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Abstract 

An accurate estimation of the hydrodynamic parameters for Underwater Robotic Vehicles 

(UR V) is a top priority for the designing of the control strategies for such vehicles. The 

identification of these parameters constitutes a main difficulty in the development of a 

UR V. Several methods have been developed to estimate such parameters. These methods 

include: strip theory, slender body theory, semi-empirical approaches, and parametric 

identification. Most of these methods have many assumptions and drawbacks that restrict 

their applicability. 

I am mainly concerned with the parametric identification. One of the advantages 

of parametric identification is that if it can be done in real time then one can have a tool 

for updating the dynamic model as the vehicle moves through the water. Responses 

obtained using this model will be realistic and increase the chances of having better 

control of the vehicle. 

In this dissertation, I develop a new robust technique for the identification of the 

damping, restoring, and coupling parameters in the equations describing the coupled 

heave and pitch motions for an URV sailing near the water surface in random waves. The 

developed technique is called RDI.RNNT, which is a combination of the random 

decrement technique, multi-linear regression algorithm, and a neural networks technique. 

RDLRNNT requires only the measured coupled heave and pitch responses for the URV in 

random waves and does not require a prior knowledge of the wave excitation. The 

developed technique would be particularly useful in identifying the parameters for both 

moderately and lightly damped motions under the action of unknown wave excitations 

affected by a realistic sea. 



Numerically generated data for the coupled heave and pitch motion of an URV 

are used initially to test the accuracy of the technique for both different levels of damping 

and a wide range of damped natural frequencies in heave and pitch motions. Moreover. 

several case studies are further investigated to test the dependency of the developed 

technique on the wave excitation forms. Two different excitations are investigated: a 

wide-band and a narrow-band form. 

Experimental data are also used to validate the identification technique for 

different functions of wave excitations and different towing speeds. Three main 

experimental variables are further investigated: the significant wave height (Hs). the 

wave modal frequency (11), and the towing speed (U). 
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Chapter 1 

Introduction 

1.1 Objectives 

The main objective of this work is to develop a robust technique for the identification of 

the damping, restoring, and coupling parameters in the equations describing the coupled 

heave and pitch motions for an Underwater Robotic Vehicle (URV) sailing near the sea 

surface in random waves. 

The technique should be able to deal with situations where the level of damping is 

high and where the wave spectrum can no longer be considered white noise. A long-term 

objective is to develop this technique into a tool for continuous monitoring of the URV's 

motion and stability. The tool will be helpful in raising the level of reliability of the UR V. 

It will also provide full-scale data, which can be used to improve the design procedure for 

such vehicles. The technique developed in this work can also be used for the analysis of 

towing tank data. 

1.2 Methodology 

A robust identification technique called .. RDLRNNT'" has been developed in this work to 

identify the parameters in the equations describing the coupled heave and pitch motions 

for an UR V sailing near the sea surface in random waves. The technique is based on the 

use of a combination of a random decrement technique. a multi-linear regression 
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algorithm and a neural networks technique. The present technique uses only the 

measured heave and pitch motion responses at sea without a prior knowledge of the wave 

excitation. 

The identification procedure consists of three steps. In the first step I derive the 

random decrement equations. The derivation is based on a mathematical model 

describing the coupled heave and pitch motions for an UR V sailing near the sea surface 

in random waves. In the second step a multi-linear regression algorithm is applied to the 

random decrement equations to identify the damping and the restoring parameters. In the 

third step a neural networks technique is used to identify the coupling functions for the 

heave and pitch motions. 

The neural networks technique is based on the minimization of the error between 

a target function and the network's output. In the problem at hand, it is difficult to 

determine the target function. Substituting the network's output back into the differential 

equations and integrating these equations to obtain the heave and pitch displacements 

have remedied this situation. The obtained heave and pitch displacements are then used 

as network outputs and the error is calculated between these outputs and the measured 

heave and pitch displacements. 

1.3 Thesis Organization 

The thesis is divided into four parts. In the first part~ which can be found in Chapter 2, I 

provide a literature survey in two main areas: dynamics of the underwater robotic 

vehicles and identification techniques. The survey sheds light on different methods used 
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in the identification of the hydrodynamic parameters for ships and underwater robotic 

vehicles. In addition~ the survey covered the most recent methods in the identification of 

the hydrodynamic forces: parametric identification and neural networks. In the survey. I 

describe the advantages and disadvantages as well as the limitations of each method. 

In the second part, which can be found in Chapters 3 and 4, a mathematical model 

that describes the coupled heave and pitch motions for an URV sailing near the sea 

surface in random waves, is formulated using rigid body dynamics and Newton's laws of 

motion. In addition, the random decrement equations as well as the auto- and cross­

correlation functions for the coupled heave and pitch motions for an URV are derived. I 

briefly introduce the new developed identification technique, RDLRNNT. In this part, the 

developed technique is based on a combination of the random decrement technique or 

auto- and cross-conelation functions, a multi-linear regression algorithm. and a neural 

networks technique. These techniques are briefly introduced in this part. 

In the third part, which can be found in Chapter 5, I introduce a procedure for the 

validation of the model using both numerically generated data and experimental data. In 

addition, the main features of the designed UR V -model as well as the associated 

calculations: weight, buoyancy, ballast, and stability are presented. Moreover. I 

investigate the use of strip theory in the prediction of the coupled heave and pitch 

motions for a harmonic excitation. 

I introduce briefly the preparation of the URV-model for carrying out the 

experimental work. Two main categories of experiments are carried out in this work: 

calm water experiments and random wave experiments. The first category was needed to 

measure the free decay coupled heave and pitch motions for the UR V -model, while the 
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second one was important to validate the utility of the developed technique in the 

identification of the hydrodynamic parameters in the equations describing the coupled 

heave and pitch motions for an URV sailing near the sea surface in random waves. 

In the fourth part, which can be found in Chapter 6, I generate r:mdom data for the 

coupled heave and pitch motions using the mathematical model. The random data were 

generated for both wide-band and narrow-band excitations. In this part, I investigate the 

effect of using a band-pass filter centered around the damped natural frequencies for 

heave and pitch motions. on the identified parameters. Furthermore, I present the 

numerical simulation results for random motions taking into account the variation of both 

the damping levels and different values of damped natural frequencies for heave and 

pitch motions. 

Furthermore, I present the experimental results for random motions taking into 

account the variation of towing speed. and both the significant wave height and the modal 

frequency of the wave excitations. I finally conclude our work in Chapter 7 and give 

some directions for the future open problems in the area. 

1.4 Scope of Research 

The dissertation focuses on the development of a reliable and robust technique for the 

identification of the parameters in the equations describing the coupled heave and pitch 

motions for an UR V sailing near the sea surface in random waves. The developed 

technique depends only on the measured responses of the URV and does not require a 

prior knowledge of the wave excitation. 
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The developed technique has been validated using both numerically generated 

data as well as experimental data. Numerical data for random motions have been 

generated taking into account the variation of both the damping levels in heave and pitch 

motions, and different values for the damped natural frequencies. Both the effects of 

wide-band and narrow-band excitations on the identified parameters are investigated 

using the developed technique. In addition, the effect of using a band-pass filter centered 

near the damped natural frequencies for heave and pitch motions on the identified 

parameters is investigated. 

An experimental program was designed and conducted at the towing tank at 

Memorial University. The main objective for carrying out the experimental program is to 

measure the coupled heave and pitch motions for the URV corresponding to different 

random wave excitations. Three main parameters are varied in the experimental program: 

the significant wave height, Hs. the wave modal frequency, n, and the towing speed, U. 

Computer programs for calculating the random decrement signatures, the auto­

and cross-correlation functions using both numerically generated random data and the 

measured random data for the coupled heave and pitch motions for the UR V were 

developed. 
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Chapter 2 

Literature Review 

2.1 Introduction 

The ocean is an important source of resources such as fish, minerals, natural gas, and oil. 

A huge effort has been made to utilize and to protect these resources since they can 

contribute significantly to the development of our lives. The first step towards the ocean 

exploration was the use of diving suits and manned submersibles. Since the appearance of 

their limitations, various fonns of unmanned remotely controlled vehicles were 

developed. 

Several studies have been carried out to develop vehicles that can be used in 

ocean exploration. These studies have been under way for several decades. They were 

mainly directed to military tasks and scientific research. In the 1960s and 1970s, two 

main types of vehicles were developed: deep submersible vehicles (DSVs) and 

underwater robotic vehicles (URVs) [1,2]. 

It is essential that the DSVs be large enough to accommodate several persons, 

such as a pilot and observers. These vehicles are classified as human occupied vehicles. 

Therefore, these vehicles are more difficult to handle at sea and more difficult to position 

in restricted work areas. Most DSVs require the presence of a mother ship to provide the 

supervision support for the vehicle and personnel. 

URVs include the whole range of unmanned underwater vehicles from remotely 

operated vehicles (ROVs) to autonomous underwater vehicles (AUVs) [3]. These 
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vehicles are classified as unoccupied vehicles. ROVs provide greater endurance and 

larger range than DSVs at a lower cost. In addition. ROVs can operate in hazardous 

environments and provide on·line n:al time observation. This is because life·safety 

support is not necessary for ROVs. Thus, ROVs have replaced DSVs in most commercial 

applications. 

ROVs were originally developed for military applications. In the early 1970s. the 

offshore oil industry needed such vehicles to construct and to maintain underwater 

structures [1]. ROVs technology was further developed to meet such needs by private 

firms. They are the most common type of underwater vehicles. Because of user 

familiarity and extensive proven capabilities for such vehicles. they are widely used. 

Using a tether (umbilical cable). an ROV is usually connected to a mother ship. 

The tether carries power and control signals from the mother ship, and transmits the 

feedback·measured data from the vehicle. In general. ROVs have been classified into 

three main types depending on the type of mission: small, light and medium·weight, and 

large·work class ROVs [1]. The tether constrains the vehicle in many ways. Therefore, 

the use of ROVs is restricted by tether drag and the stability of ROVs can be affected by 

the surface waves. Due to the tether's limitation, unmanned autonomous underwater 

vehicles (AUVs) have been created as an alternative exploration and work platform. 

AUVs have potential advantages over ROVs and DSVs because they are free 

from tethers and human occupants. Therefore, the vehicle is free to roam widely in the 

ocean. Furthermore, they can be used in hazardous environments such as a toxic area, or 

in radioactive material areas, or in poor weather conditions. Humans cannot reach these 
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environments. In addition, these vehicles are suitable for tqJCtitive and long time 

missions instead of using surface platfonns. 

The development of these vehicles has been under way for several decades and 

was mainly funded by the military. The development of these vehicles was slower than 

ROVs, because there was no experience with such vehicles in the commercial sector [1]. 

The currently existing AUVs are restricted with limited decision-making capability and 

endurance. AUVs are still in their developing phase. There is a lack of operational 

experience with these vehicles in the open ocean. This marks them as an immature 

technology with very important potential for the future. 

The last three decades saw a rapid growth in the development and use of the 

URVs. The early use of these vehicles was limited to military applications. However, the 

use has spread recently to all types of industrial activities. Foremost, among these 

activities is the use in offshore oil and gas applications. The success of an URV in 

achieving its mission depends largely on the sophistication of the control strategies used 

in controlling the motion of the vehicle and the ability of the vehicle to perform required 

maneuvers. Accurate dynamic modeling is a prerequisite for designing effective control 

strategies [3,4,5,6]. 

The dynamic behavior of a UR V is based on the hydrodynamic forces and 

moments that represent the main difficulty in the modeling of the URVs. However, the 

high performance of URVs cannot be achieved without resolving this difficulty. In 

addition, the dynamics of these vehicles are strongly coupled due to the comparable 

velocities along the three axes of the motion. Moreover, the added mass values and the 

location of the centers of gravity and buoyancy suffer large variation because of large 
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changes in the load of the vehicle during its mission. Finally, underwater currents have 

significant effects on the performance of the URVs. 

Different types of external forces and moments are exened on the vehicle body 

during its mission. These are hydrodynamic forces, weight and buoyancy forces, and 

current forces. Likewise. the advancing motion of the URV in water causes two major 

effects: accelerating the layer of the water sunounding the vehicle and introducing drag 

forces due to the effects of viscosity. 

The equations of motion describing the motion of the URV can be formulated 

using rigid body dynamics and Newton's Jaws of motion. The hydrodynamic parameters 

of the vehicles are important components of the model. Several methods have been used 

lO define and calculate these parameters. These include: strip theory, slender-body theory. 

a semi-empirical approach and most recently. parametric identification. I am mainly 

concerned with last approach. 

The most recent approach to estimate the hydrodynamic parameters for a 

particular vehicle is the parametric identification technique. The relationship between the 

inputs and the outputs is assumed based on the nature of the dynamic system. This 

relationship is known as a mathematical model. The unknown parameters in that model 

are determined by minimizing the mean square of the error function, which is the 

difference between the output of the mathematical model and the measured output of the 

dynamic system. 

One of the advantages of parametric identification is that if it can be done in real 

time then one can have a tool for updating the dynamic model as the vehicle moves 
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through the water. Responses obtained using this model will be realistic and increase the 

chances of having better control of the vehicle. 

One main drawback for the classical identification techniques is that they require 

knowledge of the input and the output to the system. In case of a ship at sea, input 

measurements are difficult to carry out. A technique that depends on the knowledge of 

the output only is desirable in this case. 

Some parametric identification techniques have been used successfully in the area 

of ship motion such as equivalent linearization technique, auto-correlation function, 

random decrement technique, and neural networks technique [7,8,9,10]. 

In general, the hydrodynamic parameters of the URV are functions of forward 

speed and frequency. A method, which could estimate these parameters in real time and 

feed them into the dynamic model to update the vehicle state variables continuously with 

time, is desirable. Such a method would have to rely only on the measured response of 

the vehicle because it is difficult to get information about the environmental conditions 

while the vehicle is moving. A method that is based on the random decrement concept 

seems to be most suitable for such problems. 

The method for obtaining the random decrement signature applies an averaging 

technique that has been used successfully in the on-line failure detection and damping 

identification for linear systems [11,12]. Statistical properties obtained indicate that this 

signature is stable in fonn and scale. This marks it as a reliable method with very 

important potential in damping identification. 

The random decrement signature is the ensemble average of a large number of 

segments of the response of a system. Ea:h segment must start with the same initial 
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conditions. The random decrement is based on the fact that when the general response of 

a single-degree-of-freedom system is averaged, the contribution of its steady state 

component to the expected value of the response vanishes when the excitation function is 

a Gaussain white noise random process. Then, the expected value of the random response 

is represented only by the contribution of its transient component caused by the initial 

conditions [13.14]. 

In other words, when a Gaussain white noise random process excites a single­

degree-of-freedom system, the random decrement signature is identical in fonn to its free 

response and its auto-correlation function in the case of lightly damped motions. 

However. for nonlinear and multiple-degree-of-freedom systems in heavily damped 

motions which are excited by other excitations, it differs. Moreover. the obtained 

signatures for the systems are influenced by the excitations and this must be taken into 

account in the interpretation (12]. 

The method has been developed in connection with the identification of the 

rolling motion of a ship [14]. It is based on calculating the random decrement signature 

from the random response. It was shown that the random decrement signature agrees well 

with both the auto-correlation function and the free decay roll response. The method was 

extended to the case of the coupled sway and yaw motions for a ship [13] and to the case 

of two-degrees-of-freedom systems [IS]. 

Coupled heave and pitch motions for semi-submersible rigid bodies have been 

studied in several research studies [6.10,16.17,18]. The main parameters of the coupled 

heave and pitch motion equations are: the virtual mass of the body and its vinual moment 

of inertia, heave and pitch damping parameters, heave and pitch restoring parameters, the 
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exciting wave force and momen~ and the coupling parameters. Fourteen unknown 

parameters in these equations are to be detennined. The coupled heave and pitch 

equations can be nonnalized with respect to the total virtual mass and the virtual moment 

of in,!rtia of the body, respectively. In this case I am left with only twelve quantities to 

determine. 

The case of the coupled heave and pitch motions [15] showed that the random 

decrement signatures and the components of the correlation matrix satisfy the same 

equations describing the free decay motion of a heaving and pitching floating body. It has 

also been shown that both the correlation functions and the random decrement signatures 

yield good results for systems, which have weak damping. When damping is low, the 

random decrement signatures and the correlation functions provide good representation 

of the free decay motion of the system. However, for highly damped systems this ceases 

to be the case. High damping causes the transient solution to die very quickly and the 

random decrement signatures and the correlation functions become affected by the 

external excitation. 

A modification of the above mentioned approach has been developed. The results 

of the new technique are presented. This new approach enables us to use the random 

decrement signatures or the conelation functions to represent the free decay coupled 

heave and pitch motions of a moderately damped semi-submersible vehicle. The 

modified approach is used to show that the free decay coupled heave and pitch motions 

for an URV can be detennined using its measured stationary random response. 

The spectral densities of the coupled heave and pitch motions of a UR V /ship 

floating near the water surface in random waves are characterized by well separated 
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multiple peaks. One peak is usually centered around the natural frequency while the other 

is usually centered around the wave modal frequency. With the present state of 

knowledge in the area of ship motion, one can get rough estimates for the natural 

frequencies for heave and pitch motions. One can then use a band-pass filter centered 

around the estimated natural frequency to get a signal which is composed mainly of the 

transient response of the floating vehicle. The correlation functions and/or the random 

decrement signatures can be then calculated using this filtered signal. 

A robust technique has been developed in this dissertation to identify the 

damping, the restoring, and the coupling parameters in the equations describing the 

coupled heave and pitch motion for an URV working near the sea surface in random 

waves using only its measured random responses without a prior knowledge of the wave 

excitation. This has been achieved using a combination of the random decrement 

technique, a multiple-linear regression algorithm and a neural networks technique in one 

technique, which I called as uRDI.RNNT". 

In this chapter. I am going to present the literature survey for this work. This 

survey has been conducted and classified into two main tasks: dynamics of the URVs. 

and identification techniques. These tasks will be discussed in the following sections. 

2.2 Dynamics of Underwater Robotic Vehicles 

During the last three decades, the use of URVs has rapidly increased in different areas. 

This is because the use of URVs is no longer limited to the military field only. Reliability 

of operation for these vehicles has become an important factor in their development 
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because they work in a hostile ocean environment, which is unrestricted and 

unpredictable. Many problems have restricted the development of these vehicles such as 

maneuverability, and control strategies. This is due to the fact that the dynamic behavior 

of the URV is highly nonlinear and strongly coupled [3,4,5,6]. 

The advancing motion of the URV in water causes two major effects: accelerating 

the layer of the water surrounding the vehicle and introducing drag fon:es due to the 

effects of viscosity. The mass of the layer of the surrounding water that has been 

accelerated by the vehicle motion is known as the added mass. Added mass parameters 

are proportionality constants that relate each of the linear and angular accelerations to 

each hydrodynamic force and moment they generate [4]. Thus, the effective mass of the 

vehicle and its moment of inertia should be calculated based on the added mass tenns. 

The effect of the added mass terms will be significant in the case of high acceleration 

motion. 

Another result from the motion of the URV in the water is drag force, which 

results from the friction between the URV body and the surrounding water particles. This 

fon:e is proportional to the square of the corresponding relative motion [4). Forces and 

moments resulting from thruster dynamics, weight and buoyancy should be defined at the 

local coordinate systems. All of the mentioned forces should be included in the equations 

that describe the motion of the URV. 

Three approaches have been used to study the motion of UR V s: theoretical 

investigations, model experiments, and full-scale measurements. Theoretical 

developments in the area of URVs motion may be largely divided into two main 

categories: .analytical and empirical methods [16]. 
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The methods in the first category focus on finding numerical solutions to 

problems, which deal with linear and nonlinear. two-dimensional (2D) and three­

dimensional (30) surface flow around a floating body. Some of these methods used 

include strip theory, slender-body theory, and panel source method. 

Strip theory allows for good estimates of the vertical motions of conventional 

ships. It has proven more than satisfactory for the calculation of some ship motions [ 19]. 

Korvin Kroukovesky and Jacobs originally developed strip theory to calculate the 

coupled heave and pitch motions for a ship [17]. This theory considers the 

floating/submerged body as a cylinder having a series of transverse strips. Each strip is 

assumed to be a pan of infinite cylinder having a 20 flow. This assumption reduces the 

problem from a 30 flow problem to a 20. The response of each strip is easily calculated. 

The total response of the floating/submerged body is found by integrating the component 

reactions of all strips along the length of body. This method reduces the 3D flow problem 

to a 2D one with specific assumptions. One of these assumptions is zero-interaction 

between the flows at adjacent sections. However, there is a significant difference between 

20 and 30 flows. The assumption restricts the applicability of the strip theory. Moreover, 

the strip theory is still in a state of refinement due to the complexities of free surface 

effects. In fact, the practical limits of this method are poorly known [20]. 

Slender-body theory is another method that could be utilized to solve the 3D-flow 

problem around floating/submerged bodies [21 ]. It is used in the calculation of resistance 

and hydrodynamic forces of ships. The vehicle's beam and the draft are small compared 

to the length of the vehicle. The fluid actions are described by the unified slender-body 

theory presented by Newman in 1978 [22]. The comparison between the experiments and 
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the slender-body theory is difficult because the theory neglects the effects of control 

surfaces, propellers, and other appendages in the model, whereas experiments are usually 

conducted using full-form models with all appendages [7]. Moreover, the applications of 

slender-body theory are limited in ocean engineering. The URV may have many 

manipulators, links, fins, and thrusters. Therefore, this method will not be suitable for the 

calculation of the hydrodynamic forces for such vehicles. 

A panel source method is based on the approximation of the velocity potential 

flow of the submerged vehicle in waves. This approximation is obtained by distributing 

sources and nonnal dipoles on the submerged surface of the vehicle. An integral equation 

for the strength of these singularities is derived from the conesponding boundary 

conditions [19,20]. This method is suitable for the complicated structure shapes. 

However, it is considered to be a highly time-consuming method, where its accuracy is 

proportional to the square of the number of panels. 

The basic assumption underlying the second category is that the Froude-Kirylov 

hypothesis is valid [5,6,8]. According to this hypothesis, one can decompose the forces 

acting on an UR V advancing in waves into two types of forces: hydrodynamic forces and 

exciting forces. The equations of motion have been obtained using Newton's law of 

motion while considering the effect of the underwater cunents, torques, and cable 

traction only in the case of ROVs [6]. 

Hydrodynamic forces are produced as a result of the oscillations of the URV 

about a stationary or steadily advancing mean position below the calm free surface. 

Exciting forces are produced as a result of the pressure disttibution in waves assuming 

that URV is fixed at the mean position. The analysis is carried further by assuming that 
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the hydrodynamic forces are functions of the accelerations, velocities. and displacements 

of the URV. Thus, the Taylor or McLaurin expansions of these variables are used to 

express these forces mathematically. The parameters of the different acceleration, 

velocity, and displacement tenns are generally called added masses, damping parameters, 

and hydrostatic spring parameters, respectively. Different methods exist in the literature 

for the determination of these parameters [9]. The hydrostatic parameters are easily 

calculated by theory; however, the added masses and damping parameters are extremely 

difficult to calculate especially for large amplitudes and coupled motions. 

Abkowitz (1964) replaced the hydrodynamic forces and moments by their Taylor 

expansions [10] and Baiardi et al., approximated these forces and moments for low 

velocity motion by using McLaurin expansions [9]. Since, the use of Taylor or McLaurin 

expansions is limited only for the analytical functions, the hydrodynamic forces and 

moments are assumed to be of this nature at least for the linear tenn and third order term 

[10]. 

However, truncation of the higher order terms from these expansions diminishes 

the accuracy of the estimated values. In addition, the number of the parameters to be 

identified is large, which means a large time-consuming calculation procedure. 

Yuh and Choi et al. have developed a mathematical model describing the 

dynamics of the URV [4,5,23]. In this model, all the nonlinear dynamic tenns with 

velocity terms, terms associated with forces and moments exerted on the vehicle by fluid 

motion, drag forces and torque are included in one matrix. The inertia matrix includes the 

mass of rigid body plus the added mass and added inertia associated with the motion of 

rigid body in the fluid. There are two force vectors, one for gravity and buoyancy forces, 
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and the other represents the forces and torque generated by thruster forces. Unfortunately. 

there are poorly known hydrodynamic parameters among the parameters of the dynamic 

model. Therefore, a conventional control scheme cannot guarantee high performance in 

URVs motion control. 

When one or more manipulators are attached to the vehicle, it becomes a 

multiple-body system. In this case, a significant effect on the global motion of the vehicle 

will be introduced. Consequently, the dynamic modeling of such vehicles will be very 

complicated [3]. Uncertainty involved in the evaluation of the hydrodynamic parameters 

of URVs usually introduces the significant em>r in the final prediction results. 

A semi-empirical approach is based on the derivation of empirical models 

(relationships) for the hydrodynamic parameters of a tested-vehicle as functions of its 

attitude and motion. These models can be obtained using a multiple-linear regression 

algorithm for the measured values of these parameters conesponding to particular 

motions for such a vehicle. The measured values for these parameters can be detennined 

using a forced/captive model experiments for a particular vehicle such as planar motion 

mechanism (PMM), rotating arm technique, and marine dynamic test facility (MDTF). 

Nahan [16] used well-known empirical hydrodynamic relations, which use the 

geometrical shape of the vehicle to calculate the hydrodynamic parameters for 

streamlined underwater vehicles. The vehicle's body has been decomposed into its basic 

elements: hull, individual control surfaces, and propulsion system. Each element is 

modeled using well-known empirical hydrodynamic relations. The total hydrodynamic 

forces and moments are then considered as a summation of the element effects with some 

conections. The approach is valid only for streamlined underwater vehicles; however, 

18 



most of the working underwater vehicles have some complicated geometry. However, the 

correction factors that have been used as a result of the interference effects between 

different elements constituting the streamlined vehicle are difficult to obtain accurately. 

The idea of a numerical wave tank (computer codes) is currently being developed. 

Great progress is being achieved in this area of research. but the complexity of involved 

phenomena and the high degree of nonlinearly still constitute the main difficulty. Also, 

many difficulties remain in order to obtain practical tools to solve the URV design 

problems. In addition, numerical wave tank predictions do not indicate that 

Computational Fluid Dynamics (CFD) is actually replacing the physical towing tank. One 

of the computer codes which has been used in the simulation of offshore structures is 

FLOW-3D. 

Model experiments have been used extensively in applied sciences and 

engineering to provide a practical tool for validating the theoretical prediction of the 

behavior of the floating/submerged vehicles in a realistic sea. In addition, they are used to 

study new huH shapes and wave loads that a floating/submerged body will encounter for 

its optimum design. Model test results suffer from scale effects, which may be of great 

importance especially in cases where viscosity plays a major role [17]. 

FuH-scale tests are performed in limited cases due to the expense involved. Their 

use is usually limited to the conditions under which the tests have been carried out. Thus, 

the results of these tests do not provide excitation independent transfer functions, which 

can be used later for calculating a vehicle's response to different excitations [17]. 
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Currently, an important desire exists for research to develop a practical and 

reliable tool for the prediction of the URVs response in realistic seas without the 

drawbacks of the traditional methc;xls. This desire is the focus of this dissertation. 

2.3 Identification Techniques 

The existing techniques for the determination of the hydrodynamic parameters of UR V s 

are theoretical predictions, water tunnel and towing tank tests, and trial and error 

adjustment of model parameters. These techniques have drawbacks such as high cost, are 

time-consuming, and do not provide any mathematically defined optimum. 

In the last two decades, several studies have been conducted in the area of the 

identification techniques. Recently, system identification techniques have been applied to 

identify the hydrodynamic parameters included in the dynamic model describing the 

motion of the URV. The dynamic model is traditionally fonnulated using rigid body 

dynamics and Newton's law of motion. 

Parametric identification techniques have been used instead of the traditional 

methods to overcome the drawbacks from using them [18]. Many parameter 

identification techniques have been developed, of which most involve a minimized 

measure of the mean square error between the output of the predicted model and that 

from the measured data. 

Abkowitz [24] used a Kalman Filter approach to identify the hydrodynamic 

parameters in the maneuvering equations of the ship. Roberts et al. [25] developed a 

method for the prediction of the hydrodynamic parameters of a single-degree-of-freedom 

rolling equation from roll measurements in realistic sea. This method assumes the 
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propeny of the energy envelope process associated with the roll motion is a Markov 

process. Healey [26] applied both Batch Least Squares and Kalman Filters for system 

parameter identification to the experimental maneuvering responses of AUV to detect a 

change in AUV perfonnance. 

Roberts et al. [27] initiated an approach, based on the use of a combination of the 

Markov process theory and the statistical linearization technique. Roberts' approach does 

not require prior knowledge of the excitation data. It requires long records of data and the 

results are not always unique because of the large number of parameters to be 

detennined. 

The development of a robust identification technique, which uses the measured 

response at sea, does not require prior knowledge of wave excitation and deals only with 

a few unknown parameters, seems to be in order. Haddara [14] used the Markov process 

theory to extend the random decrement technique to the case of nonlinear roll motion. 

This technique is based on calculating the random decrement signature from the random 

response. It was shown that the random decrement signature agrees well with both the 

auto-correlation function and the free decay roll [14]. The random decrement signature 

can then be used to identify the parameters in the equation of motion without a need to 

know the input to the system. 

Originally, Cole [11,12] developed the random decrement technique empirically 

in 1968. The basic assumption underlying this method is that one can obtain the free 

response of a linear system excited by a zero mean, stationary, white, Gaussian random 

process by ensemble averaging of the selected segments of the system response. These 

segments are selected such that they all start with the same initial conditions 
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(displacement and velocity values). This value is then considered to be an initial 

condition for the free response. The random decrement signature has been used as an 

identification technique in the aerospace industry such as aircraft structures since 1968. It 

has been used successfully for the damping identification of linear structures. The 

random decrement signature has been also considered as the main basis of ·'Ibrahim Time 

Domain Model Vibration Testing Technique"[28]. 

During that time, a mathematical basis of random decrement signature did not 

exist to determine the accuracy of that technique in the estimation of damping ratio of a 

dynamic system. Vandiver et al. [29] developed a mathematical basis for the random 

decrement technique, and provided the relationship between the random decrement 

signature of a random process and its auto-correlation function. This relationship is for a 

linear time invariant system excited by a zero-mean, stationary, Gaussian white random 

process. in which the random decrement signature of the response is proportional to its 

auto-correlation function. Fortunately, most applications of the random decrement 

technique have been restricted with the assumption that the excitation was sufficiently 

broadband (Gaussian white noise random process). 

The random decrement technique has successfully extended to nonlinear dynamic 

systems, by Haddara [14]. The equations governing the random decrement signature for 

ship rolling motion in a random sea have been derived. These equations are used to 

identify the nonlinear rolling damping. This technique when combined with Standard 

Parametric Identification techniques (SPI) yields values for damping and restoring 

parameters without prior knowledge of the excitation. Haddara et al. [30] has conducted 

the identification of the parameters successfully and the method was tested using 
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simulations. model tests, and full-scale results. The method was shown to be successful 

and is used by a local company as the basis for design and production of stability 

continuous monitoring systems [31]. 

Haddara [32] has combined the random decrement technique and neural networks 

technique. as an identification technique of stability parameters in a random sea. C. Y. 

Liaw et al. [33] has applied the Genetic algorithm in the parametric identification of 

nonlinear-coupled roll and heave motions. In this algorithm, one can start the 

identification process with a population of a random set of parameters, or genes. Each set 

of these parameters is coded into binary digits, the chromosomes. Genetic algorithm can 

then manipulate chromosomes in order to find the fittest set of parameters with respect to 

the target function (free decay record). Any available Genetic algorithm computer 

program, for example GENESIS, can be used. This algorithm needs only a feedback from 

the searching space to be consistent, so that the solution yields better evaluations. 

Haddara et al. [IS] derived random decrement equations that describe the coupled 

heave-pitch motions for a ship sailing in random waves. It has been shown in that work 

that the random decrement signatures and the components of the correlation matrix 

satisfy the same equations describing the free decay motions of heaving and pitching for 

a ship. It has also been shown that both the correlation functions and the random 

decrement signatures yield good results for systems, which have weak damping. When 

the damping is low, the random decrement signature and the correlation function 

provides good representation of the free decay motion of the system. However, for highly 

damped systems this ceases to be the case. High damping causes the transient solution to 
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die very quickly and the random decrement signatures and the correlation functions 

become affected by the external excitation. 

Multiple-linear regression algorithms may be used to estimate the parameters in a 

linear mathematical model; however, for a nonlinear and coupled model with a large 

number of independent variables (regressors), the accuracy of the algorithm decreases. 

One of the limitations of using a multiple-regression algorithm is that there is no control 

over the values that the method allocates to the different parameters in the model. For a 

multiple-parameter model, there is some son of "energy sharing" between the different 

parameters. This sometimes results in a phenomena where an estimated value of a 

parameter is larger than it should be, while the estimated value of another parameter 

decreases to compensate for the increase in the value of the first parameter. 

The most recent technique in the area of the parametric identification is the use of 

an anificial neural network. In general, research on artificial neural network models has a 

long history. Development of detailed mathematical models began more than 50 years 

ago [34]. Neural networks try to mimic biological networks [35]. The present artificial 

neural networks are considered much simpler compared to the biological networks 

especially in the number of neurons, size, and construction complexity [36]. 

Current interest in the field of neural networks is due to the vast development of 

new network topologies and algorithms. Due to the rapid growth in the range of 

alternative neural network systems, it is necessary that these systems be classified. This 

classification is based on four characteristics: data fonnat, mode of operation, principal 

connection shape, and training process [36]. The network topology, neuron 

characteristics .. and training algorithms specify neural network systems [37]. Artificial 
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neural networks have been proven to be more successful as a robust tool for identification 

of discrete nonlinear control systems than conventional statistical techniques. This is 

because there are many more processing nodes, each with primary local connections. 

In an artificial neural network, the outputs can be fed back to the input layer to 

adapt its weights by using learning algorithms. However, the main current concern area 

in neural networks is to improve the training algorithms. Since the conventional 

techniques typically process all training data simultaneously before being used with new 

data, strong assumptions have been made concerning underlying distributions of the input 

elements [34]. On the contrary, these assumptions do not exist in the neural networks. 

This is because neural networks have a large number of simple processing elements 

operating in parallel (34]. 

Currently, neural networks are used in almost all branches of engineering. For 

example, in mechanical engineering, neural networks are used in the modeling of 

dynamic systems for both design and control strategies. The use of the conventional 

controllers has been restricted by the difficulties in the modeling of URV and the 

hazardous environment of the ocean. Moreover, the technology for land vehicles cannot 

be easily applied to URVs because the nature of the ocean environment is much more 

complicated than the lantl. environment [38]. Therefore, researchers are trying to develop 

an intelligent control strategy for effective operation of URVs. 

The emergence of neural networks as an effective learning system for a wide 

variety of applications has resulted in the use of these networks as learning controllers for 

dynamic systems. One of the most imponant advantages of using neural networks for 
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control applications is that the dynamics of URVs need not be completely known as a 

prior condition for controller design. 

Masri et al. [37] used a neural network in the identification of a nonlinearity in a 

single-degree..of-freedom dynamic system. However, Haddara et al. [15,39] used neural 

networks techniques successfully in the identification of the hydrodynamic parameters in 

the equations describing the coupled sway and yaw motions for a ship. In addition, 

Haddara suggested a method, which is used as a part of continuous monitoring system to 

provide information about instantaneous values of ship stability. This method has been 

made by using the neural network technique to identify stability parameters [32]. 

Lainiotis et al. [40] has developed a comparison between the Kalman Filter 

estimator and the neural network one. The conclusion from this comparison is that the 

neural network estimator requires only very little information about the dynamics of the 

system compared to that required by the Kalman Filter estimator. Nevertheless, the 

performance of the conventional statistical techniques depends basically on the 

information about the possible variations of the unknown parameters. The prediction of 

the ship position by using a neural network estimator is much better than that obtained by 

using a Kalman Filter estimator in cases where the underlying statistics and dynamics of 

the system are not completely known to the estimator. 

In order to compare the Adaptive Lainiotis Filter (ALF) and adaptive neural 

network estimator, three experiments in the ship position estimation were developed by 

Lainiotis et al. [41]. In the first experiment. it is supposed that the dynamic model of the 

system is partially known. In the second experiment, it is supposed that there is a 

different uncertainty scenario for the model. The result of the comparison from these 
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experiments is that both ALF and neural network estimators identify the actual model 

very well. It must be emphasized that the neural network estimator does not require any 

statistical or detenninistic information about the inputs to the model. In the third 

experiment, there is a more difficult uncertainty scenario. It has been found from this 

experiment that the adaptive neural network estimator provides a very reliable solution to 

the problem of ship motion estimation. This is because it provides accurate and consistent 

results despite the minimum information about the nature of the dynamic systems. 

The identification of the nonlinear dynamic systems has been done using two 

popular types of artificial neural networks. These types are feedforward neural networks 

(FNNs) and recurrent neural networks (RNNs). Recurrent neural networks are the 

networks with internal or external feedback in which the past system outputs are replaced 

by the past outputs of the network, while in FNNs, past system inputs and outputs are 

used as neural network inputs. Any dynamic system can be modeled using FNNs with at 

least one hidden layer to any level of accuracy [42]. 

However, Flood et al. [36] suggested that FNNs with at least two hidden layers 

would provide a greater flexibility in the modeling of any dynamic system. In the mean 

time Haddara et al. [13,15,35,39] obtained good results by using FNNs with one hidden 

layer in the modeling of dynamic systems. It is concluded that FNNs with one hidden 

layer is more efficent to model most dynamic systems. 

In conclusion, neural networks should be regarded as a complement part to 

conventional computing techniques. A neural network model reflects only the input­

output behavior of a dynamic system without regard to an internal physical mechanism 

that reproduces the outputs. The artificial neural network approach does not require any 
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assumptions about the internal structure of the system to be made [36]. The operating 

mechanism of the neural network can be easily understood by knowing the main 

concepts. construction elements and their functions in the network, and how these 

elements work simultaneously in the network. 

From this review, it is obvious that during the last two decades, researchers have 

used the random decrement technique several times. In this dissenation, I am going to 

combine the classical identification techniques with the neural networks technique. 
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Chapter 3 

Mathematical Formulation 

3.1 Equations of Motion 

In order to measure the coupled heave and pitch motions for an URV -model using the 

available dynamometer in the wave tank at Memorial University, a connection was made 

between the main body of the model and the dynamometer flange. This connection has a 

hydrofoil cross-section of area as shown in Figure (3.1). 

Figure 3:1 URV-Model Drawing 

The connection also provided a watertight environment for the transducers, which are 

used for measuring the coupled heave and pitch motions. The main body of the URV and 
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the hydrofoil part are designed to constitute one neutrally buoyant body taking into 

account the effect of the weight of the dynamometer flange. 

The dynamics of the URV·model in this case should take into account the effects 

arising from both the hydrofoil connection and the dynamometer. The equations of 

motion in this case are similar to those describing the motion of vehicles floating at the 

surface. The neutrally buoyant body in this case is considered as a semi-submersible 

vehicle. The equations of motion describing the coupled heave ~d pitch motions for that 

body, are given as [43]: 

(m +a33 )Z +bl3i +c33Z +a35S+b35S+c359 = F(t) (3.1) 

(I" +a55 )S+b~5S+c559+a53Z +b53Z +c53 Z = M(t) (3.2) 

where Z and 9 are the heave displacement and the pitch angle, respectively. A dot over 

the variable indicates differentiation with respect to time; lyy and m are the mass moment 

of inertia for the neutrally buoyant body and its mass, respectively; a33 and ass are the 

added mass for heaving and the added mass moment of inertia for pitching, respectively; 

b33 and bss are the damping parameters for heaving and pitching, respectively; c33 and c55 

are the restoring force parameters for heaving and pitching, respectively; a35, h]s. CJS, a53, 

bsJ, and C53 are coupling parameters. F(t) and M(t) are the wave exciting force and 

moment, respectively. In the derivation of equation (3.2), I have ignored second order 

terms similar to R.e.t, for small heave and pitch motion. 
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These equations are written with reference to a right-hand system of coordinate 

axes having its origin at the center of gravity of the URV and its x-axis in the longitudinal 

plane of symmetry of the URV with its positive direction pointing forward, as shown in 

Figure (3.2). 
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' ' ' ' ' ' ' ' 
Yo 
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~.: 

' R ' ' ' ' ' ' 
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yaw 

z 

~heave 

surge 

Figure 3.2 Vertical plane motion of a URV with respect to earth axes 

where R is the distance between the center of gravity of the model and the pitching pivot 

of the dynamometer flange. This distance is 0.41 m. 

Normalizing equations (3.1) and (3.2) with respect to the total virtual mass and 

total virtual mass moment of inertia of the neutral buoyant body, respectively and using 

the following change of variables: 
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y, z 
Y1 e 

Y(t) = = i. 
(3.3) 

YJ 

Y.a e 
equations (3.1) and (3.2) can be easily replaced by the following set of four first order 

differential equations [15]: 

Y(t) = D Y(t) + K(t) (3.4) 

where 

0 0 1 0 0 

0 0 0 1 0 F,(t) =-E1F(t)-E2M(t) 
(3.5) D= , K(t) = 

-dll -d32 -dJJ -d34 F, (t) 'M,(t)=-a1F(t)-cr2M(t) 

-d .. , -d .. 2 -d .. 3 -d..,. M,(t) 

where d33 and d31 are the damping force and the restoring force parameters for heave 

motion, respectively; d.w and d..2 are the damping moment and restoring moment 

parameters for pitch motion, respectively; d32, d34 and d. 1, d..J are the coupling parameters 

for heave and pitch equations, respectively; £1, £2, a 1, and a2 are constants. Detailed 

expressions for these parameters are given in Appendix A. 

The excitation vector, K(t) is assumed to be a Gaussain white noise random 

process whose components satisfy the following conditions [15]: 

E [~(t)] = 0 

i =1,4 (3.6) 

E [ki(t) kj(t+'t)] = 0 (i ~j) 
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where 'Vi , i =1, .... ,4, are the elements of the covariance matrix of the excitation vector, 

K(t). 8 and 't are the Dirac delta function and time lag, respectively. E [.] denotes the 

ensemble average of a variable. 

3.2 Conditional Probability Equation 

Assuming that the random process Y(t) is a Markov process, a Fokker-Pianck equation 

can be used to describe the conditional probability density function, P(Y ,tiY o) for the 

random process, Y(t) [14]: 

The solution of equation (3.7) subject to the initial condition 

" Lim,~ P(Y,t I Yo>= n cS(yj- Y;o) 
t=l 

yields the conditional probability density function which describes the Markov process, 

Y(t) completely. Here Yio. i =1 •.. .4 are the initial conditions for the heave and pitch 

displacements and heave and pitch rates. 

3.3 Random Decrement Equations 

A mathematical model that describes the coupled heave and pitch motions for a URV is 

formulated above. The next step is to use the concept of the random decrement to get rid 

of the explicit dependence of the force vector on time. This is accomplished by assuming 
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that the process. Y(t) is a multi-dimensional Markov process. Next I use the Fokker-

Planck equation to derive the equations. which describe the propagation of the response 

ensemble average vector as a function of time as well as the auto- and cross-correlation 

functions. 

The derivation of the propagation of the conditional mean values corresponding to 

the coupled heave and pitch motions given by equations (3.1) and (3.2) is based on the 

Fokker-Pianck equation (3.7). Multiplying equation (3.7) by the variables Yi • i =1, .. ,4 

each one at a time and integrating the whole equation over the range of the four variables, 

the equations describing the propagation of the conditional expected values of Yi(t), 

= 1. ..• 4 can be obtai ned as 

where 

-

" 
ill =-~dlj,u j 

I 

" il.a =-~d .. j,uj 
I 

/J; = I I I J Y; P(Y ,t I Y0 )dy, dyl dy3 dy" i = 1, .•. ,4 

Equations (3.8) to (3.11) can be written in a matrix form as 

M=DM 
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where 

M = [Jll J.l2 J13 J.l.a] T 

The random decrement signatures for the coupled heave and pitch motions are calculated 

based on the procedure given in [15]. In this procedure, one of the two-degrees~of-

freedom is chosen as a reference. In this work, the heave motion is chosen as the 

reference motion. 

The random decrement signatures for heave and pitch motions are calculated from 

the numerically generated random data as well as from the measured motion responses by 

dividing the response into a number of overlapping segments with equal length of time. 

The segments are chosen in such a way that each segment start with the same initial 

heave displacement, Zo and heave velocity. Half of these segments start with positive 

velocity (slope) and the other half stan with a negative velocity. The random decrement 

signatures for heave and pitch motions, J.lt and J.l1 are calculated as 

(3.13) 

(3.14) 

where 

t=ti at z.(t) =Zo and i,<r> > o 

t = tj at 
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The derivatives on the left hand side of equations (3.8), (3.9), (3.10), and (3.11) are 

calculated using numerical differentiation. 

3.4 Auto-and Cross-correlation Equations 

The derivation of the auto- and cross-correlation equations corresponding to the two-

degrees-of-freedom system given by equations (3.1) and (3.2) is based on the Fokker-

Planck equation (3.7). The Iauer equation is to be multiplied by Yi(t) yj(t+'t) Ps(Y), i 

=1, .. ,4 and j =1, .. ,4, each in time and integrating the whole equations over the range of 

the two variables. P5(Y) is the steady state probability function and it is independent of 

time and the initial condition Y 0 • The following equations are obtained: 

i =1,2 ,j = 1, ... ,4 (3.15) 

" R;i(r) =-~da R4 i(-r) i = 3,4 'j = 1, ... .4 (3.16) 
k=l 

where 

-
Rij('f')= fiJI Y;(t)yj(t+T)~(Y)dyldy2dy3dyo& i .j= 1, ... ,4 

Equations (3.15) and (3.16) have four sets (j = 1, .. ,4) of first order differential equations. I 

consider here only one set of these equations (j =1) in order to show that the auto- and 

cross-correlation functions are similar to those that describe the free-coupled heave and 

pitch motions for an URV. 
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(3.17) 

(3.18) 

" RJa =-I,dn Ru (3.19) 
t~l 

" R41 = -I,d.u Ru (3.20) 
k=l 

Equations (3.17) to (3.20) can be written in a matrix form as 

(3.21) 

where 

The auto- and cross-conelation functions are calculated from the random motion 

responses for the heave and pitch motions using the following expression: 

(3.22) 

where Np and 't are the total number of points in the both heaving and pitching responses, 

and the time lag, respectively. The derivatives on the left hand side of equations (3.17), 

(3.18), (3.19), and (3.20) are calculated using numerical differentiation. 
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Chapter4 

The Identification Technique 

4.1 Introduction 

The main objective of this work is to develop a new procedure for the identification of 

the parameters in the mathematical model describing the coupled heave and pitch 

motions for an URV sailing near the sea surface in random waves using only its 

measured responses. 

In this chapter, I introduce the developed technique "RDLRNNT'. This technique 

is based on the use of both multi-linear regression and neural networks algorithms. 

4.2 Identification Technique "RDLRNNT' 

Combining the random decrement equations (3.8), (3.9), (3.10) and (3.11), one can get 

the following equations: 

where 

jj, +d33{l1 +dJtJ.lt +G,(pz,{l2) =0 

il2 +d"{lz +d42J.l2 +Gl(p.,,U,) =0 

G, (J.l,_,{l2) = d32J.l2 + d34,U2 

G2(Jl1,{.&1) =d.,~ +d.~{.&, 
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This form shows that the average motion of the URV at sea is an oscillatory motion. with 

some damped natural frequency. It is shown in equations (4.1) and (4.2) that the random 

decrement signatures of the heave and pitch responses. J11 and J12. respectively satisfy the 

homogenous-coupled heave and pitch differential equations. 

Similarly, combining the auto- and cross-correlation equations (3.17), (3.18), 

(3.19) and (3.20), one can get the following equations: 

where 

R11 +d33 R11 +d31 Ru +H1(R11 ,R11 )=0 

R11 + d44 R11 +d~R21 + H 1 (R11 ,R11 ) = 0 

H, (Rza•Rzr) = dJzRza + d~Rz, 

H 2(Ru,R11 ) = d 41 R11 + d 43R11 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Similarly, as in the random decrement equations, the auto- and cross-correlation 

functions for the heave and pitch responses satisfy the homogenous-coupled heave and 

pitch differential equations as shown in equations (4.5) and (4.6). 

The damping and the restoring parameters in the above equations are identified 

using a multi-linear regression algorithm, while the coupling parameters are identified 

using a neural networks technique. Once the parameters in these equations have been 

identified, a heave-pitch motions model for the vehicle has been obtained. The success of 

this model depends on the accurate estimation of the motion. 
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The dynamic model is independent of the wave excitation. It can be used to 

predict the motion to any form of excitation. A flowchart for the developed technique is 

presented in Figure (4.1). 

Predicted 
Model 

Figure 4.1 Developed identification technique " RDLRNNT' 
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4.3 Multi-Linear Regression Algorithm 

An iterative technique is used to identify the values of the damping, restoring, and 

coupling parameters for an URV using equations (3.10), (3.11), (4.1), and (4.2) 

corresponding to the derived random decrement equations as well as using equations 

(3.19), (3.20), (4.5), and (4.6) corresponding to the derived auto- and cross--correlation 

functions. This technique is based on the use of multi-linear regression algorithm. Three 

statistical indices are used to ascertain the suitability of the regression model. These are 

the P-value, the R-sq, and the Variance Inflation Factor (VIF). The following criteria are 

selected and should be satisfied by a model in order that the model is accepted: a P-value 

< 0.05, an R-sq ~ 0.85 and a VIF < 10. These criteria are in agreement with criteria used 

in similar research [44,45,46,47]. 

First, the following two equations are used to detennine estimates of the damping 

and restoring parameters for the coupled heave and pitch motions using the random 

decrement equations: 

Jl1 = -dJJi-'3 -dJII-'t 

fl .. = -d~Jl. -d~l-'l 

(4.9) 

(4.10) 

Alternatively, the auto- and cross-correlation functions can also be used to determine the 

damping and restoring parameters using the following equations: 

(4.11) 
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(4.12) 

The parameters identified using equations, (4.9) and (4.10) should equal those identified 

using equations, (4.11) and (4.12). The derivatives on the left hand side of equations 

(4.9), and (4.10) or equations (4.11) and (4.12), are calculated using numerical 

differentiation. 

Values for the identified parameters d3a, d33, d..2. and d.w are obtained from either 

equations (4.9) and (4.10) or equations (4.11) and (4.12). These values are then 

substituted back in equations (4.1) and (4.2) or equations (4.5) and (4.6). Having 

determined the values of d3., d33, ~2• and d.w. equations (4.1) and (4.2) or equations (4.5) 

and (4.6) will have two more unknown functions, G1(Jl2 ,{l2 ) and G2 (Jl.,fl1 ) or 

H,(R2 .. R21 ) and H 2 (R11 ,R11 ), to be determined, respectively. These functions are then 

identified using a neural networks technique as described in the following section. 

4.4 Neural Networks Technique 

The concept behind developing artificial neural networks is to try to mimic the work of 

biological networks [35]. Lately, neural networks become much simpler in size, number 

of neurons and complexity of construction when compared with actual biological 

networks [36]. Artificial neural networks have been used successfully in function 

approximation and parametric identification [15]. 

The coupling parameters in the equations describing the coupled heave and pitch 

motions for an liR.V sailing ncar the sea surface in rcmdom waves are lumped in the two 
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equations {4.1) and (4.2) or equations (4.5) and (4.6), respectively. Continuous records of 

the measured coupled heave and pitch responses are used with equations (4.1) and (4.2) 

to identify the lumped functions using a neural networks technique. 

Two single hidden layer feedforward neural networks as shown in Figure (4.2), 

are used to identify the lumped function, G1 (Jl1 , {l'l) or H 1 (R11 • Rl1 ) • The input to each 

network is a vector consisting the random decrement signatures for the measured coupled 

heave and pitch motion responses and their derivatives with respect to time, and a bias. 

The hidden layer consists of several neurons. In this work, 11 neurons give a sufficient 

accuracy in the identification parameters. The output layer consists of one neuron, which 

The input to the jth neuron in the hidden layer is the weighted sum of the inputs to 

the network. This relationship is given as 

s 
Ai = L wii XJJ; j =1 ••.• 11 (4.13) 

1.=1 

where wij is the synaptic weight of the i'h neuron in the input layer to the jth neuron in the 

hidden layer; J&s is the bias and is equal to 1.0. The function Aj is acted upon by a 

sigmoidal function f, as follows: 

(4.14) 

The lumped function, G1 (Jl1 , {l1 ) or H 1 (R11 • Rl1) is obtained as the weighted sum of the 

outputs of the hidden layer neurons expressed as 

11 

G1(Jl1 ,ic2 ) = LPi xf(Ai) (4.15) 
i•l 
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where pj is the synaptic weight of neuron jtb in the hidden layer and A12 =1. 

Using an arbitrary starting set of weights, an initial value of the lumped function 

is obtained. The obtained value of that function is substituted back into equation (4.1) or 

equation ( 4.5), and the equation is integrated numerically using the Runge-Kutta 

algorithm. The calculated heave response, 1-'ka obtained from the integration is compared 

to the input heave response to the network, Jlim· Here, i is the number of the inputs to the 

neural network. k; m and n refer to the measured response and the obtained response 

using the network. respectively. The difference between these two responses is the error. 

The synaptic weights Wij and . Pj are then updated and the process is repeated in an 

iterative fashion until the error in the response is minimized. A simple flowchart for the 

neural network technique is shown in Figure (4.3). 

Similarly, the pitch lumped function, G2 (Jl.,{l1 )or H 2 (R11 ,R11 )can be identified 

using a similar but independent neural network. Then, the coupling parameters d32, d34, 

~ .. and <43 are identified using a multi-linear regression algorithm for equations (4.3) 

and (4.4) or equations (4.7) and (4.8). 

The reason for using a combination of multi-linear regression and neural networks 

is to have a more efficient identification technique. Using a multi-linear regression 

algorithm alone, produces unreliable estimates for the individual parameters which 

constitute the model. This has been observed by other researches (47] especially when the 

number of the parameters to be identified is large. In this case, although the whole 

identified model produces good estimates for the response, the individual values of the 

parameters may not be accurate. This happens because of the interaction that occurs 

between these parameters. 

44 



Using neural networks alone produces a reliable model because only one function 

is being identified. However. the iterations needed to optimize the solution require a huge 

amount of computer time. For these reasons, it has been found optimum to use a hybrid 

model, which combines the use of multi-linear regression. and neural networks. 

k =land j=2~HeaveNet. 

k = 2and j = 1 ~Pitch Net. 

•••••••• 

1 Ill lit 

Figure 4.2 Feedforward neural networks 
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ChapterS 

Model Validation 

5.1 Numerically Generated Data 

A numerical simulation procedure is an important stage in the development of a new 

prediction method. Carrying out a numerical simulation can provide a clear 

understanding about the relationship between the input and the output of a dynamic 

· system. Three main objectives are desired from conducting a numerical simulation in this 

work. First, checking the accuracy of the proposed method using a direct comparison 

between the actual ·values of the parameters and the predicted ones. Second, a series of 

complete numerical experiments can be conducted under controlled input environment. 

Finally, the estimated cost for a numerical simulation is much less than carrying out real 

experiments especially in the developing stage of a new method. 

The description and the main features of the designed UR V -model. and the 

associated different calculations are presented in Appendix B. The calculations for the 

hydrodynamic parameters, the wave exciting force and moment using a 20-strip theory 

are presented in Appendix C. The main objective behind the use of the strip theory in the 

designed stage of the URV-model is to ascertain the suitability of the available 

dynamometer for measuring the coupled heave and pitch motions for such model. I 

generate the numerical data for random motions taking into account the variation of both 

the damping levels in heave and pitch motions, and different values for the damped 

natural frequencies. 
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Both the effects of wide-band and narrow-band excitations on the identified 

parameters are investigated using the developed technique. In addition. the effect of using 

a band-pass filter centered near the damped natural frequencies for heave and pitch 

motions on the identified parameters is investigated. 

5.1.1 Case Studies 

Several case studies have been investigated in this work. Numerical random data for the 

case studies are generated for the coupled heave and pitch motions for an UR V sailing 

near the water surface in random waves using a mathematical model given as 

z + d 33 i. + d31 Z + d:we + d329 = F, <t> 

9+d429+d.w9+d43Z +d4,Z = M,(t) 

where ft(t) and Mt(t) are the nonnalized wave excitation force and moment. 

(5.1) 

(5.2) 

Several spectra have been used in the description of the ocean waves. These spectra are 

classified into two main categories: wide-band spectra and narrow-band spectra. The 

wide-band spectra are such as me. Bretschneider and Pierson-Moskowitz while the 

narrow-band spectra are such as JONSW AP. The Joint North Sea Wave Project team has 

derived the JONSW AP spectrum. This spectrum is an extension of the Pierson­

Moskowitz spectrum to account for a much sharper spectral peak [48]. 

Numerical random data for the coupled heave and pitch motions for the URV 

have been generated for both wide-band and narrow-band excitations. The main 
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objectives for generating such data are to ascertain the suitability of the developed 

technique in different forms of excitation and to test its dependency on the excitation 

form. A JONSW AP wave spectrum is used as a narrow-band spectrum. 

5.1.2 Wide-Band Excitations 

A wide-band excitation is a stationary random process whose spectral density function 

has significant values over a band of frequencies. which is approximately the same order 

of magnitude as the band center frequency [49]. 

As shown in equations (5.3) and (5.4), the normalized wave exciting force and 

moment, Ft(t) and M,(t), respectively, are composed of 70 sinusoidal components of 

constant amplitude of 0.07 mlsec2 and 0.15 radlsec2
, respectively. The phase angle, ~ 

between these components, is taken as a random variable unifonnly distributed between 0 

and 21t. The frequency band for the excitation is taken between 2.0 and 5.0 rad/sec. 

70 

F, (t) = ~ 0.07 sin(m;t + (/1;) (5.3) 
•=• 

70 

M r (I)=~ 0.15sin(CO;I +(/)) (5.4) 
•=I 

Numerically generated data for the coupled heave and pitch motions are obtained by 

integrating equations {5.1) and (5.2). The numerical integration of these equations has 

been conducted using the Runge-Kutta algorithm. A MATLAB program has been 

developed. Details of the program called "D.E. SOLVER" are given in Appendix F. The 

values of the damping, restoring, and coupling parameters in equations (5.3) and (5.4) 

used are given in Tables (5.1) and (5.2). 
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Ten case studies are used in this section to test the validity of the proposed 

identification technique. The purpose of the case studies is to investigate the effect of the 

different levels of damping and different values of the damped natural frequency on the 

ability of the random decrement signatures to represent the URV's free decay coupled 

heave and pitch motion. The first six cases are used to validate the technique for different 

levels of damping, while the last four cases are used to validate the technique for different 

values of the damped natural frequencies in the coupled heave and pitch motions. The 

identified parameters for these case studies are shown in Tables (5.1) and (5.2). Tables 

(5.3) and (5.4) show the error percentages for the identified parameters using the 

developed technique. 

Table S.l Comparison between the actual and the predicted parameters from the 
numerically generated data for heave motion (Wide-band) 

Heave Motion 

Case# Actual Prediction 

dll dn d:u d.w dll d32 dll d:w 

1 19.8356 0.0149 0.2500 0.0190 19.9301 0.0313 0.1492 0.0075 

2 19.8356 0.0149 0.3500 0.0190 19.9418 .. ().0034 0.3887 -0.0027 

3 19.8356 0.0149 0.5500 0.0190 20.1730 0.0027 0.5656 -0.0004 

4 19.8356 0.0149 0.7500 0.0190 20.1291 0.0666 0.6926 0.0227 

s 19.8356 0.0149 1.5000 0.0190 19.2921 0.2159 1.4809 -0.0525 

6 19.8356 0.0149 2.0000 0.0190 20.0685 0.6335 1.6432 0.1669 

7 10.0000 0.0056 0.2500 0.0016 9.9263 -0.0016 0.2641 -0.0014 

8 6.0000 0.0056 0.2500 0.0016 5.9142 0.0319 0.2283 -0.0084 

9 5.0000 0.0056 0.3000 0.0016 4.8842 0.0308 0.2822 -0.0368 

10 3.0000 0.0056 0.3000 0.0016 2.9938 -0.0073 0.2710 0.0069 
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Table S.l Comparison between the actual and the predicted parameters from the 
numerical generated data for pitch motion (Wide-band) 

Pitch Motion 

Case* Actual Prediction 

d.a. dal d.o d.w ct.. da2 d43 ...... 
1 0.0015 19.4143 0.0738 0.2900 0.1253 19.6725 0.0176 0.1863 

l 0.0015 19.4143 0.0738 0.4000 ·0.0086 19.5206 .0.0042 0.4554 

3 0.0015 19.4143 0.0738 0.6000 .0.0056 19.7674 ·0.0078 0.6352 

4 0.0015 19.4143 0.0738 0.8000 0.2997 19.7508 0.0857 0.7545 

s 0.0015 19.4143 0.0738 2.0000 0.5654 18.7744 .0.2089 1.9202 

6 0.0015 19.4143 0.0738 2.5000 2.1374 19.3307 0.5415 1.8572 

7 0.0105 9.0000 0.0738 0.2000 ·0.0310 9.0040 .0.0127 0.1725 

8 0.0105 4.0000 0.0738 0.2000 0.0776 4.0784 .0.0308 0.1749 

9 0.0105 3.5000 0.0738 0.1500 0.0040 3.6261 .0.0001 0.1479 

10 0.0105 1.5000 0;0738 0.1500 .0.0022 1.4306 ·0.0153 0.1449 

Table 5.3 Error percentages for heave parameters (Wide-band) 

Case Heave Motion 

II dll du dl.l d.w 

1 0.48 110 40.00 60 

l 0.54 77 11.00 0.04 

3 1.70 82 2.80 102 

4 1.48 347 7.60 80 

5 2.74 1349 1.30 376 

6 1.17 4151 17.80 778 

7 0.74 128 5.60 187 

8 1.43 470 8.70 625 

9 2.32 450 6.00 3487 

10 0.20 230 9.60 331 
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Table 5.4 Error percentages for pitch parameters (Wide-band) 

Case Pitch Motion 

# ..... d.u d.a_, d.a.a 
1 8253 1.33 76 35.70 

2 6733 0.55 106 13.80 

3 473 1.82 Ill 5.80 

4 19880 1.85 16 5.70 

s 37593 3.29 383 4.00 

' 142393 0.43 634 25.70 

7 395 0.04 117 13.75 

8 639 1.96 142 12.50 

9 62 3.60 1 1.40 

10 121 4.60 120 3.40 

5.1.3 Narrow-Band Excitations 

A narrow-band excitation is a stationary process whose spectral density function has 

significant values only for a band of frequencies whose width is small compared to the 

magnitude of the center frequency of the process [49]. The most recent wave spectrum to 

describe ocean waves is the JONSW AP spectrum. The narrow-band heave force and 

pitch moment excitations for the mathematical model are expressed by 

10 

F: (t) =I, a"; sin(m;t +;;) (5.5) 
i:l 

70 

M,(t) =I, a pi sin(mjt +') (5.6) 
i:zl 
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where 

alii = ~2 SIt (roi) ~ro 

a pi = ~2S P (ro;) ~(JJ 

(5.7) 

(5.8) 

where 3bi and 3pi are the individual sinusoidal heave force and pitch moment amplitudes. 

respectively; S11(ru.) and Sp(Oli) are the heaving force and the pitching moment power 

spectral density functions at of frequency of ru.. respectively; ~ro is the frequency 

increment. 

The phase difference between heave and a pitch motion was taken as a uniformly 

distributed random number between 0 and 2n. The frequency increment and the range to 

generate the JONSW AP wave excitations were taken as 0.0285 Hz and 2.0 Hz. 

respectively. 

Numerically generated random data for the coupled heave and pitch motions 

corresponding to a narrow-band excitations are obtained using the numerical integration 

of equations (5.1) and (5.2). The numerical integration of these equations has been 

conducted using a Runge-Kutta algorithm. 

Six case studies are used in this section to ascenain the validity of the proposed 

identification technique for a narrow-band wave excitation as shown in Tables (5.5) and 

(5.6). The purpose of using the case studies is to investigate the effect of different levels 

of damping and different values of the damped natural frequency on the ability of the 

random decrement signatures to represent the URV·s free decay coupled heave and pitch 

motion. The first three cases are used to validate the technique for different levels of 

damping, while the others are used to validate the technique for different values for the 
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damped natural frequencies in the coupled heave and pitch motions. The values of the 

predicted damping. restoring, and coupling parameters corresponding to each case are 

given in Tables (5.5) and (5.6). Table (5.7) shows the natural and the modal frequencies 

for the six case studies. Tables (5.8) and (5.9) show the error percentages for the 

identified parameters using the developed technique. 

Table 5.5 Comparison between the actual and tbe predicted parameters from the 
numerically generated data for heave motion (Narrow-band) 

Heave Motion 

Case I Actual Prediction 

d3a d32 dll d.J.a d3a d32 dl3 d].l 

r 19.8356 0.0149 0.2500 0.0190 19.8064 0.0012 0.2382 0.0009 

2' 19.8356 0.0149 0.3500 0.0190 19.9034 0.0290 0.3005 0.0086 

3' 19.8356 0.0149 0.5500 0.0190 20.3730 0.0252 0.4979 -0.0128 

7' 10.0000 0.0056 0.2500 0.0016 9.9871 -0.0001 0.2674 0.0018 

8' 6.()()()() 0.0056 0.2500 0.0016 5.9113 0.0266 0.2341 0.0121 

9' 5.()()()() 0.0056 0.3000 0.0016 4.8630 0.0971 0.3141 -0.0009 

Table 5.6 Comparison between the actual and the predicted parameters from the 
numerically generated data for pitch motion (Narrow-band) 

Pitch Motion 

Case# Actual Prediction 

d.aa d.a2 d.u d.w ..... d.a2 d.a.J d.w 

1' 0.0015 19.4143 0.0738 0.2900 0.0038 19.4023 0.0014 0.2835 

2' 0.0015 19.4143 0.0738 0.4000 0.0610 19.5408 0.0131 0.3499 

3' 0.0015 19.4143 0.0738 0.6000 0.0338 20.0447 -0.0221 0.5819 

7' 0.0105 9.0000 0.0738 0.2000 0.0002 9.0670 0.0003 0.1931 

8' 0.0105 5.0000 0.0738 0.2000 0.1079 4.8935 0.0238 0.1973 ,, 
0.0105 3.5000 0.0738 0.1500 0.1360 3.5204 -0.0370 0.2120 
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Table 5. 7 Damped natural frequencies for heave and pitch motions and 
the excitation modal frequency 

Case Heave Frequency Pitch Frequency Modal Frequency 
I# (Hz) (Hz) (Hz) 

1' 0.7080 0.7010 0.5000 

2' 0.7080 0.7010 0.5000 

3' 0.7080 0.7010 0.5000 

7' 0.5030 0.4770 0.5000 

8' 0.3890 0.3560 0.5000 

9' 0.3560 0.2970 0.5000 

Table 5.8 Error percentages for heave parameters (Narrow .. band) 

Case Heave Motion 

# d31 d3l d33 dlol 

1' 0.15 92 4.72 95 

2' 0.34 94.6 14 55 

3' 2.71 69.1 9.5 167 

7' 0.13 102 6.96 12 

8' 1.5 375 6.36 656 

9' 2.74 1634 4.7 156 

Table 5.9 Error percentages for pitch parameters (Narrow .. band) 

Case Pitch Motion 

# d .. I du d43 d.w 
1' 153 0.06 98 2.24 

2' 3966 0.65 82 12.50 

3' 2153 3.25 130 3.00 

7' 98 0.74 100 3.45 

8' 927 2.13 68 1.35 

9' 1195 0.58 150 41.00 
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Investigating the effect of using a band-pass filter centered around the estimated natural 

frequencies for heave and pitch motions on the identified parameters using the developed 

technique has been carried out using the previous six case studies. The values of the 

predicted damping. restoring. and coupling parameters corresponding to each case are 

given in Tables (5.10) and (5 .11). Tables (5.12) and (5.13) show the error percentages for 

the identified parameters using the developed technique. 

Table S.tO Comparison between the actual and the predicted parameters from the 
numerically generated data for heave motion with Oltering 

Heave Motion 

Case# Actual Prediction 

dlt d32 d.J..l d.J,I d]t d32 d.J..l d.J.a 

I' 19.8356 0.0149 0.2500 0.0190 19.6716 0.0019 0.1715 0.0009 

2' 19.8356 0.0149 0.3500 0.0190 19.6308 0.0068 0.3262 0.0056 

3' 19.8356 0.0149 0.5500 0.0190 19.7629 0.0054 0.4142 0.0050 

7' 10.0000 0.0056 0.2500 0.0016 9.9665 -0.0005 0.2436 0.0012 

8' 6.0000 0.0056 0.2500 0.0016 5.9372 -0.0037 0.2513 0.0025 

9' 5.0000 0.0056 0.3000 0.0016 4.8002 0.00074 0.2651 0.00051 
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Table 5.11 Comparison between the actual and the predicted parameters from the 
numerical generated data for pitch motion with filtering 

Case# 

I' 

l' 

3' 

7' 

8' 

9' 

Pitch Motion 

Actual Prediction 

cln d.t:z d.o dw ct.. a d.t:z d.o da.a 

0.0015 19.4143 0.0738 0.2900 0.0053 19.3539 0.0014 0.2024 

0.0015 19.4143 0.0738 0.4000 0.0208 19.1831 0.0090 0.3689 

0.0015 19.4143 0.0738 0.6000 0.0162 19.3893 0.0088 0.4577 

0.0105 9.0000 0.0738 0.2000 0.0008 9.0534 0.0024 0.1741 

0.0105 5.()()()() 0.0738 0.2000 0.0043 4.9934 0.0052 0.1714 

0.0105 3.5000 0.0738 0.1500 -0.0004 3.4647 -0.0053 0.1371 

Table 5.12 Error percentages for heave parameters with filtering 
(Narrow-band) 

Case Heave Motion 

# dlt d3% dll dJ,t 

1' 0.82 87 31.40 95 

2' 1.00 54 6.80 70 

3' 0.37 64 25.00 74 

7' 0.34 108 2.60 94 

8' 0.30 166 0.52 87 

9' 4.00 86 11.63 97 
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Table 5.13 Error percentages for pitch parameters with filtering 
(Narrow-band) 

Case -Pitch Motion 

# d.ea d.e2 d.a dw .. 253 0.30 98 30 

l' 1287 1.20 88 8 

3' 980 0.13 88 24 

7' 92 1.00 97 13 

8' 59 0.13 93 14 

9' 104 1.00 104 9 

5.2 Experimental Data 

The e~perimental program for this research is important to validate . the developed 

identification technique, RDLRNNT. A model of an URV has been designed and built for 

the purpose of this work. In this chapter, I describe the preparation of the UR V -model for 

carrying out the designed e~perimental program. Preparatory e~periments were 

conducted to adjust and estimate the longitudinal metacentric height and the natur.al 

frequencies for heave and pitch. In the following sections, I outline briefly the different 

aspects of the e~perimental program. 

In the derivation of the random decrement equations for the mathematical model 

for the coupled heave and pitch motions for a URV, the wave e~citation has been 

assumed Gaussian white noise random process. This is an ideal process that cannot be 

generated in the towing tank. Only a narrow-band wave excitation process (JONSW AP) 

has been used in the experimental work. 
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The suitability of the developed technique has been tested for both narrow-band 

and wide-band wave excitations using numerically generated random data for the coupled 

heave and pitch motions. The obtained results show that the developed technique is 

independent of the wave excitation. The identified parameters from the experimentally 

measured random data for a narrow-band wave excitation estimate the coupled heave and 

pitch motions with reasonable accuracy. 

5.2.1 URV-Model Preparation 

The main body of the UR V -model has been built from aluminum alloy in a local 

company in St. John's. This body consists of three main parts: a hemispherical nose. a 

cylindrical tube, and a conical tail. A hydrofoil connection has been built from a 

Styrofoam material at Memorial University in order to house the dynamometer flange as 

shown in Figure (5.1). The model was ballasted as shown in Figure (5.2). 

An inclining experiment was conducted in the deep tank at Memorial University. 

The deep tank has dimensions of 3.65 m x3.65 m x 3.65 m with a water depth of 3.35 m. 

The main objective of this experiment is to determine the value of the longitudinal 

metacentric height GML as shown in Figure (5.3). The trim angle corresponding to each 

movement is recorded. The corresponding trimming and righting moments are calculated. 

Using a linear regression algorithm, the value of GMt is determined as +0.0481 m. 

Knowing the values of the KB and the BML as calculated in Appendix 8, the 

value of the KG is determined as 0.1494 m from the base line of the model. Furthermore, 

the heave and pitch natural periods are determined. This was conducted by causing the 
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model initial displacements from its equilibrium position in both heave and pitch 

directions and release it to oscillate freely in calm water. Several periods for heave and 

pitch motions are recorded. The averages of these periods are calculated as 2.82 sec and 

6.1 sec for heave and pitch motions, respectively. 

Another experiment has been carried out to detennine the value of the KG. In 

addition, the moments of inertia about the transverse and longitudinal axes of the model 

passing through the center of gravity are determined. This has been conducted using a 

frame-table at Memorial University. The frame-table consists of two main frames: a fixed 

frame to the ground and the other is pivoted on the fixed one as shown in Figure (5.4). 

The value of the KG is determined as 0.1465 m from the base line of the model, which is 

close to that obtained from the inclining experiment. The moments of inertia about the 

transverse and the longitudinal axes of the model are detennined as 24.8 kg-m2 and 7.34 

kg-m2
, respectively. 
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Figure 5.1 URV-Model 

Figure 5.2 Ballasting of the URV-Model 
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Figure 5.3 Inclining experiment setup in the deep tank 

Figure 5.4 Setup of the URV -Model on the frame-table for pitching 
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5.2.2 Experimental Setup 

The URV-model that was used in the experimental work for this research is shown in 

Figure (5.1). It consists of four parts: a hemispherical nose of dimension 0.254 m 

diameter. a cylindrical hull of dimensions 0.254 m diameter x 1.225 m length. conical tail 

of dimensions 0.675 m length x 0.12 m diameter x 0.254 m diameter. and a hydrofoil 

connection of NACA0024 section x 0.75 m cord x 0.35 m height. The main hull of the 

model is made of aluminum alloy and the hydrofoil connection is made of Styrofoam 

material. The total mass of the model including the ballast weights is 104 kg. 

The experimental data was obtained by testing the UR V -model in the towing tank 

of Memorial University. The towing tank is approximately 58 m x 4.5 m x 3 m. A 

hydraulically operated, piston-type wavemaker made of aluminum with a watertight 

Teflon seal around its periphery is located at one end. An upright wave absorber is 

located at the other end. This construction is intended to absorb and dissipate the energy 

contained in the incident wave and maintain a minimum reflection coefficient. 

A towing carriage is installed on the rails of the tank. which is used in towing the 

URV-model with fixed forward speed. The carriage can attain a maximum speed of 5 

m/sec. The model is attached to the dynamometer that can measure the coupled heave 

and pitch motions within 0.40 m for heave displacement and ± 30° for pitch. 

The UR V -model is attached to the dynamometer flange such that heave and pitch 

are allowed while other motions are constrained see Figure (5.5). A dynamometer that 

measures the coupled heave and pitch motions for the UR V -model is shown in Figure 

(5.6). The attachment of the URV-model with the vertical dynamometer flange is shown 

in Figure (5.7) and Figure (5.8). A capacitance-type wave probe used to monitor the time 

63 



history of the wave profile as shown in Figure (5.9). Data from accelerometers, 

inclinometers and wave probes are digitized with a 16-channel Keithley System 500 

analog to digital converter and microcomputer. 

Figure 5.5 Experimental setup for the URV-Model in the towing tank 
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Figure 5.6 Dynamometer for measuring the motions of URV-Model 

Figure 5.7 Dynamometer flange with the URV-Model 
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Figure 5.8 Sketch of the dynamometer flange with the URV-Model 

Figure 5.9 Capacitance wave probe 
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5.2.3 Experimental Procedure 

Two main experiments carried out at the towing tank: calm water experiments and 

random wave experiments. The main objective for the calm water experiments to 

measure the free decay coupled heave an-i pitch motions, while the main objective for 

carrying out the random wave experiments to measure the random motion responses for 

the coupled heave and pitch motions when the URV-model excited using random waves. 

These measurements are needed to validate the identification technique. 

5.2.3.1 Calm Water Experiments 

The UR V -model attached to the dynamometer as shown in Figure (5.5). The carriage was 

located at the mid length of the towing tank in a stationary case state. Calm water 

experiments have been carried out in this situation to measure the free decay coupled 

heave and pitch motion responses for the URV-model. This has been ccnducted by giving 

the model an initial heave displacement and pitch angle. After the model initially 

inclined, it is then released and the free motion responses measured. The measured free 

decay coupled heave and pitch motion responses are shown in Figures (5.10) and (5.11), 

respectively. The random and free motion :-esponses measured using the available data 

acquisition system at the wave tank. 
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Figure 5.10 Free decay heave motion response 

Figure 5.11 Free decay pitch motion response 
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5.2.3.2 Random Wave Experiments 

The developed technique for the identification of the parameters in the equations 

describing the coupled heave and pitch motions for an UR V sailing near the water surface 

in random waves, requires only the measured responses at seas. Therefore, JONS\V AP 

wave spectra with different significant wave heights and different wave modal 

frequencies were used to excite the model in the tank. Three main groups were generated 

to validate the proposed identification technique. 

Tests were conducted with the model attached to the dynamometer's flange. Each 

JONSW AP spectrum in these groups has been generated for the stationary state case as 

well as for two forward towing speeds: 0.1 m/sec and 0.2 mlsec. Since the length of the 

wave tank is small compared to the required length of the collected data (400 sec with 

sampling rate of 20 Hz), a complete experimental run was conducted in two parts of 200 

sec long each for case when the model was towed with a speed of 0.1 mlsec and four 

parts of tOO sec long each when the towing speed of0.2 mlsec. 

5.2.4 Experimental Program 

The experimental program was designed to investigate the effects of different wave 

excitations and different towing speeds on the identification of the parameters in the 

motion equations. The JONSW AP wave spectrum was used in this work as a wave 

excitation source for the UR V ·model. The spectrum has two main characteristic 

parameters: significant wave height, Hs and wave modal frequency (wave peak 
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frequency). n. JONSW AP wave spectra with different significant wave heights and 

different wave modal frequencies were used to excite the model in the towing tank. 

The experimental program was been divided into three main groups as 

shown in Appendix L in Tables (L.l), (L.2), and (L.3). Each group has nine complete 

runs in which each run may have sub-runs based on the required total time for collecting 

data and both the length of the towing tank and the forward towing speed. These runs 

have been tested for three different JONSW AP spectra having constant significant wave 

heights: 0.07 m, 0.10 m, and 0.15 m, and different wave modal frequencies: 0.5 Hz, 0.6 

Hz, and 0.7 Hz. Since the pitch pivot was not located at the center of gravity of the 

model, the ranges of the experimental variables were taken small. This was considered in 

the experimental work to avoid the effect of the dynamometer flange. Therefore, each 

wave spectrum has been generated for the stationary state case as well as for two forward 

towing speeds: 0.1 m/sec and 0.2 m/sec. 

It is obvious in Table (L3) that a significant wave height of 0.13 m is used instead 

of 0.15 m for runs: 21-0, 26-0 I, and 27-02. The main reason for this is that when I tried 

to generate a JONSW AP spectrum corresponding to a significant wave height of 0.15 m 

and a wave modal frequency of 0.7 Hz. the wavemaker shut itself down several times. I 

realized that the significant wave height of 0.15 m couldn't be obtained with a frequency 

of 0.7 Hz, which is reasonably high. Therefore, I tried to generate a JONSWAP spectrum 

for another significant wave height of 0.13 m with the same modal frequency, and I 

succeeded. 

In order to carry out the experimental program for this work, three persons are 

needed. The first one should stay in the control room where an electronic control for the 
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waveboard is provided through an MrS closed-loop. servo-controlled system with error 

detection and compensation implemented through L VDT feedback loop. The second one 

is a person who controls the towing carriage. Finally, the third one is a person who 

controls the data acquisition system through a microcomputer which available on the 

towing carriage. 
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Chapter6 

Results and Discussions 

6.1 Numerical Results 

Numerical random data for the coupled heave and pitch motions for an URV sailing near 

the water surface in random waves have been generated for both wide-band excitation 

and narrow-band excitation data. The data have been analyzed using the developed 

identification technique, RDLRNNT. Numerically generated data for the coupled heave 

and pitch motion of an UR V are used initially to test the accuracy of the technique. 

Moreover, the effect of using a band-pass filter for the data on the identified parameters is 

funher investigated. 

6.1.1 Wide-Band Excitations 

Numerically generated data for the coupled heave and pitch motions are obtained using 

numerical integration of equations (5.1) and (5.2) using wide-band excitations given as in 

equations (5.3) and (5.4). 

Ten case studies were investigated and are presented in this section. The values of 

the actual damping, restoring, and coupling parameters in equations (5.1) and (5.2) used 

in the case studies are given in Tables (5.1) and (5.2). The first six cases are used to 

validate the technique for different levels of damping, while the last four cases are used to 

validate the technique for different values of the damped natural frequencies in the 
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coupled heave and pitch motions. The values of the predicted damping. restoring, and 

coupling parameters conesponding to each case are given in Tables (5.1) and (5.2). 

The coupling functions for heave and pitch motions, G1 (J.l2 , (J 2 ) and G2 (J.l1, (J1 ) 

are identified using the neural networks technique given in Chapter (4). Figures (6.1) and 

(6.2) show the predicted functions G1(JJ2 ,f.t2 ) and G2 (JJ.,f.t1) for Case (1) as functions 

of the average values of heave and pitch responses. The outputs of the neural networks 

for heave and pitch motions are shown in Figures (6.3) and (6.4), respectively. These 

figures show that the predicted heave and pitch motion responses using the neural 

networks are identical with the target inputs to the networks. This has been obtained by 

minimizing the mean square error between the simulated response and the calculated 

response using the neural networks algorithm. 
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6.1.1.1 Effect of the Damping Level 

The damping parameter of a dynamic system is an important parameter that characterizes 

the behavior of the system. The damping of an URV results from the friction between its 

surface and the surrounding water particles. This type of damping is called friction 

damping. 

With the present state of knowledge in the area of UR V /ship motions, no 

analytical method is available for the determination of the heave and pitch damping 

parameters for a floating vehicle sailing near the surface in random waves. Therefore, 

there is an essential need to develop a practical and reliable technique that can identify 

such parameter. Such a technique has been developed in this work and is dependent only 

on the measured response at sea. In order to test the validity of the proposed technique, 

random data have been generated numerically. The data were generated for a wide range 

of damping levels in the heave and pitch equations. These cases are represented by Case 

studies (1) to (6). 

The power spectral density functions corresponding to the random time series for 

the heave and pitch motions are calculated for the six case studies as shown in Figures 

(6.5) to (6.16). It is obvious from these figures that multiple peaks characterize the power 

spectral density functions. In addition, the maximum energy content in the motion spectra 

are distributed closely around the damped natural frequencies for heave and pitch 

motions. 
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Both the random decrement signatures and the auto.correlation functions have been 

calculated using numerically generated random data for the coupled heave and pitch 

motions using a MA TLAB program called "RD&AC_sim", see Appendix G. 

The random decrement signatures are compared with the predicted free responses 

using equations (5.1) and (5.2) for each case. The compari.~on is shown in Figures (H. I) 

to (H.12) for the six case studies as given in Appendix H. An example of the results is 

shown in Figures (6.17) to (6.20) for Cases ( 1) and (2). 
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Figure 6.17 Comparison between the random decrement signature 
and the free response for heave motion [Case # 1] 
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Figure 6.20 Comparison between the random decrement signature 
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As the damping increases, the agreement between the random decrement and the free 

response deteriorates as shown in Figures (H.9) and (H.lO), and Figures (H.ll) and 

(H.l2) for Cases (5) and (6), respectively. The reason behind this can be observed from 

the shape of the power spectral density of Case (6). Figures (6.15) and (6.16). These 

graphs show that the peak around the natural frequency becomes less pronounced than in 

Cases (1) to (4). The number of segments that can be used to construct the random 

decrement becomes small. This will cause the random decrement to be less 

representatives of the free motion. 

Another comparison has been conducted between the random decrement and the 

auto-correlation functions for the heave and pitch motions. The comparison is shown in 

Figures (1.1) to (1.12) for the six case studies as given in Appendix I. An example of the 

results is shown in Figures (6.21) to (6.24) for Cases {1) and (2). 
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Similarly, as the damping increases, the agreement between the random decrement 

signature and the auto-conelation function deteriorates. This result is obvious as shown 

in Figures (1.9) and (1.10), and Figures (1.11) and (1.12) for Cases: (5) and (6), 

respectively. 

I can conclude from the previous comparisons that as damping increases, the 

agreement between the random decrement signature and the free response, and that 

between the random decrement signature and the auto-correlation function, deteriorates. 

However, for moderately damped motions. excellent agreement has been obtained as 

shown in Cases (I) to (4). 

6.1.1.2 EITect of the Damped Natural Frequency 

The last four Case studies: (7) to (10), have been considered in this work to test the 

validity of the developed identification technique for different values of the damped 

natural frequencies in the equations describing the coupled heave and pitch motions for a 

URV. 

The power spectral density functions corresponding to the random time series for 

heave and pitch motions are calculated for the case studies as shown in Figures (6.25) to 

(6.32). Again, it is shown in these figures that multiple peaks characterize the power 

spectral density functions. In addition, the maximum energy contents in the motion 

spectra are distributed closely around the damped natural frequencies. 
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Figure 6.32 Power spectral density function for pitch motion [Case# 10] 
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The random decrement signatures are compared with the predicted free responses for 

each case study. The comparison is shown in Figures (H.l3) to (H.20) for the four cases 

as given in Appendix H. An example of the results is shown in Figures (6.33) to (6.36) 

for Cases (7) and (8). 
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Figure 6.33 Comparison between the random decrement signature 
and the free response for heave motion [Case # 7] 
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Figure 6.36 Comparison between the random decrement signature 
and the free response for pitch motion [ Case # 8 ] 

As the difference between the exciting frequency and the natural frequency increases, the 

agreement between the random decrement signature and the free response deteriorates. 

This result is clear in Figures (H.19) and (8.20) for Case (10). At resonance, the dynamic 

system vibrates at its own natural frequency. This will produce a better random 

decrement, since the energy around the natural frequency will be large. The random 

response will yield a large number of segments that can be used to construct the random 

decrement signature. 

Similarly. a comparison between the random decrement signatures and the auto-

conelation functions for the heave and pitch motions, has been conducted. The 

comparison is shown in Figures (1.13) to (1.20) as given in Appendix I. An example of 

the results is shoV~n in Figures (6.37) to (6.40) for Cases (7) and (8). 
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Again, as the difference between the exciting frequency and the natural frequency 

increases, the agreement between the random decrement signature and the auto-

correlation function deteriorates as shown in the figures corresponding to the pitch 

motion. The discrepancies in these figures show that the auto.correlation function ceases 

to represent the random decrement signature. 
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Figure 6.37 Comparison between the random decrement signature 
and the auto-correlation function for heave motion [Case # 7] 
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Figure 6.40 Comparison between the random decrement signature 
and the auto.conelation function for pitch motion [Case # 8] 

I can conclude from the previous comparisons that both the random decrement signature 

and the auto-correlation function describe the free motion of the vehicle for lightly and 

moderately damped motions. For heavily damped motions~ the use of the random 

decrement signature to represent the free motion is better than the use of the auto-

correlation function. This result is clearly obvious from the comparison of Figures (6.33) 

to (6.36) and Figures (6.37) to (6.40). 

6.1.1.3 Motion Prediction 

A comparison between the parameters used in the actual model and the predicted 

parameters for the ten case studies is shown in Tables (5.1) and (5.2). It is obvious from 
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these tables that the predicted damping and restoring parameters. d3a. d33. d-.2. and d..& for 

the heave and pitch motions are in close agreement with the actual values used in the 

generation of the numerical random motion responses. The agreement between the actual 

and the predicted values for the coupling parameters. d32. d34, d. a. and da3 is poor. 

However, the criterion should be the quality of motion predictions that the model 

is able to achieve. The predicted model was then used to generate the free and regular 

coupled heave and pitch motion responses using equations (5.1) and (5.2). The free 

motion responses have been obtained by replacing the R.H.S. of equations (5.1) and (5.2) 

with zeros while, the regular motion responses have been obtained using an excitation of 

the form 

F,(t) =0.2 sin (2.5 t+1r) 

M, (t) = 0.25 sin (2.5 t + n) 

(6.1) 

(6.2) 

A comparison of the motion predictions using the actual and the predicted models for the 

ten cases has been conducted. The comparison between the actual and the predicted free 

motion responses is shown in Figures (J.l) and (J.20) as presented in Appendix J. 

Figures (J.l) to {1.12) show the comparison between the predicted and the actual 

coupled free heave and pitch responses corresponding to Case studies: (1) to (6). It is 

shown in these figures that the agreement between the actual and the predicted responses 

is excellent. In general, the agreement between the predicted and the actual free heave 

responses. is better than that obtained for the predicted free pitch responses. 
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Figures (6.41) and (6.44) show the predicted and the actual free responses for 

heave and pitch, respectively corresponding to Cases (l) and (2). In these figures there 

are some disagreements between the responses for the last cycle in the signatures. 

As the damping level increases, the agreement between the actual and the 

predicted free responses is still acceptable even with heavily damped cases such as Case 

(6). This result shows that an accurate free motion prediction can be obtained using the 

developed identification technique, RDLRNNT . 
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Figure 6.41 Comparison between the simulated and the predicted free responses 
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Figure 6.44 Comparison between the simulated and the predicted free responses 
for pitch motion [Case # 2) 

The disagreement in Case (6) is mainly due to the high level of damping used in this case. 

This does not pose a major problem in the case of underwater vehicles. It is clear from 

results of the case studies that the measured damping parameters are smaller than those 

for which the random decrement ceases to be representative of the free motion of the 

vehicle. 

Figures (1.13) to (1.20) show the comparisons between the predicted and the 

actual coupled free heave and pitch responses corresponding to Case studies (7) to ( 1 0). 

An example of the results is shown in Figures (6.45) to (6.48) for Cases (7) and (8). It is 

clear that the agreement between the predicted and the actual free coupled heave and 

pitch responses is excellent for Case (7) as shown in Figures (1.13) and (1.14). 

As the difference between the exciting frequency and the natural frequency 

ineteases, the agreement deteriorates as shown in Figures (1.15) to (J.20). In addition. the 
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agreement for the predicted free heave responses is better than that obtained for the pitch 

responses. Moreover, the agreement for low damped natural frequencies is poor as shown 

in Figures (J.l9) and (J.20) for Case (10). 
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Figure 6.45 Comparison between the simulated and the predicted free responses 
for heave motion [Case # 7] 
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It is clear from these results that the agreement between the actual and the predicted 

values for the damping and the restoring parameters is excellent. The agreement is not as 

good for the coupling parameters. However. the criterion should be whether the model 

yields accurate motion predictions. The predicted model was then used to generate the 

regular coupled heave and pitch motion responses. Results for the comparison of the 

predicted and the actual regular responses for the ten case studies are shown in Figures 

(K.l) to (K.20) as presented in Appendix K. An example of the results is shown in 

Figures (6.49) to (6.52) for Cases (1) and (2). 

The agreement between the actual and the predicted regular responses is excellent 

for all case studies except for Cases (6) and (10), which represent a heavily damped 

system and a case in which the naturdl frequency is much small~r than lh~ exciting 
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frequency, respectively. This was expected since the agreement between the random 

decrement and the free motion is poor in these two cases. In addition, the agreement 

between the random decrement signature and the auto-correlation function is not good. 

Good agreement between the actual and the predicted regular responses for all case 

studies (lightly and moderately damped levels) except in Cases (6) and (10). Table (6.1) 

shows the error percentages for the predicted heave and pitch motion amplitudes. It is 

obvious in the previous table that the coupled heave and pitch motions can be predicted 

accurately using the developed technique with 10% error percentage. This result shows 

the utility of the developed technique in the identification of the hydrodynamic 

parameters in the equations describing the coupled heave and pitch motion for an URV 

sailing near the sea surface in random seas . 
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Figure 6.49 Comparison between the simulated and the predicted 
regular responses for heave motion [Case II 1] 
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Table 6.1 Error percentaps for the motion ampHtudes 

ease• Heave Motion Pitch Motion 

1 4.80 5.30 

2 0 0 

3 2.70 2.60 

4 2.00 4.80 

s 2.10 2.30 

6 7.30 9.30 

7 0.95 0 

8 7.80 0 

9 3.60 6.80 

10 0.85 9.20 
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6.1.2 Narrow-Band Excitations 

Numerically generated random data for the coupled heave and pitch motions 

corresponding to narrow-band excitations are obtained using numerical integration for 

equations (5.1) and (5.2). The numerical integration of these equations has been done 

using a Runge-Kutta algorithm. 

Case studies (1 ') to (6') are used in this section to ascertain the validity of the 

proposed identification technique for a narrow-band wave excitation. It has also been 

noticed that a good agreement between the random decrement signature and the free 

response is obtained when the natural frequency is near the wave modal frequency. In 

this case. the transient solution is strong. This result is clearly obvious in Figures (6.77) 

and (6.78) for Case (7'). 

The values of the predicted damping. restoring, and coupling parameters for Case 

(7') are very close to the actual values as shown in Tables (5.5) and (5.6). Similar 

agreement has been obtained between the actual free response and the predicted response 

using the developed technique as shown in Figures (6.95) and (6.96) for Case (7'). This 

result was expected since the damped natural frequency is close to the modal frequency 

of the excitation. In addition. the maximum energy content is distributed around the 

natural frequency. This result explains the appearance of t.1e disagreement in other cases 

where the modal frequency is far from the natural frequency. 
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6.1.2.1 Effect of the Damping Level 

It is obvious from Tables (5.5) and (5.6) that the first three Case studies: (1 ')to (3') were 

chosen similar to the first three cases in section (6.1.1). The main objective behind this is 

to test the effect of the identification technique on the fonn of the excitation. Numerically 

generated nmdom data for coupled heave and pitch motions are obtained using the actual 

values of the parameters given in Tables (5.5) and (5.6). 

The power spectral density functions for the heave and pitch motions are 

calculated for each case study as shown in Figures (6.53) to (6.58). Again, it can be seen 

from these figures that multiple peaks characterize the power spectral density functions. 

Two main peaks are significant: the first peak corresponds to the damped natural 

frequency, while the second corresponds to the modal frequency of the excitation. 

Moreover, the maximum energy contents in the motion spectra are distributed closely 

around the damped natural frequencies for heave and pitch motions. 
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The random decrement signatures have been obtained from the numerically generated 

random data for the coupled heave and pitch motions corresponding to the three case 

studies. In each case, a comparison between the random decrement and the free response 

has been made as shown in Figures (6.59) to {6.64). The main objective of this study is to 

investigate the utility of the developed technique for a wide range of damping levels for 

the coupled heave and pitch motions. 

As the damping level increases, the agreement between the obtained random 

decrement signature and the free motion response deteriorates as seen in Figures (6.63) 

and (6.64) for Case (3'). 
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Figure 6.59 Comparison between the random decrement signature 
and the free response for heave motion [Case # 1 '] 
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Another comparison has been made between the random decrement signatures and the 

auto-correlation functions for the heave and pitch motions. The comparison is shown in 

Figures (6.65) to (6. 70). Similarly, as the damping increases, the agreement between the 

random decrement signature and the auto-correlation function deteriorates. This result 

can be seen from Figures (6.69) and (6.70) for Case (3'). 
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6.1.2.2 Effect of the Damped Natural Frequency 

The last three cases in Tables (5.5) and (5.6): (7') to (9') are chosen similar to Cases: (7) 

to (9) in section (6.1.1). The main objective of this part of the study is to test the 

dependency of the identification technique on the excitation forms. Numerical random 

data for coupled heave and pitch motions are generated using the actual values of the 

parameters for Cases: (7') to (9') as given in Tables (5.5) and (5.6). 

The power spectral density functions corresponding to the random time series for 

the coupled heave and pitch motions are calculated for each case study as shown in 

Figures (6.71) to (6.76). It can be seen from these figures that well-separated peaks 

characterize the power spectral density functions. It is clear in these figures that the 

maximum energy content in the heave and pitch motion spectra are distributed around the 

damped natural frequencies in heave and pitch . 
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Figure 6.76 Power spectral density function for pitch motion [Case# 9'] 

A comparison between the random decrement and the free response has been made as 

shown in Figures {6.77) to {6.82). The main objective of studying these cases is to 

validate the developed technique for different values of the damped natural frequency. As 

the difference between the exciting frequency and the damped natural frequency 

increases, the agreement between the random decrement signature and the predicted free 

response deteriorates. The disagreement appears in the comparison for the pitch motion 

for Case (8') and become significant in both heave and pitch motions for Case (9') as 

shown in Figure (6.80) and Figures (6.81) and (6.82). respectively. 

From the above discussion it can seen that the agreement as the damping level 

increases and that as the difference between the exciting frequency and the natural 

frequency increases, that the accuracy of using the developed technique in the 

identification of the parameters decreases. 
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Also, a comparison between the random decrement signatures and the auto-correlation 

functions for the heave and pitch motions, has been made. The comparison is shown in 

Figures (6.83) to (6.88). As the damping increases, the agreement between the random 

decrement signature and the auto--correlation function deteriorates. This result is seen 

from Figures (6.84). (6.86), and (6.88) for pitch motion. The agreement is not as good for 

Case {9'), where the damped natural frequency is very low . 
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Figure 6.88 Comparison between the random decrement signature and 
the auto-correlation function for pitch motion [Case# 9') 

6.1.2.3 Motion Prediction 

Since there is some disagreements between the random decrement signature and the free 

response, and also between the random decrement signature and the auto-correlation 

function, the actual model and the predicted one in Tables (5.5) and (5.6) are substituted 

back in equations (5.1) and (5.2) to generate motion predictions. A comparison between 

the actual and the predicted flee response is conducted Results for this comparison are 

shown in Figures (6.89) to {6.94), and Figures (6.95) to (6.100) for Cases (1') to (3') and 

Cases (7') to (9'), respectively. 

Although the damping level increases, the agreement between the actual and the 

predicted fn:e responses is still excellent as shown in Figures (6.93) and (6.94) for Case 
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(3'). As the difference between the exciting frequency and the natural frequency 

increases, the agreement between the predicted free responses deteriorates as shown in 

Figures (6.99) and (6.100) for Case (9'). 

I can conclude from the above discussion that the accuracy of using the developed 

technique in the identification of the parameters in the equations describing the coupled 

heave and pitch motions for an URV is affected significantly with the increase in the 

difference between the exciting frequency and the natural frequency. 
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Figure 6.100 Comparison between the simulated and the predicted 
free responses for pitch motion [Case# 9'] 

6.1.2.4 Filtered Data 

It is obvious in the previous discussion that some discrepancies appeared in the obtained 

agreement for the motion predictions for both heavily damped motions and when the 

difference between the exciting frequency and the damped natural frequency is large. 

Therefore, it was suggested that I use a one-dimensional digital band-pass filter centered 

around the estimated natural frequencies for heave and pitch motions to get signals which 

were composed mainly of the transient responses of the floating vehicle. The filter has 

two main characterized vectors coefficients: A and Bas given below: 

Y =FILTER (B.A. X) (6.3) 
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where X andY are the original data vector and its filtered data vector. respectively. 

The values of the vectors A and B characterize the type of the filter and are known as the 

filter coefficients. These values are designed using a MATLAB Toolbox function called 

buner as follow: 

[ B, A) = buner ( n. (JJ" ) (6.4) 

where n and m.. are the order of the filter and the cutoff frequency, respectively. The 

cutoff frequency is that frequency where the magnitude response of the filter is Jli2. In 

the band-pass filter the cutoff frequency is given by: 

(6.5) 

The buner function designs an nih order digital band-pass Butterwonh filter and returns 

the filter coefficients in length 2n vectors Band A. The upper and lower frequencies of 

the filters were determined from the shapes of the power spectral density functions for the 

coupled heave and pitch motion spectra. 

The comparison between the parameters used in the actual model and the 

predicted parameters for the previous six case studies is shown in Tables (5.10) and 

(5.11). The comparison of these tables with Tables (5.5) and (5.6) shows the effect of 

using a band-pass filter on the parameters identified using the developed technique. The 

identified damping and restoring parameters from the filtered data are better than those 

obtained witho\lt filtering. I chose Cases (2') and (8') to discuss the results obtained using 
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the band-pass filter. Cases (2') and (8') represent a case of moderate damped motion and 

a case of low damped natural frequency motion, respectively. 

Results for the comparison between the random decrement signature and the 

predicted free response is shown in Figures (6.101) to (6.104). The agreement between 

the responses is better than that obtained without filtering. 

The comparison between the random decrement signature and the auto-correlation 

function is shown in Figures (6.105) to (6.108). It is obvious that the agreement between 

the random decrement and the auto-correlation function for the heave motion is better 

than that obtained for the pitch motion for Case (8'). This is because the damped natural 

frequency for pitch motion is relatively small compared to that for the heave frequency. 

This agreement is better also than that obtained without filtering. 

The actual model as well as the predicted one are used to generate the motion 

predictions using equations (5.1) and (5.2). The comparison between the actual free 

response and the predicted one is conducted and is shown in Figures (6.109) to (6.112). 

The agreement between the predicted free responses for Case (2') is excellent. 

The comparison for Case (8') is good. This is because the damped natural frequencies for 

Case (2') are higher than that used in Case (8'). Even in Case (8') itself, the agreement of 

the comparison for the heave motion is better than that obtained for the pitch motion 

since the damped natural frequency for the pitch motion is smaller than that for the heave 

motion. This result shows that the use of band-pass filter is more effective when the 

difference between the exciting frequency and the damped natural frequency is large. 

Despite these conclusions, the agra:ment obtained here with filtering around the 

damped natural frequencies for heave and pitch motions, is better than that obtained 

140 



without filtering. It is clear from the above results that the use of a band-pass filter for the 

coupled heave and pitch responses is important in the identification of the hydrodynamic 

parameters. Therefore, I recommend the use of this filter for the measured data. 

Moreover, it is obvious from Tables (5.3), (5.4), (5.8), (5.9), (5.12) and (5.13) that 

the error percentages for the coupling parameters are larger than correspond to the 

damping and restoring parameters. This result has been obtained directly from the visual 

comparison between the actual and the identified parameters. It seems that the coupling 

parameters are unimportant in this case since they did not change the solution. In general 

application, the identification technique has been developed for cases where the coupling 

parameters are important. 
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6.2 Experimental Results 

The experimental program was conducted using the model in the towing tank. Four 

measurements were collected for each individual run: towing speed, wave height, and the 

coupled heave and pitch random motion responses. Wave height represents the input to 

the UR V ·model, while the coupled heave and pitch motions represent the output. 

The power spectral density functions for the wave height and the coupled heave 

and pitch time series for each run have been obtained using the Fast Fourier Transform 

(FFI') algorithm. Results for the wave and the motion power spectral density functions 

for the experimental program are presented in Appendix M, and Appendix N and 

Appendix 0, respectively. The main objective for calculating the power spectral density 

functions for the input and the output time-series is to look at the energy distribution. In 
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addition, the power spectral density functions for the wave excitation (input) and the 

coupled heave and pitch motion spectra (outputs) are needed in the detennination of the 

correlation between the wave modal frequency and the damped natural frequencies for 

heave and pitch motions. 

The maximum energy content in the coupled heave and pitch motion spectra are 

distributed closely around the wave modal frequency of the excitation as shown in 

Appendix Nand Appendix 0 . It is clear from Appendices Nand 0 that multiple peaks 

characterize the motion power spectral density functions. In order to investigate the 

utility of the power spectral density functions, two experimental runs, 5-02 and 19-0, are 

considered. The power spectral density functions for the time series corresponding to the 

two runs are obtained as shown in Figures (6.113) to (6.118) . 
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Figure 6.118 Pitch power spectral density function [Run # 19-0] 

Two main peaks are significant in the motion spectra: one corresponds to the damped 

natural frequency while the other corresponds to the modal frequency of the wave 

excitation. In addition. Figures (6.115) and (6.118) have another peak characterizes the 

pitch motion spectra. This peak corresponds to the damped natural frequency for heave 

motion and is located between the previous two peaks. This shows the coupling between 

the heave and pitch motions in the experimentally measured data. 

It is obvious from Figures (6.113) to (6.118) that the maximum t~nergy content in 

these spectra is distributed around the modal frequency of the wave excitation. In order to 

obtain a random dectement signature that resembles the free response of the system, the 

motion response is filtered around the natural frequency of the UR V. 

Using a band-pass filter centered around the damped natural frequency. one can 

get a signal, which is composed of the transient ~sponse of the floating URV. Then, the 
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random decrement signature is calculated using the filtered signal for the coupled heave 

and pitch motions. 

Using the filtered random response, the damping, the restoring and the coupling 

parameters in the equations describing the coupled heave and pitch motions for an URV 

are identified using the technique developed in this work. The technique has been applied 

to the runs given in Table (6.2). The predicted parameters for these runs are shown in 

Tables (6.3) and (6.4). The predicted parameters are substituted back in equations (5.1) 

and {5.2) and the equations are integrated numerically using the Runge-Kutta algorithm 

to generate the predicted free response. 

Table 6.2 Experimental Parameten 

EXJterimenlal Parameters 

RUN# Towine Speed JONSWAP Wave Excitation 

U (m/sec) Hs(m) Q(Hz) 

1-0 0 0.07 0.5 

5-02 0.20 0.07 0.5 

9-02 0.20 0.07 0.7 

10.0 0 0.10 0.5 

12-0 0 0.10 0.7 

13-01 0.10 0.10 0.5 

16-02 0.20 0.10 0.6 

18-02 0.20 0.10 0.7 

19-0 0 0.15 0.5 

ll-0 0 0.13 0.7 

22-01 0.10 0.15 0.5 
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Table 6.3 The predicted parameten from the experimental data 
for heave motion 

Heave Motion 

RUN# Predicted Parameten 

dll d32 dll d34 

1-0 5.10570 0.12170 0.07900 0.12130 

5-02 4.93470 0.02520 0.08530 -0.02370 

9-02 4.83660 -0.00660 0.08490 -0.03510 

10.0 5.24100 0.08650 0.08450 -0.03150 

12-0 4.85530 0.01560 0.09360 0.08420 

13-01 5.07070 0.04360 0.07930 0.15750 

16-02 4.92830 -0.08250 0.10850 0.32640 

18-02 4.79630 0.00110 0.11970 0.00580 

19-0 5.15560 0.00270 0.10830 0.00690 

21-0 5.05250 0.00430 0.11450 0.04500 

22-01 5.19690 -0.00470 0.10400 0.03580 
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Table 6.4 The predicted parameten from the experimental data 
for pitch motion 

Pitch Motion 

RUN I# Predicted Parameters 

d.tt d.t2 d.a3 d.u 

1.0 0.00170 1.10860 0.00360 0.06860 

5-01 -0.000 13 0.99840 -0.00084 0.07820 

9-01 -0.00100 1.00390 0.02150 0.07090 

10.0 0.00064 1.03330 0.00086 0.06560 

11.0 0.00010 0.98880 0.00230 0.03870 

13-01 -0.00190 1.03900 -0.00470 0.04500 

16-81 0.00030 1.02930 0.01020 0.04530 

18-01 0.00210 0.98700 -0.01730 0.05680 

19-0 -0.00010 1.12410 -0.00017 0.05280 

11-0 0.0000 1 1.16390 0.00009 0.05810 

11.01 -0.00100 0.96810 ·0.00190 0.04010 
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The comparison between the obtained random decrement signature and the measured free 

motion response for those runs is shown in Figures (6.119) to (6.140). It is obvious from 

these figures that the agreement between the random decrement signatures and the 

measured free responses for heave and pitch motions is good especially for the first cycle 

of the signatures. 

The agreement for the heave motion is better than that obtained for the pitch 

motion. The results for the pitch motion seem to suffer a phase shift. In this case, the 

pitch damped natural frequency for the URV model is very small compared to the heave 

one. Moreover, the difference between the damped natural frequency for heave and the 

exciting frequency is smaller than the difference between the damped natural frequency 

for pitch and the exciting frequency. Therefore~ the obtained agreement for the heave 

motion is better than that obtained for the pitch motion. 
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Figure 6.123 Comparison between the random decrement and the measured 
free response for heave motion [Run # 9..02 ] 
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Figure 6.124 Comparison between the random decrement and the measured 
free response for pitch motion [Run ft 9-02 ] 
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Figure 6.125 Comparison between the random decrement and the measured 
free response for heave motion [Run# 10-0] 
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Figure 6.126 Comparison between the random decrement and the measured 
free response for pitch motion [Run # 10-0 ] 
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Figure 6.127 Comparison between the random decrement and the measured 
free response for heave motion [Run# 12-01 
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Figure 6.128 Comparison between the random decrement and the measured 
free response for pitch motion [Run #I 12·0 l 
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Figure 6.129 Comparison between the random decrement and the measured 
free response for heave motion [Run# 13-01 ) 
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Figure 6.131 Comparison between the random decrement and the measured 
free response for heave motion [Run # 16-02 ] 
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Figure 6.132 Comparison between the random decrement and the measured 
free response for pitch motion (Run # 16-02 ] 
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Figure 6.133 Comparison between the random decrement and the measured 
free response for heave motion [Run # 18-02 ] 
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Figure 6.134 Comparison between the random decrement and the measured 
free response for pitch motion [Run tl 18-02 ] 
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Figure 6.135 Comparison between the random decrement and the measured 
free response for heave motion [Run # 19-0 ] 
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Figure 6.136 Comparison between the random decrement and the measured 
free response for pitch motion [Run #I 19-0 ] 
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Figure 6.137 Comparison between the random decrement and the measured 
free response for heave motion [Run# 21-0] 
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Figure 6.138 Comparison between the random decrement and the measured 
free response for pitch motion [Run 121-0 ) 
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Figure 6.139 Comparison between the random decrement and the measured 
free response for heave motion [Run# 22-01] 
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Figure 6.140 Comparison between the random decrement and the measured 
free response for pitch motion [Run ft 22..01 ] 
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The previous figures show that the random decrement signature obtained from the filtered 

response agrees well with the measured free motion response for the coupled heave and 

pitch motions. This result emphasizes that the random decrement signature obtained from 

the filtered signal represents the free motion of an URV. 

The values of the identified damping, restoring, and coupling parameters for the 

experimental runs given in Table (6.2), are obtained using the developed technique. 

These parameters are given in Tables (6.3) and (6.4) for the heave and pitch motions, 

respectively. The values of the damping and restoring parameters d31 and d33. and <42 and 

du determined from the different runs are nearly the same, within the expected 

experimental etTOr. 

The agreement for the coupling parameters d32 and d34, and c41 and ~J is not as 

good. However. the criterion should be whether the identified model yields an accurate 

motion prediction. Therefore, the identified models were used to generate predictions of 

the free motion using equations (5.1) and (5.2). The predicted free motion responses have 

been obtained by setting the nonnalized excitation force and moment functions, ft(t) and 

Mt(t) to zero. 

The comparison between the free responses obtained using the proposed 

identification technique and the measured free responses for heave and pitch motions is 

shown in Figures (6.141) to (6.163). The agreement between the predicted free response 

and the measured response is excellent for the heave motion. The agreement for the pitch 

prediction is excellent except for a phase between the two responses. It should be noted 

that, in spite of the phase shift in the predicted pitch response, the prediction gives the 

amplitude and \:he frequency with reasonable accuracy. 
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The agreement in the previous figures shows that the identification technique 

suggested in this work can be used to identify the parameters in the equations describing 

the coupled heave and pitch motions for an URV sailing near the water surface in random 

waves using only the measured responses at sea. 
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Figure 6.141 Comparison between the measured and the predicted free responses 
for heave motion [ Run # 1-0 ] 
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Figure 6.143 Comparison between the measured and the predicted free responses 
for heave motion [ Run # 5-02 ] 
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Figure 6.144 Comparison between the measured and the predicted free responses 
for pitch motion [ Run ft 5-02 ] 
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Figure 6.145 Comparison between the measured and the predicted free responses 
for heave motion [ Run # 9-02 ] 
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Figure 6.146 Comparison between the measured and the predicted free responses 
for pitch motion [ Run It 9-02 ] 
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Figure 6.147 Comparison between the measured and the predicted free responses 
for heave motion [Run# 10-0] 
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Figure 6.148 Comparison between the measured and the predicted free responses 
for pitch motion [ Run I 10-0 ] 
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Figure 6.149 Comparison between the measured and the predicted free responses 
for heave motion [ Run It 12-0 ] 
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Figure 6.150 Comparison between the measured and the predicted free responses 
for pitch motion [ Run l# 12-0 1 
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Figure 6.151 Comparison between the measured and the predicted free responses 
for heave motion [Run# 13-01] 
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Figure 6.152 Comparison between the measured and the predicted free responses 
for pitch motion [ Run 4# 13-01 ] 
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Figure 6.153 Comparison between the measured and the predicted free responses 
for heave motion [Run# 16-02] 
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Figure 6.154 Comparison between the measured and the predicted fi= responses 
for pitch motion [ Run it 16-02 ] 
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for heave motion [ Run # 18-02 ] 
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Figure 6.156 Comparison between the measured and the predicted free responses 
for pitch motion [ Run # 18-02 ] 
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Figure 6.157 Comparison between the measured and the predicted free responses 
for heave motion [ Run # 19-0 ] 
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Figure 6.158 Comparison between the measured and the predicted free responses 
for pitch motion [ Run II 19-0 ] 
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Figure 6.159 Comparison between the measured and the predicted free responses 
for heave motion [Run# 21-0] 
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Figure 6.161 Comparison between the measured and the predicted free responses 
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Figure 6.162 Comparison between the measured and the predicted free responses 
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6.2.1 Effect of the Significant Wave Height, Wave 
Modal Frequency, and the Towing Speed 

The experimental program for the random wave experiments covered ranges of three 

parameters: the significant wave height, Hs. the wave modal frequency. Q, and the 

towing speed, U as shown in Appendix L. The main purpose of varying these parameters 

was to investigate the effect of different fonns of the wave excitations on the utility of the 

developed identification technique for use in different wave environments. 

The experimental runs given in Table (6.2) are chosen from the experimental 

program in order to show the effect of varying the three parameters on the utility of the 

developed technique in the identification of the hydrodynamic parameters for an UR V 

sailing near the sea surface in random waves. 

Two experimental runs: 1-0 and 10-0 are presented to investigate the effect of 

varying the significant wave height on the utility of the developed technique. These runs 

are carried out with different values of significant wave height: 0.07 m and 0.1 m, at 

constant wave modal frequency of 0.5 Hz in a stationary state case (U = 0 m/sec) as given 

in Table (6.2). 

The results for the identified parameters for runs: 1-0, 10-0, and 19-0 from the 

experimental measurements are given in Tables (6.3) and (6.4). It is clear from these 

tables that changes in the significant wave height do not affect the predicted parameters. 

The damped natural frequencies in heave and pitch motions are not affected as well. 

Moreover, the agreement between the random decrement signature and the predicted free 

response is good and does not change as the significant wave height varies. 
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The effect of varying of the wave modal frequency on the utility of the developed 

technique can be investigated using runs 10.0 and 12.0 or runs 16-02 and 18.02 or runs 

19-0 and 21-0. These runs are carried out with different wave modal frequencies at 

constant significant wave height and constant towing speed as given in Table (6.2). 

The results of the identified parameters for these runs from using both the 

experimental measurements are given in Tables (6.3) and (6.4). It is clear from these 

tables that as the wave modal frequency varies, the damping and the restoring parameters 

are almost constant. Moreover, the random decrement signatures agree well with the 

measured free responses. 

The effect of varying of the towing speed, U on the suitability of the developed 

technique can be ascertained using runs 1-0 and 5-02 or runs 10-0 and 13-01 or runs 19-0 

and 22-01. These runs are conducted with different speeds and constant wave modal 

frequencies and constant significant wave height as given in Table (6.2). The results 

show that as the towing speed varies, the identified damping and restoring parameters are 

almost constant. 

I can conclude from the above results that the developed identification technique 

provides values of the parameters, which are independent of the wave environment 

(significant wave height, wave modal frequency, and towing speed). It was shown above 

that the proposed identification technique is a suitable tool that can be used to identify the 

hydrodynamic parameters using the measured random coupled heave and pitch time 

series for an UR V sailing near the sea surface in random waves. 
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The filtered data corresponds to narrow-band excitations was used to detennine 

the random decrement signatures using the numerically generated data and 

experimentally measured data. The results obtained from the numerically generated data 

for the six case studies. It is clear that while the agreement between the random 

decrement signature and the free response is good for the first two cases, this agreement 

starts to deteriorate for Case (3' ). 

The agreement between the random decrement signature and the free response 

obtained from the experimental data is excellent. So, it is clear that for highly damped 

systems the random decrement signature cannot be used to represent the free response of 

the system. However. the method developed in this work is successful with moderately 

damped systems. As can be seen from Tables (5.1), (5.2), (5.5), (5.6). (5.10), and (5.11). 

the damping level used in Case (2) is almost four times the values found for the physical 

model from the experimental data. 

The random decrement signatures were used to identify the parameters in heave 

and pitch equations of motion using the developed technique. The parameters used in 

generating the numerical data as well as those predicted using the identification are 

shown in Tables (5.1), (5.2), (5.5). (5.6), (5.10), and (5.11). It is clear that there is 

variation in the values of the parameters while there is good agreement between the 

original and the predicted values for the direct parameters (d3., d33, ~2. and d.w). The 

agreement is poor for the coupling parameters (d32, d34, ~ .. and ~3). This may be 

attributed to errors associated with the application of the regression analysis to the 

functions Gt and G2. 
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In the actual application of this technique we suggest that the functions G 1 and G2 

be used directly to estimate the motion response. The reason we used the regression 

technique at this point is to try to find how successful the regression technique would be 

in estimating these parameters. If instead, we use the predicted G1 and G2 functions in the 

equations of motion and integrate the equations to estimate the response, we find that the 

predicted response agrees well with the response calculated from the original model. The 

same comparison was made for the results obtained using the experimental data. 
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Chapter7 

Conclusions and Future Work 

7.1 Conclusions 

In this work I have developed an identification technique that can be applied to detennine 

estimates for the damping. restoring. and coupling parameters in the coupled equations of 

heave and pitch motions for an underwater robotic vehicle sailing near the sea surface. 

The technique uses the response of the vehicle to random waves; however. it does not 

require prior knowledge of the excitation. This makes the technique a candidate for the 

continuous monitoring tool for the hydrodynamic parameters of these vehicles. 

One of the main features of this technique is to apply a band-pass filter. centered 

around the damped natural frequency of heave and pitch, to the random response of the 

vehicle. This way, I was able to obtained accurate estimates for the free motion of the 

vehicle using the random decrement signature and the correlation functions technique. 

To the best of the author's knowledge this approach has not been used before and 

represents a new methodology, which extends the applicability of the random decrement 

and the correlation function techniques to moderately damped motions. 

The following conclusions have been arrived 

l. Numerical simulations show that the level of damping and the difference between 

the natural frequencies and the wave modal frequency affects the accuracy of the 
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predictions of the hydrodynamic parameters in the equations of heave and pitch 

motions. 

2. The developed technique can accurately predict the hydrodynamic model of an 

UR V for both wide-band and narrow-band excitations. 

3. Using numerically generated data. we have shown that the method is valid for a 

damping level about four times that measured experimentally. The method does 

not apply for a damping level higher than this. However, these results indicate 

that the technique will be valid for realistic vehicles. 

4. The developed model was able to predict the hydrodynamic model of the vehicle 

in a range of different situations. The predictions are not affected by the 

significant wave height. the wave modal frequency, or the towing speed. 

The developed identification technique was shown to provide models, which can 

accurately predict the free and regular responses of the vehicle. The fact that this 

technique provides results in a very short processing time and that it only requires the 

knowledge of the measured responses of the vehicle makes it a strong candidate for a 

system to be used onboard to provide an up-to date model for the heave-pitch motion of 

the vehicle. Better control of the vehicle"s motion can be achieved if such a system is 

included in the control loop of the vehicle. This will be subject of a future study. 
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7.2 Future Work 

Although the developed identification technique has been validated using numerically 

generated data as well as experimental data. I stil1 need to investigate the reliability of the 

technique using full-scale measurements. 

The experimental work in this dissertation is conducted for an URV -model. which 

was not equipped with foreword planes, after planes, rudder, vertical stabilizer. and 

propeller. It is not expected that these appendages will affect the ability of the developed 

technique. However, this needs to be ascertained. 

Another way for the validation of the new technique is to use the Marine Dynamic 

Test Facility (MDTF) where the input and the output can be measured. The developed 

identification technique can be extended to the coupled sway and yaw motions for a UR V 

sailing near the sea surface. 
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AppendixB 

Design of the URV -Model 

1. Introduction 

A 1.4 scale model of the main body of a well-known vehicle, DOLPHIN (Deep Ocean 

Logging Platform with Hydrographic Instrumentation for Navigation), has been designed 

and built for the purpose of this work. I called the designed model URV-model. Before 

building the model, a numerical simulation has been conducted to estimate the motion of 

the model for regular hannonic waves. 

The model consists of four main parts: a hemispherical nose, cylindrical hull, 

conical tail, and a hydrofoil connection as shown in Figure (B.l), see Figure (5.8). The 

model is attached to the dynamometer flange using a vertical strut element, which is 

located insi~ a hydrofoil connection. 

I investigate two major calculations for the model in calm water: the weight 

calculation and buoyancy calculation. In the former the total weight distribution of the 

model and its center of gravity (KG and LCG) are calculated. In the latter the total 

buoyancy distribution and its center of buoyancy (KB and LCB) are calculated. These 

calculations are based on the premise that the main body of the UR V -model and the 

hydrofoil connection are designed to constitute one neutrally buoyant body taking into 

account the effect of the dynamometer flange. The main dimensions of the different pans 

of the model are given in the following sections. 
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The ballast calculation has been conducted based on the buoyancy and the weight 

calculations. Stability calculation is essentially needed to make sure that the attachment 

of the hydrofoil connection, the vertical dynamometer flange, and the main body of the 

URV-model, are statically stable in calm water. 

2. Weight Calculations 

The total weight of the UR V -model consists of four weights: the hemispherical nose, 

cylindrical hull, conical tail, and the hydrofoil connection. According to the geometrical 

shape of each part, the conesponding weight per unit length and its longitudinal center of 

gravity are calculated. Furthermore, the weight distribution of the model can be 

estimated. Finally the total weight of the model and its LCG are calculated. 

Aluminum alloys have many advantages compared to other materials. Some of 

these advantages are higher density, higher strength and good weldability. Therefore, it 

was suggested that the model be built from aluminum alloy which has the following 

properties: 

Mass per unit volume = 2640 kg/m3 

Weight per unit volume = 24.9 kN/m3 

2.1 Hydrofoil Connection Weight 

The installed dynamometer on the carriage of the wave tank measures the coupled heave 

and the pitch motions for a towed model. The dynamometer is attached to the model's 
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strut using a flange. The weight of this flange is nearly 73.6 N and is assumed to act as a 

concentrated load at the center of gravity of the model. 

The model is attached to the dynamometer flange through a vertical aluminum 

strut inside the hydrofoil connection. The dimensions of the strut are 0.63 m x 0.105 m x 

0.0254 m. The weight of the strut plate is approximately 38.6 N. This weight is assumed 

to be a concentrated load acting at the center of gravity of the model. The weight of the 

inner horizontal stiffener and top flange of the strut is 9.8 N. In addition, the weight of the 

Styrofoam material that has been used in the fabrication of the hydrofoil part is 54 N. 

2.2 Nose, Tube, and Tail Weight 

The hull weight of the model consists of three main parts: hemispherical nose, cylindrical 

hull, and conical tail. Assuming that the thickness of the shell plating of the model is 

0.0032 m, a hemispherical nose of diameter 0.244 m will be built as shown in Figure 

(B. I). The corresponding weight of this nose is 13 N, which has been assumed linearly 

distributed on a length of 0.125 m from the forward perpendicular (FP). 

The cylindrical hull of the model has dimensions of 1.225 m length. 0.251 m 

diameter, and 0.0032 m wall thickness, as shown in Figure (B. I). The weight of this tube 

is 75 N and is assumed to be a uniformly distributed over its entire length. In order to 

attach the strut to the main tube at the location of the LCG, another horizontal tube is 

inserted at that location. This tube has dimensions of 0.52 m length. 0.245 m diameter, 

and 0.0032 m wall thickness, and is assumed to be a uniformly distributed over its entire 

length. The corresponding weight of this tube is 34.3 N. 
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The conical tail of the UR V -model has dimensions of small and large bases of 

0.12 m and 0.244 m. respectively. The length of this part is 0.675 mas shown in Figure 

(B.1). The weight of the tail is 34.3 N, and is assumed to be a linearly distributed over its 

entire length. 

Therefore. based on the above information, it can be determined that the total hull 

weight of the model is 206.14 N. 

3. Buoyancy Calculations 

The buoyancy forces for the main body of the vehicle and the submerged part of the 

hydrofoil connection are calculated as given in the following sections. In addition. the 

longitudinal center of buoyancy for the neutral buoyant body is calculated. 

3.1 Hydrofoil Buoyancy 

An aluminum strut is located inside the hydrofoil body at its center of gravity. The cross 

section of the hydrofoil body is NACA0024 with a chord length of 0.75 m. The offsets of 

this section are shown in Table (B. I). The hydrofoil connection is submerged to a draft of 

0.20 m from its base line. The total buoyancy force corresponding to that draft for the 

hydrofoil connection is 189.7 N. Consequently, the assembly of dynamometer flange, the 

hydrofoil connection, and the main body of the URV-model constitutes one neutrally 

buoyant body. 
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3.2 Nose, Tube, and Tail Buoyancy 

The buoyancy forces resulting from the submerged volume of the nose. tube, and tail 

parts are 42.1 N. 609.2 N, and 189.7 N, respectively. Therefore. the total buoyancy force 

for the main body of the model is 841 N. The LCB is 0.109 m forward of amidships 

which has been calculated using equation (B.1) as 

I, Moment of volumes 
LCB=~~~--------­

I,Volumes 
(B. I) 

where p and g are the water density in kglm3 and the acceleration due to gravity in 

m/sec2
, respectively. 

Then, the total buoyancy for the main body of the model and the hydrofoil connection is 

1017.5 Nand is acting upward at venical center (KB) of0.166 m from the base line and 

at longitudinal center 0.109 m forward amidships. 

4. Ballast Calculations 

Since the resulting buC'yancy force from the submerged volume of the model is greater 

than its hull weight, a ballast weight is required. This weight is equal to the difference 

between the total buoyancy force and the hull weight of the model. Therefore, the 

required ballast mass for this model is 69.5 kg. Different materials can be used to ballast 

the model. One is lead, which has the following propenies: 
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Mass per unit volume = 11 400 kglm3 

Weight per unit volume =112 kN/m3 

Since the available weight of a lead block at the towing tank is 117.6 N, six blocks are 

required to provide the ballast weight. The total weight distribution of the model is shown 

in Figure (8.2). The area under the weight distribution represents the total weight of the 

model and the hydrofoil connection. The LCG for the model is 0.117 m forward 

amidships which has been calculated using equation (B.2). 
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5. Stability Calculations 

Since the hydrofoil connection and the vertical dynamometer flange are acting with the 

main body of the UR V -model, stability calculations are essential to make sure that the 

whole system is statically stable in calm water. In addition, the! designed URV-model is 

considered as a semi-submersible vehicle in this work. The stability calculations are 

carried out for the neutrally buoyant body taking into account the effect of the vertical 

dynamometer flange. 

Two main approaches are used in the assessment of the ship's survivability in a 

seaway: a static approach (quasi- static) and a dynamic one. The static approach is based 

on the minimum value that the longitudinal metacentric height (GM.J should have and 

the shape of the static stability curve (GZ-8). This approach is still being applied in the 

assessment of ship's stability criterion. I am going to use the static approach to assess the 

longitudinal stability of the neutral buoyant body with the vertical dynamometer flange. 

The water plane sectional area (AH) and its center (XH) as well as the longitudinal 

moment of the waterplane area about the center of area (10 for the hydrofoil section 

NACA 0024, are calculated with the aim of Table (8.1) as 

2 
AH =-xSxSUM 1 3 

X = SUM 2 

H SUM1 xS 
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where S is the longitudinal spacing for the stations and is equal to 0.025 m. X and Y u are 

the longitudinal distance of the stations from the leading edge of the section and the half-

breadth ordinate of hydrofoil section, respectively. Land SM are the lever distance from 

the mid-length of the section's chord (Station #15) and the Simpson's multiplier, 

respectively. 

The values of AH. XH, and IL are calculated as 0.09229 m2
, 0.059 m from Station 

#15, and 0.00285 m4
, respectively. The total buoyancy of the submerged body of the 

UR V -model corresponding to the designed draft as well as its vertical and longitudinal 

centers (KB and LCB) are calculated as 1022.94 N, 0.1666 m from the base line and 

0.109 m forward of amidships, respectively as shown in Table (B.2). 

LCB= SUM! 
SUM 1 

KB= SUM3 
SUM 1 

(8.6) 

(8.7) 

where Bi is the total buoyancy force of part ida inN. Xi and Yi are the longitudinal and the 

vertical centers of buoyancy of part ida from the after perpendicular (AP) and from the 

base line of the URV -model, respectively. 

The total weight of the URV-model as well as its venical and longitudinal centers 

(KG and LCG) are calculated as 1013.58 N, 0.1494 m from the base line and 0.116 m 

forward of amidships, respectively as shown in Table (B.3). 
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LCG= SUMJ 
SUM 1 

KG= SUM" 
SUM 1 

(8.8) 

(8.9) 

where Wi and Mi are the weight magnitude of part ilb and its mass, respectively. Xi and Yi 

are the longitudinal and the vertical centers of gravity of part ilb from the after 

perpendicular (AP) and from the base line of the URV .. model. respectively. 

It is obvious that the total buoyancy force obtained from Table (8.2) is not equal 

to the total weight of the model obtained from Table (B.3). This difference was expected 

since the measuring equipments for weights at the laboratory have some errors. When I 

measure the weight of a heavy object, the errors can be neglected. However, for a light 

object the error is significant. In our case, the individual weights are considered light 

objects. Therefore, when I measure the total weight of the URV .. model with the effect of 

the dynamometer flange, the weight was found as 104 kg, which is almost the same as 

obtained from the buoyancy calculations. Then, the values of the 8ML and the GMt are 

calculated as 0.0274 m and +0.0446 m, respectively as 

BM =!.b._ 
L V (8.10) 

GML =KB+BML -KG (8.11) 

where Vis the volume of the submerged body of the URV .. model at the designed draft. It 

is obvious that the value of GML is positive which means that the main body of the UR V-

model, the hydrofoil connection and the dynamometer flange constitut~ a stable system. 
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Table 8.1: NACA OOZ4 properties 

ST. X Yu SM YuxSM L YuXSMxL YuxSMxL1 

0 0.000 0.000 1 0.000 15 0.000 0.000 
l 0.025 0.045 4 0.179 14 2.501 35.016 
2 0.050 0.060 2 0.120 13 1.563 20.314 
3 0.075 0.070 4 0.281 12 3.372 40.459 
4 0.100 0.077 2 0.155 11 1.703 18.732 
5 0.125 0.083 4 0.330 10 3.300 33.005 
6 0.150 0.086 2 0.172 9 1.549 13.942 
7 0.175 0.088 4 0.353 8 2.828 22.622 
8 0.200 0.090 2 0.179 7 1.255 8.784 
9 0.225 0.090 4 0.360 6 2.161 12.964 
10 0.250 0.090 2 0.179 5 0.897 4.483 
11 0.275 0.089 4 0.355 4 1.418 5.673 
12 0.300 0.087 2 0.174 3 0.522 1.567 
13 0.325 0.085 4 0.340 2 0.680 1.359 
14 0.350 0.082 2 0.165 1 0.165 0.165 

IS 0.375 0.079 4 0.318 0 13.913 0.000 
16 0.400 0.076 2 0.152 1 0.152 0.152 
17 0.425 0.072 4 0.290 2 0.579 1.159 
18 0.450 0.068 2 0.137 3 0.411 1.232 
19 0.475 0.064 4 0.257 4 1.027 4.109 
20 0.500 0.060 2 0.119 5 0.597 2.985 
21 0.525 0.055 4 0.220 6 1.319 7.914 
22 0.550 0.050 2 0.100 7 0.700 4.898 
23 0.575 0.045 4 0.179 8 1.433 11.462 
24 0.600 0.039 2 0.079 9 0.708 6.374 
25 0.625 0.034 4 0.135 10 1.348 13.479 
26 0.650 0.028 2 0.056 11 0.612 6.733 
27 0.675 0.022 4 0.087 12 1.042 12.508 
28 0.700 0.015 2 0.031 13 0.400 5.194 
29 0.725 0.009 4 0.035 14 0.491 6.871 
30 0.750 0.002 1 0.002 15 0.028 0.425 

5.54 Net 10.847 304.581 

SUMt SUM2 13.065 SUM1 
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Table 8.2: Buoyancy details for tbe URV ·Model 

Item Item Name Bi Xi Yi BixXi BixYi 
It (N) (m) (m) (N.m) (N.m) 

1 Nose 42.08 1.947 0.127 81.92 5.34 
2 Main Tube 608.91 1.288 0.127 783.97 77.33 
3 Conical Tail 189.63 0.405 0.127 76.80 24.08 
4 lflydrofoil 182.32 1.122 0.349 204.47 63.63 

1022.94 1147.16 170.39 
SUM, SUMz SUM3 

Table 8.3: Weight details for tbe URV -Model 

Item Item Name M, w. x, y, w, xx. w.xv. 
# (kg) (N) (m) (m) (N.m) (N.m) 

l Conical Tail 3.79 37.20 0.405 0.127 15.07 4.72 
2 ~ose 1.40 13.73 1.947 0.127 26.74 1.74 
3 ~nTube 8.06 79.04 1.288 0.127 101.76 10.04 
4 nnerTube 3.34 32.75 1.122 0.127 36.73 4.16 
5 Horizontal Stiffener 0.67 6.59 1.122 0.127 7.39 0.84 
6 Venical Strut 4.74 46.49 1.122 0.275 52.14 12.78 
7 Upper Flange 0.32 3.10 1.122 1.000 3.48 3.10 
8 lydrofoil 4.50 44.15 1.122 0.604 49.51 26.66 
9 lallast (1) 1.05 10.33 1.900 0.065 19.63 0.67 
10 ,a) last (2) 56.40 553.28 1.125 0.050 622.44 27.66 
11 )allast (3) 9.98 97.95 1.122 0.130 109.85 12.73 
12 Ballast (4) 1.77 17.35 1.122 0.070 19.46 1.21 
13 D'Ytlamometer Flang_e 7.30 71.61 1.122 0.630 80.31 45.12 

103.32 1013..58 1144.51 151.45 
sUM. SUM2 SUM3 SUM.a 
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AppendixC 

Numerical Simulation for Regular Motions 

1. Introduction 

Since both the main body of the URV-model and the hydrofoil connection constitute a 

neutral body which is considered as a semi-submersible vehicle in this work. the regular 

coupled heave and pitch motions for that body is investigated using linear two­

dimensional strip theory as given in [17.43]. Korvin-Kroukovsk's and Jacobs developed 

this theory in 1957 [ 17] (The original reference of this work can be found in reference 

[17] pp. 487 'no. 121'). They studied the coupled heave and pitch motions for a ship in 

regular head seas. Several assumptions and limitations are considered in the numerical 

simulation in order to simplify the complex motion of the model. These assumptions can 

be classified into two main categories: assumptions related to the theory and others 

related to the problem [18,43,49]. The first category includes that the excitation is 

considered as regular hannonic waves, there is no interaction of the flows at the adjacent 

strips. the Froude-Krylov hypothesis is valid, other degrees of freedom are neglected, 

slender hull forms (i.e. the length is much greater than the beam or the draft and the beam 

is much less than the wavelength) are only considered, and the flow is irrotational and 

inviscid. The second category includes that a vehicle is assumed be studied in a head sea 

condition (J.L = 1800) and moderale forward speeds are assumed. 
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Based on the above assumptions, the approach of the linear strip theory has been 

implemented in this work by assuming that the model's hull consists of an infinite 

cylinder having a series of infinite transverse strips. The flow around each strip has been 

treated as 2D flow. However. in our case, the calculations of the hydrodynamic 

parameters are obtained for the neutrally buoyant body that constitutes the main body of 

the URV-model and the hydrofoil connection. The relative vertical motion of each strip is 

calculated based on the coupled heave and pitch motions. After calculating the response 

for each strip, the total motion response of the vehicle in coupled heave and pitch 

directions can be obtained from numerical integration of the different component 

reactions of all strips ~ong the vehicle length. 

2. Hydrodynamic Parameters Calculation 

The total vertical motion of each strip is assumed to consist of two components: the 

heave motion and the pitch motion. The hydrostatic, hydrodynamic, and inenial forces 

acting on each strip are described using equations (3.1) and (3.2). All other coefficients in 

equations (3.1) and (3.2) are defined in Appendix E. and they are calculated using the 

MATLAB program ··uRV-MOTION" as given in Appendix D. The hydrodynamic 

parameters are functions of the towing speed and the wave encounter frequency. 

Then, equations (3.1) and (3.2) can be solved using a MA TLAB toolbox or any 

other numerical integration algorithm such as the Runge-Kuna if the time series of the 

exciting forces time series are known. These forces depend on the hull geometry, towing 

speed, the encounter wave frequency. and the pressure distribution on the submerged 
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body of the model. Using 2D strip theory, these forces can be calculated for regular 

harmonic wave excitation [17]. 

3. Exciting Forces Calculation 

All floating vehicles near the water surface are subjected to wave exciting forces and 

moments. The determination of these forces and moments has a significant importance at 

the design stage for such vehicles. At present there is no reliable procedure for 

calculating the interaction between the wave and the vehicle [49]. Numerous studies have 

been conducted in this area. Some of them are based on linear wave theory and Morison's 

equation where the wave forces are described as comprised of inertia and drag force 

component, and others are based on the strip theory [ 17,43,50,51 ]. Several methods to 

estimate the inertia and the drag coefficients have been developed. 

For the purpose of the numerical simulation in the design stage for the URV­

model, the regular wave forces acting on the model are calculated using linear 20 strip 

theory. The exciting forces consist of two main components: a Froude-Krylov component 

and a diffraction one [8,52]. The Froude-Krylov component can be obtained by 

integrating the pressure field acting on the submerged body of the model along the 

vehicle's length. The diffraction component, which is related to the scattering of the 

incident wave field, is associated with the disturbance introduced to the wave field by the 

presence of the vehicle [8,52~3]. In addition, the diffraction component is of minor 

importance compared with the froude-Krylov one in the case of small structures [52]. 

However, for large structures such as Hibernia GBS, the diffraction component is 

significant. The Froude-Krylov component can be calculated in regular waves. 
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Regular waves are theoretical constructs, which never occur in the real ocean 

environment. An understanding of their nature is one of the helpful tools in the study of 

seakeeping. A train of regular waves can be produced in wave towing tanks and fonn the 

basis of many seakeeping model experiments. The theory of irregular waves that occur in 

nature. is based on the assumption that superimposing a large number of regular waves 

can represent them [43]. 

The assumption that the encountered wave is regular and harmonic allows us to 

express the instantaneous depression of the water surface below the mean level, ~w as 

follows: 

(C. I) 

where l;a and me are the wave amplitude in metres, and the encountered wave frequency 

in rad /sec, respectively. L, k, and tare the lever of a particular strip from LCG in metre, 

wave number, and time in sec, respectively. Since Lis equal to zero at the LCG of the 

model. the depression of the sea surface at the LCO becomes: 

,.., = _,o sin(wort) 

Equations (3.1) and (3.2) can be rewritten in a complex fonn as follows [17]: 

where 

PZ+QS=F 

SS+RZ =M 

P = -(m +a33)aJor 
2 +b,, (J}e; +ell; 

Q =-au (J}e 2 + bu (J)e i + C3s; 
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By manipulating equations (C.3) and (C.4), the heave and pitch motion responses can be 

calculated as follows: 

- MQ-FS Z=----
QR-PS 

- FR-MP 
9=--­

QR-PS 

(C.5) 

(C.6) 

Substituting the above complex fonns into equations (C.S) and (C.6), the final solution 

of the second order diffrential equations of motion can be obtained as follows: 

(C.7) 

(C.8) 

where Zo and 9 0 are the heave, and the pitch amplitudes, respectively. 8 and£ are the 

heave and pitch phase angles, respectively. The wave profile, the coupled heave and pitch 

responses, the exciting force and the exciting moment acting on the model are calculated 

and shown in Figures (C.l) to (C.S) as 
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Figure C.l: Regular wave profile 
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Figure C.2: Heave motion in regular waves 

213 



0.04 

~ 
tU 0.02 
.:. 
(J) 
"'C 

-~ 0 a 
E 
<( 
~ 

~ -0 .02 

-0.04 

150 

100 

~ 50 
(J) 
"'C 

-~ a 0 E 
<( 
Q) 
v .... 

-50 0 
~ 

-100 

-150 

Regular Pitch Motion Response 

4 6 8 10 
Time [sec] 

Figure C.3: Pitch motion in regular waves 
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Figure C.4: Exciting force in regular waves 
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Exciting Moment Time Series 
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figure C.S: Exciting moment in regular waves 
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AppendixD 

MA TLAB Program: URV-Motion 

clear; 
t£=300.0; 
to=O.O; 
dt=0.02; 
nt=(tf-to)/dt; 
fo=0.7; 
Hl3=0.13; 
ff=2.0*fo; 
nf=70; 
df=ff/nf; 
nss=82; 
pi=4*atan(l); 
u=0.2; 
g=9.81; 
meu=pi; 

for k=l:nf+l 
fw(k)=(k-l)•df; 
ww{k)=2•pi*fw(k); 
we(k)=ww(k)•(l-ww(k)•u•cos(meu)/g); 
fe(k)=we(k}/2/pi; 

end 
ssw=fw(2)-fw(l); 
sse=fe(2)-fe(l); 

sega=0.07; 
segb=0.09; 
gama=3.3; 

for k=l:nf+l 
if fw{k) <= fo 

seg=sega; 
else 

seg=segb; 
end 
Al=5*Hl3A2*foA4/(16*gamaA(l/311; 
Bl=5*foA4/4; 
a2=exp(-l*(fw(k)-fo)A2/2/segA2/foA2); 
if fw(k)==O 

sw(ki=O; 
se(k)=O; 

else 
sw(k)=(Al/(fw(k))A5)*expC-Bl/(fw(k))A4)*gamaAa2; 
se(k)=sw(k)/sqrt(l-4*fe(k)*u*cos(meu)/g); 

end 
alw(k)=sqrt{2*sw(k)*ssw); 
ale(k)=sqrt(2*se(k)*sse); 
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end 

for k=l:nf+l 
aw(k,l)=fw(k); 
aw(k,2)=alw(k); 

end 

for k=l:nf+l 
ae(k,l)=fe(k); 
ae(k,2)=ale(k); 

end 

oddd=1:2:nf-l; 
even=0:2:nf+l; 

for k=l:nf+l 
if k==l 

sms(k)=l; 
elseif k==nf+l 

sms(k)=l; 
elseif k==even((k-1)/2+1) 

sms(k)=4; 
elseif k==oddd(k/2) 

sms(k)=2; 
end 

end 

ro=lOOO; 
sl=0.025; 

load brd; 
load sm; 
load l; 
load tn; 
l=l'; 
sm=sm'; 

for k=l:nf+l 

prodl=O.O; 
prod2=0.0; 
for k2=l:nss 

snb(k2)=(brd(k2))A2•pi/4; 
anb(k2)=ro•snb(k2); 
prodl=prodl+anb(k2)•sm(k2); 
prod2=prod2+(l(k2))A2*anb(k2)*sm(k2); 

end 

Az(k)=3*sl•prodl/8; 
Ayy(k)=3•sl•prod2/8; 

end 

load brdh; 

for k2=l:nss 
tnh(k2)=0.25; 
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snh(k2)=brdh(k2)*tnh(k2); 
end 

xw1=[0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0}; 
zwl=[O 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.6 4.4}; 
zw11=[0 0.4 0.8 1.2 1.4 2.0 2.4 2.8 3.6 4.4); 

for k=l:nf+1 
prod1=0.0; 
prod2=0.0; 
prodtl=O.O; 
prodt2=0.0; 
for k2=l:nss 

termlhCk2,k)=(we(k))A2*brdhCk2)/2/g; 
rlh(k2,k)=brdh(k2)/tnh(k2); 
if brdh(k21==0 

sach(k2)=0.0; 
else 

sach(k2)=snh(k2)/(brdh(k2)*tnh(k2)); 
end 

if sach(k2)>= 1.0 
sach(k2)=1.0; 

elseif sach(k2)< 0.5 
sach(k2)=0.5; 

end 

xi=termlh(k2,k); 
yi=rlh(k2,k); 
if xi==O.O & yi==O.O 

Cx(k2,k)=O.O; 
elseif sach(k2)>=0.5 & sach(k2)<=0.6 

load chSa; 
load ch6a; 
chSa=chSa I ; 

ch6a=ch6a 1 
; 

zila(k2)=interp2(xwl,zw1,ch5a,xi,yi); 
zi2a(k2)=interp2(xw1.zw1,ch6a,xi,yi); 
zia(k2)=zila(k2)+((zi2aCk2)-zi1aCk2})/0.l)*(sach(k2)-0.5); 
CxCk2,k)=zia(k2); 

elseif sach(k2)>=0.6 & sach(k2)<=0.7 
load ch6a; 
load ch7a; 
ch6a=ch6a I ; 

ch7a=ch7a I; 

zila(k2)=interp2(xwl,zwl,ch6a,xi,yi); 
zi2a(k2)=interp2(xwl,rwl,ch7a,xi,yi); 
zia(k2)=zila(k2)+((zi2a(k2)-zila(k2))/0.l)*(sach(k2)-0.6); 
Cx(k2,k)=zia(k2); 

elseif sach(k2)>=0.7 & sach(k2)<=0.8 
load ch7a; 
load ch8a; 
ch7a .... ch7a ·; 
ch8a=ch8a • ; 
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zila(k2l=interp2(xwl,zwl,ch7a,xi,yi); 
zi2a(k2)=interp2(xwl,zwl,ch8a,xi,yi); 
zia(k2l=zila(k2)+((zi2a(k2)-zila(k2))/0.l)*(sach(k2)-0.7); 
Cx(k2,k)=zia(k2); 

elseif sach(k2)>=0.8 & sach(k2)<=0.9 
load chBa; 
load ch9a; 
chBa=chBa' ; 
ch9a=ch9a •: 

zila(k2)=interp2(xwl,zwl,ch8a,xi,yi); 
zi2a(k2)=interp2Cxwl,zwl,ch9a,xi,yi); 
zia(k2)=zila(k2)+((zi2a(k2)-zila(k2))/0.l)*(sach(k2)-0.8); 
Cx(k2,kl=zia(k2); 

elseif sach(k2)>=0.9 & sach(k2)<=1.0 
load ch9a; 
load chlOa; 
ch9a=ch9a' : 
chlOa=chlOa' ; 

zila(k2)=interp2(xwl,zwl,ch9a,xi,yi); 
zi2a(k2)=interp2(xwl,zwll,chl0a,xi,yi); 
zia(k2)=zila(k2)+((zi2a(k2)-zi1a(k2))/0.l)*(sach(k2)-0.91; 
Cx(k2,k)=zia(k2); 

end 

anh(k2,k)=Cx(k2,k)*ro•pi*(brdh(k2))A2/8; 
prod1=prod1+anh(k2,k)*sm(k2); 
prod2=prod2+anh(k2,k)*(l(k2))A2*sm(k2); 
ant(k2,k)=anb(k2)+anh(k2,k); 
prodt1=prodt1+ant(k2,k)*sm(k2); 
prodt2=prodt2+ant(k2,k)*(l(k2})A2*sm(k2); 

end 
Azh(k)=3*s1*prod1/8; 
Ayyh(k)=3*s1*prod2/8; 
Azt(k)=3*sl*prodt1/8; 
Ayyt(k)=3*s1*prodt2/8; 

end 

xw2=[0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0]; 
zw2=[0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.6 4.4}; 

for k=l:nf+1 
prod3=0.0; 
prod4=0.0; 
for k2=l:nss 

term2b(k2,k)=(we(k))A2*brd(k2)/2/g; 
r2b(k2,k)=brd(k2)/tn(k2); 
if brd(k2)==0 

sacb(k2)=0.0; 
else 

sacb{k2)=snb(k2)/(brd(k2))A2; 
enci 
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if sacb(k2l>= 1.0 
sacb(k2)"'1.0; 

elseif sacb(k2)< 0.5 
sacb(k2)=0.5; 

end 

xi=term2b(k2,k); 
yi=r2b (k2, k) ; 
if xi==O.O & yi==O.O 

Al(k2,k)=O.O; 
elseif sacb(k2)>=0.5 & sacb(k2)<=0.6 

load ch5b; 
load ch6b; 
ch5b=ch5b I ; 

ch6b=ch6b • ; 

zil(k2l=interp2(xw2,zw2,ch5b,xi,yi); 
zi2(k2)=interp2(xw2,zw2,ch6b,xi,yi); 
zi(k2)=zil(k2)+((zi2(k2l-zil(k2))/0.l)*(sacb(k2)-0.5); 
Al(k2,kl=zi(k2); 

elseif sacb(k2)>=0.6 & sacb(k2)<=0.7 
load ch6b; 
load ch7b; 
ch6b=ch6b I ; 

ch7b=ch7b 1 
; 

zil(k2l=interp2(xw2,zw2,ch6b,xi,yi); 
zi2(k2)=interp2(xw2,zw2,ch7b,xi,yi); 
zi(k2)=zil(k2)+((zi2(k2)-zil(k2))/0.l)*(sacb(k2)-0.6); 
Al(k2,k)=zi(k2); 

elseif sacb(k2)>=0.7 & sacb(k2)<=0.8 
load ch7b; 
load ch8b; 
ch7b=ch7b 1 

; 

ch8b=ch8b 1 
; 

zil(k2)=interp2(xw2,zw2.ch7b,xi,yi); 
zi2(k2)=interp2(xw2,zw2.ch8b,xi.yi); 
zi(k2)=zil(k2)+((zi2(k2l-zil(k2))/0.1)*(sacb(k2)-0.7); 
Al(k2,kl=zi(k2); 

elseif sacb(k2l>=0.8 & sacb(k2)<=0.9 
load ch8b; 
load ch9b; 
ch8b=ch8b • ; 
ch9b=ch9b • ; 

zil(k2)=interp2(xw2,zw2,ch8b,xi,yi); 
zi2Ck2)=interp2Cxw2.zw2,ch9b,xi,yi); 
zi(k2)=zil(k2)+((zi2(k2)-zil(k2))/0.l)*(sacb(k2)-0.8); 
Al(k2.k)=zi(k2); 

elseif sacb(k2)>=0.9 & sacb(k2)<=1.0 
load ch9b; 
load chlOb; 
ch9b=ch9b I ; 

ehlOb=chlOb • ; 

zil(k2)=interp2(xw2.zw2.ch9b,xi,yi); 
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zi2Ck2)=interp2(xw2,zw2,ch10b,xi,yi); 
zi(k2)=zil(k2)+((Zi2(k2)-zi1(k2))/0.1)*(sacb(k2)-0.9); 
A1(k2,k)=zi(k2); 

end 

if we(kl==O 
bn1(k2,k)=O; 

else 
bn1(k2,k)=ro*gA2*(Al(k2,k))A2/(we(k))A3; 
prod3=prod3+bn1Ck2,k)*sm(k2); 
prod4=prod4+bn1(k2,kl*(l{k2))A2*sm(k2); 

E!nd 

end 
b1{k}=3*s1*prod3/8; 
B1(k)=3*s1*prod4/8; 

end 

xw2=[0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0]; 
zw2=[0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.6 4.4]; 

for k=1:nf+1 
prod3=0.0; 
prod4=0.0; 
prodt3=0.0; 
prodt4=0.0; 

for k2=1:nss 
term2h(k2,kl=(we(k))A2*brdh(k2)/2/g; 
r2h(k2,k)=brdh(k2l/tnh(k2); 
if brdh(k2)==0 

sach(k2)=0.0; 
else 

sach{k2l=snh(k2l/(brdh(k2)*tnh(k2)); 
end 

if sachCk2)>= 1.0 
sach (k2) =1. 0; 

elseif sachCk2l< 0.5 
sach(k2l=O.S; 

end 

xih=term2h(k2,kl; 
yih=r2h{k2, k); 
if xih==O.O & yih==O.O 

A2(k2,k)=O.O; 
elseif sach(k2)>=0.5 & sachCk2)<=0.6 

load chSb; 
load ch6b; 
chSb=chSb 1 

; 

ch6b=ch6b 1 
; 

zi1(k2)=interp2(xw2,zw2,ch5b,xih,yih); 
zi2Ck2)=interp2(xw2,zw2,ch6b,xih,yih); 
zi(k2)=zil(k2)+((zi2Ck2l-zi1(k2))/0.l)*(sachCk2)-0.5); 
A2{k2,ki=zi{k2i; 

elseif sach(k2l>=0.6 & sach(k2)<=0.7 
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load ch6b; 
load ch7b; 
ch6b=ch6b I ; 
ch7b=ch7b 1 

; 

zil(k2)=interp2(xw2,zw2,ch6b,xih,yih); 
zi2(k2)=interp2(xw2.zw2,ch7b,xih,yih); 
zi(k2)=zil(k2)+((zi2(k2)-zil(k2))/0.l)*(sach(k2)-0.6); 
A2{k2,k)=zi(k2); 

elseif sach(k2)>=0.7 & sach(k2)<=0.8 
load ch7b; 
load ch8b; 
ch7b=ch7b I ; 
ch8b=ch8b I ; 

zil(k2)=interp2(xw2,zw2,ch7b,xih,yih); 
zi2(k2)=interp2(xw2,zw2,ch8b,xih,yih); 
zi(k2)=zil(k2)+((zi2(k2)-zil(k2))/0.l)*(sach(k2)-0.7); 
A2(k2,k)=zi(k2); 

elseif sach(k2)>=0.8 & sach(k2)<=0.9 
load ch8b; 
load ch9b; 
ch8b=ch8b 1 

; 

ch9b=ch9b 1
; 

zil(k2)=interp2(xw2,zw2,ch8b,xih,yih); 
zi2(k2)=interp2(xw2,zw2,ch9b,xih,yih); 
zi(k2)=zil{k2)+((zi2(k2)-zil(k2))/0.l)*(sach(k2)-0.8); 
A2{k2,k)=Zi(k2); 

elseif sach(k2)>=0.9 & sach(k2)<=1.0 
load ch9b; 
load chlOb; 
ch9b=ch9b I ; 
chl Ob=chl ObI ; 

zil(k2)=interp2(xw2,zw2,ch9b,xih,yih); 
zi2(k2)=interp2(xw2,zw2,chl0b,xih,yih); 
zi(k2)=zil(k2)+((zi2(k2)-zil(k2))/0.1)*(sachCk2)-0.9); 
A2Ck2,k)=zi(k2); 

end 

if we(k)==O 
bn2(k2,k)=O; 

else 
bn2(k2,k)=ro*gA2*(A2(k2,k))A2/(we(k))A3; 
prod3=prod3+bn2(k2,k)*sm(k2); 
prod4=prod4+bn2(k2,k)*(l(k2))A2*sm(k2); 
bn(k2,k)=bnl(k2,k)+bn2{k2,k); 
prodt3=prodt3+bn(k2,k)*sm(k2); 
prodt4=prodt4+bn(k2,k)*(l(k2))A2*sm(k2); 

end 

end 
b2{k)=3*sl*prod3/8; 
B2(k)=l*sl*prod4/8; 
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b(k)=3*sl*prodt3/8; 
B(k)=3*sl•prodt4/8; 

end 

prodS=O.O; 
prod6=0.0; 
for k2=1:nss 

cn(k2)=ro•g•brdhCk2); 
prodS=prodS+cn(k2)*sm(k2); 
prod6=prod6+cn(k2)*(l(k2))A2*sm(k2); 

end 

c=3*sl*prod5/8; 
for k=l:nf+l 

prod7=0.0; 
for k2=l:nss 

prod7=prod7+bn(k2,k)*l(k2)*sm(k2); 
end 

e(k)=-3*sl*prod7/8+u*Azt(k); 
E{k)=-3*sl*prod7/8-u*Azt(k); 
C(kl=3*sl•prod6/8-u*E(k); 

end 

prod9=0.0; 
for k2=l:nss 

prod9=prod9+cn(k2)*l(k2)*sm(k2); 
end 

H=-3•sl•prod9/8; 

for k=l:n£+1 
prod8=0.0; 

for k2=l:nss 
prod8=prod8+ant(k2)•l(k2)•sm(k2); 

end 
'5d=ddl 

%D=dd2 
ddl(k)=-3*sl•prod8/8; 
dd2(kl=-3*sl•prod8/8; 
h(kl=-3*sl•prod9/8+u*b(k); 

end 

load wet; 
prodlO=O.O; 
prodll=O.O; 
for k2=l:nss 

mn(k2)=wet(k2)/g; 
prodlO=prodlO+mn(k2)*sm(k2); 
prodll=prodll+mn(k2)*(l(k2))A2*sm(k2); 

end 
m=3*sl•prodl0/8; 
Iyy=3*sl*prodll/8; 

for k=l:nf+l 
wnh(k)=Sqrt(C/(m+AZt(k))); 
wnp(kl=sqrt(C(k)/(Iyy+Ayy(k))); 
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end 

for k2=l:nss 
sn(k2)=snb(k2)+snh{k2); 
if brd(k2)==0.0 

tm{k2)=0.0; 
else 

tm(k2)=sn(k2)/brd(k2); 
end 

end 

for k=l:nf+l 
for k2=l:nss 

if k2>l & k2< nss 
DAN(k2)=0.5*({ant(k2+ll-ant(k2))/(l(k2+ll-l(k2))+(ant(k2l­

ant(k2-l))/(l(k2)-l(k2-l))); 

end 

elseif k2==l 
DANCk2)=(ant(k2+l)-ant(k2))/(l(k2+l)-l(k2)); 

elseif k2==nss 

end 
end 

DAN(k2)=(ant(k2)-ant(k2-l))/(l(k2)-l(k2-lll; 

for k=l:nf+l 
al(k)=ae(k,2); 
tk(k)={ww(k))A2/g; 
PRODl=O.O; 
PROD2=0.0; 
PROD3=0.0; 
PROD4=0.0; 

for J=l:nss 

EXPP(J,k)=exp(-tk{k)*tm(J)); 
TERM0(J,k)=-(we(k))A2•ant(J)•al(k); 
CNETA(J,k)=cn(J)*al(k); 
TERMOO(J,k)=TERMO(J,kl+CNETA(J,k); 
TERMl(J,k)=u*alCk)•weCkl*DAN(J); 
TERM2(J,k)=al(k)*we(k)*bn(J,kl; 
TERM3(J,k)=TERM2(J,kl-TERM1(J,k); 
TERM4(J.~)=TERM00(J,k)*sin(tk(k)*l{J)); 

TERMS (J ,1:) =TERM3 CJ, k) *cos ( tk(k) *1 (J) l ; 

TERM6(J,kl=TERM4(J,k)+TERMS(J,k); 

TERM10(J,k)=TERM6(J,k)*EXPP(J,k); 

PRODl=PRODl+TERMlO(J,k)*sm{J); 

TERM7(J,k)=TERM00(J,k)*COS(tk(k)*l(J)); 
TERM8(J,kl=TERM3(J,k)*sinCtk(k)*l(J)); 
TERM9(J,kl=TERM7(J.k)-TERM8(J,k); 
TERMll(J,kl=TERM9(J,k)*EXPP(J,k); 
PROD2-PROD2+TEm~l(J,k)•sm(J); 

TERM12(J,k)=TERM10(J)*l(J); 
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PROD3=PROD3+TERM12(J,k)•sm(J); 
TERM13(J,k)=TERMll(J,k)*l(J); 
PROD4=PROD4+TERM13(J,k)•sm(J); 

end 

Fl(k)=3*sl*PROD1/B; 
F2(k)=3*sl*PROD2/8; 
Ml(k)=3*sl*PROD3/8; 
M2(k)=3*sl*PROD4/8; 

Fo(k)=sqrt((Fl(k))A2+(F2(k))A2); 
Mo(k)=sqrt((Ml(k))A2+(M2(k))A2); 
[ANGl]=subrl(Fl(k),F2(k)); 
[ANG2]=subrl(Ml(k),M2(k)); 
ANGF(k)=ANGl; 

end 

ANGM(k)=ANG2; 

sfor(k)=(Fo(k)}A2/2/sse; 
smom(k)=(Mo(k))A2/2/sse; 

for k=l:nf+l 
i=O + l. OOOOi; 
Pl(k)=(-(m+Azt(k))*(we(k))A2+c); 
P2(kl=(b(k)•we(k)); 
Po(kl=sqrt((Pl(k))A2+(P2(k))A2l; 
[ANGll]=subrl(Pl(k),P2(k)); 
angp (k) =ANGll; 
P(k)=Po(k)•exp(angp(kl*i); 

Sl(k)=(-(Iyy+Ayyt(k))*(we(k))A2+C(k)); 
S2(k)=(B(k)•we(k)); 
So(kl=sqrt((Sl(k))A2+(S2(k))A2l; 
(ANG12]=subrl(Sl(k),S2(k)); 

angs(kl=ANG12; 
\angs(k)=acan!S2Ckl!Sl(k)): 
S(kl=So{k)•exp(angs(k)*i); 

Ql(k):(-ddl(k)*(We(k))A2+h(k)); 
Q2(k)=(e(k)•we(k)); 
Qo(k)=sqrt((Ql(k))A2+(Q2(k))A2); 
[ANG13l=subrl(Ql(k),Q2(k)); 

angq(k) =ANG13: 
Q(kl=Qo(k)*exp(angq(k)*i); 

XRRl(k)=(dd2(k)*(we(k))A2+H); 
XRR2{k)=(E(k)*we(k)); 
XRRo(k)=sqrt((~(k))A2+(XRR2{k))A2); 

[ANGl4]=subrl(XRRl(k),XRR2(k)); 
angr(k)=ANG14; 

XRR(k)=XRRo(k)*exp(angr(k)*i); 

PS=P(k)*S(k); 
QR=Q{k) *XRR(k); 
PSQRl=PS-QR; 
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PSQR2=conj(PSQRl); 
AAA=PSQRl*PSQR2; 

Fxl(k)=Fl(k); 
Fx2(k)=F2(k); 
Fxo(k)=sqrt((Fxl(k))A2+(Fx2(k))A2); 
[ANG15]=subrl(Fxl(k).Fx2(k)); 
angf(k)=ANGlS; 
Fx(k)=Fxo(k)*exp(angf(k)*i); 
Mxl(k)=Ml(k); 
Mx2(k)=M2(k); 
Mxo(k)=sqrt((Mxl(k))A2+(Mx2(k))A2); 
[ANG16]=subrl(Mxl(k).Mx2(k)); 

angm(k) =ANG16; 

Mx(k)=Mxo(k)*exp(angm(k)*i); 

FS=Fx(k)*S(k); 
MQ=Mx(k)*Q(k); 
FSMQ=FS-MQ; 

BBB=FSMQ*PSQR2; 

MP=Mx(k) *P(k); 
FR=Fx(k)*XRR(k); 
MPFR=MP-FR; 

CCCC=MPFR*PSQR2; 

ZH(k)=BBB/AAA; 
ZHa(k)=sqrt((real(ZH(k)))A2+(imag(ZH(k)))A2); 
ZP(k)=CCCC/AAA; 
ZPa(k)=sqrt((real(ZP(k)))A2+(imag(ZP(k)))A2); 

(ANGlB]=subrl(real(ZH(k)) , imag(ZH(k))); 
[ANG19]=subrl(real(ZP(k)),imag(ZP(k))); 

angzh(k)=ANG18; 
angzp(k)=ANG19; 

if al(k)==O 
ZHtf(k)=O.O; 
ZPtf(k)=O.O; 
Ftf(k)=O.O; 
Mtf(k)=O.O; 

RAOH(k)=O.O; 
RAOP(k)=O.O; 
RAOF(k)=O.O; 
RAOM(k)=O.O; 

else 
ZHtf(k)=ZHa(k)/al(k); 
ZPtf(k)=ZPa(k)/tk(k)/al(k); 
Ftf(k)=Fo(k)/al(k); 
Mtf(k)=Mo(k)/al(k); 
RAOH{k) ={ZHa{k} ial{k}} -"2; 
RAOP(k)=(ZPa(k)/al(k))A2; 
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RAOF(k)=(Fo(k)/al(k))~2; 

RAOM(k)=(Mo(k)/a~(k))~2; 

SHH(k)=RAOH(k)*se(k); 
SPP(k)=RAOP(k)*se(k); 
SFF(k)=RAOF(k)*se(k); 
SMM(kl=RAOM(k)*se(k); 
rlh(k)=ZHa(k)/al(k); 
rlp(k)= ZPa(k)/al(k); 

end 

sz(k)=(ZHa(k))A2/2/sse; 
sp(k)=(ZPa(k))A2/2/sse; 

for J=l:nt+l 

ZH(J,k)=ZHa(k)*cos(we(k)*(J-l)*dt+angzh(k)); 
ZHV(J,k)=-ZHa(k)*we(k)*sin(we(k)*(J-l)*dt+angzh(k)); 
ZP(J,k)=ZPa(k)*cos(we(k)*(J-l)*dt+angzp(k)); 
ZPV(J,kl=-ZPa(k)*we(k)*sin(we(k)*(J-l)*dt+angzp(k)); 
Fxx(J,k)=Fxo(k)*cos(we(k)*(J-l)*dt+angf(k)); 
Mxx(J,kl=Mxo(k)*cos(we(k)*{J-l)*dt+angm(k)); 

end 
end 

prodww=O.O ; 
prodse=O . O; 
prodSHH=O.O; 
prodSPP=O.O; 
prodsz=O . O; 
prodsp=O.O; 
prodSFF=O.O; 
prodSMM=O.O; 
prodsfor=O.O; 
prodsmom=O.O; 
for k=l:nf+l 

prodww=prodww+sw(k)*sms(k); 
prodse=prodse+se(k)•sms(k); 
prodSHH=prodSHH+SHH(k)*sms(k); 
prodSPP=prodSPP+SPP(k)*sms(k); 
prodsz=prodsz+sz(k)*sms(kl; 
prodsp=prodsp+sp(k)*sms(k); 
prodSFF=prodSFF+SFF(k)*sms(k); 
prodSMM=prodSMM+SMM(k)*sms(kl; 
prodsfor=prodsfor+sfor(k)*sms(kl; 
prodsmom=prodsmom+smom{k)*sms(k); 

end 

mosw=ssw*prodww/3; 
mose=sse•prodse/3; 
moSHH=sse•prodSHH/3; 
moSPP=sse•prodSPP/3; 
mosz=sse•prodsz/3; 
mosp:sse~prodsp/3; 

moSFF=sse•prodSFF/3; 
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moSMM=sse•prodSMM/3; 
mosfor=sse•prodsfor/3; 
mosmom=sse*prodsmom/3; 

Wsav=l.25*sqrt(mosw); 
Wsavl3=2.0*sqrt(mosw); 
Wsavll0=2.55*sqrt(mosw); 
Wsavll00=3.34*sqrt(mosw); 

Esav=l.25*sqrt{mose); 
Esavl3=2.0*sqrt(mose); 
Esavll0=2.55*sqrt(mose); 
Esavll00=3.34*sqrt(mose); 

Hav=l.25*sqrt(moSHH); 
Havl3=2.0*sqrt{moSHH); 
Havll0=2.55*sqrt(moSHH); 
Havll00=3.34*sqrt(moSHH); 

Pav=l.25*sqrt(moSPP); 
Pavl3=2.0*sqrt(moSPP); 
Pavll0=2.55*sqrt(moSPP); 
Pavll00=3.34*sqrt(moSPP); 

Fav=l.25*sqrt(moSFF); 
Favl3=2.0*sqrt(moSFFl: 
Favll0=2.55*sqrt(moSFF); 
Favll00=3.34*sqrt(moSFF); 

Mav=l.2S*sqrt(moSMM); 
Mavl3=2.0*sqrt(moSMM); 
Mavll0=2.55*sqrt(moSMM); 
Mavll00=3.34*sqrt{moSMM); 

t=O.O:dt:nt*dt; 

for k=l:nf+l 
x=rand(l); 
xr(kl=x*2*pi; 

end 

for J=l:nt+l 
eta(J)=O.O; 
Fz(J)=O.O; 
Mp(J)=O.O; 
ZHl(J)=O.O; 
ZPl(J)=O.O; 
ZHlV(J)=O.O; 
ZPlV(J)=O.O; 
for k=l:nf+l 

eta(J)=eta(J)+al(k)*cos(2*pi*fw(k)*(J-l)*dt+xr{k)); 
Fz (J) =Fz (J) +Fxo{k) •cos (we (k) * (J-1) *dt+angf (kH· xr(k)); 
Mp{J}=Mp(Ji+Mxo(k)~cos(we(k)~(J-li~dt+angm{k)+ xr{k}i; 
ZHl(J)=ZHl(J)+ZHa(k)*cos(we(k)*(J-l)*dt+angzh(k)+ xr(k)); 
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ZPl(J)=ZPl(J)+ZPa(k)*cos(we(k)*(J-l)*dt+angzp(k)+ xr(k)); 
ZHlV(J)=ZHlV(J)-ZHa(k)*we(k)*sin(we(k)*(J-l)*dt+angzh(k)+ 

xr(k)); 
ZPlV(J)=ZPlV(J)-ZPa(k)*we(k)*cos(we(k)*(J-l)*dt+angzp(k)+ 

xr(k)); 

end 

end 

nh=length ( ZHl) : 
np=length(ZPl); 
ns=SOO; 
TRIGGER=0.003; 
M=O; 
N=O; 

yh=ZHl; 
yp=ZPl; 
for I=l:nh-ns 

end 

if (yh(I) <= TRIGGER & yh(I+l) > TRIGGER) 
M=M+l; 

end 

SP(M)=I; 
if (abs(yh(I)-TRIGGER) > abs(yh(I+l)-TRIGGER)) 

SP(M)=I+l; 
I=I+l; 

end 

for I=l:nh-ns 
if (yh(I) >= TRIGGER & yh(I+l) < TRIGGER) 

N=N+l; 
SN(N) =I; 
if(abs(yh(I)-TRIGGER) > abs(yh(I+l)-TRIGGER)) 

SN(N)=I+l; 

end 
end 

K=M; 

end 

if M > N 
K=N; 

end 

I=I+l; 

for J=l:ns+l 
RDl(J)=O.O; 
RD2(J)=O.O; 

for I=l:K 
ROl(J)=RDl(J)+yh(SP(I)+J-1); 
ROl(J)=RDl(J)+yh(SN(I)+J-1); 
RD2(J)=RD2(J)+yp(SP(I)+J-l); 
RD2(J)=RD2(J)+yp(SN{I)+J-l); 

end 
RDl(J)=RDl(J)/(2.0*K); 
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RD2(J)=RD2(J)/(2.0*K); 

end 

tr=O:dt:ns•dt; 
yl=xcorr (yh) ; 
y2=xcorr (yp) ; 

xxl=max(yl)/RDl(l); 
xx2=max(y2)/RD2(1); 
jl=l; 
nl=length{yl); 
n2=length(y2); 

for il=l:nl 

end 

if il >= floor{nl/2) 
xl(jl)=yl(il)/xxl; 
if jl >= ns+l,break 
else 

end 

jl=jl+l; 
end 

j2=1; 
for il=l:n2 

end 

if il >= floor(n2/2) 
x2(j2}~y2(il)/xx2; 

if j2 >= ns+l,break 
else 

end 

j2=j2+1; 
end 

for kl=l:nf+l 
for J=l:nt+l 

k(J,l)=Fxx{J,kl); 
k(J,2)=Mxx(J,kl); 

end 

xal=b(kl)/(m+Azt(kl)); 
xa2=c/(m+Azt(kl)); 
xa3=dd1Ckl)/(m+Azt{kl)); 
xa4=e(kl)/Cm+Azt(kl)); 
xaS=hCkl)/(m+Azt(kl)); 
xa6=1/(m+Azt(kl)); 

xbl=B(kl)/(Iyy+Ayyt(kl)); 
xb2=CCkl)/(Iyy+Ayyt(kl)); 
xb3=dd2 (kl) I Ciyy+Ayyt Ckl)); 
xb4=E(kl)/(Iyy+Ayyt(kl)); 
xb5=H/(Iyy+A~(kl)); 
xb6=1/Ciyy+AyytCkl)); 
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xa31=-(xa2-xa3*(xb5-xb3*xa2)/(1-xa3*xb3)); 
xa32=-(xa5-xa3*(xb2-xb3*xa5)/(1-xa3*xb3)); 
xa33=-{xa1-xa3*{xb4-xb3*xa1)/(1-xa3*xb3)); 
xa34=-(xa4-xa3*{xbl-xb3*xa4)/(l-xa3*xb3)); 

xa41=-(xb5-xb3*xa2)/(l-xa3*xb3); 
xa42=-(xb2-xb3*xa5)/(1-xa3*xb3); 
xa43=-(xb4-xb3*xa1)/(1-xa3*xb3); 
xa44=-(xbl-xb3*xa4)/(l-xa3*xb3); 

AA=[O 0 1 0;0 0 0 l;xa31 xa32 xa33 xa34;xa41 xa42 xa43 xa44]; 

xb3l=xa6+xa3*xb3*xa6/(l-xa3*xb3); 
xb32=-xa3*xb6/(l-xa3*xb3); 
xb41=-xb3*xa6/(l-xa3*xb3); 
xb42=xa6/(l-xa3*xb3); 

BB=(O 0;0 O;xb31 xb32;xb41 xb42]; 
U=k; 
CC=-[0 0 0 0]; 
D=[O 0]; 
T=-O:dt:nt*dt : 
[Y,XX] = lsim(AA,BB,CC,O,U,T); 

for kk=l:nt+l 
Xl(kk,kll=XX(kk,ll; 
X2(kk,kl)=XX(kk,2); 
X3(kk,kl)=XX(kk,3); 
X4(kk,kl)=XX(kk,4); 

end 

end 

for J=l:nt.+l 
XZ(J)=O.O; 
XP(J)=O.O; 
for k=l:nf+l 

XZ(J)=XZ(J)+Xl(J,k)*cos(we(k)*(J-l)*dt+xr(k)l; 
XP(J)=XP(J)+X2(J,kl*cos(we(k)*(J-l)*dt.+xr(k)); 

end 
end 

YH=fft(ZH1,512); 
YP=fft(ZP1,512); 
YF=fft(Fz,512); 
YM=fft(Mp,512); 

Phh=YH.*conj(YH)/512; 
Ppp=YP.*conj(YP)/512; 
Pff=YF.*conj(YF)/512; 
Pmm=YM.*conj(YM)/512; 

£=50•(0:51)/512; 
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AppendixE 

Hydrodynamic Parameters 
Using Strip Theory 

The definitions of the hydrodynamic coefficients in equations (3.1) and (3.2) are as 

follows [ 16]: 

I YY = J (m,. xx)dx (E.l) 

m = f m,. dx, vehicle mass, kg (E.2) 

where ma and x are the mass distribution of each strip, weight per metre I g and the 

distance of each strip from the longitudinal center of gravity (LCG). 

a 33 = J all dx • Added mass for heaving, kg-sec2/m (E.3) 

where a.. is the added mass for each strip is obtained as follows: 

(E.4) 

where p and Bn are the water density in kg/m3 and the diameter of each strip, in metre. 

b33 = J b,. dx, Damping coefficient for heaving, kg-sec/rad (E.5) 

where b. is the damping coefficient per unit length for each strip is obtained as 

(E.6) 

where A is the ratio of the amplitude of the radiated waves to the amplitude of the 

heaving motion. This ratio is obtained from Figure ( 4.6) as shown on page 44 in refrence 
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[17]. As shown in this figure, the value of A depends on the sectional area coefficient of 

each strip, the ratio of the diameter of each strip to the local draft, and m/B.J2g. 

c33 =I c,. dx, Restoring force coefficent for heaving, kglm 

where Cn is the restoring force coefficient for each strip and is equal to pg Bn. 

a 35 = -fa,. x dx, Coupling tenn, kg-sec2 

b35 = -J b,. xdx + u xa33 , Coupling tenn, kg-sec2/sec 

where u is forward speed of the towed model in m/sec. 

c35 =-I c,. xdx + u xb33 , Coupling term, kg 

a55 =I a,. x 1 dx, Added mass moment of inertia for pitching, , kg-sec2/m 

b55 =I b,. x 2 dx, Damping coefficent for pitching, kg-m-sec/rad 

c 55 =I c,. x: dx - u x b53 , Restoring moment coefficient for pitching, kg-m/rad 

a,3 = a 3j = -I a,. x dx , Coupling tenn, kg-sec2 

b53 =-I b,. xdx- u xa33 , Coupling term, kg-sec2/sec 

c53 = -J c,. xdx, coupling tenn, kg 

Exciting force, F(t): 

F =F. cos(w.l)+ Fz sin(w~t) = F0 cos(w.,t +a) 

F0 =Jfi1 + F.,Z a =-tan-1(F2 1 F1) 
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where Fo and o are the amplitude of the exciting force and the its phase lag relative to the 

wave propagation. 

(E.19) 

where 

(E.20) 

(E.21) 

where z is the mean draft for each strip, T m. and is equal to strip sectional areal 

maximum breadth. The wave number is represented by k and is equal We2/g. 

Exiciting moment, M(t): 

M = M 1 cos(co,t) + M 2 sin(w,t) = M 0 cos(W
6
t + T) (E.22) 

(E.23) 

where Mo and 't' are the amplitude of the exciting moment and the its phase lag relative to 

the wave motion. 

IdMI IdM., M 1 = bd:c and M 2 = dx. dx (E.24) 
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AppendixF 

MA TLAB Program: D.E.Solver 

clear; 
load meu2 
dt=0.02; 
pi=4.0*atan(l.O); 
Nl=70; 
N2=4; 
y(l)=2.7l*O.Ol; 
y(2)=0.017; 
y(J)=O.O; 
(A,S,W]=pspect2(Nl); 
kx=2; 
TI=O.O;TLAST=400.0; 
H=dt; 
N={TLAST-TI)/H; 
T=TI; 
TYl(l)=y(l); 
TY2(l)=y(2); 
TY3(l)=y(3); 
TY4(l)=y(4); 
TYll(l)=y(l); 
TY22(2)=y(2); 
TY33(l)=y(3); 
TY44(l)=y(4); 

tr=H:H:N*H; 

for J=l:N 

for I=l:Nl 

end 

Rl=rand ( l) : 
ranl(I)=2*pi*Rl; 

SOMF=O; 
SUMM=O; 
for I=l:Nl 
SUMF=SUMF+ 0.07*sin(W(I)*T+ranl(I)); 
SUMM=SUMM+ O.lS*sin(W(I)*T+ranl(I)); 
end 
F(J)=SUMF; 
M(J)=SUMM; 

[yout}=rk42(SUMF,SUMM,ranl,y,N2,A,W,T,H); 

TYl(J)=yout(l); 
TY2(J)=yout(2); 
TY3(J)=youct3); 
TY4(J)=yout(4); 
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end 

TYll (J) =TYl (J); 

TY22 (J) =TY2 (J); 
TY33 (J) =TY3 (J); 

TY44 (J) =TY4 (J); 

y(l)=yout(l); 
y ( 2 ) =you t < 2 ) ; 
y(3)=yout(3}; 
y(4)=yout(4); 

T=T+H; 
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AppendixG 

MA TLAB Program: RD&AC_Sim 

clear; 
M=O; 
N=O; 
ns=499; 
TRIGGER=O. 03; 
load heaved 
load pitchd 
yh:zheaved; 
yp=pitchd; 
nh=length tyh) ; 
np=length (yp) ; 
dt=0.02; 
fs=l/dt; 

zh=fft(yh,512); 
zp=fft(yp,5l2); 

Phh=zh.•conj(zh)/512; 
Ppp=zp.•conj(zp)/512; 

f=fs•(0:51)/512; 
t1=(1:nh)/fs; 
t2=(1:np)/fs; 

(b1,al]=butter(4, (0.07 0.9) •2/fs}: 
[h1,w1]=freqz(b1,a1,512); 
sf1=filter(b1,a1,yh); 

[b2,a2]=butter(4,[0.07 0.65]•2/fs); 
[h2,w21=freqz(b2,a2,512); 
sf2=filter(b2,a2,yp); 

for I=l:nh-ns 
if (yh(I) <= TRIGGER & yh(I+l) > TRIGGER) 

M=M+1; 
SP(M)=I; 

end 
end 

if (abs(yh(I)-TRIGGER) > abs(yh(I+1)-TRIGGER)) 
SP(M)=I+l; 
I=I+1; 

end 

for I=1:nh-ns 
if (yh(I) >= TRIGGER it yh(I+l) < TRIGGER) 

N=N+l; 
SN(N)=I; 
if(abs(yh(I)-TRIGGER) > abs(yh(I+l)-TRIGGER)) 
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end 
end 

K=M; 

end 

if M > N 
K=N; 

end 

SN(N)=I+l; 
I=I+l; 

for J=l:ns+l 
RDl(J)=O.O; 
RD2(J)=0.0; 

for I=l:K 
RD1(J)=RDl(J)+yh(SP(I)+J-1); 
RD1(J)=RD1(J)+yh(SN(I)+J-1); 
RD2(J)=RD2(J)+yp(SP(I)+J-l); 
RD2(J)=RD2(J)+yp(SN(I)+J-1); 

end 

end 
RDl(J)=RDl(J)/{2.0*K); 
RD2(J)=RD2(J)/(2.0*K); 

[xl]=correlx(nh,ns,RDl,yh); 
(x2]=correlx(np,ns,RD2,yp); 

[Drdl]= firstderv (RDl,ns,dt); 
[Drd2]= firstderv (RD2,ns,dt); 

[DDrdl]= firstderv (Drdl,ns.dt); 
[DDrd2]= firstderv (Drd2,ns,dt); 

for i=l:ns-4 
trx ( i ) = tr ( i) ; 
RDlx(i)=RDl(i); 
RD2x (i) =RD2 ( i); 
Drdlx(i)=Drdl(i); 
Ord2x(i)=Drd2(i); 
OOrdlx(i)=OOrdl(i); 
DDrd2x(i)=DDrd2(i); 
xlx(i)=xl(i); 
x2x ( i ) =x2 ( i) : 

end 

xlx=xlx' 
x2x=x2x': 
Ordlx=Drdlx • : 
Drd2x=Drd2x I ; 

oordlx=DDrdlx I ; 

DOrd2x=DDrd2x • ; 
RDlx:RDlx' ; 
RD2x=RD2x • ; 
trx=trx'; 
xhl.= (trx RDl.x Drdl.x]: 
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xpl=[trx RD2x Drd2x]; 
yhaut=(trx RDlx xlx] 
ypaut=[trx RD2x x2xl 

RH=RDl; 
Hautl=xl; 
RP=RD2; 
Pautl=x2; 
Hl=dt; 

Kll=l; 
for I=l:ns-1 

if (RH(I)>= 0.0 & RH(I+l) < 0.0) 
if abs(RH(I))==O.O 

ZPl(Kll)=I; 
Kll=Kll+l; 

elseif abs(RH(I+l))==O.O 
ZPl(Kll)=I+l; 
Kll=Kll+l; 

elseif (abs(RH(I)) < abs(RH(I+l))) 
ZPl(Kll)=I; 

end 

Kll=Kll+l; 
elseif abs(RH(I)) > abs(RH(I+l)) 

ZPltKll)=I+l; 

end 
end 

Kll=Kll+l; 

K22=1; 
for I=l:ns-1 

if (Hautl(I)>= 0.0 & Hautl(I+l) < 0.0) 
if abs(Hautl(I))==O.O 

ZP2(K22)=I; 
K22=K22+1; 

elseif abs(Hautl(I+l))==O.O 
ZP2(K22)=I+l; 
K22=K22+1; 

elseif (abs(Hautl(I)) < abs(Hautl(I+l))) 
ZP2(K22)=I; 

end 

end 

K22=K22+l; 
elseif abs(Hautl(I)) > abs(Hautl(I+l)) 

ZP2(K22)=I+l; 
K22=K22+l; 

end 

if RD2(1) < 0 
TRIGGERP=min(R02);KK=2; 
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elseif RD2(1)> 0 
TRIGGERP=max(RD2l;KK=l; 

end 

if KK == 2 

end 

for i=l:ns 
RP(i)=-RP(i); 
Pautl(i)=-Pautl(I 

end 

K33=1; 
for I=l:ns-1 

end 

if (RP(I)>= 0.0 & RP(I+l) < 0.0) 
if abs(RP(I)l==O.O 

ZP3(K33)=I; 
K33=K33+1; 

elseif abs(RP{I+lll==O.O 
ZP3(K33)=I+l; 
K33=K33+l; 

elseif (abs(RP(Ill < abs(RP(I+l))) 
ZP3(K33)=I; 

end 

K33=K33+1; 
elseif abs(RP(I)) > abs(RP(I+l)) 

ZP3(K33)=I+l; 
K33=K33+1; 

end 

K44=1; 

for I=l:ns-1 

if (Pautl(Il>= 0.0 & Pautl(I+ll < 0.0) 
if abs(Pauel(I)l==O.O 

ZP4{K44l=I; 
K44=K44+1; 

elseif abs(Pautl(I+lll==O.O 
ZP4(K44l=I+l; 
K44=K44+1; 

elseif (abs(Pautl(I)) < abs(Pauel(I+llll 
ZP4(K44l=I; 
K44=K44+1; 

elseif abs(Pautl(Ill > abs(Pautl(I+lll 
ZP4(K44l=I+l; 
K44=K44+1; 

end 
end 

end 
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Random Decrement and Free Response: 
Simulation 
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Random Decrement and 
Auto-correlation Function: 
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Figure 1.16: Comparison between the random decrement and the aut(K()rrelation 
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Figure 1.17: Comparison between the random decrement and the auto-correlation 
function for heave motion [Case # 9] 
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Figure 1.18: Comparison between the random decrement and the auto-correlation 
function for pitch motion [Case It 9] 
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Figure 1.19: Comparison between the random decrement and the auto-conelation 
function for heave motion [Case# 10] 
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Figure J.4: Comparison between the simulated and the predicted free responses 
for pitch motion [Case 41 2] 
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Figure J.S: Comparison between the simulated and the predicted free responses 
for heave motion [Case# 3) 
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Figure 1.6: Comparison between the simulated and the predicted free responses 
for pitch motion [Case# 3] 
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Figure J.7: Comparison between the simulated and the predicted free responses 
for heave motion [Case# 4] 
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Figure J .8: Comparison between the simulated and the predicted free responses 
for pitch motion [Case I 4] 
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Figure J.lO: Comparison between the simulated and the predicted free responses 
for pitch motion [Case # 5] 
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Figure J .11: Comparison between the simulated and the predicted free responses 
for heave motion [Case # 6] 
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Figure J .12: Comparison between the simulated and the predicted free responses 
for pitch motion [Case tt 6] 
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Figure J.l4: Comparison between the simulated and the predicted free responses 
for pitch motion [Case# 7] 
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Figure J.l5: Comparison between the simulated and the predicted free responses 
for heave motion [Case # 8] 
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Figure 1.16: Comparison between the simulated and the predicted flee responses 
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Figure J.17: Comparison between the simulated and the predicted free responses 
for heave motion [Case # 9] 
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Figure J.l8: Comparison between the simulated and the predicted free responses 
for pitch motion [Case 41 9] 
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Figure J .19: Comparison between the simulated and the predicted free responses 
for heave motion [Case# 10] 
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Predicted Regular Responses: 
Simulation 
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Figure K.l: Comparison between the simulated and the predicted 
regular responses for heave motion [Case # 1] 
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Figure K.S: Comparison between the simulated and the predicted 
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Figure K.20: Comparison between the simulated and the predicted 
regular responses for pitch motion [Case # 10] 

284 



AppendixL 

Experimental Program 

Table L.l: Random wave experiments: Group #t 1 

RUN Run Hs g u Time 
I FileName Name (m) (Hz) (m/sec) (sec) 

1 RUN_l 0 HS7 FOS UOO RUNt 0 0.07 0.5 0.0 400 

2 RUN 2 0 HS7 _F06 UOO RUN2 0 0.07 0.6 0.0 400 

3 RUN 3 0 HS7_F07_UOO RUN3 0 0.07 0.7 0.0 400 

4 RUN 4 1 HS7 F05 U01 RUN4 01 0.07 0.5 0.1 200 

s RUN_4 2 HS7 FOS UOl 0.07 0.5 0.1 200 

6 RUN S 1 HS7 FOS U02 RUNS 02 0.07 0.5 0.2 100 

7 RUN S 2 HS7 FOS U02 0.07 0.5 0.2 100 

8 RUN 5 3 HS7 FOS U02 0.07 0.5 0.2 100 

9 RUN S 4_HS7 F05_U02 0.07 o.s 0.2 100 

10 RUN 6 1 HS7 F06 UOI RUN6 01 0.07 0.6 0.1 200 

11 RUN 6 2 HS7_F06_U01 0.07 0.6 0.1 200 

12 RUN 7 1 HS7_F06 U02 RUN7 02 0.07 0.6 0.2 100 

13 RUN 7 2 HS7 F06 U02 0.07 0.6 0.2 100 

14 RUN 7 3 HS7 F06_U02 0.07 0.6 0.2 100 

15 RUN 7 4 HS7 F06 U02 0.07 0.6 0.2 100 

16 RUN 8 1 HS7 F07 U01 RUNS 01 0.07 0.7 0.1 200 

17 RUN 8_2_HS7 F07 U01 0.07 0.7 0.1 200 

18 RUN 9_1_HS7_F07_U02 RUN9 02 0.07 0.7 0.2 100 

19 RUN 9_2_HS7_F07 U02 0.07 0.7 0.2 100 

20 RUN 9 3 HS7 F07 U02 0.07 0.7 0.2 100 

21 RUN 9 4 HS7 F07 U02 0.07 0.7 0.2 100 
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Table L.2: Random wave experimenu: Group It 1 

RUN Run lis g u Time 

' FileName Name (m) (Hz) (m/sec) (sec) 

22 RUN_10 0 HS10_F05 UOO RUN10_0 0.10 0.5 0.0 400 

23 RUN 11 O_HS10 F06 UOO RUN11 0 0.10 0.6 0.0 400 

24 RUN 12 O_HS10 F07 UOO RUN12 0 0.10 0.7 0.0 400 

25 RUN 13 1 HS10 F05 UOl RUN13 01 0.10 0.5 0.1 200 

26 RUN 13 2_HS10 F05 UOl 0.10 0.5 0.1 200 

27 RUN 14 1 HS10 F05 U02 RUN14 02 0.10 0.5 0.2 100 

28 RUN 14 2_HS10_F05 U02 0.10 0.5 0.2 100 

29 RUN 14_3_HS 10 Rl5 U02 0.10 0.5 0.2 100 

30 RUN 14_4_HS10 FOS U02 0.10 0.5 0.2 100 

31 RUN 15_l_HS 10 F06 U01 RUN15_01 0.10 0.6 0.1 200 

32 RUN 15 2_HS10 F06 UOI 0.10 0.6 0.1 200 

33 RUN 16 1_HSIO F06 U02 RUN16 02 0.10 0.6 0.2 100 

34 RUN 16_2_HS10 F06 U02 0.10 0.6 0.2 100 

35 RUN 16 3 HS10 F06 U02 0.10 0.6 0.2 100 

36 RUN_16_4 HS10 F06 U02 0.10 0.6 0.2 100 

37 RUN 17_1_HSIO F07 U01 RUN17_01 0.10 0.7 0.1 200 

38 RUN 17_2_HS10 Rl7_U01 0.10 0.7 0.1 200 

39 RUN 18_1 HSlO F07 U02 RUN18_02 0.10 0.7 0.2 100 

40 RUN 18_2_HSIO F07 U02 0.10 0.7 0.2 100 

41 RUN_l8 3 HSlO F07_U02 0.10 0.7 0.2 100 

42 RUN 18 4 HSIO F07 U02 0.10 0.7 0.2 100 
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Table L.3: Random wave experiments: Group #I 3 

RUN Run Bs g u Time 

' FileName Name (m) (Hz) (m/sec) (sec) 

43 RUN 19 O_HS15_F05_UOO RUN19 0 0.15 0.5 0.0 400 

44 RUN 20_0 HS15 F06 UOO RUN20 0 0.15 0.6 0.0 400 

45 RUN 21 0 HS13 F07 UOO RUN21 0 0.13 0.7 0.0 400 

46 RUN 22_1 HS15 FOS_UOl RUN22 01 0.15 0.5 0.1 200 

47 RUN 22 2 HS15_F05_U01 0.15 0.5 0.1 200 

48 RUN 23_l_HS 15 FOS U02 RUN23 02 0.15 0.5 0.2 100 

49 RUN 23 2_HS 15 FOS U02 0.15 0.5 0.2 100 

50 RUN 23 3 HS 15 FOS U02 0.15 0.5 0.2 100 

51 RUN 23_4 HS15 F05 U02 0.15 0.5 0.2 100 

52 RUN 24 1 HS15 F06 U01 RUN24 01 0.15 0.6 0.1 200 

53 RUN 24_2 HS15 F06 U01 0.15 0.6 0.1 200 

54 RUN 25 1 HS15 F06 U02 RUN25_02 0.15 0.6 0.2 100 

55 RUN 25 2 HS15 F06 U02 0.15 0.6 0.2 100 

56 RUN 25 3 HS15 F06_U02 0.15 0.6 0.2 100 

57 RUN 25_4_HS15 F06 U02 0.15 0.6 0.2 100 

58 RUN_26 1 HS13 F07 UOI RUN26 01 0.13 0.7 0.1 200 

59 RUN 26 2 HS13 F07_U01 0.13 0.7 0.1 200 

60 RUN 27 I HS13 F07 U02 RUN27 02 0.13 0.7 0.2 100 

61 RUN 27 2 HS 13 F07 U02 0.13 0.7 0.2 100 

62 RUN 27 3 HS13 F07 U02 0.13 0.7 0.2 100 

63 RUN 27 4 HS13 F07 U02 0.13 0.7 0.2 100 
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AppendixM 

Wave Power Spectral Density Function: 
Experiment 
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Figure M.l: Wave power spectral density function [Run # 1-0] 
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Figure M.14: Wave power spectral density function [Run # 14-02] 
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Figure M.l7: Wave power spectral density function [Run# 17-01] 

................ , .... 
2.00E-o2 ....-------....--------r------r------, 

I 1.50E.02 . 
E 
g J 1.00£.(12 

! 5.00E.(J3 

0 0.5 

I 
· ·- ·· -· · -· · - · · -i 

· - -··-··- -- ~ 

fNIIUIIICJ,Ita 

I 

I 

I - ·--·--· ·-l 
I 

1.5 2 

Figure M.18: Wave power spectral density function [Run 4118-02] 
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Figure M.20: Wave power spectral density function [Run # 20-0] 
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Figure M.22: Wave power spectral density function [Run# 22-0] 
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Figure 0.14: Pitch power spectral density function [Run It 14-02] 

325 



............ .....,_, .... , ..... 
125E~1~----------~--------~----------~-----------. 

I 1.00E.Q1 

. 
I 
~ 7.SOE.Q2 

e 1 S.DDE-02 

i 
2.50E.()2 

0 0.5 1.5 2 

Figure 0.15: Pitch power spectral density function [Run# 15-01] 
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Figure 0.16: Pitch power spectral density function [Run # 16-02] 
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Figure 0.17: Pitch power spectral density function [Run # 17-0 I] 
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Figure 0.18: Pitch power spectral density function [Run I 18-02] 
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Figure 0 .19: Pitch power spectral density function [Run# 19-0] 
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Figure 0.20: Pitch power spectral density function [Run# 20-0] 
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Figure 0.21: Pitch power spectral density function [Run# 21-0] 
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Figure 0.22: Pitch power spectral density function [Run# 22-01] 
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Figure 0.23: Pitch power spectral density function [Run# 23-02] 
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Figure 0 .24; Pitch power spectral density function [Run# 24-01] 
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Figure 0.25: Pitch power spectral density function [Run# 25-02] 
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Figure 0.26: Pitch power spectral density function [Run 4# 26-01] 
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Figure 0.27: Pitch power spectral density function [Run# 27-02] 
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