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Abstract

An accurate estimation of the hydrodynamic parameters for Underwater Robotic Vehicles
(URV) is a top priority for the designing of the control strategies for such vehicles. The
identification of these parameters constitutes a main difficulty in the development of a
URYV. Several methods have been developed to estimate such parameters. These methods
include: strip theory, slender body theory, semi-empirical approaches, and parametric
identification. Most of these methods have many assumptions and drawbacks that restrict
their applicability.

[ am mainly concerned with the parametric identification. One of the advantages
of parametric identification is that if it can be done in real time then one can have a tool
for updating the dynamic model as the vehicle moves through the water. Responses
obtained using this model will be realistic and increase the chances of having better
controi of the vehicle.

In this dissertation, I develop a new robust technique for the identification of the
damping, restoring, and coupling parameters in the equations describing the coupled
heave and pitch motions for an URYV sailing near the water surface in random waves. The
developed technique is called RDLRNNT, which is a combination of the random
decrement technique, multi-linear regression algorithm, and a neural networks technique.
RDLRNNT requires only the measured coupled heave and pitch responses for the URV in
random waves and does not require a prior knowledge of the wave excitation. The
developed technique would be particularly useful in identifying the parameters for both
moderately and lightly damped motions under the action of unknown wave excitations

affected by a realistic sea.



Numerically generated data for the coupled heave and pitch motion of an URV
are used initially to test the accuracy of the technique for both different levels of damping
and a wide range of damped natural frequencies in heave and pitch motions. Moreover,
several case studies are further investigated to test the dependency of the developed
technique on the wave excitation forms. Two different excitations are investigated: a
wide-band and a narrow-band form.

Experimental data are also used to validate the identification technique for
different functions of wave excitations and different towing speeds. Three main
experimental variables are further investigated: the significant wave height (Hs), the

wave modal frequency (£2), and the towing speed (U).
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Chapter 1
Introduction

1.1 Objectives

The main objective of this work is to develop a robust technique for the identification of
the damping, restoring, and coupling parameters in the equations describing the coupled
heave and pitch motions for an Underwater Robotic Vehicle (URV) sailing near the sea
surface in random waves.

The technique should be able to deal with situations where the level of damping is
high and where the wave spectrum can no longer be considered white noise. A long-term
objective is to develop this technique into a tool for continuous monitoring of the URV’s
motion and stability. The tool will be helpful in raising the level of reliability of the URV.
It will also provide full-scale data, which can be used to improve the design procedure for
such vehicles. The technique developed in this work can also be used for the analysis of

towing tank data.

1.2 Methodology

A robust identification technique called “RDLRNNT" has been developed in this work to
identify the parameters in the equations describing the coupled heave and pitch motions
for an URYV sailing near the sea surface in random waves. The technique is based on the

use of a combination of a random decrement technique. a multi-linear regression



algorithm and a neural networks technique. The present technique uses only the
measured heave and pitch motion responses at sea without a prior knowledge of the wave
excitation.

The identification procedure consists of three steps. In the first step I derive the
random decrement equations. The derivation is based on a mathematical model
describing the coupled heave and pitch motions for an URYV sailing near the sea surface
in random waves. In the second step a multi-linear regression algorithm is applied to the
random decrement equations to identify the damping and the restoring parameters. In the
third step a neural networks technique is used to identify the coupling functions for the
heave and pitch motions.

The neural networks technique is based on the minimization of the error between
a target function and the network’s output. In the problem at hand, it is difficult to
determine the target function. Substituting the network’s output back into the differential
equations and integrating these equations to obtain the heave and pitch displacements
have remedied this situation. The obtained heave and pitch displacements are then used
as network outputs and the error is calculated between these outputs and the measured

heave and pitch displacements.

1.3 Thesis Organization

The thesis is divided into four parts. In the first part, which can be found in Chapter 2, I
provide a literature survey in two main areas: dynamics of the underwater robotic

vehicles and identification techniques. The survey sheds light on different methods used



in the identification of the hydrodynamic parameters for ships and underwater robotic
vehicles. In addition, the survey covered the most recent methods in the identification of
the hydrodynamic forces: parametric identification and neural networks. In the survey, I
describe the advantages and disadvantages as well as the limitations of each method.

In the second part, which can be found in Chapters 3 and 4, a mathematical model
that describes the coupled heave and pitch motions for an URV sailing near the sea
surface in random waves, is formulated using rigid body dynamics and Newton’s laws of
motion. In addition, the random decrement equations as well as the auto- and cross-
correlation functions for the coupled heave and pitch motions for an URV are derived. |
briefly introduce the new developed identification technique, RDLRNNT. In this part, the
developed technique is based on a combination of the random decrement technique or
auto- and cross-correlation functions, a multi-linear regression aigorithm, and a neural
networks technique. These techniques are briefly introduced in this part.

In the third part, which can be found in Chapter 5, I introduce a procedure for the
validation of the model using both numerically generated data and experimental data. In
addition, the main features of the designed URV-model as well as the associated
calculations: weight, buoyancy, ballast, and stability are presented. Moreover, |
investigate the use of strip theory in the prediction of the coupled heave and pitch
motions for a harmonic excitation.

I introduce briefly the preparation of the URV-model for carrying out the
experimental work. Two main categories of experiments are carried out in this work:
calm water experiments and random wave experiments. The first category was needed to

measure the free decay coupled heave and pitch motions for the URV-model, while the



second one was important to validate the utility of the developed technique in the
identification of the hydrodynamic parameters in the equations describing the coupled
heave and pitch motions for an URYV sailing near the sea surface in random waves.

In the fourth part, which can be found in Chapter 6, I generate random data for the
coupled heave and pitch motions using the mathematical model. The random data were
generated for both wide-band and narrow-band excitations. In this part, I investigate the
effect of using a band-pass filter centered around the damped natural frequencies for
heave and pitch motions, on the identified parameters. Furthermore, I present the
numerical simulation results for random motions taking into account the variation of both
the damping levels and different values of damped natural frequencies for heave and
pitch motions.

Furthermore, I present the experimental results for random motions taking into
account the variation of towing speed, and both the significant wave height and the modal
frequency of the wave excitations. I finally conclude our work in Chapter 7 and give

some directions for the future open problems in the area.

1.4 Scope of Research

The dissertation focuses on the development of a reliable and robust technique for the
identification of the parameters in the equations describing the coupled heave and pitch
motions for an URV sailing near the sea surface in random waves. The developed
technique depends only on the measured responses of the URV and does not require a

prior knowledge of the wave excitation.



The developed technique has been validated using both numerically generated
data as well as experimental data. Numerical data for random motions have been
generated taking into account the variation of both the damping levels in heave and pitch
motions, and different values for the damped natural frequencies. Both the effects of
wide-band and narrow-band excitations on the identified parameters are investigated
using the developed technique. In addition, the effect of using a band-pass filter centered
near the damped natural frequencies for heave and pitch motions on the identified
parameters is investigated.

An experimental program was designed and conducted at the towing tank at
Memorial University. The main objective for carrying out the experimental program is to
measure the coupled heave and pitch motions for the URV corresponding to different
random wave excitations. Three main parameters are varied in the experimental program:
the significant wave height, Hs, the wave modal frequency, €2, and the towing speed, U.

Computer programs for calculating the random decrement signatures, the auto-
and cross-correlation functions using both numericaily generated random data and the
measured random data for the coupled heave and pitch motions for the URV were

developed.



Chapter 2

Literature Review

2.1 Introduction

The ocean is an important source of resources such as fish, minerals, natural gas, and oil.
A huge effort has been made to utilize and to protect these resources since they can
contribute significantly to the development of our lives. The first step towards the ocean
exploration was the use of diving suits and manned submersibles. Since the appearance of
their limitations, various forms of unmanned remotely controlled vehicles were
developed.

Several studies have been carried out to develop vehicles that can be used in
ocean exploration. These studies have been under way for several decades. They were
mainly directed to military tasks and scientific research. In the 1960s and 1970s, two
main types of vehicles were developed: deep submersible vehicles (DSVs) and
underwater robotic vehicles (URVs) [1,2].

It is essential that the DSVs be large enough to accommodate several persons,
such as a pilot and observers. These vehicles are classified as human occupied vehicles.
Therefore, these vehicles are more difficult to handle at sea and more difficult to position
in restricted work areas. Most DSVs require the presence of a mother ship to provide the
supervision support for the vehicle and personnel.

URVs include the whole range of unmanned underwater vehicles from remotely

operated vehicles (ROVs) to autonomous underwater vehicles (AUVs) [3). These



vehicles are classified as unoccupied vehicles. ROVs provide greater endurance and
larger range than DSVs at a lower cost. In addition, ROVs can operate in hazardous
environments and provide on-line real time observation. This is because life-safety
support is not necessary for ROVs. Thus, ROVs have replaced DSVs in most commercial
applications.

ROVs were originally developed for military applications. In the early 1970s, the
offshore oil industry needed such vehicles to construct and to maintain underwater
structures [1]. ROVs technology was further developed to meet such needs by private
firms. They are the most common type of underwater vehicles. Because of user
familianity and extensive proven capabilities for such vehicles, they are widely used.

Using a tether (umbilical cable), an ROV is usually connected to a mother ship.
The tether carries power and control signals from the mother ship, and transmits the
feedback-measured data from the vehicle. In general, ROVs have been classified into
three main types depending on the type of mission: small, light and medium-weight, and
large-work class ROVs {1]. The tether constrains the vehicle in many ways. Therefore,
the use of ROVs is restricted by tether drag and the stability of ROVs can be affected by
the surface waves. Due to the tether’s limitation, unmanned autonomous underwater
vehicles (AUVs) have been created as an altemnative exploration and work platform.

AUVs have potential advantages over ROVs and DSVs because they are free
from tethers and human occupants. Therefore, the vehicle is free to roam widely in the
ocean. Furthermore, they can be used in hazardous environments such as a toxic area, or

in radioactive material areas, or in poor weather conditions. Humans cannot reach these



environments. In addition, these vehicles are suitable for repetitive and long time
missions instead of using surface platforms.

The development of these vehicles has been under way for several decades and
was mainly funded by the military. The development of these vehicles was slower than
ROVs, because there was no experience with such vehicles in the commercial sector [1].
The currently existing AUVs are restricted with limited decision-making capability and
endurance. AUVs are still in their developing phase. There is a lack of operational
experience with these vehicles in the open ocean. This marks them as an immature
technology with very important potential for the future.

The last three decades saw a rapid growth in the development and use of the
URVs. The early use of these vehicles was limited to military applications. However, the
use has spread recently to all types of industrial activities. Foremost, among these
activities is the use in offshore oil and gas applications. The success of an URV in
achieving its mission depends largely on the sophistication of the control strategies used
in controlling the motion of the vehicle and the ability of the vehicle to perform required
maneuvers. Accurate dynamic modeling is a prerequisite for designing effective control
strategies [3,4,5,6).

The dynamic behavior of a URV is based on the hydrodynamic forces and
moments that represent the main difficulty in the modeling of the URVs. However, the
high performance of URVs cannot be achieved without resolving this difficuity. In
addition, the dynamics of these vehicles are strongly coupled due to the comparable
velocities along the three axes of the motion. Moreover, the added mass values and the

location of the centers of gravity and buoyancy suffer large variation because of large



changes in the load of the vehicle during its mission. Finally, underwater currents have
significant effects on the performance of the URVs.

Different types of external forces and moments are exerted on the vehicle body
during its mission. These are hydrodynamic forces, weight and buoyancy forces, and
current forces. Likewise, the advancing motion of the URYV in water causes two major
effects: accelerating the layer of the water surrounding the vehicle and introducing drag
forces due to the effects of viscosity.

The equations of motion describing the motion of the URV can be formulated
using rigid body dynamics and Newton’s laws of motion. The hydrodynamic parameters
of the vehicles are important components of the model. Several methods have been used
io define and calculate these parameters. These include: strip theory, siender-body theory,
a semi-empirical approach and most recently, parametric identification. I am mainly
concemed with last approach.

The most recent approach to estimate the hydrodynamic parameters for a
particular vehicle is the parametric identification technique. The relationship between the
inputs and the outputs is assumed based on the nature of the dynamic system. This
relationship is known as a mathematical model. The unknown parameters in that model
are determined by minimizing the mean square of the error function, which is the
difference between the output of the mathematical model and the measured output of the
dynamic system.

One of the advantages of parametric identification is that if it can be done in real

time then one can have a tool for updating the dynamic model as the vehicle moves



through the water. Responses obtained using this model will be realistic and increase the
chances of having better control of the vehicle.

One main drawback for the classical identification techniques is that they require
knowledge of the input and the output to the system. In case of a ship at sea, input
measurements are difficult to carry out. A technique that depends on the knowledge of
the output only is desirable in this case.

Some parametric identification techniques have been used successfully in the area
of ship motion such as equivalent linearization technique, auto-correlation function,
random decrement technique, and neural networks technique [7,8,9,10].

In general, the hydrodynamic parameters of the URV are functions of forward
speed and frequency. A method, which could estimate these parameters in real time and
feed them into the dynamic model to update the vehicle state variables continuously with
time, is desirable. Such a method would have to rely only on the measured response of
the vehicle because it is difficult to get information about the environmental conditions
while the vehicle is moving. A method that is based on the random decrement concept
seems to be most suitable for such problems.

The method for obtaining the random decrement signature applies an averaging
technique that has been used successfully in the on-line failure detection and damping
identification for linear systems [11,12]. Statistical properties obtained indicate that this
signature is stable in form and scale. This marks it as a reliable method with very
important potential in damping identification.

The random decrement signature is the ensemble average of a large number of

segments of the response of a system. Each segment must start with the same initial
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conditions. The random decrement is based on the fact that when the general response of
a single-degree-of-freedom system is averaged, the contribution of its steady state
component to the expected value of the response vanishes when the excitation function is
a Gaussain white noise random process. Then, the expected value of the random response
is represented only by the contribution of its transient component caused by the initial
conditions [13,14].

In other words, when a Gaussain white noise random process excites a single-
degree-of-freedom system, the random decrement signature is identical in form to its free
response and its auto-correlation function in the case of lightly damped motions.
However, for nonlinear and multiple-degree-of-freedom systems in heavily damped
motions which are excited by other excitations, it differs. Moreover, the obtained
signatures for the systems are influenced by the excitations and this must be taken into
account in the interpretation [12].

The method has been developed in connection with the identification of the
rolling motion of a ship [14]. It is based on calculating the random decrement signature
from the random response. It was shown that the random decrement signature agrees well
with both the auto-correlation function and the free decay roll response. The method was
extended to the case of the coupled sway and yaw motions for a ship [13] and to the case
of two-degrees-of-freedom systems [15].

Coupled heave and pitch motions for semi-submersible rigid bodies have been
studied in several research studies [6,10,16,17,18]. The main parameters of the coupled
heave and pitch motion equations are: the virtual mass of the body and its virtual moment

of inertia, heave and pitch damping parameters, heave and pitch restoring parameters, the
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exciting wave force and moment, and the coupling parameters. Fourteen unknown
parameters in these equations are to be determined. The coupled heave and pitch
equations can be normalized with respect to the total virtual mass and the virtual moment
of inertia of the body, respectively. In this case I am left with only twelve quantities to
determine.

The case of the coupled heave and pitch motions [15]) showed that the random
decrement signatures and the components of the correlation matrix satisfy the same
equations describing the free decay motion of a heaving and pitching floating body. It has
also been shown that both the correlation functions and the random decrement signatures
yield good results for systems, which have weak damping. When damping is low, the
random decrement signatures and the correlation functions provide good representation
of the free decay motion of the system. However, for highly damped systems this ceases
to be the case. High damping causes the transient solution to die very quickly and the
random decrement signatures and the correlation functions become affected by the
external excitation.

A modification of the above mentioned approach has been developed. The results
of the new technique are presented. This new approach enables us to use the random
decrement signatures or the correlation functions to represent the free decay coupled
heave and pitch motions of a moderately damped semi-submersible vehicle. The
modified approach is used to show that the free decay coupled heave and pitch motions
for an URV can be determined using its measured stationary random response.

The spectral densities of the coupled heave and pitch motions of a URV/ship

floating near the water surface in random waves are characterized by well separated
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multiple peaks. One peak is usually centered around the natural frequency while the other
is usually centered around the wave modal frequency. With the present state of
knowledge in the area of ship motion, one can get rough estimates for the natural
frequencies for heave and pitch motions. One can then use a band-pass filter centered
around the estimated natural frequency to get a signal which is composed mainly of the
transient response of the floating vehicle. The correlation functions and/or the random
decrement signatures can be then calculated using this filtered signal.

A robust technique has been developed in this dissertation to identify the
damping, the restoring, and the coupling parameters in the equations describing the
coupled heave and pitch motion for an URV working near the sea surface in random
waves using only its measured random responses without a prior knowledge of the wave
excitation. This has been achieved using a combination of the random decrement
technique, a multiple-linear regression algorithm and a neural networks technique in one
technique, which I called as “RDLRNNT ”.

In this chapter, I am going to present the literature survey for this work. This
survey has been conducted and classified into two main tasks: dynamics of the URVs,

and identification techniques. These tasks will be discussed in the following sections.

2.2 Dynamics of Underwater Robotic Vehicles

During the last three decades, the use of URVs has rapidly increased in different areas.
This is because the use of URVs is no longer limited to the military field only. Reliability

of operation for these vehicles has become an important factor in their development
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because they work in a hostile ocean environment, which is unrestricted and
unpredictable. Many problems have restricted the development of these vehicles such as
maneuverability, and control strategies. This is due to the fact that the dynamic behavior
of the URYV is highly nonlinear and strongly coupled [3,4,5,6].

The advancing motion of the URV in water causes two major effects: accelerating
the layer of the water surrounding the vehicle and introducing drag forces due to the
effects of viscosity. The mass of the layer of the surrounding water that has been
accelerated by the vehicle motion is known as the added mass. Added mass parameters
are proportionality constants that relate each of the linear and angular accelerations to
each hydrodynamic force and moment they generate [4]. Thus, the effective mass of the
vehicle and its moment of inertia should be calculated based on the added mass terms.
The effect of the added mass terms will be significant in the case of high acceleration
motion.

Another result from the motion of the URV in the water is drag force, which
results from the friction between the URV body and the surrounding water particles. This
force is proportional to the square of the cormresponding relative motion [4]. Forces and
moments resulting from thruster dynamics, weight and buoyancy should be defined at the
local coordinate systems. All of the mentioned forces should be included in the equations
that describe the motion of the URV.

Three approaches have been used to study the motion of URVs: theoretical
investigations, model experiments, and full-scale measurements. Theoretical
developments in the area of URVs motion may be largely divided into two main

categories: analytical and empirical methods [16].
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The methods in the first category focus on finding numerical solutions to
problems, which deal with linear and nonlinear, two-dimensional (2D) and three-
dimensional (3D) surface flow around a floating body. Some of these methods used
include strip theory, slender-body theory, and panel source method.

Strip theory allows for good estimates of the vertical motions of conventional
ships. It has proven more than satisfactory for the calculation of some ship motions [19].
Korvin Kroukovesky and Jacobs originally developed strip theory to calculate the
coupled heave and pitch motions for a ship [17]. This theory considers the
floating/submerged body as a cylinder having a series of transverse strips. Each strip is
assumed to be a part of infinite cylinder having a 2D flow. This assumption reduces the
problem from a 3D flow problem to a 2D. The response of each strip is easily calculated.
The total response of the floating/submerged body is found by integrating the component
reactions of all strips along the length of body. This method reduces the 3D flow problem
to a 2D one with specific assumptions. One of these assumptions is zero-interaction
between the flows at adjacent sections. However, there is a significant difference between
2D and 3D flows. The assumption restricts the applicability of the strip theory. Moreover,
the strip theory is still in a state of refinement due to the complexities of free surface
effects. In fact, the practical limits of this method are poorly known [20].

Slender-body theory is another method that could be utilized to solve the 3D-flow
probiem around floating/submerged bodies [21]. It is used in the calculation of resistance
and hydrodynamic forces of ships. The vehicle’s beam and the draft are small compared
to the length of the vehicle. The fluid actions are described by the unified slender-body

theory presented by Newman in 1978 [22]. The comparison between the experiments and
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the slender-body theory is difficult because the theory neglects the effects of control
surfaces, propellers, and other appendages in the model, whereas experiments are usually
conducted using full-form models with all appendages [7]. Moreover, the applications of
slender-body theory are limited in ocean engineering. The URV may have many
manipulators, links, fins, and thrusters. Therefore, this method will not be suitable for the
calculation of the hydrodynamic forces for such vehicles.

A panel source method is based on the approximation of the velocity potential
flow of the submerged vehicle in waves. This approximation is obtained by distributing
sources and normal dipoles on the submerged surface of the vehicle. An integral equation
for the strength of these singularities is derived from the cormresponding boundary
conditions [19,20). This method is suitable for the complicated structure shapes.
However, it is considered to be a highly time-consuming method, where its accuracy is
proportional to the square of the number of panels.

The basic assumption underlying the second category is that the Froude-Kirylov
hypothesis is valid [5,6,8]. According to this hypothesis, one can decompose the forces
acting on an URYV advancing in waves into two types of forces: hydrodynamic forces and
exciting forces. The equations of motion have been obtained using Newton’s law of
motion while considering the effect of the underwater currents, torques, and cable
traction only in the case of ROVs [6).

Hydrodynamic forces are produced as a result of the oscillations of the URV
about a stationary or steadily advancing mean position below the calm free surface.
Exciting forces are produced as a result of the pressure distribution in waves assuming

that URYV is fixed at the mean position. The analysis is carried further by assuming that
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the hydrodynamic forces are functions of the accelerations, velocities, and displacements
of the URV. Thus, the Taylor or McLaurin expansions of these variables are used to
express these forces mathematically. The parameters of the different acceleration,
velocity, and displacement terms are generally called added masses, damping parameters,
and hydrostatic spring parameters, respectively. Different methods exist in the literature
for the determination of these parameters [9]. The hydrostatic parameters are easily
calculated by theory; however, the added masses and damping parameters are extremely
difficult to calculate especially for large amplitudes and coupled motions.

Abkowitz (1964) replaced the hydrodynamic forces and moments by their Taylor
expansions [10] and Baiardi et al., approximated these forces and moments for low
velocity motion by using McLaurin expansions [9]. Since, the use of Taylor or McLaurin
expansions is limited only for the analytical functions, the hydrodynamic forces and
moments are assumed to be of this nature at least for the linear term and third order term
[10].

However, truncation of the higher order terms from these expansions diminishes
the accuracy of the estimated values. In addition, the number of the parameters to be
identified is large, which means a large time-consuming calculation procedure.

Yuh and Choi et al. have developed a mathematical model describing the
dynamics of the URV [4,5,23]. In this model, all the nonlinear dynamic terms with
velocity terms, terms associated with forces and moments exerted on the vehicle by fluid
motion, drag forces and torque are included in one matrix. The inertia matrix includes the
mass of rigid body plus the added mass and added inertia associated with the motion of

rigid body in the fluid. There are two force vectors, one for gravity and buoyancy forces,
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and the other represents the forces and torque generated by thruster forces. Unfortunately,
there are poorly known hydrodynamic parameters among the parameters of the dynamic
model. Therefore, a conventional control scheme cannot guarantee high performance in
URVs motion control.

When one or more manipulators are attached to the vehicle, it becomes a
multiple-body system. In this case, a significant effect on the global motion of the vehicle
will be introduced. Consequently, the dynamic modeling of such vehicles will be very
complicated [3]. Uncertainty involved in the evaluation of the hydrodynamic parameters
of URVs usually introduces the significant error in the final prediction results.

A semi-empirical approach is based on the derivation of empirical models
(relationships) for the hydrodynamic parameters of a tested-vehicie as functions of its
attitude and motion. These models can be obtained using a multiple-linear regression
algorithm for the measured values of these parameters corresponding to particular
motions for such a vehicle. The measured values for these parameters can be determined
using a forced/captive model experiments for a particular vehicle such as planar motion
mechanism (PMM), rotating arm technique, and marine dynamic test facility (MDTF).

Nahon [16] used well-known empirical hydrodynamic relations, which use the
geometrical shape of the vehicle to calculate the hydrodynamic parameters for
streamlined underwater vehicles. The vehicle’s body has been decomposed into its basic
elements: hull, individual control surfaces, and propulsion system. Each element is
modeled using well-known empirical hydrodynamic relations. The total hydrodynamic
forces and moments are then considered as a summation of the element effects with some

corrections. The approach is valid only for streamlined underwater vehicles; however,
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most of the working underwater vehicles have some complicated geometry. However, the
correction factors that have been used as a result of the interference effects between
different elements constituting the streamlined vehicle are difficult to obtain accurately.

The idea of a numerical wave tank (computer codes) is currently being developed.
Great progress is being achieved in this area of research, but the complexity of involved
phenomena and the high degree of nonlinearly still constitute the main difficulty. Also,
many difficulties remain in order to obtain practical tools to solve the URV design
problems. In addition, numerical wave tank predictions do not indicate that
Computational Fluid Dynamics (CFD) is actually replacing the physical towing tank. One
of the computer codes which has been used in the simulation of offshore structures is
FLOW-3D.

Model experiments have been used extensively in applied sciences and
engineering to provide a practical tool for validating the theoretical prediction of the
behavior of the floating/submerged vehicles in a realistic sea. In addition, they are used to
study new hull shapes and wave loads that a floating/submerged body will encounter for
its optimum design. Model test results suffer from scale effects, which may be of great
importance especially in cases where viscosity plays a major role [17].

Full-scale tests are performed in limited cases due to the expense involved. Their
use is usually limited to the conditions under which the tests have been carried out. Thus,
the results of these tests do not provide excitation independent transfer functions, which

can be used later for calculating a vehicle’s response to different excitations [17].
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Currently, an important desire exists for research to develop a practical and
reliable tool for the prediction of the URVs response in realistic seas without the

drawbacks of the traditional methods. This desire is the focus of this dissertation.

2.3 Identification Techniques

The existing techniques for the determination of the hydrodynamic parameters of URVs
are theoretical predictions, water tunnel and towing tank tests, and trial and error
adjustment of model parameters. These techniques have drawbacks such as high cost, are
time-consuming, and do not provide any mathematically defined optimum.

In the last two decades, several studies have been conducted in the area of the
identification techniques. Recently, system identification techniques have been applied to
identify the hydrodynamic parameters included in the dynamic model describing the
motion of the URV. The dynamic model is traditionally formulated using rigid body
dynamics and Newton’s law of motion.

Parametric identification techniques have been used instead of the traditional
methods to overcome the drawbacks from using them [18]). Many parameter
identification techniques have been developed, of which most involve a minimized
measure of the mean square error between the output of the predicted model and that
from the measured data.

Abkowitz [24] used a Kalman Filter approach to identify the hydrodynamic
parameters in the maneuvering equations of the ship. Roberts et al. [25] developed a
method for the prediction of the hydrodynamic parameters of a single-degree-of-freedom

rolling equation from roll measurements in realistic sea. This method assumes the
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property of the energy envelope process associated with the roll motion is a Markov
process. Healey [26] applied both Batch Least Squares and Kalman Filters for system
parameter identification to the experimental maneuvering responses of AUV to detect a
change in AUV performance.

Roberts et al. [27] initiated an approach, based on the use of a combination of the
Markov process theory and the statistical linearization technique. Roberts’ approach does
not require prior knowledge of the excitation data. It requires long records of data and the
results are not always unique because of the large number of parameters to be
determined.

The development of a robust identification technique, which uses the measured
response at sea, does not require prior knowledge of wave excitation and deals only with
a few unknown parameters, seems to be in order. Haddara [14] used the Markov process
theory to extend the random decrement technique to the case of nonlinear roll motion.
This technique is based on calculating the random decrement signature from the random
response. It was shown that the random decrement signature agrees well with both the
auto-correlation function and the free decay roll [14]. The random decrement signature
can then be used to identify the parameters in the equation of motion without a need to
know the input to the system.

Originally, Cole [11,12] developed the random decrement technique empirically
in 1968. The basic assumption underlying this method is that one can obtain the free
response of a linear system excited by a zero mean, stationary, white, Gaussian random
process by ensemble averaging of the selected segments of the system response. These

segments are selected such that they all start with the same initial conditions

21



(displacement and velocity values). This value is then considered to be an initial
condition for the free response. The random decrement signature has been used as an
identification technique in the aerospace industry such as aircraft structures since 1968. It
has been used successfully for the damping identification of linear structures. The
random decrement signature has been also considered as the main basis of “Ibrahim Time
Domain Model Vibration Testing Technique”[28].

During that time, a mathematical basis of random decrement signature did not
exist to determine the accuracy of that technique in the estimation of damping ratio of a
dynamic system. Vandiver et al. [29] developed a mathematical basis for the random
decrement technique, and provided the relationship between the random decrement
signature of a random process and its auto-correlation function. This relationship is for a
linear time invariant system excited by a zero-mean, stationary, Gaussian white random
process, in which the random decrement signature of the response is proportional to its
auto-correlation function. Fortunately, most applications of the random decrement
technique have been restricted with the assumption that the excitation was sufficiently
broadband (Gaussian white noise random process).

The random decrement technique has successfully extended to nonlinear dynamic
systems, by Haddara [14]. The equations governing the random decrement signature for
ship rolling motion in a random sea have been derived. These equations are used to
identify the nonlinear rolling damping. This technique when combined with Standard
Parametric Identification techniques (SPI) yields values for damping and restoring
parameters without prior knowledge of the excitation. Haddara et al. [30] has conducted

the identification of the parameters successfully and the method was tested using
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simulations, model tests, and full-scale results. The method was shown to be successful
and is used by a local company as the basis for design and production of stability
continuous monitoring systems [31].

Haddara [32] has combined the random decrement technique and neural networks
technique, as an identification technique of stability parameters in a random sea. C. Y.
Liaw et al. [33]) has applied the Genetic algorithm in the parametric identification of
nonlinear-coupled roll and heave motions. In this algorithm, one can start the
identification process with a population of a random set of parameters, or genes. Each set
of these parameters is coded into binary digits, the chromosomes. Genetic algorithm can
then manipulate chromosomes in order to find the fittest set of parameters with respect to
the target function (free decay record). Any available Genetic algorithm computer
program, for example GENESIS, can be used. This algorithm needs only a feedback from
the searching space to be consistent, so that the solution yields better evaluations.

Haddara et al. {15] derived random decrement equations that describe the coupled
heave-pitch motions for a ship sailing in random waves. It has been shown in that work
that the random decrement signatures and the components of the correlation matrix
satisfy the same equations describing the free decay motions of heaving and pitching for
a ship. It has also been shown that both the correlation functions and the random
decrement signatures yield good results for systems, which have weak damping. When
the damping is low, the random decrement signature and the correlation function
provides good representation of the free decay motion of the system. However, for highly

damped systems this ceases to be the case. High damping causes the transient solution to



die very quickly and the random decrement signatures and the correlation functions
become affected by the external excitation.

Multiple-linear regression algorithms may be used to estimate the parameters in a
linear mathematical model; however, for a nonlinear and coupled model with a large
number of independent variables (regressors), the accuracy of the algorithm decreases.
One of the limitations of using a multiple-regression algorithm is that there is no control
over the values that the method allocates to the different parameters in the model. For a
multiple-parameter model, there is some sort of “energy sharing” between the different
parameters. This sometimes results in a phenomena where an estimated yalue of a
parameter is larger than it should be, while the estimated value of another parameter
decreases to compensate for the increase in the value of the first parameter.

The most recent technique in the area of the parametric identification is the use of
an anificial neural network. In general, research on artificial neural network models has a
long history. Development of detailed mathematical models began more than 50 years
ago [34]. Neural networks try to mimic biological networks (35). The present artificial
neural networks are considered much simpler compared to the biological networks
especially in the number of neurons, size, and construction complexity [36].

Current interest in the field of neural networks is due to the vast development of
new network topologies and algorithms. Due to the rapid growth in the range of
alternative neural network systems, it is necessary that these systems be classified. This
classification is based on four characteristics: data format, mode of operation, principal
connection shape, and training process [36]. The network topology, neuron

characteristics, and training algorithms specify neural network systems [37]. Artificial
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neural networks have been proven to be more successful as a robust tool for identification
of discrete nonlinear control systems than conventional statistical techniques. This is
because there are many more processing nodes, each with primary local connections.

In an arntificial neural network, the outputs can be fed back to the input layer to
adapt its weights by using leamning algorithms. However, the main current concern area
in neural networks is to improve the training algorithms. Since the conventional
techniques typically process all training data simultaneously before being used with new
data, strong assumptions have been made concerning underlying distributions of the input
elements [34]. On the contrary, these assumptions do not exist in the neural networks.
This is because neural networks have a large number of simple processing elements
operating in parallel [34].

Currently, neural networks are used in almost all branches of engineering. For
example, in mechanical engineering, neural networks are used in the modeling of
dynamic systems for both design and control strategies. The use of the conventional
controllers has been restricted by the difficulties in the modeling of URV and the
hazardous environment of the ocean. Moreover, the technology for land vehicles cannot
be easily applied to URVs because the nature of the ocean environment is much more
complicated than the land environment [38]. Therefore, researchers are trying to develop
an intelligent control strategy for effective operation of URVs.

The emergence of neural networks as an effective leaming system for a wide
variety of applications has resulted in the use of these networks as learning controllers for

dynamic systems. One of the most important advantages of using neural networks for
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control applications is that the dynamics of URVs need not be completely known as a
prior condition for controller design.

Masri et al. [37] used a neural network in the identification of a nonlinearity in a
single-degree-of-freedom dynamic system. However, Haddara et al. {15,39] used neural
networks techniques successfully in the identification of the hydrodynamic parameters in
the equations describing the coupled sway and yaw motions for a ship. In addition,
Haddara suggested a method, which is used as a part of continuous monitoring system to
provide information about instantaneous values of ship stability. This method has been
made by using the neural network technique to identify stability parameters [32].

Lainiotis et al. [40] has developed a comparison between the Kalman Filter
estimator and the neural network one. The conclusion from this comparison is that the
neural network estimator requires only very little information about the dynamics of the
system compared to that required by the Kalman Filter estimator. Nevertheless, the
performance of the conventional statistical techniques depends basically on the
information about the possible variations of the unknown parameters. The prediction of
the ship position by using a neural network estimator is much better than that obtained by
using a Kalman Filter estimator in cases where the underlying statistics and dynamics of
the system are not completely known to the estimator.

In order to compare the Adaptive Lainiotis Filter (ALF) and adaptive neural
network estimator, three experiments in the ship position estimation were developed by
Lainiotis et al. [41]. In the first experiment, it is supposed that the dynamic model of the
system is partially known. In the second experiment, it is supposed that there is a

different uncertainty scenario for the model. The result of the comparison from these
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experiments is that both ALF and neural network estimators identify the actual model
very well. It must be emphasized that the neural network estimator does not require any
statistical or deterministic information about the inputs to the model. In the third
experiment, there is a more difficult uncertainty scenario. It has been found from this
experiment that the adaptive neural network estimator provides a very reliable solution to
the problem of ship motion estimation. This is because it provides accurate and consistent
results despite the minimum information about the nature of the dynamic systems.

The identification of the nonlinear dynamic systems has been done using two
popular types of artificial neural networks. These types are feedforward neural networks
(FNNs) and recurrent neural networks (RNNs). Recurrent neural networks are the
networks with internal or external feedback in which the past system outputs are replaced
by the past outputs of the network, while in FNNs, past system inputs and outputs are
used as neural network inputs. Any dynamic system can be modeled using FNNs with at
least one hidden layer to any level of accuracy [42].

However, Flood et al. [36] suggested that FNNs with at least two hidden layers
would provide a greater flexibility in the modeling of any dynamic system. In the mean
time Haddara et al. [13,15,35,39] obtained good results by using FNNs with one hidden
layer in the modeling of dynamic systems. It is concluded that FNNs with one hidden
layer is more efficent to model most dynamic systems.

In conclusion, neural networks should be regarded as a complement part to
conventional computing techniques. A neural network model reflects only the input-
output behavior of a dynamic system without regard to an internal physical mechanism

that reproduces the outputs. The artificial neural network approach does not require any



assumptions about the intemal structure of the system to be made [36). The operating
mechanism of the neural network can be easily understood by knowing the main
concepts, construction elements and their functions in the network, and how these
elements work simultaneously in the network.

From this review, it is obvious that during the last two decades, researchers have
used the random decrement technique several times. In this dissertation, I am going to

combine the classical identification techniques with the neural networks technique.
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the hydrofoil part are designed to constitute one neutrally buoyant body taking into
account the effect of the weight of the dynamometer flange.

The dynamics of the URV-model in this case should take into account the effects
arising from both the hydrofoil connection and the dynamometer. The equations of
motion in this case are similar to those describing the motion of vehicles floating at the
surface. The neutrally buoyant body in this case is considered as a semi-submersible
vehicle. The equations of motion describing the coupled heave and pitch motions for that

body, are given as [43]:

(m+ay,)Z +byZ +3,Z +a,,0+ 5,0 +¢,,©0 = F(1) (3.1)

(I, +ay)0+ b O +c @ +anZ +byZ +cZ =M (1) (3.2)

where Z and © are the heave displacement and the pitch angle, respectively. A dot over
the variable indicates differentiation with respect to time; I,, and m are the mass moment
of inertia for the neutrally buoyant body and its mass, respectively; a33 and ass are the
added mass for heaving and the added mass moment of inertia for pitching, respectively;
b33 and bss are the damping parameters for heaving and pitching, respectively; c33 and css
are the restoring force parameters for heaving and pitching, respectively; ass, bss, C3s, as3,
bs3, and cs3 are coupling parameters. F(t) and M(t) are the wave exciting force and

moment, respectively. In the derivation of equation (3.2), I have ignored second order

terms similar to R.6.Z, for small heave and pitch motion.
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These equations are written with reference to a right-hand system of coordinate
axes having its origin at the center of gravity of the URV and its x-axis in the longitudinal
plane of symmetry of the URV with its positive direction pointing forward, as shown in
Figure (3.2).

v
z
\l heave

Figure 3.2 Vertical plane motion of a URV with respect to earth axes

where R is the distance between the center of gravity of the model and the pitching pivot
of the dynamometer flange. This distance is 0.41 m.

Normalizing equations (3.1) and (3.2) with respect to the total virtual mass and
total virtual mass moment of inertia of the neutral buoyant body, respectively and using

the following change of variables:
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equations (3.1) and (3.2) can be easily replaced by the following set of four first order

differential equations [15]:
Y(t)=DY()+ K(r) (3.4)
where
0 0 1 0 0
0 0 1 0 F@) =—F@)-e.M(t
D= 0 K@) = , . (@) F@)-e.M(1) 3.5)
-d,, -d,, —-dy; —d,, F@) | M(@t)=-0,F@t)-0o.,M(1)
_d.u —du —dn —du Mr(')

where di3 and ds;; are the damping force and the restoring force parameters for heave
motion, respectively; dys and ds; are the damping moment and restoring moment
parameters for pitch motion, respectively; dsz, d3s and dy;, dy3 are the coupling parameters
for heave and pitch equations, respectively; €, €z, 6), and O, are constants. Detailed
expressions for these parameters are given in Appendix A.
The excitation vector, K(t) is assumed to be a Gaussain white noise random

process whose components satisfy the following conditions [15]:

Ek®]l=0

E (ki) ki(t+7)] = y; (1) i=l4 (3.6)

E (ki) kj(t+t)] = 0 (i #j)
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where y; , i =l,....,4, are the elements of the covariance matrix of the excitation vector,

K(t). 8§ and 7 are the Dirac delta function and time lag, respectively. E [.] denotes the

ensemble average of a variable.

3.2 Conditional Probability Equation

Assuming that the random process Y(t) is a Markov process, a Fokker-Planck equation
can be used to describe the conditional probability density function, P(Y ,t|Yo) for the

random process, Y(t) [14]:

BP 2 d 3 aJ 3 1 2
— —_— --‘P - —_— d" ) P — _"\*“P 3.7
E» ,z}[ayi Yz P ;}(ay‘_[;( i) 1)+2§[ay;( N G

The solution of equation (3.7) subject to the initial condition

Lim_, P(Y,t|Y,) =[] 60y, ~ y,0)

=l

yields the conditional probability density function which describes the Markov process,
Y(t) completely. Here yio, i =1....4 are the initial conditions for the heave and pitch

displacements and heave and pitch rates.

3.3 Random Decrement Equations

A mathematical model that describes the coupled heave and pitch motions for a URV is
formulated above. The next step is to use the concept of the random decrement to get rid

of the explicit dependence of the force vector on time. This is accomplished by assuming
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that the process, Y(t) is a multi-dimensional Markov process. Next I use the Fokker-
Planck equation to derive the equations, which describe the propagation of the response
ensemble average vector as a function of time as well as the auto- and cross-correlation
functions.

The derivation of the propagation of the conditional mean values corresponding to
the coupled heave and pitch motions given by equations (3.1) and (3.2) is based on the
Fokker-Planck equation (3.7). Multiplying equation (3.7) by the variables y; , i =1,..4
each one at a time and integrating the whole equation over the range of the four variables,
the equations describing the propagation of the conditional expected values of yi(t), i

=l],.., 4 can be obtained as

o=, (3.8)

B, =u, 3.9)
4

By =-3dyu, (3.10)
1
‘ -

a, =-Zda,-ll, 3.11)
1

where

mo= [[[ v POt Vo dn ey, =1,

Equations (3.8) to (3.11) can be written in a matrix form as

=
"

DM (3.12)



where

M = [ P2 ps pal”

The random decrement signatures for the coupled heave and pitch motions are calculated

based on the procedure given in (15]. In this procedure, one of the two-degrees-of-

freedom is chosen as a reference. In this work, the heave motion is chosen as the

reference motion.

The random decrement signatures for heave and pitch motions are calculated from

the numerically generated random data as well as from the measured motion responses by

dividing the response into a number of overlapping segments with equal length of time.

The segments are chosen in such a way that each segment start with the same initial

heave displacement, Zo and heave velocity. Half of these segments start with positive

velocity (slope) and the other half start with a negative velocity. The random decrement

signatures for heave and pitch motions, u; and p; are calculated as

T)=
K (1) 2N,

(T)=
H,(T) 2N,

where
t=¢g at

t=t; at

-NZZ,(:,. +r)+N222(tj +‘t)]

L =1 j=l

PNXG, @ +7)+ NXez(tj + r)]

=l =l

Z\(t) =Zo and Z,1))0

Zy(t) =Zo and Z,0(0
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The derivatives on the left hand side of equations (3.8), (3.9), (3.10), and (3.11) are

calculated using numerical differentiation.

3.4 Auto-and Cross-correlation Equations

The derivation of the auto— and cross—correlation equations corresponding to the two-
degrees-of-freedom system given by equations (3.1) and (3.2) is based on the Fokker-
Planck equation (3.7). The latter equation is to be multiplied by yi(t) yj(t+t) P«(Y), i
=l.,..,4 and j =1,...4, each in time and integrating the whole equations over the range of
the two variables. P,(Y) is the steady state probability function and it is independent of

time and the initial condition Yo. The following equations are obtained:

R, ()=R,, ,(7) i=12,j=1,..4 (3.15)

4
R@®=-Yd,R,®) i=34,j=1..4 (3.16)

k=1

where

R,@=[[[ 7@y, + 0P Vdy, dysdy,dy, i.j=1...4

Equations (3.15) and (3.16) have four sets (j = 1...,4) of first order differential equations. I
consider here only one set of these equations (j =1) in order to show that the auto- and
cross-correlation functions are similar to those that describe the free-coupled heave and

pitch motions for an URV.
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Rn =R, 3.17)

R, =R, (3.18)

R 4
R, =-Yd; R, (3.19)

ksl

. 4
R,=-Yd, R, (3.20)

k=l

Equations (3.17) to (3.20) can be written in a matrix form as

R.=DR. (3.21)
where

Rc = [Ri1 Ra1 Ry Ry’

The auto- and cross-correlation functions are calculated from the random motion

responses for the heave and pitch motions using the following expression:

N, -t
(—ﬁ'—ﬂ- $ 3 n G+ 3.22)
= =

P

R, (®)=

where N, and T are the total number of points in the both heaving and pitching responses,
and the time lag, respectively. The derivatives on the left hand side of equations (3.17),

(3.18), (3.19), and (3.20) are calculated using numerical differentiation.
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Chapter 4
The Identification Technique

4.1 Introduction

The main objective of this work is to develop a new procedure for the identification of
the parameters in the mathematical model describing the coupled heave and pitch
motions for an URV sailing near the sea surface in random waves using only its
measured responses.

In this chapter, I introduce the developed technique “RDLRNNT". This technique

is based on the use of both multi-linear regression and neural networks algorithms.

4.2 Identification Technique “RDLRNNT”

Combining the random decrement equations (3.8), (3.9), (3.10) and (3.11), one can get

the following equations:

by +dup, +dyp +G,(u,,0,)=0 4.1)
B, +d p, +d pu, +G,(4,,12,)=0 4.2)
where
G (U, ;) =dypp, +dy ity 4.3)
Gty i) =d b, +d i, @.9)
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This form shows that the average motion of the URYV at sea is an oscillatory motion, with
some damped natural frequency. It is shown in equations (4.1) and (4.2) that the random
decrement signatures of the heave and pitch responses, u; and u,, respectively satisfy the
homogenous-coupled heave and pitch differential equations.

Similarly, combining the auto- and cross-correlation equations (3.17), (3.18),

(3.19) and (3.20), one can get the following equations:

R,+d,, R, +d,R, +H,(Ry,R,,)=0 (4.5)
R, +d, R, +d R, +H,(R,,R,)=0 (4.6)
where
H,(R,,R,)=d,R, +d,R,, 4.7
H.(R,,R,)=d R, +d R, (4.8)

Similarly, as in the random decrement equations, the auto- and cross-correlation
functions for the heave and pitch responses satisfy the homogenous-coupled heave and
pitch differential equations as shown in equations (4.5) and (4.6).

The damping and the restoring parameters in the above equations are identified
using a multi-linear regression algorithm, while the coupling parameters are identified
using a neural networks technique. Once the parameters in these equations have been
identified, a heave-pitch motions model for the vehicle has been obtained. The success of

this model depends on the accurate estimation of the motion.
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4.3 Multi-Linear Regression Algorithm

An iterative technique is used to identify the values of the damping, restoring, and
coupling parameters for an URV using equations (3.10), (3.11), (4.1), and (4.2)
corresponding to the derived random decrement equations as well as using equations
(3.19), (3.20), (4.5), and (4.6) corresponding to the derived auto- and cross-correlation
functions. This technique is based on the use of multi-linear regression algorithm. Three
statistical indices are used to ascertain the suitability of the regression model. These are
the P-value, the R-sq, and the Variance Inflation Factor (VIF). The following criteria are
selected and should be satisfied by a model in order that the model is accepted: a P-value
< 0.05, an R-sq 2 0.85 and a VIF < 10. These criteria are in agreement with criteria used
in similar research [44,45,46,47].

First, the following two equations are used to determine estimates of the damping
and restoring parameters for the coupled heave and pitch motions using the random

decrement equations:

By =—-d, iy —dy 4, 4.9)

By=-d p,—d u, (4.10)

Altematively, the auto- and cross-correlation functions can also be used to determine the

damping and restoring parameters using the following equations:

Rat = —dnkn -dyR,, 4.11)
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Ru = "d.uRzl —dgR, 4.12)

The parameters identified using equations, (4.9) and (4.10) should equal those identified
using equations, (4.11) and (4.12). The derivatives on the left hand side of equations
(49), and (4.10) or equations (4.11) and (4.12), are calculated using numerical
differentiation.

Values for the identified parameters ds,, di3, ds2, and dy are obtained from either
equations (4.9) and (4.10) or equations (4.11) and (4.12). These values are then
substituted back in equations (4.1) and (4.2) or equations (4.5) and (4.6). Having
determined the values of ds,, d33, ds2, and das, equations (4.1) and (4.2) or equations (4.5)

and (4.6) will have two more unknown functions, G,(K4,.i,) and G.(M,./,) or

H (R, ,R,,) and H,(R,,R,), to be determined, respectively. These functions are then

identified using a neural networks technique as described in the following section.

4.4 Neural Networks Technique

The concept behind developing artificial neural networks is to try to mimic the work of
biological networks [35]. Lately, neural networks become much simpler in size, number
of neurons and complexity of construction when compared with actual biological
networks [36]. Antificial neural networks have been used successfully in function
approximation and parametric identification {15].

The coupling parameters in the equations describing the coupled heave and pitch

motions for an URYV sailing near the sea surface in random waves are lumped in the two
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functions G,(l4,.12,) and G,(4,.&,) or H,(R,,R,)and H,(R,.R,), as shown in
equations (4.1) and (4.2) or equations (4.5) and (4.6), respectively. Continuous records of
the measured coupled heave and pitch responses are used with equations (4.1) and (4.2)
to identify the lumped functions using a neural networks technique.

Two single hidden layer feedforward neural networks as shown in Figure (4.2),
are used to identify the lumped function, G,(i,,4,) or H,(R.,,R,,). The input to each
network is a vector consisting the random decrement signatures for the measured coupled
heave and pitch motion responses and their derivatives with respect to time, and a bias.
The hidden layer consists of several neurons. In this work, 11 neurons give a sufficient
accuracy in the identification parameters. The output layer consists of one neuron, which
yields the values of the identified lumped function, G, (u,,4,) or H,(R,,,R.,)[15].

The input to the j™ neuron in the hidden layer is the weighted sum of the inputs to

the network. This relationship is given as
5
A=Y wixp  j=lall 4.13)
t.=l

where w;; is the synaptic weight of the i neuron in the input layer to the j* neuron in the
hidden layer; s is the bias and is equal to 1.0. The function A; is acted upon by a

sigmoidal function f, as follows:

f(A)= l‘;;l‘-a,‘) (4.14)

The lumped function, G,(i,.4,) or H,(R,,,R,,) is obtained as the weighted sum of the

outputs of the hidden layer neurons expressed as

12
Gl(“zvﬂz)‘;'Zﬁ,- x f(A;) 4.15)
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where B; is the synaptic weight of neuron j* in the hidden layer and A2 =1.

Using an arbitrary starting set of weights, an initial value of the lumped function
is obtained. The obtained value of that function is substituted back into equation (4.1) or
equation (4.5), and the equation is integrated numerically using the Runge-Kutta
algorithm. The calculated heave response, Py, obtained from the integration is compared
to the input heave response to the network, Mim. Here, i is the number of the inputs to the
neural network, k; m and n refer to the measured response and the obtained response
using the network, respectively. The difference between these two responses is the error.
The synaptic weights w;; and. f; are then updated and the process is repeated in an
iterative fashion until the error in the response is minimized. A simple flowchart for the
neural network technique is shown in Figure (4.3).

Similarly, the pitch lumped function, G,(u,,#,)or H,(R,,R,,)can be identified
using a similar but independent neural network. Then, the coupling parameters di, dq,
ds;, and dg; are identified using a multi-linear regression algorithm for equations (4.3)
and (4.4) or equations (4.7) and (4.8).

The reason for using a combination of multi-linear regression and neural networks
is to have a more efficient identification technique. Using a multi-linear regression
algorithm alone, produces unreliable estimates for the individual parameters which
constitute the model. This has been observed by other researches {47] especially when the
number of the parameters to be identified is large. In this case, although the whole
identified model produces good estimates for the response, the individual values of the

parameters may not be accurate. This happens because of the interaction that occurs

between these parameters.



Using neural networks alone produces a reliable model because only one function
is being identified. However, the iterations needed to optimize the solution require a huge
amount of computer time. For these reasons, it has been found optimum to use a hybrid

model, which combines the use of multi-linear regression, and neural networks.

G, (1, 42,)

k =1and j=2=> Heave Net. Output
k =2and j=1= Pitch Net. Layer

Hidden
Layer

Input
Layer

Figure 4.2 Feedforward neural networks
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Chapter S
Model Validation

S.1 Numerically Generated Data

A numerical simulation procedure is an important stage in the development of a new
prediction method. Carrying out a numerical simulation can provide a clear
understanding about the relationship between the input and the output of a dynamic
- system. Three main objectives are desired from conducting a numerical simulation in this
work. First, checking the accuracy of the proposed method using a direct comparison
between the actual -values of the parameters and the predicted ones. Second, a series of
complete numerical experiments can be conducted under controlled input environment.
Finally, the estimated cost for a numerical simulation is much less than carrying out real
experiments especially in the developing stage of a new method.

The description and the main features of the designed URV-model. and the
associated different calculations are presented in Appendix B. The calculations for the
hydrodynamic parameters, the wave exciting force and moment using a 2D-strip theory
are presented in Appendix C. The main objective behind the use of the strip theory in the
designed stage of the URV-model is to ascertain the suitability of the available
dynamometer for measuring the coupled heave and pitch motions for such model. [
generate the numerical data for random motions taking into account the variation of both

the damping levels in heave and pitch motions, and different values for the damped

natural frequencies.
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Both the effects of wide-band and narrow-band excitations on the identified
parameters are investigated using the developed technique. In addition, the effect of using
a band-pass filter centered near the damped natural frequencies for heave and pitch

motions on the identified parameters is investigated.

5.1.1 Case Studies

Several case studies have been investigated in this work. Numerical random data for the
case studies are generated for the coupled heave and pitch motions for an URYV sailing

near the water surface in random waves using a mathematical model given as

Z+dy,Z+d, Z+d,©+d,,©=F,(t) 5-1)

©0+d,0+d, O+d,Z+d,Z=M,() (5.2

where F(t) and M(t) are the normalized wave excitation force and moment.
Several spectra have been used in the description of the ocean waves. These spectra are
classified into two main categories: wide-band spectra and narrow-band spectra. The
wide-band spectra are such as ITTC, Bretschneider and Pierson-Moskowitz while the
narrow-band spectra are such as JONSWAP. The Joint North Sea Wave Project team has
derived the JONSWAP spectrum. This spectrum is an extension of the Pierson-
Moskowitz spectrum to account for a much sharper spectral peak [48].

Numerical random data for the coupled heave and pitch motions for the URV

have been generated for both wide-band and narrow-band excitations. The main
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objectives for generating such data are to ascertain the suitability of the developed
technique in different forms of excitation and to test its dependency on the excitation

form. A JONSWAP wave spectrum is used as a narrow-band spectrum.

5.1.2 Wide-Band Excitations

A wide-band excitation is a stationary random process whose spectral density function
has significant values over a band of frequencies, which is approximately the same order
of magnitude as the band center frequency [49].

As shown in equations (5.3) and (5.4), the normalized wave exciting force and
moment, F(t) and M(t), respectively, are composed of 70 sinusoidal components of
constant amplitude of 0.07 m/sec’ and 0.15 rad/sec’, respectively. The phase angle, ¢
between these components, is taken as a random variable uniformly distributed between 0

and 2n. The frequency band for the excitation is taken between 2.0 and 5.0 rad/sec.

70
F,(t) =Y 0.07sin(w +¢,) (5.3)
=}
70
M, ()= Y 0.15sin(t +9,) (5.4)

o=l

Numerically generated data for the coupled heave and pitch motions are obtained by
integrating equations (5.1) and (5.2). The numerical integration of these equations has
been conducted using the Runge-Kutta algorithm. A MATLAB program has been
developed. Details of the program called “D.E. SOLVER” are given in Appendix F. The
values of the damping, restoring, and coupling parameters in equations (5.3) and (5.4)

used are given in Tables (5.1) and (5.2).
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Ten case studies are used in this section to test the validity of the proposed
identification technique. The purpose of the case studies is to investigate the effect of the
different levels of damping and different values of the damped natural frequency on the
ability of the random decrement signatures to represent the URV’s free decay coupled
heave and pitch motion. The first six cases are used to validate the technique for different
levels of damping, while the last four cases are used to validate the technique for different
values of the damped natural frequencies in the coupled heave and pitch motions. The
identified parameters for these case studies are shown in Tables (5.1) and (5.2). Tables
(5.3) and (5.4) show the error percentages for the identified parameters using the

developed technique.

Table 5.1 Comparison between the actual and the predicted parameters from the
numerically generated data for heave motion (Wide-band)

Heave Motion
Case # Actual Prediction
ds; ds. das das day dx; dixs day
1 19.8356 [ 0.0149 | 0.2500 | 0.0190 | 19.9301 | 0.0313 | 0.1492 | 0.0075
2 19.8356 | 0.0149 | 0.3500 | 0.0190 | 19.9418 | -0.0034 | 0.3887 | -0.0027
3 19.8356 | 0.0149 } 0.5500 | 0.0190 | 20.1730} 0.0027 | 0.5656 | -0.0004
4 19.8356 | 0.0149 | 0.7500 | 0.0190 | 20.1291 | 0.0666 | 0.6926 | 0.0227
S 19.8356 | 0.0149 | 1.5000 | 0.0190 | 19.2921 | 0.2159 | 1.4809 [ -0.0525
6 19.8356 { 0.0149 | 2.0000 | 0.0190 } 20.0685 | 0.6335 | 1.6432 | 0.1669
7 10.0000 | 0.0056 | 0.2500 | 0.0016 | 9.9263 | -0.0016 | 0.2641 | -0.0014
8 6.0000 | 0.0056 | 0.2500 | 0.0016 | 59142 | 0.0319 | 0.2283 | -0.0084
9 5.0000 | 0.0056 | 0.3000 | 0.0016 | 4.8842 | 0.0308 | 0.2822 | -0.0368
10 3.0000 | 0.0056 | 0.3000 | 0.0016 | 2.9938 | -0.0073 | 0.2710 | 0.0069
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Table 5.2 Comparison between the actual and the predicted parameters from the

numerical generated data for pitch motion (Wide-band)

]

Pitch Motion

Actual

Prediction

dq)

ds

n—

das

das

da

de

da

das

0.0015

194143

0.0738

0.2900

0.1253

19.6725

———

0.0176

0.1863

0.0015

19.4143

0.0738

0.4000

-0.0086

19.5206

-0.0042

04554

0.0015

19.4143

0.0738

0.6000

-0.0056

19.7674

-0.0078

0.6352

0.0015

194143

0.0738

0.8000

0.2997

19.7508

0.0857

0.7545

0.0015

19.4143

0.0738

2.0000

0.5654

18.7744

-0.2089

1.9202

0.0015

19.4143

0.0738

2.5000

2.1374

19.3307

0.5415

1.8572

0.0105

9.0000

0.0738

0.2000

-0.0310

9.0040

-0.0127

0.1725

0.0105

4.0000

0.0738

0.2000

0.0776

4.0784

-0.0308

0.1749

W (00 I | [ [ W N e

0.0105

3.5000

0.0738

0.1500

0.0040

3.6261

-0.0001

0.1479

-
(—

0.0105

1.5000

0.0738

0.1500

-0.0022

1.4306

-0.0153

0.1449

Table 5.3 Error percentages for heave parameters (Wide-band)

Case Heave Motion
# dyy dx2 dss dsq
1 0.48 110 40.00 60
2 0.54 77 11.00 0.04
3 1.70 82 2.80 102
4 1.48 347 7.60 80
5 2.74 1349 1.30 376
6 1.17 4151 17.80 778
7 0.74 128 5.60 187
8 1.43 470 8.70 625
9 232 450 6.00 3487
10 0.20 230 9.60 331
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Table 5.4 Error percentages for pitch parameters (Wide-band)

Case Pitch Motion
dy ds; do dss
1 8253 1.33 76 35.70
2 6733 0.55 106 13.80
3 473 1.82 111 5.80
4 19880 1.85 16 5.70
S 37593 3.29 383 4.00
6 142393 0.43 634 25.70
7 395 0.04 117 13.75
8 639 1.96 142 12.50
9 62 3.60 1 1.40
10 121 4.60 120 3.40

5.1.3 Narrow-Band Excitations

A narrow-band excitation is a stationary process whose spectral density function has
significant values only for a band of frequencies whose width is small compared to the
magnitude of the center frequency of the process [49]. The most recent wave spectrum to
describe ocean waves is the JONSWAP spectrum. The narrow-band heave force and

pitch moment excitations for the mathematical model are expressed by

10
F(t)=Y a,, sin(wt+9,) | (5.5)

i=l

70
M, @)=Y a, sin(@t+0,) (5.6)

52



where

a,, =+[25,(®,) Aw (5.7
a,, =25, (@) bo (5.8)

where ay; and a,; are the individual sinusoidal heave force and pitch moment amplitudes,
respectively; Sp(ex) and Sp(ex) are the heaving force and the pitching moment power
spectral density functions at of frequency of wy, respectively; Aw is the frequency
increment.

The phase difference between heave and a pitch motion was taken as a uniformly
distributed random number between O and 2nt. The frequency increment and the range to
generate the JONSWAP wave excitations were taken as 0.0285 Hz and 2.0 Hz,
respectively.

Numerically generated random data for the coupled heave and pitch motions
corresponding to a narrow-band excitations are obtained using the numerical integration
of equations (5.1) and (5.2). The numerical integration of these equations has been
conducted using a Runge-Kutta algorithm.

Six case studies are used in this section to ascertain the validity of the proposed
identification technique for a narrow-band wave excitation as shown in Tables (5.5) and
(5.6). The purpose of using the case studies is to investigate the effect of different levels
of damping and different values of the damped natural frequency on the ability of the
random decrement signatures to represent the URV’s free decay coupled heave and pitch
motion. The first three cases are used to validate the technique for different levels of

damping, while the others are used to validate the technique for different values for the

53



damped natural frequencies in the coupled heave and pitch motions. The values of the
predicted damping, restoring, and coupling parameters corresponding to each case are
given in Tables (5.5) and (5.6). Table (5.7) shows the natural and the modal frequencies

for the six case studies. Tables (5.8) and (5.9) show the error percentages for the

identified parameters using the developed technique.

Table 5.5 Comparison between the actual and the predicted parameters from the
numerically generated data for heave motion (Narrow-band)

Heave Motion
Case # Actual Prediction

dy dy; dys das du dyp | dwn dys |
1’ 19.8356 | 0.0149 | 0.2500 | 0.0190 | 19.8064 | 0.0012 | 0.2382 | 0.0009
2’ 19.8356 | 0.0149 | 0.3500 | 0.0190 | 19.9034 [ 0.0290 [ 0.3005 | 0.0086
¥ 19.8356 | 0.0149 | 0.5500 | 0.0190 | 20.3730 ( 0.0252 | 0.4979 {-0.0128
7’ 10.0000 | 0.0056 | 0.2500 | 0.0016 | 9.9871 | -0.0001 | 0.2674 | 0.0018
8’ 6.0000 | 0.0056 | 0.2500 | 0.0016 | 59113 | 0.0266 | 0.2341 | 0.0121
9 5.0000 | 0.0056 | 0.3000 | 0.0016 | 4.8630 | 0.0971 | 0.3141 |-0.0009

Table 5.6 Comparison between the actual and the predicted parameters from the
numerically generated data for pitch motion (Narrow-band)

Pitch Motion
Case # Actual Prediction
dy de | dp | dy | dy | dg dos | dy
1’ 0.0015 | 19.4143 | 0.0738 | 0.2900 | 0.0038 | 19.4023 | 0.0014 | 0.2835
P 0.0015 | 19.4143 | 0.0738 | 0.4000 | 0.0610 | 19.5408 | 0.0131 | 0.3499
3 0.0015 | 19.4143 | 0.0738 | 0.6000 | 0.0338 [ 20.0447 | -0.0221 | 0.5819
7 0.0105 | 9.0000 | 0.0738 | 0.2000 | 0.0002 | 9.0670 ; 0.0003 | 0.1931
8 0.0105 | 5.0000 | 0.0738 { 0.2000 | 0.1079 | 4.8935 | 0.0238 | 0.1973
9 0.0105 | 3.5000 ; 0.0738 | 0.1500 | 0.1360 | 3.5204 | -0.0370 | 0.2120




Table 5.7 Damped natural frequencies for heave and pitch motions and

the excitation modal frequency
Case | Heave Frequency | Pitch Frequency | Modal Frequency

# (Hz) (Hz) (Hz)

1’ 0.7080 0.7010 0.5000
2 0.7080 0.7010 0.5000
3 0.7080 0.7010 0.5000
7 0.5030 0.4770 0.5000
8 0.3890 0.3560 0.5000
9 0.3560 0.2970 0.5000

Table 5.8 Error percentages for heave parameters (Narrow-band)

Case Heave Motion
# dy ds; dss dys
1’ 0.15 92 4.72 95
2' 0.34 94.6 14 55
3 2.71 69.1 9.5 167
7' 0.13 102 6.96 12
8 1.5 375 6.36 656
9’ 2.74 1634 4.7 156

Table 5.9 Error percentages for pitch parameters (Narrow-band)

Case Pitch Motion

# dy dg day das

1 153 0.06 98 2.24
2 3966 0.65 82 12.50
¥y 2153 3.25 130 3.00
7 98 0.74 100 3.45
8 927 2.13 68 1.35
9’ 1195 0.58 150 41.00
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Investigating the effect of using a band-pass filter centered around the estimated natural
frequencies for heave and pitch motions on the identified parameters using the developed
technique has been carried out using the previous six case studies. The values of the
predicted damping, restoring, and coupling parameters corresponding to each case are
given in Tables (5.10) and (5.11). Tables (5.12) and (5.13) show the error percentages for

the identified parameters using the developed technique.

Table 5.10 Comparison between the actual and the predicted parameters from the
numerically generated data for heave motion with filtering

Heave Motion

Case # Actual Prediction

dsy ds; das das dy ds; dy day

1’ 19.8356 | 0.0149 | 0.2500 | 0.0190 | 19.6716 | 0.0019 | 0.1715 | 0.0009
2 19.8356 | 0.0149 | 0.3500 | 0.0190 | 19.6308 | 0.0068 | 0.3262 | 0.0056
k) 19.8356 | 0.0149 | 0.5500 | 0.0190 | 19.7629 | 0.0054 | 0.4142 | 0.0050
7 10.0000 | 0.0056 | 0.2500 | 0.0016 | 9.9665 | -0.0005 | 0.2436 | 0.0012
8 6.0000 | 0.0056 | 0.2500 | 0.0016 | 5.9372 | -0.0037 | 0.2513 | 0.0025
9 5.0000 | 0.0056 | 0.3000 | 0.0016 | 4.8002 | 0.00074 | 0.2651 |0.00051
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Table 5.11 Comparison between the actual and the predicted parameters from the
numerical generated data for pitch motion with filtering

Pitch Motion
Case # Actual Prediction
da dyz de | du dg | do | deo | dy
1’ 0.0015 | 19.4143 | 0.0738 | 0.2900 | 0.0053 | 19.3539 [ 0.0014 | 0.2024
2 0.0015 | 19.4143 1 0.0738 [ 0.4000 | 0.0208 | 19.1831 | 0.0090 | 0.3689
¥y 0.0015 | 19.4143 | 0.0738 | 0.6000 | 0.0162 | 19.3893 | 0.0088 | 0.4577
7’ 0.0105 | 9.0000 { 0.0738 | 0.2000 | 0.0008 | 9.0534 | 0.0024 | 0.1741
8’ 0.0105 | 5.0000 | 0.0738 | 0.2000 | 0.0043 | 49934 | 0.0052 | 0.1714
9 0.0105 | 3.5000 | 0.0738 | 0.1500 | -0.0004 | 3.4647 | -0.0053 | 0.1371

Table 5.12 Error percentages for heave parameters with filtering

(Narrow-band)
Case Heave Motion
# d3; dsz dxs dss
1 0.82 87 31.40 95
2 1.00 54 6.80 70
k) 0.37 64 25.00 74
7' 0.34 108 2.60 94
8 0.30 166 0.52 87
9 4.00 86 11.63 97
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Table 5.13 Error percentages for pitch parameters with filtering

(Narrow-band)
Case Pitch Motion
Ld da de dg Bas
1 253 0.30 98 30
2 1287 1.20 88 8
¥y 980 0.13 88 24
7 92 1.00 97 13
8 59 0.13 93 14
9’ 104 1.00 104 9
5.2 Experimental Data

The experimental program for this research is important to validate .the developed
identification technique, RDLRNNT. A model of an URV has been designed and built for
the purpose of this work. In this chapter, [ describe the preparation of the URV-model for
carrying out the designed experimental program. Preparatory experiments were
conducted to adjust and estimate the longitudinal metacentric height and the natural
frequencies for heave and pitch. In the following sections, I outline briefly the different
aspects of the experimental program.

In the derivation of the random decrement equations for the mathematical model
for the coupled heave and pitch motions for a URV, the wave excitation has been
assumed Gaussian white noise random process. This is an ideal process that cannot be
generated in the towing tank. Only a narrow-band wave excitation process (JONSWAP)

has been used in the experimental work.
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The suitability of the developed technique has been tested for both narrow-band
and wide-band wave excitations using numerically generated random data for the coupled
heave and pitch motions. The obtained results show that the developed technique is
independent of the wave excitation. The identified parameters from the experimentally
measured random data for a narrow-band wave excitation estimate the coupled heave and

pitch motions with reasonable accuracy.

5.2.1 URV-Model Preparation

The main body of the URV-model has been built from aluminum alloy in a local
company in St. John’s. This body consists of three main parts: a hemispherical nose, a
cylindrical tube, and a conical tail. A hydrofoil connection has been built from a
Styrofoam material at Memorial University in order to house the dynamometer flange as
shown in Figure (5.1). The model was ballasted as shown in Figure (5.2).

An inclining experiment was conducted in the deep tank at Memorial University.
The deep tank has dimensions of 3.65 m x3.65 m x 3.65 m with a water depth of 3.35 m.
The main objective of this experiment is to determine the value of the longitudinal
metacentric height GM_ as shown in Figure (5.3). The trim angle corresponding to each
movement is recorded. The corresponding trimming and righting moments are calculated.
Using a linear regression algorithm, the value of GM, is determined as +0.0481 m.

Knowing the values of the KB and the BM_ as calculated in Appendix B, the
value of the KG is determined as 0.1494 m from the base line of the model. Furthermore,

the heave and pitch natural periods are determined. This was conducted by causing the
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model initial displacements from its equilibrium position in both heave and pitch
directions and release it to oscillate freely in calm water. Several periods for heave and
pitch motions are recorded. The averages of these periods are calculated as 2.82 sec and
6.1 sec for heave and pitch motions, respectively.

Another experiment has been carried out to determine the value of the KG. In
addition, the moments of inertia about the transverse and longitudinal axes of the model
passing through the center of gravity are determined. This has been conducted using a
frame-table at Memorial University. The frame-table consists of two main frames: a fixed
frame to the ground and the other is pivoted on the fixed one as shown in Figure (5.4).
The value of the KG is determined as 0.1465 m from the base line of the model, which is
close to that obtained from the inclining experiment. The moments of inertia about the
transverse and the longitudinal axes of the model are determined as 24.8 kg-m’ and 7.34

kg-mz, respectively.









5.2.2 Experimental Setup

The URV-model that was used in the experimental work for this research is shown in
Figure (5.1). It consists of four parts: a hemispherical nose of dimension 0.254 m
diameter, a cylindrical hull of dimensions 0.254 m diameter x 1.225 m length, conical tail
of dimensions 0.675 m length x 0.12 m diameter x 0.254 m diameter, and a hydrofoil
connection of NACA0024 section x 0.75 m cord x 0.35 m height. The main hull of the
model is made of aluminum alloy and the hydrofoil connection is made of Styrofoam
material. The total mass of the model including the ballast weights is 104 kg.

The experimental data was obtained by testing the URV-model in the towing tank
of Memorial University. The towing tank is approximately S8 m x 45 mx 3 m. A
hydraulically operated, piston-type wavemaker made of aluminum with a watertight
Teflon seal around its periphery is located at one end. An upright wave absorber is
located at the other end. This construction is intended to absorb and dissipate the energy
contained in the incident wave and maintain a minimum reflection coefficient.

A towing carriage is installed on the rails of the tank, which is used in towing the
URV-model with fixed forward speed. The carmiage can attain a maximum speed of 5
m/sec. The model is attached to the dynamometer that can measure the coupled heave
and pitch motions within 0.40 m for heave displacement and + 30° for pitch.

The URV-model is attached to the dynamometer flange such that heave and pitch
are allowed while other motions are constrained see Figure (5.5). A dynamometer that
measures the coupled heave and pitch motions for the URV-model is shown in Figure
(5.6). The attachment of the URV-model with the vertical dynamometer flange is shown

in Figure (5.7) and Figure (5.8). A capacitance-type wave probe used to monitor the time
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5.2.3 Experimental Procedure

Two main experiments carried out at the towing tank: calm water experiments and
random wave experiments. The main objective for the calm water experiments to
measure the free decay coupled heave ani pitch motions, while the main objective for
carrying out the random wave experiments to measure the random motion responses for
the coupled heave and pitch motions when the URV-model excited using random waves.

These measurements are needed to validate the identification technique.

5.2.3.1 Calm Water Experiments

The URV-modet attached to the dynamometer as shown in Figure (5.5). The carriage was
located at the mid length of the towing tank in a stationary case state. Calm water
experiments have been carried out in this situation to measure the free decay coupled
heave and pitch motion responses for the URV-model. This has been cenducted by giving
the mode! an initial heave displacement and pitch angle. After the model initially
inclined, it is then released and the free motion responses measured. The measured free
decay coupled heave and pitch motion responses are shown in Figures (5.10) and (5.11),
respectively. The random and free motion -esponses measured using the available data

acquisition system at the wave tank.
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Figure 5.11 Free decay pitch motion response
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5.2.3.2 Random Wave Experiments

The developed technique for the identification of the parameters in the equations
describing the coupled heave and pitch motions for an URYV sailing near the water surface
in random waves, requires only the measured responses at seas. Therefore, JONSWAP
wave spectra with different significant wave heights and different wave modal
frequencies were used to excite the model in the tank. Three main groups were generated
to validate the proposed identification technique.

Tests were conducted with the model attached to the dynamometer’s flange. Each
JONSWAP spectrum in these groups has been generated for the stationary state case as
well as for two forward towing speeds: 0.1 m/sec and 0.2 m/sec. Since the length of the
wave tank is small compared to the required length of the collected data (400 sec with
sampling rate of 20 Hz), a complete experimental run was conducted in two parts of 200
sec long each for case when the model was towed with a speed of 0.1 m/sec and four

parts oi 100 sec long each when the towing speed of 0.2 m/sec.

5.2.4 Experimental Program

The experimental program was designed to investigate the effects of different wave
excitations and different towing speeds on the identification of the parameters in the
motion equations. The JONSWAP wave spectrum was used in this work as a wave
excitation source for the URV-model. The spectrum has two main characteristic

parameters: significant wave height, Hs and wave modal frequency (wave peak



frequency), Q. JONSWAP wave spectra with different significant wave heights and
different wave modal frequencies were used to excite the model in the towing tank.

The experimental program was been divided into three main groups as
shown in Appendix L in Tables (L.1), (L.2), and (L.3). Each group has nine complete
runs in which each run may have sub-runs based on the required total time for collecting
data and both the length of the towing tank and the forward towing speed. These runs
have been tested for three different JONSWAP spectra having constant significant wave
heights: 0.07 m, 0.10 m, and 0.15 m, and different wave modal frequencies: 0.5 Hz, 0.6
Hz, and 0.7 Hz. Since the pitch pivot was not located at the center of gravity of the
model, the ranges of the experimental variables were taken small. This was considered in
the experimental work to avoid the effect of the dynamometer flange. Therefore, each
wave spectrum has been generated for the stationary state case as well as for two forward
towing speeds: 0.1 m/sec and 0.2 m/sec.

It is obvious in Table (L.3) that a significant wave height of 0.13 m is used instead
of 0.15 m for runs: 21-0, 26-01, and 27-02. The main reason for this is that when I tried
to generate a JONSWAP spectrum corresponding to a significant wave height of 0.15 m
and a wave modal frequency of 0.7 Hz, the wavemaker shut itself down several times. I
realized that the significant wave height of 0.15 m couldn’t be obtained with a frequency
of 0.7 Hz, which is reasonably high. Therefore, I tried to generate a JONSWAP spectrum
for another significant wave height of 0.13 m with the same modal frequency, and 1
succeeded.

In order to carry out the experimental program for this work, three persons are

needed. The first one should stay in the control room where an electronic control for the
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waveboard is provided through an MTS closed-loop, servo-controlled system with ervor
detection and compensation implemented through LVDT feedback loop. The second one
is a person who controls the towing carriage. Finally, the third one is a person who
controls the data acquisition system through a microcomputer which available on the

towing carriage.
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Chapter 6

Results and Discussions

6.1 Numerical Results

Numerical random data for the coupled heave and pitch motions for an URYV sailing near
the water surface in random waves have been generated for both wide-band excitation
and narrow-band excitation data. The data have been analyzed using the developed
identification technique, RDLRNNT. Numerically generated data for the coupled heave
and pitch motion of an URYV are used initially to test the accuracy of the technique.
Moreover, the effect of using a band-pass filter for the data on the identified parameters is

further investigated.

6.1.1 Wide-Band Excitations

Numerically generated data for the coupled heave and pitch motions are obtained using
numerical integration of equations (5.1) and (5.2) using wide-band excitations given as in
equations (5.3) and (5.4).

Ten case studies were investigated and are presented in this section. The values of
the actual damping, restoring, and coupling parameters in equations (5.1) and (5.2) used
in the case studies are given in Tables (5.1) and (5.2). The first six cases are used to
validate the technique for different levels of damping, while the last four cases are used to

validate the technique for different values of the damped natural frequencies in the
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coupled heave and pitch motions. The values of the predicted damping, restoring, and
coupling parameters corresponding to each case are given in Tables (5.1) and (5.2).

The coupling functions for heave and pitch motions, G,(#,,4.) and G,(u,.4,)
are identified using the neural networks technique given in Chapter (4). Figures (6.1) and
(6.2) show the predicted functions G,(i,,4,) and G,(4,,4,) for Case (1) as functions
of the average values of heave and pitch responses. The outputs of the neural networks
for heave and pitch motions are shown in Figures (6.3) and (6.4), respectively. These
figures show that the predicted heave and pitch motion responses using the neural
networks are identical with the target inputs to the networks. This has been obtained by
minimizing the mean square error between the simulated response and the calculated

response using the neural networks algorithm.
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Figure 6.1 Identified coupling function for heave motion [Case # 1]
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Figure 6.2 Identified coupling function for pitch motion [Case # 1]
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Figure 6.3 Output of the neural network for heave motion [Case # 1]
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Figure 6.4 Output of the neural network for pitch motion [(Case # 1)
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6.1.1.1 Effect of the Damping Level

The damping parameter of a dynamic system is an important parameter that characterizes
the behavior of the system. The damping of an URYV results from the friction between its
surface and the surrounding water particles. This type of damping is called friction
damping.

With the present state of knowledge in the area of URV/ship motions, no
analytical method is available for the determination of the heave and pitch damping
parameters for a floating vehicle sailing near the surface in random waves. Therefore,
there is an essential need to develop a practical and reliable technique that can identify
such parameter. Such a technique has been developed in this work and is dependent only
on the measured response at sea. In order to test the validity of the proposed technique,
random data have been generated numerically. The data were generated for a wide range
of damping levels in the heave and pitch equations. These cases are represented by Case
studies (1) to (6).

The power spectral density functions corresponding to the random time series for
the heave and pitch motions are calculated for the six case studies as shown in Figures
(6.5) 10 (6.16). It is obvious from these figures that multiple peaks characterize the power
spectral density functions. In addition, the maximum energy content in the motion spectra
are distributed closely around the damped natural frequencies for heave and pitch

motions.
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Figure 6.5 Power spectral density function for heave motion {Case # 1]
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Figure 6.7 Power spectral density function for heave motion [Case # 2]
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Figure 6.8 Power spectral density function for pitch motion {Case # 2]
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Figure 6.9 Power spectral density function for heave motion [Case # 3]
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Figure 6.10 Power spectral density function for pitch motion [Case # 3]
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Figure 6.11 Power spectral density function for heave motion [Case # 4]
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Figure 6.14 Power spectral density function for pitch motion {Case # 5}
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Figure 6.15 Power spectral density function for heave motion [Case # 6}
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Figure 6.16 Power spectral density function for piich motion {Casc # 6}
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Both the random decrement signatures and the auto-correlation functions have been
calculated using numerically generated random data for the coupled heave and pitch
motions using a MATLAB program called “RD&AC_sim”, see Appendix G.

The random decrement signatures are compared with the predicted free responses
using equations (5.1) and (5.2) for each case. The comparison is shown in Figures (H.1)
to (H.12) for the six case studies as given in Appendix H. An example of the results is

shown in Figures (6.17) to (6.20) for Cases (1) and (2).

Rendam Decrament and Prae Respense [Case 8 1)
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Figure 6.17 Comparison between the random decrement signature
and the free response for heave motion [Case # 1]
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Figure 6.18 Comparison between the random decrement signature
and the free response for pitch motion [Case # 1]
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Figure 6.19 Comparison between the random decrement signature
and the free response for heave motion [Case # 2]
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Figure 6.20 Comparison between the random decrement signature

and the free response for pitch motion [Case # 2]

As the damping increases, the agreement between the random decrement and the free
response deteriorates as shown in Figures (H.9) and (H.10), and Figures (H.11) and
(H.12) for Cases (5) and (6), respectively. The reason behind this can be observed from
the shape of the power spectral density of Case (6), Figures (6.15) and (6.16). These
graphs show that the peak. around the natural frequency becomes less pronounced than in
Cases (1) to (4). The number of segments that can be used to construct the random
decrement becomes small. This will cause the random decrement to be less
representatives of the free motion.

Another comparison has been conducted between the random decrement and the
auto-correlation functions for the heave and pitch motions. The comparison is shown in
Figures (1.1) to (£.12) for the six case studies as given in Appendix I. An example of the

results is shown in Figures (6.21) to (6.24) for Cases (1) and (2).
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Figure 6.21 Comparison between the random decrement signature
and the auto-correlation function for heave motion [Case # 1]
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Figure 6.22 Comparison between the random decrement signature
and the auto-correlation function for pitch motion (Case # 1}
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Figure 6.23 Comparison between the random decrement signature
and the auto-correlation function for heave motion [Case # 2]
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Figure 6.24 Comparison between the random decrement signature
and the auto-correlation function for pitch motion [Case # 2]
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Similarly, as the damping increases, the agreement between the random decrement
signature and the auto-correlation function deteriorates. This result is obvious as shown
in Figures (1.9) and (1.10), and Figures (I.11) and (1.12) for Cases: (5) and (6),
respectively.

I can conclude from the previous comparisons that as damping increases, the
agreement between the random decrement signature and the free response, and that
between the random decrement signature and the auto-correlation function, deteriorates.
However, for moderately damped motions, excellent agreement has been obtained as

shown in Cases (1) to (4).

6.1.1.2 Effect of the Damped Natural Frequency

The last four Case studies: (7) to (10), have been considered in this work to test the
validity of the developed identification technique for different values of the damped
natural frequencies in the equations describing the coupled heave and pitch motions for a
URV.

The power spectral density functions corresponding to the random time series for
heave and pitch motions are calculated for the case studies as shown in Figures (6.25) to
(6.32). Again, it is shown in these figures that multiple peaks characterize the power
spectral density functions. In addition, the maximum energy contents in the motion

spectra are distributed closely around the damped natural frequencies.
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89



1.00E-01

Figure 6

6.00E-01

Hoove Metion Spoctrum [Case 88 )

.27 Power spectral density function for heave motion [Case # 8]

Puch Motion Spectrum [ Case 28 }
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Figure 6.29 Power spectral density function for heave motion [Case # 9]

Pich Metien Spectrum [ Case 09)
1.00E+00 .
;
I
8.00E-01 1 0 S R _.I
b
;- 6.00E-01 —_ = — = —_ s = —i
g 4.00E-01 1 — L - = _
§

& 200601 +— - —}- - — - — . . — L L — - — . —

0.00E+00 : S — ————e
0 05 1.5 2

Frequency, Hz

Figure 6.30 Power spectral density function for pitch motion [Case # 9]

91



Hosve Metion Specyum [ Coss 8 10}

8.00E-02 T
!
|
g GOOE02H - - — - - — . — .. — .. e e e == —

E
8. |
40002 H - - — f +{-— - —-- ) R ~
I
|
: i
H !
L 2006021+ -A£ - -~ - — - —-- T .............. —
|
0.00E+00 /\-‘—-::~ — !
0 0.s 1 15 2
Fregquency, Hx

Figure 6.31 Power spectral density function for heave motion [Case # 10]
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Figure 6.32 Power spectral density function for pitch motion [Case # 10]
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The random decrement signatures are compared with the predicted free responses for
each case study. The comparison is shown in Figures (H.13) to (H.20) for the four cases

as given in Appendix H. An example of the results is shown in Figures (6.33) to (6.36)
for Cases (7) and (8).

fandem Desrement and Fres Respenss (Case 0 7)
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Figure 6.33 Comparison between the random decrement signature
and the free response for heave motion [Case # 7]
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Figure 6.34 Comparison between the random decrement signature
and the free response for pitch motion [Case # 7]
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Figure 6.35 Comparison between the random decrement signature
and the free response for heave motion [ Case # 8 ]
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Figure 6.36 Comparison between the random decrement signature
and the free response for pitch motion [ Case # 8 ]

As the difference between the exciting frequency and the natural frequency increases, the
agreement between the random decrement signature and the free response deteriorates.
This result is clear in Figures (H.19) and (H.20) for Case (10). At resonance, the dynamic
system vibrates at its own natural frequency. This will produce a better random
decrement, since the energy around the natural frequency will be large. The random
response will yield a large number of segments that can be used to construct the random
decrement signature.

Similarly, a comparison between the random decrement signatures and the auto-
correlation functions for the heave and pitch motions, has been conducted. The
comparison is shown in Figures (1.13) to (1.20) as given in Appendix I. An example of

the results is shown in Figures (6.37) to (6.40) for Cases (7) and (8).
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Again, as the difference between the exciting frequency and the natural frequency
increases, the agreement between the random decrement signature and the auto-
correlation function deteriorates as shown in the figures comresponding to the pitch
motion. The discrepancies in these figures show that the auto-correlation function ceases

to represent the random decrement signature.

Randem Dosrament end Aute-esrraiation Funsiion [ Case 87 )
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Figure 6.37 Comparison between the random decrement signature
and the auto-correlation function for heave motion [Case # 7]
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Figure 6.38 Comparison between the random decrement signature
and the auto-correlation function for pitch motion [Case # 7]
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Figure 6.39 Comparison between the random decrement signature
and the auto-correlation function for heave motion [Case # 8]
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Figure 6.40 Comparison between the random decrement signature
and the auto-correlation function for pitch motion [Case # 8]

[ can conclude from the previous comparisons that both the random decrement signature
and the auto-correlation function describe the free motion of the vehicle for lightly and
moderately damped motions. For heavily damped motions, the use of the random
decrement signature to represent the free motion is better than the use of the auto-
correlation function. This result is clearly obvious from the comparison of Figures (6.33)

to (6.36) and Figures (6.37) to (6.40).

6.1.1.3 Motion Prediction

A comparison between the parameters used in the actual model and the predicted

parameters for the ten case studies is shown in Tables (5.1) and (5.2). It is obvious from
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these tables that the predicted damping and restoring parameters, ds;, di3, ds2, and dy for
the heave and pitch motions are in close agreement with the actual values used in the
generation of the numerical random motion responses. The agreement between the actual
and the predicted values for the coupling parameters, dsz, dis, da1, and ds; is poor.

However, the criterion should be the quality of motion predictions that the model
is able to achieve. The predicted model was then used to generate the free and reguiar
coupled heave and pitch motion responses using equations (5.1) and (5.2). The free
motion responses have been obtained by replacing the R.H.S. of equations (5.1) and (5.2)
with zeros while, the regular motion responses have been obtained using an excitation of
the form

F.(1) =0.2sin (25t +7) (6.1)

M, ()=025sin (25t +m) 6.2)

A comparison of the motion predictions using the actual and the predicted models for the
ten cases has been conducted. The comparison between the actual and the predicted free
motion responses is shown in Figures (J.1) and (J.20) as presented in Appendix J.

Figures (J.1) to (J.12) show the comparison between the predicted and the actual
coupled free heave and pitch responses comresponding to Case studies: (1) to (6). It is
shown in these figures that the agreement between the actual and the predicted responses
is excellent. In general, the agreement between the predicted and the actual free heave

responses, is better than that obtained for the predicted free pitch responses.



Figures (6.41) and (6.44) show the predicted and the actual free responses for
heave and pitch, respectively corresponding to Cases (1) and (2). In these figures there
are some disagreements between the responses for the last cycle in the signatures.

As the damping level increases, the agreement between the actual and the
predicted free responses is still acceptable even with heavily damped cases such as Case
(6). This result shows that an accurate free motion prediction can be obtained using the

developed identification technique, RDLRNNT.

Pradicied Fres Respences [ Case 8 1]

Figure 6.41 Comparison between the simulated and the predicted free responses
for heave motion [Case # 1)
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Figure 6.42 Comparison between the simulated and the predicted free responses
for pitch motion [Case # 1]

Proticiod Fros Rcspanses [Cane 92 )

Figure 6.43 Comparison between the simulated and the predicted free responses
for heave motion [Case # 2]
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Figure 6.44 Comparison between the simulated and the predicted free responses
for pitch motion [Case # 2]

The disagreement in Case (6) is mainly due to the high level of damping used in this case.
This does not pose a major problem in the case of underwater vehicles. It is clear from
results of the case studies that the measured damping parameters are smaller than those
for which the random decrement ceases to be representative of the free motion of the
vehicle.

Figures (J.13) to (J.20) show the comparisons between the predicted and the
actual coupled free heave and pitch responses corresponding to Case studies (7) to (10).
An example of the results is shown in Figures (6.45) to (6.48) for Cases (7) and (8). It is
clear that the agreement between the predicted and the actual free coupled heave and
pitch responses is excellent for Case (7) as shown in Figures (J.13) and (J.14).

As the difference between the exciting frequency and the natural frequency

increases, the agreement deteriorates as shown in Figures (J.15) to (J.20). In addition, the
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agreement for the predicted free heave responses is better than that obtained for the pitch
responses. Moreover, the agreement for low damped natural frequencies is poor as shown

in Figures (J.19) and (J.20) for Case (10).

Prodicod Fres Rospensss [ Cans 8 7)

Figure 6.45 Comparison between the simulated and the predicted free responses
for heave motion [Case # 7]
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Figure 6.46 Comparison between the simulated and the predicted free responses
for pitch motion [Case # 7]

Prediciod Fres Respeness [ Case 98 )

Figure 6.47 Comparison between the simulated and the predicted free responses
for heave motion [Case # 8]
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Prodicted Fres Rospenane [ Cane 8 8 ]

Figure 6.48 Comparison between the simulated and the predicted free responses
for pitch motion [Case # 8]

It is clear from these results that the agreement between the actual and the predicted
values for the damping and the restoring parameters is excellent. The agreement is not as
good for the coupling parameters. However, the criterion should be whether the model
yields accurate motion predictions. The predicted model was then used to generate the
regular coupled heave and pitch motion responses. Resuits for the comparison of the
predicted and the actual regular responses for the ten case studies are shown in Figures
(K.1) 10 (K.20) as presented in Appendix K. An example of the results is shown in
Figures (6.49) to (6.52) for Cases (1) and (2).

The agreement between the actual and the predicted regular responses is excellent
for all case studies except for Cases (6) and (10), which represent a heavily damped

system and a case in which the natural frequency is much smaller than the exciting
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frequency, respectively. This was expected since the agreement between the random
decrement and the free motion is poor in these two cases. In addition, the agreement
between the random decrement signature and the auto-correlation function is not good.
Good agreement between the actual and the predicted regular responses for all case
studies (lightly and moderately damped levels) except in Cases (6) and (10). Table (6.1)
shows the error percentages for the predicted heave and pitch motion amplitudes. It is
obvious in the previous table that the coupled heave and pitch motions can be predicted
accurately using the developed technique with 10% error percentage. This result shows
the utility of the developed technique in the identification of the hydrodynamic
parameters in the equations describing the coupled heave and pitch motion for an URV

sailing near the sea surface in random seas.

Prosictad Roguinr Reapenses [Cane 8 1]
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Figure 6.49 Comparison between the simulated and the predicted
reguiar responses for heave moiion {Case # 1}
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Figure 6.50 Comparison between the simulated and the predicted
regular responses for pitch motion [Case # 1]

Pradicind Roguier Respenses (Case 01)

Figure 6.51 Comparison between the simulated and the predicted
regular responses for heave motion [Case # 2}
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Pveictod Reguiar Responase [ Case 9 2)

Time, sec

Figure 6.52 Comparison between the simulated and the predicted
regular responses for pitch motion [Case # 2]

Table 6.1 Error percentages for the motion amplitudes

Case# | Heave Motion | Pitch Motion
1 4.80 5.30
2 0 0
3 2.70 2.60
4 2.00 4.80
5 2.10 2.30
6 7.30 9.30
7 0.95 0
8 7.80 0
9 3.60 6.80
10 0.85 9.20
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6.1.2 Narrow-Band Excitations

Numerically generated random data for the coupled heave and pitch motions
corresponding to narrow-band excitations are obtained using numerical integration for
equations (5.1) and (5.2). The numerical integration of these equations has been done
using a Runge-Kutta algorithm.

Case studies (1’) to (6’) are used in this section to ascertain the validity of the
proposed identification technique for a narrow-band wave excitation. It has also been
noticed that a good agreement between the random decrement signature and the free
response is obtained when the natural frequency is near the wave modal frequency. In
this case, the transient solution is strong. This result is clearly obvious in Figures (6.77)
and (6.78) for Case (7°).

The values of the predicted damping, restoring, and coupling parameters for Case
(7°) are very close to the actual values as shown in Tables (5.5) and (5.6). Similar
agreement has been obtained between the actual free response and the predicted response
using the developed technique as shown in Figures (6.95) and (6.96) for Case (7°). Tﬁis
result was expected since the damped natural frequency is close to the modal frequency
of the excitation. In addition, the maximum energy content is distributed around the
natural frequency. This result explains the appearance of tae disagreement in other cases

where the modal frequency is far from the natural frequency.
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6.1.2.1 Effect of the Damping Level

It is obvious from Tables (5.5) and (5.6) that the first three Case studies: (1°) to (3’) were
chosen similar to the first three cases in section (6.1.1). The main objective behind this is
to test the effect of the identification technique on the form of the excitation. Numerically
generated random data for coupled heave and pitch motions are obtained using the actual
values of the parameters given in Tables (5.5) and (5.6).

The power spectral density functions for the heave and pitch motions are
calculated for each case study as shown in Figures (6.53) to (6.58). Again, it can be seen
from these figures that muitiple peaks characterize the power spectral density functions.
Two main peaks are significant: the first peak comesponds to the damped natural
frequency, while the second corresponds to the modal frequency of the excitation.
Moreover, the maximum energy contents in the motion spectra are distributed closely

around the damped natural frequencies for heave and pitch motions.
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Hoave Metion Spectyrum {Case 91’}
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Figure 6.53 Power spectral density function for heave motion [Case # |’]
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Figure 6.54 Power spectral density function for piich motion [Case # 1’}
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Figure 6.55 Power spectral density function for heave motion [Case # 2°]
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Figure 6.56 Power spectral density function for pitch motion [Case # 2’)
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Figure 6.57 Power spectral density function for heave motion {Case # 3°]
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Figure 6.58 Power spectral density function for pitch motion [Case # 3°)
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The random decrement signatures have been obtained from the numerically generated
random data for the coupled heave and pitch motions corresponding to the three case
studies. In each case, a comparison between the random decrement and the free response
has been made as shown in Figures (6.59) to (6.64). The main objective of this study is to
investigate the utility of the developed technique for a wide range of damping levels for
the coupled heave and pitch motions.

As the damping level increases, the agreement between the obtained random
decrement signature and the free motion response deteriorates as seen in Figures (6.63)

and (6.64) for Case (3°).

Randem Cocrenunt and Free Reapenee [Case 8 V')

0.0015

0.001

-0.001

-0.0015

Figure 6.59 Comparison between the random decrement signature
and the free response for heave motion [Case # 1°]
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Random Cecrement and Frea Respones [Cese s 1')
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Figure 6.60 Comparison between the random decrement signature
and the free response for pitch motion [Case # 1’]

Randam Cesremant snd Freo Respanse { Case 0 2 |

== Aangomaic
Fres Responee

-0.0003

Figure 6.61 Comparison between the random decrement signature
and the free response for heave motion [Case # 2’}

115



Rengem Decremunt and Fres Respense [ Case 8 2 )
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Figure 6.62 Coimparison between the random decrement signature
and the free response for pitch motion [Case # 2°]

Randem Docronment and Free Response [Cae 8 T )
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Figure 6.63 Comparison between the random decrement signature
and the free response for heave motion [Case # 3]
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Rondem Dowement and Free Reapenss [ Cane ¢ 3°)
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Figure 6.64 Comparison between the random decrement signature
and the free response for pitch motion [Case # 3’}

Another comparison has been made between the random decrement signatures and the
auto-correlation functions for the heave and pitch motions. The comparison is shown in
Figures (6.65) to (6.70). Similarly, as the damping increases, the agreement between the
random decrement signature and the auto-correlation function deteriorates. This result

can be seen from Figures (6.69) and (6.70) for Case (3°).
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Rensem Desromant and Aute-eorveigtion Funstien [ Case 0 1°)
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Figure 6.65 Comparison between the random decrement signature and
the auto-correlation function for heave motion [Case # 1°]

Randem Ossremant and Aute-esrreiation Funalion ( Case 0 V')
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Figure 6.66 Comparison between the random decrement signature and
the auto-correlation function for pitch motion [Case # 1°)

118



Randam Deeranent g Auto-gorreistion Fungtion [ Cane 02°)
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Figure 6.67 Comparison between the random decrement signature and
the auto-correlation function for heave motion [Case # 2’]
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Figure 6.68 Comparison between the random decrement signature and
the auto-correlation function for pitch motion [Case # 2°}
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Randem Decrewent and Aute-earreishion Functien [ Coas 83" )
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Figure 6.69 Comparison between the random decrement signature and
the auto-correlation function for heave motion [Case # 3°]

Rengem Dusromant and Aute-eurrelation Funstion (Case 0T )
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Figure 6.70 Comparison between the random decrement signature and
the auto-correlation function for pitch motion [Case # 3°]
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6.1.2.2 Effect of the Damped Natural Frequency

The last three cases in Tables (5.5) and (5.6): (7°) to (9’) are chosen similar to Cases: (7)
to (9) in section (6.1.1). The main objective of this part of the study is to test the
dependency of the identification technique on the excitation forms. Numerical random
data for coupled heave and pitch motions are generated using the actual values of the
parameters for Cases: (7°) to (9°) as given in Tables (5.5) and (5.6).

The power spectral density functions corresponding to the random time series for
the coupled heave and pitch motions are calculated for each case study as shown in
Figures (6.71) to (6.76). It can be seen from these figures that well-separated peaks
characterize the power spectral density functions. It is clear in these figures that the
maximum energy content in the heave and pitch motion spectra are distributed around the

damped natural frequencies in heave and pitch.

Heave tiotien Spostrum (Cane 0 7° )
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Frequancy, Ha

Figure 6.71 Power spectral density function for heave motion [Case # 7°]
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Figure 6.72 Power spectral density function for pitch motion [Case # 7°]

Hoave Mation Spectrum [Cam 98 )
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Figure 6.73 Power spectral density function for heave motion [Case # 8’]
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Pitch Motion Spacirum [ Case 08'}
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Figure 6.74 Power spectral density function for pitch motion [Case # 8’}

Masve Metion Spactum [ Case 8 ¥ )

2.50E-04

Figure 6.75 Power spectral density function for heave motion {Case # 9]
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Figure 6.76 Power spectral density function for pitch motion [Case # 9°)

A comparison between the random decrement and the free response has been made as
shown in Figures (6.77) to (6.82). The main objective of studying these cases is to
validate the developed technique for different values of the damped natural frequency. As
the difference between the exciting frequency and the damped natural frequency
increases, the agreement between the random decrement signature and the predicted free
response deteriorates. The disagreement appears in the comparison for the pitch motion
for Case (8') and become significant in both heave and pitch motions for Case (9°) as
shown in Figure (6.80) and Figures (6.81) and (6.82), respectively.

From the above discussion it can seen that the agreement as the damping level
increases and that as the difference between the exciting frequency and the natural
frequency increases, that the accuracy of using the developed techmique in the

identification of the parameters decreases.
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Randem Dowernent and Fres Response [ Canp 8 7" )

Figure 6.77 Comparison between the random decrement signature
and the free response for heave motion [Case # 7°]

Rangem Desrement and Pree Ruspenss [ Case # 7°)

Figure 6.78 Comparison between the random decrement signature
and the free response for pitch motion [Case # 7’}
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Rengomn Dosrerment and Free Respanss [Case 8§ ]
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Figure 6.79 Comparison between the random decrement signature
and the free response for heave motion [Case # 8’}

Rendam Desrement and Free Respense { Case 9 8°)
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Figure 6.80 Comparison between the random decrement signature
and the free response for pitch motion [Case # 8’)
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Asndem Oserement and Fres Respones (Case 8 ¥ |
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Figure 6.81 Comparison between the random decrement signature
and the free response for heave motion [Case # 9’}
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Figure 6.82 Comparison between the random decrement signature
and the free response for pitch motion [Case # 9°]
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Also, a comparison between the random decrement signatures and the auto-correlation
functions for the heave and pitch motions, has been made. The comparison is shown in
Figures (6.83) to (6.88). As the damping increases, the agreement between the random
decrement signature and the auto-correlation function deteriorates. This result is seen
from Figures (6.84), (6.86), and (6.88) for pitch motion. The agreement is not as good for

Case (9’), where the damped natural frequency is very low.

Rengem Oocrement and Aute-earveiation Funstien [Case 8 T |
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Figure 6.83 Comparison between the random decrement signature and
the auto-correlation function for heave motion [Case # 7°]
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Rendam Dosrement and Aute-carreiation Funstion { Case 07*)
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Figure 6.84 Comparison between the random decrement signature and
the auto-correlation function for pitch motion {Case # 7°]
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Figure 6.85 Comparison between the random decrement signature and
the auto-correlation function for heave motion [Case # 8’}
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Randem Duarement ang Aute-eurrelalion Funciien [ Case #8' )

-0.003

Figure 6.86 Comparison between the random decrement signature and
the auto-correlation function for pitch motion [Case # 8']

fRendem Decremant sng Auto-esrraiation Funetien [Case 8 9 )

Figure 6.87 Comparison between the random decrement signature and
the auto-correlation function for heave motion [Case # 9’}
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Randemd Dosrament and Aute-ssereistion Funstion [ Case 00 )
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Figure 6.88 Comparison between the random decrement signature and
the auto-correlation function for pitch motion [Case # 9°]

6.1.2.3 Motion Prediction

Since there is some disagreements between the random decrement signature and the free
response, and also between the random decrement signature and the auto-correlation
function, the actual model angd the predicted one in Tables (5.5) and (5.6) are substituted
back in equations (5.1) and (5.2) to generate motion predictions. A comparison between
the actual and the predicted free response is conducted. Results for this comparison are
shown in Figures (6.89) to (6.94), and Figures (6.95) to (6.100) for Cases (1°) to (3’) and
Cases (7°) to (9°), respectively.

Although the damping level increases, the agreement between the actual and the

predicted free responses is still excellent as shown in Figures (6.93) and (6.94) for Case
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(3"). As the difference between the exciting frequency and the natural frequency
increases, the agreement between the predicted free responses deteriorates as shown in
Figures (6.99) and (6.100) for Case (9°).

I can conclude from the above discussion that the accuracy of using the developed
technique in the identification of the parameters in the equations describing the coupled
heave and pitch motions for an URYV is affected significantly with the increase in the

difference between the exciting frequency and the natural frequency.

Pradicind Froo Respeness [ Case 0 1')
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Figure 6.89 Comparison between the simulated and the predicted
free responses for heave motion [Case # 1°]
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Progictos Frop Responass [Case 8 1)
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Figure 6.90 Comparison between the simulated and the predicted
free responses for pitch motion [Case # 1°]

Prodiciod Frop Assponens { Case 0 T )
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Figure 6.91 Comparison between the simulated and the predicted
free responses for heave motion [Case # 2]
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Figure 6.92 Comparison between the simulated and the predicted
free responses for pitch motion [Case # 2’}

Predicted Free Respeness [ Case 8 Y )
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Figure 6.93 Comparison between the simulated and the predicted
free responses for heave motion {Case # 3°]
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Prodizied Fres Respensse [Cans 0T )
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Figure 6.94 Comparison between the simulated and the predicted
free responses for pitch motion [Case # 3°]
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Figure 6.95 Comparison between the simulated and the predicted
free responses for heave motion [Case # 7°]
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-0.003

Figure 6.96 Comparison between the simulated and the predicted
free responses for pitch motion [Case # 7°]
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Figure 6.97 Comparison between the simulated and the predicted
free responses for heave motion [Case # 8]
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Figure 6.98 Comparison between the simulated and the predicted
free responses for pitch motion [Case # 8’]
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Figure 6.99 Comparison between the simulated and the predicted
free responses for heave motion {Case # 9°]
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Figure 6.100 Comparison between the simulated and the predicted
free responses for pitch motion [Case # 9°)

6.1.2.4 Filtered Data

It is obvious in the previous discussion that some discrepancies appeared in the obtained
agreement for the motion predictions for both heavily damped motions and when the
difference between the exciting frequency and the damped natural frequency is large.
Therefore, it was suggested that I use a one-dimensional digital band-pass filter centered
around the estimated natural frequencies for heave and pitch motions to get signals which
were composed mainly of the transient responses of the floating vehicle. The filter has

two main characterized vectors coefficients: A and B as given below:

Y =FILTER (B,A,X) (6.3)
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where X and Y are the original data vector and its filtered data vector, respectively.
The values of the vectors A and B characterize the type of the filter and are known as the
filter coefficients. These values are designed using a MATLAB Toolbox function called

butter as follow:

[B,A)=butter(n,w,) 6.4)

where n and w, are the order of the filter and the cutoff frequency, respectively. The
cutoff frequency is that frequency where the magnitude response of the filter is Ji/2. In

the band-pass filter the cutoff frequency is given by:

Wy =[y wz] and ® <<y (6.5)

The burter function designs an n™ order digital band-pass Butterworth filter and returns
the filter coefficients in length 2n vectors B and A. The upper and lower frequencies of
the filters were determined from the shapes of the power spectral density functions for the
coupled heave and pitch motion spectra.

The comparison between the parameters used in the actual model and the
predicted parameters for the previous six case studies is shown in Tables (5.10) and
(5.11). The comparison of these tables with Tables (5.5) and (5.6) shows the effect of
using a band-pass filter on the parameters identified using the developed technique. The
identified damping and restoring parameters from the filtered data are better than those

obtained without filtering. I chose Cases (2’) and (8’) to discuss the results obtained using
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the band-pass filter. Cases (2’) and (8’) represent a case of moderate damped motion and
a case of low damped natural frequency motion, respectively.

Results for the comparison between the random decrement signature and the
predicted free response is shown in Figures (6.101) to (6.104). The agreement between
the responses is better than that obtained without filtering.

The comparison between the random decrement signature and the auto-correlation
function is shown in Figures (6.105) to (6.108). It is obvious that the agreement between
the random decrement and the auto-correlation function for the heave motion is better
than that obtained for the pitch motion for Case (8’). This is because the damped natural
frequency for pitch motion is relatively small compared to that for the heave frequency.
This agreement is better also than that obtained without filtering.

The actual model as well as the predicted one are used to generate the motion
predictions using equations (5.1) and (5.2). The comparison between the actual free
response and the predicted one is conducted and is shown in Figures (6.109) to (6.112).

The agreement between the predicted free responses for Case (2') is excellent.
The comparison for Case (8’) is good. This is because the damped natural frequencies for
Case (2’) are higher than that used in Case (8’). Even in Case (8’) itself, the agreement of
the comparison for the heave motion is better than that obtained for the pitch motion
since the damped natural frequency for the pitch motion is smaller than that for the heave
motion. This result shows that the use of band-pass filter is more effective when the
difference between the exciting frequency and the damped natural frequency is large.

Despite these conclusions, the agreement obtained here with filtering around the

damped natural frequencies for heave and pitch motions, is better than that obtained
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without filtering. It is clear from the above results that the use of a band-pass fiiter for the
coupled heave and pitch responses is important in the identification of the hydrodynamic
parameters. Therefore, I recommend the use of this filter for the measured data.
Moreover, it is obvious from Tables (5.3), (5.4), (5.8), (5.9), (5.12) and (5.13) that
the error percentages for the coupling parameters are larger than correspond to the
damping and restoring parameters. This result has been obtained directly from the visual
comparison between the actual and the identified parameters. It seems that the coupling
parameters are unimportant in this case since they did not change the solution. In general
application, the identification technique has been developed for cases where the coupling

parameters are important.

Rendam Degromant and Free Respense [ Case 0 T “With Filwer"]

0.0003

Figure 6.101 Comparison between the random decrement signature
and the free response for heave motion [Case # 2']
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Aendem Decremaent and Pree Reagense [ Case ¢ 2° "With Piler”)

Figure 6.102 Comparison between the random decrement signature
and the free response for pitch motion {Case # 2’]
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Figure 6.103 Comparison between the random decrement signature
and the free response for heave motion [Case # 8°)
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Figure 6.104 Comparison between the random decrement signature
and the free response for pitch motion {Case # 8’}

Aondem Dosrement and Aute-earreistion Funciion [ Case 0 2° "W Filter™)

Figure 6.105 Comparison between the random decrement signature and
the auto-correlation function for heave motion [Case # 2’)
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Figure 6.106 Comparison between the random decrement signature and
the auto-correlation function for pitch motion [Case # 2]
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Figure 6.107 Comparison between the random decrement signature and
the auto-correlation function for heave motion [Case # 8]
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Figure 6.108 Comparison between the random decrement signature and
the auto-correlation function for pitch motion [Case # 8’)
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Figure 6.109 Comparison between the simulated and the predicied
free responses for heave motion [Case # 2°)
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Figure 6.110 Comparison between the simulated and the predicted
free responses for pitch motion [Case # 2’]
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Figure 6.111 Comparison between the simulated and the predicted
free responses for heave motion [Case # 8]
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Figure 6.112 Comparison between the simulated and the predicted
free responses for pitch motion [Case # 8’]

6.2 Experimental Results

The experimental program was conducted using the model in the towing tank. Four
measurements were collected for each individual run: towing speed, wave height, and the
coupled heave and pitch random motion responses. Wave height represents the input to
the URV-model, while the coupled heave and pitch motions represent the output.

The power spectral density functions for the wave height and the coupled heave
and pitch time series for each run have been obtained using the Fast Fourier Transform
(FFT) algorithm. Results for the wave and the motion power spectral density functions
for the experimental program are presented in Appendix M, and Appendix N and
Appendix O, respectively. The main objective for calculating the power spectral density

functions for the input and the output time-series is to look at the energy distribution. In
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addition, the power spectral density functions for the wave excitation (input) and the
coupled heave and pitch motion spectra (outputs) are needed in the determination of the
correlation between the wave modal frequency and the damped natural frequencies for
heave and pitch motions.

The maximum energy content in the coupled heave and pitch motion spectra are
distributed closely around the wave modal frequency of the excitation as shown in
Appendix N and Appendix O. It is clear from Appendices N and O that multiple peaks
characterize the motion power spectral density functions. In order to investigate the
utility of the power spectral density functions, two experimental runs, 5-02 and 19-0, are
considered. The power spectral density functions for the time series corresponding to the

two runs are obtained as shown in Figures (6.113) to (6.118).
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Figure 6.113 Wave power spectral density function [Run # 5-02)
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Figure 6.114 Heave power spectral density function {Run # 5-02]
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Figure 6.115 Pitch power spectral density function [Run # 5-02]
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Figure 6.116 Wave power spectral density function [Run # 19-0]
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Figure 6.117 Heave power spectral density function [Run # 19-0}
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Figure 6.118 Pitch power spectral density function [Run # 19-0}

Two main peaks are significant in the motion spectra: one comresponds to the damped
natural frequency while the other comresponds to the modal frequency of the wave
excitation. In addition, Figures (6.115) and (6.118) have another peak characterizes the
pitch motion spectra. This peak corresponds to the damped natural frequency for heave
motion and is located between the previous two peaks. This shows the coupling between
the heave and pitch motions in the experimentally measured data.

It is obvious from Figures (6.113) to (6.118) that the maximum cnergy content in
these spectra is distributed around the modal frequency of the wave excitation. In order to
obtain a random decrement signature that resembles the free response of the system, the
motion response is filtered around the natural frequency of the URV.

Using a band-pass filter centered around the damped natural frequency, one can

get a signal, which is composed of the transient response of the floating URV. Then, the
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random decrement signature is calculated using the filtered signal for the coupled heave
and pitch motions.

Using the filtered random response, the damping, the restoring and the coupling
parameters in the equations describing the coupled heave and pitch motions for an URV
are identified using the technique developed in this work. The technique has been applied
to the runs given in Table (6.2). The predicted parameters for these runs are shown in
Tables (6.3) and (6.4). The predicted parameters are substituted back in equations (5.1)
and (5.2) and the equations are integrated numerically using the Runge-Kutta algorithm

to generate the predicted free response.

Table 6.2 Experimental Parameters

Experimental Parameters
RUN # |Towing Speed | JONSWAP Wave Excitation
U (m/sec) Hs (m) Q (Hz)

1-0 0 0.07 0.5
5-02 0.20 0.07 0.5
9-02 0.20 0.07 0.7
10-0 0 0.10 0.5
12-0 0 0.10 0.7
13-01 0.10 0.10 0.5
16-02 0.20 0.10 0.6
18-02 0.20 0.10 0.7
19-0 0 0.15 0.5
21-0 0 0.13 0.7
22-01 0.10 0.15 0.5
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Table 6.3 The predicted parameters from the experimental data

for heave motion
Heave Motion
RUN # Predicted Parameters
dx ds2 dsy_ das
1-0 5.10570 0.12170 0.07900 0.12130
5-02 4.93470 0.02520 0.08530 -0.02370
9-02 4.83660 -0.00660 0.08490 -0.03510
10-0 5.24100 0.08650 0.08450 -0.03150
12-0 4.85530 0.01560 0.09360 0.08420
13-01 5.07070 0.04360 0.07930 0.15750
16-02 4.92830 -0.08250 0.10850 0.32640
18-02 4.79630 0.00110 0.11970 0.00580
19-0 5.15560 0.00270 0.10830 0.00690
21-0 5.05250 0.00430 0.11450 0.04500
22-01 5.19690 -0.00470 0.10400 0.03580
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Table 6.4 The predicted parameters from the experimental data

for pitch meotion
Pitch Motion
RUN # Predicted Parameters
da de Ay dys

1-0 0.00170 1.10860 0.00360 0.06860
5-02 -0.00013 0.99840 -0.00084 0.07820
9-02 -0.00100 1.00390 0.02150 0.07090
10-0 0.00064 1.03330 0.00086 0.06560
12-0 0.00010 0.98880 0.00230 0.03870
13-01 -0.00190 1.03900 -0.00470 0.04500
16-02 0.00030 1.02930 0.01020 0.04530
18-02 0.00210 0.98700 -0.01730 0.05680
19-0 -0.00010 1.12410 -0.00017 0.05280
21-0 0.00001 1.16390 0.00009 0.05810
22-01 -0.00100 0.96810 -0.00190 0.04010
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The comparison between the obtained random decrement signature and the measured free
motion response for those runs is shown in Figures (6.119) to (6.140). It is obvious from
these figures that the agreement between the random decrement signatures and the
measured free responses for heave and pitch motions is good especially for the first cycle
of the signatures.

The agreement for the heave motion is better than that obtained for the pitch
motion. The results for the pitch motion seem to suffer a phase shift. In this case, the
pitch damped natural frequency for the URV model is very small compared to the heave
one. Moreover, the difference between the damped natural frequency for heave and the
exciting frequency is smaller than the difference between the damped natural frequency
for pitch and the exciting frequency. Therefore, the obtained agreement for the heave

motion is better than that obtained for the pitch motion.
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Rendam Oosrement and Pros Respense [ RUN # 18 )

Time, sec

Figure 6.119 Comparison between the random decrement and the measured
free response for heave motion { Run # 1-0]

Anndem Decrement and Froe Respanes { RUN § 18]

0.024

0.016 +—

-0.016 -

-0.024

Figure 6.120 Comparison between the random decrement and the measured
free response for pitch motion {Run # 1-0 ]
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Randem Oocroment and Free Reapenite [ RUN ¢ 548 )

Heave Response, m

Figure 6.121 Comparison between the random decrement and the measured
free response for heave motion [Run # 5-02 ]

Randam Desrement end Fras Respenas [ RUN # 548 )
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0.018 1

-0.016

-0.024

Figure 6.122 Comparison between the random decrement and the measured
free respense for pitch motion [Run # 5-02 ]
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Rendem Decrewent and Pres Asaperes [ RUN 8 -8R |

Figure 6.123 Comparison between the random decrement and the measured
free response for heave motion {Run # 9-02 ]

Randam Decremant and Pres Respense [ RUN ¢ 982 )
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Figure 6.124 Comparison between the random decrement and the measured
free response for pitch motion {Run #9-02 ]
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Randem Docremuent and Froe Mesperes { AUN @ 168 )

Figure 6.125 Comparison between the random decrement and the measured
free response for heave motion [Run # 10-0 )

Randam Desrement and Froe Ranpanse [ AUN # 100 |
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Figure 6.126 Comparison between the random decrement and the measured
free response for pitch motion {Run # 10-0}
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Randem Desremant and Fres Reapenee [ RUN £ 120 )

Figure 6.127 Comparison between the random decrement and the measured
free response for heave motion [Run# 12-0]

fandem Cesrarmunt ong Free Respanse [ AUN ¢ 124 )

Figure 6.128 Comparison between the random decrement and the measured
free response for pitch motion [Run # 12.0 ]
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Rendem Oesrement sng Fros Reapenee | AN # 1361 )

Figure 6.129 Comparison between the random decrement and the measured
free response for heave motion {Run # 13-01 )

Rangerm Dssrement and Fres Respenss [ NUN # 1381 )
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-0.024

Figure 6.130 Comparison between the random decrement and the measured
free response for pitch motion [Run # 13-01 ]
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Rendem Dasrement snd Frae Respense [ AUN 0 1608 )

Figure 6.131 Comparison between the random decrement and the measured
free response for heave motion [Run # 16-02 ]

Randem Decremant and Free Reapenee [ AUN ¢ 1582 )
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Figure 6.132 Comparison between the random decrement and the measured
free response for pitch motion {Run # 16-02 ]

162



Randen Cosrement ond Fros Respenee { RUN # 1588 )

Figure 6.133 Comparison between the random decrement and the measured
free response for heave motion [Run # 18-02 ]

Mandam Dosrement ond Free Rospenae [ AUN 0 1582 )
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Figure 6.134 Comparison between the random decrement and the measured
free response for pitch motion [Run # 18-02 ]
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Randess Oesrement and froe Reapense [ RUN ¢ 1908 ]

Figure 6.135 Comparison between the random decrement and the measured
free response for heave motion [Run # 19-0 ]

Aandem Decrement and Froe Respanss [ RUN 8 198 )

0.024

0.016 -

rnd
o
g
T

Pitch Response,
o
&

&
g
i

0.016 +— -

-0.024

Figure 6.136 Comparison between the random decrement and the measured
free response for pitch motion [Run # 19-0}
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Rendem Desrormant and Free Rospanes [ RUN § 210 )

Time, sec

Figure 6.137 Comparison between the random decrement and the measured
free response for heave motion [Run # 21-0 ]

Rendem Oosrement and Fros Resperse [ AN § 290 )

Figure 6.138 Comparison between the random decrement and the measured
free response for pitch motion [Run #21-0 }
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Rangem Desremant and Fres Respanse { RUN ¢ 3281]

Time, sec

Figure 6.139 Comparison between the random decrement and the measured
free response for heave motion [Run # 22-01 ]

fgndam Dysremant and Frae Respenee [ RUN # 23401 |
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-0.024

Figure 6.140 Comparison between the random decrement and the measured
free response for pitch motion [Run #22.01 )
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The previous figures show that the random decrement signature obtained from the filtered
response agrees well with the measured free motion response for the coupled heave and
pitch motions. This result emphasizes that the random decrement signature obtained from
the filtered signal represents the free motion of an URV.

The values of the identified damping, restoring, and coupling parameters for the
experimental runs given in Table (6.2), are obtained using the developed technique.
These parameters are given in Tables (6.3) and (6.4) for the heave and pitch motions,
respectively. The values of the damping and restoring parameters ds; and dsz, and dsz and
dss determined from the different runs are nearly the same, within the expected
experimental error.

The agreement for the coupling parameters ds; and di4, and ds, and dg3 is not as
good. However, the criterion should be whether the identified model yields an accurate
motion prediction. Therefore, the identified models were used to generate predictions of
the free motion using equations (5.1) and (5.2). The predicted free motion responses have
been obtained by setting the normalized excitation force and moment functions, F(t) and
M;(t) to zero.

The comparison between the free responses obtained using the proposed
identification technique and the measured free responses for heave and pitch motions is
shown in Figures (6.141) to (6.163). The agreement between the predicted free response
and the measured response is excellent for the heave motion. The agreement for the pitch
prediction is excellent except for a phase between the two responses. It should be noted
that, in spite of the phase shift in the predicted pitch response, the prediction gives the

amplitude and the frequency with reasonable accuracy.

167



The agreement in the previous figures shows that the identification technique
suggested in this work can be used to identify the parameters in the equations describing
the coupled heave and pitch motions for an URYV sailing near the water surface in random

waves using only the measured responses at sea.
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Pradicied Free Rospenss [ RUN § 18]
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Figure 6.141 Comparison between the measured and the predicted free responses
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for heave motion [ Run # 1-0 ]

Progicnd Fres Rospangs [ RUN # 1-0)
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Figure 6.142 Comparison between the measured and the predicted free responses

for pitch motion [ Run # 1-0 ]
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Pradisted Frao Rospenss [ FUN ¢ 508 |

Figure 6.143 Comparison between the measured and the predicted free responses
for heave motion { Run # 5-02 ]

Prodicing Fres Rospenee ( RUN # 588 |

-0.024

Figure 6.144 Comparison between the measured and the predicted free responses
for pitch motion [ Run # 5-02 ]
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Pragisied Free Rsspenss ([ RUN § 988 )

Heave Response, m

Figure 6.145 Comparison between the measured and the predicted free responses
for heave motion [ Run # 9-02 ]

Prosieted Fres Respenes { AUN @ 502 )
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Figure 6.146 Comparison between the measured and the predicted free responses
for pitch motion [ Run # 9-02 )
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Prodioted Froe Respanes [ N ¢ 188 )

Time, sec

Figure 6.147 Comparison between the measured and the predicted free responses
for heave motion [ Run # 10-0 ]

Presicind Fres Respanee [ AUN ¢ 100 )
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Figure 6.148 Comparison between the measured and the predicted free responses
for pitch motion [ Run # 10-0 ]
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Predictad Fros Respanes [ AUN § 124 )

Figure 6.149 Comparison between the measured and the predicted free responses
for heave motion [ Run # 12-0 ]

Prodicted Froe Respenes { RUN § 128 ]
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Figure 6.150 Comparison between the measured and the predicted free responses
for pitch motion { Run # i2-0 ]
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Prodicted Frap Respanes | RUN § 1381 )
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Figure 6.151 Comparison between the measured and the predicted free responses
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for heave motion [ Run # 13-01 ]

Pradiciad Free Respones [ RUN # 1301

Figure 6.152 Comparison between the measured and the predicted free responses

for pitch motion [ Run # 13-01 }
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Prodictnd Froe Respanes [ RUN # 1942 |

Figure 6.153 Comparison between the measured and the predicted free responses
for heave motion [ Run # 16-02 ]

Prodicind Frae Raspenes [ RUN S 1882 )
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Figure 6.154 Comparison between the measured and the predicted free responses
for pitch motion [ Run # 16-02 ]

175



Prowiceed Froe Rospenes [ RUN # 1988 |

Figure 6.155 Comparison between the measured and the predicted free responses
for heave motion [ Run # 18-02 ]

Prodieted Free Reapenee [ RUN 8 1842 |

Figure 6.156 Comparison between the measured and the predicted free responses
for pitch motion [ Run # 18-02 ]
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Prodictnd Fron Respenes (MUN ¢ 198 )

Time, sec

Figure 6.157 Comparison between the measured and the predicted free responses
for heave motion [ Run # 19-0 ]

Prodicindg Free Respenes [ RUN ¢ 180 )
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Figure 6.158 Comparison between the measured and the predicted free responses
for pitch motion [ Run # 19-0 ]
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Prodictod Free Respenee [AUN 0219 ]
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Figure 6.159 Comparison between the measured and the predicted free responses
for heave motion [ Run # 21-0 ]

Proticnd Froo Renpanes [ RUN 9 214 )

Pitch Response, rad

Figure 6.160 Comparison between the measured and the predicted free responses
for pitch motion [ Run # 21-0)
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Prodictod Fros Rospunes [ RUN ¢ 2281 )

Time, sec

Figure 6.161 Comparison between the measured and the predicted free responses
for heave motion [ Run # 22-01 ]

Prodicied Fren Ruspenee { AUN ¢ 2201 )
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Figure 6.162 Comparison between the measured and the predicted free responses
for pitch motion [ Run # 22-01 )

179



6.2.1 Effect of the Significant Wave Height, Wave
Modal Frequency, and the Towing Speed

The experimental program for the random wave experiments covered ranges of three
parameters: the significant wave height, Hs, the wave modal frequency, £2, and the
towing speed, U as shown in Appendix L. The main purpose of varying these parameters
was to investigate the effect of different forms of the wave excitations on the utility of the
developed identification technique for use in different wave environments.

The experimental runs given in Table (6.2) are chosen from the experimental
program in order to show the effect of varying the three parameters on the utility of the
developed technique in the identification of the hydrodynamic parameters for an URV
sailing near the sea surface in random waves.

Two experimental runs: 1-0 and 10-0 are presented to investigate the effect of
varying the significant wave height on the utility of the developed technique. These runs
are carried out with different values of significant wave height: 0.07 m and 0.1 m, at
constant wave modal frequency of 0.5 Hz in a stationary state case (U = 0 m/sec) as given
in Table (6.2).

The results for the identified parameters for runs: 1-0, 10-0, and 19-0 from the
experimental measurements are given in Tables (6.3) and (6.4). It is clear from these
tables that changes in the significant wave height do not affect the predicted parameters.
The damped natural frequencies in heave and pitch motions are not affected as well.
Moreover, the agreement between the random decrement signature and the predicted free

response is good and does not change as the significant wave height varies.
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The effect of varying of the wave modal frequency on the utility of the developed
technique can be investigated using runs 10-0 and 12-0 or runs 16-02 and 18-02 or runs
19-0 and 21-0. These runs are carried out with different wave modal frequencies at
constant significant wave height and constant towing speed as given in Table (6.2).

The results of the identified parameters for these runs from using both the
experimental measurements are given in Tables (6.3) and (6.4). It is clear from these
tables that as the wave modal frequency varies, the damping and the restoring parameters
are almost constant. Moreover, the random decrement signatures agree well with the
measured free responses.

The effect of varying of the towing speed, U on the suitability of the developed
technique can be ascertained using runs 1-0 and 5-02 or runs 10-0 and 13-01 or runs 19-0
and 22-01. These runs are conducted with different speeds and constant wave modal
frequencies and constant significant wave height as given in Table (6.2). The results
show that as the towing speed varies, the identified damping and restoring parameters are
almost constant.

I can conclude from the above results that the developed identification technique
provides values of the parameters, which are independent of the wave environment
(significant wave height, wave modal frequency, and towing speed). It was shown above
that the proposed identification technique is a suitable tool that can be used to identify the
hydrodynamic parameters using the measured random coupled heave and pitch time

series for an URYV sailing near the sea surface in random waves.
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The filtered data corresponds to narrow-band excitations was used to determine
the random decrement signatures using the numerically generated data and
experimentally measured data. The results obtained from the numerically generated data
for the six case studies. It is clear that while the agreement between the random
decrement signature and the free response is good for the first two cases, this agreement
starts to deteriorate for Case (3°).

The agreement between the random decrement signature and the free response
obtained from the experimental data is excellent. So, it is clear that for highly damped
systems the random decrement signature cannot be used to represent the free response of
the system. However, the method developed in this work is successful with moderately
damped systems. As can be seen from Tables (5.1), (5.2), (5.5), (5.6), (5.10), and (5.11),
the damping level used in Case (2) is almost four times the values found for the physical
model from the experimental data.

The random decrement signatures were used to identify the parameters in heave
and pitch equations of motion using the developed technique. The parameters used in
generating the numerical data as well as those predicted using the identification are
shown in Tables (5.1), (5.2), (5.5), (5.6), (5.10), and (5.11). It is clear that there is
variation in the values of the parameters while there is good agreement between the
original and the predicted values for the direct parameters (ds), di3, ds2, and dy). The
agreement is poor for the coupling parameters (dsz, dis, dsi, and dg3). This may be
attributed to errors associated with the application of the regression analysis to the

functions G; and G..
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In the actual application of this technique we suggest that the functions G, and G;
be used directly to estimate the motion response. The reason we used the regression
technique at this point is to try to find how successful the regression technique would be
in estimating these parameters. If instead, we use the predicted G, and G; functions in the
equations of motion and integrate the equations to estimate the response, we find that the
predicted response agrees well with the response calculated from the original model. The

same comparison was made for the results obtained using the experimental data.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this work [ have developed an identification technique that can be applied to determine
estimates for the damping, restoring, and coupling parameters in the coupled equations of
heave and pitch motions for an underwater robotic vehicle sailing near the sea surface.
The technique uses the response of the vehicle to random waves; however, it does not
require prior knowledge of the excitation. This makes the technique a candidate for the
continuous monitoring tool for the hydrodynamic parameters of these vehicles.

One of the main features of this technique is to apply a band-pass filter, centered
around the damped natural frequency of heave and pitch, to the random response of the
vehicle. This way, I was able to obtained accurate estimates for the free motion of the
vehicle using the random decrement signature and the correlation functions technique.

To the best of the author’s knowledge this approach has not been used before and
represents a new methodology, which extends the applicability of the random decrement

and the correlation function techniques to moderately damped motions.
The following conclusions have been arrived

1. Numerical simulations show that the level of damping and the difference between

the natural frequencies and the wave modal frequency affects the accuracy of the
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predictions of the hydrodynamic parameters in the equations of heave and pitch
motions.

2. The developed technique can accurately predict the hydrodynamic model of an
URY for both wide-band and narrow-band excitations.

3. Using numerically generated data, we have shown that the method is valid for a
damping level about four times that measured experimentally. The method does
not apply for a damping level higher than this. However, these results indicate
that the technique will be valid for realistic vehicles.

4. The developed model was able to predict the hydrodynamic model of the vehicle
in a range of different situations. The predictions are not affected by the

significant wave height, the wave modal frequency, or the towing speed.

The developed identification technique was shown to provide models, which can
accurately predict the free and regular responses of the vehicle. The fact that this
technique provides results in a very short processing time and that it only requires the
knowledge of the measured responses of the vehicle makes it a strong candidate for a
system to be used onboard to provide an up-to date model for the heave-pitch motion of
the vehicle. Better control of the vehicle’s motion can be achieved if such a system is

included in the control loop of the vehicle. This will be subject of a future study.
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7.2 Future Work

Although the developed identification technique has been validated using numerically
generated data as well as experimental data, I still need to investigate the reliability of the
technique using full-scale measurements.

The experimental work in this dissertation is conducted for an URV-model, which
was not equipped with foreword planes, after planes, rudder, vertical stabilizer, and
propeller. It is not expected that these appendages will affect the ability of the developed
technique. However, this needs to be ascertained.

Another way for the validation of the new technique is to use the Marine Dynamic
Test Facility (MDTF) where the input and the output can be measured. The developed
identification technique can be extended to the coupled sway and yaw motions for a URV

sailing near the sea surface.
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Appendix A

Expressions of the Hydrodynamic
Parameters in the Mathematical Model
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Appendix B

Design of the URV-Model

1. Introduction

A Va scale model of the main body of a well-known vehicle, DOLPHIN (Deep Ocean
Logging Platform with Hydrographic Instrumentation for Navigation), has been designed
and built for the purpose of this work. I called the designed model URV-model. Before
building the model, a numerical simulation has been conducted to estimate the motion of
the model for regular harmonic waves.

The model consists of four main parts: a hemispherical nose, cylindrical hull,
conical tail, and a hydrofoil connection as shown in Figure (B.1), see Figure (5.8). The
model is attached to the dynamometer flange using a vertical strut element, which is
located inside a hydrofoil connection.

I investigate two major calculations for the model in calm water: the weight
calculation and buoyancy calculation. In the former the total weight distribution of the
model and its center of gravity (KG and LCG) are calculated. In the latter the total
buoyancy distribution and its center of buoyancy (KB and LCB) are calculated. These
calculations are based on the premise that the main body of the URV-model and the
hydrofoil connection are designed to constitute one neutrally buoyant body taking into
account the effect of the dynamometer flange. The main dimensions of the different parts

of the model are given in the following sections.
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The ballast calculation has been conducted based on the buoyancy and the weight
calculations. Stability calculation is essentially needed to make sure that the attachment
of the hydrofoil connection, the vertical dynamometer flange, and the main body of the

URV-model, are statically stable in calm water.

2. Weight Calculations

The total weight of the URV-model consists of four weights: the hemispherical nose,
cylindrical hull, conical tail, and the hydrofoil connection. According to the geometrical
shape of each part, the corresponding weight per unit length and its longitudinal center of
gravity are calculated. Furthermore, the weight distribution of the model can be
estimated. Finally the total weight of the model and its LCG are calculated.

Aluminum alloys have many advantages compared to other materials. Some of
these advantages are higher density, higher strength and good weldability. Therefore, it
was suggested that the model be built from aluminum alloy which has the following
properties:

Mass per unit volume = 2640 kg/m’

Weight per unit volume = 24.9 kN/m’

2.1 Hydrofoil Connection Weight

The installed dynamometer on the carriage of the wave tank measures the coupled heave

and the pitch motions for a towed model. The dynamometer is attached to the model’s
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strut using a flange. The weight of this flange is nearly 73.6 N and is assumed to act as a
concentrated load at the center of gravity of the model.

The model is attached to the dynamometer flange through a vertical aluminum
strut inside the hydrofoil connection. The dimensions of the strut are 0.63 m x 0.105 m x
0.0254 m. The weight of the strut plate is approximately 38.6 N. This weight is assumed
to be a concentrated load acting at the center of gravity of the model. The weight of the
inner horizontal stiffener and top flange of the strut is 9.8 N. In addition, the weight of the

Styrofoam material that has been used in the fabrication of the hydrofoil part is 54 N.

2.2 Nose, Tube, and Tail Weight

The hull weight of the model consists of three main parts: hemispherical nose, cylindrical
hull, and conical tail. Assuming that the thickness of the shell plating of the model is
0.0032 m, a hemispherical nose of diameter 0.244 m will be built as shown in Figure
(B.1). The corresponding weight of this nose is 13 N, which has been assumed linearly
distributed on a length of 0.125 m from the forward perpendicular (FP).

The cylindrical hull of the model has dimensions of 1.225 m length, 0.251 m
diameter, and 0.0032 m wall thickness, as shown in Figure (B.1). The weight of this tube
is 75 N and is assumed to be a uniformly distributed over its entire length. In order to
attach the strut to the main tube at the location of the LCG, another horizontal tube is
inserted at that location. This tube has dimensions of 0.52 m length, 0.245 m diameter,
and 0.0032 m wall thickness, and is assumed to be a uniformly distributed over its entire

length. The corresponding weight of this tube is 34.3 N.
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The conical tail of the URV-model has dimensions of small and large bases of
0.12 m and 0.244 m, respectively. The length of this part is 0.675 m as shown in Figure
(B.1). The weight of the tail is 34.3 N, and is assumed to be a linearly distributed over its
entire length.

Therefore, based on the above information, it can be determined that the total hull

weight of the model is 206.14 N.

3. Buoyancy Calculations

The buoyancy forces for the main body of the vehicle and the submerged part of the
hydrofoil connection are calculated as given in the following sections. In addition, the

longitudinal center of buoyancy for the neutral buoyant body is calculated.

3.1 Hydrofoil Buoyancy

An aluminum strut is located inside the hydrofoil body at its center of gravity. The cross
section of the hydrofoil body is NACA0024 with a chord length of 0.75 m. The offsets of
this section are shown in Table (B.1). The hydrofoil connection is submerged to a draft of
0.20 m from its base line. The total buoyancy force corresponding to that draft for the
hydrofoil connection is 189.7 N. Consequently, the assembly of dynamometer flange, the
hydrofoil connection, and the main body of the URV-model constitutes one neutrally

buoyant body.



3.2 Nose, Tube, and Tail Buoyancy

The buoyancy forces resulting from the submerged volume of the nose, tube, and tail
parts are 42.1 N, 609.2 N, and 189.7 N, respectively. Therefore, the total buoyancy force
for the main body of the model is 841 N. The LCB is 0.109 m forward of amidships

which has been calculated using equation (B.1) as

ZMomem of volumes
LCB ==~
E Volumes

B.1)

where p and g are the water density in kg/m® and the acceleration due to gravity in
m/sec’, respectively.

Then, the total buoyancy for the main body of the model and the hydrofoil connection is
1017.5 N and is acting upward at vertical center (KB) of 0.166 m from the base line and

at longitudinal center 0.109 m forward amidships.

4. Ballast Calculations

Since the resulting bucyancy force from the submerged volume of the model is greater
than its hull weight, a ballast weight is required. This weight is equal to the difference
between the total buoyancy force and the hull weight of the model. Therefore, the
required ballast mass for this model is 69.5 kg. Different materials can be used to ballast

the model. One is lead, which has the following properties:
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Mass per unit volume = 11 400 kg/m’

Weight per unit volume =112 kN/m*

Since the available weight of a lead block at the towing tank is 117.6 N, six blocks are
required to provide the ballast weight. The total weight distribution of the model is shown
in Figure (B.2). The area under the weight distribution represents the total weight of the
model and the hydrofoil connection. The LCG for the mode! is 0.117 m forward

amidships which has been calculated using equation (B.2).

Moment ights
LCG =2 of weig (B.2)
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Figure B.2: Weight distribution for the URV-Model
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S. Stability Calculations

Since the hydrofoil connection and the vertical dynamometer flange are acting with the
main body of the URV-model, stability calculations are essential to make sure that the
whole system is statically stable in calm water. In addition, the designed URV-model is
considered as a semi-submersible vehicle in this work. The stability calculations are
carried out for the neutrally buoyant body taking into account the effect of the vertical
dynamometer flange.

Two main approaches are used in the assessment of the ship’s survivability in a
seaway: a static approach (quasi - static) and a dynamic one. The static approach is based
on the minimum value that the longitudinal metacentric height (GM,) should have and
the shape of the static stability curve (GZ-0). This approach is still being applied in the
assessment of ship’s stability criterion. I am going to use the static approach to assess the
longitudinal stability of the neutral buoyant body with the vertical dynamometer flange.

The water plane sectional area (Ay) and its center (Xy) as well as the longitudinal
moment of the waterplane area about the center of area (I,) for the hydrofoil section

NACA 0024, are calculated with the aim of Table (B.1) as

A, =§xSxSUM, (B.3)
SUM,

X, =——i_ 4

" SUM, xS ®4)

I, =§x$’ xSUM, - A, x X ,* (B.5)
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where S is the longitudinal spacing for the stations and is equal to 0.025 m. X and Yy are
the longitudinal distance of the stations from the leading edge of the section and the half-
breadth ordinate of hydrofoil section, respectively. L. and SM are the lever distance from
the mid-length of the section’s chord (Station #15) and the Simpson’s multiplier,
respectively.

The values of Ay, Xy, and I are calculated as 0.09229 m?, 0.059 m from Station
#15, and 0.00285 m*, respectively. The total buoyancy of the submerged body of the
URV-model corresponding to the designed draft as well as its vertical and longitudinal
centers (KB and LCB) are calculated as 1022.94 N, 0.1666 m from the base line and

0.109 m forward of amidships, respectively as shown in Table (B.2).

LCB = SUM, (B.6)
SUM,
KB = SUM, (B.7)
SUM,

where B; is the total buoyancy force of part i™ in N. X; and Y; are the longitudinal and the
vertical centers of buoyancy of part i from the after perpendicular (AP) and from the
base line of the URV-model, respectively.

The total weight of the URV-model as well as its vertical and longitudinal centers
(KG and LCG) are calculated as 1013.58 N, 0.1494 m from the base line and 0.116 m

forward of amidships, respectively as shown in Table (B.3).
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SUM,

LCG = :
SOM. (B.8)
SUM
KG = >——3 9
SUM, ®9)

where W; and M; are the weight magnitude of part i and its mass, respectively. X; and Y;
are the longitudinal and the vertical centers of gravity of part i from the after
perpendicular (AP) and from the base line of the URV-model, respectively.

It is obvious that the total buoyancy force obtained from Table (B.2) is not equal
to the total weight of the model obtained from Table (B.3). This difference was expected
since the measuring equipments for weights at the laboratory have some errors. When 1
measure the weight of a heavy object, the errors can be neglected. However, for a light
object the error is significant. In our case, the individual weights are considered light
objects. Therefore, when I measure the total weight of the URV-model with the effect of
the dynamometer flange, the weight was found as 104 kg, which is almost the same as
obtained from the buoyancy calculations. Then, the values of the BM, and the GM, are

calculated as 0.0274 m and +0.0446 m, respectively as

I
BM, =+ :
L= (B.10)
GM, =KB+BM, -KG (B.11)

where V is the volume of the submerged body of the URV-model at the designed draft. It
is obvious that the value of GM_ is positive which means that the main body of the URV-

model, the hydrofoil connection and the dynamometer flange constitute a stable system.
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Table B.1: NACA 0024 properties

ST.| X Yu |SM]| YpxSM | L | YoxSMxL | YyxSMxL?
0 [0000 | 0000 | 1 | 0000 | 15 0.000 0.000
1 {0025 ]| 0045 | 4 | 0179 | 14 2.501 35.016
2 {0050 0060 | 2 | 0120 | 13 1.563 20.314
3 ]o0o075 | 0070 | 4 | 0281 12 3.372 40.459
4 10100] 0077 | 2 | 0155 | 11 1.703 18.732
5 {0125 | 0083 | 4 [ 0330 | 10 3.300 33.005
6 |o150 | 008 | 2 [ 0.172 9 1.549 13.942
7 10175 | 0088 | 4 | 0.353 8 2.828 22.622
8 10200 ] 0090 | 2 | 0.179 7 1.255 8.784
9 10225 | 0090 | 4 | 0360 | 6 2.161 12.964
10 0250 | 0090 | 2 | 0179 5 0.897 4.483
11 J 0275 ] 0089 | 4 | 0.355 4 1.418 5.673
12 | 0300 | 0087 | 2 | 0.174 3 0.522 1.567
13 ] 0325 | 0085 | 4 | 0.340 2 0.680 1.359
14 | 0350 | 0082 | 2 | 0.165 1 0.165 0.165

15 | 0375 | 0079 | 4 | 0318 | © 23913 0.000
16 | 0400 | 0076 | 2 | 0.152 1 0.152 0.152
17 | 0425 | 0072 | 4 | 0290 2 0.579 1.159
18 | 0450 | 0068 | 2 | 0.137 3 0.411 1.232
19 | 0475 | 0064 | 4 | 0257 4 1.027 4.109
20 | 0500 | 0060 | 2 | 0.119 5 0.597 2.985
21 | 0525 ] 0055 | 4 | 0220 6 1.319 7.914
22 |1 0550 | 0050 | 2 | 0.100 7 0.700 4.898
23 10575 | 0045 | 4 | 0.179 8 1.433 11.462
24 | 0600 | 0039 | 2 | 0.079 9 0.708 6.374
25 10625 ] 0034 | 4 | 035 | 10 1.348 13.479
26 | 0650 | 0028 | 2 | 0056 | 11 0.612 6.733
27 0675 1 0022 | 4 | 0087 | 12 1.042 12.508
28 10700 ] 0005 | 2 | 0031 | 13 0.400 5.194
29 10725 | 0009 | 4 | 0035 | 14 0.491 6.871
30 ] 0750 | 0002 | 1 | 0002 | 15 0.028 0.425
554 | Net | 10.847 304.581
SUM,; |SUM,| 13.065 SUM,
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Table B.2: Buoyancy details for the URV-Model

Item Item Name Bi Xi Bi xXi Bi xYi
# N) (m) (m) (N.m) (N.m)
1 [Nose 42.08 1.947 0.127 81.92 5.34
2 ain Tube 608.91 1.288 0.127 783.97 77.33
3 [Conical Tail 189.63 0.405 0.127 76.80 24.08
4 ydrofoil 182.32 1.122 0.349 204.47 63.63
1022.94 1147.16 | 170.39
SUM, SUM; | SUM,
Table B.3: Weight details for the URV-Model
Item Item Name M; W; ) € Yi W xX;| Wix Y;
# (kg) N) | m | (m) | (Nm) | (N.m)
I [Conical Tail 3.79 37.20 | 0.405 | 0.127 | 15.07 4.72
2  [Nose 1.40 13.73 | 1.947 | 0.127 | 26.74 1.74
3 [Main Tube 8.06 79.04 | 1.288 | 0.127 | 101.76 | 10.04
4 [Inner Tube 3.34 32.75 | 1.122 | 0.127 | 36.73 4.16
5 orizontal Stiffener 0.67 6.59 1.122 | 0.127 7.39 0.84
6 [Vertical Strut 4.74 4649 | 1.122 1 0.275 | 52.14 12.78
7 [Upper Flange 0.32 3.10 { 1.122 | 1.000 | 3.48 3.10
8 [Hydrofoil 4.50 44.15 | 1.122 | 0.604 | 49.51 26.66
9 [Ballast (1) 1.05 10.33 | 1.900 | 0.065 | 19.63 0.67
10 {Ballast (2) 56.40 | 553.28 | 1.125 | 0.050 | 622.44 | 27.66
11 [Ballast (3) 9.98 97.95 | 1.122 j 0.130 | 109.85 | 12.73
12 [Ballast (4) 1.77 17.35 | 1.122 ] 0.070 | 19.46 1.21
13 [Dynamometer Flange | 7.30 7161 | 1.122 | 0.630 | 80.31 | 45.12
103.32 ;1013.58 1144.51 | 151.45
SUM, | SUM, | SUM, | SUM,
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Appendix C

Numerical Simulation for Regular Motions

1. Introduction

Since both the main body of the URV-model and the hydrofoil connection constitute a
neutral body which is considered as a semi-submersible vehicle in this work, the regular
coupled heave and pitch motions for that body is investigated using linear two-
dimensional strip theory as given in (17,43]. Korvin-Kroukovsk’s and Jacobs developed
this theory in 1957 [17] (The original reference of this work can be found in reference
[17] pp. 487 ‘no. 121’). They studied the coupled heave and pitch motions for a ship in
regular head seas. Several assumptions and limitations are considered in the numerical
simulation in order to simplify the complex motion of the model. These assumptions can
be classified into two main categories: assumptions related to the theory and others
related to the problem ([18,43,49]). The first category includes that the excitation is
considered as regular harmonic waves, there is no interaction of the flows at the adjacent
strips, the Froude-Krylov hypothesis is valid, other degrees of freedom are neglected,
slender hull forms (i.e. the length is much greater than the beam or the draft and the beam
is much less than the wavelength) are only considered, and the flow is irrotational and
inviscid. The second category includes that a vehicle is assumed be studied in a head sea

condition (4 = 180°) and moderate forward speeds are assumed.
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Based on the above assumptions, the approach of the linear strip theory has been
implemented in this work by assuming that the model’s hull consists of an infinite
cylinder having a series of infinite transverse strips. The flow around each strip has been
treated as 2D flow. However, in our case, the calculations of the hydrodynamic
parameters are obtained for the neutrally buoyant body that constitutes the main body of
the URV-model and the hydrofoil connection. The relative vertical motion of each strip is
calculated based on the coupled heave and pitch motions. After calculating the response
for each strip, the total motion response of the vehicle in coupled heave and pitch
directions can be obtained from numerical integration of the different component

reactions of all strips along the vehicle length.

2. Hydrodynamic Parameters Calculation

The total vertical motion of each strip is assumed to consist of two components: the
heave motion and the pitch motion. The hydrostatic, hydrodynamic, and inertial forces
acting on each strip are described using equations (3.1) and (3.2). All other coefficients in
equations (3.1) and (3.2) are defined in Appendix E, and they are calculated using the
MATLAB program “URV-MOTION” as given in Appendix D. The hydrodynamic
parameters are functions of the towing speed and the wave encounter frequency.

Then, equations (3.1) and (3.2) can be solved using a MATLAB toolbox or any
other numerical integration algorithm such as the Runge-Kutta if the time series of the
exciting forces time series are known. These forces depend on the hull geometry, towing

speed, the encounter wave frequency, and the pressure distribution on the submerged



body of the model. Using 2D strip theory, these forces can be calculated for regular

harmonic wave excitation [17].

3. Exciting Forces Calculation

All floating vehicles near the water surface are subjected to wave exciting forces and
moments. The determination of these forces and moments has a significant importance at
the design stage for such vehicles. At present there is no reliable procedure for
calculating the interaction between the wave and the vehicle [49]. Numerous studies have
been conducted in this area. Some of them are based on linear wave theory and Morison’s
equation where the wave forces are described as comprised of inertia and drag force
component, and others are based on the strip theory [17,43,50,51]. Several methods to
estimate the inertia and the drag coefficients have been developed.

For the purpose of the numerical simulation in the design stage for the URV-
model, the regular wave forces acting on the model are calculated using linear 2D strip
theory. The exciting forces consist of two main components: a Froude-Krylov component
and a diffraction one [8,52]. The Froude-Krylov component can be obtained by
integrating the pressure field acting on the submerged body of the model along the
vehicle’s length. The diffraction component, which is related to the scattering of the
incident wave field, is associated with the disturbance introduced to the wave field by the
presence of the vehicle [8,52,53]. In addition, the diffraction component is of minor
importance compared with the Froude-Krylov one in the case of small structures [52].
However, for large structures such as Hibemia GBS, the diffraction component is

significant. The Froude-Krylov component can be calculated in regular waves.
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Regular waves are theoretical constructs, which never occur in the real ocean
environment. An understanding of their nature is one of the helpful tools in the study of
seakeeping. A train of regular waves can be produced in wave towing tanks and form the
basis of many seakeeping model experiments. The theory of irregular waves that occur in
nature, is based on the assumption that superimposing a large number of regular waves
can represent them [43].

The assumption that the encountered wave is regular and harmonic allows us to
express the instantaneous depression of the water surface below the mean level, {,, as
follows:

g, =6, sin(kL ~w,1) (C.1)
where {; and . are the wave amplitude in metres, and the encountered wave frequency
in rad /sec, respectively. L, k, and t are the lever of a particular strip from LCG in metre,
wave number, and time in sec, respectively. Since L is equal to zero at the LCG of the
model, the depression of the sea surface at the LCG becomes:

€. =-¢,sin(@,?) (C2)

Equations (3.1) and (3.2) can be rewritten in a complex form as follows {17]:

PZ+Q00=F (C3)
S8+RZ=M (C.4)
where

2 .
P=-(m+ay,)m,” +bw,i+cyy;

2 . )
Q=-a,0, +b;m,i+c,;
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S=~(I, +ay)o,’ +by @, i+c:
R=-a,0,> +b,,i+c,;
F=F,¢ =F,cos(w,t +0);
M =M_,e" =M, cos(,t+V);
i=J-1
By manipulating equations (C.3) and (C.4), the heave and pitch motion responses can be

calculated as follows:

MQ-FS

Z= OR-PS €3
CE % (C.6)

Substituting the above complex forms into equations (C.5) and (C.6), the final solution

of the second order diffrential equations of motion can be obtained as follows:

Z=2Z,cos (w1t +5) (o))

© =0, cos (@t +¢) (C.8)

where Z, and ©, are the heave, and the pitch amplitudes, respectively. 8 and € are the
heave and pitch phase angles, respectively. The wave profile, the coupled heave and pitch
responses, the exciting force and the exciting moment acting on the model are calculated

and shown in Figures (C.1) to (C.5) as
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Regular Wave Profile

TIETENI

Wave Amplitude [m)
o

ot YUYV E Y U\J“UJJUﬂ
% 2 me [sec]é 8 10
Figure C.1: Regular wave profile
0015 Regular H'eave Motion Response
om-nnﬂﬁﬂhnnqﬁl\nn\nm.
§-o.oos \
ool LULVVVVRRRVTT T

-0.015 - > . :
0.0 0 2 4 6 8 10
Time [sec]

Figure C.2: Heave motion in regular waves
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Regular Pitch Motion Response
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Figure C.3: Pitch motion in regular waves
Exciting Force Time Series
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Figure C.4: Exciting force in regular waves
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Exciting Moment Time Series
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Figure C.5: Exciting moment in regular waves
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Appendix D

MATLAB Program:

clear:
t£=300.0;
to=0.0;
dc=0.02;
nt=({tf-to)/d4t;
fo=0.7;
H13=0.13;
££=2.0*fo;
nf=70;
df=ff/nf;
nss=82;
pi=4*atan(l);
u=0.2;
g=9.81;
meu=pi;

for k=1l:nf+l
fwi(k)=(k-1)*df;
wwi(k)=2*pi*fw(k):;
we (k) =ww(k) *(l-ww(k) *u*rcos (meu) /g) ;
fe(k)=we(k)/2/pi;
end
ssw=fw(2)~-fw(l):;
sse=fe(2)-fe(l);

sega=0.07;
segb=0.09;
gama=3.3;

for k=l:nf+l1

if fw(k) <= fo

seg=sega;
else

seg=segb;
end
Al=5*H13~2*fo"4/(16*gama~(1/3));
Bl=5*fo0"4/4;
a2=exp(-1*(fw(k)-£fo)*2/2/seg”2/£f0°2):;
if fwik)==

sw(k)=0;

se(k)=0;
else

URV-Motion

sw(k)=(Al/(fw(k))~S) *exp(-Bl/ (fw(k))~4) *gama“a2;
se(k)=sw(k) /sqrt(l-4*fe(k) *urcos(meu)/qg);

end
alw(k)=sqgrt(2*sw(k) *ssw)} ;
ale(k)=sqrt(2+*se(k)*sse);
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end

for k=1:nf+l
aw(k,1l)=fw(k);
aw(k,2)=alw(k);
end

for k=1:nf+l
ae(k,1l)=fe(k);
ae(k,2)=ale(k);
end

oddd=1:2:nf-1;
even=0:2:nf+1;

for k=l:nf+l

if k==
sms(k)=1;
elseif k==nf+l
sms(k)=1;
elseif k==even((k-1)/2+1)
sms(k)=4;
elseif k==oddd(k/2)
sms(k)=2;
end
end
ro=1000;
sl=0.025;
load brd:;
load sm;
load 1;
load tn;
1=1";
sm=sm' ;

for k=1:nf+1

prodl=0.0;

prod2=0.0;

for k2=1:nss
snb(k2)=(brd{k2))~2*pi/4;
anb(k2)=ro*snb(k2);
prodl=prodl+anb({k2)*sm(k2) ;
prod2=prod2+(1l(k2))“+2*anb(k2) *sm(k2);

end

Az(k)=3*sl*prodl/8;

Ayy({k)=3*sl*prod2/8;
end

lcad brdh;

for k2=1l:nss
tnh(k2)=0.25;
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snh (k2)=brdh(k2) *tnh(k2};
end

2 0.40.60.81.01.21.401. 0]
zwl=(0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3. 4]:
zwll=(0 0.4 0.8 1.2 1.4 2.0 2.4 2.8 3. 6 .4];

for k=1l:nf+1
prodl=0.0;
prod2=0.0;
prodtl=0.0;
prodt2=0.0;
for k2=1l:nss
termlh(k2,k)={(we(k))~2*brdh(k2)/2/g;
rlh(k2,k)=brdh(k2)/tnh(k2) ;
if brdh(k2)==
sach(k2)=0.0;
else
sach(k2)=snh(k2)/(brdh(k2)*tnh(k2));
end

if sach(k2)>= 1.0
sach(k2)=1.0;
elseif sach{k2)< 0.5
sach(k2)=0.5;

end

xi=termlh(k2,Kk);
yi=rlh(k2,k);
if xi==0.0 & yi==0.0
Cx(k2,k)=0.0
elseif sach(k2)>=0.5 & sach(k2)<=0.6
load chSa;
load chéa;
chS5a=ch5a’';
chéa=chéa"';

zila(k2)=interp2(xwl, zwl,ch5a,xi,yi);
zi2a(k2)=interp2(xwl,zwl,chéa,xi,yi):
zia{k2)=zila(k2)+((zi2a(k2)-zila(k2))/0.1)*(sach(k2)-0.5);
Cx(k2,k)=zia(k2);

elseif sach(k2)>=0.6 & sach(k2)<=0.7
load cheéa;
load ch7a;
chéa=ché6a’;
ch7a=ch7a’;

zila(k2)=interp2 (xwl, zwl,chéa,xi,yi);
zi2a(k2)=interp2(xwl,zwl,ch7a,xi,yi);
zia(k2)=zila(k2)+((2zi2a(k2)-zila(k2))/0.1)*({sach(k2)-0.6);
Cx(k2,k)=zia(k2):;

elseif sach(k2)>=0.7 & sach(k2)<=0.8
load ch7a;
load ch8a;
ch7a=ch7a’;
ch8a=ch8a’;

218



zila(k2)=interp2(xwl,zwl,ch7a,xi,yi);
zi2a(k2)=interp2{(xwl,2zwl,chBa,xi,yi):
zia(k2)=zila(k2)+((zi2a(k2)-zila(k2))/0.1)*{sach(k2)-0.7};
Cx(k2,k)=zia(k2);

elseif sach{k2)>=0.8 & sach(k2)<=0.9
load ch8a:
load ch9a;
ch8a=ch8a"';
ch9%a=ch9%a"';

zila(k2)=interp2(xwl,zwl,ch8a,xi,yi);
zi2a(k2)=interp2(xwl,zwl,ch9a,xi,yi);
zia(k2)=zila(k2)+((zi2a(k2)-zila(k2))/0.1)*(sach(k2)-0.8);
Cx(k2,k)=zia(k2);

elseif sach(k2)>=0.9 & sach(k2)<=1.0
load ch9a;
load chlola;
ch9a=ch9%a‘;
chlO0a=chl0Oa’;

zila(k2)=interp2 (xwl, zwl,ch9%a,xi,yi);
zi2a(k2)=interp2(xwl,zwll,chlOa,xi,yi);
zia(k2)=zila(k2)+((zi2a(k2)-zila(k2))/0.1)*(sach(k2)-0.9);
Cx(k2,k)=zia(k2);

end

anh(k2,k)=Cx(k2,k) *ro*pi*(brdh(k2))"2/8;
prodl=prodl+anh(k2, k) *sm(k2) ;
prod2=prod2+anh{k2, k) *(1(k2))~2*sm(k2);
ant (k2,k)=anb(k2)+anh(k2,k);
prodtl=prodtl+ant(k2,k) *sm(k2);
prodt2=prodt2+ant (k2,k) *(1(k2}))~2*sm(k2) :

end
Azh(k)=3*sl*prodl/8;
Ayyh(k)=3*sl*prod2/8;
Azt (k)=3*"sl*prodtl/8;
Ayyt(k)=3*sl*prodt2/8;

end

for k=l:nf+1
prodi=0.0;
prod4=0.0;
for k2=1:nss
term2b(k2, k) =(we(k)) *2*brd(k2)/2/qg;
r2b(k2,k)=brd(k2)/tn(k2) ;
if brd(k2)==
sach(k2)=0.0;
else
sacb(k2)=snb(k2)/(brd(k2))*2;
end
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if sacb(k2)>= 1.0
sacb(k2)=1.0;
elseif sacb(k2)< 0.5
sacb(k2)=0.5;

end

xi=term2b(k2,k}:
yi=r2b(k2,k);
if xi==0.0 & yi==0.0
Al(k2,k)=0.0;
elseif sacb(k2)>=0.5 & sacb(k2)«<=0.6
load chS5b;
load chéb;
chSb=ch5b*;
chéb=chéb"’;

zil(k2)=interp2 (xw2,zw2,chS5b,xi,yi);
zi2 (k2)=interp2 (xw2,2w2,chéb,xi,yi);
zi(k2)=zil(k2)+((zi2(k2)-2zi1(k2))/0.1)*({sacb(k2)-0.5);
Al(k2,k)=2zi(k2);
elseif sacb(k2)>=0.6 & sacb(k2)<=0.7
load chéb;
load ch7b;
ch6b=chéb"’ ;
ch?7b=ch7b' ;

2il(k2)=interp2 (xw2,zw2,chéb,.xi,yi);
2i2(k2)=interp2 {xw2,zw2,ch7b,xi,yi);
zi(k2)=zil(k2)+((2zi2(k2)-2zil1(k2))/0.1)*(sacb(k2)-0.6);
Al(k2,k)=zi(k2);
elseif sacb(k2)>=0.7 & sacb(k2)<=0.8
load ch7b;
load ch8b;
ch7b=ch7b’;
ch8b=ch8b’;

zil(k2)=interp2(xw2,2zw2,ch7b,xi,yi);
zi2 (k2)=interp2 (xw2,2w2,ch8b,xi,yi);
zi(k2)=2i1(k2)+((zi2(k2)-2zil(k2)})/0.1)*(sacb(k2)-0.7);
Al (k2,k)=2zi(k2);
elseif sacb(k2)>=0.8 & sacb(k2)<=0.9
load ch8b;
load ch9b;
ch8b=ch8b"*;
ch9b=chSb’;

zil (k2)=interp2 (xw2,2w2,ch8b,xi,yi};
2i2(k2)=interp2(xw2,2w2,ch%b,xi,yi);
2i(k2)=2i1(k2)+{(zi2(k2)-2i1(k2))/0.1)*(sacb(k2)-0.8);
Al (k2,k)=2zi(k2);

elseif sacb{k2)>=0.9 & sacb(k2)<=1.0
load ch%b;
load chlOb;
ch9b=ch9%b';
chl0b=chl0Ob':

2il(k2)=interp2(xw2,2w2,chSb,xi,yi);
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zi2 (k2)=interp2(xw2,2w2,chl0Ob,xi,yi):
zi(k2)=zil(k2)+((2i2(k2)~-2i1(k2))/0.1)*(sacb(k2)-0.9);
Al(k2,k)=zi(k2);

end

if we(k)==
bnl(k2,k)=0;

else
bnl(k2,k)=ro*g~2*(Al(k2,k))"2/(we(k))"3;
prod3=prod3+bnl (k2, k) *sm(k2);
prod4=prod4+bnl(k2,k)*(1(k2})~2*sm(k2);

end

end

bl(k)=3*sl*prod3/8;

Bl(k)=3*sl*prod4/8;
end

xw2=[0 0.2

0.4 0.6 0.8 1.0 1.2 1.41.6 2.0)
zw2=(0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.6 4.4)

for k=l:nf+l
prodl=0.0;
prod4=0.0;
prodt3=0.0;
prodt4=0.0;

for k2=1l:nss

term2h(k2,k)=(we(k})*“2*brdh(k2)/2/g;
r2h(k2,k)=brdh(k2})/tnh(k2) ;
if brdh(k2)==

sach(k2)=0.0;
else

sach(k2)=snh(k2)/(brdh(k2) *tnh(k2));
end

if sach{k2)>= 1.0
sach(k2}=1.0;
elseif sach(k2)< 0.5
sach(k2)=0.5;

end

xih=term2h(k2,k):;
yih=r2h(k2,k);
if xih==0.0 & yih==0.0
A2(k2,k)=0.0;
elseif sach(k2)>=0.5 & sach(k2)<=0.6
load chS5b;
load chéb;
chSb=chSb';
ch6éb=chéb' ;

zil(k2) =interp2 (xw2,2w2,ch5b, xih,yih);
zi2 (k2)=interp2 (xw2, zw2,chéb,xih,yih);
2i(k2)=2il(k2)+((2i2(k2)-zil1(k2))/0.1)*(sach(k2)-0.5);
AZi{kzZ,k)=zi{k2i;

elseif sach(k2)>=0.6 & sach(k2)<=0.7

221



load chéb;
load ch7b;
chéb=chéb* ;
ch7b=ch7b';

zil(k2)=interp2 (xw2, zw2,chéb,xih,yih) ;
zi2 (k2)=interp2 (xw2, zw2,ch7b,xih,yih) ;
zi(k2)=2zil1(k2)+((2zi2(k2)-211(k2))/0.1)*(sach(k2)-0.6) ;
A2 (k2,k)=zi(k2);
elseif sach(k2)>=0.7 & sach(k2)<=0.8
load ch7b;
load ch8b;
ch7b=ch7b’;
ch8b=ch8b' ;

zil(k2)=interp2 (xw2,zw2,ch7b,xih,yih);
zi2 (k2)=interp2 (xw2, zw2,ch8b, xih,yih);
zi(k2)=21i1(k2)+((zi2(k2)-2zil1(k2))/0.1)*(sach(k2)-0.7);
A2(k2,k)=2zi(k2):
elseif sach(k2)>=0.8 & sach(k2)<=0.9
load ch8b;
load ch9b;
ch8b=ch8b";
ch9b=ch9b"’ ;

zil(k2)=interp2 (xw2, zw2,ch8b,xih,y¥ih);
zi2 (k2)=interp2 (xw2, zw2,ch9b, xih, yih) ;
z2i(k2)=2i1(k2)+((2zi2(k2)-2i1(k2))/0.1)* (sach(k2)-0.8);
A2(k2,k)=zi(k2);
elseif sach(k2)>=0.9 & sach(k2)<=1.0
load ch9b;
load chlOb:
ch9b=ch9b" ;
chl0b=chl0b’;

zil({k2)=interp2 (xw2, zw2,ch9b,xih,yih);
2i2 (k2) =interp2 (xw2, zw2,chl10b, xih,yih) ;
zi(k2)=zil(k2)+((2i2(k2)-2i1(k2))}/0.1)~*(sach(k2)-0.9);
A2({k2,k)=2i(k2);

end

if we(k)==
bn2(k2,k)=0;

else
bn2 (k2, k) =ro*g~2* (A2(k2,k)) "2/ (we(k))"3;
prod3=prod3+bn2 (k2,k) *sm(k2) ;
prod4=prod4+bn2 (k2, k) *{1(k2))"~2*sm(k2);
bn(k2,k)=bnl(k2,k)+bn2{k2,k);
prodt3=prodt3+bn(k2,k} *sm(k2) ;
prodt4=prodt4+bn(k2,k) *(1(k2))~2*sm(k2) ;

end
end

b2(k)=3*sl*prod3i/8;
B2(k)j=3*sl*prodd/o;
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b(k)=3*sl*prodt3/8;
B(k)=3*sl*prodt4/8;

end

prod5=0.0;

prod6=0.0;

for k2=1l:nss
cni{k2)=ro*g*brdh(k2) ;
prodS=prod5+cn(k2) *sm(k2) ;
prod6=prodé+cn(k2) * (1 (k2))"2*sm(k2};

end

c=3*sl*prodS/8;
for k=l:nf+1
prod7=0.0;
for k2=l:nss
prod7=prod7+bn(k2,k)*1(k2)*sm(k2);
end
e({k)=-3*sl*prod7/8+u*Azt(k);
E{k)=-3*sl*prod7/8-u*Azt(k);
C(k)=3*sl*prod6/8~-u*E(k);
end

prod9=0.0;

for k2=1:nss
prod9=prod9+cn(k2)*1(k2)*sm(k2);

end

H=-3*sl*prod9/8;

for k=1l:nf+1
prods8=0.0;
for k2=1l:nss
prod8=prod8+ant(k2) *1(k2) *sm(k2) ;
end
sd=dd:
$D=dd2
ddl{k)=-3*sl*prod8/8;
dd2 (k) =-3*sl*prod8/8;
h(k)=-3*sl*prod9/8+u*b(k):
end

load wet;

prodl0=0.0;

prodll=0.0;

for k2=1:nss
mn (k2) =wet (k2) /g;
prodlO=prodl0+mn(k2) *sm(k2) ;
prodll=prodll+mn{k2)*(1(k2))~2*sm(k2);

end

m=3*sl*prodlQ/8;

Ivy=3*sl*prodll/8;

for k=1:nf+l

wnh(k)=sgrt(c/ (m+Aztik)}));
wnp (k) =sqret (C(k) / (Iyy+Ayy(k)));
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end

for k2=1l:nss
sn{k2)=snb(k2) +snh(k2);
if brd(k2)==0.0
tm(k2)=0.0;
else
tm(k2)=sn(k2) /brd(k2);
end

end

for k=l:nf+l
for k2=1l:nss
if k2>1 & k2< nss
DAN(k2)=0.5*((ant (k2+1)-ant(k2))/(1(k2+1)-1(k2))+(ant(k2) -
ant (k2-1))/(1{k2)-1(k2-1)));
elseif k2==
DAN(k2)=(ant(k2+1) ~ant (k2)) /(1 (k2+1)-1(k2));
elseif k2==nss
DAN(k2)=({ant (k2)-ant(k2-1))/(1(k2)-1(k2-1));
end
end
end

for k=1l:nf+1
al(k)=ae(k,2);
tk(k)=(ww(k))*2/g;
PROD1=0.0;
PROD2=0.0;
PROD3=0.0;
PROD4=0.0;

for J=l:nss

EXPP{J, k) =exp(~-tk{k)*tm(J) )}

TERMO(J, k) =-(we(k))*2*ant (J) *al(k):;
CNETA(J, k) =cn (J) *al (k) ;

TERMOO0 (J, k) =TERMO (J, k) +CNETA(J, k) ;
TERM1 (J, k) =u*al (k) *we (k) *DAN(J) ;

TERM2 (J,k)=al (k) *we (k) *bn(J.Kk);

TERM3 (J, k)=TERM2 (J, k) ~-TERM1 (J, k) ;

TERM4 (J, k) =TERM00 (J, k) *sin(tk(k) *1({(J));
TERMS (J,1:) =TERM3 (J, k) *cos (tk(k) *1(J)) ;

TERM6 (J, k) =TERM4 (J, k) +TERMS (J. k) ;
TERM10 (J, k) =TERM6 (J, k) *EXPP (J, k) ;
PROD1=PROD1+TERM10(J, Kk} *sm(J);

TERM7 (J, k) =TERM0O (J, k) *cos (tk(k) *1(J));
TERMB (J, k) =TERM3 (J. k) *sin(tk(k) *1(J)):
TERM9 (J, k) =TERM7 (J, k) ~-TERM8 (J, k) ;
TERM11(J, k) =TERM9 (J, k) *EXPP(J, k) ;

FROD2=PRODZ2+TERMIL{J. K] *smid);
TERM12 (J, k) =TERM10(J) *1(J);
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PROD3=PROD3+TERM12 (J, k) *sm(J) ;

TERM13(J,k)=TERM11(J,k)*1(J);

PROD4=PROD4+TERM13 (J, k) *sm(J) ;
end

Fl1(k)=3*s1*PROD1/8;
F2(k)=3*31*PROD2/8;
M1l (k)=3*s1*PROD3/8;
M2(k)=3*s1*PROD4/8;

Fo(k)=sqrt((Fl(k))*2+(F2(k))"2);
Mo(k)=sqgrt((Ml(k))~2+(M2(k))"2);
[ANG1]=subrl(Fl(k),F2(k));

[ANG2 ] =subrl (M1 (k) ,M2(k));
ANGF (k) =ANG1;

ANGM(Kk) =ANG2;

sfor(k)=(Fo(k)}"2/2/sse;
smom(k)=(Mo(k))"2/2/sse;

end

for k=1:nf+1
i=0 + 1.0000i;
Pl(k)=(-{m+Azt (k))*(we(k))~2+c);
P2 (k) =(b(k) *we(k)):
Po(k)=sgrt((P1l(k))~2+(P2(k))"2);
[ANG11])=subrl(P1l(k},P2(k)):;
angp (k) =ANG11;
P(k)=Po(k) *exp(angp (k) *i);

S1(k)=(-(Iyy+Ayyt(k))*(we(k))*2+C(k)):

S2(k)=(B(k})*we(k));

So(k)=sqret((S1(k))~2+(82(k))"2);

(ANG12]=subrl(S1(k),S2(k)):
angs (k) =ANG12;

tangs{k)=atan(S2(k) Si(k));

S(k)=So(k) *exp(angs (k) *i) ;

Ql(k)=(-ddl(k)*(we(k))~2«h(k));

Q2 (k)=(e(k) *we(k));

Qo(k)=sqgre ((Ql(k))~2+(Q2(k))"2);

(ANG13]=subrl(Ql(k).Q2(k));
angq(k)=ANG13;

Q(k)=Qo (k) *exp(anga(k) *i};

XRR1 (k) =(dd2 (k) * (we (k) ) “2+H) ;

XRR2 (k) =(E(k) *we (k) ) ;

XRRo (k) =sqrt ( (XRR1 (k) ) ~“2+(XRR2 (k) }~2);

[(ANG14]=subrl (XRR1 (k) ,XRR2 (k) ) ;
angr (k) =ANG14;

XRR (k) =XRRo (k) *exp (angr (k) *i) ;

PS=P(k)*S(k):

QR=Q(k) *XRR (k) ;
PSQR1=PS-QR;
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PSQR2=conj (PSQR1) ;
AAA=PSQR1*PSQR2;

Fx1l(k)=Fl(k):

Fx2(k)=F2(k):

Fxo(k)=sqrt({Fx1l(k))"2+(Fx2(k)}"~2);

[ANG15]=subrl(Fxl (k) .Fx2(k)):;

angf (k) =ANG15:;

Fx (k) =Fxo (k) *exp(angf (k) *i);

Mxl (k) =Ml(k);

Mx2 (k)=M2 (k) ;

Mxo{k)=sqrt( (Mx1l(k)) 2+ (Mx2{k))*2):

[ANG16]) =subrl (Mx1 (k) ,Mx2(k)) ;
angm(k) =ANG16;

Mx(k)=Mxo (k) *exp(angm(k) *i);

FS=Fx (k) *S(k) ;
MO=Mx({k}*Q(k) ;
FSMQ=FS-MQ;

BBB=FSMQ*PSQR2;

MP=Mx(k} *P(k) ;
FR=Fx (k) *XRR(k) ;
MPFR=MP-FR;

CCCC=MPFR*PSQR2;

ZH (k) =BBB/AAA;

ZHa (k) =sqrt((real (ZH(k)))"2+{imag(2H(k)))~2);
ZP (k) =CCCC/AAA;

ZPa(k)=sqgrt((real (ZP(k)))~2+(imag(ZP(k)))~2);

(ANG18])=subrl(real (ZH(k)),imag(ZH(k)));
[ANG19]=subrl(real (ZP(k)),imag(ZP(k))):
angzh(k)=ANG18;
angzp (k) =ANG19;

if al(k)==
ZHtf (k) =0.0;
ZPtf(k)=0.0;
Ftf(k)=0.0;
Mcf(k)=0.0;

RAOH(k)=0.0;
RAOP(k)=0.0;
RAOF(k)=0.0;
RAOM(k)=0.0;

else
ZHt £ (k) =2Ha(k)/al(k);
ZPtf (k) =2Pa (k) /tk{k) 7al(k);
Ftf (k)=Fo(k)/al(k);
Mtf(k)=Mo(k)/alik):
RAOH (k) =(ZHa(k) /ai{k))"2;
RAOP(k)=(2Pa (k) /al(k))"2;



RAOF (k)= (Fo(k)/al(k)}"~2;
RAOM (k) =(Mo (k) /al(k))~2;
SHH(k)=RAOH (k) *se(k}:
SPP(k)=RA0OP (k) *se(k);
SFF (k) =RAOF (k) *se(k) ;
SMM (k) =RAOM (k) *se(k) ;
rlh(k)=2Ha (k) /al (k) ;
rlp(k)= ZPa(k)/al(k):

end

sz(k)=(ZHa(k))"~2/2/sse;
sp(k)=(Z2Pa(k))~2/2/sse;

for J=1l:nt+1

ZH(J,k)=ZHa (k) *cos (we (k) *(J-1) *dt+angzh (k) ) ;
ZHV(J.k)=-ZHa (k) *we (k) *sin(we(k) * (J-1) *dt+angzh(k));
ZP(J,k}=ZPa(k) *cos(we(k)*(J-1) *dt+angzp(k));
ZPV(J,k)=-ZPa{k)*we(k)*sin(we(k) * (J-1) *dt+angzp(k));
Fxx(J.k) =Fxo (k) *cos{(we (k) *(J-1) *dt+angf (k) ) ;
Mxx(J, k) =Mxo (k) *cos(we (k) *(J-1) *dt+angm(k));

end

end
prodww=0.0;
prodse=0.0;
prodSHH=0.0;
prodSpPp=0.0;
prodsz=0.0;
prodsp=0.0;
prodSFF=0.0;
prodSMM=0.0;

prodsfor=0.0;

prodsmom=0.0;

for k=1:nf+l
prodww=prodww+sw(k) *sms (k) ;
prodse=prodse+se (k) *sms (k) ;
prodSHH=prodSHH+SHH (k) *sms (k) ;
prodSPP=prodSPP+SPP (k) *sms (k) ;
prodsz=prodsz+sz (k) *sms (k) ;
prodsp=prodsp+sp(k) *sms (k) ;
prodSFF=prodSFF+SFF (k) *sms (k) ;
prodSMM=prodSMM+SMM (k) *sms (k) ;
prodsforz=prodsfor+sfor(k) *sms (k) ;
prodsmom=prodsmom+smom (k) *sms (k) ;

end

mosw=ssSw*prodww/3;
mose=sse*prodse/3;
moSHH=sse*prodSHH/3;
moSPP=sse*prodSPP/3;
mosz=sse*prodsz/3;
mosp=sse*prodsp/3;
moSFF=sse*prodSFF/3;
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moSMM=sse*prodSMM/3;
mosfor=gsse*prodsfor/3;
mosmom=sse *prodsmom/3;

Wsav=1.25*sqrt ({mosw) ;
Wsavl3=2.0*sgrt (mosw} ;
Wsavl10=2.55*sqrt (mosw) ;
Wsav1100=3.34*sqgrt (mosw);

Esav=1.25*sqrt{mose) ;
Esavl3=2.0*sqrt (mose);
Esav110=2.55*sqrt (mose) ;
Esav1100=3.34*sgrt (mose);

Hav=1.25*sqrt (moSHH) ;
Havl3=2.0*sqrt (moSHH} ;
Hav110=2.55*sqrt (moSHH) ;
Hav1100=3.34*sqrt (moSHH) ;

Pav=1.25*sqrt (moSPP) ;
Pav13=2.0*sqrt (moSPP);
Pav110=2.55*sqrt (moSPP) ;
Pav1100=3.34*sqrt (moSPP};

Fav=1.25*sqrt (moSFF) ;
Favl1l3=2.0*sqrt (moSFF) ;
Favl110=2.55"sqrt (moSFF) ;
Fav1100=3.34*sqgrt (moSFF);

Mav=1.25*sqgrt (moSMM) ;
Mavl13d=2.0*sqrt (moSMM) ;
Mav1ll0=2.55*sgrt (moSMM) ;
Mav1100=3.34*sqgrt (moSMM} ;

t=0.0:dt:nt*dt;

for k=1l:nf+l
x=rand(1l);
xr(k)=x*2*pi;
end

for J=1l:nt+l
eta(J)=0.0;
F2(J)=0.0;
Mp(J)=0.0;
ZH1(J)=0.0;
ZP1(J)=0.0;
ZH1V(J)=0.0;
ZP1V(J)=0.0;
for k=1l:nf+l

eta(J)=eta(J)+al(k) *cos(2*pi*fw(k) *(J-1) *dt+xr{k));
Fz(J)=Fz(J)+Fxo{k) *cos(we(k}*(J-1) *dt+angf (k) + xr(k)):

Mp (5} =Mp({J) +Mx0o{K) *cos({we{k) *{J-1)*dt+angm(k}+ xr{k}j;
ZH1 (J)=2H1 (J) +ZHa (k) *cos (we (k) * (J-1) *dt+angzh (k) + xr(k));
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ZP1(J)=2P1(J) +ZPa(k) *cos (we(k) * (J-1) *dt+angzp(k)+ xr(k)):

ZH1V (J) =ZH1V(J) -ZHa (k) *we (k) *sin(we (k) * (J~1) *dt+angzh (k) +
xr(k));

ZP1V(J)=ZP1lV(J)-2Pa(k) *we (k) *cos(we (k) * (J-1) *dt+angzp (k) +
xxr(k)):

end
end

nh=length(ZH1);
np=length(2ZPl);
ns=500;
TRIGGER=0.003;
M=0;

N=0;

yh=2ZH1;
yp=2P1;
for I=1l:nh-ns
if (yh(I) <= TRIGGER & vyh(I+l) > TRIGGER)
M=M+1;
SP(M)=I;
if (abs(yh(I)-TRIGGER) > abs(yh(I+1)-TRIGGER))
SP(M)=I+1;
I=I+1;
end
end
end

for I=1:nh-ns
if (yh(I) >= TRIGGER & vyh(I+l) < TRIGGER)
N=N+1;
SN(N) =I;
if (abs(yh(I)-TRIGGER) > abs(yh(I+1)-TRIGGER))
SN(N)=I+1;
I=I+1;
end
end
end

for J=1:ns+l
RD1(J)=0.0;
RD2(J)=0.0;

for I=1:K
RD1 (J)=RD1(J) +yh(SP{(I)+J-1)
RD1(J)=RD1(J)+yh{(SN(I)+J-1)
RD2 (J)=RD2 (J) +yp(SP{I) +J-1)
RD2 (J)=RD2 (J) +ypP (SN(I)+J-1)

end

RD1(J)=RD1(J)/(2.0*K);

.
’
-
.
-
v
-
.
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RD2 (J)=RD2(J)/(2.0*K);
end

tr=0:dt:ns*dt;
yl=xcorr(yh);
y2=xcorr(yp);

xxl=max(yl) /RD1(1);
xx2=max(y2) /RD2(1):
jl=1;
nl=length(yl):
n2=length(y2) ;

for il=1l:nl

if i1 >= £loor(nl/2)
x1(31)=y1(il)/»xx1;
if jl1 >= ns+l,break
else
Jl=51+1;
end
end

end

j2=1;
for il=1l:n2

if il >= floor(n2/2}
x2(j2)=y2{il) /xx2;
if j2 >= ns+l,break
else
j2=72+1;
end

end

for kil=1l:nf+l
for J=1l:nt+1
kK(J,1)=Fxx(J.kl);
k(J,2)=Mxx(J,kl):;
end

xal=b(kl)/ (m+A2t(kl));
xa2=c/ (m+azt(kl)):;
xa3d=ddl (k1) / (m+A2t(kl));
xad=e(kl)/ (m+Azt (kl));
xaS5=h(kl)/ (m+Azt(kl));
xa6=1/ (m+Azt(kl));

xbl=B(kl)/ (Iyy+Ayyt(kl)):
xb2=C(kl)/ (Iyy+Ayyt(kl));
xb3=A4d2 (k1) / (Iyy+Ayyt(kl));
xb4=E(kl)/ {Iyy+Ayyt{kl));
xbS5=H/ {1yy+Ayyt(kli;
xb6=1/(Iyy+Ayyt(kl)):



xa3l=-(xa2-xa3* (xb5-xb3*xa2)/(1-xa3*xb3}}:
xa32=-(xa5-xa3* (xb2-xb3*xa5)/(1-xa3*xb3));
xa33=-{xal-xa3* (xb4-xb3d*xal)/(l-xa3*xb3));
xal3d=-{xad-xal* (xbl-xbi*xad)/{(1l-xa3*xb3));

xadl=-(xb5-xb3*xa2)}/{1-xa3*xb3);
xad2=- (xb2-xb3*xa5)/ (1-xa3*xb3);
xa43=-(xb4-xb3*xal)/ (1-xa3*xb3);
xad4=-(xbl-xb3*xad)/ (1-xa3*xb3);

AA=[0 0 1 0;0 0 0 1:xa3l xa32 xa33 xa34:;xadl xad2 xad3 xaddl:;
xb3l=xab6+xal3*xb3*xa6/ (1l-xal*xbl);

xb32=-xal3*xb6/(1-xa3*xb3l) ;

xb4l=-xb3*xa6/({1-xa3*xb3) ;

xb42=xa6/(1-xa3*xb3);

BB=[0 0;0 0;xb31 xb32;xb4l xb42];

U=k;
CC=[0 0 0 0]
D=[0 0];

T=0:dt:nt*dt ;
[Y,XX] = lsim{(AA,BB,CC,D,U,T};

for kk=l:nt+l
X1 (kk,kl)=XX(kk,1)};
X2 (kk,kl)=XX(kk,2);
X3 (kk,kl)=XX(kk,3);
X4 (kk,kl)=XX(kk,4) ;
end

end

for J=1l:nt+l
XZ(J)=0.0;
XP(J)=0.0;
for k=1l:nf+1
XZ(J)=X2(J)+X1{(J,k)*cos(we(k)*(J-1)*dt+xr(k));
XP(J)=sXP(J)+X2(J,k) *cos(we(k)*(J-1) *dt+xr(k));
end
end

YH=££ft (ZH1,512);
YP=££fc(2P1,512);
YF=fft(Fz,512);
YM=£fft (Mp,512);

Phh=YH. *conj (YH) /512;
Ppp=YP. *conj (YP) /512;
PEE=YF. *conj (YF) /512;
Pmm=YM. *conj (YM)} /512;

£=50+(0:51)/512;
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Appendix E

Hydrodynamic Parameters
Using Strip Theory

The definitions of the hydrodynamic coefficients in equations (3.1) and (3.2) are as

follows [16]:
I, =J'(m,xx)dx (E.D
m= I"'" dx, vehicle mass, kg (E.2)

where m, and x are the mass distribution of each strip, weight per metre / g and the

distance of each strip from the longitudinal center of gravity (LCG).
ay; = Ia,, dx , Added mass for heaving, kg-sec’/m (E.3)

where a, is the added mass for each strip is obtained as follows:

2

a, = :l‘—pyr B, (E4)
where p and B, are the water density in kg/m> and the diameter of each strip, in metre.
by, = Ib,, dx , Damping coefficient for heaving, kg-sec/rad (E.5)
where b, is the damping coefficient per unit length for each strip is obtained as

ZZZ
b, =LE (E-6)

()]

where A is the ratio of the amplitude of the radiated waves to the amplitude of the

heaving motion. This ratio is obtained from Figure (4.6) as shown on page 44 in refrence
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[17]. As shown in this figure, the value of A depends on the sectional area coefficient of

each strip, the ratio of the diameter of each strip to the local draft, and m.’Bo/2g.

¢y, = [ c, dx, Restoring force coefficent for heaving, kg/m E.7)
where c, is the restoring force coefficient for each strip and is equal to pg B,.

Gy = -Ia,, xdx , Coupling term, kg-sec’ (E.8)
by = —I b, xdx +u xa,,, Coupling term, kg-sec’/sec (E.9)

where u is forward speed of the towed model in m/sec.

Cys = -jc,, xdx + u xby, , Coupling term, kg (E.10)
Ay = Ia,, x* dx , Added mass moment of inertia for pitching, , kg-seczlm (E.11)
bys = [ b, x* dx, Damping coefficent for pitching, kg-m-sec/rad (E.12)

Css = Ic,, x* dx - u xb,, , Restoring moment coefficient for pitching, kg-m/rad (E.13)

ay; =Qy = —Ia,, xdx , Coupling term, kg-sec’ (E.14)
by, = -J'b,, xdx - u xa,; , Coupling term, kg-sec’/sec (E.15)
Cy = -J.c,, xdx , coupling term, kg (E.16)
Exciting force, F(t):

F = F, cos(w,0) + F, sin(w,t) = F, cos(w,t +O) (E.17)

F, =1/F,2 +F,’ o=-un(F,/F) (E.18)
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where Fo and o are the amplitude of the exciting force and the its phase lag relative to the

wave propagation.
dF, dF.
F]=Ij‘T‘dx and r;jﬁdx (E.19)
where
dF‘l “: 2 3 -h M"
— = e (W, a, +c,)sintkx)+{ e w, (b, — u—=)cos(kx) (E.20)
dx dx
dF, -k 2 -k da,, .
e §.e " (-w, a, +c,)costkx)—§ e w (b, —u = )sin(kx) (E21)

where z is the mean draft for each strip, Tm, and is equal to strip sectional area/
maximum breadth. The wave number is represented by k and is equal a/g .

Exiciting moment, M(t):

M =M, cos(w,)+ M, sin(w,t) =M, cos(®,t +T) (E.22)

M, = 1/Mf +M," and T=-tan"'(M,/M,) (E.23)
where Mo and t are the amplitude of the exciting moment and the its phase lag relative to

the wave motion.

dM,
dx

M =[Zas and M, =[Zrax (E24)
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Appendix F

MATLAB Program: D.E.Solver

clear;

load meu2
dt=0.02;
pi=4.0vatan(1.0);
N1=70;

N2=4;
y(1)=2.71*0.01;
v(2)=0.017;
y(3)=0.0;
(A,S,W])=pspect2(Nl);
kx=2;
TI=0.0;TLAST=400.0;
H=4t:;
N=(TLAST-TI) /H:
T=TI:
TY1{1l)=y(1l);
TY2(1l)=y(2);
TY3(1)=y(3);
TY4(1l)=y(4);
TY11(1l)=y(1l):;
TY22(2)=y{(2);
TY33(1l)=y(3);
TY44(1l)=y(4});

tr=H:H:N*H;
for J=1:N
for I=1:N1
Rl=rand(1l):;
ranl (I)=2*pi*R1l;
end
SUMF=0;
SUMM=0;
for 1I=1:N1

SUMF=SUMF+ 0.07*sin(W{(I)*T+ranl(Il));
SUMM=SUMM+ 0.15*sin(W(I)*T+ranl(I});
end

F(J)=SUMF;

M(J) =SUMM;

(yout]=rk42 (SUMF, SUMM,ranl,y,.N2,A,W.T,H);
TY1(J)=yout(l);
TY2(J) =yout(2);

TY3 (J)=yout(3);
TY4(J)=yout(4) ;
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end

TY11(J)=TY1(J):
TY22({J)=TY2(J):
TY33(J)=TY3(J);
TY44 (J)=TY4(J);

y(l)=yout(l};
y{2)=yout(2};
y(3)=yout(3);
y(4)=yout(4);

T=T+H;
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Appendix G

MATLAB Program: RD&AC _Sim

clear;

M=0;

N=0;

ns=499;
TRIGGER=0.03;
load heaved
load pitchd
vyh=heaved;
yp=pitchd;
nh=length(yh);
np=length(yp):;
dc=0.02;
fs=1/d4c;

zh=ffc(yh,512);
zp=££ft({yp,512);

Phh=zh.*conj(zh)/512;
Ppp=zp.*conj(zp) /512;

f=fs*(0:51)/512;
tl=(1l:nh)/£fs;
t2=(1l:np)/£s;

[bl,al)=butter(4,[0.07 0.9])*2/£fs)}:
(hl,wl)=freqz(bl,al,512);
sfl=filter(bl,al,yh):

[b2,a2)=butter(4,[0.07 0.65]*2/£fs):
[h2,w2]=freqz(b2,a2,512);
sf2=filter(b2,a2.yp!};

for I=1l:nh-ns
if (yh(I) <= TRIGGER & yh(I+l) > TRIGGER)
M=M+1;
SP(M)=I;
if (abs(yh(I)-TRIGGER) > abs(yh(I+1l)-TRIGGER))
SP(M)=I+1;
I=I+1;
end
end
end

for I=1l:nh-ns
if (yh(I) >= TRIGGER & yh(I+l) < TRIGGER)
N=N+1;
SN(N)=I;
if(abs(yh(I)-TRIGGER) > abs(yh(I+1)-TRIGGER))
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SN{N)=I+1;
I=I+1;
end
end
end

K=M;

if M>N
K=N;

end

for J=1l:ns+l
RD1(J)=0.0;
RD2(J)=0.0;

for I=1:K

RD1 (J)=RD1(J)+Yh(SP(I)}+J-1);
RD1(J)=RD1(J)+Yh(SN(I)+J-1);
RD2 (J)=RD2 (J) +YP(SP(I) +J-1);
RD2 (J) =RD2 (J) +YpP (SN(I)+J-1);

end
RD1(J)=RD1(J)/(2.0*K) .,
RD2(J)=RD2(J)/(2.0*K);

end

[x1])=correlx(nh,ns,RD1l,yh);
[x2]}=correlx({np.ns,RD2,yp):

[Drdl]= firstderv (RDl,ns,dt):;
[Drd2)= firstderv (RD2,ns,dt):;

[DDrdl]}= firstderv (Drdl.ns.,dt):
[DDrd2)= firstderv (Drd2,ns,dt):

for i=l:ns-4
trx(i)=tri{i);
RD1x(i)=RD1l(i):
RD2x(i)=RD2(i);
Drdix(i)=Drdl(i);
Drd2x(i)=Drd2(i);
DDrdlx({i)=DDrdl(i):
DDrd2x (i) =DDrd2(1i) :
x1lx(i)=x1(i);
%x2x(i)=%2 (i) ;

end

xlx=xlx"'

xX2x=%2x"';
Drdlx=Drdlx";
Drd2x=Drd2x’';
DDrdlx=DDrdlx’' ;
DDrd2x=DDrd2x"’ ;
RD1x=RDlx':
RD2x=RD2x' ;

crx=trx':

xhl=[trx RD1x Drdilx]:;
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xpl={trx RD2x Drd2x]:
yhaut={trx RDlx xlx]
ypaut=[trx RD2x x2x]

RH=RD1;
Hautl=xl;
RP=RD2;
Pautl=x2;
Hl=dt;

Kll=1;
for I=1l:ns-1

if (RH(I)>= 0.0 & RH(I+1l) < 0.0)
if abs(RH(I))==0.0
ZPl{K1ll1l)=I;
K11=K1l1l+1:
elseif abs(RH(I+1))==0.0
ZP1(K1ll)=I+1;
K11=K11l+1l;

elseif (abs(RH(I)) < abs{RH(I+l)))
ZP1(K1l1l)=I;
Kl1=K1l1l+1;

elseif abs(RH(I)) > abs(RH(I+1l))
ZP1(K11l)=I+1;
K11=K11+1;

end

end

end

K22=1;
for I=1l:ns-1

if {Hautl(I)>= 0.0 & Hautl(I+l) < 0.0)
if abs(Hautl(I))==0.0
Zp2(K22)=I;
K22=K22+1;
elseif abs(Hautl(I+1l))==0.0
ZP2 (K22)=I+1;
K22=K22+1;

elseif (abs(Hautl(I)) < abs(Hautl(I+l)))
ZP2(K22)=I;
K22=K22+1;

elseif abs(Hautl(I)) > abs(Hautl(I+l))
ZP2 (K22)=I+1;
K22=K22+1;

end

end

end

if RD2(1) < O
TRIGGERP=min (RD2) ; KK=2;
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elseif RD2(1l)> O
TRIGGERP=max (RD2) ; KK=1;
end

if KK ==
for i=1l:ns
RP(i)=-RP(i);
Pautl(i)=-Pautl(I
end
end

K33=1:;
for I=1l:ns-1

if (RP(I)>= 0.0 & RP(I+1l) < 0.0)
if abs(RP(I))==0.0
ZP3 (K33)=I;
K33=K33+1;
elseif abs(RP(I+1))==0.0
ZP3 (K33)=I+1;
K33=K33+1;

elseif (abs(RP(I)) < abs(RP(I+1l)))
2P3(K33)=I;
K33=K33+1;

elseif abs{(RP(I)) > abs(RP(I+1l))
ZP3 (K33)=I+1;
K33=K33+1;

end

end

end
K44=1;
for I=1l:ns-1

if (Pautl(I)>= 0.0 & Pautl(I+l) < 0.0)
if abs(Pautl(I))==0.0
ZP4 (K44)=I;
K44=K44+1;
elseif abs(Pautl(I+1l))==0.0
ZP4 (K44)=I+1;
K44=K44+1;
elseif (abs(Pautl(I)) < abs(Pautl(I+1)))
ZP4 (K44)=I;
K44=K44+1;
elseif abs(Pautl(I)) > abs(Pautl(I+1l))
ZP4(K44)=I+1;
K44=K44+1;
end
end

end
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Appendix H

Random Decrement and Free Response:
Simulation
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Rendem Oosrement and Free Respanss [Cane 8 1 )

0.015

0.01 -

-0.01

-0.015

Figure H.1: Comparison between the random decrement and the free response
for heave motion {Case # 1)
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Figure H.2: Comparison between the random decrement and the free response
for pitch motion [Case # 1}

242



Rendem Oosrement and Freo Respenss { Cae 62 )
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Figure H.3: Comparison between the random decrement and the free response
for heave motion [Case # 2]

Rengem Desrarment and Froo Rospense (Cane 62 }
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Figure H.4: Comparison between the random decrement and the free response
for pitch motion [Case # 2]
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Rendem Dosrement and Pree Respense { Cone # 3 )
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Figure H.5: Comparison between the random decrement and the free response
for heave motion [Case # 3]
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Figure H.6: Comparison between the random decrement and the free response
for pitch motion [Case # 3]
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Rendom Ducrement snd Froe Respence (Cass 0 4]

0.0t

Figure H.7: Comparison between the random decrement and the free response
for heave motion [Case # 4]

fAendem Decremant and Free Reapense [ Case 0 4 )

Figure H.8: Comparison between the random decrement and the free response
for pitch motion [Case # 4]
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Randem Desrament end Fras Respanse (Case 0 6 )
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Figure H.9: Comparison between the random decrement and the free response
for heave motion [Case # 5]

Rundem Comement ang Proe Respence { Case 08 )

Figure H.10: Comparison between the random decrement and the free response
for pitch motion [Case # 5]
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Randem Desromant and Free Rusponee [Case 548 |

Figure H.11:

0.01

Comparison between the random decrement and the free response

for heave motion {Case # 6]

Randem Decrement and Froe Respence (Cass 08)

Figure H.12: Comparison between the random decrement and the free response

for pitch motion [Case # 6]
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Rangem Docrarmant snd Froe Respenee [ Cane 9T )

0.02

Figure H.13: Comparison between the random decrement and the free response
for heave motion [Case # 7)

Rangem Ooerormant and Froe Respenes [Case 0 7)

Figure H.14: Comparison between the random decrement and the free response
for pitch motion [Case # 7]

248



Aendem Dsararment and Froe Reospanae [Cass § 9]
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Figure H.15: Comparison between the random decrement and the free response
for heave motion [ Case # 8 ]

Ransewn Oouwrement and Fres Rsspense { Case #0)
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Figure H.16: Comparison between the random decrement and the free response
for pitch motion [ Case # 8 }
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Randem Oosrement end Free Rospanss [ Case 89 )
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Figure H.17: Comparison between the random decrement and the free response
for heave motion {Case # 9]

Rengem Desremant end Fres Respense (Case 09 )

Pitch Response, rad

<0.08

Figure H.18: Comparison between the random decrement and the free response
for pitch motion [Case # 9]
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Randemn Dearament and Prap Respense [ Cone 8 19 )
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Figure H.19: Comparison between the random decrement and the free response
for heave motion [Case # 10]

Randam Oscrement and Free Respence [ Cans # 10 )
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Figure H.20: Comparison between the random decrement and the free response
for pitch motion [Case # 10)
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Appendix I

Random Decrement and
Auto-correlation Function:
Simulation
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0.015

0.01

-0.005

-0.01

Figure I.1: Comparison between the random decrement and the auto-correlation
function for heave motion [Case # 1]

Randem Decremant ind Aute-eerraiation Function ( Case 01 )
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Figure I.2: Comparison between the random decrement and the auto-correlation
function for pitch motion [Case # 1}
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Randem Dacrement end Aute-eorraintion Funclien [ Case 02 )
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Figure 1.3: Comparison between the random decrement and the auto-correlation
function for heave motion [Case # 2]

Rendem Oasromant and Aute-omveistion Functien (Cass §2 )
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Figure 1.4: Comparison between the random decrement and the auto-correlation
function for pitch motion [Case # 2]



Aandem Dosremant and Aute-aprveiation Funstion [ Case 83 )
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Figure 1.5: Comparison between the random decrement and the auto-correlation
function for heave motion [Case # 3]

Randam Desveomant and Aute-serveiation Funstien [ Cose 03 }

<0.01 |

-0.015

Figure 1.6: Comparison between the random decrement and the auto-correlation
function for pilch motion [Case # 3}
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Rengem Desrement snd Auto-cawaintian Funstion | Coss 84 )
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Figure [.7: Comparison between the random decrement and the auto-correlation
function for heave motion [Case # 4]
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Figure 1.8: Comparison between the random decrement and the auto-correlation
function for pitch motion [Case # 4]

256



fandem Docremant end Aute-eorralation Funsiien ( Coss § 8 )

0.0

0.0075

0.005 1

0.0025

Heave Response, m

<0.0025

-0.005 -

-0.0075

Figure 1.9: Comparison between the random decrement and the auto-correlation
function for heave motion [Case # 5]
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Figure 1.10: Comparison between the random decrement and the auto-correlation
function for pitch motion [Case # 5]
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Randem Decroment and Aute-esrreisiion Funsiion [ Case 98 )
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-0.0075

Figure 1.11: Comparison between the random decrement and the auto-correlation
function for heave motion [Case # 6]
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Figure 1.12: Comparison between the random decrement and the auto-correlation
function for pitch motion {Case # 6]

258



fendem Decrement and Aute-correletion Fusction { Cass 8 7)
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Figure I.13: Comparison between the random decrement and the auto-correlation
function for heave motion [Case # 7]

Randem Dosrement end Aute-earreistion Funatien [Cass 87 )
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Figure I.14: Comparison between the random decrement and the auto-correlation
function for pitch motion [Case # 7)
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Randem Dosremunt and Aute-eorveiation Funstien [ Case #0 ]

Figure 1.15: Comparison between the random decrement and the auto-correlation
function for heave motion [Case # 8]

Figure 1.16: Comparison between the random decrement and the auto-correlation
function for pitch motion [Case # 8]
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Figure [.17: Comparison between the random decrement and the auto-correlation
function for heave motion [Case # 9]

Rondemn Oocvamunt and Aule-earmsintion Function { Cass 09 )

Figure 1.18: Comparison between the random decrement and the auto-correlation
function for pitch motion [Case # 9]
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fandem Dosrement and Asto-eamalation Funation { Case ¢ 10 )
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Figure 1.19: Comparison between the random decrement and the auto-correlation
function for heave motion [Case # 10]

Random Oseromant and Aute-eswveiation Punatien { Cass ¢ 18}
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Figure 1.20: Comparison between the random decrement and the auto-correlation
function for pitch motion {Case # 10}
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Appendix J

Predicted Free Responses:
Simulation
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Prodieted Fres Respenes [ Cave § 1]

Figure J.1: Comparison between the simulated and the predicted free responses
for heave motion [Case # 1)

Predicied Free Ruspenses [ Case 0 1)

Piich Response, rad

Figure ].2: Comparison between the simulated and the predicted free responses
for pitch motion [Case # 1]
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Prodicind Frow Ruspeness [ Coee 02 )

Time, sec

Figure J.3: Comparison between the simulated and the predicted free responses
for heave motion [Case # 2]
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Figure J.4: Comparison between the simulated and the predicted free responses
for pitch motion [Case # 2]
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Predicted Froe Rospensss (Case 83 ]

Figure J.5: Comparison between the simulated and the predicted free responses
for heave motion [Case # 3]

Prodicted Free Respences [Cone 03 |

Figure J.6: Comparison between the simulated and the predicted free responses
for pitch motion [Case # 3]
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Protioted Froa Respeness [Cane 0 8 )

Time, sec

Figure J.7: Comparison between the simulated and the predicted free responses
for heave motion [Case # 4]
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Figure J.8: Comparison between the simulated and the predicted free responses
for pitch motion [Case # 4]
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Prodicind Fres Respences [ Case 0§ |
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Figure J.9: Comparison between the simulated and the predicted free responses
for heave motion [Case # 5]

Predictnd Fres Asspanses [ Cans 88 )

0.008

Figure J.10: Comparison between the simulated and the predicted free responses
for pitch motion [Case # 5]
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Prodiated Froe Responses [ Cane 08 )

Time, sec

Figure J.11: Comparison between the simulated and the predicted free responses
for heave motion [Case # 6]

Prodicied Fras Respeness ( Cane 96 )
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Figure J.12: Comparison between the simulated and the predicted free responses
for pitch motion {Case # 6]
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Prodiciod Fres Respensse [Can 0 7))
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Time, sec

Figure J.13: Comparison between the simulated and the predicted free responses
for heave motion [Case # 7]

Prodissod Fras Respenses (Case 97 ]

Pitch Response, rad

Figure J.14: Comparison between the simulated and the predicted free responses
for pitch motion [Case # 7]
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Prodiotod Froe Respeness [ Case 08|

Figure J.15: Comparison between the simulated and the predicted free responses
for heave motion [Case # 8]

Prodictad Fran Rospeness (Case 00 )

Figure J.16: Comparison between the simulated and the predicted free responses
for pitch motion [Case # 8]
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Praiicted Fras Respanase [Case 8§ 9 )

Tiene, sec

Figure J.17: Comparison between the simulated and the predicted free responses
for heave motion [Case # 9]

Predictad Froe Reapances {Case § ¢ )

Figure J.18: Comparison between the simulated and the predicted free responses
for pitch motion [Case # 9]
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Prodizd Fres Respaness [ Case § 18]
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Figure J.19: Comparison between the simulated and the predicted free responses
for heave motion [Case # 10)

Predicind Fran Responess [ Case # 18]

Figure J.20: Comparison between the simulated and the predicted free responses
for pitch motion [Case # 10}
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Appendix K

Predicted Regular Responses:
Simulation
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Proscted Roguier Reepenees [ Case 0 1]
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<0.015 -

-0.02

Figure K.1: Comparison between the simulated and the predicted
regular responses for heave motion [Case # 1]

Prodiesnd Roguinr Respeness [ Case 8 1]

Figure K.2: Comparison between the simulated and the predicted
regular responses for pitch motion [Case # 1]
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Prodicted Reguier Responass (Casa 8 2)
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Figure K.3: Comparison between the simulated and the predicted
regular responses for heave motion [Case # 2]

Prodicied Roguiar Respenses (Case 22 )

Figure K.4: Comparison between the simulated and the predicted
regular responses for pitch motion [Case # 2]
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Prodiciod Reguiar Responees { Case #3 )
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Figure K.5: Comparison between the simulated and the predicted
regular responses for heave motion [Case # 3]
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Figure K.6: Comparison between the simulated and the predicted
regular responses for pitch [Case # 3]
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Prodictos Roguier Reaponase [Cane #4)
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Figure K.7: Comparison between the simulated and the predicted
regular responses for heave motion [Case # 4]

Prasictod Roguler Respanate [ cane 04 )

Figure K.8: Comparison between the simulated and the predicted
regular responses for pitch motion [ Case# 4]
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Prodictod Roguisr Respsnsss (Case 05 ]

Figure K.9: Comparison between the simulated and the predicted
regular responses for heave motion [Case # 5]

Progisted Roguiar Respanses [ Case 0§ §

Figure K.10: Comparison between the simulated and the predicted
regular responses for pitch motion [Case # S)
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Prodicted Rogular Asspences [ Cane 08 )
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Figure K.11: Comparison between the simulated and the predicted
regular responses for heave motion [Case # 6]
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Figure K.12: Comparison between the simulated and the predicted
regular responses for pitch motion [Case # 6]
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Prodicied Reguisr Respanses [ Cane 8 7)

Figure K.13: Comparison between the simulated and the predicted
regular responses for heave motion [Case # 7]

Prodicid Roguisr Assperaes (Case 8 7)

<0.15

Figure K.14: Comparison between the simulated and the predicted
regular responses for pitch motion [Case # 7]
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Prodieted Roguilar Reapeness [ Case 98]
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Figure K.15: Comparison between the simulated and the predicted

03

regular responses for heave motion [Case # 8]

Prowisios Reguier Roapenses [ Case #8)
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Figure K.16: Comparison between the simulated and the predicted

regular responses for pitch motion [Case # 8]
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Prediciod Reguier Respenses [Case 0 8 )
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Figure K.17: Comparison between the simulated and the predicted
regular responses for heave motion [Case # 9]

Presicind Reguisr Avagenses [ Cans #9]
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Figure K.18: Comparison between the simulated and the predicted
regular responses for pitch motion [Case # 9)
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Prodictod Rogulsr Asspannes [ case § 18 )

Figure K.19: Comparison between the simulated and the predicted
regular responses for heave motion [Case # 10]

Pradicined Raguiar Mespences [ Case ¢ 18]

Pitch Response, rad

Figure K.20: Comparison between the simulated and the predicted
regular responses for pitch motion [Case # 10]
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Table L.1: Random wave experiments: Group # 1

Appendix L

Experimental Program

RUN Run Hs Q U Time
# File Name Name (m) | (Hz) | (m/sec)| (sec)
1 | RUN_1_0_HS7_Fo5 U0 | RUN1.O | 007 | 05 | 00 | 400
2 RUN_2_0_HS7_F06_U00 RUN2 0 | 0.07 0.6 0.0 400
3 | RUN_3.0 HS7_FO7.U00 | RUN3 0 | 007 | 07 | 00 | 400
4 RUN_4_1_HS7_F05_UO01 | RUN4 01 | 0.07 0.5 0.1 200
5 | RUN_4_2_HS7_F05_UO1 007 | 05 | 01 | 200
6 RUN_5_1_HS7_F05_U02 | RUN5_ 02} 0.07 0.5 0.2 100
7 RUN_5_2_HS7_F05_U02 0.07 0.5 0.2 100
8 RUN_S_3_HS7_F05_U02 0.07 0.5 0.2 100
9 RUN_5_4_HS7_F05_U02 0.07 0.5 0.2 100
10 | RUN_6_1_HS7 Fo6_U01 | RUN6.O1 | 007 | 06 | 01 | 200
11 RUN_6_2_HS7_F06_U01 0.07 0.6 0.1 200
12 RUN_7_1_HS7_F06_U02 | RUN7_02 | 0.07 0.6 0.2 100
13 | RUN_7_2_HS7_F06_U02 007 | 06 | 02 | 100
14 | RUN_7_3_HS7_F06_U02 007 | 06 | 02 | 100
15 RUN_7_4_HS7_F06_U02 0.07 0.6 0.2 100
16 RUN_8_1_HS7_F07_UOl | RUNS8 0l { 0.07 0.7 0.1 200
17 RUN_8_2 _HS7_F07_U0l 0.07 0.7 0.1 200
18 RUN_9_1_HS7_F07_U02 | RUN9_02 | 0.07 0.7 0.2 100
19 RUN_9_2_HS7_F07_U02 ’ 0.07 0.7 0.2 100
20 RUN_9_3_HS7_F07_U02 0.07 0.7 0.2 100
21 RUN_9_4_HS7_F07_U02 0.07 0.7 0.2 100
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Table L.2: Random wave experiments: Group # 2

RUN Run Hg Q U Time
# File Name Name (m) | (Hz) | (m/sec)| (sec)
22 | RUN_10_0_HS10_F05_U00 | RUN10.0 | 0.10 | 05 | 00 | 400
23 RUN_11_0_HS10_F06_U00 | RUN11 0 | 0.10 0.6 0.0 400
24 | RUN_12_0_HS10_FO7_U00 | RUN12.0 | 0.10 | 07 | 00 | 400
25 | RUN_13_1_HS10_Fo5_Uo1 [RUN13 01| 0.10 | 05 | 0.1 [ 200
26 | RUN_13_2_HS10_F05_U01 0.10 0.5 0.1 200
27 | RUN_14_I_HS10_F05_U02 |RUN14 02} 0.10 | 05 | 02 | 100
28 | RUN_14_2_HS10_F05_U02 0.10 0.5 0.2 100
29 | RUN_14_3_HS10_F05_U02 010 | 05 | 02 | 100
30 | RUN_14_4_HS10_F05_U02 0.10 0.5 0.2 100
31 | RUN_I5_1_HS10_F06_U01 |RUN1501] 0.10 | 06 | 0.1 | 200
32| RUN_15_2_HS10_F06_UO0I 0.10 | 06 | 01 | 200
33 | RUN_16_1_HS10_F06_U02 |RUN16.02]| 0.10 | 06 | 02 | 100
34 | RUN_16_2_HS10_F06_U02 0.10 0.6 0.2 100
35 RUN_16_3_HS10_F06_U02 0.10 0.6 0.2 100
36 | RUN_16_4_HS10_F06_U02 0.10 | 06 | 02 | 100
37 RUN_17_1_HS10_F07_UOl |RUN17_01] 0.10 0.7 0.1 200
38 RUN_17_2_HS10_F07_UO1 0.10 0.7 0.1 200
39 RUN_18_1_HS10_F07_U02 |RUNI8_02] 0.10 0.7 0.2 100
40 | RUN_18_2_HS10_F07_U02 010 | 07 | 02 | 100
41 | RUN_18_3_HS10_F07_U02 0.0 | 07 | 02 | 100
42 | RUN_18_4_HS10_F07_U02 010 | 07 | 02 | 100
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Table L.3: Random wave experiments: Group # 3

RUN Run Hs Q U Time
# File Name Name (m) | (Hz) | (m/sec)| (sec)
43 RUN_19_0_HS15_F05_U0O | RUN19 0 | 0.15 0.5 0.0 400
44 | RUN_20_0_HS15_F06_U0O | RUN20 0 | 0.15 | 0.6 0.0 400
45 | RUN_21_0_HS13_F07_U00 | RUN21 0 | 0.13 | 0.7 0.0 400
46 | RUN_22_1_HS15_F05_UO1 |RUN22 01] 0.15 | 0.5 0.1 200
47 | RUN_22_2_HS15_F05_U0I 0.15 } 05 0.1 200
48 | RUN_23_1_HS15_F0S_U02 |RUN23 02| 0.15 | 0.5 0.2 100
49 | RUN_23_2_HS15_F05_U02 0.15 § 0.5 0.2 100
50 | RUN_23_3_HS15_F05_U02 0.15 | 05 0.2 100
51 | RUN_23 4_HSIi5_F05_U02 0.15 | 0.5 0.2 100
52 | RUN_24_1_HS15_F06_UOl |[RUN24 01} 0.15 | 0.6 0.1 200
53 | RUN_24_2_HS15_F06_UO1 0.15 | 0.6 0.1 200
54 | RUN_25_1_HS15_F06_U02 JRUN25_02] 0.15 | 0.6 0.2 100
55 | RUN_25_2_HS15_F06_U02 0.15 | 0.6 0.2 100
56 | RUN_25_3_HS15_F06_U02 0.15 | 0.6 0.2 100
57 | RUN_25_4_HS15_F06_U02 0.15 | 06 0.2 100
58 | RUN_26_1_HS13_F07_UOl1 {[RUN26 01| 0.13 | 0.7 0.1 200
59 | RUN_26_2_HSI3_F07_U0l1 0.13 | 0.7 0.1 200
60 | RUN_27_1 _HSI3 F07_U02 |RUN27 02| 0.13 | 0.7 0.2 100
61 | RUN_27_2_HS13_F07_U02 0.13 | 0.7 0.2 100
62 | RUN_27_3_HS13_F07_U02 0.13 | 0.7 0.2 100
63 | RUN_27_4_HS13_F07_U02 0.13 | 0.7 0.2 100
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Appendix M

Wave Power Spectral Density Function:
Experiment
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Figure M.1: Wave power spectral density function (Run # 1-0]

Wove Spacsrum [AUN 220}
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Figure M.2: Wave power spectral density function [Run # 2-0]
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Weve Spestrum [ RUN § 3-8 )

Figure M.3: Wave power spectral density function [Run # 3-0]

Wove Spestrum [ RUN 8 481 )
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Figure M.4: Wave power spectral density function {Run # 4-01}
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Wave Spectrum, 8q. m - sec

Wave Spectrum [RUN 0502 ]
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Figure M.5: Wave power spectral density function [Run # 5-02}
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Figure M.6: Wave power spectral density function [Run # 6-01]

291




Wave Spactrum [ RUN S 702 )
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Figure M.7: Wave power spectral density function {Run # 7-02]

Wove Spectrumn [ RUN S 501 )

Figure M.8: Wave power spectral density function [Run # 8-01]



Weve Spactrum [ RUN 5 902 ]
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Figure M.9: Wave power spectral density function [Run # 9-02]

Wave Spactrum [ AU 9 190

Figure M.10: Wave power spectral density function [Run # 10-0]
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Wowve Specvrum [ RUN ¢ 119 )
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Figure M.11: Wave power spectral density function [Run # 11-0]

Weve Spectrum [ AUN # 12-9 )
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Figure M.12: Wave power spectral density function [Run # 12-0]
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Weve Spostrum ( RUN 0 1341 }
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Figure M.13: Wave power spectral density function [Run # 13-01]
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Figure M.14: Wave power spectral density function [Run # 14-02)
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Figure M.15: Wave power spectral density function [Run # 15-01)
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Figure M.16: Wave power spectral density function [Run # 16-02}
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Wewe Spectrum | UM # 7701 ]

4.00E-02

Figure M.17: Wave power spectral density function [Run # 17-01]

Wewe Spestrum ( RUN & 18-00 )

2.00E-02

Figure M.18: Wave power spectral density function [Run # 18-02]
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Figure M.19: Wave power spectral density function [Run # 19-0]
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Figure M.20: Wave power spectral density function [Run # 20-0]
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Figure M.21: Wave power spectral density function (Run # 21-0]
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Figure M.22: Wave power spectral density function [Run # 22-0]
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Figure M.23: Wave power spectral density function [Run # 23-02]
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Figure M.24: Wave power spectral density function [Run # 24-01)




Wave Spestrum [ RUN 83568 )

1.25€E-01

1.00E-01 -

¥ 7.50E-02 -

5.00E-02 -

Wave Spectrum, 8q

2.50E-02 -

0.00E+0Q0 ¢

Figure M.25: Wave power spectral density function [Run # 25-02)
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Figure M.26: Wave power spectral density function [Run # 26-01]
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Figure M.27: Wave power spectral density function [Run # 27-02]



Appendix N

Heave Power Spectral Density Function:
Experiment
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Figure N.1: Heave power spectral density function [Run # 1-0]
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Figure N.2: Heave power spectral density function [Run # 2-0]
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Heave Spectrum, 8q. m - sec
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Figure N.3: Heave power spectral density function {Run # 3-0]
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Figure N.4: Heave power spectral density function [Run # 4-01]
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Figure N.5: Heave power spectral density function {Run # 5-02]
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Figure N.6: Heave power spectral density function [Run # 6-01}
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Houove Metion Spectrumn { RUN & 782 )

Figure N.7: Heave power spectral density function [Run # 7-02}
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Figure N.8: Heave power spectral density function [Run # 8-01}
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Figure N.9: Heave power spectral density function {Run # 9-02]}
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Figure N.10: Heave power spectral density function [Run # 10-0}
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Figure N.11: Heave power spectral density function [Run # 11-0}
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Figure N.12:

Heave power spectral density function [Run # 12-0}
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Figure N.13: Heave power spectral density function [Run # 13-01]
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Figure N.14: Heave power spectral density function [Run # 14-02]
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Figure N.15: Heave power spectral density function [Run # 15-01]
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Figure N.16: Heave power spectral density function [Run # 16-02]
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Figure N.17: Heave power spectral density function [Run # 17-01]
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Figure N.18: Heave power spectral density function [Run # 18-02]
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Heave Metien Spactrum [ RUN ¢ 190 )

Figure N.19: Heave power spectral density function [Run # 19-01}
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Figure N.20: Heave power spectral density function [Run # 20-0]
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Figure N.21: Heave power spectral density function [Run # 21-0}
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Figure N.22: Heave power spectral density function (Run # 22-01)
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Figure N.23: Heave power spectral density function [Run # 23-02]

Haave Melien Spestrum [ RUN ¢ 2801 )
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Figure N.24: Heave power spectral density function [Run # 24-01]
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Figure N.25: Heave power spectral density function (Run # 25-02]
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Figure N.26: Heave power spectral density function {Run # 26-01)
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Figure N.27: Heave power spectral density function [Run # 27-02]
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Appendix O

Pitch Power Spectral Density Function:
Experiment
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Figure O.1: Pitch power spectral density function [Run # 1-0]

Piah Metion Spectrum [ AUN § 20 |

Figure O.2: Pitch power spectral density function {Run # 2-0}
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Pk Mation Spestrum [ RUN 6 39

Figure O.3: Pitch power spectral density function [Run # 3-0]
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Figure O.4: Pitch power spectral density function [Run # 4-01]
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Figure O.5: Pitch power spectral density function [Run # 5-02]
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Figure O.6: Pitch power spectral density function [Run # 6-01]
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Pugh Motion Spesivum [ RUN 0 702 )
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Figure O.7: Pitch power spectral density function [Run # 7-02}
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Figure O.8: Pitch power spectral density function [Run # 8-01}
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Phich Matien Syncirumn [ RUN 8982 )
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Figure O.9: Pitch power spectral density function [Run # 9-02]
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Figure O.10: Pitch power spectral density function [Run # 10-0]

323



Pich Spectrum, 8q. rad -

Pitch Spectrum, 8q. rad - sec

Puch Mosien Spoctum [ RUN & 118 ]

Figure O.11: Pitch power spectral density function [Run # 11-0]
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Figure O.12: Pitch power spectral density function {Run # 12-0]
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Figure O.13: Pitch power spectral density function [Run # 13-01]
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Figure O.14: Pitch power spectral density function [Run # 14-02]
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Pioh Metion Spectrum [ RUN # 15-01 )
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Figure O.15: Pitch power spectral density function [Run # 15-01}
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Figure O.16: Pitch power spectral density function [Run # 16-02]
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Figure O.17: Pitch power spectral density function [Run # 17-01]
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Figure O.18: Pitch power spectral density function [Run # 18-02)
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Figure O.19: Pitch power spectral density function [Run # 19-0]
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Figure 0.20: Pitch power spectral density function [Run # 20-0]
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Figure O.21: Pitch power spectral density function [Run # 21-0]
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Figure O.22: Pitch power spectral density function (Run # 22-01]
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Figure 0.23: Pitch power spectral density function [Run # 23-02]
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Figure 0.24: Pitch power spectral density function {Run # 24-01]
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Figure O.25: Pitch power spectral density function [Run # 25-02]
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Figure 0.26: Pitch power spectral density function [Run # 26-01)
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Figure O.27: Pitch power spectral density function [Run # 27-02]
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