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1X PBS = 1 X phosphate buffer solution
Apaf-1 = apoptotic protease acti’ factor-1
Bcl-2 = b cell lymphoma 2
BrdU = 5-bromo-2-deoxyuridine
CARD = caspase recruitment dc  ain
CNS= central nervous system
DNA = deoxyribonucleic acid
DIx2 = Distal-less2
EGF = epidermal growth factor
FGF-2 = fibroblast growth factor 2
GFAP = glial fibrillary acidic protein
GFP = green fluorescent protein
Mcl-1 = myeloid cell leukemia |
Mcl-1""=" eloid cell leukemia 1 >mozygous floxed alleles
NesCre = Cre recombinase driven o of the Nestin enhancer promoter
NesGFP = green fluorescent prote  off of the Nestin enhancer promoter
NSCs = neural stem cells
OMM = outer mitochondrial memb
PCR = polymerase chain reaction
PFA = para-formaldehyde
SGZ = subgranule zone
SVZ = subventricular zone
TACs = transient amplifying cells

TPBS = tween20 phosphate buffer solution
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Figure 1. Cell Types of the Adult Subventricular Zone. The SVZ (orange) is adjacent to
lateral ventricles and is lined with multi-ciliated ependymal cells (grey). Type B SVZ a  ocytes
(blue) are stem cells that give rise to migrating neuroblasts (A, red) destined for the olfactory
bulb via the tri  sit-amplifying type C cells (green). (Adapted from Riquelme er al., 2008).
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membrane changes without harming neighboring cells. The two major protein familics that

regulate apoptosis are the caspase family of proteases and the B cell lymphoma (Bcl-2) family.

1.3.1.1 Caspase Family of Proteases

There have been fourteen caspases identified and all share common characteristics
including being aspartate-specific cysteine proteases. having the conserved pentapeptide active
site "QACXG™ (X can be R, Q or D) (Fan /., 2005). Furthermore, the caspase f 1ily is
divided into 3 subfamilies based « ino acid homology: the initiator caspases, which clude
caspase 9, the apoptosis execution luding caspase 3 and 7, and the inflammatory mediators.
With the exception of caspase 14, | of the caspases are translated as inactive zymogens and are
regulated at the posttranslational level. The initiator caspases contain domains such as the
caspase recruitment domain (CARD) that en le these proteins to interact with other molecules
such as apoptotic protease activation :tor-1 (Apaf-1). which then cleaves the executioner
proteins (Fan er al., 2005). Once activated, the executioner proteins begin cleaving ¢ ular
proteins resulting in the morphologic ¢t ges that are characteristic of apoptosis suck 5
plasma membrane blebbing and nuc rc lensation (Fan er al., 2005).

There are a variety of caspase family members involved in both developmental apoptosis
and apoptosis that occurs after ac’ _ury or in CNS degeneration. For instance, embryonic
NPCs from either caspase 9 or casj 3 null mice fail to undergo normal develop: ntal
apoptosis (Kuida, et al., 1998 Woo, ¢r al., 1998). This results in an increased number of
surviving NPCs and differentiated cells causing an expanded ventricular zone and cortex, which
ultimately leads to lethality at the perinatal period (Kuida. ¢f ¢/, 1998; Woo. et al., 1998).
Furthermore, a variety of injury models of the adult CNS including spinal cord injury. ischemia

and traumatic brain injury, have demonstrated that significant cell loss occurs through the
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Figure 2. Bcl-2 protein family ¢ ses. A representation of each of the three major classes of
proteins found within the Bel-2 family. The anti-apoptic proteins contain all four Bel-2
homology (BH) domains while the multidon  n effector proteins contain BH1-3 domai . In the
BH-3 only class, both the sensitizer and activator BH3-only proteins contain just the BH-3

domain.
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Figure 3. Mitochondrial mediated apoptosis. In the healthy cell. Bax and Bak exist as
monomers. Upon an apoptotic stimulus, the sensitizer BH-3 only proteins displace ictivator
BH-3 only proteins from the anti-apoptotic Bcl-2 family members. This allows the vator BH-
3 only proteins to induce homo-oligomerization of Bax and/or Bak, which results i M
permeablization releasing cytochrome c into the cytosol where it interacts with Ap: to form
the apoptosome. Caspase 9 is activated by the apoptosome. which in turn activates caspase 3.
Active caspase 3 cleaves cellular proteins resulting in the morphological changes that are
characteristic of apoptosis.
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which underscores the crucial role that Mcl-1 plays in the developing brain. Other  (dies have
demonstrated that the anti-apoptotic activity of Notchl in NPCs can be attributed to Mcl-1
upregulation (Oishi ef al., 2004). In contrast to embryonic NPCs. Mcl-1 loss-of-function does not
directly induce apoptosis in differ :iated neurons. but Mcl-1 deficiency potentiates neuronal cell
death in an acute DNA damage model of apoptosis (Arbour ¢/ al, 2008). demonstrating that Mcl-

I does play a pro-survival role in post  totic cells of the CNS.

Curren - there is little kne  1about - regulation of apoptosis within the adult SVZ.
There is evidence demonstratingt  enhanced trophic factor support (Reynolds & Weiss, 1992;
Craig et al., 1996), exercise (van Pra. 21 al., 1999), cell cycle regulators such as Bmi (He et al.,
2009) can enhance proliferation within the adult SVZ. llowever, there has yet to be a nt anti-
apoptotic Bcl-2 family member implicated in the regulation of adult NPC apoptosis or survival.
However, the function of Mcl-1 in adult NPC’s has yet to be characterized. which could be a

reflection of the peri-implantation lethality that exists in germline kockouts of this protein.

1 immary and Hypothesis

Many neurodegenerative conditions are most prevalent during adulthood; therefore focus
has recently been directed towards ative strategies within the adult brain. When
compared to the embryonic brain, the endc  nous neural precursor populations of the adult  in
are quite small and without manipulation offer the dam: d brain an insignificant level of
functional regeneration. One putative therapeutic approached to regeneration of the adult brain is
to expand the . dogenous neural precursor population. When looking for potential g ctic
targets, Mcl-1 has emerged as a viable candidate as the Mcl-1 conditional KO results in a

dramatic increase in apoptosis of the embryonic NPCs (Arbour et al, 2008). Althou 1 this is
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promising, there has yet to be any evidence that Mcl-1 is even expressed in the adu neural
precursor popi ition, let alone wk 1er Mcl-1 is a prosurvival factor within this population.
Therefore, to begin this journey tc improving the therapeutic efficiency of the endc  znous

neural precursor population of the adult brain. I put forward the following hypothesis:
Hypothesis:

Mcl-1 is a pro-survival factor wi n Jult neural precursor population of the adult

mammalian brain.

1.5 Objectives

The m: 1 objectives of this thesis are as follows:

I. To demonstrate that Mcl-1 is expressed in proliferating cells of the adult
mammalian brain;

To demonstrate that Mcl-1 ss-of-function inc  1ses endogenous apoptosis of
adult NPCs;

to

3. To investigate whe r Mcl-1 gain-of-function reduces endogenous apoptosis in
adult NPC'’s.
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Component Volume/Sample (pl.)
10X Reaction Buffer 5.0

Primers (2.5uM):

*6Mcl-1 5.0

**TMcl-1 5.0

1.25mM dNTP’s 8.0

50mM MgCl, 1.5

Taq polymerase 0.5

Water 22.0

DNA 3.0

*6Mcl-1 =5 GCA GTA CAG GTT LAA uLUL UAT] U3
**7Mcl-1 =5'CTG AGA GTT GTA CCG GAC AA3

Table 3. Components of Mcl-1 ]

ction solution
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Figure 4. Mcl-1 genotypes can be determined through PCR and gel electrophoresis. The
Mcl™ allele contains two 34-bp loxP sites, which makes it larger than the wild type Mcl-1 allele.
The PCR products of these two alleles are separated by placing them in a 2% agarose gel and
applying electrophoresis. By doing this, the different alleles will separate and the genotype can
be determined.
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Figure 5. Acquisition of Clonally Derived Neural Precursor Cells. The SVZ of Mcl-1 "and
wild type mice were dissected. tt  expanded in serum-free media containing FGF-2, EGF and
heparin. Neurospheres were mechanically dissociated and plated as single cells 12- >hrs before
transfection. (Modified from Cho  cki et al., 2009).
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Figure 6. Western analysis of protc  expression. A, Western analysis of protein exy  ssion
from 293A cells that were transfected with a pCIG2 vector (GFP) or pCIG2 vector containing
Cre recombinase (Cre) or untransfected cells (control). 48hrs after transfection, cells w

collected for € : protein analysis. B, Western analysis of Mcl-1 protein expression from 293A
cells that were transfected with a)  1G2 vector (GFP) or pCIG2 vector containing M (Mcl-1)
or untransfected cells (control). 48hrs: - transtection, cells were collected for Mcl otein
analysis. Blots were reprobed with Actin as a loading control.

\












Mcl-1 & Adult NPCs

43

Figure 7. Mcl-1 is expressed in | erai  cells of the adult subventricular zone, in vivo.
FVBN mice received a BrdU inje (10 3) every 2hrs for 10hrs and were euthan d at
30min. or 4 weeks after the last i n. A, Representative photomicrographs of proliferat
neural precursor cells labelled wi ibodies against Mcl-1 (green) and BrdU (red). B,

Quantification of the percentage of BrdU positive cells that are also Mcl-1 positive.
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Figure 8. Mcl-1 loss-of-function  ults in increased apoptosis of Nestin-positi  ac |t
NPCs, in vitro. A, Representative photomicrographs of wild type (top panel) and ! |-1"'

(bottom panel) Nestin-positive NPCs ted with expression plasmids containing GFP. B,
Representative photomicrographs of wi : (top panel) and Mcl-1"" (bottom panel) Nestin-
positive NPCs¢ ansfected with ex  ession plasmids containing Cre recombinase. Cells were
plated at 2 x10 cells/mL and trans h GFP or Cre expression plasmids 12hrs ter
plating. C, Quantification of the p of transfected cells that are apoptotic. Apoptosis was
assessed by nuclear condensation by Hoechst staining at 24, 36, 48 and 60hrs after
transfection. D, Percentage of N yositive transfected cells that are apoptotic. Cells were
stained with primary antibody ag Nes at 36 and 60hrs after transfection. Resu  are

expressed as mean = SEM (n=3) ) .05, **p<0.001
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Figure 9. Mcl-1 loss-of-function sults increased apoptosis of SVZ-derived NPCs, in
vitro. A, Representative photomic 1s of wild type (top panel) and Mcl-1 " (bottom panel)
NPCs transfected with expression ds containing NesGFP. B, Representative
photomicrographs of wild type (top panel) and Mcl-1"" (bottom panel) NPCs transfected with
expression plasmids containing® [ Cells were plated at 2 x10°cells/mL and transfected with
NesGFP or NesCre expression pl  1ids 12hrs after plating. C, Quantification of the percen e
of transfected cells that are apoptotic. Apoptosis was assessed by nuclear condensation at 24, 36,
48 and 60hrs after transfection. R 1lts pressed as mean + SEM (n=3). *p<0 .05
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apoptosis based on nuclear conder  ion. W 1 apoptosis was assessed at 36hrs. the level of
apoptosis did not differ between1 :1-1 o  expression (Fig. 11B). However, wher e level of
apoptosis was assessed in Nestin positive NPCs at 60hrs, there was a significant re iction in
apoptosis in Mcl-1 transfected cells (Fig.1 1B; Wt. GFP vs. Wt. Mcl-1: p<0.01; n=3). These data
demonstrate that Mcl-1 gain-of-function in NPCs leads to an overall reduction in endogenous

apoptosis, in vitro.
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Figure 10. Mcl-1 loss-of-function results in increased apoptosis in adult NPCs in vivo.
NesGFP or NesCre plasmids wer  ectroporated into the rostral lateral ventricles:  apoptosis
was assessed at 72hrs. A, Represc  itive photomicrographs of GFP" cells from coronal wild type
(top panel) and Mcl-1"" (bottom | el) -ains that were transfected with NesGFP.
Representative photomicrographs of GFP" cells from coronal sections of wild type (top  ancl)

and Mcl-1"" (bottom panel) brains were transfected with NesCre. C, Quantification of the
percentage of apoptotic wild ty; d Mcl-1"" cells that were transfected with NesGFP or
NesCre in vivo. Transfected GF sitive apoptotic cells were identified by nuclear conder  ion

as visualized by Hoechst stainir esults are expressed as the mean £ SEM (n=3). *p<0.05
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Figure 11. Mcl-1 gain-of-function 1 1lts in decreased apoptosis of SVZ-derived cultt

and Nestin-positive adult NPCs  vitro. C. s were plated at x10°cells/mL and transfected
with GFP and Mcl-1 expression f  mids 6hrs after plating. A, Quantifi  ion of the percentage
of transfected cells that are apoptotic. Apoptosis was assessed 7 nuclear condensation as
visualized by Hechst staining at 24, . 48 and 60hrs. B, Quantification of the percentage of
Nestin-positive transfected cells tl ipo itic. Cells were stained with primary antibody
against Nestin and apoptosis asse: ied on nuclear condensation as visualized by Hoechst
staining at 36 and 60hrs. Results a  2xpressed mean + SEM (n=3). *p<0.05, *p<0.001
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proportion of the NPC population, it is reasonable to suggest that this type of approa  would not
provide the full benefit Mcl-1 gain-of-function has to offer. To achieve the optimal benefit that
Mcl-1 gain-of-function offers would require an inducible transgenic mouse that drives Mcl-1 off
of the Nestin promoter. Once induced, Mcl-1 gain-of-function would be present within e entire
neural precursor population as well as all of the subsequent NPC progeny. This wc¢  orovide
the optimal setting to assess whether Mcl-1  n-of-function leads to functional recovery in a

variety of neurodegenerative diseas
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