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The innovation covariance, S(k), is computed using priori covariance matrix of state
estimates, the Jacobian of the observation model, V, A(k), and the covariance of the

observation, R(k).

S(k) = Vh(K)S™(K)V.hT (k) + R(k) (2.34)

Update

The state estimate and s ¢ covariance matrix are updated in the update step.

k) = i (k) + WEw(k) (2.35)

SHE) = (k) — W(k)SEWT(K) (2.36)

where 11"(k) is gain matrix.

W(k) =S (k, . AT (k)S™' (k) (2.37)

Limitations of EKF-SLAM

Although EKF-SLAM is a good  lution to SLAM problem, it suffers from two major
problems. They are quadratic computational complexity and sensitivity to failures
in data associations. The uncertainty of SLAM posterior is rej ented | a co-
variance matrix. Correlation matrix has correlations of all possible pairs of state
variables(Robot pose and landmarks). For a 2D map with N landmarks, the size
of correlation matrix will be (2N + 3) x (2N + 3) where memory requirement is
O(N?). Since correlation betw 1 all pairs of state variables are maintainc it is
necessary to update the correlations of a the state variables whencver observation

is made. Therefore number of computations grows quadratically with the number of
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sub-map and not the number of landinarks in global map. Uncertainties of the >bot
pose and feature estimation of local frame of reference tend to be comparatively small,
therefore CLSF improves the data association process. Moreover the decision of data
association of global map can be deferred until an local sub-map of the environment
is available. Correspondences etween two maps can be established by comparing
the inter feature distances. Transformation between two maps can he found once
correspondences are known. This transformation is used as an initial guess for for
least squares solution to the tri  sformation between two maps. Least square solution
is used to transfer new featur  into related frame of reference. Algorithin has been

verified with simulation r  Its.

Sparse Extended Info: ation Filter Based Multi-robot SLAM

Works by S. Thrun et al [19] v : Sparse Extended Information Filter(SEIF) based
solution to multi robot SLAM prc lem. Proposed algorithm enables a team of robots
to build joint map without prior  >wleC  of relative starting positions and ambigu-
ous of landmark positions. There is no periodical fusion of local map with the global
map like in [22]. Fusion is done only after completing all the local maps. Additivity
and locality are the two key properties of the SEIF based multi robot SLAM. Ad-
ditivity enables multiple robots to integrate their information by adding increments.
Locality ensures that all updates performed by a robot are limited to own posc and
landmark history. Fusion of local aps to one global inap is challenging because cach
robot maintains its own local coordinates frames and relative position of each other is
unknown and complexity of estal shing correspondence among landmarks common
to several maps. To find good . gnment, it searches for corresponding pairs of local
landnmark configurations in dif -ent maps. For each and every identified landmark,

algorithm identifies three adjacent landmarks that fall within a small radius. The rel-
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ative distances and angl in these triplets are saved in an SR-trec to facilitate casy
retrieval. Landmarks with similar local configurations can he identificd by searching
SR-tree. Correspondences found in this search served as a starting hvpothesis for the
map fusion. The possible data associations are scarched recursively assuming and
un-assuming correspondences between landmarks in the different maps. Map 1sion
is finalized with reduction of overall map likelihood that comes from cquating two
landmarks and the increase in  kelihood that results from the fact that if there were
really two separate landmarks. To perform the latter parts of the map fusion, both
robot must ave detected the landmarks and sensor model is employed to characterize

the not seeing a landmark.

Manifold Representation Based Multi-robot SLAM

A. Howard et al [28] propose a solution to SLAM problem using manifold represen-
tations. Manifold will develop a spiral structure with same location repeated over
and over again. In other words, the sanmie location in the world may be represented
more than once in the manifold. Loop closure algorithm is relatively expensive in
SLAMI and refitting the entire map is nontrivial. Loop closing has to perform more
than once if the robot moves more than once in the same loop. In order to close
loop. one must find out two p clov © in the map which are representing single
point cloud in real world. Man Id representation has lazy loop closure and loop
closing can be indefinitely delayed until algorithm is confident enough to close loop
without risking map consistency. In addition to delaying the decision of loop closing,
loop closing algorithin is executed only once for each loop in the environment. Island
merging algorithm is used to fuse two maps obtained from two robots. Island merging
is performed whenever two robe : identify themselves (authors used the term mutual

observation)to have their relative pose. Two islands are considered to be rigid and
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The causal queue is used to inco orate the observations of the i** robot to the map of
(i — 1) robot after the time of encounter. The acausal queue is used to incorporate
the observations of the i** robc to the map of (i — 1) robot before the time of
encounter. Integration of data in the acausal queue is considered to be a virtual
robot moving backward in time until queue becomes empty. If there were any robot
which already has the state variable of another robot at the time of encounter a new
robot all the details of both r ot will be transferred to the new robot. Particle filter
of the new robot will be 1gmented vy the variables corresponding to both robots.
Above procedure is repeated wl 1ever two robots meet each other. In this manner
one robot can incorporate the observation of all the robots into a single map. Finally
each and every robot w produce comparable maps of the whole area. No map
merging is necessary since a the robots maintaining a map of whole environment.
Increasing number of re ots will lim the ability of online processing and system is

sensitive to communication failures.

2.4.1 Summary of Mu :i-Robot SLAM
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features.  Therefore, feature bi 1 maps suffer from computational complexity of
the feature detection. Realtime performance of online mapping will be affected by
the complexity of feature extraction algorithm. Line detection for feature extraction
will perform well in man made environments such as indoor applications or out door
applications rich of straight line features, but the same algorithm will fail if there is no
straight line features in the environment. In general, algorithm does not know which
features should be detected in  vance. After the feature is detected and location
is estimated, ¢ feature based map itself does not maintain any uncertainty of that
feature. Due to complexity of e feature and quality of the sensor, there is a risk of

resulting wrong or missing featu s [42, 3].

3.1.2 Topological Mag

Topological maps model the env nment without implicit use of metric information.
Topological maps are generally represented by graphs whose nodes are distinetive
locations and arc that connects odes denote path inforination between locations.
Whenever topological maps are v d, localization and navigation have to be performed
using location recognition algori ms. Localization using topological maps performs
well in structured environments where distinctive locations are more frequent. In
unstructured environments where location recognition is more complex, there is more

risk of fail to localize [42,43].

3.1.3 Occupancy Gr Maps

Two dimensional occupancy grid maps which are also known as evidence grid maps
were introduced by H. P. Moravec et al {44]. In this representation. the environment

is subdivided into a grid of r 1igular or square cells. Resolution of the environ-
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ment representation directly depends on the size of the cells. Each and every cell
is associated with probabilistic measure of occupancy, additional to this grid of the
environnic . Each cell contains any real number in the interval [0, 1] and that nun-
ber describes the possible cell states, namely occupied, unoccupied and unknown.
Occupancy probability of 1 means it is definitely occupied while occupancy proba-
bility of 0 means it is d nitely unoccupied. Furthermore occupancy probability of
0.5 declares unknown state of occupancy. Occupancy grid is an efficient approach
for fusing multiple sensor measurements and representing uncertainty. It also allows
to incorporate different sensor uncertaintics. Map resolution depends on the size of
the grid cell. Smaller grid cells increase the map quality but it increases memory
requirenient a | number of computations. Occupancy grids represent both occupied
space and unoccupied space of the environment, which are useful for path planning

and obstacle avoidance [34,42 44].

3.1.4 Comparison of ' i1p Representations

The aim of the SLAM is to n a map of the environment to use in future ap-
plications. If the map represents occupied and unoccupied arcas, path planning and
obstacle avoidance can be done ¢ ily. Feature based maps and occupancy grid based
maps provide metric infi  ation abi | the environment while topological maps do
not provide metric information. Metric information is essential in path planning spe-
cially to find e shortest path. 'ccupancy grid map itself provides the probability
of occupancy and such information is valuable whenever robot operates in dynamic
environment. Memory require ent and computational complexity for 2D occupancy
grid are no more a huge burden for modern computers but for 3D occupancy grid is

still challenging. Considering the above factors, feature based maps and occupancy
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w = arctan —— - (3.3)
zz! T Dyy’
T, =73 — (Tcosw — ysinw) (3.4)
T,=7 — (Tsinw + ycosw) (3.5)
Where,
r = % Z:l iy
n
y= % Z Yis
=1
V= 717; &,
1 L;
y==> v
i=1
Serr = 3 Z_:l (z: = )i ),
Sw =52 (i =9 — 7).
=1
Sy = 13 (@ = )y~ 7) 0
Syz’ % (yl - g)(I/ - il)
i=1

The two largest problems v h ICP are that, it is a point-based method that does
not consider the local shape of the surface around cach point and that the frequent

nearest neighbor searches are wutationally expensive.
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re-sampling and map estimation. In sampling stage, the next generation of particles
{r!""} is obtained from the present generation of particles {z\"" "} by sampling from
the proposal distribution 7. Often, probabilistic motion model is used as the pro-
i)

posal distribution. In next step individual importance weight u',(' is assigned to each

particle according to the impe .ance sampling principle.

i p(l'(_i)|21:{fll1.¢\ .
wl = —‘('1.') - (3.7)
7T(~T1;1|21:t,u1;t)

The weights are assigned for t. t that the proposal distribution 7 is in general not
equal to the target distrik  ion. Particles are drawn with replacement proportional
to their importance weights. After re-sampling all the particles will have the same
weight. Final step of particle filter SLAM is to update the map. For cach particle, the

(i)
1:4

corresponding map estin ¢ p(m(i)|x(1'l:3, 1) is computed based on the trajectory &«
of that san le and the history of observations z;,,. Weights of the trajectories should
be cvaluated from scratch whenever new observation is available. This procedure

would be inefficient, since the length of the trajectory increases over time. Following

assumption is used in order to ¢ :cc 2 this inefficiency.
7T(l'1:r|21:r»u1;t) =7 |Trgon, Zee v (T 201 Uee) (3.8)

where 7 is the proposal distribustion.

Based on Eq. 3.7 and 3.8 we 1ts are computed as,

5 (rOlz, )
wi) = 27 (3.9)
TT(I}:”Zl:u’Ul:t)
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case of a robot equipped with a laser range finder. To overcome this problem, most
recent observation z; has to be considered when generating the next generation of
samples as used in FastSLAM 2.0. Integration of z; into proposal allows to focus the
sampling on the meaningful regions of the observation :elihood. The distril: ion
(@)

(1) i
i : pzm™. x)plrx” | w) )
P(wz|mr§31,$§g172zwuf) = 1 \%‘ en (3.14)

P(Zt|mtl—1,‘~vt—1 U )

is the optimal distribution with respect to the variance of the particle weights. With
the integration of z; into the proposal distribution, the computation of weights is as

follows.

: ol zdm )20y
- ” )Z(?i() |y ) (3.15)
plaemy?y 22y 2, w)
o mp(admiy, o e ey u) ,
x W,y = = (3.16)
p(zedm e )plaede, 2y ue)
p(z,]mit)l,r,@l,u()
= u,'ii_)l.p(z,[rn,gj_)l,r,_l, uy) (3.17)
= w) /p(zﬂx')p(a"]xfgl,ut)d;r' (3.18)

Whenever modelling mok : robot equipped with an accurate sensor like laser
range finder, it is convenient to use an improved proposal distribution since accuracy
of the laser range finder leads to extremely peaked likelihood functions.

In order to calculate the next generation of samples, first use a scan matching
algorithm to determine the m( 1ingl area of the observation likelihood function.

Then sample that meaningful & 1 : d evaluate the sample points based on the
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target distribution. For each particle ¢, the parameter uii) and Z,(i) are determined
individually for A sampled points {z;} in the meaningful area of the observation

likelihood. Gaussian parameters are estimated as

1 K
—-<—Z plafmi?, z)) (3.19)
A R - - :
= = pladmiy, ) (x; = 1) (s = ™)’ (3:20)
-

with the normalization factor

K
) Zp(:dmfi)l,;vj) (3.21)
=

In this wayv, closed form approximation of the optimal proposal can be obtained.

Using this proposal distribution, 1e weights can be computed as,

wt = wt(l 1Pz |mt 17135 )17Ut) (3.22)
_ u(i) ( | O] 10 3 ‘)3)
= w2y [ plamZy 2’ )da (3.2

. [{ .
= Y pladmi?y, ;) (3.24)
=1

=w®, @ (3.25)

Where 1t is the normalization { .or that used in the computation of the Gaussian

approximation of the proposal in 7. 3.21.

46






3.4 Loop Closing

SLANMI problem is identified to overcome the drawback of inability to determine the
robot posce only using odometry. Various SLAM techniques estiniate the robot pose
precisc - but can not completely eliininate the error. Therefore residual error is
accumulated over the motion of the robot. This can he clearly seen when robot
entered to previously visited area after traversing a large loop. Due to accumulation
of error, corresponding features detected at the beginning of the loop and at the end
of the loop will not be at the same spatial location of the acquired map. Loop closing
is perfornied in order to eliminate these topographical inconsistencies. Loop closing
procedure contains three steps detection of loop closure, calculation of correction and

distribute the correction over in 2 loop.

3.4.1 Detecting Loop Ulosure

Main step in loop closure is the detection of the opportunity to close a loop. Various
techniques » tect the I v different solutions SLAM problem are given in [3,5.
16,48.19]. The loop closure detection method used in this thesis is described here.
Each and every particle creai  and updates a occupancy grid map m and topo-
logical map G') and both are updated while performing the SLAN. Vertices of the
topological map G| represent positions visited by the robot and edges of G
represent the trajectory  rresponding to the ith particle. While the robot is pro-
gressing. nodes are added to G®, if distance to previous node exceeds a threshold or
none of the other nodes is visiblc ) current pose of the robot. Whenever, a new node
is added to G| an edge is also added from current node to most recently visited node.
Ray casting operation in occupancy grid should be performed, in order to determine

whether or not the previous node is visible from current pose of the robot or another
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node other than previous node is visible to current node.

While robe is progressing and maps are continuously updated, if another node
other than previous node is visible to the robot then ere may he a possibility of
closing a loop in the area. When the robot is further moving, if the distance to the
newly visible node from the robot is decreasing in occupancy grid map m while the
distance to the same node is increasing in topological map G, then it is confirmed

that loop closing is immninent.

3.4.2 Calculation of Correction and Distribute over the Loop

In grid based SLAM the only available data is a set of points obtained from laser
scans. Calculation of corrections to the poses along the loop can be treated as a scan
matching problem. Instc  of n ching two scans, batch of scans at the beginning
of the loop and at the « 1 of 2 loop are matched in order to find the relative
pose(accumnulated residual error) of two batches of scans. The relative pose obtained
from scan matching is the correc  n that is necessary to align corresponding features
obtained at the beginning and at the end of the loop.

The accumulated residual error is distributed proportionally between all the poses
along the loop to correct the acc nulated error at the end of the loop. The error is
distributed proportionally  corc 1g to the magnitude of the displacement and turn

at each motion.
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3.4.3 SLAM Algorithm

SLAM algorithm used in this study is shown below, The algorithm requires the sample
set of the previous time step(S;_;), t @ most recent observation(z;), the most recent
control command to robot(u,.;) and topological map for loop closing(G). Algorithm
returns the new sct of samples(S;) and topological map for loop closing (G)and cor-

respond to current robot position.

for all sfl_)l € Sdo
< Jtﬁ'_)l, wt(i_)l.'mgi_)l >= Sﬁ\

//scan matching

) : i
' = argmazgp(xlm,, 7, 1)

(2

if ¥ = failure then

)
1‘51) ~ p(I,[Iﬁl)

else
//si ple around the mos
forall =1,..,K do

T~ {l‘jHIJ—i’(i)l <

end for
//compute Gaussian prop
1 =(0.0.0)T
n® =0

for all ¢; € {z),...,xx} ¢

(1) )

i) =1 4 rp(zmf?) 1))

' =pl 4 p(z ‘BI,IJ)
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end for
' = w0
mi=o
for all z; € {x1,...,Tx} ¢
S = Ty = ) = ) p(dmi @)
end for
£ =3
//saniple new pose
o) ~ N, 52)

//update importance wei; ¢t

end if
//update occupancy grid m:
m!" = integrateScan(m'”,, 2V z)
//update sample set
S =8 U {< xfi),wfi),mfi) >}
//update topological map
robotPosition = (a:,(i).X, Igi).Y)
dist = EucledianDistance(robotPosition, lastNode(G))
if dist > 2m then
insertNewNodeTo(G ™)
flagNewNode = 1
end if
end for
Ngs=

2 \u'“')'
if N{ff < T then
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S = resample(S;)
end if
if lagNewNode == 1 then
hw = max(wy)
visibleNo = rayCasting(G"*))
if visible )de == 1 then
visibleDistance = calculateVisibleDistance(visibleNode(G ")), lastNode(G "))
distanceAlongGraph = calDistanceAlongGraph(visibleNode(G")), lastNode(G"*)))
if (visible Distance < 6m) AND (distance AlongGraph > 20m) then
doLoopCLosing
end if
end if
end if
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3.5 Experiment

3.5.1 Mc ile Robot P tform

An Active Media Pioneer 3 AT mobile robot equipped with SICK LNIS 200 laser range
finder is used to verify the validity of the algorithm. Pioneer 3 AT robot is equipped
with onboard C 104 computer 1d accessory cards. Robot has a differential drive
svstem and each drive motor is equipped with quadrature optical shaft encoders for
position and speed sensi Robot is also equipped with a gyroscope to improve the
estimation of robot position. SICK LMS 200 laser range finder is a two-dimensional
scanning sensor. Device does require any position marks or reflectors. Time of
flight of laser pulse is used to e mate the range from sensor to the object. SICK
LMS 200 has maximum range of 50m and angle resolution of 0.5% and 1°. Angle

resolution of 0.5% is used to have a better accuracy in scan matching.

3.5.2 Details of Mapped Area

Robot is traversed in the first floor corridor of S.J. Carew Building, Memorial Uni-
versity. Corridor is a rectar 1ilar loop about 65m in length and 28m in width. Raw
odometry and lased range finc - readings were extracted from the robot log. MAT-

LADB program code is written to 1n the SLAM algorithm off-line.

3.5.3 Res lIts

Figure 3.1 shows a map of the er  ronment generated by raw odometry of the mobile
robot. The map generated by od  >try is not a complete map, it fails to map straight
corridors and 90° corners correctly. Odometry errors are accumnulated over the loop

and as a result the genera 1 map is erroneous.

53


















Chaj ter 4

Multi-rKobot  astSLAM and Map

Merging

4.1 Int1 ducti_n

In multi-robot SLAM, two or more robots travel independently and provide individual
maps. The important task is to 1 rge all the maps from different robots, in order to
have a complete map of the environment.Various solutions are presented in literature
for joining maps from team of m: ile robots.

G. Dedeoglu et al [50], S. run et al [41] and S.B. Williams et al [22] proposed
to localize a robot in another robot’s map to find transformation between two maps.
This method is computationa r exp sive. Markov localization makes the strong
assumption that the robot is somewhere in the map and that can be casily lead to
false location somewhere in the r  p (false positive).

W. H. Huang et al [51] pr d a method to merge topological maps. But the
topological map nientioned in the algorithm is not the topological map generally

discussed in robotics literature. Algorithm needs a specially created topological map
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of wall like features obtained from a sensors such as laser range finder. Having such a
map, . jorithm scarches for the possibility of aligning line like features of two maps.
Results depict the proper merging of maps. The map necessary for the algorithin
does not generated by any SLAM algorithm, therefore generating such a map will
increase the computational burd ~ There will be less computational complexity. if it
Is possible to e image processing techniques to generate required topological map
from occupancy grid map.

S. Carpin et al [52] address the map merging as an stochastic scarch to solve an
optimization problem. The algorithm is based on adaptive random walks to merge
occupancy grid maps independent from how they are generated. Suitable transforma-
tion aiming to overlap two grid maps is sought in the space of possible transformations.
Further improvements are introduced by A. Birk et al [53] who attempts to detect
failures and try to guide the search in order to obtain the result in an cfficient man-
ner. Algorithm is guaranteed to find optimal solution when the number of iterations
tends to infinite. Computational requirement due to iterative nature of the algorithin
prevents its use in real time ope  ions.

X. Ma et al [5 introduced an adaptive genetic algorithm based method for oc-
cupancy grid map mergit  Adaptive genetic algorithm is used to prevent premature
convergence, low convergence rate an  low stability. Simulation results confirm the
feasibility of the algorithm. But simulation is done for a simple map. No results
are presented for merging eon  lex real world occupancy grid maps. Authors claim
that the algorithm outperforms the adaptive random walk based map merging algo-
rithm presented in [53]. But there is no any analysis of computational complexity
and memory requirement to prov  the efficiency of the algorithin.

S. Carpin et al 5] proposed ovel algorithm to find out the transformation be-

tween two occupancy grid basc  maps using spectral information of the maps. Unlike
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4.2.1 Computation of Rotation between Two Maps

Orientation between two maps is calculated as first step of the algorithm. Occupancy
grid map is transformed to a binary image by setting all occupied cells to black and
all other cells to white. Then discrete Hough trar  >rm is applied. Discrete Hough
transform discretizes the hough domain for p and 6 and it can be represented by a
matrix. On this point onv ds, f  amap M, the symbol HTy, is used to indicate the
discrete Hough transform in tl:  thesis. HT 'y has 8, colunmns and p, rows. Associated

liough spectrum for a given HT can be calculated as follows:

Ps
HSm(k) =N Tm(i k) 1<k <6, (4.1)

=1
Hough spectrum is extended periodically for values of k outside the range 1....,6,.
Hough spectrum (HS.) is a ieasure of the directions where more frequent lines
arc detected in M. Hough spectrum is a unidimensional signal. Therefore cross
correlation between two such signals can be used to determine similarities. Correlation
outlines translations that will ap two signals. Since Hough spectrum is defined
over orientations, cross correl  on should be calculate considering 27 periodicity
imto account. In other words, is necessary to calculate circular cross correlation.
For two hough spectrums HSxq,and HSyy, with same sampling periods, the circular
cross cotrelation CCyn, can e defined as follows:

2

CCuim, D Sm(DHSm(i+k) 1<k <6, (4.2)

i=1
Cross correlation of Hough spectrums gives useful indications about how H.S v, should
be translated in order to overlap it with HSx,. Translation of Hough spectrums

corresponds to rotation of associated m: 3. Therefore local maxiia of circular cross
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SXa,. the translation ¢ mg x axis is given by the global maximum of the cross

correlation between them. It is defined as follows:

CCXptp(T) = D SXom, (k +7)SX gy (K) (4.5)

k=—00

Translation along y axis can be calculated in similar way using following equation.

+0o0
CCYpmy(T) = S SYap, (k + 7)SY, (k) (4.6)

r=—00

At the end of this step, all together there will be n possible transformations. Ac-
ceptance index(w)is calculated it der to find the best transformation fromn candidate
transformations. Acceptance index is a measure accuracy of candidate transforma-

tions.

4.2.3 Acceptance Inde

Let A, and M, be two maps wit  r rows and ¢ columns. The agreement between M,
and M, re] sented by arg(M), Ms) is the number of overlapping cells in Af} and Al
after transfor1 ition that are ei er both free or both occupied. The disagreement
hetween A/, and M, represen 1 by dis(M;, Ma) is the number of overlapping cells
after transfor1 tion such that  is free and Af, is occupied or vice-versa. The

acceptance index between two maps is defined as

0 if arg(M,. M) =0
w(My, M) = Jrarghh ) (4.7)
LM arg(ML M) # 0

“dis(M,Mz)
Only occupied and unoccupied cells are considered to calculate the acceptance index

while simply ignoring the unknown ¢ s. Two extremes are reached when the maps
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do not agree  a single cell or when they are the same. When two maps do not
agree in a sing - cell, arg(M,, Ay) will be zero hence w is zero. When two maps are
identical dis(My, My) is zero, hence w is one. Values between these two boundaries
are obtained for intermediate situations. According to [52], acceptance index values
less than 0.9 indicate either the 1 ) maps does not overlap well or there is no suitable

transtformations and candidate t 1sformation should be discarded.

4.3 Experiment

Laser and odometry readings t 1 the experiment in Chapter 3 were taken and sensor
measurements are divided — to two parts with overlap. Set of readings from the end
of the data set were omitted to have one set of readings and sct of readings from
beginning of the readings were omitted to generate another set of readings. Two
readings sets were treated as they were obtained from two different robots. Maps
obtained from two sets of readings are shown in Figure 4.1 and Figure 4.2.

Hough spectrums of map 1id map 2 are shown in figure 4.3 and figure 1.4
respectively.  Circular cross correlation of two Hough spectruins arce in figure 4.5.
Each and every local maximum  circular cross correlation is a candidate angle for
possible rotation between o iaps.  nce there is no rotation between them therve
is only one maximum at 1°. By incorporating uncertainty ¢ of one degree which use

throughout the experiment it will have the exact angle 0°.
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maps are treated as images hou; transform based map merging. Therefore required

translation in both X-directic d Y-direction are shown in image coordinates.
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Figure 4.9: Y-Spectrums of map 1

Merged map is shown in |

» 4.12 and it has the same accuracy compared to

map generated from single robot SLAM.
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Figure 4.10: Y-Spectrums of rotated map 2
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Figure 4.11: Cross correlation of Y-spectrums of two maps

w(M), M,) for map in Fig 4.12 is 0.9774. If w(M,, My) is less than 0.9 those
transform 10u  be discard 1is can be happen either when there is no enough
overlap between two maps or when there is no relationship between two maps in real
world. Map obtain from multi robot SLAM is in good quality compared to map
obtained from single robot SLAM. But map obtained from single robot SLAM is
more accurate since loop closing is applied to that map. F. Lu et al [56] introduced
to avoid the prol 'm due to non Hop closed section in multi robot SLAM. It worked

well since map is simple but t s method will fail when there is non loop closed
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acquisition. Considering the power consumption by single robot and multiple robot,
computational complexity and capability of robots, multi robot system is efficient to

deploy and the larger the higher the efficiency.
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will bevond the capability of single robot. Even if it is within the capability of single
robot. such a deployment will not be cost effective and will not be time effective.
Odometry and sensor readings from Pioneer 3AT were divided in to two scts
with overlap. Single robot SLAM algorithm described in Chapter 3 was applied to
both data sets. Two partial maps were obtained by treating as if two data sets were
obtained from two robots. Map merging technique described in Chapter 4 is emploved
to combine two maps. Resulting map of the map merging algorithin has the same
accuracy as the map of the environment generated by single robot SLAM. Results
prove the feas ility of employing multiple robots which divide the computational

burden of map building and terrain acquisition among team of robots.

5.2 Future Works

Although proposed algorithm pe Hrms well, there are modifications to the algorithm
that will in  rove the robustness of the algorithin. Hough spectrum based map merg-
ing algorithm does not allc  to incorporate previous knowledge of relative orientation
hetween two maps, even if they are available. This situation can arise when two robots
nmutually recognize each other during mapping. This drawback can be eliminated hy
checking line to line structural consistency. Hough transform bhased line detection can
be employed to extract lines from two occupancy grid maps.

There may be situations that wo robots will mutually recognize cach other more
than once at different locations. In such situations all these conditions should be
considered when merge two me  from those two robot. Hough spectrum based
techniques may fail because sti there may be residual errors due to loop closing. Best
way to deal with this problem is to maintain a list of mutual observation and employ

graph based optimization techn e to merge maps. This will help the algorithm
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to close larger loops wl h single robot in the group has not explored that loop

completely.
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