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Abstract 

Robotic mapping has been an active research area in robotics for last two decades. 

An accurat map is a mandatory requirement for a robot to work autonomously. In 

addition t he robot requires to know its position with respect to a given map and this 

olved t hrough robot localization. The problem of olving both map building and 

robot localization i addressed by simultaneous localization and mapping (SLAM). 

A large volume of li terature is available to solve the SLAM problem using a ingle 

robot. A robot will take a series of sensor readings about an unexplor d area and 

then continues to build the map while knowing its po ition reference to partially built 

map. However , when an area becomes larger multi-robot SLAM is more efficient and 

al o has the advantage of sharing the computational burden among several robots. 

Solving SLAM problem using multiple robot is important when there i large terrain 

to map and perhaps it will beyond the capability of single robot. Even if it is within 

t he capability of single robot such a deployment will not be cost and t ime effective. 

Therefore this research focuses on developing a multi-robot SLAM filter based on 

Fa tSLAM algorithm. 

Single Pioneer 3AT robot was deployed to collect odometry and sensor readings. 

Grid based fa tSLAM algorithm is implemented on MATLAB program code for off­

line processing and successfully generated the map of the environment. The data t 

obtained from ingle robot was divided into two data sets and they w r treat d as 

if th y w re obtained from two different robots. Single robot grid based fastSLAM 

algorithm was applied to both of the data sets and obtained two maps. Two map 

wer merged using Hough transform based map merging technique. Maps obtained 

from ingle robot SLAM and multi-robot SLAM is compared and multi-robot SLAM 

algorithm provides maps as same accuracy as single robot SLAM. 
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Chapter 1 

Introduction 

1.1 Introduction 

Building a map is a key requirement for a robot to operate in an unknown environment 

where prior information of the environment is unavailable. It is necessary for robot 

to explore the environment and acquire information of the environment from s ries 

of s nsors in order to build its own map. Map building process requires an accurate 

e timation of robot pose either with reference to ini t ial position or with refer nee to 

partially constructed map. Accurate estimation of robot pose is easy, if it is possible 

to incorporate GPS or DGPS sensors to robot. But GPS is unavailable for indoor, 

underground and underwater robotic applications. It is possible to use dead reckoning 

which integrates odometry data with steering angle data obtained from encoders of 

the robot wheels to estimate robot poses along the path. Accurate localization based 

on odometry i not possible due to errors associated with sensor data. These errors 

can accumulate due to finite sensor resolution, errors introduced by lipping and 

skidding, kinematical errors due to wear of wheels, wheel misalignment and trav lling 

in un ven urfaces. Some robots use skid steering, thus their odometry data will 

1 



always be rroneous. 

Feature in the environment can be incorporated to eliminates errors from odom­

etry based localization. Therefore map building and self localization problem have 

to be solved simultaneously. This problem is commonly known as Simultaneous Lo­

calization and Mapping(SLAM), also termed as Concurrent Mapping and Localiza­

tion(CML) . Although there are solutions to single robot SLAM problem, employing a 

sing! robot to build a map of a large environment is not cost effective and time av­

ing. There may be situations that a single robot will fail to build a map autonomously 

du to limited battery power or fuel. Therefore deploying multiple robots to build a 

map of large environment is effective and time saving. Various solutions have been 

proposed to solve the single robot simultaneous localization and mapping problem, 

but reasonabl research contribution is required to efficiently solve the multi-robot 

SLAM problem. 

1.2 The SLAM Challenges 

SLAM challenge is to acquire a spatial model of the robot environment while local­

izing relative to the acquired model. In SLAM there is bi-directional dependency 

b tween map accuracy and pose uncertainty. Sensor limitations, measurement noise, 

data dimen iona.lity, data a sociation, dynamic environments, obstacl , and xplore 

unknown area are the factors affecting the solution to SLAM problem [1]. 

To acquir a map of the environment, the robot has to process cliff rent sensor 

data in order to fuse them together. Sensors used in mapping are range finder based 

on onar, laser or infrared technology, radar, cameras, GPS, compass and gyroscopes. 

All these en ors are subjected to range limitations and errors referred to as mea­

surement noise. To overcome the problem of range limitation, robot ha to navigat 
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around its environment to complete mapping. Motion commands are i sued to robot 

in order to navigate around its environment for mapping. Location information of 

th robot is important since all the sensor readings are referred to those locations and 

can not be interpreted without location data. Robot motions are subjected to rrors 

due to slipping, uneven terrain, different wheel sizes and errors of encoder readings. 

Therefore control signals are insufficient to determine robot pose relative to it envi­

ronment. Because errors in robot control accumulate over time, they affect the way 

future sensor measurements are interpreted. 

Another challenge that is posed to SLAM algorithm is dealing with data dimen­

sionality. Consider how much data it would take to describ a particular environ­

ment up to a certain amount of detail. Whenever precision is desired for xample 

two-dimensional floor plan with good resolut ion or three-dimensional model of an 

underwater mapping, more and more details about the environment acquired to be 

stored. Every additional piece of data increases the memory r quirements and time 

complexity of the mapping and localization algorithm. 

A a robot navigate through the environment it potentially visits the sam physi­

cal location multiple times. In other words different observations are taken at diff rent 

time intervals that are correspond to the same feature in real world. Therefore there 

should be a mechanism to identify whether observations correspond to the sam fea­

ture or not. This identification is called data association (or correspondence problem) 

which is t he hardest problem in robotic mapping. Data association incurs a high ri k. 

Re ulting map will have irrecoverable errors if two observations are falsely considered 

to match to the same feature or vice versa. As robot explores large scale environ­

m nts requiring longer travel distances, as robot position error grow , the number 

of possible matches will grow progressively and risk of false data association will be 

higher. 
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In many real life circumstances robots can not assume that past or current ob-

ervations are repre · nting the current state of the world. Consider furniture in a 

building, po ition of a door or parked car that were observed in the past but have 

moved in the mean time. Consider any structural changes in the environment such as 

adding new building, removing existing building or changes in an existing building and 

appearanc of a tree or environment in different seasons. All of these circumstances 

ar added to the dynamics of the environment and ther exists no general solut ion to 

d a! with dynamic of the environment adequately. Moving obstacles such as people, 

v hicles will complicate solution to SLAM problem. Robots explore an environment 

for a constrained period of time which the world is assumed to be static during that 

time. 

Unexplored area of the environment has to be explored to map the area or to olve 

SLAM problem. During the exploration of the environment, robot must choos their 

way to explore new area to be acquired. There can be unexpected kind of ob tacles 

lik pit to fall into, curbs and other kinds of nvironmental aspects not account d . 

It is typically unknown what challenges will be provided by the environment, there­

fore robot equipped with sensors and robust behaviors that enable it to deal with 

unanticipated situations. 

1.3 Problem statement 

Accurate localization and map building is essential when a robot is introduced to 

a new environment where no priori available information. As robot navigates it 

explores n w nvironm nt while building a map of environment and localizing with 

respect to partially constructed map. When robot revisits a previously explor d area, 

it can reflect backward the changes appeared to the map. Robot can increases the map 
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accuracy by revisiting previously mapped area [2- 5] . Various solutions are available to 

SLAM problem in literature [6- 18] . Whatever the underline theory for solving SLAM 

filter, the final map is either feature based or occupancy grid based . Feature-bas d 

map are used in early solutions to SLAM problem. Feature based map suffer from 

inabili ty to model free and occupied space of the environment. Accurate occupancy 

grid map are easily generated with high pr cision sensors like laser range finders . 

Occupancy grid based map can be used for path planning and obstacle avoidance. 

Thi property encourages to use occupancy grid map in SLAM filter. Th main 

drawback of occupancy grid map is that it only contains information of horizontal 

cro s section of the environment at the hight where the laser range finder( or ranging 

device) is mounted hence a 2D map. This problem can be eliminated by 3D occupancy 

grid . But higher memory requirement and computational complexity will degrade the 

realtime p rformance of the SLAM filter with 3D occupancy grid . 

Research has been carried to solve mult i-robot SLAM problem. Majority of them 

are based on feature based maps [19- 26]. Mult i-robot SLAM wit h occupancy grid 

maps is less addressed in research community [27, 28]. Accurate map merging and 

clo ing loops discovered by more than one robot are the main challenge of multi-robot 

SLAM. Although various solut ions are available for single robot SLAM problem, more 

re earch is necessary to find solutions for mult i-robot SLAM specially with occupancy 

grid maps. 

1.4 Contributions of the thesis 

In this the is, occupancy grid based multi-robot SLAM algori thm is developed. Ro­

bots individually builded maps of the environment they have acquired without com­

munication with its team members. At the end of terrain acquisition and map build-
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ing by individual robots, central computer or one robot gathers all the maps and 

m rges them to gen rate complete map of the environment. Multi-robot SLAM algo­

rithm that does not require prior information about relative transformations of the 

maps , is developed. The algorithm itself several possible candidate transformation. 

The algorithm merges maps choosing the best transformation among several possible 

candidate transformation. 

1. 5 Thesis Overview 

Chapter 2 provides an overview to SLAM problem and the state of the art solu tions 

that has been proposed to solve the problem and discusses the qualities and draw­

backs of proposed solutions. In addition to present the various solution, chapter 2 

ov rviews the proposed solutions to multi-robot SLAM problem. Chapter 3 detail d 

background to single robot SLAM problem which is used for multi-robot SLAM in 

next chapter. Chapter 4 discusses proposed solution for multi-robot SLAM and map 

merging technique employed to merge maps from mult iple robots. Chapter 5 draws 

the conclusions and suggests future directions for the extension of this work. 
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Chapter 2 

Literature Review 

2.1 Fundamentals and Concepts 

The problem of simultaneous localization and mapping(SLAM) is th ability to posi­

tion a robot in an unknown location of an unknown environment and build a consi -

tent map of the environment using observations taken from the ensors of the robot 

while localizing in the map that is being built. SLAM is also known as concurrent 

localization and mapping( CML) 

Mapping using robots was in the researched for decades and concept of SLAM was 

introduced to the research community from the work by R. Smith et al. [29, 30] . R. 

Smith et al. [31] showed that, estimation of landmarks that are observed by a mobile 

robot moving in an unknown environment is necessarily correlated with each other 

due to the uncertainty of the estimated robot pose. 

S. Thrun et al. [32] propose a probabilistic approach to solve SLAM problem. 

Probabilistic approach is important in SLAM because both measurements and robot 

controls noise can be statistically modelled. Commonly used sensors are subjected to 

errors, often refer to as measurement noise and range sensor have range limitations 
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[1]. Robot motions are also subjected to errors due to slip , skid, uneven surfaces and 

diff rent wheel sizes( due to pressure difference in tires). Therefore robot pose relative 

to its environment can not be determined only using robot controls. Since these errors 

are accumulated over the time, and they affect the way future sensor measurements 

are integrated into the map [1]. Pose of the robot is represented by x-coordinate XR, 

y-coordinate YR and heading fJR . Since the robot motion is inaccurate, effect of robot 

control uk to move robot from xr(k - 1) to xr(k) where, 

(2. 1) 

is the state vector describing the pose of the robot at time k, can be modelled by 

conditional probability density, 

p(xr(k) lxr(k - 1),u(k)) (2.2) 

which is called motion model. Here it is assumed that robot operates on a planer 

surface, therefore Cartesian coordinates in the plane and th heading direction is 

sufficient to model the robot pose. 

u(k) = [V(k) w(k)]T (2.3) 

is the control vector, applied at time k- 1 to drive the robot to a state Xr(k) from 

state Xr ( k - 1) at time k. V ( k) is the translat ional velocity vector and w( k) is the 

rotational velocity vector. This state transition is assumed to be Markov process in 

which next state Xr(k) depends only on the immediate proceeding state xr(k - 1) 

and the applied control u(k) and it is independent from both the obs rvations and 

th map [32 , 33]. S. Thrun et al. [32] assume that landmarks are not necessarily 
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distinguishable or may be entirely indistinguishable in some case . They also assum 

that th re are errors in range, bearing or type of landmark. Th refor observation 

model for robot sensors is proposed as, 

p(z(k)lxr(k), m) (2.4) 

zi(k) is the observation of i1
h landmark at time k. z(k) denotes the all obs rvabl 

landmark at time k. 

(2.5) 

is the et of all N landmarks where, 

(2.6) 

is th vector describing the Cartesian coordinates of ith landmark in th world coor­

dinate and it i time invariant. The observation model determines the likelihood of 

making observation z(k) when the robot is at location Xr(k), assuming that m is the 

corr ct model of the environment [32]. 

p(x(k)lzt:k, ul:k) = 

1Jp(z(k)lx(k)) j p(x(k)ix(k - l ),u(k))p(x(k - l)lzl:k- t,Ul:k- I)dx(k - 1) 
(2.7) 

Where, 

ZJ:k = {z(l ), z(2), ... , z(k)} (2. ) 
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is the history of sensor data measurements(set of all landmark observations), 

u1,k = {u(1) ,u(2) , ... ,u(k)} (2.9) 

is the history of control inputs, x(k) is the set of parameters need to be estimated 

and rJ is a normalizer [1]. 

In SLAM both map and robot pose should be estimated together b cause errors in 

robot pose or errors in map affect the integration of future observations to the map. 

SLAM problem is categorized to full SLAM problem and online SLAM probl m. Full 

SLAM probl m is defined as the e timation of the map and complete pose history of 

th robot using history of sensor data measurements and history of robot controls. 

The full SLAM problem can be probabilistically defined as p(xr(1 : k), mlz1,k, uu) 

where Xr(1 : k) is the complete pose history of the robot. Map of the environment and 

curr nt po e of the robot will be calculated using history of sensor data measur ments 

and history of robot controls. 

Online SLAM problem can be defined as the concurrent estimation of th current 

robot pos and the map of the environment using all pa t control input and m asure­

ments. The online SLAM problem can be probabilistically defined as p(xr (k), mlz1,k, uu). 

In contrast , the full SLAM problem is defined as the estimation of the map along with 

the complet pos hi tory. It is more difficult to estimate full SLAM problem than 

online SLAM problem due to its high dimensionality of the parameter space and the 

data association problem, with a large number of pose-feature associations. On ac­

count of above reasons online SLAM problem has been widely explor d compar d to 

full SLAM problem. This thesis also focuses on online SLAM problem. Th r fore 

x(k) will be, 

(2.10) 
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where X 7.(k) i robot pose and mr is map of the environment. Hence Eq 2.7 can be 

written as, 

It can be assumed that the world is static, therefore any effect to the param ters 

referring to variation of map can be neglected. Hence Eq 2.11 will be reduced to, 

p(xr(k) ,mlz1:k, ul:k) = ryp(z(k)lxr.(k) , m) 

J p(xr(k)lxr(k - 1), u(k))p(xr(k- 1) , mlz1:k- 1, ul:k- 1)dxr(k- 1) 
(2.12) 

Where p(z(k)lxr(k) , m) is the observation model , p(xr(k)lxr(k- 1) , u(k)) is the 

motion model and p(xr(k- 1) , mlzl:k_1, ul:k_1) is the estimation of Eq 2.12 for previous 

step. Thi shows Eq 2. 12 can be solved recursively. 

In SLAM problem there are several methods to represent map. Landmark-based 

map and occupancy grid [34] based maps are common methods. Identified features 

in environment are used as landmarks in landmark bas d maps. All the neces ary 

parameters should be calculated from raw sensor data. Occupancy grid segments the 

environment to finite number of regular shaped(square shape in most cases) c lis. 

Each cell contains the probability that particular cell is occupied and sensor data ar 

used to calculate the occupancy probability of the cells. Landmark based mapping 

method is widely u ed in SLAM [35]. 

Work by Di sanayake et al [7], proved and verified that SLAM problem can be 

solved recursively. They formulate a solution using Extended Kalman filter(EKF) to 

SLAM problem with nonlinear motion models and nonlinear asynchronous ob erva-

tion models. 
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2.1.1 System Model 

System mod l is used to transform robot from Xr(k -1) to Xr(k ) a cording to control 

vector. Ther fore final pose of the robot is affected by three factor po e of the robot 

prior to the application of control, control vector at time k and motion disturbance. 

Xr(k) = fr(Xr(k- 1) + u(k)) + Vv(k) (2.13) 

fr(.) de cribcs the kinematics of the robot and v(k) is zero mean uncorrelated, additive 

motion di turbance with covariance Qv(k). The motion disturbance is assumed to b 

Gaus ian in EKF solution to SLAM problem. Eq 2.13 can be expand d as, 

Xr(k) -
( tltw(k)) Xr(k- 1) + tltV(k) COS Br(k) + 

2 
(2.14) 

Yr(k) Yr(k -1) + lltV(k)sin (er(k) + tlt~(k)) (2.15) 

Br(k) = Br(k- 1) + tltw(k) (2.16) 

xR(k) and YR(k) are coordinates of the robot potion at tim k while BR(k) i the 

heading of th robot. 

Motion model in Eq 2.2 and system model in Eq 2.13 are interrelated [33] . 

P(xr(k)ixr(k - 1) u(k)) ¢=:? Xr(k) = J(xr(k - 1) + u(k)) + v(k) (2.17) 

2 .1. 2 M easurement Mode l 

Range and bearing to a landmark is th commonly used sensor model in SLAM. Ther 

ar exampl s of bearing only SLAM which mostly use computer vision techniqu s. 

Observation of iLh landmark in range and bearing sensor model can be expressed as 
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(2.1 ) 

r i (k) is the range to ith landmark and ei (k) is the bearing to ith landmark. h(.) models 

th geometry of the observation and w(k) is the zero mean uncorrelated measurement 

error with covariance R(k). The measurement error is assumed to be Gaussian in EKF 

solution to SLAM problem. r i(k) and ei(k) can be calculated using, 

(2.19) 

(2.20) 

where wr(k) and w0 (k) are zero mean uncorrelated measurement error related with 

rang measurement and bearing measurement respectively. 

Observation model in Eq 2.4 and measurement model in Eq 2.18 are interrelated 

[33]. 

(2 .21) 

2.2 FastSLAM 

FastSLAM is an algorithm that integrates both particle filter and EKF to solve SLAM 

probl m [36]. Landmark estimation and robot pose estimation depend on each other 

du to the uncertainty of the robot pose. If it is possible to obtain th true path of 

the robot by a reliable mechanism, then the problem of landmark position estimation 

will be independent of each other. In other words, if the true path of the robot is 

known, location information of one landmark does not carry any information about 

other landmarks [37] . Simply landmarks are uncorrelated given that true path of the 
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robot is available. This factorization of path estimation and landmarks estimation 

was introduc d to the robotics community by Murphy [38]. According to Murphy's 

work, SLAM posterior can be rewritten as, 

N 

p(xr(l: k), mlzi :k, UJ :k) = p(xr(l : k)izl:k, UJ :k ) IJ p(milxr(l: k), Z J:k , Ul :k) (2.22) 
n=l 

where N is the number of landmarks. Due to above factorization SLAM problem can 

be decomposed to one estimator over the robot path and N independent landmark 

estimators. All together there are N + 1 recursive estimators, one particle filter for 

robot path and N EKFs for landmarks. If M particles are employ d to solve SLAM 

problem, there will be M x N Extended Kalman filters. Each particle in the filter 

r pres nts the current robot pose, mean position of the landmarks and their variances. 

When robot moves to a new pose, filter proposes a new robot pose to all the 

particles. Since samples can not be directly drawn from the SLAM posterior at 

time t , samples are drawn from simpler distribution called proposal distribution. 

The proposal distribution of FastSLAM generates guesses of the robot pose at time 

t, using previous robot pose. This guess is obtained by sampling the probabilistic 

motion model Eq 2.2 which can be any non-linear function and needs not to be 

linearized to draw samples. 

The next step of FastSLAM is landmark location estimation of each and every 

particle in the particle filter. FastSLAM represents the conditional landmark sti­

mat s p(mlxr(1 : k), Z J:k UJ:k) by extended Kalman filters. This estimate is condi-

tioned on the robot pose, therefore extended Kalman filters are attached to parti­

cle in particle set. Linearized version of the observation model (in Eq 2.4) is u ed 

in landmark update equations since they are based on EKF which approximates 

the observation model using linear Gaussian function . Th resulting distribution 
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p(mlxr( l : k) zl:k , ul:k) is Gaussian due to linear Gaussian observation model and 

independent of the nonlinear motion model. This is a consequenc of the us of 

sampling to approximate the distribution over the robot's pose. 

Samples drawn from proposal distribution are distributed according to p(xr( l 

k)l z1:k- I ,ul:k) and they do not match the desired posterior p(xr(l: k) izl:k,ul:k)· The 

difference is corrected during the importance sampling. Before importance sampling, 

each particle is given an importance weight(w) and it is a measure of how a particle 

agr es with the observations. 

w · = target distribution (2.23) 
1 proposal distribution 

The last step of FastSLAM is importance re-sampling. ew set of sampl s are 

drawn from the present set with replacements and replacement probabilities ar pro-

portional to importance weights. In other words, re-sampling eliminates sample with 

low importance weights and multiplies samples with high important weights. Finally 

particles which comply with observations will survive. 

Each and every instance the robot progresses to new pose, above procedure i 

repeatedly applied to the particles. This procedure converges asymptotic~lly to the 

true po terior as the number of particles(M) goes to infinity but lesser number of 

particl are sufficient for a practical implementation of FastSLAM [37]. 

The key advantage of FastSLAM algorithm is the ability to incorporate multi-

modal beliefs and nonlinear motion and observation models increase the robustness 

of th particle filter based solution. Data association is calculated on per particle 

basi , this enables filter to maintain several hypotheses of data association. Therefore 

FastSLAM is much more robust to the errors occurred due to wrong data associations. 

Time complexity of FastSLAM algorithm is ON(log(N)) therefore it can handle maps 
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with large number of landmarks [8]. 

There are two versions for FastSLAM namely FastSLAM 1.0 and FastSLAM 2.0. 

The main differences between these two algorithms are choice of proposal distribution 

and calculation of importance weights. The landmark updates, data association and 

re-sampling are remain unchanged. 

FastSLAM 1.0 

Samples for robot pose can not be drawn directly from the SLAM posterior at time 

t. Therefore samples are drawn from simpler distribution called proposal distribution 

and the diff renee will be corrected at re-sampling step. The proposal distribution of 

FastSLAM 1.0 generates guesses of the robot 's pose at t imet for each particle. This 

guess is obtained by sampling from the probabilistic motion model which can be any 

non-linear function [8]. 

Calculation of importance weight is performed according to Eq. 2.23 and it is a 

measure of how well the proposal distribution approximates the target distribution. 

After simplification of Eq. 2.23 using Bayes rule the observation likelihood is the 

weight in FastSLAM 1.0 [8]. 

FastSLAM 2.0 

FastSLAM 1.0 samples the robot pose according to the motion model and it does not 

in orporate the observation for proposal distribution. Observation i introduced in 

calculation of importance weights for re-sampling. This approach is uboptimal if the 

nois in th motion is large relative to the measurement noise. This will be th typical 

scenario when the robot is equipped with a laser range finder. In such situations, 

sampled poses will mostly falls into areas of low measurement likelihood and will 

subsequently be terminated in there-sampling phase with high probability. Ther fore 
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ob ervation Zt at time t is incorporated to calculate the proposal distribution [10]. 

Calculation of importance weight is complicated in FastSLAM 2.0 and it depends 

on the measurement model , landmark estimate at time t- 1 and th motion model. 

2.2.1 Grid Based FastSLAM 

FastSLAM has been extended beyond conventional landmark list. Grid based Fast­

SLAM replaces the landmark list by an occupancy grid. Grid based FastSLAM does 

not require pre defined definition of landmarks and any arbi trary environment can 

be modelled using occupancy grid. Each particle has a full occupancy grid of the 

environment instead of landmarks. 

D . Hahne! et al [11] propose a new algorithm that combin s Rao-Blackw llized 

particle filtering and scan matching. Scan matching is used to transform sequence of 

laser scans into odometry measurements that minimizes the odometric errors during 

mapping. In this way number of particles can be reduced so that map of even larger 

environment can be constructed online. The corrected odometry and laser scans are 

used for map estimation in the particle filter. A probabilistic model of the residual 

errors of scan matching process is then used for re-sampling steps. The lower variance 

in the corrected odometry reduces the number of necessary re-sampling teps and 

decreases the particle depletion problem that typically prevents the robot from clo ing 

larger loop . 

C. Stachniss et al [2] and [16] propose a novel technique that combin s au­

tonomous exploration and simultaneous localization and mapping. For SLAM algo­

rithm authors used the grid based version of FastSLAM algorithm described in [11] 

and Frontier-Based exploration is used to explore new terrain. Each particle has an 

occupancy grid map and a topological map and they are updated wh n the robot is 
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p rforming exploration. In the topological map, the vert ices represent the locations 

visited by the robot and the edges represent the trajectory corresponding to the parti­

cle. After adding new node to the topological map, algorithm performs a ray-casting 

operation in the occupancy in order to check whether the new node is visible from 

another node. If it detects another node and if the length of the shortest path from 

the current pose to the previously visited node in topological map was large, th n 

the e hortcuts represent edges that would close a loop in the topological map. Algo­

rithm use these shortcuts for loop closing whenever the uncertainty of the robot pos 

becomes too large. If uncertainty is too large then the algorithm starts loop closing 

behavior and re-visits the portions of previously explored area in order to reduce the 

uncertainty while closing the loop. Since it is time consuming task to perform the 

above mechanism and find the possibility of closing loop for all particles in on line 

processing, the check has been limited to the particle with highest importance weight. 

During loop closing uncertainty in the pose reduces because robot navigates through 

the previously explored area localizing itself in the map constructed o far. Therefore 

it is unlikely that particles vanish during loop closing. But too small uncertainty in 

robot po e become problematic when there is nested loop in the map. If robot elimi­

nates uncertainty while closing inner loop, particle necessary to clos outer loop may 

vanish and filter will diverge and robot fails to build a correct map. To avoid this 

problem, algorithm introduces a threshold for uncertainty of the robot pose to stop 

loop closing. Whenever uncertainty becomes smaller than given threshold robot stops 

loop closing and resumes terrain acquisition. This algorithm can build map on line 

actively closing loops. Although there is a threshold value for stoping loop closing, it 

does not grantee that filter will not diverge. Whole algorithm has to be repeated in 

case of filter divergence. Comparison with the method in [11], each particle in thi 

algorithm maintain a topological map of the environment. These topological map 
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are stored in a graph data structure therefore memory requirement is low as com­

pared to the memory requirement where grid map(Occupancy grid) i mployed. But 

ray-casting op ration in adding new node and applying A* algorithm or Dijkstra s 

algorithm for computing shortest path add significant computational burden. 

G. Grisetti et al [17] proposed an algorithm for Rao-Blackwellized partie! fil­

ter based grid SLAM with improved proposal distribution and adaptive re-sampling. 

FastSLAM 2.0 uses Rao-Blackwellized particle filter that uses Gaussian approxima­

tion of the improved proposal for feature(Landmark) based SLAM. It is as umed 

that the error affecting the feature detection is Gaussian. [17] extends the idea of 

computing an improved proposal distribution for grid based SLAM. The proposal 

distribution is designed to generate new pose that agrees with both current control 

and current observation. Algorithm uses scan matching to determine the mode of 

the meaningful area of the observation likelihood and sample around the mode to 

calculate the proposal distribution. There is a possibility to fail scan matching due to 

poor observation or due to small overlapping area between current laser scan and pr -

viously computed map. In such cases the raw motion model of the robot is used but 

there is rare opportunity to occur such situations. Re-sampling has a major influence 

on t~e performance of the particle filter. In re-sampling particles with low importanc 

weight are replaced by those with high importance weight but there is a risk of re­

placing better matched particles that leads to particle depletion. On the other hand 

re-sampling is important since target distribution is approximated by finite numb r 

of amples. Technique described in [39] was employed to calculate ff ctive sample 

size(ESS) to reduce the risk of particle depletion. Algorithm in [39] calculates the 

ESS and re-sampling step is postponed until ESS falls below the given threshold. 

With above improvements, results show that the number of particle r quired for a 

given data set is drastically reduced compared to the algorithm discussed in [11] . 
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S. Grzonka et al [18] proposed a new algorithm that uses look-ahead propo als 

for grid based, Rao-Blackwellized particle filter SLAM. Rao-Blackwellized particle 

filter SLAM will fail when the particle distribution is significantly different from the 

true posterior. This can happen due to either proposal distribution provide a bad 

approximation of the true posterior or the environment does not provide enough 

structure to allow proper particle weighting. Such failures can be avoided by either 

using a large number of particles or directing the fewer number of particles to more 

accurate position. Authors in [18] propose an algorithm to direct the fewer number of 

particles to more accurate position. Pose prediction is computed based on the next k 

sensory inputs instead of just one immediate input. In other word, k measurements 

are u ed to better localize each particle within its own map. In the algorithm there 

are two types of particles namely SLAM particles and localizing particles. SLAM par­

ticles are the conventional particles in Rao-Blackwellized particle filter SLAM while 

localizing particles are used for look-ahead proposals. At the time of calculation of 

n w proposals , each SLAM particle is assigned number of localization particles(N) 

based on motion model. If the filter has M, SLAM particles, altogether there will 

be M x N localization particles in the filter. Each localization particle is moved 

forward to collect k sensory inputs in the map of corresponding SLAM particle using 

next k control signal and observe the likelihood how future measurement are agre d 

with current map. Then likelihoods of observations are propagated along the traj c­

tory backward in time. All the localization particles are weighted according to the 

propagated likelihood of observations. Highest M localization particles are selected in 

re-sampling step and t hey will be the SLAM particles for next step of the filter. Ther 

are M x N particles and only M part icles will survive at the end . Th refore th r is 

a possibility that none of the localization particles own to some SLAM particles will 

not be selected while multiple localization particle own to one SLAM particl to be 
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selected. There is an optimum number for k look-ahead steps and further growing k 

will not improve the accuracy. This is due to fact that localization particles will move 

to unknown area of the map at time t and it is unable to calculate the likelihood of 

observation. 

2.3 Other Solutions to SLAM Problem 

2.3.1 DP-SLAM 

In [12] and [14] the authors propose a novel approach based on Rao-Blackw llized 

particle filter to SLAM problem namely Distributed Particle Simultaneous Localiza­

tion and Mapping(DP-SLAM). DP-SLAM is based on occupancy grid map th refore 

it does not require feature extraction and data association. There is only a single 

map in DP-SLAM and all the particles are associated with it. Each and every grid 

square of the occupancy grid holds a tree structure which maintains the IDs of the 

parti les that have made changes to the occupancy of the relevant grid square. The 

grid is initialized with empty tree and associated tree is updated whenever a particle 

makes an observation about a grid square. This method allows particles to behave 

as if they have their own maps. DP-SLAM maintains an ancestry tr e of all of the 

particles and it contains all of the current particles as leaves. Each particle maintains 

a li t of grid squares that it has updated. The parent of a given node of ancestry 

tr r presents the particle of the previous iteration from which that particl was re­

sampled. Algorithm maintains a bounded size ancestry tree by removing unneces ary 

branches of the tr e. 

DP-SLAM it self can close loop without explicit use of loop closing algorithms or 

heuristics but algorithm needs large number of particles to close loop. Data retrieving 
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from a grid cell is far more complicated compared to conventional occupancy grid on 

account of memory utilization technique. 

2.3.2 EKF-SLAM 

Extended Kalman filter(EKF) is widely used in solving SLAM problem. Kalman 

filter is used to represent posteriors p(xr(k), mlzl:k, ul:k) with Gaussian. It is assumed 

that noise in robot motion and perception( observation) is Gaussian and the initial 

uncertainty of robot pose must be Gaussian in Extended Kalman filter solution to 

SLAM problem. 

x(k) = f(x(k- 1) + u(k)) + v(k) (2.24) 

State Vector a nd Covarian ce M atrix 

In EKF terminology the set of parameters need to be estimated is called state vector. 

In EKF-SLAM x(k) in Eq 2.10 is the state vector. The elements of Eq 2.10 are called 

state variables. All the sensor observations are integrated into a single covariance 

matrix in EKF solution to SLAM problem. The covariance matrix of the state vector 

E(k). Covariance matrix contains three components. They are covariance of robot 

pose Err(k), covariance of the map Emm(k) and cross covariance between robot pose 

and map Erm(k). Covariance matrix will be, 

(2.25) 
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Estimation P r ocess 

In general, estimation using Kalman filter proceeds recursively. Three are steps 

namely prediction, observation, and update [7]. In Kalman filter literature any quan­

tity with accent hat is an estimated( or predicted) quantity. For example x(k) and 

z(k) are the state vector and observation, while x(k) and z(k) are the estimate for the 

tate v ctor and predicted observation respectively. Any quantity with superscript 

"-" is predicted or priori value while the same quantity with superscript"+" is up­

dated or po teriori value. For example :r-(k) and x+(k) are predicted and updated 

estimates of the state vector respectively. r:- ( k) and r;+ ( k) are priori and post riori 

covariance matrix respectively. 

Prediction 

In the prediction stage, filter generates predictions for state estimate, observation and 

covariance matrix using updated state estimate and posteriori covariance matrix of 

previous state. :r- (k) will be calculated using 2.24. 

:r- (k) = f(x+(k- 1) + u(k)) (2.26) 

z(k) can be calculated using 2.18 and :r- (k) 

(2.27) 

The covariance matrix must also propagate uncertainty of state estimates and robot 

control in prediction state. The EKF linearizes the propagation of unc rtainty about 

the current estimate x+ ( k- 1) using the Jacobian \1 xf ( k) of f evaluated at x+ ( k - 1) 

and uncertainty of control input u(k) using the Jacobian \1 u.f(k) evaluated around 
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u(k). Therefore priori covariance matrix, r;-(k) can be written as 

where, 

(2.29) 

The Jacobians \l xf(k ) and \l uf (k) can be represented as follows [35]. 

[ 8[, Ocm ] \l xf(k) = 
8{xr ,yr ,Or } 

Omr Imm 
(2.30) 

[ ~ ] \l uf(k) 8{V,w} 

Omx2 

(2.31) 

Therefore, r;- can be efficiently implemented by, 

(2.32) 

Observation 

When new observation is received from the robot sensors, it is associated with ob-

servable features in the environment. The difference between the actual observation 

z(k) and the predicted observation z- (k) is defined as innovation v(k). 

v(k) = z(k)- z- (k) (2 .33) 
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The innovation covariance, S(k) , is computed using priori covariance matrix of stat 

estimates, the Jacobian of the observation model, '7 xh(k), and the covariance of th 

observation, R(k). 

(2.34) 

Update 

The state timate and state covariance matrix are updated in th update step. 

x- (k) + W(k)v(k) 

L:-(k) - W(k)S(k)Wr(k) 

where W(k) is gain matrix. 

Limitations of EKF-SLAM 

(2.35) 

(2.36) 

(2.37) 

Although EKF-SLAM is a good solution to SLAM problem, it suffers from two major 

problem . They are quadratic computational complexity and s nsitivity to failur s 

in data associations. The uncertainty of SLAM posterior i repre ented by a co­

variance matrix. Correlation matrix has correlations of all possible pairs of state 

variables(Robot pose and landmarks). For a 2D map with N landmarks, the ize 

of correlation matrix will be (2N + 3) x (2N + 3) where memory requirement is 

O(N2 ). Sin correlation betw en all pairs of state variables ar maintained , it is 

necessary to update the correlation of all the state variable wh never observation 

i made. Th refore number of computations grows quadratically with the number of 
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landmarks. In EKF-SLAM both computational complexity and memory requir ment 

increases quadratically with the number of landmarks in the map [33, 37]. O(N2 ) 

complexity limits the maximum number of landmarks in the map. Therefore it is 

nee s ary to modify the original EKF-SLAM algorithm if it is n cessary to us in 

large environments. In EKF-SLAM, maximum likelihood is used to verify whether 

an observation belongs to existing landmarks in the state variables or not. ew land­

mark is assigned if there is less probability that an observation belongs to an existing 

landmarks. Ther is no way of representing the uncertainty of data association in 

EKF-SLAM formulation. Therefore effect of wrong data association can not be re­

cov r d by any means in future stages of the filter. Therefore large number of errors 

in data association will diverge the SLAM filter [37]. Map generated by EKF-SLAM 

contains the mean of estimation of the landmarks and their variances, therefore those 

map does not model free and occupied space. 

2.3.3 Sparse Extended Information Filter Based SLAM 

S. Thrun et al [13] propose a solution to SLAM problem using an extended version 

of the information filter (EIF) whose estimation process is similar to the EKF. The 

information matrix is the central data structure in the ElF which is equivalent to 

inver e of the covariance matrix of EKF. The elements in the information matrix 

represent either links between robot pose and landmarks or the landmarks themselves. 

Th normalized information matrix is almost sparse [13]. The information matrix 

in SElF is sparse. At the given instant robot can only observe limited number of 

landmarks known as active landmarks. When the robot makes new observation, 

el m nts in related to robot pose and observed landmarks in the information matrix 

are affected. Filter does not update links with robot pose and unobserved landmarks 
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or observed landmarks and unobserved landmarks. Number of computations need 

to update the information filter is depend on the number of observed landmarks at 

that time. It is independent of total number of landmarks. According to S. Thrun et 

al [13] updates are additive. Maximum likelihood approach described in Dissanayake 

et al [7] is used here for data association. SElF performs lower accuracy compared 

to EKF olution but the computational speed is improved. Problem in the EKF 

SLAM such as, O(N2
) memory requirement, inability to incorporate multiple data 

association hypotheses and use of Taylor expansion for linearization persist in SElF 

bas d SLAM [13]. 

2.4 Multi-Robot SLAM 

This section reviews research on multi-robot SLAM. Solutions are available for multi­

robot SLAM based on: extended Kalman filter, sparse extended information filter, 

particle filter , constrain local sub-map filter, and D-SLAM framework. Some algo­

rithm requires known initial poses of every member in the team while other algorithm 

requires either pre-arranged or random meetings among the members of the team 

during the process terrain acquisition. There are solutions which do not ne d any 

of the abov conditions. Above techniques are reviewed considering computational 

complexity, memory requirement and ability to work in realtime. Summary of above 

techniques is available at the end of the review. 

EKF Based Multi-robot SLAM 

E.W. Nettleton et al [23] propose decentralized multi vehicle map building algorithm 

based on information filter for multiple unmanned aerial vehicles(UAV). Known ini­

tial UAV poses and unique landmark signatures are assumed and thos assumptions 
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restrict the generalization of the algorithm. GPS, Radar, laser range finder, and 

camera are used as sensors. Main contributions of the paper are decentralized data 

fusion, effective communication among team members to update their observations 

and making the system robust to communication failures or changes in communica­

tion media. 

Employability of EKF and SElF for Multi-robot SLAM 

E.W. ettleton et al [24] discuss the ability of incorporating state space(Kalman filter 

based) and information based(Information filter based) solution to multi-robot SLAM. 

It i found that information filter based solutions have advantages than Kalman filter 

based solutions to multi-robot SLAM problem. Main advantage is the additive na­

ture of the information filter update. In other words, total map is simply the sum of 

contributions from each individual map. Main drawback of information filter bas d 

olution is that, there is no actual map maintained and inverse of the map is main­

tained. Inversion of the information filter is always required whenever it is necessary 

to extract any physical location. It is not possible to delete row or column of informa­

tion matrix since off diagonal terms affect the inversion. Inversion to the state space, 

performing necessary calculations and returning to information space are necessary 

to resolve map management issues. 

Constrained Local Sub-map Filter Based Multi-robot SLAM . 

S.B. Williams et al [22] propose Constrained Local Sub-map Filter(CLSF) to multi 

vehicle SLAM. CLSF crates a local sub-map of the immediate vicinity of the robot. 

This local map is periodically fused into global map of the environment. This rep­

resentation reduces the computational complexity of global map estimate because 

update of local covariance matrix is a function of the number of features in the local 
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sub-map and not the number of landmarks in global map. Uncertainties of the robot 

pose and feature estimation of local frame of reference tend to be comparatively small, 

therefore CLSF improves the data association process. Moreover the decision of data 

association of global map can be deferred until an local sub-map of the environment 

i available. Correspondences between two maps can be established by comparing 

the inter feature distances. Transformation between two maps can b found once 

corr spondences are known. This transformation is used as an initial guess for for 

least squares solution to t he transformation between two maps. Least square solution 

is used to transfer new features into related frame of reference. Algorithm has been 

verified with simulation results. 

Sparse Extended Information Filter Based Multi-robot SLAM 

Works by S. Thrun et al [19] use Sparse Extended Information Filter(SEIF) based 

solution to multi robot SLAM problem. Proposed algorithm nables a team of robots 

to build joint map without prior knowledge of relative starting positions and ambigu­

ou of landmark positions. There is no periodical fusion of local map with the global 

map like in [22]. Fusion is done only after completing all the local maps. Additivity 

and locality are the two key properties of the SElF based multi robot SLAM. Ad­

ditivity enables multiple robots to integrate their information by adding increments. 

Locality en ures that all updates performed by a robot are limited to own pose and 

landmark history. Fusion of local maps to one global map is challenging because each 

robot maintains its own local coordinates frames and relative position of each other is 

unknown and complexity of establishing correspondence among landmarks common 

to everal maps. To find good alignment, it searches for corresponding pairs of local 

landmark configurations in different maps. For each and every identified landmark , 

algori thm identifies three adjacent landmarks that fall within a small radius. The rei-
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ative distances and angles in these triplets are saved in an SR-tree to facilitate easy 

retri val. Landmarks with similar local configurations can be identified by searching 

SR-tree. Correspondences found in this search served as a starting hypothesis forth 

map fusion. The possible data associations are searched recursively assuming and 

un-assuming correspondences between landmarks in the different maps. Map fusion 

is finalized with reduction of overall map likelihood that comes from quating two 

landmarks and the increase in likelihood that results from the fact that if there wer 

really two separate landmarks. To perform the latter parts of the map fusion , both 

robot must have detected the landmarks and sensor model is employed to characterize 

the not seeing a landmark. 

Manifold Representation Based Multi-robot SLAM 

A. Howard et al [28] propose a solution to SLAM problem using manifold represen­

tations. Manifold will develop a spiral structure with same location rep ated over 

and over again. In other words , the same location in the world may be represented 

more than once in the manifold . Loop closure algorithm is relativ ly expensiv in 

SLAM and refitting the entire map is nontrivial. Loop closing has to perform mor 

than once if the robot moves more than once in the same loop. In order to close 

loop, one must find out two point clouds in the map which are representing single 

point cloud in real world. Manifold representation has lazy loop closure and loop 

clo ing can be indefinitely delayed until algorithm is confident enough to clos loop 

without risking map consistency. In addition to delaying the decision of loop closing, 

loop closing algorithm is executed only once for each loop in the environment. Island 

merging algorithm is used to fuse two maps obtained from two robots. Island merging 

is performed whenever two robots identify themselves (authors used th term mutual 

ob ervation)to have their relative pose. Two islands are considered to be rigid and 
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quickly bring th m into rough alignment and fine tune the merging. Island merging is 

computationally expensive and needs to repeat N - 1 times for group of N robots. Ro­

bots are necessary to be halted during island merging or loop closing. The algorithm 

is centralized and has some key limitations. Algorithm i sensitive to communication 

failure and scale poorly with increasing team size. Authors carried out experiments 

using only four robots. Developing a distributed algorithm is challenging and it may 

also be sensitive to communication failures. Algorithm uses scan matching and finally 

occupancy grid map which can be readily us d for path planning and navigation will 

be available for future use. 

EKF and Robot Rendezvous Based Multi-robot SLAM 

Works by X.S. Zhou et al [21] use robot rendezvous to solve multi robot SLAM 

problem with unknown initial correspondence. This approach requires to meet robots 

at least once either as a random or as an arranged meeting by two robots. Extended 

Kalman Filter(EKF) is used to estimate robot and landmarks' positions and final 

map is a feature based map. Map alignment problem can be solved by processing 

relative distance and bearing measurements while two robots are in the sensing range 

of each other. Transformation between two local maps can be found using robot to 

robot measurements. There may be possibility of having duplicate landmarks in the 

merged map due to uncertainty of the landmark estimation. To increase the quality of 

the merged map authors use Sequential N earest Neighbor Test to det ct and combine 

duplicate landmarks. If landmark Li and li in map m 1 and m 2 represent a same 

landmark , their distance in the merged map should be either zero in ideal m rging 

or close by in duplicate landmark case. If the algorithm finds any doubt of duplicate 

landmarks, Mahalanobis distance between two landmarks is calculated . If it is smaller 

than a threshold then they are considered as duplicate landmarks. Kalman filter is 
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updated by eliminating duplicate landmarks. This can be easily done by deleting row 

of the state v ctor and row and column of the covariance matrix. This works well 

if the landmark error is smaller than the distance between two landmarks. Decision 

of matching two landmarks is irrecoverable. To avoid false removing landmarks, 

detection of duplicate landmarks are started in the vicinity of two observed robots . 

Most certainly errors of landmark positions are small in the vicinity of two robots and 

correct matches are most likely to be found there. As new matches are completed and 

state vectors are updated sequentially, the errors in the landmarks further away are 

also r du ed. Thereafter, it is more likely to find correct matche in distance areas 

and end up with a consistent map. 

D-SLAM Framewor k Based Mult i-robot SLAM 

Z. Wang et al [20] introduce a solution to multi-robot SLAM problem using D-SLAM 

frame work. Each robot in the team acquires a map of the environment using Ex­

tend d Kalman Filter (EKF) SLAM algorithm and D-SLAM framework is used to 

fuse maps obtained from multiple robots. Corresponding features of two maps which 

are going to merge are searched in order to find a map alignment hypothesis. En­

ergy function is used to find out corresponding points and correspondence matrix is 

updated. Energy function is capable of removing outliers and it has components to 

prevent removing too many points as outliers. Moreover there is pos ibility to apply 

constrain on transformation of points one map to the other map. Coarse alignment 

of two maps can be found based on corresponding features . Algorithm performs joint 

compatibility test to verify feature correspondence. Feature pairs with large valu s 

in correspondence matrix are confident correspondences but those with small values 

unconfident correspondences. Unconfident correspondences can occur due to outli rs, 

close by features or error accumulation in robot motion. Unconfident correspondences 
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indicate possible matching and algorithm finds possible features of the global map 

which are close enough to current unconfident correspondenc s. Only simulation re­

sults are presented in [20]. Algorithm works well for simulation. Data r cord d from 

single robot has b en divided into three parts and used as they were from three robots. 

Results are compared with multi-robot SLAM in single robot EKF-SLAM covering 

whole area using same data set. Simulation results have same accuracy for single 

robot and multi-robot SLAM. Although robots individually build maps, integration 

of local map to one global map is a centralized. 

Particle Filter Based Multi-robot SLAM 

A. Howard [27, 40] used particle filter to solve multi-robot SLAM problem which can 

be considered as an extension to the work done in S. Thrun [41]. Either known 

initial poses of all the robots or robot rendezvous are pre requirement to determine 

their relative poses among robots. It is assumed that robots are capable of mutual 

recognition and relative pose determination for nearby robots within line of sight and 

broadcast actions and observation pairs over a reliable wireless link. Robot does not 

know presence and poses of the other robots at the time of start, therefore it performs 

single robot SLAM until it observes another robot. Whenever two robots encounter 

each other((i- l)th robot observes ith robot) they determine their relative pose. 

Th n particle filter of the (i- l)th robot is augmented with two additional variables 

( x; , xi) representing causal and acausal instances of the ith robot and vice versa. Then 

the queued data for robot i is divided to 2 queues namely causal queue and acausal 

qu ue. The causal queue contains the data( odometry and observation) record d after 

the time of encounter while the acausal queue contains the data record d b for th 

t ime of encounter. The causal queue is empty at the beginning but it is updated with 

the odom try and observation data of the ith robot received through wireles link. 
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The causal queue is used to incorporate the observations of the ith robot to the map of 

(i- l)th robot after the time of encounter. The acausal queue is used to incorporate 

the observations of the ith robot to the map of (i - l)th robot before the time of 

encounter. Integration of data in the a.ca.usa.l queue is considered to be a virtual 

robot moving backward in time until queue becomes empty. If there were any robot 

which already has the state variable of another robot a.t the time of encounter a. new 

robot all the details of both robot will be transferred to the new robot. Particle filter 

of the new robot will be augmented by the variables corresponding to both robots. 

Above procedure is repeated whenever two robots meet each other. In this manner 

one robot ca.n incorporate the observation of all the robots into a single map. Finally 

each and every robot will produce comparable maps of the whole area. No map 

merging is necessary since a.ll the robots maintaining a map of whole environment. 

Increasing number of robots will limit the ability of online processing and syst m is 

sensitive to communication failures. 

2 .4.1 Summary of Multi-Robot SLAM 
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EKF- CLSF SElF Manifold EKF- DSLAM Particle 
MR-S LAM Representation Rendezvous Filter 

Complexity 
O(N2

) O(N2
) O(Nlog(N)) Depend on map O(N2

) O(N2
) Depend on map 

resolution resolution 
Data Necessary Necessary Necessary Not Necessary Necessary Not 

Association ecessary ecessary 
Memory O(N2

) O(N2
) O(N2

) Depend on map O(N2
) O(N2

) Depend on map 
Requirement resolution resolution 

Communication Necessary Necessary No Necessary Necessary No Necessary 
During 

Mapping 
Realtime In No No Yes Yes No Yes 

Operation Simmulations Information Information Limited robots Max 2 robots Information Max 4 robots 
Known Initial Yes Yes or No Yes or No but No Yes or 

Pose Rendezvous Rendezvous Rendezvous Rendezvous 
Map Feature- Feature- Feature- Occupancy Feature- Feature- Occupancy 

Representation based based based grid based based grid 
MR Not No Not Yes Not Not No 

Loop closing Discussed Discussed Discussed Discussed 
Map Not Yes Yes Yes Yes Yes No 

Merging Discussed 

Table 2. 1: Classification of multi-robot SLAM solutions 



Chapter 3 

Grid Based Fast SLAM 

3.1 Map Representation 

3.1.1 Feature Based Maps 

Feature based maps use geometric primitives such as corner , point lines to repre ent 

the environment. After each and every measurement cycle, map i updated with 

th se geometric primitives. Introduction of new geometric primitive will increase th 

compl xity of the map. Another representation of the environment, which uses lesser 

numb r of geometric primitives, called features has been introduced in order to avoid 

the complexity. Although feature based maps are efficient way of representing the 

environment they are limited to parametric landmarks or modelled objects. Feature 

based map suffer from inability to represent complex environments such as natural 

structures or space between the features. There is no way to repr sent free spa in 

feature based maps [42]. 

Feature are not readily available aft r the observation of the environment. Lin 

detection, edge d tection or some other technique should be employed to extract 
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features. Th refore, feature based maps suffer from computational complexity of 

t he feature d tection. Realtime performance of online mapping will be affected by 

the compl xity of feature extraction algorithm. Line detection for feature extraction 

will perform well in man made environments such as indoor applications or out door 

applications rich of straight line features, but the same algorithm will fail if there i no 

straight line features in the environment. In general, algorithm does not know which 

feature should be detected in advance. After the featur is d t ct d and location 

is timat d, th feature based map itself does not maintain any unc rtainty of that 

feature. Du to complexity of the feature and quality of the sensor there is a risk of 

resulting wrong or missing features [42,43]. 

3.1.2 Topological Maps 

Topologi al map model the environment without implicit us of metric information. 

Topological maps are generally repres nted by graphs who nod are distinctiv 

locations and arc that connects nodes denote path information b tween location . 

Whenev r topological maps are used localization and navigation hav to be performed 

using location recognition algorithms. Localization using topological maps performs 

well in tructur d environments where distinctive locations are more frequent. In 

unstructur d nvironments where location recognition is more ompl x, there i more 

risk of fai l to localize [42,43]. 

3.1.3 Occupancy Grid Maps 

Two dim n ional occupancy grid maps which are also known as vidence grid map 

were introduced by H. P. Moravec et al [44]. In this repre entation the environment 

is subdivided into a grid of rectangular or quare cells. Resolution of the environ-
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ment representation directly depends on the size of the cells. Each and every c ll 

is associated with probabilistic measure of occupancy, additional to this grid of the 

environm nt. Each cell contains any real number in the interval [0 1] and that num­

ber d crib s the possible cell state , namely occupied , unoccupied and unknown. 

0 cupancy probability of 1 means it i definitely occupi d whil occupancy proba­

bility of 0 means it is definitely unoccupied. Furthermore occupancy probability of 

0.5 d clar s unknown state of occupancy. Occupancy grid is an efficient approach 

for fusing multiple sensor measurements and representing uncertainty. It also allows 

to incorporate different sensor unc rtainties. Map resolution depends on th size of 

the grid cell. Smaller grid cells increase the map quality but it increase memory 

requirement and number of computations. Occupancy grid repr ent both occupi d 

space and unoccupied space of the environment, which are useful for path planning 

and ob tacle avoidance [34, 42-44]. 

3.1.4 Comparison of Map Representat ions 

The aim of the SLAM is to obtain a map of the environment to use in future ap­

plicat ion . If the map represents occupied and unoccupied areas, path planning and 

obstacle avoidance can be done easily. Feature based maps and occupancy grid bas d 

maps provid metric information about the environment whil topological map do 

not provid m tric information. Metric information is ess ntial in path planning spe­

cially to find the shortest path. Occupancy grid map itself provid s the probabili ty 

of occupancy and such information is valuable whenever robot operates in dynami 

environment. Memory requirement and computational complexity for 2D occupancy 

grid ar no mor a huge burden for modern computers but for 3D o cupancy grid is 

t ill chall nging. Considering the above factors, feature bas d maps and occupancy 
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grid based maps are more common in SLAM. Focus on readily available map for path 

planning and obstacle avoidance, occupancy grid based maps are used in this thesis. 

3.2 Scan Matching 

3.2.1 Iterative Closest Point (ICP) 

The iterative closest point (ICP) algorithm is widely used today for registration of 3D 

point clouds and polygonal meshes. ICP iteratively updates and refines the relative 

pose by minimizing the sum of squared distances between corresponding points in the 

two scans, and was introduced in 1992 in seminal papers on ICP are by P. J. Besl et 

al [45]. 

The fir t step of the algorithm is to find set of corresponding point pairs from 

two consecutive range scans. This search for point pairs from two range scan is the 

most time consuming step of the scan matching process. The naive way to do t his is 

to pick up for each point its closest neighbor by Euclidean distance. While thi will 

not in general be the correct corresponding point , especially if the scans are far apart 

from each other, successive iterations will still usually converge to a good solution. 

It is n cessary to assign different weights for point pairs since all of them may not 

corTe pond to same physical location. One may want to assign different weights to 

diff r nt point pairs , marking the confidence one has that they do indeed match. This 

can be done, for example, by setting the weight inversely proportional to the point 

to point distance and having lower weights for points further apart. For tunnel or 

corridor data, such linear weighting may degrade performance, as most of the points 

along the walls and ceiling will generally be well-aligned. In addition their influ nee 

will overwhelm point pairs with larger distances, which correspond to corners and 
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other features that are important. When registering scans with different amount of 

occlusions, taken from the same position, linear weighting is preferable, to reduce the 

effect of outliers and other non-overlapping points. 

Some outlier pairs will also need to be rejected entirely. This can be done using 

some heuristic to reject pairs where the points are far apart. Points lying on surface 

boundaries should always be rejected. Otherwise, points from non-overlapping sec­

tions of the data may affect the accuracy of the final alignment. Since it is difficult 

to determine the boundary points for point cloud data, best solution is to decrease 

distance threshold for rejection instead. This way, pairs that are separated by a large 

distance are used in early iterations to bring the scans closer.In later iterations, point 

pairs which are far apart from each other will be rejected since they are likely to 

be from non-overlapping areas. The best choice of weighting and rejection strategies 

depends on the characteristics of the data. Finally, the measured distances between 

the point pairs are minimized and the process is repeated again, with a new selection 

of points, until the algorithm has converged. 

For a pair of points: P(xi, Yi), P'(x~, yD, i = 1, ... , n, a distance function betw en 

the transformed point set P and point set P' is defined as follows . 

n 

Edist(w, T) = L \RwP + T- P'\2 (3.1) 
i=l 

n 

Edist(w , T) = L ((xi cosw - Yi sin w + Tx- x~) 2 + (xi sin w + Yi cos w + Ty - y~ )2 ) (3.2) 
i= l 

Where Rw is rotation matrix and T = [Tx, Ty]· Closed-form solutions for Tx, Ty and 

w can be calculated by minimizing Edist(w, T) as given below. 

40 



Where, 
11 

- 1 '"""' X= n ~Xi, 
i=1 
n 

- 1 '"""' Y =;;: ~ Yi, 
i= l 

n 

x' =.!. '"""'x' n ~ P 
i= l 
n 

y' = ~ LY~ , 
i = 1 

n 

Sxy'- Syx' 
w = arctan --::--''-----=.!<.-

Sxx' + Syy' 

Tx = x' - ( x cos w - y sin w) 

Ty = y' - ( x sin w + y cos w) 

Bxx' = ~ L (xi - x)(x~- x'), 
i = 1 
n 

Syy' = ~ L (Yi- y)(y~ - y'), 
i= l 

n 

S xy' = ~ L (xi - x)(y~- y') and 
i= l . 

n 

Syx' = ~ L (Yi - y)(x~- x'). 
i= l 

' 

(3.3) 

(3.4) 

(3.5) 

The two largest problems with ICP are that, it is a point-based method that does 

not consider the local shape of the surface around each point and that the frequent 

nearest neighbor searches are computationally expensive. 
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3.3 Rao - Blackwellized Particle Filter for Grid 

Based SLAM 

According to Murphy [38], key idea of Rao-Blackwellized particle filter for SLAM 

is to estimate the joint posterior p(xu, mlzJ:t, uu) about the map m and trajectory 

xl:t = x1 , . .. Xt of the robot. This estimation is performed given the control commands 

to the mobile robot u 1 :t = u 1 , ... , Ut and the observations z1 :t = z1 , ... , Zt obtained 

by the mobile robot. Rao-Blackwellized particle filter for SLAM make use of the 

following factorization . 

p(xu, mlz1:1 uu) = p(mlxu, zu) .p(xulzu, uu) (3.6) 

As a benefit of this factorization , trajectory of the robot can be estimated first and 

th n to compute the map given that trajectory. Map only depends on th pose 

estimation of the robot and not the motion control commands to the robot. Thus , 

this approach offers efficient computation of the both robot trajectory and map. 

Particle filter can be applied to estimate the posterior p(xulzu, ul:t) over the 

potential trajectories of the robot. Individual map is associated with each particle and 

th yare updated by the observations and the trajectory repr s nted by corresponding 

particle. Since xu and zu are known, the posterior p(mlxu, z1,t) can be computed 

analytically. 

One of the most common particle fi ltering algorithm is sampling importance 

re- ampling (SIR) filter. A Rao-Blackwellized SIR filter for SLAM incrementally 

processes the sensor observations and the odometry readings as they are available. 

It updates the set of samples that represent the posterior of the robot traj ctory 

and the map. This process has four steps, namely sampling, importance weighting, 
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re-sampling and map estimation. In sampling stage, the next generation of particles 

{ x~i) } is obtained from the present generation of particles { x~i-l}} by sampling from 

the propo a! distribution 1r. Often , probabilistic motion model is us d as the pro­

po a! distribution. In next step individual importance weight w~i} is assigned to each 

particle according to the importance sampling principle. 

(3.7) 

The weights are assigned for the fact that the proposal distribution 1r is in general not 

equal to the target distribution. Particles are drawn with replacement proportional 

to their importance weights. After re-sampling all the particle will have the same 

weight. Final step of particle filter SLAM is to update the map. For each part icle, the 

corresponding map estimate p( m(i) l x~~L zu) is computed based on the trajectory x~~~ 

of that sample and the history of observations zu. Weights of the trajectories hould 

be evaluated from scratch whenever new observation is available. This procedure 

would be inefficient , since the length of the trajectory increases over time. Following 

as umption is used in order to overcome this inefficiency. 

wh re 1r is the proposal distribustion. 

Based on Eq. 3.7 and 3.8 weights are computed as, 

(3.9) 
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(3.10) 

(i) (i) (i) (i) 
7]p( ztlmt- I, xt )p(xt lxt-I, Ut) (i) 

OC (i) (i) · Wt - l 
7r(Xt lx l:t - l, ZI :t, UJ:t) 

(3.11) 

where 77 = 1/p(ztlzi:t - I,ui:t ) is the normalization factor resulting from Bayes rule 

and equal for all particles. Most of existing particle filter applications rely on the 

recur ive structure of Eq. 3.11. Decision on how to calculate the propo al distribution 

and when tore-sample leaves open in this recursive formula. Samples are drawn from 

proposal distribution 1r in the prediction step in order to obtain the next generation of 

particles. The better the proposal distribution approximates the target distribution 

the better is the performance of the particle filter. If it is possible to directly draw th 

samples from the target distribution , the importance weights would b come equal for 

all particles and the re-sampling step would no longer be necessary. Unfortunately 

there is no way of draw samples directly from target distribution. 

The typical particle filter applications use the odometry motion model p( Xt I Xt - 1, Ut- I) 

as the proposal distribution. The motion model has the advantage that it is easy to 

compute. Importance weights are then calculated according to the ob ervation model 

p(ztlm, Xt)· This becomes clearly by replacing 1r in Eq. 3.11 by th motion model. 

(3.12) 

(3 .13) 

However, this proposal distribution is suboptimal especially when th sensor informa­

tion i preciser than the motion estimate of the robot bas d on oclometry such as in 

44 



case of a robot equipped with a laser range finder. To overcome this problem, mo t 

recent observation Zt has to be considered when generating the next generation of 

samples as used in FastSLAM 2.0. Integration of Zt into proposal allows to focus the 

sampling on the meaningful regions of the observation likelihood. The distribution 

0) (0 
( I 

(i) (i) )-p(ztlmt-1,xt)p(xtlxt-1•ut) 
p Xt mt-1 ' Xt- 1' Zt, Ut - (i) (i) 

p(zt lmt-1, xt-1, Ut) 
(3.14) 

is the optimal distribution with respect to the variance of the particle weights. With 

the integration of Zt into the proposal distribution, the computation of weights is as 

follows. 

(3.15) 

(3.16) 

(3.17) 

(i) J ( I ') ( 'I (i) )d I = Wt-1 p Zt X p X Xt-1,Ut X (3.18) 

Whenever modelling a mobile robot equipped with an accurate sensor like laser 

range finder, it is convenient to use an improved proposal distribution since accuracy 

of the laser range finder leads to extremely peaked likelihood functions. 

In order to calculate the next generation of samples, first use a scan matching 

algorithm to determine the meaningful area of the observation likelihood function. 

Then sample that meaningful area and evaluate the sample points based on the 
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target distribution. For each particle i, the parameter p,~i) and l:~i) are determined 

individually for K sampled points { Xj} in the meaningful area of the observation 

likelihood. Gaussian parameters are estimated as 

K 
_, (i) - 1 ""' ( I (i) )( (i))( (i) )T ut - (i) ~ p Zt mt_1 , Xj Xj - J-lt Xj - J-l t 

rJ j=1 

with the normalization factor 

K 

ry (i) = L p(ztlm~~ 1 , Xj) 

j=1 

(3.19) 

(3.20) 

(3.21 ) 

In this way, closed form approximation of the optimal proposal can be obtained. 

Using this proposal distribution, the weights can be computed as , 

(i) J ( I (i) ')d I = Wt-l p Zt mt_1 , X X 

K 

~ w~~ 1 LP(ztlm~~ 1 , xj) 
j=l 

_ w(i) 'YJ(i) 
- t-1''1 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

Where ry (ii is the normalization factor that used in the computation of the Gaussian 

approximation of the proposal in Eq. 3.21. 
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3.3.1 Efficient Calculation of Proposal Distribution 

Calculation of proposal distribution requires to evaluate Eq. 3.19 to Eq. 3.25. Ef­

ficient evaluation of measurem nt likelihood (p(ztlm~~ 1 Xj)) at the sampled points 

Xj in occupancy grid map is the key challenge. Likelihood fields for range finders 

algorithm in [46] is used to calculate p(ztlm~~ 1 , Xj)· 

3.3.2 Effective Sample Size for Selective Re-sampling 

Re-sampling step has major influence on the performance of the particle filter. During 

re-sampling, particles with low importance weights e(i) are typically replaced by by 

sample with a high weight. But re-sampling is necessary since only a finite numb r of 

parti le are used to approximate the target distribution. There is a risk of removing 

good particles from the filter which can lead to particle impoverishment and finally 

filter will diverge. To avoid that problem A. Kong et al [39] and A. Doucet et al [47] 

introduced effective sample size to estimate how well the current particle represent 

the target posterior. 

N - 1 
el 1 - 2:::

1 
( uM)2 

(3.26) 

Where u)i) refers to the normalized weight of particle i. If the samples were drawn 

from the target distribution, their importance weights would be qual to each other 

and N el 1 equals to N where N is the number of particles. The worse the approxi­

mation of the target distribution , the higher is the variance of the importance w ight 

and 0 ::; N el 1 ::; N accordingly. Since N el 1 can be regarded as a measure of the 

dispersion of the importance weights, it is useful to evaluate how well particle set 

approximates the target posterior and re-sampling is done whenever Nel 1 fall b low 

a threshold value such as 0.75N or 0.5N. 
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3.4 Loop Closing 

SLAM problem i identified to overcome the drawback of inability to determine the 

robot pas only using odometry. Various SLAM technique estimate the robot po e 

precisely but can not completely eliminate the error. Th r for r idual rror i 

accumulated over the motion of the robot. This can be clearly seen when robot 

entered to pr viously visited area after traver ing a large loop. Due to accumulation 

of error , corre ponding features detected at the beginning of the loop and at the end 

of the loop will not be at the same spatial location of the acquired map. Loop closing 

is perform d in order to eliminate these topographical incon istencies. Loop closing 

procedure contains three step detection of loop closure, calculation of correction and 

distribute the correction over in the loop. 

3.4.1 Detecting Loop Closure 

Main ep in loop closure is the detection of the opportunity to clo e a loop. Variou 

techniqu s to detect the loop for different solutions SLAM probl m are given in [3 5, 

16,4 ,49]. The loop closure detection method used in this thesi is described here. 

Each and every particle creates and updates a occupancy grid map m(i) and topo­

logical map Q (i) and both are updated while performing the SLAM. Vertices of th 

topological map Q(i), represent the positions visited by the robot and edges of g (i} 

repr ent the trajectory corresponding to the i th particle. Whil th robot is pro­

gressing, nod s ar added to g(i}, if distance to previous node exc ds a threshold or 

none of th other nodes is visible to current pose of the robot. Whenever, a new node 

is added to Q(i) an edge is also added from current node to most r cently visited nod . 

Ray casting op ration in occupancy grid should be performed, in order to determine 

w heth r or not the previous node i visible from current po e of the robot or another 
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node other than previous node is visible to current node. 

While robot is progressing and maps are continuously updated, if another node 

other than previous node is visible to the robot then there may be a possibility of 

closing a loop in the area. When the robot is further moving, if the di tance to the 

newly visible node from the robot is decreasing in occupancy grid map m(i) while the 

distance to the same node is increasing in topological map Q(i), then it is confirm d 

that loop closing is imminent. 

3.4.2 Calculation of Correction and Distribute over the Loop 

In grid based SLAM the only available data is a set of points obtain d from las r 

scans. Cal ulation of corrections to the poses along the loop can be treated as a can 

matching problem. Instead of matching two scans, batch of scan at the beginning 

of the loop and at the end of the loop are matched in order to find the r lative 

pose( accumulated residual error) of two batches of scans. The relative pose obtained 

from scan matching is the correction that is necessary to align corr sponding features 

obtained at the beginning and at the end of the loop. 

The accumulated residual error is distributed proportionally between all the po es 

along the loop to correct the accumulated error at the end of the loop. The error is 

di tributed proportionally according to the magnitude of the displacement and turn 

at each motion. 
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3.4 .3 SLAM Algorithm 

SLAM algorithm used in this study is shown below, The algorithm requires the sample 

set of the previous time step(S1_ 1), the most recent observation(z1), the most recent 

control command to robot(ut_1) and topological map for loop closing(9) . Algorithm 

returns the new set of samples(St) and topological map for loop closing (g)and cor-

respond to current robot position. 

for all s~~ 1 E S do 

(i) ( i) (i) (i) 
< xt-1 , wt- 1 , mt- 1 >= 8 t- 1 

//scan matching 

l (i) (i) 
Xt = Xt- 1 EB Ut- 1 

A (i) ( I (i) l{i)) x 1 = argmaXxP x m 1_ 1 , Zt, x 1 

if i;~i) = failure then 

(i) (i) 
x 1 "'p(xtlx1_ 1,ut-1) 

wii) = w~~ 1 .p(ztlm~~~, x~i)) 
else 

//sample around the mode 

for all k = 1, .. . , K do 

end for 

//compute Gaussian proposal 

p,~i) = (o, o, o)r 

'r/(i) = 0 

for all Xj E {x1 , ... ,xJ<} do 

(i) (i) (i) 
fLt = fL t + Xj .p(zt lm1_ 1, Xj) 

r] (i) = r] (i) + p(ztlm~~ 1 ,xj) 

50 



end for 

J.L~i) = J.L~i) /r/i) 

I:~i) = 0 

for all Xj E {x1, .. . ,xK} do 

I:ii) = I:~i) +(x1 - p,~i))(xJ- p,~i)f.p(zt l m~~ 1 , Xj) 

end for 

I:~i) = I:~i) ! rt(i ) 

//sample new pose 

X~i) "'N(p,~i)' I:~i)) 

//update importance weight 

w~i) = w2i) ·rt(i) 

end if 

//update occupancy grid map 

m~i) = integrateScan( mi~ 1 , x~i), Zt) 

//update sample set 

St = St U { < x~i), wii), m~i) >} 
//update topological map 

robotPosition = ( x~i) .X, x~i). Y) 

dist = EucledianDistance(robotPosition, lastNode(Q(il )) 

if dist ~ 2m then 

insert ew odeTo(9(i)) 

ftagNewNode = 1 

end if 

end for 

N - 1 
eff- l:~1 (w<•l )2 

if N eff< T then 
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S t = resample( S t) 

end if 

if flagNew ode == 1 then 

hw = max(wt) 

visibleNode = rayCasting(Q(hw)) 

if visibleNode == 1 then 

visi bleDistance = calculate Visi bleDistance( visibleN ode( g(hw)), lastN ode( g (hw))) 

distanceAlongGraph = calDistanceAlongG raph( visibleNode(Q(hw)), last ode(g(hw))) 

if (visible Distance ::; 6m) AND ( distanceAlongGraph ~ 20m) then 

doLoopCLosing 

end if 

end if 

end if 
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3.5 Experiment 

3.5.1 Mobile Robot Platform 

An Active Media Pioneer 3 AT mobile robot equipped with SICK LMS 200 laser range 

find r i used to verify the validity of the algorithm. Pioneer 3 AT robot is equipped 

with onboard PC 104 computer and accessory cards. Robot has a differential drive 

system and each drive motor is equipped with quadrature optical shaft encoders for 

position and speed sensing. Robot is also equipped with a gyroscope to improve the 

estimation of robot position. SICK LMS 200 laser range finder is a two-dimensional 

scanning sensor. Device does not require any position marks or reflectors. Tim of 

flight of laser pulse is used to estimate the range from sensor to the object. SICK 

LMS 200 has maximum range of 50m and angle resolution of 0.5° and 1°. Angl 

resolution of 0.5° is used to have a better accuracy in scan matching. 

3.5.2 Details of Mapped Area 

Robot is traversed in the first floor corridor of S.J. Carew Building, Memorial Uni­

versity. Corridor is a rectangular loop about 65m in length and 28m in width. Raw 

odom try and lased range finder readings were extracted from the robot log. MAT­

LAB program code is written to run the SLAM algorithm off-line. 

3.5.3 Results 

Figure 3.1 shows a. map of the environment generated by raw odometry of the mobil 

robot. The map generated by odometry is not a complete map, it fails to map straight 

corridors and 90° corners correctly. Odometry errors are accumulated over the loop 

and as a result the generated map is erroneous. 
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Figure 3.1: Map generated by raw odometry 

The map in figure 3.2 was generated using laser stabilized odometry(scan match­

ing). Compared to the map in figure 3.1, the map in figure 3. 2 has better accuracy 

but still fails to generate an accurate map of the environment. There is a large er­

ror at the point of closing the loop. It can also be seen that, some sections of the 

mapped corridor are not straight while other sections are straight. As a result, the 

accumulated error along the loop will be non-linear. Error can not be compensated by 

calculation of the error and re-distributing along the loop. SLAM problem originally 

came to research community to compensate the problem of inability to build a map 

from either raw odometry or laser stabilized odometry(scan matching). 
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Figure 3.2: Map generated by scan matching 
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·~----------------------~·--------·-

Figure 3.3: Map generated by SLAM algorithm and it is about to close a loop 

Figure 3.3 shows the map generated by SLAM algorithm. There is an error at the 

point of loop closing. Except the error at the end of the loop, map is in good quali ty 

and it is not possible to observe any inconsistency in corridors of the map. Therefore 

it is possible to assume that the error at the end of the loop is an accumulation of 

residual errors of robot pose along the loop. 

It is essential to calculate the correction necessary for the robot pose to regulate 

the error in the map. It can also be treated as a scan matching problem. Instead of 

matching two scans, batch of laser scans from the beginning and from the end of the 

loop is matched to estimate the error accumulated along the loop. Figure 3.4 shows 

the batch of 200 scans from the beginning of the loop and from the end of the loop. 

Points in red depict start of the loop and points in blue depict points from the end 

of the loop. 
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Figure 3.4: S l cted points for loop clo ing from beginning of th loop and end of the 
loop. Point in red depict start of the loop and points in blue d pict end of the loop 
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Figure 3.5: Proper alignment of two point sets after loop closing 

Figur 3.5 shows proper alignment of two point sets after correcting the error due 

to accumulated error of robot pose along the loop. 
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Figure 3.6 shows the map of the environment after loop closing. It is the complete 

map of the environment that can be used for path planning and obstacle avoidance. 

Figure 3.6: Map generated by SLAM algorithm after loop closing 

The length of the building is 76 m and the width of the building is 28m. Resolution 

of the map is 10 em x 10 em per grid cell and map is accurate according to the 

r solution of the map. There is no misalignments or structural inconsistencies hence 

map is consistent. 

58 



Chapter 4 

Multi-Robot FastSLAM and Map 

Merging 

4.1 Introduction 

In multi-robot SLAM, two or more robots travel independently and provide individual 

maps. The important task is to merge all the maps from different robots, in ord r to 

have a complete map of the environment. Various solutions are presented in literature 

for joining maps from team of mobile robots. 

G. Dedeoglu et al [50], S. Thrun et al [41] and S.B. Williams et al [22] proposed 

to localize a robot in another robot's map to find transformation b tw en two map . 

This method is computationally expensive. Markov localization makes the strong 

assumption that the robot is somewhere in the map and that can b easily lead to 

fa! e location somewhere in the map (false positive). 

W . H. Huang et al [51] proposed a method to merge topological maps. But the 

topological map mentioned in the algorithm is not the topological map generally 

discussed in robotics literature. Algorithm needs a specially created topological map 
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of wall like features obtained from a sensors such as laser range finder. Having such a 

map, algorithm searches for the possibility of aligning line like features of two map . 

Results depict the proper merging of maps. The map n cessary for the algorithm 

does not generated by any SLAM algorithm, therefore generating such a map will 

increase the computational burden. There will be less computational complexity, if it 

is possible to use image processing techniques to generate required topological map 

from occupancy grid map. 

S. Carpin et al [52] address the map m rging as an stochastic s arch to solve an 

optimization problem. The algorithm is based on adaptive random walks to merge 

occupancy grid maps independent from how they are generated. Suitabl transforma­

t ion aiming to overlap two grid maps is sought in the space of possible transformation . 

Further improvements are introduced by A. Birk et al [53] who attempts to detect 

failur and try to guide the search in order to obtain the result in an efficient man­

ner. Algorithm is guaranteed to find optimal solution when the number of iterations 

tends to infinite. Computational requirement due to iterative nature of the algorithm 

prevents its use in real time operations. 

X. Ma et al [54] introduced an adaptive genetic algorithm based method for oc­

cupancy grid map merging. Adaptive genetic algorithm is used to prevent premature 

conv rgence, low convergence rate and low stability. Simulation results confirm the 

feasibility of the algorithm. But simulation is done for a simple map. No results 

are presented for merging complex real world occupancy grid map . Authors claim 

that the algorithm outperforms the adaptive random walk based map merging algo­

rithm presented in [53]. But there is no any analysis of computational complexity 

and memory requirement to prove the efficiency of the algorithm. 

S. Carpin et al [55] proposed novel algorithm to find out the tran formation be­

tween two occupancy grid based maps using spectral information of the maps. Unlike 
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in [52], rotation is first calculated in this algorithm and then the corresponding tran -

lation i calculated. Several possible transformations are calculated in the algorithm. 

Authors introduced a simple calculation(acceptance index) to check how well two 

maps are aligned by each and every possible set of transformation . Acceptance 

index can have values between 0 and 1 but value will approach to 1 for correct tran -

formation when there is good overlap. 'Iransformations whose acceptance indexes are 

less than 0.9 should be discarded. This can happen either when maps do not over­

lap well to find reliable transformation between them or for invalid transformations. 

Finally the algorithm returns the correct transformation if such a transformation is 

possible. According to the authors experience only one will have acceptance ind x 

clo er to 1 while others in the group will have acceptance indexes well below 0.9. This 

is not an iterative algorithm and solution will be available in single run enabling it to 

be used in real t ime. 

4.2 Map Merging based on Hough Transform 

Considering the map merging techniques discussed above, the Hough transform based 

technique provides accurate results. It allows to incorporate uncertainty and provid s 

the best solution for map merging among set of candidate solutions. Adaptive ran­

dom walk based and Hough transform based solutions rarely provide false positive 

since there is possibility to check the validity of map merging. They can reject all the 

candidate transformation if their acceptance indexes are less than the given threshold. 

According to S. Carpin et al [55], Hough transform based techniques ar computa­

tionally efficient compared to adaptive random work technique based map merging. 

Therefore Hough transform based map merging technique used to merge map from 

different robot platforms. 
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-------- -------- - ----------------

4.2.1 Computation of Rotation between Two Maps 

Orientation between two maps i calculated as first step of the algori thm. Occupancy 

grid map is transformed to a binary image by setting all occupied cells to black and 

all other cells to white. Then discrete Hough transform is applied . Discrete Hough 

t ran form discretizes the hough domain for p and e and it can be represented by a 

matrix. On this point onwards, for a map M , the symbol HTM is used to indicate the 

discrete Hough t ransform in this thesis. HTM has Bs columns and Ps rows. Associated 

hough spectrum for a. given HT M can be calculated as follows: 

Ps 

H s M ( k) = L HT M ( i, k) 2 1 :::; k :::; e s. ( 4.1 ) 
i=l 

Hough spectrum is extended periodically for values of k outside the range 1, ... , 88 • 

Hough spectrum ( H S M) is a. measure of the directions where more frequent lines 

a.r d tee ted in M. Hough spectrum is a unidimensional signal. Therefore eros 

correlation between two such signals can be used to determine similarities. Corr lation 

out lines translations that will overlap two signals. Since Hough spectrum is defi ned 

over orientations cross correlation should be calculated considering 21r periodicity 

into account . In other words, it is necessary to calculate circular cross corr lation. 

For two hough spectrums H SM 1and HSM 2 with same sampling periods, the circular 

cross correlation CCM 1M 2 can be defined as follows: 

B, 

CCM 1M2 = L HSM 1 (i)H SM2 (i + k) 1 :S: k :S: 88 • (4.2) 
i = l 

Cross correlation of Hough spectrums gives useful indications about how H SM2 should 

be translated in order to overlap it with H SM
1

• TI·a.n la.tion of Hough spectrums 

corresponds to rotation of associated maps. Therefore local maxima. of circular cro s 
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----- -------------------------------------

correlat ion of Hough spectrums reveal how M2 should be rotated in order to align it 

with M 1• Whenever circular cross correlation displays multiple local maxima, each of 

th m associated with possible rotations. Instead of dealing with global maximum, the 

algorithm extracts n local maxima and n is the number of candidates for the possible 

t ransformation. Value for n can be defined at the beginning of the algorithm. Then 

the algorithm tracks all possible n transforms and find the best transformation as 

described later. Uncertainty can be added to the possible rotations for better accuracy 

of results. This can be done by introducing uncertainty (E) to angles. Therefore for 

every angle e obtained from the algorithm, there will be another two angles e- E and 

e +E. Therefore all together there will be 3n candidate angles for possible rotation . 

4.2.2 Computation of Translation between Two Maps 

Once possible rotations are known, map M2 can be rotated using candidate rotation 

angle i resulting map M3 . Spectral structures of two images M1 and M3 are extracted 

to calculate the translation between two maps. The X-spectrum of a binary imag 

M is defined as follows: 

SXM(J) ~ { ~;~, M(i,j) 1 :::; j :::; c 

otherwise 

Similarly Y-spectrum of image M is defined as follows: 

SYM(J) ~ { ~J~, M(i,j) l:S;i:S;r 

otherwise 

(4.3) 

( 4.4) 

where r and c are number of rows and number of columns respectively. SXM and 

SY M ar the proj ctions along the x and y axi of the image. Given th SXM 1 and 
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SXM3, the translation along x axis is given by the global maximum of the cross 

correlation between them. It is defined as follows: 

+oo 

CCXMJM3(T) = L SXMJ (k + T)SXM3(k) (4.5) 
k=-oo 

Translation along y axis can be calculated in similar way using following equation. 

+oo 

CCYMIM3(T) = L SYMJ (k + T)SYM3(k) (4.6) 
k= -00 

At the end of this step, all together there will be n possible transformations. Ac­

ceptance index(w )is calculated in order to find the best transformation from candidate 

transformations. Acceptance index is a measure accuracy of candidate transforma-

tions. 

4 . 2. 3 Acceptance Index 

Let M1 and M2 be two maps with r rows and c columns. The agreement between M1 

and M2 represented by arg(M1, M2) is the number of overlapping cells in M1 and M2 

after transformation that are either both free or both occupied. The disagreement 

between M1 and M2 represented by dis( M1 , M 2) is the number of overlapping cells 

after transformation such that M1 is free and M2 is occupied or vice-versa.. The 

acceptance index between two maps is defined as 

w(M1 , M2)= { 0 
arg(M1,M2) 

-ar-g"( M--,-1=, M-!=;2l-:_:)..:.!+'7di:..:..s (~M-:-1-;, M,..,.2' ) 

if arg(M1 ,~12) = 0 

if arg(M1 , M2) -:/= 0 
(4.7) 

Only occupied and unoccupied cells are considered to calculate the acceptance index 

while simply ignoring the unknown cells. Two extremes are reached when the maps 
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do not agr e in a single cell or when t hey are the same. When two maps do not 

agree in a single cell , arg(M1 , M2 ) will be zero hence w is zero. When two map are 

identical dis(M1 M2 ) is zero, hence w is one. Values between these two boundaries 

ar obtained for intermediate sit uations. According to [52], acceptance index values 

le ·s than 0.9 indicate either the two maps does not overlap well or there is no sui table 

transformations and candidate transformation should be discarded. 

4.3 Experiment 

Laser and odometry readings from the experiment in Chapter 3 were taken and sensor 

measurements are divided in to two parts with overlap . Set of readings from the end 

of the data et were omitted to have one set of readings and set of r a.dings from 

beginning of t he readings were omitted to generate another set of readings. Two 

readings sets were treated as they were obtained from two different robots. Maps 

obtained from two sets of readings are shown in Figure 4. 1 and Figure 4.2. 

Hough spectrums of map 1 and map 2 are shown in figure 4.3 and figure 4.4 

respectively. Circular cross correlation of two Hough spectrums are in figure 4.5. 

Each and every local maximum of circular cross correlation is a candidat angle for 

possible rotation between two maps. Since there is no rotation betw n them there 

is only one maximum at 1°. By incorporating uncertainty f of one degree which use 

throughout the experiment it will have the exact angle 0°. 
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Figure 4.1: Map 1 for map merging 

Figure 4.2: Map 2 for map merging 
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Figure 4.3: Hough Spectrum of Map 1 
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Figure 4.4: Hough Spectrum of Map 2 

Having candidates for possible rotations, the next step of the algorithm is to find 

all the possible transformations. Map 2 has to be rotated for each and every candidate 

angle for rotation leading to have calculation of large number of X-spectrums and 

Y-spectrums. Figures of X-spectrums and Y-spectrums whose correspond to final 

successful transformation are shown in this thesis . X-Spectrums of map 1 and map 

2 are shown in figure 4.6 and figure 4.7 respectively. Cross correlation between them 

is shown in figure 4.8. Y-Spectrums of map 1 and map 2 are shown in figure 4.9 and 

figure 4.10 respectively. Cross correlation between them is shown in figure 4. 11. Two 
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Figure 4.5: Circular cross correlation of Hough Spectrums of two maps 

maps are treated as images hough transform based map merging. Therefore required 

translation in both X-direction and Y-direction are shown in image coordinates. 
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Figure 4.6: X-Spectrums of map 1 
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Figure 4.7: X-Spectrums of rotated map 2 
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Figure 4.9: Y-Spectrums of map 1 

Merged map is shown in figure 4.12 and it has the same accuracy compared to 

map generated from single robot SLAM. 
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Figure 4.11: Cross correlation of Y-spectrums of two maps 

w(M1, M 2 ) for map in Fig 4.12 is 0.9774. If w(M1 , M 2 ) is less than 0.9 those 

transform should be discarded. This can be happen either when there is no enough 

overlap between two maps or when there is no relationship between two maps in real 

world. Map obtain from multi robot SLAM is in good quality compared to map 

obtained from single robot SLAM. But map obtained from single robot SLAM is 

more accurate since loop closing is applied to that map. F. Lu et al [56] introduced 

to avoid the problem due to non loop closed section in multi robot SLAM. It worked 

well since map is simple but this method will fail when there is non loop closed 
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Figure 4.12: Complete map of the environment 

complex maps. Best way to overcome this problem is to maintain list of mutual 

observation among other robots in the team( robot rendezvous) and apply graph based 

optimization techniques to apply constrain found during mutual obs rvation . This 

method is mentioned in future works of this thesis. Computational time for map 

building in sing! robot SLAM example is less since there is overlapping area in multi 

robot SLAM. Significant area of th maps is falls into overlapping area and this cause 

the higher computational time. If there were maps with enough overlapping for map 

m rging and the overlapping area is a Jess percentage of the total map area, then 

there will be less time for multi robot SLAM. Time taken to loop closing is sam a 

the time tak n to map merging and algorithm in [56]. Robot power con umption is 

higher in ingl robot SLAM and th re was low battery warning when complete the 

loop. Travelling di tance for single robot is less in multi robot LAM and there will 

not be problem of low battery even if two single robot were introdu ed for terrain 
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acquisition. Considering the power consumption by single robot and multiple robot , 

computational complexity and capability of robots, multi robot system is efficient to 

deploy and the larger the higher the efficiency. 
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Chapter 5 

Conclusion 

5.1 Conclusion 

FastSLAM offers computationally efficient algorithm to solve SLAM problem com­

pared with other available solutions. EKF based SLAM is the earliest and widely 

used solution to SLAM problem in early days. But it suffers from higher compu­

tational complexity and memory requirement and this burden limits the size of the 

environment that can be mapped using EKF-SLAM. FastSLAM obtains the path of 

the robot from particle filter , hence calculation of landmark location will be indepen­

dent of each other. Employing particle filter to estimate the path of the robot makes 

it easier to estimate landmark locations. Reduced computational complexity enables 

to map larger environments. FastSLAM allows to use an occupancy grid map instead 

of landmark list while EKF-SLAM can only use list of landmarks. Path planing 

and obstacle avoidance become easy with occupancy grid maps. However, when an 

area becomes larger mult i-robot SLAM is more efficient and also has the advantage 

of sharing the computational burden among several robots. Solving SLAM problem 

using multiple robot is important when there is large terrain to map and perhaps it 
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will beyond the capability of single robot. Even if it is within the capability of single 

robot , such a deployment will not be cost effective and will not be time effective. 

Odometry and sensor readings from Pioneer 3AT were divided in to two sets 

with overlap. Single robot SLAM algorithm described in Chapter 3 was applied to 

both data. ts. Two partial maps were obtained by treating as if two data. sets were 

obtained from two robots. Map merging technique described in Chapter 4 is employed 

to combine two maps. Resulting map of the map merging algorithm has the same 

accuracy as the map of the environment generated by single robot SLAM. Results 

prove the feasibility of employing multiple robots which divide the computational 

burden of map building and terrain acquisition among team of robots. 

5 .2 Future Works 

Although proposed algorithm performs well , there are modification to the algorithm 

that will improve the robustness of the algorithm. Hough spectrum based map merg­

ing algorithm does not allow to incorporate previous knowledge of relative orientation 

between two maps , even if they are available. This situation can arise when two robots 

mutually recognize each other during mapping. This drawback can be eliminated by 

checking line to line structural consistency. Hough transform based line detection can 

be employed to extract lines from two occupancy grid maps. 

There may be situations that two robots will mutually recognize each other more 

than one at different locations. In such situations all these conditions should be 

considered when merge two maps from those two robot. Hough spectrum based 

techniques may fa il because still there may be residual errors due to loop closing. Best 

way to deal with this problem is to maintain a list of mutual observation and employ 

graph based optimization technique to merge maps. This will help the algorit hm 
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to close larger loops which single robot in the group has not explored that loop 

completely. 
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