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Abstract 

In order to keep supplying computer hard disk drives with more and more storage 

space, it is essential to have smaller bits. With smaller bits, superparamagnetism, the 

spontaneous flipping of the magnetic moments in a bit caused by thermal fluctuations, 

becomes increasingly important and impacts the stability of stored data. Recording me­

dia is composed of magnetic grains (usually made of CoCrPt alloys) roughly 10 nm in 

size from which bits are composed. Most modeling efforts that study magnetic recording 

media treat the grains as weakly interacting uniformly magnetized objects. In this work, 

the spin structure internal to a grain is examined along with the impact of varying the 

relative strengths of intra-grain and inter-grain exchange interactions. The interplay 

between these two effects needs to be examined for a greater understanding of super­

paramagnetism as well as for the applications of the proposed Heat Assisted Magnetic 

Recording (HAMR) technology where thermal fluctuations facilitate head-field induced 

bit reversal in high anisotropy media. 

Simulations using the Monte Carlo method (with cluster-flipping algorithms) are 

performed on a 2D single-layer and multilayer Ising model with a strong intra-grain 

exchange interaction J as well as a weak inter-grain exchange J'. A strong deviation 

from traditional behavior is found when J' / J is significant. M-H hysteresis loops are 

also calculated and the coercivity, He, is estimated. A large value represents a strong 

resilience to the superparamagnetic effect. It is found that taking into account the 

internal degrees of freedom has a significant effect on He. As the Ising model serves 

only as an approximation, preliminary simulations are also reported on a more realistic 

Heisenberg model with uniaxial anisotropy. 

Key Words: Ising model, Heisenberg model, Monte Carlo Simulation 
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Chapter 1 

Introduction 

1.1 Micromagnetics and Magnetic Recording Media 

Micromagnetics, as the name suggests, is a field which deals with phenomena related 

to magnetism at sub-micrometer length scales. It typically uses the Landau-Lifshitz­

Gilbert (LLG) stochastic differential equation to obtain the magnetization of a system 

under different situations. At these scales, there are many interactions in the energy E 

to take into account, namely the exchange energy, the anisotropy energy, the Zeeman 

energy (interaction with an external magnetic field), the dipolar energy and temperature 

effects through a Langevin stochastic term. 

The LLG equation is named after Lev Landau, Evgeny Lifshitz and T. L. Gilbert 

and is often given as 

am am 
&t = --ym X H eff + am X &t , (1.1) 

where m is the magnetization, H eff = -Pr& is the effective magnetic field (due to the 

different interactions) and a and 'Yare a damping parameter and the electron gyroscopic 

ratio, respectively. This allows a realistic description of the system, from which the time­

dependent magnetization can be calculated as a function of the effective magnetic field , 
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Ileff. This effective field can become quite cOmplicated which makes the calculation of 

the magnetization non-trivial. 

Micromagnetics has had, for the past twenty years, considerable success at modeling 

magnetic recording media [1, 2] as it allows for a fairly accurate modelling of magnetic 

grains used in magnetic recording media, such as hard disk drives. A fundamental 

assumption of micromagnetics is that there are well defined regions with a uniform 

magnetization having a constant magnitude lml. In the case of current recording media 

based on highly anisotropic cobalt alloys, these regions are taken to be the magnetically 

separated grains which are typically 8-9 nm in diameter and are composed of hundreds 

to thousands of atomic spins. For conventional recording media, the consideration of 

grains as uniformally magnetized may be justified by the fact that the intra-grain (inside 

grains) spin-spin ferromagnetic exchange interaction is typically 10-100 times larger than 

inter-grain (between grains) exchange. In addition, temperatures relevant for typical 

recording processes (,....., 320K) are about one-quarter of the Curie temperature for cobalt 

(Tc = 1400K) so that thermal effects are not obviously important. 

Due to reductions in bit size, the need for more accurate models, and the increasingly 

important role of thermal effects there has been an exploration of modified approaches 

which go beyond the assumption of a uniformly magnetized grain and consider effects 

due to intra-grain spin degrees of freedom [3, 4, 5, 6]. As grain sizes shrink, surface 

spins can play an increasingly important role in determining reversal mechanisms. This 

is due not only to modifications in surface exchange interactions arising from simple 

geometrical arguments but also to a reduction of surface-spin anisotropy. These effects 

can lead to modifications in grain magnetic moments and magnetic field-induced reversal 

mechanisms important for the recording process [7, 8, 9, 10, 11, 12]. 

It is anticipated that new technologies will be introduced into the recording process 

within a few years in an effort to ensure a continuation of bit size reduction [13]. One 

of the more promising is considered to be heat assisted magnetic recording (HAMR) 

[14] where bit (and grain) reversal in an applied head field is facilitated by thermal 
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fluctuations. This allows for the possibility of higher anisotropy, smaller grain media 

thereby avoiding the superparamagnetic effect and spontaneous decay of stored infor­

mation [15]. The HAMR concept is being explored at temperatures near the Curie point 

of cobalt where the grain magnetization is reduced to near zero. While thermal effects 

can be incorporated into the LLG formalism by the introduction of a stochastic term, 

the thermal fluctuations only affect the direction of the grain magnetization, not its 

magnitude. One phenomenological approach to include intra-grain degrees of freedom 

is to assign a temperature dependence for the magnetization and single-ion anisotropy 

which mimics bulk cobalt [16, 17]. A more sophisticated technique is to incorporate 

longitudinal grain-moment magnitude dynamics into the LLG equations [18]. Nonlo­

cal reversal mechanisms where grain surface spins initiate the process are not captured 

in these models. A detailed account of these known effects are expected to play an 

increasingly important role in technologies and future modelling efforts. 

1.2 Outline of the Thesis 

In this work, the limitations of assuming uniformly magnetized grains is explored within 

the context of a simple model that includes explicitly the internal atomic spins of the 

grains in magnetic recording media. Monte Carlo simulations are performed on a 2D 

system assuming grains composed of L' x L' x z Ising spins with strong nearest-neighbor 

intra-grain (spin-spin) exchange interactions J' and weaker inter-grain exchange J be­

tween the 2D lattice of L x L grains. The Ising model may be viewed as a simple first 

approximation to a more realistic Heisenberg model with the strong anisotropy present 

in cobalt-based alloys. In order to address equilibration issues that arise as a conse­

quence of the large difference in the interaction energies in this model, the simulations 

utilize a combination of a cluster-flip Wolff algorithm and a Metropolis algorithm. A 

number of thermodynamic quantities are evaluated that reflect the degree of intra-grain 

and inter-grain ordering of the spins. From these, regimes where a uniformly magne-
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tized grains approximation is valid can be distinguished. Hysteresis associated with the 

reversal of the magnetization in an applied field for temperature below the critical tem­

perature is studied and the impact of the intra-grain spins in determining the coercivity 

is examined. Lastly, simulations are performed on the zero-field anisotropic Heisenberg 

model constructed in a similar way to the Ising case. 

In the remainder of this chapter, the Ising and Heisenberg magnetic models which 

are used in this work are explained along with some background information on phase 

transitions as they relate to magnetic models. Monte Carlo simulations are explained 

and it is discussed how they can be used to simulate magnetic models. Finally, the 

Metropolis and Wolff algorithms that were used to obtain the simulation results are 

introduced with an emphasis on how to use them in simulations. 

Chap. 2 explores the Ising model with grains with an explanation on the terminology 

used and how the grains are simulated. An explanation is given on how the Metropolis 

and Wolff algorithms are modified to be used for a granular model. Results are given for 

the 2D Ising model, leading up to how the critical temperature reacts in an unexpected 

way as different coupling strengths are studied. This is then redone for a multilayer 

model to better represent thin films of magnetic material. An equation is derived that 

can be used to estimate the critical temperature as a function of the simulated grain size 

and number of layers for the granular Ising model. The work is done with no external 

magnetic field present. 

Chap. 3 also studies the granular Ising model, but with an external magnetic field. 

A modified Wolff algorithm is explained that was needed to obtain the coercivity He for 

the Ising model. M-H loops were obtained of the 2D Ising model with grains as a way 

to study the coercivity He as a function of temperature and the results are compared to 

the homogeneous (no grains) model. 

Chap. 4 explores the simulation of the anisotropic Heisenberg model. An explanation 

is given on how the Metropolis and the Wolff algorithms can be applied to the Heisenberg 

model. Results are given for the granular Heisenberg model and fluctuations seen for 
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higher anisotropies are studied by looking at the magnetization as a result of simulation 

time. Results of the critical temperature for the multilayer model as a function of the 

inter-grain coupling constant and the anisotropy are obtained with comparison to the 

homogeneous model. 

Finally, a discussion on the results and conclusions drawn from them is presented in 

Chap. 5. Possibilities for future work are also mentioned. 

1.3 Magnetic Models and Phase Transitions 

1.3.1 Ising model 

The simplest and by far the most famous model that can be conceived to study magnetic 

systems is the spin-1/ 2 Ising model [19]. In this model, a lattice of discrete spins are 

represented as each having a magnetic moment of +1 or -1. In its simplest form, it has 

only nearest neighbor interactions. In one dimension, it consists of a chain of L spins 

where each spin interacts with its two nearest neighbors. In two dimensions, the square 

lattice Ising model has L x L spins in which each spin interacts with its four nearest 

neighbors, two in each lateral direction, has been studied theoretically using a variety of 

methods such as low and high temperature series expansions, transfer matrixes, mean 

field theory and Green's function theory. 

The Ising model was first formulated by Ernst Ising in 1925 [20] who presented the 

exact solution for the 1D case in his PhD thesis. It was not until 1944 that Lars Onsager 

managed to analytically solve the square lattice 2D Ising model in zero field . So far, 

no-one has been able to solve the 2D model with external magnetic field or the 3D case 

for this simplest of magnetic models. 

The most common of Ising models is ferromagnetic with a constant exchange energy 

J and external magnetic field H given by the Hamiltonian 
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1i = -JLSiSi -HLSi· 
(ij) 

(1.2) 

where (ij) represents nearest-neighbor interactions only. However, taking into account 

site- or spin-specific exchange parameters, it can be given as 

1i =- 2::.: Jijsisj- H"'L si. 

ij 

(1.3) 

Here, the Si and the Sj denote the spin variables at different lattice sites that can take the 

value of +1 or -1. Each interaction (bond) between two nearest neighbor is counted once 

so that a 2D model with 100 spins has 200 bonds. Jij is the exchange coupling between 

spins and H is the external magnetic field. The standard ferromagnetic Ising model 

consists of a nearest-neighbor interaction with Jij = J > 0, while a nearest-neighbor 

interaction Jij = J < 0 defines the antiferromagnetic Ising model. The case of Jij = 0 

is called the non-interacting Ising model, as spins do not interact with their neighbors. 

The J ij can be changed depending on the model, as, for example, having a random Jij 

for different bonds is one model for a spin glass. A number of other modifications can be 

done to this model to represent different systems, such as adding next-nearest-neighbor 

interactions or adding dipole interactions wherein each spins affects other spins with 

an interaction that depends on the displacement vector separating the spins and their 

orientation. 

1.3.2 Heisenberg model 

The classical Heisenberg model [21] is defined by a Hamiltonian that is similar to that 

of the Ising model 

1i =- 2::.: Jijsi · s j- "'LH . si - K"'L(Bi)2
. 

(ij) 
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where the spin variables Si denote 3D vectors with ISil = S. Here, H is the external 

magnetic field strength and K is the single-ion magnetocrystalline anisotropy of the 

system. The anisotropy represents the tendency for the magnetic moments to align in a 

certain direction. In the case of thin films, this is often the z direction, perpendicular to 

the film plane. K > 0 causes the spins to orientate along z while K < 0 causes the spins 

to orientate in the plane perpendicular to z. Another type of anisotropy sometimes used 

is an exchange anisotropy with terms of the type Jz L:(ij) Sf Sj. 

The limit of infinite single-ion anisotropy, K -t oo, constrains the spins to point 

in one direction and the Heisenberg model reduces to the Ising model. If, instead, 

K -t -oo, the spins are constrained to lie on the plane normal to z and the Heisenberg 

model reduces to the XY model. As the Ising model allows spins to vary in a single 

dimension and the Heisenberg model allows the spins to vary in three dimensions, the 

XY model allows spins to rotate in the 2D XY plane. As such, varying the anisotropy 

within the Heisenberg model allows the system to approach the behavior of the Ising 

and XY models. 

1.3.3 Phase Transitions 

An order parameter is defined as a quantity which is zero in one phase and non-zero 

in another. The behavior of this quantity as a function of some parameter like the 

temperature determines the point at which the system undergoes a phase transition and 

switches between phases. 

There are two main classes of phase transitions [22], first-order phase tmnsitions and 

continuous phase tmnsitions (also sometimes called second order phase transitions). In 

a first order phase transition, the order parameter jumps discontinuously from zero to a 

certain value and the system can have a co-existence of different phases, such as water 

at its boiling point. In a continuous phase transition, as the name suggests, the order 

parameter goes from zero to a non-zero value continuously at the critical temperature 

and there is a divergence in certain properties, such as the susceptibility and the specific 
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heat. There are many theories to study these phenomena, such as mean field theory 

or the phenomenological Landau theory of second order phase transitions, which can 

provide a qualitative description of the transition. 

For the magnetic systems under study here, the second order ferromagnetic phase 

transitions of the Ising and Heisenberg models are considered. The order parameter 

is the magnetization, which falls off to zero at the critical temperature Tc , called the 

Curie temperature for ferromagnetic systems. In the case of the Ising and Heisenberg 

antiferromagnet, the order parameter is the staggered magnetization. 

When studying continuous phase transitions, a number of quantities exhibit singu­

larities at the critical point. These signularities are characterized by a set of critical 

exponents. For example, in a magnetic system some of the exponents defined are for the 

zero field specific heat, magnetization and susceptibility, known as a, f3 and 'Y respec­

t ively. These would be defined like 

(1.5) 

which describe the behavior of the specific heat C near the critical temperature. 

These exponents are interesting because of universality: systems that appear differ­

ent but have a few essential properties in common possess the same critical exponent. 

A universality class comprises systems which exhibit this behavior, e.g. certain ferro­

magnetic systems and the liquid-gas phase transition for fluids. The thermodynamic 

properties of the system would seem to depend only on the few parameters, such as 

dimensionality and symmetry. 
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1.4 Monte Carlo Simulations 

1.4.1 Monte Carlo 

Monte Carlo simulations are used in many diverse areas of science, from the study of 

fluids, finances, artificial intelligence, differential equations to chemistry or astronomy. 

The general idea is simply to generate random quantities as input in such a way as to 

probe the system of study and gather useful information [23]. For example, one way to 

approximately calculate 1r with a Monte Carlo simulation is to draw a circle of radius 

~ inside a square of length L. The area of the circle being 1r( ~ ) 2 and the area of the 

square being L2 , t he ratio of these two areas is given as 'Tr~~/4 = i. By generating T 

uniform random locations inside the square and then counting the amount C that fall 

within the circle, the ratio C /T will approximate 1r /4. For example, if in a simulation 

T = 1000 and C = 768, 4C /T = 4 * 768/1000 = 3.072, which approaches the true value 

of 1r ~ 3.14. The representation of this example is shown in Fig. 1.1. To get a closer 

estimate, the simulation can be repeated multiple times and the result averaged, or a 

higher value of T can be used. 

From this fairly simple example, the basics of using Monte Carlo simulations are 

shown. Even with a thousand random values as input, the result obtained was only 

approximately close to 1r, in this case obtaining a value only accurate to the first digit. 

To obtain many more accurate significant figures, a very high value ofT is needed which 

would become computationally expensive very quickly. As such, for cases like these the 

Monte Carlo method can provide a first stab approach at a problem using a very simple 

principle. This is not to say that it is ineffective as, for higher dimensions, Monte Carlo 

is a very efficient method of calculating integrals. 

Monte Carlo in Statistical Mechanics 

The Monte Carlo method is widely used in statistical mechanics, where the internal 

energy of the system can be computed based on the states of the particles in the system. 
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Figure 1.1: Monte Carlo simulation used to determine 1r with T = 1000 and C = 768. 

With Maxwell-Boltzmann statistics, the probability at equilibrium that the system will 

be in a specific state a is given by 

(1.6) 

where {3 = k~ with k the Boltzmann constant (1.38xlo-23 JK- 1) and T the temperature, 

Ea is the internal energy for the state a and Z is the partition function 

(1. 7) 
a 

In the study of magnetic systems, several quantities are of value to study, such as 
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the magnetization or the energy. The expectation value (or average over the different 

states of the system) of such quantities Q in equilibrium is given by 

(Q) = ~ L Qae-f3Ea. (1.8) 
a 

The average of Q over different states, (Q) is often written simply Q when it is obvious 

that an average is being taken. 

1.4.2 Markov Chain Monte Carlo 

When a process follows a sequential ordering and a new state b can be obtained randomly 

from the current state a without access to all the other previous states, it is called a 

Markov chain [24]. Markov chain Monte Carlo methods are algorithms for which a 

specific probability distribution is followed, such as the Boltzmann distribution. The 

Markov chain states are chosen to represent the system of study and there are a number 

of other constraints that are imposed so as to be useful. 

1.4.3 Ergodicity 

A process or algorithm is said to be ergodic, or to satisfy ergodicity, if any state can be 

obtained from any other state, provided a sufficiently long simulation time to sample all 

possible states of a system. This property must be satisfied to get a useful algorithm. 

As such, from any state a, there must be a path, no matter how long it takes, to any 

other state b in the Markov chain. Conversely, the system must also be able to go back 

from b to a. This is usually fairly simple to satisfy for a given Monte Carlo algorithm 

with an appropriate choice of transition probability, but it is crucial to take these factors 

into consideration. 

1.4.4 Detailed Balance 

The transition probabilities used for the system must satisfy detailed balance, given by 
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P(a, b) 
P(b,a) 

Pb 

Pa ' 
(1.9) 

where P(a,b) (P(b,a)) is the probability that the system will generate state b (a) from 

state a (b) and transition to it, and the Pa and Pb are the probabilities of occupation 

at equilibrium. Working with classical systems, the equilibrium distribution used is the 

Boltzmann distribution, which is given by Eq. 1.6. Thus, to satisfy detailed balance with 

a system following the Boltzmann distribution, Eq. 1.9 becomes 

P(a, b) _ -f3(t.E) 
P(b,a) - e ' (1.10) 

where D.E = Eb - Ea. 

The transition probability P( a, b) has two parts: the selection probability g( a, b) and 

the acceptance ratio A( a, b), such that P(a, b)= g(a, b)A(a, b). The selection probability 

is the probability that the algorithm generates a specific state b from state a and the 

acceptance ratio is the probability for the system to change from state a to this state 

b. As an example of the selection probability, an algorithm could be constructed that 

selects a random spin of a 2D square-lattice Ising model with N (even) spins such that 

spins on the left side of the lattice are selected twice as often as spins on the right side. 

The selection probability g(a, b) of selecting a spin on the favored side of the lattice is 

then g(a, b) = 3~ while the selection probability for a spin belonging to the other side 

is g( a, b) = 3't. The acceptance ratio is then the probability of the algorithm doing 

something to the spin, such as changing its value. Eq. 1.10 is then used to determine 

this probability when using a system following the Boltzmann distribution. 

1.4.5 Metropolis Algorithm 

The condition of detailed balance does not uniquely determine what transition probabil­

ities should be used. As such, this gives some flexibility to develop an efficient algorithm 

that applies to the problem at hand, so long as the ergodicity and detailed balance 
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conditions are satisfied. For example, any implementation of P(a, b) and P(b, a) that 

satisfies Eq. 1.10 will give a correct result. However, most choices are simply not efficient 

and will not be useful. 

The Metropolis-Hastings algorithm [25], named after Nicholas Metropolis and W. 

Keith Hastings, is a particular choice of the transition probabilities so as to be very 

efficient. The original algorithm was developed in 1953 by N. Metropolis using the 

Boltzmann distribution and was extended to the general case in 1970 by W. K. Hastings. 

It is referred here as the Metropolis algorithm as only the Boltzmann distribution is used. 

It is the most commonly used Markov chain Monte Carlo method due to its simplicity 

and efficiency. 

The Metropolis algorithm has single-spin-flip dynamics, as it only considers a single 

spin at a time. This is not a requirement and there exists other algorithms that consider 

more than one spin, such as the Wolff algorithm, explained in Sec. 1.4.6. 

The derivation of the Metropolis algorithm follows from a few simple steps [24]. From 

state a, there are N possible states that can be reached after one flip to create different 

states. The probability to create a specific state b from a is thus g(a, b) = j, as they 

are all equally favored; the probability of creating state a from b is also the same. The 

condition of detailed balance, which follows from Sec. 1.4.4, can then be stated as 

P(a,b) = A(a,b)g(a,b) = A(a,b) = e-f3D.E 
P(b, a) A(b, a)g(b, a) A(b, a) · 

(1.11) 

The choice of acceptance ratio can be made in almost any fashion, so long as this 

equation is obeyed; however, a low acceptance ratio would lead to many wasted calcula-

tions, and as such a large acceptance ratio is therefore generally more efficient. For this 

purpose, the larger of the two acceptance ratios is usually taken to be unity while the 

other one is adjusted accordingly. With this single-spin flip algorithm, there are three 

situations: the energy of the new state can be either smaller or larger than the one of 

the current state or remain the same. If AE > 0, e-f3D.E will be smaller than unity, as 
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f3 > 0. This means that P(b, a) > P(a, b), so P(b, a) is set to 1 and P(a, b)= e-f3.6.E_ If, 

however, !:::.E < 0, the exponential will be greater than unity and a similar logic is ap­

plied: P(a, b) is set to 1 and P(b, a) = e-f3D.E_ Having !:::.E = 0 has P (a, b)= P(b, a)= 1, 

such that the spin is flipped with no change in energy. 

What this means is that when the spin flip reduces the energy (!:::.E < 0) , the 

probability of accepting the new configuration is 1. On the other hand, when the spin 

flip increases the energy, the new configuration is accepted with a probability given by 

the weight w = e-f3.6.E. To implement this, a random number r is chosen such that 

0 :::; r < 1. If r < w, the spin is flipped. This is the Metropolis algorithm, which has 

seen remarkable success. Other implementations of the acceptance ratio can be used if 

they prove to be more applicable to the problem at hand, but the Metropolis algorithm 

has shown itself to generally be very efficient. Ergodicity is assured by being able to flip 

one spin at a time, indefinitely, to go from any state to another. 

As a summary to the usage of the Metropolis algorithm in Monte Carlo simulations, 

the following steps are done for one application of the algorithm: 

1. Calculate the energy of the system. 

2. Pick a random spin on the lattice. 

3. Calculate the energy if the spin is flipped and !:::.E, the difference in energy between 

this energy and the previous one. 

4. If !:::.E:::; 0, the spin is flipped. Otherwise, the next step is followed. 

5. Calculate the Boltzmann weight, w = e-f3.6.E_ 

6. Generate a random number 0 :::; r < 1. 

7. If r < w, flip the spin. If not, no change is made. 

As can be seen, this algorithm involves calculating the Boltzmann weight w every 

time a spin is considered. This can easily become computationally expensive, as calcu-
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lating an exponential is an expensive operation. Luckily, for the Ising model, there is a 

shortcut that can be used to help speed calculations. The weights can be calculated in 

advance and placed inside a lookup table. It is then only a matter of figuring out the 

current spin's situation and looking at the precalculated weights to gather what is the 

value of w. 

A first implementation of the Metropolis algorithm into a computer program will 

almost surely involve calculating the system's entire energy before flipping the spin, the 

system's entire energy afterwards and finding D.E by comparing the two. While this 

does work, it is another source of inefficiency as it involves many unused calculations. 

Consider the effect of flipping a single spin Si to a new spin value S~ on the total energy 

of the system. The only thing that changes is Si which becomes S~ , but s: = - Si for 

the Ising model. From Eq. 1.3, the spin's flip only affects its nearest neighbors from the 

first term (nearest neighbor interaction) and itself from the last term (external magnetic 

field). 

To help with speed calculations, the system's energy and magnetization can be cal­

culated before applying the Metropolis algorithm many times. After each spin flip, the 

change is applied to these quantities instead of calculating them again. The single spin 

flip change used is computationally inexpensive compared to calculating the contribution 

of the entire lattice again, which helps speed up the runs. 

The exchange energy term due to the nearest neighbors will have (in the 2D case in 

this example) four contributions to it, consisting of all the nearest neighbors. From the 

Hamiltonian, the energy associated with nearest-neighbor interactions is 

EJ = -J~SiSi. 
(i j ) 

(1.12) 

The only terms that are affected are the four for which (ij ) involves Si· These can 

be explicitly given as 
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4 4 

EJ, = -JL:sisi+k = -JsiL:si+k, (1.13) 
k= l k=l 

where the k runs over the four nearest neighbors, the two in the x direction and the two 

in the y direction. After flipping the spin, the energy EJ, becomes E~1 , given by 

4 4 

E~, = -Js~L:si+k = JsiLsi+k· (1.14) 
k=l k=l 

The difference in energy is then given by 

4 4 4 

6.EJ1 = E~, - EJ, = JSi LSi+k- (-JSi LSH k) = 2JSi LSi+k· (1.15) 
k=l k=l k=l 

The Zeeman term due to the external magnetic field will have a contribution to the total 

energy due to EH1 = -HSi becoming Eif
1 

= -Hs: = HSi . It is then very simple to 

calculate the change in energy due to the Zeeman term 

(1.16) 

Finally, 

(1.17) 

Since all the spins can only take a value of +1 or -1, one can calculate all the possible 

6.E. The spin Si has two choices and can have neighbors that have the spin values given 

in Table 1.1. 

With a knowledge of the current temperature T and thus of /3, it is then very simple 

to calculate and store these few w = e-f3t:.E before applying the Metropolis algorithm 

many times. This analysis can be extended to consider a different amount of nearest 

neighbors, such as six for a 3D system. 
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si + 1 neighbors -1 neighbors 2::,...,1 si+k AEJ; AEH; D..E 
+1 0 4 -4 -8J 2H -8J +2H 
+1 1 3 -2 -4J 2H -4J +2H 
+1 2 2 0 0 2H 2H 
+1 3 1 2 4J 2H 4J+2H 
+1 4 0 4 8J 2H 8J+2H 
-1 0 4 -4 8J -2H 8J-2H 
-1 1 3 -2 4J -2H 4J-2H 
-1 2 2 0 0 -2H -2H 
- 1 3 1 2 -4J -2H -4J -2H 
-1 4 0 4 -8J -2H -8J- 2H 

Table 1.1: Possible values of nearest neighbor spins with the resultant energy change. The 
second and third columns represent the number of nearest neighbors of the spin that have spin 
value +1 or - 1. 

1.4.6 Wolff Algorithm 

While the Metropolis algorithm is a good general purpose procedure, due to the large 

thermal fluctuations that arise in the vicinity of Tc, the number of applications of the 

algorithm required to equilibrate the system increases substantially, an effect referred 

to as critical slowing down. In the case of finite size systems, the correlation length 

is limited by the system size, which gives rise to size dependent effects in many of the 

quantities of interest close to the critical temperature and an increase in the time required 

to equilibrate the system with increasing size. 

It has been shown that the difficulties associated with critical slowing down may be 

avoided by using an algorithm that allows "moves" that involve large numbers of spins. 

Instead of flipping a single spin at a time, these so-called cluster algorithms build virtual 

clusters consisting of a select amount of spins and flip them. While these algorithms 

address the issue of the long equilibration time near the critical temperature, they are 

not as efficient when studying the system at temperatures away from it. 

A widely used cluster algorithm is the Swendsen-Wang (1987) algorithm, which, 

in a single step, creates many virtual clusters and flips a proportion of them; it can 

easily be shown to satisfy ergodicity and detailed balance. Another algorithm developed 
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two years later by Ulli Wolff [26] was based on the Swendsen-Wang algorithm with 

some improvements which make it more efficient, especially at high temperatures. The 

Wolff algorithm is the most commonly used cluster algorithm, as it is very efficient at 

equilibrating systems. 

Above the critical temperature, the spins are mostly random and uncorrelated, while 

below the critical temperature the spins are mostly correlated and everything points 

mostly in the same direction. The Wolff algorithm takes advantage of this and builds 

a virtual cluster which depends on the current temperature. At high temperatures, the 

clusters will be small while for low temperatures the cluster will be very big, often times 

expanding to encompass the entire lattice. Picking a random seed spin, the cluster is 

made up of spins that all point in the same direction. To account for the change in 

correlation link by the temperature, all similarly pointing spins are not added, but have 

a probability of being added which depends on the temperature. 

The derivation of the Wolff algorithm for the Ising model [24] also follows from the 

discussion on detailed balance from Sec. 1.4.4, but is a bit more complicated since the 

algorithm does not use single-spin dynamics. As a consequence, the selection probabili­

ties g(a, b) are not simply going to be -f:t. For a specific cluster, there are only two moves 

to consider: going from state a to b by selecting a random seed spin, building the cluster 

and flipping it and the reverse move involving going from state b to a where the same 

seed spin is used and the same cluster is built. The only difference between these two 

moves is at the cluster border and the interaction between those spins. As such, even 

though a cluster can be built in multiple ways (since a spin can be considered more than 

once), especially for 2D and 3D systems, the selection probabilities g(a, b) and g(b, a) will 

always share a common factor. While these probabilities can become quite complicated 

for large systems and big clusters, as the seed spin is chosen at random, ~~~:!~ depends 

only on the boundary spins and everything else cancels out. 

Spins are added to the cluster with a certain probability PJ, which means that 

rejection has a probability 1- PJ. Naming m the number of bonds that are in state 
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a between spins at the boundary of the cluster and same-valued spins just outside the 

clusters and n the number of such bonds that are in state b, the probability of not adding 

all m spins to the cluster in state a is (1 - PJ )m and the probability of not adding all 

n spins to the cluster in state b is (1- PJ)n. The probability g(a, b) of creating state b 

from state a is thus go(1- PJ)m and g(b, a) for the reverse move is go(1- PJ)n, where 

g0 is the same for both, a factor that depends on the size of the cluster and the size of 

the lattice. Detailed balance can then be stated as 

P(a,b) =g0(1 - PJ)mA(a, b) =(1 -PJ)m-nA(a,b) =e-(3t:..E. (1.18) 
P(b, a) g0(1 - PJ )n A(b, a) A(b, a) 

To figure out the AE, it is simply noted that upon flipping the cluster, only the boundary 

spins' interactions will affect the nearest neighbor exchange energy. Furthermore, the 

effect on the magnetic field energy can be easily calculated based on how many spins are 

flipped. Setting k as the cluster size, this last one becomes 

(1.19) 

where si is the spin value inside the cluster before flipping and s~ the value after flipping. 

For AEJ, there is the contribution from them bonds and then bonds. The total number 

of spins touching the cluster boundary is m + n, with m bonds having the same spin 

direction as Si and n bonds having S~ = -Si· These m bonds each contribute an energy 

of - J(Si)2 = - J while then bonds contribute J . Upon flipping the cluster, the energy 

contributions will switch and so: 

AEJ = E~ - EJ = (m(J) + n( - J)) - (m( - J) + n(J)) = 2J(m - n). (1.20) 

Eq. 1.18 then becomes 
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A(a, b) = (1-p )-(m-n) e-.B(2J(m-n)) e-.B2kHS; = (e2.BJ(1- p ))-(m-n) e-2,BkHS; (1.21) 
A(b,a) J J · 

One choice of PJ that greatly simplifies this can be immediately seen: PJ = 1- e-2.BJ. 

This completely removes the dependence on m and n and reduces the problem to 

A( a, b) _ -2.BkHS; 
A(b,a) - e · 

(1.22) 

Similar to the Metropolis algorithm, the greatest acceptance ratio is chosen to be 1. If 

HSi > 0, the exponential is smaller than unity and A(b,a) is set to 1 with A(a,b) = 

A= e-2.BkHS; . If HSi::; 0, the exponential is greater or equal to unity and A(a,b) is set 

to 1. Lastly, A= e-2.BkHS; = 1 if there is no magnetic field. 

Again, what this means is if H = 0, the acceptance ratio is unity and once a cluster 

is constructed it is always flipped. If H Si < 0, the acceptance ratio is also unity. If 

HSi > 0, the cluster is flipped with probability e- 2.BkHS;_ 

The application of the Wolff algorithm for the Ising model can be summarized as 

such: 

1. Pick a random lattice site as a seed spin which begins the construction of a virtual 

cluster. 

2. Look at all its nearest neighbors. If a neighbor has the same spin value as the seed 

spin, it can be added to the virtual cluster with a probability PJ = 1- e-2.BJ. 

3. When a spin is added to the cluster, also consider all of its neighbors. There can 

be multiple opportunities for spins to be added to the cluster due to the way the 

cluster is constructed. 

4. Continue until there are no more spins to add. Generate a random number 0 ::; 

r < 1 and calculate the acceptance ratio A. If r < A, flip the entirety of the virtual 
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cluster. 

The algorithm satisfies ergodicity since it is possible to have single-spin clusters, 

which allows any state transition given enough time. The linking probability PJ can 

be precalculated, as it depends only on J. The acceptance ratio A( a, b) can also be 

calculated in advance, but it depends on k, which can take any value from 1 toN. 

In the following applications, it will be seen the Wolff algorithm is particularly useful 

in the study of granular systems. 

1.5 Monte Carlo Simulations of the Ising Model 

The 1D Ising model was solved exactly by Ising and was found to exhibit no phase 

transition at T > 0. The 2D square lattice Ising model, solved by Onsager [27], does 

admit a second order (continuous) phase transition at the critical temperature Tc = 

ln(l!\/2) J ~ 2.269 for H = 0, J = 1. A plot of the magnetization against temperature is 

shown in Fig. 1.2 for an infinite lattice, where it can be seen that the order parameter 

(the magnetization) becomes 0 at Tc. There is no discontinuity in the magnetization, 

which illustrates that the phase transition is continuous. 

Since simulations cannot be done on infinite lattices, the 2D model involves N = L x L 

spins [24]. Of course, not having an infinite lattice will give rise to finite size effects. 

These effects have been studied extensively and lead to a shift in location and shape 

of the peaks in the susceptibility and heat capacity. The exact solution of the finite 

size Ising model allows comparisons with the magnetization and other quantities to be 

obtained for finite L, which gives an indication of the validity of simulations. 

The effects of having a finite lattice can be reduced by a judicious choice of bound-

ary conditions. Periodic boundary conditions involve assigning these missing neighbor 

connections in a periodic fashions, so that spin 1 and spin L on a line are connected. As 

such, every single spin on a square lattice has exactly four nearest neighbors. 
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Figure 1.2: Onsager exact solution for the magnetization vs. temperature of the 2D Ising model. 
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1.6 Monte Carlo Step 

A Metropolis Monte Carlo step (MCS) is defined as one sweep of the lattice with the 

Metropolis algorithm. A single sweep of the lattice can be done in two different ways, by 

either sequentially going over each N spins of the lattice or by selecting a random lattice 

site N times. In the second case, there will be spins which will be picked more than once 

in a single MCS, but it removes the artifical ordering of spin flipping that sequentially 

picking spins introduces. As such, the second case is more often used. A Wolff MCS is 

defined as building one virtual cluster and trying to flip it. Unless otherwise stated, the 

work done uses a hybrid Monte Carlo scheme where a MCS is defined by one Metropolis 

MCS followed by one Wolff MCS. For equilibration reasons, a certain amount of initial 

steps MCSo are discarded, which is usually taken to be 10% of the total number of MCS. 

MCSu is defined as the total amount of useful steps from which quantities are calculated; 

thus, a run that has 10000 MCS and 1000 MCSo has MCSu = 9000 useful steps. MCST is 

defined as the total amount of steps used, so that MCST = MCSo + MCSu. The MCST 

used in the present study have a typical value of 50000, as much longer requires too long 

to run and much lower is not typically long enough to reach equilibrium. Looking at the 

behavior of a quantity of interest as a function of MCST for one specific temperature 

gives an idea of when equilibration is reached for that temperature, while averaging over 

several runs can be done to ensure a more accurate result. 

1. 7 Thermodynamic quantities 

To draw meaning from the results, there are a few quantities already mentioned that are 

calculated: the magnetization, the energy, the specific heat and the susceptibility. The 

magnetization and the energy of the system are calculated after every MCS after MCSo 

steps have passed. An average over the MCSu steps is taken for these quantities because 

of the randomness of the process. From these, several results are calculated, with (X) 

indicating an average over MCSu steps. 
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The magnetization per spin, reffered to as the total magnetization or simply magne­

tization, in contrast with the grain magnetization later introduced, is defined through 

(1.23) 

where i is summed over all N lattice sites. In addition, the magnetic susceptibility per 

spin was calculated using: 

(1.24) 

where f3 = 1/ kT and the specific heat per spin is given by 

(1.25) 

For the purposes of Monte Carlo simulations, k = 1. While the magnetization can 

be intuitively defined, the susceptibility and specific heat follow a less straightforward 

derivation. 

Energy and Specific Heat 

From the partition function in Eq. 1.7: 

{}Z "" - f3E 8{3 =-~Eae a, 
a 

(1.26) 

and so, with Eq. 1.8 

(1.27) 

where Q was replaced by the total energy of the system E and Qa by Ea. The specific 

heat of the system is given by 
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(1.28) 

While the quantities Q themselves provide important information on the system, their 

standard deviation can also be looked at. The variance of Q is 

(1.29) 

From Eq. 1.8 and using Eq. 1.26, (E 2 ) is given by 

(1.30) 

Thus, 

(1.31) 

Finally, the system specific heat can be equated to the variation of the energy 

c 2 ( 2 
k[J2 = (E ) - E) ' (1.32) 

C = k[J2 ((E2
)- (E)2

). (1.33) 

The specific heat often used for Monte Carlo simulations is calculated per spin, as 

mentioned in Sec. 1.7, and a factor of 1/N is introduced. 

Magnetization and Susceptibility 

To measure the response of the system magnetization M to a change in magnetic field, 

the system magnetic susceptibility is defined by 

a(M) 
X= aH ' 
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where (M) is the average magnetization and H is the external magnetic field. The 

average magnetization and average magnetization squared are given by 

(1.35) 

(1.36) 

The effect of an external magnetic field on magnets is given by the Zeeman term, defined 

by, for example, the last term in Eq. 1.2 which comes down to, for a state a, -HMa. 

Since this term is only in the energy Ea, 

{)Z "" -f3Ea {)H = f3 L....t Mae . (1.37) 
a 

The susceptibility becomes 

~(M) 8Ea Mae- f3Ea z - '\" M -f3Ea az 
X - _u __ - -~&~H!__ __ --==:L.J=a_a_e __ ~aH'-!... 

- oH - z2 (1.38) 

Finally, the susceptibility is given as 

which is similar to specific heat, as it involves the variance. The susceptibility often 

used for Monte Carlo simulations is calculated per spin, as mentioned in Sec. 1.7, and a 

factor of N is introduced when using the magnetization per spin. 
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Chapter 2 

Ising Model of Grains 

2.1 Granular Ising Model 

Within magnetic recording media, bits are made of multiple grains that typically have 

length scales of the order of several nanometers. In micromagnetics, these grains are 

assumed to have a uniform magnetization. As the grains get smaller and smaller, to 

obtain denser information storage, the effects and validity of this assumption needs to 

be carefully examined. 

Monte Carlo simulations have been used to study the Ising model for a variety of 

lattice structures in two and three dimensions and for different types and combinations 

of interactions, where exact solutions are not possible. Such variations of the basic Ising 

model can be used to study a wide variety of magnetic systems of physical interest, such 

as antiferromagnets, spin glasses and frustrated systems. 

In this thesis, an Ising model constructed to explicitly take into account the effect 

of inter-grain (labelled J) and intra-grain (labelled J') exchange interactions is studied. 

The use of the near-neighbor Ising model is a limit of the anisotropic Heisenberg model, 

studied in Chap. 4, which more accurately describes magnetic recording media. These 

materials are often cobalt-based and have a high uniaxial anisotropy that can be ap­

proximated by the Ising model. Single-layer 2D models and multilayer models, which 
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emulate thin films, are constructed with periodic boundary conditions and seperated 

into grains, with J and J' as nearest neighbor exchange interactions for spins between 

grains and spins inside of grains, respectively. Fig. 2.1 shows a schematic of the 2D 

lattice, with grains represented as islands. 

Figure 2.1: Schematic of the 2D model with 3 x 3 grains each having 3 x 3 spins. The labels of 
J and J' on the figure show locations where these nearest neighbor interactions apply. 

The grains are modelled to have L' spins in the x and y directions and z spins in the 

z direction. As such, a grain has a total of L' x L' x z spins, and the total system has 

L x L grains, a total of N = (LL')2z spins. 

In the multilayered case (z > 1), the top and bottom layers of the model have open 

boundary conditions to better represent the thin films of magnetic recording media. 

The magnetization of a single grain is defined as 

(2.1) 
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where EjEI denotes the sum over all L' x L' x z spins in grain I. The thermal average 

over all grain magnetizations is then given by 

(2.2) 

To calculate the effects of the granular characteristic of the films, the difference 

between J and J' needs to be taken into account. The only effect of a varying Jij to the 

Metropolis algorithm is in the evaluation of D.E. As Jij is only used when calculating the 

nearest neighbor energy, only Eq. 1.15 changes, depending on whether or not the nearest 

neighbor is connected with J or J'. This in turn changes Table 1.1, as the number of 

choices increases significally. The new lookup table then has many more elements, but 

they can still easily be discretized. 

The derivation of the effect on the Wolff algorithm is a bit more involved and involves 

changing the linking probability. In addition to the m and n bonds from the derivation 

in Sec. 1.4.6, there are also m' and n' bonds defined analogously to m and n to be taken 

in consideration. At the cluster boundary, there are four possible near-neighbor spin­

spin interactions: J between two same-valued spins across grain boundaries (of which 

there are m), J between two different-valued spins (n), J' between two same-valued 

spins within a grain ( m') and J' between two different valued spins ( n'). As such, g( a, b) 

becomes go(1 - PJ )m(l - PJ' )m' and g(b, a) becomes go(1 - PJ )n(1- PJ' )n' where PJ' is 

the probability of adding a spin to the cluster if the bond under consideration is linked 

with J' instead of J. Again, the go is the same for the forward and the backward move 

and can be a complicated factor that depends on the cluster and lattice size. Detailed 

balance is then given by 

P(a,b) = go(1 - PJ)m(1-PJ')m' A(a, b) =e-f36.E 

P(b,a) go(1- PJ)n(1 - PJ')n' A(b,a) 
(2.3) 

D.E can be split into different parts, such that D.E = D.EH + D.EJ+ D.E',. Compared 

29 



to the non-granular model, AEH = 2kHSi and AEJ = 2J(m - n) do not change. 

AEJ'' derived in a very similar way to AEJ, is 2J'(m' - n'). The ratio of acceptance 

probabilities then becomes 

(2.4) 

In a very similar fashion to the homogeneous Ising model, PJ can be chosen to be 

1 - e-213J and PJ' can be chosen to be 1 - e- 213J'. The algorithm is carried out in the 

same way as described earlier for the uniform Ising model except that when considering 

whether the spins are added to the cluster, PJ is used if the spin bond uses J while PJ' 

is used for a bond connected with J' . 

2.2 Simulation of Granular Media 

2.2.1 Init ial simulat ions 

Ideally, L should be chosen such that finite size effects are negligible. Unfortunately, 

this is not feasible as it would require L to be immensely big. Fig. 2.2 shows the effect 

of changing the lattice size on the magnetization, the specific heat and the susceptibility 

vs. temperature for a homogeneous ( J = J' = 1) 2D Ising model using the Metropolis 

algorithm. 

The critical temperature Tc can be obtained from the simulation data by a variety 

of methods: t he temperature at which the magnetization extrapolates to zero, the tem­

perature at which the susceptibility shows a large peak and the temperature at which 

the specific heat also shows its peak. The value obtained will depend on L to a certain 

extent, which will add a systematic error to Tc; however, extracting Tc from more than 

one method and extrapolating to higher values of L helps to diminish this error. Finite-
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Figure 2.2: Magnetization (a), susceptibility (b) and specific heat (c) vs. temperature for a 
homogeneous (having no grains) 2D Ising model with the Metropolis algorithm with different 
values of the lattice size (shown in the legend) . Here, MCST = 50000. 

size scaling techniques can be used to obtain a more accurate value in some cases, but 

for the current work the present methods are adequate. 

In the case of the granular 2D square-lattice Ising model, the situation is somewhat 
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more complicated as there are two different length scales to consider. Here, L' must be 

sufficiently large as it represents a mini-Ising model within each grain. L must also be 

large enough to capture the essential system features. Due to computational reasons, 

it would be exorbitantly expensive to have much more than even L = L' = 20, as that 

would entail160000 spins for every 2D layer which is not feasible, except perhaps in the 

single-layer case (z = 1). As such, Land L' are typically chosen to be smaller while still 

giving the simulation of the relevant physics. In all of the following results, J' = 1. 

Shown in Fig. 2.3 is a graph of the magnetization vs. temperature with the granular 

model using the Metropolis algorithm for a small system size (L = 4, L' = 5) for finite 

and zero J. 

-------·---
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0.2 
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T 

Figure 2.3: Magnetization vs. temperature of the granular Ising model using only the Metropolis 
algorithm for J = 0 and J = 0.1. Large fluctuations are seen near the critical temperature. Here, 
MCST = 50000. 

As can be seen, there are some equilibration issues even when using a reasonably 
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large value of MCSr. While the data is obtained by starting at the highest temperature 

and lowering it, the J = 0 case shows an unexpected behavior, falling to zero near T = 0. 

This is due to the choice of algorithm, as later results do not show this behavior. When 

J =/= 0, there are two different length scales to the problem. While the spins inside a 

grain can equilibrate about as well as they would be able to if the simulation was done 

on a small homogeneous system, the inter-grain correlations are not able to equilibrate. 

To flip an entire grain, the Metropolis algorithm has to go through every spin from the 

grain and flip them. At lower temperatures, the Metropolis algorithm has diminished 

chances to flip spins which makes it even more difficult for the system to equilibrate. 

As equilibrium is required to obtain results of the critical temperatures Tc, different 

simulation techniques were explored to equilibrate the system. A possible solution would 

be to simply raise MCSr; however, this suggestion has the disadvantage of not being 

able to scale well nor does it guarantee good results for values accessible in a reasonable 

amount of computer time. Shown in Fig. 2.4 is the situation for the interactions of a 

single grain with its neighbors. The spins at the edge of the grain are the ones that 

facilitate the grain flipping, but a single spin could flip many times before helping its 

neighbors flip . The single spin at the edge on the right that was flipped has three 

different neighbors coupled with a strong J' interaction that favors the spin flipping 

back to match its own grain's spin direction. 

For larger lattices, the amount of computer time needed to keep a high value of 

MCSr increases very quickly. For the 2D model, the amount of calculations required 

is 0(£2 ) since a linear increase in L quadratically adds to the amount of spins. If 

the grains get bigger, the effect seen in Fig. 2.4 becomes even more pronounced since 

there are even more chances for the progress of the grain flipping to be hampered. It is 

therefore difficult to equilibrate the system using a single-spin-flip algorithm such as the 

Metropolis algorithm. 

The Wolff cluster-flipping algorithm explained in Sec. 1.4.6 provides a more efficient 

alternative to the Metropolis algorithm. The Wolff algorithm, originally designed to help 
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Figure 2.4: Representation of a single grain showing the effort needed to flip it when using only 
the Metropolis algorithm. After a single spin is flipped on the right side of the grain, the system 
ntight be more inclined to flip it again rather than flip the other spins in the grain. 

with critical slowing down, has the advantage of allowing multiple spins to be flipped 

simultaneously and as such allows equilibrium to be reached very quickly. This makes 

it a good choice for what is seen in Fig. 2.3, where there are large fluctuations of the 

magnetization around the critical temperature when grains are added to the model. 

While the Wolff algorithm alone does satisfy ergodicity and detailed balance, it would 

take many iterations to sweep over the entire lattice when the spins are highly disordered, 

such as at high temperatures. Combining the Metropolis and Wolff algorithm results 

in a method that is efficient at both high and low temperature. A single MCS is then 

defined to be one Metropolis sweep of the lattice along with one Wolff cluster, whether 

it flips or not. This hybridization has been studied in the past [28] and proves to be very 

effective for the simple Ising model and it will be shown that it also works well in the 

model for granular media considered in the present work. 
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2.2.2 2D Single-Layer Ising Model Results 

The first simulations for this model were done on a single-layer Ising model to test its 

validity before being extended to the multilayer case. The total magnetization is plotted 

in Fig. 2.5 for different values of J, the inter-grain coupling. In recording media, it is 

estimated that J is 10-100 times smaller than J'. 
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Figure 2.5: Total magnetization vs. temperature in the 2D case with L = 12 and L' = 10 as a 
function of inter-grain coupling J (values shown in the legend). 

It can immediately be seen that the fluctuations in the magnetization calculated from 

the Wolff algorithm are much less than those calculated using the simple Metropolis 

algorithm, especially around the critical temperature. 

The J = 0 case shows a different behavior from Fig. 2.3, settling at around 0.07 

when T = 0. The magnetization at T = 0 when J = 0 can be estimated by noting that 

the grains are completely independent and uniformly magnetized 
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~ ~ N' 
M(N9 ) = ~ M'(i)P(i) = Ng~N9 ~ JN9 - 2i J (Ng _:'~) !i! , (2.5) 

where N9 is the number of grains, M'(i) = J
9 

JN9 - 2iJ is the magnetization when 

there are i grains pointing down and P(i) = ~1 (N~~)' ' ' covers the number of ways 
g g t .t. 

of selecting i grains pointing down (normalized binomial coefficient in factorial form). 

As an example, if there were 2 grains, N9 = 2 and the sum l:~=O accounts for the 

situations of zero grains pointing down, one grain pointing down and two grains pointing 

down. If one grain is pointing down, i = 0, M'(1) = 0 and P(1) = 0.5, as half of the 

configurations occur when only one grain is pointing down. If either both grains are 

pointing down or both grains are pointing up, M'(i) = 1 and P(i) = 0.25. The sum is 

then M(N9 = 2) = M'(O)P(O) + M'(1)P(1) + M'(2)P(2) = 0.25 + 0 + 0.25 = 0.5. For 

N9 = 144, Eq. 2.5 gives 0.0664 which is consistent with Fig. 2.3, while with an infinite 

system, one can expect M(N9 --+ oo) = 0 as the finite size effect is removed. The earlier 

use of the Metropolis algorithm in Fig. 2.3 showed erratic behavior as the temperature 

dropped down, but using the Wolff algorithm gives the expected result, though a much 

higher MCST would allow the Metropolis algorithm to eventually achieve the correct 

result. This shows that using the Wolff algorithm allows a quicker method of reaching 

equilibrium. 

Fig. 2.6 shows the grain magnetization (defined in Sec. 2.1) obtained by simulation. 

The grain magnetization has a shape vaguely similar to the total magnetization and has 

a drop around T = 2. As L' is only 5 or 10, what looks like a finite size effect is seen, 

with a sharper drop for the higher L'. It is also seen in these results, as opposed to the 

total magnetization, that J has very little effect on the grain magnetization. 

Fig. 2.7 shows the susceptibility x (defined in Sec. 1.7) obtained in the same simu­

lation as the total magnetization. Similar to the homogeneous model, the peak in the 

susceptibility provides a good indication on the location of the phase transit ion associ-

ated with Tc, the ordering between the grains. While the estimates of Tc calculated from 
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Figure 2.6: Grain magnetization vs. temperature in the 2D case with L = 12 for two grain sizes 
L' = 5 and L' = 10 and two values of J = 0.01 and J = 0.1 as shown in the legend. 

the magnetization data are consistant with those obtained from the susceptibility, the 

susceptibility often provides a slightly more accurate method to obtain Tc. 

Fig. 2.8 shows the specific heat C (defined in Sec. 1. 7) obtained in the same simulation 

as the other quantities. The specific heat for the granular model, much like the one for 

the homogeneous model, has a very distinct peak around a temperature that is defined 

here as T~ . 

There are several important points to note about T~. Firstly, it occurs above the tran­

sition temperature Tc obtained from the magnetization/susceptibility data. Secondly, 

it corresponds loosely to the temperature at which grain magnetization drops rapidly. 

Finally, unlike Tc, it is almost independent of the value of J. A close examination of the 

data shown in Fig. 2.8 also reveals some secondary peaks. The location of these peaks 

depends on the value of J and corresponds to the peaks in the magnetic susceptibility 
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Figure 2.7: Susceptibility vs. temperature in the 2D case with L = 12 and L' = 10 as a function 
of inter-grain coupling J (values shown in the lengend). 

Another way to draw meaning from the results is by looking at the spin configurations 

at specific points of the simulation. Fig. 2.9 shows one spin configuration for the 2D 

Ising model at a specific point in the simulation. The spin configuration shows the spins 

to be highly ordered within the grain, while the grains themselves show a considerable 

degree of disorder. In effect, the temperature of the system at that time is below T~ and 

above Tc. When the temperature of the system is much higher than both Tc and T~, 

all the spins of the lattice are disordered. As the temperature lowers to reach T~, the 

spins inside grains align to become correlated. This is what is seen in Fig. 2.9, where the 

grains are "mostly black" or ''mostly white". The grains, however, remain uncorrelated 

such that a ''mostly black" grain might or might not have a ''mostly black" neighbor. 

As the temperature lowers even more to reach Tc, the grains themselves order and the 
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Figure 2.8: Heat capacity vs. temperature in the 2D case with L = 12 and L' = 10 as a function 
of inter-grain coupling J (values shown in the legend). 

entire lattice has a preferred spin direction. It is seen in the snapshot that the different 

grains are mostly uncorrelated, as expected for T > Tc. This is reflected in the total 

magnetization graph, where above Tc the system magnetization is effectively very small. 

These various quantities provide different approaches to draw results from the sim­

ulation, but in order to relate to the initial hypothesis of the effect of approximating 

grains as a single spin, some assumptions must be probed. If a single grain can safely 

be treated as uniformly magnetized, it is expected that approximating grains by single 

spins in this model would be analogous to the homogeneous model, with single lattice 

sites interacting with neighbors with some effective exchange constant of ex J. By plot­

ting Tc in the granular model for different values of the exchange constant J, the linear 

relationship between the effective exchange constant and J can be tested. 

Fig. 2.10 shows Tc vs. J obtained from Figs. 2.5 - 2.8 with L' = 5 and L' = 10. 
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Figure 2.9: Spin configuration in the 2D case with L = 12 and L' = 10 using J = 0.03 at 
T = 1.79 forT~ :::::: 2.0 and Tc :::::: 0.6. Up and down spins are shown as black and white points 
and grain boundaries as grey lines. 

For both cases, with low values of J, Tc shows a linear dependance on J, but for larger 

values of J the transition temperature deviates significantly from linear behavior. The 

effect is even more pronounced for the higher L' case, with a deviation starting at a 

lower value of J. The slope of the lines for L' = 5 and L' = 10 were respectively 11.4 

and 23.37. These values are not, in fact, 2.269. To explain this behavior, a new quantity 

Jeff is introduced as 

Jeff = JL'. (2.6) 

This quantity allows a description of the exchange interaction J while being independent 
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Figure 2.10: Tc vs. J in the 2D case with L = 12 and L' = 5 for Fig. (a) and L' = 10 for 
Fig. (b) . 

of L'. In micromagnetics, this can be taken into account by the exchange interactions 

scaling according to the cross-sectional area between grains. It is then seen that the 

slope of the linear section is in fact close to 2.269Jeff. These results thus suggest that J 
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times the number of spins along a side of the grain gives an effective measure of inter­

granular exchange in the single-layer case. They also show that there can be significant 

deviations from a linear relation between Tc and J . To better understand this effect, 

simulations were undertaken on a multi-layer thin film model. 

2.2.3 Results for Multilayer Systems 
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Figure 2.11: Magnetization vs. temperature for different values of J shown in the legend. Here, 
L' = 10 and z = 10. 

Similar to the single layer case, examples of results for the total magnetization, sus­

ceptibility and specific heat used to estimate T~ and Tc for the multilayer (z > 1) granular 

Ising model are plotted in Figs. 2.11 - 2.13. Within the accuracy of the simulations, the 

values ofT~ are insensitive to the specific value of J, depending only on the variables z 

and L'. 

Just as in the single layer case, the critical temperature of the grains Tc can be 
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Figure 2.12: Susceptibility vs. temperature for different values of J shown in the legend. Here, 
L' = 10 and z = 10. 

plotted as a function of J to observe what is expected to be a linear regime. It was 

noted in Eq. 2.6 that an effective J is used that takes into account the amount of spins 

on one side of the grain, L'. For the multilayer model, the number of spins in a grain is 

L 12z. If a grain is to be approximated by a single spin, this entails that the multilayer 

system reduces to a simple single layer model with each grain represented by a single 

spin. The spins denoting the single grains will couple through an effective exchange 

constant which was labeled Jeff, such that Jeff <X J. For the single-layer model, the 

constant of proportionality is L', the amount of spins on one side of the grain; this is the 

number of spins for a single grain that interact with its nearest grain neighbor. For the 

multilayer model, the number of spins of a single grain that interact with one neighbor 

grain is now L' z . This situation is shown in Fig. 2.14. 

As such, for the multilayer model Jeff is defined as 
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Figure 2.13: Heat capacity vs. temperature for different values of J shown in the legend. Here, 
L' = 10 and z = 10. The boxed area approximate the location of the peaks. 

Jeff= JL'z. (2.7) 

The critical temperature of the grains Tc can then be plotted against Jeff to test 

this conjecture. Fig. 2.15 shows this for a few different simulation parameters. Again, 

with low values of J, Tc shows a linear dependence on J, but for larger values of J 

the transition temperature deviates significantly from linear behavior. The slope of the 

linear regime is 2.27 which is very close to the expected result of Tc ~ 2.269Jeff of the 

2D Ising model. This result confirms what was observed for the z = 1 case. 

While the 2D model has a critical temperature Tc ~ 2.269 which can be determined 

exactly, the full 3D model cannot be solved, but the critical temperature has been 

estimated by Monte Carlo simulations [29] to be Tc ~ 4.512J. This implies that, in the 
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Figure 2.14: Two uniform Ising grains, each having 5 x 5 x 5 spins with one having spins pointing 
up and the other having spins pointing down. The light red area on the left grain shows the spin 
that interact with the grain on the right. The area encompasses L' z = 25 spins such that here, 
Jeff= 25J. 

case of a homogeneous multilayer film of thickness z, the transition temperature Tc(z) 

is such that Tc(1) = 2.269 < Tc(z) < Tc(oo) = 4.512. A model function to explain 

multi-layer effects has been proposed based on finite-size scaling arguments [30] given 

by 

b a 
Tc(z) = Tc(oo)[1- - 11 (1--)] = Tc(oo)f(z) . 

z v z 
(2.8) 

Simulations determined that fairly accurate values of the parameters a, b and v were: 

a = 1.37572, b = 1.92629 and the 3D Ising critical exponent v = 0.6289. This function 

is plotted in Fig. 2.16 and is considered accurate for z > 3. 

While Eq. 2.8 is for a model with infinite spins in two of the dimensions, it allows 

a good comparison to simulations for multilayer models. It does not account for the 
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Figure 2.15: Tc vs. Jeff in the multi-layer case for different J, L' and z (values shown in the 
legend). Straight line has a slope of 2.269 ~Tel J eff for the 2D model. 

granular model, but modifications can be made to formulate a model to compare with 

simulation results. 

To estimate T~(L', z), it is noted that the correlation length for the 2D Ising model 

is given asymptotically by [31] 

(2.9) 

As the temperature nears the critical temperature, the correlation length diverges 

towards infinity; however, for the finite granular model, it cannot extend further than 

L'. As such, an estimation ofT~ can be made with the condition e'(T~(L', z)) ~ L'. 

Setting T~ = Tc(z) from Eq. 2.8, an expression is obtained for T~(L' , z ) 
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Figure 2.16: Plot of Eq. 2.8 showing the expected Tc as a function of z. The equation is only 
valid for z > 3. 

I I T~(z) 
Tc(L ' z) ~ 1 + T/;(z )j4J1 L1 ' 

(2.10) 

Eq. 2.10 is an approximate extension of Eq. 2.8 for the granular model. Data obtained 

from applying it, along with simulation results, are included in Table 2.1 for L1 = 1, 

5, 8 and 10. Despite the approximate nature of Eq. 2.10, comparisons show reasonable 

agreement with the simulation data. 

This analysis suggests that for T « T~, the correlation length is very small com­

pared to L 1 and the magnetization within a single grain can approximately be consid-

ered uniform and close to saturation. This suggests that the approximation of uniform 

magnetization within a grain is reasonable if Tc « T~. 
Within the Ising model (at H = 0), a uniformly magnetized grain pointing either up 
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L' 5 8 10 L'= oo (J' = 1) 
z= 1 1.78(2.04) (2.12) 2.04(2.15) (2.2 69) 
z=5 3.15(3.35) (3.57) 3.65(3.66) 4.03 ± 0. 01(4.028) 
z =8 (3.50) 3.7(3.75) (3.84) 4.25 ± 0. 05(4.246) 

z = 10 3.4(3.55) (3.80) 3.9(3.90) 4.32 ± 0. 01(4.317) 

Table 2.1: Intra-grain order temperature T~ at which the peak in the heat capacity occurs as 
a function of the grain dimensions L' and z. The values in parentheses are calculated from the 
scaling relations from Eqs. 2.8 and 2.10. 

or down contibutes the same energy amount to the system Hamiltonian. This energy, 

Eo, can be directly calculated as follows: 

1. For a grain with L12z spins, each spin has six nearest neighbor interactions with 

energy - J'. However, since each interaction is counted only once, this is a total 

energy contribution of - 3J' L12z. 

2. The spins on the top and bottom layer do not follow periodic boundary conditions 

and so an energy contribution of - J' £ 12 is not counted. 

3. Similarly, as the calculation is done for the internal energy, the J interactions spins 

at the four grain edges are not counted. A total of 2 x (-J' L' z) is to be taken out 

of t he energy contribution. 

4. The internal energy of a uniform grain is then Eo = - 3J' L 12 z- (-J' L 12 - 2J' L' z) = 

- J'(3zL12 - L'(L' + 2z)). 

If every grain in the model is assumed to be uniformly magnetized, a single spin variable 

a I can be made to represent each one. These ai interact with neighbor grains with an in­

teraction Jeff= JL'z from Eq. 2.7. The granular Hamiltonian within the approximation 

is then given by 

£2 

'Hgrain =Eo- J eff L f7If7I' · 

(II'} 
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----- ----- ------------------

This 2D model would have a critical temperature Tc given by Tc ~ 2.269Jeff. The 

deviation from this model is shown in Fig. 2.15. 

It is possible to quantify, approximately, the region of validity for the uniform grain 

approximation using T~(z, L) » Tc(z, L) as a criterion. Substituting Eq. 2.8 into Eq. 2.10 

'( , ) 4.512J' f( z ) 4.512J' f(z) '!( ) 
Tc L ,z ~ 1 + 4.512J'f(z)/4J'L' ~ 1 + 1.128f(z)/L' ~ 4.512J z » 2.269Jeff· 

(2.12) 

With J' = 1, f( z) ~ 1 and for sufficiently large L', this reduces to Jeff «: 2.0, which is 

consistant with the results plotted in Fig. 2.15 where the deviation happens at around 

Jeff~ 1.0. For z = 1, !(1) ~ 2.269/4.512 ~ 0.5 and Jeff = JL'z = JL', the inequality 

reduces to J «: 1.0/ L' which is consistant with results plotted in Fig. 2.10. While this 

approach is very approximate, it does appear to be consistent with obtained simulation 

results. 
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Chapter 3 

Ising Model With External 

Magnetic Field 

3.1 M-H Loops: Background 

Having a nonzero external magnetic field in the Ising model allows for the study of a 

slightly more complicated system, as the lattice loses its ground state symmetry. When 

H = 0 and T = 0, the energy of the system is the same if the spins are all pointing in 

t he up direction or if they are all pointing down. As a consequence, the total system 

magnetization M(T ) of Eq. 1.23 was defined so as to take the absolute value of the sum 

of the spin magnetizaions, to reflect this symmetry. When H #- 0, the spins want to 

align themselves in the direction of H due to the Zeeman energy - M · H , thus removing 

this degeneracy. In this case, it becomes important to differentiate between the spins 

pointing in one direction or the other. The total system magnetization when studying 

the Ising model with an external magnetic field is thus defined as 

(3.1) 

By adding a magnetic field to the Ising model, it is also possible to study hysteresis 
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by varying Hand observing t he effect on M. A useful property that characterizes the 

degree of hysteresis is t he coercivity (He), defined as the magnetic field at which the 

magnetization falls to zero. This is illustrated in Fig. 3.1, showing a hysteresis loop 

obtained on a homogeneous 2D Ising model. 
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Figure 3.1: Hysteresis loop of the homogeneous 2D Ising model, showing the coercivity on both 
sides, where the magnetization sharply changes direction. 

A material with high coercivity implies a robustness to superparamagnetic fluctu­

ations, as a stronger magnetic field is needed to induce a flip in magnetization. For 

hard-drive recording media, this is essential so as to securely hold information in the 

magnetization of the bits. The coercivity depends on the temperature, falling to zero at 

the critical temperature. As HAMR relies on heating the material to high temperature, 

t his implies a temporary lowering of the coercivity to be able to change the bit direction 

with an external field. To correctly model this process, it is essential to take into account 

the spin degrees of freedom internal to media grains, especially at temperatures close to 
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the critical temperature T~ . This can be modeled using the granular Ising model, the 

principal focus of this thesis. 

While it is certainly the case that Monte Carlo simulations show hysteresis below the 

critical temperature (as was shown in Fig. 3.1), its interpretation is not as straightfor­

ward, as hysteresis is a non-equilibrium, dynamical process. In the case of the classical 

Heisenberg model, it is possible to link the Metropolis algorithm to Langevin micromag­

netics through the Fokker-Planck equation [32, 33], and hence relate the coercive field 

obtained from simulation results to experimental measurements. Unlike the classical 

Heisenberg model, the Ising model does not have any intrinsic dynamics associated with 

it [34], and thus simulation results shown in this chapter illustrate some useful trends 

regarding the impact of the inter-grain degrees of freedom on Hc(T) and serve as an 

initial step towards a more realistic treatment based on the more general Heisenberg 

model. 

3.2 Simulations 

3.2.1 Homogeneous Ising model 

Shown in Fig. 3.2 is a hysteresis loop of the homogeneous (J = J') 2D single-layer Ising 

model for two different values of J = J', 0.64 and 2.24 with T fTc :::::: 0.21 calculated with 

the Metropolis algorithm. Graphing M vs. H / J', the data collapse onto a single curve. 

This implies that the coercivity depends linearly on J' , as might be expected from 

simple scaling arguments. Fig. 3.3 shows the coercivity vs. temperature, illustrating the 

expected result that He -+ 0 at T~. These results provide a baseline for simulations of 

the granular model. 

3.2.2 Metropolis and Wolff Algorithms 

In the case of the granular model, where there are large differences between the intra­

and inter-grain exchange parameters J' and J , the equilibration times for T < T~ are 
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Figure 3.2: M-H loops for the homogeneous 2D Ising model using the Metropolis algorithm with 
M plotted as a function of H / J' for similar values ofT / Tc. 

strongly dependent on the choice of algorithm. In the case of the simple Metropolis 

algorithm, the acceptance rate for spin reversal drops off dramatically for T « T~. 

As a consequence, the number of Monte Carlo steps required to reverse a single grain 

increases significantly at low temperatures and, in order to reverse the magnetization, 

the simulation requires either large fields or many Monte Carlo steps. On the other 

hand, the Wolff algorithm, used to study the magnetization in the previous section, 

equilibrates in a reduced number of Monte Carlo steps by reversing large clusters. This 

yields a coercive field that is close to zero even down to the lowest temperature. These 

two situations are illustrated in Fig. 3.4 where Fig. 3.4(a) gives He vs. T when using only 

the Metropolis algorithm and Fig. 3.4(b) shows an M vs. H plot using the Metropolis 

combined with the Wolff algorithm. 

There are a number of points worth noting from the coercivity field plotted in 
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Figure 3.3: He/ J vs. T fTc of the homogeneous 2D Ising model calculated with the Metropolis 
algorithm for two values of J = J' shown in the legend, giving the same profile. 

Fig. 3.4(a). For example, the data show the coercivity dropping to zero at around 

T = 3.7, which corresponds to the T~ of the system, as seen in Table 2.1. This is well 

above the value of Tc, where the total system magnetization goes to zero as would be 

expected. The data also show a systematic decrease in the coercivity with increasing 

MCST. Finally, it is noted that the shape of this Hc(T) curve is very similar to cor­

responding results from micromagnetic simulations on an anisotropic Heisenberg model 

system of nanoparticles (35]. In contrast to the coercivity data shown in Fig. 3.4(a), the 

M-H loop obtained using the Wolff/Metropolis algorithm, shown in Fig. 3.4(b), exhibits 

no (or negligible) hysteresis. 
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Figure 3.4: Fig. (a) shows He vs. T with only the Metropolis algorithm for the granular 
multilayer model, falling to zero at T~. Fig. (b) shows the first part of an M-H loop with the 
original Wolff/Metropolis algorithm for T = 0.5 having the same parameters as Fig. (a) with 
MC~ = 5000. Here, J' = 1, J = 0.01, L = 8, L' = 8, z = 8 and MCST is shown in the legend 
for Fig. (a). 

3.2.3 Wolff Grain Algorithm 

The goal is then to develop a new algorithm specifically for this model which explicitly 

takes into account the grain flipping dynamics. A modified version of the Wolff algorithm 
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is developed, where a virtual cluster is not allowed to extend past a grain boundary which 

essentially means that a single application of this algorithm will never flip more than 

one grain. This Wolff grain algorithm const ructs the virtual cluster in the same manner 

as the original Wolff algorithm, but sets J = 0 when considering spins at t he edge, 

though only when constructing the cluster and not when calculating the energy. As 

single spins can still be considered, ergodicity is satisfied. The linking probabilities and 

the acceptance ratio are then determined so detailed balance is satisfied. 

As the clusters are constructed in almost the same fashion, only the border spins of 

the virtual cluster will have an impact on g(a, b) and g(b, a), just like the original Wolff 

algorithm, and ,6.E does not change. From the derivation of detailed balance for the 

Wolff algorithm with J' and J of Sec. 2.1, detailed balance is given by 

P(a, b) _ go(1- PJ)m(l- PJ' )m' A( a, b) _ - (36.E 
---- -e . 
P(b,a) go(1- PJ)n(l- PJ' )n' A(b,a) 

(3.2) 

Since spins at the border of the grain are not considered, PJ is set to zero. Thus, 

(3.3) 

It can be seen that the dependence on m and n cannot be fully removed by a simple 

choice of PJ'· However, choosing again PJ' = 1- e- 2f3J' does allow t he dependence on 

m' and n' to be removed, so that 

A(a,b) = e-2(3[J(m-n)+kHSi]. 
A(b,a) 

(3.4) 

This is more complicated due tom and n, which have to be tabulated. In the code, 

they are counted when the cluster is building as PJ (which is 0) is applied and the 

exponential can easily be calculated. The choice of A( a, b) and A(b, a) will depend on 
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whether { -2,8[J(m - n) + kHSi]} > 0 or not, with a positive exponent case causing 

A(b, a) to be set to 1 and A( a, b) to be e-2.B(J(m-n)+kHS1] and a negative exponent causing 

a switch in A(b, a) and A( a, b). To implement the acceptance ratio, m, n and then the 

exponential must be calculated in every case; if the exponential is greater than unity, 

the cluster is flipped. If it is smaller, generate a random number to compare with, much 

like the other algorithms. For similar reasons as the Wolff algorithm, this algorithm is 

used alongside the Metropolis algorithm, in the same ratio. 

The motivation behind this modified Wolff/Metropolis algorithm involves the as­

sumption that the spins within a single grain equilibrate much more rapidly than the 

grains themselves, which is particularly true for T < Tc when the spins are mostly aligned 

in grains. The use of the Wolff algorithm to treat the spins within a grain ensure that 

the grains maintain a "quasi-equilibrium" as the grains themselves order in response to 

the applied magnetic field. 

3.2.4 Granular Model Simulation results 

For the model with no external field of Chap. 2, Jeff was defined to represent a grain 

face or area which allowed a data collapse for systems of different sizes. Upon adding 

an external field, an effective H can also be defined, Heff. When looking at a single 

grain, Jeff corresponds to the interaction between its own magnetic moment Mi and the 

Mj magnetic moments of its neighbor grains. When concerned with the Zeeman term 

involving - H · Mi, the energy dependency on the grain volume is considered. In an 

effective model where the grains are taken as a giant single spin, Jeff is the coupling 

constant between a grain moment and its neighbor while Heff is the field that affects a 

single grain moment. AB such, for grains composed of L12z spins, 

(3.5) 

Just like the graphs of Chap. 2 which were plotted vs. Jeff, the data here are plotted 
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as a function of Heff instead of H. Using the modified algorithm, M-H loops were 

calculated for various values of J and lattice dimensions L x L' = 100 and z = L'. The 

magnetization data are plotted in Fig. 3.5 as a function of the ratio Heff / Jeff using a 

range of parameters J and L' which give similar values of the ratio T fTc. Data for the 

homogeneous model from Sec. 3.2.1 are also included in Fig. 3.5 for comparison. 
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Figure 3.5: M-H loops calculated using the modified Wolff algorithm with the magnetization 
plotted as a function of Heff /Jeff for values ofT /Tc ~ 2/ 3 using a range of J eff and L' shown in 
the legend for the single-layer granular Ising model (z = 1). The data for the homogeneous 2D 
Ising model are also shown. 

Roughly, a data collapse is expected for small Jeff, much like the granular model with 

no field, with a significant deviation for larger values of Jeff . A complete data collapse is 

not seen in Fig. 3.5, but the coercivity is in a reasonable range given the variation in J', 

L' and z . There also does seem to be a general increase in He for higher values of Jeff. 

To better illustrate the change in coercivity, Fig. 3.6 shows H~/Jeff vs. T / Tc using 

the data in Fig. 3.5, where H~ff = HcL12z , as an analog to Eq. 3.5. The same effect of 
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Figure 3.6: Plots of the scaled coercive field Hi ff / Jeff plotted as a funct ion ofT / Tc for several 
values of Jeff and L' shown in the legend for the single-layer granular Ising model (z = 1). The 
data for the homogeneous 2D Ising model are also shown. 

stronger inter-grain coupling is seen here as previously at H = 0: a higher Jeff causes a 

stronger deviation (higher H;ff /Jeff) from the homogeneous 2D model data. For seperate 

values of L' and Jeff, Monte Carlo simulations with the Wolff grain algorithm do provide 

reasonable qualitative estimates of the coercive field. The non-linear effect seen in the 

model with no external magnetic field isn't as clear to see here, but it does seem as though 

the quasi-dynamics implied by Monte Carlo simulations are affected by the internal spin 

degrees of freedom of the individual grains. To better understand these effects in real 

magnetic recording media, the more realistic Heisenberg model with anisotropy is studied 

in Chap. 4. 
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Chapter 4 

Heisenberg Model 

4.1 Heisenberg Model Simulat ion 

While t he Ising model does capture many of the essential features of highly anisotropic 

materials used in magnetic recording media, it cannot quantitvely be used to model dy­

namical and non-equilibrium properties. Dynamical effects of magnetic materials can be 

successfully simulated using the Heisenberg model. Unfortunately, the Heisenberg model 

is computationally more demanding than the Ising model and many of the methods used 

to simulate the Ising model are not readily generalised to the more general Heisenberg 

model. 

Due to the additional computational demands associated with the Heisenberg model, 

simulations typically involve either a smaller MCST or a smaller system size. As the 

system size has a drastic effect on the run time of the program, smaller lattices are 

often used in the simulations while still trying to maintain a size big enough to capture 

accurate results. 

4.1.1 Energy 

The Heisenberg model described in Chap. 1 was given as 
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1t =-I: Jijsi · s1 - I:H. si- Kl:(St)2
. 

(ij) 

( 4.1) 

Spins Si in the Heisenberg model are represented as three-dimensional unit vectors. 

The spin direction can be represented in spherical coordinates (r, B, </>) with r = 1. In 

particular, since the spin vectors Si are not represented by discrete variables, the Boltz­

mann factor can no longer be simply described in terms of a simple and computationally 

efficient lookup table as described in Sec. 1.4.5, but instead requires a direct calculation. 

4.1.2 Magnetization 

For the Heisenberg model, the magnitude of the total system magnetization is defined 

by 

M(T) = ~ ( (L sx)2 + (L SY)2 + (L sz)2) ' 
N N N 

(4.2) 

while the magnitude of the grain magnetization, used for the granular model, is given 

by 

(L s x)2 + (L SY)2 + (L sz)2) ' 
NCI NCI NCI 

(4.3) 

where the I are the different grains on the lattice. 

The direction that the spins point does not influence the order parameter , e.g., all 

the spins pointing in the z axis or all the spins pointing in the y axis will both give 

M(T) = 1. When the external magnetic field or the anisotropy is nonzero, the spins 

then have preferred direction. 

4.1.3 Specific Heat and Susceptibility 

The specific heat is defined the same way as the Ising model through energy fluctuations, 

though the calculation of the energy differs for the Heisenberg model. The susceptibil-
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ity is a tensor with longitudinal and transverse components which can be calculated 

from spin fluctuations. For the present case, only the longitudinal component is con­

sidered which is defined the same way as the Ising model with the magnetization and 

magnetization squared defined as per Eq. 4.2. 

4.2 Monte Carlo Algorithms for the Heisenberg Model 

4.2.1 Metropolis 

T he Metropolis algorithm used in the Ising case can be generalized to the Heisenberg 

model with t he spin flips, that define the Markov process in the case of the Ising model, 

replaced by a random rotation of the unit spins. Some care has to be taken to ensure 

t hat the random rotation generates a probability distribution that is uniform over the 

unit sphere. It can be shown [24] that this may be achieved by selecting the coordinates 

of the randomized spin such that z = cos () is distributed uniformly over the interval 

( - 1, 1) and ¢is distributed uniformly over the interval (0, 1r). To achieve this, () itself 

is not uniformly generated, but comes from the distribution() = arccos(1 - 2R), where 

0 ~ R ~ 1 is uniformly generated. 

T he steps then for the Metropolis algorithm for t he Heisenberg model can be stated 

as: 

1. Pick a random spin on the lattice. 

2. Calculate the energy of the system. 

3. Generate two random numbers, 0 ~ R < 1 and 0 ~ ¢' < 21r. 

4. Generate a new ()' = arccos(1 - 2R) 

5. Calculate the energy if t he spin Si is now defined by r = 1, ()' and ¢'. 

6. Calculate flE, the difference in energy between this energy and the previous one. 
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7. Calculate the Boltzmann weight, w = e-f3D..E. 

8. Generate a third random number r such that 0 ~ r < 1. 

9. If r < w, flip the spin. If not, do nothing. 

4.2.2 Wolff Algorithm 

The changes required to adapt the Wolff algorithm to the Heisenberg model are some­

what more involved than those required to adapt the Metropolis algorithm described 

previously. The same basic idea is used, where a virtual cluster is constructed, but de­

termining which spins can be added to the cluster is not as simple, as the binary choice 

of a cluster having spins pointing up or down cannot be applied. To get around this, an 

Ising-like variable is associated with the spin direction so that one can apply the same 

logic [26, 36]. Considering a single spin and the plane perpendicular to its spin direction, 

all the vectors that point in the same side of this plane have the same Ising-like spin 

variable o = + 1. All the vectors pointing the other direction of the plane are considered 

to have o = - 1. All the spins on the lattice can then be compared to a specific plane to 

check if they possess the same o as the other spins. 

The actual implementation of the Wolff Heisenberg cluster algorithm considers both 

a seed spin Ss and the plane perpendicular to a seed unit vector Us , which are both 

chosen randomly for every iteration of the Wolff algorithm. The easy way to determine 

which side of a plane a spin is pointing is with the scalar product, such that if Ss ·Us > 0, 

Os = + 1 and if Ss · Us < 0, Os = -1. When considering whether to add a spin Si or not 

to the virtual cluster, the first step is to compare Os with oi: if Os =f. oi, the spin Si is not 

be added to the cluster. 

If, however, Os = oi, the spin is added with a certain probability, the linking proba­

bility. This probability is not t he same as in the Ising model: to satisfy detailed balance, 

it becomes 
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(4.4) 

where Si is the spin whose neighbor, Sj, is the spin that might be added to the cluster. 

As spins are not added to the cluster if they do not share the same~' the exponent will 

always be negative and PJ will thus vary between 0 and 1. The derivation of PJ is not 

as simple as the Ising case, but its verification is straightforward. 

The spin Si = Sfx+Sfy+Stz can also be expressed as Si = s:''u8 +S~~u's +S~~ ~" s 

where u'8 and ~" 8 are unit vectors perpendicular to us, and s:'' can also be written 

as Si ·us. Upon reflection of the spin by the plane perpendicular to u8 , Si becomes 

S/ _ Cf'U1 ... SU~ ""1 SU~ ""11 
i- -,;,i Us+ i U s+ i U s· 

As the spin Si does not change upon the reversal of Si, D.Si is then D.Si = Sj- Si = 

0. For Si, it is found that D.Si = S~ - Si = -2s:'•us = -2(Si · us)u8 • This also 

explicitly shows the step needed to actually flip the spin, given by the reflection equation 

S~ = Si- 2(Si · u 8 )us. The energy change associated with nearest-neighbor interactions 

caused by this one spin's reversal, due toE = -J I: Si · Si is given as, for one neighbor's 

contribution, 

D.Ei = -J(S~ · Sj - Si · Si) 

= -J[(S~- Si) · SiJ 

= 2J(s:'' Sj•) 

= 2J(Si · u8 )(Sj ·Us)· 

From this, the factor e- f3t:.E1 becomes 
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While this is only for one neighbor, consideration for the other nearest neighbors will 

only add an exponent factor, much like it did with (m- n) in the Ising case, which 

cancelled out. 

Once the virtual cluster is constructed, it is flipped with a certain probability, the 

acceptance ratio A. The definition of flipped here is, of course, different from the Ising 

model and different from the Heisenberg implementation of the Metropolis algorithm. In 

the same vein as the Ising-like spin variables, flipped spins merely undergo a reflection in 

the plane perpendicular to Us. As Us is completely randomly generated at each iteration 

of the Wolff algorithm, the clusters built will often times be vastly different. 

The acceptance ratio A will, just like the Wolff algorithm for the Ising model, depend 

on the energy due to the magnetic field. Furthermore, the energy associated with the 

anisotropy will also play a role, though its effect is very similar in nature to the magnetic 

field. Every spin that gets flipped changes the magnetic field and anisotropy contribution 

to the energy in a different way, so that to account for them, a running tally is kept. 

For the Zeeman term, the effect of the cluster's reversal is 

For the anisotropy, a simple expression such as the one for the magnetic field cannot be 

found, but rather is expressed as 

Due to the squared terms, this cannot be simplified; however, it can be computed directly 

by calculating s? - s~ for every spin in the cluster and then adding them up. 

The acceptance ratio is then A = e-f3(D.EH+D.EK) which becomes 
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The steps needed to apply the Wolff algorithm for the Heisenberg model can then 

be summarized as: 

1. Select a random seed spin 8 8 and generate a random unit vector ii8 • 

2. Calculate the reflection of the spin from the plane that is perpendicular to ii8 • 

3. Calculate 88 = sgn(Ss · iis)· 

4. Look at all the nearest neighbors of the seed spin and for each one, calculate their 

8i in the same way. 

5. If 88 = 8j, add the spin to the cluster with probability PJ. 

6. For each spin added to the cluster, look at their nearest neighbors and follow the 

same procedure until there are no more spins considered. There can be multiple 

opportunities for spins to be added to the cluster due to the way the cluster is 

constructed. 

7. Generate a random number 0 ~ r < 1 and calculate the acceptance ratio A. 

8. If r <A, reflect every spin Si in the cluster using S~ = Si- 2(Si · ii8 )ii8 • 

When applying the Wolff algorithm to the granular model, the only change is again 

with PJ' and PJ. This proves to be quite efficient at helping the system equilibrate. 

4.3 Heisenberg Model Simulation Results 

One important distinction between the Ising model and the Heisenberg is that, unlike 

the Ising model, the 2D model with H = 0 and K = 0 does not exhibit long-range 

magnetic order for T > 0. In order to study the effects of granularity in the Heisenberg 

model, the 3D case and the 2D case with finite perpendicular anisotropy are considered 

here. Out of convention, K = z defines the perpendicular anisotropy. 

66 



The ultimate goal for this study in examining the Heisenberg model concerns thin 

films, with a multilayer model. For comparative purposes, simulations were done on 

the 3D model, as it does have a phase transition for non-zero temperature at K = 0. 

Simulations were then done on the granular multilayer Heisenberg model, with results 

from the single-layer case for comparison. 

4.3.1 3D Heisenberg Model 

Homogeneous Model 

Fig. 4.1 shows an example of the magnetization for different values of J in the homoge­

neous 3D model with K = 0. Here, L = 10 and MCSr = 10000 using the Metropolis 

and Wolff algorithms. 
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Figure 4.1: Magnetization vs. temperature for different values of J = J' shown in the legend 
for the homogeneous 3D Heisenberg model with K = 0. 

Despite the small system size and small number of Monte Carlo steps, clear evidence 

of the phase transition can be seen in the magnetization curves. Compared to the 

Ising model, the total magnetization below Tc is lower and remains well below 1 over 
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a larger range of temperatures. By looking at Fig. 4.1, Tc can be approximated to be 

slightly below 1.5J by looking at where the magnetization extrapolates to zero, which 

is consistent with the most accurate calculations of Tc ~ 1.443J for the isotropic 3D 

classical homogeneous Heisenberg model [36] . 

Granular M odel 

While the results presented in Fig. 4.1 show that the implementation of both the 

Metropolis and Wolff algorithms successfully reproduce the results for the homogeneous 

model, as indicated in the introduction, magnetic recording media are highly anisotropic. 

The anisotropy energy of a grain scales linearly with its volume, EK ex KVg , and it has 

been estimated that K values in the range 0.001 < K < 0.1 (assuming J' = 1) are 

relevant to real media. In the present work, larger values are also considered for com­

pleteness. It is anticipated that, as was the case for J and H , a Keff can be defined to 

describe the anisotropy's effect on grains, as will be shown below. 

To better visualize the granular Heisenberg model, Fig. 4.2 shows an 80 x 80 x 80 spin 

(L' = 5, L = 16) cube with the magnetization given by arrows drawn from a colormap. 

This particular picture was taken at the end of a MCSr = 100000 run. It shows that 

while the individual spins within the grains are ordered, the grain themselves are not. 

The magnetization in the Heisenberg model with grains (J = 0.01) and strong 

anisotropy (K = 10) is shown in Fig. 4.3. A small system size (L = 2, L' = 5) is 

used as these simulations were done with the 3D lattice. 

It is seen that the system exhibits a large fluctuation in the total magnetization M 

forT< 2.2. However, these large fluctuations are not present in the grain magnetization 

M 9 , which suggests that the spins inside the grains align themselves as expected, while 

the weakly-coupled grains do not exhibit long-range magnetic order. 

Fig. 4.4 shows the effect on the magnetization caused by changing the anisotropy by 

several orders of magnitude. A lower anisotropy reduces the effect of the fluctuations 

as well as the transition temperature. The larger fluctuations at high K are a result 
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Figure 4.2: Granular 803 spin Heisenberg cube showing the magnetization with the positive z 
pointing perpendicular to the top face of the cube. Here, L' = 5 and L = 16. A purple color 
represents a negative z spin direction while a blue-green color is the positive z spin direction. 

of a reduction in the Monte Carlo acceptance probability due to an increase in uniaxial 

anisotropy which tries to keep spins pointing along one axis. 

Fluctuations 

To study the effects of thermal fluctuations, extended runs of the magnetization vs. 

MOST for larger systems were performed at different values of K at specific temperatures. 

This is done to determine the values of MOST, system size and K that can be used in 

order to obtaine reliable results. Fig. 4.5 shows the equilibration when K = 10, which 
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Figure 4.3: Total magnetization (M) and grain magnetization (M9 ) vs. temperature for the 3D 
granular Heisenberg model. Here, L = 2, L' = 5, MCST = 25000, J = 0.01 and K = 10. 

1 

0 .9 

0.8 

0 .7 

0.6 

~ 0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 0.5 1 1.5 2 2.5 

T 
3 3.5 4 

• • .... 
)IE 

0 
+ 

4.5 5 

Figure 4.4: Total magnetization vs. temperature for different values of the anisotropy shown in 
the legend. Here, L' = 5, L = 2 and J = 0.01 for the 3D model. 

has big fluctuations, also seen in Figs. 4.3 and 4.4. 

The temperatures were chosen to be around or below Tc (which seems to be located 
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Figure 4.5: Magnetization vs. MCS for Fig. (a) T = 1.5 and Fig. (b) T = 1.0. Here, L' = 5, 
L = 8, J' = 0.01 and K = 10 for the 3D model. The different data series represent independent 
runs. 

between T = 1.5 and T = 2), where the grains should begin to correlate and the 

fluctuations are largest. For both temperatures, three different runs are shown in Fig. 4.5, 

which are expected to give the same average magnetization after discarding MCSo steps. 
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What is seen is t he magnetization reaching a value near its average very quickly (less 

than 1000 steps), but the average magnetization is not the same for the three runs. 

Even though these runs are done for a large MCSr = 100000, the magnetization does 

not stabilize. Discrete steps are seen where the magnetization hovers around a specific 

value for several thousand steps before jumping to another value. As this is around or 

below Tc, these correspond to entire grains flipping. 

0.3 
T = 0.6 • 
T = 0 .7 • 

0.25 
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~ 0.15 
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0 .05 

0 
0 20000 40000 60000 80000 100000 

Figure 4.6: Magnetization vs. MCS at T = 0.6 and T = 0.7 with K = 0.1. Here, L' = 5, L = 8 
and J = 0.01 for the 3D model. 

Fluctuations are also examined with different anisotropy values in Figs. 4.6-4.8. 

Fig. 4.6 shows results with K = 0.1 and shows sizable fluctuations, where the mag­

netization does not stabilize much like the effect also seen at K = 10 in Fig. 4.5. Fig. 4. 7 

shows results at K = 0.01 with T = 0.4 and illustrates also the finite size effect of L . 

L = 2 and L = 4 show big variations in the magnetization, but have around the same 

average value. The L = 8 case shows a magnetization that is much smoother. The 

magnetization is more stable than in the other data seen so far, although big dips are 

still seen. A higher MCSr is needed to get an accurate average value. Lastly, Fig. 4.8 

shows the magnetization below and around the critical temperature. As seen in Fig. 4.4, 
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Figure 4.7: Magnetization vs. MCS for different values of the number of grains L forK= 0.01. 
Here, L' = 5, T = 0.4 and J = 0.01 for the 3D model. L is shown in the legend. 
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Figure 4.8: Magnetization vs. MCS for different values of the temperature with K = 0.001 . 
Here, L' = 5, L = 8 and J = 0.01 for the 3D model. T is shown in the legend. 

the data with K = 0.001 does not exhibit strong fluctuations. After some hundreds of 

steps, the magnetization hovers around its average value without much deviation. 
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Specific Heat and Susceptibility 

The effect of K on the specific heat and the susceptibility was also studied. Al5 the 

susceptibility is calculated from the magnetization, the fluctuations seen with M are 

seen in the susceptibility, especially for higher values of K. Fig. 4.9 shows both C and 

x for various values of the anisotropy. 

The susceptibility is very similar to the Ising model, with its single peak at Tc. As 

can be seen, larger fluctuations occur at larger values of K, especially near Tc. The zero­

temperature specific heat is different from the Ising case with a value around 1 instead 

of 0. The value of the specific heat is not very stable for specific temperatures, although 

this is mostly due to the modest value of MCST used. This makes the determination 

of T~ more difficult compared to the Ising case. It is seen that changing the anisotropy 

does not affect Cat the lower values of K, but forK = 1, T~ can increase significantly. 

4 .3.2 T hin F ilm Heisenberg M odel 

Homogeneous 2D Model 

While the 2D Heisenberg model exhibits no phase transition when there's no anisotropy, 

it is possible to extract a Tc for K =F 0 from the behavior of the susceptibility. Fig. 4.10 

shows Tc vs. K taken for two different values of J = J' (no grains). 

As expected, Tc goes to zero as K approaches zero. Plotting the data as Tel J vs. 

K/ J, the two datasets collapse into a single curve as may be expected based on simple 

scaling arguments. It is expected that the results from the multilayer (z > 1) granular 

Heisenberg model collapse onto the data from this graph, at least for small Jeff, much 

like the Ising case. 

Fig. 4.11 shows Tc vs. J, for specific values of Kin the homogeneous 2D Heisenberg 

model. A linear behavior can be observed at the lower anisotropy values. For higher 

(K = 5, 10) anisotropies, a non-linear deviation is seen. The goal is then to take 

Figs. 4.10-4.11 which provide a homogeneous model viewpoint and collapse data from the 
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Figure 4.9: Fig. (a) shows the susceptibility while Fig. (b) shows the specific heat of the granular 
3D Heisenberg model for values of K shown in the legend. Here, L = 4, L' = 5, MCST = 25000 
and J' = 0.01. 

granular model onto it as was done in the Ising case with the use of effective parameters, 
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Figure 4.10: Tel J vs. K/ J of the 2D homogeneous Heisenberg model for J' = J = 1 with 
L = 80 and J' = J = 0.5 with L = 160. 

2 

1.8 

1.6 

1.4 

1 .2 
I-<.> 
II 1 

I-<.> 
0.8 

0.6 

0.4 

0.2 

0 
0 0 .2 

K = 0.1 ----­
K = 1 ------­K=5 ··· • · ·· 

K = 10 ·······liE······ 

0.4 0.6 
J = J ' 

... 

.. ··· 
•••••••••• liE" ..... 

.... 

0 .8 1 

Figure 4.11: Tc vs. J of the 2D homogeneous Heisenberg model for different values of K (shown 
in the legend) . Here, L = 80. 

Multilayer Granular Model 

Using the same energy scaling arguments that lead to the definition of Heff, it is possible 

to define here 
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( 4.10) 

The results presented used L' = z = 5, so that Kefi = 125K, a difference of two orders 

of magnitude, which is significant. As big fluctuations are present at large values of the 

anisotropies, the values of K that can be used with moderate simulation times are thus 

fairly limited. 
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Figure 4.12: Tc vs. Jeff with different values of K eff shown in the legend for the multilayer 
granular Heisenberg model. 

Fig. 4.12 shows the result of Tc vs. Jeff (Jeff = JL'z) for different values of Keff· 

Unlike what was seen in Fig. 4.11, the results here do not appear to show linearity. 

However, having Keff > 1 deviates from the estimates of 0.001 < K < 0.1 for real media 

and such cases are thus not as important. Taking these data for the granular model and 

collapsing it onto the homogeneous model is then the next goal. Fig. 4.13 shows a step 

in that direction. 

Here, the Keff shown in the legend in the homogeneous model cases are chosen 

to be the same as the ones for the granular model. For low values of Jeff , Tc for the 
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Figure 4.13: Tc vs. Jeff with two different values of K / Ketr shown in the legend comparing the 
multilayer granular and 2D homogeneous Heisenberg models. 

homogeneous and granular models coincide before deviating at Jeff;::=: 0.1 for Keff = 0.125 

and Jeff ;::=: 0.05 for Keff = 1.25. This suggests a behavior similar to what was seen with 

t he Ising case, where a grain can have a uniform magnetization below a certain J eff· The 

value at which this deviation occurs then depends on Ketr , adding another complexity 

to t he model. As such, t he agreement of the homogeneous and granular model using 

effective parameters for the Heisenberg case may be less straightforward; however, it does 

appear to preliminarily indicate a regime of agreement which merits further studies. 
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Chapter 5 

Discussions and Conclusions 

A number of results have been presented which were obtained from a series of Monte 

Carlo simulations of the Ising and Heisenberg models. The granular model allows a study 

of the interplay between the fluctuations within the grains via exchange coupling J' and 

the fluctuations associated with weaker inter-grain coupling J. Various thermodynamic 

quantities such as the total magnetization M , grain magnetization M9 , specific heat 

C and susceptibility x were used to probe the details concerning intra- and inter-grain 

order. Estimates of the temperature at which the two orderings occur, T~ and Tc, were 

obtained as a function of the effective inter-grain exchange. The simulations used the 

Wolff algorithm to address the difficulties associated with equilibrating a system having 

two distinct energy scales. Preliminary results on hysteresis M-H loops based on the 

Ising model were also presented. 

5.1 Ising Model 

The work of Chaps. 2 and 3 present a detailed study of the granular Ising model, with­

out and with an external magnetic field, to simulate magnetic recording media and 

field-induced switching. It is noted that the Ising model provides only an approximate 

representation of recording media which is better modeled by the Heisenberg Hamilto-
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nian with strong anisotropy. 

The use of the Wolff algorithm for the granular Ising model helped tremendously in 

obtaining accurate results without the use of a prohibitive amount of Metropolis Monte 

Carlo steps. Without this algorithm, the simple Metropolis method could not produce 

signature results of the model, such as two separate peaks in the specific heat and an 

accurate measure of Tc. The Wolff algorithm, taking into account the grain boundaries, 

is well suited to the granular model, as it incorporates the correct temperature dependent 

length scale. 

A principal result coming from the analysis of the Ising model is found in Chap. 2 

where a rough estimate ofT~ was found to be given by Eq. 2.12 

T~(L' , z) 
To 

f( z) 
1 + 1.128/(z)/ L' ' 

(5.1) 

with To ~ 4.512J' being the Curie temperature for the 3D model and f( z) is defined 

in Eq. 2.8. This result provides a quantitative estimate of an important part of the 

granular model based simply on system parameters. 

It was also found that the inter-grain transition temperature Tc, estimated from the 

peak in the susceptibility, was consistent with the the expected linear result Tc ~ 2.27 Jeff 

for sufficiently low Jeff = J L' z . Within this regime, the temperatures at which the inter 

and intra-grain ordering occur are well separated with Tc « T~ and the fluctuations 

within the individual grains do not play a significant role in the inter-grain ordering. 

This already suggests that the assumption of uniform grain cannot be used in the HAMR 

approach; however, simulations using the more realistic Heisenberg model are needed to 

get better quantitative predictions. 

Simulated M-H loops for the single-layer granular Ising model done to examine the 

role of the intra-grain fluctuations on the coercive field also provided interesting results. 

The modified Wolff algorithm allowed the capture of phenomena on a time scale as-

sociated with grain reversal without foregoing the intra-grain details. The coercivity 
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obtained with the modified Wolff algorithm goes to zero at T fTc = 1, much like the 

magnetization on simulations without an external field. Using only the Metropolis al­

gorithm, He does not go to zero until T~, which does not accurately represent its true 

behavior. As such, the modified Wolff algorithm does provide data which follows an 

expected trend. The results are at best qualitative, as the Ising model does not possess 

intrinsic dynamics like the Heisenberg model. This, however, does not prevent sim­

ulations from providing useful information, as was seen from Chap. 3. A systematic 

deviation is seen with increasing Jeff, which is consistant with the results from the sim­

ulations done without a magnetic field. Data from lower values of Jeff do not directly 

collapse on the homogeneous model results, but they do fall below the data from the 

higher values of Jeff as expected. 

5.2 Heisenberg Model 

The Heisenberg model presents a more realistic representation of recording media but 

also a more complicated model if only for the addition of the extra anisotropy parameter. 

For computational time reasons, the analysis that was done in this case was with smaller 

values of L, L' and MCST, which gives rise to larger finite size effects. Interesting 

results were still found for this anisotropic Heisenberg granular model, such as the large 

fluctuations with higher K values. The fluctuations present a difficult problem, as they 

make finding accurate values of Tc and T~ more challenging. Different techniques, such 

as Binder cumulants, could be explored, as they might provide better data. The specific 

heat and susceptibility are usually well-behaved except for higher values of K and so 

working with a lower K is desirable. 

The Wolff algorithm was again essential for the granular Heisenberg model as it allows 

the flipping of entire grains at once. As the fluctuations for high K happen around Tc, 

where the grains start to order, individual grains have spins mostly pointing in a single 

direction (uniform magnetization). Using only Metropolis, the grains themselves are not 
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able to flip efficiently and the magnetization might not reach unity at zero temperature. 

It is possible that a different algorithm might be able to provide a better solution, 

accounting more explicitely for the grains. 

The graphs of Figs. 4.12 and 4.13 represent an effort to obtain what was seen in the 

Ising model, a regime corresponding to uniformly magnetized grains. However, this case 

is not as simple as assuming a linear relationship between Tc and J as it was for the 

Ising case, since the anisotropy changes the relationship, seen in Fig. 4.11. It is found 

that there is no real linear regime for lower values of Jeff. , but there does seem to be 

some agreement between the granular model data and the homogeneous model data for 

very low Jeff < 0.1. 

5.3 Future Work 

Appendix A describes the code that was used to obtain the data, with possible improve­

ments and expansions that could be used in the future. 

This project still has many avenues to explore. While the result already demonstrate 

the conditions where the uniform grain approximation fails, a more thorough examina­

tion of the anisotropic Heisenberg model still needs to be done. 

There is still a thorough analysis to be made of the Heisenberg model with anisotropy, 

as it would be essential to see quantitatively where and for what values of J and K the 

grains can be assumed uniformally magnetized. Furthermore, certain important effects 

were not examined. The anisotropic Heisenberg model with an external magnetic field 

was not studied, though the coercivity is an important property that needs to be studied. 

This adds yet another dimension to the model, having He as a function of Jeff. , Heff and 

Kef£ · 

Another effect that remains unstudied is the effect of magnetic dipole-dipole interac­

tions. While nearest-neighbor exchange interactions dominate the energy in the absence 

of a large external field , this interaction affects every spin of the lattice through an in-
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verse power law and can contribute to important effects in thin films. As every spin 

on the lattice feels the dipole-dipole effect of every other spin, this interaction is very 

computationally expensive. 

A more thorough study of finite size effects and the number of Monte Carlo steps 

as applied to the granular model could also be done. Ideally, larger L' and L would be 

used to better represent actual magnetic grains used in recording media. As the study of 

granular models using Monte Carlo methods represents a different paradigm to simulate 

magnetic recording media, there are plenty of opportunities for expansion of the project. 

Usage of the dynamic LLG equation is more prominent as it provides a straightforward 

to simulate the time dependence of spins, but can be computationally more expensive to 

achieve equilibrium results. It is possible to create hybrids of the Monte Carlo method 

with the LLG equation to capture the best of both worlds. 
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Appendix A 

Code Used in Simulations 

The code that was used to obtain these results was written in C++ with a Python front 

end. An input file is used to set the parameters before the program is run over MCSt 

steps and statistics are taken. Fig. A.l shows a graphical program that was made with 

QT that could be used to create the input files for the Heisenberg code. 

Omension------, 

X y z 

0 unlinked AI linked 0 XY lonkod 

E=:ffi E::]j E::]j 
==0=-- -=0===== -=0===== 
C ~X [jjY ljlz 

Grain Size 

X y z 
0 unlinked All linked 0 XY linked 

~ Cffi Cffi 
0 0 0 

Dlre-ry 11> Put R•oult In 

Maximum Dilnanaion 

200 : 

Metropollo 

Wolff 

l 
11.00 ffi 

Save Input File 

[jj Add cmd scnpt for Ace-Net 

fil•n••• •nd filelave Lj in....:.p_ut_brt ______ _, 

Stert 

lwoooo f:J End 

lnterv.l 

110000 1:1 "'Oemi·lbur 

M•gn•tlc " •ld X M•gn•llc fi• ld z 

1 o.oooo [?] 1 o.oooo ~ 
M•gn•llc fl•ld Y KAnlootropy 

1 o.oooo !:J 1 o.oooo ffi 

Figure A.l : Input file generator for the Heisenberg model studied with the Monte Carlo method. 

Several parameters can be set. While M (and C, x, etc.) vs T is often used to 

determine the critical temperatures, M-H loops are done differently. Furthermore, M 
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vs MCSt runs are done slightly different. Selection of the specific run is done with the 

"Choice" parameter. Other important parameters are set as follows: 

• The dimension of the lattice LL' is set for the x, y and z dimensions. 

• The grain size L' is set for the x, y and z dimensions. 

• The periodic boundary conditions (PBC) are added or removed individually. For 

the multilayer model, it is removed in the z direction. 

• The use of the Metropolis and Wolff algorithms are individually set depending on 

the preference. 

• J and J ' are set as preferred. Usually, J = 1. Setting J = J' = 1 and L' = LL' 

(L = 1) will calculate the model for the homogeneous (no grain) case. 

• If not doing M vs T runs, the temperature is set to a specific value. 

• If not doing M vs MCSr, the amount of Monte Carlo steps is set. 

• If not doing M-H loops, a static magnetic field can be set in any direction (usually 

z). 

• The anisotropy in the z direction is set with K 

• The value range to sweep over and the step size is also set with "Start", "End" 

and "Interval". For example, a M vs T run that cools down could be made from 

T = 5.0 toT= 0.1 with a step size of 0.1. 

This allows to easily save an input file to be used by the main program. As there 

are many different parameters to try, this program is trivially parallelized such that each 

different iteration of parameters can be run independantly on a different computer core. 

These programs are run in the high-performance computing environment of the Atlantic 

Computational Excellence Network (ACEnet) , a partnership of multiple Atlantic Canada 

88 



universities. Hundreds of jobs can then be run simultaneously, which can each take 

multiple days. Otherwise, the main program is not parallelized. This is in part due 

to the use of the Wolff algorithm, which requires information from the entire lattice to 

properly operate. 

Additional programs were made to help with data management. Fig. 2.9 was obtained 

with a written C++ program that took the spins configurations and created a PNG 

image from it. Furthermore, numerous scripts were used to help with automating several 

repetitive tasks such as data formatting, organization and management. 

The random number generator used was the Mersenne Twister pseudorandom num­

ber generator, which was created with Monte Carlo simulations in mind. The benefits 

in speed and an extremely long period make it a natural choice. It has been noted in 

the past that certain bad random number generators can generate errors, particularly 

with the Wolff algorithm [37, 38]. 

The Heisenberg code is a fork of the Ising code, which is much simpler and faster, 

though fundamentally the same. To help with run time speed, several tricks were used. 

Previously mentioned, the Ising code has a lookup table holding the different possible 

energy. Consideration of every possible permutation of having z' = 0 to 6 nearest 

neighbors, with 0 to z' of them having a J interaction, gives a total of 210 possible 

nearest-neighbor energies that can be precalculated before iterating over the main Monte 

Carlo loop. 

The neighbors, with considerations of periodic boundary conditions, can also be 

computed before going into the main loop and put into another lookup table. This 

eliminates the need to check if a spin is at the lattice boundary. It also allows the code 

to be used for other lattice configurations, such as a triangular lattice, with minimal 

changes, as a spin's neighbors are known before going in the main loop. Similarly, a 

lookup table can also be done beforehand to know if a spin's neighbor is connected 

by J or J', putting the calculation of the determination of a spin's position within a 

grain outside the main loop. Particular attention must be made to using many lookup 
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tables, as the program can actually slow down if it becomes memory bound, such that 

it spends most of its time looking in memory for pre-determined values, which can be a 

slow operation. 

Approximate benchmarks of the program are as follows. The Heisenberg code will 

compute a 10 x 10 x 10 spin cube for MCSt = 10000 with the Metropolis and Wolff 

algorithm for one single temperature in a little less than one minute of CPU time. This 

time will depend on many factors, such as the computer the program is run on, but does 

provide a good guideline, as a similar program with MCSt = 20000 takes approximately 

twice the time and a cube of 20 x 20 x 20 spins takes approximately eight times as long 

to run. Having large systems with the Wolff algorithm will noticeably increase the run 

time, as at lower temperatures, the virtual clusters become pretty big; the algorithm then 

considers many spins. The Ising code with 120 x 120 x 10 spins, MCSt = 25000, using 

both the Metropolis and Wolff algorithms for 250 seperate temperatures took around 

60-90 hours, depending on J and thus depending on how many temperatures the Wolff 

algorithm was constructing big clusters. 
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