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Abstract 

The study of amphiphilic molecules and their behaviour in solution is encompassed in a 

broad array of disciplines. The utility and prevalence of these molecules in our everyday 

lives and in a wide array of practical applications have stimulated a great deal of effort to 

understand their properties. Moreover the interesting behaviour of amphiphilic molecules 

in solution has received much attention. One specific example is the fonnation of macro­

molecular aggregates composed of many amphiphilic molecules and often referred to as 

micelles. 

In this thesis we examine systems of self-assembling amphiphilic molecules using 

Monte Carlo simulations. Aggregates of amphiphilic molecules in solution are not mono­

disperse; there is a broad distribution of aggregate sizes. This distribution has characteristic 

properties and contains infonnation about the free energy of the system and other proper­

ties. Qualitative comparisons are made between a predicted fonn of the aggregate size 

distribution, a model for the free energy of aggregates and the results from the simulations. 

Direct comparisons between the Monte Carlo resul's and results from experiment are not 

carried out. 

We carry out a systematic examination of the aggregation of amphiphiles. This ex­

amination is based on a variation of the molecular weight, the temperature (or so-called 

reduced interaction parameters) and various other parameters. An examination of the aggr­

egate composition, morphology and the critical micelle concentration is also carried out. 
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Chapter 1 

Introduction 

''To accomplish great things. we must not only act, bm also dream; 

rwt only plan, but also believe." 

Anatole France. 

This chapter is devoted to a discussion of amphiphilic molecules, their composition, 

properties in solution and the methods used to study them. Amphiphilic molecules are 

studied in a broad range of disciplines including Physics, Chemistry and Chemical Engi­

neering. These molecules exhibit a variety of behaviour in solution and have many desir­

able properties; for these reasons their study is currently an active field of research. In this 

thesis a systematic examination of the aggregation of amphiphilic molecules based on the 

variation of temperature/interactions, molecular weight and other properties is carried out. 

1.1 An Introduction to Amphiphilic Molecules 

The term amphiphilic originates from the Greek words "amphi" meaning of both kinds and 

.. philos" meaning strong affinity or attraction. Webster's Online Dictionary (131] defines 

amphiphilic as: 

l 
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amphiphilic: (adj): circa 1950: of, relating to, or being a compound (as a surfac­

tant) consisting of molecules having a (typically polar) water-soluble group attached to 

(a) water-insoluble hydrocarbon clzain(s); also: being a molecule of such a compound. 

Hence, amphiphilic1 has come to describe molecules composed of two distinct sections 

which exhibit opposing behaviour in solution. Typically one section is "hydrophobic" (wa­

ter disliking) and referred to as the tail-group of the molecule. The second section is 

typically "hydrophilic" (water liking) and referred to as the head-group of the molecule. 

For brevity, the term amphiphile(s) will be used throughout this thesis to denote (an) amp­

hiphilic molecule(s). 

The typical composition of amphiphiles is the following: the tail-group is composed 

of one or more linear hydrocarbon chains (repeated CH2 's terminating in a CH3) and the 

head-group is either an ionic or nonionic species. Although amphiphiles can have a wide 

variety of compositions the discussion here will be restricted to relatively short single chain 

amphiphiles. The model molecules studied in this thesis are most often compared with 

sodium n-alkyl sulphates and n-alkyl polyoxyethelene ethers [10, 105]. These molecules 

are depicted in Figure 1.1 and differ only in the composition of their head-groups. 

(a) Sodium n-alkyl sulphates. 

Cn H2n+1 (' ~ ~ ) 
A A A . c-e-o 

fJ' ¥¥¥I I 
H H 

1 

(b) n-alkyl polyoxyethelene ethers. 

Figure 1.1: Schematic diagram of two typical short chain surfactant molecules. 

Amphiphilic molecules can behave as surfactants, i.e., surface active agents. At very 

1Evidently it was G. S. Hanley in 1936 [34] who first proposed the term amphipatlty to describe these 
types of molecules to later be replaced by amphiplriles. 



CHAPTER 1. INTRODUCTION 3 

low concentrations they locate themselves at an air/water interface such that the tails lie 

above the water and the heads protrude into the water [26, 122]. As the concentration is in­

creased the surface layer becomes saturated and the remaining molecules go preferentially 

into the bulk solvent [122, 26]. 

The available literature on amphiphiles is voluminous, some classic works can be found 

in references [8, 12, 14, 17, 22, 23, 26, 29, 34, 43, 49, 53, 58, 59, 76, 90, 122, 132, 134, 

137]. Amphiphiles are found in many facets our everyday lives in the form of plastics, 

synthetic materials, detergents and cellular structures. The wide use, applicability and 

complex behaviour of amphiphiles have stimulated a great deal of effort to investigate their 

behaviour and properties. 

One of the first studies of amphiphilic aggregation proper was carried out by Hartley 

[34] in a classic 1936 paper on the "Aqueous Behaviour of Paraffin Chain Salts". Hartley 

was also the first to suggest that aggregates formed by these molecules at low concen­

trations are spherical and coined the term •micelle' meaning 'small bit' to describe them 

[34]. McBain [73] is accredited with first identifying these molecules as being composed 

of distinct opposing sections, i.e., a hydrophobic and hydrophilic section. 

These early pioneering studies broke the ground for further examinations of amphi­

philic systems. Although much knowledge has been gained about the behaviour and prop­

erties of amphiphiles, their study still comprises an active field of research. Many properties 

of these systems are still not well understood, including the morphology and morphological 

transitions of aggregates. 

1.2 Amphiphilic Molecules in Solution 

Amphiphiles, being simultaneously hydrophobic and hydrophilic, tend to exhibit ambiva­

lent behaviour in solution. As a result, they adopt unique orientations, often assembling 
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to a decrease in entropy associated with the reordering of the water molecules. For other 

hydrocarbons the en tropic contribution is much larger [122]. The free energy of transfer for 

many hydrocarbons is roughly proportional to the surface area of the molecules [42, 122]. 

There is a distinct dependence on the immiscibility of a hydrocarbon chain on its length, 

i.e., the number of carbons in the chain. Figure 1.4 shows a plot of the free energy of trans­

fer J.LHc- p,w of several hydrocarbons from pure liquid water to pure liquid hydrocarbon at 

25°C. The free energy of transfer has roughly a linear dependence on the number of carbon 

atoms in the chain. For more thorough discussions of the hydrophobic effect, the reader is 

asked to consult [42, 122]. 

e Aikenes 
• A lkanes 

-9 • ro A lkadlenes 

-8 
0 
~ 
~ 
ji -7 
.;_ 

I 

~ 
·~ 

-6 

-5 

-4 
3 4 5 6 7 

Number of Carbon Atoms 
8 9 

Figure 1.4: Free energy of transfer of hydrocarbons from pure liquid water to pure liquid 

hydrocarbon for alkanes, alkenes and w-alkadienes as a function of the number of carbon 

atoms in the chain (reproduced from Tanford [122]). 

1.3 Micelles and Other Morphologies 

The morphology of an aggregate depends on many factors including the length of the am-

phiphile, number of tails, composition of the head-group, temperature, interactions and 
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The formation of aggregates is nonnally characterized by a relatively sharp transition in 

the observable properties of a system as a function of amphiphile concentration. This be­

haviour was originally observed by McBain [73] who studied the anomalous concentration 

dependence of the physical properties of soap (surfactant) solutions. Figure 1.3 shows a 

plot of various observables as a function of concentration. The vertical axis does not show 

any units or scale since it is only the qualitative behaviour of the various observables that is 

of interest. The CMC denotes the critical micelle concentration, i.e., the total amphiphile 

concentration at which micellization begins2• The onset of micellization also has a distinct 

temperature dependence. 

I 

I 
I 

Osmotic Pressure 

Surface Tension 

:-cMC 
I 

0.01 0.02 0.03 0.04 
Con~ntratlon, M 

Figure 1.3: Schematic representation of the variation of physical properties of a sodium 

dodecyl sulphate (SDS) and water solution. (Sodium n-alkyl sulphate with n = 12). 

Debye [16] was one of the first to report light scattering experiments which examined 

the variation of the weight average aggregation number as a function of concentration. 

These results indicated a strong correlation between the weight average aggregation num­

ber and concentration [16]. This in tum suggests a significant growth of each aggregate as 

a function of the concentration. Similar behaviour is observed as a function of temperature. 

2The phrase 'critical micelle concentration' is somewhat of a misnomer since it does not correspond to a 
critical concentration of micelles; rather. it is a critical value of the total concentration. 
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The main driving force behind aggregation is the reduction in unfavourable solvent 

tail-group contacts. As a result, amphiphiles assemble themselves so as to minimize tail­

solvent contact. The hydrophobic effect is the same effect which accounts for the low 

solubility of oil in water. The next section contains a brief description of the main properties 

of the hydrophobic effect. 

1.2.1 The Hydrophobic Effect 

McBain [73] originally attributed the association of hydrocarbon chains in water to a like­

like attraction of the chains. The true nature of the hydrophobic effect is not a manifestation 

of a like-like attraction of hydrocarbons; rather, it is due mainly to the unique nature of 

water and its affinity to participate in hydrogen bonding [122]. It was Traube [125] who 

first qualitatively understood the true nature of the hydrophobic effect. 

The hydrophobic effect results from the fact that bulk water is arranged such that each 

molecule participates on average in 3 to 3.5 hydrogen bonds [42, 122]. When a nonpo­

lar solute (such as a hydrocarbon chain) is introduced into the water matrix the hydrogen 

bonding is disrupted. This forces the reorientation of the water molecules around the solute 

so as to maximize the number of hydrogen bonds, this is highly entropically unfavourable. 

This results in a low solubility of most nonpolar substances including hydrocarbons and 

fluorocarbons. 

To illustrate this, consider the free energies of transfer of methane and n-butane to bulk 

water at 25°C which is about 14.5 kJ/mol and 24.5 kJ/mol respectively [42]. For n-butane 

this is divided as follows: 

D.G = !lH - T !lS = -4.3 + 28.7 = +24.4 kJ/mol (LL) 

where AG, !lH and AS correspond tc the change in the Gibbs free energy, Helmholtz 

free energy and the entropy respectively. The low solubility of hydrocarbons is attributed 
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to a decrease in entropy associated with the reordering of the water molecules. For other 

hydrocarbons the en tropic contribution is much larger [ 122]. The free energy of transfer for 

many hydrocarbons is roughly proportional to the surface area of the molecules [42. 122]. 

There is a distinct dependence on the immiscibility of a hydrocarbon chain on its length. 

i.e., the number of carbons in the chain. Figure 1.4 shows a plot of the free energy of trans­

fer JLIIc- p.w of several hydrocarbons from pure liquid water to pure liquid hydrocarbon at 

25°C. The free energy of transfer has roughly a linear dependence on the number of carbon 

atoms in the chain. For more thorough discussions of the hydrophobic effect. the reader is 

asked to consult [42, 122]. 

-1 

I -7 
•• :I. 

I 

.II ... 
:I. 

-s 

-43 I I 7 • • Nulnbet ol ca.t.oft Atoma 

Figure 1.4: Free energy of transfer of hydrocarbons from pure liquid water to pure liquid 

hydrocarbon for alkanes, alkenes and w-alkadienes as a function of the number of carbon 

atoms in the chain (reproduced from Tanford [122]). 

1.3 MiceUes and Other Morphologies 

The morphology of an aggregate depends on many factors including the length of the am­

phiphile, number of tails, composition of the head-group, temperature, interactions and 
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total amphiphile concentration. There is a delicate balance between these factors which 

determines the morphology of the aggregate. Figure 1.5 illustrates three basic morpholo­

gies. There are many more exotic structures which can be formed; however, these are the 

simplest and easiest (geometrically) to examine [26, 42]. 

7 

Figure 1.5: Various possible morphologies of aggregates: spheres, cylinders and bilayers. 

The minimum dimensions of the aggregates are on the order of 2Z:;. 

There is one important geometrical constraint on aggregates (under the proviso that 

there is negligible solvent penetration into the interior of the aggregates): one dimension of 

the aggregate cannot exceed 2Z5 , where Zs is the fully stretched length of the amphiphile. 

For a spherical micelle all three dimensions are on the order of Zs whereas for an infinite 

cylinder two dimensions are on the order of Zs and the other can be much larger than Z5 • 

Systems of single chain amphiphiles at low concentrations typically assemble into 

spherical micelles, whereas amphiphiles with two parallel tail-chains such as lecithins tend 

to form lamellar structures or vesicles [8, 132]. Micellar shape is notoriously difficult to 

examine experimentally and there is still some debate as to the exact shape of aggregates 

under various conditions [26, 122, 132]. X-ray and light scattering techniques are often 

used to examine the shape of aggregates [26, 132]. The transition between different mor­

phologies in some instances is still not well understood although some recent studies have 



CHAPTER 1. INTRODUCTION 9 

given some insight into these transitions [2 L, 26]. The growth and morphological transition 

of aggregates is most likely driven by one of several mechanisms as suggested by Eisen­

berg [21], the first being the favourable transfer of free molecules into aggregates and the 

second being the merger of two aggregates to form a compound aggregate. 

The a priori assumed aggregate shape in the calculation of the free energy of the micelle 

systems is spherical because it allows a simple geometric interpretation and calculation of 

the free energy. The results from our Monte Carlo simulations suggest that aggregates are 

not perfect spheres but rather prolate spheroids with increasing eccentricity as a function 

of aggregation number. The results from the simulations can also be used to examine the 

morphological transition of aggregates. 

Aggregates of amphiphiles in solution can exhibit a broad range of aggregate sizes, i.e., 

they are polydisperse, there is a continual exchange of amphiphiles with one another and 

with free amphiphiles in solution. As a result, micelles do not have a static identity. In order 

to describe micellar systems it is necessary to examine this characteristic distribution of 

aggregate sizes. This distribution is a sensitive function of solution conditions, amphiphile 

concentration and temperature. 

From a theoretical perspective, treating micellar systems is quite challenging. There 

are many approaches used to examine these systems including self-consistent field theories 

[2, 31, 35, 40, 67, 68, 84, 96, 134], integral equation techniques (47, 52, 55, 69] and various 

other statistical mechanical approaches [8, 12, 14, 17, 42, 49, 75, 120]. 

1.4 Scope of Thesis 

In this thesis, a combination of statistical mechanical methods and Monte Carlo simulations 

are used to examine the properties of aggregates including the characteristic aggregate size 

distribution and the critical micelle concentration. A systematic examination of the ag-
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gregation of amphiphilic molecules using Monte Carlo simulations is carried out. This 

systematic study includes variations of molecular weight and temperature. Using these 

simulations, it is possible to examine the characteristic aggregate size distribution: more­

over, it is possible to make qualitative comparisons between the results from the Monte 

Carlo simulations and a phenomenological model for the free energy of aggregates and for 

the predicted aggregate size distribution. The critical micelle concentration is also exam­

ined as functions of the length of the molecules and temperature. 

An examination of the shape/morphology of aggregates is carried out. The results 

from the Monte Carlo simulations suggest that the shape of the aggregates depends quite 

markedly on temperature, total amphiphile concentration and amphiphile composition. A 

thorough examination of the interior composition of the aggregates in terms of their density 

profiles is also included. The scaling of the dimensions of the aggregates as a function of 

the aggregation number is also carried out, this leads to an interpretation of the behaviour 

of the density profiles as a function of the aggregation number. 



Chapter 2 

Statistical Thermodynamics of 

Self-Assembly 

"Everything has beauty, blll not everyone sees it." 

Confucius 

This chapter provides a description of aggregation from a statistical mechanical per­

spective. It includes a discussion of systems of fully interacting molecules based on the 

general formalism of Hill [36]. The main result will be the derivation of the characteristic 

aggregate size distribution (in the grand canonical ensemble) for a system of noninteract­

ing clusters of molecules based on Hill's formalism [36]. This result provides the basis for 

comparison with the distribution of aggregate sizes obtained using the Monte Carlo simula­

tions. A discussion of the Mayer cluster expansion is also included for illustrative purposes 

[36, 83]. The last section is devoted to a discussion and generalization of a phenomenolog­

ical model for the free energy of aggregates originally derived by Goldstein for symmetric 

di-block amphiphiles [28]. 

11 
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2.1 Introduction and Review of Statistical Mechanics 

This chapter begins with a very brief review of statistical mechanics. For more thorough 

reviews, the reader cannot do better than consult the following classic works [36, 64, 65, 

106, 107, 123, 124]. This section is meant to review in short form some important concepts 

that will be used throughout this chapter. 

Consider a system of N identical interacting particles in a volume V at a temperature 

T. The canonical partition function Q for this system is 

(2.1) 

where dn = dN i.dN p and corresponds to an infinitesimal volume of the phase space for 

the system of N particles 1• Assume that the Hamiltonian 11. has the form 

(2.2) 

where Pi is the momentum of an individual particle and V(X.N) is the potential energy 

associated with a given configuration of the system. 

With the Hamiltonian as defined in Eqn. (2.2) the integrals over momentum space are 

easily carried out and the partition function can be written as 

Q 1 fdN- ( rJ\•(-tV)) Z = f3NN! xexp - .v ' x = N!f3Nr (2.3) 

where r = h/(2m-rrk8 T) t and is referred to as the thermal wavelength, m is the mass 

of an individual particle, Tis the thermodynamic temperature and 1i is Planck's constant 

divided by 2-rr. Z is the so-called configurational partition function and is defined as 

(2.4) 

1It should be noted lhat {3 = A:;T. where ks is lhe Boltzmann constant and Tis the thermodynamic 
temperature. 
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From the partition function it is then possible to calculate various properties of the 

system. One such property is the Helmholtz free energy :F defined as 

(2.5) 

It is also possible to calculate other quantities such as the chemical potential J.L and 

the entropy S from the partition function. All intermolecular interactions and clusters of 

molecules are implicitly included in the partition function in Eqn. (2.3). It is convenient to 

rewrite the partition function in Eqn. (2.4) directly in terms of contributions from clusters. 

2.2 Statistical Mechanics of Clusters 

Two methods of including contributions from clusters in the partition function for a system 

are Mayer's cluster expansion [36, 83, 106] and the formalism developed by Hill [36, 37]. 

Both methods lead to representations of the partition function in terms of so-called aggre­

gate partition functions. The method of Hill [37] is a formal but exact method of treating 

physical clusters and leads to a compact and elegant description of aggregates. Mayer's 

cluster expansion leads to a description of mathematical clusters whereas Hill's treatment 

leads to a description of physical clusters. 

2.2.1 Mayer's Cluster Expansion and Cluster Integrals 

This section focuses on Mayer's explicit representation of clusters in terms of the so-called 

aggregate (or cluster) partition functions [36, 83]. For a more complete derivation the 

reader is asked to consult [36, 83, 106]. This method is limited since it leads to a description 

of mathematical clusters and not true physical clusters and is limited to small molecules 

interacting via two body interactions; however, it does illustrate some important concepts. 



CHAPTER 2. STATlSTlCAL THERMODYNAMICS OF SELF-ASSEMBLY 14 

Consider again the system as discussed in the first section of this chapter, N identical 

interacting particles in a volume Vat temperature T. It is assumed that for small particles 

the potential energy V(x\, ... XN) can be written as a sum of pair potentials such that 

V(xl, ... XN) = L u(Tij) 
l~i<j~N 

(2.6) 

where u( Tij) is the interaction potential between two particles i and j as a function of the 

distance Tij between them. It is useful to introduce the function Iii defined as 

f .. _ e-u(r;i )13 _ 1 IJ-

It is then possible to write the integrand of the partition function in Eqn. (2.3) as 

exp(- V(x11 ... xN ).B) = IT (1 + !i1) 

1$i<j~N 

The products in the above equation can then be written as 

exp(-V(xt, ... xN).B) = 1 + L Iii+ L 
1$i<j~N 

(2.7) 

(2.8) 

(2.9) 

The above expression is often referred to as the cluster expansion. If the particles are treated 

as noninteracting, i.e., u(rii) = 0 and Iii= 0 \::1 i,j, then the configurational integral can 

be evaluated trivially. This corresponds to treating the system as an ideal gas. 

In order to interpret the cluster expansion it is useful to consider a diagram which de­

picts the various possible clusters in terms of the Iii's. Figure 2.1 shows a representation 

of all possible clusters of three particles. A cluster is any two or more particles that are 

connected as in the cluster diagram. 

It is useful to introduce the cluster sums Si,j,k, ... defined as the sum of all terms Iii in 

which particles i, j, k, ... are connected. For clusters of three particles the cluster sum 

St,2,3 is 

(2.10) 
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Figure 2.1: Clusters of three particles, corresponding to the terms /1.2/t.3· ft.2f2.J, ft.3h .3 

and ft.2!t .Jh,:1 respectively. 

The cluster integrals qi [36] are defined as 

(2.11) 

where j is the size of the cluster, i.e., the number of particles in the cluster. lt is possible 

to rewrite the total partition function in Eqn. (2.1) for the system in terms of these cluster 

partition functions [83, 106]. This leads to an interpretation of mathematical clusters [83, 

36]. In the next section we examine a method to obtain an expression for the distribution 

of physical clusters in terms of cluster partition functions. 

2.3 Physical Clusters and Equilibrium Size Distributions 

This section describes a formal approach to obtain the equilibrium size distribution. This 

method was first suggested by Hill [36, 37] and leads to a formal but exact description 

of physical clusters unlike the mathematical clusters which result from Mayer's cluster 

expansion. This method will allow the calculation of the equilibrium numbers of clusters. 

Consider a system composed of N molecules in a volume Vat temperature T. The 

grand canonical partition function for this system is 

::: = L QN,.\N 
N?,.O 

(2.12) 

where,.\ = e~'-0 is defined as the absolute activity and p. is the chemical potential of a single 

molecule. 
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Intermolecular interactions and clusters of molecules are implicitly represented in the 

partition function. To facilitate an explicit discussion of clusters it is necessary to write 

the partition function in Eqn. (2.12) in terms of so called aggregate (or cluster) partition 

functions similar to those of the last section. The method in this section is general and can 

be applied to any physical system of interest. Consider the system to be composed of Nn 

clusters of size n. It is then possible to rewrite the partition function as 

==I: (rr A~~n) Q{N} 
{N} n 

(2.13) 

where {N} = S1 , N'l. , ... and denotes a set of clusters such that E:=L nNn = N. The 

partition function Q{N} is defined as the partition function of the set of clusters {N}. Nn 

is the number of clusters of size nand An is the absolute activity of a cluster of size n such 

that 

(2.14) 

where J.Ln is defined as the chemical potential of an aggregate of n molecules. The Nn. 's 

of this section will be seen to correspond to actual physical cluster numbers and, in fact, 

it will possible to obtain the actual equilibrium number of physical clusters. Since these 

clusters are in equilibrium with each other the chemical potentials must satisfy 

n = 1, 2, 3, ... (2.15) 

Using this relationship it is possible to write the total partition function for the system 

as 

: _ """',1: ... nN ... Q 
-- ~Al {N} (2.16) 

{N} 

The partition function in Eqn. (2.16) is an explicit representation of physical clusters of 

molecules. The implicit representation in Eqn. (2.12) and the explicit representation in 
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Eqn. (2.16) must be identical so that 

.:. - L QN>..N 
N>O 
~, E,. nN,. .-., 

- L,,/'L ~{N} (2.17) 
{N} 

and it is possible to write 

.:. - 1 + ,\Ql + A2Q2 + ... 

- 1 + .xl QLOo ... + .xrQ2oo ... + A2Qo10 ... + ... (2.18) 

The partition functions can then be written as 

QL - QLOO ... 

{h - Q2oo ... + QoLo ... 

Q3 - Q300 ... + QLLO ... + Quot... 

- (2.19) 

where the aggregate partition functions Qijk ... refer to the partition function fori aggregates 

of size 1, j aggregates of size 2, k aggregates of size 3 and so forth. 

Using this representation of the partition function, it is possible to derive an expression 

for the distribution of aggregate sizes. The equilibrium number of clusters S n of size n can 

be obtained from the basic thermodynamic relationship 

(2.20) 

Using An = >..n, i.e., A1 = .X, A2 = A2, ... the equilibrium numbers of clusters Nn are 

>..nQ + >..n+l(l"l _"' .-., ) + 000 ... 1 ~100 ... 1 ~100 ... ~000 ... 1 ••• (2.21) 
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The equilibrium quotients of aggregates can then be written as 

:~ = Q~0o ... ( 1 +A [2nQ2oo ... _ (n _ 1)Qtoo ... _ Qroo ... ll + ... ) 
• n Qoo ... L QlOO... Qooo ... l 

(2.22) 

ln mole fractions the equilibrium quotients are 

\"n ;y Q'l ( [?nQ. Q l ) ··:/ = nN n 100... 1 +A - :loo ... - (n- 1)Qtoo ... - 100 ... 1 + ... 
• n ( ) Qoo ... L QLOO... Qooo ... 1 

(2.23) 

Mole fractions are used because they are the predominant units used in the literature, and 

because this will facilitate a comparison with the Monte Carlo model. 

If the system is composed of noninteracting clusters of various sizes, it is possible 

to simplify the above expression. In this case, the aggregate partition functions can be 

simplified according to 

( 
1 . ) . 

Qoo ... OiO ... OjO ... = :V! Qoo ... OLO... ( Qboo ... o ... olo ... ) (2.24) 

The above result is applicable for all possible combinations and permutations of -i, j and for 

any other possible aggregate partition function. Using the relationship in Eqn. (2.24) the 

equilibrium quotients can be simplified since all terms except the leading term will cancel, 

the quotient then becomes 

xn N Qn 
1 - 100 •.• 

Xn - (nN)n Qooo ... l 
(2.25) 

The individuallVn 'scan then be written as 

(2.26) 

Using the Fin's as in Eqn. (2.26), it is possible to write 
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ln(lVn) - ln(e~'" 8 Qooo ... t) 

ln(JVn) - ttn,8 + In( Qooo ... d 

The chemical potentials Jtn can be written as 

J.ln = kaT (ln(lVn) -in( Qooo ... d) 

This can be expressed in terms of mole fractions as 

flu - kaT (ln(JV~~) -ln(Qooo ... d) 

Vn 

- kaT (ln(JVn) + ln{V Psoluent) - ln(V Psolvend -In{ Qooo ... d) 
_ k T (1 ( iVn ) _ l ( Qooo ... l ) ) 

a n v P3olvent n v Psolvent 

- kaT (tn (JV~) +In ( Ptot ) -In (Ptot) -ln ( Qooo ... l .)) 
~ Psolvent Psolvent V 

19 

(2.27) 

(2.28) 

- kaT ( ln ( ·:n) + ln (P~;::nt) -In ( v~::~~·~~t)) (2.29) 

where Psaluent is the solvent density, and 

Nsolvent + N ~ 
Ptat = V = Psotvent + L- npn (2.30) 

n 

and whereptot is the total density, and Xn = !!.ell. is the mole fraction of molecules in 
Plot 

aggregates of size n and Pn = ti'infnV). It is now convenient to define the standard 

chemical potential on the number density scale J..L~,·P as 

p~·P = - kaT ln ( Qooo ... l ) 

V Psolvent 
(2.31) 

i.e., the last tenn in Eqn. (2.29). The chemical potential on the mole fraction scale J..L~ [26] 

is defined as 

J.l~ - JL~'P +kaT ln ( Ptot ) 
Psolven t 

JL~'P + ksT ln ( lf>tot ) 
rPsolven t 

(2.32) 
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If it assumed that Ptot ~ Psolvent• then p.~ does not depend on Ptot· The chemical potential 

J.Ln can then be written as 

(2.33) 

As noted by Goldstein [28] this expression is such that the standard chemical potential 

p.~ contains contributions arising from interactions between the clusters and the solvent, 

internal interactions in the cluster, and entropic contributions other than the translational 

entropy of mixing. The second tenn in Eqn. (2.33), k8 T ln ( ~) contains contributions 

from the translation entropy of mixing. This becomes more transparent if one derives the 

above relationship starting from the free energy for the system as in the method discussed 

in Goldstein [28]. 

Since J.ln = np.t it is possible to write that 

J.L~ + ksT ln ( ·:L) = n(p.~ + ksT ln(X t)) (2.34) 

Upon rearranging this expression. it is possible lO write the equilibrium size dislrihution of 

molecules as 

' r _ . 'rn . ( {3( o o)) 
..-\.,1 - n.·\.t exp - P.n - np.t 

Eqn. (2.35) is self-consistent in the sense that 

00 

Xtot = LXn 
n=l 

where Xeot is the total mole fraction of amphiphile in the system. 

(2.35) 

(2.36) 

The expression in Eqn. (2.35) is the size distribution for a system of noninteracting 

clusters of molecules in terms of mole fractions of aggregates. The term J.L~ - np.J. in 

Eqn. (2.35) is the free energy difference associated with the aggregation of n molecules 

including: interactions between the aggregates and solution, internal contributions from the 
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aggregates and en tropic contributions other than those associated with the loss of transla­

tional entropy due to the localization of the molecules [28]. This term can be written in a 

more compact form as 

f3~n = f3(p.~ - np.~) 

The expression for the size distribution then becomes 

Xn = nX~ exp ( -~n/3) 

(2.37) 

(2.38) 

This represents the size distribution for physical clusters of molecules. The Nn 's are nec­

essarily positive numbers and can be interpreted as numbers of physical clusters [36]. For 

a more thorough discussion of physical clusters the reader is referred to [36]. 

2.4 Modeling the Free energy of Micelle Systems 

The discussion so far has been rather general; the remainder of this chapter will examine 

systems composed of amphiphilic molecules. This section contains a derivation of the free 

energy ~n for a spherical aggregate of n amphiphilic molecules, i.e., J.l.~ - nJ.Lr of Eqn. 

(2.37). The discussion will not focus on the use of the aggregate partition functions per 

se; rather, a phenomenological model for the free energy is developed. For an explicit 

discussion of the properties of the aggregate partition functions for amphiphilic molecules, 

the reader is referred to [26, 36]. 

The expressions for the free energy examined in this section were originally derived 

by Goldstein [28 J for systems of symmetric di-block. These expressions will prov1de the 

context for the aggregate size distributions obtained from the Monte Carlo simulations. A 

derivation and discussion of the model for the free energy of aggregates of both symmetric 

and asymmetric molecules is included. Other forms for the free energy can be found in the 

following references [42, 68, 120, 135]. 
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2.4.1 The Goldstein Model 

In order to discuss the free energy of systems of amphiphilic molecules, it is first necessary 

to describe the structure of the molecules and the aggregates. The molecules have a total 

length of Zs with the tails and heads composed of Zst and Zsh units respectively, such that 

Z~ = Zs, + Z.~h · In the Goldstein model, the aggregates (or clusters) are assumed to be 

composed of n molecules arranged such that the tails form a spherical core. It is funher 

assumed that the core is dry, i.e., there is no solvent found in the interior of the core. This 

assumption implies the remaining tail/head/solvent interactions occur on the surface of the 

aggregate. The head-groups protrude into the solvent exterior to the core. This region is 

often referred to as the corona. Negligible penetration of the corona into the core of the 

aggregate is assumed. The assumed aggregate composition is depicted in Figure 2.2. 

Corona 
'0:::1 • 

.If 
Core 

Figure 2.2: Diagram of assumed aggregate composition. 

Under these assumptions the radius of the core, Rc. is 
I 

Rc = (3ZstnVo) 
3 

47r 
(2.39) 

where Vo is the volume of a monomer. This calculation implicitly assumes that the micelle 

is hard packed, i.e., the core is of uniform density equal to one up to the surface of the core, 

beyond which the density is zero, i.e., 
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{ 

1 r<Rc 
Pcore = 

0 r > Rc 
(2.40) 

It is also assumed (implicitly) that the head-groups lie exclusively outside the core and that 

this region is of uniform density. A schematic depiction of the assumed density profile for 

the corona and the core are shown in Figure 2.3. 

-e-

~ ·c;; 
c::: 
C1) 

c 

_~Core 

~Corona 

o~~~~~~~~----------------~ 

Rc 
Distance to Center of Mass 

Figure 2.3: Assumed density profile of spherical aggregates in the Goldstein model. 

To model the free energy of the aggregates, it is assumed that there are three separate 

contributions arising from: surface free energy, bulk free energy and an entropic contribu­

tion due to the elongation of the molecules. The free energy of an aggregate of n molecules 

is written as 

(2.41) 

where 68 , bb and be refer to the per molecule contributions from the residual tail-solvent 

and head-tail interactions, the bulk and the entropic terms respectively. 
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The surface term is assumed to be proportional to the surface area of the core, Sc, which 

is 

(2.42) 

where Rc is given by Eqn. (2.39). Denoting the surface free energy per unit area by;, the 

total surface free energy of the aggregate can be written as 

(2.43) 

It is convenient to the write this term as 

(2.44) 

where"(= T47r(Zst3Vo/47r) 213 • 

The bulk term contribution to the free energy arises from the transfer of tail- and head­

groups to the core and corona of the micelles respectively. This bulk tenn depends on the 

lengths of both the tail- and head-groups. It can be written as 

(2.45) 

where h and h' are constants. 

The last term in the free energy expression is the term associated with the elongation of 

the tail-groups of the molecules as the size of the aggregates increases. It is assumed [28] 

that the probability distribution function P(r) for the end-to-end distance of a free chain 

is a Gaussian such that 

P(r) oc exp ( -~ (;_) 
2

) (2.46) 

where Ro = (Zstb) L/2 is the average end-to-end distance of a random chain of Zst units 

and where b is the effective segment length of a molecule. It is then possible to write the 
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entropy as a function of the length of the molecule as 

S(r) = kB ln[P(r)] (2.47) 

so the change in free energy of n chains forming an aggregate is 

n6e - nkBT [ln(P(Rc)) - ln(P(Ro))] 

- nkBT [ cn2
/
3 I Zst l /

3 
- 3/2] (2.48) 

where c = ~(t~~ )213 and is a geometric factor of order unity [28]. 

As noted by Goldstein [28], this approximation for the stretching entropy of the chains 

is not particularly good for short chains, since they do not necessarily obey ideal random 

walk statistics; however, the important loss of configurational entropy as the chains elon­

gate is emulated in this expression. 

The full expression for the free energy of the aggregates is then 

~n - n (6b + 6s +de) 

- n(Zshh + Zsth') + "'tn ~ + nkaT(cn213 I Zst l/3 
- 312) (2.49) 

The free energy per molecule, 6n . in an aggregate of size n is then 

(2.50) 

This expression can be written more compactly as 

(2.51) 

with 

Zshh + Zsth' 3 
a -

kBT 2 

~ 
'Y -

kaT 
c 

'7 - --1 

Zst 3 
(., -., ) -·'-
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This expression for the free energy can be inserted in Eqn. (2.38) in the previous sec­

tion. The aggregate size distribution obtained in the previous section with the above ex­

pression for the free energy becomes 

(2.53) 

This expression wilJ be used to examine the size distributions from the Monte Carlo simu­

lations. A discussion of its properties and general behaviour is included in Chapter 4. 



Chapter3 

Monte Carlo: Introduction and 

Application 

"Wizo can believe what varies everyday, nor ever was, nor will be at stay?" 

John Dryden ( 1631-1700) 

Hind and Panther. 

This chapter provides an imroduction to the Monte Carlo method, its application in 

statistical mechanics and in the study of amphiphile self-assembly. The chapter begins 

with a review of the partition function and observables, followed by a general discussion 

of Monte Carlo. The remainder of the chapter is devoted to a discussion of Monte Carlo 

applied to the study of self-assembling amphiphilic systems. 

3.1 Statistical Mechanics and the Partition Function 

To quote Richard Tolman [124], "Statistical mechanics has the special function of provid­

ing reasonable methods for treating the behaviour of mechanical systems", so in essence 

the goal of statistical mechanics is to predict the behaviour of systems with many degrees 

27 
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of freedom. For a maciOscopic physical system the degrees of freedom are on the order of 

1023. 

Consider the same system of N identical interacting particles, in a volume yr at tem­

perature T, as considered in the last chapter. If an analytical calculation of the partition 

function in Eqn. (2.3) were possible, all thermodynamic quantities would be obtainable 

therein. 

Given an observable (or local operator) A(xN, pN) its thermal average value (A)r is 

calculated as 

(3.1) 

The explicit calculation of the partition function and thermal averages is possible for only 

the simplest of examples, such as a monatomic and diatomic ideal gas [11, 36, 64, 106]. 

ln general, the evaluation of the partition function and associated observables is a highly 

nontrivial task, as a result it is often necessary to implement techniques such as Monte 

Carlo. 

3.2 The Partition Function: The Monte Carlo Way 

The available literature on the Monte Carlo method is voluminous. The interested reader is 

referred to references [ 1, 5, 6, 11] for a more general discussion of Monte Carlo applied to 

a variety of systems. The general Monte Carlo algorithm (applied to integrals over phase 

space) approximates the integrals in Eqn. (2.1) by a discretization of phase space. In this 

section two methods of integrating over phase space are examined. The first method is 

referred to as simple sampling Monte Carlo and involves randomly sampling states, i.e., 

sets of points in phase space. A second method is importance sampling Monte Carlo, 

of which a specific example is Metropolis Monte Carlo [86]. In this method states are 
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sampled based on a Markovian process. A thorough discussion and justification of the 

importance sampling method is included here to illustrate that it leads to results in the 

canonical ensemble 1 • 

3.2.1 Simple Sampling 

As previously stated, the evaluation of the total partition function Q is in general a highly 

nontrivial task and it is necessary to resort to numerical techniques one such technique is 

simple sampling Monte Carlo. As the name implies. it is a 'simple' method by which to 

carry out the integration over the phase space of a system. 

Using the partition function as defined in Eqn. (2.3), the thermal average of an observ­

able A(xN) can be written as 

(3.2) 

where dO/ = dN x and Z is the configurational partition function as defined in Eqn. (2.4 ). 

The integral in Eqn. (3.2) can be written as a discrete sum over states in analogy to replacing 

integrals by discrete sums in one dimensional integration. The discrete analog of Eqn. (3.2) 

written as a sum over states is 

(A)r = 'E~~ 1 ~(xt) exp( -,8~(xt)) 
Lt=L exp( - .J1i(xt)) 

(3 .3) 

where ivl refers to the number of states and xc refers to a configuration of the N particles 

in the system or simply a state of the system. 

Consider Eqn. (3.3), in the limit as lvl -+ oo, Eqn. (3.2) and, consequently, thermal 

averages in the canonical ensemble are obtained. It is not possible to sample an infinite 

number of states; moreover, it is not necessary to do so since states of high energy will 

contribute little to the sums in Eqn. (3.3). A .. simple" alternative to sampling an infinite 

1 It should be noted that the term .. Monte Carlo" is used to imply the stochastic nature of this technique. 
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number of states is to sample states randomly instead of at regular intervals [6]. This 

method is referred to as simple sampling. 

Simple sampling Monte Carlo is somewhat more efficient than sampling states over 

a 'regular grid' in phase space [6]. The situation is not significantly improved since the 

number of states that must be sampled to obtain a decent thermal average is still not known. 

The main advantage of simple sampling is that one can ensure that the finite number of 

states which are sampled do not come from the same local region of phase space [6], i.e., 

this ensures that thermal averages are not taken over local regions of phase space. 

3.2.2 Importance Sampling 

As noted in the last paragraph, the method of simple sampling, although somewhat more 

effective than sampling states at regular intervals, is still a rather inefficient method to carry 

out the integrals over phase space. Even for a small system the number of available states is 

too numerous. A more efficient method of sampling states is needed. An alternative method 

is importance sampling; in the general sense importance sampling involves a controlled 

biasing of the points sampled to lie predominantly where the integrand (of the function 

being integrated) is largest. A specific example of importance sampling was suggested by 

Metropolis et al. [86]. 

The Metropolis algorithm will be discussed in terms of transitions between consecutive 

states or points in phase space. Metropolis et al. [86] suggested that, instead of choosing 

states randomly, it is more efficient to choose states x1 weighted by a probability P(x1) . If 

each state is weighted by P(x1) , the thermal average (A)r can be written as 

M 

L A(xt) exp( -{31£(xt))/ P(xl) 

(A) = .;;_l=.....;;.l ________ _ 
T M (3.4) 

L exp( -;31£(x£))/ P(x£) 
l=l 



CHAPTER 3. MONTE CARLO: INTRODUCTION AND APPLICATlON 31 

In general it is possible to choose any form for P(x1); however, it is useful to choose 

one which simplifies the partition function. The obvious choice is simply the canonical 

probability distribution 

P(:Xt) ex exp( -'H.(:Xt)/3) (3.5) 

With this choice, the thennal average in Eqn. (3.4), simply reduces to an arithmetic average 

of 1\l values of A( :it) evaluated at each state x1 

1 M 
(A)r = 

1
\1 LA( :it) 

l=l 

(3.6) 

To realize the result in Eqn. (3.6) it is necessary to construct a Markov process where 

each successive state Xt' is constructed from the previous state x1 via a suitable transition 

probability [6]. The reader is referred to references [106, 108] for a discussion of Markov 

processes. This Markov process should be such that in the limit i\ll ~ oo the distribution 

function P(xt) tends to the equilibrium canonical distribution 

(3.7) 

A necessary and sufficient condition to obtain the result in Eqn. (3.7) is to impose the 

condition of detailed balance 

(3.8) 

The reader is referred to Binder and Reichl [6, 106] for a derivation of the detailed balance 

relationship and a discussion of its relevant propenies. Using Eqn. (3.8) the ratio of the 

transition probabilities is 

(3.9) 

This ratio depends on the energy change associated with going from state x1 to state :X1,. 

As noted by Binder [6], the transition probability ~V(Xt• ~ x1) in Eqn. (3.9) is not unique. 
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The Metropolis form is 

{ 

.l. exp(-611./3) ' ·V(... ... ) is • v Xi -7 X1• = 
1 
is 

if 81l > 0, 
(3.10) 

otherwise. 

The factor is in Eqn. (3.10) is an arbitrary factor and is chosen as unity, i.e .• is = 1 [6]. 

Eqn. (3.10) provides a rule by which to sample consecutive states of a system. 

To implement the Monte Carlo method it is necessary to have a practical working al­

gorithm. This algorithm will consist of sampling different states based on the prescribed 

transition probability in Eqn. (3.10). The general Metropolis Monte Carlo algorithm is as 

follows 

l . Begin with an initial state of the system x1. 

2. Change the state of the system, x1 --+ x1•. 

3. Calculate the change in energy 1i(xt) -'H.(x1,) = 81£. 

4. Calculate the transition probability ~V(x1 --+ x1• ). 

5. Draw a random number ( E [0, 1). 

6. If the transition probability is such that ( < ~~'(x1 -t i 1·) accept the new state, 

otherwise reject it and repeat the process, keeping track of observables for averaging. 

The practical application of the above algorithm is discussed in Section 3.7 as applied to 

the self-assembly of amphiphiles. Eqn. (3.10) states that if a transition is such that the 

change in energy of the system is negative the transition is automatically accepted. If the 

transition is such that the change in energy is positive the transition is accepted or rejected 

by comparing a randomly chosen numberto the Boltzmann factorexp( -/381£). 

Using the transition probability in Eqn. (3.10), the thennal average (A)r will tend to 

the canonical ensemble average after a sufficient number of steps [5, 6]. The number of 
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Monte Carlo steps, i.e., the number of attempted transitions x1 -t x1' required to obtain 

equilibrium thermal averages, is related to the number of steps required for the system to 

reach equilibrium. The next section focuses on a discussion of autocorrelation times and 

equilibrium. These autocorrelation times are a useful tool in characterizing equilibrium in 

the Monte Carlo model. 

3.3 Autocorrelation Times and Equilibrium 

In the previous section it was illustrated that importance sampling Monte Carlo can lead 

to thermodynamic averages in the canonical ensemble. The remaining question is, How 

many states iVI must be sampled in order to calculate these averages? Another important 

question when using Monte Carlo is, How long does it take a system to reach equilibrium, 

in tenns of the number of attempted transitions? 

In order to discuss equilibrium, it is necessary to identify the time scales relevant to the 

behaviour of observables. For example, in a gas of hard spheres, one time scale of interest 

(in real time) would be the average time for a gas particle to traverse a certain characteristic 

length, such as the average distance between neighbouring spheres. 

In order to discuss time scales in the Monte Carlo model it is necessary to describe 

the system as it evolves in "time" (in the Monte Carlo model the "time" will be defined 

in terms of the number of Monte Carlo steps, i.e., the number of sampled states). It will 

be useful to associate these "time" scales with the behaviour of observables defined in 

terms of the number states which are sampled. It is first necessary to define Monte Carlo 

time: unit Monte Carlo time will be defined as 1 MCS (Monte Carlo Step) per species in 

a system. The definition of a species will depend on the system under consideration2• For 

2It is worthy to note. that it is difficult to relate Monte Carlo "time" to real time [6]. A dynamical 
interpretation does not in any way imply a direct correspondence with the real dynamics of a system or the 
real time scales in a physical system. Monte Carlo time is often referred to as stochastic time. 
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the amphiphile systems, a species will be an individual monomer of a molecule. 

It is usual to associate the probability P(x1) with the "time" (Monte Carlo time) depen­

dent probability P(x, t) such that P(iL) = P(i, t), where P(x1) is the probability of an 

associated state x1• This is equivalent to discussing the behaviour of P(i1) as a function 

of l the number of states being sampled. After a sufficient length of Monte Carlo time the 

probability distribution tends to the time independent equilibrium distribution, i.e., 

lim P(i, t) = Peq(it) 
t--too 

(3.11) 

As noted by Binder [6] a dynamic interpretation of the Monte Carlo method is impor­

tant in order to discuss correlations in the Monte Carlo model. For a thorough discussion 

and justification of the dynamical interpretation of the Monte Carlo method, the reader is 

referred to Binder [5, 6]. 

With this understanding of the meaning of "time" in the simulations, a method of cal­

culating each time scale associated with various observables is required. This is done by 

calculating autocorrelation functions and associated autocorrelation times. This allows a 

quantification of the time necessary for a system to reach equilibrium and the time neces­

sary to calculate equilibrium averages [5, 6] . 

To discuss equilibrium in terms of fluctuations in an observable quantity (A}. it is 

convenient to consider how the mean squared fluctuations of this value ( ( 6A)2) varier with 

time, in this case Monte Carlo time. The mean squared error in a measurement of (A} is 

defined as 
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It is possible to carry out the summation over i 1 in Eqn. (3.12), so that 

((Mf) = 1~£ [ (A2
)- (A)

2 + 2 t ( 1- ~) ((AoA;)- (A)') l (3.13) 

The total Monte Carlo time will be defined as ti = (1/N)i = (ot)i, where At/ is the 

total number of states sampled and N is the total number of particles. Using this definition 

for the total Monte Carlo time, it is possible rewrit~ Eqn. (3.13) as an integral over timet, 

the continuous analog of ti 

(3.14) 

The time dependent normalized autocorrelation function ¢....t(t) (sometimes called a 

normalized relaxation function) of an observable (A) is defined as 

(3.15) 

It is important to note that lim ¢>A(t) = 0 and ¢A(O) = 1 for most physical observables of 
t-+oo 

interest3• The associated autocorrelation timer A of a given observable (A) is defined as 

T = 10() ¢> (t)dt = 100 ( (A(O)A(t)) - (A)2) dt 
A 0 A 0 (A2) - (A)2 

(3.16) 

It is assumed that t << tM is the only regime for which the autocorrelation times have 

a non zero value, consequently in Eqn. (3.14) the term tftM can be neglected and it is 

possible to write the mean squared fluctuation ((oA)2 ) as 

3For periodic A. the autocorrelation function will also be periodic and will not converge in the limit as 
t ~ 00 . 
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Furthennore using the definition for the relaxation time in Eqn. (3.17) it is possible to write 

the mean squared fluctuation ((c5A)2) as 

(3.18) 

where T,H = 1V18t. 

The statistical fluctuations are proportional to the ratio 
21 

A. that is to say. the ftuctu-
Tfvl 

ations depend on the number of Monte Carlo steps relative to the autocorrelation time of 

a given quantity. This provides a convenient way of determining appropriate time scales 

for a system. In order to obtain averages which are representative of equilibrium aver­

ages, it is necessary to know how long it takes given quantities in a system to relax to their 

equilibrium values, i.e., their autocorrelation times. 

In the application of Monte Carlo to self-assembly, there are several characteristic time 

scales of interest. Autocorrelation times are calculated for each of these. The largest of 

these times will be referred to as the relaxation time of the system and will determine the 

criterion for equilibrium. In the self-assembly of amphiphiles, it is often necessary to wait 

between 100 to 200 relaxation times before collecting averages and a further 100 to 200 

relaxation times for the purposes of collecting averages. 

3.4 Simulating Self-Assembly: The Monte Carlo Way 

In recent years, Monte Carlo has become a method of choice for examining a diverse va­

riety of physical phenomena in a wide range of disciplines including: classical mechanics, 

quantum mechanics, statistical mechanics and gravitational theories. The application of the 

Monte Carlo method to the study of self-assembly was first presented in a series of papers 

by Larson [59, 60, 62, 63] and Pratt et al. [103, 104]. The use of Monte Carlo to study self-
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assembly has gained popularity, and numerous papers have been published on the subject 

[5, 9, 10, 15, 19, 20, 24, 27, 38, 41, 45, 50, 51, 53, 54, 70, 71, 76, 77, 97, 99, 115, 118, 

121, 126, 127, 140, 145]; however, to date, few systematic studies of self-assembly using 

Monte Carlo have been attempted. 

The first application of the Monte Carlo method to the study of a physical system was 

discussed in a 1953 article by Metropolis et al. [86] entitled "Equation of State Calcula­

tions by Fast Computing Machines." In this paper, importance sampling Monte Carlo was 

applied to a two dimensional gas of hard disks. The results were in good agreement with 

the equation of state and a four term vi rial coefficient expansion. The work by Metropolis 

et al. [86] opened a new venue for the investigation of physical phenomena via computer 

based simulations. 

The remainder of this chapter provides a detailed description of the Monte Carlo method 

applied to study of self-assembly of amphiphiles. The first part of the discussion focuses 

on the model for the structure of the molecules and the space in which they exist. This is 

followed by a discussion of Monte Carlo moves and the calculation of model autocorrela­

tion functions. The chapter ends with a schematic depiction of the algorithm that is used in 

the simulations. 

3.4.1 Amphiphiles: The Coarse-Grained Description 

There are numerous methods used to model molecules and their properties. These methods 

typically vary in their level of detail, which depends on the behaviour to be observed. The 

time scales which are accessible in a model are often restricted; for example, in molecu­

lar dynamics an accessible time scale is on the order of hundreds of pico-seconds and is 

commensurate with fast molecular reorientations and short range motions [26, 53, 57]. In 

molecular dynamics, aggregates are typically assigned a predefined ·shape', the molecules 
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are initially assigned a known crystal structure, and it is assumed that the prepared aggre­

gate is stable. However, the time scales associated with the spontaneous formation of an 

aggregate are on the order of micro to milli-seconds, so molecular dynamics typically falls 

short of being able to simulate spontaneous self assembly [26]. 

Practitioners of Monte Carlo typically use a coarse grained model for molecules. These 

coarse grained models allow longer accessible 'time' scales which are commensurate with 

self-assembly [26, 132]. Using Monte Carlo, it is possible to simulate self-assembly; 

furthennore, accessible 'time scales' are such that spontaneous fonnation and dissolution 

of aggregates can occur. 

In order to model the behaviour of molecules, it is first necessary to model their struc­

ture. This will depend on the molecules which are being modeled. For a single chain 

molecule one of the simplest models is to represent it as a chain of monomers where a 

monomer can represent a single atom or a generalized group of atoms such as a methyl 

group CH3 • The molecules under consideration in this thesis are modeled as chains with 

different monomers for the head- and tail-groups. 

The linear chain molecules are composed of Zs monomers with Zst and Zsh monomers 

comprising the tail- and head-groups respectively, such that 

(3.19) 

A typical model molecule is shown in Figure 3.1. 

The linear chain model is an example of a coarse grained model. A thorough discussion 

and justification of the use of coarse grained models is contained in the article by Sokal 

[5]. It should be noted that although the coarse grained model may seem like a "ridiculous 

caricature" [5] of a real molecule, it can lead to exact results for certain universal propenies 

such as the radius of gyration. It is non trivial to make direct comparisons between to 

the model molecules and specific molecules. However, Mattice et al. [76] using mapping 
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Figure 3.1: Illustration of a typical model coarse grained molecule used in this thesis, with 

Zs = 10, Zsh = 4 and Zst = 6, the head- and tail-groups are blue and red respectively. 

and reverse mapping, have shown that it is possible to map a coarse grained model onto 

a detailed molecular model. In doing so, it is possible to make direct comparisons with 

specific molecules. The linear coarse-grained model is a good approximation for single 

chain amphiphiles, such as single chain surfactants and polymers [5, 10]. 

3.4.2 The Lattice Model 

In this thesis, a simple cubic lattice is used to represent the space in which the amphiphiles 

and solvent exist. The lattice is composed of L 3 lattice sites, i.e., an L x L x L lattice. The 

simulations also use periodic boundary conditions to minimize the effects imposed by the 

finite lattice size [5]. The periodic boundary conditions are such that 

(3.20) 

where Xi, Yi and Zi refer to arbitrary lattice sites. The unit of length in the lattice model is 

such that the bond length is equal to the lattice constant. 

Each monomer occupies a single lattice site, with no two monomers occupying the 

same site. The model is referred to as mutually and self-avoiding, i.e., double occupancy of 

lattice sites is not allowed, this is sometimes referred to as the excluded volume interaction. 

There are N 8 amphiphiles in the system. Of the L 3 lattice sites, N 8 groups of Zs contiguous 

lattice sites are occupied by amphiphile and the remaining L3 - N 8 Z 8 lattice sites are 
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occupied by the sol vent. 

The volume fraction of amphiphile 4Js in the lattice is 

(3.21) 

where ~,~ and V'tot refer to the total volume of the amphiphile and the lattice respectively, 

Nw and ZsNs denote the total number of lattice sites occupied by solvent and amphiphile. 

Typical volume fractions used in the simulations are 4Js ::; 5%. 

3.4.3 Modeling the Interactions 

The interactions among the various components in the system must reflect the nature of 

interactions in a physical system. The model molecules must also be able to emulate the 

known behaviour of the 'real' molecules in solution. 

The model for the interactions used in this thesis is similar to the classic Flory [22] 

lattice model for polymer molecules. Only the interactions between unlike first nearest 

neighbour pairs on the lattice are used. The coordination number z of a lattice is defined as 

the number of first nearest neighbours to each lattice site. The simple cubic lattice has a co­

ordination number of z = 6. The inclusion of other than first nearest neighbour interactions 

would greatly increase the computational complexity of the simulations. 

There are three distinct interacting pairs in the model systems. The interaction be­

tween the head- group and the solvent is modeled by an attractive interaction between each 

head-group monomer and the solvent. The interaction between the head- and tail-group 

monomers is repulsive, and these groups tend to avoid one another. There is also an in­

teraction between the tail-group and solvent which is modeled by a repulsive interaction. 

These interactions are chosen to reflect the ambivalent behaviour of the model molecules 

towards a host solvent. 
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The model is not well suited to describe the long range polar interactions of ionic 

molecules; nonetheless, people compare the model molecules to ionic surfactants such 

as n-alkyl sulphates. The model molecules are more representative of nonionic surfactants 

such alkyl ethoxylates [ 10]. 

The quantities which actually enter the Monte Carlo simulations are Eii /kaT. It is 

convenient to introduce these as reduced interaction parameters" 

(3.22) 

where i. j = h, t. s and refer to the head-, tail-group and solvent respectively, and EiJ 

represents interactions between unlike nearest neighbours of type ij. These reduced in-

teraction parameters incorporate an intrinsic temperature dependence. An increase in cii 

corresponds to a strengthening of interactions and/or a lowering of T. The three reduced 

interaction parameters used in this thesis are 

• cts• the tail-group solvent interaction, cts > 0, 

• cth• the tail-group head-group interaction, cth > 0, 

• chs• the head-group solvent interaction, chs < 0. 

The reduced interaction parameters cts, chs and cth as defined, make this model directly 

comparable to the classic Flory [22] model for linear chain polymer molecules. 

The interactions in the system are only between nearest neighbours so the Hamiltonian 

(divided by ksT) is 

1l 
kaT 

_1 ~ ~Eii 
2 L- . L- ksT 

LatticeS,tes n.n 

- ntscts + nhschs + nthCth· 

"'Introduction of reduced interaction parameters is a common procedure in physics. 

(3.23) 
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where the tenns nts• nhs and nht represent the total number of tail-, head-solvent and head-

tail contacts, respectively, in the entire system. The subscript n.n on the second summation 

refers to a sum over nearest neighbours. A typical set of interaction parameters used in 

the simulations in this thesis and in the literature [10, 105] are such that Chs = -2et, = 

-2cth =c. The total energy in the system can be written as 

1l 

kaT 

(3.24) 

As the reduced interaction parameters €t5 , ehs are decreased to zero, i.e., cts,chs -? 0, the 

solvent becomes athennal. 

It is also necessary to calculate the energy change in going from one state to another. 

With the reduced interaction parameters as defined and the Hamiltonian as in Eqn. (3.24), 

the change in energy 61i is 

81l 1 1 
- ?c:-(nA (·n··' + n·4 )) + ·)r:(·n8 (n8 + ·n 8 )) k 

8 
T - - _._ h11 - 2 ts th -· hs - 2 ts th (3.25) 

where the superscripts B and A refer to before and after the state has changed respectively. 

In the Metropolis algorithm, the probability of a transition occurring is 

(3.26) 

Clearly the change in energy depends only the number of contacts of each type nts 

nhs· nht and the value of e. This provides a very convenient way of calculating the change 

in energy and the associated probability of successive configurations in the Monte Carlo 

model. This has facilitated a method in which energy calculations are carried out not as 

direct lattice sums but rather as sums of local positions of molecules and the tabulation of 

numbers of nearest neighbours. This is discussed in references [50, 51, 99]. 
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3.5 Monte Carlo Moves 

The previous two sections provided a description of the model amphiphiles and their inter­

actions. The depiction of the model systems, so far, has been static and limited to molecules 

'existing' and 'interacting' on the lattice; however, aggregation is intrinsically a dynamic 

process. At equilibrium, there is a continual exchange of molecules between aggregates 

and solution, and between other aggregates; the conformations of the molecules are also 

continually changing [26, 99, 132]. A practical method of generating new conformations 

and positions of the molecules is required. This method involves using Monte Carlo moves; 

successive configurations are then generated using importance sampling Monte Carlo. 

The Monte Carlo moves used in this thesis fall under the general classification of lo­

cal, hi-local and nonlocal N-conserving Monte Carlo moves as defined in the article by 

Sokal [5]. Local moves refer to moves in which a few consecutive sites of the lattice are 

affected by the move. Bi-local moves are defined as moves which alter two small disjoint 

groups of consecutive lattice sites. For a general discussion of Monte Carlo moves and their 

properties the reader is referred to Sokal [5]. There are four types of N-conserving Monte 

Carlo moves used in this thesis: reptation, kink-flip, crank-shaft and Brownian motion (a 

nonlocal move). A thorough description of these four moves is provided in the following 

discussion. 

3.5.1 Reptation 

The reptation move is known informally as the slithering snake move, as it essentially 

allows a molecule to "slither" around the lattice. A monomer at either end of the molecule 

is allowed to move to any of the available unoccupied lattice sites adjacent to it, and the 

remainder of the monomers of that molecule move one lattice site along the chain (hence 

the name slithering snake). 
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The reptation move is effective as it allows molecules to both diffuse around the lattice 

and adopt new chain configurations [5]. Reptation is the most commonly used of the Monte 

Carlo moves for systems of chain-like molecules and many practitioners implement only 

reptation[lO, 58, 59, 121]. Figure 3.2 shows an example of the reptation move in two 

dimensions 

(\ ••• A ··: 
--·~ 

Figure 3.2: Illustration of reptation motion. 

In two dimensions the reptation move can 'trap' a molecule in a local conformation; 

however, in three dimensions, entrapment of molecules in local conformations is not pos-

sible [6]. 

3.5.2 Kink-Filp 

The kink-Hip Monte Carlo move involves rotating a 'kink' in the molecule by either ±90° 

or ±180° depending on the position of the monomer along the chain. This move can Hip 

either an end of a molecule or a part of the molecule interior to the ends. One type of 

kink-Hip motion is depicted in the following diagram, 

8 

GOO 

Figure 3.3: Illustration of kink-Hip motion. 
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The kink-flip move plays an important role in the relaxing of the local chain conforma­

tions in aggregates [99]. Using only reptation, local chain conformations relax much more 

slowly than when kink-Hip moves are also used. 

3.5.3 Crank-Shaft 

The crank-shaft move also plays an important role in the relaxation of chain conformations 

in an aggregate. This move allows a crank-shaped bend in the molecule to rotate by ±90°. 

A schematic picture of the crank-shaft motion is shown in Figure 3.4. 

h A B 

X··~ ,~ ,J 
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Figure 3.4: Illustration of crank-shaft motion. 

3.5.4 Brownian Motion 

Brownian motion involves moving a molecule a specified number lattice sites, nb, while 

retaining the relative positions of the monomers with respect to one another. Typically 

nb is such that nb < L/2. where L is the dimension of the lattice. Figure 3.5 shows a 

schematic representation of a Brownian motion move of nb = 7 lattice sites. Brownian 

motion is important in allowing the molecules to diffuse around the lattice as the molecules 

are allowed to move many lattice sites with a single move, unlike the other previously 

mentioned moves. 

It is important to note that a single Monte Carlo move corresponds to a change in the 

state of the system, i.e., a single move corresponds to a transition from state l to l + 1, 
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Figure 3.5: Illustration of Brownian motion. 
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Xt ~ Xt+L · Since the Monte Carlo moves only affect lattice sites local to the old and new 

positions of the molecules, the change in energy of a system need only be calculated with 

respect to the positions of the lattice sites before and after a move has been carried out. 

This has allowed a method of energy calculation which does not involve direct sums over 

all lattice sites. The energy calculations are carried out over the subset of lattice sites which 

are affected by a single move. 

In the simulations, moves are chosen randomly within an overall weighting of each 

kind of move. The typical weighting scheme used in the simulations is: reptation 50%, 

kink-flip 40%, crank-shaft 8% and Brownian motion 2%. Work by Pepin [99] has shown 

that equilibrium results are independent of the relative weighting of the moves provided 

they are approximately in this range. The above weighting scheme has been effective, but 

is not necessarily the most efficient combination of moves. 

3.6 Model Autocorrelation Functions and Times 

As stated in Section 3.3 the autocorrelation times serve as guides to how long it is nee-

essary to run the simulations. The autocorrelation times also allow a classification of the 

time scales associated with the observable behaviours. The discussion of autocorrelation 

functions in Section 3.3 was very general, this general discussion is now cast in a more 
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practical setting. 

In this thesis there are four time scales associated with the characteristic behaviour of 

observables, these are: 

1. Chain Extraction; a time scale associated with the extraction of a molecule from an 

aggregate. 

2. Chain Exchange; a time scale associated with the exchange of molecules between 

aggregates. 

3. Diffusion; a time scale associated with the diffusion of a molecule over a distance 

which is equal to the average distance between molecules. 

4. End-t~nd vector; a time scale associated with the correlation of the end-to-end 

vector of a molecule from its original orientation. 

As noted by Wennerstrom and Lindman [132], there are other processes which have time 

scales associated with them. They include: 

• Fonnation and dissociation of an aggregate. 

• Change in the shape and size, both dimensionally (i.e., the radius of the aggregate) 

and through changes in the aggregation number of an aggregate. 

The exchange and extraction of molecules play significant roles in the growth of aggre­

gates [21]. Eisenberg [21] has suggested that there are two possible mechanisms associated 

with micellar growth and morphological transitions, such as the transition from spherical 

aggregates to rod-like aggregates. The suggested mechanisms involve chain extraction and 

chain insertion and the combining of aggregates to form larger aggregates. Figure 3.6 illus­

trates the two suggested mechanisms of micelle growth. Smaller unstable aggregates can 
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also dissociate and the molecules can be incorporated into larger aggregates. If the chain 

exchange and extraction mechanisms play an important role in micelle growth, then the 

autocorrelation times for these mechanisms provide a guide to ensure that aggregates have 

had sufficient time to equilibrate. 
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Figure 3.6: Two possible mechanisms for micelle growth. 

The characteristic time scales can depend markedly on the value of the reduced interac­

tion parameters eii· The autocorrelation times are roughly constant below a characteristic 

interaction parameter and, above this parameter, increase by orders of magnitude with small 

changes in the interaction parameter. It will be seen that the characteristic interaction pa­

rameters at which the autocorrelation times begin to increase correspond to the onset of 

micellization in the system. 

The autocorrelation times are defined in terms of N-bead cycles, where one N-bead 

cycle is NsZs attempted Monte Carlo moves. The increase in the autocorrelation times 

with the onset of micellization implicitly implies that the number of Monte Carlo steps 

required to reach equilibrium increases. The actual computational time necessary to carry 

out the simulations increases markedly beyond the characteristic interaction parameter at 

which micellization begins. The increase of the autocorrelation times as a function of 

the interaction parameter ultimately limits its maximum value that can be obtained in the 
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simulations. 

The chain exchange autocorrelation times are the largest of the four autocorrelation 

times. The maximum of the autocorrelation times will be referred to as the relaxation time 

of the system, in the simulations the relaxation time will always correspond to the chain 

exchange correlation time. The relaxation time will provide a method of determining the 

minimum number of N-bead cycles that are required for the system to reach equilibrium. 

The next four sections define the model autocorrelation functions. 

3.6.1 Chain Extraction 

There are two chain extraction autocorrelation functions that are calculated, the weighted 

and the unweighted. The weighted autocorrelation function is weighted relative to the 

number of molecules in an aggregate. They both can be defined by 

where O(t) is defined as 

(8(t)8(0)) 
l/Je:rt(t) = (82(0)) (3.27) 

1. Unweighted Chain Extraction; O(t) = 1 if the amphiphile was in an aggregate at 

timet = 0 and remains at timet; otherwise O(t) = 0. 

2. Weighted Chain Extraction; O(t) = N, if the amphiphile was in an aggregate of 

size Ni at timet= 0 and remains at timet; otherwise O(t) = 0. 

It is then possible to calculate the weighted and unweighted autocorrelation times as 

1t; l/Je:rt(t)dt 

'~ext = 0 
( (3.28) 

1 - ¢Jext ti) 

where rPextCtd = 1/e, which implicitly defines ti. Typically the weighted autocorrelation 

times are larger than the unweighted times; however, both are calculated and the larger of 

the two is used to determine the relevant time scale associated with chain extraction. 
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3.6.2 Chain Exchange 

The chain exchange mechanism involves the transfer of molecules between aggregates 

There are also two types of chain exchange autocorrelation times, the weighted and un­

weighted. They can be defined as 

,~.,. ( ) _ (O(t)B(O)) 
'/-'ex t - (82(0)) 

In Eqn. (3.29) the function O(t) is defined as: 

(3.29) 

1. Unweighted Chain Exchange; B(t) = 1 if the amphiphile was in an aggregate at 

timet= 0 and has not migrated to another aggregate at timet; otherwise, O(t) = 0. 

2. Weighted Chain Exchange; B(t) = Ni if the amphiphile was in an aggregate of 

size Ni at timet= 0 and has not migrated to another aggregate at timet; otherwise, 

O(t) = 0. 

The associated chain exchange autocorrelation times are 

(3.30) 

3.6.3 End-to-End 

The end-to-end vector autocorrelation is defined as 

¢-( ) = (x(t) . x(o)) - (x(t)) . (x(O)) 
x t (x(0)2 ) - (x(o))2 

(3 .31) 

where x corresponds to one of the following 

• End- to-end vector of an amphiphile Rs· 

• End-to-end vector of either block of the amphiphile, the head group Rh or the tail 

group Rt. 
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The corresponding end-to-end vector autocorrelation time is then calculated from 

3.6.4 Diffusion 

r- = f.'' 4>x(t)dt 

X 1- ¢>;c(ti) 
(3.32) 

It is also necessary to allow time for the amphiphiles to move throughout the system. 

The diffusion time characterizes the relevant time scale associated with the diffusion of 

molecule through the system. The diffusion constants D are calculated as 

D = lim (rF(t)) 
t-+oo 6t 

(3.33) 

where d(t) = r(t) - f(O) is the displacement of a molecule from its initial position at time 

t relative to its position at timet = 0. A relevant time scale associated with this is the time 

necessary for a polymer to travel the average distance between molecules 

1:2 
ro=-

6D 
(3.34) 

where i: = (6\lfrrNs) l/J [99], Ns denotes the total number of amphiphiles in the system 

and V is the total volume of the system. 

There are other autocorrelation functions that can be calculated. Nelson et al. [95] have 

used the weight average aggregation number autocorrelation function which is defined as 

( ) 
_ (N(t)N(t' + t)) - (N)~ 

¢>N t - (N2) - (N)2 (3.35) 

where N(t) is the weight average aggregation number at timet [95] and the averages are 

over all molecules and all times t'. The associated aggregation number autocorrelation time 

TN is calculated as 

(3.36) 
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Nelson et al. also claim that it is possible to estimate a time scale Tsize necessary to achieve 

a smooth aggregate size distribution as 

(N(O)) (N2 (0)) 
lsize = :\r IN 

i'is 
(3.37) 

where Ns is the total number of molecules in the simulation. A worthwhile future endeav­

our would be to include this autocorrelation time and compare the time scale with those 

being calculated in this thesis. 

It is noteworthy that the calculated autocorrelation times from the simulations appear 

to be strictly monotonically decreasing functions of the number of Monte Carlo steps used. 

They are exponential or stretched exponential functions and may be composed of contribu­

tions from several different time scales in the systems [99]. For example, the end-to-end 

autocorrelation time may have contributions arising from free molecules, aggregates of two 

molecules, and so forth [100]. 

3. 7 Monte Carlo Simulations: A Practical Algorithm 

This chapter has provided a description of the model used to study the self-assembly of 

amphiphilic molecules in terms of: model interactions, structures of the model molecules 

and model autocorrelation functions. It is useful to construct a general picture of the Monte 

Carlo simulations and how they are carried out in terms a practical working algorithm. This 

algorithm is the basis of the simulation code for the Monte Carlo simulations. 

The simulation code has been written predominantly in Fortran 77 with some C. The 

code itself is platform independent and is a serial code, in the sense that it runs on a sin­

gle processor. The simulations have been carried out on a multitude of different comput­

ing platforms at various high performance computing sites across Canada made available 

through the nationwide computing initiative C3.ca Inc. A full copy of the current code is 



CHAPTER 3. MONTE CARLO: INTRODUCTION AND APPLICATION 53 

also included in the CD-ROM accompanying this thesis. 

Algorithm 1 The Monte Carlo Algorithm: Applied to Self-Assembly 

Require: Read appropriate input data files: These files specify the details of the simula­

tion, including: the length of the molecules Z 5 , Zst. Zsh• number of molecules Ns. the 

dimensions of the lattice £3 , r max and all other variables. 

if New Simulation then 

Perform all necessary initializations, including input parameters. 

Place molecules randomly on lattice. 

else if Simulation is to be restarted or continued. then 

Perform all necessary initializations. 

Read previous data. 

Do necessary analysis on the previously recorded data and record results. 

end if 

if Wannup stage is needed then 

Set Ets' cth, chs = 0 and iterate system for Nwarm N-bead cycles. This is done to 

randomize the system before a simulation is carried out. A wann up stage is usually 

required. 

end if 

Increment interaction parameters by Jcii 
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Algorithm 2 The Monte Carlo Algorithm: Applied to Self-Assembly (cont.) 
while c < c max do 

lmplement Metropolis algorithm, choosing moves and molecules at random. 

Monitor autocorrelation times and calculate the relaxation time. 

lterate system for specified number of relaxation times. 

Collect averages over specified number of relaxation times. 

Record results and positions of molecules. 

Increment interaction parameters Cij by 6cii· 

end while 

STOP 
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Chapter 4 

A Systematic Study of Self-Assembly 

"Discovery consists of seeing what everybody has seen 

and thinking wlzatnobody lzas thought." 

Albert von Szent-Gyorgyi. 

4.1 Introduction to Model Systems of Interest 

The focus of this chapter is to implement the Monte Carlo model as described in Chapter 

3 to examine systems of amphiphiles and solvent, and to make qualitative comparisons 

with the theories of Chapter 2. A systematic examination of the aggregation of amphiphilic 

molecules based on the variation of the length of the molecules Zs and the reduced inter­

action parameters Eii is carried out. The crux of the work is based on the variation of Zs 

and its effects on various observables in the system including: aggregate composition, the 

aggregate size distribution, the critical micelle concentration and aggregate morphology. 

A better understanding of systems of self-assembling amphiphiles can provide predictive 

capabilities for their properties and behaviour. 

55 
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4.1.1 Model Systems: An Overview 

Monte Carlo simulations were first used to study systems of self-assembling amphiphiles 

by Larson [59, 60, 62, 63] and Pratt et al. [103, 104]. These studies focussed on short 

chain lengths, typically with Zs < 4, in two dimensions, with relatively large amphiphile 

concentrations, rPs > 40%. A number of subsequent studies have appeared in recent years, 

most notably those contained in references [4, 10, 27, 51, 59, 76, 99, 105, 121, 140]. Other 

simulation techniques have been employed to study aggregation including Molecular Dy­

namics [5, 9, 24, 25, 38, 48, 56, 97, 126, 143] and vector field models [13]. Monte Carlo, 

nevertheless, has remained a popular method. 

The range of Zs used in the simulations in this thesis is 5 :5 Zs < 22, with the molecules 

ranging from symmetric, Z11t = Zsh• to highly asymmetric Zst >> Zsh· Typical interaction 

parameters used in the simulations are such that 

0 < Ets $ 1.5 (4.1) 

The accessible range of interaction parameters, in the model, is severely restricted by the 

length of the molecules Zs and other criteria including the total concentration. This will be 

illustrated in the section on relaxation times. 

A simple schematic phase diagram for a dilute solution of amphiphiles is shown in 

Figure 4.1. Region I corresponds to a solution of free amphiphiles and small aggregates of 

typically less than 10 molecules. Region II is a single phase region consisting of a dilute 

solution of micelles in dynamic equilibrium with free molecules. Region ill corresponds to 

free molecules in equilibrium with precipitated crystals. Region IV is a two phase region 

with both a solute and solvent rich phase [17]. 

The typical phase behaviour for a dilute solution of arnphiphiles in a solvent is: micelles 
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Figure 4.1: Schematic phase diagram for a dilute solution of amphiphiles and solvent. 

(Reproduced from DeGiorgio [ 17]). 

form above a temperature To and a amphiphile concentration cPcmc [ 17] 1• In Region U the 

average micelle aggregation number increases with decreasing temperature and increasing 

concentration [17]. Degiorgio [17] notes that the effects of temperature and concentration 

(for low concentrations) are rather small. As an example, consider sodium dodecyl sulphate 

(SDS) in water. At 25°C and at the CMC, this system has an average aggregation number 

of approximately 95. At a concentration of 100 times the CMC the average aggregation 

number is approximately 112 [17]. For the same system at the CMC and at •l0°C, the 

average aggregation number is roughly 85 [17]. For more discussion of the phase behaviour 

of dilute systems, the reader is referred to references [17, 42, 91, 132]. 

The transition to the micellar phase is not a true phase separation process [ 17] since 

there is no well defined critical concentration at which the transition occurs; rather, there 

exists a very narrow concentration range below which no micelles exist and above which 

1 rl>r:mc is referred to as the critical micelle concentration; however, the transition to the micellar phase is 
not a true phase transition, and ¢erne does not indicate a critical point. 
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essentially all added amphiphile enters the micellar phase [17]. For this reason <Pcmc is 

usually defined in terms of the fraction of molecules in aggregates. The Monte Carlo sim­

ulations in this thesis operate at a fixed concentration and vary the reduced interaction 

parameters (corresponding to varying the temperature). Each simulation explores a small 

section of the phase diagram for a given concentration, the concentration range used in the 

simulations in this thesis is roughly 2.5% $ <Ps $ 9%. The results from the simulations 

represent venical tracts on the phase diagram in Figure 4.1 going from Region I to Region 

II, i.e., they examine the transition from a region of free molecules to a region of micelles 

in dynamic equilibrium with free molecules. 

4.1.2 Relaxation Times and Equilibrium 

The relaxation times as outlined in Chapter 3 are used to determine the appropriate time 

scales over which to collect averages. In this section, the autocorrelation and diffusion 

time(s) from several simulations are presented. 

It is useful to (re)introduce some of the notation that will be used throughout the fol ­

lowing discussion: 

• Z3 , Z!t• Zsh : The total length of the amphiphile, tail- and head-group respectively 

in monomer units. 

• <Ps• Xtot: The total volume and mole fraction of amphiphile, respectfully. 

• Ns: The total number of amphiphiles in the system. 

• rmax: The number of relaxation times used for equilibrating and collecting averages. 

• hi: i denotes the ratio of the tail to head-solvent interaction parameters, i.e., i = 

~~~: ,. 
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Consider a system composed of N s = 2000 symmetric molecules of length Z s = 14, 

Zst = Zsh = 7, a total volume fraction of cl>s = 2.5% and a total mole fraction of Xtot = 

0.1857%. A plot of the logarithm of the various correlation and the diffusion time(s) as a 

function of the interaction parameter is shown in Figure 4.2. The range of the interaction 

parameters for this system is 0 < Ets < 0. 75. This system is a h2 system, i.e., I~~; I = 2. 

6 .-------~---------r--------~--~---, 
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............. 
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Figure 4.2: Logarithm of the diffusion and autocorrelation time(s) for a ~ system of N 8 = 

2000 symmetric molecules with Z s = 14, Zsh = Z st = 7 and a volume fraction of c/>8 -

2.50%. 

The diffusion and correlation time(s) are roughly constant up to an interaction param­

eter of Ets = 0.5. Upon further increase in Ets• several of the times increase by an order 

of magnitude with small increments in the interaction parameter. The relaxation time for 

the system corresponds to the weighted chain exchange correlation time for all values of 

the interaction parameter. The increase in the relaxation time limits the accessible range of 

interaction parameters since an order of magnitude increase in the relaxation time (in some 

instances) increases the computational time necessary to carry out the simulations, from 

days to weeks (depending on the value of the interaction parameter). As will be illustrated 
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later in this chapter this increase in the relaxation time, above an interaction parameter of 

Ets = 0.5, corresponds to the onset of micellization in the system. The value of Ets at 

which this occurs is system specific and depends on the value of Z 8 , the concentration in 

the system, and other parameters. 

Next, consider a system composed of 2000 asymmetric molecules of length Zs = 5 

with Zst = 2, Zsh = 3 and a total volume fraction of c/Js = 5.14%. Figure 4.3 shows 

the diffusion and autocorrelation time(s) for this system as a function of the interaction 

parameter Ets· 

• ·--··· • Weighted Chain Extraction 
• • Weighted Chain Exchange 

5 ........... End-to-End 
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2 

• ·········• End-to-End Tall 
. .......... End-to-End Head 
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•··•·· •.. 
••• • 
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Figure 4.3: Logarithm of the diffusion and autocorrelation time(s) for a h2 system of Ns = 

2000 asymmetric molecules of length Zs = 5, Zst = 3 and a total volume fraction of 

c/Js = 5.14%. 

In this system the times are roughly constant up to an interaction parameter of Ets = 0.8, 

then rapidly increase up to an interaction parameter of Ets = 1.10. The relaxation time for 

the system, corresponding to the weighted chain exchange correlation time increases by 

nearly four order of magnitude from Ets = 0.8 to Ets = 1.1. 

From a physical perspective, it is possible to understand why the chain exchange cor-
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relation time corresponds to the relaxation time of the system in the following manner. For 

small £ts• the formation of aggregates is essentially a random process, and there are very 

few of these aggregates at any time. Once an amphiphile leaves one of these random ag­

gregates it takes a long time to encounter another one. For large £ts• most chains are in 

aggregates, and the rate determining step is the escape of a molecule from an aggregate. 

This takes a relatively long time, because of the large energetic penalty associated with the 

extraction of a molecule from an aggregate to solution. Once a molecule has escaped from 

a micelle, it then takes some additional time for it to be reabsorbed (to join) another aggr­

egate. The result is that the extraction and exchange times are nearly equal, but the latter 

is always somewhat larger since it takes more time for a molecule to be extracted and fur­

ther reabsorbed into an aggregate. In all cases in this thesis, the weighted chain exchange 

correlation time corresponds to the relaxation time of the system. 

The value of :r.s at which the diffusion and correlation time(s) begin to increase depends 

on the length of the molecules Z5 • As Zs increases, this value decreases. This, compounded 

with the consequent increase in computational time, limits the range of interaction param­

eLers which are accessible as a funcLion of Z~ . This, in Lum, affects Lhe ex.aminaLiun ur 
properties of the systems as a function of Zs at constant value of the interaction parameter. 

Chain extraction and chain exchange are key to the formation, growth and dissolution of 

aggregates [21]. In general, it is seen that the chain exchange correlation time corresponds 

to the relaxation time of a system. Pepin [99, 100] has shown that it is sufficient to iterate 

the system for 100 to 200 multiples of the relaxation time for the purposes of equilibrating 

the system and collecting averages. Pepin [99, 100] has also investigated relaxation times 

and hysteresis. It has been shown that cooling and heating lead to no hysteresis in the 

correlation times, provided at least 100 times the relaxation time are used [99, 100]. 

Previous investigations in the literature typically have not used this method of relaxation 

times for determining when the system is at equilibrium [10, 58, 105]. The published results 
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in the literature typically iterate the systems for a specified number of iterations and assume 

that equilibrium results are obtained. The relaxation times suggest that the characteristic 

time scale varies by orders of magnitude with small increments in the interaction parameter 

and so choosing a fixed number of iterations with which to run the simulations at different 

values of the interaction parameter will not ensure equilibrium. Many of the results in 

the literature exhibit nonequilibrium effects, especially in terms of the size distribution 

[10, 58, 105]. 

For most systems in which a distinct micellar phase exists, the autocorrelation and 

diffusion time(s) behave in a similar manner; however, the actual value of the interaction 

parameter at which the times begin to increase depends on the properties of the system 

such as Zs and d>.,. Typical simulations (in real time) often take a few days to reach the 

critical interaction parameter at which micellization onsets. The stopping criterion for the 

simulations is simply to gauge whether data can be generated in a feasible amount of time. 

4.2 Micelle Composition 

In many theoretical treatments such as those discussed in Chapter 2 of this thesis, the ag­

gregates are assumed to be spherical clusters with the tail-groups lying exclusively interior 

to the core and the head-groups protruding into the solvent surrounding it, as depicted in 

Figure 2.2 2• It is also often implicitly assumed that each core is of uniform density up 

to some radius Rc after which it is zero as discussed in Chapter 2. It is assumed in the 

calculation of the free energy that there is an interfacial region of negligible thickness for 

the purposes of calculating the entropic and surface contributions to the free energy. In this 

!The reader should note that this composition corresponds to an average micelle composition not an 
instantaneous composition. In general it is possible to observe instantaneous aggregates which have no well 
defined shape since in the Monte Carlo model an aggregate is defined as any group of molecules which are 
connected to one another by at least one nearest neighbour contact. 
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section the interior composition of the micelles will be examined using the results from the 

Monte Carlo simulations. 

It is advantageous to visualize the results from the simulations. The computer code has 

been written so as to allow the visualization of these systems in three dimensions either 

as individual pictures or as time lapse movies. The visualization of these systems allows 

a unique insight into how the aggregates behave and. using them. it is possible visualize 

the formation, growth and dissolution of aggregates. Several movies are included on the 

CD-ROM accompanying this thesis, along with several .pdb files, an electronic copy of 

this thesis, and a copy of the simulation code. 

Figure 4.4 is a snapshot from the simulation with 2000 asymmetric molecules of length 

Z:s = 18, ZIJt = 14, Zsh = 4 and a total volume fraction of 4.9%. This Figure shows 

that there is a broad range of aggregate sizes and shapes present. It should be clear that 

the interface between the core and the corona is not well defined. It will be seen in the 

following discussion that this interfacial region has a finite width and. in some instances, 

is very broad. This is in contrast to the assumptions of the free energy model where it was 

assumed that the interfacial region was of negligible width. This picture was generated 

using Rasmol v2.7. 

In the simulations the directionally averaged density profiles for the micelles are cal­

culated. This allows an examination of the interior micelle composition in greater detail. 

The five calculated distribution functions are the head-, tail-group volume fraction, and 

the head- , tail-end and joint distribution functions. The head-, tail-end and joint distribu­

tions correspond to the end monomer of the head/tail and the joint between the head/tail 

respectively. 

Figure 4.5 shows these distributions as a function of the distance from the center of mass 
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Figure 4.4: Snapshot from simulation for a system with N 8 = 2000, Zs 

Zst = 14 and cPs = 4.9%. The unit of length is equal to a bond length. 
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18, Zsh = 4, 

of the micelles resulting from the same simulation as Figure 4.43
• This figure illustrates that 

the density of the core block is not uniform. The density is nearly equal to one near the 

center of mass; however, there is nonzero solvent penetration into the core. The core block 

density is approximately ¢ = 0.98 up to 4 units from the center of mass after which it 

decreases to zero at about 8 units. The density profile illustrates that the aggregates have a 

relatively wide interfacial region which is occupied by both the core and the corona. This 

interfacial region is located in the range of about 4 to 8 units from the center of mass and 

includes most of the corona forming block. 

The tail, head and joint distribution functions in Figure 4.5 contain other important in-

3It should be noted that the distributions are calculated as averages over ranges of aggregate sizes. The 
range used in Figure 4.5 is 69 to 83 molecules per aggregate. This range includes about 10% of the aggregates 
and coincides with the peak in this distribution. 
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Figure 4.5: Directionally averaged density profiles and related distributions for a h1 system 

with Ns = 2000, Zs = 18, Zsh = 4, Zst = 14 and cPs = 4.9% for aggregates in the range of 

69 to 83 molecules per aggregate and for € ts = 0.45. This is the same system as in Figure 

4.4. The unit of length is equal to a bond length. 

formation about the composition of the core and corona. The tail-end distribution function 

suggests that it is most probable to locate the tail-end of the molecule near the center of 

mass; however, there is a non zero probability of finding the tail-ends anywhere inside the 

core region. Similar results have been observed using molecular dynamics by Karabomi et 

al. [26, 48]. Marangoni [72] has also observed similar behaviour in experiments on sys­

tems of sodium dodecyl sulphate using NMR, finding that the ends of the molecules can be 

found throughout the core. 

The joint distribution function illustrates that the joints between the head- and tail­

groups are predominantly located at the center of the interfacial region (approximately 6 

units from the center of mass). The head-end distribution function also illustrates that there 

is a greater probability of finding the head-ends farther from the center of mass than the 

joints, i.e., the head-groups protrude into the solvent. The peak in the head-end distribution 
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is located at 8 units from the center of mass. There is a non zero probability of finding the 

head-ends anywhere inside the coronal region and in the outer edge of the core. 

The next system illustrated is composed of 1000 symmetric molecules with Zst -

Zsh = !Zs = 7 and a total volume fraction of cl>s = 2.5%. The density profile for this 

system is shown in Figure 4.6. These density profiles are for aggregates in the range of 35 

to 40 molecules per aggregate and an interaction parameter Ets = 0.75 . 

•• • 
• 0.2 

0.8 • 
-E>- •• c 
~ 0.6 • 
e u. • 4 6 8 
Cll • 
~ 0.4 

~ 
• Core Block 
• Corona 
• Ends Head 

• • Ends Tall 
~Joints 

9 12 
Distance to Center of Mass 

Figure 4.6: Directionally averaged density profiles and related distributions for a h 2 system 

with N 8 = 1000, Z 8 = 14, Zst = Zsh = 7 and cl>s = 2.5% for aggregates in the range of 

35 to 40 molecules per aggregate and for Ets = 0. 75. The unit of length is equal to a bond 

length. 

The density of the core block is very nearly ¢> = 1 up to 3 units from the center of mass. 

It has a more narrow interfacial region located in the range of 3 to 5 units from the center of 

mass. In this system, the head-end monomers are predominantly located outside the core 

region. In fact, more of the head-group lies outside the core and interfacial region than was 

the case in Figure 4.5. In this example there is a more well defined interface and separation 

of the core and corona regions. 
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The center of the joint distribution is located at 4.0 units from the center of mass, near 

the outer region of the core distribution. The tail-end distribution function suggests that, 

although it is most likely to locate the tail-ends of the molecules near the center of mass, 

there is a non zero probability of locating them anywhere in the core block as in the case 

of the asymmetric molecules. The two previous examples are indicative of other results in 

terms of the density profiles. 

A discussion of the aggregate morphology is provided in the second last section of this 

chapter. Density profiles will also be further discussed in the last section of this chap­

ter where the relationships between the size, shape and scaling of the dimensions of the 

aggregates are examined. 

These results illustrate that the assumed micelle composition as described in Chapter 2 

can significantly differ from that obtained using the simulations. The main differences are 

the degree of penetration of the corona into the core block and the definition and relative 

width of the interfacial region. These differences manifest themselves in the comparison of 

the size distributions and the free energy with the results from the Monte Carlo simulations. 

The effects of these differences will examined in the next section. 

4.3 Size Distributions 

In this section an examination of the aggregate size distributions based on a systematic 

variation of the molecular weight Z~ and the reduced interaction parameters ~,1 will be 

presented. This examination will include a qualitative comparison between the predicted 

aggregate size distribution, the free energy and the results from the Monte Carlo simula­

tions. The results show good qualitative agreement with the form of the aggregate size 

distribution and the free energy as discussed in Chapter 2, for a wide variety of systems. 

The limitations of this model will also be discussed. 
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4.3.1 General Discussion 

One interesting aspect of the amphiphilic systems is that the aggregates which form do not 

have a static identity. Their size, shape and aggregation number fluctuate . These systems 

are in dynamic equilibrium, with a continual exchange of molecules between aggregates 

and solution, and among aggregates. The aggregates are polydisperse with a distribution of 

sizes. 

The distribution of aggregate sizes is a sensitive function of system parameters includ­

ing total concentration, amphiphile composition and temperature (i.e., reduced interaction 

parameters). Significant infonnation about the system, such as the free energy and the 

CMC (critical micelle concentration) can be obtained from it. In this section a general 

discussion of the aggregate size distribution and its properties wiil be given. 

Figure 4.7 illustrates the typical behaviour of the aggregate size distribution superim­

posed with plot of the free energy per molecule, as functions of n for two sets of interaction 

parameters. For low interaction parameters (high T) the bulk of the molecules are either 

free in solution or are in very small aggregates of fewer than 10 molecules. For high in­

teraction parameters (low T) the system is no longer composed of mainly free molecules. 

Rather, the distribution develops a distinct second peak centered at a finite aggregation 

number, in this case at roughly n = 25. 

The behaviour of this size distribution depends on the free energy per molecule, 8n, 

and the free molecule concentration X 1. Figure 4. 7 also shows a plot of the corresponding 

free energies. For c ts = 1.10, there is a shallow minimum in the free energy which corre­

sponds roughly to the second peak in the distribution. The location of this minimum is an 

increasing function of cts• i.e., it is energetically favourable to form larger aggregates with 

increasing c ts· 

For both values of Ets• the free energy has the same generaJ shape; however, the mini-
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Figure 4.7: Size distribution, Xn, and free energy, On, for a h2 system with JV8 = 2000 

molecules with Zs = 5, Zst = 3 and a total volume fraction of cf>s = 5.14%. The size 

distributions correspond to the unfilled symbols and the free energy corresponds to the 

filled symbols. 

mum in On shifts to larger n with increasing cts and becomes quite shallow. For cts = 0.90 

there are small aggregates but there is no well defined second peak in the distribution even 

though there is a well defined minimum in the free energy. For cts = 1.10 there is a well 

defined peak at n = 25 and the free energy has a shallow minimum near the same value of 

n. 

4.3.2 Calculated Size Distributions 

In this section the results from the Monte Carlo simulations for the aggregate size distribu-

tions will be presented. Comparisons of result~ from the simulations with the expression 

for the size distribution and free energy of Chapter 2 are also presented. There are a number 

of simulations which are summarized in this section. For convenience, Table 4.1 lists them. 

A complete listing of the simulations is contained in Appendix A. 
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Figure Ns Zs Zsh Zst hi tPs Max Ets 

4.8 2000 5 2 3 h2 5.14% 1.10 

4.12 1000 6 2 4 h2 2.51% 0.90 

4.13 1000 6 2 4 hl 9.37% 0.95 

4.14 1000 6 3 3 h2 ? -?o/c --~- 0 0.90 

4.16 500 7 2 5 h2 5.46% 0.80 

4.17 1000 8 4 4 hl 4.55% 1.05 

4.18 1000 10 2 8 hl 8.00% 0.60 

4.19 1000 15 5 lO hl 4.73% 0.55 

4.20 1000 16 4 12 h2 3.79% 0.45 

4.21 1000 20 5 15 h2 2.56% 0.40 

Table 4.1: Table of simulations contained in this section along with the Figure number in 

which the size distributions are shown. 

The first system to be considered has 2000 molecules with Zs = 5, Zst = 3 and a 

total volume fraction of 4>s = 5.14%. Although it is convenient to plot the aggregate 

size distributions in two dimensions simply as functions of the aggregation number n, it 

is more illustrative to use a surface plot. This plot allows a convenient and unique way to 

visualize the distributions as functions of both Ets and the aggregation number n. The size 

and surface aggregate distributions for this system are plotted in Figure 4.8 and Figure 4.9, 

respectively, as a function of nand for 0.90 :::; cts :::; 1.10. 

The aggregate size distributions for low values of Ets are rapidly decreasing functions of 

n, and the system is mainly composed of free molecules with few aggregates of greater than 

20 molecules. The distribution develops a distinct second maximum (at roughly Ets = 0.94) 

which is an increasing function of Ets· For Ets = 1.10, the distribution has essentially 
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Figure 4.8: Aggregate size distributions for a h2 system with Ns = 2000, Zs = 5, Zst = 3, 

Zsh = 2 and a total volume fraction of 4>s = 5.14%. 

separated into a distinct Gaussian peaked at n = 27 and a rapidly decreasing function in the 

range of 1 to 10 molecules per aggregate. The surface aggregate size distribution illustrates 

very clearly the behaviour of the aggregate size distributions over the entire accessible 

range of aggregation numbers and interaction parameters. 

To make quantitative comparisons between the predicted form of the aggregate size 

distribution and the Monte Carlo simulations, nonlinear least squares fits of Eqn. (2.53) 

to the distributions were performed using Xmgr (version 4.1.2). Matlab was also used to 

perform curve fitting for comparison with the results from Xmgr and the results were in 

excellent agreement with each other. The results shown for the fitted curves throughout 

this thesis were obtained using Xmgr. 

Figure 4.10 shows the results from the Monte Carlo simulations superimposed with 

the fitted curves using Eqn. (2.53). The fitting parameters are shown in the legend. The 

general behaviour of the distributions is emulated quite well by the fitted curves. The 

quality of the fit increases as Ets increases. This is, in part, due to the extreme sensitivity 
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Figure 4.9: Surface aggregate size distribution for a system with .1V8 = 2000, Zs = 5, Zst = 

3, Zsh = 2 and a total volume fraction of c/Js = 5.14%. 

of the distribution function to the free molecule concentration X 1 , which is not a fitted 

parameter but is obtained directly from the simulations. The only fitted parameters are the 

three parameters from the free energy expression a,~ and TJ. 

For low interaction parameters, the systems have a large free molecule concentration 

X 1 which is often an order of magnitude larger than all the other Xn. It is by far the con-

trolling factor in the expression for the distribution function, for low cts· A small change in 

X 1 can significantly alter the quality of the fit. With increasing cts the fitted curves capture 

the behaviour of the distributions progressively better over the whole range of aggregate 

sizes, which suggests that the aggregates conform somewhat better to the model used in 

the free energy calculations at larger cts· The quality of fits at lower interaction parameters 

suggests some possible inconsistencies with the free energy expression and the model sys-

terns as detailed in Chapter 2. One of these points has already been identified, namely, the 

differences between the assumed micelle structure and that obtained from the Monte Carlo 

simulations. It will become apparent that the expression for the distribution typically leads 
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Figure 4.10: Fitted curves for a h2 system with N 8 = 2000 molecules with Z s = 5, Z st = 3 

and a total volume fraction of cPs = 5.14% 

to a better fit for symmetric molecules than for the asymmetric molecules. 

Previous attempts in the literature to fit the distributions with similar functional forms 

have yielded fits which do not capture the behaviour of the distributions very well [ 10, 105]. 

Other attempts to fit them have used various functional forms [3]. These fits often describe 

the distribution over the whole range of aggregate sizes very well; however, there is no 

physical basis for describing the distributions by these arbitrarily introduced functions [3]. 

Figure 4.11 shows a plot of the fitted parameters as a function of Ets · These fitted 

parameters will be used to calculate the CMC as a function of Ets · The bulk and surface 

terms, a and~ respectfully, exhibit similar behaviour; they decrease with increasing Ets up 

to an interaction parameter of Ets = 0.94 and then they both increase. The value at which 

they are both minimum corresponds roughly to the interaction parameter at which the total 

concentration is equal to the critical micelle concentration and the second peak appears 

in the distribution. The increase in the bulk term, a, reflects the fact that it becomes less 

favourable for molecules to remain in solution as Ets is increased. 
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Figure 4.11: Variation of fitting parameters a,~ and r7 with the interaction parameter Ets· 

This corresponds to the same system as in Figure 4.1 0. 

Another useful piece of information is contained in the monotonic decrease of 7J with 

Ets· It might be expected that 7J would increase as a function of Ets reflecting the stretching 

(i.e., an increase in the average end-to-end distance) of the chains in micelles, compared 

with that of a free molecule. In the calculation of the entropic contribution to the free 

energy of Chapter 2, it is assumed that the root mean squared end-to-end distance of 

the tail-groups, ltail is proportional to the radius of the core block of the aggregates, i.e., 

ltail ex Rc. It is also assumed that Rc ex n~ since it is assumed that the aggregates are 

tightly packed which implies that ltail ex n ~. 

From the simulation results, in fact, it is found that ltail is an increasing function of 

Ets corresponding to the elongation of the chains in micelle, as expected, but that Rc is a 

decreasing function of c ts. This will be discussed in more detail in the section on aggregate 

shape. Hence, the model calculation of the entropy incorporates a decrease in ltail with Ets• 

when in fact it increases. The result of this difference is that the parameter 7J is a decreasing 
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function of Ets· A possible way around this (although we do not explore this) is to assume 

that ltail in micelles is instead proportional tonE where 0 < E < 1/3. The scaling of the 

size of the aggregate as a function of n will be discussed in a later section. 

The next system examined is a h2 system with 1000 molecules of length Zs = 6, Zst = 

4 and a total volume fraction of cp8 = 2.51 %. Compared with the last system described, Zs 

is increased from 2 to 3 and c/>s is roughly doubled. The size distributions and fitted curves 

for this system are shown in Figure 4.12. For interaction parameters below Ets = 0. 75, 

the system is composed mainly of free amphiphiles with few aggregates of greater than 20 

molecules. At an interaction parameter of Ets = 0.80, the distribution develops a second 

peak at n = 22, whereas for the previous system the second peak appeared at roughly 

Ets ~ 0.92 and n = 15. As Ets is increased, this peak shifts towards larger aggregation 

numbers. At Ets = 0.90 the distribution is Gaussian-like, and centered at 37 molecules per 

aggregate; however, there is a distinct tail in the distribution extending to 70 molecules per 

aggregate. 
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Figure 4.12: Aggregate size distribution and fitted curves for a~ system with Ns = 1000 

molecules with Zs = 6, Zst = 4, Tmax = 150 and c/>s = 2.51 %. 



CHAPTER 4. A SYSTEMATIC STUDY OF SELF-ASSEMBLY 76 

It will be seen in a later section that the long tail in the distribution in the range from 50 

to 70 molecules per aggregate corresponds to (highly) nonspherical micelles. These non­

spherical aggregates are not explicitly accounted for in the expression for the free energy 

that was derived in Chapter 2, since the aggregates were assumed to be spherical. The tail 

is seen in many of the simulations and will be discussed in detail in a later section. Aside 

from it, the fits are relatively good, although they underestimate the width of the distri­

bution. It is interesting to note that there appears to be a distinct knee in the distribution 

at roughly twice the aggregation number of the peak in the distribution for an interaction 

parameter of Ets = 0.90. This knee most likely corresponds to two aggregates coming in 

contact with one another. 

The next system to be considered is a h 1 system of 1000 molecules with Zs = 6, Zst = 4 

and a total volume fraction of <l>s = 9.37%. This system has a concentration of about 3 times 

that of the previous simulation and weaker head-group/solvent interactions. Figure 4.13 

shows the aggregate size distributions for this system along with a fit to the distribution for 

one value of Ets· This system was examined for only two values of Ets and was not simulated 

from Ets = 0; rather, it was quenched, i.e., it was staned at an interaction parameter of 

Et:; = 0.90. Nonetheless, the usual process of calculating and eKamining the relaJCation 

times is used, and it indicates that the system is in equilibrium and the distributions are 

representative of equilibrium distributions [99, 100]. System quenching was examined by 

Pepin [99, 100], who showed that equilibrium is achieved provided that upwards of 100 

relaxation times are used for iterations. 

At Ets = 0.90 the distribution is a relatively narrow Gaussian centered aboU[ an aggre­

gation number of n = 40, plus a distinct tail which begins at an aggregation number of 

about n = 50. For Ets = 0.95 the shape of the distribution is significantly altered and no 

longer is Gaussian like. An attempt to fit the distribution for a value Ets = 0.95 was carried 

out; however, the function does not fit over the range of aggregate sizes. In order to fit 
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this distribution, it is necessary to modify the free energy expression to explicitly include 

the change in the shape of the aggregate as a function of the aggregation number. It will 

be seen that the long tail in the distribution extending to roughly n = 120 corresponds to 

nonspherical aggregates. 
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Figure 4.13: Aggregate size distributions and fitted curves for a h1 system of 1000 

molecules with Z 8 = 6, Zst = 4 and cf>s = 9.37%. 

These distributions are markedly different than the previous example with molecules of 

the same length. This is in part attributed to the weaker head-group solvent interactions. 

Qualitatively this can be understood from the smaller energetic penalty for a head-group 

monomer to enter the core in a h1 system. The energy change associated with removing a 

single head-group solvent contact and replacing it with a head tail contact for a h1 system 

is €th + Ets and for a h2 system is Eth + 2€ts· 

Similar results have been observed by Nelson et al. [95] for a h1 system with Zs = 4, 

Zst = Zsh = 2, a volume fraction of cf>s = 20%, and at an interaction parameter of 

Ets = 1.5. A replica of this simulation was carried out in order to make comparisons, the 

two were in excellent agreement. 
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So far, the systems considered have been for moderately asymmetric molecules. Con­

sider now a system of 1000 symmetric molecules with Zst = !Zs = 3, and a volume 

fraction of cf>s = 2.52%. This is a similar system as the first one considered in this section 

in Figure 4.8, except that Zsh is increased from 2 to 3 and the concentration is halved. 

Figure 4.14 shows the aggregate size distributions and the fitted curves for this system. 

The distributions in Figure 4.8 and Figure 4.13 are similar. At cts = 1.10 the peak in the 

distribution is located at n = 20, compared with n = 25 for the first system at the same 

interaction parameter. 
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Figure 4.14: Aggregate size distributions and fitted curves for a h2 system of Ns = 1000 

molecules with Zs = 6, Zst = 3 and cf>s = 2.52%. 

Figure 4.15 shows a snapshot of this system for an interaction parameter of cts = 1.10. 

There are significantly more free molecules and smaller aggregates than in the case of the 

Zs = 5, Zst = 3 system. Even from a single snapshot it is clear that there is a broad range 

of aggregate sizes. 

The distributions for this system have some key differences as compared with the sys­

tems in Figure 4.8. On average, the aggregates are smaller and the distributions are more 
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Figure 4.15: Snapshot of simulation for system with 1000 molecules with Zs = 6, Zst = 3, 

at cts = 1.10 and a total volume fraction of cl>s = 2.52%. 

narrow. At cts = 1.10 there are few aggregates of greater than 30 molecules, whereas for 

the system in Figure 4.8 there are an appreciable number. These differences are attributed 

in part to the smaller concentration in this system and the fact that Zsh is different. 

In the simulations there is a minimum number of molecules required to obtain good 

statistics in terms of the aggregate size distributions. For most of the simulations Ns = 

1000 has been used. The necessary minimum number of molecules compounded with the 

inherent increase in the relaxation times as a function of Zst makes it increasingly difficult 

to simulate molecules as Zst is increased. 

The next system to be examined is a system of 500 molecules with Zs = 7, Zsh = 

2, Zst = 5, and a total volume fraction of cf>s = 5.46%. Figure 4.16 shows the fitted distri-
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butions for this system superimposed with results from the simulations. The distributions 

are not as smooth as those in the previous system. The fitted curves still capture quite well 

the behaviour of the distributions over the whole range of Ets and n. 
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Figure 4.16: Aggregate size distributions and fitted curves for a h2 system of 500 molecules 

with Zs = 7, Zst = 5 and if>s = 5.46%. 

The same system was examined with T max = 200, and the results exhibit somewhat 

smoother size distributions. However, the shape of the distributions is the same and fits 

to the distributions yield the same values for the fitting parameters. A similar system with 

twice the number of molecules at the same volume fraction was also examined. It exhibits 

similar distributions as the one shown and the distributions were somewhat smoother, but 

with no significant improvements. 

The next system to be considered is a h 1 system of 1000 symmetric molecules with 

Zs = 8, Zst = 4 and a total volume fraction of if>s = 5.46%. The size distributions for this 

system are shown in Figure 4.17. This system differs from the previous system in that Zsh 

has been doubled from 2 to 4 and Zst has been decreased from 5 to 4. 

The fitted curves capture the behaviour of the distributions very well over the whole 
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Figure 4.17: Aggregate size distribution and fitted curves for a h1 system with JV8 = 1000 

molecules with Z 8 = 8, Zst = 4 and c/Js = 4.56%. 

range of aggregate sizes and Ets· There is no long extended tail in the distribution as seen 

in some of the previous simulations. It is interesting to note that the fitted curves describe 

the data better as the interaction parameter increases. This is in part due to the decrease in 

free molecule concentration X 1 • 

At an interaction parameter of Ets = 0.80 this system has a second peak in the distri-

bution (which is not well separated from the initial distribution) at roughly 15 molecules 

per aggregate, for the previous system at the same Ets the distribution had separated into 

a distinct Gaussian centered at approximately 40 molecules per aggregate. The dominant 

effect is due to the decrease in the length of the tail-group Z 8 t, since the energetic penalty 

for a molecule to remain in solution is roughly a linearly increasing function of Zst· 

Not all of the systems examined actually exhibit a well defined micellar phase. The 

existence of a micellar phase depends on a delicate balance between: the interactions in the 

system, the relative lengths of the head- and tail-groups, and the total concentration .. Some 

systems exhibited a non-micellar phase, with the molecules aggregating into a macro phase. 
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The next system illustrates this behaviour. It is a h 1 system of 1000 asymmetric molecules 

with Zs = 10, Zst = 2 and a total volume fraction of f/Js = 8.00%, and is shown in Figure 

4.18. 
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Figure 4.18: Non-micellar aggregate size distribution for a h1 system of 1000 molecules 

with Zs = 10, Zst = 2 and <Ps = 8.00%. 

This system is clearly macrophase separating, as indicated by the appearance of a peak 

in the distribution located at approximately n = 700. This single aggregate would contain 

about 70% of all of the molecules in the system. As the number of iterations increases 

this peak grows and becomes better defined. However, this system has not yet reached 

equilibrium. The reader will recall that the relevant autocorrelation times are the weighted 

extraction and exchange times. In this case, for such a large aggregate, these weighted times 

become extremely large, and in fact too large for equilibrium to be reached in a reasonable 

amount of computational time. 

There are several reasons why this system does not exhibit distributions similar to the 

other systems: the molecules are highly asymmetric, it is a h1 system and it has a relatively 

large concentration of f/Js = 8.0%. Similar h2 and h3 systems with the same chain lengths 
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were examined and exhibit characteristic micellar behaviour in terms of the distributions. 

The next three systems are composed of asymmetric molecules with chain lengths of 

Zs = 15, Zs = 16 and Zs = 20 respectively. The first of these is a h 1 system of 1000 

molecules with Zs = 15, Zst = 10 at a total volume fraction of cf>s = 4. 73%. This system, 

as with previous examples, exhibits a distinct second peak in the distribution above a certain 

interaction parameter, in this instance above Ets = 0.40. The distributions and the fitted 

curves for this system are shown in Figure 4.19. 

0.0003 
- t;.=0.40, a=15.2161, !;=14.6064, 11=0.5732 
- t;.=0.45, a=13.0437, !;=12.7843, 11=0.1806 

0.00025 - e,.=0.50, a=13.8529,!;=13.6317, 11=0.1411 
- e,.=0.55, a=14.8492, !;=14.5076, 11=0.1209 

c 0.0002 
0 = u 

~ 0.00015 
II 
0 

== 'l: 
0.0001 )( 

Se-05 

80 100 
Aggregate Size (n) 

Figure 4.19: Aggregate size distributions and fitted curves for a h1 system of 1000 

molecules with Zs = 15, Zst = 10, Tmax = 60 and cf>s = 4.73%. 

For low values of c ts the fitted curves do not correctly reproduce the peak height and 

width. These discrepancies are attributed, in part, to the possible inconsistencies in the 

expression for the free energy which were discussed earlier in this section. These include 

the differences between the assumed micelle composition in the free energy model and that 

obtained from the Monte Carlo simulations. For Ets = 0.55, the curves fit very well over the 

whole range of aggregate sizes and the distribution has separated into a distinct Gaussian 

like distribution centered at about 50 molecules per aggregate and an initial distribution 
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which describes very small aggregates and free molecules. 

The next system is composed of 1000 molecules with Zs = 16, Zst = 12 and a total 

volume fraction of cl>s = 3. 79%. The differences between the simulation data and the fitted 

distributions shown in Figure 4.20 are similar to those in the previous case; however. it is 

worthwhile to bear in mind that the free molecule concentration for the system at Ets = 0.40 

is almost an order of magnitude larger than the value of the peak in the distribution. For a 

value of Cts the value of xl is twice that of the peak in the distribution. This single point 

dominates the fit and affects the quality of the rest of the fit to the distribution. 
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Figure 4.20: Aggregate size distributions and fitted curves for a h2 system of 1000 

molecules with Zs = 16, Zst = 12 and cl>s = 3. 79%. 

The final simulation of this section is shown in Figure 4.21. It corresponds to a system 

with 1000 molecules of length Zs = 20, Zst = 15 at a total volume fraction of cl>s = 2.56%. 

The behaviour of the size distribution is similar to the previous two cases. The change in the 

shape of the distributions may appear to be abrupt. this is an artifact of the large increment 

in Ets· A smaller increment would yield distributions which vary in a more incremental 

manner. 
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Figure 4.21: Aggregate size distributions and fitted curves for a h2 system of N 8 - 1000 

molecules with Z 8 = 20, Zst = 15 and cf>s = 2.56%. 

The fitted distributions capture the overall behaviour of the distributions obtained from 

the simulations; however, even for the largest value of cts• they underestimate the width of 

the distribution. Again as with previous examples, the distribution exhibits distinct Gaus-

sian behaviour, in this case at an interaction parameter of cts = 0.45. 

The size distributions examined in this section illustrate the behaviour of the distribution 

for a wide range of Zs and cts· The majority of the distributions behave in a very similar 

manner for low cts they are rapidly decreasing functions of n. With increasing cts the 

distributions develop a distinct second peak, corresponding to the onset of micellization. 

The value of cts at which this occurs depends on the characteristics of the system. The 

distribution usually tends to a Gaussian peaked at a particular aggregation number with 

increasing cts· This Gaussian distribution will be seen to correspond to roughly spherical 

micelles. If the interaction parameter is further increased, the distribution develops a tail 

extending to large aggregation numbers and the distribution is no longer Gaussian. The 

appearance of the tail in the distribution will be seen to correspond to the morphological 
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transition of aggregates with increasing n. In some cases, macrophase separation occurred, 

as for the system in Figure 4. 18. 

Using the form for the aggregate size distribution and the free energy of Chapter 2, it 

was also possible to fit the distributions and examine the variation of the fitting parameters 

as a functions of ets· This qualitative comparison yielded good agreement. The fitting 

parameters will be utilized in the next section to examine the variation of the critical micelle 

concentration. 

4.4 The Critical Micelle Concentration (CMC) 

The onset of micellization in a system is typically characterized by a relatively sharp transi­

tion in observable properties as a function of concentration, with micellization occurring in 

a very narrow concentration range [91, 92, 93, 94, 122]. The approximate concentration at 

which it begins is referred to as the critical micelle concentration and denoted by Xcmc (in 

mole fractions). The phrase 'micellization begins' is somewhat misleading since the CMC 

is usually defined as the concentration at which there is a certain fraction of molecules in 

aggregates. The concept of the CMC will be refined in the following discussion. 

The following discussion will focus on an examination of the CMC and its relation to 

the size distribution and the free energy. There are many discussions of the CMC in the 

literature, the interested reader is referred to references [26, 42, 91, 92, 101, 102, 122, 141]. 

Physically, Xcmc• is the total concentration in the system at which the concentration 

of free molecules begins to saturate. Any further amphiphile that is added to the system 

goes into an aggregate while the free molecule concentration remains roughly constant 

[12, 26. 42, 91, 105]. The interaction parameter at which the second maximum in the 

distribution appears corresponds roughly to the point at which the total concentration is 

equal to the critical micelle concentration. 
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Using a method suggested by Nagarajan and Ruckstein [91], it is possible to obtain an 

expression for Xcmc from the size distribution Xn defined as 

X vn ( n6n ) vn ( ~n ) 
n = ... ,1 exp -kaT = ..-\.1 exp -kaT (4.2) 

where ~n = n6n and where 6n is defined as 

(4.3) 

The minimum in c5n occurs at a specific aggregation number which can be obtained from 

!!_ (~) -o 
dn kBT n=ncmc -

(4.4) 

The value of n at which the free energy is a minimum is denoted by ncrnc where 

(4.5) 

It is now possible to estimate the critical micelle concentration Xcmc· Nagarajan and 

Ruckstein [9 L, 92] use the approximation that 

,,. "J v 
..-·'\ nc:mc - · ·"\ nc:mc- L (4.6) 

where X,,cmc is Eqn. (2.53) evaluated at ncmc· Equating these two terms it is possible to 

write 

\'nanc ( -ncmc6nemc) _ ''nemc-1 ( -(ncmc- 1)6ncmc-1 ) (4.7) 
..'\.1 exp kaT - ..'\.t exp kBT 

It is also assumed that 6nemc ~ c5neme-lt so the above expression becomes 

x~cme = x~eme-l exp ( ~;·r ) (4.8) 

It is possible to solve the above equation for ln(X dcmc (the logarithm of the free molecule 

concentration at the CMC) which is 

6 
ln(.Xt) erne = k:T (4.9) 
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The definition used for the CMC is the total concentration at which Xcmc = 2(Xt)cmc• 

i.e., when half of the molecules are in aggregates [91, 105]. The critical micelle concentra-

tion in terms of the free energy evaluated at ncmc is then 

v 2 (cSncmc) 
.'\.erne = exp kaT (4.10) 

This is a conventional definition for the CMC; however, it is possible to define the CMC as 

the concentration at which an arbitrary fraction of the molecules are in aggregate [26, 91, 

105]. The free energy evaluated in terms of a,~ and TJ at ncmc is 

(4.11) 

X erne can then be written as 

v _ ? . ( 3 (~2. ) L/3 ) 
·"erne- _exp 4L/3.., T} -Q (4.12) 

From the simulations it is possible to calculate X erne for each value of the interaction 

parameter Et.:;o The calculated CMC values can also be examined as a function of Z$ to a 

limited degree, for reasons which will become apparent. 

4.4.1 CMC versus Interaction Parameter cts 

In this section, the results for Xcmc as a function of ets are discussed ". As the temper­

ature decreases (increasing c1.s) it becomes less energetically favourable for molecules to 

remain in solution. It is also expected that a decrease in temperature (increasing interaction 

parameter) would decrease the CMC. This behaviour is examined for a variety of chain 

lengths and X erne is calculated from the fitting parameters a,~ and TJ over a whole range of 

interaction parameters and values of Zs as prescribed in the previous discussion. 

"All systems use a value of r mar = 100 unless otherwise specified. 
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The first group of molecules to be considered are those with 5 < Zs < 9 and var­

ious values of Zst and Zsh· A plot of ln(Xcmc) as a function of €ts is shown in Figure 

4.22. It is clear that ln(Xcmc) varies approximately linearly with €ts. i.e., Xcmc decreases 

exponentially as a function of €ts· 
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Figure 4.22: Logarithm of Xcmc as a function of €ts for molecules with 5 < Zs < 9 and 

various values of Zst and Zsh· The lines are shown as a guide to the eye. 

There is little deviation from linearity of ln(Xcmc) versus € ts even though Xcmc varies 

over several orders of magnitude. Similar behaviour is seen in systems of n-alky 1 sulphates 

examined in analytical calculations by Nagarajan et al. [91, 92, 93, 94]. It is interesting to 

note that the systems in which the molecules are highly asymmetric are the ones in which 

the values for the CMC exhibit the greatest deviation from linearity. 

The next set of results is for molecules with constant total length Zs = 10 and various 

values of Zst· Figure 4.23 shows a plot of ln(Xcmc) versus €ts for these systems. For 

Zst = 8, the data are localized to a small region of the graph. In fact several of the data 

sets nearly over lap each other, these correspond to similar systems iterated for different 

multiples of the relaxation time and for different values of hi. The values of ln(Xcmc) for 
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the h3 and h2 systems with Zst = 8 vary only slightly by a constant amount over the range 

of interaction parameters 0.45 < cts < 0.6. 
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Figure 4.23: Logarithm of Xcmc as a function of cts for molecules with lengths Z s - 10 

and various values of Zst· 

Figure 4.24 shows the variation of X cmc with cts for molecules with total lengths in the 

range 11 < Zs < 22. As with the previous two figures, the key thing to note is the variation 

of the CMC with Z st· Again as in the previous examples, ln(Xcmc) varies approximately 

linearly with the interaction parameter especially for the shorter chain length molecules. 

The highly asymmetric molecules exhibit the largest deviation from linearity; whereas, the 

symmetric molecules are consistently more linear. 

4.4.2 Xcmc versus Chain Length Zst 

In this section the variation of the CMC as a function of the chain length of the molecules 

for a fixed cts is examined. As Zst increases it becomes less energetically favourable for 

molecules to remain free in solution since (z - 2)ctsZ st (z is the coordination number of 

the lattice) is roughly the energy penalty for a molecule to remain in solution. It is also 
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Figure 4.24: Logarithm of the CMC as a function of €ts for molecules in the range 11 < 

Zs < 22 with various values of Z st· 

expected that, as the chain length is increased, (at constant interaction parameter) X cm c 

should also decrease [91, 92]. 

Figure 4.25 shows a plot of the logarithm of the CMC as a function of Z st for two 

different head-group lengths. It is quite clear that ln(Xcmc) varies linearly with Z st · Even 

though there are few points, the data show very little deviation from linearity. The lines 

of best fit are given in the legend of the graph. Tanford [122] illustrates that the CMC is a 

linearly varying function of the carbon chain length for a variety of nonionic surfactants, 

including alkyl hexaoxyethylene glycol monoethers. These systems also exhibit the same 

linear behaviour of ln(Xcmc) as a function of the number of carbon atoms. 

The onset of micellization occurs at lower values of €ts for longer chain lengths than 

for shorter ones. It is difficult to bring systems with different chain lengths Z st to the 

same interaction parameter €ts because of the increasing time scales in the simulation as a 

function of the interaction parameter. The relaxation time for the system begins to increase 

at a lower value of €ts for longer chain lengths Zst · 
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Figure 4.25: Plot of the logarithm of Xcmc versus Zst· 

4.5 Aggregate Shape and the Size Distribution 

In this section a discussion of the shape of the aggregates is presented. Also included is a 

further discussion of the density profile and its relationship to the aggregation number. The 

picture which emerges from this discussion coincides with the generally accepted view of 

roughly spherical aggregates for low aggregation numbers and the transition of the shape 

of the aggregates as a function of the aggregation number [17, 26, 43]. 

One of the useful aspects of the Monte Carlo simulations in this thesis is that it is pos-

sible to examine, in detail, the composition, shape and structure of the aggregates over the 

whole range of aggregate sizes n. Most simulation techniques such as molecular dynam-

ics typically simulate a single preconfigured aggregate [48]. As such molecular dynamics 

usually falls short of being able to simulate the entire aggregate size distribution [48, 53]. 

The shape of the size distribution will be seen to correlate with the morphology of the 

aggregates. For spherical aggregates, the distribution is essentially a Gaussian. It will also 

be seen that the appearance of highly nonspherical aggregates corresponds to the appear-

ance of the tail in the distributions. 
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4.5.1 Aggregate Shape/Morphology 

So far the shape of the aggregate has not been examined except in the free energy model 

of Chapter 2 where the aggregates were assumed a priori to be sphericat5• The validity of 

this assumption is examined here. The morphology of the aggregates will be seen to vary 

markedly as a function of n. 

Experimentally, measuring the shape of aggregates is a notoriously difficult problem 

[17, 42) and there is still some debate about the shape of aggregates in solution [17. 26, 

43]. The results from the Monte Carlo simulations suggest that the average shape of an 

aggregate is not that of a perfect sphere (even for low aggregation numbers) rather the 

aggregates are prolate spheroids with increasing eccentricity as a function of n. 

ln order to discuss the shape of the aggregates, it is useful to quantify their shape. This 

is done by calculating the three ordered instantaneous principal radii of gyration and the so 

called asphericity parameter as. lt is necessary to calculate the squared radius of gyration 

tensor of each aggregate defined as 

R~1X1 R~1:c2 R~1X3 
R2= R;2r1 R;2X2 R2 

X:!XJ 
(4.13) 

n;3Xl 
R'} •) 

:C3X:! R;3.l:J 

The matrix elements R;;:r; are defined as 

(4.14) 

where Zsn is the total number of monomers in an aggregate of size n, X i, xi represent the 

three principal directions in the lattice for 1 <.:: i < 3, 1 < j ~ 3 and xi,k and Xj,k are the 

i1h and lh components of the positions of the kth monomer. The coordinates of the center 

sThe astute reader will note that this assumption does not apply to the aggregates in the simulations where 
there are no pre-assumed constraints on the aggregate shape. 
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of mass x i,cm of this aggregate are 

1 z.n 
xi em= -Z ~ xik , nL- , 

s k=l 

(4.15) 

The square root of the eigenvalues of the matrix in Eqn. ( 4.13) are the three instan­

taneous principal radii of gyration of the aggregate and are denoted by (R;) ~, (R~)! and 

(R;)~ respectively. In the calculations these eigenvalues are ordered such that (R;)! ~ 

(R;) ~ ~ (R;)! are calculated as averages over all aggregates of size n The average values 

of these ordered eigenvalues are calculated in the simulations and will be referred to as the 

average principal radii of gyration (or simply the principal radii of gyration for brevity) and 

will be denoted by (R;)! , (R;)! and (R;)! herein. 

For a perfect sphere the three principal radii of gyration are equal, i.e., 

(4.16) 

For an infinite cylinder two of the principal radii of gyration are equal while the third is 

infinite . i.e., (R;)! = (R;)! < oo and (R;) t --? oo. A more thorough analysis of the 

aggregates (in the Monte Carlo model) would include calculations of the radii of gyration 

of both the core block and of the entire aggregate and the mean squared fluctuations of 

these values. 

Another useful quantification of the shape of the aggregates is the asphericity parameter 

a 5 [95, 105] defined by 

(4.17) 

The asphericity parameter of an aggregate has a value of Cts = 0 and a 5 = 1 for a perfect 

sphere and an infinite cylinder, respectfully. Conventionally, an aggregate is considered 
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spherical [95, 105]if 

(4.18) 

The results of Section 4.3.2 show that the distribution functions often exhibit distinct 

Gaussian like behaviour with an extended tail. In a complementary way to the principal 

radii of gyration, the Gaussian like nature of the distributions and the appearance of the 

extended tail will be used to examine the change in the shape of the aggregates. 

It is possible to fit the distributions (excluding the tail) with a Gaussian. Funhermore, it 

is possible to introduce an expression which explicitly accounts for the tail in the distribu­

tion. This expression cannot be derived from a physica! context, rather it is introduced on a 

mathematical basis. Nonetheless, combining these two approaches and using the principal 

radii it will be possible to examine the change in aggregate shape as a function of n and 

interpret this growth in terms of a change in the shape of the aggregate distribution function 

as a function of et:J· 

Israelachvilli [43] notes that it is possible to express the aggregate size distribution in 

terms of a Gaussian like distribution of the following form 

{( 'KM) };~/ 
Xn = n •

1
'\;[ exp [.M.B(J.L~r - J.L~)] (4.19) 

where 1\if corresponds to the position of the peak in the Gaussian, XM the mole fraction 

at this peak position, and where J.L~ are the standard chemical potentials as discussed in 

Chapter 2. This is a trivial extension of the formalism discussed in Chapter 2. The existence 

of a Gaussian distribution will be seen to correspond to a system composed of roughly 

spherical micelles. 

To fit the distributions from the simulations a Gaussian of the following form is used 

xsphere = C exp [-(n- Nf)2] 
n M · ? 2 -U 

(4.20) 



CHAPTER 4. A SYSTEMATIC STUDY OF SELF-ASSEMBLY 96 

where C M is the mole fraction at J.v[ and cr is the standard deviation of the distribution. It 

should be noted thatthe only parameters for fitting the curves are Jill, cr and CM6 • 

Nelson et a!. [95] note that it is possible to fit the distributions including the tail by 

superimposing the Gaussian in Eqn. (4.20) with a so called matching function of the form 

x~ail = (exp(-'1/m)(l- x~phere;c['.-1) n ~/Iii (4.21) 

where (and ·1/J are constants. Combining Eqn. (4.20) and Eqn. (4.21) it is possible to fit 

(continuously) the distributions including the tail with a function of the following form7 

.• _ { CM exp [ -(~:~\1)2 ] n ~ 1\tl, 
.\,,-

C M exp [ -(~;2\-£)2 ] + ( exp( -lJm) ( 1 - exp [ -c~;:\-!)2 ]) n ~ At/ 
(4.22) 

Although this procedure accounts for the tail in the distribution on a purely mathemati-

cal basis, it will allow an interpretation of the transition from spherical to nonspherical mi­

celles. It will be seen that a nonzero contribution of the matching function can be correlated 

with the appearance of an appreciable number of highly nonspherical micelles (cylinders) 

in the system. 

In this description it is presumed implicitly that the highly nonspherical micelles do not 

exist for aggregation numbers below n = l'vl corresponding to the peak in the distribution. 

Above this aggregation number there may exist a region of coexistence between spherical 

and nonspherical micelles. Physically it is expected that the absolute cutoff aggregation 

number for spherical micelles, nc:rit corresponds roughly to ncrit = Z!t 
2 't;. 

This corresponds to the aggregation number at which the micelles are tightly packed 

into spheres (under the assumption of perfectly spherical micelles) with a radius equal to 

the fully stretched chain length of the molecules. Since the aggregates are not close packed, 

this value of ncrit is just used as a guide to understand the growth of the aggregates. 

6Typically C M ~ X M but since C M is a fitted parameter a different notation is used. 
7In actually fitting the distributions the range of n is typically restricted to be such that n > 10. 
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To illustrate the previous discussion, several sets of simulation results will be presented. 

The first system to be considered is composed of 2000 molecules with Zs = 5, Zsh = 3, a 

total volume fraction of cPs = 5.14% and an interaction parameter of Ets = 1.10. This is 

the same system as considered previously and is shown in Figure 4.8. Figure 4.26(a) and 

Figure 4.26(b) show the size distribution superimposed with the principal radii of gyration, 

a Gaussian fit to the distribution (for Et8 = 1.10) and the asphericity parameter. 

It is clear from Figure 4.26(a) that the three principal radii of gyration are not equal over 

the whole range of aggregate sizes. In fact, the two smallest principal radius of gyration 

increase slightly up to an aggregation number of approximately n = 30 after which they 

both remain roughly constant. The third principal radius of gyration also increases slowly 

up to n ::::: 30 after which it increases rapidly. It is not surprising that the radii of gyration 

increase since the size of the aggregate increases with increasing n. However, the interest­

ing thing to note is that the two smaller dimensions of the aggregate tend to an approximate 

value of 1.5 and the third increases dramatically with increasing n. 

According to the convention that aggregates with as < 0.1 are considered spherical, it 

would appear that aggregates with less than roughly 30 molecules are nearly sphericaL By 

inspection of the principal radii it would seem that the inflection point in the largest radius 

of gyration is located near 30 molecules per aggregate. This corresponds to the transition 

from spherical to prolate spherical micelles with increasing aggregation number. 

There are very few aggregates of greater than 30 molecules. In an entirely comple­

mentary way, this is reflected in the fits to the distribution functions using the prescribed 

Gaussians and so-called matching functions. The fitted distributions and the simulation 

results are shown in Figure 4.27. The fits were performed for aggregates with greater than 

lO molecules per aggregate. It is clear that the matching function makes a contribution to 

the fit which is almost negligible even for an interaction parameter of Ets = 1.10. This 

corresponds to the very small number of aggregates that are highly nonspherical, i.e., with 
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Figure 4.26: The shape distribution and asphericity parameter for a ~ system with 2000 

molecules of length Zs = 5, Zst = 3 and ¢s = 5.14%. 

an asphericity greater than 0.1. 

The Gaussian + matching function description of the aggregate size distribution implic­

itly implies a region of coexistence of nonspherical micelles and roughly spherical micelles. 

This description is not particularly transparent in this example since there is not an appre-

ciable number of large nonspherical aggregates. 

Using this description of the system it is also possible to examine the variation of the 

position of the peak in the distribution function as a function of c ts. This is shown in 

Figure 4.28 along with a linear fit to the data. It is clear that the position of the peak in 

the distribution varies linearly as a function of the interaction parameter c ts· Similar results 

have been seen in analytical calculations by Nagarajan et al. [91, 92]. 

The next simulation will illustrate the effect of significant numbers of highly nonspher-
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Figure 4.27: Gaussian+ matching function fits using Eqn. (4.21) for a~ system with 2000 

molecules of length Zs = 5, Zst = 3 and cf>s = 5.14%. 

ical micelles and the use of the Gaussian + matching function description to interpret the 

transition in the shape of the aggregates and the region of coexistence. This system is com­

posed of 1000 molecules with Z 8 = 6. Zst = 4 and a volume fraction of cf>s = 9.37%. 

The principal radii of gyration (for an interaction parameter of €ts = 0.95) and the fits to 

the aggregate size distribution are shown in Figure 4.29 and Figure 4.30 respectively. This 

system is different from the previous system in that the length of the tail-group has been 

increased from Zst = 3 to Zst = 4 and the concentration is about 4% higher. 

It is clear that (R;) ~ increases rapidly past roughly n ~ 45. The two smaller principal 

radii of gyration. (R;) ~ and (R~) ~. tend towards a roughly constant value of (R~) ~ = 

(R~) ~ ~ 2.0 monomer units. The increase in (R~) ~corresponds to the aggregates growing 

as highly nonspherical aggregates. A small increment in €ts from €ts = 0.90 to €ts = 0.95 

significantly alters the shape of the distribution. 

With a change from €ts = 0.90 to €ts = 0.95. the peak in the distribution shifts from a 

value of 37 to 43 molecules per aggregate and the height at the peak significantly decreases. 
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Figure 4.28: Variation of the peak in the aggregate size distribution as a function of the 

interaction parameter €ts· This is the same system as depicted in Figure 4.27. 

The distribution also exhibits a long tail in the range of 60 to 120 molecules per aggregate 

corresponding to the appearance of an appreciable number of large nonspherical micelles. 

Figure 4.30 shows the aggregate size distributions and fitted curves, using the Gaussian 

+ matching function description. For an interaction parameter of €ts = 0.90, the distri­

bution is essentially Gaussian with a short tail corresponding to a very small number of 

nonspherical aggregates. For an interaction parameter of €ts = 0.95 the situation is signifi­

cantly altered. The distribution is no longer strictly Gaussian; however, using the Gaussian 

+ matching function it is possible to approximately separate the contributions from the 

roughly spherical aggregates and the highly nonspherical aggregates. The distribution of 

'spheres', corresponding to the Gaussian has a peak at 43 molecules per aggregate for an 

interaction parameter of €ts = 0.95. The distribution corresponding to the nonspherical mi-

celles has a peak at an aggregation number of approximately 56 molecules per aggregate. 

For c ts = 0. 90 the range of coexistence of sphere-like and nonspherical aggregates is 

43 to 70 molecules per aggregate. From this description the system is still mainly com-
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Figure 4.29: Principal radii of gyration (for Ets = 0.95) and the aggregate size distributions 

for a h1 system with Ns = 1000 molecules with Z s = 6, Z st = 4 and cl>s = 9.37% 

posed of roughly spherical aggregates. It is not possible to directly determine from the 

simulations the relative populations of nonspherical and spherical aggregates separately. 

However, using the Gaussian and matching function description it is, since the area under 

each respective curve will yield the mole fraction of either spheres or nonspheres. 

A possible future calculation could include the mean squared fluctuations in the princi­

pal radii of gyration. This would indicate the relative spread in aggregate sizes and would 

provide some credence to the interpretation of the coexistence of the spherical and non-

spherical aggregates. 

The next system considered is a system composed of 1000 molecules with Z s = 10, 

Z st = 6 and a total volume fraction of cl>s = 2.46%. This system will be seen to be 

composed of mainly spherical micelles even at the maximum interaction parameter of 

Ets = 0. 70. A plot of the principal radii and the asphericity parameter superimposed with 

the aggregate size distribution are shown in Figure 4.31(a) and Figure 4.31(b). The three 
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Figure 4.30: Gaussian + matching function fit to the distributions for a h1 system of .l'vs = 

1000 molecules with Zs = 6, Zst = 4 and a volume fraction of ¢s = 9.37% 

principal radii are seen to increase with increasing aggregation number. There is evidence 

of an inflection point in the largest radius of gyration; however, the effect is less pronounced 

in this system since there are very few large aggregates and in fact the asphericity parameter 

is as < 0.1 for (nearly all) aggregates in the range from 10 to 60 molecules per aggregate. 

Figure 4.32 shows a plot of the Gaussian + matching function fitted curves and the 

simulation data. The coefficients of the matching function are zero and the distribution 

for an interaction parameter of cts = 0. 70 is very nearly a perfect Gaussian, with a peak 

position of 30 and a half width a = 6. 98. This description coincides with that of the 

previous discussion, since the aggregates appear to be essentially spherical over the range 

of aggregate sizes and the asphericity parameter for the aggregates in the range of 10 to 60 

molecules per aggregate is less than 0.1. 

The next system considered will again illustrate the appearance of the long tail in the 

distribution and its correlation with the appearance of an appreciable number of large non-
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Figure 4.31: The principal radii, asphericity parameter and aggregate size distribution for 

a h1 system of 1000 molecules with Zs = 10, Zst = 6, cts = 0. 70 and ¢s = 2.46%. 

spherical aggregates. This system is a h2 system composed of 1000 (highly asymmetric) 

molecules with Z 5 = 10, Zst = 8 and a total volume fraction of ¢s = 2. 70%. These 

distributions are shown in Figure 4.33(a) and Figure 4.33(b) respectively. 

Similar behaviour is observed for this system as for the previous systems in terms of 

the size distributions. For a value of cts = 0.50 the distribution is roughly Gaussian with a 

peak located at M = 32. This distribution is not well separated from the initial distribution 

describing small aggregates and free molecules. However, at an interaction parameter of 

cts = 0.55 the distribution has separated into a well defined Gaussian and a small tail. With 

further increase in the interaction parameter to a value of cts = 0.60, the peak position 

shifts to M = 57 and the distribution develops a relatively long tail extending to roughly 

n = 120. 

The three principal radii of gyration (corresponding to an interaction parameter of cts = 
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Figure 4.32: Gaussian + matching function fit to the distributions for a system of N 8 -

1000 molecules with with Z 8 = 10, Zst = 6 and a volume fraction of cPs = 2.46% 

0.60) increase up to an aggregation number of roughly n = 75. The two smaller radii 

remain constant up to an aggregation number of 120 after which (R~) ~ begins to increase 

with n. The increase in (R~) t (and to some degree (R;) t past n = 120) might be attributed 

to the growth of the aggregate in two dimensions. The aggregates grow roughly as spheres 

up to an aggregation number of n = 75 after which they start to grow as prolate spheres or 

cylinders. When the aggregation number reaches roughly n = 120 the aggregates start to 

grow in two dimensions. 

Using the Gaussian and matching function description of these systems, it is possible to 

examine the variation of the peak position in the distribution as a function of the interaction 

parameter. Figure 4.34 shows the peak positions of the Gaussian distribution as a function 

of the interaction parameter for a wide variety of systems. It is clear that the peak position 

is a linearly varying function of the interaction parameter Ets· 

In summary, using the principal radii of gyration and the complementary discussion 
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Figure 4.33: The principal radii, asphericity and distributions for a h2 system of N 8 = 2000 

molecules with Zs = 10, Zst = 8 and rPs = 2.74. 

of the Gaussian + matching function, it has been possible to examine the shape of the 

aggregates over a broad range of aggregate sizes and c ts. The resulting picture which 

emerges is the following: 

• Below an aggregation number, say nsphere• the aggregates are roughly spherical with 

an asphericity parameter that is below a 8 = 0.1. The value of nsphere depends on the 

characteristics of the system including the length of the chains and the value of the 

interaction parameter Ets· The distribution function which describes these 'spherical' 

micelles is in most cases a very well defined Gaussian. 

• When the aggregation number exceeds the value of nsphere the aggregates begin to 

grow in one dimension and the other two dimensions of the aggregate remain approx-
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Figure 4.34: Variation of the Gaussian peak in the distribution as a function of the interac-

tion parameter Ets for a wide range of Zs. 

imately constant. This corresponds to the aggregates growing as prolate spheres or 

small hemispherically capped cylinders with a length that is an increasing function 

of the aggregation number. The values of nsphere often corresponds approximately to 

the location of the peak in the Gaussians, although this is not always the case. 

• The use of the Gaussian + matching function implies a small region of coexistence 

of roughly spherical and nonspherical micelles. 

Physically, the reason that the large aggregates extend in one dimension is that, once 

the radius of the core block is on the order of the fully stretched chain length, Zst• it is 

highly energetically unfavourable for the aggregates to remain as spheres. The reason for 

this is that the remaining volume in the core would then have to be filled with solvent, i.e., 

it will result in an increase in the number of unfavourable solvent tail-group contacts. As 

well, there is a large entropic penalty due to the elongation of the chains. The net result is 

that the large aggregates are prolate or hemispherically capped cylinders. This argument 

is related to the discussion of Chapter 1 where the maximum sizes of the aggregates were 
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discussed. 

4.5.2 Aggregate Scaling and Density Profiles 

In Section 4.2 the interior composition of the aggregates was discussed using the simulation 

results for the density profiles and distributions. This helped provide a physical picture of 

the aggregate composition. These profiles were averaged over both direction and a range 

of aggregate sizes, this range corresponds to the peak in the distribution. In this section, an 

examination of the density profiles as a function of n will be examined using the principal 

radii of gyration discussed in the previous section. 

In order to facilitate this discussion the mean squared radius of gyration R~ean [94, 105] 

is introduced and defined as 

(4.23) 

It is expected that II;nean will vary markedly with n since (R;), (~).and (R;) are func­

tions of n, as illustrated in the previous section. It will be seen that the variation of ~ean 

with n will provide information about the behaviour of the density profile as a function of 

n . 

To motivate this discussion, log-log plots of II;nean versus n for several systems are 

shown. The first of these corresponds to a system composed of 2000 molecules with Zs = 

5, Z:st = 3 and a total volume fraction of 4>s = 5.14% is shown in Figure 4.35. This is the 

same system as considered in previous sections. 

It is quite clear that ln(~ean) varies linearly with ln(n), except for large values of n 

where the aggregates are no longer roughly spherical. The line of best fit is shown in the 
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Figure 4.35: Log-log plot of R;,ean as a function of n for a h-2 system of 2000 molecules 

with Zs = 5, Zst = 3 at a total volume fraction of r/>s = 5.14%. The unit of length is equal 

to the lattice constant. 

legend of the graph8• The linear form of this relationship implies 

R2 d mean ex n (4.24) 

where d ~ 0.57. 

The next two systems illustrate the same behaviour for different chain lengths. The first 

of these systems is composed of 1000 symmetric molecules with Zs = 6, Zst = 3 and a 

volume fraction of cPs = 2.52%. Figure 4.36 shows a log-log plot of R;,ean as a function 

of n, the line of best fit has a slope of d = 0.537. 

The final system is composed of 1000 asymmetric molecules with Zs = 14, Zst = 10 

and a volume fraction of cPs = 2. 73%. Figure 4.37 shows a log-log plot of R;,ean as a 

function of n. The slope of the best fit line is d = 0.541. Again it will be seen as with the 

other two examples that this behaviour is correlated to the behaviour of the density profiles 

8The fitted line does not include the last 20 points on the graph (since these correspond to aggregates 
which are not spherical). 
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Figure 4.36: Log-log plot of R~ean versus n for a h2 system of 1000 molecules with 

Zs = 6, Zst = 3 and a volume fraction of </Js = 2.52%. The unit of length is equal to the 

lattice constant. 

as a function of n. 

To illustrate this discussion, consider a tightly packed spherical aggregate. Its volume 

The squared radius of the aggregate R~ (in terms of n) is then 

so R~ is proportional to n213 , i.e., 

3 2 

R 2 = -(nZs)3 
n 4n 

So for a tightly packed aggregate, d = 2/3. 

(4.25) 

(4.26) 

(4.27) 

This contrast to the range of 0.53 < d < 0.57 obtained in the simulations. The reason 

for this difference is that the aggregates are not tightly packed (over the whole aggregate). 
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Figure 4.37: Log-log plot of R~ean versus n for a h2 system of 1000 molecules with 

Zs = 14, Zst = 10 and a volume fraction of cf>s = 2.72%. The unit of length is equal to the 

lattice constant. 

Instead there is a densely packed (nearly) tmiform interior region and a finite interfacial 

region. The packing of chains in the aggregate has been examined in a limited capacity in 

Section 4.2. This scaling (of R~ with n) can be explained by assuming that the (densely 

packed) core radius increases with n while the interfacial region remains approximately of 

constant width. 

To illustrate the underlying picture, assume for simplicity that the density profile is 

modeled as a Fermi-Dirac function p(r) of the form 

1 
p ( r) - ------,--,------:-:-,....,..-

- 1 + exp((r- a)/l) 
(4.28) 

where a and l are constants which describe the radius of the uniform densely packed core 

and the width of the interfacial region, respectively, and where r is the distance from the 

center of mass of the aggregate. Figure 4.38 shows plots of this function for a few typ­

ical values of a and l. The reader should note the resemblance of these profiles to those 

presented in Section 4.2. In fact, a fit to the core block density profile for the systems de-
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picted in Figure 4.5 and Figure 4.6 yields values of a = 3.61, 5.67 and l = 0.408, 0. 769 

respectively. 
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Figure 4.38: Schematic behaviour of the model density profile in Eqn. (4.28) for some 

typical values of a and l. 

Using the function in Eqn. (4.28) the number of molecules n in an aggregate is simply 

1 100 1 100 1 
n = -Z 47rr

2
p(r)dr = -Z 47rr

2 
(( )/l)dr 

s o s o 1 + exp r - a 
(4.29) 

Furthermore the squared radius of gyration R 2 of an aggregate (of size n) is 

2 1 100 2 2 ) 1 100 4 1 R = -Z 41fr r p(r dr = -Z 41fr (( )/l) dr n s 0 n s 0 1 + exp r - a 
(4.30) 

These integrals can be evaluated in terms of a and l (expressed as an infinite series). It is 

then possible to plot ln(R2 ) versus ln(n) by evaluating these terms numerically. The values 

for n and R 2 as defined in Eqn. ( 4.29) and Eqn. ( 4.30) are calculated by picking a value of 

l and calculating these terms numerically over a range of a. Appropriate values for a and l 

can be estimated from the actual density profiles. Some typical values are a= 2 ... 5 and 

l = 0.3 ... 0.5. Figure 4.39 shows a plot of ln(R2 ) versusln(n) for a typical value of land 

a range of a. The slope of the line in Figure 4.39 is approximately 0.50. 
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Figure 4.39: Log-log plot of the squared radius of gyration as a function of the aggregation 

number n for value of a = 1..2 with l = 0.2. The slope of this line is approximately 0.50. 

For the system in Figure 4.6, using the values a = 2 ... 5 and l = 0.408 9 the slope of the 

ln(R2 ) versus ln(n) plot is approximately d = 0.54. From the principal radii calculations 

in the simulations, the plot of ln(~ean) versus ln(n) yields a line with sloped = 0.56. 

The two values are in excellent agreement. 

It is possible to directly interpret the linearity of a log-log plot R2 versus n in terms 

of the density profiles. Essentially the density profile has a fixed interfacial width L and a 

region of nearly uniform density (with ¢J ~ 1) of radius a near the center of the aggregate. 

The schematic behaviour of the density profile is shown in Figure 4.40. This behaviour is 

seen in all of the simulation results, where the value of d is in the range 0.45 < d ::::; 0.66. 

Table ( 4.2) shows the scaling parameter d for a wide variety of systems including those 

considered in this section. The behaviour as illustrated in this section is seen in most of the 

si mutations and the parameter d typically lies in the range 0.50 < d < 0.63. The parameter 

9The approximate value of l is obtained by fitting the Fermi-Dirac distribution in Eqn. (4.28) to the 
density profiles tor the system in Figure 4.6. The values of a correspond roughly to the range of aggregate 
sizes. 
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s 2 a 

Figure 4.40: Behaviour of the density profile as a function of the parameter a with l = 0.408 

corresponding to the system in Figure 4.6. Increasing a corresponds to increasing n. 

d typically has a lower value for symmetric molecules than for asymmetric molecules, al­

though this is not necessarily the case. It is suspected that the value of d depends not only of 

the relative lengths of the Zst and Zsh but also on the value of the interaction parameter and 

hi. The main result is that the aggregates have a nearly uniform tightly packed interior and 

an interfacial region and that as the aggregates become larger (increasing n), the interfacial 

region remains of fixed width and the core radius increases. 

In this chapter the results from the Monte Carlo simulations have been presented. Dis­

cussions of the relaxation times, density profiles, size distributions, comparisons of the size 

distribution with a phenomenological model and expression for the free energy, critical 

micelle concentration, aggregate shape, aggregate growth and the scaling of the radius of 

gyration have been presented. These discussions combined have given an overview and 

provided a thorough and systematic examination of aggregates of amphiphilic molecules 

with lengths 5 ::; Zs < 20. 
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1Ys Zs Zsh Zst hi 4Js Max €ts d 

2000 5 2 3 h2 5.14% 1.10 0.567 

1000 6 2 4 ht 9.37% 0.95 0.630 

5000 6 2 4 h2 5.85% 0.90 0.563 

1000 6 3 3 h2 2.52% 0.90 0.537 

500 7 2 5 h2 5.46% 0.80 0.566 

1000 8 2 6 h2 2.54% 0.65 0.581 

1000 8 4 4 h2 4.55% 1.05 0.530 

1000 9 2 7 h2 2.61% 0.65 0.571 

1000 10 5 5 hl 2.91% 0.80 0.507 

1000 10 4 6 h2 2.91% 0.70 0.534 

1000 12 4 8 hl 1.88% 0.70 0.547 

1000 12 6 6 h2 ? - -o/c -.00 0 0.80 0.504 

1000 14 4 10 h2 2.52% 0.55 0.541 

1000 14 7 7 hl 2.50% 0.75 0.493 

1000 18 4 14 h2 4.93% 0.45 0.561 

Table 4.2: Table of scaling parameter d and associated parameters. 



Chapter 5 

Concluding Remarks 

"TIJe [mit derived from labour is the sweetest of all pleasures." 

Marquis de Vauvenargues. 

5.1 Review and Further Discussion of Results 

This thesis has provided a systematic examination of self-assembling amphiphiles using 

Monte Carlo simulations. The study of self-assembling systems is a very active field of 

research in a broad array of disciplines. An understanding of these systems has potential 

benefits in many fields. As illustrated throughout this thesis, the behaviour of these systems 

is complex, even for the two component systems considered here. 

The work has focused on an examination of the regime in which the amphiphiles self­

assemble into roughly spherical or prolate spherical micelles. In Chapter 2, the statistical 

mechanical approach of Hill [36] was used to derive an explicit expression for the aggregate 

size distribution Xn. This is a general expression in terms of the free energy An. associated 

with the aggregation of n molecules from solution to an aggregate of size n. In order to 

utilize this general expression for, Xn, an existing model for the free energy, ~n originally 

us 
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derived by Goldstein [28] for symmetric molecules was modified for both symmetric and 

asymmetric molecules. The end result was an expression for the aggregate size distribution 

of self-assembling amphiphiles in terms of ~n· 

The Monte Carlo simulations were introduced in Chapter 4 both in a general context 

and as applied to the modeling of amphiphiles. One of the important discussions provided 

was that associated with the autocorrelation and relaxation times. The results indicate that 

the relaxation time for the system corresponded to the weighted chain exchange correlation 

time. This is true for all systems considered in this thesis. 

As illustrated in Chapter 4, the relaxation times are an invaluable tool by which to 

gauge how long it is necessary to iterate the simulations to ensure that the results obtained 

are representative of equilibrium. One of the key things to note is the behaviour of the 

correlation times as a function of O:ts· They suggest that the characteristic time scales in a 

system vary dramatically as a function of O:ts· Using the method of relaxation times ensures 

(to the best of our abilities) that the results presented are representative of equilibrium 

averages. Other practitioners of Monte Carlo normally assume that a fixed number of 

Monte Carlo steps can be used to collect averages in the system, this often leads to results 

which are not necessarily representative of equilibrium [105]. 

ln order to examine the interior composition of the aggregates and compare it to the 

composition assumed in the free energy model, the density profiles and distributions from 

the Monte Carlo simulations were probed. There were several key differences between the 

assumed composition and that observed in the Monte Carlo simulations, including the finite 

thickness of the interfacial region. These differences in composition most likely manifest 

themselves in the comparison of the free energy with the Monte Carlo results, since the 

assumed composition is in contrast with the results from the simulations. 

In order to more accurately model the free energy of the systems it would be necessary 

to make additions to the free energy expression which explicitly account for the differences 
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in the assumed composition relative to the Monte Carlo results. A possible future endeavour 

would be to modify the existing free energy expression to include these contributions and 

make comparisons with the same Monte Carlo results. 

Another very subtle difference appeared in Chapter 4 in the examination of the variation 

of the fitted parameters as a function of the interaction parameter cts· The parameter Tf 

which is related to the stretching entropy of the chains, is a decreasing function of ~ts· 

This is an artifact of the approximation used in the free energy expression which implicitly 

assumed that the end-to-end distance of a molecule in micelle is equal to the radius of the 

micelle. It turns out from the simulations that the end-to-end distance increases whereas 

the micelle radius decreases as a function of cts· This results in the apparent decrease in 

the stretching term 'IJ. 

A significant part of the discussion in Chapter 4 focused on a qualitative examination 

of the behaviour of the aggregate size distributions for a wide range of chain lengths ZJ. It 

was illustrated that the shape and behaviour of the distributions depend very distinctly on 

the characteristics of the model systems including: chain length, concentration. interaction 

parameters and the relative lengths of the head- and tail-groups. 

These distributions exhibit a universal behaviour in the sense that, in all systems in 

which micelles form, they behave in the following manner: for low c15 , most molecules are 

free in solution and there are very few large aggregates. With increasing cts (decreasing 

temperature) the distribution develops a distinct second maximum at some aggregation 

number n· which corresponds to the appearance of micelles in the system. With a further 

increase in c1s this maximum shifts to larger aggregation numbers. In fact, it was seen that 

the position of this maximum is a linearly increasing function of €ts for most systems. 

The comparison between the Monte Carlo simulations and the expected form for the 

size distributions yielded very good agreement in most instances. The quality of the fit to 

the distributions depends on the characteristics of the specific system. It is worth noting 
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that the fitted curves for small Ets were not as good as those for large Ets· This is in part 

attributable to the deviation of the aggregate composition from the assumed composition in 

the free energy model of Chapter 2 for low Ets• compounded with the extreme sensitivity 

of the distributions to the free molecule concentration X 1 in the systems. Nonetheless, the 

fits to distributions did emulate their behaviour quite well. 

In some systems at sufficiently large Ets• the distribution separates into a distinct Gaus­

sian peaked at some aggregation number 1\I. With further increase in cts• some of the 

systems exhibited a further change in the shape of the distribution with the appearance of 

the long tail corresponding to highly nonspherical micelles. 

The fitting parameters~ and TJ were used in the calculation of the critical micelle con­

centration and the examination of its variation as a function of the ces and Z:st· The CMC 

for many of the simulations is in fact an exponentially varying function of ets and Zst · This 

is true for a wide variety of systems. 

The examination of the shape of the aggregates of Chapter 4 led to some interesting 

results in the sense that the aggregates appear to undergo a morphological change as a 

function of the aggregation the number. Using the simulations, it was possible to examine 

and characterize this transition using the principal radii of gyration calculations. The results 

suggest that the aggregates are approximately spheres up to some aggregation number. 

Beyond which, it is energetically unfavourable to remain spherical and hence the aggregates 

grow primarily in one dimension as prolate spheres or hemispherically capped cylinders 

whose length is an increasing function of the aggregation number n. 

It was possible to fit the distributions to Gaussians and a so called matching function 

as described in Chapter 4. In an entirely complementary manner to the principal radii cal­

culations, it was possible to use this Gaussian + matching function to interpret the shapes 

of the aggregates. Moreover it was possible to separate out the contributions of the "spher­

ical' and "nonspherical' aggregates. The "spherical' aggregates correspond to a Gaussian 
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distribution and the ·nonsphertcal ' aggregates correspond to the matching function. 

Using the Gaussian plus matching function description, it was also possible to examine 

the variation of the peak position in the distribution as a function of the cts· It also appears 

that the peak aggregate size is a linearly varying function of cts for many systems. 

In the last section of Chapter 4, the scnling of the aggregate sizes (for spherical aggre­

gates) was examined in terms of the density profiles. Essentially, the density profile has a 

fixed interfacial width with a densely packed region of nearly ¢J = 1. The dense region of 

the core grows as a function of the aggregation number and the interfacial region remains 

of fixed width. Using a simple Fermi-Dirac function to model the density profile, the 

behaviour of the mean principal radius of gyration as a function of n could be understood. 

The results from the Monte Carlo simulations have provided valuable information about 

many aspects of the aggregation of amphiphilic molecules. The comparison between the 

predicted form for the aggregate size distribution and the phenomenological model for the 

free energy of Chapter 2 yielded good agreement. There are obvious flaws in the model for 

the free energy, which include the finite width of the interfacial region. It is suspected that 

inclusion of terms in the free energy attributable to these contributions would increase the 

quality of the fit over the entire range of aggregate sizes. 

One obvious limitation of the Monte Carlo simulations is that it can be difficult to make 

comparison with experiment and, although we do not do so, such a comparison would be 

quite useful. Due to the level of detail (or lack thereat) used in the Monte Carlo simula­

tions and the accessible range of Zs comparisons with experimental work are quite diffi­

cult. However, it is possible to compare the general behaviour of the systems in terms of 

the behaviour of the CMC, the change in the shape of the aggregates and the scaling of 

the aggregates as a function of the aggregation number to those observed in experiment; 

however, that is beyond the scope of this work. 
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5.2 Further Studies and Modifications Using This Model 

This model is versatile in many regards and in terms of the actual simulations it is very easy 

to make modifications and additions to carry out extra analysis. The programs are written 

in a modular manner which facilitates modification. 

There are several possible modifications that can be made to the simulations. The first is 

to parallelize the code so that it can make use of multi-processor machines more efficiently. 

The parallelization of the simulations would allow the examination of systems with longer 

chain lengths and possibly the inclusion of more realistic interaction potentials. However 

the task of parallelizing such a large simulation is not to be taken lightly and would require 

major revisions to how the code is written. 

Another possible future endeavour is to modify the simulations to examine multi­

component systems of amphiphile, i.e., to examine systems of Ni molecules of type i and 

length Zi. Ni molecules of type j and length Zi etc. This modification was carried out in 

its preliminary stages and a few systems were examined. To carry out a systematic study 

of multi-component systems would be extremely fruitful since there is very little work in 

the current literature which looks at the partitioning of multi-component systems and their 

phase behaviour. It is expected that these systems would exhibit much more complex be­

haviour than the two component systems. A similar analysis could be carried out in terms of 

the size distributions and a free energy model developed for the multi-component systems. 

The simulations could also be quite easily modified to examine multi-block amphiphiles. 

The current simulations have the capability of including a third component (amphiphile 

or solvent) which is either solvent liking or solvent disliking; however, no simulations with 

this component have been included in the thesis. The inclusion of this component and an 

examination of its effects on the formation of aggregates would also be an interesting future 

endeavour. 
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As discussed, the expression for the free energy of aggregates developed in Chapter 2 

has some limitations and also is unable to explicitly account for the tail in the distribution 

function that appears due to aggregates which are nonspherical. It would be useful to make 

modifications to the free energy expression to explicitly account for the finite thickness 

of the interfacial region. It would also be advantageous to include an expression which 

describes the continuous change in the shape of aggregates from spheres to cylinders. 

Monte Carlo simulations provide an excellent starting point for the investigation of self­

assembly and can be used to test and improve theories. Recent advances and increased 

availability of high powered computational resources have broadened the field which is 

available for study via computational methods. The use of computers to investigate physical 

phenomena has opened a new venue in which researchers can simulate, explore and provide 

a basis for comparison of experimental and theoretical work and, in some instances, provide 

quite accurate predictive capabilities. The use of computational methods such as Monte 

Carlo have, in recent years, aided in gaining a better understanding of problems in many 

branches of the sciences. 



Bibliography 

( 1] R. Balescu. Equilibrium and non-equilibrium statistical mechanics. John Wiley and 

Sons lnc., New York, 1975. 

[2] R. Baranowski and M. D. Whitmore. Theory of the structure of adsorbed block 

copolymers: Detailed comparison with experimelll. J. Chern. Phys., 103, 6, 755-768, 

L995. 

[3] A. Bhattacharya and S. D. Mahanti. Energy and size fluctuations of amphiphilic ag­

gregates in a lattice model. J. Phys. Conds. Matter, 12, 6141-6160,2000. 

[4] A. T. Bemardes, V. B. Henriques and P.M. Bisch. Monte Carlo simulation of a lattice 

mode/formation. J. Chern. Phys., 101, 1, 645-650, 1994. 

[5] K. Binder. Mollie Carlo and Molecular Dynamics Simulations in Polymer Science. 

Oxford University Press, Oxford, 1995. 

[6] K. Binder and D. W. Heerman. Monte Carlo Simulations in Statistical Physics. 

Springer Verlag, Berlin, Germany, 1988. 

[7] J .. M. Blitz and M. R. Fisch. Aggregation members of micelles in semi-dilute solu­

tions. Langmuir, 11, 9, 3595-3597, 1995. 

122 



BlBLlOGRAPHY 123 

[8] D. Blankschstem, G. M. Thurston and G. Benedek. Phenomenological theory of 

equilibrium themJOdynamic propenies and phase separation of micellar solutions. 

J. Chern. Phys., 85, (1986), 12, 7268-7288, 1986. 

[9] S. Boyden, N. Jan and T. Ray. Mome Carlo simulations of microemulsions. Nuevo 

Cimento D.S.I.F.D.C., 16, 2, 1439-1445, 1994. 

[10] C. M. Care. Cluster size distribution in a Monte Carlo simulation of the micellar 

phase of an amplriphile and solvent mixture. J. Chern. Soc. Faraday Trans., 83, 9, 

2905-2912, 1987. 

[ 111 D. Chandler. flllroduction to statistical mechanics. Oxford University Press, New 

York, 1987. 

[ 12] S. R. Chen and R. Rajagopalan. Micellar Solutions and Microemulsions: Stmcture, 

Dynamics and Statistical Thermodynamics. Springer-Verlag, New York, 1990. 

[13] P. V. Coveney, A. N. Emerton and B. Boghosian. Simulation of self-reproducing 

micelles using lattice gas automaton. J. Amer. Chern. Soc., 118, 10719-10724, 1996. 

[14] J. M.G. Cowie. Polymers: Chemistry and Physics of Modem Materials. International 

Textbook Company Limited, Great Britain, 1973. 

[15] N. Dan and S. A. Safran. Self-assembly in mixtures of diblock copolymers. Macro­

molecules, 27, 20, 5766-5772, 1994. 

[16] P. Debye. Ann. N.Y. Acad. Sci., 51, 575, 1949. 

[17] V. Degiorgio and M. Corti. Physics of Amphiphiles: Micelles, Vesicles and Mi­

croemulsions. Proceedings of the International School of Physics North-Holland 

Physics Publishing. The Netherlands, 1985. 



BIBLIOGRAPHY 124 

[18] M. Depner, B. Deloche and P. Satta. Uniaxiality induced in a strained polymer net­

work: Theory and Mome Carlo simulations. Macromolecules, 27, 18, 5129-5199, 

1994. 

[ 19] J. C. Desplat and C. M. Care. A Mome Carlo simulation of the micellar plzase of an 

amphiplrile and solvent mixtllre. Molecular Physics, 87, 2, 441-453, 1996. 

[20] I. Domic and B. Widom. Development of periodic order in disordered surfactant­

solution phases. Molecular Physics, 86, 4, 675-684, 1995. 

[21] A. Eisenberg and L. Zhang. Crew-em aggregates from self-assembly of poly­

styrene poly( acrylic acid) block copolymers and homopolystyrene in solution. 

J. Poly. Sci. Part-B. Polymer Physics, 37, 13, 1469-1484, 1999. 

[22] P. J. Flory. Principles of Polymer Chemistry. Cornell University Press, Ithaca New 

York, 1954. 

[23] P. J. Flory. Statistical Mechanics of Chain Molecules. Nanser Publishers, New York, 

New York, 1989. 

[24] J. Forsman, B. Jonsson and C . .E. Woodward. Computer simulations of water between 

hydrophobic surfaces: rite hydrophobic force. J. Phys. Chern., 100, 36, 15005-15010, 

1996. 

[25] S. Fujiwara and T. Sato. Molecular dynamics simulation of stnlctural fonnation of 

short polymer chains. Physical Review Letters, 80, 5, 991-994, 1998. 

[26] W. M. Gelbart, A. Ben-Shaul and D. Roux. Micelles, Membranes, Microemtclsions 

and Mono/ayers. Springer, New York, 1994. 

[27] A. E. van Giessen and I. Szleifer. Monte Carlo simulations of chain molecules in 

confined environments. J. Chern. Phys., 102, 22,9069-9076, 1995. 



8 IB LIOGRAPHY 125 

[28] R. Goldstein. Model for plzase equilibria in micellar solwions of nonionic smfactams. 

J. Chern. Phys. 84, 6, 3367-3378, 1986. 

[29] G. Gompper and M. Schick. Self-Assembling Amphiphilic Systems. Academic Press, 

London, 1994. 

[30] H. Gilhoj, M. Laradji et al. Effects of vacancies and surfactants on the dynamics 

of ordering processes in multi-component systems. Math. Comp. in Simul., 40, 319-

317, 1996. 

[31] D. W. R. Gruen and E. H. B. Lacey. The packing of amplziplzile chains in micelles and 

bilayers. Surfactants in Solution, 279-306, 1984. 

[32] E. Hackett, E. Manias and E .. P. Giannelis Molecular dynamics simulations of organ­

ically modified layered silicates. 1. Chern. Phys., 108, 17,7410-7415, 1998. 

[33] T. Haliloglu, R. Balaji and W. L. Mattice. Mobility ojfree ends and junction points in 

a lamellar block copolymer. Macromolecules, 35, 6, 1473-1476, 1994. 

[34] G. S. Hartley. Aqueous Solutions of Paraffin Chain Salts; Hennann, Paris, 1936. 

[35] E. Helfand. Theory of lzomopolymer/binary-polymer mi.'(ture interface. Macro­

molecules, 25, 6, 1676-1685, 1992. 

[36] T. L. Hill. Introduction 10 Statistical Mechanics. Addison Wesley, Reading, Mas­

sachusetts, 1960. 

[37] T. L. Hill. Molecular Clusters in Imperfect Gases. J. Chern. Phys., 23, 4, 617-622, 

1955. 

[38] A. Hoffman, J. Sommer and A. Blumen. Computers simulations of asymmetric block 

copolymers. J. Chern. Phys., 107, 18, 7559-7570, 1997. 



B 18 LIOGRAPHY 126 

[39] P.M. Holland and D. N. Rubingh. Mixed Surfactam Systems. ACS Symposium Series, 

501, 1992. 

[40] K. M. Hong and J. Noolandi. Theory of inhomogeneous multicomponent polymer 

systems. Macromolecules, 14, 3, 727-736, 1981. 

[ 41] M. lto and T. Cosgrove. Monte Carlo simulation of nonionic surfactants at the oil­

water interface. Molecular Simul., 12, 3-6, 1994. 

[42] 1. N. lsraelachvili, D. J. Mitchell and B. W. Ninham. Theory of sell-assembly of 

hydrocarbon amplliplliles into micelles and bilayers. J. Chern. Soc. Faraday Trans., 

12, 2, 1525, 1976. 

[43] J. N. lsraelachvili. lntennolecular and Surface Forces. Academic Press, San Diego. 

1985. 

[44] D. Izzo and C. M. Marques. Fonnation of micelles of diblock and triblock copolymers 

in a selective solvent. Macromolecules, 26, 26, 7189-7194, 1993. 

[45] N. Jan and S. Macleod. Large lattice simulation of random site percolation. Int. J. of 

Mod.Phys. 1,9,2,289-294,1998. 

[46] N. Jan and D. Stauffer. Simulation of membranes, micelles and interfaces with asym­

metric surfactants. J. Phys. l France, 4, 345-350, 1994. 

[47] E. D. Jennings, Y. A. Kuznetsov, E. G. Timoshenko and K. A. Dawson. Confor­

mational transitions in a lattice model of a three componem mixture of solvent. am­

phiphile and soluble polymers. J. Chern. Phys., 108, 4, 1702-1709, 1998. 

[48] S. Karabomi, K. Esselink, P. A. J. Hilbers, B. Smit, J. Karthauser, N. M. van Os and 

R. Zana. Simulating tlze self assembly of gemini surfactants. Science, 206, 254-256, 

1994. 



BIBLIOGRAPHY 127 

[ 49] T. Kawakatsu, K. Kawasaki, et al. Theories and computer simulations of self assem­

bling surfactants systems. J. Phys. Cond. Matter, 6, 6385-6408, 1994. 

[50] M. Kenward. Monte Carlo Simulations of surfactants and surfactant aggregation, 

B.Sc. Hons. Thesis, Memorial University of Newfoundland, 1998. 

[51] M. Kenward and M. D. Whitmore. Mome Carlo Swdies of the Self-Assembly of 

Amphiphilic Molecules. High Perfonnance Computing, Systems and Applications. 

Kluwer Academic Publishers. 481-495, June, 2000. 

[52] P. G. Khalatur, A. R. Khokhlov et al. Aggregation of colloidal particles induced by 

polymer chains: The RISM integral equation theory. Physics A., 5, 1, 205-234, 1997. 

[53] P. G. Khalatur, A. R. Khokhlov et al. Aggregation processes in self-associating poly­

mer systems, computer simulation study of micelles in the super-strong segregation 

regime. Macro. Theory Simul., 5, 1. 713-714, 1996. 

[54] P. G. Khalatur, A. R. Khokhlov et al. Computer simulations of aggregates of associ­

ating polymers: influence of low-molecular weight additives solubilizing the aggre­

gates. Macro. Theory Simul., 7, 3, 299-316, 1998. 

[55] A. R. Khokhlov and I. R. Erukhimovich. A new class of systems exhibiting microplzase 

separation: Polymer blends with a nonlocal entropy of mixing. Macromolecules, 26, 

28,7195-7203, 1993. 

[56] M. Laradji, G. Hong and M. J. Zuckermann. A triangular model for binary and 

ternary surfactant mixtures containing surfactants. J. Phys. Cond. Matter, 6, 2799-

2812, 1994. 



BIBUOGRAPHY 128 

[57] M. Laradji, 0. G. Mouritsen, S. Toxvaerd and M. J. Zuckermann. Molecular dynam­

ics simulations of phase separation in the presence of surfactants. Physical Review 

E,30,2, 1243-1252,1994. 

[58] R. G. Larson. Simulation of lamellar phase transitions in block copolymers and sur­

factants. Mol. Sim., 13, 321-345, 1994. 

[59] R. G. Larson. Self-assembly of swfactamliquid crystalline phases by Monte Carlo 

simulation. J. Chern. Phys., 91, 4, 2479-2487, 1989. 

(60] R. G. Larson. Monte Carlo simulation of amphiphilic systems in two and three di­

mensions. J. Chem. Phys., 89, 3, 1642-1650, 1988. 

[61] R. G. Larson. Monte Carlo simulation of micro-structural transitions in surfactant 

system. J. Chern. Phys., 96, ll, 7903-7918, 1992. 

(62] R. 0. Larson, L. Scriven and H. T. Davis. Mome Carlo simulcuion of model 

amphiphile-oil-water systems. J. Chern. Phys., 83, 5, 2411-2420, 1985. 

(63] R. 0. Larson. Molecular simulation of ordered amplliphilic phases. Chern. Eng. Sci., 

49,17,2833-2850,1994. 

[64] L. Landau and E. M. Lifshitz. Statistical Physics 3rd edition part 1 Volume 5. Perga­

mon Press, London, 1980. 

[65] L. Landau and E. M. Lifshitz. Statistical Physics 3rd edition part 2 Volume 9. Perga­

mon Press, London, 1980. 

[66] L. Landau, E. M. Lifshitz and A. I. Akhiezer. General Physics Mechanics and Molec­

ular Physics. Pergamon Press, London, 1967. 



BIBLIOGRAPHY 129 

[67] F. A. M. Leermakers, C. M. Wijmans and G. I. Fleer. On the stnccture of polymeric 

micelles: Self consistent-field theory and universal propenies for volume fraction 

profiles. Macromolecules, 28, 3434-3443, 1995. 

[68] L. Leibler, H. Orland and J. C. Wheeler. Theory of critical micelle concemrationfor 

solutions of block copolymers. I. Chern. Phys., 79, l, 3550-3556, 1983. 

[69] H. Liu and Y. Hu. Equation of state for systems containing chain/ike molecules. Ind. 

Eng. Chern. Res., 37, 8, 3058-3066, 1998. 

[70] P. K. Maiti and D. Chowdury. Micellar aggregates of gemini surfactants: Monte 

Carlo simulation of microscopic model. Euro. Phys Letter. 41, 2, 183-188, 1998. 

[71] P. K. Maiti and D. Chowdury. Numerical Approaclz to statistical mechanics of sur­

factants in porous media: A coarse grained description. Int. J. of Modern Phys .. 8. 6, 

1335-1343, 1997. 

[72] G. Marangoni. Personal communication. 1999. 

[73] I. W. McBain and C. S. Salmon. J. of Am. Chemical Society, 42,426, 1920. 

[74] L.A. Molina and J. J. Freire. Monte Carlo study of Symmetric diblock copolymers in 

selective solvents. Macromolecules, 28, 8, 2705-2713, 1995. 

[75] L. De. Maeyer, C. Trachimow and U. Kaatze. Entropy-driven micellar aggregation. 

J. Phys. Chern. B, 42, 102, 8480-8491, 1998. 

[76] W. L. Mattice, Y. Wang and D. Napper. Simulations of the self-assembly of symmetric 

triblock copolymers in dilute solution. Macromolecules, 25, 16, 4073-4078, 1992. 

[77] W. Mattice and T. Haliloglu. Monte Carlo Lattice simulation of tire exchange between 

micelles of diblock copolymer. Polymer Preprints, 34, 2, 460, 1993. 



BIBLIOGRAPHY 130 

[78] W. L. Mattice andY. Wang. Simulation of the formation of micelles by diblock copoly~ 

mers under weak segregation. Langmuir, 9, 1993. 

[79] W. L. Mattice and K. Rodrigues. Micelles and networks formed by symmetric triblock 

copolymers in dilme solutions that are poor solvents for the terminal block. Polymer 

Bulletin, 25, 1991. 

(80] W. Mattice, T. Haliloglu and R. Balaji. Mobility of free ends and junction points in a 

lamellar copolymer. Macromolecules, 27, 2. 464-465, 1994. 

[81] M. W. Matsen and M. Schick. Stable and unstable phases of a linear multiblock 

copolymer melt. Macromolecules, 27, 24,7175-7163, 1994. 

[82] W. Matties and W. L. Mattice. In vacuo molecular dynamics simuiatio11 of single 

chain polyethylene and model compounds. Polymer Preprints, 34, 2, 456, 1993. 

[83] J. E. Mayer and M. G. Mayer. Statistical Mechanics. Chapman and Hall, New York, 

1954. 

[84] J. Melenkevitz. K. S. Schweizer and J. G. Curre. Self-consistent imegral equation 

theory for the equilibrium propenies of polymer solutions. Macromolecules, 26, 1993. 

[85] F. M. Menger. Molecular conformations of surfactant micelles. Nature, 313, 603-604, 

1985. 

[86] N. Metropolis, A. W. Rosenbluth, N. M. Rosenbluth, A. H. Teller and E. Teller. Equa­

tion of State Calculations by Fast Computing Machines. 1. Chern. Phys., 21, 6, 1087-

1092, 1953. 

[87] S. T. Milner. Chain architecture and asymmetry in copolymer microplzases. Macro­

molecules, 27, 8, 2333-2335, 1994. 



BIBLlOGRAPHY 131 

[88] M. Moffitt, Y. Yu, et al. Coronal strucwre of star-like block ionomer micelles: An 

investigation by small angle neutron scattering. Macromolecules, 27, 7, 2190-2197, 

1994. 

[89] P. M. Morse and H. Feshbach. Methods of Theoretical Physics. McGraw Hill Book 

Company Inc., New York, 1953. 

[90] P. Munk. Introduction to Macromolecular Science. Wiley Interscience, New York, 

1989. 

[91] R. Nagarajan and E. Ruckstein. Relation Between the Transition Poim in the Micellar 

Size Distribution. the CMC and the Cooperativity of Micellization. J. Colloidal and 

Int. Sci., 91. 2, 500-506, 1983. 

[92] R. Nagarajan and E. Ruckstein. Critical Micelle Concentration: A transition point 

for micellar size distribwion. (A statistical tlzennodynamic approach). J. Colloidal 

and 1nr. Sci., 60, 2, 221-231, 1977. 

[93] R. Nagaraj an and E. Ruckstein. Aggregation of amphiphiles as micelles or vesicles in 

aqueous media. 1. Colloidal and Int. Sci., 71, 3, 580-604, 1979. 

[94] R. Nagarajan and E. Ruckstein. Theory of surfactant self-assembly: A predictive 

molecular thennodynamic approach. Langmuir, 12, 7, 2934-2969, 1991. 

[95] P. H. Nelson, G. C. Rutledge and T. A. Hatton. On the shape and size of self­

assembled micelles. J. Chern. Phys., 107, 24, 10777-10781, 1997. 

[96] P. D. Olmsted and S. T. Milner. Fluctualion corrections to mean-field theory 

for homopolymer- copolymer phase separation. Macromolecules, 27, 7, 1964-1967, 

1994. 



BIBLIOGRAPHY 132 

[97] B. J. Palmer and J. Liu. Simulations of micelle self-assembly in surfactant solutions. 

Langmuir, 12, 3, 746-753, 1996. 

[98] B. J. Palmer and J. Liu. Effects of solute imeractions on micelle fonnation in surfac­

tant solutions. Langmuir, 12, 25,6015-6021, 1996. 

(99) M. Pepin. Monte Carlo and mean field smdies of polymers in solution. Ph.D. Thesis. 

Memorial University of Newfoundland, 1999. 

[ 100] M. Pepin and M. D. Whitmore. Mome Carlo and mea11 field swdy of di-block 

copolymers micelles. Macromolecules, 33, 23, 8644-8653, 2000. 

[LOll D. C. Poland and H. A. Scheraga. Hydrophobic bonding and micelle stability; the 

influence of ionic head groups. J. Colloidal and Int. Sci., 21, 273-283, 1966. 

[ L02) D. C. Poland and H. A. Scheraga. Hydrophobic bonding and micelle stability. 

1. Chern. Phys., 69, 7, 2431-2442, 1965. 

[L03] L. R. Pratt and S. W. Haan. A new Mome Carlo method for direct estimation of 

cluster partition functions. Application to micellar aggregates. Chern. Phys. Letters, 

77 t 2, 436-441, 1982. 

[ L04] L. R. Pratt and B. Owenson. Molecular statistical tlzennodynamics of model micellar 

aggregates. J. Phys. Chern., 88, 13, 2905-2915, 1984. 

[LOS] R. Rajagopalan, L. A. Rodriguez and S. K. Talsania. Lattice Monte Carlo Simula­

tions of Micellar and Microemulsion Systems. Handbook of Microemulsion Science 

and Technology, Eds. P. Kumar and K. L. Mittal, Marcel Dekker, 1999. 

(106] L. E. Reichl. A Modem Course in Statistical Mechanics. (First Edition). University 

of Texas Press, Austin, Texas, 1980. 



BIBLIOGRAPHY 133 

[ 107] F. Rei f. Statistical and 17zermal Physics. McGraw Hill Inc., New York. New York. 

1965. 

[108] H. S. Robertson. Statistical Thennophysics. PTR Prentice Hall Inc., New Jersey, 

USA, 1993. 

[109] K. Rodrigues and W. L. Mattice. Micelles and networks fanned by symmetric tri­

block copolymers in dilute solutions that are poor solvents for the tenninal block. 

Polymer Bulletin, 25, 2, 456-459, 1991. 

[ 1 10] K. Rodrigues and W. L. Mattice. Micelles and networks fanned by symmetric tri­

block copolymers in dilute solutions that are poor solvents for the temzinal block. 

Polymer Bulletin, 25, 239-243, 1991. 

[ 111] K. Rodrigues and W. L. Mattice. Segmental distribmion functions for a mi­

celle comprised of small symmetri,· diblock copolymers (short chain amphiplziles). 

J. Chern. Phys., 95, 7, 5341-5347, 1991. 

[112] J. F. Rusting and T. F. Kumosinski. An approximation to hydrophobic attraction for 

molecular dynamics of self-assembled surfactant aggregates. J. Phys. Chern., 99, 22, 

9241-9247, 1995. 

[113] M. J. Schick. Nonionic sztrfacrams, pltysical chemistry. Marcel Dekker, New York, 

1987. 

[ 114] K. Shida, K. Ohno. Parallelized simulation of complicated polymer stntClltres and 

its efficiency. lElCE Trans. lnf. & Sys., E80-D, 4, 531-536, 1997. 

[ 1 15] B. Smit, K. Esselink, et al. Compmer simulations of surfactant self assembly. Lang­

muir, 9, 1, 9-ll, 1993. 



8 IB UOGRAPHY 134 

[116] M. Surridge, D. J. Tildesley et al. A parallel molecular dynamics simulation code 

for dialkyl cationic surfactants. Parallel computing, 22, 1053-1071, 1996. 

[Ll7] E. N. B. Stasiuk and L. L. Schramm. The temperature dependence of the critical 

micelle concentrations of the foam-forming surfactants. J. Coli. and Int. Sci., 178. 

324-333, 1996. 

[118] D. Stauffer, N. Jan and R. B. Pandey. Simulation of amphiphilic polymer chains in 

a lattice modelformicroemulsions. Physics A 198,401-409, 1993. 

[1191 D. Stauffer and N. Janet al. Micelle formation, relaxation time and tllree-plwse 

coexistence in microemulsion model. I . Phys. I (France), 4, 9, 6934-6943, 1994. 

[120] M. M. Stecker and G. B. Benedek. Theory of multicomponent micelles and mi­

croemulsions. I. Phys. Chern., 88, 26, 6519-6544, 1984. 

[121] S. K. Talsania, Y. Wang, R. Rajagopalan and K. K. Kishore. Monte Carlo simula­

tions for micellar encapsulation. J. Colloidal and Inter. Sci., 190, 2, 92-103, 1997. 

[122] C. Tanford. The Hydrophobic Effect. Wiley Interscience, New York, 1980. 

[123] D. Ter Haar. Elements of Thermostatics. Holt Reinhart and Winston, New York, 

New York, 1966. 

[124] R. C. Tolman. Tlze Principles of Statistical Mechanics. Oxford University Press, 

New York, New York, 1962. 

[125] J. Traube. Ann., 265,27, 1891. 

[ 126] T. Wallin and P. Linse. Monte Carlo simulation of polyelectrolytes at charged mi­

celles 3. Effects of surfactant tail length. J. Phys. Chern. 8 , 101,28,5506-5513, 1997. 



BIBLIOGRAPHY 135 

[127] T. Wallin and P. Linse. Monee Carlo simulation ofpolyelectrolytes at charged mi­

celles 1. Effects of chain flexibility. Langmuir, 12, 2, 305-314, 1996. 

[128] Y. Wang, Y. Li and W. L. Mattice. Simulation of the adsorption of asymmet­

ric diblock copolymers at tlze inteiface between the two monomeric homopolymers. 

J. Chern. Phys., 98, 5. 4068-4075, 1993. 

[129] Y. Wang and W. L. Mattice. Simulation of the adsorption of symmetric di­

block copolymers at tlze interface between the two monomeric homopolymers. 

J. Chern. Phys., 12, 12,9881-9887, 1993. 

[130] Y. Wang and W. L. Mattice. Simulation of the adsorption of symmetric diblock 

copolymers at the inteiface between the two monomeric lzomopolymers. Polymer 

Preprints, 34, 2, 462, L993. 

[131] WWWebsters Dictionary. Merriam Websters Online Dictionary. 2000 by Merriam­

Webster, Incorporated, 2000. 

[ 132] H. Wennerstrom and B. Lindman. Physical chemistry of suifacrant association. 

Physics Reports C., 1979. 

[133] M. D. Whitmore and T. S. Smith. Swelling of copolymer micelles by added ho­

mopolymer. Macromolecules., 27, 17, 4673-4683, 1994. 

[ 134 J M. D. Whitmore and J. D. Vavasour. Self-consistelll field theory of block copolymers 

and block copolymer blends. Acta Polymer, 46, 341-360, 1995. 

[ 135] M. D. Whitmore and J. Noolandi. Theory of Micelle fonnation in block copolymer­

lzomopolymer blends. Macromolecules, 18, 1985. 

[136] M.D. Whitmore and T. W. Smith. Swelling of copolymer micelles by added ho­

mopolymer. Macromolecules, 18, 17, 4673-4683, 1985. 



BIBLIOGRAPHY 136 

[137] B. Widom. Lattice-gas model of amphiphiles and of their orientation at interfaces. 

J. Chern. Phys .• 88, 3, 242-251, 1984. 

[138] B. Widom. Theoretical Modeling: An Introduction. Berichte der Bunsen Gess. fur 

Phys. Chern .• 100, 3, 1996. 

[139] C. M. Wijmans and P. Linse. Modeling of nonionic micelles. Langmuir, 11, 10, 

3748-3756, 1995. 

[ 140] C. M. Wijmans and P. Linse. Surfactant self assembly ar a lzydroplzilic surface. A 

Monte Carlo study. J. Phys. Chern. B. 100. 30, 12583-12591 , 1996. 

[ 141] A. Wulf. Statistical mechanical theory of non ionic micelles. J. Phys. Chern., 82, 7, 

804-811, 1978. 

[142] Y. Zhan and W. L. Mattice. Confomzation and mobility of 1,4-trans-polybmadiene 

in the crystalline state. Macromolecules, 20, 5, 1554-1561, 1992. 

[143] Y. Zhan and W. L. Mattice. Self-assembly and adsorption of diblock copolymers 

from selective solvents 1. Self assembly. Macromolecules, 27, 3, 677-682, 1994. 

[144] W. L. Mattice andY. Zhan. Self-assembly and adsorption of a copolymers from a 

selective solvents. Macromolecules, 27, 452-453, 1994. 

[145] Y. Zhan, W. L. Mattice and D. Napper. Mome Carlo simulation ofthe adsorption 

of diblock copolymers from a non-selective solvent II: Stntcture of adsorbed layer. 

J. Chern. Phys., 98, 9, 7506-7513, 1993. 

[146] Y. Zhan and W. L. Mattice. Monte Carlo simulation of the adsorption of di­

block copolymers from a non-selective solvent 1. Adsorption kinetics and adsorption 

isothenns. J. Chern. Phys., 98, 9, 7502-7509, 1993. 



8 IB LIOGRAPHY 137 

[147] L. Zhang, H. Shen and A. Eisenberg. Phase separation behaviour and crew­

CUI micelle fonnation of polysryrene-b-poly (acrylic acid) copolymers in solmions. 

J. Chern. Phys. B, 101, 24,4697-4708, 1997. 

[148] L. Zhang, H. Shen and A. Eisenberg. Mesosized crystal/ike stntclltre of hexagonally 

packed hollow hoops by solution self-assembly of diblock copolymers, Phys. Rev. Let­

ters, 79, 25, 5034-5037, 1997. 



Appendix A 

A.l Accompanying CD-ROM 

The CD-ROM which accompanies the thesis contains the latest version of the simulation 

code. The code is contained in .tar.gz, .tar.Z and .zip files . There are also brief instructions 

for the interested reader on how to compile and run the simulations. There is no example 

code included in text of this thesis since the shortest single piece of code would occupy at 

least LO pages of print. The electronic copy of the code will allow the readers to peruse at 

their convenience its full functionality and capabilities and will allow them (if so inclined) 

to run an actual simulation. 

Also included on the CD-ROM are electronic copies of the thesis in both .dvi and .ps 

formats. These are included for the convenience of the reader. 

There are also several time lapse movies from the simulations contained on the CD­

ROM in .mpeg and .avi formats. These are included as they illustrate very succinctly the 

behaviour of the systems of amphiphiles and their dynamical nature. These movies illus­

trate many of the important aspects of aggregation including the formation and dissolution 

of the aggregates. 

A.2 Tables of completed simulations 

This section contains a complete listing of the simulations which have been carried out in 

the course of this thesis. Not all of the simulations appear in the text of the thesis. The 

following tables contain this complete listing along with all other pertinent information 

about the simulations. 

A-1 



Appendix A A-2 

Ns Zs Zsh L -~hsf ~ts Tma.x Max ets 

4050 4 2 60 0 100 1.15 

2000 5 2 73 1 100 1.10 

2000 6 2 49 2 100 0.90 

1000 6 3 62 2 100 0.50 

500 6 2 50 1 100 0.95 

5000 6 2 86 2 60 0.95 

1000 6 2 62 2 150 0.90 

500 7 2 40 2 100 0.80 

1000 8 2 68 2 150 0.70 

1000 8 4 56 2 150 1.10 

2000 8 2 86 2 100 0.65 

1000 8 2 56 1 100 0.40 

500 8 2 50 2 60 0.85 

2000 9 2 88 2 100 0.65 

500 10 2 40 2 100 0.65 

500 10 2 55 2 60 0.50 

500 10 2 55 2 100 0.60 

1000 10 2 60 1 100 0.50 

1000 10 5 70 1 150 0.80 

2000 10 2 90 2 100 0.65 

1000 10 4 74 1 LOO 0.65 

Table A.l: Table of completed Monte Carlo simulations for molecules with lengths 4 < 

Zs < 10. 



Appendix A A-3 

N$ Zs Zsh L ·eh$1 ets 'Tma:,; Max cts 

1000 10 2 70 3 100 0.55 

1000 10 2 70 2 150 0.55 

1000 10 2 70 3 100 0.55 

1000 10 2 so 1 100 0.55 

2000 Ll 3 70 2 100 0.60 

500 12 2 70 1 60 0.45 

500 12 2 60 2 100 0.50 

1000 12 6 78 1 100 0.40 

1000 12 2 70 1 60 0.55 

500 12 2 60 1 70 0.55 

1000 12 2 70 2 100 0.60 

500 12 2 60 2 60 0.55 

500 12 2 60 2 100 0.60 

2000 12 2 98 2 100 0.55 

1000 12 2 80 2 100 0.60 

1000 12 2 86 1 150 0.70 

500 12 2 60 2 60 0.55 

500 12 2 60 2 100 0.60 

500 14 2 50 1 60 0.50 

500 14 2 50 2 60 0.50 

500 14 2 60 3 100 0.50 

Table A.2: Table of completed Monte Carlo simulations for molecules with lengths 10 ::; 

Zs < 14. 



Appendix A A-4 

Ns Zs Zsh L -ehsl ets tmax Max ers 

LOOO 14 4 80 1 100 0.55 

LOOO 14 7 82 1 LOO 0.45 

LOOO 14 4 80 1 100 0.55 

2000 14 2 98 2 150 0.90 

500 14 2 62 1 60 0.45 

500 14 2 60 3 60 0.50 

1000 14 2 60 l 60 0.45 

LOOO 15 5 70 1 60 0.45 

500 15 3 70 1 60 0.40 

LOOO 16 4 75 2 LOO 0.45 

500 16 4 70 2 60 0.45 

LOOO 16 4 70 1 100 0.45 

LOOO 16 2 70 3 100 0.45 

2000 18 4 90 1 100 0.45 

500 20 2 80 L 60 0.45 

LOOO 20 2 92 L 100 0.40 

LOOO 20 5 92 2 100 0.40 

2000 22 6 120 1 100 0.375 

LOOO 25 5 LOO 2 100 0.36 

Table A.3: Table of completed Monte Carlo simulations for molecules with lengths 14 < 

Zs ~ 25. 










