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Abstract

In recent years, new technologies for wireless communications have emerged.
The wireless industry has shown great interest in orthogonal frequency division
multiplexing (OFDM) technology, due to the efficiency of OFDM schemes to convey
information in a frequency selective fading channel without requiring complex equalizers.
On the other hand, the emerging OFDM wireless communication technology raises new
challenges for the designers of intelligent radios, such as discriminating between OFDI
and single-carrier modulations. To achieve this objective we study the cyclostationarity «
OFDM and single carrier linear digital (SCLD) modulated signals.

In this thesis, we first investigate the nth-order cyclostationarity of OFDM and SCLD
modulated signals embedded in additive white Gaussian noise (AWGN) and subject to
phase, frequency and timing offsets. We derive the analytical closed-form expressions f
the nth-order (g-conjugate) cyclic cumulants (CCs) and cycle f uencies (CFs), and the
nth-order (g-conjugate) cyclic cumulant polyspectra (CCPs) of OFDM signal, and obtain a
necessary and sufficient condition on the oversampling factor (per subcarrier) to avoid
cycle aliasing. An algorithm based on a second-order CC is proposed to recognize OFDM
against SCLD modulations in AWGN channel, as an application of signal cyclostationari
to modulation recognition problem.

We further study the nth-order cyclostationarity of OFDM and SCLD modulated signals,
affected by a time dispersive channel, AWGN, carrier phase, and frequency and timing

off s. Tl yti T o o expr o1 for the nth-order (g-conjugate) s and




CFs, the nth-order (g-conjugate) CCPs of such signals are derived, and a necessary and
sufficient condition on the oversampling factor (per subcarrier) is obtained to eliminate
cycle aliasing for both OFDM and SCLD signals. We extend the applicability of the
proposed algorithm in AWGN channel to time dispersive channels to recognize OFD]

against SCLD modulations. The | posed algorithm obviates the | eprocessing tasks; such
as symbol timing, carrier and waveform recovery, and signal and noise power estimation.
This is of practical significance, as algorithms that rely less on preprocessing are of crucial
interest for receivers that operate with no prior information in a non-cooperative
environment. It is shown that the recognition performance of the proposed algorithm in
time dispersive channel is close to that in AWGN channt  In addition, we have noticed
that the performance of recognizing both OFDM and SCLD signals does not depend on the

modulation format used on each subcarrier for OFDM and for SCLD signals respectively.
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Chapter 1
Introduction

1.1. Modulation Recognition: Problem Formulation

In recent years, new technologies for wireless communications have emerge
The wireless industry has shown great interest in OFDM, due to several advantages
OFDM, such as high capacity data transmission, immunity to multipath fading a
impulsive noise and, simplicity in equalization [1]-[2]. OFDM has been adopted in a
variety of applications, such as wireless local area network (WLAN) IEEE 802.11a [3] a
wireless metropolitan area network (WMAN) IEEE 802.16a [4]. On the other hand, the
emerging OFDM wireless communication technology raises new challenges for the
designers of intelligent radios, such as discrimination of OFDM against single-carrier
modulations. Solutions to tackle such new signal recognition problems need
be sought [5]. Blind modulation recognition (MR) for single carrier signals has been
studied for at least a decade (  [5] and references herein). Algorithms for discriminating
between OFDM and single-carrier signals have been recently started to be investigated by the
research community [6]-[8]. However, algorithms proposed in the literature to recognize the
OFDM require either carrier or timing recovery [6]-[10], or estimation of signal-to-noise
ratio [8], before the recognition algorithm is applied. This effort explores the applicability
of s 1al cyclostationarity to distinguish OFDM against the class of single carrier lin

digital (SCLD) modulations.






likelihood ratio test is used for decision making. This can provide an optimal solution, i
the sense that it maximizes the probability of false recognition. However, a complete
mathematical representation of an optimal classifier is very complex even for simple
modulation formats [5]. With the latter approach, features are extracted from the receive
signal, and a decision on the modulation format is made based on their differences. Sever.
signal features have been investigated in the open literature, such as moments ar
cumulants, cyclic moments and cyclic cumulants, and wavelet transform [5].
The FB approach can have the advantage of implementation simplicity for an appropriately

chosen feature set, and can provide near optimal performance.

Here we exploit signal cyclostationarity to distinguish OFDM against SCLD modulations.
In general, cyclostationary signals are present in communications, signal processing,
telemetry, radar, sonar, and control systems. Signal cyclostationarity can be exploited for
several purposes, including signal identification, blind equalization, synchronization,
parameter estimation and modulation recognition [6]-[22]. Communication signals exhit
cyclostationarity in connection with the symbol period, carrier frequency, chip rate an
combination of these [6]-[7] and [11]-[22]. First-, second- and higher-order cyclostationarity
of single carrier signals is employed for the aforementioned applicatior
in [11]-[17], [21]-[22]. In particular, second-order cyclostationarity of the OFDM signal -
exploited for blind estimation of symbol timing and carrier frequency offset, extraction «
channel allocation information in a spectrum poling system, and blind chann

identification [18]-[20].



1.2. Thesis Objectives

The main objective of this research is to find a feature-based blind recognition algorithm
to identify OFDM against SCLD modulations, which is easy to implement, and still can
provide good recognition performance. To achieve this objective, we investigate the
cyclostationarity of OFDM and SCLD signals. Firstly, we study the nth-ord
cyclostationarity of OFDM and SCLD modulated signals embedded in additive white
Gaussian noise (AWGN) and subject to phase, frequency and timing offsets.
The analytical closed-form expressions for the nth-order (g-conjugate) cyclic cumulants
(CCs) and cycle frequencies (CFs), and nth-order (g-conjugate) cyclic cumulal
polyspectra (CCPs) of OFDM signals are derived. Such expressions for the SCLD signals
are presented in [ 1]. An algorithm based on a second-order CC is proposed to recognize
OFDM against SCLD modulations in AWGN channel. In addition, we obtain a necessary
and sufficient condition on the oversampling factor (per subcarrier) to avoid cycle aliasir
for OFDM signals. Note that such a condition for SCI  signals i1s obtained in [11].
Secondly, we investigate the nth-order cyclostationarity of OFDM and SCLD modulated
signal affected by a time dispersive channel, AWGN, carrier phase, and frequency ar
timing offsets. We derive the analytical closed-form expressions for the nth-order
(g-conjugate) CCs and CFs, and the nth-order (g-conjugate) CCPs of these signals, and
obtain a necessary and sufficient condition on the oversampling factor (per subcarrier) to
eliminate cycle aliasing for both OFDM and SCLD. We extend the applicability of the
algorithm proposed for AWGN channel to time dispersive channel, to discriminate

OFDM against SCLD. The proposed algorithm has the advantage that it does not require



preprocessing tasks, such as symbol timing, carrier and waveform recovery, and signal a;
noise power estimation. This is of practical significance, as algorithms that rely less
preprocessing are of crucial interest for receivers that operate with no prior information
non-cooperative environments. Both recognition performance and complexity of t

proposed algorithm are investigated for AWGN and time dispersive channels.
1.3. Thesis Organization

The rest of the thesis is organized as follows. Fundamental concepts of signal
cyclostationarity are introduced in Chapter 2. Single carrier linearly digitally modulated
and OFDM signal models, along with corresponding signal cyclostationarity, and
proposed recognition algorithm in AWGN and time dispersive channels are presented in

Chapter 3 and Chapter 4, respectively. Finally, conclusions are drawn in Chapter 5.



Chapter 2
Signal Cyclostationarity: Fundamental Concepts

2.1. Introduction

Signal cyclostationarity has been used as a statistical tool for several applications, includii
signal identification, blind eq ization, synchronization, parameter estimation a
modulation recognition [6]-[22]. In communications, signals exhibit cyclostationarity
connection with symbol period, carrier frequency, chip rate and combination
these [6]-[7]. The cyclostationary signals have been studied either within a
stochastic [23]-[24] or a fraction-of-time probability framework [22], [25]. Here, we first
introduce the fundamental concepts of continuous-time cyclostationary processes, using the
stochastic framework. Then, we briefly review the fundamental concepts of discrete-time
cyclostationary processes. For the modulation recognition application, we employ

discrete-time processes obtained by sampling continuous-time cyclostationary processes.
2.2. Signal Cyclostationarity

A signal exhibits nth-order cyclostationarity if its nth- and lower-order time-variant

cumulants are almost-periodic functions' of time [22]-[25]. For a complex-valued

" A function r(¢) , real or complex, defined for all real arguments 1, is said to possess a translation number <, pertaining to the
positive number ¢, if for all values of r from -» to x ., |r(1+7,)-r()[<e The continuous function r(¢) is then said to be
almost periodic if, whenever ¢ is given. there exists a finite number /. such that it 3 is any real number, the interval
(v.y+1) contains at lcast one translation number t pertaining to & .



continuous-time nth-order cyclostationary process, r(t),the nth-order (g-conjugate)
time-varying cumulant,

& (15%),,, =Cum[r (1 +7), 20+ %), K1+ 7)), 2.

is an almost periodic function of time. Here Cum[-] represents the cumulant operator (fi

T tnm

the definition one can see, e.g. [22]), T=[%,,....T ]*’_ i is the delay vector and (*),,

i=1,...,n,1s a possible conjugation, with the total number of conjugations equal to g and

as the transpose. This time-varying cumulant can be expressed as a Fourier series [22]-[25]

~ ~ ~ P2y .
cr(t’T)n,q = Z Cr('Y;T)n,qej o ® (2‘

s
V€K, 4

where «,  =1{¥| ¢, (¥;7),, # 0} represents the nth-order cycle frequencies (CFs) (for cyclic

ng

cumulants) and the coefficient ¢ (7;%),, is the nth-order (g-conjugate) cyclic cumula

"y

(CC) at CF 7 and delay vector ¥, which can be expressed as [22]-[25]

172
& (1), = lim /™ [ &), e/ ar. (2.3)
-1/2

For the nth-order cyclostationarity process r(¢), the nth-order (g-conjugate) time-varyir

moiment function

m (t;7),, =E[r™ @ +7), /"¢ + 1y, r " (t+7,)], (2.4)

n.q

is also an almost periodic function of time [22]-[25]. Here E[-] denotes the statistical

expectation. This time-varying moment can also be expressed as a Fourier series [22]-[25]

m,(4,3),, = D, m(&7), ™, (2.5)

- il
e k.Il’. ¢



where K}, ={a| m,(&;7),, #0} represents the nth-order CFs (for cyclic moments), and the

ng

coefficient m, (@;%),, 1s the nth-order (g-conjugate) cyclic moment (CM) at CF a a

nyg

delay vector %, given by [22]-[25]

i, (&%), = lim I [ i, (%), e/ ar. (2.6)
- -112 '
The nth-order (g-conjugate) cumulant can be expressed in terms of the nth- a
lower-order moments by using the moment-to-cumulant formula [25],

zZ
E(68),,= D, D@D ]m (7)., (2.7)

{21,507} z=l
where {{,,...,¢,} is a partition of @ =4{1,2,...,n}, with g_, z=1,...,Z, as a non-empty
disjoint subset of ¢, so that the reunion of these subsets is ¢, Z is the number of subsets in

a partition (1< Z <n), t_ is a delay vector whose components are elements of {t,},_,, with

indices specified by ., and n_ is the number of elements in the subset ., from which ¢.

- Z
corresponds to conjugate terms, with » n.=» and Zq: =q.

z=1 z=1

By combining (2.2), (2.5) and (2.7), the nth-order (g-conjugate) CC of r(¢) at CF 7 and

delay vector ¥ can be expressed usit the nth- and lower-order CMs as [25]

Y4

EFT,, = Y D9@-) g [ (&), ., @

{91522} a 1=y ==I

where @ :[d,,...,dz]T is a vector of CFs and 1=[l....,1]" is a Z-dimensional one vect

Equation (2.8) is referred to as the cyclic moment-tt  umulant formula [25].



The nth-order (g-conjugate) cyclic cumulant polyspectrum (CCP) of the cyclostationary
process, r(t), at CF § and spectral frequency vector f, is defined as the

(n—1) -dimensional Fourier transform of the nth-order (g-conjugate) CC [23], [25]

C,(D),, = [6(:8), 0 dr, (2.9)

7 t

where f=[/,....f, 1.
A discrete-time signal r(u):r(t)|l=u/_1 is obtained by periodically sampling the

continuous-time signal r(r) at rate f,. The nth-order (¢-conjugate) CCP of the discrete-

time signal, r(u), at CF y and spectral frequency vector f , is given by [26]

C.(1;1),, =f:“ZZ z_,lé,.(?—VI;;f—Yﬂ)n,q (2.1
vel veZ""
where y=7/", f=1f", with components f,=f f', u=1,...,n—1, Z is the set of all
integers, and v=[v,...v, 1", with v, u=1,...,n—1, as an integer. One can notice that the
nth-order CCP of the sampled si_ 1l consists of the periodic extension of the nth-order
CCP of the original continuous signal, in both spectral (f -vf,) and cycle frequency

(¥ —vf,) domains. Two kinds of aliasing effects can appear due to sampling, i.e., spectral

aliasing, which is overlapping of images of CCP with the same CF, and cycle aliasing,
which is the overlapping of images of the CCP with different CFs. Sampling has to
carried out such that both spectral and cycle aliasing are eliminated. Apparently, for a
band-limited signal, the Nyquist condition has to be fulfilled to eliminate aliasing in 1

spectral frequency domain. For the cycle frequency domain, the support of 7 has to

found in order to obtain a condition to eliminate cycle aliasing.




Under the assumption of no aliasing, the nth-order (¢-conjugate) CC of the discrete-time

signal, r(u), the nth-order (¢-conjugate) CCP, and the corresponding CFs, are respectively

given by [26]
¢ (1;7),, =C, (yf;;‘c}‘s"l)n'q, (2.1
C (130, = 17 COH ),y (2.12)
and
Ko, ={ye[-1/2,1/2)| y=%", ¢,(v;1),, 2 0}, (2.13)
where =7/, , with components t, =%, f, , u=1...,n.

Similar expressions can be written for the nth-order (g-conjugate) CM of the discrete-time

cycle moment polyspectrum, and corresponding CFs, «  [23].

ny

signal, m, (a;7)

ng?

The estimator for the nth-order (g-conjugate) CM at a CF « and delay vector T, based ¢

L samples, is given by [24]

m, (1), = L_liﬁr(‘)" (u+1, Ye /e (2.14)
u=1 p=i
Furthermore, the estimator for the nth-order (g-conjugate) CC at a CF y and delay vector
v, based on L samples, ¢.(y;t),,, can be obtained by applying the cyclic
moment-to-cumulant formula given in (2.8), with CMs replaced by their estimate

given in (2.14) [24]. For the estimator of the nth-order (g-conjugate) CCP one can see, for

example, [23].

10




Chapter 3

Cyclostationarity-Based Recognition of OFDM Against

SCLD in AWGN Channel

3.1. Introduction

Blind recognition of the modulation format of a received signal is of importance in
variety of military and commercial applications, such as electronic warfare, surveillance
and control of broadcasting activities, spectrum monitoring and management, and cognitive
radio. Although this topic has been extensively studied (see the comprehensive survey [
and reference herein), less attention has been paid to the identification of OFDM signals.
In recent years OFDM has been adopted in a variety of applications, such as WLANs an
WMANS. Algorithms to recogn  OFDM agaii  SCLD si_ ils have been reporte
in [8}-[9]. The algorithms proposed in [8], [9] and [10] require estimation ¢«
signal-to-noise ratio, carrier frequency recovery, and both carrier frequency and timir
recovery as preprocessing tasks. In this Chapter, we investigate the cyclostationarity «
OFDM signals with a view to rccognizing OFDM against SCLD. The analytic
closed-form expressions for the sth-order (g-conjugate) CCs and CFs, and CCPs of ¢
OFDM signal embedded in additive white Gaussian noise and subject to phase, frequency
and timing offsets are derived. In addition, a necessary and sufficient condition on the
ove fac > & 1s derived for C

signals. An algorithm based on a second-order CC is proposed to recognize OFDM against



SCLD modulations. The proposed recognition algorithm obviates the need for
preprocessing tasks, such as symbol timing estimation, carrier and waveform recovery, ar
signal and noise power. The performance of the proposed recognition algorithm

evaluated through simulations. The average probability of correct recognition, P, is use

or

as a performance measure for performance evaluation.

3.2. Cyclostationarity of Single Carrier Linearly Digitall,

Modulated Signals

3.2.1. Signal Model

Let us assume that a single carrier linearly digitally modulated signal is transmitte
through a channel, which corrupts the signal by adding white Gausian noise. The output «

the matched filter at the receive-side is a baseband waveform, given by [27]

rSCLD

(t)=ae’e/>™ > 5g(t-IT —€eT)+ w(t), (3.
I=—0
where a is the amplitude factor, 0 is the phase, Af. is the carrier frequency offset, T is the

symbol period, 0<e<1 is the normalized timing offset, s, represents the symb

transmitted within the /th symbol period drawn either from a quadrature amplitude

modulation (QAM) or phase shift keying (PSK) constellation, g() is the overall impul:
response of the transmit and receive filters and w(¢) is the zero-mean complex Gaussic
noise. The overall impulse response of the transmit and receive filters in cascade is given

by g(t)=g" ()® g™ (¢), with g”(¢) and g"“(r) as the impulse response of the transmit and



receive filters, respectively and ® as the convolution operator. The data symbols {s,} are
assumed to be zero-mean independent and identically distributed (i.1.d.) random variables.

The discrete-time baseband signal r,, («), obtained by oversampling r . (f) at rc

f.=pT™", with p as the number of samples per symbol (overs " factor),1s ven by

o af.Tu X
ro@) =ae’e ® Y sg(u p-ep)+wu), 32

I=—0

where w(x) is wide-sense stationary zero-mean complex Gaussian noise.

3.2.2. Cyclostationarity of Received SCLD Modulated
Signals

For the continuous-time baseband received signal, r,(¢), the nth-order (g-conjugate)

time-varying cumulant at delay vector % is given by [11]

J2R80 (),
~ = _ . n j(n-2¢4)0 p=l J2n(n-2q)0f 4
Crs«w( ,‘r)"‘q =a’c,, e e e

[=—

x[Te™ (+3,)® > 8(t-IT—eT)+é,(6:%),,, (3.3)
p=l

where ¢, is the nth-order (g-conjugate) cumulant of the signal constellation, ¢, (1%),, 2
is the nth-order (g-conjugate) time-varying cumulant of w(¢), (=), is the optional minus

sign associated with the optional conjugation (¥),, p=1,..,n, 8(t) is the Dirac delta

function. The values of delays, %, are defined within the symbol interval (for rectangu

pulse shape). At zero-delays, the ¢1  ilant magnitude reaches a maximum, and as the delay

2For n=1 and n>3 there is no additive contribution of the wide-sense stationary zero-mean Gaussian noise to the
cumulant of the received signal. For n=2, the cumulant corresponding to the noise does not depend on time, due to the
wide- sense stationarity of the noise.



values increase towards the symbol duration, the cumulant magnitude reduces to zero.
The delay values for which the CCs are non-zero can exceed the symbol period fi

a non-rectangular pulse shape.

The nth-order (g-conjugate) CC at CF y and delay vector ¥, the nth-order (g-conjugate)
CCP at CF 7 and spectral frequency vector f , and the CFs for the continuous-time signal

few (1) are respectively given by [11], [13]

n
1 29)0 - j2nfieT S8 2Ty
~ ~. o~ — 4" -1_j{n-2q -J2nrfe p=!
C"S('LD (Y’T)”v‘l a cS,ﬂ»qT € € €

x o i 59,

—— -

_ n-l . _
Crpn (Bl =", T/ P[]G0 (), /= M)

seLp
p=l

x G ((—)n<B—§<—>p<<—>pfp -AN+CED,,. G5
P
and
R = (717 =B+(n—29)0,, B=IT"", [ integer, ¢, (7:9),,#0},  (3.6)
where ¢,(7;7),, and C.7:f )ng are the nth-order (g-conjugate) CC and CCP of w(y),
respectively.
, ,to imi e ~cle

aliasing has been derived in [11] forara «dcos , ise shape as

p=n(l+r,), 3.7)

where r. is the roll-off factor.

o}
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At the receiver-side, the continuous-time baseband equivalent is given by

-1 @
rooy ()= ae’ e’ ’Z > s ¢/ 2R T=ED o T —eT) + w(t), (3.¢

k=0/=-x

where g(£)=g" (1)® g™ (1).
A discrete-time baseband OFDM signal, r,,, (), is obtained by oversampling r, ., (t) at

arate f, =pKT, ', where pK is a positive integer, which represents the oversampling fact

per subcarrier in the useful symbol duration, with p as the number of samples per symbol
per subcarrier (oversampling factor per subcarrier). For SCLD signals, the number of
(sub)carriers is one and p simply represents the oversampling factor (the number of
samples per symbol). The expression for the discrete-time baseband OFDM signal can be

easily written as,

AT u K-l = _]—k(ll ~ID-€D)
(u) = ae’e PK s, e ™ gu—-ID—eD)+w(u), (3.10)
k.

k=0[=—00

OFDM

where D=pK(1+T,T") is the number of samples over an OFDM symbol.

Note that equations (3.1) and (3.2) represent particular cases of (3.9) and (3.1«

respectively, K =1 and no cyclic prefix, 7,, =0(7 =T,).

3.3.2. Cyclostationarity uf neceived OFDM Signals

Results derived in Appendices A and B for the nth-order cyclostationarity of the receiv
OFDM signal are presented in the following. The nth-order (g-conjugate) time-varying

cumulant of the continuous-time baseband received OFDM signal, r,.,, (¢), at delay vector

T (- Appendix A for ' :c n on the delay values) is given by :

16



o J2RALL Y (<), 1, I 200, K-l /MAA/AZ( Vpip
- — N Jn-2q) Pl jn(n A IZ o
(,7),,=a’c,, e e e
k=0

d
JOFDM

xR T gr (147 ))® Y 8(t~IT —€T)+6,(87),,.(3.1
p=l ==

The nth-order (g-conjugate) CC at CF § and delay vector 7, the nth-order (¢-conjugate)

CCP at CF 7 and spectral frequency vector f, and the CFs for the continuous-tir

baseband received OFDM signal, r,, (¢) , are respectively given as

n n
J2RB Y (2), %, Ko J2rkASk D (5),1,
pi

= -1 j(n-2q)0 - j2nfieT 2 )
Cropon (1:7 )"q _ancs,n,qT el gm ST p=! %
k=0
e o) ] n _
« [T g s T ) Vv (), (D)
— p=l
2016 i B T K-1 n-1 %)
Lo/ (n=2q)8 = j2mBe
G @Dy =a"c, T7e S T167 (), 7, - A ~kdfy)
k=0 p= 1

n-1

<G (OB (L)), ], == k)= (1= 20k8/,)
p=1

+C (:f) (3.13)

ng?2

and
RO™M = (7| §=P+(n—29)0f., B=IT™", | integer}. (3.19)
A necessary and sufficient condition on the oversampling factor (per subcarrier), p, to
eliminate cycle aliasing in AWGN channel is derived in Appendix C, which will be
presented in the subsequent section. Under the assumption of no aliasing, the expressic
for the nth-order (g-conjugate) CC, CCP, and CFs for the discrete-time OFDM signal,

ro:om (), can be easily derived based on (3.12)-(3.14) and by using (2.11)-(2.13).

17



Note that (3.4), (3.12) and (3.5), (3.13) give the analytical expressions for the CC and
CCP, respectively, only at CFs and certain delays (see Appendix A for comment on t|
delay). At other frequencies and delays, the CC and CCP equal to zero. It is also to |
noted that (3.4)-(3.6) are particular cases of (3.12)-(3.14) for a single carrier (K =1) and no

cyclic prefix (T, =0, T =T,). This is expected from the comments on the signal mode

From (3.4) and (3.12) one can see that the nth-order (g-conjugate) CCs of both SCLD and
OFDM signals depend on the nth power of the signal amplitude, the nth-order
(g-conjugate) cumulant of the signal constellation, phase, timing offset, carrier frequen
offset, pulse shape, and symbol period. In addition, the CC of the OFDM signal depends «
the number of subcarriers, K , and frequency separation between two adjacent subcarrie

Afy . However, the CC magnitude of the signal component does not depend on phase, a:

timing and carrier frequency offsets. Owing to the nature of the noise, c,(y;7),, is

non-zero only for n=2 and g=1, at zero CF and for zero delay vector. From (3.5) a
(3.13) it can be noticed that the nth-order (g-conjugate) CCP of SCLD and OFDM signals
depends on the nth power of the signal amplitude, the nth-order (g-conjugate) cumulant
the signal constellation, phase, timing offset, carrier frequency offset, symbol period, a:
the Fourier transform of the pulse shape. In addition, the CCP of the OFDM signal depends
on the number of subcarriers, K, and frequency separation between two adjacent
subcarriers, Af; . According to (3.6) and (3.14), if n=2q, the CFs are integer multiples
the inverse of the SCLD and OFDM symbol period, respectively. Otherwise, there is a sh

of these values due to the carr £ ] icy offset, Af,.



3.3.3. A Necessary and Sufficient Condition on the
Oversampling Factor (per Subcarrier) to Eliminate Cycle

Aliasing for OFDM Signals

In several signal processing applications, cyclostationary continuous-time signals are
subject to sampling operations. This leads to aliasing in both cycle and spectral frequency

domains [26]. In our analysis, the continuous-time signal, r(¢), i=OFDM, SCLD

oversampled at the output of the receive lowpass filter. Therefore, it is important to find
condition to eliminate aliasing.

As mentioned in Chapter 2, the Nyquist condition has to be fulfilled to eliminate spectr.
aliasing. On the other hand, we show that to eliminate cycle aliasing, a necessary an

sufficient condition on the oversampling factor (per subcarrier), p, has to be fulfilled.

This is as follows (see Appendix C for derivations):

p2n—2q|+ K (2nT,T"'~|n-2q])|, G.1!

where [.] denotes the nearest la st~ “eger.

Note that this result is valid for n even. For n odd we cannot derive such a condition, as the

nth-order (g-conjugate) CPP equa zero.

From (3.15) one can see that the oversampling factor per subcarrier, p, depends on the

order n, number of conjugations, ¢, number of subcarriers, K, and the product TuT".

As an example, with n=2, g=1, k=128, and 7, =T, /4, the necessary and sufficient

condition on the oversampling factor (per subcarrier), p, given by (3.15), becomes p>1.




3.4. Recognition of OFDM Against SCLD by Exploiting

Signal Cyclostationarity

Results presented in previous sections are employed here to develop an algorithm for the

classification of OFDM and SCLD in AWGN channel.
3.4.1. Discriminating Signal Feature

We investigate the lowest-order non-zero CC to recc_ ze OFDM against SCLD signals;
this i1s of second-order (one-conjugate); the first-order and second-order (zero-conjugatt

CCs equal zero due to zero values of ¢ ,,and c,,,, respectively, for PSK and QA!

signals with more than four points in the signal constellation [S], [11]. Under the
assumption of no aliasing, with n=2, ¢g=1, and t=[t 0]', and by using (2.11), (2.13),
(3.4), (3.6), (3.12) and (3.14), one can easily obtain the second-order (one-conjugate) CC

and sets of CFs for the discrete-time SCLD and OFDM signals respectively, as’

2n

J—4 Tt )
(B;1),, =a’c lg=/amhery” p gu+1)g (e 7™ +c (B;1),,,(3.1¢
21 s21P w 2.1

u

’5( LD

K-1 jz_h

2
(B 1)21 =q Csle le—j2nB£De PA Ze pK Zg(u+r)g (u)e J2nPu

’oFDM

+¢,.(B; )5, (3.1

K> = {BIp=Ip~', I integer}, (3.1

and

? Note that according to (2.11) and (3.6), if n=2g¢ (in this case #=2 and g=1), the CF y is equal to (3. This result will be used
for the CF notation throughout the thesis.

20



Ko™ ={B|B=/D"", | integer} . (3.19)

ng

] R L S Y
One can easily show that Z, (1)= ; ¢ ®* =e Sin(rt/p) , and write (3.17) as

s sin(nt/ pK)

In

. JELIVE,
. 2 -1 _—j2nBeD K
(B; T)z,l =a Cs,z,lD e /PP Pe P

2 (Y gg" @ e 4 e (B, (3.20)

u

Croeom
According to the analysis carried out in Appendix A, these results are valid for specific
ranges of the delay values. For SCLD and OFDM, these delay values belong to the interv
zero to that corresponding to symbol period of SCLD and OFDM, respectively (for
rectangular pulse shape). At zero delay, the second-order (one-conjugate) CC magnitu
reaches maximum, and approaches zero at delay corresponding to the symbol period f
both SCLD and OFDM signals (rectangular pulse shape). If the pulse shape is
non-rectangular, non-zero CC magnitude values can appear also at delays beyond tt
corresponding to the symbol period. For the OFDM signal, a significant non-zero value
the second-order (one-conjugate) CC magnitude can be noticed at delays corresponding
the useful symbol period, +pK . This is due to the existence of the cyclic pref
The magnitude of the second-order (one-conji 1te) CC of SC” ™ and OFDM signals (in
the absence of noise) is plotted versus CF and delay in Fig. 3.1 a) and b), respectively (i
parameter setting see Section 3.5.1). In addition to the peak at zero delay, CC magnitude

peaks are visible for the OFDM signal at t=+pK and for different CFs. With sufficiently
large K, these peaks do not occur in the vicinity of zero delay, and this represents a

distinctive  characteristic of OFDM in comparison with the SCLD signe

The existence of such a peak in the magnitude of the second-order (one-conjugate) CC of



the OFDM signal (at zero CF, B =0, and delay 1 =pK ) is employed here as discriminating

feature to identify OFDM against SCLD signals.
3.4.2. Proposed Recognition Algorithm

At the receive-side, the bandwidth of the signal is roughly estimated, and a low-pass filter
is used to remove the out-of-band noise. The signal is down-converted and (over)sample

at a rate equal to p times the signal bandwidth estimate. Discrimination between OFD!
and SCLD signals is performed by applying the following algorithm, which consists of two
steps.
Step 1:

Based on the observation interval available at the receive-side (L samples), the magnitude
of the second-order (one-conjugate) CC of the baseband received signal is estimated at zero

CF, B=0, and over a range of positive delay values. This range is chosen to cover possible

and pK__,with K . and K_,_as the minimum and maximum number

X

peaks at pK

min max ? n

subcarriers that we consider (the number of subcarriers is assumed unknown at the

'

receiv ide and a rar : of possible values considered). The peak pK,, | to be f

enough from zero delay to serve as an unambiguous discriminating feature between OFDM
and SCLD signals. Over the considered delay range, we select that delay value for which the

CC magnitude reaches a maximum.
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Step 2:

With n=2 and ¢ =1, the cyclostationanty test developed in [28] is used to check whether
or not =0 is indeed a CF for the delay selected in Step 1. This test consists in comparir
a statistic against a threshold (see Appendix G for the test description). If =0 1s found 1
be a CF, then we decide that the signal is OFDM, otherwise we declare it as SCLD.

As one can notice, the algorithm proposed here to recognize OFDM against SCLD does
not require symbol timing, carrier and waveform recovery, or estimation of signal and noi:

powers.
3.5. Simulation Results

Simulations are performed to confirm theoretical developments, and results of these

simulations are presented in the following.

3.5.1. Simulation Setup

For SCLD modulations, we consider a pool consisting of BPSK, QPSK, 8-PSK, 16-QAl
and 64-QAM. Without any loss of generality, we simulate unit variance constellations.
The transmit filter is a root-raised cosine with 0.35 roll-off factor [27], and the signal
bandwidth is 40 kHz. At the receive-side, a low-pass filter is used to eliminate the
out-of-band noise, and the signal is sampled at a rate f, =160 kHz . For the OFDM signal,
we set the parameters as follows. The signal bandwidth is set to 800 kHz, the number of

subcarriers to 128, the useful time period to 160 us, and the cyclic prefix period to 40 ps.

All subcarriers are modulated either using QPSK or 16-QAM. Unit variance constellations
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are also used in this case. The transmit pulse-shaping window is chosen as raised cosine,
with 0.025 roll-off factor [2]. At the receive-side, the signal is low-pass filtered and
sampled at a rate of 3.2 MHz. For both OFDM and SCLD, we consider an oversamplii

factor of 4. Unless otherwise mentioned, the observation interval available at tl

receive-side is 0.1 s. This interval corresponds to L =320,000 and 16,000 samples for
OFDM and SCLD, respectively. In addition, we set a to one, ¢ to 0.75, 8 as a random
variable uniformly distributed over (-n,n), and A/, to 16 kHz and 320 kHz for SCLD and
OFDM signals, respectively. The signal-to-noise ratio (SNR) is defined as the signal power
to the noise power at the output of receive filter. For the cyclostationarity test, a Kaiser
window of length 61 and parameter 10 is employed to compute the estimates of
covariances used in the test, and a threshold of 23.0258 is employed for decision maki

(see Appendix G for the description of the test and parameters involved in i

This threshold value corresponds to a probability of false alarm P, =107 [2¢

The probability of false alarm represents the probability to decide that p =0 is a CF for t
delay t=pK, when it is actually not; in other words, that the received signal is OFDI

when this is SCLD. The probability to correctly decide that the modulation format of the
received signal is i, when indeed the modulation format i 1is transmitted,
P i = OFDM, SCLD, is used to evaluate the performance of the proposed recognition

cr

algorithm. This is calculated based on 100 trials.
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3.5.2. Numerical Results

The estimated magnitude of the second-order (one-conjugate) CC of OFDM and SCLD
signals is plotted versus cycle frequency and delay in Fig. 3.2 a) and b), respectively, f
20dB SNR and 0.1s observation interval. When comparing results presented in Figs. 3.1
and 3.2, one can notice the existence of non-zero spikes in the estimated magnitude
frequencies different than CFs, and over the whole delay range. This is due to the finite
length of the observation interval. The magnitude of the second-order (one-conjugate) CC
at zero CF (B =0), is plotted versus delay (positive values) in Fig. 3.3 a) and b), for OFDM
and SCLD signals, respectively. The peak corresponding to t=pK is to be noticed in the
results presented for OFDM; no such peak appears for SCLD.

Fig. 3.4 shows the estimated magnitude of the second-order (one-conjugate) CC
OFDM versus delay, for zero CF and at different SNRs. From Fig. 3.4 one can notice the
significant peak at delay t=pK . In addition, it is to be noted that the CC value at zero
delay increases with a decrease in the SNR, which can be explained by the noise
contribution to the CC, at zero CF and zero delay. Fig. 3.5 shows the estimated magnitude
of the second-order (one-conj 1ite) CC of SCLD versus delay, for zero CF, and at
different SNRs. From Fig. 3.5 one can notice that there is no significant peak along the
delay axis, even at lower SNR values. As the SNR decreases, the same behavior of the (
at zero CF and zero delay can be noticed for SCLD signals as well.

Recognition performance of the proposed a* rithm is shown in Fig. 3.6. The probability

of correct recognition, P\ is plotted versus SNR, for i = OFDM, SCLD . It can be noticed



that with 0.1 s and 0.05 s observation intervals, P{*™°™ equals one for SNR above
-9 dB and -7 dB respectively; these results do not depend on the modulation type within
the OFDM signal (4-PSK or 16-QAM). On the other hand, PP"**'® is always one for

the whole investigated SNR range; these results hold regardless the SCLD modulatio
format. This can be easily explained, as for SCLD there is no statistically significant peak
in the second-order (one-conjugate) CC magnitude at zero CF and over the searche
delay range. Thus, the local maximum in the CC magnitude, which is selected in Step 1
of the classification algorithm, is due only to the finite length of the observation interval,
and does not pass the cyclostationarity test in Step 2 of the algorithm. Hence, a corre
decision is made when recognizing SCLD modulations. This is in agreement with the
value set for the probability of false alarms, which actually represents the probability to
decide that the modulation format is OFDM when this is SCLD. Simulations have bet
performed for different pulse shapes at the transmit-side, such as rectangular for both
SCLD and OFDM signals, root-raised cosine with roll-off factor 1 for SCLD signals, and
raised cosine with 0.1 roll-off factor for OFDM signals. The same recognition

performance is practically obtained, regardless the change in the pulse shape.
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Figure 3.1: The magnitude of second-order (one-conjugate) CC versus cycle frequency and
delay (in absence of noise), for a) OFDM and b) SCLD signals in AWGN channel
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Figure 3.6: The average probability of correct recognition P\, i = OFDM, SCLD, versus
SNR in AWGN channel

3.6. Summary

In this Chapter, we invest” te signal cyclostationarity of OFDM, and apply the results to
recognize OFDM against SCLD modulations in AWGN channel. We derive the analytical
closed-form expressions for the nth-order cyclic (g-conjugate) CC, CCP, and CFs for an
OFDM signal embedded in AWGN and affected by phase, frequency offset and timit
errors, and obtain a necessary and sufficient condition on the oversampling fact
(per subcarrier) to avoid cycle aliasing. Furthermore, based on the second-order

(one-conjugate) CC, we . pose an algorithm to discriminate OFDM against SCLD




-

modulations. The proposed recognition algorithm has the advantage that is devoid «
preprocessing tasks, such as symbol timing, carrier and waveform recovery, and signal and

noise power estimation.



Chapter 4

Cyclostationarity-Based Recognition of OFDM Again

SCLD in Time Dispersive Channel

4.1. Introduction

The algorithm proposed in Chapter 3 is applicable to the recognition of OFDM against
SCLD signals in AWGN channel. Here we extend the applicability of this algorithm
time dispersive channels. We study the nth-order cyclostationarity of OFDM and SCLD
signals affected by a time dispersive channel, AWGN, carrier phase, and frequency a
timing offsets. We derive analytical closed-form expressions for the nth-order
(g-conjugate) CCs, nth-order (g-conjugate} CFs, nth-order (g-conjugate) CCPs of such
signals. Then, we obtain a necessary and sufficient condition on the oversampling fact
(per subcarrier) to eliminate cycle aliasing for OFDM and SCLD signals. Second-order
CCs are finally employed to develop the recognition algorithm. In addition, we investigate

the computational complexity of the proposed recognition algorithm.



4. 2. Cyclostationarity of Signals of Interest

4.2.1. Channel and Signal Models

Channel Model

Let us assume that the signals of interest are transmitted through a time dispersive channel,
which also corrupts the signal by adding white Gaussian noise. The impulse response of the

time dispersive channel is

M -~ -~
h(t)=> h(C, B -E,). .1
m=1

with () as the channel coefficient at delay £,, m=1,..M.

SCLD Signal Model

If an SCLD signal is transmit | through the above channel, the output of the matched

filter at the receive-side is a baseband waveform, given by [27]

o M
T () = @€ 3" S 5 h(E,)g(t=C, — 1T —€T)+ w(2). (4.2)

I=—c0 m=1

The discrete-time baseband signal, ., («), obtained by oversampling r . (¢) at a re

f.=pT"", with p as the number of samples per symbol (oversampling factor), is given by

2n
w)= aejeej P

6T 2 M
3 sih(u,)g(—u, —Ip—ep)+w(u), (4.3)

I=—0 m=1

rSCLD
where w(u) is wide-sense stationary zero-mean complex Gaussian noise and u,, =C,, f; (not

1 T).
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OFDM Signal Model

The continuous-time baseband equivalent of a transmitted OFDM signal is given by [18],

1 K-1 %

Xoron (1) =- Z Z Se e.iznkAﬁ,(:—/T)g:r (t-IT). (4.4)
\/K k=01=-x

At the receive-side, the continuous-time baseband equivalent is given by

o M -

K-1 - . ,
T ()= a7V NN 5 h(E,, Ye! AN UGN o T —eT)+w(t). (4.

k=0 I=—co m=1

A discrete-time baseband OFDM signal, r,,,,, (%), is obtained by oversampling r.,, () -
arate f, =pKT ', with pK as a positive integer which represents the number of samples |
the useful symbol duration, and p as the number of samples per symbol per subcarrier
(oversampling factor per subcarrier). Note that for the SCLD signals there is a single carrer
(K =1) and, thus, p simply becomes the number of samples per symbol (oversamplir
factor). The expression for the discrete-time baseband OFDM signal can be easily written
as,

NELIYE Y SR /2% Ku-it, ~ID~2D)
roo () = ae’’e P Z Z Zs,“,h(um) e’ gu—u, —ID —eD)+w(u), (4.

k=0/=—com=!

where D =pK(1+T, T ") isthen er of samples over an OFDM symbol.
cplu p Y

Note that equations (4.2) and (4.3) represent particular cases of (4.5) and (4.6),

respectively, for K=land7, O0(7=T,). In addition, if A(r)=3(t), (the channel 1s

AWGN) (3.1), (3.2), (3.9) and (3.10) represents particular cases of (4.2), (4.3), (4.5) and

(4.6), respectively.
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4.2.2. Cyclostationarity of SCLD Signals

Results obtained from the analysis performed in Appendices D, E and F for the nth-order
cyclostationarity of the SCLD signals are presented as follows. For the continuous-time

baseband received signal, (1), the nth-order (g-conjugate) time-varying cumulant .

rSC LD

delay vector T (see Appendix D for the comments on the delay values), i1s obtained as’

n
J2R80 3 (), 8,

=~ .= —_ .n J(n-2g)8 _j2n(n-2g9)Aft \
C’S('LD (t’T)",q_ a cs‘".fle € € g
IR *), 7 * pa
[T 2 A", 08 " (18, +7,)
p=lm,=1

® i 8(t—IT —eT) +&,,(1;7)

[=-0

4.7

n.g?

2

where ¢, is the nth-order (g-conjugate) cumulant of the signal constellation, ¢, (£;7),,

s.n.y

is the nth-order (g-conjugate) time-varying cumulant of w(s), and (-), is the optional
minus sign associated with the optional conjugation (*),, p=1,...,n.
The nth-order (g-conjugate) CC at CF 7 and delay vector ¥, the nth-order (g-conjugate)

CCP at CF 7 and spectral frequency vector f , and the CFs for the continuous-time sign

rewo (), are respectively given as

n
| j(n-2q)0 - j2peT S 2 0y
~ o~ n -1 _j(n-2q)0 -j2nfe p=t
Criio (y,‘r)n,q a cm’qT e e e

@

x [y 2K &, )77 (18, +7,)e My

—oo p=l m,=1

+Ew(?; ‘E)”,q’ (4'8)



~ -~ . oA n-l * ~ » ~
C’_SCLD (_7;1-)"’{1 — ancs'n‘qT—lej(n’zq)ee—jZT[BETH H( ),; ((_)pfp _Af;,)G( )I’ ((_)pfp —Aﬁ)

p=1
N n-1 -
x H (=), B-N(2), (), [, -D)
p=!
_ n-l - - ~
X G(*)" ((—)n (B - Z (_)p((_)p fp - Afc )) + Cw(y; f)",q ’ (4.S
p=1
and
R =717 =B+(n-29)87,, B=1T"", I integer). (X

A necessary and sufficient condition on the oversampling factor, p, to eliminate cycle

aliasing is derived in Appendix F, which will be presented in Section 4.3. Under the
assumption of no aliasing, the expressions for the nth-order (g-conjugate) CC, CCP, ar

CFs for the discrete-time SCLD signal (1), can be easily derived based on (4.8)-(4.1(

> rSCLD

and by using (2.11)-(2.13).
4.2.3. Cyclostationarity of OFDM Signals

Results derived in Appendices D, E and F for the nth-order cyclostationarity of the
OFDM signal are presented as follows. The nth-order (g-conjugate) time-varying cumulai
at delay vector 7 (see Appendix D for comments on the delay values) for the continuous-

time baseband received OFDM signal, r,,,(¢) , is given by

- J2Rbf 3 (), 2000 K-l J2mkdfx D (5),%,
= _ Jj(n-2q p=! j2n(n-24 JZ p=1
C’OFDM (t"r)",q a CS,",‘Ie e e e
k=0

, M . B ~J2kbfx D () pCm,
Xej2n(n—2q)kAfKt| I Z h )p (Cm )g( )p(t_cm _*_%p)e p=i
P P
m



® i 8(t~IT —eT)+&,(t;7) (4.1

I=—0

ng-

The nth-order (g-conjugate) CC at CF 7 and delay vector %, the nth-order (g-conjugate)
CCP at CF 7 and spectral frequency vector f, and the CFs for the continuous-time

baseband received OFDM signal, r,,.., (1), are respectively given as

JIAL Y (), 8, Kl J2mRAfk D (), T,

Crovon DBy = a"6‘5,,,,(,7“'ej("_zq)ge"jznﬁare - Ze Pl
k=0
= n M - . _ —j2nkA/'Ki(—),émp _ » o
JTT S A G g (=8, 4y 1T g
o p=lmy,=I
+C (V3 Ty (4.12)
~ = f o —1_j(n-2g)0 —j2mrPel
C’()FDM (Y’f)"-‘l =a CSJMIT e e
K~1 n-1 _ . 5 ‘
S TTH" (), 7, - AL)G " ((-), ], - B, —kdfy)
k=0 p=I
x HO"((2),(B= £, (), (), [, = Af. kA )= (n=2@)kAf ) + KBSy
p=l
x G (=), B~ 2, (0) (), f, =B — kAfi ) = (n = 2q)kAfy )
p=1
+ C (1), (4.13)
and
R = {717 =P+(n-29)af., B=IT"", [ integer}. (4.14)

Note that (4.8) and (4.12), and (4.9) and (4.13) give the analytical expressions for the CC
and CCP, respectively, only at CFs and certain delays (see Appendix D for comments

the delays). At other frequencies and delays, the CC and CCP equal to zero. It is also to be
noted that (4.8)-(4.10) are particular cases of (4.12)-(4.14) for a single carrier (K =1) and

no cyclic prefix (7,, =0, 7 =T, ). This is expected from the comments on the signal model

39



(see Section 2.1). In addition, one can easily notice that if the channel is AWGN

(h(1)=d(t)), then (3.4)-(3.6) and (3.12)-(3.14) are obtained as particular cases

of (4.8)-(4.10) and (4.12)-(4.14) for SCLD and OFDM, respectively. From (4.8) and (4.12)
one can notice that the nth-order (g-conjugate) CCs of both SCLD and OFDM signals
depend on the nth power of the signal amplitude, the nth-order (g-conjugate) cumulant «

the signal constellation, phase, timing and carrier frequency offsets, channel impulse
response, pulse shape, and symbol period. In addition, the CCs of the OFDM signal depend
on the frequency separation between two adjacent subcarriers, Af,, and the number «

subcarriers, K . On the other hand, CC magnitude of the signal component does not depend

on phase, timing and carrier frequency offsets. Owing to the nature of the noise, ¢, (¥;%)

ng
is non-zero only for n=2 and ¢=1, at zero CF and for zero delay vector.
From (4.9) and (4.13), one can notice that the nth-order (g-conjugate) CCPs of both SCLD
and OFDM signals depend on the nth power of the signal amplitude, the nth-order
(g-conjugate) cumulant of the signal constellation, phase, timing and camer frequency
offsets, symbol period, and the Fourier transform of the pulse shape and channel impulse
response. In addition, the CCPs of the OFDM signal depend on the frequency separation
between two adjacent subcarriers, Af , and the number of subcarriers, K . According to

(4.10) and (4.14), if n=2q, the CFs are integer multiples of the inverse of the SCLD ar

OFDM symbol period, respectively. Otherwise, there is a shift of these values due to the

carrier frequency offset, Af, .
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p=[2nWT], (4.15)

where W represents the one-sided bandwidth of the pulse shaped signal. One can easi

notice that the oversampling factor, p, depends on the order n, symbol period, T, and

bandwidth (unless otherwise mentioned, the bandwidth is referred to as the one-sided

bandwidth for both OFDM and SCLD signals) of the pulse shaped signal, # . For examp

if n=2 and the received SCLD signal is band-limited to W = (1+r,)(~. ,”", with the roll-off
factor r, =0.35, a necessary and sufficient condition on the oversampling factor, p, to
eliminate cycle aliasing is p>3. Note that for SCLD we use the term oversampling factor
for p, as in this case there is a single carrier (K =1), and the oversampling factor per
subcarrier simply becomes the oversampling factor.

For the OFDM signal and a good channel, a necessary and sufficient condition on t

oversampling factor per subcarrier, p, to eliminate cycle aliasing is (see Appendix F for
derivations):

pz[TuK-'(an+|n—2q|(K—l)AfK)]. (4.16)

One can easily notice that the oversampling factor per subcarrier, p, depends on the order
n, number of conjugations, g, number of subcarriers, K , useful symbol duration, T, ai
the bandwidth of the pulse shaped signal, W . For example, if n=2, ¢g=1, K=128, a
W =T"=(125T,)" (T,, =T, /4), the necessary and sufficient condition on the oversampli
factor per subcarrier, p, given by (4.16),1s p>1.

Results presented here for both SCLD and OFDM signals are valid only for n even. For n

odd we cannot derive such a condition, as the nth-order (g-conji ite) CCP equals zero.
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To be noted that results obtained for SCLD and OFDM signals and good channels are t

same as for the AWGN channel (for the latter see Chapter 3).

4.4. Recognition of OFDM Against SCLD by Exploitin

Signal Cyclostationarity

Results presented in previous sections are employed here to develop an algorithm for t
recognition of OFDM against SCLD, when affected by a time-dispersive channel, AWG
carrier phase, and frequency and timing offsets. We extend the algorithm proposed
Chapter 3 for the recognition of OFDM against SCLD in the AWGN channel to time

dispersive channels.
4.4.1. Discriminating Signal Features

We investigate the lowest-order non-zero CC to recognize OFDM against SCLD signals.
is is of second-order (one-conjugate), as the first- and second-order (zero-conjugate)
CCs for PSK and QAM signals with more than four points in the signal constellation equal

zero due to zero values of ¢, and c,,,, respectively [5], [11]. Under the assumption

no aliasing, with n=2, ¢ 1, T=[t 0]', and by using (4.8), (4.10), (4.12), (4.14), (2.11),
and (2.13) one can easily obtain the second-order (one-conjugate) CCs and sets of CFs for 1
discrete- time SCLD and OFDM signals respectively, as®

, | anpep T
. . _ -1 _—j2nBep " p
(’rs”D(B’ 0y =a°C )P € €

M M .
g Z Z h(um‘ )g(u - u’"l ) Z h* (urnz o (u ~ Uy, )e-'lbnﬁ“
my =]

u m=1






the second-order (one-conjugate) CC magnitude can be noticed at delays corresponding

the useful symbol period, +pK . This is due to the existence of the cyclic prefix. At delays
around zero and *pK , other peaks can appear (local maxima) in the second-order

(one-conjugate) CC magnitude, depending on the location of the channel coefficients,

U,, m=1....M (here we assume that u, <T, f ). The magnitude of the second-order

(one-conjugate) CC of SCLD and OFDM signals (in the absence of noise) is | Htted versus
CF and delay in Fig. 4.1 a) and b), respectively (for the parameter setting see Sections 3.5.1
and 4.5.1). In addition to the peak at zero delay, CC magnitude peaks are visible for the
OFDM signal at 1=1pK and for different CFs. To be noted that other peaks (loc

maxima) appear around zero and +pK delays; these are due to the time dispersive chann

and occur at delays <, such that t-u, +u, =0 and t-u, +u, =*pK, m,m=1...5.
To be noted that this is an extension of the results presented in Chapter 3 for the AWGN
channel. If  A(u)) =1, withw, =0, and h(xz,)=0, p=2,---M, (4.17) and (4.19) give the

expressions for the second-order (one-conjugate) CCs for SCLD and OFDM signals
AWGN channel, respectively. With sufficiently large K , the peaks in the CC magnitude
delays tpK do not occur in the vicinity of zero, and the existence of such peaks represents
a distinctive characteristic of the OFDM signal when compared with SCLD. The existence
of such peaks in the second-order (one-conjugate) CC magnitude of the OFDM signal

(at zero CF, B=0) is employed here as a discriminating feature to identify OFDM against

SCLD.
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4.4.2. Proposed Recognition Algorithm

At the receive-side, the bandwidth of the received-signal is roughly estimated, and a
low-pass filter is used to remove the out-of-band noise. The signal is down-converted and

(over)sampled at a rate equal to p times the signal bandwidth estimate. Discrimination

between OFDM and SCLD signals is performed by applying the following algorithm,
which consists of two steps.
Step 1:

Based on the observation interval available at the receive-side (L samples), the magnitude
of the second-order (one-conjugate) CC of the baseband received signal is estimated at zero

CF, B=0, and over a range of positive delay values. This range is chosen to cover possible

and pK_, ,with K . and K___ as the minimum and maximum number «

X

peaks at pK_ x> i
subcarriers that we consider (the number of subcarriers is assumed unknown at the
receive-side and a range of possible values considered). The peak pK,,, has to be f
enough from zero delay to serve as an unambiguous discriminating feature between OFDI
and SCLD signals. Over the co  dered delay range, we select that delay value for which the
CC magnitude reaches a maximum.
Step 2:

With n=2 and ¢ =1, the cyclostationarity test developed in [28] is used to check wheth

or not B=0 is indeed a CF for the delay selected in Step 1. This test consists of comparir

a statistic based on the second-order (one-conjugate) CC, against a threshold. This threshold

corresponds to a certain probability of false alarm, P, , which actually represents the probability to
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decide that p=0 is a CF for the delay selected in the Step 1 of the recognition algorithm,

when it is actually not; in other words, that the received signal is OFDM, when this is

SCLD (see Appendix G for the test description). We actually compare the test statistics with a

thresholds, which correspond to P, = 107 . If the test statistic exceeds the threshold, then we

decide that the received signal is OFDM. Otherwise we declare the signal as SCLD.

As one can notice, the algorithm proposed here to recognize OFDM against SCLD does
not require symbol timing, carrier 1d waveform recovery, or estimation of signal and noise

powers.

4.4.3. Complexity Analysis of Proposed Recognition
Algorithm

As previously presented, the | posed recognition algorithm consists of two steps.
As such, the computational complexity of the algorithm is determined by the estimation
the second-order (one-conjugate) CC at zero CF and over the considered delay range,

1€[pK,,  .pK (Step 1), and estimation of a covariance matrix used with the

max ]

cyclostationarity test for decision making (Step 2).

In the following we investigate the computational complexity associated with both Step 1 and
Step 2. In Step 1 we estimate the second-order (one-conjugate) CC at zero CF for a numt

of delays equal to <, -1, +1, with t  =pK, and 7, =pK,, as integers.

According to (2. 14)4, estimation of the second-order (one-conjugate) CC at zero CF, p=
)

* For zero-mean processes, (2.14) gives the estimator for the second-order (n=2) /one-conjugate (¢=1) CC.
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4.5. Simulation Results

Simulations are performed to confirm theoretical developments, and results of these

simulations are presented in the following.
4.5.1. Simulation Setup

Here we consider the simulations setup used in Section 3.3.2. In addition to that, the

channel considered in simulations is a five-tap (M=5) time dispersive channel, wit
coefficients (L) =0.227, h(C,)=0.460, h(C,)=0.688, h(C,)=0.460, and h(,)=0.688
[31],and C,, i=1,...,5, uniformly distributed over {0, {], with C; =25 ps. The thresho

used for decision making is set to 23.0258 (see Appendix G for the description of the te

and parameters involved in it). This threshold value corresponds to a probability of false

alarm P, = 107 [29]. The probability to correctly decide that the modulation format of the

received signal is i, when indeed the modulation format i is transmtted,
P j=OFDM, SCLD, is used to evaluate the performance of the proposed recognitic

cr ’

algorithm. This is ev " 1atc ~ Hased on 100 trials.
4.5.2. Numerical Results

The estimated magnitude of the second-order (one-conjugate) CC of OFDM and SCLD
signals is plotted versus cycle frequency and delay in Fig. 4.2 a) and b), respectively.
These results are obtained for 20dB SNR and 0.1s observation interval. When comparir

results presented in Figs. 4.1 and 4.2, one can notice the existence of non-zero spikes in the
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estimated magnitude at frequencies different than CFs, and over the whole delay range.

This is due to the finite length of the observation interval used for estimation.
The magnitude of the second-order (one-conjugate) CC at zero CF, B =0, is plotted vers

delay (positive values) in Fig. 4.3 a) and b), for OFDM and SCLD signals, respectively.
These results are obtained by using (4.17) and (4.21) in the absence of noise, with signal
parameters set as specified in Sections 3.5.1 and 4.5.1. Peaks at delays

1=4(pK +u, —u, ), m,my=1...5 are to be noticed for OFDM; such peaks do not

appear for SCLD.
Fig. 4.4 shows the estimated magnitude of the second-order (one-conjugate) CC of OFDM
versus delay, for zero CF and at different SNRs. From Fig. 4.4 one can notice the peaks at

delays t=+(pK +u, —u, ), m,m,=1...5, which are specific to the OFDM signal. It

also to be noted that the CC value at zero delay increases with a decrease in the SNR,
which can be explained by the noise contribution to the CC at zero CF and zero delay. F
4.5 shows the estimated magnitude of the second-order (one-conjugate) CC of SCLD
versus delay, for zero CF and at different SNRs. From Fig. 4.5 one can notice that there
nos ficant peak alor the delay axis, even at lower SNR values. As the SM . decrease
the same behavior of the CC at zero . and zero delay can be noticed for SCLD signals, as
well.

Recognition performance of the proposed algorithm is shown in Fig. 4.6. The probabili
of correct recognition, P | is plotted versus SNR, for i =OFDM, SCLD . It can be noticed

~{NFDMIOFDM )

that with 0.1 s and 0.C" s observation intervals, . equals one for S.... abo
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—9 dB and -7 dB respectively. These results do not depend on the modulation type
within the OFDM signal (4-PSK or 16-QAM). On the other hand, P*'*“*) s alwa
one for the whole investigated SNR range. These results hold regardless the SCLD
modulation format.

In Fig. 4.7, the probability of correct recognition, P, is plotted versus SNR f
i =OFDM, SCLD, in time dispersive and AWGN channels, respectively. One can notice
that the recognition performance in the time dispersive channel is close to that in the
AWGN channel, with both 0.1 s and 0.05 s observation intervals.

In Fig. 4.8, the probability of correct recognition, P\", is plotted versus SNR fi
i =OFDM, SCLD, assuming that different observation intervals are available at the receive-

side. As expected, the recognition performance depends on the observation interval. Wit
sufficient observation interval (above 10 ms), the probability of correct recognition reaches
one above a certain SNR; the longer the observation interval, the lower the SNR at whic

this performance is achieved. However, for a shorter sequence (see 7, =7 ms), the

probability of correct recognition does not reach one even at higher SNR (the P reaches
a floor); this is due to the inaccurate estimation when insufficient data are available at the

receive-side.
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delay (in absence of noise), for a) OFDM and b) SCLD signals in time dispersive channel
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Figure 4.8: The average probability of correct recognition, P, i =OFDM, SCLD, versus
SNR in time dispersive channel, {  lifferent observation intervals

4. 6. Summary

In this Chapter, we investigate the cyclostationarity of OFDM and SCLD signals, wh
affected by a time dispersive channel, white Gaussian noise, carrier phase, frequency a:
timing offsets. We derive the analytical closed-form expressions for the nth-order
(g-conjugate) CCs, nth-order (g-conjugate) CCPs, and nth-order (g-conjugate) CFs 1
OFDM and SCLD signals, and obtain a necessary and sufficient condition on the
oversampling factor (per subcarrier) to avoid cycle aliasing. Furthermore, based on the
second-order (one-conjugate) CC, 2 propose an algc . hm to dis inate OFDM against

lations. ...2 pr (.t a_ has t advantage that is devoid
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of preprocessing tasks, such as symbol timing, carrier and waveform recovery, and signal

and noise power estimation.
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Chapter 5

Conclusions and Future Work

In this thesis, we investigate the nth-order cyclostationarity of orthogonal frequency
division multiplexing (OFDM) and single carrier linearly digitally (SCLD) modulat
signals affected by additive white Gaussian noise (AWGN) and time dispersive chann
with a view to recognizing OFDM against SCLD modulations. An algorithm is propos
based on a second-order cyclic cumulant to recognize OFDM against SCLD. The propos
recognition algorithm shows good recognition performance even at low signal-to-noise
ratio (SNR).

The major contributions of this thesis includes the following:

We investigate the-nth-order cyclostationarity of OFDM signal embedded in AWGN, a
subject to phase, frequency and timing offsets. The analytical closed-form expressions 1
the nth-order (g-conjugate) cyclic cumulants (CCs), cycle frequencies (CFs), and cyc. ‘
cumulant polyspectra (CCPs) of OFDM signal are derived.
We obtain a necessary and sufficient condition on the oversampling factor (per subcarrier)
to avoid cycle aliasing for OFDM signals, when these are affected by AWGN, phase a
frequency and timing offsets.
An algorithm based on a second-order CC is proposed to recognize OFDM against
SCLD modulations in AWGN channel as an application of signal cyclostationarity to the

modulation recognition problem.
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We further investigate the nth-order cyclostationarity of OFDM and SCLD modulated
signal affected by a time dispersive channel, AWGN, carrier phase, and frequency a
timing offsets. The analytical closed-form expressions for the nth-order (¢g-conjugate) CCs,

CFs, and CCPs of such signals are derived.

A necessary and sufficient condition on the oversampling factor (per subcarrier)
eliminate cycle aliasing for both OFDM and SCLD signals are obtained for good and b
channels. It is shown that for good channels, this condition is same as in AWGN.

We extend the applicability of the proposed algorithm in AWGN channel to tir
dispersive channels. The proposed algorithm obviates that it does not require the
preprocessing tasks; such as symbol timing, carrier and waveform recovery, and signal a
noise power estimation. This is of practical significance, as algorithms that rely less
preprocessing are of crucial interest for receivers that operate with no prior information in a
non-cooperative environment.

The performance of the proposed algorithm is evaluated through computer simulations.
It can be noticed that the recognition performance of the proposed algorithm does r
depend on the modulation type within the OFDM signal and modulation format used for
SCLD in both AWGN and time dispersive channels. In addition, the recognition
performance of the time dispersive channel is close to that in AWGN channel.

The computational complexity associated with the proposed recognition algorithm is
also investigated. It is shown that the computational complexity mainly depend on the first

step of the proposed recognition algorithm.
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Suggested future work as follows:

Investigation of the applicability of the proposed algorithm to environment with different
propagation characteristics, such as frequency-selective fading.

Study the applicability of signal cyclostatioanrity to blind parameter estimation, such as
number of subcarriers, cyclic prefix period and useful symbol periods.

Exploitation of the OFDM signal cyclostationarity for modulation recognition within t
OFDM signals.

We will improve the accuracy of the proposed recognitnio algorithm by appropriately

choosing K ;.
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Appendix A

Cyclic Cumulants and Cycle Frequencies of Receive

OFDM Signal in AWGN Channel

The expressions for the nth-order (g-conjugate) CC and CFs for the received basebar
OFDM signal are derived here. With the received baseband OFDM signal as in (3.9), and
by using the multi-linearity property of the cumulants [32], the time-varying nth-ords

(g-conjugate) cumulant of .., (s) at delay vector % can be expressed as follows®,

(t T)n g Cum[ ()FI)M(t + Tl ) OFDM(t + Tn ~g-1 )’ OFDM (t + %n—q )’ te ’r(;FDM (t + :En )]’ (A l)

"OFDM

jamay, Z( [

_ ane/'(n—Zq)OejZTl("_z‘])Af’ ZZ Z z z Z ZZ

l Il Aqllnql/‘ nq

* * J2rkAf, 1+ —4T—eT)

LSk ,...,s,\,n‘,"]e

xCumls, ,,...,5 et Sk

n-g~=1r
-1, T-¢T)

n 'n

XejanA_/‘K(Hi,, ¢ ,AI,,,qA,T—eT)e—janA_/'K (t+7, -, ,T-€T) e_jznkA_/‘K (1+%

Xg(t+‘i'l —IIT_ST)-"g(t'i-:En—q—l -

n-q-1

T-¢T)

xg" (t+%,  ~1, . ~€T)...g"(t+7, -1, T—eT)+C, (t7) (A.2)

q n.g?

where * denotes conjugation.

In the following derivations we consider only the cumulant of the signal componen. .

As the data symbols {s,,} on each subcarrier k, k=1,...,K, are iid. and mutually

»

independent for different subcarriers, Cumls; ;....,8, ;S 4 .-, equals zero,

)
n og-1ln-g-1 n gvn g

unless k =---=k, =k and [, =---=1 =1. This occurs for certain delays, 7, p=1...,n.

n

¥ The cumulant of the noise component has to be added to the final result.
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For the OFDM signal, the values of these delays belong to the interval zero to the OFDM
symbol period, T (for a rectangular pulse shape). For a non-rectangular pulse shape, this
interval exceeds the symbol period. At zero delays, the cumulant magnitude reaches

maximum, as this is calculated for the signal and its identical replicas. At delays equal to

the useful symbol period, T, the cumulant magnitude reaches a local maximum, due to the

existence of the cyclic prefix. Non-zero cumulant magnitudes at delays over the symb
period (for rectangular pulse shape) or beyond (for non-rectangular pulse shape), other than
those previously mentioned, are due to the inverse Fast Fourier transform (IFFT) operation.

Under such conditions, (k =---=k,=k and [/ =---=/ =/), the cumulant
Cum(s, ;,....8; ;>S5 -5, ] is non-zero and equals the nth-order (g-conjugate) cumulant f

the signal constellation, ¢, . With & =--=k =k, l=---=1 =I, the cumulant

s.n.q

Cum(s; ;,...,8; >S5 15-->55,1= €, ,, and (A.2) can be further written as,

q

2ot J2RAL Y (), o208 K=1 J2mkA D (), 1,
~ - — A" Jj(n=2q) =1 J2n(n-2q)4f.1 =l
C (t,T),,,q =ac,,e e P e E e J

k=0

ToFDM

[e o n
% Z e,,Zn(n~2q)kAfK (l—lT—sT)Hg(‘)p (t i :Ep _IT— ST),

l=~cc p=1
J2n8f Y (), 1, K-l J2mkfx 3 (0), 1,
_n j(n=2q)6 -1 j2n(n-2q)Aft -1
=ac,,,.€ e ? e Z e i
k=0
n e e
x e/ M2 T 6O (4 7 Y@ " §(¢ ~IT —€T). (A.3)
p=1 {=—0

The Fourier transform of the nth-order (g-conjugate) time-varying cumulant of t

received baseband OFDM signal can be expressed as
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o

Sie "()FDM( O q} .[C’OFDM & T)"q hai
—oo
jznA/;.i(—) i, o K-l j2nkA/ki(—),?,
—d'c,, e 0 " j[eﬂn(n—zmmze PR
o k=0

. - n (‘) ®© . -

xR TT O (143 )@ Y 8(t—IT —eT)]e /> ™dt, (A
p=1 [z

~

where 3{-} denotes the Fourier transform.

By using the convolution theorem, (A.4) can be written as

j2ndf, Z( )pi, K-l /2nkA./th—>,,i,, %

~~ . — — n ( —2 )B = jzn(n_z )Af(’
\‘{Cr()FDM (t T)",q} =a Cs,n,qej e P! je q
k=0 —x
x Jermo i g )Z 8(t—u~IT —eT)e > dudt. (A.S)
-0 p=! |=—

With the change of variables r-u-¢7=v and u=u, and by using the identi

ZS 1—IT)} = ‘Zﬁ(y IT™"), one can easily show that

jZTtAfCZn:(—)p?p K-1 j2Imkdfy i(—),,i,,
~ = = _n -1 _j(n-2q)8 pel —j2r(¥-(n-2q)8f.)el p=i
e, BT, =ac, T e e e ée
@© n
% jej21t(n—2q)kA/k14Hg(')p (u+‘~r )e—j2n(?—(n—2q)Aﬁ.)udu
p
—o p=1
~ -1
x D (7 —(n-2q)0f, —IT™). (A.6)
[

It can be seen that 3{¢, _ (1%),,}#0 only if §=IT"" +(n-2¢)Af., with [ as an integer.

By using the notations p={7"' and u=t, (A.6) can be written as



n

Jmbf Y (5,1, K-l J2mkbfy 3 (), 7,

~ = L= _n -1 _j(n-2¢)0 p= —j21t[_3£T p
e, Dt =a'c,, T e e e AZe !
=0
0 n -
j2n(n-2¢)kAfy *)p = -j2
X jef mn=29) "“Hg P(t+1,)e”’ P
Y p=l
x D 8(F—(n-2q)Af, —IT™"). (A7)
!

By taking the inverse Fourier transform of (A.7) one can easily show that ¢, (1;7),, can

be expressed as’

(1:8), = 2 Be™™, (A8)
{7}

TOFDM
where {7} denotes the set {y|7=B+(n-2¢)Af,, B=IT"",I integer}, and B, is t
coefficient corresponding to frequency ¥ in the Fourier series expansion of t

time-varying cumulant. This implies that the cycle frequency domain is discrete, and the
spectrum consists of a set of finite-strength additive components. By using (2.2) and (A.

one can easily notice that the nth-order (g-conjugate) CC at CF y >, and the CFs are

respectively given as

J2RA[ Y ()R, K=l J2TkAfK D (), 1,

~ - . on -1_j(n-2q)0 - j2nfel P! -1
Crorons (y,r),,‘q =q cs‘,,’qT e e e e !
% J‘Hg('),, (t+%p)ej2n(n-Zq)kAfKre~j2nﬁ!dt’ (A
-0 p=1
and
RO = (717 =B+(n—2q)af,, B=IT"", | integer}. (A1

Note that <™ is used here to denote the CFs which corresponds to the nth-order

n.q

(g-con ) CC of the continuous-time OFDM signal.
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Appendix B

Cyclic Cumulant Polyspectrum of Received OFDM Sign:
in AWGN Channel

The expression for the nth-order (g-conjugate) CCP of the received baseband OFDM
signal is derived here. In this derivation, we consider only the signal component (no noise).

By replacing (A.9) into (2.9), the nth-order (g-conjugate) CCP of r,,,,(¢) can be expressed
as

8

5 b < [ B - Ry
C’()FDM (Y’ f)"‘q - C"()FDM (Y’ T)n,qe € dT] dT,,—l

éc—.@r
8 ———

. Lm e ALY (), Kol J2k Y ()T,
- a"cs ., qrulej(n-Zq)Oe--jZHBtﬂ J' e p- e P

k=0

-aC -0
=3

n - - -

o . ", o iraia s _
» J'eﬂﬂ(n Zq)kA_/AtHg‘ ’(t+tp)e Janbt = j2thy | =) 2t \d%,---d%, dt
—c p=1

K-1=

_ -1_j(n-29)0 —j2nfeT ™), J2n(n=2qYkfyt —j2npr
=a'c,, T o/ (=298 5= j2nfe Z J'g (D)e Dkt o= j27f
k=0 _

% J'g(—). (t+%l)e(~),j2nA,/ﬁ —)l_iZILkA_/'Ki,e—j2nflrld%1“_

—C

—oC

o
. ~ - i2nAf T - i 2nkAf T —j2nf, % ~
X J.g( In I(t+Tn—l)e( Vo 1J2NBL T, Ie( In Ijznl‘Afhrrhle J2nfp 4, ldTn_ldt.

(B.1)
With a change of varniables, i.e., t=¢, u =t+1,,

oy u,  =t+1,_, (B.1) becomes
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By using that j g(De 2™ g% = G(f - Af) and j g (@ TV i = G (- + Af),

with G(f) as the Fourier transform of g(r) and Af as a frequency shift, (B.2) can be

rewritten as
K-1 n-1

é (?;f)",q — a"CS’",qT—lej("_zq)ee_ﬁnBET Z HG(*),, ((_)pj‘p _Afc _kAfK)

ToFDM
k=0 p=|

5 n-1 -
%G (B (T (), (), ], = A, = KA )~ (1= 20)kAf,). (B3)
p=1
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Appendix C

A Necessary and Sufficient Condition on the
Oversampling Factor (per Subcarrier) to Eliminate Cycle

Aliasing for OFDM Signals in AWGN Channel

As mentioned in Chapter 2, the nth-order (g-conjugate) CCP of a discrete-time signal
the periodic extension of the nth-order (g-conjugate) CCP of the original continuous-time
signal, in both spectral and cycle frequency domains. This periodic extension of CCP of the
original continuous-time signal leads to two kinds of aliasing, 1.e., spectral and cycle
aliasing. When sampling is carried out, both spectral and cycle aliasing have to |
eliminated. As mentioned in Chapter 2, the Nyquist condition has to be fulfilled in order to

eliminate aliasing in the spectral frequency domain. To derive a condition to eliminate
cycle aliasing when sampling an OFDM signal, the domain of y for which C‘,OFDM (:1),, 1s
non-zero has to be first obtained. Here we start with the derivation of this domain f{
particular values of n, ¢, and K, i.e.,, n=2, ¢g=0,and K =4 (Example 1), n=2, ¢ 2,a
K =4 (Example 2), n=2, ¢g=1, and K=4 (Example 3), and then we generalize the
results to any #, g, and K.

Example 1: n=2, g=0,and K =4.

For these particular values of n, g, and K, (B.3) becomes



C. G f)ae =P, T e (G, - LGB - f, + )
+G(f, —Af, - A GPB - fi + 0.~ M)
+G(f, - M.~ 28 )G(B~ f, +Af, - 24f)

+G(f, —Af. =38f)GB - £, + A, — 341 )). (C.1)

By using that G(7) = G(/)|e”*"™ , with 1, as a time delay, (C.1) can be rewritten as

é’omM (?;1;1)2,0 - azcsyz,OT—lejzee—jZnﬁsr[l G(f, =M || G(B—f| +0f)]
F1G =, = AL | GB - F, + AF, —Af, )| /™
+|G(J =&, = 28f )| GB = [, + A = 2Af ) | /™K

F G =B, =30 NGB - fy+ . - 38f) [ /5175 ()

We seek to find the range of 7 for which |C._ (¥ /, )20 £ 0. Based on (C.2), one can

OFDM

identify different cases for which | C . (F; /)2, | is non-zero, as follows:

TOFDM
Case 1: (one term out of four, i.e., the first term, from the summation in (C.2) is non-zero):

C2020 (CL.D), and

|G(f, -Af)[#0 (C1.2), and
|GB-f, +Af) %0 (C1.3), and
|G(f, —Af. —Af)|=0 (C1.4), and
|G(f, - Af. —24f,)|=0 (C15), and
|G(f, =M. =3Af)]=0 (C1.6).

Let us consider that g(f) is band-limited to W , with W =T (this is valid in our case, in

1C,. (5 f)a0 0 if (C.3)

which we use a raised cosine window function [2] and a low-pass receive filter).
Based on the conditions (C 1.2), (C 1.4), (C 1.5), and (C 1.6), and by taking into account

that Af, =T ' >W =T"', one can easily show that

- Af. < f, <—W + Af. + Afy. (C




In addition, based on (C 1.3), one can write that

W —Af. < f, <W - Af,. (C..

By using (C.4) and (C.5), it is straightforward that j takes values in the range

2W <P < Af. (C.6)

Case 2: (one term out of four, i.e., the second term, from the summation in (C.2) 1s
non-zero):

C20%20 (C2.1), and

|G(f, - Af. —Af )20 (C2.2), and

(55 Faa 140 if |G([§ ~f+Af. -Af )0 (C23), and )
|G(f,-Af)=0 (C2.4), and

|G(f, - Af, —24f)|=0 (C2.5), and

|G(/, =8/, =38/ ) =0 (C2.6).

Based on the conditions (C 2.2), {C 2.4), (C 2.5), and (C 2.6), and by taking into account

|C

TOFDM

that Af, =T, ' >W =T"', one can easily show that

W+ Af, < f, <-W +Af, + 240y (C.8)

In addition, based on the condition (C 2.3), one can write that

W —Af, + M <B— f, <W —Af, + Afy. (C.9)

By using (C.8) and (C.9), it is straightforward that p takes values in the range

Afy <P <3Afx. (C.10)

Case 3: (one term out of four, i.e., the third term, from the summation in (C ™ is non-zerc
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¢20#0 (C3.1), and
|G(f, —Af. —2Af )0 (C3.2), and
|GB- f,+Af. -2Af,)[#0 (C3.3), and
|G(f,-Af)E0 (C3.4), and

|G/ —Af. - Af) =0 (C3.5), and
|G(f, - Af. -3Af)|=0 (C3.6).

Based on the conditions (C 3.2), (C 3.4), (C 3.5), and (C 3.6), and by taking into account

|C

"OFDM

(F: /)20 12 0 if (C.11)

that Af, =T,' >W =T"', one can easily show that

W+ Af, +Afy < fy < -W + Af. +3Af. (C.12)

In addition, based on (C 3.3), one can write that

W —Af, +2Af, <B— f, <W —Af. +2Af. (C.13)

By using (C.12) and (C.13), it is straightforward that B takes values in the range

3Af, <P<5Af. (C.14)

Case “- (one term out of four, i.e., the fourth term, from the summation in (C.2) is

non-zero):
C20720 (C4.1), and
|G(f, —Af, -3Af) |20 (C4.2), and
N . GPB- f,+4Af. 30/, )20 (C4.3), and
|CrOFDM (?’ﬁ)ZO li 0 lf 9 | (B ﬁ f“ fK )| ( ) (C15)

|G(f, -Af)|I=0 (C4.4), and

|G/, =M. - Af)|=0 (C4.5), and

|G(f, —Af, =2Af,) =0 (C4.6).

Based on the conditions (C 4.2), (C 4.4), (C 4.5), and (C 4.6), and by taking into account

that Af, =T >W =T"', one can easily show that



W +Af. +2Af, < f, <W +Af. +3Af. (C.16)

In addition, based on (C 4.3), one can write that

~W — Af, +30f, <B-f, <W ~Af. +34f,. (C.17)
By using (C.16) and (C.17), it is straightforward that p takes values in the range

5Af, <P <2W +64f, . (C.18)

Other cases in which only one term in the summation in (C.2) is non-zero can be identified.

Derivations are not shown here, but these can be similarly performed. Results are taken into

account when determining the overall range of f.

In order for |C,  (¥; /)., to be non-zero, two terms in the summation in (C.2) can be

TOFDM
non-zero. It can be easily shown that only consecutive terms can be non-zero
simultaneously (there is no spectral frequency range for which two non-consecutive terms
are non-zero). For the case when the first and the second terms are non-zero in the summati

in (C.2), one obtains

F: [)z0 =a%c, 5 oT "' (| G(f - ALY | GB - [ +A1)]

’oFDM

G, -A. NMOIGB-f; +Af, —Af )| ™ e (C.19)
By using th

|G/ - AL E GB - f, + M) =G, - M, - M) =GB - /i + A - A G(f) | for  the
whole range of £, , (C.19) can be expressed as

ej4nAfKt ~j2n[-3*rx

G5 /i )a0 = a2¢, o ™™ T | G(f) P [1+ 2le

— aZC T—lejlﬂe—jlnf}ET ’ (f ‘" Sln(_ TtAfVT )ejznA/AT 12n[_3‘rg . (Cz
20 SIN(2nAfT,)

’oFDM
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In addition, based on (C 5.5) and (C 5.6), one can write that

W —Af, +20f <B—f, <W ~Af. + Ay (C.2¢
By using (C.27) and (C.28), it is straightforward that {§ takes values in the range

—2W +AAf, <P <2W +24f, . (C.29)

Other similar cases can be identified, for which the second and third consecutive terms in

the summation in (C.2) are non-zero. These are not shown here, but derivation of the range

of B can be similarly done; note that results are included when determining the overall

range of f.

Case 7: (two consecutive terms are non-zero in the summation in (C.2), i.e., the third and

fourth terms):

¢20#0 (C7.1), and

4nAfyt, #In, with/asanoddinteger (C7.2), and
|G(f, -Af, =24 )0 (C7.3), and

|G(f, -Af. =341, )0 (C74), and

|G(B— f, +Af. -20f )0  (C7.5), and

|G(B - f,+Af. -3Af)[#0 (C7.6), and
|G(f,-Af)|=0 (C7.7), and

|G/, -4, ~Af) =0 (C7.8).

Based on the conditions (C 7.3), (C 7.4), (C 7.7), and (C 7.8), and by taking into account

| Crovons (5 /)20 1 0 if 5 (C30)

that Af, =T' >W =T, one can easily show that

W+ A, + 30y < f, <W +Af, +24f. (C.31)
In addition, based on (C 7.., and (C 7.6), one can write that
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W —Af. +3Af, <B-f, <W —Af, +20f;. (C.32)

By using (C.31) and (C.32), it is straightforward that B takes values in the range

20 +6Af, <B<2W +4Af, . (C.33)

Other similar cases can be identified for which consecutive terms in the summation in (C.2)

are

non-zero. These are not shown here, but derivation of the range of 8 can be similarly done.
Note that results are included when determining the overall range of f3.

It can be easily shown that three or more consecutive terms in the summation in (C.2)
cannot be non-zero simultaneously (there is no spectral frequency range for which thr

terms are non-zero).
By considering all possible cases for which CPP is non-zero, one can find the range of

values for f as

—2W <P <2W +6Afy . (C.34)

Example 2: n=2, g=2,and K=4.

For these particular values of n, ¢, and K (B.3) becomes

Co (G )an = e,y T2 PTG (= f — AL)G (B + f +A,)
+ GO (= f, —Af, —AfOG (—B+ £, +Af, - Afy)
+ GO (= f, = M, =20/ )G (B + f, + Af. - 24f)

+GO(=f = A =3M)GO (P + £, + A, = 3Af)). (C.39)
u G (-/)=G(_ 1,(C.35) can be written as
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Crpo T Faa =@ aT e e PTG+ 1) 1| GB= =410 |
FIGU, + 8, + MO GB - f - o, +Af ) [ e /™
G, + AL+ 20 | GB - - B, + 280 ) | e/
F1G( + AL +30) |GG~ J, - A, +38f )| e ™5 12 (3

By performing a similar analysis as in Example 1, one can show that B takes values in the

range

W —6Af <B<2W. (C3

Example 3: n=2, g=1, K =4.

For these particular values of n, ¢, and K, (B.3) becomes

C. (F )y =ae, T PTG, - MDIIGB - £, +81,)]
G, = = MO NGB £, + A +Af¢) |
+1G(f - . —28f ) | GB~ f, + A, +241,)|

H G, - M. =385 | GB - i+ A, + 38 e/ (.3

By performing a similar analysis as in Example 1, one can show that p takes values in t

range

W <B<2W . (C.39)

Results obtained for the range of B for n=2,4,6,8, g=0,...,n, and K =4 are shown

Table C.1.







Order, n Number of conjugations, ¢ | Range of p values

8 0 ~8W < B < 8W + 244f,
8 I ~8W <P < 8W +18Af}
8 2 o —8W << 8W +124Af}
8 3 —8W <P <8W +6Af
8 4 —8W <P < 8W

8 5 —8W —6Af, <P <8W
8 6 -8W —12Af, <P<8W
8 7 -8 —18Af, <Pp<8W
8 8 —8W —24Af, <Pp<8W

The same procedure can be applied for any n, ¢ and K. Note that if n is odd, the CCP is zero,

as c,,, =0 [11]. With n even, by using the mathematical induction, one can obtain the range

of ¥ =B +(n-2q)Af, as
W +(n=29)Af. <y <nW +(n=2q)Af. + (n=29)(K -DAf, If n-2¢>0,
—nW +(n=2q)Af. +(n=2g) (K -DAfy <y<nW +(n—2q)A if n-2¢<0, (C.40)
-nW<y<nW, if n=2q.

c?

By knowing the possible range of j, a necessary and sufficient con tion on the
oversampling factor per subcarrier, p, to eliminate cycle aliasing can be derived for ar

or¢  n, number of conj tions, g, 11 "er of subcarriers, K. For example, if

n-2g>0, then, according to (C.40), the range of y  values
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—nW +(n=2q)Af. <y <nW +(n-2q9)Af, + (n-2q)(K -1)Af,. By using this domain of ¥
values with (2.10), one can easily see that f, has to satisfy the following condition to avoid

cycle aliasing

[ =nW +(n=2q)Af, > nW +(n=2q)Af, +(n—2g)(K —DAf,. (C4l)

By replacing f, =pKT,', W =T"" and Af, =T, in (C.41), one can obtain the necessary and
sufficient condition on the oversampling factor per subcarrier, p, to eliminate cycle aliasii

as

p=(n —2q)+[1<“(2nTuT-‘ ~(n- 2q))_] if n-2¢>0. (C.42)

Similarly, for n~2¢ <0 and n-2¢ =0, one can respectively obtain the following necessary
and sufficient conditions on p as
p>—(n-2g)+ [K-' QnT.T " +(n- 2q))_], if n-2g<0,
and (C43)
p= [2n7:‘K_‘T'I_], if n-2q=0.
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Appendix D

Cyclic Cumulants and Cycle Frequencies of OFDM an

SCLD Signals in Time Dispersive Channel

The expressions for the nth-order (g-conjugate) CC and CFs for the received baseband
OFDM and SCLD signals in time dispersive channel are derived here. We obtain the

results for the SCLD as a particular case of OFDM (K =1and 7,, =0). In the following, we

consider only the cumulant of the signal component’. With the received baseband OFD
signal as in (4.5) and by using the multi-linearity property of the cumulants [32], tl

time-varying nth-order (g-conjugate) cumulant of r,,,(r) at delay vector T can

expressed as’,

(t; {-)n,q = Cum[’;)mm (t + %1 )’ -3 Torpm (I + in—q—l )’ r;FDM (t + %n~q )’ A ’;).FDM (t + fn )]

TOFDM

n
J2RAL D (), 7, K-l -1

_ g/ (2000 Li2nn-20) 0, ol ZZ IS Z Kz_l Z ZIZ

k=0 & ky g =00y, k=0l k=0

- L
Se ,...,sk",,"]

n-gq I’In g |\ n-qn-q

X Cum[s,q‘,l yeees St

M . Foo.= ~
x 3 h(E,, )¢/ I AT D o L, 4%~ 1T ~€T)-

my =1

M

~ JIRKAf (=8 A~y T—ET) ~ -

x h(C,, , e grtn et e gt=C, A+ Tyl T —€T)

m,_, =}

M . - —j2nkAfK(l—(-;,,,"Aq+i,,_q—l,,_qT—x:T) . ~ . ‘

x > h (S g t=C, +%,_ -1, T—¢eT)-

m"_q:l

oz - M-8, +T,-1,T-€T) . = -
x 2 (G, )e : g 5, +1,-1,T—¢€T). (D.1)

m, =1
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n
- JIRAS Y (), 1, )
= _n j(n=2q) p-1 J2n(n-2q)Af
oy 3T g =a7C; € e e

K-1 J2mkAfx 3 (), %,
y Ze R Z o/ A=k (=IT~eT)
k=0 |=—%
- J2kfy 3 ()G,

n M .
T2 0@ e (=8, +5, 1T =eT)e 7

p=lm,=l
n n
. , J2RAL Y (), T, S K-1 J2mkAIg D (), 1,
=a"cs,, e;(n—Zq) e pel g/ 2mln- q)Aﬂ'Ze p-i
g
k=0

PRI R 2kl Y (),
x (e’ n(n-2q)kdfx H Z h p(gm,, )g P(I—le) +%p)e e
p=ln,=l
® > 8(t—IT —¢T). (D.2)
{=—00

The Fourier transform of the nth-order (g-conjugate) time-varying cumulant of t]

received baseband OFDM signal can be expressed as,

~f{= e — =~ .- - .2"'-?’
\S{C’()H)M (t’T)"v‘I} - _“crOFDM (t,‘r)n,qe ! dt

j2nA./;-‘Z(—) i, ® K-l j2mkAfg ‘Z(—) T
', e P " j[efz"(”'z‘fmf«-’ze PR
o k=0
. - j2nkafy 3 )
i2n(n~2q)kA () 7 (*) pt ~ o= ’
x(eJ n(n-2q)kAfg 112 h n(cmp)g p(t_qmp +‘cp)e p=l
p=lm,=l
® g, 8(t—IT-€T)]e /> ™d. (D.3)
{=—0

By using the convolution theorem, (D.3) can be written as,
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n
200, jandf, Z( i K- JznkAfKZ<—>,,f,, -
<~ - — J{n-2q) p=1 J2n(n-2q)Af .t
\s{c,OFDM (t,'r),,,q} =a’c,, e Ie

S

;=0 et

- Jj2mkAfy Z (')pémp

* n M
i2 -2 )kA -y (‘): P (.)1 > =~ 2
< Jerme o T 5 h G, g =L, tE e

0 p=lm,=
x " 8(t—y—IT —eT)e /> ™dydt. (D
[=—0

With the change of variables r—y-¢T'=v and y=y, and by using the identity

J{Z&(t—lT) 'Zﬁ(y IT™"Y, one can easily show that

J2raf Y (4,3, K-l Jamkpfy D.(9), 1,
(7)), b=d'c. T, / ’e—jzm—(n—qufc)erze PR
b ng s,n.q
k=0

3{¢

TOFDM

—i2mkafy 30, E

© M
i2m(n-2g) kO *), > (*) P ~ )
% J.e.l m(n-2q)kBfg l[ Z h /(Cmp)g P(u_cmp +Tp)€ P

—x p=lm,=|
x e~,/2n<7—<n—2q)Afr)ydyZ 87— (n—2q)Af, —IT™). (D.
l

It can be seen that I (T g} 20 only if ¥=IT" +(n-2q)Af. , with / as an integer.

By using the notations f=/T"' and y=t,(D.5) can be written as,

IZHALi(—),,f,, . K-l j2nkAf,<i(—),,f,,
1 29)8,, ) - j2nPel .
{romM(’ )”q} ac T J(" q P eJﬂBE Ze p=!
-2kt T g, *) Y D, Oyl 21
.‘ ( - A 'I * P * > -~ il -7 7! '
% J'e/ n(n-2¢q KHZh P(Cm,,)g p(t_gmp-ﬂ;p)e o e Jambt
o p=lm,=l
~ -1
x Y 8(F—(n-2q)0f, —IT™"). (D.6)
!

By taking the inverse Fourier transform of (D.6) one can easily show that ¢, (£7),, ca

TOFDM

be expressed as’
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o

oo (5 = ;Byeﬂﬂ’, (D7)
Y

where {7} denotes the set {j|§=p+(n-2q)Af,, p=IT"",I integer}, and B, is
coefficient corresponding to frequency ¥ in the Fourier series expansion of tl
time-varying cumulant, given |

AL YO, ket 2 D), = n M
_n -1 _j(n-2¢)8 - j2nBeT m ol () 7 ), P -
B, =a"c,, T™'e/" 200 BTy e [TT 2 #" €, e -2, +1,)

¥ s.n.q
k=0 o p=lm,=1

kb 3 (),

xe Pl ejzn(n-zq)kAfK:e—jznﬁ:dt )

This implies that the cycle frequency domain is discrete, and the spectrum consists of
finite-strength additive components. By using (2.2) and (D.7), one can easily notice that t

nth-order (g-conjugate) CC at CF 7 and delay 1 (see previous comments on the del:

values), and the CFs are respectively given as

J2RAL Y (=), E, K-l J2mkAf Y (<),

~ ~ _on, -1_j(n-29)0 - 2nfeT - ’
oy B ng =a’c,, T e e e ; ;}e ;
e Mo ) _ -jznkAfK‘"L(—),,émp ' N
< JIT 2 K7€, (=8, +T)e 0 ey,
0 p=l m,=l
(D.8)
and
o ~\=_ A A -l
Koo ={717=B+(n-2q)af,, B=IT"", | integer}. (D.9)

For the OFDM signal in AWGN channel, the analytical closed-form expressions for t

nth-order  (g-conjugate) CC can be  obtained form (D.8), wh

&, ) =1, with{, =0, and h(?;mp)=o, m,=2,...,M,p=1,..n. Note this is in agreemc

with results presented in Chapter 3.
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obtained from (D.11), when h(émI )=1, with &ml =0, and h(&,,,p )=0,m,=2,.. . M,p=1....n.

Note this is in agreement with results presented in Chapter 3.



Appendix E

Cyclic Cumulant Polyspectrum of OFDM and SCLI

Signals in Time Dispersive Channel

The expressions for the nth-order (g-conjugate) CCP of the received baseband OFDM and
SCLD signals in a time dispersive channel are derived here. In this derivation, we consider
only the signal component (no noise). We obtain the CCP of the SCLD signal as

particular case of OFDM, for K =1 and 7,, =0 (T =T,). By taking the Fourier transform

of (D.8) with respect to %, the nth-order (g-conjugate) CCP of r.,,,,(¢) can be expressed as

@0 oo}

= . jznf‘i‘ v _jznin-l%n—l S )
’omM (r:f )"q - J JCrOFDM ;7 ) € dTl dTn~l
- -0
e e b J2RAL Y (2), T, Kl J2rkAS Y (5), 7,
— i(n— i 7 = ‘
=a"c“,qT lej(" 4)ejn[is Jje p=i Ze !

—oc - k=0

- j2mkAfy Z(—)pémp

© 5 M
(*) > (*), - ~ - 2n(n-2 )kA[I
% JHZh P(Cmp)g !(I—Cmp +‘[p)e p=1 ej n(n—2q X

—0 p=lm,=l
s sl _i -
x e JZnBte Jj2mh, et T"n-lrn—ld{'l ..-dfn_ldt,

_n 1 _j(n-2¢q)6 —A'Zn[.}aT
=a'c,, T e e’
S CGhF (*) ¥

S SO -8, +7)
k=0 _o0 —oo my=1

w o NIIRkCm (=), J2mkB/c T )y j20L e‘fz"f-'**al%l

3G, e, )
—op My, =1

e A Y 2y b N A E



" -
» - - P - —)"_-2 kA IS m j - ot —j2up
x D K, Vg (0= L, Y I g 2t by ()

m, =1

With a change of variables, i.e., r =¢, v =r+ 7%, ---, v, , =t+7,, (E.]) becomes

n ~1_j(n-2q)8 -j2nfeT
(v.f )" g =4a cs,"’qT e e

r()FDM

L S\ N2k () 2 ) B ~(= kDY )

* -\ - g E ( m * = -7 —(— ;v— - v 1V

% J’ h( )I(Cm])e | K ’g( '(VI—CM,)G J2r(f= (=) VKOS Vv,
k=0 _oc my=1
M
(") = [2Tt/\A/kC,,," (*),_ P

_[ Z h l(C’m 1 B lg l(vn--l_-C.’m,Pl)
o My =1

@ /2 Una =Dt M= KOOV, dv

X M —
RN W £ .1 1Y R
< [ 3 A, e Ko g (1=, )
—op M, =!
n-| _
SIS (=) () Fp ~AS—kAfy )t )
e I}Zl e * o2 (B-(n=20)k8 /1 g,

(E.2)
One can notice that the second, third, and fourth lines of (E.2) can be written as a Fourier

transform of two convolved functions, and (E.2) becomes

(Y’f),, Y - ¢ T—lej(n—Zq)Ge—j2nB£T

-’OFDM €y g
K-

X Z I(h(‘)l (v‘)e~(—),j2ﬂkAfKV| ®g(‘)1 (Vx ))e—JZTI(/i*(*)IAfc—(—)I kAf, v dVl
k=0 _»

0

N —(-) |, jankAfyv, . T (e
% I(h( Y-l (v"—l)e (=), J2TkD v, ®g( )H(vn—l))e J2r( = () M=) kA )‘u—ldvn_l

JznZ( Yo U Jy=Do~kbfy
J'(h( ) (t)e (=)n J2TkAfxt ®g( In (t))e p=i e—jZn(B—(n—Zq)kAjK ‘.

-0

(E.
By using that the Fourier transform of the convolution of two signals is multiplication of

their Fourier transforms, and I g(De MV gi = G(f -
g @e W di =G (- + A1), [r@e 7™ < H(f-a), a |
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j K (F)e 27 gt = 1 (~f + Af), with G(f)and H(f) as the Fourier transforms -

=0

g(1) and A(t) respectively, and Af as a frequency shift, (E.3) becomes

~ = n —1_j(n-2q)0 —j2rPeT
Cromm(y’f)w a‘e,, T e e

K-1 n-1

> T4, f, - 8)G " (), ], - A, — kAfy)

k=0 p=i

. n-l =
x H' " ((9), B2 (),((5), f, = Af, — kAfy )~ (n = 2q)kAf, )+ kfy)
p=l

xG (=), (B2 (), (), [, =D, — kAfi )= (n = 2q)kAf ). (E4)

p=1
Similarly, one an easily obtain the analytical closed-form expressions for the nth-order
(g-conjugate) CCP of the SCLD s 1al. This can be also obtained as a particular case of

(E.4), for K =1 and T,=0(T=T,),and is given by,

~ -~ ; s -l * ~ * =
C. (D), =d"c,, 7720 2T (4), f, - )G (), f, - Af)

scLp
p=l

—~ h—l —~
x H' " (=), B=Y (), (), [, =)

x G (=), B —L;(—),,((—),,f”,, - A1) (E.5)
P
Note that based on (E.4) and (E.5) one can easily obtain the analytical closed-fi
expressions for the nth-order (g-conjugate) CCPs of OFDM and SCLD signals in AWGN
channel (with A(t)=8(r) and H(f)=1). These results are in agreement with those

presented in Chapter 3 for OFDM and SCLD, respectively.
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Appendix F

A Necessary and Sufficient Condition on the
Oversampling Factor (per Subcarrier) to Eliminate Cycle
Aliasing for OFDM and SCLD Signals in Time Dispersive

Channel

Similar to the conditions defined in appendix C, here we have derived a necessary and
sufficient condition on the oversampling factor (per subcarrier) to eliminate cycle aliasn
for both OFDM and SCLD signals.

FDM signals

First we derive the CF domain for which CPP is non-zero for n=2, ¢=0, and K =4
(Example 1), n=2, g=2, and K=4 (Example 2), and n=2, ¢g=1, and K=4
(Example 3), and then we generalize the result to any #n, ¢, and K.

Example 1: n=2, ¢g=0,and K =4.

For these particular values of #, ¢, and K, (E.4) becomes

Cro (5 12 = @26, 1 T €™ e BT H(Jy — A )H (B~ fi +81,)
<[G(f, - MIGB - fi+ A1)

+G(f, — O, - A GB - /i +Af. - )

+G(fi- =20 )GB - £+ M. - 20f)

+G(fy, ~ M. =3M)GB - f, + A, = 3Af)]- (F.1)



By using that G(f)=| G(f)|e"2"ftg and H(f)=|H(J)| e, with t, as a time del:

(we assume linear phase for g(¢)), and ¢, (/) as the channel phase response, (F.1) can be

rewritten as,

Cpoon (i f)ng =@,y T/ ™ | H(f =AY | HB -/, + A1)
<[|G(fy - M) GB- /i +41)|
+1 Gy = A, = MO GB - , +Af, = Ay ) | 7
+ ' G(]] —A_f( -2Afk)” G(ﬁ_ii +Af; _2AfK) [ e-jS"AfKTg
+| G(ii _Afc _3Af1\') [ G(B— /;l +Afc — 3AfK )| t?,/'IQnA/)\-t_Q ]e.i(¢u, +bp, )e,ﬁ"ﬁtg ’

(F.2)

where ¢, and ¢, represent the channel phase response at fi-4Af and B-f +4f,

respectively. We seek to find the range of 7 values for which |C,_ (3; /; )2 |20 . Based «

"OFDM
(F.2), one can easily see that,

¢2020 (FLI1), and
J[H(fl—Afr)];tO (F1.2), and

Conm (iS00 i B~ f, F3
|G (V3 /120 [0 |HB- f,+Af)#0 (F1.3), and (F.3)
o (Bfao #0 (F1),
where |CRN (32 f )y [= @ [, a0 | TG, = MIGB - T, + AL

TOFDM

+1GU, ~ o, ~ AN GB ~ J; + A — A 1 €™ 1 |G(f, - A, - 28F) I GB - [, + Af, - 28f,) €™
+1 G, =M. =3AOGB - £, + A, =301, ¢/'*™x% ] is the second-order (zero-conjugate)

CCP of the OFDM signal in AWGN channel.
Let us assume that g(¢) is band-1 ted to W . In our case, g(1)=g"(£)® g™ (), with

g"(¢) as a raised cosine window function [2] that is considered band-limited to 7~', and



I

g" (1) as the low-pass receive filter with bandwidth KAf, . As such, one can easily obtain

that w =T". In our discussion we consider two types of channels, i.e., a good channel
(there are no spectral nulls in the channel amplitude response) and a bad channel (there are
spectral nulls in the channel amplitude response) [27]. When the channel amplitude

response has no spectral nulls, then infinite channel bandwidth can be assumed, and (F 1.2)
and (F 1.3) are valid for any B. On the other hand, when the channel amplitude response
has spectral nulls, one can easily show from (F 1.2) and (F 1.3) that B belongs to a union

of open intervals whose endpoints are sums of frequencies at which spectral nulls occur

the channel amplitude response, and this amplitude is non-zero above or below the
frequencies. Let us denote the union of these intervals by «%, . In addition, based on t

condition (F 1.4) (see analysis performed in Appendix C for the AWGN channel), one ¢

write that

—2W <P <2W +6Af;. (F.4)

By using (F.4) and the remarks on the domain of # values for good and bad channels, one
can conclude the following:

- If the channel is good (there are no spectral nulls in the channel amplitude response), then
the range of B values is given by (F.4). Note that this also corresponds to the AWGN

channel.

- If the channel is bad (there are spectral nulls), then the range of B values is given by

P N (2w, 20 +64f, ).
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Example 2: n=2, ¢g=2,and K =4.
For these particular values of , ¢, and K, (E.4) becomes

C,i)H)M (?’fl )2‘2 — aZCS,2'2T—Ie~j2067j2nB£THt(_f"] _AfC)H. (—G N jl + Af()
<[G*(-f, - Af)G" (-B+ [, + 4f)
+G ' (—f =N = MG (B + [, + M. — Afy)
+ G (=, = Af, = 20/)G (B + £, + Af. — 24y )
+ G (—f, = A, =30,)G (B + [, + Af. =3Af,)]- (F.5)

By using that G (/) =G(f) and H"(-f)=H(f), (F.5) can be written as

]

Vo2 = aPc,,, T e e T H(f + AN HB~ f - A1)
x[|G(f, + M) GB~ f, - 1) |
+GUA+MAMINGP- f,-Af, +Af ) e
GO+ + 28 | GB— f, = A, + 28 ) [ e/

(v:

TOFDM

—j4ndfyt,

F1GU,+ A+ 30O | G(B - J - A, + 38, )| e 72T/ )72y

(F.6)

where ¢, and ¢, represent the channel phase response at fi+Af, and B—f -Af,
respectively. By performing a similar analysis as in Example 1, one can show that

If the channel i1s good (there : no spectral nulls in the channel amplitude response), t
range of B values is -2 ~6Af, <P <2 . Note that this is the same as in the AWGN
channel case.

If the channel is bad (there are spectral nulls in the channel amplitude response), then the
range of B values is «?, N(-2W —6Af,,2W).

- le3: n=2,q9=1, K=4.

For these particular values of n, ¢, and K, (E.4) becomes






- If n=2g,then
—-nW <y<nW. (F. I

Note that these results are identical to those derived for the AWGN channel, given in

(3.15).
For a bad channel, the ¥ range is given by the intersection of previous intervals with 7, ,
where «}, represents the union of open intervals whose endpoints are the endpoints of the
intervals in !, shifted by (n—24)A/. .

By knowing the range of CF values, a necessary and sufficient condition on the
oversampling factor per subcarrier, p, can be derived to eliminate cycle aliasing for ar
order, n, number of conjugations, ¢, number of subcarriers, K, frequency separation Af; ,

and channel. Results will be presented here for good channels, 1.e., without spectral nulls in

the amplitude response. For such channels, with the range of y values as in 7.8)-(F.1(
and by using (2.10), one can easily write the condition to avoid cycle aliasing as follows:
-1f n-2¢ >0, then

fo—=nW +(n=-2)Af. > nW +(n=2q)Af, +(n-2q)(K - DAf. (F.11)
By replacing f, =pKT," in (F.11), one can obtain the necessary and sufficient condition ¢

the oversampling factor per subcarrier, p, to eliminate cycle aliasing as,
pZ[Z,K"(ZnW+(n—2q)(K—1)AfK )]. (F.12)

-If n-2¢<0, the necessary and sufficient condition on p to eliminate cycle aliasing s,
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Appendix G

Cyclostationarity Test Used for Decision Making

A cyclostationarity test, which i1s developed in [28], is presented here for »=2 and ¢=1.
This is used in Step 2 of the proposed recognition algorithm, for decision making. With this
test, the presence of a CF is formulated as a binary hypothesis-testing problem, i.e., und

hypothesis H , the tested frequency B is not a CF at delay t, and under hypothesis H, the
tested frequency P is a CF at delay 7. The cyclostationarity test consists of the following
three steps.
Step 1:

The second-order (one-conjugate) CC of the received signal »(u) is estimated (from
samples) at tested frequency B and delay t, and a vector ¢, is formed as

¢y =[Refc, (B;i1)y,} Imic, (Bi)y,}], (G.1)

where Re{}and Im{}are the real and imaginary parts, respectively.
Step 2:
A statistic ¥, , is ¢ uted for the tested frequency B and delay <,

Y, =L éz,n ig,ll é;,l ) (G.2)

where -1 denotes the matrix inver and %, is an estimate of the covariance matrix

Re{(Qy0+ 7 1)/2} Im{(Qrp—0s)/ 2}

- , G3
Im{(Qy0+ 0/ 2} Rel(Qrr ~0ro)/ 2} (6
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with



Qz,o = {LTO LCum[é,_' (B T)z,vé,-, (B;t)l,l]’

and

Qz,l = 1!1_133( Lcum[ér, (Ba T)z'l 75:, (B, T)zi ]

The covariances 0, and Q,, are given respectively by [28]6

o0

L-1
0o =1im LY Cumlf,, (151), fo, (1 + & 1)) e /227720

Loo 120 E=—o

and

L-1

0, =lm L“Z Z Cum{ f, ,(/;7), fzt,l(l"'&; T)]e MBI

L—»o 1=0 £= 0

where f, (/;1)=r.(I+1)r" () is the second-order (one-conjugate) lag product.

The estimators for the covariances Q,,and O, , are given respectively by [28]°

A (wa_l)/z
Oro=(LL,)" > W 'OFPPE-sLHF@+sL)
s==(L;,-1)/2
and
~ (1‘:»'_1)/2
0 =L, 3 WEOEP@E+sLHEL B+
s==(Lp,~1)/2

L-1
where W' is a spectral window of length L, and F{"(y)=Y r(l+ 1) (e ™.

1=0

Step 3:

(G.4)

(G.5)

(G.6)

(G.7)

(G.8)

G

The test statistic ¥,,, calculated for the tested frequency B and delay t, is compared

against a threshold I'. If ¥, >I", we decide that the tested frequency B is a CF at delay 1;

otherwise not. The threshold I' is set for a given probability of false alarm, P., which is

6 . .
These cquations are valid for zero-mean processes.
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defined as the probability to decide that the tested frequency f is a CF at tested delay 1,
when this is actually not. This can be expressed as P, =Pr{¥,, >['| H,} . By using that the
statistic ¥, , has an asymptotic chi-square distribution with two degrees of freedom under

the hypothesis H, [28], the threshold I' is obtained from the tables of the chi-square

distribution for a given probability of false alarm, P, .
















