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ABSTRACT 

The main aim of this research is to develop a comprehensive flow model capable of 

predicting the nucleation process, the growth rate, and the deposition potential of hydrate 

particles. The model is developed for applications in two-phase fluid flow through flow 

lines with flow re triction geometries using Computational Fluid Dynamic (CFD) 

approach. 

The primary objective of the research is to predict the risk hazards involved in the marine 

transportation of compressed natural gas. However the proposed model can be equally 

used for other applications including production and transportation of natural gas in any 

high pressure flow line. 

The influence of the major parameters affecting the hydrate formation rate and deposition 

are addressed. The background knowledge concerning the development of the proposed 

model has been reviewed through literature survey. From the existing literature, it was 

found that the fundamental concepts related to the nucleation phenomena and growth 

theory are well established and ready to be integrated. A number of comprehensive 

models have also been successfully developed to predict hydrate formation and 

accumulation. These models however were not specifically developed to predict the 

most probable location for hydrate deposition under conditions where natural gas flows 

through restrictions in pipeline systems. 

The proposed model employs the following three main components to approach the 

problem: (a) computational fluid dynamics (CFD) technique is used to configure the 

flow field; (b) nucleation and growth are incorporated in the simulation to predict the 



incipient hydrate particles size and growth rate; and finally(c) the novel approach of 

the migration and deposition of the particle is used to determine how particles deposit 

and adhere to the flow conduit wall. These components are integrated in the proposed 

model to locate the hydrate deposition in flow lines. Experimental tests are also 

established to assess the agreement of the proposed model. Further, the influence of 

pipe size and flow rate on the distance of deposition is also studied. 

The results predicted by the model simulation show that the distance of the deposition 

decreases as the particle size increases. However, after certain size of particle, there is 

no effect on the distance of deposition. Such size has been called "deposition critical 

size". This behaviour can be returned to the fact that small particles are influenced by 

the main fluid velocity but for relatively large particles such effect diminishes as a 

result of the high particle inertia. 

The experimental tests that performed in the Centre for Marine Compressed natural 

Gas Inc. are shown to be in good agreement with the model prediction in term of the 

following criteria: 1) Formation of hydrate particles are observed to be polydisperse 

since different sizes of particles are formed. This observation is matched with the 

analytical correlation of the Particle Growth and Distribution proposed in the study; 

2) Studying the influence of flow Reynolds number and pipe diameter, the deposition 

distance is found to be linearly responded to the Reynolds number and pipe size. 
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1.1 General 

CHAPTER I 

INTRODUCTION 

Natural Gas is a mixture of hydrocarbon gases that occurs within petroleum deposits . It 

is principally composed of methane together with varying quantitie of ethane, propane, 

butane, and heavier hydrocarbons, and is used as a fuel and in the manufacture of organic 

compounds. These hydrocarbon components can appear in multiple phases according to 

changes in temperature, pressure, and composition. Under certain pressure and 

temperature conditions, solids may also precipitate resulting in changes to flow of the 

fluid. The occurrence of such solids may lead to severe problem in oil and gas 

production systems. One of the most common solid precipitation problems is caused by 

hydrate clathrates which will be the main focus theme in this research. 

Hydrate can pose a major risk in all high pressure natural gas transport lines including the 

connecting lines and manifold systems in marine transportation of compressed natural 

gas. Given the significance of safety and reliability in any high pressure natural gas 

transport system, it is critical to have a very accurate analysis of such systems from the 

safety stand-point. The variation in pressure and temperature of the system is one of the 

most significant factors which lead to the formation of hydrate. These circumstances can 

also be commonly found in exploration and production systems when fluids flow through 

various types of equipment along the production tubing or transportation pipelines. 



Components such as chokes, velocity-controlled subsurface safety valves, and 

conventional valves and fittings (piping components) can all act as restrictions to the 

flowing fluids causing changes in the flow conditions (Brill and Mukherjee, 1999). 

1.2 What is Clathrate Hydrate? 

The term "clathrate", from the Greek word khlatron meaning barrier, refers to crystalline 

compounds in which small guest atoms or molecules are physically trapped in the host 

cavities shaped by a three dimensional assembly of hydrogen bonded molecules (lmen et 

al., 2005). 

The crystalline compounds form when gas or a volatile liquid comes in contact with 

water at high pressures (typically more than 0.6 MPa) and low temperatures (typically 

less than 300K) (Zhao et al., 2002). These compounds are called clathrate hydrates when 

they contain water and natural gas hydrates in non-stoichiometric ratio varying from 5.67 

to 17 water molecules per hydrate gas molecules (Lee et al., 1998 and Sloan, 1998). 

Macroscopically, the structure looks similar to ice or snow, but unlike ice these hydrates 

are also stable at temperatures above 0 °C (Jinping et al., 2004; Svandal et a/. ,2005; and 

Trygve et al., 2006). Gas hydrates represent one of the few phases and perhaps the sole 

condensed phase where water and light non-polar gases exist together in significant 

proportions. 
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Solid gas hydrate masses, up to several meters across, are commonly found in nature. The 

modern thrust of investigation into gas hydrate is divided into several areas: environment, 

including global climate, carbon budget, and C02 sequestration; seafloor stability, 

including slop failure and drilling hazards; flow assurance and energy extraction. 

The growth of large crystals is made easier by maintaining the system within or near the 

metastable zone (MSZ), a region free of primary nucleation. The MSZ exists beyond the 

equilibrium line, within the stability region of hydrate (see Figure 1.1). 

Homogenous 
Nucleation 

Crystallites 

/ 

/ 
/ 

Temperature 

I 
I 

Figure (1.1) Precipitation phase boundary for gas hydrate showing the metastable zone, 
heterogeneous nucleation, homogenous nucleation, and the domains of 
crystallite formation and dendrite formation (Osegovic, et al, 2005) 

During nucleation, clusters of solute and water molecules form. Small clusters have large 

positive surface free energies relative to the volume free energy. Once the cluster radius 

has reached the critical size, the negative volume free energy becomes the dominant 

factor and growth becomes spontaneous (Osegovic et al., 2005). 
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---------------~~--------

Among several different hydrate structures, the two most common are structure I and 

structure II. Type I forms with smaller gas molecules such as methane, ethane, hydrogen 

sulphide, and carbon dioxide, whereas structure II is a diamond lattice, formed by larger 

molecules such as propane and isobutene (Sloan, 1998). Nitrogen, a relatively small 

molecule, also forms a type II hydrate (Carroll, 2003). Further, in the presence of free 

water, temperature and pressure can also influence the type of hydrate structure, where 

the hydrate structure may change from structure II at low temperatures and pressures to 

structure I at high pressures and temperatures (GPSA, 1998). 

Clathrate hydrates are solid solutions of a volatile solute in the host lattice (van der 

Waals, 1956). The solvent is known as the empty hydrate lattice. It is thermodynamically 

unstable. It owes its existence to the fact that the water molecules are linked through 

hydrogen bonding and form a lattice-like structure with cavities. The diameter of the 

cavities is between 0.780 and 0.920 nm (Englezos, 1993). Molecules which do not 

interfere with the hydrogen bonding of water molecules and have a diameter smaller than 

the diameter of cavity can render the structure stable under suitable pressure and 

temperature conditions (Englezos, 1993). This stable structure is the gas hydrate. 

Structure I gas hydrates are formed when these cavities arrange themselves in space in a 

manner that they link together through their vertices. The unit cell of structure I gas 

hydrate is a cube with a 1 200 picometer side length and contains 46 water molecules 

(Englezos, 1993). These molecules have diameters in the range 410-580 picometer 

(Handa and Tse, 1986). 
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Structure II gas hydrates are formed when the cavities arrange themselve in pace in a 

manner that they link together through face sharing. A unit cell of gas hydrate of structure 

II is a cube of side length close to l 730 picometer, contains 136 water molecules. The 

diameter of the molecules is less than 410 pi co meter or greater than 550 picometer 

(Englezos, 1993). 

1.3 Why Hydrates are of Interest? 

Over a long period following their discovery by Sir Humphrey Davy in 1810, interest in 

clathrate hydrates was purely academic. Intense research on natural ga hydrates wa 

conducted by the oil and gas industry when it was pointed out that these compounds were 

responsible for plugging natural gas pipe (Svandal et al., 2005; Lee et al., 1998; and 

HammerShmidt, 1934). 

Hydrate plug have di turbed the normal flow of natural gas and other re ervoir fluids in 

the production and transportation lines and have claimed lives of personnel and resulted 

loss of property in oil and gas industries (Sloan, 1998). They can plug high pressure 

transportation lines as large as 24 inches and higher and therefore are treated with very 

careful attention. In fact, light gases such as methane or ethane pre ent in petroleum 

products, are easily trapped as guest molecules in hydrate structures. The mo t notable 

fact that they are non-flowing crystalline solid , denser than typical fluid hydrocarbons 

and that the gas molecules they contain are effectively compressed, giving rise to 

numerous applications in the broad areas of energy and climate effects. 
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The physical properties of these compounds may include an important bearing on flow 

assurance and safety issues. More recently, they were encountered in refrigeration 

systems where their crystallization occurred in expansion valves (!men et al. , 2005). 

However, combating these drawbacks has made it possible to acquire substantial 

knowledge of hydrates, including their existing conditions, their crystalline structure, 

their ability to store gas and their heat of dissociation. 

Consequently, the interest in hydrates has expanded in other directions because of their 

potential as a separating agent, and their potential as a storage vehicle (Holder and Enick, 

1995). Indeed, gas hydrates naturally found in deep seas and permafrost may provide a 

large amount of methane. Other positive applications include carbon dioxide 

sequestration (Lee et al. , 2003)], separation (Englezos, 1993) and natural gas storage and 

transportation (Sloan, 2000). Finally, the use of their dissociation energy can be applied 

in refrigeration processes and cold storage (Tanasawa and Takao, 2002; Foumaison et 

a/.,2004). 

To touch on the importance of hydrate research, it is more convenient to detail their 

advantages and shortcomings from an economic point of view. Several key physical 

properties of hydrates determine the roles that they play (or might play in the future) in 

both industry and environment. They are solids with densities greater than those of 

typical fluid hydrocarbons, and this has practical implications for flow assurance in 

pipelines and the safety thereof. Furthermore, the fact that, in effect, hydrates concentrate 

their guest molecules, results in three potential applications: that energy can be recovered 
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from in situ hydrates; that hydrates can be used to transport stranded gas; and that 

hydrates may be a factor in climate change. Each of these implications and applications is 

discussed briefly below. 

1.3.1 Hydrate as an Energy Source 

The vast amounts of gas hydrates in the Earth's crust might be considered as a new 

source of sustainable energy. Makogon (1965, 1988) and K venvolden (1 988) pointed out 

that the amount of gas in known hydrate reserves up until 1988 was at least twice as 

much as the energy contained in the total fossil fuel reserves. A unit volume of methane 

hydrate can yield 164 times more methane than a unit volume of gaseous methane under 

the same pressure conditions and at standard temperature (Davidson DW et al., 1978). 

This study was completed by Collett and Kuuskraa (1998), who estimated that these gas 

reserves range from 1.4xl01 to 3.4xl04 trillion cubic meters (tern) for permafrost areas 

and from 3.lx103 to 7.6x106 tern for oceanic sediments. It is important to note that the 

total discovered conventional natural gas reserves in 2006 amounts to about 180 tern (BP 

magazine, 2006). Gas hydrate deposits are mainly distributed offshore due to the high 

pressure and low temperature conditions at the seabed and more parsimoniously 

encountered in permafrost (K venvolden, 1995 and Sloan, 1998). However gas hydrate 

deposits might represent a real threat to the environment. For instance destabilizing 

hydrate sediments plays an undeniable role in climate change due to the great amount of 

Methane that is released as a result of any slight global warming (Brewer, 2000). 
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1.3.2 Storage and Transportation 

It is estimated that about 70% of the total gas reserve is either too far from an existing 

pipeline or too mall to justify liquefaction facility (Sloan, 2003). Gudmundsson and 

Borrehaug (1996) suggested that it i economically feasible to transport tranded gas in 

hydrated form. 

1.3.3 Safety 

When hydrate blockages dissociate in pipeline , they detach first at the pipe wall; 

therefore, any pressure gradient aero the high-density hydrate plug will cause the 

hydrate to travel rapidly (-300 km/hr) down the pipeline. This effect will compress the 

downstream gas, either causing pipeline blowouts or causing the plug to erupt through 

pipeline bends. A second safety concern arises when hydrate plugs are locally heated 

(for example, u ing a blowtorch out ide a pipeline) to dissociate them. Frequently, the 

evolving gas from the hydrate is contained by the ends of the plug until the pipeline 

bursts owing to the pressure being too high. This safety concern i a re ult of the next 

hydrate property- the ability of hydrates to concentrate high levels of gas. 

1.3.4 Pipeline Plugging 

In thermal-hydraulic de ign of multiphase transmis ion systems, the ystem designer i 

encountered with several challenges associated with multiphase flow, which can 

significantly change design requirements. The aim of any pipeline designer is to secure 

"flow assurance" i.e., the transmi sion y tern mu t operate in a afe, efficient, and 

reliable manner throughout the design life. Failure to do so has ignificant economic 
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consequences, particularly for offshore gas production and transportation system 

(Mokhatab et al., 2006). 

"Flow assurance" covers the whole range of possible flow problems in pipeline, 

including multiphase flow and fluid-related effects such as gas hydrate formation, wax 

and severe slugging. The avoid~mce or remediation of these problems is the key aspect of 

flow assurance that enables the design engineer to optimize the production system and to 

develop safe and cost-effective operating strategies for the range of expected conditions, 

including start-up, shutdown, and turndown scenarios. However, as production systems 

go increasingly deeper, flow assurance becomes a major issue for offshore production 

and transportation systems, where traditional approaches are inappropriate for deepwater 

development systems due to extreme distances, depths, temperature, or economic 

constraints (Wilkens, 2002). 

The marine transportation of natural gas in compressed form using ocean going ships is 

an evolving technology in which gases with various composition and therefore water 

contents might be considered for transportation in high pressure storage systems. The 

production and transfer of gas to the ships involve various pressure and flow control 

systems within relatively small diameter transport lines through which the gas may easily 

face the Joule-Thompson effect (Berner, 1992) similar to those encountered in offshore 

oil and gas production systems. The formation of hydrate in flowlines in compressed 

natural gas (CNG) transporting ships during loading and unloading operations can also 

potentially pose severe risk factors to such systems. 
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While many other factors influence hydrate formation, the temperature and pressure at 

locations across the system are the key factors to be considered when predicting the 

likelihood of the hydrate formjng (Jadhawar, 2003). The exact temperature and pressure 

at which hydrates form depend on the composition of the gas and the water. For any 

particular composition of gas at a given pressure, there is a temperature below which 

hydrates will form and above which hydrates will not form. As the pressure increases, the 

hydrate formation temperature also increases. As a general rule, as pressure increases or 

as the system becomes colder, the tendency to form hydrates increases (GPSA, 1998). 

Hence, many gas-handling systems are at significant risk of forming hydrate plugs during 

shut-in and subsequent start-up (Mokhatab et al., 2006). 

Hydrate propagation tends to gradually form a plug that separates the pipe into two 

pressure sections: a high pressure section between the well or high pressure gas source 

and the plug and a second section at low pressure between the plug and the gas recovery 

division. In the upstream section, a pipe blast can occur due to pressure rise. The plug can 

also behave as a projectile that destroys the pipe when the pressure difference between 

the upstream and downstream sections increases. Both events can endanger personnel 

safety and damage production equipment (Sloan, 2000). 

Hammerschmidt (1934) indicated that the formation of gas hydrate was responsible for 

blocking pipelines. Considering the significant economic risks in the gas and oil industry, 

a great deal of research has been conducted by petroleum industry to inhibit this 

undesirable phenomenon. Annually, an operating expense greater than $500 rrullion is 
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devoted to hydrate prevention (Lederhos et al., 1996), almost half of that is devoted for 

hydrate inhibition (Sloan, 2003). In addition, offshore operations spend approximately 

$1,000,000 per mile for insulation of subsea pipelines to prevent hydrates (Sloan, 2003). 

Further, Lysne (1995) listed three incidents in which hydrate projectiles erupted from 

pipelines at elbows and caused loss of three lives and over $7 million (US) in capital 

costs. Accordingly, concerns have been expressed about the effect of hydrates on 

foundations of platforms and pipelines, as well as offshore drilling. 

First and perhaps most importantly, when hydrates form, they are solid, non-flowing 

crystalline structures. Oil and gas wells always produce undesired water along with 

hydrocarbons that are in the hydrate guest size range. As the flowing mixed phases cool, 

hydrates form and plug transmission lines, causing costly production stoppage, 

sometimes for as long as months, in large pipelines, while the hydrates are dissociated 

(Sloan, 2003). 

Fortunately, the hydrate stability temperature and pressure range is predictable to within 

experimental accuracy using modem thermodynamic programs usually based upon the 

Gibbs free energy extension (Ballard and Sloan, 2002) of the van der Walls and 

Platteeuw (1959) method. Such multiphase programs (e.g. PIPEPHASE®) can predict the 

pipeline conditions leading to free hydrate formation. Figure (1.2) shows the pressure and 

temperature conditions superimposed on the hydrate stability curves (Bollavaram, 2002). 

At a short distance, say 7 miles, the fluid stream retains the high temperature from the hot 

reservoir. The ocean cools the fluid stream, and at 9 miles, the fluid enters the hydrate 
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stability region. Typically, these conditions commonly exist in wells, valves, flow lines 

and meter discharges. In a pipeline, hydrates form at the hydrocarbon-water interface, 

and accumulate. Once the hydrates accumulate enough to plug the pipeline, they hinder 

flow through pipeline. This is a major safety and economical concern to the industry. 

Unfortunately, low temperatures (such as the deep-sea floor temperature of 277 K) and 

the mandates of high pressure for economic energy densities place many pipelines well 

within the hydrate-formation region. 
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Figure (1.2) Pressure and temperature along a typical pipeline (Notz, 1994) 

1.4 Objectives of Proposed Research 

The objectives of the current study can be summarized as follows: 

1. A novel and comprehensive model for prediction of hydrate deposition location in high 

pressure natural gas flowlines is proposed. The model should be able to predict the 

distance between the spots where the conditions for hydrate formation exists and the 

actual location of hydrate agglomeration. The main goal is to develop an efficient 
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simulation algorithm that has the capability to foresee the location, migration, and 

agglomeration of hydrate particles. The flow of a single Fluid (gas) through a restriction 

device (such as an orifice) is simulated by combining existing physical transport, 

thermodynamics, and hydrate models. 

2. A new definition for the process of nucleation and growth of hydrate particles is 

introduced. Based on the law of mass action, the new approach describes the process of 

particle growth and distribution using analytical correlations. These equations can be 

used to explain the growth of the hydrate particles with time and can also demonstrate the 

influence of flow structure on the process. 

3. A robust model for predicting the trajectory of hydrate particles is developed. The 

model divides the flow regime into two regions, the turbulent and the sublayer regions, 

each region having its own model for tracking the hydrate particle. 

4. In the near wall region, the particle bouncing effect is considered for particles with 

sizes of the order of, and larger than sublayer thickness. Since the particle-wall collision 

is sufficient enough to keep the particle moving forward, the distance traveled by the 

particle due to bouncing extends the deposition distance. 

1.5 Outline of Thesis 

The thesis is organized as follows: 

• Chapter 2 reviews literature related to hydrate structure, physical properties, 

formation, and treatment. 

• Chapter 3 outlines the governing equations of multiphase flow built in the CFD 

software and used to describe the flow configuration. 
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• Chapter 4 presents a new mathematical modelling approach to demonstrate the 

hydrate nucleation formation and distribution in a gas flow. 

• Chapter 5 details the forces exerted on particles travelling in a fluid. 

• Chapter 6 describes the proposed novel algorithm to predict hydrate particle 

deposition in high pressure gas flowlines. 

• Chapter 7 explains the experimental apparatus and its parts that used to perform 

verification tests in this study. 

• Chapter 8 discusses two model verification case studies specifically tests with 

saturated air and saturated propane 

• Chapter 9 summarizes the findings of this research and suggests areas that need to 

be further considered in future examination. 
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2.1 General 

CHAPTER2 

LITRITURE SURVEY 

The li terature reviews and articles concerning gas hydrate are numerous. The literature 

includes but is not limited to the structure of hydrate, favourable conditions to form , 

hydrate formation and growth, thermodynamic properties, potential for hydrate 

formation, flow assurance, and dissociation techniques. In this chapter, a brief review 

of the research on the structure of hydrates will be presented followed by a concise 

review of the properties of hydrate. The research relevant to the formation and growth of 

hydrate will then be covered in details, and finally the chapter will be concluded by 

reviewing the literature concerning the dissociation and inhibition of hydrates. 

2.2 Hydrate Structures 

Hydrates are hybrid crystalline structures formed when small gas molecules are in contact 

with water. As illustrated in Fig. (2.1 ), there are three basic hydrate structures known to 

form from natural gases, structure I (sl), structure II (sll), and structure H (sH). The type 

of hydrate that forms depends on the size of the gas molecules included in the hydrate. As 

a rule of thumb, small molecules such as methane or ethane form sl hydrates as single 

guests, larger molecules such as propane and i-butane form sll hydrates. Larger 

molecules such as i-pentane form sH hydrates in the presence of a "help" molecule such 

as methane (Bollavaram, 2002). The type of hydrate that forms depends on the 

composition, temperature, and pressure of the system. 
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Figure (2.1) the three common hydrate structures (Bollavaram, 2002) 

Numerous literatures studied the structure of hydrates. Palin and Powell (1945) reported 

the results of the X-ray analysis of the crystalline compound formed between quinol 

(hydroquinone) and sulfur dioxide. They also discussed and revealed the structure of the 

clathrate compound of quinol with methanol and other compounds. Later, X-ray analyses 

revealed that gas hydrates could be recognized as Clathrates and crystallize in two 

distinct cubic structures (Englezos, 1993). Von Stackelberg (1949 a, b) reported the 

conclusion of his work over 20 years of investigation and proved that all crystals form in 

the cubic class. Claussen (1951) constructed a cubic unit cell containing 136 water 

molecules and proposed structure II hydrates. His results were immediately confirmed by 
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von Stackelberg and Muller (1951 ). Simultaneously, Pauling and Marsh (1952) 

determined structure I hydrates. 

Many structural, calorimetric, and molecular simulation studies were carried out by 

Davidson and his co-workers at National Research Council (NRC) of Canada (1978). 

Their structural work led to: i) endorsing the purely theoretical study of Holder and 

Manganiello (1982), which suggested the elucidation of hydrate structure II that the small 

molecules of argon, krypton, oxygen, and nitrogen can form (Davidson et al., 1984, 

1987), and ii) the identification of the third hydrate structure, structure H (Ripmeester, 

1987, 1990). 

2.3 Hydrates Properties 

Despite more than 200 years of gas hydrate history, their properties were studied very 

little due to the fact that the research is extremely complicated. The study of the hydrates' 

properties was initiated with the advent of modern measurement techniques. Recently, 

hydrates are studied on the molecular level using the most advanced instruments, such as 

X-ray diffraction, Nuclear Magnetic Resonance (NMR), proton NMR, infrared (IR) 

spectroscopy, and quantum microcalorimetry. Only after the study of gas hydrates 

structure using NMR and EPR were completed, the methods for calculating the hydrate 

density was developed (Makogon, 1997). The density could be determined by knowing 

the parameters of hydrate lattice, the filling ratio of cavities in the structure, and the 

density of hydrate of a former gas with known molecular mass. The number of studies 

related to the direct study of mechanical, thermal deformation parameters of hydrates and 
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hydrate-saturated media is limited. These studies were completed by Parameswaran and 

Paradis (1985, 1989), Cameron, Baker and Handa ( 1989), and Jeanjean and Briaud 

( 1990). Handa et al. (1990) compared the strength characteristics of ice-and hydrate­

saturated sandstone and found that at -1 0°C the ice-saturated sandstone failed under stress 

of P = 7 MPa, while hydrate-saturated sandstone failed at P= 12.2 MPa. That means 

hydrate-cemented samples are stronger than ice-cemented ones. 

The thermo-physical properties of hydrate formation and decomposition proces es are 

extremely important in all problems of the natural gas hydrate. Quite accurate results 

have been obtained through instrumental methods and allowed to calculate the heat of 

hydrate formation, their heat capacities, and thermal conductivities. The latter is 

extremely important for the development of thermal methods of treatment of hydrate­

saturated deposits in gas production systems, for applications involving the removal of 

hydrates in gas production, transportation, and processing systems, and also for the 

climate calculations (Makogon, 1997). 

The impetus for measuring thermal conductivity measurement studies was initiated by 

Stoll and Bryan (1979). They indicated anomalously low thermal conductivity for bulk 

hydrate. Among the experimental studies on the thermal conductivity for hydrates of 

methane and several other gases, as well as for ice and water at various temperatures and 

pressures, results showed that the thermal conductivity of hydrate is close to that of water 

and slightly increases with temperature (Makogon, 1997). In turn thermal conductivity of 

ice at freezing temperature is four times higher than that of hydrates and decreases 
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significantly with temperature (Makogon, 1997). These results indicate that further 

research of thermal conductivity of hydrates of pure gases and natural gas mixtures, and 

of the hydrate saturated rock at various pressures and temperatures is extremely 

important. 

The anomalies in the thermal conductivity mentioned earlier often manifest themselves in 

the heat capacity (Callanan and Sloan, 1983). Heat capacity of hydrates is one of the 

major thermodynamic parameters affecting their accumulation, decomposition, and 

structural characteristics. The heat capacity of hydrates depends on the composition and 

type of hydrate (Callanan and Sloan, 1983; Makogon, 1997) as well as on the pressure 

and temperature (Makogon, 1997). Callanan and Sloan (1983) correlated the average heat 

capacity for four hydrates using differential scanning calorimeter. A polynomial was 

fitted to represent heat capacity data as a function of temperature for each hydrate using 

the information obtained from their experiments. 

2.4 Hydrate Formation 

Literature related to hydrate formation is summarized as follows: 

2.4. 1 Induction Time 

Hamrnershrnidt (1934) first indicated that there could be an induction period associated 

with the appearance of the first crystals from a hydrocarbon-water mixture. The gas­

water mixture should have a suitable composition at the right temperature and pressure 

such that hydrates could thermodynamically form. 
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During their studies on the formation of gas hydrates containing Ar, Kr, and Xe, Barrer et 

al. (1967) found that the induction period varied with the type of the hydrate former. The 

induction time is defined as the mean time lapse for the appearance of the first crystal in 

the fluid. However, this time includes the nucleation time and the time required for 

crystals to grow from the critical size (rc) to an observable size (Liu et al., 2003). 

Natarajan et al. (1994) discussed the induction phenomena associated with methane, 

ethane and carbon dioxide hydrate formation and offered a correlation for the induction 

time based on a large number of experiments with three hydrate formers namely, 

methane, ethane, and carbon dioxide. Skovborg et al. (1993) reported isothermal 

experimental data on induction times for the formation of methane and ethane hydrates. 

They found the induction time to be strongly dependent on the stirring rate of gas water 

mixture and on the deviation of potential driving force. This deviation, known as driving 

force, can be expressed as the degree of super-cooling, or the degree of overpressure or 

thermodynamjcally using a suitable function of the fugacity of the hydrate forrrung gas. 

Monfort and Nzihou (1993) found that probability of hydrate formation at a given time 

decreases with decreasing degree of super-cooling. In their experimental tests, they 

investigated the sub-cooling driving force, defined as the difference between equilibrium 

and experiment temperature (Teq - Texp), and its influences on hydrate nucleation and 

growth time. They showed that induction period was relatively short at large Temperature 

Driving Force (TDF). Moreover, they observed that when a solution that has been 
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prelinUnary hydrated and rapidly depressurized is used, during a second hydrate 

formation cycle: 

The induction time is greatly reduced. 

The crystal growth occurs on sites different from those observed during hydration 

in a fresh water solution. 

Herri et al. (1999) studied the nucleation and mechanism of crystallization of methane 

hydrate and observed that appearance of first crystals was generally not immediate, but 

occurs after a certain period. They studied experimentally the influence of pressure as a 

driving force and showed the good agreement between the experimental behaviour and 

the classic law of Zettlemoyer (1969) which formulated the induction period as: 

t int! =exp[-.,----2 _B __ J 
log (P,Y" I Peq) 

Where, B is a constant. 

(2.1) 

In his experimental study on the influence of agitation on the induction time, Sun C. 

(2004) showed the impact of system pressure and flow rate on induction period. He 

suggested that induction time was influenced by the turbidity time, the time when the 

solid hydrates grow in the solution, and the solubility time, the time need for gases to 

dissolute into the liquid and the aqueous solution when it is not yet saturated. He 

determined the induction period by analyzing the experimental data and carne up with the 

following formula: 
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t . = K - 8
- I - 1 ( 

JV J-m 
md j eq .JQ/Q; (2.2) 

Where, K and m are constants, fq the three phase equilibrium fugacity (MPa), J; the 

fugacity of the dissolved gas in the liquid, (MPa), Q is liquid flow rate and Qo is a 

reference flow rate (Q/Q0 shows the influence of agitation in the flow system). 

Jinping Li; et al (2004) studied the influence of agitation and adding surfactants and 

inoculating seeds on the induction time. Their target was to reduce the induction time and 

super-cooling degree of crystallization and to promote the growth rate of gas hydrates. 

Their experiments, however, concluded that there are some limitations in the effective 

use of the above methods in practice. Other means such as employment of ultrasonic and 

magnetic fields have been studied as well and have shown favourable effects on the 

formation of gas hydrates (Jinping, 2004). 

2.4. 2 Growth Rate 

It is important to note the distinction between nucleation, growth, and deposition of 

hydrate particles. During the nucleation process, solid crystals may form, but no 

operational problems will occur if the crystals are carried along by the flowing fluids. 

The hydrate growth may occur both before and after deposition, for instance on the pipe 

wall, although difficulties only arise if the solid begin to deposit and stop moving. 
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The nucleation process has a random component and hence is difficult to model. It may 

occur instantaneously or may take several days to start. On the contrary, the growth of 

hydrate crystals is amenable to mathematical modeling. 

While many factors influence the hydrate formation, the two major conditions that 

promote this process are the gas being (Sloan, 1998): 

1. At the appropriate temperature and pressure; and 

2. At or below gas dew point. 

Other factors that affect, but are not necessary for hydrate formation include turbulence, 

nucleation site, surface for crystal formation, agglomeration, and the salinity of the 

system (Mokhatab et al., 2006). Makogon (1981) described the factors which affect 

hydrate nucleation and growth; those factors include super-cooling, pressure, 

temperature, state of water, composition, and state of the gas-hydrate forming system. 

In general, temperature is thought to increase the rate of any kinetic process. However, 

higher gas temperatures also decrease the pressure driving force and will tend to impede 

the rate over the temperature range used. Driving force has been addressed by many 

authors. Knox et al. (1961) and Lee et al. (1998) identified the degree of super-cooling 

(TDF) as an important factor in the rate of hydrate formation. The growth rate response to 

perturbation in the (TDF) has been also addressed by Erik et al. (2001). Their results 

indicated that growth rate has a linear dependence with bulk temperature at constant 

equilibrium temperatures but is nonlinearly dependent on equilibrium temperature at 
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constant bulk temperatures. The latter unexpected behaviour was attributed to the 

ambiguity in the defined driving force. 

Higher pressures increase the rate of hydrate formation (Lee et al., 1998 and Hwang et 

al., 1990). However, the experimental results of Osegovic et al. (2005) indicated that the 

rate of nucleation unexpectedly levelled off at higher pressures because probably 

nucleation becomes mass transfer limited at higher pressures. 

Another factor that may be important in the hydrate formation process is the ability to 

stabilize the large cavity of the hydrate structure (Lee et al. , 1998). The stability and 

kinetics of hydrate depends on temperature and pressure as well as on the concentrations 

of all components involved in the phase transition (Svandal et al., 2005). Higher ga flow 

rate tends to produce higher rates of hydrate formation (Lee et al., 1998). This is because 

the higher gas flow rates dissipate the con iderable heat release generated during hydrate 

formation and also improve the mass transfer of water to the hydrate-forming surface. 

However, the experiments by S.Y. Lee et al. (1998) showed that the effect of gas flow 

rate levelled off at higher rates. Thus mass and heat transfer are no longer limiting. 

It was also noticed that no clear difference in growth rate was observed for the 95% 

methane and 97% methane mixtures, but the rates for gas mixtures and for carbon 

dioxide were faster than for pure methane (Lee et al., 1998). Taro et al. (2002) also 

observed that the growth rate of C02 hydrate became fast particularly in the temperature 

range just below melting point of ice. 
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Nerheim et al. (1992) reported the results of their investigation on hydrate kinetics in the 

nucleation and early growth phase by laser light scattering. Their measured nuclei sizes 

were found to compare well with those calculated by Englezos et al. (1987a). The model 

of Englezos (1987 b) was adopted to predict the growth of hydrates and it was found that 

the model predictions matched the experimental data well. Hwang et al. (1990) studied 

the formation of methane hydrates from the melting of ice and concluded that the rate of 

formation depended on the rate of supply of hydrate former to the growth surface and the 

rate of removal of the heat from the forming surface. 

Lee et al. (1998) experimentally measured the rates of hydrate formation at various 

conditions. They physically simulated their system such that gas was flowing at rates 

comparable to those that might exist in gas transmission pipelines. Hydrates formed at 

7.58 MPa and around 280 K in a mixture of methane with 3% and 5% propane. The 

reaction rates for forming hydrates were proportional to the pressure driving force, the 

pressure difference between the system pressure and the equilibrium pressure. According 

to their results, linear growth rates of 0.2 crn/h were likely to represent the maximum 

growth rate that could be expected in gas transportation lines operated at ocean 

temperatures of 275-277 K. This is because as hydrates thicken, they can serve as 

insulators of the line, which will result in slower cooling of the produced fluids. The 

insulation will produce higher transportation temperatures, which would inhibit hydrate 

formation . 
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Bilyushove et al. (1988) analytically studied the hydrate formation in a pipeline. He 

mathematically modeled the process of hydrate formation in pipeline transport of a moist 

gas. The analysis of the result showed that hydrate formation is possible if the input 

concentration of water vapour in the gas exceeds the minimum required for the given 

conditions, which depends on a number of parameters such as external temperature, the 

heat liberation coefficient, and the thermal conductivities of the hydrate and surrounding 

material. His model also concluded that the hydrate is distributed non-uniformly over the 

length of the pipe. The position of the maximum hydrate layer thickness move down the 

flow as time passes and the velocity of this motion decreases with increase in the 

concentration. Then the hydrate layer grows monotonically with time, which in case of 

long term use of the pipeline with unchanging gas parameters can lead to total blockage 

of the pipe. Also, increase in temperature of the surrounding material leads not only to 

increase in the dew point of the gas transportable without hydrate formation, but also to a 

slowing of the hydrate formation rate. 

The coefficient of heat liberation from the gas to the hydrate has a significant effect on 

the process of hydrate formation and decomposition in wells and pipelines. Results 

showed that with increase in the heat liberation coefficient, the leading edge of the 

hydrate layer is located closer to the input section and the thickness of the hydrate layer 

increases significantly (Bilyushove et al. 1988). Hydrate formation in the tube depends 

significantly on the heat and mass liberation coefficients, which in turn are determined by 

the mass flow rate of the gas. On the other hand the gas flow rate determines the gas flow 

parameters and through them affects the hydrate formation process. 
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Svandal et al.'s (2005) experimental study on growth and dissociation of C02 showed 

that the growth and dissociation of C02 hydrates were governed by the diffusion of C02 

in the aqueous phase particularly the initial mole fraction of C02 in the aqueous phase. 

Recently, Tegze et al. (2006) applied a phase field theory with model parameters 

evaluated from atomistic simulations/experiments to predict the nucleation and growth 

rates of solid C02 hydrate in aqueous solutions . They determined the growth rate from 

phase field simulation as a function of composition. They found that the growth rates 

predicted by theory were about three orders of magnitude too high in comparison with 

respective experimental observation. They suggested that the kinetic barrier reflecting the 

difficulties in building the complex crystal structure was the most probable source of the 

deviation. 

Glew and Hagget (1968 a and b) studied the kinetics of ethylene oxide (EO) hydrate 

formation. They correlated their results and found the EO hydrate growth was limited by 

heat transfer from hydrate slurry. Different dependencies, however, were found by 

Pangborn and Barduhun (1970), who studied the kinetics of methyl bromide hydrate 

formation in a continuous stirred tank reactor. Their study showed that hydrate formation 

rate appears to be controlled mainly by the kinetics of interfacial reaction to form 

crystals. 

Graauw and Rutten (1970) proposed a mass transfer-based model for the kinetics of 

hydrate formation. They used chlorine and propane as the hydrate forming substances 
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and showed that mass transfer at the hydrate-forming substance-water interface can be a 

rate-determining factor. However, the hydrate formation reaction at the surface can also 

become a rate-determining step. Svandal et al. (2006) confirmed the dominating effect of 

the mass transport of solutes towards the growing front. 

Scanlon and Fennema (1972) found in their studies of the formation of ethylene oxide 

hydrate (structure I) and of tetrahydrofuran (THF) hydrate (structure II), that at any 

degree of super-cooling, hydrate-forming solutions crystallized more slowly than pure 

water, and the THF hydrate crystallized more slowly than hydrate of ethylene oxide. 

They attributed this difference to the fact that the rate of hydrate formation should decline 

as more molecules of water are required to associate in an orderly fashion with each 

molecule of hydrate former. 

Werezak (1969) examined the rate at which the solute concentration was increasing due 

to hydrate formation in aqueous solutions of coffee extract, sucrose, and sodium chloride. 

It was found that miscible hydrate formers exhibited higher rate of formation compared 

to the slightly soluble hydrate formers used. The rate of solution concentration was found 

to be a function of the initial thermal driving force and heat transfer capabilities of the 

hydrate formation vessel. 

2.5 Preventing Hydrate Formation 

Gas hydrates, as mentioned in Chapter 1, may be of potential benefit both as an important 

source of hydrocarbon energy and as a means of storing and transporting natural gas. 
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They however pose severe operational problems, as the crystals may deposit on the pipe 

wall and accumulate as large plugs that can completely block pipelines and lead to 

shutting in production (Sloan, 1998 and GPSA, 1998). 

Methods of preventing hydrate solids development in gas production systems have been 

of considerable interest for a number of years (Bufton, 2003). The chemical methods, 

which can be used either to prevent or to remove plugs, consist of injecting additives in 

the pipe that act differently on hydrate agglomeration according to whether the inhibitors 

are thermodynamic (TI), kinetic (KI), or dispersant (DI). 

The hydraulic removal method is based on the dissociation of the hydrate plug by 

depressurization. This method seems promising, given the porous structure of the gas 

pipeline plugs (Sloan, 2000; Kelkar et al., 1997). 

Thermal methods consist of delivering a local heat flow towards the plug through the 

pipe wall in order to raise the system temperature above the hydrate formation point. This 

method is possible for onshore pipelines but unsuitable for subsea equipment (Sloan, 

1998). Mechanical methods, such as pipeline pigging, can be used to prevent hydrate 

plugs. Pipeline pigs are inserted into pipe and travel throughout the pipeline, driven by 

fluid flow. These projectiles then remove the obstacles or deposits they encounter (Sloan, 

2000). 
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The ultimate remedy for hydrate problem is to remove or reduce the water content of the 

gas using gas dehydration processes. However in practical field operation, water can be 

economically removed only to a certain vapour pressure and residual water vapour 

always exists in a dry gas (Denney, 2005). Gas dehydration reduces the risk of rapid 

hydrate formation and deposition. 

2.6 How This Work Helps the Hydrate Community 

This work involves an important problem in oil and gas production, processing and 

transportation. The question is: if hydrates form due to a contraction (such as an orifice) 

in a pipe, where would be the accumulation spot and how this distance could be related to 

the geometry of the contraction, pressure reduction, and flow configuration? 

The following questions would be answered in this thesis: 

1. What are the factors that dominate the growth and distribution of hydrates? Theoretical 

correlations for the growth rate and particle distribution of a hydrate are developed. Two 

main processes govern the formation, growth, and distribution of hydrates; mass transfer 

and the reaction kinetic. The correlations could account for the behaviour of the process 

of hydrate growth and size distribution with time. 

2. What are the major variables that influence hydrate deposition process and how are 

they related? There are many factors that may dominate the process of particle travels 

such as particle size, particle-wall interaction, and flow conditions and geometry of the 

gas carrier. Our model should be comprehensive enough to take the impact of these 
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parameters into consideration and be able to predict the location of hydrate accumulation 

as accurately as possible. 

3. How do we quantitatively anticipate the agglomeration position? A novel mathematical 

model proposed in the thesis divides the migration of the particle towards the pipe wall 

into two main regions, the fully turbulent and the sublayer regions; the latter is modelled 

based on the size of the particle and on the forces experienced by the particle. 
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CHAPTER3 

Mathematical Model of Flow Structure 

This chapter summarizes the transport equations of gas/solid multiphase flow in 

deferential form and explains briefly the computational fluid dynamics (CFD) technique 

used to solve these equations. More details can be found in many texts and literatures 

such as (Brennen, 2005), (Gidaspow, 1994) and Jassim et al. (2006). 

3.1 Equations of Motion 

It is implicitly assumed that an infinitesimal volume of dimension e is considered to 

define the flow model. The dimension parameter e is considered such that it is very much 

smaller than the typical distance over which the flow properties can significantly vary but 

is very much larger than the size of individual phase elements (the disperse phase 

particles, drops, or bubbles). The first condition for the dimension parameter is necessary 

to define derivatives of the flow properties within the flow field. The second condition is 

necessary so that each averaging volume (of volume e3
) contains representative samples 

of each of the components or phases. 
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3.1.1 Continuum Equation for Conservation of Mass 

The 3D continuity equation of component N can be written as: 

(3.1) 

Where, UN; velocity and aN volumetric fraction of the component (or phase), N. 3 N, called 

the mass interaction term, is the rate of transfer of mass to the phase N from other phases 

per unit total volume. 

For each phase or component there is continuity equation present in the flow called the 

Individual Phase Continuity Equation (IPCE). Since the mass as a whole must be 

conserved whatever phase changes happen, it follows that: 

(3.2) 

In the other words, the sum of all the IPCEs results in a Combined Phase Continuity 

Equation (CPCE) that does not involve 3N as follows: 

(3.3) 

or 

(3.4) 

where, p is mixture density 

3.1.2 Disperse Phase Number Continuity 

Complementary to the equations of conservation of mass are the equations governing the 

conservation of the number of particles, drops, or bubbles that constitute a disperse phase. 
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The equation takes the form: 

(3.5) 

Where, n0 is the number of particles of the disperse component, D, per unit total volume. 

D!Dt denotes the Lagrangian derivative following the disperse phase. This demonstrates a 

result that could, admittedly, be assumed a priori . Namely that the rate of transfer of mass 

to the component Din each particles, 3N/n0 , is equal to the Lagrangian rate of increase of 

mass, p0 v0 , of each particle. 

3.1.3 Continuum Equation for Conservation of Momentum 

Viewed from Lagrangian perspective, the momentum equation of component N is: 

Where, the left-hand side is the normal rate of increase of the momentum of the 

component N. The term SN UNk is the rate of increase of the momentum due to the gain of 

mass by that phase. XNk is the force that each component impose on the component N. J0 

= 0 for the disperse phase and Jc = 1 for the continuous phase. 

If the momentum equations, Eq. (3.6), for each of the components are added together, the 

resulting Combined Phase Momentum Equation (CPME) becomes the following: 

(3.7) 
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3.1.4 Disperse Phase Momentum Equation (DPCE) 

Newton's equation of motion for an individual particle of volume VD may be written as: 

(3 .8) 

Where, Fk is the force that the surrounding continuous phase imparts to the particle in 

direction k and includes not only the force due to the velocity and acceleration of the 

particle relative to the fluid but also the buoyancy forces due to pressure gradients within 

the continuous phase. Expanding Eq. (3.8) and using Eq. (3.5) for the mass interaction, 

3D, one obtains the following form of the Disperse Phase Momentum Equation (DPME): 

(3.9) 

Now if we set a0 = n0 V0 in Eq. (3.6), expand and compare the result with Eq. (3 .9), 

using the continuity, we would end up with: 

(3.10) 

Hence the appropriate force interaction term in the disperse phase momentum equation is 

simply the sum of the fluid forces acting on the individual particles in a unit volume, 

namely n
0

Fk . Extensive discussions of the forces acting on the particle (drag, buoyancy, 

left and adhesive) can be found in the literature (Brennen, 2005). 
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3.1.5 Velocity Relaxation Time 

Downstream of a disturbance that creates a relative velocity, Wk (defined as the difference 

between the particle velocity, Vk = Uok, and the fluid velocity, Uk = Uck, that WOUld have 

existed at the centre of the particle in the latter's absence), the drag force will tend to 

reduce that difference. Hence it is useful to characterize the rate of equalization of the 

particle (mass, mp, and radius, rp) and fluid velocities by defining a velocity relaxation 

time, tu. For gas flows laden with small particles, it is common to assume that the 

equation of motion can be approximated by just two terms, namely the particle inertia 

and a Stokes drag, which for a spherical particle is 6n:Jicrp Wk (Mokhatab, 2006). It 

follows that the relative velocity decays exponentially with the time constant, tu, given 

by: 

(3.11) 

3.1.6 Equation for Conservation of Energy 

The IPEE may be written as follows: 

(3.12) 

wheree~, total internal energy density; eN rate of heat addition toN from outside CV; 

esN Rate of heat transfer toN within cv including the heat of formation; WN, rate of 

external shaft work; W3 N Rate of work done to N by other components in CV. o-cu 

stresses acting on the component Non the surface of the control volume 
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The two terms involving internal exchange of energy between the phases may be 

combined into an energy interaction term given by£ N = 83 N +WEN. It follows that: 

(3.13) 
N N 

Moreover, the "work-done" term, WEN, may clearly be related to the interaction forces 

XNk· In a two phase system with one disperse phase we have the following: 

E>Sc = -830 and and (3.14) 

IPEE equation for each phase or component can be summed to obtain the combined 

phase energy equation (CPEE): 

(3.15) 

where, Q =:LeN and 
N 

Using Eq. (3.14), continuity equation, momentum equation, and the relation: 

(3.16) 

Between the internal energy, eN, the specific heat at constant volume, cvN , and the 

temperature, TN, of each phase, the thermodynamic form of the Eq.( 3.12) can be written 

as follows: 

{
()TN dTN} s: dUe; ~ 

p NaNcvN --+uN; -- = uN(J'CiJ --+E>N + WN + E>.!:.. N 
dt dX; dXJ (3.17) 

+ XN;(uo; -uN;)-(e~ -uN;UN;)3N 

And, summing IPEE, the thermodynamic form of CPEE is: 
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(3 .18) 

In Eqs. (3.17) and (3.18), it has been as umed that the specific heats, cvN , are constant 

and uniform. 

3.1.7 Temperature Relaxation Time 

Analogous to the definition of velocity relaxation time, tu, the temperatures of the phases 

might be different downstream of a flow disturbance and consequently there would be a 

second relaxation time associated with the equilibration of temperature through the 

process of heat transfer between the phases. This temperature relaxation time is denoted 

by tT and can be obtained by equating the rate of heat transfer from the continuous phase 

to the particle with the rate of increase in heat stored in the particle. The heat transfer to 

the particle can occur as a result of conduction, convection, or radiation. However, for 

simplicity, we neglect the radiation component. 

Conduction Component: if the relative motion between the particle and the gas is 

sufficiently small, the only contributing mechanism is the conduction and it will be 

limited by the thermal conductivity, kc, of the gas (because the thermal conductivity of 

the particle is usually much greater). Then the rate of heat transfer to a particle (with 

radius rp) is given by 27r rp kc (Tc- To), where Tc and To are representative temperatures 

of the gas and particle respectively. 
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Convection Term: To add the component of heat transfer by convection caused by 

relative motion, we define the Nusselt number, Nu, as twice the ratio of the rate of heat 

transfer with convection to that without convection (Mokhatab, 2006). Then the rate of 

heat transfer becomes Nu times the above result for conduction. Typically, the Nusselt 

number is a function of both the Reynolds number of the relative motion, Re = 2 W, r,lvc 

where W, is the typical magnitude of (uo; - uc;)], and the Prandtl number, Pr = pc uc 

cpc/kc. One frequently used expression for Nu (Ranz and Marshall 1952) is: 

I I 

Nu = 2+0.6Re 2 Pr 3 (3 .19) 

Assuming that the particle temperature has a roughly uniform value of T0 , it follows that: 

(3.20) 

Where, the material derivative, D/Dt, follows the particle's temperature. This provides 

the equation that must be solved for T0 : 

DTv Nu (Tc -Tv) 
--= 

Dt 2 lr 
(3.21) 

where, 

(3.22) 

Obviously tT represents a typical time for equilibration of the temperatures in the two 

phases and is referred to as the temperature relaxation time. 

The above general equations are built in the CFD software, so one can predict the flow 

properties either separately (Eulerian model) or using slip velocity (mixture model). The 
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results obtained will be used in the hydrate nucleation and growth models which will be 

discussed in the next chapter. 

3.2 Technique of Solving Transport Equations (CFD) 

CFD techniques are currently used in industry for design purposes in many different 

areas (e.g., propulsion, chemistry, combustion, turbo-machinery, etc.). The importance of 

such techniques for integration of the Navier-Stokes equations is steadily growing 

because of the fact they improve the design reliability and flexibility. Three main 

methodologies in the CFD modeling research can be highlighted (Carvero and Satta, 

2000) as: a) flexible and robust schemes for steady or unsteady flows for all fluid 

velocities, b) turbulence modeling (k-E, k-oo, Reynolds stress), and c) fluid properties 

modeling (two phase, real gas, and cryogenics). 

At high Reynolds numbers, turbulent fluctuations transport a far greater amount of 

momentum than viscous forces throughout most regions of the flow. Thus the modeling 

of the Reynolds stress is a vital part of the flow prediction. A turbulence model is a 

means of deriving the Reynolds stresses (and other turbulent fluxes) in order to close the 

mean-flow equations. 

Turbulent flow can be modeled by using several schemes. However, the k-E model (Pope, 

2000) is used here due to its frequent use for industrial applications, its relative accuracy, 

and its incorporation in the most commercial CFD codes. 
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The commercial software adopted in our work is built based on the Finite Volume 

Method. The solver discretizes the mass, momentum and energy equations in integrated 

form. The general form of the transport equation is: 

J ~( J p~VJdt+ J J n.(p¢u)dAdt = J J n.(rgrad¢)dAdt+ J J S; dVdt 
!!JOt CV arA atA atCV 

(3.23) 

Equation (3 .23) is used as the starting point for computational procedures in the finite 

volume method. By setting qJ equal to 1, u, v, and T and selecting appropriate values for 

the diffusion coefficient r and the source termS¢, the mass, momentum and energy 

equations are obtained. 

The governing equations are transformed into algebraic equations for every cell. The 

discrete equation for 20 becomes: 

(3.24) 

ap = aw +a, +as +an -b (3 .25) 

Where, a stands for the coefficient of the property qJ (diffusion, advection, etc.) and b is 

the source term coefficient. 
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CHAPTER4 

Hydrate Nucleation, Growth and Distribution 

In principle, the problem of finding the size distribution function for hydrate is 

sufficiently hard both from physical and mathematical prospective. In this chapter, we 

endeavour to confine our consideration to a derivation of a formula for size distribution 

function which satisfies the Law of Mass Action. Two nucleation models are proposed 

and compared in this work, the first model is based on mass transfer alone while the 

second is based on both mass transfer and hydrate formation reaction kinetics. A 

comparison between the two models in terms of growth rate is also presented in this 

chapter. 

4.1 Review 

The basic behaviours of flowing particles such as deposition, transport, lifetime, and 

optical influence, depend strongly on their size, their chemical composition, and on the 

nature of the carrier gas. 

Among considerable work reported in the literature concerned with the Particle Size 

Distribution PSD, Den Ouden and Thomson (1991) proposed a simplified form of 

population balance which could not address several key issues related to the full 

precipitation problem. Tandon and Rosner (1996) measured the deposition rate using the 

influence of the particle size distribution. Wachi and Johns (1991) studied precipitation 

effects in gas/liquid mass transfer by means of population balances. 
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In his study on aerosol particles in the early 1950's, Junge (1963) found in measurements 

that atmospheric aerosol particles had the interesting property that the mass was almost 

uniformly distributed in equal geometric intervals. Then he derived the Junge distribution 

function as follows (1963): 

n = dN =Cr-a 
dlogr 

(4.1) 

Where, N is the particle number concentration, Cis a constant, r is the particle radius, and 

a is an adjustable constant in the range between 2.2 and 4.0. 

The Junge distribution was proved to be very good for dispersed particles, especially for 

particles with radii larger than 0.1 f.tm. Because of the limitation of the development of 

aerosol technology to measure particles with sizes smaller than 0.1 f.tm in 1950's, Junge 

could not find a suitable size distribution function to describe fine size particles. Usually 

particles in fine size region have bimodal and other distribution shapes because of the 

strong interactions among them such as coagulation and diffusion collision. 

The present chapter starts with explaining the phenomena of hydrate nucleation, which is 

mainly affected by mass transfer and reaction kinetics. The value of each term will be 

evaluated and discussed, followed by presenting a mathematical model for particle 

distribution (n) based on conservation of mass. The influence of saturation and gas-

particles relative velocity on the growth rate is also discussed. Finally the discussion 

concludes with a comparison between the results of the two proposed models in 

expressing the distribution of the particles with time and size growth rate. 
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4.2 Theory 

4.2.1 Mass Transfer 

The mass transfer rate between the particle and the gas medium can be expressed by the 

mass transfer rate equation on the particles: 

(4.2) 

Where, J +stands for the flow rate of vapour molecules direct towards the particle and 

J _is the outward flow rate from the particle surface; mv is the mass of a single molecule 

of vapour. The solution of the equation depends ignificantly on Knudsen number. For 

the case of continuum region Kn<<l, the net molecule flow rate J = J + - J _obeys the 

Pick's law: 

1 = - D dz 
v dr 

(4.3) 

Where, z is the molecule number density ( p = mvz ); Dv is the molecule diffusivity of 

vapour in a fluid media. With boundary conditions z(r) = zs at r = rP and z =zoo at 

r = oo, we obtain the solution of the mass transfer equation: 

(4.4) 

Since the particles move in a gas flow, the moving flow around the particles cause an 

increase in mass transfer as a result of the 'forced' convection besides the 'free' diffusion 

convection. Eq. 4.4 is valid for free diffusion convection and needed to be modified for 

the consideration of relative movement between particles and gas medium. Therefore, by 

introducing particle Sherwood number (Sh), Eq. 4 .4 becomes: 

(4.5) 
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When the system under free diffusion convection, Sherwood number is (Sh =2), and Eq. 

4.5 becomes identical to Eq.4.4. 

For forced diffusion convection, a following new modified expression based on 

experimental data is considered (Kulmala and Vesala, 1995): 

Sh = 2.009+0.514Re~2 Sc113 (4.6) 

Where, Rep is the particle Reynolds number: 

(4.7) 

Uris the ga -particle relative velocity; Vg i the kinematics visco ity of the carrier gas. 

4.2.2 Model of Homogenous Nucleation and Droplet Growth (Model 1): 

The saturation ratio defined in multi-component mixture as the ratio of actual molar 

fraction of component kin the vapour pha e (yv) and the equilibrium molar fraction (yeqv). 

S=~ 
Y eqvk 

(4.8) 

and its value of a solution at the temperature T can be estimated using the following 

formula: 

(4.9) 

Where, D..H, is the heat of solution (for hydrate 13.26x103 J/mole), (Max and Pellenbarg, 

1999), ~Tis the super-cooling and R is the ga constant (8 .314 J/mole K). 

Using saturation ratio (S) as a driving force, the critical radius is defined a : 

45 



(4.10) 

Where, 

PL: Liquid density 

Rv : Specific gas constant 

The droplet growth is governed by diffusion and the change in droplet size over time is 

represented by: 

(4.11) 

Where, 

Sh: Sherwood number for mass transfer (Eq. 4.6) 

MW : Molar mass 

nv: Vapour molar density 

Pressure and temperature dependence diffusivity coefficient is considered in the present 

work. The following equation for estimating the rate of diffusivity has been developed 

from a combination of kinetic theory and corresponding states arguments (Bird et al., 

2002): 

( J
b 1/2 

D _ a T p p 11 3 T T s1 12 1 1 
AB - p .JT::T:: { cA cB ) { cA cB ) ( MW + MW J 

cA cB A B 

(4.12) 

Where, DAB is the binary diffusivity in (cm2/s), P is the pressure in (atm), T is the 

temperature in (K). 
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Analysis of experimental data gives the dimensionless constants a, b as follows (Bird et 

al., 2002): 

For no~polar gas pair: a= 2.745 X 10-4 ; b = 1.823 

For pairs consisting H20 and a nonpolar gas: a= 3.640 x 10-4 ; b = 2.334 

4.2.3 Model of Reaction Kinetics combined with Mass Transfer (Model II): 

The kinetics of the hydrate formation reactions can be written as (Clarke and Bishnoi, 

2000; Clarke and Bishnoi, 2001; Englezos et al, 1987a,b; Kim et al., 1987): 

(4.13) 

Where, rm (mollm3 s) is the consumption rate of methane; k (mollm2 Pa s) is the kinetic 

constant of hydrate formation or dissociation; As (m2/m3
) is the reaction surface area, 

which is essentially the interface area between hydrate particles and the surrounding 

phases; fiPa) i the fugacity of methane under the local temperature and pressure; /eq(Pa) 

is the methane fugacity at the equilibrium pressure corresponding to the local 

temperature. 

For hydrate dissociation, the kinetic constant k is written in an Arrhenius-type equation as 

(Kim et al., 1987>: 

( 
!).G. J k =k0 exp -~ 
RT 

(4.14) 

Where, ko is the intrinsic kinetic constant and LIG* is the activation energy. For sl 

methane hydrate in a bulk phase system without salt, ko= 3.6 x 104 mol/m2 Pa s, and 

LIG*/R = 9752.73 K, as measured by Clarke and Bishnoi (2001). Measurement of kinetic 
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constant for hydrate formation is more difficult than for dissociation. Englezos et al 

(1987a) measured the value of formation of sl methane hydrate from methane gas and 

aqueous-phase. The results exhibited an ambiguous dependence on temperature. In our 

analysis, we assume that the kinetic constant for hydrate formation is constant and its 

default value takes the average of the results measured by Englezos et al.' (1987a) which 

is 0.5875 X w-ll mol!m2 Pa s. 

The determination of reaction surface As in Eq. (4.13) has been numerously proposed in 

the literatures. Among those were: Yousif et al (1991) ; Masuda et al (2002); and Sun et 

al (2006). For simplicity, the model of Masuda et al., which estimated the average 

surface area to be approximately 3.75 x 105 m2/m3
, is adopted in this research. 

Eq. (4.13) can be manipulated to determine the rate of growth due to nucleation process: 

(4.15) 

Where, MW is the molecular weight of the gas (g/mol); p" density of the gas hydrate 

particle (kg/m3
). For sl methane hydrate, Eq. 4.15 becomes: 

drp = 1.2689 X 1 o - Il (J- f eq )r 
dt p 

(4.16) 

Where,fand f eq are in (Pa). 

Combining Eqs (4.11) and (4.15), the final expression of the hydrate growth rate as a 

re ult of mass transfer and kinetic reaction is: 

drP = kA,. MW{J - J.J r +(nv(Sh)(D)MWJ(y - Yeq ) 

dt 3000pP " PL 2rP 
(4.17) 
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Assumptions: 

• The growth rate due to kinetic reaction is independent of the surface area 

• The particle-gas relative velocity is small 

• For methane fugacity and other gas properties calculations, ideal gas has been 

assumed at this stage for simplicity. 

4.3 Size Distribution model: 

The growth equation can be expressed as (Brock, 1983): 

on(v,t) a ( ) -
0
-t -+-

0
-v I u(v,t)n(v,t) = A ,(v,t) (4.18) 

Where, n(v,t) is the particle size distribution function defined as the number of particles 

per unit volume, with particle volumes is in the range (v , v + dv) at time t. I u (dvl dt) is 

the growth rate of particle volume. A, (v, t) is the 'source' rate accounting for emission 

and other particle sources as well as sinks. In this study, we can neglect the source term 

since there is no external sources or sinks of particle. 

Defining I , = (dr, I dt) as the radius growth rate of a single particle ( I u = 4m-: I , ), and 

usingtheapproximation: I ,= I ;, , I m= (dm, ldt),Eq.(4.18)canbewrittenas: 
4m-, P, 

on(r,,t) a ( ) 
----'---+- I ,(r,,t)n(r,,t) = 0 

ot or, 
(4. 19) 
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4.3.1 Solution of Mass Transfer Model: 

Simulating the evolution of the particle size distribution with time along the pipe can be 

obtained through introducing Eq. (4.11) into Eq. 4.19. 

Eq. 4.11 for single component can be written as: 

(4.20) 

Wh f3 = (n" (Sh)(DJMW J ( _ ) ere, I y Y eq 
2p L 

(4.21) 

Sherwood number is a function of the particle Reynolds number which in turn is a 

function of gas-particle relative velocity and particle radius as shown in Eq.4.6. However, 

since the particle relative velocity is relatively low, we assumed in our analysis that the 

Sherwood number is non-size dependant. This assumption is reasonable especially in the 

tiny particle which its average radius is of order 10-8 m while the particle relative velocity 

(ur) considered in our model is relatively small ( -5 m/s) and the gas viscosity is of order 

Combining Eqs. 4.19 and 4.20, the deferential equation for size density would be: 

(4.22) 

and the solution of Eq. 4.22 (details are in discussed in Appendix A): 

(4.23) 
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Where, no is the concentration of sites in the system, on which the clusters of the new 

phase can form (particle per m\ 

Introducing the following parameters in Eq. (4.23): 

Particle Fourier number: Fo = jJ,t 
r2 
c 

Reduced radius : r • = !_, 
r, 

Eq. (4.23) becomes: 

.2 
• • r n (t,r) = 1.65r exp(Fa--) 

2 

Where, a dimensionless parameter: n • = !!:..._, 
no 

4.3.2 Solution of Model of Reaction Kinetics with Mass Transfer: 

Using Eq. (4.17), the general size distribution function can be written as: 

dr fJ 
_P =-' +/3 r 
dt r P 

2 
P 

Wh j3 -kA-=-sM_w_(_J_---=f•.J......q) 
ere = 

' 
2 3000 p p 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

One can now simulate the evolution of the particle size distribution with time. 

Substituting Eq (4.27) into Eq. (4.19), the deferential equation for size density would be: 

(4.29) 

and the solution of Eq.4.29 would be: 
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(4.30) 

Again by introducing Eqs. 4.24 and 4.25, Eq. 4.30 becomes: 

* (F *)- /31 rexp(Fo) 
n. o, r - 2 •2 2 

f32rc (r + /31 I f32rc ) 
(4.31) 

Details of the solution of Eq. (4.29) are presented in Appendix-B. 

4.4. Analysis and Discussion: 

In the present study, the classical nucleation theorem is applied to hydrate formation in a 

saturation gas flow. The analysis here begins with the investigation on the growth rate of 

particles in each model, followed by studying the influence of the saturation and particle-

gas relative velocity on the radius growth rate. Then the comparison of particle size 

distribution results for the two models is presented. 

4.4.1 Growth of particle radii (Model I) 

Due to the mass transfer between the gas (and water vapour) and solid particles, 

nucleation could occur. However, the formed hydrate particles may melt if the driving 

force is vanished. In turn, when the flow is still under driving force, the particles grow 

and reach the critical size; such particles are stable and will stay in the solid form even 

though the driving force is eliminated. As mentioned earlier, the driving force of the first 

model used in our analysis is the supersaturation of the gas. Figure ( 4 .1) shows the 

growth of the particle radius as a function of time. The relation reveals that the radius 

grows exponentially with the time. In contrast the speed of the particle growth decreases 

with the time as shown in Figure (4.2). Thus, Small size particles grow much more 
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quickly compared to large size particles. In other word, the particle growth decelerates as 

the particle becomes large (see Figure 4.3). Therefore, the nuclei starts forming rapidly 

and as its size develops, the growth rate becomes slow . 
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Figure ( 4.1) Growth of hydrate particles (Model I) 
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Figure (4.3) Hydrate growth rate vs. particle radius (Model I) 
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4.4.2 Growth of particle radii (Model II) 

Since the particle growth in the process of hydrate formation is affected by the reaction 

kinetics, time, as well as mass transfer, a second driving force, the fugacity of the gas, 

takes a part in the particle growth process. The influence of the reaction time appears 

after the particle reaches the critical size as shown in Figure (4.4). While the significance 

of the mass transfer diminishes as the particle size grows, the reaction kinetics however 

dominates the process of hydrate formation. Figure (4.5) shows the trend of the reaction 

and condensation terms as a function of particle radii. One can conclude that the effect of 

condensation decreases reciprocally and almost vanishes as the size of the particle 

becomes relatively larger. In turn, the reaction rate starts to control the growth process 

and even becomes the sole effective driving force in the particle growth process. 

The existence of kinetic reaction in the process of nucleation decelerates the particle rate, 

causing a delay in the particle evolution as illustrated in Fig. (4.6). 
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Figure (4.4) Effect of hydrate formation reaction kinetics on particle growth rate 
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Figure (4.6) Delay in size growth due to reaction kinetic process 
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4.4.3 Effect of Saturation 

The supersaturation ratio (S), the ratio of actual molar fraction of a component in the 

vapour phase and the equilibrium molar fraction, is an important parameter which 

influences the free energy change, critical radius, and critical energy at a fixed 

temperature (Sakrani et al, 2005). The effect of saturation ha been tudied in this work. 

The result reveal the very significant rule that the larger the super aturation ratio, S, the 

maller is the critical radius rc. This could attribute to the fact that a the super aturation 

ratio increa es, it will raise the molecular bombardment rate and reduce both the critical 

radius rc and the attendant height of the activation energy barrier LJG• to uch extent that 

the probability of some sub-critical embryo fortuitously growing to supercritical size in a 

short time approaches unity (Abraham, 1974). 

Figure (4.7) illu trates the particle size a a function of time for various saturation values. 

The graph concludes that the particle grow fa ter in a short period of time when the 

saturation ratio increases. Further, an increase in the saturation ratio results in a 

significant deviation in the particle growth rate as illustrated in Figures (4.8a) and (4.8b). 

In fact, higher aturation ratios enhance the growth rate by improving the diffusion 

process. 
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4.4.4 Effect of Relative Velocity 

The gas-particle relative velocity is studied and analyzed in the present work. Figure (4.9) 

shows the particle radii growth at different relative velocities. The relative velocity works 

as a driving force and increases the particle growth rate. This could be attributed to the 

increase in the mass transfer since the relative velocity results in inducing the convective 

mass transfer, assists the diffusion, and therefore accelerates the mass transfer. 

The relative velocity shows no significant effects on the particle growth rate for very 

small particle sizes, however, the influence of the relative velocity can clearly appear at 

relatively larger sizes as shown in Figure (4.10). Such behaviour could be explained by 

the fact that the particle Reynolds number required for the convective mass transfer 
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process becomes more significant as the size of the particle increases. Figure (4.11) 

represents the growth rate as a function of the particle size for various relative velocities. 

Again the growth rate becomes faster when the relative velocity increases. 
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Figure (4.9) Influence of relative velocity on hydrate particle size growth 
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Figure (4.11) Effect of relative velocity on hydrate growth rate verses particle size 

Aldaco et al (2007) performed experimental studies on the crystallization process in 

fluidized bed reactors. They were interested in the influence of the saturation ratio and 

the relative velocity of particles on the particle growth rate. Their experimental results 

support the modeling proposed in this thesis in that the increase in the relative velocity 

and supersaturation gives rise to an increase in the particle growth rate. This conclusion 

was also observed by Yang (1999), who simulated the growth of aerosol condensing 

particles and came up with identical trends. He also found that the relative velocity 

between the particles and the fluid have a noticeable influence on the growth rate for the 

particles with radii larger than 1.0 1-1m. The results of the influence of supersaturation and 
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relative velocity presented in this thesis are in agreement with the conclusions of Aldaco 

et al (2007) and Yang (1999). 

4.4.5 Size distribution 

Particles suspended in a gas - the gas being either confined in an enclosed space or 

flowing in a conduit or through equipment- are in a state of constant motion. The particle 

motion generates a change in size distribution as a result of diffusivity, gravity, and 

thermal activity. Other processes responsible for changes in size distribution are 

condensation, which occurs on the existing particles (particle growth), and nucleation, 

which occurs to generate entirely new particles (Nadkarni and Mahalingam, 1985). The 

impacts of condensation and reaction kinetics on the particles distribution are of interest 

in the present work. 

In Section 4.3 we derived an analytical expression for particle size distribution based on 

mass balance for two cases: condensation alone and condensation with reaction . In this 

section we compare the results of both models and discuss the significance of parameters 

in each model. Figure ( 4.12) demonstrates the particle size distribution as a function of 

particle radius (rp) for both cases. The plot shows quantitatively the impact of reaction 

kinetics on the population equation. The impact increases the domain of particle sizes that 

are instantaneously formed. 

The behaviour of size distribution in each case remains unchanged with the time as 

shown in Figure ( 4.13). In fact both cases have the same exponential term in their 
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expression, (see Eqs. 4 .23 and 4.30), which means no discrepancies in the behaviour of 

the particles population with time. However, in the case of Model II, the number of 

particles definitely increases as a result of the second driving force term. 

Finally, Figure (4.14) illustrates the number of particles formed as a function of time for 

various particle sizes. The graph shows that the number of particles with larger sizes is 

always fewer than that of very small sizes because the very small particles form and grow 

faster than large particles. This conclusion is in agreement with numerous literature 

reports concerning the particle size distribution; see for instance papers by Sakrani (2005) 

and Abraham (1974). 
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4.5. Conclusion 

New nucleation and di tribution model including mass transfer and kinetics of reaction 

were applied to model the hydrate formation and deposition process. Analytical 

expressions were derived for the case of formation and growth as are ult of mass transfer 

alone and for the ca e of both mass tran fer and reaction. A comparison between the 

results of the proposed models was made. Influence of saturation and relative velocity on 

the growth process was also proposed. 

The main conclu ions can be summarized as follows: 

• The uper aturation (S) forces the particle growth rate to be fa t and decreases the 

critical radius. 

• The particle-fluid relative velocity work a a driving force and increases the 

particle growth rate. 

• The growth rate due to mas transfer decreases as the ize of the particle 

increases. 

• The hydrate formation reaction kinetics changes the trend of the growth rate as a 

result of aturation. 

• Mass transfer is the dominant factor in the beginning of the nucleation process 

then the reaction kinetics becomes the controlling factor in the growth process. 

• Particle size distribution (PSD) i al o influenced by the reaction kinetics. The 

modeling result showed that particles with a wider size distribution form when 

reaction kinetic i taken into account. 
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• The dependence of PSD to time for both cases (i.e., modeling only with mass 

transfer vs. modeling considering the reaction kinetics) is identical although the 

number of particles per unit volume of the container is different. 
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CHAPTERS 

Forces Applied to a Single Particle 

The Lagrangian equations governing the position Xi and velocity Upi along the trajectory 

of each spherical particle, of diameter dp and mass mp in the carrier flow field can be 

written as 

dX; =u . 
df pi 

(5.1) 

dupi 
m --=-F. 

p dt I 

(5.2) 

Where, Fi denotes the summation of all forces acting on the particle. It is vital first to 

identify all forces acting on a moving particle that is immersed in a flowing fluid. These 

forces can be divided into four categories: 

(1) Forces that act on a particle due to the motion of particle such as the Basset force (the 

force associated with past movements of the particle), virtual mass (added mass), and 

Magnus force (the force perpendicular to the forward motion on a spinning object 

moving through a fluid or gas) (Amiri et al, 2006). 

(2) Forces that act on a particle due to the motion of the surrounding fluid such as drag 

and lift forces. 

(3) Forces that act on a particle regardless of whether the particle is in motion or is 

immersed in a flowing fluid, i.e., body forces, such as gravity. 

(4) Forces that act on any object immersed in fluid, regardless of either particle or fluid 

motion such as buoyancy forces. 
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As the diameter of the hydrate particles in the situation of interest in this research is much 

smaller than the carrier pipe radius and its density is much greater than that of the carrier 

fluid, the particle equation of motion can be reduced to an equation consisting only of the 

drag and gravitational forces (Crowe, 2006). Therefore, for such a particle, the Basset and 

virtual added mass forces can be neglected (Burry and Bergeles, 1993). For a particle 

with a Reynolds number higher than the Stokes limit, a lateral force, called lift force, may 

exist due to the asymmetric pattern of flow around the particle. If the particle does not 

rotate, only slip-shear lift is caused by the shear of the surrounding fluid, which makes 

the pressure distribution around the particle inconsistent and generates the so-called the 

Saffman lift force (Saffman, 1968). Another transport phenomenon associated with the 

interaction of small particles with fluid molecules is the Brownian motion. The Brownian 

motion results when high-momentum molecules in the fluid collide with small particles 

in suspension. 

The following section demonstrates the forces that act on the flowing particle: 

5.1 Pressure Gradient Force 

An additional force on the particle, which may be included in the calculation, is the force 

due to pressure variation across the particle. The formula takes the form: 

(5.3) 
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Where, p is the pressure in the continuous phase. This force is small for particles with 

densities much higher than the continuum fluid and may be excluded in the modeling of 

the hydrate particle movement. 

5.2 Buoyancy Force 

The next force holding a particle to a surface to be considered is the net weight. For a 

density difference 15.p = p P - p 1 between particle and fluid the net weight (that is, 

buoyancy-corrected) is: 

(5.4) 

The buoyancy effects have been neglected in the analysis since the particle density is 

much more than gas density (Crowe, 2006). 

5.3 Drag Force 

Since the particles in gas flow have diverse sizes, they obtain different accelerations as a 

result of their different inertias. The general expression for the drag force F 0 on a 

spherical particle in a gas of constant velocity can be written as: 

(5.5) 

Where, Cc Cunningham non-continuum correction, defined as: 

(5.6) 
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Case I: Stoke's Regime (Rep<O.I) 

(5.7) 

Ca e II: for other values of Rep: 

(5.8) 

Where, J.1
8 

the dynamic viscosity of the gas; ReP is the particle Reynolds number 

defined as 

2lu, -u8 h 
ReP = ' ; and v

8 
is the kinematic viscosity of the gas. 

vg 

The drag coefficient is obtained from the following piecewise expression depending on 

the particle Reynolds number: 

c =~ 0 
ReP 

ReP< 0.1 (5.9a) 

( 24 J[ 3Re 9Re' ( l] C0 = -- 1 +--P +--PIn 2 ReP 
ReP 16 160 

0.1<ReP<2 (5.9b) 

C0 = (~)[1 + 0 . 15Re~·687 ] 
ReP 

2< ReP <500 (5.9c) 

C0 = 0.44 500< ReP <2x 1 05 (5.9d) 
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5.3.1 Slip Correction Factor 

Correlation of the drag force which obeys the Stokes's law assumed that the relative 

velocity of the gas right at the surface of the sphere is zero. However, this assumption is 

not met for small particles whose size approach the mean free path of the gas. Such 

particles settle fa ter than those predicted by the Stokes's law since there i the "slip" at 

the surface of the particle and often the error becomes more significant for particles less 

than 1 11m in diameter. In 1910, Cunningham (Hinds, 1999) derived a correction factor 

for the Stokes's law to account for the effect of slip. The factor i alway greater than one 

and reduces the Stoke drag force by: 

c = 1 + 2.52/i. 
c d 

(5.1 0) 

Where, 'A is the mean free path (48 nm for methane), given by: 

(5.11) 

Where, d111 is the diameter of gas molecule; n number of molecule per unit volume. 

The correlation extends the range of application of the Stokes' law to particle of 0.1 11m 

in diameter. The more extended formulas to still smaller particle are empirical 

correlations ba ed on experimental measurement of the slip. The following equation, 

developed by Allen and Raabe for oil droplets (1982) and for solids particles (1985) 

agrees with Eq. (5 .1 0) (adju ted for mean free path) within 2.1 % for all particle sizes: 
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(5.12) 

The correlation i plotted for different sizes of particles flow in methane in Figure (5.1 ). 

One can ob erve the high lope in the slip factor for tiny particles and then at about 1 J.lm 

in diameter, the slip factor becomes relatively con tant for particles larger than 1 J.lm. 
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Figure (5.1) Stokes slip correction coefficient (Cc) for non-continuum flow 

5.4 Gravitational Settling 

5.4.1 Low Reynolds numbers (Rep<1) 

The termi nal velocity of spherical particles due to gravitational ettling can be obtained 

from the follow ing expression: 
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(5.13) 

The above expression is valid for any particle size since the slip correction has been taken 

into account and can strictly be used for the Stokes flow. The formula is quite accurate 

over the extended range 0.1 < Rep<1 (Vincent, 1995; Hinds, 1999). 

The buoyancy effects have been neglected in the formula since the particle density is 

much larger than that of the gas. 

5.4.2 Other Rep>l 

For particle motion m the Stokes region, the settling velocity of Eq.(5 .13) can be 

determined explicitly if particle diameter and density are known. Method of calculation u.1· 

at higher particle Reynolds numbers (Rep> 1) is given by (Hinds, 1999): 

us= (5.14) 

However, in order to calculate the settling velocity by Eq. (5.14), the drag coefficient 

must be determined first using Eq. (5.9). So, we need the par6cle Reynolds number for 

estimating the drag coefficient which in tum requires knowing the settling velocity. One 

way around this quandary is an iterative solution obtained by substituting Eq. (5.9) into 

Eq.(5.14) and trying different values of velocity until Eq. (5.14) is an equality to within 

some desired accuracy. 
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Another approach requires converting the implicit form of Eq.(5.14) to an explicit one. 

Rearranging Eq.(5.14) for Cv and multiplying both sides by Re! gives: 

(5.15) 

Since Eq. (5.15) does not include velocity, the left hand side can be determined and used 

to estimate the settling velocity graphically by plotting the expression of Eq.(5.15) in the 

Drag-Reynolds number curve of Eq. (5.9a-d). Alternatively, an empirical equation has 

been developed for calculating settling velocity using C 0 Re! directly: 

(5.16) 

Where, 

(5.17) 

Eq. (5 .16) agrees with iterative calculations using the transition region approximation of 

drag coefficient, within 3% for the range 1 < Re < 600. 

To touch the influence of the correlation on the magnitude of the settling velocity, a plot 

was developed using settling velocity expressions in both the Stokes's law and high 

Reynolds number conditions. Figure (5.2) shows the overestimation in the settling 

velocity predicted by the Stokes's law. For instance, if the Stokes's law was unwittingly 
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applied to a condition of a particle Reynolds number of 40, the calculated velocity would 

have a degree of overestimation of about 180%. 
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Figure (5.2) Deviation in settling velocity as a function of Reynolds number 

5.5 Lift Force 

Small particles lying entirely submerged in the viscous sublayer close to a wall satisfy the 

condition that the Reynolds number based on the friction velocity u • is smaller than unity 

(Hinze 1975) and experience a lift force perpendicular to the direction of flow. The shear 

lift originates from the inertia effects in the viscous flow around the particle and is 

basically different from aerodynamic lift force. The first expression for the inertia shear 

lift was obtained by Saffman (1968): 
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(5 .18) 

Equation (5.18) is valid under the following constraints: 

V d o'r/ 2 Rel t2 du 
r p f'A'p G f 

Re p =--<<1; ReG =-<<1· £=-->>1 · r=--
v v ' Re" ' dy 

For large and small e, McLaughlin (1993) obtained the following empirical formulas: 

{

1 -0.287£-2 

FL 

FL(Saff) - 5 2 
-140£ In(£- ) 

£ >> 1 

(5.19) 

£<<1 

Cherukat and McLaughlin (1994) analyzed the lift force acting on spherical particles near 

a wall as shown in Figure (5 .3) and came up with the following correlation: 

Where, 

and for non-rotating particles, 

I L = (1.7716 + 0.216K- 0.7292K 2 + 0.4854K3
) 

-e·2
:

97 
+ 1.145 + 2.084K- 0.9059K

2 )Ac 
+ (2.0069 + 1.0575K- 2.4007 K 2 + 1.3174K3 )A~ 

Where, 

77 

(5.20) 

(5.21 ) 

(5.22) 



dp 
K=-

21 ' 
A = jdp 

G 2V 
r 

Lift 

1 

Figure (5.3) Lift force on particle near the wall 

When l approaches d,/2, the particle touches the wall as shown in Figure (5.4). Leighton 

and Acrivos (1985) obtained the following expression for the lift force on spherical 

particles: 

(5.23) 

which is always directed away from the wall . 
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Figure (5.4) Lift force on particles touching the wall 

For small particles in turbulent flows, using: 

• *2 
+ + + u + yu . u 

u =y ,u =-. ,y =--,r=-
u v v 

Where, u · is the shear velocity, Eq. (5.23) becomes: 

Where: 

(5.24) 

(5.25) 

Experimental investigations on the lift force were performed for relatively larger particles 

in the range of 100 to several hundred micrometers. Hall's (1988) experimental work 

suggested the following formula: 

+ ( + )2.31 + 
FL( Hall ) = 4.21 d ford > 1.5 (5.26) 

Mallinger and Nieuwstadt (1996) found: 

+ ( + )1.87 0 + 
F L(MNJ = 15.57 d for .15 < d < 1 (5.27) 
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The comparison of the model's predictions with the experimental data demonstrates that 

the experimental data are relatively much higher than the theoretical models. The model 

proposed in this thesis adopts the formula of Cherukat and McLaughlin (1994). The 

variation in the lift force slightly changes when the particle-wall distance is small. For 

particles further away from the wall, the incremental changes become more significant 

and the left force increases rapidly as shown in Figure (5.5). 

0.0001 --=---------,-----------------, 

1E-005 

1E-006 

- I 

z I 

.s 
Q) 
u 1E-007 ...._ 

I 
0 

LL I 

.:= 
:..:J 

1E-008 

1E-009 ...... - .... 

0.001 0.01 0.1 1 10 100 1000 

Distance (11-m) 

Figure (5.5) Lift force as a function of particle-wall distance 

5.6 Adhesive Force 

Adhesive forces are induced as a result of inter-particle forces which in turn are created 

due to particle wetness, electrostatic charges, and the van der Waals forces (A weak 
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physical force that holds together two molecules or two different parts of the same 

molecule). These forces are known to cause adhesion of a particle to a wall or onto 

another particle. The van der Waals force becomes apparent when very smooth surfaces 

are brought into contact. The first attempt to estimate the magnitude of the van der Waals 

forces acting on solid bodies was performed by London (Anandarajah et al, 1995). He 

computed the van der Waals attractive energy between two unit molecules in vacuum 

separated by a distance r according to the following formula: 

B 
U(r)=--

r 6 
(5.28) 

Where, B is the London constant. This equation was then corrected by Anandarajah and 

Chen (1995) through introducing a parameter named the "characteristic wavelength 'Aw" 

of the interaction, often assumed to be about 100 nm (Chen et al, 1996). The formula 

now takes the following form: 

U(r) = - Be ; c = -bA.w; b=3.1 
r 6 (r+c) 2;r 

(5.29) 

Hamaker proposed a method for calculating the interaction force for various geometries. 

For instance, the force F between two infinite flat plates with separation distance of z is 

expressed by (Crowe et al, 1998): 

(5.30) 
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Where, F is force per unit area and A is referred to as the Hamaker constant. Hamaker 

approach is based on two assumptions: 

• The retardation effect of the dispersion interaction is neglected, whatever the 

distances are. 

• The interaction potential between two molecules keeps the same form even if 

other molecules surround them. 

These two assumptions made the method suffering drawbacks and encouraging the other 

theory, the macroscopic theory, to develop. The theory was initiated by Lifshitz and then 

expanded in 1961 by Dzyaloshinskii et al (Bonnefoy et al, 2005), known as (DLP 

theory). The Lifshitz theory is complete and exact in that it takes into account the multi­

body interactions and the retardation effect. However, its complexity prevents any 

application to complex geometries. Thus, although some advantages are acquired using 

the DLP theory, other problems, such as limited applications for simple geometries 

(sphere for example), have arisen (Bonnefoy eta!, 2005). 

To circumvent these problems, Bonnefoy et al. (2005) adopted the hybridation method of 

Parsegian in their study on the interaction between gas hydrate particles. They introduced 

the interaction potential as an approximating product of two functions. The first function 

is calculated with the Hamaker approach while the second function expresses the 

retardation effect. 
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This hybrid approach is adopted in our model for the van der Waals forces calculation in 

both particle-wall and particle-particle interactions. The model, detailed below, is simple 

enough to permit closed-form solutions to be obtained by the Hamaker-De Bore approach 

for macrobodies of different geometries (Chen et al, 1996). 

5.7 Model of Adhesion 

Often time , conditions for pipe flows and boundary layer flows can produce high 

concentrations of particles very near the wall. Several studies have shown such high 

concentrations at transverse positions on the order of the particle diameter for solid 

particles (Young and Hanratty, 1991; Kaftori et al. 1995; Young & Leeming, 1997) as 

well as for gas bubbles (Zun et al. 1993; Marie et al. 1997; Felton & Loth, 2001). In 

these cases, the consideration of particle wall interactions becomes crucial. 

5.7.1 Particle-Wall Attraction 

Consider the interaction between a spherical particle (1) and a wall (2) separated by a 

medium (3) shown in Figure (5.6). The van der Waals energy between the particle and 

the wall can be obtained from the following expression: 

U (h)= A[U 0 (h)+ U, (h)] (5.31) 

Where, A i the Hamaker constant in (Joules). 

U (h) -_ _!_[( 2 J -ln(h/ r + IJJ 0 
- 6 h/r-r/h h/r-1 

(5.32) 
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b:t 
where c = -- ; b = 3.1 and :tw = 100nm. 

21C 

Body ( I ) 

'6) 
Medium (3) 

j~------h---~1 

Body (2) 

Figure (5.6) Adhesive force in particle-wall system 

(5.33) 

The van der Waals attractive force is obtained through differentiating Eq. (5.31) with 

respect to has: 

F(h) = A[F0 (h)+ F1 (h) ] (5.34) 

Where, 
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F0 (h)= ~ 2 ] 
3r (hI r) -1 

2 
(5.35a) 

2(h+c-2r)( )2 ( ) 2(h+c+2r)( )2 ( ) F
1
(h) = 

4 
h+r+c In h+r+ c + 

4 
h-r+c In h - r+c 

3c 3c 

-[2(h+2r)(h - r)2 + 2(h+r)(h - r)+ 2h +~]ln(h - r) 
3c4 c3 c2 3c 

[
2(h-2r)(h )2 2(h - r)(h ) 2h ~]I (h ) + 

4 
+r + 

3 
+ r + 2 + n +r 

3c c c 3c 

(5.35b) 

4hr 8r 4hr 
- 3c3 - 3c2 - 3c(h2 -r 2 ) 

U1(h) and F1(h) stand for the retardation effects according to the proposed correction 

function and their values approach zero when c goes to infinity. Thus original London 

equation will be obtained. 

The Hamaker constant between two solid particles separated by a third material is 

expressed by: 

(5.36) 

Where, A 11 and A22 are the Hamaker constants for the solids and A33 is the Hamaker 

constant of the third material. 

5.7.2 Particle-Particle Attraction 

Figure (5.7) shows a system of two spherical particles of radii r1, r2 placed at a centre-to-

centre separation distance of h. 
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Figure (5.7) Particle-Particle Adhesion force 

Defining the following parameters: 

(5.37a) 

(5 .37b) 

(5.37c) 

(5.37d) 

and 

(5 .37e) 

(5.37f) 

(5.37g) 

fori= 1, 2, 3, and 4, the interaction energy U(h) is given by Eq. (5.31) listed earlier with 

the following definitions of its terms: 

(5.38a) 
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(5.38b) 

The van der Waals attractive force F(h) is given by Eq. (5.34): 

F(h) = A[F0 (h)+ F1 (h)] (5.34) 

where: 

(5.39) 

(5.40) 

It is worth to mention here that Uo(h) and Fo(h) represent the non-retarded contributions 

and U1(h) and F 1(h) represent the retarded contributions in accordance with the proposed 

correction model. 

5.8 Conclusion 

As the external forces acting on the particles control the trajectory of the particles, it is 

important to understand the significance of each force on the particle movement. This 

chapter highlights the forces applied to the particle and the correlations that determine the 

particle movement. The important conclusions in this chapter can be summarized as 

follows: 
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• Drag and gravitational forces are the only significant forces influencing the 

particle in the fully turbulent regime. 

• Slip factor should be taken into account when the particle size is smaller than 1 

jlffi. 

• Different expressions should be used in predicting the settling velocity for the 

Stokes's and non-Stokes's regimes. 

• Particles that merge in the sublayer region experience other forces such as lift and 

adhesive forces. 

The model proposed in this thesis adopts the Bonnefoy hybrid approach for adhesive 

force calculation since it has been used for hydrate applications (Bonnefoy et al, 2005), 

and the Cherukat and McLaughlin model for lift force. The model also considers the non­

continuum correction for very small particle sizes and the correlation of non-Stoke's 

regtme. 
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CHAPTER6 

Deposition Mechanism 

In this Chapter, the motion and the mechani m of the depo ition of hydrate particles 

suspended in a fluid stream is discu sed. The effects associated with the particle's own 

inertia become manifest for relatively large particles particularly in accelerating fluid 

motion. However, very tiny particles experience unsystematic motion a a result of their 

continuous bombardment by the molecule of the surrounding gas (Crowe, 2006) . The 

mechanisms driving particle motion are ynonymously called depo ition mechanisms 

since there ult i to make particles migrate to the bounded urfaces and depo it there. 

6.1 Brownian Motion 

The very tiny hydrate particles exhibit a random motion called the Brownian motion as a 

result of their continuous bombardment by the molecules of the surrounding gas. This 

motion cau e net transfer of particle from regions of high to low concentration, a 

process known a diffusion which is de cribed by the Fick's law in terms of the number 

of particles diffused according to the following expression: 

(6.1) 

Where, lp i the flux vector (particle /m2
/ ec), np the particle concentration (particle/m3

), 

and rP is the particle diffusion coefficient (m2/sec) . 

The diffusion coefficient depends strongly on the particle size, with maller particles 

diffusing much more efficiently than larger one . Figure (6.1) how the variation of the 
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diffusion coefficient of hydrate particles in methane for different particle sizes. For 

example under the same concentration gradients the diffusive mass flux of a 0.01-!J.m 

particle is about 15 000 times larger than that of a 1 0-!J.m particle. 

Figure (6. 1) also shows the variation of the particle Schmidt number (Scp) defined as: 

v 
Sc =-8 

p r 
p 

(6.2) 

Where, the diffusion coefficient of particles IS determined from the Stokes-Einstein 

equation and slip correction: 
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Figure (6.1) Diffusivity and Schmidt Number as a function of particle size 
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The strength of the Brownian diffusion can be characterized using the quantity called, the 

root mean square (rms) net displacement of a diffusing particle over a time interval L1t: 

(6.4) 

This displacement is related to the particle diffusion coefficient through the expression 

x r,,. = ~2r/~t . Since the growth of the particle causes alleviation in the Brownian 

movement, the ratio x rms I usf:.t is an indicator of the Brownian strength of diffusion. 

As illustrated in Figure (6.2), the ratio is of the order of 1 for dp = 0.6 jlm, whereas it is of 

104 for dp = 0.01 11m and of 10-3 for dp = 10 11m. It can be concluded that the Brownian 

diffusion is an important transport mechanism only for small particles of the 

submicrometer range. In contrast, the gravitational settling and inertia effects outweigh 

diffusional transport for particles grater than 1 11m in diameter. 
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Figure (6.2) Brownian to settling ratio for various hydrate particle sizes 
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6.2 Impaction Effects 

In an accelerating flow field, particles are not able to follow perfectly the fluid motion 

due to their own mass. For instance, in straight-line accelerating (decelerating) motion, 

hydrate particles lag behind (ahead) the Lagrangian "fluid particles". For sub-micrometer 

particles, and in the absence of external force fields, the Brownian or turbulent diffusion 

is the basic mechanisms that drive deposition. For particles larger than about 1 Jlm, 

deposition is primarily due to inertial impaction and gravitational settling. 

A basic quantity characterizing convective transport of a hydrate particle is the 

penetration ratio, or penetration fraction, defined as the fraction of the inflowing 

particles that exit the flow system (Crowe, 2006). It can be written as: 

f =COlli 
p c 

0 

(6.5) 

Where, Cout and Co are the particle concentrations (either mass or number) at the outlet 

and inlet, respectively. Alternatively, collection efficiency can be defined as the fraction 

of the inflowing particles that is lost by deposition (Crowe, 2006): 

(6.6) 

Another quantity commonly employed to characterize deposition in convective particle 

flows is deposition velocity, defined as: 

G 
v =-" d cav 

(6.7) 
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Where, Gp is the particle mass flux to the wall and Cav the particle average particle 

concentration above the surface. The latter is usually taken equal to the average 

concentration over the cross-section of the conduit. 

For fully developed turbulent flow in a circular pipe of length L, the deposition velocity 

Vd may be considered as constant along the tube, and the penetration fraction can be 

express as: 

f = exp(- 4V" LJ 
P . U D 

g 

(6.8) 

Where, Ug is the carrier gas velocity; Dis the pipe diameter. 

6.3 Correlations of Deposition Velocity 

Equation (6.8) enables the calculation of penetration through the knowledge of the 

deposition velocity. Models of the deposition velocity have been numerously reported in 

the literatures based on experiment, numerical simulation and analytical theory. 

During past few decades, intensive investigations have been conducted to describe the 

deposition phenomena of the particles in turbulent flow. Schwendiman and Postma 

(1961), Wells and Chamberlain (1969), Liu and Agarwal (1974), Friedlander and 

Johnston (1957), Sehmel (1968), and llori (1971) reported extensive experimental data 

for particle deposition rate in turbulent duct flows. Wood (1981), and Papavergos and 

Hedley (1984) have provided a reviews of the experimental results. In general, the studies 

concluded that deposition velocity has a V-shaped variation with a minimum at the 

particle relaxation time of about 0.1 to 0.5 wall units (Chen et al., 1997). The rate of 
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particle deposition increases as the relaxation time decreases in the diffusion regime 

whereas it increases when the relaxation time increases in the impaction regime. 

Theories of particle deposition process were also addressed by many researchers; Fuchs 

( 1964 ), Wood (1981 ), Hidy (1984 ), Papavergos and Hedley (1984 ), and Hinds (1999). 

Semi-empirical correlations for evaluating particle deposition rates in turbulent ducts 

have been proposed by Friedlander and Johnston (1957), Davies (1966), and Cleaver and 

Yates (1975); however, the expressions are valid for smooth walls. Further progress in 

developing the deposition model was reported by Fichman et a!. (1988), Fan and Ahmadi 

(1993, 1994), Chen and Ahmadi (1997), Shams et a!. (2000), and Tian and Ahmadi 

(2007). 

Numerical studies of transport and deposition of particles in turbulence flow field have 

been conducted as well in the past few decades. Among lots of literatures studied such 

phenomena, Li and Ahmadi ( 1991, 1993) performed a series of numerical simulations on 

deposition of small particles in a turbulent channel flow. Li et al. (1994) presented digital 

simulation results for particle deposition rate in an obstructed turbulent duct flow. 

Finally, Tain and Ahmadi (2007) compared different computational models for predicting 

particle deposition in the turbulent duct flows. 

In summary, earlier and recent works are confirmed that the deposition velocity has a V­

shaped variation. The following section discusses and compares several models that have 

addressed the deposition velocity of the particles in turbulent flows . 
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6.3.1 Model of Wells and Friendlander 

The following three parameters need to be introduced before discussing the correlation of 

the deposition velocity: 

• A time scale characterizing the adjustment of particle velocity to a change in fluid 

velocity is called the particle relaxation time (velocity response time). It is 

calculated by considering the time required by the particle to reach its terminal 

settling velocity when released with zero initial velocity in a quie cent fluid and 

for pherical particle is given by: 

(6.9) 

• The stop distance is a length scale that characterizes the persistence of a particle 

to continue its original motion in a changing flow field before it equilibrates again 

with the fluid motion. Its value is simply the initial velocity times the relaxation 

time: 

(6.10) 

The formula represents the distance a particle will travel in stagnant fluid before it 

comes to rest, following injection with initial velocity Vo and in the absence of 

external forces. 

• Stokes number: here defined as the ratio of the stop distance to a characteristic 

length of the flow. 

(6. 11) 
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N f 
+ -rv(u*Y 

ow or a particle with: 'rv = < 0.3 , the correlation of deposition velocity 
vs 

proposed by Wells and Chamberlain (1967) can be used: 

(6.12) 

Where, Vg is the kinematics viscosity of the fluid. Schmidt number is calculated using Eq. 

(6.2) and the fluid Reynolds number is: 

U g D pipe 
Re = -----=--=--'--

vs 
(6.12a) 

In most cases, the above correlation is satisfied for particles with diameter dp<l ~-tm 

(Crowe, 2006). 

For other regimes where -z/ >0.3, or roughly dp> 1 ~-tm, the Friedlander and Johnstone 

(1957) correlation (Eq. 6.13) is frequently used. The deposition velocity is calculated as 

follows: 

f/2 

1 + .j172(I525/CSZ)2 -50.6) 

~ f/2 
- = 
U 8 l+.Jf72{sin[5.04/CSZ/5-0.959)] -I3 .73} 

f 
2 

Where,jis the Moody friction factor; and 
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5 $ s ~ $ 30 

30 < s ~ 

(6.13) 

(6.14) 



As a summary, Eq. 6.12 is used to estimate the deposition velocity for particles size in the 

range of the Brownian diffusion, whereas Eq.6.13 is the governing deposition velocity 

formula for particles with sizes that lie in the inertia region. 

6.3.2 Wood Model 

The Wood non-dimensional deposition velocity is given by: 

(6.15) 

Where, Sc is the Schmidt number and: 

(6.16a) 

(6. 16b) 

The reference velocity, the mean stream velocity (Ug), used in the Wells and Friedlander 

model has been changed to the friction velocity. Hence, the dimensionless deposition 

velocity would be: 

v + = v dr 
dr • (6.17) 

u 

The first term in Eq. (15) is resulted from the Brownian motion and eddy diffusion, and 

the second term is the consequences of particle deposition by the eddy diffusion-

impaction mechanism, while the last term stands for the gravitational sedimentation on 

the lower wall of horizontal pipes. 
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6.3.3 The model of Fan and Ahmadi 

Fan and Ahmadi (1993) proposed an empirical correlation for deposition of particles 

including the effects of surface roughness and gravity. For horizontal ducts, the 

expression takes the form of: 

[

( )2]1/(IH+2

t.;) 
_2, 3 1 ,o.64e + o.sd; 

0.084Sc +- -------'--
2 3.42 

vd~ = [1 8 -(r-10)2 /32 ] 0.037 + + Xl + e 2 + -r g 
1--r+ ~ 

0.14 

if Vdr < 0.14 (6.18) 

+ 3.08 
where ' ' = -- · 

-'-1 Sd+ ' 
p 

S= p" . , 
Pr 

d u· d; = _ P - and e is the Surface roughneSS ( Which 
v 

is zero for smooth surface). 

6.3.4 Comparison of Models 

To appreciate the process of particle deposition predicted by the model adopted in this 

project, comparison of the theoretical prediction of the model against some experimental 

data and semi-empirical correlations has been performed. Although experimental data for 

particle deposition from turbulent flows is relatively scarce, there is however more data 

for deposition from aerosols applications. The deposition efficiency is compared using 

the experimental data, the numerical data, and the semi-empirical models suggested by 

Wells and Freindlander, Wood, and Fan and Ahmadi (1993). 

Figure (6.3) compares the suggested model with those of earlier studies for horizontal 

pipe. The experimental data of Kavasnak et al. (1993), the numerical simulation results of 

Tian et al. (2007) and Shams et al. (2000), and the empirical equations of Wood (1981), 
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Fan and Ahmadi (1993), and Wells (1967) and Friedlander et al. (1957) are plotted in this 

figure. The experimental data and the simulation results show that the deposition 

velocities have a "V -shaped" variation. The empirical equation of Wood (1981) and Fan 

and Ahmadi (1993) models are slightly varied for tiny particles, thus no "V -Shape" has 

obtained. In tum, the model of Wells and Friedlander gives better trend than Fan and 

Ahmadi curve and describes the deposition velocity that resulted by the experimental and 

numerical works in very good manner. 
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Figure (6.3) Comparison of non dimensional deposition velocity as predicted by 
earlier experiments and models in horizontal pipe 

The process of deposition can be divided into two regions, the Brownian dominated 

region and the inertia dominated region. In the Brownian region, the deposition rate 

increases with decrease in particle size, see Fig. (6.4). For large particles, turbulence eddy 

impaction becomes significant and dominates the deposition process (Chen and Ahmadi, 
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1997). Hence, the deposition efficiency increases with particle size. For very large 

particles, the particle inertia becomes very large and essentially not influenced by other 

forces since the particle deposition rate approaches constant. The tendency of such 

particles occurs at relaxation time • + >I 0 as shown in Fig. (6.4 ). 

In summary, the deposition velocity and deposition efficiency in turbulent pipe flow 

follow a V-shaped curve. The deposition efficiency increases both with the increase of 

diameter for large particles, and with the decrease of diameter for submicron particles. 
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6.4 Number of Deposited Particles 

The turbulent mass transport equation included in the model of Cousins and Hewitt 

(1968) states that the particle deposition flux G is proportional to the particle 

concentration C and to the area of deposition Ad. The flux G is the rate at which non-

interacting particles deposit (dN/dt) while particle concentration C is defined as the ratio 

between the number of particles Nand the volume occupied by these particles¢ . We can 

therefore write: 

(6.19) 

Where, kd is the constant of proportionality caJled the deposition coefficient. By 

comparing Eq. (6.19) to Eq. (6.7), the deposition coefficient is actually the deposition 

velocity Vd. Therefore, Eq. 6.19 becomes: 

dN _ V NAd 
dt -- d-¢- (6.20) 

For pipe geometry, the ratio ~ is equivalent to ~where rd stands for the distance 
~ ep 
'f' rdep 

from the ptpe centerline to the sublayer boundary (R-o). Now Eq. 6.20 takes the 

foJlowing form : 

dN 2VdN 
-=---
dt R - J 

(6.21) 

Given the initial number of particles released or formed in the pipe (No) and the number 

of particles already deposited at a given time N~.P , the number of deposited 

particles, N dep, can be estimated as a function of time using the solution of Eq. (6.21 ): 
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No -Ndep =ex(- 2Vd (t-t )) 
N -N° p R-8 ° 0 dep 

(6.22) 

Or 

N dep -N~•r ( 2Vd ) 
-N----'--_-N-o---'- = 1 - ex p - -R---8- (t - to) 

0 dep 
(6.23) 

Using b = vglu • as the reference length and t• = vglu •2 as the reference time, Eq. 6.23 can 

be written in the following non-dimensional form (identified by the superscript"+"): 

(6.24) 

Figure (6.5) illustrates the variation of the number of the particle reduction in time as a 

result of deposition for various particle relaxation times. After 800 t•, more than 4% of 

particles with r; =92 have deposited. During the same time interval, only 0.17% of 

particles with r; = 5.8 x 1 o·5 were labeled as deposited. 
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Figure (6.5) Decrease of particle number in time due to deposition 

6.5 Sublayer Region 

The behaviour of the particle in the boundary layer region is influenced by the fluid 

turbulence and properties, particle-wall interactions, particle inertia, gravity in the case of 

horizontal flows, and local wall surface geometry in the case of cross-flows (Wang et al, 

2003) . 

The proposed approach used in the modeling of the particle behaviour within the near-

wan region in the current research is discussed in this section. The particle path could be 

explained from the particle's resultant force based on force balance approach. As 

mentioned in the previous chapter, lift force is the main force affecting the particle 

entrainment in the sublayer region. Adhesion force of the particle with the wall resists the 
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lifting force and jointly influences the movement of the particle. Further drag and settling 

forces are considered in the model and it is shown how the balance of these forces would 

determine the trajectory of the particle. 

Figure (6.6) shows the force balance applied to a particle moving in the sublayer region. 

The following expressions are used for calculating the components of the balance force: 

Adhesion 

l Lift 

u 
Gravity 

Figure (6.6) Forces acting on a particle within sublayer region 

Drag Force: 

Gravity force: 

Adhesion force: 

The van der Waals attractive force: 

F(h) = A[F0 (h)+ F, (h)] 
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(6.25) 

(6.26) 

(6.27a) 



Where, 

Fo (h) = r 2 ] 
3rL(h!r) -1 

2 
(6.27b) 

2( h + c - 2r) ( )2 ( ) 2( h + c + 2r) ( )2 ( ) F;(h)= 
4 

h+r+c ln h+r+c + 
4 

h-r+c ln h-r+c 
3c 3c 

-[2(h+2r)(h-rY + 2(h+r)(h-r)+ 2h +2]ln(h-r) 
3c4 c3 c2 3c 

[
2(h-2r)(h )2 2(h-r)(h ) 2h .3:_]1 (h ) + 

4 
+r + 

3 
+r + 

2 
+ n +r 

3c c c 3c 

(6.27c) 

4hr 8r 4hr 
- 3c3 - 3c2 3c(h2 - r 2 ) 

Lift force 

The model of Cherukat and McLaughlin (1994) is adopted and the lift force is calculated 

based on the following correlation: 

Where, 

V = u - u1 = u - ,'} r p p r• 

and for non-rotating particles, 

I L = (1.7716 + 0.216K- 0.7292K 2 + 0.4854K3
) 

-(3·~97 + 1.145 +2.084K - 0.9059K 2 JAa 

+ (2.0069 + 1.0575K- 2.4007 K 2 + 1.3174K 3 )A~ 

Where, 

dp 
K=-21 , 

A = idr 
G 2V 

r 
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6.6 Behaviour of particles in near-wall regime 

In this section, the discussion will begin with comparing the values of forces acting on 

the particle. Then the influence of the particle size and the particle-wall distance on the 

resultant force will be discussed. The agreement of the results of the proposed model with 

those in the literature will then be presented. 

The gravity/adhesion forces tend to keep the particles attached on the wall whereas the 

lift force pushes the particle away from the wall. Figure (6.7) demonstrates the variation 

of lift, adhesive, and gravity forces of the Brownian particles as a function of particle 

diameter. The distance between the particle and the wall is very short and the particle 

almost lies on the wall, the lift force shown in the figure cannot resist the 

gravity/adhesion forces and the particle will therefore tend to attach to the wall. As the 

size of the particle increases, lift and gravity forces increase while the adhesive force 

decreases, see Figures (6.7) and (6.8). The particle now could entrain as a result of the 

increasing positive lift force. However, the increase in the gravity force could make the 

particle move toward the wall. In summary, the very tiny particles have more chances to 

deposit whereas the relatively larger particles have an opportunity to entrain. 
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Figure (6.7) Variation of external forces for Brownian hydrate particles 
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Figure (6.8) Variation of external forces for inertia hydrate particles 

107 



This conclusion is consistent precisely with the experimental studies of particles in the 

boundary layer region reported by Yung et al (1989). The interaction of the turbulence 

and the deposited particles within the viscous sublayer region was investigated through 

several tests . They carefully placed spherical particles of polystyrene and glass (50-!lm in 

diameter) on the wall so that the particles were completely submerged within the viscous 

sublayer. They were interested in the re-entrained particles by measuring the number of 

particles re-entrained in the viewing area at a given time and determined the ratio of the 

experimental number of particles re-entrained to the total number of particles under the 

burst area, which was identified as the cleaning efficiency. Their observation of the 

experiments showed that as the size of particles increased, the number of the re-entrained 

particles also increased. Based on these results they concluded that the turbulence-particle 

interaction in the viscous sublayer region is not responsible for the re-entrainment of the 

particles within the experimental range of 0.5 < cr < 1.3, where cr is the dimensionless 

particle diameter (cF =dpu *lv) . On the other hand, as d! increases, the importance of 

particle re-entrainment is substantially increased. Part of their test results are summarized 

in Table (6.1). 
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T bl (61) E a e . lR xpenmenta esu ts o fY ung eta I (1989) 
No. of particles 

re-entrained 

experimentally 

dp d+ Re per viewing area Ejection Angle 

(j.!m) in 1 0-s interval (0) 

0.55 16,983 8 

50 0.585 18,460 30 5.47 

0.635 20,306 37.8 

3.5 18,460 majority of the 15 

300 7.8 46,150 particles lifted up 30 

Rashidi et al. (1990), conducted experiments to study the variation of particle size in the 

near-wall region. The objective was to better understand the influence of the particles on 

the dominant flow structures and the effect of these structures on the particle motion near 

the wall. Based on their observations during the tests in a horizontal channel, they 

suggested that the particle transport is mainly governed by the ejections originating from 

the lift-up and breakdown of the low-speed streaks in the wall region. They also 

proposed that the low-speed streaks observed near the wall are formed between pairs of 

longitudinal counter-rotating vortices. The particles accumulate but due to these vortex 

loops of the wall regions they are then lifted up, depending on their size, density and the 

flow Reynolds number, and ejected into the bulk of the flowing fluid. Later, the ejected 

particles returned toward the wall since their density was greater than the fluid density. 
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As these particle return to the wall region, some encounter wall ejections already in 

progress and are lifted up before reaching the wall region. The process repeats itself and 

dominates the particle transport in the flow direction. 

Their experimental results showed that the particle-flow interaction is very dependant on 

the particle size. Their results can be summarized as follows: 

As the particle diameter decreases below ct ::::: l, the particles falling beneath the viscous 

sublayer do not interact with the bursting process, the process of particle ejection into the 

bulk fluid as a result of vortex loops near the wall, and are rarely lifted up by the wall 

ejections. 

6.7 Particle-wall distance 

Lift and adhesion forces vary with the distance between particles and the wall. The lift 

force increases when the particle-wall distance increases as shown in Figure (6.9). 

However the increment appears more clearly for tiny particles and at large size particle 

the lift force remains constant when the distance is short and starts to increase after a 

certain distance. This could be explained as follows: 

The intensity of the vortices can easily dominate the weight of tiny particle even near the 

wall although the vortices strength is relatively low; hence the variation of the lift force 

with the distance is noticed from the wall. In turn, large particles should lie in the high 

strength regime in order for the influence of the lift force to become significant. Such 

influence occurs at a distance relatively far from the wall. 
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Figure (6.9) Influence of particle-wall distance on lift force 

The van der Waals force is responsible for the adhesion and is inversely proportion to the 

particle-wall distance. Thus the strength of adhesion decreases as the distance increases 

as illustrated in Figure (6.10). However, for the same particle-wall space, the force 

becomes larger for larger particle sizes because the interaction potential between the wall 

and the particle increases. 
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Figure (6.10) Influence of hydrate particle wall distance on 
adhesive force 

Figure (6. 11) shows the lift force as a function of particle diameter for the distance range 

from near-wall to the boundary layer limit. The conclusion is that on the one hand the 

particle can obtain higher value of the lift force when the distance becomes large, and on 

the other hand the variation of the lift force decays and eventually vanishes as the particle 

size becomes large. Hence, less influence of the particle-wall distance appears for large 

particles. 

Similar conclusion can be made for the adhesion force. Figure (6. 12) demonstrates the 

variation of adhesive force with the particle size for different particle-wail distances. 

Although the adhesion force increases as the distance decreases, the size of the particle 

also plays a significant role on the force magnitude by decreasing the force when the 
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-------------------------------

particle is large. The net effectiveness of the distance and the particle size causes a peak 

value in the adhesion force curve. 
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A graph representing lift and adhesive forces as a function of particle diameter for 

various particle-wall distances is shown in Figure (6.13). The equivalent lift to adhesion 

forces , the intersection point, occurs at smaller particle sizes when the distance increases. 
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Figure (6.13) Lift-Adhesion Balance Point 

6.8 Bouncing model 

In many practical situations where multiphase flow is involved, particle-wall interactions 

play a major role in the overall dynamics of the flow. When a solid particle contacts a 

surface at low velocity, the particle looses its kinetic energy by deforming itself and the 

surface. At high velocities, part of kinetic energy is dissipated in the deformation process 

(plastic deformation), and part is converted elastically to kinetic energy of rebound 

(Hinds, 1999). If the rebound energy exceeds the adhesion energy, the particle will 

bounce away from the surface. 
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The problem of particle bounce has been experimentally and analytically reported for 

solid and droplets as well. The results concerning the bouncing of a solid sphere on a wall 

in air as well as in various fluids have been proposed by numerous researchers. The most 

recent experiments for such system reported by Joseph et al. (2001) and Gondret et 

a/.(2002), have clearly demonstrated that the restitution coefficient e (the ratio of the 

velocity after the rebound to the approach velocity) can be scaled by the particle Stokes 

number. This conclusion matched with the analytical derivations of Davis et al. (1986) 

using the lubrication theory. A no-rebound situation (e=O) is observed below a critical 

Stokes number (St? l 0-15). The restitution coefficient rapidly increases after the 

transition at Stc and monotonically reaches an asymptotic value close to the value of e 

obtained in air where viscous effects are supposed to be negligible during the interaction 

with the wall (Stc > 1 04
) (Legendre, 2006). 

There are two approaches used in defining the conditions at which the particle could 

bounce. The first approach is based on the limiting adhesion or kinetic energy whereas 

the second approach defines a critical velocity Vc for which bounce will occur if that 

velocity is exceeded. 

The surface potential energy is given by Dahneke (1971): 

(6.30) 

Where, A is the Hamaker constant and y0 is the equilibrium separation distance of the 

particle from the surface, which depends on the scale of surface roughness. For mooth 

surfaces, the distance is usually assumed to be 0.4 nm (Hinds, 1999). 
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Friedlander (1977) described the process of bouncing as a balance of energy before and 

after impact and proposed a relation between the velocities of the particle before and after 

impact. The expression is given as: 

1/2 

2 E{l- e 2
) 

e - 2 

mPV1 

(6.31) 

2 

Where, mp is the mass of the particle and e is the restitution coefficient. The critical 

approach velocity corresponding to v2 =0 is given by: 

(6.32) 

It is important to note that the particle rebound model outlined here was developed for 

dry interface. The nature of interaction changes dramatically when the surface is coated 

with a liquid layer since the surface tension due to liquid bridging becomes a significant 

adhesion force (Kvasnak et al., 1993). 

The restitution coefficient e provides a global description of the bounce including the 

effect of the wall without describing the detailed action of all physical mechanisms 

involved: deceleration due to hydrodynamic interaction, deformation, film drainage, and 

restitution of initial shape (Legendre, 2006). 
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Using the analogy with a dissipative mass-spring system, Legendre et al. (2005) found 

that for droplets, the coefficient of restitution evolves as: 

(6.33) 

Where, St is defined as the Stokes number of the particle away from the wall by an order 

of boundary layer thickness. 

(6.34) 

Where, pp is the particle density, p is the fluid density, f.1. is the fluid viscosity. fJ is a 

parameter that includes the viscous effects of the film drainage and according to the 

experimental results from many available sources in the literature for spherical drops and 

solid spheres colliding both in air and in different liquids, takes the value of 35. emax is 

the maximum coefficient of restitution that can be reached by the particle. In practical 

situation, emax is the value measured in air. Measurement done by Richard and Quere 

(2000) obtained a nearly constant value for emax = 0.91 for collisions in air for both solid 

particles and drop. 

6.9 Summary 

The flowchart presented in Fig (6.14) summarizes the procedure of the particle migration 

and process of deposition in turbulent flow together with the appropriate equation(s) used 

in describing such process. As particles travel in the fully turbulent region, deposition 

velocity is evaluated (depending on their sizes) and used to determine collection factor 

and the number of particles reaches the wall each time step. 
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In the sub layer region, again the size of the particle is used to direct the phenomena of the 

deposition to the proper model of deposition process, which is either the balance of the 

forces experienced by the particle or the probability of bouncing. 

Turbulent Region 

Brownian motion: 
Eqs. (6.2, 6.12, 6.12a) Inertia Motion: 

Eqs. (6.13, 6.14) 

Collection efficiency: 
Eqs (6.6, 6.8) 

No. of Particle Deposit: 
Eqs (6.19, 6.20) 

Sublayer 
Lift 
Eqs. 6.25, 6.26, 6.27 

Bouncing 
Eqs. 6.30-6.34 

Forces Balance 

Adhesive 

Drag 
Eq. 6.21 

Gravity 
Eq. 6.22 Eqs. 6.23, 6.24 

Figure (6.14) Flowchart of deposition model 
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6.10 Conclusion 

The mechanism of particle deposition is presented and discussed in this chapter. The 

following conclusions could be made as a summary of the chapter: 

• Two motions are exhibited by the particles depending on their sizes, namely: the 

Brownian and impaction motion. The particle size for distinction between the two 

motions is -1 11m. 

• The deposition rate m the non-continuum region decreases as the size of the 

particle increases whereas it increases with the particle growth in the impaction 

region. 

• The minimum numbers of particles that deposit and reach the boundary layer are 

those that have sizes of about 1 11m. 

• The very tiny particles tend to deposit whereas the relatively larger particles are 

probably more susceptible to be entrained from the boundary layer near the wall. 

• For certain particle-wall distances, adhesive forces increase to a peak with 

increasing particle size. 
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CHAPTER 7 

Experiment setup 

7.1 Preliminary Experiment Setup 

Before constructing the actual apparatus for natural gas/hydrocarbon tests, we decided to 

perform preliminary tests using saturated air as the workjng fluid. The purpose of these 

tests was to obtain a better understanding of the test system by monitoring ice particles 

formed and deposited in the transparent tubes. The following section outl ines the system 

setup. 

7.1.1 Apparatus and Procedures 

As illustrated in Figure (7 .1 ), the com pre sed air is saturated by bubbling it through the 

water container, cooled down through cooling coil to drop the temperature to just above 0 

°C, and then passed through separator to separate the air stream from any liquid droplets 

that might be formed during the cooling process. After that, the air flows through the 

orifice, which is connected to the tube where the accumulation is monitored, and finally 

the stream passes through a flowmeter before exiting to the ambient. The tests were 

performed at the Faculty of Engineering and Applied Science of Memorial University of 

Newfoundland using the environmental chamber located in the Fluids Lab. The entire 

system but the air source and the saturated vessel were placed inside the environmental 

chamber. 
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Figure (7.1) Schematic of deposition apparatus using saturated air 

Exit 

The compressed air pressure was measured right after the compressor. The orifice inlet 

pressure and temperature were directly measured using the attached pressure gauge and 

temperature sensors. Information about pressure loss through water container, cooling 

coil, separator, and all connections were recorded. No temperature measurement sensor 

was placed at the orifice outlet as any measuring sensor in this position could perturb the 

air flow and affect the process of condensation and/or crystallization. The pressure and 

temperature after the orifice were calculated using the procedure detailed in Appendix C. 
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The original plan was to observe ice particles formed on the tube wall. However, only 

water droplets (as opposed to ice particles) could be observed. Numerical analysis using 

computational fluid dynamics software (the Fluent software was used here) was 

conducted to predict the temperature after the orifice. Figure (7 .2) shows the variation of 

air temperature along the orifice region. 
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Figure (7.2) Numerical prediction of temperature variation through an orifice 

The plot proves that although the air temperature drops sharply within the orifice, it 

increases rapidly right after the orifice and reaches almost orifice's inlet temperature. 
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Therefore, there i no sufficient time for vapour to nucleate and cry tallize. Raising the 

flow rate (by increasing the orifice inlet pressure) decreases the orifice exit temperature. 

However, the time that the fluid need at this low temperature is still inadequate due to 

exposure to relatively high temperature of the chamber, i.e. the air tream is affected by a 

significant driving force. The temperature of the chamber was intentionally kept above 

zero to avoid plugging in the cooling coil. The observed water droplets however were an 

indication of where the ice particles were likely to form. 

In order to ee actual ice particles, it wa concluded that the chamber temperature should 

be kept low enough to make the nuclei formed in the orifice exposed to a sufficient 

driving force in the tube suitable for stabilization and growth. The conclusions reached at 

thi stage helped to plan and design the actual sy tern built at the Centre for Marine CNG 

Inc. (see Section 7.2). The improved environmental chamber, shown in Figure (7.3), wa 

constructed such that the temperature of the cooling coil and the tube could be controlled 

independently in two separate compartment . In the two separate chambers the actual 

natural gas or a hydrocarbon gas with imilar behaviour (e.g., propane) can be used as the 

working fluid in the te ts for hydrate formation and deposition studies. The first chamber 

is set around equilibrium temperature and contains the cooling coil and eparator while 

the second chamber contains the rest of the system where temperature could be set at 

sufficiently below the equilibrium temperature, o the formed hydrate could be under 

driving force as it moves through the tube. Thus, the nucleation process could be 

enhanced. 
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7.2 Improved Experimental Apparatus 

The main objective of the experimental work wa to establish, by physical evidence, the 

role played by the various forces discussed in previous chapters on particles deposition. 

The method adopted to examine this effect was to form hydrate particles a the result of a 

contraction to flow passage and record the distance required by the particle to deposit on 

the wall 

7.2.1 Flow Circuit 

The experimental apparatus is composed of transparent tubes approximately 2m in length 

and diameters ranging from 6.35 to 19.05 mm (114" to 3/4"). The orifice had a diameter 

of 2.54 mm (0. 1 ") and other equipment pieces are listed in Figure (7.3). Two main test 

zones were suggested, namely: the starting or gas saturation loop, which is designated for 

cooling the gas and saturating it with water at the desired temperature, and the main 

hydrate formation loop, where the gas passes through the orifice and the tube, and the 

place where hydrate particles are deposited. 

In the starting loop, the charged gas is mixed with the cool gas in a separator container 

(9) before being routed to the compressor. In order to bring the gas temperature down, it 

is then passed through the cooling coil (5) located in the environmental chamber (9). This 

process continues until the compressor's exit temperature reaches a stable value. The gas, 

at this time, will be directed to the main loop by opening Valve (2). 
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The gas then moves through the Container (3) filled half with water to saturate the gas, 

the cooling coil to bring the gas temperature to the equilibrium level, and the Separator 

(6) to trap any droplet that could form during the cooling process in the coil. At this 

point, the gas is at equilibrium temperature and ready to flow through the system. It is 

worth to note here that the temperature of the small environmental chamber is adjusted 

around the gas hydrate formation temperature. 

The pressure and temperature of the gas are monitored once again upstream of the orifice 

and the tube to confirm that its conditions are suitable for hydrate formation. The orifice 

and the tube are located in a separate chamber with an independent temperature control 

system. As the gas flows through the orifice its temperature falls rapidly. Although the 

gas temperature could increase after leaving the orifice, as concluded from the numerical 

simulation mentioned earlier, the low temperature of the second chamber will keep the 

gas below the equilibrium hydrate formation temperature. Figure (7.4) shows some 

photos of the actual system. 
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Figure (7 .3) Schematic of improved experimental system using propane as carrier gas 
1. Compressor 6. Separator 
2. Valve 7. Valve 
3. Gas saturator 8. Flow meter 
4 . Gas charging valve 9. Liquid trap/filter 
5. Cooling coil 

126 



127 



------------- ----- -- --------

eparator 

Cooling Coil 

(c) 
Figure (7.4) Components of the gas hydrate apparatus: a) b) parts located 

in the small chamber (coil, separator, saturator); c) Parts 

located in the large chamber (orifice, pipe) 
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Chapter 8 

Modelling of Hydrate Deposition Location for Single Particle 

In this chapter the procedure to determine the particle deposition distance is outlined. A number 

of case studies will be discussed. The model predictions for water-air system will be first 

examined and then the results of model predictions for hydrocarbon hydrate formation will be 

compared with the experimental data. 

A. Water-Air system 

The approach taken in this research to determine the deposition distance can be categorized into 

three areas as discussed below: 

8.1 Flow Simulation-CFD results 

Since the model of nucleation needs the distribution of fluid properties, e.g., temperature, 

velocity, pressure, along the pipe, the governing transport equations of air-vapour mixture should 

be numerically solved using commercial software (the FLUENT software was used in this 

research). However, it is first required to define the system graphically and generate a simulation 

grid structure using a meshing tool. The GAMBIT software was used for grid generation. 

The geometry used in this study (Figure 8.1) is a simplified version of the actual orifice-pipe 

system, with the axisymmetric assumption. The dimensions of the orifice and the pipe are shown 

in Figure (8.1). 
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For the FLUENT air-vapour case, a grid with 575 340 quadrilateral cells was used. Good initial 

grid design relies largely on an insight into the expected properties of the flow such as boundary 

layer, point of separation, or abrupt variation of a property. The quality of the mesh plays a 

significant role in the accuracy and stability of the numerical computation. Obviously, the goal of 

any numerical simulation should be the optimization of both the discretization scheme as well as 

the grid generation scheme. 

One of the most powerful techniques used recently to achieve this task is the Multigrid Scheme 

(Patankar, 1980). The idea of a Multigrid algorithm, which is considered in the present numerical 

technique, is to accelerate the convergence of a set of fine-grid discrete equations by computing 

corrections to these equations on a coarser grid, where the computation can be performed more 

economically. This process is applied recursively to an entire set of coarse-grid levels. 

Since the boundary layer (b) in the orifice is of interest in the present study, a non-uniform mesh 

was used in the y direction, and the smallest elements were placed close to the orifice wall. The 

parameters used were: first row a=O.l8; aspect ratio, the ratio of the two consecutive mesh 

thicknesses, (t;+1/t;= 1.2) and the depth of the boundary layer meshing region > b. Starting from 

the wall, the height of the first grid row should be less than the boundary layer thickness to 

describe the flow in that region more precisely. A structured grid with 575 340 cells was used for 

the calculations, resolution was found to be independent of cell dimensions, and solutions were 

grid independent. 
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The solution algorithm for the non-linear algebraic equations involves: 

• The linearization of the discretized equations and solution of the resultant linear equation 

system to yield updated values of the dependent variables starting with a given initial 

value and boundary conditions; 

• The update continues until the scaled relative difference between two successive 

iterations has been reduced below a user-set threshold. In this study, the threshold value 

was set as: 

I k+l k I 
rp ~ rp ::; 1 o-3

, where rpk represents temperatures and velocities of the kth iteration. 
rp 

The computational domains and the partial differential equations describing the flow 

were discretized before being solved. The solution process means solving the governing partial 

differential equations (mass, momentum, energy, and k-Epsilon). The control volume technique 

converts these equations into a set of algebraic equations that can be solved numerically, 

resulting in a solution, which satisfies the governing equations in every control volume in the 

computational domain. 

FLUENT uses an upwind/central differencing scheme, in which the convection terms are 

discretized using upwinding, and the diffusion terms are centrally differenced. Second order 

schemes include the second order terms of the Taylor series expansion of the partial differential 

equations, and are therefore, more accurate. The SIMPLEC method of interpolation (Patankar, 

1980) was employed for the pressure-velocity coupling of all simulations. The second order 

interpolation scheme was applied to calculate the pressure. The details of these methods can be 

found in Patankar (1980) and FLUENT User's Manual (2002). 
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The boundary conditions for the saturated air case are listed in Table (8.1 ), which represents the 

data measured under the experiments' conditions. 
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Figure (8.1) Schematic of the saturated air case study (identical dimensions of the 
experiment) 

T bl (8 1) a e B d oun d" . ary con ttJons f or saturate d . I . a1r stmu atwn 
Parameter Value Unit description 

Inlet Pressure 8.96x104 Pa gauge 
Total temperature 273 K 

Exit 
Pressure 2.35x103 Pa gauge 

Total temperature 300 K 
Lateral Wall 

temperature 271 K Isothermal 

Default values were used k-epsilon parameters. Figure (8.2) illustrates the velocity vector of the 

air coloured by the velocity magnitude in the vicinity of the orifice region. The enlargement of 

this region could demonstrate a better view of the flow vortices and circulation right after the 

orifice. Figure (8.2c) show the temperature contours inside of the orifice. Due to the variable 

temperature within the orifice, ice particles with diverse critical sizes may form as a result of 

different driving forces. This can also be interpreted as the flow leaving the orifice may contain a 
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wide range of particle sizes. Thjs conclusion will be further analyzed in the subsequent 

discussions. 
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Figure (8.2) Velocity vector and temperature contours generated by CFD simulation 
for water-air Case Study: (a) Velocity vector in the orifice region; (b) 
Enlargement to show circulation; (c) Temperature contours inside the 
orifice 

8.2 Nucleation and Growth of Ice Particles 

The data obtained from the FLUENT software was used to describe and estimate the process of 

nucleation and growth of the ice particles. Based on the analysis discussed in Chapter 4 and 

using mass transfer as the predominant process of nucleation and growth, parameters used for 

describing the processes are listed in Table (8.2). 
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Table (8.2) Parameters used in calculating /31 and critical radius for ice 
Parameter Value 

nv 0.067 
Sh 2.009 
D 1.636xlo-• (cmL/s) 
y 2.68xlo-j 

J (!_q 2.49xlo-j 

cr 0.033 (N/m) . 
See Append1x E for typ1cal calculations 

The variation of the particle size and its growth rate with time for the condition listed in Table 

(8.2) are now presented. Figure (8.3) shows the growth rate of ice particles in micrometer scale 

as a function of time. The growth starts with a very fast rate after the ice particle becomes 

nucleated and slows down as the time elapses. That means the ice particle growth rate decreases 

with particles size. Hence, the time required for ice particles to grow to several microns is 

relatively long; see Figure (8.4). 
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Figure (8.3) Growing rate for ice particle as a function of time 
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Figure (8.4) Diameter for ice particles as a function of time 
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Based on the correlation of the particle critical size, Eq. 4.10, particles formed in the orifice have 

different values of critical sizes. This could also be due to the fact that the temperature 

distribution inside the orifice is not uniform, as also mentioned in Section 8.1. The temperature 

of the flow inside the orifice ranges from 235 to 272K. Accordingly, the critical sizes would be 

11-13 nm (calculated through the use of Eq. 4.1 0). Since the measurement of the actual nucleus 

(critical particle) size was not possible in this research, the analytical correlations of the Particle 

Distribution Function, Eq. 4.26, presented in Chapter 4, was used. 

Figure (8.5) illustrates the number of particles in dimensionless form (using Eq. 4.26) as a 

function of dimensionless particle radius at time equal zero (nucleation time). The graph proves 

that the distribution of the particles contains different sizes; in particular particles with radii 

larger than the critical radius. It will be confirmed analytically later that the size of the particles 

just after the orifice are neither identical nor all at critical size, rather large sizes (several 

microns) could also exist. Besides, due to large amount of particles formed, the probability of 

particle-particle attachment is possible and even larger sizes (up to hundreds of microns) could 

form. 

Hence the assumption made here is based on the conclusion that the particles leaving the orifice 

have different sizes and the approach used to describe the deposition model in this research is 

based on this fundamental hypothesis. 
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Figure (8.5) Particle distribution as a function of its size 

8.3 Calculating the distance of the deposition 

10 

According to the propo ed model, the procedure for calculating the distance traveled by a single 

particle before depositing on the wall could be summarized as follow : 

• The depo ition velocity i fir t determined using the model of Wells and Friendlander 

(Crowe, 2006). 

• The time required for the particle to reach the sublayer region can be found from: 

t = !.i._ (8.1) 
vd 

Where, y; is mea ured from the tube wall. 
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• The traveling distance in the turbulent region, as uming the initial velocity of the particle 

is equal to the fluid velocity, become : 

(8 .2) 

• In the ublayer region, the particle mailer than the thicknes of the boundary layer 

could migrate further as a re ult of external forces. Hence, the total di tance from the 

initial position would be: 

(8.3) 

• When particles larger than the ublayer thickness, the bouncing distance (X8), the 

distance taken by the particle to ettle as a result of rebound, i added to the di tance 

traveled in the turbulent region. 

X 1 = X 1 +X 8 (8.4) 

8.3.1 Trajectory of a single particle (dp < o) 

The following data, obtained from the actual saturated air test, is u ed as the initial conditions in 

the simulations to track and calculate the distance from the initial position of a single ice particle 

(x0,yi) to the point of resting on the wall (X" 0): 

Smooth pipe: Dpipe= 20 mm; J= 0.023; Re-32800 and o- 56.7 11m 

Fig. (8.6) illustrates the deposition of a 1 0-11m particle initially located at the centre of the pipe 

where u(y;)= U00• U ing the conditions mentioned earlier, the results show that the particle travel 

-7m before entering the boundary layer (BL) region. In the BL, the particle moves - 1 mm then 

deposits on the wall. Although the particle migration in the BL region is minor for this particular 

139 



size, very small particles tend to travel a significant distance in this region. For instant particles 

with 0.1 ~-tm diameter travel -5,995 m in the turbulent flow and -1.5 m in the BL region. 
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Figure (8.6) Deposition distance of a 1 0-J..lm particle calculated based on influence of 
flow motion and force balance 

8.3.2 Trajectory of single particle (dp > o) 

Particles having sizes greater than the sublayer thickness experience bouncing process as a result 

of collisions in the wall region. The total distance that the particle travels is now equivalent to the 

migration distance in the turbulent regime plus the distance traveled due to bouncing effect, (Eq. 

8.4). Fig. (8.7) shows the deposition distance as a function of the particle size for particle 

diameters greater than the sublayer thickness. The three curves in this figure indicate 
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respectively: the distance caused by bouncing, the distance traveled in the turbulent region, and 

the total distance traveled by the particle. The figure also shows that as the particle becomes 

larger, the inertia of the particle increases and hence the bouncing distance will shrink. 
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Figure (8.7) Deposition distance of particles (dp>b) calculated based on influence of 
flow motion and bouncing 

A very important conclusion is shown in Fig. (8.8), which represents a combination of results 

shown in Figures (8.6) and (8.7). The reduction in the total deposition distance will 

asymptotically approach a certain value. Hence the conclusion reached from Fig. (8.6), which 

stated that the deposition distance decreased dramatically following an increase in the particle 

size, should be corrected as follows: For particles larger than a certain diameter, called hereafter 

deposition critical size, there is no significant influence of the particle size on the deposition 
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distance. Consequently, particles having sizes greater than the deposition critical size will 

deposit at the same position. In this example, (ice formation studies), particles larger than 200 

fliTI will deposit almost at the same location ( -0.6 m). Therefore the deposition critical size for 

this example is about 200 f.!m. Therefore deposition will start at about 0.6 m and all smaller 

particles will travel further until they become large enough to start settling on the wall. 
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Figure (8.8) Deposition distance as a function of particle size initially located at the 
pipe centerline 

The effect of Reynolds number is now discussed to understand how the location of deposition 

would be affected. Figure (8.9) illustrates the particles deposition spot as a function of particle 

size for different flow Reynolds numbers for the ice deposition tests. As seen in Figure (8.9), the 

small particles are influenced by the main fluid velocity. However, such effect diminishes and 
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even vanishes for relatively large particles due to the high particle inertia. The particles inertia 

dominates its trajectory and makes it not yield to the drag force. 
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Figure (8.9) Influence of Reynolds number on particle deposition location 

8.4 Bouncing distance 

The distance that the particle moves forward as a result of rebound is affected not only by the 

particle size but also by the pipe size and flow structure. A graph representing the influence of 

the pipe size on the rebound distance as a function of particle size can be used to demonstrate 

this effect. Figure (8.1 0) illustrates the variation of rebound distance with particle diameter as a 

function of particle size within a pipe. It can be seen that the bouncing distance reaches a 
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maximum as the size of the particle increases. This trend is identical for all pipe sizes; however, 

the vertex could shift to the left as the pipe becomes large. 
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Figure (8.10) Distance traveled by ice particles due to bouncing as a function of 
particle diameter for different pipes 

8.5 Experimental results and preliminary model validation 

Several tests were conducted using four tubes and at different Reynolds numbers. The 

transparent tubes used for the tests were - 1.83m (6ft) in length and their diameters were varied 

from 1~ to 3~ inches. The tests for each tube were conducted using three different flowrates 

controlled by changing orifice inlet pressure through controlling the air pressure at the 
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compressor discharge. Position of the first droplets deposit on the wall was observed and the 

distance from the orifice to that position was measured. 

Based on the procedure of the experiments described in Chapter 7 and appendix C, the 

temperature of the air at the exit of the orifice drops slightly below water freezing point. The 

temperature right after the orifice starts to increase rapidly and reaches almost the orifice inlet 

value within a short distance (- 2cm). Theory and numerical analysis matched the observations. 

Both confirmed that the ice particles, if formed in the orifice, thawed out due to either the rapid 

increase in the pressure and temperature after the orifice or as a result of the heat tran fer with 

the surrounding. The latter means that the ice particles maintained in the solid form during 

migration in the flow then melted after deposited on the tube wall. In the present analysis both 

ituations are studied by including the bouncing effect for solid particles and ignoring such effect 

for water droplets. 

During the tests the following parameters were recorded: exit air standard volume flow rate Qs, 

; inlet P1 and T1; and system exit conditions Pex and Tex- The given data were reported in standard 

condition (1 01 325 Pa; 15 °C). 

The measured data were compared with the model predictions to find out the level of agreement 

and to validate the accuracy of the simulations. The model presumed that various sizes of 

particles, ranging from the critical size (rc= 11.5 nm) to several hundred microns ( -200 Jlm), are 

leaving the orifice. It is concluded from Figure (8.8) that particles larger than this range have no 

influence on the deposition distance. Based on the assumption, the model is designed to predict 
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the deposition distance of these sizes using the approach discussed earlier in Section 8.3. The 

typical calculations proposed in Appendix F demonstrate the procedure of the model prediction. 

Figure (8.11) illustrates the distance from the orifice to the location of deposition as a function of 

pipe size when Reynolds number is 32.8x103
. The figure shows a fair agreement between the 

experiment and the model prediction; see Table (8.3a). Both Tables (8 .3 a) and (8.3b) indicate 

that the distance of the deposition increases with the pipe size. Poor agreement was found when 

the influence of Reynolds number was investigated as shown in Fig. (8.12). Experimental results 

and model predictions conclude that the deposition distance varies linearly with Reynolds 

number; however, the slop of the trend in the test data is significantly higher; see Table (8.3b). 

Table (8.3a) Percent error of deposition distance observed in experimental tests and 
d" db 1 . f R 32 800 (F 8 11) pre Jete >y s1mu atiOn or e= 1gure 

Pipe Diameter (em) Model prediction (em) Test result (em) % discrepancy 
6.36 19.1 15 21.5 
9.53 28.7 24 16.4 
12.70 38.2 40 4.7 
19.05 57.3 55 4.0 

Table (8.3b) Percent error of deposition distance observed in experimental tests and 
d. db . I . f 1/4" . (F 8 12) pre Jete >y s1mu at10n or p1pe 1gure 

Re Model prediction (em) Test result (em) % discrepancy 
32 800 19.12 15 21.5 
35 300 19.3 20 3.5 
37 300 19.44 24 19 
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Finally, comparison of the ice particles with water droplets is presented by studying the influence 

of the bouncing process. Figure (8 .13) illustrates the deposition distance as a function of the pipe 

size with and without bouncing effect, i.e. assumption of particles remaining in the solid or liquid 

states, respectively. It could be concluded from the figure that the discrepancy of the deposition 

distance predicted by the simulation for the liquid droplets and solid particles with that observed 

in the tests is reasonable for all pipes. The percent errors of the droplet and ice with respect to the 

experimental results are listed in Table (8.4) and shows good agreement between the simulations 

prediction and the tests observation. 

Table (8.4) Ice and water comparison of the deposition distance observed in the 
d d. db h 1 . £ R 32 800 tests an pre Jete >y t e s1mu atwn or e= 

Dpipe (mm) Test result Liquid Ice particle % error of % error of ice 
(em) droplet (em) droplet particle 

(em) 
6.35 25 19.12 27.66 23.5 10.64 

9.525 30 28.7 33.95 4.33 13.17 
12.7 40 38.2 41 .93 4.5 4.8 

19.05 55 57.3 59.6 4.2 8.4 
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Fig. (8.13) Comparison of deposition distance predicted by simulation for different 
types of particles (assumption of particles remaining in ice or liquid forms 
when reaching wall) with experimental data as a function of the pipe size 

8.6 Uncertainty analysis of saturated air experiments 

There is a fact that uncertainties exist in virtually all computational, analytical, or experimental 

engineering endeavour. Fluid mechanics is among those that are heavily dependant on 

experimentation and the data uncertainty checks are needed since sometimes uncertainty 

completely changes the viewpoint of the results. Uncertainty of the data is defined as the band 

within which the experimenter is 95 percent confident that the true value lies (White, 2003). The 

purpose of this section is to manifest the uncertainty analyses, which was used in the planning of 

experimental facilities. 
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The fundamental concept of experimental uncertainty analysis is to compute the experimental 

results (r) using a data-reduction equation and the values of J basic measurements: 

r=r(X 1,X2 , •••••• •• ,X1 ) (8.5) 

The uncertainty in the results is computed to the first order using a root-sum-square of the 

product of the uncertainties in the measured variables and the sensitivities of the result to 

changes in that variable: 

(8.6) 

Where, the Ux's are the uncertainties in each basic measurement and the partial derivatives are 

the sensitivity coefficients. 

Since the target of the experiments that presented in this research is to predict the distance of the 

particle deposition from the orifice (Sd), it is essential to consider this parameter as a dependant 

variable. The independent variables or the measured parameters were: flow temperature and 

pressure (T, P), standard flowrate (Qo), pipe diameter (D), and the standard temperature and 

pressure (To, P) . 

Therefore, the uncertainty equations become: 

(8.7) 

[asd ~ J
2 
+(asd JD)2 

+(asd or)
2 
+[asd or. J

2 
+ 

112 

"dQ0 ° "dD "dT "dT0 ° 

(asd JP)2 
+[asd JP. J

2 
()p dPo o 

(8.8) 
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The sensitivity of the flowmeter device used in the experiment is ±2%, the tolerance error in the 

size of the pipe is ± 1 %, the accuracy of temperature measurement is within ±1 K, and that of the 

pressure measurement is ±13.79 K.Pa (±2 PSD. 

The measurement's errors influence the flow Reynolds number according to the following 

formula: 

P. T 
Where, Q = Q0 x-0 x­

p To 

(8.9) 

(8.1 0) 

The actual flowrate is sensitive to the error of measurements in the standard flowrate, the system 

temperature and pressure, and the standard temperature and pressure. Besides, the viscosity of 

the fluid changes strongly with the temperature (White, 2003). All these parameters will disturb 

the magnitude of Reynolds number followed by the value of the deposition distance (Sd). 

The following equation, which represents the variation of kinematics viscosity with temperature 

for air, was used in the analysis: 

(8.11) 

Where, Tis temperature in K and Vg kinematics viscosity in m2/s. The simulation model was run 

for data obtained from a typical test by keeping all the parameters but one constant and the 

results of the deposition distances were compared with the base case (exact values of all 

parameters) to find out the discrepancy in the deposition distances responding to the error in a 

certain parameter. Table (8.5) shows such response in the values of Reynolds number and 

deposition distance. 
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T bl (8 5) S a e I . f ensttlvttyanatysts o parameters measure m expenmenta tests 
Parameter Change in the parameter I L1Re I I L1Sdl (mm) 

Flowrate (Qo) ±2% 370.7 1.7 
Diameter (D) ±1% 244.68 1.2 

System Temperature (1) ±lK 66.83 0.3 
System Pressure (P) ±2PSI 2081.09 10.3 

Ambient Temperature (To) ±1K 85.51 0.5 
Ambient Pressure (Po) ±2PSI 3408.68 15.1 

Using Eq. (8.8), the total uncertainty in the deposition distance would be: 

U sd = 18.41mm= 1.841 em 

The measured deposition distance of this typical sample test was found to be 55 em. Therefore, 

the percent error due to uncertainty is approximately ±3.3%. 

Similar procedure is established for all saturated air tests discussed earlier and the results of the 

total uncertainty in deposition distance for each tests is calculated using Eq. (8.8). Table (8.6) 

summarizes the uncertainty value for different pipe size and at various Reynolds number while 

table (8.7) shows the percent error in the deposition distance due to uncertainty. 

T bl (8 6) U a e . ncertamty va ues f or saturate d . a1r tests 
Usd (mm) 

Re Size (3/4") Size (1/2") Size (3/8") Size (1/4") 

32 800 18.41 12.32 9.22 6.14 

35 300 18.7 12.44 9.33 6.25 

37 300 18.61 12.52 9.42 6.36 
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T bl (8 7) P a e . ercent o f uncertamty error or saturate d 0 air tests 
% error 

Re Size (3/4") Size (l /2") Size (3/8") Size (l /4") 

32 800 3.3 3.1 3.8 4 .1 

35 300 3.4 3 3.5 3.1 

37 300 3.1 3 2.5 2.6 

B. Propane-Hydrate Tests 

8. 7 Experiment apparatus 

The experience from the preliminary tests with air and water led to the revised design of the 

experimental set-up. Using the two separated cooling zones with capability for adjusting 

temperatures in the saturation and hydrate formation zones, the difficulties encountered in water-

air tests could be prevented. In the new revised experimental set-up, the coil, the saturator, and 

the separator were located in the first zone (gas saturation zone, the small chamber). The orifice 

and the pipe, where the hydrate forms, were placed in the large chamber (hydrate formation 

zone). The system is presented in Fig. (7.3) of Chapter 7. Propane was used as the working fluid 

since the propane hydrate can form above water freezing temperature under relatively low 

pressures. 

8.7.1 Test procedure 

A compressor was used to circulate the gas within the system. The gas loops were charged with 

propane and the compressor was started. The maximum pressure recorded in the transparent pipe 

was around 293 kPa abs (-42.5 psi). Using Fig. (8.14), the hydrate equilibrium temperature Cteq) 

relative to this pressure is -3°C. The small chamber was adjusted to a temperature slightly higher 
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than teq (5, 6°C) to prevent any hydrate formation in saturation zone. The temperature in the large 

chamber (hydrate formation zone) was set to a temperature lower than t eq ( -1, -2°C) to induce a 

driving force large enough to stabilize the nucleation and particle growth stable. 

The Hydrate Loci For Several Components Found In Natural Gas 
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Fig. (8.14) Hydrate loci for several components found in natural gas (Carroll J.J., 2003) 

The saturator was originally located before the cooling coil outside of the small chamber. 

However, the temperature of the gas heading to the saturator was observed to be excessively high 

making the gas oversaturated leading to excessive condensation in the saturation zone. The 

condensed water overloaded the filter separator and ended up as free liquid in the transparent 

tube in the hydrate formation zone. Since the purpose of this study was to investigate the hydrate 

formation in the absence of free water, it was decided to saturate the gas, under low temperature 
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of saturation zone, by moving the saturator to downstream of the coil inside the small chamber; 

see Figure (8.15). 

The data shown in Table (8.8) were recorded during the tests. The flow rate was corrected using 

Eq. (C-1) in Appendix (C). Table (8 .8) shows the recording data and the corrected flow rate for 

typical test using the%" pipe. From the table, the following parameters were calculated: 

Gas superficial velocity: U8= 15.02 m/s; 

Gas density: p= 5.6 kg/m3
; and 

Reynolds number: Re= 14 560 

T bl (8 8) D a e . ddfr ata recor e . I om a typ1ca propane test 
Suction Discharge Point 2 Point 3 Point 4 

Temperature (uC) 3 63 60 8.0 5.5 

Pressure (KPa) 82.74 455 413.7 193 193 

Standard flowrate (m3/s) 13xl0·3 

Corrected flowrate(m3/s) 4.28x10-3 
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Figure (8.15) Location of measuring points in the system 

These parameters along with the environmental temperature inside the large chamber were used 

as the boundary conditions in the simulation model to predict the deposition of the hydrate 

particles. 

156 



8.7.2 Observations 

As shown in Fig. (8.16), propane hydrate with different particle sizes was formed. As explained 

in the first case study, it was presumed that due to the particle-particle attachment (coalescence 

within the gas and on the tube wall), formation of various critical sizes, and different growth 

times, a range of particle sizes were formed. 

After the completion of the test, the distance from the orifice to the location of the first 

observable particle was measured. Then the pipe was dismantled and abandoned for a while to 

assure there were no water droplets remaining in the pipe before doing the next test. This 

procedure was repeated three times for different flowrates to investigate the influence of the 

Reynolds number on the deposition distance. 

8.8 CFD and simulation- results 

The system was simulated by means of the commercial CFD software (FLUENT) using the data 

of the conditions prevailing the experimental tests. Similar to the saturated air case, the 

parameters obtained from the FLUENT simulation were used to calculate the deposition distance 

based on the concept proposed in this study. 

The geometry used in this study had the same dimensions as discussed in Fig. (8.1 ). For the 

propane case, a grid with 575 340 quadrilateral cells were created in the Gambit software. 

The boundary conditions are listed in Table (8.9), which represents the data measured for typical 

test conditions. 
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Figure (8.16) Hydrate particles deposit on the pipe wall (magnification factor -2.73) 

T bl (8 9) B d a e oun d" f . I ary con 1t10ns or typ1ca d I . saturate propane s1mu at10ns 
Parameters Values Units Description 

Inlet Pressure 1.95x105 Pa gauge 
Total temperature 279 K 

Exit 
Pressure 1.93x105 Pa gauge 

Total temperature 278 K 
Lateral Wall 

temperature 272 K Isothermal 
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8.9 Nucleation and Growth of Hydrate Particles 

The data obtained from FLUENT was used to describe and estimate the process of nucleation 

and growth of the hydrate particles. It was shown in the analysis discussed in Chapter 4 that mass 

transfer and hydrate formation reaction kinetics are the dominant processes in the nucleation and 

growth of the hydrate particles. Parameters used for describing these processes are listed in Table 

(8.10). 

Table (8.10) Parameters used m calculating fJ 1, fJ2 and critical radius for propane 
hydrate 

Parameter Value 
nv 0.13 

Sh 2.009 

D 3.lxl o·l (cml/s) 

y 2.143x10-4 

Yeq 1.964x10-4 

f 2 .9x10) (Pa) 

/eq 1.8x10) (Pa) 

(J 0.022 (N/m) 

. 
See Appendtx E for typtcal calculatwns 

Figure (8.17a) shows the growth rate of hydrate particles in micrometer scale as a function of 

size (diameter). Since mass transfer is the dominating factor of growth after the hydrate was just 

nucleated, the rate of growth will decrease as the size of hydrate grows. However, the reaction 

kinetics will start to be the controlling factor in the growth process as the particle size grows 
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further. Therefore there is a dip in the growth rate diagram. That means that the elapsed time 

required for hydrate particles to grow to several hundreds of microns is relatively long but the 

trend dramatically change as the particle size increase beyond 100 microns and a sharp change of 

particle diameter is observed; see Figure (8.17b) . 
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Figure (8. 17a) Propane hydrate growth rate as a function of particle size 
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Figure (8.17b) Propane hydrate diameter as a function of time 

It is important to note here again that our simulation results are based on the basic assumption 

that the particles leaving the orifice have different sizes and the approach used to describe the 

deposition model in this research is based on this fundamental hypothesis. 

Figure (8.18) illustrates the number of particles in dimensionless form using Eq. 4.31 as a 

function of dimensionless particle radius at time equal zero (nucleation time). The graph clearly 

indicates that there is a distribution of the particles different sizes when hydrate particles are 

formed; in particular particles with radii greater than the critical radius. 
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Figure (8.18) Propane hydrate particle distribution as a function of size 

8.10 The deposition distance 

The data of the measured deposition distance from the orifice exit to the first deposition spot 

were recorded with a measurement tape with millimetre precisions. The deposition measurement 

data were compared with the results obtained from the simulation. Table (8.11) illustrates such 

comparison of deposition distances with those predicted from the model for three tests performed 

for a %" pipe under the conditions where Reynolds numbers were 14 500, 8 400, and 4 300, 

respectively. Figure (8.19) shows the discrepancy of the deposition distance predicted by the 

theory and the experiment. The model predictions were in a very good agreement with the 

experiment data. The discrepancy between the model predictions with experimental readings at 

the low and high Reynolds numbers are due to measurements inaccuracies. 
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T bl (811) M a e . easure dd eposltwn tstance an d d 1 mo e pre tc wns f or varwus R e 
Test# Re sd theory (em) sd measured Deviation 

(em) % 
1 14 500 89.1 90.5 1.6 
2 8 400 82.3 83.7 1.7 
3 4 300 74.6 73.5 1.5 

Figure (8.19) Comparison of hydrate deposition distance predicted by proposed model 
and experimental results as a function of Reynolds number 

8.11 Uncertainty Analysis 

As discussed in the first case study, the sensitivity of the flowmeter device used in the 

experiment is ±2%, the tolerance error in the size of the pipe is ±1 %, the accuracy of temperature 

measurement is within ±1 K, and that of the pressure measurement is ±13.80 kPa (±2 PSI). 

Following the procedure elaborated for the previous case in this Chapter and using Eq. 8.8, the 

uncertainty in the deposition distance and the precision of each parameter are calculated. Tables 
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(8.12) to (8.14) demonstrate the discrepancy in the deposition distance for each measuring 

parameter and the total uncertainty error for each test. 

Table (8 .1 2) Uncertainty in parameters and total uncertainty for test no. (1) 

Parameter Change in the parameter I LJRe I I LJSd l (mm) 
Flowrate (Qo) ±2% 306 3 
Diameter (D) ±1% 151 2 

System Temperature (1) ±lK 55 1.3 
System Pressure (P) ±13.8kPa 53 1.3 

Ambient Temperature (To) ±1K 720 6.6 
Ambient Pressure (Po) ±13.8kPa 2109 19 

u s" 
20.5 

Table (8.13) Uncertainty in parameters and total uncertainty for test no. (2) 

Parameter Change in the parameter I LJRe I I LJSd l (mm) 
Flowrate (Qo) ±2% 170 2 
Diameter (D) ±1% 84 1 

System Temperature (1) ±lK 30 0.5 
System Pressure (P) ±13.8kPa 30 0.5 

Ambient Temperature (To) ±1K 400 5.7 
Ambient Pressure (Po) ±13.8kPa 1170 17.3 

u s" 
18.36 

Table (8.14) Uncertainty in parameters and total uncertainty for test no. (3) 

Parameter Change in the parameter I LJRe I I LJSd l (mm) 
Flowrate (Qo) ±2% 82 1.9 
Diameter (D) ±1 % 41 1.4 

System Temperature (1) ±lK 15 0.2 
System Pressure (P) ±13.8kPa 14 0.2 

Ambient Temperature (To) ±lK 194 5.1 
Ambient Pressure (Po) ±13.8kPa 570 16 

Us" 16.96 
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Chapter 9 

Conclusions and recommendations 

The present research examined the growth and deposition of hydrate formed in a gas/vapour 

mixture. A circular pipe with restriction (orifice in this study) is simulated using new analytical 

model of hydrate growth and distribution processes. 

The model, which satisfies the law of mass action, described the development of hydrate 

formation and growth through the contribution of two processes, the mass transfer and the 

reaction kinetics. The former occurs due to the drop in temperature below the equilibrium 

temperature while the latter is the result of the fugacity difference. 

A novel approach to describe the particle traveling and deposition is introduced. The concept of 

the particle deposition velocity is introduced to help to predict the trajectory of the particle 

motion in the turbulent region. While the literature reports concerning the hydrate migration and 

deposition have ignored the wall effect, the model presented in this research proposes a new 

approach to track the particle motion merged in the sublayer region using the forces acting on the 

particle. For particles with sizes larger than the sublayer thickness, the model introduces the 

influence of the bouncing concept to explain the near wall effects. 

The main conclusions of the research can be summarized as follows: 

1. Analysis of the proposed model showed that the rate of particle growth is inversely 

proportional to the particle size in the process of mass transfer and linearly related to the 

process of reaction kinetics. 
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2. The continuum equations should be corrected when the motion of submicron particles is 

addressed. Since very tiny particles behave as fluid particles, Brownian effect is taken 

into account by including the slip correction factor in the continuum equations. 

3. The deposition of particles in the turbulent region is mainly dominated by the diffusion 

process for submicron sizes and by inertia for relatively large sizes. The deposition 

velocity and collection efficiency follow a V -shape trend in that their values decrease as 

the particle size increases in the diffusion-controlled regime and increase as the size of 

particle increases in the inertia-controlled region. The particle size for distinction between 

the two motions is found to be -1 J.tm. 

4. The minimum numbers of particles that deposit and reach the boundary layer are those 

that have sizes of about 1 J.tm. 

5. The very tiny particles tend to deposit whereas the relatively larger particles are probably 

more susceptible to be entrained from the boundary layer near the wall. 

6. The study showed that the distance of deposition decreases as the particle size increases. 

However, the analysis has introduced a certain size of particle in which further particle 

growth has no effect on the distance of deposition. Such size was called "deposition 

critical size". 

7. Small particles are influenced by the main fluid velocity but the effect diminishes for 

relatively large particles as a result of the high particle inertia. 

8. The experimental tests are in good agreement with the model predictions in that the 

deposition distance is linearly proportional to the Reynolds number. 
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9. Formation of hydrate particles are observed to be poly-dispersed since different sizes of 

particles are formed. This observation is consistent with the analytical correlation derived 

based on the law of mass action. 

10. The deposition distance is found to be linearly proportional to the Reynolds number and 

ptpe SIZe. 

Recommendations for future works: 

1. The hydrate formation reaction kinetics process was assumed to be independent on the 

particle's surface area. 

. dr" ( ) t.e. - = rp r" 
dt 

However, the more precise relation should be dr" = lp(r,;} since as the particle grows the 
dt 

surface area also affects the kinetics of the gas/vapour reaction and the growth rate. 

2. The proposed model has ignored the influences of the electrical dipole force, 

thermophoresis force and coagulation process when the force balance concept is 

addressed. Therefore it is recommended to consider these forces in the future research. 

3. The model ignored the effect of real gas conditions at high pressure conditions and 

fugacities were simply assumed to be equal to partial pressure of the desired component 

in the gas mixture. Equation of states should be used to improve the accuracy of the 

model for high pressure predictions. 

4. Using accurate means in the experiment such as high speed camera to observe and follow 

the particle trajectory will enhance the accuracy of the prediction in terms of particle 
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growth and distribution, particle entrainment and deposition, and the phenomena of 

bouncing. 

5. Study the sensitivity analysis for other factors that influence the deposition of hydrate; 

these factor include temperature (temperature of the saturator and the tube), pressure, gas 

structure, and the concentration in the gas mixture. 

6. The model is believed to be comprehensive enough to be employed in addressing 

deposition of particles of other fields such as respiratory system, fouling in heat 

exchanger and deposition in combustion chamber. 
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Appendix-A 

Solution of Eq. 4.22 

The general Partial Differential Equation of the Particle Distribution Function is: 

A-1 

The method of separation of variables may be used by assuming that the product solution of the 

form: 

n(t, r) = T(t) .R(r) A-2 

By differentiating Eq. (A-2) and substituting into A-1 yield the following expression: 

R aT {J, T aR - {J, T R = 0 . + . . 2 •• 
at r ar r 

A-3 

Dividing A-3 by A-2: 

aT aR 

A-4 

Eq. (A-4) can only be satisfied if the left hand side and the right hand side are equal a constant 

(A.) which should be equal to any real number including zero. In other words: 

aT aR 

at = {J, - {J, ar = 0 c 
T(t) r1 r R(r) ' 1 A-5 

Examination of the case equal zero leads to the fact that no time dependant exists and this 

violates the original assumption, which says the size distribution is function of time and growth. 

However, for the other case we obtain the following expressions: 

T(t) = exp(c1t) A-6 
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-c ,z 
R(r) = Arexp(--1 

-) 

2/3, 

n(t, r) = Arex{ { - ;;,)J 
Where, A and c1 are constants 

-- -------··------ --------------------

A-7 

A-8 

The constants in Eq. (A-8) can be estimated using initial and boundary conditions. We consider 

that the first nucleation occurs with the concentration of sites in the system, on which the clusters 

of the new phase can form, is denoted by no (particle perm\ Hence the initial condition would 

be the condition that all the particles have sizes of critical radius: 

n(O, rc) = n0 =constant 

And the boundary condition is: CJnl = 0 
dr r t , . 

Substituting the boundary condition leads to: 

now equation(A-8) reduced to: 

Then from the initial condition, the constant A can be estimated as: 

The hydrate size distribution function due to mass transfer would be: 
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A-9 

A-10 

A-ll 

A-12 

A-13 



Introducing the Fourier number Fo = fJ~t , the reduced radius r • = .!__ , and a dimensionless 
~ ~ 

• n 
parameter n =-, Eq. (23) becomes: 

no 

• • r 
( 

. 2 J n (t,r)=l.65r exp Fo- 2 
A-14 

209 



Appendix-B 

Solution of Eq. 4.29 

The general Partial Differential Equation of the Particle Distribution Function (PDF) is: 

B-1 

The method of separation of variables may be used by assuming that the product solution of the 

form: 

n(t, r) = T(t).R(r) B-2 

By differentiating Eq. (B-2) and substituting into B-1 yield the following expression: 

dT f3 /31 dR f3 /31 R.-+( 2r+-).T.-+( 2 --2
).T.R=O 

dt r dr r 
B-3 

Dividing B-3 by B-2: 

B-4 

Eq. (B-4) can only be satisfied if the left hand side and the right hand side are equal a constant 

(2) which should be equal to any real number including zero. In other words: 

dT dR 

dt = -(f3
2
r + fJ1) dr _ (/32 _/l) = O, A. 

T(t) r R(r) r 2 
B-5 

Examination of the case equal zero leads to the fact that no time dependant exists and this 

violates the original assumption, which says the size distribution is function of time and growth. 

However, for the other case we obtain the following expressions: 

T(t) = exp(At) B-5a 
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B-Sb 

Hence: 

Arexp(h) 
n(t,r)= A 

( I+-) 

(j3
2

r 2 + p
1

) 2p2 

B-6 

where A and f... are the arbitrary constants and can be found from initial and boundary conditions. 

Now our initial condition assumes that the time begins after the particles reach its critical size 

because unlike critical particles, any particle with a size less than the critical value will be 

vanished if the driving force is eliminated. 

We consider that the first nucleation occurs with the concentration of sites in the system, on 

which the clusters of the new phase can form, is denoted by n0 (particle perm\ Hence the initial 

condition would be the condition that all the particles have sizes of critical radius: 

n(O, rc) = n0 =constant 

And the boundary condition is: dnl = 0 
dr 'r 

Substituting the boundary conditions leads to the value of the constant A.: 

B-7 

since rc - o(l0-9 );/32 - o(l0-5 );/31 - o(l0-12
), the more significant term of Eq. B-7 is the first 

term. Thus: 

B-8 

Then from the initial condition, the constant A can be estimated as: 
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B-9 

( /3, ) is o(l0-3
), in which is the dominated term. 

rc 

The final form of the hydrate size distribution function would be: 

or: B-10 

Now the term I in Eq. (B-10) approaches one since: /32 r/ and /32 r
2 

<<1. 
/3, /3, 

Therefore the approximated final form of the hydrate size distribution function due to mass 

transfer and hydrate reaction would be: 

B-11 

Introducing the Fourier number Fo = f3~t , and the reduced radius r • = !_, 
~ ~ 

B-12 
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Define a dimensionless parameter n • =.!!:.., 
no 
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Appendix-C 

Calculation procedure of temperature after the orifice 

The target of the following analysis is the temperature at orifice exit (T2), Fig.(Cl). 

• Determining actual mass flow: 

Using the ideal gas relation: 

Q = Q ·(p" J·(Tex J {/ Sf p T 
ex s1 

C-1 

( Pex J 
Pex = RTex C-2 

C-3 

Where: 

rna: Actual mass flow (kg/s); Qa actual volume flow rate; Pex: density at system exit; R 

gas constant 

• Stagnation properties: 

From mass flow rate, the velocity at orifice inlet (V1), Point 1 in Figure C 1, can be 

deterTTllned as follows: 

p, = (:~.J C-4 

C-5 

Then stagnation pressure and temperature at Point I can be calculated using: 

T. T v,2 
01 = I+ 2Cp C-6 

C-7 
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• Assuming adiabatic reversible process through the orifice, the mass flow rate formula 

listed below was used to find out the pressure at Point 2 (John and Keith, 2006) 

C-8 

Where, P0 = P01 = P02 ; T0 = T01 = T02 ; y: specific heat ratio; and A 1 : orifice area 

The Newton-Raphson method can be used in calculating the pres ure at the orifice exit. 

• The orifice exit temperature now can be found using the isotropic formula: 

I 
I 

A.r--.: 
I 
I 
I 

<:::: .. ~·::·_: .. -: .. :::: .. ::·:.·: .. :: · :~! 
I 
I 

I 

... ·········································>: 
:...... I 

Figure Ct. Flow through an orifice Plate 
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Appendix-D 

Running typical FLUENT simulation 

Dl Design the system using GAMBIT 

Gambit is AutoCAD-like software since it uses vertices, lines, shapes, and volumes to 
build any complex structure. The following steps have been used to construct our system. 

Dl.l Constructing the System in GAMBIT 
• Vertices are first appointed 
• Using LINE icon, lines are generated and the shape should be enclosed. 
• By selecting all the lines, the system has to define as a surface using FACE icon. 

D1.2 Mesh the Face 
• In the Mesh edges Select the edge and click apply 
• In the Mesh Faces form, select the face for Faces and Tri for Elements. 
• Retain the default values for the other parameters and lick Apply. 

D1.3 Identify the boundaries 
• Select the boundary 
• Define the boundary using define form 

D1.4 Save the file 
• Select Export in the File menu 
• Save the file as mesh extension 

D2 Simulation in FLUENT 
The file is ready now to handle by FLUENT software. Start the 2D version in FLUENT then 
follow the following steps 

D2.1 Grid 
• Read the grid file "name.msh" 
• Check the grid for confirrrung non-negative cell area 
• To ensure the best possible grid quality for the calculation, it is good practice to 

smooth a triangular grid after reading it into FLUENT by using Smooth/Swap 
icon. 

• Scale the grid using Units Conversion then click Change Length Units. 

D2.2 Models 
• In the Solver, select Coupled and keep the rest default. 
• Turn on the standard k-e turbulence model and keep the default standard model by 

clicking OK 
• Enable heat transfer by activating the energy equation. 
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02.3 Materials 
• Define water vapour from the material database so that it can be used as a 

secondary phase. 

02.4 Phases 
• Specify air as a primary phase and click the Set. .. button 
• In the Primary Phase Panel, select air from the Phase Material drop down list. 
• Specify water-vapour as a secondary phase using same procedure of the primary 

phase. 

02.5 Boundary Condition 

Inlet 

Exit 

• The boundary conditions for typical saturated air case are listed in table (01), 
which represent the measuring data gained from the experiment conditions. 

Table (01) Boundary conditions (saturated air) simulation 

Parameter Value Unit 

Pressure 8.96xl04 Pa gauge 
total temperature 273 K 

Pressure 2.35xl03 Pa gauge 
Total temperature 300 K 

Lateral Wall 
temperature 270 Isothermal 
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Appendix-E 

Calculation of parameters in table (8.3) 

p 150 3 
n =-=- = = 0.067 kg-mole/m 

v RT 8.314x272 

Diffusion Coefficient (Eq. 4.12) 

Critical temperature and pressure for: 
Air: 133K; 39 atm 
Water: 647.1K; 217.75 atm 

D = 
3

·
64

x
1
0 x 

272 
x(39x217.75Y' 3 x(133x647.1)5112 X -

1 
+-

1 -4 ( )2.334 ( )I /2 
AB 1.5 .Jt33X647.1 29 18 

DA8 =0.16366 cm2/s 

Sherwood Number: as umed to be Sh= 2.0 

Equilibrium water content (yeq) : 

Using the diagram (El), the water content at OC and 1.5 bar is: -0.002 kg/m3 air. The water 
content in moler unit can be calculated as follows : 

l gr-mole of a gas = 22.4 L at atmospheric pressure and OC temperature 

0.002xl03 x22.4x10-3 
. 

Yeq = = 2.49 X 10-3 gr-mole of water/gr-aJr 
18 

Saturation Ratio (S) and actual molar fraction (y): 
From Eq. 4.9: 

S=l+ 46.7x10-
3
x l =1.076 

8.314x2722 

and Eq. 4.8: 

y = 2.68 X 10-3 gr-mole of water/gr-air 

Critical radius (r,): 

The range of flow temperature inside the orifice is 235-272K. Based on that the range of the 
critical radius would be: 
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2x0.033 ( ) 
rc = 8314 =11.5-13.37nm 

1000 X--X T X ln(1.076) 
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---------------------------------------------------------------------------

Appendix-F 

Typical calculation of deposition distance 

Assume a hydrate particle with diameter 50flm moves in a gas flow. According to the CFD 
simulation results, Ug-14.4 mfs at the centerline. Hence Re= 14 500 for Dpipe= 19.05 mm. 

The deposition velocity, using the model of Friedlander and Wells, would be: 

The elapsed time for this particle to reach the wall is: 

y 
t = -' = 0.764s 

v" 
Within this time, the hydrate particle grows from the original size rpo= 25flm to a new size rp. 
According to the solution of Eq. 4.17, the correlation of particle radius a a function of time 
becomes: 

dp = 50.02 pm 

Now, launching from rest, the particle velocity can be determined using the following formula, 
which analytically derived from the equation of motion (Jassim et al., 2008): 

uP= (u 8 - grv )x (1- e - t trv )= 14.39 m/s 

The deposition distance X1 would be: 

The particle reaches the wall region. Thus, the code will direct the process of the particle motion 
near the wall based on the comparison of the particle diameter with the boundary layer thickness. 

D . 
£5 = 14.1 X ptpe ;::::: 105 flffl 

Rex .[.i 

As: d P < b', the particle will merge into the boundary layer and the balance of the forces applied 

to the particle will track the trajectory of the particle. Hence, the code will evaluate all the 
external forces, which are lift, drag, adhesive and gravity forces. 
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Using the correlations 6.25 to 6.29, the magnitude of the forces would be: 

Force Value in (nano-Newton) 

Lift 12.12 

Adhesive 6.6xl0-9 

Drag 44.26 

Gravity 0.6 

Fnet= Lift-(Adhesive+Gravity) = 11.5 (nN) 

Since the net force applied on the particle is positive, the particle will entrain at this moment with 
an angle: 

() = tan - t ( F,., J = 14.56° 
FDrag 

The extended distance due to this process will be: 

X 2 = X 2(0) + Yo/tan(8), 

Where : X 2<0l = {
0 

and x2 {
Y0 = 5 t = 0 

for 
Y0 =Y t>O 

x 2 = 0 + 105x10-6 /tan(14.56) = 4.04x10-4 m, 

Repeating the steps in the boundary layer region and for each step, X2 should estimated tillY~ 0, 
which at this point the particle attached the wall. 
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Appendix G 

List of research papers 
Papers published in peer-review journal, refereed conferences and non-refereed conferences are 
listed below: 

CFD Application 
1. Jassim E., Abedinzadegan Abdi M., and Muzychka Y., "Computational Fluid Dynamics 

Study for Flow of Natural Gas through High Pressure Supersonic Nozzles: Part 1- Real 
Gas Effects and Shockwave", Journal of Petroleum Science and Technology, 26(15), 
1757-1772. 

2. Jassim E., Abedinzadegan Abdi M., and Muzychka Y., "Computational Fluid Dynamics 
Study for Flow of Natural Gas through High Pressure Supersonic Nozzles: Part 2- Nozzle 
Geometry and Vorticity", Journal ofPetroleum Science and Technology, 26(15), 1773-
1785. 

3. Jassim, E., Abdi M., and Muzychka Y., "Simulation of Natural Ga Flow through 
Complex Geometries Using Computational Fluid Dynamics", the International Oil and 
Gas CFD Conference (!OCC), London, UK, 30 November- 1 December, 2006. 

4. Jassim, E., Abdi M., and Muzychka Y., "Thermal Effects of Cold Jet on Pressure 
Vessels and Surrounding Equipment", proceedings of the 2006 International Marine 
CNG Standard Forum, St. John's, NL, Canada, November 7-9, 2006. 

Nucleation and Hydrate growth 
1. Esam Jassim, Abedinzadegan Abdi M., and Muzychka Y., "Modeling Hydrate 

Nucleation and Growth and Predicting Particles Size Distribution in Gas Flow Regimes", 
Submitted to the Journal of Canadian Petroleum Technology, Jan. 2008. 

2. Esam Jassim, Abedjnzadegan Abdi M., and Muzychka Y., "Nucleation and 
Accumulation Phenomena of Hydrate in Oil and Gas Pipelines", proceedjngs in the 151 

Saudi Arabia Oil and Gas Exhibition (SAOGE), Damman, Saudi Arabia, Nov. 15-17, 
2008. 

Deposition 
1. Jassim E., Abedinzadegan Abdi M., and Muzychka Y., "Model Predicts Hydrate 

Deposition Location", Exploration and Production - The Oil and Gas Review, OTC 
Edition, 6(1), 112-113, 2008. 

2. Jassim, E., Abdi M. , and Muzychka Y., "Locating Hydrate Deposition in Multiphase 
Compressed Natural Gas Flow Lines", proceedings of the 2007 International Marine 
CNG Standard Forum, St. John's, NL, Canada October 30-31,2007. 

3. Jassim E., Abedinzadegan Abdi M., Muzychka Y., "A CFD-Based Model to Locate Flow 
Restriction Induced Hydrate Depo ition in Pipelines", proceedings in the 2008 Offshore 
Technology Conferecne, OTC 08, Houston, USA, May 5-8, 2008. 
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Appendix H 

********************************************************************************************************************* 
••••••••••••••••••••••• 
* THIS PROGRAM IS CREATED FOR MODELLING THE DEPOSITION PHENOMENA OF FLUID/PARTICLE MOTION. IT 
CONSISTS OF NUCLEATION AND GROWTH MODELS, 

DEPOSITION EFFECIENCY AND AMOUNT OF PARTICLE DEPOSIT IN FULLY TURBULENT REGIME, SUBLAYER 
FORCE BALANCE AND BROWANAIN MOTION 
********************************************************************************************************************* 
••••••••••••••••••••••• 
C S SATURATION RATIO 
C Rv SPEClFC GAS CONSTANT 
C NUE KINEMITIC VISCOCITY OF GAS 
C Rp RAIDUS OF PARTICLE 
C RC CRITICLAL RArDUS 
C SQMA SURFACE TENSION (0.02 N/m) 
C ROWL DENSITYOFWATER ( l000kg/m3) 
C ROWP DENSITY OF HYDRATE PARTICLE (960 kg/m3) 
C MW A,MWB Molecular weight of water and Gas 
C MUE Dynamic VISCOCITY OF GAS 
C Vr RELATIV E VELOCITY (Vp-Vg) 
C TCA CRITICAL TEMPERATURE OF SUBSTANCE A 
C TCB CRITICAL TEMPERATURE OF SUBSTANCE B 
C PCA CRITICAL PRESSURE OF SUBSTANCE A 
C PCB CRITICAL PRESSURE OF SUBSTANCE B 
C P PRESSURE (atm) 
C T TEMPERATURE (K) 
C Ug AVERAGE GAS VELOCITY (m/s) 
C KB BOLTIZMAN CONSTANT 

REAL L,MUE,MWA,MWB,NUE,KB,Rn(I 000000) 
OPEN(33,FILE='DA TA') 
OPEN(2,FILE='PARTICLEDIA') 
OPEN(3,FILE='PARTICLEDIFF') 
OPEN(4,FILE='DEPOSITION') 
OPEN(5,FILE='ANGLE') 
OPEN(6,FILE='FORCE') 
OPEN(7,FILE='POSITION') 
OPEN(8,FILE='BOUNDAR Y -LAYER') 
OPEN(9,FrLE='BOUNCING') 

PI=3. 1428 
Rv=83 14/44 
f=0.02804 
READ(33,6 1) 

61 FORMAT(/,/,/,/,/,/,/,/ ,I ,1,/,/,/,/ ,1) 
READ(33,*)SQMA,ROWL,ROWP,MWA,MWB,MUE,Vr 
READ(33, *)TCA,TCB,PCA,PCB,T,P,Ug, KB 
READ(33, *)Dpipe,L 
Yi=0.5*Dpipe 
Pa=P* 101.325 
S= l +(13.26e3*(276-T)/(8.3 14*T*T)) 

YEQ= 160e-3*0.2367/MWB 
RC=2 *SQM A/(ROWL *R v*T*LOG(S)) 
Rp=RC 
ROWG=Pa*MW A/(T*8.314) 

NUE=MUEIROWG 
CALL FLOW(f,Dpipe,Ug,NUE,BL,Usub,SRV,RE) 
CALL OUTPUT! (Dpipe,Ug,f,RE,Usub,BL) 

Rp=25.0e-6 

C CALL NUCL(Pa,T,S ,DRDTNUC) 
time=O.O 

NTIME=IOOO 

TOTALN=l 
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Y=BL 
hm=Y 
REp=2*Rp*Vr/NUE 
CALL DIFFCOF(TCA,TCB,PCA,PCB,T,P,MWA,MWB,Dift) 

DO 10 I=I,NTlME 

CALL SHROOD(REp,NUE,Diff,Sh) 

CALL PENT(f,Dpipe,2*Rp,L,ROWP,ROWG,MUE,T,Usub,Ug,Vdr,Us,Cc,tau) 

CALL MODELS(K,ROWPIROWG,Usub,NUE,Diff,2*Rp,tau,Re,Vpln) 

Vd=Vpln*Usub 
time=YiNd 
CALL GROWTH(SQMA,ROWG,ROWL,ROWP,MWA,MWB,S,YEQ, 

+ KB,T,Pa,RC,Rp,Sh,D,time,Rn(I),DRDTM,DRDTR,DRDT,DNDT) 

uy=Ug-2.5*Usub*ALOG(0.5 *Dpipe/Yi) 
uyp=(uy-9.81 *tau)*(l -exp(-time/tau)) 
X I =uyp*Yi/Vd 

write(*, *)X l,uyp,time,Vpln,Vd,2*Rp,4*Rp*Rp*Cc*ROWP/(18*MUE) 
pause 
Pmass=4*Pl*ROWP*Rp**3/3 

IF(2*Rp.GE.BL)THEN 
c WRITE(*,*)BL* IE6,2E6*Rp,Us 

CALL BOUNCEF(I,2*Rp,ROWG,Ug,Vd,pmass) 
GOT020 
END IF 

CALL DEPO(I,TOTALN,time,Dpipe,BL.Vd,DEPN,DEPNT) 
lF(hm.GE.BL)THEN 
hm=BL 
ELSE 
hm=BL-Y 
END IF 
IF(SR V.GE. I E- 15)THEN 

c SRV=SRV*Y/BL 
END IF 

CALL FORCES(J,Cc,ROWG,ROWP,MUE,2*Rp,SRV,Ug,hm,BL,FL, 
+ Fg,Fwaii,FDy,Fbalance) 

CALL DRAG(2*Rp,MUE,SRV*Ug,Cc,FD) 
THETA= A TAN(Fbalance/FD)* 180/Pl 

CALL BLAYER(I,J,BL,THETA,Us,Rp,time,X,Y) 

write(*,*)'XI =',XI ,XI+X,Y,2e6*Rp 
c PAUSE 

20 CALL OUTPUT2(2*Rp,time,X, Y ,BL,DEPN,DEPNT,TOTALN ,THETA,FL, 
+ Fg,Fwaii,FDy,FD,Fbalance,PB) 

10 CONTINUE 
write(*, *)'end' 

STOP 
END 
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SUBROUTINE BOUNCEF(I,Dp,ROWG,Ug,Ub,pmass) 

write( 15, *)'------------1=',1,'----Dp=',Dp* l e6,'----------------' 
XX=O 
tt=O 
nb=O 

Vlp=Ub 
st=(926+0.5 *ROWG)*U g*Dp/(9* 1.027e-5) 

ep=0.91 *exp( -35/st) 
Energy=4.8647e-20*Dp/(12*4e- l 0) 

VI c=SQRT((2*Energy/pmass)*( 1-ep*ep)/(ep*ep)) 
23 if(Vlp.le.V Ic)then 

write(*, *)'Particle adhere' 

Rerum 
else 
write(*,*)'Particle rebound' 
V2p=V I p*SQRT(ep*ep-(2*Energy*( 1-ep*ep)/(pmass*V I p*V I p))) 

nb=nb+l 
VR=VIpN2p 
sinphi=SQRT(ABS( 1-(VR *ep)**2)/(VR *VR *( 1-ep*ep))) 
phi I =ASIN(sinphi) 
IF(sinphi*VR.LE. I )then 
phi2=ASIN(VR *sin phi) 
else 
phi2=3.14*0.5 
write(*, *)'nb=',nb,V I p,V2p,phi 1*180/3 .1 ,phi2*18013.14 

write(•, *)'Particle adhere' 
stop 
Rerum 

endif 

c write(•, *)'nb=',nb,ep,VI p,V2p,phi I* 180/3.1,phi2* 180/3.14 
Vlp=V2p 
YY=(V2p*COS(phi2))**2/(2*9 .81) 
tt=V2p*COS(phi2)/9.81+tt 
XX=V2p*S!N(phi2)*2*n+XX 
write( l5,*)nb,tt,XX,YY 

c pause 
go to 23 
endif 
RETURN 
END 

SUBROUTINE DIFFCOF(TCA,TCB,PCA,PCB,T,P,MWA,MWB,DAB) 

C TCA,TCB CRITICAL TEMP.OF GASES A&B [K] 
C PCA, PCB CRITICAL PRESS.OF GASES A&B [atm] 
C P SYSTEM PRESSURE [arm] 
C a,b DIMENSIO LESS CONST.(a=3.640E-4; b=2.334) 
C MWA,MWBM MOLECULER WEIGHTOFSUBSTANCEA&B 

REALMWA,MWB 
a=3.64e-04 

b=2.334 

T ERM I=(T/SQRT(TCA*TCB))**b 
TERM2=SQRT((( I /MW A)+( I/MWB))) 
TERM3=(PCA *PCB)**( 1/3.0) 
TERM4=(TCA *TCB)**(5/1 2.0) 

DAB=a*TERM I *TERM2*TERM3*TERM4/P 
C write(*, *)TERM I ,TERM2,TERM3,TERM4,P,T,DAB 
C PAUSE 
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RETURN 
END 

SUBROUTINE FLOW(f,Dpipe,Ug,VISKO,BL,Usub,SRV,Reg) 

Reg=Ug*Dpipe/VISKO 
BL=14.1 *Dpipei(Reg*SQRT(f)) 
Usub=S*VIS KO/BL 
SRV=Usub/Ug 
write(*,*)Reg,BL,Ug,Usub 
pause 
RETURN 

END 

SUBROUTINE GROWTH(SQMA,ROWG,ROWL,ROWP,MWA,MWB,S,YEQ,KB,T,Pa 
+ ,RC,Rp,Sh,DAB,time,Rpn,DRDTM,DRDTR,DRDT,DNDT) 

REAL Mv,Nv,MWA,MWB,KB,LNPEQ 
PI=3.14159 

A VOGADR0=6.022E+23 

Nv=ROWG/MW A 
Mv=MWB/AVOGADRO 

Y=S*YEQ 
T A U=SQMA *(36* Pl)**(0.333 )*(M v/ROWL)* *(0.66667)/(KB *T) 
TERMM=4*T AU*T AU*T AU/(27*LOG(S)*LOG(S)) 

BETA I =O.S*(Nv/ROWL)*(Sh*DAB*l E-4*MWA)*(Y-YEQ) 
Rpmass=SQRT(2*BETAI *time+RC*RC) 

c DNDT=( l/S)*(Mv/ROWL)*SQRT(2*SQMN(Mv*PI))*(ROWG/Mv)**2* 
c + EXP(TAU-TERMM) 

C REACTION KINETIC COEFFECIENT-----

LNPEQ=0.11 6*T-30.778 
PEQ= I E6*EXP(LNPEQ) 
FUGEQ=( 1-Y)*PEQ 
FUG= I E3*(1-Y)*Pa 

BETA2=0.5875E-11 *3.75E5*MWA*(FUG-FUGEQ)/(3000*ROWP) 

C GROWTH RATE 
DRDTM=BETAI/Rp 
DRDTR=BETA2*Rp 
DRDT=DRDTM+DRDTR 

Rpn=SQRT(EXP(2*BETA2*time)*(RC*RC+(BETAI /BETA2))-(BETAI/BETA2)) 

c 
write(2, I 08)time,2*Rpmass* l e6,2*Rpn*le6,DRDT 

108 FORMAT(2X,(4EI2.4,2X)) 

RETURN 
END 

SUBROUTINE NUCL(Pa,T,S,DRDTNUC) 

A=7.262E-21 
DELTAH= l 3.26E3 
DELTAT=8.314*(S- l )*T*T/DELTAH 
DT=(DELTAT)**2.4 11 

DRDTNUC=A *EXP( - I 06.20E3/(8.3 14*T))*EXP( -0.0778/DT)* 
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+ (Pall E3)**2.986 
WRITE(*,*)DELTAT,DT,T,DRDTNUC 
PAUSE 

RETURN 
END 

SUBROUTINE PENT(f,D,Dp,L,ROWP,ROWG,VISGAS,T,Usub,Ug,Vdr, 
+ Us,Cc,TAUV) 

REAL lambda,L,NUE 
lambda=48E-9 
SR=ROWP/ROWG 
Re=ROWG*Ug*DIYISGAS 
NUE=VISGAS/ROWG 

C WRITE(I2,*)' Dp Cc us DIFF Scp 
C +RELAX. Time' 

CALL SLIPCORR(lambda,Dp,Cc) 

CALL SETTLVELOC(ROWP,Dp,VISGAS,Cc,Us) 

CALL DfFFPART(T,Dp,Cc,VISGAS,DfFFP) 

CALL SCPARTICLE(ROWG,VISGAS,DIFFP,SCP) 

CALL RELAX A TION(ROWP,Dp, VISGAS,Cc,RTlME) 
WRITE(3, I 5)Dp*l .OE6,Cc,Us,DIFFP,SCP,RTlME 

I 5 FORMA T(2x,F8.3,2X,F7.3,2X,4(E9.4,2X)) 

C**************************************************** 
C -----ESTIMATING DEPOSTION VELOCITY RATIO-----
C**************************************************** 

S L=ROWG*ROWP*U g*U g*(f/2)*Dp*Dp/( 18 *VIS GAS *VIS GAS) 
TA UV=SR *Dp*Dp*Usub*Usub*Cc/( 18*NUE*NUE) 

IF(TAUV.LE.0.3)THEN 
C WRITE(*, *)SCP,Re,'DIFFUSION' 

V dr=0.039*SCP**( -0.667)*Re* *( -0.25) 

ELSEIF(SL.L T.5.0)THEN 
DEMO=SQRT(f/2)*( I 525/(SL *SL)-50.6) 
Vdr=(U g/Usub)*0.5*f/( I +DEMO) 
ELSEIF(SL.GT.30)THEN 
Vdr=0.5*f*(U g/Usub) 

ELSE 
DEMO=SQRT(f/2)*(5* ALOG(5 .04/((SU5)-0.959))+ 13. 73) 
Vdr=(U g/Usub)*0.5*f/( I +DEMO) 

ENDfF 

fp=EXP(-4*Vdr*Usub*U(Ug*D)) 
fc=l-fp 

C WRITE(l3,*)Dp*l E6,DEMO,Vdr,TAUV 
WRITE(l4,*)Dp*lE6,TAUV,fc* IOO 

c pause 
RETURN 
END 

SUBROUTINE SLIPCORR(lambda,Dp,Cc) 
REAL lambda 
Cc= I +(lambda/Dp)*( 1.05 *EXP( -0.39*lambda/Dp)+2.34) 

RETURN 
END 
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SUBROUTINE SETTLVELOC(ROWP,Dp, VISGAS,Cc,Us) 

GRAY=9.81 
Us=ROWP*Dp*Dp*GRAV*Cc/(18*VISGAS) 

RETURN 
END 

SUBROUTINE DIFFPART(T,Dp,Cc,YISGAS,DIFFP) 

BOL TZ=I.381 E-23 
P1=3. 14 159 
D IFFP=BOL TZ *T*Cc/(3 *PI* YISGAS*Dp) 

RETURN 
END 

SUBROUTINE SCPARTICLE(ROWG,VISGAS,DIFFP,SCP) 

SCP=YISGAS/(ROWG*DIFFP) 

RETURN 
END 

SUBROUTINE RELAX A TION(ROWP,Dp, YISGAS,Cc,RTIME) 

RTIME=ROWP*Dp*Dp*Cc/( 18*YISGAS) 

RETURN 
END 

SUBROUTINE DEPO(I,TOTALN,time,Dpipe,BL,Vd,DEPN,DEPNn 

IF(I.LE.2)THEN 
CT=time 
END IF 

DEPN=TOT ALN*(l -EXP( -2*Vd*(CT)/(Dpipe-BL))) 
DEPNT=DEPNT+DEPN 
TOTALN=TOTALN-DEPN 

RETURN 
END 

SUBROUTINE SHROOD(REp,NUE,D,Sh) 

REALNUE 

Sc=NUEID 
Sh=2.009+0.514*SQRT(REp)*Sc**( l/3) 

RETURN 
END 

SUBROUTINE FORCES(J,Cc,ROWG,ROWP,YISGAS,Dp,SRV,Ug,hh,BL,FLCA, 
+ Fg,Fwaii,FDI ,Fbalance) 

REAL hh,rp 

228 



A=4.59e- 12 

VISK=YISOAS/ROWO 
C hh=Dp/2+ I OOe-6 
c hh=l63e-6 

lF(hh.LE.Dp/2)THEN 
WRITE(*,*)'ATTACHED TO WALL' 
STOP 
ENDlF 
rp=Dp/2 

CALL DRAO(Dp,VISOAS ,SRY*Ug,Cc,FDI) 
CALL LIFTFORCE(Dp,hh,ROWO,VISK,SRY,Ug,Fplus, BL,FLC) 

CALL ADHESIONWALL(A,hh* I e9,rp* I e9,Fwall ) 

CALL ORA VITY(ROWP,Dp,Fg) 
FLCA=FLC*( 1-J) 
Fbalance=FLC*( 1-J)-Fwaii-Fg 

c WRITE(*,*)Dp* lc6,FLC* I E9,Fwall * l E9,Fg* lE9 
c WRITE(*, *)(hh-Dp/2)* I E6,FLC* I E9,Fbalance* I E9 

C PAUSE 

RETURN 
END 

SUBROUTINE LlFTFORCE(Dp,h,ROWO,VISK,SRY,Ug,Fplus,delta,FLC) 

Dplus=Dp*(0.06*U g)/VIS K 

IF(Dplus. LT.O. IS)THEN 
Fplus=0.567*Dplus 
ELSElF(Dplus.L T.I .S)THEN 
Fplus=I5 .57*(Dplus)** 1.87 
ELSE 
Fplus=4.21 *(Dplus)**2.3 1 
END IF 

CALL LIFTC(Dp,h,ROWO,VIS K,SRV,Ug,delta,FLC) 
FL=ROWO*YIS K*V ISK*Fplus 

C WRITE(*, *)'LIFT' ,Dp* I E6,FL,FLC 
C PAUSE 

RETURN 
END 

SUBROUTINE LlFTC(Dp,h,ROWO ,YISK,SRY,Ug,delta,FLC) 

Yr=(0.9*SRY*U g-S R V*U g)*h/delta 
HR=Dp/(2*h) 
S=Dp*(SR V*U g)**2/(2 *VIS K*Yr) 
AI=I .7716+0.216*HR-0.7292*HR*HR+0.4854*HR **3 

+ -(3.2397/HR+ 1.145+2.084*HR-0.9059*HR *HR)*S 
+ +(2.0069+ 1.0575*HR-2.4007*HR *HR+ 1.3174*HR **3)*S*S 

FLC=ROWO*Yr*Yr*Dp*Dp* AU4 
RETURN 
END 

SUBROUTINE ORA VITY(ROWP,Dp,Fg) 
Pl=3. 1416 
Fg=9.8 1 *PI*ROWP*Dp**3/6 
RETURN 
END 
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SUBROUTINE ADHESIONW ALL(A,h,r,Fwall) 

CALL FOW ALL(h,r,FO) 

CALL F I W ALL(h,r,F I) 

Fwaii=ABS(A *(FO+O*FI)) 

RETURN 
END 

SUBROUTINE FOWALL(h,r,FO) 

F0=(2/(3*r))*( 1/((h/r)**2-1)) 

RETURN 
END 

SUBROUTINE Fl W ALL(h,r,FI) 
b=3.1 
ambdaw=IOO 
Pl=3.1416 
c=-b*ambdaw/(2 *PI) 
TERM I =2 *(h+c-2 *r) *(h+c+r)**2 * ALOG(abs(h+r+c ))/(3 *c**4) 
TERM2=2 *(h+c+2 *r)*(h+c-r)**2 * ALOG(abs(h-r+c))/(3 *c* *4) 

TERM3=(2*(h+2*r)*(h-r)**2/(3*c**4)) 
+ +(2*(h+r)*(h-r)/c**3)+(2*h/c**2)+21(3*c) 
TERM4=(2 *(h-2 *r)*(h+r)**2/(3 *c **4)) 
+ +(2*(h-r)*(h+r)/c**3)+(2*h/c**2)+2/(3*c) 
TERM5=4*h*r/(3*c**3)+(8*r/(3*c*c))+(4*h*r/(3*c*(h-r)*(h+r))) 

FI=-TERMI+TERM2-TERM3*ALOG(h-r)+TERM4*ALOG(h+r)-TERM5 

RETURN 
END 

SUBROUTINE DRAG(Dp, VISGAS,Up,Cc,FDD) 

P1=3 .1 416 

FDD=3*PI*Dp*VISGAS*Up/Cc 

RETURN 
END 

SUBROUTINE BLAYER(I,J ,BL,THETA,Us,Rp,time,X,Y) 
P1=3. 1428 

IF(THETA.LE.O)THEN 
Y= Y -Us*time/(1-1) 
IF(Y.LE.O)THEN 
WRITE(*, *)2*Rp* I e6,'PARTICLE DEPOSIT 
Y=BL 
STOP 
ELSE 
X=X+Y/ABS(TAN(THETA*PU180)) 

J=O 
END IF 
ELSE 
Y=Y+Us*time/(1-1) 
IF(Y.GT.BL)THEN 
WRITE(*,*)2*Rp,'ENTRA!N' 
]= I 
Y=BL 

C STOP 
ELSE 
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X=X+Y/ABS(TAN(THETA*Pl/180)) 
J=O 
END IF 
END IF 

RETURN 
END 

SUBROUTINE MODELS(K,SR,Usub,NUE,DIFF,Dp,tau ,Re,Vpln) 
REAL Ll, K,NUE,kpl 
Pl=3.1415926 

dpi=Dp*Usub/NUE 
kpi=K*Usub/NUE 
gpl=9.81 *NUEI(Usub**3) 

Ll=3.08/(SR*dpl) 

Sc=NUE/DJFF 
term I= I +S*exp{-(tau-1 0)**2/32) 
term2=abs( 1-tau*tau*Ll) 
Vpll =0.5*({0.64*kp1+0.5*dpl)**2/3.42)**( I/{ I +Ll *tau*tau)) 
+ *0.037*(term I /term2)+tau*gpi+0.084*Sc**(-2/3) 
IF(Vpii .GE.0.14)THEN 
Vpll=0.14 
END IF 
V p12=0 .057 *Sc* *( -2/3 )+4.5e-4*tau *tau+tau * gpl 
Vpln=0.5 *((0.64*kpl+0.5*dpl)**2/3.42)**( I/( I +Ll *tau*tau)) 
+*0.037*(term I lterm2)+tau*gpi+0.039*Sc**( -0.667)*Re**( -0.25) 
IF(Vpln.GE.O.I4)THEN 
Vpln=0.14 
END IF 

RETURN 
end 
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