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Abstract: 

Acid Mine Drainage (AMD) discharged to the surrounding environment may cause 
serious environmental problems. Sulphidic mine wastes are oxidized resulting in the 
consequent release of AMD. Different metals such as cadmium, cobalt, copper, iron, 
lead, nickel, zinc, etc. are released to the environment when sulfides of these metals are 
exposed to the air. AMD affects the surface water as well as groundwater nearby and 
limits the reuse of the mine water for processing purposes. Because of differences in 
mine sites and ambient conditions, the prediction of AMD water composition is very 
complicated and remains a great concern for scientists. The determination of the minerals 
involved in producing AMD, as well as the oxidation reactions and chemical components 
produced in these reactions, are essential prior to choosing the appropriate treatment 
technology. The oxidation reactions of the minerals and chemical components produced 
by these reactions are discussed in this thesis. A methodology for predicting the minerals 
involved in the production of AMD is presented and may be used in conjunction with 
analytical techniques to reduce the cost of using sophisticated techniques. 

The determination of the possible chemical components included in AMD may aid in 
finding a suitable treatment system for treating mine water. Waste Stabilization Pond 
(WSP) technology is one of the natural treatment methods that use chemical and 
biological processes for AMD treatment. The design of the WSP is based on many 
assumptions, one of which is that the pond is well mixed. That is, there are no 
concentration gradients within the pond or the pond is modeled as a Continuously Stirred 
Tank Reactor (CSTR). However, in reality due to the heterogeneity of the constituents of 
the wastewater and influence of controlling parameters (i.e., temperature & 
concentration), these assumptions are over simplified. The concentration, wind shear, and 
temperature stratification within the pond significantly impact the flow pattern within the 
system. Instead of using ideal reactor models, dispersed flow model covers the non­
idealities within the pond. This model is highly related to the hydraulic conditions of the 
pond. This non-ideal model is rarely used for determining the concentration gradient 
within the pond, because the main parameters of the model (i.e. actual retention time and 
dispersion coefficient) are not easy to obtain. Computational Fluid Dynamic (CFD) codes 
are one of the options presented for defining these two parameters. A methodology 
discussed in this thesis is using CFD as a suitable option for determining the main 
parameters of the dispersed flow model. A dispersion model is tested and validated for 
modeling the concentration gradient within the pond, and CFD is used for determining 
the dispersion coefficient and actual retention time via case studies in this thesis. 

Following the determination of the chemical concentrations in the effluent, 
assessment of the effect of these concentrations on human health and the ecosystem is 
required. Environmental risk assessment is a systematic process for describing and 
quantifying the hazardous effect of chemical contaminants to human health and 
ecosystems. The USEPA framework is used for identifying and quantifying the risk of 
chemical contaminants to ecological entities. The four steps of the USEPA framework 
are hazard identification, exposure assessment, dose-response modeling, and risk 
characterization. The estimated risk of the effluent of treatment systems may be used to 
assess the performance of the treatment process. Furthermore, the risk value is associated 
with different uncertainties and therefore uncertainty assessment may not be neglected in 
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any risk assessment process. The ecological risk assessment methodology and 
quantification of risk associated with effluent contaminants from the tailing pond to the 
ecosystem is demonstrated in this thesis via a case study. 
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CHAPTER! 

Introduction 

1.1 Overview 

Mining processes may cause environmental problems that can adversely affect 

human health and the ecosystem. The impacts of mining on the environment are based on 

the nature of the ore body, the type of mining and the size of operation. Acid generation 

and metal dissolution are examples of issues related to mining activities. AMD can affect 

mine water quality and limit the recycling capability of mine water for processing 

purposes and also for usage as secondary water. It may also adversely affect the plant and 

animal communities along downstream channels and ground water quality. 

In light of various sources that produce AMD and the problems caused by AMD, 

researchers have begun research in the quality of mine water. Different static and kinetic 

tests on the sulfide wastes have presented the information on the ability of waste to 

generate acid. The prediction of mine water composition is very complicated and remains 

a great challenge for scientists. Therefore, having knowledge of different possible 

chemical components of specific AMD is necessary prior to selecting a treatment 

process. 

Different treatment methods of AMD have been developed, which are divided into 

traditional and innovative categories (Costello, 2003). After the completion of the 

treatment process, tailing waste enters the pond in order to be stabilized and released into 

the environment. Tailing ponds are commonly observed in every country, which contain 

"the residue (tailing) of the milling process to extract metals from mined ores" (Ginige, 
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2002). Stabilization the tailing wastes in a pond is one of the cheap and effective method 

of treatment. 

A series of chemical reactions occurs in tailing ponds, depending on the geology and 

the hydrology of the specific mine site. There are a variety of different approaches 

available to design the ponds; however, the majority of them are based on the design of 

the chemical reactors. The chemical reactors are intricate vessels designed to convert the 

feedstock to the desired product. There has been a lot of effort put into the modeling, 

simulation and analysis of chemical reactors. Designing methods of the pond as reactor is 

based on the chemical reactions that occur in the pond and physical nature of the 

wastewater. 

There are two types of ideal chemical reactors, Continuously Stirred Tank Reactor 

(CSTR) and Plug Flow Reactor (PFR). The designs of them are based on the particle 

transportation. Researchers used these two types of ideal reactors for modeling the WSP 

(Arceivala, 1981; Pearson et al., 1995), in some cases the results of using these ideal 

models may not fit with the actual effluent of the systems. 

In reality, the flow in the ponds is rarely ideal and the assumptions of CSTRs and 

PFRs often do not hold true. The majority of the ponds that do not have mechanical 

mixing mechanisms do not reach a CSTR conditions (Polprasert et al., 1985). Wind and 

temperature are the most important factors that affect the degree of mixing (James, 1987). 

It is important to mention that the effect of short circuiting and stagnant region does exist 

to a certain degree in WSPs (Belzile et al. , 2004). The stratification of temperature and 

mass, which is usual in the ponds as described in the subsequent chapters, is the main 

reason to reject the assumptions of ideality. 
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As a result, designing the pond based on the ideal models is unable to predict the 

effluent of the pond (Lee, 2006). The hybrid models which are the combinations of 

CSTRs and PFRs are recommended by many researchers (Ferrara, 1981; Juanico, 1991), 

but many parameters used in these models (e.g. the place of thermocline) are not easy to 

determine without testing at the field and they are really case sensitive. 

The dispersion model is another option of non-ideal model that may cover the gap 

between PFRs and CSTRs. Many researchers have mentioned that a dispersed flow 

model better represents the conditions of non-ideal flow in WSPs. This model is highly 

related to two different parameters, the actual retention time and the dispersion index. 

Finding the actual amount of these parameters of dispersed flow model remains a great 

challenge for scientists (Wood et al., 1998; Shilton, 2001). 

The prediction of the effluent from contaminant ponds is important as it must meet 

the local and regional water and sewage regulations. At the same time, surface and 

groundwater in the area should comply with the guidelines. 

Environmental risk analysis is a tool that may assess the risk of effluent 

contaminants of the pond to ecological entities and human health. The risk assessment 

process is divided into different components according to different organizations such as 

Environmental Protection Agency (EPA) and Canadian Council of Ministers of the 

Environment (CCME). Finding the risk of effluent contaminants of the pond to the 

ecosystem and comparing the results with the existing guidelines may help to discover 

the actual performance of the treatment system, and the level of treatment required to 

meet the guidelines. 
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1.2 Problem statement 

The existence of different minerals in the specific mine site, the oxidation reactions 

of these minerals and different chemical components producing by theses oxidation 

reactions cause complexity in the composition of AMD and are the basis of determining 

which treatment system is appropriate. Therefore, the need of the methodology to 

discover the chemical composition of AMD is apparent. 

There have been significant researches conducted m modeling the contaminant 

transport in the tailing pond. These models are based on many assumptions, one of which 

is that the pond is perfectly mixed. That means there are no concentration gradients 

within the pond or the pond is modeled as a CSTR. In reality, the assumptions of ideal 

reactors do not exist in a majority of the ponds. Therefore, the existence of the model to 

predict the chemicals concentration gradient within the ponds is required. 

Moreover, the effluent concentration of the WSP can affect the human health and 

ecosystem. Consequently, the existence of the process to determine the hazardous effect 

of the effluent contaminants on the surrounding environment is essential. 

Conversely, by taking into account the above problems, significant limitations still 

exist in the AMD characterization and pond modeling. These limitations are: 

./Lack of characterization of the minerals producing AMD 

./Lack of published information of different categories of chemical components in 

AMD 

./Lack of information of different chemical reactions occurring in the tailing ponds 

./Shortcomings of transport model in the tailing ponds 
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v" Under use of risk assessment approaches and risk -based decision making for 

evaluating pond disposal 

This research aims to overcome these limitations. 

1.3 Objectives and scope of the proposed research 

1.3.1 Objectives 

The objectives of this research are as follows: 

v" To obtain better understanding about the minerals producing AMD 

v" To obtain more comprehensive understanding of different categories of AMD 

chemical components 

v"To develop the non-ideal reactor model for tailing pond 

v"To develop/revise a model to determine the fate of contaminant within the tailing 

pond 

v"To develop a risk model (Considering ecology and human health) to evaluate 

different AMD treatment strategies 

v"To develop risk-based design methodologies for AMD treatment design 

1.3.2 Scope 

In order to achieve the objectives of the research to be carried out, the following 

areas should be considered: 

v" Literature review for better understanding of different chemical components of AMD 

and the reactions occurring in the tailing pond 

v" Developing a methodology for AMD characterization 
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./Tailing pond modeling using advance approaches 

./Evaluating the guidelines for better understanding the environmental risk assessment 

processes 

./Risk assessment of AMD and tailing pond system 

./Development of risk-based waste management strategies 

It is noteworthy that the following objects are not evaluated in this research: 

./Different methods for extracting the ore from the mine site 

./Different ways the AMD get produced 

./Different treatment methods of AMD 

./Final disposal methods of sludge which is produced in the tailing pond 

The extent of this PhD research has been outlined in the figure below: 

Mining of 
Ore 

Production of Acid 
Mine drainage 

Focus of the Proposed Research program 

Figure 1.1. Focus ofthe proposed PhD research 

The scope of this research may be seen in the following flowchart: 
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Literature review 

Compilation different chemical 
I+ f-. 

Identification the reactions in the tailing 
components of AMD pond 

1 1 
Tailing pond modeling using advance 

f-t 
Risk assessment of AMD and tailing 

approaches 1- pond system 

1 1 
Developing risk-based waste 

management strategies 

Figure 1.2. The scope of this PhD research 

1.4 Organization of the thesis 

The thesis is divided into six chapters. Chapter 1 introduces the problem, objectives 

and scope of doing this research. Chapter 2 reviews the literatures about research 

conducted to the state in three fields: i) AMD characterization, ii) WSP modeling, and, 

iii) Environmental risk assessment. Chapter 3 develops a methodology for AMD 

characterization. The evaluation of this methodology is also discussed using a case study 

from the Wolverine coal mine in northeastern BC, Canada. 

In Chapter 4, the non-ideal dispersed flow model is presented. Furthermore, different 

methods to determine the actual retention time and dispersion index as the main 

parameters of dispersion model are explored. The methodology to determine these 

parameters using Computational Fluid Dynamics (CFD) is demonstrated with a case 
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study for its validation. Dispersed flow model is also validated using two different case 

studies in this chapter. 

In Chapter 5, the USEPA (1998) ecological risk assessment (ERA) framework is 

discussed. A case study of effluent contaminants of the tailing pond is used in assessing 

and characterizing ecological risk assessment. 

Chapter 6 provides the conclusions of the present research. Recommendations are 

also made for the future research work related to the risk-based decision making of AMD 

characterization and WSP modeling. 

Finally, Chapter 7 summarizes the novelty and contribution of the present work. 

Figure 1.3 demonstrates sequence of the thesis to achieve the objectives outlined above. 

Chapter 3 

Chapter 1 
(Introduction) 

Chapter 2 
(Literature Review) 

(Acid Mine Drainage Characterization) 
Chapter 4 

(Stabilization Pond Modeling) 

Chapter 5 
(Ecological Risk Assessment) 

Chapter 6 
(Conclusions and Recommendations) 

Chapter7 
(Statement of Originality) 

Figure 1.3. Organization of the thesis 
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.---------------------------------------------------------------------------------·------- --

CHAPTER 2 

Literature Review 

2.1 Mine water quality 

The prediction of mine water quality is important during mining and mineral 

processing activities. AMD is one of the environmental issues in sulfide ore mmmg 

(Nieto et al, 2007). Sources of producing AMD can be grouped into primary and 

secondary. 

Table 2.1. Different sources for producing AMD (Akcil et al., 2006) 
Primary Sources Secondary Sources 

Mine rock dumps Treatment sludge pounds 

Tailings impoundment Rock cuts 

Underground and open pit mine workings Concentrated load-out 

Pumped/nature discharged underground water Stockpiles 

Diffuse seeps from replaced overburden in Concentration spills along roads 

rehabilitated areas 

Construction rock used in roads, dams, etc. Emergency ponds 

Considering these different sources in the mine sites, AMD is produced and released 

into the environment, creating many environmental hazards. 

Sulfides wastes are characterized by elevated acidity, high concentration of sulfides 

and metals such as cobalt, copper, iron, lead, nickel, zinc, etc. (Nieto et al., 2007). The 

release of AMD reduces the value of pH and it has high specific conductivity and high 

concentrations of iron and toxic metals. Thus, the effluent from the metal mining industry 

can have serious impact on human and ecological health (Akcil et al., 2006). 
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In short, the problems of producing AMD include the following (Lupankwa et al., 2006): 

• Limits the reuse of mine water and processing water by its effect on mine water 

quality 

• Corrosion 

• Negative impacts on flora and fauna communities 

• Impacts on the groundwater quality 

• Impacts on downstream water used for fishing or irrigation purposes 

The prediction of tailing water composition is complicated and remains a challenge 

for scientists. 

2.1.1 Chemical components of AMD 

Many types of sulfide minerals produce AMD, some of which can be seen in Table 

2.2. Among them iron sulfides are the most common. The reactions of acid generation are 

best declared by examining the oxidation of pyrite (FeS2), which is one of the most 

typical sulfide minerals (Akcil et al., 2006). 

Pyrite is one of the dominant minerals in AMD, and is commonly associated with 

coal and metal ore deposits (Elberling et al., 1994; Lottermroser et al., 2003). As a matter 

of fact, the chemical processes producing AMD can be exemplified by oxidation of 

pyrite. Therefore, the oxidation mechanism and the rate of oxidation of pyrite can be 

chosen to represent the process of AMD generation by the sulfide minerals. 
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Table 2.2. AMD producing sulfide minerals (Akcil et al., 2006) 

Mineral Composition 

Pyrite FeS2 

Marcasite FeS2 

Chalcopyrite CuFeS2 

Chalcocite Cu2S 

Sphalerite ZnS 

Galena PbS 

Millerite NiS 

Pyrrhotite Fet-xS 

Arsenopyrite FeAsS 

Cinnabar HgS 

Metals such as cadmium, cobalt, copper, iron, lead, nickel, zinc, etc. are released into 

the environment when sulfides of these metals are exposed to the air (Garcia et al., 2005). 

The oxidation process of pyrite begins as follows (Revengai et al., 2004; Sherriff et al., 

2007): 

2FeSz (s) + 70z + 2Hz0 ~ 2Fe+2 + 4S04-
2 + 4H+ (2-1) 

There are several chemical and biological processes related to the oxidation of pyrite 

(Lonesiy, 2006). 

When sufficient oxygen is dissolved in the water, the oxidation of ferrous iron to 

ferric iron occurs as follows: 

(2-2) 

The oxidation of ferrous to ferric iron is very slow in acidic solutions and this is the rate 

determining step in pyrite oxidation. The reaction constant (K) is 2.8*10-6 Umol.Atm at 

T = 30.5 a C (Nordstrom, 1985). The reaction rate can be seen below: 
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Both chemical and bacterial oxidants participate in ferrous iron oxidation. The pH, 

temperature and dissolved oxygen affect the bacterial oxidation of ferrous iron as well as 

ferrous iron oxidation kinetics. In another step, the ferric iron precipitates as ochre as 

stated by the following reaction: 

(2-3) 

In this process, more hydrogen ions are released into the environment and this may 

lead to pH reduction. Iron hydroxide (Fe(OH)3) may produce an orange and yellow 

sludge at the bottom, which is harmful for aquatic life (Lonesiy, 2006). Fe(OH)3 is not 

stable at a pH below 3.5, where ferric iron remains in solution (Dold, 2005). Finally, the 

ferric iron may react with pyrite to produce more ferrous iron and acidity: 

(2-4) 

Ferric iron is a strong oxidant of pyrite in low pH conditions where oxidation of 

ferrous iron to ferric iron is catalyzed by bacteria (Lonesiy, 2006). As pH increases, the 

oxidation of pyrite is via oxygen and oxidation of pyrite with ferric iron is less 

significant. 

By integrating the above reactions, the final reaction for the oxidation of pyrite is as 

follows: 

(2-5) 

This reaction shows that for each unit of pyrite that is oxidized, four units of 

haydrogen ions (H+) will be produced and this will increase acidity in the system 

(Lonesiy, 2006). 
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Espana et al. (2006) evaluated the amount of ferrous iron oxidation and ferric iron 

precipitation and calculated the rate of the reactions considering inflow and outflow 

concentrations. The resulting rate equations are as follows: 

~[Fe(II)] 
fox= __.:_____..:.~=([Fe( II )]in - [Fe( II )]out)/t 

~t 

fox= oxidation rate (molL-'s·') 

rpp =precipitation rate (molL-'s·') 

[Fe( II )Jrn =ferrous iron concentration (in mol/L) at the inflow station 

[Fe( II )]ln =ferrous iron concentration (in mol/L) at the outflow station 

t =travel time between station (s) 

(2-1) 

(2-2) 

The amount of ferrous iron, ferric iron and total iron at the Lomero mine portal in 

hourly evaluation can be seen in Figure 2.1. 

The amount of ferrous iron is reduced from inlet to outlet (due to ferrous iron 

oxidation) and the amount of ferric iron increases, respectively, but both completely 

dependent on the temperature which changes daily and seasonally. 

The oxidation rate for this mine site varies between 4*10.7 and 7*10-7 mol L-1s·1 for 

temperatures between 20 and 35 ° C. This reaction rate is 105 to 106 times faster than the 

abiotic (in the absence of microorganisms) reaction rate. The rate of ferrous iron 

oxidation is strongly catalyzed by acidophilic iron oxidizing bacteria. Studies show that 

the bacterial activity dependent on temperature, pH and dissolved oxygen is more 

effective on ferrous iron oxidation than ferrous iron concentration itself. 
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Figure 2.1. The amount of ferrous oxidation and ferric precipitation (Espana et al., 2006) 

The investigations show that the rate of the reactions is not constant at different 

hours of the day and it depends on daily temperatures. A decrease in the rate will be 

observed during the evening. At sunset and sunrise when the temperature is lowest, the 

lowest oxidation rate is observed. Bacterial cell concentration and temperature are two 

factors that affect the rate of oxidation. 

At the pH ranged between 2.7 and 3.1, the precipitation rate of ferric iron is between 

1. 7* 1 o-6 and 10-7 mol L-Is -I. In an AMD where the pH is too far below this range, no 

precipitation takes place (Espana et al., 2006). 
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By taking temperature into account, the precipitation rate of ferric iron demonstrates 

a condition similar to the oxidation rate of ferrous iron, and the precipitation shows a 

strong removal of iron from the acidic solution. However, the relation (correlation factor) 

between bacterial cell concentration and oxidation rate has been unknown until now 

(Espana et al., 2006). 

The rate of ferrous iron oxidation in the field is 5 to 8 times faster in magnitude than 

the oxidation rate in the laboratory tests, which are in the abiotic condition (Kirby, 1998). 

In another investigation, pyrite oxidation rate was calculated by the following equation: 

r = Ml 
1 

_, * the molecular mass of FeSz * a* w-' (2-3) 

It should be mentioned that pyrite and pyrhotite are chemically and biologically 

oxidized and this is obvious in microcalorimetric data in several studie (Kirby, 1998). 

The different rates for pyrite and pyrhotite oxidation found in different mine sites are 

related to "molecular oxygen diffusion, temperature, metal sulfide reactivity and 

abundance of metal sulfide oxidizing bacteria" (Kock et al., 2006). 

There are many physical, chemical and biological factors that affect the rate of AMD 

generation. These factors can be seen below (Akcil et al., 2006): 

./pH 

./ Temperature 

./ Oxygen content of the gas phase, if saturation is less than 100% 

./ Oxygen concentration in water phase 

./ Degree of saturation with water 

./ Bacterial activity and 

./ Chemical activity of ferric iron 
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Therefore, chemical and biochemical reactions take place when sulfide minerals are 

associated with water and oxygen (the process was mentioned for pyrite oxidation), 

which leads to produce acidity. This acidity and the metals that are released in the sulfide 

minerals oxidation processes have hazardous effects on human health and the 

environment. To choose the best way for treating AMD, one should have complete 

information about the oxidation process and the rate of the reactions in different stages. 

However, scientists remain concerned about the prediction of AMD composition, 

although such a prediction is very complicated. 

2.1.2 Chemical reactions in the tailing pond 

A series of chemical reactions happens in the pond, which are related to the 

particular geology and hydrology of the specific mine site. The reaction between mineral 

pyrite, water and oxygen is the major problem of AMD (Lonesiy, 2006). The chemical 

oxidation of a mineral can be classified as acid producing or consuming (the reactions 

which generate or consume W) or non-acid producing or consuming (Lottermroser, 

2003). These types of reactions are described in the following sections. 

2.1.2.1 Non-acid producing sulfide minerals 

There are many metal sulfides that can participate in the reaction with oxygen and 

release metal ion into a solution but may not produce acidity. Examples of such reactions 

may be seen below (Costello, 2003; DaSilva et al., 2003): 

Sphalerite: ZnScs> + 20zcaq) ~ Zn+2 + S04-
2 

Galena: PbScs> + 20zcaq) ~ Pb +Z + S04-2 
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Greenockite: CdScs) + 202Caq) ~ Cd+2 + S04-
2 

Chalcopyrite: CuFeS2cs)+ 402Caq) ~ Cu+2 + Fe+2 +S04-2 

Covellite: CuScs) + 202Caq) ~ Cu2+ + S04-
2 

(2-8) 

(2-9) 

(2-10) 

(2-11) 

Some metal sulfides can participate in the reaction with oxygen and not produce 

acidity. However, if a different oxidant such as ferric iron is present, the e reactions may 

produce acidity as well. For example, the process of oxidation of sphalerite by ferric iron 

may be seen below: 

ZnS + 2 Fe3+ ~ Zn2+ + S0 + 2 Fe2+ (ppt) (2-12) 

(2-13) 

(2-14) 

2.1.2.2 Acid producing sulfide minerals 

Metal sulfides may react with oxygen and produce acidity. In addition to pyrite, the 

details on acid producing minerals are outlined below: 

Pyrrhotite (Fe (1-x) S) 

Pyrrhotite is the most common iron ulphide in nature after pyrite (Belzile et al., 

2004). The x in the pyrrhotite formula can be varied from 0.125 (Fe7S8) to 0 (FeS, 

troilite) (Dold, 2005). The oxidation of pyrrhotite is as follows (Brookfield et al., 2006): 

X ~ 2+ 2- + Fe(l -x) s + (2 - -) 02 +X H20 -, (1 - x) Fe + so4 + 2 xH 
2 

(2-15) 

The stiochiometery of the pyrrhotite effects on the production of acid. When x = 0, 

no acid will be produced and when x = 0.125 (Fe7Ss), the maximum amount of acid will 
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be produced (Dold, 2005). Raising the temperature increases pyrrhotite oxidation (Belzile 

et al., 2004). 

Chalcopyrite (CuFeS2) 

The complete oxidation of chalcopyrite or copper pyrite as mentioned above does not 

produce any acidity. However, "the combination of ferrous iron oxidation and 

ferrihydrate hydrolysis" will lead to acid production as follows (Dold, 2005): 

CuFeSz + .!:..?_ Oz + 5 HzO ~ 2 Cu2+ + 2 Fe(OH)J + 4 so/ -+ 4 H+ 
2 

(2-16) 

This reaction illustrates that for the oxidation of each unit of chalcopyrite, 4 units of 

W will be produced. 

Arsenopyrite (FeAsS) 

The chemical reaction for the oxidation of arsenopyrite is as follows (Belzile et al., 

2004): 

4 FeAsS + 13 Oz + 6 HzO ~ 4 Fe2+ + 4 SO/ + 4 HzAs0 4-+ 4 H+ (2-17) 

The oxidation rate of arsenopyrite is the same as that of pyrite when the oxidant is 

ferric iron but if the oxidation is carried out by oxygen, the oxidation rate of arsenopyrite 

is lower than that of pyrite (Dold, 2005). 

The oxidation of pyrite, sphalerite and arsenopyrite is the main source for producing 

S04-
2 in the oxidized tailing wastewater (Romero et al., 2007). 

Some other sulphide minerals may produce acidity as well and are discussed in the 

following paragraphs. These minerals may be oxidized by oxygen or by ferric iron. 
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Enargite (Cu3AsS4): 

Enargite is a copper arsenic sulfosalt mineral with the chemical formula Cu3AsS4, 

which is mostly found in the copper mines. The oxidation may be caused by oxygen 

(Smith et al., 2003): 

Cu3AsS4 + 8.75 0 2 + 2.5 H20 ~ 3 Cu2+ + HAsol· + 4 sol· + 4 H+ 

Or it may be caused by ferric iron: 

CuAsS4 + 35 Fe3+ + 20 H20 ~ 3 Cu2+ + 35 Fe2+ + HAsol· + 4SO/ + 39 H+ 

Marcasite (FeSz): 

(2-18) 

(2-19) 

Marcasite has the same structure but different symmetry and crystal shapes 

compared to pyrite. It is rare but it may be locally abundant in some types of ore deposits. 

The oxidation of marcasite by oxygen and ferric iron may be seen below (Rinker et al., 

1997). 

FeS2 +3.5 0 2 + H20 ~ Fe2+ + 2 sol ·+ 2 W 

FeS2 + 14 Fe3+ + 8 H20 ~ 15 Fe2+ + 2Sol· + 16 H+ 

(2-20) 

(2-21) 

In addition, feiTous iron in the reaction above may be oxidized by reaction 2-2 and 

recycled as an oxidant in the reaction above. 

Tennantite (Cu12As4Sn): 

Tennantite is one of the common sulfosalts. The oxidation of tennantite is as follows 

(Lin, 2006): 

Cu12As4S 13 + 12 H20 ~ 12 Cu2+ + 4 H3As03 + 13 S + 12 W + 36e· (2-22) 

The oxidation of intermediate products may produce more acidity as follow : 
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s + 4 H20 -7 sol-+ 8 w + 6 e­

H3As03 + H20 -7 H3As04 + 2 H+ + 2e-

2.1.2.3 Oxidation mechanism of acid insoluble compounds 

(2-23) 

(2-24) 

Various intermediate inorganic sulfur compounds are formed in the course of the 

multi-step oxidation process (Moses et al., 1987). 

The three acid insoluble metal sulfides are FeS2 (pyrite), MoS2 (molybdenite) and 

WS2 (tungstenite). Luther (1987) described why ferric iron rather than oxygen reacts with 

the pyrite surface. By the initial attack of ferric iron as an oxidant, "the sulfur moiety of 

pyrite is oxidized to soluble sulfur intermediate (Luther, 1987)." Thiosulfate is the first 

soluble sulfur intermediate in the dissolution of pyrite by ferric iron. 

In the next step, tetrathionate is the main product of thiosulfate degradation in the 

course of pyrite oxidation. The degradation of tetrathionate strongly depends on pH and 

on the availability of catalysts (bacteria). Due to the specific pH of the mine water and 

oxygen availability, tetrathionate may degrade again to disulfane-monosulfonic acid and 

trithionate respectively. Finally, trithionate can be hydrolyzed to thiosulfate and sulfate. 

As a result, the series of reactions occurs in a cyclic degradation of thiosulfate via 

polythionates to sulfate, shown in the Figure 2.2. Since thiosulfate is a key compound in 

the reaction series, the pyrite oxidation mechanism has been named the thiosulfate 

mechanism (Schippers, 2004 ). Therefore, various intermediate reactions occur in AMD 

according to pH, bacterial and oxygen availability, which should be defined to determine 

the chemical compounds in the specific AMD. 
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Figure 2.2. A cyclic degradation of thiosulfate via polythionates to sulfate 
(Schippers, 2004) 

2.1.2.4 Oxidation mechanism of acid soluble compounds 

As described above, FeSz, MoSz and WSz, which are known as acid insoluble 

sulfides can be degraded by oxidation in the environment, but other metal sulfides, such 

as CuFeS2 (chalcopyrite), FeS (troilite), ZnS ( phalerite) and AszS3 (orpiment), can be 

dissolved by protons. 
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Due to the acid solubility of metal sulfides (MS) and to the proton attack, the fir t 

reaction occurs a follows: 

(2-25) 

Unlike pyrite oxidation, "the M-S bonds in acid soluble metal ulfides may be 

cleaved before the sulfur is oxidized" (Schippers, 2004 ). H2S is oxidized by ferric iron 

according to reaction 2-26. 

(2-26) 

Because ferric iron breaks metal ulfide bonds more effectively than protons, the 

H2s *+ radical may be formed in one reaction without intermediately occurring H2S as 

follows: 

MS + Fe3+ + 2H+ ~ M2+ + H2S*+ + Fe2+ (2-27) 

By dissociation of the strong acid (H2s *+), a Hs* radical may lead to the polysulfide 

formation as follows: 

(2-28) 

The reaction of two radicals of HS* leads to a disulfide ion in the following reaction: 

2 HS* ~ HS2- + H+ (2-29) 

The oxidation of a disulfide ion is done by a ferric iron or a HS* radical. This 

oxidation by HS* is shown in reaction 2-30. 

(2-30) 

Polysulfides decompose to rings of elemental sulfur, mainly Ss rings (>99%) in 

acidic solution, by the following reaction. 

(2-31) 
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The formation of thiosulfate (polythionates and sulfate) happens as indicated by the 

following reactions: 

(2-32) 

(2-33) 

The mechanism of metal sulfide (MS) oxidation via polysulfides is shown in Figure 2.3. 

Table 2.3. Main sulfur compound products from the oxidation (biological and chemical) of 
acid soluble and insoluble compounds (Schippers, 2004) 

FeS2, pH 2, oxic, 0 2 as an 
oxidant 

MS, pH 2, oxic, 0 2 as an 
oxidant 

FeS2, pH 7-8, oxic, 0 2 as 
an oxidant 

MS, pH 7-8, oxic, 0 2 as an 
oxidant 

FeS2, pH 2, anoxic, Fe3+ 

ions as oxidant 

MS, pH 2, anoxic, Fe3+ 

ions as oxidant 

FeS2, pH 7-8, anoxic, Mn4
+ 

oxide as oxidant 

MS, pH 7-8, anoxic, Mn4+ 

oxide as oxidant 

MS, pH 7-8, anoxic, 
Nitrate as oxidant 

MS, pH 7-8, anoxic, C02 
as oxidant, light 

Chemical oxidation Biological oxidation 

sulfuric acid, elemental sulfur 

Elemental sulfur 

Trithionate, tetrathionate, 
sulfuric acid, thiosulfate 

Elemental sul fur, thiosulfate 

Sulfuric acid, elemental sulfur 

Elemental sulfur, sulfate 

Sulfate, tetrathionate, trithionate, 
thiosulfate 

Elemental sulfur, sulfate 

No oxidation 

No oxidation 
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Sulfuric acid; aerobic strongly 
acidophilic Fe2+ (and S) oxidizer; e.g., 

Acidithiobacillus ferrooxidants 
Sulfate; aerobic, strongly acidophilic 

Fe2+ and S oxidizer; 
e.g.,Acidithiobacillus ferrooxidants 
Sulfuric acid; {aerobic moderately 

acidophilic S oxidizer; e.g., Thiomonas 
intermedia}, microaerophi I ic Fe2

+ 

oxidizer 
Sulfate; aerobic moderately acidophilic S 
oxidizer; e .g., Thiomicrospira frista, and 

microaerophilic Fe2+ oxidizer 
Sulfuric acid; {anaerobic strongly 

acidophilic S oxidizer and Fe3
+ reducer; 

e.g., Acidithiobacillus ferrooxidants} 
Sulfuric acid; {anaerobic, strongly 

acidophilic S oxidizer and Fe3
+ reducer; 

e.g., Acidithiobacillus ferrooxidants} 

No oxidation 

Sulfate; {Sulfur disproportionating 
bacterium; e.g., Desulfocapsa 

sulfoexigens} 
Sulfate; moderately acidophilic S [or 

Fe2+] oxidizer; e.g., Thiobacillus 
denitrificans, and anaerobic Fe2+ oxidizer 

Sulfate; anaerobic, phototrophic Fe2
+ 

oxidizer; e.g., Rhodovulum iodosum 



H• 

[ H'ls••4 HS* ---+- H2 Sn ) 

Figure 2.3. Scheme for metal sulfide (MS) oxidation via polysulfides (Schippers, 
2004) 

Based on the oxidation reactions discu ed previously, metals such as cadmium, 

cobalt, copper, iron, lead, nickel, zinc etc. and different sulfur compounds such as 

thiosulfate, thrithionate, tetrathionate, pentathionate, sulfate and elemental sulfur are 

present in the tailing wa te. The existence of the metal sulfides in the AMD is related to 

the specific conditions of the site, such a pH and Eh (the voltage potential with respect 

to the standard hydrogen electrode) of the mine water. Moreover, the role of 

microorganisms in the oxidation reactions can not be neglected and should be considered 

when obtaining the rate of the oxidation reactions. 

2.1.3 The role of microorganisms in the oxidation process 

Microorganisms play an important role in the oxidation proces and one of the 

critical factors that control the generation of acidic waters (Komnitsas et al., 1995). 

Oxidation that occurs in the presence of microorganisms is known as biotic; while, 

oxidation in the absence of microorganisms i abiotic (Lottermroser, 2003).Generally, 

oxidation of minerals can be grouped accordingly: 

1) Biotic direct oxidation, with oxygen in the presence of microorganisms. 

2) Abiotic direct oxidation, with oxygen in the absence of microorgani ms. 

3) Biotic indirect oxidation, with oxygen and iron in the pre ence of 

microorganisms. 
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4) Biotic indirect oxidation, with oxygen and iron in the absence of microorganisms. 

Bacteria are adsorbed on the mineral's surface "physically," considering the forces of 

molecular interaction, or "chemically", due to the formation of a chemical bond between 

the cell and the elements. The bacteria absorbed on the minerals tend to change the 

electrode potential, depolarizing the mineral surface through oxidation of sulfur and 

ferrous iron. This leads to an increase in the Eh of the mine water, producing highly 

oxidized conditions (Kornnitsas et al., 1995). 

Oxidation of sulphur or sulphides for energy production is restricted to the bacteria, 

such as Thiobacillus, Thiomicrospira, and Sulfolobus. These bacteria all produce 

sulphuric acid (i.e. H+ and sulphate ions (S04-
2
)) as metabolic product. These bacteria are 

identified to accelerate the generation of AMD from the minerals in the mine site, where 

sulphide oxidation catalyzed by bacteria may produce over 1000 times more acid in 

comparison with the chemical reactions alone (Rawat et al., 1982; Egiebor et al., 2007). 

The biological oxidation rate is highly dependent on the pH of the mine water, being 

most rapid at pH between 3 and 3.5. The biological oxidation of ferrous iron, as the 

slowest reaction of sulphide minerals oxidation, is 1 million times greater in compare 

with abiotic conditions. As a result, consideration of the biological condition of the 

specific AMD to determine the reactions kinetic should not be neglected. 

2.1.4 Different methods for finding the minerals producing the AMD in the mine 

site 

Due to the complex nature of AMD, no specific methodology is standard for 

qualitative and quantitative characterization of AMD formation. Optical and electron 

microscopy are some of the common methods used for mineral matter characterization. 
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Although these techniques are widely used for identifying and characterizing different 

minerals, the low resolution of optical microscopes for a particle size less than 5-10 f..Lm is 

a major problem. Many minerals, particularly clay and accessory minerals, with a grain 

size less than 5-10 f..Lm (typically between 0.01-10 f..Lm) can not be identified and 

characterized. A similar disadvantage is encountered in EM (electron microscopy), where 

detection of grain size below the 0.5-1 f..Lm is not possible. This limits detection of many 

accessory minerals in coal (Vassilev et al., 2003). 

Table 2.4. Advantageous and disadvantageous of mineral identification techniques 
(Vassilev et al., 2003) 

Identification Techniques 

Optical microscopy 

Electron microscopy 

X-Ray diffraction 

Advantageous 

- Valuable information about 
optical characteristics and 
properties, such as size, 
composition & morphology 
provided by this method 

- The distribution of elements 
("elemental map") in phases 
may be conducted and 
photographed 

- The detection of occurrence 
and degree of crystallinity 
formi ng, major, and some 
minor crystalline phases 
independently from their size 

Disadvantageous 

- Particle size less than 5-l 0 jlm can 
not be detected 
- Minerals with low reflectance or 
intimately associated with coal 
macerals may not be recognized 

- Particle size less than 0.5- 1 jlm can 
not be detected 
- Elements with the atomic weights 
below that of Na cannot be detected 

Detailed characterization of 
samples is a time consuming process 

- The relatively low sensitivity of 
the XRD technique requires 
significant preliminary physical and 
chemical separations 
- This technique should be used 
together with the other techniques, 
due to the detection limits and peak 
overlapping 

One of the most common and useful methods for identifying minerals is X-Ray 

diffraction (XRD) (Yaman et al., 2001). This technique is useful for the detection of 

different minerals (Pollack, 1979), although factors such as different absorption 

26 



characteristics and crystallite size may reduce the degree of accuracy. This method is 

costly too; needs a degree of interpretation and consequently and highly trained 

personnel. However, identification of many minerals by only XRD is not possible, and so 

this technique is used in conjunction with other techniques such as eparation procedure , 

optical, and canning electron microscopy. 
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2.2 Stabilization pond model 

WSPs are one of the treatment systems that take advantage of naturally occurring 

chemical and biological processes to cleanse contaminated mine waters and are used for 

treating AMD. Although chemical oxidation is the predominant reaction taking place in 

the pond, the existence of sulphate reducing bacteria in the sludge of the pond bottom 

leaves open the possibility of their use in the reduction of the metals and sulphite ion 

presented in the influent AMD (Garcia et al. , 2005). 

The simplicity of construction and operation are the main advantage of this treatment 

system (Shilton, 2006). While WSP technology has been developed in past 50 years for 

treating a wide range of wastewater; little attention has focused on using of this system 

for treating AMD (Rose et al., 1998). 

Different models exist to represent the contaminants' transportation along the pond. 

The standard reactor theory derived from the process engineering field may be applied to 

model the complexity of the chemical transport within the WSP. futegrating the rate of 

chemicals' oxidation reactions with an appropriate mass balance equation may help to 

design the pond based on chemical reactor design (Shilton, 2006). 

2.2.1. Ideal models 

Designing methods of the pond vary by the chemical reactions that happen in the 

pond and the physical nature of the wastewater. These methods are based on various 

reactor assumptions (Metcalf et al., 1979). "Ideal reactors are model systems for which 

the transport and mixing processes are exactly defined" (Gujer, 2008). Two ideal reactor 

models, CSTR and PFR, are widely used for the WSP design. The assumptions of ideal 
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reactors are the basis of the WSP designed, as stated by many researchers (Gloyna, 1976; 

Moreno et al., 1990). The properties of the ideal reactors are identified in Table 2.5. 

Table 2.5. Overview of the characteristics of the ideal reactors (Gujer, 2008) 
Type of reactor Influent and effluent Volume Internal mixing 

Batch reactor No Constant oo large in x, y, z 

CSTR Yes, equal Constant oo large in x, y, z 

PFR Yes, equal Constant oo large in y, z 
Advection in x 

Stirred tank reactor Yes, different amount Variable oo large in x, y, z 
with variable volume 

The properties of ideal reactors, frequently used to model the WSP, are introduced 

and discussed in the following paragraphs. 

2.2.1.1 Continuously Stirred Tank Reactor (CSTR) 

In CSTR models, one or more fluids enter the reactor and are assumed to be 

perfectly mixed (Metcalf et al., 1979). Some assumptions in this type of reactor include: 

1) In steady-state condition, the influent flow rate is equal to the effluent flow 

rate; otherwise the tank will overflow or go empty. 

2) All of the calculations related to these reactors assume perfect mixing, which 

means a concentration gradient does not exist in the reactor. 

3) If an infinite number of CSTRs are operated in series, they would be 

equivalent to PFR. This assumption may help to design a PFR by N series 

CSTRs (N =number of reactors in series). 

4) A constant temperature is assumed within the reactor, which means any heat 

stratification does not exist. 
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These assumptions are for an ideal CSTR, but in reality, this model is difficult to 

achieve. For designing the CSTR, it should be noted that the reactor's design is based on 

the following general word statement (Levenspiel, 1972; Chow et al., 1979): 

Rate of accumulation of reactant within the system boundary = rate of flow of reactant 

into the system boundary - rate of flow of reactant out of the system boundary + rate of 

disappearance (utilization) of reactant within the system boundary. 

And in simple mathematical terms: 

dC 
V (-) = QCo - QC + V (-KC) 

dt 
(2-4) 

By considering the assumptions of CSTR and solving the above equation by 

applying the boundary conditions of a specific situation (specific influent concentration 

and the retention time), the concentration gradient within the reactor may be evaluated. 

The effluent concentration calculated from the materials' mass balance for a tracer is 

as follows (the tracer does not disappear through its transportation within the reactor and 

the reaction term is eliminated): 

dC 
V- =QCo-QC 

dt 

Solving this equation will lead to the following result: 

If N CSTRs are assumed in series, the equation changes to the following: 

C C -Ne 
t= oe 

By considering the above equations: 
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Integrating these equations for finding the effluent of N reactors in series will lead to: 

Ce =(Co/ (N-1)!) (N8)N-I e-Ne (2-10) 

The series CSTRs can be used for modeling treatment plants. For example, Wilson et 

al. (1984) used CSTRs in series for modeling the pond. The pond was divided into 

CSTRs with equal volumes, and the model allowed mixing between CSTRs. This model 

had a good prediction of the observed effluent (Wilson et al., 1984). 

2.2.1.2 Plug Flow Reactor (PFR) 

This type of reactor, which is also called piston flow (Arceivala, 1981), is divided 

into different plugs, with each plug assumed to be uniform in temperature, pressure and 

composition. However, once a plug moves in the longitudinal direction, there may be 

variation in these terms. 

In the PFR, the general balance equation is not simplified to a simple algebraic 

relationship as it can be simplified in CSTR, but it involves the evaluation of an integral 

as shown in equation 2-13. 

The element within the reactor is assumed and the mass balance equation for this 

element is written as follows (Hill, 1977; Froment et al., 1979): 

(Rate of flow of the reactant into volume element) = (Rate of flow of reactant out of 

volume element) + (Rate of disappearance of reactant by chemical reactions within the 

volume element) 

CA = (CA + dCA) + (-rA)dVR 

CA + dCA = the molal flow rate of reactant exiting from the element 

And dCA = rAdV R 
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Assuming XA as a fraction of CA which is converted: 

(2-12) 

By combing the equations above: 

dVR dXA 
--=--
CAO (-rA) 

(2-13) 

2.2.2 Non-ideal models 

In reality, the flow in the reactors is rarely ideal and the assumptions of CSTRs and 

PFRs may not exist. Most of the ponds that do not have mechanical mixing do not reach 

CSTR conditions (Polprasert et al., 1985). Wind and temperature are the most important 

factors that affect the degree of mixing. (James, 1987; Torres et al., 1997). The effects of 

short circuiting and stagnant region cannot be neglected in WSPs (Banda, 2003). The 

results of designing the reactors based on the ideal flow do not accurately predict effluent 

of the ponds (Lee, 2007). The stratification of temperature and mass are the main reasons 

for rejecting the ideality assumptions. 

Therefore, the two ideal models for designing the reactor, CSTR and PFR, may not 

accurately predict the effluent of the ponds in the non-ideal conditions where the 

temperature and concentration stratify. The temperature stratification is the main reason 

for the concentration gradient within the pond. 

The reason for these kinds of stratification, which are the main causes of non-

idealities in the pond, will be described in the following (Torres et al., 1999; Abis et al., 

2006; Banda et al., 2006; Lovanh et al., 2007): 

• Daily variation of temperature 
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• Seasonal variation of temperature 

• Difference between the inlet flow temperature and the temperature within the pond 

• Effects of wind, which leads to the mixing of contaminants in the surface layer 

• Difference between the flow velocities in the pond 

• Effects of shear stress of walls on the return flow velocities which affect the back­

mixing velocity 

• Existence of the dead region (usually in the comers of the pond) which prevents the 

advantageous use of the whole volume of the pond 

An energy balance can be used to estimate the average pond water temperature as a 

function of thermal energy stored in the pond. Increasing the temperature of the 

wastewater affects physical, chemical and biological processes. The energy balance is 

based on the conservation of energy and mass within the control volume (Karteris et al., 

2005; Van Buren et al., 2000). 

Circulation patterns and flow velocities impact temperature stratification within the 

pond. Van Buren et al. (2000) evaluated the temperatures in the pond by a stationary 

temperature probe. This evaluation showed that the average temperature at the surface 

was 3.6 ° C warmer than the average temperature recorded at the bottom of the pond. On 

top of this, cool inflow water travel in the main advective zone was 2 ° C cooler than 

return flow in the recirculation zone. The temperature stratification (vertically and 

horizontally) results in density stratification in the pond. In addition, the sedimentation of 

mass by the gravity forces affects the homogeneity along the pond. As a result, the mass 

is distributed within the pond in different layers (corresponding to densities), leading to 

mass stratification within the pond. 
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2.2.2.1 Hybrid models 

Researchers have studied the impact of stratification on the treatment efficiency of 

the WSPs. Lorens et al. (1992) found that if there is no thermal stratification in the pond, 

the WSP has approximately CSTR conditions. When the thermal stratification starts, a 

well defined thermocline is produced in the pond. The upper layer, which is aerobic, is 

called the epilimnion and the bottom which is anaerobic is the hypolimnion. The 

temperature, dissolved oxygen and pH are affected by this stratification. 

The hydraulic routing through the pond is affected by "wind mixing, thermal 

stratification, pond geometry and other basic design parameters"(Preul et al. , 1987). The 

resulting model is based on the CSTR and PFR reactors. They separated the pond into 

active and return zones. The return zone is evaluated as a CSTR and active zone as PFR. 

The schematic of the model can be seen below (Preul et al., 1987): 

Rcrunt flow 0•-

cth't!ZoocQ,. 
lnllow Q0 Outflow Qo 

l-;;.;~ .... "'-= ---------r 

Figure 2.4. Hydraulic pattern in the pond (Preul et al., 1987) 
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In warmer periods, the inflow is directed to the bottom, and in colder periods, it is 

directed to the top, as can be seen in Figure 2.4. As a result, the equation that is 

applicable for predicting the effluent contaminants of the pond during winter is not the 

same as the one that is used during warmer climate in the summer. 

Ruochuan et al. (1996) studied water quality stratification considering some water 

variations such as pH, water temperature and dissolved oxygen in the vertical profiles. 

The researchers found that, cooling at night resulted in a completely or partially mixed 

condition. In the winter, there is no mixing with wind and a weak stratification with water 

temperatures from 0 to 4 ° C may be seen. After the formation of the ice layer, the pond 

becomes essentially anoxic by early January. The bottom sediments which are heated 

during summer, release some heat during winter. When the ice thawed out, daily 

stratification begins when the water warms up to 8 ° C. In that time, after the production 

of a sharp thermocline, the surface water temperature rises up to 18 ° C and the bottom 

temperature remains at about 8 ° C. This study also evaluated jet mixing effects (the 

turbulent mixing which occurs as a result of the inflow velocity of the pond) and 

demonstrated that the effect of the mixing does not result in complete mixing. Based on 

their work, three types of pond stratification were proposed: 1) Completely mixed during 

day and night 2) Stratified during the day and mixed during night 3) Continuously 

stratified during consecutive days and nights (Ruochuan et al., 1996). 

Juanico (1991) suggested a series of ponds instead of a single one. He argued that the 

PFR model perform much better compared to CSTR for parameters with high removal 

constant such as bacteria. The series of several ponds are recommended instead of a 

single big one to reduce the effect of short circuiting. The author concluded that actual 
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rectangular ponds are not perfectly mixed, but have "a central partial mixed area mnning 

from inlet to outlet surrounded by dead areas" (Juanico, 1991). The dead areas in the non-

ideal flow can be seen in Figure 2.5. 

Dead Areas 

Mixing 

(a) 

Figure 2.5. Dead area in the pond (Juanico, 1991) 

The stratification measurement techniques in various ponds showed that the current 

models cannot be used in stratified ponds. 

In addition to stratification, pond geometry will impact treatment efficiency. Ferrara 

et al. (1981) used the model simulations to indicate the effects of various pond 

geometries and inlet and outlet configurations. The pond was divided into active and 

return zones, as can be seen in Figure 2.6. 

Q. J-------- -~- ~----~:----· - ·t Oo 

~--········Q, "~-------·········1" 
Figure 2.6. Model of hydraulic pattern in Pond (Ferrara et al., 1981) 

The effluent concentration of the pond can be evaluated by the following formula: 

(2-14) 

~=the ratio of the active zone volume (VA) to the total pond volume (VT) 
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The researchers proposed that if Ds is too high and the term in the parentheses is 

approximately equal to 1, this model is a CSTR. The effluent concentrations may be 

calculated by the following formula (Ferrara et al., 1981): 

(2-15) 

Hybrid pond models have shown good agreement with experimental data under 

specific conditions. There are limitations with these models. First, experimental data must 

exist in order to calculate the parameters of the model. Work has been done to develop 

predictive equations for the unknown parameters, but not be useful for design purposes 

(Shilton, 2001). Furthermore, different separation surfaces (e.g. the place of thermocline) 

used in these models are not easy to find without testing at the field and are case 

sensitive. The parameters are based on the environmental conditions (e.g. temperature) 

and are highly variable. Therefore, depending on the conditions of the pond, the use of 

these models may lead to misleading results. 

2.2.2.2 Dispersion model 

In PFR model, no intermixing between fluid packets is allowed; however, molecular 

and turbulent diffusion can skew the profile as may be seen in Figure 2. 7. Furthermore, in 

CSTR, the influent is completely mixed within the tank as soon as it enters the reactor. In 

the dispersed flow model, each element of incoming flow resides in the reactor for a 

different length of time. Therefore, it lies between the ideal PFR and CSTR. This non­

ideal model can be used to determine the flow conditions in most reactors in which the 

assumptions of ideal reactors do not exist (Arceivala, 1981). 
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Figure 2.7. Concentration as function of time for different pond models (Arceivala, 

1981) 

Figure 2.7 is obtained by considering tracer concentrations at different time intervals. 

This diagram is called C-diagram. The C-diagram gives the "age" distribution at the exit. 

Different reactors show different trends; therefore, it can be seen how different types of 

reactors respond to tracer tests in terms of the dimensionless term D/UL or dispersion 

number. For the CSTR, the tracer is completely mixed with the tank, therefore, 

concentration C is equal to C0. Therefore, at t=O, C/C0=1. For the PFR, the tracer flows 

through the tank uniformly and appears all at once in the effluent at timet= to; hence, t/to 

=1. 

As can be seen in Figure 2. 7, the dispersion model covers the gap between PFRs and 

CSTRs models (Valsaraj, 1995). Researchers propose a dispersion model more accurately 

shows the conditions of non-ideal flow in WSP (Arceivala, 1981; Polprasert et al., 1985; 

Chien et al., 1995). 
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Some authors propose the short circuiting problem that is usual in the pond because 

of stratification, can be accounted in the non-ideal dispersed flow model (Banda, 2003). 

Hayes (2001) propose a dispersed flow model where the radial mixing is neglected 

and only the dispersion in the length of the reactor is assumed. The steady state 

differential equation used is as follows (Ramaswami et al., 2005): 

(2-16) 

If no chemical reactions exist within the pond, the one dimensional dispersed flow 

model may be simplified to: 

u acA = DAs a2cA 
dz dz2 

Multiplying both parts of the equation to Land divided to DAa: 

Pe * ac A = L a 2 c A 
dz dz2 

In the equations above: 

Peclet number (Pe) =(Mass transfer by diffusion)/ (Mass transfer by convection) 

Pe = L2 I DAB 
LIU 

UL R-- kL Pe=- and 
D u 

(2-17) 

(2-18) 

(2-19) 

Considering the dispersion equation in different forms (steady state or transient 

conditions, with or without the presence of the reaction term), the concentration gradient 

within the pond is modeled. This model may cover the gap between the CSTRs and PFRs 

(as the ideal models) and be a good option for modeling the concentration gradient within 
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the pond (Polprasert et al. 1985; Chien et al. 1995), as it covers the non-idealities within 

the pond. 

2.2.2.3 Computational Fluid Dynamics (CFDs) 

The term CFD includes computer-based methods for solving the linked partial­

differential equations that consider the conservation of energy, momentum and mass in 

fluid flow. In the past few years, commercial CFD software for modeling basins is being 

widely used (Shilton, 2001). Molnar et al. (2005) explained that because of the lack of a 

general theory for a prediction of non-idealities in mixing, CFD codes may be used to 

predict the quality of mixing. 

Many researchers used the CFD software to show the hydraulic behavior of the 

basins, considering different conditions experienced by the specific basin (Wood et al. , 

1995; Shilton 2001). 

Sweeney et al. (2005) concluded stratification affects the flow pattern and 

subsequently the treatment efficiency. They evaluated the stratification within the pond 

and it become clear that stratification included short circuiting in the pond. They used the 

CFD model to predict the mean temperature based on the heat balance between the WSP 

and the surrounding environment. The results showed that even weak winds may affect 

stratification and the use of wind shear stress in CFD model leads to better predictions. 

Simulating circulation patterns and mass transport in large basins driven by wind and 

thermocline effects were carried out by Fares (1993) based on the numerical model that 

he developed. In the next step, Fares et al. (1995) used this model representing the inlet 

and outlet position, to carry out a study of the flow behavior of a WSP. Their results 
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confirmed the presence of short-circuiting according to wind effects. They continued the 

work with an objective of using the model to evaluate the effects of different inlet and 

outlet configurations considering the effect of different wind speeds and directions on the 

fluid movement in the pond. This investigation showed that wind action across the 

surface of ponds induces development of a "complex, three-dimensional, helical 

circulation pattern" (Fares et al., 1995). CFD software may help identify the effect of 

various parameters such as inlet/outlet configurations or the effect of wind on the pond 

characteristics and allow for the optimum conditions for the pond performance to be 

found. But, the CFD software used for modeling the hydraulic patterns of the basins are 

really case sensitive. An inability to introduce the exact conditions of the basins leads to 

misleading results. 
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2.3 Environmental risk assessment 

Environmental risk analysis is a systematic process of assessing, managing and 

communicating risk to human health caused by an event or activity occurring in the 

environment. 

Risk analysis is a detailed examination that consists of risk assessment, risk 

evaluation and risk management alternatives that are produced to recognize the nature of 

unwanted, adverse consequences to human life, health, property and environment 

(Bondad et al., 2008). 

The Food and Drug Administration (FDA, 2002) defines "risk analysis as a tool to 

enhance the scientific basis of regulatory decisions." It includes risk assessment, risk 

management and risk communication activities. Each component has unique 

responsibilities. Risk assessment provides information on the extent and characteristics of 

the risk attributed to a hazard. Risk management includes the activities undertaken to 

control the hazard. Risk communication involves an exchange of information and opinion 

concerning risk and risk related factors between the risk assessors, risk managers and 

other interested parties (Fjeld et al. 2006). In simple terms: 

Risk analysis= risk assessment+ risk management+ risk communication 

These three components of risk analysis are dependent on one another for analyzing 

the magnitude of risk caused by the release of the contaminants, as can be seen in Figure 

2.8. 

Environmental risk assessment is the characterization of adverse health effects that 

results from human and ecological exposures to environmental hazards. The field of 

environmental risk assessment has grown in the last two decades due to the increase in 
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public concern about the adverse effect of chemicals and hazards to the wildlife and 

ecosystem. Environmental risk assessment uses a set of tools to identify the likelihood 

and magnitude of adverse effects posed by environmental agents on human health and to 

natural resources. Conclusively, risk assessment is a systematic process for describing 

and quantifying the risk related to hazardous substances, processes, actions, or events 

(Covello et al., 1993). 

Risk Assessment 

./ Hazard (V s. "risk") 
identification 

./ Hazard characterization 

./ Exposure assessment 

./ Risk estimation 

Risk communication 

Receiving messages from risk 
shareholders 

Risk Management 

Risk evaluation 
./ Profile the risk 
./ Rank Risks 
./ Set of risk assessment policy 
./ Communication risk 

assessment 

Risk management option 
assessment 
./ Identify management options 
./ Select safety standard 
./Final management design 
Monitor & review effectiveness 
Implement management strategy 

./ Perceptions of risk magnitude 

./ Prioritization of risk 

./ Perception of risk acceptability 

Delivering messages to risk 
Stakeholder 
./ Best estimate of risk 
./ Standards of safety 
./ Management strategies chosen 

Figure 2.8. Different components of risk analysis (Brunk, 1998) 
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However, most environmental risk assessments are performed to answer a question 

or resolve an issue, such as: Is it safe for a proposed chemical plant to operate in this 

location or is it safe to dispose? 

The Canadian Council of Ministers of the Environment (CCME) (1997) has set forth 

guidelines for a three-tiered system that may be used to derive environmental quality 

criteria. The following components outlined by CCME are involved in the risk 

assessment process (CCME, 1997): 

Figure 2.9. Different components of risk assessment process (CCME, 1997) 

As per Figure 2.9, the receptor is the person or population exposed to the 

contaminant at the exposure point. One of the important factors in determining exposure 

includes the characteristics of receptors. For most of the equations used to estimate the 

exposure, at least two terms (e.g. age, body weight and gender), attempt to define a 

specific receptor's characteristics or parameters. Some characteristics like body weight, 

volume of air inhaled per unit, amount of soil consumed inadvertently and time spent 

indoors and outdoors for human and ecological entities should be evaluated as a part of 

the environmental risk assessment process. The values for each of the receptors vary 
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significantly and, in this way, which receptors receive the greatest exposure from the 

contaminant needs to be defined. 

Hazard, a measure of harm or the potential of the event to cause harm, is one of the 

components of the risk assessment process. Different types of hazards exist. Some are 

natural, while industrial or technological hazards are caused by human beings. 

Exposure is one of the components of the analysis phase of a risk as essment. It is a 

measure of the amount that the likely recipient of a specific hazard takes in. For any 

special hazard, the greater the exposure, the greater the risk of an adverse effect is on 

health. Exposure can be simply identified as the amount of the agent that is available to a 

human or animal. Exposure can occur through different pathways for humans, as shown 

in Figure 2.10. 

The absorption of chemicals is related to the route of exposure. Furthermore, the 

absorption of a chemical also is affected by its chemical and physical properties. In 

simple terms, chemicals that are soluble in fat can be absorbed more easily into the body. 

These risk assessment processes are divided into different components according to 

different organizations such as Environmental Protection Agency (EPA) and CCME. 

The EPA baseline risk assessment process includes data collection and evaluation, 

exposure assessment, toxicity assessment and risk characterization (USEPA, 1999), as 

can be seen in Figure 2.11. 
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Figure 2.10. Major pathways of human exposure to environmental contaminants 
(Health Canada, 1995) 

There are many different risk assessment approaches proposed by regulations 

agencies such as EPA and CCME. Most of these approaches are comprised of four steps, 

which are outlined below: 

./ Hazard identification and assessment 

./ Exposure assessment 

./ Dose-Response assessment 

./ Risk characterization 

These four steps provide a better understanding of a system's environmental risk 

assessment. Thus, these steps are described in the following sections. 
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Exposure assessment 

../ Analyze contaminant 
releases 

../ Identify exposed populations 

../ Identify potential exposure 
pathways 

../ Estimate exposure 
concentrations pathways 

../ Estimate contaminant 
intakes for pathways 

Data collection and 
evaluation 

./Gather and analyze 
relevant site data 

./ Identify potential chemical of 
concern 

Risk characterization 

../ Characterize potential for 
adverse health effects to 

'------""~ occur 
l. Estimate cancer risk 
2. Estimate non-cancer 

hazard quotients 
../ Evaluate uncertainty 
../ Summarize risk information 

Toxicity assessment 

../ Collect qualitative and 
quantitative toxicity 
information 

../ Determine appropriate 
toxicity values 

Figure 2.11. Different processes of risk assessment according to EPA (USEPA, 

1999) 

2.3.1 Hazard identification and assessment 

The potential for chemicals to cause adverse effects on the lives of humans, plants 

and animals can be provided and understood by considering hazard assessment. Hazard 

identification is the first stage in hazard assessment (Phua et al., 2007). It includes 

gathering and evaluating toxicity data on the types of health impact or disease that may 

be produced by a chemical and the conditions under which the impact or the disease is 
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produced. In order to identify the hazard, the data for all contaminants at a site should be 

examined and the data to stress the chemicals of concern should be consolidated. The 

following steps show the data needed in hazard identification stages (Khan, 2008): 

• Site history 

• Land use 

• Contaminant levels in media 

./Air 

./Ground water 

./Surface water 

./ Soils and sediments 

• Environmental characteristics affecting chemical fate and transport 

./Geologic 

./Hydrologic 

./Atmospheric 

./Topographic 

• Potentially affected population 

• Potentially affected biota 

Hazard assessment is most commonly used for analyzing the effects of chemicals on 

the natural environment. The definition of hazard is formulated by Klopffer (1994) as 

follows: 

Hazard= Exposure* Effect (2-20) 

This shows that there is no hazard (bad effect) if there is no exposure. The following 

steps are involved in hazard assessment: 
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1) The contaminant data should be sorted by medium (e.g. ground water, soil, etc.) 

for both carcinogens and non-carcinogens. 

2) The average and range of each chemical concentration observed at the site should 

be demonstrated. 

3) The toxicity scores (TS) for each chemical in each medium due to carcinogens 

and non-carcinogens should be demonstrated as follows: 

For non-carcinogens: Considering exposure duration, the toxicity score is 

estimated as follows: 

TS = CMax 

RFC 
(2-21) 

RFC =Chronic reference concentration (an estimate of acceptable daily intake) 

For carcinogens: TS =SF* CMax (2-22) 

SF = Slope factor (slope factor here IS considered for daily intake 

(slope factor * day)) 

4) Ranking the compounds by toxicity scores for each exposure route. 

5) For each exposure route, selecting those chemicals that compose 99 percent of the 

total score. 

2.3.2 Exposure assessment 

There has been a significant increase in awareness of environmental issues in recent 

years and there is a great concern among the people over how their health is affected by 

environmental factors. Exposure assessment includes estimating the dose or 

concentration of the contaminant taken in by human and ecological receptors per unit of 
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time. Characterization of the exposure setting, identification of exposure pathways and 

quantification of exposure are different steps in exposure assessment. 

Using the exposure assessment, the following questions can be answered: 

1) Who and what is exposed (For example: people, aquatic ecosystems)? 

2) How much exposure occurs? 

3) How often and how long does the exposure occur and what is its frequency and 

duration? 

Various plausible exposure pathways exist for every valued ecosystem component. 

Different pathways include direct contact, water ingestion, soil or sediment ingestion, and 

through the food chains. Indirect contact should be considered as well. 

Using the fate and transport model, which is validated through field measurement, 

the information for input into an exposure model can be provided. Different steps for 

calculating exposures to chemicals present in the environment can be seen in Figure 2.12. 

For calculating people's and ecological entities' expose to environmental 

contaminants, several assumptions need to be considered. 

The average values are generally used for: 

• Body weight 

• Amount of food and water consumed 

• Amount of air breathed, and 

• Number of times people and ecological entities are exposed to contaminants over 

their lifetime 
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STEP 1 
Identify the contaminant of 
concern 

~ 
STEP 2 
Identify all pathways of exposure 
for that contaminant 

l 
STEP 3 
Obtain the concentration of the 
contaminant or the radionuclide 
activity concentration in each 
pathway 

I 
CHEMICALS I I IONIZING RADIATION 

~ ~ 
STEP 4 STEP4 
Estimate the daily intake (ED) of Estimate the annual dose from all 
the contaminant for each pathway external radiation sources and the 
and sum to calculate EDI committed dose from radionuclides 

taken into the body during the year. 
Sum to calculate the total Estimated 
Dose (ED) 

~ l 
STEP5 STEP 5 
Compare the calculated EDI to the Compare the calculated ED received 
available TDI (non-carcinogen) or and committed in the current year 
RsD (carcinogen) with the 1 mSv per year dose limit. 

Compare the dose from drinking 
water with the 0.1 mSv per year 
Health Canada guideline 

! l 
STEP 6 STEP 6 
Decision: Is EDI for the contaminant Decision: is total ED received and 
a concern? committed in the current year from 

all radiation sources a concern? 
Is the dose received from drinking 
water in the current year a concern? 

Figure 2.12. Different steps for calculating exposure to chemicals (Health Canada, 
1995) 

The exposure pathway describes how the contaminants go into the environment 

from their source to humans or other living organisms. 

Exposure pathways include the following steps: 

• Source of contamination 

• Environmental media 
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• Point of exposure 

• Receptor person or population; and 

• Route of exposure 

It is noteworthy that the source of environmental contaminants varies from place to 

place. It can consist of exhaust from cars, wastewater released by factories and mills, 

waste disposal sites or closed factories or disposal sites. Furthermore, a number of 

natural sources can release various substances into the environment. 

When the contaminants are released from their sources, they can travel over 

different environmental media to reach the points where human exposures can occur. For 

humans, the major environmental media are water, air, food and soil. Figure 2.13 shows 

how contaminants are transported through the food chain and affect human health 

through exposure and food intake. 

The point of exposure is where contact with the contaminants occurs. Different 

locations that people are exposed during the day and night (e.g. homes, workplaces, 

lakes, rivers or other bodies of water) can be the point of exposure. 

The individual or population that is exposed to the contaminant at the point of 

exposure is the receptor. For example, people may be exposed to the contaminated air by 

going outside and breathing. Finally, the route of exposure is the way that the 

contaminant enters into the human and animal body. Ingestion, inhalation and skin 

contact are three general routes by which human and animals take the contaminant into 

their body. 
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Figure 2.13. Exposure pathways schematic (ATSDR, www.atsdr.cdc.gov) 

After determining the different parts of exposure pathways, the exposure factor 

should be calculated in each pathway of exposure. 

As mentioned above, inhalation of the contaminant is one of the pathways of 

exposure. The amount of a contaminant absorbed into the body by inhalation can be 

found by the following equation: 

C* IR* EF 
EDa=-----

BW 

C = Concentration of contaminant in the air (mg/m3 of air) 

(2-23) 

The inhalation rate and average body weight for each person according to that 

person's sex and age can be seen in Table 2.6 and 2.7 (USEPA, 1997). 
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Table 2.6. Average body weight for each age group according to their sex (US EPA, 

Model Age Group 

0-17 
18-44 
45-64 
65+ 

1997) 

Male 
34.3 
78.2 
79.9 
74.8 

Female 
33.0 
64.3 
68.0 
66.6 

Table 2.7. EPA recommended inhalation values (USEPA, 1997) 
Age Group (years) Sex Inhalation values 

(m3/day) 
<1 Both 4.5 

1-2 Both 6.8 

3-5 Both 8.3 

6-8 Both 10 

9-11 Male 14 

Female 13 

12-14 Male 15 

Female 12 

15-18 Male 17 

Female 12 

19-65+ Male 11.3 

Female 15.2 

Moreover, the amount of a contaminant taken into the body per food is calculated 

for each individual food by the following equation: 

(Food group 1) 

CF*CR*EF 
EDr=----­

BW 

(Food group 2) 

CF*CR* EF 
+-----

BW 
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Finally, after calculating the amount of exposure for different pathways, the 

estimated daily intake (EDI) of a chemical can be calculated by adding these amounts of 

exposure. Estimated Daily Intake of a chemical should be calculated by the following 

equation: 

EDI = EDa + EDw + EDs + EDr + EDws + EDss (2-25) 

2.3.3 Dose-Response assessment 

Dose-Response assessment is the step of the risk assessment process that connects 

the likelihood and severity of damage on human health from exposures to different 

levels of risk agents. The quantitative relationship between the level of exposure and the 

intensity of the resulting adverse health effects is represented by graphs. This graph, 

which can be seen in Figure 2.14, shows the cumulative exposure or rate of exposure per 

unit of time. 

Ill 

! 
0 
Q. • 
~ 

Dose 

Figure 2.14. Dose-Response curve (USEPA, 1991) 

The extrapolation of dose relationships from a specific population to another group 

or from animal studies to human beings should be conducted according to the following 

factors: 

./Difference in physical dimensions like body weights 
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./ Difference in intake 

./Different life span 

./Difference in the absorption rate of chemical, nature, routes. 

Regression methods can be used for finding the dose and response relationship if 

enough data are available. Dose-Response models can be divided into three main 

categories. These categories are described in the following paragraphs. 

Simple Dose-Response models: These models show the single measurement of dose 

(e.g. cumulative exposure) to a single measure health response (e.g. number of fatalities). 

These models are used to estimate the number of cases of cancer caused by exposure to 

low level radiation. For applications of this model, dose-response relationships are 

usually shown by curves with thresholds. 

Tolerance distribution models: These models are based on the fact that each person 

in the population has an individual threshold tolerance associated with the specific risk 

agent. In these models, it is assumed that the probability that a particular individual will 

experience an adverse effect when exposed at the dose level d is the same as the 

probability for the tolerance level of the individual less than d. The log-probit model is 

the most commonly used tolerance models. It is popular because the result of toxicity 

tests often fit the shape assumed in the model. This model is usually used for determining 

the dose-response of the exposure to toxic gases and estimation of infections from disease 

caused by organisms. 

Mechanistic models: These models usually show the biological processes that lead to 

an adverse effect as a series of events evolving over time. Although such models can 

become mathematically complex, they are usually based on very simple biological 
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assumptions. Hit, multistage, and cellular proliferation models are the most well-known 

in this case (Fjeld, 2006). Mathematical equations of different dose-response models can 

be seen in Table 2.8. 

Table 2.8. Mathematical equations of several dose-response models used in cancer risk 
assessment (Edler et al., 1998) 

Equations for the probability of 

Model 
response (Proportion of population 

Parameter constraints 
affected at dose d) 

Pro bit F(d) = ¢(a+b lnd) b>O 

Logit F(d) = [1-exp( -(a+b lnd))r1 b>O 

Weibull F(d) = 1- exp(-bdk) b>O,K>O 

One hit P(d) = [1-exp(-bd)] b>O 

k 

Multistage F(d) = [1-exp(- Ia;d; )] ai;:::o 
i=O 

The standard procedure for assessing non-cancer risks related to hazardous 

components uses a No Observed Adverse Effect Level (NOAEL) approach. NOAEL is 

the point in which no-effect level is observed. By applying an uncertainty factor to this 

point, it may be then used to estimate a dose limit for humans. This limit is below a 

presumed threshold and shows the acceptable exposure level. For establishing a 

permissible exposure levels for humans for non-carcinogens, the NOAEL is used for 

finding the RFD (Reference Dose) as follows: 

RFD= NOAEL 
UF 

(2-26) 

UF is the uncertainty factor, which is assumed to be 10 when relevant research based 

information is missing. 
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In a new dose-response procedure, the benchmark dose method is used instead of 

NOAEL. In benchmark modeling, the bench mark (BM), which is the dose related to 

10% response, is evaluated. The lower bond of 95% confidence interval for this BM is 

called LBM (Faustman, 1996). 

To determine the best model that can fit the dose and response data, EPA develops 

the Benchmark Dose Software (BMDS) to facilitate the application of benchmark dose 

(BMD) methods to the EPA hazardous pollutant risk assessment. This software helps find 

the Bench Mark (BM) and Lower Bond of 95% of confidence interval (LBM) associated 

with different doses and responses. After finding BM and LBM, the RFD is calculated as 

follows: 

RFD= BM,LBM 
UF 

(2-27) 

A different approach is used for carcinogens which are generally assumed to have a 

non-threshold dose-response. A decision about these chemicals (carcinogens) must be 

made to determine "how large a risk of cancer can be accepted, in order to set acceptable 

intake levels" (Health Canada, 1995). 

Different acceptable levels of risk are used around the world. These levels vary 

between one extra cancer death per ten thousand people and one extra cancer death per 

million people exposed to the contaminants over their entire lifetime. 

After establishing the acceptable level of risk, a dose that people can be exposed to 

on a daily basis over their entire lifetime that will not exceed the accepted level of risk of 

cancer can be calculated. As the acceptable dose is directly related to the decision about 

an acceptable level of risk, it is called Risk-specific Dose (RsD). Considering each 
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carcinogen, which has its own slope factor, the RsD is calculated as follows (Health 

Canada, 1995): 

RsD = Acceptable level of risk I Slope factor (2-28) 

2.3.4 Risk characterization 

By integrating exposure assessment and toxicity assessment, which are discussed 

earlier, the probability of negative effects is understood. Risk characterization is carried 

out for individual chemicals and then summed for a mixture of chemicals (Considering 

that additivity is assumed). Next, the amount of these chemicals can be compared with 

different guidelines on chemicals concentration. These guidelines suggest different 

criteria by considering different chemicals and ways of exposure. 

Qualitative and quotient methods are suitable for risk characterization. The judgment 

will be relied on using qualitative methods, such as a ranking system that shows the level 

of risk in terms of high, moderate or low. If there is sufficient information available about 

the Expected Environmental Concentration (EEC) in the most important medium or 

media and where there are adequate studies available in the literature to determine the 

toxicological benchmark, the quotient method may be used. The quotient is calculated by 

"taking the ratio of the EEC and aBC (Benchmark Concentration) (CCME, 1996)". 

If the quotient is less than 1, it shows that the risk is slight and little or no action is 

required. If the quotient is near 1, it shows uncertainty in the risk estimate and additional 

data is required. Finally, if the quotient is more than 1, it shows that the risk is greater and 

regulatory action may be indicated (CCME, 1996). 
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CHAPTER32 

Acid Mine Drainage Characterization 

Abstract: 

It is difficult to predict the quality of AMD due to the diversity of reactions which take 

place in the mine water. The composition of the mine waste are dependent on the specific 

mine site and the specific ambient conditions. 

Methods such as optical microscopy, electron mtcroscopy, and X-ray diffraction are 

sometimes used to identify minerals involved in the production of AMD. A simpler 

method to identify the minerals without losing accuracy would help to decrease costs. 

This chapter presents an overview of the important oxidation reactions of sulphide 

minerals and related chemical components produced by these oxidation reactions. A 

methodology for predicting the minerals producing AMD using MINTEQ is also 

discussed. This method can be used in conjunction with analytical techniques to 

characterize AMD for a specific site. While it does not replace analytical tests, it may 

decrease the number and frequency of these expensive tests. The model has been 

validated with data from the Wolverine coal mine in northeastern BC, Canada. 

2 
• A part of this chapter is published and cited as: 

Abbassi, R., Khan, F., Hawboldt, K. 2009. Prediction of minerals producing acid mine drainage using a 
computer-assisted thermodynamic chemical equilibrium model. J. mine water and the environment, 28, pp. 
74-78. 
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3.1 Methodology for AMD characterization 

AMD is a highly acidic discharge containing cadmium, cobalt, copper, iron, nickel, 

and other chemical species that may lead to negative impacts the environment. Due to the 

complexity of reactions in AMD, it is generally difficult to determine the quality of the 

mine water. Knowledge of different possible minerals that produce specific AMD, the 

oxidation reactions related to these minerals and the chemical components produced by 

these reactions are vital. A variety of techniques for identification and characterization of 

minerals, different oxidation reactions and different chemical components produced by 

these chemical reactions are available. Because of the complex character of these 

constituents, no specific technique is as a universal method for qualitative and 

quantitative characterization of the mineral matters. Methods such as optical microscopy, 

electron microscopy and X-Ray diffraction are complex, needing expert analysis and 

costly to work with. Prior to designing any treatment system, a method for identifying the 

minerals and reactions which generate AMD is required. The proposed procedure for 

identifying and characterizing the minerals, their oxidation reactions producing AMD and 

chemical components in AMD are demonstrated in the Figure 3 .1. The procedure begins 

by measuring metal and non-metal species in the mine water. Based on the conditions 

experienced by the mine water, Eh-pH diagrams are used to recognize the chemical 

species that may be thermodynamically favored over others. In the next step, the amount 

of chemical species are keyed into MINTEQ to obtain the chemical components in the 

AMD. Finally, based on the oxidation reactions of the minerals and chemical components 

obtained by MINTEQ, the key minerals and reactions are identified. This procedure is 

explained in detail in the following sections. 
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-----------------------------------

Identification of different chemical 
species in the mine water 

Identification of metals ions 

Identification of different chemical 
components that may exist in AMD 

l 
Classification of different minerals 
producing AMD 

r--------------------------------------; 
: Testing methods such as atomic absorption : 

________ ,.l spectrophotometery and inductivity coupled : 
1 plasma (ICP) to measure the amount of metal : 
: and non-metal species in the mine water : 
~--------------------------------------~ 

r---------------------------------------1 

: Using HSC software to draw Eh-pH diagrams 
________ .l and to determine ion speciation 

~--------------------------------------~ 

r---------------------------------------1 

: Using MINTEQ to determine chemical : 
________ .i components and concentration in AMD : 

I 
I 
I 
I 

~--------------------------------------~ 

r--------------------------------------
: Chemical components received from MINTEQ 
: and minerals oxidation reactions to identify 
I 

--------~ possible minerals in the mine site and 
: classifying these minerals to acid generating 
: and non-acid generating minerals 
I 

Figure 3.1. Different steps for characterization of AMD and identifying the minerals that 
produce AMD 

3.1.1 Identification of different chemical species in the mine water 

Tailings with high sulphide minerals content produce AMD. When mine water 

contacts with oxygen that exists through ambient air, the reactive sulphides are oxidized 

and generate an acidic leachate that may act as an agent carrying heavy metals and 

dissolved salts. As a result, different metal and non-metal species are accumulated in 

AMD which should be determined using different standard testing methods such as 

atomic absorption spectrophotometery and inductivity coupled plasma (ICP). 

Determining some of the characteristics of AMD (e.g. pH, temperature and alkalinity) 

may help to obtain the existing chemical components in AMD in a specific condition. 
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3.1.2 Identification of metal ions 

Eh-pH diagrams are used for determining the stability areas of metal species in a 

solution, based on the solution's redox potential (Eh) and pH (Roine, 2002). The 

horizontal axis in this diagram shows pH for the log function of the H+ ion concentration, 

while the vertical axis Eh is for the voltage potential with respect to the standard 

hydrogen electrode as calculated by the Nemst equation (Pourbaix, 1974). 

(3-1) 

These diagrams visually present the oxidizing and reducing abilities of the major 

compounds and are applied commonly in geochemical, environmental and corrosion 

applications. Any point on the diagram will demonstrate the thermodynamically most 

stable and theoretically most abundant form of that species at a given potential and pH 

condition. For instance, due to the Eh-pH diagram for different iron species, at a pH of 

approximately 7 where the concentration of dissolved ferric iron is too low to measure, 

all Fe can be assumed to be present as ferrous iron (Ball et al., 2006). Finally, this will 

lead to selecting and entering the amount of the specific ions (based on the specific 

condition that the ion experience) in the next step. 

3.1.3 Identification of different chemical components in AMD 

After detailing different elements that exist in the tailing, different possible chemical 

components that are produced in AMD need to be evaluated. To this end, computer-

assisted thermodynamic chemical equilibrium models are useful tools to predict the 

behavior of chemical system. MINTEQ is one of the chemical equilibrium models. The 

data required to predict the equilibrium composition consist of chemical analyses of the 
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AMD sample to be modeled, total dissolved concentrations for the chemical species and 

any other applicable invariant measurements for the mine water including pH and 

temperature. This will also include modeling the solubility of different chemical species 

according to different conditions that the AMD experiences and finding the possible 

components and their concentration in the AMD. By entering all of the existing aqueous 

species and their concentrations, specific pH, specific ionic strength and the amount of 

alkalinity, and running the model respectively, all of the possible chemical components 

that may exist in AMD can be evaluated. In the next step, the minerals producing these 

chemical components according to specific oxidation reactions shown in Table 3.1 are 

classified through different groups (acid producing or non-acid producing and acid 

consuming or non-acid consuming) of minerals producing AMD. 
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Table 3.1. Selected oxidation reactions for mine tailing with oxygen and ferric iron 

Mineral 

(I a) Pyrite (by oxygen) 

(1 b) Pyrite (by iron) 

(2a) Marcasite (by oxygen) 

(2b) Marcasite (by iron) 

(3a) Chalcopyrite (by oxygen) 

(3b) Chalcopyrite (by iron) 

(4a) Pyrrhotite (by oxygen) 

(4b) Pyrrhotite (with iron) 

(Sa) Arsenopyrite (with oxygen) 

(5b) Arsenopyrite (with iron) 

(6a) Sphalerite (with oxygen) 

(6b) Sphalerite (with iron) 

(7a) Covellite (with oxygen) 

(7b) Covelite (with iron) 

(Sa) Millerite (with oxygen) 

(8b) Millerite (with iron) 

(9a) Greenockite (with oxygen) 

(9b) Greenockite (with iron) 

(lOa) Galena (with oxygen) 

( lOb) Galena (with iron) 

Oxidation reactions 

FeS2 + 14Fe3+ + 8H20 7 2S04-2 + l5Fe+2 + 16W 

Same as pyrite 

Same as pyrite 

CuFeS2(Sl + 402<aq) 7 Cu2+ + Fe2+ +S04 
2-

CuFeS2<S> + 16Fe3+ + 8H20 7 Cu2+ + 17Fe2+ + 2S0 4 
2- + 16W 

Fe(l -xJ S + (2 -0.5x) 0 2 + x HzO 7 (I - x) Fe2+ + S04 
2. + 2 xW 

Fe<1·x>S + (8-2x) Fe3+ + 2H20 7 (9-3x)Fe2+ +SO/+ 8W 

FeAsS + 13/4 02 + 3/2 H20 7 Fe2+ + S04 2. + H2As04. + H+ 

FeAsS<s> + 14Fe3+ + 7H20 7 15Fe2+ +SO/ + H3As03(aqJ + l4W 

ZnS<s> + 202(aq> 7 Zn2+ + S04 
2-

ZnS<s> + 8Fe3+ + 4H20 7 Zn2+ + S04 
2. + 8Fe2+ + 8W 

CuS<s> + 20z(aql 7 Cu2+ + S04 
2-

CuS(s) + 8Fe3+ + 4H20 7 Cu2+ + SO/ + 8Fe2+ + 8W 

NiS<s> + 202(aq) 7 Ni2+ + SO/+ 

NiS(s) + 8Fe3+ + 4H20 7 Ni2+ +SO/+ 8Fe2+ + 8W 

CdS<s> + 20z(aq) 7 Cd 2+ + S04 
2
. 

CdS(s) + 8Fe3+ + 4H20 7 Cd2+ +SO/+ 8Fe2+ + 8W 

PbS<s> + 202(aq) 7 Pb2+ + S04 
2. 

PbS<s> + 8Fe3+ + 4H20 7 Pb2+ + SO/ + 8Fe2+ + 8W 

3.1.4 Classification of different minerals producing AMD 

In this step the possible minerals and different reactions related to oxidation of 

minerals are predicted. These minerals can be classified as acid producing and non-acid 
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producing. Classification helps to determine the oxidizing process of each class according 

to the multiplicity of this process for each individual component. 
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3.2 Application of AMD characterization of Wolverine coal mine: A Case study 

To verify the proposed methodology, a case study based on the Wolverine (Perry 

Creek) coal mine located 23km west of Tumbler Ridge in northeastern BC, Canada, 

(Yukon zinc corporation, 2005) is selected. The water quality at this mine site during 

operation is shown in the Table 3.2. 

Table 3.2. Wolverine AMD Earameters and dissolved metals 
Parameters Parameters Parameters Parameters 

Cond. (uS/em) 1860 Thiosalts 452 Cr 0.00125 p 0.08 
pH 7.4 Ag 0.0113 Cu 0.0267 Pb 0.0166 

TDS 1510 Al 0.07 Fe 0.03 Sb 0.0216 

TSS 31 As 0.012 Hg 0.000075 Se 1.825 

*.Acidity 365 Ba 0.3485 K 10 Si 0.35 

*.Alkalinity 37 Be 0.0038 Li 0.0038 Sn 0.007 

*. Hardness 452 B 0.019 Mg 4.97 Sr 0.293 

F 0.25 Bi 0.00023 Mn 0.0165 Ti 0.0023 

Cl 19 Ca 175 Mo 0.03015 T1 0.0056 

N03 0.22 Cd 0.002 Na 201 u 0.0003 

so4 605 Co 0.0008 Ni 0.014 v 0.0005 

CN(T) 0.02 CNO 1.85 CNS 3.7 Zn 0.024 

*.The unit of acidity, alkalinity and hardness is mg/1 as CaC03 
*.The unit of dissolved metals is mg/1 

Treating effluent AMD before releasing to the environment is necessary. 

Determination of the minerals that produce the specific AMD and different chemical 

components is required to assign a treatment system. 

In this step, the HSC software is used to create Eh-pH diagrams in the specific AMD. 

The pH of the Wolverine mine water is 7.4 and used in the modeling step (modeling 

different possible species with MINTEQ). As an example, this Eh-pH diagram for iron is 

illustrated in Figure 3.2. 
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Figure 3.2. Eh-pH diagram for Fe (iron) at 25 o C 

MINTEQ (Version 2.52) is used to model the possible components that exist in 

Wolverine mine water. The amount of metal and non-metal species that are related to the 

chemistry of the Wolverine AMD demonstrated in Table 3.2 are entered in the MINTEQ 

program. 

For verification of the chemical components produced by MINTEQ, these chemical 

components are compared with typical chemical components that are found by oxidation 

of minerals in different coal AMD. These typical minerals for Wolverine coal mine may 

be seen in Table 3.3. 

The minerals in the mine site can be divided into two groups of acid and non-acid 

forming sulfide minerals. Hill ( 1977) explained that most coal bodies are associated with 

sulphides and/or sulphosalts. Pyrite, pyrrhotite, chalcopyrite, marcasite and sphalerite are 

the main acid forming minerals in the coal mines. The acidity in AMD stems principally 

from the formation of free sulphuric acid and hydrolysis of the oxidation products (iron 

sulphates) ofpyrite. 
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Ferrihydrite (Fe(OH)3) produced in these oxidation processes would not be stable at 

very low pH, but it is more stable at a pH approximately 8. The existence of Fe(OH)J 

amongst the mineral components that are revealed by MINTEQ indicates pyrite in this 

specific AMD. Moreover, pyrrhotite is an abundant sulfide mineral found in some coal 

mine environments. The oxidation of pyrrhotite produces Fe(OH)3 and acidity as well. 

Arsenopyrite is also expected to yield acid according to reactions Sa and 5b in Table 3.1. 

The existence of Asoi · in the output of MINTEQ for this mine site indicates 

arsenopyrite in the mine site. Acid generation occurs via chalcopyrite oxidation according 

to reaction 3b in Table 3.1 through the oxidation according to ferric iron path. The 

Cu(OHh exists in AMD at Wolverine coal mine and this may be cau ed by the oxidation 

of chalcopyrite. Finally, sphalerite is an acid generating sulfide mineral with an indefinite 

composition ((Zn, Fe)S). The oxidation of sphalerite may produce acidity due to reaction 

6b in Table 3.1. The existence of Zn(OH)2 indicates sphalerite in Wolverine coal mine. 

Table 3.3. Minerals identified in Wolverine coal mine 
Chemical components Chemical formula Acid producing condition 

Pyrite FeS2 Acid forming sulfide 

Pyrrhotite Feo.9sS Acid forming sulfide 

Arsenopyrite Fe AsS Acid forming sulfide 

Sphalerite ZnS Acid forming ulfide 

Chalcopyrite CuFeS2 Acid forming sulfide 

Chalcocite Cu2S Non-Acid forming sulfide 

Galena PbS Non-Acid forming sulfide 
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Some minerals such as chalcocite and galena, which are the usual mineral 

components in the coal mine, oxidize but do not produce acidity. As an example, the 

direct oxidation of chalcocite with oxygen does not produce acidity. The existence of 

CuS04 can be seen in the output of MINTEQ for this mine water and this can verify the 

existence of chalcocite in this coal mine. Finally, galena is another sulfide mineral that 

does not generate acidity and the existence of PbS04 can be identified in Wolverine 

AMD. The direct oxidation process of galena led to produce PbS04 is shown in reaction 

lOa in Table 3.1. Due to the output of MINTEQ and evaluation of the minerals that exist 

in the coal mine, the existence of PbS04 can demonstrate the availability of galena in this 

mine site. 

Summary 

AMD may lead to severe environmental problems to adversely affect humans and 

ecosystems. Predicting the minerals produced AMD, the oxidation reaction of these 

minerals and the chemical components produced is required prior to selection of specific 

treatment system. Samples from the mine site are typically tested using methods such as 

optical microscopy, electron microscopy and X-ray diffraction which are generally costly 

and complex. A procedure is proposed to identify the chemical components produced in 

AMD and used to back out the minerals producing these chemical components. In this 

method, samples from AMD are analyzed and Eh-pH diagrams are used to characterize 

the specific AMD. Chemical equilibrium models are used then to model the possible 

chemical components in AMD. By evaluating the chemical components produced by 

MINTEQ, and going through oxidation processes of these minerals, the minerals having 
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the potential to produce acidity for any specific mine site may be identified. This 

prediction can be used in conjunction with analytical analysis to optimizing design 

criteria for treatment. It should be noted this method does not replace analysis but rather 

supplements it. 
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CHAPTER43 

Stabilization Pond Modeling 

Abstract: 

WSP is one of the simple and cost effective methods of treating AMD. The design of 

the WSP is based on many assumptions, one of which is that the pond is well mixed. That 

implies that there are no concentration gradients within the pond or the pond may be 

modeled as a CSTR. However, due to the heterogeneity of the constituents of the 

wastewater, concentration gradient, temperature gradient, and wind shear, the CSTR 

assumption is an oversimplification. In reality there are concentration, wind shear, and 

temperature stratification within the pond, significantly impacting the flow pattern within 

the system as outlined in chapter 2. 

In this chapter, the non-ideal dispersed flow model is used to model the 

concentration gradient within the pond. A methodology using CFD to determine the main 

parameters of the model (retention time and dispersion coefficient) based on hydraulic 

behavior of the basin is also discussed in this chapter. This model is then validated using 

two case studies. 

3 Part of this chapter is submitting to be published and has been presented in the following paper and 
conferences: 
Abbassi, R., Khan, F., Hawboldt, K. 2010. A methodology of finding dispersion coefficient using 
Computational Fluid Dynamics (CFDs). Journal of environmental sciences, Under process. 
Abbassi, R., Khan, F., Hawboldt, K. 2009. Risk based tailing pond water management strategies 
considering non-idealities in tailing pond modeling. EWRI Conference, Bangkok, Thailand. 
Abbassi, R., Khan, F., Hawboldt, K. 2009. Characterization of parameters effect on hydraulic flow pattern 
of waste stabilization pond. CSCE Conference, St.John's, NL, Canada. 
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4.1 Dispersion model 

In reality, the flow in the reactors is rarely ideal and the assumptions of ideal CSTRs 

and PFRs may not exist. Most of the ponds, which do not have mechanical mixing, are 

not able to achieve a completely mixed state and therefore do not satisfy the conditions. 

Therefore, the dispersion model is suitable to cover these non-idealities. This model may 

be used in both steady state as well as transient conditions. Furthermore, if the reactions 

reach equilibrium quickly, the reaction term, can be eliminated. In the following section, 

the steady state dispersed flow model is solved using Wilhelm-Wehner boundary 

conditions (Wehner et al., 1956). 

4.1.1 Steady-state condition of dispersion model 

Considering the mass balance equation for component A (an element selected within 

the pond volume as shown in Figure 4.1), the advective-diffusive equation may be 

written as (Clark, 1996): 

iJpA 
afLlx~y& = (nA.x- nA.x+&)~y&- (nA.y - nA,y+t.y)&Llx- (nA,z - nA.Z+t.Z )~yLlx (4-1) 

+ rALlx~y& 

Y+~Y Z+~Z 

X X+.6.X 

z 
y 

Figure 4.1. Concentration gradient through an element in the pond 
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If each term of equation 4-1 is divided by Llx~y&, equation 4-2 will be received as 

following: 

ap A n A,x - n A,x+<lx + n A.y - n A.y+<~.y + n A.< - n A.<+<~.< = +~ 
~ Llx ~ & 

apA+'\lnA=rA 
at 

In this equation, 

(4-2) 

(4-3) 

(4-4) 

The equation 4-4 is derived using Fick's first law and general diffusion transport 

(Amiri, 2003). By substitution of equation 4-4 in to equation 4-3: 

(4-5) 

Assuming p A as a constant (incompressible fluid): 

apA = -V(p u) at A 
(4-6) 

(4-7) 

The differential form of the continuity equation may be written as: 

Vu=O (4-8) 

Substituting equation 4-8 in to equation 4-5 will lead to the following result: 

(4-9) 

74 



Dividing each term of equation 4-9 by the molar mass of the component: 

dCA nc - 2 -- + u v A - DAB v c A + R A 
dt 

(4-10) 

(4-11) 

ln Steady State COnditiOn Where dC A = 0, a One dimensional form Of the disperSiOn 
dt 

equation may be written as: 

( 4-12) 

DA.B 
a2cA- u acA 
dz 2 dz 

+ RA =0 (4-13) 

If equation 4-13 is then divided by the term u*l and it is assumed that the component 

A is consumed through the reaction (not produced) and the first order reaction rate exist: 

DAn ii2CA u acA KcA _
0 ----;;[ ---a;} - ul Tz - ----;;[ - (4-14) 

Assuming ul I DAB is equal to Pe (Peclet number), the following equation will be 

obtained: 

_1_ a2cA- acA -RcA =O 
Pe dz 2 dz 

(4-15) 

Equation 4-15 is the dispersion equation m dimensionless form for first order 

reaction (Wehner et al., 1956). The dispersion equation which is the ordinary second 

orders differential equation in dimensionless form may be seen below: 

_1 a2 j(z)- dj(z) - Rf(z) = 0 
Pe dz 2 dz 

(4-16) 
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..------------------------------------~-- --

The following divisions are considered in the modeling scenario: 

b 

Figure 4.2. Boundary used in dispersion model 

Before Z ~ 0 and after Z ~ 1, no reaction occurs. 

_1_ d2
/(z) _ dj(z) = 

0 
Pea dz 2 dz 

z~o (i) 

_1_ d
2 
f( z) _ df(z ) _ Rf(z) = O 

Peb dz 2 dz 
O~Z~1 (ii) 

_1_ d2 
f( z) - dj( z) = 0 

Pee dz 2 dz 
Z~1 (iii) 

Equations 4-17 to 4-22 are six boundary conditions used for solving equations i, ii and iii. 

(4-17) 

(4-18) 

(4-19) 

(4-20) 

f ( oo) is finite (4-21) 

J(-oo)=1 (4-22) 

These boundary conditions are used for solving the following equations: 

z~o (4-23) 
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Pe Pe f (z) = N 3 exp _b (1+ a)z + N 4 exp-b (1-a)z 
2 2 

O~Z~1 (4-24) 

z;:::1 (4-25) 

It may be seen in equation 4-23, 4-24 and 4-25 that six constant values exist in these 

equations and six boundary conditions are available, that are equations 4-17 to 4-22. 

Solving the equations 4-23 to 4-25 using the boundary conditions 4-17 to 4-22, will lead 

to the following results: 

O~Z~ 1 -7 f = goexp ( P~z ){ (1+ a) exp ( aPeb;1- z) ) - (1-a)exp ( a"Peb; z -1) )} 

(4-26) 

KL 

In which, a= ~1+ 4R = 
Peb 

4
- ~ 4KLD 1+-u-= 1+ 

2 
= .J1+4Kdt 

Lu Lu 

D 

2 
And go=-----------------

2 aPeb 2 aPe11 (1 +a) exp(-
2
-)- (1- a) exp( --

2
-) 

Another way to write equation 4-26 is: 

D 
(where d=-) 

uL 

c 
1 

4aexp(-) 
2d =--------=..;;;,_ ___ _ which a =.J1 + 4Kdt 

c 

a -a 
(1 + a) 2 exp(-)- (1- a)2 exp(-) 

2d 2d 

Pe 
4aexp(- ) 

2 
=--------~~-----

2 aPe 2 -aPe 
(1+a) exp(-

2
-)-(1-a) exp(-

2
- ) 

4.1.2 Transient condition of dispersion model 

(4-27) 

(4-28) 

All of the equations mentioned above are in steady state. Considering time parameter 

in the dispersed flow equation will result in transient form of the dispersion equation. 
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The transient one dimensional dispersed flow model is (Nameche et al., 1998; Garcia 

et al., 2005): 

(4-29) 

Solving equation 4-29 leads to a Gaussian concentration distribution: 

M -(z- U *t) 2 

C(z, t) = exp [ ] 
A * .J4tr * D * t 4 * D * t 

(4-30) 

Equation 4-30, imilar to other equations written for steady state condition, is 

dependent on the dispersion coefficient (or Peclet number). 
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4.2 Determination of dispersion model parameters 

Researchers (Arceivala, 1981 Polprasert et al. , 1985; Chien et al., 1995) have 

concluded the dispersed flow model predicts the transport of contaminants more reliably 

than the CSTR or PFR models. This model is a strong function of retention time and 

dispersion coefficient, which in turn depend on the hydraulic regime of the basin. The 

following sections will describe the specific parameters which affect these two factors 

(retention time & dispersion coefficient). Furthermore, the methods for finding these two 

factors are also discussed. 

4.2.1 Actual retention time of the stabilization pond 

The treatment efficiency of the basin is directly correlated to its hydraulic regime. A 

poor hydraulic design of the pond reduces its treatment efficiency (Shilton et al., 2003; 

2006). The hydraulic performance of the ponds is a function of the pond geometry, the 

location of inlet and outlet, the inlet flow velocity, etc. (Piondexter et al., 1981; 

Thackston et al., 1987; Marecos et al. , 1987; Muttamara et al., 1997; Salter et al., 1999; 

Torres et al., 1999; Brissaud et al., 2000; Shilton et al. , 2003; Aldana et al., 2005; Abbas 

et al. , 2006; Agunwamba, 2006; Fyfe et al., 2007). Poor hydraulic design may cause 

some parcels of water to exit earlier or later than their optimal residence time or short 

circuiting and dead regions within the pond. 

Typically drogue and tracer studies are performed to determine ponds hydraulic 

parameters (Marecos et al., 1987; Moreno, 1990; Pedahzur et al., 1993; Salter, 1999; 

Brissaud et al., 2000; Vorkas et al., 2000). Although useful, these tests are costly and 

time consuming. As a result, a tool for predicting the hydraulic pattern of the basins and 
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actual retention time could be used to tailor any subsequent tracer tudies and upplement 

any tracer data collected. 

Various researchers (Baleo et al., 2001; Shilton, 2001) have used CFD software to 

model the hydraulic behavior of the basins. It is important to know that mo t of them are 

not validated using actual experimental data. The results of CFD software give an 

indication of the hydraulic behavior of the ponds and make an assumed calculation of the 

actual retention time. 

A final method is to use the empirical approaches to show the relation of actual 

retention time and theoretical retention time ba ed on hydraulic parameters of the pond 

uch as pond's geometry or inlet/outlet positions. 

Pond geometry is one of the important factors that affect the hydraulic performance 

of the basin (Marecos et al., 1987; Torres et al., 1999). It is proposed by researchers that 

the UW ratio is the most important factor in the design of the ba in (Poindexter et al., 

1981). The relation between hydraulic efficiency (the ratio of actual retention time to 

theoretical retention time) and UW is outlined in the following equation (Thackston et 

al., 1987): 

(4-31) 

This equation hows that UW has great influence on the hydraulic efficiency of the 

WSP. The deviation of hydraulic efficiency of the ponds relative to different UW ratio 

may be seen in Figure 4.3. 
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Figure 4.3. Relationship between the effective volume ratio (e) and length to width ratio 
(Thackston et al., 1987) 
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Figure 4.4. Hydraulic efficiency of the ponds based on different geometries and inlet­
outlet positions (Persson et al., 2003) 

The hydraulic efficiency related to different geometries of the ponds and inlet/outlet 

configurations is indicated in Figure 4.4 (Persson et al., 2003). This figure shows that the 

pond with higher length to width ratio (e.g. Pond J) has better hydraulic efficiency in 
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comparison with the others. Abbas et al. (2006) proposed designing the pond with a UW 

ratio of 4. 

The placement of inlet and outlet impacts the hydraulic efficiency of WSP and the 

retention time respectively. Wastewater can be discharged at the surface, mid depth, and 

bottom of ponds. The position of the outlet may also be diverse in the variety of different 

ponds. The effect of inlet and outlet places on short circuiting was evaluated by 

Agunwamba (2006). Different inlet/outlet positions showed that short circuiting is highly 

related to the location of inlet/outlet. Minimum hydraulic efficiency occurs when the inlet 

and outlet are in front of one another and improves significantly if the inlet and outlet are 

positioned on the opposite corners of the pond (Persson et al., 2003). The presence of 

baffles in the pond reduces short circuiting. When baffles are present, shifting the outlet 

toward the baffles may reduce short circuiting (Safieddine, 2007). 

Inflow jet is one of the factors that produces short circuiting within a pond depending 

on the conditions of the high inlet flow velocity (Fyfe et al., 2007). The influence of the 

inflow jet reduced as the flow heads to the outlet. 

In order to predict the transport of contaminants within the pond accurately, actual 

retention time of the pond is critical. As tracer studies are costly and time consuming, 

using a CFD or empirical equations to determine the actual retention time is an 

alternative option. However, CFD accuracy is only as good as input data; therefore, 

predictions must be scrutinized carefully. 
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4.2.2 Dispersion coefficient 

The molecular diffusion is described by the Pick's law. According to Pick's law, the 

dispersion of a tracer (C) may be described by the following equation: 

ac -Da2c -- --
dt d2x 

(4-32) 

In this equation, D is the axial dispersion coefficient and indicates degree of back-

mixing and may be experimentally derived from the results of a tracer study. In actual 

fact, the dispersion coefficient is a function of the numerous physical parameters that can 

affect fluid movement in a pond: 

• Flow rate and its variation over time 

• Inlet size and position 

• Outlet position and design 

• Wind shear and its variation over time 

• Pond geometry (including influences of baffles) 

• Temperature/density effects 

For designing of new ponds, an accurate method of predicting the dispersion coefficient 

has been sought in a number of research studies. These methods are de cribed in the 

following paragraphs. 

4.2.2.1 Tracer tests 

Tracer tests are widely used for tracking the flow motion in the basins. Finding the 

hydraulic pattern and dispersion coefficient of the WSP using tracer studies have been 

evaluated by many researchers (Marecos et al., 1987; Moreno, 1990; Uluatam et al., 1992; 

Pedahzur et al., 1993; Frederick et al., 1996; Wood, 1997; Salter, 1999; Shilton et al., 2000; 
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Vorkas et at., 2000). The tracer study is carried out by injection of a tracer in the basins 

using various techniques such as random, cyclic, step input or pulse input injection. 

These techniques are displayed in Figure 4.5. 

c: 
0 ::::: 

Tracer Tracer 
input '..r- ,.... ..J "'-'_.. output 
signal -1 Ves~ C!.li' .1 r signal 

(stlmufus) (response) 

Cyclic input 

~ 
Output 

i 
~ ~--------------------~ c: 
8 

Step input 
Pulse input 

Time 

Figure 4.5. Tracer methods (Levenspiel, 1972) 

The pulse input is the simplest method where a slug of the tracer enters to the basins 

and the tracer concentration in the effluent of the basin is measured over time. The 

amount of the tracer in the effluent in different time step is plotted, known as hydraulic 

retention time distribution (RTD) curve. An important specification of this curve is the 

time that the tracer input to the basin (t = 0), until the time that the first tracer is measured 

leaving the outlet. For CSTR, this time is instantaneous, and for the PFR, this time is the 

theoretical retention time. But, for the non-ideal flow, this time is something between 

these two ideal reactors. If the time interval between tracer release within the basin and 
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the first response measured at the outlet is too short, the basin will have significant short 

circuiting. 

It should be noted that tracer tests are costly in time and finances. It also can not be 

used predicatively for ponds that are to be constructed in the future. 

4.2.2.2 Empirical equations for finding dispersion coefficient 

Different types of empirical equations are currently being used for predicting the 

axial dispersion coefficient. The simplest proposed by Arceivala (1981) is based on the 

pond width. Polprasert et al. (1985) developed an empirical equation ba ed on the pond 

geometry and retention time. Other researchers used an empirical formula based on the 

pond geometry and retention time, but with different correlation factor (e.g. Fisher, 

1967; Liu 1977). Agunwamba et al. (1992), have stated that the shear stress of the wind 

also affects the hydraulic behavior of the basin and axial dispersion coefficient. 

Nameche et al. (1998) evaluated the number of empirical equations used for 

predicting the di persion coefficient. The results of these empirical equations were 

compared with the actual tracer tests data for more than thirty different basin . Linear and 

multi-linear regressions were used to develop the empirical equation for predicting the 

dispersion coefficient. 

Empirical equations reduce the cost of actual tracer studies and may be a suitable 

option for predicting the dispersion coefficient in non-ideal dispersed flow model. The 

empirical equations, unlike actual tracer studies may solve the problem of predicting the 

dispersion coefficient for the basins to be constructed in the future. 
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Table 4.1. Empirical equations for determining the Peclet number (UUD) 

Name 

Fisher ( 1967) 

Liu (1977) 

Polprasert et al., 
(1985) 

Arceivala ( 1981) 

Arcei val a ( 1981) 

Murphy et al. , ( 1974) 

Nameche et al. (1998) 

Agunwamba et al. ( 1992) 

Condition 

Streams and river 

Large width to depth ratio 

Waste stabilization pond 

For pond width greater than 30 m 

For pond width less than 30 m 

The volume over 300000 m3 

Stabilization pond and lagoon 

Stabilization pond 

4.2.2.3 CFD approaches 

Formula 

1 0.304*(w+2z)l.5 *.Jr.v.w 
= 

Pe (Lz)l.5 

1 0.168*(r.v) '25 *(W +22)3
·
25 

= 
Pe (LWZ) I.2s 

1 0.184*[-r.v(W +2Z)]0.489 WI.511 
= 

Pe (LZ) t.489 

D= 16.7W 

1/Pe = Kr /L2 

L L 
Pe = 0.1(-) + 0.01(-) w z 

• H u _0.8196 H H -<o.9s t+usswl 
d= O. I02( - ) (-) (-) 

u L W 

Using CFD program is another option to find the dispersion coefficient (D). These 

programs have the ability to model the various conditions that the pond experiences. For 

the basins that have not been constructed yet, these models give the designer the ability to 

compare different geometries and find the optimum one according to the surrounding 

environmental conditions. The parameters affecting the dispersion coefficient, such as 
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different flow rate and its variation over time, the inlet size and position and the wall 

shear stresses may be considered in CFD modeling. 

Using CFD for finding the dispersion coefficient has the following advantages: 

• Considers the effect of pond's characteristics such as ponds geometry, inlet size and 

position 

• Considers the parameters such as temperature and viscosity 

• Includes surrounding environmental parameters such as wind 

• Considers the effect of hydraulic behavior of the basins 

• Decreases the cost 

The above advantages nominate CFD as one of the favorable options for finding the 

dispersion coefficient, although these programs are really case sensitive and the lack of 

complete description of different parameters in the accurate way would cause uncertainty 

in the results. Furthermore, the user must be aware of the CFD model limitations, 

assumptions and working knowledge of actual ponds to prevent misinterpretation of 

results. 
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4.3 CFD approach: A case study 

A methodology for determining the dispersion coefficient is propo ed by combining 

Fluent software (CFD) and Levenspiel's formula. Testing and validation of the method is 

assessed by field data. The name and the place of the basin used as a case study in this 

part will not be disclosed herein, due to the confidentiality of the data. 

4.3.1 Flow domain and mesh 

A two dimensional model was developed for this study. The model created and 

meshed using Gambit (version 2.4.6). The whole surface wa divided to 711819 

homogenous quadrilateral cells (30cm*30cm). The parameters related to this model are 

presented in Table 4.2. 

Table 4.2. Geometry and flow parameters of the basin 
Parameter Units Value 

Length (L) m 512 

Width (W) m 125 

Inlet width m 0.45 

Inlet velocity in x-direction rn/s 4.63 

Inlet velocity in y-direction rn/s 0 

Fluid Density Kg/m3 998.2 

Fluid viscosity Kg/(m.s) 0.001 

4.3.2 Initial and boundary conditions 

The governing equations were solved in combination with the proper initial and 

boundary constraints. The inlet boundary was specified as an inlet velocity (V=4.63 rnls) 

and the outlet as an outflow. The no slip boundary condition was chosen for the walls. 

For discrete phase boundaries, the outflow was chosen as an escape boundary and the 
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walls as reflect boundaries. The boundary conditions that were picked for this case are 

presented in Table 4.3. 

Models 

Solution Control 
Materials 

Operating conditions 

Boundary conditions 

Convergence limit 

Table 4.3. Inputs to Fluent 
Two dimensional 
Pressure based, Steady state 
Standard k-epsilon turbulence model 
Second order upwind discretization 
Liquid water (H20), Solid particles 
Operating pressure: 101325 Pa 
Gravity: Off 
Inlet: Velocity inlet (V=4.63rn/s) 
Walls: No slip boundaries 
Outlet: Outflow 
Discrete phase condition at walls: reflect, 
normal constant 0.5, tangential constant 0.8 
Discrete phase condition at inlet and outlet: escape 
Scaled residuals: l.OE-04 

4.3.3 Particle phase modeling 

For a low surface fraction of dispersed second phase (particle), an Eulerian-

Lagrangian approach was used. This allows the effects of turbulence modulation (effect 

of particles on turbulence) to be neglected. The Lagrangian approach divides the particle 

phase into a representative set of discrete individual particles and tracks these particles 

separately through the flow domain by solving the equations of particle movement. 

Assumptions regarding the particle phase included the following: (i) no particle 

rebounded off the walls/surfaces; (ii) no particle coagulatiqn in the particle deposition 

process and (iii) all particles are spherical solid shapes. Trajectories of individual 

particles can be tracked by integrating the force balance equations on the particle (Fluent 

Inc, 2003): 

(4-33) 
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Where Fo (Drag force) is calculated according to the following equation: 

Fo = 18,u C0 Re 
pPD2 

p 24 

And the Reynolds number is defined as: 

pDPiuP -ul 
Re = ----'--....:. 

,lL 

(4-34) 

(4-35) 

When the flow is turbulent, Fluent uses mean fluid phase velocity in the trajectory 

equation (Equation 4-33) in order to predict the dispersion of the particles. 

4.3.4 Modeling flow and solid phase particles 

The Navier-Stokes equation for turbulent flow in a two-dimensional geometry was 

solved to obtain the water velocity. CFD software sets up and solves fundamental mass, 

momentum and energy balance equations using numerical techniques. The standard K- e 

is a widely used, robust, economical model, which has the advantages of rapid, stable and 

reasonable results for many flows (Marshall et al., 2003). In this case study, the standard 

K- e model is used. Mter running the model for 5000 iterations and obtaining acceptable 

convergence, the unsteady particle tracking is used for tracking the solid particles within 

the basin. For this reason, 5000 spherical particles with the same size are injected at the 

inlet at the same time. Particle diameters ( 100 ,urn) and density ( 1020 Kg/m3
) is selected 

based on previous investigation (Gancarski, 2007). This size and density is an acceptable 

option for modeling the particle as a drogue in the basins. After injection, this model is 

run for 104 time steps, 1800 seconds each and the amount of the particles escaped from 
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the basin in each time step is calculated. The dispersion number, DIUL may be calculated 

from the dimensional variance which is defined by Equation 4-36 (Levenspiel, 1972). 

(4-36) 

The dispersion number (d) (Levenspiel, 1972) was determined using Equation 4-34. 

(4-37) 

The variance and t are used to calculate "d" by a process of trial and error via Excel 

Solver in Microsoft Excel. 

4.3.5 Dispersion coefficient 

The data received from actual tracer studies from the field can be seen in Figure 4.6. 

This is one of the typical RTD for this basin between 12 RTDs that draw during different 

months of the year. Tracer concentration versus time shows the existence of short 

circuiting in the basin. The actual retention time using the actual tracer studies is 19.25 

hours. Using the actual retention time of the basin from the tracer test and theoretical 

retention time, the hydraulic efficiency of the basin is calculated to be 37%. 

RTD may be determined using unsteady particle injection in Fluent (Figure 4.6). The 

maximum concentration of the tracer in the exit stream is observed to occur at 1.5 hours. 

Comparing this peak with the theoretical retention time suggests significant short-

circuiting. As mentioned previously, the RTD drawn in Figure 4.6 is one of the RTDs 

between 12, but the final value of dis calculated based on the concentrations mean value. 

The existence of short circuiting in the pond was previously reported by other authors as 

well (Vorkas et al., 2000; Moreno, 1990). 
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Figure 4.6. RTD using actual tracer and CFD data 

Table 4.4. Summary of variables to obtain "d" using Fluent 

Value Function Value 

4457 Lt,'C, -[Lt,C, J 
z:ci z:ci 2.6E+10 

2.31E+08 (J' 2 2.6E+ l0 

1.27E+14 2 0.75 (J'i 

2.84E+l0 d 0.5 

* i = Different time steps 

The amount of actual retention time calculated by data received using CFD modeling 

and Equation 4-38 is 14.39. Using this value, the hydraulic efficiency (t/T) of the basin is 
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calculated, which is 28%. This compares with the value from Persson et al. (2003) for 

pond "A" (inlet and outlet in opposite position), which is approximately 30%. 

Researchers typically run the model with a time pan approximately two or three times 

larger than the theoretical retention time for calculating RTD (Paugatch et al., 2007), a 

the model a sume a group of particles do not escape from the basin if the actual 

theoretical residence time is used. 

"d" is calculated according to the Levenspiel equations (Levenspiel, 1972). The 

ummary of this calculation is presented in Table 4.4. After determining the variance, the 

Excel Solver i u ed and the value of dis calculated by trail and error. "d" was previously 

calculated as 0.6 by actual tracer test. The calculated value from this tudy is 0.5. 

Comparing "d" obtained using actual tracer tudy and "d" found by CFD, it is confirmed 

that CFD is a suitable option for calculating "d". 
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4.4 Application of dispersion model to a case study 

Two WSPs with the following characteristics are chosen to test and validate the 

dispersion model and to compare the results with ideal reactor models. The name and the 

place of the ponds used as the case studies in this section will not be disclosed herein, due 

to the confidentiality of the data. 

Pond "A" is the WSP in the coal mme area for disposal of the AMD from 

underground and open pit mining in the region, and pond "B" is the WSP in the Nickel 

mine site used for co-disposal of tailings and mineralized mine rock during the open pit 

operations. The hydraulic characteristics of these WSPs are displayed in Table 4.5. 

Table 4.5. Characteristics of WSPs used in the case studies 
Characteristics Pond "A" Pond "B" 

Volume -500,000 m3 15,755,200 m3 

Area 2 -163,000 m -1,048,750 m2 

Height 3.06m 20m 

3 3 

Flow rate 236.1 m 900m 
hr hr 

Retention time 93 days 62 days 

The influent and effluent concentrations for chemical species are actual field data. 

By comparing the concentration of chemical species present in the mine water with 

CCME, contaminants of concern are selected for modeling the concentration gradient 

within the pond. 
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4.4.1 Iron concentration gradient within pond "A" 

Based on the chemical components in the pond, obtained by using the methodology 

outlined in section 3.1.3 of chapter 3, some of the ferrous iron components from 

MINTEQ are selected for modeling the concentration gradient within the pond (Table 

4.6). 

Table 4.6. Ferrous iron species at the influent of the pond 
Iron species 

Fe(CN)6 

Fe•2 

FeCI+ 

FeHC03+ 

FeHP04(aq) 

FeOH+ 

FeS04 (aq) 

Ferrous iron i con idered as one of the component in the influent of the pond, as it i 

one of the mo t abundant components among the chemical component predicted by 

MINTEQ. 

By comparing the rate of ferrous iron oxidation and precipitation of ferric hydroxide 

(reactions 2-2 & 2-3), it is evident that the oxidation of ferrous to ferric iron is very slow 

in acidic solution and thus is the rate determining step in pyrite oxidation. The oxidation 

rate coefficients for the oxidation of ferrous iron in different months of the year (Diez et 

al., 2007) may be een in the following table: 
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Table 4.7. Ferrous iron oxidation rate coefficients in different months of the year 
Month 

May 

July 

August 

November 

October 

K (Ferrous iron oxidation rate coefficient) 

1 *10-4 (s-1) 

5* 10"3 (s"1
) 

7*10-3 (s-1) 

2*10-3 (s-1) 

Another ferrous iron component predicted by MINTEQ is iron sulphate. The 

oxidation mechanism of iron sulphate is as follows: 

(4-3) 

This is followed by the decomposition of oxidized material to Fe203: 

(4-4) 

The oxidation of sulphate iron in high temperature water is fast, thus reaction reaches 

equilibrium very quickly. Therefore, the ferrous to ferric iron oxidation rate is chosen as 

the rate determining step for modeling purposes. 

The concentration gradient of ferrous iron within the pond "A" is modeled by the 

dispersion equation. By using the concentration of ferrous iron in the influent of the pond 

and using the dispersed flow model, the concentration gradient within the pond is 

predicted as shown in Figure 4. 7. In order to compare the results from the dispersed flow 

model and CSTR, the concentration gradient within the pond using ideal CSTR is 

calculated and shown in Figure 4.7. 
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Figure 4.7. Ferrous iron concentration gradient within the pond "A" using dispersed 
flow and CSTR 

Considering that the Peclet number is less than 1 (using Arcievala's equation) the 

fact that the pond is in CSTR condition was expected. Using both of these models for this 

case study, it may be said that the WSP acts approximately as a CSTR. 

4.4.1.1 Evaluating the effect of Peclet number on dispersion model 

The results of the empirical equations used in finding the Peclet nw11bers are 

compared in this section. Based on the hydraulic condition of Pond "A", the Peclet 

number may be calculated by different empirical equations (Table 4.8). 
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Table 4.8. Peclet numbers used in the dispersion model related to Pond "A" 
Peclet number formula Value 

Fisher (1967) 1.06 
Arceivala (1981) 0.7 

Polprasert and Bhattarai (1985) 1.582 

O.D3 .. 
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Figure 4.8. Comparison of the dispersed flow model using different dispersion 
coefficients with CSTR 

All Peclet numbers calculated by these empirical equations show the condition of the 

system approximately as CSTR. Variations in the ferrous iron concentration within the 

pond are plotted in Figure 4.8. These values are developed using the dispersed flow 

model by applying the Peclet numbers obtained from empirical equations. The results of 

comparing the dispersed flow model with CSTR shows that using this model better 

predict the effluent of the pond than CSTR. Among the Peclet numbers developed using 

different empirical equations, integrating the one based on Polprasert et al. (1985) 

equation in the dispersed flow model will lead to a better prediction of ferrous iron 

concentration in the pond's effluent. 
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4.4.2 Nickel concentration gradient within pond "B" 

Nickel concentration in the influent and effluent of the pond has been obtained from 

the field which may be seen in Table 4.9. 

Table 4.9. Concentration of Nickel in the influent and effluent of pond "B" 
Nickel Concentration (ug!L) 
Influent 82 
Effluent 31 

Considering the chemical concentrations at the influent of the pond "B", the 

following chemical components shown in Table 4.10 were predicted using MINTEQ. 

Table 4.10. Nickel species at the influent of the pond "B" 
Nickel species 

NiH(CN) 

Ni+2 

NiF+ 

NiHC03+ 

NiHP04(aq) 

NiN03+ 

NiS04 (aq) 

For modeling purposes, the rate constant of Nt2 oxidation is used because it is the 

slowest reaction rate constant (Njau et al., 2000) among the oxidation of nickel 

components in the influent of pond "B". 

Ni2+ + OR ~ NiOW (4-5) 

The value of Peclet number was calculated according to the formulas mentioned by 

Fisher (1967), Liu (1977) and Polprasert et al., (1985). These values may be seen in 

Table 4.11. 
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Table 4.11. Peclet numbers used in the dispersion model related to Pond "B" 
Peclet number formula Value 

Fisher (1967) 26.34 
Liu (1977) 38.77 

Polprasert and Bhattarai (1985) 41.7189 

The Nickel concentration gradient within the pond "B" using the dispersion model is 

compared with the concentration gradient using the conventional CSTR. This comparison 

may be seen in Figure 4.9. 
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Figure 4.9. Nickel concentration gradient within the Pond "B" using dispersion model 
and ideal CSTR 

This diagram shows that the Peclet number calculated with the empirical equation 

mentioned by Polprasert et al. (1985) gives a better prediction of the effluent of the pond. 

Besides, comparison of the dispersion model with CSTR in this case study also shows 

that using this model better predicts the effluent of the pond. It should be noted that in 

dispersed flow model, the Peclet number makes the model sensitive to small changes in 
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any of the three parameters of Pe and therefore the dispersion model better predicts the 

non-idealities in the pond than the ideal CSTR or PFR. 

Summary 

The non-idealities within the ponds such as concentration and temperature gradient 

do not follow assumptions of ideal reactors. Different parameters such as geometry, inlet 

and outlet positions and inlet flow velocity affect hydraulic performance of the basin. 

Problems such as recirculation or reverse flow and short circuiting in the system are 

difficult to predict and can lead to a reduction in the theoretical retention time of the pond 

and, thus decreasing treatment efficiency. 

Due to the non-idealities in the ponds, there are a number of different approaches 

available to model the non-idealities; among them the dispersion model may predict the 

effluent of the pond more reliably compared to ideal CSTR or PFR. Comparing the 

results of modeling the chemicals concentration gradient within the ponds is a validation 

of the advantages of using the dispersed flow model in comparison with ideal CSTR or 

PFR. For modeling the chemical concentration gradient within the pond, after finding 

different chemical components of the species using MINTEQ in the influent, the rate of 

the slowest reaction is chosen to be used in dispersion model. This is the rate determining 

step among the reactions that take place in the pond. It should be noted that by the time 

that this specific reaction is completed, the other oxidation reactions which are faster than 

this particular reaction have already been completed. 

The dispersion model is highly dependent on dispersion coefficient which itself is 

based on hydraulic performance of the basin. The results of comparing CFD analysis with 

actual tracer test nominates the CFD models as a good option to determine the actual 
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retention time and dispersion index for u e in the dispersion model. Furthermore, in tead 

of using costly and time dependent tracer studies and highly sensitive CFD analysis, 

empirical equations are another suitable option for finding the dispersion coefficient. 
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CHAPTER 54 

Ecological Risk Assessment 

Abstract: 

After modeling the chemical concentration gradient within the pond and obtaining 

chemical concentrations in the effluent, a methodology was developed to assess the effect 

on the environment. Ecological risk assessment is the process of defining and quantifying 

risks to ecological entities and determining the acceptability of the predicted risk. The 

USEPA (1998) has established a systematic framework for ecological risk assessment. 

The four steps of EPA framework are hazard identification, exposure assessment, dose-

response modeling and risk characterization. These steps are used for identifying and 

quantifying the risk of the chemical contaminants to ecological entities. The estimated 

risk of the effluent of treatment systems can be used to assess the performance of the 

treatment process. Comparing the amount of risk for different chemical species with 

existing guidelines helps one to evaluate the efficiency of the treatment system. In case 

the risk of the effluent contaminants of the treatment system exceeds the existing 

guidelines, further or alternative treatment should be considered. The objective of this 

chapter is to assess the risk of effluent contaminants from the WSP to the ecosystem. A 

case study is considered in this chapter to demonstrate the use of ecological risk 

assessment methodology and to quantify the risk of the effluent contaminants of the 

tailing pond to the ecosystem. 

4 A part of this chapter is going to be published and cited as: 
Abbassi, R., Khan, F., Hawboldt, K. 2009. Ecological risk assessment of a stabilization pond discharge. 
Environmental engineering and management journal, Submitted. 
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5.1 Ecological risk assessment of the tailing pond effiuent 

Ecological risk assessment is a method that defines the relationship between 

pollution and environmental effects (Gaudet, 1994). The general risk assessment model 

proposed by the USEPA (1998) is outlined in Figure 5.1. 

Hazard Identification 
Finding the chemicals which are 

potentially harmful (chemical 
potential of concern) 

+ 
Exposure assessment 

Finding different receptors, different 
routes of exposure, exposure points 

and the period of exposure 

+ 
Dose-Response Modeling 

Finding the relation between dose of 
chemicals to adverse effects 

+ 
Risk Characterization 

What effects are likely on exposed 
populations? 

Figure 5.1. Procedure of risk assessment model (USEP A, 1998) 

In present research, different processes of the ecological risk assessment as stated by 

the EPA framework will be used to assess the effect of the tailing pond discharge to 

ecological entities in the study region. 

As the first step, determining the chemicals of concern is a part of hazard 

identification. The second step is exposure assessment which will identify different routes 

of exposure through different media. Finally, based on the dose-response assessment and 

risk characterization, the amount of risk for these chemicals will be demonstrated and 
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these amount will be compared with the well-known environmental guideline such a 

EPA and CCME. Figure 5.2 provides the framework of the risk assessment proce 

considering the risk assessment approach. 

Exposure assessment 

./ Analyzing contaminant 
releases from the tailing 
pond 

./ Identifying exposed 
populations on the pond 
effluent pathway 

./ Identifying different 
potential exposure pathways 
for the effluent of the tailing 
pond 

./ Estimating contaminant 
intakes for pathways 

Hazard identification and 
assessment 

./ Gathering and analyzing of 
data in the effluent of the 
tai ling pond 

./Identifying potential 
chemicals of concern in these 
data 

Risk characterization 

./ Characteriz ing potential for 
adver e effects to occur 

!.Estimating cancer risk 
2.Estimating non-cancer 
hazard quotients 

./ Evaluating uncertainty 

./ Summarizing risk 
information 

Dose-response assessment 

./Collecting qualitative and 
quantitative toxicity 
information 

./ Determining appropriate 
toxicity values 

Figure 5.2. Different risk assessment proces es as stated by EPA for the effluent 
contaminants of the tailing pond 
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It should be noted that the goal in most risk-based decision making proce e is to 

reduce risk as much as possible. Sometimes higher levels of treatment are required to 

reduce the risk associated with the effluent concentration. To reduce the ri k, attempts 

should be made to manage it. Considerations such as cost should be con idered for 

managing risk. If the estimated risk exceeds acceptable criteria, alternative trategies to 

minimize and control risk will be developed. 
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5.2 Application of the ecological risk assessment to a case study 

The EPA recommended framework for ecological risk assessment has been applied 

for a tailing pond discharge scenarios. This framework as mentioned previously is 

considered to estimate the risk of effluent contaminants to ecological entities in the study 

region. The name and the location of the WSP used as a case study in this part will not be 

disclosed herein, due to the confidentiality of the data. 

5.2.1 Site specification 

The tailing pond is located east of the mine mill and is used for co-disposal of 

tailings and mineralized mine rock during the open pit operations. The acid generating 

rock is placed under water in the tailing pond to reduce oxidation and acid generation. 

Moreover, this pond receives the process water from the mill. The effluent of the tailing 

pond goes directly through a marine embayment. In addition, there is a risk of seepage to 

groundwater and to freshwater ponds. Biological receptors include: aquatic animals 

(freshwater and marine water fish), aquatic plants, terrestrial animals and terrestrial 

plants. 

5.2.2 Hazard identification 

Metals considered in this modeling scenario include cadmium, cobalt, copper, lead, 

nickel, and zinc. These metals produce hazardous effects on ecological receptors and 

human health (Lee et al. , 2006; Lim et al., 2008). In addition, these metals were selected 

for study as they are present in the tailing pond. 

Three different transport scenarios are considered in the study. The treated effluent 

of the WSP migrates to the bay through the discharge pipeline. Seepage from the pond 
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transports from the soil to groundwater that is flowing under the pond area. In the worse 

case scenario, it is assumed that approximately 10% overflow of the tailing pond would 

enter the surrounding soil. These pathways are illustrated in Figure 5.3. 

Di•cJuarac Pipeline 

Figure 5.3. Schematic showing the transport pathways for the tailing pond ' s discharge 

5.2.3 Fate and transport of the contaminants 

The transport of contaminants within the soil and groundwater related to seepage 

from the tailing pond is modeled by SEVIEW 6.3 (Schnelker, 2006). It includes SESOIL 

and AT123D. SESOIL is a one-dimensional vertical transport model, simulating the 

contaminant transport and fate based on diffusion, adsorption, volatilization, 

biodegradation, and hydrolysis. Parameters calculated by SESOIL are passed to AT123D, 

a three dimensional groundwater transport model. Transport and fate processes simulated 

by AT123D include advection, dispersion, sorption and biological decay and show how 

far a contaminants plume will migrate in the groundwater. ATD1 23D can run about 450 

scenarios which the combination of three contaminant types, eight source configurations, 
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three source release types and four types of aquifer dimensions may define these run 

options (Khan et al., 2003). 

For the simulation, the mean of seasonal variation of temperature, humidity, and 

precipitation were collected from 1997-2007 for the region (Environment Canada, 2007). 

The soil column considered in this simulation included approximately 0.3 m of peat moss 

and topsoil, 15.5 m of silty sand, following with 3.5 m of clay and do not reflect the 

actual condition of the study region. In this modeling scenario, the topsoil was not 

considered due to its narrow thickness and high permeability in comparison with the total 

depth of the soil column. 

The maximum concentration of these chemicals in the groundwater is calculated 

using SEVIEW. Inputs for the model were included the climate condition of the study 

region, chemicals of concern, soil characteristics and groundwater specific factors. 

The concentration of metals in the marine water is calculated according to 

Arceivala's equation (1981), considering the initial dilution which is the ratio of initial 

concentration of effluent discharge to marine water and the maximum concentration in 

the centerline of the plume. Pycnocline is a rapid change in water density with depth 

which is often caused by a combination of decreasing water temperature and increasing 

salinity in marine water. For this modeling, the pycnocline is considered at 9m depth 

from the surface. 

Uby 
Dinitial = --

Q 
(5-1) 

For finding the concentration of metals in the soil, contaminants are considered to be 

deposited on the soil surface and mixed uniformly with the underlying soil (the top soil 
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with 0.3 m depth). The concentration in the soil is calculated by the total amount of 

contaminant on the soil surface divided by the mass of the soil (Fjeld et al. , 2006). 

c soil = c, 
PsAZ, 

5.2.4. Exposure pathways for different ecological entities in the study area 

(5-2) 

Due to the site specific conditions, three exposure pathways are considered in the 

modeling scenario. 

'ource 

I Pond overflow I 

I Pond effiuenl I 

I Pond seepage I 

Trans ort mechanism 

Pipeline 
trnnsportation 

Leaching 

l 
Groundwaler 
transport 

Exposm·e 
Ml'<.lia 

Affected 
surf are s.oi I 

Affected 
marine water 

Affected 
freshwater 

Figure 5.4. Simplified flowchart of exposure pathways 

Rece11tors 

Ecological 
entities 

The effluent of the tailing pond discharge to the marine water is the primary pathway 

for marine fish and terrestrial animals. The seepage of the pond through to groundwater 

and into the freshwater pond in the vicinity of the tailing pond is also considered. The last 

exposure pathways considered in this modeling scenario is soil contamination due to the 

overflow of the pond. 
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The concentration of the metals in the tails water and discharge of the pond can be 

seen in Table 5.1. For confidentiality purposes, the actual data has been modified, thus 

the data in Table 5.1 are not the real data of the pond received from the field. 

Table 5.1. Concentration of metals in the tailing water and treated effluent 

Metals Concentration in the tailing Concentration in the treated 
water (mg/1) effluent (ug/1) 

Nickel 0.11 34.1 

Copper 0.022 BTL 

Cobalt 0.022 BTL 

Cadmium 0.0011 BTL 

Zinc 0.055 BTL 

Lead 0.011 BTL 

*.BTL: Below the detection limit of ICP 

The initial dilution of the wastewater discharge to the marine environment, the 

dilution factor is calculated, which is 1:27. The maximum metals concentration in the 

groundwater is obtained using SEVIEW (Table 5.2). 

Table 5.2. Maximum concentration of CPC in the groundwater received from SEVIEW 
Metals Nickel Copper Cobalt Zinc Cadmium Lead 

Max. Concentrations 
(mg/1) 

4.6* 10-4 

The last exposure pathways considered in this modeling scenario is contaminated 

soil. The metals concentration of the soil, calculated based on the pond's overflow, can 

be seen in Table 5.3. 
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Table 5.3. Concentration of metals in the soil according to 10% overflows from the pond 
Metals Nickel Copper Cobalt Zinc Cadmium Lead 

Concentrations(mg/Kgsoil) 1*10-2 0.2*10'5 0.2*10-5 0.5*10-5 0.1 *10'6 0.1*10-5 

The terrestrial animals considered as receptors in this modeling scenario ingested 

food (plants, aquatic animals and other terrestrial animals), soil and water in the tailing 

pond region. The amount of food ingestion (FI) and water intake (WI) for 6 of mammals 

based on their body weight (BW) are found by following formulas (USEPA, 1993): 

FI (kg/day) = 0.0687 (BW)0
·
822 

WI (Liday) = 0.099(BW)0
·
9 

(5-3) 

(5-4) 

The amount of the soil ingestion is assumed to be 13% of the food ingestion for these 

species. Furthermore, for three bird species existed in the study region, the amount of 

food ingestion and water intake is calculated, by following formulas (USEPA, 1993): 

FI (g/day);, 0.648(BW)0·
651 

WI (L/day) = 0.59(BW)0
·
67 

(5-5) 

(5-6) 

The amount of the soil ingestion considered in this scenario is the same as the one 

that was considered for the mammals; 13% of the food ingestion. The diet of the nine 

terrestrial species available in the study region is shown in Table A 1.1 of the Appendix I. 

Chemicals may be accumulated in the body burdens of these terrestrial animals and, these 

species can be a food source for the other animals. The rate of transfer of metals from the 

points of entry into body to muscle tissues is based on specific species and metal-specific 
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transfer factor. This ingestion transfer factor for different terrestrial animals and different 

chemicals is available in Table A1.2 of the Appendix I. 

Metals may be transferred to muscle tissue of terrestrial animals by exposure of 

metal bearing food, soil and drinking water. The tissue concentration (body burdens) 

based on concentration of the ingested food from different media and the ingested 

transfer factor for different metals is calculated according to following formula (Beak, 

1997): 

c animal = Fing[IC.JwKw + ICJsKs + Icrp/tpKtp + Icral ta Kta + Icaa / aa K aa 

+I caplapKap] (5-7) 

In this modeling scenario, the potential exposure pathways of aquatic organisms to 

metal released due to the effluent of the tailing pond is considered; including exposure to 

the water column containing dissolved and particle metals. It should be noted that 

exposure to metal-bearing sediment is not considered in this modeling scenario. Two 

groups of freshwater and marine water fish are considered for the modeling purposes, 

including arctic charr and brook trout (freshwater species) along with arctic charr and 

sculpin (marine water species). 

Bio-Concentration Factors (BCFs), which represent the ratio of the concentration of 

chemicals in aquatic animals tissue compared to concentration of the same chemicals in 

the surrounding water column, were obtained (CCME, 1997; USEPA, 1999), and 

outlined in Table A1.3 of the Appendix I. 

The concentration of metals in the mussel tissue (Body Burdens) of aquatic animals 

can be calculated by having the BCFs (UKg) and concentration in the water according to 

following formula (Sanderson et al., 2009): 
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(5-8) 

The last organisms considered in this modeling scenario are terrestrial and aquatic 

plants, ingested by terrestrial animals. The abandoned terrestrial plants in the study area 

are Lichens, Bak:eapples, Coniferous and Deciduous browse. While, Sedge is the aquatic 

plant common to the study area. The soil to plant transfer factor, which is the 

concentration of metal in the soil divided by the measured concentration of metals in the 

plant tissues according to terrestrial plants and chemicals of concern in the study region, 

is outlined in Table A1.4 of the Appendix I. For Sedge (aquatic plants), BCFs show the 

ratio of concentration of metals in comparison with the surrounding environment, as 

shown in Table A1.5 of the Appendix I. Available concentration in the plants tissues for 

terrestrial and aquatic plants can be found according to following equations, respectively: 

CPlant = Csoil * Bv 

CPlant = Cwater * BCF 

5.2.5. Toxicological benchmark doses for terrestrial animals 

(5-9) 

(5-10) 

The benchmark doses typically represent the Non Observable Adverse Effect Level 

(NOAEL) where some sublethal effect (e.g. weight loss) has not been observed. 

Considering the existing NOAEL for mammalian test species (NOAELt), the equivalent 

NOAEL (NOAELw) for the mammalian wildlife species can be found by using the 

adjustment factor for differences in body size. Allometric equation used to adjust for 

weight differences between the test species (e.g. Rat) and mammalian wildlife species 

can be seen below (Sample et al., 1996): 
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(5-11) 

The adjustment factor for the birds can be calculated by the following equation: 

NOAELw = NOAELt (5-12) 

This NOAEL according to the data for rats (Sample et al., 1996) and body weight of 

tenestrial animals existed in the study region may be seen in Table Al.6 of Appendix I. 

5.2.6. Risk characterization 

From confirmed information concerning the amount of chemicals in the Bay (Table 

5.1 ), the amount of chemicals existing in the tailing pond seepage entering the freshwater 

pond near the WSP and the amount of chemicals in the soil according to WSP watershed, 

the ecological risk assessment software (ERAS), developed at Memorial University of 

Newfoundland, to determine the risk. The code of the program was written in MATLAB, 

version 7 .1. This software is capable of calculating the food ingestion, soil ingestion, 

water intake and toxicological benchmark according to body weight of the animals, as 

mentioned previously. Moreover, different routes of exposure to the chemicals such as 

food ingestion (e.g. eating plants or other terrestrial and aquatic animals), soil and water 

are considered in the software. Doses of metal received by tenestrial animals are 

calculated based on the chemical concentrations in the foods containing all ingested 

animal, vegetable matter, ingested soil and drinking water. The dose is further based on 

ingested rates of food, soil and water and the defined body weight of the animals. 

The total exposure dose and the amount of HQ for tenestrial animals are calculated 

by the software as stated by following formulas: 
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HQ = D exp / Dbench 

(5-13) 

(5-14) 

Considering the assumption that HQ for each individual chemical of concerns are 

additive, the hazard index (HI) is calculated by ERAS, summing of all hazard quotients 

(Lim et al., 2008). 

HI= I HQ (5-15) 

5.2.7. Uncertainty analysis 

A less biased approach to risk assessment uses uncertainty analysis to estimate the 

degree of confidence that can be placed in the risk estimate (Hammonds et al. , 1994). 

Two distinct categories based on the nature of uncertainties may be considered in the 

quantitative ecological risk assessment. First is the variability, which is the common 

source of uncertainty, and is caused by inherent fluctuations or differences in a quantity 

or process. The variability of hydrogeologic parameters across a site such as hydraulic 

gradient, hydraulic conductivity and aquifer thickness may be examples of this kind of 

uncertainty. Second is incertitude, which is the type of uncertainty arisen from limitations 

of the scientific knowledge or incomplete descriptions of a mechanism or process. For 

example, the lack of having the toxicological benchmark for different ecological entities 

in the study region can produce this kind of uncertainty (Fjeld et al., 2006). 

Despite of the sources and types of uncertainty in the ecological risk assessment, 

these uncertainties are quantified and analyzed using the concepts of probability and 

statistics. For evaluating the uncertainty of calculating risk, @RISK seeks to determine 

the outcome of a decision situation as probability distribution. In an @RISK risk analysis, 

the output probability distributions give the decision maker a complete picture of all the 
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possible outcomes. It uses advanced Monte Carlo simulation techniques to analyze risk in 

the Excel spreadsheet model. The first step in conducting the Monte-Carlo simulation is 

to specify the probability distribution for the uncertain variable. @RISK contains many 

different distributions, but the one which is chosen should reflect, as much as possible, 

the input variables actual uncertainty. Using the increasingly common Monte Carlo 

simulation in quantitative uncertainty analysis (Poulter, 1998), demonstrates the location 

of any particular risk estimate within the range of risk, leading to decrease uncertainties 

for risk estimation. 

The variability is one of the categories of uncertainty consider in this research. It 

should be noted that incertitude uncertainty is not considered in present modeling 

scenario. The body weight of the animal is one of the variables that can produce 

uncertainties for estimating ecological risk assessment. The ecological entities have a 

range in body weight and using a specific value of this parameter to find the risk may 

produce uncertainty in the results. In this paper, the 90% confidence intervals for 

animal's body weight are calculated. Since, the body weight is affected on the other 

parameters included in HQs estimation, the range of this index, by using the lower and 

upper bonds of the 90% intervals for the body weight, is calculated for the ecological 

entities exposed to metal concentrations from the effluent of the tailing pond. 

5.2.8 Risk parameters analysis 

The results of finding HQs by ERAS considering different exposure roots (direct and 

indirect) are shown in Table 5.4. This software has the capability to calculate the 

concentration of chemicals in animals' body burden, and uses this calculation for finding 

the amount of HQ, as mentioned previously. 
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Table 5.4. HQ for different terrestrial animals in the study re~ion 
Hazard guotient Nickel Co~~er Cobalt Zinc Cadmium Lead 

Snowshoe Hare 8.72* 10"~ 3 .98* 10-~ 6.56* 10-~ 9.96*10"' 6.23*10"6 7.95*10"6 

Ptarmigan 3*104 6.64* 10"3 3.4*104 1.25* 10"3 1.6*10"3 2.9* 10"~ 

Caribou 1.2* 10"3 9.5* 10"3 3.2* 10"~ 2.4*104 4*104 3.9*104 

Black Bear 8*104 6.9*104 1.5* 10"3 2.7*104 1*104 1.9* 1 o4 

Polar Bear 5.8* 10"3 7.2* 10"3 1.9* to-2 2.5* 10"2 6.1 * 10"3 4*104 

Harlequin Duck 2* 10"3 3.8* 10"3 4.1 * 10"3 7* 10"3 3.6* 10"3 1.9* 10"3 

Merganser 2.2* 10"3 7 .6* 10-~ 5.7* 10"3 1.32* 10"3 1.84*104 4.9* 10"3 

Beaver 1.8* 10"3 1.63* 10"2 5.5* 1 o·3 4*104 6.9*104 6.6*104 

Ringed Seal I* 10·3 6.79*10"3 1.1 * 1 o4 I. 7* 10"6 1.07* 10"3 1.36* 1 o·3 

The HI, which is the sum ofHQ, is demonstrated in Figure 5.5. 

7.00E-02 

6.00E-02 

)( 5.00E-02 
~ 

"'0 c ....... 4.00E-02 
"'0 
~ 
~ 

3.00E-02 

::r: 2.00E-02 

l .OOE-02 

Figure 5.5. Hazard index for ecological entities 

HQ of 1 or greater indicates that the level of predicted exposure is equal to or greater 

than the threshold level of exposure (Lee et al. , 2006). Accordingly, if the HQ values are 

less than 1, no environmental effects of any form are expected. Predicted HQ values for 

each metal of concern and each animal within the study area were below 1, shown in 

Table 5.4. The maximum HI is for polar bear. The evaluation of HQs shows that these 
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chemicals do not have major toxic effects on the ecological entities in the vicinity of the 

tailing pond. This shows that effluent of the tailing pond in the study area does not have 

any major effects on the surrounding environment and demonstrating the proper 

performance of this pond in the study region. 

The uncertainty analysis is completed by finding the risk range according to different 

body weight of the animals in the study region. It should be noted that the parameters of 

the model for finding HQ such as food ingestion, soil ingestion, water intake and NOAEL 

are dependent on the body weight of the animals. Changes in body weight of different 

animals may produce an uncertainty within the risk estimates. Using @Risk for doing 

Monte Carlo simulation and the weight of polar bear (500± 150), demonstrates the range 

of risk estimate (with 90% confidence interval) as shown in Figure 5.6. The range of the 

HQs calculated for different animals according to the range of their body weights still 

does not show any risk of effluent metal concentration of the tailing pond to the 

ecological entities within the study area. 
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Figure 5.6. HQ intervals according to different chemicals for polar bear 
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Summary 

The performance of the WSP as a treatment system for treating AMD is evaluated 

using a risk-based approach. The estimated risk to ecological entities for the chemical 

concentration in the pond' s discharge and comparing the results with the existing 

environmental guidelines help to determine the treatment performance of the WSP. Four 

steps of environmental risk assessment according to EPA framework are used to estimate 

the amount of risk. For the studied WSP, the amount of HQs related to different 

chemicals and different animals existing in the study region shows that the risk of 

effluent contaminants is below the acceptable limits. Because the estimated risk is 

associated with uncertainties, the uncertainty analysis using the Monte Carlo simulation 

is conducted. The range of risk provided by uncertainty analysis again confirms 

acceptable risk according to guideline's criteria. Therefore, determining the risk of the 

effluent contaminants from this WSP to ecological entities in the study region reapproves 

the effective performance of this treatment system. The risk-based methodology may be 

used for the evaluation of any treatment system. 
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CHAPTER6 

Conclusions and Recommendations 

Abstract: 

The research conducted in the current study has introduced risk-based evaluation of 

AMD treatment system. This chapter presents a summary of the conclusions drawn from 

this work. Recommendations for future research are also provided. 

6.1 Conclusions 

AMD impacts surrounding ecosystems and therefore must be properly managed. 

Determining the likely chemical nature of AMD is critical in water management and 

treatment system design. Analytical methods to determine mineral content are time 

consuming and costly. A methodology is proposed to decrease the requisite number of 

analyses using predictive models to determine the possible presence of minerals. This 

methodology may assist in directing analysis of the wastewater, focusing attention on 

important or key components for analysis rather than a carte blanche approach. In 

addition, it could assist with the interpretation of the analytical output and thereby reduce 

analytical costs. From mine water analysis, metal and non-metal species, are used to 

generate Eh-pH diagrams. These diagrams help to identify the key metals and their 

oxidative state. This information is used to elucidate the chemical analyses of the AMD 

and determine the oxidative state of the metals measured. Next, chemical reaction 

equilibrium models are used to determine the possible minerals in the AMD, based on 

input from the previous steps. This is critical as it will identify major acid 
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producing/consuming minerals present and thereby aid to determine the optimal water 

management and treatment system. This method must be used in conjunction with 

analytical methods. 

The most common method for treating AMD is WSP. The methodology outlined 

above can be combined with WSP model to predict impacts on the environment. 

Different models exist to study the transportation and transformation of contaminants 

within the pond, most of which are based on assumptions of ideal reactors. The non­

idealities within the ponds such as concentration and temperature gradient do not follow 

assumptions of ideal reactors. There are different approaches available to model non­

idealities; among them the dispersion model may predict the effluent of the pond more 

reliably in comparison with ideal CSTR or PFR. Dispersed flow model may cover the 

gap of non-idealities between two ideal models, CSTR and PFR. The results of the case 

studies described in this research are a confirmation of this statement. The main 

parameters used in dispersed flow model, retention time and dispersion index, may vary 

extensively based on the hydraulic behavior of the pond. Therefore, sufficient knowledge 

about the actual hydraulic behavior of the system is required for accurate prediction of 

these parameters. Parameters, including geometry of the pond, inlet and outlet positions 

and inlet velocity affect the hydraulic performance of the basin. Problems, such as 

recirculation or reverse flow and short circuiting in the system exist and are difficult to 

predict. These problems lead to a reduction in the theoretical retention time and decreased 

treatment efficiency of the pond. Comparing the results of CFD analysis with actual 

tracer test shows that the CFD model may be used to determine the actual retention time 
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and dispersion number. Moreover, using the empirical equations as an option for fmding 

the dispersion number used in dispersed flow model is recommended. 

After finding the actual concentration of the chemicals in the pond's discharge, 

Environmental Risk Assessment process may help to find the hazardous effect of 

chemical contaminants on humans and the ecosystem. Application of ERA framework 

helps to assess the impact of the effluent of the pond. Hazard identification is the first 

step in this process, done by deciding about chemicals of concern and site characteristics 

such as the site history, contaminant level in media, environmental characteristics 

affecting chemical fate and transport and potentially affected population and biota. The 

transport of contaminants within the media is calculated in exposure assessment. As a 

part of fate and transport modeling, SEVIEW is used to simulate the transport of 

chemical contaminants within the soil and the groundwater. SEVIEW has the ability to 

predict the accurate concentration of chemicals in soil and ground water conditional to 

the availability of environmental parameters (e.g. soil characteristics and weather 

conditions). To obtain the chemical concentrations in the marine water, the dilution of the 

contaminants reaching the marine water may be considered using Arceivala's equation. 

Determining the place of pycnocline and waste water flow rate may help to calculate the 

dilution factor. For finding the benchmark doses for mammalian wildlife species, finding 

the NOAEL for mammalian test species and changing doses according to the animals' 

body weights is useful. The last step in risk assessment process is risk characterization 

done by finding the amount of HQ. Using the data obtained from the ingestion of food by 

different animals, and the concentration accumulated in the animal's body burden 
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integrated with toxicological benchmark for the specific animal leads to accurate 

determination of this index. 

As the value of risk is combined with different uncertainties, the uncertainty analysis 

uses Monte Carlo simulation which demonstrates a range for risk based on the related 

parameters. Comparing this range with the well known guidelines such as CCME or 

USEPA may help to evaluate the performance of the treatment system. In the case that 

the value of risk exceeds the criteria, further treatment of AMD should be considered. 

By applying three steps: characterization of AMD, modeling the WSPs based on 

their non-ideality and ecological risk assessment, this research lead to the conclusions as 

follows: 

v'Eh-pH diagrams may be used to characterize the specific AMD. HSC chemistry 

which is a software designed for drawing Eh-pH diagram based on chemical species, 

is a useful tool to study AMD characteristics. 

v' Computer-assisted thermodynamic chemical equilibrium models are useful tools for 

describing the reactions that occur in a chemical system. These models assist in 

predicting the behavior of chemical system. MINTEQ software based on these 

models may be used to predict different possible chemical components that exist in 

AMD. 

v' The chemical oxidation of a mineral can be classified as acid producing or consuming 

(the reactions that generate or consume W) or non-acid producing or consuming. This 

will help put a variety of minerals producing AMD in different categories. 
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v'The flow in WSPs is rarely ideal and the assumptions of ideal CSTRs and PFRs often 

do not exist. Therefore, designing the treatment system such as WSPs based on ideal 

models may give misleading results. 

v' Dispersed flow model is one of the non-ideal models that may cover the non­

idealities that exist within the pond. The main parameters of this model may vary 

extensively based on the hydraulic behavior of the system. 

v' CFD software may be useful to find the actual retention time and dispersion 

coefficient. However, these software are case sensitive and inaccurate interpretation 

of the hydraulic conditions of the pond may also lead to misleading results. 

v'Using the empirical equations is another option to find the dispersion index . Most of 

these equations are based on the pond's geometry, which is the most important 

hydraulic parameter of ponds. The advantages of using these equations are reducing 

the cost of actual tracer studies and predicting the dispersion index required at the 

design stage of a WSP. 

v' USEP A framework has been used to assess risk of the hazardous chemical 

components in the pond's discharge. Comparing the calculated risk with the 

guidelines will help to characterize the WSP efficiency and the level of treatment. 

Risk-based treatment provides a methodology to evaluate the treatment efficiency of 

the pond. In cases where estimated risk exceeds the acceptable criteria, methods to 

improve the treatment are also developed. 

v' As a part of risk assessment process, the fate and transport of contaminants within the 

soil and the groundwater are calculated using SEVIEW. Parameters related to site 
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specific conditions such as soil characteristics and weather conditions should be 

considered in this simulation . 

../ The dilution factor should be considered to obtain the actual concentrations of the 

chemical species in the marine water. Flow rate of the wastewater discharged to the 

marine water and the specific condition of the bay such as the place of pycnocline are 

required to determine to reach this propose . 

../A less biased approach to risk assessment uses tmcertainty analysis to estimate the 

degree of confidence that can be placed in the risk estimate. Despite of the sources 

and types of uncertainty in the environmental risk assessment, these uncertainties 

should be quantified and analyzed using the concepts of probability and statistics. 

6.2 Recommendations 

Based on this research, the following recommendations are suggested for future 

research: 

../In the reactions taking place in AMD, many secondary chemical components based 

on the specific conditions of AMD (e.g. pH and temperature) are produced. 

Investigations of secondary reactions taking place in AMD under different conditions 

and evaluations of the effect of existing chemical species on these reactions are 

recommended . 

../ WSP is one of the cost effective methods used for treating AMD. However, this 

method is not suitable for restricted areas. Researchers recommend many treatment 

methods for treating AMD. Comparing these methods and evaluating their 
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performance according to specific conditions (e.g. cold weather) is suggested for 

future research. 

V'Different hydraulic parameters such as the pond geometry, the inlet/outlet 

configurations and positions, wind and the inlet jet affect the actual retention time and 

dispersion coefficient. The combination of these parameters may lead to change the 

hydraulic behavior of the basins. Finding the effect of different hydraulic parameters 

of the WSP on actual retention time and dispersion index and integrating equations 

that consider these behaviors may help to design the WSP easily with the optimum 

performance. Evaluating the effects of different hydraulic parameters and their 

combinations on the pond's retention time and dispersion index is recommended. 

V'The depth of the WSP is one of the parameters of the pond's design that may not be 

neglected easily. Using three dimensional CFD modeling to determine the optimum 

conditions of pond performance according to different hydraulic parameters is 

suggested for future investigations . 

./Comparing the risk evaluation results with the existing guidelines may not always 

satisfy the regulations. Therefore, changing the treatment system in a way that 

reduces the risk of discharged contaminants is desired. Evaluating different methods 

to improve the performance of the WSP is recommended . 

./The variability and incertitude uncertainties are two types of uncertainties need to be 

considered in ERA processes. Uncertainty analysis should be done considering all 

types of uncertainties in different parameters. 
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CHAPTER7 

Statement of Originality 

7.1. Novelty 

The novelty of the present study by integrating three steps of mine waste management, 

characterization of AMD, modeling the WSPs considering non-idealities and ecological 

risk assessment can be viewed from the following perspectives: 

../The methodology proposed for AMD characterization is useful to determine the 

chemical components of the specific tail's water. Identifying the existing chemical 

components of AMD is required prior to choosing the specific treatment system . 

../ Methods such as optical microscopy, electron microscopy and X-ray diffraction are 

used to identify the minerals producing AMD. The methodology recommended in this 

study can be used in conjunction with these analytical tests, to decrease the number of 

these costly and complex tests . 

./The non-idealities within the tailing pond reduce the actual retention time, resulting in 

decreases of the treatment efficiencies. The dispersion model used in the present 

study bridges the gap of ideal models for modeling the concentration gradient within 

the pond. Applications of the dispersed flow model for different case studies confirm 

the validity of this non-ideal model in predicting the actual concentration of 

chemicals in the pond's discharge . 

../Determination of the actual values of dispersion coefficients used in dispersed flow 

model remains a great concern for researchers. Tracer studies used to find the 

dispersion coefficient are costly and do not allow the designer to estimate dispersion 
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index for the ponds which are not yet constructed. Application of the methodology 

presented in this research would help the researchers to obtain the actual retention 

time and dispersion index using CFD code . 

../Different empirical equations exist to estimate the dispersion coefficient in the WSPs 

and lagoons. Testing and validation of these equations for real case studies provide 

more confidence on the sustainability of these equations used in tailing pond 

modeling . 

../The risk-based methodology presented in this study characterizes the potential impact 

of chemical concentrations in the pond's discharge to human health and the 

ecosystem in the pond's vicinity. The risk amount produces the criteria to evaluate the 

treatment efficiency of the ponds. It also helps to determine if the treatment system 

should be improved or alternative treatment should be considered. 
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Appendix 1: 

Table Al.l. Terrestrial animal's diet and duration of stay in the study area (Beak, 1997) 
Animal Total intake Duration of stay in the study area 

Snowshoe Hare Deciduous browse (75%) 
Coniferous browse (25%) 

Ptarmigan 

Caribou 

Black Bear 

Polar Bear 

Deciduous browse (70%) 
Bakeapples (20%) 
Coniferous browse (I 0%) 
Lichens (75%) 
Scrubs, grasses & sedges (25%) 
70% vegetation consumption 
(Including 75% Bakeapples & 25% 
deciduous browse) 
15% terrestrial animals 
(Including snowshoe Hare (80%) & 
caribou (20%)) 
15% of aquatic animals (charr) 
Seals (80%) 
Marine charr (I 0%) 
Mergansers (5%) 
Harlequin duck (5%) 
Freshwater invertables (50%) 

Harlequin Duck 
Marine mussels (50%) 

Merganser 

Beaver 

Ringed Seal 

Marine water charr (50%) 
Freshwater charr (50%) 
Terrestrial vegetation (50%) 
(Including deciduous browse (50%) & 
coniferous browse (%50)) 
Aquatic plant (50%) 
Marine water Charr (50%) 
Sculpin (50%) 

I year 

I year 

4 months 

I year 

I 0% of the year 

Six months 

Six months 

l year 

I year 

Table A1.2. Ingestion transfer factors for terrestrial animals (IAEA, 1994) 
Animal Nickel Copper Cobalt Zinc Cadmium 

Snowshoe Hare 0.005 0.039 0.062 4.1 0.0075 
Ptarmigan I 0.5 2 7 0.8 
Caribou 0.005 0.039 0.062 4.1 0.0075 

Black Bear 0.005 0.022 0.025 0.14 0.0075 
Polar Bear 0.005 0.022 0.025 0.14 0.0075 

Harlequin Duck l 0.5 2 7 0.8 
Merganser 0.5 2 7 0.8 

Beaver 0.005 0.039 0.062 4.1 0.0075 
Ringed Seal 0.005 0.022 0.025 0.14 0.0075 

150 

Lead 
0.0004 

0.4 
0.0004 
0.0004 
0.0004 

0.4 
0.4 

0.0004 
0.0004 



Table A1.3. BCFs (Kg!L) for different aquatic species in the study region (Thompson et 
al., 1972) 
Freshwater species Nickel Copper Cobalt Zinc Cadmium Lead 
Arctic charr 100 200 300 2000 200 300 
Brook trout 100 200 300 2000 200 300 
Marine water species 
Arctic charr 500 667 1000 3300 3000 300 
Sculpin 500 667 1000 3300 3000 300 

Table A1.4. Soil to plant transfer factor, Bv (Kg/Kg) (Beak, 1997; IAEA, 1994) 
Chemical component Lichens Bakeapples Coniferous browse Deciduous browse 

Nickel 0.45 0.41 0.24 0.24 

Copper 1.58 2.54 0.8 0.8 

Cobalt 0.41 0.41 0.211 0.2 11 

Zinc 7.48 1.32 1.266 1.266 

Cadmium 0.08 0.08 0.0053 0.0053 

Lead 1.55 0.02 0.0053 0.0053 

Table Al.S. Bio-concentration factor for Sedge (Unitless) (Thompson et al., 1972) 
Plant Nickel Copper Cobalt Zinc Cadmium Lead 
Sedge 50 l 000 200 I 000 270 200 

Table A1.6. Toxicological benchmark doses for terrestrial animals within the study area 
(SamEle et al., 1996) 

Animal Nickel Coeeer Cobalt Zinc Cadmium Lead 
Snowshoe Hare 56.56 14.15 8.56 226.27 7.07 56.57 

Ptarmi8_an 107 61.7 12 131 20 11.3 
Caribou 17.76 4.44 2.69 71.05 2.22 17.76 

Black Bear 17.58 4.4 2.63 70.33 2. 19 17.58 
Polar Bear 13.01 3.25 2 52.05 1.62 13.01 

Harlequin Duck 107 61.7 12 131 20 11.3 
Mer8_anser 107 61.7 12 131 20 11.3 

Beaver 29.09 7.28 4.41 116.38 3.63 29.09 
Ringed Seal 23.14 5.79 3.5 92.56 2.89 23. 14 
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Table A1.7. Body weight of terrestrial animals within the study area 
Animal Body Weight (kg) 

Snowshoe Hare 1.4 
Ptarmigan 0.6 

Caribou 144 
Black Bear 150 
Polar Bear 500 

Harlequin Duck 0.6 
Merganser 0.7 

Beaver 20 
Ringed Seal 50 
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