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Abstract 

Most analytical methods, including ICP-MS, require sample decomposition for 

elemental analysis of plant materials. Dry ashing was investigated in this study. Factors 

studied included ashing temperature, duration of ashing, rate of temperature rise, and type 

and nature of ashing vessel on the digestion of plant matrices. The reagents used in the 

subsequent leaching were also investigated. Samples were ashed at 450 °C for 8 hours 

following a temperature ramp of 18 °C/hr, followed by dissolution with HN03/HF + 

H20 2. Recovery of silicate elements (Al Co, Cr, Ni, V, and U) was satisfactory. The 

procedure was validated with reference materials including pine needles peach leaves, 

and black spruce. The result also agreed with that obtained using the wet digestion 

protocol used by ICP-MS group at MUN. Losses mainly through volatilization were 

observed for Hg, Se, Br, Bi, I, and As. The dry ashing procedure was applied to a 

biomonitoring study using black spruce samples from a study area in Holyrood, 

Newfoundland. The results suggest that the elemental sources include rock weathering, 

sea spray, atmospheric deposition, the thermal electric plant, vehicular exhaust, and 

municipal waste leachate. 
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Chapter 1: Introduction 
Plants have trace element signatures which are related to the composition of the 

soil, water and air in which they grow. Determination of elemental concentrations in 

plants constitutes an important aspect of environmental monitoring and geochemical 

exploration. Plants including mosses, pine needles, and lichens have been used for 

monitoring levels of elements in air, soil, and water (Gramatica et al, 2006; Yun et al, 

2002). Plants constitute a major component of ecosystems as they provide a transport 

pathway from the abiotic to the biotic environment. They make specific demands on the 

physical and other biological components of their environment, and respond critically to 

changes (Seaward, 1995). Plants as bioindicators represent a fundamental tool for 

environmental monitoring and surmount some ofthe shortcomings associated with the 

direct measurement of pollution, since importantly they provide lower analytical cost 

because no sampling equipment has to be installed and protected. Also widely distributed 

and common bioindicators can be used over large areas to record and evaluate heavy 

metal inputs (Markert et al. , 1999). They make it possible to identify sources of emission 

and also help to measure overland transportation rates of individual elements. 

During the last two decades, significant progress has been made in the 

development of analytical instruments for the determination of trace metals concentration 

in all kinds of matrices, including environmental san1ples. Most of these analytical 

methods require, or are optimally applied to solid samples, following a digestion prior to 

analysis. The efficiency of the digestion step is of critical importance in order to obtain 

accurate results. While analytical instrumentation has received a lot of attention, the 



fundamental first step of sampling and sample preparation has, with some notable 

exceptions, been seriously neglected. Both dry and wet ashing techniques have been 

employed with success to decompose several matrices, but there are numerous challenges 

regarding complete digestion for a large number of analytes in a wide variety of samples. 

Problems such as incomplete matrix digestion, volatilization of analytes, and 

contamination from solvents and crucibles have especially been noted (Gorsuch 1970). 

The use of microwave heating for acid digestion of many types of solid samples 

has received a significant attention in the recent literature (Hoenig 1995; Lambie and Hill 

1998; Oliveira 2003), and is used as an alternative to open vessel hot plate digestion. The 

main advantages of closed vessel microwave digestion are a shorter digestion time, more 

complete digestion due to the higher temperature and pressure, and lower volatile loss, 

compared with open vessel methods. These advantages are, however, accompanied by 

higher labour costs, much more expensive laboratory equipment, and a decreased sample 

throughput. 

With increasing concerns about environmental pollution, it has become very 

important to develop accurate and economical methods for the analysis of environmental 

samples, including those with an organic matrix (i.e. plants and animals). The goals of 

this project are: 

1. To develop a more general purpose sample preparation procedure for ICP-MS 

analysis of trace elements in a wide range of organic samples. 

2. To develop a procedure which is economical in time and cost. 

2 



3. To develop a method which minimizes the loss of volatile sample components 

while documenting the extent of these losses. 

The goal is to develop a technique which can become more general purpose; 

economical for the determination of trace metals in a wide variety of plant san1ples u ing 

ICP-MS. Remembering that "no method is a panacea", the limitations of the method are 

docwnented. The method is be tested in a case study that analyzes trace metal 

concentrations in black spruce twigs (Picea mariana) as bioindicators near the Holyrood 

thermal power plant. 

3 



Chapter 2: Literature review 

2.1 Background information on sample preparation 

Sample preparation constitutes a fundamental aspect in the determination of 

metals in biological samples. It involves all the steps taken to transfer elements into 

solution for determination, with the exception of the main structural components of the 

organic matrix i.e. carbon, hydrogen, oxygen (Gorsuch 1970). 

Sample preparation steps are of paramount importance in order to ensure a high 

quality analysis. Complete dissolution/decomposition of a sample is necessary to achieve 

reproducible and accurate elemental results using instrumental analytical methods (Mader 

et al, 1996; Poykio et al, 2000). This is especially true for atomic spectrometric methods 

such as AAS, ICP-MS, and ICP-OES. Interferences due to incompletely decomposed 

organic matter also occur, to a certain degree, when using analytical techniques such as 

polarography and voltammetry (Adeloju, 1989). These procedures require complete 

conversion of the sample to a form compatible with the measurement technique being 

used. 

2.2 Treatment of solid samples 

Collected solid samples are often too heterogeneous to satisfy the needs of the 

analysis hence the need for preliminary treatments to obtain a more representative sub­

sample with a smaller particle size. Preparation of solid samples generally includes 

several stages such as drying (air or oven), homogenization (mixing, crushing), grinding 

4 



(mills, mortars), followed by dissolution of the sample (Hoenig 2001). Lyophilisation 

(drying by freezing) procedures can be applied to samples to allow preservation of the 

initial sample texture and to facilitate subsequent grinding, while removing water. 

Homogenization of plants, animal tissues, and food samples is often processed by using 

. . 
varwus mixers. 

2.3 Solubilisation of biological samples 

For many analytical methods for determination of trace metals in environmental 

materials, complete decomposition and solubilization of the sample prior to the 

instrumental determination is very critical (Mader et al, 1996; Mustafa et al, 2004). The 

essence of this step is to "free" the analytes and make them available for instrumental 

detection. A broad spectrum of decomposition methods has been applied to determine the 

concentration of trace elements in biological matrices, and these include different 

combinations of concentrated acids. Open beakers heated on hot plates, digestion tubes in 

a block digester, and digestion bombs placed in microwave ovens are the most commonly 

used equipment for digesting solid/biological matrices (Matusiewicz, 

http:/ /www.pg. gda. pl/chem/CEEAM/Dokumenty/CEEAM ksiazka/ hapters/chapter 13 .p 

df). While reagents like sulphuric acid, nitric acid, perchloric acid, hydrofluoric acid, 

hydrochloric acid, and hydrogen peroxide have been used individually or in combinations 

to release trace and ultratrace elements into solution. Methods such as dry ashing 
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(oxidation), fusion, and oxidation using uv-light have also been used for this purpose 

(Hoenig, 2001). 

The low concentration of metals in environmental and geological samples can 

require preconcentration prior to detection, depending upon the instrumental method 

being applied. For processes involving very low concentrations, volatilization, solvent 

extraction, coprecipitation, sorption, and clu·omatographic methods are applied to 

separate metals from their associated matrices and then preconcentrated to levels 

detectable by analytical instruments. The effective combination of a digestion procedure 

with separation and detection steps is important to ensure the reliability of the results. 

The size of the test sample which is treated depends primarily upon the 

homogeneity ofthe material to be analyzed and upon sensitivity of the analytical 

technique being employed. The classical dry ashing of biological material offers the 

possibility of utilizing relatively large amounts of sample which is required for 

heterogeneous material, while increasing the concentration of the analytes in the digest 

(Mader et al, 1996). The extent of decomposition required is dependent on the analytical 

method being used. ICP-MS for example, can tolerate some level ofundestroyed but 

dissolved organic matter during total elemental analysis but this is not the case with 

methods like voltammetry and other spectrophotometric methods (Adeloju et al, 1989). 

Unlike dissolution of inorganic matrices such as rocks and metals which may 

result in clear solutions in which analytes and other elements are present in ionic forms, 

dissolution of organic or mixed matrices such as plants, animal tissues, and soils does not 

necessarily result in complete decomposition. The analyte may still be partially 
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incorporated in an organic molecule and hence be masked from the analytical 

determination. This can lead to interference if not fully decomposed to achieve complete 

dissolution especially in cases where ionic species are required for detection. Complete 

dissolution is required in such cases where the analysis involves the determination of the 

total content of the element present in the matrices in trace amounts. 

2.4 Wet digestion procedures 

The task of preparing samples with acid treatment for subsequent analysis is 

common in many laboratories. A variety of techniques, ranging from ambient-pressure 

wet digestion in a beaker on a hot plate (or hot block), to high pressure microwave or 

conventional oven heating have been employed. The open vessel acid digestion technique 

for instance, is one of the oldest methods of decomposing both organic and inorganic 

sample materials. The method is inexpensive, readily automated, and all relevant 

parameters (time, temperature, introduction of digestion reagents) lend themselves to 

straightforward control (Radojevic and Bashkin 1999). Acid digestions are accomplished 

in many kinds of vessels, usually in glass or PTFE (beaker, conical flasks, etc.) with or 

without a refluxing condenser and using heat from conventional heating sources such as 

Bunsen burner, hot plate, sand baths, etc. Refluxing is used when loss of volatiles is a 

critical factor when samples are decomposed by an open wet digestion method. 

Open vessel systems differ in their ability to reflux and also to prevent losses by 

volatilization, and splashing. Examples of such systems are PTFE beakers covered with a 
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lid (Novozamsky et al, 1993); flasks with long neck placed at an angle of about 45°, or 

with narrowing for the opening; and more complicated constructions with air - or water­

cooled refluxes and traps (Bethge 1954 in Novozamsky et al, 1993). A significant 

drawback to these systems is their risk of contamination. These systems are also limited 

by a low maximum digestion temperature which cannot exceed the ambient-pressure 

boiling point of the corresponding acid or acid mixture. For instance, the oxidizing power 

of nitric acid with respect to many matrices is insufficient at such low temperatures 

(boiling point 122 °C). 

When carried out in closed systems (bombs), digestion of the sample is performed 

under the synergistic effect of elevated temperature and pressure resulting in higher 

reactivity and oxidizing power. There is reduced contamination as the system is isolated 

from the laboratory environment. Loss of volatiles is minimised and digestion of difficult 

samples becomes possible. Closed systems for wet digestion are particularly suitable for 

trace and ultra trace analysis, especially when the amount of sample is limited. 

When a microwave heated oven is used, these advantages are even more 

pronounced because the heating takes place in the mixture. This result in shorter times 

needed for the digestion (Coley et al, 1977). For organic samples, due to the evolution of 

a large amount of gas, typically only about 300 to 500 mg of dry sample can be used, 

compared to several grams in open systems. A notable advantage of closed system is that 

losses through volatilization can be minimized. 
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2.5 Reagents frequently used for wet (acid) digestion procedures 

2.5.1 Nitric acid 

Among the reagents used for the oxidation, nitric acid is the only acid which is 

often used alone. Advantages of nitric acid include: its availability in high purity (and 

ease of purification), high solubility of nitrates, and its use over a range of temperatures. 

Complete digestion is usually achieved when nitric acid is applied at high temperatures 

and pressure. Boiling organic materials in concentrated nitric acid at atmospheric 

pressure (b.p. 120 °C) rarely leads to complete dissolution; as about 2 - 20 % of the 

original carbon compounds remain undestroyed after boiling under total reflux for 3 

hours (Novozan1sky et al, 1995). Wurfels et al, (1989), however, demonstrated that near 

complete digestion can be achieved when the sample is heated in a PTFE closed vessel 

with 69 % HN03 at 180 °C for 3 hours. A study by Kingston and lassie, (1988) using 

nitric acid in closed PTFE vessels heated in the microwave oven, reported that 

carbohydrates decomposed at 140 °C, proteins at 150 °C, and lipids at 160 °C. 

2.5.2 Perchloric acid 

Perchloric acid is also a very clean wet digestion reagent with very high oxidative 

power and extremely efficient in the destruction of organic matter. However, it is only 

applied in a combination with other reagents because of the occurrence of occasional 

explosions of quite stunning violence (Gorsuch 1970). These spectacular explosions often 

took place in hoods, which lead to the requirement of special wash down hoods for use 
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with perchloric acid. Mostly used are mixtures with HN03 alone, with HN03 and H2S04, 

or with H20 2. Griepink et al, (1989) suggested the use of perchloric and chloric acids in 

the later stage of digestion to avoid the possible explosions. They further contended that 

the safest and most efficient technique was to evaporate the digest to dryness followed 

by treatment with HC104 untill fuming. 

When cold, concentrated HC104 behaves as a strong acid without appreciable 

oxidizing power. Increasing temperature leads gradually to an increase in oxidizing 

power (Gorsuch 1970). Norvozamsky et al, (1995) reported a procedure which begins 

with gentle heating ofthe mixture ofHC104 and HN03 until the boiling point ofHN03 is 

reached. The solution is held at this temperature for a prolonged period of time and care 

is taken not to distil the HN03 too quickly; e.g. in the case of vegetable; the maintenance 

of this stage for 45 minutes was recommended. Then the remaining HN03 was distilled 

and the temperature increased rapidly to 203 °C, the boiling point of the perchloric acid­

water azeotropic mixture (72.5 % HC104). Reaction ceases once this temperature is 

reached and a clear, colourless solution results. 

Use ofl-hS04 in combination with HCl04 and HN03 is considered by some 

investigators as safer (May et al, 1984 in Griepink and Tolg 1989), but not by others. The 

addition of the strong oxidant to nitric acid increases the power of oxidation. Boiling to 

dryness is not easily achieved when H2S04 is present, but stronger dehydrating 

conditions are involved. The efficiency ofHC104, HN03, and H2S04 mixture has been 

reported, but it does not always result in complete oxidation, as was shown by Martini 

and Schilt (1976) who studied the system with 85 different organic substances. May eta 
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(1984) on the other hand digested up to 4 g of organic matrices in a nitric acid and 

perchloric acid mixture at a temperature of 200 °C. The typical digestion times were: 

plant tissue, 1.5 hours; fats 3 hours; and sludges 8 hours. Tlus mixture did not fully 

dissolve metals in silicates. 

2.5.3 Hydrogen peroxide 

Hydrogen peroxide (30% or 50%) is mostly used as a primary oxidant in 

combination with H2S04 (Novozamsky et al, 1995). Tills mixture has proven to be very 

effective, as the only decomposition product is water, and reagent purity is high 

(Gorsuch, 1970). Finely divided carbon produced by charring organic matter with 

concentrated I-hS04, is readily oxidized by H20 2. Hydrogen peroxide may be added 

dropwise to the acid mixture and sample, in order to minimise dilution and cooling of the 

solution. Practically all kinds of organic san1ple may be digested using tllis procedure. 

The draw back however, is that the sample size is rather limited (for plant tissue about 

300 mg dry matter can be used); larger amounts of sample give rise to excessive foaming 

from the large gas evolution. Losses of volatile elements such as As, Ge, Se, and Hg may 

occur during the process due to the rugh temperatures compared to other wet digestion 

mixtures (Novozamsky et al, 1995). 

The other disadvantage of use of acid mixtures has to do with the fact that they 

are unable to completely break silicate bonds. This may lead to incomplete detection of 
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many elements depending on the original matrix structure. Secondary precipitates of 

cations may occur in the matrices when H2S04 is used (Temminghoff eta/, 1992). 

Other combinations with H20 2, such as H20 2 and HN03; HN03, H20 2, and HCl; 

H20 2 and HC104 (Hoenig 1995); and H20 2, HN03, and HF (Novozan1sky eta/, 1993) are 

also used. In these cases complete oxidation is also not necessarily obtained because of 

the low boiling points of the reagents. In open systems sequential working can be 

expected, e.g. in H20 2 and HC104 mixture, perchloric acid only starts to oxidize after 

evaporation of the H20 2 and H20. The usefulness ofthese mixtures depends upon the 

matrix involved. 

2.6 Dry ashing procedures 

Dry ashing involves processes in which organic matter is oxidized by reaction 

with gaseous oxygen in combination with heat. The classical dry ashing method leads to 

complete removal of the organic matrix if performed with care (Mader eta/, 1998b). 

Examples of dry ashing procedures include: methods in which the sample is heated to a 

relatively high temperature in a stream of air or oxygen; the related low-temperature 

technique where excited oxygen is used; bomb (high pressure) methods using oxygen 

under pressure; and an oxygen flask technique in which the sample is ignited in a closed 

system at near atmospheric pressure. Mader eta/ (1997) studied the chemistry and 

energetics of biological matrix decomposition during classical dry ashing of animal and 

plant materials and identified at least three phases in the decomposition profile. All dry 

12 



ashing methods listed above proceed through the following series of processes, although 

it can sometimes be difficult to establish sharp borders between the overlapping 

processes. 

• Phase 1: Evaporation of moisture (dehydration). 

• Phase II: Evaporation of volatile materials including those produced by thermal 

cracking and partial oxidation. 

• Phase III: Progressive oxidation ofthe non-volatile residue, until all organic 

matter is destroyed. 

The relative significance of each of the steps can vary from one method to the other. Dry 

ashing at elevated temperature at atmospheric pressure is the most frequently applied 

method. 

Generally, two types of procedures can be distinguished in muffle furnace ashing. 

Firstly, procedures involving the use of closed systems where extra air is supplied to the 

sample (Gorsuch 1970). The sample glows and reaches higher temperatures than the air 

atmosphere in the furnace and works well with small quantities of material. The digestion 

temperature in such a system will vary with the thickness of the sample layer and the air 

supply. This method has been used successfully for both non-volatile materials which 

remain in the residue in the combustion boat, and for volatile elements such as mercury 

which can be trapped. An important advantage claimed for the extra air supply is a 

substantial reduction in the ashing time, but the procedure becomes much more difficult, 

especially for volatile elements such as Cd and Ph (Mader et al, 1996). 
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Another procedure is carried out in open systems in a muffle furnace on the 

assumption that no significant amount of the analytes to be determined will be lost 

through volatilization. The temperature of the sample will be closer to the furnace 

temperature although some temperature gradients can occur in the furnace. This method 

is commonly used for the decomposition of organo-metallic compounds, and is almost 

exclusively used when large samples are analysed. 

The main advantage of dry oxidation procedures is the ability to process large 

amounts of samples, compared with wet digestion methods (Gorsuch 1970). On the other 

hand possible losses caused by volatilization at high temperature (e.g. As, Cd, Pb, and 

Hg; these effects are matrix dependent), and reactions with container materials, are higher 

than in wet digestion methods. 

To some extent, drawbacks associated with dry ashing can be surmounted by 

performing dry ashing procedures at reduced pressure (70 - 100 Pa). This involves the 

use of gaseous oxidants where oxygen is activated by a high frequency electromagnetic 

field and the temperature in these so-called low-temperature ashers reaches only about 

100 - 200 °C (Carter and Yeoman 1980). The oxidant is activated in glass ashing 

chambers in which sample crucibles are placed. The use of pure oxygen as a sole reagent 

is an added advantage while the closed environment in which the sample is ashed, allows 

building-in a cold finger, so that volatile components can be trapped. The main 

disadvantage is the long digestion times due to the formation of crusts on the surface of 

the sample which reduces the surface area of the particles to react with acids (Fabry et al, 

1972). 
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Knapp et al (1981) developed a partially mechanized decomposition method 

where an apparatus called the "Trace-0-Mat" was used to oxidize up to 1.0 g of organic 

material in approximately one hour. The instrument consists of a small volume (75 ml) 

combustion chamber on top of which is mounted a cooling unit. The sample is burnt in a 

stream of oxygen, heated by IR lamps. Volatile products are condensed in the cooling 

unit at liquid nitrogen temperature. Eleven elements, including Cd, Pb, Hg, As, and Se 

were determined with success. The drawback of their method is the low sample 

throughput of one sample at a time and the need for skilled operators to use the 

equipment. Similarly, Adeloju et al, (1989) developed three dry ashing procedures for 

digesting animal muscle, bovine lever, orchard leaves, and oyster tissue for voltammetric 

analysis of trace elements. These procedures although somewhat effective are not usually 

applied to ICP-MS analysis due to the use of hydrochloric acid as a leaching agent, since 

chlorides cause interferences with some elements. 

2.6.1 Oxidation with excited oxygen 

This teclmique involves oxidation of the sample in a stream of activated oxygen at 

temperatures up to 120 °C. Activated oxygen is produced by subjecting a stream of 

oxygen gas to a high-frequency electrodeless discharge at low pressures to produce 

reactive atomic and ionic species in the oxygen which then react with the organic 

material without raising the temperature above 120 °C (Gorsuch 1970). Little attention is 

required once the sample is placed in the device; the blanks are low, and there are no 
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hazards from aggressive liquids and explosions (Griepink 1989). Reactions between 

container and sample do not occur and the rate of the reaction can be monitored (e.g. N­

emission line at 675 nm). Volatilization is not a significant problem except when 

fluorides are formed (B, Si, Ti, and U). The technique however, is expensive, few 

samples can be processed at a time, and the ashing takes several hours and requires dry 

samples. 

2.6.1.1 Oxidizing fusion 

Some metals are readily attacked by alkaline hydroxides in the presence of an 

oxidizing agent, such as alkali metal hydroxide mixed with sodium peroxide or nitrate. 

Sodium hydroxide mixed with sodium peroxide, or sodium peroxide alone, is frequently 

used as a flux (Balcerzak Maria, 2002). Fusion is usually performed at 450 °C - 600 °C 

for 15 - 60 minutes. The melt is dissolved in water and acidified with hydrochloric acid 

for converting the analytes into chloro-complexes, which can serve as the basis for 

subsequent separation or determination methods. 

Fusion is rarely used in trace element analysis of biological and/or environmental 

materials because it uses large amounts of reagents that are difficult or costly to obtain in 

high purity (Kucera eta!, 2007). However, fusion of biological materials with alkali 

hydroxides has been recognized as a suitable decomposition method for the 

determination of halogenides, importantly iodine, which can otherwise be easily lost 

using some methods of sample decomposition (Dermeli el a!, 1990). 
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Fusion can increase blank values and/or cause interferences in analytical methods 

of many trace elements, such as atomic absorption and emission spectrometry, mass 

spectrometry, etc. Large amounts of salts and other contaminants from the wall of the 

crucible attacked by the flux may be introduced into the sample. The application of the 

method is restricted to small sample weights of about 0.5 -2.0 g (Balcerzak Maria, 

2002). 

2. 7 Analytical methods 

Various analytical methods have been applied for biological samples that require 

elemental determination. Many of these applications are in the field of environmental 

safety, food, and health. For reliable and accurate determination of trace metals, there is a 

need for a solid knowledge of the various analytical techniques for determination of 

elements in the various matrices. 

2.7.1 Inductively coupled plasma (ICP) 

Inductively coupled plasma (ICP) is an excitation source used with optical (OES) 

or mass spectrometric detection (MS) for the detection of trace metals in a number of 

different industries including environmental, food and agriculture, semiconductor, 

clinical and pharmaceutical, geological, nuclear, and chemical. In ICP-OES the elements 

emit a characteristic wavelength of light which can then be measured. This technology 
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was first employed in the early 1960's with the intention of improving crystal growing 

techniques (Thomas 2001, I). ICP has been refined and used in conjunction with other 

procedures for quantitative analysis. In the early 80's the ICP was interfaced with mass 

spectrometers giving nearly a thousand fold lower detection limits. In the last decade 

around an additional 1000 fold decrease in detection limits has been obtained (Thomas 

2001 , I). 

A plasma is a gas like fluid but one which contains a large number of positive 

ions and free electrons. This plasma has sufficiently high energy to atomize, ionize, and 

excite the majority of the elements in the periodic table. Although there are several types 

of plasmas (direct current, microwave induced, etc.), the inductively coupled plasma 

(ICP) has demonstrated the most useful properties as an ion source for analytical 

spectrometry. Gases such as argon, nitrogen, helium, neon, and air have been used to 

sustain plasmas useful for analytical purposes; however, the inert gases offer some 

advantages because, of their desirable ionization properties, their availability in relatively 

pure forms (Thomas 2001 II), and because they are monatomic gases. Impurities in the 

plasma gas can result in spectra interferences and backgrounds leading to difficulties in 

quantitative measurements. Inert gases, specifically argon, also have advantageous 

property of lower chemical reactivity with various analyte species, which can also result 

in undesirable analytical results. 
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2.7.2 The workings of an ICP 

The ICP hardware consists of three concentric tubes, most often made of fused 

silica or quartz. These tubes, termed outer, intermediate, and inner make up the torch of 

the ICP. The torch is situated within a water or argon cooled coil excited by a high power 

radio frequency (r.f.) generator. The plasma gas is passed through the outer annular 

region at a usual flow rate of from 12 to 17 L/min. A second gas (auxiliary) flows 

through the intermediate tubes at a rate of from 1 to 2 L/min. The third gas flow which 

also flows (nebulizer or sample carrier gas) at approximately 1 Llmin carries the sample 

which is usually in the form of a fine droplet aerosol from the sample introduction system 

to the plasma. 

Inductively coupled plasmas are formed by coupling energy produced by a RF 

generator to the plasma support gas with an electromagnetic field. First a tangential 

(spiral) flow of argon gas is directed between the outer and the middle tubes of the ICP 

torch. A load coil surrounds the top end of the torch and is connected to the RF generator. 

When an RF power (typically 750 - 1500 W) is applied to the load coil, an alternating 

current oscillates within the coil at a rate corresponding to the frequency of the generator 

(usually 27 or 40 MHz). This RF oscillation of the current in the coil causes an intense 

electromagnetic field to be created in the volume at the top of the torch. With argon gas 

flowing through the torch a high voltage spark is applied to the gas causing some 

electrons to be stripped from the argon atoms. These electrons, which are caught up and 

accelerated in the magnetic field, then collide with other argon atoms, stripping off still 

more electrons (Thomas 2001 , III). This collision induced ionization of argon continues 
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in a chain reaction, breaking down the gas into argon atoms, argon ions, and electrons, to 

form the ICP discharge. The ICP discharge is then sustained with the torch and the load 

coil as the RF energy is continually transferred to it through the inductive coupling 

process. The amount of energy required to generate argon ions in this process is 

approximately 15.8 e V, which is enough to ionize the majority of the elements in the 

periodic table. The sample aerosol is then introduced into the plasma through the san1ple 

injector. 

Obervation region 

Plasma 

"' ·~ Lead coil 

Plasma touch 

Sample aerosol 

Fig. 2 . 1: Schematic diagram ofiCP flame (source: Bradford T. and Cook N.M. : 
www.cee.vt.edu/ewr/enviro1m1ental/teach/smprimer/icp/icp.html) 
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t- Coolant gas inlet 

- Plasma gas inlet 

l Aerosol inlet 

Fig. 2. 2: A typical plasma torch (source: Bradford T. and Cook N.M.: 
www.cee.vt.edu/ewr/environmental/teach/smprimer/icp/icp.html) 

The plasma is insulated from the rest of the instrument by the concurrent flow of 

gases through the system and this helps to prevent possible short-circuiting and meltdown 

(Bradford et al, 2001). The outer gas (typically argon) has been demonstrated to serve 

several purposes including maintaining the plasma, stabilizing the position of the plasma 
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and thermally isolating the plasma from the outer tube (Jarvis et al. , 1992). Argon is 

commonly used for the intermediate and carrier gas because it is relatively easy to ionize. 

2.7.3 ICP combined with mass spectrometry 

Introduced in 1983, ICP-MS has gained much popularity within the analytical 

community as the most promising technique (Vanhaecke et al, 1999) for the 

determination of trace and ultra-trace elements in a variety of matrices. The efficiency of 

the Inductively Coupled Plasma in producing singly-charged positive ions for most 

elements makes it an effective ionization source for mass spectrometry (Thomas 2001 , I). 

Inductively coupled plasma-mass spectrometry is unique among the flame and plasma 

spectroscopy techniques owing to its high speed excellent detection limits, wide dynamic 

range, and possibility of accurate multi-element analysis and unique capability of 

measuring element isotopic ratios (HP 4500 ChemStation Operator' s Manual, 1997). The 

ICP-MS has a wide elemental coverage and measures virtually all elements including 

alkali and alkaline earth elements, transition, and other metals, metalloids, rare earth 

elements most of the halogens and most ofthe non-metals. Other advantages ofiCP-M 

include high san1ple throughput, and the relatively simple spectra, which permit 

immediate qualitative to semi-quantitative conclusions to be drawn (Jarvis et al. , 1992). 

These features make ICP-MS attractive for applications ranging from ultra-trace analysis 

in semi-conductor industries and clinical applications through environmental monitoring 
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of polluted soils, water and air to the determination of elemental species in the life 

sciences. 

However, ICP-MS signals can suffer from interferences of various forms. These 

interferences can be categorized as spectroscopic and non-spectroscopic in nature (Jarvis 

et al. , 1992). The spectroscopic interferences result from signals of oxides (MO+) and 

hydroxides (MOH+) which occur abundantly under wet plasma conditions, doubly 

charged ions (M2+), argides, isobaric overlaps, and other polyatomic ions with the same 

ratio of mass to charge as the elements of interest. Non-spectroscopic interferences are 

either physical effects which result from the solids present in a solution or analyte 

suppression and enhancement effects which result from influences of matrix elements in 

the sample on the yield of ions (Jarvis et al. , 1992; Falkner et al. , 1995). For nebulization, 

samples must be free of particles that can cause nebulizer blockage. A high concentration 

of dissolved solids can result in the build up of material on the sampler and skimmer cone 

orifices. The worst culprits are elements that can deposit refractory oxides, such as AI, 

and Zr (Falkner et al., 1995). Residual organic material can also be deposited on the 

nebulizer, spray chamber, and torch walls, leading to memory effects as well as affecting 

sample flow rates through altered viscosity. At high levels of organics, carbon can 

destabilize and even extinguish the plasma as it builds up on the sampling cone. The 

other limitations of the ICP-MS technique arise from the conversion of solid san1ples into 

solution prior to analysis, and the inability to detect the chemical form in which the 

elements occur (Vanhaecke et al. , 1999). 
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An ICP-MS can be broken down into fom main processes, including: sample 

introduction and aerosol generation, ionization in the argon plasma, mass selection, and 

the detection (Thomas 2001, I). The conventional method of sample introduction for ICP­

MS is by aspiration, via a nebulizer, into a spray chamber (Thomas 2001, II). The sample 

introduction system produces an aerosol of liquid droplets or solid particles and vapom. 

An ideal aerosol has: a) constant density, b) a composition that represents the original 

sample and c) small particles with a narrow distribution that allows complete atomization 

and ionization in the ICP-MS interface (Nuttall and Gordon, 1995). This is not 

completely achieved with any sample introduction system available. Calibration for ICP­

MS is usually based on external calibration standards, using internal standardization to 

compensate for changes in the sample introduction and the ionization efficiency. Other 

approaches include standard additions or isotope dilution methods where the sample 

introduction has more identical influence on a given element in calibration solutions and 

the samples (Jiang and Houk, 1986). 

Nebulization of solutions is most widely used for sample introduction in ICP-MS 

measurements. This is because calibration solutions can be prepared in almost any 

concentration and matrix composition. Fig. 2.3 shows a schematic drawing of a 

concentric nebulizer. The major disadvantage of solution nebulization, however, is that 

the majority of real samples are solids, which require digestion before being introduced 

into the ICP using solution nebulization. This dissolution step requires reagents, increases 

sample preparation time and is accompanied by the dilution of the original sample. 

Especially at ultra-trace concentrations in the sub j.!g/g range, the pmity of reagents, 
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laboratory environment and sample preparation equipment are important factors in cost 

and labour. 

~--------65mm----------~·~ 

' ) 

Fig. 2. 3: A schematic drawing of a concentric nebulizer (source: Chemstation Operator's 

manual, 1997). 

These limitations have long triggered the search for direct solid sample 

introduction systems, including spark ablation (Vanhoven et al, 1995) and laser ablation 

(Mochizuki et al, 1991 ). Spark ablation is restricted to electrically conductive san1ples 

and while providing comparably low spatial resolution, whereas laser ablation is 
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potentially applicable to any solid san1ple for quantitative analysis at high spatial 

resolution. Restrictions due to sample heterogeneity are an important limitation to the use 

of Laser Ablation (LA) for bulk analysis. Note that solutions have the very desirable 

property of being homogeneous at the molecular level. 

The function of the spray chan1ber is to remove droplets produced by the 

nebulizer that are greater than approximately 8 Jlm in diameter allowing only small 

droplets to enter the plasma and to smooth out pulses that occur during the nebulization 

process due to the peristaltic pump if used. This allows only small droplets into the 

plasma for dissociation, atomization, and ionization of the elemental component in a 

sample. A small fraction of the resulting aerosol is swept by argon into the torch. 

Approximately 1 mL of sample is required per analytical run, about 99 % of which is 

wasted (Thomas 2001 , II) using conventional nebulizers. 

There are basically three designs of spray chambers that are used for commercial 

ICP-MS instrumentation - double pass, cyclonic, and impact bead spray chambers (Fig. 

2.4). The double pass is by far the most common with the cyclonic type rapidly gaining 

popularity. The impact bead was first used with flame AA, and is also an option for use 

with ICP-MS. The double pass selects the small droplets by directing the aerosol into a 

central tube. The larger droplets emerge from the tube and by gravity, exit the spray 

chamber via a drain tube. The liquid in the drain tube is kept at positive pressure, which 

forces the small droplets back between the outer wall and the central tube and emerges 

from the spray chamber into the sample injector of the plasma torch. 
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Fig. 2. 4: A schematic diagram of a Scott double pass spray chamber: (source: 

Chemstation Operator's manual, 1997) 
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Fig. 2. 5: A schematic diagram of oscillating capillary nebulizer with single pass spray 

chamber (source: B'Hymer C. et al , 1998) 
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Fig. 2. 6: Photograph of single spray chamber. (source: Todoli Jose-Luise and Jean­

Mermet, 2002). 

The cyclonic spray chamber on the other hand operates in a similar manner (Figs. 

2.5 and 2.6). Droplets are discriminated according to their size by means of a vortex 

produced by a tangential flow of the sample aerosol and argon gas inside the chamber. 

Small droplets are carried with the gas stream into the ICP-MS, while the larger droplets 

impinge on the outside walls and fall out through the drain. The cyclonic spray chamber 

has a higher sampling efficiency, which for clean samples, translates to high sensitivity 

and lower detection limits (Howard 2000). However, the droplet distribution appears to 
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be different from the double pass design, and for certain type of samples can give slightly 

inferior precision. 

Fig. 2. 7: Photograph of a cyclonic type chamber. (source: Tololi Jose-Luise and Jean 

Mermet, 2002). 

Ion Extraction 

After the analyte ions are formed at atmospheric pressure, they are analyzed in a 

mass spectrometer, which must operate in a vacuum. Extracting ions from the plasma 

into the vacuum system is the critical step. A diagram of an extraction interface is shown 

in Fig 2.8. The ions enter a region evacuated by a mechanical pwnp through the orifice 
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(approximately lmm) of a cooled cone (sampler cone). Then the ions pass through a 

second orifice, called the skimmer (Fig. 2.8). At the back of the skimmer cone a lower 

vacuum pressure is usually maintained by a turbo molecular pwnp backed by a rotary 

pump. In most modern units a third larger orifice separates an additional region which is 

maintained by a second turbo pwnp at approximately 100 fold lower pressure. Ion lenses 

focus the ions into the entrance of the mass spectrometer, while limiting the passage of 

high energy photons which could be detected depending upon the detector system being 

used. 

Ouadrupole entrace 
aperture 

Slide valve 

Collector and 
phlltDn stop 

Skimmer cone 

Emction lens 

Fig. 2. 8: Schematic diagram of the standard ion extraction interface and ion optics. 

(source: Carteret a!, 2003) 
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The gas expands behind the first orifice, and approximately one percent passes 

through the second orifice in the skimmer cone. A series of ion lenses, maintained at 

appropriate voltages, are used to direct the ions into the mass analyzer, which is most 

c01mnonly a quadrupole, although magnetic sector and time of flight analysers are also 

commercially available. In the case ofthe quadrupole, the ion is transmitted through the 

quadrupole on the basis of the selected mass to charge ratios and then to a detector which 

is conunonly an electron multiplier. 

The quadrupole mass analyzer is usually set to give slightly better than unit mass 

resolution over mass range up to rnlz = 300. The quadrupole based ICP-MS system is a 

sequential multielement analyzer that can complete a full mass scan in less than 20 ms, 

although times ofthe order of several hw1dred ms are more commonly used. The signal 

intensity is a function of the number of analyte ions in the plasma and the mass­

dependent transport through the sample introduction system and the mass spectrometer. 

The most important advantages of ICP-MS include multi-element capability, high 

sensitivity, and the possibility to obtain isotopic information about the elements 

determined. Disadvantages inherent to the ICP-MS system include the interferences 

produced by polyatomic species arising from the plasma gas and other atmospheric gases. 

The isotopes of hydrogen, carbon, nitrogen, oxygen, and argon combine with themselves 

or with other elements to produce a large set of background ions. ICP-MS is not as useful 

in the detection of non-metals (Thomas 2002, XII) due to their higher ionisation 

potential. However all the elements in the periodic table, except He, can be detected 
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although fluorine, with its very high ionisation potential, can only be determined using 

high resolution or negative ion detection, and with very high detection limits. 

2.8 Use of plants as indicators of environmental pollution 

Anthropogenic emissions of pollutants have increased greatly in the last two 

centuries since the onset of the industrial age. An estimation of the atmospheric inputs of 

Zn, Pb, and Hg in 1988 amounted to 840,000 t, 400,000 t and 11,000 t respectively 

(Markert eta!., 1997). These continuing anthropogenic emissions and the resulting input 

into the environment are causing severe damage to plants, animals, and humans. In 

particular, accumulation in soils, groundwater, and organisms may have incalculable 

consequences within links in the food chain. Tllis necessitates careful monitoring of 

deposition and its effects, for which the use ofboindicators and biomonitors provide an 

indirect integrating method for estimating the pollution levels in an area. 

A bioinidicator is an organism (or part of an organism or a community of 

organisms) that contains information on the quality of the environment (Markert et al, 

1997; Figueiredo et al, 2007) wllile biological monitors (biomonitors) have commonly 

been defined as organisms that provide quantitative information on some aspects of their 

environment, such as how much of a pollutant is present (Keane et a/, 2001; De 

Temmerman et al, 2004; Figueiredo et al, 2007). Both bioindicators and biomonitors 

react to changes in their environment caused by one or more pollutant substances by 

changing their way of life with respect to their morphology and/or metabolism. These 
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changes being observable or measurable. Monitoring by observation may include 

examination for changes such as needle or leaf discolouration, changes in population 

density or distribution, intermodular stretching, etc. in an organism or a population of 

organisms. Monitoring may involve physical or chemical determination of heavy metals 

nutrients, or various enzyme activities and biochemical investigation of metabolic 

reactions and secondary plant constituents. 

The responses of plants to a concentration gradient of trace elements in their 

environment (air, water, and soil) can follow one of three main patterns i.e. as 

accumulators, monitors, or excluders. Accumulators build up pollutants to a level several 

orders of magnitude higher than in their environment. The uptake of pollutants by such 

plants varies linearly with increasing environmental input until a threshold where metal 

uptake becomes constant. They tolerate high concentrations of trace elements in their 

tissues, and this accumulation can be produced even at low external concentrations in the 

environment. The excluders on the other hand maintain low concentration of a substance 

irrespective of the quantities in the environment, and resist any increases in metal uptake 

until a level in the environment is reached which breaks down the regulatory mechanisms 

of the plants. Biomonitors have a correlation between the concentration of the pollutant in 

the environment and that in the organism and therefore reflect the actual trend of 

pollutant input into the environment. 

Bioindicators are useful tools for environmental monitoring due to their high 

tolerance to substances accumulated in their tissues over an extended period of time. The 

use of bioindicator plants to monitor environmental pollution has advantages such as ease 
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of monitoring large areas and the low cost of plant sampling (De Temmerman et al, 

2004). Thus biological monitoring with plants provides low-cost and effective methods to 

estimate the amount of pollutants and their impact on biological receptors as compared to 

direct methods of pollution measurement, especially as no collecting or measuring device 

has to be installed and protected against vandalism and the weather. Use of bioindicators 

generally help to detect changes in the natural environment; monitor the presence of 

pollutant and its effect on the ecosystem in which the organisms live; monitor the 

progress of environmental clean up; and to test substances such as drinking water for the 

presence of contaminants. 

Use of biomonitors also helps to facilitate analytical measurements and thus helps 

to detect low concentrations that are not always easy to measure directly using chemical 

extraction techniques (Market eta!. 1999; Madejon eta!. 2004). Errors due to analytical 

measurements are reduced because most accumulators build up substances to be 

determined to a level several orders of magnitude higher than that of their environment 

Finally, use of individual parts of an ecosystem in determining the latter' s trace or heavy 

metal status has the advantage that it permits conclusions going beyond the biomonitor 

itself (Market eta!, 1999). By occupying a niche in the ecosystem, biomonitors make it 

possible to integrate the results of the analysis in an overall biological system and this 

permits ecologically relevant statements about the whole community of organisms as 

well as the biomonitors themselves. Tingey (1989) observed that "there is not a better 

indicator of the status of a species or a system than the species or system itself'. Physical 

and chemical methods do not provide sufficient information on the risk associated with 
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an exposure (Mulgrew et al., 2000). It is therefore evident that plants play a significant 

role in the biomonitoring of pollution as analysis of plant tissue provides direct 

quantitative information on relative concentration load. 

Plants as biomonitors have been used since the beginning of the 20111 century; for 

instance, the alterations in the composition of some species in the beginning ofthe 1920's 

provided information about the pollution in areas exposed to fumes originating from coal 

burning industrial plants (Ruston 1921 in Figueiredo et al. , 2007). Since then, a variety of 

organisms and material have been proposed for biomonitoring purposes. These include 

mosses, lichens, tree bark, tree rings, pine needles, grass, leaves, and ferns (De 

Temmerman 2004, Figueiredo et al. , 2007). Studies in many parts of the world have used 

tree leaves as bioaccumulators of trace elements, in the surroundings of industrial 

facilities (Giertych et al 1997; Mieieta and Murin 1998; Rautio eta/, 1998) and in urban 

environments (Monaci et al., 2000; Aboal eta/., 2004; Figueiredo eta/, 2007). In most of 

these studies, the elemental concentrations in the tissues of plants used as pollution 

bioindicators reflect largely the concentration of the pollutants in the monitored 

environments. 

Spruce needles were used by the German environmental sample bank for the 

permanent monitoring of known pollutants and retrospective determination of pollutants 

that were not known or could not be accurately analyzed at the time of accumulation 

(Market B. et al, 1999). De Temmerman et al., (2004) used leafy vegetable crops for 

biomonitoring Pb and Cd deposition, and they concluded that vegetables are suitable 

during the growing season if their specific differences in accumulation rates are taken 
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into account. Their study further revealed that growth rates are important parameters 

according to the accwnulation efficiency. 

Bioaccumulative indicators are frequently regarded as biomonitors. Plants act as 

bioaccwnulative indictors by accumulating pollutants from their surroundings without 

necessarily displaying an obvious response (Sabah et al., 2004). They are useful in 

determining past pollution exposure and analysis of their tissues provides an estimate of 

the environmental load of pollutants. For example, high levels of heavy/trace metals in 

plants often correlate to levels of such metals in soil, air, and water. Bioaccwnulation 

therefore is the result of the equilibrium process of biota compound intake/discharge from 

and into the surrounding environment (Conti et al., 2001). 

Several vascular terrestrial and aquatic plants have been used for both 

environmental and geochemical studies, especially for trace metal exploration/monitoring 

(Kabata-Pendias and Dudka 1991). Recent investigations identified black spruce as an 

effective tool for monitoring trace metal levels in soils. Zayed et al (1991) used black as a 

bioindicator to evaluate aluminum contamination in the Saguenay region while up to 130 

~tg/g uranium was measured in black spruce twigs obtained from the Midwest uranium 

deposit area of the Athabasca basin (Northern Saskatchewan) (Gordon 1999 in CCME). 

This shows that spruce tree is a bioaccwnulative indicator and therefore essential for 

trace metal biomonitoring. A key feature of this conifer is its metal-absorbing capability 

to reflect the prevailing soil concentrations without significant adverse effects on its 

survival or growth (Zayed et al, 1991 ). Other advantages of using black spruce as 
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bioindicator of metal contamination are its long life and its abundance and even 

distribution over the area studies. 

2.9 Black spruce (Picea mariana) 

2.9.1 Growth habit 

Black Spruce is a small to medium sized coniferous tree with a shallow and wide 

spreading root system. The branches are short, pendulous, and have a tendency to curve 

up at the ends. The bark is grayish brown, and the surface is broken into thin scales 6 mm 

to 12 mm thick. The twigs are light reddish brown and densely covered with short hairs, 

some of which are tipped with glands (Ryan 1989). The cones are 35 mm long, ovoid, 

and purplish but turning brown at maturity and usually remain on the trees for many 

years. The cone scales are stiff, have toothed margins, and dark brown seeds. The needles 

are 4-sided, dull blue-green in color, 6 mm to 35 mm long, blunt-pointed, flexible, and 

soft to the touch (Maine Forest Service/Department of Conservation, 1995). Average 

maximum age is about 200 years. The black spruce grows to about 1 0 to 13 m tall and the 

dian1eter of its stem ranges between 150 to 450 mm. It forms an open, irregular crown 

and has a limited spread. 
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2.9.2 Fruit/seed description and dispersal methods 

The black spruce is monoecious (separated male and female sexes). The male 

flowers are produced on the outer branches of the crown below the zone of female 

flowers. They are ovate, 175 to 200 mmlong and dark red to purplish. The female 

flowers , produced in the upper crown, are usually erect, cylindrical and green or purplish 

in colour and about 150 mm in length. Black spruce flowers in late May/early June 

(Maine Forest Service/Department of Conservation, 1995; Ryan 1989). Female conelets 

develop rapidly and contain mature seeds about 3 months after pollination. A few cones 

may be produced after 1 0 years, but maximum production is between 1 00 and 200 years 

(Ryan 1989). Black spruce seeds mature 3 months after pollination in late August or early 

September. Some are produced almost every year, but heavy seed years occur at 2 to 6 

year intervals. Seeds are dispersed throughout the year, but dispersal is highest in the 

spring and seeds are not commonly dispersed over long distances. 

2.9.3 Habitat 

Black spruce is widespread throughout the boreal region ofNorth America and 

extensive in area from Newfoundland to Alaska, south of British Colombia, Great Lakes 

Region and Minnesota (Maine Forest ervice/Department of Conservation, 1995). It 

grows on cool upland soils, but is more commonly found along streams, and on the 

borders of swan1ps and sphagnum bogs. It has a tolerance to both shade (however, growth 
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is fastest in full sunlight) and nutrient-poor soils. It is commonly found on poorly drained 

acidic peatlands. 
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Chapter 3: Analytical methodology 

3.1 Site description (Holyrood area) 

Holyrood is located 20 km SW of StJohn's, Newfoundland. The study area is 

located between Gull Pond and Big Pond, and a boundary to the west at longitude 

53°03 'W; on the east at longitude 52°57'W; on the north at latitude 47°28 'N; and on the 

south at latitude 47°25 'N. The vegetation in tllis area falls within the Avalon Forest 

Ecoregion (Department afForest Resource and Agrifood, 2000), and the landscape 

pattern is dominated by trees of balsam fir with a mixture of black spruce (Picea 

mariana) and pine. The land surface is well forested with wllite and yellow birch 

scattered throughout the area while bedrock outcrops are common on the hills. The 

choice of tills site was based on the description of a uraniwn anomaly recorded in a study 

conducted by Sherwin (1979); willch was in turn a follow up to Davenport' s report 

"Uraniwn Distribution in the Granitoid Rocks of Eastern Newfoundland" willch 

identified the northern end of the Holyrood Granitic Pluton as being enriched in uranium. 

Urrulium concentrations determined in lake bottom sediment samples from Gull Pond and 

Big Pond ranged from 12- 42 ppm while that recorded in strean1 silt san1ples ranged 

from 12-22 ppm. A goal of tills study is to demonstrate whether tills anomaly is 

recorded by the black spruce twigs obtained from the area. 
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3.2 Geology of the Holyrood area 

The sampling site is underlain by late Precambrian granitoid rock ofthe Holyrood 

Plutonic series which have intruded volcanic rocks ofthe Habour Main Group. The 

Holyrood Granite is unconformably overlain by Eo-Cambrain sediments of the 

Conception Bay Group near the east boundary of the area and by Cambrain and 

Ordovician marine sediments of the Manuels River and Chamberlains formations to the 

north. Volcanic and gabbroic dykes found cutting the granitic rocks are pre Conception 

Bay in age. 
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Fig 3. 1: Geology map showing the bedrock of the Holyrood study area (Holyrood 

granitic intrusion). Dots = winter sample points, Diamonds = spring sample points. 

The latitude and longitude are given for a point in NW corner of map and scale bar is 

shown for reference. 
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3.3 Sample collection 

For the purpose of this study, black spruce twigs, about 20 em long were collected 

from trees located in the area between the Gull Pond and a stream originating from the 

north tip of Big Pond (Fig 3.1). At each sample point, the twigs were snipped from trees 

using a pair of shears labelled clean plastic bags and tied to avoid cross contamination. 

The UTM coordinates of each sample point were recorded using a GPS. The height of 

trees on which the san1ples were collected ranged from 1 to 3 m. The samples were 

collected in January and May, 2008 and stored at -4 °C prior to analysis. 

43 



c;:::::; 
0 

Gull pond 

Fig 3. 2: Location map Holyrood field area showing the 40 sample points (P = winter 

sample points; SP = spring sample point) 
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3.3 Sample treatment/processing 

The samples were physically examined, and all foreign matter and lichen-infested 

twigs removed. Each sample was washed in dilute solution of non-ionic, phosphorus-free 

detergent to remove traces of atmospheric deposits, rinsed twice with nanopure water and 

then swirled in air for about 15 seconds to remove excess water. They were placed on 

labelled plastic trays lined with brown paper and oven dried at 35 °C in a Fisher Isotemp 

Incubator (model 503) for two weeks. Partially dried needles were removed from the 

twigs after drying for a week. The dried twigs were shredded into smaller pieces by hand 

and milled in a clean cup mill (model TE 100/250, Angsrom Inc, Chicago). The resulting 

fine powder was stored in labelled clean air-tight plastic containers. 

3.4 Certified standard and in-house reference material 

Trial digestions were done using coffee, orange pekoe tea, and spruce twig 

san1ples (obtained from the forest near the MUN Health Centre) as in-house reference 

materials. The tea and coffee san1ples were each separately dried in a Fisher Isotemp 

Incubator (model503) at 35 °C for seven days, ground into a fine powder in a cup mill 

(model TE 100/250, Angstrom Inc, Chicago) and then stored in clean, labelled, air-tight 

plastic containers. The black spruce in-house material was treated as described in section 

3.3 above. 

The certified standard reference materials used for this study included National 

Institute of Standards and Technology pine needles (1575) and peach leaves (1547), and 
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black spruce vegetative radionucliede CL V -1 and CL V -2 made from black spruce twigs 

and black spruce needles respectively. The black spruce material was obtained from the 

Cluff lake uranium mining area in Northern Saskatchewan, Canada and then prepared as 

an analytical reference material. 

3.5 Instrumentation 

The inductively coupled plasma-mass spectrometer (ICP-MS) used in this study 

was a Hewlett Packard 4500 Series ICP-MS which has a quadrupole mass analyzer, an 

argon inductively coupled plasma source, and a concentric nebulizer. The samples are 

nebulized into a Scott double pass spray chamber, where larger droplets (> 10 um) are 

deposited on the walls of the spray chamber and then fall into a drain, the finer droplets 

as well as the gas phase, are transported to the plasma by the sample carrier gas 

(Montaser eta/. , 1998). The instrument laboratory is supplied with two air conditioners to 

minimize fluctuations resulting from temperature variations. In order to stabilise water 

loading of the plasma, a Peltier cooling device is supplied to control the spray chamber 

which was set to 2 °C. Deionized water which cools the Peltier cooling device is supplied 

by a Neslab CFT-75 refrigerated recirculator. This diminishes water vapour pressure (HP 

4500 chemStation Operator' s Manual, 1997). It is often thought that this also reduces the 

formation of molecular oxides and hydroxides which may contribute to spectra overlap 

(Falkner et al., 1995), however this has been clearly shown not to be the case (Longerich 

and Diegor 2001 ), as after optimum sensitivity is re-established after a spray chamber 
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temperature change, the sensitivity and degree of oxide formation is identical . What 

happens is that when the spray chamber temperature is reduced, the vapour load of water 

to the ICP is reduced increasing the effective ICP temperature. To return the ICP to the 

optimum apparent temperature the nebuliser sample carrier gas must be increased. Water 

from the cooler is also passed through the ICP load coil, the sample interface, the turbo 

molecular pump, and the radio frequency (RF) power supply. 

3.6 Operating conditions 

The tuning parameters for the instrument are given in Table 3 .1. The instrument 

was turned for maximum sensitivity where the thorium oxide formation (ThO+/Th l was 

less than 5 %. A tuning solution containing 10 ppb Li, Co, Y, Rh, Cs, Tm, Bi, and U in 

0.2 M HN03 was used to optimize the sensitivity. Optimal operating conditions, 

particularly the ion lens setting (Longerich et al. , 1985), are different for low and high 

mass element, so tuning for the entire mass range compromises the sensitivity ( cotmt rate 

per unit concentration). The instrument was operated at a radio frequency (RF) power of 

1250 - 1275 W. 

Once sensitivity was optimized, the conditions for low oxide ion formation, 

without loss of sensitivity, were found by aspirating the tuning solution and measuring 

the ion intensities for 238U+ and its oxide 238U 160 +. The oxides decrease with an increase 

in apparent plasma temperature, as more bonds break (bonds break when heat energy is 

greater than bond energy), and equilibrium shifts from MO+ toM++ 0 , reducing 
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polyatomic species formation in the plasma. The operating conditions determined for 

optimal sensitivity with low oxide ion formation are given in Table 3 .2. 

Table 3. 1: Element concentration in calibration standards for the waters and biological 

package 

CALIBRATION ELEMENTS CONCENTRATION 
SOLUTIONS 

Standard A Ag,Be 5 ppb 
V, Mn, Co, Rb, Sr, Mo, Sb, Tl, Pb, U 10 ppb 
Cd 30 ppb 
Li, Be, Al, Ti, Cr, Ni, Cu, Zn, As, Sn, Ba 20 ppb 
B, Mg, Se 50 ppb 
Fe 120 ppb 

Standard B Ca 4ppm 

Standard C Cl 25 ppm 
Br 150 ppb 
I 10 ppb 

Standard D Si 200 ppb 
p 600 ppb 
s 4ppm 

Standard E c 75 ppm 
Hg 50 ppb 
Tl 160 ppb 
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Table 3. 2: Operating parameters for ICP-MS analysis of plants samples 

VARIABLE VALUE 

RF Power 1250- 1275 w 
Carrier Gas (inner) 1.00 Llmin 

Auxiliary Gas (intermediate) 0.82 Llmin 

Plasma gas flow (outer) 14 Llmin 

Peristaltic Pump (liquid san1ple uptake) 0.4 mL/min 

Spray chamber temperature 2°C 

Extract 1 -166 v 
Extract 2 -215 v 
Einzel 1,3 -50 v 
Einze1 2 9.9V 

Quadrupole Focus -151 v 

3. 7 Digestion procedures 

Several trial sample digestions were done to determine an optimum ashing 

procedure. The initial digestions involved a combination of dry and wet digestions (acid 

digestions) over varying time periods. The initial dry ashing procedure applied is as 

follows: test tubes containing weighed san1ple (1.0 g) were each capped, transferred to a 

metal test tube rack, and placed in a muffle furnace (PSG mfg. Kilns & Furnaces, model 

TE-20M-M2) at a temperature 50 °C. The sample was dry ashed by ramping the 

temperature at a rate of 18 °C per hour to 500 °C, held at for 16 hours, and then cooled to 

50 °C. Details of subsequent trial digestions performed are as follows: 
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1. The first trial digestion was done using a sample of orange pekoe tea which was 

dry ashed according to the temperature program stated above. At the end of the 

first round of ashing, test tubes containing partially ashed sample were transferred 

into a metal block, 1.0 mL of 8 M HN03 added to each, and these were wet ashed 

at approximately 90 °C for one hour on a hot plate. Hydrogen peroxide (30 %) 

was added at 2 drops at 1 0 minutes intervals. A total of ten drops were added to 

each test tube and then evaporated to dryness. The capped test tubes with the 

sample were returned to a muffle furnace and dry ashed by ramping the 

temperature gradually from 50 °C to 500 °C over an eight hour period and held at 

500 °C for 4 hours. The sample remained partially ashed after approximately 60 

hours of dry and wet ashing (the trial was considered a failure) and so further 

ashing was aborted. The procedure was repeated for the coffee sample and black 

spruce sample (collected from the forest near the MUN Health Center). 

2. The second trial ashing used 1.0 g of orange pekoe tea in each of 8 test tubes, four 

of which were capped and four w1capped. Another set of four crucibles each 

containing 1.0 g sample were used. The samples were transferred into a muffle 

furnace at 50 °C and ashed according to the initial temperature program described 

above. The procedure was repeated for coffee and the in-house black spruce 

sample. 
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3. The third trial digestion followed the second digestion procedure. A 1 g sample of 

tea was weighed into each of four labelled test tubes none of which was capped and 

was ashed according to the initial temperature program. The completely ashed 

samples in the four tubes were used for further analysis. A set of four different 

combinations of acids was used to leach the elements. The acid combinations 

included: 16M HN03, 8 M HN03, 8 M HN03/6 M HCl, and 8 M HN03/29M HF. 

Tube A was treated with 2.0 ml of 16M HN03, tube B received 2.0 mL 8M HN03, 

tube C received 1.0 mL each of 8 M HN03 and 6 M HCl, and tubeD received 1.0 

ml of 8 M HN03. The dissolved ash from each acid combination was transferred to 

corresponding labelled Teflon containers, after which 1.0 mL of29 M HF was 

added to the container labelled D only. Two drops of H20 2 were added to each 

container and the sample-acid mixture evaporated to dryness on a hot plate. The 

samples were each reconstituted in 1.0 mL of 8 M HN03, two drops of H202 added 

to each container and these were warmed on a hot plate for two minutes. A sample 

blank was included as part of the batch. The 1.0 mL solutions were transferred to 

labelled 120 mL acid cleaned snap seal plastic containers and made up to 60 g with 

nanopure water for ICP-MS analysis (HP 4500 ICP-MS). This same procedure was 

repeated for samples of coffee, black spruce (from MUN Botanical Garden), and a 

NIST Pine needle 1575 certified standard reference material. 

4. For the fourth trial digestion, a 1.0 g sample of coffee was weighed into each of 

four test tubes. These were placed in a metal test tube rack and then transferred into 
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a muffle furnace at an initial temperature of 50 °C. The samples were ashed by 

ramping the f-urnace temperature at a rate of 18 °C per hours up to 500 °C, held at 

this temperature for 16 hours and then cooled to 50 °C. The completely ashed 

san1ples were leached by treating with 8M HN03/ 29M HF acid combination as 

described in trial digestion 3. The procedure was repeated for pekoe tea, in-house 

black spruce sample, and the certified standard reference materials (NIST 154 7 

peach leaves, NIST 1575 pine needles, and black spruce CL V -1 and CL V -2). 

Optimisation of the ashing procedure 

5. For the fifth trial digestion, 1. 0 g of in-house black spruce sample was weighed into 

each of four test tubes and 1.0 g of the NIST 1575 pine needle was weighed into 

another set of four test tubes. The samples dry were ashed by ramping the 

temperature at a rate of 18 °C per hour up to 450 °C, held for 8 hours and then 

cooled to 50 °C. To the ash in each test tube, 1.0 mL of 8M HN03 was added and 

the content transferred to corresponding labelled Teflon container. Each container 

received 1.0 mL of 29M HF and 2 drops of 30% H202. The resulting solutions 

were evaporated to dryness on a hot plate, the residue reconstituted in 1.0 mL of 8M 

HN03, and then 2 drops of H20 2 were added and heated on a hot plate for 2 

minutes. The solutions were made up to 60 gin acid clean containers and then 

analyzed by ICP-MS (HP 4500 ICP-MS). This procedure was repeated for pekoe 

tea, coffee, and the certified reference materials. 
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6. For the sixth trial digestion, each of the samples (both in-house and certified 

reference materials) was ashed by ramping the temperature at a rate of 50 °C per 

hour and then held at 450 °C for 8 hours. The samples were only charred (partially 

ashed) and so the procedure was aborted. 

7. The seventh trial digestion was done by ramping 1.0 g samples (both in-house and 

certified reference material) at a rate of 10 °C per hour until 450 °C and then ashed 

at 450 °C for 8 hours. The samples were cooled to 50 °C and the resultant ash 

leached by treating with the 8 M HN03/29 M HF reagent as described in trial 

digestion five and then analyzed on HP 4500 series ICP-MS. 

8. Successive trial digestions 8 and 9 were similar to the fifth trial digestion where 

samples were ramped at 18 °C per hour and then ashed at 450 °C but at varying 

durations of the holding time (4 and 16 hours). The samples ashed for 4 hours were 

partially ashed and so were each treated with 1.0 mL 8M HN03 and transferred into 

Teflon containers, 1.0 mL of29 M HF was added to each container, and then 

diluted with 10 mL of nanopure water. The resulting solutions were filtered by 

gravity through a 125 mm diameter Whatman #1 filter paper. The filtrates were 

collected into labelled 120 mL acid cleaned snap seal plastic containers and made 

up to 60 g with nanopure water for analysis using ICP-MS (HP 4500 ICP-MS). The 

samples ashed for 16 hours were completely ashed and therefore were treated as in 

trial digestion five. 
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3.8 Acid digestion procedure 

This acid digestion procedure is used in digesting biological samples by the ICP-MS 

group at MUN. About 0.2 grams of the plant material was weighed into 15 ml acid clean 

Teflon containers and 3 mL of 8 M HN03 added to each, covered and then warmed on a 

hot plate at approximately 90 °C for three days. The lids were removed and the solutions 

were evaporated to dryness. The previous step was repeated and again evaporated to 

dryness. One mL of 8 M HN03 and 1 mL of 30% H20 2 were added to each container, 

covered, warmed at approximately 90 °C for 24 hours and then evaporated to dryness. 

Tllis step was repeated twice and the residue reconstituted in 2.0 mL of 8 M HN03, 

warmed on a hot plate for 2 minutes and then made up to 60 g with nanopure water in a 

snap seal container for ICP-MS analysis. The procedure was applied to standard 

reference materials: NIST 1575 pine needles and 1547 peach leaves, and black spruce 

vegetative radionuclide CL V -1 and CL V -2. 

3.9 Dry ashing procedure of choice 

Trial digestion 5 was chosen as it provided the best results for aslling plant materials. Its 

accuracy and reliability was assessed by analysing standard reference materials: NIST 

1575 pine needles and 154 7 peach leaves, and black spruce vegetative radionuclide CL V-

1 and CL V -2. The mean element recoveries were compared to those obtained by acid 

digestion. 
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Chapter 4: Results 

4.1 Choice of isotopes 

Concentrations of analytes with two or more isotopes were determined by 

examining the spectra for masses with high analyte isotope abundance and low 

interferences and backgrounds. Both 42Ca and 43Ca were measured but the determination 

of 43Ca was used in the data analysis, because despite the higher isotopic abw1dance of 

42Ca, the occurrence of 40Ar2H and 40Ar1H2 at 42 amu causes a high backgrow1d. The 

other isotopes of calcium were not used for the determination due to the presence of Ar at 

40 amu, 12C 160 160 at 44 amu and the isobaric interferences with Ti at 46 and 48 amu. 

Three isotopes of Fe were measured, at 54, 56, and 57 amu. Determination ofthe isotope 

57Fe was used as a high background occurred at 56 amu from 40Ar160 , a high background 

occurred at 54 amu due to 40 Ar 1~, and Cr causes an isobaric interference at 54 amu. The 

two isotopes of 77Se and 82Se were measured, with high backgrounds occurring due to 

(
40Ar1H)2 and 40Ar2

1H2, and interferences occurring from 40Ar37Cl and 8 1Br1H. The 

determination of 82Se was used for the data analysis although the detection limits of the 

two isotopes are similar. The determined concentration ofthese two Se isotopes showed 

good agreement, which is evidence for good background and interference correction. The 

isotopes of chromium measured are 52Cr and 53Cr but determination of isotope 53Cr was 

used because a high background occurred from 40Ar12C at 52 amu although the 52Cr 

isotope has a lower detection limit in the absence of carbon. The 54Cr isotope was not 

measured due to a high background encow1tered from 40 Ar14N and isobaric interference 

from 54Fe. 
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4.2 Digestion procedures 

The criteria for determining the suitability of a digestion/ashing procedure was 

based on the completeness of decomposition as determined by the absence of the residual 

organic matrix (complete combustion/elimination of the sooty substance deposited on the 

test tubes) and by the extent of recovery of the trace elements (as determined by analysis 

of the reference materials). Biological samples generally consist of a complex mixture of 

carbohydrates, proteins, and lipids and so require a digestion method that adequately 

oxidizes all these components, especially proteillS and lipids. Hence any procedure for 

analysing trace metal content in such matrices must adequately decompose both organic 

and inorganic matrices (e.g. silicates) to release the metals from the sample matrix into 

solution. 

The partial decomposition observed in the first trial digestion (all test tubes 

capped) of this study may be attributed to inadequate supply of oxygen to complete the 

combustion process. The caps on the test tubes obstructed the exchange of gases in an 

environment where oxygen was already depleted at high ashing temperatures. In addition 

to an inadequate supply of oxygen, it is suspected that the evaporation step of the wet 

ashing stage must have induced the formation chemical entities such as oxides which 

cause the residue to be more difficult to digest. The oxides form crusts on the surface of 

the sample. This limits the surface area of the particles and hinders the combustion 

process (Fabry and Nangniot, 1972; Van Paemel et al, 2005; Mader et al, 1997). Since 

completeness of a digestion is an essential requirement for obtaining reliable results in 

ICP-MS analysis, further ashing of samples in Trial digestion 1 was aborted as the ashing 
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period had exceeded 60 hours and continued ashing would likely lead to further losses of 

volatile elements. 

Losses of trace elements during digestion affect the accuracy ofthe final results. 

Gorsuch, (1970) identified possible loss mechanisms associated with all sample 

decomposition procedures; among others were gaseous evolution (volatilization), 

absorption or adsorption onto surfaces, precipitation, and the persistence of w1dissolved 

material. Loss of sample analytes may also result from their incorporation into a residue 

which is insoluble in the leaching reagents and therefore lead to the formation of 

refractory oxides by combinations with other sample constituents hence the need to 

ensure a complete decomposition. 

The second trial digestion procedure was intended to identify the best digestion 

vessel suited for dry ashing owing to the diversity of the sample matrices involved in the 

study. The ideal vessel is one that supplies sufficient oxygen to drive the decomposition 

process to completion while minimizing sample contamination, loss of sample 

components through volatilization, and reactions with the walls of the vessel. Generally, 

all four san1ple types were completely ashed in the uncapped test tubes but the samples in 

the capped test tubes and crucibles were only partially ashed. The capped test tubes were 

characterized by the deposition of soot on the walls and a charcoal residue. Similarly, the 

plant materials in the crucibles were only partially decomposed except for the SRM 1575 

(pine needles), which was completely ashed (Table 4.1). 

Similarly, Mader eta!, (1997) encounted considerable difficulty in ashing alfafa 

leaves at 500 °C in beakers covered with watch glasses. The partial decomposition of the 
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samples in the crucibles was contrary to expectation and may be attributed to the general 

depletion of oxygen in the furnace at high temperature. The complete decomposition 

observed in the uncapped (open) test tubes could be attributed to the utilization of oxygen 

trapped within the empty space in the test tubes. In addition, the long narrow test tubes 

reduced the ease of escape of volatile sample components and also limited introduction of 

external contaminants as compared to the crucibles with wide mouth. The uncapped test 

tubes were therefore chosen as a suitable vessel for dry ashing. 

If performed well, classical dry ashing leads to complete destruction of the 

organic matrix producing ashes of white, orange, or grey colour. The analytes of interest 

are completely solubilised and are in a form compatible with the analytical method of 

choice. The ease and extent of ashing also depends of the composition of sample 

(carbohydrates, proteins, or fats) as well as its particle size. Powders with finer particles 

such as SRM 1575 were easier to ash in the crucibles as result of their larger surface to 

volume ratio. The in-house reference materials were not ground to very fine powders 

comparable to the reference materials for fear of introducing contaminants during 

grinding. 

58 



T bl 4 1 Effl a e ect o f f nature o vesse on t h ffi . f 'd . f 1 ee ICiency o ox1 atwn o p ant materials 
SAMPLE TEST TUBE TEST TUBE CRUCIBLE 

(CAPPED) (UNCAPPED) 

TEA - + -

COFFEE - + -

BLACK SPRUCE - + -

1575 PINE - + + 

NEEDLE 

Key: + = completely ashed, - = mcompletely ashed 

Since ICP-MS like many other analytical techniques, requires a sample to be 

transformed into a solution prior to analysis, a choice of an acid or acid mixture that 

would efficiently leach the elements into solution is necessary for accurate and reliable 

results. For instance, factors, such as the fraction of organic matter in a sample, insoluble 

components of the plant material (e.g. silicates) in the leaching acid, or solubilisation of 

ash may affect the degree of trace element recovery. Also some acids react with trace 

elements to form volatile compounds or complexes, and therefore result in artificially low 

concentrations of the elements of interest (Azcue and Mudroch, 1994 ). 

Trial digestion three was effective in decomposing all plant materials tested and 

produced a whitish to grey ash. The resultant ash was leached with four combinations of 

acids in order to evaluate their effectiveness in leaching the elements prior to 

instrumental analysis. The acid combinations included 16 M HN03, 8 M HN03, 8 M 

HN03/6 M HCl, and 8 M HN03/29 M HF. Generally, all four acid combinations tested 

were satisfactory in leaching the elements into solution, but the dissolution of the ash in 8 

M HN03/29M HF (2:1) with addition of2 drops H20 2 was observed to be most efficient 
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in leaching the elements in both in-house reference materials and SRM 1575 (Figs. 4.1-

4.5). 

Hydrofluoric acid is commonly used to decompose silicate minerals to form 

volatile SiF4 and to free the associated elements into solution. Its application in this study 

is to leach elements bound to any silicious components of the plant matrix. Plant media 

contain varied concentrations of silica that can attain several percent (Hoenig 2000). As 

observed by Mader et al, (1997), anaJytes can be quite strongly retained in the siliceous 

residue with the consequent risk of them not being solubilised during the leaching 

procedure. The use ofHF in combination with nitric acid therefore helps the complete 

dissolution of both organic matter and inorganic silicates. This is in agreement with the 

observation by Maurizio et al, (2002) that use of HF in the reagent mixture is particularly 

important for leaching lithogenic elements such as Al, Cr, Fe, U, and Ti which partially 

associate with silicates. 

The relatively low recovery of AI by all other three reagent mixtures (16M 

HN03, 8 M HN03, and 8 M HN03/6 M HCI) is an indication of their inefficiency in 

decomposing silicates as AI is partly associated with silicates. Both 16 M and 8 M HN03 

were quite efficient in the treatment of the in-house reference san1ples (coffee, tea, and 

black spruce) with high recoveries for elements such as Pb, Sn, Br and Zn (Tables 4.1 to 

4.3) but the recoveries were unsatisfactory for AI, Ti, V, and U. 

Figure 4.1 shows the element recoveries for the in-house coffee material. The 8N 

HN03/HF reagent combination was more efficient in leaching the majority of the 

elements. It recovered 4.2 ppb ofU while the 8 N HN03/HC1 combination recovered 3.1 
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ppb (Table 4.2) when the sample was ashed at 500 °C for 16 hours. Recovery of U in the 

coffee in-house material with nitric acid alone (both 16 M and 8 M) was generally not 

satisfactory but its recovery of non-lithogenic elements is impressive. 
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Fig. 4 . 1: Concentration of trace elements (ppb) recovered by the leaching agents in the 

in-house coffee material. 

ICP-MS results for elements such as Be, As, Cl, Si, S, Br, Se, Hg, Mo, Ag, Cd, 

Sn, Sb, I, Tl, and Bi which were below detection limits in the in-house tea and coffee 

samples (Figs. 4.1 and 4.2). It could however not be ascertained whether the low 

concentrations were natural or were due to losses by volatilization during dry ashing and 

dissolution. 
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Fig. 4. 2: Concentration oftrace elements (ppb) recovered by the leaching agents in the 

in-house tea sample 

Uranium recovery by all four reagent combinations in the tea in-house reference 

sample was below the detection limit. This may be due to low levels ofuraniwn in the 

sample or due to losses. There was good agreement between the element recoveries by all 

four reagent mixtures except for Mo where recovery with 8 M HN03/HF far exceeded the 

recoveries by the other three reagent mixtures. The recovery by 8 M HN03/HF is 30 % 

higher. Again 3.6 ppb and 2.6 ppb of uranium were recovered by 8 M HN03/HF and 8M 

HN03/HC1 respectively in the in-house spruce reference material (Table 4.1) but 

recovery by 16 M and 8 M nitric was below the detection limit. Recoveries of all other 

elements by all four reagents are quite good with no significant differences except for 

uraniwn which was not detected. The recovery of Mn, Cr, and Mo however recorded 
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RSDs higher than 20% while concentrations for elements such as Be, Si, Ti, As, Br, Se, 

Hg, Tl, and Bi were below detection limit. 
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Fig. 4. 3: Concentration of trace elements (ppb) recovered by the leaching agents in the 

in-house spruce sample. 

The efficiency of leaching by all four reagent mixtures was assessed by analysing 

a certified reference material, NIST 1575 pine needles. The analytical results for the 

NIST SRM 1575 were satisfactory for all four reagent mixtures with recoveries in the 

range of 40 % and higher. Recovery of silicate bound elements (lithophile elements), 

such as Al, Ni, Ti, and U vary for all four reagents. Their recovery was most satisfactory 

with the 8N HN03/HF reagent mixture, with recoveries ranging from 75 - 81 %, while V 

and Co exceeded 100% recovery (Table 4.4). The source of contamination of these 
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elements could however not be ascertained. The recovery of AI, Ni, and U with nitric 

acid and HN03/HC1 reagents was 72%, 75%, and 68% respectively. The use ofHF has 

been reported to give complete digestion (Gorsuch 1970; Hoenig 2000; Mader et al, 

1997; and Xinbang Feng et al, 1999). 

The recovery of uranium ranges between 58 to 82% with 8 N HN03/HF 

recovering 82 %while 16 M nitric acid recovered the lowest at 58 %. Similar patterns of 

results were also observed in the in-house reference material. The recoveries of As, Cd, 

Sb, and Tl were above 60% in the SRM 1575 pine needle reference material. This 

strongly suggests that the below detection limit recorded for these elements in tea and 

coffee in-house reference material cannot entirely be attributed to losses through any of 

the routes stated above. The concentration of these elements may naturally be low in the 

tea and coffee samples hence the low concentrations recorded. 

64 



10000000.0 

1000000.0 

....100000.0 

..c 
a. 
.90000.0 

u 
:z 1000.0 
0 

u 100.0 

10.0 

1.0 

- -

f-

-

- -

- -

1 

---------------

--

-

T 
-

1 

ELEMENTS 

D16N HN03 

lll 8NH N03 

188NH 

~H 

N0316N HCI 

N03/H"----F _J 

I 

-

-

Fig. 4. 4: Concentration of trace elements (ppb) recovered by the leaching agents in the 

SRM 1575 pine needle. 

Mercury and Br were below the detection limit in all four samples (i.e. in-house reference 

material and SRM 1575 pine needle) when leached with each ofthe four reagent mixtures 

after an initial dry ashing at 500 °C for 16 hours. 

Mader et a!, (1997) reported that losses of volatile elements such as Hg, As, and 

Se could be minimized by the use of ashing aids in the dry ashing procedure. They 

explained that ashing aids -generally MgO and/ or Mg(N03) 2 can sometimes lead to the 

formation of less volatile Se and As compounds during ashing. However, Hoenig (2000) 

observed that ashing aid efficiency is strongly dependent on the initial analyte form and 

may not apply to all sample types. For example, Vassileva et al, in Hoenig (2000) noticed 

after dry ashing of terrestrial plants that, As and Se recoveries are very consistent but that 
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this was not the case for plants of aquatic origin. Therefore utilization of ashing aids is 

particularly questionable because a few successful examples cannot be generalized for 

routine use. Their use in a procedure necessitates a serious and time-consuming 

validation for each type of samples analyzed. In addition, the utilization of ashing aids 

may significantly increase the total content of dissolved salts in solutions, limiting the 

application of this approach for ICP-MS analysis and also prevent the often required 

determination of the sample Mg concentration. 

Consensus exists in the literature that moderate heating prior to ashing (charring 

phase) is of critical importance to avoid losses of analyte from the sample through local 

overheating and subsequent loss of the analyte due to its removal from the sample in the 

form of solid particles of smoke (Mader et al, 1996; Mader et al, 1997). This necessitated 

the slow rate of temperature ramp (18 °C per hour) adopted for the initial ashing 

programme. Mader et al, ( 1997) also observed that the removal of organic components 

from plant materials proceeds through an initial charring temperature below 200 °C. The 

choice of a base line initial temperature of 50 °C allows adequate time for the san1ple to 

dry and expel bound water. 

In order to improve elemental recoveries and mitigate losses by volatilization the 

ashing temperature was varied from 400 °C to 500 °C and its impact on elemental 

recovery was assessed. The samples were ashed at 400 °C and 450 °C for 8 hours and at 

500 °C for 16 hours after a gradual temperature ramp of 17 °C per hours. All samples 

(both in-house and certified reference material) ashed at 400 °C for 8 hours were charred 

into charcoal particles and the walls of test tubes were covered with soot: an indication of 
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incomplete decomposition. However, complete decomposition of the plant materials was 

achieved when ashing temperature was increased to 450 °C and 500 °C and held for 8 and 

16 hours respectively. All plant materials examined were completely ashed forming a 

white to grey ash with clear sample tubes. This contradicts the suggestion by Mader et al, 

(1997) that a decrease in ashing temperature from 500 °C to 450 °C leads to incomplete 

decomposition of even readily decomposable plant materials such as potato tubers. The 

recovery of the elements in all samples ashed at 450 °C was significantly higher than the 

quantities recovered in samples ashed at 500 °C. For instance, U recovery in in-house 

spruce and coffee reference material increased from 3.7 ppb to 13.4 ppb and 4.0 to 7.0 

ppb respectively (Tables 4.10 and 4.11). A reduction ofthe ashing temperature from 500 

°C to 450 °C also improved the recovery of Be and Tl in the in-house spruce sample (i.e. 

28.2 ppb and 15.5 ppb respectively) (Table 4.10). 
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Fig. 4. 5: Concentration oftrace elements (ppb) recovered at varying ashing temperatures 

in the in-house spruce sample. 

The in-house tea reference sample recorded 4.9 ppb of uranium when ashed at 

450 °C for 8 hours but it recorded concentration below detection limit when ashed at 500 

°C for 16 hours. Other elements, Be, Br, and Tl were recovered in relatively high 

quantities when ashed at 450 °C as compared to the below detection limit recorded when 

ashed at 500 °C. Appreciable increases were observed for Cr, Mo, and Co with element 

concentrations increasing by 15 %, 50 %, and 20 % respectively in comparison with 

concentrations recovered when the sample was ashed at 500 °C (Fig. 4.5, Table 4.12). 
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Fig. 4. 6: Concentration of trace elements (ppb) recovered at varying ashing temperatures 

in the in-house tea sample. 

A similar phenomenon was observed with the in-house coffee reference material 

where uranium recovery increased by 66% from 4.0 ppb to 6.0 ppb (Fig. 4.6, Table 4.11) 

when the ashing temperature was reduced from 500 °C to 450 °C. All other elements 

increased marginally but the differences in the recoveries are not as significant as in the 

tea and black spruce in-house reference materials. Coffee has high fat content and as 

stated in the literature, materials rich in fat are much more difficult to decompose (Mader 

et al, 1997; Radojevic and Bashkin 1999). Besides Li and U whose concentrations 

increased appreciably when ashed at 450 °C (Fig. 4.7), the difference in the mean 

elemental recovery for all other elements is not statistically significant at 95% confidence 

limit. 
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Fig. 4. 7: Concentration of trace elements (ppb) recovered at varying ashing temperatures 

in the in-house coffee sample. 

Figure 4.8 shows results of varied periods (i.e. 4, 8, and 16 hours) for ash.ing the 

plant materials. All samples that were ashed for 4 hours at 450 °C after a gradual 

temperature ramp of 18 °C per hour resulted in a partially decomposed sample containing 

charcoal particles. Coloured solutions of varying degrees were obtained for ICP-MS 

analysis unlike the clear solutions obtained for completely decomposed san1ples. Ashing 

for 4 hours recovered 161 ppb of Arsenic. But ashing for longer periods recorded As 

concentrations below detection limit (Table 4.16). Recovery for all other elements was 

low with high RSD' s in comparison with samples ashed for 8 hours. Uranium recovery 

dropped by 23% in the in-house spruce reference sample (Fig. 4., Table 4.13) while other 
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lithogenic elements, such as AI, Ti, and Fe, also recorded significant drops in their 

recovery. This is because the elements bound to the undecomposed matrix were not 

recovered. The recovery of Mo was highest in spruce and coffee in-house materials (92 

ppb and 114 ppb respectively) (Tables 4.13 and 4.14) after 4 hours of ashing. 

Concentrations of metals recovered after 4 hours of ashing were imprecise, inaccurate, 

and were characterised by high RSDs. 
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Fig. 4. 8: Concentration oftrace elements (ppb) recovered at varying durations ofashing 

(in-spruce sample) 

A similar pattern of element recovery was observed for the in-house coffee 

sample but with small differences in mean element recoveries between samples ashed for 
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4, 8, and 16 hours. Uranium recovery was much higher in samples ashed for 4 hours than 

those ashed for 16 hours (Fig 4.9). The highest elemental recovery was obtained for 

samples ashed for 8 hours (Table 4.15). The low element recovery observed after 4 hours 

of ashing was due to the incomplete decomposition of the plant material and the 

adherence of some of the elements onto the undecomposed matrices hence their 

unavailability for measurement. 
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Fig. 4. 9: Concentration of trace elements (ppb) recovered in the in-house coffee san1ple 

after varied periods of ashing. 
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The differences in the mean recoveries of some of the elements were however 

marginal and statistically insignificant at 95% confidence limit (e.g. B, Mg, AI, Ca, and 

Mn) between samples ashed for 4, 8, and 16 hours. The RSD's were also relatively higher 

in san1ples ashed for 16 hours (Table 4.13 - 4.18). 
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Fig. 4. 10: Concentration of trace elements recovered in the SRM 1575 pine needle after 

varied periods of ashing. 

For the in-house tea material, uranium was recovered in samples ashed for 4 and 8 

hours but was totally lost when ashed for 16 hours. The mean concentrations recovered 

for both U and Tl in samples ashed for 4 hours were very close to the detection limits (i.e. 

0.63 ppb and 1.91 ppb respectively) (Fig 4.10). A large variation was observed in the 
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mean element recovery of Co with increasing duration of ashing. The recovery dropped 

from 8.7 ppm when ashed for 4 hours to 3.1 ppm after 8 hours of ashing at 450 °C and to 

0.2 ppm when ashed at 500 °C for 16 hours (Table 4.15). Molybdenum was completely 

lost when ashed at 500 °C for 16 hours. 
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Fig. 4. 11: Concentration of trace elements (ppb) in the in-house tea sample after varied 

periods of ashing. 

The result, thus far suggest that not only does ashing at elevated temperatures lead 

to losses of analytes but prolonged times of ashing also contribute to element loss. This 

therefore corroborates the observation by Mader et al, (1997) that ashing at lower 

temperature assures a decreased loss of sample components during the dry ashing 

procedure. 
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The effect of the rate of temperature rise on the efficiency of decomposition and 

retention of volatile sample components was studied. The samples were ashed by using 

rates of temperature rise of 50 °C/hr, 18 °C/hr, and 10 °C/hr. In general, element recovery 

increased with a slower rate of temperature rise for all examined samples. All samples 

ramped at 50 °C/hr were only partially decomposed into charcoal and the test tubes were 

covered with soot, an indication of incomplete combustion. Ramping at rates of 18 °C/hr 

and 10 °C/hr resulted in complete decomposition of the plant material indicating that a 

slower temperature ramp increases the efficiency of the decomposition process. For 

example, there was a significant increase in the recovery of Be, Mg, Si, Ag, and Cs when 

the rate of temperature ramp was slowed from 18 °Cihr to 10 °C/hr in the CL V -1 

reference material (Fig 4.12). The increase was marginal for all other elements, for 

example, U recovery increase from 73 ppm to 74 ppm (Tables 4.17). These increases in 

recovery are not statistically significant. 
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Fig. 4. 12: Concentration of trace elements recovered in CL V -1 at different rates of 

temperature rise. 

The difference in element recovery in the case of CL V -2 reference material was 

however not as distinct as observed for the CL V -1. The only elements whose recovery 

increased marginally when the rate of temperature ramp was reduced from 18 °C/hr to 10 

°C/ hr were Mg, Al, Ti, and Ag (Fig 4.13). The recovery of Ag increased by 

approximately 50% i.e. from 14.3 ppb to 23.3 ppb while As and U increased from 276 

ppb and 3.0 ppm to 311 ppb and 3.3 ppm respectively (Tables 4.18). Lithiw11 also 

increased by 14%, from 263 ppb to 299 ppb. Besides Ag whose recovery increased by 

approximately 50 %, the increase observed for all other elements was less than 15 %. 
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Fig. 4. 13: Concentration of trace elements (ppb) recovered in CL V -2 at different rates of 

temperature rise. 

The element recovery in SRM 154 7 peach leaves (Fig 4.14) is similar to the 

pattern observed in the CLV-1 and CLV-2 samples. There was a slight increase in 

element recovery when the rate of temperature rise was reduced from 18 °C/hr to 1 0 

°C/hr. This difference in element recovery is, however, not statistically significant. The 

concentration of U recovered when 154 7 peach leaves was ashed by varying the 

temperature ramp at rates of 18 °C/ hr and 10 °C/hr were 21 ppb and 24 ppb respectively, 

about 30% higher than the concentration given in the certificate of analysis (i.e. 15 ppb) 

(Table 4.19). 
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Fig. 4. 14: Concentration oftrace elements recoverd from 1547 peach leaves at different 

rates of temperature rise. 

There was no significant difference in the elemental concentrations recovered 

when black spruce in-house reference material was decomposed at rates of 18 °C/lu· and 

10 °C/hr except for Bi whose concentration increased from 6.74 ppb to 13.44 ppb. The U 

concentration also increased from 17.4 ppb to 19.5 ppb. This implies that increasing the 

temperature at a slower rate increases the efficient of decomposition while minimizing 

the loss of volatile sample components. This is in agreement with the observation by van 

Paemel et al, (2005) that a moderate charring stage is of critical importance to avoid 

losses of analytes from san1ples through local overheating and subsequent loss of solid 

78 



particles as smoke. The comparison of the element recovery by decreasing the 

temperature at a rate of rise from 18 °C/hr to 1 0 °C/hr for all elements that recorded 

concentrations above detection limit including U showed no statistically significant 

differences in the mean element concentrations. Therefore, increasing the temperature at 

a rate of 18 °C/ hr was preferred because it is a compromise with respect to time and cost. 
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Fig. 4. 15: Concentration oftrace elements (ppb) recovered from in-spruce coffee sample 

at varying rates of temperature rise. 

The trial digestion experiments and the optimisation of parameters such as ashing 

temperature, rate of temperature rise (charring stage) prior to ashing, and varying 

duration of ashing led to a more optimised dry ashing procedure. For a successful dry 

ashing the final ashing temperature should be kept as low as possible to minimise the loss 
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of volatile sample components but it must be high enough to ensure complete combustion 

(oxidation) of all the organic matter. Thus a procedure where the san1ple is ashed at 450 

°C for 8 how-s after an initial temperature ramp of 18 °C/hr resulted in complete 

decomposition of plant materials and improved recovery. 

Factors which were considered in the selection of this procedw-e included the 

completeness of digestion and reproducibility in analyte recovery from matrix, its ability 

to handle a representative sample, and its economic efficiency with regard to the time 

required for sample preparation, labour, reagent consumption, and equipment cost. 

Increasing the temperatw-e (i.e. the charring stage) at a rate of 18 °C/hr reduced 

the total ashing time to 32 how-s compared to 48 hours when the temperature was 

increase a rate of 10 °C/hr. The comparison of the element recoveries for all samples 

ashed by increasing the temperature at rates of 18 °C/hr and 1 0 °C/hr showed no 

statistically significant differences. This demonstrates that increasing the temperature at a 

rate of 18 °C/hr is as good as 10 °C/hr. Another important consideration for the selection 

of a digestion method for the determination of trace metals in biological and 

environmental materials is the required digestion time. The comparison of the dry ashing 

procedure with the wet ashing procedure used by the ICP-MS Group at MUN showed 

significant differences. 

To verify the accuracy of the proposed procedure, three certified reference 

materials: pine needle (1575) by NIST and black spruce radionuclide samples (CLV -1 

and CL V -2) from Cluff Lake uranium mining area in northern Saskatchewan were treated 

by the proposed dry ashing procedure and analysed using ICP-MS with the operating 
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conditions stated in Table 3.2. The results of the analysis indicated that there is agreement 

between measured and certified values with relative deviations less than 1 0 %, except for 

elements such as Ni, Mo, and Co which consistently recorded RSDs more than 10% 

(Tables 4.2 to 4.5). A student t-test of the mean recoveries at 95 %confidence limit 

showed good agreements between the measured concentrations and the certified values 

for most analytes. Elemental recoveries in all SRM were in the range of75 to 120%. 

Both dry ashing and wet digestion procedures are found to be suitable for ICP-MS 

determination of trace elements in plant samples. Consistent analytical results and 

satisfactory precision were noted for both procedures when the element concentrations 

were compared with the certified values oftl1e standard reference materials. Considering 

time, reagent, and need for supervision, the dry ashing procedure seems to be more 

convenient decomposition method for sample preparation. For many of the elements the 

wet digestion procedure gave slightly higher recoveries. However it cannot be 

recommended for the determination of AI, Fe, Cr, Ti, and Mn because of the significant 

losses and relatively higher RSD's associated with these elements. 
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Table 4. 2: Concentration of trace metals (ng/g) determined using ICP-MS after dry and 

acid digestion, n = 4 

MEAN CONCENTRATION (ng/g) 

ELEMENT ACID RSD CERTIFIED % DRY RSD % 
DIGESTION % VALUE RECOVERY ASHING % RECOVERY 

Li 0.83 6 1.05 2 
Be 0.07 10 
B 12.2 7 11.2 13 

Mg 1030 7 1020 4 
AI 450 3 1430 31.51 1000 3 69.62 
Si 41 3 11 .0 7 
p 490 6 500 6 

Ca 5000 6 6300 79.06 4700 4 74.69 
Ti 10.3 3 51 14 
v 2.67 9 3.6 74.16 2.93 2 81 .30 
Cr 4.2 3 6.6 2 
Mn 470 7 612 76.38 480 5 78.42 
Fe 1320 15 1610 5 
Co 0.76 4 0.49 14 
Ni <DL 2.27 13 
Cu 4.8 22 4.7 5 
Zn 60 6 69 7 
Se 2.29 7 1.40 9 
Rb 2.98 4 3.6 3 
Sr 25.2 5 29.7 2 
Mo 2.22 29 2.0 3 
Ag 0.06 9 0.09 5 
Cd <DL 0.08 15 
Sn 3.7 12 0.32 4 
Sb 0.10 11 0.13 5 
Cs 0.06 8 0.09 4 
Ba 50 5 170 29.70 57 2 33.76 
La 0.64 3 1.11 3 
Ce 1.38 2 2.34 3 
Tl 0.020 1 0.05 1 
Pb 7.3 3 7.4 2 
Bi 0.06 4 0.05 4 
u 78 6 86.80 89.60 77 4 88.38 
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Table 4. 3: Concentration of trace metals (ng/g) in CLV-2 determined using ICP-MS after 

dry and acid digestion, n = 4 

MEAN CONCENTRATIONS (ng/g) 

ELEMENT ACID RSD CERTIFIED % DRY RSD % 
DIGESTION % VALUE RECOVERY ASHING % RECOVERY 

Li 0.258 3 0.3 4 
Be 0.13 3 
B 38 2 37 2 
Mg 810 3 <1 .00 740 3 
AI 219 7 320.00 68.49 297 4 92.94 
Si >DL 170 26 
p 870 2 850 5 
Ca 7500 2 7700.00 97.40 7000 2 90.91 
Ti 2.55 1 10.3 5 
v 0.51 7 0.76 66.86 0.56 2 73.36 
Cr 3.9 18 4.7 15 
Mn 900 3 1940.00 46.14 1410 3 72.56 
Fe 239 2 320 6 
Co <DL 0.08 23 
Ni <DL 1.15 17 
Cu 1.55 10 2.03 5 
Zn 61 3 61 3 
Se <DL 0.31 27 
Rb 3.1 2 3.2 2 
Sr 17.1 2 17.7 4 
Mo <DL 0.07 9 
Ag 0.02 6 0.02 4 
Cd <DL <DL 
Sn 2.16 21 0.2 9 
Sb 0.03 9 0.03 6 
Cs 0.02 10 0.03 4 
Ba 24.1 2 28.00 85.90 24.5 3 87.48 
La 0.28 17 0.25 6 
Ce 0.29 6 0.51 8 
Tl 0.02 2 0.02 12 
Pb 0.91 4 0.89 7 
Bi 0.01 1 0.01 5 
u 3.3 4 3.60 92.41 3.3 3 92.56 
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Table 4. 4: Concentration of trace metals (ng/g) determined in SRM 1575 using ICP-MS 

after dry and wet digestion 

MEAN CONCENTRATION (ng/g) 

ELEMENT ACID RSD CERTIFIED % DRY RSD % 
DIGESTION % VALUE RECOVERY ASHING % RECOVERY 

Li 0.180 4 0.200 9 
B 14.8 6 15.4 3 

Mg 1050 3 940 5 
AI 470 5 550 85.40 480 3 87.18 
Si <DL 28.3 22 
p 1060 3 1080 3 

Ca 3600 3 3800 2 
Ti 5.3 4 10.8 3 
v 0.35 2 0.36 2 
Cr 2.24 4 2.60 85.98 2.31 6 89.04 
Mn 540 3 680 79.37 540 7 80.36 
Fe 185 2 200 92.31 191 2 95.32 
Co 0.120 7 0.100 117.50 0.100 1 98.02 
Ni <DL 3.5 2.17 11 62.07 
Cu 2.68 2 3.00 89.37 2.56 2 85.29 
Zn 56 12 68 12 
Rb 10.5 3 11 .7 89.96 10.8 2 92.09 
Sr 4.3 4 4.4 1 
Mo <DL 0.120 13 
Cd 0.160 10 0.170 7 
Sn 3.5 7 0.300 15 
Sb 0.210 46 0.200 105.94 0.180 3 91 .29 
Cs 0.110 4 0.110 1 
Ba 7.1 2 6.7 2 
La 0.12 4 0.20 57.85 0.120 6 58.89 
Ce 0.23 5 0.40 57.41 0.230 5 57.02 
Tl 0.04 7 0.05 83.51 0.040 3 85.59 
Pb 9.7 5 10.8 89.48 9.7 3 90.03 
Bi 0.024 13 0.0200 4 
u 0.018 3 0.020 89.73 0.0190 2 94.19 
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A summary of uranium recovery by both methods in the certified reference 

materials is given in table 4.5. The repeatability of the procedure was also examined by 

analysing in-house reference materials (i.e. coffee, tea, and black spruce samples). There 

was agreement between the mean concentrations of repeated digestions with relative 

standard deviations less than 1 0 % for most of the elements. The proposed dry ashing 

procedure is efficient for simple, rapid, and reliable determination of trace metals in plant 

tissues. 

Table 4. 5: Uranium recovery(%) in certified reference materials using dry and acid 

digestion methods, n = 4. 

MATERIAL CERTIFIED % RECOVERY % RECOVERY 
CONCENTRATION WET DRY ASHING 
(mg/kg) DIGESTION 

CLV-1 87 90 88 

CLV-2 3.6 92 93 

1575 Pine needle 0.02 90 94 

154 7 peach leaves 0.015 - 206 

85 



Table 4. 6: Concentrations of trace elements (ng/g) recovered with four different leaching 

agents in the in-house black spruce reference material, n = 4. 

8M HN03/6M 8M HN03/29M 
16M HN03 8M HN03 HCI HF 

ELEMENT 
MEAN RSD MEAN RSD MEAN RSD MEAN RSD 
(ng/g) % (ng/g) % (ng/g) % (ng/g) % 

Li 0.06 20 0.07 9 0.07 33 0.10 13 
B 8.2 5 9.2 5 7.8 8 9.4 3 
Mg 800 6 810 4 760 5 770 6 
AI 60 34 50 6 50 13 93 32 
p 690 30 610 6 570 9 560 7 
Ca 3700 28 3200 2 3200 4 3100 2 
Ti 1.88 35 1.83 15 2.39 21 4.9 14 
v 2.1 21 1.97 2 1.92 5 1.88 3 
Cr 0.89 36 0.82 29 0.85 14 0.62 16 
Mn 430 54 320 41 298 42 294 33 
Fe 49 12 67 32 72 14 73 11 
Co 1.6 19 1.59 6 1.51 6 1.46 2 
Ni 4.9 23 4.5 9 4.4 15 4.1 6 
Cu 6.0 22 5.7 6 5.5 6 5.4 3 
Zn 51 22 47 4 45 6 44 3 
Rb 5.3 29 4.9 2 4.8 4 4.8 2 
Sr 24.2 28 20.9 3 20.6 5 20.6 2 
Mo 0.14 46 0.11 9 0.15 28 0.14 30 
Ag 0.04 2 0.04 4 0.05 6 0.05 5 
Cd 0.04 2 0.05 2 0.04 5 0.06 8 
Sn 0.07 16 0.08 15 0.09 4 0.11 14 
Sb 0.02 8 0.03 33 0.05 17 0.06 5 
Cs 0.02 5 0.02 4 0.03 7 0.03 3 
Ba 59 26 52 3 53 5 52 2 
La 0.52 29 0.47 2 0.5 8 0.62 4 
Ce 0.17 26 0.160 8 0.16 8 0.21 3 
Pb 0.83 27 0.75 5 0.74 5 0.76 9 
u <DL <DL 0.003 16 0.004 14 

<DL = below detection limit 
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Table 4. 7: Concentration of trace elements (ng/g) recovered from the in-house coffee 

reference material with four different leaching agents, n = 4. 

8M HN03/6M 8M HN03/29M 
ELEMENT 16M HN03 8M HN03 HCI HF 

MEAN RSD MEAN RSD MEAN RSD MEAN RSD 
(ng/g) % (ng/g) % (ng/g) % (ng/g) % 

Li 0.03 26 0.03 12 0.03 11 0.03 19 
B 6.3 9 6.7 5 6.51 3 6.5 9 
Mg 1360 43 1470 30 950.77 10 950 3 
AI 33 5 39 10 39.99 19 40 9 
p 1540 10 1480 10 1484.82 9 1480 3 
Ca 1100 2 1140 4 1093.90 2 1090 3 
Ti 1.58 6 1.84 5 2.16 8 2.16 2 
v 0.070 7 0.090 11 0.09 7 0.1 5 
Cr 0.32 22 0.190 3 0.22 2 0.22 7 
Mn 26.6 5 24.8 5 24.71 1 24.7 3 
Fe 72 14 72 24 88.10 11 88 7 
Co 0.280 8 0.280 6 0.28 3 0.28 6 
Ni 1.56 13 1.35 10 1.26 4 1.26 8 
Cu 13.4 2 13.5 3 13.52 2 13.5 3 
Zn 8.2 23 5.7 8 6.37 21 6.4 14 
Br 0.85 8 0.9 9 0.48 16 0.48 17 
Rb 44 2 46 4 45.07 4 45 2 
Sr 5.4 2 5.5 3 5.42 3 5.4 2 
Mo 0.100 10 0. 1 8 0.10 10 0.1 27 
Sn 0.220 10 0.14 8 0.09 8 0.09 14 
Cs 0.1 30 9 0.14 6 0.14 4 0.14 2 
Ba 3.3 4 3.5 3 3.39 4 3.4 10 
La 0.01 9 0.01 10 0.01 12 0.01 5 
Ce 0.02 1 0.02 20 0.03 19 0.03 11 
Pb 0.09 14 0.04 8 0.06 2 0.06 3 
u 0.002 13 <DL 0.003 12 0.003 10 
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Table 4. 8: Concentration of trace elements (ng/g) recovered from the in-house tea 

sample with four different leaching agents, n = 4. 

8M HN03/6N 8M HN03/29M 
ELEMENT 16M HN03 8M HN03 HCI HF 

MEAN RSD MEAN RSD MEAN RSD MEAN RSD 
(ng/g) % (ng/g) % (ng/g) % (ng/g) % 

Li 0.10 24 0.09 11 0.11 20 0.09 7 
B 15.5 4 15.7 3 15.5 5 16.7 3 
Mg 900 14 920 13 910 11 890 12 
AI 390 15 390 14 390 13 390 13 
Ca 4900 5 4800 2 5100 3 4900 2 
Ti 4.9 8 4.8 2 5.5 3 9.3 7 
v 0.17 7 0.17 2 0.17 4 0.180 2 
Cr 1.25 9 1.45 5 1.34 10 1.27 3 
Mn 320 8 320 9 340 8. 340 11 
Fe 145 4 143 4 147 7 140 2 
Co 0.25 1 0.26 3 0.25 2 0.25 3 
Ni 5.0 9 5.1 4 5.1 2 5.0 2 
Cu 16.0 1 15.8 2 16.0 2 15.7 2 
Zn 27.9 2 29.3 10 29.1 5 27.9 5 
Br 0.79 6 0.73 9 0.81 4 0.75 11 
Rb 36 3 38 3 38 4 36 2 
Sr 25.9 5 26.1 4 26.6 3 25.5 3 
Mo 0.05 34 0.08 1 0.06 1 0.08 4 
Sn 0.25 8 0.23 6 0.28 7 0.3 3 
Cs 0.25 4 0.25 4 0.27 5 0.26 3 
Ba 36 4 37 3 38 4 38 2 
La 0.24 3 0.24 4 0.240 6 0.25 4 
Ce 0.36 4 0.35 5 0.36 6 0.36 3 
Pb 0.42 6 0.37 8 0.33 4 0.34 6 
u <DL <DL <DL <DL 
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Table 4. 9: Concentration of trace elements (ng/g) recovered from the SRM 1575 pine 

needle materials with four different leaching agents, n = 4. 

8M HN03/6M 8M HN03/29M 
ELEMENT 16M HN03 8M HN03 HCI HF 

MEAN RSD MEAN RSD MEAN RSD MEAN RSD 
(ngfg} % (ng/g) % (ng/g) % (ng/g) % 

Li 0.2 10 0.17 27 0.2 10.30 0.19 17 
B 15.4 3 15.7 4 14.3 2.19 14.9 2 

Mg 940 25 760 25 690 33.07 1090 3 
AI 275 3 205 24 266 0.91 420 2 
Si 28.3 22 29.5 30 29.0 21 .72 11 .9 20 
p 1080 3 1090 4 1080 1.18 1140 2 

Ca 3800 2 3700 8 3600 1.25 3600 1 
Ti 10.8 3 9.7 6 11 .3 3.50 11 .2 2 
v 0.36 2 0.34 13 0.36 1.69 0.34 4 
Cr 2.10 2 1.93 13 2.26 6.69 4.8 25 
Mn 340 1 340 5 340 0.68 280 3 
Fe 191 3 168 12 184 2.24 212 9 
Co 0.1 2 0.1 7 0.10 2.54 0.16 11 
Ni 2.17 1 2.19 11 2.63 22.82 2.65 3 
Cu 2.56 4 2.51 34 2.55 2.65 2.99 3 
Zn 68 12 65 8 62 23.89 67 13 
Rb 10.8 1 10.7 6 10.7 1.18 10.9 2 
Sr 4.4 1 4.3 7 4.4 1.53 4.4 1 
Mo 0.1 9 0.19 8 0.08 9.15 0.14 22 
Cd 0.17 4 0.18 3 0.17 5.22 0.1 3 
Sn 0.29 4 0.3 16 0.31 6.32 0.3 5 
Sb 0.17 3 0.18 4 0.17 2.60 0.14 13 
Cs 0.11 1 0.1 11 0.10 1.52 0.11 1 
Ba 6.7 2 6.6 10 6.7 1.84 6.8 2 
La 0.12 6 0.09 18 0.12 3.63 0.12 8 
Ce 0.23 5 0.17 18 0.24 2.77 0.24 6 
Tl 0.04 6 0.04 7 0.04 4.42 0.05 5 
Pb 9.7 3 9.7 7 9.5 2.86 9.5 3 
Bi 0.02 4 0.02 13 0.02 7.42 0.02 4 
u 0.012 19 0.013 26 0.014 11 .93 0.016 12 
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Table 4. 10: Concentration of trace elements recovered after ashing the in-house spruce 

twigs at 500 °C and 450 °C 

MEAN CONCENTRATION (ng/g) 
ELEMENT 

500 °C RSD % 450 °C RSD% 
Li 0.100 14 0.27 11 
Be <DL 0.03 9 
8 7.8 4 9.2 4 
Mg 600 18 630 14 
AI 93 32 249 15 
Si <DL 28.9 23 
p 560 7 730 4 
Ca 3100 2 3900 1 
Ti 4.9 15 13.3 10 
v 1.88 3 1.50 11 
Cr 0.62 16 1.04 8 
Mn 294 43 390 3 
Fe 73 12 169 11 
Co 1.46 2 3.5 4 
Ni 2.52 12 4.1 5 
Cu 5.4 3 6.4 7 
Zn 44 3 77 2 
Rb 2.70 3 4 .9 2 
Sr 20.6 2 21 .7 3 
Mo 0.02 28 0.05 13 
Ag 0.02 25 0.05 5 
Cd 0.04 8 0.06 7 
Sn 0.11 15 0.14 25 
Sb 0.06 5 0.06 7 
Cs 0.03 3 0.04 6 
Ba 45 5 54 6 
La 0.25 5 0.63 3 
Ce 0.21 3 0.36 8 
Tl <DL 0.02 4 
Pb 0.76 9 1.36 2 
u 0.004 4 0.013 9 
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Table 4. 11 : Concentration of trace elements (ng/g) recovered after ashing in-house 

coffee material at 500 °C and 450 °C, n = 4 

MEAN CONCENTRATION (ng/g) 
ELEMENT 

500 °C RSD % 450 °C RSD % 
Li 0.023 10 0.06 19 
B 7.8 2 7.8 8 
Mg 940 4 1640 3 
AI 39 9 42 16 
Si <DL 18.5 17 
p 880 1 1570 3 
Ca 1100 2 1100 3 
Ti 4.4 12 4.5 2 
v 0.09 11 0.11 5 
Cr 0.14 12 0.32 22 
Mn 22.4 3 24.5 3 
Fe 64 8 79 7 
Co 0.28 2 0.28 6 
Ni 1.20 6 1.63 8 
Cu 13.4 1 13.5 3 
Zn 5.3 15 7.6 13 
Br 1.43 6 0.64 17 
Rb 46 2 46 2 
Sr 5.3 2 5.5 2 
Mo 0.09 12 0.1 2 17 
Sn 0.088 24 0.092 5 
Cs 0.15 2 0.15 2 
Ba 3.00 4 3.1 10 
La 0.01 5 0.02 8 
Ce 0.03 11 0.03 9 
Pb 0.05 3 0.08 4 
u 0.004 8 0.007 10 
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Table 4. 12: Concentration oftrace elements (ng/g) recovered after ashing the in-house 

tea material at 500 °C to 450 °C, n = 4. 

MEAN CONCENTRATION (ng/g) 
ELEMENT 

500°C RSD% 450 °C RSD% 
Li 0.07 7 0.088 5 
Be <DL 0.040 28 
B 16.7 3 16.3 3 
Mg 890 12 1770 3 
AI 390 13 730 15 
Si <DL 122 11 
p 1620 16 2660 3 
Ca 4300 9 4900 2 
Ti 9.3 7 12.2 8 
v 0.180 2 0.23 2 
Cr 1.27 4 3.1 10 
Mn 340 11 440 13 
Fe 140 1 208 2 
Co 0.250 3 3.1 5 
Ni 5.0 2 6.0 8 
Cu 15.6 5 15.7 2 
Zn 27.9 5 27.3 2 
Br <DL 0.75 11 
Rb 36 2 36 2 
Sr 25.5 3 25.6 2 
Mo 0.04 19 0.210 4 
Sn 0.3 3 0.33 4 
Cs 0.26 3 0.260 2 
Ba 37 3 38 3 
La 0.25 5 0.270 1 
Ce 0.36 3 0.42 1 
Tl <DL 0.012 9 
Pb 0.34 6 0.37 6 
u <DL 0.0050 15 
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Table 4. 13: Concentration oftrace elements (ng/g) recovered in the in-house black 

spruce material after ashing for 4, 8, and 16 hours, n = 4 

MEAN CONCENTRATION (ng/g) 

ELEMENT 4 8 16 
HOURS RSD% HOURS RSD% HOURS RSD % 

Li 0.09 36 0.31 19 0.05 27 
B 8.3 11 8.3 6 7.4 5 
Mg 680 16 690 17 670 15 
AI 117 6 140 7 117 2 
Si 22.5 25 34 12 11 .8 26 
p 540 42 860 14 620 3 
Ca 3600 17 4200 2 2970 4 
Ti 8.9 34 15.0 10 4.5 6 
v 1.66 17 1.67 14 1.85 4 
Cr 0.53 10 0.66 11 0.81 29 
Mn 210 18 380 4 243 12 
Fe 144 4 161 10 53 3 
Co 2.40 25 3.7 3 1.39 4 
Ni 3.1 34 2.43 4 4.1 6 
Cu 5.6 8 7.2 12 1.42 5 
Zn 61 25 77 3 46 3 
Rb 3.7 32 2.81 4 4.5 3 
Sr 21 .0 5 22.5 2 13.4 5 
Mo 0.1 1 67 0.04 13 0.06 54 
Ag 0.01 44 0.04 13 0.01 24 
Sn 0.11 9 0.17 6 0.08 46 
Sb 0.06 19 0.06 4 0.02 29 
Cs 0.03 9 0.03 7 0.02 5 
Ba 48 8 48 5 42 6 
La 0.42 52 0.62 2 0.23 11 
Ce 0.28 30 0.38 11 0.18 5 
Tl 0.01 1 0.01 3 0.01 25 
Pb 1.03 34 1.40 3 0.72 9 
u 0.01 17 0.013 10 0.004 45 
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Table 4. 14: Concentration of trace elements (ng/g) recovered in the in-house coffee 

material after ashing for 4, 8, and 16 hours, n = 4. 

MEAN CONCENTRATION (ng/g) 

ELEMENT 4 RSD 8 16 RSD 
HOURS % HOURS RSD% HOURS % 

Li 0.025 15 0.022 13 0.016 13 
B 5.7 6 7.8 2 5.5 9 
Mg 770 10 940 4 800 6 
AI 42 44 42 16 37 5 
Si 4.7 28 18.5 12 7.8 21 
p 860 40 880 1 790 2 
Ca 880 9 1100 2 950 3 
Ti 3.9 29 4.4 11 3.7 4 
v 0.07 35 0.09 9 0.08 15 
Cr 0.13 6 0.14 11 0.08 5 
Mn 19.8 6 22.4 2 19.4 4 
Fe 52 29 64 8 51 13 
Co 0.22 9 0.28 2 0.22 6 
Ni 1.01 8 1.20 6 0.85 11 
Cu 8.1 7 13.4 1 8.7 6 
Zn 6.4 50 5.3 14 5.2 12 
Br 1.80 22 1.43 6 2.39 34 
Rb 32 8 46 2 37 3 
Sr 4.4 7 5.3 2 4.8 3 
Mo 0.08 32 0.09 12 0.06 17 
Sn 0.18 83 0.09 4 0.08 11 
Cs 0.1 6 0.15 2 0.12 8 
Ba 2.65 10 3.0 4 2.12 3 
La 0.01 9 0.02 14 0.01 21 
Ce 0.02 4 0.03 14 0.02 16 
Pb 0.06 29 0.10 8 0.05 32 
u 0.004 19 0.010 12 0.003 6 
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Table 4. 15: Concentration of trace elements (ng/g) recovered in the in-house tea material 

after ashing for 4, 8, and 16 hours, n = 4. 

MEAN CONCENTRATION (ng/g) 

ELEMENT 4 RSD 8 RSD 16 RSD 
HOURS % HOURS % HOURS % 

Li 0.01 22 0.07 7 0.04 8 
Be <DL 0.040 14 <DL 
B 5.1 65 16.3 3 6.0 74 
Mg 980 87 1770 3 920 11 
AI 125 18 730 15 256 16 
Si 20.0 14 122 11 65 48 
p 1150 77 2020 4 1110 9 
Ca 1370 37 4300 9 1680 20 
Ti 2.84 51 12.2 7 7.8 9 
v 0.110 80 0.230 2 0.11 14 
Cr 1.13 77 3.1 10 1.08 41 
Mn 85 5 440 13 272 7 
Fe 98 56 160 11 94 10 
Co 0.41 3 3.1 5 0.17 13 
Ni 3.8 51 6.0 7 3.1 17 
Cu 8.0 34 15.6 5 5.5 12 
Zn 10.3 61 27.3 2 19.7 10 
Rb 20.5 48 36 2 27.7 9 
Sr 8.1 26 25.6 3 16.8 13 
Mo 0.09 5 0.040 19 <DL 
Sn 0.05 11 0.33 4 0.25 15 
Cs 0.11 37 0.260 2 0.17 13 
Ba 4.8 20 37 3 21.1 15 
La 0.08 42 0.270 1 0.11 11 
Ce 0.13 19 0.42 3 0.18 9 
Tl <DL 8 0.0100 9 0.01 13 
Pb 0.27 15 0.37 5 0.190 14 
u <DL <DL <DL 
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Table 4. 16: Concentration of trace elements (ng/g) recovered in the SRM 1575 pine 

needle material after ashing for 4, 8, and 16 hours, n = 4. 

MEAN CONCENTRATION (ng/g) 

ELEMENT 4 RSD 8 RSD 16 RSD 
HOURS % HOURS % HOURS % 

Li 0.150 9 0.20 9 0.14 32 
B 14.2 2 15.4 3 13.8 4 
Mg 540 16 940 12 750 11 
AI 206 16 275 3 204 24 
Si 16.2 46 28.3 22 29.3 34 
p 930 26 1080 3 1060 4 
Ca 3400 2 3800 1 3600 8 
Ti 9.4 2 10.8 3 6.6 8 
v 0.33 3 0.36 1 0.260 16 
Cr 1.71 5 2.21 2 1.31 18 
Mn 340 1 340 1 310 5 
Fe 154 6 191 6 161 13 
Co 0.09 12 0.1 1 0.07 9 
Ni 2.08 6 2.17 7 1.88 12 
Cu 2.13 24 2.56 6 2.10 41 
Zn 62 14 68 12 58 9 
As 0.160 28 <DL <DL 
Rb 10.1 2 10.8 6 8.6 7 
Sr 4.1 2 4 .4 9 3.9 7 
Mo 0.1 9 0.12 13 0.15 41 
Cd 0.17 4 0.17 6 0.14 4 
Sn 0.29 4 0.3 15 0.26 20 
Sb 0.18 22 0.17 2 0.11 7 
Cs 0.10 4 0.11 7 0.06 19 
Ba 5.8 4 6.7 3 5.9 12 
La 0.09 24 0.12 6 0.07 22 
Ce 0.16 13 0.23 6 0.14 23 
Tl 0.04 6 0.04 3 0.03 8 
Pb 9.3 3 9.7 3 7.4 11 
Bi 0.011 21 0.02 4 0.01 23 
u 0.014 10 0.019 2 0.015 10 
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Table 4. 17: Concentration of trace elements (ng/g) recovered from in-house spruce twigs 

at varying rates of temperature ramp, n = 4. 

MEAN CONCENTRATION (ng/g) 
ELEMENT 

18 °C/hr RSD% 10 °C/hr RSD% 
Li 0.82 10 1.05 7 
Be 0.08 8 0.070 11 
B 12.6 2 11 .2 12 
Mg 480 9 1020 4 
AI 560 27 970 3 
Si 42 14 111 8 
p 500 2 500 6 
Ca 4200 4 4700 3 
Ti 35 4 51 14 
v 2.57 5 2.93 2 
Cr 5.4 2 6.6 2 
Mn 450 1 480 5 
Fe 1250 7 1610 4 
Co 0.46 4. 0.49 4 
Ni 2.33 10 2.27 13 
Cu 3.7 1 4.7 6 
Zn 66 2 69 7 
As 4.3 10 4.1 13 
Se 2.16 5 1.40 49 
Rb 2.56 11 3.6 3 
Sr 26.1 3 29.7 2 
Mo 1.78 2 2.0 3 
Ag 0.04 9 0.09 5 
Cd 0.08 15 0.08 14 
Sn 0.29 6 0.32 4 
Sb 0.12 3 0.13 5 
Cs 0.05 23 0.09 34 
Ba 51 2 57 2 
La 0.7 5 1.11 3 
Ce 1.48 4 2.34 3 
Tl 0.05 2 0.05 2 
Pb 7.1 2 7.4 4 
Bi 0.04 11 0.05 8 
u 73 4 74 10 
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Table 4. 18: Concentration oftrace elements (ng/g) recovered from SRM CLV-2 at 

varying rates of temperature ramp, n = 4 

MEAN CONCENTRATION (ng/g) 
ELEMENT 

18 °C/hr RSD% 10 °C/hr RSD% 
Li 0.26 14 0.3 4 
Be 0.13 4 0.13 3 
B 38 5 37 2 
Mg 560 12 740 4 
AI 169 22 267 3 
Si 75 17 170 26 
p 830 4 850 5 
Ca 6300 6 7000 1.6 
Ti 7.1 8 10.3 5 
v 0.45 9 0.56 2. 
Cr 1.35 5 1.71 16 
Mn 1330 6 1410 3 
Fe 234 11 320 3 
Co 0.07 9 0.08 33 
Ni 0.74 19 1.15 28 
Cu 2.16 20 2.03 5 
Zn 57 4 61 3 
As 0.28 17 0.31 27 
Rb 2.99 3 3.2 4 
Sr 16.4 3 17.7 1 
Mo 0.06 5 0.07 9 
Ag 0.01 21 0.02 10 
Cd 0.03 8 <DL 
Sn 0.22 35 0.2 9 
Sb 0.04 12 0.03 23 
Cs 0.02 7 0.03 41 
Ba 22.2 3 24.5 3 
La 0.17 9 0.25 6 
Ce 0.34 9 0.51 8 
Tl 0.02 7 0.02 18 
Pb 0.97 14 0.89 7 
Bi <DL 12 0.01 15 
u 3.0 3 3.2 3 
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Table 4. 19: Concentration of trace elements (ng/g) recovered from SRM 1547 peach 

leaves at varying rates of temperature ramp, n = 4. 

MEAN CONCENTRATION (ng/g) 
ELEMENT 

18 °C/hr RSD% 10 °C/hr RSD% 
Li 0.21 18 0.25 15 
Be 0.03 11 0.03 22 
8 7.7 4 8.10 7 
Mg 620 17 755.40 4 
AI 249 18 276.81 3 
Si 28.9 26 43.05 37 
p 730 4 763.98 6 
Ca 3900 1 3947.54 3 
Ti 13.3 12 14.75 4 
v 1.50 14 1.70 1 
Cr 1.04 43 0.88 6 
Mn 390 3 413.97 5 
Fe 169 12 197.42 7 
Co 3.5 5 3.73 3 
Ni 2.61 13 2.37 5 
Cu 6.4 7 7.01 4 
Zn 77 3 81 .81 8 
As <DL 0.05 9 
Rb 2.73 6 2.82 3 
Sr 21 .7 3 22.51 6 
Mo 0.05 26 0.05 12 
Ag 0.02 34 0.03 5 
Cd 0.03 6 0.05 24 
Sn 0.14 28 0.19 8 
Sb 0.06 8 0.07 6 
Cs 0.04 7 0.04 3 
Ba 46 5 48.97 5 
La 0.24 7 0.26 2 
Ce 0.36 8 0.39 2 
Tl 0.02 4 0.01 11 
Pb 1.36 2 1.36 3 
Bi <DL 0.003 27 
u 0.02 10 0.02 13 
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Chapter 5: Results of biomonitoring 

5.1 Factors affecting metal availability in soils 

The uptake of trace elements from soils depends on the bioavailability and the 

mobility of the metal in soil. Bioavailability is the proportion of total metals that are 

available for incorporation into biota (bioaccumulation) (Kabata-Pendias, 2001). Plants 

cannot usually access the total pool of a metal present in the growth substrate hence the 

total metal concentrations do not necessarily correspond with metal bioavailability. For 

example, sulphide minerals may be inclusions in quartz or other low solubility minerals, 

and despite high total concentrations of metals in sediment and soil containing these 

minerals, metals are not readily available for incorporation in the biota; hence their 

associated environmental effects may be low (Davis et al, 1994). 

Metals present in a soil can be divided into a number of fractions including; the 

soluble metal in the soil solution, metal-precipitates, metal sorbed to clays and other soil 

particles, hydrous oxides and organic matter, and metals within the matrix of soil 

minerals. These different fractions are in dynamic equilibrium with each other (Norvell, 

1991 ). However, while the soluble metal in the soil solution is directly available for plant 

uptake other soil metal pools are less available (del Castilho et al, 1993). Hence factors 

which affect the concentration and speciation of metals in the soil solution will affect the 

bioavailability of metals to plants. Soil factors which affect metal bioavailability include 

the total metal present in the soil, pH, clay and hydrous oxide content, organic matter, 

and redox conditions. 
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5.1.1 Total metal concentration 

The total metal concentration in a soil includes all the metal, from the readily 

available to the unavailable. Other soil factors, such as pH, organic matter, clay and redox 

conditions, determine the proportion of total metal which is found in solution in the soil. 

Hence, while total metal provides the maximum pool of metal in the soil, other factors 

have a great importance in determining how much of this soil pool will be available to 

plants (Wolt, 1994 ). It has been observed that while total metal correlates with 

bioavailable soil pools of metal it is inadequate by itself to reflect bioavailability 

(Peijnenburg et al, 2000). 

5.1.2 pH 

The equilibrium between metal speciation, solubility, adsorption, and exchange 

on solid phase sites is closely connected to solution pH (Sauve et al, 1997). Numerous 

studies have found soil pH to have a large effect on metal bioavailability (McBride et al, 

1997). Most elements especially Mo, Mn, and Zn are highly affected by soil pH (Turner, 

1994). As soil pH decreases, Mn and Zn competes with the the high concentrations ofH+ 

and Ae+ for positions on the exchange sites. The solubility of Mn and Zn increases in the 

soil solution and a greater proportion is present as highly available free metal ions in the 

soil solution (Sauve et al, 1997). This increases the concentrations of Mn and Zn in the 

directly bioavailable fraction, i.e., the soil solution (Jeffery and Uren, 1983). In 

accordance with the changes in metal bioavailability associated with a change in pH, 
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many studies have shown that plant metal uptake varies under different pH conditions. 

For example, it has been observed that plant uptake ofMn and Zn increases as soil pH 

decreases (Kabata-Pendias 2001). Uptake of uranium by plants may be influenced by pH. 

Accumulation of uranium in shoots of peas (Pisum sativum) grown in nutrient solution at 

pH 6.0 and pH 8.0 was less than 20% and 5%, respectively compared to the uptake at pH 

5.0 (Ebbs eta/, 1998 in CCME). At pH 5.0 the uranium was present primarily as the free 

uranyl cation which may be more readily taken up and translocated than other uranium 

species (Ebbs et a/, 1998 in CCME). 

Conversely, the solubility of Mo increase with the increasing pH of soil. 

Abnormally high concentrations of Mo were found in native plants grown in neutral or 

alkaline soils (Kabata-Pendias 2001). Mo concentration in plants therefore has been 

observed to reflect the soluble Mo pool and the uptake by plants is a function of soil pH. 

Adsorption ofU onto goethite in the pH range of 4.5 to 6.5 increases with increasing 

(U02) 3(0H)5 + and then decreases because of the formation of carbonates. A similar 

tendency occurs with hematite, ferric an1orphous oxy-hydroxide and other Fe oxides, and 

also with smectite by edge co-ordination reaction with increasing pH. The mobility of Al 

is pH dependent and increases sharply in acid soils with pH below 5.5. A sudden increase 

of the Al solubility occurs in the narrow pH range from 4.5 to 4.0 and its solubility in 

soils is also increased by soil acidification due to the atmospheric deposition of S (mainly 

as S02) resulting from both anthropogenic and natural events. 
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5.1.3 Organic matter 

Metal ions can be complexed by organic matter altering their availability to 

plants. The coo-groups in both solid and dissolved organic matter form stable 

complexes with metals (Baker and Senft, 1995; Kabata-Pendias, 2001). Hence, as the 

amount of organic matter present in soil increases the opportunity for forming stable 

metal-organic matter complexes increases. In general, plants are unable to absorb the 

large metal-complexes and so the bioavailability of metals decreases. 

Copper ions form strong coordination complexes with organic matter (Stevenson, 

1991). Hence, Cu is often predominantly found bound to the organic matter fraction in 

the soil and soil organic matter can be the most important soil factor in determining Cu 

bioavailability (del Castilho et al, 1993). The an1ount of organic matter found in soils also 

affects the bioavailability of Zn (del Castilho et al, 1993). However, while Zn readily 

forms complexes with organic matter it does not compete for these sites as well as Cu 

(Cavallaro and McBride, 1984) and other more prevalent cations such as Ca2
+ (Fotovat et 

al, 1997). In soil solution, the activity of the highly bioavailable Zn2
+ in the soil solution 

decreases as organic matter increases across a range of contaminated soils (McBride et al, 

1997). Across a range of soils greater than 50% of the soil solution Zn was present as the 

free ion (Lorenz et al, 1997). 
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5.1.4 Clays and hydrous oxides 

Clays and hydrous oxides, i.e. oxides of Al, Fe, and Mn, play an important role in 

the availability of metals. Clays and hydrous oxides determine metal availability mainly 

by specific adsorption to surface hydroxyl groups (Pampura eta!, 1993), nonspecific 

adsorption (exchange), coprecipitation (Martinez and McBride, 1998), and precipitation 

as the discrete metal oxide or hydroxide (Martinez and McBride, 1998). Hence, 

increasing clay and hydrous oxide contents in soils provides more sites for adsorption of 

metals thus reducing the directly bioavailable metal (Qiao and Ho, 1996). 

5.1.5 Oxidation and reduction 

The oxidation/reduction (redox) conditions of a soil can play a role in the 

availability of metals. The redox status of the soil can be affected by many factors 

including water logging and compaction. Redox conditions can affect the availability of 

metals by affecting the proportion of particular metal species (e.g. Mn(II) vs. Mn(IV) in 

the soil solution and by affecting the solubility of metals in the soil solution (Patrick and 

Jugsuj inda, 1992; Evangelou, 1998). 

Redox state has a large affect on Mn speciation and solubility in the soil solution 

(Sajwan and Lindsay, 1986). Manganese can exist in soil as Mn(II), Mn(III) and Mn(IV), 

however only the reduced Mn(II) form is stable in solution (Whitehead, 2000). 

Manganese (II) is the most soluble form of Mn and so under reducing conditions higher 

concentrations of Mn2
+ will be present in the soil solution (Patrick and Jugsujinda, 1992). 
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Conversely, under more oxidising conditions, soil solution concentrations ofMn decrease 

because the equilibrium shifts in favour ofMn(III) and Mn(IV) which primarily exist as 

insoluble hydroxides and oxides. For example, increasingly reducing conditions 

corresponded with an increase in the highly bioavailable Mn2
+ in the soil solution and a 

corresponding increase in Mn uptake by rice plants (Schwab and Lindsay 1983). 

imilarly, uranium IV and VI are the oxidation states typically observed in the 

environment. It occurs in the tetravalent oxidation state under reducing conditions. Under 

oxidizing conditions, uranyl is reduced to the U(IV) form, which tends to precipitate on 

clay layers, calcite, or phosphate. The tetravalent oxides of uranium are less soluble than 

the hexavalent. 

5.2 Plant factors 

While soil factors have a large impact on the bioavailablity of metals to plants, 

different species or varieties grown on the san1e soil can have different metal uptake 

capabilities (Miles and Parker, 1979). There are species specific factors affecting plant 

uptake. Jarvis and Whitehead (1981) suggested that a true measure of plant availability of 

metals will not be attained unless the extent of soil exploitation by the roots is accounted 

for. However, it should be noted that while two plant species may take up a different 

amounts of metal within a given time frame it does not necessarily mean they are 

extracting from different soil pools of metal. 
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5.2.1 Supply of bioavailable metals for plant uptake 

The bioavailable fraction of metals in a soil is generally thought to be the free 

metal ion in the soil solution. However, this appears to be an over simplification in some 

circumstances. In deficiency and sufficiency situations the free metal ion activity in the 

soil solution is low and plants have developed strategies to maximise the potential uptake 

of metals (Welch, 1995). Plants are able to influence the solubility and speciation of 

metals in the rhizosphere by exuding chelators (Fan et al, 1997) and manipulating 

rhizosphere pH. 

Most ofthe present understanding of plant metal uptake has come from the study 

of Fe (Kochian, 1993 ). For Fe uptake, two different strategies have been identified. In 

Strategy I plants, i.e. dicots and nongraminaceous monocots, Fe(III)-chelates or -

complexes present in the rhizosphere are reduced by plant produced reductants in the 

rhizosphere for uptake with other sources of free Fe2
+ across the plasma membrane 

(Welch, 1995). In addition, plant produced organic acids are excreted which can complex 

with Fe (Grusak et al, 1999). It does not appear as though Strategy I plants are able to 

directly absorb Fe-chelates or Fe-complexes (Chaney et a/, 1972). In addition to the 

above mechanisms, Strategy II plants, i.e. graminaceous monocots, excrete chelates such 

as mugeneic and avenic acids (Kochian, 1993; Fan eta/, 1997) which are known as 

phytosiderophores or phytometallophores depending on their association with Fe alone or 

all metals respectively, into the rhizosphere (Fan et al, 1997). Iron, and other metals, 

chelate with the phytometallophores, providing a ready supply of metals for reduction 
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and transport across the plasma membrane. Research has also shown that Strategy II 

plants can directly absorb the Fe-phytometallophore complex (Grusak et al, 1999). 

5.2.2.1 Manipulation of rhizosphere pH 

The pH of the rhizosphere may vary by up to 2.5 pH units from that of the bulk 

soil solution depending on plant species, plant age, nutrient supply, and the buffer 

capacity of the soil (Rornheld et al, 1984). This is primarily as a result of an imbalance in 

cation/anion uptake, and hence, excretion ofH+/OR(or HC03-), excretion of organic 

acids, production of C02 , and microbial activity in the rhizosphere (Marslmer, 1993). 

Hence, the solubility, speciation, and corresponding availability of metals in the 

rhizosphere may be different from that in the bulk soil solution. 

5.2.2.1 Role of mycorrhizae 

Mycorrhizae are mutualistic associations between certain soil fungi and the roots 

of plant species (Brundrett et al, 1996). The mycorrhizal fungi benefit from the 

association by obtaining photosynthates, and in exchange, mycorrhizal fungi increase the 

plant uptake of P (Burgess et al, 1993) and trace metals (Pahlsson, 1989). Mycorrhizal 

fungi achieve this increase in plant nutrition by increasing the surface area of the soil 

explored compared with non-mycorrhizal roots (Clarkson, 1985) and increase the 

solubility of metals e.g. by producing metal-chelators (Szaniszlo et al, 1981 ). 
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It has been suggested as well that as assisting nutrient uptake at low metal concentrations, 

mycorrhizal fungi are able to reduce metal uptake, or at least increase plant metal 

tolerance by affecting metal translocation, under conditions of metal contamination. 

Some studies have found this to be the case for example, mycorrhizal Trifolium praten e 

(red clover) plants grown in acid soils had less Mn in the roots and the shoots than non­

mycorrhizal plants (Arines eta/, 1989). 

It appears that the ability of mycorrhizal fungi to increase plant metal tolerance is 

affected by other growth conditions, the fungal species, and the meta] type (Weissenhorn 

et al, 1995). Of special importance is the tolerance of the mycorrhizal fungi to excess 

meta] as the plant could be more tolerant than the fungi. 

5.3 DISCUSSION 

5.3.1 Introduction 

Having demonstrated acceptable accuracy and precision, the digestion method 

was applied to determine trace elements in spruce twigs collected from the Holyrood 

area. From the results of the mean metal concentrations for samples collected in both 

winter and spring, it is evident that Ca Mn, P, Mg, AI, Fe, Ba, Zn, r and Si were the 

dominant elements in the samples analysed. The high concentrations and distribution of 

these elements are indicative oftheir large flux within the study area which also 

correlates with their bioavailable concentrations in the soil and bedrock. The result did 

not show any clear seasonal effect in the uptake of metals by spruce trees. The element 
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concentrations varied randomly with the seasons and with the sample locations. Some of 

the elements recorded higher concentrations in winter while for others the concentrations 

were higher in spring. The only elements which exhited a clear seasonal effect were 

uranium and phosphorus. Phosphorus recorded a mean concentration of 695 mglkg in 

winter while all the spring samples recorded concentrations below the detection limit. 

The source of the excessively high concentration of phosphorus in the winter samples 

was not ascertained. The input of these elements in soil is related to weathering of parent 

rocks, pedogensis, and from anthropogenic sources. The standard deviation values related 

to the distribution of these metals in the plant samples show a high dispersion around the 

mean metal concentrations. 

The average concentrations ofB, Cu, Ti, Ni, Rb, Cr, and V in all samples ranged 

from 1.0 jlg/g to 8.2 jlg/g. Most of these elements are lithogenic hence may reflect the 

crustal and background soil concentrations in the study area. It also implies that uptake of 

these elements/metals by the spruce trees may occur mainly by the roots rather than aerial 

absorption. Anthropogenic additions to soil concentrations and absorption through shoots 

and needles cannot be entirely discounted. Soil additions through leaching from scrap 

metals, municipal and electronic waste, etc dumped at the study site cannot be eliminated 

from consideration. Also Ni and V have been associated principally with emissions from 

the Holyrood thermal electric plant. 

It should be noted that the elements with the highest crustal abundance also 

recorded higher concentrations in the spruce san1ples. In particular, Ca, Mn, P, Mg, Al, 

Fe, Ba, Zn, Sr, and Si made up a significant weight of the analysed elements Ca, Mn, 
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Mg, Al, and Fe being the most abundant. Geogenic and anthropogenic sources may 

contribute to the load of metals in the twigs. The geogenic sources include the bedrock, 

soil dust sea spray, and direct uptake from the soil by roots. The anthropogenic sources 

within the study area are probably limited to emission from vehicular traffic, emission 

and discharge from the power plant, house-heating, dust and aerosols from the 

pyrophyllite mine, and small manufacturing industries. 

5.3.2 Uranium in black spruce trees (Picea mariana) 

Examination of uranium concentration in spruce twigs obtained from the study 

area revealed extremely low concentrations (close to the detection limit in most samples). 

Of all the samples, only three samples P13, P 14, and P 15 collected in winter registered a 

slight uranium anomaly, with concentrations of 83 ng/g, 111 ng/g, and 20 ng/g 

respectively. The U concentration in the spring san1ples were also very low and below 

detection limit in most san1ples. The samples SP 2 and SP 5 recorded 49.36 and 71.52 

ng/g respectively. The low concentration ofU in the spruce twigs reflects its low 

concentration in soils within the study area. This is evident in the study conducted by 

Sherwin (1979) in the Hoyrood claims, a site about 500 m south of the current study area. 

Of the 58 soil samples analysed, only 22.4% had U concentrations above 0.1 J..tg/g. One 

sample out ofthe 22.4% recorded 10.5 J..tg/g uranium while all others had concentrations 

below 2.5 J.lgl g. 
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In a similar study where vegetation was sampled in the Midwest uranium deposit 

area of the Athabasca basin (Northern Saskatchewan) uranium concentrations were below 

analytical detection (<0.2 mg/kg) in black spruce trunks (300 sites). Spruce twigs (69 

sites) contained the highest uranium concentrations, ranging between 20 to 130 !J.g/g 

(Gordon 1992 in CCME) and uranium concentrations ranged from 8 to 46 IJ.g/g) in 

Labrador tea stems and from 4 to 39 IJ.g/g in Labrador tea leaves (CCME). The above 

study shows that spruce twigs are excellent indicators of metal accumulation. 

5.4 Statistical analysis 

Prior to statistical analysis, analytes which consistently had concentrations below 

their respective detection limits in all samples were eliminated from further 

consideration. The elements S, Cl, As, Br, Se, I, Hg, and Bi had concentrations below 

detection limit in the winter samples and Be, P, S, Cl, As, Br, Se, Cd, Sb, I, Hg, Tl, and 

Bi were below detection limit in the spring samples. The lower detection limits 

encountered may be attributed to the low natural abundance of these analytes, or due to 

high detection limits for the individual elements. The parameter set used for the waters 

package for analysing environmental samples includes measurements of multiple 

isotopes for some selected elements. This made it possible to select an isotope which is 

optimal for a given sample taking into account the backgrounds and interferences. For 

this study, 7Li, 43Ca, 53Cr, and 57Fe were chosen for the multi-isotopic elements measured. 
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The distribution of the analytes were treated using stem and leaf plot (Mini tab 

14.0 for windows) to determined whether they approximated normal error distributions 

(significance level of 0.05). The skewness and kurtosis for the trace metals and major 

elements were also examined. It should be noted that parametric statistical tests require 

the errors to be normally distributed. In order to meet this requirement, the data was 

logarithmically transformed to make them more closely approximate a normal 

distribution (Taylor et al, 2003). The log transformation also reduced the relative 

distribution of the data and brought both elements of higher and lower abundances into 

the san1e range. This step is also important because elements of widely varying 

concentrations are included in the same analysis (Yun et al, 2002). For all values which 

were greater than zero, the measured value was used in subsequent statistical analysis. 

However, since negatives and zeroes cannot be log transformed, these values were set to 

half of the detection limit (Huelin et al, 2006). It was observed that more of the log 

normalised variables approximated a normal distribution compared to the original data. 

Pearson's correlation coefficients were used to measure association between the 

analytes (i.e. the extent to which values of two analytes are proportional to each other). 

Pearson' s R range from + 1 to -1 and because of the linear relationship there is an 

assumption that residuals are normally distributed (Gardiner, 1997). A normal correlation 

assumes that outliers are highly unlikely and therefore meaningful, giving them a large 

influence on correlation coefficients. The robustness of the Pearson R values were 

evaluated by exanlining a probability value associated with each correlation. The 

probability value (p) is the probability that an observed relationship occurred by pure 
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chance, so for p = 0.05, there is 95 %probability that the relationship can be reproduced 

(Gardiner, 1997). The correlation matrix is then examined for high values expressing 

similarity between variables. If two variables are highly correlated, it implies they will 

give similar information, and one of them can therefore be eliminated, as a ratio of 4 or 5 

observations relative to variables is recommended to produce a stable model. A high 

correlation was obtained for La and Ce, with a Pearson correlation coefficient of 0.823 

hence a high probability of exhibiting similar characteristics. 

5.4.1 Multivariate analysis 

Multivariate analysis comprises a set of techniques dedicated to the analysis of 

data sets with more than one variable. These methods comprise descriptive techniques 

which can simultaneously analyse a large number of variables (characters or attributes). 

In many cases, they represent the generalization of classical univariate statistical 

methods. Their main task is to reveal the underlying structure of the data to help identify 

points of similarity and dissimilarity as well as inter-relationships between the 

experimental units and their response measurements (Taylor et al, 2003). Multivariate 

statistics have been used for chemical fingerprinting in enviro1m1ental studies which rely 

on a large amow1t of chemical data (Berget al, 1994; Yun et al, 2002; Taylor et al, 2003; 

and Huelin et al, 2006). Certain difficulties have been encountered in applying statistical 

methods in chemical data. Multivariate analysis do not account for analytical 

w1certainties. Hence errors may arise when analytes with concentrations close to 
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detection limits are included in the statistical analysis as the RSD associated with 

analytes with such low concentrations is high. The multivariate method used assumed the 

residuals are normally distributed (a normal distribution would assume that for each 

element, 68% ofthe determined concentrations are within 1 standard deviation of the 

mean, 95% of the concentrations are within 2 SD, and 99% are within 2.5% SD). 

5.4.2 Principal component analysis 

Principal component analysis (PCA) was used to obtain an overview of the data, 

to show the differentiation between the metals at the study site, and to identify their 

possible sources. PCA, a data reduction technique, identifies patterns in a data set and 

expresses the data in such a way as to highlight their similarities and differences. The 

technique reduces a large number of variables into a smaller set of dimensions by 

analyzing the inter-relationships between variables (Gardiner, 1997). The components 

give the best linear combination of variables, and identify variables which account for 

more of the contribution of that component. For each component, a loading is assigned to 

each variable and an absolute value of the loading indicates the magnitude of contribution 

of each variable to the component, with values ranging between 0 and ± 1. The sign, 

positive or negative, of the loading describes whether the variable is positively or 

negatively correlated with other variables in that component. Variables with loadings less 

than 0.5 were not considered to contribute significantly to a factor or component. 
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Each component is a linear combination of a number of variables. The first 

component accounts for the largest possible amount of variance. The second component, 

formed from the variance remaining after that associated with the first component has 

been extracted, accounts for the second largest amount of variance, etc. The principal 

components are extracted with the restriction that they are orthogonal. Geometrically 

they may be viewed as dimensions in a given dimensional space where each dimension is 

perpendicular to each other dimension (Gardiner, 1997). 

Rotation of the component matrix redistributes the variance to achieve a different 

component pattern, ideally where loadings are high for a few variables and low for other 

variables in the analysis, to give a clear grouping of variables. The reduction of 

ambiguities that accompanied initial unrotated factor loadings improved the interpretation 

of factors in the rotated component matrix. The total variance explained by each 

component is determined by an eigenvalue, which is reported as a percentage. Each 

eigenvalue represents the amount of variance that has been captured by one component or 

factor. The nun1ber of significant principal components to retain was determined by 

examining the scree plots and eigenvalues for each set of data (Ratha and Sahu, 1993). 

The Kaiser criterion states that only factors or principal components having eigenvalues 

greater than 1 should be retained. Hence components that account for less variance than 

does a single variable were discarded. 

The characteristics and similarities of elements grouped by PCA were evaluated 

by reviewing their chemical properties according to the periodic law and ionic potential. 

According to the periodic law, elements in the same group, or columns, of the periodic 
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table, have the same valences and structure, and therefore tend to have similar physical 

and chemical properties (Bradl, 2004). The grouping of elements with similar properties 

implies that element mobility influences the uptake of elements by plants. Elements in the 

same periodic group display geochemical coherence in their distribution in nature (Taylor 

et al, 2003). Element mobility is influenced by the ionic potential of an element, which is 

quantified as the ratio of valence, or positive ionic charge, to the ionic radius, in 

picometres (pm) (Rollinson, 1993). 

Of the several approaches to performing factor rotation, varimax rotation was 

used to maximise the variance of the normalized component loadings. Varimax rotation 

maximises the variance of a column of the factor pattern matrix as opposed to a row of 

the matrix (Berget al, 1994). PCA analysis was performed on log transformed element 

concentrations using the SPSS statistical software (version 11.0 for windows). Based on 

the point of inflection or minima point of cumulative eigenvalues (Ratha and Salm, 1993) 

seven prinicipal components were extracted for subsequent varimax rotation and 

interpretation. The component loadings for samples collected in winter and spring, and 

their respective percent variance are given in tables 5.1 to 5 .4. Elements which did not 

contribute significantly to any of the components, or had high analytical w1certainty were 

excluded from the analysis. 
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5.5 Discussion on the sources of Elements 

For winter samples, the PCA analysis produced seven principal components 

whose eigenvalues are greater 1. The unrotated component matrix (Table 5.1) set for 

these samples indicate that Be, Bi, Fe, Co, Mo, Cr, Ag, P, Cs, Al, Ni, and Ce are 

associated, and they display high values in the first component. The second component is 

explained by V, La Li, Ce, Pb, Ti, Si, Sb, and Ni, while Rb, Mn, B, and U loaded in the 

third component. Component four loaded Al, Ca, Cu, and Ba; and Sb, Mg, and Ba were 

explained by the fifth component. The element, Zn, is isolated in the sixth component. 

The seventh component had an eigen value greater than 1 but displayed low loading for 

all variables. 

The rotation of the matrix aided in the clarification of the ambiguities associated 

within the unrotated component matrix (Facchinelli eta!, 2001 ). Again seven 

components were retained, accow1ting for 83.1% of the total variance. The first rotated 

component contributing 25.1% of the total variance loaded V, Li, Pb, Sb, La, P, Ce, and 

Ni with a negative correlation for P. This factor suggests crustal erosion (weathering) as 

the main source with a minor anthropogenic contribution from atmospheric fallout. The 

elements Ni, V, and Pb could account for emissions from the Holyrood power plant and 

vehicular exhaust. Burning of heavy fuels emits V, Ni, and Pb and as estimated by 

Laveskog et al in Yun et al (2002), approximately 20 kg ofV, 6 kg ofNi, and 0.3 kg of 

Pb are released when 1,000 tons of heavy fuels are com busted. The geographical 

variables such as Sb, La, P, and Ce are explained by weathering of the parent rock. The 

second rotated component explains approximately 18.8% of the total variance containing 
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Be, Bi r, Cs, Fe, Sn, Co, and Ce which can be interpreted as contribution from the 

source rock lithology (magnetite and ilmenite), and abrasion and leaching from scrap 

metals dumped in the study area. 

The third rotated component, contributing 11.0% of the total variance, has a 

significant contribution from Fe, AI, and Ti suggesting a soil source. The variability of 

these elements appears to be controlled by parent rocks. A small quantity of Ti and Fe 

may be coming from anthropogenic sources such as pigment and paint and corrosion 

from cast iron, alloys, and machinery dumped at the site. The fourth component, which 

contributed 9.7% of the total variance, shows significant loading from Sr, Ba, Ca, Si , Mg, 

and Mo and suggests a carbonate rock origin. All elements except Si and Mo in this 

component belong to the alkaline earth group with similar ionic potential, solubility, and 

bioavailability hence similar geochemical properties. The elements Mg, a and Sr are 

well known seaspray constituents (Yun et al, 2002). Depositions from these elements ar 

probably through atmospheric fallouts since the study site is located a few kilometres 

from Conception Bay. The negative relation ofMo in relation to r Ba, Ca, i, and Mg 

suggest its chalcophilic nature and possible replacement by other cations. The association 

of Si with the alkaline earths may arise from minerals such as beryl and asbestos. The 

fifth component loaded Rb, B, and U and contributed to 7.7% of the total variance. This 

component represents a lithogenic source; U may also have anthropogenic contributions 

from the Holyrood thermal power plant. 

The sixth rotated factor, explaining 5.9% of the total variance, contains Mn, Zn, 

Ag, and Cd, all of which except Mn are chalcophilic and therefore have affinity for 
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sulphide phases. The contribution of these elements to this component is likely a 

consequence of atmospheric pollution from vehicular exhaust fumes. There may be 

geogenic addition to since Ag, Zn, and Cd are abundant in the volcanic rocks of 

Newfoundland (Yun, et al, 2002). The seventh and last component reflects the 

mineralization of the bedrock. It displayed a high loading for U, Co, Tl and Cu with a 

total variance of 4.8%. 
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Fig. 5. 1: A scree plot of eigenvalues versus component nwnber for the winter samples. 
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Table 5. 1: Unrotated component matrix showing loadings of analytes in the winter 

samples 

Variables 
Components 

1 2 3 4 5 6 7 

Be 0.880 0.064 0.054 -0.185 -0.017 0.248 0.188 

Bi -0.823 0.402 0.095 0.266 -0.011 -0.213 0.002 

Fe 0.815 0.480 -0.118 -0.072 0.233 -0.150 0.028 

Co -0.765 0.063 0.449 0.082 -0.099 0.036 0.295 
Mo 0.729 0.385 -0.098 0.131 -0.349 -0.036 0.287 

Cr 0.727 0.200 -0.175 -0.293 0.386 0.085 -0.068 

Ag -0.725 -0.061 -0.097 0.197 0.275 0.289 0.243 
p 0.618 -0.332 0.329 0.425 0.201 -0.038 -0.151 

Cs 0.574 -0.008 0.319 -0.351 0.103 0.468 -0.089 

AI 0.572 0.193 -0.038 0.527 0.223 -0.354 0.282 

Cd -0.465 0.063 -0.428 0.317 0.362 0.122 -0.039 

v -0.041 0.951 -0.120 0.085 -0.136 0.153 0.053 

La 0.327 0.886 -0.068 -0.250 0.047 0.075 -0.048 

Li -0.201 0.846 -0.223 0.022 -0.132 -0.013 0.078 

Pb -0.485 0.711 -0.238 0.125 -0.167 0.214 0.125 

Ti 0.485 0.609 0.082 0.319 0.244 -0.338 0.072 

Si -0.476 0.602 0.502 -0.038 0.196 -0.055 0.002 

Sb -0.283 0.582 -0.228 -0.285 -0.500 0.247 -0.232 

Ni -0.51 8 0.523 0.164 0.221 0.049 0.031 0.102 

Rb 0.317 0.157 0.736 0.213 -0.123 0.247 -0.256 

Mn -0.104 -0.130 -0.670 0.349 0.394 0.224 0.161 

B 0.184 0.233 0.655 0.491 -0.107 0.233 -0.059 

u 0.258 -0.226 0.588 0.094 -0.180 0.368 0.469 

Sr -0.208 0.367 0.457 -0.224 0.439 -0.026 -0.337 

Ca -0.477 0.076 0.376 -0.661 0.224 -0.007 0.093 

Cu 0.097 0.346 -0.101 0.585 0.021 0.335 -0.385 

Mg -0.129 0.042 0.369 0.169 0.722 -0.172 0.130 

Ba -0.446 0.098 -0.080 -0.534 0.553 0.228 -0.025 

Zn -0.118 -0.098 -0.073 0.339 0.217 0.616 0.1 57 

Sn 0.380 -0.077 . -0.165 -0.272 0.111 0.282 0.493 

Tl -0.378 0.066 0.299 -0.1 59 -0.216 -0.289 0.432 
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Table 5. 2: Rotated component matrix showing loadings of analytes in the winter samples 

Components 
Variables 7 

1 (25.1%) 2 (18.8%) 3 (11 .0%) 4 (9.7%) 5 (7.7%) 6 (5.9%) (4.8%} 

v 0.958 0.039 0.189 0.028 0.111 0.038 -0.064 

Li 0.885 -0.105 0.154 0.035 -0.104 0.001 0.004 

Pb 0.858 -0.282 -0.074 0.011 -0.055 0.274 0.057 

Sb 0.795 -0.051 -0.474 -0.086 -0.058 -0.182 -0.116 

La 0.778 0.447 0.245 0.198 0.031 -0.209 -0.139 
p -0.563 0.200 0.425 -0.112 0.464 -0.029 -0.281 

Ni 0.522 -0.439 0.087 0.272 0.151 0.200 0.1 49 

Be -0.038 0.867 0.206 -0.220 0.238 -0.112 0.000 

Bi 0.443 -0.809 0.023 0.277 -0.032 0.117 0. 146 

Cr 0.021 0.795 0.302 0.143 -0.122 -0.087 -0.284 

Cs -0.100 0.746 -0.158 0.168 0.398 -0.082 -0.081 

Fe 0.242 0.665 0.620 -0.008 -0.017 -0.235 -0.224 

Sn -0.042 0.637 0.026 -0.126 -0.122 0.235 0.304 

Co 0.145 -0.600 -0.222 0.274 0.237 0.178 0.551 

AI -0.045 0.139 0.897 -0.243 0.092 0.043 -0.045 

Ti 0.324 0.159 0.833 0.059 0.152 -0.153 -0.140 

Sr 0.162 -0.065 0.024 0.797 0.192 -0.156 -0.125 

Ba 0.111 0.113 -0.322 0.720 -0.369 0.264 0.066 

Ca 0.064 -0.020 -0.366 0.708 -0.1 09 -0.148 0.444 

Si 0.479 -0.337 0.088 0.639 0.274 -0.048 0.21 6 

Mg -0.224 -0.131 0.462 0.627 0.095 0.238 0.110 

Mo 0.335 0.488 0.435 -0.537 0.191 -0.209 0.057 

Rb -0.008 0.104 0.051 0.122 0.876 -0.203 -0.127 

B 0.089 -0.084 0.219 0.013 0.873 0.028 -0.038 

u -0.238 0.272 -0.039 -0.149 0.657 0.144 0.503 

Mn -0.042 -0.007 0.152 -0.162 -0.429 0.733 -0.242 

Zn -0.016 0.053 -0.111 -0.030 0.220 0.725 -0.069 

Ag 0.071 -0.428 -0.200 0.238 -0.119 0.676 0.199 

Cd 0.132 -0.353 0.040 0.124 -0.321 0.577 -0.239 

Tl 0.105 -0.303 -0.021 0.078 -0.009 -0.179 0.661 

Cu 0.317 -0.112 0.153 -0.129 0.364 0.294 -0.609 
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Fig. 5. 2: Unrotated plot of components 1 and 2 of the winter samples. 
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For samples collected in the spring, the principal component analysis using SPSS 

produced seven unrotated components with eigenvalues greater than 1 (Table 5.3). The 

first component loaded high positive loadings for Fe, Ti, La, Al, U, Pb, V, Li, Mo, and 

Zn. The second component is explained by Cr, Ba, Ca, Rb, Ag, Mn, and Co. The third 

component loaded Cs, Mg, Cu and Rb; while the fourth component contained Cu and Zn. 
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The fifth component explains Li, B, and Si. Only Ag was in the sixth component. The 

seventh component had a total variance of 5.2%, and did not record any high loading for 

any element. Nickel and strontium recorded very low loadings in all seven components. 

The application of varimax rotation to the data set maximised the loadings of 

individual elements on single factors and also eased the interpretation of the results. This 

created a new set of a smaller number of composite variables to replace the original set of 

unrotated variables. The component loadings and percent variance after varimax rotation 

of each component are presented in Table 5.4. Seven components explaining 83.8% of 

the total variance in the spring samples resulted. The first rotated component, 

contributing 29.7% of the total variance is a lithogenic component; it depicts the high 

influence of La, Fe, Ti, Li, U, V, Pb, and Al. This explains the general chemical 

weathering of the source rocks. According to the definition of the enrichment factor, the 

less enriched elements Ce, La, U, V, and Li mainly represent soil contribution. The 

relatively high U concentration observed in sample SP13 and SP14 could be associated 

with the granitic bedrock of the area. The rather low to less than detection limit for 

uranium in most samples attest to the fact that anthropogenic addition may be negligible 

and therefore concentrations recorded may reflect aU anomaly in such locations. 

Lithium is widely distributed in the Earth' s crust. It is very mobile in geochemical 

processes, and readily absorbed by clay minerals (Kabata-Pendias, 2001). The soluble Li 

in soils is readily available to plants; therefore, the plant content of this element is 

thought to be a good guide to the Li status of the soil. High Ti content is normally 

associated with highly weathered soils and soils derived from Ti-rich parent rocks. 
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Anthropogenic activities which produce effluents or emissions from certain industries (Ti 

alloys, Ti paint production) may contribute significantly to the bioavailability ofTi in 

soils and to plants. Levels in plants vary rather considerably within the range of 0.15 to 

1500 ppm (DW) (Kabata-Pendias, 2001), and the average concentration in the spruce 

trees in the study area falls within this range i.e 5.05±0.43 11g/g. 

The second rotated component, contributing to 15.6 % of the total variance shows 

high loadings for Rb, Ca, Mo, and Ag, which primarily represent soil contribution. The 

third component loaded Ba, Ca, Sr, and Co, contributed to a total variance of 11 %. This 

component relates to contributions from carbonate rocks and soils because of the high 

mobility and bioavailability of the cations of groups IIA (alkaline earth metals). 

Chromium, Zn, and Mn showed a strong association with component four (8.8% of the 

total variance) and is likely a consequence of anthropogenic pollution, including 

emissions from activities such as use of fungicides, anti-knock agents, batteries, and 

process from alloy industries. The occurrence of Cr in components three and fouth 

indicates a mixed source, i.e. lithogenic and anthropogenic inputs. The fifth rotated 

component loaded Sn, Cu, and Pb and explains 7.2% of the total variance. This 

component could be anthropogenic with the Pb and Cu may originating from motor 

vehicle exhaust and leachate from scrap metals (automobiles, fridges, etc) dwnped at the 

study site. Soil additions of Pb, Cu, and Sn can also originate from atmospheric 

deposition of particulates from the nearby pyrophillite mine. Contributions of Pb 

therefore have lithogenic and anthropogenic sources as it loaded in components one and 

five. Component six contributed to 6.7% and has high loadings for Mg, B, and Si; and 
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could be related to the natural occurrence of these elements in plant composition. ilicon 

and Ni are also in the seventh component accounting for a total variance of 4.8%. 
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Fig. 5. 4: A scree plot of eigenvalues versus component numbers of the spring samples. 
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Table 5. 3: Unrotated component matrix showing loading of analytes in the spring 

samples 

Variables Components 
1 2 3 4 5 6 7 

Fe 0.931 0.002 0.147 -0.141 -0.081 -0.037 -0.067 

Ti 0.878 -0.277 0.084 -0.141 -0.152 -0.128 -0.120 
La 0.836 0.123 0.062 0.175 -0.025 -0.244 0.302 
AI 0.785 -0.313 -0.1 50 0.075 -0.079 0.198 -0.185 
u 0.783 -0.278 0.157 -0.131 -0.119 -0.118 -0.055 
Pb 0.727 0.055 -0.424 0.491 0.037 -0.015 0.005 
v 0.708 0.311 -0.268 0.221 0.094 -0.303 0.231 
Li 0.627 -0.112 0.044 -0.114 -0.535 -0.247 0.192 
Mo 0.610 0.606 -0.220 -0.181 0.209 0.080 -0.065 
Zn 0.606 -0.160 -0.066 -0.558 0.010 0.236 -0.314 
Ni 0.493 -0.065 -0.222 0.265 0.097 0.478 0.473 
Cr -0.091 0.778 0.318 0.158 -0.034 -0.276 -0.080 
Ba 0.177 0.723 0.240 0.179 -0.092 0.253 -0.271 
Ca -0.154 0.620 -0.402 -0.148 0.301 -0.184 0.094 
Rb -0.035 -0.618 0.526 0.373 -0.113 0.269 -0.065 
Ag -0.014 0.599 -0.169 -0.323 -0.091 0.529 0.111 
Mn -0.480 0.508 0.303 0.471 -0.091 -0.222 0.100 
Co 0.480 0.504 0.330 -0.283 0.167 0.279 0.109 
Cs 0.225 0.284 0.655 0.165 -0.039 0.453 0.144 
Mg 0.049 -0.382 0.552 0.082 0.429 -0.113 0.461 
Sr 0.200 0.305 0.437 0.408 -0.352 0.130 -0.225 
Cu 0.110 -0.327 -0.512 0.636 0.191 0.336 -0.065 
Sn 0.389 0.144 -0.238 0.483 0.293 -0.054 -0.442 
B 0.258 -0.116 0.252 -0.156 0.649 0.134 0.082 
Si 0.225 -0.132 0.495 0.003 0.570 -0.240 -0.407 
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Table 5. 4: Rotated component matrix showing loadings of analytes in the spring 

samples. 

Variables Components 
1 (29.7%) 2 (15.6%) 3 (11 .0%) 4 (8.8%) 5 (7.2%) 6 (6.7%) 7 (4.8%) 

La 0.892 0.101 0.116 -0.082 0.138 0.156 0.177 

Fe 0.820 0.006 0.236 0.412 0.075 0.135 -0.015 

Ti 0.816 -0.174 -0.003 0.462 0.090 0.068 -0.084 

Li 0.804 -0.133 -0.026 0.116 -0.210 -0.284 0.039 

u 0.743 -0.204 0.004 0.387 0.025 0.125 -0.063 

v 0.735 0.412 0.020 -0.148 0.334 0.048 0.164 

AI 0.563 -0.208 0.020 0.533 0.389 -0.014 0.162 

Rb -0.061 -0.915 0.082 0.005 0.056 0.183 0.063 

Ca -0.155 0.812 -0.013 -0.198 0.051 -0.006 -0.011 

Mo 0.391 0.675 0.373 0.265 0.204 0.087 0.082 

Ag -0.212 0.504 0.468 0.240 -0.207 -0.200 0.366 

Ba 0.028 0.236 0.830 -0.064 0.155 -0.100 -0.080 

Cs 0.105 -0.248 0.763 -0.062 -0.154 0.270 0.245 

Sr 0.199 -0.290 0.679 -0.185 0.134 -0.179 -0.114 

Co 0.291 0.331 0.611 0.228 -0.199 0.331 0.146 

Cr 0.045 0.358 0.565 -0.507 -0.065 -0.026 -0.334 

Zn 0.328 0.086 0.063 0.856 -0.037 0.074 -0.069 

Mn -0.242 0.033 0.356 -0.807 -0.030 -0.094 -0.154 

Sn 0.183 0.127 0.142 0.025 0.805 0.072 -0.153 

Cu -0.116 -0.207 -0.218 0.039 0.797 -0.065 0.441 

Pb 0.600 0.123 0.009 0.030 0.697 -0.092 0.287 

Mg 0.138 -0.367 -0.151 -0.253 -0.228 0.747 0.138 

B 0.045 0.053 0.026 0.220 0.036 0.743 0.079 

Si 0.106 -0.138 0.112 0.104 0.198 0.692 -0.538 

Ni 0.300 -0.017 0.070 0.112 0.255 0.124 0.801 
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Chapter 6: conclusion 

6.0 Introduction 

The effect of the sample-preparation step on the quality of the analytical results is 

universally recognized (Novozamsky et al, 1995; Mader et al, 1996; Mader et al, 1997; 

Mader et al, 1998a; Poykio et al, 2000; and Hoenig, 2001). The application of 

appropriate digestion procedure and its effective combination with the separation and 

detection methods are of major importance in the analysis of trace and heavy metals in 

biological matrices. The high tendency of losing volatile sample components, the low 

concentrations to be determined in the varied matrices, and numerous interferences 

seriously limit the direct application of even highly sensitive and selective spectrometric 

techniques, e.g. ICP-MS, to the examination ofthe samples. Complete digestion of the 

biological samples and a quantitative transformation of the analytes into solution are 

therefore very essential in quantitative determination of trace metals. 

The following factors were considered in developing this sample preparation 

procedure for environmental analysis: the amount of sample, quantities of the elements in 

the sample, the need for total or partial digestion, and the instrumental methods available 

for element determination. The efficiency of the procedure as regards low reagent 

consumption and contamination, low residue generation, the integrity of the sample, and 

the uncertainty in the measurements were also given a careful consideration. 

The application of a wet digestion treatment, widely used for the decomposition 

of many materials is limited; it is deficient in completely decomposing silicate minerals. 

This is partly because the maximum digestion temperature cannot exceed the an1bient-
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pressure boiling point of the acid/acid mixture and also due to the fact that most acids do 

not efficiently oxidize the biological matrices. Other limitations associated with acid 

digestions include contaminations arising from use of large volumes of acids, longer 

periods for digestion, and lower sample throughput. 

Dry ashing, though prone to losses via volatilization and reaction with container 

material; leads to more complete decomposition of the organic matrices and high sample 

throughput. This study involved the development of a classical dry ashing procedure for 

digesting matrices of plant origin. The effect of different acid mixtures, type of digestion 

vessel, temperature of ashing, duration of ashing, and rate of temperature ramp were 

evaluated for optimum digestion conditions. The study revealed the importance of a 

digestion vessel in enhancing the rate and completeness of a digestion process. Open 

(uncapped) test tubes made of quartz proved to be the best vessels for complete 

decomposition of plant materials in the dry ashing process even at high temperatures. 

Crucibles, though useful could not supply adequate air to enhance combustion as the 

open (uncapped) test tubes did, hence less efficient a digestion mediun1. The suitability of 

vessels for a digestion procedure was estimated according to the following criteria: heat 

resistance and conductance, mechanical strength, resistance to acids and alkalis, surface 

properties, and reactivity and contamination. In addition to the afore-mentioned 

requirements, vessels for dry ashing must be able to supply adequate air for combustion 

while minimizing contamination and loss of sample components. 

The ashing temperature was evaluated to determine the optimwn temperature for 

complete decomposition of plant material and minimum loss of volatile sample 
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components. Ashing at 450 °C was most efficient as all samples were completely ashed 

and at the same time recovered significant quantities of the analytes as compared to 

ashing at 500 °C. Ashing at 400 °C caused a partial decomposition of the plant samples. 

Ashing for 8 hours was optimum while ashing for 4 hours resulted in incomplete 

decomposition and longer duration; 16 hours of ashing caused higher loss of analytes. It 

can therefore be inferred from tllis study that high temperature and prolong ashing 

promote losses of analytes. Hence the ashing temperature and duration of ashing play 

sigtlificant roles in recovery of metals in biological tissues. 

In evaluating the effect of temperature ramp on efficiency of digestion and 

possible retention of volatile sample component, ramping the temperature at a rate 18 

°C/hr was observed to be the best with regard to time and cost effectiveness. A 

temperature ramp at 18 °C/hr also improved element recovery while ramping at 50 °C/hr 

produced incomplete digestion. The study also revealed that a slower rate enhances 

efficiency and also reduce loss of volatile sample components during a digestion process. 

This corroborated the observation by Mader (1996) that losses may be nlinimized when a 

moderate charring regime is adopted in a dry aslling procedure. The mechanism by which 

tllis occurs is however uncertain. Ramping at a rate of 50 °C/5 hrs produced relatively 

higher element concentrations, but the difference in concentrations are statistically 

insignificant in relation to ran1ping at 50 °C/3 hrs. 

On the choice of a leaching acid mixture, HN03/HF (2:1) and two drops ofH20 2 

is the most suitable reagent combination for quantitative determination of trace elements 

in vegetation. The other three reagents (16 N HN03, 8 N HN03, and 8 N HN03/6 N HCl) 
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exhibited varying degrees of inadequacies in dealing with the lithophile elements. 

Decomposition of silicates under the hydrofluoric acid treatment is generally required for 

releasing the silica-bound minerals. 

There is no universal sample preparation method, but from the results of the 

study, washing the plant material thoroughly with nanopure water and subsequent ashing 

at 450 °C for 8 hours after an initial temperature ramp of 50 °C/3 hrs followed by 

leaching with a mixture of HN03/HF (2: 1) plus 2 drops of H20 2 proved to be a powerful 

and a fast method of sample preparation. The advantage for tllis dry ashing procedure is 

its ability to digest large samples and to perform total elemental analysis including major, 

nlinor and trace element in the same run. Moreover, this method is less time consuming, 

requires less amounts of reagents and it is easy to control. It is useful in environmental 

studies where conclusions are drawn on the basis of a large number of samples. 

Although there was generally high recovery for most heat stable elements, volatile 

elements such as Se, Hg, As, and I were completely lost or partially as a result of the high 

aslling temperature. The precision was also poor for Cd resulting in relatively high RSD. 

The proposed procedure produced very accurate and precise results when applied to 

determine metal concentrations in tea, coffee, and spruce twigs. The relative standard 

deviation of heavier elements were <1 0% while Ni, Mo, Co and most light elements were 

<15%. The procedure was validated by the use of standard reference materials SRM 

1575, SRM 1547, CLV -1 , and CLV -2. Element recoveries were in the range of 75 -

120%. A comparison of the proposed procedure with the wet digestion method used by 

the ICP-MS group at MUN also yielded good agreement in the mean recoveries. 
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Biomonitoring 

The proposed procedure was applied in a biomonitoring study using black spruce 

as indicator of metal pollution in the Holyrood area. Knowledge of the source of the trace 

metals and their relative concentrations is necessary for taking effective control measures 

to prevent pollution. The metal concentrations determined using ICP-MS and PCA 

analysis of the chemical data revealed varied sources of pollution within the study area. 

The advantage of the PCA is that it reduces a large number of variables into a smaller set 

of dimensions by analyzing the inter-relationships between variables (elements) and 

explains them in terms of common underlying factors . 

A multivariate statistical analysis produced seven principal components of the 

element data from samples collected both in winter and spring. Each set of samples had 

contributions from anthropogenic and geogenic sources. The rotated components 

interpreted metal sources including crustal weathering, the source rock lithology 

(bedrock), sea spray, atmospheric deposition of soil particles, emission from the thermal 

electric generation plant and vehicular exhaust, leaching from scrap, electronic, and 

municipal waste dumped at the study site. The study however did not show any clear 

seasonal variation in trace metal concentrations as the concentrations varied randomly 

with season and from one sample to the other. The reason for this pattern may be 

attributed to the long winters and diffused climate pattern in Newfoundland. The high U 

concentrations recorded in a few of the samples were indicative of aU anomaly in such 

as areas and a confirmation of earlier observation that black spruce is an excellent 

indicator ofU anomaly. 
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6.1 Future work 

Future work should include analysis of both soil and plant samples in order to 

establish a correlation or otherwise between plant and soil metal concentration. Also a 

comparative study involving samples obtained from highly polluted sites and others from 

pristine sites (areas of low industrial activity) to assess the usefulness of black spruce of 

Newfoundland as indicators of pollution. Future work on the seasonal variation in metal 

uptake by spruce tree should include samples taken in all four seasons. 
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Appendix 1: Element concentrations in spruce twigs collected in winter. 

Sample P1 P2 P3 P4 

MEAN RSD MEAN RSD MEAN RSD MEAN RSD 
Element ppm % ppm % ppm % ppm % 

Li 0.082 2 0.047 9 0.046 5 0.058 14 
Be 0.005 4 <DL <DL 0.004 1 
B 11 .0 8 10.1 1 7.9 3 9.4 4 

Mg 700 8 780 7 620 17 710 6 
AI 174 6 59 12 64 8 164 8 
Si 31 31 28.2 8 24.0 7 17.3 9 
p 600 5 610 3 670 4 460 6 

Ca 2410 8 3900 2 3100 3 2820 4 
Ti 8.5 2 4.7 11 4 .0 2 6.5 18 
v 6.0 1 0.97 3 1.03 1 2.28 1 
Cr 1.32 11 0.82 17 0.50 5 0.36 7 
Mn 1070 9 590 13 520 9 610 17 
Fe 106 10 53 12 55 7 82 9 
Co 1.90 23 1.29 4 0.89 3 2.07 4 
Ni 6.8 7 4.3 1 2.68 1 4.5 8 
Cu 7.0 3 5.0 2 5.9 4 4.7 2 
Zn 45 4 43 2 45 3 40 5 
Rb 4.6 26 6.3 2 5.9 1 3.2 1 
Sr 20.0 4 21 .0 2 23.2 1 20.2 1 
Mo 0.128 4 0.002 <DL <DL 
Ag 0.061 9 0.044 1 0.044 2 0.033 6 
Cd 0.119 2 0.042 14 0.045 3 0.040 5 
Sn 0.176 6 0.121 1 0.130 16 0.113 10 
Sb 0.175 5 0.039 5 0.058 3 0.053 10 
Cs <DL 0.035 8 0.044 2 <DL 
Ba 51 3 50 5 68 1 45 1 
La 1.51 9 0.37 1 0.46 1 0.51 4 
Ce 0.40 7 0.140 4 0.146 2 0.243 5 
Tl 0.009 3 0.009 2 DL 0.02 2 
Pb 1.04 11 0.59 2 0.56 4 0.99 3 
Bi 0.003 2 0.001 34.5 0.002 10 0.003 3 
u 0.008 7 0.009 13 0.004 23 0.005 17 
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Appendix 1: Element concentrations in spruce twigs collected in winter. 

Sample P5 P6 P7 

MEAN RSD MEAN RSD MEAN RSD 
Element ppm % ppm % ppm % 

Li 0.052 7 0.046 8 0.032 11 
Be <DL <DL -;:DL 
B 8.6 5 7.7 1 7.5 1 

Mg 930 7 440 25 860 13 
AI 70 5 162 1 102 3 
Si 21 .5 18 12.7 11 13.8 21 
p 740 6 740 9 660 9 

Ca 2340 4 1570 4 2230 2 
Ti 6.2 1 5.8 5 3.8 13 
v 1.47 3 0.93 9 0.53 11 
Cr 3.0 14 0.37 21 0.58 23 
Mn 1310 4 940 9 1350 10 
Fe 83 9 57 7 51 17 
Co 0.98 15 0.55 10 0.56 9 
Ni 6.9 12 2.86 39 2.62 16 
Cu 5.1 4 5.2 7 5.5 7 
Zn 52 5 48 11 43 11 
Rb 3.5 1 2.86 4 2.21 3 
Sr 22.5 2 11 .3 2 15.7 1 
Mo <DL <DL <DL 
Ag 0.032 1 0.025 10 0.070 4 
Cd 0.066 3 0.033 5 0.102 3 
Sn 0.132 2 0.146 5 0.116 7 
Sb 0.053 4 0.034 8 0.024 10 
Cs <DL <DL <DL 
Ba 66 3 18.3 3 50 4 
La 0.39 5 0.203 9 0.187 2 
Ce 0.165 5 0.101 13 0.078 14 
Tl 0.012 1 0.02 4 0.01 4 
Pb 0.66 2 0.63 9 0.48 6 
Bi 0.002 5 0.001 8 0.001 19 
u 0.005 22 0.009 6 0.003 28 
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Appendix 1: Element concentrations in spruce twigs collected in winter. 

Sample P8 P9 P10 P11 

MEAN RSD MEAN RSD MEAN RSD MEAN RSD 
Element ppm % ppm % ppm % ppm % 

Li 0.036 15 0.051 9 0.40 11 0.046 15.3 
Be <DL <DL <DL <DL 
8 9.2 1 7.0 2 75 6 8.6 6 

Mg 750 27 590 5 4800 9 790 11 
AI 96 2 76 2 560 3 96 1 
Si 12.3 13 11 .0 9 144 29 20.6 3 
p 800 7 590 5 6800 3 540 3 

Ca 2350 3 2570 5 29900 2 3300 2 
Ti 2.30 5 2.39 6 24.5 7 4.0 3 
v 0.40 7 0.55 5 5.8 1 1.32 2 
Cr 1.03 14 0.43 9 4.8 29 0.80 17 
Mn 1160 13 1300 18 7700 16 1340 23 
Fe 43 11 43 13 370 19 55 15 
Co 0.45 9 0.82 3 38 17 1.45 2 
Ni 3.2 32 3.0 9 27.4 13 16.2 8 
Cu 4.9 6 4.7 4 54 5 4.9 2 
Zn 47 11 41 9 450 5 53 4 
Rb 4.8 2 2.27 6 14.8 6 2.70 2 
Sr 17.7 1 13.5 3 246 2 17.7 2 
Mo <DL <DL <DL <DL 
Ag 0.036 2 0.055 10 0.31 2 0.07 2 
Cd 0.084 16 0.091 6 0.62 5 0.08 3 
Sn 0.132 8 0.19 3 1.92 7 0.2 9 
Sb 0.018 2 0.026 8 0.22 4 0.034 2 
Cs <DL <DL <DL <DL 2 
Ba 44 2 42 3 670 2 57 3 
La 0.143 7 0.169 10 1.99 5 0.35 9 
Ce 0.057 15 0.068 17 0.77 2 0.17 10 
Tl 0.023 1 <DL 0.08 7 0.021 3 
Pb 0.35 6 0.44 8 5.0 2 1.02 1 
Bi 0.001 18 0.001 22 0.01 6 0.002 12 
u 0.002 22 0.006 13 0.005 10 0.004 5 
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Appendix 1: Element concentrations in spruce twigs collected in winter. 

Sample P12 P13 P14 P15 

MEAN RSD MEAN RSD MEAN RSD MEAN RSD 
Element ppm % ppm % ppm % ppm % 

Li 0.049 9 0.032 9 0.039 12 0.034 5 
Be <DL 0.028 7 0.03 1 0.025 11 
B 4.1 7 10.1 3 9.7 2 9.4 5 

Mg 750 4 760 10 560 15 1010 12 
AI 67 2 65 6 83 3 560 1 
Si 17.8 6 12.9 16 13.7 21 13.6 13 
p 440 2 680 9 910 3 1330 4 

Ca 4000 1 2930 4 2480 2240 6 
Ti 3.1 12 2.49 12 3.0 3 12.6 3 
v 0.79 1 0.57 7 0.67 8 0.45 4 
Cr 1.00 11 1.01 15 1.16 13 3.0 2 
Mn 1420 4 670 6 800 10 1030 5 
Fe 49 13 52 6 60 6 159 4 
Co 1.46 1 1.57 5 0.97 3 0.271 3 
Ni 2.24 17 1.99 12 2.05 30 1.71 10 
Cu 4.2 2 4.4 4 5.2 7 5.2 4 
Zn 45 6 50 4 48 6 47 3 
Rb 1.18 2 5.8 5 6.2 2 4 .2 3 
Sr 16.7 1 15.9 5 16.5 3 19.5 2 
Mo <DL 0.03 10 0.03 20 0.052 17 
Ag 0.104 3 0.04 7 0.03 6 0.027 10 
Cd 0.254 1 <DL 0.13 4 0.053 14 
Sn 0.166 7 0.18 17 0.17 10 0.192 6 
Sb 0.025 1 0.022 19 0.026 23 <DL 
Cs <DL 0.051 10 0.08 7 0.023 6 
Ba 101 2 49 7 41 7 36 3 
La 0.272 3 0.227 8 0.24 5 0.28 4 
Ce 0.126 6 0.109 10 0.11 8 0.23 4 
Tl 0.038 1 0.034 6 0.006 6 <DL 
Pb 0.64 2 0.35 6 0.49 8 0.254 2 
Bi 0.001 42. <DL <DL <DL 
u 0.004 28 0.083 1 0.111 3 0.02 6 
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Appendix 1: Element concentrations in spruce twigs collected in winter. 

Sample P16 P17 P18 P19 

MEAN RSD MEAN RSD MEAN RSD MEAN RSD 
Element ppm % ppm % ppm % ppm % 

Li 0.04 2 0.04 7 0.05 7 0.05 8 
Be 0.02 2 0.02 13 0.02 2 0.02 3 
8 9.2 5 9.2 6 7.6 2 7.3 5 

Mg 570 4 570 7 610 2 620 12 
AI 127 5 127 4 103 3 116 2 
Si 9.1 12 9.1 14 15.3 5 14.4 29 
p 750 4 750 7 610 4 900 5 

Ca 1970 2 1970 4 2440 2 2670 1 
Ti 4.7 6 4.7 9 4.2 2 7.0 4 
v 1.50 4 1.50 4 0.84 3 1.03 2 
Cr 2.97 5 2.97 5 5.8 4 5.6 3 
Mn 1760 5 1760 15 1070 13 570 11 
Fe 104 5 104 4 148 2 158 2 
Co 0.10 4 0.10 5 0.11 5 0.12 5 
Ni 2.11 12 2.11 5 1.53 6 3.3 4 
Cu 6.8 4 6.8 2 4.4 2 5.0 2 
Zn 47 5 47 3 38 1 37 4 
Rb 3.0 2 3.0 2 2.78 2 4 .1 2 
Sr 15.9 1 15.9 3 17.1 2 17.7 2 
Mo 0.05 3 0.05 3 0.06 1 0.07 5 
Ag 0.03 5 0.03 3 0.02 6 <DL 
Cd 0.05 9 0.05 7 0.004 0.004 27 
Sn 0.16 5 0.16 4 0.2 7 0.1 8 5 
Sb 0.04 13 0.04 9 0.05 11 0.05 1 
Cs 0.02 2 0.02 10 0.04 6 0.03 4 
Ba 38 2 38 4 81 2 31 4 
La 0.46 1 0.46 3 0.76 17 0.62 21 
Ce 0.19 3 0.19 4 0.46 12 0.36 8 
Tl <DL <DL 0.01 18 0.02 1 
Pb 0.62 6 0.62 2 0.42 9 0.4 5 
Bi <DL <DL <DL <DL 
u 0.004 18 0.004 19 0.005 20 0.004 28 
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Appendix 1: Element concentrations in spruce twigs collected in winter. 

Sample P20 

MEAN RSD 
Element ppm % 

Li 0.042 2 
Be 0.0160 11 
B 6.3 8 

Mg 490 3 
AI 124 3 
Si 10.5 7 
p 530 2 

Ca 2840 1 
Ti 5.9 3 
v 1.43 1 
Cr 3.6 3 
Mn 610 6 
Fe 119 5 
Co 0.141 4 
Ni 2.12 2 
Cu 4.2 2 
Zn 50 2 
Rb 2.63 1 
Sr 18.4 1 
Mo 0.051 6 
Ag 0.022 5 
Cd 0.050 10 
Sn 0.164 14 
Sb 0.072 12 
Cs 0.026 7 
Ba 39 1 
La 0.79 2 
Ce 0.259 1 
Tl <DL 
Pb 0.49 4 
Bi <DL 
u 0.003 13 
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Appendix 1: Element concentrations in spruce twigs collected in spring. 

Sample P1 P2 P3 P4 

MEAN RSD MEAN RSD MEAN RSD MEAN RSD 
Element ppm % ppm % ppm % ppm % 

Li 0.060 11 0.050 16 <DL 0.06 13 
B 7.6 6 7.6 2 6.3 6 5.6 6 

Mg 650 11 550 4 720 1 560 1 
AI 330 7 145 5 81 7 174 2 
Si 17.0 11 26.0 4 14.5 11 21 .5 4 
Ca 3200 4 2400 2 2400 1 3000 3 
Ti 5.9 1 4.9 2 1.93 11 5.8 4 
v 2.03 5 0.89 1 0.250 3 1.74 3 
Cr 13.7 10 6.0 3 7.7 5 13.3 7 
Mn 1700 3 740 3 1700 2 2380 2 
Fe 201 3 133 1 72 3 155 4 
Co 0.35 4 0.14 5 0.28 6 0.37 6 
Ni 1.89 3 2.48 19 1.57 18 2.67 14 
Cu 3.7 2 5.6 3 4.5 9 4.3 8 
Zn 47 1 57 2 40 4 58 2 
Rb 2.07 2 3.9 1 4.9 7 1.88 2 
Sr 13.0 13 12.0 9 13.0 3 28.0 14 
Mo 0.1 6 0.06 13 <DL 0.08 16 
Ag 0.06 9 0.07 22 0.04 17 0.07 11 
Sn 0.16 16 0.19 7 0.14 5 0.15 19 
Cs 0.05 7 0.07 11 0.05 15 0.06 12 
Ba 66 1 90 1 41 7 149 3 
La 0.59 3 0.64 3 0.2 4 0.81 5 
Ce 0.35 9 0.24 3 0.09 16 0.31 7 
Pb 0.60 2 0.57 3 0.27 3 0.76 9 
u 0.01 12 0.05 9 <DL <DL 
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Appendix 1: Element concentrations in spruce twigs collected in spring. 

Sample P5 P6 P7 

Element MEAN RSD MEAN RSD MEAN RSD 
ppm % ppm % ppm % 

Li 0.06 13 0.04 7 0.04 5 
8 5.7 9 5.5 9 6.8 8 

Mg 490 6 550 1 730 2 
AI 140 5 85 2 117 3 
Si 18.5 8 0.07 3 10.0 11 
Ca 2950 2 2070 1 1980 1 
Ti 5.4 8 2.69 7 4.5 3 
v 1.22 4 0.54 1 0.39 4 
Cr 12.8 2 5.3 4 6.0 1 
Mn 1810 1 1030 1 1330 1 
Fe 161 12 71 1 84 2 
Co 0.15 5 0.14 8 0.12 8 
Ni 1.93 7 2.36 14 2.00 15 
Cu 3.6 3 3.4 1 4.0 7 
Zn 44 3 46 2 56 2 
Rb 2.03 2 6.0 1 2.90 1 
Sr 17.5 4 17.0 4 10.5 7 
Mo 0.06 13 <DL <DL 
Ag 0.05 16 0.03 28 0.03 28 
Sn 0.11 13 <DL <DL 
Cs <DL 0.03 3 <DL 
Ba 50 3 46 7 20.7 2 
La 0.55 3 0.29 5 0.28 5 
Ce 0.220 10 0.1 7 0.11 7 
Pb 0.59 1 0.29 4 0.32 4 
u 0.070 8 <DL <DL 
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Appendix 1: Element concentrations in spruce twigs collected in spring. 

Sample P8 P9 P10 P11 

Element MEAN RSD MEAN RSD MEAN RSD MEAN RSD 
ppm % ppm % ppm % ppm % 

Li 0.05 1 0.11 7 0.11 14 0.04 20 
B 7.6 7 7.1 4 7.1 8.0 10 

Mg 600 1 690 1 690 1 680 1 
AI 310 11 610 6 610 1 112 1 
Si 11 .0 10 18.1 7 18.1 5 14.0 5 
Ca 1550 8 550 2 550 1 1970 1 
Ti 7.0 3 9.9 4 9.9 4 4.1 6 
v 0.65 5 0.76 4 0.76 6 0.85 1 
Cr 6.2 3. 6.8 2 6.8 3 6.5 2 
Mn 930 9 1270 2 1270 3 1430 1 
Fe 134 12 226 4 226 6 83 1 
Co 0.13 9 0.26 3 0.26 9 0.07 5 
Ni 1.71 8 3.9 11 3.9 11 2.06 1 
Cu 4.0 2 8.4 2 8.4 1 8.1 5 
Zn 44 4 48 5 48 2 43 3 
Rb 3.2 3 7.2 4 7.2 1 3.6 1 
Sr 11.7 5 14.0 1 14.0 5 11 .0 4 
Mo <DL <DL <DL <DL 
Ag 0.03 3 0.06 4 0.06 20 <DL 
Sn 0.1 6 0.1 7 0.10 12 0.120 5 
Cs <DL 0.05 8 0.05 <DL 
Ba 28.1 3 42 3 42 1 36 1 
La 0.45 5 0.69 4 0.69 3 0.45 2 
Ce 0.2 13 0.32 2 0.32 6 0.140 10 
Pb 0.39 2 0.86 5 0.86 2 0.78 3 
u <DL <DL <DL <DL 
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Appendix 1: Element concentrations in spruce twigs collected in spring. 

Sample P12 P13 P14 P15 

MEAN RSD MEAN RSD MEAN RSD MEAN RSD 
Element ppm % ppm % ppm % ppm % 

Li 0.03 13 0.06 12 0.05 15 0.1 14 
B 6.9 14 8.6 6 8.2 3 7.2 1 

Mg 880 1 640 9 680 8 530 5 
AI 88 2 360 4 297 2 2250 2 
Si 15.0 9 30.0 4 25.0 6 18.0 8 
Ca 3100 1 2150 2 1690 2 2040 11 
Ti 3.3 14 6.1 1 5.5 4 20.5 2 
v 0.84 2 1.55 8 1.36 1 1.16 1 
Cr 4.6 4 5.5 2 4.6 2 3.3 1 
Mn 920 2 1110 3 790 3 173 3 
Fe 75 2 118 5 103 8 350 2 
Co 0.1 7 0.11 7 0.11 3 0.24 3 
Ni 3.3 5 2.00 10 2.37 2 2.79 1 
Cu 7.3 1 7.0 9 5.3 7 6.0 2 
Zn 43 2 48 2 39 3 140 2 
Rb 4.7 1 3.8 2 4.7 1 2.46 4 
Sr 16.0 3 14.0 2 13.0 2 12.0 1 
Mo <DL <DL 5 <DL 0.11 4 
Ag 0.05 16 <DL <DL 0.05 16 
Sn 0.15 11 0.26 26 0.16 14 0.18 8 
Cs 0.02 14 <DL <DL <DL 
Ba 37 4 37 7 27.7 3 34 3 
La 0.41 7 1.07 4 0.34 4 0.54 5 
Ce 0.13 5 0.27 10 0.16 5 0.36 2 
Pb 0.50 5 0.89 6 0.49 2 0.83 3 
u <DL <DL <DL 7 0.01 15 
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Appendix 1: Element concentrations in spruce twigs collected in spring. 

Sample P16 P17 P18 P19 

MEAN RSD MEAN RSD MEAN RSD MEAN RSD 
Element ppm % ppm % ppm % ppm 

Li 0.08 9 <DL 0.03 0.03 20 
B 6.4 8 6.9 7 6.93 1 6.9 6 

Mg 730 2 540 1 500.4 2 500 15 
AI 1440 3 490 1 523 5 520 6 
Si 197 17 13.0 7 16.50 13 16.5 9 
Ca 660 7 2830 1 2689.5 3 2690 1 
Ti 13.3 1 3.9 2 3.54 1 3.5 4 
v 0.45 2 1.23 4 1.11 3 1.11 3 
Cr 6.3 1 7.2 2 4.93 2 4.9 2 
Mn 1130 1 1400 2 1029.7 5 1030 2 
Fe 234 2 102 4 76.5 11 77 8 
Co 0.12 6 0.14 10 0.09 8 0.09 6 
Ni 2.14 8 3.7 9 1.47 1 1.47 8 
Cu 5.7 1 12.2 2. 6.63 3 6.6 7 
Zn 60 1 44 2 46.23 2 46 1 
Rb 20.3 3 4.5 1 5.0 1 5.0 2 
Sr 25.5 3 14.0 3 20.0 3 20.0 6 
Mo <DL 0.06 6 <DL <DL 
Ag <DL 0.03 8 0.04 5 0.04 13 
Sn 0.08 11 0.16 14 0.20 14 0.20 3 
Cs 0.07 10 <DL 0.04 20 0.04 
Ba 47 2 34 1 49.44 2 49 1 
La 0.53 1 0.29 2 0.27 3 0.27 17 
Ce 0.23 6 0.13 4 0.14 9 0.14 16 
Pb 0.56 10 0.99 2 0.70 1 0.70 4 
u 0.01 13 <DL 15 <DL 7 <DL 

160 



Appendix 1: Element concentrations in spruce twigs collected in spring. 

Sample P20 

MEAN RSD 
Element Ppm % 

Li 0.19 14 
8 8.8 9 

Mg 650 3 
AI 2880 2 
Si 0.07 8 
Ca 2540 5 
Ti 9.9 5 
v 4.2 3 
Cr 4.8 2 
Mn 770 3 
Fe 269 24 
Co 0.21 3 
Ni 4.0 3 
Cu 7.4 6 
Zn 48 4 
Rb 3.4 2 
Sr 15.7 4 
Mo 0.06 16 
Ag 0.03 10 
Sn 0.2 12 
Cs 0.03 6 
Ba 37 2 
La 1.96 2 
Ce 0.57 14 
Pb 1.58 10 
u 0.01 16 
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Appendix 3: Pearson's R correlation coefficients between element 
concentrations in spruce twigs 

Li 7 Be B Mg A1 Si p Ca Ti 
Be - 0 . 341 
B 0 . 187 0 . 191 
Mg -0 . 18 4 -0 . 078 0 . 270 
A1 -0.153 0 . 301 0 . 237 0 . 411 
Si 0 . 634 - 0 . 4 32 0 . 383 0 . 316 - 0 . 095 
p -0 . 428 0 . 4 93 0 . 319 0 . 295 0 . 707 -0 . 242 
Ca 0 . 091 - 0 . 260 - 0 .188 0.163 - 0 . 317 0 .4 70 -0 . 432 
Ti 0 . 1 96 0 . 2 12 0 . 281 0 . 381 0 . 849 0 . 220 0 . 534 -0 . 258 
v 0 . 82 1 -0. 1 46 0 . 391 - 0 . 015 0 . 064 0 . 599 - 0 . 268 -0 . 075 0 . 392 
Cr - 0 . 0 41 0 . 607 -0 .183 - 0 . 021 0 . 186 -0 . 242 0 . 278 -0 . 249 0.344 
Mn -0 . 026 - 0 . 089 - 0 . 255 0 .177 - 0 . 001 - 0 . 288 -0 . 056 - 0 . 353 -0 . 129 
Fe 0 . 094 0 . 610 0 . 032 0 . 092 0 . 567 -0 . 1 09 0 . 430 -0 . 31 4 0 . 719 
Co 0 . 22 4 - 0 . 397 0 .1 62 -0 . 069 - 0 . 231 0 . 383 -0 . 327 0 . 444 -0 . 212 
Ni 0 . 367 -0 . 393 0 . 220 0 . 276 -0 . 109 0 . 467 - 0 . 265 0 . 222 0 . 042 
Cu 0 . 357 -0 . 050 0 . 379 -0 . 066 0 . 110 0 . 232 0 . 18 4 -0 . 437 0 . 224 
Zn -0 . 250 - 0 . 036 0 . 082 0 . 149 0 . 027 - 0 . 07 6 0 . 069 - 0 . 139 -0 . 039 
Rb 0.003 0 . 302 0 . 706 0 . 181 0 . 040 0 . 382 0 . 352 0 . 084 0 . 105 
Sr 0 . 161 - 0 . 229 0 . 220 0 . 238 -0 . 000 0 . 554 0 . 009 0 . 426 0 . 182 
Mo 0 . 505 0 . 222 0 . 245 -0 . 261 0.33 4 0.029 - 0 . 023 -0 . 426 0 . 514 
Ag 0 . 14 4 - 0 . 507 -0 . 197 0 . 30 4 -0 . 152 0 . 282 -0 . 412 0.425 -0 . 276 
Cd 0 . 181 - 0 . 3 12 - 0.374 0 . 141 - 0 . 126 0 .1 83 -0 . 261 0 . 352 -0 . 205 
Sn -0 . 025 0 . 450 -0 . 158 - 0 . 1 99 0 . 187 -0.216 0 . 199 -0 . 021 0 . 063 
Sb 0 . 81 4 - 0 . 098 0 . 255 - 0 . 1 80 - 0 . 107 0 . 580 - 0 . 330 - 0 . 039 0 . 273 
Cs -0 . 257 0 . 650 0 . 266 -0 . 109 - 0 . 102 0 . 007 0 . 201 0 . 201 -0 . 134 
Ba 0 . 095 - 0 . 23 4 - 0 . 430 0 . 1 90 - 0 . 352 0 . 300 - 0 . 450 0 . 554 -0 . 341 
La 0 . 709 0 . 118 0 . 224 - 0 . 116 0 . 079 0 . 4 92 -0 . 211 -0 . 041 0 . 436 
Ce 0 . 497 0 . 390 0 . 106 - 0 . 033 0 . 25 4 0 . 263 0 . 006 -0 .080 0 . 529 
T1 0 . 059 -0 . 1 33 - 0 . 14 0 0 . 1 46 - 0 . 249 0 .109 - 0 . 290 0 . 41 6 -0 . 256 
Pb 0 . 738 - 0 . 4 37 0 . 158 -0 . 017 - 0 . 180 0 . 532 - 0 . 573 0 . 130 0 . 091 
Bi 0 . 693 -0 . 722 0 . 24 4 0 . 232 -0 . 120 0 . 692 -0 . 456 0 . 233 0 . 103 
u - 0 . 327 0 . 596 0 . 391 - 0 . 031 -0 . 028 - 0 . 1 37 0 . 296 -0 . 009 -0 . 177 
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v Cr Mn Fe Co Ni Cu Zn Rb 
Cr -0 . 026 
Mn 0 . 003 0 . 092 
Fe 0 . 211 0 . 871 - 0 . 027 
Co 0 . 233 -0 . 571 - 0 . 286 -0 . 504 
Ni 0 . 322 - 0 . 200 0 . 130 -0.168 0 . 252 
Cu 0 . 528 -0 . 058 0 . 374 0 . 085 0 . 001 0 . 061 
Zn -0 . 006 -0 . 215 0 . 356 -0 . 257 0 . 002 0 .356 0 . 163 
Rb 0 . 090 -0 . 082 -0.496 -0 . 001 -0 . 106 -0 . 058 0 . 143 0 . 025 
Sr 0 . 205 - 0 . 029 - 0.397 0.022 0 . 529 0 .1 68 0 . 110 -0 . 028 0 . 206 
Mo 0 . 583 0 . 196 -0. 1 55 0 . 478 -0 . 054 -0 . 087 0 . 214 -0 . 237 -0 . 008 
Ag 0 . 121 -0 . 584 0.380 - 0 . 551 0 . 268 0 . 312 - 0 . 009 0 . 147 -0 . 286 
Cd 0 . 132 - 0 . 319 0 . 372 -0 . 340 0 . 186 0 . 069 -0 . 033 0 . 101 -0 . 308 
Sn 0 . 004 0 . 380 0 .153 0 . 352 0 . 031 0 . 114 - 0 . 058 0 . 011 -0.247 
Sb 0 . 936 0 . 122 -0 . 074 0 . 257 0 . 091 0 . 193 0 . 482 -0 . 092 0.136 
Cs -0 . 223 0 . 216 -0.339 0 . 138 -0 . 201 - 0 . 003 -0 . 142 0 . 096 0.609 
Ba -0.026 0 . 022 0 . 222 -0 . 179 0 . 302 0 . 058 -0 . 179 -0.014 -0 . 286 
La 0 . 870 0 . 380 -0.120 0 . 536 -0 . 016 0 . 150 0 . 361 -0 . 183 0 . 092 
Ce 0 . 538 0 . 716 - 0 . 154 0 . 828 -0 . 219 0 . 033 0 . 091 - 0 . 415 0.019 
Tl -0.058 -0 . 226 -0.124 - 0 . 306 0 . 311 0 . 173 -0 . 4 65 -0 . 044 -0 . 078 
Pb 0 . 706 -0 . 288 0 . 169 -0 . 144 0.365 0.675 0 . 334 0 . 182 -0 . 159 
Bi 0.590 - 0 . 508 - 0 . 066 -0 . 336 0 . 501 0 . 628 0 . 144 0 . 029 -0 . 027 
u -0.155 - 0 . 151 -0.268 -0 . 153 0 . 090 - 0.189 -0 . 137 0 . 202 0.545 

Sr Mo Ag Cd Sn Sb Cs Ba La 

Mo -0 . 202 
Ag - 0 . 1 39 -0 . 356 
Cd -0 . 057 - 0 . 272 0 . 775 
Sn -0 . 200 0 . 007 - 0 . 032 0 . 028 
Sb 0 . 210 0 . 490 0.021 0.095 0 . 009 
Cs -0.014 -0 . 149 -0 . 287 -0 . 212 0 . 242 -0.110 
Ba 0.369 - 0 . 387 0 . 447 0 . 543 0.090 0 . 035 - 0 . 056 
La 0 . 224 0 . 564 - 0 . 125 -0.021 0.171 0 . 934 -0 . 010 0 . 044 

Ce 0 . 139 0 . 583 -0 . 350 -0.198 0 . 335 0 . 608 0 . 125 0 . 068 0.830 
Tl -0 . 164 0 . 028 0 . 381 0 . 319 0 . 003 -0 .156 -0 . 088 0 . 270 -0 . 179 
Pb 0 . 142 0 . 405 0.318 0 . 218 - 0 . 142 0 . 570 -0 . 212 0 . 142 0 . 4 60 
Bi 0 . 365 0 . 199 0 . 399 0 . 239 -0 . 362 0 . 448 - 0 . 437 0 . 171 0.280 

u - 0 . 171 -0 . 044 -0 . 098 0 . 022 0 . 169 - 0 . 183 0 . 687 -0 . 172 -0.202 
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Ce T1 Pb Bi 
T1 -0 . 110 
Pb 0 . 198 0 . 141 
Bi 0 . 015 0.218 0 . 788 
u -0 . 199 0 . 166 -0 . 261 -0 . 327 
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Appendix 4: Glossary of terms 
1. Bioindicator - a bioindicator is an organism (or part of an organism or a co nun unity 

of organisms) that contains information on the quality of the environment (or part of 

an environment) (Market et al. 1999). 

2. Biomonitor - a biomonitor is an organism (or part of an organism or a community) 

that contains information on the quantitative aspect of the quality of the environment. 

(Market et al, 1999). 

3. Dry ashing is an oxidative process in which organic matter is oxidized by reaction 

with gaseous oxygen, generally with the application of energy in some form (Gorsuch 

T.T., 1970). 

4. Wet ashing/Acid digestion refers to an oxidation process where the organic part of the 

sample is oxidized in a liquid phase by the application of energy. The oxidants are 

usually strong acids (such as sulpheric acid, nitric acid, perchloric acid) in different 

combinations and proportions (Novozamsky et al., 1995). Aside from the mineral 

acids, other reagents such as hydrogen peroxide, potassium peroxide sulphate, boric 

acid and many more are employed. 

5. Microwave digestion is an acid digestion procedure where samples are heated directly 

by absorption of microwave radiation from digestion equipment heated by 

microwaves. 
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6. Trace metals are metals in a sample that are present in small concentrations usually in 

average concentrations of less than 100 parts per million atoms or less than 100 

micrograms per gram. 

7. Volatile elements are chemical elements that condense (or volatilize) at relatively low 

temperatures. Volatile elements can be divided into moderately volatile (Tc = 640-

1230 K) and highly volatile (Tc < 640 K). Moderately volatile lithophile elements are 

Mn, P, Na, B, Rb, K, F, and Zn. Moderately volatile siderophile and chalcophile 

elements are Au, Cu, Ag, Ga, Sb, Ge, Sn, Se, Te, and S. Highly volatile lithophile and 

atmophile elements are Cl, Br, I, Cs, Tl, H, C, N, 0 , He, Ne, Ar, Kr, and Xe. Finally, 

highly volatile siderophile and chalcophile elements are In, Bi, Pb, and Hg (James 

Wittke, 2007; http:/ /www4 .nau.edu/meteorite/Meteorite/Book -Glossary V .html). 
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