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Abstract

For autonomous operations of mobile robots, three key functionalitics are required:
(a) knowl ge of the structure of the world in which it operates, (b) ability to navigate
to different positions autonomously using path planning algorithnis. and (¢) ability
to precisely localize itself for the task exccution. This thesis will address son of the
issues rel. »d to the first and third requirements. The knowledge of the structure of
the environment can be represented in several forms such as: 3D models, 2D wall
plan, 2D plan of landmarks, and position and velocity of moving objects. Efficient
navigation and obstacle avoidance methods are often aided by information about the
structure of the environment in any of the above forms. At the end of cach navigation
task the  bot has to exccute an assigned task such as pick and place or park. In
most cases these tasks require precise localization ol the robot where the degree of
precision required depends on the task specilication.

Taking these functions into consideration, this thesis addresses the issues of learn-
ing the structure of the world by constructing a visual landmark map of static land-
marks. Additionally, it provides a solution to the precise localization problem of the
mobile 1 using a vision based hybrid controller.  On the subject of the visual
landmark map, the thesis deseribes a landmark position measurement syste - using
an integrated laser-camera 1 or. The traditional laser range finder can be used to
detect landmarks that are direction invariant in the laser data. The processes that
are dependent on the presence of directional invariant features such as navigation
and simultancous localization and mapping (SLAM) algorithms will fail to function
in their absence. However, in many instances, it is possible to {ind a larger number of
landmarks that are visually salient using computer vision. The calculation of depth

to a vist  feature is non-trivial due to the loss of depth information in the sensor







the proposed parking behaviour is invoked. the robot has the ability to start from
any arbitrary position to achieve successful parking given that initially the parking
station is in the robot’s field of view. As the method is purely based on vision the
hybrid controller does not require any position information (or localization) of the
robot. Usi ; a Pioneer 3AT robot, several experiments are carried out to validate the

method. The experimental system has the ability to achieve ¢ parking state and

align laterally within 1 cm of the targetl pose.
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Chapt.r 1

Intr »duction

1.1 _Tobile robot navigation

During recent years, mobile robotic research has been expi  ded to include many
industrial and service applications and the navigation of i ots has been studied
and implemented in a range of applications, such as: navigation in well structured
buildings such as honies, offices and warchouses; exploration in harsh environmients
such as underwater, deserts, abandoned mines, volcanos. battleficlds, space; consumer
applications sucli as robotic vacuum cleaners, lawu mowers, golf carts [2, 3, 4. 5. 6.
7). Although robots provide some unique benefits to humans in exploration and
working in harsh environments, in the future robotic applications will be expanded to
large scale environments with multiple robots. Health care applications and servicing
robots in i ports are some targeted future applications. In general indoor service
mobile 1 Hotic applications, the robot will respond to a user request and navigate in
a dynamic environment, where other moving and unexpected obstacles are envisaged.
In such a scenario the robot perforins tasks at specific places, returns back to its

parking station, and waits in idle niode until it receives a new assigmnent. In such




a scenario the users can be humans or other robots that may require the service of
a particular robotic agent. When a robot is in  )duced into an indoor environment
that it b ever seen and has no other information such as maps, it requires some
fundame features and capabilitics to be adaptive and also to perform its tasks in a
uscful manner. In addition to general automation requirements of a mobile robot, this
thesis considers the following three groups of major capabilities. These requirements
have bec¢ identified at a higher level, aside from the requirc 1ent of having robust

low-level itelligent controllers of robots maneuvering.

1. Localization and mapping : Robotic mapping is one of the key capabilitics
a robot requires to operate in environments when prior information about the
str ture of the environment is unavailable. In such circumstances a robot is
req red to explore and acquire information about the structure of the operating
workspace {rom a series of sensor measurements collected by the robotic system
or a map. In order to build an accurate map of a relatively large workspace,
the robotic map buildii  process requires an accurate estimate of the robot
pos  with respect to its initial start position or with reference to an already
est.  lished map. The latter process is called self-localization. The mapping
cay ty removes the requirement of having a pre-built infrastructure for nav-
igation where the robot has the capability to select and choose landmarks or
features for alignment and navigation. This capability is regarded as one of
the in  ortant features required in developing an autonomous robot [8]. In the
absence of a GPS, for operation in indoor, underground or underwater applica-
tions, one can integrate the odometry and steering angle data obtained from the
encoders of the wheeled robot to generate discrete localization information for

ma ing - the process known as dead reckoning. Usually, accurate odometry



data based localization is not possible due to associated errors (both determinis-
tic and otherwise) in the sensor data. These errors can accumulate due to finite
sen r resolution and other errors introduced by skidding/slipping, kinematical
erre 5 in wheels such as wheel misalignments, wear of wheels or traveling in
uneven terrains [9]. Therefore accurate localization is a challenging issue and as
a result, without having accurate localization information the robot will be un-
able to gencrate a consistent map. Therefore, the two | Hhlems, map-building
and self-localization have to be solved simultaneously. Due to this dual ni are
of e estimation problem, it is often termed Concurrent Mapping and Lo-
calization (CML) or more commonly Simultaneous Localization and Mapping
(SI' M), a term first coined by Leonard and Durrant-Whyte [10]. SLAM has
been an active rescarch arca in mobile robotics since the late 80's and is largely
motivated by the seminal paper on uncertain spatial relationships in robotics
by Smith et al [11]. The Kalman filter based developinents later became e
sta lard method for many SLAM implementations although there are other
methods available such as expectation maximization [12]. scan matching [13]
and genetic algorithms [14] that have been devised later for solving the SLAM
problem. Since the Kaliman filter based method construets and updates the
map while providing an te of the robot position in a wniform m:  or
by accommodating sensor uncertainties. this method becaine the most popular
among SLAM rescarchers. Although it remains extremely popular to this date,
various drawbacks of the Kalman filter method, such as lincarization ecrrors,
its 1ability to represent non-gaussian probability distributions of the variables
and computational efficiency when building large maps, have been identified.
In order to overcome these drawbacks seve  variations and new niethods such

as Sparse Extended Information Filters (SEIF) [15] and FastSLAM [16] came



into the forefront.

Modeling environmental dynamics: General purpose robots that operate
in highly dynamnic environments are required to share a common workspace
with other agents. Identification of static objects and acconnnmodating them
into the existing map can be automatically performed 1 a SLAM filter. An
acc ate and complete description of both moving and static objects has two key
advantages in mobile robotics. Firstly, it provides information necessary for the
robot control algorithin to avoid collisions with those unexpected (unmapped)
obstacles. Rather than considering them as static obstacles in cach time step. by
detecting and classifying them as dynamic obhjects, the robot can move efficiently
and intelligently avoid those moving objects through planning ahead. Secondly,
the identified moving objects can be removed {rom the robotic mapping process
in order to generate an accurate map. Nost mapping algorithms, including
existi 1 SLAM techniques, assume a static environment during the maj ing
prc ss.  Although this assumption would hold for mapping robots that are
operating only when the environment is free from any moving objects. in more
ge -al applications the robot is required to build and maintain a map of the
environment during its operational lifetime. Such an assumption often leads to
inconsistencies in the map and also in the robot localization. After the proper
identification of the sensor data that corresponds to the moving objects, they
can be removed from the mapping and localization process leading to a more
accurate map. The static obstacles can be identificd using range sensors and
avoidance of them can be accomplished using techniques such as potential field
m 10ds in behaviour based control [17]. Iowever. identification of moving

obje by a moving robot is quite a challenging task. In the past several



techniques have been developed using vision [18, 19] and laser ranger [20, 21, 22].
The primary goal of these moving object detection methods is to identify sensory

dat that corresponds to a moving object.

. Prec : alignment of the robot against landmarks: Visual servoing has
been a popular and important resecarch arca in both manipulator and mobile
robot control [23, 24]. Use of traditional visual servoing methods is more chal-
len "1g due to the varying types of mobile robot platforms and the lesser number
of de; :es of freedoms as compared to manipulators. The typical service robot
perfo 15 a variety of tasks, such as material handling, where the robot is re-
quired to align itself to a specific configuration to accomplish the assigned tasks.
In another application, the robot can navigate while aligning itsel{ with respect
to a set ol specific features observed by the robot. Wall following [17] and opti-
cal lance [25] are typical examples where robots are required to align during
navigation. These locations are usually identified by some special landimarks,
such as the target object or artificial landmarks placed by the user. Generally.
th  landmarks are arbitrarily placed without anyv reference to the robot’s in-
ternal map and can be changed by users at any time. During its operation when
the robot isin tI -~y of the landmark. it should I able to identify the
land) wrk as well as align itself so that it will be able carry out the itended
fu  .ion. Computer vision can be easily adapted to identify visually distinct
ob :ts or landmarks. In case of robot alignment. the robot controller has to
overcome the nouholonomic constraints of the robot and the field of the view
constraints of the camera. Most vision based solutions to the robot alignment
problem can be categorized into: conventional controllers with smooth velocity

control [26, 27] and hybrid controllers [28, 29, 30, 31. 32]. Other controllers us-

53}




ing telligent techniques such as fuzzy logic and neural networks [33, 34, 35, 36
show improved performances. However, generally they ave to be trained on

each landmark before they can be deployed.

All tl e tasks primarily depend on sensory information for their operation. Addi-
tionally, ch of those tasks can mutually benefit from each other. As an example the
landmarks on the detected moving objects can be removed from the mapping process
yielding more accurate maps. Therefore, this research will [ocus on the development
of efficient  ethods for unified localization and mapping and moving object detection
to better utilize the sharable information between modules rather than cach module
operating on its own and collaborating at a higher level. Additionally, this thesis

describes an accurate and highly adaptable robot alignment algorithmn.

1.2 oblem statement

Various types of sensors are being used and researched in mobile robotics. It has
been we established that autonomous operation of a gener:  purpose service robot
requires veral types of sensor modalitics. Thus, by using a more distributed and
integrat  multi sensor approach rather than a single sensor r each task, the perfor-
m e of ¢ h task can be further enhanced resulting in an efficient utilization of the
onboard resources and improved performance. In this thesis several essential aspects
of indoor autonomous robotics are explored and discussed leading to contributions in
cach as) -t in improving performance while mitigating some drawbacks of previous

methods.




1.2.1  ’ase for multi-sensor simultaneous localization and map-
ing (SLAM)

Accurate localization and map building are essential tasks for utonomous operation
of mobile robots. These operations take on extra significance when a robot is intro-
duced into a new environment where it doesn’t have any prior information. In such
cases the robot essentially starts with a blank memory. As the robot explores and
navigates in a new environment it will gradually build the map and localize itself
against t » newly created map. In subsequent revisits to a previously mapped area
of the environment, the robot can update the map to reflect any changes to the map
since the time it was last built. Additionally, the robot can r 1e the map for bet-
ter accuracy and fidelity when it revisits an alrcady mapped area. Localization and
mapping has been an extremely active field ol rescarch in mobile robotics during e
last decade. Hence there are numerous techniques for map br ding and localization.
Among them landmark based methods have been the most widely explored.

Various types of sensors such as laser range scanners [37], millimeter wave radar
[38], sonar [39] and cameras [40, 41] have been used in landmark based SLAM im-
plement; ons. Due to the high degree of precision offercd by the the laser range
scanner 2], it is the most popular sensor that is used in majority of the reported
SLAM n thods. However, in most indoor environments, finding an adequate munber
of landr rks using a laser range scanner is difficult and sometimes impossible. It
is known that computer vision provides a rich set of visual information about the
robot’s environment that can be used to identify visually salient landmarks (e.g. cor-
ner features 13, 44], lines [45], etc.). However, most reported results in vision based
SLAM suffer from several drawbacks, which include (1) the requirement of a large

number of landmarks [46, 47], (2) use of specific visual patterns [48, 40], and (3) small







prior to analyzing the differences between the respective laser scans. While most of
these methods are developed as general moving object trackers, some are explicitly
treated as moving people detectors and employ special properties that are reli »d
to prope  es of scans related to moving people. One key problem in moving object
detection in registered scan data is that, when the laser data is highlv contaminated
with data from moving objects, most conventional registration methods [13] would
fail to re  ster the scans accurately. This low precision in registration will lead to
highly erroneous moving objeet detection, i.c. the accuracy of thie moving object
detection method is as good as the accuracy of the laser scan registration algorithin.
Additionally, most moving object. trackers do not employ te  niques to capture the
complete moving ohjects [51, 53, 22]. This would normally lead trackers to wrongly
classify . wing objects and further, when incomplete, to locate them at an erroncous
position. Therefore, any laser bascd moving object tracker has to accomplish the

following:

1. It should be able to detect moving objects in highly cluttered environments.
In ost highly cluttered environments, moving objects are typically humans
sharing the same workspace as the robot. Therefore the algorithms shoul  be

able to detect randomly moving nonuniform objects.

2. It should be able to extract all sensor data corresponding to each moving object.
T! Hsugh the correct identification of all the data, while it is possible to sup-
port the first condition it will also be able to support the stationary landmark

detection for SLAM.



1.2.3 Case for visual servoing of mobile robots

In generi vision based robot control (23, 24], the robot is controlled using the di - r-
ence (error) between the measured or estimated values and the desired value. In visual
servoing these quantities are cither directly expressed in image plane coordinates or
calculated or estimated using nieasurcments made in image plane coordinates, usu-
ally in ¢ tesian coordinates. llence, visual servoing can be categorized as el or
direct in  ge-based visual servoing (IBVS), when the errors are expressed in image
plane units (usually in pixels); or position-based visual servoing (PBVS) when the
errors are expressed in cartesian coordinates. In PBVS, as the error quantities are
expressed in cartesian coordinates, traditional path planning and control technigues
can be v d to achieve the control objectives. However, in PBVS methods the error
has to be calculated from the iimage plane quantities through coordinate transforma-
tions. It is well known that these coordinate transformations usually introduce errors
due to calibration errors. Due to this reason the IBVS method is popular as a more
robust a 1 flexible control technique.

Differe; ally driven mobile robots have nonholonomic constraints [24, 54]; i.c.
a robot ca 10t move sideways. Further, the limited field of view in vision systems
generally i poses an additional constraint on the coutrol law. Thus, image based
visual s roing of mobile robots is a challenging task given the limited munber of
degrees  freedom (usually two) and the limited field-of-view available in the vision
system. For nonholonomic robots visual servoing can be applied for path following
[25, 55, 56] or it can be used to align the robot with a given pose. In vision based
robot aligniment techniques, the robot is aligned against a fixed set of features, so that
the robot will satisfy a predefined control objective {28, 31]. Robot parking controllers

generally belong to either conventional smooth controllers or hybrid controllers. In
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convention: controllers [26, 27] the robot is aligned to a set of features scen by the
camera using smooth control of robot velocity. Ilybrid controllers for vision based
robot control [28. 29, 30. 31, 32] allow the robot velocities to be controlled in a
discontin manner. In hybrid controllers, a finite state machine is used to define
a sct of states to reflect multiple operational contexts in a robotic task.

The typical issues in the continwous controllers include: the convergence of the
solutions -hen starting from an arbitrary robot pose [26], and the inabilily to obtain
a unique nal position [27]. Some improvements have been reported in vision-hased
parking controllers using intelligent control techniques such as fuzzy logic and neural
networks [33, 34, 35, 36]. Gencrally. fuzzy logic and neural network based controllers
perforimm  tisfactorily, but they do not guarantee convergence. Hybrid controllers
equipped with a state machine have different control algorithms for each state. Hence,
multiple vitching control a” Hrithms give rise to discontinuous control of the robot
velocities. Most vision based hybrid controllers [28. 29. 30, 31, 32] use this property
to overcome nonholonomic and field of view constraints [54] of the system. Thercfore
in this research hybrid control strategy was chosen in the design of a new parking
controller. Lyapunov techniques [57] have been widely adopted in hybrid closed-loop
parking controllers [28, 29, 30, 32]. Limitations of the past hybrid methods include:
the rapid switching behaviour around the parking position (zeno behaviour) [28. 31]:
partial utilization of the available field of view of the camera [32. 31]; and not explicitly

addressing the ficld of view constraints of the camera [29, 30).

1.3 lesearch objectives

The main focus of this research is to develop a multisensor simultaneous localization

and mapping technique and other necessary functions for woving object detection
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the laser scan segments will be classified into three categories: moving objects,

stationary objects, or indeterminate.

3. Hybrid controller for image based visual servoing of a mobile robot:
A nov image based visual servoing method was developed to control nonholo-
non  mobile robots against a set a visual features. The proposed controller
avoids the oscillatory behavior (zeno behavior) that is exhibited by the tradi-
tional controllers while intelligently adapting the controller paramcters for the

maximum use of the available field of view.

1.5 hesis organization

Chapter ghlights the main areas of rescarch in mobile robotics and associated
issues. This chapter also provides a list of issues that is addressed in this thesis and
its contr 1 ons. Chapter 2 provides an overview of the SLAM problem and the
state of e art solution that has been proposed to solve the problem. Additionally
chapter  highlights some of the arcas of the SLAN that can be improved using
multisensor implementations for landmark and moving object detection. Chapter
3 details the proposed multisensor landmark detection and localization method for
SLAM. CI ter 4 provides the details of the moving object detection algorithm that
can Dbe used to identify moving objects. This type of moving object 1dentification
can be use  to improve the robustness of SLAM through the elimination of the non-
stationary components of the map. In almost cvery SLAM implementation the {inal
robot position and map estimates will have some bounded micertainty. Chapter 5
introduces a visual servoing method for a nonholonoinic imobile robot that can be used
to achieve accurate positioning using additional visual features and thus overcome the

bounded 1 certainty of the localization in SLAM. Chapter 6 draws the conclusions
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of this r¢ arch and discusses future directions.
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Chapter 2

Sim 1ltaneous Localization and
Mapping (SLAM) an. Related

Issues

In autonomous robot navigation, localization or the questioc  “where am 177, with
respect to a priori map is a fundamental, well known, and widely studied problem.
Direct calculation of the position ol the robot fromi odometry data is highly susceptible
to sensor noise and unpredictable movements such as slippage of the robot. These
errors accumulate over time and can very quickly render the calculated position of
the robot useless. Thus, in  ler to reliably localize a robot, an accurate map of
the environment should be used as the reference. A map representing the robot's
workspace can take many different forms, such as: 2D line map, landmark position
map, view (appearance) map etc. Robot localization becomes a challenging task when
the map of the operating area is (1) completely unknown, (2) rtially known, or (3)
il the rol _isoperatit inah " yd, amiccnvironment wi  many moving objects.

Thus it is essential [or the robot to have sufficient ability to map the environment



robustly by itself. This is more important as it cnables the robot to operate in new
workspacc  without any human intervention, thus allowing for greater flexibility in
their deployment. In order to build a map from sensor data acquired at different poses
in the wo space, the robot should have a reliable knowledge about the differences
between 1 ative poses of the robot at which the sensor readings are taken. This is
essentially the relative localization problem. However in order to solve the mapping
problem the localization problem is also required to be solved simultancously using
the currer  up to date map. This dual problem is widely known in robotics research as
the simul neons localization and mapping (SLAM) problem or concurrent mapping
and local uion (CML).

SLAM has been addressed using many different algorithis as discussed later in
this chap : There are some characteristics of the problem that have to be addressed

by any a Hrithm in order for it to be useful.

Nonline ity of the robot model Most mobile robot mod  used today (¢.g. uni-
cyc model) are inherently non-lincar. Therefore the estimation frameworks
that are used for linear systems such as the Kalman fi »r have limitations in
solving the SLAM problem. Usually the robot model is linearized at the cur-
rent pose, and velocitics or other techniques such as sample based methods (e.g.

pa filter) that can handle the nonlinearities have to be used.

Noisy ¢« 1sors Sensor measurements are inherently noisy. Some sensors are noisier
than others and even the same type of sensors from diflerent manufacturers or
un s in the same batch may show different noise levels. Therefore the key issue
in Idressing the sensor noise is the development of a reliable statistical model

of the sensor that represents a wide spectrum of noise processes.

Data association When a sensor reading is taken, the robot will identify landmarks
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or other key features from sensor data. In the subscquent sensor readings with
the me field of view, the same objects will be visible. The SLAM algorithin
should be able to associate the same objects that were seen in two sensor read-
ings as the same featurcs and establish their correspondences by assigning a
unique identity. This is of primary importance, because without the correspou-
dence the SLAM process will risk initializing new features in the map when in

essence they are the same features already in the map.

Loop clo ing Loop closing is a problem closely related to data association but at a
more global level. When a robot revisits an area that it has seen before, it should
hav  the capability to identify the corresponding leatures and estimate the pose
of the robot correctlv. Loop closing in most SLAM mecthods is an inherer v
bui in property, but there are other methods that explicitly address the loop

closing problem [58].

Consistency Consistency is an important statistical property that is required to
ma tain the quality of the map. In principle the uncertainty estimate of the
map ¢ drobot pose (or path) should represent the actual statistical uncertainty.
It has been observed that due to many assumptions including the inaccurate
lin  rization models, the SLAM algorithm may fail to produce consistent results

in longer robot runs [59, 60].

Scalability In most indoor environments the robot will explore a relatively small
area. The size of the areas that robots should map can vary from single rooms
to hole floors of large buildings or warchouses. Morcover, in outdoor appli-
cations such as in exploration, the size of the mapping environment can grow

wi Hut any bounds. T st common  thod used to efficiently map large

environments is to build smaller sub maps and m e them together at  aitable
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intervals [61].

The ¢ racteristics listed above provide metrics to compare and contrast SLAM
algorithms and evaluate new methods. The most commonly used method in SLAM,
the extended Kalman filter (EKF) will be discussed in detail in this chapter. A
discussion of the methods used for evaluating consistency in EKF based SLAM is
followed by a discussion of other alternative solutions to SLAM, emphasizing the
additional key advances that those methods bring in over the EKF based SLAM.
SLAM is widely researched area. There is a large body of literature that — scusses
various aspects of the problem ranging from sensors to algorithms. In this chapter
only the key contributions in the SLAM are highlighted along with some important
descriptions of current state of the art applications. First in the processing section,

notation 1d the key relationships between different coordinate frames are described.

2.1 Preliminaries

In order to facilitate the formulation of EKF based SLAM formulation, the following
key definitions are introduced. They include the robot model and sensor model along

with the relationship between coordinate systems.

2.1.1 Coordinate systems and transformations

Figure 2.1 shows the relative coordinate frames that are used in the mobile robot
mapping and localization. In the Figure 2.1 the frames < i > and < j > represent
the world and robot coordinate frames respectively. The frame < [ > is the landmark
frame. hen a landmark is represented as a single point then this representation

will bect e redundant. However, the notation will be used for completeness. If the
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landmark represents a complex object, such as a line or a composite of lines, then the

representatic  in frame < [ > can be used to describe its location and orientation.

Y, Xy
Y,’ 0,

[ | .
Yj <[> Landmark

<i> World

Figure 2.1: Coordinate frame labeling and corresponding notations.

In the proceeding section the formulation of the uncertain spatial relationships
that is commonly used in mobile robotics is discussed. These relationships are re-
ported in the EKF based SLAM algorithm description in Smith et al [11]. Also it
is important to note that all the state variables, x, discussed hereafter can generally
have arbitrarily complex probability distributions.

Let x be the spatial relationship between coordinate frames 7 and j, which is
described by the vector [z;; i, (},-j]T. The covariance matrix of x;; 1s denoted as 2y |

whicli is a 3 x 3 maltrix.

Compon ng relationship [11]

The landmarks in the environment are first observed in the robot coordinate frame.
The final map, however, is constructed in a world coordinate frame. Thercfore, in
order to ‘alize a eorrect representation in the world coor nate frame. measured
landm : | »sitions and their uncertainty are compounded with the robot position

and with associated uncertainty of the robot position. The x;;, relationship hetween
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frame i an  j can be compounded with x,,; using:

Tjicos 0 — yjsindy; + ay;

—_
o

Xy =X DX = | xysinb,; +yjicos8;; + y;;
9,'] + (9]'1
where @ is the compounding operator. The mean of the compounding operation

can be represented as the compounding between two means.

o
)
g
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Since 2 compounding relationship is nonlinear, the equi  on is approximated
with first order Taylor series approximation. Similarly, first order approximation of

the covariance of the compounding relationship can be expressed as:

Vs Y
~ i 13 ¥ T .
Sy, & Vg v (2.3)
Yxyxiy

where the Jacobian of the compounding operation is defined by:

10 —(yil—;lj.fj) costj —sinf; 0
0 1 (xg—ay) sind; cosb; 0. (2.4)

—_

00 1 0 0

In some  actical situations the two spatial relationships are independent of cach
other (¥4, x, = 0) e.g. the landmark observations and their uncertainty is inde-
pendent of the robot pose and its uncertainty. In such cases the covariance can be

expressed s



Exqt ~ VIEBE Vir@ + v?@ExJ,VQT@ (25)

Xqy

where Vg and Vg are the left and right hand side of V5, respectively.

Inverse :lationship [11]

The useful relationship is used to map the inversc of a relationship. For example,
rather than describing the robot pose with respect to the world frame. ¢ world
frame can be described with respect to the robot frame. Thercfore the inverse ol x;;

is expressed as:

—~x;jcos b — yijsinb;;
Xji = O(x45) = x;;sind;; — y;; cos b;; (2.6)
—0;
where O is the inverse operator. Similar the compounding operator, the mean of

the inverse can be expressed as:

—_
o
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The order covarian  estimate can be calculated by:

Y, B Valy, v (2.8)
where the Jacobian of the inverse operation, V- is expressed as:
: —cosf;; —sinf;;  y;
O(x;i
VG 5 J]_) n@ij COSQU —.’L'j,' . (29)
0 0 -1
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Compo: e relationships [11]

The two rimary operators (compounding and inverse) can now be used to define
other useful composite relationships. One such useful relationship is the tail to tail
relationship. When a robot navigates in the environment, it will have to perform
path planning for obstacle avoidance. The obstacles are generally represented in the
map with respect to the world frame, x;; and it is efficient to represent those objects
in the m » with respect to the robot frame, xj;, using the inverse of the robot pose

estimate x;;.

X, = (Ox;) O xu = X;; ® Xy (2.10)

and the first order approximation of the mean and covariance can be casily calcn-
lated frc  the corresponding equations of the compounding  d the inverse relation-

ships.

2.1.2 Mobile robot and sensor model

Althoug mobile robots can have a large variety of models, the differentially driven
robot model is most commonly used in robotic resecarch. This is specially the case
for robo stined for indoor operation. The dillerentially driven robot can be easily

and accurately modeled using the unicycle model.

System model

A robot model is used to transform the robot pose from x,.(k) to x,.(k + 1) using
the me:  red velocity inputs [v(k), w(k)] during At, where (k) denotes the value of
any quant 7 at the end of A-th t©  step. This translormation can be written in a

general fornn:

[N}
o




2ok 4 1) = [l (k). v(k), w(k)), (2.11)

which can be expanded to

r.(k+1) = (k) + Ate(k)cos <9T(k,) + Al;;'(k)) (2.12)
ye(k+1) = yo(k) + Atu(k) sin ((ir(/\') + A“;(“) (2.13)
0.(k+1) = 6.(k)+ Atw(k). (2.14)

The current covariance of the robot pose L,.(k) can be propagated through the
robot modcl equations to the covariance of the robot after the velocity commands v(k)
and w(k) du g Af, £.(k+1). The equations for the propagation of the uncertainty
in the od 1etry measurements through the robot model are discussed in the next
section. The robot model f(.) can be expanded to accommodate the augiented state
vector by including the landmark locations in f(.). Since landmarks are considered

stationary, the landmark model is a stationary process which for i-th landmark 1s

simply:

rik+1) = x;(k)

yi(k+1) = y/(k).

Measurement model

Range and bearing measurements to a landmark is the most commonly used sensor
model. In some cases (mostly computer vision based techmniques) a bearing only

model is  so emploved. The nonlinear observation model for the i-th landmark. h,
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can be ex) ssed as:

0; = arctan(y; — y,.x; — ) — 0,.6; € [—g g} (2.17)

where «; and y, are the landinark position expressed in the world frame and @,

yr and 0, ibe the robot pose in the world frame.

2.2 SLAM Formulations

There are numerous popular SLAM iimplementations where the localization objective
of all algorithms remains the samne, i.e. to obtain the best estimate for the vehicle
pose 7., y, and 6, in the world frame with respect to the initial starting position. The
mapping methods differ frc  each other based on the representation used in building
the map. hey are (1) landmark based maps, (2) maps based on direct sensor data,
and (3) occupancy grid based maps. In type (1) the features in the environment
are identified as landinarks and their positions and uncertainties in the positions are
calculated from the raw sensor data. This information is used in SLAM to build
a map of landmarks. In type (2) representation, dircct sensor data are used for
SLANMN wi t any intermediate representations. The map built by incremental laser

scan registri  on is an example of type (2) representation. Type (3) representation

24




segments the environment into a finite number of regularly s .ped blocks. Using
sensor data, the occupancy of these blocks that make up the environment can be
probabilist ally inferred. All three types of representations have been popular in
SLAM, and specifically, the landmark based mapping method has been widely used.

The follow g section characterizes the SLAM problem in a generic way.

2.2.1 SLAM Problem

The algorith s in SLAM can be broadly categorized into online and full SLAM
problems. Online SLAM problemn can be defined as the concurrent estimation of the
current robot pose and the map of the environment using all past control inputs and
measurem ts. The probability of the estimated current robot position, x,.(&) and

map, M ¢ be expressed as:

p(xo(k), M|Z(1: k), UL+ k) (2.18)

where, Z(1 : k) and U(1 : k) represent all the sensor data and the measurement
data history of the robot. In contrast, the full SLAM problem is defined as the
estimation of the map along with the complete pose history (path), x,(1 : &) of the

robot which can be probabilistically expressed as:

p(x (1 : k), M|Z(1: k), U(1:k)). (2.19)

Naturally the full SLAM is a much more difficult estimation problem than the
online version, due to its high dimensionality of the parameter ace and the data as-
sociation | lem, with a large number of pose-feature associations. For thesc reasons

the online SLAM problem has been explored more than its counterpart. Therefore
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the algorithms developed in this thesis focus on using the online approach to the
SLAM prc em. The most popular algorithm for the online SLAM problem is the
extended Kalman filter. In the next section the general formulation of the Kaliman

filter based solution to the online SLAN problem is explained.

2.2.2 Extended Kalman filter solution

The Ext «d Kalman filter (EKF) [62] has been widely used in solving the SLAM
problem since the pioneering work by Smith et al [11]. In the EKF based solution the
information from sensors are integrated into a single covariance matrix. The state
vector of t.  filter represents the current cstimate of the robot pose and the landmark
positions. Althougl robot pose history can be maintained in state vector, in most
implementations the current robot pose is kept in the state vector by updating the
previous state. To start the discussion on EKF based SLAM algorithin, the state

vector a | covariance matrix are defined.

State vector and covariance matrix

State vector with N landmarks can be defined as:

x(k) = [ %,() | x1(k) ... x, (k) .. x ()] (2.20)

where x.(k) (= [ =, yr 0, ]7) is the robot pc  and x,(k) (= [, y; ]7) is the
position of the i-th landmark in the world frame at time A,

The covariance matrix of the state vector (k) is composed of the cov 1ance of
vehicle se, X,.(k), covariance of the map, ¥,,,,(k) and cross covariance between

vehicle pe "map, (k) and can be expressed as:
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So(k) Son(k)
v (1‘1) Evnrrl(]“)

Predictic

The Kalman filter has three steps: prediction, observation and update [38, 63]. Ac-
cording to e general notation in the Kalman filter, x (k) and x* (k) are predicted
and updated estimates of the state vector, respectively. £7(k), ET(&) and W(k) are
priori covariance matrix, posteriori covariance matrix and Kalian gain, respectively.

Robot pose after a time interval is predicted using (2.12) and the rest of the
state vectt remains unchanged (as features remain stationary in the world frame).
The covariance matrix can be updated by the new information by propagating the
previous covariance matrix through the system model and adding the contribution
of the uncer inty from the odometry readings using the first order lincarization of

(2.12). The covariance of the predicted state, 27 (&) can be calculated by [63]:

E7(k) = Vo f[(R)SH (k= DV T (R) + Vo f ()2, V. T (R), (2.22)

2

2] 1s the covariance matrix of the measurement noise in the

where ¥, = diag[o? o
odometry 1. The mat ., can be considered diagonal assuming that ¢ and w

are indep dent measurements. The Jacobians V. f(k) and . ,f(k) arc defined as:

22

V. f(k 2.23

O (223
or

v,/ (k o 2.24

I (221)

The . obians V f(k) and V,f (k) can be represented in the following matrix
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form:

Ofr
1 = e ye 0} 0rm 9 9r
V. I(k) = (2.25)

07” r ITH m

()t‘
Vofk) = | A | (2.26)

O1nx2

Therefore, £~ (k) can be efficiently implemented by

Frzn(k)FZ + FUSUFIT F‘;rzr‘m(}“‘)
S (k) = (2.27)
(Erzrm (A))’I me (}‘)

o r — 6 iy
where F, = 5.{7{7} and F, = 8{1{w}'

Observation and update

When the robot’s sensors detect a landmark it can be cither a landmark that has
been perceived by the robot previously and has been included in the state vector, or
a new landmark encountered by the robot, that will be added to the state vector. In
the latter case, it is required that the landmark should be initialized mto the filter.
The initialization procedure is described in the next section. In the former case, ¢
new information should be integrated into the filter by updating the system. First,
using (2.15), predicted observations z(k) of the landmarks are calculated using the
predicted ate vector. The innovation, which is the error in the expected observation

and innoyv  ion covariance matrix can be calculated from:



(k) = z(k) —2(k) (2.28)

S(k) = V. h(R)Z™(K)V AT (k) + R(k) (2.29)

where k) is the measurement covariance matrix; and Jacobian V,h;(k) can he

calculated using;:

_BAx Ay g ... BAr dx
vrhl(/\") — d d d d (23())

where d = ((z; — z,) + (y; — yr))%‘ Ar =x;, —x,, and Ay = y; — yr.
Finally, the estimated position of the robot and the feature locations are updated

using;:

xF(k) = x7(k)+ W(k) C(k) (2.31)

SHk) = (k) — W(k) S(k) WT(k) (2.32)
where, W(k) = & (k) V.h' (k) S7H(k).

Map management [63]

During exploration of the environment the robot observes new landinarks and they
are added to the state vector, and consequently the state covariance matrix will be
updated accordingly. Similarly when a landmark is no longer observable or deemec
not worthy of maintaining in the map, it will be removed from the state vector by
the remo " corresponding elements in the state vector and corresponding rows

and colun s in e state covariance matrix.
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The n ly observed landmark, z; can be augmented into the state veetor x(k)

using:

X, (k) = fi(x(k), z) = ’ (2.33)
9i(%,(k), 2)

where g;(x,(k), z;) = [z, +r;cos(0, +6,),y,+r;sin(0, +6,)]". The state co riance

matrix is first augmented with the measurement covariance.

er(}”) Zrm(k) 0
k)= | £T (k) Spm(k) 0 (2.34)

Since the true covariance of the new landmark depends on the vehicle pose co-
variance, is important to update the augmented state covariance matrix X*(k) by

propagati through the system model for a new landmark, z;.

Se(k) = Vo, 28 (K) v e 2i)” (2.35)

where Jacobian . . z; is given by:

V:z‘az'i == 0 Imm 0 (236)
Vi,g: 0 V.,g

where,

1 0 —risin(d,+0;)
v x, Ji (2.37)
0 1 r;cos(6, +6;)
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cos(0, +6;) —r;sin(6, +0,)
V.gi = . (2.38)

sin(f, +60;)  ricos(f. +0))

Due to the sparse nature of V,_ z; the ¥,(k) can be iinplemented more efficiently

using:
s, (k) (k) S (k)(Vi,9:)T
Sa(k) = £T (k) Y em (k) S (k) (Vi)
(ergi)zrr(k) (vxrgi>2rm(k) (Vx,«gi)zrr(k)(vxw-gi)r + (v:,gi)zz(l")(vz.gi)’r

(2.39)

When a landmark is no longer observable by the robot it can be removed from
the state vector by deleting the corresponding elements and can be removed from
the state covariance matrix by simply deleting the corresponding rows and columns.
If and unobservable landmark is not removed it will remain the map without any
effect to the overall map but it will act as a unnccessary phantomn landmark in path

planning.

Data A »o>ciation

When th robot makes an observation of a landmark. one of two things can be true.
It can ei 2r be a landmark that the robot has scen previously and which has been
already integrated into the map, or it is a new landmark that is suitable for inclusion
in the map. The latter case is related to the map management. In the former case
the corresponding landmark in the map is required to be ident 2d before the update.
This correspondence identification problem is commonly known as the data associa-

tion in S 1M. The most common aspects of a landmark used in data association are
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its global position in the map together with the uncertainty bounds of the current
estimate, the appearance of the landmark, and its position in the layout of a set of
landmarks. The appearance based method requires additional information about the
landmark, such as extra features indicating its uniqueness. Computer vision based
methods often augment this additional information in their data association as a
landmark can be easily characterized by its visual appcarance [64].

The ost common method for data association is the global ncarest neighbor
(GNN) which, is also known as individual compatibility nearest neighbor ICNN)
[66]. The current landmark is associated with the i-th landmark if the following con-

dition b »d on the Mahalanobis distance holds:

D? = (z; —2)"8(z; — 2;) < G (2.40)

where . is the Mahalanobis distance between the measured feature and /-th land-
mark in the map, z is the current measurement, z is the estimated measurcinent, and
¥, is the covariance matrix of the i-th landmark all in the robot frame. The test

conditio is often chosen to be a gate G of suitable value while other works prefer

2
d,a

to use x5, where d = dim(z) and « is the confidence level. The main difference
between a simple gating test against the chi-squared test is that the former offers
greater  xibility. The nearest neighbor method can be successfully applied under
the followi ; conditions. (1) The global uncertainty of the robot is relatively smaller
than the distance between the closest landmark pair and (2) the sensor in the robot
has an adequately low level of noise such that there won't be an excessively high
number of spurious landmark observations.

When above conditions do not hold true. especially the first condition. where it

can give rise to a single observation being associated with two or more landmarks, a
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more sopt icated data association method has to be used. The joint compatibility
(JC)[66] can be used to test the consistency of the landmark-observation associations.
A tree based search method based on JC known as joint compatibility branch and
bound (JCE ) [61] is used to exploit the information in the layout of the landmarks
present in the map. In JCBB, each observation is tested for individual compatibility
(IC) agai  each landmark. Once it passes the IC test, the observation is tested
for joint ¢ atibility between all the associated landmarks-measurcment. pairs cs-
tablished thus far. Both IC and JC based methods take the hard-data association
decisions where they are not allowed to reverse or be discarded in the future, even il
there is any new and nore convincing evidence. New evidence can be incorporate

by expanc 1g the search for associations in time (across multiple sensor [rames).
Multi-dimensional assignment (MDA) bascd technique has been used to achieve this
objective [37]. Other techniques in SLAM, such as in FastSLAM [16, 67] (described
in more detail in section 2.2.3) maintain multiple hypotheses for the robot path. Each
of these paths also maintains a data association hvpothesis on its own, yielding an
implicit multi hypothesis scenario for data association. When the path does not fit
the current state of observations (through wrong data association or otherwise) it has

a higher chance of being discarded in the resampli  stage.

Consiste 'y Analysis

In EKF 1L ed SLAM, consistency of the filter is one very important consideration.
This is mainly due to many assumptions that have been made during the formulation
of the filter.  ractically, once the filer becomes inconsistent it becomes worthless to
continue any further as the constructed map is bound to become highly inaccurate.
Gencrally the filter is said to be inconsistent if the current estimate is overly optin e

(i.c. the statistics of the filter repr  mt thesy  em as having a lower uncertainty  an
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is the ac case). Consistency is especially important in data association and loop

closing.  sic criteria for a consistent filter are [65]:

1. The state errors should have a zero mean and have a n  nitude that is within

the acceptable limits of the covariance as calculated by the filter.
2. Innovations should also follow the first criteria.

3. Innovations should be acceptable as white.

The first and sccond criteria can be formally expressed as:

E[x(k) — x* (k)] = 0 and 3(k|k) > (k) (2.41)

Elz(k) — 2(k)] = 0 and S(k|k) > S(k) (2.12)

where ¥ (&|k) is the current estimated covariance and (k) is the true covariance.
The ideal ¢ dition is when the estimated covariance is equal to the true covariance.
When the estimated covariance is greater than the true values, then the filter can be
character :d as conservative. When the estimated covariance values are less than the
trn valt  the  ter becomes optimistic and the magnitude of the
the risk of exceeding the covariance bounds. The first criterion can only be tested for
simulated filters when the true value of the estimated variables is available, while the
second and third can be tested for real filter estimates.

Following arc the commonly used methods for testing the consistency of e filter

[65]:

1. Noi alized estimation error squared (NEES) test: The NEES (k) is defined

as:
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e(k) = (x(k) = %(kE)) T (x(k) = %(k ). (2.43)

Und 2 assumption that the filter is consistent and linear-gaussian, ¢ (&) is chi-
square distributed with dim(xy) degrees of freedom [65].  1erefore the average

value fi (k) will be equal to the dim(xy). For a simulated filter a Monte Carlo

test N robot runs can be used to calculate the average value of ¢(A) by
1N
(k) =+ > (k). (2.41)
=1

Then the mean of the N¢(k) has a chi-squared distribution with a mean of
Ndim(xy). For the Monte Carlo tests a two sided test for the 95% probability
region can be carried out to evaluate the consistency. If the average NEES is
higher than the upper bound of the confidence interval then the filter is highly
optimi c¢. Although the lower bound does not have any significance relating

to et sistency it can be used to test the conservativeness of the filter.

. Nor ed mean cstimation crror (NMEE) test: If there is a large bias in
the est ation error then the NEES value will also be higher. Therefore if the
average NEES test fails it custe  ary to t * »mean estimation error of the

j-th component of the state vector for N robot runs using:

1T xg(k) = Xy (k|E) ]
xj(l‘)-NL SND) . (2.45)

=1

The average NMEE, x;(k) should ideally have a NV (0,1//N) distribution. There-
fore the the value x;(k) can be easily tested to lie witl 1 the 95% confidence

bou s.



3. No alized innovation squared (NIS) test: Similar to the average NEES test,

if the filter is consistent the normalized innovation squared:

(k) = (z(k) — 2(k|k))" S (a(k) — 2(k[k)) (2 )

should have a chi-squared distribution with n, degrees of freedom, where n, is

thc¢  imension of the measurcment.

4. Whiteness test using sample autocorrelation: If the innovations are zero mean
and white then the autocorrelation of the each component (for 2V runs) of the

inn ation should have a zero mean and a variance of 1/V.

The v .ps produced by EKF based SLAM implementations are inherently incon-
sistent [6 68]. This fact has been experimentally shown using stationary and moving
robot experiments [60, 59]. The consistency can be improved by inflating the stan-
dard dev tions of robot motion and landmark measurements. This will extend the
duration 1at the filter will be statistically consistent. But in the short term, 1
filter will produce highly conservative estimates. Another more general solution used
to circumvent the inconsistencies arising in mapping of large arcas is sub mapping
[69]. The principle concept of sub mapping is to uild smaller consistent maps and

then join them to produce a la  r global map. which will be less inconsistent.

Scalabil vy

The two main implementation issues in EKF based SLAM are the high computational
complexity in relatively large environments and the data association problem. The
computa 1 complexity of the EKF is largely dominated by the update stage of

the filter d it is known to be in the order O(n?), where n is the number of land-
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marks in 2 state vector. The computational complexity of the EKF based method
is circumvented to a large extent by using the compressed version of the EKF. The
compressed EKF filter improves the computational efficiency y updating only
local land s that are currently visible to the robot. The robot performs the sin-
gle global update when the robot travels into a new local region. The gain in ¢
computational cost of the compressed filter increases when the number of landimarks
in the global map is larger compared to the local map. Improvements in the compu-
tational complexity of SLAM are achieved through the use of various methods such
as particle i ors (FastSLAM), information filters (sparse extended information filter

(SEIF)), cte.

2.2.3 Alternative solutions to the SLAM problem

In this sect: 1 two alternative solutions to the SLAM problem are reviewed. © ¢
first metl |, FastSLAM. is based on the particle filter and offers an elegant solution
that can be viewed as a solution to both full SLAM and online SLAM. The second is
an online algorithm bhased on the extended information filter and it mainly exploits
the sparsc nati : of the information matrix. Both solutions are computationa -
more efficie.  than the EKF and under certain conditions they offer con arable

performance.

FastSLAM [16]

The structure « the SLAM problem has a property where if the true path of ¢
robot s | >wn then the landmark position estiimation problems are independent
of each o or [70]. Due to the uncertainty of the current robot pose in the EKF

solution, dmark estimation problems are dependent on cach other. This property
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The particle set in hand at this stage has a proposal distribution that is dominated
by the control inputs to the robot, when it should be conditioned on the observed
landmark locations. In order to make this adjustment in the final distribution, the
usual res.  ipling step is performed where cach particle is appended a weight based
on the ratio of the target (final) distribution and the proposal distribution. These
weights are used in drawing a new set of particles where the particles which are
in most agreement with the measurements will survive. In an improved version of
FastSLAM, FastSLAM 2.0 [71], the measurcments are taken into consideration to
obtain a better proposal distribution. Experimental results have shown that both
versions of FastSLAM perforin comparably when using a large number of particles.
However, the second version performs better when the mcasurement noise is low,
One key di vback of the FastSLAM algorithm is in its loop closing ability. Duc
to the lack of correlations, the additional information from loop closing cannot be
propagated through the entire map. Due to this reason it is imperative in Fast SLAM
to mainti 1 a reasonably rich particle diversity. This can be done by either adopting

the sccond version, having a large number of particles or both.

Sparse . :tended Information Filters (SEIF) [15]

An extended version of the information filter (EIF)[15] is a popular estimation pro-
cess similar to EKF. The only difference is that in EKF one can extract mean and
variance of an estimated variable without any additional computations. In contrast
EIF requires an additional set of computations to derive the mean and variance of
a variable. The information matrix is the central data structure in the EIF (equiva-
lent to the inverse of the covariance matrix). The information matrix of the SLAN
process shows interesting properties that are exploited in the derivation of SEIF. The

elements in the information matrix represent cither links between robot pose and
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landmarks or the landmarks themselves. Also, inspection of the normalized infor-
mation n rix (inverse covariance matrix) shows that it is generallv a sparse matrix
(a great 1 mber of elements in the matrix will have very small values which can be
assumed  -o for practical purposes). This is due to the fact that only landmarks that
are close  gether show higher correlations. At any given time the robot will only be
able to o erve a limited number of landmarks known as, active landmarks. Since
the elements in the information matrix represent the links between robot and land-
marks and between landmarks, when the robot makes observations or when tlie robot
moves, only a few elements corresponding to the robot pose and aective landmarks are
affected. s, motion and measurement updates can be achieved in an information
additive manner. The key advantages of SEIF is that the measurement update time
is independent of the total number of landmarks in the map and only de; ads on
the number of active landmarks currently in view. SEIF is known to perform at a
lower acc acy than EKF implementations; specially with a lower number of active

landmarl due to the approximations introduced to maintain the sparsity.

2.3 __pplications

The theoretical analysis of algorithms in the recent past has led to a greater un-

; of SLAM as well as the development of efficient algorithms that can

derstand:
be used to serve practical purposes. Developments in the application areas involve
development of new sensor technologies such as compact sensors, forinulation of com-
putationally efficient methods in sensor data processing such as in sterco vision, and
development of multisensor approaches such as laser-camera-basced methods. The fol-
lowing sections offer a review of the application areas of SLAM and the related sensor

technol
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2.3.1 Application of SLAM

SLAM h  been applied to a wide variety of tasks in many different tyvpes of envi-
ronments. The primary applications have been in indoor mmoh - robotics, while there
is a cons ible application base in outdoor environments. The following itemized
descriptions provide a summary of the significant state of the art experimental con-
tributior in SLAM. They are categorized according to the type of sensor used, the
type of environment, and the scale of the application, followed by other important

remarks.

Laser and Sonar based SLAM applications

e [15]. [61]. [72] Laser / Outdoor / Large 150m x 150m / The Vietoria park,
Sydney dataset. The tree trunks in the park have b 1 extracted from the
laser range finder data and treated as landmarks. This is one of the pioneering
and complete datasets for large scale outdoor SLAM and has been used as a

ber hmark for testing several SLAM algoritluns.

e [37] Laser / Outdoor / Large 60m x 60m / Uses laser data to identify nat-
ural outdoor features in a campus environment such as poles, trees, cte. The
appli. ‘ion scenario described in the paper closely resembles mi-urban cn-
vironment and demonstrates the applicability of the EKF based SLAN using

laser range finder in cluttered environments.

e [73] I ser / Outdoor / City wide several km / Is si  lar to [37]above. but
larger scale with heavy clutter (moving vehicles and people) in a real urban

setting.

e [69] Laser / Indoor / Large 100m x 70m / Line features in the laser range data

41



are ed as landmarks.

[74] Imaging Sonar / Underwater / Medium / The SLAM was performed in a
semi-structured environment where there are several straight ridges that can be

extracted as lines in Sonar images.

[39] naging Sonar / Underwater / Large / Artificially placed sonar targets are

observed as 2D landmarks using imaging Sonar.

Comput - vision based SLAM applications

[75] Monocular Vision / Airborne / Large / 6 DOF system was used with

arti ially placed landmarks on the ground. The images are captured at 5011z.

[76] Monocular Vision / Airborne / Large / SIFT features are used as landmarks

and the vehicle is flown at a constant altitude simulating a 2D SLAM problem.

[77] Sonar / Indoor / Medium small office environment / Landmarks such as
walls and corners are detec 1| as points and lines using time series ¢ a from

multiple sonar sensors.

(78] Stereo Vision / Indoor / Large / The artificially placed markers on the floor

are detected and located using  ereo ¢

[79] Trinocular Vision / Indoor-3D / Medium / 3D SLAN implementation uses

a trinocular camera system in a small office environment.

[80] Ceiling Vision / Indoor / Medium small office environment / Line featv s

in the ceiling tiles and the lighting elements are used as landmarks.

[81] Ceiling Vision / Indoor / Small / Special lighting fixtures on the ceiling are

selected as landmarks.




[46] Trinocular Vision / Outdoor-3D / Small / EKF based SLAM application
is - plemented using the stereo located corner features of the images as the

landmarks. The method provides true 6DOF camera movements.

[48, 82] Stereo Vision / Indoor / Small / Very first attempts at vision based
SLAM, uses a artificial set of features. Although the sensor rig could calculate

3D positions, landmarks are mapped to 2D space.

[83] Monocular Vision / Indoor/3D / Small / Corner features arc detected as

lan narks and use a free camera motion model yielding a 3D SLAM systein.

[84, 85] / Monocular Vision / Indoor / Small / Natural Landmarks (vertical

line

[86] Monocular Vision / Indoor-3D / Small / Shows a bearing ouly application

of SLAM using a single camera.

[87] Monocular Vision / Indoor-Outdoor-3D / Small / Natural corner fcatures

arc :lected as landmarks in a 3D SLAM implenentation.

[1] Laser-Vision / Indoor / Medium / Uses the line features {rom laser range
data. Additionally obtai redundant information about the corner features to

lat  corners and semiplanes in the line landmarks detected from laser data.

As ¢ be seen from the above list SLAM has been experimentally applied in

many different types of environments, from small lab size experiments to city wide
SLAM. © aditionally. laser range finder has been the sensor of choice for SLAN. The
typical I dmarks found in laser data include line objects (corresponding to flat wall-

like objects), small isolated objects (tree trunks, poles), corners (intersection of line
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objects), ete. Laser data is also used as a dense point cloud in scan registration [13]
that would allow SLAM to operate without landmark detection.

Computer vision has found wide adoption as the primmary sensor technology in
SLAM. 1 > popularity can be mainly attributed to the highly detailed information
that the sensor provides about its environment. In computer vision landmarks are
often identified as a wide variety of objects that can be casily detected {rom their
backgrou | (markers, lines, patterns on ceilings). Among them corner features are
the casic  to detect and the most general type of landmark at is used in SLAN

using computer visioun.

2.3.2 Multisensor approach to SLAM

[t is apparent that a single sensor modality would not be able to perform all the tasks
assigned to a mobile robot. This makes the case for multi sensor implementation of
mobile robots. In [88] information extracted from vision and sonar have been used in
the development of EKF based SLAM method. The landmarks in this method are
represeni . as lines and points. Lines in the environment are first detected in both
sonar and vision data using Hough transform and the corresponding pairs have been
identified using data association algorithms. The data association algorithm essen-
tially perfo s the data fusion at landmark level (appearance based). Experimental
data shows that the error quantitics in localization are less than that in the odometry
only navigation. EKF based robot localization has been achieved using a combined
laser and vision scnsor [89, 90]. In above implementations the vertical lines in the
images and the horizontal lines extracted from the laser data are used as features in
the environment. These methods do not perform any data fusion between the two

sensors, rather they use the extracted features from each sensor independently in the
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localization process. In contrast, Castellanos et al. [1] describe a multisensor SLAM
implemen ion using the laser and vision, where individual maps are derived from all
sensor data and fused using sensor calibration information. The vertical line positions
from the ra are used as redundant information to locate corners and semiplances
in the las  data. In [1] the visual features are used as a labeling mechanisim of land-
marks identified from the laser data. However. it is quite apparent that given the
high level of textural information that vision provides, it can be used to serve as a
primary sensor to identify the landmarks. Once the laser and camera are calibrated,
the precise  ser data can be used to locate the landmarks i ntified by the camera

data.

2.3.3 SLAM in Dynamic ..avironments

In most implementations of SLAM algorithms the sensor data is assumed to be from
an enviromnent that is clutter free. However, this is rarely the case in most un-
controlle  environments such as public facilities and outdoor environments (urban
environn ats). In those cases at any given time there could be any number of mov-
ing objects present in the sensor data. The landmarks identified in these moving
objects i required to be separately processed from the stationary landmarks.

The first option is to model the movement of these objects and identify the motion
model of the landimark and then incorporate the motion model of the moving land-
mark in the system equations [50. 37]. The estimation of the accurate motion model
of arann  mly moving object is a difficult task and can lead to a highly uncertain esti-
mate. The incorporation of such moving landmarks with an uncertain motion model
to the 1 p could lead to the corruption of the system and ultimate failure. The

problems with the moving landmarks could be compounded by the difficultics in data



association. The simple and more prudent option is to disregard all the landmarks
attached  the moving objects. In order to remove sensor data correspondii  to the
moving objects, first the moving objects are required to be accurately identified.
Movir  object detection methods based on laser data [50, 20, 21, 51] can be cm-
ployed to remove the laser data corresponding to the moving objects. While above
methods offer solution to the moving object detection, they do not provide a com-
prehensive solution to the problem. A more detailed treatment of the current state

of the art 1 laser based moving object detection is detailed in Chapter 4.

2.4 Conclusion

The EKF based SLAM basics and the issues in theory and implementation have been
presented 1 this chapter. Major issues in implementations of EKF based SLAM,
including complexity and consistency have been described. Fro 1 the literature survey
it is evident that from a performance perspective the EKF is the best solution to the
SLANM problem, barring the inconsistency problems arising due to the nonlinearities in
the system model. This epitomizes the optimal nature of the Kalman filter. In many
practical implementations where robots operate in large environments a purc EKF
solution b i severe drawbacks in computational efficiency. The current state of the
art altern:  ve solutions offer attractive computational performances while providing
close to o mal performance.

It is evident that performance of the EKF can be improved by obtaining high
quality land; rk data ° >ugh low level sensor fusion. Higher quality landmarks can
be obtained by the fusion of many attributes of landinarks that arc being extracted
from each sor, rather than with individual sensors. Also there is a notable vacuuni

in the lite: .ure for a systematic algorithm for moving object detection in the domain
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of SLAM in dynamic environments. Availability of a robust 1oving object detec-
tion method will greatly advance the SLAM with resulting contributions in mapy 1g

of dynamic environments, to simultancous localization and moving object tracking

(SLMOT).
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Chapter 3

Mul isensor Landmark Detection

and Localization for SLAM

Landmark detection and localization are the primnary tasks of the sensor in the imple-
mentation of any SLAM technique. In this chapter a multisensor landmark detection
and localization algorithm is explored for the EKF based SLAM implementation.
The proposed method integrates the laser range data and vision data to detect the
maximur possible number of landmarks and then localizes them to the best possi-
ble accuracy. The chapter starts by introducing the multisensor landmark detection
and loca ation schemes. The rest of the chapter develops the proposed multisensor
approach a 1 presents results of the landmark localization ar  the SLAM mmplemen-

tation using EKF based SLAM.

3.1 ;roduction

Among various scnsors used in solving the SLAM problem in robotics, laser range

scanners have received most attention, mainly due to their response behaviour and
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ability to acc  ately scan a wider field of view. Laser range finders can precisely locate
landmarks in environments having directional variant features, such as protruding
edges in walls, edges of objects located in the field of view such as chairs. or tables,
and also moving objects such as humans [91]. However, when such features are
unavailable, such as corridors having flat walls, long empty rooms and halls, the laser
data will un a minimum number of features that can be detected as lan narks.

Recently, computer vision received much attention for ¢ AM [92, 93, 94] and
has the a 7 1o extract visually salient [catures even in flat walls or corridors
buildings. However, there are many drawbacks in vision based sensors. Monocular
SLAN in  cmentations require the [catures to be present in the ficld of view for
a longer duration to facilitate proper convergence of the fcature position estimate.
However, stereo vision has the ability to overcome this issue in single camera systens,
but requi ; a significant computational overhead, particularly for calibration and 3D
estimates. Thus, it is possible to use the features of both sensors, laser and camera,
to overcome the drawbacks of cach. Hence this work demonstrates a novel application
of a sing  sensor based on a laser-vision model. Early work ol the laser-vision model
uses two sensor readings separately and fuses the SLAM data in the post processing
stage to estimate robot pose [1]. In contrast, the method proposed in this chapter
perforins feature extraction at the sensor level while using a laser-vision model as a
single sensor for detecting and locating landmarks. Therelore this chapter presents
the following key contributions. First, the work demonstrates effective integration of
laser and camera as a single sensor for general purpose robot navigation. Secondly
the work demonstrates how the integrated laser-camera model can be used  ectively
to solve the SLAM problem. The sensor also has the ability to cither work as a laser

only sensor or vision only sensor.




3.1.1 Related Work

The research in computer vision based simultancous localization and mapping (SLAM)
can be br dly categorized into two areas. They are: appcarance based methods and
feature bi  d methods. In appearance based localization and mapping, iinage features
are collectively used to describe a scene. These feature based scriptions are used to
compare and contrast the images that the robot acquires along the way. Ilence when
a robot revisits an environment, the localization algorithm will be able to measure the
similarity between the images of the current scene and the images that are registered
in a database. In most cases this type of qualitative localization and mapping can
only generate topological representations of the environment. Although it provides
a viable and more natural mapping and localization procedure, the qualitative algo-
rithms do not provide detailed information about the environment. Details  such a
map may be inadequate, especially when robots require accurate information about
the structure of the environment [or tasks such as path plam 1g. Although appear-
ance based 1ethods have been used in SLAM [95, 96, 97], they are mostly used in
the re-localization of the robots [98. 99, 100].

In cont st to the appearance based methods, feature based methods uniquely
identify  sually salient landmarks in the environment and calculate their position
with respect to the robot. Such measurements can be used in estimators to build the
map ol t - visual landmarks while localizing the robot. The primary advantage of the
feature * sed methods is the higher fidelity of the map. The feature based me  ods
can be classified based on the method that they use to calculate the range and bearing
to the features. The most common method is the use of stereo cameras [40. 48, 46, 101,
64]. Other methods used to calculate the feature position include: si: "¢ camera based

feature position estimation [83, 87] and optical flow based calculation [47]. Although

(@54
—
)



computer vie n based SLAM methods show significant advances, they exhibit one or

morc of the following drawbacks with respect to general SLAM applications.

1. The methods were only demonstrated to work in small scale environments [40,

83, 87].

2. It is n ~ssary to have a large number of features in the environment for the

SLA igorithms to properly converge [46, 47).

These issues can be primarily attributed to the large uncertainties associated with
the vision ased feature position calculation. Further. in stereo and other vision based
feature position calculation methods, uncertainty of the feature position increases
with incr  sed distance. Additionally, a regular camera lens provides only a limited
field of vi . This severely limits the amount of time that a feature is actively observed
in the SLA  process, especially if the robot is moving at relatively high speeds.

On the atrary, the laser range finder provides excellent range measuring capa-
bilities and has been widely used in SLAM implementations. Landmarks that are
generally wvariant to the direction of scanning (such as chair and table legs, corners,
tree trunks, poles, etc.) can be identified in laser range data. However, typical indoor
environments with corridors, walls and other structured shapes cither do not have
any features or have only very few features. During the estimation process. when
landmar are absent in the environment, uncertainty of the estimator rapidly grows.
The landimarks that will be encountered with a higher robot uncertainty will have a
higher unc ainty bound (Theorem 3 in [38]). This will lead to possible inconsistent
data ass iations when the robot revisits the same arca. Ilence frequent feature-
lessness in the environment will lead to a highly unstable SLAM process.  owever,
computer vision can be used to detect visually salient features on walls and other

places w e it is not possible to use a laser range finder to detect landmar!  and the
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laser range finder can be used to measure the range to the visually salient lan  narks.
On multi  nsor SLAM, Castellanos et. al. [1] have presented a laser-camera based
method that fuses landmark information from laser range finder data with image
data. The 1 thod presented in [1] detects landmarks using data {rom cach sensor
and calcu tes the individual and joint compatibility between them. From the laser
range finder it locates the line segments, corners and semiplanes. Using camera data
it obtains redundant information about the landmarks that were observed by the
laser range der. Thus this method only provides the laser based landinarks with
additional redundant information about the corners and semiplanes from vision data.
In contrast, 1e proposed method uses vision as the primary sensor to obtain vertical
edge features and then uses data from the laser range finder to measure the range to

those larr  narks.

3.1.2 Objective

The mai objective of this chapter is to introduce a novel integrated laser-camera
sensor L. L can be readily used in landmark based simultancous localization and
mapping algorithms. In contrast to the other notable works in multisensor SLAM
(1] the p  posed method fuses the information in the sensor domain, rather than fus-
ing map iformation that is being built using each sensor, as shown in Fig. 3.1. In
the proposed work a camera is mounted on a laser range finder and the coordinate
transformations arc obtained through an experimental calibration process [102]. 7 e
vertical lines in the environment are detected using the im e data (bearing infor-
mation) 1d the range to the vertical lines can be then interpolated using the laser
readings and the coordinate transformation between the laser and the camera. These

located features are then used in the extended Kalman filter based SLAN! {ormulation.
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3.2 T indmark Detection and Position Estimation
Using a Single Sensor

This section explores the applicability of each sensor for landmark detection and
position « imation. In robotics, the camera and the laser range finder are the most
commonly used sensors for environment sensing. Computer vision based solutions
have long been proposed for detection and in many cases for position estimation of
visually ¢ ient landmarks. The most important advantage of using computer vision
for landr rk detection is that it can detect visually salient landmarks with a high
degree of details that can later be used for tracking or association. For example, scale
invariant feature transform (SIFT) uses rich visual information to derive a multi
dimensional descriptor of visual features [103]. This type of rich description is useful
for assoc ling features in stereo vision [44] and for homography estimation [104].
Due to the inhereni sensor model, computer vision can only capture the be. ngto a
feature. erefore in computer vision, stereo vision is the most popular method for
direct landmark position estimation. On the contrary, a laser range finder scans its
field of view to measure the distances to closest objects. Usually, the measurements
are taken at very small angular resolution and a higher range accuracy than any of
the other range sensors, providing a high resolution depth plan of the field of view
of the s nner. Next, the issues relating to the landmark detection and position
measurement using a single sensor are addressed.

Monocular vision has been widely used in visual landmark detection in bearing
only SL. /1. Starting {rom the initial works of Andrew Davison [48] the rescarch in
vision based SLAM has moved to realtime monocular SLAM [83, 105, 106] imnplemen-
tations. In 83, 105, 106] the position (depth) of the visual landmarks is estimated

using re  ated observation of the landmark, and when the estimation converges it is
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initialized into the map. This type of feature initialization requires landmarks to be
present in the field of view of the camera until the depth estimates converge to an
acceptable level. Although these are pioneering methods in vision based SLAM, in
typical application scenarios the landmarks cannot be guaranteed to renain in the
field of view for a specific duration. In other methods the optical flow of a landmark,
along with the robot velocities, can be used to calculate its position with respect to
the robot ame. However, due to the high sensitivity to noise in robot velocity mea-
surements, ¢ uncertainty of the final calculated values can be extremely large and
the resulting position calculations will be of limited use. This  certainty problem in
the position calculation is magnified at low robot velocities. Further, the optical flow
based method cannot directly calculate the object position when the robot is making
pure transl: onal motion as shown in the next section 3.2.1.

In the detection of landmarks based on the laser range finder data, the corner
and line lanes in the real world) features are the mostly used features [107, 1]. The
landmarks that can be represented by a point in the map are often preferred over
the line features, which can only be localized with a higher degree of frcedom when
the com; te line segment is in the field of view of the scanner. The corner [eatures
that are 1variant to the direction of the laser scan arise in the laser data due to
objects such as corners in walls and other objects that have protrusions similar to
legs of tables. However, in some cases these types of corner features may not be
available in environments such as long corridors. Nevertheless, in most cases there
arc palt 1s on walls and other features that can be easily detected using computer
vision. I addition, due to the differences in the appearance of surfaces under lighting,
the corr  features would usually appear as visually salient features. In the rest of
this sect 0 two attempts in localizing features using comput:  vision and laser range

data are discussed with their limitations. ..e next section introduces an integrated
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laser-vision sensor that exploits the above mentioned properties of the visual features

with the high accuracy of the laser based measurement.

3.2.1 andmark localization using computer vision

Landmark localization using only monocular vision has been achieved using two main
methods: bearing only localization and optical flow based localization. Bearing only
localization requires multiple wide baseline [rames to infer the 2D position of a land-
mark. 1 refore, the position estimation and the accuracy ol the estimation of a
landmark using bearing only readings arc highly dependant on the movement of the
camera and the number of sensor frames. In contrast, the optical flow based [eature
localization can be used to calculate the landmark position as soon as accurate op-
tical flow data becomes available. Thus, in this thesis, for monocular vision based
landmark localization, only the optical flow based method was investigated.

From the six degrees of freedom general model, the horizontal velocity of features
(optical flow) (p) on the image plane can be derived from the horizontal [eature
position ), heading velocity (v), rotational velocity (w), and focal length of the
camera (A) as Hllows [23]:

p=" (V) (3.1)

where Z is the distance to the feature in the direction of the heading velocity.
Using t.  above equation and the camera model (p/A = X/Z) where X is the per-
pendicu r distance frc  the feature to the heading direction, the feature position

with respect to the robot can be calculated by:
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The cov anceof the calculated position can be found using the first order Taylor
expansic ol the feature position [X,Y]7. The covariance matrix of the position

calculation can be obtained from

Syz =J diaglo,, 05,00, g7 (3.3)
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and 0, 05, 0,, and o, arc the standard deviations of the horizonal feature position
on the im : horizontal optical flow, heading velocity and rotational velocity of the
robot, resper  vely. The nieasurement covariance matrix is considered diagonal as-
surning that each of the measurcments are independent from others. The uncertainty
of the cal e locations can be evaluated by comparing the arca of the ellipsoid
defined by the 95% confidence interval. The uncertainty comparison for varying op-
tical flows a | feature positions is shown in Figure 3.2. From Figure 3.2 it is clear
that at lc  optical Hows the uncertainty increases regardless of the feature position
on the image. Morcover, as the feature moves closer 1o the edge of the image, the
uncertainty increases even for the same optical flow value. Generally, a robot encoun-
ters many combinations of robot velocities and feature positions which could give rise
to high covariance values in the feature position calculations. The limitations in the
usable ra e of optical flow and feature position make the optical flow based feature

position  culation method unsuitable for SLAM applications.

3.2.2 Landmark localization using laser data

The dires  on invariant {eatures in the laser data can be identified as unique landmarks
using the n imum points in the laser data plot [22] which aj ear as peaks  -om the
robot direction when the laser data is connected with line segments. These landmarks
generally remain in the laser data regardless of the direction of scan. In addition to
the com atures that appear as minimum points in the laser data, concave points
such as sharp corners can be reliably detected in the laser data. However, as shown
in Figure 3.3. in certain environments such as in long corridors, there might not
be any directional invariant features. In such cases feature based laser only SLAM

implement  ions will not be possible unl  higher level features such as lines are
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Figure 3 A typical laser reading in an indoor environment where there are not
sufficient direction invariant features.

used.

3.3 Calibrated Laser-Vision Sensor

A camer is mounted on the laser range finder using a custom made bracket as
shown in Fig. 3.4. The camera is mounted at the center of the laser range finder
to maint n the coordinate transformation between the laser scanning plane and the
camera coc linate system as simple as possible. The coordinate frames are defined
as shown in Fig. 3.5. In the real setup the axes z and z. coincide with cach other

(i.e. a =0) and b = 19cnu.




Figurce 3.4: The camera and the laser range sensor used 1 the experiments.
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Figure 3.5: Coordinate frames of calibrated laser-vision sensor




3.3.1 " 1al Landmark Detection

Landmarks in the camera images can take several forms. The most common land-
marks are the visually distinet corner features. Other visually salient landmarks
include lit | arcs, and user defined objects. In the proposed method visually salient
vertical i1 features were detected in the captured images. Although the choice of
vertical lines s the exclusive landmark type restricts the applicability of the method
in diverse cnvironments, it offers a trade off between simplicity in landmarks the ap-
plicability 1 most structured indoor environments. Line features are robust in terms
of detection accuracy and repeatability compared to corner points and much easier
to describ d detect than complex composite objects. In this work two algorithms

have becn ¢ luated for the detection of vertical lines in the images.

1. Hough transform based method.

2. Artifii ] corner feature based niethod.

Line ¢ ection algorithms based on the Tough transformation are most popular
in compuler vision and pattern recognition. Hough transformation typically accu-
mulates the votes for line configurations based on their support in the binary image.
Since it is of interest to detect only the vertical (or close to vertical) lines. the search
space can be restricted to compute the angle values in the vicinity of zero, thus re-
ducing the computational cost. In addition to the Hough tr sform based iethod,
a simpler and computationally efficient corner based method was tested for vertical
line detection. Initially, a set of horizontal lines were superimposed on the original
image as shown in Fig 3.6. Then, all the resulting corner features were detected using
a Harris corner detector [43] and are indicated by the white  cles in Fig. 3.6.

This list of corner features is then searched for sets of features that are v tically

aligned. If the number of features in a set is greater than the threshold value, then
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3.3.2 Se sor calibration

In order tc 1easure the distances to the visual landmarks using the laser range finder,
the coordinate transformations of the two sensors have to be accurately calibrated.
There are two possible sources for errors in the calibration information: the errors
in the alig nent of the frames of the sensors (parameters ¢ and b in Fig. 3.5) and
the errors in  amera calibration. Although the camera is calibrated using standard
camera calibration techniques!, the distortions especially at the edge of the images,
contribut¢  gnificantly to the errors.

The main objective of the sensor calibration method is to accurately map the
field of vic  of the camera to that of the laser range finder. In order to achieve that
objective, v’ shaped target with black and white faces is placed in front of the
robot. In  series of image and laser data with the v’ shaped object placed to span
the field of view of the camera (since the field of view of the camera is less than that
of the laser range [inder), the angle to the tip of 'v' is measured from the center of
cach scnse  In the camera images it is measured in degrees from the optical axis (,.)
and in the  er range finder it is measured from the central laser scan (6;). Thus,
the error in the calibration can be calculated fromn e = 8, — 8.. As shown i Fig.
3.8, the erri e is approximated using a higher order polynomial e(6,.) with respect
to .. Thus for any new mecasurement in the image 6., the corresponding mapping
angle in the laser range finder can be calculated from 6.+ ¢(6,.). Similarly, the reverse
mapping, the mapping of a reading in laser data onto the image, is also possible with

the same data with a new calibration curve of e(8;) vs. ;.

'MATL 3 toolbox for camera calibration, http://www.vision.caltech.edu/bouguetj/calibdoc/
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Figure 3.8: Calibration curve for mapping between the field of view of the camera
and the field f view of the laser range finder.

3.3.3 Measurement Model

The goal « defining a measurement 1model is to calculate the range to the landmark
that has I detected by computer vision and then define its uncertainty. The bear-
ing angle (6.) of the detected landmarks (line features) can be calculated using a
camera model with sub pixel accuracy. A laser ranger provides a set of scanned read-
ings that provides the range to the objects in the laser scan plane. The scanner is able
to operate in a ficld of view of 180° with a half a degree resolution. Therefore, using
the coord ¢  transformation between the camera and the laser vange finder along
with the ¢ ibration information, the range to the line features can be calculated. Due
to the resolt on constraints in the laser data, the range value has to be interpolated
from the data to increase its accuracy. This process of range interpolation is shown in
Fig. 3.9. It should be noted that the coordinate frame of the laser range data and the
camera ¢ 1cide with cach other as the calibration is already applicd to the bearing
angle of the camera. Thus, in Fig. 3.9 bearing angle can be explicitly expressed as
in the las  cor linate ume.

Assuming the resolution of the I range scanner is at 0.5°, the range to the line
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R = diag[ o7 o} | (3.5)

wlere o, and gy are the standard deviations of the range and bearing measurement

errors, respectively.

3.4 LKF based SLAM Algorithm

The EKF based SLAM algorithm described in Chapter 2 has been used for SLAN.
The algorithmi is summarized in Algorithm 1. The equations are elaborated in detail

in Chapter 2.

Algorithm 1 rkr pased SLAM Algorithm

1: Initia the robot pose and covariance to zero.
2: whil bot runs do
3. DM 1e robot to the next location.

4 Predict:
(kb + 1) = fla(k), v(k), w(k))
Toh) =V (KT (k DVSTR) + VoS (B) 8.V [T (k)
Ol  rve the landmarks.
Pe rm data association.
Update:
k) =x (k) + W(k) o(k)
(k) = (k) — W(k) S(k) WT(k)
8. Perform map management.
9: end hile

e w

3.5 xperiments and Results

This section provides information about experiments that have been carried out to
validate the suitability of the integrated sensor. Before the description of the experi-

ments and eir results, a key step in the sclection of the detected visual landmarks
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each intersecting point can be calculated by a suitable gradient detector. Then the
vertical landmarks corresponding to points with weak total vertical gradients can be
dropped. Although this method is able to remove most of the landmarks that do not
intersect the laser plane, in rare cases two vertical aligned landmarks that belong to
objects with different ranges could yield erroneous range information.

Two SLAN experiments were carried out to evaluate the fitness of the mmulti-
sensor landmark detection and measurcinent. method. In the first experiment the
robot was driven through a regular office environment where it encountered narrow
corridors, sen office areas, and regular object clutter that are typical to an office
environment. The robot travelled approximately 67 m making two loops through the
office environment. In the second. longer experiment the robot was driven through
the main corridors in a university building where the corridors were consi rably
wider compared to the first experiinent. The robot travelled approximately 148 m
while looping one and half times in the same environment. The experinients were
carried out using a Pioneer 3AT robot cquipped with a SICK laser range finder and a
camera with a regular off the shelf lens. During this experiment the laser range data,
images from the camera and odometry data were logged atl regular spatial intervals
(20 cm or  apart, whichever occurs first). The noise levels that have been used in
the map e mation and localization are listed in Table 3.1.

Figure 3.11 shows the proc  of feature detection and localization using an in-
tegrated sensor for a typical set of image and laser scan data. As can be seen from
Figure 3.11 the laser range finder can only detect the landma — at location ¢ (using
the intersection of two lines) while computer vision can be effectively used to detect
other landmarks that can only be detected using a camera (at locatious .1 and 13).

As discussed previously, the protr ' g features in the laser data can be detected

as landmarks in the laser data. Figure 3.12 shows a comparison between the number
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Figure 3.11:  1e landimarks detected by the camera and their bearing angle super-
imposed on laser readings.

of landmair ; that can be detected in laser data and in image data during the rst
experiment. It is clearly evident that there are significant periods when image features
outnumber the laser based landmarks. Further it should be noted that when there is
a low number of visual features there is a significantly higher number of laser based
landmarks. / hough the results are purely specific to a given environient, the total
number of ndmarks can be improved using the proposed method in addition to the
laser based landmarks.

After the landmarks are detected and located using laser data and images, the
data is processed off-line using the EKF method outlined in Chapter 2. The Joint
Compatibility Branch and Bound (JCBB)[66] algorithm was used for the data asso-
ciation. In e first experiment a map consisting of 71 landmarks has been built at
the end of the run (Figure 3.13(b)). Figure 3.13(a) shows the robot path using pure
odometry « . The 95% confidence bounds of the errors in the robot pose cstimate
are shown F ire 3.15. In F' 1re 3.15 it is possible to observe the rapid decrcase

in the unc nty of the robot position estimation due to the loop closing around
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Figure 3.12: Number of landmark features detected by vision and laser systen.

the midway point of the robot run. In the second experiment the robot constructed
a map (as shown in Figure 3.14) that contains 271 landmarks. Although the robot
travels a cc  siderably longer distance in a different environment compared to the first
experiment, a similar pattern can be observed in the performance of the EKFEF based
SLAM in the sccond experiment. The accuracy of the EKF based SLAM algorithm
was cnough to robustly close the loop in the long run, but during the initial steps of
the loop ¢l ing there were erroncous data associations. The ability of the gorithin
to recover from the initial errors data association can be mainly attributed to the

large size of the map compared to the nuimber of erroncous ¢ a associations.

Table 3.1: The measurement of noise levels of the respective sensors that is used in

the SLAM.

Quantity Measurement noise
Range to the Landmark (cm), o, 5.0

Bei  ng to the Landmark (Degrees), oy 1.0

Robot heading velocity (cm/sec), o, 0.5

1 bot rotational velocity (Degrees/sec), o, 0.025
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3.6 Conclusion

In this chapter it has been shown that computer vision and a laser range scamier
can be us  to accurately detect and measure the visually salient landmarks in the
environment. Further, such measurements can be readily integrated into the EKF
based SLAM method to build maps of typical indoor environments. From the results
it 1s evident that using a calibrated laser-vision sensor, a higher number of landmarks
can be detected than with each sensor. Future extensions of this work include the use
ol more accurate sensor uncertainty modeling especially in the case of bearing angle
to the la: mark and experimentation in large looping environments with possible
sub-mapping. Some visual lanchmarks arc present in the form of wide vertical strips,
in which two side edges are detected as vertical lines. Thus they are recognized as
two landmarks and the SLAN algorithm will attempt to initic  ze them as such in the
map. Ho >ver, since they are often physically close together only one ol them will
be initial into the map. Further, when the robot is away {rom visual features as
described above, the line detection algorithm will often detect a single line ¢ to the
limitation in the resolution of the camera. However, as the robot gets closer to the
object, it will appear as two landimarks and the data association algorithm will have
to decidc e best edge to be assigned to the [eature that is already in the map. Thus

a better  nsor model that can handle this type of composite objects is required.
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Chapter 4

Modeling of rnvironment: |

Dyn mics

So far th thesis has focused on navigating a robot in environments where e sur-
rounding objects and perceived landmarks for SLAM have been assumed to be static.
The SLAM development based on laser or vision sensors always attempts to identily
stationary landmarks. When objects move at relatively high velocities compared to
the robot, t +SLAM filter has the capacity to ignore such objects through data asso-
ciation. However, when objects move at a relatively low velocity, the data relating to
moving landmarks may be associated with existing landmarks leading to faulty map-
ping in t. SLAM. Therefore the objective of this chapter is to develop a technique to
detect and isolate moving objects {rom the laser scan taken by the moving robot and

finally to accommodate the SLAM process to be effective in dynamic environments.
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4.1 1 ackground

Moving object detection and tracking has been employed in a wide variety of appli-
cations ra z from tracking of ships, airplancs, submarines, projectiles and vehicles
to people. The comion objective in all of these applications is to identifv the sensor
data corresponding to the concerned object and to estimate its position for tracking
purposes. In many applications such as maritime and airborne target detection and
tracking, the objects can be casily isolated from the radar data. This is mainly due to
the fact that radar reflected from the object will have uniquely defined features in the
workspace with respect to the background. In contrast, moving object detection is a
challengi:  problem in environments where there is no such wide difference between
the object and the background. In such cases simple detection would not sufhice and
one has to closely explore the properties of the moving object with respeet to its
backgrot 1.

There are nuinerous types of sensors that arce used in obscerving the environment.
known as extroceptive sensors. The most commonly used sensors are radar, laser.
sonar, and vision [9]. Radar sensors are popularly used to detect objects that are a
few meters to several hundred kilometers away, whereas laser range finders are used
to detect objects that are only tens of meters away, but with a higher accuracy than
radar. Sonar scnsors use b s of acoustic impulses to measure the distances to
the objects using the time of flight and phase shift of the returning sign:  While
sonar is much cheaper than laser or radar. it has ouly lim ~d applicability due to
its accuracy limitations. Somnar is the most widely used underwater sensor due to
the high  performance of acoustic signals in denscr media such as water. Computer
vision is  versatile sensor that can retrieve a large amount of information compared

toother 1 rs. In contrast with other _measuring sel > computer vision
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lacks the ity to directly observe the structure of the environment. There are
numerous techniques for recovering the depth to an object from vision data, sterco
vision being the most commonly used one.

In mo e robotics these sensors are mainly used for navigation and path planning.
Addition y. the data gathered from the extroceptive sensors are increasingly used
in real tn apping and localization [8]. In mapping and localization, it is assumed
thal the . vironment remains stationary during the operation of the robot. . wever,
this cond on could be violated in most practical scenarios, especially in uncontrolled
outdoor  vironments. Thus there should be adequate methods to identify and clas-
sify moving objects by moving robots. in order to produce a accurate map that is
entircly composed of stationary objects. Moving object detection is important for two
main reasons. The information about the moving objects can be used in safe rc ot
navigatic  (obstacle avoidance). If a robot can make a sufficiently reliable estimate
about the velocity of a moving object as early as possible, its path planning algori m
can usc¢ s information to efficiently circumvent the obstaele. Scecondly, moving ob-
ject detection can function as a filtering process in which the data corresponding to
moving objects can be removed from the sensor data in order to provide the SLAM

algorithm with data from only stationary objeets.

4.1.1 Challenges in Robotics

The las:  range sensor is the most popular sensor in indoor and some outdoor op-
eration scenarios for mobile robots. It has been used in 1 Hwving object detection
in most  trivial scenarios where simple free space consistency is used to detect the
motion in objects [21]. However, in many other situations,  oving object detection

has been found to be non-trivial. Some details of the identified challenges in movi:
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object de ‘tion are summarized below.

Low rel: ve velocities When the relative velocities between the robot and the
object are sufficiently large, then the object can be completely separated in the
laser data in the world franie. This would yield a trivial moving object detection
cas which can be achieved through direct closest point climination.  wever,
at I v relative velocities the object separation will be at a ninimum. In such
cases the complete moving object detection will be a complex task, as the laser
data that represents the moving object may overlap in several diflerent ways,

depending on the direction of the relative velocity.

Complexity of the objects Objects in the environment can take arbitrary shapes
and [ ns. The shape can be of fixed nature or change with time through either
del mation or rotation. Thus the object can appear in many geometric forms
du g the lifetime of a track. Therefore the moving object detection algorithm
shoul  be robust enough to detect objects under many different scenarios. Ad-
dit nally the moving object detection system should be capable of detecting
multiple objects. When the robot moves, the arcas that were previously oc-
cluded but stationary will becomne visible to the laser and thus the detection
algor 1m must have sufficient capabilities to identify these occluded areas to

prev  them from being classified as moving objects.

4.2 DN oving Objects and SLAM

Moving object tracking is a popular and widely rescarched topic in computer vision'.

Computer vision based methods use color and shape featurces of objects for detection

*http: edu/Vision-Notes/rosenfeld/contents.html
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and employ umerous estimation techniques for tracking. Computer vision based
tracking of moving objects by moving robots (or by moving pla rm, in general) still
remain a significant research challenge. Examiples of some of the attempts made to
solve the problem of computer vision based moving object detection from moving
robots are shown in [108, 109, 110, 111]. In comparison to laser range based methods,
computer vision based methods exhibit some drawbacks. Among others, they include
low precision in position estimation, susceptibility to lighting conditions, and reduced
field of v w when regular lenses are used. In contrast laser range finders provide
accurate range data of the environment in a wider field of view.

The Simultaneous Localization, Mapping and Moving Ob ¢t Tracking (SLAM-
MOT) method [49, 50] uses two different rules, to detect approaching and leaving
objects. Al ough the rule related to approaching objects is straightforward, the rule
related to leaving objects requires more than two laser scans to identify the moving
object. Morcover this method has limitations in detecting the complete object when
the obje is moving sideways in the field of view. The people detection method in
[20] uses a laser scanner and a camera to specifically search for the two g posi-
tions and skin colour. Although [20] provides interesting work on sensor fusion, it
can only detect people when they are facing the laser. Lindstrom and Eklundh [21]
provide another moving object detection method based on the static world assuimnp-
tion, which provides interesting results of human tracking by a moving robot. In
their method all laser readings and the robot itself form a closed polvgon, which is
also the free space “scen” by the robot. In subsequent scans, the violations of this
free space are monitored and such violations are detected as moving objects. While
this me >d can detect objects that are approaching the robot, there is a possibility
of not detecting the objects t1 . behave othery ~ », since they don’t violate the free

space con :on. Mendes et al. [51] provide a target tracking syvstem with a laser
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scanner, v ich assumes that all the objects (or scan segments) are within a certain
predefined range from the scanner (there is no distinction between moving obje
and stationary objects) and are classified into a known set of objects based on the
shape features extracted from the laser data. Further, the presented method will fail
to identifly moving objects which cannot be classified into the known set of objects.
An interesting occupancy grid based moving object detection method is presented
by Schulz . al [22]. In their application of the sample-based joint probabilistic data
association filter (SJPDAF) thev have compared occupancy grid maps of two sub-
sequent laser scans to generate the difference map. The generated difference map
is then c¢¢ ipared with the minimum points in the current laser scan to remove any
stationary fcatures in the map, and the resulting feature mi  will only contain the
moving objects. Also, when a moving object moves sideways at low velocities, the
method 1 [22] will [ail to completely recover the moving object. Montemerlo el al.
[52] provide a multi robot localization and people tracking method based on particle
filtering. I er readings are scgmented into clusters and then fitted against cylin-
drical models, which approximate a model human torso. Fod et al [53] propose a
people tracker using multiple laser scanners. [53] adopt a bl and object model to
combine ser segments from each scanner (blob) to a single object (object). The
blobs are identified using a foreground method where all laser scans that belong to
furthest objects are assumed to represent stationary objects. In [112] a model based
people t  zking algorithm using the laser range finder is presented. The algorithm
first climinates the closest points in two subsequent laser range scans and then at-
tempts to identify the clusters of laser readings which fit a model that resembles the
cross s¢  on of the legs of a person. This algorithm is only suitable for detecting
human motion where the visible parts of the legs conform to a given model. The

limited applicability in the model based detection is further inereased when a person
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is moving . a distance from the laser where the number of readings that corresponds
to the legs would be minimal. Prassler, Scholz and Elfes [113] present a real time
occupancy grid based method for detection and tracking of multiple moving objects
using time-stamp maps. The method establishes moving object hypothesis from the
difference between two subsequent occupancy maps created using laser data. These
initially detected moving objects are further filtered by the size of the clusters. The
inability to detect slow moving objects (aperture problem) is a limitation of any dif-
ference b: d detection method, owing to the resolution of the sensor and the noise
content. When an occupancy grid based method is used as opposed to the use of di-
rect laser range data, the resolution of the laser readings further decreases, and thus
the ability to detect even relatively slow moving objects that otherwise are visible in
direct laser data, also decreases.

In this chapter a systematic algorithm is proposed to maximally recover the mov-
ing objects f  m laser range scans. The proposed method can recover multiple mov-
ing objects regardless of their direction of movement with respect to the robot. The
proposed moving object detection algorithmi has two distinct steps: (1) laser scan
segmentation, and (2) detection of the moving objects in the laser scan segments and

the calcul.  on of their position.

4.3 1 ser scan segmentation

The objective of a laser scan seginentation algorithm is to identifv the laser scans cor-
responding to the moving objects. At any given time the two subscequent laser range
readings a  defined as Lp and Le, where subscripts C' and P stand for the current
and previous laser scans, respectively. Le represents a set of range readings returned

by the sca ier in a single scan. Each reading is represented by the superseripts i or
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7, which is a 2D position vector. Two saniple laser scans are shown in Fig. 4.1.

In this algorithim it is assumed that initially two laser scans are perfectly aligned
with all their stationary objects. This iimplies that in each laser scan there should be a
significant amount of scan points that belong to stationary objects. This method will
not suffice for environments that are highly cluttered with moving objects, because
there will be adequate data to properly align any two subsequent scans. Laser
scan alignment is a heavily rescarched area in robotic mapping and localization. A

suitable 1 thod can be found in [13].

4.3.1 Definitions

The two scts of laser readings can be divided into different mutually exclusive sets,

depending on their physical representation, as shown below.

Lp bl AP U ()[J U .\1}) U x’\'vp (41)

Le = Ac U Oc U Mo U Ne ( 2)

where Ac and Ap are the laser readings that represent the same stationary objects
in the tw scans. Op are the readings in Lp that will be occluded by the readings
of Le, wl 1 the robot moves to the current position. O¢ are the readings that have
been ocel led by the readings of Lp. when the robot is in the previous position. A
and A p ¢ the readings belonging to the nioving object in the respective laser scan,
but not occluded by the other. N and Np are the readings that are out of the field of
view of ¢ 2 scan when the robot is at the other position. Fig. 4.1 shows the regions
in the scans that belong to the corresponding scts.

The f ing ol rvations can be made regarding the range reading scts presented

above.
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Typical Laser Data

Apand Ac —

Scan )

Direction

1 I I i L L 1

Figure 4.1: Typical laser scans from a stationary robot. The object on the left hand
side moves downward in a negative y-direction.

1. The lascr scans that are spatially close to each other (after proper alignment)

belong to A¢ and Ap. Therefore A¢ and Ap can be identified by searching for

the spatially closest points in two laser scans, Lo and Lp.

2. M}, is on or close to the scan line, which emanates from the laser when the
robot is at the current position resulting in Oé. Similarly, O} is on or close to
the scan line, which emanates from the laser when the robot is at the previous
posi resulting in 1\1}. Apart from yielding different sets. this relationship

would 50 yield a point to point correspondence between the pairs (M. O}.)

and (ML, O)).

3. Int.  point to point correspondences identified according to observation 2, the

folle  ng is always true for the range values of the corresponding pairs of laser
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read zs.

2

l(Oé) > r(Mp)

r(0%) < r(AML)
where 7(-) is the range value of the corresponding laser reading.

4.3.2 gmentation Algorithm

The main objective of the segmentation algorithm is to classify the laser readin s
into sets, A¢, Me and O¢. The algorithm has three main stages. These are |
identification of Ax and Ap, (2) separation of Afe and O¢, and (3) segmen  ion of

identified sets. These three stages are discussed below.

1. Through an element by element comparison the closest points ol the two laser
scans can be identified and removed. This operation can be described as a set
operation as described in (4.3), assuming that the closest elements are common

elements in the sets Lo and Lp.

(LcLJLP) — (LcﬂLp) :‘nﬂllf\[cUNC (—13)
Be-
UQ[’ U AIP U 1\'5
By

2. Alge ~ m 2 can be used to further identify the sets M and O¢ from Be. This
algorit n uses the second observation in section 4.3.1 to identify M, Oc, Mp
and 'p from Be and Bp. The rest of scan data in Be and Bp that does not

belong to those four sets can be classified into N and Vp, respectively.
3. The identified sets Mq. Or and Ae may have zero (cmply set) or more con-
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Algorith 2 Algorithm w weninv Ig in Be

Require: B~ # 0 and Bp # v

1:
2:
3:

4
5
6:
7
8

9:
10:
11:
12:
13:
14:

Initialize Mc, Mp, No. Np, O¢ and Op = 0)
for Each clement BL. in B¢ do
if 3 a BJ, in Bp that is close to scan line of BL then
if Bl < BJ, then
Op — OP + B;J and f\[(' — ./\'[(‘ + Bé
e lif
if B. > BJ then
Mp — Mp + BJ, and O¢ — O¢ + BL
e lif
else
N¢ — Ne + Bé
end if
end for
A’Vp — Bp - Op - i‘[p

tinuous segments of readings. A continuous segment is a string of consccutive
readin  Usually in a laser scan, a continuous segment represents a single ob-
ject. During this step continuous segments within cach set are identified. For
exal le, in Fig. 4.1, G and H are continuous segnients ¢ the reading set Op.
The scgmented sets will be represented by the superseript s and it can have

zerc r more continuous segments. For example, Of, = {G, II}.

4.3.3 Parameter selection

The following parameters have to be carefully chosen for proper operation of the

moving object detection algorithn.

The effective time interval between laser data, Af: The data acquisition time

from the laser range finder is denoted as 8¢, which is a constant for a given
sensor ad the computer. ..ne Al can be chosen to be ndt (n is any positive

integer). where n has to be chosen according to the minimum relative velocity



that has to be detected, as defined in (4.5).

Closest int detection threshold, Ad,: In order to identify the stationary ob-
jects, the laser data points that are closer to each other have to be detected.
The closest points can be casily defined as follows: if a point in the current
scan is closer to a data point in the previous scan by a threshold Ad.. then the
poli . are identified as representing stationary points in their respective laser
scans. However, due to the projective nature of the laser beam, the distance
betwer  two consecutive laser points at different ranges changes linearly with
the range. Therefore a fixed threshold would not suffice for the detection of the
closest points, as the points that are further away have greater separation than
the points that are closer to the scanner. Thus a variable value for the Ad, 1s

chosen based ou:

Ad, = ktan(x/360)r (4.4

where 7/360 is the resolution of the laser. r is the range » the first laser point
and A is a suitably chosen tuning parameter to counter the noise levels in the
scanni  readings. Once the stationary scan points ha  been identified. the
laser readings have to be grouped in segments. A series of consecutive laser
readit  that is spaced by less than a threshold with each ol it neighbors is
ide fied as a segment. Since the same spacing properties as above are applied
in selecting a threshold, a similar variable threshold is  osen for segmentation

with a different tuning parameter £.

The mii num size of the moving object The objects that are further away from

the scanner are represented as smaller objects (in the number of laser data
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poir i) than the objects closer to the laser. Also the noise levels increase with
range (property of the laser range finder). Therefore a fixed threshold is selected
for the minimum number of laser points that is needed in a segment to label it

as a valid segment (not noisy).

The separation of a moving object in the world frame between two laser scans is
directly related to the magnitude of the relative veloeity between the object and the
robot. Based on the above parameters, the minimum detecti le relative velocity of

an object will be:

Ad,
Viain = — 4.5
At (45)

4.3.4 DN »ving Object Detection

After ac. ving the final segmentation, the next objective is to accurately and com-
pletely i fy the moving object. Generally, the segments in M¢ represent moving
objects. However. there are instances where M. either represents only a part of e
moving object or not represent any moving objects (M& = ¢), when actually { re
are movi ; objects present in the laser scans. To facilitate a development of a system-
atic algorithm to completely recover the moving object, the following possible case

scenarios are enumerated along with their properties.

1. Case 1: (Object is perfectly separate in two scans)

Fig. 4.2 provides an example of this case. The complete object is represented

by Mg, and as such no further processing is required.

" Ci :2: (Object is only partially separated in two scans)
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Object attime -~

IR

Y(m)

) [
Scan
Direction |

Object at time. t,,

X(m)

Figure 4.2: Perfectly separated object positions.

Fig. 4.3 provides an example of this case. Only part of the object is represented

by '&. Also in this particular case it is observed that « 2 continuous segment

in O belongs to the moving object. This is a common observation when scans

arc iken with a higher sampling time or when the object itsell is moving slowly.

Object at time, t, ;. //
oo
= AR o
Scan T —
D. t n N v/
ircction | f\ M,

Object at time. t,

Y{(m)

X(m)

Figure 4.3: Partially separated object positions.

3. C: 3 (Object movit  away from scanner)

An example of an ol | et wing away [1rv the st videdinF L4
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As. 1beseen in the figure, the moving object will be completely missing in the
M¢. but will be represented by a segment in Of.. Therefi it can be concluded
that, if the set M2 = ¢, with O} # ¢, then a segment in the O} will correspond
to the actual moving object. However, when Mg # ¢, it cannot be concluded
that a moving object is completely missing from Af%; for example, when there
is more than one moving object and only one of them moves away [rom the
scanner. In such a case M} # ¢, but there will be one missing moving object

in ALZ.

x Y{m)

Scan
Direction

X(m}

Figure 4.4: Object moving away {rom the scanner.

4. Case 4: (Object moving towards the scanner)
This is the opposite of case 3 and Mg will represent the complete moving object.

Thus, this is similar to case 1 and no further processing is required.

5. Case 5: (Lateral movement with minimum or no radial movement) In s case,
Mg« ly has a partial representation of the moving object. The missing part of
the moving object will belong to the continuous segment set. AAf..

From t : above 3 it is clear that in  me cases straightforward s 1-

tation v uld not yield the complete moving object. In cases 2, 3 and 5 further
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Scan
Dircction
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Figure 4.5: Partial latcrally scparated object positions.

processit - is necessary to recover the complete object. It should he noted that the
issues relat 1 to false positives are relevant to all five cases. Of all the cases, the
3rd case is the most difficult to resolve, especially in the presence of false positives
and /or multiple moving objects. In order to resolve the 2nd and 5th cases a set join

operation is defined.

Definition: (Join of two continuous segment sets, Join(A,B)) When cither end of a
continuc  segment. of set A is adequately close to either end of a continuous segment
of set B3, they are joined and placed in the set A. replacing the contributing clement
of set A. The joined segment is deleted froni the second set in order to avoid repeated
join of the same segment in set B with multiple segments in set A.

The above operation can be iteratively applied until there is no reduction in the
number of segments in set B. Generally, one pass could properly reconnect most of
the disconnected segments. Algorithm 3 is applied to recover the complete moving

objects  at belong to cases 2 and 5.
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the algorith  shows acceptable resulls in recovering the con ete object scena s

relevant Lo cases 2 and 5.

1.6 - 1.¢ -
1.4 1.4
1.2 1.2
E g 1
> -
0.8 0.8
0.6 0.6
0.4 0.4
1.5 2 2.5 1.5 2 2.5
X(m) X(m)
(a) (b)

Figure 4.6: The detection of a moving object similar to case 2. (a) Two laser scans.
(b) Dete :d moving object.

4.4 _./Jloving Object Detection and Position Calcu-

lation

Once the laser segments are identified they have to be labeled according to the ob-
ject that they represent, either moving or stationary. When the moving objects are
isolated from the laser segments, the object positions (centroid of the foot print of

the object) have to be calculated for the purposes such as velocity estimation.

4.4.1 Moving Object Position Calculation

The position of moving objects is estimated fr  all the recovered information that is

available in the form of scan segments. In order to support any higher level functions
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Figure 4.7: The detection of a moving object similar to case 5. (a) Two laser scans.
(b) Detected moving object.

related to moving objects their position has to be accurately calculated. The most
cominon 10d for object position calculation is to estimate the centroid of the
footprint of the object based on the laser data, where the ¢ ject position can be
calculated directly using the current data corresponding to the object. As the laser
range finder always observes only one side of the object at any given time, this method
If the object is observed over a

will only ield an approximate position estimate.

long peri | of time or the object is actively observed, the complete object can be
reconstructed using the data from scanmng multiple directions.

Tn this work the object position is recovered by constructing the simple eonvex hinll
of the laser readings in each segment in A&, Also. Af5 might contain false positives
that may appear as very short segments compared to the actual objects. Thus, the
segments that are below a predefined size threshold are ignored. Threshold value
the moving objects in

must be selected with careful consideration to the nature «

terms of their size and their distance to the scanner. Once the convex hulls of the
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selected scans segments are constructed, the actual object position can be considered
to be at th centroid of the convex hull. Accuracy of the object position will depend
on the shape and size of the moving object. Therefore it is very difficult to quantify
the absolu  uncertainty of the object position from the observed data. Fig. 4.8
shows an exa ple of a segmented object, its convex hull, and the estimated position,
along with  view of the real object from the scanner.

Alternatively, the object position can be calculated using the bounding rectangle
of the laser segment data. This method usually allows for greater accuracy (through
overestimation of the object area) than the convex hull. Therefore in the results
shown in the next section bounding rectangles are used to display the position of the
object.

Bounding Rectancle

\ L Convex Hull

\ Object Positior
M. T | (Centroid)

Direction ) (b)
Figurc 4.8: (a) The final moving object segment, its centroid of the convex hull

(calculated object position) and the bounding rectangle. (b) The actual view of the
object.

4.4.2 Experimental iesults

This section shows some examples of the tracking results obta™ «d with people moving

in the ficld-of-view of the moving robot. ..c laser scanning planc is located about
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35cm above ground level. Thus when a person walks across the field of view only the
legs are visible as two different moving objects. In this case two results are shown
with a per n moving across the field of view. In the first result in Figure 1.9 the
person is moving close to the robot (1.5m - 2.5m) and as can be seen [rom the figure,
the two le  are visible from time to time as cach leg becomes occluded by the other
in the walking gait. The data is acquired at 5Hz (At = 200ms) and for closest point
detection  threshold of 5c¢m is used. The black stars in Figure 4.9 represent the
possible torso position of the person when the scan segments from the two legs are
available. The second result (Figure 4.10) is similar to the first result but the person is
walking about 5m away from the robot. From both results it is clear that the two legs
of the person are not always detected. Apart from the obvious reason ol ocelusion,
the other main reason is that the two legs of a person move at varying velocities
during the gait. Therefore, when the velocity is below the minimum detectable, the

leg will be 1 detectable.

4.5 Conclusion

In this chapter a general moving object detection algorithm was presented. The al-
gorithm  es some specific properties of the laser scan data corresponding to moving
objects to successfully detect them. The proposed algorithim can be used to detect
multiple moving objects from a moving platform in a dynamic environment. Ad-
ditionally, in comparison to other methods, the proposed algorithm has the ability
to recover the complete moving object when the object is moving at a low relative
velocity and when the object is moving sideways with respect 1o the scan direction.
Throngh ; wieter  ning the detectable mumn relative velocity can be adjusted

to suit the application. The s shows that the proposed algorithm can be used
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Figure 4.9: Track of the walking person at a distance about 1.5m - 2.5m from the
robot. The blue bounding boxes represent the detected moving objects while the black
stars represent the possible torso position of the person when the scan segments from

the two legs are available.
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Figure 4.1  The track of a person walking approximately 5m from the robot. The
blue bounding boxes represent the detected moving objects while the black stars
represent the possible torso position of the person when the scan segments from the
two legs a railable.
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to successfu - track generic objects such as legs of a human in structured indoor
environm  t. In regular SLAM implementations the environment (or the lan  narks)
is assume to be stationary. Therefore. apart from the direct use of moving object
detection nd tracking, the proposed method can be used as a data preprocessing
step in regular SLAN applications to remove the data related to the moving objects
from the nsor data. This type of preprocessing will aid in improviug the stability of
the SLAM filters by preventing any possible moving landmarks {rom corrupting the

data structures.
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Cha rter 5

Active Control and Robot Parking

Almost all localization and mapping techniques that have heen proposed to date have
a resulting level of uncertainty for robot pose and map cstimation. However, at the
end of a iation task, the robot might need to be precisely positioned to carry out,
an assigned task. such as pick and place or park. This chapter details a visual servoing
control strategy to overcome the limitations in the positioning accuracy considering

the nonholonomic nature of the robot and the field of view limitations of the robot.

5.1 Introduction

Automat . parking systems have been an important issue in robotic research [11.,
115, 116]. Recently automated parking systems have been developed to automate
large scale parking garages. Although they are mostly pallet placing for space cfli-
ciency, more autonomous parking methods are rapidly a growing concern for many
users. I ticularly when robots (automated vehicles) are operated autonomously,
parking Il become an important issue for a variety of reasons: to replenish cnergy

supply (I tery charging, refueling), precise alignment against a given target for ma-
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terial loac g, or parking in idle for a new task assignment. In the majority of cases
the robot is required to align precisely with a predefined spatial configuration (target
pose).

In the past the automated parking problem has been addressed using a varicty
of technic es. Much of the initial rescarch was related to design of low level robot
controller  where the control objective was to move the robot autonomously along a
preplanned trajectory [117]. Such controllers require the robot to be supplied with
precise p. 1 information (or a trajectory). Furthermore, the system requires accurate
feedback information of the robot position for the controller to estimate its tracking
error. E  mation, or acquiring feedback position information, or precise robot lo-
calization using odometry data, is a challenging task [118, 8]. Recently rescarch has
focused « developing more reactive parking techniques using exteroceptive sensors
such as computer vision [28, 29, 30, 31, 32, 26, 27]. These vision based methods use
image plane measurements to align the robot with a given :ference configuration.
The reference configuration is either defined in a world coordinate system relative to
the parking station or in an image plane. The robot uses feedback control strategies
to achier the control objectives. Some key requirements of an automated parking
system will be: (1) the robot must be able to begin its parking behaviour {rom any
position ven its sensors have the capability to recognize the parking station; (2) the
parking system must be able to park the robot in a unique pose while providing the
required vel of accuracy for the application; (3) the robot  ust maintain the park-
ing stati 1 in its field of view during the whole parking process; and (4) the parking

system should be able to overcome the nonholonomic nature of the robot.
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5.1.1 lated Work

The problem of vision based parking belongs to the general rescarch arca of nonholo-
nomic visual servoing [23, 24]. In visual servoing the feedback control loop is driven
using the response measurements observed using a camera. The feedback system is
based on ither using direct image-based (IBVS) measurcments or position based
visual se Hing (PBVS) [23]. In PBVS, image measurements arc used to caleulate
the posit n crror of the robot posc in a global coordinate system. This method
requires transformation of image measurements calculated in pixel units into pose
estimation  distance units. The estimated pose error will be used in the feedback
control law. Generally, pose estimation is a three-dimensional image imterpretation
scheme, errors accumulated in the estimation processes can lead to erroncous
pose esti s (23], In IBVS the error is measured in image plane (in pixels) and is
directly used in the error driven control law. Thus, in visual servoing IBVS is pre-
ferred over PBVS since it avoids any errors that can be introduced during the position
estimatic . An inherent drawback in IBVS is that all image features are required to
be maintained within the field of view of the camera throughout the control process
unless there is redundancy built into the feature set.

Diffe tially driven mobile robots have nonholonomic coustraints [24, 54]; i.c.
a robot cannot move sideways. Further, the limited field of view in vision systemns
generally imposes an additional constraint on the control law, Thus, image based
visual servoing of mobile robots is a challenging task under the limited 1 mber of
degrees of freedom (usually two) and the limited field-of-view available in the vision
systeni. nonholonomic robots visual servoing can be ap; ed for path following,
or it can be used to align the robot with a given pose (parking). Continuous ground

curves (a line on the ground or other complex paths like roads) are the most commonly
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selected feature type in robot path following (25, 55, 56] where robots use them in
the environment to continuously align themselves. In parking techniques. the robot is
aligned with a fixed set of features, so that the robot will satisfy a predefined control
objective [28, 31]. Robot parking controllers generally belong to either conventional
continuous controllers or hybrid controllers.

With >nventional controllers [26. 27] the robot is aligned to a set of features
scen by the camera using smooth control of robot velocity. The typical issues in the
continuous controllers include: the convergence of the solutions when starting from
an arbitrary robot pose [26], and inability to obtain a wnigue final position [27].
These problems arise due to the nonholonomic nature of the Hbots and the limited
field of view of the camera. Some improvements have been reported in vision-based
parking controllers using intelligent control techniques such as fuzzy logic and neural
networks [33, 34, 35. 36]. Generally, fuzzy logic and neural network based controllers
perform  tisfactorily, but they do not guarantce convergence. Also, each time there
is achar  in the appearance of the parking station, the controller has to be manually
trained to accommodate the new appearance.

In ¢ :rast, hybrid controllers allow the robot velocities to be controlled in a
discontinuous manner. In hybrid controllers, a finite state machine is used to define
a set of ates to reflect mul e operational contexts in a robotic task. .ach ate
can be eqr Hped with its own control algorithm. Hence, multiple switching control
algorithn ive rise to discontinuous control of the robot velocities. Most vision based
hybrid controllers [28, 29, 30, 31, 32] use this property to overcome nonholonomic
and ficld of view constraints [54] of the system. Therefore in this rescarch hybrid
control rategy was chosen in the design of a new parking controller. Lyapunov
te © 'q s [L., have been widely adopted in hyl 1 closed-loop parking controllers

[28, 29, 30, 32]. Limitations of the past hybrid methods include: the rapid switchi
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behaviour a und the parking position (zeno behaviour) [28, 31]; partial utilization
of the available field of view of the camera [32, 31]; and not explicitly addressing
the field ¢ view constraints of the camecra [29, 30]. In other related works on vision
based robot parking. [119] presents an optical flow based robot docking controller
while [12  presents a controller based on the potential fields. The method presented
in [119] is only capable of parking perpendicular to a vertical surface and therefore

has limited applicability in precision parking applications.

5.1.2 Motivation

With an  3VS based control law, that is dependent only on the image-plane mea-
surement  (in pixels), the user will have the ability to provide image-plane templates
(reference i ages) for achieving required parking behavior. As the control strategy
employs a finite state automaton, the systemn can be extended to facilitate niany other
servoing tasks such as behavior based integrated navigation systems [17].

In order to perform efficient image based parking. a novel vision based, locally
convergc  control system is developed. The hybrid control solution successfully
overconies the nonholonomic and field of view constraints of the robot and camera,
respectively. Additionally, the controller maximally utilizes the available field of view
of the cam . Experimental results demonstrate the convergence of the robot to the
parking position without any oscillations. Further, the parking controller shows a
high acc acy in the parking position as demonstrated by the repeatability tests.

Secti 15.2 provides the preliminaries of the parking system and image-plane mea-
surements. In section 5.3 the proposed control strategy is presented.  Section 5.4
analyzes 1] convergence properties of the proposed system. Section 5.5 provides the

details of the experimental in ementation and the 1l
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5.2 Visual Servoing System

5.2.1 Parking Station

The objective of the parking system is to move the robot, so that the current view
of the parking station accurately aligns with the reference parking station. An iinage
pattern h  ng three distinct features is used as the parking station. A minimum of
three features is required to define a unique robot parking position in {ront of the
parking station. As shown in Fig. 5.1(a) the three features are horizontally aligned
and equal spaced. The reference nmage taken at the parking station has features
al positions [ uf, uj, uj). measured from the left edge of the image. and A" is the
overall wi h of the parking station in image plane. A centered configuration is
chosen to allow for better utilization of the field of view of the camera. Fig. 5.1(h)
shows a typical parking station configuration as seen by the camera. The {eatures are
extracted using a series of image processing techniques and the error measurements
are evalu: by comparing the features against the reference image. It should be
noted that A, f; and f; are scalar quantitics and are alwayvs positive. The values
of ¢;’s ha a positive sign in the direction shown in Fig. 5.1(b). £ is defined as
the difference between the current overall width of the parking station (A) and the

required (reference) width (A”):
Ei=A-A".
Parking condition The robot is considered ‘parked’ if the following condition holds

true.

(JE4| <64 AND |eg| <0, AND |eq| < 0, AND |ey| < 6y) (5.1)
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Figure 5.2: Differentially driven robot mo 1.

wy = Aptan(y — fGa) + ‘21
up = Aptan(y) + % (5.3)
ug = Aptan(vy + 5;) + %
where is the focal length, p is the number of pixels per meter and W is the width
of the imi 2 in pixels. Also v, 5, and J5 are as defined in Fig. 5.9. The principal

point of the  mera is assiuned to be at the rotational axis of the robot and the optical

axis of the camera is assumed to be parallel to the heading velocity of the robot.

573 “verall Vision- :d Control System

As shown | Fig. 5.3, the overall objective of the vision based control syst 1 is to
park the robot at a desired position in front of the parking station. Fig. 5.4 shows
the overall block diagram of the closed loop control system. The hybrid controller
uses the imi : plane measurements resulting from image processing to produce the
control c¢ mand of the robot (hcading and rotational velocities). The markers on
the parkit station are identified and segmented using a set of nage processing an

analyzing steps. Then, the horizontal centroid position of each marker is measured
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from the gmented blobs. Finally, the hybrid controller uses the measured

plane values to generate the final robot commands.

4V
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1
)
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Figure 5.4: Overall block diagram ol the control system.

5.2.4 ssumptio

image

The following assumptions are used to enable the robot to observe the parking station

in a compatible manner with the camera model used in the definition of the controller.
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It is impor 1t to note that these assumptions are general requirements. As such,
apart from approximate alignments, no additional effort is taken to satisfy 1em in

the imple .ation described in Section 5.5.

1. Features are at approximnately the same height as the horizontal optic:  axis of

the ca era.
2. The rt ot operates on a {lat floor.

3. The c¢i 1era is fixed and the optical axis is approximately parallel to the heading

velocity.

4. At = start, the parking station is within the field-of-view of the camera.

5.3 Control Strategy

The control strategy proposed in this section is mainly motivated by behavior-based
robotics [17]. Behavior based robotics provide many biologically inspired intelligent
control techniques for mobile robot navigation. Following the principles of behavior-
based robotics, the proposed method provides close coupling between scusory infor-
mation and motor control using simple mathematical relationships. Speci callv, a
finite sta machine (FSM) is used at the heart of the parking control system to
provide t : context (state) of operation (rclationship between sensory information
and motor  eed) based on the current sensory information and the progress of the
parking process. Thus, a state in the discrete part of the hybrid system ence suli s

a particular continuous control scenario.
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5.3.1 inite State Machine

The FSM proposed for the parking system is based on the intuitive forward and
reverse 1 ion that is observed during regular parking opcrations. The FSM has four
states and five transitions. Three states represent active controllers, while the other
state represents the termination state. The FSM can be mathematically represented

as:

FSM (X, ¥ .a,5,X0), (5.1)

where X denotes the state : ¥ denotes the finite cevent set; a : ¥ x X — X
denotes the state transition functions; rg € X denotes the initial state; and .X,,, € X
denotes t : terminating (or marked) states set. Fig. 5.5 shows the FSM designed to

solve the parking problem and the complete FSM can be represented as follows.

X = {S, F. R, S,

[\
—~—
m
~

1...5)
a = {(S,51) = F, (S,e2) = R, (Feq) = S,

(R,Es) — F, (R 63) — Sp}

= {a;]i=1...5}
Zo {St}
Xn = {S,}.

When the robot controller enters a particular state it will first execute the initial-
ization functions. During initialization the controller will init  ze the data structure

related to the current state 1d will make any required additional measurements.
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Stop, Sp

Figure 5.5: Proposed finite state machine

Following initialization, the robot will execute the core functionality of the state in a
loop structure which is governed by the motor control algorithm. Once the exit con-
ditions - ted to the state arc satisfied, it will terminate the state by first executing
the term on functions, and then flagging the transition event, ¢,. Termination
functions usually include the memory cleanup operations and measurement updates

to facilitate the proper operation ol the next state.

5.3.2 Details of the States

This scction provides the operational details of each state. It should be noted that

all k;s are suitably chosen control parameters.

Start (S;) State

In the start state, the robot will be oriented so that the feature in the center (£Ps) of
the parking station aligns with the center feature in the reference image (Py). Then
it will switch the control of the robot to either F or R state deper ™ on the relative

size of the parking station in the current image.
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Algorithm 5 starty)
1: init: none

2: durir
3: while |¢,
4 v =0;
5.  w = —kjey; // proportional controller
6. end while
7. if E4 <0 then
8
9

> 4, do

exit event = (;
: goto exit:

10: else
11:  exit event = ¢
12:  golo exit:

13: end

14: exit:

150 f1 = uy — uy;

16: fo = uy — uo;

Forward (F') State

When the controller is in this state, depending on the sign of the value (f; — f3). it
will align a side feature a distance of ¢ pixels from the edge of the image while moving
towards the parking station (Fig. 5.6). The distance ¢ (> 0) defines a virtnal edge of
the image and it will ensure that the features of the parking station always remain
within the ficld of view of the camera. The objective of the angular velocity control
law is tc Hree the error. e, to zero, as shown in Fig. 5.6. The robot will exit this state
when the v ~ontrolled side feature is less than ¢ pixels away from the other edge.

It is  ways desirable to have a larger turn of the robot ([ast transient responsc)
when the robot starts from a position away from the y-axis. However, when the value
of ¢ is reli  vely high the turn angle of the robot is constrained to a lower value.
Proof of this property is shown in section 5.4. Under those circumstances the value
of ¢ nec ) be lower when the robot will have the ability to turn in a large angle

while o ntaining the parking station in the field of view « the image. As shown
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Algorithm 6 rorward()

1: init: nc

2. durit

3. if fy then

14 // Fig. 5(a)

5 wl eW —u;>cdo

6 V= U,

7 w = kye; // proportional controller
8  end while

9: else

10: // Fig. 5(b)
11:  while u; > c¢do

12: U= U
13: w = —hye; // proportional controller
14:  end while

15: end if

16: exit ev bt = ¢y
17: exit: none

Actual images

w w
— —_— o« _
c. re Ll
e | —
| ® 0 © @ ® o
7] 1 113 | |
| l { ] 1
1
Jy</2 R
e=uj-c¢ e=W-uy-c
(a) (b)

Figure 5.6: The control scenarios in forward state. The corresponding control error
is labeled as ¢. (a) If the robot starts with 2 > 0. (b) If the robot starts with @ < 0.

(the glo 1 x-y reference frame is defined in Fig. 5.7)
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in Fig. 5 e robot will take path (3 when the value of ¢ is lower and ()5 when ¢
is higher. Clearly it is advantageous to have a path similar to Q3 to obtain faster
convergence. However, faster turning (convergence) leads to overshoot and oscillation
near the y-axis as shown in path Q) of Fig. 5.7. which can be avoided by using a larger
¢ value to obtain a path similar to Q. In order to preserve both these properties the

paraimeter ¢ is adaptively changed as shown in Fig. 5.8.

AY

1
Desired 1
Robot — ! ,
Pose

Path, Q) —

tlow ¢)

Path, Q:;

> (low ¢)

Path, QZ -
(high ' — Path, Q
» Qs
{high ¢}
Docking

station |
\ ] X

Figure 5.7: The eflect of oversteering in the forward state on the final position. (0.
and Q3 are desirable robot paths while (&, and (4 arc undesirable.

When the robot is on the y-axis with the center feature aligned. f,— f, = 0. When

the robot : 1rting position moves away from the y-axis |f) — f2| will increase. This
observation can be used to adaptively change the value of ¢. In order to calculate
the value of ¢ at the start of each forward motion, the proportional relationship

fiz k)i =[] is defined. In Fig. 5.8 the maximum for fi, can be observed by placing

the robot . cxtrenie angles that  » possible in a given scenario. The maximum for ¢,
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Cmazs 18 set ing the maximum allowed value of (W — A™)/2. Further, the ¢y, value
can be tuned by trial runs of the forward move so that the robot efficiently converges
to the parking position without any overshoot from starting positions that are closer
to the y-axis. The minimum for ¢, ¢,,;, has to be adjusted so  at the robot does not

bump into the parking station from starting positions awayv from the y-axis.

C
ixels
(pixels) .
-4 .
—— 4 «— Allowablc maximum for ¢
C”ILl\’
le"
L >
0 Observed )
Maximum '/12
(pixels)

Figure 5.8: The relationship between ¢ and |f12|. The allowable maximum for ¢ is
defined ning that the parking station appcars symmetric in the images when the
robot is e exact parkin - condition (6,  0).

Reverse (R?) State

During  : reverse state the robot I move away from the parking station while
aligning the center feature (Py) with the corresponding feature in the reference frame
(P5). The reverse state is essential to move the parking station sufficiently inside
the ima  to facilitate the next forward move. Additionally, while the robot is in the
reverse st: >, it will monitor the parking condition. The robot will exit the reverse
state w1 the robot is parked or when the overall size of the parking configuration

is less than a predefined value, A,,;,.
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Algorrth rerse ()

1: init: none

2. during:

3: while (NOT A < A,,;,) OR parked do
4 U= -

5  w = —kyes; // proportional controller
6: end while

7. if A < A, AND ( NOT parked) then
8  exil event = ¢5;

9: else ! parked then

10:  exit event = «y;

11: end .

Stop (S,) State

The robot will come to a halt after a successful parking at the stop state.

Algorit] 3 stop()
init:

durir one
exit:

v=20

=0

PN S

5.4 . nalysis of Convergence

In this s tion the convergence properties of the controller are evaluated. The proof
of convergence is provided in two stages. In the first step it is shown that the robot
converges to a region (R in Fig. 5.9) about the final position. At the beginning of
this process, if the robot starts outside the region, it will move into the region and if
it starts  ithin the region it will remain in the same region. In the sccond stage it
is shown that through the modulation of the controller parameter ¢, the region R, is

minimiz  until the final thresholds are satishied.
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5.4.1 Proof of convergence

This secti . establishes the convergence of the controller. Before analvzing the con-
vergence of 2 controller, the general operational characteristics and some auxiliary
propertics are presented. Depending on the initial error in overall size (£4) of the
parking station, the robot either starts moving forward or reverses. Initially, the start
state will  ign the robot with the center feature (¢o = 0) in the arking station. Then
during tk  exit from the start state it will measure the f; and f; values, which are
then used to adjust the ¢ value. If 4 < 0 the robot will start to move forward. with
the value f ¢ calculated at the exit of the start state. When the robot exits from
the forward state it will switch to the start state and align the center feature. After
nmeasuring the new values of f) and f, and calculating the new ¢, the robot will switch
into reverse state (£,4 > 0). During the reverse motion the controller will attenmipt to
keep the r feature of the parking station properly aligned (e, = 0) while traveling
in a radial straight line. When the parking station appears to be sufhiciently small
the robot will switch to the forward state. At the forward st: » the robot will move
forward with the latest ¢ value. Additionally, during the reverse motion the robot will
evaluate the parking condition. This cycle would continue until the robot converges
to the defined position.

As described in section 5.3.2, if the robot starts to move forward {rom a starting
position very close to y-axis with a low ¢ value, it would steer into the other side of
y-axis. In order to eapture this behavior of the robot with a low ¢ value, the following

definition is introduced.

Definition (Region R,, see Fig. 5.9) If the robot (with a fixed ¢ (< ¢pax) value)
starts to move fo ard from a point in the region R,. it will terminate the forward

move at a point inside the region R, and the subsequent reverse motion will also
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terminate at a point inside the region R,. The region R, is defined by the value df.

While 1c robot is maneuvering through the forward and reverse cycles, it should
stop at the extremne ends to switch between states. The [ollowing two propertices
establish the fact that conditions set in the forward and reverse states guarantee the

state switches.

Property 1 The robot would not reverse beyond the eurve C). Let r be the straight
linc istance from the center feature (£)) to the camera when the center feature
is properly aligned (e, = 0). Then assuming the pinhole camera model, at any

givi  position

wh » A" and r" are the reference values of A and r respectively.  Also, the
apparent size of the parking station is always greater than a predelined minimum

‘4min-

‘4 > Allli”

also when A = A,,;,. r dns its maximum value, r,,,.. Thus,

[
()
~—

Tmar = rwhich definesC. (

Proper: The robot would not travel over the boundary Cy as the apparent size
of the parking station would become larger than allowed in a given forward

move. The Same arguments as in the case of Property  can be used with the
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fact A < W — 2¢ to show that r has a bounded minim n, r,,;, which defines

Cs.

The 1 ion of attraction of the controller is defined by four boundaries, C'y, C'y, Cy
and Cy4. Property 1 and 2 establish boundaries C and C;. The parking station will
appear to 1 smaller at the extreme values of §. Therefore, the boundaries €5 and
Cy (symmetrically placed about the y-axis) are defined by the ability of the vision

system to robustly identify the parking station.

[0.yp-n2]

Desired
robot posc

’

+——> x

Figure 5.9: Typical robot position and oscillation envelope about the y-axis.

Theore 5.4.1 When the robot is outside the region R, (in Fig. 5.9). al the end of
every forward move, the robol comes onto a radial line representing a lower ¢ value

than at e beginning of the forward move. ©  |0(k)| > |#(k + 1)]
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Proof Let’s assume that the robot starts from the left side of the y-axis. At the
beginning of the start motion the center feature (/%), is aligned with the fe: e Py

Also by definition of the controller, the robot will move forward only if
AT > A

Thus,
W —-A W — A"
> .
2 2
———

=Cmax

Using the fact that by the definition cpax > ¢ at all times,

W —2c> A (5.6)

A

In thisc 2 f; > fo and A= fy + fa, therefore f, < 4, which can be also written as,

fa= i;- + ¢ where ¢ > 0. From Fig. 5.1,

4%
Uy = = + f2
Using f; 4+
W+ A
u; - .
3 5 S
A=2uy; W 2%, (5.7)

Using (¢ ) and (5.7) it can be shown that

e=W —uy—c>c¢.

From tt definition of the forward state, when the robot starts from the left hand
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side of th  y-axis,

w = /\'26.

Thus, with a positive ky, al the start of the forward move w > 0, i.e. the robot
always moves to the right side of line L; in Fig. 5.9. To complete the proof one has
to show that when the robot starts moving forward from the right side of line Ly, it
never moves over the line to the other side before it stops moving forward. While the
control is in the forward state, the most right feature Pj is maintained at a distance

¢ from the :ht edge.

ug=W —¢

%4
Atan(y + (1) + 5 = W —c

7 e

2p)\_p_)\

v + J; = arctan ( ) = constant. (5.8)

Thus, during the forward motion the value of v+ 7y is required to be maintained at
a constant value. When the controller attains the desired value for uy (i.e. W —¢), v
reaches its maximun value. As the robot approaches the parking station g; increases
and thus v decreases to maintain the condition specified in (5.8).

If the robot is to cross the line L, it should have a negative v value and the robot
should be able to attain this value early in the forward travel. However, from (5.8)

and the preceding explanation this is clearly not true. Ilence, at the end of cach

forward move the robot decreases the value of 6. |}

As ¢ wn in Theorem 4.1, when the robot reaches the end of the forward move
it will be i a position with a lower 8 value than at the end of the previous forward

nove. / e end of the forward travel, the robot will switch back to start state, align
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the center feature, and measure the values f; and f5 in order to calculate ¢ ing (as

defined in section 5.3.2),

¢ = _k'sk|f1 - f?l + Crmax. (59)

Using the pinhole camera model, (5.9) can be expanded to

c = —kskA

tan(/3) — tan(2)| + cinax-

At the e [ of the forward motion the two side features are approximately at the
same distance from the edges of the image. Hence it can be assumed that the curve %y
is an app nate semicircle with the middle feature as its center and with a radius
of rimin. When the center feature is aligned (e3 = 0), it can be casily shown that

, 2d? sin(#) cos(f)
|tan(3) — tan(5y)| = y (5.10)

d?sin*(0) — r?

min

where d is the separation of the features in the parking station in meters and r,;,

is the minimum approach distance as shown in Fig. 5.9.

The ; ical behavior of the |tan(3,) — tan(f,)| around 0 < 6 < 60° is shown in

Fig. 510 ) d = 0.12m and r,;, = 0.2m. As it is shown in Fig. 5.10(a), function

(3]

tan(;) —t 1(J2)] behaves as a monotonically increasing function until about 45°.

Additionally, Fig. 5.10(b) shows the variation of the maximum of the |tan(3;) —
tan(f)| v h respect to d and r,;, and it can be seen that for all practical values of
d and 7., the maximum of § has a minimum of around 45°. Usually the region R,
is confined to a maximum @ of approximately 15°. Hence, it can be concluded that
the function behaves as a monotonically increasing function v hin practical limits d

and 7,
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Figure 5.10: Properties of | tan(3;) —tan(3,)]. (a) The behavior of | tan(/3) — tan(/3,)|
with d = 0.12m and rp,;, = 0.2m and (b) the plot of the maximum of ¢ for the practical
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Using (5.10), (5.9) can be rewritten in the form

2d? sin(6) cos(6)
d?sin?(#) — r?

min

Cc = _ksk/\ + Conax- (511>

Using e fact that the first term in the right hand side of (5.11) is a monotonically

increasing function in all practical limits, it can be shown that

2d?% sin(#) cos(0)
d?sin®(8) — r2

min

lim & kA =0
0—0

Therefore,
lim ¢ = Cyax-
0—0

Theorem 5.4.2 As the value of ¢ increases from its initial value to the maximum,

the area of the region Ry, will shrink to zero.

lim dfd =0

C—Cinar

Proof Let’s assume that the robot starts from the right side of the y-axis. From
Fig. 5.8,

Cmax —C = ks.fl’z-

Also from the error calculation in the control law (Fig. 5.6),

c = kl(ul - C).

e = —k(Cmax — 1) — kikof12 (5.12)

The con )l objective at the forward move is to align the left feature (F), to a position

of distance ¢ from the edge (i.e. u;  ¢). ..us, when the control objective is satished

123



(5.12) will become

e = —F(chax — ¢) — Rk f12. (5.13)

Also from the pin hole camera model,

fi = [o = Atan(3) — tan(ds)).

fl‘.! = ]\/\' Lﬂll(ﬁ]) - tan([32)|

In the region R, (i.e. close to y axis), the difference in the values of /3 and ;35 will
become very small. Therefore, for all practical purposes fi, can be assumed to be

zero when the robot is in the region R;. Thus, (5.13) will become

e~ —k(Cipax — €)- (5.14)

At the start of the forward motion the steering angle is proportional to the the error,
e. Thus, the steering angle of the robot in the forward motion is proportional to
¢ — Cyax. From the definition of the region R,, the area of the region R, (df) is

proporti to the steering angle. Thus,

df x (Cax — )

and

lim df = 0.

C—Cmax

Finally, using the Theorem 5.4.1 and the definition of 12, it can be shown that the

robot will converge into the re “on R; and in Theorem 5.4.2 it 1s shown that the r "on
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R, shrinks ( decreasing df ) with the increasing ¢ value. Hence, the robot converges
to the fir  parking position if it starts with the parking station in the ficld of view
of the camera. As previously discussed in this section the robot looses its ability to
turn towards the y-axis when ¢ is set to ¢ax. Therefore in practice it is necessary to
set the maximum value of the ¢ just below the theoretical maximum of ¢,,,,. This
will facilitate a small steering angle when the robot is starting from a position close
to the y-axis. When df is sufficiently small, during the reverse motion the robot will

find its parking position, given sufficiently large values for du; and dA.

5.5 E periments and Results

The pro; sed method was implemented using a Pioneer 3AT mobile robot. Image
processing routines and the finite state machine were implemented in the onboard
computer (Pentium II1, 860MIlz). The parking system uses a Basler A102fc camera
that is f to the robot frame. The camera acquires images at approximately 19

frames per cond.

5.5.1 Image processing

Iinages captured from the onboard camera are used to detect the parking station.
Intel OpenCV Image processing libraries are used for iimage processing and analysis!.
The acq red images are thresholded to isolate the features of the parking station
that appear darker than the background. Then all the small spurious image blobs
are filtered out, using a threshold value based on the area of each blob. The center
area of the remaining features (of the parking station) is calculated and used in the

parking controller as the feature position in the image planc.

Thttp:  vww.intel.com/technology /computing/opencv/index.htm
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5.5.2 ling

The desired accuracies and parking times can be achieved through the tuning of the
system para oters. The tunable systein parameters are listed in Table 5.1 along with

their sele:  on criteria.

5.5.3 esults

Three experiments were carried out to validate the parking controller. and an addi-
tional set ol arking tasks was carried out to quantify the repcatability of the parking
process. 1 the first experiment (I) the robot parks from a position clos  to the
y-axis. In t second (II) and third (III) experiments the robot starts parking {from
positions on the positive and negative sides of the x-axis, respectively. Table 5.2 lists
the valuc  of the parameters used to obtain the results described below. Table 5.3
provides the summary of the experiments and Fig. 5.12, 5.13 and 5.14 show the re-
sults of 2 experiments I, II and III, respectively. The robot path in cach of the
experitnents was obtained using gyro corrected odometry information. In Fig 5.12 it
is clear t .t when the robot starts from closer to y-axis it parks by taking only a one
forward re rse cycle. When the robot starts at positions away {rom the y-axis it
only tak a few forward reverse cycles to park. as shown in Fig. 5.13 and Fig. 5.14.
Additionally, Fig. 5.15 shows the cffect of the adaptation of the value of ¢ on the
parking process. From Fig. 5.15(b) it is apparent that although the robot success-
fully completes the parking, it takes a higher number of cycles (thus, a longer time)
to park. When the value of ¢ is very low due to oscillations, ¢ robot takes a much
longer time to park, as shown in Fig. 5.15(c).

From the heading velocity curve (V) in each plot (d) of Fig 5.12, 5.13 and 5.14,

it is apparent that reverse speed drops to a lower value when the robot gets closer
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Table 5.1: Sygt~~ »arameters and their selection eriteria.

Par ieter

[k (start/reverse) kg(iorwara))

Cmin

(‘771 ar

Amin

Description

Gain values of the proportional controllers
for rotational velocity control. Should be
adjusted so that the robot has a fast ve-
locity response without oscillations.

Minimuin allowable distance to the virtual
edge from real image edge. Should be ad-

justed so that the robot does not bump

into the parking station.

Maximum allowable distance to the vir-
tual edge from real iinage cdge and it has
to be less than the allowable maximum of
W=4" " The value should be adjusted just
below the allowable maximum so that the
robot has enough steering angle to get on
the y-axis when it is starting {romn a posi-
tion closer to the y-axis (also see the proof
of Theorem 5.4.2)

Defines the accuracy of the final parking
position. Lower values define a tighter
parking condition.

Forward and reverse hcading velocities.
Should be adjusted to the maximum val-
ues based on the frequency of the image
acquisition and processing cycle.

The minimum value of A that defines the
outer boundary of the region of attraction.
Should be selected so that when the park-
ing station appears at A,;,, the camera
should be able to capture enough infor-
mation to robustly identify it.
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Figure 5.13: Results of the Experiment II. (a) The x-y trajectory of the robot during
parking. (b)The trajectory of the feature positions during parking. (c¢) The initial
and final images acquired during the parking routine. (d, ¢)The commanded and
actual heading and rotational velocities of the robot during parking,.
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Figure 5.14: Results of the Experiment I1L. {a) The x-y trajectory of the v ot during
parking. (b)The trajectory of the feature positions during arking. (c) The initial
and final i1 ges acquired during the parking routine. (d, ¢)The commanded and
actual heac g and rotational velocities of the robot during parking.
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Figure 5. : Effects of the c-adaptation on the path of the robot. (a) Successful

parking with c-adaptation. In this case the allowed maximum of the ¢ value is 478
and ¢ var s from a ¢, of 275 to a e of 470, (b) Parking with a higher static
value of ¢ ) Parking attempt with a low static value of ¢.

to the potential parking position. The low robot velocity around the parking arca is

necessary to decrease the probability of missing the detection of the parking condition.

Thisisa¢ nificant design consideration when low frame rate image processing is used.

In this implementation a discrete velocity change is selected when |E4] < 25 and fi,
is less than a predefined threshold. Another possibility is to change the velocity

smoothly ased on the value of E,4 as opposed to a discrete change.
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Figure 5. : Final parking positions for 20 different arbitrary starting positions. Note:

Some rea ngs may overlap cach other.

Fig. 5.16 shows the final parkit  positions for 20 different arbitrary starting posi-

tions with 8, = 8,4 = 1.5 pixels. The final robot position was obtained using a marker
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attached to the robot frame and by scribing the position of the robot alter cach park-
ing task. 7 e robot achieves less than 1 cin accuracy in the y-direction, and 8 ¢m
accuracy 1 the z-direction. It should be noted that a simple thresholding method
followed a blob analysis is used to detect the rectangular features in the parking
station.  1e lower precision in the y-direction is mainly attributed to the number
ol features in the parking station. Accuracy in the y-dircction can be improved by
using a parking station with more [eatures. Although additic of more [eatures im-
proves the accuracy in both axis, the improvements will be much more significant in
y-direction. Further, the repeatability of the nnage-plane measurements under low

guality {luorescent lighting affects the accuracies in both & and y-divections.

5.6 Conclusion

This chapter described a novel hybrid controller for parking robots autonomously
against a set of features scen by a regular camera. The control law is based on image
based vi servoing. Thus the parking strategy does not require any trajectory gen-
crations or odometry robot position feedback information to achieve accurate parking
conditions. A comprchensive analysis is provided to prove the guaranteed convergence
of the hy  rid controller. Experimental results are shown to validate the system per-
formance. The field-of-view constraints are adjusted to a ** e robust and faster
convergence. In comparison to other reported parking systems [28, 317 the proposed
method requires fewer number of iterations to achieve the parking condition. As an
example. the Lyapunov based hybrid control strategy in  [28] requires a significant
number of erations cven for the simple case, similar to Experiment [, whereas the
proposed method has demonstrated the same parking process using only one iteration.

Similar  oblems can be observed in the visual servoing basced technique presented in
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[31]. Con wively, even in the extreme cases when the robot starts away from the
y-axis (Experiments IT and III), the proposed system has the ability to converge with
fewer iterations (in this case four). In addition to these performance improvements,
proposed method has demonstrated the repeatability and accuracy of the me  od and
has proven the robustness of the systein. The proposed method has a demonstrated

repeatability of +£4 cin and £0.5 e in the 2 and y directions, respectively.
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Chapter 6

Conclusion

The main goals of this thesis were to investigate the vision and laser range finder
based applications in SLAM, moving object detection and precise visunal servoing in
mobile 1 otics. These three goals were achieved by devising novel methods, using the
importar characteristics of the available methods. This chapter provides . overall
conclusion of the topics and a summary of the key contributions of this thesis followed

by a list of ossible future research dircctions.

6.1 )iscussion

The laser and vision sensors can be fused together to exploit the advantages of each
sensor v le overcoming the disadvantages of the other sensor. The multi sensor
SLANM application discussed in this thesis demonstrates that computer vision and
laser ray > scanners can be used to accurately detect and ecasure visually salient
landinar  in the environment. Further, such measurements can be readily integrated
into the EKF based SLAM method to build maps of typical indoor environments.

From tl1 results it is cvident that using a calibrated laser-vision sensor, a higher
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number of high quality landmarks can be detected. The major advantage of e laser-
cameran .hod is that landmarks can be detected and accurately located during cach
iteration. In contrast, bearing only methods require multiple frames of sensor data
to initial : a landmark with acceptable accuracy, and to some extent stereo vision
suffers from the same problem, in addition to its high computational complexity.
Additionally, the robustness of detection in the proposed sensor unit can be further
unproved by incorporating laser based landmark detection methods in addition to
vision be  d landmark detection.

Gene . moving object detection in mobile robotics can support both safe nav-
igation and robust mapping in the presence of moving objects in the cenviromment.
In this thesis a general moving object detection algorithin was presented. The algo-
rithin us  some specific propertics of the laser scan data corresponding to the moving
objects to successfully detect them. The proposed algorithm can be easily used to
detect multiple moving objects from a moving platform in a dynamic environment.
Additionally, in comparison to other methods, the proposed algorithm has the ability
to recov:  the complete moving object when the object is moving at a low relative
velocity 1d when the object is moving sideways with respect to the scan direction.
Through the tuning of the paramecters, the detectable minimnm relative velocity can
be adjusted to suit the application. The results demonstrate that the proposed algo-
rithm can be used to successfully track many different tvpes of moving objects. In
regular SLAM implementations the environment (or the landmarks) is assumed to he
stationary. Therefore, apart from the direet use of moving object detection and track-
ing, the proposed method can be used as a data preprocessing step in regular SLANI
applications to remove the data related to the moving objects from the sensor data.
This ty] of preprocessing will aid in improving the stability of the SLAN filters by

preventi ; any possible moving landmarks [rom corrupting the data structures.

)
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Visual s s0ing a nonholonomic mobile robot is a challenging task when the cam-
era ficld of view constraints is considered. A novel hybrid controller for parking mobile
robots is proposed i this thesis for autonomously parking the robot against a set of
features scen by a regular camera. The control law is based on image based visual
servoing. Thus the parking strategy does not require any trajectory generations or
odometry r ot position feedback information to achieve accurate parking conditions.
A compr ensive analysis is provided to prove the guaranteed convergence of the hy-
brid controller. Experimental results are shown to validate the system performance.
The feld-of-view constraints are adjusted to achieve robust and faster convergence.
In comp. son to other reported parking systems [28, 31] the proposed method re-
quires fewer number of iterations to achieve the parking condition. As an example,
the Lyapunov based hybrid control strategy in [28] requires a significant number of
iterations even for the siinple case, similar to Experiment I, whereas the proposcd
method has demonstrated the same parking process using only one iteration. Similar
problems can be observed in the visual servoing based technique presented in [31).
Even when the robot starts at extreme poses, the proposed system has the ability to
converge w1 fewer number of iterations. In addition to these performance nprove-
ments, t s thesis has demonstrated the repeatability and accuracy of the method

and has proven the robustness of the system.

6.2 >onclusion

The key contributions of this thesis are:

1. Mutltisensor landmark localization and detection: The landmarks are first de-
tected and then localized with respect to the robot framne by using a single

camera and a laser range finder. The novelty of the proposed method arises
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from the fact that each step of the process - detection and localization - 1s ac-
complished using the most suitable sensor whereas other similar methods [1]

used sensor {usion techniques to [use similar types of observations.

2. Moving object detection: Moving object detection algorithm uses pre-registered

laser data from laser range finder to extract the measurements that correspc d
to 1 wing objects. In contrast to other similar work, the proposed method
systematically addresses all possible cases of moving object by how they appear
inl -rdata. Further minimun detectable relative velocity can be tuned such
that the algorithm is flexible enough to detect objects that are moving at a wide

range of velocities.

. Robot parking using visual servoing: A couvergent novel parking algorithm
was developed and implemented using a single camera fixed to robot frame.
The parking algorithm uses a hybrid controller to overcome nonholonomic con-
straints of the robot and limited ficld of view constraints of the camera. The key
properties of the proposed controller are: (1) the maximum usc of the available
fiel of view, (2) avoids the zeno behaviour, (3) global convergent regardless of

the 11 ial pose of the robot.

'ublications Resulting from the PhD Program

6.3.1 . urnal Papers

. Di 1 Amarasinghe, George K. I. Mann, and Raymond G. Gosine. Landmark
Detection and Localization for Mobile Robot Applications; A Multisensor Ap-

proa . ROBOTICA. ~ 108 [Submitted for review].

138



2. Dilan Amarasinghe, George K. I. Mann, and Raymond G. Gosine. Vision based
hyb 1 control scheme for autonomous parking of a mobile robot. Advanced

Robotics, 21(8):905 930, May 2007.

6.3.2 Refereed Conference Papers

1. Dy1 nic object identification by a moving robot using wser data. In Interna-
tional Federation of Automatic Control World Congress (IFAC WC 2008), July

2008.

2. Integrated laser-camera sensor for the detection and localization ol landmarks
for botic applications. In International Conference on Robotics and Automa-

tior 'CRA2008), May 2008.

3. Moving object detection in indoor environments using laser range data. In
IEEE/RS.J International Conference on Intelligent Robots and Systems (IROS2006).

pages 802 807, October 2006.

4. Vit n-based hybrid control strategy for autonomous do .ng of a mol: - robot.
In [EEE Conference on Control Applications (CCA2005), pages 1600 1605,

August 2005.

6.4 Future Work

During this research the following areas were identified to have possible future rescarch

potential:

e In multisensor mappi _ and localization the effectiveness of the sensor(s) de-

pends on the characteristics of the environment. For example, if the environ-
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ment ontains a significant number of direction invariant features in the plan
view then it would be best to use the laser range scanner to identify the land-
mart  whereas in environments that are void of any such landmarks the com-
puter vision can be used to identify landmarks. Switching of the sensor model
from ision based landmark detection to a laser only model can be beneficial, as
methods for detection of point features in the laser are computationally less de-
manding than those in vision. Such reductions in computational requirements
for loc  zation and mapping can be utilized to improve the processing of navi-
gall id path planning functions. In a simpler implementation the decision of
the sw hing points can be based purely on the number of features. However,
further study is required to better understand the best switching scenarios and

their effects on the performance of the SLAM.

Son visually salient landmarks are present in the form of wide vertical  ips, n
which two side edges are detected as vertical lines. Thus they arc reco;  zed as
two landmarks and the SLAM algorithm will attempt to initialize them as such
in the map. However, since they are often physically close together, only one
of them will be initialized into the map. Further, when the robot is away from
visual features as described above, the line detection algorithm will often detect
a single line due to the limitation in the resolution of the camera. llowever. as
the robot gets closer to the object, it will appear as two landmarks where the
data association algorithm will require further classifications in order to decide
the best edge to assign to the feature that is already in the map. This type of
dil ult decision could be avoided by using better image processing techniques
that would identify the vertical strip as a single object, both when the robot is

clc 1 to the object and when the robot is away from the object.
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e As| S hlighted in Chapter 4 moving object detection has been a widely studied
topic in computer vision. However, vision based moving object detection from
moving robots poses a challenging task due to the residual motion of the back-
gro- d. Nevertheless as proposed in this thesis, laser range data can be used to
effe  vely detect the moving objects in the environment. The initial informa-
tion from the detections can be used to enhance the vision based moving object
detection through the localization of the moving areas by using a calibrated
laser sensor configuration. This localized scarch of visual information can be
used to robustly detect the complete objects. Laser based solutions can only

recc °r information about the laser scan plane.

e The image based visual servoing application proposed in this thesis adapts its
parameters to minimize the servoing duration and the length of travel of the
robot. In this case a simple linear adaptation scheme has been used in the
proposed solution to improve the performance of the visual servoing task with
resper  to the unmodulated case. The adaptation scheme could be further
im] Hved using more intelligent techniques, where the performance of the robot
could be optimized with a nonlinear relation between the paramecters of the

control system and the current robot pose.

e Finally, in any robot platform the final realization is based on an integrated set
ol algorithms based on a suitable robot architecture. Al - ough in early robotics
a | rely sense-plan-act cycle based architecture was dominant, later the re-
active architecture, where the robot senses, plan, and  ts in parallel became
popular. Modern robotics architectures closely follow the traits of the reactive
methods while uti.  a1g the limportant characteristics of the carly decision cyele

ba 4 architectures, which are commonly known as hybrid architectures.  he
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functionality described in this thesis, along with an intelligent path plam g
method, can be used to realize a completely autonomous robot implementa-
tion. As computer vision and SLAM algorithms arc usually computationally
demanding, the most suitable architecture and the method of implementation
should be selected after a careful study of the currently available methods and

available resources.
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