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ABSTRACT 

Bardet-Biedl Syndrome (BBS) is an autosomal recessive, genetically heterogenous, 

ciliopathic condition, characterized by dystrophic extremities, retinal dystrophy, obesity, 

renal abnormalities and male hypogonadism. It is possible that inheritance of a single 

BBS mutation may predispose to complex diseases such as obesity, hypertension and 

diabetes, particularly as these disorders occur frequently in BBS. To determine the 

incidence of metabolic and renal events 46 BBS cases, 96 heterozygote BBS mutation 

carriers, and 37 relatives without a BBS mutation were studied. Cases have been 

followed prospectively for up to 28 years, but relatives were assessed for the first time. 

The molecular basis of BBS was identified in all families in whom DNA was obtained: 9 

mutations in 6 different BBS genes were discovered in 21 families. Body mass index in 

adult cases was 38 ± 12, in carriers 28 ± 6 and in non carriers 29 ± 3. Hypertension had 

developed in 72% of cases, in 54% of carriers and 49% of non carriers. Median time to 

onset of hypertension treatment was 34, 63 and 67 years respectively. Diabetes had 

developed in 50% of cases, 17% of carriers, and 24% of non carriers, with median time to 

diabetes being 43, 75 years and not achieved respectively. Stage 3 chronic kidney 

disease had developed in 4 7% of cases, 11% of carriers, 15% of non carriers, with 

median age to diagnosis being 58, 86 and 81 years respectively. 

Metabolic and renal events occurred frequently and at an early age in BBS. There were 

no significant differences in the risk of these events comparing carriers of a BBS 
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mutation to non carriers. Inheritance of a BBS mutation does not predispose to obesity, 

diabetes, hypertension or renal impairment. 
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1 Introduction: 

1.1 Newfoundland's Founder Population: 

The Island of Newfoundland is one of the world's richest resources for study of genetic 

disease. Arrythmogenic right ventricular cardiomyopathy, hereditary cancers such as 

colon cancer, polycystic kidney disease, and numerous other inherited conditions all have 

a high prevalence in Canada's easternmost province. Newfoundland's population may be 

useful in the study of autosomal recessive, autosomal dominant and complex genetic 

disease. A high co-efficient of kinship, essentially the marriage of cousins, has resulted 

in a predisposition to some autosomal recessive conditions like Bardet Biedl Syndrome 

[1]. The settling ofNewfoundland has led to several distinct genetic isolates, within 

which autosomal recessive conditions are more likely to arise. Ninety percent of 

Newfoundland's current population has arisen from approximately 30,000 founders [1]. 

Geographic isolation, segregation by religion, and founder effects predispose 

Newfoundlanders to genetic disease. In addition, Newfoundlanders have had large 

families throughout generations, who have settled in or near the core community and 

there has been little in or out migration. Close family connections facilitate the study of 

genetic conditions [ 1]. 

The island ofNewfoundland was settled primarily in response to high demand for cod 

fish in Europe in the late 1700's and early 1800's. The bulk of the settlers who came to 

exploit the rich fishery in Eastern Canada came from two distinct populations. These 

settlers came from Southeast Ireland and Southwest England. Both of these groups were 



fairly homogenous in their homeland origins, and often settled within specific outport 

communities ofNewfoundland that were geographically isolated. The Irish settlers came 

in two major migrations, and the English came in a fairly steady flow for a period of the 

early 1800's and the 1830's [1]. After this rush to settle, the migration essentially 

stopped, and the population growth ofNewfoundland was driven by natural reproduction. 

In the 1980's Newfoundland's population reached its peak at approximately 580,000 

people, of whom an estimated 90% can be traced to the initial20,000-30,000 settlers. 

Geographic isolation of coastal settlements was perpetuated by dependence on the cod 

fishery, lack of roads and by the segregation of the Irish settlers who were mostly 

Catholic from the English settlers who were largely Protestant. Any expansion of these 

isolated communities was primarily due to the division of land amongst descendants of 

original settlers, and settlement of descendents in nearby coves and bays which did little 

to contribute to the genetic diversity of large families [1, 2]. Little has changed over time 

into the modem era. In 1982, 50% ofthe Newfoundland population lived in towns of 

less than 2500, and 41% in towns ofless than 1000 [1, 2]. 

The settlement and expansion ofNewfoundland, coupled with religious segregation, 

close family ties, a high coefficient of kinship, low gross in and out migration has created 

a number of genetic isolates, defined by the coastal geography [1, 2]. None the less, 

Newfoundland is the most generalizable of founder populations to Caucasian 

populations. [3]. 
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1.2 Bardet-Biedl Syndrome: 

Bardet-Biedl syndrome (BBS) is an autosomal recessive disorder characterized 

predominantly by obesity, retinal dystrophy, dystrophic extremities, male 

hypogenitalism, and renal malformations. Secondary features of this syndrome include 

diabetes mellitus, endocrine dysfunction, neurologic abnormalities, learning difficulties, 

and systemic abnormalities in nearly every organ [4] . 

The prevalence ofBBS has been estimated variously as 1 in 160000 (Switzerland) [5,6], 

1 in 150000 in the European population [7], and 1 in 100000 as the global prevalence [8]. 

Newfoundland has a very high prevalence ofBardet-Biedl syndrome, estimated at 1 in 

18000 live births [9], and that figure is only surpassed by the rate seen in Kuwaiti 

Bedouins which is 1 in 13500 [10]. 

1.2.1 Early Descriptions of BBS: 

The Britons, Laurence and Moon first described four mentally retarded siblings with 

obesity and retinal dystrophy in 1866. The three males in the case studies had small 

genitals and walked with an ataxic gait [11]. The syndrome was called Laurence-Moon 

Syndrome. Bardet and Biedl, in 1920, and 1922 respectively, reported similar cases, in 

French and Austrian children, and the patients ofBiedl also had polydactyly [12, 13]. 

After these reports, the conditions Laurence-Moon Syndrome and Bardet Biedl syndrome 

were considered to be expressions of the same condition, called Laurence-Moon-Bardet 

Biedl Syndrome (LMBBS) [14]. Literature reviews performed by Klein and Ammann 
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(1969) and Schachat (1982) suggested that the two conditions were distinct, with LMS 

involving a progressive spasticity and no sign of polydactyly [ 6, 15]. This division was 

widely adopted in the scientific community, with the majority of patients previously 

diagnosed with LMBBS then being given the diagnosis ofBBS. However, more recent 

molecular genetic research has shown that BBS mutations are responsible for phenotypes 

that appear to conform to the LMS diagnosis [9]. Of 46 BBS cases in the Newfoundland 

cohort, two cases met the criteria for LMS. One case, meeting the LMS diagnostic 

criteria, had siblings with BBS who did not meet LMS criteria. All affected individuals 

in this extended family were later shown to have the same BBS5 mutations. The other 

instance of a phenotype consistent with LMS was seen in a family with BBS6 mutations. 

This project is the extension of several years of work on the Newfoundland population of 

Bardet-Biedl syndrome. The project began with ascertainment and assessment of cases 

of BBS through the Canadian National Institute for the Blind. 

1.2.2 Clinical Manifestations of BBS 

Bardet-Biedl syndrome is associated with many deleterious clinical outcomes. BBS has 

manifestations in almost all of the body's organs. The lives ofBBS affected individuals 

are significantly burdened by the syndrome, and their lifespan is often much shorter than 

the average for their population [9]. 
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1.2.2.1 Vision: 

Bardet-Biedl patients have severely impaired vision. The retinal dystrophy found in BBS 

is often classed as a rod-cone dystrophy. Individuals with BBS are frequently registered 

blind in their teens or twenties, and many lose all vision by their twenties or thirties. 

1.2.2.2 External Physical Abnormalities: 

Brachydactyly, syndactyly, and polydactyly of the hands and feet are seen regularly. 

Facial and cranial structure is also frequently affected. Patients show a flat affect in their 

faces and often have narrowing of the skull around the temples. Men with BBS are 

subject to hypogonadism, characterized by small, buried penises and undescended testes 

[4, 7, 9]. Women also may be burdened with sexual structural abnormalities, some 

women having dystrophic vaginas [9]. It is of note that none of the men with BBS in the 

Newfoundland population have fathered a child, women have similarly reduced or 

impaired fecundity; with only two lives birth reported [9]. 

1.2.2.3 Obesity: 

Obesity is one ofthe cardinal manifestations ofBBS. Twenty five percent of the 

Newfoundland BBS population had a Body Mass Index (BMI) higher than 40 [9]. This is 

known as morbid obesity, and is associated with substantial morbidity. 
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1.2.2.4 Endocrine Disease: 

Diabetes and impaired glucose tolerance are very commonly associated with BBS. A 

study from the late 80 s and early 90 s, showed abnormalities in gonadotrophins in 

women, and that reproduction was low [ 4]. 

1.2.2.5 Hypertension: 

BBS patients in Newfoundland are subject to early onset of hypertension (median age 34) 

[9]. 

1.2.2.6 Renal Structure and Function: 

In the Newfoundland BBS population, 100% of patients who underwent a renal 

ultrasound had a structural abnormality [9]. BBS patient kidneys frequently show fetal 

lobulation. Calyceal blunting or clubbing, renal cysts, and some degree of kidney failure 

are all features ofthe syndrome [4, 9, 16]. Depressed renal function in those with BBS 

could predispose to hypertension. 

1.2.2.7 Neurological Disease: 

Traditionally BBS was thought to be associated with mental retardation. However, with 

IQ testing appropriate for those with severe vision loss, only a third had below normal IQ 

[4]. Learning disabilities, however, are common. BBS patients also have a host of other 

neurological deficits. Ataxic gait, poor coordination, abnormal cranial nerve function, 
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impaired eye movement, difficulty forming words and sounds are all common [9] . There 

is also an increased prevalence of mental disorders in the BBS population [ 4, 9]. 

1.2.3 Establishment of a Clinical Phenotype for BBS: 

To classify and diagnose BBS a clinical phenotype was defined that took into account the 

cardinal and secondary manifestations ofBBS [9, 17]. This undertaking created a 

concrete list a characteristics and outcomes most associated with BBS. This clinical 

phenotype excluded mental retardation, which was previously listed as a clinical 

manifestation of the syndrome. In recent years, it has been suggested that the lack of 

intellectual stimulation in BBS affected persons contributed to their developmental delay 

[ 4, 9]. Their blank and expressionless faces, caused by poor coordination of facial 

muscles, together with blindness, obesity, and dystrophic extremities also gave the 

impression of retardation. 

Newfoundland Bardet-Biedl syndrome patients were first ascertained through a review of 

the records of the Canadian National Institute of the Blind (CNIB), and subsequently 

through referral by Ophthalmologists or the Newfoundland Provincial Medical Genetics 

program. All patients had complete clinical investigations and detailed medical record 

reviews. Clinical diagnosis of BBS was made by the patient being positive for 4 of the 

cardinal BBS manifestations, or by being a sibling, with 3 cardinal manifestations, of a 

positively identified BBS patient. The description of the clinical phenotype of the 

Newfoundland BBS cohort was derived initially from the work of Green et al, Harnett et 
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al, and O'Dea et al. [4, 16, 18] . More recently, Moore et al. performed a detailed 

assessment of all available BBS cases in Newfoundland in 2005 [9]. 

1.3 BBS Molecular Genetics And Genotypes: 

Since 1995, Newfoundland families have participated in research to identify the genes 

responsible for BBS. Similar studies of Bedouin BBS families as well as cohorts of BBS 

patients particularly in the United States, Great Britain, and France, have contributed to 

the elucidation of the BBS genes. There are now 12 confirmed BBS genes, BBSJ2 having 

recently been discovered [19]. Two major genes, BBSJ and BBSJ 0, each account for 

~20% ofthe mutational load in families of European descent, whereas ten other genes 

each account for approximately 5%, and some of these were found mutated in only a few 

families or even a single family (the latter in the case of BBSJJ) [19, 20]. The 12 known 

BBS genes account for ~ 70% of affected families, suggesting that additional BBS genes, 

for the remaining 30% remain to be identified. A further complication is the finding that, 

in some cases, inheritance departs from classic autosomal recessive inheritance and may 

involve three mutated alleles in two genes, defined as oligogenic inheritance. It is also 

possible that severity can be modulated by an allele of a modifier gene [19, 21]. 

1.3.1 BBSl: 

Mutations in BBSJ are the most common cause of BBS, and account for approximately 

20% ofthe cases world wide [21, 22]. The gene's chromosomal locus is 11ql3 (23]. 
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BBSJ because of mutations that result in dysfunction in sensory capabilities of the 

ciliated cells [23, 24]. The BBSJ mutation in Newfoundland families is M390R. 

1.3.2 BBS2: 

Mutations in BBS2 account for 8% of BBS cases [21]. Like BBSJ , mutations in BBS2 

result in dysfunction of cellular sensory machinery. The chromosomal locus for BBS2 is 

16q21 [23, 25] . BBS2 mutations are thought to have negative effects in regulation of 

development and growth, which may result in the failure of BBS2 cases to develop fully 

at early stages of growth. Mice with BBS2 mutations display obesity, retinal 

degeneration, renal cysts, male infertility, and olfactory deficiencies [23, 26] . The BBS2 

mutation identified in Newfoundland families is Y24X. 

1.3.3 BBS3: 

BBS3 accounts for a small proportion (0.5%) of world wide BBS cases [21] . The BBS3 

protein product is also known as ADP-ribosylation factor-like protein 6 and its gene is 

found at chromosome location 3p12-q13 [23]. This intracellular protein is responsible for 

a series of molecular signals in the cell via the GTP and the RAS proteins, which are key 

to intracellular trafficking [26, 27]. BBS3 mutations result in changes in amino acid 

residues near the GTP binding site and are likely to prevent GTP binding and therefore 

signal conduction [27]. The mutation identified in Newfoundland is G 169A. 
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1.3.4 BBS4: 

This gene contributes to less than three percent of BBS cases [28]. BBS4 may be an 

adaptor protein that facilitates the loading of cargo onto the dynein-dynactin molecular 

motor in preparation for microtubule-dependent intracellular transport in the cilium or the 

cytosol (figure 1) [29]. Mutations in BBS 4 have been linked with impaired olfaction. 

The gene' s chromosomal locus is 15q22.3-q23 [30]. Mutations in BBS4 in mice led to 

obesity, retinal degeneration, sperm defects, olfactory deficiencies and improperly 

formed olfaction structures [31 , 3 2] . BBS4 mutations have not been identified in 

Newfoundland. 

1.3.5 BBSS: 

Like BBS3, mutations in BBS5, also account for about 0.5% ofBBS cases [21]. 

Localization of the BBS5 protein to basal bodies suggests that it is involved in ciliary 

function (figure 1). In C. elegans, BBS5 silencing results in an unciliated model ofthe 

species. BBS 5 is located at 2q31 and the mutation seen in the Newfoundland BBS5 

families is IVS6+ 3A>G 

1.3.6 BBS6: 

Mutations in the BBS6 gene are thought to be the cause of 5% of BBS cases. However, 

this mutation is much more common in Newfoundland [21]. The BBS6 gene is known as 

MKKS/BBS6 and is located at locus- 20p12. BBS6 is proposed to be an atypical 

member of the superfamily of type II chaperonins, which are mediators for the proper 

10 



folding of proteins [21, 3 3]. BBS6 may code for a chaperonin which is thought to be key 

in proper mechanoreception and photoreception [34]. Defective BBS6 protein has been 

found in models that have cytokinesis defects, and in mice that are obese, have retinal 

degeneration, sperm flagellation defects and olfactory deficiencies [29, 35]. There are 

three BBS6 mutations seen in the Newfoundland families, F94fsX103 , D143fsX157, and 

L227P. 

1.3.7 BBS7: 

Mutations in BBS7 account for~ 1.5% of cases world wide [21]. BBS7 is required for the 

normal localization/motility of the intraflagellar trafficking (1FT) proteins, and group of 

proteins required for complex shuttling of other proteins along the cilia (figure 1) [26], 

and dysfunction of the protein has been shown to cause ciliary defects and improper 1FT 

in C. Elegans models [36]. The BBS7 gene is located at 4q27. No Newfoundland 

families have been identified with a BBS7 mutation. 

1.3.8 BBS8: 

Mutations in BBS8 account for ~ 1% of BBS cases worldwide [21]. The BBS8 gene is 

located at chromosome 14q32.1. It has been proposed that BBS8 protein, known as 

Tetratricopeptide repeat protein 8 (TTC 8), is required for the normal 

localization/motility of the 1FT proteins [36]. BBS8 protein is associated with centriolar 

structures, ciliary structures, and interacts with a protein that is likely involved in basal 

body function (figure 1) [24, 37]. There are no BBS 8 mutations in Newfoundland. 
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BBS 1-8 proteins all have some similar putative effects. They influence the structure and 

function of Kupffers vesicle, left/right differentiation and mutations in their BBS genes 

have been shown to result in degenerated cilia and delayed intra cellular transport. This 

is explained by defects in the cilia dependant intraflagellar transport chain (figure 1) [20, 

38]. 

1.3.9 BBS9: 

Parathyroid hormone-responsive gene B1 (Bl) , located at chromosome 7p14, was found 

to be a novel BBS gene (BBS9), supported by the identification of homozygous mutations 

in BBS patients [39]. Little is known about the function of this protein. In BBS9 null 

mice, protein B 1 is down regulated in the retina, and this could result in suboptimal 

vision [39]. There are no known Newfoundland BBS9 cases. 

1.3.10 BBSlO: 

20% of BBS cases have mutations in BBSJ 0 [ 40]. Like BBS6, this gene is proposed to 

code for a protein that is an atypical member of the superfamily of type II chaperonins 

[34] . Chaperonins ensure that proteins are folded properly and may impact ciliary protein 

folding and function. The BBS 10 protein may be an active hydrolytic enzyme. 

Suppressing BBS 10 function in zebrafish models causes severe developmental 

irregularities [ 40]. The BBSI 0 gene is located at 12q21.1, and the mutations in BBSI 0 

observed in Newfoundland are C91fsX95 and F198 Del/199 Del. 
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1.3.11 BBSll: 

The protein product of BBSJJ is also known as "tripartite motif protein 32" (TRIM32). It 

is thought to be an ubiquitin ligase, involved in protein turnover by identifying proteins 

for disintegration by "tagging" them with ubiquitin [20]. This is proposed to cause BBS 

by acting on other BBS proteins either directly or indirectly. Mutations in the zebrafish 

model of the BBSJJ gene cause disruption of the ciliated organ, Kuppfer' s vesicle and 

delayed intracellular transport. Mutations of BBSJJ were seen in a single 

consanguineous Bedouin family [20]. The BBSJJ gene is located at 9q31-q34.1. No 

BBSJJ mutations have been identified in Newfoundland. 

1.3.12 BBS 12: 

Like BBS6 and BBSJ 0, the BBS12 gene encodes a protein which is an atypical member of 

the superfamily of type II chaperonins [19, 34, 40]. Mutations in the BBSJ2 gene are 

seen in 5% of BBS families [19]. This gene is found at chromosomal location 4q27. No 

BBS 12 mutations have been identified in Newfoundland. 

Figure 1 is a schematic of the respective roles of several of the aforementioned BBS 

proteins. The figure displays the localization of the various BBS proteins around the cilia 

and basal body, further establishing BBS and a ciliopathy, and indicates that the BBS 

proteins are critical in the maintenance of proper functioning cilia. 
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Figure 1: The Putative Role of BBS Proteins 
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The Cause ofBBS: 

Figure one amalgamates data accrued from several organisms and thus represents an 

idealized cell system. All BBS proteins have been placed in the transition zone (basal 

body), centrosome, and/or ciliary axoneme. There is additional evidence for the role of 

BBS7 and BBS8 in facilitating the selective assembly of intraflagellar transport (1FT) 

proteins into 1FT particles. Knock-down of either BBS7 or BBS8 (only BBS7 is 

illustrated) results in diminished levels ofCHE-11 and OSM-5 (polaris) in the ciliary 

axoneme, culminating in shortening. BBS4 through its direct interaction with the 

p150glued subunit of dynactin probably behaves as an adapter assisting the loading of 

cargo (such as PCM-1) onto the 1FT particles and subsequent transport to the centriolar 

satellites (in the centrosome and the basal body). Given that the primary structure of 

BBS6 is similar to the group II chaperonins, we may speculate that its role is to process 

proteins prior to 1FT assembly and loading, as well as microtubule-dependent membrane 

trafficking [26]. 

This Diagram and the above passage of text appear courtesy of (www .genetests.org) 

and copyright belongs to the University of Washington and Children's Health 

System, Seattle. 
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1.4 Molecular Genetics of Ciliopathies: 

1.4.1 BBS "Spectrum" Disorders: 

There are several conditions that have a distinct likeness to Bardet-Biedl syndrome. 

Exploration ofthese conditions may prove useful in the study ofBBS. 

1.4.1.1 McKusick-Kaufman Syndrome (MKKS): 

MKKSIBBS6 mutation is also associated with MKKS. MKKS was first identified as the 

gene for McKusick-Kaufman syndrome (MMKS) and mutations of the same gene (BBS6) 

can cause BBS. MKKS shares clinical manifestations with BBS, including post-axial 

polydactyly, congenital heart disease and hydrometrocolpos- a congenital abnormality of 

the vagina. BBS may be mistaken for MKKS in infancy or early childhood prior to the 

recognition of other clinical manifestations of BBS, particularly retinal dystrophy which 

is not present in MKKS [26]. 

1.4.1.2 Alstrom Syndrome: 

Rod-Cone dystrophy, obesity, insulin resistance, and physical developmental delay are 

seen in both BBS and in Alstrom Syndrome (AS). However, Alstrom syndrome differs 

in the fact that cognition is generally unimpaired. There is also an absence of 

polydactyly, the presence of progressive hearing loss, and dilated cardiomyopathy, 

neither of the latter two being usually observed in BBS. AS is also transmitted through 

recessive inheritance [26]. 
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1.4.1.3 Biemond 2 Syndrome: 

Mental retardation, hydrocephalus, facial dystosis, hypogonadism, polydactyly, obesity 

and coloboma (holes in the structures of the eye), are all major manifestations of this 

condition. BBS shares some of these manifestations. However, little is known about the 

genetic basis of this condition. 

1.4.2 Oligogenic Inheritance of BBS: 

BBS was initially modeled as a purely recessive trait and the syndrome typically 

segregates in families as a classic autosomal recessive trait. Recent data suggests an 

oligogenic mode of disease transmission in which mutations at different BBS loci may 

interact genetically to cause and/or modify the phenotype [21]. Significant genetic 

heterogeneity and clinical variability in BBS suggest that a second site of genetic 

modification is possible [21]. The second site mutations could alter the penetrance or 

expression of the first mutations, resulting in variable severity of the condition [21, 41]. 

In a few cases, it has been proposed that three mutations at two gene loci may be required 

for BBS expression. This would be the first example of trialle1ic inheritance described in 

humans [ 42]. The BBS2 and BBS6 genes appear to be the most frequently involved in 

triallelic inheritance, however, it has also been stated that the BBS8 gene is the only one 

ofthe 12 BBS genes that does not actually participate in this phenomenon [21]. 

It is difficult to determine the extent to which triallelism is present in BBS but it is 

estimated to be a small percentage of all BBS [26]. 
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1.4.3 Molecular Biology of BBS: 

BBS is caused by mutations that cause dysfunction of basal body and ciliary proteins. 

Thus BBS is a ciliopathy. Research on such conditions is ongoing in a wide spectrum of 

diseases such as BBS, Polycystic Kidney disease, Alstrom Syndrome, Meckel Syndrome, 

Joubert Syndrome and many others [19]. Research of this type has recently come into 

vogue after experimental procedures on flagellated C. Elegans and Chlamydomonas 

indicated that mutations in cilia related genes caused abnormalities. It was suggested that 

the BBS phenotype is the result of ciliary defects at the early stages of fetal development 

[24, 29, 31 , 33, 43]. Properly functioning cilia are of critical importance for proper 

development of many organs, and improper function at later embryonic stages could lead 

to widespread organ disorder as seen in BBS and other ciliopathies. 

1.4.4 Cilia and Flagella: 

Cilia and flagella are microtubule-filled, cellular extensions whose enclosing membrane 

is continuous with the cell plasma membrane. Although cilia and flagella are identical in 

structure and composition, the two names were originally coined to indicate distinctive 

patterns of movement and are still used. A motile cilium contains nine sets of doublet 

microtubules arranged in the form of a hollow cylinder that surrounds a central pair of 

single microtubules [44] . The internal structure of the cilia provides ATP-hydrolysis 

driven mechanical movement that causes the movement ofthe motile cilia. All of these 

microtubules and their associated proteins together form the axoneme, the core of the 
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cilia. Non-motile cilia have few microtubules or a different alignment of the outer 

microtubules and this less advanced structure does not allow for movement [ 44-46]. 

One fascinating feature of cilia and flagella is that the basal body, which templates the 

assembly of their axonemes, contains the same organelle, the centriole, in man and higher 

life, and is also the defining element of another microtubule-related organelle, the 

centrosome [44]. Remarkably, cilia are conserved across many phyla. Centrosomes, 

which contain a pair of centrioles, are the organizing centers for cytoplasmic 

microtubules in the interphase cell and for the spindle microtubules in mitotic cells. The 

centriole and centrosomes are key in the division of mitotic cells, and therefore key in the 

propagation, growth and maintenance of human cells. This creates an interesting link 

between the cilia related defects discussed here and the over proliferation of cells that 

seem to be present in the cystic kidney and the cystic pancreas[44] . Cilia are recognized 

as being chiefly important as mechanoreceptors in kidney epithelium, in the 

photoreceptors of the retina, and in planar cell polarity required for embryonic 

development [19, 24, 29, 41]. 

1.4.5 BBS is a Ciliopathy: 

BBS proteins (BBS 1-8) have been shown to localize to primary cilia in model organisms 

such as C. Elegans and Chlamydamonas. The proteins are likely to be involved in 

intraflagellar transport (IFT)- which moves proteins onto the cilia, ADP rybosylation, and 

chaperonin activity. As many BBS orthologues localise specifically to the organisational 

center of the microtubules, the centrosome and the basal body (which is required for clilia 
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formation), it is quite likely that these proteins could be involved in ciliogenesis, cilia 

maintenance, the 1FT, and/or microtubule dependent intracellular transport [24, 33, 43, 

4 7, 48]. Recent studies have led to a much fuller appreciation of the fact that not only do 

cilia act in sensory roles at critical stages in embryonic development, but their sensory 

roles are essential for the normal functioning of many tissues [ 44]. Defects in these 

proteins have been shown to cause abnormal ciliogenesis. These ciliary defects in critical 

epithelial cells, such as those of the kidney, liver, pancreas, and other areas, may well 

predispose to conditions such as renal cysts, pancreatic cysts, retinal dystrophy and more 

complex manifestations including obesity, hypertension, and diabetes [44, 45]. 

Discovery of new cilia related genes that cause human disease came from studies on the 

mechanism of assembly of the organelles. However, there is a need for further research 

to continue to develop these hypotheses [ 44]. 

The BBS phenotype is consistent with the hypothesis put forward by Ansley (2003) that 

suggests that the vision related manifestations of BBS can be explained by a ciliary defect 

[24]. Dysfunction of the nodal cilium causes reduced protein transport across certain 

photoreceptors in the eye, which then results in retinal dystrophy. Ansley also suggested 

that renal conditions ofBBS had a similar etiology. He proposed that failure of 

mechanosensation at the primary cilium of renal tubular cells causes another related 

condition, cystic kidney disease [24]. Mouse models of polycystic kidney disease 

support this condition being a ciliopathy [24]. Ansley's proposal was that a link between 

ciliary dysfunction and cellular response was at the heart ofthe pathology ofBBS. 
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1.4.6 BBS Gene Defects Impact Later Stages of Organ Differentiation: 

It is proposed that the effects of BBS gene defects occur in neurulation and gastrulation 

during the later development of the embryo [29, 49]. Neurulation is the period of early 

fetal development when the rudimentary nervous system is formed. This process creates 

the neural tube, which gives rise to the central nervous system and creates the neural 

crest, which migrates away from the dorsal surface of the neural tube, and differentiates 

into a diverse set of cell types [50]. Gastrulation 'is the developmental phase in which the 

three major layers of human tissue are formed. These germ layers later form into the 

organs of the body. Also during this phase, the primitive body plan is established. 

Essentially these two developmental processes are mediated by cilia, via 

mechanoreception between cells. Current work by Mykytyn et al. has suggested that 

BBS proteins serve as mediators for communication and/or intracellular transport 

between the cilium and the interior of the cell, and suggests that a breakdown in this 

communication may cause the BBS phenotype, with incompletely developed organs [48]. 

The outward appearance of BBS seems to also give this hypothesis weight, as BBS cases 

present with organs that do not appear to be fully developed; including lobulated kidneys 

and poly- and brachydactyly [9]. Incomplete formation of organs at the critical stages of 

neurulation and gastrulation could lead to endocrine dysfunction, organ malformation, 

situs-inversus and other problems associated with BBS. Failure ofthe embryo to 

differentiate properly is suspected to be the cause ofthe cardinal manifestations ofBBS. 
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1.5 Metabolic and Renal Conditions: Diabetes, Obesity, Chronic Renal 
Failure and Hypertension are Prevalent and Costly: 

BBS is associated with obesity, hypertension, diabetes, and chronic renal failure. These 

are common conditions in Canadian society today and are detrimental to health. Further 

study of the mechanisms and mode of inheritance of these conditions is vital to reducing 

the large direct costs of treatment and burden of illness. 

1.5.1 Obesity: 

Obesity is a morbid state which indirectly and directly cost Canadians $4.3 billion in 

2001 [51]. Between 1970-1972 and 1998, the proportion of Canadian adults considered 

overweight or obese increased from 40.0% to 50.7% [51]. 

1.5.2 Diabetes: 

Diabetes is a condition in Canada that has achieved epidemic proportions. 2007 

estimates are that over 2 million Canadians suffer from diabetes [52]. Diabetes is a 

contributing factor in the deaths of approximately 41,500 Canadians each year. Diabetes 

and its complications cost the Canadian healthcare system 13.2 billion dollars per year 

[52]. 

1.5.3 Hypertension: 

An estimated 20% of Canadians are hypertensive [53]. This condition is the single 

largest predictor of heart disease in North America [54]. Seventy three percent of 
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hypertensive patients are under the age of 65, and the condition is associated with a 

massive burden of illness in North American society (54] . 

1.5.4 Chronic Renal Failure: 

While a very small percentage of Canadians have end stage renal disease (0.1 %), chronic 

renal failure represents a great financial burden to Canada: 1.3 billion dollars of direct 

medical costs and 1.9 billion dollars when mortality and morbidity indirect costs are 

considered [55]. 

1.6 Etiology of Metabolic and Renal Diseases in BBS: 

Diabetes, hypertension, chronic renal failure, and obesity are all expressions of the BBS 

phenotype [9]. New studies on BBS raise the possibility that cilia play roles in energy 

metabolism, blood glucose homeostasis, and regulation of blood pressure [ 44, 45]. 

1.6.1 Renal Failure: 

Cilia have long been observed on kidney epithelium, and are suggested to play a major 

role in the proper function of nephrons. It is suggested that ciliary dysfunction in the 

kidney can lead to a number of defects including cysts, calyceal clubbing and tubular 

defects [ 44, 45]. In humans ciliary dysfunction is usually the cause of cystic kidney 

diseases [44, 56]. The kidney epithelial cilia function in a mechanosensory system that 

monitors and responds to fluid flow over the surface of the renal epithelial cells [44, 46, 
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57]. Thus, in normal kidneys, the renal cilia are sensory transducers in a cilium

generated signaling pathway. 

Cilia dysfunction caused by malfunctioning BBS proteins may also be involved in early 

embryonic development of the nephron or in maintenance of its normal tubular structure. 

Thus, in the embryo, the BBS genes might regulate nephron morphogenesis. 

1.6.2 Hypertension: 

Elevated blood pressure has a hereditary component [44]. The etiology of hypertension 

in BBS is likely to be complex. Predisposing factors include primary renal disease, 

diabetes mellitus and obesity, which occur frequently in BBS. Furthermore, 

abnormalities in intracellular calcium signaling in vascular cells in polycystic kidney 

disease may predispose to hypertension [58]. It is possible that inheritance of a BBS 

mutation may predispose to hypertension. 

1.6.3 Diabetes: 

Cilia have been identified in the exocrine, endocrine, and ductal cells of the pancreas for 

many years [45]. The cilia in the epithelium of the pancreas are thought to be primary, 

non-motile, cilia and function as mechanoreceptors and chemoreceptors. It is currently 

thought that these cells are responsible for regulating fluid flow and ion transport, or 

pressure sensation in the endocrine ducts of the pancreas. Dysfunctional cilia, like those 

affected by mutant BBS proteins, improperly sense flow of fluid produced in the 
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pancreas. Ciliary defects in mice lead to ascinar cell atrophy and duct hyperplasia in the 

pancreas, and compromised glucose homeostatic maintenance [45] . Evidence linking 

diabetes and insulin resistance has been shown in another model of recessively inherited 

ciliopathy, namely Alstrom Syndrome. Hearn et al. indicated that ALMS 1, the protein 

product responsible for Alstrom syndrome, a syndrome similar to BBS, affected the 

function and appearance of cilia in a similar manner to BBS, and caused diabetes and 

insulin resistance [43, 59]. BBS patients are prone to type 2 diabetes and have high 

insulin levels [9]. It is likely that both obesity and primary pancreatic disease contribute 

to insulin resistance. 

1.6.4 Obesity: 

It is not fully understood how defective cilia may lead to obesity; however, one theory is 

that ciliary receptors are necessary for regulating food intake and overall energy 

metabolism. Several cells in humans have known extracellular receptors that are also 

present on cilia. For example, Integrins, cell surface receptors that mediate signaling 

inside the cell, have been localized to the primary cilium of certain cells, where they are 

proposed to influence intracellular Ca2+ levels in a flow-independent mechanism [60]. 

Furthermore, somatostatin receptor 31 02 and the serotonin receptor 5-Ht61 03 are 

localized to neuronal cilia in the brain [ 44]. This establishes a link that suggests that 

other receptors, possibly those involved in the sensation of fullness are found on cilia or 

are cilia dependant. These cilia dwelling receptors could be involved in regulating food 

intake and overall energy metabolism. In fact, many brain neuronal cells that are 
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responsive to the weight-regulating protein Leptin display somatostatin 3 receptors on 

their neuronal cilia [61] . Insensitivity could well cause a decreased sensation of satiety 

and may result in habitual overeating, leading to obesity. These theories suggest that 

BBS obesity could come from overeating because the patients simply do not ever feel 

'full'. 

Recent research in mice suggests that elements of Leptin driven appetite regulatory 

pathway require cilia [ 44]. Hedgehog pathway proteins are a family of secreted signaling 

molecules paramount for inductive cell interactions in embryos. Huangfu reported that 

the Hedgehog signaling pathway was disrupted in mouse embryos with lesions in 

kinesin-11 and two 1FT particle proteins [49]. It is possible that these 1FT machinery 

proteins play a non-ciliary role in the pathway, but one explanation for the results is that 

Hedgehog pathway proteins require cilia for their function [ 49]. This research indicates 

that these hedgehog proteins rely on proper ciliary function to properly differentiate 

tissues and organs in embryonic development and that proper function of Leptin and its 

pathway are dependant on properly functioning cilia. This further substantiates a 

potential correlation between BBS and obesity. 

It is also possible that improper type II chaperonin development, resulting from mutations 

of several BBS genes (BBS6, BBSJ 0, and BBS12) may well be responsible for the 

improper folding of the obesity protein, Leptin [44] . Improperly folded Leptin may not 

correctly sit in its receptor site, and therefore could cause insensitivity to Leptin. 
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Cilia have been observed in the fat storing cells of the liver, and also in the thyroid gland 

and adrenal glands [44]. Dysfunction of the former would lead to improper distribution 

and storage of fat, and the latter may lead to improper regulation of thermogenesis and 

metabolic rate, leading to a predisposition to obesity through sluggishness, 

hypothyroidism, or insensitivity to Leptin. 

1.7 BBS Mutation Carriers may be at Risk: 

Carriers of BBS have one wild type allele as well as one mutated allele. It is proposed 

that being a heterozygous carrier of a BBS mutation may predispose carriers to some of 

the clinical manifestations ofBBS. Qian et al. have shown in polycystic kidney disease 

mice that carrying a single mutant allele led to a variety of altered homeostatic chemical 

levels. It was suggested that increased intracellular calcium accumulations in these 

models could predispose carriers to hypertension [58]. It is possible that this 

phenomenon that had occurred in polycystic kidney disease mice could manifest in the 

carriers of BBS mutations. Beales et al. determined that there was a significant increase 

in renal cancers and malformations in the parents of BBS children. There were similar 

findings in their unaffected siblings, showing a increased risk of kidney problems of 

seventeen and twenty fold respectively [8]. However, others have recently discovered 

contradictory evidence that suggests that there is no link between BBS heterozygosity 

and an increased prevalence of renal cancers. [62]. 
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In recessive conditions associated with cancer or diabetes, some disease manifestations in 

heterozygote carriers have been suggested [8, 63]. Carriers of an autosomal recessive 

syndrome, Ataxia-Telangiectasa, may have a 3 to 4 fold increased risk of developing 

cancers [63]. 

Specific to BBS, obesity, renal disease, diabetes mellitus and hypertension have been 

identified as risks to carriers by Croft et al. [64, 65]. In 1990, Croft and Swift obtained 

hospital records and personal questionnaires in a single BBS family in which they 

discovered that heterozygous carriers for BBS were at substantial risk of renal disease, 

diabetes mellitus, and hypertension. Renal disease was implicated in the death of 3 of the 

proband' s first-degree relatives, and affected one other. Five ofthe proband ' s first

degree relatives were diabetic, and 5 of the proband's first degree relatives were 

hypertensive. Four of the five first-degree relatives were also classified as obese. 

In 1995 Croft again examined the carriers of Bardet-Biedl Syndrome mutations, assessing 

records and questionnaires on thirty-four parents ofBBS cases, who were obligate 

heterozygotes. Fathers ofBBS children were predominantly overweight. In fact Croft 

showed 26.7% ofBBS fathers to be "severely overweight" (BMI exceeding 31.2). This 

was a 3-fold increase above the 8.9% United States national average taken from the 

NHANES II study [66]. 

Stoetzel et al. in 2007 studied the three BBS proteins corresponding to BBS6, 10 and 12 

in wild type zebrafish. They suppressed each BBS protein individually, 6 and 10 
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together, 6 and 12 together, 10 and 12 together, and all three together. They found 

evidence that the proportion of improperly developed fetuses was dependant on the sum 

effect ofthe suppression of the BBS proteins. These findings suggest that there is a 

"dose dependant" effect to BBS 12, 10, and 6, which also suggests that carrying a mutant 

allele for BBS could lead to clinical BBS manifestations. 

These aforementioned studies do suggest a link between being a carrier of BBS mutations 

and predisposition to the clinical outcomes associated with BBS. However, the clinical 

studies are based only on single families or small sample sizes, and are not properly 

controlled. In addition, the animal studies may not extrapolate to humans. 

1.8 Clinical Epidemiology of BBS in Newfoundland: 

The research published by Harnett et al, Green et al, O'Dea et al provided the initial 

clinical information on BBS in the Newfoundland population [ 4, 9, 16, 18]. Moore et al. 

extended the BBS phenotype, determined if BBS and LMS were the same disorder, 

described the genetic epidemiology of BBS, and determined whether there were 

genotype/phenotype correlations for BBS. These reports established wide spread 

systemic manifestations observed across the BBS cohort, irrespective of genotype and 

included substantial endocrine and renal disease [9]. 

To assess phenotype and outcomes for the BBS cases, Moore et al. evaluated 38 of the 46 

BBS patients in clinic, and reviewed the medical charts of all 46 patients. Anthropometric 
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measures were taken ofhead, face, ears, hands, feet, and ofthe genitals. Dysmorphic 

features were compared to norms created by Hall et al. 1995, and scored by clinical 

geneticists [67]. A neurologist examined 7 patients and 19 patients were assessed on 

standardized and diadochokinetic speech tests. Psychiatric evaluation and verbal IQ 

scores were obtained. Laboratory measures of blood urea, creatinine and random glucose 

were determined on whole blood drawn from the subjects. Renal ultrasound scans were 

performed to assess structural abnormalities. 

Green et al. [4] established that retinal dystrophy leading to blindness, dystrophic 

extremities, obesity, renal abnormalities, and genital and reproductive abnormalities were 

the cardinal manifestations ofBBS, and that diabetes mellitus, hypertension, and renal 

failure occurred frequently. Moore et al [9] extended the phenotype to neurological 

abnormalities, speech disorders, psychiatric abnormalities, gallstone disease, colonic 

disorders, asthma, congenital heart disease, other disorders such as epilepsy/thyroid 

disease, and early death. There were no significant differences between genotypes for 

any of these morbidities. 

1.9 Relevance of Proposed Research: 

Bardet-Biedl Syndrome cases have increased incidence of four major conditions common 

in the community: obesity, hypertension, diabetes and chronic renal failure [4, 9, 16, 18, 

27]. Our research provides more precise estimates of risk because of the long prospective 

follow up of cases. What is not established, is the risk of obesity, hypertension, diabetes, 
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and chronic renal failure in first degree and other relatives who carry a BBS mutation. 

This investigation will test the hypothesis that there is greater risk of these morbid events 

in carriers of BBS mutations as compared to their relatives who do not carry a BBS 

mutation. 

For relatives of those with BBS, it is important that they know if they may be predisposed 

to BBS related morbidities. Given the case rate ofBBS in the Newfoundland population, 

and the likelihood that many of the BBS alleles occur in other members of the population 

it is possible to hypothesize that haploinsufficiency (the state of an organism having only 

a single normal copy of a particular gene) of a BBS protein may contribute to a high rate 

of chronic diseases in the Newfoundland population [27]. This research can also 

contribute to the investigation of the genetic nature of obesity, hypertension, diabetes, 

and chronic renal impairment. 

This is important because the ciliary I basal body I centrosome cellular apparatus is 

complex and dependant on the normal function of multiple proteins. Consequently many 

mutations in the genes controlling this function may occur in the community. 

1.9.1 Institutions: 

This study was performed under the auspices of the Patient Research Center, at Memorial 

University, StJohn's, Newfoundland and was approved by the Human Investigation 

Committee of the Faculty of Medicine; Memorial University. The work was sponsored 

by the Janeway Foundation, and Genome Canada. 
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1.9.2 Objectives of this Study: 

This study characterizes the risk of diabetes, hypertension, chronic renal failure, and 

obesity in the Newfoundland BBS carriers by comparing them to other relatives of BBS 

cases who do not have a BBS mutation. This is the first study of its type in this 

population. 

Objectives: 

1) To describe the incidence of endocrine and renal events in a large group of 

BBS cases followed for 28 years. 

2) To characterize the risk of metabolic and renal conditions in the carriers of 

BBS mutations. 

3) To determine the relative risk of these events in BBS cases and in carriers 

of BBS mutations based on their BBS genotype. 
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2 Methods: 

2.1 Recruitment of Cases: 

The cases of BBS in Newfoundland have been extensively studied since the initial 

recruitment of patients to the study in 1983-1985 through the Canadian National Institute 

for the Blind, and ongoing referrals from Ophthalmologists and the Provincial Medical 

Genetics program. Protocol driven assessments have taken place in 1988 [16], [4], 1993 

[18] and in 2001 [9]. 

A fourth assessment of the cases was performed in 2008. At this time medical charts of 

the BBS cases were reviewed, blood pressure was measured, and blood urea, serum 

creatinine, random glucose, and Hemoglobin Ale tests were performed. 

The current BBS case cohort consists of 46 individuals (26 males and 20 females) from 

26 families. Consanguinity was documented in 27% of families (7 /26) and suspected in 

another 15% ( 4/26). 

2.2 Recruitment of relatives: 

Twenty-one of 26 families participated in the gene discovery research program, of whom 

20 families participated in the current study (Fig 2). Participants included siblings and 

parents of cases, together with some sibships of parents who requested to enroll in the 

study. Of 138 first degree relatives of cases, 78 participated in the study, 23 were dead 

and 37 did not participate. Of 107 siblings of parents, 55 participated, 24 were dead and 
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28 did not participate. Thus of 198 living eligible relatives 67% (N=133) participated in 

the study. DNA was obtained from 130 relatives and a further 3 were obligate carriers. 

Fig 3 illustrates the sibships enrolled in the study by carrier status. 

Dr. Elizabeth Dicks and Michael Webb organized research clinics in the community of 

each family. Standardized histories, physical examinations and blood pressure were 

undertaken by Dr. Dicks or Mr. Webb. Physical test performed by the team entailed 

height and weight measurements, blood taken for serum creatinine, blood urea, blood 

sugar and Hemoglobin A1C, and DNA extraction. 
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Figure 2: Ascertainment of BBS Family Members: 
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Figure 3: BBS Family Pedigrees: 
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2.3 Participant Assessment 

Blood Pressure was taken in both a sitting and standing position, and the left arm was 

used for every measure. Blood pressure was measured at least twice in each position. 

Care was taken to ensure that the same arm was used for every study subject where 

possible. A standard blood pressure cuff and stethoscope were used to assess blood 

pressure. Patients were seated comfortably for an extended period prior to blood pressure 

measures being taken. 

Several questions regarding blood pressure were asked in the history assessment. 

Patients were asked to recall if they had ever been diagnosed with hypertension. 

Participants were also asked if they were currently taking any medications to control 

blood pressure, and if they answered in the affirmative, the age they had begun therapy. 

Measurements of height in centimeters, and weight in kilograms were taken using a 

standard tape measure, and a calibrated scale respectively. The height and weight 

measures were used to calculate a body mass index. 

Serum creatinine assessed in the clinical laboratory ofthe Health Sciences Centre was 

used to calculate glomerular filtration rate using the MDRD (modification of diet in renal 

disease) equation. This estimate is reliable and valid [68, 69]. 

The Hemoglobin A 1 c test was also measured in the clinical laboratory of the Health 

Sciences Centre. Patients were asked if they had been diagnosed with diabetes. If so, 
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they were asked to recall at what age they had been told this, what kind of medication, if 

any, they were taking and at what age they had started treatment. 

2.4 Mutation detection 

A collaborative novel gene discovery program was undertaken between 1995 and 2004 

[70,71,72] which lead to the discovery ofBBS6 (34], BBS5 (47] and BBS3 genes (73] . 

In addition mutations causing BBSl, and BBS2 were identified [72, 74]. Following the 

discovery ofBBSlO, the remaining 4 Newfoundland families ofunknown genetic 

etiology were confirmed in France to have mutations in BBS 10. (Personal 

communication: Dr. H. Dollfus). 

DNA was extracted from whole blood by a standard salting out method. DNA was 

amplified by the polymerase chain reaction (PCR) method and electrophoresis was 

performed. The PCR product was then purified. For all BBS genes except BBS3 cycle 

sequencing was undertaken, and sequencing products were precipitated. Sequencing was 

performed using the capillary based ABI 3130 XL. The resultant sequences were 

analysed using the Mutation Surveyor v3.2 program. To determine carrier status in the 

BBS3 family, a restriction enzyme assay was performed. (NEB cutter, V2.0 from New 

England Biolabs. http://tools.neb.com/NEBcutter2/index.php ). 

In 2004, the DNA from 130 family members and from 25 BBS cases was analyzed for 

the 9 different mutations present in Newfoundland BBS families. The mutations are as 

follows: BBSl: M390R; BBS2: Y24X; BBS3: G169A; BBS5 : 1VS6+3A>G; BBS6: 
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F94fs X103, D143fs X157 and L227P; BBSIO: C91fsX95 and, F198del, F199del. Three 

family members were obligate carriers. Of 1170 mutation analyses that were performed 

on relatives ofBBS patients, 5 (0.48%) did not provide a conclusive result. Four carriers 

of a BBS mutation had these 5 inconclusive results. None of these 5 inconclusive 

analyses were for the mutation that was present in the relatives' family. Of225 tests in 

25 cases there were 4 (1.8%) inconclusive analyses. 

2.5 Ethics: 

The Human Investigation Committee (HIC) ofthe Faculty of Medicine, Memorial 

University ofNewfoundland and Labrador approved this research project on April28, 

2004. 

Assessment of the cases was approved by the Memorial University Human Investigation 

Committee and the Simon Fraser University Research Ethics Board prior to the 

investigations of Moore et al. [9] 

2.6 Norms and Definitions: 

The definitions used in this study are the same as those used in the report of Moore et al., 

2005. 
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2.6.1 BBS: 

Presence of at least four of the cardinal features (retinal dystrophy, obesity, renal 

abnormalities, male hypogenitalism, dystrophic extremities) or three cardinal 

manifestations in a sibling of an affected person with four cardinal features [1 0]. 

2.6.2 Obesity: 

A body mass index, calculated from the height and weight measurements taken in the 

physical exam, of 30 or greater kg/m2 [75] 

2.6.3 Hypertension: 

Hypertension was defined as sitting systolic blood pressure of greater than or equal to 

140mm of Hg or a diastolic blood pressure of greater than or equal to 90mm of Hg in 

patients not taking antihypertensive drugs, or being on antihypertensive medications. 

2.6.4 Chronic Renal Impairment/ End Stage Renal Disease: 

Chronic renal failure stages was defined as an estimated creatinine clearance <60 mVmin 

using the MDRD formula [68, 69]. Patients were considered as being End Stage Renal 

Disease if they were on dialysis, or had received a kidney transplant. 

2.6.5 Diabetes mellitus: 

Patients were considered to be diabetic if they were currently undertaking hypoglycemic 

therapy (diet/oral medication/insulin) for diabetes mellitus, had met diagnostic criteria of 

40 



the 1998 clinical practice guidelines for the management of diabetes in Canada [76] or 

had a hemoglobin A 1 c above 6%. 

2.6.6 Age of onset: 

The age of onset of hypertension, diabetes mellitus, or renal failure was considered to be 

the age at which the clinical end-point was first recorded in the medical history, or when 

diagnostic tests indicated that they were hypertensive, diabetic, or in renal failure. 

2.7 Analysis: 

Mean BMI and blood pressure in carriers and non-carriers were compared using the two

tailed Student's t-test. Cumulative probability of having an event over time was 

calculated using Kaplan Meier Analysis in cases, carriers and non-carriers. Cox 

regression was performed for each clinical endpoint to assess the hazard in a) cases with 

BBS compared to non-carriers, (b) carriers of a BBS mutation compared to non-carriers. 

The exponent of Beta coefficient and 95% confidence intervals were calculated. 

Statistical significance wasP value< 0.05 . The denominator used in the calculation of 

proportions for clinical endpoints varied, depending on the number of people available 

for testing. Statistical analysis was performed on SPSS, by Michael Webb. 
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3 

3.1 

Results: 

Cases of BBS: 

Forty-six cases from 26 families were identified. Of 153 siblings 30% had BBS. DNA 

was obtained from members of21 families, and the molecular genetic cause ofthe 

disease was identified in all of these families (Table 1). Nine mutations in 6 BBS genes 

were identified. 

Four BBS 1 families, homozygous for the M390R mutation, clustered on the southwest 

coast (Fig 3). Cases from four BBS6 families, homozygous for the F94fsX103 mutation, 

were from the same bay (Conception Bay). However cases from 2 BBS6 families 

homozygous for D143fsX157 mutations were from distinct regions. Two BBS10 

families, homozygous for C91fsx95, were from communities geographically distant from 

each other (Seal Cove and Green Bay). Individual families with homozygous mutations 

in BBS2, BBS3 and BBS5, and compound heterozygotes of BBS6 and BBS 10 were 

distributed randomly around the coast of the island. 

One of9 BBSl cases was a heterozygous carrier ofthe BBS3 mutation. One of the 15 

BBS6 cases was a heterozygous carrier of the BBS 1 mutation. One of the BBS3 cases 

was a heterozygous carrier ofthe BBS1 mutation. 

At death or last follow up, the cases were younger (40.8 years of age) than carriers (53.8 

years) and non carriers (56.8 years). Fifty seven per cent of cases were male, as were 

43% of carriers, and 46% of non carriers. Of 96 carriers of a BBS mutation BBS 1 

accounted for 47%, BBS2 for 7%, BBS 3 for 2%, BBS 5 for 14%, BBS 6 (through its 3 
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different mutations) for 25%, and BBS 10 for 5% (Table 1). In one BBS1 family (NF-

B 1 0) 3 members carried both a BBS 1 and BBS3 mutation, none of whom presented with 

any ofthe cardinal manifestations ofBBS. These carriers were categorized according to 

the homozygous mutation seen in the BBS cases present in their family (BBS 1) (Table 

2). 

3.2 Body Mass Index 

The body mass index in adults with BBS was significantly higher than that of non 

carriers (38±12 v 29±3). (<.0001) The mean BMI of carriers and non carriers were 

similar (28±6 v 29±3). When analyzed by genotype no differences were observed in 

either the cases or carriers (Table 1 0). 

3.3 Hypertension 

In cases, 33 of 46 (72%) were diagnosed with hypertension, all of whom were treated 

with antihypertensive medication. The median age to onset of hypertension treatment 

was 34 years (95% CI = 31-38) (Table 4). Compared to non carriers, cases were 7 times 

more likely to develop hypertension (Table 4). 

In carriers, 52 of96 (54%) were diagnosed with hypertension, of whom 40 (77%) 

received antihypertensive medication. The median age to hypertension diagnosis in 

carriers was 57 years (95% CI = 54-61) (Table 4) and median age to hypertension 

treatment was 63 years (58-68 years) (Table 5). 
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In non carriers, 17 of35 (49%) were diagnosed with hypertension, 15 (82%) of whom 

were treated. The median age to hypertension diagnosis in non carriers was 67 years 

(95% CI = 59-72) (Table 4) and age to hypertension treatment was 67 years (95% CI = 

59-75). (Table 5) No significant difference in the incidence of hypertension between the 

carriers and non carriers was observed. (Figs. 5&6) 

The mean systolic blood pressure in untreated carriers was 124± 14 mm Hg and in non 

carriers 119± 11 mm Hg respectively. The mean diastolic blood pressure in carriers and 

non carriers was 79±8 mm Hg and 77±8 mm Hg respectively. 

No differences in the incidence of hypertension or treated hypertension were observed 

when carriers were analyzed by genotype (Table 1 0). 

3.4 Diabetes Mellitus 

In cases, 23/46 (50%) had been diagnosed with diabetes mellitus, all of whom were 

treated by insulin, oral hypoglycemic agents or diet. The median age of diagnosis of 
/ 

diabetes was 43 years (95% CI 39-48). There was an 18 fold increased risk of diabetes in 

cases compared to non carriers (Table 6). 

No significant difference was observed in the incidence of diabetes comparing carriers 

and non carriers (Fig 7). In carriers 16/93 (17%) were diagnosed with diabetes, ofwhom 

12 (75%) were receiving treatment. The median age to onset of diabetes mellitus in the 

carriers was 75 years. In non carriers 8/34 (24%) were diagnosed with diabetes mellitus, 
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of whom 7 (88%) were receiving diabetes treatment. By age 70, 45% of non carriers had 

developed diabetes. (Table 6) 

There was no difference in the incidence of diabetes in carriers of a BBS mutation, when 

classified by genotype (Table 1 0). 

3.5 Chronic Renal Failure: 

In cases ofBBS, 20/43 (47%) developed chronic renal failure stage 3. Median age to 

onset of CKD stage 3 was 58 years (95% CI 53-64) (Table 7). There was a 15 fold 

increased risk of CKD in cases compared to non-carriers (Table 7). 

Six cases ofBBS developed end-stage renal disease. By age 60 years 13% ofthe 

population had developed end-stage disease. (Figure 9) 

No significant difference in the incidence of stage 3 CKD comparing carriers and non 

carriers was observed (Fig. 8). In carriers 8/76 (11 %) were diagnosed with stage 3 CKD. 

The median age of onset of chronic renal failure was 86 years (95% CI 81-91) (Table 7). 

In non carriers 5/33 (15%) were diagnosed with stage 3 CKD, with median age to onset 

being 81 years (95% CI 63-99). (Table 7) 

When analyzed by genotype, no differences in the incidence of chronic kidney disease in 

carriers were found. (Table 1 0) 
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3.6 First Renal or Metabolic Illness 

There was no significant difference in incidence between the carriers of BBS and the non 

carriers for at least one of the renal or metabolic outcomes that they were tested for. 

However, there is an 11 fold hazard of composite renal and metabolic illness in BBS 

cases versus non carriers (Table 8). 

In 55/96 (57%) of carriers there was at least one renal or metabolic illness diagnosed. 

The median age ofthe first diagnosis in composite illness was 57 years (95% C.l. 53-61) 

(Table 8). 

Non carriers also had a large proportion ofparticipants, 19/37 (51%), with a diagnosis of 

at least one renal or metabolic illness. The median age of the first diagnosis of renal or 

metabolic illness in this group was 64 years (95% C.l. 58-70) (Table 8). 

Thirty-nine of forty-six (85%) BBS cases had a diagnosis of at least one renal or 

metabolic illness. The median age of the first diagnosis of renal or metabolic illness in 

the cases was 32 years (95% CI 30-34) (Table 8). 

When analyzed by genotype, no differences were observed in either the cases or the 

carriers. 

3.7 Survival in BBS: 

Twelve BBS cases died, with median survival being 63 years (95% CI=62-64). 

Cumulative mortality at age 40 was 12%, at age 50 it was 20% and at age 60 it was 25% 

(Fig. 11 & Table 9). 
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Table 1: BBS Families in Newfoundland by Genotypes 

Mutation Family Cases Carriers Non Carrier 
Identification n=46 n=96 of familial 

mutation 
n=37 

BBS1: M390R B7, B8, B10, 8 45 18 
Bl5, Bl9, Homozygous 
B23 

BBS2: Y24X B14 1 7 2 
Homozygous 

BBS3: G169A B2 5 2 1 
Homozygous 

BBSS: IVS6+3A>G B9 5 13 6 
Homozygous 

BBS6: D143fsX157 B13, B20 4 5 3 
Homozygous 

BBS6: F94fsX 103 B3, B4, B16, 8 13 5 
B25 Homozygous 

BBS6: D143fsX157 B1 2 3 1 
I F94fsX103 Compound 

Heterozygous 
BBS6: F94fsX103 B5 1 3 1 
L227P Compound 

Heterozygous 
BBS10: C91fsX95 B21 , Bl2 4 5 0 

Homozygous 
BBS10: F198 del/ B6, B11 2 0 0 
F199 del/ C91fsX95 Compound 

Heterozygous 
Unknown/No DNA B17, B18, 6 0 0 

B22, B24, 
B26 

Total 26 46 96 37 

47 



.-------------------------------------- ----

Figure 4: Geographic Distribution of BBS in Newfoundland: 
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Table 2: Additional BBS Mutations That Do Not Match Family Genotype: 

Family Mutation BBS Mutations observed in 
Identification Seen in Relative of BBS Case 

family Case 
B10 BBS1 BBS 1 and 3 
B10 BBS1 BBS 1 and 3 
B10 BBS1 BBS 1 and 3 
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3.8 Analysis of Clinical Outcomes in Cases, Carriers and Non Carriers 
T bl 3 M d Cl' . V . bl . N ~ dl d S b. t a e . easure IDIC ana es m ew oun an U ljeC S . 

Cases Carriers Non Carriers 
Mean I <S.D.> Mean I <S.D.> Mean I <S.D.> 
Freq. I (%) Freq. I (%) Freq. I (%) 

Height (m) n=38 n=75 n=30 
Adults age~ 18 1.63 I <0.10> 1.67 I <0.08> 1.68 I <0.09> 
Mass (kg) n=39 n=73 n=30 

Adults age > 18 99.4 I <31.2> 79.4 I <17.6> 81.4 I <12.9> 
Adult (~18) Body Mass n=38 n=73 n=30 
Index (kglm2

) 37.8 I <11.7> 28.4 I <5.6> 28.7 I <2.6> 

30-35 kglm2 n=30 n=15 n=12 

~35 kglm2 n=16 n=6 n=O 
Hypertensive Subjects 33146 (72%) 52196 (54%) 17/35 (49%) 

Prescribed Medication 33133 (100%) 40/52 (77%) 15/17 (82%) 

Hypertensive in Clinic 0134 (0%) 12152 (23%) 2117 (18%) 
Subjects with Chronic 20143 (47%) 8176 (11%) 5133 (15%) 
Renal Failure 
Diabetic Subjects 23146 (50%) 16193 (17%) 8134 {24%) 

Prescribed Medication 23123(100%) 12116 (75%) 7/8 (88%) 

Diabetic in Clinic 0/23 (0%) 4116 (25%) 1/8 (12%) 

Subjects with 39/46 (85%) 55196 (57%) 19137 (51%) 
Diagnosis of Renal or 
Metabolic Illness 
Systolic B.P. n=43 n=l7 
(Normotensive or no 
previous Hypertension 123.7 I <13. 7> 119.4 I <11.4> 
Diagnosis/Unmedicated NIA 
Subjects) mm Hg 
Diastolic B.P. n=43 n=l7 
(Normotensive or no NIA 
previous Hypertension 78.6 I <8.2> 76.5 I <7.9> 
Diagnosis/U nmedicated 
Subjects) mm Hg 

n= subjects for which there was available clinical data for the indicated examination. 
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Figure 5: Time to Hypertension in Cases, Carriers and non Carriers of 
Newfoundland BBS mutations: 
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~-----------------------------------------------------------

Figure 6: Time to Treated Hypertension in Cases, Carriers and non Carriers of 
Newfoundland BBS mutations: 
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Table 4: Cumulative Events and Hazard Ratios for Hypertension comparing Cases, 
Carriers and non Carriers of Newfoundland BBS mutations: 
!Mutation Events ~urn. Cum. ~urn. Cum. ~urn. Mean Median IHazard 
!Presence !Events Events !Events Events !Events Age of Age of !Ratio 

~t30 at 40 at so at 60 ~t 70 Event Event 1<95% CI> 

<95%CI> 
Carrier 52 ~.7% 13.7% 33.4% 56.4% 76.3% ~8.9 57 1.45 
(n=96) <53.5- 1<0.84-

60.5> ~.53> 
Non 17 2.8% ~.8% 22.6% ~6.9% 56.0% ~3.8 67 
Carrier <58.7-
(n=35) 72.3> 

Case 33 30.7% ~2.1% 84% ~4.7% 94.7% ~5.3 34 7.34 
(n=46) <30.5- <3.93-

37.5> 13.71> 

Table 5: Cumulative Events and Hazard Ratios for Treated Hypertension 
Comparing Cases, Carriers and non Carriers of Newfoundland BBS mutations: 

Mutation Events K:um. Cum. Cum. Cum. ~urn. Mean Median Hazard 
Presence !Events Events Events Events !Events Age of Age of Ratio 

Fit 30 at 40 at 50 at 60 nt 70 Event Event <95% 
<95% CI> Cl> 

Carrier 40 5.6% 14.5% 25% 46.2% 66.2% ~2.6 63 1.24 
(n=96) <58.3- <0.68-

67.7> 2.25> 
Non 15 2.8% 5.8% 25.6% ~6.9% 56% ~4.6 67 
Carrier <58.7-
(n=35) 75.3> 
Case 33 30.7% 72.1% 84% ~4.7% 94.7% ~5.3 34 7.76 
(n=46) <30.5- <4.05-

37.5> 14.9> 
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Figure 7: Time to Diabetes Mellitus in Cases, Carriers and non Carriers 
of Newfoundland BBS mutations: 
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Table 6: Cumulative Events and Hazard Ratios for Diabetes Mellitus comparing 
Cases, Carriers and non Carriers ofNewfoundland BBS mutations: 

Mutation Events K:um. ~urn. K:um. Cum. Cum. Mean Median Hazard 
Presence fEvents Events fEvents Events Events age of age of Ratio 

~t 30 at 40 ~t 50 at 60 at 70 Event Event <95% CI> 

<95% 
CI> 

Carrier 16 0 1.2% 2.9% 9.0% 23.4% 76.2 75 0.71 
(n=93) <73.3- <0.30-

76.7> 1.70> 
Non 8 0 0 7.1% 20.7 45.1 % 72.7 
Carrier % <nla> 
(n=34) 
Case 23 15.1 36.7 63.1 100 100% 44.0 43 18.16 
(n=46) % % % % <38.5- <6.84-

47.5> 48.18> 
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Figure 8: Time to Chronic Renal Failure in Cases, Carriers and non Carriers of 
Newfoundland BBS mutations: 
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Table 7: Cumulative Events and Hazard Ratios for Chronic Renal Failure 
comparing Cases, Carriers and non Carriers of Newfoundland BBS mutations: 

Mutation Events ~urn. Cum. ~urn. Cum. ~urn. Mean Median Hazard 
Presence ~vents Events ~vents Events ~vents age of age of Ratio 

~t 30 at 40 ~t 50 at 60 ~t 70 Event Event <95%-
<95% CI> 
Cl> 

Carrier 8 0 0 0 3.9% 4.5% 82.8 86 0.59 
(n=76) <81.4- <0.19-

90.6> 1.19> 
Non 5 0 0 0 4.5% ~.1.2% 76.9 81 
Carrier <62.6-
(n=33) 99.4> 
Case 20 5% 16.3% 20% ~9.6% 00% 54.7 58 15.06 
(n=43) <52.5- <5.06-

63.5> 44.84> 
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Figure 9: Time to End Stage Renal Disease in Cases of BBS: 
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Figure 10: Time to Composite Renal and Metabolic Illness in Cases, Carriers and 
non Carriers ofNewfoundland BBS mutations: 
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Table 8: Cumulative Events and Hazard Ratios for Composite Renal and Metabolic 
Ill . C . d C . f N ~ dl d BBS t f ness com parmg arners an non arners o ew oun an mu a 1ons: 
Mutation !Events Cum. ~urn. K::um. Cum. ~urn. Mean Median Hazard 
Presence Events IE vents !Events Events !Events age of age of Ratio 

at 30 ~t 40 ~t 50 at 60 ~t 70 Event Event <95%CI> 
1<95% Cl> 

Carrier 55 6 .7% 15.1 % 33.4% 56.3% 79.1 % 58 57 1.38 
(n=96) <53 .1 - <0.81-

60.9> 2.33> 
Non 19 2.8% 8.6% 21.7% 38.6% 50.8% 60 64 
Carrier <58.1-
(n=37) 69.9> 
Case 39 31. 70f< 83.3% 93.5% 100% 100% 31.2 32 11.33 
(n=46) <30.2- <6.11-

33.8> 21.0> 
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Figure 11: Time to Death in Cases ofBBS: 
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T able 9: Mortalit yin Cases ofNewfoundland BBS 
Events Cum. Cum. Cum. Cum. Cum. Mean Median 

Events Events Events Events Events age of age of 
at 30 at 40 at 50 at 60 at 70 Event Event 

<95% 
CI> 

Case 12 6.8% 12.3% 20% 25.3% 100% 58.6 63 
n=46 <61.6-

64.4> 
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3.9: Genotype Analysis of Carriers and Cases: 
Table 10: Renal and Metabolic Event Rate in Carriers and Cases by Genotype 

All other BBS Unknown 
BBS 1 BBS5 BBS6 Genotype Mutation 

Measure 
In Clinic 
Distribution 45 ~ 13 ~ 24 15 14 12 ~Cases 
in Carriers/ 
Cases 

Mean/S.D. iMean/S.D. iMean/S.D. iMean/S.D. Mean/S.D 
Adult Body n=38 r =7 r =12 n=5 r = 12 n=10 r = 11 r =4 h=5 
Mass Index 29.11 p6.51 ~7 .5 I 46.1/ ~7 . 8 I 39.51 ~8 . 1 I ps.u 33.61 
(kg/m2

) <5.4> 1<3.4> 1<4.2> <17.4> ~.6> <17.0> 1<9.5> 1<6.6> <6.2> 

Subjects with n=34 n/a n=8 n/a n=12 r;a n=7 r;a n/a 
Untreated 5.4 1 5.4 / 5.2 I 5.2 I 
Diabetes or no 1<0.4> <0.6> <0.6> <0.5> 
diagnosis of 
diabetes 
HbAIC (%) 

Diabetes by r =3/42 n=418 n=3113 r =21s n=2/24 r =711s n= l/14 r =7112 n=3/6 
age 70 7% ~0% 23% ~0% 8% ~7% ~% 58% ~0% 
Hypertension n=27/ r =718 n=5113 r =41s r =9124 n= I0/15 ]=8/14 n=8/12 r =416 
by age 70 45 ~8% 38% ~0% p7.5% 67% ~7% 67% ~7% 

60% 
Chronic Renal 3/43 ~18 1113 ~15 1119 5/14 PI It 5/12 ~16 
Failure by age 
70 7% ~5% ~% ~0% ~% 36% p% 42% ~7% 
Systolic B.P. n=22 r,ta r =7 n/a r =s n/a r =6 n/a r,ta 
(Normotensive 127.01 123.41 118.51 119.0 

and <13.7> 1<18.1> 1<9.6> 12.5> 

Unmedicated 
Subjects) mm 
Hg 

Diastolic B.P. n=22 n/a r =7 n/a r =s rva n=6 rva n/a 
(Normotensive 81.31 ~7.7 I ~4.5/ 75.0 
and <8.7> 1<4.7> 1<10.6> <7.8> 
Unmedicated 
subjects) mm 
Hg 

n= number of subjects for which there was available clinical data for the indicated 
examination 

!comparison 
~mongst 
penotype: 
p= 

~ar. lease 

812 .407 

542 

.390 

.174 
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4.1 

Discussion 

Genetic Epidemiology ofBBS in a Large Population: 

BBS is caused by mutations in multiple different genes. The biologic complexities of the 

cilium/basal body/centrosome, which is dependent on multiple genes [ 48] implies that 

many pathogenic BBS mutations may occur. It is likely that some of the approximately 

30,000 founders of the Newfoundland population carried different heterozygous BBS 

mutations to Newfoundland 8 to 10 generations ago. Their progeny experienced 

geographic and religious isolation which predisposed to occurrence of affected 

individuals with this autosomal recessive condition. In fact, 9 different BBS mutations 

and one variant have been discovered in the Newfoundland population. Several families 

with the same BBS 1 or BBS6 homozygous mutations were clustered in specific genetic 

isolates. Individual families with homozygous mutations of different genes and other 

families with BBS caused by compound heterozygote mutations have been identified in 

random locations around the island. Thus it appears that the genetic complexity of the 

cilium/basal body/centrosome leading to multiple mutations, founder effects and the high 

inbreeding coefficient in multiple Newfoundland isolates, has caused the high incidence 

of autosomal recessive BBS in Newfoundland. 

It is likely that BBS heterozygotes occur in the general population. In the region where 

BBS 1 families are most common (South-West Newfoundland) 6 BBSJ carriers were 

identified in a group of 400 control individuals studied (1.5%) [27]. In the current study 
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additional BBS mutations were identified in 3 of 130 (2.3%) relatives that differed from 

the mutations causing BBS in their families. 

4.2 Renal and Metabolic Illness: 

This study clearly demonstrates that early onset obesity, hypertension, diabetes mellitus, 

chronic kidney disease and early death are associated with BBS. It is possible that the 

high incidence of genetically complex manifestations, such as hypertension and diabetes, 

in the BBS cases was influenced by other genetic influences prevalent in the population. 

The non carriers certainly had a high incidence of hypertension, but obesity was less 

prevalent than in cases and the onset of hypertension, diabetes and chronic renal disease 

was of substantially later onset. 

4.2.1 Renal Events: 

It is likely that primary ciliary dysfunction in BBS predisposes to the renal and endocrine 

events reported here. In normal kidneys the epithelial cilia are sensory transducers in a 

cilium-generated signaling pathway [57]. Abnormal ciliary function leads to cysts, 

calyceal clubbing and tubular defects [16, 44, 46]. Defective expression of BBS proteins 

could also lead to permanent changes in cellular properties that lead to early onset kidney 

dysfunction [ 44]. 
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4.2.2 Pancreatic and Diabetic Events: 

Cilia have been identified in the exocrine, endocrine and ductal cells of the pancreas for 

many years [ 44]. Ciliary defects have been associated with acinar cell atrophy and duct 

hyperplasia, and compromised glucose homeostasis. BBS patients are prone to type 2 

diabetes and have high insulin levels [4], suggesting that both obesity and primary 

pancreatic disease contribute to insulin resistance. Alstrom's Syndrome is another 

autosomal recessive ciliopathy strongly associated with diabetes and insulin resistance 

[59]. 

4.2.3 Obesity: 

It is not fully understood how defective cilia predispose to obesity. Neuronal cilia

dwelling receptors could be involved in regulating food intake and overall energy 

metabolism. In fact, many neurons that are responsive to the weight regulating protein 

leptin display somatostatin 3 receptors on their cilia [61]. Consequently dysfunctional 

cilia associated with BBS could predispose to dysregulation of energy metabolism. Type 

II chaperonin proteins ensure proper folding of proteins. BBS6, 10 and 12 genes code for 

proteins with similar properties to chaperonins [19, 34, 44, 77] , and mutations in these 

genes may result in abnormal proteins, which could possibly be responsible for improper 

folding of leptin, and thus predispose to the development of obesity. In addition cilia 

have been observed in the fat storing cells of the liver, in the thyroid and in the adrenal 

glands, defects in which could lead to defective storage of fat, and abnormalities in 

thermoregulation and metabolic rate [44]. 
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4.2.4 Hypertension: 

The etiology of hypertension in BBS is likely to be complex. Predisposing factors 

include primary renal disease, diabetes mellitus and obesity which occur frequently in 

BBS. Furthermore abnormalities in intracellular calcium signaling in vascular cells may 

induce dysregulation of contraction and predispose to hypertension [58]. In addition an 

underlying genetic predisposition to hypertension may cluster in these families. 

4.3 Phenotype/Genotype Comparisons: 

The fact that nine different mutations in six different BBS genes are associated with a 

similar phenotype suggests that all of the BBS genes are necessary for later organ 

differentiation. The cilium/basal body/centrosome structure appears to be critical in the 

proper development of kidneys, liver, pancreas, and other endocrine organs as renal and 

metabolic illness arising from these systems are seen in all BBS genotypes. 

The heterozygote state is not associated with a predisposition to endocrine and renal 

events associated with BBS, as the prevalence of obesity and incidence of hypertension, 

diabetes and chronic kidney disease are comparable in BBS mutation carriers compared 

to non carriers. The observation of similar BMI in BBS mutation carriers and non

carriers is consistent with our results from a study of BBS 1 genotype in obesity, in the 

geographic area where cases caused by BBSJ mutations were identified [27]. The BBSJ 
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mutation was found in the heterozygous state in 3 of 200 obese individuals and also in 3 

of 200 matched non obese controls. 

4.4 Study Limitations: 

The limitations of this study include small numbers enrolled in the study, potential 

ascertainment bias, and definitions of clinical manifestations which may provide higher 

estimates of disease. However this is a population based study likely to have identified 

most of the cases who presented with blindness, a clinical manifestation highly prevalent 

in BBS. The definitions of disease are less likely to be a problem in the cases who we 

have been following for 28 years, but may be less reliable in relatives who have been 

assessed once. The virtual overlap of time-to-event curves suggests that very large 

numbers of relatives would be required to disprove our conclusion that endocrine/renal 

events are similar in carriers and non carriers. 

4.5 Summary 

The high prevalence ofBBS in Newfoundland is likely the result of the inbreeding 

coefficient in multiple genetic isolates and the frequency of pathogenic BBS mutations in 

founders. BBS includes early onset obesity, hypertension, diabetes mellitus, and chronic 

kidney disease, which may be associated with ciliary dysfunction in a variety of organs. 

The incidence of renal and metabolic diseases was similar in carriers and non carriers of 

the Newfoundland BBS mutations. No statistically significant variation between either 
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carriers or non carriers was found in any of the outcomes sought in this study. The 

heterozygote BBS state is not associated with increased risk for these endocrine and renal 

events in this population. 
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