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Abstract

Computer-Supported Cooperative Work (CSCW) is the study of how comput-
ers can be used to help people work together. Cooperative work on shared, per-
sistent data requires computing system support to coordinate the work of multiple
users and to ensure data consistency. Attempts to extend the traditional concepts

of tr ions and

to specify i of cooperative
have largely been unnatural and unsatisfactory.

In this thesis, a new approach is to specify i of

executions. It is based on an intuitive notion of legality of the read operations.
Five legalities, each capturing a different notion of ‘recentness’ of the values, with
respect to a defining relation are explored. They are stated formally in terms of

system executions in shared read/write variables. A cooperative execution is con-

sistent in a strong sense when all reads obey all legalities. By relaxing the leg;
requirements, and also by choosing different defining relations, a large variety of
(weaker) consistencies can be specified in a hierarchical manner.

We also give detailed algorithms for ensuring the various legalities. The algo-

rithms correspond to three different envi - 1 distributed, and

mobile agent setups. We illustrate some examples where the legalities can be em-

ployed in various aspects of cooperative work.

Keywords: Consistency, Legality, Cooperative Executions, Mobile Agents.
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Chapter 1

Introduction

1.1 Context for the Thesis

This thesis deals with Ci t d C ive Work and i in

cooperative executions. In particular, internal consistency of a cooperative execu-
tion is dealt with. The different levels of system support that can be provided in a

cooperative application system are investigated.

1.2 Computer-Supported Cooperative Work

(CSCW)

Computer-Supported Cooperative Work (CSCW) is the study of how computers can

be used to help people work together. The recent progress of Computer-Supported



Cooperative Work has been fostered by constant improvements in base technolo-

gies (e.g., computer hardware, software and network infrastructures) and changing

requirements. This resulted from an envi growing in ity and dy-
namics, that surpasses the capabilities of a single individual and demands a group
work. The evolution of computing systems went hand in hand with the evolution

of izational work styles. C ing systems evolved from mainframe systems

(which offered primitive collaborative applications like shared calendaring systems),
to networked personal computers (PC) (which brought dissemination of computing
power). Organizational work styles changed from a hierarchical, monolithic and
rigid form of cooperation to flatter organizations and increased division of labour
within and between companies. This trend has been reflected in a changing focus
of many computer scientists from single-user applications to office automation sys-

tems and, later on, to CSCW and groupware systems.

Commercial CSCW products are often referred to as examples of Groupware.

This term is freqr ly nsed almost \ ly with CSCW technology. The

popularity of the CSCW technology is also evi d by an i ing number of

commercial products, such as Lotus Notes, Microsoft NetMeeting, and CoolTalk
in Netscape Communicator. Many of these systems have been successfully used,

usually in small groups, to facilitate data sharing among distributed participants.

yne and

To this date, two main classes of have been i
synchronous|45). The former class, consisting, for example, of e-mail and organiza-
tional memory systems, is clearly the most successful. Synchronous groupware is

often called desktop lications [45]; examples include collab




writing/drawing/design tools, group decision support systems, and games.

An important research area in information systems is computerized support for
cooperative users, where those users may be either humans or computers. The act
of cooperation implies a means of communication. Further, the individual users
need to cooperate and also collaborate to reach a common goal. Moreover, the users
need to have access to information, both actual and historical, as well as have sup-

port for searching, sorting and selecting information from large repositories.

The design of Computer-Supported Cooperative Work (CSCW) systems in-
volves a variety of disciplinary approaches, drawing as much on sociological and
psychological perspectives on group and individual activity as on technical ap-

proaches to designing distributed systems.

Cooperative work on shared, persistent data requires computing system sup-
port to coordinate the work of multiple users and to ensure data consistency. The
system support can range from loosely coupled collaboration such as electronic
mail, to tightly coupled, real time collaboration support such as shared drawing
or writing systems. Systems must deal with multiple workers, working in groups
with possibly dynamically changing membership, different degrees of coordination

and i ion, and diverse ives and conceptions of the shared work. This

implies that different levels of support are required depending on the tasks and

groups involved, and that systems must adapt to changes in tasks and groups.



Systems in cooperative work require the construction of applications which sup-
port interaction by multiple users. These applications exploit multi-user interfaces
to promote cooperative work by a group of users. Users may be distributed across
a number of locations and the associated interfaces run across a number of work-
stations (Networked or PC’s). The need to support user interface execution in a
distributed environment has resulted in combining the interests of user interface

software and distributed systems.

The objective of a collaborative environment is to facilitate team working and,
in particular, to enable a group of persons to manipulate shared objects, and mod-
ify them in a coherent manner. Maintaining consistency of objects produced during
cooperative activities is an important issue in this environment. Different applica-
tions require different levels of consistency. There is a need to ensure consistency
for both the work of a single user as well as the cooperative effort. Cooperating
users may require information to be presented in a variety of formats corresponding
to different levels of sharing. Since information usage is context dependent, coop-

erative systems must provide multiple views to the users in the group.

In support of this requirement, the present study concentrates on the provision

of different levels of system support for cooperative executions. A new approach

to specify i of cooperative cutions is Some types of consis-
tencies explored in cooperative applications are Operation Transformation Scheme,
Consistency Guarantees, Application defined consistency criteria, History Merging,

some relaxed forms of Serializability, COO-Serializability (COO-SR), etc. Our ap-



proach is based on the assumption that if the values read by a read operation are
consistent, then the values written in the write operation are also consistent. En-
suring the consistency of the read operations is the main idea of our approach. This
is done by defining five different Legalities, each based on the values the read reads
and each captures a different notion of ‘recentness’ of the value. These different
notions of recentness can be related to different levels of system support that can

be provided by our approach.

1.3 Structure of the Thesis

Chapter 1 gives introduction to C t d C ive Work (CSCW),

and describes the context of the research reported in this thesis. Chapter 2 gives a
brief description about the properties, characteristics, and classification of CSCW
applications. A brief description of some of the existing systems developed for
cooperative applications is also given. Chapter 3 gives a brief description about
consistency and some of the consistency issues dealt in CSCW applications. In
Chapter 4, a general definition of the legalities is given. Based on this general defi-
nition of legalities, two defining relations are explored: 1) real-time order (p =—3),
ii) causal order (p = (—; U —,)*). Detailed algorithms ensuring the five legalities

with respect to the two defining relations and correctness proofs are also given in

Chapter 4. Chapter 5 gives the i for a different envi ent where mobile

agents are involved. Chapter 6 gives the conclusion and examples describing pos-
sible scenarios where legalities described in Chapter 4 can be effectively employed

in cooperative work.

@



Chapter 2

Survey of Cooperative Systems

Since the early 1980s, more and more personal computers or desktops have become
available at work place. As a desktop tool for individuals, the personal computer
initially provided services for helping a single user with his/her work. The most

important ication classes were databases, word , graphic tools and

spreadsheets. In the 1990s these individual workstations became more and more
wired together in local and wide area networks (LAN and WAN). The interconnec-
tion of computers was first used for distributed computation and data exchange.
The next logical step is not only to connect programs that are running in different
computers but also to connect the users themselves [50]. The efforts are intensified
by the emerging need for people to work in teams that are locally dispersed.
llab

The research area that is conc 1 with p support for

teams is called Computer-Supported Cooperative Work (CSCW). CSCW is not a

self-contained research area with its own 1 It is an interdisciplinary ap-

proach where the main issue is to integrate different technologies in order to sup-
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port collaborative work. The following disciplines are part of CSCW, among others:
communication technology, distributed systems, user interfaces, man-machine inter-
action, artificial intelligence and several other associated aspects such as sociology
and organizational theory [8]. While CSCW is the name to the entire subject, the
term groupware specifically stands for software solutions implementing CSCW. The
term usually refers to a huge class of computer software systems which cannot be

strictly distinguished from other classes of software systems.

2.1 The Characteristics of CSCW Applications

All applications, interfaces and tools rely, to a great extent, on the underlying
services provided. Some of the characteristics of CSCW applications and services

provided are [6]:
e Awareness,
e Information sharing,
o Dynamic change and flexibility,
o Multiuser conversion,
e Open infrastructure,
e Models of the real-world,

o Alternative models of control,



o General group mechanisms, and
o Explicit mechanism and policy separation.

These characteristics represent a set of issues and concerns which prevail in existing
CSCW applications. Each of the above addresscs a different aspect of the support
of the cooperative applications. However, the effect of inadequately supporting one
particular aspect may influence the successful provision of another. Some of the

properties of a CSCW-System are:
e Cooperation
o Communication
o Coordination
® Distribution
o Groupwork
o Group Awareness
© Shared Resources

o Lightly Structured Work

2.1.1 Awareness

The desire for awareness can be found in a number of different aspects of group

work and across several layers of a system architecture. Indeed, four out of the five



primitives identified by Dewan and Choudhary [6] involve awaren For CSCW

applications and services the basic awareness support should include:

o Awareness of the actions of individuals
Consider two people, A and B who are remotely editing a document at the
same time but in different portions of the document. A deletes an entire

section of the d ‘Without any collab. i B would notice

the change only when he attempts to view that part of the document. Clearly,
such a change may be important and B should have the option of being aware

of A’s actions. This type of awareness can also be called group awareness.

Awareness of the current status of the cooperating indwiduals [47]

In a co-located team, members typically learn from a wide range of cues about
the activities of the other members, about the progress in the common task
and about subtle changes in group structures and the organization of the
shared task environment. Most of this group awareness is achieved without
overhead effort. A distributed (virtual) team - even if its cooperation is based
on a state-of-the-art groupware system - today is far from a similar level of

awareness and opportunity for informal icati This

reduces the effectiveness of the joint effort, and makes cooperation a less
satisfving experience for the team members.

This concept is researched in the projects TOWER [47] and NESSIE [48].
TOWER provides awareness of collaborative activities of team members and
their shared working context through symbolic presentations in a Theatre of

‘Work. The aim is to enhance distributed teams with group awarcness and



spontaneous communication capabilities close to those of co-located teams.

NESSIE provides an i for ive settings which

enables new ways to foster task-oriented and social awareness.

Awareness of the current state of the cooperation

In order to function successfully within a collaboration, an entity (user, ap-
plication, process, cfc.) must actually know what it should be doing. This
knowledge is dependent on the current state of the cooperation itself. There-
fore any changes in the cooperation will affect what the members of the co-

operation should do.

Awareness of the state of the underlying system
If a shared object being used by a number of system entities fails, then all

the collab should be ically notified of the failure, as it may

directly affect their subsequent actions. If notification does not occur, then
the entities involved in it will be inevitably affected. Therefore, it is important
that some feedback from the supporting services and system is available to

CSCW applications.

o Awareness of information ownership

may be i i by external factors and hence each
participant must be aware of the identity of the originator of the given unit

of information. P ion of information hi

is an important factor

in any cooperative work.

Closely connected to shared resources is group awareness which differs in certain

significant traits from other approaches of computer supported work. Since lightly

10



structured work (which cannot be easily formalized) has to be supported, there must
be a concept of coordinating this work. Group awareness lets the group members
see in which tasks or data the other users are involved and take appropriate actions
to coordinate their work (and thus collaborate). So the awareness of the other
people’s existence enables the work to be carried out with low conflict complexity

and in a highly cooperative way.

2.1.2 Information sharing

Aspects of i ion use and ion are 1 to CSCW. By its

very nature, most cooperation between people takes place through an exchange of
information. Cooperation relies on peaple sharing information (ideas, files, pro-
cesses, etc.) Mechanisms for information sharing should work to actively facilitate
the seamless cooperation between individuals and not restrict them with applica-
tions where sharing information is cumbersome.

The control of concurrent access to shared information is particularly important

in supporting group working where a number of users may need to simultaneously
access information. The form of concurrency control mirrors the style of cooper-
ative interaction being supported. Concurrency control in groupware is needed to
resolve conflicts and to perform tightly coupled group activities. Concurrency con-
trol is the activity of coordinating the potentially interfering actions of processes
that operate in parallel. To share information, it must be presented to the user so as
to be readily available. Access control is required to make sure that the information
is not shared in unexpected and detrimental ways. Access control makes sure that

the policies and rights on data objects attributed to the different processes are not

11



violated. Support for cooperative work needs to focus on sharing and to consider

the dual issues of access and concurrency collectively.

2.1.3 Dynamic change and flexibility

Dynamic change and flexibility are closely related to the need for awareness. Group
work and related activities can change rapidly in significant ways. An example of
such change can be due to people leaving groups unexpectedly because of illness

or because of their moving between different cooperative activities or work groups.

The manner in which they interact with the i and how these

respond to that change are important.

2.1.4 Multiuser conversion

As more and more complex systems are built out of different components, the
desirability of software reuse is very important. Reusing existing modules, objects
and code can greatly speed up the development of any system. It is advantageous to
view single user systems as building blocks for various parts of a CSCW application.

Supporting CSCW applications and tools should provide some means of exploiting

ori ing existing single-user appli and services.

2.1.5 Open infrastructure

Given the variety and diversity of possible CSCW applications, it is unlikely that
a single service/environment will be sufficient to support every application require-

ment. Therefore, any part of the application’s supporting infrastructure should be

12



sufficiently open to allow the information it contains to be used by other parts of
the infrastructure and not to force an application to rely on any single piece of

support.

2.1.6 Models of the real-world

Given that cooperative applications and services are intended to support the actual
work of groups in real-life, it is important that some support is provided to aid
applications and services in this necessary modeling. Failure to provide for this
need forces all the CSCW applications to build their own versions of the real-world
from scratch. Poor models of the real-world will have a tremendous impact on
how useful an application is. In fact it is the core feature upon which real-life

cooperation can be modeled within the system.

2.1.7 Alternative models of control

Many different types of control are imposed by applications on users and services.
CSCW applications may provide control over the cooperation being supported to
guide users towards a goal or conclusion, Each strand of control is imposed to some
extent on the applications and services it supports. Because of the nature of CSCW
(the large number and variety of possible applications), it would be very difficult for
‘many of the applications and services to rely on a single form of control in order to
successfully coordinate a group of people. Hence different type of roles and policies
arc assigned to different users at different levels in the system depending upon the

requirements of the application. A wide variety of alternative models of control at

13



each level in a system (interface, application, service, etc.) is needed if cooperative

services and application are to support, rather than constrain, any significant range

of group activiti

2.1.8 General group mechanisms

CSCW applications contain general “group” mechanisms which are employed to
support the semantics and the various rules of the application. Because of the range

and sheer number of ications, very similar mech are often d  side

by side. What these applications require is access to a suite of very general and

which support ly used concepts.

2.1.9 Explicit mechanism and policy separation

If any application or service is to be readily susceptible to change, the policy which

the icati ies must be d from the set of i which it

drives. Separation of these policies concerns the developers to focus on the seman-

tics of the cooperation being supported without having to unravel the mysteries of

the mechanisms which perform them. This is one of the most desirable charac
tics for any application and support services across the field of practical computer
science. In the domain of CSCW, it is not only desirable but essential. Without this
separation of concerns, many of the other needs (tailorability, alternative models of

control, multiuser scaling, etc.) become unattainable.

14



2.2 Classification of CSCW systems

The essential precursor to the study of collaborative systems is the definition of a
mechanism for classifying such systems. Two principal characteristics are common

to all cooperative systems [46]:

1. THE FORM OF INTERACTION (SYNCHRONOUS VS. ASYNCHRONOUS)
Creative problems, such as those tackled by brain-storming (for example, in
teleconferencing, etc.,), require group members to cooperate in a synchronous
manner since the creative input of each group member is required to generate
strategy for tackling the task. In contrast, perspective tasks have a previously
formulated solution strategy where group members take on particular roles
and work in an asynchronous manner often without the presence of other

group members.

2. THE GEOGRAPHICAL NATURE OF THE USERS (REMOTE VS. CO-
LOCATED)
Computer support for group interaction has traditionally considered the case

of geographically distributed groups who work asynchronously with each
other. More recent research is aimed at the support of face to face meet-
ings. This division is as much logical as physical and is concerned with the
accessibility of users to each other rather than their absolute physical prox-

imity.

For reviewing the variety of systems that emerged under the heading groupware,

the following taxonomy may be useful. It classifies groupware into several cate-



gories based on application-level functionality [8]:

Message Systems: These systems represent the largest class of cooperative sys-

tems. They have evolved from electronic mail programs. As wide area networks

designed to support ication became more wid d [29], elec-
tronic mail systems increased in complexity and functionality. Since the prolifera-
tion of such systems has led to the information overload phenomenon [16], recent
systems often provide help for users in structuring, filtering and pre-processing in-

coming messages (one example is INFORMATION LENS [26]).

Group Decision Support Systems and Electronic Meeting Rooms: Group
Decision Support Systems (GDSSs) provide computer-based facilities for explo-
ration of unstructured problems in a group setting. The aim of these tools is to
improve the productivity of decision-making meetings, either by speeding up the
decision-making process or by improving the quality of the resulting decisions [22].
Often, GDSSs are implemented as electronic meeting rooms. One example is the
CATeam room and the GROUPSYSTEMS software of the University of Hohenheim
in Germany [9]. A typical automated meeting room consists of a conference room
furnished with a large screen video projector, a computer (or network of comput-
ers), video terminals, a number of individual input/voting terminals, and a control
terminal. The computer system supporting the meeting often makes use of multi-

user software based on some form of analytical decision technique.



Computer Conferencing: Computer conferencing systems are also related to
electronic mail programs. However, the principles are different in that: (i) they im-

pose a structure based on how messages are grouped, (i) they store information in

a central database. The P! serves as a ication medium in a variety

of ways. It supports both asynchronous and real-time (synchronous) conferencing.
A well known example for asynchronous systems is USENET NEWS. A typical
computer conferencing system consists of a number of groups (called conferences),
each of which has a set of members and a sequence of messages. Conferences are
often arranged so that they individually address a single topic and users subscribe

to conferences of interest.

‘The development of reliable high speed communications has lead to the emer-
gence of new real-time conferencing systems. These allow conference members to
communicate in real-time. Multi-media conferencing systems represent the intro-

duction of a new

into ing systems. As P
systems become more powerful, their capability to handle wider classes of data in-

creases. This has led to multi-media systems which integrate audio, text and video.

Multiuser Editors: Members of a group often work on data concurrently. Mul-
tiuser editors provide help for exchanging data, notifications and for avoiding or
resolving conflicts emerging from concurrently accessing the same data [10, 14, 19,
23, 25]. Real-time group editors allow a group of people to edit the same object at
the same time. The DistEdit system [21] tries to provide a toolkit for building and

supporting multiple group editors.



Coordination Systems: Coordination Systems address the problem of “integra-
tion and harmonious adjustment of individual work efforts towards the accomplish-
ment of a larger goal” [40]. Coordination systems address this problem in a variety
of ways. Typically these systems allow individuals to view their actions, as well as
the relevant actions of others, within the context of the overall goal. Coordination
systems can be categorized by one of the four types of models they embrace: form,
procedure, conversation, or communication-structure oriented. Examples for coor-
dination systems are electronic circulation folders [20], workflow management tools

[35], Coordinator [5, 11], etc..

Co-Authoring and A i Co-Authoring and argumenta-

tion systems are a general class of systems which aim to support and represent
the negotiation and argumentation involved in group working. The cooperative

authoring of documents is demonstrative of this class of cooperation where the fi-

nal ion of a the product of a process of negotiation

between authors.

In most of the above categories, there are several overlapping characteristics. Tt
is often not possible to say that one real-life system belongs exclusively to exactly
one category. Hence one has to give a list of categories or just categorize by the

primary emphasis and intent of an application.



In the remaining of the chapter, a brief description of some of the specific tools

developed for Multiuser editors and Co-Authoring systems is given.

GROVE: GROVE [8] is a real-time outline editor allowing several people to edit at
the same time. Users can enter and leave a GROVE ‘session’ at any time. Within
the GROVE session, each user has his or her own workstation and bitmap display.
Each user in the session knows via ‘group windows’ which other user is partici-
pating. The users in the session can see and manipulate one or more views of the
text being worked on. GROVE separates the concept of a view from the concept
of a viewer. A view is a subset of the items in an outline determined by the read
access privileges. A viewer is a group window for seeing a contiguous subset of a
view. GROVE views and viewers are categorized as private, public or shared. The
differences are in the read access for the different users. A private view contains
items which only a particular user can read, a shared view contains items readable
by an enumerated set of users and public view contains items readable by all users.
When users enter (or reenter) a session, they receive an up-to-date document unless
they choose to retrieve a previously stored version. The default mode in GROVE is
amode where everybody can read and edit everything, i.c., there is no locking. The
authors report that (after a learning period) this does not give a chaotic situation,

but appears to be quite useful.

PREP: The focus in PREP [30] is on enhancing the effectiveness of loosely-coupled

llaboration. The i ion in a is defined as one or more columns

and a column is composed of “chunks.” PREP columns are used for the main text

19



of a document, for document plans, for a particular co-author’s or commenter’s
annotations, for request for clarifications or responses to comments. The chunks
can contain text, grids, trees or arbitrary images. They are shared by the users in
a database. An important issue in PREP is the possibility of commenting. A user
can define ‘drafts’. A draft defines an area in the workspace that an author intends
others to access and consists of a sparsely filled grid of chunks. Each column in a
grid is used to store different workspace content such as document content, plan and
comments. Collaboration occurs then by commenting on drafts. The authors of
PREP find it also important to allow revisions of drafts to exist as distinct versions
such that old information is not lost.

The PREP editor is basically asynchronous, although it supports simultaneous
editing and commenting of copies of a document through merging. An underlying
node-link architecture supports the merging of comments from multiple reviewers,
allowing simultaneous display of annotations from several distributed commenter’s
to whom copies of the document were passed. Recipients can modify their copy of
the original draft. A flexible difference finding algorithm allows one writer to see
“at a glance” what has changed between the original and the copy (or any two ar-
bitrary versions) and to decide whether to incorporate the change into the current

version [33].

SEPIA: The SEPIA [41], [42] system is a hypertext authoring environment using
a hypertext database (Hyperbase) constructed on top of a commercial relational
database. SEPIA supports synchronous and asynchronous collaborative editing of

hypertext documents. 1t supports the creation of hyperdocuments by providing

20



ity spaces’ which can be seen as task-specific browsers. Users create a hyper-

document by interacting with four activity space browsers dedicated to the tasks
of content generation and structuring, planning, arguing, and writing the final hy-
perdocuments under a rhetorical perspective (Content Space, Planning Space, Ar-
gumentation Space, and Rhetorical Space respectively). Information can be shared
or private. SEPIA’s basic hypertext objects are atomic nodes, composite nodes,
and labeled links. Furthermore, annotation nodes and links are provided as spe-
cializations of atomic nodes and labeled links. SEPIA provides annotation nodes
and thus supports collaboration via draft passing. Composite nodes are heavily
used as organizational means. Each author may see the actions of the other users
but is free to navigate through the document. SEPIA forces one to select objects
before being able to execute an operation on them. That way a user can lock an ob-
ject. A coloring mechanism is used to give a user information about locked objects.
SEPIA is a general hypertext authoring tool that can be used for the production of

a variety of documents such as manuals, scientific articles, project proposals, etc.



Chapter 3

Consistency in Cooperative Work

Consi i is a fund: 1 issue in many areas of computing sys-

tems, including operating systems, database systems, distributed shared memory
systems, and groupware systems. Traditional algorithms typically maintain con-
sistency by restricting concurrency; however, this approach is unsatisfactory in

general, as it often interferes with the flexible management of group activity. In tra-

ditional database systems, the concept of Transaction and Serializability are taken

to provide for the necessary i The traditional t ion read/write
model uses a semantics-free approach to transactions, and considers each database
access as either a read or a write. Traditional model has four desirable proper-
ties for transactions, often called the ACID (Atomicity, Consistency, Isolation and

Durability) properties [1].

1. Atomicity: All operations of a transaction must be treated as a single unit;

all of the operations are executed, or none are.
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. Consistency: A transaction when executed alone takes the database from one

consistent state to another.

w

Isolation: Each transaction executes as if it were the only transaction in the

database. Its Intermediate results are not seen by other transactions.

-

Durability: The results of a transaction are never lost if the transaction ter-

minates normally.

An execution is serializable if its effect (generally for both transactions and database)
is equivalent to that of some serial execution of the same set of transactions. Both
these concepts reflect the expectations of the users that their executions are not
interfered by those of the others. In contrast, mutual interference is inherent and
welcome in collaborative applications. Therefore, only (some form of) Consistency
and Durability are expected to be satisfied among transactions collaborating with
each other. However, Atomicity and Isolation are also required of them with re-
spect to transactions not collaborating with them. Concurrency control is required

to guard against inconsistencies, and to handle conflicting actions. However, con-

currency control in groupware must be handled differently than traditional con-
currency methods, simply because the user is an active part of the process. For
example, people doing highly interactive activities will not tolerate delays intro-

duced by conservative locking and serialization schemes.

The consequen stency are quite different for different domains. For

example in a Document Authoring domain the writers may be willing to trade “high

availability” for “accuracy.” Many applications do not require absolute consistency

23



in user data. For instance, in a “shared whiteboard”, absolute consistency is rarely
a concern. Conflicts over a single-plane bitmap are minimal and non-intrusive. In
these circumstances, the system would unlikely attempt to maintain data integrity
rigorously. Indeed, the overhead of many consistency management strategies would
interfere with the responsive performance and free-form interactive style that a
shared whiteboard requires. In some applications, however, consistency can be vi-

tal.

Different types of i ies such as Consi G 7], A
defined consistency criteria, Operation Transformation scheme [43], History Merg-

ing [49], some relaxed forms of Serializability[8, 3], COO-Serializability (COO-SR)

27, 28], etc., suitable for cooperative applications have been explored.

3.1 Types of Consistencies

1. Ce G hanism uses knowledge of application

and the semantics of particular operations to increase concurrency and par-

allel activity. This mechanism is used in Prospero [7] where control over the

nsistency i in the toolkit is given to the applica-
tion. Prospero is a p; ype toolkit for collaborative applications which uses
level to allow icati pers to reach in and tailor

toolkit structures and behaviors to the particular needs of applications. Pros-

pero exploits the ics of specific appli and ions involved to
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allow multiple users to act over data simultaneously. This involves finding op-
erations which can be performed in parallel without leading to inconsistency.
Prospero adopts an optimistic strategy by presuming that simultaneous ac-
tions will probably not result in conflict, but that if conflict does occur, things
can be sorted out later. These simultaneous actions cause different users to
have different views of the data; this is called divergence. To compensate

for this effect, ion is done to tablish a common view of the

data. So, data management takes the form of continual divergence and syn-
chronization of views of the data. The problem is that the divergence model
makes no commitment to the nature or extent of the divergence. The longer
two streams of activity remain active but unsynchronized, the greater their
potential divergence, and so the more complex it becomes to resolve conflicts
at synchronization time. Indeed there is no guarantee that the system will
ever be able to resolve two arbitrary streams into a single, coherent view of

the data store.

A generalized locking mechanism is used to achieve constrained divergence.
Locking is used to guarantee the client of future consistency (promise that
“no other user can make changes, so consistency is maintained”) in exchange
for a prediction of the clients future activity. This flexible interpretation al-
lows applications to balance freedom of action against eventual consistency as

appropriate to the particular circumstances of use. This is the first principle:

locks are of ach bl . However, support for oppor-

tunistic work without bandoning the ization of parallel
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activities is achieved by allowing clients to break their promises of future ac-
tivity (and hence not holding the server to its guarantce of later consistency),
and looking at syntactic consistency when necessary. This is the second prin-
ciple: a client can break a promise, in which case the server is no longer held

to its guarantec.

Consistency is obtained in [39, 49] by semantically correct exchange of in-
formation among cooperating users by means of merging histories of user

activities. CoAct transactional model is designed for supporting cooperative

work in multi-user 1 user “tr: ions” are called
user activities which are executed within the scope of a group-based “trans:
action” called the cooperative activity to enable cooperation between users
involved in a joint effort. The CoAct model assigns a user activity and a
private workspace to every user who takes part in a cooperative activity. By
defanlt, the private workspaces of the co-workers are isolated from each other.

Each cooperative activity is associated with its own workspace, called the com-

mon workspace which is isolated from the user activities.

Execution constraints are assigned for cooperative activities that govern
the execution of the work of the individual users as well as the overall coop-
erative activity. The constraints describe which operations are allowed to be
executed within the context of the cooperative activity. Cooperation among
user activities (belonging to the same cooperative activity) is achieved by the

explicit, semantically correct exchange of information (operations) between
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co-workers. They can exchange operations through the common workspace
by means of save and import. Direct exchange of operations among user ac-
tivities is achieved by means of import and delegate. All the users involved in
the cooperative activity would integrate their individual work into the com-

mon workspace such that there is a single result of the cooperative activity.

Compatibility between user actions is exploited to extend the concept of
user activities to activity histories. An activity history is referred to as histo-
ries of single user activities as well as the cooperative activity reflected in the
common workspace. Correct subhistories (which are independent and consis-
tent atomic units of work) are extracted from the activity histories and these
subhistories can be exchanged between different activity histories by applying
the merge algorithm described in [39], [49]. This process of merging of ac-
tivity histories is guided by merging rules (described in the algorithm) which
ensure that the resulting activity history is a correct one again in the sense
that the observable behavior of actions in the merged history is the same as in
the original histories. If merging of some operations leads to an inconsistent
history, then those operations are compensated. The correctness criteria of

the merge approach guarantees that no inconsistencies are introduced due to

the exch of i ion between c executed work.

. The model in [43] deals with i v in Real-time Cooperative Editing

systems. Cooperative editing system allows multiple users to view and edit

a shared document simultaneously from different sites, which are connected
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by a communication network. The model adopts a replicated architecture
regarding the storage of shared documents to achieve good response and -

The shared are repli d at the local

storage of each participating site (user), and so, the editing operations are
first performed at local sites and then propagated to remote sites. Three in-

consistency problems in such situations have been identified.

First, operations may arrive and be executed at different sites in different
orders, resulting in divergent final results or divergence. Secondly, due to the

nondeterministi ication latency, ions may be executed out of

their natural cause-effect resulting in causality violation. Thirdly, due to con-
current generation of operations, the actual effect of an operation at the time
of its exccution may be different from the intended effect of this operation at

the time of its generation. The three inconsistency problems are independ

in the sense that the occurrence of one or two of them does not always result

in the others. An exccution at each participating site is consistent if it always

maintains the following properties:
(a) Convergence: The same sct of operations have been executed at all sites,
and all copies of the shared document are identical.

(b) Causality-preservation: For any pair of operations O, and Oy, if O, —

Oy, then O, is executed at all sites before Oy,

(c) Intention-preservation: For any operation O, the effects of executing O

at all sites are the same as the intention of O, and the effect of executing
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O does not change the effects of independent operations.

Various coneurrency control protocols have been proposed for cooperative
editing systems and have been successfully used in non-real time or real-time

constrained cooperative editing systems. However, none of the existing ap-

proaches has addressed all the three inconsistency problems in ive
editing systems under the constraints of a short response time, a short no-
tification time, and support for unconstrained cooperative editing in such
environments. Many researchers have dealt with the first two problems and
have devised different protocols to ensure them but failed to correctly solve the
third issue ‘intention violation.” A novel and integrated approach to correctly
solve the intention violation (in combination with the problems of divergent

final results and causality violation) is proposed in [43].

Convergence is achieved by an optimist

and causality-preservation by a state-vector-based ti ing scheme. Achiev-
ing intention-preservation is much harder because it is not related to the ex-
ecution order of operations and cannot be resolved by just re-scheduling of
operations as in the other two cases. Intention-preserving scheme is achieved
by applying the Generic Operation Transformation (GOT) algorithm (given

in [43]) which uses inclusion and ezclusion transformation strategies.

. The COO-SR model of (28] assumes a central repository containing all the

objects during the i ot The ion consists
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of users reading the versions of the objects in the repository, and writing new
versions of objects and adding them to the repository. Users may execute
the operations concurrently. The complete execution, entered in a log, is
supposed to satisfy some ‘external’ and ‘internal’ consistency requirements.
For external consistency, the transactions are partitioned into several groups
based on interactions between them, an useful sub-log is extracted from the
log by eliminating some operations which primarily aid cooperation but are
irrelevant for serializability, and it is required that the sub-log be serializable

with respect to the groups of transactions. For internal consistency, properties

like “the last version of an object produced by a transaction in a group must
be read by all the other transactions in that group” are demanded in the

cooperative execution.

3.2 Examples

1. Consider a cooperative execution of document authoring. A group of authors
A, B, C, D, and E are involved in writing a large document. The document
contains three sections z, y, and z They distribute the three sections among
the five authors and outline some constraints, as to when and how the docu-
ment should be finished. All the three sections are jointly written by several
authors. All the authors are aware of the progress and changes on all sec-
tions. Some sections are edited by more than one of the authors concurrently.
Several intermediate versions of the sections are written. Suppose authors A

and B are in charge of section z, authors B, C and D are in charge of section
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y and authors D, E and A are incharge of section z Wai(z) represents the
execution of a write operation by processor A of the object z. Similarly a read

Rpi(z) rep the ion of a read of ion by processor B

of the object z. Tu the figure the read operation Ry (x) reads from Wa,(z)
(the reads from relation shown by the solid arrow), that is the version written

by Way. For example, consider the partial execution shown below.

Authors
A - SR ) e
By souiens s RO -~ W) whoma W () mmasus
(o At R

Figure 3.1: Example

In Figure 3.1, process order is shown by broken arrow and reads from relation
by solid arrow. Author B reads section z written by author A (Rp () reads
from W (z)), and then writes section 7, and after that, writes scction 3.
Author C reads section y written by author B (R (y) reads from Ws(y)),
and then decides to read section z. At this stage there are two versions of
section z (W (2) and Wi (2)) available to author C. The problem is to de-
cide which version is appropriate or suitable for author C. Depending on the
requirements of the author and the application, author C might request for a
latest write on a particular data item. So the system should support the user
in deciding to select an appropriate version. For instance, on one extreme,

the system can respond to author C by returning all the values on scction &
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from the database. And, on the other extreme, the user can specify a par-
ticular value to be returned. It may be assumed that, since author B writes
section z after reading @ written by author A, the version Wy (z) contains
the modifications done in Wi (z). Hence, for author C, W, (z) would be an

appropriate choice if he wishes to read the ‘recent’ version on section z.

Consider another application of a weather data bank for a particular

.
The system is serviced and used by different sources. The sources (or pro-
cessors) are: a meteorological station at the city airport , a set of polar orbit
satellites passing over the city, a geostationary satellite and a semi-permanent
weather balloon operated by a local university. The sources collect physical
data from their respective equipment and write into the data bank. These

sources can also access the data reported (or written) by other sources. Each

source reports the data at periodic intervals. These intervals vary for different
sources. The actual data composition collected from various equipment might
also vary depending upon the source. For example, the data from the polar
satellite is significantly different from that of the weather balloon. However,
all the processors work in a cooperative manner to update ‘weather condition
data’. Due to physical limitations not all sources might be able to collect the
complete data at all times or may even collect partially incorrect data. The
central data bank may be located at another location which serves several

such cities.

Different weather related applications may be using the data for different re-
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quirements. One such application may be about ‘current weather conditions.”
Bach processor periodically writes data to the data bank. Before writing,
it reads some recent data from the data bank (data may be from the same
source or from different sources), checks it against its own data collected and
writes into the data bank a filtered data. This reading is done in order to
check if the current data collected is in line with the previous data (to pre-
clude incorrect data from being written). It also helps in making sure that
any missing data is filled in. For example, if the airport weather station is
updating the ‘current conditions’, it may not be able to write information
on road conditions (icy, snow covered, clear, ctc). That information may be
provided by other sources (perhaps satellite data). So the airport weather
station requires this data and hence reads it from other sources. If the re-
quirement of the application is such that, each set of physical data reported
should be read at most once (by any of the cooperating processors) so that

relevant information is passed on for further updates.

Using the system described above, we can look at a particular type of recent-
ness. If a data item is read by a computer (or processor), it is assumed that it
will process the data, filter it and write it back to the data bank. Sometimes,
the data read may be partial or insufficient and so the processor might need
to read data from other processors to complete its write. In that case, if a
data is read first to be followed by another read or write operation, then the
first data item that was read becomes obsolete and need not be read again.

A processor keeps accessing different unread data only till its requirements
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are satisfied.

Hence users (at different layers of the system) in a cooperative systems require
different types of recentness of the values. In the next chapter we define five types

of legalities, each capturing a different notion of ‘recentness’ of the values.
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Chapter 4

Legalities

As discussed earlier, data given to a read request (by users) have to be consistent
so that the writes (performed by the users) are also consistent. In this chapter, we

describe different ways of satisfying a read request using generic legalities.

D ding on the i of the ication and of the users involved (in
the application), different levels of recentness of data may be required. In the next
section, we give five legalities, each capturing a different notion of ‘recentness’ of the
values [15]. We believe that the five legalities are very meaningful for cooperative
environments where traditional concurrency methods [36] are too rigid to apply.
This work is based on partial orders and illegality concepts. The illegality concepts
are stated relative to certain defining relation (represented as p) on the operation
executions. For example, for operation exccutions O and O, we defined O —, O’
if the execution of O is completed before that of O' starts in global real time order;

the defining relation p (—) here is real time order. In the thesis we have explored
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the legalties for different defining relations. The defining relation p, stated also as

—», can be real time order, causal order, etc.

4.1 Definition

In this section we state the five illegalities based on a general defining relation p
(=), all in terms of the values the reads read. The five illegalities (or conversely,
legalities) are RR-illegal, RW-illegal, WR-illegal, WW-illegal, and NO-illegal. For
operations executions O and 0/, O ~» O' if the execution of O is completed before
that of O starts with respect to the defining relation.
The first four illegalities refer to the occurrences of the following situation where
a legal serialization extending p cannot have the following situation for any read
R(z,):

O(z1) = O'(z2) = R(=) (4.1)

where, 73 # @. 71 and z refer to the same data item x but represent different
versions. Operations O and O’ may each be a read or a write. Both O and O' may
be from the same processor or from different processors. However, our emphasis is
on the relation (p) between two operations. A write into an object defines a new
value for the object; a read allows to obtain a value of the object. If O is a write,
then O(xy) denotes a write operation W (z) writing value z, in z. Similarly, if O
is a read, then O(x,) denotes & read operation R(z) returning data item z;. In the
later chapters we use O(W;) (where O can be a read or a write operation) instead

of O(a1) or R(z1)
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The situation defined in eq. 4.1 above implies that R(z,) is illegal with respect

to —. This illegality notion can be expanded further as follows:
o RR-illegal if O is a read and O' is a read,
o RW-illegal if O is a read and O is a write,
o WRillegal if O is a write and O’ is a read, and
o WW-illegal if O is a write and O is a write.

In addition to the above four, a fifth illegality is defined as the New-Old-inversion

or New-Old-illegality (NO-illegality):

o NO-illegal: for two different writes Wy and Wa, writing values z; and z; in
data itemxX respectively, and two different reads R and R/, if Wi(z,) =

Wa(s) and R (22) — R(x).

WW denotes that WW-illegality is allowed, and WW denotes that WW-illegality
is not allowed. We use similar notation for other illegalities. An execution is said
to be p-causally consistent if all the read operations in that execution are legal in

RW, RR, NO). This is the

all respects (that is the execution satisfies WW, WR,
strongest possible consistency. Weaker consistencies can be defined by allowing the
read operations to satisfy only some, but not all, legalities. An execution belongs to
a certain consistency class based on the presence or absence of each of these illegal-
ities with respect to —. This framework facilitates specification of a large variety

of consistencies. The present work is based on the reading of intermediate ver-

sions in a cooperative application subject to the read operations satisfying different
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legalities.* A common notion adopted in the literature for correctness of concur-
rent execution of operations on shared variables is causal consistency. Though not
explicitly mentioned in [28], it can be shown that under certain assumptions, the
internal consistency requirements mentioned in that paper include a form of causal

consistency. This is explained in detail in the next section.

4.2 A form of Causal Consistency - COO-SR model

Causal Consistency: Let H = (H,—y) be a history. H is causally consistent if
all its read operations are legal w.r.t. causal order. Causal order is the transitive
closure of the union of process order and reads from relation represented as ((—;
U —)%). A read operation is said to be legal if it returns the most recently written
value to the location being read.

Under ceratin assumptions and a defining realtion, the internal consistency re-
quirement of the COO-SR model (28] (given in Chapter 3) corresponds to a form

of causal consistency. This is shown below with the following assumptions.

1. pis the causal order represented as (—; U —,5)".

o

. A processor does not read its own write.

=

A processor does not read a version more than once.

. The latest version of a processor and the versions read by the processor after

writing that latest version contribute to the next version.

o

Every version that is created is useful for the final result.
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o Since each version of a processor is (implicitly) useful for the next version
of the same processor, each version need not be useful i.e., need not be

read by any body clse.

=3

. However the final version of each processor (except possibly one) must be

read.

b

The reads need to be consistent so that the writes the processors perform are

consistent.

9

Eventually all we need is a partial order of the writes (versions), ending in

one version.

©

. Concurrent writes commute.

Properties:

1. No processor reads its own write.
Casel: Consider WR-illegality, Wy — R(Wy) — R/(W,)
Wi and R' are of different processors. Considering the defining relation, if

there exist a W —, R path in between, i.c.,

Wi = Wy =g R(WS)... = R(Wh) (4.2)

We have WW-illegality and therefore WR = WW, i.c., WW = WE. It has
been shown in [15], when p contains —, in transitive closure, (WW,WR) =

ty. Therefore all we need is WIW.
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Case2 Consider WW-illegality, Wy — W, — R(Wy)

An intervening W3 —,; R(Ws) path gives rise to the situation

Wi... = Wy = R(Wa)... = R(Wy) 43)

We have WR-illegality and therefore W = WR, i.c., WR => WW. Thus
WR is also good enough. Therefore all we need is either W or W, both

are equivalent.

Assumptions 2 and 3 imply WW- and WR-legal which guarantees p-causality. As-
sumption 2 may be changed to 2a: a processor can only read its write immedizately

after the write or before reading any other write. Even then p-causality is satisfied.

In this thesis, we subscribe to the above idea for the internal consistency of

of an exccution is determined by the legalities
of its reads. The five legalities are explored for two different defining relations and
for two different environments. The five illegalities are dealt with two defining
velations: i)real time order and ii)causal order. We give detailed algorithms for
ensuring the various legalities. We believe that the five legalities are very meaning-
ful for cooperative environments, and CSCW system support must include helping
read operations (users) satisfy these legalities. In the thesis we try to relax the

ACID properties so that ions that are not seriali are in cer-

tain CSCW systems. Some types of inconsistencies may be acceptable to people
in certain groupware applications. Later on people might mediate and repair their

actions and conflicts following some social protocols.
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As seen in the examples of Chapter 3, the first example indicates that a data item
satisfying WW-legality would be an appropriate choice by author C. The second
example requirement relates to a data item satisfying RR-legality and RW-leaglity.
It has been shown in [15], for some special values of p and /or special system execu-
tions, the absence of some illegalities imply the absence of some other illegalities.
Raynal and Schiper [37] define an execution to be causally consistent if no read in

that execution is WW-illegal and WR-illegal (in our terminology).

4.3 Motivation

Due to the popularization of the Internet, cooperative applications are expected to
become common place on the WEB. Cooperative applications are the result of the
cooperation between several users (humans or software), playing different roles,who
build a relational system which is structured by a common objective, or project, and
for the duration of this project. Users interact (cooperate) when they share objects
not only at the start and at the end of the execution, as in traditional database
applications, but during their execution. Users communicate through peer to peer
communication channels or through cooperation spaces, especially common repos-

itories.

Ezample : Consider a scenario in which the medical staff of a hospital wants
additional diagnostics before concluding on a patient disease. For that, two other

specialists are contacted for their advice or opinion. The two specialists are ge-
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ographically distributed. Patient records and diagnostic images are sent to these
specialists who must do studies and report together, producing one report, despite
geographical separation. Each specialist comments on the report of the other and
write their own report. This process is done in an iterative fashion. Before each
specialist arrives at his/her own final report, some intermediate versions are writ-
ten. The isolation between the two specialists is broken by explicitly allowing them
to share some intermediate versions of their reports when executing their respective
process. Our concern is not with the end result but how and which of the inter-
mediate versions are accessed by each of the users involved. A partial execution of

how the iali in their ution is shown below:

A: RM(x),”>WM(X) ”"WAzm o WA:;“)""WAA(X)

B: Ry ®---= Wy ® - R ® o Wi, @ Wy 0 >R 5, )

Figure 4.1: Example

The two specialists are represented as A and B and the data of the patient is
represented as x. A and B read the patient data x (represented as Ra_(z) and
Ry (x) respectively) and write (represented as W (x) and Wy (z) respectively)
their respective reports. In addition to this, each specialist reads the report of the
other and writes comments which are denoted by data item z. They write interme-
diate versions before they arrive at the final report. For example, Wy (z), Waz(z)
are the intermediate versions of the user A and Wi, (z), Wpa(z), and Wpy(x) are

the intermediate versions of the user B. Wp;(z) represents comments written by
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autor B.

As shown in the figure, user B reads a write of A and comments on that, i.e.,
Rps(z) reads from Wyy(z). For a further read by user B say, Rgs(z), user B has
more than one write to choose from (because user A has written Was(z) and Way ()
by the time user B issued the read Rps(z)). In such situations giving all the write
versions to user B may be waste of resources and not useful. Only key information
should be provided to the user in order to reduce cognitive overload on the user and
on the system. Suppose that user B is given all the versions and he/she chooses
to read W (x). User B writes comments based on the write Wy (z) read. Thus
the comments of B will be inconsistent because he/she has read an older version

than the version read previously by B (i.e., Wy (z) is an older version than Wa(z)).

For example, suppose report W (z) contains the dosage say 15mg to be ad-
ministered to the patient and later on user A decides to change it to 10mg which he
modifies in the next version of the report Wp(x). Next, B writes a comment saying
that ‘Reduce the dosage by 5mg because of the age of the patient’ after reading
Was(z). Again when B reads W (z) and writes the comments, he/she thinks that
user A misunderstood and so he comments saying ‘reduce the dosage by 10mg which
confuses user A and inconsistency arises. In order to avoid such type of inconsis-
tencies, the system should some how keep track of the versions read by the users

and prompt or give the users only versions that are eligible, recent values or ‘Legal’

In the next chapter the five [llegalities are explained in detail with repect to real

time order.
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Chapter 5

Legalities in Real Time Order

We consider a ive system of a set of processors (Proci, Procs,
Procy, etc.) which interact with cach other by reading and modifying (writing)
shared objects (z, y, 7 etc.). The system supports two primitive operations: read
and write. A write into an object defines a new value for the object. A read obtains
a value of the object. Every (read or write) operation is assigned a unique id (Rid or
Wid, respectively). The execution of a write operation by processor i of the object 7
is denoted by Wi (z): uh write operation by processor i. Similarly a read operation
is denoted by Ry, (z). The system responds to the read request with references to
a set of writes satisfying the desired “legality” criteria. The read in the model can

read any value written by earlier or simultaneous writes.

The above representation and description holds good for all the three envi-
ronments given in this thesis (centralized, distributed and mobile agent). In the

following sections we explain in detail how the five legalities can be implemented
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in a centralized environment considering the Real Time Order.

5.1 Definition

For operations O and O, we define O — (0, that is O precedes O' if the execution

of O is completed before that of (' starts in global real time order.

Scenarios for various illegalities for a read operation Ryj(z) are shown in Fig-

ure 5.1. This figure is taken from [15].

Consider RR-illegality from Figure 5.1. Writes Wina(x) and Wp,(z) are concur-
rent with each other. As shown in figure, read Ri;(z) starts after the completion
of the reads Rao(x) and Ru(x), and read Ra(z) starts after the completion of
reads Ru(z). The three reads are concurrent with the writes. In order to avoid
RR-illegality, read Ry (x) should not read write Wi ().

Consider another case say, WW-illegality from Figure 5.1. Write Wy (z) starts
after the completion of the write Wi (z) and read Ry («) starts after the completion
of the write Wyy(z). Hence write Wyy(x) is considered more recent write than

Wina(z) and so if read Rij(x) reads Wi

then according to our terminology
it is WW-illegal. Consider an example of a stock market news which is updated
(displayed) by two news agencies. Another user is regularly reading or following the
stock news. The user is interested in reading only the latest updated news and so

such users should be given only WW-legal (according to our terminology) versions.
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Figure 5.1: Example Showing Various Tllegality Scenarios (in global real time order)
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In the similar way, the other illegalities can be explained. In the next section we
explain the data structures and give a detail algorithm (general case) satisfying all
the five illegalities. The algorithm gives a step by step description of the actions to

be taken when a write or a read operation is executed.

5.2 Data Structures

The algorithm requires the following data structures. All the sets given below are
assumed to be maintained globally in a central repository without any replication
and there exists a global clock. Individual processors do not have local copies of
the data. The processors access the shared data from the central repository. Bach
write creates a version. As the operations are issued and completed, their respective
start time and finish time are recorded in the appropriate sets.

In addition to the above information, Wids of write operations may be tagged
as illegal with respect to one or more of the five legalities discussed. Based on the
execution of an operation (read/write), appropriate sets are updated, We assume
that no two operations start at the same time. The central repository contains the
following data structures, one for each data item.

1. Ongoing Read Set: This set contains the Rids of all the ongoing read oper-

ations (a read operation that has started but not yet finished) reading that
object. Tagged with each read operation is a list of Wids (of the writes on

that object) that are concurrent with that read operation.

o

Ongoing Write Set: This set contains the Wids of all the ongoing write oper-

ations.
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3. Finished Read Set: This set contains the Rids of the finished read operations.
Tagged with each read operation is the Wid of the write read by that read

operation.

4. Finished Write Set: This set contains the Wids of the finished write opera-

tions.

5.3 Algorithm
1. When a write operation Wix(z) is issued by processor i,

(a) Enter Wid of Wix(z) in the Ongoing Write Set.

(b) Tag the Wid of Wik(z) to each of the ongoing read operations in the
Ongoing Read Set.

2. When a write operation Wy () is finished,

(a) Remove Wid of Wi(x) from Ongoing Write Set and enter it in the Fin-
ished Write Set.

(b) Check the Finished Read Set and collect all the read operations say,
Ray(z) whose finish time is less than the start time of Wi(z). For each
such read Ry (x), tag its respective Wid (i.c., the write read by the read
Ray(x)) as RW-illegal in the Finished Write Set.

(¢) Check the Finished Write Set and tag all the writes whose finish time is
less than the start time of Wi(x) as WW-illegal in the Finished Write

Set.



(d) Tf any particular Wid in the Finished Write Set is tagged as illegal w.r.t
all the five legalities, remove it from the Set.

() if the Wid removed from the Finished Write Set (in step 2d) also exists
in the Finished Read Set (i.e., this Wid is read by one or more reads in
this set and accordingly this Wid will be tagged to those reads), then

remove it from the Finished Read Set along with its respective read.

3. When a processor j issues a read Rj,(x), an eligible list is formed from which
Rj,(z) can pick a write and read. In addition to the eligible list the read
operation can choose from any of the Wids tagged to it. This tagged list of
Wids are the write operations that are concurrent to R;,(«) and which have
started after the read was issued. However writes which are concurrent to the
read Ry, (z) and which were started before the read was issued exists in the
Ongoing Write Set. If the eligible list does not contain any value to be read,
then a message is sent to the processor saying that there are no values that
can be read satisfying the requested criteria.

(a) RR-legality: The eligible list will contain all the Wids from the Finished
Write Set excluding the Wids that are tagged as RR-illegal, plus all the
Wids in the Ongoing Write Set.

(b) RW-legality: The eligible list will contain all the Wids from the Finished
Write Set excluding the Wids that are tagged as RW-illegal, plus all the
Wids in the Ongoing Write Set.

(c) WR-legality: The eligible list will contain all the Wids from the Finished

Write Set excluding the Wids that are tagged as WR-illegal, plus all the
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Wids in the Ongoing Write Set.

(d) NO-legality: The eligible list will contain all the Wids from the Finished
Write Set excluding the Wids that are tagged as NO-illegal, plus all the
Wids in the Ongoing Write Set.

(¢) WW-legality: The eligible list will contain all the Wids from the Finished
Write Set excluding the Wids that are tagged as WW-illegal, plus all the
Wids in the Ongoing Write Set.

(£) Enter the Rid of Ry, (x) in the Ongoing Read Set.

4. When a read operation Ry, (x) is finished and it read Wi (),

(a) Remove Rid of Rj,(x) from Ongoing Read Set and enter Rid of Rj,(x)
along with the Wid of Wy () in the Finished Read Set.

(b) Check in the Finished Read Set for any read operation say, R (x) whose
finish time is less than the start time of R, (x). For each such read Rgy(z)
collected, tag its respective Wid (i.e., the write read by the read Ry ()

as RR-illegal in the Finished Write Set.

=

Check in the Finished Write Set and tag all the writes say, Wn(2),
whose finish time is less than the start time of R;,(z) as WR-illegal in
the Finished Write Set.

(d) Check in the Finished Write Set and tag all the writes say, Wyn(z),
whose finish time is less than the start time of Wi (z) (Wi(z) is read
by the read operation Rj,(x)) as NO-illegal in the Finished Write Set.

(e) If any particular Wid in the Finished Write Set is tagged as illegal w.r.t

all the five legalities, remove from the Set.
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i. if the Wid removed from the Finished Write Set also exists in the
Finished Read Set (i.e., this Wid is read by one or more reads in
Finished Read Set and accordingly this Wid will be tagged to those
reads), then remove it from the Finished Read Set along with its

respective read.

It is clear from the data structures and the algorithm described that some of the
data items may have duplication even after taking care of some garbage collection.

However based on the application and the impl ation ique adopted, the

sets can be optimized. One way is by removing Wids which are illegal with respect
to all the five legalities from the Finished Write Set and Finished Read Set (In

the Finished Read Set, Wid along with the Rid is removed). Different types of

1 ion teck can be empl

d to arrive at an imized algorithm.
Due to the simplicity of understanding we have dealt the algorithm in this manner.

The algorithm can be tailored based on the requirements of an application.

In the next section we give the correctness proof of our algorithm. The proof

for each legality is given separately.

5.4 Correctness Proof

Proof of RR-legality:
Consider a read R,,(z). Recall that the eligible list w.r.t RR-legality (step 3a in the

algorithm) given to R;;(x) consists of all the Wids (

writes that are not tagged

as RR-illegal) from the Finished Write Set plus all the Wids in the Ongoing Write
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Set. We will need to show that every write that is RR-illegal for R(z) exists in
Finished Write Set tagged as RR-illegal. For a write Wi (z) to be RR-illegal for
Ry(x), we should have

Ry (2)[Winn ()] = Rae(2)[Wig()] = Rij(z) (5.1)

According to step 4b in the algorithm, when the read operation Ry (z) is fin-
ished (i.c., Ruo(x) read write Wyy(x)), Wid of Wn(x) is tagged as RR-illegal in
the Finished Write Set. Hence, a write which is RR-illegal for read exists in the

Finished Write Set tagged as RR-illegal or removed in garbage collection.

Proof of RW-legality:

Consider a read R;j(x). Recall that the eligible list w.r.t RW-legality (step 3b in the
algorithm) given to Ry;(x) consists of all the Wids (i.., writes that are not tagged
as RW-illegal) from the Finished Write Set plus all the Wids in the Ongoing Write
Set. We will need to show that every write that is RW-illegal for Ryj(x) exists in
Finished Write Set tagged as RW-illegal. For a write Wina(x) to be RW-illegal for

Ryj(z), we should have
Rat(2) [ Winn ()] = Wig(2) = Rij() (5.2)
According to step 2b in the algorithm, when the write operation Wyy(x) is fin-
ished, Wid of Wi () is tagged as RW-illegal in the Finished Write Set. Hence, a

write which is RW-illegal for read exists in the Finished Write Set tagged as RW-
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illegal or removed in garbage collection.

Proof of WR-legality:

Consider a read Ry;(x). Recall that the eligible list w.r.t WR-legality (step 3¢ in the
algorithm) given to R;;(x) consists of all the Wids (i.e., writes that are not tagged
as WR-illegal) from the Finished Write Set plus all the Wids in the Ongoing Write
Set. We will need to show that every write that is WR-illegal for Ry;(z) exists in
Finished Write Set tagged as WR-illegal. For a write Wyua(x) to be WR-illegal for
Ryj(z), we should have

Winn (@) > Rap () [Wig ()] = Big(z) (5.3)

According to step 4c in the algorithm, when the read operation Ray(z) is fin-
ished (i.e., Rap(z) reads write Wpe(x)) Wid of W (z) is is tagged as WR-illegal
Finished Write Set. Hence, a write which is WR-illegal for read exists in Finished

Wite Set tagged as WR-illegal or removed in garbage collection.

Proof of NO-legality:

Consider a read Ry;(x). Recall that the eligible list w.r.t NO-legality (step 3d in the
algorithm) given to Ry;(x) cousists of all the Wids (i.c., writes that are not tagged
as NO-illegal) from the Finished Write Set plus all the Wids in the Ongoing Write
Set. We will need to show that every write that is NO-illegal for Ryj(x) exists in

Finished White Set tagged as NO-illegal. For a write Wyn(z) to be NO-illegal for
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Rij(x), we should have
Winn () = Wyy(z) (5.4)

Rap(2) [ Wiy ()] = Rig(x) (5.5)

According to step 4d in the algorithm, when the read operation Ry (z) is finished
(i-e., Rop(x) reads write Wiq(z)), Wid of Wi (z) is is tagged as NO-illegal in Fin-
ished Write Set. Hence, a write which is NO-illegal for read exists in Finished Write

Set, tagged as NO-illegal or removed in garbage collection.

Proof of WW-legality:

Consider a read Ry;(z). Recall that the eligible list w.r.t WW-legality (step 3e in
the algorithm) given to Rj;(x) consists of all the Wids (i.e., writes that are not
tagged as WWe-illegal) from the Finished Write Set plus all the Wids from the
Ongoing Write Set. We will need to show that every write that is WW-illegal for
Rij(z) exists in Finished Write Set tagged as WW-illegal. For a write Wy, (z) to
be WW-illegal for Rj;(z), we should have

Wonn(@) = Wyg(2) — Bi(x) (56)

According to step 2c in the algorithm, when the write operation Wy(z) is
finished, Wid of Wy(z) is tagged as WW-illegal in Finished Write Set. Hence, a
write which is WW-illegal for read exist in Finished Write Set tagged as WW-illegal

or removed in garbage collection.



Chapter 6

Legalities in Causal Order

Consider a Cooperative application where the number of processors and data ob-

jects involved are small in number and the processors are geographically distributed.

[¢ fon among ( ing to the same ive activity) is
achieved by exchange or sharing of information (data) between co-workers. This
exchange or sharing of information is not only at the start and at the end of their
execution but during their execution also. Each processors involved in the coop-

is aware of their co-workers. They communicate through peer to

peer communication channels or through cooperation spaces (common repositories,
etc.) and the communication system is reliable. There exists a local clock with
each processor. The granularity of the data objects is assumed to be small and
simple. As the processors are geographically distributed, it is efficient to keep the
data distributed. We give in detail how the legalities (with respect to causal order)

can be implemented in a system with the above charecteristics.

o
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In this chapter, the Legalities are defined with respect to causal order, as de-
fined below. Section 4.2 gives the data structures required for the algorithm given
in section 4.3 Section 4.4 gives the correctness proof of the algorithm and discussion

is given in section 4.5.

6.1 Definition

For operations O and O, we define (i) O —; O' (process order) if both are executed
by the same processor, and in the order O and then O, and (ii) O =, O' (reads
Jrom relation) if O is a write, say W, and O' is a read R reading the value wiitten
by O, denoted as R(W). We define — as (= U —b,s)". where the asterisk («)

indicates transitive closure. We say that O precedes O' if O — O'.

Broken arrow and solid arrow in Figure 6.1 represents process order relation
and reads from relation respectively. Examples of illegalities w.r.t causal order for

different, reads Ry are shown below, referring to Figure 6.1:

(i) RR-illegality: Consider Ry, (z)[Wi1(x)] = Roa()[War ()] = Ryun(2)[Wai ()]
Read Ry () should not read the write Wi () because it is RR-illegal for
Ruun(z) due to the relation Ry (z)[Wii ()] = Was () =y Rsp(x)[Was (2)].

(if) RW-illegality: Consider Ruz(2)[Wiz(2)] = Wia(2) = Roua(2)[Waz(2)]-
Read Ry (2) should not read the write Wis(z) because it is RW-illegal for

Runa(2) due to the relation Wis(2) =y Riz(2)[Wia(2)] = Wia(2).

56



(iii) WR-illegality: Consider Wiy (x) — Ruy (z)[Wa1 (2)] = Runn()[Wir ().
Read Ry () should not read the write Wy (z) because it is WR-illegal for
Ryun(2) due to the relation Wi (z) —; Ru (@)[Wea ().

(iv) WWe-illegality: Consider Wi (2) = War(2) = R (@)Wt ())-

Read Rya(x) should not read the write Wi (z) because it is WW-illegal for

Run(z) due to the relation Wiy (z) =7 Rar(2)[Win(2)] = Wan ().

(v) NO-illegality: Consider Way(z) — Waa(2) =y Rar(2)[Waa(2)] from fig-
ure 6.1. For a read R (z) where Ryi(2) = Run(2) (Ra1(2) precedes Rua(2)),

reading Wi, (2) gives rise to a new-old inversion.

0 == Ry =R W) - Ry R > W

W, 0= = - W, O - - = RO = W, 0 - - =W, 0

R --->RY ---

W@ = A=W @ - 2= RP-\-3> R@--- =W, 0 - - - >W, -~ - R@

f

W@ - - =W 0- - - RY - -\ R®

W, 0= - = W@ - - —>R@- -
R(- == W o= 3 W0 - R - == W o - 2 W0 - - R

Figure 6.1: Example Showing Partial Interaction Between Different Processors

An execution is causally consistent if all the reads in that execution satisfy

all the five legalities. We note that, for certain defining relations, the absence of
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some illegalities may imply the absence of some other illegalities. Several interesting

interdependencies of illegalities for different of p are given in [15]. One
such interesting result igiven in [15] is that, for — as defined above (—; U )", if
all reads are WW- and WR-legal, then the execution is causally consistent. Another

interesting case is, if —» contains —, then

1. RR-illegality implies WR-illegality, and therefore WR = RR.

2. RW-illegality implies WW-illegality, and therefore WW = RW.

3. NO-illegality implies WW- and WR-illegality, and therefore WR vV WW =
NO.

Proof: Consider the case of RR-illegality, that is
R () [Win (2)] = Rea(2)[Wig(2)] = Ry (2)[Wonn ()] (6.1)
If — contains —y, then adding Wyun (z) ~rs Rab(w)[Winn ()] gives

Wana(2) v Rap (2)[Wonn (2)] = Rea(@)[Wpg(@)] = Beg(2) Wi (@)] - (6:2)
which is WR-illegal, that is
Wann(2) = Bea() W ()] = Ry (2)[Wonn ()] (63)

Hence RR-illegality implics WR-illegality. Others also can be proved in a similar

way. Several such implications have been given in [15].
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6.2 Data Structures

The algorithm requires the following data structures. All the sets described below
are maintained locally by each processor. The contents of the Tllegality Set and the
History Set of individual processors differ. Each write creates a version. Whenever

a write operation is started, it is notified to all the processors involved in the ex

-
tion. As the write operation on a particular object is completed, it is notified to all
the processors involved in the execution. Writes executed by a particular processor
are kept locally except that the id of that write is notified to other processors. So

the actual data resides with the owner of the write.

The read request is assumed to be of two parts. The first part of the read is for
getting a list of writes (Wids) satisfying a particular legality and the second read
is to actually read a write that has been selected from the list of Wids given. For
example, consider a read Ry; () by processor i which has picked a write Wyn () from
the eligible list. The system supports or responds to this read request by collecting
the data (write) from processor m. Along with the data, the History Tree and
the Tllegal Write List attached to that write (Wyua(z)) is also given. The History
Tree (HT) and the Illegal Write List (IWL) are explained later. This information
is provided to processor i because all the illegal writes (w.r.t all the five legalities
up to the write Wy, (x)) for processor m also holds good for processor i due to the
transitivity nature of the causal order (p = —; U —,)*. Based on the History Tree
and the Illegal Write List provided by processor m, appropriate sets of processor i

are updated as explained in the algorithm below.



1. Ongoing Write Set: This set contains the Wids of all the ongoing write oper-

ations ( a write operation that has started but not yet finished). A Ongoing

Write Set is maintained by each of the involved in the

The structure of the Ongoing Write Set is similar to that of the Master Set.
For example, when a write Wi, (z) (started) is notified to processor i by pro-
cessor m, then processor i enters the Wid of Wy, (z) in the m-th row of its

(processor i) Ongoing Write Set.

Master Set: This set contains the Wids of all the writes executed by all the

g

processors or in other words it can be assumed to be the database of all the
writes. A Master Set is maintained by each of the processors involved in
the execution. Figure 6.2 shows the structure of Master Set. For example,
when a write Wy, (z) (finished) is notified to processor i by processor m, then
processor i moves the Wid of Wi,(x) from its (processor i) Ongoing Write
Set to the m-th row of its Master Set.

Pid

Figure 6.2: Master Set

3. History Set (HS): A History Set is maintained by each of the processors
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involved in the execution. The History Set of a particular processor k contains
the ids of all the read and write operations (Rid and Wid, respectively) issued
by the processor k on all the objects. The structure of the History Set is
shown in Figure 6.3. The content of the History Set of each processor differs.
For example, if a write or a read operation is executed by processor ¢, then
the id of the operation is entered in the i** row of the History Set of processor
4. Each slot contains two parts. If part 1 of a slot contains a wrile operation,
part 2 of that slot is empty. If part 1 contains a read operation, then part
2 contains the id of the write read by the read operation. HS[i] represents
the History Set of processor i. ‘In addition to the above information, every
write (part 1 or part 2 of the History Set) operation in the History Set of any
processor has a History Tree and a Illegal Write List.
Part1

Fia K
R, @ I

W@ i Part 2

i

Figure 6.3: History Set

History Tree and Tllegal Write List: For every write (i.c., cither in part 1 or
part 2) in the History Set of any processor, some information has to be stored.
This information is stored in History Tree and Illegal Write List. Each such
History Tree exists for each of the writes mentioned above. The History Tree
of a particular write is nothing but all the causally preceding operations of that
write. History Tree is represented as HT. HT[W(2)] represents History Tree

of the write Wix(z). The Ilegal Write List of a particular write say Wix(z)
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contains all the Wids present in the Illegality Set of processor i (except those
ids w.r.t object z) when the write Wi (r) is executed by processor i Illegal
Write List is represented as IWL. TWL{W(z)] represents the Tilegal Write
List of the write Wix(x). For example, consider the History Set of processor
1 from Figure 6.1 after the write Wiy(2) is executed. The History Set looks

like as shown in Figure 6.4.

As shown in Figure 6.4, all the causally preceding operations of a particular

write form the History Tree of that write.

]

Tilegality Set: Each such set is maintained locally by each of the processors
involved in the execution. This set contains the writes which are tagged as
illegal w.r.t any of the legalities discussed. Any wrie in the set may be tagged
as illegal w.r.t to more than one legality. Figure 6.5 shows the structure of
Illegality Set. X* row of the Illegality Set of processor m contains all the

illegal writes w.r.t object z.

In the next section we give a step by step description of the actions to be taken
when a write or read operation is executed. The algorithm gives in detail how a

processor updates its sets when a particular operation is executed.

6.3 Algorithm

When a write operation Wix(z) (i.e., write operation on object z) is issued by
processor i, it is notified to all the processors. All the processors enter this

write into their respective Ongoing Write Set as soon as they are notified of
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Part1

R, ()

W, (x)

R, @

W, @)

W, @

Part2

W, ®)

Rsi@

!

W, @

history tree of the write W,(z)

Figure 6.4: Example History Trees
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Oid

Figure 6.5: Tllegality Set
this write. Processor i enters the Wid of Wix(z) into its Ongoing Write Set

2. When a write operation Wix(x) (i.e., write operation on object z issued by

processor i) is finished, it is notified to all the processors.

(a) All the processors move the Wid of this write from their respective On-
going Write Set to their Master Sets as soon as they are notified of this
write.

(b) Processor i enters the Wid of W;(z) into its Master Set and History Set
and removes this Wid from its Ongoing Write Set. After entering into
the History Set, processor i forms the History Tree (HT) and the Tilegal
Write List (IWL) of the write Wi(z).

i. The History Tree is nothing but all the ids present in the History Set
along with any other History Trees of the writes. Looking back at
Figure 6.4, the HT[IWy5(2)] contains all the contents of the History
Set (in the same order) along with the History Trees of the writes

Wsi(z) and Wys(2). Once the History Tree of Wi(z) is formed and
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stored, all the other History Trees of the previous writes can be

removed.

ii. Now the Tllegal Write List of the write Wi(z) must be formed.
The Tlegal Write List of the write Wig(z) (ILW[Wik(2)]) contains
all the Wids (except those Wids w.r.t object ) in the Illegality Set
of processor i. Both the History Tree and Tllegal Write List of the
write Wik(x) is formed because, this information should be provided

to any processor who reads this write.
{c) Check the History Tree of the write Wix(z) and

i. collect all the read operations on 7, say, Rpy(z) that transitively
precede Wi(z) and tag the read operations as RW-illegal in the

Tllegality Set of processor i.

i. collect all the write operations, say, Winn (2) that transitively precede
Wik(w) (including Wi (), if it exists) and tag them as WW-illegal
in the Tllegality Set of processor i.

(The above two checkings are done for all the operations that lie
between the previous write on z by processor i (if it exists) and
Wik(z).)

3. If a processor j request to read a write Wi (), go to step 5, else

4. When a processor j issues a read request Rj,(z), a cligible list is formed from
which Rj,(z) picks a write and reads. As all the information is available

locally with each processor (i.e., the Master Set, Ongoing Write Set and the

Illegality Set), the eligible list can be formed locally by a processor. If the



eligible list does not contain any value to be read, then a message is sent
to the processor saying that there are no values to be read satislying the
requested criterion. Requesting for versions satisfying more than one legality
can be satisfied by providing different eligible lists to the read operation (one

for each legality criterion),

(a) RR-legality: The cligible list will contain all the write operations on
object # in the Master Set and Ongoing Write Set of processor j minus
the writes on object = that are tagged as RR-illegal in the Illegality Set

of processor j.

(b) RW-legality: The cligible Tist will contain all the write operations on
object z in the Master Set and Ongoing Write Set of processor j minus
the writes on object & that are tagged as RW-illegal in the Illegality Set

of processor j.

=

‘WR-legality: The eligible list will contain all the write operations on
object z in the Master Set and Ongoing Write Set of processor j mi-
nus the writes on object z that are tagged as WR-illegal in the Tllegal-
ity Set of processor j. For example, consider the read Ris(y) (in the
Figure 6.1) on object y requesting WR-legal values. The eligible list
(which is formed locally by processor 1) given to the read will contain
Waa(y), War(y), Waa(y) and Wi (y), assuming operation Wi(y) has not
been executed yet.

(d) NO-legality: The eligible list will contain all the writes operations on

object z in the Master Set and Ongoing Write Set of processor j minus
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the writes on object & that are tagged as NO-illegal in the lllegality Set

of processor j.

)

WW-legality: The eligible list will contain all the writes operations on
object & in the Master Set and Ongoing Write Set of processor j minus
the writes on object & that are tagged as WW-illegal in the Nlegality Set
of processor j. For example, consider the read Ry(x) (in the Figure 6.1)
requesting WW-legal values. Accordingly the list given to the read will

contain Wy (z), Was(z) and Way(z).

Note: The merbers of the eligible list continue to be eligible until the
read operation is over. However one or more writes may be added to the
Ongoing Write Set during the interval of the read getting the eligible list
and selecting a write to read. This can be taken care of depending on the
requirements of the application and the users involved. As mentioned
in the algorithm, several sets (e.g., Master Set, Ongoing Write Set and
Tllegality Set) need to be accessed to get the eligible list. The order in
which these sets are accessed is first the Tllegality Set, then the Ongoing

Write Set and then the Master Set.
5. When Ry, () picks a write Wik(z) from the eligible list given,

(a) Get the write (Wix(x)) from processor i and give it to processor j along
with the History Tree and Tllegal write List.
(b) Enter the Rid of Ry,(x) and Wid of Wy(x) in HS[j]. Store the History

Tree of Wik(x) in the HT[Wy ()]

67



(¢) Scan the process order tree (which can be constructed from the History
Set of processor 7) of Ry (z) and collect all the read and write operations
on object z that precede Ry, (z). This scanning of the process order tree
is done for all the operations between the previous read operation on «
(if it exists) by processor j and Ry, (z).

i. Affects RR-legality:
For cach read operation collected, tag its respective Wid as RR-
illegal in the Illegality Set of processor j,

it Affects WR-legality:
For each write operation collected, tag its Wid as WR-illegal in the
Mlegality Set of processor j.

(d) Scan the reads from relation tree of Ry, (x) (nothing but the HT(Wi(z)])
and collect all the read and write operations on object z that precede
Wik(x). The reads from relation tree is nothing but the history tree
provided by the processor i along with write Wix(z).

i. Affects RR- and RW-legality:

For each read ion collected, tag its respective Wid as RR- and

RW-illegal in the Tllegality Set of processor j,
i, Affects WR-, NO-, WW-legality :
For each write operation collected, tag its Wid as WR-, NO-, and

‘WW-illegal in the Illegality Set of processor j,

6. Check the Tllegal Write List of the write Wix(z) and update accordingly in

the Illegality Set of processor j. Any write in the tagged list tagged as illegal
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w.r.t a particular legality should also be tagged as illegal in the Tllegality Set

of processor j.
7. Empty the Tllegal Write List of the write Wi(z).

Note: Execution of a read operation on a certain object = may cause some other
versions on any object to become illegal w.r.t any of the legalities discussed, to the
processor that executed the read operation. This is due to the reads from relation

where read Ry, (x) reading from the write Wix(z).

Tree Scanning: In the algorithm discussed above, we use scanning of a tree in
order to identify some illegal writes and update the appropriate sets. The main idea
behind this scanning is to identify some of the transitively preceding operations.
For example consider the Figure 6.1 and the read operation Rys(x). When the
read operation Ry(z) is executed (i.e., Rys(z) has read the write Wis(z)), then
the tree of Ry4(z) has to be scanned for any preceding operations that might affect
the legalities for processor 1. The read operation Rys(x) has two branches in the
tree, one is the process order tree and the other is the reads from relation tree or the
history tree provided by processor 4 to processor 1 along with the write Wys(z). The
tree (including both process order tree and reads from relation tree) of an operation
of a particular processor i can be extracted from the History Set of processor i.
Assume that the tree is scanned from left to right. The Figure 6.6 shows the tree of
the read operation Ry4(z). For instance the tree of Ry4(z) is scanned to collect all
the WW-illegal writes w.r.t object 7. So once the write operation Wi () is reached

there is no need for scanning the tree further beyond the write Wy(z) because
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Wi () is already tagged as WW-illegal for processor 1.
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Figure 6.6: Scanning a Tree

In the next section we give the correctness proof of our algorithm. The proof

for each legality is given separately.



6.4 Correctness Proof

Proof of RR-legality:

Consider a read R;j(z). Recall that the eligible list w.r.t RR-legality (step 4a in
the algorithm) given to R;;(z) consists of all the writes on object z in the Master
Set and Ongoing Write Set minus the writes that are tagged as RR-illegal in the
Illegality Set of processor i. We will need to show that every write that is RR-illegal
for Ry;(z) is tagged as RR-illegal in the Illegality Set of processor i. For a write
Winn(x) to be RR-illegal for Ri;(z), we should have

Rt (2)[Wonn (2)] = Rae(3)[W(2)] = Fij(z) (6.4)

Three cases arise:

case I Ra(@)[Wina(@)] =i Wan(2) = Rin(2)[Wig(2)]

Then, according to step 5¢(i), when the read operation Rix(z) is executed, Wid of
Wi () is tagged as RR-illegal in the Tilegality Set of processor i.

case 2 Rap(2)[Winn (2)] =i Wao(®) =77 Rin(2)[Wao(2)]

Then, according to step 5d(i), when the read operation Rey(x) is executed, Wid of
Winn(2) is tagged as RR-illegal in the Illegality Set of processor i.

case 8 Rap (@) [Winn (2)] = Rae(@)[Wa(@)] = Wio(2) =y Rur(2)[Wio(2)] —
Rij(x)

Then, according to step 6, when the read operation Ry(z) is executed, Wid of

Wipa(z) is tagged as RR-illegal in the llegality Set of processor i.

71



Proof of RW-legality:

Consider a read R;j(z). Recall that the eligible list w.r.t RW-legality (step 4b in
the algorithm) given to Ry(z) consists of all the writes on object & in the Master
Set and Ongoing Write Set minus the writes that are tagged as RW-illegal in the
Tlegality Set of processor i. We will need to show that every write that is RW-illegal
for Ryj() is tagged as RW-illegal in the Illegality Set of processor i. For a write
Wona(z) to be RW-illegal for Ry(x), we should have

Rap () [Winn ()] = Wag(2) = Rij(z) (65)
Three cases arise:

case I: Rat(2)[Wona ()] = Wir(z) =i Rij(w)

Then, according to step 2a, when the write operation Wi () is executed, Wid of

Winn(z) is tagged as RW-illegal in the Hlegality Set of processor i.

case 2 Rt () [Winn (2)] = Wag() =27 Rip()[Wig(2)] = By ()

Then, according to step 5d(i), when the read operation Rq(x) is executed, Wid of
Winn(z) is tagged as RW-illegal in the Hlegality Set of processor i.

case 9 Rap(2)[Wonn ()] = Wig(x) = Wii(2) =4 Rip(2)[ Wi (2)]

Then, according to step 6, when the read operation Ry (z) is executed, Wid of

Win(x) is tagged as RW-illegal in the Tlegality Set of processor i.

Proof of WR-legality:
Consider a read Ry(z). Recall that the eligible list w.r.t WR-legality (step 4c in

the algorithm) given to Ry(x) consists of all the Wids on object « in the Master



Set and Ongoing Write Set minus the Wids that are tagged as WR-illegal in the Tl-
legality Set of processor i. We will need to show that every write that is WR-illegal
for Ry(x) is tagged as WR-illegal in the Tllegality Set of processor i. For a write
Wian() to be WR-illegal for Ryy(z), we should have

Wonn (%) = (%) [Wpa ()] = Rij() (6.6)

Three cases arise:

casel: Winn(a) = Rin(2)[Wiq(2)] = Ris(a)

Then, according to step 5¢(ii), when the read operation Ry (2) is executed, Wid of
Winn(z) is tagged as WR-illegal in the Illegality Set of processor i.

case 2 Wonn(z) = Wya(z) =rs Rip(2)[Wia()] = Ri(x)

Then, according to step 5d(ii), when the read operation Ry (z) is executed, Wid of
Wonn(z) is tagged as WR-illegal in the Illegality Set of processor %

case & Winn(2) = Rap(2)[Wpg (2)] = Wik(2) =y Rap(2)[Wik(2) = Rij(r)
Then, according to steps 6, when the read operation Ry,(z) is executed, Wid of

W () is tagged as WR-illegal in the Illegality Set of processor i

Proof for NO-legality:

Consider a read Ryj(x). Recall that the eligible list w.r.t NO-legality (step 4d in
the algorithm) given to Rj;(z) consists of all the writes on object z in the Master
Set and Ongoing Write Set minus the writes that are tagged as NO-illegal in the
Tilegality Set of processor i. We will need to show that every write that is NO-illegal

for Rj(x) is tagged as NO-illegal in the Illegality Set of processor i. For a write
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Winn() to be NO-illegal for Ry(x), we should have

Wann () = Wig(@) =5 Ru(z) = Ryj(z) 6.7

Two cases arise:

case i Winn(®) = Wino(@) —rs Rin(@)[Wino(2)] = Ruj(z)

Then, according to step 5d(ii), when the read operation Rjx(x) is executed, Wid of
Winn(z) is tagged as NO-illegal in the Tllegality Set of processor i.

case 2 Wonn(2) = Wea() —rs Rap(2)[Wea ()] = Wig(2) =5 Rin(2)[Wag(2)] —
Rij(z)

Then, according to step 6, when the read operation R(z) is executed, Wid of

Wina(2) is tagged as NO-illegal in the Illegality Set of processor i.

Proof for WW-legality:

Consider a read Ry(z). Recall that the eligible list w.r.t WW-legality (step 5d in
the algorithm) given to Ry;(x) consists of all the writes in the Master Set minus the
writes that are tagged as WW-illegal in the Illegality Set of processor i. We will
need to show that every write that is WW-illegal for Ry;(x) is tagged as WW-illegal
in the Illegality Set of processor i. For a write Wi, () to be WW-illegal for Ry;(x),

we should have

Wann () = Wyg(z) = Rij(x) (6.8)

Three cases arise:
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case 1: Won () = Wik(e) = Ry ()

Then, according to step 2b, when the write operation Wi(z) is executed, Wid of
Win(z) is tagged as WW-illegal in the Illegality Set of processor i.

case 2 Wen(#) ~ Wano(z) ~r Bi(@)[Wono(2)] = Ris(2)

Then, according to step 5d(ii), when the read operation R (z) is executed, Wid of
Wian(2) is tagged as WW-illegal in the Illegality Set of processor i.

case 3: Win(x) = Wap(2) = Wig(2) —4rs Rin(2)[Wpe(2)] = Ryj(2)

Then, according to step 6, when the read operation Ris(2) is executed, Wid of

Winn(z) is tagged as WW-illegal in the Illegality Set of processor i.

6.5 Discussion

The algorithm given above is a general one with a push based scheme. Different ap-
plications may impose different requirements on the system. A push based scheme
is one where any changes in a particular data is propagated to all the users involved
in that execution. However different methods can be easily achieved without much
modification to the algorithm. Consider a pull based scheme where in the notifi-
cation of any changes in a particular data is propagated only to the users who are
interested or who have subscribed for it. This can be achieved in the algorithm
by having a list of subscribers for each object and notifying accordingly. Another
requirement may be of finding out if a certain write has been read by anybody.
This can be achieved in the algorithm by making each processor to keep track of
who is reading its writes. Recalling from the algorithm, a read request is satisfied

by providing suitable versions. However, what if those suitable versions are not



available at that moment and need to be provided when available. The algorithm
can accommodate such requirement in different ways. Hence different requirements

can be achieved with little modifications to the algorithm.
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Chapter 7

Legalities in Mobile Agent

Environment

Recent years have seen an explosion in the amount of information available in clec-

tronic form, forcing the pers of information isition systems to re-evaluate
their model of the world. Vast amounts of electronic information are freely avail-
able at a multitude of sites to anyone with access to the Internet. The problems
of searching for information on the WWW are familiar to every web surfer: slow

search response time, irrelevant links, broken links, etc,

The location of information on the WWW today requires the use of one of the
many “search engines” available. The continuing rapid expansion of the WWW
leads to three related problems with current search technology: currency, bottle-

necks and coverage. Increasing use of the web is likely to exacerbate these problems
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and hence different solutions to solve these problems are being proposed. One so-
Tution proposed in [12] is to distribute the indexing process and the use of mobile,
collaborative agents to search the information. How the indexing process is dealt
with is not the subject of this thesis but we address the aspects of interaction (or
dialogue) between agents which is at the core of their system. The mobile agents
are used to search and collect the information. This can be thought of as browsing
in a collaborative fashion or cooperative agent based solution for information gath-
ering. Hence we introduce the legality concept to restrict the interaction between
the agents. These restrictions are based on the user requirement and the applica-

tion in the form of legalities.

The algorithm explained in the previous chapter is based on a system where
all the participating processors are aware of each other and the communication

medium is message broadcasting. Any change with a particular processor is noti-

fied to all the others immediately and the assumption made is that no messages

are lost. In this chapter, the legalities (defined in chapter 4) are used to address

a different envi and in an i ion different from the one given in

chapter 4. Consider a system where the participating sites are not aware of each

other due to the dynamic nature of the sites or due to the large number of the sit

involved, etc. One such system can be thought of as WWW. In this chapter, we
tune our algorithm to accommodate such systems by relaxing some of the previous
assumptions. The legalities defined with respect to causal order (refer to chapterd,

sectiond.3) are considered.
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Mobile agent is a piece of mobile code and associated data which can move from
one machine to another. Each agent has a unique identifier which can be used to lo-
cate and communicate with the agent at any time. These mobile agents (hopefully)
meet other agents of similar interest and exchange information. Agents represent
real people or organizations in cyberspace. They are able to autonomously act on
behalf of their human counterparts and can negotiate with each other in order to

achieve their goals.

Consider a system composed of a set of processors (Proc:, Proc,, Procs, etc.)
which interact with each other by reading and modifying (writing) shared objects
(2, 9, 2 etc.). The system supports two primitive operations: read and write. Two

types of mobile agents are introduced into the s

em: a publicist and a ferret
[12]. Every processor, its operations (read and write), and the mobile agents are
assigned unique identifiers (Pid, Rid, Wid, or Aid respectively). Whenever a read
operation is to be executed, a ferret is fired to collect the required information. In

is fired to advertise the write.

a similar way, when a write is executed, a publici
Along with the Rid and the Wid of the read and the write operations, the respective
agent id is also tagged to these operations. Ferrets and publicists keep track of all
the relevant agents they meet in a list called Meta Data List (MDL). Ferrets may
be timed to return home after collecting the required information. Unlike ferrets,
publicists have no need to go home at the end of their mission. They can be allowed
to expire after certain time. The actual writes reside at the owner sites and any
exchange of information between the agents is w.r.t ids of the writes and not the

actual values of the writes. By relying simply on chance encounters and allowing



sufficient time, ferrets and publicists with similar interests will meet and be able to

exchange information.

The system responds to the read request by firing a ferret to collect the required
information. The ferret meets other agents (be a publicist or a ferret) and collects
the required information. The ferret returns to the processor and presents to the
read with a list of eligible Wids satisfying the requested legality criterion. The
reader can choose any Wid from the list and update its sets based on the informa-

tion collected and the write that was chosen by the read.

In the next section we give the data structures and a defailed algorithm satis-
fying the five legalities with respect to causal order in such an environment. The
legalities are w.r.t the information gathered by a particular processor and not w.r:t

the whole system.

7.1 Data Structures

This algorithm requires the following data structures:
1. Master Set (MS)
2. History Set (HS)
3. Mllegality Set

4. History Tree (HT) and The Illegal Write List (TWL)



5. Meta Data List (MDL)

All the data structures given above are similar to the ones explained in chapter 4
(refer section 4.3.1) except for one additional data structure called the Meta Data
List (MDL). All the sets given above are maintained locally by each site except
for the MDL. Meta Data list is used by an agent to keep track of all the relevant
agents (ignored agents are not entered into the MDL) it meets. Each fired agent
maintains such list and contains the ids (along with Wids) of the agents it meets,
The MDL of a publicist is destroyed when the publicist dies (or its time expires)
whereas the MDL of a ferret is destroyed after the ferrel returns to the site and
appropriate sets are updated. In the next section we give the algorithm description
in detail which explains the actions of a ferret or a publicist and how they should
interact with others under certain given conditions. PP} represents a publicist P}

fired from processor P,. P;F; represents a ferret I} fired from processor Pi.

Before going to the step by step details of the algorithm, we give an informal
description of the algorithm. The steps of the algorithm gives the actions that
are to be performed by a processor or by the mobile agent. The algorithm gives
the interactions between the agents and what type of information that has to be
exchanged when an agent meets another agent. These interactions are between two
publicists or two ferrets or a publicist and a ferret. The role of a ferret is to collect,
as much legal information ( Wids along with the Aids) as possible and that of pub-
licist is to advertise a write and meet other agents of similar interest and exchange
the required information (Wids along with the Aids). Only the Wids (along with

Aids) are collected by a ferret or a public

There is no exchange of partial history
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between the agents at this time. The ferret does not tag any Wid as illegal while in
the process of meeting other agents and collecting the required information. The
ferret returns back to the processor/site and the read picks a write from the eligible

list.

After the actual write is read by the read, the reads from relation is established
and then the History Tree and the IWL of the write are collected. Based on the
History Tree and the TWL, the processor/site updates its Illegality Set. An agent
A can ignore another agent B (when met) if agent A has met agent B (directly
or indirectly) before or agent A has met a mote recent agent than agent B. This
can be done by checking the information present with both the agents. A ferret
carries with it two types of data: one is the af-legal and a/-illegal lists (check the
algorithm for a detailed explanation) and the other is the MDL. The af-legal and
af-illegal lists are tagged to the ferret at the beginning and the data in the MDL
gets accumulated as the ferret meets other agents. The a3-legal and a-illegal lists
are carried along with the ferret to make sure that the ferret does not meet with
agents whose writes are already tagged as legal or illegal. The ferret keeps track of
all the relevant agents it meets in the Meta Data List (MDL). Hence the ferret can
make sure not to meet with an agent with whom it has already met. The ids in the
MDL are provided to other agents (when met) who are interested. If a ferret likes
to know more information or double check with a particular agent, it can do so by

contacting that agent directly.

82



Two types of meta data are carried along with the publicist. One is the History
Tree tagged at the beginning (when the publicist is fired) and the other is Meta
Data List (MDL). The HT contains all (w.r.t to the processor which issued that
write) the transitively preceding operations of the write that is advertised by the
publicist. The HT can be used by other agents to determine whether they have met
this agent (directly or indirectly) before and which Wids are relevant (in order to be
collected) for them. The Meta Data List is empty at the beginning. Appropriate
data (i.c., the Aids and the corresponding Wids) is entered into the MDL only
when the publicist meets other agents and exchange some information. The Wid

- advertised by a publicist and the Wids in the MDL; of the publicistare w.r.t to
the same object. Apart from advertising its own write, a publicist PP, is also
advertising other publicists (listed in the MDL of P,P}) involved in the same object
as PPj. Hence, if an agent meets publicist PP, it will also be made aware of
other agents who have similar interest (w.r.t same objects) as P, P;. Therefore after
meeting some relavent agents, the publicist PP, has more information to give other
agents (of similar interest) than at the beginning. In the next section we give a

step by step explanation of our algorithm.

7.2 Algorithm

1. When a write operation Wi(x) (i.e., write operation on object z issued by
processor i) is executed,

Actions to be taken by the processor
(a) Processor i enters the Wid of Wi(z) into its Master Set (MS) and History
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Set (HS).

(b) Check the History Set of processor i, and collect all the read and write
operations on object z, say Ryq(2) and Wy, (x) that transitively precede
Wik(z), (check also in the History Trees of the writes in the HS of pro-
cessor i)

Note: The above two checkings are done for all the operations that lie
between the previous write on z by processor i (if it exists) and Wi(z).

i. For each read operation Ry,(x) collected, tag its respective Wid as
RW-illegal in the Illegality Set of processor i.

ii. For each write operation Wi(z) collected, tag its Wid as WW-
illegal in the Tiegality Set of processor i.

(¢) Form the History Tree (HT) and the Illegal Write List (IWL) of the
write Wix(z) (refer to chapter 4 for a detail explanation),

i. History Tree (HT) of the write Wy (z) contains all the read and write
operations from the History set of processor i. After forming the HT
of the write Wi (z) and stored, the History Trees of other writes are
removed.

ii. Tllegal Write List (IWL) contains all the Wids from the Illegality Set
of processor i (except those Wids w.r.t object x). The HT and IWL
are tagged to the actual data while entering the write Wi (z) into
the Master Set of processor i.

(d) Fire a mobile agent P.P; (publicist) advertising the write Wig(x). The

agent carries along with it the HT of W(z). Actions to be taken by
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the mobile agent

() 1f P,P; meets an agent say P, P, (publicist) advertising a write w.r.t the
same object as PP (i.e., object ),

i, If the Aid of PP, exists in the MDL of PP, then ignore the pub-

licist Py, Py.

If the Aid of P, P, does not exist in the MDL of P;P;, but if the
Wid advertised by P, P, exists in the HT of P;P;, then ignore the
publicist P, Py.

iii. If the Aid of P,, P, does not exist in the MDL of P;P; and Wid of
the writc advertised by P, P, does not exist in HT of P,P;, then
A. PP, enters the Aid of P, P, in its MDL along with the Wid

advertised by PpPy.

=

Check the HT of P,,P, and collect all the Wids on object z and
enter them in the MDL of P;P; along with the corresponding

Aid.

a

. Compare the MDL of P,P; and P,,P, and copy the Aids (into
the MDL of P,P;, along with the Wid being advertised) that are

present in P, P, but not present in the MDL of P,P;.

iv. If P,P; meets an agent say P,F; (publicist) advertising a write w.r.t
a different object than the publicist P;P;, but there exists Wid w.r.t
object z in the HT of the write advertised by P,P;, then

A. If the Aid of P,P, exist in the MDL of F;P;, then ignore the

agent P,P;.



=

If the Aid of P,P; does not exist in the MDL of P, P;, but if the
Wids w.r.t object = (found in the HT of P,P;) exist in the HT

of P,P;, then ignore the agent P, P

o}

If the Aid of P,P, does not exist in the MDL of P;P; and the

Wids w.r.t object z (found in the HT of P,P,) does not exist in

the HT of PP}, then

o Copy the Wids (w.r.t object z found in the HT of P,P,) along
with the corresponding Aid in the MDL of P;P;.

“

. If P,P; meets an agent say P.P; (publicist) (both the publicist are
fired from the same processor), then
A. If both the agents are advertising the same objects, then com-
pare the MDLs of both the publicists and exchange the Aids
(along with the Wid being advertised) that are present with one
agent but not with other.
B. If both the agents are advertising different objects, then ignore

the agent PP,.

2. When a read operation Ry (x) is issued by processor j requesting for af-legal
Wids,
Note: af can take any of the five legalities discussed (i.c., RR, RW, WR,
NO, or WW).
(a) Fire a mobile agent P;F, (Ferret) to get the requested information.
Actions to be taken by the mobile agent

(b) The agent carries with it all the af-legal (taken from the MS of P;
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excluding those tagged as af-illegal in the Illegality Set of P;) and af-
illegal (taken from the Tllegality Set of P;) Wids w.r.t object z.
(c) If agent P;F,, meets an agent P; P, (agent advertising a write w.r.t object
z, agents P;Fy, and P, P, are from the same processor j), then
i. Enter the Wids (along with their respective Aids) present in the
MDL (Meta Data List) of P;P, into the af-legal list of P;F,, except
those already tagged as of-illegal or already present in the a-legal

list or MDL of PjF,,.

ii. Enter the Wids (along with their respective Aids) present in the
MDL and af-legal list of F; Py, but not present in the MDL of P;P,
into the MDL of P,P,.

(d) 1f agent P;F,, meets an agent PP, (agent advertising a write w.r.t a

different object than the one required by P;E,), ignore the agent PP

() If agent P,F,, meets an agent P,Py (agent advertising a write Wi(x)

written by processor a), then
i. If the Wid of the write W,;(z) exists in the af-legal or of-illegal
list, then ignore the agent P,P.
ii. If Aid of P,P, does not exist in the MDL of P;F,, and Wid of the
write Wyi(2) does not exist in af-legal and af-illegal list, then
o Agent P;F,, collects all the Wids (except those already present
in the a/f-legal and af-illegal list) w.r.t object z from the HT
of W,;i(z) and are entered into the a3-legal list of P;F,,.

(£) 1f agent P;F,, meets an agent P,F} (agent looking for information on
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object z and required to satisfy any legality criterion), then
i. Compare the MDL, of-legal lists of P;F;, and P,F; and exchange
the Wids (along with their respective Aids) that are present with
P,Fy, but not present with P,F, (excluding those present in af-
illegal list).
(g) If agent P;F, meets an agent P,F,, (agent looking for a different data

object), then ignore the agent Py Fr.

3. When agent P;Fy, returns to the site after collecting the information,

Actions to be taken by the processor

(a) Agent P;F,, presents to the read Rjx(x) a list of eligible legal Wids (w.r.t
requested legality criterion and object 1), i.c., the a/f-legal list is given
t0 Rjx(x), then

i. All the newly tagged Wids to the af-legal list are copied into the

MS of processor j.

If Rji(x) picks Wy(x), then the actual data is read along with its
HT and IWL. The HT of W,(x) is stored in the MS of processor
along with the write W, ().

(b) Rid of Rye(x) and Wid of Wy,(x) are entered into the History set (HS)
of processor j.

(¢) Check the TWL of W,(x) and update accordingly in the Illegality Set
of processor j. Any Wid in the IWL of Wp,(z) tagged as illegal w.rt a
particular legality, should also be tagged as illegal in the Tllegality Set of
processor J. Delete the IWL of Wp,(z).
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(d) Scan the HS of Rjx(x) or process order tree and collect all the write and

read operations on object z that transitively precede Rjx(z).
Note: This scanning is done for all the operations between the previous
read on z (if it exists) by processor j and Rjx(z).
i. For each read operation collected, tag its respective Wid as RR-
illegal in the Tllegality Set of processor j.
ii. For each write operation collected, tag its Wid as WR-illegal in the
Tllegality Set of processor j.

(e) Scan the History Tree of Wpy(z) or reads from relation tree of Rjx(x)
and collect all the read and write operations on object & that transitively
precede Rji(z),

i. For each read operation collected, tag its respective Wid as RR- and
RW-illegal in the Illegality Set of processor j.
ii. For each write operation collected, tag its Wid as WR-, NO-, and

WWeillegal in the Tllegality Set of processor j.

7.3 Correctness Proof

When an operation is executed, it is clear from the step by step description of
the algorithm given above that certain actions are performed by the processor and
certain other actions by the mobile agent. The steps performed by the processor

are same as the previous algorithm (given in the algorithm of chapter 6). So the

proof for these steps is similar to the one given in chapter 6. However as seen from

the description of the algorithm. the role of the mobile agents is to go and meet
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other agents and collect information (relevant information). The mobile agents do
not tag any Wid as illegal w.r.t any of the five legalities during their (mobile agents)

life time. Therefore this part of the algorithm need not be proved.

7.4 Discussion

In the previous sections, we have seen how the agents (ferrets and publicists) behave
under certain conditions and in a particular type of system. We have addressed the
legalities in a system with just ferrets and publicists. Depending on the require-
ments of the application, a more complex system with different agents for different
roles can be considered. One such agent called a “guru” [12] can be introduced into
the system to increase the probability of sufficient like minded agents to meet. The

role of a guru is to remember which agent had which interest and direct like minded

agents to meet and negotiate. Another ibility is to introduce the concept of

cloning the agents to reduce the load on a single agent.

In the next chapter we discuss in general the applicability of the legalities in

various scenarios.



Chapter 8

Discussion And Conclusions

In this thesis, consi of cooperati ions in terms of legalities of the read
operations is defined. Two defining relations (p) are taken into consideration: i)
real-time order (p =—»), ii) causal order (p = (— U ~+,7)*). Detailed algorithms
and their respective correctness proofs for each defining relation for selecting appro-
priate versions (writes) for each legality are also given. The three algorithms cor-
respond to three different environments - centralized, distributed and mobile agent
setups. Algorithms are given for two different types of systems: i) One in which the
cooperating users are aware of each other and the communication medium is mes-

sage broadcasting, and if) The other environment where the participating users are

not aware of each other and collecting and notification of information is through the
mobile agents. The approach and the algorithms developed in the thesis will help
in providing different levels of system support for cooperative executions. Some

illustrations are given in the following sections.
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8.1 Document Authoring

The underlying theme in the notion of consistency presented in the thesis is that,
if all the reads are consistent, that is, legal in all respects (completely-legal), then
all the writes are ‘consistent.” Therefore, each read operation may simply want a
completely-legal set of writes instead of specifying one or more legalities explicitly;
this can be obtained by the intersection of the eligible sets for each legality. Further-
more, depending on the semantics of the variables and/or cooperative execution,
certain legalities may not be essential with respect to some variables. (For exam-
ple, any version of section z may be sufficient for writing section y in a document
authoring environment). The system can keep track of such properties and select
the writes appropriately. In some instances the user may settle for a lesser legal

version than the latest version due to slow response time.

There may be cases when no completely-legal version is available. Then a ‘some-
what legal version can be given for the time being, and a ‘more legal’ version can
be given later on. For example, we may have W(z) — W'(z) = R(x), and so W
is WWeillegal for R. However, the version of W/ may not be available temporarily.
Then the version of W may be given, and a later read of the version of W' can be
forced by the system (assuming that W' makes a few more ‘changes’ in z, keeping
all the changes W has made). In this case, conceptually, causal consistency of a
sub-execution (like the useful sublog [28]), obtained by eliminating, for instance,
the ‘tentative’ reads as described above, may be required of the cooperative execu-

tion.
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Other internal consistency constraints like “the last version of an object pro-
duced by a transaction in a group must be read by all the other transactions in
that group” and “any processor reading an intermediate version of z must also read
the final version of z” of [28] can also be facilitated as follows: the system may
keep track of the (legal) versions that must be read by a processor and prompt that

processor to read.

Again, as mentioned earlier (in chapter 3), if all legalities are satisfied for all
the reads, then the exccution is causally consistent. It is shown that, under cer-

tain ions, the internal d in [28] include

a form of causal consi Dependi

on the ics of the variables and/or
cooperative execution, some illegalities may be tolerable for some reads, cither tem-
porarily (that is, the execution can be ‘corrected later on) or permanently. The
CSCW system can keep track of these features and, with the help of the algorithm,

suggest suitable values for the reads.

8.2 World Wide Web

The World Wide Web is developing at a furious pace, with new innovations appear-
ing with every release of Web browser and server software. The Web was originally
intended to support a richer, more active form of information sharing than is cur-
rently the case. The explosive growth of the World Wide Web and its penetration

into academic, commercial and domestic environments is well documented. The
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World Wide Web is considered to be a medium for information browsing, pub-
lishing, etc. The combination of a global addressing system, network protocol,
document mark-up language and client-server architecture provides for a simple
method for users to search, browse and retrieve information as well as share infor-
mation of their own with others. However, all the concepts of the World Wide Web
do not fully and directly support more collaborative forms of information sharing,
where widely-dispersed working groups work together to jointly author, comment
and annotate documents, and engage in other forms of collaboration such as group
discussion. There are a number of reasons to suggest that support for such collabo-
rative working based on information sharing is becoming more necessary. Trends in

the current business world towards Jjoint ventures, ing of

business functions and so on are highlighting a need for effective methods of sharing
information and coordinating activities. Hence many researchers are focusing on

how to utilize and extend the Web technology to provide richer forms of cooperation.

Underlying any activity in the web is the finding of new or ‘recent’ data. Re-
centness may be due to new sources, up-to-dateness with respect to a time scale
(e.g., hurricane watch), changes in organization (change in group membership), etc.
Recentness may help keeping personalized web pages up-to-date, finding best com-
maodities at best price, or even reorganizing the web itself in terms of redesigning
web page, replicating the contents in different sites, etc. Recentness can be mea-

sured in different ways. (The variable in the context of this application could be a

page, a URL, or any piece of identifiable data.) In the Web context, the illegalities

can be called as or The five i lities can be
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in terms of five obsoleteness (i.c., RR-obsolete, RW-obsolete, WR-obsolete, WW-
obsolete, and NO-obsolete). We give several examples illustrating the occurrences

and usefulness of these recentness notions later.

One rescarch group at GMD [3, 4 is focusing on how to transform the Web
from a primarily passive information repository to an active cooperation tool. The
Basic Support for Cooperative Work (BSCW) project at GMD is attempting to
realize this potential through development of Web-based tools which provide cross-
platform collaboration services to groups using Web technologies. In particular,
one of the tools developed in the project is the BSCW Shared Workspace System

-8 ized cooperati ication i 1 with an i

Web server
accessible from standard Web browsers. The BSCW. system supports cooperation
through ‘shared workspaces; small repositories in which users can upload (write)
documents, hold threaded discussions, and obtain information on the previous ac-

tivities of other users to coordinate their own work.

The BSCW Shared Workspace system is an extension of a standard Web server
through the server CGI Application Programming Tnterface. A ‘BSCW server’
(Web server with the BSCW extension) manages a number of shared workspaces;

for shared i i ible to members of a group using simple

name and password scheme. In general, a BSCW server will manage workspaces
for different groups , and users may be members of several workspaces. A shared
workspace can contain different kinds of information such as documents, pictures,

URL links to other Web pages or FTP sites, threaded discussions, member con-
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tact information and more. Members can transfer (upload) information from their
machines to the workspace and set access rights to control the visibility of this
information or the operations which can be performed by others. In addition mem-
bers can download, modify and request more details on the information objects by

clicking on one of the ‘event icons’ provided in the interface.

The event service of the BSCW systems is an attempt to provide users with
information on the activities of other users, with respect to the objects within a
shared workspace. Events are triggered whenever a user performs an action in a

workspace, such as uploading a new d downloadi

(reading) an exist-
ing document, renaming & document and so on. The system records the events,
and presents the recent events to each user as event icons mn the workspace listing.
Bach event icon captures different meaning and information about the objects in
the workspace. The first two evénts are related to the ideas discussed in this thesis.
The first event called the new event (an object that has been created or modified
since the user last caught up or last read) directly corresponds to the NO-legality
in real time order discussed in Chapter four. The second event called the read event
(which shows that an object has been read by someone) does not directly corre-
spond to any of the legalities discussed in this thesis. However it can be achieved
by the current algorithm without much modification just by keeping track of an
object and which processor has read it. These events can be caught up at different
levels, for example real time order, causal order, etc. But real time order is inherent
in the system described in [3]. As each of the five legalities give a different notion

of the recentness of the values, using them as event icons in the workspace listing
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seems appropriate and conveys more meaning to some applications.

8.3 Shared Health Care System

Consider the shared care system of a diabetic patient by a number of clinics and

doctors who are networked together.

« A diabetic patient may be seeing several clinicians concurrently over a period
of time. That is, a diabetic individual is treated for his/her diabetes and for

other medical problems by different specialists over the course of the disease.

o Clinicians, for example, share the treatment of patients and supply test results
and other information to one another. The requirement by different people

involved may be different at different stages or instances of the treatment.

By providing a shared or collaborative care, we can avoid some inconsistencies in

the system such as.
o Duplication of tests or any other information
® Omission of certain important facts
e Delays in communication
o Avoiding unwanted data or overload, etc.
The following actions take place in such a system,
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e The patient monitors himself daily (weight, glicose levels, etc) and enters this

data for reference to the doctors and others.

o A nurse or a program sketches a graph of the readings daily and reports to

the doctor (GP or General Practitionar) or nurse of any unusual readings.

o The nurse might get an appointment with the GP who may further refer the

patient to a specialist and/or to a dietician or to have some other tests done.

o The specialist and/or the dietician may check the patient and enter further

comments or treatment to be administered.

o Tf any blood test or x-rays are to be'done, then the respective labs performn

the tests and enter that data into the system accordingly.

Some specific instances are considered below how the legalities can be applied to

avoid certain inconsistencies in the system is explained:

1. Consider the following trivial case of the shared care system where the pa-
tient enters his daily readings (weight, glucose level) into the system and
another processor say N, reads these readings regularly and sketches a graph
(Figure 8.1). The writes by processor N are considered to be of incremental
updates. So writing of the graph (W1 (z), Wya(z), etc.,) depends on reading
the data written by the patient. In other words writing Wy, (z) depends on
the read Ry, (2)[Wp1(x)]. Hence processor N (nurse or a program), needs only
WW-legal values for such an instance. Looking carefully at the Figure 8.1
Wpi(2) is illegal w.r.t all the five legalities to a read operation after Rys(x)

and Wpy(z) is WW- and RW-illegal to a read operation after Wy (z).
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Figure 8.1: Shared Care System

2. Consider another instance where the patient is advised to take blood tests and
x-ray (Figure 8.2). X-ray is done by the x-ray department and blood tests
by the blood clinic. A radiologist reads the x-rays and writes his comments.
Later the GP reads these teports and considers referring the patient to a
specialist. So the GP inputs her comments along with the results from the
x-ray and blood tests into-the system. The specialist reads the comments
(Wi (2)) from the GP and decides to take another x-ray and blood test.

Later when the GP reads these latest test results and before commenting

further (may be the GP bumped into the radiologist and after the

between them) decides to recheck with the radiologist the values read (Ras(x)
read Wy(r)) previously. So the next read operation (Rss(z)) by the GP
has to request for a x-ray version that is legal w.r.t all the five legalities.
Consider an extension to the partial executions given in the Figure 8.2. If
Wia(x) is the x-ray that is taken after the request from the specialist, then
as usual the radiologist examines the x-ray and writes a report (Wa(z) in
Figure 8.2 which contains the x-ray plus the comments by the radiologists).
The GP reads this report which says that there is no difference from the
previous x-ray and hence writes the same into the patients record say Wiy (z)

Later when the specialist reads this decides to have a look at the radiologists
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report. Hence the radiologist request for a version that is legal in all respects
ice., Wan(z). All the others (Wis(z), Wis(x), Wi (#)) become illegal w.r.t all

the five legalities due to the transitivity nature of the causal order.

Hence different instances require different legalities or combination of them to be

satisfied.
Pid
1 Xeray W, ® o= W0

Ry ® --ooom Wy 00

N

Blood ... W, 0 - W0
3 Clinic P 2
/
4 GP Ry® ---= R0 oo W
/
/
& Specialist """ Ry @ -oeom Wy, ®

Figure 8.2: Shared Care System2

8.4 Other Examples

Consider an example of an online exam in which different sections have to be

o

answered, and they will be given one at a time. The examiners have imposed
a restriction that once a section is finished, and another section is taken up,

you cannot go back to the former section. Then, all the previously solved
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sections are no longer of any relevance to subsequent reads, or in other words

RR-obsolete.

Consider an application where any write (W2) fully incorporates the knowl-
edge gained through all the previous reads of W, (R(W1)). For such an
application, any read that follows the write (W2) need not reread any writes
that have already been read. In terms of the obsoleteness, all such previously

read writes then become RW-obsolete.

For example, take a project that compiles a comprehensive summary of a
collection of data being made available in the form of different writes stored
in a database. The compilation proceeds by creating partial compilations.
Perhaps each partial compilation may address a particular sub-aspect. Each
partial compilation (say W?2) is also considered as new data for subsequent
work and hence is written back into the database. However, if a partial
compilation is completed based on collating the data contained in certain
other writes collected by means of reading them (say R(W1)), any subsequent
read need not reread any of the writes (W1) that have already been read
for compiling the just completed write (W2). Hence, such writes (W1) that
have been read and processed, become obsolete (i.e., RW-obsolete) for further

reads.

. Consider a situation where the different writes of a given variable are nom-

inally equivalent (that is, they contain the same information but may be

presented in different formats) to each other. An example would be different
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web sites on the net which contain information on the score of an ongoing

Bascball game.

This illustrates a situation where different writes give information about

the same item. A profes

ional sports commentator group that regularly pre-
pares statistical and other types of analysis of Baseball matches for a web
site can access different sources on the web (newspapers, broadcast networks,
privately owned web sites, ctc) to get the scorecards. The different sources
contain nominally equivalent basic information, although the actual packag-
ing and presentation format from the source can differ widely. When a read is
issued requesting the information about & particular match, the sports com-
mentator is satisfied to get the information from any one of the available
sources. After the choice is made and the information obtained, the remain-
ing writes automatically are of no use in the sense that they cannot augment
the information gathered by issuing the read request. In terms of the obso-
leteness, all these writes are WR-obsolete for any subsequent read. So, any

subsequent read should get a fresh set of writes (information).

Similar situation arises when a read operation is employed in order to fill
a single specified slot by choosing from among a given choice of writes such
that once the slot is filled, the remaining writes that exist at the time of the
read have 1o more useful function and should not be read by a subsequent

read.
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4. Consider a web site which lists all the share prices of a number of stocks.
Individual traders sitting at their desk (remotely) would like to view the
latest changes in share prices of all or some of the stocks (of their interest).
That is, once the share price of a particular stock changes, the old values are
of no interest or use for the trader. Getting or knowing the latest value for a
particular stock is important or required, In other words, all those previous

values are WW-obsolete.

"

Consider a category of applications where a condition is based on the latest
version of the data being read. That is, once a particular data is read say

R{W2), then all- the previ ; fons which-hav kil

this write (W2) directly or indirectly should not be read by any subsequent
read. For example, if a Baseball match is in progress and the scorecard is
updated every few minutes. Each updation is called an intermediate result.
If a sports colummist sitting at his desk remotely is accessing this site from
time to time. Every time he accesses or reads the scorecard, he would like
to see all the changes done since he last visited the site. That is in a way
informing the system that he is familiar with all the previous changes and
that he does not want to see them anymore. In terms of the obsoleteness,

NO-obsoleteness provides such support to the user.
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8.5 Conclusion

This thesis begins with an overview of Computer-Supported Cooperative Work and
gives the survey of some of the charecteristics of the cooperative systems. We give
a review of some of the consistencies proposed in the literature for cooperative sys-

tems and present a new approach to specify it of cooperative execution:

It is based on the intuitive notion of legality of the read operations. Five different
notions of ‘recentness’ or ‘obsoleteness’ of the values have been presented for two

defining relations.

When all reads are legal in ali five respects; the execution is said 1o be p-ceusai,

and if this property holds with' respect to “exclusion-closure” of p, then the execu-

tion is p-atomic. When p is the global real time order, p-atomicity is linearizability
[17), and when p is the transitive closure of the union of the process order and
reads-from relation, p-causality is causal consistency [38], and p-atomicity is se-
quential consistency [24]. Thus the five notions of recentness are not just intuitive

and meaningful, but also 'complete’.

The recentness notions can be defined with respect to some special writes (in-
stead of all the writes) and, similarly, with respect to only some reads. This would
amount to different defining relations p. This will facilitate, in various ways, noti-

fications in collaborative work [8], collaborative browsing [44], etc.
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