

St. John's

Consistency In Cooperative

Executions

by

Vasantha Lakshmi Adluri

A thcsb submitted to the School of Graduate Swdies

ill partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Memorial University of Newfoundland

July 2002

Canada

Abstract

Computer~SupportedCooperative \Vork (CSCW) is the study of how comput­

ers can be used to help people work together. Cooperative work on shared, per~

sistent data requires computing syslem s1lpport to coordinate the work of multiple

users and to ensure data consistency. Attempts to extend the traditional concepts

of transactions and serializability to specify consistency of cooperative executions

Imvc largely becll unnatural and ullsatisfactory.

In this thesis, a new approach is presented to specify consistency of cooperative

executions. It is based on an intuitive notion of legality of the read operations.

Five legalities, eacil capturing a different notion of 'recentness' of the values, with

respect to a defining relation are explored. They are stated formally in terms of

systeul executions in shared read/writc variahles. A cooperat.ive execution is con-

sistellt in a strong sense whell all reads ohey an legalit,ies. By relaxing the legality

requirements, and also by choosing different defining relations, a lluge variety of

(weaker) consistencies can be specified in a hierarchical manner.

We also give detailed algorithms for cn-suring the varions legalities. The algo­

ritllIUS correspond to three rlilTerellt environments - cclltralized, distributed, and

mobile agent ~ctu~. We illustrate some p...xarnples where the legalities can be em­

ployed in various aspects of cooperative work.

Keywords: Consistency, Legality, Cooperative Executions, Mobile Agents.

Acknowledgements

J wish to express my thanks to my advisor, Dr. Krishnamurthy Vidyasankar,

for his continuous guidance and suggestions. He always been a collstant source of

inspiration.

I would like to thank the systems support staff and the administrative staff

for providing help and assistance during my program. I would like to thank my

fellow graduates for their cherished comradeship, suggestions, friendly ears, timely

distractions for the past few years.

I would like to thank my husband for his inspiration and spending hours together

talking to me. Finally r would like to thank my lovely daughter for her patience

over the last three years.

Contents

Abstract

Acknowldegement

Table of Contents

List of Figures

1 Introduction

1.1 Context for the Thesis

1.2 Computer-Supported Cooperative Work

(CSCW)

1.3 Structure of the Thesis

2 Survey of Cooperative Systems

2.1 The Characteristics of escw Applications

2.1.1 Awareness.

2.1.2 Information sharing

2.1.3 Dynamic change and flexibility

iii

iii

Ll

12

2.1.4 Multiuser conversion

2.1.5 Open infrastnlcture

2.1.6 ~Iodels of the real-world

2.1.7 Alternative models of control

2.1.8 General group mechanisms

2.1.9 Explicit mechanism and policy separation

2.2 Classification of CSCW systems

3 Consistency in Cooperative Work

3,1 Types of Cousistellcies

3.2 Examples

4 Legalities

4.1 Definition

4.2 A form of Causal Consistency - COO-SR model

4.3 ~Iotivatioll

5 Legalities iu Relil Time Ordef

5.1 Definition

5.2 Data Structures

5.3 Algorithm

5.4 Correctness Proof

6 Legalities in Causal Order

6.1 Ddillitioll

6.2 Data Structures

iv

12

12

13

13

14

14

15

22

24

30

35

36

38

41

44

45

47

48

51

55

56

59

6.3 Algorithm

6.4 Corrl-'t.:tness Proof

6.5 Discussion

7 Legalities in Mobile Agent Environment

7.1 Data Structures

7.2 Algorithm

7.3 Correctup.ss Proof.

7.4 Discussion

8 Discussion And Conclusions

8.1 Document Authoring

8.2 \Vorld Wide \Veb

8.3 Shared Health Care System

8.4 Other Examples

8.5 Conclusion.

Bibliography

62

71

75

77

80

83

89

90

91

92

93

97

lOa

104

105

List of Figures

3.1 Example

4.1 Example

31

42

5.1 Example Showing Various Illegality Scenarios (in global real time

order) 46

6.1 Example Sbowing Partial Interaction Between Different Processors . 57

6.2 Master Set . 60

6.3 History Set 61

6.4 Example History Trees 63

6.5 Illegality Sct 64

6.6 Scanning a Tree 70

8.1 Shared Care System

8.2 Shared Care System2 .

vi

99

100

Chapter 1

Introduction

1.1 Context for the Thesis

This thesis deals with Computet-Supported Cooperative Work and consistency ill

cooperative executions. In l>articular, internal consistency of a cooperative execu­

tioll is dealt with. The different levels of s}"stcm support that can be provided in a

cooperative application system are im"estigatoo.

1.2 Computer-Supported Cooperative Work

(CSCW)

Computer-Supported Cooperative Work (CSCW) is the study of how computers call

be used to help people work together. The recent progress of Computer-Supported

Cooperative Work has been fostered by constant improvements in hase technoio­

giel; (e.g., computer hardware, software and network infra.<;tructures) and changing

requirements. This resulted from an ellvironment, growing in complexity and dy­

namics, that surpasses the capabilities of a single individual and demands a group

work. The evolution of computing systems went hand in hand with the evolution

of organizational work stylCli. Computing systems evolved from mainframe systems

(which offered primitive collaborative applications like shared calendaring systems),

to networked personal computers (PC) (which brought disseminatiou of computing

power). Organizational work stylCli changctl from a hierarchical, monolithic and

rigid form of cooperation to flatter orgallizatiolls alld increased division of labour

within and betwccn companies. This trend has been reflected in a changing focus

of mallY computer scientists from single-user applications to office automation sys­

tems and, later on, to CSCW and groupware systems.

Commercial CSC\V products are often referred to as examples of Group1Van~.

This term is frequcntly used almost synouymously with CSCW technology. The

popnlarity of the CSCW technology is also evidenced by an increasing number of

commercial products, such as Lotus Notes, i\1icrosoft ~etMcctillg, and CoolTalk

in Netscape COlIllllunicator. ~'Iany of these systems have been sllccessfully used,

usually in small gronps, to facilitate data sharing among distributed participants.

To this date, two main classes of Kroupware have been identified: asynchronous and

synchronous[45] The former class, consisting, for example, of e-mail and organiza­

tional memory systems, is clearly the lIlost snccessfuL Synchronous groupware is

often calkxl. desktop con!enmcing applications [45]; examples include collaborative

writing/drawing/design tools, group decision support systems, and ganLl>~<;

An important research area in information systems is computerized support for

cooperative users, where those users may be either humans or computers. The act

of cooperation implies a means of communication. Further, the individual users

need to cooperate and also collabomte to reach a common goal. ~Ioreo"er, the users

nt.'Cd to have access to information, both actual and historical, as well as have SIII>­

port for searching, sorting and selecting information from large repositories.

The design of Comp\lter-Supportcd Cooperath'c Work (CSCW) systems in­

volves a variety of disciplinary apPfollchcs, {lrawing as much on sociological and

psychological perspectives on group and individual activity as on technical ap­

proaches to designing distributed systems.

Cooperative work on shared, persistent data reqllires computing system sup­

port to coordinate the work of multiple users and to ensure data consistency. The

system support can rauge from loosely coupled collaboration sllch as elect.ronic

mail, to tightly coupled, real time collaboration support such a."J shared drawing

or writing systems. Systems must deal with multiple workers, working in groups

with possibly dynamically changing membership, different degrees of coordination

and interaction, alld diverse perspectives and conceptions of the shared work. This

implies that different levels of support are required dependillg 011 the tasks and

groups im"olved, and that systems must adapt to changes in tasks and groups.

Systems in cooperative work require the construction of applications which sup­

port interaction by multiple usen;. These <lpplic<ltions exploit mult.i-user interfaces

to promote cooperative work by a group of users, Users may be distributed across

a number of locations and the as:>ociated intcrfaces run across a number of work~

stations (Networked or PC's). The need to support user interface execution ill a

distributed envirOllmelll has resulted in combining the interests of user interface

software and distributed systems.

The objective of a collaborative environment is t.o facilitate team working and,

in particular, to enable a group of persons to manipulate shared objects, and mod­

ify them ill a coherent marmer. Maintaining consistency of objects produced during

cooperative activities is an important issue in tlJis environmcnt. Differcnl applica.­

tions require different levels of consisteD!;}'. There is a need to ensure consistcncy

for both the work of a single nser as well as the cooperative effort. Cooperating

users may require information to be presented in a variety of formats corresponding

to different levels of sharing. Since information usage is context dependent, coop­

erative systems lIiust provide multiple views to the users in the group.

In support of this requirement, the present study concentrates on the provisioll

of differellt levels of system support for cooperative executions, A new approach

to specify consistency of cooperative executions is presented. Some types of consis­

tencies explored in cooperative applications are Operalion Transformation Scheme,

COllsistency Guarantees, Application defined consistency criteria, History Mcrgillg,

some relaxed forms of Serializabitity, COO-Serializability (COO-SR), etc. Our ap-

proach is based on the assumption that if the \-alucs read b)' a read operation are

consistent, then the \-alucs written in the write operation are also consistent. En­

suring the consistency of the read operations is the main idea of our approach. This

is done by defining five different Legalities, each based On the \-alues the read reads

and each captures 8 different notion of 'recc!ntness' of the value. These different

notions of recentness Ciln be related to different levels of s)'llteln support that can

be provided by our approach.

1.3 Structure of the Thesis

Chapter 1 gi..-es introduction to Computer-Supported Coopt!rlltive Work (CSCW),

and describes the conte.'I(t of the research reported ill this thesis. Chapt.er 2 givcs Il

brief description about the I>ropcnies, characteristics, and classification of CSCW

applications. A brief description of some of t.he existing systems dew.loped for

cooperativc applications is also gi\-en. Chapter 3 givcs a brief description about

consistency and some of the consistency issues deall in CSCW applications. III

Chapter 4, a general definition of the legalities is given. Based Oil this general defi­

nition of legalities, two defining relations are explored: 1) real· time order (p =-+,),

ii) caWlal order (p = (-+; U -+'1)'). Detailed algorilhms ensuring the five legalities

with respect to the two defining relations and correctness proofs are also givcn in

Chapter 4. Chapter 5 gives the algorithm for a different environment where mobile

agents are involved. Chapter 6 givcs tbe conclusion and eXllmples describing pos<­

sible scenarios where ICglllitit.'S described ill Chapter" can be effectively employr.<l

in eooperative work.

Chapter 2

Survey of Cooperative Systems

Since the early 19808, more and more personal computers or desktops have become

aV"dilablc at work place. A~ a desktop lool for individuals, the persollal computer

initially provided services for helping a single user with his/her work. The most

important application das..'i(!s were databases, word processors, graphic tools and

spreadsheets. In the 19905 these individual workstations became more and morc

wired together in local and wide area networks (LAN and WAN). The interconnec­

tion of computers was first used for distributed computation and data exchange.

The next logical step is not only to connect programs that arc running in different

computers but also to connect the Ilscrs themselves [50}. The efforts are intensified

by tbe emerging need for people to work in teams that are locally dispersed.

The researcll area that is cont:crned with computer support for collaborating

teams is called Computer-Supported Cooperative Work (eSClV). CSCW is not a

self-contained researeh area with its own technology. It is an interdisciplinary ap­

proach where the main issue is to integrate different technologies ill order 1.0 sup-

port collaborath'e work. The following disciplines are part ofCSCW, among others:

communil:ation tedmology, distributed systems, uscr interfacC'S, man~machine inter-

action, artificial intelligence and several other associat.ed aspects such as sociology

and organizational theory [81. While escw is the name to the entire subject, the

tenn groupware specifically stands for software solutions implementing CSCW. The

term usually refers to a huge class of computer software systems which cannot be

strictly distinguished from other classes of software systems.

2.1 The Characteristics of CSCW Applications

All applications, interfaces and tools rely, to a great cxtCTlt, on the underlying

services provided. Some of the characteristics of CSCW applications and services

provided arc [6J:

• Awareness,

• Illfollnation sharinl-(,

• Dynamic change and flexibility,

• ~'1ultiuser conversion,

• Open infrastructure,

• Modcls of the real-world,

• Alternative models of control,

• General group mechanisms, and

• Explicit mechanism and policy separation.

These characteristics represent a set of issues and concerns which prevail in existing

escw applications. Each of the above addresses a different aspect of the support

of the cooperative applications. However, the effect of inadequately supporting oue

particular aspect lIlay influence the successful provision of another Some of tbe

properties of a CSCW-Syst.elll arC"

• Cooperation

• Communication

• Coordination

• Distribution

• Groupwork

• Group Awareness

• Shared Resources

• Lightly Structured Work

2.1.1 Awareness

The desire for awareness can be found in a number of diITercnt aspects of group

work and across several layers of a system architecture. Indeed, four out of the five

primitives identilletl by Dewau and Choudhary (6) iuvolve awareness. For CSCW

applications and services the basic awareness support should illdude:

• Awareness of the actiorn of individuals

Consider two people, A and B who are remotely editing a document at tbe

same time but in different portions of the document. A deletes an lOlItire

section of the document. Without any collaborative aw'.ueness B would notice

the changc only when he attempts to view that part of the document. Clearly,

such a change may be important and B should have the option of being aware

of A's actions. This type of awareness can also be called group awareness

• Awareness of the current statw of the cooperating indltliduaLs {47J

in a co-located team, members typically learn from a wide range of cues about

the activities of the other members, about thc progress in the comillon task

and abOllt subtle changes ill group structures and the organization of the

shared task cnvironmcnt. Most of this group awareness is achieved without

overhead effort. A distributed (virtual) team - CYcrl if its cooperation b based

on a state-of-the-art groupware system - today is far from a similar level of

awareness and opportunity for spontaneous, informal communication. This

reduces the effectiveness of the joint effort. and makes cooperation a less

satisfyin~ experience for the team members.

This concept is researched ill the projects TOWER [17) and NESSIE [48].

TOWER provides awareness of collaborative activities of team members and

their shared working context through symbolic presentations in a Theatre of

Work The aim is to enhance distributed teams wit.h group awareness lUld

spontancous communication capabilities close to those of co-located teams.

NESSIE provides an awareness envirOllment for cooperative Hettings which

enables new ways to foster task-oriented and social awareness.

• Awareness of the current state of the cooperotion

In order t.o fUllction successfully within a collaboration, an ent.ity (user, ap­

plication, process, etc.) lIIust actually know what it should be doing. This

knowledge is dependent on the current state of the cooperation itself. There­

fore any changes in the cooperation will affect what the members of the co­

operation should do.

• Awareness of the state of the underlying system

If a shared object being used by a number of system entities fails, then all

the collaborators should be automatically notified of the failure, as it lIlay

directly affect their subsequent actions. 1£ notification does not occur, then

the entities involved in it will be inevitably alfeeted. Therefore, it is import.ant

that some feedback from the support.ing serdces and system is available t.o

CSCW applications.

• Awarelle.~.~ of information ('1JmCf·.~hip

Infonnation may be unreliable, influenced by external factors and hence each

participant must be aware of the identity of the originator of the given unit

of information. Presentation of information ownership is all important factor

in any cooperative work.

Closely connected to shared resources is group awareness which differs in certain

8ignifieant traits frolll other approaches of computcr supported work. SinL~ ligbtly

JO

structured work (which cannot be easily forma1ir.ed) has to he supported, there must

be a concept of coordinating this work. Group awareness lets the group members

see in whirh tasks or data the other users are involved and take appropriate actions

to coordinate their work (and thus collaborate). So the awareness of the other

people's existence enables the work to be carried out with low conflict complexity

and in a highly cooperative way.

2.1.2 Information sharing

Aspects of information use and representation are fundamental to CSC\V. By its

very nature, most cooperation bet.....een peo~le takCl; place through lUI cxchange 'of

information. Cooperation relies on people sharing information (ideas, files, pro­

cesses, etc.) ~'Iechanisms for information sharing should work to actively facilitate

the seamless cooperation between individuals and not restrict them with applica-

tions where sharing information is cumbersome.

The control of concurrent access to shared information is particularly important

in supporting group working where a number of users may need to simult.alloollsly

access information. The form of concurrency control mirrors the style of cooper·

ative interaction being supported. Concurrency oontrol in groupware is needed to

resolve conflicts and to perform tightly coupled group activities. Concurrency con­

trol is the activity of coordinating the potentially interfering actions of processes

that operate in parallel. To share informatiou, it must be presented to the user so as

to be readily available. Access control is required to make sure that the information

is not shared in uncxpected and detrimental ways. Access control makes sure that

the policies and rights on data objects attributed to the different processes are lIot

11

violated. Support for COOIJerative work ueeds to focus Oil sharing and to consider

the dual issues of access and concurrency collectively.

2.1.3 Dynamic change and flexibility

Dynamic change and flexibility are closely related to the need for awareness. Group

work and related activit.ics can change rapidly in significant ways. An example of

such change can be due to people leaving groups unexpectedly because of illness

or because of their moving betwccn different cooperative activities or work groups.

The manner in which they interact with the applications aI!d how these applications

respond to that change arc important.

2.1.4 Multiuser conversion

As morc and more complex systems arc built out of different components, the

desirability of software reuse is very important. Reusing existing modules, objects

and code can greatly speed up the dc\'clopmcnt of any system. It is advantageous to

view single user systems as building blocks for various parts of a CSCW application

Supporting CSC\-'" applications and tools should provide some meallS of exploiting

or integrating existing single-uscr applications aud services.

2.1.5 Open infrastructure

Given the variety and diversity of possible CSCW applications, it is unlikely that

a single service/environment will be sufficient to support c\"ery application require­

ment. Thcrefore, any part of the application's supporting infrastructure should be

12

sufficiently open to allow the information it contains to be used by other parts of

the infrastructure alld not to force an application to rely on any single piece of

support.

2.1.6 Models of the real-world

Given that cooperative applications and services are intended to support the uctual

work of groups in real-life, it is important that some support is provided to aid

applications and services in this necessary modeling. Failure to provide for this

need forces all the escw applications to build their own versions of the real-world

from scratch. Poor models of the real-world will have a tremendous impact Oil

how useful an application is. In fact it is the core feature upon which real-life

cooperation can be modeled within the system

2.1.7 Alternative models of control

Many different types of control are imposed by applications on users and services.

CSCW applications may provide control over the cooperation being supported to

guide users towards a goal or conclusion. Eadl strand of control is imposed to some

extent on the applications and services it supports. Because of Ihe nature ofCSCW

(the large number alld variety of possible applications), it would be wry difficult for

many of the applications and services to rely on a single fonn of control in order to

successfully coordillate a group of people. Hence different type of roles and policies

arc assigned to different users at different levels ill the system depending upon the

requirements of the applicatiou. A wide variety of alternative models of control at

13

each level in a system (interface, application, service, etc.) is needed if cooperative

services and application arc to support, rather than constrain, any significant range

of group activities.

2.1.8 General group mechanisms

CSC\V applications contain general "group~ mechanisms which are employed to

snpport the semantics and the various rules of the application. Because of the range

and sheer number of applications, vcry similar mechanisms are often developed side

by side. What these applications require is access to a suite of ,"cry general and

tailorable mechanisms which support commonly used concepts.

2.1.9 Explicit mechanism and policy separation

If any application or service is to he readily susceptible to change, the policy which

the application embodies must be separated from the set of mechanisms which it

drives. Separation of these policies concerns the developers to focus 011 the seman­

tics of the cooperation being supported without having to unravel the mysteries of

the mechanisms which perform them. This is one of the most desirable characteris­

tics for auy application and support services across the field of practical computer

science. In the domain ofCSCW, it is not only desirable but essential. \Vithout this

separation of concerns, many of tile other needs (tailorabiJity, alternatiw models of

cOlltrol, multiuser scaling, etc.) become unattainable.

14

2.2 Classification of CSCW systems

The essential precursor to the l;tudy of collaborative systems is the definition of a

mechanism for classifying such systems. Two pritlcipal characteristks IlTC common

to all cooperative systems ['J6J;

L THE FORM OF INTERACTfON(SYNCHRONOUS VS. ASYNCHRONOUS)

Creatiw problems, such as those tackled by brain-storming (for example, in

teleconferencing, etc.,), re<luire group members to cooperate in a syllchronoWJ

maimer since the creative input of caeh group member is required to generate

strategy for tackling the task. In contrast, perspective ta!iks have a previously

formulated solution strategy where group members take on particular roles

awl work in au ~ynchronou.'l manner often without the presence of other

group members.

2. THE GEOGRAPHICAL NATURE OF THE USERS (REMOTE VB. CO­

LOCATED)

Computer support for group interaction has traditionally considered the case

of geographically distributed groups who work asynchronously with each

other. More recent research is aimed at the support of face to face meet,..

ings. This division is as much logicaJ as physical and is concerned with the

accessibility of users to each other rather than their absolute physical prox-

imity.

For reviewing the variety of systems that emerged under the heading groupware.

the following taxoJlomy may be lIseful. It classifies groupware into several cate-

15

gories based on application-level functionality [8]:

Message Systems: These systems represent tile largest. c1a.c;s of cooperative sys­

tems. The.y have evolved from electronic mail programs. As wide area networks

designed to support computer communication became more widespread [291, elec­

tronic mail syst.ems increased in t.:olliplexity and functionality_ Since the prolifera­

tion of such systems has led to the information overload phenomenon [16J, recent

systems often provide help for users in structuring, filtering and pre-processing in­

coming mess.ages (one example is INFOR.\IATION LENS [26]).

Group Decision Support Systems and Electronic Meeting Rooms: Group

Decision Support Systems (GDSSs) provide computer-based facilities for explo­

ration of unstructured problems in a group setting. The aim of these tools is to

improve the productivity of decision-making meetings, either by speeding up the

decision-making process or by improving the quality of the resulting decisions [22].

Often, GDSSs are implemented a'l electronic meeting rooms. One example is the

CATeam room and the GROUPSYSTElvlS software of the Uni\-ersity of Hohenheim

in Germany [91_ A typical automated meeting room consists of a conference room

furnished with a large screen video projector, a computer (or network of comput­

ers), video terminals, a Humber of individual input/voting terminals, and a control

terminal. The computer system supporting the meeting often makes use of multi­

user software ba'lcd on some form of analytical decision technique.

16

Computer Conferendng: Computer cOflferencing /;ystems are also related to

electronic mail programs. However, the principles are different in that: (i) they im­

pose a structure based on how messages are grouped, (iil they store information in

a central database. The computer serves as a communication medium in a variety

of ways. It supports both asynchronous and real-time (synchronous) conferencing.

A well known example for asynchronous systems is USENET NE\VS. A typical

computer conferellcillg systelll consists of a nmnber of groups (called conferences),

each of which has a set of members and a sequence of messages. Conferences are

oflen arranged so that they individually address a single topic and users subscribe

to conferences ofilltercst.

The development of reliable high speed communications has lead to the emer­

gence of new real-time conferencing systems. These allow conference members to

communicate in real-time. Multi-media conferencing systems represent the intro­

duction of a new technological development into cOllferencing systems. As computer

systems become more powerful, their capability to handle wider classes of data in­

ereases. This has led to multi-media systems which integrate audio, text and video.

Multiuser Editors: Members of a group often work on data concurrently. Mul­

tiuser editors provide help for exchanging data, notifications and for avoiding or

resolving conflicts emerging from concurrently accessing the same data [10, 14, 19,

23, 251. Real-t.ime group editors allow a group of people to edit the same object at

the same time. The DistEdit system [21] tries to provide a toolkit for building and

supporting multiple group editors.

17

Coordination Systems: Coordination Systems address lohe problem of "integra­

tioll and harmonious adjustment of individual work efforts towards lohe (\(;coruplish­

mcnt of a larger goaJ" [40]- Coordinatioll systems address this problem in a variety

of ways. Typically tbese systems allow individuals to view their actions, as well as

the rele\~dJlt actions of others, within the context of the overall goal. Coordination

systems can be categorized by one of the four wpes of models they embrace: form,

procedure, conversation, or communication-structure oriente<!. Examples for coor-

dination systems arc electronic circulation folders [20], workflow management tools

[351, Coordinator [5, 111, etc..

Co-Authoring and Argumentation Systems: Co-Authoring and argumenta­

tion syStems are a general class of systems which aim to support and represent

the negotiation and argumentation involved in group working. The cooperative

authoring of documents is demonstrative of this class of cooperation where the fi­

nal generatioll of a document represents the product of a process of negotiation

between authOni,

In most of the above categories, there are several overlapping characteristics. It

is often not possible to say that one real-life system belongs exclusively t.o exactly

one category_ Hence one has to give a list of categories or just categorize by the

primary emphasis and intent of an application.

18

In the remaining of the chapter, a brief description of some of the specific tools

developed for Multiuser editors and Co-Authoring systems is given.

GROVE: GROVE [81 is a real-time out,line editor allowing several people to edit at

the same time. Users can enter and leave a GROVE 'session' at any lime. Within

thr. GROVE session, each user has his or her own workstation and bitmap display.

Each user ill the session knows via 'group windows' which other user is partici.

pating. The users in the session can see and manipulate one or more views of the

text being worked on. GROVE separates the concept of a "iew from the concept

of a viewer. A view is a subset of the items in an outline determined by the read

acces..'> privileges. A viewer is a grOllp window for seeing a contiguous subset of a

view. GROVE views and viewers are categorized as private, public or shart"<1. The

differences arc in the read access for the different users. A private view contains

items which only a particular user can read, a shared view contains items readable

by an enumerated set of users and public view contaiIls items readable by all users.

When users enter (or reenter) a session, they receive an up-to-date document unless

they choose to retrieve a previously stored version. The dcfallit Illode in GROVE is

a mode where everybody call read and edit everything, i.e., there is 110 locking. The

authors report that (after a learning period) this does not give a chaotic situation,

but appears "0 be quite U~flli.

PREP: The focus in PREP [301 is on enhancing the effectiveness of loo,sely-coupled

collaboration. The information ill a document is defined as olle or morc colullllls

and a columll is composed. of "chunks." PREP columns are used for "he main text

19

of a documcnt, for document plans, for a particular co-author's or commcntcr's

annotations, for request for clarifications or responses to COlllment.~. The chunks

can contain text, grids, trees or arbitrary images. They are shared by the users in

a database. An importaut issue in PREP is the possibility of commenting. A user

can define 'drafts'. A draft defines an arcain the workspace that an author intends

others to access and consists of a sparsely filled grid of chunks. Each column in a

grid is used to store different workspace content such as document content, plan and

comments. Collaboration occurs then by cOllllueutillg on drafts. The authors of

PREP find it also important to allow revisions of drafts to exist as distinct versions

such tllat old information is not lost.

The PREP editor is basically asynchronous, although it supports simultaneous

editing and commenting of copies of a docnlIlent ~hrough merging. An underlying

node-link architecture supports the merging of comments from multiple reviewers,

allowing simultaneous display of annotations from several distributed commcnter's

to whom copies of the document werc passed. Recipients cau modify tlleir copy of

the original draft. A flexible difference finding algorithm allows one writer to see

"at a glance" what has changed between the original and the copy (or any two ar­

bitrary versions) and to decide whether to incorporate the change into the current

version [33].

SEPIA: The SEPIA [41], [421 system is a hypertext authoring environment using

a hypertext database (Hyperbase) constructed on top of a commercial relational

database. SEPIA supports syn<;hrollous and asynchronous collaborative editing of

hypertext documents. It supports the creation of hyperdocurnents by providing

20

'activity spaces' which call oe seen as task-specific Orowsers, Users create a hyper­

document by interacting with four activity space browsers dedicated to the tasks

of content generation and structuring, planning, arguing, and writing the final hy­

perdocuments under a rhetorical perspective (Content Space, Planning Space, Ar­

gumentation Spa(:e, and tuletorical Space respectively). Information can be shared

or private. SEPIA's basic hypertext objects are atomic nodes, composite nodes,

and labeled links. Furthermore, annotation nodes and links are provided as spe­

cializations of atomic nodes and labeled links. SEPIA provides annotation nodes

and thus supports collaboration via draft passing. Composite nodes are heavily

used as organizational means. Each author may sec the actions of the ,other uscrs

hut is free 1,0 navigate through the document. SEPIA forces one to select objecls

before being able to execute an operation OB them. That way a user can lock an ob­

ject. A coloring mecllanism is used to give a user information about locked objects.

SEPIA is a general hypertext authoring tool that can be used for the production of

a variety of documents such as manuals, scientific articles, project proposals, etc.

21

Chapter 3

Consistency in Cooperative Work

Consistency maintenance is a fundamental issue in mallY areas of computing sys­

tems, including operating systems, database systems, distributed shared memo!'.}'

systems, and grouJlware systems. Traditional algorithms typically maintain COll-

sistency by rcstrict.illg concurrency; however, this approach is IIllsatL'lfaClory in

general, as it often interferes with the flexible management of group activity. In tra­

ditional database systems, the concept of Transaction and SerializabiWy arc taken

to provide for the necessary consistency. The traditional transaction read/write

model lIses a semantics-frce approach to transactions, and considers each databa..<;.e

access as either a read or a write. Traditional model has four desirable propcr~

ties for transactions, often calloo. the ACID (Atomicity, Consistency, Isolation and

Durability) properties [1].

J. Atomicity: All operations of a transaction must be treated (1.<; a single unit;

all of the operations are executed, or nOlle arc.

22

2. Consistency: A transaction when exccut.ed alonc takes the database from one

consistent stllte to another.

3. Isolation: Each transaction executes as if it were the only transaction in the

dalabase. Hs Intermediate results are lIot seeTl by other transactions

4. Dumbility: The rcsults of a transaction arc never lost if the transaction ter­

minates normally.

All execution is scdalizablc if its effect (generally for both transactiolls and rlat.abase)

is equivalent to that of some serial execution of the same sel of trausa.ctiolJs. Both

these concepts reflect the expectations of the users that their executions are not

interfered by those of the others. In contrast, mutual interference is inherent and

welcome in collaborative applications. Therefore, only (some form of) Consistency

and Durability are expected to be satisfied among transactions collaborating with

each other. However, Atomicity and Isolation arc also required of them with re­

spect to transactions not collaborating with them. Concurrency cOlltrol is requircJ

to guard against incollsistencies, and to handle conflicting actions. Howe\"er, con­

curreTlcy control in groupware must be handled differently than traditional con­

currency methods, simply because t.he user is an active part of the process. For

example, people doing highly interactive activities will lIot tolerate delays intro­

duced by couservative locking and serialization scllCmes.

The conSC<.juenccs of inconsistency are quit.e different for different domains. For

example in a Document Authoring domain the writers may be willing to trade "high

availability" for "accuracy." Many applications do not require absolute consistency

23

in user data. For installce, in a "shared whiLeboard", absolute consistency is rarely

a concern. Confficts over a singk"'plonc bitmap are minimal aud lion-intrusive. In

these circumstances, the system would unlikely attempt to maintain data integrity

rigorously. Inda-'d., the overhead of lIlallY consistency management strategies would

interfere with the responsive perfonnance and free-form interactive style that a

shared whiteboard require.... In some applications, however, consistency can be vi-

tal.

Different types of COllsistencies such as Consistency Guarantees [7], Application

defined consistency criteria, Operation Transformation scheme [43], History Merg­

ing [49], some relaxed forms of Serializability[8, 33], COO-Serializability (COO-SR)

(27, 28J, etc., suitahle for cooperative applkations have becn explored.

3.1 Types of Consistencies

I. CQ1l.'Jistency Guarantees mechanism uses knowledge of application semantics

and the scmantics of particular operations to increase concurrency and par­

allel activity. This IlJt'chanj~m is u~ed in Prospera [71 where control over the

consistency management mechanisms in the toolkit i~ given 1.0 the applica­

tioIl. Prospera is a prototype toolkit for collaborative applications which uses

metalevcl techniques to allow application developers to reach in and tailor

toolkit stmcturcs and behaviors to the particular needs of applications. Pros­

pero exploits the semaJltics of specific applications and operations involved to

24

allow multiple users to act over data simultaneously. This involves finding op­

erations which can be performed in parallel without leading to inconsistency.

Prospero adopts all optimistic strategy by presuming that simultaneous ac­

tions will probably 1I0t result in conflict, but that if conflict does occur, things

call be sorted out later. These simultalloous actions cause differcnt. users to

have different views of the dat3; this is called divcraence. To compensate

for this effect, synchronization is done to re-establish a common view of the

data. So, data mallugcment takes the form of contillual divergence and syn­

chroni:r,ation of views of the data. The problem is that the divergence model

makes no commitment to the nature or extent of the divergence. The longer

two streams of activity remain activ(; but unsynchwllized, the greater their

potential divergence, and so the more complex it becomes to resolve conflicts

at synchronization time. Indeed there is no guarantee that the system will

ever be able t.o resolve two arbitrary streams int.o a single, coherent view of

the data store.

A generalized locking mechanism is used to achieve constrained divergence.

Locking is used to guarantee the client of future consistency (promise that

"no other user can make changes, so consistency is maintained") in ~xchang~

for a prediction of the clients future activity. This flexible interpretation al­

lows applications to balance frt-ocdom of action against eventual cOllsistcncy as

appropriate to the particular circumstances of usc. This is the fin,,, principle:

locks are yuarantees of acll'ielJable comutency. However, support. for oppor­

tunistic work withollt completely abandoning the synchronization of para.Jlel

25

activities is achicved by aJlowing clicnts to break thcir prorni5e!i of futurc ac­

tivity (and hcnce not holding the servcr to its guaranlee of later consist.cIICY),

and looking at syntactic consistency when nCCCl:isary. This is the second prin­

ciple: a client can break u promise, in whic11 case the senJcr is 110 longer held

to itsguamntee.

2. COllSistency is obtained in [39, 49] by semantically correct exchange of in-

formatioll among cooperating users by lIIeans of merging histories of uscr

activities. CoAct transactional model is designed for supporting t;ooperath'c

work in multi-user environments. Individual user "transactions" are called

user activities which are executed" withlll the scope of a group-based "transc

action" called the cooperative activity to enable cooperation bctween uscrs

involved in a joint cffort. The CoAct model assigns a user activity and a

private work,~pa(;e to cvery uscr who takes part ill a cooperative activity. By

default, the private workspllces of the co-workcrs are isolated from each other.

Each cooperative activity is associated with its own \\'orkspace, called the com-

mOil workspace which is isolated from the user activities.

Execution constraints are assigned for cooperative acth'ities that govern

the execution of the work of the individual users as well as the overall 0001)-

erative activity. TllC constraints describe which operations arc allowed to be

executed within the context of the cooperative activity. Cooperation among

user activities (belonging to the same cooperative activity) is achieved by the

explicit, semantically correct c.xchange of information (operations) between

26

co-workers. They can exchallge operations through tlw common workspace

by means of save and import. Direct exchange of operatious among user ac­

tivities is achieved by means of import and delegate. All the uscrs involved ill

the cooperative activity would integrate their individual work into the com­

mon workspace stIch that there is a single result of the cooperathre at-tivity.

Compatibility between uscr actions is exploited to extend the concept of

user activities to activity histories. An activity hi..~tory is referred to as histo­

ries of single uscr activities as well as the cooperative activity reflected in the

common workspace. Correct subhistories (which arc independent and conliis­

tent atomic units of work) are extracted from the activity histories and these

subhistories can be exchanged betwccn different activity histories by applying

the merge algorithm described in [39J, [49J. This process of merging of ac­

tivity histories is guided by merging rules (described ill the algorithm) which

ensure that the resulting activity history is a corrcct olle again ill the sense

that the obsen'able behavior of actions in the merged history is the same as in

the original histories. If merging of some operations leads to an incoll;;istent

history, then those operations are compensated. The correctness criteria of

the merge approach guaramees that no iuconsistencies are introduced due to

the exchange of information between concurrently executed work.

3. The model in [43J deals with consistency in Real-time Cooperative Editing

systems. Cooperath·e editing system allows multiple users to view and edit

a shared document simultaneously from different sites, which are connected

27

by a communication network. The model adopts a replicated architecture

regarding the storage of shared documents to achie\"e good response and Ull­

constrained collaboration. The shared documents are replicated at the local

storage of each participating site (user), and so, the editing operations arc

first performed at local sites and then propagated to remote sites Three in­

consistency problems in such situations have been identified.

First, opcrations may arrive and be executed at differelll. sites in different

orders, resulting in divergent final resul/.§ or divergence. Secondly, due to the

Ilondeterministic communication latency, operations may be executed out of

their natural cau.~e-effecl resulting in mtJ3ality tiolat1or•. Thirdly, due to COll-

current generation of operations, the actual eife£! of an operation at the time

of its execution may be different from the jlltended effect of this operation at

the time of its generation. The three inconsistcncy problems are indepclldcllt

in the sense that the occurrence of one or two of them docs not always result

in the others. An execution at each participating site is consistent if it ah'r<tys

maintains the follo.....ing properties:

(a) Convergence: The same set of operations have been executed at all sites,

aud all copies of the shared document are identicaL

(b) Causality-preservation: For any pair of operations Oa and Ob, if Oa -+

Ob, tllcn Oa is cxecuted at. all sites before Ob.

(c) Intention-preservation: For any operation 0, the effects of executing a
at all sites are the same a..... the intention of 0, and the effect of executing

28

o does not change the effects of independent operations

Various concurrency control protocols have been proposed for cooperativc

editing systems and have been successfully used in non-real time or real-time

constrained cooperative editing systems. However, nonc of the existing ap­

proaches has addressed all the three inconsistency problems in cooperative

editing systems under the constraints of a short responsc time, a short no­

tifir.atioll time, and support for unconstrained cooperative editing in such

environments. Many rCS()archers have dealt with the first two problems and

have devised diffetCllt protocols to ensure them but failed to correctly solve the

third issue 'interdion ,nolrltiorl.' A novel and integrated approach to correctly

solvc the iutelltion violation (in combination with the problems of divergent

final results and causality violation) is proposed in [43].

Convergence is achieved by an optimistit: serialization strategy using undo/do/redo

and causality-preservation by a stat.&\'ector-based timcstampingscheme. Achiev-

ing intention-preservation is much harder because it is not related to the ex-

ecution order of operations and cannot be resolved by jllst re-scheduling of

operations as in the other twO cases. Intention-preserving scheme is achieved

by applying the Generic 01JCration Tmnsformatioll (GOT) algorithm (given

in [43]) which uses inclusion and exclusion transformation strategies

4. The COO-SR model of [28J assumes a central repository containing all the

objects developed during the cooperative execution. The execution consists

29

of users reading the versions of the objects in the repository, and writing new

versions of objects and adding them to the repository. Users Iilay execute

the operations collcurrently. The complet.e execution, entered in a log, is

supposed to satisfy some 'external' and 'internal' consistency reqnirements.

For external consistency, the t,ransactiOlJs are partitioned into sewlral groups

based on interactions between them, an useful sub-log is extracted from the

log by eliminating some operations which primarily aid cooperation but arc

irrelevant for scrializability, and it is required that the sub-log be serializable

with respect to the groups of transactions. For internal consistency, properties

like "the lillit veniion of an object produced by a transaction in a group must

be read lJy all th~ other transactions in that group~ are demanded in the

cooperative execution

3.2 Examples

1. Consider a cooperative execution of document authoring. A group of authors

A, B, C, D, and E are involved in writing a large document. The document

contains three sections x, Y, and z. They distribute the three sectiolls among

the five authors and outline some constraints, as to whell and how the docu­

mellt should he finished. All the three sections are jointly written by several

authors. All the authors are aware of the progress and changes on all SC<;­

tions. Sollie sectiOJJS arc edited by more than one of the authors concurrently.

Several intermediate versions of the sections are written. Suppose auLhors A

and B are in charge of secLioll x, authors B, C and D are ill charge of section

y and authors D, E and A are incharge of section z. WAi(X} represents the

execution of a write operation by processor A of the object x. Similarly a read

operation Rm(x) represents tlle execution of a read operation by processor 8

of the object x. In the figure the read operation RHI(x) reads from WAdz}

(the reads from relation shown by the IlOlid arrow), that is the \'ersion written

by WAI . For example, consider the partial execution shown below.

Authors

A: - ·_>W",(x)--

B: - -··>Rolx) ------Wolx) _.. --- Wo;:(y)

~
C: ------ .. ---> Rcl(Y) -----Rc/x)

Figure 3.1: Example

In Figure 3.1, process order is shown by broken arrow and reads/rom relation

by solid arrow. Author B reads section x written by author A (Rm(x) reads

from WA1(X)), and then writes section x, and after that, writes section y.

Author C reads section y written by author B (RCl(Y) reads from Wm(Y)),

and then decides to read section x. At this stage there are two versions of

section X (WAdz) and WBI{x)) available to author C. The problem is to de-

dde which version is appropriate or suitable for author C. Depending on the

requirements of the author and the application, author C might requcst for a

latest write Oil a particular data item. So the system should support the user

in deciding to select an appropriate version. For instance, 011 one extreme,

the ~y~tern call respond to author C by returning all the values 011 section x

31

from the database. And, on the other extreme, the user can specify a par­

ticular value to be rcturnp-d. It lilay be assumed that, since author B writes

section x after reading x written by author A, the version IVBI (x) contains

the modifications dorrc ill WAl(x). Hence, for author C, Wm(x) wonld be an

appropriate choice if he wishes to read the 'recent' version on section x.

2. Consider another application of a weather data bank for a particular city.

The system is serviced and used by different sonrces. The sources (or pro­

cessors) are: a meteo.rologicai station at the dty airport, a set of polar orbit

satellites passing over the city, a geostationary satellite and a scmi~perlllanellt

weather balloon operated by a local university. The sources colh~ct physical

data from their respective eqnipnH.mt and write into the data bank. The;;c

sources Cfll\ also access the data reported (or written) by other sources. Each

source reports the data at periodic intcf\'als. These intcrvals vary for different

sources. The actual data composition collected from various equipment might

also vary depending upon the source. For example, the data from the polar

satellite is significantly different from that of the weather balloon. However,

all the processors work in a cooperativc manner to update 'weather condition

data'. Due t.o physical limitations not all sources might bc able to collect the

complete data at all times or may c,·en collect partilllly incorfl-'Cl. data. The

central data bank may be located at another location which serves scveral

such citics.

Different weather related applications lIlay be using the data for different re-

32

quirements, One such application Olay be about 'current weather conditions.'

Each processor periodically writes data to the data bank. Before writing,

it reads some recent data from the data bank (data may be from the same

source or from different sources), checks it against its own data collected and

writes into the data bank a filtered data. This reading is done in order to

check if the current data eollected is ill line with the previous data (to pre­

dude incorrect data frolll being written). (t also hclps in making sure that

any missing data is filled in. For example, if the airport weather station is

llpdat,illg tlle 'curren~ conditions', it may 1I0t be able to write information

on road conditiolls (iC)', snow cowred, clear, etc). That information may be

provided by other sources (perhaps satellite data). So the airport weather

station requires this data and hence reads it from oUler sources. If the re­

quirement of the application is such that, each set of physical data reported

should be read at most once (by any of the cooperating processors) so that

relevant information is passed on for further updates.

Using the system described above, we can look at a particular t.ype of recent­

ness. If a data item is read by a computer (or processor), it is assumed that it

will process the data, filter it and write it back to the data bank. Sometimes,

the data read lllay be partial or insufficicllt and so the processor might need

to read data from other processors to complete its write. In that case, if a

dfl.ta is read first to be followed by another read or write operatioll, then the

first data item that was read becomes obsolete and need llot be read again.

A processor keeps accessing difrerent unread data only till its requirements

33

aresatisfilXl.

Hem;e users (at different layers of the system) in a cooperative systems require

different types of recentness of the valucs. In the lJext chapter we define five types

of legalities, each capturing a different notion of 'recentness' of the values.

34

Chapter 4

Legalities

As discussed earlier, data given to a read requcst (by users) have to be consistent

so that tile writes (performed by the usen;) arc abo consistent. In this chapter, Vi-e

llescribe IlifferCllt ways of satisfying a read H.·quest using generic legalities.

Depending Oil the requirements of the application and of the users involved (ill

the application), different levels of recentness of data may be [Cl:luircd. In the next

seetioll, we give fivc legalities, each capturing a different notion of'R'Ccntness' oCthe

values [15). We believe that the five legalities are very meaningful for cooperative

environments where traditional concurrency methods [36] are too rigid 10 apply.

This work is based 011 partial orders ant! illegality concepts. The illegality concepts

afe stated relative to certain defining relation (represented as p) on the operation

executions. For example, for operation executions 0 and 0', we defined 0 41 0'

if the execution of 0 is completed before that of 0' starts in global real time orner,

the definin,e; relatioll P (4') here is real time order. In the thesis we have explored

35

the legalties for different defining relations. The defining relation p, stated also as

-+, can be real time Qrder, musul onler, etc.

4.1 Definition

In this section we state the five illegalities buS(.'<l on a general defining relation p

(-+), all in terms of the values the readj read. The five illegalities (or conversely,

legalities) are RR-illegal, RW-illegal, WR-illegal, WW-illegal, and NO-illegal. for

operations executions 0 a.nd 0', a -+ 0' if the exccution of a is completed before

that of 0' starts with respect to the defining relatioll.

The first four illegalities refer to the occurrences of the following situation where

a legal serialization extending p cannot have the following situation for any read

(4.1)

where, Xl i= X2. XI and X2 refer to the same data item x but represent different

versions. Operations 0 and 0' may each be a read or a write. Both 0 and 0' lIlay

be from the same processor or frolll different processors. However, our emphasis is

on the relation (p) betwccn two operations. A wlite into an object defines a new

value for the object; a read allows to obtain a value of the object. 1£ 0 is a write,

thcn O(xd dcnotes a write operation W{x) writing value XI in x. Similarly, if 0

is a read, then O(xd denotes a read operation R(x) retuflling data item .1:1. In the

later chapters we use O(Wd (where 0 can be a read or a wrile operation) instead

of O(xd or R(xd

36

The situation defined in eq. 4.1 above implies that R(xd is illegal with respect

to -j.. This illegality notion call be expandcd further as follows:

• RR-illegal if 0 is a read and 0' is a n~(,ld,

• RW-iUegal if 0 is a read and 0' is a u."'te,

• WR~ille9al if 0 is a write and 0' is a read, and

• WIV~illegal if 0 is a write and 0' is a write.

In addition to the above four, a fifth illegality is defined as the New-Old-ifltJcrllioll

or New-Old-illegality (NO-illegality):

• NO-illcgll/: for two different wdtes WI alld Wz, writing values XI and Xz ill

data itemxX respectively, and two different reads Rand R!, if Wl(xd -j.

WAxl) and R'(xz) -j. R(xd·

WW denotes that iVW-illeglllityis allowed, and WW denotes that WW-illegality

is not allowed. \Ve use similar notation for other illegalities. An execution is said

to be froousally cousistent if all the read operations in that execution are legal in

all respects (that is the exccution satisfies WW, WR, RW, RR, NO). This is the

strongest possible consistency. \Veaker consistencies can be defined by allo\\ing the

read operations to satisfy only some, but not all, legalities. An execution belongs to

a certain consist.ency da.<;s based Oil tbe pre,<;cnce or absence of each of these illegal­

ities with respect to~. This framework facilitates specilication of a large variety

of consistencies. The present work is based ou the reading: of intermediate ver­

sions in a cooperative application subject to the read operations satisfying different

37

legalities.' A common notion adopted in the literature for correctness of concur­

rent execution of operations on shared \'3riables is causal consistency. Though not

explicitly mentioned in [281, it can be shown that uuder certain as.'iumptions, the

internal consistency requirements mentioned in that paper include a form of causal

consistency. This is explained in detail in the next section.

4.2 A form of Causal Consistency - COO-SR model

Causal Consistency: Let H = (H,-+H) be a history. His cau.sally consistent if

all its read operations are legal W.f.t. causal order. Causal order is the transitive

closure of the union of process order and reads from relatwn represent,cd a.<; {(....-Jo;

U-joT!)·). A read operation is said to be legal ifit returns the most recently written"

value to the location being read

Under ceratin assumptions and a defining realtion, the internal consistency re­

quirement of the COO-Sn. model [28J (given in Chapter 3) corresponds to a form

of causal consistency. This is shown below with the following assumptions.

1. P is the causal ordcr represented as (....-Jo; U-Jo.!)*.

2. A processor docs not read its own write.

3. A processor does not read a version more than once.

4. The latest \'CrSiOll of a processor and the versions read by the processor after

writing that latest version contribute to the next version.

5. Every version that is created is useful for the final result.

38

• Sinee eadl version of a processor is (implicitly) ll"eful for the next \-ersion

of the same processor, each \·ersioll need not bl;' useful i.e., lJeed not be

read by any body elsc.

6. However the filial version of each processor (except possibly one) must be

read.

7. The reads need to be consistent so that the writes the processors perform art'

consistent.

8. Eventually all we lJeed is a partial order of the writes (versions), cnding in

one versiOll.

9 Concurrent writcs commute.

Properties·

1. No processor reads its own write.

!JJill:.l.; Consider WR-illegality, WI ----t H(W2) ----t R'(W.)

"B'I and R! are of different processors. Considering tile definillg relatiou, if

there e.xist a IV -+rJ R puth in between, i.e.,

We have WW·illegality and therefore IVR "* WW, i.e., WW =} HI R. It has

been shown in [15], when pcontains -+., in transitive closnre, (WW, WR) =>

p-causality. Therefore all we need is WW.

39

CM!Jl: Consider WW-il/cgality, IVl ---j. W2 ---t R(Wd

An intervening lV3 -7rJ R(W3) path gives rise to the situation

We have WR-iUegalityaud therefore lVlV ~ lVR, i.e., WR "* WW. Thus

WR is also good enough. Therefore all we need is either WW or IVR, both

are t"1uivalellt.

Assumptions 2 and 3 imply WW- and WR-legal which guarantees p-causality. As­

sumption 2 may be changed to 2a: a processor can only read its write imme<liately

after the write or before reading any other write. Even then p-causality is satisfied.

III this thesis, we subscribe to the above idca for the intelIul.l COIL<;istCliCy of

cooperative executions: cOn:JistCllcy of all f'-3;c(;utioll i.~ ddermirwd by the legalities

of its t'f'Ad.~. Tile five legalities are explored for two different defining relations and

for two different environments. The five illegalities are dealt with two defining

relations: i) real time order alld ii)causal orner. We give detailed algorit.hms for

ellsuring the various legalities. We believe that the five legalities /lre very meaning­

ful for cooperative environments, and CSCW system support must include helping

read operations (users) satisfy these legalities. In the thesis we try to relax the

ACID properties so that executiotJs tllat are Tlot serializable arc acceptable in cer-

tain CSC\\' systems. Some types of inconsistencies llIay be acceptable to people

in certain groupware applicat.ions. Later on people might mediate IUld repair their

actions and conHicts following some sociaJ protocols.

40

As seen in the examples of Chapter 3, the first example indicates that a data item

satisfying WW-legality would be an appropriate choice by author C. The second

example requirement relat.es to a data item satisfying RR-Iegulity and RW~lea9Iity.

It has been shown in [15]. for some special values of p and/or special system execu~

tions, the absence of some illegalities imply t.he absence of some other illegalities.

Raynal and Schiper [371 define an execution to be causally consistent if no read in

that execution is WIV-illegal and WR-illcgu{ (in our terminology).

4.3 Motivation

Due to the popularization of the Internet, cooperative applications are expected to

become common pluce Oil the WEB. Cooperat.ive applications are tIle result of the

cooperation between ~veral u~n; (humans or software), playing different roles,who

build a relational system which is structured by a WIlllllon objective, or project, and

for the duration of this project. Users interact (cooperate) when tiley share objects

not only at the start and at the cud of the execution, as in traditional database

applications, but during their execution. Users communicate through peer to peer

communication channels or throngh cooperation spaces, especially common l'epos-

itories.

Example: Consider a scenario ill which the medical staff of a hospital wants

additional diagnostics before concluding on a paticnt disease. For that, two other

specialists are contacted for their advice or opinion. The two specialists arc ge-

41

ographically distributed. Patient records and diagnostic images arc sent to these

specialists who must do studies and report together, pl'Orlllcing one rcport, despite

geographical separation. Each specialist comments on the report of the other awl

write their own report. This process is done in an iterative fashion. Before each

specialist arrives at his/her own final report, some intermediate versions arc writ­

ten. The isolation between the two specialists is broken by explicitly allowing them

to share some intermediate versions of their reports when executing their respective

process. Our concern is not with the end rp.snlt but how and which of the inter­

mediate ~'crsioJls are accessed by each of the users involved. A partial eXl'CutioJl of

how the specialists cooperate in their execution is shown below'

A: RAI(X)- --WA1(.lt) ----WA2(x)----WA3(x)----WM(x)

j
B: R

B1
(X)----W

B1
(.t)- --R

B2
(x) - --W

B2
(z)----W

B3
(x)- --R

B4
(x)

Figure 4.1: Example

The two specialists are represented as A and B and the data of the patient is

represented as x. A and B read the patient data x (represented as RA_(x) and

RB_(x) respectively) and write (represented as WA_(x) and Wo_(x) respecth'ely)

their respective reports. In addition to this, each specialist reads the report. of the

other and writes comments which ale denoted by data item z. They write illterme·

diate versions before they arrive ae the final report. Por example, WAdx), WA2 (X)

are the intermediate versions of the user A and Wtll(x), WB:i(X), and WR4 (x) are

the intermediate versions of the user B. Wll2(z) rcprC>icnts comments writlen by

42

autor B.

As showll in the figure, user B reads a write of A and commcnts on that, i.e.,

Rm(x) reads from IVA2 (x). FOl" a further read by user B say, RB3(X), user B has

mOl"ethan one write t.ochoosc from (because user A has written WA3 (X) and WA~(X)

by the time user B issued the read R B3 (X)). In snch sit.nations giving all the write

versions to user B may be waste of resources and not u~ful. Only key information

should be provided to the user in order to reduce cognitive overload on the user and

on the system. Suppose that user B is given all the versions and hc/she chooses

to read WAdx). User B writes comments ba-'''ed on the write WA1(X) read. Thus

the comments of B will be inconsistcnt beclIuse he/she has read an older version

than the \-ersioll read previously by B (i.e., WAdx) is all older version than WA.1(X)).

For example, suppose report ~VAl(X) contains the dosage say 15111g to be ad­

ministered to the patient and later on user A decides to change it to lOmg which he

modifies in the next version of the report W A2 (X). Nc.xt, B writ('$ a comment saying

that 'Reduce the dosage by Gmg because of the age of the patient' after reading

WA2 (X). Again when Breads WA1(X) and writes the comments, he/she thinks that

user A misunderstood and so he comments saying 'reduce tile dosnge by Wmg which

confuses user A and inconsistency arises. In order to avoid such type of inconsis­

tencies, the system should some how keep track of the versions read by the users

and prompt or giw the users only versiollS that are eligible, recent values or 'Legal'

In the next chapter tIle five Illegalities are explained in detail with repect to real

time order.

43

Chapter 5

Legalities in Real Time Order

We consider a cooperative system composed of a set of procc~rs (Proch PrOC2,

PrOC:I, etc.) which interact with each other by reading and modifying (writing)

shared objects (x, y,]" etc.). The system supports two primitive operations: read

and write. A write into an object defines a new value for the object. A read obtains

a value of the object. Every (read or write) operation is assigned a uniqne id (Rid or

Wid, respectively). The execution of a write operation by proct:'..5S0r i of the object x

is denoted by W;.. (x): lilt< write operation by processor i. Similarly a read opeTal.ion

is denoted by R;,,(x). The system responds to the read request with references to

a set of II",les satisfying the desired "legality" criteria. The read in the model can

read any value written by earlier or simultaneous writes.

The above representation and description holds good for aJl the three eIlvi­

ronments givcn in this thesis (centralized, distributed and mobile agent). In the

following sections we explain in dctail how the five legalities can be implemented

44

in a centralized environment comidering the Relll Time Order.

5.1 Definition

For operations 0 find 0', we define 0 --+ 0', that is 0 precedes 0' if the cxecmiolJ

of 0 is complett.'<I before that of 0' starts in global real time order

Scenarios for yarious illegalities for a read operation R;j(x) nrc shown in Fig­

ure 5.1. This figure is taken from [ISJ.

Consider RR-illegality from Figure 5.1 Writes Wmn(x) and Wpq(x) are concur­

relit with each other. As shown in figure, read R;j{x) starts after the completion

of the rearL~ ~(x) and R..b(X), and read R<tt(:l:) stal'ts after the completion of

readl$ R-ab(x). The three reads are concurrent with I.he writes. In order to avoid

RR-illegality, read l?;j(x) should not read write Wmn(X).

Consider another case say, WW~illegality from Figure 5.1. Write Wpq(x) starts

after the completion of the write Wmn(x) and relJd R;j(x) starts after the completion

of the write Wpq(x). Hence write Wpq(x) is considered more recent write than

W".m(x) and so if 're!ld R;j(x) reads Wmn(x), then according to our terminology

it is WW-illegal. Consider an example of a stock market news whieh is updated

(displayeJ) by l.wo news agencies. Another user is regularly reading or following the

stock news. The user is interested in leading only the latest updated news and so

snch users should be given only \V\V-legal (according to onr terminology) versions.

45

RR-illegality

'%",(x)

r------<
RlIt(x)['\\N(x'j

r--__--'R--'W_-_illegality

f-------------<
'%",(x)

NO-illegal1ty

WR-illegality

~--==--W"",(')

r------<
R",,{xJ["l.q(')}

f-------'
Ri?)[\Vmr'<X)]

>----=-~~,"*"(»

WW-ilJegalilY

Fignre 5.1: Example Showing Various Illegality Scenarios (in global real time order)

46

In the :;imilar way, the other iliegaliti€S can be explainl..>d. In the next section we

explain the data structures and give a detail algorithm (general case) satisfying all

the five illegalities. The algorithm gives a step by step description of the actions to

be taken when a write or a read operation is executed.

5.2 Data Structures

The algorithm requires the following data structures. All the sets given below are

l\Sl;umed to be maintained globally in a central repository without any replication

and there exists a global dock. Individual processors do not ha'·e local copi~ of

the data. The processors access the shared data from the central repositoT)~ Each

write creates a version. As the operations are issued and completed, their respective

starL time and finish time are recorded in the appropriate sets.

In addition to the above information, Wid.... of write operations lIlay he taggecl

as illegal with respect to one or more of the five legalities discussed. Based on the

execution of all operat.ion (read/write), appropriat.e sets are updated. We assume

that 110 two operations start at the same time. The central repository contains the

following data structures, olle for each data item.

I. Ongoing Read Set: This set contains the Rids of all the ongoing read oper­

ations (a read operatiou that has st.ane<! but not yet finished) reading that

object. Tagged with each read operation is a list of Wids (of the wrlles 011

that. objcct) that arc concurrent with that n;ad operation.

2. Ongoing Write SCI.: This set contains the Wids of all tile ongoing write oper-

ations.

47

3. Finished Read Set: This set contains the Rids of thc finished fWd operations

Tilgged with cach read opcration is the Wid of thc write read by that read

operation.

4. Finished Write Set: This set contains the Wids of thc linished write opera-

LiollS.

5.3 Algorithm

I. When a write operation 1Vi.l;(x) is issued by processor i,

(a) Enter Wid of Wit(x,) in. the Ongoing Write Set.

(b) T..,g "he Wid of Wit (x) to each uf the ongoing /Tad operations in the

Ongoing Read Set.

2. Whcn a write operation W;dx) is finished,

(a) Remove Wid of Wik(X) from Ongoing Write Set and enter it in the Fin­

ished Write Sct.

(b) Chel:k tile Finished Read Set and collect all the read operations say,

R..b(X) whose finish time is less thilll. the start time of Wik(X). For each

sllch read Rat,(x), tag its respective Wid (i.e., the write read by the read

Ra~(x)) as RW-illegal ill the Finished Write Set.

(c) Clwck the Finished Write Set and tag all the writes whose finish time is

less than the start time of Wik(X) as W\V-illegal in the Finished Write

Set.

48

(d) If any particular Wid in the Finished \Vrite Set is tagged as illegal W.r.t

all the five legalities, remove it from the Set.

(e) if the Wid removed from the Finished Write Set (ill step 2<1) also exists

in the Finished Read Set (i.e., this Wid is read by one or more re/lr!8 in

this set and accordingly this Wid will be tagged to those reads), then

remove it from the Finished Read Set along with its respeetive read.

3. \Vhen a proces..<;or j issues a read Rj,,(x), all eligible list is forllled from which

Rj,,(x) can pick a write and read. III addition to the eligible list the read

operation can choose from any of the Wids tagged to it. This tagged list of

W.d." are the write-ope,rations that are concurrent to Rj..(x) anti whiclchave

started after the read was i&<;ued. However 'lJJrite.1 which are collt;llrrenl. to the

read Rj,,(x) and which were started before the read ivas issued exists in the

Ongoing \Vrite Set. If the eligible list does not contain any value to be read,

then a message is sent to the processor saying that there are no values that

can be read satisfying the requested criteria.

(a) RR-Iegality: The eligible list will contain all the Wids from the Finished

\Vrite Set excluding the Wirlll that arc tagged as RR-illegal, plus all the

Wids in the Ongoing \Vrite Set.

(b) R\V-legality: The eligible list will contain all the Wids from the Finished

Write Set excluding the Wids lhat are tagged as RW-illegal, plus all the

Wids in the Ongoing Write Set.

(c) \VR-legaJity: The eligible list will contain alllile Wids frOIli the Finished

'.Vrite Set excluding the Wids that are tagged as WR-illegal, plus all the

49

Wids in the Ongoing Write Set.

(d) NO-legality: The eligible list will contain all the Wids from the Finished

Write Set exclnding the Wids that are tagged as NO-illegal, plus all the

Wids in the Ongoing Write Set.

(e) WW-Iegality: The eligible list will contain all the Wids from the Finished

Write Set excluding the lVid.~ that are lagged as WW-illegal, plus all the

lVid.~ in the Ongoing Write Set.

(f) Enter the Rid of Rj~(x) in the Ongoing Read Set.

4. When a read operation R)~(x) is finished and it read Wit(x),

(a) Remove Rid of Rj~(x) from Ongoing Read Set ILnd enter Rid of Rj,,(x)

along with the Wid of W;l;(X) in the Finished Read Set.

(b) Check in the Finished Read Set for any read operation say, R.w(x) whose

finish time is less than the start time of Rj,,(x). For each such read Ra~(x)

collected, tag its respective Wid (i.e., the write read by the read RaII(x))

as RR.-illegal in the Finished Write Set.

(c) Check in the Finished Write Set and tag aJl the writes say, W"",(x),

whose finish time is less than the start time of Rj,,(x) as WR-illegal in

the Finished Write Set.

(d) ClJeck in the Finished Write Set and tag all the writes say, W",,,(x),

whose finish time is less than the start time of W,l;(X) (Wil;(X) is read

by the read operation 14,,(x)) as tiD-illegal in the Finished Write Set.

(e) If any particular Wid in the Finished Write Set is tagged as illegal \V.r.t

aJl the live legalities, remo\'e from the Set,.

50

i if the Wid removed from the Finished Write Set also exist.'l ill t.he

Finished Read Set (i.e., this Wid is read by one or morc reads ill

Finished Read Set and ar.cordingly t.his Wid wiil be tagged to those

n;ads), t.hen remove it from the Finished Read Set along with its

respective read.

It is clear (rom the data structures and tile algorithm described that some of the

datA. items may have duplication even after taking care of sollle garbage collection.

However based on the application and the implemcntation technique adopted, the

sets call be optimized. One wa)' is by removing Wirls which are illegal \\'ith respect

to all the five legalities from the Finished Write Set and Finished Head Set (In

the Finished Read Set, Wid along with the Rid is removed). Different types of

implementation techniques can be employed to arrive at an optimi7.ed algorithm.

Due to the simplicity of understanding we have dealt the algorithm in this mallner.

The algorithm can be tailored based on the requirements of an application

In the next section wc give the correctness proof of our algorithm. The proof

for cad! legalil)' is given separately.

5.4 Correctness Proof

Proof of RR-Iegality:

Consider a retld RiJ(:r). Recall that the eligible list W.r.t RR-lcgality (step 3a in the

algorithm) given to R;j(x) consists of all the Wid.5 (i.e., IIJritC,i that are not tagged

as RR-illegal) from the Finished Write Set plus all the Wids in tIle Ongoing Writ.e

51

Set. We ",ill net--d to sllOw that every write that is RR-illegal for R;j(x) exists in

Finished Write Set tagged as RR-illeg<l\. For a write IVrn ,,,(x) to be fiR-illegal for

R;j(x), we should have

According to step 4b in the algorithm, when the read operation R.J.,(x) is fin­

ished (i.e., R,k(x) read write Wpq(x}), Wid of Wm,,(x) is tagged as RR-illegal in

the Finished Write Set. Hence, a write which is RR-illegal for rend cxist-s in the

Finished Vlrite Set tagged as RR-illegal or remO\'ed in garbage collection.

Proof of RW-legaHty:

Consider a read R;j(x). Recall that the eligible list W.Lt RW-Iegalily (step 3b ill the

algorithm) given to R~J(x) consists of all the Wills (i.e., writes that are not tagged

as RW-illegal) from the Finished \Veite Set plus all the Wills in the Ongoing Write

Set. We will need to show that every write that is RW-illegal for i?<j(x) exists in

FillisheJ \Vrite Set tagged as RW-illegal. For a write Wrn,,(x) to be RW-illegal for

R;j(x), we should have

(5.2)

According to step 2b in the aJgorithm, when the write operatioll Wpq(x) is fin­

ished, Wid of Wm,,(x) is tagged as RW-ilh'gal ill the Finished Write Set. Hence, a

write which is RW-illegal for read exists in the Finished \-Vrite Set taggctl as RW-

52

illegal or removed in garbage colledion.

Proof of WR-legality:

Consider a read R,j(x). Recall that the eligible list IV.f.t WR-legality (step 3c in the

algorithm) given to Ri,(x) consists of all the Wl'ds (i.e., writc8 that are not tagged

as WR-illegal) from the Finished Write Set plus all the Wids in the Ongoing Write

Set. \Ve willllccd to show that every write t.hat is WR-illegal for R;j(x) exists ill

Finished Write Set tagged as WR.-illegal. For a write Wmn(x) to be \VR.-illegal for

R;j(x), we should have

(5.3)

According to step 4c in the algorithm, when the read operation Rd(x) is fin-

ishcd (i.e.! R~~(x) reads write Wpq(x)) Wid of Wmn(x) is is tagged as WR-illegal

Finished Write Set. Hence, a write which is WR-illegal for read exists in Finished

Write Set tagged as WA.-illegal or removed in garbage coJle<:tion.

Proof of NO-legality:

Consider a read R,j{x). Recall that the eligible list \.V.f.t NO-legality (step 3d in the

algorithm) given to R;j(x) consists of all the Wid.~ (J.e.! writes that are not tagged

as NO-illegal) from the Finished Write Set plus all the Wids in the Ongoing Write

Set. Vle will need to show that every w,ite that is NO-illegal for R.j(x) exists ill

Finished Write Set tagged as :\lO-iliegal. For a write Wmn(x) to be NO-illegal for

R;j(x), we should have

(5.4)

(5.5)

According to step 4d in the algorithm, when the read operation Rab(X) is finished

(i.e., R"b(X) reads write Wpq(x)), Wid of Wmn(x) is is tagged as NO-illegal in Fin­

ished Write Set. Hence, a write wnich is NO-illegal for read exists in Finished Write

Set tagged as NO-illegal or removed ill garbage collection.

Proof of ·WW.legality:

Consider a read R;j(x). Recall that the eligible list w.r.t WW-legality (step 3e in

the algorithm) given to R;j(x) consists of all the Wids (i.e., writes that are not

tagged as WW-illegal) [rom the Finished \Vritc Set plus all the Wids from the

Ongoing \Vritc Set. We willneoo to show that every write that is WW+illegal for

R;j(x) exists in Finished Write Set taggctl as \'VW+illegai. For a write W.",,(x) to

be WW-illegal for R;j(x), we should have

(5.6)

According to step 2c in the algorithm, whcll the write operation Wpq(x) is

finished, Wid of W",,,(x) is tagged a" W\V-illegal in Finished \Vrite Set. Hence, a

write which is WW+ilIcgal for read exist in Finished Write Set tagged as W\V-iIIegal

or removed in garbage collection.

54

Chapter 6

Legalities in Causal Order

Consider a Cooperative application where the number of processors and data ob­

jlX:ts involved are small in number and the processors are geographically distributed.

Cooperation among prOl-'CS.<;(lfS (belonging to the same cooperative activity) is

achieved by excllungc or sharing of information (data) between co.-workers. This

exchange or sharing of information is not only at the start and at the end of their

exccution but during their execution also. Each processors involved ill the COOI)­

erative acth'it.y is aware of their co-workers. They communicate through peer to

peer communication channels or t1lrough cooperation spaces (common repositories,

etc,) and the communication system is reliable. There exists a local clock with

each proces.sor. The granularity of the data object~ is assumed to be small and

simple. As the processors are geographically distributed, it is efficient to keep the

data distributed. We give in detail how the legalities (with respect 1.0 causal order)

can be implemented in a system with the above charccteristics.

55

ln this chapter, the Legalities are defined WiLh respect to causal order, as de­

fined below. Section 4.2 gives the data structures required for the algorithm given

in section 4.3 Seet.ioll 4.4 gives the correctnrss proof of the algorithm and discussion

is given in section 4.5.

6.1 Definition

For operatiolls 0 and 0', we define (i) 0 -t; 0' (process order) if both 8re executed

by the same processor, and in the order 0 and then 0', and (ii) 0 -trIO' (reads

from relation) if 0 is a write, say lV, and 0' is a 1~ad R reading the value written

hy 0, denoted a~ R(W). We define -> as (->i U -tr/)', where the asterisk (.)

indicates transitive closure. We say that 0 precedes 0' if 0 -t 0'

Broken arrow and solid arrow in Fignre 6.1 represents process order relation

and reads from relation respectively. Examples of illegalities \\'.f.t causal order for

different reads Elm" arc shown below, referring to Figure 6.1:

(i) RR-illcgality: Consider Rzl(X)[H'II(X)]-t Rdx}[W2dx)] -t R",,,(xllWn(x)]

Read R."n(x) should not read the write 11'1l(X) becansc it is fiR-illegal for

fl",,,(x) dnc to the relaLion R2dx)[Wu (x)] -ti W21 (X) -tTl f42(X)!W21 (x)].

(ii) RW-illegality: Consider Rdz)!W.u(z)] -t Wdz) -t R,nn(Z)[W42 (Z)].

Read R",,,(z) should not read thr. wl'itc W42 (Z) LecauS(! it is RW-illcgal fOI

R".,,(z) due to the relation W42 (Z) -trl Rdz)!W42 (Z)]-t, WI2{Z).

56

(iii) \VR.-illegality: Consider lVll(x) ~ R u (X)[W51 (x)] ~ R",,,(X)[W11(X)].

Re(td R,,,.. (x) should not reall the write IV11(X) because it is \VR.-illegal for

Rm.. (x) due to the relation Wll (x) ~i R ll (x)[W51 (X)].

(iv) WW.illegality: Consider lVll (x) ~ W21 (X)""" R"",(x)[Wu(x)].

Read R",,,(x) should not read the write lVll(x) because it is WW-illegal for

R.....(x) duc to the relation W1dx) --+r/ R21 (X)[WI1 (X)] ~j W2dx).

(v) NO.illcgality: Consider W31 (Z), lV32 (Z) --+r/ RI1 (Z)[U'32(Z)] from fig­

ure 6.1. For ll. rnul J?,,,,,(z) where Ru(z) ~ R."..,,(z) (Rn(z) precedes R,.",,(z)),

reading I¥Jl(z) gives rise to a new-old inversIOn.

Figure 6.1: Example Showing Partialillteractioll Between Different ProcCliSors

An execution is cattsally consistent if all the ''Cads in that execution satisfy

all the five legalities. We note tll<\t, for certain defining relations, the absence of

57

some illegalities may imply the absence of!iome other illegalitie!i. SeveraJ interesting

interdependencies ofinegaliti~ for different comhinations of p are given in [15]. One

!iuch interesting result igiven in [15] is that, (or --; as defined ahove (-+; U --+.,)', if

all read!i are WW- and WR-Icgal, thcn the execution is causally con!iistellt. Another

interesting case is, if -+ contains -+'1' then

1. nR-illegality implies WR-illegality, alJ(1 therefore WR::::} rm.

2. RW-iUeglllity implies WW-illcgality, and therefore WW::::} RIV.

3. NO-illegality implies WW- and WR.-illegality, and therefore WRy WW::::}

NO.

Proof: COIl!iider the case of R.R.-illegality, that is

If -+ contains --+." then adding W",,,(x) -+.1 fl..b(x)[W"",(x)] gives

which i!i WR-illegal, that is

W,""(x) -, R,,(x)[WM(x)) -> R.f(x)[Wm"(xll (63)

Hence RR-illegality implies WR-illegality. Others also can be proved in a similar

way. Several such implications have been given ill [15J

58

6.2 Data Structures

The algorithm requires the following data structures. All the sets described below

arc maintained locally by each processor. The cOlJtcnt;; of the Illegality Set and the

History Set of individual processors differ. Each write creates a version. Whenever

a 1JJfite operation is started, it is notified to all the processors involwxl in the execu­

tioll. As the write operation on a particular object is completed, it is notified to all

the processors involved in the execution. Writes executed by a particular processor

are kept locally except that the id of that write is notified to other processors. So

the actual data resides with the owner of the write.

The read request is assumed to be of two parts. The first part of the read is for

getting a list of writes (Widsj satisfying a particular legality and the second ",ad

is to actually read a write that has been selected from the list of Wids given. For

example, consider a read R;j(x) by processor i which has picked a write Wmn(x) from

the eligible list. The system supports or responds to this read request by collecting

the data (write) from processor III. Along wil.h the daT,a, the History Tree and

the megal \\trite List attached to that write (Wmn(X)) is also given. The History

Tree (HT) and the Illegal Write List (IWL) are explained later. This information

is provided to processor i becausc all the illegal writf;,'J (w.ct a1l the five legalities

up to the write Wmn(x)) for processor m also hulds good for proct'>;sor i due to the

transitivity nature of the causal order (p = -+j U -'tr/)"' Based 00 the History Tree

and the Illegal Write List provided by processor m, appropriaTe sets of processor i

are updated as explained ill the algorithm below.

59

1 Ongoing Writ~ Set: This set contains the Wills of <11\ the ougoing write oper­

ations (a write operation that has started but not yet finished). A Ongoing

Write Set is maintained by each of the processors invoh'ed in the execution.

The strudllre of the Ongoing Write Set is similar to that of the Master Set.

For example, wllell a write W",n(X) (started) is notifled to processor i by pro­

l-~ssor Tn, then processor i enters the Wid of W"m(x) in the m-th row of its

(processor i) Ongoing Write Set

2. Master Set: This set contains the Wids of aU the writes executed by all the

processors or in other words it can be a&mmed to be the database of all the

writes. A tI'Iaster Set is maintained by each of the processors involved in

the execution. Figure G.2 shows the structure of ~'Iaster Set. For example,

when a Wf-ite W",,,(x) (finished) is notified to processor i by processor m, then

proc~or i moves the Wid of W",,,(x) from its (processor 11 Ongoing Write

S~t to the m-th row of its Master Set.

pU] ,-- _

figure G.2: l\'laster Set.

3. History Set (lIS): A History Set is maintained by each of the processors

60

involved ill the eXe<:utioll. The History Set of a particular processor kcontains

the ids of all the read and write operations (Rid and Wid, respectively) issued

by the processor k on all the objt-'Cts. Thc structure of the History Set is

ShOWIl in Figure 6.3. The content of the History Sel. of each processor differs.

For example, if a write or a read operation is executed by processor i, then

the id of the operation is entered in the i1h row of the History Set of processor

i. Each slot contains two parts. If part 1 of a slot contains a write operation,

part 2 of that slot is empty. If part 1 contains a read operation, then ()art

2 contains the id of the write read by the read operation. HS[i] represents

the History Sct of processor i. In addition to the abovc information, every

write (part I or part 2 of the .History Set) operation ill the History Set of any

processor has a History Tree and a Illegal Write List.

~
'''I

Pid

i R,.lz)

Part 2
"("..lZ)

Figure 6.3: History Set

4. History Tree and Illegal Write List: For every write (i.e., either in part 1 or

part 2) in the Hist.ory Set of any processor, some information hus to he st.orOO.

This information is stored ill History 'rree and Illegal \Vrite List. Eadl such

History Tree exists for each of the writes mentioned above. The History Tree

of a particular write is nothing but all tile causally preceding operations of that

write. History Tree is represented as HT. HT[Wik(x)] represents IIistory Tree

of the write Wik(X). The llIegal Write List of a particular write say Wjk(x)

61

contains all the Wiw prCSl!:nt in the Illegality Set. of processor i (except those

ids W.r.t. Objecl %) wh(m the write lVo!;(z) is executed by processor i. megal

Write List is represented as IWL. IWL[lVo!;{z)J represents the Illegal Write

List of the u.rite W,.(%). For example, consider the History Set of processor

1 from Figure 6.1 after the write W1:l(z) is executed. The I-listOf)' Set looks

like as shown in FigufC 6.4.

As shown in Figure 6.4, all the causally preceding operations of a particular

write form the History Tree of tb.at write.

5. Tilegalit)" Set: ElI.Ch such set is maintained locally by each of the prOCe'lSOfS

iuvoh'ed ill thf' execution. This. set comains the writes which are I,agged as

illegal W.r.t any of the legalities discussed. All)' write in the set. may be lagged

as illegal W.r.\ to more than one legality. Figure 6.5 shows the structure of

Illegality Sel. Xli. row of the U1cgality Set of processor m contains all the

illegal u..rile.t w.r.t. object %.

In the next section we gh-c a step by step description of the actions to be taken

when a write or read operation is executed. The algorithm gives in detail how a

processor updates its sets when 8 particular operation is executed.

6.3 Algorithm

1. When a write operation W;.t(x) (i.e., write operatiolJ all objlX't x) is issued by

processor i, il is notified to all the processors. All the processors enler this

ILrite into their respeclive Ongoing Write Set liS soon as they are notified of

62

PUl ,---,----",---In---,-

(W.l-(;'j-':
: A :, , '
: W..'(Yl:
~ ~' history Iffi' orthe write

R,,(z)

t
,""l,(Z) 1
, '
~ __ .. : history tree ohhe wrile '.\j, (xl

""llz)

W,,(z)

Rl1(zj

"-RIl'(x) W.,(z)

d t A
W,,{x) "S,{x) W.,(y)

A

Rl,(z)

t
''S,(1.)

hlsloryl~orthel"'ilew,.t1.)

Figure 6.4: Example History Trees

63

Did
,-----------

Figure 6.5: TlJcgality Set

this write. Processor i enters the Wid of H!;k(X) into its Ongoing V,!rite Set

2. When a write operation W,t(r) (i.e., write operation on object. x issucdoy

processor i) is finished, it is notified to 3[1 the processors

(a) All the proces.<;ors rno\"c the Wid of this write from their respective On­

going Write Set to their Master Sets as 50011 as they arc notified of this

write.

(b) Processor i enters the Wid of lV;k(x) into its Master Set and History Set

and removes this Wid from its Ongoing Write Set. After entering into

the History Set, processor i forms the History Tree (HT) and the Illegal

\Vrite List (lWL) of the write Wit(x).

i. The History Tree is nothing but all the ills prf'~<>elJt in the History Set

along with any other History 'frees of the writes. Looking back at

F'igure 6.4, the HT1W12 (z)] contains all the cOlltcnts of thc History

Set (in the same order) along with the History Trees of the writes

W51 (X) and Wdz) Once the History Tree of Wik(X) is formed and

64

stored, all the other History Trees of the previous write.'J can be

removed.

ii. Now the Illegal Write List of the write H';t(x) must be formed.

The Illegal Write List of the write W;t(x) (lLW[W;.t(x)]) contains

aJl the Wids (except those Wids W.Lt object x) in tile Illegality Set

of processor i. Both the HL'itory Tree and Illegal Write List of the

write Wi.t(x) is formetllJecallsc, this information should be provided

to allY processor who reads this write.

(c) Check the History Tree of the write Wi/;:(x) and

i. collect all the read operations on x, say, ~(x) that transitivdy

pn..'Cede Wi/;:(x) and tag the read operations as R\V~illegal in the

Illegality Set of processor J.

ii. collect all the write operations, say, Wmn{X) that transitively pn.'Cede

Wi/;:(X) (including Wik_1(X), ifit exists) and tag them as WW+illcgal

in the Illegality Sel of processor i.

(The above two checkings arc done for all the operations that lie

between the previous write all x by processor i (if it exists) and

W,,(x).)

3. If a procC&<;or j requcst to read a write H'ik(X), go to step 5, elsc

4. When a processor j issues a read reqUCl;t Rj,,(x), a eligible list is formed from

which R;u(x) picks a write and reads. As all the information is available

locally with each processor (i.e., the Master Set, Ongoing Write Set and the

Illegality Set), the eligible list can be formed locally by a processor. If the

65

eligible list does not comaill an)' value to be read, then a message is sent

to the processor saying that there are no valuel; to be re;ld s<uisfying the

r~quested criterion. Requesting for versions satisfying more tila]\ one leg;llit)'

call be satisfied by providing different eligible lists to the read operation (one

for eadl legality criterion),

(a) RR-legality: The eligible list will contain all the write operations on

object x ill the Master Set and Ongoing Write Set of processor j minus

the writes on object x that are tagged as RR-illegal in the lIlegalit.)' Set

of processor j.

(b) RW-legalit.y:· The eligible list will contain all the write operations 011

object x in the Master Set and Ongoing Write Set of processor j minus

the writes on object x dlat Me tagged as RW-illegal in the Illegality Set

ofproccssor j.

(c) WR-legality: The eligible list will contain all the write operations on

object x in the Master Set and Ongoing \Vritl~ Set of processor j mi­

nus the writes on object x that arc tagged as WR-illegal ill the Illegal­

ity Set of processor j. For example, consider the read RI3 (y) (in the

Figure 6.1) on obje<;t y reqIH..>stillg WR-legal valucs. The eligible list

(which is formed locally by processor 1) given to the read will contain

W:n(Y), W41 (y), Wdy) and W53 (Y), a,,<;.suming operal,ioll W34 (Y) has Dot

been executed yet.

(d) NO-legality: The eligible list will coIltain all the writes operations on

objecL x in the ~:Iastcr Set and Ongoing Write Set of processor j minus

66

the lIJri.tr<~ on object x that arc tagged as NO-illegal in the Illegality Set

ofproce&;OT j

(el WW-Iegality: The eligible list will contain all the writes operations on

objcct X in the Mastcr Set and Ongoing Write Set of processor j minus

the writes on object x that are tagged as WW-illegal in the Illegality Set

of processor j. For example, consider the read R I4 (X) (in the Figure 6.1)

requesting WW-Iegal values. Accordingly the list given to the read will

contain W21 (X), W;u(x) and \i'44(X).

Note: The members of the eli~ble list cominue to be eligible until the

rctJd o~ration is over. However oue or more writes may be added to the

Ongoing Write Set during the interval of the read getting the eligible list

and selecting a write to read. This can be taken care of depending on the

requirements of the application and the users involved. As mentioned

ill the algorithm, se'ieral sets (e.g., Master Set, Ollgoing Write Set and

Illegality Set) need to be accessed to get the eligible list. The order in

which t1lesc sets are accessed is first the Illegality Set, then the Ongoing

Write Set and then the ~Iaster Set.

5. When Ilj,,(x) picks a write Wik(X) from the eligible list given,

(a) Get tbe write (Wik(X)) from processor i and give it to processor j along

with the History Tree and Illegal write List.

(b) Enter the Rid of Rj,,(x) and Wid of W,.,(x) iu H S[j). Store the Hist.ory

Tree of lVik(X) in the HT[Wik(x)J.

67

(c) Scan the Proce&~ ordr:r tree (which can be constructed from the History

Set of processor J) of 14u(x) and collect all t}le f"ClJd and write operations

on object x that precede Rju(x). This scanning of the process order tree

is dOlle for all the operatiolls betwccn the previous read operation on x

(if it exists) by processor i and RJu(x).

i. Affects Rfl-Iegality:

For each read operation collected, tag its respective Wid as HR­

illegal in the Illegality Set of processor i,

Ii Affects WR-Iegality:

For each I/Jrite operation collected, tag its Wid as WR-illegal in the

lllegality Set of proc.c&;or j.

(d) Scan the roods from relation tree of Rju(x) (nothing but t.he HT[\Vit(x)])

and collect all the read and write operations on object x tlmt precede

Wit (x). The reads from relation tree is nothing but the history tree

pro\'ided by the processor i along with write ~Vit(X).

i. Affcct.~ RR- and RWlegality:

For each read operation collected, tag its rcspective Wid as RR- and

RW-illegal in the IllegaJity Set of processor i,

ii Affects WR-, NO-, WW-lcgulity :

For each write operation collected, tag its Wid as 'VR-, NO-, and

WW-illcgal ill tile Illegality Set of processor i,

6 Check the Illegal Write List of the write \Vit(x) and update accordingly in

the Illegality Set of processor J. Any write in the tagged list ta~ed as illegal

68

w.r.t a particular legality should also be t.agged as illegal in the Illegality Set

of processor j.

7. Empty the Illegal Write List of the write W;t(x).

J:i.JJJ&: Execution of a read operation on a certain object x may l'anse some other

versions on any object to become illegal W.f.t any of the legalities discns;;cd, to t.he

processor that execnted t.he read operation. This is due to the reads from relation

where read Rju(x) reading from the write Wik(X).

Tree Scanning: In the algorithm discussed above, we use scanning of a tree in

order to identify some illegal writes and update the appropriate sets. The main idea

behind this scanning is to identify some of the transitively preceding operations.

For example consider the Figure 6.1 and ttlC rt:ad operation R l4 ix). When tILe

read operation RI4 (X) is executed (i.e., RI4 (X) has read the write W3.1(X)), then

the tree of R14 (X) has to be scanned for allY precediug operations that might affect

the legalities for processor J. The read operation R I4 (X) has two branches in the

tree, olle is the process order tree and the other is the reads from relation tree or the

history tree provided by processor 310 processor J along with the write W3:1(X). The

tree (including both process order tree and roods ftvm rP-latioll trt:e) of an operation

of a particular processor i can be extracted from the History Set of processor j.

Assume that the tree il; scanned from left to right. The Figure 6.6 shows the tree of

the read operation R l4 (X). For instance the tree of R 14 (X) is scanned to collect all

the WW-illegalwr1tcs W.r.l object x. So once the Iwite operation IVu(x) is reached

there is lIO need for scanning the tree further beyond the write H111 (x) because

69

Wu(x) is already tagged as WW-illegal for processor 1.

1
R),"

/\
W.,lYl':

\
I Rndsl'romReialio;>nTrtt I

Figure 6.6: Scanning a Tree

III tile next SCf;lion we give the correctness proof of our algorithm The proof

for each legality is given separately.

70

6.4 Correctness Proof

Proof of RR-Iegality:

Consider a read R;j(x). Recall that the eligible list W.Lt RR-legality (step 4a ill

the algorithm) given to R;,j(x) consists of all the writes on object 7; in the Master

Set and Ongoing Write Set minus the writes that aTc tagged as RR-illcgal in the

Illegality Set of processor i. "Ve will need to show that every write that is RR·iIlcgal

for R;j(x) is tagged as RR~illegal in the Illegality Set of processor i. For a write

IVm,,(x) to be RR-illegal for R;j(x), we should have

Three cases arise·

Theil, according to step 5c(i), when tile rwl1 operation Rih(X) is executed, Wid of

W",,,(x) is tagged as JUl-illegal in tlw Illegality Set of proceiiSor i

J:<ill.Ji; R••(x)[Wm.(x)!-->; W~(x) -->., R,,(x)[W••(x)]

Then, according to step 5dO), when t]IC read operation R;h{X) is executed, Wid of

Wmn(x) is tagged as RR.illcgal ill the Illegalit.y Set of processor i.

--:t R",(x)[Wm.(x)! --> R~(xIlW~(x)! 4 W,.(x) 4., R;;(,)[W•• (x)] 4,

R;;(x)

Then, according to step 6, when the read operation R~t(z) is executed, Wid of

W"",(x) is tagged a.s RR-illegal ill the Illegality Set of processor i.

71

Proof of RW-legality:

Consider a read R;j(x). Recall that the digible lil;t w.r.t RW-legality (step 4b ill

the algorithm) gh'en to .R;j(x) consists of all the writes on object x ill the Master

Set and Ongoing \\'rit,e Set minus the writes that are tagged as R\V~il1egal in the

Illegality Set of processor i. \Ve will need to show that evcry write thllt is RW-illegal

for R;j(x) is tagged as RW-iJlcgal in the Illegality Set of processor i. For a write

Wmn(x) to be RW~incgal for R;j(x), wc should lun"e

(6.5)

Three cases arise:

Thcn, according to step 2a, whell the write operation Wik(X) is executed, Wid of

Wmn(x) is tagged as RW-illegal in the Illegality Set of procl'SSOr i.

Then, according to step 5d(i), when the read operation R;p(x) is executed, Wid of

Wmn(x) is tagged as RW-illegal in the Illegality Set of processor i.

Then, according to step 6, whell the read operation R.,p(z) is executed, W'id of

Wmn(X) is tagged as RW-illcgal in the Illegality Set of processor i.

Proof of WR-legality:

Consider a read R,j(x). Recall that the eligible List w.r.t WR-legality (step 4c in

the algorithm) given to R~j(x) consists of all the Wids on object x in the Master

72

Set and Ongoing Write Set minus the Wid.'! that are tagged as \VR-illegal ill the 11-

legality Sct of processor i. We will need to show that every write that is WR-illegal

for R~j(x) is taggcd as \VR.-ilIegai in the Illegality Set of processor i. For a write

Wmn(x) to be WR-illegal for Rij(x), we should have

(6.G)

Three cases arise:

TiJcn, according to step 5c(ii), when the read operation R~h(X) is executed, Wid of

Wmn{x) is tagged as WR.-illegal in the Illegality Set of processor i.

~; W",n(x) -+ Wpq(x) -+./ R;p(x)(Wpq{x)]-+ Rtj(x)

Then, according to step 5d(ii), when the read operation Ru,(x) is executed, Wid of

Wmn(X) is tagged as Wn-illegal in the lllegality Set of processor i.

~; Wmn(X) -+ R<Ii)(x)[W1"I(x)]-+ Wu·(z) -+r/ R;p(z)[lV1k(Z) -+ R;j(x)

Then, according to steps 6, wheu the read operation R;p(z) i.s executed, Wid of

W",,,(x) is tagged as WR-illegal in the Illegali1.y Set of processor i..

Proof for NO-legality:

Consider a read R;j(l:). Recall t.hat the eligible list \\'.r.t NO~legality (step 4d ill

the algorithm) given to R;j(x) consists of all the writes on object x in the Master

Set and Ongoing Write Set minus the writw that a.re tagged a<; NO-illegal in the

Illegality Set of processor i. We will need to show that every write that is NO-illegal

for R.j{.t;) is tagged as NO-illegal in the Illegality Set of processor i. For a write

73

Wm,,(X) to be NO-i1Jegal for R;j(x), we should have

(67)

Tw() cases arise'

Then, according to step 5d(ii), when the read operation R.IL(X) is executed. Wid of

lV",,,(x) is tagged as NO-illegal in the Illegality Set of processor i.

mMJ!' W",,,(x) --+ Wcd(x) --trj R..b(X)[W"",(x)]--+ Wpq(z) --trj RtIL(Z)[Wpq(z)]-+

R;;(x)

Then, according to step 0, when t.lle read operation R;IL(Z) is executed, Wid of

Wmn(X) is tagged as NO-illegal ill the Illegality Set of processor i.

Proof for W\V-legality:

Consider a read R;j(x). Recall that the eligible list W.r.t W\V-lcgality (step 5d in

the algorithm) given to R;j(x) consists of all the writes in tlle Master Set minus the

writes that are tagged as WW-illegal ill t.he Illegality Set of processor i. We will

n~d to show that every 1J.Jrite that b W\V-illegal for R;;(x) is t.agged as WW-illegal

in the Illegality Set of processor i. For a write l-11,,,.. (x) to be \VW-illegaJ for R.J(x),

we should have

(6.8)

Three cases arise:

74

Then, according to step 2b, when the write operatioll Wittx) is executed, Wid of

Wm .. (x) is tagged as WW~illegal in the lllegality Set of processor i

~ Wtn(x) ----j. W"",(x) ----j.,r Fl;h(X)[W",O(x)] ----j. R.j(x)

Thcll, according to step 5d(ii), when the read operation R.h(X) is executed, Wid of

W",,,(x) is tagged us W\V-illegal ill the Illegality Set of processor i.

TILen, according to step 6, when the read operation R.h(Z) is executed, Wid of

W",,,(x) is tagged as WW-illegal in the Illegality Set of processor i.

6.5 Discussion

The algorithm given ubo'le is a general one with a push based scheme. Different ap­

plications may impOl;e different requirements on the syst.em. A push based scheme

is one where any changes in a particular da.ta is propagated to all the users involved

in that execution. However different methods can be easily acllim'OO without much

modification to the algorithm. Consider a pull based scheme where in the llotifi­

cation of any changes ill a part.icular dal.a is propagated only to the users who are

interested or who have subscribed for it. This can be achieved ill the algorithm

by having a list of subscribers for each objL'Ct and notifying accordingly. Auother

requirement may be of finding out if a certaill write has been read by anybody.

This can be achieved in the algorithm by making each processor to keep track of

who is reading its writes. Recalling from the algorithm, a read request is satisfied

by providing suitable versions. However. what if those suitable versions arc not

75

availablc at that moment and nct.od to be provi<.kod when availaLle. The algorithm

can accommodate such requircmcllt in diffcrent ways. Hence different requirements

cali be achieved with littlc modifications to thc algorithm.

76

Chapter 7

Legalities in Mobile Agent

Environment

Ilecellt years have seen an explosion in the amount of information available in elec­

tronic form, forcing the developers ofinformatiolJ acquisition systems to fe-evaluate

their model of the world. Vast amounts of electronic information are freely avail­

able at a multitude of sites to anyone with access to tlJc Internet. The problems

of searching for information on the WWW arc familiar to every web surfer: slow

search response time, irrelewmL links, broken links, etc,.

The location of information 011 the W\VW today requires the use of onc of the

many uscarch engines" available. The continuing rapid expansion of the WWW

leads to three related problems with current search techno!oKY: currency, bottle-­

IlL'Cks and coverage, Increasing use of the web is likely to exacerbate these problems

77

and llcnce different solutions to solve these problems arc being proposed. One s0­

lution proposed ill [J2) is to distribute the indexing proces.'; and the use of mobile,

collaborative agcnts to search the infomlation. How the indexing process is dealt

with is not the subject of this thesis but we addrcs.'l the aspects of interaction (or

dialogue) betv.ocen agents which is at the core of their s)'stem. The mobile agents

are used to search and collect the information. This can be thought of as browsing

in a collaborati\'e fashion or cooperative agent based solution for information gath­

ering. Henrp. we introduce the legality concept to reHrict the int.eraction between

the agents. These restrictions are based on the user requirement and the applica­

tion in the form of legalities.

The algorithm explained in the previous chapter is based on a syst.em where

all the Imrticipating processors are aware of each other and the communication

medium is message broadcasting. AllY change with a panicular proceS1:ior is 1I0ti­

fied to all the others immediately and the assumption made is that no messagt"S

are lost. In this chapter, the legalities (defined in chapter 4) are used to address

a different environment and ill an implementation different from the one given in

chapter 4. Consider a system where thp. participating sites arc not aware of each

other due to the dynamic nature of the sites or due to the large number of the site>;

involved, etc. One such system can be thought of as W\V\V. In this chapter, we

[\Ine our algorithm to accommodate such systems by relaxing some of the previous

assumptions. The legalities defined with respect to causal order (refer to chapter4,

section4.3) are cousidered

78

Mobile agent is a piece of mobile code and associated data which can move from

otle machine to another. Each agent bas a unique identifier which can be use<! to lo­

cate and COlJllllunicale wiLh the agent at any time. These mobile agents (hopefully)

meet other agents of similar interest and exchange information. Agents represent

real peaple or organizations in cyberspace. They are able to autonomously act 011

behalf of their IHunan coullterparts and can negotiate with each other in order to

achieve their goals.

Consider a system compost"(] of a set of processors (P"OC1, Proc2, Proc3, etc.)

which interad with each other by reading and modifying (writing) shared objects

(x, y, z, etc.). The system supports two primitive operatio!ls: reBd and write. Two

types of mobile agents are introduced into the system: a publidst alld a ferret

[12]. Every processor, its operations (read and write), and the mobile agents are

assigned unique identifiers (Pid, Rid, Wid, or Aid respectively). Whenever a read

operation is to be f'..xecuted, a ferret is !ired to collect the required information. In

a similar way, when a write is executed, a publicist is fired to advertise the write.

Along with the Rid and the lVid of the read and the Mite operations, the respective

agent id is also tagged to these operations. Ferrets and publicists keep track of all

the relevant agents they meet in a list called Meta Data List (MOL). Ferrets may

be timed to return hOllle after conecting the required information. Unlike ferrets,

publicists have no need to go home at the end of their mission. They can be allowed

to expire after certain time. The actual writes reside at the owner sites and any

exchange of information between the agents is W.r.t ids of the writes and not the

actual \'(dl1e.~ of tIle writes. By relying simply on chance encounters and allowing

79

sufficient time, ferrets and publicists with similar interests will meet aud be able to

exchange information.

The system responds to the read request by firing a ferret to collect the required

information. The ferret meets other agcllts (be a publicist or a ferret) and collects

the required information. The ferret returns to the processor and presents to the

read with a list of eligible Wids sati.o;fying the requestoo legality criterion. The

reader can choose allY Wid from the list and update its sets based on the informa­

tion coliectL'<i and the write that was choocn by the read.

In the next section we give the data structures and a deta.lled algorithm satis­

fying the five legalities with respect to causal order in such an ellvironment. The

legalities are w.r.t the information gathered by a particular processor and not W.r.t

the whole system.

7.1 Data Structures

This algorithm requires the following data structures:

1. Master Set (MS)

2. History Set (HS)

3 Illegality Set

4. History Tree (HT) and The Illegal Write List (1WL)

80

5. i\Ieta Data List (~1DL)

All the data structures given above are similar to the olles explained in chapter 4

(refer section 4.3.1) except for one additional data structure called the r-.Ieta Data

List (MOL). All t.he sets given above are maintained locally by each site eJ\cept

for the l'dDL. fl'!eta Data list is llsed by an agent to keep track of all the relevant

agentl:i (ignored agents are not entered illto the MOL) it meets. Each fired agent

maintains such list and contaius the id.s (along wit.h Wid.~) of the agents it meets.

The MOL of a publicist is destroyed when the publicist dics (or its time expires)

whereas the MOL of a ferret is destroyed aft.er the ferret returns to the site and

appropriate sets are updated. In the next section we-give the algorithm description

iu detail which explains the actions of a fcrrci or a publicist and how they should

interact with others under certain given conditions. PiPj represents a publicist ~

lired from processor p,. P,Pj represents a ferret Fj fired from processor p;.

Before going to the step by step details of the algorithm, we give an informal

description of the algorithm. The steps of the algorithm gives the actions that

are to be performed by a processor or by the mobile agent. The algoritbm gives

the interactions between the agents and what type of information that has to be

exchanged when an agent meets anot.her agent. These interar.tiOtlS are between two

publicists or two ferrets or a publicist and a ferret. The role of a ferret is to collect

as Illllch legal information (Wids along with the Aid.s) as possible alld that of pub­

licist is to advertise a write and meet other agents of similar imerest and exchange

the requircd information (Witts along with the Aids). Only the Witts (along with

Aids) are collected by a ferret or a publicist. There is no cxchange of partial history

81

between the agents at this time. The ferret does not tag any Will as illegal while ill

the process of meeting other agents and collecting the required information. The

ferret returns back to the processor/site and the read picks a write from the eligible

list.

After the actnal write is rea.d by the read, the reads from relatio11 is established

and then the History Tree and the IWL of the write are collected. Based on the

History Tree and tile IWL, the processor/site updates its Illegality Set. An agent

A can ignore another agent 8 (when met) if agent A has met ag-ent 8 (directly

or indirectly) before or .agent A has met a more lecent agent than agent B. This

call be doue by cheekillg the infOl"loation prcscnt with both the agents. A ferret

carries with it two types of data: one is the ofi-legal and ufl-illegallists (check the

algorithm for a detailed explanation) and the other is the r-,·IDL. The uP-legal and

op-illegallists are tagged to the ferret at the beginning and the data in the),1DL

gets accumulated as the ferret Illeets other agents. The up-legal and op~ilIegallists

arc carried along wit.h the ferret to make sure that the ferret does nol meet with

agents whose writes arc already tagged as legal or illegal. The ferret keeps track of

all the relevant agents it meets ill the j\·teta Data List (MOL). HelU.:c the ferret call

make sure not to meet with an agent with whom it has already met. The ids in the

MDL are provided to other agents (when met) who arc interested. If a ferret likes

to know more information or double check with a particular agent, it can do so by

contacting I.bat agcllt directly.

82

Two types of meta data are carried along with the publicist. One is the History

Tree tagged at I.he beginning (when the publicist is fired) and the othcr is Meta

Data List (]\-[DL). The HT contains all (w.r.t to the processor which issued that

write) the transit.ively preceding operations of the write that is advertised by the

publicist. The HT can be used by other agents to determine whether they have met

this agent (directly or indirectly) before and which Wids are relevant (ill order to be

collected) for them. The Meta Data List is empty at the beginning. Appropriate

data (i.e., t.he Aids and the corresponding Wids) is entered into the MDL only

when the publicist meets other agents and exchange some information. The Wid

- - - - -- --- - ---" advertised by-a-llublicishnd -the -Wido:rill--the-MDL-of-the-publicist--are- w.r.t-to-

the same object.. Apart from advertising its own write, a plIblicist P;Pj is also

advert.ising other publicists (listed in the :'l'lOL of P;Pj) involved in the same object

as PiPj . Hence, if all agcnt meets publicist P;Pj , it will also be made aware of

other agellts who have similar interest (w.r.t same objec::ts) as p;Pj . Therefore after

meeting some rclavent agents, the publicist PiPj has lIlore informatiolJ to give other

agents (of similar imerest) than at the begilllling. In the uext section we give a

step by step explanation of our algorithm.

7.2 Algorithm

1. When a write operation lV'k(X) (i.e., write operation on object x issued by

processor i) is executed,

Actions to be taken by the processor

(a) Processor ienters the WidofWik(x) into it.s Master Set (~IS) and History

83

Set (HS).

(b) Check the History Set of processor i, aJl(1 collect all the read and write

operations on object x, say Rw{x) and W,,,,,(x) thal transitively precede

WiJ;(x), (check also in the History Trees of the writes ill the HS of pro­

cessorl)

Note: TIle abovc two checkings are done for all the operations that lie

between the previous write on x by processor i (if it exists) and WiJ;(x).

i. For each read operation Rw(x) collected, tag its respective Wid a.~

RW-illcgal in the Illegality Set of processor i.

ii. For cach write operation W",,,(x) collected, tag its Wid as WW­

illegal in the Illegality SCt of processor i

(c) Form the History Tree (HT) and the Illegal Write Lin (IWL) of the

write W;J;(x} (refer to chapter 4. for a detail explanation),

i History Tree (HT) of the write WiJ;(x) contains all the readaud lJJ7ite

operations from the History set of processor i. After forming the HT

of the write W;J;(x) and stored, the History Trees of other writes are

removed.

ii Illegal Write List (l\VL) contains all the Wids from the lllegality Set

of processor j (except those Wids w.r.t object x). The HT and IWL

arc tagged to the actual data while entering the write WiJ;(x) into

the Master Set of processor i.

(d) Fire a mobile agent PiP, (publicist) advcrtisiIlg the write WiJ;(x). The

agent carries along with it the HT of W,J;(x), Actions to be taken by

84

the mobile agent

(e) If PiP, meets an agent say Pm?" (publicist) advertising a write W.Lt the

same object as PiP, (i.e., object x),

i. If the Aid of PmP" exists in the MDL of PiP" then ignore the pub­

licist?,,,P,,.

il If the Aid of PmP" docs not exist in the MDL of P;P" hut if thl!

Wid advertised by PmP" exists ill the HT of PiPj , then ignore the

publicist PmP"

iii If tbe~~a of Pm-P" does"not exist in the-MDL-of PiP/and- Wid "of

the write advertised by Pm?.. docs not exist in HT of P,P" then

A. P;Pj enter1i the Aid of PmP" in its MDL alorlg with the Wid

advertised by Pm?".

D. Check the HT of P,,,P,, and collect all the \Vids on object x and

enter them in the MOL of P;Pj aJong with the corresponding

Aid

C. Compare the ~·IDLs of PiPj and P",P" and copy the Aids (into

the MDL of PiP" along WitIl tile Wid being advertised) that are

present in PmP" but not present in the MOL of PiPj .

iv. If PiP, meets an agent say p$Pj (publicist) advertising a write \V.r.t

a diffet'ent object than the publicist PiPj , but there cxists Wid \V.Lt

object x in the HT of the write advertised by p.pt , then

A. If the Aid of P'PI exist ill the MOL of PiPj , then ignore the

agent?,Pt .

85

B. If the Aid of P'P1 does not exist ill the MOL of P;Pj , but if the

Wilis W.r.t objl.,'(;t x (found in tlte HT of p.Pd exist in the HT

of PiPj , then ignore the agent p.pt

C. If the Aid of p.pt docs not exist in the .MOL of PiP; and the

Wid.~ w.r.t object x (found in the HT of p.n) does not exist in

the HT of Pi Pj , then

• Copy the Witl3 (w.r.t object x found in the HT of p.pt) along

with the corresponding Aid in the MOL of PiPj .

v. If PiPj mccts an agel.lt say Pirt (publicist) (both the publicist are

fi(I.,'<.! from the same processor), then

A. If bo.th the agents are advertising the samp objCds, then com·

pare the MOLs of both the publicists and exchange the Aids

(along with the Wid being advertised) that are present with one

agent but not with other.

B. If both the agents are advertising different objects, then ignorc

the agent PiPt

2. \VhCll a read operation Rj/;:(x) is issued by processor j requesting for ap-Iegal

IVids,

Note: o:p can take any of the five legalities discusst'<! ('i.e.! HR, RW, WR,

KO,or\"i"\V)

(a) Fire a mobile agent Pjl''.n (Ferret) to get the requested information.

Actions to be taken by the mobile agent

(b) The agent carries with it all the o:)3-lcgal (takcll from the MS of Pj

80

excluding those tagged as Ilfj-iIlegal in the Illegality Set of PJl and afj­

illegal (takcn from the Illegality Set of Pi) WilLs W.Lt ohject x.

(c) If agent PiP", meets an agent PjPq (agent advertising a write w.r.t object

x, agents PiP", and PjPq are frolll the same processor }I, then

i. Enter the Wids (alOlJg with their respective Aids) prcsent in the

),10L (Meta Data List) of Pi?q into the a,B-Iegallistof PiP", except

those already tagged as ofi-illegal or already present in the afi-legal

list or MOL of PiP",

ii. Enter the Wids (along with their respecti\~ Aids) present in the

MOL and ap-Iegal list of PjP", but not present in the MOL of PiPq

illlO the MOL of PjPq.

(d) If agent Pj}~" meets an agent PjPr (agent a(lvertising a write W.Lt a

different ohject tlmll the one required by PiP",), ignore tbe agent PjPr .

(e) [f agent PiF,,, meets an agent P,,!1 (agent advertising a write Waii(:l:)

written by processor (I), then

i. If the Wid of the write W"j(x) exists in the a,8-legal or afj-illegal

list, then ignore the agent P"I1.

ii. If Aid of Pan does not e.xist in the MOL of PiP", and Wid of the

write W(Jj(x) does not exist ill ofi-legal and a,B-illegallist, then

• Agcnt PiP,,, collects all the Wids (except those already presfmt

in the a.B-legal and o,B-ilIegal list) W.l".t object x from the HT

of H'a;(x) and arc elltered iato the o'.B-legallist of PiF",.

(f) If agent PjFm meets an agent PaF/ (agent looking for information on

87

objecl x and required to satisfy any legality criterion), then

1. Compare the MOL, u,B-legallists of PjPm and PnFl and exchange

the Wids (along with their respective Aids) that are present with

PjP", but not present wit.h PnFl (excluding those present in u.(J­

illegal list).

(g) If agent PjFm meets all agent PnFm (agellt looking for a different data

object), then ignore t.he llgCllt Pal'',.,.

3. When agent. PjF", returns to the site after collecting the information,

Actions to be taken by the processor

(a) Agent PjP." presents to the ""Ad Rjk(x) a list of eligible legal Wid.~ (w.r.t

requested legality criterion and objed x). i.e., tile o:B-legal li:o;t is given

to Rjk(x), then

i. All the newly tagged Wids to the o:,B-legal list are copied into the

~IS of processor j.

ll. If Rjdx) picks 11/pq(x}, then the actual data is read along with its

HT and rWL. The I-lT of Wpq(x) is stored in the l\IS of processor i

along with the write \·i'",q(x).

(b) Rid of Rjk(x) and Wid of Wpq(x) are entered into the History set (HS)

of processor j.

(c) Check dlC rWL of Wpq(x} and update accordingly ill the Illegality Sct

of processor j. AllY Wid ill t.he IWL of Wpq(x) tagged as illegal w.r.t a

particular legality, should also be tagged as illegal in t.he Illegality Set of

processor j. Delete the n'VL of Wpq(x)

88

(d) Scan the HS of Rjk{X) or process order tr~ and collect all the lIWitt: and

read operations on object x that transitively precede Rjk(x).

Note: Thi.s scanning is done for all the operations between the previous

read on x (if it exists) by processor j and lYk(X).

i. For each read operation collected, tag its rcspecti\·e Wid as RR·

illt:gaJ in the lIIcgaJity Set of processor j.

ii. For each write operation collected, tag its Wid as \VR-ilJegal in the

Illegality Set of processor j.

(e) Scan the History Tree of Wpq(x) or reads from relatioll tree of R]J:(x)

and collect all the rood and write operations 011 object:.:; that transitively

precede 14k(X),

i. For each read operation collected, tag its respective Wid as RR- and

RW-illegal in the lllegality Set of processor j.

ii. For each write operation collected, tag its Wid as WR., NO-, and

WW-illegal in the Illegality Set of processor j.

7.3 Correctness Proof

When an operation is executed, it is dear from the step by step description of

the algorithm given aho\'e that certain actions are performed by the processor and

certain other actions by the mobile agent. The steps performed by the processor

an~ same as the previous algorithm (given in the algorithm of chapter 6). So the

proof for t!lese steps is similar t.o the one given in chapter 6. However as seen from

the description of the algorithm, the role of the mobile agents is to go and meet

89

other agents and collect information (relevant information). The mubile agents do

not tag any Wid as illegal w.r.t any of the five legalities during their (mobile agents)

life time. Therefore this part of the algorithm need not be prO\·ed.

7.4 Discussion

In tIle previous sections, we ha\·e seen how the agents (ferrets and publicists) behave

under certain conditions and ill a particular type of syst.em. \Ne have addressed the

legalitip.s ill a system with just ferrets and publicists. Depending on the rl..'Quire­

mellts of the application, a HlOre complex system with different agents for different

roles can be considered. One such agent called a "guru")12] can be introduced into

the system to increase the probability of sufficient like minded agents, to meet. The

role of a guru is to remember which agent had which interest and direct like minded.

agents to llleet and negotiate. Anot.her possibility is to introduce the concept. of

doning the agents to reduce the load all a single agent.

In the next chapter we discuss in general the applicability of the legalities in

various scenarios.

90

Chapter 8

Discussion And Conclusions

In this thesis, cOI15istency of cooperative executions in terms of legalities of the read

operations is defined. Two defining relations (p) are taken into consideration: i)

real-time order (p =-+1)' ii) causal order (p = (-+j U -+rJ)')' Detailed algorithms

and their respective correctness proofs for each defining relation for selecting appro­

priate versions (writes) for each legality arc also given. The three algorithms cor­

respond to three different environments - centralized, diHtributed and mobile agent

setups. Algorithm:; are given for two different types of systems: i) One in which the

cooperating users are aware of each other and the communication medium is Illes-

sage broadcasting, and ii) Tile other cnviwnmcnt where the participating users arc

not aware of each other and collecting l:Ind notificatioll of information is through the

mobile agents. The approach and the algorithms dcveloped in the thesis will hclp

ill providing differcnt. I..wels of systcm support for coopcrativc ('-xccutiolls. Some

illustrations are given ill t.he following sections.

91

8.1 Document Authoring

The underlying theme in the notion of consistency presented iu the thesis is that,

if all the '"Cads arc consistcnt, that is, legal in all respects (complete/y-legaQ, then

all the writes are 'consistent.' Therefore, each read operation may simply want a

completely-legal set of writes instead of specifying one or more legalities explicitly;

this can be obtained by the intersection of the eligible sets for each legality. Further­

more, depending 011 the semantics of the variables and/or cooperative execution,

certain legalities may not be essential with respect to some variables, (For exam­

ple, allY version of sect-ion x may be sufficient for writing section y in a document

authoring environment). The system can keep track of such properties and select

the writes appropriately. In some Instances the user may settle for a lesser legal

versioll thau the latest ~"CrsIOIl due to slow r('Sponse time.

There may be cases when no completely-legaJ \"ersioll is available. Then a 'some­

what legal' version can be given for the time being, and a 'more legal' version can

be given later on. For example, we may have lV(x) --+ lV'(x) --+ R(x), and so tv

is W\\'-illeg<ll for R. However, the version of W' may not be available temporarily.

Then the version of W may be given, and a later n~ad of the version of W' can be

forced by the system (assuming that 141' makl..'S a few more 'changes' in x, kreping:

all the changes W has made). III this case, conceptually, causal consistency of a

sub-execution (like the useful sublog [28]), obtained by eliminating, for inst.ance,

the 'tentative' rt;lI{L~ as described abo\"f~, may be reqUired of tbe cooperative execu-

tiOll.

92

Other internal consistency constraints like "the last version of an object pro­

duced b}' a transaction in a group must be read by all the other transactions in

that group" and "any proces..~or reading an intermediate version of x must also read

the final version of x' of [28] can also be facilitated as follows: the systcm may

keep track of the (legal) versions that m\lst be read by a processor and prompt that

processor to read

Again, as mentioned earlier (in chapter 3), if all legalities arc satisfil'<.J for all

the reads, then the executiolJ is causally consistent. It is sho.....n that, under cer-

taia assumptiollS, the internal consbtency requirements mentioned in [281 include

a form of causal consistency. Depending on t.he semantics of the variables and/or

cooperative executiou, sollie illegalities may be tolerable for some rea.h, eithcr t.em­

porarily (that is, the execntioll can be 'corrected' later on) or permancntly. The

escw system call keep track of these fealures and, with the help of the algorithm,

suggest suitable values for the reads.

8.2 World Wide Web

The World 'Wide Web is developing at a furiolls pace, with /lew innovations appear­

ing with every release of \Veb browser aud server software. The \VeL was originally

intended t.o support a richer, more active form of informatiOll sharillg than is cur­

rClItly the case. The explosive growth of the World Wide 'Web and its penetration

into academic, cOlllmercial and domestic environlllcnts is well documented The

93

World Wide Web is considered to b~ a medium for information browsing, pub­

lishing, etc. The combination of ll. global addressing system, network protocoL

document mark-up Ill.1lguage and client-server architecture provides for a simple

method for users to search, browse and retrieve information as well as share infor­

mation of their own with others. However, all the concepts of the World Wide Web

do not fully and directl)· support more collaborativc forms of information sharing,

where widely-dispersed working groups work together to jointly author, comment

and annotate documents, and engage in other forms of collaboration such as group

discussion, There arc a number of reasons to suggt.·<;t that support for such collabo-

rative working based on infolJlwtion shnring is becoming more necessary. Trends in

-the current-'business world towards decentralization, joint ventures, olltso\lrdng of

busincss functions and so on are bignlighting a need for effective methods of sharing

information and coordinating activities. Hence roany researchers are focusing on

how to utilize and extend the Web tcchllolo~y to provide richer fonlls of cooperation.

Underlying any activity in the web is the liuding of lIew ur 'recellt' data. Re­

centness may be due to new sources, ul>-to-dateness with respect to a time scale

(e.g., hurricane watch), changes in organization (change in group membership), etc.

Recentncss may help keeping personalized web pages up-to-date, finding best COIll­

modities at best price, or evell reorganizing the web itself in terms of redesigning

web page, replicating the contellls in different sit.es, etc. Recentness can be mea­

sured in different. ways. (The variable in the context of this application could be a

page, a URL, or any piece of identifiable data.) In the Web r.ontext, the illegalities

can be called aJ; obsoleteness or recentness. The live illegalitil-s can be expressed

94

in terms of five obsoleteness (i.e., RR~obsolete, mV-obsolete, WR-obsolet.e, WW­

obsolete, and NO-obsolete). INc give several examples illlliitratillg t.he occurrences

and usefulnl'~s of t1lese recentness notions later.

One rescardl group at GMD [3, 4J is focusing on how to transform the Web

from a primarily passive information repository to all aetive cooperation tool. The

Basic Support for Cooperative Work (RSCW) projed at GMD is attempting to

reali:te this potential th.rough development of Web-based tools which provide cross­

platform collaboration services to groups using Web tcdlllologies. Itl particular,

one of the tools developed in the project is .the BSCW Shared Workspace System

-8 centralized cooperative application integrated with an llnmodifioo ,",'eb 8erver

accessible from standard Web browsers. The RSC\V, system supports cOQperation

throngh 'shared workspaces;' small repositories in which users can tlpload (write)

documents, hold threaded discussions, and obtain information on the previous ac­

tivities of other uscrs to coordinate their own work.

The BSCW Shared Workspace system is an extensioll of a st.alldard \'Veb server

through the server CGI Application Programming Interface. A 'BSC\\! seryer'

(Web server with the BSCW extension) manages a number of shared workspaces;

repositories for shared information, accessible to lIlembers of a group using simple

nallle and password scheme. In general, a BSCW seryer will manage lI"orkspaces

for different groups, and users may be members of several workspaccs, A shared

workspace call cOlltain different. kinds of information such as documents, pictures,

URL links to other Web pages or FTP sites. threaded discussions, mcmbcr COIl-

95

tact information and more. r.Icmbers can transfer (upload) mformation from their

machines to the workspace and set access rights 1.0 comrol the visibility of this

information or the operations which can be performed by others. In addilion IlIPliI­

bers can download, modify and rEXlUcst IlIore details on the information objects by

clicking on one of the 'evpnt icons' provided in the int.erface.

The event service of the BSCW systems is an attempt to provide users with

information on the activities of other users, with respect to the objects within a

shared workspace. Events are triggered whenever a user performs an action in a

workspace, such as uploading a new document, downlo:u:ling (reading) lln exist­

illg document, renaming II; document and so on. The system records the events,

and presents the recent events to each user as event icons In the .wor!ti;pa/;e listing.

Each event icon captures different me<wing and infcrmation about the objects in

the workspace. The first two events are relatL"<I to the ideas discussed in this thesis.

The first event called the new event (an object that has been created or modified

since t.he user lust caught up or last read) directly corresponds to the NO-legality

in real time order discllssed ill Chapter fonf. The second event called the rood event

(which shows that an object has been read by somcone) does not directly corre­

spond to any of the legalities discussed ill this thesis. However it call be a.chieved

by the current algorithm wit.hout much modification just by keeping track of an

object and which processor has read it. These e\·ents can be caught up at different

levels, for example real time order, causal order, etc. But real time order is inherent

in the system described in [31. As each of the five legalities give 11 different notion

of the reI:eritness of the values, using lhem as e\'ent icons in the workspace listing

90

seems appropriate and conveys more meaning to some applications.

8.3 Shared Health Care System

Consider the shan..>d care system of a diabetic patient by a number of dinics and

doctors who are networked together.

• A diabetic patient may be seeing several clinicians concurrently over a period

of time. That is, a diabetic individual is trcatf!<! for his/her diabetes nnd for

other medical problems by differellt specialists avel the t:Ourse of the disease.

• Clinicians, for example, share the treatment of patients and supply tcst results

and other information to olle another. The re<luirement by different people

involved may be different at different stages or inst.ances of the treatment.

By providing a shared or collaborative carc, we call avoid some inconsistencies in

the syst.em SUdl as.

• Duplication of tests or allY other information

• Omission of certain important fact·s

• Delays in communication

• Amidillg unwanted data or overload, etc.

The following actions take place in such a system,

97

• The patient monitors Ilimself daily (wcigllt, glucose levels, etc) and enters this

data for reference to the doctors and alhers.

• A nurse or a Jlt'Ogram sketches a graph of the readings daily and repons to

the doctor (GP or General Practitionar) or nurse of any unusual readings.

• The nurse might get an appointment with the GP who may furtller refer the

patient. to a specialist and/or to a dietician or to have some other tcsts done.

• The specialist aud/or the dietician Jllay check the patient and enter further

comments or treatment to be administer~ .

•._TLal1y:_hloud. test or x-rays are to be·doll(~, then the· respective labs perfonll

the iests and enter that data into the sptfOffi llo;ordingly.

Some specific illsl,ances are considered below how the legalities can bEl applied to

avoid certain inconsistenCies in the system is explained'

I. Consider the following trivial case of the shared care systcm whcre the pa­

ticllt euters his daily readings (weight, glucose level) into the !>"ystem and

another processor say N, reads these readings regnlarly and sketches a graph

(Figure 8.1). The writes by processor j\ arc comndereJ to be of incremental

updates. So writing of the graph (W!'/l(X), WN2 (x), etc.,) depends 011 reading

the data written by the patient. III other words writing IVN1 {x) depends on

tile read RNdx)[WP1(x)]. Hence processor N (nurse or a program), nee<1sonly

WW-legal mlnl's for such all installce. Looking carefully a~ the Figure 8.1

Wpdx) is illegal w.r.t all the five legalities to a read operation aft.er R,..z(x)

and WP2 (x) is WW- and RW-illegal ~o a realloperation after WN1 (x).

98

Patient

Nurse

Program

wl'2(Jl)---- ... W P3 (Jl)

~

Figure 8.1: Shared Care System

2. Consider another instance where the patiellt is advised to take blood tests and

x-ra~' (Figare 8.2). X-ray is dOlle by the x-ray department and blood tests

by the blood clinic. A radiologist reads the x-rays and writes his comments.

Later the GP reads these -reports and considers referring the patient to a

specialL'lt. So the GP inputs her comments along with the results from t!Je

x-ray and blood tests into the system.- Thl' spt'Cia!ist reads the comments

(W11 (Z)) from the GP and decides to take anotller x-ray and blood test.

Later when the GP reads these latest test results and before commenting

further (may be the GP bumped into ~he radiologist and after the cOllversal.ion

between them) decides to recheck with the radiologist the vailles read (~4(X)

read Wn(x)) previously. So tbe next read operation (R;,,(x» by the GP

has to request for a x-ray version that is legal \V.r.t all the five legalities.

Consider an extension to the partial executiolls given in the Figure 8.2. If

W12(x) is the x-ray that is taken after the request from the specialist, then

as usual the radiologist examines the x-ray amI writes a report (W:n(x) in

Figure 8.2 which contains the x-ra.y plus the comments by the radiologists).

The GP reads this report IVllith says that there is no difference frolll the

previous x-ray and hence writes the same into the patients record say W42 (Z)

Latcr when thc specialist reads this decides to have a look at the radiologists

99

report. Hence the radiologist request ror a version that is legal in all respects

i.e., W22 (X). All the others (W1Ax), WJZtx), W21 (.1:)) become illegal W.Lt all

the five legalities due to the transitivity nature or the causal order.

Hence different instances require different legalities or combination or them to be

satisfied.

Pid

z'

Figure 8.2: Shared Care System2

8.4 Other Examples

1. Consider an example of an online exam ill which different sections have to be

answered, and they will be given one at a time. The examiners have imposed

a restriction that once a section is finished, aud another section is taken up,

you cannot go back to the former section. Then, all the previously solved

100

sections are no longer of allY relevance to subsequent reads, or in other words

RR.-obsolete.

2. Consider all application where any write (W2) fully incorporates the knowl­

edge gained through all tbe previous reads of WI (R(Wl)). For such an

application, any read that follows the write (W2) need not rcread any wrile.~

t.hat have alrr.ady been read. In terms of the obsoletelless, all stich previously

read wntcs then become RW-obsolete.

For example. take a project t.hat compiles a comprehellsive summary of a

collection of data being made available in the form of differel!t-writcs-stored

ill a datahase. The r.ompilatioll proeeeds by creating putial compilations.

Perhaps each partial compilation may address a particular sub-aspect. Each

partial compilation (say W2) is also collsidered as new data for subsequent

work and hence is written back into the databasc. Howeyer, if a partial

compilation is completed based 011 collating the data contained in certain

other writes collected by means of reading them (say R(WI)), any subsequcnt

read Ileed not reread any of the Il!Iitf'-S (WI) that have already been read

for compiling the just completed tlJ1ite (W2). lIcnce, such writes (WI) that

have becn read and processed, become obsolete (i.e., RVV-obsolete) for further

reads.

3. Consider a situation where the different writes of a given variablc arc nom­

inally equivalent (that is, they contain the same information but may be

presented in different formats) to each other. An example would be different

101

web sites 011 the net which contain information on the score of an ongoing

Baseball game.

This illustI'ates a situation where ditferelJt writes give information about

the sallie item. A professional sports commentator group that regnlarly pre­

pares statistical and other typcs of analysis of Baseball matches for a web

site can access different sources on the web (newspapers, broadcast nel.works,

priVlltely owned web sit.es, etc) to get the scorecards. The different sources

contain nominally equivalent basic information, although the actual packag­

ing and presentation format frOlll the source can differ widely. \Vhen a read is

isseed requesting the information about a particular match, the SPOIts com­

mentator is satisfied to get the information from any Ollt' of the available

sources. After the choice is made and the information obtained, the remain­

ing write;rautoOlatic.'l.lly arc of no use in the sense that they cannot augment

the information gathered by issuing the read request. In terms of the obso­

leteness, all these writes are \VR-obsolcte for any subsequent read. So, any

sllbse<lucnt read should get a fresh set of writes (informatioll).

Similar situation arises when a read operation is employed in order to fill

a ~inglc specified slot by choosing from among a given choice of writes such

that once the slot is filled, the remaining writes that exist at the time of the

l'Cad have no more useful function and should not be read by a subsequent

read.

102

4. Consider a web site which !i;;b all the share price;; of a number of stocks.

Individual traders sitting at their desk (remotely) would like to view the

latest changes in share prices of all or some of the slocks (of their interest).

That is, once the share price of a particular stock thanges, the old values are

of no interest 01" use for the trader. Getting or knowing the latest value for a

particular stock is important or required. In other words, all those previous

valucs are WW-obsolete.

5. Consider a category of applications where a condition is based on the latest

....ersion of the datu being mud. That is, once a particular data is read ,,<.Iy

R{W2), thcfl-all-thc·pr-evious-i.nteaDediate·versi(>ns-whieh·have~olltribuledto·

this write (W2) directly or indilecily sht;uld not be read by any subsequent

1"Cad. For example, if a Baseball match is in progress and the swrecard is

updated evcry few minutc!i. Each updation is called an intermediate result.

If a sports columnist sitting at his desk remotely is accessing this site from

time to time. Every time he accesses or reads the scorecard, he would like

to see all the changes done since he last visited the site. That is in a way

informing the system that he is familiar with aJl the previous changes and

that he docs not want to see them anymore. In terms of the obsoleteness,

NO-obsoleteness provides such support to the \lscr.

103

8.5 Conclusion

This thesis begins with an overview of Computer-Supported Cooperative Work and

gives the survey of some of the charceteristics of the cooperative syHcms. We give

a review of some of the consistencies proposed in the literature for cooperative sys-

tems and present a new approach to specify consistency of cooperative t'xecntions.

It is bused on the intuitive notion of legality of the read operations. Five different

not.iolls of 'recentness' or 'ohsoletcllcSS' of the values have been presented for two

defining relations.

j When all reads are legal in-lIll five respett~; tne-f--xet:lltion is said \.0 be p..cawal,

J!.lliliLt!Ji:u!f_QIllir.t}:...b.9J..!:m._~.i1li....re:i~Q~on-closlluLcl..J!,.1hm-'Jlli..~!:£y-

tiOll is ~atomic. \Vhell p is the glohal real time order, p-atomicity is liw~anz(lbilit!l

[17], and when p is the transitive closure 61' the union ')f tile proce.~,~ order' ami

reads-from relation, p-callsality is causal consistency (38], and ,J-atomicity is ,~c­

qlJCIltial consistency [241. Thus the five lIot.ions of recentness are not just intuitive

and meaningflll, hUl also 'complete'.

The recentness notions cao be deflued with respect to some special writes (in­

stead of all the writes) and, similarly, with respect to only some reads. This would

allloUllt to different defining relations p. This will facilitatc, ill various ways, noti·

fications ill collaborative work [8], collaborative browsing [44]' etc.

104

Bibliography

Ii] P. A. Bernstein, V. HadziJacos, and ~. Goodman, uConcurrcncy Control and

Recovery; in DataBase System.~," Ad(lisoll-Wesley Puhlishing Company, 1987.

[2) N. S. Barghollti) and G. E. KaiSl.'r, "Cimwrrency t:onil'Ql in advaliCcd database

applica/iom", in Computing Sun"cys, :l3(3), 19!1l, pp. '!69-:H7.

[3J R. Bentley, W. Applet, U. Busbach, Eo. Hinrichs, D. Kerr, K. SikkcJ, .1. Trevol,

and G. Woetzel, ~Basic Support for Coopernfive Wm"k on the World Wide Web",

in International Journal of Human Computer Studies: Special issue Oil the Novel

Application of the WWW, Spring 1997, Academic Press, Cambridge.

[41 R. Bentley, T. Horstmann, and .I. Trevor, "The World !Vide Web as enabling

technology jor CBCW: Tlie C(Lse of HSCW", in CSC\V: the Journal of Collabo-

rative Computiug, 2-3, 1997, Kluwer Academic Press, Amsterdam.

[51 P. M. Cashman, and D. Stroll, ~Developing the managemetlt system of tile

1990s: The role of collaborative work," ill Technological Support for Work Group

Collaboration, ~t H. Olson, Ed., Lawrence Erlbaum Associates, Publishers.

Hillsdale, J'l.,l., 1989, Pl'. 129-146.

[6] P. Dcwall, and R. Chaudhary, "Primitives jar IJrogrammiTlg mu/li-u.~er inter­

faces" in User Interface Software and Tcchnology (L'IST), Nov. 11-13, Hilton

Head, South Carolina, Hl91, ACM Press, pp. 69--78.

(71 P. Dourish, "Consi.oJtency Guamntecs: E;q/loiti119 Application Semantics jar

Consi.oJtency Management in a Collaboration Toolkit," in Proe. ACi\.f Conference

on Computer-Supported Cooperative Work, CSCW'96, Boston, USA, 1996.

[8] C. A. Ellis, S. ,1. Gibbs, and G. L. Rein, "Groupware - Some Issues and Expe­

riences," in Communications of the AC~'[, 34(1), January 1991, pp. 38-58.

[9] T. Ferwagllcr, "Expu"iencu in de,.iyning the .lJuhwhcim CATeam room," in J.

M. Bowers, and S. D. Benford, .editors., Studies in C~mpllt.t:r Supportoxl Cooper­

ativc Work, North-Hollaud Publishrrs, AmsterdaIU, 1;:191.

[10] R. Fish, R. Kraut, M. leland, and M. Cohen, "QTlilt: A collabomtive lUol for

coopemtive writing," in Proc. of the conference on Office Information Systems,

(Palo Aho, California, March, 23-25), ACM, New York, 1988, pp. 3(1..37.

[111 r. F'lores, M. Graves, 13. Hartfield, and T. Winograd, "Computer systems and

the design of organIzational interaction, ' ill ACM Transactions of Iurormation

Systems, 6(2), April 1988, pp. 153-172.

[12] D. J. Grey, and R. 1. Ferguson, "AqentSpace: A toolkit for coru:.:tructing mobile

a.QC1it systems, ", University of Sunderland, School of Computing, Engillecring

awl Technology, Occasional Paper Series, No. SCET-1999-14, 1999.

106

[13J D. .1. Grey, P. Dunne, and R. 1. Ferguson, "WebSeeker: a meallS of efficiently

lor;ati1lg n~Q"n;cs on the World Wide Web using mobile, collaborat1ve agents, ",

in Proc. ASI!\I Agent-Based Simulatioll Workshop, \1ay2-3, 2000.

[14] 1. Grief, R. Seliger, and W. Weihl, "Atomic data abstractions in (I dist1ibutf'A

collalJ(Jmtiv(~ "ailing system," in Proe. of the 13th Annual Symposium on Prin-

dples of Programming Language:l, (St. Pct.cr~burg, Fla., January 13-15), ACM,

!\ew York, 1986, pp. 160-172

[15] S. HaJdar and K. Vidyasankar, "Unified COnJistency Specifications of

Read/Write Shared Variables," llJtel'~lal Report, Department. of Computer Sci­

ence, Memorial Uiliversity of· Newfoundland, Canada 1998.

[16] S. R. Hiltz, and M. 'Ihroff, "Structunng computer· mediatoo commtmicati(m

8ystem to avoid infonnation ove1"l()(Jd," in Communications of the ACM, 28(7).

July 1985, pp. 68Q..6S9.

[17] M. P. Herlihy and J. M. Wing, "LincU1izability: A co1rectness condjtionjor

concurrent object.~, " ill ACM TOPLAS, Vol. 12(3), 1990, pp. 463-492.

[18] J. Trevor, "Injrastructure Support for CSCW," Ph.D thcsis, 1994

[19] G. E. Kaiser, S. M. Kaplan, and J. Micallef, "Multiuser, distributed lan[j1wge­

based environments," in IEEE Software, 4(6), Novcmber 1987, pp. 58-67.

[201 B. Karbe, .~. Ramspcrger, and P. Weis~, "Support for Cooper-ative Work by

Electronic Circuilition Folders," in Proc. of Olllfcrcllcc of Office Information

Systems, (Cambridge, MA), ACM Press, New York, April 1990, pp. 10f}..117.

107

[211 M. J. Kni~ter, and A. Prakash, "DistEdit: A distributed toolkit for supportIng

multiple group editors;" in Proc. of the third conference on Computer-Supported

Cooperative Work, (Los Angeles, California, October 8-10) , ACM, New York,

1990.

(22] K. L. Kraemer, alld J. L. King. "Computer-based systems for cooperative work

and group decision making, " in AC~vl Computing Survey, 20(2). June 1988, pp.

115-146.

[23] M. Koch, "Design issues for a distributed multi-user editor," in the interna­

tional journal of Computer-Supported Cooperative Work, 5(J), 19%.

[24] L. Lamport, "How to make a multiprocessor computer lIlat correctl.~· executes

multiprocess progrnm:J," in IEEE Te, Vol. C-28(9), 19,9, pp. 690-69J.

[25] M. D. P. Leland, R. S. Fish, arId R. E. Kraut, "Coliaborative document produc­

tion using Quilt," in Proc. oithe conference OIL Computer-Supported Cooperative

Work, (portland, Oregan, Septemner 26-28), ACM, New York, 1988, pp. 206-215

[26] T. vV'. Malone, K. R. Grant, F. A. Turbak, S. A. Brobst, and r..-t D. Cohen, "In­

telligent information-sharing systems," in Communications of the ACM, 30(5),

1987, pp. 390-402.

127] P. Molli, "COO- Transtlctions: Supporting CoollerntilJc Wo'-k," ill 7th Inter·

national Workshop on Software Configuration Mana~cment (SCM7), LNCS.

Sprillger-Verlag, J997.

108

[28] P. Molli, M. Munier, G. Canals, F. Charoy, and C. Godart, "COO-

serializabilify: A CorH;dll~S Cf"it~riOIi for Cooperative Executions, " Technical

Report, Centre de Recherche en Iufonnatique de Nancy, 1997

[291 E. I'l'lortcllsen, "Tnmds in electronic Mail and its role in office automation," in

Electronic Publishing Review, Vol 5, No 4, December 1985, pp. 257-268

[301 c. M. Neuwirth, D. S. Kaufer. R. Chandhok, and J. H. T\Iorris, "Issues in the

design of computer-support for co-authoring and comrnentirfg, ~ in Proc. of the

~hird conferellcc ou Computer-Supported Cooperative Work (CSCW'90), ACM

Prcs~, 1990, pp. 183.-195.

[31] C. t\.J. Neuwirt.h, D,·S. Kaufer., D._S...El'ioIlr..P._.Morris,.3nd_C. MjJ1er,~~Plexible

dilJ-ing in a collaborative writing .-;ystem, ~ in Proc. of lilt' fourth conferehce on

Computer-Supported Cooperative Work (CSCW '92), AeM Press, 1992, pp.

147-154.

[32] C. M. Neuwirth, D. S. Kaufer, R. Chandhok, and J. H. Morris, "Cofflpl1ter

SUPpof'l for Distributed Collaborutiue Writing: Defining Parameters of Interne­

tiorl," In Computer-Sllpporled Cooperative Work (CSC\-V '94), Chaphill, North

Carolina, USA.

[33J M. Nodine, S. Ramaswamy, and S. Zdonik, "A CooIJerative 7hm,~acti(Jn Model

for D~i!Jn Database," ill Database Transaction Models for Advanced Applica­

tions, A. Elmagarmid, Ed. J\'!organ Kauffman, 1992.

IOU

(34] Tim Oates, M.V. Nagendra Prasad, and Victor R. Lesser, "Cooperative lnfor­

matiofl Gat/wnng: A Distributed Problem Solving Approach, n in UMass Com­

puter Science Teehinieal Report 94-66.

(35] L. Osterweil, "Automated support for- the enactment oj "rlorously described

software proces.~, n in Proe. of t.lle fourth International Software Process Work-

shop, (Devon, UK, !\'Iay 11-13, 1988), ACM SIGSOFT, 14,4, June 1989, Pl'.

122·125.

[3G} C. Papadimilriou, "The Theory oj Database Concurrency Control, n Computer

Sciellce Press Inc, 1986.

i37J r.,,!. Raynal, and A. Sdlipcr, "From Callsal Consistellcy to Seq/wlti.11 C01l3is­

lCliCy1T1 Shared M(;mory Systems," in Proe. of the t·)th Int. C(.:lf.'FST-TCS

(Foundations of Software Technology and Tbcorit.icaJ Computer Science), Ban·

galore, India, Springer.verlag LNCS 1026, (P.S. Thiagarajan Ed.), December

1905, pp. 180-194.

[38] :\1. RaYllal, G. Thia-kime, and M. Ahamad, "From Serializable to Causal

7hlflsactiQf1.5 jOl' Collaborative Application.s, n in Proc. of the 23nl EUROMICRO

Conference, Budapest, 1997, pp. 314-321.

[39] Rolf de By, Wolfgang Klas, Jari VeijalainclI(eds), ~Transaction Management

Support for Cooperative ApplirotioTls, " Klllwer Academic Publishers, Dceember

1997.

[40] B. Singh, "Invited talk all coordination systems," in Organizational Computing

conference, (Austin, Texas), No\-elllbcr 1989, PI'. 13--14

itO

[411 N. A. Strcitz, J. hI. Haake, J. Hannemann, A. Lemke, \Y. Schuler, H. Schutt,

M. Thuring, ~SEPJA: A COfJTK:mti1lf~ Hypt:rrrlaJia Author1flY Efltnronmerlt, " in

Proceedings of the ACM conference 011 Hypretext, November 3D-December 04,

Milan, Italy, 1992, pp. 11-22.

[421 J. M. Haake and B. Wilson, "Stlpporting Collu/JomtilJe W,1t1rlg oj Hyperdoc­

ument.~ in SEPIA," in Proeeedings of the conference on Computer-supported

cooperative work, November 1992, Toronto, Canada

[43] C. Snn, X. Jia, Y. Zhang alld Y. Yang, "A Generic Opemtio71 Transfo1'­

mation Scheme jor GOTlBistency MlLirltcnance in Real-time Coopcratille Edlti1lg

Systems, " in Proc. of InteflJatiollfll ACM SfGROUP Conference 011 Supporting

Group Work, Phoenix, Arizona, USA, 1997, pp.425.434.

[44J M. B. Twindalc, D. M. Nichols, and C. D. Paice, "Browsing IS a Collaborative

P1"Q{;CSS," in Information Processing and Management, 33(6), 1997, pp. 761-783.

[45] Tore Urnes and Roy Nejabi, "Tools for Implementing Groupware: Survey and

Evaluation," in Technical Report No. CS-94-D3. York University, North York,

Ontario, Canada.

[46] Tom Rodden, "A SU11Jey oj CSCW Systems, n in Interacting with Computer~,

3(3), Det:ember 1991, PI'. 319-353

[471 W. Prinz, A. !I'IcGrath, A. Penn, P. Schickel and F. Wilhelmsen, "TOWER

- Thetltre oj Work Ena/lling Relationships," in Proceedings of eBusincss and

eWork, Madrid 2000.

III

[481 W. Prim, ~NESSIE: An Awareness Environment/or Cooperative Settings," in

Proceedings of The Sixth Elu'opean Conference Oil Computer Supported COOL)..

erative Work - ECSCW'99, S. Belker, M. KYllg, Il.nd K. Schmidt (eds.). Kluwer

Academic Publishers, 1999, pp 391-410.

[49] J. Wasch and \V. Klas, "Jli.'~tory Merging u.~ a Mechani.~m for Concurrcfl(~Y

Control in Cooperative Environments, " RiDE-NOS, 1996.

[50J P.WilsoIl, "Computer Supported Cooperative Work: An Introductiott, ~ Oxford,

UKllitellect Dooks, 1991.

112

	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Blank Page
	0005_Title Page
	0006_Abstract
	0007_Acknowledgements
	0008_Table of Contents
	0009_Table of Contents IV
	0010_Table of Contents V
	0011_List of Figures
	0012_Chapter 1 - Page 1
	0013_Page 2
	0014_Page 3
	0015_Page 4
	0016_Page 5
	0017_Chapter 2 - Page 6
	0018_Page 7
	0019_Page 8
	0020_Page 9
	0021_Page 10
	0022_Page 11
	0023_Page 12
	0024_Page 13
	0025_Page 14
	0026_Page 15
	0027_Page 16
	0028_Page 17
	0029_Page 18
	0030_Page 19
	0031_Page 20
	0032_Page 21
	0033_Chapter 3 - Page 22
	0034_Page 23
	0035_Page 24
	0036_Page 25
	0037_Page 26
	0038_Page 27
	0039_Page 28
	0040_Page 29
	0041_Page 30
	0042_Page 31
	0043_Page 32
	0044_Page 33
	0045_Page 34
	0046_Chapter 4 - Page 35
	0047_Page 36
	0048_Page 37
	0049_Page 38
	0050_Page 39
	0051_Page 40
	0052_Page 41
	0053_Page 42
	0054_Page 43
	0055_Chapter 5 - Page 44
	0056_Page 45
	0057_Page 46
	0058_Page 47
	0059_Page 48
	0060_Page 49
	0061_Page 50
	0062_Page 51
	0063_Page 52
	0064_Page 53
	0065_Page 54
	0066_Chapter 6 - Page 55
	0067_Page 56
	0068_Page 57
	0069_Page 58
	0070_Page 59
	0071_Page 60
	0072_Page 61
	0073_Page 62
	0074_Page 63
	0075_Page 64
	0076_Page 65
	0077_Page 66
	0078_Page 67
	0079_Page 68
	0080_Page 69
	0081_Page 70
	0082_Page 71
	0083_Page 72
	0084_Page 73
	0085_Page 74
	0086_Page 75
	0087_Page 76
	0088_Chapter 7 - Page 77
	0089_Page 78
	0090_Page 79
	0091_Page 80
	0092_Page 81
	0093_Page 82
	0094_Page 83
	0095_Page 84
	0096_Page 85
	0097_Page 86
	0098_Page 87
	0099_Page 88
	0100_Page 89
	0101_Page 90
	0102_Chapter 8 - Page 91
	0103_Page 92
	0104_Page 93
	0105_Page 94
	0106_Page 95
	0107_Page 96
	0108_Page 97
	0109_Page 98
	0110_Page 99
	0111_Page 100
	0112_Page 101
	0113_Page 102
	0114_Page 103
	0115_Page 104
	0116_Bibliography
	0117_Page 106
	0118_Page 107
	0119_Page 108
	0120_Page 109
	0121_Page 110
	0122_Page 111
	0123_Page 112
	0124_Blank Page
	0125_Blank Page
	0126_Inside Back Cover
	0127_Back Cover

