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Abstract

Computer-aided cireuit analysis, or circuit simulation, is widely used in the area of

cittuit design. Circuit simulation programs, e.g. SPICE, create and solve systems

of differential equations which describe the analyzed electronic circuit. The systems

of differential equations are converted into nonlinear algebraic equations and solved

through a sequence of linear approximations to the Donlinear equations.

Parallel processing is a promising way to improve the perfonnance of circuit sim­

ulation programs. Several attempts to port sequential codes into equivalent ones for

shared-memory architectures have been reported in the literature. However, with tbe

increasing popularity of message-passing systems, our project aims at the parallelization

of a circuit simulation program on a network. of workstations. A domain decomposition

approach was implemented through a master-slave model on a cluster of SUN stations.

The experiments show speedups OVl'!r up to 8 workstations. This presentation discusses

the implemented algorithm and provides an overview of some performance results.
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Chapter 1

Introduction

Until the appearance of integrated circuits, computational methods found little use in

the analysis and design of electronic circuits. A slick designer could synthesize the

relatively simple circuits with only minimal computational effort, set them up on a

bench, take measurements, make modifications, and quickly arrive at the final versions.

The situatioD changed dramatically with the arrival of integrated. circuits, containing

large functional blocks with thousands of transistors on one chip. Obviously, such

designs cannot be carried out by experimenting on a bench. Computer technology and

nume.rical mathematics have bad profound impact on computer.aided circuit analysis

and design.

Computer.aided. circuit analysis, or circuit simulation, is the process of building and

solving a system of ordinary differential e>.t-uations that model an electronic circuit. The

system of equations is built using Kirchhoff's laws to provide mathematical models of

individual devices in the circuit. The systems of differential equations are usually solved

by "direct methods" using backward differentiation formula to convert the system of

differential equations into a system of nonlinear algebraic equations. This system of

nonlinear equations is typically solved using Newton's method, Le. using linear approx-



imations of nonlinear equations in consecutive points of an iterative process converging

to the solution. The systems of linearized equations are usually solved by LU factoriza­

tion foUov.~ by forward and backward substitutions in the factorized matrices.

Since the matrices of coefficients for the linearized systems oC equations are very

sparse (each element is normally ronnected with only 3 to 5 other elements), the rom·

putation time and memory requirements can be reduced. significantly if LU factorization

can preserve this sparsity. This requirement, however, may conflict with the optimal

pivoting strategy. So usually a compromise must be reached between the accuracy re.­

quirements (implied by the pivoting strategy) and the preservation of sparsity. Since

the distribution of non-zero elements in the coefficient matrix is implied by the circuit

topology (which is constant), the order of elimination of consecutive variables needs to

be determined only once.

Conventional circuit simulations, such as SPICE, have been widely used because

of their general applicability and high accuracy. Many efforts have been wade to suc­

cessfully improve their performance on general-purpose computers. However, rapid

growth in circuit integration requires the performance of circuit simulators to improve

as rapidly.

One of the popular approaches to radically improve the performance of circuit siam·

lation is the relaxation method, as adopted in RELAX, SPLICE and NOTIS. However,

this approach often results in deterioration of accuracy and convergence problems for

circuits with strong feedback. An alternative approach is to use parallel processing.

Several attempts used shared memory machines for parallel circuit simulation as the

transformation of traditional sequential code into an equivalent one for a shared mem­

ory architecture is rather straightforward. Recently, however, message-passing systems



have been gaining popularity because ofeasily available high-performance workstations.

The concept of -virtual parallel machines", Le., clusters of (possibly heterogeneous)

high-performance machines connected by a fast network, is an interesting alternative to

traditional supen:omputing systemS. Several message-passing libraries have been devel­

oped (PVM and MPI are just two examples) and ported to many computing platforms

to facilitate parallel processi.ng on such clusters of computers.

The purpose of this thesis is to find an efficient way to port a large sequential cir­

cuit simulation program, SPICE-PAC, onto a network of worlcstations. SPICE-PAC is

upward compatible with the SPICE-2G6 program, i.e., it has some new features added

to the original SPICE simulator [341. In paralleliz8tion of sequential progr&IllS, quite

often it is not obvious which part of the program has the most important effect on the

program's execution time. Therefore a profile of the program can be obtained in order

to find out its most time-alosuming parts..4Jter profiling SPICE-PAC, two subrou­

tines were selected to be the most promising candidates (or parallelization, SPPDCD

and SPPDCS. SPPOCD decomposes the (sparse) matrices, while SPPDCS solves the

decomposed system of linear equations.

Chapter 2 describes this profiling process on SPICE-PAC program.

Chapter 3 reviews the research work on solving large sparse linear systems. The tra­

ditional direct and iterative method are introduced. Different approaches for exploiting

parallelism of sparse matrix computation are explained and compared.

Chapter 4 is devoted to presenting a domain decomposition method which is more

suitable for solving linear equations on a network of workstations. The method is

realized through a master-slave modeL The implementation result and conclusions are

shown in Chapter 5 and Chapter 6, respectively.



Chapter 2

Dynamic Behavior of Programs

Computer aided circuit simulation programs are tools for design and verificatioD of elec-

ttonic circuits at the transistor leveL Since a large circuit may have several thousands

of transistors, the simulation requires considerable resources. At this point, parallel and

distributed computing methods are naturally considered to save computation time and

solve the space problem. Vectorization of the popular SPICE-like simulator (SPICE2­

S) was implemented and observed with no vector speedup [91. The reason is tbat the

algorithms and data structures are not suitable for vectorization, so special versions of

SPICE2 for vector processotS have been developed [9)- Our interest is to pacallelize tbe

original SPICE-PAC program. It is not possible to globally parallelize or vectorize the

whole program without modifying the code. Therefore, we concentrate OD the most time

consuming part of the progr-am and try to paca.llelize it in a distributed environment.

The main tasks for the SPICE-based programs are to set up a system of equations

from the circuit description and to compute solutions of this system in the time domain

(91. Using the specific device equations leads to a coupled system of implicit nonlinear

ordinary differential equations and linear equations. The unknowns in the system are

basicaUy the node voltages, and the number of equations is approximately equal to



the number of circuit nodes. The nonlinear system F(X} = 0 is solved by Newton­

Raphson iteration which requires the computation of the device characteristics and their

derivatives and the solutioD of a system. of linear equations at. each Newton itenuion.

Feldmann [9) gave a brief description for the inner- tl1U1Sient. analysis part of the

circuit simulator. The construction and computation of linear systems take 90 percent ()["

even more of the total transient analysis time. In Feldmann's experiment, for small and

medium size circuits, matrix construction time is dominating. For very large circuits,

the nonlinear time for linear system solving becomes dominant.

In the next section, we will describe our work on profiling the SPICE-PAC code in

order to find out the most time consuming part of the program.

2.1 Run-time program profile

To evaluate the dynamic behavior of the program, we use the system utility gprof on

workstations. gprof produces a call graph showing the execution profile of a program.

The profile data is taken from the profile file (gmon.out by default) which is created by

programs compiled with -PI option. The gprof pro6ling tool reads the symbol table

in t.he specified object file, correlating it with the call profile file. To produce call graph

data, it needs three steps:

1. Compile the program with -PI option;

2. Execute the program to produce a data file (gmon.out by default);

3. Run gprof on the data file;

The profile contains a. listing with the total execution time and call counts for each of

the functions in the program, sorting by decreasing time. A section of a sample output



called/total p"",,>t,
index %time ,;eJf descendants <aIIed+,;eJf name index

called/total dllidren
0.00 65.91 III main m(I) 100.0 0.00 65.91 1 "'--0.00 65.19 III spicer_ (3)
0.00 0.40 III spicec.. [23)
0.00 0.32 III spicea..... [29)
0.00 0.00 III outres_ [741
0.00 0.00 III extime.- [85)
0.00 0.00 III spicej_ [981
0.00 0.00 III ntpfiL .f:g~0.00 0.00 III spicem..

...
0.00 65.19 III sppac_

m[31 98.9 0.00 65.19 1 spicer_
0.02 65.06 Il' spptra. [4}
... ... ...

Table 2.1: Profile of a program.

from SPICE-PAC profile is shown in Table 2.1 (The more complete files can be found

in the appendix). Each section of the table contains the information of the function

with indicated index and its parent and children.

1. function eDtries:

• inrkJ:. the index of the function in the call graph listing.

• %time: the percentage of the total time of the program accounted for by this

function and its descendants.

• self; the number of seconds spent in this function itself.

• descendants: the number of seconds spent in the descendants of this function

on behalf of this function.



• called: the number of times this function is called (other than recursive calls).

• 3d! the number of times this function caJ.1s itself recursively.

• name: the name of tbe function.

• index: the index of the function in the call graph listing.

2. parent listings:

• 3df; the number of seconds of this function's self time which is due to calls

from this parent.

• descendantT- the number of seconds of this function's descendant time which

is due to calls from this parent.

• called:. the number of times this function is called by this parent. This is the

numerator of the fraction which divides up the function's time to its parents.

• total: the number of times this function was called by all of its parents. This

is tbe denominator of the propagation fraction.

• parents: the name of this parent.

• indez; the index of this parent in the call graph listing.

3. children listings:

• 3elf; tbe number of seconds of this child's self time which is due to being

called by this functioD..

• descendants: the number of seconds of this child's descendant's time which

is due to being called by this function.



Nam<
test.-a.dd-2
test-adder

test-adder-2
test-inv-l
test-osc-l

Size D~cription

227 2-bit all NAND gate binary adder
115 I-bit all N binary adder
115 I-bit all N binary adder-

."26 osciUato["

Table 2.2: The input circuits.

• ccJled: the numbe[" of times this child is called by this function. This is the

numerator of the propagation fraction ror this child.

• total: the number of times this child is called by all functions.

• ehiJdnm: the name of this child.

• indu the index or this child in the call graph listing.

The time ror each execution or a function can be expressed by the total time for the

function divided by the number or times the function [s called.

2.2 SPICE-PAC profile

In order to profile SPICE-PAC, the whole program was recompiled with option -pg on

a DEC workstation. A few changes were made to customize the program because of

the different version or FORTRAN compiler than before.. We have tested several circuit

input files which differ in both structure and size. Table 2.2 gives a. brief description of

these input circuits.

From the profile result, as shown in Appendix A, the execution of subroutine SP·

PLDM is the most time consuming part. SPPLDM includes SPPBJT, SPPMOS etc.,

which "Ioadn matrix. However, as the size of the input circuit increases, the subroutines



which solve sparse linear equations (SPPDCD and SPPDCS) are taking more computa·

tiOD effort. So, for those very large circuit simulation problems, SPPDCD and SPPDCS

are the most promising candidaus for- parallelizatiolL

SPPDCD decomposes the coefficient matrices and SPPDCS solves the decomposed

system of linear equations. The main objective of this project is to find an efficient

concurrent linear solver- to take the place of the two SprCE-PAC subroutines, so as to

gain a better penonnance of the simulation program..



Chapter 3

Parallel and Distributed Methods

The dynamic behaviOl" of many continuous-time systems can be described by a system

of differential equations. For the purpose of numerical simulation, these systems are

converted into systems of simultaneous nonlinear algebraic equations, which are solved

by an iterative process using linear approximations to nonlinear equations at consecutive

iteration points.

Let the solution of a nonlinear system F(X) = 0 be denoted by X·. The NeWlon­

Raphson iteration solves the original system of nonlinear equations through a sequence

of linear approximations to the nonlinear function F(X) at points X lJ1 , j = 1,2, .. _

F(XW) + G(XW)(X· - XW) '" 0

where G is the Jacobian of F with respect to X (evaluat.ed. at XUl). The U + 1)

approximation to the solution X· is obtained by solving a system of linear equations

with respect to the correction 6(;)

and X(J+l) = XCi) + .6.(;). The iteration terminates when aU) is sufficiently small.

The linearized system is solved by LU decomposition and forward/backward substitu-

10



tion. Efficient solutions of linear systems can improve the performance of the Newton-

Raphson iteration. Therefore, we focus on different approaches to linear solutions in

thiscbapter.

Throughout the literature, linear systems are commonly written in the following

form.;

Az=b,

where A. denotes the coefficient matrix of the system, b is the vector of the right-hand

sides, and x is the vector of unknowns. It is usually assumed that A is & nonsingular

n x n matrix as foUows;

The approaches to solve linear equations can be generally grouped in two categories,

direct methods and iterative methods. In the foUowing sections, we will review the

background of these techniques for solving a large sparse linear system of equations.

Previous work: on applying these techniques of pacalleljdistributed architectu.res is also

discussed.

3.1 Direct and iterative solutions of linear systems

Direct methods of solving linear systems generally use a decomposition of the coefficient

matrix or Gaussian elimination. The common form of Gaussian elimination subtracts

multiples of rows of A from other rows in order to reduce the matrix to an upper

triangular system, which is then solved by back substitution. LV decomposition and

Choleski decomposition (for symmetric, positive definite linear systems) are two of

11



the most commonly used approaches. In LU decomposition, the coefficient matrix is

factOrized. into A = W. where L is lower triangu..Iar with 1'5 on the main diagonal and

U is upper triangulac. Then the solution is obtained by solving the triangular systems

Ly=b,Uz=y,

which are called the forward and badcward substitutions.

Since the matrices generated in circuit simulation are very sparse, we are concerned

about direct methods for solving a sparse system of linear equations. A matrix is sparse

if many of its coefficients are zero. For practical reasons, it is not necessary to exploit

all the zeros. Term entry is used to refer to coefficients that are handled explicitly. All

nonzeros are entries and some zero coefficients may also be entries.

The exploitation of sparsity can lead to enormous computational savings. The s0­

lution of a sparse system is usually divided into several phases [7]:

L Analysis of the sparsity structure to determine a pivot ordering.

2. Symbolic factorization to generate a structure for the faetoB.

3. Numerical factorization.

4. Solution of equations.

When it is important to consider numerical values in dloosing the pivots, the first three

phases are combined into the analyze-factorize phase. The algorithms for direct sparse

linear solvers are grouped into three categories: general techniques, frontal methods,

and multiftontal approaches. The multifrootal approach is an extension of the frootal

method. Details of frontal methods and multifrontal methods are described in [8].

12



The main features of the general approach, typified by Harwell Subroutine MA28 or

Y12M [331, are that numerical and sparsity pivoting are performed at the same time.

The major concern is that the factors L and U will be denser than the original matrix

.4. FilI·in is caused by the operation of Gaussian elimination

when the original value of Q.;j is zero. So the ordering of A is ve%y important to p~

serve the sparsity in the factors. Sparsity pivoting is used to find a reordering of the

matrix such that the number of operations and fill-in of the reordered matrix are small.

The Markowitz strategy [71 is simple and effective for maintaining sparsity for general.

purpose use. At each step of Gaussian elimination, the pivot is selected as the Donzero

entry of the remaining reduced submatrix with the lowest product of the number of

other entries in its row and the number of other entries in its column. For example,

after the kth step of Gaussian elimination, let r~ denote the number of entries in row

i of the reduced. (n-k) x (n-k) submatrix, and m:, the number of entries in column

j. The Markowitz. strategy chooses such entry a.;~ oF 0 as the pivot which minimizes the

expression

(rOW: - l)(m: - 1).

The parallelism of general sparse direct methods will be discussed in the next section.

Iterative mdhodJ are attractive for use on vector or parallel computers. Geoenilly,

an iterative method is suitable only for a specific class of problems, since the rate of

convergence depends on spectral properties of the matrix. No single iterative method

is robust enough to solve all sparse linear systems accurately and efficiently. Many

iterative approaches are based upon the following approach. The matrix A is split into

13



an easily invertible part P and a remainder Q. The splitting A = P - Q leads to the

basic iteration

PXi+l =Q:c;+b,i =0, 1,2•... ,

where Xo is a user-specified starting vector. If we write 'Yo = b - Azo, then it follows by

induction that Xi can be expressed as

Consequently, %0+1 is equal to Zo plus a specific vector from i-dimensional subspace

spanned by the vectors p-1'Yo,p-IAP-11'o, .. ,(P-1A)i-Ip-I")b. Such a space of the

Conn

....If.Bf.B'f. ··.B'-'fl

is called the i-dimensional Krylov subspace corresponding to f and B, and is denoted

as Kj(Bjf). [n our case we have Xi = XO + y, with y e Ki{p-1AjP-I'Yo)·

Often P is called the preconditioner for the system Az = b. Note that the special

choice P = I leads to solution elements belonging to Ki(A; 'Yo), which gives rise to the

unpreconditioned or basic methods, such as Jacobi's method and Seidel's method.

The straightforward iteration leads to very special elements of the Krylov subspace.

But we can also search for more optimal elements. Such an approach leads to the

so-called Krylov subgpace methods or projection-type methods such as BC (the bicon­

jugate gradient method), eGS (the conjugate gradient-squared method), GMRES, and

many more.

Hybrid .!olutions combine the capabilities of dicect methods and iterative methods.

When solving a sequence of linear systems, instead of factoring each linear system to be

14



solved, the iterative method is used whenever appropriate. This approach was shown

to be W!ry efficient by Liegmann in [11J.

3.2 Parallel direct linear solvers

In SprCE-PAC, subroutines SPPOCD and SPPDCS solve the Linear equations. They

use the LU decomposition (SPPDCO) rollowed by rorward/backward substitutions (SP­

POCS). The coefficient matrix is assumed to be nonsingular, sparse and general. The

oext two sections discuss different approaches to LU decomposition used ror shared­

memory and distributed-memory architectures.

3.2.1 Shared-memory architectures

[0 sbared-memory architectures, all processors are connected with (shared) memory

modules by an interconnection network. Memory aceess resolution schemes are needed

to handle the situations when two (or more) processors attempt to aceess the same

memory module at the same time. Optimal performance on shared-memory comput.­

ers requires algorithms that minim.i%e data m(M;!ment between the shared memory and

processors. Figure 3.1 is a very simple outline or a shared.memory ardlitecture; proces­

sors are indicated by P-blocks, and memory modules by M-blocks. Each processor

can access any or the memory modules, and processors exchange information by using

common (the same address space) memory locations.

The sparsity of the matrix can be used to exploit parallelism in parallel LU de­

composition or general unsymmetric sparse matrices. The idea is to use the ability to

choose several pivots simultaneously. Two matrix entries, ov and tlr., can be used as

pivots simultaneously if OW and BrJ are zero. These pivots are called compatible. This

15



Figure 3.1: Shared-memory atthitecture.

method has been applied to several parallel aJgorithms fOI" genel"aJ matrices [31. The

main process is to select a number of compatible pivots that would create a diagonal

btock if ordered to the top left of the matrix. The update process from all these pivots

is then performed in paralleL This procedure is then repeated on the reduced matrix.

Different algorithms may select the pivots and update the matrix differently. However,

anyone of them must compromise the Markowitz criterion to get a large compatible

pivot set.

An incompatible table [31 is used to assist in the pivot search. The two-stage imple­

mentation chooses pivots in parallel from the diagonal and tben off-diagonal pivots are

chosen sequentially to stabilize the ordering. Thresholds for both sparsity and stability

are set when choosing pivots. Pivoting fOI" numeric:al stability is performed in a different

section of the code. Once the set of compatible pivots is selected, each pivot is tested

for numerical stability.

The decomposition of the coefficient matrix is followed. by forwaro and backward

substitutions. Based on the block triangular structure of L and U, two methods are

tested in (3], a block approach and an asynchronous approach. [n the block approach,

the matrix is divided into regions and the rows of each region are processed in parallel

16



by a presc::heduled. paraI.lel loop. The solution of the nat region is not started until

the previous region is complete. The asynchronous approach is a self scheduled. process

and it processes rows of the matrix in forward 0[" backward substitutions. However.

the processing of the next region is started without the requirement of completion

of the previous region. Thus access to the elements in the IlDknown \'t!Ctors should

be synchronized. The performance comparison of the two methods showed that the

asynchronous approach has much higher execution speed. when the block sizes and the

number of parallel processors are increased [3J. Fo[" a 4-processor parallel environment,

the performances of the two methods are almost tbe same.

The most commonly used codes for solving general sparse linear systems are MA28

and Y12M. They are two sets of Fortran subroutines for sparse unsymmetric linear

equations.

MA28, developed. by I.S. Duff, is part of the Harwell Subroutine Library. The user

can set a parameter u to control the balance between numerical pivoting and sparsity

pivoting. u = 1.0 gives partial numerical pivoting, while u = 0.0 minimizes fiII·in with·

out checking the magnitude of the pivots. The sparsity pivoting is based OIl Markowitz

criterion. Since MA28 performs LU decomposition followed by forwardfbackward sub-

stitutioD. in separate subroutines, it is suitable for soLving a sequence of lio.ear systemS

with the same structure by perfonning one decompositioo.

Y12M was developed by Zlatev for the same purpose of MA28 [33J (the code is

available at netLib http://1JJVJW.ndlib.org). The ¥12M algorithm extends the notion of

compatible pivots by permitting the pivot block to be upper triangular rather than

diagonal, which allows selection of a larger number of pivots. However, in this case, the

update is more complicated. The code selects the mixture between sparsity and numer-
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ieal pivoting itself. The underlying sparsity pi\'OtiDg strategy is based on Markowitz

criterion as ..-eIl.

Y12M and MA28 ~re tested [29) on a uniprocl!SSOr machine and a Cray C98/4256,

a shared memory compute!" with four processors (in the test, on average 2.5 processors

were used concurrenUy). A tool called ATExpert -ns used to predict the speedup factors

on four processors. The result confirms the expectation that the speedup factors grow

for increasing problem size.

PARASPAR (A Package for the Solution of Large and Sparse SystemS of Linear

Algebraic Equations on Parallel Computers with Shared Memory) is a another set of

Fortran subroutines for solving systemS of linear equations whose coefficient matrices are

assumed to be generally sparse [321. Four methods are available in this package: direct

solution by Gaussian elimination, iterative refinement, preconditioned ORrHOMIN

algorithm and the pure ORI'HOMIN algorithm. Two different single pivoting strategies

and a parallel pivoting strategy are provided. If the matrix is very sparse and remains

sparse during the computations, the parallel pivoting is recommended.

3.2.2 Distributed.-memo~architectures

The other class of parallel computers uses memory which is distributed among the

processors; each processor contains a CPU and local memory. Distributed memory can

be shared or not. Distributed.shared-memory architectures, or hybrid acd1.itectures, &1'e

becoming quite popular reeently. If the memory is not shared, processors use messages

to communicate and exchange information, and the systems are called message-passing

&1'chitectures. Figure 3.2 outlines a distributed.memory architecture (M' denotes local

memory) and a hybrid architecture.
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(1) (2)

Figure 3.2: Distributed-memory architecture (1) and hybrid architecture (2).

The pattern of connections between processors is called the topology of the parallel

computer. The most common topologies are ring, mesh (usually two or three dimen­

sional) and n-<:ube. The communication overhead is critical in distributed. comput.­

ing. An important issue in developing algorithms for distribuU:d-memory architectllreS

is how to reduce the data communication between processors. The extreme case of

distributed-memory architecture is a network of computers, a roncept very r~hiona.ble

recently.

Sadayappan and Rao (261 analyud the amount of communication in sparse LU de­

composition on a distributed-memory parallel computer. They present the fragmented

distribution which splits rows and columns into parts and distributes these parts over

different processors. This is in contrast to the shared-memory algorithms that treat rows

and columns as basic indivisible units. Compared to a row/column-wrapped distribu­

tion, the fragmented distribution decreases the total length of communication messages.

Skjellum [271 presents an algorithm using the grid distribution defined below:
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Av .......... processor (i mod Q, i mod Q) for all i,i, O:S i,i < n,

for qt processors (8, t), 0 :S 8, t < Q. This distribution splits each row i into Q row

parts, i.e., sets of the form {AtJ : 0 :S i < nil. j mod Q = t}, and it also splits each

column into Q column parts.

Experimental results on a Symu.lt 52010 show that for a 2500 x 2500 random sparse

matrix with approximately 51 noozeros per row, execution time on a 96 processor

machine is 9.7 times faster than on a 6 processor machine.

Stappen. Bisseling and Vorst [28J developed an algorithm based on an approach

used for dense matrices. The same grid distribution as above was used. The algorithm

scales well with the number of processors, and it ac:hieves a speedup of up to 107 on

400 processors for large problelIl$. This algorithm is suitable for transputer networks

and hypercubes.

ScaLAPACK is a portable linear algebra library for distributed memory computers.

The ScaLAPACK library includes a subset of LAPACK routines redesigned for d.istri~

uted memory MIMD parallel computers. It is written in an SPMD style using message

passing for communication. It assumes that matrices are laid out in a two-dimensional

block cyclic decomposition. The fundamental building blocks of the ScaLAPACK are

distributed memory versions (PBLAS) of the Level 1, 2 and 3 BLAS (Basic Lineae Al­

gebra Subroutines), and BLACS (Basic Linear Algebra Communication Subprograms)

for communication tasks.

PBLAS is very similar to BLAS. Only one substantially new routine, matrix trans-­

position, was added to PBLAS, since it is & complicated operation in & distributed

memory system [35J. As BLAS provides a shared memory standard, PBLAS will pr~

vide a standard for distributed memory systems. So, PBLAS is supposed to simplify
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and stimulate the development of high performance and portable parallel numerical

software.

The model coaesponding to the parallel LU factorization implemented. in ScaL.o\­

PACK is presented in (35J. Its performance was measured for different block sizes and

grid sizes. Most of the computations of the ScaLAPACK routines are pedormed in a

block fashion using Le\-el 3 BLAS. The computational blodcing factor is chosen to be

the same as the distribution block size. The performance of the ScaLAPACK library

is not very sensitive to the block size, as long as the block sizes are similar. The best

grid shape is determined by the algorithm implemented in the library and the underly­

ing physical network. The LU factorization performs better for process grids when the

number of processors in rows is smaller than that in columns, which can be denoted as

Pr <Pc'

ScaLAPACK is portable ac1'05S the Intel series(NX), IBM SP series, Thinking Ma­

chines CM-5, and clusters of workstations via PVM and MPJ. Implementations of

ScaL.-'\PACK on networks of workstations were conducted over gmeral sparse matrices.

The performance on 2, 4, and B workstations is poor with alIMSt no speedup. The

problem is due to frequent data transmission between workstations and low network

speed. ScaLAPACK is more suitable for closely coupled distributed-memory comput­

ers. Some specialized algorithms should be used for solving large sparse linear systems

on workstation dusters.

3.2.3 Clusters of workstations'

While dedicated distributed-memory systems are expensive and many users do not

have access to them, workstation clusters are quite popular and relatively inexpensive.
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Bjorstad, Coughran and Grosse [4] applied domain decomposition techniques to model­

ing semiconductor devices on a network of HP workstations connected by FDDI. FOOl

(Fiber Distributed Data lDterface) is a high-performance fiber optic token ring L.>\.N,

which can accommodate up to 1000 stations on a cable of up to 200m communicating

at up to 100 Mbps.

"Domain decomposition" refers to a method that divides the original problem do­

main into parts and solves each subdomain locally. The results show that domain de­

compo&ition is one of those "essentially independent parallel computations" that works

weU for a modest number of workstations. The speedup they gained on four worksta­

tions was 2.9.

Peter Carlin [51 modified some basic linear aJgebra algorithms to improve their

performance on networks of workstations. This library was designed with consideration

towards three characteristics of networks of workstations; small numbers of processes, '

availability of multithreading and high communication latency.

.'\. domain decomposition approach is a natura! way to coarse grain parallel compu­

tation: it decomposes the sparse coefficient matrix of linear equations into blocks and

bas each block solved on a different processor. When partial solutions are coUected

from each processor, the final result can be assembled into the solution vector. There

is no existing code for solving sparse linear systems by domain decomposition. The

next chapter describes the design and development of this approach on a network of

workstations.
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3.3 Parallel iterative solvers

Iterative methods are very different from direct methods. The idea of an iterative

solution is to use a predicted initial approximation as a starting-point solution of the

linear system, and to rdine it iteratively until the final solution is reached. So, when

the starting point is "close" to the soLution, the iterative solver can be ver}- efficient.

However, convergence can be a problem. If a sequence of "similar" linear equations is

to be solved. (as is the case for solving systems of Doolinear equations), the iterative

approach may be very attractive, because the solution for one system can be used as

the starting-point for the next system of equations.

[n the begi.n.ni.ng of this chapter, the standard Krylov subspace acceleration was

introduced. The main operations in this method are: (1) vector update, (2) dot product,

(3) matrix-vector product and (4) preconditioning. The most expensive operations in

a parallel iterative solver are the matrix-vector product and preconditioning.

Lo and Saad (22J proposed a pacallel iterative approach by using domain decom­

position. F..ach processor bolds a set of equations (rows of the linear system) and a

..-ector of the variables associated with lhese rows. Then each system associated wilh a

subdomain is solved by an iteralive process. We need to multiply the matrix consisting

of rows that are local to a given processor by a distributed vector. Some componeots

of the vector are local (called local variables), while other oomponents (called external

variables) have to be transferred from other processors.

Let AI"" be the local matrix, Le., the rectangular matrix oonsisting of all the rows of

A that are allocated to the given processor. BI« is the submatrix of At"" whose nonzero

elements blii are such that i is a local variable. B't><; is a square matrix of size n/De x n,oc

where nl"" is the number of equations assigned to this processor. Similarly, Bed is the
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submatrix of At..: whose nanzero elements ~j are such that j is nat a local variable.

The faUawing steps are needed tQ perform a matrix-vectQr product:

1. Multiply the diagonal block Bw.:. by the local variables.

2. Bring in the extunal variables.

3. Multiply the Be:r:( by these external variables and add the result tQ the result of

step 1.

Steps 1 and 2 can be performed simultaneously. A pI'OCeS$()r can be multiplying B,oc

by the local variables while waiting for the external variables.

On the preconditioning side, Saad. developed a flexible variant of the GMRES al­

goritlun (FGMRES) [23J. FGMRES allows the inner preconditioning steps to be com­

pletely asynchronous in order tQ minimize communication and synchronization costs in

a parallel approach.

P..sPARSLffi was developed using the above method by Saad and Malevsky [241.

They used Harwell-Boeing test problems. Different network configurations were tested

and a SP2 cluster achieved a fairly good performance for the solution of unstructured

sparse systems. For a 4-processor SP2 machine, the speedup was 2.92, and for an

8-processor machine, the speedup was 4.62.

3.4 Parallel hybrid solvers

Some work has been done in developing efficient solutions of sparse linear systems using

a combination of direct and iterative methods. The idea of so-called hybrid methods

is that during the solution of a problem, one can select the method which is known to

work best in a particular phase of the solutian process, whereas the nonnal approach
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uses only one method for the whole solution process. For example, Liegmann [17] used a

combination of both iterative and direct techniques. When solving a sequence of linear

systems, the hybrid approach tries to avoid as many computationally expensive factor­

izations as possible by using an iterative method instead. To increase the likelihood

of success of the iterative algorithm, the last factorization is used as a precon<iitioner.

This approach has shown to save up to 90% of the factorizations. Therefore, for a

sequence of linear systems with similar sparsity structure, the hybrid method of using

the solutioa from direct methods as the starting point vector of the iterative process

can be effective.
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Chapter 4

The Domain Decomposition
Method

Since dedicated supercomputers are rather expensive, and often a whole team is needed

to service a single system, readily available networks of workstations connected either by

Ethernet or FOOl offer an attractive alternative. The overall power of such a wodcsta-

tion cluster can often be equivalent to that of a supercomputer. Most ortbe utilization

of workstations is low (e.g. if users are editing files). Therefore it can be very econom-

ieal to use these machines by running parallel application software on such clusters.

However, there is a disadvantage to implementing parallel programs on workstation

clusters; the communication overhead is high because the transmission performan~of

the network is still rather low and is limited by the underlying hardware (e.g. Ethernet;

lOMB/,) [301_

High communication overhead of workstation clusters implies a constraint on the

choice of parallel algorithms. Only those algorithms which do not require extensive

communicatioD overhead can achieve good speedup aD workstation clusters. Low-level

parallelism, such as that of independent loops, can be successfully applied only on

shared memory systems or on massi~ly parallel tightly coupled computeIS. Thus,
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automatically parallel.ized code based on low level parallelism generally cannot achieve

good speedup on workstation clusters.

New algorithms have to be developed for workstatioos. One approach which is very

promising is the domain decomposition method. The idea of this method is to split

a problem domain into subdomains: each subdomain is calculated by an individual

processor, so the application can run in parallel. Each parallel task consists of two

parts, a local part. and a part which requires communication with other tasks. In

analyzing the time complexity of a para1lel program, there are two major costs: one is

communication, and the other is load balancing. Problems which can be partitioned

in such a way that the subtasks do not need to communicate are known as perfectly

parallel problems. Application programs which, for example, involve the solution of

PDEs (partial differential equations) do not fall into this class of problems [14]. Besides

reducing the communication overhead to improve performance, the workload. oi parallel

processors must be balanced, otherwise some processors have to wait for others to finish

their work before they can proceed with their next task. In (141, Gropp gave an example

of a system. where p - 1 processors have work: load Wt and the last one has work load.

W2 > WI. For such a case, the best possible speedup is :

s~= (P-l)~1 +W2 1+(P-l)~. (4.1)

Formula 4.1 shows that smaller speedup is expected if there is a large imbalance in

workload distribution. Figure 4.1 shows SI' with varying P and ~.
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Figure 4.1: Speedup oCa p processor system with different worldoad distributions W.

4.1 An overview of the domain decomposition ap­
proach

To solve sparse linear systems by domain decomposition, it is natural for us to think

about partitioning the coefficient matrix into submatrlces, and solving each subsystem

independently of others. The partition method for a structurally symmetric matrix has

been developed and known for many years. Liegmann (17] applied this method in his

experiment of solving linear equations on a network of workstations.

Using domain decomposition requiRs a reordering of the coefficient matrix A into

a block diagonal fonn which is caUed the "arrowhead structure":

The diagonal block A. in the lower right corner is referred to as the separator block.

The ordering is" achieved by an algorithm which is based on graph theory and which is



desaibed in Section 4-3.1.

Once the matrix is reordered. the linear system A% = b is multiplied by the matrix

which results in:

(

l,

N.

Let M, = A..;-l M, and b, = A..;-lb;. The above equation can be written as a set of n + 1

blocks of linear equations expressed as

Therefore. z, = b; - M,%., for i = I, .. , n. After substitution. we get

The term

is referred to as the Schur complement of A.. Computing the Schur complement

of A. is the ma.jor task in the parallel solution process. After z. is computed. each

processor i can compute its local portion %i of the overall solution vector z.
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4.2 The Master-Slave model

The above solution can be used in the Master-Slave model of parallel computation. In

this model, the master process controls the other slave processes and computation is

performed only by slave processes.

partition~ e«JfiC'imt matri:r A;
creak the .slave procu,6eA;

broadca.rt dai4 to slavu;
do

if a partial ruuU from a ,slaue ha.! arrived then
plaa the partial ruult into averall solution

end if
until all slavu have sent re,roU"..

Algorithm. 4.1: The Master Process.

receive data from ma.der;
atmct local daM;

compute loct:zI part of Schur complement 0/ A...
do

recrive other parU of A.
until A. it annplete;
solve the local block of linear SY3tDn;

send result to muter;

Algorithm 4.2: The Slave Process.

• The MASTER Pf"OCU$"..

Algorithm 4.1 explains the master process. The master process consists of four

steps. First, the coefficient matrix A is reordered into the arrowhead structure.

Then the matrix is partitioned into separate blocks, 1\0. Mi and No_ This transfor-

mation should also be applied to the right hand side of the linear system. Second,
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the sla.ve processes are created. The creation of slave proce>ses can be done by

using a communication libr3ly like PVM (parallel Virtual Machine) to start the

executable program which resides on each "'slave" procl!SSOr. In the next. step, the

data structure representing the linear system is broadcast to all slave processes.

Each process i extracts the blocks ~. Ni , Mi and the portion b;, of the right-hand

side vector. After broadcasting the data structure to slave processes, the mas-

ter process waits to receive results from slaves. When a slave process returns its

partial solution x•• the master process will put %, in the entire solution vector x.

• The SLAVE proce.u:

Algorithm 4.2 describes the slave process which performs the solution of the linear

system. Once a slave process is initiated, it waits for data sent from the master

process. Depending on its task identifier i, the slave process extracts the appropri­

ate blocks A.. N i • Mi and A: of the separator A•. Then slave processes compute

the Schur complement of A. in parallel, and solve the local block linear system.

Eventually, each slave task sends its partiaJ result, %I, to the master until the final

solution vector is complete.

4.3 Matrix partitioning

Direct methods of solving linear system Ax = b usually decompose the coefficient matrix

A into lower and upper triangular matrices:

A=W (4.2)

This decomposition simplifies the solution, as only forward and backward substitutions

are needed for the final solution. The decomposition of A into two triangular factors,
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Land U. is called an LU decomposition or LU factorization [6}. When A is sparse. the

fat:torization process can introduce additional non-zero elements in LU factors. These

elements are called 6Jl-in entries and sueb. additional DOD-zero elements require more

storage space. This is a very important aspect when direct methods are coDSiden!d.

Mol'OO\'er, the number of required arithmetic operations increases with the size of the

factors.

Reordering the matrix is a natural way to reduce fill-in. Interchanging columns and

rows can be done by multiplying tbe matrix A by permutation matrices P and Q. P

interchanges the rows of A and Q permutes the columns. For structurally symmetric

matrices. usually Q = pT is used to preserve the symmetric structure of the reordered

matrix. Reordered matrices with no fill-ins in their LV factors are called perfect

elimination matrices.

Some properties of elimination matrices are {17J:

• A matrix has a perfect elimination ordering if its graph is triangulated.

A graph G is triangulated if for each cycle c = (i. i + 1, .. , i + n, i) in G with

n 2: 3 there is an edge between any two non-consecutive nodes of Co Most matrices

associated with real problems do not have triangulated graph representations.

Therefore other approaches have been used to retain the sparsity of the coefficient

matrices.

• Computing the minimum fill-in is an NP-complete problem.

There are several alternative approacbes producing near optimal reordering for

general matrices. Among these approaches, the minimum degree reordering algo­

rithm has proven to be most effective [Ill. A detailed description of the minimum
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degree reordering is shown in the following subsections.

4.3.1 Graph representation of sparse matrices

Sparse matrices and graph theory are closely linked. The pattern of a square sparse

matrix can be represented by a graph. In this chapter, graph theory is used for visual-

ization of sparse matrix partitioning.

A directed graph (digraph) consists of a set of nodes (vertices) and direet edges

between nodes. Any square sparse matrix pattern has an associated digraph. For a

given sparse matrix A, a node is associated with each row. For each entry av, there is

an edge from node i to node j in the directed graph as shown in Figure 4.2.

Figure 4.2: An unsymmetric matrix and its directed graph.

For a symmetric matrix a connection from node i to node j implies that there is

also a connection from node j to node i. So the edge directions may be dropped. The

graph without arrows is called an undirected graph, as illustrated in Figure 4.3.

(

XX

X X

X

X

: :)
X X

Figure 4.3; A symmetric matrix and its directed graph.

A special case occurs when an undirected graph contains no cycles. If the graph is
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connected and a particular node is selected as the root, it is a rooted tree, as illustrated

in Figure 4.4.

( ::~~X )
X X X

X X ~• 6

I 2 3

Figure 4.4: A matrix and its rooted tree.

Since the matrix reordering and partitioning algorithms are described using graph

theory, some basic terms which are used frequently in the next section are introduced

here.

G = (V, E) represents a graph. V denotes the set of nodes (or vertices) and E is

the set of edges connecting the nodes of the graph. The elements of E are commonly

e:q>ressed as node pairs, i.e.

E~{(i,i)[i,iEV,i#i}·

The number of elements of a set A is denoted by [A[. Two nodes i,i e V are adjacent

to each other, if (i,i) e E. The adjace.....:y set of a node i is defined as

adj(i) ~ (j E V I (;,j) E E).

Graph G = (V, E) is connected, if for every i, j E V there is a path p from i to i, i.e.

Vi,i e V, 3p = (i, .. ,i).

Graph theory helps in visualizing the changing pattern ofentries as elimination takes

place. Corresponding to the graph G, the elimination graph Gj for node i is obtained
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by removing node j and adding a new edge (i,k) whenever (i,j) and U,k) are edges of

G but (i, k) is not. For example, G1 for the graph of Figure: 4.3 has the representation

shown in Figure 4.5, with the ne" edge (2,4) added.

Figure 4.5: Elimination sequence for the matrix from Figure 4.3.

It is important to note that the graph structure of a structurally symmetric matrix

does not change when its rows and columns are reordered with the same permutation

matrix, i.e. G(A) = G(PAPT). Changing the permutation matrix just permutes the

node numbering in the corresponding graph. Consequently, finding a matrix permuta­

tion which generates minimal fill-in is equivalent to finding such a permutation of the

nodes which minimizes the size of the adjacent sets of nodes:

for each elimination step m.

4.3.2 The minimum degree algorithm

It is mown (6) that sparse matrix factorization requires a reordering of the rows and

columns in order to reduce the number of 6.lI-ins. Among various algorithms, the

minimum degree approach has been proven to be very effective [111. Let G be an

undirected graph and v a node in G. We use the notion adia(v) to refer to the set of

nodes adjacent to v in G. The degree ofv in G is denoted by [adia(v)l.

35



The basic minimum degree ordering can be best described in terms of elimination

graphs. We use G" to represent the elimination graph obtained after the elimination

of v from the graph G. The graph G" can be obtained by deleting v and its incident

edges from G and then adding edges to connect the nodes that were adjacent to v into a

clique (a clique is a subgraph where every two nodes are adjacent). If v is not adjacent

to Y in G, then:

adje.(v) = adje(v).

If v E adje(Y), we have

adje.(v) = (adje(Y) Uadje(v)) - {v,y}.

The basic algorithm is described as follows:

s,~{};

G is the graph of the matrix;
while S# V do

forvEV\Sdo
6(v) ~ lad;(v) I

end for;
select z e {y e V\ S I 8(y) =min"eV\s(8(v)};
S,~SU{z);

eliminate z and create Gz

end while;

Algorithm 4.2.1: The minimum degree algorithm.

Once z with minimum degree is selected, it is added to S, the set of reordered

nodes, and is eliminated from the cunent elimination graph. Rules on how to select z

are known as tie-breaking strategies. Effective tie-breaking can significantly reduce: the

number of fill-in entries. Most implementations of reordering use random tie-breaking,
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which is to select the nodes randomly, since there is no efficient tie-breaking procedure

available for general sparse linear systems.

10

Figure 4.6: A structurally symmetric matrix pattuD. and its graph representation.

Here is an example. A structlll1llly symmetric matrix and its graph representation

are given in Figure 4..6. The matrix will be reordered by applying the minimum degree

algorithm.

The initial minimum degree is 00 = 3. We have

s ~ (), T ~ {l,2,3,6,B,9,1O}, 5, ~3.

Since random tie-breaking is used, any node in T can be chosen for elimination. If we
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Figure 4.7: Elimination graphs after removing node 10 and node 6.
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set z = 10, the elimination graph Gz turns out to be like that in Figure 4.7. The dash

line indicates the ;;ll-in edge. The minimum degree 01 decreases to 2. In the next loop

we have:

s ~ (lO}, T ={6}, 5, = 2.

Apparently we can only set z = 6. The elimination of node 6 does not introduce any

new edge because the nodes fonn. a clique with its adjacent nodes in the current graph.

This is true for the remaining steps of eliminations. Finally, we have the permutation

PI = (10,6,2,8,4,1,5,3,7,9). The filled matrix pattern is shown in Figure 4.8. The

permutation PI results in an optimal elimination sequence with only two fill-in entries.

10
• 6 ••

2 0 •

• • 4. •.,
5 •
• 3 ••

7 •
• 9

Figure 4.8: Pattern of the filled matrix F of P1APT.

For the same matrix, if we select z = 1 in the first step instead of z = 10, we will

have:

S = {I}, T = {2,3,6,S,9,lO}, 5, ~ 3.

Elimination of node 1 introduces ODe fill-in edge. With respect to the number of fill-in

edges, there is no di1£erence between eliminat.ing node 1 or node 10 in the first step.
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Figure 4.9: Elimination graphs aftee removing node 1 and node 2.

However, the situation changes if we select node 2 to be eliminated next. Removing

node 2 results in two additional fill-in edges (4, 10) and (4, 6), as shown in Figure 4.9.

Elimination of the remaining nodes does not generate 6ll-ins. The alternative permu­

tation is P2 = (1,2,6,8,10,4,7,3,5,9). The filled matrix Fp,.AP[ for permutation P2

is shown in Figure 4.10. From this picture we can see that P2AP! has foue additional

lill-in entries compared to the filled matrix PtAP'{'.
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