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Abstract 

Natural killer (NK) cells and cytotoxic T-lymphocytes (CTL) express activating and 

inhibitory accessory receptors specific for class I human leukocyte antigens (HLA-I) or 

stress induced antigens. Signals from the ligation of these receptors are integrated to 

modulate T-cell mediated cytolysis and to determine NK cell cytolytic activity. Signals 

generated from the ligation of inhibitory receptors also mediate several other functions, 

such as reducing apoptosis and activation induced cell death. In mouse models these 

inhibitory receptors ' license' NK cells. NK cells expressing an inhibitory receptor, from 

mice expressing the ligand, have the ability to mediate both general and antibody­

dependent cellular cytotoxicity (ADCC). NK 'licensing' also appears to account for 

human NK cell activity. Data from two studies have demonstrated a role for licensing of 

general NK cell mediated cytolysis, but data regarding ADCC are conflicting. As 

activating and inhibitory receptors are of much importance to both NK and T-cells, we 

investigated the potential expression and/or involvement of these receptors in the HLA-I 

unrestricted cytolysis mediated against CD4+ T-lymphocytes by a subset of CD8+ CTL in 

HIV infection. The TCR-dependent and HLA-I-independent CTL demonstrated a 

phenotype that matches generalized changes on CD8+ T-lymphocytes in progressive HIV 

infection. The CTL that killed activated uninfected CD4+ T-lymphocytes lacked 

expression of the CD56 marker and the inhibitory NKG2A receptor. We also investigated 

the role ofNK cell 'licensing' for ADCC in humans. The potency ofNK cells expressing 

the inhibitory KIR3DL1 receptor was investigated in samples taken from individuals 

expressing and not expressing the HLA-BW4 ligand. Our results suggest NK cell 

licensing is involved in ADCC. 
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Chapter 1 

Natural Killer Cell Receptors in Human Immunodeficiency Virus Infection: 

Pathways to Protection or Doors to Disappointment 
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Abstract 

In the absence of effective treatment, infection with the human immunodeficiency virus 

(HIV) ultimately leads to the acquired immune deficiency syndrome (AIDS). Many 

attempts have been made to prevent and attenuate HIV infection. While antiretroviral 

therapies for infected individuals have had great success, preventative and therapeutic 

vaccines focused on both humoral and cellular-mediated immunity have failed. Recently, 

several natural killer cell receptor (NKR) genotypes, in concert with certain class I human 

histompatibility-linked antigens (HLA) were found to be associated with protection from 

HIV infection and/or disease progression. These receptors are expressed on both natural 

killer (NK) cells and subsets ofT lymphocytes. As HIV infection is often associated with 

attenuation of NK cells and much remains unknown about the basic functions of NKR, it 

remains undetermined whether the protective effect of these receptors relates to their 

expression on NK cells, T lymphocytes or both. This review summarizes current literature 

regarding NKR and HIV infection, and addresses several major questions remaining 

about the role of these receptors in protection against infection and disease progression. 
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1.1 Introduction 

Human immunodeficiency vims (HIV) infection is a global health problem with 

approximately 30 million people worldwide infected and many times that number 

affected [ 1]. Since untreated HIV infection leads to acquired immune deficiency 

syndrome (AIDS), infected individuals with access to appropriate health care are treated 

with highly active antiretroviral therapy (HAART). While this treatment is highly 

effective, it is also expensive and unavailable in most underdeveloped countries [2]. Even 

in those individuals treated with HAART, multiple side effects and development of viral 

resistance are common problems [reviewed in 3 & 4]. As well, HAART cannot eradicate 

HIV, therefore, it can never cure HIV infection. Given the complex socioeconomic, 

political and scientific problems that limit the efficacy of HAART, development of a 

preventative or therapeutic vaccine remains an urgent goal for HIV I AIDS research. 

Developing an effective HIV vaccine is a daunting task. The broadly neutralizing 

anti-HIV antibodies that protect rhesus macaques against chimeric simian/human 

immunodeficiency vims (SHIV) infection or disease progression have proven difficult to 

induce in vivo [5-9]. Other research using the simian immunodeficiency virus (SIV) 

model has demonstrated that CD8+ cytotoxic T-lymphocytes (CTLs) are important 

regulators of viral replication and disease progression. Antibody-mediated depletion of 

these cells from macaques infected with attenuated SIV increases SIV RNA levels [1 0]. 

However, induction of HIV specific CTL in uninfected high-risk groups has not resulted 

in protection from infection. In fact, a recent trial actually observed a higher risk of HIV 

infection in a subset of vaccine recipients [11]. The difficulties encountered in developing 

a successful HIV vaccine imply that novel vaccination methodologies and/or a better 
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understanding of the immune system are necessary to design an effective vaccine. An 

important step in improving our understanding of immunological function is elucidating 

mechanisms of interaction between the innate and adaptive immune systems. The innate 

immune system is a large and complex system consisting of multiple soluble factors, cell 

types and effector mechanisms. Natural killer (NK) cells are one impot1ant component of 

the innate immune system that provide a critical link to the adaptive immtme system. 

Natural killer cells are lymphocytes that recognize and kill target cells, activate 

dendritic cells (DC) and secrete a broad range of cytokines and chemokines. Selective 

recognition by NK cells is mediated through expression of a variety of activating and 

inhibitory receptors, some of which are also expressed on CTL. Increased understanding 

of the functioning of NK cells and CTL expressing NK cell receptors (NKR) appears 

critical for the development of effective immunological therapies or vaccines against 

HIV, as demonstrated by relationships between certain NKR genotypes and protection 

from HIV infection and/or disease progression [12-14]. This review will focus on the role 

ofNK cells and NKR in HIV transmission and disease progression. The ability ofHIV to 

alter the phenotype and attenuate certain functional characteristics of NK cells will also 

be addressed. Lastly, the ability of NKR to influence CTL function and prominent 

contemporary research questions regarding NK cells and NKR expressed on CTL in HIV 

infection will be discussed. 

1.2 HIV I AIDS 

The 2008 Nobel Prize in Medicine was recently awarded to Luc Montagnier and 

Francoise Barre-Sinoussi for their discovery of HIV in 1983 [15]. This retrovirus, 

consisting of two copies of a single stranded RNA genome encoding nine genes, was 
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associated with development of AIDS in 1984 [ 16-19]. HIV is classified as a lentivirus, 

reflecting the lengthy incubation period between initial infection and development of 

AIDS. HIV infects CD4+ T-lymphocytes, macrophages and DC through a multi-step 

interaction between individual components of viral envelope glycoprotein 160 (gp 160) 

and several cell surface proteins [reviewed in 20]. Initially, the gp120 component of 

gp160 interacts with CD4. This results in a conformational change in gp120, allowing its 

interaction with either the CCR5 or CXCR4 co-receptor. This secondary interaction 

positions the virion closer to the plasma membrane and allows the fusogenic domain of 

gp41 to interact with the cell membrane. Subsequent fusion of the viral envelope and cell 

membrane allows the viral genetic material, included within the viral core, to be released 

inside the cell. Following capsule dissolution and reverse transcription, proviral DNA is 

transported to the nucleus and incorporated into cellular DNA, where it can remain silent 

or generate infectious virions. 

Acute HIV infection is followed by the rapid depletion of CD4+ T -lymphocytes in 

the gut-associate-lymphoid-tissue (GALT) [21]. This is followed by gradual depletion of 

the infected individual's peripheral CD4+ T-lymphocytes, resulting in AIDS. Multiple 

mechanisms of CD4+ T-lymphocyte destruction have been observed in HIV infection 

[reviewed in 22]. Although the relative contribution of these various mechanisms of 

CD4+ T-lymphocyte depletion has not yet been determined, it is clear these mechanisms 

affect both infected and uninfected lymphocytes. Infected cells may be destroyed through 

loss of membrane integrity [23], increased susceptibility to apoptosis [reviewed in 24] , 

cytolysis of infected cells by human leukocyte antigen class I (HLA-I) -peptide complex 

specific CTL [25] and cytolysis by NK cells [26]. Uninfected cells are destroyed through 
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the formation of syncytium [27] , activation-induced cell death (AICD) [28] , increased 

susceptibility to apoptosis [29] and recognition by CTL capable of lysing uninfected 

CD4+ T-lymphocytes [30-33]. 

1.3 NK Cells 

NK cells are large granular lymphocytes characterized by their ability to kill target 

cells without prior sensitization. These cells differ from other lymphocytes in their lack of 

clonotypic receptors encoded by rearranged germ-line T-cell receptor (TCR) or B-cell 

receptor (BCR) genes. Instead, NK cell clones stochastically express different 

combinations of numerous activating and inhibitory germ-line encoded receptors (Table 

1.1) [reviewed in 34]. Therefore, individual NK cells can exhibit clonal behavior 

reflecting interactions between their idiosyncratic constellation of activating and 

inhibitory receptors and self-ligands expressed within variable contexts on normal and 

abnormal host cells. The ability of NK cells to kill target cells is determined by the 

overall balance between activating and inhibitory signals generated by ligation of these 

receptors. Therefore, activation of NK cells can be largely explained by a modified 

version of the 'missing-self hypothesis ' (Fig. 1.1) - NK cells lyse target cells when 

activating NKR are engaged in the absence of inhibitory NKR ligation or when activating 

signals prevail over inhibitory signals [reviewed in 35]. It should be noted that cytolysis is 

not the sole purpose of NK cells, as human NK cells also produce cytokines and 

chemokines and promote maturation of DC, which is important for the initiation of an 

adaptive immune response [36 & reviewed in 37]. 

The major inhibitory NKR recognize classical and non-classical HLA-class I 

molecules. These receptors include the lectin-like NKG2A/CD94 heterodimer, which 
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.... 
Killing 

.... 
Killing 

.... 
No Killing 

.... 
No Killing 

Fig. 1.1. The ability of an NK cell to kill a target cell is explained by a modified version 

of the 'missing self' hypothesis. NK cells kill target cells when (i) activating receptors are 

engaged in the absence of inhibitory receptors or when (ii) the signal propagated through 

activating receptors is stronger than that through the inhibitory receptors. NK cells will 

not kill target cells when (iii) there is an absence of activating receptor ligation or (iv) 

when the signal propagated through inhibitory receptors is stronger than that through the 

activating receptors. 
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Table 1.1 . Activating and inhibitory natural killer cell receptors and their ligands 

Receptor Activating/Inhibitory Ligand 

NKG2D Activating MICA/MICB 1 and 
ULBPs2 

NKG2C Activating HLA-E 

KIR-S Activating HLA-C and 
putatively HLA-A 

andB 
NKp30 Activating pp65j 

NKp44 Activating Viral hemagglutinins 

NKp46 Activating Viral hemagglutinins 

CD16 Activating IgG constant region 

KIR-L Inhibitory Classical HLA-I 

NKG2A Inhibitory HLA-E 

1MICA/MICB, MHC-I chain-related A orB gene. 
2ULBP, UL-16 binding proteins. 
3pp65, CMV tegument protein. 
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recognizes the non- classical HLA-E molecule [38] and the killer cell immunoglobulin­

like receptors with long cytoplasmic tails (KIR-L), which recognize classical l-ILA-A, B 

and C molecules [reviewed in 34]. These receptors share a common signaling mechanism 

involving the phosphorylation of intracellular immunoreceptor tyrosine-based inhibitory 

motifs (ITIM). Tyrosine phosphorylation of these regions attracts phosphatases such as 

SHIP-1, SHP-1 and SHP-2 that suppress NK cell activity by reversing phosphorylation 

events induced by activating NKR ligation [reviewed in 39]. Signals from inhibitory 

KR counteract the ligation of activating NKR. These activating receptors recognize an 

assortment of ligands. The major human activating NKR include the lectin-like receptors 

NKG2D and NKG2C/CD94 [38 & 40], the killer cell immunoglobulin-like receptors with 

short cytoplasmic tails (KIR-S) [reviewed in 34], the natural cytotoxicity receptors (NCR) 

NKp30, NKp44 and NKp46 [reviewed in 41] and the low affinity IgG constant region 

receptor- CD16 [reviewed in 42]. ignals through activating NKR are induced through 

tyrosine phosphorylation of receptor-associated immunoreceptor tyrosine-based 

activation motifs (ITAM) or the phosphorylation of tyrosine residues on receptor­

associated signaling subunits, such as DAP-1 0 [reviewed in 39]. 

There are distinct subsets of NK cells with separate functions. These subsets can 

be distinguished via CD56 and CD16 expression. Cytotoxic NK cells express both CD56 

and CD16 and those that are CD56bright and CD16+ are cytokine producers [reviewed in 

43]. CD16+ NK cells that do not express CD56 have no known function [44] . It is 

currently unknown if these NK cell subsets arise from distinct precursors or if they 

represent different developmental stages stemming from a common precursor. Until 

recently, little was known about what developmental stages determined if an NK cell 
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becomes cytotoxic. The 'licensing hypothesis' suggests an instructive role for interactions 

between HLA-class I molecules and inhibitory receptors in this process (Fig. 1.2) 

[reviewed in 45]. 

'Licensing' refers to an NK cell acquiring the ability to kill only appropriate target 

cells (i.e., it takes into account the necessity of NK cell self-tolerance). This process is 

said to occur during NK cell development and involves the interaction of an inhibitory 

receptor with its ligand. After this interaction, NK cells, expressing an inhibitory NKR 

recognizing a self-ligand, can lyse appropriate target cells. The target cells that are lysed 

may express reduced levels of the ligand recognized by the licensing inhibitory receptor, 

as occurs in virally infected and transformed cells. This hypothesis putatively explains 

how NK cells kill appropriate target cells while remaining self-tolerant. Experiments by 

Kim et a!. [46] demonstrated evidence for the 'licensing hypothesis' in mice. They 

developed a single chain trimer (SCT)-Kb transgenic mouse that lacked expression of any 

other MHC-class I molecule. They next compared interferon-gamma (IFN-y) production 

by the NK cells of the transgenic mouse to those in a major histocompatibility complex 

class I (MHC-I) and ~-2-microglobulin knockout mouse. Stimulation by antibody cross­

linking of the activating NK1 .1 receptor lead to the production of IFN-y in NK cells from 

the transgenic mice only. Furthermore, only NK cells expressing the Ly49C inhibitory 

receptor, specific for the SCT-Kb, produced IFN-y. This was interpreted as selective 

licensing of NK cells expressing an inhibitory NKR specific for self-MHC. Kim et al. 

also demonstrated that licensing of NK cells requires signaling through the inhibitory 

NKR's ITIM. The introduction of a tyrosine-to-phenylalanine mutation, which abrogates 
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-+ ' -+ • Killing .,. 
Licensed NK Cell Target Cell Non-Licensed NK Cell Target Cell 

Fig.1.2. According to the 'licensing' hypothesis NK cells are licensed upon the 

engagement of an inhibitory NKR by its ligand. (i) In environments where such 

interactions occur, NK cells gain the ability to destroy appropriate target cells. (ii) In 

environments where no such interactions occur, NK cells are hyporesponsive to 

appropriate target cells. 
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signaling through the ITIM, removed a licensing effect of inhibitory NKR-cognate ligand 

interaction. The ITIM signal responsible for the licensing effect, however, appears to be 

distinct to the ITIM signals responsible for inhibiting NK cell cytotoxic triggering, as 

bone marrow chimera studies demonstrated preserved licensing of NK cells from SHP-1 

deficient mice. 

The importance of NK cells in human health is demonstrated by their ability to 

combat human herpes virus (HHV) and cytomegalovirus (CMV) infections and destroy 

tumor cells [ 4 7 -49]. Although the importance of NK cells is relatively undefined in HIV 

infection, there is evidence these lymphocytes can play very important roles in protection 

against both initial infection and disease progression. Functional levels of NK cells 

remain higher in non-pathogenic immunodeficiency virus infections than in pathogenic 

immw1odeficiency virus infections [50]. Maintenance of higher NK cell cytotoxicity 

levels is also associated with better prognosis in HIV -infected individuals [51], and high 

levels of NK cell function are found in exposed, but uninfected individuals [52]. In 

addition, specific NKR phenotypes, such as expression of the activating KIR3DS 1 

receptor and/or the inhibitory KIR3DL1 receptor, are associated with protection against 

HIV infection and disease progression when present in certain combinations with their 

known or presumed HLA ligands [ 12-14]. Higher degrees of antibody dependent cellular 

cytotoxicity (ADCC), a form of cytotoxicity mediated by CD 16+ NK cells against 

infected cells coated with antibodies, is also related to slower HIV disease progression 

[51]. Since NK cells are potentially important mediators of protection against HIV, it is 

important to appreciate potential negative effects of HIV infection on NK cell function. 

12 
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1.4 Attenuation of NK Cell Function in HIV Infection 

Infection with HIV has numerous detrimental effects on the fi.mction of NK cells. 

The capacity of NK cells to mediate direct cytotoxicity, mediate ADCC, interact 

efficiently with DC and secrete a normal complement of cytokines and chemokines are all 

seemingly reduced in HIV infection [reviewed in 53]. While some of these changes are 

induced through the direct interaction of NK cells with HIV, others reflect cytokine 

levels, virally induced changes in surface ligand expression on target cells and changes in 

the fimction of accessory cells that modulate NK cell fimctions. Multiple researchers have 

independently reported changes in the ability of NK cells from HIV -infected individuals 

to mediate general cytotoxicity, such as reduced cytolysis of K562 and P815 cell lines 

[54-55]. Decreases in general cytotoxicity have been linked to HIV infection related 

changes in HLA expression on target cells and changes in NKR expression patterns on 

K cells. Viruses often reduce classical HLA class I molecule expression as a mechanism 

of escape from CTL. While these changes are an effective means of escaping CTL 

responses, they can increase the sensitivity of the infected cell to NK cell-mediated lysis 

by reducing inhibitory signaling. Changes in HLA expression have been observed within 

the context of HIV infection, both for classical and non-classical HLA-class I molecules 

[56-57]. To selectively avoid increased susceptibility to NK cell mediated lysis, HIV 

reduces expression of HLA class I molecules important for CTL mediated lysis of 

infected cells while increasing expression of non-classical HLA class I molecules that 

effectively inhibit NK cytotoxicity. Typically, HIV infection is associated with the 

downregulation of the classical HLA-A and HLA-B molecules, maintenance of classical 

HLA-C expression levels and an increase in the expression of the non-classical HLA-E 
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molecule [reviewed in 58]. Several HIV proteins mediate changes in HLA expression. 

Downregulation of HLA-A and B is mediated by HIV Nef, which binds to the 

cytoplasmic tails of these HLA molecules and interferes with HLA-I trafficking [59]. The 

increase in HLA-E is a result of a peptide from HIV p24 protein binding within the HLA­

E peptide groove to stabilize its expression and increase the amount on the cell surface 

[56]. This altered HLA phenotype of HIV -infected cells may be an important contributor 

to the decreased NK cell mediated cytolysis of infected cells. Bonaparte et al. [60] 

demonstrated that NK cells kill autologous HIV -infected CD4+ T -lymphocytes more 

effectively when the interaction between inhibitory receptors and HLA-C and E 

molecules is prevented. The same research group reported a similar regulatory role for the 

interaction between HLA-C and E and inhibitory receptors in anti-HIV ADCC [61]. 

Changes in the HLA expression of HIV -infected target cells, however, are not the only 

contributors to reduced NK cell cytotoxicity. Changes in the NKR expression pattern of 

NK cells also appear to make an important contribution to this phenomenon. 

HIV -infected individuals exhibit increased numbers of NK cells with low 

expression of activating NKR and high expression of inhibitory NKR [55 & 62]. These 

changes in NKR expression have been recently reviewed [53]. They have been linked to 

the cytokine environment present in HIV infection, are related to HIV viral load and 

correlate with a decrease in the cytotoxic potential of NK cells. NK cells from HIV­

infected persons exhibit a similar NKR phenotype to those cells cultured in interleukin-1 0 

(IL-l 0), the level of which is commonly elevated in the serum of HIV -infected 

individuals [63]. Further evidence of an underlying relationship between cytokine levels 

and NK cell phenotypes comes from the effectiveness of HAART in reinstating normal 
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NK cell phenotypes, as HAART is also related to a decrease in the IL-l 0 present during 

HIV infection. 

Reductions in the ability of NK cells from HIV -infected individuals to mediate 

cytotoxicity may also reflect changes in NK cell subset distribution. While levels of the 

CD56bright CD16+ NK cells remain relatively constant during infection, decreases in the 

highly cytotoxic CD56+ CD16+ subset and increases in the non-functional CD56- CD16+ 

subset have been reported [44 & 64]. If these subsets represent different developmental 

stages from a common precursor, these observations could reflect incomplete 

development of NK cells in HIV infection. Such a developmental problem could be 

induced from a change in the cytokine environment during chronic infection, or 

insufficient interactions with other cells necessary for efficient development. If 

developmental problems are responsible for the NK cell subset distribution_ in HIV 

infection, understanding of the driving force behind the relative increase in non-ftmctional 

NK cells could enhance om knowledge ofNK cell development. 

It is likely that these changes in NK cell subset distribution are an important factor 

in the decrease in NK cell cytolytic function. While changes in HLA and NKR may play 

some role in the observed in vivo reduction of NK cell function during HIV infection, 

more recent research has demonstrated that NK cells are capable of lysing autologous 

HIV -infected targets in the presence of stimulated plasmacytoid dendritic cells (pDC), 

regardless of effector cell NKG2A expression [26]. These results suggest that the 

observed regulatory role of the HLA-E - NKG2A/CD94 interaction, in HIV associated 

general cytotoxicity and ADCC, may be more of a result of a particular in vitro 
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microenvironment, resulting from cell purification and a reduction in the ecological 

validity of the in vitro situation, rather than a true reflection of in vivo occurrences. 

Other factors possibly responsible for the decrease in NK mediated cytotoxicity 

include: (i) interference in ADCC by increased soluble CD16 [65], (ii) direct HIV 

infection of NK cells [ 66], (iii) increased levels of other cytokines, such as transforming 

growth factor beta (TGF-~) [67], shown to have detrimental impacts on NK cell cytotoxic 

function [68] and (iv) direct interaction of soluble gp120 with NK cells [69]. Although 

many factors have been envisioned and hypothesized to interfere with NK cell function in 

HIV infection, the relative contribution of each variable remains largely unknown. 

Recently, NKp80 and NKG2A, in combination with CD16, were identified as markers of 

rhesus macaque NK cells [70]. As macaques are susceptible to infection with SIV, they 

may serve as the ideal model for investigating the in vivo mechanisms behind reduced NK 

cell cytotoxicity in immunodeficiency virus infection. 

Other impacts of HIV infection on NK cell function include a reduction in the 

effectiveness of interactions between NK cells and DC. Dming the early immune 

response to infection, NK cells and DC interact with, and mutually activate one another. 

This interaction is important for effective functioning of both the innate and adaptive 

arms of the immune system. Upon recruitment to an inflamed area, NK cells become 

activated either through recognition of pathogen associated molecular patterns (PAMPS) 

or by ligands expressed on tumor or virus infected cells [reviewed in 71]. Following this, 

NK cells are further activated by IL-12 and IL-15, which are secreted by DC activated by 

recognition of pathogen products. This further NK cell activation facilitates the release of 
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numerous cytokines, including tumor necrosis factor- alpha (TNF-a) and IFN-y from the 

NK cell, which induce antigen loaded DC to mature and migrate to sites where they will 

activate adaptive immunity. This NKJDC interaction may be a key factor in appropriate 

cooperation between adaptive and innate immune responses against HIV infection, as NK 

cells are activated by interacting with DC, while simultaneously, NK cells drive DC 

maturation and migration to sites where they can induce adaptive immune responses. 

Another important aspect of the NKJDC interaction is the ability of NK cells to 

destroy immature DC cells that are not correctly undergoing maturation. This killing 

appears primarily mediated by the NKp30 receptor, as it is blocked by monoclonal 

antibodies against NKp30 [72]. NK cells lacking inhibitory KIR, but expressing the 

inhibitory NKG2A/CD94 receptor mediate this destruction of immature DC [reviewed in 

71]. As such, the responsible NK cells are capable of killing immature DC that do not 

express high levels of HLA-I (classical or non-classical), but are inhibited from killing 

mature DC that have increased HLA-I (including HLA-E) expression. This ability ofNK 

cells to kill immature DC is important in maintaining immunological efficacy. The killing 

of improperly maturing DC, as well as the induction of maturation in other DC, ensures 

that the DC population is maintained in a state that will be the most productive for 

inducing CTL effector responses. In the context of HIV infection, however, the 

effectiveness of this interaction is reduced, which may have detrimental effects on the 

adaptive immune response. 

The irregular interaction between NK cells and DC in HIV infection is 

demonstrated by the inability ofNK cells from HIV infected individuals to kill immature 
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DC and reduced IL-12 secretion by HIV-infected DC after CD40 ligand stimulation (73-

74]. A recent review of the effects of HIV infection on the NK-DC interaction suggested 

that the irregular interaction may be a result of changes in NK cell subset distributions, 

NKR expression patterns and/or an overall degradation in NK cell functional activities 

[reviewed in 7 5] . Regardless of the mechanism behind this in·egular interaction, the 

inability of NK cells and DC to efficiently cross-talk could play a large role in the 

inability of the immune response to control HIV infection. The inability of DC to 

properly activate NK cells could reduce cytolysis of HIV -infected cells through both 

ADCC and general cytotoxicity. This inefficient communication could also be an 

impediment to generation of an effective CTL response against HIV. Fewer activated DC 

would result in the activation of fewer CTL, and this may account for the inability of anti­

HIV CTL responses to keep pace with HIV mutations as progressive defects in NK cell 

function accumulate. The interaction between NK cells and DC provides a mechanism 

through which changes in the innate immune response, during HIV infection, could 

negatively affect the adaptive CTL immune response. 

The ability of NK cells to secrete other soluble factors, such as chemokines, is 

also affected during HIV infection. Production of the CCL5 chemokine by NK cells is 

reduced in HIV -infected individuals with viremia [76]. This reduction in chemokine 

production may be detrimental in HIV infection. As this chemokine is capable of 

interaction with the CCR5 HIV co-receptor, production at higher levels may prevent the 

infection of new cellular targets [reviewed in 53]. 

The study of NK cells and their interaction with HIV infection reveals numerous 

potential benefits of NK cell activity against HIV. Recent studies have suggested 
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particular NKR phenotypes, especially those including the activating KIR3DS 1 or 

inhibitory KIR3DL1 receptors, are protective against HIV infection and progression to 

AIDS when present within particular HLA environments [12-14]. Individuals expressing 

the activating KIR3DS 1 receptor have also been shown to have higher NK cell function 

and NK cells with a greater ability to inhibit HIV replication in HLA-BW4+ cell lines 

[77-78]. Others have linked the degree of ADCC mediated by NK cells to protection from 

HIV disease progression [51]. In contrast, a recent study demonstrated no effect ofCD16+ 

NK cell depletion during primary SIV infection in rhesus macaques [79]. This study 

raises the question of whether expression ofNKR on NK cells is how these receptors may 

conduct their most important functions in HIV infection. Most NKR are also expressed on 

CTL, and many of them play important roles in CTL mediated activities [reviewed in 80]. 

It remains possible that protection from HIV infection and disease progression reflects 

effects of specific NKR expression on CTL in general, and specifically on anti-HIV CTL. 

1.5 The Expression of NKR on CTL 

Although mainly studied in the context of their expression on NK cells, activating 

and inhibitory NKR are also expressed on subsets ofT-lymphocytes. These receptors are 

generally expressed on CD8+ T-lymphocytes with an effector/memory phenotype, but are 

also expressed on some CD4+, yo TCR+ and cord blood T-lymphocytes [81-83]. These 

receptors tend to be expressed on antigen experienced T-cells, and maintenance of this 

expression may require constant exposure to antigen [84]. Consistent with the phenotype 

of NKR expressing CD8+ T-lymphocytes and the mechanism of NKR expression 

induction and maintenance, NKR expressing T -cells are present at higher frequencies in 
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older individuals and persons with chronic viral infections [S5 & reviewed in S6-S7]. 

Although inhibitory receptors are most frequently induced on activated T-lymphocytes, 

activating receptors are also observed. Such receptors, when expressed, can either 

mediate cytotoxicity or co-stimulate TCR mediated cytotoxicity [SS-S9]. The expression 

of the appropriate adaptor protein corresponding to the activating NKR appears to 

determine if the receptor mediates direct cytotoxicity or co-stimulates TCR mediated 

cytotoxicity. In the presence of the appropriate adaptor protein, the receptor may mediate 

direct cytotoxicity, whereas in the absence of this adaptor protein, the activating NKR 

may still co-stimulate TCR activation [SS]. 

Inhibitory receptors expressed on T-lymphocytes appear to have several roles. 

Signaling through these inhibitory receptors can prevent AICD, decrease the T­

lymphocyte' s activation level and prevent TCR-triggered cytotoxicity [90 & Reviewed in 

91]. This last function of inhibitory NKR on T-lymphocytes is contradicted, however, by 

evidence suggesting NKR only interfere with late events following TCR engagement, 

allowing granule exocytosis to occur [92]. A higher frequency of NKR expressing T­

lymphocytes are found in chronic viral infections such as HIV infection and HIV -infected 

individuals express inhibitory KIR on more CDS+ T-lymphocytes than non-infected 

persons [93]. Although KIR expression levels on CDS+ T-lymphocytes fall in aviremic 

infected individuals and/or individuals receiving HAART, they do not generally return to 

levels observed in uninfected individuals. The study reporting this also demonstrated that 

CDS+ T-lymphocytes expressing inhibitory KIR have decreased TCR induced 

proliferation, cytokine production and granule exocytosis relative to KIK T lymphocytes. 

These decreases, although possibly induced by inhibitory KIR expression, occurred even 
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without KIR ligation. The authors of the study suggest the reason for this decrease in 

TCR stimulation induced activities is recruitment of the inhibitory KIR to the TCR 

induced immunological synapse. Positioning of the inhibitory KIR within the 

immunological synapse and recruitment of phosphatases may explain the decrease in 

TCR induced activity. The plausibility of this explanation and other potential 

explanations will be discussed in the prominent questions section of this review. While 

this study provided information regarding CD8+ T-lymphocytes expressing inhibitory 

KIR, little information is available regarding expression of activating KIR on T­

lymphocytes and much remains unresolved about how or if inhibitory KIR on HIV 

specific CTL directly reduce their functions in the presence and/or absence of relevant 

HLA-1 molecules. 

1.6 Prominent Questions 

While much has been elucidated about the functions of NK cells in healthy and 

HIV -infected individuals, many questions remain unanswered. In this section of the 

review we will discuss some of the most prominent contemporary questions regarding 

NK cell and NKR function in HIV infection. 

Can Inhibitory KIR Decrease CTL Function Independent of Ligation? 

As previously described, Alter et al. [93] recently demonstrated that CTL 

expressing KIR were inefficiently triggered through their TCR independent of ligation of 

inhibitory receptors. The authors suggested the KIR might inhibit T cell stimulation due 

to positioning of the inhibitory KIR within the immunological synapse and recruitment of 

cellular phosphatases by the ITIM within. Previous research investigating CTL 

expressing inhibitory NKR found inhibitory NKR localized to the periphery of the 
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immunological synapse during early TCR driven events, including cytotoxicity. These 

receptors only tend to move to the center of the synapse, where they mediate inhibitory 

functions, late in the interaction [92]. 

Another possibility is that expression of KIR on CTL simply reflects the status or 

natural history of the T -cell. Since KIR expression may be maintained through constant 

exposure to antigen, KIR+ cells may be refractory to TCR stimulation ex vivo. A history 

of extensive proliferation and previous activation, both factors that induce lower 

responsiveness to stimulation, may also describe T cells expressing inhibitory KIR. This 

would reflect a similar situation to that observed with CD28 expression in HIV infection, 

as infected individuals have high levels of CD8+CD28- CTL. These lymphocytes increase 

early after infection and reflect an increased number of anti-HIV effector CTL. HLA-1 

tetramers have previously been used to demonstrate this expansion of CD28- anti-HIV 

CTL [94]. 

To fully understand the role of inhibitory KIR on anti-HIV CTL, a more detailed 

phenotypic and functional analysis of KIR + T cells in different environments is necessary. 

It may also be informative to analyze the positioning of the inhibitory KIR within the 

immunological synapse. The role of the inhibitory KIR could also be investigated by 

creating a KIR-L expressing CTL cell line and compare its TCR mediated activities to the 

same cell line with the KIR-L expression inhibited. This study would elucidate if KIR-L 

expression is responsible for suppressed TCR activity, or if other cellular factors are 

responsible. 
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What is The KIR3DS1 Ligand? 

The KIR3DS 1 molecule is an activating receptor expressed on NK cells and some 

T-cells. In the context of HLA-BW4 80I, this receptor has been linked to reduced HIV 

transmission and protection from progression to AIDS [13-14]. The gene encoding this 

receptor shares greater than 95% homology with the inhibitory KIR3DLI receptor, which 

binds the HLA-BW4 epitope. Due to the similarity between the KIR3DL1 and KIR3DS 1 

receptors it has been assumed that the KIR3DS1 receptor also binds the HLA-BW4 

epitope. No physical evidence, however, has been offered supporting an interaction 

between KIR3DS 1 and HLA-BW4. Cells expressing the activating NKR are not capable 

of binding HLA-BW4 tetramers loaded with HIV peptides [95]. This begs the question of 

what KIR3DS 1 can interact with? One possibility is the receptor can only bind the HLA­

BW4 ligand when it is loaded with specific peptides and that the right HLA-I-peptide 

combination has not yet been investigated. The plausibility of this explanation is 

highlighted by similar observations with the KIR3DL1/HLA-BW4 interaction. KIR3DL1 

demonstrates an array of reactivities with different HLA-BW4 alleles, and these response 

levels are influenced by the peptides used to load the HLA-BW4 molecules [96]. Another 

possibility, similar to that offered by Alter et al. [93] to explain how inhibitory NKR may 

reduce CTL TCR triggered functions, is that KIR3DS1 may not require ligation. 

Currently, it is unknown where the KIR3DS 1 receptor locates within the immunological 

synapse. If appropriately localized, this receptor may be able to increase levels of 

activation through its IT AM. This possibility could be investigated using an NK cell or T­

cell clone expressing KIR3DS 1. A comparison of versions of the clone expressing the 

receptor, having the receptor silenced with siRNA or expressing a version of the receptor 
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with the extracellular region truncated may reveal the relevance of ligation in this 

receptor's functionality. The plausibility of this explanation is reflected in ligation 

independent regulation ofT-cell activation thresholds by CDS [97]. 

What is The Role of 'Licensing' on NK Cell Function in HIV Infection? 

The inhibitory KIR3DL1 NKR is also correlated with protection from HIV 

infection [ 12]. everal potential mechanisms exist to account for this as of yet 

unexplained protection. It is possible that NK cells expressing this NKR are capable of 

recognizing and lysing HIV-infected cells because ofthe HLA-B downregualtion induced 

by HIV [57]. Alternatively, it is possible that these cells are better mediators of 

cytotoxicity because they are licensed in individuals expressing an HLA-BW4 epitope. 

Supporting this second explanation is the observation that individuals expressing both 

HLA-B57 (BW4 801) and high expressing alleles of KIR3DL1 are the most likely to be 

protected against infection [12]. While it remains unknown whether licensing explains the 

KIR3DL1/HIV disease protection relationship, the role of NK cell licensing, in general, 

in HIV infection has been largely ignored. Human studies suggest licensing may account 

for some of the differences between people in general NK cell mediated cytotoxicity [98-

99]. However, there is conflicting evidence regarding the role of licensing in the ADCC 

capability of NK cells. It should be noted that these studies investigated ADCC using 

plate bound anti-CD16 antibody and rabbit anti-mouse antibody labeled P815 cells. It is 

possible human NK cell licensing of ADCC is more detectable using an ecologically 

valid model featuring NK cells recognizing the Fe of IgG bound to a target cell. As such, 

much remains to be answered about NK cell licensing in general and in the context of 

HIV infection. Future studies should investigate if HIV -infected individuals with higher 
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numbers of licensed NK cells maintain higher levels ofNK function than individuals with 

lower numbers of licensed cells. Questions of the role of licensing in NK cell mediated 

ADCC could also be investigated using anti-HIV ADCC models. Levels of ADCC 

mediated against CD4+ T-lymphocytes coated with gp120 and anti-gp120 antibody could 

be compared in NK cells expressing an inhibitory receptor from individuals that express 

the cognate ligand of this receptor and those that do not. 

What is the Role ofNKR on HLA-1 Independent CTL that Lyse Uninfected CD4+ T­

Lymphocytes? 

Untreated infection with HIV or SIV is associated with CTL capable of killing 

uninfected CD4+ T-lymphocytes in an HLA unrestricted fashion [30-33]. These CTL are 

CD3+, CD8+, TCR a~+, CD4-, CD 16- and CD28-. Their cytolytic activity is blocked by 

antibody against CD3 and a~ TCR molecules. The presence of these CTL is associated 

with progression to AIDS, as they are observed only in pathogenic immunodeficiency 

virus infections and have been associated with various markers of disease activity or 

progression in HIV -infected individuals (i.e., viral load, ~-2 microglobulin serum levels 

and CD8+ and CD4+ T-lymphocyte counts). 

Previous descriptions of distinct HLA-unrestricted CTL have noted CD56 and 

NKG2D as the most prominent KR identified on such cells [100-101]. The NKG2D 

receptor has been implicated in co-stimulating anti-viral HLA-1 restricted CTL and in 

mediating HLA independent TCR independent cytolysis [89 & 101]. As NKR appear to 

mediate important roles in HLA-unrestricted cytolysis, future investigations of this 
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potentially important CTL subset in HIV infection should investigate the role of a variety 

of activating and inhibitory NKR. 

1. 7 Conclusion 

The interaction of KR, expressed on K cells and CTL, with HIV is a 

blossoming area of investigation. The expression of certain combinations of NKR with 

their ligand counterparts has been associated with protection from HIV infection and 

disease progression. The mechanisms of this protection, including the functioning effector 

cell (i.e. , NK cell or CTL), have yet to be elucidated. On a much larger scale, the role of 

NKR in CTL functions remains poorly understood. While this review has highlighted 

much work that has been completed regarding NKR on NK cells and CTL in the context 

of HIV infection, it has also highlighted how little we currently understand and how much 

work remains to be completed. 

Throughout this review we have highlighted much of the background research that 

has been conducted regarding KR on NK cells and CTL. We have also addressed some 

of the prominent research questions regarding the role of these receptors in controlling 

HIV. The answers to these, and similar, research questions may have an impact on the 

future of HIV vaccine and therapeutic research. A greater understanding of NK cell 

function may make it possible to address virus transmission with prophylactic therapies 

enhancing NK cells in the mucosal immune system, or make it possible to offer therapies 

increasing NK cell function in already infected individuals. Similarly, a greater 

understanding of NKR expressed on CTL may be beneficial for designing a CTL-based 

vaccme or modulating the high levels of immune activation observed during HIV 

infection. 
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1.8 Study Objectives 

This body of work investigated the role of NKR in adaptive immune responses 

and the ontogeny of ADCC effector functions of NK cells. First, the NKR phenotype of 

CTL that mediate immunopathology during HIV infection was investigated. We 

examined ifNKR phenotypic changes that typically occur during HIV infection could be 

used as phenotypic markers of these CTL and if such changes on CTL in general could be 

implicated in the development of these autoreactive lymphocytes. Secondly, the role of 

NK cell licensing in CD 16 mediated effector functions was examined. While the role of 

licensing is appreciated for the establishment of general NK functions, its role in ADCC 

is questionable. We investigated if expression of KIR3DL1 and its HLA-Bw4 ligand was 

associated with higher CD 16-mediated effector functions of KIR3DL 1 + NK cells. 

The results from these studies have many potential applications and benefits. The 

first component of this body of work helped with the phenotyping of an autoreactive 

subset of CTL, which are correlated with HIV disease progression. The information 

gathered regarding these CTL is not only helpful with further phenotyping these cells, but 

could also be beneficial in understanding the origin and function of these cells. The 

second component of this thesis identified a model of ADCC and employed this model to 

investigate the role of NK cell licensing in CD 16-mediated effector functions. A greater 

understanding of NK cell licensing may be beneficial for the development and 

enhancement of novel immunotherapies. 
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Chapter 2 

Distinct Phenotype of Unrestricted Cytotoxic T-lymphocytes from Human 

Immunodeficiency Virus-Infected Individuals 
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Abstract 

Human immunodeficiency virus (HIV)-infected individuals have CD8+ cytotoxic T­

lymphocytes (CTL) that kill activated uninfected T-lymphocytes. These CTL are 

independent of classical class Ia human histocompatibility-linked leukocyte antigens 

(HLA-Ia). To further characterize these CTL, we investigated their restriction to non­

classical class Ib HLA-E molecules and their expression of natural killer cell receptors 

(NKR) that are often affected in HIV infection. We found no role for HLA-E in CTL­

mediated killing of activated uninfected T- lymphocytes. The non-HLA-restricted CTL 

did not express NKG2A, an inhibitory NKR that binds HLA-E, nor CD56, a prominent 

marker on previously described non-HLA-restricted CTL. This NKG2A-CD56-

phenotype of HLA-unrestricted CTL that kill uninfected activated T-lymphocytes 

matches generalized changes on CD8+ T-lymphocytes that occur in progressive HIV 

infection, suggesting these phenotypic changes may reflect pathological evolution of the 

CD8+ T cell repertoire. These CTL represent a unique phenotypic and functional subset 

with potential relevance to HIV pathogenesis. 
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2.1 Introduction 

Cytotoxic T-lymphocytes (CTL) kill cells infected with intracellular pathogens via 

T-cell receptor (TCR)-mediated recognition of class I human histocompatibility-linked 

leukocyte antigens (HLA-I) loaded with pathogen-derived peptides. In addition to the 

clonotypic TCR, CTL express numerous activating and inhibitory natural killer cell 

receptors (NKR) that can modulate their behaviour [1-2]. Human and murine studies 

show that CTL provide protection against infection with intracellular pathogens, 

contribute to the clearance of acute infections and control persistent infections [3-5]. 

However, protection, clearance and control represent only one end of a spectrum of 

possible interactions between CTL and pathogens. At the opposite end, pathogens such as 

human immunodeficiency virus (HIV) and hepatitis C virus (HCV) establish chronic 

infections and replicate liberally, despite anti-viral CTL [6 & reviewed in 7]. In these 

situations, numerous phenotypic and functional changes accumulate in CTL, such as 

increased expression of the inhibitory NKG2A receptor in HCV infection [8] . Whether 

such phenotypic changes help drive the establishment of, or are secondary to chronic 

infection remains controversial. 

Untreated HIV infection ultimately progresses to the acquired immune deficiency 

syndrome (AIDS), despite a strong anti-viral CTL response [6]. This failure reflects, at 

least in part, evasion of CTL via generation and selection of escape mutations [9]. There 

is often development of CTL-mediated immunopathology together with a loss of 

protective immunity and in HIV infection [I 0-14]. Numerous changes in the function and 

expression patterns of NKR on CTL also occur in HIV infection. While some changes in 

NKR expression are purely phenotypic with no direct effect on CTL function others 
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affecting activating or inhibitory receptors could directly alter CTL function. Such NKR 

alterations in viremic HIV -infected individuals as decreased expression of the CD 56 

marker and the NKG2A/CD94 inhibitory receptor respectively, illustrate these two 

possibilities [ 15-16]. ince these alterations are characteristic of chronic HIV infection, 

they may be useful for either signifying or explaining abnormal CTL function. This 

makes HIV infection an important system for studying the impact of phenotypic and 

functional changes to CTL. 

The CTL against activated uninfected T-lymphocytes that occur in human HIV 

infection and pathogenic simian immunodeficiency virus (SIV) infections are a striking 

exan1ple of abnormal CTL function. Their specificity and distribution suggests they may 

contribute to CD4+ T-lymphocyte depletion [10-14]. While their 

CD8+CD3+ a~TCR+CD28- phenotype is conventional, their antigen recognition features 

are not. They kill both autologous and allogeneic target cells and are not inhibited by pan 

anti-HLA-I antibodies. One possibility is that they recognize a non-classical HLA class Ib 

molecule such as HLA-E, which although similar to classical HLA-1 molecules in 

structure and function [reviewed in 17], has only three known alleles (two identical at the 

protein level). Therefore, HLA-E-restricted CTL are generally cross-reactive and appear 

non-l-ILA-restricted. This, and the increased expression of HLA-E during HIV infection 

led us to investigate its role in killing of activated uninfected T-lymphocytes by the HLA­

I unrestricted CTL. Since numerous phenotypic and functional changes in NKR 

accompany HIV infection, we also investigated if these might contribute to the behaviour 

of these CTL or aid in their identification. Our results suggest that certain changes to CTL 

function and phenotype that occur during HIV infection may reflect and effect diversion 
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of the CDS+ T cell response away from virus-specific and protective towards autoreactive 

and pathological. 
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2.2 Materials and Methods 

Study Subjects 

Study subjects were HIV -infected individuals attending the St. John's General 

Hospital HIV Clinic, St. John's, Newfoundland, Canada and HIV-uninfected laboratory 

personnel. Informed consent was obtained for their participation and the Memorial 

University Faculty of Medicine Human Investigation Committee provided ethical 

approval for the study. 

Generation of effector cells 

Blood wa drawn by forearm venipuncture into vacutainers containing acid-citrate 

dextrose (ACD) anti-coagulant (Becton Dickinson). Peripheral blood mononuclear cells 

(PBMC) were isolated via density gradient using Ficoll-Paque Plus lymphocyte isolation 

solution (GE Healthcare) and resuspended at 1.0 X 106 cells/ml in lymphocyte medium 

consisting of RPMI 1640 medium supplemented with 10% fetal calf serum (FCS), 10 mM 

HEPES, 2 mM L-glutamine, 1% penicillin/streptomycin, and 2 X 1 o-s M 2-

mercaptoethanol (all from Invitrogen). Effector cells were prepared from the freshly 

isolated PBMC of HIV-infected individuals as previously described [11]. In brief 

approximately 10% of the PBMC were stimulated for three days in lymphocyte medium 

supplemented with 10 ).lg/ml phytohemagluttinin (PHA) (MP Biomedicals) while the rest 

were cultured in plain lymphocyte medium. After three days, PHA-activated cells were 

washed twice in phosphate buffered saline (PBS) containing 1% FCS and combined with 

the remaining 90% of PBMC left in unsupplemented lymphocyte medium. Following 
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three days co-culture, 10 U/ml interleukin-2 (IL-2) (Hoffmann La Roche) was added. The 

cells were used as effectors in 51 Cr release assays after seven days expansion with IL-2. 

Cytotoxicity Assays 

Target cells were prepared from HIV -uninfected individuals by culturing PBMC 

for three days at 1.0 X 106 cells/ml in lymphocyte medium supplemented with 10 !J.g/ml 

PHA. Target cells were labeled by incubation in a small volume at 37°C for 90 minutes 

with 100 !J.Ci Na2
51Cr04 (MP Biomedicals). Labeled cells were washed once in 10 ml 

PBS with 1% FCS and three additional times with 5 ml of the same buffer. Target cells 

were then counted and resuspended in lymphocyte medium at 1 X 105 cells/mi. 

Clnomium-release cytotoxicity assays were conducted in 96-well round bottom plates 

(Becton Dickinson). Cytotoxicity against the activated lymphocytes was measured with 

intact effector cells and effector cells depleted of CD56+ cells. Effector cells were 

combined with targets at 50:1, 25:1 and 12.5:1 ratios in duplicate. Maximum release was 

obtained by adding 1 N hydrochloric acid to targets and minimum release obtained by 

incubating targets with lymphocyte medium alone. Antibody blocking studies were 

conducted by adding anti-CD3 (Clone: OKT3, ATCC), pan anti-HLA-1 (Clone: PA2.6, 

ATCC), anti-HLA-E (Clones: MEM-E/07 and MEM-E/08, Santa Cruz Biotechnology) or 

anti-TCR a~ (Clone: WT31 , Santa Cruz Biotechnology) to 5 !J.g/ml in lymphocyte 

medium with effector to target (E:T) ratios of 50:1. Each well contained 5000 targets and 

was made up to a final volume of 300 !J.l with lymphocyte medium. After 5 hours of 

incubation, 125 !J.l cell free supernatant from each well was transferred to kimble tubes 

(Fisher Scientific) and the 51Cr release counted in a Wallac 1280 gamma counter. Percent 
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specific lysis was calculated using the following formula: [(test release - minimum 

release) I (maximum release - minimum release)] X 1 00. 

Cell Depletions 

Effectors were depleted of CD56+ cells using the CD56 Easy Sep separation kit 

(Stem Cell Technologies) following the manufacturer' s protocol. The efficacy of these 

depletions (>95%) was confirmed by flow cytometry. Whole and depleted cells were 

incubated with fluorescein isothiocyanate (FITC)-conjugated anti-CD56 (eBioscience) 

antibody for 20 minutes at 4°C. Cells were then washed with fluorescence-activated cell 

sorting (F ACS) buffer containing 5 mM ethylene diamine tetra-acetic acid (EDTA) 

(Sigma), 0.5% FCS and 0.2% sodium azide (Sigma) in PBS. Labeled cells were 

resuspended in 1% paraformaldehyde (Sigma) in PBS and stored at 4°C until analyzed on 

a Becton Dickinson F ACScalibur flow cytometer. It should be noted that the antibodies 

used for depletion and staining were different clones. 

Flow Cytometry 

Target cells (stimulators) were labeled with carboxyfluorescein succinimidyl ester 

(CFSE) (Invitrogen) prior to co-culture with effector cells so that they were easily 

distinguishable from effectors by flow cytometry. Approximately 2 X 106 cells were 

resuspended at 1.0 X 106 /ml in PBS containing 5 mM EDTA. CFSE (1 )-lM) was added to 

the cells at 0.2 )-lllml and the cells were incubated at 37°C for 15 minutes. Labeled cells 

were then washed five times with ice-cold lymphocye medium. Effector cells were then 

combined with CFSE labeled target cells at a 20:1 ratio. After 1 hour at 3 7°C in 5% C02, 

Brefeldin A (Sigma) was added at 10 )-lg/ml and the cells left for an additional four hours. 
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Cells were then washed with F ACS buffer and labeled with three colour combinations of 

FITC-conjugated anti-CD3 (Biolegend), anti-CD56 (eBioscience), or anti-CD8 (Dako), 

phycoerythrin (PE)-conjugated anti-CD3 (Becton Dickinson), anti-CD8 (eBioscience) or 

anti- KG2A (R&D ystems) and peridinin chlorophyll protein (PerCP)-conjugated anti­

CD3 or anti-CD8 (Biolegend) antibodies. Antibody labeled cells were incubated at 4°C 

for 30 minutes and then washed with F ACS buffer. Cells were then fixed with fixation 

buffer, permeabilized with permeabilization buffer (both from lntraStain kit, Dako) and 

incubated with allophycocyanin (APC)-conjugated anti-IFN-y antibody (Biolegend) for 

20 minutes in the dark at room temperature. Cells were then washed and resuspended in 

1% paraformaldehyde in PBS until analysis on a F ACscalibur flow cytometer. 

Extracellular flow cytometry was also conducted on target cells to confirm HLA-E 

expression. Cells were incubated with 5 1-4g of each anti-HLA-E antibody for 20 minutes 

at 4°C. Antibody labeled cells were than washed with F AC buffer and incubated with 

APC-conjugated goat-anti-mouse lgG (Invitrogen) for 20 minutes at 4°C. Cells were once 

again washed with F ACS buffer and incubated with PE-conjugated anti-CD3 (Becton 

Dickinson) for 20 minutes at 4°C. The cells were washed once more and resuspended in 

1% paraformaldehyde in PBS until analysis on a F ACScalibur flow cytometer. 
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2.3 Results 

Generation of CTL that kill activated uninfected T -lymphocytes 

Effector CTL against activated tminfected T-lymphocytes were generated from 

freshly isolated PBMC of HIV -infected individuals as described and tested against 

activated T lymphocytes from uninfected individuals. The CTL killed target cells in a 

TCR-dependent and HLA class !a-independent manner as demonstrated by inhibition 

with anti-CD3 and anti-TCR a.p antibodies and lack of inhibition by pan anti-HLA class I 

antibody. Representative data from 2 of a total of 24 HIV -infected individuals tested is 

shown in Fig. 2.1 . 

Role of HLA-E in CTL killing of activated uninfected T -lymphocytes 

Although these effector cells are not restricted to classical HLA class Ia 

molecules, they could be restricted to the non-classical, highly conserved HLA class Ib 

molecule, HLA-E, which increases in expression during HIV infection [Reviewed in 17]. 

To test this possibility, we first confirmed surface expression of HLA-E on the activated 

PBMC used as targets in our cytotoxicity assays by extracellular flow cytometry. Over 

99% of the target cells expressed HLA-E (Fig. 2.2a). Antibody blocking of HLA-E on 

target cells had no effect on cytotoxicity in 5/5 individuals tested in this manner (Fig. 

2.2b). One of the blocking antibodies used (Clone: MEM-E/08) was previously shown to 

inhibit HLA-E restricted killing [18], therefore, this lack of inhibition indicates these CTL 

are not restricted to HLA-E. 
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Phenotypic analysis of CTL against activated uninfected T -lymphocytes 

We next used extracellular and intracellular flow cytometry to directly analyze the 

phenotype of effector cells recognizing activated uninfected T lymphocytes. Effector cells 

were co-cultured for 5 hours with CFSE-labeled, PHA-activated T -lymphocytes at a 20:1 

ratio and stained for surface markers (CD3 and CD8) and intracellular IFN-y. Stimulator 

cells were excluded from analysis on the basis of CFSE incorporation and high 

fluorescence intensity (Fig. 2.3a) and effector cells responding to the activated uninfected 

T-lymphocyte targets were identified by production of IFN-y (Fig. 2.3b). As the 

responding CTL are capable of killing HLA-E expressing T-lymphocytes and 

NKG2A/CD94 inhibits cytotoxicity via ligation of HLA-E [19], we investigated if these 

CTL expressed the NKG2A/CD94 inhibitory receptor. Previously described l-ILA class I 

unrestricted CTL were shown to prominently express CD56 [20] , therefore, we also 

investigated CD56 expression. The vast majority of CTL responding to activated 

uninfected T-lymphocytes distinctly lacked expression of both CD56 and NKG2A in 5/5 

tested samples (Fig. 2.4a and 4b). 

Depletion of CD56+ effector cells 

Since our flow cytometry results suggested an unexpected CD56-negative 

phenotype for the HLA-unrestricted CTL, we depleted our effector cell populations of 

CD56+ cells before cytotoxicity assays. Depletions using antibody-conjugated magnetic 

beads removed greater than 95% of CD56+ cells (Fig 2.5a). Intact and CD56+ cell 

depleted effector cell populations tested against activated uninfected T-lymphocyte target 

cells in cytotoxicity assays mediated similar levels of TCR-dependent cytolysis in 4/4 
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individuals tested in this manner (Fig. 2.5b ). This corroborated the results of phenotypic 

analysis by flow cytometry indicating that the HLA-unrestricted CTL against uninfected 

activated T-lymphocytes do not express CD56. 
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Figure 2.1. Effects of TCR and HLA Class I blocking on killing of activated uninfected 

T-lymphocytes by CTL from HIV-infected individuals. Representative results from 2 out 

of a total of 24 individuals tested are shown. Graphs show percent specific lysis by CTL 

at a 50:1 E:T ratio and the effect of antibodies against CD3 (OKT3), a~ TCR (WT31) and 

HLA-I (PA2.6). 
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Figure 2.2. Effect of anti-HLA-E antibodies on CTL-mediated killing of activated 

uninfected T-lymphocytes. (a) Flow cytometry demonstrates expression of HLA-E on 

>99% of target cells (3-day PHA-stimulated PBMC). (b) The bar graphs compare specific 

lysis of untreated target cells to specific lysis of those pretreated with anti-HLA-E 

antibody at 50:1 E:T ratios. Representative results from 2 of 5 individuals tested are 

shown. 
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Figure 2.3. Detection of intracellular IFN-y in effector cells stimulated with activated 

uninfected T-lymphocytes at a 20:1 ratio. (a) Prior to co-culture, activated uninfected 

stimulator cells were stained with CFSE for exclusion from analysis. (b) Intracellular 

IFN-y production by unstimulated (left hand plots) and stimulated (right hand plots) 

effector cells was measured after gating on CD3+CD8+ lymphocytes. Representative 

results from 2 of 7 individuals tested are shown. 
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Figure 2.4. Assessment of CD56 (a, b) and NKG2A (c, d) expression on effector cells 

producing IFN-y in response to activated uninfected T lymphocytes. Cells expressing 

CD3 and CD8 were gated for analysis. Representative results from 2 of 5 individuals 

tested are shown. 
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Figure 2.5 . Effect of depleting CD56+ cells on specific lysis of activated uninfected T-

lymphocytes. (a) Effector cells that killed activated uninfected T-lymphocytes were 

depleted of CD 56+ cells with antibody conjugated magnetic beads. (b) Specific lysis of 

activated w1infected T-lymphocytes by intact and CD56-depleted effector cells was then 

compared at an E:T ratio of 50:1. Representative results from 2 of 6 individuals tested 

are shown. 
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2.4 Discussion 

In this study, we further characterized unusual, previously described CTL that 

specifically kill activated uninfected T-lymphocytes. These CTL are associated with HIV 

viremia [ 14], therefore, several characteristic phenotypic changes that occur on CTL 

during progressive HIV infection were investigated as distinguishing markers and 

possible functional modifiers. As previously reported, CTL against activated uninfected 

T -lymphocytes were readily generated by in vitro stimulation of PBMC from HIV­

infected individuals [ 11]. Antibody blocking studies confirmed the CTL were not 

restricted to classical HLA class Ia molecules and showed for the first time that they are 

also not restricted to the highly conserved, non-classical class Ib molecule, HLA-E. The 

CTL responding against activated uninfected T-lymphocytes were directly identifiable by 

flow cytometry through their IFN-y production. We used this technique in concert with 

specific subset depletion to demonstrate that, unlike previously described HLA non­

restricted CTL, these CTL lack expression of CD56 [20]. They also did not express 

NKG2A/CD94, the inhibitory NKR that binds HLA-E molecules. 

The observation that CTL against activated uninfected T-lymphocytes lack 

expression of CD56 and NKG2A/CD94 corresponds to general alterations in NKR 

expression seen on CTL in HIV infection [ 15-16]. Reflection of this phenotype by HLA 

non-restricted autoreactive, potentially pathological CD8+ T cells suggests that this 

alteration in accessory receptor expression pattern in HIV infection may represent 

evolution of adaptive cellular immunity away from being primarily protective towards 

becoming autoreactive and pathological. Lack of CD56 has no known direct functional 
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consequences, but serves as a phenotypic distinction from other CTL. However, lack of 

NKG2A/CD94 may serve both as a phenotypic marker and contribute to the behaviour of 

this CD8+ T cell subset. 

The inhibitory NKG2A/CD94 receptor is a negative regulator of CTL and NK cell 

activity through its recognition of the non-classical HLA-E molecule [19]. Increased 

HLA-E expressiOn m HIV -infected individuals [Reviewed in 17] might functionally 

impair CTL expressing NKG2A/CD94 and thus, select against them. A changing pattern 

of inhibitory receptor expression on CTL might also favour expansion of non-HLA­

restricted autoreactive T cells normally inhibited by HLA-E expression on activated T 

lymphocytes. Therefore, down-regulation of NKG2A/CD94 and other inhibitory 

accessory receptors on CTL in HIV -infected individuals could directly contribute to the 

selective expansion of CTL against activated uninfected T-lymphocytes and thus, to 

establishment of pathogenic autoimmunity in HIV infection. 

The CTL we studied were previously shown to be unrestricted to classical HLA 

class I molecules and in this study, we excluded a role for the non-classical HLA-E 

molecule in either target recognition or negative regulation of the CTL. Unlike other 

previously described HLA-unrestricted CTL, these cells did not express CD56 [20]. Thus, 

not only are they atypical in their lack of HLA restriction, but are also atypical of other 

HLA-unrestricted CTL in their lack of CD56 expression. Their distinct specificity, 

unusual phenotype, and association with CD4+ T-lymphocyte depletion, viremia and 

immune activation in HIV infection [14] make the origin, regulation and impact of this 

CTL population important to determine. While the present study investigated the 

immunological characteristics of these CTL in HIV -infected humans, animal models of 
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immunodeficiency vtrus infection may be better suited to elucidate the ongm and 

regulation of these cells. Such studies could be done in SIV -infected macaques, where 

these CTL also occur in pathogenic infections [13]. Another possibility would be to 

investigate development of these cells in a recently described HIV infection model in 

mice reconstituted with human lymphoid cells [21]. Studies of the impact of transferring 

these CTL from infected to uninfected animals could address important questions 

regarding their role in disease progression, as could in vivo depletion of these CTL. 

The CTL described in this study represent both a unique observation, with 

relevance to basic immunology, and a potentially important aspect of HIV infection. 

Further studies are required to understand the origin of these lymphocytes and their 

potential role in development of AIDS. Knowledge acquired through such studies could 

benefit numerous areas ofHIV research, including pathogenesis and vaccine design. 
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Chapter 3 

Licensing of Antibody Dependent Cellular Cytotoxicity Functions in Natural Killer 

Cells Through KIR3DL1-HLA-Bw4 Interactions 
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Abstract 

Natural killer (NK) cells are a subset of lymphocytes that mediate cytolysis of 

transformed and virally infected cells through reduced human leukocyte class I antigen 

(HLA-1) expression, recognition of stress-induced ligands and recognition of the constant 

regions (Fe) of immunoglobulin gamma (lgG) antibodies bound to tumor or pathogen­

associated antigens. According to the licensing hypothesis, NK cells become cytotoxic 

only after an interaction between an inhibitory receptor and its ligand. Although this 

hypothesis is supported by murine and human studies, evidence that licensing is required 

for antibody dependent cellular cytotoxicity (ADCC) in humans is ambiguous. While 

inhibitory receptor interactions with HLA-C are associated with licensing of ADCC 

functions, interactions between the KIR3DL1 inhibitory receptor and its HLA-Bw4 

ligand may be insufficient. We investigated the impact of KIR3DL1 and HLA-Bw4 co­

expression on ADCC using an ecologically valid and robust system of antibody labeled 

Epstein-Barr Virus (EBV) transformed B-lymphocytes. General levels of ADCC were 

significantly higher in a group of KIR3DL1 + individuals expressing HLA-Bw4 than in a 

comparable group not expressing HLA-Bw4. Flow cytometry demonstrated that 

following stimulation with ADCC targets, a significantly higher frequency of KIR3DL1 + 

NK cells produced interferon-y (IFN-y) in HLA-Bw4+ individuals than in HLA-Bw4-

individuals. These results indicate a role for KIR3DL1 /HLA-Bw4 interactions in 

licensing NK cells for ADCC effector functions. 
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.-----,-----------------------------~~-~-----

3.1 Introduction 

Efficient control of viral infection and malignancy requires both the innate and 

adaptive immune systems. During early immune responses, natural killer (NK) cells 

recognize and lyse virally infected and transformed cells through general cytotoxicity, 

triggered by altered expression of self-ligands (1-2). Following an adaptive immune 

response, NK cells also kill cells by antibody dependent cellular cytotoxicity (ADCC), 

through cross-linking of the CD16 FCyiii receptor by immunoglobulin gamma (IgG) 

bound to target cells (reviewed in 3). Upon exposure to appropriate target cells, NK cells 

also secrete cytokines and chemokines and aid in the maturation of dendritic cells (DC) ( 4 

& reviewed in 5). Cytotoxic NK cell activity provides direct early protection against 

infections and cytokine and chemokine production helps initiate adaptive immune 

responses. Adaptive immunity can work efficiently when NK cells mature DC, which 

drive the efficient development of cytotoxic T -lymphocyte (CTL) responses (reviewed in 

6). 

Both the early responses of NK cell s and the longer-term responses of antigen 

specific CTL are regulated by their expression of a variety of activating and inhibitory 

receptors known as natural killer cell receptors (NKR). These non-rearranged germ-line 

encoded receptors are classified on the basis of their structure (reviewed in 7). As each 

NK cell clone can express a different combination of NKR, the activity of individual 

clones is regulated by its personalized cell surface constellation of activating and 

inhibitory NKR (reviewed in 8). The cunmlative activating/inhibitory signal generated by 
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ligation of these receptors regulates NK cell killing of target cells and production of 

cytokines and chemokines (reviewed in 9). Although the role of NKR in regulating the 

activity of mature effector NK cells and T-cells has been heavily documented, it has only 

recently been proposed that inhibitory NKR are also important in NK cell ontogeny. 

Inhibitory NKR regulate cytolytic competency in NK cells through a process 

referred to as licensing (reviewed in 1 0). According to the licensing hypothesis, NK cells 

acquire responsiveness to appropriate targets only after they engage the ligand of an 

inhibitory receptor. Therefore, NK cells from individuals that express both an inhibitory 

NKR and its ligand should be more functional than those from individuals expressing the 

NKR in the absence of its ligand. Both murine and human studies support this hypothesis 

(11-13 ), however, the evidence for licensing in humans is still somewhat contradictory 

when general cytotoxicity and ADCC are compared. When donors expressed the 

inhibitory killer immw1oglobulin-like (KIR) NKRs that interact with human leukocyte 

histocompatibility-linked antigen (HLA)-C and the corresponding HLA-C ligand, their 

NK cells exhibited greater general and CD 16-mediated effector functions than NK cells 

from those individuals lacking the appropriate HLA-C ligand (12). Similarly, expression 

of KIR3DL1, an inhibitory KIR that interacts with the HLA-Bw4 public epitope, was 

associated with higher NK cell cytotoxicity and IFN-y production upon exposure to HLA-

1 deficient target cells when the NK cells were isolated from HLA-Bw4+ donors (13). 

However, NK cells expressing KIR3DL1 exhibited no such donor dependent difference in 

IFN-y production following CD 16 stimulation. As the evidence suppmiing licensing in 

general cytotoxicity models was similar for these two inhibitory NKR ligand pairings, 
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divergent results regarding ADCC could reflect either different roles for the different 

receptors or methodological discrepancies. Both studies stimulated NK cells with plate 

bound anti-CD 16 antibody, but only the HLA-C/KIR study investigated licensing using 

IgG coated target cells. Detection of a licensing effect for ADCC may be more reliable 

with an ecologically valid experimental system using IgG coated target cells than with 

plate-bound anti-CD 16-mediated cross-linking. Therefore, in this study we employed 

IgG-coated target cells to assess the licensing capacity of KIR3DL1/HLA-Bw4 

interactions towards NK-mediated ADCC. 

Freshly isolated PBMC from KIR3DL1 + donors were tested for their ability to kill 

IgG pan anti-HLA class I coated target cells. Intrinsic ADCC levels and the direct activity 

of KIR3DL1 + cells were compared between HLA-Bw4 expressing and non-expressing 

individuals. This study addressed directly, in an ecologically valid system, the impact of 

inhibitory receptor and ligand co-expression on NK cell licensing for ADCC. 
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3.2 Materials and Methods 

PBMC Isolation 

Venous blood was drawn from the forearm vems of healthy volunteers into 

vacutainers containing acid-citrate-dextrose (ACD) anti-coagulant. Peripheral blood 

mononuclear cells (PBMC) were isolated via density gradient using Ficoll-Paque PLUS 

lymphocyte isolation solution (GE Healthcare) and suspended at 1.0 X 106 cells/ml in 

RPMI medium supplemented with 10% fetal calf serum (FCS), 10 mM HEPES, 2 mM L­

glutamine, 1% penicillin/streptomycin, and 2 x 10-5 M 2-mercaptoethanol (all from 

Invitrogen). 

KIR genotyping 

DNA was isolated from either BLCL or fresh PBMC usmg the illustra 

genomicPrep Mini Spin kit (GE Healthcare). To determine KIR3DL1 genotype status, 

200 ng genomic DNA was then used for gene-specific PCR as previously described (14). 

The KIR3DL1 primers (forward 5' CCA TCG GTC CCA TGA TGC T 3' and reverse 5' 

AGA GAG AAG GTT TCT CAT ATG 3' ) were used at 0.5 ~-tM each in a 50 ~-tl reaction 

volume using 0.2 mM dNTPs, 1.5 mM magnesium chloride, IX Taq buffer and 2.5 U Taq 

polymerase (all from Invitrogen). The PCR was performed on a PTC-100 thermalcycler 

(MJ Research) under the following conditions: initial denaturation for 5 min at 95° C, 

then 20 s at 97° C, 45 s at 62° C and 90 s at 72o C for the first 5 cycles followed by 25 

cycles of 20 s at 95° C, 45 s at 60° C and 90 s at 72° C. The PCR products were 

visualized on a 1.5% agarose gel stained with ethidiurn bromide. 
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-I 
ADCC ::~ Cr Release Assay 

Approximately 1.0 X 106 Bw6+/+ BLCL were labeled with 5 flg of W6/32 

(ATCC), or left unlabeled, and incubated on ice for 30 minutes. After two washes with 

PBS plus I% FCS, the BLCL were labeled with 100 f.LCi ofNa2
51Cr04(MP Biomedicals) 

and incubated at 37°C for 90 minutes. Labeled cells were washed once in 10 ml of PBS 

with I% FCS and tlu·ee additional times with 5 ml of the same buffer. Target cells were 

then counted and resuspended at I X I 05 cells/mi. 

Chromium-release assays were conducted in 96-well round bottom plates (Becton 

Dickinson) with freshly isolated PBMC as effectors. Effectors were combined with 

targets at 50:1 , 25: 1 and 12.5:1 ratios in duplicate. Maximwn release was obtained by 

combining targets with hydrochloric acid and minimum release was obtained by 

combining targets with medium alone. Each well contained 5000 targets and was made up 

to 300fll with additional medium. Percent specific cytotoxicity was calculated using the 

following formula: [(test release - minimum release) I (maximum release - minimum 

release)] X 100. 

Antibody purification and pepsin digest 

W6/32 antibody was purified from hybridoma supernatant using an anti-mouse 

IgG-agarose column (Sigma). Briefly, W6/32 supernatant was loaded onto the IgG-

agarose column and washed with 0.01 M sodium phosphate buffer containing 0.5 M NaCI 

(pH 7.2). The antibody was then eluted with 0.1 M glycine with 0.15 M NaCl (pH 2.4). 

Peak fractions were pooled and neutralized using I M Tris. The purified W6/32 antibody 
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was then dialyzed (dialysis tubing with 12,000 - 14,000 Da MWCO source) into distilled 

water over night at 4 °C. Following dialysis, the diluted antibody was concentrated using 

a SpeedVac centrifuge. The dried W6/32 antibody was resuspended in 200 mM sodium 

acetate (pH 4.0) and 10 flg pepsin ( igma) per 200 flg antibody was added. The mixture 

was incubated for 6 hours at 37 oc and the reaction was stopped by adding 1/10 the 

reaction volume of 2M Tris. The antibody fragments were then dialyzed (12,000 -

14,000 Da MWCO) into distilled water over night at 4 °C and analyzed using SDS -

polyacrylamide gel electrophoresis to assess complete and proper fragmentation during 

the digest. 

Biotinylation of W6/32 Fab2 

W6/32 Fab2 fragments were dialyzed (12,000 - 14,000 Da MWCO) into 100 mM 

sodium carbonate (pH 9.5) over night at 4°C and 200 flg biotin (Sigma) were added per 

1 mg antibody fragments. The mixture was then incubated for 4 hours in the dark at room 

temperature. The biotinylated fragments were then dialyzed (12,000 - 14,000 Da 

MWCO) into PBS over night at 4°C and the antigen binding capacity of the W6/32 Fab2 

fragments assessed by flow cytometry using Streptavidin-PE (Caltag) for detection. 

Flow Cytometry 

Cell surface expressiOn of KIR3DL1 on the NK cells of those individuals 

geneotyped as KIR3DL1 + was confirmed by flow cytopmetry. Whole PBMC were 

incubated with fluorescein isothiocyanate (FITC)-conjugated anti-KIR3DL1 (Miltenyi 

Biotec) and peridinin chlorophyll protein (PerCP)-conjugated anti-CD3 (Biolegend) 

antibodies for 20 minutes at 4°C. Cells were then washed with fluorescence-activated cell 

sorting (F ACS) buffer containing 5 mM ethylene diamine tetra-acetic acid (EDTA) 
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(Sigma), 0.5% FC and 0.2% sodium azide ( igma) in PB . Labeled cells were 

resuspended in 1% paraformaldehyde (Sigma) in PBS and stored at 4°C until analyzed on 

a Becton Dickinson F ACScalibur flow cytometer. 

To enumerate KIR3DL1+ NK cells producing IF -g, BLCL were first labeled as 

above with W6/32. Effector cells were then combined with W6/32 labeled target cells at a 

20:1 ratio. After 1 hour at 37°C in 5% C02, Brefeldin A (Sigma) was added at 10 )lg/mL 

and the cells left for an additional four hours. Cells were then washed with fluorescence­

activated cell sorting (F ACS) buffer, and were labeled with FITC-conj ugated anti­

KIR3DLI and PerCP-conjugated anti-CD3 antibodies. Antibody labeled cells were 

incubated at 4°C for 30 minutes and then washed with FACS buffer. Cells were then fixed 

with fixation buffer, permeabilized with permeabilization buffer (both from IntraStain kit, 

Dako) and incubated with allophycocyanin (APC)-conjugated anti-IF -y antibody 

(Biolegend) for 20 minutes in the dark at room temperature. Cells were then washed and 

resuspended in 1% paraformaldehyde in PB until analysis on a F ACscalibur flow 

cytometer. 

Statistical Analysis 

All statistical analyses were performed using Prism Graphpad Version 4.03. The 

data sets for the two groups were compared using non-paired one-tail Student' s t-tests, 

with differences considered significant at p < 0.05 . All data was demonstrated to be 

normally distributed using the Kolmogorov-Smirnov and Shapiro-Wilk tests. 
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3.3 Results 

Pan anti-HLA class I antibody induces ADCC 

Freshly isolated PBMC were used as effector cells against HLA-Bw6+/+ BLCL 

labeled and unlabeled with pan anti-HLA class I antibody, W6/32. Effector cells lysed 

W6/32 coated, but not unlabeled, BLCL in chromium release assays (Fig. 3.1). As this 

cytolysis could be due to interference with the interaction of inhibitory receptors with 

HLA class I molecules or the recognition of the IgG constant region by CD16, we created 

W6/32 Fab2 fragments via pepsin digestion to distinguish between these two possibilities. 

The Fab2 fragments were biotinylated, used to label BLCL and detected with PE labeled 

strepavidin to demonstrate binding (Fig 3.2a). However, when BLCL labeled with W6/32 

Fab2 fragments were used as target cells in chromium release assays as above, no 

cytolysis was detected (Fig 3.2b). This demonstrates the Fe region of W6/32 is important 

in the cytolysis of antibody labeled cells, and that the mechanism of cytolysis is ADCC. 

W6/32 induced ADCC is higher in KIR3DL1 + individuals that also express HLA­

BW4 

All PBMC donors were positively genotyped for KIR3DL1 and shown to express 

the receptor on similar percentages of total CD3- lymphocytes (Fig. 3.3). These 

individuals were then HLA-typed and grouped as expressers of HLA-Bw4 or HLA-Bw6 

homozygotes (Table 3.1). Freshly isolated PBMC from all individuals were used as 

effectors against HLA-Bw6+/+ BLCL labeled or unlabeled with W6/32. Cytolysis at an 

E:T ratio of 50:1 varied over a broad range from 9% to 88%. Effectors from HLA-Bw4+ 

individuals (X = 52%, SD = 23%) mediated significantly higher levels of cytotoxicity 

than those from HLA-Bw6+/+ participants (X= 22%, SD = 10%) (p < 0.01) (Fig. 3.4). 
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This suggests the HLA-Bw4+ participants had a higher number of NK cells licensed to 

mediate ADCC than the HLA-Bw6+/+ participants 

Phenotypic Analysis of responding cells by flow cytometry 

The ability of NK cells to produce IFN-y upon exposure to target cells ts an 

effector function correlated with cytolytic potential and regulated by licensing. As such, if 

NK cells were licensed for ADCC effector functions through the KIR3DL1 receptor, 

more IFN-y production would be expected in KIR3DL1 + NK cells from HLA-Bw4+ 

individuals than HLA-Bw6+/+ individuals after stimulation with ADCC target cells. 

Upon exposure to W6/32 labeled BLCL CD3-Iymphocytes produce IFN-y (Fig. 3.5). As 

such, we investigated the ability of KIR3DL1 + CD3- cells, from both groups of 

participants, to produce IFN-y upon exposure to W6/32 labeled BLCL (Fig. 3.6a). 

Significantly higher percentages of KIR3DL1 + CD3- cells produced IFN-y in PBMC 

isolated from HLA-Bw4 expressing individuals (X = 23%, SD = 13%) than in HLA-Bw6 

homozygous individuals (X = 4%, SD 4%) (p < 0.01) (Fig. 3.6b). These results 

corroborate the cytotoxicity assays in demonstrating there are more licensed NK cells in 

HLA-Bw4+ individuals. More specifically, the flow cytometry results demonstrate a 

much higher frequency of KIR3DL1 + NK cells licensed to mediate ADCC in individuals 

expressing HLA-Bw4 than in HLA-Bw6 homozygous individuals. 
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Figure 3.1. Effect of coating HLA-Bw6+/+ EBV-transformed BLCL with pan-anti-HLA 

class I antibody W6/32 on cytolysis by freshly isolated PBMC. Representative results 

from 2 of 17 tested individuals are shown. The graphs show percent specific lysis of 

BLCL at a 50:1 E:T ratio in the presence and absence ofW6/32. 
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Figure 3.2. Effect of coating HLA-Bw6+/+ EBV -transformed BLCL with Fab2 fragments 

of pan-anti-HLA class I antibody W6/32 on cytolysis by freshly isolated PBMC. (a) 

Flow cytometry demonstrates the binding of biotinylated W6/32 Fab2 fragments to BLCL 

with streptavidin-PE. The unshaded peak shows binding of streptavidin-PE alone. (b) 

The graph compares percent specific lysis mediated by PBMC at a 50:1 E:T ratio against 

HLA-Bw6+1+ BLCL treated with intact W6/32, W6/32 Fab2 fragments or no antibody. 
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Figure 3.3 . Relative frequencies of KIR3DLl+CD3- lymphocytes in Bw4 and Bw6 

individuals. The scatter plot shows the percentage of total lymphocytes that are CD3-

KIR3DL 1 +for each individual with means for each group represented by horizontal lines. 
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Figure 3.4. Comparison of W6/32 mediated ADCC by PBMC from HLA-Bw4+ and 

HLA-Bw6+/+ individuals. The scatter plot shows percent specific lysis of HLA-Bw6+/+ 

BLCL treated with W6/32 by lymphocytes from HLA-Bw4+ and HLA-Bw6+/+ individuals 

at a 50:1 E:T ratio. Mean specific lysis values for the groups are shown by horizontal 

lines within each group and significant difference between the means shown above a line 

spanning the 2 groups. 
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Figure 3.5. Detection of IFN-y produced by CD3- PBMC cells following incubation with 

W6/32 labeled HLA-Bw6+/+ BLCL at a 20:1 E:T ratio. Intracellular IFN-y production by 

unstimulated (left hand plots) and stimulated (right hand plots) show representative 

results from 2/ 17 individuals tested. 
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Figure 3.6. Detection of intracellular IFN-y produced by KIR3DL1 +CD3- PBMC 

following incubation with W6/32 labeled HLA-Bw6+/+ BLCL at a 20:1 ratio. (a) 

Intracellular IFN-y was detected in unstimulated (left hand plots) and stimulated (right 

hand plots) PBMC after gating on CD3XIR3DL1 + lymphocytes. (b) The scatter plot 

shows the percentage of KIR3DL1 +CD3- lymphocytes producing IFN-y following 

stimulation as above in HLA-Bw4+ and HLA-Bw6+/+ individuals. Means are shown by 

horizontal lines within the groups and significant difference between the means shown 

above a horizontal line spanning the 2 groups. 
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Table 3.1 - HLA-A & Band KIR3D Genotypes of Study Participants 

Sample ID HLA-A&B 1 KIR3D LocusL 
001 Al , A2; Bl8, B49 Ll++ 

002 A2; B44, BSl Ll /Sl 
003 A3, A28; B27, B62 Ll ++ 

004 A25, A32; B39, B63 Ll /Sl 
005 A3 ; B 51, B61 Ll ++ 

006 A2, A32; B44, B57 Ll /Sl 
007 A2, All ; Bl4, B47 Ll /S 1 
008 A2; B13, Bl8 Ll/Sl 
009 A2, A3 ; B27, B45 Ll++ 

010 A2, A3 ; B62, B60 Ll++ 

011 Al ; B8, B62 Ll++ 

012 A2, A3 ; B7, B40 Ll ++ 

013 Al ; B8 Ll++ 

014 A3, All ; Bl8 Ll++ 

015 Al , A2; B8, B62 Ll++ 

016 A2, All ; B7, Bl5 Ll /Sl 
017 A2, A3; B7, B18 Ll++ 

1 HLA-A & B alleles containing the Bw4 epitope are in bold. 
2 Ll ++- Homozygous for KIR3DL1. Ll /S 1 - Heterozygous, contains one copy of 
KIR3DL1 and one copy ofKIR3DS1. 
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3.4 Discussion 

In this study we investigated the licensing of NK cell CD 16 mediated effector 

functions through the inhibitory KIR3DL1 receptor via interaction with its HLA-Bw4 

ligand. We developed a robust ADCC system, appropriate for testing the impact of this 

interaction, using Bw6+t+ BLCL and the murine IgG2a pan anti-HLA class I antibody, 

W6/32. In this system, the mean level of ADCC was significantly higher in the group of 

individuals expressing both KIR3DL1 and HLA-Bw4 than in those expressing KIR3DL1 

that were HLA-Bw6 homozygous. Direct analysis of KIR3DL1 + NK cells by flow 

cytometry demonstrated substantially higher responsiveness of KIR3DL 1 + K cells on a 

per cell basis in HLA-Bw4+ individuals than in HLA-Bw6 homozygous individuals. A 

significantly higher percentage of KIR3DL1 + NK cells derived from HLA-Bw4+ 

individuals than from HLA BW6++ individuals produced IFN-y when exposed to anti­

HLA class I coated ADCC targets. 

This study provides the first evidence that the KIR3DL 1 inhibitory receptor is 

involved in licensing NK cell ADCC effector functions. While a previous report 

demonstrated a licensing effect of KIR3DL1 towards general NK cytotoxicity, no 

differences in ADCC functions were observed in KIR3DL1 + NK cells from HLA-Bw4+ 

and HLA-Bw6 homozygous participants (13). The discrepancy between these and our 

results could be accounted for by the methodological differences between the two 

investigations. While the previous report stimulated NK cells by cross-linking CD 16 with 

plate bound anti-CD16 antibody, our investigation used antibody labeled BLCL to 

stimulate NK cells. As co-stimulation is often involved in ADCC, it may be significant 
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that our methodology provided stimulation with not only the CD 16 ligand, but potentially 

with other ligands of co-stimulatory receptors that may be necessary for efficiently 

triggering ADCC. Our methodology provides a robust, but ecologically valid situation 

that may yield more physiologically relevant results than with direct cross-linking of 

CD16. 

The differential presence of licensed NK cells in humans may explain the 

associations between specific NK cell phenotypes and protection against initial infections 

and disease progression. For example, specific combinations ofKIR3DLI and HLA-Bw4 

alleles occur at higher frequencies in groups of individuals who have been exposed to the 

human immunodeficiency virus (HIV), but remain uninfected (15) . In HIV-infected 

individuals, co-expression of KIR3DL1 and its HLA-Bw4 ligand is also associated with 

slower disease progression (16). These observations could be accounted for by increased 

numbers of licensed NK cells within these individuals that could eliminate and/or control 

HIV infections. This possibility, and the role of licensing in general, requires further 

studying in the context of HIV infection, as a greater understanding of the role licensing 

plays in the protective effects of NK cells against HIV infection and in controlling 

established HIV infections could help guide development of protective vaccines and/or 

microbicides. 

The ability to investigate a role for NK cell licensing in a vaccination or 

microbicide protocol is limited by the lack of information currently available regarding 

either the mechanism or durability of the licensing process. For example, it was recently 

suggested that NK licensing is a dynamic process that may be reversible (17). One 

potential method for elucidating such information on licensing of NK cells could be the 
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development of in vitro protocols for licensing hyporesponsive/non-licensed NK cells. 

Such experiments would aid with establishing the mechanism and durability of the 

licensing process, and also with the design of potential ' immunogens ' that could be used 

to enhance NK cell function via vaccination or microbicide exposure. 

Cytolysis mediated through CD 16, ADCC, can be distinguished from cytotoxicity 

mediated by other NKR in how it bridges the innate and adaptive immune responses. 

While other NKR directly recognize self-molecules, such as HLA class I, or stress­

induced molecules, CD 16 indirectly recognizes the non-self components of pathogens 

through binding the constant region of anti-pathogen lgG antibodies. This quality of 

ADCC introduces the possibility of exploiting ADCC to prevent and/or control infection 

via therapeutic or protective vaccination. The design of such vaccines would need to 

consider two factors, the ability of the antibodies to induce ADCC and the functional 

capabilities of the NK cells. This framework involves consideration of the non-traditional 

idea of inducing non-neutralizing antibodies as a component of an effective vaccine, as 

such vaccines would only require the induction antibodies that can recognize pathogen 

components expressed on the surface of infected cells. While a vaccine inducing such 

non-neutralizing antibodies may not provide protection equally in all individuals, 

protection could be enhanced if immunogens capable of licensing hyporeactive NK cells 

were included. 

While our study provides evidence of the licensing of CD 16 mediated effector 

functions, many questions remain unresolved. This study evaluated the licensing of NK 

cells on the level of inhibitory NKR and HLA-Bw4 genotypes. Much evidence suggests 

that the function of the inhibitory KIR3DL1 receptor is influenced by the allelic version 
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of the receptor an individual possesses, as well as the ability of that version to interact 

with the allelic version of the HLA-Bw4 molecules expressed (18). As such, further study 

investigating the differential abilities of different KIR3DL1 and HLA-Bw4 allelic 

interactions to license NK cells is required. The results of such investigations could 

elucidate the optimal conditions for licensing K cells. 

The licensing process not only endows the ability to mediate effector functions 

upon NK cells, but it also maintains tolerance to self within this lymphocyte subset. As 

only K cells expressing an inhibitory receptor to self are licensed, tolerance to self-cells 

expressing the normal constellation of HLA class I molecules is ensured. This makes 

intuitive sense when considering general cytotoxicity, which utilizes receptors 

recognizing altered expression of self-molecules. However, it is less clear at first as to 

why licensing would be necessary or advantageous for CD 16 mediated effector functions. 

CD 16 exploits the adaptive immune system, and recognizes antibodies directed against 

pathogens, which have already been vetted via the B-cell tolerance pathway. Antibodies 

against self however, have been documented in healthy individuals and individuals with 

several infections (19-21 ). Therefore, the requirement for NK cells to be licensed to 

mediate ADCC can serve as a barrier for these autoreactive antibodies to be utilized for 

effector functions. Due to licensing, antibodies that bind self-molecules on healthy cells 

will not trigger an ADCC response, as the NK cell will be inhibited by the ligation of an 

inhibitory receptor by the normal expression of HLA class I. However, because pathogens 

often downregulate the expression of HLA class I to avoid the adaptive immune response 

(22), antibodies that recognize infected cells will be recognized by CD 16 and lysed by the 

NK cell. 
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While NK cell licensing can be viewed as a secondary protection mechanism 

ensuring autoreactive antibodies are not utilized in autoimmunity, it is also likely that the 

licensing process due to the evolutionary history of these cells regulates all NK cell 

functions. NK cells are considered as the evolutionary precursors to the B and T 

lymophocytes of the adaptive immune system. In the organisms where these cells were 

present in the absence of adaptive immunity, tolerance would still need to be maintained 

via licensing and similar mechanisms. As such, it is possible that the licensing of NK cell 

CD 16 mediated effector functions is a carry over from an adaptation to a previous in vivo 

environment. 

Demonstrating licensed NK cells is a key step in understanding the process of 

licensing and exploring its potential pragmatic applications. The present study provided 

evidence for the licensing of ADCC capabilities through the inhibitory KIR3DL 1 

receptor. Further elucidation of the basic properties of this process could lead to the 

development and enhancement of immunological therapies. A greater understanding of 

licensing and NK ontogeny could also help explain the mechanisms via which specific 

NK cell phenotypes provide protection against initial infections and disease progression. 

The licensing hypothesis provides a model through which many of the properties of NK 

cells can be better understood and applied. 
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Chapter 4 

Conclusion 
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This project investigated non-clonotypic activating and inhibitory receptors 

expressed on T-lymphocytes and natural killer (NK) cells. First, changes in the expression 

patterns of the CD 56 marker and the inhibitory NKG2A natural killer cell receptor (NKR) 

on cytotoxic T-lymphocytes (CTL), during human immunodeficiency virus (HIV) 

infection, were investigated as phenotypic markers and contributory factors to the 

emergence of an autoreactive CTL subset that kills activated uninfected T-lymphocytes. 

Secondly, we investigated if host co-expression of an inhibitory NKR and its ligand was 

associated with the licensing of antibody dependent cellular cytotoxicity (ADCC) 

capabilities in NK cells. Our results suggest that inhibitory receptors are involved in both 

regulating adaptive immune responses and in the ontogeny of the CD 16-mediated effector 

functions ofNK cells. 

Chronic HIV infection is associated with progressive loss of protective immunity 

and development of immune pathology, including a subset of CTL that kill activated 

uninfected T -lymphocytes (1-5). HIV infection is also associated with several alterations 

in accessory receptor expression patterns, including decreased numbers of CTL 

expressing the CD56 marker (6) and the inhibitory NKG2A/CD94 receptor (7). As such, 

we investigated if these alterations could provide phenotypic markers or contribute to the 

behaviour of CTL capable of killing activated uninfected T -cells. CTL that killed 

activated uninfected T-lymphocytes lacked expression of CD56 and NKG2A/CD94. This 

finding corresponds to the previous observation of increased levels of CTL lacking 

expression of CD 56 and NKG2A/CD94 in HIV -infected individuals. The results from this 

study suggest some of the alterations in receptor expression that develop during chronic 

HIV infection may relate to evolution of the adaptive immune response from primarily 
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protective to autoreactive and pathological. The observation of lack of expression of 

NKG2A/CD94 on autoreactive CTL from HIV infected individuals is potentially valuable 

not only for explaining how alterations in inhibitory receptors can modify CTL function, 

but also for the development of a pathology model for the progression from HIV infection 

to the acquired immune deficiency syndrome (AIDS). 

CTL that kill activated uninfected T-lymphocytes are found in human HIV 

infections and simian immunodeficiency virus (SIV) infections that progress to AIDS (1-

5). The association of these CTL with disease progression does not end with their 

appearance in only pathogenic infections, as they are also associated with several markers 

of disease progression, including CD8+ T-lymphocyte counts, serum beta-2-

microglobulin levels and viral loads. Since the majority of CD4+ T-lymphocytes 

destroyed in immunodeficiency virus infection are uninfected (8) and these CTL are 

associated with disease progression, this cellular subset could be important in the 

pathogenesis of HIV infection. Therefore, understanding how changes in accessory 

receptors induced on CTL during chronic viral infection could lead to the development of 

such an autoreactive subset of CTL may also elucidate a mechanism of pathogenesis in 

HIV infection. 

The inhibitory NKG2A/CD94 receptor is a regulator of CTL and NK cell activity. 

This receptor recognizes the non-classical class I human leukocyte-histocompatibility 

linked antigen (HLA) molecule, HLA-E (9). As HLA-E expression is increased in HIV 

infected individuals (reviewed in I 0), HIV infection may drive the selection of CTL that 

have reduced expression of NKG2A/CD94. This will result in CTL that recognize their 

cognate antigen and respond without being inhibited by the increased levels of HLA-E. 
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Therefore, CTL that lack expression of KG2A would be selected as they would be 

more likely to respond appropriately after recognizing cognate antigen. However, such a 

change in inhibitory receptor expression on CTL may allow TCR with cross-reactivity 

with self to recognize and respond to self. These changes in the expression patterns of 

inhibitory accessory receptors on CTL in HIV infected individuals may contribute to the 

development of CTL capable of killing activated uninfected T-lymphocytes and the 

establishment of pathogenic autoimmunity. 

In the second part of this project we investigated if co-expression of the killer 

immunoglobulin like receptor (KIR) 3DL1 with its ligand, class I HLA-BW4 licensed 

NK cells to mediate ADCC. As previous research investigating licensing of ADCC 

through KIRs yielded contradictory results (11-12), we applied an ecologically valid 

experimental system to address potential methodological problems. Our results 

demonstrated that KIR3DL1 + K cells had higher ADCC and interferon gamma (IFN-y) 

production when isolated from individuals expressing the HLA-BW4 ligand. This 

observation suggests inhibitory NKR ligation plays a vital role in the ontogeny of NK 

cells. Establishing that the licensing of NK cell activities occurs through inhibitory 

receptors is important for furthering our understanding of basic K cell biology and for 

creating and enhancing NK cell based therapies. 

Currently hematopoietic transplants are used as therapies against several forms of 

leukemia (reviewed in 13). NK cells that develop from these transplants, from donors 

expressing both an inhibitory receptor and its ligand, become alloreactive when the 

recipient lacks expression of the receptor' s ligand. This observation is explained by a 
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combination of the licensing hypothesis and the missing-self hypothesis. The NK cells are 

licensed for cytotoxicity in the donor. However, upon transfer to the recipient they are 

unable to be inhibited due to the missing ligand, or missing self. Thus, when an activating 

receptor is stimulated the cell will become activated due to the lack of inhibitory signals. 

A greater understanding of the licensing process may allow the development of in vitro 

licensing protocols and a simplification of this therapy. Instead of using transplantation, 

hyporeactive or non-licensed NK cells could be harvested from the individual with the 

leukemia. These cells could be licensed in vitro and reintroduced within the individual. 

Upon reintroduction these cells should mediate an anti-leukemia effect similar to that 

observed after transplantation. 

The development of in vitro licensing protocols could also provide therapeutic 

avenues for several infections, including HIV infection. Co-expression of KIR3DL1 and 

its ligand HLA-BW4 is associated with protection from HIV infection in uninfected 

individuals that have been exposed to HIV (14). This suggests that NK cells expressing 

the KIR3DL1 receptor are somehow providing protection against initial infection. As this 

protective effect coincides with expression of HLA-BW4, it is possible that licensing can 

explain this observation. As such, the ability to induce licensing in vitro and reintroduce 

KIR3DL1 + NK cells, from individuals lacking HLA-BW4, may provide protection 

against initial infection with HIV. 

Enhancement or creation of new therapies based on the licensing of NK cells is 

highly speculative. Much remains unknown about the licensing process, including if it is 

reversible. Some suggest that to remain licensed NK cells may need constant exposure to 

the ligands of their inhibitory receptors (15). If this were the case, NK cells licensed in 
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vitro would lose their ability to mediate effector functions after reintroduction into the 

original host. If NK cell licensing is to be harvested for the purposes of creating and/or 

enhancing therapies, much more information is required about the mechanism and 

stability of licensing. Although understanding licensing is of much importance for 

harvesting the full potential of NK cells, a detailed understanding of other NK cell 

properties is also essential. The recent observation of memory in NK cells is a novel 

property that could be of much importance. 

Evidence for memory in NK cells 1s seen 111 both infection models and the 

adoptive transfer of in vitro cytokine-activated cells (16-17). Murine NK cells provide 

protection against murine cytomegalovirus (MCMV) infection through the activating 

Ly49H receptor. This receptor recognizes the viral m 157 protein, which is expressed on 

the surface of infected cells. This infection model was recently employed to investigate 

memory in NK cells. The investigators found a preferential expansion of Ly49H 

expressing NK cells. They also observed heightened levels ofLy49H expressing NK cells 

in both the lymphoid and non-lymphoid organs for up to 37 days post infection. These 

cells were able to produce cytokines and degranulate upon reactivation, and provided 

protection against MCMV infection in adoptively transferred hosts. The properties of 

these cells suggest they are memory NK cells. They are expanded by recognition of a 

specific ligand by an activating receptor, and are capable of protecting adoptively 

transferred hosts from initial infection with the original pathogen. Evidence for memory 

NK cells has also been provided by in vitro activation of NK cells with cytokines and 

reintroduction into animals. These cells are detectable by production of larger quantities 

of IFN-y than nai"ve NK cells upon stimulation. In this experiment, however, memory NK 
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cells did not demonstrate higher levels of cytotoxicity than na'ive NK cells. These two 

independent studies demonstrate that NK cells have the ability to exhibit memory. The 

results suggest that two independent types of memory may be present in NK cells, one 

induced through activating receptor ligation and another through cytokine stimulation. 

These two types of memory appear to have different characteristics (Fig. 1 ), which may 

have diverse implications. With greater understanding these types of memory may have 

many different applications. 

The NK cell memory induced by triggering activating receptors confers upon the 

lymphocytes an ability to recognize and kill appropriate target cells faster than na'ive cells 

(16). In an MCMV infection model, this increased killing potential protected adoptively 

transferred animals from initial infection. This type of NK cell memory could potentially 

be harvested to protect against many infections. However, much remains unknown about 

this novel NK cell characteristic. It is unknown if activating NKR must recognize non­

self components for this type of memory to be induced or if it is just a certain threshold of 

activation that is required. These questions could be determined via in vitro experiments 

with cross-linking of activating NKR or by transplantation of NK cells into donors that 

express the self-ligands for activating receptors, but not the inhibitory receptors. 

Regardless of the basic characteristics of this form of memory, many applications are 

possible. There is even potential to use this observation to generate designer NK cell 

phenotypes that upon introduction to an in vitro environment could confer protection 

against infection or tumor development. 
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I. 

Activating Receptor­
Induced Memory 

Increased cytotoxicity 

Increased IFN -y 

Protection from infection 

II. 

Cytokine-Induced 
Memory 

Unaltered cytotoxicity 

Increased IFN -y 

Figure 4.1 . NK cell memory can be induced by (I) triggering through activating receptors 

or (II) through stimulation with cytokines. These two mechanisms of memory induction 

produce NK cells that exhibit different characteristics. 
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The NK cell memory induced by cytokine stimulation appears to predispose NK 

cells to produce higher levels of IFN-y and not influence cytotoxicity potential (17). This 

form of memory could also be used for many therapeutic purposes. The activation of 

such memory NK cells could act as an addition to vaccination protocols, as IFN-y 

activates NK cells to produce TNF-a and the two cytokines act together to induce the 

maturation and migration of antigen loaded dendritic cells (DC). As such, this form of 

NK cell memory could be beneficial for enhancing the induction of adaptive immunity. 

Although the two types of NK cell memory have many potential applications, the 

ecological validity of their in vivo existence remains questionable. As activating NKR 

tend to recognize self-ligands, the presence of an activating receptor that recognizes a 

peptide from a pathogen is most likely a chance occurrence. Thus, the development of 

NK cell memory in MCMV infection could be due to an unrealistic triggering of the 

activating receptor in the absence of inhibitory signals, which would be decreased due to 

the down-regulation of MHC-I ligands by MCMV (18). Also, it is unknown if the 

induction of memory by in vitro cytokine stimulation could occur in vivo. The culture 

conditions may simply reflect an environment that cannot be recreated within an 

organism. As such, it remains unknown if NK cell memory is an ecologically valid 

concept, or if it represents an experimental artifact. 

The present study provided evidence that NKR are valuable in the development of 

ADCC or CD 16-mediated effector functions in NK cells and that they could serve as 

phenotypic markers of and functional contributors to the development ofT-cell mediated 

immune pathology in HIV infection. Increasing the understanding of accessory receptor 
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function is a potentially valuable tool for developing and enhancing medical therapies for 

many conditions. Although it remains unknown if many ofthe observations regarding NK 

cell function are ecologically valid, many valuable contributions can arise from these 

observations. 
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