








Intracerebroventricular vasopressin produces 
noradrenergic f3-receptor-dependent potentiation of the 
perforant path-evoked potential in the dentate gyrus in . 

VlVO 

by 

Christina Dove, BSc Hon. 

A thesis submitted to the School of Graduate Studies in 
partial fulfillment of the requirements for the degree of 

Master of Science 

Faculty of Medicine 
Memorial University ofNewfoundland 

January 2008 



Abstract 

Long-term potentiation of a synaptic and/or spike response, which is widely 

accepted as a model for neuronal plasticity, was initially elicited by high frequency 

stimulation in the hippocampus (Bliss and Lomo, 1973), but can also be induced by 

neuromodulators like norepinephrine (NE; Neuman and Harley, 1983; Walling and 

Harley, 2004). The neuropeptide vasopre sin (A VP) (Chen et al, 1993; Chepkova et al , 

2001 ; Dubrovsky et al , 2002; Dubrovsky et al , 2003) also produces enhancement of 

synaptic responses and has a role in promoting memory (Bohus et al, 1982). In vitro 

studies have shown NE plays a role in AVP-initiated increases in cyclic AMP (cAMP) 

(Brinton, 2000; Brinton, 1993). 

It has been proposed that NE, released into the dentate gyrus in vivo mediates 

A VP memory enhancement (Bohus et al , 1993 ). This thesis examined 1) the perforant 

path-dentate gyrus evoked response after intracerebroventricular (icv) A VP; 2) the ~

adrenergic influence on perforant path A VP effects through the use of a double pipette 

procedure using the ~-adrenergic antagonist, propranolol; and 3) further exan1ined the 

pharmacology of the perforant path A VP response by the use of the V 1 a selective agonist 

DGA VP, an AVP fragment without peripheral effects, in the urethane anesthetized rat. 

In the first experiment, A VP (1 ng; icv) produced potentiation of perforant path 

population spike amplitude in 15/ 16 animals and of the EPSP slope in 11/16 animals. 

AVP significantly increased the population spike amplitude with a mean increase of 50% 

over baseline at 30 minutes after A VP. Individual animals showed increases of up to 

100% at peak potentiation. The mean increase for EPSP slope was 21 % over baseline at 

30 minutes after AVP. Those experiments followed beyond an hour (n=4) showed mean 

amplitude increases of 100% at 60 minutes and mean slope increases of 24% at 60 

minutes. At 100 minutes post A VP, mean spike amplitude was at a 90% increase with the 

EPSP slope at a 16% increase above baseline. 



In the second experiment using a two-pipette recording technique, perforant path 

evoked potentials were recorded using a ~-adrenergic antagonist (propranolol)-filled 

pipette and a saline-filled pipette before and after icv A VP. A VP produced a mean 

increase of 50% of the baseline population spike amplitude in all 6 animals on the saline 

pipette at 30 minutes after A VP. A VP also produced potentiation of the EPSP slope on 

the saline pipette in all animals with a mean increase of 25% at 30 minutes after A VP 

infusion. With the propranolol pipette at 30 minutes all 6 animals showed an unchanged 

or decreased population spike amplitude averaging 21% of baseline and a decreased 

EPSP slope averaging 26% of baseline. 

In the final experiment, the A VP fragment, DGA VP increased in the population 

spike amplitude in 3 animals with a mean amplitude of 100% above baseline at 30 

minutes which remained constant at 60 minutes. DGA VP did not significantly alter EPSP 

slope. 

Taken together, the results of these experiments demonstrate that A VP produces 

long-lasting potentiation of the perforant path evoked potential in vivo in the dentate 

gyrus, without tetanic stimulation. This confirms in vitro experiments on the effects of 

A VP on the perforant path evoked potential. The dependence of A VP-induced 

electrophysiological potentiation on NE receptor mediation in the dentate gyrus parallels 

the results obtained with A VP-infusion in the dentate gyrus in vivo on the potentiation of 

avoidance memory and with in vitro effects of A VP potentiation of NE-mediated cAMP 

production. 

ll 



Acknowledgements 

This thesis is dedicated to my wonderful son , Noah and Michael. I can' t wait to 

spend our time together without worrying about working on 'mommy's paper'. I am truly 

blessed to have you both in my life. 

To my husband Brent, thank you for your love, patience and support and for 

your encouragement when it was most needed. Thank you also to my wonderful parents 

for providing the strong foundation needed to persevere. One can only dream of having 

such love, support, compassion, and strength in two parents. Thank you to my brother 

Mike and sister Lisa for believing in me and standing by my side along the way. Thank 

you to my Aunt Christine who taught me strength and my beloved grandmothers who 

taught me the importance of resolve and determination and to rise above "all the hard 

stuff'. 

I thank Dr. Carolyn Harley for the support and encouragement and guidance she 

has given me over the years. She is a brilliant and compassionate person and has been a 

wonderful mentor to me, full of knowledge for sharing and full of excitement for 

learning. Also thank you to my wonderful friend Dr. ue Walling, who has alway been 

there to encourage me in the right direction. Her wonderful energy and exten ive 

knowledge in neuro cience has always inspired me to know more. Thank you to teve 

Milway who helped so much, especially in the beginning stages, with the experimental 

preparation and the fine tuning of the electrophysiology and the slice preparation. Thank 

you finally to Dr. Russ Adams and Dr. Mary Courage whom I have worked with in 

Vision Research and who have been so understanding of the need to juggle work and 

thesis for the Ia t few years. 

Sincere thanks is also given to my supervisory committee, Dr. Charle Mal bury, 

Dr. Dale Corbett and Dr. John McLean for their guidance and helpful suggestion . 

Thanks also to Dr. Penny Moody-Corbett for the support and guidance through the years 

and Rhonda Roebothan1 for all the extra help with the extensions and the final processing 

of this thesis. 

111 



Table of Contents 

Abstract .... ........... ....... ..... .. ...... ....... ... .. .. .... ... ....... ................... .... ..... .. ...... .. .... ......... .... .. ....... . i 
Acknowledgements ...... ....... .. .......... ... ....... .... .... ... ... ... ... ....... ........ .. .. .. .. ... ....... ...... .. .. ... .... ... iii 
Table ofContents ...... ....... .. .. ................. ......... ... ..... ..... .......... ................. ...... .... ...... ........... ... v 
List of Tables ... ... .... ............................... ................... ... ... .... ......... .. ....... .... ... .... ...... ........ .. . vii 
List of Figures .. .. ... .. .............. ......................... ................... ... ... ..... .. ..... ...... .......... ... ..... .... . viii 
List of Abbreviations ........ . ........................................................ . . ... . ... . . . ... ix 
Introduction .... ... ............. ..... ... .. ..... ...... .. .. .. ............ .... ... ... .. ...... ... .. ..... ... .. .. ...... .... ... ............... 1 

1.1. The Hippocampal Dentate Gyrus and Memory Processes ................................... 2 
1. I.I . Long-term potentiation .. ........ ..... .................... ....... ............... .... ...... ....... ...... 5 

l.l.l.l.Dentate Gyrus and Long Term Potentiation studies ........................ 7 
I.I . I .2. Norepinephrine-Induced LTP ............................................................... 8 
1.1.1.3. Norepineplu·ine-Induced LTP: in vitro studies .................... .. ...... 9 
1.1.1.4. Norepineplu·ine-Induced LTP: in vivo studies .. .. .... .... . .............. 11 

1.2AVP ....... ... ............................. .................. ........ ....... ............... ...... ........ ....... .. ........ l 4 
1.2.1 Structure, neural pathways and receptor distribution ......... .... .... ................ 14 
I .2.2. A VP and learning and memory: A history of De Wied ...................... .. ..... 18 

1.2.2 .1 A VP's effects on memory acquisition, consolidation and 
retrieval .......................................... . .............................. 21 

1.2.2.2 Peripheral and central effects of A VP on memory ... . . . ... . . . . ... . ... . ... 22 
I .2.3. Brain sites .... ... .... . .. . ........ . .... . . ..... ..... . ... . .... ..... . . ..... . ... .. ... . .... 25 

1.2.3.1. Fos protein ... . ............ .......... . .. .... . .. ....... ... .................. . .... 27 
1.3 A VP in vitro and in vivo .. ... ........................ ..... ......................................... ........... 28 
1.4 Neuromodulation by NE and A VP ............ .. .... .... ...... ........... .. .. ... .. ..... .. ..... .... ..... . 30 

Methods ......................... .................... .... .... .... ... .......... ...... .. .. .... ... ..... ....................... ........... 34 
Experin1ent 1 ...... ....... .. ............ ............ ........ .. ..... ..... ... ....... ..... .................. ...... ........... 34 
Experiment 2 ...... ...... ....... .... ......... .. ...... .. .. .... ..... .... .... .... ...... .... ... ........... .... .... ............ 35 
Experiment 3 ...... ...... ........... ........................................ ....... .. ....... .. ..... .... .... .... ..... .. .... 36 

Results ....... .... .............. ............. .... ................... ......................... ....... ... .... ..... .. ... ....... ........... 37 
Experiment I : Response to A VP ... .. .... .......... ........ .... ... ... ... ................. .............................. 37 

1.1 Population spike changes .................. .. ......................................... .. ............. 3 7 
1.2 EPSP slope changes .... ........ ........ ... ................... ........ ....... ...... .......... .......... . 40 
1.3 Population spike!EPSP slope relationships .............. .. .............. ..... ............ .. 43 

Experiment 2 : Response toNE antagonist and A VP ...................... .. ................................. 46 
2. I Evoked potential changes .... ....... .... .... ............ .. ................ .. .......... .. .......... .46 
2.2 Population spike changes on saline pipette .... .. .. .. ............................... ....... 46 
2.3 EPSP slope changes on saline pipette ... .... ........ .... .... ................................ .46 
2.4 Population spike and EPSP slope changes on propranolol pipette ........... .48 
2.5 Population spike and EPSP slope relationship .. ... ........................... 48 

Experiment 3: Response to an AVP Fragment, DGAVP .......... ..... .. ..... .. .. ...... ...... ............ 50 
3. I Population spike changes ...... ................................................................ ..... 50 
3.2 EPSP slope changes ...... .. ........................................................................... 52 
3.3 Population spike/EPSP slope relationship ........ ....... .. ................................ 52 

v 



4.1. Histology for Experiments 1-3 .......... .. .......... .. .. .... ............ ...... .. 52 
Discussion ............................... . ... . . . .. . .. . .. . ........ . ......... . ... . ....... .. .... .. .... . .. 57 

A VP effects on the perforant path evoked potential in the dentate gyrus: 
Experiment 1 . . .... . . . .... . ... . . . .. . . . .. .. . .......... . .. . ... . ....... .. .. . ..... . . ... . .. . .. 57 
~-Adrenoceptor mediation of AVP effects: Experiment 2 ........ . . ... ... .. . . . .. . 62 

NE and A VP dissociation of slope and spike effects . ... ............ . . ... . 66 
A VP Fragment Effects: Experiment 3 . .... . ... .. . ...... .. .. .. ... ... . ..... . . . .... .... 68 
A VP and NE Release .. ..... . .... . .. . .. . ... .. . . ... . ............. .. ........ . ..... . ....... 70 
Mechanisms of A VP Effects . . .. . .. . .. . .. .... .. . .. . .. . .. ... . ...... . . . . . . . . . ... . .... ... 71 
AVP in Real life . . . . .. . .. . . .. . .. . .. .. .... . ... . .. . ..... .. .... . ...... . ...... ... .. . ... . ... . 73 

Conclusion . . ..... .. .......... . .... . . . . . ... . .......... . ... .. . .. . . .... . ....... . . ..... .... . .. . . . . ... . .. 75 
References . . . . . ... . ... . . .. .. . .... .. .. ... . . . .... ............. .. . .. . . . .. .. . . . .. . .... .. .. . .... ... . ...... 77 

VI 



List of Tables 

Table 1-1: Effects of intracerebroventricular (icv) application of A VP on the population 
spike amplitude and the EPSP slope of the perforant path-dentate gyrus 
evoked potential in the urethane anesthetized rat. .. .. .. . .... .... . . . .. . . ... .. . . . .. 38 

Table 1-2: Effects of intracerebroventricular application of A VP on the population spike 
amplitude and the EPSP slope of the perforant path-dentate gyrus evoked 
potential in four urethane anesthetized rats .... . ...... . ............ .. ... .. ... . .. .41 

Table 1-3: Correlations (r2
) of population spike amplitude and EPSP slope in all 16 

single pipette experiments . . . . .............................................. . ... . .. 45 

Table 2-1: Effects of saline or propranolol infusion on the perforant path-dentate gyrus 
evoked potential using the double pipette procedure following A VP 
administration in the urethane anesthetized rat. . . . . . ............ . ... . ......... .48 

Table 2-2: Correlations (r2
) of spike and slope in all 6 double pipette experiments . . .49 

Table 3-1: Effects of the A VP fragment DGA VP on the population spike amplitude and 
EPSP slope of the perforant path-dentate gyrus evoked potential in the 
urethane anesthetized rat. ... . .... . . . .. . .... . .. . ..... .. .. ... .. ... ... .... .. ...... ... . 50 

Table 3-2: Correlations (r2
) of spike and slope of fragment experiments .. .. .... . ..... .. 52 

Vll 



List of Figures 

Figure 1-1: Intracerebroventricular application of A VP induces a potentiation of the 
population spike amplitude and field EPSP slope in the urethane 
anesthetized rat. .. . ... ......... ........ . . ........ . ..... ......... . . ... ... .. ... .... 3 9 

Figure 1-2 : Intracerebroventricular application of A VP induces a potentiation of the 
population spike amplitude and field EPSP slope in the urethane 
anesthetized rat that lasted beyond an hour .............. .. .. .. ................ 42 

Figure 1-3: Intracerebroventricular application of A VP decreased the field EPSP 
slope in the urethane anesthetized rat or showed little change .... . ... . ... .. 43 

Figure 1-4: A closer look at an overlay of population spike amplitude effects 
against EPSP slope effects . . . .. . . . . .. ........ . ...... ........... . ... . . . ... . ........ 44 

Figure 2-1: Effects of saline or propranolol infusion on the perforant path-dentate 
gyrus evoked potential following intracerebroventricular application of 
AVP .. . . . . .... .. . .. .. .. . . . . .. . .. . . . . .. .. .. .. . . . . .. . . . ...... .... .... ..... .. ..... . .. ... 47 

Figure 3-1 : Intracerebroventricular application of DGA VP induces a potentiation of the 
population spike amplitude but has varied effects on the field EPSP slope in 
the urethane anesthetized rat. .. . .... . ... . .. . .. . .... . . . . . ... . . . ............. . .... . . 51 

Vlll 



AVP 
AVP-LTP 
Arc 
BDNF 
CA 
CREB 
DDAVP 
DGAVP 
DG 
DG-LTP 
cAMP 
DA 
EPSP 
FOS 
IP3 
irAVP 
LC 
LTD 
LTP 
LVP 
MAM 
MAPK 
MPT 
NE-LTP 
NGF 
NMDA 
NT3 
PGI 
PROP 
PVN 
SON 
5-HT 

List of Abbreviations 

- argmme vasopressm 
- arginine vasopressin-induced long-term potentiation 
- activity-regulated cytoskeleton-associated protein 
- brain-derived neurotrophic factor 
-catecholamine 
- cAMP-response element binding protein 
- 1-deamino-8-D-arginine-vasopressin 
- desglycinamide arginine vasopressin 
- dentate gyrus 
- desglycinamide-lysine vasopressin-induced long-term potentiation 
- cyclic adenosine 3 ', 5 '- monophosphate 
-dopamine 
- field excitatory postsynaptic potential 
-immediate early gene c-fos 
- inositol triphosphate 
- immunoreactive A VP 
- locus coeruleus 
- long-lasting depression 
-frequency (tetanus) induced long-term potentiation 
- lysine vasopressin 
- methylazoxy-methanol acetate 
- mitogen-activated protein kinase 
- alpha-methyl-p-tyrosine methylester 
- norepinephrine-induced long-term potentiation 
- nerve growth factor 
- N-methyl-D-aspartate 
- neurotrophin 3 
- paragigantocellularis 
- propranolol, a beta-adrenergic antagonist 
- paraventricular nuclei 
- supraoptic nuclei 
-serotonin 

IX 



Introduction 

Learning and memory are essential for all animals in order to satisfy their own 

basic needs and to adapt to changes in the conditions of life. For every li ving organism, 

adaptation reflects behavioral modification by experience. In order to cope with these 

ongoing challenges throughout life, the brain is constantly recon tructing it e lf. Thus the 

cognitive, behavioural and emotional tatus of an organism reflects a li fe long self

adjustment and self-optimization process . Ne uronal plasticity is a fundam ntal process by 

which the brain adapts to sensory, cognitive, emotional, social, and endocrine inputs or a 

combination of such inputs . During learning and memory, neurotransmitters and 

neuropeptides promote a variety of structural and molecular changes that take place 

throughout the brain . 

Ramon Y Cajal initial ly proposed a theory of memory storage as involving the 

growth of new connections or the alteration of existing ones (Bailey et al. , 2000). Donald 

Hebb further proposed that memories are represented as enduring changes in the 

functional circuitry of the brain and that the synaptic contacts between neurons serve as 

the pliable ub trate for " memory traces" (Abraham et al., 1991 ). Specifically Hebb 

suggested the association of pre- and post- synaptic activity in two neurons elicits some 

change in one or both of the neurons such that the synaptic connection between them i 

stre ngthened (Hebb 1949) . This model for memory formation has been inten ively 

studied in the dentate gyrus of the hippocampus, a structure which initially provided 

evide nce of long-la ting synaptic plasticity in the mammalian brain (B ii and Lomo 

1973). The di scovery of long-lastin g potentiated synaptic responses supported Hebb' s 

hypothesis of a cellular mechanism for learning and memory. 

Long-term potentiation (LTP) of a synaptic response, which is widely accepted 

as a mode l for neuronal plasticity was initially e lic ited by hi gh frequency sti mulat ion 

(Bliss and Lomo, 1973), but a! o can be induced by a neuromodulator li ke 

norepinephrine (NE ; Neuman and Harley , 1983 ; W alling and Harley, 2004). The 



neuropeptide argtntne vasopresstn (A VP) (Chen et al, 1993; Chepkova et al, 200 I; 

Dubrovsky et al, 2003) a lso produces enhancement of synaptic responses suggesting its 

possible role in memory formation . Studies have examined whether A VP and NE 

together play a neuromodulatory role in synaptic plasticity (Brinton, 2000; Brinton, 

1993). 

The present study is concerned with two hypothe e . The first is that in vtvo 

A VP will induce long lasting potentiation of perforant path input to the dentate gyrus, as 

has been observed in vitro (Chen et a l, 1993), without tetanic stimulation of the perforant 

path. The second is that the modulation of the perforant path potential by A VP is 

dependent upon ~-adrenoceptor activation. 

These hypotheses arise from earlier evidence that A VP effects on learning and 

memory in the dentate gyrus require NE input to be effective (Bohus et al, 1993; Kovacs 

et al, 1979a; J 979b). If NE mediates the effects of AVP on learning and memory, and, if 

long-term potentiation-like effects play a critical role in learning and memory, AVP 

should, through its interactions with NE, produce an A VP-LTP of perforant path input 

that requires ~-adrenoceptor support as doe the LTP effect of NE itself. Finally, the 

abi lity of a more restricted Vl activating fragment to induce perforant path LTP is 

assessed. 

The introduction briefly reviews A VP pathways and receptor distribution, reviews 

evidence of the role that AVP may play in learning and memory and the evidence for 

memory-like changes in the dentate gyrus circuit with an emphasi on tho e mediated by 

NE and A VP. The focus first turns to the structure mo t studied in memory research, the 

hippocampus and, more specif icall y, the dentate gyru . 

1.1 The Hippocampal Dentate Gyrus and Memory Processes 
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The hippocampus is a bilaterally symmetrical structure comprised of the 

hippocampus proper and the dentate gyrus. These two fields each contain a dense ly 

packed sheet of cells, pyramidal and granule cells respectively, which are the principal 

cell type of their field and which project outside their respective fields, as well as a 

variety of interneurons, cells which limit their influence to the local circuit (Teyler, 

1991 ). An important feature is the intrinsic trisynaptic circuitry of the hippocampus: the 

entorhinal cortex projects to dentate gyrus granule cells (the perforant path), the granule 

cells project onto CA3 pyramidal cells (the mossy fiber system) which project to CA 1 

pyramidal cells (the Shaffer collaterals) which in turn project to the subiculum. The main 

input into the hippocampal system is from the entorhinal cortex which receives inputs 

from multiple cortical regions and all sensory modalities. One of the primary projections 

of the entorhinal cortex is to the dentate gyrus via cells in its second cortical layer 

(Amaral and Witter, 1995). Thus the granule cells are in a position to control the flow of 

information within the hippocampus as they receive excitatory input from the entorhinal 

cortex via the perforant path into the molecular layer, and activate pyramidal cells in CA4 

and CA3. 

The hippocampal formation has been one of the most extensively studied regions 

in the quest for further understanding of learning and memory processes. Much of the 

evidence used to examine the hippocampus and its role in learning and memory was 

obtained through experimental studies with animals where damage was not limited to the 

hippocampus. Selective removal of the hippocampal region consisting of CA I-CA3 

pyramidal cells and hilar and granule cells in the dentate gyrus gives a clearer picture of 

the extent of hippocampal involvement in learning and memory. In studies by Jarrard and 

colleagues (Bouffard and Jarrard, 1988; Morri s et al, 1990), axon-sparing ibotenic ac id 

le ions of the hippocampus are used to study the effects of selective removal on the 

acquisition of spatial and non-spatial information; complex, non-spatial representational 

learning; and acquisition and utilization of contextual information. These studies show 
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that rats with selective hippocampal removal by ibotenate lesioning exhibit severe 

impairments in acquisition of spatial information when tested in the radial maze 

(Bouffard and Jarrard, 1988), the rewarded alternation task (Jarrard and Hyko, 1994) and 

the Morris water maze (Morris eta!. , 1990). In general, these studies have shown that the 

performance of the rats with the hippocampus removed is impaired on tasks that require 

utilization of spatial and contextual information, but is like that of controls in the learning 

and handling of non-spatial information. 

Many studies have tried to exan1ine the specific function of the dentate gyrus and 

its role in learning and memory. These studies have found that intradentate colchicine, a 

neurotoxin that preferentially destroys granule cells and mossy fibers, disrupts the 

acquisition and performance of spatial reference memory in the Morris swim maze 

(Sutherland eta!, 1983; Jeltsch eta! , 2001), working memory in the radial arm maze 

(McLamb et al, 1988a; Jeltsch et a! , 200 I) and the acquisition of a two-way active 

avoidance response in a Y-maze (McLamb eta!, 1988b). Xavier and colleagues (1999) 

tested rats with dentate gyrus lesions on tasks requiring spatial reference and working 

memory in the Morris water maze and found that their deficit was the san1e as rats with 

complete hippocampal lesions when the start location varied on each trial. From their 

findings, Jeltsch and colleagues (2001) speculated that both types of memory are 

sensitive to granule cell damage. 

Rolls (1996) suggests that pattern separation may be a function of the dentate 

gyrus and the mossy fiber projections to CA3. Pattern separation can be described as a 

mechanism for separating partially overlapping patterns of activation so that one pattern 

may be retrieved as separate from the other pattern (Rolls 1996). Rolls' model proposes 

that pattern separation is facilitated by the sparse connections in the mossy fiber system, 

which connects granule cells in the dentate gyrus to pyran1idal neurons in the CA3. The 

mossy fiber inputs to the CA3 from the dentate gyrus may influence which CA3 neurons 

will fire based on the distribution of activity in the dentate gyrus. 
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Lee and Kesner (2004) tested rats with selective dentate gyrus lesions on the 

acquisition and retrieval of contextual fear conditioning. The lesioned rats showed initial 

impairments in freezing behavior but eventually reached the level of freezing in controls 

with subsequent training. When retrieval was examined in rats with dentate gyrus lesions 

24 hours after acquisition, the animals showed a significant deficit in freezing compared 

to controls. These studies support the hypothesis that the dentate gyrus plays a role in 

both the encoding and retrieval of spatial information. 

Since the dentate gyrus receives inputs from all sensory modalities, it is possible 

that the dentate gyrus uses sensory markers to mark a spatial location. Kesner and 

colleagues (2004) speculate that one function of the dentate gyrus would be to encode 

events and separate events in space resulting in spatial pattern separation. This would 

ensure that new highly processed sensory information is organized efficiently in the 

hippocampus. The induction and maintenance of LTP in the dentate gyrus is enhanced 

after exposure to novel or enriched environments (Davis et a l, 2004) suggesting a role in 

encoding new spatial environments. 

1.1.1 Long-term Potentiation 

In 1949, Donald Hebb published his now famous synaptic modification postulate : 

"When an axon of cell A is near enough to excite cell B and repeatedly or persistentl y 

takes part in firing it, some growth process or metabolic change takes place in one or both 

cells such that A 's efficiency, a one of the cells firing B, is increased" (Hebb, 1949). 

In 1973, Bliss and Lomo first reported that brief high-frequency electrical 

stimulation of the perforant path input to the dentate gyrus of the hippocampus could 

elicit a Ia ting enhancement of synaptic transmission in thi pathway that persisted for 

days and this enhancement was termed LTP. LTP is a synapse-specific enhancement of 
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excitatory postsynaptic responses that has been repeatedly proposed as a mechanism of 

memory (Douglas & Goddard, 1975; Bliss & Collingridge, 1993; Izquierdo, 1993). LTP 

shares several characteristics with memory including synapse specificity (Dunwiddie and 

Lynch, 1978), rapid acquisition, incremental nature, durability and persistence for very 

long periods in the absence of stimulation. The fact that it can be triggered by brief trains 

of high frequency stimulation is presumably analogous to the way brief, unique sensory 

or behavioral stimuli set the learning process in motion (Teyler and DiScenna, 1987; 

Bliss & Collingridge, 1993; lzquirdo & Medina, 1995). In addition, LTP is accompanied 

by biochemical and morphological changes which have long been proposed as a basic 

mechanism upon which synaptic connections are strengthened as a result of a learning 

expenence. 

Andersen and Lomo ( 1966) electrophysiologically examined the unique anatomy 

of the hippocampus and found that the extracellular population field potentials recorded 

at various depths directly reflect excitatory postsynaptic potentials (EPSPs) and cell body 

spike discharges. The evoked potentials reflect summed synaptic currents (EPSP) and 

unit spiking activity (population spike). The response of the population of granule cells 

firing action potentials to elicited perforant path stimulation is measured as the population 

spike. The initial slope of the evoked response is a measure of synaptic strength. Long

term potentiation, L TP, was first described in the dentate gyrus and was seen as long

lasting increases in both the population spike amplitude and in EPSP slope (Bliss and 

Lomo, 1973). 
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1.1.1.1 Dentate and Long Term Potentiation (LTP) studies 

Bliss and Lomo (1973) set a precedent for studying field potentials in the dentate 

gyrus in awake animals for the purpose of investigating the properties and persistence of 

LTP. Briefhigh frequency stimulation of the dentate gyrus in the rabbit in vivo was found 

to induce LTP lasting as long as 3 days. Tetanization of the perforant path results in 

robust and enduring increases in the population spike amplitude and the EPSP slope in 

the dentate gyrus evoked by single pulse stimulation of this input pathway (Bliss and 

Lomo, 1973; Bliss and Garner-Medwin 1973; Bronzino et al.,1994). This homosynaptic 

LTP is presw11ed to involve glutamate-mediated modulation of glutan1ate synapses. 

However some early studies established that perforant path stimulation affected 

the population spike and EPSP components differently. Potentiation of the population 

spike was found to be much greater than that of EPSP (Bliss and Gardner-Medwin, 

1973). Racine and colleagues (1983) reported that the EPSP potentiation decayed at a 

faster rate than the population spike potentiation. Subsequent studies from several labs 

confirmed in rats that LTP can last from 1 hour to a day to many weeks, depending on the 

stimulation parameters (Barnes 1979; de Jonge and Racine 1985; Staubli and Lynch 

1987; Jeffrey et al., 1990; Abraham et al., 1993; Bronzino eta!, 1994). Abraham and 

colleagues demonstrated that in the dentate gyrus L TP could last many months ( 1993 ), 

even up to a year (Abraham et a!, 2002), tmder certain conditions. Protocol variables like 

the number and timing of high frequency stimulus trains (Huang and Kandel, 1994; 

Abraham et al 2002), the time before and after stimulation that the animal is in the 

recording chamber (Abraham et al 2002) and the level of neuromodulatory activity at the 

induction time (Swanson-Park et al 1999) have been found to influence L TP duration. 
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Studies have reported that the unusuall y long duration of LTP may be due to 

structural synaptic modifications such as an increase in the number of synapses (Lynch et 

al. , 1988; Lynch and Baudry, 199 1; Bliss and Collingridge, 1993) and change in 

dendritic spines. M any studies have reported that the earl y maintenance phase of LTP in 

the dentate gyrus is p rotein synthesis-dependent (Otani and Abraham , 1989; Otani et al. , 

1989; Nguyen e t al. , 1994). Ke lly et al ( 1998) reported that nerve growth factor plays a 

role in potentiation of the rat perforant path-granule cell synapses . 

1.1.1.2 Norepinephrine-Induced LTP 

The neurotransmitter NE has been studied in the hi ppocampus and been found to 

be in volved both in memory processes and in hippocampal plasticity. In behavioral 

studies, NE has been linked to e nhanced memory retrieval, increased behavioral 

responses to novel objects or novel s timulation, and facilitated learning of new response 

contingencies in a famili ar task (Sara and Bergis, 199 1 ). Various studies have shown that 

NE depletion in rode nts and monkeys results in increased distractabili ty and deficits in 

spatia l working memory while administration of NE agonists improved me mory 

perfo rmance (Carli et al, 1983; Arnsten and Contant, 1992; Cai et al, 1993 ). The major 

source of dentate gyrus NE is the terminals of the locus coeruleus (LC) (Loy et al, 1980) . 

The LC has been a s ite of acti vation fo r studies examining the physio logical effects of 

NE release (Dahl and Winson, 1985; Harley and Milway, 1986; Harley et al 1989; 

Klukowski and Harley, 1994; W alling et al, 2004) . The LC is a noradrenergic nucle us of 

the pontine reticul ar fo rmation , which sends a dense terminal projection to the dentate 

gyrus, as well a to neocortex and other fo rebrain areas (Aston-Jones et a l, 1999) . 

8 



Stimulation of this ascending NE pathway was initially reported to modulate the 

rate of spontaneous unit activity in the hippocampus (Segal & Bloom, 1976), and the 

spike potential amplitude evoked by stimulation of the main excitatory input to the 

dentate gyrus, the perforant path (Assaf et al, 1978). NE-modulated signals were first 

observed in the hippocampus by Segal and Bloom ( 1976). They reported that 

iontophoresed NE appeared to suppress all hippocampal unit firing whether spontaneous 

or driven by cholinergic stimulation, but natural release of NE through activation of the 

LC enhanced tone-induced excitation (Segal & Bloom, 1976). Also enhancement was 

observed when LC stimulation was paired with sensory inputs to neocortex (Berridge and 

Foote, 1991 ). These results led to the proposal that LC-NE acts to enhance the signa l-to

noise ratio both in sensory areas and in the hippocampus (Harley, 1991 ). 

In 1983, NE application in the dentate gyrus was found to result in a long-lasting 

potentiation of the perforant path evoked population spike amplitude in the granule cells 

of the dentate gyrus. Neuman and Harley ( 1983) observed that one to e ight minutes of 

NE iontophoretic application in the granule cells produced a potentiation of the 

population spike amplitude that climbed to 40% in vivo and lasted at least 30 min. Such 

observations were reported as NE-induced long-lasting potentiation (NELLP), a 

heterosynaptic modulation by NE of glutamate responses to distinguish it from the tetanic 

stimulation-induced homosynaptic potentiation. 

1.1.1.3. Norepinephrine-Induced Long-Term Potentiation: In vitro studies 

Lacaille and Harley ( 1985) found that in the hippocampal slice, ten minute of NE 

exposure ( lO ~)produced a 31% enhancement of spike amplitude that was long-lasting 
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(30 minutes) in one-quarter of the experiments. Forty-seven percent of the spike 

ampl itude potentiation could be accounted for by the increase in EPSP slope, thus 

suggesting an additional increase in EPSP/spike coupling. The population spike and 

EPSP slope potentiation was seen in all s lices exposed to the ~-adrenoceptor agonist 

isoproterenol and was blocked with a ~-adrenoceptor antagonist, timolo l, arguing for ~

adrenoceptor mediation. In contrast, an a-receptor agoni st, phe nylephrine, and 

antagonist, phento lamine produced only weak effects. 

Stanton and Sarvey ( 1985) carried out a number of in vitro experime nts to better 

examine NE effects in the dentate gyrus. They discovered two fo rms of NE-induced 

potentiation of population spike amplitude through the mani pul ation of emetine , a protein 

synthesis inhibitor. A short-te rm NE-induced potentiation was seen in the presence of 

emetine . This potentiation only lasted as long as NE was present. An NE-induced long

lasting potenti ation occurred in the absence of emetine and lasted for the 5 hour recording 

time. The thirty minutes of NE superfusion produced an enhancement of spike amplitude 

that was 85% greater than control. In the same study, Stanton and Sarvey ( 1985) found 

forskolin, an adenylate cyclase activator, greatly enhanced the NE-potentiation dose

response curve supporting a ro le for adenylate cyc lase generation of cAMP in NE 

potentiation. Both forms of NE potentiation were blocked by the ~-adrenergic antagon ist, 

propranolo l, a ~ 1 /~2 antagonist and metoprolol, a ~ 1 antagonist. 

In a subsequent study, Stanton and Sarvey ( 1985b) examined slices from normal 

and NE-depleted hippocampi and found high frequency LTP of the perforant path 

population spike was blocked in the dentate gyrus . Upon recovery from the depletion , 

LTP occurred in the s lice. Forsko lin and ~-adrenergic antagonists produced the same 
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results as in the pre vious study. The fin al follow-up study reported that LTP in the 

dentate gyrus and NELLP both corre lated with increased cAMP in the dentate gyrus, with 

NE stimulation showing increased cAMP long afte r washout (Stanton and Sarvey, 

l985c). These studies by Stanton and Sarvey supported the existence of NELLP in the 

dentate gyrus in vitro and showed that thi s fo rm of LTP depends on the activation of ~

adrenergic recepto rs, adenylate cyclase and protein synthesis and the e levati on of cAMP. 

They also argued that high freque ncy LTP in dentate gyrus no rmally recruits this 

pathway. 

1.1.1.4 Norepinephrine-induced Long-Term Potentiation: in vivo Studies 

As discussed previously, Neuman and Harley ( 1983) first described NELLP in the 

dentate gyrus in vivo in anesthetized animals in which the population spike of the 

perforant path potential was consiste ntly potentiated by NE iontophoresis in the granule 

cell layer. A subsequent study conducted by Dahl and Winson ( 1985) in vivo supported 

thi s long-lasting enhancement of the population spike amplitude. In one of the earliest 

experiments on the modulation of perforant path evoked potential in the dentate gyrus by 

LC electrical stimulation , they reported that the population spike amplitude showed long

lasting potentiation w ithout any change in the EPSP slope at the cell body level. They 

observed a decrease in the EPSP slope at the dendritic level. 

Population spike enhancement has also been found fo llowing glutamate activation 

of the LC to stimulate endogenous NE in the anaesthetized rat. Harley and Milway 

( 1986) ejected glutamate into the LC and reported a pike enhancement 40% greater than 

the controls and lasting more than 20 minutes in 39% of the animals tested. The EPSP 

lope increased briefl y (2-3 minutes) in half of the experiments and decreased or was 
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unchanged in the remainder of experiments. The different latencies suggested that EPSP 

slope and spike effects were uncorrelated. Another study by Harley and Evans ( 1988) 

supported these results. Harley and Sara ( 1992) found the EPSP s lope again did not 

corre late with the population spike amplitude. EPSP slope increases occurred on less than 

30% of the evoked po tentials with increased population spikes. 

Recentl y, W a lling and colleagues (2004) in vestigated the acti vation of the LC in 

the urethane anesthetized rat by the neuropeptide, orex in-A. They reported that orexin-A 

caused a long-lasting and graduall y increasing (over 3 hours) potenti ation of the 

population spike amplitude with no change in the EPSP slope . 

Spike amplitude enhancement by glutamate acti vation of the LC has also been 

seen in the awake animal (Sara and Bergis, 199 1; Klukowski and Harley, 1994; Walling 

and Harley, 2004). A study in the awake rat by Sara and Bergis ( 199 1) examined effects 

of the drug idazoxan, which increases the release of NE, and found potenti ation of the 

population spike amplitude, but no change in the EPSP slope . W alling and Harley (2004) 

studied NE release and subsequent modulation of the perforant path evoked potential in 

dentate gyrus at 3 hours and at 24 hours fo llowing glutamate acti vation of the LC. They 

found that LC activation resulted in immediate spike potentiation Ia ting 3 hours, but 

observed both spike and EPSP s lope potentiation 24 hours after LC activation. 

Propranolo l, a ~-adrenerg i c antagonist, and anisomycin , a prote in synthesis inhibitor, 

given (icv) before LC activation was found to block both slope and spike potenti ation at 

24 hours. Thus, LC activation seems to initi ate a ~-adrenergic and protein synthesis 

dependent long-lasting enhancement in the granule cell excitability and synaptic stre ngth 

of the perforant path input to the dentate gyrus. 
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While in vitro studies concluded that a-agonists failed to mimic the effects of NE 

and that a ll potentiation depended on ~-receptor activation, Chaulk and Harley ( 1998) in 

an in vivo study, found a possible role for both a- and ~-adrenoceptors in NE 

potentiation. They used icv NE to mimic in vitro conditions in. vivo and found that both 

the ~-agonist isoproterenol and the a-agonist phenylephrine, produced potentiation 

although potentiation was more commonly long-lasting in isoproterenol treated animals. 

Both ~-and a-antagonists attenuated NE potentiation in the icv studies. Babstock and 

Harley (1992) examined the role of the ~-receptors in. vivo after stimulation of the 

paragigantocellularis (PGI). The PGI provides a major source of glutamate excitation to 

the LC which is another method of activating NE release. PGI activation induced only 

spike potentiation which was blocked by the ~-antagonist propranolol. In contrast, Munro 

and colleagues (200 1) found that the ~-antagonist, timolol , partially prevented high

frequency- induced LTP in. vivo of the EPSP slope, but LTP of the population spike 

amplitude was unaffected. 

The inconsistent demonstration of LTP of the EPSP slope in NE-induced 

potentiation studies in. vivo stands in contrast to the previous in. vitro data but is fairly 

consistent within the in vivo experiments. 

NE-induced LTP shares important qualities with the late-phase tetanic induced 

LTP. ~-adrenergic receptor activation was found to be required for tetanus-induced late

phase LTP at both the lateral and medial perforant pathways (B ramham et al., 1997) and 

at the mossy fiber-CA3 synapse (Huang and Kandel , 1996). More recently, Straube et al. 

(2003) have shown that novelty exploration transforms earl y-phase LTP (non-protein 
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synthesis dependent) in the dentate gyrus into late-phase LTP, which is prevented by the 

~-antagonist propranolol, as well as by the protein translation inhibitor, anisomycin . 

NE has been reported to work with the neuropeptide A VP in the enhancement of 

memory (Kovacs et al, 1979a; 1979b) which will be discussed shortly. The following 

section is a brief overview of A VP, its anatomical distribution and its historical role in 

learning and memory studies. 

1.2AVP 

1.2.1 Structure, neural pathways and receptor distribution 

A VP is a nonapeptide derived from larger precursor proteins. In peptide synthesis, 

the am ino group of one amino acid is bonded with the carboxyl group of the adjoining 

amino acid. The side chains of the amino acids identify the various peptides and are 

responsible for their physical and functional attributes (McEwen 2004) . AVP and 

oxytocin are synthesized in , transported within, and secreted by both magnocellular cells 

and parvocellular cells which are predominantly located within the paraventricular (PVN) 

and supraoptic (SON) nuclei. The magnocellular cel ls are neuroendocrine cells which 

project to the capillaries in the posterior pituitary lobe where they secrete their contents as 

hormones into the systemic circulation. Some parvocellular cells secrete releasing 

hormones into the portal circulation of the anterior pituitary gland, others activate, 

inhibit, or modulate, activity in other neurons in the brain and others synapse on blood 

vessels in the brain (Sofroniew, 1985; Buijs et al, 1991 ). Extrahypothalamic (from the 

bed nucleus of the stria terminal is) and hypothalamic (from PVN) A VP-ergic fibers 

innervate limbic areas like septum and hippocampus (Sofroniew 1985; Buijs 1991 ). A VP 
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and OT are released synaptically from axon terminals and from dendrites and somata of 

hypothalamic neurons (Pow and Morris, 1989). 

The neuropeptide concept was originally formulated by De Wied ( 1965) when his 

findings indicated the neurogenic effects of pituitary hormones. Generally, De Wied 

came to recognize that A VP is a peptide that can act at both peripheral target sites and at 

neural structures within the brain. In both periphery and brain, metabolic alterations 

mediated by peptidase enzymes convert the parent peptide into smaller peptides. The 

neuropeptide concept proposes that in the brain the smaller active fragments generated 

from A VP can function as neurotransmitters or neuromodulators at brain target sites. It 

also suggests that some of these fragments act at relevant brain sites to influence memory 

consolidation and retrieval. Traditionally in De Wied' s studies lysine vasopressin (LVP) 

has the same function as A VP but the form is found only in the pig. A number of studies 

carried out by De Wied and colleagues (1972) found that the entire A VP molecule, which 

produced other hormonal effects, was not required for effects on memory processes. 

Desglycinamide-lysine vasopressin (DG-LVP), produced from the parent peptide LVP 

with the glycine residue removed, lost its endocrine activity but retained its ability to 

inhibit extinction of a pole-jump avoidance response. The behavioral research of De 

Wied and colleagues is reviewed in a later section. 

Studies have shown that A VP binding sites are widely distributed throughout the 

brain and the spinal cord (Tribollet et al., 1998). Tribollet and colleagues ( I 998) 

summarized the distribution of central A VP binding sites using micro copy 

autoradiography in the adult rat brain and compared it with distribution patterns found in 

other mammalian species. Receptors specific for A VP were identified within numerous 

areas of the brain and spinal cord in the rat and other mammals but there are marked 
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species related differences in their distribution, which may be because these receptors 

mediate species typical behaviors. 

Some studies using non-radioactive selective analogues together with tritiated 

AVP suggested that only V1a-like vasopressin receptors are detectable within the brain 

(Barberis eta!, 1995; Tribollet eta!. , 1998b). There appears also to be an absence of V2 

receptor mRNA in the adult rat brain (Ostrowski eta!, 1992; Saito eta!, 1995), whereas it 

may be expressed during development (Saito eta!, 1995; Croiset and De Wied, 1997). A 

study by Hirasawa and colleagues (1994) suggests that the hippocampus also contains 

V 1 b receptor mRNA, but expression is low which probably accounts for the failure to 

detect it in some autoradiographic studies (Sugimoto et a! , 1983). The oxytocin receptor 

also has a high affinity for A VP, which has been speculated to mediate central effects of 

both A VP and oxytocin (Elands et al, 1988). 

There are still questions concerning the central distribution of A VP-ergic cells 

and their fibers. In some cases, knowledge is lacking about the terminal sites of localized 

cell clusters, while in others the sites of the A VP-ergic fibers or terminals are known, but 

not their cells of origin. In particular, while the origin of the A VP-ergic fibers in the 

ventral hippocampus (CAl , CA3) appears to be in the medial amygdala (Caffe et al. , 

1987), the origin of the A VP-ergic fibers in the dentate gyrus is not clear. 

Immunohistochemical studies have shown A VP-ergic neurons in a variety of structures, 

such as the bed nucleus of stria terminalis (De Vries and Buijs, 1983; Caffe ' and van 

Leeuwen, 1983; Sofroniew, 1985), the ve1tical limb of the nucleus of the horizontal 

diagonal band (Sofroniew, 1985), the septum (Sofroniew, 1985), the PVN ( Buijs, 1978; 

De Vries et a!. , 1985), the SON (De Vries et a!. , 1985), the suprachiasmatic nucleus 
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(Buij s, 1978; Sofroniew and Weindl, 1980), the dorsomedial hypothalamus (Caffe ' and 

van Leeuwen, 1983; De Vries et al. , 1985), the medial amygdaloid nucleus (Caffe' and 

van Leeuwen,1983; De Vries et al., 1985; Sofroniew, 1985), the locus coeruleus (LC) 

(Caffe' and van Leeuwen, 1983; Caffe ' et al., 1985; De Vries et al., 1985; Sofroniew, 

1985), the nucleus subcoeruleus (Caffe ' et al., 1985; Sofroniew, 1985), and the spinal 

cord (Kai-Kai et al., 1986). In many of these neurons, A VP has a neuromodulatory effect 

since it produced long-lasting facilitation of the response to the excitatory 

neurotransmitter glutamate (Urban, 1987). De Vries and colleagues (1984) found that the 

distribution of A VP in the rat brain included androgen dependent pathways in which a 

higher density of A VP fibres in the bed nucleus of the stria tenninalis, the amygdala and 

the LC is found only in male rats. 

Since neuropeptides are often produced in small an1ounts and rapidly transported 

from the cell body, many of these studies used the axonal transport inhibitor colchicine to 

permit cell body staining. However, colchicine has profound effects on the ultrastructural 

features of neurons (Alonso, 1988) and can affect peptide production (Ceccatelli et al. , 

1991 ; Re 'thelyi et al. , 1991). This teclmique has been replaced by in situ hybridization 

that permits detection of cells possessing peptidergic mRNA. Hallbeck and colleagues 

(1999) used this technique to identify the distribution of neurons that may be the origin of 

AVP in the hippocampus of the male Sprague-Dawley rat. APV :mRNA labeling was 

seen in the pyramidal layer of the hippocampus throughout the CA1- CA3 fields and in 

the dentate gyrus. Thus hippocampal granule cells may produce A VP. A VP binding sites 

in the dentate gyrus are the densest within the hippocampus (Brinton et al., 1984; Phillips 

et al, 1988). 
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Studies have reported that A VP activates hippocampal neurons (Versteeg et al., 

1984; Brinton and McEwen, 1989; Giri et al., 1990; Maegawa et al., 1992), which supports 

the possible involvement of AVP in learning and memory (Bohus, 1977; Leshner and 

Roche, 1977; Bohus et al, 1978; De Wied and Versteeg, 1979). Hallbeck and colleagues 

( 1999) concluded that their findings of A VP mRNA expression throughout the 

hippocampus indicate that many of the A VP effects in the hippocampus could be e licited 

by intrinsic A VP-ergic neurons. There is also evidence that A VP is released 

extrajunctionally (Buijs and Swaab, 1979), which suggests that A VP may diffuse over 

long distances to other brain areas. Many regions containing A VP receptors lack 

A VPergic or oxytocinergic fiber innervation and some regions are devoid of receptor 

sites but instead show neuropeptide terminals (Barberis and Tribollet, 1996). Such 

observations suggest these peptides may also be involved in nonsynaptic communication. 

1.2.2 AVP and learning and memory: A history of De Wied's studies 

The earliest reports on A VP and its effects on learning and memory came from 

the classic studies by De Wied and his colleagues in the late 1960s in which he originally 

investigated the effect of a posterior pituitary lobectomy and the consequent loss of 

associated hormones on avoidance behavior. A voidance behavior is a behavioral 

response which an organism uses to prevent contact with an aversive stimulus, e ither 

active ly avoiding it or passively avoiding it through behavioral inhibition. Active and 

passive avoidance tasks were the primary paradigms used by De Wied and colleagues 

(De Wied and Bohus, 1966; De Wied,1976; De Wied, l977; Bohus, Kovacs and De Wied, 

1978) in their research on A VP and oxytocin and memory processes. These consisted of 

multi-trial active avoidance tasks like the pole jump and the shuttlebox tasks, and the 

sing le-trial passive avoidance task. Such tests reflect the ability of the animals to handle 

sudden and dramatic changes in their environment. In 1965, De Wied reported that a 
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conditioned avoidance response is extinguished at a much more rapid rate with the 

removal of the posterior pituitary lobe. The lobectomy increased the rate of extinction of 

the shuttlebox avoidance training response while a relatively crude extract called pitressin 

tannate, prepared from the posterior and intermediate lobes, prevented this abnormally 

rapid rate of extinction and maintained the conditioned re ponse. This extract con isted 

of the posterior pituitary hormones, A VP and oxytocin, and the intermediate lobe 

hormone melanocyte stimulating hormone. LVP was also found to inhibit thi rapid 

extinction rate when injected peripherally (De Wied and Bolms, 1966). It was concluded 

from their studies that the peptides present in the posterior and intermediate lobe of the 

pituitary are physiologically involved in maintaining, but not acquiring the learned 

avoidance response. 

Subsequently, De Wied and Bolms (1966) al o found that when rat wer treated 

with pitressin tannate, they exhibited a delay in the extinction of the active avoidance 

response and maintained the previously acquired avoidance response for a longer period 

con istent with the view that the peptides in pitressin were preserving and promoting 

long-term memory of the conditioned response. De Wied (1971) compared the effects of 

various peptides including L VP and angiotensin on acqui ition of a pole-jump active 

avoidance response in intact rats. The rationale for u ing these particular peptides was 

that they were structurally or physiologically imilar to A VP. They found only LVP 

inhibited extinction in acquisition of the pole-jump avoidance response and the critical 

period for administration was immediately or 1 hour after completion of th first 

extinction session. The authors concluded that A VP is the peptide in pitressin that 

improves retention and its long-term effect suggests an influence on memory 

consolidation. The effect did not appear to be related to the effects of A VP on blood 

pressure or carbohydrate metabolism since neither the pressor substance, angiotensin II, 

nor insulin or growth hormone had any effects on the extinction of the avoidance 

response. 
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Researchers also found long-term behavioral effects of A VP in studies involving 

passive avoidance responses in which the animal's motor activity is decreased in order to 

avoid the aversive stimulus. The passive avoidance test consists of an acquisition trial in 

which a rat receives a footshock after entering a box, and a test trial , in which latency 

time to enter the box again is measured (Ader and De Wied, 1972). The stronger the 

association of the box with the footshock, the longer the latency will be. The acquisition 

trial and the test trial are often separated by a 24-hour period. The passive avoidance test 

allows measurement of drug effects on consolidation, by administering the drug before or 

just after the acquisition trial , and retrieval , by administration before the test trial 

(Reijmers et al. , 1998). Ader and De Wied (1972) used this passive avoidance task to test 

the effects of LVP (subcutaneous) and were able to demonstrate that this A VP analog not 

only induces strengthened maintenance of a conditioned avoidance response in a multi

trial active avoidance paradigm, but also in the single-trial passive avoidance paradigm. 

In a 1976 study by De Wied, examining the effects of A VP, intraventricular 

administration of A VP (1 ng/Jll) was given immediately (0 hours), 3 hours, 6 hours or 23 

hours after a passive avoidance learning trial. Rats given A VP exhibited longer latencies 

to enter the shock compartment relative to controls, when AVP was given immediately 

after the learning trial and 23 hours after the trial. Kovacs and colleagues (1978) tested 

L VP effects on acquisition and retention of a passive avoidance response in which rats 

were trained to escape footshock from a grid floor by jumping onto a bench; stepping 

down to the floor produced more footshock. L VP given I 0 minutes before the passive 

avoidance retention session did not influence acquisition, but facilitated retention since 

the step-down latency increased. 
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1.2.2.1 A VP's effects on memory acquisition, consolidation and retrieval 

Memory processes involve consolidation and retrieval of acquired information. 

Studies have exan1ined the role of A VP on both consolidation and retrieval memory 

processes as well as acquisition in an effort to distinguish its specific role. 

Bohus and colleagues (1978) studied time gradient effects of icv administration of 

A VP on retention of a passive avoidance response. A VP significantly prolonged reentry 

latencies relative to the controls and demonstrated a time dependent facilitation. A VP 

was most effective when injected immediately posttraining (consolidation effect) or I 

hour prior to the 24-hour retention test (retrieval effect). These results were similar to 

those of the 1976 study previously described . Bohus and colleagues (1978b) investigated 

both peripheral and centrally administered A VP and found no effect on acquisition, but 

significantly delayed extinction on both active and passive avoidance tasks. The 

observation that the retention effects occur at a much lower dose centrally then 

peripherally is consistent with the notion that A VP exerts its effect by influencing central 

rather than peripheral receptor sites. 

Other researchers studied the effects of A VP on retrograde anmesia to exan1ine 

effects on memory retrieval. Retrograde an1nesia refers to the inability to remember 

experiences that occurred just before a temporary but severe disturbance of the normal 

physiological activity of the brain (McEwen 2004). The amnesia can be produced by 

postlearning or preretention application of a variety of treatments that disrupt neural 

activity, such as carbon dioxide (Rigter et al , 1974; Sato et al, 2004), electroconvulsive 

shock or pentylenetetrazole (Book in and Pfeifer, 1978) or by inhibiting protein synthesis 

using puromycin. There is a debate about whether the amnesia produced is due to 

disruption of memory consolidation, in which short-term memories are changed into 

permanent long-term memories, or due to an impairment of memory retrieval because of 

the demonstrations of spontaneous recovery from this anmesia (Davis et al. , 1971 ; Miller 
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and Springer, 1973). Rigter and colleagues (1974) tested the ability of DG-LVP to 

reverse retrograde amnesia induced by carbon dioxide treatment using a single trial step

through passive avoidance task. They found that the amnesia was reduced when DG-LVP 

was given before the training trial, the test trial, or both. Such results seem to indicate that 

the peptide protected memory consolidation, because of the peptide's antiamnestic effect 

when given before training, and memory retrieval because of its antiamnestic effect when 

injected before the test trial. 

Bohus and colleagues (1982) found an A VP-induced reversal of retrograde 

amnesia when AVP was microinjected into the dentate gyrus of the hippocampus or into 

the central amygdala. They also found that icv A VP (1 0 ng) or subcutaneously (2 ~Lg) 

injected A VP resulted in an antiamnestic effect on pentylenetetrazole-induced amnesia in 

a single-trial passive avoidance task. Such findings together suggest that the dentate 

gyrus or amygdala could mediate the consolidation and/or the retrieval effects of A VP. 

1.2.2.2. Peripheral and Central effects of A VP on Memory 

The pioneering work by De Wied and colleagues produced some controversy 

mainly due to the difficulty in separating peripheral from central effects. It was suggested 

that changes in arousal from the action of peripheral A VP on blood pressure might act as 

an additional reinforcement in aversive memory tasks so the peripheral effects may 

mediate the apparently positive effects of A VP in the modulation of memory processes. 

Thus studies were needed to determine whether the behavioral effects of A VP could be 

produced without the pressor or peripheral effects. Studying AVP fragments provided 

one way to address this issue. 

These investigations revealed that the more powerful peptide effects on 

conditioned avoidance behavior were found with C-terminal fragments of A VP (De Wied 

eta!., 1987). The AVP fragment desglycinamide (DGAVP) and AVP (4-8), in particular, 

exhibited almost no peripheral effects, but potentiated the consolidation and retrieval 
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processes in an avers ive memory task (De Wied et al. , 1984; Gaffori et al. , 1985). A VP 

(4-8) appears to be the active sequence of the DGAVP molecule . 

Gaffori and De Wied ( 1986) investigated the time periods fo r the modulating 

effects of A VP and several analogues with a sc injection (3 !!g) in rats in a passive 

avoidance paradigm. AVP 4-8 and A VP 5-8 were most active when given immediate ly 

after the learning tri al; DGAVP and AVP 5-9 were most acti ve when given 23 hours after 

the learning tria l while I -deamino-8-D-arginine-vasopressin (DDA VP) and A VP 4-9 

were most active when given immediately and 23 hours after the learning tri al. So the 

analogues seem to have different time-related effects on memory. 

Car and Murtazina ( 1994) investigated the effects of A VP and its analogue 

([d(CH2) 1/5 ,Tyr(Me)2]A VP) in a lever-touch autoshaping model of learning and 

memory. The analogue lacks endocrine and pressor acti vity. ICV injection of I pg AVP 

and 2 pg of the ana logue 24 hours prior to extinction did not alter the response in 

extinction sessions compared to the saline controls, but in the retention test, a higher level 

of correct responses in analogue-treated rats was found . T he behav io ral processes 

involved in the ex tinc tion of an operant response are not c lear. During the earl y stages of 

extinction , the level of responding may possibl y refl ect the strength of retention of the 

conditioned response, so extinction could be considered as a measure of memory for the 

original task. The de lay in extinction, seen in other studies, does suggest a retention

enhancing effect of A VP. But as extinction continues, the decline in response over a 

period of time can itself be considered as a fo rm of learning. 

In a tudy by Kumar and Karanth ( 1995) animals conditioned in a T-maze with 

appetitive ( I 0% sucrose) and aversive (2.0 rnA foo ts hock) events were administered (icv) 

a single dose of 2.5, 5, I 0 or 20 ng A VP 20 minutes before testing. In the retention test 

conducted with the same training apparatus 72 hours afte r condi tioning, the peptide 

treated rats showed a dose-dependent increase in late nc ies to enter the prev ious ly shocked 

goal arm with the absence of such a diffe rence in responding to the non-shocked goal 
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arm. This differential response was not observed in saline-treated rats. The ICY tudies 

and analogous studies are the main evidence that pe ripheral effects are not necessary fo r 

memory improvement. 

The physiological significance of central A VP modul ation has also been 

demonstrated using specific antisera. An antiserum temporaril y blocks the biological 

acti vity of A VP in the brain when g iven icv and results in a time-dependent decline in 

memory processes (Van Wimersma Greidanus & De Wied , 1976; Van Wime rsma 

Greidanus et al. , 1975). Wimersma Greidanus et al. (1975) found that icv administration 

of A VP antiserum either 30 minutes before or immediate ly after the learning tri al induces 

a marked deficit in a one-tri al passive avoidance task, when tested 24 or 48 hours later, 

but not when tested 2 minutes or I hour after the learning tri al. This suggests that 

memory rather than learning processes are disrupted by A VP inacti vity. Kovacs and 

colleagues (1 982) examined the effect of intraventricular anti-A VP serum and also 

microinjections into the dentate gyrus on pass ive avoidance behavior. When injected 

immediate ly afte r the learning trial the anti -A VP serum resulted in marked impairment of 

the behavioral performance for the dentate gyrus group. Injection into the cerebral 

ventric les only affected pass ive avoidance re tention when given at a higher dosage than 

that given in the dentate gyrus group. This indicates that the effects of the hippocampal 

application cannot be explained by leakage to the brain ventricul ar system and the 

neutralization of the A VP must have occurred within the hippocampus. 

Co llective ly, it seems that under normal c ircumstances AVP is primaril y involved 

1n memory processes of consolidation and retrieval and not in the initial phases of 

memory processing like attention , arousal and motivation. However, under certain 

conditions, A VP does influence learning through pe ri pheral effects. Gaffori and De 

Wied, (1985) found e nhanced avoidance learning on a pole-jump task when AVP (3 f.l g 

sc) was given at a high dose immediately before the training. Suc h enhancing effects 

were not seen with a high dose of the fragment DG-A VP which is devoid of endocrine 
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effects. Arousal level effects of the peptide have also been found to enhance an other 

AVP effect on learning (Skopkova et al, 199 1). Acquisition of a shuttlebox avoidance task 

was fac ilitated in low-acti vity rats with the lowest dose of DG-A VP (0.1 !J g sc) but not in 

high activity rats as prerated on the basis of ex ploratory behavior. A VP also improves 

acquisition of a new behaviour whe n the subject's ability to process info rmati on and 

learning is impaired, as in completely hypophysectomized rats ( De Wied 1965; Bohus et 

al, 1973; De Wied and Gispen, 1977),. 

1.2.3 Brain sites involved in the A VP influence on memory 

Lesion and microinjection techniques have provided insight into the localization 

of the brain sites involved in medi ating the effects of A VP on memory storage and 

retrieval. In a study by V an Wimersma Greidanus et al. ( 1974), the mediodorsal thalamus 

and the parafascicula r nucleus were lesioned resulting in an impairment in acqui sition of 

a pole-jump avoidance task. LVP (sc) revered this impairment. When the parafasicul ar 

nucleus alone was lesioned, there was no effect. Thus it was concluded tha t the 

parafas icular region and the mediodorsal thalamus were not essential fo r the A VP effects 

to occur. On the other hand, limbic system sites such as hippocampus (Van Wimersma 

Gre idanus et al. , 1976), septal region (Van Wime rsma Greidanus et al. , 1975b), and 

amygdala (Van Wimersma Greidanus et a l. , 1979b) do play a ro le in mediating the 

e ffec ts of AVP on re tention behavio r. LVP (3 J..Lg and 9 J..Lg sc) given before extinction 

failed to maintain avoidance responding in rostral septal lesioned subjects, which 

involved complete destruction of the medial septal nucleus and partial destruction of the 

lateral septal nucleus and nucleus accumbens (Van Wimersma Greidanus et al. , 1975b). 

An anterodorsal hippocampal lesion acce lerated the rate of extinc tion in a po le-jump 

shock avoidance response which was unaffected by LVP (V an Wimersma Greidanus et 

al, 1976) . Lesions to the central and basolateral amygdaloid complex also prevented the 

inhibitory effects of DG-LVP on extinction of a po le-jump avoidance task (Van 
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Wimersma Greidanus eta!, l979b). These results suggest that an intact septal region and 

anterodorsal hippocampal region is important for mediating the A VP-induced prolonged 

extinction in the pole-jump avoidance task. 

Ibragimov ( 1990) a lso found enhanced acquisition of an active avoidance reflex 

response after the hippocampal administration of A VP agon ists 60 minutes before each 

sessiOn. 

In a study examining immunoreactive A VP (irA VP) content in various midbrain

limbic system sites following footshock, Laczi and colleagues ( 1983a,b) found that 

irA VP levels increased in both the LC and the central amygdala, but decreased in the 

lateral septum and hippocampus. They also found that the hippocampal irA VP content 

was related to avoidance performance in that good avoiders exhibited reduced 

hippocampal irA VP content. 

Kovacs and colleagues (Kovacs et al., 1979; 1982; and 1986) found that 

postlearning and preretention microinjection of 20-25 pg A VP or A VP fragments into the 

dorsal or ventral hippocampus resulted in an improvement of retention of pass ive 

avoidance behavior. When 50 pg AVP was microinjected into midline dorsal septal 

nuclei or dorsal raphe nucleus, retention was enhanced by increased reentry latency at the 

24 hr retention test but not at 48 hr. AVP (25pg) microinjected in either the central 

nucleus of the amygdala or the LC failed to have any effect on consolidation. Such doses 

are behaviorally ineffective when injected into the lateral ventricle (Bohus et al, 1978b). 

The results of these experiments as well as those of Bohus et al. ( 1982) sugge t that 

selective brain sites may mediate both consolidation and retrieval effect of A VP while 

other sites may mediate e ither consolidation or retrieval. As previously discussed, Bohus 

and colleagues ( 1982) examined the abi lity of AVP to reverse retrograde amnesia in a 

step-through passive avoidance task when injected into specific brain structures. The 

rationale for this is that the amnesia is seen as an impairment of retrieval. A VP ( I 0 ng 

icv) reversed the severe amnesia, induced by penetylenetetrazole, when injected into 
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either the central amygdaloid complex or the hippocampal dentate gyrus. A VP injection 

into the dorsal septum and dorsal raphe nucleus fai led to reverse the amnesia. The 

findings suggest that the hippocampal dentate gyrus mediates the effects of A VP in both 

memory consolidation and retrieval, but the dorsal septal nucleus and dorsal raphe 

nucleus are involved in the effects of A VP on consolidation, but not retrieval. The 

amygdala is suggested to be involved in the retrieval process and not consolidation. 

1.2.3.1 FOS protein and A VP 

One of the consequences of neuronal excitation by A VP, acting through V 1 

receptors, is the activation of the immediate earl y gene c-fos. Studies have shown that the 

icv injection of A VP stimulates c-fos mRNA expression in the hippocampus and lateral 

septum (Andreae and Herbert, 1993; Giri et al., 1990). This provides evidence that the 

central action of A VP must take place in these structures. The increase in c-fos message 

is rapid and short term, thus it became more practical to measure the gene product, Fos 

protein, since protein expression often is of longer duration. 

Studies using Fos protein confirm the differential sensitivity of the hippocampus . 

Fos protein was measured following an icv A VP injection in unconditioned and 

conditioned mice (Paban et al., 1999). The conditioned mice learned a visual 

discrimination task and were then given icv A VP (2 ng) while the unconditioned mice 

just received the icv A VP injection. The unconditioned mice showed an increase in Fos 

protein expression in the dentate gyrus over the entire septotemporal area, the CA 1 and 

CA3 hippocampal fields, also through the lateral septum, the bed nucleus of the stria 

terminalis, and the basolateral and central amygdaloid nuclei. In contrast, in the 

conditioned mice, the increase in Fos expression was specifically detected in the dentate 

gyrus along its septotemporal axis, the ventral CA3 hippocampal field and the lateral 

septum. Such specific Fos protein activated sites following post-training icv AVP 

supports the view that these specific areas (septum and hippocampus) are involved in the 
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enhancing effect of AVP on memory consolidation in visual discrimination learning. The 

conditioned mice tended to have specific Fos expression on ly in areas specific to 

hippocampus, a central target structure of the effects of A VP on memory processes. The 

authors hypothesized that the Fos expression seen in the lateral septum is a consequence 

of the hippocampal activation based on the neural connections between these two 

structures (Paban et al., 1999) 

1.3 A VP in vitro and in vivo studies 

Studies conducted by Joels, Urban, De Wied and other colleagues have u ed 

e lectrophysiological techniques in both in vivo and in vitro paradigms to investigate the 

putative neurotransmitter-neuromodulator functions of A VP. Joels and Urban ( 1982) 

investigated the actions of A VP on single cells in the lateral septal complex and the 

dorsal hippocampus. The iontophoretically applied AVP induced significant excitation of 

the cell s of lateral septal complex and the dorsal hippocampus. Such excitation of 

hippocampal cells was also seen in a study by Muhlethaler and Dreifuss ( 1982) and also 

reported in ventral hippocampal cells (Urban and Killian , 1990). A VP enhanced 

responsivity of glutamate-induced activity in both structures, especiall y in those cells 

which did not respond to AVP on its own. This suggests a neuromodulatory role of A VP. 

This modulatory influence on lateral septal neuronal responsivity was found to persist up 

to 15 minutes after termination of A VP treatment in a follow-up study by Joels and 

Urban ( 1984). 

Chepkova et al. (1995) carried out CAl neuronal recording in slices for 15 

minutes in a 0.1 mM solution of either A VP or the AVP fragment (4-8) both of which 

resulted in an increase in the amplitude and slope of the Schaffer collateral EPSP in 21 
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neurons tested. The peptide-induced increase in EPSP slope reached a maximum 30-45 

minutes after peptide application. In 14 of these neurons the increase in EPSP slope 

lasted throughout the 60-120 minute washout period. In 7 of these, the mcrease was 

followed by a gradual decline to the pre-administration level. 

A VP also increases the perforant path evoked EPSP elicited in the granule cell 

body layer of the dentate gyrus in vitro (Chen et al. , 1993). In this study A VP was studied 

in the presence of varying concentrations of calcium. The effect was dose-dependent and 

peptide specific since there was no effect with oxytocin infusion (Chen eta!, 1993). This 

effect of A VP was blocked by a Vl receptor antagonist demonstrating that the long-term 

enhancement induced by A VP is receptor- specific (Chen et al , 1993 ). 

In the presence of 1.5 mM calciwn, 100-500 nM A VP applied for 15 minutes 

increased the amplitude and slope of the EPSP which persisted for the 60 minute period 

of exposure. This enhancement also lasted in the absence of A VP for 60 minutes. In the 

presence of 2.5 mM calcium (a supraphysiological concentration) similar concentrations 

of AVP decreased the amplitude and slope of the EPSP. Thus the potentiation occurred 

only at physiological levels of calcium. This implicated dependency of long-term A VP

induced potentiation on extracellular calcium concentration was also observed in the 

expression of A VP-induced modulation of NE effects, where in the presence of 0.8 mM 

calcium AVP potentiated noradrenergic-induced cAMP formation, while in 2.5 mM 

calciwn A VP induced a depression of noradrenergic-induced cAMP formation (Brinton 

& McEwen, 1989). Neuromodulation of NE and A VP is further discussed in the 

following section. 
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Calcium is c ritical in the development of the CNS (Berridge, 1993) and the 

various types of calcium channels play a critical role in neurite growth, gene expression, 

and modulation of learning and me mory (Bliss and Collingridge, 1993; Goelet et al, 

1986). Calcium is a c ritical compone nt of LTP express ion and maintenance (Dunwiddie 

and Lynch, 1979) and because calcium regulates expression of long lasting A VP 

potentiation or depression (depending on the concentration) we can speculate that the 

mechanism is a calcium-dependent mechanism that is common to many forms of LTP 

previously studied (Dunwiddie and Lynch 1979 ; Malenka, 199 1; Son and Brinton, 1998; 

Son and Brinton, 2001 ). 

Dubrovsky and colleagues (2003) examined icv A VP ( I )..I g) in the ane the tized 

rat with tetanic stimulation and found that icv A VP produced a significant enhancement 

of tetanus-induced pote ntiation in the amplitude of both EPSP slope and population 

spikes of the perforant path-evoked potenti als in the dentate gyrus. The effects were 

evident I minute afte r tetanization . The population spike amplitude increased 

continuously for the 2 hour recording time, reaching values I 00% above baseline level. 

Without te tanization, dentate gyrus-evoked potenti als were often of higher ampli tude 

than baseline, but these values did not reach statistical signi ficance. 

1.4 Neuromodulation of NE and A VP 

A neuromodulatory action of a ne urotransmitter enhances or dimini shes the effect of 

another neurotransmitter on a given target neuron by means of an interaction between the 

receptors for the two neurotransmitters . A neuromodulatory action is mediated by 

metabotropic recepto rs. It occurs when G-protein coupled transmitter effects produce 

long-lasting neuronal changes that influence the normal responses to a fas t ionotropic 
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neurotransmitter. A neuromodul atory effect is of slow onset and results in a longer lasting 

metabolic and structural effect that alters the transmitter output or respons ivity of the 

target neuron to other transmitter inputs (McEwen, 2004). This provides a mechanism by 

which biochemical association could occur. A neuromodulatory inte raction that has been 

linked to memory function and which has been the subject of biochemical investigation is 

the interaction between NE and A VP (Church, 1983; Brinton, 1990). This is also the 

focus of the present e lectrophysiolog ical study. 

There has been extensive research on the possibility that the three brainstem

telencephalic monoaminergic projection systems, NE, dopamine (DA) and seroton in (5-

HT) modulate memory processes (Hasselmo, 1994; Myhrer, 2003). Of particular 

importance to this thesis, is the noradrenergic projection system that originates in the cell 

populations locali zed in the LC of the pons and the LC fibres proj ecting to telencephalic 

structures implicated in memory processing for example, the hippocampus and the 

septum. These same structures receive terminals from ex trahypothalamic A VP

containing fiber projections or conta in A VP receptors. As outlined previously, there is 

support for the propositions that noradrenergic projections facilitate memory processing 

(Borrell et al, 1983, Ellis, 1985; Sara, 1985 ; Lee and Ma, 1995), at least in some types of 

learning and memory. Studies by De Wied and Kovacs and colleagues have investigated 

the possibility that the central neurohypophysial peptidergic fiber syste ms modul ate 

memory processes by influencing neurotransmission in these brainstem-telencephalic 

monoaminergic projections. Their research has specificall y focused on the fi ber 

projections containing NE or DA. 

Kovacs et a!. ( 1977) carried out behavioral and biochemical experiments to 

investigate an A VP and catecholamine interaction in memory processing. In the 

behavioral experiments, the catecholamine synthesizing enzyme inhibitor, alpha-methyl

p-tyrosine methylester (MPT) was injected alone or in combination with LYP and 

learning and retention of a bench-jump pass ive avoidance task was assessed. The 
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treatment had no effect on learning but the MPT and LVP combination prevented the 

LVP-retention effect. The biochemical experiments tested if LVP influenced NE through 

the study of NE levels after L VP injection in different areas of the brain . The NE 

turnover rate was measured in these structures. LVP was not found to affect NE content 

in the hypothalamus, septum or stri atum but it increased the MPT -induced disappearance 

of NE in the hippocampus. This study supports the findings that A VP plays a role in 

retention and also suggests that NE, or catecholamines in general, may be involved in 

med iating AVP's effect since inhibiting cathecholamine synthesis prevented A VP 

enhancement of retention . 

Kovacs et al. ( 1979a) examined the effects of A VP (not L VP) on memory 

consolidation in a passive avoidance task and on NE neurotransmission. A VP injection 

into the dentate gyrus of the hippocampus facilitated passive avoidance memory 

con olidation and increased utilization of NE in that structure and also in the dorsal septal 

nuclei. Kovacs, Bohus and Versteeg ( 1979b) reported that intra-dentate injections of 25 

pg of AVP were effective in improving task retention of passive avoidance behaviour and 

that NE depletion , using 6-0HDA lesions of the dorsal noradrenergic bundle, blocked 

this effect. The results of thi s study led the authors to conclude that the dorsal 

noradrenergic bundle-LC-NE fiber pathway is important for the expression of A VP

induced facilitation of passive avoidance memory consolidation and also that the 

interaction between A VP and the dorsal noradrenergic bundle pathway-NE fiber system 

occurs in the region of the fiber te rminals of this pathway in the dentate gyrus. 

Church ( 1983) examined the influence of LVP, NE and their combination on the 

stimulation of cAMP accumulation in the hippocampal slice. He found that NE produced 

a 4-5 fo ld increase in cAMP concentration, but no effect was seen with L VP alone. 

However, L VP potentiated the cAMP stimulative effect of NE twice as much as NE 

alone. In support of these findings, another study found that anti-A VP serum, which 

reduces endogenous A VP, injected into the hippocampus and septal area attenuated 

32 



retrieval and consolidation and also showed that A VP enhances NE turnover in these 

structures (Veldhuis e t al. , 1987). 

Tanaka et a!. ( 1977) al so studied icv A VP effects on catecholaminergic rates of 

utilization in various brain sites. Their study supports the lesion and micro injection 

studies described previously in that the same regions showed increased A VP- induced 

catecholaminerg ic utilization. These regions included the hippocampus, parafaciscular 

thalamus, dorsal septal nucleus, LC and dorsal raphe nucleus . 

In a later bioc hemical investigation of this A VP dependency on NE, Brinton and 

McEwen ( 1989) found that A VP not onl y significantly potentiated NE-induced cAMP 

formation but the potenti ation was selective fo r ~-adrenoceptor-stimulated adenylate 

cyclase. It was later found that AVP-induced potenti ation was a Ca2+-dependent process 

and could be blocked by an antagonist to the calcium-binding protein , calmodulin 

(Brinton and Brownson, 1993). So it has been proposed that NE re lease into the dentate 

gyrus medi ates the A VP memory enhancement. 

The microinjection, lesion and biochemical studies provide evidence fo r the 

theory that the memory-modulating effects of AVP involve brainstem and fo re brain 

limbic system structures that are implicated in memory processing. These studies support 

the hypothesis that the interaction of A VP and central catecholamine neurotransmitters, 

in particular, NE, mediate A VP's influence on memory processing with targeted studies 

identifying the dentate gyrus as a c ritical structure in this interaction. 

The purpose of the present study is to ask if A VP plays a role in the potentiation 

of glutamatergic perforant path input to the dentate gyrus in vivo and to determine 

whether that potentiation is dependent on local noradrenergic P-receptor activation. In the 

first experiment, ure thane-anaesthetized rats are given icv infusions of A VP while 
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responses to perforant path input are monitored in the dorsal dentate gyrus. In the second 

experiment the procedure is repeated but two micropipettes, one fil led with saline and a 

second filled with the ~-receptor antagonist, propranolol, are used to monitor the 

perforant path evoked potential responses before and fo llowing icv infusion of A VP. A 

third experiment examined icv infusion of the AVP fragment, DGAVP which selectively 

activates the V 1 A receptor, while responses to perforant path stimulation were again 

monitored in the dorsal dentate gyrus. 

METHODS 

All procedures and methods were conducted in accordance with the guidelines and 

procedures of the Canadian Council on Animal Care and were approved by the Memorial 

University of Newfoundland Institutional Animal Care Committee. 

Experiment 1 

Subjects: 

Twenty male Sprague-Dawley rats weighing 250-300 g; Memorial University 

vivarium, were anesthetized with urethane (1.5 g/kg; i.p.). 

Surgical procedure: 

When tail pinch no longer caused a response, the head fur was shaved, and the 

animal was placed into the em·bars in a stereotaxic frame, in the skull flat position. 

Temperature was maintained at 37.5 degrees Celsius with the use of a rectal probe and 

heating pad. Skin was cut along the midline and held back with forcep . Coordinates 

were mapped as follows: the cannula was targeted to the lateral ventricle at 0.8 mm 

posterior to bregma and 1.5 mm lateral; the recording electrode was targeted to the 

dentate gyrus at 3.5 mm posterior to bregma and 2.0 mm lateral and the stimulating 
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electrode was targeted to the perforant path at 7.2 mm posterior to bregma and 4.1 mm 

lateral. A stainless steel guide cannula (28 ga; Plastics One, Roanoke VA) was lowered 

into the lateral ventricle to a depth of 3.2 mm below skull surface and secured with dental 

cement to a jeweller's screw implanted into the skull. 

Recording and stimulating procedure : 

A single saline-filled glass micropipette was lowered 2.5-3 mm into the dentate 

gyrus, and a single bipolar stimulating electrode (NE- 100; Kopf) lowered 3.0 mm into the 

perforant path . Stimulation consisted of a single .2 ms square wave pulse delivered with a 

I 0 second interstimulus interval (0.1 Hz). Depths were optimized to produce a max imal, 

positive-going population spike in the dentate granule cell layer. Recordings were 

amplified by a Grass P5 series amplif ier (filte rs I Hz- 3 kHz). The s ignals were digitized 

(I 0 kHz) and stored on a compute r using the D atawave Technologies "Brainwave" 

software package. After 23-30 minutes of baseline recording, I ng (i n 2 !J.l saline) A VP 

was given icv via an internal injection cannula (40 IJ.m tip) placed into the guide cannula 

in the lateral ventricle. Infusion occurred at a rate of 2 !J.llmin. Responses were recorded 

for a minimum period of 30 minutes post-injection. 

Upon completion of the experiment, methylene blue ( I %; 2 !J.l) was delivered into 

the lateral ventricle to confirm ventricul ar placements. The animal was then sacri ficed 

and the brain fresh frozen in -72 degrees Celsius methylbutane. Cannula and e lectrode 

placements were confirmed histo logicall y. Brains were sectioned in a cryostat in the 

coronal plane (40 IJ.m thickness) and alternate sections were taken for dye verification 

(methylene blue) and electrode placements (Nissl stain). Data were included if methylene 

blue was located within the lateral ventricle. 

Experiment 2 

Subjects: 
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Six male Sprague-Dawley rats weighing 250-300 g; M emorial U ni versity vivarium) were 

anesthetized with urethane ( 1.5 g/kg; i.p.). 

Surgical and recording procedure: 

This experiment followed the arne surgical procedure for cannula and recording 

procedures as the first experiment, but used two recording micropipettes (40 Jlm tip ) in 

which one recording pipette was filled with saline (0 .9%) and the other filled with the 

norepinephrine ~-antagoni st, proprano lo l (50 jlM, mi xed in 0 .9% saline). T his 

methodology has been used previously to tudy local pharmacological effects in the 

dentate gyrus (see Munro et al, 200 I). The pipe ttes were placed 0 .5 mm apart in a 2 

e lectrode ho lder with each optimized fo r a positive population spike. Typical ly the 

poste rio r pipette wa more medial and deeper than the anterior one. The pipettes were 

adjusted until s imilar population spikes were recorded o n each so as to be comparable 

prior to A VP infusion. 

Experiment 3 

Three male Sprague-Dawley rats weighing 250-300 g; M emorial University 

vivarium, were anesthetized with urethane ( 1.5 g/kg; i.p.). 

Surgical and recording procedure: 

This experiment fo llowed the procedures of experiment I with the exception that 

the AVP fragment DGAVP ( 1 ng/2 Jll aline), was injected into the lateral ventricle 

instead of AVP. 

Data Analysis: 

T he Brainware Software allo wed for parameter extraction to be performed to 

measure 2 characte ristics of the response: ( I) the excitatory post- ynaptic potentia l 

(EPSP) slope - average rate of change (rise/run ; mV/ms) of the ris ing egment of the 
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EPSP, (2) the population spike- average voltage difference (mY) between the peak and 

trough of the downward deflecting spike event. Following measurement extraction of 

each waveform, data were transferred to an E xcel preadsheet program. The final graphs 

were prepared in Prism (for percentages, graphing and statistics). Paired samples t-tests 

were performed on the average 30 minutes baseline compared to the average of 30 

minutes post injection . 
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---------- ---- --------------

RESULTS 

Experiment 1: Response to A VP 

The effect of intracerebroventricular (icv) application of A YP on the population 

spike amplitude and the EPSP slope of the perforant path-dentate gyrus evoked potential 

was exan1ined post A YP infusion in 16 rats. 

1.1 Population spike changes 

A YP reliably produced potentiation of the population spike amplitude in 15 out of 

16 animals at the 1 ng dose (Table 1-1 and Figure 1-1 ). Fifteen of the animals infused 

with A YP demonstrated potentiation of the dentate gyrus evoked response as potentiation 

of the an1plitude of the population spike. Eleven rats showed potentiation of EPSP slope. 

Table 1-1 shows the effect of I ng A YP icv on the population spike amplitude and the 

EPSP slope in the dentate gyrus in each animal (n=16). 

In the fifteen animals, A YP increased the population spike an1plitude with a mean 

increase of 94% averaged over 30 minute post A YP. This increase typically occurred 

within 3-5 minutes and potentiation continued to rise over the 30-35 minutes post

injection period. Individually the increase ranged from 10% to 250% at the peak in some 

experiments. The baseline mean increased from an amplitude of2.67 mY to 3.66 mY 30 

minutes post AYP application (t = 5.57; df = 14; p<0.05). One animal showed a 

significant decrease of 28% in population spike amplitude and showed no change in 

EPSP slope. 

In four experiments the potentiation was followed beyond 30 minutes and lasted 

more than 1 hour in all cases. The longest monitoring occurred in experiment 12 (Table 

1-1 or #4 in Table 1-2) which had a mean baseline (30 minutes) of 2.17 mY of the 

population spike amplitude, the 30 minutes post mean was 3.28 mY, in the next 30 

minutes block (1 hour post) it increased to 3.84 mY and in the last 30 minutes block (2 
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hours after AVP administration) the amplitude was at a mean of3.95 mV. The group that 

was followed beyond an hom (n = 4) showed a mean increase of 80% (in the 30-60 

minute block ) across animals with individual increases ranging from 41% to 246%. 

Table 1-1 .Effects of intracerebroventricular (icv) application of A VP on the population 
spike amplitude and the EPSP slope of the perforant path-dentate gyrus evoked potential 
in the urethane anesthetized rat (n = 16). 

I Single Pipette Population Spike Amplitude EPSP Slope 
Experiments (mV) (mV/mS) 

N= 16 Pre AVP Std. Post Std. Pre Std. Post Std. 
Mean Dev. AVP Dev. AVP Dev. AVP Dev. 

Mean Mean Mean 
1 0.28 0.063 0.79* 0.300 1.73 0.056 2. 19* 0.203 
2 0.64 0.138 3.10* 0.757 2.07 0.026 2.47* 0.124 
3 5.46 0.302 5.18** 0.414 2.63 0.086 2.66 ns 0.129 
6 5.90 0.269 6.32* 0.396 4.65 0.055 4.74* 0.068 

7 3.02 0.196 3.61 * 0.358 3.33 0.054 3.59* 0.099 
8 0.56 0.051 1.28* 0.374 2.21 0.095 1.94 ns 0.253 
9 2.36 0.075 3.51 * 0.337 3.18 0.029 3.46* 0.101 
10 4.38 0.039 5.01 * 0.339 3.1 6 0.082 2.78** 0.125 
11 1.25 0.344 2.32* 0.263 3.71 0.125 3.64 ns 0.071 
12 2.17 0.072 3.28* 0.626 2.34 0.060 3.18* 0.505 
13 1.13 0.061 1.83* 0.463 2.86 0.085 2.85 ns 0.089 
14 3.42 0.214 5.63* 0.883 4.51 0.126 6.06* 0.644 
15 2.67 0.163 3.96* 0.578 2.09 0.046 2.30* 0.044 
16 4.55 0.299 5.64* 0.844 5.71 0.064 6.10* 0.132 
17 2.46 0.430 2.87* 0.544 2.89 0.104 2.98* 0.133 
18 2.55 0.138 3.25* 0.715 5.27 0.108 5.86* 0.342 

Group Mean 2.67 1.72 3.66* 1.55 3.27 1.20 3.55* 1.39 
N= 16 

Data represent means in millivolts (m V) for the 25 minutes pre A VP mean and an 
average of 30 minutes post AVP (1 ng) infusion. * indicates an increase at a minimum of 
p<0.05 between pre and post means as a result of two-tailed paired t-test on raw data. ** 
indicates a significant decrease between pre and post mean responses. 
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Figure 1-1: lntracerebroventricular application of A VP induces a potentiation of the 
population spike amplitude and field EPSP slope in the urethane anesthetized rat. A) i.c.v 
A VP (arrow) induced a long-term potentiation of the dentate gyrus evoked population 
spike in the anesthetized rat (n = 15). Inset: Sample waveforms with parameter 
measurements of the dentate gyrus evoked potential before (solid line) and after (dashed) 
infusion of A VP into the lateral ventricle. Scale bar = 2 m V and 2 ms. B) 
lntracerebroventricular A VP also produced a long-term potentiation of the EPSP (n = 
II). 
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1.2 EPSP slope changes 

A VP reliably produced potentiation of the EPSP slope in 11 out of the 16 animals 

at a dose of 1 ng icv. Table 1-1 and Figure 1-1 show the effect of A VP on EPSP slope in 

the dentate gyrus across all animals (n= 16). EPSP slope increased stepwise starting 

within 2-4 minutes, peaked between 10-20 minutes and continued to be elevated over the 

typical 30 minute recording period. The baseline mean increased from 3.27 to 3.55 

mV/ms with 30 minute blocks pre and post AVP (t = 2.45 ; df = 15; p<0.05). The increase 

was an average of 20% at the peak overall from baseline with a range of a 2% increase to 

a 46% increase in individual animals. Out of the fifteen animals that showed an increased 

population spike, 11 animals or 73% showed increased slope as well. In 3 of the animals 

A VP produced a 10% decrease from baseline in EPSP slope and no change in the EPSP 

slope occurred in 2 animals. Figure 1- 3 illustrates the 5 animals that showed a decrease 

or slight change in the EPSP slope. 

The increases in EPSP slope were further followed from 75 min. to 125 min. in 

four experiments. Table 1-2 shows a mean increase of 21% in the 30-60 minute block, 

but individual animals varied, and ranged from a 5% increase to an increase of 45% 60 

minutes after A VP. With reference again to experiment 12 (Table 1-1 or #4 in Table 1-2), 

a significant increase is seen in the EPSP slope which had a 30 minute baseline of 2.34 

mV/ms, a mean of 3.18 mY/ms at 30 minutes, a mean of 3.56 mY/ms at 1 hour and a 

mean of 3. 7 4 m V /ms 2 hours post A VP. 

40 



Table 1-2: Effects of intracerebroventricular application of A VP on the population spike 
amplitude and the EPSP slope of the perforant path-dentate gyrus evoked potential in 4 
urethane anesthetized rats in which the evoked response was monitored for periods 
extending past 60 minutes post- A VP injection (n=4). 

Population Spike Amplitude (m V) EPSP Slope (mV/ms) 

Pre AVP Post AVP Pre AVP Post AVP 

(30mins) (60mins) (30mins) (60 mins) 

Exp. Mean StdDev. Mean Std Dev. Mean Std Dev. Mean Std Dev. 

9 2.36 0.075 3.51 * 0.699 3.18 0.029 3.37* 0.101 

12 2.17 0.072 3.63* 0.626 2.34 0.060 3.56* 0.147 

13 1.13 0.061 3.02* 0.898 2.86 0.085 2.90 0.089 

14 3.42 0.214 5.82* 0.887 4.51 0.126 6.09* 0.645 

Grp 2.27 0.106 4.00* 0.778 3.22 0.075 3.98 0.246 

% 80% increase 21% increase 

mean 

Data represent means in millivolts (m V) at 25 minutes of baseline and at 60 minutes post 
A VP (1 ng) infusion.* indicates increase at a minimum of p<0.05 between pre and post 
A VP means as a result of two-tailed paired t-test on raw data. 
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Figure 1-2 : Intracerebroventricular application of A VP induces a potentiation of the 
population spike amplitude and fie ld EPSP slope in the urethane anesthetized rat that 
lasted beyond an hour. Inset: Sample waveforms ( exp. 12) with parameter measurements 
of the dentate gyrus evoked potential before (solid line) and 30 minutes, and 1.5 hour 
after (dashed) infusion of A VP into the lateral ventricle. Scale bar = 2 m V and 2 ms. A) 
i.c.v A VP (arrow) induced a long-term potentiation of the dentate gyrus evoked 
population spike in the anesthetized rat and EPSP slope that lasted beyond an hour (n = 

4) 
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Figure 1-3 lntracerebroventricular application of A VP decreased the field EPSP slope in 
the urethane anesthetized rat (n=3) or produced little change (n=2). Inset: Sample 
waveforms for experiment 10 (Table 1-1) with parameter measurements of the dentate 
gyrus evoked potential before (solid line) and after (dashed) infusion of AVP into the 
lateral ventricle. Scale bar = 1 m V and 2 ms. 

1.3 Population spike I EPSP slope relationships 

An overlay of spike and slope (n = 16) is seen in Figure 1-4 to illustrate the 

profile of slope and spike at 20 minutes of baseline and 40 minutes after A VP. 
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Figure 1-4: A closer look at an overlay of population spike amplitude effects against 
EPSP slope effects (n= 16). 

Since A VP was found to increase the population spike amplitude and the EPSP 

slope, correlations were conducted to determine if the increase in granule cell firing (the 

population spike) was the result of postsynaptic depolarization (EPSP slope). These 

analyses were examined to determine if the effects of A VP on the population spike 

amplitude could be accounted for by the effects of A VP on the EPSP slope. 

Table 1-2 shows the correlations of population spike amplitude and EPSP slope in 

all 16 single pipette experiments. Prior to A VP, only two rats showed a significant 

increase in slope/spike correlation. Following A VP, nine rats showed significant 

correlations with all rats having significantly strong correlations for slope to account for 

more than 30% of the variance in spike. 

Thus the slope/spike relationship was variable with slope accounting for some of 

the spike change in about a third of the experiments, but not contributing to the spike 

change in the majority in others. Temporal dissociations between slope and spike changes 

can be seen in Figures 1-1 , 1-2 and 1-4. 
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Table 1-3. Correlations (r2
) of population spike amplitude and EPSP slope in all 16 single 

pipette experiments. 

Single Pipette Correlation (rL) 
Experiments Pre AVP Post AVP 

N= 16 
1 0.0214 0.7152* 
2 0.0055 0.4499* 
..., 
.) 0.1201 0.7809* 
6 0.0107 0.1093 

7 0.0003 0.1239 
8 0.0093 0.0088 
9 0.0140 0.6452* 
10 0.0002 0.2409* 
11 0.2007* 0.0016 
12 0.9652* 0.8584* 
13 0.0809 0.0453 
14 0.0877 0.7814* 
15 0.0480 0.1398 
16 0.0731 0.3152* 
17 0.1213 0.0039 
18 0.1194 0.6296* 

Group mean 0.1173 0.3655* 
Data represent correlations of populations spike amplitude and EPSP slope 
* p<0.05 
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Experiment 2: Response to NE antagonist and A VP 

2.1 Evoked potential changes 

The effect of I ng A VP icv was examined on the population spike amplitude and 

EPSP slope in the dentate gyrus at both a saline and propranolol-filled (50 mM 

propranolol dissolved in saline) micropipette across 6 animals. Results are shown in 

Table 2-1 and Figure 2-1. Prior to A VP, the size of the EPSP slope, with a mean of 3.38 

mY/mS for the saline pipette and 2.26 mY/mS for the propranolol pipette, and the 

population spike, with a mean of 2.64 mY for saline and 1.95 mY for the propranolol 

pipette were not significantly different (t( lope) = 2.072, df = 5 p>0.05)and (t(spike) = 

1.091 , df=5, p>0.05). 

2.2 Population spike changes on the saline pipette 

A VP reliably produced potentiation of the population an1plitude in all six animals 

at the 1 ng dose on the saline pipette. The mean increase was 50% from baseline. The 

increase typically occurred within 2-5 minutes and continued after 30-35 minutes post

injection. As seen in Table 2- 1, the saline filled pipette showed a population spike 

an1plitude increase from 2.64 mY to 3.59 mY post A YP (t = 5.150; df = 5; p<0.05). 

Increases ranged from 35% to 160%. 

2.3 EPSP slope changes on the saline pipette 

A VP also produced a significant potentiation of the EPSP slope in four of the six 

animals at the I ng dose on the saline pipette. The mean increase was 20%. This increa e 

typically occurred within 5 minutes and peaked at between 10-15 minutes post-injection. 

The saline filled pipette showed a baseline mean increase of3.38 mV/mS to 3.80 mV/ms 

post A VP (t= 2.699; df = 5; p<0.05). Individual increases ranged from I% to 96%. 
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Figure 2-1: Effects of saline or propranolol infusion on the perforant path-dentate gyrus 
evoked potential following intracerebroventricular application of AVP. A) i.c.v. AVP 
induced a long-term potentiation of the dentate gyrus evoked population spike (50%) on 
the saline pipette in contrast to a modest decrease (17%) on the propranolol pipette (n = 
6). Inset: Sample waveforms with parameter measurements of the dentate gyrus evoked 
potential before (solid line) and 40 minutes (dashed) infusion of AVP into the lateral 
ventricle. Scale bar = 1 mV and 2 ms. B) i.c.v. AVP produced potentiation of the EPSP 
slope (20%) in the saline pipette but showed slightly decreased EPSP slope (9%) on the 
propranolol pipette (n = 6). Inset: Sample waveforms with parameter measurements of 
the dentate gyrus evoked potential before (solid line) and 40 minutes (dashed) infusion of 
A VP into the lateral ventricle. Scale bar = 1 m V and 2 ms. 
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2.4 Population spike and EPSP slope changes in propranolol pipette 

Employing the propranolol-filled micropipette, two of the six experiments showed 

decreased population spike amplitude and four showed no significant change. Overall the 

population spike amplitude decreased from 1.95 mY to 1.68 mY, but this was not 

significant (t= 2.225 ; df=5; p<0.05) post A YP. Overall EPSP slope in four experiments 

decreased a small and significant amount in the 30 minute block post AYP, from 2.26 

mV/ms to 2.04 mV/ms post AYP (t=2.954; df=5; p<0.05). In two experiments, there was 

no change. The overall decrease was significant. The mean decrease in EPSP slope was 

9% from baseline but animals ranged from a 9% to 27% decrease on the propranolol 

pipette. 

Table 2-1 . Effects of saline or propranolol infusion on the perforant path-dentate gyrus 
evoked potential using the double pipette procedure after icv A YP administration in the 
urethane anesthetized rat. 

Double Pipette Population Spike Amplitude EPSP Slope 
Experiments (mY) (mY/ms) 

Pre Post Pre Post Pre Post Pre 
Saline Saline Prop Prop Saline Saline Prop 

3 0.54 1.40* 2.43 2.21 4.16 4.17 2.55 
5 2.71 3.63* 0.46 0.44 6.65 7.61 * 3.42 
6 3.39 5.00* 2.24 2.10* 3.18 3.56* 2.05 
7 3.40 4.05* 2.30 2.19 1.61 1.76 2.36 
8 3.88 5.18* 1.84 1.02* 1.53 2.32* 0.42 

9 1.94 2.29* 2.36 2.11 * 3.15 3.36* 2.77 
Group mean 2.64 3.59* 1.95 1.68 3.38 3.80* 2.26 

Data represent means in millivolts (mY) in the 30 minute baseline block and 30 minutes 
post A YP infusion and recorded by the saline or propranolol (50mM) pipettes. * 
minimwn of p<0.05 compared between post and baseline mean measures as a result of 
two tailed paired t-tests on individual raw data. 

2.5 Population spike and EPSP slope relationship 
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Correlational analyses of population spike and slope were performed on all 6 

animals, seen in Table 2-2. There were no significant correlations between slope and 

spike prior to A VP on the saline pipette. Four animals showed a significant increase in 

correlation from baseline A VP/Sal to post A VP/Sal. In experiment 3 and 6, the A VP/Sal 

pipette showed no correlation between the spike and slope pre or post AVP. The 

significant correlations after A VP accounted for less than 20% of the variance suggesting 

slope contributed only moderately to spike amplitude increases. There was one small, 

but significant slope/spike relationship pre A VP on the propranolol pipette, this was not 

seen after A VP. Correlations became significant in 2 other experiments but less than 20% 

of the variance was attributable to slope. 

Table 2-2. Correlations (r2
) of spike and slope in all 6 double pipette experiments. 

Double pipette experiments Pre Post Pre Post 

AVP/Sal AVP/Sal AVP/Prop AVP/Prop 

3 0.0055 0.0377 0.1718* 0.0234 

5 0.0363 0.2105* 0.0155 0.0068 

6 0.0019 0.0438 0.0015 0.0004 

7 0.0125 0.2736* 0.0565 0.0131 

8 0.0046 0.3383* 0.0120 0.4775* 

9 0.0992 0.4296* 0.0022 0.1861* 

Group means 0.027 0.222 0.043 0.118 

Group means suggest a weak positive increase in correlation after A VP between 

slope and spike whether there was an increase (AVP/Sal) or a decrease (AVP/Prop) in 

spike amplitude. These weak correlational effects may relate to the greater range of spike 

and slope responses after A VP. 
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Experiment 3: Response to an A VP Fragment, DGA VP 

In order to assess the specificity of the original AVP actions, DGA VP, the 

selective V 1 a agonist was infused into the ventricles of 3 animals. 

3.1. Population spike changes 

DGA VP produced increases in the population spike ampli tude in all 3 animals. 

Figure 3-1 and Table 3-1 show the effects of the A VP fragment (DGA VP) on the 

population spike and the EPSP slope. 

The population spike amplitude increased with a total mean of 1.95 m V on the 

baseline 30 minute block to 3.19 m V in the 30 minute block post DGA VP. This was 

significant in a one-tailed t-test (t = 3 .148; df = 2; p<0.05). DGA VP caused a potentiation 

of the population spike amplitude after 2-3 minutes rising to 100% above baseline within 

25 minutes post infusion. Individual increases ranged from 73% to 200%. 

Table 3-l. Effects of the A VP fragment DGA VP on the population spike amplitude and 
EPSP slope of the perforant path-dentate gyrus evoked potential in the urethane 
anesthetized rat. 

Fragment Population spike amplitude (m V) EPSP slope 
experiment (mV/ms) 

Pre Std Post Std Pre Std Post Std 
DGAVP Dev. DGAVP Dev DGAVP Dev DGAVP Dev 
Means Means Means Means 

1 1.82 0.395 2.80* 0.408 2. 15 0.067 2.1 1 0.072 
2 1.84 0.103 3.86* 0.886 1.35 0.042 1.64* 0.078 
3 2. 19 0.662 2.92* 0.122 3.27 0.505 2.55* 0.535 

Group 1.95 0.208 3. 19* 0.580 2.26 0.964 2.10 0.455 
mean 
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Figure 3-1: lntracerebroventricular application of DGA VP induces a potentiation of the 
population spike amplitude but has varied effects on the field EPSP slope in the urethane 
anesthetized rat. Inset: Sample waveforms with parameter measurements of the dentate 
gyrus evoked potential before (solid line) and 30 minutes after (dashed) infusion of 
DGA VP into the lateral ventricle. Scale bar = 2 m V and 2 ms. 
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3.2. EPSP slope changes 

DGA VP did not alter EPSP slope overall post DGA VP (t = 0.5269; df = 2; 

p>0.05; see Table 3-1 and Fig. 3-1 ) . One animal showed a significant increase, one a 

decrease and one, no change. The percentage effects ranged from a 72% decrease to a 

29% increase. 

3.3. Population spike/EPSP slope relationship 

There was no significant slope/spike correlation prior to DGA VP. After DGAVP, 

a significant slope/spike effect was seen in the rat with a decrease in EPSP slope, 

although spike had increased significantly overall in this experiment. Spike increases did 

not depend on slope changes in this experiment. Table 3-2 summarizes the correlations of 

the fragment experiments. 

T bl 3 2 C a e - l . orre atwns r o spL e an d I s ope o ffl ragment expenments (n=3) 

Fragment Experiments Correlation (R2
) 

Pre DGAVP PostDGAVP 

I 0.0084 0.0058 

2 0.0103 0.0110 

..., 
-' 0.0812 0.2836* 

Group Mean (n=3) 0.0333 0.1001 

4.1 Histology for Experiments 1-3 

All animals showed clear methylene blue in the lateral ventricles while waveforms were 

indicative of proper placement with the dentate gyrus and perforant path electrodes. The 
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placement of the dentate gyrus recording electrodes was also reconstructed from the 

Paxino atlas (Paxinos and Watson, 2004). Placements for each experiment are presented 

in figures 4-1 to 4-3. While it was difficult to visualize the exact tips of the glass pipettes, 

the tracks and waveforms taken together suggest placement in or slightly below the 

dorsal blade granule cell layer. In Figure 4-2 both propranolol and saline pipette tips are 

shown with the more posterior placements being propranolol. 
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Figure 4-1: Placement of recording electrode in areas of dentate gyrus in experiment 1 
showing placements of all 16 animals. 
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Figure 4-2: Placement of recording electrode in areas of dentate gyrus in Experiment 2, 
double pipette experiments, showing placements of all 6 animals. 
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Figure 4-3: Placement of recording electrode in areas of dentate gyrus in experiment 3 
showing placements of 3 animals. 
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Discussion 

A VP effects on the perforant path evoked potential in the dentate gyrus: 

Experiment 1 

Intracerebroventricular administration of 1 ng of A VP produced long-lasting 

potentiation of the perforant path evoked population spike in the dentate gyrus of the 

urethane-anesthetized rat. Potentiation of the perforant path evoked EPSP slope was also 

observed in a majority of experiments. This is the first report of A VP-induced long

lasting potentiation in vivo. In addition, the results provide a plasticity mechanism to 

support earlier observations of icv and direct dentate gyrus A VP infusion enhancement of 

the retention for avoidance learning first reported by De Wied ' s group and recent 

observations of spatial learning enhancement (Paban et al, 2003). De Wied (I976) fow1d 

I ng of A VP given icv immediately after a passive avoidance learning trial resulted in 

longer latencies to enter the shock compatiment relative to controls the next day. 

Vasopressin injected directly into the dentate gyrus (25 pg), immediately after a learning 

trial also improved passive avoidance behaviour (Kovacs et al, 1979). A study 

exan1ining A VP in mice in the Hebb-Williams maze also found improved spatial memory 

following I ng i.c.v. and dorsal hippocampal administration, but not ventral hippocampal 

administration (Paban et al , 2003). 

While both population spike and EPSP slope were potentiated, only slightly more 

than 50% of subjects showed a significant contribution of EPSP slope to the spike 

increases after A VP based on correlational analyses. The distinct time courses of EPSP 

slope and population spike increases, the failure to see EPSP slope increases in nearly a 

third of the experiments and the lack of significant slope/spike correlations in a 

substantial proportion of subjects suggests two distinct plasticity processes are engaged 

by A VP: EPSP slope increases and population spike or excitability increases. 

EPSP slope increases in the dentate gyrus were first reported by Chen et a!. 

(1993) in an in vitro study. The present study confirms their effect in vivo. In their dose 
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response study they found that at 100 nM potentiation was 18% over baseline while at 

500 nM it was 50% over baseline. Our result with 2 ).ll of 500 nM A VP (the 

concentration produced by our 1 ng solution) in the ventricles was 20% over baseline 

suggesting the concentration reaching the dentate gyrus was likely less than 500 nM, but 

above threshold, since Chen and colleagues (1993) found no response at 50 nM. Their 

potentiation was only observed at physiological calcium concentrations and became 

depression at higher calcium concentrations. Both EPSP slope increases and decreases 

appeared within 5 minutes of application and lasted for the entire 60 minute recording 

time, similar to what was found in the present study. The effect was dose-dependent and 

also peptide specific since there was no effect with oxytocin infusion. This demonstrates 

that A VP is not working through oxytocin receptors in the dentate gyrus. From the 

combined in vivo and in vitro evidence we conclude that A VP increases the EPSP slope 

or synaptic strength of perforant path input. Chen et al. (1993) suggested that the most 

likely mechanism for this effect is postsynaptic, but that remains to be proven. 

As reviewed above, in the present study, the increase in the population spike 

an1plitude is not fully accounted for by the EPSP slope increase. This is consistent with 

an increase in the coupling of the EPSP to spike generation or increased cell firing 

occurring independent of changes 111 synaptic strength. Though studies on L TP 

mechanisms have mainly focused on synaptic strength changes, there are other 

determinants of neuronal plasticity, learning, and memory which include a wide array of 

ion channels expressed in the neuronal dendrites. Neuronal excitability can be defined as 

a propensity of the neuron to generate, beyond a particular threshold, an output signal 

(the action potential) from a given input signal (an EPSP). This process involves the 

opening of voltage gated ion channels in the neuronal membrane after the synapse is 

activated. This coupling concept invokes complex processes involving the voltage gated 

Ca2+, Na +, and K+ channels in the dendrites (Reyes, 2002). These channels have been 

reported to either amplify or attenuate the EPSP amplitude (Reyes 2002). Ultimately to 
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understand excitability increases such as those observed here, it will be necessary to 

identify the type of ion channel properties engaged. These channels can have a powerful 

influence over the spread of neuronal information. Persistent changes in intrinsic 

excitability have been discovered in various learning tasks (Daoudal and Debanne, 2003; 

Zhang and Linden, 2003; Alkon et al, 1985) and examined in numerous brain areas 

including cortical, hippocampal and cerebellar regions (Frick et al, 2004; Doudal and 

Debrume, 2003; Brons and Woody, 1980). Local changes in dendritic excitability have 

been identified as a second Hebbian mechanism underlying long-term associative 

plasticity (Shrader et al., 2002; Zhang and Linden, 2003). Persistent increases in 

excitability, as seen in the present study, may enhance memory ru1d retrieval of specific 

information. 

An alternative view of the EPSP slope and spike discrepancies may relate to the 

complexities of the perforant path evoked potential and will be considered in the next 

section discussing the role ofNE in the observed effects of AVP. 

Two other studies have examined AVP effects in vivo in the dentate gyrus. Wang 

et al (2001) examined whether the impairment of synaptic plasticity induced by 

aluminum could be reversed by peripheral LVP (which has actions similru· to A VP) 

treatment combined with tetanic stimulation. It was found that aluminum significantly 

reduced the amplitudes of both EPSP and population spike L TP in the dentate gyrus. 

After the application of LVP, the range of synaptic plasticity (which they identified with 

population spike LTP or LTD; EPSP slope data were not provided for the L VP treatment) 

in aluminum-exposed rats increased from 38% to 174%, which was similar to that in 

control rats (161% ). It was suggested that A VP could reverse aluminum-induced 

impairment of synaptic plasticity. Most importru1tly for the present study was the 

observation that both the EPSP slope and the population spike were enhanced by L VP in 

control rats when given an input output curve of single pulse stimuli . Thus, although the 

investigators did not follow the effects of L VP over time they found a similar potentiation 
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ofEPSP slope (~50% maximal) and spike (~150% maximal) as found here in Experiment 

1. 

Somewhat in contrast is an in vivo study by Dubrovsky and colleagues (2002), 

also using tetanic stimulation, but in combination with 1 ~g of icv A VP. They reported a 

potentiation of the perforant path-evoked EPSP slope and spike amplitude beyond control 

L TP levels when tetanization was given in the presence of icv A VP (I ~g/~1). Both EPSP 

and population spike enhancement increased steadily within 15 minutes of application 

and continued to increase for 2 hours of recording time reaching 100% above baseline. 

Thus, AVP enhanced the LTP effect as also reported for spike amplitude by Wang et 

al.(200 1 ). Without tetanization, A VP infusion was associated with higher amplitudes than 

baseline, but the changes were not statistically significant. The lack of A VP effects 

without tetanization may be due to the much higher dose (1000 fold) used by Dubrovsky 

as compared to both Chen' s in vitro study (100-500 nM) and our in vivo study (500 nM 

or 1 ng/2 ~1). 

Inverted U curve effects have been found for A VP, both in terms of modulating 

cAMP and in terms of behaviour. An inverted U-shaped dose-response relationship was 

observed for heart rate, core temperature, gross activity, locomotion and rearing 

behaviour which all increased from low to moderate dose (1 - 10 ng) and declined after 

higher doses of A VP (30-1 00 ng) (Dian1ant and De Wied, 1993). A similar relationship is 

also seen in a study of the effects of lysine vasopressin and response prevention on the 

shuttlebox avoidance paradigm (Hagan et al, 1982). Both high and low doses caused an 

inhibitory effect while moderate doses facilitated avoidance behavior. A VP 

neuromodulation of NE-induced cAMP accumulation in vitro resulted in an inverted U 

shape within a concentration range of 10-1000 nM. Lower concentrations (50 - 250 nM) 

of AVP potentiated NE-induced cAMP accumulation while higher (1000 nM) did not 

potentiate. Brinton and colleagues (1994) examined AVP activation of calcium signalling 

pathways in cultured hippocampal neurons and found that exposure of hippocan1pal 
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neurons to A VP induced inositol-1-phosphate accumulation which was concentration 

dependent and exhibited a steep inverted U curve that included stimulation and inhibition 

of inositol -!-phosphate accumulation. The biphasic characteristic of vasopressin is not 

unique to its neuromodulatory effects. Lower concentrations of A VP facilitated neurite 

growth in cultured embryonic neurons while higher concentrations inhibited neurite 

outgrowth (Brinton and Gruener, 1987). Such a bell-shaped dose-response curve is 

characteristic of other substances that affect memory consolidation and retrieval such as 

NE which also favors memory enhancement at low to medium doses but depresses 

memory at high doses (Izquierdo 1989). 

Evidence for an inverted U curve in electrophysiological potentiation effects with 

dosage of a vasopressin agonist comes from a CAl study by Chepkova, Kapai, and 

Skrebitskii (200 1 ). They reported enhanced population spike amplitude with an A VP 

fragment, AVP 4-9 in the Schaffer collateral-pyramidal CAl cell system. Here they 

studied the effects of treatment with A VP 4-9, at varying dosages, on LTP induced by 

short- and long-term high frequency stimulation. Short term L TP became long-term and 

was maximal (1 00%) in the presence of 1 ~M A VP 4-9, but decreased in magnitude at a 

lower concentration (1 ~M) and at a higher concentration of AVP 4-9 (5 ~M). The 

modulating effect of A VP 4-9 was also found to depend on the intensity of the high 

frequency stimulus where it only significantly facilitated weak high frequency 

stimulation. This suggests that A VP 4-9 facilitates LTP but also modulates its amplitude 

depending on the intensity of the presynaptic activation at least in the CAl region. 

There was no facilitation of spike amplitude without LTP at the dosage of the 

A VP fragment used, but the authors had reported earlier that both A VP and A VP 4-8 

produced potentiation of EPSPs to Schaffer collateral input and also lowered the 

threshold for firing and increased cell excitability in CA 1 pyramidal cells. These effects 

were not blocked by NMDA blockers or GABA A blockers. The EPSP enhancement and 

cell excitability effects were separable in that not all cells that showed enhanced EPSPs 
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showed increased cell excitability and the time course of the two effects in a given cell 

could differ. A similar pattern of A VP effects on intracellularly recorded EPSPs and cell 

excitability has also been reported to fimbria fornix input in the lateral septum (Urban 

and De Wied, 1986). 

The effects seen here in the dentate gyrus at the population evoked potential level 

parallel these earlier intracellular observations in related septohippocampal areas and 

suggest that A VP promotes an enhanced synaptic response to glutamate input and m 

parallel lowers the threshold for cell excitability or enhances slope/spike coupling. 

The present observation of electrophysiological A VP enhancement effects in the 

dentate gyrus is also consistent with reports of cfos activation in the dentate gyrus with 2 

ng A VP administered icv in either unconditioned or conditioned mice (Paban et al , 1999). 

A direct test of the difference between the negative Dubrovsky result with A VP 

alone and the present study would require a systematic dose-response investigation. In 

the present study 1 ng icv was selected as it is the dose DeWied originally found to be 

effective in learning and memory studies as noted above. A dose response study 

examining A VP icv (1 ng- 200 ng) and differential effects on abnormal behaviours such 

as barrel rotation and crouching (Boakes et al , 1985), found that doses of 10 ng and higher 

resulted in abnormal behavior with convulsions starting at 100 ng. These results argue 

against the use of high doses in assessing synaptic plasticity promotion in normal 

learning and memory by A VP. 

B-Adrenoceptor mediation of A VP effects: Experiment 2 

In the second experiment we tested the hypothesis that NE ~-receptors in the 

dentate gyrus are critical for EPSP and spike potentiation effects by using the double 

pipette teclmique with propranolol (50 mM) and saline filled recording pipettes together 

with the icv administration of 1 ng A VP. Our study showed that 6/6 experiments 

significantly increased in population spike an1plitude on the saline filled pipette post 

A VP. There was no significant increase in spike amplitude on the propranolol pipettes in 
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the same experiment and in two cases there was a small, but significant, decrease in 

population spike size. Thus, population spike increases by A VP require ~-adrenoceptor 

activation. The observation of decreases is consistent with an earlier report (Harley and 

Evans, 1988) using locus coeruleus activation in the presence of intra-dentate propranolol 

and finding a decrease in spike size that was related to activation of a adrenoceptors. The 

possibility that A VP affects the release of norepinephrine so that an imbalance of a and ~ 

adrenoceptor activation could be occurring will be discussed later in this section. 

Four of the six rats showed a significant potentiation of EPSP slope on the saline 

pipette, while two others did not. Three of the four that increased also had a significant 

but small (.2-.4) positive correlation between slope and spike after A VP. This pattern of 

slope and spike results on the saline pipette replicates that of Experiment 1. A VP can 

induce increases in both the EPSP slope and the population spike. The increases in spike 

size are the most consistent. EPSP slope increases only partially account for the spike 

increases observed supporting the initial hypothesis that there may be two mechanisms 

for A VP effects in dentate gyrus. 

EPSP slope increases did not occur on the propranolol pipette and in tlu·ee 

experiments EPSP slope showed a significant decrease. Slope spike correlations were 

rarely seen on the propranolol pipette. In one experiment both slope and spike decreased 

on the propranol pipette, while both increased on the saline pipette, but the only 

significant slope/spike correlation occurred on the saline pipette. In only one case was 

there a significant increase in the slope/spike correlation after A VP on a propranolol 

pipette suggesting slope was contributing to the decrease in spike size. 

Thus, NE ~-adrenoceptor activation is required for both the EPSP slope and spike 

potentiation effects seen in the dentate gyrus with central A VP activation. The weak 

correlations between the EPSP slope and population spike effects suggest NE also 

operates on synaptic plasticity through two separate P-adrenergic dependent mechanisms. 
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--------- -----------

Church (1983), Brinton and McEwen (1989) and Brinton, Thompson and 

Brownson (2000) have reported that A VP significantly potentiates NE ~-adrenergic 

receptor action by increasing the induction of cAMP accumulation in hippocampal slices. 

This A VP-induced cAMP increase was found not to occw- in the absence of NE. 

Propranolol blocked both the NE-induced accumulation of cAMP and the cAMP 

enhancement effect of A VP. The adenylate cyclase activator, forskolin, was fOLmd to 

produce a 2-fold increase in cAMP accumulation, but there was no change in the 

presence of A VP. This provides evidence that A VP is not modulating adenylate cyclase 

directly, but suggests that it is likely a receptor-coupled event. Petit, Barveris and Jard 

(1988) examined A VP in the superior cervical ganglion and found that A VP potentiates 

cAMP accumulation when induced by the specific ~-agonist isoproterenol. Brinton and 

McEwen (1989) also found A VP-induced neuromodulation of cAMP in the dentate gyrus 

was a Ca2+-dependent process. The AVP-induced potentiation of cAMP was blocked by 

an antagonist to the Ca2+-binding protein, calmodulin. Interestingly, the AVP4-9 

fragment did not enhance cAMP, a point I will return to in considering the effects of 

DGAVP. 

If A VP and NE directly interact, the receptor systems may be functionally or 

structurally coupled in select regions within the hippocampus. Brinton (1998) examined 

this and found that high concentrations of A VP in postnatal animals resulted in a down

regulation of NE-induced cAMP formation, but no change in vasopressin potentiation. 

They also fotmd that a site-specific upregulation of vasopressin receptors occurred 

following lesions to the dorsal noradrenergic bundle. This lesion also resulted in the 

upregulation of the vasopressin receptor system that modulates adrenergic stimulated 

adenylate cyclase (Brinton 1990; 1998). This presence of A VP receptors after a DNB 

lesion indicates that the A VP receptors may be postsynaptic to noradrenergic terminals. 

Such results suggest that vasopressin and adrenergic receptors are an adaptive and 

interactive complex. 
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In the dentate gyrus, the present experiment argues that electrophysiological 

A VP-induced potentiation in the dentate gyrus requires NE and ~-adrenoceptor 

activation. Studies by Stanton and Sarvey (1985a; 1985b; 1985c) also argue that high 

frequency-induced LTP depends on NE and ~-adrenoceptor activation in the dentate 

gyrus and that both frequency-induced LTP and NE-induced LTP initiate increases in 

cAMP ( Stanton and Sarvey, 1985b; 1985c ). L TP of the perforant path evoked potential in 

vitro could not be induced with NE depletion, but recovered after application of NE. 

Consistent with a requirement for cAMP, ~-adrenoceptor antagonists blocked L TP in the 

dentate gyrus (Stanton and Sarvey, 1985a; 1985c ). In vivo there is partial, but less 

complete, dependence of high frequency L TP effects, specifically potentiation of the 

EPSP slope, on ~-adrenoceptor activation in dentate gyrus (Munro et al , 2001 ). Thus, NE 

appears to be an important contributor to long-term enhancement of functional 

connectivity in the perforant path input to dentate gyrus. 

In an attempt to localize the site(s) where the interaction between NE and A VP 

may occur, Brinton (2000) found that there are multiple sites within the hippocampus 

including especially the rostral dendritic zone of the dentate gyrus and the hilar or 

polymorph region, as well as the CA3 subfield. In these areas there is a strong parallel 

between ~ 1 and A VP receptor distribution. Brinton (2000) also examined temporal 

properties of adrenergic and vasopressin receptor interactions and found that pre

activation (for 1 minute) of the vasopressin V 1 receptor prior to NE activation of ~

adrenergic receptors resulted in a significantly enhanced generation of cAMP. This 

synergy was found in both neurons and glia (Son and Brinton, 1998). This suggests that 

temporal priming by vasopressin may have a special role in the enhancement effect of 

NE-induced potentiation. Such a prediction remains to be tested in electrophysiological 

and/or behavioural experiments. Brinton and McEwen argued the properties of AVP-NE 

neuromodulation paralleled the associative learning requirements of spatial and temporal 
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coupling. The calcium dependency of A VP potentiation of cAMP is also in line with the 

calcitm1 dependency for induction of associative long-term potentiation (Brinton 1990). 

NE and A VP dissociation of slope and spike effects 

One explanation for the weak correlations between slope and spike effects, which 

are seen with in vivo E studies as well as described here for A VP, is the differential 

effect ofNE on the medial and lateral perforant path input to the dentate gyrus. 

NE modulation preferentially potentiates input from the medial perforant path in 

the middle molecular layer synapses of the dentate gyrus while depressing synaptic input 

from the lateral perforant path in the outer molecular layer (Dahl and Sarvey, 1989). The 

medial/lateral pathways not only terminate in different parts of the dentate gyrus 

molecular layer, but also arise from different pat1s of the entorhinal cortex: the medial 

and lateral cortices (Hjorth-Simonsen and Jeune, 1972). However the dentate gyrus and 

the CA3 receive projections from both medial and lateral entorhinal cortex and the two 

pathways show interactive effects (McNaughton and Barnes, 1977; Abraham and 

McNaughton, 1984). For example, when LTP is induced in one pathway, there IS a 

concurrent long-lasting depression (LTD) of responses evoked by activation of the other 

pathway (Abraham and Goddard, 1983). LTD entails a decrease in synaptic efficacy at 

potentiated synapses which is hypothesized to be necessary to prevent oversaturation of 

inputs and to increase the storage capacity of the hippocampus network (Doyere et al , 

1997). In the Dahl and Sarvey (1989) in vitro study, they reported that NE induces 

pathway specific potentiation and depression from stimulation of medial and lateral 

perforant paths respectively, as recorded in the dentate gyrus, which were both blocked 

by the ~-adrenergic antagonist, propranolol. The NE effect, then, is asymmetrical with 

only the medial pathway showing potentiation. It is the medial population spike that was 

investigated in these experiments as judged by latency, while the EPSP was a mixture of 

both medial and lateral components and might not be consistently potentiated depending 

on the relative ratio of the two synaptic inputs. 

66 



In companng A VP results to electrophysiological results reported for NE, 

typically, slope increases are seen more with NE in vitro. Lacaille and Harley (1985) 

reported in vitro that NE increased both amplitude and EPSP slope with 47% of the spike 

amplitude accounted for by the increase in EPSP slope. Another study (Stanton and 

Sarvey; 1987) examined dendritic EPSPs and found that NE resulted in increased 

dendritic EPSPs and increased population spike amplitude. The greater consistency of 

EPSP slope potentiation in vitro may relate to the easier isolation of the medial perforant 

path fibers in that preparation. 

It will be interesting to examine whether or not A VP potentiation effects show the 

san1e pathway selectivity as NE effects. Such a selectivity would be strongly predicted by 

the present findings and would argue that A VP and NE cause the network to process 

some inputs at the expense of others. Nonetheless, NE and the activation of ~

adrenoceptors is reported to be essential for both medial and lateral perforant path high 

frequency L TP in the perforant pathway (Bramham et al, 1997) and A VP could also 

contribute to potentiation of both pathways. 

A recent finding shows that NE can induce a delayed EPSP slope potentiation that 

is not observable in the first 3 hours of recording in an awake rat (Walling and Harley, 

2004). Walling and Harley found infusion of glutamate into the LC produced an initial 

increase in population spike with no effect on EPSP slope. Potentiation was seen 24 

hours later in both the spike and EPSP slope. The ~-antagonist, propranolol and the 

protein synthesis inhibitor, anisomycin, blocked the long-term effects on EPSP slope and 

spike. In the Walling and Harley experiments slope completely accounted for spike 

increases 24 hours after NE release, but did not account for the initial spike increases. It 

will be of interest to examine A VP potentiation in awake rats to see if a similarly delayed 

slope potentiation occurs. 

To summarize Experiment 2, briefly, AVP potentiation of EPSP slope and 

population spike amplitude of perforant path input depends on ~-adrenoceptor activation. 
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The dissociation of slope and spike seen in the weak or absent correlative relationship 

suggests A VP effects in vivo are like NE effects in vivo. This dissociation may relate to 

s lective modulation of medial and lateral perforant path inputs or to distinct temporal 

and/or mechanistic modulations for the EPSP slope and spike components. 

A VP Fragment Effects: Experiment 3 

In the present study, the fragment DGAVP, a V1a receptor agonist, resulted in 

increases in population spike amplitude across all tlu·ee animals while showing varied and 

inconsistent effects on EPSP slope including decrease, increase and no change. This 

variable EPSP slope pattern is also reported with NE in vivo (Klukowski and Harley, 

1994; Harley et al , 1996; Walling and Harley, 2004) as well as in low dose in vitro 

isoproterenol studies (Dahl and Li , 1994). Population spike increases occur independently 

of slope increases when NE activation is increased in vivo, using a variety of NE release 

paradigms. 

While using the full A VP molecule produced both slope and spike changes, the 

pattern of effects argued for separate mechanisms. The spike, but not slope, potentiation 

produced by DGA VP strengthens the case for multiple mechanisms of A VP action. 

Metabolite fragments of A VP, such as DGAVP (Burbach et al. , 1983), show 

several differences from the parent molecule. Fragments bind preferentially to the 

polymorph region of the dentate gyrus, whereas the full molecule binds to the molecular 

layer as well (Brinton 1984; 1986; Du et al, 1994). The A VP4-9 fragment was reported 

not to synergistically elevate NE-induced cAMP in in vitro experiments (Brinton & 

McEwen,l994), although it is effective behaviourally. DGAVP, an AVP 4-8 fragment, 

was not tested in the cAMP study, although an earlier experiment reported DGAVP given 

intraperitoneally increased cAMP for up to 24 hours in several brain regions including 

hippocampus (Schneider et al , 1982). However the inverted U-shaped dose-response 

relationship for passive avoidance memory with A VP4-9 was not apparent for the A VP4-

68 



8 derivative (Burbach et al, 1983). In this early study pg quantities of A VP4-8 were 

effective at all doses tried. It will be of interest in future in vivo electrophysiological 

studies to try pg doses, but the lack of an inverted U curve in the earlier memory study 

suggests the pattern of spike potentiation would not be altered by lower doses. 

Since the spike potentiation induced by the parent molecule here was blocked by 

propranolol it is likely that cAMP is involved in spike potentiation, but an alternative 

mechanism could be a synergistic calcium action, which will be treated in more detail in 

a later section. NE itself influences both molecular layer and the polymorph interneuron 

region (Brown et al, 2005), so there could be two distinct spatial targets of modulation by 

A VP and its metabolites which would involve NE. 

As previously mentioned in the introduction, evidence derived from studies of 

DGA VP suggests that this peptide analog is virtually devoid of vasopressor effects, 

having little antidiuretic, corticotrophin-releasing activity, cardiovascular or endocrine 

effects (De Wied et al , 1972; Van Wimersma Greidanus et al , 1979). Administration of 

DGA VP has been found to result in resistance to extinction of active avoidance 

behaviour (De Wied and Bohus, 1966; Burbach et al, 1983; De Wied et al, 1984; Gaffori 

and De Wied, 1985). Such effects on extinction suggest that the peptide tends to work by 

strengthening previously learned responses. In these studies, they found that both A VP 

and DGAVP resulted in increased resistance, but DGAVP was more potent in facilitating 

passive avoidance behaviour. This supports the proposal that A VP promotes the activity 

in the dentate gyrus directly and not through pressor effects. Our experiments show that 

both A VP and DGA VP increased the perforant path evoked potential in the dentate gyrus 

with DGAVP causing increased cell excitability. DGAVP, like A VP, was also found to 

improve acquisition of an autoshaped behaviour thus demonstrating the specificity of the 

fragment for learning and memory processes (Messing and Sparber, 1983). 

De Wied and colleagues (1984) found that A VP produced a pressor effect and 

facilitated passive avoidance retention when administered peripherally while it only 
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resulted in enhanced passive avoidance response when centrally (icv) administered. A VP 

4-8, the more active DGA VP molecule, produced the facilitation in the passive avoidance 

retention when administered either centrally or peripherally. Thus it seems the receptors 

mediating the pressor effects are in the periphery and not in the brain. 

In the present study, the fragment molecule is working differently than in the first 

experiments such that it is more similar to the effects of in vivo NE (increased population 

spike amplitude and decreased or no change in the EPSP). Naturally, it is hard to draw a 

conclusion from the response of 3 subjects and so a larger study is needed for a more 

complete examination of specific vasopressin fragments. But if this outcome is an 

accurate reflection of DGA VP effects, then the larger vasopressin molecule appears to 

recruit more mechanisms then the specific targeted fragment. The larger molecule may 

interact more with other transmitters and pathways. It would be interesting to have done 

the double pipette study with the fragment and propranolol to assess the importance of~

adrenoceptors in the fragment effect. . 

A VP and NE Release 

Vasopressin and NE appear to coexist m the rat LC (Caffe and 

colleagues, 1985; 1988). High concentrations of A VP have been found in the rat and the 

human LC (Jenkins et al, 1984; Hawthorn et al, 1984) which also contains A VP receptors 

(Phillips et al, 1988). In human brain, radioimmunoassay has shown that substantial 

amounts of vasopressin-like immunoreactivity are present in the LC (Rossor et al , 1980). 

Olpe and Baltzer (1981) found that micro iontophoretic administration of A VP or LVP 

excites noradrenergic neurons in the LC of the rat. This was also found in the LC of the 

cat (Andre and colleagues, 1992). Thus LC is a possible site for the interaction of 

vasopressin and NE containing neurons which indicates an additional site by which 

vasopressin could affect NE release when it is given intracerebroventricularly. A VP has 

been found to increase NE levels in the hypothalamus, hippocampus and tuberculum 
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olfactorium when given intraperitoneally (Szadowska et a!, 1982) and intraventricularly 

(Schwarzberg et a!, 1981 ). Since vasopressin-induced NE release has also been proposed 

via an intrahippocampal route, as mentioned in earlier papers (Metzger et al, 1994; 

Brinton et al , 2000), there may be several routes for synergy. 

In this study, A VP and DGA VP were infused into the lateral ventricles with the 

expectation that it would be distributed easily throughout the brain to the target neurons 

via diffusion within the CSF and the extracellular fluid . A disadvantage of this technique 

is the likelihood of interaction with targets other than the area of interest. As just 

described, the LC itself is likely to be one source of influence in the present study. Some 

studies promote the use of microdialysis techniques to avoid these extra interactional 

effects and to mimic more closely the natural release patterns in the brain (Engelmann et 

al, 1992; 1994; 1996). A microdialysis approach would be of interest for future studies 

looking at A VP modulation effects restricted to the dentate gyrus. 

Mechanisms of A VP Effects 

In addition to the ability of A VP to enhance the ~-adrenoceptor initiated rise in 

cAMP discussed above, A VP has important and independent actions on intracellular 

calcium modulation. Son and Brinton (2001) found that activation of the vasopressin V1 

receptor produced a rise in intracellular Ca2
+ through the activation of the 

phosphotidyinositol signalling pathway and L-type Ca2
+ channels. Fragments such as 

A VP 4-9 (Nakayama et al., 2000) also have this action. A VP thus causes intracellular 

Ca2
+ concentration increases via release from intracellular Ca2

+ stores and via influx from 

extracellular Ca2
+ (Nakayama et al, 2000; Yibchok et al, 2000). The rise of the 

intracellular Ca2
+ concentration results in increased Ca2

+ -dependent neurotransmitter 

release (Son and Brinton, 1998) and NMDA-activated Ca2
+ currents. This suggests that 

A VP actions on the IP3/intracellular Ca2
+ concentration pathway in the rat hippocampus, 

might be important in enhancing the range of synaptic plasticity. A VP4-8 also stimulates 
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IP3 metabolism in the hippocampal slice in the presence of GTP (Gu and Du, 1991a). 

Studies have found that among the vasopressin analogs, A VP 4-8 was a hundred times 

higher in potency than the parent molecule A VP in facilitating the retention of passive 

avoidance learning ( Gaffori and De Wied, 1986; De Wied et al, 1991 ). 

However, A VP appears to require adrenergic innervation to the hippocampus to 

promote synaptic plasticity (as seen here with propranolol) and learning since lesions to 

the dorsal noradrenergic bundle abolished the behavioral effects of A VP (Kovacs et al, 

1979b ). Thus, if the calcium effects are relevant they must interact in some way with NE. 

NE itself promotes the opening of calcium L+ channels in the dentate gyrus granule cells 

(Gray and Johnston, 1987) and calcium effects of the two modulators may be additive or 

synergistic in promoting plasticity. This remains to be investigated directly. 

Another possible mechanism of the A VP effects on synaptic plasticity is A VP's 

activation of the receptor mediated signaling pathway involving mitogen-activated 

protein kinase (MAPK). This pathway is also recruited by NE (Chen et al , 2007). 

Administration of A VP 4-8 (sc) resulted in a significant increase of MAPK activity in the 

hippocampus after 2 hours, but the protein levels had not increased, indicating that the 

MAPK increase stimulated by AVP4-8 was caused by a short-term activation process 

through protein phosphorylation and not by protein expression (Qiao and Du, 1998). 

Trophic factors are also promoted by the 4-8 A VP fragment. Zhou et al ( 1995) 

found that nerve growth factor (NGF) mRNA expression in the hippocampus was 

significantly enhanced 12 hours after administration of A VP4-8 (sc). They concluded that 

the NGF gene was one of the target genes responsible for memory-enhancing responses 

induced by A VP4-8 and that the enhancement of NGF gene expression may be involved 

in the signaling pathway mediated by the A VP4-8 receptor. In a subsequent study by 

Zhou and colleagues (1996), memory impaired rats prepared by prenatal hypoxia showed 

that NGF expression increased from a low level to a normal level when given an AVP4-8 

agonist and the acquisition and maintenance of behavioural responses significantly 
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improved. Such studies confirm the role of both A VP4-8 and NGF in the learning and 

memory process. Zhou and colleagues (1997) then studied the in vivo expression of 

BDNF and neurotrophin 3 (NT3) genes as well as oxytocin and reported that only BDNF 

was significantly enhanced by A VP4-8 administration in the hippocan1pus. Although 

BDNF facilitates both short- and long-term memory, the increase of BDNF mRNA 

transcription 12 hours after A VP 4-8 indicates a long-term process. Whether any of the 

trophic factors could contribute to the synaptic plasticity and cell excitability changes 

seen here remains to be determined. They are more likely to play a role in late phases of 

plasticity than earlier ones such as those studied here. 

Vasopressin in real life 

Many of the behavioural studies on A VP have involved usmg an aversive 

situation for learning paradigm. Some studies have shown that AVP influences memory 

of emotional or stressful events, much like NE. Cahill's study (Cahill et al, 1994) 

suggested that memory is enhanced around stressful times or experiences because of a 

surge in NE. The participants are better able to recall a traumatic portion of a story or 

movie and this recall is diminished when participants are given beta blockers which block 

the effects of the NE surge. Some studies have reported that novelty of a stimulus or 

event and emotional stimuli are also associated with an A VP enhancement in processing 

(Naumann eta!, 1991 ; Pietrowski et al , 1996). In Naumrum et al (1991), subjects treated 

with A VP showed enhanced memory performance, but also showed a higher performance 

with emotional content as compared to neutral stimuli . A study by Ioder et al ( 1998) 

found that prolonged exercise, which serves as a form of stress, increases peripheral A VP 

in male athletes. NE is also increased with muscular stress at1d has been shown to 

enhance memory under those conditions (Neilson and Jensen, 1994; Neilson et a! , 1996). 

AVP may prime the information pathways under the satne circumstances as NE, the 
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release of which has been related to novel and emotional events as well as muscular 

stress. A VP may normally work with NE to enhance processing of significant stimuli. 

In a clinical vein one of my own interests is the neural basis of autism and 

recently A VP has been linked to this disorder. Autism or autism spectrum disorder is a 

neurological developmental disorder characterized by fundamental deficits in social 

behavior, social communication, language and cognitive development, excessive anxiety 

or hyperreactivity to stressful experiences and a tendency toward compulsive repetitive 

behavior. Such deficits vary in severity within the spectrum. Autism is also male biased 

afflicting males 4-5 times more than females (Chakrabarti and Fombonne, 2005 ; 

Fombonne, 2003). There is considerable evidence that autism is highly heritable and 

likely to be determined by genetic and polygenic mechanisms (Folstein et al, 2003). 

Given the complexity of the symptoms of autism, it is not unexpected that multiple sites 

of anatomical abnormalities have been hypothesized to underlie the different 

characteristics of this disorder. Abnormalities have been found throughout the brain 

including the cerebellum, amygdala, and the hippocampus (Bauman and Kemper, 1994; 

Courchesne, 1997; Kemper and Bauman, 1998; Courchesne et al , 1999; Nicolson et al , 

2006). There is growing evidence that an abnormality in A VP neurotransmission may 

account for certain features of autism ( Insel et al , 1999; Nelson et al , 2001; Jentsch et al , 

2003 ; Schuman eta! , 2004; Wassink et al , 2004; Emanuele 2006). 

Many studies implicating A VP ' s connection with autism involve the examination 

of the processing of social cues, social recognition or social memory which is thought to 

depend on septal AVP (Thor and Holloway, 1982; Dantzer et al, 1987; 1988; Popik et al , 

1992). Social memory tests are a relatively natural test of memory in rodents. The test of 

social memory originally proposed by Thor and Holloway (1982) was based on the fact 

that adult male rats spend a great amount of time investigating novel juveniles and less 

time investigating ones to which they have already been exposed. The rats exposed to the 

same juvenile 30 minutes after the initial exposure display less investigation behavior 
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which is interpreted as the adult forming a memory of the juvenile. But if the re-exposure 

occurs 2 hours later, the juvenile is not recognized and is thoroughly investigated which 

consists of sniffing, nosing, following and grooming. This form of memory is thought to 

be based on the olfactory characteristics of the juvenile conspecific. 

Centrally injected A VP (0.5 - 2.0 ng icv) has been found to facilitate social 

memory in rats. A VP given immediately after investigation of the juvenile resulted in 

decreased social investigation of the same juvenile at the long (120 minute) interexposure 

interval (Lemoal et al , 1987). Thus the memory of that particular juvenile lasted longer 

with the administration of AVP. Social memory studies with AVP have focused on the 

lateral septum as the crucial mediating structure, but it would be of interest to examine 

A VP effects in dentate gyrus on this memory as well. 

My own experience leads me to suggest an overactivity of the A VP system rather 

than a deficit as a possible abnormality in autism. Because of evidence for an inverted U 

curve function in the effects of A VP, even on cAMP activation, too much AVP could 

lead to abnormalities that would be characterized as 'overdrive' in some domains and 

'losses' in others depending on the dose-response relationship. While these ideas are 

highly speculative, the results of the present study lead me to suggest that treatment with 

propranolol might be useful in reducing some autistic symptomalogy. Such treatment has 

been tried successfully with anxiety disorders and post-traumatic stress disorders (Pitman 

eta!, 2002; Raskind et al , 2007; Strawn et al , 2007). 

Conclusion 

A VP potentiates perforant path-induced EPSP slope and population spike 

amphtude and this potentiation appears to be long-lasting. Potentiation of the two 

components are dissociable suggesting distinct mechanisms. The abi lity of a P-adrenergic 

antagonist in the dentate gyrus to prevent both EPSP slope and population spike 

potentiation argues that these effects are mediated via a synergistic interaction with P

adrenoceptor activation by NE. A critical dependence of A VP promotion of learning and 
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memory in the dentate gyrus on NE has previously been demonstrated (Kovacs et al , 

1979). 

The present results provide a model for the way in which A VP might promote 

memory through the promotion of synaptic plasticity and cell excitability to 

glutamatergic inputs. The pharmacological block of that plasticity by blocking the post

synaptic effects of NE provides a clear counterpart to the dependence of memory 

enhancement on the presence of NE fibers shown earlier (Metzger et al , 1994; Alescio

Lautier and Soumireu-Morat,1998). Surprisingly, a behaviourally highly effective 

metabolite of A VP, DGA VP only produced long-lasting increases in cell excitability. 

This further supports the dissociation of the two plasticity mechanisms seen with A VP 

and provides a tool for their dissection in future studies. The possibility that cell 

excitability increases are another component of associative learning changes deserves 

further investigation. 

76 



References 

Abraham, W.C. Corballis, M.C. & White, K.G. (1991). Memory Mechanisms A Tribute 
to G.V. Goddard. New Jersey, Lawrence Erlbaum Associates Inc. 

Abraham, W.C. & Goddard, G.V. (1983). Asymmetric relationships between 
homosynaptic long-term potentiation and heterosynaptic long-term depression. Natme, 
305: 717-719. 

Abraham,W.C., Logan B., Greenwood, J.M. , & Dragunow, M. (2002) Induction and 
experience-dependent consolidation of stable long-term potentiation lasting months in the 
hippocampus. Journal ofNeuroscience, 22(21):9626-34. 

Abraham, W.C., Mason, S.E., Demmer, J. , Williams, J.M., Richardson C.L., Tate W.P., 
Lawlor PA, & Dragunow M. (1993). Correlations between immediate early gene 
induction and the persistence of long-term potentiation. Neuroscience, 56(3):717-27. 

Abraham, W.C., Mason-Parker, S.E., Irvine, G.I. , Logan, B. & Gill, A.I. (2006). 
Induction and activity-dependent reversal of persistent L TP and LTD in lateral perforant 
path synapses in vivo. Neurobiology of Learning and Memory, 86(1): 82-90. 

Abraham, W.C. & McNaughton, B. (1984). Differences in synaptic transmission between 
medial and lateral components of the perforant path. Brain Research, 303(2): 251-260. 

Ader, R. & De Wied, D. (1972). Effects of lysine vasopressin on passive avoidance 
learning. Psychological Science. , 29: 46-48. 

Alescio-Lautier, B., & Sownireu-Mourat, B. (1998). Role of vasopressin in learning and 
memory in the hippocampus. Progress in Brain Research, 119: 501-521. 

Alescio-Lautier, B., Metzger, D., Devigne, C. & Soumireu-Mourat, B., (1989). Micro
injection of anti-vasopressin serum into hippocampus in mice: effects on appetitively 
reinforced task after intraventricular administration of Arg-vasopressin. Brain Research 
500: 287-294. 

Alescio-Lautier, B., Metzer, D. & Sownireu-Mourat, B. (1993). Central behavioral 
effects of vasopressin: point and perspectives. Reviews in Nemosciences 4: 239-266. 

Alescio-Lautier, B. , Paban, V. & Soumireu-Mourat, B. (2000). Neuromodulation of 
memory in the hippocampus by vasopressin. European Journal of Pharmacology, 405 : 
63-72. 

Alkon, D.L., Sakakibara, M., Forman, R., Harrigan, J. , Lederhendler, I., & Farley, J. 
( 1985). Reduction of two voltage-dependent K + currents mediates retention of a learned 
association. Behavioral Nemal Biology, 44: 278-300. 

77 



Alonso, G. (1988). Effects of colchicines on the intraneuronal transport of secretory 
material prior to the axon: a morphofunctional study in hypothalan1ic neurosecretory 
neurons ofthe rat. Brain Research, 453(1-2):191-203. 

Amaral, D.G., & Witter, M.P. (1995). Hippocampal formation. In: G. Paxinos, Editor, 
The rat nervous system, Academic Press, San Diego (1995), pp. 443-492. 

Andersen & Lomo, (1967). Control of hippocampal output by afferent volley frequency. 
Progress in Brain Research, 27,400-412. 

Andre, P., d' Ascanio, P., Ioffe, M., & Pompeiano, 0. (1991). Microinjections of 
vasopressin in the locus coeruleus complex affect posture posture and vestibulospinal 
reflexes in decerebrate cats. Pflugers Archives, 420: 376-388. 

Andreae, L.C., & Herbert, J. (1993). Expression of c-fos in restricted areas of the basal 
forebrain following single or combined intraventricular infusions of vasopressin and 
corticotropin-releasing factor. Neuroscience, 53(3): 735-748. 

Antoni, F.A. (1984). Novel ligand specificity of pituitary vasopressin receptors in the rat. 
Nemoendocrinology, 39: 186-188. 

Artemowicz, B. & Wisniewski, K. (1998). Role of NMDA receptor in the effects of 
arginine-vasopressin on memory processes. Polish Journal of Pharmacology, 50(1 ): 5-14. 

Arnsten AFT., & Contant, TA., (1992). Alpha-2 adrenergic agonists decrease 
distractability in aged monkeys performing a delayed response task. 
Psychopharmacology, 108: 159- 169. 

Assaf, SY, & Miller, JY. (1978).Neuronal transmiSSion in the dentate gyrus: role of 
inhibitory mechanisms. Brain Research, 151 (3):587-92. 

Aston-Jones, G., Rajkowski, J., & Cohen, J. (1999). Role of locus coeruleus in attention 
and behavioral flexibility. Biological Psychiatry, 46: 1309- 1320 

Axelson J.F. , Smith, M. & Duarte, M . (1999). Prenatal flutan1ide treatment eliminates the 
adult male rat's dependency upon vasopressin when forming social-olfactory memories. 
Hormones and behavior 36(2): 109-118. 

Babstock, D.M. & Harley, C. W. (1992). Paragigantocellularis stimulation induces 
hippocampal potentiation. Brain Research Bulletin, 28: 709-714. 

Bachevalier, J. (1994). Medial temporal lobe structures in autism: a review of 
experimental and clinical findings. Neuropsychologia, 32: 627-638. 

78 



Bailey, C.H., Giustetto, M., Huang, Y.Y., Hawkins, R.D., & Kandel, E.R. (2000). Is 
heterosynaptic modulation essential for stabilizing Hebbian plasticity and memory? 
Nature Reviews in Neuroscience, I: 11-20. 

Barberis, C. & Tribollet, E. (1996). Vasopressin and oxytocin receptors in the central 
nervous system. Critical Reviews in Neurobiology, 10: 119-154 

Bauman, M.L. & Kemper, T.L.( 1985). Histoanatomic observation of the brain in early 
infantile autism. Neurology, 35: 866-874. 

Bauman, M.L. & Kemper, T.L. (1994). Neuroanatomic observations of the brain in 
autism. In: Bauman,ML. , Kemoer, TL., editors. The neurobiology of autism. Baltimore, 
John Hopkins University Press, 1994. p. 119-145. 

Barnes, C.A. (1979). Memory deficits associated with senescence: a behavioral and 
neurophysiological study in the rat. Journal of Comparative Physiological Psychology, 
93: 74-104. 

Beckwith, B.E. , Petros, T.V., Couk, D.I. & Tinius, T.P. (1988). The effects of 
vasopressin on memory in healthy young adult volunteers. Annals of New York 
Academy of Sciences , 579: 215-226. 

Beckwith, B.E., Petros, T., Kanaan-Beckwith, S., Couk, D.I. , Haung, R. & Ryan, C. 
(1982). Vasopressin analog (DDAVP) facilitates concept learning in human males. 
Peptides 3: 627-630. 

Beckwith, B.E., Till, R. E. & Sclmeider, V. (1984). Vasopressin analog (DDAVP) 
improves memory in human males. Peptides 5: 819-822. 

Berridge, M. (1986) Second messenger dualism in neuromodulation and memory. Nature, 
323:294-295. 

Berridge,M.J.(1993). Inositol trisphosphate and calcium signaling. Nature, 
361(6410):315-25. 

Berridge, C. W. & Foote, S.L. (1991 ). Effects of locus coeruleus activation on 
electroencephalographic activity in neocortex and hippocampus. The Journal of 
Neuroscience, Nature, 361 (6407):31-9. 

Bliss, T.V.P & Collingridge, G.L. (1993). A synaptic model of memory: long-term 
potentiation in the hippocan1pus. Nature, 3 61 ( 6407): 31-9 

Bliss, T.V.P. & Gardner-Medwin, AR. (1973). Long-lasting potentiatiOn of synaptic 
transmission in the dentate area of the unanesthetized rabbit following stimulation of the 
perforant path. Journal of Physiology, 232: 357-374. 

79 



Bliss, T.V.P. & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in 
dentate area of the anesthetized rabbit following stimulation of the perforant path. Journal 
ofPhysiology (London), 232: 331-356. 

Bluthe, R.M. , Schoenen, J. & Dantzer, R. (1990a). Androgen-dependent vasopressinergic 
neurons are involved in social recognition in rats. Brain Research, 519: 150-157. 

Bluthe, R.M. & Dantzer, R. (1990b). Social recognition does not involve 
vasopressinergic neurotransmission in female rats. Brain Research, 535: 301-304. 

Bluthe, R.M. & Dantzer, R. (1992). Chronic intracerebral infusions of vasopressin and 
vasopressin antagonist modulate social recognition in rat. Brain Research, 572: 261-264. 

Bluthe, R.M., Gheust, G. & Dantzer, R. (1993). Gonadal steroids influence the 
involvement of arg111111e vasopressin 111 social recognition 111 mtce. 
Psychoneuroendocrinology, 18(4): 323-335. 

Bluthe, R.M. & Dantzer, R. (1993). Role of the vomeronasal system in vasopressinergic 
modulation of social recognition in rats. Brain Research, 604: 205-210. 

Boakes, R.J., Ednie, J. M. , Edwardson, J.A. , Keith, A. B. , Sahgal, A. , & Wright, C. 
(1985). Abnormal behavioural changes associated with vasopressin-induced barrel 
rotation. Brain Research, 326: 65-70. 

Bouffard, J.P., & Jarrard, L.E. (1988). Acquisition of a complex place task in rats with 
selective ibotenate lesions of hippocan1pal formation: combined lesions of subiculum and 
entorhinal cortex versus hippocampus. Behavioural Neuroscience, 102(6):828-34. 

Bohus, B. (1977). Effect of desglycinamide-lysine vasopressin (DG-L VP) on sexually 
motivated T-maze behavior of the male rat. Hormones and Behavior, 8(1):52-61. 

Bohus, B., Conti, L. , Kovacs, G.L., & Versteeg, D.H.G. (1982). Modulation of memory 
processes by neuropeptides: Interaction of neurotransmitter systems. In: Nemonal 
Plasticity and Memory Formation. C. Marsan & H. Matthies, (eds): 75-87. Raven, New 
York. 

Bohus, B., Gispen, W.H., & De Wied, D. (1973). Effects of lysine vasopressin and 
ACTH 4-10 on conditioned avoidance behavior of hypophysectomized rats. 
Nemoendocrinology, 11: 137-143. 

Bohus, B., Kovacs, G.L, & De Wied, D. (1978). Oxytocin, vasopressin and memory 
processes: opposite effects on consolidation and retrieval processes. Brain Research, 157: 
414-417. 

80 



Bohus, B., Borrell, J. , Koolhaas, J.M. , Nyakas, C., Buwalda, B. , Compaan, J.C., & 
Roozendaal, B. (1993). The neurohypophysial peptides, learning, and memory 
processing.Annals of New York Academy of Science, 689:285-99. 

Bookin, H.B., & Pfeifer, W.D. (1978). Adrenalectomy attenuates electroconvulsive 
shock-induced retrograde amnesia in rats. Behavior and Biology, 24(4):527-32. 

Bonell, J, De Kloet E.R, Versteeg D.H, Bohus B. (1983). Inhibitory avoidance deficit 
following short-term adrenalectomy in the rat: the role of adrenal catecholamines. 
Behaviour and Neural Biology, 39(2):241-58. 

Bramham, C.R., Bacher-Svendsen, K. & Sarvey, J.M. (1997). LTP in the lateral perforant 
path is beta-adrenergic receptor dependent. Neuroreport, 8(3): 719-724. 

Brinton, R.E. (1990). Neuromodulation: associative and nonlinear adaptation. Brain 
Research Bulletin, 24: 651-658 

Brinton, R.E. (1998). Vasopressin in the mammalian brain: The neurobiology of a 
mnemonic peptide. Progress in Brain Research, II9: 177-199. 

Brinton, R.E. & Brownson, E.A., (I993). Vasopressin-induction of cyclic AMP in 
cultured hippocan1pal neurons. Developmental Brain Research, 71: 101-105. 

Brinton, R.E., and Gruener, R.P. (1987) Vasopressin promotes neurite growth in cultured 
embryonic neurons. Synapse, 1: 329-334. 

Brinton, R.E., and McEwen, B.S. (1985). Vasopressin-induced neuronal mechanisms in 
the hippocampus. Society for Neuroscience Abstracts, II: I 04.2 

Brinton, R.E. , and McEwen, B.S.(1986). Vasopressin neuromodulation 111 the 
hippocampus: Calcium-calmodulin or protein kinase C? Society for Neuroscience 
Abstracts, I2: 223. 13 

Brinton,R.E., Gee, K.W. ,Wamsley, J.K., Davis, T.P., & Yamamura, H. (1984). Regional 
distribution of putative Vasopressin receptors in rat brain and pituitary by quantitative 
autoradiography. Proceedings of the National Academy of Science USA, 81: 7248-7252. 

Brinton,R.E., Oehlert, D.R. ,Wamsley, J.K. , Wan, Y.S. , & Yamamura, H. (1986). 
Vasopressin meatbolite 4-9, binding sites in brain; Distribution distinct from that of 
parent peptide. Life Science, 38: 443-452. 

Brinton, R.E. & McEwen, B.S. (1989). Vasopressin neuromodulation 111 the 
hippocampus. Journal ofNeuroscience, 9: 752-759 

Brinton, R.D. , Gonzales, T.M. & Cheung, W. (1994). Vasopressin-induction of calcium 
signaling in cultured hippocan1pal neurons. Brain Research, 66: 274-282. 

81 



Brinton, R.D, Thompson, R.H. & Brownson, E.A., (2000). Spatial, cellular and temporal 
basis of vasopressin potentiation of neuropinephrine-induced cyclic cAMP formation. 
European Journal of Pharmacology 405: 73-88. 

Brons, J.F. & Woody, C.D. (1980). Long-term changes in excitability of cortical neurons 
after Pavlovian conditioning and extinction. Journal ofNeurophysiology, 44: 605-615. 

Bronzino, JD, Abu-Hasaballah K, Austin-LaFrance RJ, & Morgane PJ. (1994). 
Maturation of long-term potentiation in the hippocampal dentate gyrus of the freely 
moving rat. Hippocampus, 4(4):439-46. 

Brown RA, Walling SG, Milway JS, & Harley CW (2005). Locus ceruleus activation 
suppresses feedforward interneurons and reduces beta-gamma electroencephalogram 
frequencies while it enhances theta frequencies in rat dentate gyrus. Journal of 
Neuroscience, 25(8): 1985-91. 

Browning, M.D., Huganir, R. , & Greengard, P. (1985). Protein phosphorylation and 
neuronal function. Journal of Neurochemistry, 45: 11-23. 

Bruins, Hijman & Van Ree,. (1992). Effect of single dose DGA VP or Oxytocin on 
cognitive processes in young healthy subjects. Peptides, 13 : 461-468. 

Buijs, RM (1978). Intra and extrahypothalamic vasopressin and oxytocin pathways in the 
rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue 
Research, 192: 423-435. 

Buijs, RM & Swaab, DF. (1979). Immuno-electron microscopical demonstration of 
vasopressin and oxytocin synapses in the limbic system of the rat. Cell Tissue Research, 
204(3):355-65. 

Buijs, RM, Hermes, ML, Kalsbeek,A., van der Woode,T. , van Heerikhuize,JJ (1991). 
Vasopressin distribution, origin and functions in the central nervous system. In Jard, S. 
Jamison,R. eds. Vasopressin. Paris; Libbey, 149-158 . 

Burbach, J.P., Kovacs, G.L. & De Wied, D. (1983). A Major metabolite of Arginine 
vasopressin in the brain is a highly potent neuropeptide. Science, 221 ( 4617): 1310-131 2. 

Burgard, EC., Decker, G., & Sarvey, JM. (1989). NMDA receptor antagonists block 
norepinephrine-induced long-lasting potentiation and long-term potentiation in rat dentate 
gyrus. Brain Research, 482(2): 351-355. 

Burnard, D.M., Veale, W.L. and Pittman, Q.J. (1987). Altered sensitivity to arginine 
vasopressin in area CAl of the hippocampal slice following pretreatment of rats with 
AVP. Brain Research, 422: 11-16. 

82 



Cam~, H.R. , Van Leeuwen, F.W. (1983). Vasopressin-immunoreactive cells in the 
dorsomedial hypothalamic region, medial amygdaloid nucleus and locus coeruleus of the 
rat. Cell Tissue Research, 233 : 23-33. 

Cam~, H.R. , Van Leeuwen, F.W. and Luiten, P.G.M., (1987). Vasopressin cells in the 
medial amygdala of the rat project to the lateral septum and ventral hippocampus. Journal 
of Comparative Neurology 261:237-252. 

Cahill, L., Prins, B. , Weber, M., and McGaugh, J.L. (1994). ~-adrenergic activation and 
memory for emotional events. Nature, 3 71 , 702-704. 

Cai, JX., Ma, Y., Xu L. & Hu, X., (1993) .Reserpine impairs spatial working memory 
performance in monkeys: reversal by the alpha-2 adrenergic agonist clonidine, Brain 
Research, 614 : 191- 196. 

Car, H., & Murtazina, E. ( 1994). Studies on argmme-vasopressin and its analogue 
[D(CH2)1/5, TYR(ME))2]AVP in lever-touch autoshaping model of memory in rats. 
Asia Pacific Journal of Pharmacology, 9: 149-152. 

Carli, M., Robbins, TW., Evenden, JL., & Everitt, BJ. (1983). Effects of lesions to 
ascending noradrenergic neurons on performance of a 5-choice serial reaction task in rats; 
implications for theories of dorsal noradrenergic bundle function based on selective 
attention and arousal, Behavioural Brain Research, 9 :361 - 380. 

Ceccatelli, S., Cortes R, & Hokfelt T. (1991). Effect of reserpine and colchicine on 
neuropeptide mRNA levels in the rat hypothalamic paraventricular nucleus. Brain 
Research and Molecular Brain Research, 9(1-2):57-69. 

Chakrabarti, S. & Fombonne, E. (2005). Pervasive developmental disorders in preschool 
chi ldren: Confirmation of high prevalence. American Journal of Psychiatry, 162: 1133-
1141. 

Chaulk, P.C. and Harley, C.W. (1998). Intracerebroventricular norepinephrine 
potentiation of the perforant path-evoked potential in dentate gyrus of anesthetized and 
awake rats: A role foe both a - and ~- adrenoceptor activation. Brain Research, 787:59-
70. 

Chen, C., Brinton, R.D. , Shors, T.J. and Thompson, R.F. (1993). Vasopressin induction 
of long-lasting potentiation of synaptic transmission in the dentate gyrus. Hippocampus, 
3(2): 1193-1204. 

Chen, X.F., Chen, Z.F., Liu, R.Y. and Du, Y.C. ( 1988). Neonatal administration of a 
vasopressin analog (DDA VP) and hypertonic saline enhance learning behavior in rats. 
Peptides, 9: 717-721. 

83 



Chen, M.J., guyen T.V Pike, C.J., & Russo- eu tadt, A.A. (2007). Norepinephrine 
induces BDNF and activates the PI-3K and MAPK ca cades in embryonic hippocan1pal 
neurons. Cell Signalling, 19(1): 114-128. 

Chepkova, A.N., French, P., De Wied, D., Ontskul, A.H., Ramakers, G.M.J., S!<Jebitski, 
Y.G., Gispen, W.H. and Urban, I.J.A. (1995). Long-lasting enhancement of synaptic 
excitability of CA 1/subiculum neurons of the rat ventral hippocan1pus by vasopressin. 
Brain Research, 70 I : 255-266. 

Chepkova, A.N., Kapai, N.A. and !<Jebitskii V.G. (2001). Arginine va opressin 
fragment ( 4-9) facilitates induction of long-term potentiation in the hippocampu . 
Bulletin of Experimental Biology and Medicine 131: 136-138. 

Christie, B.R. Abraham, W.C. (1992). NMDA-dependent heterosynaptic long-term 
depression in the dentate gyrus of anaesthetized rats, ynapse, 10: 1-6 

Church, A.C. (1983). Vasopressin potentiates the stimulation of cyclic AMP 
accumulation by Norepinephrine. Peptides, 4: 26 1-263. 

Connolly, A.M., hez, M., Streif, E.M., Keeling, R.M., Golumbek, P.T. , Kwon, J.M 
Rivello, JJ. , Robinson RG., Neuman, RJ. , and Deuel, RMK. (2006). Brain-derived 
neurotrophic factor and autoantibodies to neural antigens in sera of children with autistic 
spectrum disorders, Landau-Kleffner syndrome and epi lepsy. 

Courchesne, E. ( 1997). Brainstem, cerebellar and limbic neuroanatomical abnormalities 
in autism. Current Opinion in Neurobiology, 7: 269-278. 

Courchesne, E., Karn , C., Davis, H.R., Ziccardi, R., Carper, R.A, Tigue, Z.D. (2002). 
Unu ual brain growth patterns in early li fe in patients with autistic disorder: an MRI 
study. Neurology, 

Critchley, H.D., Daly, E.M., Bullmore, E.T. Willian1s, S.C., Van Amelsvoort, T., 
Robertson, D.M., Rowe, A. , Phillips M., McAlonan, G., Howlin, P. , Murphy D.G. 
(2000). The functional neuroanatomy of social behaviour changes in cerebral blood flow 
when people with autistic disorder process facial expressions. Brain, 123(1 1 ): 2203-2212. 

zurko, A., Czeh, B., Seress L. Nadel, L. Bure , J. ( 1997). Severe spatial navigation 
deficit in the Morris water maze after single high dose of neonatal x-ray irradiation in the 
rat. Proceedings of the National Academy of cience U A, 94: 2766-2771. 

Daftary, S.S., Boudaba, C., Szabo, K. and Tasker, J.G. (1998). Noradrenergic excitation 
of magnocellular neurons in the rat hypothalamic paraventricular nucleus via intranuclear 
glutaminergic circuits. The Journal ofNeuroscience, 18(24): 10619-10628. 

Dahl, D. & Li, J. (1994). Induction of long-lasting potentiation by sequenced applications 
of isoproterenol. NeuroReport, 5: 657-660. 

84 



Dahl, D. & Sarvey, J.M. (1989). Norepinephrine induces pathway-specific long-lasting 
potentiation and depression in the hippocampal dentate gyrus. Proceedings of the 
National Academy of Science USA, 86: 4776-4780. 

Dahl, D. & Sarvey, J.M (1990). 13- Adrenergic agonist-induced long-lasting synaptic 
modifications in hippocampal dentate gyrus require activation of NMDA receptors, but 
not electrical activation ofafferents. Brain Research, 526: 347-350. 

Dahl, D. & Winson, J. (1985). Action of norepinephrine in the dentate 
gyrus.l.Stimulation of the locus coeruleus. Experimental Brain Research, 59: 491-496. 

Danter,R., Bluthe, RM, Koob, GF, and Le Moal, M., (1987). Modulation of social 
memory in male rats by neurohypophyseal peptides. Psychopharmacology, 91: 363-368. 

Dantzer, R., Koob, G.F., Bluthe, R.M. and Le Moal, M., (1988). Septal vasopressin 
modulates social memory in male rats. Brain Research 457: 143-147. 

Dantzer, R. ( 1998). Vasopressin, gonadal steroids and social recognition. Progress in 
Brain Research, 119:409-414. 

Daoudal, G. ,& Debanne, D. (2003). Long-term plasticity of intrinsic excitability: learning 
rules and mechanisms. Learning and Memory, 10: 456-465. 

Davis, C.D., Jones, F.L., and Derrick, B.E. (2004) Novel environments enhance the 
induction and maintenance of long-term potentiation in the dentate gyrus. Journal of 
Neuroscience, 24 : 6497-6506. 

De Jong, M., & Racine, R.J. (1985). The effects of repeated induction of long-term 
potentiation in the dentate gyrus. Brain Research, 328: 181-185. 

DeLong, G.R. (1992). Autism, amnesia, hippocampus, and learning. Neuroscience and 
Biobehavioural Reviews 16: 63-70. 

DeLong, G.R.,& Heinz, E.R. (1997). The clinical syndrome of early-life bilateral 
hippocan1pal sclerosis. Annals ofNeurology 42: 11-17. 

De Vries, G.J., & Buijs, R.M (1983).the origin of vasopressinergic and oxytocinergic 
innervation of the rat brain with special reference to the lateral septum. Brain Research, 
273: 307-317. 

De Vries, G.J. , Buijs, R.M. & Sluiter, A.A. (1984). Gonadal hormone actions on the 
morphology of the vasopressinergic innervation of the adult rat brain. Brain Research, 
298:141-145. 

85 



------------- ------- ---

De Vries, G.J. , Buijs, R.M., Van Leeuwen, FW., Caffe, AR., & Swaab, DF. (1985). The 
vasopressinergic innervation of the brain in normal and castrated rats. Journal of 
Comparative Neurology, 233: 236-254. 

De Wied, D. (1971). Long-term effect of vasopressin on the maintenance of a 
conditioned avoidance response in rats. Nature (London), 232: 58-60. 

De Wied, D. (1980). Behavioural actions of neurohypophyseal peptides. Proceedings of 
the Royal Society of Britain, 210: 183-195. 

De Wied, D. (1976). Behavioral effects of intraventricularly administered vasopressin 
and vasopressin fragments. Life Science 19:118-122. 

De Wied, D. (1965). The influence of the posterior and intermediate lobe of the pituitary 
and pitudes on the maintenance of a conditioned avoidance response in rats. Int J 
Neuropharmacology 4: 157-167. 

De Wied, D. and Bohus, B. (1966). Long term and short term effects on retention of a 
conditioned avoidance response in rats by treatment with long acting pitressin and a
MSH. Nature 212: 1484-1486. 

De Wied, D. ,Elands, J. , & Kovacs, G. (1991). Interactive effects of neurohypophyseal 
neuropeptides with receptor antagonists on passive avoidance behavior: Mediation by a 
cerebral neurohypophyseal hormone receptor? Proceedings of the National Academy of 
Science, USA, 88: 1494- 1498. 

De Wied, D., Gaffori, O. ,Var Ree, J. , & De Jong, W. (1984). Central target for the 
behavioral effects of vasopressin neuropeptides. Nature 308: 276-278. 

De Wied, D., Greven, H.M., Lande, S., & Witter, A. (1972). Dissociation of the 
behavioural and endocrine effects of lysine vasopressin by tryptic digestion. British 
Journal ofPharmaco1ogy, 45: 118-122. 

De Wied, D., & Versteeg, CA. (1979). Neurohypophyseal principles and memory. Fed 
Proceedings, 38(9):2348-54 

Diamant, M. & De Wied, D. (1993). Differential effects of centrally injected AVP on 
heart rate, core temperature, and behavior in rats. American Journal of Physiology, 
264(33): R51-R61. 

Dluzen, D.E, Muraoka, S., Engelmann, M. and Landgraf, R. (1998). The effects of 
infusion of arginine vasopressin , oxytocin, or their antagonists into the olfactory bulb 
upon social recognition responses in male rats. Peptides, 19(6): 999-1005 . 

86 



Douglas, R.M. & Goddard, G.V.(l975). Long-term potentiation of the perforant path
granule cell synapse in the rat hippocampus. Brain Research, 86: 205-215. 

Doyere, V., Srebro, B., & Laroche, S. (1997). Heterosynaptic LTD and Depotentiation in 
the medial perforant path of the dentate gyrus in the freely moving rat. Journal of 
Neurophysiology 77(2): 571-578. 

Du, Y.C.,Wu J.I-1., Jiang, X.M. and Gu Y.J. (1994). ChaJacterization of binding ites of a 
memory-enhancing peptide A VP ( 4-8) in rat cortical ynaptosomal membranes. P ptides, 
15: 1273-1279. 

Du, Y.C., Yan,Q.W, and Qiao, L.Y. (1998). Function and molecular basis of action of 
vasopressin 4-8 and its analogues in rat brain. Progress in brain research, 119: 163-175. 

Dubrovsky, B. , Tatarinov, A., Gijsbers,K., Harris, J., and Tsiodras, A. (2003). Effects of 
A VP on long-term potentiation in intact anesthetized rats. Brain Research Bulletin, 59(6): 
467-472. 

Dubrovsky, B., Gijsbers,K., Harris, J., Tatarinov, A. (2002). Oxytocin induces long-term 
depression on the rat dentate gyrus. A TPase and ectoprotein kinase mediation. Brain 
Research Bulletin, 58: 141-147. 

Dunwiddie, TV., & Lynch, G., (1979). The relationship between extracellular calcium 
concentrations and the induction of hippocampal long-term potentiation. Brain Research, 
169(1):103-10. 

Elands, J.P.M, Barberis, , and Jard, . (1988). e H-ThJ4
, Gl/)OT: a highly selective 

ligand for central and p ripheral OT receptor . American Joumal of Phy iology, 254: 
E31-E38. 

Ellis, M.E. (1985). Amygdala norepineplu-ine involved m two separate long-term 
memory retrieval processes. Brain Research, 342( I): 191-5 

Emanuele, E. (2006). Autism conceptualized a a vasopressin resistanc syndrome. 
Medical Hypothesis, 66(6): 1245. 

Engelmann, M., Ludwig, M. & Landgraf R. ( 1992). Microdialysis administration of 
va opressin and vasopressin antagonists into the septum during pole-jumping behavior in 
rats. Behavioral Neural Biology 58: 51-57. 

Engelmann, M. , Ludwig, M. & Landgraf, R. (1994). Microdialysis administration of 
Vasopressin into the septum improves social recognition in Brattleboro rats. Physiology 
and Behavior, 55: 145-149. 

87 



Engelmann, M. , Wotjak, C.T., Neuman, I., Ludwig, M. & Landgraf, R. (1996). 
Behavioral consequences of intracerebral vasopressin and oxytocin: Focus on learning 
and memory. Neuroscience and Biobehavioral Reviews, 20 (3): 341-358. 

Everts, H.G.J. and Koolhaas, J.M. (1997). Lateral septal vasopressin in rats: role in social 
and object recognition. Brain Research, 760: 1-7. 

Everts, H.G. and Koolhaas, J.M. (1999). Differential modulation of lateral septal 
vasopressin receptor blockade in spatial learning, social recognition, and anxiety-related 
behaviors in rats. Behavioral Brain Research, 99(1): 7-16. 

Faiman, C.P. , De Erausquin, G.A., & Baratti, C.M. (1991). The enhancement of retention 
induced by vasopressin in mice may be mediated by an activation of central nicotinic 
cholinergic mechanisms. Behavioral and Neural Biology, 56:183-199. 

Fleck, M.W., Palmer, A.M., and Barrionuevo, G. (1992). Potassium-induced long-term 
potentiation in rat hippocan1pal slices. Brain Research, 580 (1-2): 100-105. 

Fombonne, E. (2003). The prevalence of autism, Journal of American Medical 
Association, 289: 439-448. 

Foster, T.C., Fugger, H.N. , & Cunningham, S.G. (2000). Receptor blockade reveals a 
correspondence between hippocampal-dependent behavior and experience-dependent 
synaptic enhancement. Brain Research, 871 ; 39-43. 

Frick, A., Magee, J. , & Jolmson, D. , (2004). LTP is accompanied by an enhanced local 
excitability of pyramidal neuron dendrites. Nature Neuroscience, 7: 126-135. 

Gaffori, D. & De Wied, D. (1986). Time-related memory effects of vasopressin analogs 
in rats. Pharmacology, Biochemistry and Behavior, 25: 1125-1129. 

Gallagher, M. , Kapp, B. S., Musty, R.E. , & Driscoll, P.A. (1977). Memory formation: 
evidence for a specific neurochemical system in the amygdala. Science, 198: 423-425. 

Giri, P.R, Dave, J.R, Tabakoff, B., and Hoffman, P.L. (1990) Arginine vasopressin 
induces the expression of c-fos in mouse septum and hippocampus. Molecular Brain 
Research, 7: 13 1-1 3 7. 

Goelet, P., Castellucci V.F, Schacher S, & Kandel E.R (1986). The long and the short of 
long-term memory--a molecular fran1ework. Nature, 322(6078):41 9-22. 

Gould, E. , Beylin, A. , Tanapat, P. , Reeves, A., & Shors, TJ. (1999). Learning enhances 
adult neurogenesis in the hippocampal formation. Nature Neuroscience, 2: 260-265. 

88 



Gray, R. & Jolmston, D. (1987). Noradrenaline and beta-adrenoceptor agonists increase 
activity of voltage-dependent calcium channels in hippocampal neurons. Nature, 
327(6123): 620-622. 

Griffen, M.G., & Taylor, G.T. (1995). Norepinephrine modulation of social memory; 
Evidence for a time-dependent functional recovery of behavior. Behavioral 
Neuroscience, I 09: 466-4 73. 

Guan, X., Blank, J. , & Dluzen, D.E. Role of olfactory bulb norepinephrine in the 
identification and recognition of chemical cues. Physiology and Behavior, 53: 437-441. 

Gu, B.X. and Du, Y.C, (1991 a). Arginine vasopressin C-terminal peptide stimulates 
inositol phospholipid metabolism in rat hippocampus. Acta Biochem Biophys Sin. 
23:331-337. 

Gu, B.X. and Du, Y.C, (199lb). The nemopeptide ZNC©PR can induce c-fos and c-src 
transcriptions in the hippocampus of newborn rats. Acta Biochem Biophys Sin. 23:53 7-
542. 

Gupta, V.K. (1997). A clinical review of the adaptive role of vasopressin in migraine. 
Cephalalgia, 17: 561-569. 

Hagan, J., Bohus, B., & De Wied, D. (1982). Post-training Vasopressin injections may 
facilitate or delay shuttle-box avoidance extinction. Behavioral Neural Biology, 36: 211-
228. 

Hallbeck, M., Hermanson, 0., and Blomqvist, A. (1999). Distribution of 
preprovasopressin mRNA in the rat central nervous system. Journal of Comparative 
Neurology, 411: 181-200. 

Harley, C. W. (1998). Noradrenergic long-term potentiation m the dentate gyrus. 
Advances in Pharmacology, 42: 952-956. 

Harley, C. W. and Evans, S. (1988). Locus-coeruleus-induced enhancement of the 
perforant path evoked potential: Effects of intradentate beta blockers. In C.D. Woody, 
D.L. Alkon and JL. McGaugh (Eds.), Cellular Mechanisms of Conditioning and 
Behavioral Plasticity, Plenum, New York, pp. 415-423. 

Harley, C.W., & Milway, J.S. (1986). Gliutatmate ejection in the locus coeruleus 
enhances the perforant path-evoked population spike in the dentate gyrus. Experimental 
Brain Research, 63 : 143-150. 

Harley, C. W., Lalies, M.D., and Nutt, D.J. (1996). Estimating the synaptic concentration 
of norepinephrine in dentate gyrus which produces ~-receptor mediated long-lasting 
potentiation in vivo using microdialysis and intracerebroventricular norepinephrine. 
Brain Research, 710: 293-298. 

89 



Harley, C. W., Milway, J.S., and Lacaille, J.C. (1989). Locus coeruleus potentiation of 
dentate gyrus responses: evidence for two systems. Brain Research Bulletin, 22: 643-650. 

Harley, C.W. and Sara, S.J. (1992). Locus coeruleus bursts induced by glutamate trigger 
delayed perforant path spike amplitude potentiation in the dentate gyrus. Experimental 
Brain Research, 89: 581-587. 

Hasselmo, M.E. (1995). Neuromodulation and cortical function: modeling the 
physiological basis of behavior. Behavioural Brain Research, 67(1): 1-27. 

Hayes , U.L. & Chambers, K.C. (2002). Central infusion of vasopressin in male rats 
accelerates extinction of conditioned taste avoidance induced by LiCl . Brain Research 
Bulletin, 2002 Mar 15;57(5):727-33. 

1-Iebb, D.O., & Williams, K., (1946). A method of rating animal intelligence. Journal of 
General Psychiatry, 34: 59-65. 

1-Iirasawa, A. , Hashimoto, K. and Tsujimoto, G. (1994). Distribution and developmental 
change of vasopressin V1a and V2 receptor mRNA in rats. European Journal of 
Pharmacology 267: 71-75. 

1-Ijorth-Simonsen, A. , & Jeune, B. (1972). Origin and termination of the hippocampal 
perforant path in the rat studied by silver impregnation. Journal of Comparative 
Neurology, 144: 215 

Huang, Y.Y. & Kandel, E.R. (1996). Modulation of both the early and the late phase of 
mossy fiber L TP by the activation of B-adrenergic receptors. Neuron, 16: 611-617. 

Huang, Y.Y., & Kandel, E.R. (1994). Recruitment of long-lasting and protein kinase A
dependent long-term potentiation in the CA 1 region of hippocan1pus requires repeated 
tetanization. Learning and Memory, 1: 74-82. 

Ibragimov, R.S (1990). Influence of neurohypophyseal peptides on the formation of 
active avoidance conditioned reflex behavior. Neuroscience and Behaviour Physiology, 
20: 189-193. 

Inder, W.S. , 1-Iellemans, Swanney, Prickett, & Donald. (1998). Prolonged exercise 
increases peripheral plasma ACTH, CRH, and A VP in male athletes. Journal of Anatomy 
and Physiology, 83(3): 835-841. 

Insel, T.R., 0 ' Brien, DJ. & Leckman, JF. (1999). Oxytocin, vasopressin and autism: is 
there a connection? Biological Psychiatry, 45(2): 145-157. 

90 



Insel , T.R., Wang, Z.X, & Ferris, C.F. (1994). Patterns of brain vasopressin receptor 
distribution associated with social organization in microtine rodents. The Journal of 
Nemoscence, 14(9): 5381-5392. 

Insel, T.R. and Young, L.J. (2000). Neuropeptides and the evolution of social behavior, 
Current Opinion in Neurobiology, 10:784-789. 

Introini-Collison, LB. ,& Baratti, C.M. (1992). Memory-modulatory effects of centrally 
acting noradrenergic drugs: possible involvement of brain cholinergic mechanisms. 
Behavioral and Neural Biology, 57: 248-255. 

Izquierdo, I. (1989). Different forms of post-training memory processing. Behavioral and 
Neural Biology, 51: 71-102. 

Izquierdo, I. (1993). Long-term potentiation and the mechanisms of memory. Drug 
Development Research, 30:1-7. 

lzquierdo,I., Medina, J.H.,(1995). Pharmacology of long-term potentiatiOn and the 
pharmacology of memory. Neurobiology of Learning and Memory, 63(1):19-32. 

Izquierdo,!., Medina, J.H. , Bianchin, M., Walz, R. , Zanatta, M.S. Da Silva, R.C. , Silva, 
M.B.E. , Rusche!, A.C. and Paczko, N . (1993). Memory processing by the limbic system: 
role of specific neurotransmitter systems. Behavioural Brain Research, 58: 91-98. 

Jaffard, R. and Meunier, M. (1993). Role of the hippocan1pal formation in learning and 
memory. Hippocan1pus, 3: 203-218. 

Jeltsch, H. , Bertrand, F. , Lazarus, C. & Cassel, J.C. (200 1 ). Cognitive performances and 
locomotor activity following dentate granule cell damage in rats: role of lesion extent and 
type of memory tested. Neurobiology of Learning and Memory, 76: 81-105. 

Jentsch, J.D., Arguello, P.A, & Anzivino, L.A (2003). Null mutation of the arginine 
vasopressin gene in rats slows attentional engagement and facilitates response accuracy 
in a lateralized reaction time task. Neuropsychopharmacology, 28(9): 1597-1605. 

Joels, M. and Urban, I.J.A., (1984). Arginine-vasopressin enhances the responses of 
lateral septal neurons in the rat to excitatory amino acids and fimbria-fornix stimuli. 
Brain Research, 311 : 20 1-209. 

Joels, M. and Urban, I.J.A. , (1985). Monoamine-induced responses in lateral septal 
neurons: influence of iontophoretically applied vasopressin. Brain Research, 344: 120-
126. 

Kai-Kai, M.A. , Arlderton B.H, & Keen P.(1986). A quantitative analysis of the 
interrelationships between subpopulations of rat sensory neurons containing arginine 

91 



vasopressin or oxytocin and those contammg substance P, fluoride-resistant acid 
phosphatase or neurofilament protein. Neuroscience, 18(2):4 75-86. 

Kasting, N.W., Veale, W.L. , & Cooper, K.E. (1980). Convulsive and hypothermic effects 
ofvasopressin in the brain ofthe rat. Canadian Journal ofPhysiology 58:316-319. 

Katsuura, G. & ltoh, S. (1986). Passive avoidance deficit following 
intracerebroventricular administration of cholecystokinin tetrapeptide amide in rats. 
Peptides, 7: 809-814. 

Kelly A, Conroy S, & Lynch M.A. (1998). Evidence that nerve growth factor plays a role 
in long-term potentiation in the rat dentate gyrus. Neuropharmacology, 37(4-5):561-70. 

Kesner, R.P, Lee, I., Gilbert, P. (2004). A behavioral assessment of hippocampal function 
based on a subregional analysis. Reviews in Neuroscience, 15(5):333-51. 

Kemper, T.L and Bauman, M. (1998). Neuropathology of infantile autism. Journal of 
Neuropathology and Experimental Neurology, 57: 645-652. 

Kiraly, M. Audigier, S., Tribollet, E., Barberis, C., Dolivo, M. and Dreifuss, J.J. (1986). 
Biochemical and electrophysiological evidence of functional vasopressin receptors in the 
rat superior cervical ganglion. Proceedings of the National Academy of Science USA, 83: 
5335-5339. 

Klukowski, G. & Harley, C.W. (1994). Locus coeruleus activation induces perforant 
path-evoked population spike potentiation in the dentate gyrus of awake rat. 
Experimental Brain Research, 102: 165-170. 

Koob, G. F. & Bloom, F. E. (1982). Behavioral effects of neuropeptides: endorphins and 
vasopressin. Annual Review of Physiology, 44: 571-582 

Kosub, K.A. , Do,V.H. & Derrick, B.E. (2005). NMDA receptor antagonists block 
heterosynaptic long-term depression but not long-term potentiation in the CA3 region 
following perforant path stimulation. Neuroscience Letters, 374(1): 29-34. 

Kovacs, G. L., Bohus, B. Versteeg, D.H.G. , De Kloet, E.R. (1979a) Effect of oxytocin 
and vasopressin on memory consolidation: sites of action and catecholaminergic 
correlates after local microinjection into limbic and midbrain structures. Brain Research 
175:303-314. 

Kovacs, G.L. , Bohus, B. & Versteeg, D.H.G. (1979b). Facilitation of memory 
consolidation by vasopressin: Mediation by terminals of the dorsal noradrenergic bundle? 
Brain Research, 172: 73-85. 

92 



Kovacs, G. F., Vecsei, L., Medvi, L. & Telegdy, G. (1980). Effect on memory processes 
of anti-vasopressin serum microinjected into the dorsal raphe nucleus: the role of 
catecholaminergic neurotransmission. Experimental Brain Research, 38: 357-361. 

Kovacs, G. L., Buijs, R.M., Bohus, B., & Wimersma Greodanus, Tj. B. van. (1982). 
Microinjection of arginine-vasopressin antiserum into the dorsal hippocampus attenuates 
passive avoidance behavior in rats. Physiology & Behavior, 28 : 45-48. 

Kovacs, G. F., Vecsei, L.,Szabo, G., & Telegdy, G. (1977). The involvement of 
catecholan1inergic mechanisms in the behavioural action of vasopressin. Neuroscience 
Letters, 5: 337-344. 

Kovacs, G. L., Veldhuis, HD., Versteeg, DH & De Wied, D. (1986). Facilitation of 
avoidance behavior by Vasopressin fragments microinjected into limbic-midbrain 
structures. Brain Research, 371: 17-24. 

Kullmann, DM (1999). Synaptic and extrasynaptic roles of glutamate in the mammalian 
hippocampus. Acta Physiological Scandanavia, 166: 79-83. 

Kumar, KB., & Karanth, KS. (1995). Effects of central administration of arginine
vasopressin on aversive memory retrieval. Brain Research, 699(2):293-6. 

Lacaille, J.C. and Harley, C.W. (1985). The action of norepinephrine in the dentate gyrus: 
beta-mediated facilitation of evoked potential in vitro. Brain Research, 358: 210-220. 

Laczi, F., Gaffori, 0., De Kloet, E.R. and De Wied, D. (1983). Arginine-vasopressin 
content of hippocampus and amygdala during passive avoidance behavior in rats. Brain 
Research, 280: 309-315. 

Lanca, A.J., Wu, P.H., lung, B., Liu, J.F., Ng, V., and Kalant, H. (1999). Differential 
increase i11 Fos immu.noreactivity in hypotl1ala1nic and septal nuclei by arginine8-
vasopressm and desglycinamide9-arginine8-vasopressin. Neuroscience, 91 ( 4) : 13 31-
1341. 

Landgraf, R. , Gerstberger, R., Montkowski, A., Probst, J.C., Wotjak, C.T., Holsboer, F. 
and Engelmann, M. (1995). VI vasopressin receptor antisense oligodeoxynucleotide into 
septwn reduces vasopressin binding, social discrimination abilities, and anxiety-related 
behavior in rats. The Journal ofNeuroscience, 15(6): 4250-4258. 

Laroche, S, Doyere, V. & Bloch, V. (1989). Linear relationship between the magnitude 
of long-term potentiation in the dentate gyrus and associative learning in the rat. A 
demonstration using commissural inhibition and local infusion of an NMDA receptor 
antagonist. Neuroscience, 28(2): 375-386. 

93 



Lee, I. , Kesner, R.P. (2004). Differential contributions of dorsal hippocampal subregions 
to memory acquisition and retrieval in contextual fear-conditioning. Hippocampus 14: 
301-310. 

Lee, E.H., Lee, C.P., Wang, H.I. & Lin, W.R. (1993). Hippocampal CRF, NE, and 
NMDA system interactions in memory processing in the rat. Synapse, 14: 144-153. 

Legros, J.J. ( 1978). Influence of vasopressin on learning and memory. Lancet, 1: 41-42. 

LeMoal , M. , Dantzer, R. , Michaud, B., Koob, GF. (1987). Centrally injected arginine 
Vasopressin(AVP) facilitates social memory in rats. Neuroscience Letters. 77: 353-359. 

Leontovich, T.A, Mukhina, J.K., Fedorov, A.A, Belichenko, P.V. Morphological study of 
the entorhinal cortex, hippocampal formation, and basal ganglia in Rett syndrome 
patients. Neurobiology Dissertation, 6:77-91 . 

Leshner, A.I. & Roche, K.E. (1977). Comparison of the effects of ACTH and lysine 
vasopressin on avoidance-of-attack in mice. Physiology and Behaviour, 18(5):879-83 . 

Levy, F., Kendrick, K.M., Goode, J.A. , Guevara-Guzman, R. and Keverne, E.B. (1995). 
Oxytocin and vasopressin release in the olfactory bulb of parturient ewes: changes with 
maternal experience and effects of acetylcholine,g-aminobutryic acid, glutamate and 
noradrenaline release. Brain Research, 669: 197-206. 

Liebsch, G. , Wotjak, C.T., Landgraf, R. and Engelmann, M. (1996). Septal vasopressin 
modulates anxiety-related behaviour in rats. Neuroscience Letters, 217:101-104. 

Lim, M.M., Bielsky, I.F. and Young, L.J. (2005). Neuropeptides and the social brain: 
potential rodent models of autism. International Journal of Developmental Neuroscience, 
23: 235-243. 

Loy, R., Koziell, D.A. , Lindsay, J .D., & Moore, R.Y. (1980). Noradrenergic innervation 
of the adult rat hippocampal formation. Journal of Comparative Neurology, 189: 699-
710. 

Lynch, M. & Baudry, G. (1991).Reevaluating the constraints on hypotheses regarding 
LTP expression. Hippocampus, 1(1):9-14. 

Lynch, G .. Muller D, Seubert P, & Larson J. (1988). Long-term potentiation: persisting 
problems and recent results.Brain Research Bulletin, 21(3):363-72. 

Malenka, R.C. (1991) The role of postsynaptic calcium in the induction of long-term 
potentiation. Molecular Neurobiology, 5(2-4):289-95. 

94 



Mayes, C.R., Watts, A.G., McQueen, J.K. , Fink, G. & Charlton,H.M. (1988). Gonadal 
steroids influence neurophysin II distribution in the forebrain of normal and mutant mice. 
Neuroscience, 25: 1013-1022. 

McEwen, B. (2004). De Wied and colleagues I: evidence for a VP and an OT influence 
on MP: launching the "VP/OT central memory theory". Advances in Pharmacology, 50: 
51-101. 

McGaugh, J.L. (1989). Involvement of hormonal and neuromodulatory systems in the 
regulation of memory storage. Annual Review of Neuroscience, 12:255-287. 

McLamb, R.L. , Mundy, W.R., & Tilson, H.A (1988). Intradentate colchine impairs 
acquisition of a two-way active avoidance response in a Y-maze. Neuroscience Letters, 
94: 338-342. 

McNaughton, B.L. & Barnes, C.A. (1977). Physiological identification and analysis of 
dentate granule cell responses to stimulation of the medial and lateral perforant pathways 
in the rat. Journal of Comparative Neurology, 175: 439-454. 

Medvedev, V. J., Bakharev, V. D., Grechko, A. T. & Nezovibatko, V. N. (1981 ). Effect 
of vasopressin and adrenocorticotrophic hormone fragment ACTH 4-7 on human 
memory. Human Physiology, 6: 307-310 

Maegawa, H., Katsube, N. , Okegawa, T., Aishita, H. , & Kawasaki, A. (1992). Arginine
vasopressin fragment 4-9 stimulates the acetylcholine release in hippocampus of freel y
moving rats. Life Science, 51 : 285-293. 

Messing, R.B. & Sparber, S.B. (1983). Des-Gly-Vasopressin improves acquisition and 
slows extinction of autoshaped behaviour. Emopean Journal of Pharmacology, 89: 43-51. 

Metzger, D. , Alescio-Lautier,B., Bosler, 0., Devigne, C., & Soumireu-Mourat, B. (1993). 
Effect of changes in the intrahippocampal vasopressin on memory retrieval and 
relearning. Behavioral and Neural Biology, 59: 29-48. 

Metzger, D. , Alescio-Lautier, B., & Somnireu-Momat, B. (1994). Involvement of alpha
and beta-noradrenergic receptors in the effects of hippocampal vasopressinergic 
treatment on retrieval and relearning. Behavioral and Nemal Biology, 62: 90-99. 

Metzger, D. , Alescio-Lautier, B., & Soumireu-Mourat, B.(1989). Facilitation of retention 
performance in mice by pretest microinjection of A VP into dorsal or ventral 
hippocan1pus: differential influence of the peptide on appetitive task. Nemoscience 
Letters 101(1): 77-82. 

Meisenberg,G. & Simmons, W.H. (1984). Hypothermia induced by centrally 
administered vasopressin in rats. Neuropharmacology 23: 1195-1200. 

95 



----- -------------------------------~ 

Millar, K., Jeffcoate, W.J. & Walder, C.P. ( 1987). Vasopressin and memory: 
improvement in normal short-tem1 recall and reduction of alcohol-induced amnesia. 
Pychological Medicine, 17:335-341. 

Miyazaki, K. , Narita, N. , Sakuta, N. , Miyahara, T., Naruse, H. , Okada, N. & Narita, M. 
(2004). Serum neurotrophin concentrations in autism and mental retardation: a pilot 
study. Brain Development, 26: 292-295. 

Mizuno, Y., Oomura, Y., Hori, N., & Carpenter, D.O. (1984). Action of vasopressin on 
CAl pyramidal neurons in rat hippocampal slices. Brain Research 309: 241-246. 

Morris, R.G.M., Schenk, T. , Tweedie, F., & Jarrard, L.E. (1990). Ibotenate lesions of 
hippocan1pus and/or subiculum: dissociating components of allocentric spatial learning. 
European Journal ofNeuroscience, 2:1016- 1028. 

Munro, C.A., Walling, S.G., Evans, J.H., & Harley, C.W. (2001). P- Adrenergic blockade 
in the dentate gyrus in vivo prevents high frequency-induced long-term potentiation of 
EPSP slope, but not long-term potentiation of population spike an1plitude. Hippocampus, 
11: 322-328. 

Muhlethaler. M. & Dreifuss, J.J. (1983). Excitation of hippocampal neurons by posterior 
pituitary peptides : vasopressin and oxytocin compared. Progress in Brain Research 60: 
147-151. 

Myhrer, T. (2003). Neurotransmitter sytems involved in learning and memory in the rat: 
meta-analysis based on studies of four behavioral tasks. Brain Research Reviews, 41 (2-
3): 268-287. 

Nakayama, Y.,Takano, Y., Shimohigashi, Y., Tanabe, S., Fujita, T. , Kan1iya, H. & 
Tsujimoto, G. (2000). Pharmacological characterization of a novel AVP (4-9) binding 
site in rat hippocampus. Brain Research, 858(2): 416-423 . 

Naun1ann, E., Bartussek, D., Kaiser, W. & Fehm-Wolfsdorf, G. (199 1). Vasopressin and 
Cognitive processes: Two event-related potential studies. Peptides, 12:1379-1384. 

Nelson, KB. , Grether, JK. , Croen, LA, Dambrosia, JM, Dickens, BF. , Jelliffe, Hansen, 
R.L. and Phillips, TM. (2001). Neuropeptides and neurotrophins in neonatal blood of 
children with autism or mental retardation. Annals ofNeurology, 49(5): 597-606 

Neuman R.S. and Harley, C. W. (1983). Long-lasting potentiation of the dentate gyrus 
population spike by norepinephrine. Brain Research, 2 73: 162-165. 

Newman, M.E. (1984). Vasopressin inhibits cyclic AMP accumulation and adenylate 
cyclase activity in cerebral preparations. Federation of European Biochemical Societies 
Letters, 181(2): 203-206. 

96 



Nguyen, P.V. , Abel, T. & Kandel, E.R.(1994). Requirement of a critical period of 
transcription for induction of a late phase of L TP. Science, 265: 1104-1107. 

Nicholson, R. , DeVito, T.J. , Vidal, CN., Sui, Y., Hatashi, K.M., Drost, D.J., Williamson, 
P.C. , Rajakumar, N. , Toga, A.W. And Thompson, P.M., (2006). Detection and Mapping 
of hippocampal abnormalities in autism. Psychiatry Research: Neuroimaging, 148(1 ): 11-
21. 

Nielson, K.A. & Jensen,R.A.(l994). Beta-adrenergic receptor antagonist antihypertensive 
medications impair arousal-induced modulation of working memory in elderly humans. 
Behavior and Neural Biology, 62(3): 190-200. 

Nielson, K.A., Radtke, R.C. & Jensen, R.A. (1996). Arousal-induced modulation of 
memory storage in humans. Neurobiology of Learning and Memory, 66(2): 133-142. 

Nilsson, M., Perfilieva, E., Johansson, U., Orwar, 0., Eriksson, P.S. (1999). Enriched 
enviromnent increases neurogenesis in the adult rat dentate gyrus and improves spatial 
memory. Journal ofNeurobiology, 39: 569-578. 

Nitz, D. and McNaughton, B. (2004). Differential modulation of CAl and dentate gyrus 
interneurons during exploration of novel environments. Journal of Neurophysiology, 91: 
863-872. 

Nowakowski, R.S. ,& Rakic, P. (1981). The site of origin and route and rate of migration 
of neurons to the hippocampal region of the rhesus monkey. Journal of Comparative 
Neurology, 196: 129-154. 

Oliveros , J.C., et al. (1978). Vasopressin in anmesia. Lancet ,1:42 

Olpe, H.R., and Baltzer, V. (1981) Vasopressin activates noradrenergic neurons in the rat 
locus coeruleus: a microiontophoretic investigation. European Journal of Pharmacology, 
73: 377-378. 

Orlowska-Majdak, M. Traczyk, W.Z. And Szymanski, D . (2003). Hippocampal 
Vasopressin release evoked by N-methyl-D-aspartate (NMDA) microdialysis. 
Physiological Research 52: 373-382. 

Ostrowski, N.L. Lolait, S.J., Bradley, D.T., O ' Carroll, A.M., Brownstein, M.J. and 
Young, W.S. (1992). Distribution of vasopressin V 1a and V2 receptors messenger 
ribonucleic acids in the rat liver, kidney, pituitary and brain. Endocrinology, 311: 533-
535. 

Otani, S., Marshall, CJ., Tate, W., Goddard, GV. , & Abraham, WC. (1989). Maintenance 
of long-term potentiation in rat dentate gyrus requires protein synthesis but not mRNA 
synthesis immediately post-tetanization. Neuroscience, 28: 519-526. 

97 



Paban, V., Alescio-Lautier, B., Devigne, C., & Soumireu-Mourat, B. (1999). Fos protein 
expression induced by intracerebroventricular injection of vasopressin in unconditioned 
and conditioned mice. Brain Research, 825(1-2): 115-131. 

Paban,V, Alescio Lautier, B., Devigne, C. and Soumireu Mourat, B. (1998). The 
behavioral effect of vasopressin in the ventral hippocan1pus is antagonized by an 
oxytocin receptor antagonist. European Journal ofPharmacology, 361:2-3, 165-73. 

Paban, V. , Soumireu-Mourat, B. , & Alescio-Lautier, B.(2003). Behavioral effects of 
arginine vasopressin in the Hebb-Williams maze. Behavioural Brain Research, 141 (1 ): 1-
9. 

Paxinos, G. & Watson, C. (1998). In the Rat Brain 111 Stereotaxic Coordinates. San 
Diego; Academic Press. 

Petracca, FM., Baskin, DG., Diaz, J. , and Dorsa, DM. (1986). Ontogenetic changes in 
vasopressin binding site distribution in rat brain; an autoradiographic study. Brain 
Research, 393: 63-68. 

Petit, P., Barveris, C. , & Jard, S. (1988). Vasopressin potentiates the noradrenaline
induced accumulation of cyclic AMP in the rat superior cervical ganglion. Brain 
Research, 440: 299-304. 

Phillips, P.A., Abrahams, J.M. , Kelly, J. , Paxinos, G., Grzonka, Z., Mendelsohn, F.A.O., 
and Johnstone, C.I. (1988). Localization of Vasopressin binding sites in rat brain by in 
vitro autoradiography using a radioiodinated Vl receptot antagonist. Neauroscience, 27 
(3): 749-761. 

Pierce, K., Muller, R.A., Ambrose, J. , Allen, G., Courchesne, E., (2001). Face processing 
occurs outside the fusiform 'face area' in autism: evidence from functional MRI. Brain 
124: 2059-2073. 

Pietrowski, R., Struben, C., Molle, M., Fehm, H.L. & Born, J. (1996). Brain potential 
changes after intranasal vs. intravenous administration of Vasopressin: Evidence for a 
direct nose-brain pathway for peptide effects in humans. Biological Psychiatry, 39: 332-
340. 

Pinaud, R. , Penner, M.R., Robertson, H.A. , Currie, R.W. (2001). Upregulation of the 
immediate early gene arc in the brains of rats exposed to environmental enrichment: 
implications for molecular plasticity. Brain research and molecular brain research, 91 (1-
2): 50-56. 

Pitman, R. K., Sanders, K. M., Zusman, R. M., Healy, A. R. , Cheema, F. , Lasko, N. B., 
eta!. (2002). Pilot study of secondary prevention of posttraumatic stress disorder with 
propranolol. Biological Psychiatry, 51 (2), 189- 192. 

98 



Pittman, Q.J. , Kombian, S.B. , Mouginot, D., Chen, X., and van Eerdenberg, F.J.C.M. 
(1998). Electrophysiological studies of neurohypophyseal neurons and peptides. Progress 
in Brain Research, 119:311-320. 

Popik, 0 ., Vos, PE. & Van Ree, JM (1992). Neurohypophyseal hormone receptors in the 
septum are implicated in social recognition in the rat. Behavioral Pharmacology 3: 3 51-
358. 

Poulin, P. & Pittman, Q.J. (1993) Arginine Vasopressin-induced sensitization in brain: 
facilitated inositol phosphate production without changes in receptor number. Journal of 
Neuroendocrinology, 5:23-31. 

Poulin, P., Szot, P., Dorsa, D.M. & Pittman, Q.J. (1995). Vasopressin-induced 
sensitization: involvement of neurohypophyseal peptide receptors. European Journal of 
Pharmacology, 294: 29-39. 

Pow, DV. & Morris, J.F (1989). Dendrites of hypothalamic magnocellular neurons 
release neurohypophyseal peptides by exocytosis. Neuroscience, 32: 435-439. 

Qiao, L.Y., & Du, Y.C. (1998). Involvement of a putative G-protein-coupled receptor and 
a branching pathway in argipressin (4-8) signal transduction in rat hippocampus. Acta 
Pharmacologica Sinica, 19: I5-20. 

Qiao, L. Y., Chen, X.F. ,Gu, B.X., Wang, TX. And Du, YC. (1998). Effect of VP 4-8 
administration on Ca2+/CaM-dependent protein kinase II autophosphorylation in rat 
brain. Acta Physiologogica Sinica, 49 

Racine, R.J., Milgram, N .W., & Hafner, S. (I983). Long-term potentiation phenomena in 
the rat limbic forebrain. Brain Research, 260: 217-231. 

Randt, C.T. , Judge, M.E. , Bonnet, K.A. and Quatermain, D. (1982). Brain cyclic AMP 
and memory in mice. Pharmacology, Biochemistry and Behaviour, 17: 677-680. 

Raskind, M. A., Elaine, R., Peskind, D. 1., Hoff, K. L., Hart, H. A. , Holmes, D. W., eta!. 
(2007). A parallel group placebo controlled study of prazosin for trauma nightmares and 
sleep disturbance in combat veterans with posttraumatic stress disorder. Biological 
Psychiatry, 61(8), 928- 934. 

Reyes, A. (2002). Influence of dendritic conductances on the input-output prope11ies of 
neurons. Annual Review ofNeuroscience, 24: 653-675. 

Reijmers, L., Van Ree, J.M., Spruijt, B.M., Burbach, J.P. and De Wied, D. (1998). 
Vasopressin Metabolites: A link between vasopressin and memory. Progress in Brain 
Research, 119: 523-535. 

99 



Rethelyi, M., Mohapatra N.K, Metz C.B, Petrusz P, & Lund P.K (1991). Colchicine 
enhances mRNAs encoding the precursor of calcitonin gene-related peptide in brainstem 
motoneurons. Neuroscience, 42(2):531-9. 

Richter-Levin, G., Segal, M. and Sara, S.(1991). An a 2 antagonist, idazoxan, enhances 
EPSP-spike coupling in the rat dentate gyrus. Brain Research, 540: 291-294. 

Rigter, H., Van Riezen, H., & De Wied, D. (1974). The effects of ACTH- and 
vasopressin- analogues on C02-induced retrograde amnesia in rats. Physiology and 
Behaviour, 13(3):381-8. 

Robinson, C., Schumann, R., Zhang, P. , & Young, R. (2003). Oxytocin-induced 
desensitization of the oxytocin receptor. American Journal of Obstetrics and 
Gynaecology, 188: 497-502. 

Robinson, G.B., & Racine, R.J. ( 1985). Long-term potentiation in the dentate gyrus: 
effects of noradrenaline depletion in the awake rat. Brain Research, 325: 71-78. 

Rolls, E.T. (1996). A theory of hippocampal function in memory. Hippocampus 6: 601-
620. 

Rossor, M.N.,Iversen L.L, Mountjoy C.Q. Roth M, Hawthorn J, Ang V.Y, & Jenkins 
JS.(1980). Arginine vasopressin and choline acetyltransferase in brains of patients with 
Alzheimer type senile dementia. Lancet, 2(8208-8209): 1367-8 

Sakurai, E., Maeda, T., Kaneko, S., Akaike, A. & Satoh, M. (1998). Inhibition by 
arginine vasopressin of long-term potentiation in guinea pig hippocampal slice. Japanese 
Journal ofPhamacology, 77: 103-105. 

Saito, M. , Sugimoto, T. , Tahara, A. & Kawashima, H. (1995). Molecular cloning and 
characterization of rat V 1 b vasopressin receptor: Evidence for its expression in extra
pituitary tissues. Brain Research, 646-170-174. 

Saitoh, 0. , Karns, C.M, & Courchesne, E. (2001). Development of the hippocampal 
formation from 2 to 42 years. Brain, 124(7): 1317-1324. 

Sara, S.J. (1985). Noradrenergic modulation of selective attention: its role in memory 
retrieval. Annals of New York Academy of Sciences, 444:178-93. 

Sara, S.J. & Bergis,O. (1991 ). Enhancement of excitability and inhibitory processes in 
hippocampal dentate gyrus by noradrenaline: a pharmacological study in awake freely 
moving rats. Neuroscience Letters, 126: 1-5. 

Sara, S.J., & Devauges, V. (1989). Idazoxan, an alpha2 antagonist, facilitates memory 
retrieval in the rat. Behavioral and Neural Biology, 51 , 401-411. 

100 



r------------------- ----

Sato, T., Tanaka, K. , Ohnishi, Y. , Teramoto, T. , Hirate, K. & Nishikawa, T. (1999). The 
ameliorating effects of a novel NC-1900 on impairments of learning and memory caused 
by glutamic acid. Nippon Yakurigaku Zasshi, 114(1): 198P-203P.(reviewed abstract 
only). 

Schneider, D.R., Felt, B.T. & Goldman, H. (1982). Desglycyl-8-arginine vasopressin 
affects regional mouse brain cyclic AMP content. Pharmacology and Biochemical 
Behavior, 16(1): 139-143. 

Schrader, L.A., Anderson, A.E. , Varga, A.W., Levy, M., & Sweatt, J.D. (2002). The 
other half of Hebb: K + channels and the regulation of neuronal excitability in the 
hippocampus. Molecular Neurobiology, 25 : 51-66. 

Schuman, CM, Hamstra, J. , Goodlin-lones, BL. , Lotspeich, LJ., Kwon, H. , Buonocore, 
M.H., Lammers, CR, Reiss,AL., & Amaral, D.G. (2004). The Amygdala is enlarged in 
children but not adolescents with autism; the hippocampus is enlarged at all ages. The 
Journal ofNeuroscience, 24(28): 6392-6401. 

Schwartzberg, H. , Kovac, G.L., Szabo, G., & Telegdy, G. (1981). Intraventricular 
administration of vasopressin and oxytocin affects the steady state levels of serotonin, 
dopamine and norepinephrine in rat brain. Endocrinology Experiments, 15 : 75-80. 

Segal, M. & Bloom, F.E. (1976). The action of norepinephrine in the rat hippocampus. 
IV. The effects of locus coeruleus stimulation on evoked hippocampal unit activity. Brain 
research, 107: 513-525. 

Seress, L. (1992). Morphological variability and developmental aspects of monkey and 
human granule cells: differences between rodent and primate dentate gyrus. Epilepsy 
Research Supplement, 7:3-28. 

Skopkova, J. , Croiset, G. & De Wied, D. (1991). Differential effects of DGAVP on 
acquisition and extinction of active behavior. Peptides 12: 471 -475. 

Sladek, C.D, Badre, S.E, Morsette D.J. , & Sidorowicz, H.E (1998). Role of non-NMDA 
receptors in osmotic and glutan1ate stimulation of vasopressin release: effect of rapid 
receptor desensitization. Journal of Neuroendocrinology 10: 897-903. 

Sofroniew, M.V. (1985). Vasopressin- and neurophysin-immunoreactive neurons in the 
septal region, medial amygdala and locus coeruleus in colchicine-treated rats. 
Neuroscience, 15 : 347-358. 

Sollertinskaya, T.N. (1997). Comparative physiological features of the regulatory effect 
of vasopressin on higher nervous activity in an ascending series of man1mals. 
Neuroscience and Behavioral Physiology 27(6): 734-742. 

101 



Son, M .C., & Diaz Brinton, R. (1998). Vasopressin-induced calcium signaling in cultured 
cortical neurons. Brain Research, 793(1): 244-254. 

Springer, A.D., & Miller, R.R. (1972). Retrieval failure induced by electroconvulsive 
shock: reversal with dissimilar training and recovery agents. Science, 177(49):628-30. 

Stanton, P.K. & Sarvey, J.M. (1985a). Depletion of norepinephrine, but not serotonin, 
reduces long-term potentiation in the dentate gyrus of rat hippocampal slices. Journal of 
Neuroscience. 5: 2169-2176. 

Stanton, PK. & Sarvey, JM. (1985b). Blockade of norepinephrine-induced long-lasting 
potentiation in the hippocampal dentate gyrus by an inhibitor of protein synthesis. Brain 
Research, 361: 276-283. 

Stanton, P.K. & Sarvey, J.M. (1985c). The effect of high-frequency electrical stimulation 
and norepinephrine on cyclic AMP levels in normal versus norepinephrine-depleted rat 
hippocampal slices. Brain Research 358: 343-348. 

Stanton, P.K. & Sarvey, J.M. (1987). Norepinephrine regulates long-term potentiation of 
both the population spike and dendritic EPSP in hippocampal dentate gyrus. Brain 
Research Bulletin, 18: 115-119. 

Stephens, L.R, & Logan, S.D. (1986). Arginine-vasopressin stimulates inositol 
phospholipid metabolism in rat hippocampus. Journal ofNeurochemistry, 46: 649-651. 

Staubli, U. , & Lynch, G. (1987). Stable hippocampal long-term potentiation elicited by 
' theta' pattern stimulation. Brain Research, 435 : 227-234. 

Straube, T., Korz, V., Balschun, D., & Frey, JU. (2003). Requirement of beta-adrenergic 
receptor activation and protein synthesis for L TP-reinforcement by novelty in rat dentate 
gyrus. Journal ofPhysiology, 552: 953-960. 

Strawn, J.R. & Geracioti, T.D. (2007). Noradrenergic dysfunction and the 
psychopharmacology of posttraumatic stress disorder. Depression and Anxiety, 0:1-1 2 

Strupp, B.J. & Levitsky D. A. (1985). A nmemonic role for vasopressin: the evidence for 
and against. Neuroscience Biobehavior Review 9: 399-411. 

Sullivan, R.M, Wilson, DA, & Leon, M. (1989). Norepinephrine and learning-induced 
plasticity in infant rat olfactory system. Journal ofNeuroscience, 9: 3998-4006. 

Sutherland, RJ. , McDonald RJ, Hill CR, Rudy JW. (1989). Damage to the hippocampal 
formation in rats selectively impairs the abi lity to learn cue relationships. Behavioural 
Neural Biology, 52(3):331-56. 

102 



Swank, M.W. and Dorsa, D.M. (1991). Chronic treatment with vasopressin analogues 
alters affinity of vasopressin receptors in the septum and amygdala of the rat brain. Brain 
Research, 544: 342-344. 

Swanson-Park, J.L., Coussens C.M, Mason-Parker S.E, Raymond C.R, Hargreaves E.L, 
Dragunow M, Cohen A.S, & Abraham W.C.(1999). A double dissociation within the 
hippocampus of dopamine Dl!D5 receptor and beta-adrenergic receptor contributions to 
the persistence of long-term potentiation. Neuroscience, 92(2):485-97 

Swenson, KL., Badre, SE, Morsette D.J., & Sladek, C.D. (1998). N-methyl-D-aspartic 
acid stimulation of vasopressin release: Role in osmotic regulation and modulation by 
gonadal steroids. Journal of Neuroendocrinology, 10: 679-685 . 

Szadowska, D. , Szmigielska H, & Szmigielski A. (1982). Effect of intraperitoneally 
injected lysine vasopressinon noradrenaline turnover in certain brain regions of the rat. 
Acta Physiol Pol., 33(5-6):447-53. 

Szatmari, P., Tuff, L. , Finlayson, M.A., & Bartolucci, G., (1990). Aspergers syndrome 
and autism, neurocognitive aspects. Journal of American Academy of childhood and 
Adolescent Psychiatry. 29: 130-136. 

Tanabe, S., Shishido, Y. , Nakayama, Y. , Furushiro, M., Hashimoto, S., Terasaki, T., 
Tsujimoto, G., & Yokokura, T.(1999) Effects of arginine-vasopressin fragment 4-9 on 
rodent cholinergic systems. Pharmacological Biochemical Behaviour, 63:4, 549-553. 

Tanaka, K., Versteeg, D.H.G. , & De Wied, D. (1977). Regional effects of vasopressin on 
rat brain catecholamine metabolism. Neuroscience Letters, 4: 321-325. 

Tanaka, K., Suzuki, M., Sumiyoshi, T., Murata, M., Tsunoda, M., & Kurachi, M. (2003). 
Subchronic phencyclidine administration alters central Vasopressin receptor binding and 
social interaction in the rat. Brain Research, 992(2): 239-245. 

Terlouw, E.M.C., Kent, S., Cremona, S. , & Dantzer, R. (1996). Effect of 
intracerebroventricular administration of vasopressin on stress-induced hyperthermia in 
rats. Physiology & Behavior, 60(2): 417-424. 

Teyler, T. J. (1991) Memory: Electrophysiological analogs. pgs 299-327. In: Learning 
and Memory A Biological View. eds Martinez, J.L. & Kesner, R.P. Academic Press 
(1991). 

Teyler, T.J. & DiScenna, P.(1987). Long-term potentiation. Annual Review of 
Neuroscience, 10: 131-161. 

Thor, D.H., & Holloway, W.R (1982). Social memory of the male labratpry rat. Journal 
of Comparative Physiology and Psychology 96: 1000-1006. 

103 



Tribollet, E., Arsenijevic, Y., & Barberis, C. (1998). Vasopressin binding sites in the 
central nervous system: Distribution and regulation, Progress in Brain Research, 119: 45-
54. 

Urban, I.J. ( 1998). Effects of vasopressin and related pep tides on neurons of the rat lateral 
septum and ventral hippocampus. Progress in Brain Research, 119: 285-31 0. 

Urban IJ. , & De Wied, D. (1978).Neuropeptides: effects on paradoxical sleep and theta 
rhythm in rats. Pharmacology, Biochemistry and Behavior, 8: 51-59. 

Urban IJ. , & De Wied, D.( l986). Effect of vasopressin, oxytocin and peptides derived 
from these hormones on field potential in lateral septum of rats by stimulation of the 
fimbria fornix. Neuropeptides, 7: 41-49. 

Urban IJ., & Killian, M. (1990). Two actions of Vasopressin on neurons in the rat ventral 
hippocampus: A microiontophoretic study. Neuropeptides, 16: 83-90. 

Van Den Hooff, P., Urban, IJ. & De Wied, D. (1989). Vasopressin maintains long-term 
potentiation in rat lateral septum slices. Brain Research, 505(2): 181-186. 

Van Londen, L.Goekoop, J . G., Zwinderman, A.H. , Lanser, J.B., Wiegant, V.M. & De 
Wied, D. (1998). Neuropsychological performance and plasma cortisol, arginine 
vasopressin and oxytocin in patients with major depression. Psychological Medicine, 28 
(2) :275-284. 

Van Praag, H., Kempermann, G. , & Gage, FH. (1999). Running increases cell 
proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 
2:266-270. 

Van Praag, H., Schinder, AF. , Christie, BR., Toni, N. , Palmer, TD. & Gage, FH. (2002). 
Functional neurogenesis in the adult hippocampus. Nature, 415: 1030-1034. 

Van Wimersma Greidanus, T.B. , Dogterom, J. & De Wied, D. (1975). Intraventricular 
administration of anti-vasopressin serum inhibits memory consolidation in rats. Life 
Sciences, 16: 637-644. 

Van Wimersma Greidanus, T.B., & De Wied, D., (1976). Modulation of passive
avoidance behavior of rats by intracerebroventricular administration of antivasopressin 
serum. Behavior and Biology, 18(3):325-33. 

Van Wimersma Greidanus, T.B., Croiset, G. & Schuiling, G.A. (1979). Fornix 
transection: Discrimination between neuropeptide effects on attention and memory. Brain 
Research Bulletin 4: 625-629. 

104 



Van Wimersma Greidanus, T.B., Croiset, G., Bakker, E., & Bouman, H. , (1979b) . 
Amygdaloid lesions block the effect of neuropeptides (vasopressin, ACTH4-1 0) on 
avoidance behavior. Physiology and Behavior 22(2):291-5 . 

Van Wimersma Greidanus, T.B., & Maigret, C. (1996). The role of limbic vasopressin 
and oxytocin in social recognition. Brain Research, 713: 153-159. 

Vawter, M.P. , De Wied, D., & Van Ree , J.M. (1997) . Vasopressin fragment, AVP- (4-8), 
improves long-term and short-term memory in the hole board search task. Neuropeptides 
31 (5): 489-494. 

Veldhuis, D.H., Van Wimersma Greidanus, T.B. , and Versteeg, D.H.G. (1987) 
Microinjection of anti-vasopressin serum into limbic structures of the rat brain: effects on 
passive avoidance responding and on local catecholamine utilization. Brain Research 
425: 167-173. 

Versteeg, CA., DeJong, W., & Bohus, B. ( 1984). Arginine-vasopressin inhibits centrally 
induced pressor responses by involving hippocampal mechanisms. Brain Research, 
292(2):317-26. 

Wahl, R.U.R. (2004). Could oxytocin administration during labor contribute to autism 
and related behavioral disorders?- a look at the literature. Medical Hypothesis, 63: 456-
460. 

Walling, S. and Harley, C. W. (2004). Locus coeruleus activation 1111tlates delayed 
synaptic potentiation of perforant path input to the dentate gyrus in awake rats: a novel 
beta-adrenergic and protein synthesis-dependent mammalian plasticity mechanism. 
Journal ofNeuroscience, 24: 598-604. 

Wang, M. , Chen, J.T., Ruan, D.Y. and Xu, Y.Z. (2001). Vasopressin reverses aluminum
induced impairment of synaptic plasticity in the rat dentate gyrus in vivo. Brain Research, 
899(1-2): 193-200. 

Wassink, T.H., Piven, J. , Vieland, VJ., Pietila, J., Goedken, RJ. , Folstein, SE., & 
heffield, VC (2004). Examination of AVPla as an autism susceptibility gene. Molecular 

Psychiatry 9(1 0): 968-972. 

Winnicka, M.M. & Wisniewski, K. ( 1999). Bilateral transactions of tempero-entorhinal 
connections attenuate vasopressin improvement or memory in rats. Pharmacological 
Research, 39(1 ): 61-66. 

Winocur, G., & Moscovitch, M. (1990). Hippocampal and prefrontal cortex contributions 
to learning and memory: analysis of lesions and aging effects on maze learning in rats. 
Behavioral Neuroscience, 104(4): 544-551. 

105 



Winslow, J.T., Hastings, N., Carter, CS., Harbaugh, CR & Insel, T.R. (1993). A role for 
central Vasopressin in pair bonding in monogamous prairie voles. Nature, 365: 545-548. 

Winslow, J.T. & Inset, T.R. (1993). Effects of central vasopressin administration to infant 
rats. European Journal of Pharmacology, 233: 101-107. 

Wisniewski, K. , Arternowicz, B. & Lutostanska, A. ( 1996). The estimation of 
interactions between arginine-vasopressin (A VP) and NMDA receptors in memory and 
learning processes. Acta Physiologica Hungarica, 84 (4): 477-479. 

Wurpel, J.D., Dundore, R.L. , Barbella, Y.R., Balaban, C.D. , Keil, L.C. & Severs, W.B. 
(1986). Barrel rotation evoked by intracerebroventricular vasopressin injections m 
conscious rats. I Description and general pharmacology. Brain Research 365: 21-29. 

Wysocki, CJ., Bean, N.J. & Beauchan1p, G.K. (1986). The mammalian vomeronasal 
system: its role in learning and social behaviors. In D. Duvall, D. Muller-Schwarze & 
R.M. Silverstein (Eds). Chemical Signals, 4. Plenum, New York, 1986. 

Xavier, GF, Oliveira-Filho FJ, & Santos AM (1999). Dentate gyrus-selective colchicine 
lesion and disruption of performance in spatial tasks: difficulties in "place strategy" 
because of a lack of flexibility in the use of environmental cues? Hippocampus, 9(6):668-
81. 

Yibchok-Anun, S., Cheng H, Chen TH, & Hsu WH (2000). Mechanisms of A VP-induced 
glucagon release in clonal alpha-cells in-Rl-G9: involvement of Ca(2+)-dependent and
independentpathways. British Journal of Pharmacology, 129(2):257-64. 

Yow1g, LJ., Nilsen, R. , Waymire, KG., Macgregor, GR., & Inset, TR. (1999). Increased 
affiliative response to vasopressin in mice expressing the V 1 a receptor from a 
monogamous vole. Peptides, 400: 766-768. 

Zhang, W., & Linden, D.J. (2003). The other side of the engram: experience-driven 
changes in neuronal intrinsic excitability. Nature Review in Neuroscience, 4: 885-900. 

Zhou, A.W., Guo, J., Wang, H.Y.,Gu, B.X. & Du, Y.C. (1995). Enhancement of NGF 
gene expression in rat brain by the memory enhancing peptide VP( 4-8). Pep tides, 16: 
581-586. 

Zhou, A.W., Guo, J., Du, Y.C. & Chen, X.F. (1996). Effects ofVP(4-8) analogs on NGF 
mRNA transcription in rat brain. Chinese Journal of Physiological Science, 12: 81 -86. 

Zhou, A.W., Li, W.X., Guo, J. , & Du, Y.C (1997) Facilitation of VP(4-8) on gene 
expression of BDNF and NGF in rat brain. Peptides, 18: 1179-1187. 

106 










