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Abstract 

Macroinvertebrate communities were sampled from 65 Newfoundland riffles 

from three geographic regions (the Avalon Peninsula, Terra Nova, and Gros Morne) in 

three seasons (summer, fall, spring). A suite of physical, chemical and land use variables 

were also measured. Differences in community composition across regions were found as 

well as large differences among seasons between sites sampled. Macroinvertebrate 

richness and abundance data were cross-examined with associated environmental 

variables to detect which ones were most related to macroinvertebrate community 

differences. UTM Easting, % macrophytes, % igneous rock, % local forest, nitrates, total 

Nitrogen and alkalinity were all highly correlated with trends in the macroinvertebrate 

community data. Urban communities differed from rural and pristine commw1ities, the 

latter two community types being virtually indistinguishable. Temporal effects were 

examined to tease apart seasonal versus non-seasonal factors affecting the 

invertebrate-environment relationship. Changes in the frequency of occurrence of a few 

key taxa between years strongly impacted regional differences. 
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1 Introduction 

Humans depend heavily on rivers for a broad range of services: drinking water, 

irrigation, industrial production, waste disposal, fishing for food and recreation. 

Therefore, maintaining healthy aquatic habitats should be a matter of great concern (Karr 

1991; Niemi and McDonald 2004; Bonada et al. 2006). Ironically, many of humanity's 

activities have detrimental impacts on the Earth's watersheds. To assess these impacts 

and prompt mitigating efforts, if necessary, tools are needed that will permit the 

evaluation of the effects of human activity on the health of the river ecosystem. A healthy 

aquatic ecosystem is one that is stable, resilient, clear of pollutants and maintains high 

diversity and evenness in its biological systems (Haskell et al. 1992). Biologists have 

developed surrogates to serve as indicators of environmental health (Karr 1999; Niemi 

and McDonald 2004). These surrogates are known as bioindicators. 

1.1 Invertebrates as bioindicators 

The impact of humans on water quality has been studied for decades using 

physical, chemical and biological characteristics. Biological monitoring has gained 

popularity since the 1980s for many reasons (sununarized by Rosenberg and Resh 1993). 

First, the biological realm can reflect the integrity of the physical and ch mica] conditions 

without expensive surveys e.g. toxicity tests (Karr 1991 ; Barbour et al. 1999). Second, 

organisms accumulate impacts over time and therefore provide more than just a single 

point measure of envir01m1ental status (Wallace and Webster 1996; Barbour et al. 1999). 

Third, biological organisms also react to synergistic effects that would be missed if the 
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chemistry and physical attributes of the stream were measured separately. Finally, using 

organisms enhances public interest and facilitates involvement in water chemistry studies 

and remedial measures (Barbour et al. 1999). 

Macroinvertebrates have often been the organism of choice when studying strean1 

health because they are intrinsically linked to ecosystem processes. Invertebrates can be 

important to the nutrient cycling within the stream, and so may be the first to indicate 

disturbance (Wallace and Webster 1996). For example, Richardson (1993) suggested that 

the amount of fish that can be sustained by a particular stream is limited by the 

abundance of benthic invertebrates, rather than the abundance of phytoplankton or 

piscivores. In addition, concurrently collected fish and invertebrate samples have been 

fom1d to produce identical responses to some stresses, and the use of macroinvertebrates 

to evaluate the health of fish and other taxonomic groups has been encouraged (Ormerod 

et al. 1987; Kilgour and Barton 1999; Mebane 2001 ). 

Invertebrates can change water flow patterns in small streams by their feeding 

and retreat building (Wallace and Webster 1996). These natural activities in turn re

suspend particles and retain organic matter, hence influencing downstrean1 communities 

and processes. Grazers and shredders can increase the movement of toxins downstream 

as contaminants in the plant matter they feed on are released through egestion (Sallenave 

et al. 1994). However, filter-feeding insects can be bioaccumulators of some pollutants, 

effectively removing toxins from the ecosystem cycle until the filter-feeders themselves 

are consumed (Wallace and Webster 1996). 
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Several characteristics about benthic macroinvertebrates make them suitable for 

study. First of all, many species are widely distributed among habitats and regions, which 

aids in comparing habitats across regions (Hellawell 1978; Barbour et al. 1999). 

Secondly, there is a large number of species and therefore presumably more niche 

differentiation and specialization than in communities with fewer taxonomic entities, 

thereby increasing the sensitivity of richness-based tests (Wiggins and Mackay 1978; 

Merritt and Cummins 1996; Barbour et al. 1999). Thirdly, macroinvertebrates are 

generally sessile and relatively long-lived compared to algae and microcrustacea. 

Therefore, their composition and health can reflect the accumulated impact of 

perturbations in the area (Hellawell 1978). Other benefits include: ease of qualitative 

sampling and analysis (Hellawell 1978; Norris and Georges 1993; Resh and Jackson 

1993; Barbour et al. 1999), well-documented taxonomy for many major groups 

(Morihara and McCafferty 1979; Merritt and Cummins 1996; Wiggins 1996), and new 

methods of data analysis that are built specifically for deriving explanations from 

biomonitoring studies (Barbour and Yoder 2000; Resh et al. 2000; Bowman and Somers 

2006). All these characteristics make macroinvertebrates an obvious choice for rapid 

bioassessment teclmiques in streams. 

Several studies have compared conclusions gained from macroinvertebrate 

analyses to those determined from other taxonomic groups such as diatoms, macrophytes 

and fish. Such studies found that macroinvertebrates are highly sensitive to disturbance 

(Griffith et al. 2005); their sensitivity was higher than that of periphyton (Mazor et al. 

2006) and diatoms (Sonneman et al. 2001). Macroinvertebrates were also more sensitive 
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than periphyton at indicating metal pollution (Griffith et al. 2005) and were as efficient as 

diatoms (Hirst et al. 2002). Johnson et al. (2006a; 2006b) showed that macroinvertebrates 

and diatoms had lower error frequencies than fish and macrophytes, and 

macroinvertebrates had the strongest response to catchn1ent land use, nutrient 

concentration and habitat quality. They also acted as good early warning indicators for 

lowland rivers (Johnson et al. 2006b). 

1.2 Using macroinvertebrate community data 

There are many ways to utilize macro invertebrate data. One of the most popular 

methods is to condense abundance or count data of macro invertebrate communities into a 

single, meaningful index or metric (Norris and Georges 1993; Lenat and Barbour 1994; 

Downes et al. 2002). There are three main types of indices: diversity, biotic and similarity 

(Washington 1984). Diversity indices generally represent the relationship between the 

number oftaxa and the number of individuals in each taxon in a given community. They 

may be weighted to increase the sensitivity to rare species, or even utilize numbers of 

food web interactions to increase reliability of the index (Washington 1984). Possibly the 

most popular index of all is the diversity index developed concurrently by Shannon and 

Wiener, now known as the Shannon-Wiener index or H' (Washington 1984; Resh and 

Jackson 1993; Resh and McElravy 1993). Strangely enough, this index is al o considered 

one of the most dubious methods of describing a biotic community, due to the lack of 

knowledge ofwhat H' really means biologically (Washington 1984). Diversity indices as 

a whole are generally criticized due to their relative inability to indicate water quality and 
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the predisposition of researchers to simply use them as "magic bullets" in assessments 

(Washington 1984). However, simple richness metrics (as a subset of diversity measures) 

such as total taxa richness, Ephemeroptera Plecoptera Trichoptera (EPT) taxa richness 

and Chironomid taxa richness have proven useful and sensitive to water quality 

differences (Resh and Jackson 1993; Lenat and Barbour 1994). 

Biotic indices are typically formed around specific taxa whose presence or 

abundance reflect different and specific types of pollutants or disturbance in a particular 

area (Washington 1984; Johnson et al. 1993). These indices are geographically limited in 

their application and should be used with extreme caution in areas outside of where they 

were developed. However, they are popular because they are effective at detecting 

impacts in their home regions (Washington 1984; Norris and Georges 1993; Downes et 

al. 2002). For example, the HilsenhoffBiotic Index (Hilsenhoff 1977) and the Family 

Biotic Index (Hilsenhoff 1988) focus on organic pollution of rivers in the mid-western 

United States and therefore are applicable only to those locations unless modified, as they 

were from Chutter' s South African index (Chutter 1972; Hilsenhoff 1987; Hilsenhoff 

1988; Resh and Jackson 1993). 

Similarity indices measure how closely related sites or samples are to one another. 

Their cousins, dissimilarity indices, work on the same principle; they are a measure of 

how different sites/san1ples are (Washington 1984). There are fewer commonly used 

similarity indices than diversity or biotic indices, though each type tends to be useful for 

certain types of data. For example, Jaccard 's Index is predominantly used for 

presence/absence data (Dyer 1978; Washington 1984; Norris and Georges 1993; Lorenz 

1-5 



and Clarke 2006). Various authors have found Bray-Curtis and Percent Similarity indices 

to be very useful in separating niches in communities (Norris and Georges 1993). 

However, the Percent Similarity Index fails when the abtmdance between sites does not 

change, but the species present in those sites change with disturbance (Whittaker 1952; 

Dyer 1978). Euclidean measures of similarity are criticized for weighting predominant 

taxa unfairly. All similarity indices are subject to difficulties associated with appropriate 

transformation ofthe data (Washington 1984; Norris and Georges 1993). 

Differences in the estimated value ofmetrics among sites can be assessed 

individually with ANOV A and other univariate analyses, but in bioassessment studies 

they are usually taken as groups in what is known as multimetric analysis (Norris and 

Georges 1993; Bonada et al. 2006). The multimetric method involves two steps: first, 

selecting and calibrating metrics to work together with classes of sites to create a 

composite index, and second, creating index thresholds to assess water quality at sites 

and make a decision as to their health (Barbour et al. 1999; Smith et al. 2005). The 

creation of site classes or conditions is most often determined a priori in multimetric 

analysis, though that is not always the case (Barbour et al. 1999). The multimetric 

method is also simple to perform and easy to understand for those who are not well

versed in statistical analysis, for it condenses biological data into a single number, or at 

least fewer numbers than in multivariate analyses. The end index from the multimetric 

analysis can be used to establish biocriteria (Gerritsen 1995; Barbour et al. 1999; Lewis 

et al. 2001 ), which allows managers to easily set numerical boundaries for water quality 

assessments. 
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There are several concerns with the multimetric method, though it has been 

shown to correctly detect human impacts (Hering et al. 2004). Firstly, a priori site 

classification by environmental data can introduce bias, through classing sites in the 

wrong groups (Norris 1995). For example, ecoregions are typically used to separate sites 

prior to analysis, but there is little evidence that sites within ecoregions are closely related 

(Corkum 1991; Hughes et al. 1994). Also, the thresholds for each bioassessment index 

are created artificially by using quartiles to indicate which sites are significantly impacted 

(Gerritsen 1995; Hannaford and Resh 1995). These thresholds may or may not be 

ecologically significant for that region. Another problem is that condensing the number 

of metrics can cause important information to be lost. In addition, the ones retained may 

be redundant, which only confounds the results and compounds error. High amounts of 

variation in the data can also confound the interpretation of results (Reynoldson et al. 

1997). 

Most current studies that use biological data to separate sites into groups for 

purposes of water quality comparison tend to use multivariate analyses (Wright et al. 

1984; Reynoldson et al. 1995; Rosenberg et al. 2000). Multivariate analyses are 

characterized by the use of changes in macro invertebrate community composition and 

environmental variables to detect human impact on sites (Bonada et al. 2006). By this 

method, site groups are typically formed a posteriori, as opposed to the predominantly a 

priori methodology of multimetrics (Barbour et al. 1999; Bonada et al. 2006). An 

important benefit to multivariate statistical models is that variability among reference 

sites is accounted for through inclusion of all data as separate, independent metrics 
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(Reynoldson et al. 1997). In addition, there is great predictive power in the method as 

ordinations allow taxa to be placed alongside environmental gradients, making 

correlations between macroinvertebrates and their environment much clearer (Furse et al. 

1984; Wright et al. 1984; Moss et al. 1987; Johnson et al. 1993; Hirst et al. 2002; Johnson 

et al. 2006b). New software is constantly being created to better respond to the needs of 

ecological studies and increase interpretation by non-statisticians (Reynoldson et al. 

1997; Bowman and Somers 2006). 

The main problem with multivariate analysis remains that the initial statistics are 

still very complex, so training and specialized statistical programs are required before 

successfully implementing multivariate analyses into a study (Gerritsen 1995; Norris 

1995; Reynoldson et al. 1997). In addition, many models only utilize presence-absence 

data, causing information to be lost for lack of quantitative analysis (Reynoldson et al. 

1997). The multivariate method tends to remove sites or variables where there are data 

missing (Norris 1995). Due to the assumption of the model that all data collected are 

pertinent to the separation of sites, many environmental parameters must be measured, 

then weeded through to see which ones actually indicate cleanliness in a region (Wright 

et al. 1984; Norris 1995). Multivariate analysis also does not account for the fact that a 

test site may be attributed to the wrong test group when utilizing a method with a priori 

classifications (Reynoldson et al. 1997; Mazor et al. 2006). 

Using any of these methods is risky when one wishes to make some sort of 

statement about water quality or impact without a broad database encompassing a wide 

range of habitats with known characteristics from the region in question. Indices and 
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models used incorrectly can and will give spurious results, perhaps leading to erroneous 

conclusions. The only way to gain reliable results is to understand how each element of 

the data analysis works so as to utilize the best analysis for the data available. 

1.3 Current biomonitoring systems 

1.3. 1 Rapid bioassessment method 

The recommended approach of rapid bioassessment methods for wadeable 

streams is to gather environmental and habitat data from the san1ple site, and then collect 

invertebrates via kick-net or sweep sampling (Barbour et al. 1999; Reynoldson eta!. 

2003). A subsample of 100-300 macroinvertebrates is removed from the sample and 

identified to a defined taxonomic level. Both subsampling and identification may occur in 

the field or in the laboratory, but these elements (as well as the level of identification) 

have not b en standardized (Barbour et al. 1999). The data collected are then used to 

form various metrics pertaining to the structure and function of the community 

(Hannaford and Resh 1995; Barbour et a!. 1999; Reynoldson et a!. 2003) or placed in 

multivariate matrices (Reynoldson eta!. 1 995; Wright 1995; Verdonschot 2006), both of 

which can be analyzed to reveal the relative environmental condition ofthe sample site. 

There are many advantages to this method of sampling the stream community. 

Hannaford and Resh (1995) maintain that without improving the habitat surrOtmding the 

stream site, water quality cannot be improved. Therefore, by including habitat data in the 

analysis, disturbance in the surrounding area is accounted for and the predictive power of 

the model increa es. Another advantage to this technique is the ease and low level of 

expertise required to collect invertebrate samples, which reduces the resources needed to 
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assess the stream. Therefore, more sites can feasibly be sampled due to the decreased 

effort in the field and in the lab (Resh and Jackson 1993; Hannaford and Resh 1995). 

There are, however, many disadvantages and limits to the rapid bioassessment 

method. The first is a lack of quality assurance and/or quality control as only one sample 

may be taken at a site (Hannaford and Resh 1995). Seasonality of invertebrates and 

physical factors affects accuracy, which makes applying the results of a study to other 

regions or seasons difficult (Resh and Jackson 1993; Vinson and Hawkins 1998; Downes 

et al. 2002). 

It is true that a broad-scale study will only show which rivers are in poorer 

conditions than others, but the method is not limited to large-scale, broad-ranged studies. 

Rapid bioassessment techniques can be used in studies attempting to rank streams, 

produce impact assessments for legal documentation, or as end points in water quality 

monitoring programs, but usually not all three at the same time (Hannaford and Resh 

1995; Downes et aJ. 2002). Depending on the focus of the study, this technique can be 

used to perform any of these tasks as long as variability is acknowledged (Hannaford and 

Resh 1995). There are still other difficulties to overcome when choosing sites to represent 

the unimpacted condition against which test sites are compared. This collection of 

unimpacted sites is known as the reference condition. 

1. 3. 2 The reference condition 

The reference condition has been described as "the condition that is representative 

of a group of minimally disturbed sites organized by selected physical, chemical, and 

biological characteristics" (Reynoldson et al. 1997). Therefore, the reference condition is 
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considered a baseline against which a test site is compared. The reference condition 

methodology allows the researcher to study streams where point-source problems do not 

exist and where other methods, such as the Before After Control Impact (BACI) design 

(Stewart-Oaten and Bence 2001), may not be appropriate. Reference sites are selected 

based on low levels of physical, chemical and biological disturbance (Reynoldson et al. 

1997). Each reference site is considered a replicate, instead of many samples within a 

site, which satisfies the complaint of Hurlbert (1984) on pseudoreplication in ecological 

studies (Reynoldson et al. 1997). In addition, this method can be used to determine the 

natural fluctuations in physical, chemical and biological parameters in different streams, 

the study region, and a broader inter-regional scale (e.g. global warming effects) (Hughes 

1995; Reynoldson et al. 1997). 

1.3.3 Current bioassessment protocols 

There are almost as many protocols as there are countries practicing water quality 

assessment in the world today. Most have been developed after intensive studies have 

been performed to Jhy the framework for a set of methodologies that provide accurate 

results for that region (e.g. RIVPACS, Wright 1995). The following is a listing and short 

description of a few of the most prominent bioassessment systems currently in use. 

The River In Vertebrate £rediction And Classification ,System (RIVPACS) has 

been the main system for predicting water quality in the UK since its creation (Wright 

1995). It utilized macroinvertebrate data from (initially) 268 sites and allowed the biota to 

separate sites using two-way indicator species analysis (TWINSPAN). Enviromnental 

variables were then correlated to multivariate ordination scores created by the 
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macroinvertebrates, by which a reduced number of environmental variables were found 

to relate to the classification of rivers (Wright et al. 1984). TWINS PAN proved to have 

difficulties with assigning new sites to groups, due to the fairly small number of species 

causing the differences between groups, therefore the procedures were updated in 

RIVPACS II (Wright 1995). The current program predicts the macroinvertebrate 

community of a new site using the new site's environmental data. Ifthe site meets the 

expected composition, then the site is considered healthy, if not, then the site is classed as 

"stressed" (Wright 1995). The Australian River Assessment System (AUSRIVAS) in 

Australia (Coysh et al. 2000) and the PERLA system in Czech Republic (Kokes et al. 

2006) are based on this system of bioassessment as well, each with their own regional 

adjustments. 

The STAR-AQEM system is a standardized multimetric method of water quality 

assessment put into place by eight countries of the European Union for the purpose of 

meeting the European Union Water Framework Directive (WFD) (Hering et al. 2004; 

Clarke and Hering 2006). The method uses ecoregions and stream typologies to break the 

strean1s into groups prior to macroinvertebrate sampling, then uses the 

macroinvertebrates and/or abiotic factors to further classify the streams into specific 

types according to disturbance. Metrics that correlate with stream degradation are then 

used to calibrate assessment systems so as to be able to give a definition of"high, good, 

moderate, poor, and bad ecological status for the selected stream types" (Hering et al. 

2004). However, the typology portion of the method in particular is under heavy scrutiny 

for being too restrictive and biased, as opposed to using reference conditions 
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(Davy-Bowker et al. 2006; Verdonschot 2006). This method is still under constant review 

by the authors, who seek to further reduce error and increase accuracy (Clarke and 

Hering 2006; Clarke et al. 2006a; Clarke et al. 2006b ). 

1.3.4 CABIN: the Canadian perspective 

The purpose of the Canadian Aquatic Biomonitoring Network (CABIN) was to 

take long-term studies done in the Great Lakes and the Fraser River in British Columbia 

and develop a national reference condition for biological assessment using benthic 

macroinvertebrates (Reynoldson et al. 2003). The method uses the reference condition 

approach (Reynoldson et al. 1997) and a suite of diversity and biotic indices together 

with multivariate analysis (Reynoldson et al. 2003). Environment Canada's National 

Water Research Institute supports the methods set out by the CABIN protocols and 

invites the sharing of data via the internet by making space for researchers to post their 

data and findings for comparison to other studies (Reynoldson et al. 2003). 

1.3.5 Biomonitoring in Newfoundland 

There are concerns about the usefulness of monitoring benthic macroinvertebrates 

in Newfoundland streams due to the impoverished fauna of the Island (Larson and Colbo 

1983). A few studies have addressed the question of whether condition in Newfoundland 

are suitable for a biomonitoring program, however, all the studi s came to the same 

conclusion: Newfoundland's biota is sufficient to detect impacts on the environment 

(Colbo 1993; Ryan et al. 1993; Colbo et al. 1999; Lomond 1997). Lomond (1997) found 

that Ephemeropt ra Plecoptera and Trichoptera groups alone were able to detect water 
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quality changes brought about by urbanization and Colbo et al. (1999) were able to 

correlate several taxa with levels of disturbance and impact. These reports are 

encouraging, but long-term monitoring is still required to answer more detailed questions 

about the factors influencing distribution ofNewfoundland macroinvertebrate taxa (Ryan 

et at. 1993). Land use occurs throughout the province; most watersheds are affected by 

logging, mining, farming or residential and recreational uses. In addition, globally 

transported air pollutants and climate change influence all regions of the Earth. Given 

these larger, ever-changing environmental conditions, it is imperative the methodologies 

for monitoring are tested and modified (if required) for Newfoundland's unique fauna 

and environment to provide clearer data with which to monitor and assess the province's 

stream health over time. 

CABIN sampling was performed in Newfoundland in 2002-2003 as part of a 

stream health survey initiated by Parks Canada in partnership with Memorial University 

ofNewfoundland (Colbo et at. submitted). Findings indicated a separation of sites on the 

basis of human disturbance, not w1like previous studies. Therefore CABIN, a nationally 

standardized methodology, was deemed an appropriate method with which to further test 

the quality ofNewfoundland ' s waters. 

1.4 Study objectives 

There were five main study objectives: 

1) Define the taxa and ecological range of the macroinvertebrate community in 

Newfoundland riffles not associated with lake outlets. 
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2) Determine if patterns of occurrence and abundance within the macroinvertebrate 

riffle community exist and, if they do, relate these patterns to seasonal, physical 

and/or chemical stream parameters measured. 

3) Determine the sensitivity ofNewfoundland macroinvertebrate communities to 

human impacts. 

4) Assess the ability ofthe CABIN protocol to use depauperate macroinvertebrate 

communities for biomonitoring. 

5) Provide recommendations for the application of a benthic macroinvertebrate 

biomonitoring program in Newfoundland. 
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2 Overview of Methods 

2.1 Study location and design 

The study incorporated 58 streams and 65 stream sites across the Island of 

Newfoundland, which is the most easterly island in Canada (W 59°24'- W 52°37'/N 

51 °38'- N 46°37'). The Island falls in the boreal forest biome (Roberts 1983) and was 

completely glaciated in the most recent ice age event (Rogerson 1983). As a result, the 

Island obtained most of its flora and fauna post-glaciation via colonization and mediated 

introductions (South 1983). There is a great deal of variation in climate, geology, soil and 

vegetation which led to the designation of nine main ecoregions on the Island (Damman 

1983) (Figure 2.1). Seven ofthe nine ecoregions were encompassed by this study; only 

the A val on F crest and Strait of Belle Isle ecoregions did not have any site 

representatives. 

The general climate ofNewfoundland is cool and wet, with a shorter growing 

season than is observed on the mainland at this latitude. Thew st-central part of the 

Island tends to be colder and has more snow in the winter than the A val on and 

experiences an earlier spring and warmer summer than the A val on. ummers also are 

warmer and sunnier on the west and central parts of the Island. The A val on Peninsula 

experiences a very cool summer compared to the other regions, aside from the Northern 

Peninsula (Banfield 1983). 
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Figure 2.1 The ecoregions of the Island ofNewfoundland and their subdivisions. Roman 
numerals indicate the ecoregions: I = Western Newfoundland, II = Central 
Newfoundland, III = North Shore, IV = Northern Peninsula Forest, V = Avalon 
Forest, VI = Maritime Barrens, VII = Eastern Hyper-oceanic Banens, VIII = 
Long Range Barrens, IX = Straight of Belle Isle. Capital letters indicate 
sub-regions. 

Taken from Damman (1983). 

The Island is made up of three tectonic plates of different origins. The western 

side of the Island came from the North American Appalachian continental plate, the 

centre from a raised oceanic plate and the ea tern side from a European or North African 

continental plate. Therefore, geology in each of these three region reflects their disti net 
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origins while evidence of past volcanic activity exists along the fault lines (Rogerson 

1983). As different as the parentage may be, the soils across the Island are primarily 

recently derived from glacial till which is typically poorly-sorted, rocky, low in nutrients 

and acidic, though some areas of high pH do exist in conjunction with limestone and 

serpentine deposits on the west coast. Organic layers are typically present and are made 

up of either peat or boreal coniferous forest duff, therefore these layers are acidic 

(Roberts 1983). 

Approximately one half of the Island is forested and the other half is made up of 

barrens, peatlands and lakes with residential and agricultural areas making up a very 

small proportion of the total landmass (Roberts 1983). The southern part of western 

Newfoundland is heavily forested with the percentage of bog and banens increasing 

towards the north. The uplands of the Long Range Mountains are essentially barren, with 

patches of heath or stunted trees called tuckamore that transition to forested valleys. As 

one moves east, there is a general increase in the number of heathlands, bogs and fens. 

Within the Maritime Barrens region, wherein St. John's lies, there is a larger proportion 

of forests in the northern part of the ecoregion, decreasing to the south with the southern 

Avalon being primarily bog, ericaceous barrens or scrub forest. Forests are made up 

mostly of balsam fir (Abies balsamea), black spruce (Picea mariana) and white spruce 

(Abies glauca), with smaller proportion of tamarack (Larix laricina) and pine (Pinus 

spp. ). There are also extensive stands of hardwood, particularly in logged or burned 

areas, dominated by birch (Betula spp.), aspen (Populus tremuloides) and alder (Ainu 

spp.) (Damman 1 983). 
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The watersheds ofNewfoundland tend to follow a glacial-fluvial morphology, 

with most streams being short and close to the ocean. Thus, they do not follow the classic 

smoothly graded river system profile, but rather tend to have headwaters on low plateaus 

and move in a step-wise fashion until they near the ocean, where the grade plunges 

steeply (Figure 2.2). As a result, the drainage system is often poorly defined where there 

are extensive bogs, fens and lakes which separate the sections of the stream that have 

deeply-carved channels of steep relief (Larson and Colbo 1983). 
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Figure 2.2 Generalized profiles of mainland streams (top) and Newfoundland streams 
(bottom). Taken from Larson and Colbo (1983). 
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Streams were selected from three general geographic locations (Figure 2.3). On 

the west coast, thirty-five sites were selected in and around Gros Morne National Park 

where three ecoregions converge. This area, as part of the Appalachian tectonic group, is 

the most geologically diverse area on the Island (Rogerson 1983). On the east coast, 

twenty sites in and near Terra Nova National Park were chosen; most of these sites were 

within the Central Newfoundland ecoregion, with two in the North Shore ecoregion. The 

third region, with ten sites, was on the A val on Penninsula. Seven sites were in the 

Maritime Barrens ecoregion close to and within the city of St. John' s and three more 

were on the outh Avalon Burin Peninsula Barrens. Both the sites in Terra Nova and on 

the Avalon have relatively the same geological make up. Sampling was concentrated 

around both ofNewfoundland's National Parks as one aim of the study was to support 

the development of a monitoring and management system for streams by Parks Canada. 

A list of sites with their coordinates is given in Appendix 1. 
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Figure 2.3 The Island ofNewfoundland with study regions zoomed in to display 
placement of sites in each region. a) the A val on Peninsula, b) Terra Nova, and c) 
Gros Morne. 

St. John's sites on the Avalon Peninsula were chosen to provide streams in highly 

disturbed basins to compare to the relatively pristine nature of most of the National 

Parks' rivers, and the other Avalon sites were chosen to expand the range of natural 

variation in pri tine habitats sampled aero s the Island. Individual river sites were picked 

on merit of their distance from a lake outlet, accessibility and habitat type. All sites were 

chosen to be at least 500 metres from a lake outlet to avoid the lake outlet influence on 

the riffle macroinvertebrate community in streams with lakes (Colbo et al. submitted; 

Lomond and olbo 2000). In addition, river needed to be relatively accessible by road, 
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boat or short walk to make sampling feasible. However, six high-altitude sites on the 

Long Range Mountains in Gros Morne were added as helicopter transport was available. 

Within parks, rivers were chosen in a wide variety ofhabitats (i.e. forested, barrens, 

boggy), substrate types (i.e. sand, organic matter, boulder) and sizes to get an adequate 

representation of insect communities in the area. Some sites were chosen as repeat sites 

of sampling efforts in previous years to acquire temporal data. 

In the summer (July 13-August 3, 2004), ten sites on the Avalon, twenty in Terra 

Nova National Park and surrounding area, and twenty-nine on the west coast, including 

Gros Morne National Park, were selected for sampling. In the fall sampling season 

(October 4-0ctober 27, 2004), six more sites were added in the Long Range Mountains 

within Gros Morne park boundaries, bringing the total sites sampled to sixty-five. All the 

fall sites, except for two in Terra Nova, were sampled again in spring (April 28 -June 10, 

2005). The two were not sampled due to unsafe high water conditions. 

2.2 Field procedures 

In-field procedures were adopted primarily from Canadian Aquatic 

Blomonitoring Network (CABIN) protocols developed by Reynoldson et al. (2003), with 

elements taken from other protocols (Fitzpatrick et al. 1998; Platts et al. l 983). All 

measured phy ical and chemical parameter are listed with their concordant unit measure 

in Table 2 .1 At each site, a reach was chosen that was dominated by riffle habitat. Riffle 

communities have a greater variety of species than pools or runs (Wohl et al. 1995; 

Angradi 1999) and thus to maximize diver ity measures and minimize variation, only the 
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riffle community was sampled. Reference photos were taken upstream, downstream and 

across from the middle of the reach, as well as the shore substrate. Latitude, longitude 

and altitude were recorded with a handheld GPS unit (Garmin E-Trex Legend). The 

positioning variables were transformed into Universal Transverse Mercator units from 

hours, minutes and seconds for ease of analysis. Water temperature, pH and conductivity 

were recorded with a YSI 63 meter on every sampling occasion, and water samples were 

procured in the fall and summer sampling sessions. Two water samples were taken from 

each site, one was left as is and the other was preserved with sulphuric acid (1: 1 ). The fall 

samples were analyzed by Environment Canada for Nitrates, total Nitrogen, Phosphorus, 

colour, specific conductivity, pH, granular alkalinity and alkalinity pertaining to total 

Calcium carbonate. The spring samples were analyzed by Ryan Pretty at the Marine 

Institute of Memorial University ofNewfoundland for nitrates, phosphorus, colour, and 

alkalinity. 
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Table 2.1 List of physical and chemical parameters and their respective units of measure. 

Physical/Chemical Property Units Physical/Chemical Property Units 
UTM Easting m Sedimentary rock in watershed % 

UTMNorthing m Metamorphic rock in watershed % 

Altitude m Non-glacial rock in watershed % 

Maximum sl.lllllller wetted width m Glacial rock in watershed % 

Maximum bankfull width m Bedrock in watershed % 

Average velocity rnls Size of watershed km2 

Maximum velocity rnls Forest in whole watershed % 

Canopy cover % Forest in local watershed % 

Macrophyte cover % Forest within 1 OOm of reach % 

Rifile in reach % Nitrates mg!L 

Average vegetation overhang em Total nitrogen mg!L 

Dominant substrate scale Total phosphorus mg!L 

2nd Dominant substrate scale Colour Hazenuni 

Surrounding substrate scale Conductivity uS/em 

Embeddedness scale pH pH scale 

Average depth m Alkalinity rngiL 

Tgneous rock in watershed % Granular Alkalinity (CaC03) rngiL 

On the first sampling session for each site, substrate measures were taken to 

gauge substrate stability and riffle depth. This entailed a protocol for assessing size ofthe 

dominant substrate, second dominant substrate and nature of the surrounding substrate in 

the reach (Reynoldson et al. 2003) (Table 2.2). Substrate particle size and embeddedness 

(Table 2.3) were obtained from measures often randomly selected rocks. Depth was 

obtained from a measure at every second rock. 
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Table 2.2 Particle sizes, descriptions and their resulting substrate scores. 

Particle Size (mm) Description Score 
orgamc cover 0 

<1 silt 1 
1-2 sand 2 

2-5 gravel 3 ,.. 
5-25 small pebbles 4 

25-50 large pebbles 5 

50-100 small cobble 6 
100-250 large cobble 7 

>250, < stream bed boulders 8 
entire stream bed bedrock 9 

Table 2.3 Embeddedness categories and scores. 

Category Score 
completely embedded 1 

3/4 embedded 2 
1/2 embedded 3 
1/4 embedded 4 

unembedded 5 

Stream wetted width was measured in all three seasons, while bankfull width was 

only measured on the first sampling session. In the summer, the width measurements 

were made at three different points in the reach and samplers located the widest, 

narrowest and medium width of the river; however, in the fall and spring, the potential 

bias of this method was replaced with measuring the width at the bottom, middle and top 

of the invertebrate sampling reach. 

Velocity was assessed by measuring the speed of a tennis ball over 5 metres 

unless stream size or debris prevented this, requiring distance to be reduced accordingly. 

Velocity was measured on all sampling occasions using the procedures outlined by 
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Reynoldson et al. (2003). If the stream was over 5 metres wide, then the width was 

divided by six to obtain a set of five velocity measures taken at even distances from the 

shore. For example, if the river was 6 metres wide, then a velocity measure was 

conducted a metre out from shore, followed by another measurement at 2 metres, etc. for 

the five velocity measures. In streams smaller than 5 metres, only three measurements 

were taken: approximately a quarter, half, and three-quarters of the way across the 

stream. In very shallow streams, three tests were run in the thalweg, or fastest channel, 

instead. At each trial, depth was measured at the half-way mark. Maximum velocity was 

the highest velocity recorded and average velocity was calculated by averaging the 

velocity of all trials. 

Canopy cover, macrophyte cover and the amount of riffle in the reach were 

estimated by all samplers present and the average value was recorded in summer and in 

spring. In the summer season, the presence or absence of grass, shrubs, deciduous trees 

and coniferous trees were recorded for the reach' s riparian zone. In summer and spring, 

overhanging vegetation within 6 inches of the water's surface was measured in three 

places on each side of the stream, usually where width measurements had been made. 

Overhanging vegetation is another measure of shading and riparian growth, and may be 

used by some species for laying eggs and rearing young (Merritt and Cummins 1996). 

Macroinvertebrate sampling was performed using a five minute kick-net san1ple 

with aD-frame net. Three streams were too small to kick for the full five minutes, so 

time was reduced to two or three minutes in those locations. In addition to kicking, large 

rocks were rubbed with the hand to disturb surfaces not done so by boot kicks. Upon 
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collection, the sample was brought to shore and large stones and sticks were washed and 

removed. The sample was then poured through a 250 micron screen, rinsed, then poured 

into a large zipper-locking bag and preserved with 90% ethanol. A label on water-proof 

paper was placed inside the bag prior to seal ing. 

2.3 Laboratory procedures 

In the lab, samples were washed tlu·ough a series of large-mesh sieves, ending in a 

250 micron screen, to remove leaves, sticks and larger stones prior to sorting. Any large 

macroinvertebrates found were transferred to the sieved material. The sieved sample was 

divided among 1 00 cells using a Marchant box (Marchant 1989) whereupon cells were 

randomly selected and invertebrates removed. Cells were selected and processed until the 

cumulative number of invertebrates reached or exceeded 300 individuals. All 

invertebrates recovered were placed in a vial with 75% ethanol. This method allows for 

the estimation of species abundance and community composition within the sample. The 

entire sample was sorted in samples with low invertebrate numbers, as well as in cases 

where the presence of filamentous algae or large quantities of sand prevented the use of 

the Marchant box. The latter two kept the organisms from sorting evenly and sand also 

tended to destroy the soft-bodied invertebrates. Invertebrates wer identified using a Wild 

dissecting micro cope to the lowest feasible taxonomic entity using numerous keys, some 

specific to Newfoundland fauna (Larson unpublished data; Morihara and McCafferty 

1979; Peckarsky et al. 1990; Merritt and Cummins 1996; Wiggins 1996; Adler eta!. 

2004"). orne organisms, such as blackflies and heptageniid mayflie , required parts to be 
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slide mounted and viewed under a compound microscope in order to ensure correct 

identification. 

Further physical environmental calculations were made using Geographic 

Information Systems (GIS) (ArcGIS v.9.2 support provided by Tracy Harvey of Parks 

Canada). ArcGIS was used to determine the size of the watershed upstream of each site, 

as well as how much of the watershed was made up of various geologic and vegetative 

parameters. The amounts of igneous, sedimentary and metamorphic rock making up the 

bedrock geology, as well as the amount of glacial till, non-glacial till and bedrock making 

up the surficial geology in the watershed were taken from the GIS data for further 

statistical analysis. imple measures of the amount of forest in the entire watershed, the 

local watershed (1 kilometre upstream ofthe site) and the immediate watershed (100 

metres surrounding the site) were made and added to the list of physical parameters. 

All data (biological and environmental) were entered into Microsoft Excel 

spreadsheets and transformed and analyzed using PRIMER 6. Minitab 14 was used for 

univariate analyses. Specific transformations and statistical approaches are detailed in the 

methods section of each subsequent chapter. 
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3 Regional and Seasonal Variation of Macroinvertebrate 
Community Composition in Newfoundland Riffles 

3.1 Introduction 

The Island Biogeography Theory predicts that islands have a much more limited 

fauna than comparable land masses on the adjacent mainlands (MacArthur 1967). 

Newfow1dland's aquatic insect fauna, not surprisingly, was also found to be 

impoverished compared to other regions on the Atlantic North American mainland 

(Larson and Colbo 1983; Lomond 1997). The most intensive studies of 

macro invertebrates have been primarily on the A val on Peninsula and the central to 

north-eastern regions ofthe island, including Terra Nova National Park (Ryan et al. 1993; 

Lomond 1997; Colbo et al. submitted). Despite the reduced diversity of taxa, differences 

in macroinvertebrate lake-outlet communities were detected among locations in Eastern 

Newfoundland (Lomond 1997; Lomond and Colbo 2000). Riffle macroinvertebrate 

communities differ from lake-outlet communities. Therefore, it is unknown whether or 

not this community would be able to achieve the same level of regional detection as seen 

in Lomond and Colbo (2000). The western portion of the province, which i the most 

diverse geologically and topographically has had little research on Jotic benthic 

invertebrates. Therefore there is an information gap in the under tanding of regional 

variation within the province. To have an accurate picture of the faunal composition of 

the entire island, a representation of all the regions within Newfoundland should be 

exan1ined as regional factors have been hown to explain many of the differences in 

macroinvertebrate communities (Vinson and Hawkins 1998; Lomond and Colbo 2000). 
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In addition to a lack of spatial representation, previous studies were limited 

temporally as well. All of the previous studies on the macroinvertebrates of 

Newfoundland were conducted in spring and summer, with little analysis of seasonality 

as a factor influencing the faunal composition among sites and regions. easonality has 

been shown to be a primary factor in defining differences between macroinvertebrate 

communities largely due to the ability of the researcher to identify the specimens (Linke 

et al. 1999; Gibbins et al. 2001; Reece et al. 2001; Sporka et al. 2006). The national 

reference database, and subsequently the Canadian Aquatic Blomonitoring Network 

(CABIN), has based their analyses on fall seasonal sampling, and in general it is 

recommended that sample comparisons be made with data from samples all taken in the 

same season (Reece et al. 2001). However, an understanding of seasonal variation of 

community structure has also been encouraged, not only to have data available for each 

season individually, but also for evaluating the information resulting from pooling 

seasonal data (Furse et al. 1984; Reece et al. 2001; Clarke et al. 2002; porka et al. 2006). 

This chapter is an overview of the diversity ofNewfoundland riffle 

macroinvertebrate fauna based on a geographically broad sampling program. The 

analysis includes regional taxa comparisons of the total stream rif-fle benthic 

macro invertebrate fauna among the Avalon Peninsula, Terra Nova National Park (and 

area), and Gros Morne National Park (and area) sites. Any regional and s asonal 

differences will be explored to elucidate the taxa that define Newfoundland' s strean1 

communities. The main goals of this chapter are: I) to define the taxa and ecological 

range of the macro invertebrate community in Newfoundland riffles, 2) to determine if 
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patterns of occurrence and abundance within the macroinvertebrate riffle community 

exist and, if they do, relate these patterns to season and region, and 3) to identify the best 

season to sample for monitoring purposes. 

3.2 Methods 

Between fifty-nine and sixty-five sites were sampled in each of three seasons 

from three study regions of the Island ofNewfoundland: the Avalon Peninsula, Terra 

Nova National Park and Gros Morne National Park. All ten sites on the Avalon Peninsula 

were sampled in all three seasons, of the twenty Terra Nova sites only eighteen were 

sampled in the spring season, and in Gros Mome only twenty-nine of the thirty-five sites 

were sampled in the summer season. All sixty-five sites were sampled in the fall season. 

Details on site descriptions and macroinvertebrate sampling and processing were 

provided in Chapter 2. 

The raw macroinvertebrate abundance data underwent three transformations for 

use in several different analyses. Presence/absence transformation was used to calculate 

the number of taxa in each region. The seasons were combined and taxa that had lower 

levels of identification under them were removed (e.g. Heptageniidae spp. was removed 

when Heptagenia pulla was also present at a particular site) to giveth most conservative 

measure of taxonomic richness. Mean number of taxa at each site wa calculated for each 

region and ANalysis Of VAriance (ANOVA) was performed using Minitab 14. AVOVA 

tables were interpreted with an alpha of 0.05. 

The econd transformation u ed on th macroinvertebrate abundance data 
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expressed the abundance of each taxon as a proportion of the total nwnber sampled. 

These were then totalled for each ofthe major taxonomic groups (e.g. Ephemeroptera, 

Diptera). Excel was used to create stacked columns for each of the three geographic 

regions, showing proportions of the taxonomic groups in each region. 

The third transformation expressed the raw macroinvertebrate abundance data as a 

more quantitative measure of"insects per minute" to standardize effort among sites. It is 

the estimated number of each taxon in the entire sample collected in each minute of the 

kick-net san1ple. At this point, rarefactions of the taxa present in each site were 

performed. Rarefaction uses the abundance of each taxon in a " random-grab" analysis, 

through which the number of taxa expected to be present at increasing ample sizes are 

obtained (Clarke and Gorley 2006). Rarefactions create plots known as "species-area 

curves" and are useful for comparing numbers of taxa between samples taken over 

different amounts of area (Preston 1960). The rarefaction increments were obtained with 

PRIMER 6 and MS xcel was used to create the species-area curves. The maximum 

nwnber of individuals used in the test was 10,000, as that was the number of individuals 

collected from the Avalon (the region with the lowest number of sample sites). 

The " insects per minute" abundance measure was transformed using log1o(X + 1) 

to decrea e the probability of over-emphasizing common species and under-emphasizing 

rare species (Clarke and Gorley 2006). This particular transformation was u ed as it 

works best with the chosen resemblance matrix, Bray-Curtis, which does not employ 

weighting on its own (Bray and Curtis 1957; Hruby 1987; Clarke and Gorley 2006). 

Nijboer et al. (2005) found that logarithmic transformations reduced cia sification error, 
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particularly when compared with presence/absence data. Transformation, the formation 

of resemblance matrices and the fo!Jowing three analyses were all performed with the 

PRIMER 6 statistical package. 

The number of taxa makes it difficult to understand and/or visualize the 

community differences between the three seasons and the three regions. The non-metric 

Multi-Dimensional .S.caling (MDS) ordination was used with the Bray-Curtis resemblance 

matrix to order the sites from most to least similar in two to three dimensions (as opposed 

to a dimensional space equal to the number of taxa in the analysis which would be 

impossible to interpret) (Clarke and Gorley 2006). Sites closest to one another in the 

resulting plot are sites whose macroinvertebrate communities are the most alike (high 

Bray-Curtis similarity score, low Bray-Curtis dissimilarity score) and sites furthest from 

one another are the most different in community composition (low Bray-Curtis similarity, 

high Bray-Curtis dissimilarity) (Clarke and Gorley 2006). MDS ordinations (1 000 

iterations) were conducted to ensure that the resulting plot was the best conformation 

(lowest stress). 

Analysis Qf Similarity (ANOSIM) tests were also run with a Bray-Curtis 

resemblance matrix to test for statistical differences between sample groups. These tests 

are multivariate analogs to AN OVA tests. Factors applied to the data a priori (e.g. region, 

season) can be analyzed in either a one-way or a two-way layout, where a two-way 

ANOSIM takes a second factor into account when looking for differences between 

groups of a primary factor (Clarke and Gorley 2006). As the sites were sampled over 

three seasons, two-way analyses were performed as "crossed with replicates". The results 
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of ANOSIM are in the form of rho values, or R statistics. The statistic ranges from -1 to 

+ 1; an R statistic equal to 0 means there is no difference between the groups being 

compared (i.e. there are no groups) and rho = 1 means that the groups are completely 

different. A p-value is also produced with every R statistic (Clarke and Gorley 2006). 

Often paired with ANOSIM is the "similarity percentages" (SIMPER) analysis, 

which interprets the ANOSIM results by showing which macroinvertebrate taxa 

contribute to the differences between groups as well as which taxa contribute to the 

similarity within groups (Clarke and Gorley 2006). The average Bray-Curtis dissimilarity 

between pairs of samples within or between groups is broken down into percent 

contributions of each taxon. The original log transformed abundance data was used for 

this analysis (Clarke and Gorley 2006). 

3.3 Results 

3.3.1 Macroinvertebrate community structure ofNewfoundland riffles 

A total of 148 taxa was recorded from all 65 sites over all three sampling seasons 

(Table 3.1). A full taxonomic list can be found in Appendix 2. Ofthe total taxa, three 

taxa were exclusive to the Avalon, thirteen were restricted to Terra Nova and twenty-one 

taxa were found only in Gros Morne. Many others were found in only two of the three 

regions. Six taxa were new records either for the province or for the Island, but none of 

the new records occurred on the Avalon Peninsula (see Appendix 2 for details). 

Plecoptera were the least diverse of all the taxonomic groups, while the 

Trichoptera group was the most diverse. However, many dipterans were not identified to 

levels lower than family (e.g. Chironomidae and Ceratopogonidae) due to the difficulties 
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associated with identification. Therefore, the relative number of taxa for this particular 

taxonomic group is artificially low. Although no one region contained all taxa, all the 

Ephemeroptera taxa found in this study were recorded in Gros Morne. In all cases, the 

number of taxa recorded increased from the Avalon to Terra Nova to Gros Morne (Table 

3.1). However, this staged increase may be attributed to the species-area curve where, 

with greater areas sampled, there is increased likelihood of greater numbers of taxa 

collected (Figure 3.1). A rarefaction analysis indicated that Terra Nova and Gros Morne 

have similar levels of taxonomic riclmess, though regional differences in the composition 

of taxa do not entirely disappear. 

Table 3.1 Taxonomic richness and mean number oftaxa per site for the Avalon 
Peninsula, Terra Nova and Gros Morne regions over all three seasons. Standard 
deviations are in parentheses. 

Taxa Data 
Avalon Terra Nova Gros Mome All Sites 

(n = 10) (n = 20) (n = 35) (n = 65) 

Total Taxa Total taxa 79 120 129 148 

Mean taxa/site 33.6 (5.2) 44.4 (7.4) 34.5 (8.4) 37.3 (8.9) 

Ephemeroptera Total taxa 17 21 25 25 

Mean taxa/site 7.6 (3.0) 10.6 (2.5) 8.7 (2.5) 9.1 (2.8) 

Plecoptera Total taxa 6 7 8 9 
Mean taxa/site 2.2 (1.3) 2.9 (0.7) 2.9(1.1) 2.8 (1.1) 

Trichoptera Total taxa 22 32 34 40 

Mean taxa/site 7.9 (3.0) 12.2 (3.3) 9.5 (2.9) 10.1 (3.3) 

Diptera Total taxa 17 29 30 34 

Mean taxa/site 6.8 (0.9) 8.8 (2.9) 7.6 (2.3) 7.8 (2.4) 

Coleoptera Total taxa 4 10 13 17 

Mean taxa/site 1.9 (1.2) 3.4 (1.2) 2.1 (1.2) 2.5(1.4) 

Non-insects Total taxa 1 1 14 13 14 

Mean taxa/site 6.7 (2.3) 5.2 (1.3) 3.1 (2.1) 4.3 (2.3) 
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Figure 3.1 Accumulation of taxa as number of organisms sampled increases for the 
Avalon Peninsula, Terra Nova and Gros Morne regions (rarefaction curves). 

In most cases, Terra Nova had the highest mean number of taxa per site, except 

for Plecoptera, where it was even with Gros Morne, and for non-insects, where the 

Avalon had approximately 1.5 more taxa per site than Terra Nova (Table 3.1 ). Analysis 

of Variance (ANOVA) tests detected significant differences among the three regions for 

total taxa, Ephemeroptera, Trichoptera, Coleoptera and non-insects (p between <0.00 I 

and 0.008) (Table 3.2). Mean numbers of Diptera and Plecoptera per site did not differ 

significantly between regions. The A val on and Gros Morne had identical mean numbers 

of total taxa in their streams. 
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Table 3.2 Analysis of Variance (ANOV A) tables comparing the taxonomic richness of 
sites in the Avalon Peninsula, Terra Nova and Gros Morne. 

Degrees Sum of Mean 
Source Freedom Squares Squares F-statistic P-value 

Total Taxa Factors 2 1401.90 701.00 11.73 <0.001 
Error 62 3703.70 59.70 

Total 64 5105.60 

Ephe me ropte ra Factors 2 70.55 35.28 5.25 0.008 
Error 62 416.89 6.72 

Total 64 487.45 

Plecoptera Factors 2 3.85 1.93 1.76 0.180 
Error 62 67.69 1.09 
Total 64 71.54 

Trichoptera Factors 2 149.77 74.89 8.25 0.001 
Error 62 562.84 9.08 

Total 64 71 2.62 

Diptera Factors 2 29.39 14.69 2.63 0.080 
Error 62 345.75 5.58 

Total 64 375.14 

Coleoptera Factors 2 23.87 11.93 7.86 0.001 
Error 62 94.19 1.52 

Total 64 118.06 

Non-insects Factors 2 125.40 62.70 17.51 <0.001 
Error 62 222.04 3.58 

Total 64 347.45 

The relative abundance of Plecoptera, Trichoptera and Coleoptera was nearly the 

same in the commtmities of all tlu·ee regions, while Ephemeroptera, Diptera and non-

insects varied (Figure 3.2). The mayfly individuals fo rmed almost half of the community 

in Gros Morne, whi le on the Avalon, mayflies only contributed to about a quarter ofthe 

stream individuals. The A val on had the highest percentage of flies and non-insects of the 

three regions. Despite inter-regional differences, all streams were predominantly a mix of 
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Diptera (34.9-44.39%) and Ephemeroptera (24.15-41.51 %) with the other four main 

taxonomic groups together making up between 23.4 and 31.32% ofthe community. 
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Figure 3.2 The relative abundance of individuals from the major taxonomic groups 
contributing to the total macro invertebrate community in sites from the A val on 
Peninsula, Terra Nova and Gros Morne. 

3.3.2 Ordination of Newfoundland macroinvertebrate communities - all samples 

Plotting the macroinvertebrate abundance at each site revealed a basic pattern 

where the Avalon sites were on one "end" of the data "cloud", Te1ra Nova sites plotted in 

the centre, and Gros Morne sites largely plotted towards the opposite "end" of the 

"cloud" from the Avalon (Figure 3.3). Terra Nova and Gros Morne sites had an 

especially large amount of overlap in the plot, indicating greater similarity in the 

macroinvertebrate conununity structure. 

3-10 



30 Stress: 0.17 

Figure 3.3 3-dimensional MDS plot of macroinvertebrate abundance data from all sites 
and seasons, coded for region. 

An ANOSIM test for differences between regions gave a global R statistic of 

0.165 (p = 0.001), which indicated that 16.5% ofthe total variation in the data was 

assigned to the regional grouping (Table 3.3). A larger proportion of the 

macroinvertebrate community variation was explained by the pairwise tests between the 

Avalon and Terra Nova (R = 0.201 , p = 0.001) and the Avalon and Gros Morne (R = 

0.243, p = 0.001). Less of the variation between TeJTa Nova and Gros Morne sites was 

explained by the regional label, where the pairwise test had the lowest R statistic (R = 

0.119), though the difference between the groups was still significant (p = 0.001 ). 

A greater portion of the variation in the macro invertebrate community 

composition was explained when season was accounted for in the ANOSIM test (Table 

3.3). The global R statistic increased from 0.165 to 0.225 . Though both values were 
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significant to the level of 0.00 I, a larger R statistic indicates an increase in the amount of 

variation explained by the analysis. When season was accounted for, the difference 

between the Avalon and Terra Nova became the largest regional difference of the three 

with an R statistic of 0.390. However, Terra Nova and Gros Morne sites were still the 

most similar of the regional pairs with a comparatively small R statistic of 0.191. All 

pairs of regions were significantly different with a p-value of 0.00 1. 

Table 3.3 ANOSIM tests for strengths of regional differences between sites sampled on 
the Avalon Peninsula, Terra Nova and Gros Mome with all sites tested regardless 
of season (one-way analysis) and accounting for season (two-way analysis). 

Two-way 
One-way crossed with season 

R p R p 
Global R 0.165 0.001 0.255 0.001 

Avalon vs. TeiTa Nova 0.201 0.001 0.390 0.001 

Avalon vs. Gros Mome 0.243 0.001 0.344 0.001 

TeiTa Nova vs. Gros Mome 0.119 0.001 0.191 0.001 

The macroinvertebrate taxa responsible for the differences between the regions 

are elucidated in Table 3.4. The Avalon Peninsula and Gros Morne were the most 

dissimilar with an average Bray-Curtis dissimilarity of71.83. However, unlike the 

ANOSIM, Terra Nova and Gros Mome were more dissimilar than the Avalon and Terra 

Nova. The taxa causing the dissimilarity between the A val on and Terra Nova and the 

Avalon and Gros Morne were the same three: Chironomidae (dipteran midges), 

Hydropsyche slossonae (caddisfly) and Acariformes (mites). The Avalon consistently had 

more of these tlu·ee taxa than the other two regions. Terra Nova and Gros Morne's 
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average dissimilarity of 69.10 was partially due to four taxa: Chironomidae, Baetis 

jlavistriga (mayfly), B. tricaudatus (mayfly), and Oulimnius latiusculus (elmid beetle). 

Table 3.4 Bray-Curtis dissimilarities of macroinvertebrate abundance between regions 
and taxa responsible for at least 3% of the total dissimilarity. 

Average dissimilarity = 68.32 Average Abundance % Contribution 
Taxon Avalon Terra Nova to Total Dissimilarity 

Chironomidae 5.69 3.72 3.49 
Hydrop syche slossonae 2.23 0.44 3.4 
Acarifonnes 2.73 1.54 3.1 

Average dissimilarity = 71.83 Average Abundance % Contribution 
Taxon Avalon Gros Mome to Total Dissimilarity 

Chironomidae 5.69 3.77 3.78 
Hydropsyche slossonae 2.23 0.35 3.43 
Acariforrnes 2.73 1.49 3.06 

Average dissimilarity = 69.1 0 Ave rage Abundance % Contribution 
Taxon Terra Nova Gros Morne to Total Dissimilarity 

Chironomidae 3.72 3.77 3.57 
Bae tis jlav istriga 0.75 1.24 3.16 
Baetis tricaudatus 3.2 3.35 3.07 
Oulimnius lat iusculus 1.25 1.35 3.03 

Separations in the plot of all macroinvertebrate abundance samples were seen 

when the axes were rotated 90 degrees from their position in Figure 3.3. These 

separations did not reflect regional differences (Figure 3.4A), but rather seasonal ones 

(Figure 3.4B and Figure 3.5). As expected from the MDS plot, season explained a large 

portion of the macroinvertebrate community differences, (R = 0.482, p = 0.001) (Table 

3.5). Again, pairwise examinations revealed a greater explanation of the data' s variation 

where summer and fall differences totalled 58.7% of the variation, and summer and 
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spring, 55.2%. Fall and spring were the most similar, explaining only 31.6% ofthe 

variation. All seasons were significantly different from one another (p = 0.001). 

Accounting for region in a 2-way ANOSIM analysis improved the amount of 

macroinvertebrate community variation explained by season (Table 3.5). The global R 

statistic increased from 0.482 to 0.516, summer and fall's differences explained 66.3% of 

the variation and fall and spring explained 33.5%. The differences between communities 

in the summer versus those in spring decreased marginally when region was accounted 

for as the R statistic dropped from 0.552 to 0.540. 

The macroinvertebrate taxa most responsible for the differences between the 

seasons seen in the MDS plot and in the ANOSIM results are listed in Table 3.6. Average 

Bray-Curtis dissimilarities were high, with the highest difference between summer and 

fall (72.47). Four taxa were influential in causing the dissimilarity: Baetis jlavistriga, 

Chironomidae, Simulium venustum/verecundum (blackfly) and Lepidostoma (caddisfly). 

Summer and spring were the next most dissimilar, with six taxa contributing at least three 

percent of the total dissimilarity, three of which were the same as in the sunm1er and fall 

dissimilarity. Fall and spring were the most similar of the three pairs, though the 

dissimilarity was still 70.44. 
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Figure 3.4 3-dimensional MDS plot of macro invertebrate abundance data from all sites 
and seasons, turned 90 degrees to the left of Figure 3.3. A) sites coded for region, 
B) sites coded for season. 

3-15 



.A Summer 
, Fall 
o s 

Figure 3.5 3-dimensional MDS plot of macroinvertebrate abundance data from all sites 
and seasons, turned 90 degrees to the right of Figure 3.4B, sites coded for season. 

Table 3.5 ANOSIM tests for strengths of seasonal differences between sites sampled in 
summer, fall and winter, with all samples tested regardless of region (one-way 
analysis) and accounting for region (two-way analysis). 

Two-way 

One-way crossed with region 
R p R p 

Global R 0.482 0.001 0.516 0.001 

Summervs. Fall 0.587 0.001 0.663 0.001 

Summervs. Spring 0.552 0.001 0.540 0.001 

Fall vs. Spring 0.316 0.001 0.355 0.001 
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Table 3.6 Bray-Curtis dissimilarities of rnacroinvertebrate abundance between seasons 
and taxa responsible for at least 3% of the total dissimilarity. 

Average dissimilarity = 72.47 Average Abundance % Contribution 
Taxon Summer Fall to Total Dissimilarity 

Baetis jlavistriga 2.97 0.10 5.38 
Chironomidae 4.90 3.42 4.17 
Simulium venustum/verecundum 2.14 0.22 3.62 
Lepidostoma 0.22 1.95 3.1 1 

Average dissimilarity = 71.62 Average Abundance % Contribution 
Taxon Summer Spring to Total Dissimilarity 

Baetisflavistriga 2.97 0.24 5.51 
Simulium venustum!verecundum 2.14 0.73 3.55 
Acariformes 2.57 0.95 3.50 
Drunella cornutella 0.00 1.95 3.48 
Chironomidae 4.90 3.95 3.25 
Epeorus pleura/is 0.75 1.40 3.01 

Average dissimilarity = 70.44 Average Abundance % Contribution 
Taxon Fall Spring to Total Dissimilarity 

Chironomidae 3.42 3.95 3.75 
Drunelfa cornutella 0.00 1.95 3.66 
Baet is tricaudatus 3.53 3.14 3.10 

3.3.3 Ordination of Newfoundland macroinvertebrate communities- seasons 

Obvious seasonal differences prompted individual consideration of each season to 

determine if regional distinctions could be seen in the data. Regional separation in 

summer was best seen in three dimensions in an MDS plot (Figure 3.6). All sites from a 

particular region sorted together and the three regional data "clouds" were almost entirely 

segregated. An ANOSIM test revealed a global R of 0.382 (p-value = 0.001), where the 

amount of variation in the macroinvertebrate dataset explained between the Avalon and 

Terra Nova was 51.3%, 53.7% by the Avalon and Gros Morne, and 26.9% by Terra Nova 

and Gros Morne (Table 3. 7). The ordering of the variations from most to least amount 
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explained was the same as in the one-way ANOSIM test, where the Avalon and Gros 

Mome were the most dissimilar of the three region pairs. These values were substantially 

higher than the R-statistics for both the one-way and two-way ANOSIM tests run with all 

the seasons together, as well as those of the other two seasons (Table 3.3, Table 3.7). All 

the region pairs were significantly different top = 0.001. 

3D Stress: 0.15 

• 

• Avalon 
+ Terra Nova 

Gros Morne 

Figure 3.6 3-dimensional MDS plot of summer macro invertebrate abundance, coded for 
region. 

Table 3.7 ANOSIM tests for strengths of regional differences betwe n sites sampled on 
the A val on Peninsula, Terra Nova and Gros Morne in summer, fall and spring 
separately. 

Summer Fall Spring 

R p R p R p 

Global R 0.382 0.001 0.224 0.001 0.189 0.001 

Avalon vs. Terra Nova 0.513 0.001 0.400 0.001 0.229 0.006 

Avalon vs. Gros Mome 0.537 0.001 0.274 0.001 0.284 0.001 

Terra Nova v . Gros Mome 0.269 0.001 0.173 0.003 0.149 0.008 
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The list of macroinvertebrate taxa causing the dissimilarities between regions was 

much larger for summer than the list provided by SIMPER for all the seasons together 

(Table 3.8). As a result, a larger proportion of the total dissimilarity was explained by a 

few species. Two taxa from the list of 9 prominent taxa making up the difference between 

the Avalon and Gros Mome supplied over 4% each to the cumulative dissimilarity: 

Chironomidae (4.27%) and Acariformes (mites, 4.20%). These two taxa groups were 

major contributors to the dissimilarity between the Avalon and Terra Nova. Hydropsyche 

slossonae also contributed to the dissimilarity between the first two regional sets (Avalon 

and Terra Nova, Avalon and Gros Morne), as in the SIMPER analysis for all the seasons 

together. The caddisfly was most abundant in the Avalon Peninsula sites. 

Baelis tricaudatus aided in the segregation of the A val on from Gros Morne and 

Terra Nova from Gros Morne; average abundance ofthe taxon on the Avalon did not 

differ enough from the abundance in Terra Nova to be included by SIMPER in the 

dissimilarity measure between those regions. An identical pattern was seen with 

Promoresia tardella (Elmidae), where Terra Nova and Gros Morne did not have 

sufficiently different abundances of the taxon. Terra Nova and Gros Morne were the 

least dissimilar (as in the ANOSIM test), but over 5% of the dissimilarity was explained 

by one taxon: Baetis jlavistriga. Epeorus pleural is (mayfly) was the second highest 

contributor in the set. Simulium venustum/verecundum and Oulimnius latiusculus were 

also major contributors to region dissimilarity between all three regions. 
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Table 3.8 Bray-Curtis dissimilarities of macro invertebrate abundance between regions in 
summer and taxa responsible for at least 3% of the total dissimilarity. 

Average dissimilarity = 60.66 Average Abundance % Contribution 
Taxon Avalon Terra Nova to Total Dissimilarity 

Hydropsyche slossonae 2.31 0.19 3.91 
Acariforrnes 4.17 2.46 3.87 
Chironomidae 6.82 4.67 3.85 
Naididae 2.40 0.63 3.69 
Promoresia tardella 2.40 0.73 3.55 
Baetis jlav istriga 3.04 1.99 3.50 
Lurnbriculidae 2.06 0.61 3.29 
Simulium venustum/verecundum 2.96 2.05 3.22 
Oulimnius latiusculus 1.79 1.02 3.15 

Average dissimilarity = 63.60 Average Abundance % Contribution 
Taxon Avalon Gros Mome to Total Dissimilarity 

Chironomidae 6.82 4.39 4.27 
Acariforrnes 4.17 2.10 4.20 
Hydropsyche slossonae 2.31 0.14 3.80 
Naididae 2.40 0.37 3.72 
Promoresia tardella 2.40 0.59 3.70 
Baetis tricaudatus 4.75 3.00 3.51 
Simulium venustum/verecundum 2.96 1.92 3.44 
Lumbriculidae 2.06 0.53 3.30 
Oulimnius latiusculus 1.79 1.55 3.14 

Average dissimilarity = 57.54 Average Abundance %Contribution 
Taxon Terra Nova Gros Mome to Total Dissimilarity 

Baetis jlavistriga 1.99 3.62 5.47 
Epeorus pleura/is 0.00 1.53 4.13 
Dolophilodes dist inctus 1.65 1.80 3.91 
Simulium venustum/verecundum 2.05 1.92 3.78 
Simulium tuberosum 1.61 1.48 3.63 
Oulimnius latiusculus 1.02 1.55 3.61 
Baetis tricaudatus 3.69 3.00 3.36 
Chironomidae 4.67 4.39 3.09 
Leptoceridae (immatw-es) 1.23 0.20 3.02 
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Fall was the only season in which all 65 sites were sampled. The regions were not 

as obviously separated as in the summer MDS, and as such required two views to portray 

separation of site clusters (Figure 3.7). Avalon sites clustered quite tightly on the plot, 

whereas Gros Mome sites were widely scattered throughout the space. Approximately 

half of the Terra Nova sites lay within the Gros Mome site "cloud". The global R-statistic 

was also lower in this season compared to the all season two-way ANOSIM and the 

summer R-statistics (R = 0.224) (Table 3.3, Table 3.7). The amount of variation 

explained by the first two season pairs (Avalon and Terra Nova = 40%, Avalon and Gros 

Mome = 27.4%) was higher than that explained by all the seasons together. Terra Nova 

and Gros Morne explained less of the macroinvertebrate variation, where the resulting R 

statistic was 0. 173. Fall was the only season to have a higher R-statistic for the Avalon 

and Terra Nova than for the Avalon and Gros Morne. This was reflected in Figure 3.7 B, 

which showed that Terra Nova points extended off into a different axis from the other 

two regions. All comparisons were statistically significant top = 0.001, except for the 

pairwise analysis of Terra Nova and Gros Mome which was significant top = 0.003. 
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Figure 3.7 3-dimensional MDS plot of fall macroinvertebrate abundance, coded for 
region. A) initial plot, B) view when axes in A) rotated 90 degrees downward. 
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Despite the ANOSIM tests indicating that fall macro invertebrates were Jess able 

to define regions than in the summer, the SIMPER test revealed that regions were more 

dissimilar in fall than in summer (Table 3.9). The Avalon and Gros Morne were the most 

different regional pair, with a Bray-Curtis dissimjlarity of 69.04. Chironomidae and 

Acerpenna pygmaeus (mayfly) were highly influential in all three pairwise comparisons 

of regions. In both the Avalon and Terra Nova test and the Avalon and Gros Morne test, 

the family Chironomidae contributed at least 4% to the total dissimilarity. For Terra Nova 

and Gros Mome, Acerpenna pygmaeus and Baetis tricaudatus contributed 4.89 and 

4.17% respectively to the dissimilarity between the two regions. As in the all season and 

summer analyses, Hydropsyche slossonae was selected by SIMPER as a top contributor 

to the dissimilarity between the Avalon and Terra Nova and also the Avalon and Gros 

Morne. Naididae, a group of oligochaete worms, also contributed to the dissimilarity 

between the two region sets. Ephemerella subvaria was only effective in distinguishing 

the Avalon from Gros Mome; Lepidostoma (caddisfly) and Heptageruidae (immatures) 

were only contributors to the dissimilarity between Terra Nova and Gros Morne. 
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Table 3.9 Bray-Curtis dissimilarities of macro invertebrate abundance between regions in 
fall and taxa responsible for at least 3% of the total dissimilarity. 

Average dissimilarity = 63.43 Average Abundance %Contribution 
Taxon Avalon Terra Nova to Total Dissimilarity 

Chironomidae 5.34 2.82 4.10 
Hydropsyche slossonae 2.70 0.77 3.67 

Naididae 2.72 0.50 3.60 

Acerpenna pygmaeus 2.51 2.51 3.00 

Average dissimilarity = 69.04 Average Abundance % Contribution 
Taxon Avalon Gros Mome to Total Dissimilarity 

Chirono midae 5.34 3.21 4.00 
Hydropsyche slossonae 2.70 0.64 3.63 
Naididae 2.72 0.37 3.56 
Ephemerella subvaria 2.59 0.30 3.47 
Acerpenna pygmaeus 2.51 0.97 3.25 

Average dissimilarity = 65.01 Average Abundance %Contribution 
Taxon Terra Nova Gros Mome to Total Dissimilarity 

Acerpenna pygmaeus 2.51 0.97 4.89 

Baetis tricaudatus 2.99 3.87 4.17 
Chironomidae 2.82 3.21 3.93 
Lepidostoma 2.53 1.57 3.62 
Oulimnius latiusculus 1.42 1.20 3.26 

Heptageniidae 1.52 1.40 3.09 

Spring macroinvertebrate commw1ities ordinated much the same as fall 

communities (Figure 3.8). Terra Nova sites clustered tightly together, while Avalon sites 

were more spread out but still gathered to one "end" of the ordination. Gros Morne sites 

spread throughout the ordination plot. According to the ANOSIM tests, the global R 

(percent variation explained by region) was the lowest out of all the seasons with an 

R-statistic of0.189, though not as low as the one-way all-seasons global R (Table 3.3, 

Table 3.7). All regions differed significantly from one another: the Avalon and Terra 

Nova (R = 0.229, p = 0.006), the Avalon and Gros Morne (R = 0.284, p = 0.001), and 
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Terra Nova and Gros Mome (R = 0. 149, p = 0.008). 

• • 

II 

30 Stress 0.16 • Avalon 
+ Terra Nova 
11 Gros Morne 

Figure 3.8 3-dimensional MDS plot of spring macroinvertebrate abtmdance, coded for 
region. 

The average dissimilarity of region pairs in spring was high; in all but one pair 

(Avalon and Terra Nova) the dissimilarities were the highest of the three seasons (Table 

3. 1 0). Several different species became important in this season. Where summer and fall 

were mainly influenced by organjsms that were ubiquitous in distribution through most 

regions and all seasons (such as Hydropsyche slossonae, Naididae and elmid beetles), 

spring dissimilarity studies also contained season-specific taxa (such as Prosimulium 

mixtum (blackfly), Drunella cornu/ella (mayfly) and Simulium murmanum). The Avalon 

Peninsula and Gros Morne were the most distinct from each other, though no one taxon 
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had a substantially higher contribution to the total dissimilarity. P. mix tum provided the 

highest amount of dissimilarity in both the Avalon and Terra Nova and Terra Nova and 

Gros Morne regional pairs ( 4.27 and 4.57%, respectively). Epeorus pleura/is also 

distinguished Terra Nova from Gros Morne, where its contribution was 4.05%. 

Table 3.10 Bray-Curtis dissimilarities of macroinvertebrate abundance between regions 
in spring and taxa responsible for at least 3% of the total dissimilarity. 

Average dissimilarity = 62.37 Average Abundance % Contribution 

Taxon Avalon Terra Nova to Total Dissimilarity 
Prosimulium mixtum 1.69 2.34 4.27 
Drunella cornutella 2.37 2.00 3.87 
Baetis tricaudatus 3.69 2.88 3.47 
Hydropsyche slossonae 1.67 0.36 3.42 

Oulimnius latiusculus 1.45 1.32 3.33 
Simulium murmanum 1.03 1.04 3.00 

Average dissimilarity = 69.20 Average Abundance %Contribution 

Taxon Avalon Gros Mome to Total Dissimilarity 
Epeorus pleura/is 0.28 1.83 3.53 

Drunella cornutella 2.37 1.80 3.49 
Hydropsyche slossonae 1.67 0.24 3.41 
Prosimulium mixtum 1.69 0.80 3.34 

Chironomidae 4.91 3.82 3.33 
Oulimnius latiusculus 1.45 1.34 3.06 

Promoresia tardella 1.68 1.04 3.01 
Acerpenna pygmaeus 1.69 0.31 3.00 
Baetis tricaudatus 3.69 3.12 3.00 

Average dissimilarity = 65.57 Average Abundance % Contribution 

Taxon Terra Nova Gros Mome to Total Dissimilarity 
Prosimulium mixtum 2.34 0.80 4.57 
Epeorus pleura/is 1.20 1.83 4.05 
Oulimnius latiusculus 1.32 1.34 3.31 

Chironomidae 3.67 3.82 3.24 

Simulium murmanum 1.04 1.05 3.23 

Drunella cornu/ella 2.00 1.80 3.20 
Leucrocuta hebe 1.38 0.09 3.00 
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3.4 Discussion 

The Gros Morne region initially appeared to have the greatest diversity of the 

three regions based on number of taxa found. However, the species-area curve analysis 

showed that for similar sample sizes, Terra Nova and Gros Morne had a nearly equal 

diversity of the taxa identified. This relative equality of richness between Gros Morne 

and Terra Nova was not expected given the greater geological and topographical diversity 

of the Gros Morne region (examples of habitat diversity resulting in increased richness: 

Townsend et al. 1983; Lilleharnmer 1985; Vinson and Hawkins 1998; Lomond and 

Colbo 2000). Most Terra Nova sites were in forested areas with cobble substrates, where 

Gros Morne sites ranged from forested to barren and sand substrate to bedrock, and 

exhibited a wide range of pH and conductivity values. However, species-area analysis 

merely shows that an equal sample of individuals from the two areas produced an 

essentially equal diversity. Therefore, in this study, the number of taxa filling the niches 

did not change in spite of differences in habitat between regions. Despite this, Terra Nova 

sites tended to be richer than Gros Morne sites when analyzed on a per-site basis (mean 

number of taxa per site), this may reflect the more adverse sites present in Gros Morne 

(e.g. pH extremes, low organic input), which tended to have lower macroinvertebrate 

abundance (and thus richness) than buffered forested sites. While there were more novel 

taxa in Gros Morne, there were still a number of taxa in Terra Nova that were not shared 

with Gros Morne or the A val on. This was again unexpected as all regions had examples 

of riffle habitat resembling those in Terra Nova. 

The six new records for the island are largely a reflection of the increased 
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sampling effort of this study compared to studies of the past. Therefore, two types of 

survey are supported for future study. One is a more intense survey of the established 

sampling sites to increase the chance of collecting rare specimens. The second is a 

broader survey including more portions ofNewfoundland (the Strait of Belle Isle 

ecoregion, for example) which may reveal novel taxa occurring in restricted or 

specialized habitats. 

The A val on Peninsula had the fewest taxa as well as the lowest mean number of 

taxa per site. This is unlikely to be wholly due to the number of sites sampled as the 

rarefactions indicated there were fewer taxa for the same sample size compared to the 

other two regions. Also, A val on sites encompassed a range of stream sizes and samples 

were taken from riffles just as they were in the other regions, decreasing the chance of 

sampling bias between regions. The low taxonomic richness may, however, been 

influenced by the large proportion of urban sites in the area. Urbanization causes a 

decrease in sensitive taxa and overall species richness, as well as an increase in 

pollution-tolerant taxa (Colbo 1993; Walsh et al. 2001). The effects of human activities 

will be discussed in greater detail in a following chapter. 

The proportions of major taxonomic groups in Newfoundland streams are of 

significant interest. Oswood's (1989) survey of Alaskan streams led to the confirmation 

that numbers of Ephemeroptera, Plecoptera and Trichoptera taxa decrease with increasing 

latitude while numbers of Chironomidae increase. Proportions of the same six major 

groups cited in this paper (Figure 3.2) were elucidated and then compared to a high and a 

low-altitude Rocky Mountain study, a northern prairie study and the Alaskan study as 
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displayed in Oswood (1989). The other three regions' streams were made up of no more 

than 25% Diptera, whereas Alaskan streams averaged about 60%. The relative abundance 

ofDiptera in Newfoundland riffles was between 35 and 45%. As the latitude of the island 

is not as high as Alaska, but more akin to the latitudes of the other sites, this was an 

interesting finding. However, similarities between Newfoundland and Alaska may 

explain the resemblances in the macroinvertebrate composition in the two areas. Oswood 

(1989) cited biogeography and tolerance of what can be considered "adverse ecological 

conditions" by individual taxa as possible reasons for the distribution patterns he saw. 

Newfoundland has biogeographical simi larities to Alaska with the latter's psuedo-island 

effects caused by watershed isolation and its high-Arctic location (Damman 1983; 

Oswood 1989). Many streams on the island are affected by one or many environmental 

factors that can stress and therefore exclude macroinvertebrate taxa, such as extreme pH, 

low nutrients, and high disturbance. Thus, as dipterans are better suited to some 

environmental extremes than other taxa, this makes them more successful in places like 

the high arctic and boreal, mid-Atlantic islands. What these environmental factors may be 

will be discussed in Chapter 4. 

Converse to the pattern seen in the Diptera, proportions of Ephemeroptera on the 

Island are in the mid-range between Alaska and the Rockies where the Rockies have a 

much higher proportions of mayflies (Oswood 1989). The proportion of Ephemeroptera 

in the Avalon streams mirrored the northern prairie streams (24% to 20%, respectively). 

The mayflies drastically increased in relative abundance moving west aero s 

Newfoundland where Gros Morne streams were composed of nearly 42% mayflies, 
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which was comparable to low-elevation Rocky Mountain streams in Idaho at about 45% 

(Andrews and Minshall 1979; Oswood 1989). This tendency towards increased mayfly 

dominance in Gros Morne streams compared to A val on streams may be influenced either 

by physical/chemical variables associated with the different types ofhabitats present in 

the two regions or urbanization effects, which are also physical-chemical in nature. A 

direct tie of mayfly abundance to urbanization could be a simple and useful measure for 

bioassessments. Therefore, the likelihood and strength of this relationship will be further 

examined in Chapters 4 and 5. 

Macroinvertebrate data showed more variation with seasons than among regions 

as evidenced by the much larger amounts of variation explained by season with 

ANOSIM. Summer and fall were always the most divergent, followed by summer and 

spring, then fall and spring. Many other studies have also described this disparity 

between the macroinvertebrate communities among sites sampled in different seasons 

(Minshall et al. 1985; Gibbins et al. 2001; Lorenz and Clarke 2006; Sporka et al. 2006). 

Lorenz and Clarke (2006) found that macroinvertebrate communities sampled using 

different collection methods still ordinated 100% to the season they were sampled in. The 

study perfonned by Sporka et al. (2006) involved sampling a fixed number of sites every 

two months. When the macroinvertebrate communities were plotted using Principal 

Component Analysis, three groups formed: samples taken in April , those taken in June 

and August and sites sampled in October, December and Februrary. Season is obviously 

a large driving factor for macroinvertebrate community structure and distribution due to 

the effects of climate on stream physical and chemical parameters (temperature, 
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precipitation, etc.) (Lenat 1988; Sporka et al. 2006). 

The difference in macroinvertebrate community structure between the seasons is 

largely due to life history (Hynes 1970; Reice et al. 1990). Many benthic insects in cold 

waters emerge over the summer and for many species, the eggs hatch soon after 

oviposition in the summer (Hynes 1970; Larson and Colbo 1983), therefore a large 

proportion of the organisms sampled in the sun1mer are immature (Merritt and Cummins 

1996). Immature individuals are difficult to identify to lower levels of taxonomy and 

often only family-level identifications were possible for several groups in the summer 

samples. These insects would then be in their third to fourth i nstar in the fall, and 

sufficiently mature to improve the level of identification, and even more advanced by the 

spring sample period. However, some species have their larval stages confined to the 

summer, which also contributes to disparity among seasons (Larson and Colbo 1983). 

Taking the different growth strategies into account, it would appear that spring 

would be the best time to sample the macroinvertebrate community, as the greatest 

number of species would have fully developed preimaginal stages present. It would then 

be assumed that more reliable identifications would be better able to segregate regional 

communities. However, this work did not indicate an increase in the ability of spring 

multivariate analyses to detect differences amongst regions. Spring had the lowest R 

statistics of the three seasons both globally and for each season pair. Possible reasons for 

spring's decreased ability to explain variation in macroinvertebrate communities between 

regions are as follows. One, sampling in Gros Morne in particular was strongly affected 

by torrential spring rains. Many of Gros Morne's sites do not have hydrological buffering 
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capacity as there are few fen/pond step-wise type streams, especially in the Tablelands. 

Therefore, spates were more destructive in those areas, as evidenced by the severely 

reduced abundance of organisms in those samples. Gibbins et al. (200 1) also found the 

spring season to be the most variable due to high precipitation and resultant drift of 

macroinvertebrates. Two, "spring" described as the season just prior to 

pupation/hatching, can be difficult to identify. One week too late and many of the 

nymphs could have already left the stream bed, reducing the number of those taxa 

sampled or completely removing them from the taxonomic list for that season (Hynes 

1970). Three, the spring season seemed to be dominated by blackflies, which are 

ubiquitous in their distribution (Larson and Colbo 1983). Species of blackfly, w1ique to 

Gros Morne in habitats sampled, also tended to be rare. Therefore those taxa did little to 

distinguish Gros Morne from the other regions. 

Though the regions were all statistically different from one another, the R values 

associated with those p-values indicate that the differences between regions may not be 

biologically significant. R statistics may be positive, negative or zero, with zero meaning 

there is no difference between the groups being compared (Clarke and Gorley 2006). 

Most ofthe R values produced from the regional analyses were small: between 0.1 and 

0.3. Therefore, the regions with small values would be considered only slightly different 

[Tom one another. For example, Terra Nova and Gros Morne's R statistic was almost 

always below 0.2 (except in sUll1ffier where it was 0.269). However, the A val on 

Peninsula was very different from the other two regions; comparisons with the A val on 

gave the highest R statistics in all the ANOSIM tests especially in summer where the R 
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values for those two comparisons were over 0.5. Therefore, there is generally little 

difference between the macroinvertebrate communities ofNewfoundland, but the Avalon 

Peninsula communities tend to significantly differentiate from the other two main regions 

depending on the season. P-values in ANOSIM are highly susceptible to differences in 

sample size between groups, which explains the highly significant values paired with low 

R statistics (Clarke and Gorley 2006). 

The observed differences within "regions" may also be limited by the fact that the 

three regions used were not true ecoregions; the sites gathered into "regions" due to 

similarities in geographic location and geological history. An analysis of differences 

between macroinvertebrate communities in the various "true" ecoregions of 

Newfoundland may reveal a greater segregation between communities by reducing 

intra-regional variation, thereby increasing inter-regional dissimilarity. Classification of 

macroinvertebrate communities by ecoregion has been met with varying success. In some 

studies, there was an excellent concordance of community differences and ecoregions 

(Feminella 2000; Rabeni and Doisy 2000). In others, a more conservative view of the 

ecoregion method of a priori site sorting has led to using clustering to adjust terrestrial 

ecoregions to suit aquatic biological data (Gerritsen et al. 2000; Sandin and Johnson 

2000), and still others find ecoregions to be of no use whatsoever for aquatic co nun unity 

classification (Marchant et al. 2000). Should the ecoregion method of classification prove 

useful for Newfoundland macroinvertebrates it would mean that a priori classifications 

could preclude the initial exploratory multivariate analysis. The ecoregion view was not 

tested in this study due to uneven numbers of sites sampled in each region. 
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.----------------------------------·--

The SIMPER analysis pairs well with the ANOSIM analysis as it picks out the 

macroinvertebrate taxa that drive observed differences among groups (Clarke and Gorley 

2006). Here it becomes a little clearer how the regions of Newfoundland have a high 

degree of similarity between them. The dissimilarity that was observed between seasons 

and between regions was often provided by the same taxa. Chironomidae supplied at least 

3% of the total dissimilarity to all regions pairs over all seasons except for the A val on 

and Terra Nova pair in spring. Oulimnius latiusculus, an elmid beetle was also useful for 

dividing the seasons in seven out of nine instances. Taxa such as Simulium 

venustum/verecundum, Acerpenna pygmaeus and Prosimulium mixtum were more 

"within season" descriptors of regional disparity. SIMPER essentially provides a list of 

"core" macroinvertebrate taxa that could be used as bioindicators in some systems 

(Clarke and Gorley 2006). However, as most of the "core taxa" are the same among the 

regions due to Newfoundland's depauperate fauna, the abundance of the taxa becomes of 

greater importance. The absence of a taxon or group of taxa is certainly a strong indicator 

of differences between sites and regions, but the differences in abundance of a certain 

taxon can indicate habitat preference or the onset of degrading conditions. Therefore, 

abundance may give an earlier warning of stress in the habitat before the taxon is 

completely lost. This possible reliance on abundance for preventative measures presents 

the need for a sampling method that is relatively insensitive to spatial variation (Merritt 

and Cummins 1996; Carter and Resh 2001; Gebler 2004). 
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3.5 Conclusions 

In addressing objectives one and two of this chapter, significant differences in 

composition between macroinvertebrate communities in the three geographic regions 

studied were found. This study supports the review of Vinson and Hawkins (1998) who 

suggested that the analysis of regional compatibility of data collected over a broad 

geographic area must be addressed prior to making comparisons and conclusions. Terra 

Nova and Gros Morne were more taxonomically rich than the Avalon, even when 

accounting for sample size. Differences in the relative abundance of some taxonomic 

groups composing the regional communities were found. A val on sites were dominated by 

Diptera, while Gros Morne sites had a greater proportion of mayflies, but there was little 

difference between the regions in proportions of beetles, caddisflies and stoneflies. 

However, the R values for comparisons among regions were low, indicating that the 

macro invertebrate communities were composed of many of the same taxa. The spread of 

the sites observed in the MDS plots indicate considerable variation within regions and 

suggest non-regional environmental gradients may exert greater influence on 

macroinvertebrate communities. Environmental variables often affect patterns in benthic 

macroinvertebrate communities (Boulton and Lake 1992; Gibbins eta!. 2001 ; Sporka et 

a!. 2006). This line of reasoning will be pursued in the following chapter. 

In addressing the second and third chapter objectives, clear differences between 

seasons were seen which encourages the use of a standardized sampling period for site 

comparisons and biomonitoring. The current baseline data provided a rationale for 

suggesting the fall as the most appropriate season for monitoring studies. The summer is 
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often plagued with low water levels and immature specimens, and spring precipitation 

and snow melt cause spates that disturb macroinvertebrate communities and impair 

sampling. 
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4 Environmental Effects on Macroinvertebrate Community 
Structure in Newfoundland Riffles 

4.1 Introduction 

Understanding the interaction of organisms with their environment has been the 

aim of ecologists for decades, if not centuries (vis Vinson and Hawkins 1998; Bonada et 

al. 2006). Ultimately, the relationship between macroinvertebrates and their envirorunent 

must be elucidated before the taxa can be of use in biomonitoring (Vinson and Hawkins 

1998). Many abiotic and biotic factors influence the make-up of a community. Therefore, 

changes in one or more envirorunental factors will affect the members of the community 

as a whole. Recognizable changes in the commtmity can, with this knowledge, lead to the 

identification of the stressor and thereby amel ioration of the conditions causing the 

change (Bonada et al. 2006). 

Poff ( 1997) reasoned how an understanding of the interactions of strean1 

organisms with their envirorunent could be accomplished: " ... understanding patterns of 

distribution and abundance of !otic species requires that we test theoretical predictions 

about functional relationships between species and their envirorunents across a range of 

spatial and temporal scales." (Poff 1997 p. 392). The author indicates that the relationship 

between macroinvertebrates and their environment may change across scales of space 

and time. This theory is confirmed by the contradictory results of studies employing the 

same methods on the same types of habitats, but in different areas of the world (Vinson 

and Hawkins 1998). The implied differences between the results of foreign studies and 

those conducted in Newfoundland are compounded by the fact that Newfoundland's 

4-1 



fauna is greatly reduced by island effects and its recent glaciation (Larson and Colbo 

1983; Preston 1962). A reduction in fauna tends to lead to an increase in the breadth of 

each taxon's niche (Preston 1980). Therefore, even though the mainland may be 

geographically close to Newfoundland, a differential response ofNewfoundland's 

macroinvertebrates to their environment may be expected merely due to the Island's 

reduced diversity and thus inter-specific interactions. 

Despite differences in interactions between varying locations, all organisms 

require resources: suitable habitat and nourishment, for example. The fact that species 

have ranges is indicative of the ability of external factors to limit macroinvertebrate 

presence and abw1dance. Also, it could then be expected that species within taxonomic 

groups will respond to environmental cues across time and space in the same way, due to 

similar environmental requirements. There are nearly as many studies in agreement as not 

over the effects of environmental factors on invertebrates (Vinson and Hawkins 1998). 

The presence of corroborating conclusions validates the formation of some general 

hypotheses from the results of other studies, particularly when the sites have similar 

physical and chemical properties (Pennak 1970). For example, New Zealand streams 

have similar hydrology to most Newfoundland streams in that they tend to form on 

plateaus and then fall to the ocean quite rapidly (Death and Joy 2004). Therefore, some 

inference about how hydrology-mediated processes affect macroinvertebrates may be 

drawn from those studies, even though the species complement differs. 

Richards et al. (1997) discovered that large-scale environmental parameters (i.e. 

bedrock geology) influenced macroinvertebrates at the community level, while 
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small-scale gradients affected invertebrates at a finer scale (i.e. species traits). Therefore, 

it is expected that the composition of a macroinvertebrate community will be more 

strongly related to large spatial-scale environmental factors (e.g. watershed-level 

differences vs. site-level differences). In contrast, individual taxa should show a greater 

response to smaller-scale gradients (e.g. substrate size). 

There are two pieces of information required from each environmental parameter 

in this study: does it correlate with macroinvertebrate communities or individual taxa 

richness and/or abundance, and if so, is the relationship positive or negative. A lack of 

environmental correlations with the biota indicates a lack ofbiologically important 

parameters in the test, while the direction of the relationship can be used for 

biomonitoring and site prediction. Most studies can agree on a parameter' s importance, 

though directionality of the response tends to vary as widely as the study locations 

(Vinson and Hawkins 1998). Newfoundland macroinvertebrates are expected to respond 

to the same contingent of environmental paran1eters as invertebrate comrmmities in other 

studies, though the direction of the relationship may differ due to the effects of the 

Island 's unique geographic location (island effects), recent glaciation (later colonization, 

fewer established taxa) and stream form (see Figure 2.2). 

Longitude and latitude were considered prime factors influencing invertebrate 

community distribution patterns in northern Europe (Heino 200 1) and world-wide 

(Fischer 1960; Giller and Malmqvist 1998). These large-scale " location" variables often 

correlate with climate, geology and geological history, and are typically equated with 

terrestrial ecoregions. Ecoregions are considered driving forces in invertebrate 
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colonization and persistence, often overriding the effects of smaller-scale variables 

(Corkum 1991; Tate and Heiny 1995; Verdonschot 2006). Geomorphic processes such as 

glaciations have an effect on the benthos as they dictate when colonization of the region 

can begin (Giller and Malmqvist 1998; Wohl et al. 1995). Geologic structure is important 

as it dictates the type of rock making up the region and thus, the potential mineral and 

nutrient inputs into the stream. In Newfoundland, a study of lake outlet Ephemeroptera, 

Plecoptera, and Trichoptera (EPT) communities observed a significant difference in 

diversity and abundance between relatively close geographical regions (Lomond and 

Colbo 2000). Therefore, regional differences in diversity and abundance can also be 

expected to occur between the riffle communities of the full complement of 

macroinvertebrate taxa. 

Related to geology is substrate size, which is also an important factor affecting the 

colonization ofmacroinvertebrates (Reice 1980; Scarsbrook and Townsend 1993; Wohl 

et al. 1995; Giller and Malmqvist 1998). Generally, a cobble-size substratum and medium 

to high embeddedness produce the highest diversity and abundance of macroinvertebrates 

(Williams and Mundie 1978; Hawkins et al. 1982; Cobb et al. 1992; Giller and 

Malmqvist 1998). Channel width, both in the bankfull (maximum flow) stage and 

average (wetted width during sampling) flow stage are linked to macroinvertebrate 

richness, abundance and location within a stream (Bronmark et al. 1984; Jenkins et al. 

1984; Kilgour and Barton 1999; Malmqvist and Hoffsten 2000). Areas of stream 

described as riffles, which are sections of fast-moving, choppy water, have been recorded 

as having the highest macroinveJiebrate abundance in a stream (Brussock and Brown 
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1991; Halwas et al. 2005). Velocity has a variety of effects on invertebrate communities 

in the literature, ranging from no effect (Quinn and Hickey 1990; Sylvestre and Bailey 

2005), to a positive effect on diversity and abundance (Rabeni and Minshall 1977; 

Hawkins et al. 1982), to a negative effect on richness and abundance (Erman and 

Mahoney 1983; Brooks et al. 2005). 

The simple measure of watershed size has also been found to correlate with 

invertebrate community composition (Bronmark et al. 1984; Kilgour and Barton 1999; 

Malmqvist and Hoffsten 2000). In many ways altitude is linked to watershed size, 

primarily through stream order (c. v. River Continuum Concept Vannote et al. 1980). In 

many studies, increased altitude was linked to macroinvertebrate composition (Furse et al. 

1984; Malmqvist and Hoffsten 2000; Heino 2001; Sanderson et al. 2005), though others 

have found little effect or conflicting results (Hawkins et al. 1997; Verdonschot 2006). 

Con·elated with altitude is riparian vegetation, as higher altitudes have less vegetation 

than lower altitudes (Meades 1983). The type and amount of vegetation impacts the 

amount of nutrients and tannins that enter the river during rain events. In turn, the 

vegetation dictates the types and abundance of herbivores that may colonize the area 

(Woodall and Wallace 1972; Hawkins et al. 1982; Giller and Malmqvist 1998; Black et al. 

2004). Also, riparian vegetation can cause shading effects, which may increase or 

decrease taxonomic richness (Clenaghan et al. 1998; Malmqvist and Hoffsten 2000). 

Vegetation may also grow directly in the stream in the form of macrophytes. 

Macrophytes have been shown to increase macroinvertebrate richness and density in 

several studies (Cienaghan et al. 1998; Malmqvist and Hoffsten 2000; Heino 2005). 
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Some others found reductions in Ephemeroptera, Plecoptera and Trichoptera (EPT) taxa 

due to decreased oxygen levels and a possible increase in the number of predators in 

macrophyte beds (Carpenter and Lodge 1986; Collier et al. 1998). 

Water chemistry is strongly influenced by the climate, underlying geology and 

land use in the stream's catchment (Tate and Heiny 1995; Walsh et al. 2001; Huryn et al. 

2002; Doledec et a!. 2006). Many studies have declared the importance of chemical 

parameters such as nutrients, conductivity and pH to macroinvertebrate communities, yet 

did not record the relationships between the variables and the community (Malmqvist and 

Maki 1994; Paavola et al. 2003; Sylvestre and Bailey 2005). As chemical variables are so 

highly influenced by larger, over-arching variables such as geology and land use, the 

effects of individual water chemistry parameters can be masked as they may act in 

concert with other variables (Tate and Heiny 1995; Walsh eta!. 2001; Huryn et al. 2002; 

Slavik et al. 2004 ). For example, the chemical measure of colour of the water is directly 

related to the amount of coniferous forest, p at beds and humus in the soil (Colbo pers. 

comm.; Hoff 1957; Roberts 1983). Macro invertebrates may then respond to any one of 

those land-based variables, or several at once, as measured through the "colour" variable. 

Therefore, it is important to be aware of the broad-scale effects and r lationships of water 

chemistry parameters with the physical habitat. 

Nutrients are a primary restrictor of any community in what is known as the 

"bottom-up effect". Reduced nitrogen and phosphorus availab.ility limits algal growth . 

This in turn limits invertebrate growth and production, which then limit fish growth and 

production (Peter on eta!. 1993· lavik eta!. 2004). All strean1s on the Island of 
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Newfoundland are nutrient limited except for those receiving inputs from urban and 

agricultural land use (South 1983; Roberts 1983). Increases in nutrients leads to increased 

macroinvertebrate production and richness (Heino et al. 2003; Doledec et al. 2006). 

Therefore, the amount of nitrates, total nitrogen and phosphorus should be the most 

important commodities in Newfoundland stream ecosystems and should result in higher 

abundance and r.ichness in areas with higher amounts of nutrients. 

Conductivity tends to decrease with an increase in the presence of forest in the 

watershed; an increase in conductivity often indicates the presence of urban land use. An 

increase in conductivity often coincides with a loss ofEPT taxa and a decrease in their 

abundance (Huryn et al. 2002; Black et al. 2004). Gibson and Colbo (200 I) found urban 

St. John 's streams had a much lower proportion of the community made up ofEPT taxa. 

Therefore, strean1s with higher conductivity would be expected to have lower abtmdanc 

ofEPT taxa and a lower proportion of PT in the macroinvertebrate community. 

Streams with low pH tend to have low species diversity and abundance 

(Townsend et al. 1 983 ; Clenaghan et al. 1998; Malmqvist and Hoffsten 2000). However, 

some streams in Newfoundland tended to have a large selection of phemeroptera, 

Plecoptera and Trichoptera (EPT) taxa present in low pH strean1s, but not in high pH 

streams (Colbo tal. 1999). Studies from hydrologically similar New Zealand strean1 

found that EPT taxonomic richness was limited by high pH as well (Death and Joy 2004). 

Therefore, it is expected that low pH streams will have a positive relationship with EPT 

species richness. 
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In this chapter, two main hypotheses are tested. 1) There are differences between 

the three geographic regions that are distinguishable based on the environmental 

variables sampled. 2) Macroinvertebrate abundance and occurrence is linked to these 

environmental variables in a predictable manner. 

4.2 Methods 

Two datasets were used in this chapter. The environmental dataset was made up 

of physical variables that were considered relatively stable in the temporal scale of the 

macro invertebrates and those that were more temporally dynamic (e.g. wetted width, 

velocity and water chemistry). Data from the fall sampling season was generally used for 

the latter variables as fall was the season considered to be the best for invertebrate 

monitoring (Chapter 3). For a list of variables and their tmits, see Table 2.1 in Chapter 2. 

Physical variables included vegetation and macrophyte measures due to their part in 

forming the macroinvertebrate habitat. Draftsman plots were created to detect correlates 

and evaluate the need for transformation of non-normal variables (Clarke and Gorley 

2006). Pairs ofvariables with correlations of0.95 had one of the correlates removed; the 

one removed was selected based on the highest correlations with other variables. 

Log 10(x+ 1) transformation was applied to the following variables: altitude, maximtm1 

summer wetted width, maximum bankfull width and average vegetation overhang. 

Average velocity, maximum velocity, pH, conductivity, nitrates and alkalinity were 

log 10(x) transformed. These transformations linearized the variables in order to normalize 

the data for analysis. Draftsman plots of dominant substrate, 2nd dominant substrate and 
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surrounding substrate measures also indicated non-normal curves, so some classes were 

lumped together. Bedrock was given a class of 5, boulder a class of 4, large and small 

cobble became 3, large and small pebbles a 2, and gravel, sand, silt and organic cover 

were all classed as 1. 

The environmental dataset was split into physical and chemical variables for 

normalization. The chemical dataset required the removal of the Northwest River site 

(NWR) as it lacked water chemistry data. Likewise, when the physical and chemical 

variables were re-joined, NWR had to be removed prior to normalization of the entire 

dataset. UTM co-ordinates were removed for all sites in analyses involving the 

environmental dataset only, but added to later comparisons with the macroinvertebrate 

datasets. All environmental resemblance matrices were measured with uclidian 

distances. Analysis Qf Sin1ilarity (ANO IM) tests were performed on the environmental 

data to test for differences between the regional groups depicted with the 

macro invertebrate data in Chapter 3. Refer to the methods section of Chapter 3 and 

Clarke and Gorley (2006) for details of this analysis. 

Principal Component Analysis (PCA) was used to ordinate the sites according to 

their environmental attributes. The analysis takes all of the variables, which would 

customarily make their own dimension in a regular ordination, and condenses them into a 

smaller number o[ dimensions (Clarke and Gorley 2006). The resulting two or three 

dimensions explain as much of the variation in the dataset as possible, and this is 

reflected in th eigenvalues of the Principal Component (PC) axes (Clarke and Gorley 

2006). The PC axes are merely linear rotations of the original dimen ions; therefore, the 
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relationship between the sites does not change, but is simply re-expressed on the new 

axes (Kenkel 2004). Each variable used in the analysis has an eigenvector associated with 

it, which is the cosine of the angle between the original dimension and the new PC axis. 

Eigenvectors are produced on the plot as a measure of the strength of the correlation 

between the variable and the PC axis (Kenkel 2004; Clarke and Gorley 2006). The PCA 

analysis used here was performed with the transformed environmental dataset. All 

eigenvectors were reported, despite goodness of fit. Axes were not rotated, but were left 

in their original position as determined by the PRIMER program. 

The second dataset used in this chapter was the fall macroinvertebrate abundance 

data with the units being individuals/minute. The macroinvertebrate dataset was 

log10(x+ 1) transformed as in Chapter 3. All macroinvertebrate resemblance matrices were 

calculated using Bray-Curtis similarity (Bray and Curtis 1957). Justification for the 

choices of transformation and similarity matrix was given in the methods of Chapter 3. 

The other prominent analysis utilized in this chapter was the BVSTEP algorithm 

from Primer v.6. BVSTEP tests for correlations between a normal dataset and 

resemblance matrix. It uses a "forward-stepping and backward-elimination stepwise 

procedure" to distil a subset of variables that provide the highest correlation to a selected 

resemblance matrix (e.g. invertebrate data Bray-Curtis similarity matrix) (Clarke and 

Gorley 2006). The methodology involves a random selection of variables in the first run 

that correlates to the secondary dataset (e.g. an environmental similarity matrix). Then, 

variables are added to the first group. They remain if the correlation increases, and are 

removed if they do not increase the correlation. The variables in the final set are those 
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that give the highest correlation with the resemblance matrix (Clarke and Gorley 2006). 

The Spearman rank correlation was used and resulted in correlations being expressed as 

Rho values (between 0 and 1). 

Two different BVSTEP analyses were used in this chapter. First, BVSTEP was 

run on the macroinvertebrate matrix against the environmental datasets (physical, 

chemical, physical and chemical combined). A random selection of 6 variables for the 

first run with 1 00 repetitions was used. This analysis provided a subset of environmental 

variables that maintained a similar relationship to macroinvertebrate data. The second 

BVSTEP analysis was run using the environmental Euclidean distance matrix against the 

fall macroinvertebrate abundance dataset. A starting random selection of 6 taxa and 1 00 

repetitions was used. This analysis determined which taxa were consistently associated 

with particular environmental variables. 

A BIOENV analysis, also from the Primer v.6 package, was performed on the 

environmental data to determine how it related to the macroinvertebrate community 

structure. BIOENV performs the same task as BVSTEP, though it does not use a 

forward-backward method. It starts with the first variable and adds each subsequent 

variable in tum, removing those that do not add to the overall correlation, and it runs 

methodically through all possible combinations of variables (Clarke and Gorley 2006). 

The end result is the individual coiTelations of each of the environmental variables to the 

macroinvertebrate community as a whole. This enables an understanding of exactly how 

(positively or negatively) each variable relates to the macroinvertebrate community. 
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The final analysis, used to identify the link between macroinvertebrates and their 

environment, was linear, univariate regression. The second form ofBVSTEP analysis 

mentioned above resulted in a list of macro invertebrate taxa that, either by themselves or 

combined with others, were correlated with the pattern of sites in the environmental data. 

The environmental data was split into physical and chemical variables due to the loss of 

Northwest River in the chemical samples; BVSTEP was performed on these two 

environmental datasets separately. All the taxa combinations resulting in a correlation of 

0.5 or more were examined to find taxa common to all, or all but one, of the 

combinations. These "common" taxa were then individually regressed with each water 

chemistry parameter to examine the strength of the correlations using the fall 

insects/minute abundance data for the invertebrates. Taxa that were not present at five or 

more sites ("rare" taxa) were excluded. Linear, univariate regressions were performed 

using MINITAB 14. Regressions were also performed with several community measures: 

estimated number of organisms, number of taxa, number ofEphemeroptera, Plecoptera 

and Trichoptera (EPT) taxa, percent EPT, percent Simulidae (blackflies) and percent 

Chironomidae (midges). Metrics involving percentages were arcsin transformed before 

regressing against the chemical variables in order to reduce skewing in the proportional 

data (Wheater and Cook 2000). 
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4.3 Results 

4.3.1 Environmental description ofthe regions 

The Global rho value of an Analysis Qf Similarity (ANOSIM) test between 

regions indicated that there was little to distinguish regions from one another using only 

physical data (Table 4.1) (Global R = 0.115, p-value = 0.015). The Avalon and Terra 

Nova regions were significantly different (p = 0.003), and though the rho value was the 

largest of the four given by the ANOSIM analysis, the relationship was sti ll weak (R = 

0.269). The A val on and Gras Marne pair and the Terra Nova and Gras Marne pair were 

not statistically different from one another and had R statistics that approached zero. 

The variable vector plots appeared to adequately describe each region and 

reflected the ANOSIM results (Figure 4.1). The cumulative amount of variation 

explained by the first three Principal Component (PC) axes was 47.4%; where 20.4%, 

15 .5%, and 1 1.5% of the variation was explained by the first, second, and third PC axes 

respectively. A val on sites never formed a distinct data cluster from the other regions in 

any of the three PCA views, and were generally relegated to the negative side of PC axis 

two and the positive side of PC axis three. Velocity and watershed size were most 

strongly related to the negative side of PC axis two, whereas % riffle and % igneous rock 

in the underlying geology were indicative of the positive portion of P axis three (Table 

4.2). Percent macrophytes and %glacial till a lso described the A val on according to the 

variable vector plots though the two variables were not strongly related to any of the 

three PC axes. Terra Nova sites overlapped with A val on sites and orne of the Gras 
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Morne sites (Figure 4.1). Terra Nova sites were typically widespread across PC axis one 

and three, but on the negative side of PC axis two. Therefore, Terra Nova sites were 

largely described by the same group of environmental variables as the Avalon. Gros 

Morne sites were widely scattered across all the PC axes, denoting a broad spectrum 

within each physical variable for this group of thirty-five sites. However, a larger 

proportion of the Gros Morne sites sorted to the positive side of PC axes one and two. 

Altitude and width in particular vectored in those areas of the PCA plot, as well as some 

geological variables (Table 4.2). 

Table 4.1 ANOSIM tests for strengths of regional differences between sites sampled on 
the A val on Peninsula, Terra Nova and Gros Morne using only physical data, only 
chemical data, and both physical and chemical data. 

Physical Chemical Physical 
Only Only +Chemical 

R p R p R p 
Global R 0.115 0.015 0.333 0.001 0.227 0.001 
Avalon vs. Terra Nova 0.269 0.003 0.489 0.001 0.546 0.001 

Avalon vs. Gros Morne 0.142 0.064 0.312 0.002 0.236 0.013 
Terra Nova vs. Gros Mome 0.086 0.058 0.321 0.001 0.185 0.002 
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Figure 4.1 2-dimensional PCA biplots of the a) first vs. second, b) first vs. third, and c) 
second vs. third Princ ipal Component axes for the physical environmental 
variables. Points represent sample sites, labelled by region. L ngth of lines 
represent the correlation of variables with the principa l component . 

4- 15 



Table 4.2 Eigenvector strengths corresponding with the physical environment variable 
vector p lots in Figure 4.1. Asterisks mark the five eigenvectors that are most 
strongly related to each axis. 

Variable PCl PC2 PC3 
altitude 0.1 03 0.340* -0.234 

wetted width 0.333* -0.260* -0.176 

bankfull width 0.362* -0.212 -0.088 

average velocity 0.095 -0.320* -0.116 

maximum velocity 0.047 -0.429* 0.029 

%canopy -0.312* 0.082 -0.006 

% macrophytes -0.124 -0.157 0.153 

%riffle 0. 112 -0.092 0.143 

vegetation overhang -0. I 13 -0.135 -0.077 

dominant substrate 0.018 -0.004 -0.243 

2nd dominant substrate 0.061 -0.124 -0.158 

surrounding substrate 0. 167 -0.166 -0.206 

% igneous rock 0. 187 0.157 0.208 

% sedimentary rock -0.314* -0.219 0.056 

% metamorphic rock 0.227 0. 127 -0.328* 

%nonglacia l 0. 150 0.065 0.293* 

% glacia l till -0.186 -0.225 0.163 

% bedrock 0.081 0.207 -0.465* 

watershed size 0. 149 -0.418* -0.059 

%fore tin whole watershed -0.377* -0.088 -0.253* 

%fore tin local watershed -0.260 -0.107 -0.330* 

% fore t within I OOm -0.294 -0.070 -0.236 
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Water chemistry variables segregated the three regions more clearly than the 

physical variables (Table 4.1). All the rho statistics were statistically significant and were 

in most cases twice as large as those produced by the physical ANOSIM test (Global R = 

0.333, p = 0.001). The Avalon and Terra Nova region groups were again the most well 

defined groups in the test, with a rho value approaching 0.5. The Avalon and Gros Morne 

regions differed by an R statistic of 0.312 (p = 0.002), while Terra Nova and Gros Morne 

were significantly distinct groups (R = 0.321 , p = 0.001). 

The analysis of the water chemistry parameters at all of the fall sites produced a 

highly defined series of regional clusters (Figure 4.2). The cumulative amount of 

variation explained by the first three PC axes was 84.5%, where 51.5%, 1 8.1 %, and 

15.0% was explained by the first, second and third PC axes, respectively. The Avalon 

sites were scattered across PC axis 1, though three of the sites were distinctly at the 

highest point of the nitrates vector, which was most prominent on PC axis three (Table 

4.3). Two Avalon sites were strongly associated with high Phosphorus and conductivity, 

whose largest eigenvectors were on PC axis two and one, respectively. Terra Nova sites 

were associated with higher total nitrogen and colour as well as phosphorus, but the latter 

only showed up on PC axis three as a weaker eigenvector. Gros Morne sites, except for 

the six upper Long Range Mountain sites, were associated with higher conductivity, pH, 

alkalin ity and total nitrogen. 
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Table 4.3 Eigenvector strengths corresponding with the water chemistry variable vector 
p lots in Figure 4.2. Asterisks mark the two eigenvectors that are most strongly 
related to each axis. 

Variable PCl PC2 PC3 
nitrates -0.368 0. 123 0.436* 
total Nitrogen -0.226 -0.594* -0.346 
Phosphorus 0.191 0.680* -0.252 
colour 0.336 -0.008 -0.647* 
conductivity -0.438 0.405 -0. 159 
pH -0.50 I* 0.01 1 -0.201 
alkalinity -0.470* 0.071 -0.377 

When the physical and chemical variables were combined, the amount of 

variation between the regions explained by the combined environmental datasets 

decreased from what was explained by the water chemistry alone in all but one region 

pair (the A val on and Terra Nova, Table 4.1 ). 

4.3.2 Linking the environment and macroinvertebrate community structure 

The maximum correlation of the environment with the macro invertebrate 

community was 0.509 using II of the 3I physical and chemical variables (Table 4.4). 

The average an1ount of overhanging vegetation, amount of igneous rock in the watershed 

and the amount of forest in the local watershed were consistently includ din the 

BVSTEP analysis results as key factors in connecting the physical and macroinvertebrate 

datasets. The Easting map units and the amount of macrophytes in the sample reach were 

also included in most of the high-corre lation re ults. 
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The physical data on its own had a maximum correlation of 0.454 with the 

macroinvertebrate abundance data using five variables (Table 4.4). The three highest 

correlating sets of variables included seven of twenty-four variables, four of which were 

in all three sets: UTM Easting, average vegetation overhang, % igneous rock and % 

forest in the local watershed. Wetted and bankfull widths as well as watershed size were 

each in one of the three results. 

The chemical variables had the least amount of correlation with the 

macroinvertebrate data, where the correlation was 0.353 using three of seven water 

chemistry parameters (Table 4.4). Nitrates, total nitrogen and alkalinity were also often 

included in the sets of variables chosen by the BVSTEP algoritlun in the joint physical

chemical analysis. No other combinations of chemical variables gave a higher correlation, 

nor were additions of the other four variables to the prime three able to increase the 

amount of agreement between the two datasets. 

Individual correlations of environmental variables to the abw1dance data revealed 

similar results to those deciphered using the BVSTEP algorithm (Table 4.5). UTM 

Easting co-ordinates, amount of igneous rock in the catclunent, nitrates, pH and alkalinity 

were the most highly correlated with fall macroinvertebrate abundance. All five variables 

were positively correlated with the macroinvertebrate data. Total nitrogen and UTM 

Northing co-ordinates were also related to the macroinvertebrates, with correlations of 

0.223 and 0.200, respectively. 
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Table 4.4 Environmental variables contributing to a maximum correlation with the fall 
macroinvertebrate abundance data. Variables segregated into only physical 
variables, only chemical variables and both physical and chemical variables. 
# Observed is the number of times that arrangement of variables occurred out of 
100 random starts ofBVSTEP. 

Fall Macroinve rte brate Abundance 
#Observed Correlation Variables 

Physical Variables Only 

73 0.454 I ,6,8, I 0, II 

17 0.453 1,4,6,8,11 

10 0.445 1,3,6,8,11 
Chemical Variables Only 

100 0.353 12,13,16 
Physical and Chemical Variables 

19 0.509 1,5-13,16 

5 0.508 1,5-13,15 
44 0.505 1,4,6-8,11-13,16 

12 

II 

9 

0.505 
0.486 

0.476 

1 ,4,6-8, I 1- 13, 15 

2,6-8, I 0-13,16 

1,4,6,8, 11,13,14 

Ke to Variables 

1 UTM Easting 

2 UTM Northing 

3 Maximum summer wetted width 

4 Maximum bankfull width 

5 % Macrophytes in reach 
6 Average vegetation overhang 

7 Dominant substrate 
8% Igneous rock in watershed 

9 % Sedimentary rock in watershed 

I 0 Size of watershed 

II % Forest in local watershed 

12 Nitrates 
13 Total Nitrogen 

14 Conductivity 

15 pH 
16 Alkalinity 
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Table 4.5 Individual correlations of each of the environmental variables with fall 
macroinvertebrate abundance data. Asterisks mark the top five correlates. 

Variables Correlations 
U1M Easting 0.258* 

U1M Northing 0.200 

Altitude 0.091 

Maximum summer wetted width 0.060 

Maximum bankfull width 0.105 

Average velocity 0.112 

Maximwn velocity 0.105 

% Canopy cover 0.008 

% Macrophyte cover 0.127 

% Ritl:le in reach 0.071 

Average vegetation overhang 0.169 

Dominant substrate 0.069 

2nd dominant substrate -0.002 

Surrounding substrate -0.023 

% igneous rock 0.331 * 

% sedimentary rock 0.181 

%metamorphic rock -0.038 

%non-glacial 0.134 

%glacial till 0.054 

%bedrock -0.023 

Size of watershed 0.109 

% Forest in whole watershed 0.051 

%Forest in local watershed 0.1 25 

%Forest within 1OOm of site 0.012 

Nitrates 0.312* 

Total nitrogen 0.223 

Phosphorus 0.166 

Colour 0.062 

Conductivity 0.145 

pH 0.224* 

Alkalinity 0.277* 
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The BVSTEP analysis was previously run in such a way as to compare the 

correlation of environmental variables to the fall abundance macroinvertebrate data 

(Table 4.4). Here, the fall macroinvertebrate abundance was correlated with the 

environment to associate taxa with the patterns seen in Figure 4.1 and Figure 4.2. The 

highest correlation of macroinvertebrates with the physical environmental variables was 

0.552 with 25 of 127 taxa. Of the twenty-four taxa that were in all, or all but one, of the 

combinations that correlated with the physical data at 0.5, only nine were not considered 

"rare" (present at five or more sites). Of these nine, one taxon was not correlated with any 

of the physical parameters: Isogenoides fontalis. Also, seven physical variables were not 

correlated with any ofthe nine species: bankfull width, wetted width, average velocity,% 

canopy cover, % riffle, vegetation overhang and dominant substrate. 

Most taxa were strongly correlated with more than one environmental variable 

(Table 4.6). Ceraclea sp. and Chironomidae were positively correlated with UTM 

Easting, whereas Gyralis sp., Ephemerefla sp. and Chironomidae were negatively 

associated with the UTM Northing variable. Substrate size was an important factor for 

Heptagenia pulla and Apatania sp. , where both were positively related to larger second 

dominant and surrounding substrates, respectively. Epheremerella sp., Hydroptila sp. and 

Chironomidae were positively related to the amount of macrophytes on site, and the Latter 

two were also negatively correlated with presence of forest in the catchment. 

Chironomidae showed the strongest relationship with the base geology of the strean1, 

where their relationship with igneous rock is strongly negative, but positive with streams 

having sedimentary and/or metamorphic rock. Seven of the eight taxa had a significant 
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relationship with any one of the three substrate type variables - non-glacial, glacial till 

and bedrock. Apatania sp. alone showed a preference for streams with larger catchments. 

For the community measures, only % canopy cover at the sampling site was not 

correlated with any of the metrics. The total number of organisms estimated at each site 

was related to 8 of the 23 available physical variables; the metric was positively 

correlated with macrophytes and non-glacial type substrate in the catchment (Table 4.7). 

Total nwnber of organisms at a site was negatively related to the UTM Northing, 

bankfull width, surrounding substrate size, percent of the watershed containing glacial 

debris and igneous rock and forestation in the local watershed. The total number of taxa 

at each site was positively correlated with twelve variables, and was only negatively 

correlated with igneous rock. UTM Northing, altitude, stream width, macrophytes, 

amount of riffle, dominant substrate size, metamorphic rock and the glacial till in the 

catchment had no significant effect on taxonomic richness. 

The total number of EPT taxa per site was correlated with five fewer variables . 

than the total-taxa-per-site metric (Table 4.7). The number ofEPT taxa at a site was 

positively correlated with catchn1ent size, forest cover in the watershed and on site, 

average velocity, as well as second dominant substrate and surrounding substrate size. 

Interestingly, the physical variables having the strongest correlations with number of EPT 

taxa were not the variables that had the strongest correlations with percentage of the 

sample made up of EPT taxa. Higher abundances of EPT organisms were positively 

associated with sites that were further north, had a higher amount of riffle in the reach, 

were based on igneous rock with glacial debris and whose local watershed was largely 
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forested. Lower proportions ofEPT organisms were found at sites where there was a high 

percentage of macrophytes and overhanging vegetation and in catchments dominated by 

metamorphic bedrock. 

The proportion ofthe sample made up ofblackflies was negatively correlated 

with the bankfull width and the amount of the catchment that contained glacial till , but 

was positively correlated with dominant substrate and bedrock (Table 4.7). The 

percentage of chironomids in the sample was not always correlated with the same 

physical variables as the overall abundance of Chironomidae in the sample (Table 4.6), 

though the shared variables did have the arne relationship with the two metrics. A 

greater proportion of chironornids was found in samples that were higher in altitude, had 

a greater wetted width and average velocity and were in catchments dominated by 

metamorphic bedrock. Percentages of chironomids dropped at sites in igneous rock with 

glacial till and large amounts of forest at all three levels. 
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-- ---------------------- ----------------------------------------

Table 4.6 The relationship of specific macroinvertebrate taxa to physical environmental variables. If the relationship was not 
significant, neither the p-value nor the direction of the relationship was reported. Key to shorthand: dir =direction of 
relationship, sub = substrate, WW = whole watershed, L W = local watershed. 

UTM Easting 
UTM Northing 
Altitude 
Maximum -..elocity 
% Macrophytes 
2nd Dominant sub. 
Surrounding sub. 
%Igneous 
% Sedimentary 
% Metamorphic 
% Nonglacial 
% Glacial till 
% Bedrock 
Size of watershed 
WW% forest 
LW% forest 
1OOm % forest 

Gyralis 
sp. 

dir p 

- 0.010 

Heptagenia Ephemerella Ameletus Hydroptila 
pulla sp. sp. sp. 

dir p dir p dir p dir p 

- 0.006 
+ 0.004 

+ <0.001 + <0.001 
+ 0.049 

- 0.038 
+ 0.003 + <0.001 

+ 0.004 + <0.001 

- 0.001 - 0.037 
+ 0.018 + 0.035 

- 0.024 
- 0.006 

Ceraclea 
sp. 

dir p 
+ 0.013 

- 0.041 
+ 0.004 

+ 0.033 

Apatania Chironomidae 
sp. 

dir p dir p 
+ 0.047 
- 0.015 

+ 0.040 

+ 0.027 
- <0.001 
+ 0.033 
+ 0.017 

+ 0.044 - 0.024 

+ 0.047 

- 0.003 
+ 0.008 
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Table 4.7 The relationship ofmacroinvertebrate community measures to physical 
environmental variables. If the relationship was not significant, neither the 
p-value nor the direction of the relationship was reported. Key to shorthand: dir = 
direction of relationship, sub = substrate, WW =whole watershed, L W = local 
watershed. 

Total# Total# Total# EPT % % % 
/site taxa/site taxa/site EPT Simulidae Chironomidae 

dir p dir p dir p dir p dir p dir p 
UTM Easting + 0.009 
UTM Northing - 0.004 + 0.031 
Altitude + 0.002 
Bankfull width - 0.023 - 0.021 
Wetted width + 0.011 
A\€rage '.€1ocity + 0.015 + 0.041 + 0.050 
Maximum '.€1ocity + 0.012 
% Macrophytes + <0.001 - 0.045 
% Riffle + 0.044 
Vegetation o\€rhang + 0.002 - 0.036 
Dominant substrate + 0.020 
2nd Dominant sub. + 0.008 + 0.017 
Surrounding sub. - 0.020 + 0.013 + 0.024 
%Igneous - 0.011 r-::---o: 001 + <0.001 - <0.001 
% Sedimentary + 0.017 
% Metamorphic - 0.003 + <0.001 
% Nonglacial + 0.012 
% Glacial till - 0.032 + 0.049 - 0.004 - 0.001 
%Bedrock - 0.024 + 0.002 + <0.001 
Size of watershed + 0.020 + 0.023 
WW% forest + 0.001 + 0.006 - 0.016 
LW% forest - 0.002 + 0.002 + 0.001 + 0.008 - <0.001 
-----
1OOm % forest + <0.001 + 0.001 - 0.004 

The fa ll macroinvertebrate abundance data was also correlated with the water 

chemistry information in such a way as to associate taxa with the water chemistry PCA 

plot (Figure 4.2). The best correlation of macro invertebrates with the water chemistry 

data was 0.529 using 25 of 127 taxa. Of the twenty-one taxa that were in all, or all but 

one, of the combinations that correlated with the physical data at a level of 0.5 or more, 

only fifteen were not considered "rare" (present at five or more sites). Two of the 

common taxa were not significantly related to any of the water chemistry parameters: 
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Rhyacophila ignorata and Ephemerella aurivilli. Most of the other fifteen prominent taxa 

were related to several parameters (Table 4.8). Ten taxa were associated with pH and 

alkalinity, nine of which were negatively related to these variables. Nine taxa were 

strongly related to total nitrogen and conductivity; eight of the nine taxa displaying a 

negative relationship. Eight taxa were associated with nitrates, six negatively. 

Phosphorus and colour were correlated with the least number of taxa: five and three, 

respectively. Of these, only Rithrogenia undulata had a negative relationship with the 

two variables. Of the fifteen "conunon" taxa, Acerpenna pygmaeus and Rithrogenia 

undulata related to the highest number of water chemistry parameters; both taxa only 

lacked an association with conductivity. 

The total number of organisms present at each site was negatively related to total 

nitrogen, pH and alkalinity (Table 4.8). Total number of taxa per site increased with 

increasing phosphorus and colour, but decreased with increasing nitrates, total nitrogen 

and pH. This pattern of relational directions was identical to that for Acerpenna 

pygmaeus, a baetid mayfly. The total number ofEphemeroptera, Plecoptera and 

Trichoptera (EPT) taxa per sample did not have the same pattern as the total number of 

all taxa as there was no significant relationship between the metric and total nitrogen and 

Phosphorus, but instead a significant negative relationship with conductivity. The 

percentage of each sample that was made up of EPT taxa was very strongly and 

positively correlated with nitrates, pH and alkalinity, but negatively associated with 

Phosphorus. The percent Simulidae (blackflies) in the sample was not significantly 

related to any water chemistry parameters. The proportion of Chironomidae present was 

negatively related to total nitrogen, conductivity, pH and alkalinity. 
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Table 4.8 The relationship of specific macro invertebrate taxa and commw1ity measures 
to water chemistry variables. If the relationship was not significant, neither the 
p-value nor the direction of the relationship was reported. 

Total 
Nitrates Nitrogen Phosphorus Colour Conductivity pH Alkalinity 

Lumbriculidae + - + + 
p-value 0.043 0.002 0.001 0.001 

Acerpenna pygmaeus - - + + - -
p-value <0.001 0.002 0.032 <0.001 0.004 0.029 

Heptageniidae -
p-value 0.028 

Heptagenia pulla - - -
p-value 0.041 0.014 0.007 

Leucrocuta hebe - - - -
p-value 0.008 0.038 0.024 0.023 

Rithrogenia undulata + + - - + + 
p-value 0.007 0.003 <0.001 0.010 <0.001 <0.001 

Stenonema vicarium - - - - -
p-value 0.005 0.013 0.026 0.004 0.015 

Eurylophella sp. - - - -
p-value 0.023 0.028 0.003 0.002 

Ameletus sp. - - -
p-value 0.014 0.017 0.008 

Paracapnia opis - - - - -

p-value 0.001 0.004 0.003 0.001 <0.001 
/soper/a transmarina - - - - -

p-value 0.040 0.031 0.012 0.01 7 0.008 
Oxyethira sp. - - - -

p-value 0.048 0.003 <0.001 <0.001 
Hydatophylax argus + 

p-value 0.007 
Rhyacophila minora + 

p-value 0.001 
Prosimu/ium mixtum - + 

p-value 0.016 0.039 

Community Measures 
Total# organisms/site 

p-value 0.026 0.044 0.010 
Total# taxa/site + + 

p-value 0.003 0.026 0.011 0.001 0.027 
Total# EPT taxa/site + 

g-value 0.001 0.002 0.027 0.041 
% EPT + + + 

p-value <0.001 0.027 <0.001 <0.001 
% Chironomidae 

p-value <0.001 0.001 <0.001 <0.001 
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4.4 Discussion 

4.4.1 Environmental description of the regions 

The ordination ofthe environmental data indicated that there were small, but 

consistent and significant differences in the environmental attributes of the three regions 

which mirrored findings from the analysis of the macroinvertebrate data (Chapter 3). The 

Global R statistics associated with the physical variables in particular wer close to zero, 

indicating that all the regions are physically similar. The statistical significance matters 

little when the rho values are low asp-values .are strongly affected by sample size (Clarke 

and Gorley 2006). Part of the lack of significant differences between regions on the 

Island ofNewfoundland is related to the fact that it is completely contained within the 

Boreal Shield ecozone (Danunan 1983). Ecozones are identified by similarities in climate, 

geology and vegetation (Danunan 1983). Therefore, sites within an ecozone would be 

expected to have the same, or at least a broadly similar, physical description. Thus 

analysis of sites by specific ecoregion may have revealed a greater segregation of groups 

than the analy is of sites by region. However, testing of ecoregion effects was not 

possible here as sites were not evenly spread among the nine ecoregions on the Island, 

which negatively influences sample-size dependent measures ( Iarke and Gorley 2006). 

The water chemistry exhibited some power to distinguish r gions a the Global R 

was higher than 0.3 , though still not clo e to 0.4: the general rule of thumb in deciding 

whether or not the R tati stic is ecologically significant (Clarke and Gorley 2006). The 

region pair indicated a consistent difference between the Avalon and Terra Nova regions 

in particular. ln the water chemistry ANO IM test, the pair had th highest R tatistic of 

the three (0.489), and in the combined phy ical and chemical test, the pair had the highe t 
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R statistic of all the pairs in all the tests (0.546). As the rho value was quite low in the 

physical test, the large R statistic in the latter is more related to the water chemistry than 

the physical differences between the regions. Chemical differences between the A val on 

and the other regions likely come from the large urban component of sample sites from 

this eastern region. Effects of urbanization on water chemistry are discussed later. The 

physical similarities are understandable as these eastern regions share the same basic 

geological morphology due to their shared glacial history (Rogerson 1983). 

Ordinations and associated variable vector plots of physical environmental data 

mirrored the ANOSIM results. Regions did not form distinct, tight clusters, probably for 

the reasons noted above. The regions often lay on specific sides of various axes, so their 

presence or lack thereof in quadrants of the plot made it possible to describe them. The 

variable vectors associated with the axes related well to what is already known of the 

regions from past studies (vis South 1983) and to the raw environmental data collected in 

this study. For example, many Gros Morne sites were at higher altitudes, had large 

amounts of bedrock in the surficial geography, and had lower amounts of vegetative 

cover, which was supported by the ordination of a large number of Gros Morne sites in 

the positive ends of PC axes 1 and 2 (Figure 4.1). However, not all Gros Morne sites 

followed this description, as evidenced by dispersion of Gros Morne points throughout 

the other region "clouds" in the PC plot. An ecoregion approach may improve the results, 

for example, there are barrens both in the Long Range Mountain portion of Gros Morne 

and around the streams near Cape Race on the A val on. The environmental similaritie of 

these two regions resulted in these sites ordinating together, rather than with sites 

belonging to their won regions. If these ecoregions had been segregated from the others 
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in their general regions, the sorting of Avalon sites with Gros Morne sites may have been 

better explained. 

In the regionally well-defined chemical PCA plot, it became clear that Terra Nova 

sites were associated with greater colour and increased total amounts of phosphorus. The 

inference from the raw data implied that A val on sites would be most strongly associated 

with phosphorus as Virginia River and Waterford River had the highest concentrations of 

phosphorus (Appendix 3). However, phosphorus concentrations at these two sites were 

higher than others by only a few flg/litre. Phosphorus, when available, is quickly 

removed from stream systems by algae and riparian vegetation. This immediate 

consumption in the nutrient-poor streams of the island masks the record ofthe true 

amount of phosphorus entering the stream system. Phosphorus input cannot be measured 

by the simple water samples taken in this study and therefore the values should be treated 

with a measure of caution. The nitrates vector is also commonly associated with 

urbanization and nutrient enrichment in general (Huryn et al. 2002), which was the case 

in the St. John's region. However, total nitrogen did not have such a specific regional 

eigenvector, perhaps because the amounts of nitrogen were low and stable across the 

island, except on the Avalon where the readings were below detection. Using 

accumulators of nutrients (e.g. algae, stream-side plants) could eliminate the problems 

with single water samples and give a more accurate reading of actual nutrient inputs. The 

vectors associated with Gros Morne were expected due to the high pH and alkalinity in 

the Tablelands area, as well as the extremely low pH and alkalinity in the high-elevation 

Long Range Mountain sites. Conductivity was generally greater not only in certain Gro 

Morne sites, but also in the A val on city sites, which was reflected by vector direction. 
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Surprisingly, the Avalon had more in common with Gros Morne than with Terra 

Nova. The eigenvectors explained part of the reason for this small degree of similarity 

between some of the Avalon and Gros Morne sites: low pH, conductivity, alkalinity and 

colour as well as high amounts of nitrates. Sites with these specifications were the 

barrens sites of the southern A val on Peninsula and the high-altitude Long Range 

Mountain sites of Gros Morn e. The city sites on the A val on as well as the streams 

draining the sites with basic rock in Gros Morne tended towards more elevated levels of 

conductivity, pH, alkalinity and colour (Appendix 3). 

4. 4. 2 Broad linkages between macroinvertebrates and their environment 

Though knowing the extent of the environmental differences among regions is 

important and informative, it is arguably more important to know how those differences 

relate to the distribution of macro invertebrates. That is, are the differences or similarities 

imposed on the macroinve11ebrates by the environment biologically relevant? The aquatic 

macroinver1ebrates ofNewfoundland tend to be habitat generalists (Larson and Colbo 

1983), which can cause a lack of visible response of invertebrates to environmental 

variation (Batzer et al. 2004). However, in this study, the maximum correlation of the 

environmental data with the macroinvertebrate data was Rho = 0.509, with eleven of the 

thirty-one variables available (Table 4.4). A study of seasonal woodland ponds in 

Minnesota achieved an overall explained variation of 31.6% on the first three CCA axes 

for an entire community (Batzer et al. 2004). Heino's (2001) study on river benthos in 

northern Europe described the correlation of climate and geography with stoneflies as the 

environment having explained 25% of the variation, dragonflies 37.3%, and dytiscid 

beetles 40.5%. Richards et al. (1996) managed a 46% COITelation of stream 
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macro invertebrates with a series of environmental variables. By comparison, the level of 

correlation between macroinvertebrates and their environment reached in this study is 

high enough to infer a definite relationship between the environmental variables sampled 

and the macroinvertebrate communities. 

In the analysis of the environment's connection to the macroinvertebrate data, 

seven physical variables were included in most or all of the results from the BVSTEP 

algorithm: Easting map co-ordinates, the amount of macrophytes, wetted width, bankfull 

width, average vegetation overhang, % igneous rock in the watershed and amount of 

forest in the local watershed. Of these seven, UTM Easting and % igneous rock had the 

highest individual correlations with the macroinvertebrate data. Three chemical variables, 

nitrates, total nitrogen and alkalinity were also pulled out in the BVSTEP analyses as 

parameters best explaining macroinvertebrate community structure. Nitrates, alkalinity 

and pH had the highest independent relationships with the macroinvetiebrate data. The 

highest correlation of the physical data with the macroinvertebrate pattern was 0.454, but 

the highest correlation afforded by the chemical data was 0.353. This supports the theory 

that macroinvertebrate communities are foremost influenced by the physical parameters 

of the island, mirroring the sampling focus of most monitoring programs (Reynoldson et 

al. 1997; Vinson and Hawkins 1998; Barbour et al. 1999; Hering et al. 2004). More 

specific responses of macroinve1iebrates to individual variables, as well as interaction 

between environmental variables, will be discussed later on in the chapter. 

When the macroinvertebrate data were compared to the patterns existing in the 

environmental data, instead of the environmental data with the pattern in the 

macroinvertebrate community, much higher correlations between macroinvertebrates and 
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their habitat resulted. This change is understandable as the resulting correlation uses a 

subset of taxa that was selected specifically to maximize the correlation with the 

environmental data. Reducing 127 taxa to 25 "important" taxa increases the likelihood of 

detecting correlations due to decreased "noise" and variation in the dataset. Twenty-five 

taxa had a maximum correlation of 0.552 with the physical variables, while another 

subset of twenty-five taxa had a slightly lower correlation of 0.529 with the chemical 

variables. Therefore the study showed that some freshwater macroinvertebrate taxa in 

Newfoundland can be associated with both physical and chemical measures of their 

environment. 

In contrast with the low number of variables considered to be well correlated with 

macro invertebrate community structure, most of the thirty-one environmental variables 

were either positively or negatively correlated with both individual "common" taxa and 

community metrics. The increase in highly correlated variables is because the whole 

dataset of 127 taxa was pared down to a reduced number using their correlation with the 

environmental variables. Only the commtmity metrics were associated with stream width, 

average velocity,% riffle, vegetation overhang, dominant substrate and% sedimentary 

rock in the watershed. It is understandable that community-based metrics would correlate 

with the same variables as the entire dataset, as they are merely a simplified invertebrate 

community descriptor. 

4.4.3 Specific linkages between macroinvertebrates and their environment 

The most basic components of any habitat will influence the organisms that live 

there: from simple geographic location, to climate, to vegetation patterns. It has been 

proposed that even the evolutionary history of a watershed affects macro invertebrate 
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community structure (Wohl et al. 1995). Verdonschot (2006) recorded that ecoregion, as 

influenced by climate and geology, was a driving force in macroinvertebrate communities. 

In a study of Northern Europe, longitude was implicated in ultimately describing 

community composition (Heino 2001). In Newfoundland, the UTM Easting (longitude) 

directly corresponds with the ecoregional divisions of the Island (Damman 1983). 

Therefore, according to the definition of an ecoregion, the base geology type and origin 

are also intrinsically related to the map Easting co-ordinates. Rogerson (1983) confirmed 

this with his study of the geological origins ofthe Island ofNewfoundland and the 

coinciding topography. The six geological variables in this study were not significantly 

correlated (<0.95) with each other or the UTM Easting variable, but their theoretical 

relationship is undeniable. 

All tests relating macroinvertebrate communities to the Easting map unit 

co-ordinates resulted in a positive correlation. The univariate analysis indicated by a 

positive relationship that the taxonomic richness at each site may have been part of what 

related the macroinvertebrate community to this variable. This appears to contradict the 

findings of Chapter 3, where Terra Nova had the highest number of taxa at its sites and 

not the most easterly A val on as suggested here. The likely reason is that the large easterly 

shift between Gros Morne (with a lower number of taxa per site) and Terra Nova and the 

comparably small easterly shift from there to the few A val on sites. In fact, the taxonomic 

richness per site on the Avalon and Gros Morne were nearly equal. Therefore the 

univariate result does not indicate that the f1.1rther east a site is on the Island, the more 

taxa it will have. This stresses the importance of having a broad knowledge of 

geographical characteristics, geological history and associated environmental variables of 
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sites sampled before attempting to interpret the statistical analyses. The positive 

correlations of abundances of Ceraclea sp. and Chironomidae are less controversial. 

There are generally higher abundances of these taxa in the eastern portion of the province, 

for example, Gros Morne only had one specimen of Ceraclea at one site. Larson and 

Colbo (1983) and results here also showed that other taxa were limited to the western 

side of the province. 

As stated above, geological type and origin is related to ecoregion. However, of 

the geological variables, only the amount of igneous rock was indicated in the BVSTEP 

and BEST analyses as being highly correlated with macroinvertebrate community 

structure. The community metrics were often mixed in their response to a particular 

geological factor. The total estimated abundance was negatively con·elated with the 

amount of igneous rock and the amotmt of glacial deposits. The Avalon sites had the 

highest abundances on average, in agreement with previous research on St. John' s stream 

macroinvertebrate production (Gibson and Colbo 2001), and also have no igneous rock in 

their basins. However, the northern portion of the Avalon has large an1ounts of glacial till 

in its watersheds. Therefore, the correlation of macro invertebrates with % glacial till does 

not relate to UTM Easting in the same way as their correlation with % igneous rock. 

Longitude is not the only large-scale factor affecting macroinvertebrate distribution. In 

areas such as the A val on Peninsula where there are distinct north-south ecoregional 

separations, the Northing map co-ordinates must have an indirect effect. Gros Morne has 

north-south separations as well , the granite highland sites being confined to the northern 

side of the park and the Tablelands strictly residing on the southern side (vis. Chapter 2, 
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Figure 2.1). Thus, geographic positioning of the site is not the direct factor, but rather the 

correlation of co-ordinates with an environmental variable. 

Substrate size is an important factor determining colonization of 

macroinvertebrates (Reice 1980; Scarsbrook and Townsend 1993; Wohl et al. 1995; 

Giller and Malmqvist 1998). First, an increasing dominant substrate size indicates an 

increase in substrate stability. Stability affects colonization and the resulting 

macroinvertebrate community composition, partly due to the loss of organisms in spates 

(Boulton and Lake 1992; Death 1995; Miyake and Nakano 2002). Some 

macroinvertebrates, such as black flies, require a stable substrate to anchor to while they 

filter feed (Merritt and Cummins 1996). In this study, the proportion of simulids in the 

community did increase with increasing dominant substrate size, which presumably 

relates to increased stability. Also, black fly presence was negatively correlated with 

bankfull width, which is also connected to substrate stability. The smaller the bankfull 

width compared to wetted width, the less likely it is that the stream floods or flashes. If 

blackflies simply preferred smaller rivers, there would have been a corresponding 

negative correlation with wetted width. 

Another factor indicated by a larger substrate size is a lower amount of inorganic 

particulate matter in the stream (Rabeni and Minshall 1977; Parker 1989). Taxa with 

external gills tend to be sensitive to fine particles such as sand and silt (Johnson et al. 

2005; Doledec et al. 2006). Richards et al. (1997) found that abundances of all 

macroinvertebrates, except for burrowers, decreased with an increased amount of fine 

particulates. The abundance of the caddisfly Apatania was positively correlated with 

surrounding substrate size, and Heptagenia pulla was positively correlated with the size 
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of the 2nd most dominant substrate. Ceraclea sp. was associated with faster-moving 

waters, but not with surrounding substrate, which is interesting as several of these taxa 

require sand grains to build their external cases. However, larger rocks tend to form 

depositional zones immediately downstream where sand, detritus and organic matter may 

collect (Parker 1989). This may explain why Ceraclea sp. did not appear to be associated 

with surrounding substrate as small depositional zones behind boulders would not have 

been considered extensive enough to identify as the surrounding substrate. 

As stated by Death (1995), instability may not affect colonization of a site, but it 

does affect the relative success of macroinvertebrates attempting to colonize. Futhermore, 

Death and Winterbourn (1995) also found that the highest diversity in strean1 habitats 

occurred with low levels of disturbance. Moderate levels of deposition (stability) can lead 

to increased species richness in some streams (Miyake and Nakano 2002). However, 

when stability leads to complete embeddedness, macroinvertebrate productivity has been 

shown to decrease (Giller and Malmqvist 1998). In this current study, the total number of 

taxa per site and the total number ofEPT taxa per site were positively correlated with 2nd 

dominant substrate (the second most common size of substrate) and surrounding substrate 

(interstitial substrate) size. The dominant substrate was generally the largest sized 

substrate in the stream bed, though sometimes the 2nd dominant substrate exceeded the 

size of the dominant. As a result, the dominant substrate was most likely to have the 

highest size class, and therefore the highest stabili ty. The 2nd dominant substrate size was 

most frequently recorded as either large or small cobble. The surrounding substrate size 

rarely exceeded 50-1 OOmm or "small cobble" and was registered to be as miniscule as 

"silt" (Appendix 3). Certain macroinvertebrate taxa have been found to prefer cobble 
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substrates (though abundance does not usually reflect this preference) but preferences are 

also related to substrate availability (Reice 1980). 

It has been suggested that substrate stability and size are negatively associated 

with macrophytes (Collier 1995). Understandably, substrates such as bedrock and large 

boulders would be poor for growing macrophytes due to a lack of rooting material. 

Several studies have indicated an increase in macrophytes led to an increase in taxonomic 

richness, and in some cases, density (Cienaghan et al. 1998; Malmqvist and Hoffsten 

2000; Heino 2005). The density, or abundance, of macroinvertebrates was positively 

correlated with macrophytes density in this study. Ephemerella sp., Hydroptila sp. and 

Chironomidae were all positively correlated with macrophytes in the sample reach. The 

Hydroptila sp. feed on filamentous algae (Wiggins 1996) and immature ephemerellids 

and midges may use macrophytes for refuge from predators. However, the proportion of 

EPT taxa in the stream was negatively coJTelated with macrophytes. Collier et al. (1998) 

found this to be the case in New Zealand streams as well. They cite dissolved oxygen 

variation, decreased velocity and increased predation by some fish species within the 

macrophyte beds as possible reasons for the reduction of EPT taxa in this habitat 

(Carpenter and Lodge 1986; Collier et al. 1998). 

Macroinvertebrate abundance tends to be higher in riffles than in pools, runs and 

chutes (Brussock and Brown 1991 ; Halwas et al. 2005). However, in these literature 

studies, community structure was not affected by this finer level of habitat specification. 

Some invertebrate families, such as Heptageniidae, Leptophlebiidae and Chloroperlidae, 

were more abundant in riffles than in other habitats, but the overall composition of the 

community did not differ (Halwas et al. 2005). Likewise, Scarsbrook and Townsend 
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(1993) found no difference in species diversity between riffles and pools, though riffles 

were reported to have a greater amount of refuge for macroinvertebrates. However, 

studies performed in the Southern Appalachians denoted the cobble-riffle habitat as 

having the highest diversity, but the lowest productivity in the stream (Wohl eta!. 1995; 

Angradi 1996). The current study found a higher proportion of EPT taxa at streams sites 

with a greater amount of riffle habitat, much as Hal was eta!. (2005) reported. Neither 

total nor EPT taxa numbers correlated with % riffle, which indicates an agreement with 

findings of the first three studies, but not with Wohl et al. (1995). In this study, there was 

also no relationship found between % riffle and macroinvertebrate abundance, which 

mirrors the results of the Appalachian studies to an extent, though a negative correlation 

would have been a stronger corroborating result. 

Velocity has shown varying degrees of importance in describing 

macroinvertebrate communities. Some studies have found little or no conelation between 

flow and macroinvertebrate communities (Quinn and Hickey 1990; Sylvestre and Bailey 

2005). Others have found a negative correlation for community richness and abundance 

(Erman and Mahoney 1983; Brooks et al. 2005). While yet other studies have fotmd a 

positive relationship between macroinvertebrate diversity and abundance with increasing 

velocity (Rabeni and Minshall 1977; Hawkins et al. 1982). In the cun·ent study, there 

were several significantly positive relationships between community measures and 

velocity. The total number of taxa, the number ofEPT taxa and the proportion of 

Chironomidae were all positively correlated with average velocity, and only total richness 

was positively related with maximum velocity. The one fact agreed upon by all studies is 

that as velocity increases, the amount of silt decreases (Rabeni and Minshall 1977; 
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Hawkins et al. 1982; Erman and Mahoney 1983). As mentioned earlier, silting is 

detrimental to macroinvertebrates with delicate external gills, limiting respiratory 

efficiency. However, Brooks et al. (2005) also found that increased velocity led to 

increased "roughness" that decreased the abundance of young mayfl ies in particular. In 

their study, they postulated that the high turbulence required a greater an1ount of energy 

from the macroinvertebrates than was available in food (Brooks et al. 2005). 

Newfoundland streams are generally very nutrient-poor and extremely rocky (Larson and 

Colbo 1983). Therefore, as the san1e types of habitats were sampled across the island, 

turbulence and available food may not have been significantly different between sites. An 

exception to these observations occurred in the upstream site of Winter House Brook 

where an exponentially high number of mayflies inhabited the rocky, flashy brook 

(Appendix 4). Despite the physical conditions, abundant algal growth provided a high

quality food source for the grazers (Colbo, pers. comm. ). As a result, the mayflies could 

probably access enough energy to withstand the high velocity and turbulence of Winter 

House Brook. A reduction in silting is therefore the most plausible explanation for a 

significantly positive correlation of community richness to velocity. 

Many studies have found the width of the strean1 to influence macroinvertebrate 

community structure (Bronmark eta!. 1984; Jenkins et al. 1984; Grubaugh et al. 1996; 

Kilgour and Barton 1999; Malmqvist and Hoffsten 2000). Some have postulated that the 

effects of stream size are a simple matter of larger streams having a greater area of habitat 

available, including a greater number of microhabitats (Bronmark et al. 1984; Jenkins et 

al. 1984). The presence of more microhabitats in a stream indicates an increa e in 

heterogeneity, which increases macroinvertebrate diversity (Giller and Malmqvist 1998). 
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The results ofthjs study are not congruous with this idea. Macroinvertebrate abundance 

decreased with increasing bankfull width and there was no correlation between either of 

the richness variables and the width variables. 

Stream order is closely tied to stream size and has been shown to affect 

community composition, abundance and biomass going from low to high order streams 

(Brussock and Brown 1991; Grubaugh et al. 1 996). This change in the invertebrate 

community with size was predicted by Vannote et al. (1980) in the "River Continuum 

Concept", or RCC. They explained changes in commuruty composition partly in regards 

to changing organic inputs from leaves in low-order headwaters to periphyton and 

plankton in larger orders in "typical" streams. In agreement with Vannote et al. (1980), 

studies have found the highest taxonomic richness to occur in mid-order streams 

(Minshall et al. 1985; Grubaugh et al. 1996). However, in others, macroinvertebrate 

abundance and richness has been discovered to increase the further downstream the 

sample is taken (the increased distance also presumably increasing the order of the stream 

c. v. Vannote et al. 1980) (Furse et al. 1984; Jenkins et al. 1984; Brussock and Brown 

1991; Clenaghan et al. 1998; Vinson and Hawkins 1998). StiJJ others have found little to 

no support for the RCC, citing instead that physical channel morphology drives 

macroinvertebrate communities (Brussock and Brown 1991). Strean1 order was not 

directly considered in thjs study. However, the topographic natme of the Island of 

Newfoundland means that the vast majority of streams are low- to mid-order strean1s 

(Larson and Colbo 1983) which were the range sampled here. Stream width measures 

were considered an acceptable sun·ogate in this study . 
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Using measures of stream width as a function of stream order, the BVSTEP 

algorithm pulled out both wetted and bankfull width as factors influencing community 

composition. Wetted width was positively correlated with the proportion of chironomids 

inhabiting the stream. However, bankfull width was negatively correlated with the total 

abundance of invertebrates as well as the ammmt of Simulidae taxa making up the 

community. Erman and Mahoney (1983) found Shannon diversity and evenness to 

decrease with an increase in the bankfull width. Bankfull width increased with drainage 

area, which in turn was positively correlated with velocity. High velocity led to a 

decrease in diversity and evenness (Erman and Mahoney 1983). Previously, the argument 

was presented that high velocity (linked to substrate instability) affected the ability of 

simulids to colonize rocks and generally cost all organisms more energy (Brooks et al. 

2005). In joint sedimentation/substrate/velocity experiments, Len at et a!. ( 1981) 

discovered that under high flow conditions, sediment falling on rocky substrate merely 

reduced available habitat. The community composition was basically the same, but 

abundance decreased (Lenat eta!. 1981) and so community composition was relatively 

unaffected (Bradt and Wieland 1981; Maier 2001; Death 2002). The negative correlation 

between macroinvertebrate abundance and bankfull width is proposed to be due to 

increased velocity, instability of substrate and increased movement of sediments 

downstrean1 during spates. 

Many studies have found macroinvertebrate composition to be correlated with 

watershed size itself (Bronmark et al. 1984; Kilgour and Batton 1999; Malmqvist and 

Hoffsten 2000), which also relates to stream order. In this study, the total number of taxa 

at a site, the number ofEPT taxa at a site and Apatania sp. were positively correlated 
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with watershed size. If watershed size is correlated with stream order, we can presume 

that a positive correlation of richness with watershed size indicates a positive correlation 

of richness with mid-order streams in the range of stream sizes studied here. Stream order 

should be incorporated into the list of physical variables in future studies. 

There is much debate on the influence of altitude on macroinvertebrate 

community structure (Vinson and Hawkins 1998). Altitude was correlated with 

invertebrate community structure in some studies (Furse et al. 1984; Malmqvist and 

Hoffsten 2000; Heino 2001; Sanderson et al. 2005), but has also had no effect in others 

(Hawkins et al. 1997; Verdonschot 2006). The effects of altitude may have been 

connected to differences in pH between high and low altitudes (Cienaghan et al. 1998; 

Sanderson et al. 2005). In Gros Mome, the high altitude Long Range Mountain plateau 

sites were on acidic granite, but on the Tablelands side they were basic, therefore pH is 

not necessarily confounded with altitude in this study. In addition, all high sites were 

barren, whereas for the low-altitude sites only three on the south A val on were barren. 

In theory, the RCC is also connected to altitude, as low-order streams are 

generally from highlands and high-order streams in lowland valleys (V armote et al. 1980). 

However, as noted previously, the recent glaciations have altered the nature of the 

drainage system profiles on the Island. Thus, the many complex variables along stream 

gradients made the effects of altitude difficult to decipher. As a result, it was not a 

significant factor in the BVSTEP and BEST analyses in this study. At the taxon level, 

Ameletus sp. and the amount of chironomids constituting the community were positively 

correlated with altitude. Ameletus, a siphlonurid mayfly, is typically found in montane 

regions across North America (Merritt and Cummins 1996) as is the case in 
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Newfoundland. Chironomidae are a highly diverse group with many taxa that range over 

a wide spectrum of environmental variables (Merritt and Cummins 1996). Therefore, 

family level dominance for the high-altitude granite regions of Gros Morne may be taxa 

quite different from lowland sites. 

Riparian vegetation affects invertebrate community composition by the amount 

and type of vegetation in the catchment, which dictates the terrestrial organic inputs, 

which in turn influences invertebrate community composition (Woodall and Wallace 

1972; Hawkins eta!. 1982; Molles 1982; Black et al. 2004). Black et al. (2004) found that 

heptageniid and ephemerellid mayflies, as well as chloroperlid stoneflies, were the most 

consistently correlated with increasing forest cover. Heptageniidae and EphemereJlidae 

were both indicative of a high amount of forest cover in the local watershed, whereas 

Ephemerellidae and Chloroperlidae were considered indicators of 70-80% forestation in 

the whole watershed. Amphipods, nematodes and chironomids were correlated with a 

much lower amount of forest in both the local and whole watershed (Black et al. 2004). 

Kilgour and Barton (1999) found that with increased forest cover, there was an increase 

in the insect families Perlodidae, Tricorythidae and Nemouridae, while watersheds with 

low forest cover were typified by Erpobdellidae, Tubificida, and Planorbidae. However, 

in Kilgour and Barton's (1999) study, un-forested areas were coincident with agricultural 

areas, thus stream eutrophication rather than forest cover may have been indicated by the 

taxa they found. 

The current study found Chironomidae occurrence and the proportion of 

chironomids making up the community were negatively correlated with the amount of 

forest at whole, local and immediate watershed levels. Conversely, the total number of 
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taxa per site, the total number ofEPT taxa per site and the proportion ofEPT taxa in the 

sample were all positively correlated with varying levels of watershed forestation. 

Kilgour and Barton ( 1999) and Black et al. (2004) found EPT families were strongly 

related to rugh amounts of forestation. Inputs of leaves and logs, aside from providing 

food, also increase the number of available microhabitats. Microhabitats increase 

macroinvertebrate abundance and taxonomic richness (Giller and Malmqvist 1998; 

Brooks et al. 2005). EPT taxa tend to prefer wood substrates and leaf packs, 

microhabitats associated with forest in the stream catchment (Collier et al. 1998; Woodall 

and Wallace 1972). Velocity also decreases in these kinds of complex environments 

(Carpenter and Lodge 1986). However, in the current study, one high-velocity brook 

(Winterhouse Brook, upstream) with no overhanging vegetation was completely 

dominated by an EPT taxonomic group: the grazer-type mayflies. As this site was unique, 

it had little influence on the overall analysis, but illustrates the need to evaluate the 

statistically significant findings against the underlying biology of the taxa. 

The type of forest contributing to the stream catchment also has an effect on 

macroinvertebrate community structure and abundance (Woodall and Wallace 1972; 

Hawkins et al. 1982; Molles 1982; Kilgour and Barton 1999). One study found the type 

of forest cover directly affected taxonomic richness (Black et al. 2004), while the others 

did not (Woodall and Wallace 1972; Hawkins eta!. 1982; Molles 1982). This may be due 

to the inclusion of urban and suburban watershed in the study by Black et al. (2004), as 

opposed to the others that tended to compare less impacted watersheds with one another, 

or simply watersheds with different types of trees. Woodall and Wallace (1972) found no 

difference in the taxa present between the sites, but found a change in the importance of 
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various feeding groups depending on whether the stream was canopied with deciduous or 

coniferous trees. The vegetation data from this study was incomplete; therefore a 

comparison between all sites in regards to types of land cover was not feasible. 

The amount of shading caused by riparian vegetation can affect 

macroinvertebrates through the amount of light reaching the stream surface, and 

temperature increases associated with irradiation (Collier 1995; Kreutzweiser et al. 2005). 

This was especially the case with the negative correlation of Hydroptila sp. with the 

amount of forest in the whole and local watersheds. This caddisfly genus feeds on 

filamentous algae (Wiggins 1996), and a decrease in incident light, coupled with low 

nutrients produced by forest uptake, decreases the amount of primary production (Giller 

and Malmqvist 1998; Woodall and Wallace 1972). For these reasons, Hydroptila is less 

likely to inhabit heavily shaded streams (Hughes 1966). 

Shading of streams has been identified as a factor causing decreases in species 

richness (Malmqvist and Hoffsten 2000), yet another study found it increased diversity 

and evenness (Clenaghan et al. 1998), and others showed decreases in abundance and 

biomass (vis. Kreutzweiser et al. 2005). Still others found no significant difference in the 

taxonomic richness with varying degrees of shading, though preferences by certain taxa 

(causing shifts in dominance and guild structure) were noted (Woodall and Wallace 1972; 

Hawkins et al. 1982; Molles 1982). Thus, a complex set of relations have been reported. 

Presently, none of the common species or community metrics were correlated with the 

amount of canopy over the sample site, nor was this parameter considered useful by the 

BVSTEP and BEST algorithms in this study. This supports the findings of Hawkins et al. 

(1982), Molles (1982) and Woodall and Wallace (1972). However, total taxonomic 
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richness was positively correlated with the average amount of overhanging vegetation, 

while the proportion ofEPT taxa in the stream decreased with increasing overhang. 

Clenaghan et al. (1998) noted this was possibly because shading is related to terrestrial 

stream inputs and increased detritus. These factors were discussed earlier on. Considering 

the above, a better measurement of vegetation overhang would be the resulting 

proportion of the stream that was shaded, as smaller streams would be more shaded than 

large streams with the same amount of overhang. 

Newfoundland's streams are nutrient poor (Larson and Colbo 1983; Roberts 

1983), so it may be expected that macroinvertebrates would generally respond positively 

at sites with elevated levels of nutrients. However, most of the individual and community 

metrics were negatively correlated with concentrations of total nitrogen, nitrates and 

phosphorus. The two types of nutrients, nitrogen and phosphorus, together are considered 

a measure to assess eutrophjcation (Giller and Malmqvist 1998; Schindler 2006). Levels 

of nitrates and phosphorus were extremely low at most sites, though the phosphorus 

levels at seven sites indicated mesotrophy, and at two others, mild eutrophy (Pelechata et 

al. 2006; also Appendix 3). Therefore, the negative relationship between the invertebrate 

metrics and phosphorus concentration may indicate a community difference between sites 

with low phosphorus concentrations and sites with higher concentrations. The effects of 

phosphorus levels on macroinvertebrates as seen in this study will be more closely 

examined later in the chapter. 

A long term study of nutrient additions to a nutrient-poor arctic stream indicated 

that as some taxa increased in response to fe1iilization, others decreased (S lavik eta!. 

2004). In the arctic study, nutrient enriched areas exhibited a switch in their dominant 
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primary producer from algae to moss, which affected not only the food source for 

invertebrates, but also the substrate of the stream. Up until the primary producer change, 

some taxa flourished, only to be replaced by others when the moss became dominant 

(Slavik et al. 2004). Moss was present in several of the strean1s in the current study, 

however its presence does not necessarily indicate nutrient enrichment as the vegetative 

succession ofNewfoundland streams has not been tested with controlled nutrient 

additions. 

Nitrates and phosphorus did appear to be correlated to the position of St. Jolm's 

sites in the PCA plot. In addition, the nitrate vector also lay over some Gros Morne sites 

and Phosphorus had higher readings in some Terra Nova sites (Figure 4.2, Appendix 3). 

The negative associations of most of the other "important" taxa may be a negative 

relationship with urbanization or flooding. The positive correlation of Rithrogenia 

undulata with nitrates appears to be related to areas of higher nitrate concentrations in 

Gros Morne. Acerpenna pygrnaeus, Hydatophylax argus and Prosimulium mixtum 

abundances were all positively correlated with phosphorus, but not with nitrates. These 

species, particularly the first two, are not considered strongly pollution-tolerant taxa 

(Hilsenhoff 1988; Klemm et al. 2002). The finding could be resultant of a covariant 

relation with the Terra Nova region as there was also a positive correlation of total 

number of taxa per site with phosphorus. Whether the increased phosphorus and colour in 

the Terra Nova region resulted in the greater taxonomic riclmess will require further 

study. 

The total nitrogen vector in the PCA analysis lay in the complete opposite 

direction from phosphorus and was associated with sites outside of St. John 's, especially 

4-50 



.--------------------------------------------

those in Gros Morne. The association of Gros Morne with total nitrogen may explain the 

negative correlation of total abundance and total richness with total nitrogen as Gros 

Morne streams had some of the lowest macro invertebrate abundances and taxonomic 

richness of the three regions. However, other studies showed that total nitrogen increases 

led to increased taxononilc richness, particularly in nutrient-poor regions (Peterson et al. 

1993; Heino et al. 2003; Doledec et al. 2006). Total nitrogen was unlikely to be linked to 

agriculture in Newfoundland as only one strean1 near St. Jolm's had agricultural activity 

in its watershed. The link between total nitrogen and Gros Morne is likely related to 

geological factors, which are difficult to tease apart from the other variables here. 

Conductivity can also be related to anthropogenic activities: often increasing in 

response to urbanization or agriculture (Huryn et al. 2002; Black et al. 2004). 

Conductivity decreases with an increase in the presence of forest in the watershed (Huryn 

et al. 2002; Black et al. 2004). A typical response of the macroinve11ebrate community to 

an increase in conductivity is the loss ofEPT taxa and individuals (Collier et al. 1998; 

Huryn et al. 2002; Black et al. 2004) and a concordant increase in Chironomidae 

(Woodall and Wallace 1972). In this study, the conductivity readings were generally very 

low (Appendix 3). However, both the number of EPT taxa and percent chironomid 

measures were negatively correlated with conductivity. It would be expected that 

Chironomidae would increase with increasing conductivity if the variable were directly 

related to urbanization as the streams in urban St. John's are largely made up of this 

taxonomic group (Gibson and Colbo 2001 ). Nevertheless, all samples in this study 

contained a large amount of chironomids except for the streams from the Tablelands in 

Gros Morne (Appendix 4). However, the Chironomidae are a diverse group 
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taxonomically and ecologically. Different taxa may have inhabited each region, thus 

family-level identification reduces their usefulness as indicators of environmental 

relationships. 

The variables pH and alkalinity are at first glance, the same measure. However, 

there is a slight difference between the two: pH measures the amount of free hydrogen 

ions (cations) in the water, while alkalinity quantifies the amount of carbonate (a 

dominant anion). As there is limestone present in some areas of the Island, both measures 

were included in the tests. There is a general consensus that pH (and/or alkalinity) is 

important to macroinvertebrate community composition (Peterson and Van Eeckhaute 

1992; Malmqvist and Maki 1994; Malmqvist and Eriksson 1995; Clenaghan et al. 1998; 

Paavola eta!. 2003). That increasing pH tends to increase taxonomic richness is also 

well-agreed upon (Townsend et al. 1983; Jenkins et al. 1984; Peterson and Van 

Eeckhaute 1992; Clenaghan et a!. 1998). However, there are also studies that have found 

evidence to the contrary, particularly for specific taxonomic groups (Huryn et a!. 2002; 

Death and Joy 2004). Taxonomic richness, abundance and most of the individual taxa 

were negatively correlated with pH and alkalinity in this study, which is in direct 

opposition to the findings of the majority of studies. The strean1s with the highest pH 

were those of the Tablelands region, which are also known to be flashy (prone to spates) 

and have barren watersheds. As taxonomic richness was positively correlated with forest, 

and abundance was negatively associated with bankfull width (flashiness), it becomes 

apparent that the negative association with pH and alkalinity was likely produced via the 

confounding influences ofthe physical variables associated with these sites. If these basic 

sites were removed, then perhaps the relationship of acidity/a lkalinity with 
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macroinvertebrates could be more accurately measured. Huryn et al. (2002) documented 

similar conclusions as this study, as they found pH decreased with increasing forestation 

and forested sites had higher taxonomic richness. 

The proportion of EPT taxa in the sample increased with increasing pH and 

alkalinity in this study. Death and Joy (2004) found EPT taxa were more prevalent in 

acidic streams and were replaced by molluscs, crustaceans and chironomids at higher 

alkalinities. However these alkaline streams also tended to be low gradient streams with 

decreased velocity. In Newfoundland, the streams with the highest proportion ofEPT 

taxa were in the Tablelands in Gros Morne: streams known for high-velocity flashiness 

and banen watersheds as well as ultra-basic springs. Velocity has been cited as having an 

important positive correlation with EPT taxa in this study, therefore the findings of Death 

and Joy (2004) linking high pH with low EPT richness may not be applicable to 

Newfoundland. Rithrogenia undulata was one of the taxa in high abtmdance in these 

basic streams. As a result ofthis unique alkaline nature of the Tablelands, R. undulata 

and % EPT were positively correlated with pH and alkalinity. 

Colour is also related to the amount forest in stream catchments. Coniferous trees 

leak tannins into strean1s and humus leaks from the soil with rainfall, increasing acidity 

and colour (Colbo pers. comm.; Hoff 1957; Roberts 1983). Terra Nova sites were 

consistently associated with high amounts of colour according to the PCA plots. All sites 

from Terra Nova had watersheds that were almost entirely bog or forested , therefore the 

leeching of taru1ins into the water seems a likely reason for this relationship (Appendix 3). 

The link of this region with colour explains the positive correlations between total and 

EPT richness, as Terra Nova was the most taxonomically rich region, as well as the 
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positive relationship of Acerpenna pygmaeus. A. pygmaeus was a common species in 

Terra Nova, but quite rare in the other regions. Therefore the link between this baetid 

mayfly and colour may be related to its distinct relationship with Terra Nova as a region. 

Rhyacophila minora was found primarily in wooded streams across the province and so 

was more likely to be related directly to colour from humus and tannins rather than 

geographical effects. A more detailed study of riparian vegetation and its relationship to 

colour would benefit future studies by pinpointing how much colour belongs to tannins 

and how much belongs to humus and peat bogs. This in turn would lead to further 

divergence of regional effects from more local water chemist1y effects. 

4.5 Conclusions and Recommendations 

1) Physical variables were unable to consistently distinguish the three geographic regions, 

though water chemistry consistently segregated A val on Peninsula and Terra Nova 

sites. The environmental ordination plots suggested that the sites sampled might be 

better distinguished on the basis of ecoregion than by geographic region. 

2) Variation in macroinvertebrate community composition was correlated with several of 

the environmental variables. Community composition was most highly influenced by 

physical habitat and to a lesser degree by water chemistry. 

3) The UTM Easting co-ordinates,% macrophytes, % igneous rock,% forest in the local 

watershed, nitrates, total nitrogen and alkalinity variables were the most consistently 

correlated with macroinvertebrates at the community and individual taxa level. 

However, UTM Northing co-ordinates, stream width, vegetation overhang, and pH 

showed detectible but weaker correlations with macroinvertebrate communities. 
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4) Physical and chemical variables were highly inter-linked at several locations, but as 

this differed among sample locations, they were not significantly correlated. 

5) Newfoundland's geography, ecoregions, and land use are generally split along an 

east-west gradient, causing difficulty in identifying structural vs. regional effects. 

More sites on the Avalon Peninsula with reduced urban influences, may improve the 

clarity of distinction (or Jack thereof) between community structure caused by 

physical surroundings and/or regional segregations. 

6) Macroinvertebrate richness was greatest at sites characterized by larger substrate sizes 

and higher velocities, which implied that they were moderately stable stream beds 

with little suspended silt. A direct measure of turbidity in future studies is 

recommended. 

7) It is suggested that stream order be measured in future studies to reduce variation in 

the watershed size variable and test the usefulness of the River Continuum Concept 

(RCC) in Newfoundland. 

8) More refined measurement of land use, e.g. urbanization, and more specific 

classification of vegetation cover is recommended to improve detection of the 

interactions between degree and type of vegetation cover, which may be a result of 

natural or anthropogenic disturbance. 

9) A more precise measure of stream shading is required to judge the impact of this 

parameter on stream fauna. 

1 0) The links between macro invertebrate communities and water chemistry were clouded 

by confounding geographical and regional effects. However, community metrics and 

individual taxa showed that there were few positive relationships between them and 
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nutrient concentrations, which was unexpected. Total EPT had a negative relationship 

with conductivity and pH as hypothesized. 

11) The Island's impoverished freshwater macroinvertebrate fauna did show patterns that 

related to the environmental variables sampled. However, the known correlations of 

invertebrate metrics are contradictory and emphasize the need for local understanding. 
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5 Biomonitoring Applications 

5.1 Introduction 

Biomonitoring uses biological variables to indicate environmental health, where 

health may include stability, resilience, low pollution levels and high biological richness 

(Haskell et al. 1992; Bonada et al. 2006). These biological variables are often referred to 

as ecological indicators and may take form on varying levels of detail. Niemi and 

McDonald (2004) define ecological indicators as: "measurable characteristics of the 

structure (e.g. genetic, population, habitat, and landscape pattern), composition (e.g. 

genes, species, populations, communities, and landscape types), or function (e.g. genetic, 

demographic/life history, ecosystem, and landscape disturbance processes) of ecological 

systems." 

There are many goals biomonitoring programs are designed to achieve (Niemeijer 

2002; Niemi and McDonald 2004). Ecological indicators are often applied to create an 

early warning system for ecosystems or human health (Karr 1999; Niemi and McDonald 

2004). Defining the cause of a shift in the environment is also a common goal, where 

Before-After-Control-Impact (BACI) designs provide concise answers to precisely-set 

problems (Vieira et al. 2004). Predicting changes in the future of a region's environment 

is another important role that ecological indicators can fulfill. Long-term studies are 

particularly useful for answering this question, primarily because it provides researchers 

with sufficient power to identify changes and/or trends in the indicator(s) over time 

(Niemi and McDonald 2004; Jackson and Fi.ireder 2006). 
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Biomonitoring programs are in place all over the world (RIVPACS in the United 

Kingdom, AUSRIVAS in Australia, PERLA in the Czech Republic, STAR-AQEM in 

Europe), a large proportion of those being in North America (CABIN and BEAST in 

Canada, NRI and EMAP in the United States and numerous state programs). Despite the 

methodological contributions from each program, each tends to only work in the 

region(s) in which it was developed (Washington 1984; Urquhart et al. 1998; Niemi and 

McDonald 2004; Maloney and Feminella 2006). Therefore, the application of existing 

programs must be evaluated in each new geographical and ecological region. 

Indicators of anthropogenic impacts for the Island of Newfoundland, a species-poor 

region, have yet to be defined. In Newfoundland, the Canadian Biomonitoring Network 

(CABIN) biomonitoring program has shown promise (Colbo et al. submitted). In the 

current study use of the CABIN method was expanded: the effects of seasonality, 

regions, environmental variables (including anthropogenic effects) and temporal variation 

among years were examined. 

Urban streams tend to have increased amounts of nutrients and heavy metals, as 

well as disturbance due to higher amounts of impervious surfaces in urban environments 

causing high amounts of runoff (Morse 200 1; Paul and Meyer 2001 ). In addition, 

increased conductivity, ammonium, suspended solids and pH have also been recorded in 

urban areas (Garie and Mcintosh 1986; Paul and Meyer 200 1 ). While additional nutrients 

can bring about higher densities of invertebrates, when coupled with other urban effects, 

reduced taxonomic richness and the reduction or loss of taxonomic groups tends to occur 

(Lenat and Crawford 1994; Colbo et al. 1999; Miserendino 2008). The mayflies in 
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particular are sensitive to urban influences, while the Chironomidae flourish (Pratt et al. 

1981 ; Garie and Mcintosh 1986; Lenat and Crawford 1994; Colbo et al. 1999; Brisbois et 

aJ. 2008; Miserendino 2008). Less urban, or " rural" , invertebrate communities tend to 

differ very little from urban communities (Pedersen and Perkins 1986), unless these rural 

areas are agriculturally based (Lenat and Crawford 1994). As there was very little 

agricultural activity in the regions sampled, detecting impacts of agriculture is unlikely. 

Long-term studies have indicated that there are variations in macroinvertebrate 

communities between years which are often unexplainable (Hynes 1970; Colbo 1985; 

Slavik et al. 2004). However, Townsend et al. (1987) states that "Overall, persistence was 

greatest at low discharge, upstream sites with cool summer temperature regimes and low, 

stable pH." (Townsend et al. 1987 p.597). These conditions adequately describe the state 

of most Newfoundland streams (Larson and Colbo 1983 ). 

In this chapter, objectives 3 to 5 of Chapter I are evaluated. The goal of objective 3 

was to determine the sensitivity ofNewfoundland macroinvertebrate communities to 

human impacts. Objective 4 was to test the usefulness of the CABIN protocol for 

biomonitoring. The aim of objective 5 was to provide recommendations for the 

application of a biomonitoring system in Newfoundland. In addition to these goals, a 

series of hypotheses based on the arguments in the above introduction will be tested. 

They are as follows: 1) the abundance and riclmess of ephemeropteran and dipteran 

orders are good indicators oflevels of urbanization in Newfoundland, with severely 

impaired areas generally having fewer mayflies and more chironornids, 2) rural areas 

(suburban) are not biologically different from urban communities, 3) chemically, urban 
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sites are expected to have a higher conductivity and a higher pH than pristine sites, and 4) 

Newfoundland invertebrate community structure and the relationships between sites are 

expected to persist between years. 

5.2 Methods 

The goals of this chapter have been split into two sections: the first identifies the 

sensitivity ofNewfoundland invertebrates to land use. Urbanization on the Island of 

Newfoundland is concentrated on the Avalon Peninsula. Thus it was the region of focus 

for studying the effects of human impacts on macro invertebrate communities. Three 

levels of land use were identified: the "urban" rating denoted a site that was urbanized for 

3-5 km upstream, "rural" did not have the level of urbanization as the previous rating, nor 

the extent, and may include agricultural areas. "Pristine" was defined as an un-urbanized 

site with little to no anthropogenic impact in the sunounding area. There were three 

urban sites (Rennies River, Virginia River and Waterford River), two rural sites (Broad 

Cove Brook and South Brook) and five pristine sites (Beaver Brook, Bristol Brook, 

Peyton Brook, Portugal Cove Brook and Wattern Brook). 

Land use sensitivity was first assessed with the seasonally amalgamated data from 

Chapter 3, transformed into proportions. The proportion of each taxon was calculated 

from the combined seasonal abundance of that taxon at each site, and then a group 

average was performed for each land use type. Major taxonomic groups were tallied and 

graphed in MS Excel as described in Chapter 3. The amalgamated data was also 

transformed into presence/absence for easy assessment of taxonomic richness. Taxa with 
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lower taxonomic entities present were removed from analysis for each site where that 

occurred (e.g. if Heptagenia pull a was present, then a corresponding mark for presence at 

the Heptageniidae level was removed). Analysis Qfvariance (ANOVA) was also carried 

out using MS Excel. The Waterford River is a distinct community, having an unusually 

high abundance of salmonids, unlike other less urbanized sites in the area (Gibson and 

Col bo 2001 ). Due to its unique nature, this site was removed from some tests. 

A second dataset consisting of fall macro invertebrate abundance data was also used 

to assess land use sensitivity. The latter dataset was log10(x+ 1) transformed in PRIMER6. 

£rincipal Component Analysis (PCA) was utilized to ordinate sites, as described in detail 

in the methods section of Chapter 4 and also by Clarke and Gorley (2006). A cluster 

analysis was performed on the macroinvertebrate abundance data with the intent of 

overlaying the clusters on the PCA plot. The cluster analysis used a Bray-Curtis 

similarity matrix, performed a group average test on the sites, and measured the level of 

similarity between the sites. In addition, Analysis Qf Similarity (ANOSIM - see Chapter 

3; Clarke and Gorley 2006) was performed with the land use factor, resulting in a Rho 

value: a correlation coefficient valued between 0 and 1 (Clarke and Gorley 2006). A third 

dataset of the fall physical and chemical data was used to interpret macro invertebrate 

abundance. ANOSIM was used on the transformed variables (list of transformations in 

Chapter 4), and the dataset was split to further analyse the connections of water chemistry 

to land use. PCA and ANOSIM were performed on the chemical dataset. 

The second goal of this chapter examines the sensitivity of Newfoundland 

invertebrates to temporal effects. The datasets examined in this area of the chapter were 
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presence-absence fall macroinvertebrate data from the Avalon Peninsula and Terra Nova 

in the current study, and presence-absence data previously collected in those regions in 

the fall of2002 and 2003 (Colbo et al. submitted). Presence/absence was used to more 

easily amalgamate data from different sources. PCA and ANOSIM were utilized to 

measure differences between the two regions and between years within a region. PCA 

was also used to track changes in repeat ites over time. 

5.3 Results 

5.3. I Sensitivity of Newfoundland invertebrates to land use 

An analysis ofthe conununity composition of the three land use types revealed a 

few key differences in several ofthe taxonomic orders (Figure 5.1 ). Urban communities 

were largely populated by Ephemeroptera and had the lowest abundance ofbeetles of the 

three land u e types. Rural sites had the highest proportions of beetles, stoneflies and 

caddisflies, and the lowest of non-insect macro invertebrates. Pristine sites were 

dominated by Diptera, this taxon made up nearly half the community. Non-insect fauna 

were most abundant in pristine streams, while mayflies were the least abundant there. 
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Figure 5.1 The proportion of individuals from the major taxonomic groups contributing 
to the macroinvertebrate community in samples from urban, rural and pristine sites on the 
Avalon Peninsula. 

Ephemeroptera were expected to be indicators of urbanization therefore an 

identical figme was created using the proportion each mayfly family contributed to the 

total mayfly population (Figure 5.2). Urban sites lack heptageniid mayflies and have the 

lowest abundances of phemerellidae of the tlu·ee land use types. Baetids make up over 

85% of the mayfly population in urban treams, but just over 50% in the other two land 

use types. Leptophlebiid mayflies are found at relatively similar levels in all areas, 

though are slightly more abundant at pristine sites. Heptageniids are equal ly prevalent at 

rural and pristine sites, while ephemerell ids are slightly more common in rural areas. 
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F igure 5.2 The proportion of individuals from the families of the order Ephemeroptera in 
urban, rural and pristine sites on the A val on Peninsula. 

The number of taxa making up the macro invertebrate community was variable 

between sites, irrespective ofland use type (Table 5.1). Ofthe urban sites, Rennies River 

and Virginia River both had much lower richness than Waterford River, where the 

Waterford had over ten more taxa than the other two. Among the pristine sites, Peyton 

Brook had the lowest overall richness (eight Jess taxa than the highest) while Beaver 

Brook had five less mayfly taxa than the richest pristine site. Analysis Qf variance 

(ANOV A) tests indicated that there was no difference in total and mayfly richness 

between land use types (Table 5.2). However, when the Waterford River site was 

removed from the analysis, both richness tests were significant where the total richness 

ANOVA had ap-value of0.012 and the mayfly richness ANOVA had a p-value of0.018. 
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Table 5.1 Total taxonomic richness and richness of Ephemeroptera in sampled A val on 
streams. 

Land use Brook Name Total Ephemeroptera 
Urban Rennies River 18 4 

Virginia River 19 3 
Waterford River 33 8 

Rural Broad Cove Brook 33 10 
South Brook 28 7 

Pristine Beaver Brook 27 7 
Peyton Brook 22 9 
Bristol Brook 30 9 

Portugal Cove Brook 27 12 
Watern Brook 27 10 
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Table 5.2 ANOV A tables ofland use comparisons with and without the Waterford River 
for A) total richness and B) Ephemeroptera richness. P-values less than a = 0.05 
are in bold type. 

A) Total richness with Waterford River included 

Source of Sum of Degrees Mean F P-value F critical 
Variation Squares Freedom Squares 

Between Groups 62.0 2 31.0 1.165 0.366 4.737 
Within Groups 186.4 7 26.6 

Total 248.4 9 

Total richness without Waterford River 

Source of Sum of Degrees Mean F P-value F critical 
Variation Squares Freedom Squares 

Between Groups 153.8 2 76.9 9.987 0.012 5.143 
Within Groups 46.2 6 7.7 
Total 200 8 

B) Ephemeroptera richness with Waterford River included 

Source of Sum of Degrees Mean F P-value F critical 

Variation Squares Freedom Squares 
Between Groups 37.2 2 18.6 4.107 0.066 4.737 

Within Groups 31.7 7 4.5 
Total 68.9 9 

Ephemeroptera richness without Waterford River 

Source of Sum of Degrees Mean F P-value F critical 

Variation Squares Freedom Squares 
Between Groups 50.7 2 25.3 8.355 0.018 5.143 

Within Groups 18.2 6 3.0 
Total 68.9 8 
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The Principal Component Analysis (PCA) explained a cumulative total of 64.2% 

ofthe total variation in the macroinvertebrate dataset in the first three axes. 30.2% of the 

total variation was explained by the first Principal Component (PC) axis, 18.5% by the 

second, and 15.5% by the third. This first axis segregated the sites according to land use 

type, with urban sites sorting to the positive end ofPC1 and pristine sites sorting towards 

the negative end (Figure 5.3). All strong eigenvectors were related to the negative part of 

the first PC axis (Table 5.3). Two hydroptilid caddisflies, Hydroptila and Oxyethira, as 

well as a baetid mayfly were the taxa most directly related to that axis. All urban sites 

sorted to the negative side of the second PC axis, which was correlated with the presence 

ofSphaeridae. Immature ephemerllid mayflies, Lepidostoma sp. and Oulimnius 

latiusculus had large positive eigenvalues for the second PC axis. 

Macroinvertebrate communities at all Avalon sites were at least 20% similar to 

one another, as seen by the clusters overlaid on the PCA plot (Figure 5.3). All urban sites 

had a Bray-Curtis similarity equivalent to 40%, while rural sites were included with the 

pristine sites at this level of similarity. At the 60% similarity level, the rural sites were in 

the same cluster as two pristine sites. 

The segregation of sites on a gradient of land use was significant in Analysis Qf 

Similarity (ANOSIM) tests where the Global Rho value was 0.59 (p = 0.011) (Table 5.4). 

The R-statistics for urban vs. pristine and urban vs. rural sites approached 1 (R = 0.877, p 

= 0.018; R = 0.917, p = 0.1 respectively). Pristine sites did not differ from rural sites, 

where the R value for the pair was 0.073 and the p-value was 0.619. 
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Figure 5.3 2-dimensional PCA biplot of the first vs. second Principal Component axes 
for the Avalon fall macroinvertebrate abundance data. Points represent sample 
sites, labelled by land use type. Similarity clusters are overlaid. 

Table 5.3 Eigenvector strengths corresponding with the Principal Component axes of 
Figure 5 .1. Only eigenvectors equalling or exceeding 0.250 are listed. 

PCl PC2 
Sphaeridae -0.285 -0.305 
Hyalella azteca -0.259 
Acerpenna pygmaeus -0.288 

EphemereUidae 0.362 
Hydroptila sp. -0.324 

Oxyethira sp. -0.292 
Lepidostoma sp. 0.310 
Simulium venustum/verecundum -0.284 

Oulimnius latiusculus 0.364 
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Table 5.4 ANOSIM tests for strengths of land use differences between sites sampled on 
the A val on Peninsula, using fall macro invertebrate abundance data. 

R p 
Global R 0.590 0.011 

Urban vs. Pristine 0.877 0.018 

Urban vs. Rural 0.917 0.100 

Pristine vs. Rural 0.073 0.619 

The CABIN protocols specify physical and chemical data to be recorded as well. 

Physical variables did not sort sites along a gradient of land use, where the Global Rho 

for the ANOSIM test was 0 with a p-value of 0.485. However, the water chemistry did 

sort sites along a gradient similar to that seen in the macroinvertebrate data (Figure 5.4). 

95.3% of the variation in the data was explained in the first three PC axes, 76.9% in the 

first, 12.3% in the second, and 6.0% in the third. Urban sites sorted to the negative end of 

PC axis 1, rural sites centred on the zero of both axes, and pristine sites were restricted to 

the positive side of PC axis I. Most eigenvalues were large, resulting in large variable 

vectors. According to the variable vectors in both plot views, conductivity, pH and 

alkalinity were best correlated with the urban sites. Nitrates were also strong on PC axis 

1, though the strength of the variable on other axes pulled the vector from the urban site 

cloud in Figure 5.4 b). 

The Global Rho value was very high for the land-use segregations of the water 

chemistry dataset, at 0.88 (p = 0.001). Both pairs containing urban sites had a Rho of 

1.00, indicating perfect difference between land use pairs (Table 5.5). Interestingly, 

pristine and rural site water chemistry was statistically different (R = 0.6, p = 0.048), 

unlike the results for the macroinve11ebrate communities (Table 5.4). 
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Figure 5.4 2-dimensional PCA bi plots of the a) first vs. second and b) first vs. third 
Principal Component axes for the Avalon water chemistry data. Points represent 
sample sites, labelled by land use type. Length of lines represent the correlation of 
variables with the principal components. 
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Table 5.5 ANOSIM tests for strengths of land use differences between sites sampled on 
the A val on Peninsula, using fall water chemistry data. 

R p 
Global R 0.88 0.001 
Urban vs. Pristine 1.00 0.018 
Urban vs. Rural 1.00 0.100 
Pristine vs. Rural 0.60 0.048 

5. 3. 2 Sensitivity of Newfoundland invertebrates to temporal effects 

The fall macroinvertebrate presence-absence data from 2002, 2003 and 2004, 

when combined in a PCA plot, indicated that there were clear differences between the 

Avalon Peninsula and Terra Nova (Figure 5.5). However, only 19.2% of the variation in 

the dataset was explained by the first two PC axes. A val on sites tended to lie on the 

negative side of the second PC axis, though some sites were scattered in among the sites 

in the Terra Nova "cloud". Hydropsyche slossonae was associated with the negative side 

of PC axis 2 (Table 5.6). Immature leptophlebiids were related to the positive side of the 

second PC axis where the majority of the Terra Nova sites lay. ANOSIM proved the 

separation ofthe two regions with an R-statistic of0.308, p-value = 0.001. 

Using the same macroinvertebrate plot, but labelling it by year, revealed another 

pattern in the data (Figure 5.6). Sites from the 2004 sampling season tended to sort 

together on the negative side of PC ax is 1, whi le 2002 and 2003 clustered on the positive 

side. All strong eigenvectors for PC axis I were negative associations, indicating a lack 

of these taxa in 2002 and 2003 samples (Table 5.6). The clearest regional separation was 

seen in the 2002 sites across PC axis 2, as indicated in Figure 5.5 . 
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ANOSIM was also used to search for significant differences between each region 

within and between years (Table 5.7). The only regional/temporal pair that was not 

significantly different was the 2004 Avalon and 2004 Terra Nova pair, which had an 

R-statistic of0.122 and a p-value of0.064. Every other pair was statistically significant to 

p = 0.001 with the exception of2002 and 2003 Terra Nova, which had a p-value of0.004. 

The Rho value for the 2002 and 2003 Terra Nova pair was low, recorded as 0.249. 
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Figure 5.5 2-dimensional PCA biplot of the first vs. second Principal Component axes 
for the 2002, 2003 and 2004 fall macroinvertebrate presence/absence data. Points 
represent san1ple sites, labelled by region. 
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Table 5.6 Eigenvector strengths corresponding with the Principal Component axes of 
Figure 5.5 and Figure 5.6. Only eigenvectors equalling or exceeding 0.225 are 
listed. 
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Table 5.7 R-statistic and p-values for the ANOSIM analysis of the combined temporal 
and regional effects on the combined 2002-2004 fall macroinvertebrate 
presence/absence data from the A val on Peninsula and Terra Nova. 

R-statistic p-value 
2004 Avalon vs. 2004 Terra Nova 0.122 0.064 

2004 Avalon vs. 2002 Avalon 0.726 0.001 

2004 Terra Nova vs. 2002 Terra Nova 0.644 0.001 

2004 Terra Nova vs. 2003 Terra Nova 0.540 0.001 

2002 Terra Nova vs. 2003 Terra Nova 0.249 0.004 

2002 Terra Nova vs. 2002 Avalon 0.948 0.001 

The PCA of the repeat sites explained more variation than the 2002-2004 dataset 

together, where 42.4% of the variation was explained in the first three axes. 17.1% of the 

variation was explained by PC axis 1, 14. 1% by PC axis 2, and 11 .2% by PC axis 3. In 

Figure 5.7a), there were obvious changes in the communities between years, though those 

shifts did not cause sites to change in the same way. Subtly, Terra Nova sites tended to 

shift towards the positive side of PC axis 2, while A val on sites hifted toward the 

negative. PC axis 2 was associated with Lumbriculidae on its negative axis, as well as 

with Acerpenna pygmaeus and Oulimnius latiusculus on the positive (Table 5.8). 

However, when viewed as the third PC axis aga inst the first, a definite directional shift in 

macroinvertebrate communities between 2002 and 2004 took place at each repeat site. 

All 2004 sites were further to the negative end of PC axis 3 than in previous years, which 

was associated with increases in the taxa Paracapnia opis, lsoperla transmarina and 

Apatania sp. (Table 5.8). Despite differences in directional shifts of sites belonging to 

different regions, none ofthe lines between repeat sites crossed each other. 
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Table 5.8 Eigenvector strengths corresponding with the Principal Component axes of 
Figure 5.7. Only eigenvectors equalling or exceeding 0.225 are listed. 

5.4 Discussion 

Axis 
PC 1 

PC2 

PC3 

Taxon 
Helobdella stagnalis 

Stenonema vicarium 

Dolophilodes distinctus 

Hydropsyche slossonae 
Lumbriculidae 

Acerpenna pygmaeus 

Oulimnius latiusculus 
Paracapnia opis 

!soper/a transmarina 

Apatania sp. 

Eigenvector 
0.244 

-0.245 
-0.241 

0.228 
-0.252 

0.232 

0.229 

-0.317 

-0.256 
-0.23 1 

5. 4. I Sensitivity of Newfoundland invertebrates to land use 

Differences in macroinvertebrate communities among watersheds of varying 

levels of human impact were evident. Colbo et al. (1999) and Lomond and Colbo (2000) 

found that highly urbanized sites had decreased richness and abundance of 

Ephemeroptera, Plecoptera and Trichoptera (EPT) taxa. Many papers have found that the 

density, diversity and abundance of macro invertebrates decreases in urban settings, 

especially for EPT taxa. Conversely, the density and abundance ofDiptera, particularly 

Chironomidae, and oligochaetes increase in urban communities (Pratt et al. 1981 ; Garie 

and Mcintosh 1986; Lenat and Crawford 1994; Paul and Meyer 2001 ). However, in the 

current study, the urban sites had the highest proportion of may:fl ies in their communities, 

stone:flies were in short supply over the entire Avalon Peninsu la, and caddis:flies 

generally made up the same proportion in all communities. Pristine sites had the lowest 
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proportion of EPT taxa, comprising approximately 30% of the population, whereas urban 

and rural communities were approximately 50% EPT taxa. Pristine sites also had the 

largest proportions ofDiptera and non-insects (including Oligochaeta) while urban 

communities had 10% less ofthe former order than the pristine sites. However, Colbo et 

al. (1999) reported that heptageniid mayflies were absent from the most urban sites, a 

result confirmed by this study. Therefore, though mayflies made up a larger proportion of 

the community, the taxa doing so changed in the urban environment compared to the 

other environments. Despite the above findings that were contrary to the literature, the 

taxonomic richness of Avalon streams did decrease with increasing urbanization for the 

most part. The Waterford River is an anomaly, as it had the highest taxonomic richness of 

all the sites sampled (except for Broad Cove Brook, which had the san1e richness) while 

Rennies and Virginia rivers had the lowest. Ephemeroptera richness was lower in the 

Waterford stream, presumably reflecting the loss of the heptageniid group, but was still 

richer than the other urban streams. The precise factors making Waterford River unique 

are unknown, but possibilities will be discussed later on. 

The macroinvertebrates visibly followed a land use gradient when the site 

information was plotted using Erincipal Component Analysis (PCA). Water chemistry 

produced an identical plot, suggesting that chemical variables related to urban sites are 

also those acting on macroinvertebrates at those sites. High conductivity and pH were 

correlated with urbanization, as noted in other studies (Garie and Mcintosh 1986; Paul 

and Meyer 2001). A consistent pattern emerged when the results of the eigenvector 

analyses and proportional analyses between the invertebrates and water chemistry were 
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combined. Heptageniidae and Hydroptilidae can be considered intolerant of urban 

conditions due to their absence or severe depletion in urban streams. Coleoptera (and 

elmid beetles, by inclusion), Acerpenna pygmaeus and Lepidostoma sp. were less 

abundant in urban streams, indicating a sensitivity to urban conditions. Baetid mayflies, 

Baetis tricaudatus to be specific (Appendix 4) and Sphaeridae may not prefer urban 

conditions, but seem to be more tolerant of them as they are more abundant in those 

streams compared to most others. 

St. John's streams are cold and relatively fast-moving, eliminating dissolved 

oxygen as a limiting factor in this environment (Larson and Colbo 1983). However, 

moving water displaces sediments from river banks and ponds, adding suspended solids 

to the water. High amounts of suspended sediments are particularly common in urban 

areas due to the large amount of human disturbance and spates caused by an increase in 

impervious surfaces and storm drains (Morse 1996; Paul and Meyer 2001; Lomond and 

Colbo 2000; Miserendino et al 2008). The east-coast provinces experience a large amount 

of rain events, causing frequent spates (Colbo 1985). Coupled with increased 

sedimentation in urban streams, stream invertebrates would be constantly bombarded 

with inputs of suspended solids. 

Colbo et al. (1999) cited high physical disturbance and storm drains with their 

input of silt and pollutants as key inhibitors ofEPT colonization. In the present study, 

ephemeropterans such as Heptageniidae and Ephemerell idae were either absent or rare in 

urban sites, indicating difficulties with colonization despite the high abundances of 

baetids. In contrast, high amounts of suspended sediments released from a dam instantly 
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reduced the chironomid population by 90% in Wyoming rivers, while Ephemeroptera and 

oligochaetes increased in density (Gray and Ward 1982). Therefore, if the flushing of 

sediments occurred more frequently, then the Chironomidae would potentially remain at 

a reduced density, as they did in the current study. The genus Baetis is also tolerant of 

high-flow episodes and silting (Gray and Ward 1982; Wallace and Anderson 1996), 

which explains the prevalence of this taxon in urban streams. Coleoptera too, particularly 

the elmids, are known for low tolerance to storm water runoff (Lenat et al. 1981; Pratt et 

al. 1981 ; Garie and Mcintosh 1986; Lenat and Crawford 1994). Therefore, as "urban 

conditions" tend to produce results akin to those seen in this study, it is suggested that the 

sensitive taxa in Newfoundland respond to physical disturbance. Conductivity and pH 

may play a part, either as indicators of some conditions or as factors directly affecting 

taxa. However, the extent to which these environmental factors individually affect the 

macroinvertebrate community is un-testable with the current data. The current results 

imply that proportions of mayfly families and coleopteran abundance could be used to 

test for impacts of fire and logging as higher velocity and sedimentation are intrinsically 

connected to loss of forest (Kerr 1995). 

A recent study by Townsend et al. (2008) pursued the question of segregating 

sedimentation and nutrient interactions with stream macroinvertebrates. They found that 

taxonomic richness and EPT richness were lowest when sedimentation and nutrient levels 

were at their highest, but that richness increased exponentially when sediment levels were 

low and nutrient levels were high. This effect could explain the high riclmess in the 

Waterford River compared to the other two urban streams. It is possible that Rennies 
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River and Virginia River have higher concentrations of suspended solids which 

counteract the more beneficial aspects of nutrient introduction. Furthermore, these latter 

two sites did not have clean water tributaries entering the strean1 near the sampling site, 

unlike the Waterford River. Clean water tributaries may also allow recolonization of 

impacted lower reaches. Accurate measures of turbidity would enable testing of the 

sedimentation hypothesis in the future. 

Analysis Qf Similarity (ANOSIM) tests confirmed that macroinvertebrate 

communities in different land use areas were significantly different. Urban sites were 

strongly divergent from pristine and rural sites according to the R-statistics. In contrast, 

the corresponding p-values was not significant. Similar results were found in the 

ANOSIM test of land use differences in water chemistry where the highest possible Rho 

values (R = 1) were coupled with less significant p-values than would be expected. In 

situations where this occurs, Clarke and Gorley (2006) recommend the use of R-statistics 

for decision making as Rho is a measure of differences between two (or more) groups 

and is not affected by the number of sites, unlike p-values. Consequently, it is concluded 

that 1) urban, rural and pristine sites are chemically distinct, and 2) invertebrates respond 

to the urban level of land use, but community composition does not drastically differ 

between rural and pristine sites. The second conclusion is supported by the cluster 

analysis, which grouped the two rural and two of the pristine site together at 60% 

similarity. 

A measure of the percentage of the basin that is residential would be useful for 

future studies of land use effects, pa1ticularly in defining "urban" versus " rural" sites. 
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Morse (200 1) found that a threshold of 6% impervious surfaces in the basin must be 

exceeded before a change in taxonomic composition and richness would occur in the 

stream. A threshold similar to this may exist on the A val on Peninsula as indicated by the 

lack of segregation between pristine and rural sites. Also, direct measures of turbidity 

taken over a full season would increase knowledge of silting events caused by storm 

runoff and would improve understanding of the conditions urban invertebrates tolerate. 

5. 4. 2 Sensitivity of Newfoundland invertebrates to temporal effects 

The macro invertebrate communities of the A val on Peninsula and Terra Nova 

have been shown to be significantly different (Chapter 3). Changing the abundance 

information to presence/absence and adding two additional years of data did not alter this 

result, though the Rho value decreased from 0.400 (p = 0.001) with 2004's fall 

macroinvertebrate data to 0.308 (p = 0.001) in the combined dataset. Presence/absence 

data also decreases the size of some individual eigenvectors, while raising the size of 

others (Clarke and Gorley 2006), reducing the probability oflocating an indicator species 

for either region or year. 

The temporal aspect of the combined study delivered some interesting results: one 

being that the Avalon and Terra Nova sites were not statistically different in 2004 but 

were so in 2002. In fact, macroinvertebrate communities at Avalon sites from 2004 and 

2002 differed sign ificantly and the Terra Nova sites from 2004 differed from samples 

taken in 2002 and 2003. This would seem to indicate either a) a shift in the invertebrate 

community that occuned over two years, or b) a difference in the sampling and/or 

laboratory regime between studies. As no drastic visible changes occurred at or near any 

5-25 



of these sites in those two years (e.g. new building complex upstream, drought, fire), then 

b) seems to be the cause. This conclusion is fortified by the close clustering of Terra 

Nova sites between 2002 and 2003, both of which studies were performed by the same 

person. 

In some cases different field sampling and sub-sampling techniques/methods have 

not affected models or sampling standard deviations (Clarke et al. 2002; Ostermiller and 

Hawkins 2004) , though others caution against differences in sampling and sub-sampling 

effort (Cao et al. 2005), and some refute the validity of using sub-san1pling at all 

(Doberstein et al. 2000). However, in the current study, nearly identical methods were 

used. All invertebrates were sampled in-field according to protocols outlined in the 

Canadian Aquatic Biomonitoring Network manual (Reynoldson et al. 2003) and sub

sampled using a Marchant box (Marchant 1989). No information regarding the number of 

cells used to produce the 300-individual count was located, hence the use of 

presence/absence data. lfthis information had been available, the data would have been 

standardized in the same manner as the 2004 data. Still, there may not have been any 

difference in the conclusions reached by the presence/absence data from what may have 

been expected from the abundance data (Wright et al. 1995). Therefore, the hypothesis 

that differences in sampling/identifying techniques caused the variation between the 

2002/2003 and 2004 datasets is falsified and hypothesis a) appears to be supported by the 

evidence. 

A closer examination of the taxonomic information reveals some differences 

between the types of taxa sampled and counted each year. Data from 2002 and 2003 
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contained more pond taxa (i.e. aeshnid dragonflies, planarians, cladocerans), some of 

which were not identified in 2004. Lake outlet stream communities frequently differ from 

those in riffle habitats (vis Richardson and Mackay 1991; Lomond and Colbo 2000; 

Colbo et al. submitted). Therefore, if some of the sites sampled in 2002 and 2003 were in 

fact from lake outlets, the presence of pond taxa would result, and potentially 

differentiate between these communities and the other streams sampled from 2002-2004. 

Not all 2002 and 2003 sites were at different locations from those in 2004; there were 

several sites that were repeated in the exact same location. The main reason for the split 

between 2004 and 2002-2003 in the plots was due to the fact that some taxa that were 

common in 2004 were rarely sampled in 2002 and 2003 (Paraleptophlebia adoptiva, 

Paracapnia opis and !soper/a transmarina). 

The repeat sites generally agreed with the overall findings of the compiled 

datasets, with a few additional conclusions. The fact that there are differences between 

communities at identical sites over several years indicates a loss of predictive power due 

to natural interannual variation. However, it also follows that the more data collected, the 

less small, intra-annual variation affects the end results (e.g. temperature variation data 

becoming viewed as seasonal maxima and minima instead of daily highs and lows). 

Continuing to sample the repeat sites would better define the limits of natural variation 

and increase the possibility of using directional site movement within a plot to indicate 

potential degradation. It is also encouraging that the temporal lines connecting the site 

pairs did not cross, which indicates that site interrelationships remained identical among 

years (Brady et al. 2007). 
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As in the Avalon and Terra Nova PCA plots, Paracapnia opis and !soper/a 

transmarina were representative of the separation of 2004 sites from 2002 and 2003 sites. 

The reduced occurrence of these taxa in 2002 and 2003 may be explained by the adoption 

of a semi- or multi-voltine life cycle by these taxa due to cold temperatures and limited 

nutrients (Edmunds and Waltz 1996; Stewart and Harper 1996; Wallace and Anderson 

1996). As a result, the loss of a cohort would have effects in subsequent years, but might 

not show up in the collected data every year the community was sampled. An intensive 

study would reveal if these particular taxa have a less than one life cycle a year which 

would be critical for protecting Newfoundland taxa in the future. 

Differences in taxonomic assemblages among years are not uncommon, though 

few studies have been dedicated to long-term experiments (Hynes 1970; Drake 1982; 

Colbo 1985; Slavik eta!. 2004). Many of these studies have been relatively unsuccessful, 

where success is defined as: if inter-annual variation did occur, it was accounted for by 

some measurable term (Hynes 1970; Colbo 1985). Complicated models by which 

populations may be predicted have been devised, but still require many years' worth of 

data to create (Urquhart et al. 1998). Generally, inconsistency across temporally diverse 

data is to be expected, and may be considered a symbol of a healthy invertebrate 

community responding to natural changes in the local environment. Also to be gained 

from this and other studies is the understanding that many sites should be revisited to 

avoid identifying local fluctuations as overall trends. 

One result that may not be affected by the between-year differences is the change 

in distance between the Avalon sites and the Tena Nova sites between years. In 2004, the 
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two regions were much more similar than in 2002, as evidenced not only in the PCA plot, 

but also by close-to-1 Rho value of the 2004 samples in the ANOSIM results. These 

results indicate an increased likeness of the macroinvertebrate communities in these two 

regions between 2002 and 2004. This may be, at least partially, due to the addition of 

several "pristine" sites to the A val on dataset in 2004. If the similarity was totally due to 

the addition of pristine sites, then the urban St. John's sites would have been expected to 

segregate from the rest of the sites in an identically discreet manner as 2002. 

5.5 Conclusions and Recommendations 

1) Newfoundland macro invertebrate communities in heavily urbanized areas differ from 

communities in rural and pristine environments. Rural and pristine invertebrate 

communities are similar. 

2) Impacted urban communities are characterized by a large Baetis tricaudatus 

population, an absence of Heptageniidae, and few beetles. They tend to have lower 

taxonomic and Ephemeroptera richness than rural or pristine sites. 

3) An abundance of spate events and resulting sedimentation are suspected potent agents 

of change associated with urbanization in St. John's. 

4) Chemically, sites classed as urban, rural and pristine, were distinct. Urban sites had 

higher conductivity and pH than rural and pristine sites. 

5) Accurate measures of the density of urbanization (e.g. % impervious substrates, % 

residential area) in the basin would increase the amount of explained variation. 
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6) The macroinvertebrate community can change over time in response to an unknown 

combination of environmental variables. This temporal variability has implications 

for biomonitoring program design and power. 

7) Samples taken in 2004 differed from samples taken in 2002 and 2003 due to a greater 

number of occurrences of Paracapnia opis and Isoperla transmarina in 2004. 

8) Terra Nova and the Avalon Peninsula invertebrate communities were found to be 

more similar since the 2002 study, indicating variation in the strength of region-based 

relationships. This may be due to annual population changes of the taxa in these 

communities. Thus, spatially and temporally expanded data bases are recommended 

prior to establishing a biomonitoring system. 

9) The diversity of the island fauna sampled with the CABIN protocol can provide data 

to biomonitor the Island 's rivers. 
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6 Summary 

A total of 148 taxa was collected from 65 riffle sites in the A val on Peninsula, 

Terra Nova National Park and Gros Mome National Park regions over three sampling 

seasons (summer 2004, fall 2004, spring 2005). Newfoundland macroinvertebrate riffle 

community richness was lowest in the A val on Peninsula region. Gros Morne and Terra 

Nova had identical taxa accumulation curves, though highest mean riclmess per site 

varied across taxonomic groups (orders). The proportion of the community made up by 

beetles, caddisflies and stoneflies did not vary drastically between regions, but non

insects and flies contributed more to A val on populations than the other two regions. 

Mayflies were the richest taxonomic family in Gros Morne communities, and they 

contributed more individuals to sites in that region than any other. Regional differences 

were more pronounced when the effects of season were taken into account. Season was 

responsible for large amounts of variation in the macro invertebrate community dataset. 

Based on examinations of the three seasons, fall was chosen for subsequent analyses. 

Specimens collected in spring and fall were generally more mature than 

summer-collected specimens, and spring has a higher occurrence of spate events than 

summer and fall. Therefore, due to increased certainty of identification and safety for the 

sampler, fa ll san1pling is recommended for future studies. 

Physical environmental variables did not differ consistently among geographic 

regions, although Avalon Peninsula sites taken as a group consistently differed in water 

chemistry from Terra Nova sites. Macroinvertebrate community structure was more 
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highly correlated with physical than with chemical variables. UTM Easting, % 

macrophytes,% igneous rock,% forest in the local watershed, nitrates, total Nitrogen and 

alkalinity were the variables most highly correlated with the macroinvertebrate 

community data. However, descriptions of structural and regional effects often did not 

follow the same pattern, causing difficulty in determining why invertebrates responded to 

their environment as observed (e.g. positive relationship between number of taxa present 

at a site and UTM Easting co-ordinates, though lower numbers of taxa were present at 

sites with the highest Easting co-ordinates). In general, streams with low sediment loads 

(as indicated by middling substrate size and velocity as well as the presence of 

macrophytes) positively influenced invertebrate richness and abundance. 

Within the Avalon Peninsula, "urban", " rural" and "pristine" land use classes 

exhibited significant differences in water chemistry. Urban sites had consistently higher 

conductivity and pH than rural and pristine sites. The invertebrate community did not 

differ between rural and pristine sites, but urban communities were significantly different 

from conununities found in the other two land use zones. This suggests that 

anthropogenic effects are negligible outside of urban centres, likely due to 

Newfoundland's limited agriculture, cool temperatures and turbulent strean1s. Urban 

communities were largely populated by Baetis tricaudatus and completely lacked the 

mayfly family Heptageniidae. In general, urban sites had the lowest taxonomic and 

mayfly richness of all sites. 

Relative abundances of dominant macroinvertebrates within the sites varied 

an1ong years, but not enough to affect the ordering of sites relative to one another. 
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Continued monitoring, particularly with repeat sites, is strongly advised in order to 

measure the amount of natural variation in Newfoundland conununities in time and 

space. Despite the few years available for analysis, a reduction in the difference between 

Avalon Peninsula and Terra Nova sites was observed from comparing a 2002 to 2004 

dataset. Changes in the frequency of occurrence in two key species between these sample 

dates were the apparent cause of this merging of regions. Again, continued sampling may 

determine if this reduction in regional difference is persistent through time, or if it is a 

result of cyclical, more global environmental effects rather than more local land use 

changes. 

In sununary, this research defined the macroinvertebrate community of riffles 

across the island, which also revealed some differences in composition among geographic 

regions. The macroinvertebrate communities ofNewfoundland appeared to be sensitive 

to physical and chemical conditions, including land use patterns. Human land use 

influences were only detected in St. John' s urban sites. Correlations between 

macroinvertebrates and the environmental variables indicated that the CABIN protocol is 

a suitable method for biomonitoring in Newfoundland, despite the island's depauperate 

species assemblage. Macroinvertebrates were good indicators of stream characteristics, 

but to detect meaningful gradual trends at local or global levels, data co.llected over a 

long time series will be required. 

Recommendations for the application of a benthic macroinvertebrate 

biomonitoring program in Newfoundland are as follows: 

l) Samples should be collected in the fall. 
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2) Sample sites should be chosen in such a way as to give equal numbers of sites in each 

ecoregion. At the very least, there should be five sites in a region for statistical power; 

a number generally accepted by statisticians. 

3) The accuracy of physical data collection is important due to the high correlation of 

physical variables with macroinvertebrates. The inclusion of forest type in the 

watershed is highly recommended. 

4) Alkalinity and nutrients should continue to be monitored closely and tmbidity should 

be added to water chemistry protocols. Conductivity and pH also become important 

within a region where human impacts are expected. 

5) Abundances of the taxa Baetis tricaudatus, Heptageniidae and Coleoptera are clear 

indicators of urbanization in Newfow1dland. Continued use of abundance/proportion 

data as opposed to presence/absence data is encouraged. 

6) Repeated san1pling of past sites is highly recommended for long-tem1 monitoring. 

Topics for future study that will increase the effectiveness ofthe biomonitoring 

system include: 

1) Describing the effects of sedimentation on Newfoundland invertebrates to separate 

these effects from those of urbanization. 

2) Measuring nutrient levels (Phosphorus, nitrates, total Nitrogen) from plant matter and 

water samples to assess overall nutrient inputs (bioaccumulated in plants) to compare 

to values of single point collections (water chemistry). 
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3) Determining the threshold of land use change (including impervious surfaces) that, 

when exceeded, causes change in invertebrate communities. This will result in 

refining the definition of "rural" and "urban" sites, as pertaining to agriculture, 

logging and residential activities. 
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Appendix 1. Listing of sample sites, codes and respective latitude and longitude for each 
brook sampled at some point in the summer and fall2004 and spring 2005. 

St. John's and Avalon Peninsula 
River Name 

WatemBrook 

Bristol Brook 

Po~al Cove_ ~ook 
Rennies River -- --

Site Code 

WAT01 
BRI01 

-· -· 

PCB01 

Latitude Longitude 

46° 38' 52.011 53° 09' 55.811 

46° 38' 59.1 11 53° 10' 54.5 11 

46° 44' 41.7 11 53° 14' 03.711 

- - -- -- -
RENOl 47° 34' 28.711 52° 42' 28.911 

---------
VIR01 47° 35'04.1 11 52° 41'24.211 

V~ginia River 
. -- -·----- --- -- -

Waterford River 
- -

South Brook 

Beaver Brook - - ----
Peyton Brook 
Broad Cove Brook 

Terra Nova National Park 
River Name 

Square Pond Broo~ 
Arnolds Pond Brook 

-
Southwest Brook 

Upper Southwest Brook 

Southwest River 
-p • ·-~-- .. ~ 

Salmon Brook - --
BigBrook 
Terra Nova Brook 

Charlottetown Brook 

Northwest River 
Cobblers Brook 
Rocky Brook 

Bloody Brook 
Triton Brook 

Penneys Brook 
Penneys Brook 

Minchins Pond Brook 
North Broad Cove Brook 

Little Shoal Harbour River 
Little Shoal Harbour River 

WFR01 47° 32' 36.5 11 52° 43' 26.8 11 

-
STB01 47° 29' 50.6'' 52° 47' 25.711 

BEA01 47° 20' 40.3 11 52° 55' 09.1 II 

PEY01 

BCB02 

Site Code 

~QP02 
APB02 
SWB01 

USWOl 

SWR01 

SABOl 
BBA02 

1NB03 
CTB02 

NWR03 
CBB02 
RPB01 
BBBOI 
TRJ01 

PNB02 
PNBOl 

MPB01 
NBC01 

LSR01 

LSR02 

47° 20' 38.1 II 52° 55' 46.0 11 

----
470 34' 34.8 11 52° 52' 32.211 

Latitude Longitude 

48° 38' 10.5'' 53° 57' 36.011 

48° 37' 21.911 53° 58' 7.12 11 

48° 36' 41.5 11 53° 58' 30.011 

48° 21'02.1 11 54° 01'48.011 

48° 18' 53.611 54° 10' 21.9 11 

48° 23' 30.211 54° 12' 25.8 11 

48° 32' 12.411 53° 58' 49.5 11 

48° 32' 01.1 11 53° 59' 11.211 

48° 26' 30.611 54° 00' 21.411 

48° 23' 36.5 11 54° 11 I 46.6 11 

48° 25' 08.9 11 54° 08' 04.8 11 

48° 35' 30.611 54° 33' 11 .1 II 

48° 35' 30.611 54° 34' 01 .011 

48° 36' 12.1 11 54° 35' 11.911 

48° 40' 02.8 11 54° 01' 52.9 11 

48° 40' 22.0 11 54° 01' 54.411 

48° 33' 36.7211 53° 52' 52.64" 

48° 37' 21.8" 53° 49' 26.9" 
48° 08' 49.5" 53° 58' 15. 7" 

48° 09' 07.411 53° 57' 57.3 " 
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Gros Mome National Park 
River Name 

Slants Brook 

Western Brook ----
Bakers Brook 

Eels Brook 

Eels Brook 
-------- ·-
Rocky Harbour Pond Brook 
DeerBrook -·-- - ----·--
Tro~t Rive! ~ib~ _ 
Trout River Brook 

Clear Cut Brook 

Martin~ St~ger Brook 
McKenzies Brook 

Nichols Brook 

Nichols Brook 
Bottom Brook 

Bottom Brook 
Feeder Brook 

-----

-------
Feeder Brook 

Wallace Brook 
Manuels Brook 

. M-· --· ·-

Wallac~-Brook Tributary_2 

Wa~~~ro?~ !nbutary 1 
Winter House Brook 

Winter House Brook 

Shoal Brook 

Sellars Brook 
Lomond River 
Mitchells Brook 

Southeast Brook 
Birch Rine Woods Brook 

Pilgrims Pond Brook 

Middle Barrens Brook 

Sloping Rock Brook 

Glander Gulch Brook 

No N arne Brook 

Site Code 

SLBOl 

WEBOl 
. ··-·-

BABOl 

EEL02 

Latitude Longitude 

49° 57' 06.1 II 57° 45' 04.4 11 

.. -- --- -- --
490 49' 44.911 57° 51' 17.5 11 

49° 39' 20.6 11 57° 57' 18.9 11 

49° 37' 20.911 57° 55' 37.7 11 

---· - -
EELOl 49° 37' 9.8 11 57° 55' 22.9 11 

--··- ---- -· 
RHPOl 49° 34' 25.5 11 57° 53' 03.3 11 

-------------
DEEOl 49° 34' 05.011 57° 50' 19.011 

TRTOl 

TRHOl 

CCBOl 

MSBOl 

MKBOl 

NICOl 

NIC02 

BOTOl 
BOT02 
FEDOl 

-
FED02 

WALOl -
MANOl 

WBTOl ---
WBOOl 

Wl-IBOl 
WHB02 

SHOO I 

SELOl 
LOMOl 
MITOI 

SEBOl 
BRWOl 

PPBOl 

MBBOl 

SROOI 

GGBOl 

NNBOI 

---
490 21' 03.1 11 57° 53' 15.211 

49° 21' 06.4 11 57° 53' 14.5 11 

49° 21' 06.5 11 57° 53' 14.5 11 

49° 23' 03.5 11 57° 49' 51.2 11 

--- - .. 
49° 24' 40.2 11 57° 50' 38.2 11 

49° 33' 34.411 57° 49' 54.911 

49° 11' 26.2 11 57° 26' 56.911 

49° 34' 53 .1 II 57° 54' 20.6 11 

49° 35' 20.1 II 57° 55' 01.0 11 

49° 28' 11.711 58° 06' 54.9 11 

- - ~- ~ - -
49° 28' 07.011 58° 07' 31.011 

- -
49° 29' 29.3 11 58° 00' 53.611 

49° 29' 20.7" 58° 04' 46.911 

49° 29' 19.3 11 58° 00' 47.6 11 

49° 28' 34.011 57° 57' 57.911 

- -
49° 28' 05.611 57° 57' 24.0 11 

49° 29' 13.711 57° 55' 38.211 

49° 28' 24.6 11 57° 55' 18.211 

49° 26' 01.011 57° 53' 43.1 II 

49° 24' 18.8 11 57° 43' 42.6 11 

49° 33' 31.211 57° 49' 49.9 11 

49° 27' 37.9 11 57° 40' 22.4 11 

49° 38' 50.5'' 57° 42' 48.5 11 

49° 35' 29.611 57° 35' 29.5 11 

49° 37' 30.411 57° 38' 20.8 11 

49° 43' 40.3 11 57° 31' 38.8 11 

49° 39' 20.5 11 57° 35' 19.711 

49° 35' 26.9 11 57° 36' 01.8 11 
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Appendix 2. Taxonomic list obtained from all three sets of sorted samples and 
geographical location of each taxon. Key: A= Avalon Peninsula, T =Terra Nova 
National Park and area, G = Gros Morne National Park and area. An asterisk(*) 
marks those species that are new records for either the province or the Island. 
Common names listed in parentheses where appropriate. 

Mollusca 
Gastropoda (snails) 

Ancylidae 
Ferissia rivularis A, T 

Limnaeidae G 
Stagnicola elodes T 

Physidae A, T, G 
Planorbidae 

Helisoma A, T, G 
Gyraulus A, T, G 

Valvatidae 
Valvata sp. T, G 

Bivalvia (clams) 

Annelida 

Sphaeriidae A, T, G 
Unionidae T, G 

Oligochaeta (worms) 
Tubificida 

Naididae A, T, G 
Enchytraeidae A, T, G 

Lumbriculida 
Lumbriculidae A, T, G 

Hirudinea (leeches) 
Rhynchobdellida 

Glossiphoniidae 

Arthropoda 

Helobdella stagnalis A, T, G 
Arhynchobdellida 

Erpobdellidae 
Erpobdella puncta/a A, T, G 

Crustacea 
Amphipoda 

Hyalellidae 
Hyalella azteca A, T, G 

Arachnida 
Acari formes 

Mites (not classified) A, T, G 
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Insecta 
Collembola (springtails) A, T, G 
Ephemeroptera (mayflies) 

Baetidae 
Acentrella lapponicus G 
Acerpennapygmaeus A, T, G 
Baetis jlavistriga A, T, G 
B. macdunnoughi G 
B. tricaudatus A, T, G 
Procloeon convexum T 

Heptageniidae 
Epeorus pleura/is A, T, G 
Heptagenia pulla A, T, G 
Leucrocuta hebe A, T, G 
Rithrogena undulata T, G 
Stenonemafemoratum G 
Stenonema vicarium A, T, G 

Ephemerellidae 
Drunella cornuta A, T, G 
Drunella cornutella A, T, G 
Ephemerella aurivillii. A, T, G 
Ephemerella subvaria A, T, G 
Eurylophella sp. A, T, G 
Eurylophellafuneralis A, T, G 
Eurylophella temporalis A, T, G 
* Serratella sp. T, G 

Caenidae 
Caenis arnica G 

Tricorythidae 
Tricorythodes allectus T, G 

Leptophlebiidae 
Habrophlebia vibrans A, T, G 
Leptophlebia sp. A, T, G 
Paraleplophlebia adoptiva A, T, G 
Paraleptophlebia debilis T, G 

Siphlonuridae 
Ameletus sp. T, G 

Odonata (dragonflies and damselflies) 
Calopterygidae 

Calopteryx aequabilis T 
Gomphidae 

Ophiogomphus colubrinus A, T, G 
Aeshnidae 

Aeshna umbrosa A, G 
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Plecoptera (stoneflies) 
Nemouridae 

Podmosta macdunnoughi A, T, G 
Leuctridae 

Leuctraferruginea A, T, G 
Capniidae 

Allocapnia minima A 
Capnia sp. T, G 
Paracapnia opis A, T, G 

Perlodidae 
Isogenoides fontalis T, G 
!soper/a bilineata T, G 
!soper/a transmarina A, T, G 

Chloroperlidae 
Alloperla sp. A, T, G 

Hemiptera 
Gerridae 

Gerris comatus A, T 
G. remigi T 

Trichoptera ( caddisflies) 
Glossosomatidae 

Glossosoma nigrior A, T, G 
Hydroptilidae 

Hydroptila metoecea A, T, G 
* Neotrichia sp. T, G 
Oxyethira p. A, T, G 

I-Ielicopsychidae 
Helicopsyche borealis T 

Rhyacophil idae 
Rhyacophilia atrata G 
R. carolina A, T, G 
* R. carpenteri G 
R. fuscula A T, G 
R. ignorata A, G 
R. invaria T, G 
R. me/ita T G 
R. minora A, T , G 
R. torva A, T, G 
R. vibox G 

H ydropsychidae 
Arctopsyche ladogensis A, T, G 
Parap yche apicalis T, G 
* Hydropsyche alternans T, G 
H slos ·onae , T G 

11-3 



H sparna A, T, G 
Philopotamidae 

Chimarra sp. A, T, G 
Dolophilodes sp. A, T, G 
Wormaldia sp. G 

Polycentropodidae 
Neureclipsis T, G 
Ncytiophylax T, G 
Polycenlropus A, T, G 

Apatanidae 
Apatania sp. A, T, G 

Brachycentridae 
Micrasema sp. A, T, G 

Lepidostomatidae 
Lepidosloma sp. A, T, G 

Leptoceridae 
Ceraclea p. A, T, G 
Mystacides sepulchralis A, T 
Oecelis sp. A, T 
Triaenodes sp. T 

Odontoceridae 
Psilotreta sp. G 

Limnephil idae 
Hydatophylax argus A, T, G 
Limnephilus T 
Pseudostenophylax sp. G 
Psychoglypha sp. G 

Molannidae 
Molanna sp. A 

Uenoidae 
Neophylax p. A, T, G 

Lepidoptera (butterflies) 
Pryalidae T 
Cossidae 

Prionoxystus sp. T, G 
Tortricidae 

Archips sp. T, G 
Diptera (true flies) 

Blephariceridae 
Blepharicera p. G 

T ipulidae (crane flies) 
Antocha sp. A, T, G 
Dicranola sp. A, T, G 
Hexaloma sp. A, T, G 
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Limnophila sp. T, G 
Limonia sp. A, T, G 
Molophius T, G 
Tipula sp. A, T, G 

Dixidae 
Dixa sp. G 

Psychodidae 
Pericoma sp. T, G 

Culicidae T 
Simuliidae (black flies) 

Helodon pleura/is T, G 
Prosimulium approximatum T, G 
Prosimulium mixtum A, T, G 
Stegopterna mutata A, T, G 
Simulium annulus T, G 
* S. violator T, G 
S.craigi T, G 
S. silvestre T, G 
S. vittatum sp. complex A, T, G 
S.murmanum A,T,G 
* S. parnassum T 
S. tuberosum sp. complex A, T, G 
S. venustum/verecundum A, T, G 

Ceratopogonidae A, T, G 
Chironornidae A, T, G 
Nymphomyiidae 

Nymphomyia walkerii A, T, G 
Empididae 

Hemerodromia sp. A, T, G 
Muscidae 

Limnophora A 
Tabanidae G 
Sciomyzidae G 

Coleoptera (beetles) 
Dytiscidae 

Colymbetinae 
Agabus sp. G 
A. thompsoni G 
A. tristis G 
Colymbetes sp. G 

Dytiscinae 
Hydaticus aruspex G 
Liodessus ajjinis T 

Hydroporinae T, G 
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Nebrioporus rotunda/us T 
Georyssidae 

Georyssus sp. G 
Gyrinidae 

Gyrinus sp. T 
Hydrophilidae 

Helophorus sp. G 
Laccobius agilis G 

Elmidae 
Optioservus sp. T, G 
Oulimnius latiusculus A, T, G 
Promoresia tardella A, T, G 
Stenelmis crena/a A, T, G 

Curculionidae T 
Staphylinidae G 
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Appendix 3. Physical and chemical data from fall sampling season. Please reference 
Appendix 1 for location of sites. 

altitude summer bankfu ll canopy i ~ciphytes I _!i~ ; vegetation dominant --
wetted width width overhang substrate 

units m m m % I % I % em scale 
VlROl 6 6.4 15.5 80 2 85 85.00 3 

WFR02 6 7.5 17.3 0 70 48.33 3 
PCBOI 61 21.0 23.0 0 90 27.50 4 
STBOI 40 3.6 5.7 50 45 53.33 3 
BRJOI 15 17.0 17.0 0 I 95 51.67 4 - -
PEYOI 46 13.8 15.6 0 t- _ 3_ 25 0.00 3 -- -
BCB02 26 6.5 7.0 10 I I 85 29. 17 3 --- r-----
RENO I 6 9.0 10.5 30 2 95 2.67 3 
BEAO I 46 4.7 6.4 10 I 40 13.83 4 - - - - __,_ 

WATO I 30 3.4 3.4 5 5 
-1-

90 29. 17 3 -
LSROI 17 6.9 9.6 5 2 70 75.33 4 . -
LSR02 2 12.5 16.2 0 2 -~ 75 27.50 3 
TNB03 8 3.5 4.8 30 80 69.67 3 
BBA02 I 6.7 9.2 5 .1-- 1 85 4 1.33 3 
NBCO I 2 7.3 8.7 15 2 70 32.83 5 l 

CTB02 I 7.2 11.2 70 85 61.67 2 
SQP02 44 3.0 3.6 65 2 90 7.17 4 --
SWBO I 13 9.6 10.7 5 2 80 0.00 3 
USWO I 88 7.4 9.1 5 2 90 28.00 5 
APB02 14 2.8 3.0 10 2 80 13.67 3 -
MPBOI 3 3.6 6.6 50 2 70 2 1.00 4 
SW ROI 9 39.6 53.7 0 2 75 5.67 4 
NWR03 2 50.0 50.0 0 2 60 0.00 5 
PNBO I 2 5.2 7.0 25 2 60 59.17 3 
PNB02 15 5.0 9.0 25 2 75 61.17 4 -
88801 23 11.8 17.2 5 2 90 19.33 4 
RPBO I 27 12.8 14.2 0 I 90 38.67 4 
TRIO I 15 19.5 23.6 0 2 95 I 01.67 3 
CBB02 25 6.4 7.4 90 I 70 101. 17 3 
SABO l 23 19.7 22.7 5 2 90 50. 17 3 
NICO l 36 5.9 7.5 90 2 75 18.00 3 
EELO I 76 4.0 5.5 70 80 152.67 4 
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F- nonglacial glacial ~ 

units scale sca le % % % % % I 
VIROI 3 2 0.0 100.0 t- __ 0.0 0.0 93.1 , __ 

~·~ 
-+--

WFR02 3 0.0 100.0 0.0 1.5 79.8 
PCBOI 3 0.0 100.0 0.0 100.0 0.0 
STBOI 2 I 0.0 100.0 0.0 0.0 98.4 --
BRJOI 3 2 0.0 100.0 0.0 100.0 0.0 
PEYOI 4 2 0.0 100.0 0.0 l.O 99.0 
BCB02 4 2 0.0 100.0 0.0 0.0 96.8 
RENO I 3 2 0.0 100.0 0.0 0.0 93.5 -
BEAO I 3 0.0 100.0 0.0 33.0 67.0 ...l f··-- -
WATO I 3 I 0.0 100.0 0.0 100.0 0.0 I 

LSROI 5 3 44.6 0.0 55.4 0.1 92.6 
LSR02 3 

~ 
2 44.6 0.0 55.4 0.1 92.9 

TNB03 2 0.0 89.6 10.4 2.7 95.9 
---+ 

BBA02 3 -+ 0.0 89.2 10.8 2.5 96.6 
NBCO I 3 2 0.0 100.0 0.0 5.5 17.4 - -
CTB02 3 I 0.0 89.6 10.4 0.1 99.0 
SQ_P02 3 2 0.0 89.3 10.7 0.0 100.0 
SWBO I 4 3 0.0 88.9 I I. I J. 1.9 98.0 - - - -
USWOI 3 2 2.3 77.0 20.7 0.5 97.3 
APB02 3 0.0 89.3 10.7 0.0 100.0 
MPBOI 3 I 0.0 100.0 0.0 1.4 45.5 
SW ROI 3 3 29.6 38.5 31.9 2.2 91.7 
NWR03 4 2 36.1 58.2 5.7 3.7 90.7 
PNBO I 4 2 19.9 74.0 I 6.2 0.4 99.4 
PNB02 3 I 19.9 74.0 6.2 0.4 99.4 - r- -r 
BBBO I 3 3 14.8 85.3 0.0 1.8 98.2 
RPBO I 3 3 100.0 0.0 ..!.-- 0.0 

-t-
3.3 96.7 

TRJOI 3 4 12.6 86.2 1.3 7.8 92.2 
CBB02 3 2 4.8 62.7 32.6 0.9 98.3 
SABO l 3 4 20.9 52.1 27.1 1.3 96.6 
NICO l 3 0.0 100.0 0.0 0.0 71. 1 
EELO I 3 2 0.0 100.0 0.0 0.0 40.3 
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BRIOI 0.0 

PEY01 0.0 

BCB02 3.2 
-----------+~~~ 
RENO! 6.5 

BEAOI 

WATOI 

LSROI 

LSR02 

TNB03 

BBA02 ,___-
f.-- NBCOI 

CTB02 

7.3 

7.0 

SQP02__ 0.0 1.68E+06 
SWB01 0.1 3.87E+07 I .. 

-U-SW--0 ~--·I--2-.2--+--2._-09E+07 j-
A PB02 0.0 1.50E+06 I 
MPBOI 53.1 t 2.03E+07 1 
S W RO I 6. I 4.62E+08 

NWR03 5.6 ~-~~JE+Q§ f 
PNB01 0.1 2.20E+07 

PNB02 0.1 ~2.:.!_?E+07 t-
BBBOI 3.39E+07 1 
RPBQ~ 8.37E+Q? l. 

TRIO I 

CBB02 

SABO l 

NICOl 

EELO I 

0.0 

0.9 

2.28E+08 
2.37E+07 I 

2.2 1. 16E+08 I 

28.9 I 1.14E+07 
59.7 ; 7.41E+05 

% 

6.32 

31.74 

0.00 

57.98 

0.00 

12.94 

55.72 

15.47 
36.23 

0.00 

60.70 

52.04 

39.32 

46.30 

71.17 

36.47 

53.10 

64.67 

58.76 
76.69 

50.95 

12.13 

12.13 

35.03 

35.48 
33.47 

8.36 -
47.00 

24.24 

9.84 

83.58 

72.62 

total 

Nitrogen 

% i % I mg/L mg/L 

_ 15:0Q ______ t·-. Q.go -+.! . 1.~1 ·t o.oo 
44.36 0.00 I 1.04 0.00 - -- -·--- -
o.oo. _ t _ o.oo 

1 
0.01 o.06 

27.00 17.00 0.42 0.00 

0.00 r 0.00 0.01 ,- 0.07 ...., 

l- _ 44.04 r- 8.00 -+ _ 0:2.? o.oo 

50.82 42.00 I 0.01 t 0.00 

o.oo I o.oo o.69 o.1 1 

0.00 0.00 0.05 0.15 
t ~.OQ_ l_-_- 22.0Q_ ~ _ 0.0 I t 0.00 

11.10 64.oo o.o3 1 o.oo 1 
77.79 41.00 0.01 0.23 

-
70.14 

70.67 
--+- -·-87.33 ·~ 

78.47 

69.11 

74.57 

2.46 

12.13 

20.14 

58.89 
71.12 

73.68 

67.15 

28.95 

98.00 

79.08 

88.57 

100.00 

0.59 
- -+-

64.06 

0.01 

0.01 

0.01 _ f· 
0.01 

0.01 1 
0.01 

100.00 

100.00 

100.00 

100.00 

100.00 

86.69 

- o.OI [ 

0.13 

0.00 

0.1 4 

0.1 1 

0.12 

0.16 

0.15 

0.15 

0.00 
0.00 

43.83 

15.03 

46.82 

77.28 

62.30 

11.99 

72.00 

68.80 

0.0 1 

0.09 

0.12 

N/A 

0.17 

0.01 

0.01 

N/A 
0.01 

0.01 
0.01 

0.01 

0.01 
1 

I 0.15 

0.01 

0.01 

0.01 

0.05 

0.12 

0.13 

0.14 

0.18 

0.00 

I 0.05 
0.16 
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f~ total t colo~onductivity pH alkalin ity alkalinity 

Phosphorus (CaC03) 

units I mg/L I Hazenuni uS/em pH sca le I mg/L mg/ L 
I VIROI 0.026 II 400.0 7.22 L I7.00 18.1 

~i 
- -

WFR02 19 353.0 7.13 11.99 13.6 _, __ 
PCBOI 0.008 34.4 6.64 3.16 4.5 

STBOI 0.008 37 99.7 6.59 4.92 5.9 
; 

I BRJOI 0.008 37 41.3 6.35 2.53 3.9 

PEYOI 0.008 t 57 26.5 6. 17 2.61 1 3.7 

BCB02 0.009 ' 132.9 6.42 3.45 _I 4.5 --- - -
RENO I 0.018 321 .0 7.02 10.19 11.6 

BEAOI 0.013 32.5 5.68 r~ 3.4 

WATOI 0.007 49.6 6.38 3.5 1 4.6 

LSRO I 0.016 170 66.7 6. 16 5.63 5.9 

LSR02 0.0 16 31.0 6.39 5.62 6.1 

TNB03 0.010 53.4 6.67 8.18 8.4 

BBA02 0.012 33.5 6.76 7.03 7.4 

NBCO I 0.005 76 33.8 6.32 3.94 4.7 

Cf802 0.012 71 51.9 6.86 8.88 9.4 

SQP02 0.007 95 213.0 7.09 11.82 12.8 

SWBOI 0.009 147 33.3 6.23 5.20 ' 5.4 - - -t -t -
USWOI 0.0 14 95 32.5 6.42 6.04 6.5 

APB02 0.009 171 50.7 6.60 8.12 8.2 

MPBOI 0.006 39 30.9 6.79 5.30 6.1 

SWROI 0.013 91 28.0 6.46 5.08 5.7 

WR03 l A N/ A N/A l A N/A N/A 

PNBOI 0.009 155 96.0 6.84 9.51 10.3 

PNB02 0.008 162 82.5 6.72 8.27 I 8.8 

88801 0.020 202 24.4 5.49 3.35 3.8 

RPBOI 0.017 140 20.8 6.09 4. 19 4.7 

TRJOI 0.016 103 22.7 6.09 4.45 4.9 

CBB02 0.01 2 244 28.8 5.7 1 4.33 4.6 

SABO l 0.006 80 21.6 5.89 3.43 4.2 

N ICOl 0.0 10 26 271.0 8. 14 109.00 109.7 

EELO I 0.006 137 126.2 7.83 42.36 42.7 
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,-- -
alt itude s u~ bankfull canopy , mac~phytes 1 riffle dominant 

~ wetted width width I I I s ubs trate 

units m m I m I % I % scale 

SLBOI 6 L 3.3 _ _j 6.1 80 2 80 0.00 3 
--+ 

DEEOI 6 22.9 24.7 5 I_ -4 80 98.33 3 
r-

EEL02 75 2.1 3.4 85 2 .! 40 27.50 3 
·-
WHBOI 222 11.8 55.5 0 95 0.00 4 -
WHB02 2 7.5 13.0 0 80 0.00 4 
SEBOI 93 16.5 19.2 2 95 34. 17 4 
RHPOI 38 7.1 7.9 17 65 125.50 3 

-----< 

WEBOI 13 27.6 29.9 5 70 98.67 4 
MJTOI 8 6.1 13.0 95 80 2 1.67 4 
WBOOI 186 3.1 10.8 2 75 13.33 4 
SELOI 12 8.5 20.8 5 I 50 0.00 4 - - -LOMOI 42 29.1 30.7 5 2 40 63.00 4 
CCB01 258 3.0 5.2 60 70 37.50 4 
MSBOI 335 l 2.6 3.0 30 40 20.33 5 
SHOO I 10 5.3 8.0 0 85 0.00 4 - r 
TRTOI 206 4.8 6.5 25 40 16.33 5 
FEDOI 25 6.8 20.0 2 95 0.00 4 

MANDl 212 t 3.3 10.3 0 80 0.00 3 --- - --.. 
FED02 7 11.3 19.5 5 80 30.83 3 
MKBOI 96 10.8 14.8 15 70 0.00 4 
TRHOI 197 11.0 15.8 30 70 3.33 4 

WALOI 130 16.0 18.1 5 40 58.83 2 
NIC02 16 4.3 6.7 25 80 %. 17 3 
BOT02 2 8.4 12.8 10 90 37.33 5 
BOTOI 30 9.2 10.5 5 80 52.50 5 
WBTOI 137 3.8 6.9 5 90 18.1 7 2 
BABOI 14 32.6 34.2 0 90 29.00 3 
BRW01 399 10.2 10.2 0 70 0.00 3 
PPBOI 607 7.3 7.3 0 80 11 .67 3 
MBBOI 469 25. 1 25.1 5 75 25.00 4 
SROO I 402 14.0 15.2 0 60 29.67 3 
GGBO I 469 36.0 38.5 0 90 5.00 4 
N 801 604 15.1 20.6 0 50 20.50 4 

JJl-5 



2nd dominant 

substrate 

f-~LBQ_! __ --··_4:_ _____________ ?__ 0.0 
I DEEO I 4 3 35.8 

EEL02 3 2 0.0 

WHBOl 3 3 100.0 

W HB02 2 1 88.3 

~~~- --~ 1- + ~~ 
I 

Y!_E~ --+-+ ~ t 0.0 

--~E~ ~ ~--~ +':f 
-~~-~~-~ ·---~---~L ~ i ~~ 

MSBOJ 3 ! 2 _;;__+- 0.0 

SHOO 1 1----'3'----+---'---l---.:...:72.4 
TRT01 3 2 0.0 

FED01 3 

MANOl 3 ~ ____ _..;;.._ 

FED02 

MKBO I 

TRHOI 

WAL01 

NIC02 

BOT02 

BOTOI 

WBT01 

BABO I 

BRWOI 

PPBOI 

MBBOI 

SROO I 

GGBO I 

NNBO I 

3 

3 
3 
2 

4 

3 

3 

2 r 94.2 
.1. 

.l - J_ 99.3 
I 1. 94.2 

2 0.0 

2 0.0 

1 

2 
2 

,j. 86.8 
0.0 

+ 0.0 
0.0 

i-
2 l 88.9 

_3_-+ 0.0 
I I ' 0.0 

t- 2 ~:~ 
L 2 
! 3 
I 3 

0.0 

0.0 

0.0 

% I % I % 

t- __ _!_ OQ~Q_ --- -- __ 2:Q __ }_ 65.6 
31 .8 3 . ..::2::...;.4:..__--;- 33.1 

1 
100.0 0.0 16.4 

0.0 .:...:0 • .:;_0 --ii!-. _ 4=5.2 
11.7 0.0 34.5 

11.0 

100.0 

100.0 

0.0 

2.2 

35.7 

100.0 

100.0 

100.0 

12.5 

7.6 

!--_.:.:..;;___+-- 17. 1 

......... 

80.7 

1.7 

59.8 

24.4 

0.0 8.4 

0.0 0.0 

-----

0.0 i 0.0 

_J~:.! - 19.6 
100.0 

5.8 

0.7 

5.8 

100.0 

100.0 

13.2 

100.0 

100.0 

100.0 

11.1 

100.0 

0.0 

0.0 

0.0 
0.0 

0.0 

0.0 

0.0 39.0 

o.o I 7.4 

_Q2.__ ~ 24.6 

0.0 l 7.4 
0.0 0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

100.0 

100.0 

100.0 

100.0 

100.0 

100.0 

0.0 

33.0 

0.0 

22.9 

24.9 

23.6 

49.8 

1.5 

0.0 

10.5 

8.8 

9.1 

0.0 

% 
22.0 

-l.. 30.5 
81.1 

54.8 

62.7 

2.8 

70.0 

10.2 
i 

40.5 -1 
40.2 

46.0 1 

67.3 

18.5 

44.7 

40.3 

45.2 

78.8 

75.4 

78.8 

67.3 
75.1 

65.4 

78.2 

57.7 

58.3 

76.4 

50.2 

67.8 

1.3 
19.7 
2.3 

2 1.3 

19. 1 

III-6 



bedrock f s i; of 
---

forest in fo rest in forest within -
watershed whole watershed local watershed I OOm of reach 

units % s . km % % % 

SLBOI 12.4 9.24E+06 23.69 28.41 34.78 -
DEEOI 36.5 9.26E+07 23.14 81.51 34.27 0.11 0.17 ---- --
EEL02 2.5 8.07E+05 67.29 63.38 84.00 0.03 0.10 

WHBOI 0.0 7.44E+06 0.00 0.00 --+- 0.00 0.16 0.23 
WHB02 2.8 1.43E+07 7.24 46.58 7.88 0.15 0.20 
SEBOI 89.6 6.06E+07 22.66 88.80 81.61 0.01 0.09 -
RHPOI 13.0 58.47 74.53 60.33 0.04 0.13 ....... 
WEBOI 9.1 9.19 1.09 10.18 0.14 0.20 - - ... 
MITOI 57.8 46.60 93.04 93.78 0.01 0.09 
WBOOI 0.0 0.00 0.00 0.00 0.15 0.1 9 
SELOI 29.6 1.84E+07 24.40 81.93 35.1 3 0.13 0. 19 
LOMOl 32.7 1.13E+07 76.42 89.26 89.26 0.07 0.14 
CCBO I 73.1 t 2.86E+06 69.39 86.87 40.00 0.01 0.23 -
MSBOI 55.3 4.77E+05 78.00 78.00 85.00 0.01 0.08 - - -
SHOO I 40.0 9.51E+06 21.58 62.60 15.26 0.14 0.20 -
TRTOI 15.8 3.56E+06 48.78 89.00 94.00 0.04 0.15 
FEDOI 13.8 2. 16E+07 3.57 41.79 61.09 0.18 0.2 1 

MANOI 0.0 1.43E+06 0.00 0.00 0.00 0.23 0.28 -
FED02 13.8 2.21E+07 4.38 43.80 0.00 0. 19 0.24 

MKBOI 32.7 1.84E+07 82.75 93.90 37.00 0.03 I 0. 12 
TRHOI 24.9 1.27E+07 1. 72.63 97.00 96.00 0.01 ' 0. 10 

WALOI 1.5 1.84E+07 t 6.07 15.22 0.00 0.17 0.18 
NIC02 21.8 1.32E+07 85.02 80.00 54.00 0.01 0.06 ,.. 
BOT02 19.4 t 3.34E+07 60.75 

~ 
56.07 0.00 0.04 0.15 

BOTOI 16.8 3.03E+07 f- 59.63 

I 
2 1.99 87.26 0.03 0.13 

WBTOI 0.0 8.70E+05 0.00 0.00 0.00 0.19 0.20 
BABOI 0.0 2.32E~ 32.83 44.32 31.92 0.12 0.28 
BRWOI 30.7 2.66E+05 1 2.52 I 2.52 3 1.92 0.03 I 0.08 
PPBOI 98.7 6.68E+06_ 0.52 2.28 0.00 0.0 1 0.07 

MBBOI 69.8 2.21 E+07 12.56 25.76 11.76 0.01 0.09 
SROO I 88.9 7.99E+06 I 10.05 23.84 6.47 0.01 0.10 
GGBO I 69.6 3.08E+07 6.10 29.66 0.00 0.01 0.06 
NNBO I 80.9 5.86E+06 0.62 0.03 0.00 0.01 0. 10 
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f ..., - to~l -~~~·fcondu~tivity--H l a lkalin itt:al~li!_li_ty_ 
! Phosphorus 1 I (CaC03) I 

units 1 mg/ L Hazenuni uS/em pH scale mg/L mg/L I 
SLBOI 0.016 91 114.5 7.73 38.29 38.8 I 

- - -- I- - - -1--- 1--
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-- 1---- -· 
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7.88 

8. 14 
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7.28 
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5.56 

5.3 1 
5.60 

5.42 
5.42 

4 1.1 0 t 42.4 
36.21 37.0 

21.38 j 21.9 
43.72 44.4 

36.1 6 37.1 
- ---

106.80 107.4 
t 66.68 -J-_..:.67:..;;.3::_ _, 

64.65 1 65.0 

50. 12 1 
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Appendix 4. Estimated fall abundance of macroinve11ebrates in the entire sample per 
minute sampled. Taxonomic list is in three parts. 

IFamil -~--· -
1Genus S cies Vffi.OI W FR02 I PCBO I 

1fam. ,gen. s p. 0 0.2 0 

j Ancylidae 
---

Feriss ia rivularis 4.3 0 0 
t··~- -

Physidae .!.gen. _ 5.7 0 3.3 

TPianorbidae 
---t 

'Heliosoma 1.4 0 0 

P lanorbidae Gyralis 1.4 1.4 13.3 
l--·-- ---- --; 

Valvatidae gen. s p. 0 0 0 

7 Gastropoda Yalvatidae Yalvata sp. 0 0 0 

J hae!.:ii~e _gen~~ fsL 1.4 0 0 -- 1 9 Qligochaeta l Naididae gen. s p. 4.3 0 30.0 - r -
10 1 Qiigoc~aeta_ E~chytr~eidae , g~n. sp. 20.0 4.8 0 -·- -

. II 1o ligochaeta Lumbriculidae gen. sp. 60.0 8.8 0 -
___ l~ag~aiis 12 Hirudinea Glossiphonidae Helobdella 0 0.2 0 I - -t- - - 1 

13 t Hirud inea IErpobdell idae [Erpobdella punctata 0 0 0 

14 Amphip_?da -· ljxalellidae tHyalell~ 1azteca 2.9 0.6 3.3 

15 Acariformes fam. gen. lsp. 2.9 I 70.0 

16 ~o llem~o Ia -=:_ [f~l~ tgen. s p. 0 0 0 

17 Ephemeroptera fam. gen.--jsp. 0 0 0 

~ Ephemocoptorn &oot;doo 1gen. sp. 0 0 0 

9 -l Ephe~optera Baetidae ~cerpenna_ pyg_maeus 0 0.2 10.0 
---; 

0 Ephemeroptera Baetidae Baetis I fla vis trig a 0 0.4 0 

~ 21 tEphemeroptera 1-Ba~idae _ Baetis tricaudatus 125.7 15.8 180.0 -
22 l Ephemeroptera Heptageniidae jgen. s p. 0 0 20.0 t 23 Ephemeropte~ He~?_tageniidae Epeorus pleuralis 0 0 0 

24 Epheme~ptera r H~ptage_!l iidae · H~ptagenia pulla 0 0 0 
I 25 Ephemeroptera ~ fieptageniidae Leucrocuta hebe 0 0 73.3 
1 26 

-
Ephemeroptera Heptageniidae • Rithrogena undulata 0 0 0 

27 Ephemeroptera I Heptagen iidae Stenonema vicarium 0 0 3.3 .. 
28 Ephem:ropte~ Heptagen iidae Stenonema femora tum 0 0 0 

29 Ephemeroptera Ephemerellidae gen. s p. 0 0 150.0 

30 Ephemeroptera Ephemerellidae Ephemerella sp. 0 0 0 

3 1 Ephemeroptera Ephemerellidae Ephemerella aurivill i 0 0 0 

32 Ephemeroptera Ephemere llidae Ephemerella s ubvaria 0 8.4 33.3 

33 Ephemeroptera Ephemerellidae Eury !ophelia sp. 0 0.4 0 

34 Ephemeroptera Ephemerellidae Eury !ophe lia funera lis 0 0 0 

35 Ephemeroptera Ephemerellidae Eury !ophe lia tempora l is 0 0 0 

36 Ephemeroptera Tric01yth idae Tricorythodes a llectus 0 0 0 

37 Ephemeroptera Leptophlebiidae gen. s p. 1.4 1.4 16.7 

38 Ephemeroptera Leptoph lebiidae Habroph leb ia vibrans 0 0 0 

39 Ephemeroptera Leptophlebiidae Leptophlebia sp. 0 0.4 0 

40 Ephemeroptera Leptophlebiidae Para leptop h leb ia adoptiva 0 0 60.0 

41 Ephemeroptera Leptoph lebiidae Paraleptophlebia debilis 0 0 0 

42 Ephemeroptera Siph Jo n uridae Ameletus sp. 0 0 0 
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Ot·der Famil Genus fs- ~ie~- V[ROI 

43 Q~g~~!~ -------- ~~lop_~e_rygi~_~e ___ ~~~~P..!~'2~----·-···· ~~9l:l.~bi!i~--- ____ o ..... . 
44 Odonata Gom hidae 0 hio om colubrinus 0 

- --+- -----
1--4_5+-P_le_c_o,_pt_e_ra __ +f:_a_m_._ jgen. ___ 0 _ 

:~ :::~~p~:~: ~~~ti~~~~a~--- _ lie~~~~ --=--;.:~ginea ~ 
48 PleCOJJ:..:te.:..:ra.::...__-+ 1 A"nocapnia [ 1inima 0 

+Pa~~ap_~ia - ~pi~_=- 0 
lgen. _ ... p . 0 

l ls.og:~ide~_ ontalis 0 

~~~;:1;& f:~.nsmarina ~ 
fam. gen. s p. 0 

-1----...:c.I'----+H- ydropsychidae 1 g~,;-·- -- s p. 0 
t 

_jH ydropsychidae 1~ctopsy~he J lagdogens is 0 

I Hydropsyc~_ida: -~~a~~psyc..b_~ _ aeicalis 0 
Tricho tera Hydropsychidae ~dro s che s _._ __ 10.0 

. Trichoptera Hydropsychidae 1 Hydropyyche 
1
altemans 0 

60 T~chop_t:e_r:~ _ J.!:fl_d roe._syc!:t._i~ae Hydropsyche ··1s lossonae_ 118.6 
61 Trichoptera_ jHydropsyc~idae j Hy~~p~y_9h_e spama 11.4 

62 ~richoptera _ I Polycentropodid~e rNeure~si~ _ sp._ __ 0 
63 Trichoptera lfo lycentropod idae Nyctiophy lax s p. 0 

67 Trichop!era 
68 Trichoptera 

. 6_2 frrichopt~ra 
7.Q t·.Trichoptera 
7 1 Trichoptera 

7?:_ 1 Trichoptera 

73 F richoptera 

~ 7~ LTrichoytera 
[ 75 jTrichoptera 

I 76 · Trichoptera 

77 1Trichoptera 

78 Trichoptera 

79 Trichoptera 

80 'Trichoptera 
81 Trichoptera 

82 Trichoptera 

83 Trichoptera 
84 Trichoptera 

85 Tric!10ptera 

86 Trichoptera 

87 Trichoptera 

!Polycentropodidae ,Polycentropus 1sp. 0 

Glossosomatidae 1Giossosoma _ ,nJg_rior 0 
Hydroptilidae 1 Hydroptila s p. 0 

1 Hydropti lid~e Oxyethira s p. 0 
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l Leptoceridae 
Leptoceridae 

Leptoceridae 

Leptoceridae 
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Limnephilidae 

Limnephilidae 

Limnephilidae 

Philopotomadae 

Ph ilopotomadae 

Ph ilopotomadae 
Philopotomadae 

Rhyacoph ilidae 

Rhyacoph ilidae 

Rhyacoph ilidae 

Rhyacoph ilidae 

gen . 

Ceraclea 

..._Mystacides 

'Oecetis 

Triaenodes 

Psilotreta 

Micrasema 
Lep idostoma 

Apatania 

Hydatophy lax 

Limnephilus 

Psychoglypha 

gen. 
Chimarra 

Dolophilodes 

Wo rmaldia 
Rhyacoph ila 

Rhyacoph ila 

Rhyacophila 

Rhyacophila 

,sp . 

sp. 

sepu l~_!:l_r:aJis 

ISp. 

sp. 
tsp. 

sp. 
'sp. 

sp. 

a rg us 

sp. 

sp. 
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0 

0.2 

0 

0 
0.2 

0.4 I 

0 

0 
0.4 

0 

0 

0 
0.2 

0 

0 
0.8 
0 

0 
0 

0 

0 

0.2 

0 

0 

0.2 

0 

0 
0 

0 

0 
1.4 2.2 
0 -t 0.2 

0 0 
0 0 

0 

0 
0 
0 
0 

0 

0 

0 

0 

0 
0 
0 

0 

0 

0 

0 

0 
1.2 
0 
0 
0 

0 
1.2 
0.2 

0 

0 

0 

0.2 

0 

0 
0 
0 

0 

0 

0 

"f l 
0.2 l 
0 
0 
0 

0 
0 

0 
0 

0 -
1.2 
0 

0 

0 

0 
0 

0.2 

0 
0.6 
0 

0 

0 
0 

0 
1.4 I 

1.2 
0 

0 
0 

0.2 

0 

0 

0 
0 
0 

0 
0 

IV-10 



: 88801 T RP801 -TRJC)]-- c88oiT SABOtT-NlCO I r EEl,QJ I SLBOl I DEEOI I EEL02- WHBOI 

43 0 0 0.2 0 0 0 0 0 0 0 0 
.. --··· .. ----- --- ~- . . ~-- ·- --- . _____ ,_________ ~--·-······--··· .. ·--·· ·-·····--··-··t ... 

0.4 1.1 0 0 0 0 

o_+--..:....11:.:....1~!--....:o~ 6.7 -r- _ o_ 
o __,~--=2...:..2:..:....2-+_27...:...8=---l--33_.3 __ o __ 

0 0=----t-- 0 t. Q - - 0 
0 . 0 0 0 

-r-----
0 

4.2 I 0 0 ' 28.9 0.8 I 
+-_;::;_;_;:..__+-:::...;__--+_...:;;..:.;:0 ----l:....... 0 0 -0 - ,...... 0 -- _._ 0 

- -<> -~---u o 

53 
oo~4 + 1_o~o - 4~.6 + 'o~l o_r=_ o_ ;- 2. r + 17.8 . 1.4 6.7 

0.4 

2.0 
0.2 

0 

0 

0.6 

0 E I t ~- ~ ~ ~ t ~ rr L 
-% r 0°4 u~ ~ ~ ~ 0 + 0 - +- ~ 

2.2 - - 1.4 0.4 0 1.1 11.1 0 ' 0 3.6 

_ -o~·~ , ~, -. ~; 2I r ·: +4~::T ·; - 2~· 
64 ~ -f ~- t- ~ i- ~ t ~ r- ~ - ~ r ~ ~ 

_i?'""~" o __ l __ o_ +- 9 _ o_ _ o 26.7 • o o 17.8 
66 1 0 0.2 • 0 0 1.1 0 0 0 0 l 

:~ f- !o2 - l_ o~. -i :_Q~ oo8 --~~ 201 ~ ~ J_i~2_ l ~:~ 
. ~~ l ·~2 ro~2 oo2 ~ ~ I ~ t ~ ~ 

71 r 0 r . 0 ·t· 0 0 l 1.1 I 0 I 0 0 

~~ ~ ~ t ~ t ~ ~ t ~ r ~ F ~ 2°2 

74 +- 0.2 -1 1.0 _j__ 0 0 0 0 0 0 
75 I 13.6 1 14.6 7.6 23.1 40.0 8.9 1.4 

76 0 0 9.2 0 0 0 0 

77 J 

78 

79 

80 
81 

82 

83 
84 

85 

86 

87 

0 

0 

0 
0 
0 
0 
0 

0.6 

0 
0 

0 

0 

0 

0 
0 

0.4 

8.8 

0 

0 
0 
0 

0.2 

0.2 

0 

0 

0 
0.2 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

0 

0 
3.1 

0 
0 

0 

0 

0 

0 

0 

6.3 

13.7 

0 

0 

0 
0 

0 

0 

0 

0 
2.2 

0 
0 

0 
15.6 

0 

0 

0 

0 

0 

0 
6.9 

0 

5.6 
18.1 

6.9 

0 
0 

0 

6.7 

0 
2.2 

0 

0 
0 
0 

0 
8.9 

44.4 

0 

0 

0 

0 
0 

0 

0 

0 

0 
0 

0 
23.0 

0 
0 
0 

0 
0 

0 

1.0 

0 
0.4 

0 

0 

0.4 

+ 

0 

0 
7.5 

0 
0 

0 

0 
0 
0 

9.7 

0 

0 
0 

14.0 

3.2 

0 

0 

0 
1.1 

1.1 

4.3 

0 
0 

0 
0 

0 

0 

0 

0 

0 

1.1 

26.9 

0 
2.2 

0 

0 

0 
0 

1.1 

0 
18.3 

0 
1.1 

0 

I 

0 

0 

0 
1.5 

0 
3. 1 

0 

0 

0 

0 

0 

0 
0 

0 

0 

0 

0 
0 
0 
0 

0 

0 

0 

0 
0 

0 

0 
0 

0 

0 

0 
0 
0 

0 

0 
0 
0 
0 
0 

0 
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r w-H:s02 · sEBol T RHPOI r wEBo1 r M1Tol- wsoo1 r sao1 1 wMo l I ccso1 r Msso1 T sHoot 
43 0 0 0 0 0 0 0 0 0 0 0 

--~-· ·-·······--·· -··-·· ····• .. ··-·---·-~····-- . ··-···-· 
0 0 0 0 0 0 0 0.2 I 0 0 

0 

0 

0 
1.0 
0 
0 
0 

--!----+-0--t 0 0 0.2 0.6 1- l} _ t- J.4 

_o _ r o-- 0 0 _o_.. 0 0 
0.7 3.0 0.4 0 0 3_.1 f 0 -

___ q_ -+ -Q - 0 0 - 0 0 
:.:..::...-+__::_:..;__-+-_.::..;.0 . .;_7-+ 0.4 0 4.6 4- 34.~ 

0 I 0 - L . 0 0.8 I 0 j 0 
0.4 
0 

4.4 
0 

0 
0 

0 t 0 - 0.2 0.? __ :_ 0.8 ' 0 l 
2.2 0 _Q_ - 0 -! 0 0 0 
0 1 1.2 0.4 c q_.2 : 0 9.2 1.0 

+--+r- ~ -l + +-%- -+ -t- · -·- ~ r -~ 
0 0 0 0 0 0.6 0 0 

- -- r 

: ~L. . - 9 -l-- Q_ - .... o .. .. .\ .. -~ ... i· ____ Q__ .... o 0 
0 

0 

0 

0 

1.4 
0 
0 
0 

0.2 
0 · ss o o_ L 5.7 o o 0.4 o.6 

~~5-9-t--0-1---0 ----r-0 6 7 0 0 0.4 I 0 
.. -

6o o 1.s t s.6 1~.3 i 1.0 r a· 1 o.4 4.8 o 
~ 61 o.s O.s }4_.3- 15.6 0.2 t- o- T - 2- I 1A - 2.3 
r - - r- !- ·+--
~ 62 0 0 2.9 4.4 I 0 ~ 0_ +--0 -· _;_ 0 ~ _ 0 

1 63 o o o o o o o ~- o_ o 
M 0 0 0 0 0 0 0 0 0 

' 65 0 1.2 5.7 0 r 2.6 1 0 0 ' 0.4 
1.-- -+---- +- - 0 

~ 66 0 0 0 13.3 l 0 0 0 0 0 
67 0 0 0 0 0 0 0 0 0.8 
68 0 0 0 0 0 0 0 0- I 0 

- ·-- ... - +- ·-

'!! ~- ! ! ! l I ~ ~ "- I "- ~ -1 ~ 
74 0 0 0 t 3_) 0 0 0 0 0 
1s r o.2 3.6 82.9 s.1 12.s o o.4 s .s 16.9 
76 0 I 0 0 0 0 0 0 0 0 

77 t 0 r 0 0 0 0 0 0 0 1.5 
78 I o o o o o o o o 0 
79 0 0 0 0 0 0 0 0 0 
80 0 0 0 0 0 0 0 0.8 0 
81 0 0 0 0 0 0 0 1.6 0 
82 0.4 0.4 37. 1 0 0 0.4 0 8.0 0 
83 0 0 0 0 1.8 0 0.2 0 1.5 
84 0.2 0 0 0 8.6 1.2 0.4 0.2 1.5 
85 0.4 0 0 0 0 0 0 0 0 

86 0 0.4 5.7 0.7 4.0 0 0 0 0 
87 0.2 0.4 0 0 0 0 0.2 0 0 

0 

0 
0 

3.1 
0 
0 

0 
0 

1.0 
0 

0 
0 

0 

0 
0 

0 
4.2 
0 
0 
0 

1.0 
0 
0 

0 
0 

2. 1 
0 

0 
0 

0 
o _I 

0 
0 
0 

0 
0 

0 

0 
0 
0 

0.4 
0 
0 
0 

0 
0 
0 

0.2 
0.2 
0.8 
0 

0 
0 
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,-------------------------------------------------

0 
·· ·! 

72 I 0 - +--
. 73 0 

0 

0 

0 

0 
0 
0 

0 

0 0 ---r-
0 0.2 
0 0 
0 

0 
0 
0 

0 
0 

0 

0 
0 

744 
751 
76 
n l 

0 -J 0 
1.0 l 0.6 

~ l ~ i 

0 

0 

0 

0 
0.6 

0 
0 

0 

0 

0 
0 

0 

0 

0 

0 
0.2 
0 
0 
0 

0 
0 
0 

0 
0 

78 
79 

80 
81 0 0 
82 

83 

0 
0 

84 0.2 
85 0 
86 0 
87 0 

0.2 
0 

0.4 
0 

0 

0 

0.2 
0 

0.6 I 0 
0 0 
0 0 
0 0 

0 

0 

0 
0 

4.2 

0 
0 
0 

0 

0 

0.2 
0.2 
0 

0.6 

0 

0 
0.2 

0 

0 
0 

1.0 
23.8 

0 

0 

0 
0 
0 
0 

0 

0 
0 
0 

0 
0 

0 ... l-

0 

0 

0 

0 

0 

0 0 
- oi--- - -

1.1 1.7 
0 0 
0 
0 

0 
0 
0 

0 
0 

7.9 

0 

0 

0 

0 
0 

0 
0 
0 

1.7 
0 

13.3 
0 

1.7 

0 

0 

0 

0 
0 

5.0 

0 

0 

0 

0 

0 

0 

2. 1 

0 

0 
0 

0 
0 

0 
0 

0 

0 
0 
0 
0 
0 
0 

0 
0 
0 

0 

0 
10.0 

0 

0 
3.3 

WBTOI 

0 

0 
0 

0 
0 

0 

0 
0 

0 
0 
0 

0 
0 

0 

5.6 

0 
25.6 

0 
3.3 

0 
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-----------------

i BABOi . BRwoi l PPBOI MBBOI - SROOI-T GGBOI ' NNBOi l 
43 0 0 0 0 0 0 0 ----·•¥• ··~·--·· ... 
44 0 0 0 0 0 0 

45 t 0.2 0 0 0.2 

46 0 5.0 5.0 0.4 
-., -· -

_47 t 0 0 0 0 0 

48 0 0 0 0 0 

49 4.2 15.0 5.0 0.4 2.5 5.7 i 
I 

50 0 0 0 0 0 0 0 
1 51 I 0.2 0 0 0 0 0 ' 0 

52 r - - - t I 
I 

0 0 2.4 0 t- 1.7 I 2.9 I 
r .. 

53 0.4 0 0.2 0.8 0 0 
I 

' 
54 0 0 0 I 0.2 0 8.6 _j 
55 0.2 0 o-l- 0 0 0 

56 0 0 0.2 0.2 0.8 0 

57 1 
--

0 0 0 0 0 0 
. --·-·- • T -' i 

58 I 0 0 0 0 0 
ol o -i 

0 0 

0 1.4 
1 

0 0 

j 
I - - - -

1.2 3.8 0.8 !. 0 
62 l 0 0 0 0 0 0 0 

63 0 0 0 0 0 0 0 
+ ---· ----

64 0 0 0 0 0 0 0 

~~ I 4.8 0 0 0 0 0 

66 0.2 
t 

0 0 0 0.4 0 2.9 ' 
67 0 3~_0.Q_ 1_ ~~ + 0.2 5.0 240.0 

68 0 0 0 0 0 0 
l- -

--! _J 
69 0 0 0 0 0 0 

70 0 0 0 0 0 0 

71 0 0 0 0 0 0 

72 0 0 0 0 0 0 

73 0 0 .... 1 0 0 0 0 

74 0.8 t 0 5.0 1 0.6 0 3.3 0 
l- - . 

75 8.8 40.0 5.0 6.2 I 13.2 14.2 0 

76 0 0 0 0 0 0 0 

77 0 0 0 0 0.6 0 2.9 

78 0 0 0 0 0 0 0 

79 0 0 0 0 0 0 0 

80 0 0 0 0 0 0 0 

81 0 0 0 0 0 0 0 

82 3.4 0 0 0 0.4 2.5 8.6 

83 0 0 0 0 0 0 0 

84 0 60.0 0 0.2 0.6 0 0 

85 0 0 0 0 0.4 0 0 

86 0.4 15.0 0 0 0 0 0 

87 0 0 0 0.6 0.4 0 0 
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Order f Fa~ll 

~ l~~-~~~~~ ___ l_{hyac()philidae 

~0 [:~c_!lop_!e_r:a __ 

91 [!'ric_hop_!_era_+.::;;:_,t_ 

92 1 Tric~oJ?.!..era 

93 Lepidoptera_ 

94 ~pidoptera 

95 j Diptera 

[__96 ~ Diptera 
97 1 Dipte~a 

98 JDiptera 

99 Oipt~ra 

100 Oiptera 

I 0 I , pipt~_:a_ 

0 
en. ~P_:__ ___ 0 

1Antocha •sp. 4.3 

l Oicranota - -+::· 0 
w;-X<_!tO~ -- ~p .--_ o 
Limnophila t sp. 0 

Limonia !sp. 0 

0 0 
·-+--

0 0 

0 0 
0 - 0 -1 

0.2----:- o . 
0 - - 0 I 

1.0 6.7 I -

~ 0 0 

0.2 0 

0 0 

0 0 J 
, 102 ,Diptera 

.J 03 1 !Jiptera 1:~---~ - ~ 
Pe::icoma r sp. 0 

0.2 0_ - ~ 
0 

. I 

Q_ -l 
I 04

1
Diptera 

105 Diptera 

I o6l Dipter; 

107 Diptera 
I -

108 Diptera 

109 Diptera 

II 0 1 Dipte!:a 

Ill Diptera 

11 2 Diptera 
r -

113 Diptera 

I 141 Oiptera 

115 1 Diptera 

116 Oipter_a . 

I 17 , Diptera 

118 1 Co leoptera 

119 Coleoptera 

120 Co leopte ra 

12 1 Co leoptera_ 

122 Co leoptera 

123 Co leoptera 

124 Coleoptera 

125 Co leoptera 

126 Co leoptera 

127 Coleoptera 

----'1-D_ixa_ -l-s p. 
Prosi~lium lsp. 

Simulidae mixtum 

Simulidae 
t: - -
sp. - - -

l silv~stre 
--

!Simulidae Simulium 

lSimulida~ __ ~~i~m- ---+!._u~ros~~-
f """d" Si""li"m 'v/v 
C~rc:tipogonidae - gen . J sp. 

Chironomidae !gen. sp. 

r~mpho,Yiidje . IN~mph~myio wolkeri 
Empi~da_e _ t Hernerodromia sp. 

Ephy5!rida_e Di~cocerina _ ~sp. 

t Muscidae : Limnophora sp. 

fam. ,gen. s p. 

J D~tiscidae , Liodessus affin is --
Hydrophilidae gen. sp. 

1 H~drophilidae Laccobius agilis 

' Eimidae gen . s p . 

' Eimidae Optioservus sp. 

Elmidae Oulinmius latiusculus 

· Eimidae · Promoresia tarde lla 

Elmidae Stenelmis crenata 

Curculionidae gen. s p. 

Total invertebrates examined 

0 0 
j 0 0 

0 0 I 
0 0--l 

1.4 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

84.3 34.2 200.0 
-· 
0 0 0 

12.9 2.4 10.0 
-l 

0 0 0 

0 
T 

0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0.8 36.7 

0 1.0 3.3 

0 0 0 

0 0 0 

332 545 308 
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T STBOI r BRIO I-r PEYOJ BCB02 . RENO! BEAi)] TwATotTiSR:oi ~- LSR02l TNB03 r BBA02 

. :: ~ ~ ~ ~ ·6-··- -- ~ - ·- ___ ?i-__ J ... ~----~-- -K- ··· ~ ··- ··· -K-----
--- -r- J -- + -

~ 92 
93 

0 0 0 1.5 0 0 L_O I 0.2 I 0 14.0 

~ ~ ~ ~ ~ ~ ·i-- -~- -t--~-_L~ i ~ 
0 0 0 0 0 ~-l-·· ~- 0.2 l _Q 0 

94 0 0 0 0 ~ H 0 I 0 0 

95 0 J-.. 0 . - . 4.0 0 0 . 0 - 0 l OJ -=--0 0 

, ?6 _ o --h·Q__ -1- o o .. o _g _o __ ~ _ o _T: _ o o 
97 0 +. 1.8 0 7.7 ' 20.0 I 4.0 ' 0 I 0 0 0 

0 
0 

: ~~ . ~ ~ ~ ~ 2t + ~ - ~~--- ~F ~ : . ~-
::; ~ ~ ~ ~ ~ t-r ~ -lffo -'····· ~ ~ 
1 06

1 

o o o o o .. J ·o- · g-l o o - .
1 

o j -~--
101 o o o 1.5 _o_J _!_?.O , _o __ t- o _o 4.0 o 
I 08 0 0 _ 0 0 __ 

1
, 0 t _ 0 

1 
_ 0 _ -~ 0 _ ! 0 , 0 -. 0 

:~~ I ~ ~ -- o~
0 

-· 6~ - ~ L ~-: ---6 ~l_r _6 -1- 6 -+ - 6_ 
Ill ~ 0 0 0 I 0 286.7 I 0 I 0 I 0 1.7 

11 2 4.0 I 0 0 2.0 0 I 0 0 ' 2.0 0 
I 13 492.0 -t 2 14.5 t 408.0 - [ I 04JJ 240.0- 238.0 -. -9733! 7.8 I 1.8- 54.0 ; 29.2 
114 0 I 1.8 0 I 0 0 - 0 0 - i 0 . i 0 0 l 0 

i i 46.7-r · -~ 

! ! ~ 4{ l ~~: 4{ I ~ . T ; T ~ ~ J ~ -12 

1 ~ f 
2

f 
: ~~ 6 6 f 6 t 6 6 6 6 °~2 - - - ~ ~ ~ 
121 

122 

0 0 0 0 0 0 0 0 0 0 0 

123 

0 

0 
0 

0 
124 I 08.0 30.9 

125 100.0 16.4 

126 0 0 

127 0 0 

tot. 315 3 19 

0 

0 

0 

0 

0 
0 

35 1 

0 

0 

0 
1.5 

0 

0 

310 

0 

0 

0 

0 

0 
0 

307 

0 
0 

0 
48.0 

2.0 

0 

3 13 

0 

0 

0 
166.7 

0 
0 

506 

0 
0 

6.8 

0.2 

0 

0 

597 

0 

0 
0 

0.2 

0 

0 

143 

0 

0 
90.0 
12.0 

0 
0 

307 

0 
0 

17.5 

1.7 

0 

0 

313 
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r NBCOI T CTB02 SQP02 SWBOI USWO I APB02 

88 I 0 I 0 0 0 0 I 0 

§91 1. 7 o _o--il- 0.2 
I 9() 0 0 1.6 0.2 

91 0 
92 I o 

1 
93 0 
94 0 __, -
95 0 
96 I 0 
97 18.3 
98 0 
99 I 0 

100 0 
101 0 

102 0 

103 0 
104 0 
105 r 0 
106 1 0 

107 0 
108 0 

109 0 
110 0 
111 50.0 
11 2 0 

113 148.3 
11 4 0 

11 5 25.0 
116 0 

117 0 

118 0 

11 9 0 
120 0 
12 1 0 

122 0 
123 0 
124 0 
125 25.0 
126 0 
127 0 

tot. 333 

~ 

I 

I 

f 

0 
0 

0 
0 
0 
0 
0 
0 
0 

2.7 

0 
0 
0 

1.3 
0 
0 
0 

0 
0 
0 
0 

1.3 
92.0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 

13.3 
0 

1.3 
0 

320 

-
0.4 

0 

0.6 

' 0 

L o 

t 

0 
1.0 

0 
0 

0.4 

0 
0 
0 
0 

0 
14.4 

0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

12.4 
0.8 
0 

0 

759 

r 

0 

0 
0 

0 
0 
0 
0 
0 

0.2 

0 
0 

0.2 
0 

0 
7.6 
0 

0.6 

0 
0 
0 

0 
0 
0 
0 
0 

2.0 
0 

0.2 
0 

705 

f 

0 
0.2 

0.2 

0 
0 

0 
0 

0.2 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0.2 

0 
0 
0 

1.2 

0 
5.0 
0 

0.4 

0 
0 
0 
0 
0 
0 

0 
0 

0.4 
0.6 
0.2 
0 

401 

f 

0 

13.3 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 

1.1 
0 
0 
0 
0 

0 
23.3 

1.1 
0 

0 
0 
0 
0 
0 
0 

0 
0 

22.2 
1.1 

0 
0 

300 

MPBOI 
1 

SWR01 NWR03 1 PNB01 PNB02 

0 0 0 t 0 l 0 

~ 0~2 ~ + ~ i ~ 
0.7 0 0 0 0 
0 -r 0 T 0 1 0 1 0 

0 0 0 0 0 

o r o ~ 0 
0 
0 
0 
0 

0 
0 

0 
0 
0 
0 

0 
0 

0 
0 
0 
0 

0 

0 
19.3 

0 
0 

0 
0 

0 
0 
0 
0 
0 
0 

1.5 
0 
0 
0 

3 16 

0 

0 
0 

0.4 
0 

0 
0 

0 
0 
0 
0 

0 
0 

0 
0 
0 

i 

~ ~ l 
0.2 
0 

0 

0 
0 
0 
0 
0 
0 
0 

0 
0.2 
0 

0.2 

0 j 
I 0.2 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 

0.2 0 0 
0 0 0.2 

0.2 0 0 
18.4 6.8 4.0 

0 0 0 
0.4 0.4 0.6 

0 0 0 

0 0 0 
0 0 0.2 

0 0 0 
0 0 0 

0 0 0 
0 0 0 

2.4 0 0 
0.2 0 0.4 
0 0 0 

0.2 0.2 0.2 
0 0 0.4 

467 122 278 

0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 

0.4 

0 
12.8 

0 

3.2 l 
0 

0 
0 
0 
0 
0 

0 
0 

3.8 
0.2 
0.6 
0 

384 

JV -17 



r -BBBOI r "RPso1 

1~-~- 0__ 0 
89 0 0 - --
90 2.6 0.2 

' 91 0 0 

92 -0-t 0 93 0 0 
94 0 0 
95 0 0 

0 
0 

0 

0 

0 

96 J 

l 97 J 
98 

0 

0 
0 

0 
0 
0 
0 

0 
0 
0 

0 

0 

0 
0 
0 
0 
0 
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