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Abstract 

Although the aetiology of many neurodegenerative diseases differ, they all share a 

common feature in that they result in neural cell death. Neural precursor cells (NPCs) of the 

adult brain are thought to be capable of regenerating the injured brain by replacing cells that are 

injured or have died. NPCs ofthe adult brain are maintained in a balance of proliferation and 

death; however, little is known about the molecular mechanisms that regulate these processes. As 

Mel- I is a critical survival factor for NPCs in the embryonic brain, I questioned whether Mcl-1 

regulates the survival of adult NPCs. To determine whether Mcl-1 is expressed in adult NPCs, I 

used BrdU to identify different subpopulations ofNPCs based on their proliferation kinetics. In 

doing so, I demonstrated that Mel- I is expressed in both the neural stem and neural progenitor 

populations ofthe adult subventricular zone (SVZ). To determine the role ofMcl-1 in adult 

NPC's, I used the Crellox conditional knockout system to conditionally knock out Mcl-1 in adult 

NPCs. To assess Mcl-1 loss-of-function in NPCs in vitro, l first drove Cre recombinase off the 

chicken P-actin promoter and stained the cultures with Nestin. Secondly, I drove Cre 

recombinase off the Nestin promoter (NesCre), which resulted in Cre expression specifically in 

NPCs. In both experiments, Mcl-1 loss-of-function resulted in a 2-fold increase in apoptosis in 

Cre transfected Mcl-1 rtr NPCs. When Mcl-1 loss-of-function was characterized in vivo, there was 

a 2-fold increase in apoptosis in Cre transfected Mcl-1 rtr NPCs. Finally, Mcl-1 gain-of-function 

was assessed, in vitro, which resulted in a 2-fold reduction of apoptosis in Nestin + NPCs. 

Collectively, these data demonstrate that Mcl-1 is a prosurvival factor in adult NPCs. Therefore, 

Mcl-1 gain-of-function may lead to an expansion of the adult NPCs, which could offer a putative 

therapy for neurodegenerative conditions and ultimately facilitate neural regeneration. 
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Chapter 1 

Introduction 

1.1 Adult Neural Stem Cells and Neurodegenerative Disease 

Although the etiology of many central nervous system (CNS) diseases such as stroke, 

Alzheimer s di ea e and Parkinson's disease differ, they all share a common feature in that they 

result in neural cell death, which leads to functional impairment. Various cell replacement 

therapies have been attempted including transplant therapies; however, cell death remains the 

biggest drawback to exogenous cell therapies. With the discovery of endogenous neural stem 

cells (NSCs) in the adult mammalian brain (Reynolds & Weiss, 1992), there has been a lot of 

excitement surrounding the possibility of therapeutically manipulating the e populations in a 

variety of neurodegenerative conditions. For instance, several stud ies have shown a transient 

increase in cellular proliferation in the subventricular zone (SVZ) after ischemic stroke 

(Arvidsson et a!., 2002; Jin eta!., 2001 ). However, this response from the SVZ seems to be 

insufficient as only a mall number of cells differentiate into neurons. By identifying the 

molecular mechanism regulating proli feration, survival migration, differentiation and 

integration, it may be possible to optimize neurogene is and ultimately regeneration after neural 

degeneration or injury. This thesis focuses on the survival of neural precursor cells (NPCs) and 

puts forward the hypothesis that the expression levels of a specific protein, myeloid cell 

leukemia I (Mcl-1 ), dictates the sensitivity ofNP s to apoptosis within the adult mammalian 

brain. 
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1.2 Neural Precursor Cells of the Adult Mammalian Brain 

In 1992, Reynolds and Weiss (1992) used the two defining properties of all stem cells, 

self-renewal and potentiality, to show that cells found within the SVZ of3- to 18-month old 

adult mice are mitotic and have the capacity to differentiate into neural lineages in vitro, thus 

providing empirical evidence for the existence of adult NSCs. Subsequent studies have found 

that adult neurogenesis occurs within the SVZ and the hippocampal subgranular zone (SGZ). 

Within the SVZ there are several subpopulations, which are collectively known as NPCs (Figure 

I). The most primitive cell types are the neural stem cells (type B cells), which are defined as 

having long-term, self-renewing capacity and multipotentiality, meaning that they can 

differentiate into all three neural lineages, which include neurons, astrocytes and 

oligodendrocytes (Morshead et. al, 1998). The more restricted type C transit amplifying cells 

(TACs) have lost their self-renewal capacity and are restricted to a single neural cell lineage 

(Morshead et. al, 1994). These cells give rise to the tangentially migrating neuroblasts (type A 

cells) that migrate to the olfactory bulb via the rostral migratory stream and differentiate into 

both granule and periglomerular inhibitory neurons (Doetsch, 2003). Table I provides a list of 

phenotypic markers that will be used to identify these cell types in our work. 

The type B, NSCs persist in the adult mammalian brain largely due to their specialized 

microenvironments or niches that support their lifelong self-renewal and multipotential 

capabilities. As stated above, one ofthe main neurogenic niches includes the SVZ (Figure 1). 

This area consists of a thin layer of dividing cells that is separated from the cerebrospinal fluid 

by a layer of multi-ciliated ependymal cells. This dividing layer contains the type B cells, which 
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have been identified as astrocytes based on their ultrastructural features, phenotypic markers as 

well as electrophysiological properties (Doetsch eta/. , 1999). Although these SYZ astrocytes 

have the characteristics of multi potent stem cells both in vitro and in vivo, there is some debate 

as to whether the SGZ neurogenic niche contains neural stem cells or only committed neurogenic 

precursors (Seaberg & van der Kooy, 2002). Therefore, this thesis will focus on the SYZ PC s 

from this point unless otherwise stated. 

Table 1: Marker expression for the different stages of neural cell differentiation in the 
adult brain. Modified from Okano et al., 2007 
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Figure 1. Cell Types of the Adult Subventricular Zone. The SVZ (orange) is adjacent to the 
lateral ventricles and is lined with multi-cil iated ependymal cells (grey). Type B SVZ astrocytes 
(blue) are stem cells that g ive rise to migrating neuroblasts (A, red) destined for the olfactory 
bulb via the trans it-amplify ing type C cells (green). (Adapted from Riquelme et a!., 2008). 
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1.2.1 Survival and Proliferation of Adult Neural Precursor Cells 

The NPCs found within the adult SYZ exist in equilibrium, such that new cells are 

constantly being produced while cell death is also occurring. In a defining study Morshead and 

van der Kooy ( 1992) used the thymidine analog 5-Bromo-2-deoxyuridine (BrdU) to demonstrate 

that the majority of mitotically active cells ofthe adult subependyma are the type C and type A 

neural progenitors, which collectively have a cell cycle time of approximately 12.7 hours. 

Furthermore, this study suggests that for every neural progenitor cell division, I progeny dies. In 

a subsequent study, Morshead et al. , ( 1994) demonstrated that when the neural progenitors of the 

subependyma are depleted using high doses of tritiated thymidine eH-thy) the much smaller, 

more quiescent NSCs will repopulate the neural progenitor population by temporarily shortening 

their cell cycle time. Normally, the quiescent NSC population has a cell cycle time of roughly 28 

days and constitutes less than I% of the proliferating subependyma population, in vivo (Craig et 

al., 1994; Morshead eta!. , 1994). Whether there is an endogenous level of cell death occurring in 

the NSC population has yet to be determined. However, for every type C division, one progeny 

undergoes cell death (Morshead and van der Kooy, 1992). 

The NPCs of the adult SYZ can also be isolated and grown to form clonal neurospheres 

in vitro when epidermal growth factor (EGF) is added to serum free media (Reynolds and Weiss, 

1992; Morshead et al. , 1994). Cells that are derived from neurospheres are multipotent and self­

renew, thus meeting the criteria of type B neural stem cells. On this basis, it had been assumed 

that only the quiescent neural stem cells were capable of producing neurospheres (Morshead et 

a!., 1994) and as a result, many used the neurosphere assay to assess how various manipulations 

to NSCs affected these cardinal properties of neural stem cells. However, Doetsch eta!. , (2002) 
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seriously challenged the assumption that type 8 NSCs were the primary neurosphere forming 

cells when they showed that the majority of EGF-responsive cells appear to be Dlx2+ neural 

progenitors. The expression of Dlx2+ is indicative that the neural progenitor cells have begun the 

differentiation process toward inhibitory neurons destined for the olfactory bulb (Panganiban and 

Rubenstein, 2002), therefore the demonstration that 01x2+ cells are capable of returning to a 

proliferating, sphere forming stem cell underscores the plasticity within the NPC population. 

Although we have known since the early 1990' s that roughly half of the progeny of type 

C cell divisions die in the adult brain, little is known about the molecular mechanisms that result 

in such a high rate of cell death. As the expansion of adult SVZ NPCs is hypothesized to be a 

putative therapy for a variety of neurodegenerative diseases, understanding how endogenous cell 

death of adult NPCs occurs is of huge significance. As apoptosis regulates the size of the 

embryonic NPC population (Kuida, eta!., 1998; Woo, et al. , 1998), this thesis focussed on 

identifying a potent anti-apoptotic factor that is expressed in adult NPCs, which could be used to 

expand the NPC population and provide the injured brain with an enhanced regenerative 

capacity. 

1.3 Regulation of Adult Neural Precursor Cells 

1.3.1 Apoptosis 

Apoptosis was a term first used by Kerr et al., (1972) to describe an energy dependent 

form of cell death that is characterized by DNA fragmentation, nuclear condensation and 
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membrane changes without harming neighboring cells. The two major protein families that 

regulate apoptosis are the caspase family ofproteases and the 8 cell lymphoma (Bcl-2) family. 

1.3.1.1 Caspase Family of Proteases 

There have been fourteen caspases identified and all share common characteristics 

including being aspartate-specific cysteine proteases, having the conserved pentapeptide active 

site "QACXG" (X can be R, Q or D) (Fan eta!., 2005). Furthermore, the caspase family is 

divided into 3 subfamil ies based on amino acid homology: the initiator caspases, which include 

caspase 9, the apoptosis executioners including caspase 3 and 7, and the inflammatory mediators. 

With the exception ofcaspase 14, a ll ofthe caspases are translated as inactive zymogens and are 

regulated at the posttranslationallevel. The initiator caspases contain domains such as the 

caspase recruitment domain (CARD) that enable these proteins to interact with other molecules 

such as apoptotic protease activation factor-1 (Apaf-1 ), which then cleaves the executioner 

proteins (Fan eta/., 2005). Once activated the executioner proteins begin cleaving cellular 

proteins resulting in the morphological changes that are characteristic of apoptosis such as 

plasma membrane blebbing and nuclear condensation (Fan eta/. , 2005). 

There are a variety of caspase fami ly members involved in both developmental apoptosis 

and apoptosis that occurs after acute injury or in CNS degeneration. For instance, embryonic 

NPCs from either caspase 9 or caspase 3 null mice fail to undergo normal developmental 

apoptos is (Kuida, eta/., 1998; Woo, et al., 1998). This results in an increased number of 

surviving NPCs and differentiated cells causing an expanded ventricular zone and cortex, which 

ultimately leads to lethality at the perinatal period (Kuida, eta!., 1998; Woo, eta/. , 1998). 

Furthermore, a variety of injury models of the adult CNS including spinal cord injury, ischemia 

and traumatic brain injury, have demonstrated that significant cell loss occurs through the 
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activation of active caspase-3 and ultimately apoptosis (Springer, 2002). In these models, 

neurons, glia and newly born cells that have migrated from the NSC niches are vulnerable to 

apoptosis (Springer, 2002). Finally, caspase 3, 6 and 8 activity has been demonstrated in both 

neurons and glia of Alzheimer's disease models (Zhang et al., 2000). In all models of 

Alzheimer's disease that identified apoptosis as a contributing factor to degeneration, the 

apoptotic cascade converged on the activation of caspase 3 (Gervais eta!., 1999). Collectively, 

these data demonstrate that active caspase 3 is the major executioner caspa e for CNS apoptosis. 

1.3.1.2 Bc/-2 Family 

The Bcl-2 family is composed of 12 core proteins that contain at least one of the Bcl-2 

homology domains (BH domains) (Chipuk et al., 20 I 0). As described in Figure 2, proteins 

within the Bcl-2 family are functionally divided into three groups based on the presence of the 

four BH domains. The anti-apoptotic proteins contain all four BH domains and function to 

inhibit the oligomerization of the Bax and Bak. The pro-apoptotic proteins are functionally 

subdivided into two groups: the multidomain effector proteins and the BH3-only proteins. The 

multidomain, pro-apoptotic proteins, Bax and Bak, contain BH1-3 domains and activate the 

mitochondrion-mediated pathway of apoptosis after an apoptotic signal has been given. The 

second major class of pro-apoptotic proteins is the BH-3 only proteins and this group is further 

subdivided based on their ability to interact with the anti-apoptotic Bcl-2 proteins, or both the 

anti-apoptotic and multidomain effector proteins. The sensitizer BH-3 only proteins only interact 

with the anti-apoptotic proteins and the current theory suggests that they displace the activator 

proteins, which are then free to facilitate the oligomerization ofBak and Bax, which leads to 

mitochondrial permeablization and ultimately apoptosis (Chipuk eta/., 20 I 0). 
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Within the CNS, Bcl-2 expression peaks from E I 1- 15 in the mou e brain and then begins 

to decline with little staining occurring at birth (Krajew ka et al., 2002). Expression of Bcl-xL, 

another Bcl-2 anti-apoptotic protein, peak in the neural population during the formation ofthe 

neural tube and continues to stay high through birth only to decline about I week after birth 

(Krajewska et a /., 2002). With regard to the multidomain pro-apoptotic Bcl-2 proteins, it is 

known that Bax and Bak are both expressed in the proliferative areas of the brain, as concomitant 

knock out (KO) of these proteins results in hypercellularity (Lindsten et a /., 2005). Although 

there has been ome evidence of the BH-3 only protein Bid in the developing N (Krajewska et 

al., 2002), little is known about the expression and/or function of other BH-3 protein with in 

either the proliferative zone of either embryonic or adult brain. Furthermore, the molecular 

mechanisms that regulate cell death in the adult NPC population have yet to be identified, despite 

the fact that this could optimize the therapeutic potential of this population. 

1.3.1.3 The Mitochondrial- Mediated Apoptotic Pathway 

Figure 3 provide a summary of the molecular mechanisms involved in mi tochondrial­

mediated apoptosis. Multiple apoptotic signals such as endoplasmic reticulum stre s (ER stres ), 

trophic factor withdrawal and UV radiation have the capacity to induce apopto i by causing 

BH-3 only proteins to catalyze Bax and Bak homo-oligomerization, which ultimately leads to the 

permeablization of the outer mitochondrial membrane (OMM). While it is knm n that Bax and 

Bak are the proteins that homo-oligomerize to create the pores within the OMM, there have been 

several key question surrounding the mechanism by which homo-oligomerization of these 

proteins occurs. In the healthy state, both Bax and Bak exist as monomer with Bax being 

unbound in the cytosol and Bak existing as an OMM tran membrane protein. The Bak monomer 

i in erted into the OMM because its C-terrninal a9 helix does not interact with the -terminal 
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a. I helix, which is the case for the Bax monomer (Suzuki et al., 2000). It is known that certain 

BH-3 only molecules interact with Bak and Bax to induce homo-oligomerization (Cheng et al., 

2001) but the precise mechanism by which this occurs was not established until recently. In a 

landmark study, Kim et al. , (2009) showed that under ER stress, the BH-3 only activator proteins 

tBid, Bim and PUMA bind to theN-terminal a. I helix ofBax, which releases its C-terminal a.9 

helix enabling the Bax monomer to insert into the OMM. Once inserted into the OMM, the 

activator proteins can continue to interact with N-tenninal of both Bax and Bak to induce the 

higher-ordered tetramers that create the transmembrane channel known as the mitochondrial pore 

that allows cytochrome c to be released from the mitochondria (Saito et al., 2000). 

Once cytochrome c is released into the cytosol, it binds to Apaf-1 in an energy dependent 

manner (Li eta/. , 1997). Other proteins such as second mitochondria-derived activator of 

caspase (SMAC) are released through mitochondrial pore, which interfere with the ability of 

proteins such as X chromosome-linked inhibitor of apoptosis protein (XIAP) that block the 

activation of caspase 3, 7 and 9. Once activated, caspase 9 can interact with cytochrome c and 

Apaf-1 to form a complex known as an apoptosome (Rodriguez & Lazebnik, 1999), which is 

capable of cleaving the effectors caspase 3 and caspase 7. Once activated, these proteins begin 

cleaving cellular proteins ultimately resulting in morphological change that are characteristic of 

apoptosis such as plasma membrane blebbing and nuclear condensation (Fan et al. , 2005). 

The importance of cytochrome c in the developing central nervous system was 

underscored when Hao eta/., (2005) created a knock-in mouse that expressed a mutant 

cytochrome c protein capable of functioning in oxidative phosphorylation but defunct in its 

apoptotic role. This resulted in an overexpansion in the proliferating ventricular zone a well as 

an overexpansion ofthe cortex and midbrain by E14.5. Similar results were found in Apaf-1 
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knockouts (Hao et a/. , 2005), which collecti vely underscores the importance of mitochondrial­

mediated apoptosis in regulating the size of the NPC population during development. 

Within the mitochondrial-mediated apoptotic pathway, the in itiation of apoptosis can be 

inhibited if the formation of the mitochondrial pore is prevented (Lindsten eta/. , 2005). Kim et 

at. , (2006) have demonstrated that the key role of the major anti-apoptotic proteins, Bcl-2, Bci­

XL and Mel-t is to sequester and inhibit the Bl-1-3 activator proteins that catalyze the homo­

oligomerization ofBak and Bax. This study went on to show that the role of the remaining Bl-1-3 

only proteins, Bad, Noxa, Bmf and Bik-Blk is to prevent the anti-apoptotic Bcl-2 proteins from 

sequestering the activator Bl-1-3 proteins. More specifica lly, Kim et al., (2006) showed that Bad, 

Bmf and Bik-Blk were all capable of inducing apoptosis by displacing Bid from both Bcl-2 and 

Bel-XL, while Noxa was the only BH-3 protein capable of inducing apoptosis by displacing Bid 

from Mcl-1. 

When comparing the roles of the three major Bcl-2 ant i-apoptotic proteins in the 

developing CNS, Mel-t emerges as a critical survival factor in NPCs during neurogenesis. Loss­

of-function studies have shown that Bcl-2 deficiency results in a loss of sympathetic, motor and 

sensory neurons postnatally (Michaelidis et al., 1996), while Bcl-XL deficiency causes a 

reduction in catecholaminergic neurons (Savitt et a!., 2005) . However, Mel- I is the only anti­

apoptotic family member required for embryonic NPC survival during neurogenesis (Arbour et 

a!., 2008). As Mel-t plays such an important role in the survival of the embryonic NPC 

population, it is foreseeable that Mel- I may play a similar role in the adult NPC population. 

Furthermore, if Mel-t was a survival factor for adult NPCs, it could be an appropriate target 

when addressing the question of how one could decrease the endogenous rate ofapoptosis within 

the adult NPC population. 
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Bcl-2 Protein Family 
Anti-Apoptotic Multidomain BH3-only Proteins 

Proteins Proapoptotic 
Proteins 

BH3-only Sensitizer BH3-only Activator 
Proteins Proetins 

Bcl-2 Bax Bad tBid 
Bcl-xL Bak Noxa Bim 
Mel- I Bmf Puma 

Bik-Bik 
Table 2. Bcl-2 protein family and the various subclasses 
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Figure 2. Bcl-2 protein family classes. A representation of each of the three major classes of 
proteins found within the Bcl-2 fam ily. The anti-apoptic proteins contain all four Bcl-2 
homology (BH) domains whi le the multidomain effector proteins contain BH 1-3 domains. In the 
BH-3 only class, both the sensitizer and activator BH3-only proteins contain just the BH-3 

domain. 
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Figure 3. Mitochondrial mediated apoptosis. In the healthy cell, Bax and Bak exist as 

monomers. Upon an apoptotic stimulus, the sensit izer BH-3 only proteins d isplace the activator 

BH-3 only prote ins from the anti-apoptotic Bcl-2 fam ily mem bers. This a llows the activator BH-

3 only prote ins to induce homo-oligomerization of Bax and/or Bak, which results in OMM 

permeablization releas ing cytochrome c into the cytosol where it interacts with Apaf-1 to form 

the apoptosome. Caspase 9 is activated by the apoptosome, which in turn activates caspase 3. 

Active caspase 3 c leaves cellular proteins resulting in the morpho logical changes that are 

characteristic of apoptosis. 
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1.3.2 Mcl-1 

The Mel- I protein was first isolated from the ML-1 human myeloid leukemia cell line 

during the differentiation ofmonocytes and macrophages and its gene is located on chromosome 

I q21 (Kozopas eta!. , 1993). The Mel- I gene contains three exons and alternative splicing 

produces mRNA transcripts that either contain or lack exon 2 producing the Mel- I Land Mcl-1 

isoforms, respectively (Bingle et al., 2000). With respect Mel- I L, this isoform contains the C­

terminal transmembrane domain, which allows the protein to be inserted into the OMM. It is 

thought that this is where Mel- I L exerts its anti-apoptotic function by inhibiting the activation of 

Bax/Bak (Bingle et al. , 2000). Focussing on Mel-I s, when exon 2 is excluded, there is a shift in 

the reading frame and the resulting Mcl-1 s protein contains only the BH3 domain, thus this form 

of Mcl-1 is proapoptotic (Bingle et al. , 2000). The shift in reading frame occurs when the cell 

enters into an apoptotic cascade resulting in an upregulation of pro-apoptotoic Mcl- 1 s (Marriot et 

a!., 2005). Furthermore, Mel- I isoform does not contain the C-terminal transmembrane 

domain, which may account for some studies suggesting that Mcl-1 is found in the nucleus ofthe 

cell and in turn, has physiological roles that are distinct from its anti-apoptotic role (Jamil, eta!., 

2005). 

The characterization of Mcl-1 has been minimal compared to other Bcl-2 proteins due to 

the fact the Mel- I germline KOs cannot implant in utero because of trophectoderm defects, 

which results in lethality at the peri-implantation stage (Rinkenberger et al. , 2000). However, we 

do know that Mcl-1 has a relatively short half life of approximately 3 hours (Weng et al., 2005) 

and it is strictly regulated at transcriptional, translational and post-translational levels (Akgul, 

2009). For instance, the signal transducers and activators oftranscription (STATS) family of 
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proteins regulate are capable of regulating survival by targeting the Mel-t promoter at the 

transcriptional level while various microRNAs such as mir-29b can directly inhibit Mel-! mRNA 

translation upon an apoptotic st imulus (lsomoto, eta/. , 2005). This tight regulation also appears 

to be crucial in the prevention of cancer, as Mcl-1 expression is enhanced in a variety of cancers 

including multiple myeloma (Wulleme-Toumi eta/. 2005) and B-cell non-Hodgkin ' s 

lymphomas (Cho-Vega, eta/., 2004). 

Much of the current understanding ofthe role of Mel- I has come about through 

conditional knockout ystems such as the Cre/ lox system. For instance, Opferman et al. , (2003) 

generated a conditional KO of Mel-! to specifical ly assess the function of Mel-t within the 

hematopoietic system. Thei r results demonstrate that Mel-t is essential for the urvival of 

hematopoietic stem cells (Opferman eta!. 2005) and development and survival of the BandT 

cell populations (Opferman eta/. 2003). Furthermore, Mel-! expression i a c ritical surv ival 

factor for hepatocytes, which are the proliferating progenitors required for normal liver 

development and functioning (Hikita eta/. , 2009). 

1.3.2.1 Mel-land the Central Nervous System 

Most of the data surrounding apoptosis of the proliferating populations in the CNS has 

been restricted to the developing brain. Recently, Arbour eta!, (2008) have shown that 

embryonic neural precursors express Mel-! during cortical neurogenesis. When Mel-t loss-of­

function was induced during this time period, there wa an increased level of apoptos is in Nestin­

expressing precursor cells, which ultimately lead to severe deficits in cortical neurogenesis 

(Arbour et al, 2008). Moreover, Arbour eta/, (2008) u ed a conditional KO system to 

demonstrate that Mel-t depletion at embryonic day 8 results in embryonic death by E 16-E 17, 
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which underscores the crucial role that Mel- I plays in the developing bra in. Other studies have 

demonstrated that the anti-apoptotic activity ofNotch I in NPCs can be attributed to Mel-! 

upregulation (Oishi eta/. , 2004). In contrast to embryonic NPCs, Mel-! loss-of-function does not 

directly induce apoptosis in differentiated neurons, but Mel- I deficiency potentiates neuronal cell 

death in an acute DNA damage model of apoptosis (Arbour eta!, 2008), demonstrating that Mcl-

1 does play a pro- urvival role in postmitotic cells of the CNS. 

Currently there is little known about the regulation of apoptosis with in the adult SVZ. 

There is ev idence demonstrating that enhanced trophic factor support (Reynolds & Weiss, 1992; 

Craig et a!., 1996), exercise (van Praag eta/., 1999), cell cycle regulators such as Bmi (He eta!., 

2009) can enhance proliferation within the adult SVZ. However, there has yet to be a potent anti­

apoptotic Bcl-2 family member implicated in the regulation of adul t NPC apoptosis or survival. 

However the function of Mel- ! in adult NPC's has yet to be characterized, which could be a 

reflection of the peri-implantation lethality that exists in germline kockouts of this protein . 

1.4 Summary and Hypothesis 

Many neurodegenerative conditions are most prevalent during adulthood; therefore focus 

has recently been directed towards regenerative strategies within the adult brain. When 

compared to the embryonic brain, the endogenous neural precursor populations of the adult brain 

are quite small and without manipulation offer the damaged brain an insignificant level of 

functional regeneration. One putative therapeutic approached to regeneration of the adult brain is 

to expand the endogenous neural precursor population. When looking for potential genetic 

targets, Mel- I has emerged as a viable cand idate as the Mel- ! conditional KO results in a 

dramatic increase in apoptosis of the embryonic NPCs (Arbour eta!, 2008). Although th is is 
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promising, there has yet to be any evidence that Mcl-1 is even expressed in the adult neural 

precursor population, let alone whether Mcl-1 is a prosurvival factor within this population. 

Therefore, to begin this journey toward improv ing the therapeutic efficiency of the endogenous 

neural precursor population of the adult brain, I put forward the following hypothe is: 

Hypothesis: 

Mcl-1 is a pro-survival factor within the adult neural precursor population of the adult 
mammalian brain. 

1.5 Objectives 

The main objectives of this thesis are as follows: 

I. To demonstrate that Mcl-1 i expressed in proliferating cell of the adult 
mammalian brain; 

2. To demonstrate that Mcl-1 lo -of-function increases endogenou apoptosis of 

adult PCs; 

3. To investigate whether Mcl-1 gain-of-function reduces endogenous apoptosis in 

adult NPC's. 
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Chapter 2 

Materials and Methods 

Mice and Genotyping 

Adult floxed Mcl-1 (Mcl-1 rtr) mice or FVBN wi ld type control mice ranging from 2-6 

months of age were used. Mice were kept on a 12hr light/dark cycle and food/water was 

administered ad libitum. All experiments were approved by the Memorial University of 

Newfoundland 's Internal An imal Care Committee adhering to the Guidelines of the Canadian 

Council on Animal Care. 

Mcl-1 rtr mice were previously generated by Opferman et al., (2003) . To determine the 

genotype of each animal, D A was acquired from tail c lippings and isolation wa completed 

using the REDExtract-N-Amp tissue PCR kit (S igma 029K6262). Once i o lated, the DNA was 

combined with the polymerase chain reaction (PCR) reaction components as outlined in Table 2. 

The PCR reaction (94°C for 6 min; 55°C for I min; 72°C for I min) was then carried out for 30 

cycles. The products of the PCR reaction>.: ere run on a 2% agarose gel containing ethid ium 

bromide (15585-0 II ; Invitrogen), which binds to D A and fluoresces under ultraviolet light. As 

the Mcl- Jwtlwt a lle le (360bp) lacks the two 34bp loxP sites that flank exon I ofthe Mcl-l rtr allele 

( 400bp) (Operferman et a/. 2003), it can be separated from the Mcl-1 rtr allele via e lectrophoresis 

on an agarose gel (Figure 4). Therefore, the two pos ible alleles can be di tinguished according 

to band size as shown in Figure 4 and the genotype of each mouse can be determined. 



Mcl-1 & Adult NPCs 27 

Component Volume/Sample (JlL) 

1 OX Reaction Buffer 5.0 

Primers (2.5f.!M): 
*6Mcl-1 5.0 
**7Mcl-l 5.0 
1.25mM dNTP' s 8.0 

50mM MgCb 1.5 

Taq polymerase 0.5 

Water 22.0 

DNA 3.0 

*6Mcl-1 = 5' GCA GTA CAG GTI CAA GCC GAT G3 ' 
**7Mcl-1 = 5'CTG AGA GTI GTA CCG GAC AA3 ' 
Table 3. Components of Mcl-1 PCR reaction solution 
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Figure 4. Mcl-1 genotypes can be determined through PCR and gel electrophoresis. The 
Mclrtr allele contain two 34-bp loxP sites, which make it larger than the wild type Mcl-1 allele. 
The PCR products of these two alleles are separated by placing them in a 2% agarose gel and 
applying electrophoresis. By doing this, the different alleles will separate and the genotype can 
be determined. 
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Acquisition of Clonally Derived Neural Precursor Cells 

NPCs were obtained from adult Mcl-1 r;r and wild type control mice (2-6 months old). 

Mice were euthanized with a 0.3ml intraperitoneal (i.p.) injection of Euthanol (2.5mg/kg). NPCs 

were acquired as depicted in Figure 5. Access to the SVZ was acquired by separating the 

hemispheres along the longitudinal fissure and removing the overlying cortex. The exposed SVZ 

was then dissected out, cut up and dissociated by manually triturating in artificial cerebrospinal 

fluid [(2M NaCl (S271-3, Sigma), I M KCl (P333, Sigma), I M MgCb (M2393, Sigma), 155mM 

NaHHC02 (Sigma, S576), 1M glucose (G7528, Sigma), I 08mM CaCb (C7902, Sigma)] and 

incubated at 37°C for 15 min with trypsin enzyme (T4549, Sigma) to chemically digest the 

tissue. The solution was then spun at 5000rpm for 5 min and the pellet was resuspended and 

plated in DMEM/F 12 (911330, Gibco) and the following: 0.0033mol/L D-glucose (G7528, 

Sigma), 0.5% penicillin-streptomycin (15140-122; Invitrogen), 0.5% insulin (1-5500, Sigma), 

0.2% apo-transferrin (T4382, Sigma), 0.002% progesterone (P8783, Sigma), 0.12% putrescine 

(P5780, Sigma), 0.015% selenium (S5290, Sigma), 0.1% fungizone (Gibco; 15290-0 18) and 

0.02% Heparin (H3149, Sigma) supplemented with I% 827 (Invitrogen; 17504-044), 0.1% 

FGF-2 (Sigma; F0291) and 0.02% EGF (Invitrogen; 13247-051) (Tropepe et at., 1997). Neural 

precursor cells (NPCs) were plated at clonal density (I Ocells/f.!l) unless otherwise stated and 

primary neurospheres were grown for plasmid transfection. 
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Figure 5. Acquisition of Clonally Derived Neural Precursor Cells. The SVZ of Mcl-1 flf and 
wild type mice were dissected, then expanded in serum-free media containing FGF-2, EGF and 
heparin. Neurospheres were mechanically dissociated and plated as sing le cells 12- 16hrs before 
transfection. (Modified from Chojnacki et al. , 2009). 
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Plasmid Constructs 

Cre, Mcl-1 , Ne GFP and NesCre were cloned into the pCIG2 vector (Megason & 

Mcmahon, 2002) in our laboratory at Memorial University of ewfoundland and their maps are 

shown in Appendix A. To a sess Mcl-l loss-of-function, the Cre construct (Tranche eta/., 1999) 

was cloned into the pCIG2 expression vector (Megason & Mcmahon, 2002). To selectively 

target the NPC population, the heat shock protein 68 minimal promoter (Rossant eta!. , 1991) 

linked to the 2nd intron Nestin enhancer element (Kawaguchi eta/., 200 I) wa u ed to drive 

either GFP or Cre expres ion in Nestin expres ing neural precursors. The Mel- I expression 

construct (Rinkenberger eta/. , 2000) was cloned into the pCIG2 vector (Mega on & Mcmahon, 

2002) to assess Mel-t gain-of-function. Protein expre sion ofboth Cre and Mel-t in HEK 293A 

cells was verified by western analysis (Fig, 6 A,B). 

In Vitro Transfection and Immunocytochemistry 

Cells were plated at a density of2 x I 05 cells/ml in eurobasalmedia (Gibco; 2 11 03-049) 

supplemented with 0.25% L-glutamine ( igma; 25030-081 ), 0.1% fungizone (G ibco; 15290-

0 18), 2% 827 (Invitrogen; 17504-044), I% N2 (Sigma; 17502-048), 0.1 %FGF-2 (25~-Lg/ml ; 

Sigma; F0291) 0.02% EGF (Invitrogen; 13247-051 ). 12-16hrs after plating, the cultures were 

transfected with GFP, Mel- I or Cre plasm ids using Lipofectamine Plus reagent (Invitrogen; 

11668-027). After 6-hr , additional media was added such that the cells were at clonal density. 

Cultures were incubated for 24, 36, 48, or 60 hrs and fixed with cold para formaldehyde (PF A, 

pH; Sigma; F8775). 

All GFP positive cells were assessed for apoptosis based on nuclear condensation as 

visualized by Hoech t staining (60~-Lg/ml ; igma· B 1155). To specifically identify P that 
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were transfected with the plasm ids that are driven off of the universal chicken P-actin promoter, 

cultures were immunostained with Nestin antibody (mouse monoclonal, I :200; Millipore 

MAB353). 

In vivo Plasmid Injections and Electroporation 

Plasmid transfection of PCs in vivo was accomplished as described previously 

(Barnabe-Heider et al., 2008). Adult Mcl-1 rtr and wild type control mice were anesthetized using 

isofluorane. The dorsal portion of the head was shaved and the animal was secured in the 

stereotaxic device. Once secured, the shaved portion of the skin was terilized with provoiodine 

olution (Rougier; 00 172944) and the skull was exposed. Both Bregma and Lamda were 

landmarked to ensure that the head was positioned equally in all three axes. Once aligned, the 

injection site was marked with the following coordinates: Anterior-Posterior: 4.0mm from 

bregma; Medial-Lateral: 0.6mm from the midline. After drilling through the skull, the dura was 

pierced to allow the injection needle to go through with ease. The loaded injection needle was 

then secured to the stereotaxic device and lowered to the surface of the brain and measurement 

was taken at the cortical surface. The injection needle was then slowly lowered ventrally by 3-

4mm and the 2j..LL plasmid volume (6-1 Oj..Lg/j..LL) was infused into the lateral ventricle over a 2 

minute period. Within I minute of completion of the injection, electrode gel (Spectra) was 

applied to both ide of the dorsolateral aspects ofthe kull and a 5-pulse current at 200V and a 

duration of 50ms and an interpulse interval of 950ms was passed through the brain. The injection 

needle was then slowly removed from the brain and skin was sutured. 
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BrdU labeling of Proliferating Cells 

5-Bromo-2-deoxyuridine (BrdU, igma; B5002) was used to label the proliferating cells 

of the SVZ. Wild type mice were given an intraperitoneal BrdU injection (IOO~g/g body weight) 

every two hours for I 0 hours. To specifically target the neural progenitor cell , the mice were 

euthanized 30 minutes after the last BrdU injection. To specifically target the slowly dividing 

neural stem cells, animals were allowed to live for 28 days after the last injection. In both group , 

coronal sections were collected beginning at the formation of the corpus callo urn and continuing 

caudally until the third ventricle. Roughly every fifth section was asses ed and quantification 

was measured by calculating the percentage of BrdU positive cells that were al o positive for 

Mcl-1 staining. 

Tissue Processing and Immunohistochemistry 

Adult mice were euthanized and perfu ed with I X phosphate buffer olution (I X PB ) 

fo llowed by cold 4% PFA. Brains were removed and postfixed overnight in 4% PFA and 

cryoprotected incrementally using 12%, 16% and 22% sucrose (Sigma) di solved in I XPBS. 

Brains were then frozen and coronal sections ( 1 4-~m) were collected on Superfrost Plus slides 

(Fisher Scientific) using a freezing cryostat microtome (Microm, HM520). For all subsequent 

BrdU immunostaining, sections were incubated in 2 HCI at 37°C for 30m in followed by a I O­

m in wash in 0.1 M sodium borate (pH 8.0) to denature the D A. Immunohi tochemistry was 

performed with primary antibodies for Mcl-1 ( I :400; Santa Cruz; sc-819), Brd U ( I: I 00; BD 

Biosciences; 347580) and Hoechst (60~g/ml ; Sigma; B 11 55) was used to stain nuclei. 

For the in vivo electroporation study, apoptosis oftransfected cel l (GFP+) was assessed 

at 72hrs after electroporation. Mice were perfused and tissue was processed as described above. 
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Coronal sections were collected beginning at the rostral site oftransfection (i.e. a soon as GFP+ 

cells were present) and apoptosis was assessed via nuclear condensation as visualized by 

Hoechst staining. A minimum of 50 GFP+ cells was assessed per brain in each treatment group 

(NesGFP range: 58-158; NesCre range: 50-200). The percentage of apoptotic cells was 

calculated by dividing the number ofapoptotic GFP+ cells by the total number ofGFP+ cells per 

brain. 

Western blot Analysis 

As shown in Figure 6, western blot analysi was performed on HEK 293A cells to 

demonstrate plasmid expression. To extract the protein, complete immunoprecipitation (IP) 

buffer [25mM Tris-base (Roche, 1070897600 I); 150mM NaCI (Sigma, C7902); I mM CaCb 

(S igma, C7902); I% Triton X-1 00 (Sigma, 93426); I OOj..l.L phenylmethylsulfonyl Floride 

(S igma, P7626); 1 011L OTT (Sigma, 43816)] was added to cell pellets and incubated on ice. 

Samples were mechanically triturated and centrifuged at 2000 rpm for 5 min and the supernatant 

was transferred to a new pre-chilled tube. Protein concentration was determined using the Bio­

Rad protein Assay kit I (500-000 1) and a Thermo cientific Genesys I OUV pectrophotometer 

reading at 595nm absorbance. 

Separating gels and stacking gels were made as shown in Table 4 and 5, respectively. 

30j..l.g of protein was added to 5j..l.L of protein loading buffer [250mM Tris-HCI (Fisher, 89153); 

0.5 OTT; 10% sodium dodecyl sulphate (SDS, 155-25-0 17 Invitrogen); 50% Glycerol (S igma, 

G5516); 0.5% Bromophenol Blue (Fisher, 8392-5)] and topped up to 25 j..l.L with complete IP 

buffer. Protein was denatured by boiling for 5 minutes. After denaturation, I 011L of each protein 

sample and kaleido cope prestained protein standards (Bio-Rad, I 6 I -0324) were loaded into the 
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gel, which was then submerged in running buffer [0.6% Tris-base, 1.1 25% glycine (Bio-Rad, 

16 1-0724 ), 0.1% SDS] and run at II OV for approximately two hours. Protein was then 

transferred to a nitrocellulose membrane (Hybrid-ECL, LRPNK/95/81) by sandwiching the 

nitrocellulose membrane w ith the separating gel. The cassette was then submerged in transfer 

buffer [0.3% Tris-base, 1.1 25% glycine and 20% methanol (S igma, 179337)] and run at 190 

amps for 1.5hrs. Following protein transfer, the membrane was washed in Tween20 phosphate 

buffer solution [(TPBS); 1.42% Na2HP04 (Fisher Scientific, S374-500), 1.38% NaH2P04 

(Fischer Scientific, S399-500), I% NaCI (Fisher Scientific, S27 1 ), 0.1% Tween20 (Sigma, 

P7949)], blocked with 5% blotto (mi lk powder in TPBS) and incubated overnight with primary 

antibodies. The membranes then underwent 3x 15 min washes of 0.5% blotto and were incubated 

with Horseradish peroxidase conjugated to econdary antibodies (I :2000; BioRad; anti-rabbit 

IgG: 1706515, anti-mouse IgG: 1706515) for I hr. After secondary antibody exposure, 

membranes underwent 3, 15 min washes ofTPBS and the peroxidase reaction was then 

catalyzed with chemiluminescence reagent (Western lightning (Nell 00) for I min. Blots were 

blotted and exposed to Fuji Medical X-Ray film (I OONIF) for I-3min and developed on a Mini 

Medical Series developer. Primary antibodies used were as fo llows: Mcl-1 ( I : I 0,000; Rockland 

lmmunochemicals; 600-40 1-394); Cre recombinase (I: I 0,000; Chemicon, MAB3120); and anti-

P-Actin (I :2000; Sigma; A53 16-2) as a loading control. 

Stock Solution Separating gellO% (20ml Final Volume) 

dd water 7.0ml 
O.SM Tris, 1.5M glycine 4.0ml 
10% SDS (RT) 0.8ml 

50% glycerol 2.0ml 

40% acrylamide; 0.25% bisacrylamide 5.0 ml Filtered 

Ammonium persulphate (made fresh) 30mg in 1 ml of dd water 

10% TEMED 0.02ml (TEMED) 

Table 4. Separating gel. 
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Stock Solution Stacking gel14% (lOml Final Volume) 

dd water 4.05ml 

0.5 M Tris-HCI pH 6.8 1.4ml 

10% SDS (RT) 0.4ml 

SO% glycerol l.Oml 

40% acrylamide, 0.25% bisacrylamide 1.25ml FILTERED 

Ammonium persulphate ( made fresh) 2Smg in 1ml of dd water 

10% TEMED 0.01 ml (TEMED) 

Table 5. Stacking gel. 

Microscopy and Statistics 

Immunostained cultures were examined on a Zeiss AxioObserver A. I microscope while 

immunosta ined sections were examined on a Zeiss Axio lmager Z. l microscope. All images were 

taken with a Zeiss AxioCam MRm camera using Zeiss AxioYision 4.8 software. All figures were 

created using Adobe Photoshop CS2. Jf required, manipulations of brightness and contrast were 

made such that all treatment groups received the same adjustments. A ll statistics were completed 

on GraphPad Prism 5 so ftware, including unpaired T-test and both one and two way analys is of 

variance. T ukey' s posthoc analysis was used to determine differences between treatment groups. 
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Figure 6. Western analysis of protein expression. A, Western analys i of protein expression 
from 293A cells that were transfected with a pCIG2 vector (GFP) or pCIG2 vector containing 
Cre recombina e ( re) or untransfected cell (control). 48hrs after transfection, cells were 
collected for Cre protein analysis. B, Western analy is of Mcl-1 protein express ion from 293A 
cells that were transfected with a pCIG2 vector (GFP) or pCfG2 vector containing Mcl-1 (Mcl-1 ) 
or untransfected cells (control). 48hrs after transfection, cells were collected for Mcl-1 protein 
analysis. Blots were reprobed with Actin as a loading control. 

\ 



Mcl-1 & Adult NPCs 40 

A 
0 
~ ~ cJ .. e 00 c} 

a Cre 38kDa 
Actin 42kDa 

B. 
~0 " 0~ x.« ::X c; c; (j 

a Mcl-1 37.3 kDa 

a Actin 42 kDa 



Mcl-1 & Adult NPCs 41 

Chapter 3 

Results 

Mcl-1 is Expressed in NPCs of the Adult SVZ 

To demonstrate that Mc l-1 is expressed in NPCs of the adult SVZ, I used a cumulative 

BrdU labeling assay that labels cells undergoing S-phase of the cell cycle. By administering a 

BrdU injection every two hours for ten hours and euthanizing the animals 30 minutes after the 

last injection, it is po s ible to label the majority of the TACs ofthe adult VZ and a very few 

neural stem cells (Morshead & van der Kooy, 1992). When the proliferating cells of the SVZ 

were labeled in this manner, approximately 63% of the BrdU cells also expressed Mcl-1 (Fig. 

7 A, B; an average of 225 per brain BrdU positive cells were assessed ; n=3), sugge ting that a 

subpopulation of the tran int amplifying population expresses Mcl-1. 

To specifically assess whether Mcl-1 was expre sed in the quiescent tern cell population 

of the adult SVZ, I took advantage ofthe fact that the cell cycle time ofthi population is 

approximately 28 days (Craig el a!. , 1994· Morshead et al. , 1994) while the cell cycle time of the 

TACs is 12.7 hours (Morshead & van der Kooy, 1992). By using the same BrdU labeling assay 

a above and a llowing the an imals to live for 28 days, the few quiescent stem cell that 

underwent S-pha e during the BrdU assay wi ll be the only cells that retain BrdU in the SVZ. One 

can assume that all the BrdU positive cells remaining in SVZ are the quiescent stem cell 

population because TACs that were initia lly labelled will die, migrate away from the SVZ or 

dilute the BrdU signal out as they continue to divide (Morshead et al., 1994; Craig el al. , 1994). 

When the percentage of BrdU positive cells that were co-labeled with Mcl- 1 was quantified, 
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approximately 52% of the BrdU labeled neural tern cells also expres ed Mel-t (Fig. 78; an 

average of91 per brain BrdU positive cells assessed; n=4 ). Taken together, these results 

demonstrate that Mel-t i expressed in both the TACs and the more quie cent N C population of 

the adult SYZ. 

Mcl-1 Loss-of-Function Increases Apoptosis of Adult NPCs in vitro 

To characterize the function of Me l- t in adult NPCs, I began by using loss-of-function 

strateg ies in vitro. In the first set of experiment , Mel- I loss-of-function was induced by 

transfecting D A expres ion plasmids into YZ-derived cultures from both wi ld type and Mel­

t rtr brains. The pia mids used in this initial study directed either Cre recombinase (Cre) or 

control (GFP) off of the chicken ~-actin promoter which induces robust prote in expression in all 

VZ-derived cell types. Expression of both the GFP and Cre plasmids occurred by 24hrs (Fig. 

8C) and I assessed apopto is on the basis of nuc lear condensation becau e this mea ure of 

apoptosis is less transient compared w ith other measurements of apoptos i , such a active 

caspase 3. T his resulted in a significant degree of chromatin condensation in Mel-t rtr cultures 

that were transfected with the Cre plasmid . Indeed, when this measure of apoptosis in Cre 

transfected Mel- I rtr cultures was compared to all controls, there was a 2 fold increase in 

apoptosis (Fig.8C; Wt.GFP vs. Mel- I rtrCre, Wt.Cre vs. Mel-t rtrCre, Mel-t rtrGFP vs. Mel- I rtrc re: 

p<O.OO I ; n=3). This effect was sustained at all time points measured (Fig. 8 ) indicating that a 

higher rate of apoptosis wa sustained for at least 60 hrs in Cre transfected Mel- I rtr cells when 

compared to controls. 
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Figure 7. Mcl-1 is expressed in proliferating cells of the adult subventricular zone, in vivo. 
FVBN mice received a BrdU injection (I OOJlg/g) every 2hrs for I Ohrs and were euthanized at 

30min. or 4 weeks after the last injection. A, Representative photomicrographs of proliferating 

neural precursor cells labelled with antibodies against Mcl-1 (green) and BrdU (red). B, 
Quantification of the percentage of BrdU positive cells that are also Mcl-1 positive. 
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As previou tudies have demonstrated that embryonic NPCs undergo apoptosis after 

Mcl-l is knocked out (Arbour et al., 2008), a Nestin antibody was applied to these cultures to 

pecifically label adult NPCs. When apoptosis was as essed at 36hrs, there wa at lea t a 2 fold 

increase in apoptosis in Cre transfected Mcl-1 rtr cell compared to control groups (Fig. 8A,B,D· 

Wt.GFP vs. Mcl-1 rtrcre: p<.OS; Wt.Cre vs. Mcl-1 rtr re: p<.O 1; Mcl-1 rtrGFP vs. Mcl-1 rtrcre 

p<O.OS; n=3). This effect was also seen at 60 hrs. (Fig. 80; Wt.GFP vs. Mcl-1 rtrcre: p<O.OS ; 

Wt.Cre vs. Mcl-1 rtrcre: p<.OS; Mcl-1 rtrGFP vs. Mcl-1 rtrcre p<O.OS; n=3). Overall, this indicates 

that Mcl-1 is a pro- urvival factor in Nestin-po itive PCs, in vitro. 

To underscore the fact that Mcl-1 loss-of-function increases apopto is in adult PCs in 

vitro, I did another set of experiments using DNA expression plasm ids that directed either Cre or 

GFP off of the Nestin enhancer promoter. This promoter is only functional in Nest in expressing 

NPCs (Lothian eta/. , 1999). Therefore, only NPC will express Cre (NesCre) or GFP (NesGFP) 

proteins. As in our previous experiment, there was a 2 fold increase in apopto is in Cre 

transfected Mcl-1 rtr PCs at 36 hrs (Fig.9A,B C; Wt. esGFP vs. Mcl- 1 rtf es re: p<O.OO I; 

Wt.NesCre vs. Mcl-1 rtrNesCre: p<.O 1; Mcl-1 rtrNesGFP vs. Mcl-1 rtrNe Cre p<O.OS n=3). 

Furthermore, this effect was also observed at 60 hrs (Fig.9C; Wt.NesGFP vs. Mcl-1 flfNesCre: 

p<O.O I; Wt.NesCre vs. Mcl-1 rtr e Cre: p<O.O I ; Mcl-1 rtrNesGFP vs. Mcl-1 rtr esCre p<O.OS; 

n=3). Overall, these data, combined with the data using the chicken P-actin promoter show that 

Mcl-1 is a pro-survival factor of adult NPCs, in vitro. 
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Figure 8. Mel-t loss-of-function results in increased apoptosis ofNestin-positive adult 
NPCs, in vitro. A, Representative photomicrographs of wi ld type (top panel) and Mcl- 1 rtr 
(bottom panel) Nestin-positive NPCs transfected with expression plasmid conta ining GFP. B, 
Representative photomicrographs of wild type (top panel) and Mcl-1 rtr (bottom panel) Nestin­
positive NPCs transfected with expression plasmids containing Cre recombinase. Cells were 
plated at 2 x I 05cells/mL and transfected with GFP or Cre expression plasm ids 12hrs after 
plating. C , Quantification of the percentage of transfected cells that are apoptotic. Apoptosis was 
assessed by nuclear condensation visualized by Hoechst staining at 24, 36, 48 and 60hrs after 
tran fection. D, Percentage of Nestin-positive transfected cells that are apoptotic. Cells were 
stained with primary antibody against Nestin at 36 and 60hrs after transfection. Results are 
expressed as mean ± SEM (n=3). *p<O .05, **p<O.OO I 
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Figure 9. Mcl-lloss-of-function results in increased apoptosis ofSVZ-derived NPCs, in 
vitro. A, Representative photomicrographs of wild type (top panel) and Mel- I rtf (bottom panel) 

NPCs transfected with expression plasmids containing NesGFP. B, Representative 
photomicrographs of wild type (top panel) and Mel-! f/f (bottom panel) NPCs transfected with 

expression plasm ids containing NesCre. Cells were plated at 2 xI 05cells/mL and transfected with 

NesGFP or NesCre expression plasmids 12hrs after plating. C, Quantification ofthe percentage 

oftransfected cells that are apoptotic. Apoptosis was assessed by nuclear condensation at 24, 36, 

48 and 60hrs after transfection. Results are expressed as mean± SEM (n=3). *p<O .05 
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Mcl-1 Loss-of-Function Increases Apoptosis of Adult NPCs in vivo 

As I have shown that Mcl-1 loss-of-function results in increased apoptosis of adult NPCs 

in vitro, I next addressed the question of whether Mcl-1 loss-of-function also affects the survival 

ofNPCs, in vivo. To address this question, l used in vivo electroporation (Barnabe-Heider eta!., 

2008) to transfect either NesGFP or NesCre into NPCs in the SVZ of adult wildtype or Mcl-1 rtr. 

By 72 hrs after transfection, there was robust expression of both plasm ids in all genotypes 

(Fig. I OA B). When chromatin condensation was assessed at 72 hrs, Mcl-1 rtr NPCs transfected 

with NesCre had a significantly higher rate of apoptosis when compared to controls (Fig. I OC; 

Wt. NesGFP vs. Mcl-1 rtrNesCre, Wt. NesCre vs. Mcl-1 rtrNesCre: p<O.O I; Mcl-1 rtrNesGFP vs. 

Mcl-1 flfNesCre p<0.05; n=3). These results support the in vitro findings demonstrating that Mcl-

1 is a potent prosurvival factor for NPCs in vivo. 

Mcl-1 Gain-of-Function Decreases Apoptosis in Adult NPCs in vitro 

To assess whether Mel- I gain-of-function is sufficient to reduce apoptosis in the adult 

neural precursor population in vitro, I performed gain-of-function experiments by overexpressing 

Mcl-1 in adult SVZ-derived cultures. As in our loss-of-function studies, expression of both 

control and Mcl-1 plasmids had occurred by 24 hrs. When apoptosis was assessed by nuclear 

condensation, Mcl-1 overexpression resulted in roughly a 2-fold decrease in apoptosis at 24 hrs 

(Wt. GFP vs. Wt. Mcl-1: p<O.O 1; n=3). This was sustained for 60-hrs after transfection 

(Fig. II A). As I saw a significant increase in apoptosis specifically in neural precursor cells in 

the Mcl-1 loss-of-function studies (Figs. 8,9, I 0), I questioned whether overexpressing Mcl-1 in 

adult SVZ-derived NPCs would decrease the endogenous rate of apoptosis. As in our loss-of­

function studies, the cultures were labeled with the NPC marker Nestin and assessed for 
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apoptosis based on nuclear condensation. When apoptosis was assessed at 36hrs, the level of 

apoptosis did not differ between Mcl-1 overexpression (Fig. 11 B). However, when the level of 

apoptosis was assessed in Nestin positive NPCs at 60hrs, there was a significant reduction in 

apoptosis in Mcl-1 transfected cells (Fig.l1 B; Wt. GFP vs. Wt. Mcl-1 : p<0.01; n=3). These data 

demonstrate that Mcl-1 gain-of-function in NPCs leads to an overall reduction in endogenous 

apoptosis, in vitro. 
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Figure 10. Mcl-lloss-of-function results in increased apoptosis in adult NPCs in vivo. 
esGFP or esCre pia mids were e lectroporated into the rostral lateral ventricle and apoptosis 

was assessed at 72hr . A, Representative photomicrographs of GFP+ cell from coronal wild type 

(top panel) and Mcl-1 flf (bottom panel) brains that were transfected with esGFP. B, 
Representative photomicrographs ofGFP+ cells from coronal sections of wild type (top panel) 

and Mcl-1 rtr (bottom panel) brains that were transfected with NesCre. C, Quantification of the 

percentage of apoptotic wi ld type and Mcl-1 f/ f cell that were transfected with NesG FP or 

esCre in vivo. Transfected GFP positive apoptotic cells were identified by nuclear condensation 

a visualized by Hoech t taining. Results are expressed as the mean ± EM (n=3). *p<0.05 
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Figure 11. Mcl-1 gain-of-function results in decreased apoptosis ofSVZ-derived cultures 
and Nestin-positive adult NPCs in vitro. Cells were plated at 2 xi 05cells/mL and transfected 

with GFP and Mcl-1 expression plasmids 6hrs after plating. A, Quantification of the percentage 

oftransfected cells that are apoptotic. Apoptosis was assessed by nuclear condensation as 

visualized by Hoechst staining at 24, 36, 48 and 60hrs. B, Quantification of the percentage of 

Nestin-positive transfected cells that are apoptotic. Cells were stained with primary antibody 

against Nestin and apoptosis assessed based on nuclear condensation as visualized by Hoechst 

staining at 36 and 60hrs. Results are expressed mean± SEM (n=3). *p<0.05, *p<O.OO I 
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Chapter 4 

Discussion 

Mcl-1 is Expressed in NPCs of the Adult SVZ 

Our initial Mcl-1 co-labeling studies demonstrate that Mcl-1 is expressed in both the 

neural stem cell and neural progenitor populations, in vivo. This is the first time that a Bcl-2 

prosurvival protein has been found to be expressed within the adult neural precursor population. 

The other major Bcl-2 prosurvival proteins, Bcl-2 and Bcl-XL, are expressed at specific times 

during CNS development but the expression of both ofthese proteins significantly declines by 

the first week of postnatal life (Lindsten et al., 2005). Moreover, the fact that Mcl-1 is the only 

Bcl-2 prosurvival factor expressed in NPCs from the early stages ofCNS development (Arbour 

eta/., 2008) into adulthood provides a huge opportunity to manipulate NPC apoptosis in both 

developmental conditions as well as the neurodegenerative diseases that are seen in adulthood. 

In addressing whether Mel- I is expressed in adult NSCs, the animals were euthanized at 

0.5hrs and 28 days after BrdU labeling, which specifical ly labels the neural progenitor and neural 

stem cel l populations, respectively (Morshead & van der Kooy 1992; Craig et al. , 1994). 

Roughly half of BrdU positive cells seen in both populations were co-labeled with Mcl-1 , which 

could suggest that the NPC population is heterogenous with some cells having a requirement for 

Mcl-1 whi le others do not. This is supported by the fact that not all embryonic PCs require 

Mcl-1 for survival (Arbour et al., 2008). Furthermore, Barraud et al. , (2005) a lso suggested that 
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the NPC population i heterogenous by creating a Sox 1-GFP transgenic mouse and using 

fluorescence-activated cell sorting (F ACS) to demonstrate that there are region specific 

morphological and potentiation differences within the ox 1-GFP population. 

Another explanation as to why only half of the PC population are Mcl-1 + may relate to 

the level of cell death that occurs endogenously within this population. ince I progeny will die 

for every neural progenitor division (Morshead & van der Kooy, 1992) the proportion ofNPCs 

that do not expres Mcl-1 may be those cells destined to die. As there is a lack of cell specific 

markers for the different PC subpopulations, one could F ACS sort NP based on Mcl-1 

expression. Ifthi technique did separate the PC subpopulations, then it would support that 

there is a heterogenous population. Furthermore, one could then carry out characterization 

studies for self-renewal, proliferation kinetics and survival to assess potential differences 

between the subpopulation . These studies may provide a significant contribution to our 

understanding of the adult population. Investigations into Mcl-1 ' s function in y terns that have 

the ability to isolate stem and progenitor cells have demonstrated distinct roles for Mel- I in the 

different subpopulations. For instance, Opferman eta/., (2005) demonstrated that conditional 

deletion of Mcl-1 within the Hematopoietic system specifically kills the hematopoietic stem 

cells. If a similar type of specificity was found within the adult NPC population, it could have 

dramatically different impacts and as a result, the strategies that would be developed to use Mel­

t in a regenerative capacity would also differ. 
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Mel-I Loss-of-Function Increases Apoptosis of Adult NPCs both in vitro and in vivo 

Collectively the in vitro and in vivo Mcl-1 loss-of-function experiments demonstrate that 

Mcl-1 is a survival factor in adult NPCs of the SVZ. There have been several studies 

demonstrating increased levels of apoptosis in NPCs cell lines (Walls eta/., 2009) or primary 

NPCs in vitro (Hung & Porter, 2009); however, all of these studies use exogenous initiators of 

apoptosis such as nitric oxide (Hung & Porter, 2009) and hypoxia (Walls et al., 2009). As these 

initiators of apoptosis are present in a variety of disease states, these studies were completed in 

order to characterize the pathophysiology ofNPCs during CNS injury. However, compounds 

such as nitric oxide or a hypoxic state are not present in the healthy brain and therefore, these 

studies do not provide any insight into how adult NPC apoptosis occurs within the healthy brain. 

Having an understanding of the molecular mechanisms that regulate adult NPC apoptosis in the 

healthy brain may provide strategies that facilitate regeneration. This thesis demonstrates that 

Mcl-1 is not only expressed within the adult NPC population but that Mcl-1 loss-of-function 

increases NPC apoptosis without any exogenous apoptotic initiator. This demonstrates that Mcl-

1 is key regulator of adult NPC apoptosis in the healthy brain. 

The Mcl-1 loss-of-function studies presented here are the first experiments to 

demonstrate that an anti-apoptotic protein of the Bcl-2 family has a pro-survival effect on the 

adult NPC population. Since Mcl-1 loss-of-function increases PC apoptosis both in vitro and in 

vivo and Mcl-1 gain-of-function inhibits the endogenous apoptosis in adult NPCs it can be 

suggested that Mcl-1 gain-of-function could possibly provide a protective strategy against NPC 

apoptosis and ultimately facilitate regeneration. 
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Mcl-1 Gain-of-Function Decreases Apoptosis in Adult NPCs in vitro 

The Mel-t gain-of-function experiment uses the wild type form of Mel-t and 

demonstrates that enhancing Mel-t expression in adult NPCs in vitro decreases the endogenous 

rate of apoptosis that is seen within this population. Although this suggests that Mcl-1 gain-of­

function could potentially lead to an expansion of the adult NPC population, unpublished data 

from the Vanderluit laboratory suggest that Mel-t gain-of-function affects the proliferation 

kinetics of embryonic NPC by causing the cells to exit the cell cycle. In spite ofthis, Mel-t 

gain-of-function may have a different effect of the adult NPC population, therefore the risk of 

tumorigenesis is still present. As such, studies ofhow Mel-t gain-of-function affects the 

proliferation kinetics of adult NPCs are currently being conducted within the Vanderluit 

laboratory. However, independent of its affect on cell proliferation, the ability of Mel- I to reduce 

apoptosis in adult NPCs has major implications for adult regeneration . For instance, one of the 

current challenges in stroke regeneration is the fact the NPCs that migrate to the site of injury 

and differentiate ultimately undergo apoptosis (Kernie & Parent, 2009). Therefore, by using a 

Mel-t gain-of-function strategy in conjunction with other regenerative strategies such as trophic 

factor administration (Reynolds & Weiss, 1992; Craig eta!. , 1996), it may be possible to inhibit 

apoptosis in this situation while also circumventing the issue of tumorigenesis that exist with 

many prosurvival proteins. 

A variety of mechanisms have been shown to expand the NPC population both in vitro 

and in vivo. Studies have demonstrated that enhanced trophic factor support such as EGF can 

expand the NPC population both in vitro and in vivo (Reynolds & Weiss, 1992; Craig eta!. , 

1996). Fittingly, exogenous stimuli such as exercise, which are capable of enhancing trophic 

factor production in the stem cell niches have been hown to increase proliferation ofthe NPC 
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population (van Praag eta/. , 1999). Other studies have shown that particular cell cycle 

regulators such as PCNA, the C ip/Kip family and p53 (Bertand & Hermanson. 20 I 0) have the 

potential to alter proliferation within adult NPCs (He eta/., 2009), while inactivation of cell 

cycle inhibitors such as the p 161
nk

4
a and p 19Arf tumor suppressor proteins via Bmi-1 enhances 

stem cell self-renewal but has little effect on neural progenitor proliferation (Molofsky eta/., 

2003). 

There has been some evidence suggesting that Mcl-1 expression levels are influenced by 

trophic factors including insulin-like growth factor I (Zhang & D'Ercole, 2004). As trophic 

factor administration has been identified as a mechanism to expand the adult NPC population 

(Reynolds & Weiss, 1992; Craig eta/., 1996), Mcl-1 gain-of-function strategies may offer a 

potential additive effect to trophic factor expansion by reducing the endogenous rate of apoptosis 

that occurs within this population. One advantage of this approach lies with current techniques 

such as retroviral gene delivery that can be used in the experimental setting to allow Mel- I gain­

of-function to be maintained during proliferation, migration and differentiation, which could 

dramatically enhance the regenerative capacity of adult NPCs. 

One ofthe major drawbacks that our Mcl-1 gain-of-function study has, is that it does not 

address whether Mcl-1 gain-of-function selectively rescues a particular subpopulation of the 

neural precursor population. There was an overall decrease in apoptosis in the Mcl-1 gain-of­

function study, but whether Mcl-1 gain-of-function selectively rescues NSCs over neural 

progenitor cells, or vice versa could have different effects. For instance, ifMcl-1 gain-of­

function selectively rescues NSCs, there would presumably be more NSCs proliferating, thus the 

entire NPC population would expand. However, if Mcl-1 gain-of-function selective ly rescues the 

neural progenitor population that are already committed to a neuronal fate, then Mcl-1 gain-of-
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function could result in an increase in neurogenesis without altering the NPC population. To 

specifically assess how Mel- I gain-of-function affects the adult neural stem cell population, a 

self-renewal assay (Reynolds & Weiss, 1992) could be performed on SVZ-derived NPCs that are 

infected with a Mel- I expressing lentiviral construct that integrates into the host genome. By 

using a construct that stably integrates into the host genome, Mel- I gain-of-function would be 

maintained in all progeny and would thus avoid the dilution effect that would be seen using DNA 

plasmid constructs. If Mcl-1 gain-of-function enhanced NSC survival without altering cell cycle 

kinetics, then the self-renewal assay should yield a higher number of secondary neurospheres 

demonstrating an expansion of the neural stem cell population. 

To specifically assess how Mel- I gain-of-function affects the neural progenitor 

population, one could use both in vitro and in vivo strategies. More specifically, if the spheres 

formed in an in vitro neurosphere assay were much larger as compared to controls, this would 

also suggest that more progenitors are surviving demonstrating that Mel- I gain-of-function 

affects the neural progenitors in vitro. Furthermore, to assess how Mel-! gain-of-function affects 

neural progenitors in vivo, one could overexpress Mel- I through in vivo electroporation, as over 

99% of the SVZ proliferating population are neural progenitors (Craig eta!. , 1994; Morshead et 

a!., 1994). To specifically address whether Mel- I gain-of-function enhances the survival of 

NPCs in vivo is very challenging, as many ofthe techniques used to measure survival also 

measure proliferation. For instance, the I 0.5hrs BrdU labelling protocol could be used to address 

whether Mcl-1 gain-of-function leads to an expansion of the neural progenitor population. 

However, if there was an increased number ofBrdU+ cells in the Mel- I gain-of-function group, 

an equally strong argument could be made for either survival or proliferation. Although both 

arguments are legitimate, increasing either survival and/or proliferation would lead to an 



Mcl-1 & Adult NPCs 62 

expansion of the neural precursor population, which could have a putative therapeutic role. 

However, one way to differentiate between proliferation and survival in a potential NPC 

expansion would be to do Mcl-1 gain-of-function transfection experiments in a Bax knockout. 

By eliminating the pro-apoptotic affects of Bax, there should be no difference in the level of 

apoptosis in Mcl-1 gain-of-function group and controls. Therefore, any difference in the number 

of transfected cells would be the result of altered proliferation and not survival. Conversely, if 

there was no difference in the proliferation of Mcl-1 vs. control transfected cells, th is would 

suggest that the NPC expansion that is seen is due to survival and not proliferation. 

Future Directions 

Collectively, the results of this thesis demonstrate that Mcl-1 is a critical survival factor 

for adult NPCs. This has a number of implications for both the healthy aging brain as well as the 

injured brain. Firstly Tropepe eta/. , ( 1997) have shown that there is a decline in neural 

progenitors in the SVZ of aging animals and that this is a result of a lengthening ofthe cell cycle 

within this population. This presents a major problem when targeting adult NPCs for the 

treatment of different neurodegenerative diseases, as many of these are more prevalent in the 

aging brain. One way to remedy this situation would be to enhance the expres ion ofMcl-1 in 

TACs, which would presumably decrease the endogenous rate of apoptosis in the TAC 

population. Moreover, by enhancing the survival ofNPCs in vivo, the cells that were rescued 

could also contribute to the SVZ niche, which would further support the maintenance of the 

neural precursor population throughout the life time (Riquelme, et al. , 2008). In summary, Mcl-1 

gain-of-function in NPCs of the aging healthy brain may offer several key benefits that would 
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allow the NPC population to be poised to offer an enhanced regenerative re ponse when a 

neurodegenerative in ult occurs. 

There have been many studies demonstrating that endogenous PCs respond to stroke in 

a potentially therapeutic manner (for review ee Lindval l & Kokaia, 201 0). Furthermore, this 

therapeutic re ponse can be enhanced by applying trophic factors that promote proliferation and 

ubsequently applying factors that direct differentiation toward a neuronal fate (Kolb eta!., 

2007). However, one of the greatest challenges that exists w ithin this area of research is the high 

rate of cell death that occurs in these newly born cel l (Lindvall & Kokaia, 20 I 0). To combat this 

problem, one approach cou ld involve genetic manipulation of the PC population such that they 

are resistant to apoptosi after migrating away from the SVZ niche. T he Mcl-1 gain-of-function 

experiment completed in this thes is suggests that Mcl-1 would be a good target to enhance the 

survival of endogenous NPCs that migrate away from the SVZ when responding to an injury 

uch as a stroke. 

0 A expression pia mids were u ed to alter the genetic makeup of adult P in all of 

the experiments carried out in this thesis. This type of genetic manipulation i beneficial for 

short-term experiment that do not involve multiple cell divisions. To fully assess how Mcl-1 

gain-of-function affect both the aging healthy brain as well as the injured brain, one would need 

to stably insert a copy of the Mcl-1 gene driven off a constitutively active promoter into the PC 

genome so that Mc l-1 gain-of-function would be carried forward during proliferation. Th is could 

be accomplished by us ing a retrovirus and such a strategy would be suffic ient for proof-of­

principle Mcl-1 gain-of-function studies. Obviously, the ultimate goal when applying Mcl-1 

gain-of-function to any disease model would be to achieve recovery of function. However, 

because any study that employed a retrovirus cou ld only enhance Mcl-1 expres ion in a 



--------- -

Mcl-1 & Adult NPCs 64 

proportion of the NPC population, it is reasonable to suggest that this type of approach would not 

provide the full benefit Mcl-1 gain-of-function has to offer. To achieve the optimal benefit that 

Mcl-1 gain-of-function offers would require an inducible transgenic mouse that drives Mcl-1 off 

of the Nestin promoter. Once induced, Mcl-1 gain-of-function would be present within the entire 

neural precursor population as well as all of the subsequent NPC progeny. This would provide 

the optimal setting to assess whether Mcl-1 gain-of-function leads to functional recovery in a 

variety of neurodegenerative diseases. 
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