. Lanka et al. (1987) investigated the relationship between drainage basin geomorphology and trout standing stock (kg/100 m²) in 91 Rocky Mountain streams. The corresponding watersheds were either covered by high elevation forest (65 streams) or by low elevation rangelands (26 streams). Multiple regression analysis was used to predict trout standing stock from various geomorphological variables. In the case of forest streams, the predictive model consisted of the variables reach elevation, relief ratio, drainage density and average stream width ($r^2 = 1$ 0.51). Trout standing stock in rangeland streams was predicted using basin elevation, basin perimeter. channel slope and basin relief ($r^2 = 0.64$). Frissell *et al.* (1986) present a hierarchical framework to characterize stream habitats according to different spatial resolutions and temporal periods. Table 2-1 gives an overview of the proposed levels and associated geomorphological processes. The most degrading impacts on riverine habitats occur from the level "Reach" on downwards to "Microhabitat". These impacts are either of natural cause or related to man-made activities. An efficient method of habitat surveillance and monitoring will focus on habitat parameters at these levels.

Level	Spatial Resolution (m)	Time Period [years]	Boundaries	Processes
Stream	> 1000	100,000 to 1.000,000	Drainage Basin	Denudation
Segment	100 to 1000	1000 to 10,000	Junctions; Falls	Migration of Tributary Junctions
Reach	10 to 100	10 to 100	Slope Breaks	Bank Erosion
Pool-Riffle	1 to 10	1 to 10	Bed Profile	Bedform Changes
Microhabitat	0.1 to 1	0.1 to 1	Substrate Type: Depth	Microbial Activity

Table 2-1: Characteristics of Stream Habitats (after Frissell et al., 1986)

Benda *et al.* (1992) investigated the distribution of salmonid habitats over a watershed at three spatial resolutions, i.e. 0.1 to 1 km², 2 to 26 km² and 240 km². These numbers correspond to river sections, sub-basins, and the whole watershed, respectively. The most extensive areas of rearing and spawning habitats were found to be located along small reaches on a young fluvial terrace. On the sub-basin level, varying habitat quality was related to discharge and channel gradients. Overall, most habitats were located along extensive stretches of the main river valley.

Scruton and Gibson (1993) defined habitat suitability indices for juvenile Atlantic salmon at 18 selected rivers in Newfoundland, Canada. The number of fish/100 m² was related to the following river characteristics: stream width, water depth, discharge, substrate type, in-stream cover and cover by overhanging vegetation. It was concluded that fry show preference for shallow (10 to 20 cm) and narrow (<3 m) stream sections with pebble and cobble substrate, whereas part favoured wider (<7.5 m) and deeper (15 to 40 cm) sections with boulder-rich bottom material.

Accordingly, Gibson (1993) reports the vital importance of substrate grain size and heterogeneity for spawning habitat quality. In particular, habitats with coarse sediments (cobble and pebble substrate) are described as being favoured over locations with finer sediments. Sediment size has a profound impact on egg survival: the presence of large quantities of suspended fine sediment can hamper egg oxygen supply and fertilization and inhibit emergence. Preferred water depths for spawning lie within a range of 10 to 75 cm with discharge velocities ranging from 15 to 90 cm/s for normal flow conditions. Appropriate spawning areas are often located along upper reaches in the head water region of a river system, and full utilization is only achieved by free access to these areas without anthropogenic or natural obstacles.

Other significant features characterizing riverine salmon habitat are channel patterns such as pools, riffles, cascades, falls and rapids. Channel patterns reflect characteristic combinations of the

type of current flow and water depth. Moreover, they often occur in relatively regular sequences, such as alternate successions of pools and riffles, and may constitute very distinct habitats. Land cover and land use pattern in the watershed are important sources of information about the type of riparian vegetation and the location and nature of obstructions in the river. Land cover information is necessary for the identification and quantification of potential sources of fine sediment and other pollutants, such as excessive urban development, road construction and quarrying (Heller and Hohler, 1981; Bisson *et al.*, 1981; Frissell *et al.*, 1986; Gibson, 1993; Hawkins *et al.*, 1993).

The geomorphologic-hydrological and anthropogenic characteristics of a river system are the predominant factors controlling the quality of freshwater salmon habitat. These characteristics can be described by the type of bottom substrate, channel pattern and land cover in the watershed.

2.3 Remote Sensing Approaches to Riverine Habitat Mapping

2.3.1 Air Photo Interpretation

Dubois and Clavet (1979) have recognized air photo interpretation as a valuable tool for the development of habitat inventories for salmon rivers in Quebec. Aerial photography at a scale of 1: 50,000 was used in the interpretation of channel pattern, land use along the rivers, and terrestrial and aquatic vegetation. This led to the successful identification of pools and spawning beds as important habitat types. The overall classification accuracy ranged from 62% for pools to 81% for spawning beds. Clavet (1980) proposed a salmon habitat inventory method to be carried out in six stages, including the identification of relevant parameters, their coding into a map legend, a field survey, preliminary and refined air photo interpretations, and a final cartographic representation of potential

salmon habitat. Approximately 80% of the spawning beds and rearing habitats characterized by channel pattern and substrate type could be located correctly, provided that the photographs were acquired at water levels similar to those expected during spawning season. Therefore, photographs acquired at extremely high water levels are not appropriate since it is not possible to discern from them the actual state of submergence of gravel beds during spawning season. The presented method of sub-surface feature detection works best at water depths of less than 2 m. Difficulties encountered in photo interpretation include specular reflection of sun light on the water surface and the occurrence of different substrate types showing similar colour and brightness.

Interpretation of aerial photography was used by Côté *et al.* (1987) to identify substrate types at locations of shallow water. In the presence of deep water or specular reflection, the type of bottom substrate was inferred from riverbank topography, erosive processes and depositional microforms in the streambed. Rubin (1992) found color and color-infrared multitemporal aerial photography at a scale of 1:24,000 particularly useful for the identification of historic channels, the type of riparian vegetation and land use activities in the watershed. This information was subsequently used for the restoration of productive habitat for anadromous fish species in California.

The collection of habitat information by means of air photo interpretation is more cost and time efficient than conventional field based data acquisition due to the availability of aerial photographic data, short processing times and minimal costs (Dubois and Gosselin, 1994).

2.3.2 Multispectral Remote Sensing

Salmon habitat parameters such as substrate type and channel pattern are submerged or part of the water body. Water applications of satellite or airborne remote sensing have primarily focused on the identification of suspended sediment concentration, chlorophyll content and concentration of dissolved organic matter (Rimmer *et al.*, 1987; Lathorp and Lillesand, 1989; Dekker *et al.*, 1992; Goodin *et al.*, 1993; Hamilton *et al.*, 1993; Nichol, 1993; Jupp *et al.*, 1994). The applicability of multispectral imagery for the detection of bottom features has been demonstrated in conjunction with bathymetric mapping (Lyzenga, 1978, 1983; Lathorp and Lillesand, 1989; Philpot, 1989; Roberts *et al.*, 1992; Luczkovich *et al.*, 1993; Lyon and Hutchinson, 1995).

Attenuation of electromagnetic radiation through scattering and absorption in the water column has to be considered where the target features are either covered by water or water depth itself is the object of interest. Scattering is strongest at short wavelengths, whereas absorption affects radiation of longer wavelength. In addition, the absorption behaviour of water constituents such as dissolved organic matter or suspended sediment can substantially influence the water leaving radiance (Dekker *et al.*, 1992; Jupp *et al.*, 1994). Attenuation in the water column increases exponentially with water depth. Lyzenga (1978; 1981) accounts for this relationship by formulating a bottom type index. The following transformation is applied to the image data to obtain a variable that is linearly dependent on water depth:

$$X_1 = \ln(L_1 - L_{Si})$$
(2-1)

where

$$X_i$$
 = transformed radiance in band i
 L_i = radiance in band i
 L_{si} = deep water radiance in band i

Training samples were collected over areas of uniform bottom reflectance and subsequently used in the calculation of a coordinate system rotation, yielding n-1 depth independent variables and one depth dependent variable from the transformed radiances. This method was applied by Lambert (1994) to the mapping of submerged kelp beds in Eastern Canada.

A similar approach was used by Bierwirth *et al.* (1993) for the mapping sea floor reflectance in shallow coastal waters. LANDSAT-TM imagery was converted to reflectance values to represent the spectral properties of the substrate. Water depth was calculated from deep-water reflectance and depth invariant bottom type reflectance. An estimate of the true depth could be obtained by assigning a value of zero for bottom type reflectance, thus assuming the mean substrate reflectance over all bands to be one. The slope of a regression line established from known bathymetry data and the natural logarithm of pixel reflectance yielded water attenuation coefficients for each spectral band.

Khan *et al.* (1992) applied principal component analysis (PCA) directly to LANDSAT-TM bands 1 and 2 without prior corrections. Single band thresholding of the second principal component was used to differentiate sand, rock, mud and seagrass cover in the Western Arabian Gulf.

Zacharias *et al.* (1992) could distinguish several types of intertidal seaweeds. The Compact Airborne Spectrographic Imager (CASI) was used to collect spectral data in 8 channels as listed in Table 2-2. Bands 1, 2, 3, 6 and 8 were subjected to PCA. Image classification was subsequently carried out applying the ISODATA⁴ algorithm to the second, third and fourth principal components. At three different locations, at least two genera of seaweed could successfully be discriminated with overall accuracies ranging from 65 to 86 o .

Table 2-2: Spectral Band Configuration Used by Zacharias et al. (1992)

Band 1 (nm)	Band 2 [nm]	Band 3 [nm]	Band 4 [nm]	Band 5 [nm]	Band 6 [nm]	Band 7 [nm]	Band 8 (nm)
431 to 459.	480 to 590	545 to 559	602 to 614	646 to 660	656 to 678	746 to 750	871 to 879

MacLeod et al. (1992) used CASI imagery to map substrate types constituting aquatic habitat in Lake Ontario. A total of seven spectral bands were used in the analysis (Table 2-3). Image

¹ The ISODATA algorithm is described in detail in Section 2.4.

classification using the ISODATA algorithm was carried out with bands 1, 4 and 7 as well as with the band ratios 7.6, 4/1 and 6/3. The types of bottom substrate encountered in the study area consisted of vegetation, mud, limestone rubble with gravel and sand, and limestone rubble with boulders. Among these, the bottom types vegetation, mud, and limestone rubble could be differentiated. Similar results were obtained with both raw data and data converted to radiance units. This indicates that conversion to absolute radiance values is not essential when mapping bottom substrate.

Table 2-3: Spectral Band Configuration Used by MacLeod et al. (1992)

Band 1 [nm]	Band 2 [nm]	Band 3 [nm]	Band 4 [nm]	Band 5 [nm]	Band 6 [nm]	Band 7 (nm)
470 to 500	515 to 536	540 to 561	575 to 597	625 to 647	670 to 692	740 to 760

Unsupervised cluster analysis was applied by Lyon *et al.* (1992) to map bottom sediment types with Daedalus 1260 data at St. Mary's River, Michigan. The four spectral bands listed in Table 2-4 were used to discriminate 50 initial clusters. These were subsequently grouped and identified as sand, silt/clay, silt/sand, sand/silt and sand-rock/silt.

Table 2-4: Spectral Band Configuration Used by Lyon et al. (1992)

Band 1 (nm)	Band 2 [nm]	Band 3 [nm]	Band 4 [nm]
400 to 450	500 to 550	550 to 600	600 to 650

Luczkovich *et al.* (1993) used Landsat TM spectral bands 1, 2 and 3 to map coral reefs, sand bottom and sea grass off the coast of the Dominican Republic. At water depths ranging from 0 to 5 m the variability in samples of the three bottom types was related to heterogeneity in the samples rather than to water depth. Borstad *et al.* (1992) demonstrated the potential of multispectral airborne remote sensing to detect fish schools. Using three spectral bands of a CASI sensor centered at 470 nm, 545 nm and 640 nm, several herring schools could be discriminated successfully against the background radiation of deep water and sea floor.

Acomley *et al.* (1995) demonstrated the potential of CASI imagery for the mapping of salmonid spawning habitat in the River Test, England. Reference data consisted of spectrometric and bathymetric measurements as well as positional measurements of redd locations. The selected CASI spectral band configuration is presented in Table 2-5. Lyzenga's (1978) method was applied to calculate a linear relationship between spectral response and water depth. Bathymetric measurements were correlated to all transformed spectral bands and showed the highest correlation with the ln- transformed Band 8 with r = -0.82. This relationship was used to derive a map of predicted water depths. Potential spawning habitats were mapped using the spectral bands 1 to 10 in a maximum likelihood classification. Qualitatively, the classification result was found to correspond well with the known location of spawning beds.

Spectral Band										
1	1 2 3 4 5 6 7 8 9 10									
	Central Wavelength [nm]									
510	510 555 590 620 645 660 670 701 740 800									

Table 2-5: Spectral Band Configuration Used by Acornley et al. (1995)

Remote sensing has proven to be an efficient means to gather information about aquatic habitats. If applied to the mapping of rivers, remotely sensed data should have a sufficiently high spatial resolution for an appropriate coverage of narrow river sections. Moreover, requirements for the application of multispectral imagery include the selection of at least three spectral bands: two bands in the visible spectral region for the extraction of submerged features as well as one near-infrared band to separate water covered areas from dry land. The visible bands should be

selected so as to minimize loss of information due to scattering and absorption in the water column. An overview of the spectral characteristics of sensors from selected applications in aquatic habitat mapping is presented in Table 2-6.

Author	Sensor	Spectral Bands [nm]	Method	Types of Substrate
Lyzenga, 1981	M-8	480 to 520	canonical transform; use of	hard, unvegetated bottom,
		500 to 540	bathymery	white carbonate sand;
		520 to 570		seagrass beds
		550 to n00		
		580 to 640		
		620 to 700	<u> </u>	
Borstad et al., 1992	CASI	460 to 480	visual interpretation of color	tish schools; deep water;
		535 to 555	composites.	bottom.
		630 to 650		
Khan et al., 1992	Lundsat	450 to 520	PCA applied to spectral bands	sand; beach rock, hard
	I IM	520 to 600	with no prior transformation.	bottom; mud; seagrass.
Zacharias et al., 1992	CASI	See Table 2-2	PCA applied to spectral bands	several types of intertidal
			with no prior transformation,	seaweeds.
			ISODATA classification of	
			principal components.	
MacLeod et al., 1992	CASI	See l'able 2-3	ISODATA classification of	vegetation, mud;
			raw bands and band ratios	limestone rubble.
Lyon et al., 1992	Daedalus	See Table 2-4	unsupervised classification of	sand, silt clay; silt sand,
	: 260		raw spectral bands.	sand stit, sand-rock silt.
Bierwirth et al., 1993	Landsat IM	450 to 520	bottom reflectance is obtained	substrate reflectances
		520 to 600	by applying radioative transfer	
		630 to 690	model, use od bathymetric	
			information	
Lambert, 1994	Landsat TM	EM2	canonical analysis; use of	macrophytes, sand nock
	and SPOT	EM3	bathymetry	
		XS1		
		XS2		
Acomley et al. 1995	CASI	see Table 2-5	maximum likelihood	redd (nest) locations.
			classification of raw spectral	
	1		bands.	

Table 2-6: Selected Remote Sensing Applications of Substrate Mapping

2.4 Automated Classification of Multispectral Imagery

Information is extracted from remote sensing data by means of image classification. This assumes that picture elements (pixels) showing similar spectral behaviour can be grouped into distinct spectral classes that correspond to features of interest, or informational classes. The relationships

between informational and spectral classes are established by a chosen classification method. These methods are commonly divided into supervised and unsupervised techniques. The latter use only information that is inherent in an image without prior knowledge about the location of target features, and the classification is carried out by cluster analysis or histogram merging techniques. Supervised classification algorithms, on the other hand, use training data to derive spectral signatures for classes of interest. Unknown pixels in the image are then assigned to a class according to these signatures. If reliable training data are available, supervised classification methods generally outperform unsupervised approaches (Mather, 1987).

Relatively simple methods of supervised image classification assign pixels to classes based on the Euclidean distance from the class mean (minimum distance classifier) or the value range in that class (parallelepiped classifier). The ISODATA algorithm is a modification of the minimum distance method that combines the characteristics of both, supervised and unsupervised approaches (Duda and Hart, 1973). A set of training clusters is used to compute class centroids. New cases are subsequently classified according to their distance from these centroids. With each classification, the group centroids are recomputed, and the procedure is repeated until no further changes occur. In the case of overlapping spectral signatures, however, the methods described above can lead to large classification errors.

In the maximum likelihood procedure, statistical frequency distributions are used to classify pixels according to their likelihood of class membership. This method requires the estimation of probability density functions for all spectral classes from mean vectors and covariance matrices. In order to correctly estimate class membership probabilities, training pixels must be normally distributed with respect to all spectral bands used in the analysis. Furthermore, it is assumed that the covariance matrices in each class are equal, although techniques exist to account for inequality of covariance matrices as demonstrated by Kershaw and Fuller (1992). Pixels are assigned to classes according to the highest probability. In general, whenever spectral classes are not distinctly clustered around a mean or well separated by their value ranges, statistical image classification is the superior method (Gonzalez and Woods, 1992).

The maximum likelihood approach to image classification is an example of statistical discriminant function analysis (Lachenbruch, 1975). Senous implications can arise if assumptions regarding the distribution of the data and the equality of covariance matrices are violated (Basu and Odell, 1974; Mather, 1990). In addition, the presence of spatial autocorrelation, as is to be expected with most remotely sensed data, can result in underestimated variances (Campbell, 1981). Since group membership probabilities are estimated from these variances, the classification may be unreliable and no inferences may be made about the discriminating power of the underlying model (Cliff and Ord, 1981; Labovitz and Masuoka, 1984; Griffith, 1987; Odland, 1988; Chou *et al.*, 1990). Spatial autocorrelation effects in the analysis of remotely sensed data can be accounted for by choosing a random sampling scheme for training and test data to ensure the independence of sample pixels (Campbell, 1981).

Alternatively, decision tree analysis (DTA) has been applied to data that did not match the requirements for conventional statistical classification techniques (Kass, 1980; Hawkins and Kass, 1982; Breiman *et al.*, 1984; Quinlan *et al.*, 1987; Lees and Ritmann, 1991). Relationships between spectral and informational classes are detected by dividing a data set recursively into smaller portions according to a set of predictor variables and one response (dependent) variable. The final result is a division of the original data set into mutually exclusive and exhaustive sub-sets. No limiting assumptions about data distributions are necessary, and in the same data set categorical as well as continuous data can be handled simultaneously (Fabricius and Coetzee, 1992; Dymond and Luckman,

1994). With respect to the analysis of remotely sensed images, the incorporation of non-image data such as polygons digitized from maps or digital elevation models is facilitated (Walker and Moore, 1988; Lees and Ritmann, 1991). The property of generating rules from large, heterogeneous databases has recently led to the incorporation of decision tree algorithms in expert systems as tools for inductive knowledge generation. This is an efficient alternative to the expensive and slow knowledge acquisition by interviewing human experts (Hart, 1986; Wharton, 1987; Moller-Jensen, 1990; Kelly, 1991; Günther *et al.* 1993).

In DTA complex data sets are handled in a flexible manner through recursive partitioning. That is, a data set is progressively divided into smaller, more homogeneous sub-sets, and relationships between predictor and response variables are analyzed for each sub-set separately. Several approaches exist to partition the data set. Morgan and Sonquist (1963) developed an automatic interaction detection algorithm (AID). A data set consisting of a continuous dependent variable and categorical predictors is partitioned by collapsing categories of predictor variables. Categories are combined to maximize the between-group-sum-of-squares. The resulting split is always binary. Predictor variables are either monotonic (ordinal) or free (nominal). Categories of free predictors can be combined in any order, whereas categories of monotonic predictors can only be combined in an ordinal fashion. Significant improvements to the AID algorithm led to the development of the CHAID method (Kass, 1980). In this case the dependent variable is categorical, and the best predictor variable to define a split at a given node is selected according to statistical significance. That is, predictor variable categories are collapsed so as to maximize the χ^2 -statistic, and the statistical significance of the resulting groupings of categories is calculated. Other improvements include the inclusion of a type of predictor variable that can handle missing data, and the possibility of k partitions, where $2 \le k \le c$ (c = number of categories in the predictor variable). At every node, a multiple search is conducted to find the most significant statistical relationship between predictor and response variable, resulting in a higher probability of detecting relationships by chance which, in reality, do not exist (increased Type I error rate of false acception). In order to counter problems associated with the detection of spunous relationships, statistical significance values for potential splits are divided by the Bonferroni factor. This factor is calculated based on the number of ways the original predictor variable categories can be combined to groups with the number of groups fixed to the final number of merged categories. Consequently, predictors with many categories are discriminated against in favour of variables with fewer categories. Biggs *et al.* (1991) developed exhaustive partitioning as a refinement of the CHAID method. As before, the selection of the best split is based on statistical significance. The Bonferroni adjustment, however, is calculated allowing for a variable number of groups so as to remove bias towards variables with few categories.

Estimating the accuracy of a decision tree classification requires elimination of redundant branches (pruning) to find the optimal sized tree for a given application. The pruning process is necessary since redundancy of rules will decrease the accuracy of the decision tree through overfitting. Pruning is generally realized either by cross-validation procedures using the training sample, or by using a test sample that was collected independently from the training data set Quinlan *et al.*, 1987: Safavian and Landgrebe, 1991). According to Breiman *et al.* (1984), using an independent test sample is the preferred and statistically more robust method. In this case, the decision tree is reproduced on the test data set. The branches of the tree are successively removed while observing the overall accuracy at every step. The process is stopped when the accuracy decreases with the removal of a branch.

Reddy and Bonham-Carter (1991) have demonstrated the relevance of decision trees for spatial analysis. Exhaustive partitioning was used to analyze geological, geophysical and remotely sensed data to predict mineral occurrence. The resulting hierarchical tree structure is shown in Figure 2-1. Decision rules consisting of "IF...THEN" statements were established by following down the branches of the tree to the end nodes. The rules were implemented using a geographic information system (GIS), and mineral occurrences could successfully be predicted.

Figure 2-1: Decision Tree for Mineral Mapping (after Reddy and Bonham-Carter, 1991)

Lees and Ritmann (1991) used DTA to integrate remotely sensed and digital map data for vegetation mapping. Landsat TM spectral bands 1, 2, 3, 4, 5, and 7 were used together with relief and geological information in a binary decision tree algorithm to predict distributions of eight vegetation classes in a hilly environment. Only the categories "dry sclerophyll vegetation" and "cleared forest" were classified with acceptable accuracy levels of 70 and 88 %, respectively. For the remaining classes the proportion of correctly classified cases ranged from 19 to 49 %. Nevertheless, this result

was found to be superior to using either imagery or thematic map data alone under similar conditions. Belward and de Hoyos (1987) applied a supervised binary decision tree to the classification of agricultural crops from LANDSAT-MSS imagery. Eight types of crop were distinguished successfully at per class accuracies ranging from 48 to 99 %. This result was found to be comparable to the result of a conventional maximum likelihood procedure. However, the decision tree was found to be computationally more efficient and required less time for training area generation. Recently, Hess *et al.* (1995) used decision tree classification to estimate inundated area and vegetation in the Amazon floodplain from multi-frequency, polarimetric synthetic aperture radar (SAR) imagery. The land cover categories of water, clearing, macrophytes, non-flooded forest and flooded forest were identified with per class accuracies above 90%.

Bottom substrate, channel pattern, and type of land cover have proved to be key factors in the characterization of freshwater habitat for Atlantic salmon. While conventional air photo interpretation is in some instances applied routinely to the mapping of freshwater salmon habitat, the full potential of digital imagery has yet to be explored. Studies concerned with bottom type mapping have mostly concentrated on either coastal or lacustrine environments. The results from these investigations, particularly in conjunction with the recent findings of Acomley *et al.* (1995), strongly suggest that an extension into the mapping of habitat in rivers and streams is feasible. Further advances could be made by including non-spectral information about habitat parameters in the analysis. For example, bottom substrate and channel pattern can also be described by geomorphologic-hydrological measures such as stream width and gradient. Decision tree analysis has proven to be a reliable method for the efficient and robust statistical analysis of large data sets with varying data types. This characteristic makes DTA ideally suited for the integration of both spectral and non-spectral data in an analysis of freshwater salmon habitat.

Chapter 3.0 Study Area and Data

3.1 Study Area

The Come By Chance River study area is characterized by abundant freshwater salmon habitat, ample road access. A limited occurrence of shaded river sections provides the basis for the use of remotely sensed data. The river is located on the isthmus of the Avalon Peninsula in eastern Newfoundland (Figure 3-1) and has an axial length of about 17 km, draining a watershed of approximately 64 km². Stream width varies from 33 m at the mouth to 4.5 m close to the headwaters (Fisheries and Oceans Canada, 1994) (Figure 3-2). Ponds and tributaries were excluded from the analysis. The overall flow conditions have been described as relatively stable, with little change in bedforms and substrate during high water conditions (Harmon, 1966). In the western part of the watershed, the topography is characterised by comparatively steep hills rising from 170 m to 300 m above sea level. In the eastern part, the slopes are gentler with elevations varying from 100 m to 170 m. The bedrock material is composed of Palaeozoic volcanic rocks (Agriculture Canada, 1991). Glacial and glacio-fluvial sediments dominate the surficial geology, with occasional bedrock outcrops on steep slopes. Stony, humic-ferric podzols are the principal soil types. The vegetation cover in the watershed includes dwarf shrub heath dominated by Kalmia angustifolia, bogs with Sphagnum sp. mosses, fens composed of grasses and sedges and forest with Abies balsamea and Picea mariana (Damman 1983). Coniferous forest is predominantly found in the sheltered valley and along the lower slopes. Most of the higher elevations and hilltops are covered with dwarf shrub heaths.

Figure 3-1: Study Area Location

At locations exposed to strong winds, *Empetrum eamesii* replaces *Kalmia angustifolia* as the dominant species. The riparian vegetation is composed of forest, shrubs, grass, sedges and occasionally more extensive swamps with stands of alder. Urban development is concentrated in the communities of Come By Chance and Goobies (Figure 3-2). Industrial activity is limited to an oil refinery located about 5 km south of Come By Chance. The main transportation routes are the Trans-Canada Highway, the Burin Peninsula highway and the former Canadian National railbed, now used as a gravel road. In addition, numerous trails are present throughout the watershed.

Figure 3-2: Come By Chance River Study Area
In Chapter 2.0, important factors were identified that determine the quality of freshwater habitat for Atlantic salmon. Accordingly, this study is concerned with the extraction of substrate type, channel pattern and land cover as major habitat parameters from remotely sensed data. In this section all the data sets used in the analysis will be described in detail, including, field data, aerial photography, multispectral imagery and ancillary map data.

3.2.1 Field Data

A stream habitat survey conducted in October 1993 served as the primary source of reference data for the classification of channel pattern and substrate type. For this purpose the river course was divided into segments that served as basic sampling units and varied in length from 50 m to 200 m. Each segment is bordered by continuously numbered transects across the river course. The segments were identified by their upstream transect and marked in the field (Figure 3-3). Variables measured over segments and along transects are presented in Table 3-1 (Fisheries and Oceans Canada, 1994).

Parameter	Measurement Unit	Mode of Measurement	
Bank Height; Bank Gradient	meter; degree	at transect	
Channel Pattern	category	per segment	
Grain Size	percent	per segment	
Habitat Unit	square meter	per segment	
Segment Length	meter	per segment	
Stream Width	meter at transect		
Water Depth	centimeter 3 to 6 measurements across tra		

Table 3-1: F	ield Data
--------------	-----------

All river transects were numbered according to their distance from Transect 0 in the estuary. Water depth was determined at each transect at three to six equally spaced locations across the width of the river. Each segment was assigned one type of channel pattern, such as run, niffle, steady, flat and rapid (Table 3-2). Substrate was recorded for each segment as proportions of seven basic grain size classes, including fines, gravel, pebble, cobble, rubble, boulder and bedrock (Table 3-3). Habitat units were calculated as the area of each segment.

Channel Pattern	Definition
Run	Swift, turbulent flow with broken surface; mean depth ≥ 25 cm; stream width is less than average; boulder and rubble substrate;
Riffle	Average to rapid flow with broken surface; mean depth ≤ 25 cm; gravel through boulder substrate;
Steady	slow flow with smooth surface; stream width and depth greater than average; extend over several segments
Flat	Slow flow with smooth surface; stream width and depth greater than average; occurs within a segment;
Rapid	Areas of steep gradient; rapid to turbulent flow; white water; rubble, boulder and bedrock substrate;

 Table 3-2: Definition of Channel Pattern (after Scruton et al., 1992)

Table 3-3: Definition of Grain Size Classes

Grain Size Class	Diameter
Fines	< 0.2 cm
Gravel	0.2 to 3 cm
Pebble	3 to 5 cm
Cobble	6 to 13 cm
Rubble	14 to 25 cm
Boulder	> 25 cm
Bedrock	Bedrock

3.2.2 Aerial Photography

In order for the survey data to be used in the delineation of training and test areas, it was necessary to identify the surveyed river segments on the imagery. Since the field data were not georeferenced *in situ*, a second survey was undertaken in September 1994 with the objective to identify river segments as marked in the field on panchromatic aerial photographs. The characteristics of the photographic data are given in Table 3-4.

Table 3-4: Characteristics of Aerial Photography

Altitude	Focal Length	Approximate Scale	Date	
1341 m	152.7 mm	1-8800	May 1992	
Roll: 92208		Frames: 142, 144, 146, 152, 154, 156, 158, 166, 168, 170		

According to the scope of this study, aerial photography served a dual purpose: (1) the principal source of reference with regards to the location of river segments, and (2) in the identification of training and test sites for the land cover classification. The scale of the aerial photographs was large enough to identify features such as individual trees, shrubs and boulders. Digital imagery and aerial photographic data were recorded within 16 months of each other. No major changes in land cover have occurred during this time period.

Land cover categories are defined in Table 3-5. An overview of all habitat parameter categories is presented in Table 3-6. The last column in Table 3-6 indicates the tables in which the respective variable categories are explained in detail.

Land Cover Category	Description	
Coniferous	Mature coniferous trees	
Alder	Large, deciduous shrubs up to 2 m height	
Shrub	Softwood shrubs	
Wetland	Bog, fen, and herbaceous vegetation	
Noveg	Bare soil pavement and buildings	
Water	Water	

 Table 3-5: Land Cover Characteristics (after Scruton et al., 1992)

Table 3-6: Habitat Parameter Categories

Habitat Parameter	Category	Compare Table
Substrate Type	Gravel	Table 3-3
	Rubhle	
	Boulder	
	Bedrock	
Channel pattern	Run	Table 3-2
	Rıffle	
	Steady	
	Flat	
	Rapid	
Land cover	Conterous	Table 3-5
	Alder	
	Shrub	
	Wetland	
	Noveg	
	Water	

3.2.3 Multispectral Image Data

Image data were collected with a Compact Airborne Spectrometric Imager (CASI) on October 23rd, 1993. The sensor allows for a flexible setting of spectral bands from 428 to 946 nm and operates in either spectral or spatial mode. In spectral mode, the sensor records reflected radiation in up to 288 channels at a low spatial resolution, whereas spatial mode data are collected at spatial resolutions of

few centimeters or meters. The peak Spectral Radiance Unit (SRU) expressed in $[\mu W \cdot cm^2 \cdot sr^{-1} \cdot nm^{-1}]$ is selected during the flight in order to determine the optimal saturation point for scaling radiance values into a 12 bit range (Borstad, 1992). In this study, the CASI sensor was operated in spatial mode. A nominal spatial resolution of 1.5 x 1.5 m was chosen to allow for a proper coverage of the widest and narrowest river sections. At the given spatial resolution, reflected radiation could be registered in a total of four spectral channels. Details of the spectral band configuration are listed in Table 3-7. The images were recorded as 12 bit data and subsequently re-scaled into an 8 bit range as required for input in the image processing software.

Table 3-7: Spectral Characteristics of the CASI Sensor

	Band 1	Band 2	Band 3	Band 4
Bandwidth (nm)	499.5 to 521.1	579.0 to 600.7	648.3 to 671.9	
Band Center [nm]	510.30	589.85	660.10	-29,95

A peak SRU of 2.5 was chosen for all spectral bands to highlight features submerged in water while preserving sufficient spectral variability over land areas. Band 1 was positioned at 510 nm to maximize water penetration. No channel was selected in the blue spectral region due to strong scattering in atmosphere and water column. Bands 2 and 3 were selected to collect information at locations of shallow water while minimizing scattering in the water column. Band 4 was used to separate land and water. All four channels were used in deriving land cover features.

Initially, ten flight swaths were defined to account for the sinuosity of the river (Figure 3-2). Swath 3 had to be eliminated due to extreme geometric distortions. As a consequence, a river section of approximately 300 m length north of Goobies Pond was excluded from the analysis. In the case of overlapping swaths the image data with the least distortions were used. This reduced the initial image data set to 6 individual scenes. Swath 8 was used only in the assessment of radiometric normalization of the imagery since the area covered by this flight line is fully accounted for by Swaths 6 and 7 (Figure 3-2).

An example of multispectral imagery, aerial photography and recorded field data is given in Figure 3-3. In Figure 3-3(a), several types of land cover are distinguished on the false colour composite image. Examples of field survey data are overlaid onto the aerial photograph in Figure 3-3(b). Of particular interest is the fact that the river segment identified by Fransect 6175 (channel pattern = steady; substrate = bedrock) shows homogeneous tone and texture. On the other hand, tone and texture clearly vary in the segment corresponding to Transect 6300 (channel pattern = riffle: substrate = bedrock). This apparent heterogeneity in field data sampling units has implications for the classification of substrate type and channel pattern which are discussed in Chapter 6.0.

3.2.4 Ancillary Data

The National Topographic Service (NTS) digital map sheet 1N/13 served as an ancillary data source. Elevation data contained as contour lines in this map sheet were used in the calculation of valley gradient. The derivation of valley gradient as a potential predictor variable for bottom substrate and type of channel pattern is described in detail in Chapter 4.0.

Dump

Figure 3-3: False Colour Composite Image and Aerial Photograph of Sub-Area

Chapter 4.0: Methodology

4.1 Introduction

In this chapter, the procedures for data pre-processing, training data collection and selection of predictor variables are presented. Classification of habitat parameters based on decision tree analysis and methods for the assessment of classification accuracy are explained. An example of habitat suitability mapping using individual habitat parameters is given at the end of this chapter. The methodology followed in this study is summarized in Figure 4-1.

4.2 Pre-Processing

The data sets used in this study were subjected to various forms of pre-processing prior to their use in subsequent analyses. Pre-processing of the field survey data involved the categorization of continuous substrate data by means of cluster analysis. An ancillary data set was created by calculating stream width and valley gradient. All images were subjected to atmospheric, radiometric and geometric corrections as well as to the derivation of image transforms.

Figure 4-1: Methodology

4.2.1 Field Survey Data

Data from the field survey were used in the classification of the habitat parameters*Channel Pattern* and *Substrate Type*. The type of channel pattern was recorded as categorical data and subsequent pre-processing was not required. Bottom substrate composition, however, was initially described as proportions of seven basic grain size classes. In order to use bottom substrate as dependent variable, the continuous grain size data was reduced to only one variable consisting of discrete substrate categories using cluster analysis.

Cluster analysis is a method of grouping observations together that are similar with respect to a set of discriminating variables (Mather 1976; Davis, 1986). Observations are grouped together based on measures of similarity (correlation measures) or dissimilarity (distance measures). Clusters are formed so as to minimize differences within groups while maximizing differences between groups (Griffith and Amrhein, 1997). Approaches to cluster analysis include hierarchical and non-hierarchical techniques. Hierarchical clustering is further divided into agglomerative and divisive methods. Agglomerative methods start with all initial observations and form classes by grouping the most similar cases together. In divisive clustering, an initial cluster encompassing all observations is recursively split into smaller, homogeneous sub-sets. Non-hierarchical techniques, such as the kmeans procedure, require the definition of a set of initial clusters. Class membership for these groups is computed for all cases. As new cases are added, the initial clusters change. The procedure is repeated until the observed changes are below a pre-defined threshold.

Every clustering technique will result in the forming of clusters. It is therefore necessary to ensure that the clusters represent an actual grouping structure present in the data and are not artifacts of a particular algorithm. Bailey and Gatrell (1995) verified cluster analysis results by using two different

33

clustering procedures. A general agreement of both cluster solutions is an indication that a natural grouping was correctly captured. On the other hand, widely different results suggest an artificial grouping due to the chosen clustering method.

Cluster analysis of substrate data was realized in two stages. First, initial hierarchical, agglomerative clustering was applied using the median method to merge two groups based on the distance between their centroids for all discriminating variables. At every step, equal weight is given to both groups to be combined. Squared Euclidean distances were used as dissimilarity measure. It was therefore possible to retain the influence of individual river segments on the overall cluster characterization. The number of clusters was plotted against the distance measure to reveal the number of natural groups inherent in the data (Griffith and Amrhein, 1997). The second stage in reducing and categorizing substrate information involved the use of non-hierarchical k-means clustering. Both results were compared to verify the general correspondence of the obtained cluster solutions.

4.2.2 Ancillary Data

Knighton (1984) identified stream width and valley gradient as pertinent to the characterization of bottom substrate and channel pattern. Consequently, these variables are used as potential predictors in the classification of *Substrate Type* and *Channel Pattern*. In order to derive the valley gradient, a digital elevation model (DEM) of the study area was created. A DEM is a digital, discrete, three-dimensional (x, y, z) representation of a continuous surface. The generation of a DEM is divided in 2 steps: the definition of a regularly spaced grid (x, y) covering the area of interest, and the choice of an appropriate interpolation algorithm to calculate elevation (z) for all grid cells from a number of locations with known elevations. Elevation data for this study were digitized contour lines

contained in the 1:50,000 digital map sheet NTS 1N.13. The corresponding spatial resolution was accepted to be 25 m. A grid cell size of 30 m was chosen for the DEM. Since the locations of known elevation followed digitized contour lines rather than being randomly distributed over the study area, the INTERCON algorithm was used for interpolation (Eastman, 1997). In this procedure, elevation at unknown locations is determined by linear interpolation between contour lines.

The next step in the extraction of valley gradient was the overlay of the river course from the image data onto the DEM. At the intersection of river course and DEM, elevation for each cell and distance between cell centers were recorded. Valley gradient was calculated as the gradient between two cells provided that the down-stream cell showed a lower elevation than the corresponding upstream cell. If this was not the case, the next down-stream cell with a lower elevation was used. This procedure is based on the assumption that elevation along the course of the river is continuously decreasing in the down-stream direction. As a result the river was divided into discrete sections with one gradient value each.

Stream width was calculated as the average width of discrete river sections. These sections were created using the center locations of all DEM cells that intersected with the course of the river. Voronoi polygons were created around these center locations. The river course was divided into sections of an approximately equal length of 30 m by overlaying water mask and Voronoi polygons. Given length and area of each section, average stream width was calculated according to:

$$W = A / L \tag{4-1}$$

where

4.2.3 Image Data

A first order correction for atmospheric path radiance was applied to the imagery using the method proposed by Chavez (1998). This type of correction is mandatory in the case of conversion of digital counts to radiance or reflectance units, for the comparison of data collected at different dates or prior to combining spectral bands through mathematical operations (Mather, 1987). Following Chavez's procedure, an initial value for path radiance was determined for one spectral band using the lowest value in the image histogram. This assumes that in any scene there are dark areas such as deep water or shadows where the expected reflected radiation is next to zero. In the presence of path radiance, however, the minimum value in a histogram will be greater than zero. The starting DN value corresponding to atmospheric path radiance was selected using *Band 1* since it is the spectral band most affected by atmospheric scattering. Once this value was found, an appropriate relative atmospheric scattering model was selected. The scattering models have the following form:

$$\mathbf{p} = \mathbf{c}\lambda^{\mathbf{X}} \tag{4-2}$$

where

p = path radiance λ = wavelength x = parameter with values ranging from \rightarrow to 0 c = constant

The DN equivalent to path radiance was calculated using Equation 4-2 given the initial path radiance value as extracted from the histogram. Table 4-1 lists different atmospheric conditions and the corresponding values of x.

Atmospheric Conditions	Value of x	
very clear	-4	
clear	-2	
moderate	-1	
hazy	-0.7	
very hazy	-4).5	

Table 4-1: Atmospheric Conditions (after Chavez, 1988)

Given the atmospheric conditions at the time of the image acquisition, the Rayleigh scattering model was chosen (x = -4) to correct for atmospheric path radiance. Atmospheric absorption was not corrected for due to the lack of appropriate data. This is not viewed as a problem because the images were recorded in the visible and near-infrared spectral regions where absorption effects are negligible (Van Stokkam *et al.*, 1993; Cracknell and Haves, 1991).

The time required to record all images was 37 minutes. Therefore, the effect of changes in solar elevation was evaluated. While constant atmospheric and radiometric conditions are assumed within each scene, the same is not necessarily true between scenes. Spectral radiance, the physical quantity measured by the CASI sensor, varies with solar elevation. Slater (1980) proposed the following relationship between surface reflectance, radiance registered at a remote sensor, and solar elevation:

$$R_{1} = \{d^{2} \cdot \pi \cdot (L_{1} - L_{p1})\} / E_{1} \cdot \cos(\phi)$$
(4-3)

where

 R_i = surface reflectance d = earth-sun distance L_i = radiance at sensor in band i L_{pi} = atmospheric path radiance in band i E_i = spectral irradiance at top of atmosphere φ = solar zenith angle Equation 4-3 contains two important points. First, similar surfaces in two scenes might show different values of spectral radiance if there is a large discrepancy in solar elevation. Second, areas of high surface reflectance are more severely affected than features showing low reflectance. In order to verify if radiometric normalization of the flight swaths is necessary, areas of relatively high and low reflectance values were identified on images of the flight swaths 1 and 8. High reflectance targets were represented by sections of the Trans-Canada Highway (TCH). Segments of the Come By Chance River were selected as low reflectance test areas. In both cases, constant surface conditions throughout the study area were assumed.

All images were geometrically corrected and registered to UTM coordinates (Zone 22, NAD83). Ground control points (GCP's) with known coordinates were identified on reference maps (scale ranging from 1:5,000 to 1:12,500) and on the imagery. A highly accurate approach to the geometric correction of airborne imagery is the thin plate spline method. However, this requires a large number of GCP's as well as the recording of reference coordinates using a global positioning system (GPS), which was not available at the time of this investigation. Therefore, first order polynomial regression analysis and nearest-neighbour resampling were applied to transform image coordinates. Registration accuracy was assessed using the root-mean-square (RMS) error, which is the standard deviation of the residuals of both Easting and Northing coordinates. The resolution of the corrected images was set to be 2 m to allow for appropriate coverage of the narrowest river sections.

For the prediction of *Substrate Type* and *Channel Pattern* a binary mask was created to separate water covered areas from land. The river course was digitized on-screen to exclude extensive areas of shadow over land. Visual inspection of *Band 4*, colour composite images, air photos and the histogram of *Band 4* were used to select a threshold value for the separation of water from land. The threshold value for pixels representing water was set at DN < 90 in *Band 4*.

38

Extracting information on bottom substrate or channel pattern required that the impact of the water column on the reflected radiation be minimized. Due to the absence of reliable depth measurements, the method proposed by Lyzenga (1978) was modified. First, pixels of submerged areas over bedrock substrate were transformed using the natural log. The linear variability observed in the log-transformed DN values reflects variations in water depth since the type of bottom substrate is kept constant. Next, principal component analysis (PCA) was applied to these pixels. The first principal component is aligned along the direction of maximum sample variance, thus representing water depth variability. Consequently, the remaining components contain information unrelated to water depth but related to bottom type variation. In addition, the approach of Khan*et al.* (1992) was followed by applying PCA directly to pixels of varying bottom types and without prior log-transformation.

In the land cover classification, the normalized difference vegetation index (NDVI) was used besides the original spectral bands. This index is sensitive to spectral differences between vegetated and non-vegetated areas and is calculated as:

$$NDVI = (L_{ir} - L_r) / (L_{ir} + L_r)$$
(4-4)

where

$$L_{ir}$$
 = radiance in the near-infrared spectral band
 L_r = radiance in the red spectral band

The NDVI has also been used to differentiate between types of vegetation (Curran, 1983). In addition, PCA was applied to the land cover training data to enhance discrimination between land cover classes. The resulting principal components were included in the pool of potential predictor variables for the type of land cover.

4.3 Training and Test Area Generation

For each of the habitat parameters *Channel Pattern* and *Substrate Type*, 50 river segments were selected at random. Where applicable, both features were recorded for the same segment. The resulting database was randomly split in half to yield one training data set and one verification, or test, data set. A buffer of 20 m was created around each transect to account for errors in transect positioning. No pixel was collected within this buffer. Approximately 50 pixels were collected at random from each segment to assure correct representation of actual class occurrences in training and test data. Training and test areas for the classification of *Land Cover* were identified with the aid of aerial photographs. A total of 403 locations were selected at random over all images. Polygons containing an average of 60 pixels were delineated around these locations. Boundary pixels were not included. One half of the polygons were used to extract training data, while the other half was used to collect test data. The large number of training and test sites was required to account for any radiometric differences between the scenes. In both training and verification data sets the number of pixels was further reduced by randomly selecting one third of all cases for subsequent analysis.

4.4 Selection of Predictor Variables

The pool of potential predictor variables for each habitat parameter is presented in Table 4-2. For each variable, plots of mean response and standard deviations of all habitat parameter categories were examined. The coefficient of variation (CV) was used as a measure of group variability independent from the magnitude of the mean. Since the CV is only defined for positive values, variables containing negative values (i.e. principal components, NDVI) were

adjusted by adding the variable minimum to the mean in each category before calculating the coefficient of variation (Neter *et al.*, 1993). Bivariate correlations between independent variables and standardized distances, or differences, between group means were analyzed to select the final predictor variables for each habitat parameter.

Potential Predictor	Habitat Parameters			
Variables	Substrate Type	Channel Pattern	Land Cover	
Original spectral bands	Band 1	Band 1	Band I	
	Band 2	Band 2	Band 2	
	Band 3	Band 3	Band 3	
	Band 4	Band 4	Band 4	
Principal component transform	PCI_ln	PCI_In	-	
applied to In-transformed	PC2_ln	PC2_In	~	
spectral bands	PC3_In	PC3_In	-	
	PC4_ln	PC4_In	-	
Principal component transform	PCI	PC/	PCI	
applied to original spectral	PC2	PC2	PC2	
bands;	PC3	PC3	PC3	
	PC4	PC4	PC4	
Stream width	Width	Width	•	
Valley gradient	Gradient	Gradient	-	
Normalized difference vegetation index:	·	-	NDVI	

Several predictor variables were generated as linear combinations of the original spectral bands. Therefore, it was necessary to assess the degree of multicollinearity present among the independent variables. Multicollinearity exists if two or more predictors are highly correlated. Correlation coefficients exceeding a value 0.70 can lead to inflated significance levels and logical problems due to duplication of information (Tabachnick, 1996). Extreme correlations of greater than 0.90, for example, are likely to prevent matrix inversion calculations in multiple regression and discriminant function analysis (Mather, 1976). Correlation among independent variables was analyzed using the non-parametric Spearman rank correlation coefficient (Walford, 1995).

Standardized distances between category means were calculated in two stages. First, all predictor variables were standardized according to:

$$z = (x - m) - s$$
 (4-5)

where

z = standardized score
x = raw variable score
m = variable mean
s = variable standard deviation

Secondly, the distance between two categories was calculated in each standardized predictor variable as following:

$$d_{1j} = m_{Z1} - m_{Zj} \tag{4-6}$$

where

d_{1j} = distance between category means in standardized variable z ^mzi = mean of category i in standardized variable z ^mzj = mean of category j in standardized variable z

As a result, variables measured in different units were made directly comparable. Moreover, the calculated differences between category means were expressed in units of standard deviation and therefore provided a better indication of group separability than the original units (Davis, 1986). To minimize the risk of falsely accepting spurious relationships, significance levels and confidence intervals were calculated for each distance using the Scheffé procedure. This method is extremely conservative and allows for the simultaneous comparison of all group differences (Tabachnick, 1996). Group differences were accepted to be statistically significant at minimum significance level of 0.05.

A simple strategy was adopted in selecting the final predictor variables for each habitat parameter. First, independent variable showing the largest standardized distance was identified. If this value was significantly different from the corresponding difference in any other variable at a significance level of 0.05, the variable was selected. If two or more variables showed group differences not significantly different from the largest distance observed, they were included as predictors, provided that none of these variables were highly correlated with each other. However, if high correlations were observed, these variables were dropped from the analysis. High correlations between predictors were accepted when the largest mean difference observed was significantly different from any other variable in more than one instance. In this case, the presence of multicollinearity was accounted for by adjusting significance levels during the classification process. This procedure is discussed in detail in the following section.

4.5 Classification of Habitat Parameters

Classification of habitat parameters was carried out using decision tree analysis (DTA). The exhaustive partitioning procedure developed by Biggs *et al.* (1991) establishes relationships between predictor and response variable based on statistical significance. It is a statistically robustness technique and permits the integration of continuous and categorical data. For these reasons, exhaustive partitioning was selected as classification algorithm. A separate decision tree was grown for each of the habitat parameters *Substrate Type, Channel Pattern* and *Land Cover*. Only splits showing a significance level of 0.05 or higher were accepted so as to ensure statistically strong relationships between predictor and dependent variables. If several predictor variables passed the significance threshold at a given node, the variable with the highest significance was selected to partition the data. All observed significance levels were corrected using the Bonferroni adjustment factor to minimize the risk of falsely accepting relationships that were not significant. The Bonferroni adjustment factor was also used to account for the presence of highly correlated predictor variables. The effect of this adjustment was a further reduction of the initially obtained significance levels so as to suppress

relationships which are caused by the duplication of information in the predictor variables.

Before applying classification rules derived from DTA to the classification of unknown cases, redundant branches of a decision tree must be removed to avoid overfitting. This process is called pruning and generally involves the use of an independent test sample that was not used in the creation of the decision tree (Breiman *et al.*, 1984). If DTA is applied to remotely sensed data, three data sets are required: one for training, one for pruning, and one to assess classification accuracy (Friedl and Brodley, 1997). However, for practical reasons it was not possible to allocate sampling areas for three separate data sets in the present study. Instead, the risk of overfitting was minimized by specifying a threshold sample size, or stop size, for the creation of new nodes. That is, if a given node contained fewer observations than the specified stop size it was not further partitioned.

The selected threshold sample size for each habitat parameter was related to the average sample size in an individual sampling unit. In the case of *Substrate Type* and *Channel Pattern*, individual sampling units are defined by the average length and width of river sections used in the derivation of stream width and valley gradient. Given an average width of 20 m, an average length of 30 m and a pixel resolution of 2 m, the corresponding stop size was set to be 150. Individual sampling units for the habitat parameter *Land Cover* are defined by the size of individual training areas. Accordingly, a threshold sample size of 60 was selected corresponding to the average sample size per training area. The decision trees were interpreted as statistically significant classification rules in "IF...THEN" format. These rules were subsequently implemented as a FORTRAN program to classify all of the imagery.

Integration of continuous predictors in decision tree analysis required the selection of discrete categories for each variable. Class intervals were derived with the aid of exploratory data analysis as described by Vellemann and Hoaglin (1981). With this approach, a data set is described and

partitioned around the median. Furthermore, the data can be divided into equal parts to contain an eighth, a fourth, half, etc. of all observations. All image variables were divided into eight intervals of equal size. Stream width was divided into four discrete categories, while three equal sized intervals were selected for the variable valley gradient.

4.6 Accuracy Assessment

Classification was evaluated using a verification sample that was not previously used in the derivation of decision trees for the habitat parameters *Substrate Type*. *Channel Pattern* and *Land Cover*. The result of this analysis was summarized using contingency tables (Congalton and Green, 1993; Green *et al.*, 1993; Fitzgerald and Lees, 1994; Janssen and Van der Wel, 1994; Lark, 1995; Stehman, 1997).

Table 4-3 contains a schematic contingency table to illustrate the various measures of accuracy that were extracted. The columns of this table refer to the reference data, whereas the rows represent the classification result. Accuracy measures used in the assessment of classification performance are defined in Table 4-4. The misclassification rate of pixels in the test data set belonging to a particular substrate type is given by the respective errors of omission, designated as "OE" Table 4-4. Conversely, errors of commission refer to pixels wrongly assigned to groups to which they do not belong. Commission errors for each category are obtained from Table 4-4 as "CE". Accuracy measures include overall classification accuracy "OA", user's accuracy "UA" and producer's accuracy "PA". The overall classification accuracy represents the proportion of correctly classified observations across all categories. The user's accuracy value denotes the probability that a classified pixel actually belongs in the category it was classified. This measure is related to the error of

Table 4-3: Schematic Contingency Table

			Reference Data	_	
Classified Data	1=1	i=2	••••	ı=q	Row Total
ا=ر	C ₁₁	e ₁₂	•••	c _{iq}	$\sum_{j=1}^{4} c_{j,j}$
J=2	с ₂₁	C ₂₂		C ₂₄	$\sum_{j=1}^{q} c_{2j}$
,					
્ર≔ય	C _{al}	с ₁₂		С _М	$\sum_{j=0}^{n} c_{jkj}$
Column Total	$\sum_{i=1}^{4} c_{ii}$	$\sum_{i=1}^{q} c_{i2}$		$\sum_{i=1}^{4} c_{iq}$	

i = category in reference data

j = category in classified data

q = number of categories

 e_{ij} = elements of the confusion matrix

Table 4-4: Measures of Accuracy

Accuracy Measure	Definition	Calculation
Overall Accuracy OA	the proportion of overall correctly classified samples	$OA = \frac{1}{n} \cdot \sum_{i,j=1}^{4} c_{ij}$
Overall Classification Error OE	the proportion of overall incorrectly classified samples	OE = 1 - OA
User's Accuracy UA	the conditional probability p(j=1 j=k) that a sample is correctly allocated given that it was classified as k	$UA = \frac{c_{kk}}{\sum_{j=1}^{q} c_{kj}}$
Commission Error CE	for two classes (k,l) the conditional probability p(i=1 j=k) that a sample classified as k actually belongs to category 1	CE = I - UA
Producer's Accuracy PA	the conditional probability p(j=1 i=k) that a sample which actually belongs to class k is correctly allocated	$PA = \frac{c_{kk}}{\sum_{i=1}^{4} c_{ik}}$
Omission Error OE	for two classes (k,l) the conditional probability $p(j=k \mid i=l)$ that a sample which actually belongs to category l is classified as k	OE = 1 - PA
Kappa Index of Agreement ĸ	proportion of overall correctly classified samples, adjusted for the possibility of random assignment	$\kappa = \frac{OA - CA}{1 - CA}$

commission. Likewise, producer's accuracy is related to errors of omission. It designates the probability that a pixel belonging to a given category in the ventication data set is correctly classified. The kappa index of agreement is a measure of overall classification performance which takes into account correct assignment of pixels by chance. It is interpreted as the proportion by which a given overall accuracy exceeds the accuracy expected for a random classification. Calculation of the chance agreement term (CA) requires the derivation of a new matrix consisting of the products of row and column totals of the original contingency table. CA is then calculated by summing the diagonal and dividing by the grand total.

Jensen (1986) suggests the derivation of confidence intervals around estimated classification accuracy values using the normal approximation to the binomial distribution. Accordingly, confidence intervals for the overall accuracy of individual habitat parameters were calculated as:

$$C_{1} = P - \left(z \cdot \sqrt{\frac{P \cdot (1 - P)}{n}}\right)$$
(4-6)

$$C_{t} = P + \left(z \cdot \sqrt{\frac{P \cdot (1 - P)}{n}}\right)$$
(4-7)

where

P = proportion of correctly classified pixels C_{I} = lower confidence limit C_{u} = upper confidence limit z = 1.96 (corresponding to a probability of 95 % in a normal distribution)

4.7 Suitability Mapping

This study focused primarily on the extraction of individual salmon habitat parameters. Two of these parameters, i.e. *Substrate Type* and *Channel Pattern*, were used in the assessment of suitable

spawning habitat for Atlantic salmon. According to Dubois and Gosselin (1989), spawning habitat priority was calculated as:

$$P = B * C \tag{4-8}$$

where

P = spawning habitat priority B = priority weight of substrate type C = priority weight of channel pattern

The corresponding priority weights are presented in Table 4-5. A description of different spawning habitat types resulting from this analysis is given in Table 4-6. Spawning habitat priority can range from 0 to 4. A value of 4 indicates good spawning habitat suitability, while values of 1 or 2 indicate intermediate suitability. A value of 0 designates areas unsuitable for spawning.

Table 4-5: Priority Weights for Substrate Type and Channel Pattern

Substrate Type (Priority Weight)			Channel Pattern (Priority Weight)					
Gravel (1)	Rubble (2)	Boulder (2)	Bedrock (0)	Run (1)	Riffle(2)	Steady (1)	Flat (1)	Rapid (2)

Table 4-6: Salmon Spawning Habitats (after Dubois and Gosselin, 1989)

Type of Spawning Habitat	Spawning Habitat Priority (P)	Suitability
Habitat I	4	Good
Habitat II	1.2	Fair
Habitat III	0	Not Suitable

Chapter 5.0: Results

5.1 Introduction

In the first part of this chapter, the data pre-processing results are presented. Next, the process of selecting predictor variables for *Substrate Type*, *Channel Pattern* and *Land Cover* is described, followed by a presentation of decision tree classifications for each habitat parameter. The accuracy of the respective classifications is assessed. Finally, it is shown how the habitat parameters *Substrate Type* and *Channel Pattern* were used to model spawning habitat suitability for Atlantic salmon.

5.2 Pre-Processing

The following sections describe the results of substrate data categorization as well as image correction and transform procedures required in order to subject the data to further analysis.

5.2.1 Substrate Data

The number of natural substrate groups inherent in the data was estimated by plotting the cluster solutions obtained from hierarchical clustering against the distance associated with the merging of groups at each level. Natural groups are indicated by a distinct visual separation from one cluster

solution to the next. In Figure 5-1, a sharp increase in distance is observed for the transition from seven to six and from four to three terminal clusters. The first of these transitions reflects the fact that the type of bottom substrate is represented by seven individual grain size variables. The second transition suggests the presence of four natural substrate classes.

Figure 5-1: Cluster Solutions of Median Method

In order to verify that the substrate classes obtained from hierarchical clustering were not spurious, clustering was repeated using the non-hierarchical k-means procedure. The resulting cluster centers of both approaches are presented in Table 5-1. They represent average proportions of the original grain size variables for each cluster. Average proportions greater than 10 % are highlighted. Both cluster solutions are similar in the characterization of individual clusters. Cluster 1 is dominated by the variables Gravel, Pebble and Cobble. Cluster 2 is characterized by the grain size classes Rubble, Cobble and Gravel. In Cluster 3, the average proportions are largest for Boulder and Rubble, while Cluster 4 represents the grain size variables

Bedrock and Rubble. Although the observed clusters are not mutually exclusive due to overlap in average grain size proportions, the resulting categories reflect a clear trend from finer to coarser substrate.

		Cluster Centers (Average Proportion [***])								
Grain Size Variable	Cluster 1 (Median)	Cluster l (K-Means)	Cluster 2 (Median)	Cluster 2 (K-Means)	Cluster 3 (Median)	Cluster 3 (K-Means)	Cluster 4 (Median)	Cluster 4 (K-Means)		
Bedrock	2.11	1.96	2.72	3.31	1.90	4.42	66.92	69.58		
Boulder	2.31	1.40	3.85	3.55	44.52	42.92	9.28	8.22		
Rubble	4.27	2.11	40.64	30.72	35.24	32.75	13.64	12.97		
Cobble	20.58	10.38"	40.00	41.72	9.62	9.75	7.69	7.17		
Pebble	21.95	28.89	4.38	4.26	4.24	5.04	1.00	1.00		
Gravel	45.86	49.89	11.13	19.22	6.29	7.00	4.87	4.53		
Fine	7.00	9.53	1.00	1.00	1.86	1.75	1.00	1.00		

Table 5-1: Cluster Centers of Median and K-Means Methods

= cluster centers are significantly different at a significance level of 0.05

Significant differences between both cluster solutions exist only for Clusters 1 and 2. In Cluster 1, this difference is observed for the grain size variable Cobble. The average proportion for the median method is with 20.58 % twice as large as for the k-means procedure. In Cluster 2, the average proportions of both Rubble and Gravel differ for the median and k-means methods by approximately 10 %. These differences become more apparent from the cross-tabulation of both procedures in Table 5-2. Most of the discrepancy is accounted for by 18 river segments that are classified as Cluster 1 in the median method and as Cluster 2 in the k-means method.

Median Method	Cluster 1	Cluster 2	Cluster 3	Cluster 4
Cluster 1	45	18	1	0
Cluster 2	0	39	0	0
Cluster 3	0	0	21	0
Cluster 4	0	l	2	36

Table 5-2: Cross-Tabulation of Median and K-Means Clustering Results K-Means Method

When examined for their grain size composition, the segments showed average proportions for Cobble and Gravel of 45.56 % and 37.78 %, respectively. This indicates that river segments with relatively high proportions of both Cobble and Gravel substrate cause the disagreement between both clustering algorithms. Therefore, difference between clustering techniques reflects confusion between grain size classes inherent in the data. The median cluster solution featuring four terminal groups was selected to represent substrate information in all subsequent analysis. According to the highest average grain size proportions presented in Table 5-1, the final substrate categories were labelled *Gravel*. *Rubble, Boulder* and *Bedrock*.

5.2.2 Image Corrections and Transforms

Pre-processing of image data involved atmospheric and geometric correction, radiometric calibration and the calculation of image transforms. Atmospheric correction involved the estimation of a DN value equivalent to path radiance in each spectral band. The corresponding values are shown in Table 5-3. The effect of path radiance was corrected by subtracting these values from the respective spectral bands.

In order to investigate the need for radiometric calibration due to variations in solar elevation, the mean spectral response of high (paved highway) and low (water) reflectance areas after correcting for path radiance was compared. The result of this comparison is presented in Table 5-4. As expected, the differences are larger between the paved highway test areas than between the water-covered locations.

	Band 1	Band 2	Band 3	Band 4	Local Time
Swath 1	26	15	i)	6	11:21
Swath 2	30	17	11	7	11:28
Swath 4	30	17	11	~	11:38
Swath 6	32	18	11	8	11:45
Swath 7	32	18	11	8	11:48
Swath 8	32	18	11	8	11:53
Swath 9	33	18	12	8	11 : 58

Table 5-3: DN Values Equivalent to Path Radiance and Time of Acquisition

Table 5-4: Comparison of High and Low Reflectance Areas

	Mean	Spectral R	esponse (D	N of High	Reflectance	e Target (l	Paved High	iway)	
	Bar	ndi 1	Ban	Band 2		Band 3		Band 4	
	Swath 1	Swath 8	Swath 1	Swath 8	Swath 1	Swath 8	Swath 1	Swath 8	
Mean	171.5	168.1	189.1	189.7	172.5	177.8	148.3	153.9	
Standard Deviation	4.4	10.3	9.1	12.4	16.6	19.2	11.8	12.2	
Minimum	160	143	169	139	142	122	123	125	
Maximum	184	179	210	208	210	216	174	180	
	2	Mean Spec	tral Respon	ise [DN] of	Low Refle	ctance Tar	get (Water	·)	
	Ba	nd 1	Band 2		Band 3		Band 4		
	Swath 1	Swath 8	Swath 1	Swath 8	Swath 1	Swath 8	Swath 1	Swath 8	
Mean	9.1	7.7	8.8	9.4	8.1	6.9	15.2	14.4	
Standard Deviation	3.9	2.7	4.3	4.4	4.0	4.1	2.9	4.3	
Minimum	3	; 0	3	3	3	3	10	9	
Maximum	17	11	18	. 18	18	20	22	26	

In all instances, no significant differences in mean spectral response were observed between corresponding test pixels of Swaths 1 and 8 at a significance level of 0.05. These results indicate that correction for differences in solar elevation was not required.

The imagery was geometrically corrected for two reasons. First, resampling to a common coordinate system ensures a constant pixel resolution for all images. In uncorrected images the scale would vary within as well as between scenes due to sensor movement. Second, geometric registration was required for the integration of image and digital elevation data. Results of the geometric registration of image data to UTM coordinates are presented in Table 5-5. Given the lack of distinct features suitable for use as ground control points on the maps used in the correction process, a first-order polynomial transform was applied to register all images. Extreme geometric distortions in parts of the image data caused comparatively large registration errors of two to three times the resolution. However, since the resolution of the elevation data is 30 m, observed the image registration errors are well within the bounds required for data integration.

	Number of GCP's	Resolution (m)	Locational Accuracy [m]
Swath 1	10	2	5.3
Swath 2	15	2	5.1
Swath 4	11	2	4.7
Swath 6	8	2	5.8
Swath 7	8	2	6.3
Swath 9	5	2	4.4

Table 5-5: Image Registration Characteristics

Image transforms applied to training data of the habitat parameters *Substrate Type* and *Channel Pattern* included principal component analysis (PCA) of original and log-transformed spectral bands. The characteristics of these transforms are presented in Tables 5-6 and 5-7.

	Eigenvalue	Variance Explained [%]		Cumula	tive Variance [%}			
Component 1	968.226	86.4		86.4				
Component 2	105.169	9.4		95.8				
Component 3	42.484	3.8		99.6				
Component 4	4.714	0.4		100				
<u></u>	Component Loadings							
	Component 1	Component 2	Compo	onent 3	Component 4			
Band 1	0.343	0.265	0.7	19	0.544			
Band 2	0.507	0.315	0.225		-0.770			
Band 3	0.527	0.427	-0.657		0.329			
Band 4	0.590	-0.806	-0.()24	0.052			

Table 5-6: Characteristics of PCA Applied to Original Spectral Bands

Table 5-7: Characteristics of PCA Applied to log-Transformed Spectral Bands

	Eigenvalue	Variance Explained [%]		Cumula	tive Variance [%]
Component i	1.527	88.8		88.8	
Component 2	0.097	5.7			94.5
Component 3	0.085	4.9		99.4	
Component 4	0.0097	0.6		100	
		Component Loadings	;		
,	Component 1	Component 2	Сотро	onent 3	Component 4
In(Band 1)	0.493	0.563	-0	568	0.344
In(Band 2)	0.515	-0.043	-0.	111	-0.849
ln(Band 3)	0.567	-0.730	-0.001		0.381
In(Band 4)	0.413	0.385	0.1	816	0.125

In both PCA transforms, the proportions of variance explained by each of the components are very similar. When PCA is applied to the original spectral bands, 86% of the variance in the data is explained by the first component. The second component accounts for approximately 10% of the total variation. The proportion of variance explained by the third principal component is 3.8%. The fourth component accounts for less than 1% of the variability in the data. Likewise, the first principal component resulting from PCA applied to log-transformed bands explains 88.8% of the variability. However, the second and third components account for an almost equal amount of variance with 5.7\% and 4.9\%, respectively, while less than 1% is explained by the fourth component. Both approaches do not differ significantly in accounting for the overall variability in the data.

The result of PCA applied to land cover training data is presented in Table 5-8. In this case, the first component accounts for only 75.1 % of data variability, while more than 20 % of the total variability is explained by the second principal component. The third and fourth components account for 2.1 and 0.3 % of the total variance, respectively.

	Eigenvalue	Variance Explained %		Cumula	tive Variance [%]			
Component 1	7847.43	75.1			75.1			
Component 2	2352.58	22.5		97.6				
Component 3	223.82	2.1			99.7			
Component 4	29.25	0.3		100				
	Component Loadings							
	Component 1	Component 2	Comp	onent 3	Component 4			
Band1	0.400	-0.326	0.	714	0.473			
Band2	0.512	-0.226	0.149		-0.815			
Band3	0.599	-0.274	-0.677		0.328			
Band4	0.468	0.876	0.093		0.068			

Table 5-8: Characteristics of PCA Using Land Cover Training Data

5.3 Selection of Predictor Variables

5.3.1 Substrate Type

Group means, standard deviations and coefficients of variation of individual substrate categories are presented in Figure 5-2 and in Appendix A. In the original spectral bands, the observed differences between substrate categories were low with respect to the variability in each group. InBand 1, mean values ranged from 14.51 for the class *Boulder* to 23.07 for *Rubble*. Variability was generally high in all categories. The class Rubble showed the lowest coefficient of variation with a value of 51.02 %, while the corresponding values in the remaining categories ranged from 60.58 % for Gravel to 64.02 % for Boulder. The substrate category Boulder showed the lowest mean response in Band 2 with an average DN value of 20.6. It is clearly separated from the classes Gravel and Rubble, which showed a nearly identical mean response of 28.46 and 28.87, respectively. All substrate categories in Band 2 showed considerable spectral overlap with standard deviations ranging from 12.65 for Boulder to 16.56 in the class *Bedrock*. Variability remains high with coefficients of variation from 44.52 to 61.98 %. Mean response of substrate categories in Band 3 were similar to the spectral behaviour observed in Band 2. However, group variability in this variable is highest for the classes Boulder (77.10%) and Bedrock (70.35%) and lowest for Gravel (44.98%). The variable Band 4 showed the highest spectral response for all substrate groups. Mean values ranged from 30.25 in the class Boulder to 37.32 for *Rubble*. Group variability in this variable was lowest in the categories *Graveland Rubble*, with coefficients of variation of 53.87 and 55.17 %, respectively. The highest variability was observed in the classes Boulder (58.81 %) and Bedrock (60.52 %).

The principal components of log-transformed spectral bands also showed considerable

Figure 5-2: Group Means and Standard Deviations of Substrate Categories

Figure 5-2: Group Means and Standard Deviations of Substrate Categories (continued)

Figure 5-2: Group Means and Standard Deviations of Substrate Categories (continued)

overlap between all substrate categories. *PC1_in* largely resembled the response in the original spectral bands. The category *Boulder* showed the lowest mean response with a value of 5.54. Conversely, the highest response occurred in the category *Rubble* with a mean DN of 6.34. Group variability in this variable was characterized by coefficients of variation ranging from 14.79 % for *Gravel* to 21.48 % in the category *Bedrock*. In *PC2_in*, the category *Gravel* showed a low mean response of 0.24. Mean values in the remaining classes ranged from 0.53 to 0.60. Variability was highest in the category Gravel with 31.63 %, while the groups *Rubble*, *Bedrock* and *Boulder* showed coefficients of variation of 17.91 %, 22.05 % and 29.10 %, respectively. Spectral overlap of substrate classes was also dominant in *PC3_ln*. Observed mean response values ranged from 0.79 to 0.83, with standard deviations from 0.26 to 0.30. Variability was similar in all categories with coefficients of variation from 23.85 to 24.78 %. In the variable *PC4_in*, the substrate category *Gravel* was set apart from the classes *Rubble*, *Boulder* and *Bedrock* through a low mean response of -0.18 and a standard deviation of 0.09. The highest response occurred in the substrate type *Rubble* with a mean value of -0.08. Group variabilities were low and ranged from 9.57 % in the category *Rubble* to 12.50 % in the classe *Boulder*.

In PCI, the observed pattern of mean response and group variability was similar to the spectral behaviour of substrate categories in the original spectral bands. Mean response was lowest in the category *Boulder* (43.26) and highest for *Rubble* (58.97). Group variability ranged from 45.52 % in the class Gravel to 59.71 % for Bedrock. Mean response in the variable PC2 was characterized by mean values from 1.10 for *Gravel* to -5.95 for *Boulder*, while the observed standard deviations ranged from 8.08 to 9.95. Variability was lowest in the categories Gravel (13.22 %) and Rubble (14.88 %). The highest coefficients of variation in this variable were obtained for Bedrock (17.30 $^{\circ}$) and Boulder (18.41 $^{\circ}$). Pixels of the substrate type Gravel showed the lowest mean response in the variable PC3 with a value of -1.58. The remaining substrate categories were characterized by mean values from 1.90 to 4.23. Group standard deviations were similar in all classes and ranged from 5.66 to 6.77, resulting in coefficients of variation from 15.52 % in the category *Boulder* to 20.52 % for *Gravel*. The spectral behaviour of substrate categories in PC4 indicated separability of the class Gravel from Rubble, Boulder and Bedrock through a comparatively low mean response of -1.34. The remaining mean values ranged from -0.17 to 1.95, while standard deviations in all categories varied from 1.92 to 2.22. Variability was highest in the class Gravel with 28.99 %. Coefficients of variation in the remaining categories were similar and ranged from 23.39 to 24.03 %.

Differences between individual substrate classes were more apparent in the variable *Width*. This applied especially to the differentiation between the categories *Gravel* and *Rubble*. The respective mean values were 23.08 and 12.22, with corresponding standard deviations of 8.69 and 4.05. Similar mean response values of 17.95 and 19.62 were observed in the respective categories of *Boulder* and *Bedrock*. Variability in the variable *Width* ranged from 31.70 % in the class *Bedrock* to 38.83 % in the category *Boulder*. Mean response and variability in the variable

Gradient were similar for the categories *Gravel* and *Bedrock*. The observed mean values were 0.44 and 0.34, with standard deviations of 0.17 and 0.15, respectively. These categories were differentiated against the classes *Rubble* and *Boulder*, which show respective mean values of 1.48 and 1.11, and a standard deviation of 1.22 in both cases. Group variability was large for *Rubble* and *Boulder* with respective coefficients of variation of 82.43 and 109.91 %.

Standardized distances between the mean values of substrate categories in all predictor variables are presented in Table 5-9. The largest distance between means for each pair of substrate categories is underlined. Distances that are not significantly different from the largest distance for a given pair of categories are printed in bold letters. The significance level is set at 0.05. Standard error, significance level and confidence limits corresponding to each distance are listed in Appendix A. Rank correlation coefficients between independent variables are presented in Table 5-10.

The variable *Width* showed the largest difference in mean spectral response between the categories *Gravel* and *Rubble*. The observed value of 1.370 was not significantly different from the corresponding distances observed for the variables *Gradient*, *PC2*_ln and *PC4*. Class means of the substrate types *Gravel* and *Boulder* were furthest apart in the variable *PC2_ln* with a standardized distance of 1.052. The 95 % confidence interval associated with this value overlapped with the corresponding intervals of *PC2* and *Gradient*. Likewise, *PC2_ln* showed the largest difference between the categories *Gravel* and *Bedrock*. In this case, the observed distance of 0.839 was not significantly different from the corresponding values in *PC4_ln PC3* and *PC4*. The largest difference between group means for the classes *Rubble* and *Boulder* appeared in *Band 1*, with a standardized distance of 0.756. This value was significantly different only from *PC2_ln* and *PC2*. The variable *Gradient* showed the largest difference between the substrate categories *Rubble* and *Bedrock* as well as between *Boulder* and *Bedrock*. In both instances, the observed values of 1.392 and 0.940

	Band 1	Band 2	Band 3	Band 4	PC1_In	PC2 In	PC3 In	PC4 In	PC1	PC2	PC3	PC4	Width	Gradient
Gravel vs. Rubble	0.539	0.028	0.139	0.330	0.108	1.060	0.135	0.969	0.166	0.458	0.879	1.152	1.370	1.261
Gravel vs. Boulder	0.217	0.532	0.650	0.040	0.587	1.052	0.338	0.433	0.375	0.751	0.526	0.521	0.648	0.811
Gravel vs. Bedrock	0.219	0.118	0.232	0.157	0.162	0.839	0.007	0.776	0.001	0.414	0.576	0.707	0.436	0.128
Rubble vs. Boulder	0.756	0.560	0.512	0.371	0.694	0.008	0.473	0.536	0.542	0.293	0.353	0.631	0.723	0.452
Rubble vs. Bedrock	0.321	0.145	0.093	0.176	0.270	0.221	0.142	0.193	0.176	0.044	0.304	0.445	0.934	1.392
Boulder vs. Bedrock	0.435	0.414	0.418	0.195	0.425	0.213	0.331	0.343	0.365	0.336	0.050	0.186	0.212	0.940

Table 5-9: Standardized Distances between Substrate Category Means

underlined: largest distance observed for each pair of categories; bold font: distances not significantly different form largest distance at a significance level of 0.05

$Table J^{-}(0)$. Divariate Conclations (Concentration) variables	Table 5	5-10:	Bivariate	Correlations	between	Predictor	Variables
--	---------	-------	-----------	--------------	---------	-----------	-----------

	Band 1	Band 2	Band 3	Band 4	PC1 In	PC2 In	PC3_ln	PC4 In	PC1	PC2	PC3	PC4	Width
Band2	0.887												
Band 3	0.732	0.932											
Band 4	0.768	0.836	0.762									1	
PC1_ln	0.909	0.988	0.929	0.879						1			
PC2_ln	0.353	0.018	-0.260	0.244	0.062					_			
PC3_ln	-0.290	-0.060	0.047	0.324	-0.020	-0.140				<u> </u>			
PC4_ln	0.172	-0.070	0.007	0.101	0.056	0.249	-0.040						
PC1	0.872	0.972	0.916	0.928	0.989	0.078	0.089	0.037			1		
PC2	0.239	0.327	0.379	-0.140	0.254	-0.450	-0.650	-0.240	0.172				
PC3	0.411	0.055	-0.250	0.074	0.065	0.845	-0.480	0.083	0.033	-0.120			
PC4	0.198	-0.110	-0.090	0.026	0.005	0.350	-0.180	0.886	-0.020	-0.160	0.235		
Width	-0.400	-0.160	-0.010	-0.240	-0.210	-0.540	0.186	-0.340	-0.190	0.161	-0.520	-0.430	
Gradient	-0.050	-0.070	-0.070	-0.110	-0.070	-0.010	-0.110	0.012	-0.090	0.062	0.023	0.023	0.070

bold font: correlation coefficients > 0.70

were significantly different from the distances obtained for all other predictor variables.

Variables discriminating between *Gravel* and *Rubble* include $PC2_ln$, PC4, *Width* and *Gradient*. Correlation among these variables ranges from -0.01 to -0.54. These values do not indicate redundancy in information. Therefore, the variables $PC2_ln$, PC4 and *Width* were selected as predictor variables. The substrate classes *Gravel* and *Boulder* are differentiated by the variables $PC2_ln$, PC2 and *Gradient*. In this case PC2 is the only variables not yet selected as predictors. It was not found highly correlated with any other variable and therefore included in the analysis. The largest mean difference between the substrate categories *Gravel* and *Bedrock* was obtained in the variables $PC2_ln$, $PC4_ln$, PC3 and PC4. A comparison of correlation coefficients showed that PC3 and $PC2_ln$ were highly correlated with r = 0.845. Therefore, PC3 was not used in the classification of bottom substrate. Likewise, a correlation coefficient of 0.886 between $PC4_ln$ and PC4 indicated the capture of duplicate information and resulted in the exclusion of $PC4_ln$ from all subsequent analysis. The distinction between the substrate types *Rubble* and *Boulder* involves all independent variables except $PC2_ln$ and PC3. The variables *Band* 2. *Band* 3. *Band* 4. $PC1_ln$, and PC1 were highly correlated from further analysis.

The final predictor variables for the habitat parameter Substrate Type include Band 1, PC2_ln, PC3_ln, PC2, PC4, Width and Gradient.

5.3.2 Channel Pattern

Figure 5-3 contains the mean response and standard deviations of channel pattern categories. A tabular presentation of group means and variability is given in Appendix A. Throughout the original spectral bands, differences between category means were low with respect to the associated standard deviations. Likewise, high group variabilities were observed in all spectral bands. The mean response in *Band 1* ranged from 15.20 to 39.52, with standard deviations from 6.86 in the class *Flat* to 19.62 in the category *Rapid*. The lowest variability was observed in the category *Flat* with a coefficient of variation of 40.07 %, while the class *Steady* showed the highest variation (66.45 %). Spectral response increased progressively towards *Band 4*, where mean values varied from 29.43 for *Steady* to 48.96 in the class *Rapid*. Group variability in *Band 4* is similar to the coefficients of variation observed in *Band 1*. Band 2 and Band 3 and ranged from 44.44 % for *Rapid* to 65.07 % in the category *Steady*. The category *Rapid* is distinctly set apart from any other class in all spectral bands. The largest variability in all spectral bands was observed for the class *Steady* with coefficients of variation from 61.66 % in *Band 2* to 66.45 % in *Band 1*. Conversely, variability in the category *Flat* showed the lowest values throughout all spectral bands and varied from 34.64 % in *Band 2* to 47.47 % in *Band 4*.

Mean response observed in *PC1_In* was similar to that in the original spectral bands. The category *Rapid* showed a mean value of 7.18, while average DN values from 5.74 to 6.35 were observed in the remaining categories. The group standard deviations varied from 0.65 to 1.21. Variability was lowest in the class *Flat* with 10.25 % and highest for *Steady* with 21.08 °₀. In *PC2_In*, the categories *Run* and *Riffle* can be differentiated versus the classes *Steady* and *Flat*. The category *Rapid* showed the highest mean response with a value of 0.75. Group variability in *PC2_In* is characterized by coefficients of variation ranging from 17.65 % in the class *Rapid* to 44.59 % in the category *Flat*. In *PC3_In*, the channel pattern *Rapid* shows the lowest mean response with a value of 0.64. Mean response in the categories *Run*, *Riffle*. *Steady* and *Flat* ranged from 0.82 to 0.86. Similar group variabilities were observed in the classes *Run* and *Steady* with respective values of 26.73 % and 26.92 %. The class *Flat* showed the lowest coefficient of variation (19.80 %), while variability in

Figure 5-3: Group Means and Standard Deviations of Channel Pattern Categories

Figure 5-3: Group Means and Standard Deviations of Channel Pattern Categories (continued)

Figure 5-3: Group Means and Standard Deviations of Channel Pattern Categories (continued)

the categories of *Riffle* and *Rapid* was 30.00 % and 36.59 %, respectively. The channel patterns *Run*, *Riffle*, *Flat* and *Rapid* showed similar coefficients of variation in *PC4_ln* with values from 16.67 to 19.61 %. Group variability was highest in the class *Steady* with 23.53 %. Standard deviations in this variable varied from 0.09 to 0.10. Mean response values ranged from -0.15 in the class *Flat* to -0.11 in the category *Riffle*.

The observed mean values in *PC1*, *PC3* and *PC4* resembled the mean spectral response of channel patterns in the original spectral bands. The class *Rapid* showed mean response values of 87.09, 11.23 and 1.64, respectively. Mean response in the remaining classes ranged from 46.31 to 60.13 in *PC1*, from -1.64 to 2.60 in *PC3* and from -1.13 to 0.02 in *PC4*. In *PC2*, the class *Rapid* was less clearly separated from the remaining categories. Variability was approximately equal in the groups *Run* and *Rapid* with coefficients of variation of 24.52 and 22.84 %, respectively. The remaining classes were characterized by group variabilities from 13.09 % to 17.90 %. Mean response in *PC2* ranges from -3.50 in the class *Run* to 2.75 for *Rapid*.

In the variable Width, the categories Run and Riffle both showed a mean response of 16.34.

The respective coefficients of variation were 43.02 and 42.53 $^{\circ}$ ₀, respectively. Mean response values in the remaining classes varied from 19.13 to 21.17. The highest variability was observed in the classes *Steady* and *Flat*, with respective coefficients of variation of 59.71 and 47.02 $^{\circ}$ ₀. Group variability was lowest in the category *Rapid* with a value of 18.35 $^{\circ}$ ₀.

The variable *Gradient* indicated separability of the categories *Run* and *Riffle* on one side, and *Steady, Flat* and *Rapid* on the other. Variability was highest in the classes *Riffle* and *Run* with coefficients of variation of 120.34 and 82.35 %, respectively. The lowest variability was obtained for the category *Flat* with 18.92 %.

Standard distances between channel pattern categories and corresponding rank correlation coefficients between predictor variables are presented in Table 5-11 and Table 5-12. The largest observed distance for a given pair of categories is underlined, while all distances which are not significantly different from this value are printed in bold letters. Overall, the largest distances occurred between the categories *Rapid* and *Run*, *Rapid* and *Riffle*, *Rapid* and *Steady*, as well as between *Rapid* and *Flat* in *Band 1*. The corresponding mean differences range from 1.299 to 1.809. The largest difference between the groups *Run* and *Flat* as well as between *Riffle* and *Flat* occurred in the variable *Width* with a standardized distance of 1.183. Differences between the remaining combinations of channel patterns range from 0 for *Run* versus *Riffle* to 0.671 for the mean distance between the classes *Steady* and *Flat*.

The variables *Band 1* and *PC3* show the most frequent occurrence of an overlap with the largest distance observed for each pair of categories. In both instances, the observed differences between were not significantly different form the respective largest distance seven out of ten times. This provides evidence that these variables contribute significantly to the differentiation between channel pattern categories. *Band 1* and *PC3* were consequently included as predictors in the analysis.

69

	Band 1	Band 2	Band 3	Band 4	PC1 In	PC2 In	PC3 In	PC4 In	PC1	PC2	PC3	PC4	Width	Gradient
Run vs. Riffle	0.180	0.163	0.199	0.120	0.227	0.035	0.021	0.089	0.173	0.095	0.005	0.205	0	0.172
Run vs. Steady	0.330	0.220	0.170	0.264	0.295	0.620	0.128	0.309	0.255	0.074	0.257	0.344	0.512	0.391
Run vs. Flat	0.187	0.082	0.238	0.114	0.217	0.870	0.023	0.397	0.021	0.325	0.576	0.468	1.183	0.283
Run vs. Rapid	1.479	1.137	0.820	0.675	0.928	0.613	0.654	0.041	1.008	0.582	1.173	0.664	0.295	0.448
Riffle vs. Steady	0.510	0.383	0.369	0.384	0.522	0.584	0.148	0.398	0.428	0.021	0.252	0.549	0.512	0.563
Riffle vs. Flat	0.367	0.082	0.039	0.234	0.010	0.835	0.044	0.487	0.152	0.230	0.571	0.673	1.183	0.455
Riffle vs. Rapid	1.299	0.974	0.621	0.555	0.701	0.648	0.633	0.131	0.835	0.487	1.178	0.459	0.295	0.620
Steady vs. Flat	0.143	0.302	0.408	0.151	0.512	0.250	0.105	0.089	0.277	0.251	0.319	0.124	0.671	0.108
Steady vs. Rapid	1.809	1.357	0.990	0.939	1.223	1.330	0.782	0.268	1.263	0.508	1.431	1.008	0.217	0.058
Flat vs. Rapid	1.666	1.055	0.582	0.788	0.711	1.484	0.677	0.356	0.987	0.257	1.749	1.132	0.888	0.166

Table 5-11: Standardized Distances between Channel Pattern Category Means

underlined: largest distance observed for each pair of categories; bold font: distances not significantly different form largest distance at a significance level of 0.05

	Band 1	Band 2	Band 3	Band 4	PC1_In	PC2_In	PC3 In	PC4 In	PC1	PC2	PC3	PC4	Width
Band2	0.915												
Band 3	0.777	0.932							[
Band 4	0.785	0.858	0.788										
PC1_ln	0.923	0.989	0.940	0.895									
PC2_ln	0.316	0.039	-0.251	0.214	0.054								
PC3_In	-0.263	-0.047	0.043	0.333	-0.003	-0.142							
PC4_ln	0.070	-0.097	0.052	0.063	0.027	0.023	0.048		_				
PC1	0.890	0.976	0.927	0.937	0.991	0.069	0.097	0.010					
PC2	0.312	0.351	0.409	-0.089	0.289	-0.386	-0.686	-0.182	0.210				
PC3	0.403	0.105	-0.196	0.068	0.087	0.834	-0.515	-0.120	0.055	-0.007			
PC4	0.176	-0.067	0.015	0.033	0.040	0.186	-0.153	0.875	0.013	-0.061	0.084		
Width	-0.197	-0.031	0.059	-0.109	-0.068	-0.376	0.083	-0.265	-0.061	0.153	-0.321	-0.302	
Gradient	0.076	0.163	0.188	0.052	0.133	-0.182	-0.045	-0.193	0.126	0.207	-0.146	-0.194	0.133

bold font: correlation coefficients > 0.70

Conversely, all distances in the variables $PC3_ln$ and PC2 were significantly smaller than the corresponding largest distance observed. This indicates that neither of these variables contributes significantly to the discrimination between categories. Therefore, $PC3_ln$ and PC2 were excluded from further analysis. The variables *Band 2, Band 3, Band 4, PC1_ln* and *PC1* were highly correlated with *Band 1.* Bivariate correlation coefficients varied from 0.777 to 0.989. These variables were therefore considered redundant and removed from the analysis. Likewise, $PC2_ln$ was highly correlated with PC3 (r = 0.834) and not selected as a predictor variable. The variables PC4 and $PC4_ln$ were correlated with a bivariate correlation coefficient from the largest distance were observed in three instances in PC4, and in two instances in $PC4_ln$. The former was therefore selected as predictor, while the latter was excluded from further analysis. *Width* and *Gradient* were uncorrelated with any other variable and therefore included as predictor variables in the analysis.

Predictor variables used in the classification of the habitat parameter *Channel Pattern* include Band 1, PC3, PC4, Width and Gradient.

5.3.3 Land Cover

Values of mean response, standard deviation and variability of each land cover category are presented in Figure 5-4 and in Appendix A. A progressively increasing mean response from *Band 1* to *Band 4* was observed for all categories. Spectral response of land cover classes was similar in the variables *Band 1*, *Band 2* and *Band 3*. The category *Water* showed the lowest mean response and highest variability in all spectral bands. Mean values ranged from 9.80 in *Band 1* to 17.65 in *Band 3*, while coefficients of variation varied from 56.96 % in *Band 2* to 63.80 % in *Band 3*. The category

Figure 5-4: Group Means and Standard Deviations of Land Cover Categories

Figure 5-4: Group Means and Standard Deviations of Land Cover Categories (continued)

Coniferous showed the second lowest spectral response with average DN values from 26.58 in *Band 1* to 33.48 in *Band 3*. Variability of this class is similar in *Band 1* (29.16 %), *Band 2* (29.75 %) and *Band 4* (31.47 %), and is highest in *Band 3* with a coefficient of variation of 45.07 %. The classes *Shrub* and *Alder* showed mean response values of 55.16 and 50.88 in *Band 1*. In *Band 2*, these values increase to 90.70 and 72.40, respectively. The land cover category *Shrub* showed a slightly decreased mean of 80.71 in *Band 3*, while response in the class *Alder* remained nearly constant with a value of 72.31. Variability of the category *Shrub* in *Band 1* (24.15 %), *Band 2* (23.93 %) and *Band 3* (33.50 %) was

approximately twice as high as the corresponding coefficients of variation of the class *Alder*. The respective standard deviations ranged from 13.32 and 6.68 in *Band 1* to 27.04 and 11.24 in *Band 3*. Group variability was lowest in all spectral Bands for the category *Alder*. Mean values and standard deviations in the class *Wetland* varied from 85.36 and 21.14 *in Band 1* to 140.23 and 30.96 in *Band 3*. Likewise, mean response in the category *Noveg* ranged from 114.90 to 155.24, with standard deviations from 28.90 to 30.50. Coefficients of variation of the class *Wetland* varied from 13.54 °₀ in *Band 1*. Variability of the class *Noveg* ranged from 19.65 °₀ in *Band 3* to 25.15 °₀ in *Band 1*. Overall, the separability of individual land cover classes was less distinct in *Band 4*. Observed standard deviations ranged from 11.26 for *Water* to 55.82 in the class *Coniferous*. The category Water showed the lowest mean response with a value of 17.65. Mean values in the remaining categories ranged from 174.42 in the class *Noveg* to 218.26 for *Shrub*.

The normalized difference vegetation index (*NDVI*) differentiated between vegetated and not vegetated categories. The former were characterized by mean values from 0.22 in the class *Wetland* to 0.68 in the category *Coniferous*, while the latter showed mean response values of 0.05 and 0.09 for *Noveg* and *Water*, respectively. Variability was highest for *Water* and *Noveg*, with respective coefficients of variation of 66.67 % and 41.38 %. The remaining categories showed group variabilities from 10.61 to 20.00 %.

The first principal component, *PC1*, resembled the pattern of spectral response observed in *Band 1, Band 2* and *Band 3*. Mean response was lowest (32.64) and variability highest (53.62 %) for the category *Water*. The remaining categories were characterized by mean values ranged from 162.28 for *Coniferous*, to 308.93 for *Wetland*. Group variability was similar in the classes *Shrub* (17.81 %) *Wetland* (16.29 %) and *Noveg* (15.71 %). The largest coefficient of variation was observed in the category *Coniferous*, while *Alder* showed the smallest variability with 12.40 %. The variable *PC2*

indicated separability between vegetated classes on one side, and the categories *Noveg* and *Water* in the other. Variability was lowest in the class *Water* (4.99 %) and highest for *Coniferous* (56.67 %). The highest spectral response was observed in the category *Noveg* with a mean value of 24.42, whereas the class *Water* showed an average DN value of 1.33. In the remaining classes, mean values varied from –95.21 to –47.13. In *PC3*, variability was lowest in the groups *Alder* (7.80 %) and *Water* (8.73 %) with mean values of 6.77 and –1.47, respectively. The highest variability in *PC3* occurred in the categories *Wetland* and *Noveg* with respective coefficients of variation of 25.56 and 24.95 %. In *PC4*, mean response varied from –5.52 in the category *Shrub* to 2.39 for *Wetland*. Variability was lowest in the groups *Water* and *Alder* with respective values of 7.21 and 8.12 %. The largest coefficient of variation was observed for *Shrub* with 30.64 %. Group variability of the remaining classes of *Coniferous, Wetland* and *Noveg* ranged from 13.05 to 18.56 %.

Standardized distances between land cover category means are presented in Table 5-13. The largest distance observed for a given pair of categories is underlined. Distances that are not significantly different from this value are printed in bold letters. Table 5-14 shows the bivariate rank correlation coefficients between predictor variables. Correlation coefficients exceeding a value of 0.70 are highlighted.

The variables *Band 3*, *Band 4*, *NDVI*, *PC2* and *PC4* showed mean differences between land cover categories that were significantly different from all other distance observed. This applied to the discrimination of *Coniferous* versus *Wetland* in *Band 3*, *Shrub* and *Alder* versus *Water* in Band 4, *Coniferous* versus *Water* in the *NDVI*, *Shrub* versus *Noveg* in *PC2* and *Shrub* versus *Alder* and *Wetland* in *PC4*. These variables were therefore considered important in the differentiation between land cover categories and included as predictors in all subsequent analysis. The standardized distance between the categories *Coniferous* and *Shrub* is largest in the variable *Band 2*. However, the observed

	Band 1	Band 2	Band 3	Band 4	NDVI	PC1	PC2	PC3	PC4
Coniferous vs. Shrub	0.739	0.884	0.861	0.488	0.801	0.764	0.256	0.259	0.678
Coniferous vs. Alder	0.628	0.511	0.708	0.003	0.972	0.376	0.635	0.442	0.763
Coniferous vs. Wetland	1.520	1.562	1.946	0.690	1.557	1.401	0.902	1.391	0.916
Coniferous vs. Noveg	2.284	2.064	2.220	0.035	2.318	1.303	2.2.44	0.301	0.195
Coniferous vs. Water	0.434	0.629	0.288	1.879	2.152	1.239	1.811	1.185	0.137
Shrub vs. Alder	0.111	0.372	0.153	0.491	0.171	0.389	0.379	0.183	1.442
Shrub vs. Wetland	0.781	0.678	1.085	0.202	0.756	0.637	0.646	1.132	1.595
Shrub vs. Noveg	1.545	1.180	1.358	0.523	1.517	0.539	1.988	0.042	0.436
Shrub vs. Water	1.730	1.513	1.149	2.368	1.350	2.003	1.555	0.926	0.816
Alder vs. Wetland	0.892	1.051	1.238	0.693	0.585	1.026	0.267	0.949	0.153
Alder vs. Noveg	1.655	1.553	1.511	0.032	1.346	0.927	1.609	0.141	0.958
Alder vs. Water	1.062	1.140	0.996	1.876	1.179	1.614	1.176	0.743	0.626
Wetland vs. Noveg	0.764	0.502	0.273	0.725	0.761	0.098	1.342	1.090	1.111
Wetland vs. Water	1.954	2.191	2.234	2.569	0.594	2.640	0.909	0.206	0.779
Noveg vs. Water	2.718	2.693	2.508	1.844	0.166	2.542	0.433	0.884	0.332

Table 5-13: Standardized Distances between Land Cover Category Means

underlined: largest distance observed for each pair of categories; bold font: distances not significantly different form largest distance at a significance level of 0.05

Table 5-14: Bivariate Correlations between Predictor Variables

	Band I	Band 2	Band 3	Band 4	NDVI	PC1	PC2	PC3
Band 2	0.987						1	
Band 3	0.965	0.973						
Band 4	0.604	0.656	0.602					
NDVI	-0.219	-0.205	-0.317	0.383				
PC1	0.936	0.965	0.936	0.798	-0.087			
PC2	0.087	0.045	0.123	-0.646	-0.878	-0.118		
PC3	0.177	0.149	-0.033	0.264	0.551	0.138	-0.401	
PC4	-0.017	-0.087	0.045	0.0751	0.006	0.001	-0.087	-0.34

bold font: correlation coefficients > 0.70

value of 0.884 was not significantly different form the corresponding distance in Band 3. Moreover, Band 2 and Band 3 were highly correlated with r = 0.973. Band 2 was therefore excluded from further analysis. Likewise, Band 3 was highly correlated with PC1 at a correlation coefficient of 0.936. PC1 showed the largest distance between the land cover classes Wetland and Water with a mean difference of 2.569. This value was not significantly different from the corresponding distance in Band 4. The bivariate correlation of 0.602 between Band 3 and Band 4 did not indicate the capture of redundant information. Consequently, Band 4 was selected as predictor variable, while PCI was excluded from the analysis. In the variable PC3, significant differences were observed between the categories Alder and Wetland and for Wetland versus Noveg. Since PC3 was not highly correlated with any other independent variable it was selected as a predictor variable. Band 1 showed the largest distance between the categories Noveg and Water. The observed value of 2.718 was significantly different from the corresponding distances in all other variables except Band 2. Therefore, Band I was included as predictor variable for the type of land cover. The final predictor variables for the habitat parameter Land Cover include Band 1, Band 3, Band 4, NDVI, PC2, PC3 and PC4. Among these variables, high correlation coefficients were observed between NDVI and PC3, as well as between Band 1 and Band 3. The observed correlation coefficients were -0.878 and 0.965, respectively. It was required to adjust for the capture of duplicate information in these variables before the classification. Details of this adjustment are explained in Section 5.4.3.

5.4 Classification of Habitat Parameters

Classification of the habitat parameters Substrate Type, Channel Pattern and Land Cover was carried out using the exhaustive partitioning approach to decision tree analysis. At every node, the

predictor variable which showed the most significant relationship with each habitat parameter was selected to split the data. In order to minimize the risk of detecting spurious relationships, all significance levels were adjusted for multiple comparisons using the Bonferroni procedure. The minimum level of significance was set at 0.05. The partitioning process was stopped if the criterion of minimum significance was not satisfied. Likewise, no further division occurred if the number of observations in a node dropped below a pre-defined Threshold. This value was related to the smallest sampling unit for each habitat parameter and was set to 150 for *Substrate Type* and *Channel Pattern*. The corresponding threshold value for the habitat parameter *Land Cover* was set to 60.

5.4.1 Substrate Type

The classification tree for the habitat parameter *Substrate Type* is shown in Figure 5-5. The number of observations in each node is shown in brackets. Terminal nodes are indicated by the substrate category which occurred most frequently in that node. A total of 11 terminal nodes were obtained. These nodes were interpreted as classification rules and used to classify the remainder of the data. Classification rules for all habitat parameters are presented in Appendix B.

Gradient was the first variable selected to split the data set. The resulting sub-sets were further divided by Width and PC4. The last level of the tree is formed by the variables Band 1 and PC2. The substrate category Gravel occurred exclusively at intermediate valley gradients ranging from 0.29 to 0.42 %. Conversely, the class Bedrock was found at valley gradients of less than 0.29 % and more than 0.43 %. In both cases, this substrate type occurred predominantly at wider stream sections, while the categories Rubble and Boulder were found at stream widths of less than 20m. The substrate classes Rubble, Boulder and Bedrock were further differentiated by the optical variables

Figure 5-5: Decision Tree for Substrate Classification

Band1 and PC2_In at stream widths of less than 14m and from 14 to 19m, respectively.

Classification accuracy was assessed by using a test sample which was not used in the derivation of the decision tree. A cross-tabulation of predicted and actual class membership is presented in Table 5-15. A total of 989 out of 991 test pixels were classified, leaving 0.2 % of the verification data unclassified. The estimated overall classification accuracy was 66.80 %. The associated kappa index of agreement suggests that this value was 55 % better than would be expected for pure chance assignment.

	KEPENELOCE DATA											
CLASSIFIED DATA	Gravel	Rubble	Boulder	Bedrock	Total	CE [%]	UA [%]					
Gravel	248	25	50	0	323	23.22	76.78					
Rubble	37	117	46	45	245	52.24	47.76					
Boulder	7	23	51	21	102	50.00	50.00					
Bedrock	10	52	11	246	319	22.88	77.12					
Total	302	217	158	312	989	unclassifi	ed: 0.20 %					
OE [%]	17.88	46.08	67.72	21.15	0A =	66.80 %; +	c = 0.546					
PA [%]	82.12	53.92	32.28	78.85	Cl _{ot} =	[63.87 %;	69 .73 %]					

DEFEDENCE DATA

Table 5-15: Error Matrix for Substrate Classification - Original Categories

OE = Omission Error; CE = Commission Error; PA = Producer's Accuracy; UA = User's Accuracy; OA = Overall Accuracy; $CI_{95} = 95\%$ Confidence Interval; $\kappa =$ Kappa Index of Agreement

The highest user's accuracies were observed in the categories *Gravel* and *Bedrock* with 76.78 % and 77.12 %, respectively. Considerably lower values of 47.76 % and 50.00 % were observed in the respective categories *Rubble* and *Boulder*. Likewise, the substrate classes *Gravel* and *Bedrock* showed the highest producer's accuracy with respective values of 82.12 % and 78.85 %. The corresponding value for *Rubble* was 53.92 %, while the lowest producer's accuracy was observed for

the substrate type Boulder with 32.28 %.

Confusion between the substrate classes *Gravel* and *Bedrock* was minimal with only 10 cases misclassified as *Bedrock*. On the other hand, confusion was particularly strong between the categories *Rubble* and *Boulder*. The poor definition of the category *Boulder* and pronounced confusion with the class *Rubble* suggested that the overall accuracy could be improved by combining the substrate categories Rubble and Boulder. Collapsing of these classes is feasible since they share the same ecological significance as potential locations of spawning beds for Atlantic salmon (Dubois and Gosselin, 1989). The result of this operation is given in Table 5-16. The overall accuracy increased by 6.96 % to 73.76 %. This increase in overall classification accuracy is significant at the 95 % level of confidence. Accordingly, the agreement index κ shows that this accuracy is 61 % higher than would be expected under conditions of random assignment. User's and producer's accuracy of the combined category increased to 68.30 % and 63.20 %, respectively.

Table 5-16: Error Matrix for Substrate Classification - Collapsed Categories

CLASSIFIED DATA	Gravel	Rubble/Boulder	Bedrock	Total	CE [%]	UA[%]		
Gravel	248	75	0	323	23.22	76.78		
Rubble/Boulder	44	237	66	347	31.70	68.30		
Bedrock	10	63	246	319	22.88	77.12		
Total	302	375	312	989	unclassifi	ed: 0.20 %		
OE [%]	17.88	36.80	21.15	OA:	ΟΑ = 73.76 %; κ = 0.608			
PA [%]	82.12	63.20	78.85	CI ₉₅	$CI_{95} = [71.02\%; 76.50\%]$			

REFERENCE DATA

OE = Omission Error; CE = Commission Error; PA = Producer's Accuracy; UA = User's Accuracy; OA = Overall Accuracy; CI₉₅ = 95 % Confidence Interval; κ = Kappa Index of Agreement

5.4.2 Channel Pattern

Figure 5-6 shows the decision tree for the channel pattern classification. A total of 18 terminal nodes was obtained and used to classify the remainder of the data. The corresponding classification rules are presented in Appendix B. The predictor *Width* showed the most significant relationship with the habitat parameter *Channel Pattern* and was therefore selected as the first variable to partition the data set. The resulting nodes were further divided by the variable *Gradient*. The last level of the tree was formed by *Band 1* and *PC3*. The channel pattern *Run* occurred in all stream widths from 3 to 60 m. The category *Riffle*, on the other hand, was found at stream widths of less than 27 m. Both categories were further differentiated by the variable *Gradient*. At a stream width of less than 16 m, the class *Run* occurred at a valley gradient of less than 0.45 %. while the category *Riffle* was observed at gradients greater than 0.45 %. The channel patterns *Steady* and *Flat* were largely discriminated in the image variables *Band 1* and *PC3*. At stream widths from 12 to 16 m, these categories occurred in *Band 1* at DN values from 0 to 26, while the classes *Riffle* and *Rapid* were observed at values of greater than 26.

An assessment of the accuracy of this classification is presented in Table 5-17. Of the 1047 observations in the test data set only one pixel remained unclassified. The overall classification accuracy was extremely low with only 38.11 % of all cases correctly classified. The observed overall accuracy is 18 % higher than would be obtained for a random classification. User's accuracy values for individual channel patterns ranged from 0 % in the class *Rapid* to 63.44 % in the category *Riffle*. Producer's accuracies varied from 0 % for *Rapid* to 66.54 % in the class *Run*. Confusion is high between the categories *Run*, *Riffle* and *Steady*, where 312 out of 566 cases (55.12 %) classified as *Run* actually belonged to the classes *Riffle* or *Steady*. All 53 observations of the channel pattern *Rapid* were

Figure 5-6: Decision Tree for Channel Pattern Classification

falsely classified as Run.

In order to improve the classification result, the original channel patterns were combined according to their respective importance as spawning habitat for Atlantic salmon. An assessment of classification accuracy using the collapsed categories is presented in Table 5-18.

Table 5-17: Error Matrix for Channel Pattern Classification - Original Categories

REFERENCE DATA

CLASSIFIED DATA	Run	Riffle	Steady	Flat	Rapid	Total	CE [%]	UA[%]	
Run	173	165	147	28	53	566	69.43	30.57	
Riffle	62	144	l	20	υ	227	36.56	63.44	
Steady	16	12	33	4	0	65	49.23	50.77	
Flat	4	53	29	-49	()	135	63.70	36.30	
Rapid	5	48	0	0	0	53	100.00	0.00	
Total	260	422	210	101	53	1046	unclassifie	unclassified: 0.10 %	
OE [%]	33.46	65.88	84.29	51.49	100.00	0A =	. = 38.11 %; κ = 0.176		
PA [%]	66.54	34.12	15.71	48.51	0.00	CI _{se} =	$CI_{qe} = [35.17^{-0} \text{ or } 41.05^{-0} \text{ o}]$		

OE = Omission Error; CE = Commission Error; PA = Producer's Accuracy; UA = User's Accuracy; OA = Output Accuracy; CI = <math>25% Confidence Interval M = Kanne Index of Accuracy; CI = <math>25%

OA = Overall Accuracy; CI_{05} = 95% Confidence Interval; κ = Kappa Index of Agreement

The original five categories were collapsed into the new classes of *Riffle/Rapid* and *Run/Steady/Flat*, and the overall classification accuracy increased from 38.11 to 64.47 °₆. This increase was statistically significant at a significance level of 0.05. The corresponding value of kappa increased to 26 %. The observed user's accuracy values were 68.57 °₆ in the class *Riffle/Rapid* and 63.05 % for *Run/Steady/Flat*, with producer's accuracy levels of 40.42 % and 84.59 %, respectively.

Table 5-18: Error Matrix for Channel Pattern Classification - Collapsed Categories

CLASSIFIED DATA	Riffle/Rapid	Run/Steady/Flat	Total	CE %	UA [%]
Riffle/Rapid	192	88	280	31.43	68.57
Run/Steady/Flat	283	483	766	36.95	63.05
Total	475	571	1046	unclassifi	ed:0.10 %
OE [%]	59.58	15.41	OA = 64.4	7 %; к = 0.2	59
PA [%]	40.42	84.59	CI ₉₅ = [61	.57 %; 67.37	^{0.} 0]

REFERENCE DATA

OE = Omission Error; CE = Commission Error; PA = Producer's Accuracy; UA = User's Accuracy; OA = Overall Accuracy; CL₅ = 95° © Confidence Interval; κ = Kappa Index of Agreement

5.4.3 Land Cover

The decision tree for the land cover classification is presented in Figure 5-7. High correlation coefficients between *Band 1* and *Band 3* (r = 0.965) as well as between *NDV1* and *PC2* (r = -0.878) indicated the capture of duplicate information. This increased the probability of detecting spurious relationships. Consequently, the Bonferroni procedure was also used to adjust the significance levels associated with the relationships between these variables and *Land Cover*. The Bonferroni adjustment was set to a value of 2 to equal the number of highly correlated variables.

The first variable selected to partition the data set was *Band 1*. Subsequent nodes were further split by *PC2*, *PC4*, *NDV1*, *Band 3* and *Band 4*. The remaining sub-sets were divided by the predictors *Band 1*, *PC2*, *PC4*, and *NDV1*. At DN values of less than 30 in *Band 1*, the land cover classes *Water* and *Coniferous* were differentiated by *PC2*. In addition to the category *Coniferous*, the classes *Shrub* and *Alder* occurred at DN values from 31 to 47 in *Band 1*. *Shrub* and *Alder* dominate the land cover types observed at DN values in *Band 1* from 48 to 71. They were further discriminated by *PC2* and

Figure 5-7: Decision Tree for Land Cover Classification

PC4. The land cover classes *Wetland* and *Noveg* occurred predominantly in *Band 1* at DN values of greater than 71.

Classification rules derived from the decision tree were applied to a test data set in order to evaluate the performance of the classification. Table 5-19 contains a cross-tabulation of predicted and actual land cover classes. Only one observation out of 2611 remained unclassified. The overall classification accuracy was 84.91~%. The κ value indicates an accuracy 81~% higher than expected for class assignment by chance. The lowest user's accuracies were observed in the categories *Shrub* and *Alder* with 74.25 \% and 75.17 \%, respectively. User's accuracies in the remaining classes ranged from 86.67 for *Wetland* to 94.50 for *Water*. Producer's accuracy levels were lowest in the categories *Shrub* and *Wetland* with respective values of 71.24 \% and 69.55 \%. The corresponding value for *Alder* was 77.51 \%. Producer's accuracies in the remaining classes to 100 \% for *Noveg*. The categories *Noveg* and *Water* were least affected by confusion

CLASSIFIED DATA	Coniferous	Shrub	Alder	Wetland	Noveg	Water	Total	CE [%]	UA [%]
Coniferous	608	47	35	0	0	1	691	12.01	87.99
Shrub	47	369	59	22	0	0	497	25.72	74.25
Alder	10	72	324	25	0	0	431	24.83	75.17
Wetland	0	26	0	169	0	0	195	13.33	86.67
Noveg	0	4	0	27	438	0	469	6.61	93.39
Water	18	0	0	0	0	309	327	5.50	94.50
Totai	683	518	418	243	438	310	2610	unclassifi	ed: 0.04 %
OE [%]	10.98	28.76	22.49	30.45	0.00	0.32	OA = 84.91 %; κ = 0.815		
PA [%]	89.02	71.24	77.51	69.55	100.00	99.68	CI ₉₅ = [83.54; 86.28]		

REFERENCE DATA

OE = Omission Error; CE = Commission Error; PA = Producer's Accuracy; UA = User's Accuracy; OA = Overall Accuracy; $CI_{95} = 95$ % Confidence Interval; κ = Kappa Index of Agreement between land cover types. On the other hand, confusion was most prominent between the categories *Shrub, Alder* and *Wetland*. The difference between user's and producer's accuracies were small in most land cover classes, with the exception of the category *Wetland*. In this case, the user's accuracy was by 17.12 % higher than the producer's accuracy. This difference was caused by test pixels which were falsely labelled as *Shrub, Alder* and *Noveg*.

5.5 Suitability Mapping

In order to demonstrate how the results of this study may be applied to the inventory and analysis of freshwater resources, the habitat parameters Substrate Type and Channel Pattern were subsequently combined to designate spawning habitat priority in the Come By Chance River according to Equation 5-1. The result of this analysis is presented in Table 5-20.

$$P = B * C \tag{5-1}$$

where

P = spawning habitat priority B = priority weight of substrate type C = priority weight of channel pattern

Table 5-20: Areal Extent of Spawning Habitat Classes

	Area [m²]	Proportion [%]		
Habitat I	24944	7.79		
Habitat II	209964	65.56		
Habitat Ш	85368	26.65		
Total	320276	100		

Approximately two thirds of the Come By Chance River is characterized by spawning habitat of Class II. Areas most suitable for spawning occupy only about 8.% of the river course, while one fourth of the total area is not suitable for spawning due to predominant bedrock substrate. Combining Habitat I and Habitat II yields a total area of 234,908 m², or 73.35.%, suitable for spawning. The distribution of salmon habitat over the whole length of the river is easily observed in Figure 5-8. Figure 5-9 shows the distribution of land cover categories. The majority of spawning habitats of type I are located in the upper reaches of the river, while areas unsuitable for spawning are concentrated in the middle section. The lower part of the river is dominated by Habitat II. For display purposes, a scale of 1:100,000 was selected. Given an original spatial resolution of 2 m, these results can be used at scales of up to 1:5000.

Figure 5-8: Spawning Habitat Suitability

Figure 5-9: Land Cover Classification

Chapter 6.0: Discussion

6.1 Substrate Classification

The original spectral bands used in the classification of bottom substrate indicated limited discrimination between substrate categories. All bands showed considerable overlap in group variability and comparatively small differences in mean response. Standardized distances in these variables ranged from 0.040 to 0.756. An unexpected spectral response was observed in Band 4. At a central wavelength of 720 nm, the mean response was expected to be lower than in the visible spectral bands. However, the observed mean response values were highest in Band 4 for all substrate classes. Most of the Come By Chance River is characterized by water depths in the decimeter range, resulting in comparatively little attenuation in the water column. Moreover, the response of photosynthetically active vegetation is higher in the near-infrared than in the visible spectral region. It is therefore likely that the high response in Band 4 is caused by layers of microscopic algae covering the bottom substrate (Zacharias et al., 1992). In areas of fast flowing water, sun glint due to surface roughness may also contribute to an uncharacteristically high response in Band 4. However, sun glint would result in a high reflectance for all spectral bands, whereas the spectral response in Band 4 was observed to be consistently higher in all substrate and channel pattern categories. This response may in part also be caused by an inappropriate sensor gain setting. The same gain was used for all spectral bands although the expected amount of radiation reflected from water bodies is much smaller in the near-infrared.

Among all image variables, PC2_ln showed the strongest relationship with the type of bottom

substrate with relatively large standardized distances between the substrate category *Gravel* and the respective classes *Rubble*. *Boulder* and *Bedrock*. The observed standardized distances ranged from 0.839 to 1.060. This variable was derived by transforming the original spectral bands so as to separate the signal into water depth dependent and bottom dependent components. It was therefore expected to carry information about the type of bottom substrate. The magnitude of correlation coefficients (from 0.845 to 0.989) between both PCA solutions suggests that both approaches performed similarly in describing the type of bottom substrate.

Separation of substrate classes was strongest in the non-spectral variables *Width* and *Gradient*. The variable *Gradient* was selected as first variable to split the data set, while the predictor *Width* further partitioned two of the three subsequent sub-sets. Conversely, the optical variables *Band 1*, and *PC2* appear only at the third level of the decision tree. The strong relationship between *Gradient* and *Substrate Type* reflects the presence of spatial correlation between these variables. Bottom substrates found in the study area are not uniformly distributed over the whole length of the river. Rather, they occur predominantly in certain river sections. For instance, all training pixels belonging to the substrate category *Gravel* were collected within 3 km from the estuary. A digital elevation model created from digitized contour lines was used to calculate valley gradient. Incidentally, very few contour intervals characterize the lower 3 km of the river course, resulting in a uniform gradient of 0.42 % for these sections. This coincides with the predominance of the substrate category *Gravel* in this part of the river.

Overall, the differentiation of substrate classes was comparatively weak in all predictor variables. This may be largely attributed to heterogeneity in the training and test data. Bottom substrate was recorded as proportions in seven grain size variables for river sections extending over 100 or more meters. Homogeneous bottom substrate, i.e. 100 % of the substrate in a given section belonging to one grain size class, was observed only in ten cases. Nine of these sections were

characterized by bedrock substrate, while one showed a substrate composition of 100 % gravel. Consequently, the remaining river sections are characterized by more than one grain size variable. It was therefore required to group river sections of similar substrate composition together. The resulting substrate categories showed substantial overlap in grain size composition. For instance, the category *Gravel*, contains grain sizes from fines to rubble. The class *Rubble* contains equal proportions of 40 %of rubble and cobble substrates. An even greater overlap occurs between the classes *Rubble* and *Boulder*. A proportion of 30 % belonging to the category *Boulder* actually consist of the grain size class rubble. Finally, the class *Bedrock* consists of grain sizes ranging from cobble to bedrock substrate.

The heterogeneity inherent in substrate categories is reflected in the classification result. Perclass accuracy was highest in the categories *Gravel* and *Bedrock*. The corresponding values for user's and producer's accuracy ranged from 76.78 to 82.12 %. Omission and commission errors in these categories were predominantly caused by confusion with the substrate classes *Rubble* and *Boulder*. On the other hand, little confusion occurred between the categories *Gravel* and *Bedrock*. The definition of the substrate classes *Rubble* and *Boulder* was particularly poor. Classification errors of omission and commission ranged from 46.08 to 67.72 %. Combining the classes *Rubble* and *Boulder* resulted in a significant increase in overall classification accuracy from 66.80 to 73.76 %. Omission and commission errors in the combined categories were reduced to 31.70 and 36.80 %, respectively.

6.2 Channel Pattern Classification

The discrimination of channel pattern categories was weak in all predictor variables. In the original spectral bands, mean response was very similar for all categories with the exception of the channel pattern *Rapid*. This category showed consistently the highest mean response in all spectral

bands. Moreover, the largest standardized distances were observed for a discrimination between *Rapid* and all other categories, ranging from 0.974 to 1.809. This type of channel pattern is characterized by turbulent flow and a broken water surface. Consequently, comparatively high spectral response characterized these areas. The same trend was observed in both principal component transformations. All spectral variables contributed little to a discrimination between channel pattern categories other than *Rapid*.

Differentiation between the channel pattern classes *Run* and *Riffle* versus *Flat* was indicated in the non-spectral variable *Width*. In both instances the corresponding standardized distance was 1.183. In addition, this variable contributed to the discrimination between *Run* and *Steady*, *Riffle* and *Steady*, as well as between *Steady* and *Flat*. The variable *Gradient*, on the other hand, showed standardized distances which were not significantly different from the largest distance observed only in two instances. The distance between the group means of the categories *Run* and *Steady* was 0.391, while the corresponding value for the classes *Riffle* versus *Steady* was 0.512.

In the classification of channel pattern, *Width* was the first variable selected to partition the data set. At the following level, all sub-sets were further divided by the variable *Gradient*. The importance of this variable in discriminating between classes of channel pattern was not indicated in the analysis of group separability using the standardized distance measure. The third and final level of the classification tree was formed by the spectral variables *Band 1* and *PC3*, indicating the relatively subordinate significance of the spectral variables in discriminating among channel pattern categories.

The overall classification result for the type of channel pattern was extremely poor. Only 38.11 % of all cases were correctly classified. This result was mainly caused by a large commission error in the class *Run*. More than two thirds of all observations classified as *Run* actually belonged to other categories, mostly to *Riffle* and *Steady* with 29.15 % and 25.97 %, respectively. In view of the large classification error, individual channel pattern categories were combined according to their
ecological significance in providing suitable spawning habitat for Atlantic salmon. The resulting categories were *Riffle/Rapid* and *Run/Steady/Flat*. The overall classification accuracy was significantly improved with 64.47 % of all cases correctly classified. Both classes showed similar user's accuracy values of 68.57 and 63.05 %, respectively. However, the error of omission for the class *Riffle/Rapid* was still very large with a value of 59.58 %, while the combined category *Run/Steady/Flat* showed an error of omission of only 15.41 %.

These classification results indicate poor correspondence between training and verification data. During field data acquisition, the type of channel pattern was recorded for river sections extending over 100 or more meters, over which it was assumed that the type of channel pattern was constant. Nonetheless, visual analysis of image data and aerial photographs indicated that type of channel pattern may well vary within river sections. An example of this situation is presented in Figure 3-3. The entire section between Transects 6175 and 6300 was assigned the channel pattern *Riffle*, while the type of bottom substrate was *Bedrock*. Closer inspection of this section, however, showed clear tonal variations over the whole section. Three distinct tonal features can be observed at dark, light and very light tones. Tonal variation of this kind are used as key indicators for the identification of channel pattern from aerial photography (Dubois and Gosselin, 1989). This indicates that the type of channel pattern cannot be assumed constant over the surveyed river sections.

The cause for the discrepancy between assumed and actual consistency of channel pattern lies in the initial objective of the field based data collection effort. This survey was carried out following the guidelines for small stream inventories (Scruton *et al.*, 1992). These guidelines were established to ensure adequate data collection procedures for conventional, field based habitat inventories and to facilitate the ecological interpretation of the collected data. The procedures were not designed for the acquisition of reference data in support of an analysis of remotely sensed data. This also applies to the recording of substrate data which were collected at the same time.

6.3 Land Cover Classification

In the visible spectral bands, the lowest spectral response and variability was observed in the category Water. Among the vegetated land cover types, the category Coniferous showed the lowest mean response in Band 1, Band 2 and Band 3. Both Water and Coniferous were well set apart from the remaining categories through standard distances from 0.739 to 2.718. Conversely, the categories Shrub and Alder were characterized by similar mean response values. The highest mean response and variability was observed in the classes Wetland and Noveg. In Band 4, the distinction between Water and all other categories is particularly strong with standardized distances ranging from 1.876 to 2.569. Mean response was similar in the categories Coniferous, Alder and Noveg with respective values of 177.35, 177.11 and 174.42. The classes Shrub and Wetland showed the highest response with mean values of 218.26 and 235.19, respectively. Overall, separability of land cover categories was limited in Band 4. In particular, the unvegetated class was barely differentiated from the vegetated categories. Generally the spectral response of photosynthetically active vegetation is much higher in the nearinfrared than the amount of radiation reflected from unvegetated surfaces. The similar response of vegetated and not vegetated surfaces can be explained by the radiometric setting of all spectral bands. That is, during the image acquisition the maximum amount of reflected radiation to be registered in each spectral band was selected so as to maximize the information content over water covered areas. As a result, a relatively low peak SRU of 2.5 µW cm² sr⁴ nm⁴ was selected for all bands. While preserving variability of low reflectance features, a low peak SRU can result in saturation and . consequently, loss of information over high reflectance targets. This is observed for the spectral response of vegetation in Band 4.

Likewise, water showed an uncharacteristically high response in the NDV7. Generally, water covered areas are expected to have negative values. However, the mean response of the land cover category *Water* was with 0.09 slightly higher in *Band 4* than in *Band 3*. Moreover, the category *Water* showed the highest variability (66.67 %) of all land cover classes. Most of the training pixels for *Water* were collected in the Come By Chance River. Therefore, the combination of shallow water and algal cover may produce a stronger signal in *Band 4* than in the visible spectral bands. However, both unvegetated categories were clearly separated from the vegetated classes in the *NDVT*.

The first principal component, PCI, largely reflected the spectral response of land cover categories in the visible spectral bands, whereas PC2 showed the same general pattern as the NDVI. This corresponds well with the observed correlation coefficients, ranging from -0.878 to 0.936. An important feature of the principal components relates to the differentiation between the categories *Shrub* and *Alder*. The largest standardized distance between these categories was observed in the variable PC4 with a value of 1.442. Likewise, the distance between *Shrub* and *Wetland* was the highest in this variable with 1.595. Both values were significantly larger than the corresponding distances observed in other variables.

The smallest classification errors were observed in the categories *Water* and *Noveg*. In both cases, user's and producer's accuracy values ranged from 93.39 to 100 %. Of the vegetated land cover classes, the category *Coniferous* showed the smallest classification errors with a user's and producer's accuracy of 87.99 % and 89.02 %, respectively. Errors of omission and commission were related to confusion with the classes *Shrub*, *Alder* and *Water*. The land cover categories most seriously affected by confusion were *Shrub*, *Alder* and *Wetland*, with per-class accuracies ranging from 69.55 to 86.67 %.

The confusion between the categories *Coniferous* and *Water* is likely to have occurred in areas of deep shadow. Figure 3-3 clearly shows the difference between sunlit and shaded areas. Training areas for the class *Alder* were located at distinctly identifiable alder swamps along the river. However, occurrence of this land cover category was not limited to these specific locations. Rather, a

certain amount of mix between the classes *Coniferous*, *Alder* and *Shrub* was observed throughout the study area. While mixed stands were not prominent enough to have warranted inclusion as separate land cover category, confusion between *Coniferous*, *Shrub* and *Alder* is likely to be related to these stands. The comparatively large error of omission of 69.55 % in the land cover class *Wetland* was related to the fact that this category represented any open vegetation in the study area. Training and test areas of this type could be easily identified on photographs due to their location within closed stands of trees or shrubs, the actual species composition on these sites is very heterogeneous. It includes various types of vegetation such as moss, grass and shrub, all of which have different spectral characteristics.

6. 4 Suitability Mapping

This study was undertaken with the objective to examine the applicability of airborne remote sensing data and ancillary digital information to the mapping of the salmon habitat parameters *Substrate Type, Channel Pattern* and *Land Cover*. Until recently, salmon habitat mapping and modeling was conducted almost exclusively by relying on field surveys and air photo interpretation. Therefore, this investigation fulfills an important step in exploring the potential of digital remote sensing and data analysis for riverine fish habitat monitoring.

The full potential of digital databases lies in the ease of data manipulation and modelling. An example is provided of how to combine individual habitat parameters to model a particular aspect of salmon freshwater ecology, such as the quality of spawning habitat. Figure 5-8 contains a composite map of spawning habitat suitability. These results agree with previous studies undertaken at Come By Chance River (Harmon, 1966). Most of Habitat I, i.e. habitat most suitable for spawning, is located in the river sections north of Goobies Pond (Figure 3-2). Areas not suitable for spawning are

predominantly found in the central part of the river where the bottom substrate is dominated by bedrock. The lower part of the river is almost exclusively characterized by habitats of intermediate suitability for spawning. Gravel is the main type of bottom substrate found in this area. The estuary is designated as Habitat II in Figure 5-8. However, this area was excluded from the analysis as no field data could be recovered for these sections.

Including a classification of land cover categories would make it possible to include potential sources of disturbance, such as areas of excessive erosion, proximity of dumps, proximity of roads and the provision of cover by riparian vegetation in the habitat modelling process. While these features cannot be discerned at the scale present in Figure 5-9, they can easily incorporated at larger scales since the spatial resolution of the data is 2 m.

Chapter 7.0: Conclusion

It was the objective of this study to evaluate the potential of multispectral remote sensing for the mapping of substrate type, channel pattern and land cover as important freshwater habitat parameters of Atlantic salmon. To this effect, digital imagery was acquired in October 1993 using a CASI sensor at the spectral wavelengths of 510, 590, 660 and 730 nm. The findings of a stream survey conducted in the same month served as a database for reference purposes together with aerial photography from May 1992. In addition, elevation data extracted from the digital map sheet NTS UN13 were used to calculate valley gradient. Next was the stage of pre-processing involving the atmospheric and geometric correction of the imagery, as well as the categorization of substrate data contained in the reference database.

A set of potential predictor variables was defined for each habitat parameter. Besides the original, atmospherically and geometrically corrected images, these included principal component transformations to separate depth dependent bottom type dependent signals. Moreover, the non-spectral variables of valley gradient and stream width were used as potential predictors. Valley gradient was calculated from a DEM built with the digital elevation data, while stream width was obtained from the imagery. The potential predictors for land cover consisted of the original spectral bands together with an NDVI and the components of a PCA applied to pixels over land areas.

A classification method was desired that permitted the integration of data from different sources, such as remotely sensed imagery and digital map data. This method should be statistically robust while maintaining the ability to obtain statistically significant relationships between variables. These requirements are intrinsic properties of statistical decision tree analysis, which was therefore selected to classify image and ancillary data. Training and verification data were collected at random for each habitat parameter. From the training data, statistical properties for each predictor variable were derived in the form of standardized distances between group means, estimates of group variability, and bivanate correlation of predictor variables. These figures were subsequently used to determine the final predictor variables for each habitat parameter. Classification was carried out using exhaustive partitioning DTA. Separate decision trees were grown for each habitat parameter. Tree size was controlled by selecting appropriate stop sizes related to the smallest sampling units, and the partitioning process was stopped if no more splits were found to be significant at the 0.05 level of significance. The resulting decision trees were interpreted as classification rules and applied to the entire data sets.

Classification performance was evaluated using verification data and confusion matrices. Initial classification accuracy was increased for the habitat parameters substrate type and channel pattern by combining categories according to their ecological significance. The improved overall accuracies were 73.76 and 64.47 %, respectively. The classification accuracy for the type of land cover was 84.91 %. The individual habitat parameters as extracted in this research were combined to model spawning habitat suitability throughout the river course. Qualitatively, the result of this procedure was found to correspond well with the established knowledge about spawning habitat locations at Come By Chance River.

The current study illuminates the potential of digital remote sensing and image processing strategies for the mapping, inventory and modelling of freshwater salmon habitat. The important habitat parameters of bottom substrate and channel pattern were extracted so as to demonstrate the applicability of this method in terms of data integration and robust statistical classification. While the classification results for the habitat parameter substrate type do not indicate immediate operational use, the value of the approach followed in this study was confirmed in principle. Of particular interest was the emergence of the non-spectral variables *Width* and *Gradient* as the most important predictors for the type of bottom substrate. The contribution of the spectral variables to the discrimination between substrate categories in the present investigation is comparatively minor. On the other hand, application of the present method to the extraction of channel pattern categories did not yield entirely satisfactory results.

Error rates in the classification of substrate type and channel pattern were linked to the inadequate collection of supporting field data. Significant improvements in classification accuracy are therefore likely to be observed if special attention is devoted to the creation of reference data sets compatible with the objectives of remote sensing oriented investigations. In particular, emphasis should be placed upon the selection of homogeneous training and verification sites, as well as on proper geo-referencing of these areas. Moreover, shallow water bathymetry information should be included in the extraction of both bottom substrate and channel pattern. Previous studies suggest this may lead to significant improvements in classification results (e.g. Acomley *et al.*, 1995). The computation of stream width as introduced in the current investigation is deemed sufficient. However, a more reliable and accurate method of calculating the valley gradient is highly desirable. This could be achieved by using stereo-plotted vector data from digital map sheets as primary source rather than digitized contour lines, since stereo-plotted data contain an elevation value for every location. The type of land cover was identified with high accuracy. Since principles of land cover mapping using digital imagery are well established it can be extended to include more categories or specific vegetation communities, for example.

The results of this analysis suggest that the most beneficial future course in developing more

efficient habitat inventory strategies for Atlantic salmon would include both remotely sensed and nonspectral information. Further development pertaining to the inclusion of geomorphic parameters in the analysis should be directed at the derivation of appropriate digital elevation models. With respect to remotely sensed data, improvement of the current results could be achieved by the inclusion of bathymetry information and by adopting appropriate sampling schemes in the collection of field data. Finally, research effort should be directed at issues of efficient integration of both spectral and nonspectral spatial data sources.

References

Acornley, R.M., Cutler, M.E.J., Milton, E.J. and Sear, D.A. (1995) *Detection and mapping of salmonid spawning habitat in chalk streams using airborne remote sensing*. In: Remote Sensing in Action. Proceedings of the 21st Annual Conference of the Remote Sensing Society, Southampton, pp. 267-274.

Agriculture Canada (1991) Soils of the Sunnyside area, Newfoundland. Report no.24, Newfoundland Soil Survey.

Amiro, P.G. (1983) Stream gradients and Atlantic salmon parr densities. Canadian Atlantic Fisheries Scientific Advisory Committee Research Document 84/89.

Bailey, T.C. and Gatrell, A.C. (1995) Interactive spatial data analysis. Longman, Essex, 413 pp.

Barila, T.Y., Williams, R.D. and Stauffer, J.R. (1981) The influence of stream order and selected stream bed parameters on fish diversity in Raystown Branch, Susquehanna River Drainage, Pennsylvania. Journal of Applied Ecology, Vol. 81, No. 18, pp. 125-131.

Basu, J.P. and Odell, P.L. (1974) Effects of intraclass correlation among training samples on the misclassification probabilities of Bayes' procedure. Pattern Recognition, Vol. 6, pp. 13-16.

Belward, A.S. and de Hoyos, A. (1987) A comparison of supervised maximum likelihood and decision tree classification for crop cover estimation from multitemporal Landsat MSS data. International Journal of Remote Sensing, Vol. 8, No. 2, pp. 229-235.

Benda, L., Beechie, T.J., Wissmar, R.C. and Johnson, A. (1992) Morphology and evolution of salmonid habitats in a recently deglaciated river basin, Washington State, USA. Canadian Journal of Fisheries and Aquatic Sciences, Vol. 49, pp. 1246-1256.

Bierwirth, P.N., Lee, T.J. and Burne, R.V. (1993) Shallow sea-floor reflectance and water depth derived by unmixing multispectral imagery. Photogrammetric Engineering and Remote Sensing, Vol. 59, No. 3, pp. 331-338.

Biggs, D., De Ville, B. and Suen, E. (1991) A method of choosing multiway partitions for classification and decision trees. Journal of Applied Statistics, Vol. 18, No. 1, pp. 49-62.

Bisson, P.A., Nielsen, J.L. and Palmason R.A. (1981) A system of naming habitat types in small streams, with examples of habitat utilization by salmonids during low stream flow. In: Armantrout, N. (Ed.): Proceedings of the symposium on acquisition and utilization of aquatic habitat inventory information, Portland 1981, pp. 62-73.

Borstad, G.A. (1992) Ecosystem surveillance and monitoring with a portable airborne imaging spectrometer system. In: Proceedings of the First Thematic Conference on Remote Sensing for Marine and Coastal Environments, New Orleans, pp. 883-892.

Borstad, G.A., Hill, D.A. and Kerr, R.C. (1992) *Direct digital remote sensing of herring schools*. International Journal of Remote Sensing, Vol. 13, No. 12, pp. 2191-2198.

Breiman, L., Friedman, J.K., Olshen, R.A. and Stone, C.J. (1984) *Classification and regression trees.* Wadsworth International Group, Belmont, 358pp.

Campbell, J.B. (1981) Spatial correlation effects upon accuracy of supervised classification of land cover. Photogrammetric Engineering and Remote Sensing, Vol. 47, No. 3, pp. 355-363.

Chavez, Jr., P.S. (1988) An improved dark-object technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24, pp. 459-479.

Chou, Y-H., Minnich, R.A., Salazar, L.A., Power, J.D. and Dezzani, R.J. (1990) Spatial autocorrelation of wildfire distribution in the Idyllwild quadrangle, San Jacinto Mountain, California. Photogrammetric Engineering and Remote Sensing, Vol. 56, No. 11, pp. 1507-1513.

Clavet, D. (1980) Approche géomorphologique dans la détermination du potentiel d'accueil salmonique des rivières des principales régions physiographiques du Québec. Bulletin de Recherche Numéro 52-53, Département de Géographie, Université de Sherbrooke, Sherbrooke, Québec, 83 pp.

Cliff, A.D. and Ord, J.K. (1981) Spatial Processes. Models and Applications. Pion, London, 266 pp.

Congalton, R.G. and Green, K. (1993) A practical look at the sources of confusion in error matrix generation. Photogrammetric Engineering and Remote Sensing, Vol. 59, No. 5, pp. 641-644.

Côté, Y., Clavet, D., Dubois, J-M. and Boudreault, A. (1987) Inventaire des habitats à saumon et estimation de production par photographie aérienne. In: Thibault, M. and Billard, R. (Ed.): Restauration des rivières a saumons, INRA, Paris, pp. 85-93.

Cracknell, A.P. and Hayes, L.W.B. (1991) Introduction to remote sensing. Taylor and Francis, London, 293 pp.

Curran, P.J. (1983) Multispectral remote sensing for the estimation of green leaf area index. Philosophical Transactions of the Royal Society of London, A 309, pp. 257-270.

Damman, A.W.H. (1983) An ecological subdivision of the island of Newfoundland. In: South, G.R. (Ed.): Biogeography and ecology of the island of Newfoundland, The Hague, pp. 163-206.

Davis, J.C. (1986) Statistics and data analysis in geology. Wiley, New York, 646 pp.

Dekker, A.G., Malthus, M.M. and Seyhan, E. (1992) The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters. Remote Sensing of Environment, 41, pp. 211-225.

Dubois, J-M.M and Clavet, D. (1979) Télédétection de l'hydromorphologie et du potentiel de frayères à saumon de la rivière Saint-Jean en Gaspésie: rapport final. Département de Géographie, Université de Sherbrooke, Québec.

Dubois, J-M. M. and Gosselin A. (1989) *Airphoto interpretation and salmon river restoration*. In: IGARSS '89, 12th Canadian Symposium on Remote Sensing, Vancouver, Vol.4, pp. 2434-2438.

Dubois, J-M. M. and Gosselin A. (1994) La restauration des rivières à saumons et la photointerprétation. In: Bonn, F. (Ed.) Télédétection de l'environnement dans l'espace francophone, pp. 479-501.

Duda, R.O. and Hart, P.E. (1973) Pattern classification and scene analysis. Wiley, New York, 482 pp.

Dymond, J.R. and Luckman, P.G. (1994) Direct induction of compact rule-based classifiers for resource mapping. International Journal of Geographical Information Systems, Vol. 8, No. 4, pp. 357-367.

Eastman, J.R. (1997) Idrisi for windows version 2.0 user's guide. Clark Labs for Cartographic Technology and Geographic Analysis, Worcester, MA, USA.

Edgington, J., Alexandersdottir, M., Burns, C. and Cariello, J. (1987) *Channel type classification as a method to document anadromous salmon streams*. Alaska Department of Fish and Game Informational Leaflet No. 260.

Fabricius, C. and Coetzee, K. (1992) Geographic information systems and artificial intelligence for predicting the presence or absence of mountain reedbuck. South African Journal of Wildlife Research, Vol. 22, No. 3, pp. 80-86.

Fisheries and Oceans Canada (1994) Come-By-Chance River fish habitat survey. Project L-633.

Fitzgerald, R.W. and Lees, B.G. (1994) Assessing the classification accuracy of multisource remote sensing data. Remote Sensing of Environment, 47, pp. 362-368.

Friedl, M.A. and Brodley, C.E. (1997) Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, 61, pp. 399-409.

Frissell, C.A., Liss, W.J., Warren, C.E. and Hurley, M. (1986) *A hierarchical framework for stream habitat classification: viewing streams in a watershed context.* Environmental Management, Vol. 10, No. 2, pp. 199-214.

Gibson, R.J. (1993) The Atlantic salmon in fresh water: spawning, rearing and production. Reviews in Fish Biologies and Fisheries, 3, pp. 39-73.

Gonzalez, R.C. and Woods, R.E. (1992) *Digital image processing*. Addison-Wesley, Reading, Massachusetts, 716 pp.

Goodin, D.G., Luoheng, H., Fraser, R.N., Rundquist, D.C., Stebbins, W.A., Schalles, J.F. (1993) Analysis of Suspended Solids in Water Using Remotely Sensed High Resolution Derivative Spectra. Photogrammetric Engineering and Remote Sensing, Vol. 59, No. 4, pp. 505-510.

Green, E.J., Strawderman, W.E. and Airola, T.M. (1993) Assessing classification probabilities for thematic maps. Photogrammetric Engineering and Remote Sensing, Vol. 59, No. 5, pp. 635-639.

Griffith, D.A. (1987) Spatial autocorrelation. A Primer. Resource Publications in Geography, Washington D.C., 82 pp.

Griffith, D.A. and Amrhein, C.G. (1997) Multivariate statistical analysis for geographers. Prentice Hall, Upper Saddle River, New Jersey, 345 pp.

Günther, O., Hess, G., Mutz, M., Riekert, W.-F. and Ruwwe, T. (1993) *RESEDA: A knowledge-based advisory system for remote sensing*. Journal of Applied Intelligence, Vol. 1, No. 3, pp. 317-341.

Hamilton, M.K., Davis, C.O, Rhea, W.J., Pilorz, S.H. and Carder, K.L. (1993) *Estimating Chlorophyll Content and Bathymetry of Lake Tahoe Using AVIRIS Data*. In: Remote Sensing of Environment, 44, pp. 217-230.

Harmon, T.J. (1966) A proposal for the integrated development of the Black and Come By Chance River basins. MS Report, Fisheries Services, St. John's, Newfoundland.

Hart, A. (1986) Knowledge acquisition for expert systems. McGraw-Hill, New York, 180 pp.

Hawkins, C.P., Kershner, J.L., Bisson, P.A., Bryant, M.D., Decker, L.M., Gregory, S.V., McCullough, D.A., Overton, C.K., Reeves, G.H., Steedman, R.J. and Young, M.K. (1993) *A hierarchical approach to classifying stream habitat features*. In: Fisheries, Vol. 18, No. 6, pp. 3-12.

Hawkins, D.M. and Kass, G.V. (1982) Automatic interaction detection. In: Hawkins, D.M. (Ed.): Topics in applied multivariate analysis. Cambridge, pp. 269-302.

Heller, D.A. and Hohler, D.B. (1981) A hierarchical inventory system and its application in a national forest fish habitat management program. In: Proc. 7th N. Am. Trout Stream Improvement Workshop, Waterloo, Ont., 12-14 Sept. 1990. Southern Ontario Chapter, American Fisheries Society, pp. 149-155.

Hess, L.L., Melack, J.M., Filoso, S. and Wang, Y. (1995) Delineation of inundated area and vegetation along the Amazon Floodplain with SIR-C synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 4, pp. 896-903.

Janssen, L.L.F. and Van der Wel, F.J.M. (1994) Accuracy assessment of satellite derived landcover data: a review. Photogrammetric Engineering and Remote Sensing, Vol. 60, No. 4, pp. 419-426.

Jensen, J.R. (1986) Introductory digital image processing : a remote sensing perspective. Prentice-Hall, Englewood Cliffs, New Jersey, 379 pp.

Jupp, D.L.B., Kirk, J.T.O. and Harris, G.P. (1994) Detection, identification and mapping of cyanobacteria - using remote sensing to measure the optical quality of turbid inland waters. Australian Journal of Marine and Freshwater Research, 45, pp. 801-828.

Kass, G.V. (1980) An exploratory technique for investigating large quantities of categorical data. Applied Statistics, Vol. 29, No. 2, pp. 119-127.

Kelly, R.V. (1991) Practical knowledge engineering. Digital Press, Hamilton, 212 pp.

Kershaw, C.D. and Fuller, R.M. (1992) Statistical problems in the discrimination of land cover from satellite images: a case study in lowland Britain. International Journal of Remote Sensing, Vol. 13, No. 16, pp. 3085-3104.

Khan, M.A., Fadlallah, Y.H. and Al-Hinai, K.G. (1992) Thematic mapping of subtidal coastal habitats in the western Arabian Gulf using Landsat TM data - Abu Ali Bay, Saudi Arabia. International Journal of Remote Sensing, Vol. 13, No. 4, pp. 605-614.

Knighton, D. (1984) Fluvial forms and processes. Edward Arnold, London, 218 pp.

Labovitz, M.L. and Masuoka, E.J. (1984) The influence of autocorrelation in signature extraction an example from a geobotanical investigation of Cotter Basin, Montana. International Journal of Remote Sensing, Vol. 5, No. 2, pp. 315-332.

Lachenbruch, P.A. (1975) Discriminant analysis. Hafner Press, New York, 128 pp.

Lambert, É. (1994) La localisation des peuplements de macrophytes immergés à l'aide de la télédétection et de données connexes. In: Bonn, F. (Ed.) Télédétection de l'environnement dans l'espace francophone, pp. 129-146.

Lanka, R.P., Hubert, W.A. and Wesche, T. (1987) *Relations of geomorphology to stream habitat* and trout standing stock in small Rocky Mountain streams. Transaction of the American Fisheries Society 116, pp. 21-28.

Lark, R.M. (1995) Components of accuracy of maps with special reference to discriminant analysis on remote sensor data. International Journal of Remote Sensing, Vol. 16, No. 8, pp. 1461-1480.

Lathorp, R.G.Jr. and Lillesand, T.M. (1989) Monitoring Water Quality and River Plume Transport in Green Bay, Lake Michigan with SPOT-1 Imagery. Photogrammetric Engineering and Remote Sensing, Vol. 55, No. 3, pp. 349-354.

Lees, B.G. and Ritmann, K. (1991) Decision-tree and rule induction approach to integration of remotely sensed and GIS data in mapping vegetation in disturbed or hilly environments. Environmental Management, Vol. 15, No. 6, pp. 823-831.

Luczkovich, J.J., Wagner, T.W., Michalek, J.L. and Stoffle, R.W. (1993) Discrimination of coral reefs, seagrass meadows, and sand bottom types from space: a Dominican Republic case study. Photogrammetric Engineering and Remote Sensing, Vol 59, No 3, pp 385-389.

Lyon, J.G., Lunetta, R.S. and Williams, D.C. (1992) Airborne multispectral scanner data for evaluating bottom sediment types and water depths of the St. Marys River, Michigan. Photogrammetric Engineering and Remote Sensing, Vol. 58, No. 7, pp. 951-956.

Lyon, J.G. and Hutchinson, W.S. (1995) Application of a radiometric model for evaluation of water depths and verification of results with airborne scanner data. Photogrammetric Engineering and Remote Sensing, Vol. 61, No. 2, pp. 161-166.

Lyzenga, D.R. (1978) Passive remote sensing techniques for mapping water depth and bottom features. Applied Optics, Vol. 17, No. 3, pp. 379-383.

Lyzenga, D.R. (1981) Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data. International Journal of Remote Sensing, Vol. 2, No. 1, pp. 71-82.

Lyzenga, D.R. (1983) Shallow-water bathymetry using combined lidar and passive multispectral scanner data. International Journal of Remote Sensing, 6, pp. 115-125.

MacLeod, W., Stanton-Grey, R.A., Dyk, A. and Farrington, G.A. (1992) Discrimination of substrate type using airborne remotely sensed data, Bay of Quinte, Ontario, Canada. In: Proceedings of the 15th Canadian Symposium on Remote Sensing, Toronto, pp. 13-16.

Mather, P.M. (1976) Computational methods of multivariate analysis in physical geography. Wiley, London, 532 pp.

Mather, P.M. (1987) Computer processing of remotely-sensed images. Wiley, Chichester, 352 pp.

Mather, P.M. (1990) *Theoretical problems in image classification*. In: Steven, M.D. and Clark, J.A. (Ed. 1990): Applications of remote sensing in agriculture. London.

Moller-Jensen, L. (1990) Knowledge based classification of an urban area using texture and context information in Landsat TM imagery. Photogrammetric Engineering and Remote Sensing, Vol. 56, No. 6, pp. 899-904.

Morgan, J.A. and Sonquist, J.N. (1963) Problems in the analysis of survey data: and a proposal. Journal of the American Statistical Association 58, pp. 415-434.

Neter, J., Wasserman, W. and Whitmore, G.A. (1993) *Applied statistics*. Allyn and Bacon, Boston, 989 pp.

Nichol, J.E. (1993) Remote sensing of tropical blackwater rivers: a method for environmental water quality analysis. Applied Geography 13, pp. 153-168.

Odland, J. (1988) Spatial Autocorrelation. Sage, London, 87 pp.

Philpot, W.D. (1989) Bathymetric mapping with passive multispectral imagery. Applied Optics, Vol. 28, No. 8, pp. 1569-1579.

Quinlan, J.R., Compton, P.J., Horn, K.A. and Lazarus, L. (1987) *Inductive knowledge acquisition:* a case study. In: Quinlan, J.R. (Ed.): Applications of Expert Systems, Tuning Institute Press, Sydney, pp. 157-173.

Reddy, R.K.T. and Bonham-Carter, G.F. (1991) A decision-tree approach to mineral potential mapping in Snow Lake area, Manitoba. Canadian Journal of Remote Sensing, Vol. 17, No. 2, pp. 191-200.

Richards, J.A. (1987) Remote sensing digital image analysis: an introduction. Springer, New York, 281 pp.

Rimmer, J.C., Collins, M.B. and Pattiaratchi, C.B. (1987) *Mapping of water quality in coastal waters using Airborne Thematic Mapper*. International Journal of Remote Sensing, Vol. 8, No. 1, pp. 85-102.

Roberts, A., MacDonald, J.P. and Williams, I.V. (1992) Digital classification of salmon spawning habitat: an evaluation of airborne multispectral video imagery. In: Proceedings of the 15th Canadian Symposium on Remote Sensing, Toronto, pp. 54-57.

Rubin, T. (1992) Multitemporal aerial photography to guide restoration of spawning habitat for anadromous fish. In: Proceedings of the First Thematic Conference on Remote Sensing for Marine and Coastal Environments, New Orleans, pp. 893-896.

Safavian, S.R. and Landgrebe, D. (1991) A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man, and Cybernetics. Vol. 21, No. 3, pp. 660-675.

Scruton, D.A., Anderson, T.C., Bourgeois, C.E. and O'Brien, J.P. (1992) Small stream surveys for public sponsored habitat improvement and enhancement projects. Canadian Manuscript report of Fisheries and Aquatic Sciences, No. 2163, 49 pp.

Scruton, D.A. and Gibson, R.J. (1993) The development of habitat suitability curves for juvenile Atlantic salmon (<u>Salmo salar</u>) in riverine habitat in insular Newfoundland, Canada. In: Gibson, R.J. and Cutting, R.E. (Ed.): Production of juvenile Atlantic salmon, <u>Salmo salar</u>, in natural waters. Canadian Special Publications in Fisheries and Aquatic Sciences 118, pp. 149-161.

Shearer, W.M. (1992) The Atlantic salmon. Wiley, New York, 244 pp.

Slater, P.N. (1980) Remote sensing: optics and optical systems. Wiley, London, 575 pp.

Stehman, S.V. (1997) Selecting and interpreting measures of thematic classification accuracy. Remote Sensing of Environment, 62, pp. 77-89.

Tabachnik, B.G. (1996) Using multivariate statistics. HaperCollins, New York, 880 pp.

Van Stokkam, H.T.C., Stokman, G.N.M. and Hovenier, J.W. (1993) Quantitative use of passive optical remote sensing over coastal and inland water bodies. International Journal of Remote Sensing, Vol. 14, No. 3, pp. 541-563.

Velleman, P.F. and Hoaglin, D.C. (1981) Applications, basics, and computing of exploratory data analysis. Duxbury Press, Boston, 354 pp.

Walford, N. (1995) Geographical data analysis. Wiley, Chichester, 446.

Walker, P.A. and Moore, D.M. (1988) An inductive modelling and mapping tool for spatiallyoriented data. International Journal of Geographical Information Systems, Vol. 2, No. 4, pp. 347-363.

Wharton, S.W. (1987) Spectral knowledge based approach for urban land cover discrimination. IEEE Transactions on Geoscience and Remote Sensing, GE 25, No. 3, pp. 272-282.

Zacharias, M., Niemann, O. and Borstad, G.A. (1992) An assessment and classification of a multispectral bandset for the remote sensing of intertidal seaweeds. Canadian Journal of Remote Sensing, Vol. 18, No. 4, pp. 263-274.

Data Sources

CASI imagery: acquired by Provincial Airlines Ltd., St. John's, for Fisheries and Oceans, Canada. Date: October, 1993. Location: Come By Chance River, Newfoundland. Data acquisition mode: spatial. Nominal spatial resolution: 1.5 m. Number of swaths: 10. Number of spectral bands: 4. Spectral band configuration: 499.5 to 521.1 nm, 579.0 to 600.7 nm, 648.3 to 671.9 nm, 718.1 to 741.8 nm.

Aerial photographs: Newfoundland and Labrador Department of Natural Resources. Date: May 1992. Roll: 92208. Frames: 142, 144, 146, 152, 154, 156, 158, 166, 168, 170. Altitude: 1341 m. Focal Length: 152.7 mm. Approximate scale: 1:8,800.

Map NTS 1N/13: Natural Resources, Canada. Date: 1971. Scale: 1:50,000. Projection: UTM Zone 22. Type: topographic, digital.

Map 2C4-11: Newfoundland and Labrador Department of Forestry and Agriculture. Date: 1975. Scale: 1:12,500. Projection: UTM Zone 22. Type: ortho-photo, paper.

Map 1N/13-41: Newfoundland and Labrador Department of Forestry and Agriculture. Date: 1975. Scale: 1:12,500. Projection: UTM Zone 22. Type: ortho-photo, paper.

Map 1N/13-31: Newfoundland and Labrador Department of Forestry and Agriculture. Date: 1975. Scale: 1:12,500. Projection: UTM Zone 22. Type: ortho-photo, paper.

Map 1N/13-160: Newfoundland and Labrador Department of Forest Resources and Lands. Date: 1985. Scale: 1:5,000. Projection: modified 3° transverse mercator. Type: topographic, paper.

Map 1N/13-170: Newfoundland and Labrador Department of Forest Resources and Lands. Date: 1985. Scale: 1:5,000. Projection: modified 3° transverse mercator. Type: topographic, paper.

Appendix A

Group Variability and Standardized Distances

Predictor	G	ravel (n = 7	45)	R	ubble (n – 3	66)	Вс	oulder (n	.306)	Be	drock (n -	737)
Variable	Mean	SD	CV [%]	Mean	SD	CV [%]	Mean	SD	CV [%]	Mean	SD	CV [%]
Band1 [DN]	16.97	10.28	60.58	23.07	11.77	51.02	14.51	9.29	64.02	19.44	11.99	61.68
Band2 [DN]	28.46	12.67	44.52	28.87	15.16	52.51	20.61	12.65	61.38	26.72	16.56	61.98
Band3 [DN]	29.59	13.31	44.98	27.32	17.53	64.17	18.95	14.61	77.10	25.80	18.15	70.35
Band4 [DN]	31.02	16.71	53.87	37.32	20.59	55.17	30.25	17.79	58.81	33.97	20.56	60.52
PC1_In [arb]	6.22	0.92	14.79	6.34	1.09	17.19	5.54	1.19	21.48	6.03	1.28	21.23
PC2_In [arb]*	0.98	0.31	31.63	1.34	0.24	17.91	1.34	0.39	29.10	1 27	0.28	22.05
PC3_In [arb]*	1.13	0.27	23.89	1.09	0.26	23.85	1.22	0.30	24.59	1.13	0.28	24.78
PC4_ln [arb]*	0.84	0.09	10.71	0.94	0.09	9.57	0.88	0.11	12.50	0.92	0.09	9.78
PC1 [arb]	54.15	24.65	45.52	58.97	31.35	53.16	43.26	25.34	58.58	53.86	32.16	59.71
PC2 [arb]*	61.10	8.08	13.22	56.80	8.45	14.88	54.05	9,95	18.41	57.21	9.90	17.30
PC3 [arb]*	33.00	6.77	20.52	38.81	6.41	16.52	36.48	5.66	15.52	36.80	5.88	15.98
PC4 [arb]*	6.90	2.00	28.99	9.49	2.22	23.39	8.07	1.92	23.79	8.49	2.04	24.03
Width [m]	23.08	8.69	37.65	12.22	4.05	33.14	17.95	6.97	38.83	19.62	6.22	31.70
Gradient [%]	0.44	0.17	38.64	1.48	1.22	82.43	1.11	1.22	109.91	0.34	0.15	44.12

Table A-1: Descriptive Statistics of Substrate Categories

mean values adjusted for negative values: data minimum added to original mean to enable calculation of coefficient of variation

Predictor	R	un (n = 5	45)	Rı	flle (n – :	529)	Ste	ady (n	253)	F	lat (n — 1	96)	R	apid (n-1	59)
Variable	Mean	SD	CV [%]	Mean	SD	CV [%]	Mean	SÐ	CV [^{9,} u]	Mean	SD	CV [%]	Mean	SD	CV [%]
Band1 [DN]	19.63	11.98	61.03	22.05	10.88	49.34	15.20	10.10	66.45	17.12	6.86	40.07	39.52	19.62	49.65
Band2 [DN]	27.12	16.40	60.47	29.87	14.97	50.12	23.42	14.44	61.66	28.49	9.87	34.64	46.27	22.97	49.64
Band3 [DN]	25.54	17.39	68.09	29.10	18.00	61.86	22.51	14.61	64.90	29.80	11.57	38.83	40.20	23.33	58.03
Band4 [DN]	34.93	22.48	64.36	37.43	19.31	51.59	29.43	19.15	65.07	32.57	15.46	47.47	48.96	21.76	44.44
PC1_ln (arb)	6.09	1.20	19.70	6.35	1.15	18.11	5.74	1.21	21.08	6.34	0.65	10.25	7.18	1.11	15.46
PC2_In [arb]*	1.00	0.30	30.00	0.99	0.25	25.25	0.82	0.30	36.59	0.74	0.33	44.59	1.19	0.21	17.65
PC3_ln [arb]*	1.01	0.27	26.73	1.00	0.30	30.00	1.04	0.28	26.92	1.01	0.20	19.80	0.82	0.30	36.59
PC4_In [arb]*	0.55	0.10	18.18	0.55	0.10	18.18	0.51	0.12	23.53	0.51	0.10	19.61	0.54	0.09	16.67
PC1 (arb)	54.55	31.93	58.53	60.13	30.03	49.94	46.31	28.15	60.79	55.24	20.43	36.98	87.09	40,54	46.55
PC2 [arb]*	51.50	12.63	24.52	52.51	9.40	17 90	52.29	8.30	15.87	54.99	7.20	13.09	57.75	13.19	22.84
PC3 [arb]*	44.16	6.09	13.79	44.12	6.63	15.03	42.26	5.17	12.23	39.92	6.53	16.36	52.79	10.16	19.25
PC4 [arb]*	9.80	2.14	21.84	10.30	2.38	23.11	8.95	1.75	19.55	8.65	2.40	27.75	11.42	3.32	29.07
Width [m]	16.34	7.03	43.02	16.34	6.95	42.53	21.17	12.64	59.71	27.52	12.94	47.02	19.13	3.51	18.35
Gradient [%]	0.51	0.42	82.35	0.59	0.71	120.34	0.32	0.10	31.25	0.37	0.07	18.92	0.29	0.14	48.28

Table A-2: Descriptive Statistics of Channel Pattern Categories

mean values adjusted for negative values: data minimum added to original mean to enable calculation of coefficient of variation

Predictor Variable	redictor Coniferous /ariable (n - 533)		us 3)		Shrub (n 542)			Alder (n - 314)		Wetland (n - 283)		Noveg (n- 420)		Water (n-567)		567)		
	Mean	SD	CV [%]	Mean	SD	CV [%]	Mean	SD	CV [%]	Mean	SD	CV [%]	Mean	SD	CV [%]	Mean	SD	CV [%]
Band1 [DN]	26.58	7.75	29.16	55.16	13.32	24.15	50.88	6.68	13.13	85.36	21.14	24.77	114.90	28.90	25.15	9.80	6.01	61.33
Band2 [DN]	47.29	14.07	29.75	90.70	21.70	23.93	72.40	8.06	11.13	124.02	25.28	20.38	148.68	29.30	19.71	16.38	9.33	56.96
Band3 [DN]	33.48	15.09	45.07	80.71	27.04	33.50	72.31	11.24	15.54	140.23	30.96	22.08	155.24	30.50	19.65	17.65	11.26	63.80
Band4 [DN]	177.35	55.82	31.47	218.26	40.50	18.56	177.11	28.12	15 88	235.19	31.85	13.54	174.42	37.94	21.75	19.88	11.95	60.11
NDVI [arb]*	0.92	0.11	11.96	0.70	0.14	20.00	0.66	0.07	10.61	0.50	0.07	14.00	0.29	0.12	41.38	0.33	0.22	66,67
PC1 [arb]*	162.28	47.31	29.15	242.27	43.15	17.81	201.59	25.00	12.40	308.93	50.33	16.29	298.65	46.91	15.71	32.64	17.50	53.62
PC2 [arb]*	63.65	36.07	56.67	77.32	31.37	40.57	97.50	19.39	19.89	111.73	19.07	17.07	183.28	40.31	21.99	160.19	8.00	4.99
PC3 [arb]*	62.73	7.00	11.16	59.86	11.27	18.83	57.83	4.51	7.80	47.30	12.09	25.56	59.39	14.82	24.95	49.59	4.33	8.73
PC4 [arb]*	25.26	3.75	14.85	21.90	6.71	30.64	29.05	2.36	8.12	29.81	3.89	13.05	24.30	4.51	18.56	25.94	1.87	7.21

Table A-3: Descriptive Statistics of Land Cover Categories

mean values adjusted for negative values: data minimum added to original mean to enable calculation of coefficient of variation

			Mean Difference		!	95% Confiden	ce interval
Cependent Variable	(I) Substrate Type	(J) Substrate Type	(L-I)	Std Error	Sig	Lower Bound	Upper Bound
ZSCORE(BANDT)	Gravel	Rubble	- 239(30)	962	200	- 130026	- 1653 87
		Bodrock	2165287*	200	913	3 164232E-02	401414"
	Rubble	Linavel	- 2150346*	951 1	(10)	- 3001011	163138E-02
	RUDDIO	Bouider	75571010	001		2023 8 1	130026
		Bedrock	12055604	10.2	000	544 960 j	1000423
	Boulder	Gravel	16579**	100	000	.404330	4946.32
	Douidei	Rubble	. 1657194*	075 1	1.000	- 411414	-1042324E-02 \$1170e0
		Bedrock	4351034*	900	000	- 1180 ⁻¹	100955
	Bedrock	Gravel	2196340*	151	000	16314E.07	io(1)(1)
		Rubble	1205560*	16.2	-060	4940 85	1464336
		Boulder	1351631*	100	ન ન ન ન	· pomace	50.5 4
Zscore(BAND2)	Gravel	Rubble	-2 7581112E-02	in.t		- 2033342	1481 70
		Boulder	2310010+	-) o ‴	(900)	1450158	139430
		Bedrock	11"0"68	051	152	-2.5373067E-02	2007273
	Rupple	Gravel	2 75811(E-02	600	4.6	- [48] 0	2033392
		Boulder	5595730*	0.0	-000	3462880	7728581
		2edrock	:452579	963	150	-3-0814181E-02	5213300
	Boulder	Grävel	- 23100:0+	0	(1,1,1)	189480	- 3450358
		Rubble	- 5595"30*	076	000	- 7728581	- 3462880
		Bedrock	- 4143151*	- 00-	- 900 - 1	+ n015004	- 2270639
	Bedrock	Gravei	1 0 03	951	152	200 3	2.53 30 E-02
		Rubble	- 1452579	063	i 150 j	- 3213300	3-081418E-02
		Boulder	4143151*	967	1 000 i	2270639	
Zscore(BAND3)	Gravel	Rubble	1340040	102	1.4	-3 e101203E-95	3134292
		Bouider	6503393*	060	1900	4644394	3362392
		Bedrock	2318951*	051	- 000	19652 SE-02	3741375
	Rubble	Gravel	- 1 \$6040	962	178	-3134292	3 n10120E-02
		Boulder	5[16:53*	1 15	י נאאי י	2005051	7237554
	-H. 14	Sedrock	9.423110E-02	10.1	\$28		2683085
1	Boulder	Gravei	- 0203.593	ing ing	- 000	3362392	- 4644394
		Rubble	- 2110 25	1 10	000 1	- 123 1554	2002051
1	Bodrock	Genuel	- 413444		- 4,41	- 10403-0	232250
	SECLOCK	Rubble	4.123100E 01	951	510	- * - +1 (3 - 3 * - +1 (3 - 3	20-32E 2009 6- 1
		Rouider	0.01012-02	1 067	· 210	- 2003000	1 (340.)22-02
Zscore(BAND4)	Gravel	Rubble	1101196		000		150000
2300101010041	0.8.0	Boulder	4.019903E.01	1 367	0.0	1.14770.4	1 7789176
		Bedrock	15469451	052	010	. 198955*	1 0131748E.07
	Subble	Gravel	3303386	063	1881	1530929	5075841
		Boulder	3706376	d 977	-200	15554"3	5857279
		Bedrock	1756441	063	054	-1-9182632E-03	1532065
1	Boulder	Gravel	-4-0299033E-02	-)6"	-949	2288375	1 1482394
		Rubble	- 3"063"6	• 07*		- 5851279	- 1555473
		Bedrock	. 1949935	• 06"	040	- 3838297	-6 1573705E-03
1	Bedrock	Gravel	1546945	• 052	030	1 043325E-02	2989557
		Rubble	- 1756441	1001	954	- 3532065	1918263E-03
		Boulder	1949935	•] -:67	-)40	o 15*3*0E-03	3838297
ZscoreiPC1_LN)	Gravel	Rubble	- 1-1-6420	062	196	- 2822497	n 090508E-02
		Boulder	5867198	• 060		4009874	1724521
		Bedrock	[6]9881	 051 	017	1 987 395E-02	3041022
	Rubble	Gravel	10 6420	002	396	-1 6965679E-02	2822493
		Boulder	094301"	• 076	- j - 000	4824728	906250
1		Bedrock	2696.300	• 063	000	9.471046E-02	; 4445496
	Boulder	Gravel	536 128	- Uhb	000	- 7724521	400987
		Rubble	- 6943617	076	000	- 9062507	- 4824728
		Bedrock	- 4247317	060	000	- 0107573	239706
1	Bedrock	Gravei	- 1619881	- 051	017	- 3041022	-1 9873947E-0
		Rubble	- 2696300	063	000	- 4445496	-9 4710457E-0
Teorem (1975 Law	Convel	Rubble	4247317			238/061	610757
23COF8(PC2_LN)	GLAAGI	Rouider	-1.0598448	05		-1.2138065	- 9008830
		Bedmark	-1 0520336	- 060	000	-0.2211231	- 3829440
L		Deriver	- 538591	-j 040	000 <u>1</u> 000	- 90/9/15	- 092119

Table A-4: Standardized Distances - Substrate Type

1		gequocy	DSTSEDE	090	000	0055461	101/2/1
		Boulder	ESSPESE	520	000	2005811	660+855
	ejqqny	IBVEND	1.03083	n90	000	6111012	1978:01
		Redrock	CC28515 -	6 t 0	000	598251	0091811
		Jedinog	0016525 -	190	000	0295502	1652915
(CCH)BOOS2	BARAS	BIDORN	£89£6. R ·	090	000	£1928t01-	612101.
			1001000	990	000	((8975)	5687075
		AIG7D1	20-368-5-5-5	790	616	5760671 -	ciocult 1
	200000	IBARIO		000	000	0800055 -	CC: C: - 1
		194025	+00+0CC -	000	000	6457076 -	<u>22</u>
		ACTING R	198191L	C(D)	700	508L0L5	20176 61666 61
	100/000	Bidding	10/000	520	000	C1416643	to doution in the second
	yabluoH	INVER }	70477141010	7(1)		\$10(FL0*	KT41245
		Redmote	10-30571111 P	29(1	700	1295911	1000001
		Boulder	0871101	\$20	100	LU'BRIDIT N	T901205
	elduble	PARELED	COLOZST .	<u>. 90</u>	000	COSTON O	ODDAL T
		Bedrock	8101212	050	000	State	OBOOFSS
		Boulder	1829052	000	000	8401702	5161750
Zscore(PC2)	10AELD	elddu H	Loto_St	290	QKX1	9,01587	605t010
		Baulder	9822591	290	000	լ ենսեսու 1	1021855
		Biddufi	0227921	£00	150	911151	t0:3605916.5
	Bedrock	10/2/0	1 00101011	150	866	(605-151-	<u>+859661</u>
		Bedrock	9812895 -	290 14	000	1623155	18_1_1
		Aubble	9555115 -	210	000	6208552 -	21012211
	Bouider	18AELD	+611521 :	290	<u>(אא)</u>	111195 -	5515-51
		Bedrock	1105110	100	150	10-3-805996 51	9241655
		Boulder	•4555185		000	- 210117	6.0855.
	aldduR	1946J	1005205	600	1:0	1.0137506160.11	+16_T+1
		Bedrock	1 001020E-07	150	865	P85911 -	001.15!
		1ebluo8	•t615526	290	000	\$\$1\$281	££21595
Zscore(PC1)	BAEJO	elddux	- 1005305	£90	† _0	1 +16_7+6 -	1.0121002E-07
		Boulder	1751254	E90	000	8052_91	9122815
		BIDDUA	+T256261 ·	650	+10	£8\$62\$¥ *	C0182059162 C1
	Bedrock	IBVERD	•\$1065_	810	000	\$128129	T1966/86
		Bedrock	+22t2t5t	690	000	9122815 -	No52,91
		910Q72	.9769515	120	000	9PLSSL	9118511
	Jabiuda	19/610	*E05111T	100	000	\$150.57	1091 809
		Redrock	*******	650	1 110	20-3059th	1850-51
		IBDIDOG	-9F6UGEC	120	000	9118555	95.551.
	RIDONN	INAPIO	19282210+	650	000	STRINGS	CC9C5511
		20000	-51065	880	000	1 (196606 -	STESIE0 -
		100000	-5651111	cor.	004	1595800 -	5556.57
(NIT +0.4)810157	10 A P IC	Sector -		600	000	1 CCDCCCT 1-	V200000
UNI F DE/04057	Process	Hubble	D170155	021	1. 0081	C COALC -	COP761 -
		Boulder	DCC INT	_90 CDC		70-3617410633	530511 Rhefy:15
		aldavA	951_1F1	1.40		1 LUEDOLLO195 1	8000011 6450177
	Bedrock	Hever D	TO. HE COLO O	<u>(50</u>	1.000	1 CONTRA	
		Bedrock	#MICOLL	- 90	(N)(SULCE	5-19015
		eldavA	aubuciT	20	000	Law 10 LSC	4402-24
	Boulder	IBVERD	1+0.90.11	<u>_91</u>	1 (KX-	torvor	5486465
		Bedrock	451_111	1.140	i il	8969611	CONCERNS 1
		Bouider	+TLSLT1+	(<u></u> (000	0002-80 -	10.50
	BidduR	19ver0	[6K_11]	100	1415	<u> </u>	1 20-31_6122 t
		AborbeE	6.462_29F 0	. ISO	655	1. 24201210	1 _ 0 * 1_1
		Boulder	+0_90_EE*	9 0	Γ (KOK)	COMENTS -	1019011 -
CSCORE(PC3_LN)	iavenÖ	eldduR	£68_11	190	0.01	10-39(_6tllt	1.6878114
		Bouider	+61TT112 ·	E E O (F	900	186_T81	CONDUCESSON Pr
		eldauA	+1657177 ·	-\$0	1 200	1 SECTORE	COLETCOLE 002 01 2002 57 2002 01 2002 57 2002 01 2002 57 2002 01 2002 57 2002 57 2002 57 2000 57 20000 57 20000 57 20000 57 20000 57 20000 57 20000 57 20000 57 20000 57 2000000000000000000000000000000000000
	Bedrock	19460	165818	91 *(i	006	<u>611760</u>	\$126,96
		AborbeE	+61##£17	19(WOK	TO-BRESKOR T	PROLINE
		8)QQT}-	1 - ATTTI32E-03	1) 9 (1	0001	911002 -	2160583
	TabiuoB	IBAEIF	.9EEUZS01	(000)	000	j_0++6788	15711771
		Sedrock	1+1EST127	-50	200	0.200-38E-02	8867081
		Japinoe	115126-03	(19()	000 1	2160581	9512002
	81000124	IBABIC	-STT8650 1	:50	000	0588006	\$908817.1
IN L C MUMOUS		- AT TTAL			.6.0	00000 19402	nunne ladde.
eldeneV trebnedeC	eqvT etertedu2 (I)	eqvi eterteduc (Li	(f-i)	Std Error 1	U DIS	purce serior	panel secoli

Table A.4: Standardized Distances - Substrate Type (cont.)

			Mean Oifference	i		95% Confider	ice Interval
Dependent Vanable	(I) Substrate Type	(J) Substrate Type	(L-1)	Std Error	Sig.	Lower Bound	Upper Bound
Escore(PC3)	Boulder	Gravel	51259130	764	000	1462591	0554-0
		Rubble	- 3534553*	0-1	TUD	- 5584099	- 148500"
		Bedrock	-4/9910232E-02	064	190	- 2298479	13002"4
	Bedrock	Gravel	5*58233*	049		4383000	132862
		Rubble	- 3035450*	060	000	- 4727401	- (343500
		Boulder	4 991023E-02	-)64	346	- 1300274	2209479
ZscoreiPC4)	Gravel	Rubble	-1.1523035*	058	· (XK)	41.314830*	0848963
		Boulder	- 5213138*	062	- 000-1	- 6941321	1184054
		Bedrock	- "0"33"%*	-)47	000	- 4395707	- 5751-49
	Rubble	Gravel	: 1523635*	058	((())	-9898993	1 14830"
		Boulder	0210468*	070	(ии)	1128012	3282961
		Bedrock	445.7257*	्र ः ३	190	2322633	
	Boulder	Gravel	1213138*	102	i ûnd i	3484954	9941321
		Rubble	- 6310498*	0.0)t)t)	- 328206 i	- 4334935
		Bedrock	- (800241*	002	029	- 3591153	4 29328TTE 02
	Bedrock	Gravel	-0"33"8"	04	- (N)O	5751049	139570
		Rubble	- 445025**	058	- H)O	- ni377831	- 2822683
		Boulder	1300241*	1002	1 (129)	1.293288E-02-1	1591153
Zscore(WIDTH)	Gravei	Rubble	13703350*	0.50	(AK	1.212413	1 3292563
		Boulder	0475308*	000	1)00	4*95541	\$155190
		Bedrock	4359332*	1	(HX)	3074002	5044001
	Rubble	Gravel	1 37033504	010	+H.H.	-1.5282563	FL 212415
		Boulder	- 7227994*	1 ()m4	(XX)	0[44]*9	- 5311584
		Bedrock	. 91440184	<u> 05"</u>	66k ·	-1+926052	
1	Boulder	Gravel	-04753084	900	OCH.	- 3155196	- 1-0441
		Rubble	72279811	kou l	000	5311584	9144379
1		Bedrock	- 21160374	060	1030	. 1798517	-4 3355631E-02
	Bedrock	Gravel	1 11201120		000	5644661	- 30 4002
		Rubble	93440189	057	- OKH-	***61984	1.0926052
		Boulder			006	4 335563E-02	1798517
ZscoreiGRADIENT	Gravei	Rubble	-1 2630902	• 054	(M.K.	-1 4138187	-1112361
		Boulder	- (3113247)	•t	000	. 9716564	6569930
		Bedrock	1284238	•	1 030	i 5.745118E-03	1 2511025
	Rubble	Gravel	1 2630902	•1	U(K·	1.112301	1 112818
		Boulder	4517655	• 065	- 900	2688543	5346 6
		Bedrock	1 3915140	•1 054	(10)	1 2405163	1.5425117
	Boulder	Gravel	8113247	*	1 100	0304930	10504
		Rubble	- 4517655	•1 065	9(9)	0.346 6	- 2688543
		Bedrock	9197485	• 05"	CKK		1 1003334
	Sedrock	Gravel	- : 284238		130	- 2511025	1 -2 421141E-03
		Rubble	-1.3915140	•1 -054		-1.5425117	1 2405163
		Boulder	. 0197485	• 957	200	-1 1003334	

Т	able A-4:	Standardized	Distances	- Substrate	Туре	(cont.)

* The mean difference is significant at the .05 level.

Deservient vanable () FLOW () i FLOW <th() flow<="" i="" th=""></th()>				N D #			95% Configence Interval	
ScoretBAND11 run run <thrun< th=""> <th< td=""><td>Dependent Vanable</td><td>() ELOW</td><td>UNELOW</td><td>Mean Difference</td><td>Std Error</td><td>Sal</td><td>95% Comiden</td><td>Linear Bound</td></th<></thrun<>	Dependent Vanable	() ELOW	UNELOW	Mean Difference	Std Error	Sal	95% Comiden	Linear Bound
Science (Us) Steady (apd) 3293561 (17) (17) (17) (17) (17) (17) (17) (17)		0.0	nittle	18031731	054	025		
Indexity Jaababa Out Out Out Out Jabbaba Jabbaba radid 1.117225 000 3.972723E.02 4138318 1.1238984 riffle n.n 1003127 054 000 3.00273 1.133856.02 steady .10725 068 000 3.00273 1.133856.02 1.133856.02 steady	2SCORE(DAND I)	(an	steady	2208661	0.04	025	- 3405210	5270160
India 107/0239 074 107 27/27/24/24 1138314 Inffie n.m 18031737 054 326 1/17362622 1/465210 Infie n.m 18031737 054 325 1/41363222 1/45264 Infie 1/2962017 080 000 1/36339 5/952662 Infie 1/2962017 080 000 -1/325661 3/972669 Infie 1/12962607 286 3/00 -2/30169 1/226653 Infie 1/129256 3/74 167 -1/33251 3/32672 Infie 1/129256 3/74 167 -1/3331672 3/3672 Infie 1/129256 3/74 167 -1/33251 3/32672 Infie 1/129256 3/74 167 -1/33251 3/32672 Infie 1/3226691 3/44 1/333672 2/26444 3/337727 Infie 1/3002057 3/84 -3/307718 1/375760 3/85771 Infit			flat	1970205	007		1220933	5570199
idu0 -14 / 93044 -300 -000 -17 / 24494 -11 / 23094 inffie isaa 3101725 068 000 3002018 118325 isaa 3072469 074 000 118325 118325 isaa 3072469 074 000 1243381 590546 isaa -12960870 080 000 -1443306 -1052862 isaad -12960870 086 000 -1443306 -1052862 isaad -12960870 086 000 -163251 -500044 -1530769 isaad -129628 374 000 -163251 -1632727727272 -1337789 isaad -1873242 343 000 -1523954 -1723454 isaad -1873244 360 000 10528622 1243494 isaady -1893230 084 000 10538622 1243494 isaady -1893232 085 000 1238946 12399467 isaady				10/0295	074	107	-3 97 - 2773E-02	4138318
nme n.n. 1803173 034 328 14113816-02 1446510 napid 1-2996070 060 000 1394531 9990546 steady n.n. 1295561 367 000 13945369 10326054 nife 5102007 020 000 000 13945369 10326054 nife 5102007 020 000 000 13945369 102000 nife 510205 339 3000 13945318 13072775-02 napid n.n. 1870295 374 167 -4133318 13072775-02 napid n.n. 1870295 000 10328052 144384 nife 12990870 380 300 000 13280594 17248494 nife 12990870 380 300 000 1328052 15453686 steady 13062805 089 000 5333762 20846448 steady 1200250 089 000 5333762 20846448 1950205 089 000 5333762 20846448 1950205 008 1000 13573762 12864448 1950205 008 1000 13573762 12864448 195027 088 -134532823 357 386 -1325284 143030073 nat a 1564177 E-02 078 896 -3222740 1595957 napid n.n. 1632921 057 388 -134282322 3400173 1432 3128056 001 13753964 2338562 napid -1365377 000 13979047 353933 nafat a 112806E-02 078 896 -002 1355957 3322724 195037 1325032 037 1355 -23291489E-04 4403100 195997 1603945 3338562 napid -972638 088 000 -1335934 3238562 napid -972638 088 000 -1335935 33227240 195997 1325522 0350 071 1355 -4403100 2391448E-04 nffe -3826377 095 000 -1355957 33227240 195997 13255262 077 895 000 -1355957 33227240 195997 13255577 095 000 -1353933 1337947 napid n.n.n 11356220 085 000 -1353933 1337947 napid n.n.n 11356220 085 000 -1353933 1337947 napid n.n.n 199751 059 000 -13549840 23 25core(BAND3) n.n.n nffe -1997552 074 256 -70675620 577127 napid n.n.n 1997552 074 256 -70675620 2075 857 napid 930958615-02 071 855 -000 136388 -13439869 napid 930958615-07 095 000 -13638841 121456502 napid 930958615-07 002 -3714255 -6864868			rapig	-1 4/94044	080	000	-1 7248494	-1 2339594
steady 5101735* 068 000 320218 7133251 flat 337346* 074 000 14 54369 11356391 steady run 325651* 366 300 -7183251 -320622 a*1 142265 234 577 4013248 -1532672 a*1 -122265 224 577 4133318 3572775-02 a*1 -132266 324 577 1152225 124 a*1 -118052605* 326 300 -2364448 -15335760 a*164 -16664339 394 000 1233653 12727520 a*164 1666439 040 1375760 19570718 1375760 a*164 1666439 040 1375760 19570718 13423820 344 25core(BAND2)* run rffle -2394480-44 14430300 1357560 19570718 13423826 25core(BAND2)* run 1636221 077 986 -3297480 14		nme	nun	1803173*	054	J25	1 411363E-02	3465210
Ital 3873465' 074 000 1396311 5950546 Jsteady run 329851' 367 000 -1545369 -1226953 "at 1323256 326 000 -7183251 -3020159 "at 1323266 224 577 -4311243 1102215 "at -120200' 208 200 -2084248 1336762 "at -11122256 -010 -2084248 13972757252 "apoid -11422266 -044 -577 -1132525 -0419458 "apoid -11422266 -044 -577 -1132525 -0419458 "apoid -11422266 -044 -000 -1357078 13536762 "apoid -112777602 -1365232 -3401773 1442835-02 -3401773 1442835-02 "apoid -1136220 -055 -23941469-00 -13757960 -13757960 -13757960 -23941469 -136317 "apoid -11362202 -278 866 -23941469			sleady	5101735*	068	000	3020218	7183251
			flat	3673469*	074	000	1396391	5950546
steady run -3298581* 367 000 -5707669 -122693 "at -122026 284 577 -0202018 -000 "at -122026 284 577 -0202018 -1000 "flat run -1870295 0.74 107 -1133318 3977277523 "rapid -16644397 -000 -555546 -1356361 -13757660 "rapid -16644397 -080 000 -152252 -019458 "rapid -1632923 038 000 -1528054 1724584 "rapid -1632923 037 080 000 1357960 1957078 zscore(BAND2) run -6132923 037 088 -1400173 134328562 steady 12020050 071 050 -239944964 4403100 mffle -0159271 028 1337947 -3759351 rapid -11369227 028 1337947 -3759353 rapid -1362			rapid	-1 2990870°	080	000	-1 5453689	-1 0528052
nrfle -5101735' 368 300 -718251 -520251 rand -18092605' 328 577 -403251 -103251 rand -18092605' 328 577 -403251 -113336782 rand -1873469' 374 167 -1138316 3972775-32 rapid -16664339' 394 500 -12570718 -1375786 rapid -114794044' 080 500 1233654 17248484 rapid -114794044' 080 500 1233654 1245366 rapid -114794044' 080 500 1233654 1345366 rapid 1305205' 088 000 1337596 19570718 ZscoretBAND2! run nffle -1632221 357 386 -320714 41430300 flat +1542722 378 386 -3227240 1595857 3228506 rapid -1153223 057 385 -32397435 3238506 -3239745		steady	run	- 3298561*		000	- 5370169	- 1226953
"at 1:2325E 3:34 5:77 -1:03203 1:02325 "flat "un 1:870295 374 167 -1:133318 397277523 "flat "un 1:870295 374 167 -1:133318 397727523 "apid -1:6664339 394 200 1:233564 1:235564 1:235564 "apid run 1:4794044 080 300 1:532652 2:084848 "apid run 1:4794044 080 300 1:335760 1:957051 steady 1:2090870 080 000 1:335760 1:957051 steady 1:2002050 371 050 2:327240 1:955957 "apid -1:1632921 075 086 1:33297047 -3759930 "apid -1:3692021 085 000 1:1:2328222 1:400173 steady 3:333731 072 000 1:1:2328222 1:400173 "apid -3:269570 3:332506 -7:11:572 1:3:3			nffle	- 5101735*	068	200	- 7183251	- 3020218
rand -1.8092602* 389 300 -2.084448 -1.5336762 Iflat run -1.670265 374 167 -1.13331672 -1.393318 9972776-32 rapid -1.6664339 394 577 -1.163225 4019458 rapid run 1.2395641 1.2335641 1.2335641 1.2335641 rapid run 1.9993870* 300 1.23355641 1.2345844 rapid 1.6664339* 044 0.00 1.315782 2.048448 steady 1.059205* 0.88 0.00 1.315782 2.048448 2scoretBAND2* run mffle -1.632923 0.57 0.85 -2.39914961-04 4430100 flat 4.156417E-02 0.78 866 -3.227240 1555957 rapid -1.532923 0.57 3.86 -3.227240 1559393 rapid -1.532923 0.57 3.86 -3.227240 1559393 rapid -1.532923 0.57 -2.200550			1 ⁰ 1	1428266	284	577	- 4010458	::02020
"flat 'un 11870295 074 167 -1138318 3 97727F-02 steady 1428266 084 577 -1182025 4019458 'rapid -116664339 094 000 -1357360 13757860 'rapid -117900441 080 000 12339594 17248494 'nfle 12990870 080 000 1357760 19570718 steady 13092005 089 000 13357960 19570718 steady 2200350 371 050 23991489E-04 44433316-32 ZscoretBAND2! -un nfle -1632921 057 088 -1322826-02 4400173 steady 2200350 371 050 23991489E-04 4403100 'rapid -11362201 085 000 -1325826-2 4000173 'rapid -112208E-02 079 987 -160987 23991498E-04 'rapid -112208E-02 079 987 -12325023 -71115772			rapid	-1 8092605*	980	- JOO	-2 0848448	-1 5336762
nmle 3673497 074 000 -5950546 -1366391 rapid -16664339 394 000 -19570718 -1375766 rapid run 1.1794044 086 000 -12335941 1724849 rapid run 1.1794044 086 000 10528052 1543689 steady 13092605 088 000 10528052 1543689 Zscore(BAND2) run nfle -1652822 057 088 -3400173 134328352 zscore(BAND2) run nfle -1632823 057 088 -134328326-02 1400173 rapid -11369207 78 896 -12379407 -5759393 nfle run 1632223 057 388 -13428325-02 -111757 steady 3833273 072 000 1-3959407 -237586-02 rapid -13569870 095 000 -1357946 -227240 rapid -135637610 005		flat	านที	- 1870295	374	167	+ 4138318	3 977277E-02
steady 1428266 384 577 118222 4019458 'rapid run 11794044 080 300 12339594 17248494 infile 12990870 080 000 15336762 2048448 iseady 13092605 088 000 15336762 2048448 iseady 12092050 371 050 13757960 19570718 ZscoretBAND2! run nfffe 1564177E-02 78 96 -13079417 1343281-02 rapid -11369220 285 000 -1397947 -343281-02 rapid -11569223 057 388 -130771 1343281-02 rapid -11569220 078 396 -1397947 -3759933 nffle run 1632223 057 388 -13079747 -34007373 rapid -1356957 022 077 397 -1363737 1300 1235203 -117572 rapid -13569370 095 <td< td=""><td></td><td></td><td>nifile</td><td>- 3673469*</td><td>074</td><td>300</td><td>- 5950546</td><td>- 1396391</td></td<>			nifile	- 3673469*	074	300	- 5950546	- 1396391
rapid -18664339 394 000 -1397078 -1373780 rapid run 14794044 086 000 12339544 17248494 rifle 12399870 080 000 15239762 2048448 steady 13992057 089 000 1535762 2048448 16664339 094 000 13757960 19570718 13432835-02 zscore(BAND2) run nffle -1632823 057 088 -1237940 1539567 rapud -11389207 078 896 -12379407 -5759393 raft -1392047 -13759930 -13759930 -113428322-02 140013 rapud -2200350 771 050 -13979407 -5759393 raft -31320821 077 088 -13428322-02 1400130 rapud -105922 079 97 -600345 1238508 rapud -13569371 072 000 -1643943 -71177			steady	1428266	084	577	1162925	1019158
rapid run 1 4794044 080 000 1 2339544 1 7248494 nffle 1 2990870 080 000 1 5239544 1 7248494 steady 1 3992605 089 000 1 5338542 1 543868 zscoretBAND2) run nffle 1 664339 094 000 1 3557860 1 9570718 zscoretBAND2) nffle - 1 632923 057 088 - 3400173 1 343283E-02 rapid -1 1369220* 085 000 1 33292740 1595957 rapid -1 1369220* 085 000 1 333283E26-02 3400173 rapid -1 1369220* 085 000 1 333283E26-02 3400175 rapid -1 7260056-02 079 997 1603945 3238506 rapid -1 359570* 000 -645585 -613987 rapid -1 359570* 095 000 -1 643943 -7448424 rapid -1 359570* 095 000 1 5439843			rapid	1 6664339*	104	000	1 3570718	1 3757960
and 1.1.2990870 300 1.2.333.8 1.1.203.8 steady 1.3990870 089 000 1.523662 2.0844445 2score(BAND2) run nffle 1.6664339 994 000 1.3757860 1.9570718 2score(BAND2) run nffle -1.06643292 057 088 -3.400173 1.3432832-02 rapid -1.16692207 028 966 -3.2974489E-04 4403:00 rapid -1.16892207 0285 000 1.3979047 -379933 rapid -1.1269220 077 987 -1.603945 3238506 rapid -1.1269220 079 987 -1.603945 3238506 rapid -9736298 085 000 -1.235503 -711757 sieady nffle -3833273* 072 000 -6449658 -161987 rapid -135992* 089 023 -5771217 -2.6076728-02 -771217 -2.6076728-02 5771217 -2.6076728-02 577		12010		1 4704044*	080	000	1 2220604	1 7249404
steady 1 290000 000 1335762 21948440 14at 16664339 094 000 1335762 2084844 2200350 071 050 13757960 19570718 23c0ret(BAND2) run nffle - 1632923 057 088 - 3407173 134283E-02 17apid -11369220 025 000 -13979047 -5759393 17fle run 1622923 057 088 -13432822602 3400173 13432826-02 075 000 -13979047 -5759393 17fle run 1622923 057 000 -13379047 -5759393 17fle run 1622923 057 000 -133282260 23400173 14at a 1728048-02 079 987 -1603945 3238506 14at a 1728048-02 079 987 -1603945 3238506 14at a 1728048-02 079 987 -1603945 3238506 14at a 0.7528050 0071 250 -4403100 2399149E-04 14at -3015992* 088 023 -5771217 -25 158249 run -2200350 071 250 -4403100 2399149E-04 14at -3015992* 089 023 -5771217 -25 163271 run -1356418E-02 079 987 -3238506 1503945 14at -01553571* 100 000 -1649869 -10633271 17fat run -1369220* 085 000 -711572 -25076728-02 1633271 17apid -1156920* 085 000 -7159393 13979447 17apid -1156920* 095 000 10639271 1463944 143563574* 100 000 -11639271 1498969 14at -0553574* 100 000 -7463244 1343943 25core(BAND3) run rtfle -38051570* 095 000 10639271 1463944 25core(BAND3) run rtfle -1917761* 059 023 -312116 -17140598672 19966752 1996782 074 256 -57108796-02 13966752 1996782 1996782 074 256 -57108796-02 13966752 1996782 1997847 1917 100 rtfle -3809681* 074 000 -14088431 -5511931 1977944 13643943 -5511931 191761* 059 023 -13821216 -17140598602 19366782 19366782 074 256 -57108796-02 13966792 19366782 19366782 074 256 -57108796-02 13966782 19366782 19366782 074 256 -57108796-02 13966782 19366782 19366782 074 256 -5708796-02 13966782 19366782 19366782 074 256 -5708796-02 13966782 1934985 193704 193761* 059 000 -12385356 19311 193704 193761* 059 000 -12385434 5511931 1947704 1947620 -887 000 -1388843 5511931 1947 1947702 081 098 000 -1236845 193494 200323 284940 2103023 1740595-02 091 068 143444 200572* 092 001 -6918588 142455 15193 1740385 1634 163 1634 16390572* 092 001 -6918588 142455 15193 1740 164 174040572* 092 001 -6918588 142455 15193 1740 164 174040572* 092 001 -6918588 142455 15193 1740 174 17404 1740 1740 17404477002 1		apiu	offle	1 200/3870*	080	000	1 2309094	1 240424
Sready 1 Sub2003 0.09 0.00 1 3375780 2 0048448 rat 1 6664339* 094 000 1 3375780 1 9570718 Zscore(BAND2)* run nffle -1632923 057 088 -3400173 1 432835-02 rapid -11 369220*/2016 076 038 -3227240 1559367 rapid -11 369220*/2016 060 -1397047 -8759383 nffle run 152222 057 038 -143283224-02 3400173 steady 3833273* 072 000 1619987 6046558 -3238506 rapid -172086-02 079 987 -1603945 3238506 rapid -1368970* 095 000 -1359593 1327240 nffle -833273* 072 000 -6046558 -1619847 rapid -1356920* 078 397 -3238506 1603945 rapid -1055376* 100 000 -16452858 -1619847			stoody	1 23300/0	080	000	0020002	1 0400009
nat 1 bbb433* 094 000 1375/1800 1 9570/18 Zscore(BAND2): run niffle 163223 057 088 -3400173 1 4328326-02 ifflat -31564177E-02 078 856 -23991408E-04 4403100 ifflat -31564177E-02 078 856 -13227240 1555957 rapid -11369220* 085 000 -13979047 -8759393 niffle run 1632923* 057 086 -1342832E-02 3400173 isteady 3833273* 072 000 -1639945 3238506 rapid -976298* 085 000 -1355035 -1619947 ifat -3015992* 085 000 -14403100 2399149E-04 ifat -3015992* 085 000 -1639857 102327240 ifat -301596570* 095 000 -163997 3228506 ifat -1055378* 100 000 -1643943 -345943			Sieady	1 5092605*	089	000	5336/62	2 0848448
ZSCOPE(BANU2) run nttle -163/2923 357 368 -3400173 11332835-02 iflat -81564177E-02 078 896 -3227240 1559557 rapid -11369220 085 000 -13979047 -8759393 rafte run 1632923 057 388 -13328226-02 3400173 isteady 3333273* 072 000 -1619987 60-46558 iflat 81726056-02 077 987 -1603945 3238506 rapid -976298* 085 000 -1235503 -1117572 steady run -2200350 071 9550 -4403100 23991495-34 iflat -3015992* 088 023 -5771217 -26075728-62 -767328-02 iflat -3015992* 089 023 -567732-02 5771217 -26075726-02 5771217 rapid -11563976* 100 000 -76325-02 5771217 12355023 iflat <td></td> <td></td> <td>1131</td> <td>1 6664339*</td> <td>094</td> <td>000</td> <td>1 3757960</td> <td>1 95/0/18</td>			1131	1 6664339*	094	000	1 3757960	1 95/0/18
steady 2200350 371 050 -2 3991489E-04 4403100 rapid -11369220* 085 000 -1327240 1559557 rapid -11369220* 085 000 -1342832E-02 3400173 steady 333272* 077 088 -13432832E-02 3400173 steady 333272* 077 000 161987 6046558 rapid -973298* 085 000 -1235023 -7117572 steady nun -2200350 071 1350 +4403100 2 399149E-34 rapid -13569571 072 000 -6646558 -163987 rapid -13569571 095 000 -1649969 -1063927 rapid -13569571 0232 2607673E-02 5771217 -260763E-02 5771217 rapid -10553578* 100 000 -1643943 -7463214 rapid -1356927* 095 000 1717572 1335923 s	Zscore(BAND2)	run	offle	- 1632923	057	- J88	- 3400173	1 343283E-02
flat -9 1564177E-02 078 896 -3227240 1559567 rapid -11369201 085 000 -1379047 -3759393 raffle run 1632923 057 088 -13432832E-02 3400173 steady 3333273* 072 000 1619987 6046558 rapid -9736298* 085 000 -12355023 -7117572 steady run -2200350 071 950 -4403100 2399149E-34 rapid -3369570* 095 000 -1549969 -1603927 rapid -1366418E-02 078 396 -1595957 3227240 rapid -13569570* 095 000 -1649969 -1603945 steady 3015992* 089 023 2607673E-02 5771217 rapid -10553578* 100 000 -1643943 -746324 rapid -10553578* 100 000 717572 12355023 rapid			steady	2200350	371	050	-2 3991489E-04	4403100
rapid -11369220' 085 000 -13979047 -3759393 inffle run 162923 057 088 -13432832E-02 3400173 steady 3833273' 072 000 1619987 6046558 flat 8172806E-02 079 897 -1603945 3238506 rapid -973298' 085 000 -12355023 -7117572 steady run -2200360 071 950 -4403100 2399149E-34 rapid -305992' 089 023 5771217 -26077328-62 rapid -13569570' 095 000 -1649969 +1063945 steady 3015992' 089 023 26076712-02 5771217 rapid run 11369220' 085 000 7117572 1355037 rapid 10553578' 100 000 -1643914 -13639211 649969 steady 1687852 074 256 57108796E-02 3966752			flat	-8 1564177E-02	078	896	· 3227240	1595957
niffle nun 1632923 057 088 1 2332832E-02 3400173 steady 3833273 072 000 1619987 6046558 flat 8 17208E-02 079 997 1603945 3238506 rapid -9736298 085 000 1,2355023 -7117572 steady nun -2200350 071 950 -4403100 2399149E,34 nffle -3833273* 072 000 -6646558 -1619987 rapid -135698570* 095 000 -1649869 +10639271 flat -0115992* 089 023 -5771217 -26076738E-02 rapid -115691578* 100 000 -13643943 -7463214 rapid -10553578* 100 000 -13643943 -7463214 rapid rapid2989 085 000 7117572 1235023 steady 1369220* 085 000 7463214 13643943 rapid			rapid	-1 1369220*	085	000	-1 3979047	- 3759393
steady 383273* 072 000 1619987 60-46558 flat a 172808E-02 379 897 -1603945 3238506 rapid -9736298* 085 000 -12355023 -7117572 siteady nun -2200350 071 950 -4403100 2399149E-04 ntfle -3015992* 089 023 -5771217 -2 6076728E-02 rapid -13569570* 095 000 -1 649869 -1063945 steady 3015992* 089 023 -607673E-02 5771217 -rapid -13569570* 100 000 -1 64394969 -1063945 steady 3015922* 089 023 2 607673E-02 5771217 rapid -10553578* 100 000 -1 343943 -7463214 frait .0553578* 100 000 74522116 -1 146598E-02 rapid -382720 081 086 -4866784 1013456E-02 rapid		offle	run 🛛	1632923	057	388	-1 3432832E-02	3400173
flat 8 172808E-02 379 997 - +803945 3238506 steady nun - 2736298* 085 000 - +2355023 - 7117572 steady nun - 2200350 071 955 - 4403100 2 399149E-34 nffle -383273* 072 000 -6246558 -161987 rapid -1356957* 023 -5771217 -26076728E-62 rapid -1356957* 995 000 -16499669 -1063927 flat run -81768076E-02 078 396 -1595957 3227240 nffle -81728076E-02 079 397 -3238506 1603945 steady 3015992* -369 023 2607673E-02 5771217 rapid run 11369220* 085 000 1343943 -7463214 rapid run 13569570* 1905 000 7117572 12355023 steady 13569570* 995 000 7117572 1235			steady	3833273*	072	000	1619987	60-46558
rapid -9736298' 085 000 -1 2355023 -7117572 steady run -2200350 071 350 -4403100 2 399149E-04 nffle -3015992' 089 023 -5771217 -2 6076728E-02 rapid -1 3569570' 095 000 -1 6499669 -1032927240 flat -3015992' 089 023 -5771217 -2 6076728E-02 rapid -1 3569570' 095 000 -1 6499669 -1032927 nffle -8 1728076E-02 079 997 -3238506 1603945 steady 3015992' 085 000 -1 134943 -7463214 rapid run 1 1369220' 085 000 1 117572 1 235023 steady 1 555578' 100 000 -7463214 1 3643943 2score(BAND3) run nffle -1991761' 059 023 -3812116 17140589-02 flat -2382720 081 068 -486678			flat	a 172808E-02	079	897	- 1603945	3238506
steady run -2200350 371 950 -4403100 2399149E-04 nffle -3833273 072 000 -6646558 -161987 rapid -13569570 095 000 -16499669 -10639271 flat run 3156418E-02 078 396 -1559597 3227240 nffle -31726076E-02 077 397 -3238506 1603945 steady 3015992* 089 023 2 607673E-02 5771217 rapid -10553578* 100 000 -1643943 -7403214 rapid -10553578* 100 000 717572 1235023 steady 1369570* 095 000 17632217 1643943 zscore(EAND3) run nffle -1991761* 059 023 -3812116 -1714058E-02 flat -232720 081 068 -4866784 1013450E-02 3966792 gend -1691761* 059 023 1714059E-			rapid	- 9736298	085	000	-1 2355023	- 7117572
Infile		steady	run .	· 2200350	071	250	. 4403100	2 399149E-04
flat		51600)	offle	. 3833273*	072	000	6046558	- 1619987
rapid -1 3569570* 095 003 015 11 11 12 001012332 flat run 31569170* 095 000 -1 5499869 -1 0639271 flat run 31569170* 095 000 -1 5499869 -1 0639271 inffle -8 1728076E-02 079 397 -3238506 1603945 steady 3015992* 089 023 2 607673E-02 5771217 rapid -1 0553578* 100 000 -1 3643943 -7 463214 rapid run 1 1369220* 085 000 3759393 1 3979047 ifat 1 0553578* 100 000 7 463214 1 3643943 zscore(BAND3) run iffle -1 991761* 059 023 3 812116 -1 714058E-02 steady 1697852 074 256 -5 7108796E-02 3966792 flat -2300181* 087 000 -1 0488431 -5511931 iffle run 1991761*			flat	3015002	080	023	5771217	-2 6076728E-02
Instruct			canid	1 2560570	003	000	1 6 100960	1 0630271
Indit Indit Indit S 1084 182-02 O73 996 Indit S 1080 182-02 O73 997 Indit S 1080 182-02 O73 997 Indit S 1080 182-02 O13 996 Indit S 1080 182-02 O13 997 Indit S 1080 182-02 O13 997 Indit S 1080 182-02 O13 996 Indit S 1080 182-02 O13 996 Indit S 1080 182-02 O13 100 O00 Indit S 1080 182-02 O13 13690 11 Indit S 1080 182-02 O13 13690 11 Indit S 1080 11 Indit S 1080 182-02 O13 100 O00 Indit S 1080 11 Indit S 1080 11 <thindit 1080="" 11<="" s="" th=""> Indit S 1080 11</thindit>		Int		3 166 A18E 02	035	306	1 0435003	3227210
Initial -3 17 2076E-02 079 397 - 323806 1003942 rapid -1 0553578* 100 000 -1 3643943 -7463214 rapid -1 0553578* 100 000 -1 3643943 -7463214 rapid -1 0553578* 100 000 -1 3643943 -7463214 rapid 1 369520* 085 000 7117572 1 2355023 steady 1 369570* 095 000 1 033921 1 649969 flat 1 0553578* 100 000 7463214 1 3643943 Zscore(BAND3) run riffle -1991761* 059 023 - 3812116 -1 7140589E-02 steady 1697852 074 256 -57108796E-02 3866792 flat - 2382720 081 068 -4866784 1 013450E-02 rapid - 6208420* 087 000 -1 0888431 -5511931 riffle -1697852 074 256 -3966792 5 7108806E-02 <		aat	i Uli	0 100410E-02	070	090	- 1090907	1602045
steady 3015992* 369 023 26076/3E-02 577121* rapid -10553578* 100 000 -13643943 -7463214 rapid run 11369220* 085 000 8759393 13979047 nffle 9736298* 085 000 7117572 12355023 steady 13669570* 095 000 1033271 16499669 flat 10553578* 100 000 7463214 13643943 Zscore(BAND3) run nffle 1991761* 059 023 .3812116 17140589E-02 steady 1697852 074 256 -57108796E-02 3966792 flat -2382720 081 068 .4866784 1013450E-02 rapid -8200181* 087 000 1409820 5969406 flat -39095861E-02 081 994 .2884940 2103023 rapid -6208420* 081 068 -10134497E-02 4866784 <			ritite	-8 1/280/0E-02	0/9	597	• 3238500	1003945
rapid -1 05535/8' 100 000 -1 363343 -1 46214 rapid run 1 1369220* 085 000 3759393 1 3979047 nffle 9736298* 085 000 117572 1 2355023 steady 1 3569570* 095 000 1 0639271 1 6499869 flat 1 0553578* 100 000 7463214 1 3643943 Zscore(BAND3) run nffle -1991761* 059 023 - 3812116 -17140589E-02 steady 1697852 074 256 -5 710876E-02 38627116 rapid - 2382720 081 068 -4866784 1013450E-02 rapid - 32095861E-02 081 994 -2884940 2103023 rapid -6208420* 087 000 -1408826 -3511004 steady 1697852 074 256 -3966792 5710880E-02 rapid -3699613* 074 000 -599406 -1409820			steady	3015992	089	023	200/6/32-02	1 577121
rapid run 1156920* 085 000 9759393 13979047 niffle 9736298* 085 000 7117572 12355023 steady 13659570* 095 000 13639271 16439869 itat 10553578* 100 000 7463214 13643943 Zscore(BAND3) run niffle -1991761* 059 023 -3812116 -17140589E-02 steady 1697852 074 256 -57108796E-02 3966792 flat -2382720 081 068 -4866784 1013450E-02 rapid -8200181* 087 000 10888431 -5511931 niffle run 1991761* 059 023 1714059E-02 3812116 steady 3689616-02 081 994 -2884940 2103023 rapid -3 9095861E-02 081 994 -2884940 2103023 rapid -1697852 074 256 -3966792 571088			rapid	-1 0553578	100	000	-1.3643943	- 7463214
nffle 9736298* 385 000 7117572 1 2355023 steady 13569570* 095 000 13639271 1 6499869 flat 10553578* 100 000 7463214 1 3643943 Zscore(BAND3) run riffle -1991761* 059 023 -3812116 -1 7140589E-02 steady 1697852 074 256 -5 7108796E-02 3966792 flat -2382720 081 068 -4866784 1 013450E-02 rapid -8200181* 087 000 -10888431 -5511931 niffle run 1991761* 059 023 1 714059E-02 3812116 steady 3689613* 074 000 -10888431 -5511931 niffle rapid -6208420* 087 000 4805816 -3511004 steady run -1697852 074 256 -3966792 5 710880E-02 nffle -3689613* 074 000 <td< td=""><td></td><td>rapid</td><td>run</td><td>1 1369220</td><td>085</td><td>000</td><td>8759393</td><td>1 3979047</td></td<>		rapid	run	1 1369220	085	000	8759393	1 3979047
steady 1 3669570* 095 000 1 0639271 1 6499869 flat 1 0553578* 100 000 7-63214 1 3643943 Zscore(BAND3) run niffle - 1991761* 059 023 - 3812116 -1 7140589E-02 steady 1697852 074 256 -5 7108796E-02 3966792 flat - 2382720 081 068 - 4866784 1 013450E-02 rapid - 8200181* 087 000 -1 0888431 -5511931 niffle run 1991761* 059 023 1 714059E-02 3812116 steady 3689613* 074 000 -1 0888431 -5511931 niffle run 1991761* 059 023 1 714059E-02 3812116 steady 3689613* 074 000 1 09820 5969406 -1 01342972 flat -39095861E-02 081 994 -2884940 2103023 steady run -1697852 074<			nffle	9736298	· 385	000	7117572	1 2355023
flat 1 0553578* 100 000 7463214 1 3643943 Zscore(BAND3) run riffle -1991761* 059 023 -3812116 -1 7140589E-02 steady 1697852 074 256 -5 7108796E-02 3966792 flat -2382720 081 068 -4866784 1013450E-02 rapid -8200181* 087 000 -10888431 -5511931 nffle run 1991761* 059 023 1714059E-02 3812116 steady 3689613* 074 000 -10888431 -5511931 nffle run 1991761* 059 023 1714059E-02 3812116 steady 3689613* 074 000 1409820 5969406 flat -3 9095861E-02 081 994 -2884940 2103023 rapid -6208420* 087 000 -5969406 -1409820 flat -4080572* 092 001 -6918588 -1			steady	1 3569570	• 095	000	1 0639271	1 6499869
Zscore(BAND3) run riffle - 1991761* 059 023 - 3812116 - 17140589E-02 steady 1697852 074 256 -57108796E-02 3966792 flat - 2382720 081 068 - 4866784 1013450E-02 rapid - 8200181* 087 000 -1 0888431 - 5511931 riffle run 1991761* 059 023 1 714059E-02 3812116 riffle rapid -39095861E-02 081 994 - 2884940 2103023 rapid -6208420* 087 000 - 8905836 - 3511004 steady run -1697852 074 256 - 3966792 5 710880E-02 rapid -6208420* 087 000 -8905836 - 3511004 steady run -1697852 074 256 - 3966792 5 710880E-02 nffle -3689613* 074 000 -5969406 -140920 flat -4080572* 092<	}		flat	: 0553578	• 100	000	7463214	1 3643943
steady 1697852 074 256 -57108796E-02 3966792 flat -2382720 081 068 -4866784 1013450E-02 rapid -8200181* 087 000 -10888431 -5511931 nffle run 1991761* 059 023 1714059E-02 3812116 steady 3689613* 074 000 1409820 5969406 flat -3 9095861E-02 081 994 -2884940 2103023 rapid -6208420* 087 000 -8905836 -3511004 steady run -1697852 074 256 -3966792 5710880E-02 nffle -3689613* 074 000 -5969406 -1409820 flat -4080572* 092 001 6918588 -1242555 rapid -9898033* 098 000 -12916385 -6879681 flat -4080572* 092 001 1242555 6918588 rapid	Zscore(BAND3)	nun	riffe	- 1991761	• 059	023	- 3812116	-1 7140589E-02
flat - 2382720 081 068 - 4866784 1 013450E-02 rapid - 8200181* 087 000 -1 0888431 -5511931 nffle run 1991761* 059 023 1 714059E-02 3812116 steady 36995861E-02 081 994 -2884940 2103023 rapid -6208420* 087 000 -8905836 -3511004 steady run 1697852 074 256 -3966792 5 710880E-02 nffle -3689613* 074 000 -5969406 -1409820 flat -4080572* 092 001 -6918588 -1242555 rapid -9898033* 098 000 -12916385 -6879681 flat -4080572* 092 001 -6918588 -1242555 rapid -9898033* 098 000 -12916385 -6879681 flat -000586E-02 081 994 -2103023 2884940 steady <td>1</td> <td></td> <td>steady</td> <td>1697852</td> <td>074</td> <td>256</td> <td>-5 7108796E-02</td> <td>3966792</td>	1		steady	1697852	074	256	-5 7108796E-02	3966792
rapid - 8200181* 087 000 -1 0888431 -5511931 niffle run 1991761* 059 023 1 714059E-02 3812116 steady 3689613* 074 000 1409820 5969406 flat -3 9095861E-02 081 994 -2884940 2103023 rapid -6208420* 087 000 8905836 -3511004 steady run -1697852 074 256 -3966792 5710880E-02 nffle -3689613* 074 000 -5969406 -1409820 flat -4080572* 092 001 -6918588 -1242555 rapid -9898033* 098 000 -12916385 -6879681 flat run 2382720 081 068 -10134497E-02 4866784 nffle 3 909586E-02 381 994 -2103023 2884940 steady 4080572* 092 001 1242555 6918588			flat	- 2382720	081	068	- 4866784	1 013450E-02
niffle run 1991761* 059 023 1714059E-02 3812116 steady 3689613* 074 000 1409820 5969406 flat -3 9095861E-02 081 994 -2884940 2103023 rapid -6208420* 087 000 -8905836 -3511004 steady run -1697852 074 256 -3966792 5 710880E-02 nffle -3689613* 074 000 -5969406 -1409820 flat -4080572* 092 001 -6918588 -1242555 rapid -9898033* 098 000 -12916385 -6879681 flat run 2382720 081 068 -10134497E-02 4866784 nffle 3 909586E-02 081 994 -2103023 2884940 steady 4080572* 092 001 1242555 6918588 rapid -5817461* 103 000 -9000689 -2634234			rapid	- 8200181	• 087	000	-1 0888431	- 5511931
steady 3689613* 074 000 1409820 5969406 flat -3 9095861E-02 081 994 -2884940 2103023 rapid -6208420* 087 000 -8905836 -3511004 steady run -1697852 074 256 -3966792 5 710880E-02 nffle -3689613* 074 000 -5969406 -1409820 flat -4080572* 092 001 -6918588 -1242555 rapid -9898033* 098 000 -12916385 -6879681 flat -4080572* 092 001 10134497E-02 4866784 nffle 3 909586E-02 081 068 -1 013497E-02 4866784 nffle 3 909586E-02 081 068 -1 013497E-02 4866784 nffle 3 909586E-02 081 068 -1 013497E-02 486474 nffle 3 909586E-02 081 094 -2103023 2884940 steady		nffle	run	1991761	• 059	023	1 714059E-02	3812116
Interf Statury Statury <thstatury< th=""> <thstatury< th=""> <thst< td=""><td>1</td><td></td><td>steady</td><td>100000</td><td>074</td><td>000</td><td>1209820</td><td>5969406</td></thst<></thstatury<></thstatury<>	1		steady	100000	074	000	1209820	5969406
rapid -63 50500 = 102 001 354 -204540 2103230 rapid -6208420* 087 000 -8905836 -3511004 steady run -1697852 074 256 -3966792 5 710880E-02 flat -4080572* 092 001 -6918588 -1242555 rapid -9898033* 098 000 -12916385 -6879681 flat -4080572* 092 001 -6918588 -1242555 rapid -9898803* 098 000 -12916385 -6879681 flat run 2382720 081 068 -10134497E-02 4866784 ntfle 3 909586E-02 081 994 -2103023 2884940 steady 4080572* 092 001 1242555 6918588 rapid -5817461* 103 000 -9000689 -2634234 rapid run 8200181* 087 000 5511931 10888433 <	l		flat	3 00059615 02	081	000	299.1040	2103023
ispits - 0208420 007 000 - 030036 3311004 steady run - 1697852 074 256 - 3966792 5 710880E-02 nffle - 308053* 074 000 - 5969406 - 1409820 flat - 4080572* 092 001 - 6918588 - 1242555 rapid - 9898033* 098 000 -1 2916385 - 6879681 flat run 2382720 081 068 -1 0134497E-02 4866784 nffle 3 909586E-02 081 994 - 2103023 2884940 steady 4080572* 092 001 1 242555 6918588 rapid - 5817461* 103 000 - 9000689 - 2634234 fapid run 8200181* 087 000 5511931 10888431 nffle 6208420* 087 000 3511004 8905835 steady 988033* 098 000 6879681 1 2916385 <t< td=""><td></td><td></td><td>ranid</td><td>600012-02</td><td>•</td><td>000</td><td>2004340</td><td>2511004</td></t<>			ranid	600012-02	•	000	2004340	2511004
steady run - 109/852 0/4 256 - 3967/92 5 / 10800E-02 nffle - 368/9613* 074 000 - 5969406 - 1409820 flat - 4080572* 092 001 - 6918588 - 1242555 rapid - 9898033* 098 000 - 12916385 - 6879681 flat run 2382720 081 068 -1 0134497E-02 4866784 nffle 3 909586E-02 081 994 - 2103023 2884940 steady 4080572* 092 001 1242555 6918588 rapid - 5817461* 103 000 - 9000689 - 2634234 rapid rapid - 5817461* 103 000 - 9000689 - 2634234 rapid run 8200181* 087 000 5511931 10888431 nffle 620420* 087 000 3511004 8905835 steady 9889033* 098 000 6879681 1291638		alcody		- 0200420		250	1000000	5 7109005 00
Initie - 3639613* 074 000 - 5959406 - 140920 flat - 4080572* 092 001 - 6918588 - 1242555 rapid - 9898033* 098 000 - 12916385 - 6879681 flat run 2382720 081 068 -10134497E-02 - 4866784 nffle 3 909586E-02 081 068 -10134497E-02 - 4866784 steady 4080572* 092 001 1242555 6918588 rapid - 5817461* 103 000 - 9000689 - 2634234 rapid run 8200161* 087 000 5511931 10888431 nffle 620420* 087 000 3511004 8905836 steady 988903* 098 000 6879681 1 2916386 flat 5817461* 103 000 2634234 900688		steady		- 109/852	0/4	220	- 7200125	J / 10000E-02
nat -4080572* 092 001 -6918588 -1242555 rapid -9898033* 098 000 -12916385 -6879681 flat run 2382720 081 068 -10134497E-02 4866784 nffle 3 909586E-02 081 994 -2103023 2884940 steady 4080572* 092 001 1242555 6918588 rapid -5817461* 103 000 -9000689 -2634234 rapid run 8200181* 087 000 5511931 10888431 nffle 6208420* 087 000 3511004 8905838 steady 9898033* 098 000 6879681 12916385 flat 5817461* 103 000 -2634234 9000689			nue	- 3689613	074	000	- 5969406	• 1409820
rapid -9898033* 098 000 -12916385 -6879681 flat run 2382720 081 068 -10134497E-02 4866784 ntfle 3 909586E-02 081 994 -2103023 2884940 steady 4080572* 092 001 1242555 6918588 rapid -5817461* 103 000 -9000689 -2634234 rapid run 8200181* 087 000 5511931 10888431 nffle 6208420* 087 000 3511004 8905836 steady 9898033* 098 000 6879681 12916385			nat	- 4080572	092	001	- 6918588	- 1242555
flat run 2382720 081 068 -1 0134497E-02 4866784 nffle 3 909586E-02 081 994 - 2103023 2884940 steady 4080572* 092 001 1242555 6918588 rapid -5817461* 103 000 -9000689 - 2634234 rapid run 8200181* 087 000 5511931 10888431 nffle 6208420* 087 000 3511004 8905836 steady 9898033* 098 000 6879681 1 2916385 flat 5817461* 103 000 2634234 900688			rapid	- 9898033	3-098	000	-1 2916385	- 6879681
nffle 3 909586E-02 081 994 - 2103023 2884940 steady 4080572* 092 001 1242555 6918588 rapid - 5817461* 103 000 - 9000689 - 2634234 rapid run 8200181* 087 000 5511931 10888431 nffle 620420* 087 000 3511004 8905836 steady 9898033* 098 000 6879681 1 2916385 flat 5817461* 103 000 - 2634234 9006689		flat	run i	2382720	081	068	-1 0134497E-02	4866784
steady 4080572* 092 001 1242555 6918588 rapid -5817461* 103 000 -9000689 -2634234 rapid run 8200161* 087 000 5511931 10888431 nffle 6208420* 087 000 3511004 8905836 steady 9898033* 098 000 6879681 12916385 flat 5817461* 103 000 2634234 9000688	1		nffle	3 909586E-02	2 081	994	+ 2103023	2884940
rapid - 5817461* 103 000 - 9000689 - 2634234 rapid run 8200181* 087 000 5511931 1.0888431 nffle 6208420* 087 000 3511004 8905836 steady 9898033* 098 000 6879681 1.2916385 flat 5817461* 103 000 2634274 9000689			steady	4080572	2* 093	2 001	1242555	6918588
rapid run 8200181* 087 000 5511931 1.0888431 nffle 6208420* 087 000 3511004 8905836 steady 9898033* 098 000 6879681 1.2916385 flat 5817461* 103 000 2634224 9000685			rapid	- 581746	1 10:	3 000	- 9000689	- 2634234
nffle 6208420* 087 000 3511004 8905836 steady 9898033* 098 000 6879681 1 2916385 flat 5817461* 103 000 2634224 9000685		rapid	run	820018	1. 08	7 000	5511931	1 0888431
steady 9898033* 098 000 6879681 1 2916385 flat 5817461* 103 000 2634274 9000685	1		ntfle	620842	0. 08.	7 000	3511004	8905836
flat 5817461* 103 000 2634234 9000685			steady	989803	3* 09	8 000	6879681	1 2916385
			flat	581746	1. 10	3 000	2634234	9000689

Table A-5: Standardized Distances - Channel Pattern

			Maga Difference			95% Confiden	co laton ci
Dependent Variable	II) ELOW	(J) ELOW	(I-J)	Std Error	Sig	Lower Bound	Linner Bound
Zscore(BAND4)	run	nifie	1200515	059	394	- 3030129	6 290991E-02
		steady	2642196*	074	013	3 617157E-02	4922677
		flat	1136571	081	741	- 1360129	3633270
		rapid	- 6746487*	088	000	- 9448410	- 1044564
	riffle	run	1200515	059	394	-6 29099075-02	3030129
		steady	3842711*	07.4	000	1551323	6134100
		flat	2337086	081	083	-1 6958078E-02	4843752
		rapid	- 5545972	088	000	8257107	- 2834836
	steady	run	- 2642196*	074	013	1922677	3 6171571E-02
	5,666,	offle	- 3842711*	074	000	6124100	+561323
		fint	+505675	001	c+0	1250077	+1+6076
		ranid	- 0788683*	109	200	1 2422287	246020
	flat		1136571	090	711	-1 2422307	- 0304979
	nat	offle	2227096	001	000	- 3033270	1300129
		time	- 2337000	001	083	- 4843/32	1 092808E-02
		Sleady	1000020	1 043	018	- 1346826	4358077
		rapic	- 7883057*	104	000	-1 1082476	- 4683639
	rapid	<u>nun</u>	6746487*	088	000	4044564	9448410
		nnie	5545972*	088	000	2834836	8257107
		steady	9388683*	860	000	6354979	1 2422387
		flat	7883057*	104	000	4683639	1 1082476
Zscore(PC1_LN)		riffle	- 2267288*	058	004	- 4058282	-4 7629525E-02
		steady	2953054*	072	002	7 207119E-02	5185397
		flat	- 2166579	079	113	- 4610576	2 774185E-02
		rapid	- 9277552*	086	000	-1 1922440	- 6632663
	riffle	run	2267288*	058	004	4 762952E-02	4058282
		steady	5220343*	j 073	000	2977323	7463363
		flat	1 007098E-02	080	1 000	- 2353044	2554464
		rapid	- 7010263*	086	000	9664170	+4356356
	steady	run	2953054*	072	002	-5185397	-7 2071188E-02
	/	offle	- 5220343*	073	000	- 7463363	2977323
		flat	- 5119633*	1 091	000	. 7911873	. 2327393
		rapid	1 2230606*	096	2000	1 5200272	. 9260940
	flat	00	2166570	030	112	1 77119535-02	1610676
		offle	1.00709795.07	019	1 000	7554464	7252044
		steady	5110622	000	1 000	2004404	2003044
		steady	7110073	1 102	000	232/393	19110/3
	maid		-7110973	102	- 000	-1 0242030	- 79/3030
	rapiu	run nifle	9277502	086	000	0032003	1 1922440
		nne	/010263	086	000	4356356	9664170
		steady	1 2230606	096	000	9260940	1 5200272
L		lat	7110973	102	000	3979090	1 0242856
∠score(PC2_LN)	run	nme	3 533271E-02	056	983	- 1373456	2080111
		steady	6196596	1 070	000	4044287	8348900
		flat	8705459	076	000	6349082	1 106183
		rapid	- 6130621	083	000	- 8680687	- 3580556
	riffle	nun	-3 5332715E-02	056	983	- 2080111	137345
		steady	5843269	• 070	000	3680665	800587
		flat	8352132	•† 077	000	5986348	1 071791
		rapid	- 6483949	. 083	000	- 9042709	- 392518
l	steady	กมา	- 6196596	• 070	000	- 8348906	- 404428
1	-	nffle	- 5843269	• 070	000	- 8005874	- 368066
l		flat	2508862	087	083	-1 8327175E-02	520099
1		rapid	-1 2327218	1 093	000	1 5190417	- 946401
	flat	run	. 8705459	076	000	.1 1061835	634908
		offle	_ 8252122	• 070	000	1 0717015	508634
		steady	- 0502102	100	000	, 5200007	1 8327175 0
		rapid	- 2000002		003	1 7956690	1 1032/1/2-0
	moid		++ 4030080	098	000	+1 /000660	+1 101040
1	rapio		6130621	083	000	3005000	808068
l		nine atopatu	6483949	083	000	3925188	9042/0
1		steady	1 2327218	093	000	9464018	1 519041
L		nat	<u>1 4836080</u>	2*1 098	000	1 1816480	1 785568

Table A-5: Standardized Distances - Channel Pattern (cont.)

			Maan Oiffornace			95% Confiden	
Dependent Vanable	(I) FLOW	(J) FLOW	(1-J)	Std Error	Sia	Lawer Bound	Upper Bound
Zscore(PC3_LN)	านก	nfile	2 065137E-02	060	998	- 1638857	2051885
		steady	- 1276344	075	570	- 3576464	1023776
		flat	-2.2829371E-02	082	999	· 2746495	2289908
		rapid	6539171*	088	000	3813978	9264363
	riffle	ะบท	-2 0651366E-02	060	998	- 2051885	1638857
		steady	- 1482858	075	418	- 3793980	8 282644E-02
		flat	-4 3480737E-02	082	991	- 2963062	2093447
		rapid	6332657*	089	000	3598173	9067141
	steady	run	1276344	075	570	- 1023776	3576464
		nfile	1482858	075	418	-8 2826437E-02	3793980
		Sat	1048050	093	368	+ \$626967	3925068
		rapid	7815515*	099	000	4755684	1 0875345
	Tat	run	2 282937E-02	082	999	- 2289908	2746495
		riffe	4 348074E-02	082	991	- 2093447	2963062
		steady	1048050	093	968	- 3925068	1828967
		rapid	6767464*	105	000	3540492	9994436
	rapid		6539171*	088	000	19264363	- 3813978
	. op. 4	offle	6332657*	289	000	. 9067141	3598173
1		steady	7815515*	000	000	1 0875345	4755684
		flat	. 6767464*	105	000	- 0001136	3540492
Zscore(PC4 1N)	310	nffle	-8 9397282E-02	060	698	2749121	9 611754E-02
		steady	3087300*	075	002	7 7508325-02	5199697
		flat	307,1904*	082	002	1.1.13350	6506437
		ranid	1 1161125 02	080	000	. 2328020	3151212
1	ciffie		8.0207285.02	030	608	9 61175305 02	27.101.21
	inne.	stearly	1081363*	075	000	1657006	6304730
		flat	1868866*	013	000	2127217	7.110516
ļ		rand	1205584	002	200	1112299	105,1556
			100300	075	003	5200607	7 75092105 02
	SIGGUY	affo	- 308/390	075	002	- 3355057	1657006
		there	- 396 1303	0/5	000	- 0304730	2770764
		nav	5 575034E-02	100	920	- 2004/3/	10006065 00
	10		- 2073/79	00	120	- 5751622	+ 002030E-02
	nat	i Uli I	- 3974899	002	000	- 000043/	1440000
		ritie	- 4806800	002	000	- / 410310	- 232/21/
		sieduy	-0.37003300-02	1 105	920	- 37/9704	2004/37
			- 3003202	105	005	- 0807352	-3 19212972-02
1	rapio	- 1011 - 1011	-4 1101120E-02	089	1 395	• 3151242	2020020
		/ une	- 1305564	089	109	- 4054530	E751933
		Sleauy	26/3//9	1 100	120		5/51022
		1121	3563282	105	022	3 1921302-02	6807332
ZSCOre(PQ1)	ាមក	nne	- 1727593	050		+ 3512802	0/010/UE-03
		steady	2553730	072	014	3 28597/E-02	4//0803
		nat	-2.120/075E-02	0/9	999	- 26481/4	2224033
		гаріа	-1 0080 /89	085	000	-12/1/135	- /444442
	nme	run	1/2/593	058	064	-2 /0120905-03	3512802
		steady	4281323	073	000	2045548	6517099
		nat	1515522	079	456	-9 3030667E-02	3961351
1		rapid	- 8353196	• 086	000	-1 0998531	- 5707860
1	steady	run	- 2553730	• 072	014	- 4778863	-3 2859772E-02
		ntite	- 4281323	073	000	- 6517099	- 2045548
		flat	- 2765801	090	052	- 5549023	1 742085E-03
		rapid	-1 2634519	096	000	-1 5594594	- 9674444
	flat	run	2.120707E-02	079	999	- 2224033	2648174
1		nfflé	- 1515522	2 079	456	- 3961351	9 303067E-02
		steady	2765801	090	052	-1 7420851E-03	5549023
		rapid	- 9868718	<u>101</u>	000	-1 2990485	- 6746951
1	rapid	านก	1 0080789	085	000	7444442	1 2717135
		riffle	8353196	3* 086	000	5707860	1 0998531
1		steady	1 2634519	9* 096	s 000	9674444	1 5594594
		flat	9868718	3• 101	000	6746951	1 2990485

Table A-5: Standardized Distances - Channel Pattern (cont.)

			Mean Difference				95% Confiden	ce Interval
Dependent Variable	(I) FLOW	(J) FLOW	(L-I)	Std	Error	Sig.	Lower Bound	Upper Bound
Zsccre(PC2)	run	offle	-9 4571436E-02		060	650	- 280 1525	9 100960E-02
		steady	-7 3584842E-02		075	915	- 3048981	1577284
		flat	· 3247597*	1	082	004	- 5780044	-7 1514952E-02
		rapid	- 5815885*		189	000	. 4556103	. 1075276
	diffe	0.0	9 4571445.02		003 -		0.1000601E-02	2015210
	. unic	steady	2 0086505 02		075	200	3111220	2601525
		flat	20300392-02		010	333	- 2114330	2534062
		ingt social	• 2301662		082	100 1	- 1044434	2406/4/E-02
		apiu	+48/01/0	<u> </u>	009	000	- 7620124	- 2120217
	steady	run i	/ 358484E-02	ì	075	915	- 1577284	3048981
		nffle	-2 0986594E-02	1	075	999	- 2534062	2114330
		llat	- 2511748	i	- 294	128	- 5405041	3 815449E-02
		rapid	- 5080036*	1	100	000	- 9157177	- 2002896
	flat	ru n	3247597*		082	004	7 151495E-02	5780044
		nffle	2301882		082	100	-2 4067473E-02	4844439
		steady	2511748		094	128	-3 8154494E-02	5405041
		rapid	+ 2568288	1	105	203	- 5813515	6 769393E-02
	rapid	run	5815885*		089	000	3075276	3556493
		nffle	4870170*		089	000	2120217	7620124
		steady	5080036*		100	000	2002896	8157177
		flat	2568288		105	203	-6 7693933E-02	5813515
Score(PC3)	0.0	riffle	5 155252E-03		055	1 000	:655971	1759076
2300/0(/ 00/		steady	7574824*		000	000	1 1652115 02	1703178
		สอบอาห	5750091*		076	300	3+20997	8000074
		nat .	1 1733901	.	0/0	000	3429007	3090074
		rapio	5 15525175 22		082	000	+1 +254423	+ 9211170
	nnie	run	-5 155251/E-03	.]	055	1000	- 1/590/6	1655971
ļ		steady	2523272		069	010	3 847886E-02	4661755
		nat	5708428*		076	000	3369032	3047824
		rapid	-1 1784353*	•	082	000	-1 4314574	- 9254133
	steady	ាល	- 2574824*	•	069	008	4703128	-4 4652114E-02
		nffle	- 2523272	•	069	010	- 4661755	-3 8478862E-02
		flat	31851561	•	086	009	5 230498E-02	5847263
		rapid	-1 4307625	•	092	000	-1 7138889	-1 1476361
1	flat	run	- 5759981	•	076	000	- 8090074	- 3429887
		nffle	5708428	•	076	000	. 8047824	- 3369032
		steady	- 3185156	•]	086	009	- 5847263	-5 2304982E-02
		raoid	-1 7492781	•	097	000	-2 0478701	-1 4506861
	rapid	0,0	1 1732801	•	087	000	9211178	1 1251123
{	- apro	nifle	1 1784353	-	082	000	925.1133	1 4314574
		eteady	1.1307635	•	002	000	1 1176361	1 71 78980
		flat	1 7102781		032	000	1 1606961	20179701
		101	1492101		097	000	1400001	2 04/8/01
ZSCOIE(PC4)	(un	steady	- 2049940		030	014	- 3039733	-2 00141336-02
		steady	3440545		072	000	1209681	5671409
		nat	4682928		0/9	000	2240549	/125306
		rapid	6635434		086	000	- 9278571	- 3992297
	affle	<u>nun</u>	2049948	5	058	014	2 601415E-02	3839755
		steady	5490493	3*	073	000	3248959	7732027
		flat	6732876	5°	080	000	4280747	9185004
1		rapid	- 4585488	3*	086	000	- 7237635	- 1933337
	steady	านท	- 3440545	5*	072	000	- 5671409	- 1209681
		nfile	- 5490493	3*	073	000	- 7732027	- 3248959
		flat	1242383	3	090	757	- 1548008	4032773
		rapid	-1 0075979	•	096	000	-1 3043678	- 7108280
1	flat	ณา	+ 4682928	3.	079	000	- 7125306	- 2240549
		nffle	- 6732876		0.0	000	- 9185004	. 1280747
		stearty	1242281	-	000	767	- 4032773	1548008
		rand	1 1212200	- 	104	000	1 1412100	212252.1
1	ranid		-1 131030	<u> </u>	101	000	-1 4440 109	+0100304
	raµiu	nun anti-	0035434		000	000	3992297	92/00/1
		nnve stor f	4565480		086	000	1933337	/23/035
		steady	1 0075979	9"	096	000	7108280	1 3043678
		flat	1 131836	2*	101	000	8188554	1 4448169

Table A-5: Standardized Distances - Channel Pattern (cont.)

		-	Maan Difference			95% Confide	nce interval
Dependent Vanable	d) FLOW	(J) FLOW	Interence (1-J)	Std Error	Sig	Lower Bound	Lloper Bound
Zscore(WIDTH)	run	rittle	3 139466E-04	056	1 000 1	-1732141	1738420
		steady	- 5117881*	070	000	- 7280781	- 2954981
		flat	-1 1831034*	077	000	-1 4199006	· 9463063
		rapid	- 2949684*	083	014	- 5512297	-3 8707043E-02
	riffle	run	-3 1394664E-04	056	1 000	- 1738420	1732141
		steady	- 5121021*	070	000	- 7294266	- 2947775
		flat	-1 1834174*	770	000	-1 4211598	- 9456749
		rapid	- 2952823*	083	014	- 5524175	-3 8147210E-02
	steady	run	5117881*	ე70	000	2954981	7280781
		nffle	5121021*	070	000	2947775	7294266
		"lat	6713153*	282	ccc	- 3413535	- 4007772
		rapid	2168197	093	249	-7 0909121E-02	5045485
	flai	run	1 1831034*	077	000	9463063	1 4199006
		riffle	1 1834174*	077	000	9456749	1 4211598
		steady	6713153*	088	000	4007772	9418535
		rapid	8881351*	098	000	5846892	1 1915809
	rapid	ruñ	2949684*	083	014	3 870704E-02	5512297
		riffle	2952823*	083	014	3 814721E-02	5524175
		steady	- 2168197	C60	249	- 5045485	7 090912E-02
		flat	- 8881351*	398	000	-1 1915809	- 5846892
Zscore(GRADIENT)	run	riffle	- 1719568	059	079	- 3552111	1 129747E-02
		steady	3907460*	074	000	1623329	6191591
		flat	2828710*	081	016	3 280143E-02	5329406
		rapid	4483976*	088	000	1777728	7190223
	riffle	ru n	1719568	059	079	+1 1297470E-02	3552111
		steady	5627028	074	000	3331972	7922084
		flat	4548278	081	000	2037599	7058957
		raoid	5203544*	880	000	3488068	5919019
1	steady	run	- 3907460*	074	000	- 6191591	- 1623329
		nffle	- 5627028	074	000	- 7922084	- 3331972
		flat	- 1078750	093	852	- 3935768	1778267
		rapid	5 765156E-02	099	987	- 2462044	3615076
Į	flat	run	· 2828710	081	016	• 5329406	-3 2801426E-02
		nffle	- 4548278	· 081	000	- 7058957	- 2037599
		steady	1078750	093	852	- 1778267	3935768
		rapid	1655266	104	638	- 1549274	485980
	rapid	run	- 4483976	• 088	000	- 7190223	- 1777728
		nfile	- 6203544	088	000	- 3919019	- 3488068
		steady	-5 7651557E-02	099	987	- 3615076	2462044
		flat	- 1655266	104	638	- 4859805	• 54927-

Table A-5: Standardized Distances - Channel Pattern (cont.)

* The mean difference is significant at the .05 level

			Mean Difference			95% Confiden	ce interval
Cependent Vanable	(I) Land Cover	(J) Land Cover	(1-1)	Std Error	Sig	Lower Sound	Upper Bound
2score(BAND1)	Conterous	Sinnub	-7390535	024	000	- 8205321	- 6575748
1		Wetland	- 02042211	029	000	- 1 6193070	- 2334018
		Noveg	-2 2838214*	336	000 /	-2 3709702	-2 1966727
		Water	4339247*	024 -	000	3533415	5145078
	Shrub	Coniferous	7390535*	.)24	000	6575748	3205321
		Alder	1106313*	028	010	1 590400E-02	2053587
		Wetland	- 7810129*	029	000	- 8789703	- 6830556
		Noveg	-1 5447680"	325	000	-1 6315972	-1 4579387
		Water	1 1729781*	024	000	1 0927406	1 2532157
	Alder	Coniferous	5284221*	J29	000	5334018	7234424
		Shrub	+ 1106313*	028	010	- 2053587 `	-1 5903999E-02
		Wetland	- 8916443*	033	, 000	-1:0011236	- 7821649
		Noveg	-1 6553993*	030	000	-1 7550457	-1 5557529
	Therese	Water	1 0623468*	028	000	9683886	1 1563050
	wetland	Coniterous	1 5200664*	030	000	1 4218257	1 6183070
		Alder	7810129*	1 029	000	6830556	3789703
		Nover	7617650*	1 033	000	1021049	1 0011236
		Water	1 0510010*	i 0.20	0001	18567773	- 0010332
	Noveo	Conifercus	2 2838214*	026	000	2 1966727	2 3709702
		Shrub	1 5447680*	026	: 000 i	1 4579387	16315972
		Alder	1 6553993*	030	000	1 5557529	1 7550457
		Wetland	7637550*	. 031	000	6610332	8664765
		Water	2 7177461*	026	000	2 6317566	2 8037356
	Water	Coniferous	- 4339247*	024	000	- 5145078	- 3533415
		Shrub	-1 1729781*	024	000	-1 2532157	-1 0927406
		Alder	-1 0623468*	028	000	-1 1563050	- 9683886
		Wetland	-1 9539910*	029	000	-2 0512048	-1 8567773
		Noveg	-2 7177461*	026	000	-2 8037356	-2 6317566
Zscore(BAND2)	Coniferous	Shrub	- 8835925		: 000	- 9626410	- 8045441
		Alder	- 5111583	1 328	000	+ 6033445	-4189722
		wettand	-1 561/619	029	000	-1 6570724	-1 4664515
		Noveg	-2 06369411	025	1 000	-2 1482435	-19/91447
	Shaib	Vidler	5291024	023		3310028	073620
	JUNIC	Alder	1774342	- UL4 - 028		3043441	90-0410
1		Wetland	6781694	• i i i i i i i i i i i i i i i i i i i	000	. 7712050	- 58313302
		Noveo	-1 1801016	1 025	000	1 2643411	1 0958621
		Water	1 5127749	-1 023	000	1 4349306	1 5906 192
	Alder	Coniferous	5111583	028	000	4189722	0033445
		Shrub	· 3724342	• 028	000	+ 464 3362	- 2805323
		Wetland	-1 0506036	•1 032	000	-1 1568175	- 9443897
		Noveg	-1 5525358	•} 029	000	-1 6492101	-1 4558615
		Water	1 1403407	•1027	000	1 G491850	1 2314964
	Wetland	Coniferous	1 5617619	- 329	000	1 4664515	1 6570724
ł		Shrub	6781694	• 029	000	5831338	7732050
		Alder	1 0506036	• 032	000	9443897	1 1568175
1		Noveg	- 50 19322	030	000	- 6015902	- 4022742
	News	Water	2 1909443	028	000	2.0966301	2 2852585
	Noveg	Coniferous	2 0636941	025	000	1 9791447	2.1482435
		ăime:	1 1801016	025	000	1 0958621	1 2643411
1		Alder	1 5525356	029	000	14558615	1 1 6492101
		Water	2019322	u30	000	4022/42	5015902
	Water	Conterous	2 0920/03	023		2.0094018	2.7703012
	110/01	Shruh	.1 5127740	023	000	1 5906102	1 1110720
		Alder	-1 1403403	. 027		-1 2314964	-1 0491850
		Wetland	.2 1000141	3* 028		-2 2852585	-2 0966301
		Novea	-2 692876	5. 02	000	-2 7763012	-2 6094518
Zscore(BAND3)	Coniferous	Shrub	- 861087	7* 02	5 000	- 9426682	- 7795072
		Alder	- 708043	2 029	000	- 8031822	- 6129042
		Wetland	-1 946070	3" 030	000	-2 0444337	-1 8477069
		Noveg	-2.219527	3* 020	5 000	-2 3067849	-2 1322697
		Water	288259	6 02	000	2075758	3689435

Table A-6: Standardized Distances - Land Cover

			Mean Difference		1	95% Confiden	ce Interval
Dependent Vanable	It Land Cover	(J) Land Cover	(I-J)	Std. Error	Sig	Lower Bound I	Upper Bound
Zscore(BANU3)	Shub	Caniferous	8610877	325	000	7795072	9426682
		Alder	1530445*	028	000	5819880E-02	2478902
		Wetland	-1 0849826*	029	000	-1 1830624	- 9869029
		Noveg	-1 3584396*	026	000	-1 4453773	-1 2715018
	-	Valer	14934/31	024	000	1 0690096	1 2296851
	Auer	Shap	16304451	029	000	6129042	5 0100005 00
		Wetland	-1 2380271*	020	000	- 24/6902	-2 8 198803E-02
		Noveo	-1 5114R41*	030	000	-1 6112540	1.1117177
		Water	9963028*	028	000	9022273	1 0903784
	Wetland	Coniferous	1 9460703*	030	000	1 8477069	10303704
	ri citaria	Shrub	1 0849826*	029	000	9869029	1 1830624
		Alder	1 2380271*	033	000 i	1.1284110 +	1 3475432
		Noveg	- 2734569	031	000	- 3763071	- 1706068
		Water	2 2343300*	029	000	2 1369943	2 3316652
	Noveq	Coniferous	2 2195273*	026	000	2.1322697	2 3067849
		Shrub	1 3584396*	026	000	1 2715018	1 4453773
		Alder	1 5114841*	030	000	14117132	1 61 1 2 5 4 9
		Wetland	2734569*	031	000	1706068 ;	3763071
		Water	2 5077869*	026	000	2 4216900	2 5938838
	Water	Coniferous	- 2882596*	024	000	- 3689435	2075758
		Shrub	-1 1493473*	024	000	1 2296851	-1 0690096
		Alder	· 9963028*	028	000	+1 0903784	· 9022273
		Wetland	-2.2343300*	029	000	-2.3316652	-2.1369948
		Noveg	-2 5077869*	026	000	-2.5938838	-2 4216900
Zscore(BAND4)	Coniferous	Shrub	- 4882049*	027	000	· 5794951	+ 3969148
		Alder	2 917375E-03	032	1 000	- 1035450	1093798
		Wetland	· 6903353*	033	000	- 8004059	- 5802647
1		Noveg	3 495632E-02	029	922	-6 2686682E-02	1325993
		Water	1 8793817*	027	000	1 7890949 i	1 9696685
	Shrub	Coniferous	4882049*	27	000	3969148	5794951
		Alder	4911223	032	000	3849881	5972565
		wedand	- 2021304-	033	000	- 3118835	-9 2377 197E-02
		Noveg	5231613	029	000	4258762	6204463
		valer	2 36/5866	027	000	2 2776871	2.4574862
	Alder	Coniferous	-291/3/4/E-03	032	1 000	- 1093798	1035450
		SPILLO	+4911223		000	- 59/2505	- 3849881
		Noveo	1 201895E-02	034	000	7 06066125 02	- 3703901
		Water	1 8764643	034	000	1 7711010	1430043
1	Wetland	Coniferous	6903353	. 032	000	5802647	8004059
	Treading .	Shrub	2021304	033	000	9 217720E-02	3118835
1		Alder	6932527	037	000	5705901	8159152
		Novea	7252916	035	000	6102003	8403830
		Water	2,5697170	. 033	000	2,4607970	2 6786370
	Noveg	Coniferous	-3 4956324E-02	029	922	- 1325993	6 268668E-02
	-	Shrub	- 5231613	• 029	000	- 6204463	- 4258762
		Alder	-3 2038949E-02	034	969	- 1436845	7 960662E-02
		Wetland	- 7252916	035	000	- 8403830	- 6102003
		Water	1 8444251	• 029	000	1 7480812	1 9407695
	Water	Coniferous	-1 8793817	027	000	-1 9696685	-1 7890949
		Shrub	-2.3675866	027	000	-2 4574862	-2 2776871
		Alder	-1 8764643	032	000	-1 9817367	-1 771 1919
		Wetland	-2.5697170	• 033	000	-2 6786370	-2.4607970
		Noveg	-1 6444254	029	000	-1 9407695	-1 7480812
Zscore(NDVI)	Coniferous	Shrub	8013281	032	000	6950764	9075798
		Alder	9724737	037	000	8485632	1 0963842
ļ		Wetland	1 5574409	038	000	1 4293309	1 6855510
		Noveg	2.3180049	034	000	2.2043592	2.4316506
		Water	2 1517850	032	000	2 0467011	2 2568688
	Shrub	Conterous	- 8013281	032	000	- 9075798	- 6950764
		Alder	1711457	037	001	4 761713E-02	2946742
		vveuano	/561129	# 038	000	6283/23	8838535
		Noveg	1 5166769	034	000	1 4034478	1 6299060
		VVAIEF	1 3504569	9-1 031	000	1 2458237	1 4550901

					,	252 0 5	
Dependent Variable	(B Land Cover	(I) Land Cover	Mean Difference	Std Error	sia [95% Connden	ce Interval
Zscore(NUVI)	Alder	Coniferous	- 97/247/37	037	000	-1 095384/2	- 8385632
		Shrub	- 1711457*	037	001	- 2946742	4 7617132E-02
		Wetland	5849672*	043	000	4422015	7277329
		Noveg	1 3455312*	039	000	1 2155881	1 4754744
		Water	1 1793113*	037	000	1 0567858	1 3018367
	Wetland	Coniferous	-1 5574409*	038	300	-1 6855510	-1 4293309
		Shrub	- 7561129*	038	000	- 8838535 ;	- 6283723
		Alder	- 5849672*	043	000	- 7277329	- 4422015
		Noveg	7605640*	040	000	6266103	8945177
		Water	5943440°	038	i 300	4675731	7211149
	Noveg	Coniferous	-2 3180049*	034	000	-2 4316506	-2 2043592
		Shrub	-1 5166769*	934	000	1 6200060	1 4034479
		Alder	-1 3455312*	039	000	-1 4754744	-1 2155881
		Wetland	- 7605640*	040	000	- 8945177	- 6266103
		Water	- 1662199*	034	000	- 2783539	-5 4085972E-02
	Water	Coniferous	·2.1517850*	032	000	-2.2568688	-2.0467011
		Shrub	-1 3504569*	031	000	-1 4550901	-1 2458237
		Alder	-1 1793113°	037	000	-1 3018367	-1 0567858
		Wetland	- 5943440*	038	000	- 7211149	- 4675731
		Noveg	1662199*	034	000	5 408597E-02	2783539
Zscore(PC1)	Coniferous	Shrub	- 7643400*	023	000	- 8415879	· 5870920
		Alder	· 3755895*	027	000	- 4656759	- 2855031
		Wetland	-1 4011516*	028	000	-1 4942911	-1 3080120
1		Noveg	-1 3029673*	025	000	+: 3855910	-1 2203437
		Water	1 2385917*	023	000	1 1621928	1 3149906
	Shrub	Coniferous	7643400*	023	000	6870920	8415879
		Alder	3687505*	027	000	2989418	4785592
		Wetland	- 6368116*	028	000	- 7296826	- 5439406
		Noveg	- 5386274*	025	000	+6209481	+4563066
		Water	2 0029317*	023	000	1 9268604	2 0790029
1	Alder	Coniferous	3755895*	027	000	2855031	4656759
		Shrub	- 3887505*	027	000	- 4785592	- 2989418
1		Wetland	-1 0255621*	031	000	-1.1293568	- 9217674
		Noveg	- 9273779	028	000	-1 0218502	· 8329056
1		Water	1 6141812	027	000	1 5251017	1 7032606
	Wetland	Coniferous	1 4011516	028	000	1 3080120	1 4942911
		Shrub	6368116	028	000	5439406	7296826
		Alder	1 02556211	. 331	000	9217674	1 1293568
		Noveg	9 818423E-02	• 0 29	1 047	7 961607E-04	1955723
		Water	2 6397433	028	000	2 5475773	2 7319093
	Noveg	Coniterous	1 3029673	• 025	000	1 2203437	1 3855910
		Shrub	5386274	025	000	4563066	6209481
1		Alder	9273779	028	000	8329056	1 0218502
		Wetland	-9 8184228E-02	• 029	047	- 1955723	-7 9616075E-04
1		Water	2.5415590	024	000	2 4600345	2.6230836
	Nater	Coniterous	-1 2385917	023	000	-1 3149906	-1 1621928
1		Shrub	-2 0029317	023	000	-2 0790029	-1 9268604
		Alder	-16141812	027	000	-1 7032606	-1 5251017
		Wetland	-2.6397433	028	000	-2 7319093	-2 5475773
		Noveg	-2 5415590	024	000	-2 6230836	-2 4600345
Zscore(FC2)	Coniferous	Shrub	- 2564303	033	000	· 3652029	- 1476576
		Alder	- 6350077	038	000	- 7618582	- 5081572
		Wetland	· 9019321	039	000	-1 0330817	- 7707824
		Noveg	-2.2443535	5° 035	000	-2.3606957	-2 1280114
		Water	-1 8 1 1 1 8 8 3	032	2 000	-1 9187655	-1 7036112
	Shrub	Coniferous	2564303	033	3 000	1476576	3652029
		Alder	- 3785774	1* 038	000	- 5050369	- 2521180
		Wetland	- 6455018	8* 039	9 000	- 7762732	- 5147304
		Noveg	-1 9879233	3* 03	5 000	-2 1038389	-1 8720076
		Water	-1 5547580	03:	2 000	-1 6618738	-1 4476423
	Alder	Coniferous	6350077	7 034	5 000	5081572	7618582
		Shrub	3785774	4* U 034	8 000	2521180	5050369
		Wetland	- 266924-	4* 04	4 000	- 4130774	- 1207713
		Noveg	-1 609345	8" 04	000 000	-1 7423721	-1 4763198
		Water	-1 176180	6* 03	8 000	-1 3016132	-1 0507480

Dependent Vanable II.Land Cover J.Land				Mean Oifference		1	95% Confiden	ce interval
Zscore(PC2) WetBand Contensus 9918221* 313 000 7/07824 173212 Adder 2669244* 044 000 1207713 1302704 Noveg 1342213* 000 1207713 1302705 Moveg 1342213* 000 000 1208017 7708235 Moveg 1342215* 001 000 1476518 7708273 Moveg 1342215* 001 1476518 7708735 Water 14993469* 000 1476318 7133612 1918553 Water 1431652* 000 1476318 1918553 Water Conferous 6111683* 000 1316370* 547989 Vater 1451956* 032 000 136870* 1391735 Zscore(PC3) Conferous 55195* 033 000 1384797 1399132 Vater 145195* 032 000 1364797 1399132 Vater 145195* 032 <td< td=""><td>Dependent Vanable</td><td>(I) Land Cover</td><td>(J) Land Cover</td><td>(I+J)</td><td>Sta. Error</td><td>Sig</td><td>Lower Bound</td><td>Upper Bound</td></td<>	Dependent Vanable	(I) Land Cover	(J) Land Cover	(I+J)	Sta. Error	Sig	Lower Bound	Upper Bound
Shnub 4436rr 2669244 000 5147304 1330774 Noveg 1322415 041 000 1479353 133074 Noveg Confirmus 22433357 035 000 1479353 130774 Noveg Confirmus 22433357 035 000 1292317 236687 Water 1924215 041 000 1275316 173957 Water Confirmus 18116837 032 000 1295396 1739571 Water Confirmus 161116837 032 000 130577 5179997 Water 1701606 035 000 130775 5193052 Adder 11701606 036 000 130775 5193052 Adder 11701606 038 000 130775 5193052 Vetarind 13020747 032 000 130774 5193052 Zscore/PC3) Confirmus 12590764 032 000 1317123 1305122	Zscore(PC2)	Welland	Coniferous	9019321	0.39	000	7707824	1 0330817
Alder 2669244 0.04 0.00 1.2077.3 4.13077 Water -9.0025637 0.39 0.00 -1.390353 -1.202695 Noveg Caniferous 2.243152 0.05 0.00 -1.390353 -1.2026957 Shrun 19.872523 0.35 0.00 1.872037 5.47567 Water 1.431657 0.01 1.902935 1.75533 Water 1.431657 0.00 1.187577 5.47567 Water Caniferous 1.117837 0.00 7.703172 5.197567 Water Caniferous 1.1178437 0.00 7.703775 5.07397 ZscoretPC3 Comferous Shrub 2.590764 0.03 0.00 7.734775 ZscoretPC3 Comferous Shrub 2.590764 0.03 0.00 7.473677 0.313070 ZscoretPC3 Comferous 1.319362 0.00 7.374775 0.390307 Shrub 2.590764 0.33 0.00 7.374775 0.39050			Shrub	6455018*	039	000	5147304	7762732
Noveg -1322(215) 001 -1479333 -1320295 Noveg Chriarus 22443350 000 -147933 -2360350 Noveg Chriarus 22443350 000 10330350 -1774175 Wetand 1922419 041 000 1205365 14775196 Water 433652 03163707 557997 557997 Water 11761806 032 000 1305305 1477423 Water 11761806 035 000 7736775 1309305 Auter 11761806 035 000 7736775 1309305 Auter 11761806 035 000 7736775 1309305 Auter 11778183 1319327 053 000 1319327 3430029 Water 1319357 053 000 127383 1393274 3430007 13193274 Vater 1319357 053 000 1117383 1393274 3430723 Vater 13209			Alder	2669244*	044	000	1207713	4130774
Noveg Conferous 2244335 0.03 0.00 1.139304 1.24475 Shale 19872321 0.35 0.00 1.2728114 2.1038931 Wetland 19472321 0.35 0.00 1.270976 2.1038931 Wetland 1947435 0.34 0.00 1.202385 1.479533 Water 4.31652 0.34 0.00 1.202385 1.978533 Shrub 1.5547800 0.32 0.00 1.957460 1.3016132 Alder 1.417957 0.330530 417953 1.3016132 1.3016132 Noveg 431652 0.34 0.00 1.234466 1.421007 Vater 1.311732 0.62 1.00 1.314753 1.333077 ZscoretPC3 Conferous Shrub 2.250744 0.53 0.00 1.324466 1.421007 Noveg 1.391735 0.200 1.324752 1.343772 1.343772 Shrub 0.0767602 0.061 1.06 2.473382-02			Noveg	-1 3424215*	041	000	-1 4795534	-1 2052895
Adder 2244333 0.03 0.00 2 2.00113 2.200333 Adder 16933467 0.40 0.00 1.1720076 2.103336 Water 1.0331627 0.00 1.1720076 2.103336 Water 1.031627 0.00 1.131370 5.79397 Water 1.031627 0.00 1.147423 1.166132 Water 1.10667 0.38 0.00 1.047420 1.06132 Alder 1.1761667 0.38 0.00 1.074760 1.301707 Score(PC3) Conferous Shrub 2.290764 0.03 5.00 1.017383 4853226 Wetand 1.31737 0.62 0.00 1.178468 4.470077 Water 1.1661956 0.957 0.00 1.117384 4693226 Water 1.1360774 0.64 0.00 2.435922 4.3668227 Water 1.326574 0.53 1.00 1.43792 1.001737 Shrub Conferous <		Neuro	water	• 9092563*	039	000	-1 0390350	- //94775
Ander 1987/92.33 0.03 10.00 117/33/96 2/03489 Avarent 1322127 0.41 0.00 137/33/97 17/23/21 Water Conferous 1317/33/96 137/33/96 137/33/96 Water Conferous 1317/33/96 0.00 147/33/97 139/35/32 Water 15547/567 0.32 0.00 147/47/33 16/17/33 Auder 199/25/37 0.38 0.00 17/37/75 139/37/33 Noveg -3318527 0.34 3.00 139/67/34 139/57/34 Shrub 25907641 0.53 9.00 137/66/97 13/63/207 Watar 125907641 0.53 9.00 11/17/86/97 13/33/205 Shrub Conferous 12/59/74 9.03 13/33/205 13/33/205 Watar 12/259/74 13/33/205 13/33/205 13/33/205 13/33/205 Watar 12/26/74 13/33/205 13/33/205 13/33/205 13/33/205 Shrub <td></td> <td>MUNEQ</td> <td>Conterous</td> <td>2 2443535</td> <td>035</td> <td>000</td> <td>2.1280114</td> <td>2.3606957</td>		MUNEQ	Conterous	2 2443535	035	000	2.1280114	2.3606957
votes 1000000000000000000000000000000000000			Alder	1 98/9233	0.35	000	1 1763106	2 1038389
Water 1331627 033 000 1318707 1547367 Water Conferous 1811837 332 000 1706101 1917835 Auer 1701806 338 000 1457423 1591780 Wetand 9092537 039 000 1391797 1393707 Scores(PC3) Conferous Shrub 2590764 000 2354696 435632 Alder 4417397 062 000 2354696 445097 Wetand 1391728 064 000 11739469 16034076 Wetand 1391729 062 000 1311133 1352274 Water 1153055 052 000 1311133 1352274 Water 11320974 053 000 1435326 436600076-92 Water 11320974 054 000 1535480 2235624 13437123 Noveg 41987196-92 055 000 1455480 2235624 13437123			Vettand	1 0093430	040	000	1 4703 190	1 423721 1
Water Conferous 1317332 000 1103711 1103712 1			Water	1 3424213	041	000	12052695	5470507
Shrub Shrub <th< td=""><td></td><td>Water</td><td>Coniferous</td><td>+331032</td><td>032</td><td>200</td><td>1 2036112</td><td>1 0197555</td></th<>		Water	Coniferous	+331032	032	200	1 2036112	1 0197555
Alder 11701905-103 000 1791747 1301932 ZscoretPC3) Conferous Shrub 2990764 053 060 379477 1399335 ZscoretPC3) Conferous Shrub 2990764 053 060 3 50601 234598 44700 Wetland 13911738 064 000 1179449 1633007 Word 11851955 052 000 101113 1592774 Wetland 11320974 0563 000 101113 1592774 Alder 1880716-02 056 390 -435022 387005 Wetland 11320974 0564 000 12793252 387005 Wetland 11320974 052 000 -4475080 239564 Mater 1287192 052 000 -447097 2364698 Shrub -1807762 055 490 1373705 216733622 Wetland 1931737 062 000 -4487407 171		Trate.	Shrih	1 5547580*	032	000	1.1.176423	1 6618738
Weiland 0002353 003 000 7794725 103003557 Zscoret,PC3) Conferous Shrub 2500764 0031 000 5436597 10313707 Zscoret,PC3) Conferous Shrub 2500764 0001 1758469 16034007 Weiland 1391733 004 000 11758469 16034007 Water 11851956 052 000 11758469 16034007 Water 11851956 052 000 1011113 159274 Alder 1826534 061 116 -2197382542 1873065 Water 2251797 022 900 7527840 1094544 Alder 1326734 061 116 -4370697 -234668 Water 2261722 055 900 7527840 1094544 Alder Conferous 1407372 062 1000 -4370697 -234668 Water 74345597 061 000 -1353946 745774842-02 <td></td> <td></td> <td>Alder</td> <td>1 1761806*</td> <td>1 038</td> <td>000</td> <td>10507480</td> <td>1 3016132</td>			Alder	1 1761806*	1 038	000	10507480	1 3016132
Noveg -1331827 034 020 5475967 -31383707 ZscoretPC3) Conferous Shnub 2900764 062 000 1234698 6430007 Weiland 1391733 064 000 1712783 4661 643007 Noveg 3010638 057 000 1127983 469328 Water 11851956 052 000 111138 1350274 Shrub Conferous -2900764 061 116 -219732526-02 387005 Weigan 1320974 364 061 116 -219732526-02 387005 Weigan -320972 052 300 7527840 1093444 Xider Conferous -4417397 062 000 722225 1139139 Weitand 3494340 071 000 -123285 71484742-02 Weitand 3494340 071 000 -133295 -1723265 Noveg -19001022 067 000 -132			Wetland	9092563*	039	000	7794775	1 0390350
Zscore(PC3) Conferous Shub 2590754* 063 000 3366016 202 1359026 Weiland 1391733* 064 000 1756469 16034007 Weiland 1391733* 064 000 1756469 1603407 Water 11651955* 052 000 127593 1483789 Vater 11851955* 052 000 127593 1483789 Vater 11320974 053 000 -4359028 43060007E.02 Adder 11320974 054 000 -5170097 -3255624 Water 9201192* 052 100 -3470097 -325624 Water 9201192* 052 100 -3470097 -3236469 Shrub -182653 061 116 -417397 062 000 -347097 -1738255 2197382542 1459395 Noveg -1406762 065 449 -1553366 -1359464 -4563444242 -300043407 -11789469			Noveg	- 4331652*	034	000	- 5479597	- 3183707
Alder 14/17397 062 000 1236468 64/20097 Weiland 13911738 064 000 1127983 4633027 Waiter 11851956 052 000 1011138 11592774 Shrub Caniferous -2590764* 053 000 -4150928 & 30600078-02 Alder 132097-01 056 900 -45580 1237005 Weiland 1132097-01 056 900 -45580 1237005 Worder -21973026-02 336668 387005 2295624 10671057 -2364688 Moreg -13071797* 052 200 -527840 1059152 1185935 Moreg -1406762 365 449 355388 7464742 21187395 -2177335202 1185935 Noveg -1301738 064 3000 -635388 7464262 2004255 -11789468 Mater -3444307 071 000 -1320177 -6463239 -11320177 -6463228 <td>Zscore(PC3)</td> <td>Coniferaus</td> <td>Shrub</td> <td>2590764*</td> <td>053</td> <td>000</td> <td>8 306001E-02</td> <td>4350928</td>	Zscore(PC3)	Coniferaus	Shrub	2590764*	053	000	8 306001E-02	4350928
Wetland 13911736* 064 000 1179469 1 632007 Water 11851956* 052 000 1011138 1392074 Shub Conferous 2590764* 053 030 -1435028 8 3060075-02 Wetland 11820814 061 116 -219738256-02 387005 Wetland 1182071* 064 930 -1455840 10994244 Noveg -1419719* 062 000 -5470997 -238489 Water -9261420* 000 -7527840 10994244 Shrub -1826834 061 116 -3470997 -238489 Water -1406762 -065 449 -182593 51<185936			Alder	4417397*	062	000	2364698	6470097
Noveg 3010536* 057 300 1127983 4483289 Water 1851956* 052 000 1011138 135274 Shrub Canferous -2590764* 053 000 -21973826-02 3873005 Wetland 1120974* 364 000 9204825 13437123 Noveg 41987196-02 056 200 -752740 1098444 Alder Canferous -4417397 062 000 -747097 -2384698 Shnub -826634 081 116 -3470097 -2384698 Wetland 3494340* 071 900 1729285 11859395 Noveg -1406762 065 449 -3559396 7458746-02 Wetland 13201712 004 -11859395 -712285 11859395 Noveg -19901102* 067 000 -1329177 -6882027 Water -2016394 -1329177 -6882027 1329177 -6882027 Noveg			Wetland	1 3911738*	064	000	1 1789469	1 6034007
Water 11851956* 052 000 10111138 1359274 Shub Canferous 1826634 061 116 -21973826-02 387005 Wetland 1132074* 364 000 -21973826-02 387005 Noveg 41997196-02 056 990 -1455880 2236524 Water 9261192* 056 990 -1455880 2236524 Water 9261192* 056 990 -1455880 2236524 Water 9261192* 056 990 -1455880 2236524 Wetland 3494340* 071 000 7722840 1685935 Water 7434559* 061 000 -1407097 -204825 Wetland 0391723 064 000 -1459395 -7129265 Moveg -190714* 064 000 -1459395 -7129265 Noveg -090742 063 059 -14593867 4030296643 Noveg -0907102* <			Noveg	3010636*	057	000	1127983	4893289
Shrub Coniferous -2590764* 053 000 -430928 4 380007E-02 Wetland 1132074* 064 106 21973825-02 3873005 Noveg 4198719E-02 056 990 -1455880 2395624 Alder Coniferous -4417397* 052 200 -527840 1098454 Alder Coniferous -4417397* 052 200 -537840 1098454 Noveg -1407672 055 449 -559396 2187395-02 Wetland 3494340* 071 100 7129285 1185935 Adder -3446752 065 449 -559396 -7159468-02 Water -734559* 061 100 -11789469 Shrub -11320974* 064 000 -1347123 -9204825 Adder -99782 065 090 -4363289 -11739459 Noveg -1980102* 067 000 -18593264 11359469 Noveg<			Water	1 1851956*	052	000	1 0111138	1 3592774
Alder 1826634 061 116 2-19738252-02 3873005 Noveg 41987195-02 056 900 -1455880 223552 Water 9261827 052 300 -537340 10991544 Alder Confferous -4417397 062 300 -5470097 -2384698 Shnub -1826634 061 116 -3873005 2197382-02 Wetand 3494340° 071 000 -5404803 9454314 Wetand Conferous -1312074* 064 300 -16334007 -1178945 Water -3917385 051 300 -16334007 -1178945 Noveg -1909102* 064 300 -1633407 -1178945 Noveg -1991738 054 400 -1432074* -000 -1132077* -663207 Water -3905636* 057 000 -14893269 -1127983 Shrub -3010636* 057 000 -1489327* -122179		Shrub	Coniferous	- 2590764*	053	000	- 4350928	-8 3060007E-02
Wetland 11320974* 364 000 9208425 11313712 Water 9261192* 052 900 -1455880 1059454 Alder Conflerous -4417397* 962 000 -5470997 -236468 Shrub -1826834 061 116 -8470997 -236468 Wetland 3494340* 071 000 7429285 11859395 Noveg -1106762 365 449 -3559398 7159468 Alder -7434559* 061 100 -11739469 Alder -9494300* 071 000 -11859359 -7173245 Alder -106102* 067 000 -1320177 -6682027 Water -2059782 053 059 -11320177 -6682027 1320175 Alder 1901102* 067 000 -6893269 -1127983 Noveg Conferous -11851956* 000 9945414 -7527840 Alder 1991102*			Alder	1826634	061	116	-2 1973825E-02	3873005
Noveg 4 198719E-02 036 990			Wetland	1 1320974*	064	000	9204825	1 3437123
Water 9261192' 052 000 7527840 10994541 Alder Conferous -4417397' 002 000 -647007' 2384698 Shrub -1826834 061 116 -387005' 2197383E-02 Wetland 3494340' 071 000 -762285 1185935 Noveg -1406762 065 449 -3559398 7458748E-02 Water 7434559' 061 000 -1603400' -11789469 Alder -99494340' 071 000 -1185395 -7129265 Noveg -1906102' 067 000 -11853956 -1129867 Noveg -1906762' 055 900 -2235624 -1129835 Alder -1906762' 056 980 -2235624 -1127983 Shrub 419871956' 052 000 -6683271 11069833 Water Conferous -11851966' 052 000 -094544 -5527840 Wetland </td <td></td> <td></td> <td>Noveg</td> <td>4 1987 19E-02</td> <td>056</td> <td>; 990</td> <td>- :455880</td> <td>2295624</td>			Noveg	4 1987 19E-02	056	; 990	- :455880	2295624
Alder Conferous -141737' 062 000 -6470097 -2364689 Wettand 3494340' 071 300 7729285 11859395 Noveg -1406762 365 449 -3559398 7458748E-02 Watter 743459' 061 300 -16034007 -11789469 Watter 743459' 064 300 -16034007 -11789469 Noveg 1.1320974' 064 300 -1435395 -7129285 Alder -9494340' 071 000 -135395 -7129285 Noveg -0901102' 067 000 -1352975 -7129285 Noveg -0901102' 066 980 -2236624 1145580 Alder 1406762 065 980 -2236624 1132017 Wetland 1991102' 067 000 6883207 112017 Water 613906' 020 -2236624 112017 -46842027 Wetland 199272			Water	9261192*	052	000	7527840	1 0994544
Shrub -1826834 061 116 -3873005 2 1973825-02 Wetland 9494300 071 000 712225 11859395 Noveg -1406762 365 449 -3559386 7 4587486-02 Water 7431559* 061 300 5404803 9464314 Wetland Comferous -11301738* 064 300 -15034007 -11789469 Alder -3494340* 071 000 -11320177 -6683027 Noveg -1909102* 061 059 -4159867 4 0302985-03 Noveg -301650* 057 000 -489329 -1127985 Alder -419871956-02 056 990 -2295624 1455880 Alder -11867950* 052 000 -189329 1127983 Water Conferous -11851986* 052 000 -1399274 1311738 Water Conferous -11851986* 052 000 -1399274 1415117 </td <td></td> <td>Alder</td> <td>Coniferous</td> <td>- 4417397*</td> <td>062</td> <td>000</td> <td>- 5470097</td> <td>- 2364698</td>		Alder	Coniferous	- 4417397*	062	000	- 5470097	- 2364698
Wetland 3434340' 071 000 7129285 11859395 Water 7434559' 061 000 5404803 9464314 Wetland Conferous 13911738' 064 000 -16034007 -11789468 Shnub -11320974 064 000 -1634307 -920482 Aider -9494340' 000 -13437123 -920482 Noveg -19901102' 067 000 -11859395 -7129285 Noveg -19901102' 067 000 -11859295 -7129285 Water -2095722' 066 900 -2235624 1185880 Noveg Conferous -3016550' 055 -4159847442-02 3559398 Water 1408762 065 000 -683207' 1312017' Water Conferous -11851966' 052 000 -1359274' -1011138 Water Conferous Shrub -9261192' 052 000 -13945725940 -10394544 </td <td></td> <td></td> <td>Shrub</td> <td>- 1826634</td> <td>061</td> <td>116</td> <td>- 3873005</td> <td>2 197383E-02</td>			Shrub	- 1826634	061	116	- 3873005	2 197383E-02
Noveg -1406762 -055 449 -3559396 7.434595 Water 7434559* 061 000 5044803 -9464314 Welland Conferous -1.1320974* 064 000 -1.6034007 -1.1789468 Alder -9464340* 071 000 -1.159395 -7.129285 Noveg -1.9901102* 067 000 -1.159395 -7.129285 Noveg -1.9901102* 067 000 -1.159395 -7.129285 Noveg -3010636* 057 000 -493229 -1.127838 Noveg -3010636* 057 000 -493229 -1.127838 Alder -1.987195E-02 056 900 -2295624 145580 Alder 1.987195E-02 056 000 6863207 1.3120177 Water Conferous Shrub -9261192* 052 000 -1.9994544 -527840 Alder -7.34559* 061 000 -9664371 953370			Wetland	9494340*	071	000	7129285	1 1859395
Water 7434559' 0.61 0.00 5404803 946314 Wetland Conferous 1.391738 0.64 0.00 -1.179469 Shrub -1.1320974' 0.64 0.00 -1.179469 Alder -9494340' 0.71 0.00 -1.153995 -7.12928 Moveg -1.990102' 0.67 0.00 -1.15995 -7.12928 Water 0959782 0.63 0.59 -4.159867 4.03228E-03 Noveg Conferous -3.016030' 0.57 0.00 -4.99328' -1.127983 Alder 1.406762 0.65 990 -2.295624 1.455880 Alder 1.406762 0.65 0.00 6.982027 1.3120177 Water 0.301670 0.52 0.00 -1.9944514 -552740 Alder -7.327540 0.40672 0.65 0.00 -9464314 -5527440 Alder -7.834593' 0.61 0.00 -9464314 -5527440 Alder<			Noveg	- 1406762	065	449	· 3559398	7 458748E-02
Wetland Conferous 1:301738* 064 000 1:6034007 1:1189468 Aider -9494340* 071 000 1:135395 -712928 Noveg -10901102* 067 000 -1312123 -920425 Noveg -2053722 063 059 -4158807 4030296E-03 Water -2053722 063 059 -4158807 4030296E-03 Noveg -0057202 065 980 -2235624 1455880 Aider 198719562 065 449 -7458746E-02 3559398 Wetland 10901102* 067 000 8682027 1 3120177 Water Confiferous -11851956* 052 000 -1394544 -7527840 Aider -7434559* 061 000 -9484314 -5404803 Wetland 2059782 063 059 -10394544 -7527840 Aider -7434593* 061 000 -9674475 -553319			Water	7434559	061	000	5404803	9464314
Shrub -1.1320974* 064 000 -1.337123 -9204825 Alder -9494340* 071 000 -1.1859355 -7.72285 Noveg -2059782 063 059 -4159867 4030298E-03 Water -2059782 063 059 -4159867 4030298E-03 Noveg -301638* 057 000 -4893299 -1127983 Shrub 4.1987195E-02 056 980 -2295624 1455860 Alder 1406762 065 940 -7.458746E-02 355938 Wetland 10901102* 067 000 8682027 1.3120177 Water 2651192* 052 000 -1.994544 -7527840 Alder -7.834559* 061 000 -9463314 -5404803 Vetland 29261192* 052 000 1.0994544 -553319 Alder -7.34559* 061 000 -9463314 -5644803 Vetland 2052778* <td< td=""><td rowspan="3"></td><td>Wetland</td><td>Coniferous</td><td>-1 3911738</td><td>064</td><td>000</td><td>-1 6034007</td><td>-1 1789469</td></td<>		Wetland	Coniferous	-1 3911738	064	000	-1 6034007	-1 1789469
Adder -9494340' 071 000 -11894355 -7/129285 Noveg 19001102* 067 000 -1312017 -8682027 Water -2059782 063 059 -4159867 40302985-03 Noveg Coniferous -3010636* 057 000 -4893299 -1127983 Alder 149871955-02 056 990 -223624 145588 Alder 1406762 065 449 -745874845-02 3559398 Wetland 19901102* 067 000 6882027 13120177 Water Coniferous -11851956* 052 000 -13592774 -1011138 Mater -7334558* 051 000 -9464314 -7527840 Alder -7334558* 051 000 -9464314 -7527840 Vetland 2059782 063 000 -10598930 -6983710 Vetland 2059782 063 000 -127793 -559471 Nov			Shrub	-1 13209741	064	000	-1 3437123	- 9204825
Noveg -1.0901102* 067 0.00 -1.3120177 -1.6882027 Noveg Conferous -3010638* 0.57 0.00 -4493289 -1127983 Shrub -4.1987195E-02 0.56 980 -2295624 1455880 Alder 1.00762 0.56 980 -2295624 1455880 Wetland 1.0901102* 0.67 0.00 8682027 1.3120177 Water 8841320* 0.56 0.00 -13592774 -1.0111138 Shrub -9261192* 0.52 0.00 -1.0994544 -7.527840 Alder -7.34559* 0.61 0.00 -9464314 -7.527840 Alder -7.634593* 0.61 0.00 9684314 594871 Noveg .8841320* 0.53 0.00 0584304 6983710 Vetland .9162776* 0.63 0.00 1127173 .7053760 Noveg .948514* 0.55 0.00 64533312385146 .2381947 <t< td=""><td></td><td>Alder</td><td>- 9494340'</td><td>071</td><td>000</td><td>-1 1859395</td><td>- 7129285</td></t<>			Alder	- 9494340'	071	000	-1 1859395	- 7129285
Noveg C099782 063 039 -4138607 4032492-03 Noveg Coniferous 301038* 057 000 -4493289 -1127983 Shrub -41987195E-02 056 980 -2295624 1455880 Alder 1406762 065 449 -74587484E-02 355398 Wetland 10901102* 066 000 66983710 10698930 Water Coniferous -11851956* 052 000 -13592774 -10111138 Shrub -9251192* 052 000 -0945414 -5404803 Wetland 2059782 063 059 40302983E-03 4159867 Noveg -8841320* 056 000 -10598300 -6983710 Zscore(PC4) Coniferous Shrub 6784147* 053 000 -11271733 -753760 Noveg 1948514* 056 035 7761676-03 3819411 Wetland -1524593* 061 000 -187353566-02			Noveg	-1 0901102	067	000	-1 31201//	- 8682027
Horeg Commercus - 30 10636 0.00 - 4 198 1055-02 0.05 600 - 4 393 2059 - 11 2785 Alder 1406762 065 449 -7 4587484E-02 3559398 Wetland 1 0901102* 067 000 6882027 1 312017 Water 8441320* 0.05 000 -1359274 -1 0111138 Shrub -9261192* 052 000 -1 094544 -7527840 Alder -7 434559* 061 000 -9444314 -5404030 Wetland 2059782 063 059 4 0302983E-03 4159667 Noveg -8841320* 056 000 -1 058930 -6833710 Zscore(PC4) Coniferous 6784147* 053 000 -01698930 -683710 Zscore(PC4) Coniferous 6784147* 053 000 -1 127173 -7053760 Noveg 1948514* 056 035 761676E-03 319411 -912474 Water -134170*		Nound	vvaler Conternue	· 2059782	003	000	- +13900/	4 0302966-03
Alder 1406762 065 449 74.57.484E-02 153.5004 Wetland 1.990/1924 067 000 6682027 1.3120177 Water 8841320* 056 000 6983710 1.069830 Water 0.201162* 052 000 1.359274 1.0111138 Shrub 9261192* 052 000 1.0994544 7527840 Alder .7434559* 061 000 946314 5404803 Wetland 2059782 063 059 4.0302493203 4.159667 Zscore(PC4) Coniferous Shrub 6784147* 053 000 969330 6883710 Zscore(PC4) Coniferous Shrub 6784147* 053 000 9674375 .559471 Water 372122 052 000 1271793 .7053760 Noveg 1.948514* 056 035 7.761676E-03 3.19411 Water 137212 051 000 68533319		Hoveg	Shaib	1 10871065 07	056	000	- 4093209	1165990
Wetland 1901102 067 000 6862027 1320171 Water 8841320* 056 000 6983710 1069930 Water 2841320* 056 000 6983710 1069930 Water Coniferous -11851956* 052 000 -13592774 -10111138 Shrub -9261192* 052 000 -10994544 -7527840 Alder -7434559* 061 000 -9464314 -5404803 Wetland 2059782 063 059 4'0302833-03 -6983710 Zscore(PC4) Coniferous Shrub 6784147* 053 000 -9674475 -5594711 Wetland -9182776* 063 000 -1127173 -7053760 Noveg 1948514* 056 000 -6833319 -5034974 Water -1372122 052 223 -3102069 3 578258E-02 Shrub Coniferous -6784147* 053 000 -6833319			Alder	1406762	065	066	.7 4587484E-07	3550308
Water 0.001 <th< td=""><td>ł</td><td></td><td>Wetland</td><td>1 0901102</td><td>• 067</td><td>000</td><td>8682027</td><td>1 3120177</td></th<>	ł		Wetland	1 0901102	• 067	000	8682027	1 3120177
Water Coniferous 1 1851956 052 000 1 3592774 1 0111138 Shrub -9261192* 052 000 -1 0994544 -7527840 Alder -7434559* 061 000 -9464314 -5404803 Wetland 2059782 063 059 + 0302935E-03 +159867 Noveg -8841320* 056 000 -1 0698930 -6983710 Zscore(PC4) Coniferous Shrub 67644937* 061 000 -9674475 -5594711 Wetland -9162776* 063 000 -1 1271793 -7053760 Noveg 1948514* 056 035 7 761676E-03 3819411 Water -132122 052 223 -3102069 3 578256E-02 Shrub Coniferous -6784147* 053 000 -1 6452333 -1 2385146 Wetland -1 5946923* 061 000 -1 64433741 4343988 Noveg -4835633* 056 000 <			Water	8841320	. 056	000	6983710	1 0698930
Shrub -9261192* 052 000 -1.0994544 -7527840 Alder -7434559* 061 000 -9464314 -5404803 Wetland 2059782 063 059 -4.0302983E-03 -4159867 Noveg -8841320* 056 000 -1.059830 -65983710 Zscore(PC4) Coniferous Shrub 6784147* 053 000 -9674475 -5594711 Wetland -9162776* 063 000 -1.1271793 -7053760 Noveg 1948514* 056 035 761676E-03 319411 Water -1372122 052 223 -3102069 3 578256E-02 Shrub Coniferous -6784147* 053 000 -16452333 -12385146 Wetland -15946923* 0661 000 -16452333 -12385146 Wetland -15946923* 0661 000 -6699672 -2971594 Wetland -1594593* 061 000 12385146 <t< td=""><td></td><td>Water</td><td>Coniferous</td><td>-1 1851956</td><td>052</td><td>000</td><td>1 3592774</td><td>-10111138</td></t<>		Water	Coniferous	-1 1851956	052	000	1 3592774	-10111138
Alder .7434559* 061 000 -9464314 -5404803 Wetland 2059762 063 059 4 030283E-03 4159867 Noveg -8841320* 056 000 -10698930 -6983710 Zscore(PC4) Coniferous Shrub 6784147* 053 000 -9674475 -5594711 Alder -7634593* 061 000 -9674475 -5594711 Wetland -9162776* 063 000 -11271793 -7053760 Noveg 1948514* 056 035 7761676E-03 3819411 Water -1372122 052 223 -3102069 357826E-02 Shrub Coniferous -6784147* 053 000 -64983319 -5034974 Alder -11372122 052 223 -3102069 357826E-02 Shrub Coniferous -6784147* 053 000 -649858 -1384598 Wetland -15946923* 063 000 -6432333 <td></td> <td></td> <td>Shrub</td> <td>- 9261192</td> <td>052</td> <td>000</td> <td>-1 0994544</td> <td>- 7527840</td>			Shrub	- 9261192	052	000	-1 0994544	- 7527840
Wetland 2059782 063 059 4 0302983E-03 4 159867 Score(PC4) Coniferous Shrub 6784147* 053 000 5034974 8533319 Alder -7634593* 061 000 -9674475 5594711 Wetland 9162776* 063 000 -9674475 5594711 Wetland 9162776* 063 000 -1127173 -7053760 Noveg 1948514* 056 035 7761676E-03 3819411 Water -1372122 052 223 -3102069 3578256E-02 Shrub Coniferous -6784147* 053 000 -6833319 -5034974 Water -13418740* 061 000 16452333 -13845486 Wetland -15946923* 063 000 -689672 -2971594 Water -8156269* 052 000 -987877 -6433741 Alder -1528183 071 455 -3878470 8 221033E-02			Alder	- 7434559	061	000	- 9464314	- 5404803
Noveg - 8841320* 056 000 - 10698930 - 6983710 Zscore(PC4) Coniferous Shrub 6784147* 053 000 5034974 8533319 Alder - 7634593* 061 000 - 9674475 - 5594711 Wetland - 9162776* 063 000 - 11271793 - 7053760 Noveg 1948514* 055 0761676E-03 3819411 Water - 1372122 052 223 - 3102069 3 578256E-02 Shrub Coniferous - 6784147* 053 000 - 8533319 - 5034974 Vater - 1372122 052 223 - 3102069 3 578256E-02 Shrub Coniferous - 6784147* 053 000 - 8533319 - 5034974 Alder -1 4418740* 061 000 -1 6452333 -1 2385146 Wetland -1 5946923* 063 000 - 6899672 - 2971594 Water - 8156269* 052 000 -83784			Wetland	2059782	063	059	-4 0302983E-03	4159867
Zscore(PC4) Caniferous Shub 6784147' 053 000 5034974 8533319 Alder -7634593' 061 000 -9674475 -5594711 Wetland -9162776' 063 000 -11271793 -7053760 Noveg 1948514' 056 035 7761676E-03 3819411 Water -1372122 052 223 -3102069 3578256E-02 Shrub Coniferous -6784147' 053 000 -16452333 -12385146 Wetland -15946923' 063 000 -16452333 -12385146 Wetland -15946923' 063 000 -16452333 -12385146 Wetland -15946923' 063 000 -16452333 -12385146 Noveg -4835633' 056 000 -6699672 -2971594 Water -815269' 052 000 -987877 -6433741 Alder -1528183 071 455 -3878470 8 221033E-0			Noveg	- 8841320	• 056	000	-1 0698930	- 6983710
Alder - 7634593' 061 000 - 9674475 - 5594711 'Vetland - 9162776' 063 000 -11271793 - 7053760 Noveg 1948514' 056 035 7761676E-03 3819411 Water - 1372122 052 223 - 3102069 3 578256E-02 Shrub Conferous - 6784147' 053 000 - 8533319 - 5034974 Alder - 1 4418740' 061 000 -1 6452333 -1 2385146 Wetland - 1 5946923' 063 000 - 8639672 - 2971594 Water - 8156269' 052 000 - 8699672 - 2971594 Water - 8156269' 052 000 - 8699672 - 2971594 Water - 8156269' 052 000 - 86784171 9674475 Shrub 1 4418740' 061 000 1 2385146 1 6452333 Water Coniferous 7634593' 061 000 1 2385146 1 6452333	Zscore(PC4)	Coniferous	Shrub	6784147	• 053	000	5034974	8533319
Wetland -9162776* 063 000 -11271793 -7053760 Noveg 1948514* 056 035 7761676E-03 3819411 Water -1372122 052 223 .3102069 3 578256E-02 Shrub Coniferous -6784147' 053 000 -16452333 -12385146 Alder -1 4418740* 061 000 -16452333 -12385146 Wetland -1 5946923* 063 000 -6639672 -2971594 Water -8156269* 052 000 -887877 -6433741 Alder Coniferous 7634593* 061 000 12385146 16452333 Water -8156269* 052 000 -887877 -6433741 Alder Coniferous 7634187* 061 000 12385146 16452333 Wetland -1528183 071 455 -3878470 8 221032E-02 Noveg 9583107* 063 000 7443912 11722301 <td></td> <td></td> <td>Alder</td> <td>- 7634593</td> <td>r 061</td> <td>000</td> <td>- 9674475</td> <td>- 5594711</td>			Alder	- 7634593	r 061	000	- 9674475	- 5594711
Noveg 1948514* 056 035 7 761676E-03 3819411 Water -1372122 052 223 -3102069 3 578256E-02 Shrub Coniferous -6784147* 053 000 -8533319 -5034974 Alder -14418740* 061 000 -16452333 -12385146 Wetland -15946923* 063 000 -6699672 -2971594 Water -8156269* 052 000 -853319 -6433741 Alder -15946923* 061 000 -6699672 -2971594 Water -8156269* 052 000 -9878797 -6433741 Alder Coniferous 7634593* 061 000 12385146 16452333 Wetland -1528183 071 455 -3878470 8 221033E-02 Noveg 9583107* 064 000 7443912 1722301 Water 6262471* 061 000 1245390 8279552 We			Wetland	- 9162776	063	000	-1 127 1793	- 7053760
Water - 1372122 052 223 - 3102069 3 578256E-02 Shrub Coniferous - 6784147' 053 000 - 8533319 - 5034974 Alder -1 4418740° 061 000 -1 6452333 -1 2385146 Wetland -1 5946923° 063 000 -1 6459358 -1 3843988 Noveg -4835633° 056 000 -6699672 - 2971594 Water -8156269° 052 000 -9878797 -6433741 Alder Coniferous 7634593° 061 000 1 2385146 1 6452033 Water -8156269° 052 000 -9878797 -6433741 Alder Coniferous 7634593° 061 000 1 2385146 1 6452033 Wetland -1528183 071 455 -3878470 8 221033E-02 Noveg 9583107° 064 000 7443912 1 1722301 Water 6262471° 061 000 1 3443988 <td< td=""><td rowspan="2"></td><td></td><td>Noveg</td><td>1948514</td><td>056</td><td>035</td><td>7 761676E-03</td><td>3819411</td></td<>			Noveg	1948514	056	035	7 761676E-03	3819411
Shrub Coniferous -6784147' 053 000 -8533319 -5034974 Alder -14418740' 061 000 -16452333 -12385146 Wetland -15946923' 063 000 -16452333 -12385146 Woeg -4835633' 056 000 -6699672 -2971594 Water -8156269' 052 000 -9878797 -6433741 Alder Coniferous 7634593' 061 000 12385146 16452333 Water -8156269' 052 000 -9878797 -6433741 Alder Coniferous 7634593' 061 000 12385146 16452333 Wetland -1528183 071 455 -3878470 8 221033E-02 Noveg 9583107'' 064 000 7443912 11722301 Water 6262471' 063 000 7053760 11271793 Shrub 15946923'' 063 000 13843988 18049858 </td <td></td> <td>Water</td> <td>- 1372122</td> <td>052</td> <td>223</td> <td>· 3102069</td> <td>3 578256E-02</td>			Water	- 1372122	052	223	· 3102069	3 578256E-02
Alder -1 4418740° 061 000 -1 6452333 -1 2385146 Wetland -1 5946923° 063 000 -1 8049858 -1 3843988 Noveg -4835633° 056 000 -6699672 -2971594 Water -8156269° 052 000 -6699672 -2971594 Water -8156269° 052 000 -6699672 -2971594 Alder Coniferous 7634593° 061 000 5594711 9674475 Shrub 1 4418740° 061 000 1 2385146 1 6452333 Wetland -1528183 071 455 -3878470 8 221032E-02 Noveg 9583107° 064 000 7443912 1 1722301 Water 6262471° 061 000 1 2345386 8 221033E-02 Wetland Coniferous 9162776° 063 000 7053760 1 1271793 Shrub 1 5946923° 063 000 1 3843988 8 8049858 <t< td=""><td></td><td>Shrub</td><td>Coniferous</td><td>- 6784147</td><td>053</td><td>000</td><td>- 8533319</td><td>- 5034974</td></t<>		Shrub	Coniferous	- 6784147	053	000	- 8533319	- 5034974
Wetland -1 5946923' 063 000 -1 8049858 -1 3843988 Noveg -4835633' 056 000 -6699672 -2971594 Water -8156269' 052 000 -887877 -6433741 Alder Coniferous 7634593' 061 000 5594711 9674475 Shrub 1 4418740' 061 000 1 2385146 1 6452333 Wetland -1528183 071 455 -3878470 8 221033E-02 Noveg 9583107' 064 000 7443912 1 1722301 Water 6262471' 063 000 743912 1 1722301 Water 6262471' 063 000 743912 1 1722301 Water 6262471' 063 000 7053760 1 1271793 Shrub 1 5946923' 063 000 1 3843988 1 8049858 Alder 1 528183 071 455 -8 2210331E-02 3878470 Noveg 1 1			Alder	-1 4418740	061	000	-1 6452333	-1 2385146
Noveg -4836533' 056 000 -6699672 -2971594 Water -8156269' 052 000 -9878797 -6433741 Alder Coniferous 7634593' 061 000 12385146 16452333 Wetland -1528183 071 455 -3878470 8 221033E-02 Noveg 9583107' 064 000 7443912 1 1722301 Water 6262471' 061 000 4245390 827052 Wetland -1528183 071 455 -3878470 8 221033E-02 Noveg 9583107' 064 000 7443912 1 1722301 Water 6262471' 061 000 4245390 8279552 Wetland Coniferous 9162776' 063 000 7053760 1 1271793 Shrub 1 5946923' 063 000 1 3843988 1 8049658 Alder 1 528183 071 455 -6 2210331E-02 3878470 Nov			Wetland	-1 5946923	063	000	1 8049858	-1 3843988
water -8156269' 052 000 -93/8/97 -6433741 Alder Coniferous 7634593' 061 000 5594711 9674475 Shrub 14418740' 061 000 12385146 16452333 Wettand -1528183 071 455 -3878470 8 221033E-02 Noveg 9583107' 064 000 7443912 1 1722301 Water 6262471' 061 000 4245390 8279552 Wetland Coniferous 9162776' 063 000 7053760 1 1271793 Shrub 1 5946823' 063 000 1 3843988 1 8049858 Alder 1 528183 071 455 -8 2210331E-02 3878470 Noveg 1 111290'' 066 000 \$906072 1 3316508 Water 770654'' 063 000 \$906072 1 3316508			Noveg	· 4835633	056	000	- 6699672	- 2971594
Adder Coniferous 7634593' 061 000 5594711 9674475 Shrub 1 4418740' 061 000 1 2385146 1 6452333 Wetland - 1528183 071 455 - 3878470 8 221033E-02 Noveg 9583107' 064 000 7443912 1 1722301 Water 6262471' 061 000 4245390 8279552 Wetland Coniferous 9162776' 063 000 7053760 1 1271793 Shrub 1 5946923' 063 000 1 3843988 1 8049858 Alder 1 528183 071 455 -8 2210331E-02 3878470 Noveg 1 111290'' 066 000 \$906072 1 3316508 Water 7790654'' 063 000 \$906072 1 3316508		Alder	water	- 8156269	052	000	- 9878797	- 6433741
Shrub 1 44 18740' 061 000 1 2385146 1 6452333 Wetland - 1528183 071 455 - 3878470 8 221033E-02 Noveg 9583107' 064 000 7443912 1 1722301 Water 6262471' 061 000 4245390 8279552 Wetland Coniferous 9162776' 063 000 7053760 1 1271793 Shrub 1 5946923' 063 000 1 3843988 1 8049658 Alder 1528183 071 455 -8 2210331E-02 3878470 Noveg 1 1111290'' 066 000 \$906072 1 3316508 Water 7790544'' 063 000 \$57036872 1 3316508		Alder	Coniferous	7634593	5 061	000	5594/11	9674475
Wetland - 1528183 071 455 - 3878470 8 221033E-02 Noveg 9583107* 064 000 7443912 1 1722301 Water 6262471* 061 000 4245390 8279552 Wetland Coniferous 9162776* 063 000 1 1271793 Shrub 1 5946923* 063 000 1 3843988 1 8049858 Alder 1 528183 071 455 -8 221031E-02 3878470 Noveg 1 1111290* 066 000 57036672 1 3316508 Water 7790554* 063 000 5703683 9877575			SUNC	1 4418740	061	000	1 2385146	1 6452333
Water 9583107 064 000 7443912 11722301 Water 6262471* 061 000 4245390 8279552 Wetland Coniferous 9162776* 063 000 7053760 11271793 Shrub 1 5946923* 063 000 1 3843988 1 8049658 Alder 1 528183 071 455 -6 2210331E-02 3878470 Noveg 1 1111290* 066 000 5703683 9872755 Water 779054* 063 000 5703683 9872755			Neuano	- 152818		455	- 38/64/0	8.221033E-02
Wetland Coniferous 9162776* 063 000 7053760 1 1271793 Shrub 1 5946923* 063 000 1 3843988 1 8049858 Alder 1 528183 071 455 -8 2210331E-02 3878470 Noveg 1 1111290* 066 000 \$906072 1 3316508 Water 7790654* 063 000 \$703683 \$9872555			Wover Water	9583107	004		/443912	11/22301
Mitand Connectus 9182776 063 060 7053760 11277733 Shrub 1 5946923* 063 000 1 3843988 1 8049858 Alder 1 528183 071 455 -8 2210331E-02 3878470 Noveg 1 1111290* 066 000 \$906072 1 3316508 Water 7790654* 063 000 \$703683 \$9872575		Wetland	Conference	016277	, UG		7063760	1 1271702
String 1 3940923 003 000 1 3043908 1 8049908 Alder 1 528183 071 455 -8 2210331E-02 3878470 Noveg 1 1111290* 066 000 \$906072 1 3316508 Water 7790654* 063 000 \$703683 9877675		TTEUANU	Sharb	9102//0			11241000	1 12/1/93
Noveg 1 1111290* 066 000 3906072 1 3316508 Water 7790654* 063 000 \$703683 9877655			Alder	1 234085	1 00	000 L	A 22103315-02	1 10049000
Water 770654* 063 000 5703683 0872655			Noven	1 111190	01 07 01 054		8906072	1 13 18508
			Water	779065	4* 06	3 000	5703683	9877625

			Mean Difference		1	95% Confidence Interval	
Dependent Variable	(I) Land Cover	(J) Land Cover	{L-1}	Std Error	i Sig.	Lower Bound	Upper Bound
Zscore(PC4)	Noveg	Coniteraus	- 1948514	056	035	- 3819411	-7 7616755E-03
		Shrub	4835633*	056	000	2971594	6699672
		Alder	- 9583107*	064	000	-1 1722301	- 7443912
		Wetland	-1 1111290*	066	000	-1 3316508	- 8906072
		Water	· 3320636*	055	000	- 5166646	- 1474625
	Water	Coniferous	1372122	052	223	-3 5782558E-02	3102069
		Shrub	8156269*	052	000	6433741	9878797
		Alder	- 6262471*	061	000	- 8279552	- 4245390
ļ		Wetland	- 7790654*	063	000	- 9877625	- 5703683
		Noveg	3320636*	055	000	1474625	5166646

* The mean difference is significant at the 05 level.

Appendix B

Decision Rules for the Classification of Habitat Parameters
Rule 1 If Gradient = $[0.17, 0.29[$ Width = $[0, 14[$ Band1 = $[1 \ 19[$ Then
Substrate Type = Rubble 8.0°_{0} Substrate Type = Boulder 59.3°_{0} Substrate Type = Bedrock 32.7°_{0}
Rule 2 If Gradient = [0.17,0.29] Width = [0,14] Band1 = [19,34] Then
Substrate Type = Rubble 39.8°_{0} Substrate Type = Boulder 24.7°_{0} Substrate Type = Bedrock 35.5°_{0}
Rule 3 If Gradient = [0.17,0.29] Width = [0.14] Band1 = [34,70]
Then Substrate Type = Gravel 25.7% Substrate Type = Rubble 25.7% Substrate Type = Boulder 12.9% Substrate Type = Bedrock 35.6%
Rule 4 If Gradient = [0.17,0.29] Width = [14,60] Then
Substrate Type = Bedrock 100.0%
Rule 5 If Gradient = [0.29,0.43] Pc4 = [-8.24,3.3]
Then Substrate Type = Gravel 87.2% Substrate Type = Rubble 4.4% Substrate Type = Boulder 8.3%
Rule 6 If Gradient = [0.29,0.43] Pc4 = [3.3,14.79]

Table B1: Decision Rules for Substrate Type Classification

Then

```
Substrate Type = Gravel 11.8%
     Substrate Type = Rubble 82.4^{\circ} h
    Substrate Type = Boulder 5.9%
Rule 7 If
     Gradient = [0.43, 3.68]
     Width = [0,14]
Then
     Substrate Type = Gravel 12.8%
     Substrate Type = Rubble 67.3^{\circ}
     Substrate Type = Bedrock 19.9%
Rule 8 If
     Gradient = [0.43, 3.68]
     Width = [14, 20]
     Pc2 = [-90.55,0.44]
Then
     Substrate Type = Rubble 54.1%
    Substrate Type = Boulder 6.8\%
     Substrate Type = Bedrock 39.0%
Rule 9 If
     Gradient = [0.43, 3.68]
     Width = [14, 20]
     Pc2 = [0.44,2.12]
Then
     Substrate Type = Rubble 29.0%
    Substrate Type = Boulder 58.1%
    Substrate Type = Bedrock 12.9%
Rule 10 If
    Gradient = [0.43, 3.68]
     Width = [14, 20]
     Pc2 = [2.12, 22.35]
Then
     Substrate Type = Rubble 18.6%
     Substrate Type = Boulder 16.9%
     Substrate Type = Bedrock 64.4%
Rule 11 If
    Gradient = [0.43, 3.68]
     Width = [20, 60]
Then
     Substrate Type = Boulder 26.1^{\circ}
     Substrate Type = Bedrock 73.9%
```

Rule I If	
Width = $[0, 12]$	
Gradient = $[0, 0, 45]$	
Than	
Changel Day De Chan	
Channel Pattern = Run 63.6%	
Channel Pattern = Riffle 11.5%	
Channel Pattern = Steady 17.2%	
Channel Pattern = Flat 7.7%	
Rule 2 If	
Width = $\{0, 12\}$	
Gradient = [0, 15, 2, 69]	
Than	
Changel Data De la la	
Channel Pattern = Run 1.4%	
Channel Pattern = Riffle -98.6%	
Rule 3 [f	
Width = $[12, 17]$	
Gradient = [0, 0, 36]	
$Bandl \approx [1.9]$	
Then	
Channal Dome - Due 14 20	
Channel Pattern = $Run = 14.3\%$	
Channel Pattern = Riffle 21.4%	
Channel Pattern = Steady -64.3%	
Rule 4 If	
Width = $[12.17]$	
Gradient = [0, 0, 36]	
$Bandl = \{0, 1, 3\}$	
Danut - [9,12]	
Charact Days Device a	
Channel Pattern = Run 19.0%	
Channel Pattern = Riffle 9.5%	
Channel Pattern = Steady 23.8%	
Channel Pattern = Flat 42.9%	
Channel Pattern = Rapid 4.8%	
Rule 5 If	
Width = [12, 17]	
$\frac{1}{1}$	
Gradient = [0, 0.36]	
Band1 = [13, 27[
lhen	
Channel Pattern = Run 8.2%	
Channel Pattern = Riffle 34.0%	
Channel Pattern = Steady 4.1%	
Channel Pattern = Flat 30.9%	
Channel Pattern = Rapid 22 7%	

Rule 6 If Width = [12,17] Gradient = [0.0.36] Band1 = [27,58[Then Channel Pattern = Run 2.2° Channel Pattern = Riffle 66.7% Channel Pattern = Flat -2.2^{ω_0} Channel Pattern = Rapid 28.9% Rule 7 If Width = [12,17] Gradient = [0.0.36] Band1 = [58, 111]Then Channel Pattern = Rapid 100.0% Rule 8 If Width = [12,17] Gradient = [0.36.0.45] Then Channel Pattern = Run 38.0% a Channel Pattern = Riffle 27.5° o Channel Pattern = Steady 34.5% Rule 9 If Width = [12,17] Gradient = [0.45,3.68] Then Channel Pattern = Run 11.6% Channel Pattern = Riffle 88.4% Rule 10 If Width = [17, 27]Gradient = [0,0.36] Then Channel Pattern = Riffle 30.1% Channel Pattern = Steady 27.1% Channel Pattern = Rapid 42.9%

Table B2: Decision Rules for Channel Pattern Classification

Rule 11 If	Rule 16 If
Width = [17,27]	Width = [27.60]
Gradient = [0.36, 0.45]	Gradient = [0.36,0.45]
Then	Band1 = [1.9[
Channel Pattern = Run 49.8%	Then
Channel Pattern = Riffle 46.3%	Channel Pattern = Riffle -7.5°_{\circ}
Channel Pattern = Steady 4.0%	Channel Pattern = Steady -62.59_{\odot}
	Channel Pattern = Flat -30.0° o
Rule 12 If	Rule 17 If
Width = [17, 27]	Width = [27.60]
$Gradient = \{0.45, 3.68\}$	Gradient = [0.36.0.45]
Pc3 = [-41.56.0.73[Band1 = [9, 58[
Then	Then
Channel Pattern = Run 40.0%	Channel Pattern = Run 10.5%
Channel Pattern = Riffle 55.6%	Channel Pattern = Riffle -7.6%
Channel Pattern = Rapid 4.4%	Channel Pattern = Steady 12.9%
	Channel Pattern = Flat 69.0%
Rule 13 lf	
Width = [17,27]	Rule 18 If
Gradient = [0.45, 3.68]	Width = $[27.60]$
Pc3 = [0.73, 6.82[Gradient = [0.45, 3.68]
Then	Then
Channel Pattern = Run 56.9%	Channel Pattern = Run 96.4%
Channel Pattern = Riffle 17.6%	Channel Pattern = Rapid 3.6%
Channel Pattern = Rapid 25.5%	
Rule 14 If	
widin = $[17, 27]$	
Gradient = [0.45, 5.06]	
PC3 = [0.82, 31.08]	i
$\frac{11011}{1000}$	
Channel Pattern = Piffle = 3.69	
Channel Pattern = Panid 66.1%	
Chamier rattern - Rapid - 00.1.3	
Rule 15 If	
Width = [27.60]	
Gradient = [0.0.36]	
Then	
Channel Pattern = Riffle 47.1%	
Channel Pattern = Steady 52.9%	
-	

Table B2: Decision Rules for Channel Pattern Classification (cont.)

```
Rule1 If
     Band1 = [0,14[
     Pc2 = [-158.86, -40.08]
Then
     Land Cover = Coniferous 90.5^{\circ}
     Land Cover = Water 9.5%
Rule2 If
    Band1 = [0, 14]
     Pc2 = [-40.08, 126.48]
Then
     Land Cover = Coniferous 1.3%
     Land Cover = Water 98.7\%
Rule3 If
    Bandi = [14,31[
     Pc2 = [-158.86, -8.58]
Then
     Land Cover = Coniferous 95.3%
     Land Cover = Shrub 4.7\%
Rule4 If
    Band1 = [14,31[
     Pc2 = [-8.58, 61.14]
Then
     Land Cover = Water 100.0%
Rule5 If
     Band1 = [31, 48]
     Pc2 = [-158.86,-102.37[
Then
     Land Cover = Coniferous 51.4%
     Land Cover = Shrub 48.6\%
Rule6 If
     Band1 = [31, 48]
     Pc2 = [-102.37,-79.04]
Then
     Land Cover = Coniferous 34.5%
     Land Cover = Shrub 32.8%
     Land Cover = Alder 32.8%
```

Table B3: Decision Rules for Land Cover Classification

```
Rule7 If
     Band1 = [31,48[
     Pc2 = [-79.04, -40.08]
     Band3 = [23, 39]
Then
     Land Cover = Coniferous 73.3^{\circ} o
     Land Cover = Shrub 26.7%
Rule8 If
     Band1 = [3], 48[
     Pc2 = [-79.04, -40.08]
     Band3 = [39,86]
Then
     Land Cover = Coniferous 9.2^{\circ}
     Land Cover = Shrub 17.3%
     Land Cover = Alder 73.5\%
Rule9 If
     Band1 = [31, 48]
     Pc2 = [-79.04,-40.08[
     Band3 = [86, 149]
Then
     Land Cover = Coniferous -23.4^{\circ}_{\circ}
     Land Cover = Shrub 61.5^{\circ}
     Land Cover = Alder 15.4\%
Rule10 If
     Band1 = [31, 48]
     Pc2 = [-40.08, -8.58]
Then
     Land Cover = Coniferous 6.4^{\circ}
     Land Cover = Shrub 44.7\%
     Land Cover = Alder 17.0\%
     Land Cover = Wetland 31.9%
Rule11 If
     Band1 = [48.58]
     Pc4 = [-27.42, -1.14]
Then
     Land Cover = Coniferous 5.7%
     Land Cover = Shrub 76.2%
     Land Cover = Alder 13.1\%
     Land Cover = Wetland 4.9%
```

```
Rule12 If
     Band1 = [48, 58]
     Pc4 = [-1.14, 13.11]
Then
     Land Cover = Coniferous 0.6\%
     Land Cover = Shrub 15.2\%
     Land Cover = Alder 81.3\%
     Land Cover = Wetland -2.9\%
Rule13 If
     Band1 = (58,72)
     Ndvi = [-0.051, 0.065]
Then
     Land Cover = Noveg 100.0%
Rule14 If
     Band1 = [58,72]
     Ndvi = [0.065.0.213]
Then
     Land Cover = Shrub 75.0\%
     Land Cover = Noveg 25.0%
Rule15 If
     Band1 = [58, 72]
     Ndvi = [0.213,0.312]
     Pc2 = [-79.04,-58.21[
Then
     Land Cover = Shrub 18.2\%
     Land Cover = Wetland 81.8%
Rule16 If
     Band1 = [58,72]
     Ndvi = [0.213, 0.312]
     Pc2 = [-58.21,-8.58]
Then
     Land Cover = Shrub 53.1%
     Land Cover = Alder 9.4\%
     Land Cover = Wetland 12.5%
     Land Cover = Noveg 25.0%
Rule17 If
     Band1 = [58, 72]
     Ndvi = [0.312,0.402]
     Pc4 = [-27.42,1.7[
Then
     Land Cover = Shrub 72.7%
     Land Cover = Alder 10.9\%
     Land Cover = Wetland 12.7%
     Land Cover = Noveg 3.6%
```

Rule18 If Band1 = [58,72] Ndvi = [0.312,0.402] Pc4 = [1.7, 13, 11]Then Land Cover = Shrub -7.5%Land Cover = Alder 90.0° Land Cover = Wetland -2.5° Rule19 If Band1 = [58,72] Ndvi = [0.402,0.669] Then Land Cover = Shrub 87.7% Land Cover = Alder 8.5%Land Cover = Wetland -0.8° Land Cover = Noveg 3.1% Rule20 If Band1 = [72,103] Band3 = [39,68]Then Land Cover = Water 100.0% Rule21 If BandI = [72, 103]Band3 = [68,115] Then Land Cover = Shrub 58.1% Land Cover = Alder 4.7° o Land Cover = Wetland 11.6% Land Cover = Noveg 25.6° o Rule22 If Band1 = [72, 103]Band3 = [115, 176]Ndvi = [-0.244,0.213] Then Land Cover = Shrub 3.8% Land Cover = Wetland 8.8% Land Cover = Noveg 87.5%

Table B3: Decision Rules for Land Cover Classification (cont.)

Table B3: Decision Rules for Land Cover Classification (cont.)

```
Rule23 If
    Band1 = [72, 103]
    Band3 = [115,176]
    Ndvi = [0.213,0.402]
Then
     Land Cover = Shrub 15.0^{\circ}
     Land Cover = Wetland 70.6%
     Land Cover = Noveg 14.4\%
Rule24 If
    Band1 = [72, 103]
     Band3 = [176, 244]
Then
    Land Cover = Shrub 11.1%
    Land Cover = Noveg 88.9%
Rule25 If
    Band1 = [103,153]
    Band4 = [2,221[
Then
    Land Cover = Noveg 100.0%
Rule26 If
     Band1 = [103, 153]
     Band4 = [221, 249]
Then
     Land Cover = Wetland 80.2%
     Land Cover = Noveg 19.8%
Rule27 If
    Band1 = [153.223]
Then
    Land Cover = Noveg 100.0%
```

.

