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Abstract 

Marine pollution is a senous environmental problem facing many indust1ialized and 

developing countries. It has short-term and long-term impacts on the ecological ystems, 

human health, and economy. These impacts can be minimized through proper offshore 

and coastal zone management, continuous monitoring, and enforcement of regulations. 

Outfall disposal can be an effective environmental and economical method for 

discharging treated industrial and municipal effluents to the marine environment. This is 

because the dynamic nature of the ocean can enhance the dilution process of the effluent. 

However, if the outfall is not properly designed and monitored, it may have negative 

impacts on the marine biota and public health. Well designed outfalls result to better 

effluent mixing within the ambient water. 

In this work, the performance of an existing staged diffuser outfall design, at Spaniard' s 

Bay, was evaluated using the Cornell Mixing Zone Expert Model (CORMIX) length 

scale model and compared with an alternative T-Shape riser design using Roberts, Snyder 

and Baumgartner (RSB) length scale model. The existing staged outfall design provided a 

better near-field dilution than the T-Shape riser for shallow coastal waters. For model 

validation and water quality assessment, an environmental monitoring experiment was 

canied out around the Spaniard's Bay outfall. An Autonomous Underwater Vehicle 

(AUV) and towed sensor platforms were used for monitoring salinity, temperature, 

turbidity, chlorophyll a, and dissolved oxygen. The data were statistically analyzed and 

mapped for plume tracking and water column assessment purposes. Turbidity and salinity 

observations were investigated as a natural tracer of the effluent. The turbidity values 
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were decreasing while moving from the effluent boil to a downstream direction. The 

salinity variations were also decreasing while moving from the outfall to a downstream 

direction. The low salinity and high turbidity results of more than 13000 in-situ 

observations were positively correlated. As for the water quality status, the dissolved 

oxygen percent saturation and chlorophyll a concentrations were not significant 

indicating a good water circulation in the bay. The experiment results demonstrated that 

effluent plume can be traced by in-situ monitoring of turbidity and salinity as natural 

tracers. These parameters were also applied for near-filed hydrodynamic model 

validation. 
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Chapter 1. Introduction 

1.1. Marine Pollution 

According to the United Nations Environmental Program (UNEP, 2002), nearly 40 

percent of the world population lives in coastal areas less than 60 kilometers from the 

shore, most of which are being threatened by untreated sewage and industrial discharges. 

Disposal of raw sewage to the marine environment may have an adverse impact on the 

marine habitats and human health. Shannon et al. (2003) reported that estrogen 

concentrations were found higher near to a costal sewage source than the open ocean. 

The focus of much research in the past has been on the impact of human activities on the 

oceans, particularly through anthropogenic pollution and exposure risks. Marine 

pollutants are characterized as biological , chemical, and physical. Some of the important 

anthropogenic sources of marine pollution are municipal discharges and offshore 

operations, such as produced water and drilling mud. Human exposure can be through 

direct contact, such as swimming, or indirect contact, such as consumption of 

contaminated seafood. 

Ocean disposal is a common practice for discharging effluent wastes into the marine 

environment. The dynamic nature of the ocean constantly dilutes pollutants and 

minimizes stagnant conditions. However, disposal of excessive quantities of toxic 

pollutants can cause adverse impacts on the marine environment. In order to minimize 

these impacts, it has been regulated by authorities. Several socioeconomically and 
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environmental criteJia are considered when establishing these regulations, such as the 

current and future intended use of mruine resources, ecological vulnerability, bathymetric 

formation, and ambient conditions. 

1.2. Marine Outfalls 

Ocean outfalls are submerged structures designed to enhance the effluent dilution in the 

ambient. The design of these structures varies depending on economical and 

environmental considerations. A careful investigation of the ambient environment should 

be carried out before selecting the outfall location. The investigation should consider the 

ambient conditions, including depth, currents, and density stratification. Continuous 

monitoring programs should be carried out on regular bases to assure that outfalls are 

working properly and have minimal environmental impacts. Hydrodynamic models are 

important tools used for predicting the performance of proposed outfall designs. 

1.3. Outfall Modeling 

Outfall designs are evaluated through hydrodynamic models. In general, these models are 

developed to predict what changes may occur during some events in nature. Reasons for 

constructing mathematical models are as follows: 

(1) to gain a better understanding of the transport mechanism of a pollutant; 

(2) to determine exposure concentration to aquatic life or humans; and 

(3) to predict future conditions under different scenarios for supporting management 

decisions. 
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For outfall discharges, these models combine hydrodynamic and oceanographic equations 

obtained from a seties of experiments. In order to develop a realistic model, it is 

imp01tant to integrate three components controlling the fate and transport mechanism of 

the plume. These components are: 

• Effluent characteristics, 

• Diffuser geometry, and 

• Ambient conditions 

1.4. Water Quality Monitoring 

Environmental monitoring programs are undertaken to provide information to answer 

questions related to the quality of the water body. They may be a single exercise to 

examine a particular issue or may be ongoing programs to ensure that the water quality 

criteria are met. Effective monitoring programs obtain useful information and are not just 

data collection practices. They require collection of physical, chemical, and biological 

information and the interpretation of the measurements. Maher and Batley (2002) have 

addressed the following questions regarding to the need of environmental monitoring; 

• What type of information is required? 

• What specific data is needed? 

• When, where and how the data is to be collected? 

• What are the occupational health and safety issues? 

• How is the data to be analyzed and interpreted? 

• How is the quality of data to be assessed? 

• What procedures are needed to ensure that data are of defined standards? 
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• How data is to be managed? 

• How is information to be presented and communicated to those who need it? 

Water quality programs are often designed for monitoring tivers, lakes, underground 

aquifers, and matine environments. As a common practice, random field sampling and 

laboratory analysis may indicate the presence of a problem in a water body, but does not 

provide information on the extent or boundaries of these pollutants, particularly in a 

rapidly changing environment, such as the ocean. These variations can highly affect the 

fate and transport mechanism of contaminates. In-situ monitoring is considered an 

emerging technology for water quality monitoring and plume tracking. It can be 

performed through simple sensors such as fiber optics or more complicated analytical 

systems, such as mass spectrometers. 

Three approaches are being used for water quality assessment. These are laboratory 

analysis, on-site analysis and in-situ monitoring. 

The first approach is conducted through a land based laboratory. This approach involves 

sample collection, preservation, storage and transportation prior to laboratory analysis. 

For quality control and assurance objectives, a chain of custody procedures are performed 

to track the sample from its source to its final destination. The United States 

Environmental Protection Agency (USEP A) has developed detailed procedures to 

preserve the integrity of the sample during its collection and storage. Nevertheless, 

uncontrollable chemical , biological and physical processes may occur and change the 

nature of the sample before its analysis. Furthermore, this method is often costly and does 

not provide information on spatial and temporal distribution. 
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The second approach of analysis is called on-site analysis. This approach mmtmtzes 

many artifacts in companson with the first one. Collected samples are immediately 

analyzed on the shipboard or facility equipped with necessary laboratory instruments. 

Technically, this method still does not con·elate between the sample and its surrounding 

physical environment, such as temperature and hydrostatic pressure. In addition, it is not 

economically feasible to mobilize sophisticated laboratory equipments (e.g. gas 

chromatography, mass spectrometry) and trained staff to perform analysis at different 

locations (Buffle and Horvai, 2000). 

The third method is the in-situ environmental monitoring. This method minimizes most 

of the artifacts occurring during collection, storage and transpottation. It has the 

following advantages over the first two methods; 

• Performs real-time measurements in locations difficult to reach, such as great 

depth, 

• Minimizes the cost of data collection and analysis, 

• Accommodates temporal data banks of complete ecosystems, 

• Measures concentration gradients at environmental interfaces at high spatial 

resolutions, and 

• Eliminates biochemical and physical changes occurring during sample collection 

and storage. 

As for the disadvantages, this method is a relatively new and covers few parameters 

compared to laboratory analysis. 
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1.5. Autonomous Underwater Vehicle (AUV) 

AUV is an unmanned submersible robot that is capable of caJTymg out miSSIOns 

autonomously. It is powered by batteries or fue l cells and can operate in deep waters. 

This device can autonomously perform pre-programmed missions for several hours 

without any human interference. They have various research and industrial applications. 

One of its promising applications is environmental monitoring. The AUV can be 

integrated with environmental and oceanographic sensors to provide high resolution 

spatial and temporal environmental data. These data can provide researchers and 

regulators a better understanding of the changes occuning in the marine environment. 

Table 1.1 demonstrates the milestone of some important events during the development 

of AUVs. A number of vehicles are commercially available including, Hugin (Norway), 

Mruidian 600 (Denmark), AQUA EXPLORER 2 (Japan), Sea Oracle (U.S .), Explorer 

(Canada) and CETUS II (U.S.) (Wernli, 2000). 

The vehicle can be integrated with in-situ environmental and oceanographic monitoring 

sensors to collect spatial and temporal information simultaneously. Siccardi et al. (1997) 

carried out a mission using multiple input fiber optic fluorometers on the AUV to identify 

the main features of marine plants growing on the sea bottom. On-board, a submersible 

microscope and a CTD equipped with multiple sensors were mounted on AUV to 

measure lake water quality (Kumgai et al., 2002). Ramos et al. (2001) integrated in- situ 

sensors and UM3 near-field model with an AUV to predict outfall plume characteristics. 

A survey of oxygen concentrations near the bed of a lake has been conducted through 

"TanTan"AUV (Ura et al. , 2002). 
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Table 1.1. AUV Development Milestone 

Date AUV Milestone 

1969 University of Washington 1st under-ice operations 

SPURV and UARS 

1976 EAVE East-West testbeds 1st systems integration- East-West testbeds 

1980 Epaulard JL Michel 1st seabed surveys. 

1986 ARCS, AUSS JL Michel, ISE 1st Real time operating system 

PTEREOA. Twin Burger New hull forms 

Tamaki Ura - liS , 

1992 Odyysey, ABE Low cost AUVs 

1992 IMTP, SEA LION Lake science 

1992 MARIUS Integrated navigation 

1994 THESEUS Longest mission under-ice 

1995 HUGIN - Karsten Vestgard Commercial development 

1996 AUTOS DB Science missions 

1997 ISE 1st working fuel cell 

1998- FUGRO, C and C, DEBEERS, Applications 

2000 and REMUS 

2001 SWIMMERS 1st Hybrid AUVs 

2002 Solar Powered AUVs Alternative power 

2004 URASIDMA, LR AUV Longest missions 
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The long endurance solar powered AUV was used to measure DO concentration using 

fast-response galvanic oxygen micro-sensor in Greenwich Bay, Rhode Island, U.S.A 

(Crimmins et al., 2005). 

Recognizing the importance of this technology, Memorial University of Newfoundland 

(MUN) has recently acquired an AUV for oceanographic and environmental research 

applications. The vehicle known as "Explorer" is designed and constructed by 

International Submruine Enginee1ing Ltd (ISE). It consists of three sections. The reru· 

section contains the propeller and four maneuvering planes, the middle section consist of 

electronics and control system and two maneuvering planes, and the front section is 

reserved as a pay load for sensors or analytical monitoring system. More specific details 

on AUV will be discussed in the later sections. 

1.6. Thesis Overview 

The organization of the thesis is as follows: 

Chapter 2 addresses a literature review on length scale hydrodynamic outfall modeling, 

an overview of existing outfall disposal regulations, and technical specifications of 

currently available in-situ monitoring sensors and analytical systems. 

Chapter 3 describes the different components involved in the design and organization of 

the environmental monitoring experiment. 

Chapter 4 demonstrates the modeling results of an existing staged diffuser design and an 

alternative T-Shape riser design. Also, the field experimental data were analyzed and 

mapped for plume tracing and water quality assessment. 
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Chapter 5 further di cusses the results for plume tracking, water quality as essment and 

model validation, and Chapter 6 provides a conclusion and recommendations obtained 

from this study. 
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Chapter 2. Outfall Modeling and Plume Monitoring 

2.1. Outfalls Modeling 

Hydrodynamic models can be used to better understand the fate and transport of 

pollutants, dete1mine exposure concentration to aquatic life or humans, and evaluate the 

outfall dilution mechanism. Three basic factors contribute to the dilution process of 

effluent in the ambient. These factors are the effluent characteristics, the diffuser 

geometry, and the ambient conditions. 

2.1.1. Effluent Entrainment 

Many factors contribute to the mixing of effluent when discharged into an ambient body 

of water. The mixing process occurs during two important phases: a jet and a plume. The 

term "jet" is usually associated with the effluents high velocity relative to the ambient; 

where the "plume" is associated with the buoyancy forces of the ambient. Entrainment is 

defined as the process of entraining ambient fluid into a jet or a plume. Around the 

discharge point, where the relative velocity between the jet and the ambient is high, the 

entrainment is also high. As the jet moves through the ambient and loses its momentum, 

the entrainment rate decreases. Turbulent eddies also contribute to the mixing process by 

grabbing large quantities of ambient fluid and carrying it along with the jet (Davis, 1999). 

When the discharge fluid is less dense than the ambient, the buoyancy affect forces the 

plume up to the ambient surface. During this process, the effluent is also entrained due to 

viscosity and turbulent shear. Molecular diffusion resulting from the random motion of 
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the molecules in the fluid also causes additional mixing where the higher concentration 

flows to the direction of the lower concentration. This process is governed by Picks law 

as follows: (Davi , 1999). 

(2.1) 

where f is the vector diffusion flux , D, is the diffusion coefficient of tracer i, 

and VC; is the gradient of the concentration of tracer i. 

Initially, the diffusion process produces a shear layer, where the jet penetrates the 

ambient causing it to increase its velocity and the ambient penetrate the jet causing it to 

decrease its velocity. Ultimately, the ambient penetrates the jet' s centerlin cau ing it to 

lose its momentum. During this proces , the centerline velocity and concentration are 

constant until they are penetrated by the ambient (Figure 2.1 ). This region is expressed by 

the Gaussian Probability Function (Davis, 1999). 

(2.2) 

where ud is the centerline velocity, and b is the partial plume radius given by the 

standard deviation of the profile. A close approximation to this function is 2/3 power 

profiles (Davis, 1999). 

(2.3) 

where b' is the plume radius. 
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\ Velocity profile 

Figure 2.1. Development Zone Profile (Davis, 1999) 

2.1.2. Diffuser Configuration 

A diffuser is defined as an extended part of the outfall submerged by ambient water and 

closed at the end. The diffuser may contain two or more discharge ports. These ports can 

simply be holes or risers. Risers are vertical or inclined extensions of a diffuser, which is 

most often buried under the seabed. Each riser may consist of one or more discharge 

ports. The most common types of diffusers are unidirectional and staged (Figure 2.2). 

Outfall designers make diffusers in a way to enhance the near-field mixing process to 

meet regulator's objectives and minimize environmental impacts. Port otientation, 

spacing and discharge velocity highly influence the near-field mixing process. It is 

commonly believed that more discharge ports allow faster dilution and longer spacing 
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prevents plumes from mergmg. Considering regulatory requirements and economy, 

outfall designers often manipulate designs to combine both factors. In coastal areas 

dominated by currents and tides, alternating diffusers on both sides are recommended 

over other types (Mendez-Diaz et al. , 1996). 

Unidirectional Diffuser Design 

Staged Diffuser Design 

Figure 2.2. Diffuser Geometry of Unidirectional and Staged Diffuser Design (Jirka et al., 1991) 

To avoid flooding during peak hours, it is recommended to have the head loss within the 

diffusers as low as possible and maintain a constant upstream pumping. On the other 

hand, it is preferable to have high discharge velocities for more rapid mixing (Davis, 

1999). 
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2.1.3. Ambient Conditions 

Ambient conditions are the external factors contributing to the effluent dilution process. 

They highly control the dilution process of an effluent through buoyant spreading 

motions, passive diffusion due to ambient turbulence, and passive advection by ambient 

velocity (Doneker and Jirka, 2004).The most dominating ambient conditions are current 

speed and direction, stratification, tidal movement, and ambient depth . 

2.1.3.1. Current 

In most cases, the current carries the plume tn its direction and causes downstream 

advection. In stagnant environments, the buoyancy plume will tend to rise to the SUiface 

and spread in all directions. CLments can be considered as low, moderate or high. The 

higher the magnitude of the cunent, the more dilution is achieved. The configuration of 

the discharge ports and the cunent can highly affect the initial dilution process. Effluent 

dilution can be enhanced when discharge angles are perpendicular to the current. Tian et 

a!. (2004-a) conducted an experiment using a multipart diffuser in unstratified flowing 

water; they concluded that in a flowing cunent, port spacing plays a lesser role in the 

dilution process. 

2.1.3.2. Stratification 

Ambient stratification can significantly affect the plume dynamics. When a low density 

effluent is discharged into a higher density ambient, the buoyancy force can cause the 

plume to rise up unti l it approaches the same density of the ambient "positive buoyancy". 

When the effluent density is higher than the ambient, the plume tends to sink down 
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"negative buoyancy" until it approaches the same density of the ambient or hits the 

seabed. The level where the plume has the same density of the ambient is called trapping 

level. When the plume reaches this level, it starts moving horizontally along the current 

(Figure 2.3). A Pycnocline phenomenon occurs in lakes when a temperature variation 

between the lower layer and the surface layer is high and in coastal areas when density 

variation between these layers is also high. The stratification is expressed as a linear or 

two layers stratification. 

Figure 2.3. Effluent Discharge in a Stratified and Current Flowing Environment. 
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2.1.3.3. Tides 

During the 24-hour daily cycle, tidal changes cause variations in depth, current speed and 

direction. In shallow coastal areas, tidal currents also cause minor variations to salinity, 

as the water moves in and out of the bay. 

2.1.3.4. Depth 

Depth can enhance the vertical mixing process. For this reason, regulators restrict the 

outfall discharge depth. It is recommended to install outfalls at maximum possible depth 

to allow better vertical mixing and minimize surface spreading. Discharges into shallow 

water often results in incomplete dilution and spread of pollutants at the surface layer. 

Often, interaction of the plume with the surface water and seabed can cause instabilities. 

Coanda effects occur when the plume sinks down to the bottom causing bottom 

interaction, which may cause a negative impact on the benthic communities. 

2.1.4. Mixing Zone 

A mixing zone ts an area where effluent discharge undergoes initial dilution and 

secondary mixing in the ambient water. The USEPA has defined this zone as where water 

quality criteria can be exceeded, conditional that acutely toxic conditions are prevented 

(Doneker and Jirka, 2004). By applying this approach, ambient water can be used to 

dilute pollutants and minimize environmental impacts. Two mixing zones occur when 

effluent is discharged into the ambient water. The first zone is called the near-field 

mixing zone or Regulatory Mixing Zone (RMZ) and the second zone is called the far

field mixing zone. In the near-field, the mixing process is controlled by the jet 
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momentum and plume vertical buoyancy effects. Within this zone another zone is 

allocated for toxic substances, and it is called the Toxic Dilution Zone (TDZ). The 

USEPA has set a national water quality criterion for effluents containing toxic 

contaminates; the Criterion Continuous Concentration (CCC) recommends the highest in 

stream concentration of a toxicant to which organisms can be exposed without causing 

unacceptable effect. The Criterion Maximum Concentration (CMC) is another USEPA 

criterion for the highest in stream concentration of toxicants to which organisms can be 

exposed for a short period of time without causing an acute effect (Figure 2.4). 

Outfall 

s 
h 
0 

r 
e 
1 
1 

n 

Ambient Water Body 

Regulatory Mixing Zones 

Figure 2.4. USEP A Regulatory Mixing Zone Criteria (Doneker and Jirka,2004) 

In the far-field, the mixing process is dominated by ambient conditions, including current 

speed and direction, through which the dilution process occurs through advection. The 
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definition of a mixing zone varies widely from one place to another, depending on the 

ambient conditions and vulnerability of the marine ecosystem. For example, Table 2.1 

demonstrates different mixing zone regulations in the United States (Doneker et al., 

1991). 

Table 2.1. Mixing Zone Regulations of Different States (Doneker and Jirka, 1991) 

State Water body Dimensions 

Florida Streams, rivers ~ 800 m and ~10% total length 

Florida Lakes, estuaries ~ 125,600m *2(600 ft radius) and 

~ 10%surface area 

Michigan Streams 
~ 14 cross-sectional area 

Michigan Lake Michigan 
~ 1000 ft radius 

West Virginia Warm-water fish streams 
~ 33 % cross-sectional area 

and ~ 10* width 

West Virginia Cold-water fish steams 
~ 20 % cross-sectional area 

and~ 5* width 
West Virginia Lakes 

~300ft any direction 

In a highly dynamic environment such as a coastal area, the near-field mixing process is 

complicated and changes rapidly with time and space. Since regulators are more 

concerned with the near-field mixing zone, the dilution or the mixing process can be 

predicted using appropriate dispersion models. The most important characteristics of 

near-field prediction models are the dilution rate, near-field length and width, and plume 
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rise. The end of the near-field is where no significant dilution changes with distance. 

Davis (1999) has reported this location as where the dilution does not exceed 10 % of its 

ultimate value. One of the most commonly used models for predicting the near-field 

dilution are length scale models. 

2.1.4.1. Length Scale Near-Field Mixing Zone Models 

Considering the short time period in which the mixing process occurs in the near-field 

zone, chemical and biological transformations are considered negligible and are only 

limited to conservative or linear decay. Therefore, it is presumed that the dilution process 

mainly occurs due to advection and diffusion processes (Bleninger and Jerka, 2004). The 

length scale models are based on laboratory experiments and a dimensional analysis 

concept. Davis (1999) has summarized the concept as many variables contributing to the 

near-field mixing process; these variables can be arranged in groups that have dimensions 

of length, and the magnitude of these scales reflect how significant the mixing process is. 

Therefore, the different variables contributing to the mixing process can be expressed in a 

dimensional length scale to demonstrate those occurring in the field. Often, many 

experiments are conducted to characterize the behavior of these plumes. When the 

dilution collapses at a particular distance or length, this length is set as a boundary 

between the near-field and far-field mixing zone. If the objective is to characterize the 

dilution at a particular length, the length scale variable (e.g. Ll!L2) is considered as the 

independent variable, and dilution rate is considered as the dependent variable (Q/Qo) 

that falls through the center of the experiment data. Best fit equations are derived from 

these bench scale experiments to describe the relationship between these variables. Davis 
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(1999) has described the advantages of this method as easy to characterize and includes 

boundary interactions, which do not exist in other mathematical models. The author 

described its limitation, as extrapolation of field data may lead to prediction errors, where 

the best fit data do not necessarily represent all boundary sides of the plume. 

Furthermore, it is not always possible to have the same boundary conditions obtained 

from lab experiments as those in field. RSB and CORMIX are commonly used length 

scale models for near-field prediction. 

2.1.4.1.1. RSB Near-Field Model 

The RSB model is an empirical length scale model designed by Roberts, Snyder and 

Baumgartner. The model predicts the near-field mixing zone of a submerged multi port T

Shape riser. The model was constructed based on series of laboratory experiments, 

considering different ambient and discharge conditions. These experiments were 

conducted in both unstratified and stratified stationary and flowing waters. Figure 2.5 

demonstrates a multi port T -Shape riser discharging in a stratified flowing ambient. 
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Figure 2.5. Multiport T -Shape Diffuser Design (Tian et al.,2006) 

where x is the coordinate system origin extending from the center of the diffuser to a 

downstream direction, y is the transverse distance, Z is the height from the port, S is the 

spacing between ports, n is the total number of ports, d is the round port diameter, Uj is 

the port exit velocity, u is the uniform current flow at angle 8 to the diffuser axis, Po is 

the horizontal buoyant effluent of density at velocity Uj, Pa is the ambient density at the 
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level of the pmt, pis the ambient density decreasing linearly with height, Zm is the height 

to top of spreading layer, and Zn is the height of the near-field dilution. 

Tian et al. (2004-a) have characterized the discharge as a point source when the initial 

djlution is controlled by ports geometry and as line source when the discharge is 

controlled by the buoyancy force. They have defined the source fluxes per unit diffuser 

length of volume, momentum, and buoyancy, b as : 

Qj = (n I 4)d 2 u j for point source, and 

q = QT for line source 
L 

(2.4) 

(2.5) 

where Qj is the flow per port , Lis the diffuser length , and QT is the total discharge 

The authors charactetized the momentum flux as: 

M = u jQj for point source, and 

m = u . q for line source 
J 

They have described the buoyancy flux as: 

B =g o Q j for point source, and 

b =g' oq for line source 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

where B is the point source buoyancy flux, g o IS the modified acceleration due to 

gravity, b is the line source buoyancy flux, and q is the flow rate per diffuser length. The 

line source length scales for the volume, momentum and buoyancy flux can be expressed 

in the following equations respectively (Tian et al. , 2004-b). 
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q2 
l =

q m 

bY:, 
l =

b N 

(2.10) 

(2.11) 

(2.12) 

In a stratified environment, Daviero and Roberts (2006) have con idered the buoyancy 

frequency as: 

N = ~(- g I Pn )(dpn I d=) (2.13) 

where g is the gravity force and dp) d z is the stratification difference at the discharge 

depth. They calculated the modified acceleration due to gravity using the following 

equation: 

(2.14) 

and the discharge per unit diffuser length was calculated by (Tian et al., 2004-a): 

(2.15) 

The buoyancy flux per unit length is computed by: 

(2.16) 

Therefore, the length scale for a linear stratified environment can be obtained from 

(Daviero and Roberts, 2006): 

(2.17) 

Tian et al. (2006) conducted an experiment under stratified and current flowing 

environment. As a re ult of their experiment, they concluded that for a line source length 
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scale, the near- field mixing is effected by p011 pacing. When s llb < 2 the near-field 

dilution can be predicted by: 

(2. 18) 

when s I lb 2:: 6 the near-field dilution can be applied using: 

(2.19) 

For a stationary environment when s I lb <2 the near-field equation become : 

(2.20) 

where the dilution coefficient C1 = 0.86 . 

Considering a f lowing ambient, the effect of the cun·ent can be calculated using: 

(2.21) 

From a series of laboratory experiments conducted in stratified flowing environments 

(Tian et al. , 2006) found that when s I lb < 2 the near-field length is obtained using: 

X, I lb = 8.0F 11 3
. (2.22) 

For a weak current when F <0.1 Tian et al. (2006) suggested using equation 2.23 for 

computing the waste field rise heights 

Z,/ lb = 3.2m (2.23) 

and equation 2.24 for centerline height 

Z,llb = 1.7 (2.24) 
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In unstratified flowing water, Tian et al. (2004-a) reported that the upstream dilution and 

merging are more rapid than the downstream. The authors concluded from this 

experiment that cunent plays a more important role than port spacing. Daviero and 

Roberts (2006) reported that in a stratified stationary ambient condition, where the port 

spacing was vmied along the diffuser length, the end of the nem-field occurs at a distance 

equivalent to one plume rise height from the diffuser. Tian et al. (2006) found that the 

discharge can be predicted as line plume when s /l b <1.0 and as point plume when 

sll b"?:. 6.0 in a stratified flowing environment. In such conditions, the authors emphasized 

that the plume dynamics become more complex. They concluded that depending on the 

port spacing, upstream plumes may merge with themselves more than with downstream 

plumes. 

2.1.4.1.2. CORMIX Model 

Doneker and Jirka (2001) have described the Cornell Mixing Zone Expert System 

(CORMIX) as a series of programs developed to analyze and predict aqueous 

conventional and toxic dischmges into water bodies. The system was developed for the 

USEPA by Cornell University during the period of 1985 to 1995. Since then, the softwme 

has been upgraded for more advanced applications. However, its main emphasis is on the 

diffuser geometry and dilution chmacteristics of the initial mixing zone for regulatory 

compliance applications. The program consists of three subsystems: CORMIX1 , for 

single submerged discharges; CORMIX2, for multiple port dischm·ges; and CORMIX3, 

for surface dischmges. CORMIX methodology is based on the concept of boundmy 

interactions. Boundm·y interactions occur when the effluent interacts with the surface or 
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bottom or with ambient density. From these interactions, the mixing is charactetized as 

stable or unstable. Doneker and Jirka (1991) have reported that CORMIX has built in 80 

different classification schemes for submerged single port, multipart and surface flow 

discharges. The classification schemes use the length scale argument to predict the near

field mixing zone. The system uses 20 different length scales to describe all possible 

discharges. Doneker and Jirka (2002) have repmted that CORMIX 1 applies to more than 

90% of submerged single port discharges; CORMIX2 applies to more than 80% of 

multipart diffusers; and CORMIX3 applies to more than 90% of positively buoyant 

surface discharges. The early versions predict the mixing zone under steady-state 

conditions. However, new versions can be applicable to highly unsteady environments 

including tidal reversal (Doneker and Jirka, 2002). An artificial intelligence technique is 

used to check for data consistency, calculate basic length scale parameters and determine 

flow classes for simulation (Doneker and Jirka, 1991). Figure 2.6 illustrates a length scale 

diagram used by CORMIX for hydrodynamic classification of dense near surface single 

port discharges (Doneker and Jirka, 202). The EPA has recommended CORMIX as an 

analysis tool for permitting industrial, municipal, thermal, and other point source 

discharges (Doneker and Jirka, 2002). The system can also be used as a design tool for 

ocean outfall to improve its near-field mixing process. 
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Figure 2.6. CORMIX Diagram for Surface Discharges (Doneker and Jurka,2001) 

Compared to other mixing zone software, CORMIX is a user friendly; it guides the user 

through the modeling process and interpret output predictions. In an assessment study for 

brine discharges from a desalination plant (Doneker and Jirka, 2002) have used CorJet 

integral model and recommended using 30° to 45° port angle above the horizontal instead 

the conventional 60° angle. Bleninger and Jirka (2004) have coupled CORMIX near-field 

model with Delft3D Eulerian far-fi eld model for coastal and estuary modeling. They have 

selected CORMIX because it can accommodate a wide range of discharge conditions and 

predicts different flow configurations. 
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2.1.4.2. Far-Field Mixing Zone Model 

Un like the near-field models, which are mainly controlled by the jet momentum and 

buoyancy, far-field models are used to model the water quality dominated by ambient 

conditions. Bleninger and Jirka (2004) have mentioned some of the commercially known 

far-field models which can be coupled with near-field models. These models include 

Delft3D (Delft Hydraulics), ECOM (Hydroqual), Mike 3 (Danish Hydraulic Institute), 

POM (Princeton University), and Telemac-3D (HR Wallingford). For coastal 

applications, Bleninger and Jirka (2004) have recommended Delft3D for far-field 

modeling. Since the far-field modeling requires additional far-field oceanographic data, it 

was not included in this work. 

2.2. Outfall disposal Regulations 

2.2.1. Outfall Design 

According to the Government of Newfoundland and Labrador Outfall Disposal 

Regulations (Section 5.2.15), the objective of the outfall is to introduce the effluent 

stream into the receiving water in a manner to achieve efficient mixing with receiving 

water. The outfall must be located, designed, constructed and maintained for efficient 

mixing of the effluent discharges with receiving water. Wind speed and direction, tidal 

cunents, other relevant oceanographic measurements, positive and negative buoyant 

plumes shall also be considered in the outfall design. An Outfall shall not impact on fish 

plants, shellfish beds, and aquaculture areas, recreational areas, and sensitive areas. The 

length and depth relation of the outfall was also specified (Table 2 .2). 
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Table 2.2. Depth and Length relationship of Outfall Design (Section 5.2.15) 

Dept. of Natural Resources, Government of Newfoundland & Labrador 

Discharge Rate Depth and length of the outfall (m) 

(Q) Liters/Day Shellfish, intakes Recreational Others 

Q 50,000 Depth Study Required 5 3 

Length 50 30 

50,000 > Q 350,000 Depth Study Required 6 5 

Length 75 50 

350,000 > Q 2,500,000 Depth Study Required Study Required Study 

Length Required 

Q > 2,500,000 Depth Study Required Study Required Study 

Length Required 

*Length refers to the distance from the low water mark to the pomt of discharge or 
the first diffuser nozzle. 
* Depth refers to the distance between the low normal spring tide level to the top of 
the outfall. 

In Section 5.2.15.3 of the receiving water quality objectives, the regulations state that the 

typical level of treatment required for any new treatment plant is secondary treatment 

with disinfection. However, treatment level will be evaluated on case-by-case basis. 

2.2.2. Dilution Ratio and Mixing Zone Regulations 

Reference to section 5.2.15.3.2.1 of the regulations, dilution ratios should be based upon 

7 consecutive day average low stream flow occuning once in 20 years (7Q20) and the 

peak hourly effluent discharge rate. Section 5.2.15.3.2.2 has indicated that the mixing 
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zone should be as small as possible to mmtmtze impact on the marine environment. 

Mixing zone size shall be established on case-by-case bases, but for marine bodies of 

water, it shall not exceed a radius of 100 m or 25 % of the width of the body of water, 

whichever is less. 

At the boundaries or the outer limits of the mixing zone, beneficial water uses should be 

achieved. No conditions with the mixing zone should be permitted that: 

1. are rapidly lethal to aquatic life; 

2. cause irreversible responses or effects; 

3. result in bioconcentration of toxic materials to the organism or its consumer; or 

4 . attract an organism to the mixing zone. 

2.3. In-Situ Environmental Monitoring 

In-situ monitoting is perfmmed through miniature sensors or analytical systems. A sensor 

is defined as a device developed to measure a single or a few species and composed of 

an electrode (metal) or optode (fiber optic) combined with one or several 

diffusion/reaction chambers separated from the sample medium by a membrane (Buffle 

and Horvai, 2000). Analytical systems are more complicated than sensors; they are used 

to measure compounds by combining one or more sensors and reagents for chemical 

transformation or separation of the analyte. Analytical systems usually include pumps, 

injection valves, reaction chambers, and sensors. There is a big demand for the 

development of in-situ sensors and analytical systems for environmental monitoring 

applications. 
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2.3.1. Sensor Selection Criteria 

As any other field instrumentation device, important criteria shall be con idered when 

selecting an in-situ sensor or analytical system for environmental monitoring. These 

crite1ia include: 

Reliability: Reliability is defined as the ability of a product to perform well without 

failure during its life cycle. For field applications, robustness of the sensor shall be high , 

especially for measurement at a depth in which no visual contact is possible and repairs 

are difficult. The most common reliability problems associated with in-situ sensors are 

pressure and temperature variations, which may affect the integ~ity of the sensor. 

Sensitivity: Sensitivity of a sensor is evaluated based on the wide range of concentrations 

it can detect. For major components such as 0 2, C02, alkalinity, N03- and phosphate, the 

in-situ device shall be able to detect concentration in the range of 10-2 to 10-6 moi!L and 

10-6 to 10-15 moi!L for minor or trace compounds including organic pollutants and most 

of the periodic table elements (Buffle and Horvai , 2000). It is recommended to select a 

sensor that detects contaminants at levels less than the regulatory limits and responds to 

extremely high concentrations. 

Response Time: The sensor response time is the time required for a sensor to detect 

process, and record a signal. This time may vary from a fraction of a second to hours. 

However, for environmental monitoring, it is always preferable to accumulate large 

amount of data within a sh01t period of time. Usually, sensors have a faster response time 

than analyzers becau e they are simpler and do not require chemical reactions. The 

response time of a ensor often depends on the type of parameter to be mea ured and it 

concentration (Kraft et a!. , 2003). 
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Power consumption: A sensor's power consumption can limit the duration of the 

monitoring mission. The higher the consumption, the less monitoring time is ach ieved. 

Rechargeable lithium-ion batteries are commonly used for AUV applications. Vestgard 

and Hensen (2001) have extended the mission of HUGIN 300 AUV for seabed mapping 

to hours using a 40 kWh aluminum oxygen fuel cell. 

Stability: Stability of measurements is related to the ability of the sensor to resist drifts 

due to pressure and temperature variations. Most of the in-situ monitming sensors have 

numerous sensitive components that could be affected by environmental conditions. 

Environmental conditions such as temperature, pressure and PH are the main factors 

affecting the stability of in-situ sensors (Alai et al., 2005). 

Speciation Capabilities: In-situ analyzers are designed to measure simultaneously 

different parameters or compounds, while sensors often measure only one selected 

species (Buffle and Horvai, 1998). The elevated ionic strength, high content of dissolved 

substances, and presence of marine organic matters make seawater a difficult matrix for 

chemical analysis (Kraft et al., 2003). 

None Perturbing: Perturbation occurs when the sensor size and shape disturb the test 

medium. Therefore, with a smaller sensor size less perturbation occurs. In general, the 

size of a sensor is smaller than an analyzer. 

Sensor Noise: Noise is a common problem associated with in-situ monitoring. When the 

sensor signal indicates a change, but actually no change has occurred, it's considered as a 

false positive noise. When the source signal does not indicate a change, but actually a 

change has occurred, it's considered a false negative noise. There could be various 
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reasons for such failures including electronic issues, matrix effects, sensor mjsplacement, 

wrong installation, and sensor malfunction (Alai et al. , 2005). 

Weight & Size: Weight and size are important features of a sensor, patticularly for AUV 

applications. Since the payload of the AUV is limited and can affect the vehicle 

buoyancy in the water column, it is recommended to select a lighter weight and smaller 

stze sensor. 

Life Expectancy: The life expectancy of a sensor represents the time that a sensor is 

expected to operate under normal conditions. Preventive maintenance programs can 

extend the life time of a sensor. It is recommended to use a sensor or analytical system on 

regular bases to keep it in good working condition. 

Operation: In most cases, sensors are used by personnel with limited knowledge m 

electronics, therefore they should be simple to operate and easy to troubleshoot. 

2.3.2. In-Situ Water Quality Sensor and Analyzers 

The objective of this review was to select appropriate sensors for the proposed 

environmental monitoring experiment. Three in-situ sensors and two analytical systems 

were reviewed in this work. The parameters of consideration were conductivity, 

temperature and depth (CTD), oxygen, chlorophyll a, nutrients and hydrocarbons. 

2.3.2.1. CTD 

CTD is a commonly used oceanographic instrument for measuring salinity, temperature 

and depth. By measwing conductivity, salinity measurement can be detetmined. Since an 

e lectrical cutTent passes more easily through water with a higher salt content, salinity 
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concentration can be dete1mined (Figure 2.7). Aravamudhan eta!. (2005) explains this as 

based on the fact that more salt is added to water, hydration of the salt ions takes place 

and becomes more difficult for the ions to orient themselves in the direction of the 

electric field. This change corresponds to a change in the sensors' capacitor. Therefore, 

when the conductivity of water is determined, the amount of salt in the water can be 

determined. Salinity is measured in psu (practical salinity unit). Fujinawa et al. (1980) 

demonstrated from their expe1iment that CTDs can provide sufficient accuracy of 0.03% 

for salinity and 0.01 ° C for temperature while cruising at up to 4 knots. For temperature, 

Platinum Resistance The1mometer (PRT) and thermistors are the most widely used 

temperature sensing elements. The PRT works on the p1inciple of resistance through a 

fine platinum wire. They are known to be stable over a long period of time and their 

resistance is listed either 50 or 100 ohms at 0 °C. 
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Figure 2.7. Parallel Plate Arrangement for Conductivity Measurement (Arvamudhan et al., 2005) 

Two types of PRT sensors are commonly used, the first one is ceramic coated and the 

other is glass ceramic coated. Ceramic PRTs are good for temperatures ranging from -200 

to 750 °C. The glass coated ceramic PRTs are good over a range of -100 to 500 °C. 

The pressure sensor design is based on a flexible membrane as the coil element for the 

sensing pressure. The deflection of the membrane due to pressure is conve1ted into 

electrical output through a piezoresistor component, which is sensitive to diaphragm 

deflection (Aravamudhan et al., 2005). The piezoresistive micro-electro mechanical 

(MEMS) pressure sensor can operate up to 1000 meter depth (Mohan et al. , 2004). It 

consists of a thin silicon diaphragm with small regions diffused with p-type or n-type 

elements that act as a piezoresistor (Figure 2.8). The pressure values at such depths would 
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typically be in the range of 3000 psi , and the temp rature conditions would vary from -5 

to 60 °C (Mohan et al., 2004). 

Pez resist r 

Sel.econ 

rn 
Applied pressure 

Figure 2.8. Piezore istive Sensor (a) ide View (b) Top View (Mohan et al., 2004) 

Zhaoying (2004) compared the petforrnance of three commonly u ed CTDs in 

oceanographic studies, the Sea-Bird Electronics (SBE911), the Falmouth cientific Inc 

(ICTD), and the InterOcean Systems Inc (513D) (Table 2.3). 
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Table 2.3. Comparison of Commonly Used CTD Sensors (Zhaoying, 2004). 

Sensor SBE-911 ICTD 513D 

Range CC) -5 to 35 -2 to 35 -5 to 45 

Temperature Accuracy(°C) ± 0.001 ± 0.001 ±0.02 

Response (s) 65ms 20ms 1400ms 

Range(ms/cm) 0 to 70 0 to 70 0 to 65 

Conductivity Accuracy(ms/cm) ±0.00 ± 0.002 ±0.02 

Response (s) 65ms 50ms 20ms 

Range(MPa) ± 0 to 6800 ± 0 to 6000 ± 0 to 6000 

Pressure Accuracy(MPa) ± 0.015% ± 0.01 % 0.15% 

Response (s) 35ms 30ms 

2.3.2.2. Dissolved Oxygen 

Monitoring Dissolved Oxygen (DO) can directly indicate the quality of a water column. 

The most common in-situ DO measurements are conducted through the amperomettic 

and optical based sensors. 

2.3.2.2.1. Electrochemical Technique 

Electrochemical microsensors have been developed for several applications including 

medical , industrial and environmental monitoring. For in-situ monitoring, the Clark type 

has been recommended and widely used over other techniques (Wu et al. , 2005). Many 

improvements to the original design of the Clark type have been made since the 
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publication of a pioneering patent in 1959 by Leland C Clark (Lembit and Compton, 

1996). Fraher et al. (1998) desc1ibed the system as it consists of a platinum disk cathode, 

a working electrode embedded in a cylindrical insulator, and a 1ing shaped silver anode 

located around the lower end of the insulator (Figure 2.9). The electrode and the insulator 

are placed inside a rod made of glass that contains an electrolyte (KCl 3M). The oxygen 

permeable membrane is fixed at the bottom of the outer glass rod with an 0 -Iing. Various 

membranes have been used, the most common ones are collodion, polystyrene, silicon, 

acrylic polymers, cellulose acetate and DPX resin gold plated cathode. The sensor 

measures dissolved oxygen indirectly through an electrochemical reaction . 

Gold outer test electrode(cattrode) 

Oxygen permeable membrane 

Silver auxiliary electrode( anode) 

Potassium Chloride electr·olyte 

Gold inner measurment electrode 
(cathode) 

Figure 2.9. Cross Section of Clark Type DO Sensor (Farhar et at., 1998) 
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Buffle and Horvai (2000) have desctibed the working principle of the sensor is based on 

the fact that its tip contains a cathode (positive electrode) and anode (negative electrode) 

that are connected electrically by a saturated electrolyte solution (KCl), all covered by a 

permeable membrane. Oxygen molecules dissolved in the water pass through the 

membrane and are chemically reduced within the sensor generating an electrical current 

that is proportional to the oxygen concentration in the water. The cunent is then 

converted to the oxygen concentration that is either displaced on the meter or stored as 

data for later retrieval. Compared with other microoptodes, the Clark type has a faster 

response time (Tengberg et al., 2006). A well designed Clark-type oxygen sensor can 

have a 90% response time (t90) of around 0.1 second (Glud et al., 2001). In general , 

microelectrodes suffer from interference with other ions, patticularly Ca+2 and Mg+2 

(Kohls et al. , 2000). Johnson et al. (2004) reported, for continuous monit01ing 

application, the Clark type requires frequent calibration due to environmental changes. 

Permeability and the thickness of the membrane can determine the sensitivity of the 

sensor. Buffle and Horvai (2000) expressed this relationship as R/8, where R is the 

electrode radius and o is the diffusion layer thickness. Membrane contamination could be 

a limiting factor for the Clark type, particularly in a highly polluted water column. 

Contamination of the membrane causes a change in the sensor's sensitivity, which 

requires external recalibration (Johnson et al., 2004). Another limitation is when the 

electrolyte consumes all the available oxygen, making it not practical for long term 

measurements (Hendrikse et al., 1998). 

In several AUV monitoting experiments, the Clark type DO sensor has been selected due 

to its fast response time. A solar operated AUV was fitted with a fast response galvanic 
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oxygen micro-sensor (AMT Analysenmesstechnik GmbH, Rostock, Germany). Criminns 

et al. (2005) have reported that the sensor provided a response time of a few milliseconds 

while profiling at a depth of 100 m. Tervalon et al. (2002) have integrated Seabird SBE 

43 Clark type DO sensor with AUV for ice profiling mission in the Arctic. In another 

mission, the Seabird oxygen sensor, based on a modified Clark polarographic membrane, 

was used on the Sea Glider AUV (Rudnick et al., 2004). Adams (2005) has used a Clark 

type sensor for environmental monitoring of effluent plumes in coastal Newfoundland. 

2.3.2.2.2. Fiber Optic Technique 

Optodes technology has been known for many years, but it is relatively new to aquatic 

research. Tengberg et al. (2006) have described the optical fiber sensor as consisting of 

an optical silica fiber with an outer diameter of 140 11m tapered to a final diameter of 30 

11m by heating. The fiber dip is coated with the indicator mattix. An additional layer of 

black silicon is coated onto the sensor to shield out ambient and backscattering light 

during measurements. The backward light is collected by the same fiber to the measming 

device containing a miniaturized photodiode (Figure 2.1 0). 

The working principle is based on the ability of a selected parameter to act as dynamic 

luminescence quenchers. In the case of oxygen, if the ruthenium-complex is illuminated 

with a blue/green Light Emitting Diode (LED) at a wave length of 450 11m, it will be 

excited and emit a red luminescent light with an intensity of 690 11m (Tengberg et al., 

2006). The fluorescence intensity is used as the information carrier and it is proportional 

to the oxygen concentration. 
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Figure 2.10. Schematic Diagram of DO Optical Sensor (Tengberg et al., 2006) 

In eleven different laboratory and field experiments, Tengberg et al. (2006) have reported 

that a fiber optic based oxygen sensor is more suitable than other methods due to its high 

accuracy (± 2JlM); long-term stability; lack of pressure hysteresis; lower fouling and 

cross sensitivity. Oxygen optical sensors are not affected by interference such as Ca+2 and 

Mg+2 like microelectrodes and there are no metallic components generating electrical 

fields (Kohls et al. , 2000). In addition, optical oxygen sensors are suitable for long 

deployment periods because no oxygen is consumed during measurements, unlike 

electrochemical based sensors (Koneke et al. , 1999). But when it comes to response time, 

electrochemical sensors are unmatched. However, the use of oxygen optodes in the 

oceanographic community is relatively new and the assessment of its performance is still 

an active laboratory research (Rudnick et al., 2004). 
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2.3.2.3. Chlorophyll a Fiber Optic Technique 

Chlorophyll a is the pigment that allows plants including algae to convert sunlight into 

organic compounds in the process of photosynthesis as illustrated below 

6C + 6H 20 Sun/ighi +Chlorophy/1 ) 6CH 120 6 +60 2 (G I ucose) 

Chlorophyll a is the predominant type found in algae and cyanobacte1ia (blue-green 

algae), and its abundance is a good indicator of the amount of algae present in the waters . 

Excessive quantities of chlorophyll a can indicate a presence of algae blooms. 

MonitOiing chlorophyll a level is a direct way of tracking algal growth. Water column 

containing high chlorophyll a levels are typically high in nutrient levels, particularly 

phosphorous and nitrogen. High levels of nitrogen and phosphorous can be indicators of 

man-made pollution, such as a poorly operated wastewater treatment plant, leakage from 

a sewer system or fertilizer runoff. There are various techniques for measuring 

chlorophyll a concentrations, including High Performance Liquid Chromatography 

(HPLC), spectrometry and fluorometry. All these methods are published in the standard 

methods for the examination of water and wastewater. However, for in-situ applications, 

the fiber optic technique is the only dominating technique. 

One of the characteristics of chlorophyll a is that it fluoresces when irradiated with light 

of a particular wavelength and emits light of higher wavelength (lower energy). The 

ability of chlorophyll a to fluoresce is the basic operating principle of all in-situ 

fluorometers. A Light Emitting Diode (LED) is used as a light source, and it has a peak 

wavelength of approximately 470 nm. The LED with such a wavelength produces 

radiation in the blue region of the visible spectrum. When the blue light hits the 
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chlorophyll a cell , it will emit a light within 650-700 nm region of the spectrum. The 

emitted light is then absorbed by another fiber optic and directed to a photodetector 

though a filter. The purpose of the filter is to prevent any backscattered excitation light to 

reach the photodetector. Wesson et al. (1999) have described the components and the 

working principle of a fluorometer (Figure 2.11) as: (1) a clock is used to switch a light 

emitting diode having wavelength around 490 nm, (2) the LED passes through a blue 

optical filter (3) and illuminate the volume of water containing fluorescent sodium dye 

(4). The dye is excited at this wavelength and fluoresces near 575 nm. Emitted light 

passes through a green optical filter (5) and into a miniature photomultiplier tube (PMT) 

(6). The green optical filter prevents the LED to enter and allows only the exited light 

from the sample to pass. An electronic band pass filter (7) is used to reduce the very high 

frequency noise. The signal is then fed through an electronic synchronous chopper (8) 

synchronized to clock frequency. Finally, the signal is filtered (9) before showing any 

signal. 
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Figure 2.11. Schematic Diagram of Chlorophyll a FO Sensor (Wenson et al., 1998) 
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The advantage of fiber optic sensors is that the power consumption is low, particularly 

for long term deployment. The power consumption of a chlorophyll a fiber optic sensor 

manufactured by WET Labs makes the device well suited for measuring ocean dye 

patches, where size and power consumption are limiting factors (Wesson and Sauners, 

1990). For long term deployments, biofouling problem may affect measurements of the 

fiber optic sensor. Antifouling agents can be used to minimize this problem, but may 

affect the optical properties of the sensor (De'Sa et al., 1997). 

Another common problem associated with fluorometers is the effect of stray light and 

bioluminescent bacteria vibrio fischeri which might be registered as fluoresce (Wesson 

and Sauners, 1990). Also, environmental stresses on the sensor may cause fiber 

degradation , biofouling, strobe, and electronic drift (Wesson and Sauners, 1990). 

Chlorophyll a has been monitored using AUVs in many fresh and marine water 

environments. Siccardi et al. (1997) used a multiple input fiber optic LED fluorometer on 

the AUV to estimate the seabed vegetation. Carder et al. (2001) have mounted a 

chlorophyll a fluorescence sensor with the AUV for environmental monitoring. Ishikawa 

et al. (2005) have mounted a fluorescence chlorophyll a sensor (AQFL-1000MG 

Aquamatic) on the AUV for image analysis and detection of freshwater red tide. 

2.3.2.4. Turbidity 

Many methods exist for measuring the concentration of suspended sediments in the 

marine environment. The traditional turbidity sampling technique is conducted through 

an instantaneous bottle sampling or through a continuous pump sampling. These methods 

are considered intrusive, labor intensive and expensive. Another problem with intrusive 
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sampling is that it 's difficult to mai ntain the sediment aggregate found in-situ. 

Aggregates that exist in suspension may be broken up while sampling or new aggregates 

may form after settling (Creed et al., 2000) . The three common in-situ monitoring 

techniques are the Optical Backscattering Sensor (OBS), the Acoustic Backscattering 

Sensor (ABS), and the Laser Diffraction Sensor (LDS). 

2.3.2.4.1. Optical Backscattering Sensor 

Turbidity is a general indicator of the optical clari ty of water and is defined as the amount 

of light scattered from particles in the solution. In practice, a light beam is di rected into a 

water sample and a photo detector measures the light scattered at a 90° angle. While other 

scatter angles are possible, the 90° measurement angle has become the standard for 

turbidity measurement. In working principle, the lens in front of the light source directs a 

beam of light at a 45° angle into the sample, while another lens in front of the 

photodetector collects the 90° scattered light and directs it to the detector. The signal 

generated by the detector is then recorded (Figure 2.12). 

The Nephelometric Turbidity Unit (NTU) is a standard unit used for measuring turbidity. 

Depending on the application, some sensors can measure turbidity values ranging from 0 

to 1,000 NTU, while others are capable of measuring up to 4,000 NTU (Rasmussen et al., 

2002). Optical backscatter sensors have advantages of being relatively inexpensive, 

rugged, relatively unobtrusive and easy to operate (Battista, 2000). The Potential 

limitation of the OBS is its sensitivity to suspended particle grain size such as silt and 

clay (Battista, 2000). Biofouling problems may also occur during long-te1m deployment 

and affect the sensitivity of the sensor. 
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Figure 2.12. Schematic Diagram of Conventional OBS Turbidity Sensor 

Several AUV monitoring missions were conducted using OBS sensors. An optical 

backscatter sensor was mounted on Remote Environmental Monit01ing Units (REMUS) 

with other scientific payload sensors (Alen, 1997). A long-term ecosystem mission for 

coastal observation has employed an optical backscattering sensor to measure turbidity in 

the water column (Schofield et a!., 2002). A combination of backscattering and a 

fluorescence sensor was integrated on the Glider AUV for an ocean research program 

(Rudnick eta!., 2004). 

2.3.2.4.2. Acoustic Backscatter Sensor 

The Acoustic Backscatter Sensor (ABS) measures suspended sediment concentration 

through the echo sounding technique. The transducer emits a very short pulse (- 10 !lS) at 

a high frequency ( -1-5 MHz), and the acoustic energy is scattered off the suspended 

sediments back to the transducer (Figure 2.13). The concentration and size of the 

suspended sediments are related to the magnitude of the backscattered signal and the 
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range of the sediment associated with the time delay between transmission and reception 

of the signal (Battista, 2000). 
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Figure 2.13. Schematic Diagram of ABS Turbidity Sensor (Thome et at., 1991) 

The ABS technique has a relatively long signal path length, which makes the signal 

highly affected by adsorption and air bubbles (Battista, 2000). Gartner (2002) reported 

that this technique suffers from the same limitation as any single frequency sensor, as it 

does not differentiate between changes in size distribution and concentration. 

2.3.2.4.3. Laser Diffraction 

The laser diffraction turbidity measurement technique is considered as the most recent 

technique for turbidity measurement. Sequoia Scientific has described the process as 

when a parallel laser light wave strikes a particle, part of the wave enters the particle and 

the other part is blocked by it. The wave entering the particle senses the particle 

composition. This part is scattered into a wide range of angles, in which very little of 

which appears in the original light wave direction. Laser diffraction technique has many 

advantages over other techniques, as it can precisely measure scattering light at a 32° 
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angel. As for its limitations, this technique is new and has not been widely tested and is 

considered more expensive compared to other techniques. The LISST costs around $ 

10,000, limiting its application only to larger monitoring projects (Campbell et al., 2004). 

Sibenac et al. (2002) have reported using the LISST for measuring particle stze 

distribution on the Odyssey AUV for routine deep water monitoring operations. 

2.3.2.5. Nutrient Sensors 

Excessive nutrient levels in the water column often resulting depletion and disturbance of 

ecosystem. Gray et al. (2005) have reported, considering the high spatial and temporal 

variability of nutrients in the water column, there is a need for developing in-situ 

measurement techniques with a rapid response and the ability to collect long-term data. 

The most common techniques used for measuring nutrients are: the potentiometric 

method; the flow injection analysis; and the UV Absorption spectrometry analysis. 

2.3.2.5.1. Potentiometric Technique 

Potentiometric analyses are based on measuring the potential difference of an 

electrochemical cell in the absence of the current. An Ion Selective Electrode (ISE) is a 

commonly known potentiometric technique used to measure the ion concentrations of a 

sample. These electrodes measure a wide range of anions and cations. For an in-situ 

environmental monitoring application, the ion-selective membrane is the main 

component of all potentiomettic sensors. It establishes the selectivity of the sensor's 

response to various interfering ions present in the sample. The sensing platform of the 

membrane consists of an ion carrier (ionophore) entrapped within a liquid polymeric 
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membrane. The membrane offers interaction with numerous spectes, but the mam 

interaction governing the selectivity of the sensor is between the analyte intetference and 

the ionophore. Once an ionophore that offers the prefeJTed selectivity has been developed 

and the polymer components that are ionophore compatible have been optimized, the 

production of functional ISE becomes easy and rapid (Buffle and Horvai, 2000). The 

potentiometric technique is still a typical research tool mainly used for microbiological 

studies. Buffle and Horvai (2000) have reported that ISEs are more fragile , noise 

sensitive, and difficult to prepare, therefore, they are not considered instruments of choice 

or routine water analysis. Figure 2.14 demonstrates a schematic diagram of a typical ISE. 
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Figure 2.14. Schematic Diagram of a Typical ISE (Malinowska et at., 1995) 

2.3.2.5.2. Flow Injection Analyzer 

For some in- situ applications where interference between analytes and seawater ions is 

difficult to discriminate, the Flow Injection Analyzer (FIA) is considered a better 

alternative to the ISE. It was developed to automate many of the steps performed in a 

typical laboratory analysis. Unlike the Continuous Flow Analyzer (CFA), where air 
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bubbles are used to segment the flow of the sample, the PIA technique is based on an 

unsegmented stream of an ine1t canier in which a defined sample volume is determined 

(Birot et al., 1994). The analyzer consists of five major components, the rotation valves, 

motor driven syringe, colorimeter, reagent housing and electronic controlling unit. Buffle 

and Horvai (2000) have demonstrated the principal of nitrate determination using PIA in 

three steps: (1) Nitrate (N03-) is reduced to nitrite (N02-) by buffering the sample to 

neutral PH and pumping the sample buffer mixture through copperized cadmjum column. 

(2) The nitrite reacts with sulfanilamide in acid to form a diazonium ion. (3) The 

diazonium ion then reacts with ethylenediamine to form brightly colored azo dye 

molecules, which can be quantified using spectrometric technique. Worsflod (2006) has 

demonstrated this process in Figure 2.15. 
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Figure 2.15 FIA Process Diagram for Determining Nitrate (Worsfold, 2006) 

The PIA technique has demonstrated good capabilities for monitoring dissolved 

compounds m the aquatic environment more than any other method. Jannasch et al. 
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(1994) have reported that FIA can be calibrated in-situ usmg standards with known 

nitrate concentrations, it's mechanically simple, rugged, and does not consume much 

power. FIA components have also been designed to work under high hydrostatic pressure 

(Birot et al. , 1994). Worsfold (2006) has rep01ted that FIA operate in an enclosed 

environment reducing contamination and is compatible with most detection systems. 

Tover et al. (2002) have demonstrated from several experiments the applicability of FIAs 

to analyze both synthetic and real seawater samples. However, this method still has some 

limitations. The accuracy of the nitrate determination based on the reduction of nitrate to 

nitrite on copperised cadmium has been found to be highly dependent on the reduction of 

nitrite if present in the sample (Novic et al., 1994). Another common problem associated 

with FIA is filtration, particularly in a highly turbid environment. There is a pressing 

need for research into inert, high performance filtration or particle separation devices that 

are compatible with flow analysis systems, which can be deployed for extended periods 

of time in different environments (Gray et al., 2005). Worsfold (2006) has reported that 

FIAs are not recommended for long term deployment due to their continuous 

consumption of reagents. As other wet chemical techniques, the response time of FIAs is 

slow (minutes). The concentration of N03/N02 in submicromolar range is determined at 

approximately 15 minute intervals. Wet chemistry techniques are still problematic for 

AUVs monitoring applications, because of long analysis times (Griffiths et al., 2001). 

These types of chemical sensors are not suitable for fast measuring platforms such as 

CTD towed platforms or AUVs due to its slow response time (Prien and Hydes, 2003). 

Wet Labs, Inc and sub champak Systems Inc. have readily integrated the analyzer with 

oceanographic CTDs and other underwater ensors for vertical and horizontal profiling. 
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The sensor has a size of 63.5 by 12.7 em, weighting 12 lbs in the air and has a depth 

range of 200 m. Hanson (2007) has used the four channel subChem autonomous profiling 

nutrient analyzer (nitrate, nitrite, phosphate, ammonia) systems to investigate the role of 

nut1ient gradients in episodic formation, maintenance and decay of thin plankton layers in 

coastal water using Remote Environmental Monitoring Units (REMUS). 

2.3.2.5.3. UV Absorption Analyzer 

The Ultra Violate (UV) absorption technique has been used for many years by water 

authorities as a standard technique for nitrate monitoring. The UV analysis is based on 

the principle that different molecules have different absorption spectra. Many chemicals 

absorb light in the UV, where each has a unique absorption spectrum. The concentration 

of these chemicals can be determined by measu1ing the spectrum of a water body in the 

UV and then deconvolving the spectra to yield the concentration of each component. Two 

aquatic research facilities have developed this technique for in-situ monitoring 

applications. The Monterey Bay Aquarium Research Institute (MBARI) has developed an 

in-situ UV spectrophotometer (ISUS) for high resolution and long-tetm monitoring of 

nitrate, bromide and disulfide (Johnson and Coletti, 2002). The sensor is composed of 

four key components: (1) the UV source, (2) an optically coupled sensing probe, (3) a 

high resolution spectrometer and, (4) a low power instrument controller with a large 

amount of data storage. !SUS can operate whi le submerged at 2000 m depth. Johnson and 

Coletti (2002) reported that the instrument was deployed in the Pacific for a period of 6 

months with no apparent degradation in performance. Wijesekera (2003) has deployed 

ISUS on an AUV mission to detect biophysical information and nitrate concentrations. 
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Tervalon et al. (2003) integrated the ISUS with an AUV for Arctic monitoring mission. 

The fast response time (1 sec) has made it suitable for use on a towed vehicle (P1ien et 

a!., 2003). 

The National Oceanography Center in Southampton has also developed an in-situ UV 

spectrometer analyzer (SUV6). The system can measure a number of wavelengths in the 

region of 220 nm to determine the concentration of dissolved nitrate, sea salt and 

dissolved organics (Finch et al., 1998). The instrument uses a xenon flash lamp light 

source, fused silica windows and lenses, a sample cavity, a grating spectrometer and an 

UV enhanced si Iicon photodiode detector (Figure 2.16). The sensor was tested on a 

number of platforms such as SeaSoar and Autosub AUV and has demonstrated good 

results in spite of the temperature drifting problem (P1ien et a!., 2003). 
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Figure 2.16 Schematic Diagram of Mark I UV Sensor (Finch et al., 1998) 
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2.3.2.6. Hydrocarbons 

There is a pressure from regulators to continuously monitor hydrocarbon contamination 

resulting from offshore oil and gas operations. The major sources of these pollutants are 

offshore rig and oil tankers. Traditionally, land based laboratory analysis can be 

performed using Fourier Transform Infrared (FfiR), Gas Chromatography (GC), and 

Mass Spectrometry (MS). In many situations, a more effective monitoring tool is needed 

to assess the degree of contaminations as it occurs. Kraft et al. (2003) have reported that 

the ionic strength of seawater, the high content of dissolved substances, and th presence 

of marine humus resulting from organic matter uch as cellular debris , humic acids, and 

metabolic products are some of the problems encountered during in.-situ hydrocarbon 

monitoring. Several in.-situ techniques have recently been developed for hydrocarbon 

monitoring. The most prominent techniques are fiber optics and flow injection analy is. 

2.3.2.6.1. Fiber Optic Sensor 

Two optical approaches are commonly used for determining hydrocarbons. The first is 

the Mid-Infrared (MIR) spectral range and the second is the UV/VIS spectral range. MIR 

radiation of a laser diode coupled into a light guide coated with a special polymer has 

been used for aromatic and aliphatic monitoring, while the UV Fluorometer has been 

developed to measure various hydrocarbon compounds. Kraft et al. (2003) have reported 

detecting 1 ,2-dichrobenzene, tetrachoroethylene, 1 ,2-x ylene, 1 ,3-x ylene 1 ,4-xylene 1,2-

dichlorobenzene and 1 ,2-dechorobebzene at low concentrations using Mid-Infrared 

Sensor. 
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Mizaikoff (1999) has integrated the Fourier Transform Infrared spectroscopy (FTIR) 

sensor for seawater monitoring applications. The sensor consists of three main 

components: the sensor head; the optical components; and the electronic components. 

The sensor head is composed of polycrystalline silver halide fibers coil coated with an 

appropriate polymer layer used as an active transducer for determining organic 

compounds in water. The optical component consists of parabolic mirrors used to focus 

theIR beam onto the sensor head. 

Beyer et al. (2003) reported that traditional MIR is an effective monitoring technique 

used for verification of environmental pollutants. They noted that the technique can 

detect a variety of chlorinated hydrocarbons operating in the mid-infrared spectral range 

of 8 - 2.5 IJ m based on Attenuated Total Reflection (A TR) measurements. The detection 

occurs through the characteristic absorptions technique (Figure 2.17). Kraft et a!. (2003) 

and (Mizaikoff, 1999) have well described this technique for hydrocarbon monitoring. 

Woolsey et al. (2001) proposed a remote, multi-sensor station for a monitoring project 

near the sea floor within hydrate stability zone in northern Gulf of Mexico using MIR 

sensor for long term detection of hydrocarbons. 
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Figure 2.17. A Standing Wave and Envancent Field Established Near Reflecting Interfaces (Kraft et 

al., 2003) 

Kraft et al. (2003) reported that the sensor can simultaneously detect Volatile Organic 

Compounds (VOCs) in both freshwater and seawater below 100 ppb concentration, 

provide qualitative and quantitative information, withstand an underwater pressure of 500 

m, and work under temperature ranging from 3 °C to 20 °C. However, Mizaikoff (1999) 

reported for quantitative multi component analysis in seawater, the sensor has shown low 

sensitivity to parameters such as salinity, turbidity and chemically interfering substances. 

Fmthermore, the response time is still a limiting factor for using this technique. For real-

time profiling operations, such as plume tracing, response time shall be below 1 mm, 

which has not been reached currently with FTIR technique, having a response time 

ranging from 5 to 10 minutes (Kraft et al. , 2003). 
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As for the UV technique, Chelsea has developed an Ultraviolet (UV) Flourimeter named 

"UV AQUA Traka". The sensor was designed to monitor hydrocarbon concentrations at 

a 360 nm wavelength. The company has reported that the sensor can be used on a towed 

vehicle and withstand pressure up to 6000 m depth, while profiling at a response time of 

4Hz (can be extended to 10Hz). Controls Systems and Solution has also designed a 

methane sensor for offshore monitoring operations. The system can detect the presence of 

hydrocarbons/methane in gaseous or liquid forms. The company has repo1ted that the 

sensor can monitor pipelines leaks, Christmas trees and subsea installations, and can be 

integrated with ROY and AUV platforms. 

2.3.2.6.2. Flow Injection Analyzer 

Considering the need for an in-situ underwater hydrocarbon monito1ing device, an 

Underwater Mass Spectrometer (UMS) was developed for this application. In general , the 

MS is considered the most multipurpose chemical analyzer. It can analyze compounds 

ranging from small molecules to large biomolecules with high sensitivity. Also it can be 

used to monitor C02, nutrients, radioactive isotopes, metals, and other chemicals. One of 

its newly developed applications is in-situ monit01ing of man-made and non man-made 

hydrocarbon seepage (McMutrtryet eta!., 2005). 

The Center for Ocean Technology at University of South Florida has developed an UMS 

for AUV monitoring application. Short et al. (1999) reported that three challenges were 

encountered dUJing the design of the system. These challenges are: the sample 

introduction through flow injection system; the vacuum maintenance under high pressure; 
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and the power consumption. The system consists of three mam components (Figure 

2.18): the flow-injection pressure vessel; the quadrupole-mass-spectrometer with the 

membrane introduction mass spectrometer; and roughing-pump pressure vessel 

Flow Injection Mass S :r::e ctrometer Roughing Pump;; 

Electronics 

Figure 2.18. Schematic Diagram of UMS (Short et al., 1999) 

All mass spectrometers have several similar features. Analytes must be transported from 

their normal state (solid or liquid) into the vacuum through a sample interface. After 

entering the vacuum system, ionized analytes are then dispersed according to their mass

to charge ratio (m/z) by combination of electrical and magnetic fields. The ion signal is 

recorded as a function of mlz using a high-gain electron multiplier or Faraday-cup 

detector. Measured intensities in the mass spectrum can often be related to the 

concentration of the analyte in the original sample or possibly used for identification of 

an unknown compound in a complex mixture. A number of field experiments 

demonstrated capabilities of UMS, particularly for VOCs detection and quantification. 

Pennell eta!. (2003) have mounted the UMS on an AUV for a plume tracking study. She 

reported that the system has successfully detected dimethyl sulphide chemical tracer. 

The UMS can detect and quantify various types of VOCs including benzene, toluene and 

trichloroethene. Short et al. (1999) have reported that UMS has detected toluene at a 
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concentration of 1 ppb. However, there are still many challenges to improve the 

performance of UMS for long term deployment in deep water. These challenges can be 

summarized as the hydrostatic pressure at deep water, vacuum system management, the 

power consumption and the background noise as a result of residual gas in the ionization 

chamber (McMutrtryet al., 2005). Sh01t et al. (1999) reported that the biggest obstacle is 

the complexity and format of the associated electronics. 
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Chapter 3. Experiment 

3.1. Objective 

The objective of this experiment was to monitor the coastal area affected by the 

Spaniard' s Bay outfall by integrating in-situ sensors with the AUV. The generated spatial 

and temporal data was used to characterize the plume behavior and assess the water 

quality around the outfall location. 

3.2. Study Area 

Most of the ocean discharges in Newfoundland are generated from municipal sewage 

outfall and the fishery industries. Adams (2005) conducted an experiment studying 

effluent discharges from a fish plant. She indicated in her study that fish industries and 

sewage outfalls are the main sources of coastal pollution in Newfoundland. Coastal 

pollution has negative socioeconomic and environmental consequences. Treatment plants 

minimize the impact of these outfalls on the marine environment, but their construction, 

operation and maintenance costs, particularly from small scattered communities, could be 

a burden on tax payers and federal government. In this work a new monitoring technique 

was developed to investigate the effect of a small sewage outfall on the coastal marine 

environment and validate CORMIX near-filed hydrodynamic model. 

3.3. Site Selection 

Two important criteria were considered in selecting the appropriate site to conduct the 

experiment; the first criteria was, to locate a costal outfall discharging either an industrial 
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or a sewage effluent in a quantity that may pose an impact on the marine environment; 

the second criteria was, the selected outfall site shall be safe for the crew members 

conducting the experiment and the AUV. Initially, two sites were proposed to conduct 

this experiment. The first was located in Foxtrap and the second in Spaniard' s Bay. Both 

sites have sewage outfalls discharging to marine environment and located along the 

Conception Bay South of Newfoundland (CBS). Considering the AUV safety, 

deployment and recovery operations, Spaniard's Bay was recommended over the other 

site (Figure 3.1). 

Figure 3.1. Aerial Map of Spaniard's Bay Outfall 
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Spaniard's Bay outfall was installed in 1988 to handle municipal wastewater from both 

Spaniard's Bay and the town of Tilton. According to the town manager, the outfall serves 

a population of about 1600 people. It extends to 100 m length and about 6 m depth 

(Figure 3.2). A small preliminary sewage treatment plant was constructed along with the 

outfall and operated for a short period of time. Eventually, it was closed due to frequent 

maintenance problems. Since then, the raw sewage waste has been disposed directly into 

the ocean. During the time of conducting the experiment, floating raw sewage waste was 

obvious at water surface. Birds were frequently observed feeding on the outfall floating 

waste. 
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Figure 3.2. Spaniard's Bay Outfall Layout 
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3.4. Previous Work 

Sharp (1989) canied out a monitoring study on Spaniard's Bay outfall for the Department 

of Environment and Natural Resources. The study showed that the faecal and total 

coliform counts were low and below the published standard. The sampling results of 

November 29,1986, showed that the total coliform at surface and center of the boil was 

1,600 and on January 29, 1987, the result was 56,000, where the EEC limit for bathing 

beaches is 100,000 (Sharp, 1989). Gowda (1992) has conducted a field and experimental 

study using a novel shape mixing tube. The study showed that a better performance can 

be achieved at a low Froude number, which is defined as the ratio of the inettial to 

gravity forces in the flow, and the improvement of overall dilution with a slot mixing 

tube was limited compared to a circular mixing tube. Mukhtasor (1998) has developed 

and applied design procedures using a probabilistic method to calculate initial dilution 

and bacterial concentration at a location of interest. Comparison among the vmious 

probabilistic and deterministic methods showed that all methods provided similar results 

for initial dilution . 

3.5. Instrumentation 

Salinity, temperate, chlorophyll a, turbidity and DO were identified as important 

parameters for monitoting a sewage outfall effluent. Due to the limited resources and 

time constraint, it was not possible to measure other impottant parameters, such as 

nuttients using an underwater analytical system. The selection of in-situ sensors was 

based on the literature review described in Chapter 2. 
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3.5.1. CTD 

The CTD sensor was designed and manufactured by Applied Microsystems. This 

instrument was previously used by other graduate students for a similar application. 

Adams (2005) used the sensor in her experiment for an effluent monitoring study. Niu 

(2007) also used the sensor in a hydrodynamic model validation study. Both expetiments 

have shown reliability and a fast response time of the sensor. The sensor has a response 

time of 25 milliseconds in a 1.0 m/s flowing environment. In July 2007, the sensor was 

sent to Applied Microsystems for maintenance and calibration. 

3.5.2. Chlorophyll 

The Turner Designs CYCLOPS-7 Chlorophyll a sensor was selected for this expetirnent 

(Figure 3.3). The sensor has a single channel detector that can be used for freshwater and 

seawater applications. It can detect chlorophyll a pigments by fluorescence. It can be 

integrated with the CTD to obtain its power and deliver an output voltage to the system 

data logger, which is proportional to the chlorophyll a concentration. For better 

sensitivity, the sensor can be set to measure concentrations at three different gain settings, 

Xl, XlO and XlOO. As the gain increases, the sensitivity increases and the concentration 

range decreases. According to the Turner Designs manual, XlO provides the appropriate 

sensitivity for ocean monitoring applications. 
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Figure 3.3 Cyclops 7 Chlorophyll a Sensor (Turner Design) 

3.5.3. Turbidity 

The Turner Designs turbidity sensor was selected for this experiment. The sensor looks 

similar to and works under the same principle as chlorophyll a sensor. The turbidity 

Cyclops7 sensor provides a fast and accurate way to determine in-situ measurements. For 

higher sensitivity, the sensor has three gain settings: Xl for 0 - 3000 NTU; XlO for 0 -

1000 NTU; and XlOO for 0 - 100 NTU concentrations. 

3.5.4. Dissolved Oxygen 

The Idronout Dissolved Oxygen (DO) sensor was used in this experiment to monitor DO 

percent saturation. Adams (2005) has integrated this sensor with the CTD in her 

experiment. It has a scan rate of 1 Hz with a range of 0 to 15 mg/1 and accuracy of 0.2 

mg/1 (Adams, 2005). This polarographic sensor reports its measurement in percent 

saturation. In May 2007, the sensor was sent to Applied Microsystem for testing and 

calibration. 
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3.5.5. Current Meters 

Two cun·ent meters were used in this experiment for measuring the cutTent velocity and 

direction. In the first experiment, the RCM 9 LW was used and in the second experiment, 

the S-4 was used as the only current meter available at that time. According to at Oceans 

Ltd, both current meters have high accuracy and were recommended for our application. 

RCM 9 L W - Aanderaa Instruments, Inc 

The cutTent meter (Figure 3.4) was used during the May 2007 experiment. It has the 

following specification: 

• Depth Rating 300 meters 

• For use in fresh and seawater 

• Range: 0 to 300cm/s 

• Resolution: 0.3crn/s 

• Absolute Accuracy: ±0.15rn/s 

• Relative Accuracy: ±1% of reading 

• Statistical Precision: 0.45crn/s (standard deviation) 
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Figure 3.4 RCM 9 L W Current Meter (Aanderaa Instruments, Inc) 

S-4- InterOceans 

This current meter (Figure 3.5) was used during the July 2007 experiment. It has the 

following specifications: 

• Range:0-350 em/sec (standard) 

• Accuracy:2% of reading +1- 1 em/sec 

• Sampling rate: 2 Hz 

• Resolution: 2Hz 0.03 to 0.35 em/sec depending on range 

• Noise: less than the resolution for averages of 1 minute or longer 
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Figure 3.5. S-4 Current Meter (lnterOceans) 

3.5.6. GPS 

A Handheld Garmin Geographical Positioning System (GPSMAP® 60C) was used to 

collect geographical coordinates at the same locations while towing the sensor platform 

(Figure 3.6). This device can be used for marine navigation, it is rugged, waterproof, and 

has a battery life span of 30 hours. The system collects spatial coordinates continuously 

at a point per second interval with approximate 15 feet accuracy. The unit is supported 

with the Map Source software, which can be synchronized with the GPS for downloading 

and viewing spatial data. 
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Figure 3.6. Handheld GPS (Garmin) 

3.6. Apparatus 

3.6.1. MUN Explorer 

As described in chapter 1, A UV s are autonomous robots that travel underwater. They can 

be piloted or can perform pre-programmed missions for several hours depending on their 

battery capacity. Most of the previously conducted experiments were on the 

hydrodynamics aspects and their maneuvering capabi lities. 

Considering the importance of this technology, Memorial University of Newfoundland 

acquired an AUV named "Explorer" in 2006 for oceanographic and environmental 

monitoring research (Figure 3.7). The vehicle specifications are elaborated in Table 3.1. 
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Figure 3.7. MUN Explorer at Spaniard's Bay Wharf 

Table 3.1. MUN Explorer AUV Specifications 

MUN Explorer 

Parameter Specifications 

Length 4.5 m long 

Diameter 0.69m 

Dry Weight 700 kg 

Displacement 710 kg 

Payload Capacity 150 kg 

Cruising Speed 1.5m/s 

Speed range 0.5 to 2.5 mls 

Maximum Depth 3000m 

Battery Capacity Long endurance (> 100 km) 
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3.6.2. Boats 

A fishing boat and a zodiac rubber boat were used to deploy and recover the current 

meter and tow the sensor at different depths (Figure 3.8). 

Figure 3.8. Fishing Boat used for the Deployment of Current Meter 

3.6.3. Sensor Towing Platform 

A special towing platform was designed and fabricated for the sensor towing experiment 

(Figure 3 .9). The platform was designed to safeguard the sensors from hitting seabed 

rocks, minimizes current drifting effects, and easily deploy at different depths. The 

platform length is 0.5, width 0.5, and depth 0.3 m. It was fabricated from steel to 

minimize current drifting effects. Two wooden side wings were fixed on both sides of the 

platform to prevent rotation while monitoring. 
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Figure 3.9. Sensor Towing Platform 

3. 7. Experimental Design. 

Initially, it was proposed to use the AUV for the outfall monitoring experiment. Since 

this was the first time to conduct an experiment after integrating the AUV with the CTD, 

it was important to have a backup plan in case of any problem or if it was deemed not 

safe to use the AUV. The sensor towing platform was proposed as an alternative plan. 

3.7.1. Site Survey 

A site survey was carried out on May 10, 2007. The intention of this survey was to 

identify a suitable location to deploy and recover the AUV. The Spaniard's Bay fire 

department volunteered a fire truck to rinse the vehicle out after recovery. An electric 

generator was required to run the ground facilities at the wharf. 
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3.7.2. Sensor Calibration 

Chlorophyll a 

According to the Turner Design, the Chlorophyll a Cyclops-7 was set up for the 

following approximate ranges; 

XlOO 0 to 5JJ.g/L(max) 

XlO 0 to 50 ~-tg/L(max) 

Xl 0 to 500 JJ.g/L(max) 

As recommended by the Turner design, XlO gain setting is the most appropriate setting 

for a marine monitoring application. They have also mentioned that Rhodamine WT dye 

can be used to calibrate the sensor. A laboratory experiment was conducted to convert the 

voltage output to mg/1 concentration. Figure 3.10 demonstrates the calibration curve 

using Rhodamine WT dye obtained from the experiment. 
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Figure 3.10. Chlorophyll a Calibration Curve 
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Turbidity 

The Turbidity Cyclops-7 sensor has the following ranges: 

X100 0 to 100 NTU 

X 10 0 to 1000 NTU 

Xl 0 to 3000 NTU 

1000 NTU formazin based turbidity standards were ordered from GF Chemicals. For 

moderately turbid waters, X10 range was recommended because it offers the best 

resolution and range for our application. The calibration curve was obtained from the lab 

experiment in order to convert the voltage output to a Nephelometric Turbidity Unit 

(NTU) (Figure 3.11). 
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Figure 3.11. Turbidity Calibration Curve 
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3.7.3. A UV Sampling Plan 

Initially, a two day monitoring mission was planned to collect real-time water quality 

data around the outfall using AUV. The sampling plan was designed to collect a large 

amount of information from the water column. The safe monitoring depth was set at 3 

meters from the seabed. It was proposed to monitor 5 depth layers of the water column at 

1 m depth intervals. Figure 3.12 demonstrates the horizontal trajectory of each depth 

layer. In order to generate higher resolution maps, the collection frequency was designed 

at 10 hertz/sec. 

Start 20 m Finish 

200 m 

200 m 

Figure 3.12. Proposed Horizontal Trajectory 

Since the CTD can only accommodate two sensors at the same time, turbidity and 

Chlorophyll a fluorometers were alternated on each day. Table 3.2 presents the proposed 

monitoring plan for the two day AUV mission. 
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Table 3.2. Proposed A UV Environmental Monitoring Plan 

Mission Date Depth Parameter Estimated 

m time min 

1 May 16,2007 1 CTD + Chlorophyll a 30 

1 May 16,2007 2 CTD + Chlorophyll a 30 

1 May 16,2007 3 CTD + Ch lorophyll a 30 

1 May 16,2007 4 CTD +Chlorophyll a 30 

1 May 16,2007 5 CTD +Chlorophyll a 30 

2 May 18,2007 1 CTD +Turbidity 30 

2 May 18,2007 2 CTD +Turbidity 30 

2 May 18,2007 3 CTD +Turbidity 30 

2 May 18,2007 4 CTD +Turbidity 30 

2 May 18,2007 5 CTD +Turbidity 30 

Total 300 

3.7.4. Alternative Sensor Towing Plan 

As mentioned earlier in this Chapter, the sensor towing experiment was proposed to 

collect data at locations not safe for the AUV. 

3.8. AUV Monitoring Experiments 

Two environmental monitoring missions were conducted on May 16 and 18, 2007. In 

these missions, the CTD, ch lorophyll a and turbidity fluorometers were integrated with 
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the AUV computer system to achieve real-time spatial and temporal information 

simultaneously. The vehicle is equipped with 2 positioning systems. At surface, the 

Geographical Positioning System (GPS) collects spatial data, and when the vehicle dives, 

an Acoustic Positioning System (APS) collects spatial data underwater. The collection 

frequency was set at 10 Hz/s. The RCM 9 L W current meter was deployed at 5 m depth 

and about 72 m from the outfall diffuser to collect speed and cun·ent direction data. 

3.8.1. A UV Experiment 1 

In this experiment, the CTD was integrated with the chlorophyll a fluorometer. The 

InterOceans cutTent meter was deployed at 6 meters depth and about 100 m downstream 

of the outfall diffuser location. The proposed mission was programmed and downloaded 

to the AUV computer system. Initially, the AUV was tested on a pilot mode and at 

various depths. During the test, a technical fault occurred at about 16 m depth, which 

meant that the experiment had to be abandoned on this day. However, some data were 

recovered before the fault occurred. Figure 3.13 demonstrates the trajectory of this pilot 

test. 
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Figure 3.13. AUV Experiment 1 Trajectory 

A UV Experiment 2 

In thi s experiment, the CTD was integrated with the turbidity sensor. After diagnosing 

and repaiting the fault that occuned in experiment 1, it was suggested by the technical 

crew to conduct a few pilot tests before setting the vehicle on mission mode. The current 

meter was deployed at the same location of experiment 1. While piloting the AUV, its 

propeller was accidentally tangled into a lobster trap. The vehicle was rescued and towed 

back to the whatf (Figure 3.14) for damage assessment. The technical crew determined 

that the tangled rope caused extensive damage to the propeller motor. This damage could 

not be repaired on site. However, data were recovered from the data loger. Figure 3.15 

illustrates the pilot test trajectory before the accident occurred. 
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3.9. Sensor Towing Experiments 

After analyzing the environmental data obtained from experiments 1 and 2, it was 

determined that the data was not sufficient to characterize the water quality and trace the 

effluent plume. In order to fulfill the study goals and objectives, it was imp011ant to 

conduct additional experiments by towing a sensor platform around the outfall location. 

In this experiment a handheld GPS device was used to collect longitudinal and latitudinal 

spatial data simultaneously while towing the sensor platform. 

3.9.1. Water Column Monitoring Plan 

It was proposed m this experiment to accumulate a large quantity of environmental 

infotmation covering the near-field and the far-field mixing zones. To achieve that, the 

environmental monitoring boundaries were set at 100 m length by 100 m width by 3 m 

depth . To obtain three dimensional (3-D) information of the water column, 6 depth layers 

were proposed for each experiment (Figure 3.16). 

In order to verify that the proposed boundaries are exceeding the near-field mixing zone, 

an initial simulation was performed using the CORMIX model. Consideting that the 

effluent flow rate is 0.051 m3/s, the discharge depth is 5 m (Mukhtasor, 1998), and 

current speed is 2.67 crn/s as obtained from the May experiment, the model has predicted 

that the near-field mixing zone is less than 12 m. Based on the proposed monitoring 

boundaries, the time of each layer was estimated at about 30 minutes at an average speed 

of 2 rn/s. 

After analyzing the AUV experimental data, it was speculated that the large amount of 

noisy data was associated with the high collection frequency set for the CTD. Therefore, 
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a lower collection frequency of 1 hz/sec was proposed in this experiment. It was also 

determined that 2 days of monitoring would be required to complete this expetiment. 

0.5 m 
Layer1 

1.0m 

1.5m 

Outfall Diffuser 

5.0 m -r--
-----+ 
--~{) __ _ / 

Figure 3.16. Towed Sensor Environmental Monitoring Experiment Design 

In the first experiment, it was decided to integrate both CTD and DO with the turbidity 

fluorometer in the first day and with the chlorophyll a fluorometer in the second day. 

Table 3.3 presents the design parameters of the sensor towing experiment. 

81 



Table 3.3. Sensor Towing Design Parameters 

No Design Parameter Length 

1 Length lOOm 

2 Width 100m 

3 Area 1. 0 square km 

4 Time 25-35 minutes 

5 Average Speed ;::::2 meter per second 

6 Average data points collection 2000 -2200 

3.9.2. Towed Sensor Experiment 1 

The first sensor towing experiment was successfully conducted on July 18, 2007. The S-4 

current meter was deployed at 5 meters depth and about 70 m downstream of the outfall 

diffuser location (Figure 3 .17). 

Figure 3.17 Current Meter Deployment- Looking Down 
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The experiment began at 10:39 am and ended at 4:20 prn. The DO and turbidity sensors 

were integrated with the CTD sensor. As proposed, six depth layers were monitored. The 

handheld GPS collected the geographical coordinates at the same location and 

simultaneously with the sensor platform. The platform depth was controlled by a 

mechanical pulley attached to the fi shing boat (Figure 3.1 8). The obtained data are 

summarized in Table 3.4. 

Table 3.4. Experiment 1 Data Summary 

Layer Data points Proposed Depth m Length Time Ave speed 

Depth m Mean- Std. Dev Km min Krnlh 

1 2207 0.5 0.54- 0.15 1.19 37:20 1.93 

2 2490 1.0 1.1-0.18 1.33 41:50 1.93 

3 1685 1.5 1.54-0.19 0.93 28:00 2.0 

4 2327 2.0 2.0-0.21 1.30 39: 10 2.0 

5 2102 2.5 2.5-0.29 1.16 35:00 2.0 

6 2458 3.0 2.81-0.48 1.31 41:00 1.93 

Total 13269 7.22 222:20 1.965 
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Figure 3.18. Left the Boat Mechanical Poly and Right is the Towed Sensor Platform 

3.9.3. Towed Sensor Experiment 2 

The second experiment was successfully conducted on July 20, 2008. The current meter 

was deployed at the same location of experiment l .The experiment started at 10:35 am 

and finished at 5:23pm. The DO and chlorophyll a sensors were integrated with the CTD 

sensor. Figure 3.19 demonstrates a typical GPS trajectory and location of the current 

meter and outfall diffuser. Table 3.5 presents a data summary of this experiment. 
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Figure 3.19. Experiment 2 Horizontal Trajectory at 0.5 m depth 

Table 3.5. Experiment 2 Data Summary 

Data Proposed Actual depth m Length Time 

points Depth m Mean - Std. Dev km min 

2499 0.5 0.59 - 0.10 1.35 42:05 

3353 1.0 0.86- 0.08 1.86 56:00 

2567 1.5 1.40 - 0.18 1.38 43:18 

2252 2.0 1.89 - 0.19 1.25 37:53 

2184 2.5 2.24-0.27 1.17 36:41 

2056 3.0 2.78 - 0.39 1.01 34:26 

14911 8.02 250:23 
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Chapter 4. Results 

4.1. Outfall Modeling 

As described in Chapter 2, length scale models are commonly used to predict the near

fie ld mixing zone. One objective of this study is to compare near-field dilution of two 

commonly used outfall diffusers. The existing staged diffuser design and the T-Shape 

riser design was modeled using CORMIX 2 and RSB model, respectively. By comparing 

these two designs with the same modeling concept, it is possible to evaluate the 

performance of each design under the same ambient and discharge conditions. 

4.1.1. Outfall Effluent 

Sharp (1989) conducted a flow rate study of Spaniard's Bay outfall and projected the 

flow for 2006 as 4,426 m3/d. It is speculated that no significant change in socioeconomic 

activities and population growth has occurred since then. According to the Spaniard's 

Bay town manager, the population in 2007 was about 1800. Since the outfall consists of a 

typical raw sewage effluent, the density was assumed to be close to fresh water (999 

kg/m3
) and salinity as 1 psu. The effluent turbidity values were obtained by suspending 

the turbidity fluorometer as close as possible to the center of the effluent jet. Figure 4.1 

demonstrates the turbidity measurements obtained from this experiment. Few isolated 

high turbidity values were obtained due to the presence of large sized effluent waste. For 

the modeling application, a mean value of 15.49 NTU was used as a representative 

turbidity sample. 
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Figure 4.1. Spaniard's Bay Outfall Effluent Turbidity Sampling Plot, July 20,2007 

4.1.2. Diffuser Geometry 

The outfall consists of a 200 mm diameter pipe discharging through two 100 rnrn 

diameter nozzles and extending 100 m offshore in a water depth of about 6 m (Sharp, 

1989). The two nozzles (ports) were designed to discharge in a horizontal downstream 

direction (Figure 4.1). In the original design, it was reported that the depth of the 

discharge ports was about 5 m from the surface of the water. 
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Figure 4.2. Spaniards Bay Outfall Design (Sharp, 1989) 

Unfortunately, the original outfall design (Sharp, 1989) did not include the full scale 

diffuser geometry (Figure 4.3). The Government of Newfoundland and Labrador Water 

Resources Department was contacted to provide the complete design, but no additional 

information was available. The diffuser length was assumed based on field observations. 

Since only one single boil was observed at the surface, this indicated that the risers were 

clo ely spaced and tended to merge below the surface. As a conservative number, the 

distance between the two risers was assumed to be 5 m and the diffuser length to be 6 m 

(Figure 4.3). For the multipart discharge modeling, the CORMIX requires a minimum 

number of four ports. To overcome this problem, each single port riser was divided into 

two identical adjacent ports. In this case the effluent will tend to merge immediately and 

behave as a single port (Figure 4.4). 
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Figure 4.3. Spaniards Bay Outfall Diffuser Design (Sharp, 1989) 

Figure 4.4. Outfall Diffuser Port Geometry 

4.1.3. Ambient Conditions 

4.1.3.1. Current 

IOOmmBEND 

As mentioned in Chapter 3, due to an internal cunent meter fault, no data was retrieved 

from July experiment. Therefore, the collected data in May experiment was used as the 
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only available source. Figure 4.5 shows the current rose diagram from the May 16 and 18 

current data recorded between 10:00 am to 4:00 pm. The dominating current speed was 

observed to be < = 5 cm/s, the minimum was 0.28 cm/s, the maximum was 21 .36 cm/s 

and the mean was 2.67 cm/s, with a standard deviation of 2.410.28 cm/s. For the 

modeling application, the mean velocity was used. 

Based on the Environment Canada hourly weather station located in Long Pond, which is 

along the Conception Bay South and about 25 km from Spaniard's Bay, on May 18 the 

average wind speed between 10:30 am and 4:30pm was recorded as 21.42 km/hr. While 

on July 20 the average wind speed was recorded as 26.28 kmlhr at the same time. 
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Figure 4.5. Current Rose Diagram- May 16-18,2007 
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4.1.3.2. Tidal Data 

The tidal data were collected from the Deprutment of Fisheries and Oceans (DFO) 

website. The closest tidal monitoring station to Spaniard's Bay was identified in Harbour 

Grace (Station 935). During the July 18 experiment (10:35 am to 15:40 pm), the Mean 

High Water (MHW) tide was found at 11:40 am about 0.9 m. Between 10:35 am and 

11:40 am, a flood cunent was observed, which usually conttibutes to an additional 

landward effluent advection. Between 12:00 pm and 3:40 pm, the ebb cutTent was 

observed contributing to seaward effluent advection. The High Water Slack (HWS) 

occurs when the tidal cunent is in a stationary phase and before it changes its direction . 

The slag phase was observed between 11 :00 am and 12:00 pm. During the experiment, 

the tidal levels varied from 0.5 m to 0.9 m (Figure 4.6). 
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Figure 4.6. Spaniard's Bay Tidal Current, July 18,2007 

4.1.3.3. Stratification 

On July 20, a vertical column profiling experiment was conducted at 5m depth to 

determine whether the ambient density was uniformly or non-uniformly distributed. At 
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0.5 m depth, the salinity was observed as 30.33 psu (PSS-78), the temperature was 7.73 

°C, and density was 1023.650 kg/m3
. At 4 m depth, the salinity was observed as 31.34 

psu, the temperature was 6.94 °C, and density was 24.557 kg/ m3 (Figure 4.7) . As a 

practical guide, if the vertical variation in density is less than O.lkg/m3 then it can be 

neglected and considered uniform (CORMIX Manual). Since the difference between the 

upper and lower layers was 0.9 kg/ m3
, then the ambient density was considered as non-

uniform. 
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Figure 4.7. Spaniard's Bay Density (a) and Temperature (b) Profile. July 20, 2007. 

4.1.4. Model Inputs 

Based on effluent characteristics, outfall geometry, and ambient conditions described 

above, the model inputs were summarized in Table 4.1. 
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Table 4.1. Spaniard's Bay Outfall Model Input Summary 

Effiuent Characteristics 
Effluent flow rate 0.0514 m5 Is 
Density 999 kg/ mj 

Salinity 1 psu 
Mean turbidity 15,49 NTU 
Outfall Characteristics 
Outfall Length lOOm 
Outfall diameter 0.2 m 
Diffuser Length 6m 
Total number of risers 2 
Spacing between risers 5m 
Riser height 0.6 m 
Total number of ports for each riser 2 
Riser diameter 0.07 m 
Port vertical angle 0 ° (horizontal discharge) 
Port orientation 0 ° (staged diffuser) 
Horizontal angle 270°(pe_rpendicular to the ambient direction) 
Port direction Same direction 
Ambient Conditions 
Average current Velocity 0.0267 m/s 
Average cunent direction 225 ° (SW) 
Average water depth 6 m (above the diffuser) 
High water slag ! 1:00am - 12:00 pm 
Low water slag 5:00pm - 6:00pm 
Upper layer density 1023.65 kg/m5 (0.5 m) 
Bottom layer density 1024.55 kg/mj ( 4 m) 
Average wind sp_eed 7.22 m/s 

4.1.4.1. CORMIX Model 

As a result of feeding the input data to the CORMIX model and running it, flow 

description and numerical prediction files were generated. The following is a summary of 

flow description fi le: 
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-- -------------------------------------------------------------

• Since the effluent density is less than the surrounding ambient water density at the 

discharge level, the effluent is positively buoyant and will tend to rise to the 

surface. 

• The effluent will experience instability with full ve11ical mixing in the near-field, 

which may have a benthic impact of high pollutant concentration. 

• The plume becomes verticall y fully mixed within near-field , but may re-stratify 

later in the far-field. 

• The plume in the unbounded section contacts nearest bank at 96.47 m 

downstream. 

The nume1ical file demonstrated that the near-field mixing zone ends at 11.58 m with a 

35.6 dilution ratio corresponding to a 0.43 NTU turbidity concentration (Table 4.2). 

Table 4.2. CORMIX Near-Field Dilution Summary 

X (m) y (m) Z(m) s C-NTU BV(m) BH (m) 

Start of Near-field 0 -2.50 4.40 18.9 0.82 4.40 0.58 

End of Near-field 11.58 -17.96 4.40 35.6 0.43 0.71 11.45 

where X is the plume downstream length, Y is the plume width from the centerline, and Z 

is the plume height. S is the dilution rate, C is the turbidity concentration, BV is the top

hat thickness measured vertically in X-direction, and BH is the top-hat half-width 

measured horizontally in Y -direction. Figure 4.8 demonstrates the near-field dilution ratio 

and Figure 4.9 is a 3-D near-field turbidity concentration graph . 
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4.1.4.2. RSB Model 

In this model , the same discharge characteristics and ambient conditions fed to the 

CORMIX model were considered. However, in this model the existing staged diffuser 

design was compared with the T-Shape riser design (Figure 4.10). 

y 

p er s pect ive view plo.n view 

Figure 4.10. Alternative T-Shape Risers Diffuser Geometry 

where dis the port diameter, s is the riser's spacing, n is the total number of ports, u j IS 

the port exit velocity. 

Considering linear density stratification, the buoyancy frequency can be calculated by 

(Daviero and Roberts, 2006): 

(4.1) 
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where g is the gravity force, dp a/ d : is the stratification difference at the discharge 

depth, and p is the ambient density. 
a 

By substituting equation. 4.1, the buoyancy frequency becomes: 

N- ( -9.81m/s J( l0.23.65kg /m
3

- 1024.55kg /m
3 J 

1023.65kg I m3 Sm 

N = 0.0415s - l 

Considering that the effluent density vatiation is small compared to the absolute ambient 

densi ty (the Boussinesq approximation), Tian et al. (2004-a) calculated the modified 

acceleration due to gravity using: 

(4.2) 

where Po is the effluent density. 

By substituting the column density field data, 

, = 9.
81

m/ s 1023.65kg I m
3

- 999kg 1m
3 

g o 1023.65kg 1m3 

The discharge per unit diffuser length is calculated using (Tian et al., 2004-a). 

(4.3) 

where QT is the total discharge, q is the discharge per unit length, and L is the diffuser 

length. 

Considering the effluent discharge is 0.514 m3/s and the diffuser length is 6 m, the 

discharge per unit length becomes: 
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q = 0.00856m 2 Is 

Daviero and Roberts, (2006) computed the buoyancy flux per unit length in a stratified 

stationary environment using: 

(4.4) 

b = 0.00202m3 I s 3 

Daviero and Roberts (2006) calculated the length scale for a linearly stratified ambient 

usmg: 

bl /3 

l =
b N (4.5) 

Tian et al. (2006) conducted an experiment under a stratified and flowing environment. 

As a result, they concluded that the near-field dilution is effected by the pott spacing 

when s I lb < 2, where the near-field dilution can be predicted using: 

(4.6) 

when s I lb ~ 6 , the authors predicted the near-field dilution using: 

S ,qN = 1 66(s /l ) - 1/3 F' '9 
b21 3 . b 

(4.7) 

As for a stationary environment when s I lb < 2, they predicted the near-field using: 

(4.8) 

For the Spaniard's Bay outfall, the diffuser port spacing length scale was determined as: 

s llb = 5/3.0 = 1.6 
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Since s I l" < 2 , then equation 4.6 applies. 

Davis (1999) used the Froude number to express the effect of the flowing cunent 

(equation 4.9). 

(4.9) 

Substituting the mean cuiTent velocity obtained from the cuiTent meter as 0.0267 mls 

F = 0.00942 

Therefore, the near-field dilution was found: 

Sn = (0.00202m
3 I s 3

)
213 

(0.00942)
116 

0.00856m21 s x 0.04151 s 

Sn = 22.038 

When s I l" < 2 , the near-field length is obtained using equation 4.10 (Tian et al. , 2006). 

(4.10) 

X , = 5.06m 

For weak cun·ents ( F <0.1), Tian et al. (2006) suggested usmg equation 4.11 for 

computing the waste field centerline. 

Z, ll" = 1.7 (4.11) 

z/1 = 5.lm 

Therefore, when usmg the RSB model for the T -shape riser design, the near-field 

boundary (Xn) was predicted at 5.6 m with 22.03 dilution ratio and 5.lm centerline 

height (Zn). 
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4.2. Data Management 

As described in Chapter 3, large sets of raw data were generated from the AUV and 

sensor towing experiments. Often these raw data convey very little information because 

of the associated sensor noise with it. Initially, it was important to statistically analyze 

and validate the accuracy of these data. Therefore, some statistical analysis techniques 

were applied to investigate when and where large variations have occurred. These 

vruiation or outliers could be true due to actual environmental changes caused by the 

outfall effluents or false as a result of sensor errors. 

Four data sets were generated from the environmental monitoring experiments. Two sets 

were obtained from AUV experiments and the other two from towed sensor experiments. 

Figure 4.11 demonstrates a procedure developed to analyze the raw and extract useful 

information. 
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Figure 4.11. In-Situ Data Management and Analysis Diagram 

4.2.1. Data Transformation 

The raw data obtained from the data logger and GPS were transferred from comma 

delaminated format (cvs) to Excel workbook (xis) fonnat. 
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4.2.2. Data Correlation 

The GPS spatial data were correlated with environmental monitoring data acquired from 

the CTD. The correlation was based on the synchronized timing of the GPS and the CTD 

pe1forrned at the beginning of each experiment. 

4.2.3. Data Integration 

The six horizontal depth layers were integrated in ascending order. Such integration was 

used for determining when and where variations occurred in the water column. 

4.2.4. Multivariate Data Analysis 

A multivariate data analysis technique was applied to characterize the time series data of 

all experiments. This was done by plotting the relevant data in one chart for identifying 

when and where noise occurred. 

Sensor noise is a common problem associated with in-situ monitoring activities. Often 

the nature and origin of noise is unknown. Brerton (2002) reported two types of noise 

associated with in-situ environmental monitoring, a stationary and a correlated noise. The 

stationary noise occurs at each successive point in time and does not depend on the noise 

at the previous point. There are two forms of stationary noise, the homoskedastic and the 

hetroskedastic noise. When the mean and standard deviation remain constant over the 

entire data series, it is considered as homoskedastic. As for the hetroskedastic noise, it is 

dependent on the size of the measurement, which is often proportional to its intensity. 

However, this noise is still represented by the normal probability dist1ibution. The 
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cotTelated or non-stabonary noise occurs when the level of noise in each sample of a time 

series depends on that of the preceding one. 

By integrating AUV expetiment 1 data (Figure 4.12), unrealistic salinity variations 

rangmg from 0 to 30 psu were observed. Also, similar variations were observed for 

temperature and chlorophyll a concentrations. By comparing chlorophyll a, temperature 

and depth variations, it was observed that at 15 m depth these variations did not adjust 

back to their surface observations (2 - 4 °C for temperature and 0 to 0.2 ppb for 

chlorophyll a), which indicates measurement errors. At the sUJface, the noise was 

atttibuted to surface waves and cun·ents. It was observed that when the AUV was moving 

against the cutTent, the tendency of the vehicle is to resist the current and rise up to the 

surface, where sensors are exposed to the ambient air causing noisy signals. After 1528 

seconds, a technical fault occun·ed and generated noisy data. All noisy data were 

screened out and eliminated from this experiment. Experiment 2 raw data demonstrates 

noisy salinity observations at the surface due to wave and current issues (Figure 4.13). 
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Figure 4.12. AUV Experiment 1 Raw Data Analysis 
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Figure 4.13. AUV Experiment 2 Raw Data Analysis 

The sensor towing experiments (Figures 4.14 and 4.15) demonstrate more realistic results 

and fewer variations compared to AUV experiments. The only variation observed was 

when the sensor platform was deployed at the beginning of each mission and recovered 

back at the end. These data were eliminated by deleting the first and the last 1 0 seconds 

of each horizontal layer allowing the sensor to rest at the desired depth. 
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Figure 4.14. Sensor Towing Experiment 1 Raw Data Analysis 
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4.2.5. Smoothing 

Smoothing is a statistical technique used when the time series data is associated with 

noisy signals. The moving average method was applied to smooth out fluctuations of time 

series data using the trend line method (Fleming, 2000). This is accomplished by taking 

the rolling averages of the data over a number (n) of consecutive pe1iods. It is important 

to avoid over-smoothing the data by choosing too large a value of n. The moving-average 

trend values have to be "centered" against the mid-point of the average period. Table 4.3 

demonstrates an example of a three point moving average of salinity observations. The 

Minitab statistical software was used to calculate the moving average of time series data. 

Figure 4.16 graph shows the smoothed salinity data (fits) of experiment 2 after 

eliminating the depth related noise. It was possible to visualize and characterize the trend 

after smoothing the salinity observations. 

Table 4.3. Moving Average Smoothing Technique 

Time series Salinity Three point moving average 

1179329786 31.377 = (31.377+31.768+31.762)/3 = 31.635 

1179329786 31.768 = (31.768+31.762+31.803)/3= 31.777 

1179329786 31.762 = (31.762+29.803+27.805) /3= 29.79 

1179329786 29.803 

1179329786 27.805 
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Figure 4.16. AUV Experiment 2 Salinity Smoothing Technique 

Data Validation 

The towed sensor data was validated by correlating temperature and salinity observations 

with depth. Figures 4.14 and 4.15 show temperature observations decreased with depth, 

while density observations increased with depth. These observations reveal summer 

thermal and density stratification, where the surface water layer has a higher temperature 

and lower density than bottom layer. Such observations have provided confidence for 

further analysis. 

4.3. Environmental Monitoring and Plume Tracking 

One of the challenges of environmental monitoring is water quality assessment and 

plume tracking in a dynamic and complex system, such as the ocean. Traditional 

sampling and analysis can be very expensive, tedious, and represent a few discrete points 

in the water column. With the rapidly developing in-situ sensors and GPS technology, 
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more comprehensive assessments can be performed by characterizing large quantity of 

spatial and temporal data simultaneously. This monitoring technique can determine when 

and where changes occur in the water column. Therefore, it was applied to assess the 

impact of raw sewage outfall on a coastal water quality. The in-situ data were statistically 

analyzed using Mini tab software and mapped using Surfer 8. 

4.3.1. A UV Experiment 1 

The AUV data obtained from experiment 1 was used to characterize temperature, salinity, 

and chlorophyll a concentrations at different depths. The temperature varied from 2.2 to 

2.6 °C. The vertical trajectory (Figure 4.17a) demonstrates that from 0 to 2 m depth the 

temperature was around 2.6°C, from 2 to 10m the temperature was close to 2.5°C, from 

10 to 12 m a slight increase of 0.1 °C was observed, and from 12 to 15m the temperature 

varied between 2.2 and 2.3°C. Figure 4.17b demonstrates a weak salinity stratified water 

column, where, from 0 to 8 m the salinity values were around 31.9 psu, and from 8 to 15 

m the salinity was around 32 psu. 

Chlorophyll a concentrations varied from 0.02 to 0.14 ppb. Figure 4.17c demonstrates 

higher concentrations at the bottom layers. Such observation reveals that ambient light 

penetrated the water column at such depth, due to the fact that phytoplankton 

communities rely on sunlight for their production. Penetration of light to such a depth 

also indicates a clear, non-turbid water column. 
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Figure 4.17. AUV Experiment 1 Vertical Proiiling at the Center of the Bay 
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4.3.2. AUV Experiment 2 

In this experiment the AUV was piloted at the surface and the middle of the bay. The 

salinity and temperature plots (Figure 4.18) demonstrate that the minimum temperature 

was 2.50 °C, the maximum was 3.71 °C, and the mean was 2.93°C. The minimum salinity 

value was 31 .27 psu, the maximum was 31.69 psu, and the mean was 31.48 psu. 

Salinity psu Temperature deg C 

Figure 4.18. AUV Experiment 2 Surface Contour Maps 

4.3.3. Sensor Towing Experiment 1 

Six depth layers were monitored covering an approximate area of 11 ,910 m2
• In order to 

characterize spatial variations of each layer, the contour map was divided into nine 

geographical grids (Figure 4.19).The outfall is located in the western grid. 
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Figure 4.19. Geographical Distribution Grids 

4.3.3.1. Salinity 

Figure 4.20 demonstrates a slight positive salinity correlation with depth, where the 

conelation coefficient R2 = 0.23. With the exception of a few low salinity observations 

obtained around the outfall area, the graph indicates a weakly stratified water column. 
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Figure 4.20. Sensor Towing Experiment 1 Salinity - Depth Correlation 
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The longitudinal salinity distribution plots (Figure 4.21) demonstrate more salinity 

variations and less concentration in the upper layers compared to the lower layers. The 

mean values from the top to the bottom layers were 31.38, 31.42, 31.43, 31.44, 31.44, 

and 31.45 psu, corresponding to standard deviations of 0.087, 0.028, 0.018, 0.012, 0.014, 

and 0.016 psu, respectively. Such observations reveal that the buoyant effluent plume 

rose to the surface layer before being advected by the ambient cunent in a downstream 

direction. It is evident from the upper two layers that salinity vmiations were decreasing 

in a downstream direction . With the exception of a few upstream low salinity values 

observed in layer 6 caused by the outfall effluent, the small standard deviations of the 

lower 3 layers indicate homogenized salinity layers, which means that the lower layers 

were not affected by outfall effluent. Salinity contour maps (Figure 4.22) demonstrate 

that salinity variations decrease with depth, where the lowest salinity concentrations were 

identified in the surface layers and around the diffuser location extending to an eastern 

and northeastern direction. These observations conclude that the effluent plume was 

advected downstream by the current. 
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Figure 4.21. Sensor Towing Experiment I Downstream Salinity Distribution Plots 
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Figure 4.22. Sensor Towing Experiment 1 Water Column Salinity Contour Maps 
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4.3.3.2. Temperature 

Figure 4.23 shows a strong negative temperature correlation with depth, where R2 = 0.57 

This observation indicates a thermally stratified coastal zone. The temperature 

observations varied from 8.45 °C at 0.53 m to 7.0 °C at 2.83 m depth with a mean value 

of 7.86 °C and 0.19 °C standard deviation. 
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Figure 4.23. Sensor Towing Experiment 1 Temperature - Depth Correlation Plot 

The highest temperature values were identified in the upper layers. It was observed from 

the longitudinal distribution graph that the upper surface layers (L1, L2, and L3) are 

positively correlated with distance, where R2 = 0.29, 0.21, and 0.3, respectively (Figure 

4.24). Layers 4 and 5 did not demonstrate any longitudinal correlation, while layer 6 

demonstrated a negative correlation. These observations indicate a temperature increase 

in a downstream direction. Figure 4.25 shows the highest temperature variations are 

present in the surface layers. 
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Figure 4.24. Sensor Towing Experiment 1 Downstream Temp Distribution Plots 
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Figure 4.25. Sensor Towing Experiment 1 Water Column Contour Maps 
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4.3.3.3. Dissolved Oxygen 

No DO con·elation was observed with depth , where R2 = 0.08 (Figure 4.26). The lowest 

DO saturation was observed in layer 5 (130.8% saturation) and the highest in layer 4 

(145% saturation). The overall mean was 136.37% saturation and standard deviation was 

1.27. 
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Figure 4.26. Sensor Towing Experiment lDO-Depth Correlation Plot 

The mean percent saturation from the top to the bottom layers were 135.74, 136.99, 

136.08, 135.61, 137.09, and 136.47. All of the longitudinal DO plots demonstrate 

negative downstream correlation (Figure 4.27). This indicates that the biodegradation 

process was taking place with time. Due to the positive buoyancy force and downstream 

advection of the effluent, the biodegradation process of the organic matter was occurring 

at the surface layer and was exponential with time. Figure 4.28 demonstrates the highest 
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DO concentrations were observed around the outfall area and decreased in a downstream 

direction. 
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Figure 4.27. Sensor Towing Experiment 1 Downstream DO Distribution Plots 
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Figure 4.28. Sensor Towing Experiment I Water Column DO Contour Maps 
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4.3.3.4. Turbidity 

The lowest turbidity value was observed as 0.4 NTU and the highest was 4.49 NTU at the 

bottom layer. The mean observations starting from the top to bottom layers were 0.54, 

0.44, 0.43, 0.43, 0.44, and 0.45 NTU and the maximum were 1.93, 0.66, 0.61, 0.68, 1.27, 

1.27, and 4.49 NTU, corresponding to 0.11, 0.02, 0.01, 0.01, 0.02, and O.i1 standard 

deviation. It was also observed that the highest and lowest standard deviations were 

identified in the top and bottom layers. By eliminating few isolated outliers due to large 

size effluent chunks, a negative turbidity correlation can be observed with depth, where 

R2 = 0.18 (Figure 4.29). 
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Figure 4.29. Sensor Towing Experiment 1 Turbidity - Depth Correlation Plot 

Such observations reveal that due to the positive buoyancy force, the turbid effluent rose 

up to the sulface layer. This can be justified as the raw sewage effluent, which usually 

has a similar density of fresh water was dispersed at the surface and then advected by the 
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surface current. The longitudinal turbidity distribution plots demonstrate that the highe t 

turbidity variations were identified in the surface layer. While moving in a downstream 

direction , these variations were graduall y decreased (Figure 4.30). The highest 

observations were identified upstream in the bottom layer and close to the outfall diffuser 

location. The contour maps (Figure 4.31) demonstrate how turbidity observations are 

distributed in the surface layer around the diffuser location . 
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Figure 4.30. Sensor Towing Experiment 1 Downstream Turbidity Distribution Plots 
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4.3.4. Sensor Towing Experiment 2 

In this experiment, the turbidity sensor was replaced by the chlorophyll a sensor. The 

same characterization procedures applied in sensor towing experiment 1 were applied to 

this experiment. 

4.3.4.1. Salinity 

With the exception of a few outliers, the integrated salinity observation has shown a 

weakly stratified water column. Figure 4.32 demonstrates a weak positive salinity 

correlation with depth, where the correlation coefficient R2 = 0.316. The longitudinal 

salinity distribution plots (Figure 4.33) demonstrate that the highest salinity variations 

can be identified at the surface layer, and as the plume travels in a downstream direction 

the salinity values decrease. Such observations indicate that the effluent plume rose to the 

surface and advected in a downstream direction. With the exception of a few low salinity 

observations located upstream in layer 5 and 6, homogenous salinity layers are observed 

in the layers 2,3,4,5 and 6, which indicate that these layers were not affected by the 

outfall effluent. 

126 



32.0 s 0.0628856 
R-Sq 31.6% • 
R-Sq(adj) 

31.5 

:I • (I) 
Q. 31.0 
.~ • • • • • . 5 • - • ~ 

30.5 • rJ) 

30.0 I • 
• 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 
Depth m 

Figure 4.32. Sensor Towing Experiment 2 Salinity - Depth Correlation Plot 

Figure 4.33 demonstrates larger salinity variations at surface layer compared to bottom 

layers. The mean and con·esponding standard deviation values were observed as 31.34 

and 0.056; 31.37 and 0.55; 31.44 and 0.03; 31.47 and 0.015; 31.44 and 0.045; and 31.48 

psu and 0.039 psu. A similar result was observed in sensor towing experiment 1, where 

the highest variations were observed at the surface layers and the lowest were at the 

bottom layer. Such similarity of results validates our data. The large salinity variations in 

the upper layers (L1 and L2) are attributed to the near-field positive buoyancy force 

(Figure 3.34). 
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Figure 4.33. Sensor Towing Experiment 2 Downstream Salinity Distribution Plots 
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Figure 4.34. Sensor Towing Experiment 2 Water Column Salinity Contour Maps 
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4o3o4o2o Temperature 

Figure 4.35 shows a strong negative temperature con·eJation with depth , where R2 = 0.779 

as compared to R2 = 0.579 in sensor towing experiment 1. These observations indicate 

temperature stratification. The temperature observations varied from 9.0 °C at 0.86 m to 

7.0 °C at 2.8 m depth, with 7.88 °C overall mean and 0.48 °C standard deviation . 
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Figure 4.35. Sensor Towing Experiment 2 Temperature - Depth Correlation Plot 

The highest temperature values were identified in the upper 1 m (Ll and L2). Ll and L2 

of Figure 4 .36 demonstrate higher upstream temperature variations compared to 

downstream. Figure 4.37 demonstrates the water column temperature distribution. The 

plots show lower temperature at bottom layers and close to the outfall diffuser. It is 

speculated that at 4.4 m depth, the outfall discharges lower temperature effluent than the 
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ambient, and as the effluent plume is mixed wi th the ambient, the plume temperature 

gradually reaches that of the ambient. 
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Figure 4.36. Sensor Towing Experiment 2 Downstream Temp Distribution Plots 
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Figure 4.37. Sensor Towing Experiment 2 Water Column Temperature Contour Maps 
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4.3.4.3. Dissolved Oxygen 

DO concentration is highly correlated with temperature and salinity concentrations. At 

higher temperature and salinity, DO is depleted. During the summer season, coastal water 

has higher temperatures at the surface layer. Figure 4.38 demonstrates a slightly positive 

DO correlation with depth, where R2 = 0.18. In this experiment, the DO concentrations 

ranged from 118% to 142.5% saturation, which were acquired at bottom layer. The 

overall DO mean was 131 %saturation and the standard deviation was 2.78%. 
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Figure 4.38. Sensor Towing Experiment 2 DO - Depth Correlation Plot 

Figure 4.39 illustrates a negative DO correlation with longitudinal distributions, where R2 

was found 0.23, 0 .083, 0.12, 0 .582, and 0.58, respectively, and a weak positive 

correlation in the bottom layer with R2 = 0.03. As observed in sensor towing experiment 

1, the result rev aled that the sewage waste decomposition process was exponential with 
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time. Initially, the fresh raw sewage effluent has DO concentrations close to that of the 

fresh water, but when it 's exposed to surface and advected by the surface cutTent, the 

aerobic bacteria present at the surface biodegrade the organic waste exponentia lly with 

time. At the bottom layer, the low DO concentrations around the outfall area occutTed 

from the anaerobic process of the organic waste deposited at the seabed. In Figure 4.40, 

the bottom layer (L6) demonstrates the highest and lowest DO concentrations are present 

around the outfall diffusers. 
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Figure 4.39. Sensor Towing Experiment 2 DO Distribution Plots 
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Figure 4.40. Sensor Towing Experiment 2 Water Column DO Contour Maps 
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4.3.4.4. Chlorophyll a 

As described earlier in Chapter 2, chlorophyll a is a plant pigment used to determine the 

amount of algal biomass present in the water body. An excessive amount can indicate 

algal bloom conditions, which may deplete dissolved oxygen levels. Generally, algal 

blooms tend to increase with higher nutrient concentrations. The experiment did not 

indicate any algal bloom in the region. Few isolated high level concentrations were 

detected at the bottom layer. The chlorophyll a concentrations demonstrated a weak 

positive co1relation with depth, where R2 = 0.11 (Figure 4.41). 
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Figure 4.41. Sensor Towing Experiment 2 Chlorophyll a- Depth Correlation Plot 
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This observation can be explained by two factors. The first is that during the summer 

season sunlight can easily penetrate to 3 m depth, and the second is that nutrient 

concentrations around the outfall area are high due to settling organic pollutants. The 

overall mean concentration was found 0.12 ppb with a standard deviation of 0.0034. The 

mean and the corresponding standard deviations in ppb were 0.1 and 0.0 14, 0.11 and 

0.015, 0.15 and 0.018, 0.0143 and 0.025, 0.13 and 0.03, and 0.13 and 0.056 from top to 

bottom, respectively. From Figures 4.42 and 4.43 it was observed that higher chlorophyll 

a concentrations can be identified in the central and northwest grids of layers 5 and 6. 

These higher observations were attributed due to the high nutrient depositions around the 

outfall location. 
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Figure 4.42. Sensor Towing Experiment 2 Chlorophyll Distribution Plots 
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Figure 4.43. Sensor Towing Experiment Chlorophyll a Contour Maps 
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Chapter 5. Discussion 

5.1. Outfall Modeling 

As discussed in Chapter 2, both the length scale CORMIX and RSB models are widely 

used for municipal and industrial outfall designs. The two designs were compared to 

investigate which design demonstrates better mixing within the near-field boundary. The 

existing staged diffuser design was evaluated using the CORMIX model and the 

alternative T-Shape diffuser design was evaluated using the RSB model. 

5.1.1. CORMIX Model 

The near-field CORMIX model predicted dilution at the edge of the near-field (11.58 m) 

as 35.6, the turbidity concentration as 0.43 NTU, the plume height (Z) as 4.4 m, the 

plume half-width (BH) as 11.45 m, and the plume thickness (BV) as 0.71 m. 

The model characterized the effluent flow based on the ambient conditions and diffuser 

geometry. It considered the density stratification as weak relative to the discharge 

conditions and dynamically unimportant; hence, the effluent will behave as if the ambient 

conditions were unstratified. The effluent is positively buoyant and will tend to rise 

toward the surface due to the density difference between the ambient and the effluent. 

The net horizontal momentum flux controls the flow. However, lateral entraining and 

diffusion lead to a spreading of the diffuser plume and additional mixing. Initially, the 

plume is cross-flowing, but it is progressively deflected into the direction of the ambient 

current. At a certain distance, stratification may take place depending on the strength and 

direction of the plume buoyancy. The near-field will experience instability conditions 

with full ve1tical mixing. There may be a benthic impact of high pol lutant concentration. 
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In the far-field the plume becomes vertically fully mixed within the near-field at 0 m 

downstream, but re-stratifies later and is not mixed with the far-field. The plume in the 

unbounded sections will contact the nearest bank at 74.99 m downstream. The plume 

spreads laterally along the surface layer boundary while it is being advected by the 

ambient current and the plume thickness may decrease dUiing this phase with a small 

mixing rate. 

5.1.2. CORMIX Outfall Design Recommendations 

In the CORMIX model a drastic change in the flow configuration may occur as a result of 

small change in the ambient or design parameters. The model treated the two nozzle 

group for each riser as one single nozzle with mientation that represented an average of 

two nozzles. Also, it described the spacing between adjacent ports/nozzles as equal to or 

less than the local water depth, therefore the slot diffuser approximation held well. Most 

of CORMIX recommendations are motivated by the desire of improving the mixing zone 

conditions (i.e., minimizing concentration and or/areal extents). 

In order to improve the mixing process, the model recommended the following: 

Diffuser location: It is recommended moving the outfall farther offshore to deeper water 

in order to delay interaction with the banks/shore and improve the near-field mixing. 

Diffuser Type: The diffuser type is dictated by its nozzle/port arrangement and 

alignment. The diffuser choice is often dictated by local bathymetry and other safety 

conditions, e.g. clearness for navigation or fishing. The existing staged diffuser provides 

a directed momentum input; therefore, it can lead to strong induced currents, with plume 

contact at the bottom. The perpendicular alignment with the current is a good design for 

142 



shallow water conditions in the coastal environment under weak or strong revistng 

currents. Under weak currents it gives good offshore transport, and it efficiently captures 

the ambient flow under strong current conditions. As for the p01t or riser spacing, given 

the other constraints on diffuser mixing (i.e. diffuser length and di scharge velocity), the 

spacing is a dynamically unimp01tant variable that has a limited effect on overall mixing. 

However, the spacing plays a major role in the plume/jet merging process, and thus may 

affect the very initial mixing in the toxic dilution zone (TDZ) predictions. In most cases 

the port height is not important except for negatively buoyant discharges; the port height 

may control the amount of initial mixing prior to benthic contact. 

5.1.3. Alternative T -Shape Diffuser Risers Design 

In the T-Shape design, the same riser spacing of the existing staged diffuser was 

assumed, but the two ports discharged horizontally in opposite directions. Table 5.1 

shows that the existing staged diffuser requires less mixing height than the T -Shape 

design but a larger mixing zone boundary. 

Table 5.1. Comparison between Stage and T- Risers Diffuser Design 

Diffuser Design Centerline dilution Centerline length Centerline Height 

Sn Xn (m) Zn(m) 

Staged 35.6 11.58 4.4 

T -Shape Riser 22.038 5.06 5.1 

The table does not demonstrate a significant difference between the two designs. 

Nevertheless, if the objective of the regulator is to achieve less than a 35.6 dilution ratio 
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within or less than an 11.58 m near-field boundary, then the existing staged diffuser 

design is considered acceptable. But, if the regulator requires achieving a less than 22 

dilution ratio within a 5 m near-field boundary, then the T-Shape Riser design is 

preferable. Often other considerations are also taken into account in the final assessment, 

such as the ecological vulnerability and the future use of coastal zones. 

5.2. Water Quality Monitoring 

The initial intention of this study was to use the AUV as an innovative environmental 

monitoring platform. However, when the propeller motor was damaged during the second 

experiment, the sensor towing platform was used as an alternative technique. Using thi s 

technique has proven to be more practical and safer than the AUV for monitoring surface 

and shallow coastal areas. But, for deep water monitoring, this technique suffers from 

many problems, including platform drifting and 1isk of hitting the seabed. As a 

summary, it was learned that both platforms have advantages and limitations. Table 5.2 

demonstrates some advantages and limitations of both techniques. 
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Table 5.2. Comparison between AUV and Towed Sensor Platforms 

AUV Sensor Towing 

l Accumulates spatial and environmental Accumulates only environmental data 

data simultaneously 

2 Ideal for deep water monitoring Ideal for shallow water monitoring 

3 Minimizes human safety risks In harsh Not convenient to use and dangerous 

weather conditions during harsh weather conditions 

4 Vehicle safety is a maJor concern for Easy to maneuver around structures and 

shallow coastal water coastal water 

5 Requires highly trained staff to operate Does not require trained staff to operate 

6 Minimizes human health exposure in a Risks of human exposure in a 

contaminated environment contaminated environment 

7 Spatial and temporal data are collected Correlation of spatial and temporal data 

simultaneously is tedious and subjected to human error 

8 Very expensive Relatively cheap to assemble 

5.3. Plume Tracking 

Rhodamine dye is a commonly used tracer for plume tracking and leak detection 

applications. Some environmental regulators are concerned about the extensive use of 

this tracer for environmental monitoring. Based on a set of critetia for human and acute 

toxicity, Field et al. (1995) reported from their experiment on fluorescent tracer dyes used 

for groundwater tracing that these tracer have low to moderate levels of environmental 

concern. FUithermore, it may not always possible to inject artificial tracers into a 
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wastewater stream, such as the produced water and drilling mud. Using the effluent 

constituents can be considered as an alternative option for plume tracldng and 

hydrodynamic model validation. Ramos et al (2001) integrated a CTD with an AUV for 

near-field plume tracldng and model validation using salinity as a natural tracer. They 

concluded from their experiment that these techniques can improve validation between 

collected data and model predictions, allowing model performance evaluation. 

In this experiment, both salinity and turbidity parameters were used as pnmary 

constituents of an untreated sewage outfall. Observing the behavior of these constituents 

in the water column revealed a good correlation between low salinity and high turbidity 

values. During the Spaniard's Bay monitming experiment, the salinity and turbidity 

observations revealed a negative correlation, where R2 = 0.52 (Figure 5.1). By compating 

the longitudinal turbidity and salinity observations, it was found that variations decreased 

in a downstream direction (Figure 5.2). These findings show that the low salinity and 

high turbidity outfall effluent plume can be traced using in-situ sensors. Such reduction in 

variations indicates that plume was dispersed in a downstream direction. 
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Figure 5.1. Sensor Towing Experiment 1 Turbidity - Salinity Correlation 
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Figure 5.2. Sensor Towing Experiment 1 Salinity and Turbidity Distribution Plots 

5.4. Water Quality Assessment 

Three dimensional maps were generated to assess the water quality of the Spaniard' s Bay 

outfall water column _ Based on the 3-D contour maps of five common parameters present 
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in typical municipal and industrial effluents, it was possible to under tand the impact of 

outfall effluent on the marine environment. 

DO and chlorophyll a concentrations are good indicators of water quality. When the DO 

is under-saturated, this may indicate eutrophication resulting from exce ive nutrients. 

Figure 5.3 demonstrates that DO values are oversaturated and the lowest value observed 

was 118 % saturation. This observation was present at the lowest layer and close to the 

outfall diffuser. However, presence of large variations the bottom layer may indicate 

instabilities resulting from organic matter biodegradation at seabed. Another impottant 

indicator of excessive nutrients disposal is Chlorophyll a concentration. The monitoring 

experiment of chlorophyll a did not show any algal bloom where concentrations ranged 

from 0.4 to 0.6 ppb (Figure 5.4). 
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5.5. Model Validation 

Gridding is the process of using otiginal data points (observations) in an XYZ data file to 

generate calculated data points on a regularly spaced grid file. Based on known 

observations, an interpolation scheme estimates values at locations where no original data 

exists. The advantages of a g1id based approach outweigh the disadvantages. Tasks such 

as drawing contour lines are much faster with the grid based approach. Surfer 8 is a grid 

based mapping software. Most of the gridding methods in Sutfer use a weighted average 

interpolation. This means that, the closer a data point is to a grid node, the more weight it 

carries in determining the Z value at a particular grid node. The CORMIX model 

predictions were validated using the gird file generated from Surfer. CORMIX model 

perditions were compared with the surface layer turbidity field data. The longitudinal and 

latitudinal field data were distributed over 100 by 100 grids representing the 100 by 100 

m expetiment boundaries. Figure 5.5 shows the grid map and the magnified near-field 

turbidity observations. The field data demonstrated that at the center of the boil (0 m) the 

turbidity was 1.29 NTU, and at 11 m downstream (edge of the near-field) the turbidity 

value decreased to 0.59 NTU. 
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Figure 5.5. Downstream Turbidity Observations 

Table 5.3 demonstrates a comparison between CORMIX turbidity predictions and field 

observations. At the center of the boil, CORMIX predicted the turbidity value as 0.82 

NTU and 0.44 NTU at the edge of near-field (Appendix A). The CORMIX model 

dilution ratio was from the center of the boil to 11.58 m downstream distance as 3.56 

times, where the field data measurements demonstrated 3 times. 
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Table 5.3. CORMIX Model & Field Data Comparison 

Near-field & Far-field Turbidity Concentrations NTU 

Downstream Distance CORMIX Field Standard Deviation 

(X) m Model Predictions Data 

0 0.82 1.29 0.33 

1 0.71 1.08 0.26 

2 0.65 0.84 0.13 

3 0.60 0.74 0.09 

4 0.57 0.69 0.08 

5 0.54 0.66 0.08 

6 0.52 0.64 0.08 

7 0.5 0.62 0.08 

8 0.48 0.60 0.08 

9 0.46 0.59 0.09 

10 0.45 0.59 0.09 

11 0.44 0.59 0.10 

50 0.28 0.47 0.13 

75 0.23 0.43 0.14 

By comparmg turbidity concentrations m this experiment, it was observed that the 

CORMIX model has underestimated the near-field predictions. Figure 5.6 demonstrates 

the deviation between CORMIX turbidity predictions and field data observations. Figure 
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5.7 shows a good correlation of near-field model predictions with field data, where R2 is 

0.859. 
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Chapter 6. Conclusions and Recommendations 

6.1. Conclusions 

It was concluded from this study that the positive buoyancy force and current velocity 

are the main factors enhancing the dilution process of the Spaniard's Bay outfall effluent. 

The petformance of the existing staged diffuser design was evaluated using the CORMIX 

submerged multipart diffuser model and compared with the RSB T-shape diffuser design 

model. The CORMIX predicted the near-field boundary at 11.58 m with a dilution ratio 

of 35.6, while the RSB predicted the near-filed boundary at 5.06 m with a dilution ratio 

of 22.03. These resu lts revealed that the existing staged diffuser demonstrated a better 

dilution than the T-shape diffuser, where at 5 m distance the staged diffuser demonstrated 

28.5 times dilution ratio (Appendix A). This concludes that for shallow coastal waters, 

such as the Spaniard's Bay, the staged diffuser design achieves a better dilution than the 

T-Shape diffuser design. 

Due to a technical fault that occurred with the current meter during the July experiment, it 

was not possible to retrieve any measurements. Therefore, the May data was used for the 

July expetiment as the only available information. Using this information has added a 

degree of uncertainty to the model. However, the field data observations were in good 

agreement with model predictions results. 

AUV is a promising technology for environmental monitoring. It was possible in this 

experiment to collect in-situ spatial and environmental information autonomously at 16m 

depth. Due to sensor drifting issues, it would be difficult to obtain accurate spatial 

information at such a depth using the towed sensor platform. Furthermore, monitoring 
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with the AUV reduces time and human enor while conelating the GPS with the CTD 

data. However, in shallow coastal waters less than 7 m depth, it is safer to maneuver the 

towed sensor platform close to the outfall structure than using the AUV. For surface 

monitoring experiments (less than 1m depth),when the vehicle moves against the surface 

cunent, it tends to resist the cunent and rise up to the surface, where the sensors are 

exposed to ambient air causing rapid noise. Also, using the towed sensor platform at a 

low collection frequency (1 hz) has generated less noisy data compared to high collection 

frequency (10hz) used with the AUV. 

In many situations where it is not possible to use dye tracers for plume tracking studies, 

natural constituents of the effluent can be used instead. This experiment has demonstrated 

that in-situ monitoring of salinity and turbidity parameters could be used for plume 

tracking studies. From the July monitoring experiments it was observed that high 

turbidity and low salinity values, which represent sewage effluent characteristics, were 

positively conelated. The experiment has also demonstrated lower turbidity and higher 

salinity values while moving in a downstream direction from the outfall boil. 

DO and Chlorophyll a concentrations are good indicators of water quality. Due to the 

relatively small effluent flow and the dynamical flushing process caused by surface 

cunents and tides, it was observed that the Spaniard's Bay outfall effluent has a minimal 

environmental impact on the marine water. The three dimensional water quality maps did 

not indicate any DO depletion and high chlorophyll a concentrations around the outfall 

area. The lowest DO percent saturation was found to be 118.9 at about 3m depth. Also, 

no algal blooms were observed in the region, where the lowest chlorophyll a 
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concentration was 0.05 and the highest was 0.6 ppb. These low values indicate low 

nutJient concentrations in the bay. 

6.2. Recommendations 

As a result of conducting this study, the following is recommended for similar future 

studies: 

• For water quality assessment, far-field modeling is recommended as an extension 

to near-fie ld models. 

• There is a great potential in using the AUV for deep water monitoring and quality 

assessment, particularly for produced water impact assessment and model 

validation. As described in Chapter 2, it is recommended to conduct offshore 

monitoring experiments using underwater analytical systems, such as Underwater 

Mass Spectrometry. 

• Both the CORMIX model results and DO field data observations have indicated 

slight instabilities at the bottom layer, which may cause some benthic impacts. It 

is possible that fish and other benthic communities are feeding on the raw sewage 

waste, which may result in ecological and health problems. Therefore, it is 

recommended to conduct further studies on the biological and toxic impacts of the 

raw sewage on the marine environment. 

• The resolution of control maps will improve as more in-situ spatial and temporal 

data is collected. When conducting similar future studies, it is recommended to 

obtain more infmmation for more precise water column assessment. 
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• Conduct future studies using the AUV and in-situ sensor to monitor salinity and 

turbidity as natural tracers of produced water and drilling mud generated from 

offshore operations. 

• In future environmental monitoring experiments, it is recommended to maintain 

the AUV at minimum depth to 1 meter to ensure that sensors ar fully submerged 

and not affected by surface cuJTents and waves. 

• It is recommended to investigate different options to minimize the impact of a 

coastal outfall on the marine ecosystem, such as outfall relocation or construction 

of a wastewater treatment plant. 

• It would be recommended to safeguard the AUV propeller to avoid similar 

accidents in future monitoring experiments. 
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------ ----------------------------------

CORMIX2 PREDICTION FILE: 
222222222222222222222222222222222222222222222222222222222222222222222 

22222222 
CORNELL MIXING ZONE EXPERT SYSTEM 

Subsystem CORMIX2: Submerged Multi port Diffuser Discharges 
CORMIX-GI Version 4.1GT 

CASE DESCRIPTION 
Site name/label: Spaniards bay 
Design case: Feb design 1 
FILE NAME: C:\ ... and Settings\user\Desktop\validated with RSB4.prd 
Time stamp: Fri Apr 18 22:57:49 2008 

ENVIRONMENT PARAMETERS (met1ic units) 
Unbounded section 
HA = 5.00 HD = 4.40 
UA = 0.027 F = 0.005 USTAR =0.6396E-03 
UW = 7.220 UWSTAR=0.8903E-02 
Density stratified environment 
STRCND= B RHOAM = 1023.6595 
RHOAS = 1023.2990 RHOAB = 1024.0920 RHOAHO= 1023.6595 E 

=O.OOOOE+OO 
DRHOJ = 0.7930 HINT = 2.00 ES =0.3797E-02 

DIFFUSER DISCHARGE PARAMETERS (metric units) 
Diffuser type: DITYPE= staged_perpendicular 
BANK = LEFT DISTB = 97.50 YB1 = 95.00 YB2 = 100.00 
LD = 5.00 NOPEN = 4 SPAC = 5.00 
DO = 0.070 AO = 0.004 HO = 0.60 
Nozzle/port arrangement: staged 
GAMMA = 90.00 THETA= 0.00 SIGMA= 270.00 BETA = 0.00 
UO = 3.313 QO = 0.051 =0.5100E-01 
RHOO = 1000.0000 DRHOO =0.2366E+02 GPO =0.2267E+00 
CO = 0.1549E+02 CUNITS= NTU 
IPOLL = 1 KS =O.OOOOE+OO KD =O.OOOOE+OO 

FLUX VARIABLES - PER UNIT DIFFUSER LENGTH (metric units) 
qO =0.1020E-Ol mO =0.3379E-Ol jO =0.2312E-02 SIGNJO= 1.0 
Associated 2-d length scales (meters) 
IQ=B = 0.003 IM = 1.94 lm = 47.40 
Imp = 99999.00 lbp = 99999.00 Ia = 99999.00 

FLUX VARIABLES - ENTIRE DIFFUSER (metric units) 
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QO =O.SlOOE-01 MO =0.1690E+00 JO =0.1156E-01 
Associated 3-d length scales (meters) 
LQ = 0.12 LM = 2.45 Lm = 15.40 Lb = 607.30 

Lmp = 99999.00 Lbp = 99999.00 

NON-DIMENSIONAL PARAMETERS 
FRO = 125.42 FRDO = 26.30 R = 124.08 
(slot) (pottlnozzle) 

FLOW CLASSIFICATION 
222222222222222222222222222222222222222222 
2 Flow class (CORMIX2) = MUS 2 
2 Applicable layer depth HS = 4.40 2 
222222222222222222222222222222222222222222 

MIXING ZONE I TOXIC DILUTION I REGION OF INTEREST PARAMETERS 
CO = 0.1549E+02 CUNITS= NTU 
NTOX = 0 
NSTD = 0 
REGMZ= 0 
XINT = 300.00 XMAX = 300.00 

X-Y-Z COORDINATE SYSTEM: 
ORIGIN is located at the bottom and the diffuser mid-point: 

97.50 m from the LEFT bank/shore. 
X-axis points downstream, Y -axis points to left, Z-axis points upward. 

NSTEP = 50 display intervals per module 

BEGIN MOD202: DISCHARGE MODULE (STAGED DIFFUSER) 

Due to complex near-field motions: EQUIVALENT SLOT DIFFUSER (2-D) 
GEOMETRY 

Profile definitions: 
BV =Gaussian 11e (37%) half-width, in vertical plane normal to trajectory 
BH =Gaussian 11e (37%) half-width in horizontal plane normal to trajectory 
S =hydrodynamic centerline di lution 
C =centerline concentration (includes reaction effects, if any) 

X Y Z S C BV BH 
0.00 2.50 0.60 1.0 0.155E+02 0.04 0.04 

END OF MOD202: DISCHARGE MODULE (STAGED DIFFUSER) 

170 



BEGIN MOD274: ACCELERATION ZONE OF STAGED DIFFUSER 

In this laterally contracting zone the diffuser plume becomes VERTICALLY 
FULLY 

MIXED over the entire layer depth (HS = 4.40m). 
Full mixing is achieved after a plume distance of about five 
layer depths from the diffuser. 

Profile definitions: 
BY= layer depth (vertically mixed) 
BH =Gaussian 1/e (37%) half-width in horizontal plane normal to trajectory 
ZU =upper plume boundary (Z-coordinate) 
ZL =lower plume boundary (Z-coordinate) 
S =hydrodynamic centerline dilution 
C =centerline concentration (includes reaction effects, if any) 

X y z s c BY BH 
0.00 2.50 0.60 1.0 0.155E+02 0.00 0.00 
0.00 2.40 0.63 3.5 0.439E+Ol 0.02 0.02 
0.00 2.30 0.66 4.6 0.338E+01 0.04 0.03 
0.00 2.20 0.70 5.4 0.288E+01 0.06 0.05 
0.00 2.10 0.73 6.1 0.255E+01 0.08 0.06 
0.00 2.00 0.76 6.7 0.233E+01 0.10 0.08 
0.00 1.90 0.79 7.2 0.215E+01 0.12 0.09 
0.00 1.80 0.82 7.7 0.201E+01 0.14 0.11 
0.00 1.70 0.86 8.2 0.190E+01 0.16 0.12 
0.00 1.60 0.89 8.6 0.180E+01 0.18 0.14 
0.00 1.50 0.92 9.0 0.172E+01 0.20 0.15 
0.00 1.40 0.95 9.4 0.165E+01 0.22 0.17 
0.00 1.30 0.98 9.8 0.159E+01 0.24 0.18 
0.00 1.20 1.02 10.1 0.153E+01 0.26 0.20 
0.00 1.10 1.05 10.5 0.148E+01 0.28 0.21 
0.00 1.00 1.08 10.8 0.143E+01 0.30 0.23 
0.00 0.90 1.11 11.1 0.139E+0 1 0.32 0.24 
0.00 0.80 1.14 11.4 0.135E+01 0.34 0.26 
0.00 0.70 1.18 11.7 0.132E+Ol 0.36 0.27 
0.00 0.60 1.21 12.0 0.129E+01 0.38 0.29 
0.00 0.50 1.24 12.3 0.126E+Ol 0.40 0.30 
0.00 0.40 1.27 12.6 0.123E+01 0.42 0.32 
0.00 0.30 1.30 12.9 0.120E+01 0.44 0.33 
0.00 0.20 1.34 13.1 0.118E+01 0.46 0.34 
0.00 0.10 1.37 13.4 0.116E+01 0.48 0.36 
0.00 0.00 1.40 13.7 0.113E+01 0.50 0.37 
0.00 -0.10 1.43 13.9 0.111E+01 0.52 0.39 
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0.00 -0.20 1.46 14.2 0.109E+01 0.54 0.40 
0.00 -0.30 1.50 14.4 0.108E+01 0.56 0.42 
0.00 -0.40 1.53 14.6 0.106E+01 0.58 0.43 
0.00 -0.50 1.56 14.9 0.104E+01 0.60 0.45 
0.00 -0.60 1.59 15.1 0.103E+01 0.62 0.46 
0.00 -0.70 1.62 15.3 0.101E+01 0.64 0.48 
0.00 -0.80 1.66 15.5 0.997E+00 0.66 0.49 
0.00 -0.90 1.69 15.8 0.983E+00 0.68 0.51 
0.00 -1.00 1.72 16.0 0.969E+00 0.70 0.52 
0.00 -1.10 1.75 16.2 0.957E+00 0.72 0.54 
0.00 -1.20 1.78 16.4 0.945E+00 0.74 0.55 
0.00 -1.30 1.82 16.6 0.933E+00 0.76 0.57 
0.00 -1.40 1.85 16.8 0.921E+00 0.78 0.58 
0.00 -1.50 1.88 17.0 0.911E+00 0.80 0.60 
0.00 -1.60 1.91 17.2 0.900E+00 0.82 0.61 
0.00 -1.70 1.94 17.4 0.890E+00 0.84 0.63 
0.00 -1.80 1.98 17.6 0.880E+00 0.86 0.64 
0.00 -1.90 2.01 17.8 0.871E+00 0.88 0.66 
0.00 -2.00 2.04 18.0 0.861E+00 0.90 0.67 
0.00 -2.10 2.07 18.2 0.852E+00 0.92 0.69 
0.00 -2.20 2.10 18.4 0.844E+00 0.94 0.70 
0.00 -2.30 2.14 18.5 0.835E+00 0.96 0.72 
0.00 -2.40 2.17 18.7 0.827E+00 0.98 0.73 
0.00 -2.50 2.20 18.9 0.819E+00 1.00 0.75 

Cumulative travel time= 34. sec 
Plume centerline may exhibit slight discontinuities in transition 

to subsequent far-field module. 

END OFMOD274: ACCELERATION ZONE OF STAGED DIFFUSER 

BEGIN MOD252: DIFFUSER INDUCED PLUME IN WEAK CROSS-FLOW 

Phase 1: Vertically mixed, Phase 2: Re-stratified 

Phase 1: The diffuser plume is VERTICALLY FULLY MIXED over the 
entire layer depth. 

This flow region is INSIGNIFICANT in spatial extent and will be by-passed. 

Phase 2: The flow has RESTRATIFIED at the beginning of this zone. 

Profile definitions: 
BY= top-hat thickness, measured vertically 
BH = Gaussian lie (37%) half-width in horizontal plane normal to trajectory 
ZU =upper plume boundary (Z-coordinate) 
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ZL =lower plume boundary (Z-coordinate) 
S =hydrodynamic centerline dilution 
C =centerline concentration (includes reaction effects, if any) 

X y z s c BY BH 
0.00 -2.50 4.40 18.9 0.819E+00 4.40 0 .58 
0.16 -2.81 4.40 19.4 0 .799E+00 2.46 1.09 
0.32 -3.12 4.40 19.8 0.781E+00 1.99 1.41 
0.49 -3.43 4.40 20.3 0 .763E+00 1.73 1.68 
0 .65 -3.74 4.40 20.7 0 .747E+00 1.57 1.94 
0 .83 -4.05 4.40 21.2 0 .732E+00 1.45 2.18 
1.00 -4.36 4.40 21.6 0.717E+00 1.35 2.42 
1.18 -4.66 4.40 22.0 0.704E+00 1.28 2.65 
1.37 -4.97 4.40 22.4 0 .691E+00 1.22 2.87 
1.55 -5.28 4.40 22.8 0 .679E+00 1.18 3 .09 
1.74 -5.59 4.40 23.2 0.667E+00 1.13 3.31 
1.94 -5.90 4.40 23.6 0 .656E+00 1.10 3.52 
2.13 -6.21 4.40 24.0 0.646E+00 1.07 3 .73 
2.33 -6.52 4 .40 24.4 0.636E+00 1.04 3.94 
2.53 -6.83 4 .40 24.7 0.626E+00 1.02 4.15 
2.74 -7.14 4.40 25.1 0.617E+00 0.99 4 .36 
2.95 -7.45 4.40 25.5 0.609E+00 0.97 4 .56 
3.16 -7.76 4.40 25.8 0.600E+00 0.96 4 .77 
3.37 -8.07 4.40 26.2 0.592E+00 0.94 4.97 
3.59 -8.38 4.40 26.5 0 .585E+00 0.92 5 .18 
3.81 -8.68 4.40 26.8 0.577E+00 0.91 5 .38 
4 .03 -8.99 4.40 27.2 0 .570E+00 0.90 5 .58 
4.26 -9.30 4.40 27.5 0 .563E+00 0 .89 5 .78 
4.49 -9.61 4.40 27.8 0 .556E+00 0.87 5 .99 
4.72 -9.92 4.40 28.2 0.550E+00 0 .86 6 .19 
4.95 -10.23 4.40 28.5 0 .544E+00 0.85 6 .39 
5.19 -10.54 4.40 28.8 0.538E+00 0.84 6.59 
5.43 -10.85 4.40 29.1 0.532E+00 0.84 6.79 
5.67 -11.16 4.40 29.4 0.526E+00 0.83 7 .00 
5.91 -11.47 4.40 29.7 0 .52 1E+00 0.82 7.20 
6 .16 -11.78 4.40 30.0 0.516E+00 0.81 7.40 
6.41 -12.09 4.40 30.3 0.511E+00 0.81 7.60 
6.66 -12.40 4.40 30.6 0 .506E+00 0.80 7 .80 
6.91 -12.70 4.40 30.9 0.501E+00 0.79 8.00 
7.17 -13.01 4.40 31.2 0.496E+00 0.79 8.21 
7.43 -13.32 4.40 31.5 0.492E+00 0.78 8.41 
7 .69 -13.63 4.40 31.8 0.487E+00 0.77 8 .61 
7 .95 -13.94 4.40 32.1 0 .483E+00 0 .77 8.81 
8.22 -14.25 4.40 32.4 0.479E+00 0 .76 9.01 
8.49 -14.56 4.40 32.6 0.475E+00 0.76 9 .22 
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8.76 -14.87 4.40 32.9 0.471E+00 0.75 9.42 
9.03 -15.18 4.40 33.2 0.467E+00 0.75 9.62 
9.30 -15.49 4.40 33.5 0.463E+00 0.74 9.82 
9.58 -15.80 4.40 33.7 0.459E+00 0.74 10.03 
9.86 -16.11 4.40 34.0 0.456E+00 0.74 10.23 
10.14 -16.42 4.40 34.3 0.452E+00 0.73 10.43 
10.43 -16.72 4.40 34.5 0.449E+00 0.73 10.64 
10.71 -17.03 4.40 34.8 0.445E+00 0.72 10.84 
11.00 -17.34 4.40 35.1 0.442E+00 0.72 11.04 
11.29 -17.65 4.40 35.3 0.439E+00 0.72 11.25 
11.58 -17.96 4.40 35.6 0.436E+00 0.71 11.45 

Cumulative travel time= 555. sec 

END OF MOD252: DIFFUSER INDUCED PLUME IN WEAK CROSS-FLOW 

** End of NEAR-FIELD REGION (NFR) ** 

The initial plume WIDTH values in the next far-field module will be 
CORRECTED by a factor 2.04 to conserve the mass flux in the far-field! 

The correction factor is quite large because of the small ambient velocity 
relative to the strong mixing characteristics of the discharge! 
This indicates localized RECIRCULATION REGIONS and internal hydraulic 

JUMPS . 

BEGIN MOD241: BUOY ANT AMBIENT SPREADING 

Profile definitions: 
BY= top-hat thickness, measured vertically 
BH =top-hat half-width, measured horizontally in y-direction 
ZU =upper plume boundary (Z-coordinate) 
ZL = lower plume boundary (Z-coordinate) 
S = hydrodynamic average (bulk) dilution 
C = average (bulk) concentration (includes reaction effects, if any) 

Plume Stage 1 (not bank attached): 
X y z s c BV BH zu ZL 

11 .58 -17.96 4.40 35.6 0.436E+00 1.45 23.38 4.40 2.95 
12.85 -17.96 4.40 36.7 0.422E+00 1.32 26.49 4.40 3.08 
14.12 -17.96 4.40 37.7 0.410E+00 1.23 29.42 4.40 3. 17 
15.39 -17.96 4.40 38.6 0.401E+00 1.15 32.21 4.40 3.25 
16.65 -17.96 4.40 39.5 0.392E+00 1.08 34.88 4.40 3.32 
17.92 -17.96 4.40 40.2 0.385E+00 1.03 37.45 4.40 3.37 
19.19 -17.96 4.40 40.9 0.378E+00 0.98 39.93 4.40 3.42 
20.46 -17.96 4.40 41.6 0.372E+00 0.94 42.33 4.40 3.46 
21.73 -17.96 4.40 42.3 0.367E+00 0.90 44.67 4.40 3.50 
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23.00 -17.96 4.40 42.9 0.361E+00 0.87 46.94 4.40 3.53 
24.26 -17.96 4.40 43.5 0.356E+00 0.84 49.15 4.40 3.56 
25.53 -17.96 4.40 44.0 0.352E+00 0.82 51.31 4.40 3.58 
26.80 -17.96 4.40 44.6 0.347E+00 0.80 53.43 4.40 3.60 
28.07 -17.96 4.40 45.1 0.343E+00 0.78 55.50 4.40 3.62 
29.34 -17.96 4.40 45.7 0.339E+00 0.76 57.53 4.40 3.64 
30.60 -17.96 4.40 46.2 0.335E+00 0.74 59.52 4.40 3.66 
31.87 -17.96 4.40 46.7 0.332E+00 0.73 61.47 4.40 3.67 
33.14 -17.96 4.40 47.2 0.328E+00 0.71 63.40 4.40 3.69 
34.41 -17.96 4.40 47.7 0.325E+00 0.70 65.29 4.40 3.70 
35.68 -17.96 4.40 48.2 0.321E+00 0.69 67.15 4.40 3.71 
36.94 -17.96 4.40 48.7 0.318E+00 0.67 68.98 4.40 3.73 
38.21 -17.96 4.40 49.3 0.314E+00 0.66 70.79 4.40 3.74 
39.48 -17.96 4.40 49.8 0.311E+00 0.65 72.57 4.40 3.75 
40.75 -17.96 4.40 50.3 0.308E+00 0.65 74.33 4.40 3.75 
42.02 -17.96 4.40 50.8 0.305E+00 0.64 76.07 4.40 3.76 
43.29 -17.96 4.40 51.3 0.302E+00 0.63 77.78 4.40 3.77 
44.55 -17.96 4.40 51.8 0.299E+00 0.62 79.47 4.40 3.78 
45.82 -17.96 4.40 52.3 0.296E+00 0.62 81.15 4.40 3.78 
47.09 -17.96 4.40 52.9 0.293E+00 0.61 82.80 4.40 3.79 
48.36 -17.96 4.40 53 .4 0.290E+00 0.60 84.43 4.40 3.80 
49.63 -17.96 4.40 53.9 0.287E+00 0.60 86.05 4.40 3.80 
50.89 -17.96 4.40 54.5 0.284E+00 0.59 87.65 4.40 3.81 
52.16 -17.96 4.40 55.0 0.282E+00 0.59 89.24 4.40 3.81 
53.43 -17.96 4.40 55.5 0.279E+00 0.58 90.81 4.40 3.82 
54.70 -17.96 4.40 56.1 0.276E+00 0.58 92.36 4.40 3.82 
55.97 -17.96 4.40 56.7 0.273E+00 0.58 93 .90 4.40 3.82 
57.23 -17.96 4.40 57.2 0.271E+00 0.57 95.42 4.40 3.83 
58.50 -17.96 4.40 57.8 0.268E+00 0.57 96.93 4.40 3.83 
59.77 -17.96 4.40 58.4 0.265E+00 0.57 98.43 4.40 3.83 
61.04 -17.96 4.40 59.0 0.263E+00 0.56 99.91 4.40 3.84 
62.31 -17.96 4.40 59.6 0.260E+00 0.56 101.39 4.40 3.84 
63.57 -17.96 4.40 60.2 0.257E+00 0.56 102.85 4.40 3.84 
64.84 -17.96 4.40 60.8 0.255E+00 0.56 104.30 4.40 3.84 
66.11 -17.96 4.40 61.5 0.252E+00 0.56 105.73 4.40 3.84 
67.38 -17.96 4.40 62.1 0.249E+00 0.55 107.16 4.40 3.85 
68.65 -17.96 4.40 62.8 0.247E+00 0.55 108.57 4.40 3.85 
69.92 -17.96 4.40 63.4 0.244E+00 0.55 109.98 4.40 3.85 
71.18 -17.96 4.40 64.1 0.242E+00 0.55 111.37 4.40 3.85 
72.45 -17.96 4.40 64.8 0.239E+00 0.55 112.76 4.40 3.85 
73.72 -17.96 4.40 65.4 0.237E+00 0.55 114.13 4.40 3.85 
74.99 -17.96 4.40 66.1 0.234E+00 0.55 115.50 4.40 3.85 

Cumulative travel time= 2930. sec 

-----------------------------------------------------------------------------
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Plume is ATTACHED to LEFf bank/shore. 
Plume width is now determined from LEFf bank/shore. 

Plume Stage 2 (bank attached): 
X y z s c BV BH zu ZL 

74.99 97.50 4.40 66.1 0.234E+00 0.55 230.92 4.40 3.85 
79.49 97.50 4.40 68.3 0.227E+00 0.55 235.46 4.40 3.85 
83.99 97.50 4.40 70.5 0.220E+00 0.56 239.94 4.40 3.84 
88.49 97.50 4.40 72.8 0.213E+00 0.57 244.39 4.40 3.83 
92.99 97.50 4.40 75.2 0.206E+00 0.58 248.79 4.40 3.82 
97.49 97.50 4.40 77.6 0.200E+00 0.59 253.15 4.40 3.81 
101.99 97.50 4.40 80.1 0.193E+00 0.59 257.47 4.40 3.81 
106.49 97.50 4.40 82.7 0.187E+00 0.60 261.76 4.40 3.80 
110.99 97.50 4.40 85.4 0.181E+00 0.61 266.01 4.40 3.79 
115.49 97.50 4.40 88.1 0.176E+00 0.62 270.23 4.40 3.78 
119.99 97.50 4.40 91.0 0.170E+00 0.63 274.41 4.40 3.77 
124.49 97.50 4.40 93.9 0.165E+00 0.64 278.57 4.40 3.76 
128.99 97.50 4.40 96.9 0.160E+00 0.65 282.69 4.40 3.75 
133.49 97.50 4.40 99.9 0.155E+00 0.67 286.78 4.40 3.73 
137.99 97.50 4.40 103.1 0.150E+00 0.68 290.85 4.40 3.72 
142.49 97.50 4.40 106.3 0.146E+00 0.69 294.89 4.40 3.71 
146.99 97.50 4.40 109.6 0.141E+00 0.70 298.90 4.40 3.70 
151.49 97.50 4.40 113.0 0.137E+00 0.71 302.89 4.40 3.69 
155.99 97.50 4.40 116.5 0.133E+00 0.72 306.86 4.40 3.68 
160.49 97.50 4.40 120.1 0.129E+00 0.74 310.80 4.40 3.66 
164.99 97.50 4.40 123.7 0.125E+00 0.75 314.72 4.40 3.65 
169.49 97.50 4.40 127.4 0.122E+00 0.76 318.61 4.40 3.64 
173.99 97.50 4.40 131.3 0.118E+00 0.78 322.49 4.40 3.62 
178.49 97.50 4.40 135.2 0.115E+00 0.79 326.34 4.40 3.61 
182.99 97.50 4.40 139.2 0.111E+00 0.80 330.18 4.40 3.60 
187.49 97.50 4.40 143.3 0.108E+00 0.82 333.99 4.40 3.58 
191.99 97.50 4.40 147.4 0.105E+00 0.83 337.79 4.40 3.57 
196.49 97.50 4.40 151.7 0.102E+00 0.85 341.56 4.40 3.55 
200.99 97.50 4.40 156.1 0.992E-01 0.86 345.32 4.40 3.54 
205.49 97.50 4.40 160.5 0.965E-01 0.88 349.06 4.40 3.52 
210.00 97.50 4.40 165.1 0.938E-01 0.89 352.78 4.40 3.51 
214.50 97.50 4.40 169.7 0.913E-01 0.91 356.49 4.40 3.49 
219.00 97.50 4.40 174.4 0.888E-01 0.92 360.18 4.40 3.48 
223.50 97.50 4.40 179.3 0.864E-01 0.94 363.85 4.40 3.46 
228.00 97.50 4.40 184.2 0.841E-01 0.96 367.51 4.40 3.44 
232.50 97.50 4.40 189.2 0.819E-01 0.97 371.15 4.40 3.43 
237.00 97.50 4.40 194.3 0.797E-01 0.99 374.78 4.40 3.41 
241.50 97.50 4.40 199.5 0.776E-01 1.01 378.39 4.40 3.39 
246.00 97.50 4.40 204.8 0.756E-01 1.02 381.98 4.40 3.38 
250.50 97.50 4.40 210.2 0.737E-01 1.04 385.57 4.40 3.36 
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255.00 97.50 4.40 215.7 0.718E-01 1.06 389.14 4.40 3.34 
259.50 97.50 4.40 221.3 0.700E-01 1.08 392.69 4.40 3.32 
264.00 97.50 4.40 227.0 0.682E-01 1.09 396.23 4.40 3.31 
268.50 97.50 4.40 232.8 0.665E-01 1.11 399.76 4.40 3.29 
273.00 97.50 4.40 238.7 0.649E-01 1.13 403.28 4.40 3.27 
277.50 97.50 4.40 244.7 0.633E-Ol 1.15 406.78 4.40 3.25 
282.00 97.50 4.40 250.8 0 .618E-01 1.17 410.27 4.40 3.23 
286.50 97.50 4.40 256.9 0.603E-01 1.19 413.75 4.40 3.21 
291.00 97.50 4.40 263.2 0.588E-01 1.20 417.21 4.40 3.20 
295.50 97.50 4.40 269.7 0.574E-01 1.22 420.67 4.40 3.18 
300.00 97.50 4.40 276.2 0.561E-01 1.24 424.11 4.40 3.16 

Cumulative travel time= 11357. sec 

Simulation limit based on maximum specified distance= 300.00 m. 
This is the REGION OF INTEREST limitation. 

END OF MOD241: BUOY ANT AMBIENT SPREADING 

CORMIX2: Submerged Multi port Diffuser Discharges End of Prediction File 
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