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Abstract

Computer-aided circuit analysis, or circuit simulation, is widely used in the area of
circuit design. Circuit simulation programs, e.g. SPICE, create and solve systems
of differential equations which describe the analyzed electronic circuit. The systems

of di i i are into i i ions and solved

through a of linear imations to the

Parallel processing is a promising way to improve the performance of circuit sim-
ulation programs. Several attempts to port sequential codes into equivalent ones for
shared-memory architectures have been reported in the literature. However, with the
increasing popularity of message-passing systems, our project aims at the parallelization

of a circuit simulation program on a network of i A domain d
was i d through a master-sl. model on a cluster of SUN stations.
The i show over up to 8 i This ion di

the implemented algorithm and provides an overview of some performance results.
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Chapter 1

Introduction

Until the of i circuits, ional methods found little use in

the analysis and design of electronic circuits. A slick designer could synthesize the
relatively simple circuits with only minimal computational effort, set them up on a

bench, take make modifications, and quickly arrive at the final versions.

The situation changed dramatically with the arrival of integrated circuits, containing
large functional blocks with thousands of transistors on one chip. Obviously, such

designs cannot be carried out by i ing on a bench. C and

have had impact on ided circuit analysis

and design.

Computer-aided circuit analysis, or circuit simulation, is the process of building and
solving a system of ordinary differential equations that model an electronic circuit. The
system of equations is built using Kirchhoff’s laws to provide mathematical models of
individual devices in the circuit. The systems of differential equations are usually solved
by “direct methods” using backward differentiation formula to convert the system of
differential equations into a system of nonlinear algebraic equations. This system of

nonlinear equations is typically solved using Newton’s method, i.e. using linear approx-



imations of nonlinear equations in consecutive points of an iterative process converging
to the solution. The systems of linearized equations are usually solved by LU factoriza-
tion followed by forward and itutions in the ized matrices.

Since the matrices of i for the li ized systems of are very

sparse (each element is normally connected with only 3 to 5 other elements), the com-
putation time and memory requirements can be reduced significantly if LU factorization
can preserve this sparsity. This requirement, however, may conflict with the optimal
pivoting strategy. So usually a compromise must be reached between the accuracy re-
quirements (implied by the pivoting strategy) and the preservation of sparsity. Since
the distribution of non-zero elements in the coefficient matrix is implied by the circuit
topology (which is constant), the order of elimination of consecutive variables needs to
be determined only once.

Conventional circuit simulations, such as SPICE, have been widely used because

of their general applicability and high accuracy. Many efforts have been made to suc-

cessfully improve their perfc on g 1-purp However, rapid
growth in circuit integration requires the performance of circuit simulators to improve
as rapidly.

One of the popular approaches to radically improve the performance of circuit simu-
lation is the relaxation method, as adopted in RELAX, SPLICE and NOTIS. However,
this approach often results in deterioration of accuracy and convergence problems for
circuits with strong feedback. An alternative approach is to use parallel processing.
Several attempts used shared memory machines for parallel circuit simulation as the

of traditional ial code into an equivalent one for a shared mem-

ory is rather i . Recently, however, message-passing systems



have been gaining popularity because of easily available high-perfc
The concept of “virtual parallel machines”, ie., clusters of (possibly heterogeneous)

high- i d by a fast network, is an interesting alternative to

systems. Several message-passing libraries have been devel-
oped (PVM and MPI are just two examples) and ported to many computing platforms
to facilitate parallel processing on such clusters of computers.

The purpose of this thesis is to find an efficient way to port a large sequential cir-
cuit simulation program, SPICE-PAC, onto a network of workstations. SPICE-PAC is
upward compatible with the SPICE-2G6 program, i.e., it has some new features added
to the original SPICE si B34 I ization of i quite

often it is not obvious which part of the program has the most important effect on the
program’s execution time. Therefore a profile of the program can be obtained in order
to find out its most time-consuming parts. After profiling SPICE-PAC, two subrou-

tines were selected to be the most for ization, SPPDCD

and SPPDCS. SPPDCD decomposes the (sparse) matrices, while SPPDCS solves the
decomposed system of linear equations.

Chapter 2 describes this profiling process on SPICE-PAC program.

Chapter 3 reviews the research work on solving large sparse linear systems. The tra-

ditional direct and iterative method are introduced. Different for
parallelism of sparse matrix ion are ined and
Chapter 4 is devoted to ing a domain d ition method which is more

suitable for solving linear equations on a network of workstations. The method is

realized through a ter-slave model. The impl ion result and ions are

shown in Chapter 5 and Chapter 6, respectively.



Chapter 2

Dynamic Behavior of Programs

C aided circuit si i are tools for design and verification of elec-

tronic circuits at the transistor level. Since a large circuit may have several thousands

of i the si ion requires i uj At this point, parallel and

methods are V) idered to save ion time and

solve the space problem. Vectorization of the popular SPICE-like simulator (SPICE2-
S) was implemented and observed with no vector speedup [9]. The reason is that the
algorithms and data structures are not suitable for vectorization, so special versions of
SPICE2 for vector processors have been developed [9]. Our interest is to parallelize the
original SPICE-PAC program. It is not possible to globally parallelize or vectorize the

whole program without modifying the code. Therefore, we concentrate on the most time

consuming part of the program and try to ize it in a di
The main tasks for the SPICE-based programs are to set up a system of equations

from the circuit description and to computs ions of this system in the time domain

[9]. Using the specific device equations leads to a coupled system of implicit nonlinear

ordinary diffe i ions and linear i The unk in the system are

basically the node voltages, and the number of equations is approximately equal to



the number of circuit nodes. The nonlinear system F(X) = 0 is solved by Newton-

Raphson iteration which requires the ion of the device istics and their

derivatives and the solution of a system of linear equations at each Newton iteration.
Feldmann [9] gave a brief description for the inner transient analysis part of the

circuit si Th ion and ion of linear systems take 90 percent or

even more of the total transient analysis time. In Feldmann’s experiment, for small and
medium size circuits, matrix construction time is dominating. For very large circuits,
the nonlinear time for linear system solving becomes dominant.

In the next section, we will describe our work on profiling the SPICE-PAC code in

order to find out the most time consuming part of the program.
2.1 Run-time program profile

To evaluate the dynamic behavior of the program, we use the system utility gprof on
workstations. gprof produces a call graph showing the execution profile of a program.
The profile data is taken from the profile file (gmon.out by default) which is created by
programs compiled with -pg option. The gprof profiling tool reads the symbol table
in the specified object file, correlating it with the call profile file. To produce call graph

data, it needs three steps:
1. Compile the program with -pg option;
2. Execute the program to produce a data file (gmon.out by default);
3. Run gprof on the data file;

The profile contains a listing with the total execution time and call counts for each of
the functions in the program, sorting by decreasing time. A section of a sample output

5



called/total parents
index | %time | self | descendants | called+self name index
called/total children
000 6591 T main | [2]
1] | 1000 |0.00 65.91 1 sppac_ [0
000| 6519 /1 spicer_ | (3]
0.00 0.40 1/1 spicec_ | [23]
0.00 0.32 11 spicea_ | [29]
0.00 0.00 1/1 outres_ | [74]
0.00 0.00 1/1 extime_ | (85]
0.00 0.00 1/1 spicej_ | [98]
0.00 0.00 1/1 otpfil | [107]
0.00 0.00 1/1 spicem_ | [108]
0.00 65.19 171 sppac- | [1]
@B | 989 |000| 6519 1 spicer_ 3]
002 6506 1/1 spptra_ | [4]

Table 2.1: Profile of a program.

from SPICE-PAC profile is shown in Table 2.1 (The more complete files can be found
in the appendix). Each section of the table contains the information of the function

with indicated index and its parent and children.

1. function entries:

e inder: the index of the function in the call graph listing.

e Jtime: the percentage of the total time of the program accounted for by this
function and its descendants.

e self: the number of seconds spent in this function itself.

® descendants: the number of seconds spent in the descendants of this function
on behalf of this function.



@ called: the number of times this function is called (other than recursive calls).
e self the number of times this function calls itself recursively.
e name: the name of the function.

e inder: the index of the function in the call graph listing.
2. parent listings:
e self- the number of seconds of this function’s self time which is due to calls

from this parent.

o descendants: the number of seconds of this function’s descendant time which
is due to calls from this parent.

o called: the number of times this function is called by this parent. This is the

numerator of the fraction which divides up the function’s time to its parents.

e total: the number of times this function was called by all of its parents. This

is the denominator of the propagation fraction.
® parents: the name of this parent.

® indez : the index of this parent in the call graph listing.
3. children listings:

e self: the number of seconds of this child’s self time which is due to being
called by this function.

® descendants: the number of seconds of this child’s descendant’s time which

is due to being called by this function.

Y



Name | Size Description
test-add-2 | 227 | 2-bit all NAND gate binary adder
test-adder | 115 | 1-bit all NAND gate binary adder
test-adder-2 | 115 | I-bit all NAND gate binary adder
test-inv-1 | .9 MOS inverter
test-osc-1 26 oscillator

Table 2.2: The input circuits.
® called: the number of times this child is called by this function. This is the
numerator of the propagation fraction for this child.
® total: the number of times this child is called by all functions.
® children: the name of this child.
® index: the index of this child in the call graph listing.
The time for each execution of a function can be expressed by the total time for the

function divided by the number of times the function is called.
2.2 SPICE-PAC profile

In order to profile SPICE-PAC, the whole program was recompiled with option -pg on
a DEC workstation. A few changes were made to customize the program because of
the different version of FORTRAN compiler than before. We have tested several circuit
input files which differ in both structure and size. Table 2.2 gives a brief description of

these input circuits.

From the profile result, as shown in A dix A, the ion of sub ine SP-
PLDM is the most time consuming part. SPPLDM includes SPPBJT, SPPMOS etc.,

which “load” matrix. However, as the size of the input circuit increases, the subroutines



which solve sparse linear equations (SPPDCD and SPPDCS) are taking more computa-
tion effort. So, for those very large circuit simulation problems, SPPDCD and SPPDCS
are the most isi i for

SPPDCD decomposes the coefficient matrices and SPPDCS solves the decomposed

system of linear equations. The main objective of this project is to find an efficient
concurrent linear solver to take the place of the two SPICE-PAC subroutines, so as to

gain a better performance of the simulation program.



Chapter 3
Parallel and Distributed Methods

The dynamic behavior of many continuous-time systems can be described by a system
of differential equations. For the purpose of numerical simulation, these systems are

converted into systems of simuls iy Igebrai i which are solved

by an iterative process using linear imations to i ions at
iteration points.

Let the solution of a nonlinear system F(X) = 0 be denoted by X*. The Newton-
Raphson iteration solves the original system of nonli ions through a

of linear approximations to the nonlinear function F(X) at points X0), j =1,2,...
F(X9) +G(XV) (X" —X9) ~0

where G is the Jacobian of F with respect to X (evaluated at X0?). The (j + 1)
approximation to the solution X* is obtained by solving a system of linear equations
with respect to the correction AG)

G(XU)AW = —F(X0)

and XU+) = XU) + AU). The iteration terminates when AU) is sufficiently small.

The linearized system is solved by LU d ition and forward/backward substitu-

10



tion. Efficient solutions of linear systems can improve the performance of the Newton-
Raphson iteration. Therefore, we focus on different approaches to linear solutions in
this chapter.

Throughout the literature, linear systems are commonly written in the following

form:
Az =b,
where A denotes the coefficient matrix of the system, b is the vector of the right-hand

sides, and z is the vector of unknowns. It is usually assumed that A is a nonsingular

n x n matrix as follows:

@y G2 ... Gin N by
G G ... G | | b
Gny Gp2 --- Gun Zn ba

The approaches to solve linear equations can be generally grouped in two categories,
direct methods and iterative methods. In the following sections, we will review the
background of these techniques for solving a large sparse linear system of equations.
Previous work on applying these techniques of parallel/distri hi is also
discussed.

3.1 Direct and iterative solutions of linear systems

Direct methods of solving linear systems generally use a decomposition of the coefficient
matrix or Gaussian elimination. The common form of Gaussian elimination subtracts
multiples of rows of A from other rows in order to reduce the matrix to an upper
triangular system, which is then solved by back substitution. LU decomposition and
Choleski decomposition (for symmetric, positive definite linear systems) are two of

11



the most ly used In LU d ition, the ient matrix is

factorized into A = LU, where L is lower triangular with 1’s on the main diagonal and
U is upper triangular. Then the solution is obtained by solving the triangular systems

Ly=>5Uz=y,

which are called the forward and backward substitutions.

Since the matrices generated in circuit simulation are very sparse, we are concerned
about direct methods for solving a sparse system of linear equations. A matrix is sparse
if many of its coefficients are zero. For practical reasons, it is not necessary to exploit
all the zeros. Term entry is used to refer to coefficients that are handled explicitly. All
nonzeros are entries and some zero coefficients may also be entries.

The exploitation of sparsity can lead to enormous computational savings. The so-

lution of a sparse system is usually divided into several phases [7]:

1. Analysis of the sparsity structure to determine a pivot ordering.

o

. Symbolic factorization to generate a structure for the factors.

| o

Numerical factorization.

'

. Solution of equations.

When it is i to consider ical values in ing the pivots, the first three

phases are combined into the analyze-factorize phase. The algorithms for direct sparse
linear solvers are grouped into three categories: general techniques, frontal methods,
and il The i h is an ion of the frontal

method. Details of frontal methods and multifrontal methods are described in [8].

12



The main features of the general approach, typified by Harwell Subroutine MA28 or
Y12M [33], are that numerical and sparsity pivoting are performed at the same time.
The major concern is that the factors L and U will be denser than the original matrix
A. Fill-in is caused by the operation of Gaussian elimination

a5 = a;; — agaglay,

when the original value of ay; is zero. So the ordering of A is very important to pre-
serve the sparsity in the factors. Sparsity pivoting is used to find a reordering of the
matrix such that the number of operations and fill-in of the reordered matrix are small.
The Markowitz strategy (7] is simple and effective for maintaining sparsity for general-
purpose use. At each step of Gaussian elimination, the pivot is selected as the nonzero
entry of the remaining reduced submatrix with the lowest product of the number of
other entries in its row and the number of other entries in its column. For example,
after the kth step of Gaussian elimination, let row® denote the number of entries in row
i of the reduced (n — k) x (n — k) submatrix, and col¥, the number of entries in column
j- The Markowitz strategy chooses such entry a; # 0 as the pivot which minimizes the
expression
(row} —1)(colf —1).

The parallelism of general sparse direct methods will be discussed in the next section.

Iterative methods are attractive for use on vector or parallel computers. Generally,
an iterative method is suitable only for a specific class of problems, since the rate of
convergence depends on spectral properties of the matrix. No single iterative method
is robust enough to solve all sparse linear systems accurately and efficiently. Many
iterative approaches are based upon the following approach. The matrix A is split into

13



an easily invertible part P and a remainder Q. The splitting A = P — Q leads to the
basic iteration
Pz =Qz: +5,i=0,1,2,...,

where zq is a user-specified starting vector. If we write 7o = b— Azo, then it follows by

induction that z; can be expressed as
2 =20 + agPlyg + ay PLAP Iy + ... + as(PTLA) I Py

Consequently, z:; is equal to 7, plus a specific vector from i-dimensional subspace
spanned by the vectors Py, P"AP 'x,...,(P " A)""'P!7. Such a space of the
form

span{f, Bf, B*f,..., B f}

is called the i-dis i Krylov ding to f and B, and is denoted

as Ki(B; f). In our case we have z; = o +y, with y € Ki{(P~'A; P'y).

Often P is called the preconditioner for the system Az = b. Note that the special
choice P = I leads to solution elements belonging to K;(A; ), which gives rise to the
unpreconditioned or basic methods, such as Jacobi’s method and Seidel’s method.

The straightforward iteration leads to very special elements of the Krylov subspace.
But we can also search for more optimal elements. Such an approach leads to the
so-called Krylov sub: methods or jection-type methods such as BG (the bicon-

Jjugate gradient method), CGS (the conjugate gradient-squared method), GMRES, and
many more.
Hybrid solutions combine the capabilities of direct methods and iterative methods.

When solving a sequence of linear systems, instead of factoring each linear system to be

14



solved, the iterative method is used i This was shown

to be very efficient by Liegmann in [17].

3.2 Parallel direct linear solvers

In SPICE-PAC, subroutines SPPDCD and SPPDCS solve the linear equations. They
use the LU decomposition (SPPDCD) followed by forward/backward substitutions (SP-
PDCS). The coefficient matrix is assumed to be nonsingular, sparse and general. The
next two sections discuss different approaches to LU decomposition used for shared-

memory and distributed-memory architectures.

3.2.1 Shared y archi es

In shared ry archi all are with (shared) memory

modules by an interconnection network. Memory access resolution schemes are needed
to handle the situations when two (or more) processors attempt to access the same
memory module at the same time. Optimal performance on shared-memory comput-

ers requires ithms that minimize data between the shared memory and

processors. Figure 3.1 is a very simple outline of a shared-memory architecture; proces-
sors are indicated by P-blocks, and memory modules by M-blocks. Each processor
can access any of the memory modules, and processors exchange information by using
common (the same address space) memory locations.

The sparsity of the matrix can be used to exploit parallelism in parallel LU de-

of general ic sparse matrices. The idea is to use the ability to

choose several pivots simultaneously. Two matrix entries, a;; and a,, can be used as

pivots simultaneously if a;, and a,; are zero. These pivots are called compatible. This



D @

Interconnection network

Tom

Figure 3.1: Shared-memory architecture.

method has been applied to several parallel algorithms for general matrices [3]. The
main process is to select a number of compatible pivots that would create a diagonal
block if ordered to the top left of the matrix. The update process from all these pivots
is then performed in parallel. This procedure is then repeated on the reduced matrix.
Different algorithms may select the pivots and update the matrix differently. However,
any one of them must compromise the Markowitz criterion to get a large compatible
pivot set.

An incompatible table [3] is used to assist in the pivot search. The two-stage imple-
mentation chooses pivots in parallel from the diagonal and then off-diagonal pivots are
chosen sequentially to stabilize the ordering. Thresholds for both sparsity and stability
are set when choosing pivots. Pivoting for numerical stability is performed in a different
section of the code. Once the set of compatible pivots is selected, each pivot is tested
for numerical stability.

The decomposition of the coefficient matrix is followed by forward and backward

substitutions. Based on the block triangular structure of L and U, two methods are

tested in (3], a block h and an h In the block approach,

the matrix is divided into regions and the rows of each region are processed in parallel

16



by a prescheduled parallel loop. The solution of the next region is not started until

the previous region is The his a self process

and it processes rows of the matrix in forward or backward substitutions. However,
the processing of the next region is started without the requirement of completion
of the previous region. Thus access to the elements in the unknown vectors should
be i The ison of the two methods showed that the

asynchronous approach has much higher execution speed when the block sizes and the
number of parallel are i [3]. Fora 4 parallel

the performances of the two methods are almost the same.
The most commonly used codes for solving general sparse linear systems are MA28

and Y12M. They are two sets of Fortran il for sparse ic linear

equations.

MA28, developed by LS. Duff, is part of the Harwell Subroutine Library. The user
can set a parameter u to control the balance between numerical pivoting and sparsity
pivoting. u = 1.0 gives partial numerical pivoting, while u = 0.0 minimizes fill-in with-
out checking the magnitude of the pivots. The sparsity pivoting is based on Markowitz
criterion. Since MA28 performs LU decomposition followed by forward/backward sub-

stitution in separate subroutines, it is suitable for solving a sequence of linear systems

with the same by ing one d

Y12M was developed by Zlatev for the same purpose of MA28 [33] (the code is
available at netlib http://www.netlib.org). The Y12M algorithm extends the notion of
compatible pivots by permitting the pivot block to be upper triangular rather than
diagonal, which allows selection of a larger number of pivots. However, in this case, the

update is more complicated. The code selects the mixture between sparsity and numer-

17



ical pivoting itself. The underlying sparsity pivoting strategy is based on Markowitz
criterion as well.

Y12M and MA28 were tested [29] on a uniprocessor machine and a Cray C98/4256,
a shared memory computer with four processors (in the test, on average 2.5 processors
were used concurrently). A tool called ATExpert was used to predict the speedup factors
on four processors. The result confirms the expectation that the speedup factors grow
for increasing problem size.

PARASPAR (A Package for the Solution of Large and Sparse Systems of Linear
Algebrai ions on Parallel C with Shared Memory) is a another set of

Fortran subroutines for solving systems of linear equations whose coefficient matrices are
assumed to be generally sparse [32]. Four methods are available in this package: direct
solution by Gaussian elimination, iterative iti ORTHOMIN

algorithm and the pure ORTHOMIN algorithm. Two different single pivoting strategies
and a parallel pivoting strategy are provided. If the matrix is very sparse and remains

sparse during the computations, the parallel pivoting is recommended.

3.2.2 Distributed y archi

The other class of parallel computers uses memory which is distributed among the
processors; each processor contains a CPU and local memory. Distributed memory can

be shared or not. Distrib shared- ry i or hybrid i are

becoming quite popular recently. If the memory is not shared, processors use messages

to i and exch i ion, and the systems are called message-passing

architectures. Figure 3.2 outlines a distributed-memory architecture (M’ denotes local

memory) and a hybrid architecture.
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Figure 3.2: Distributed-memory architecture (1) and hybrid architecture (2).

The pattern of connections between processors is called the topology of the parallel
computer. The most common topologies are ring, mesh (usually two or three dimen-
sional) and n-cube. The communication overhead is critical in distributed comput-

ing. An i issue in developi ithms for distri ry

is how to reduce the data ication between The extreme case of

distributed-memory architecture is a network of computers, a concept very fashionable
recently.
Sadayappan and Rao [26] analyzed the amount of communication in sparse LU de-
on a distril ry parallel ‘They present the fragmented
distribution which splits rows and columns into parts and distributes these parts over

different processors. This is in contrast to the shared-memory algorithms that treat rows

and columns as basic indivisible units. C to a row/ pped distribu-

tion, the fragmented distribution decreases the total length of communication messages.

Skjellum [27] presents an algorithm using the grid distribution defined below:
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Ay —» processor (i mod Q, j mod Q) for all i,7, 0 <4, <n,

for Q? processors (s,t), 0 < s,t < Q. This distribution splits each row i into Q row
parts, ie., sets of the form {A; :0 < j <nAj mod Q = ¢}, and it also splits each
column into @ column parts.

Experimental results on a Symult s2010 show that for a 2500 x 2500 random sparse
matrix with approximately 51 nonzeros per row, execution time on a 96 processor
machine is 9.7 times faster than on a 6 processor machine.

Stappen, Bisseling and Vorst [28] developed an algorithm based on an approach
used for dense matrices. The same grid distribution as above was used. The algorithm
scales well with the number of processors, and it achieves a speedup of up to 107 on

400 for large This if is suitable for transputer networks

and hypercubes.

ScaLAPACK is a portable linear algebra library for distributed memory computers.
The ScaLAPACK library includes a subset of LAPACK routines redesigned for distrib-
uted memory MIMD parallel computers. It is written in an SPMD style using message
passing for communication. It assumes that matrices are laid out in a two-dimensional
block cyclic decomposition. The fundamental building blocks of the ScaLAPACK are
distributed memory versions (PBLAS) of the Level 1, 2 and 3 BLAS (Basic Linear Al-
gebra Subroutines), and BLACS (Basic Linear Algebra Communication Subprograms)
for communication tasks.

PBLAS is very similar to BLAS. Only one substantially new routine, matrix trans-

position, was added to PBLAS, since it is a i ion in a

memory system [35]. As BLAS provides a shared memory standard, PBLAS will pro-
vide a standard for distributed memory systems. So, PBLAS is supposed to simplify
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and stis the of high and portable parallel numerical

software.
The model corresponding to the parallel LU factorization implemented in ScaLA-
PACK is d in [35]. Its was for different block sizes and

grid sizes. Most of the computations of the ScaLAPACK routizes are performed in a
block fashion using Level 3 BLAS. The computational blocking factor is chosen to be
the same as the distribution block size. The performance of the ScaLAPACK library
is not very sensitive to the block size, as long as the block sizes are similar. The best
grid shape is ined by the i i d in the library and the underly-

ing physical network. The LU factorization performs better for process grids when the
number of processors in rows is smaller than that in columns, which can be denoted as
B<h.

ScaLAPACK is portable across the Intel series(NX), IBM SP series, Thinking Ma-
chines CM-5, and clusters of workstations via PVM and MPL Implementations of
ScaLAPACK on networks of workstations were conducted over general sparse matrices.
The performance on 2, 4, and 8 workstations is poor with almost no speedup. The

problem is due to frequent data ission between k i and low network

speed. ScaLAPACK is more suitable for closely coupled distributed-memory comput-
ers. Some specialized algorithms should be used for solving large sparse linear systems

on workstation clusters.

3.2.3 Clusters of workstations

While i istri ry systems are ive and many users do not

have access to them, workstation clusters are quite popular and relatively inexpensive.

21



Bjorstad, Coughran and Grosse [4] applied domain decomposition techniques to model-
ing semiconductor devices on a network of HP workstations connected by FDDI. FDDI

(Fiber Distri Data Interf: is a high-perfc fiber optic token ring LAN,

which can accommodate up to 1000 stations on a cable of up to 200km communicating
at up to 100 Mbps.

“Domain decomposition” refers to a method that divides the original problem do-

main into parts and solves each subdomain locally. The results show that domain de-

is one of those ially i dent parallel i that works

well for a modest number of workstations. The speedup they gained on four worksta-

tions was 2.9.

Peter Carlin [5] modified some basic linear algebra algorithms to improve their

perfc on networks of i This library was designed with consideration
towards three istics of of i small numbers of processes, *
of i ding and high ication latency.

A domain decomposition approach is a natural way to coarse grain parallel compu-
tation: it decomposes the sparse coefficient matrix of linear equations into blocks and
has each block solved on a different processor. When partial solutions are collected
from each processor, the final result can be assembled into the solution vector. There
is no existing code for solving sparse linear systems by domain decomposition. The
next chapter describes the design and development of this approach on a network of

workstations.



3.3 Parallel iterative solvers

Iterative methods are very different from direct methods. The idea of an iterative
solution is to use a predicted initial approximation as a starting-point solution of the
linear system, and to refine it iteratively until the final solution is reached. So, when
the starting point is “close” to the solution, the iterative solver can be very efficient.
However, convergence can be a problem. If a sequence of “similar” linear equations is
to be solved (as is the case for solving systems of nonlinear equations), the iterative
approach may be very attractive, because the solution for one system can be used as
the starting-point for the next system of equations.

In the beginning of this chapter, the standard Krylov subspace acceleration was
introduced. The main operations in this method are: (1) vector update, (2) dot product,

(3) matrix-vector product and (4) itioning. The most i ions in

a parallel iterative solver are the matrix-vector product and preconditioning.

Lo and Saad [22] proposed a parallel iterative approach by using domain decom-
position. Each processor holds a set of equations (rows of the linear system) and a
vector of the variables associated with these rows. Then each system associated with a
subdomain is solved by an iterative process. We need to multiply the matrix consisting
of rows that are local to a given processor by a distributed vector. Some components
of the vector are local (called local vari: while other (called external

iables) have to be d from other
Let Agc be the local matrix, i.e., the rectangular matrix consisting of all the rows of

A that are allocated to the given Bio. is the sub: ix of Aj. whose nonzero

elements bl;; are such that j is a local variable. Bj, is a square matrix of size Njoc X Njoc
where ny, is the number of equations assigned to this processor. Similarly, B, is the
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submatrix of Az, whose nonzero elements be;; are such that j is not a local variable.
The following steps are needed to perform a matrix-vector product:

-

Multiply the diagonal block By, by the local variables.

o

Bring in the external variables.

Ld

Multiply the B, by these external variables and add the result to the result of
step 1.
Steps 1 and 2 can be performed simultaneously. A processor can be multiplying Bioe

by the local variables while waiting for the external variables.

On the itioning side, Saad a flexible variant of the GMRES al-

gorithm (FGMRES) [23]. FGMRES allows the inner preconditioning steps to be com-

pletely in order to minimi: ication and ization costs in
a parallel approach.

P-SPARSLIB was developed using the above method by Saad and Malevsky [24].
They used Harwell-Boeing test problems. Different network configurations were tested
and a SP2 cluster achieved a fairly good performance for the solution of unstructured
sparse systems. For a 4-processor SP2 machine, the speedup was 2.92, and for an

8-processor machine, the speedup was 4.62.
3.4 Parallel hybrid solvers

Some work has been done in developing efficient solutions of sparse linear systems using
a combination of direct and iterative methods. The idea of so-called hybrid methods
is that during the solution of a problem, one can select the method which is known to
work best in a particular phase of the solution process, whereas the normal approach
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uses only one method for the whole solution process. For example, Liegmann [17] used a
combination of both iterative and direct techniques. When solving a sequence of linear
systems, the hybrid approach tries to avoid as many computationally expensive factor-
izations as possible by using an iterative method instead. To increase the likelihood

of success of the iterative algorithm, the last ization is used as a iti

This approach has shown to save up to 90% of the factorizations. Therefore, for a
sequence of linear systems with similar sparsity structure, the hybrid method of using
the solution from direct methods as the starting point vector of the iterative process

can be effective.
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Chapter 4

The Domain Decomposition
Method

Since dedi are rather expensive, and often a whole team is needed

to service a single system, readily available networks of i d either by

Ethernet or FDDI offer an attractive alternative. The overall power of such a worksta-

tion cluster can often be equi to that of a Most of the utilization

of workstations is low (e.g. if users are editing files). Therefore it can be very econom-

ical to use these machines by running parallel application software on such clusters.

However, there is a disad to i ing parallel on

clusters: the communication overhead is high because the transmission performance of

the network is still rather low and is limited by the underlying hardware (e.g.
10MB}/s) [30].
High icati head of ion clusters implies a constraint on the

choice of parallel algorithms. Only those algorithms which do not require extensive
communication overhead can achieve good speedup on workstation clusters. Low-level
parallelism, such as that of independent loops, can be successfully applied only on

shared memory systems or on massively parallel tightly coupled computers. Thus,



automatically parallelized code based on low level parallelism generally cannot achieve
good speedup on workstation clusters.

New if have to be loped for ions. One h which is very
is the domain di ition method. The idea of this method is to split
a problem domain into d i each subdomain is calcul. by an individual

processor, so the application can run in parallel. Each parallel task consists of two
parts, a local part and a part which requires communication with other tasks. In
analyzing the time complexity of a parallel program, there are two major costs: one is
communication, and the other is load balancing. Problems which can be partitioned
in such a way that the subtasks do not need to communicate are known as perfectly
parallel problems. Application programs which, for example, involve the solution of
PDE:s (partial differential equations) do not fall into this class of problems [14]. Besides

reducing the icatis d to improve the of parallel

processors must be balanced, otherwise some processors have to wait for others to finish
their work before they can proceed with their next task. In [14], Gropp gave an example
of a system where p — 1 processors have work load W; and the last one has work load
W, > W For such a case, the best possible speedup is :

(p—1)W + W,
s=t—F =

146 z)'—:%. @)

Formula 4.1 shows that smaller speedup is expected if there is a large imbalance in

workload distribution. Figure 4.1 shows S, with varying p and 2.
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Figure 4.1: Speedup of a p processor system with different workload distributions W.

4.1 An overview of the domain decomposition ap-
proach

To solve sparse linear systems by domain decomposition, it is natural for us to think

about itioning the ient matrix into i and solving each subsystem

independently of others. The partition method for a structurally symmetric matrix has
been developed and known for many years. Liegmann [17] applied this method in his

experiment of solving linear equations on a network of workstations.

Using domain d ition requires a ing of the ient matrix A into
a block diagonal form which is called the “arrowhead structure”:
A M
A M,
N ... N, A

The diagonal block A, in the lower right corner is referred to as the separator block.
The ordering is achieved by an algorithm which is based on graph theory and which is
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described in Section 4.3.1.
Once the matrix is reordered, the linear system Az = b is multiplied by the matrix

ATt
I,
which results in:
L AT'M, EN ATy
Lo A7M, ||z || A7
Ny one Na A s by

Let M; = A7*M; and b; = A7'b;. The above equation can be written as a set of n + 1
blocks of linear equations expressed as

T+ Mz, =b,i=1,...,n;
a
3 Nizi+ Az, = b,
=
Therefore, z; = b; — Mz,, for i = 1,...,n. After substitution, we get

(A - 3> Nz, =b, — 3 Nib.
: &

The term
-
A, - Y NM;
=
is referred to as the Schur of A,. Ci ing the Schur

of A, is the major task in the parallel solution process. After z, is computed, each

processor i can compute its local portion z; of the overall solution vector z.



4.2

The Master-Slave model

The above solution can be used in the Master-Slave model of parallel computation. In

this model, the master process controls the other slave processes and computation is

performed only by slave processes.

partition the coefficient matriz A;

create the slave processes;

broadcast data to slaves;

do
if a partial result from a slave has arrived then

place the partial result into overall solution

end if

until all slaves have sent results;

Algorithm 4.1: The Master Process.

receive data from master;
extract local data;
compute local part of Schur complement of A,;
do
receive other parts of A,
until A, is complete;
solve the local block of linear system;
send result to master;

Algorithm 4.2: The Slave Process.

The MASTER process:

Algorithm 4.1 explains the master process. The master process consists of four

steps. First, the coefficient matrix A4 is into the
Then the matrix is partitioned into separate blocks, A;, M; and N;. This transfor-
mation should also be applied to the right hand side of the linear system. Second,
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the slave processes are created. The creation of slave processes can be done by
using a communication library like PVM (Parallel Virtual Machine) to start the
executable program which resides on each “slave” processor. In the next step, the
data structure representing the linear system is broadcast to all slave processes.
Each process i extracts the blocks A;, N;, M; and the portion b; of the right-hand
side vector. After broadcasting the data to slave the mas-

ter process waits to receive results from slaves. When a slave process returns its

partial solution z;, the master process will put z; in the entire solution vector z.

The SLAVE process:
Algorithm 4.2 describes the slave process which performs the solution of the linear
system. Once a slave process is initiated, it waits for data sent from the master
process. Depending on its task identifier ¢, the slave process extracts the appropri-
ate blocks A;, N;, M; and A: of the separator 4,. Then slave processes compute
the Schur complement of 4, in parallel, and solve the local block linear system.
Eventually, each slave task sends its partial result, z;, to the master until the final

solution vector is complete.

4.3 Matrix partitioning

Direct methods of solving linear system Az = b usually decompose the coefficient matrix

A into lower and upper triangular matrices:

A=LU (4.2)

This decomposition simplifies the solution, as only forward and backward substitutions

are needed for the final solution. The decomposition of A into two triangular factors,
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L and U, is called an LU decomposition or LU factorization [6]. When A is sparse, the
! in LU factors. These

process can i non-zero
elements are called fill-in entries and such additional non-zero elements require more
storage space. This is a very important aspect when direct methods are considered.
Moreover, the number of required arithmetic operations increases with the size of the
factors.

Reordering the matrix is a natural way to reduce fill-in. Interchanging columns and
rows can be done by multiplying the matrix A by permutation matrices P and Q. P
interchanges the rows of A and Q permutes the columns. For structurally symmetric

matrices, usually Q = P is used to preserve the i of the

matrix. Reordered matrices with no fill-ins in their LU factors are called perfect
elimination matrices.
Some properties of elimination matrices are [17]:
* A matrix has a perfect elimination ordering if its graph is triangulated.
A graph G is triangulated if for each cycle ¢ = (i,i + 1,...,i+n,i) in G with

n > 3 there is an edge between any two non-consecutive nodes of c. Most matrices

with real do not have tri; graph

Therefore other approaches have been used to retain the sparsity of the coefficient

matrices.

 Computing the minimum fill-in is an NP-complete problem.

There are several h di near optimal ing for

general matrices. Among these hes, the mini degree ing algo-

rithm has proven to be most effective [11]. A detailed description of the minimum
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degree ing is shown in the

4.3.1 Graph representation of sparse matrices

Sparse matrices and graph theory are closely linked. The pattern of a square sparse
matrix can be represented by a graph. In this chapter, graph theory is used for visual-

ization of sparse matrix partitioning.

A directed graph (digraph) consists of a set of nodes (vertices) and direct edge
between nodes. Any square sparse matrix pattern has an associated digraph. For a
given sparse matrix A, a node is associated with each row. For each entry a;;, there is

an edge from node 7 to node j in the directed graph as shown in Figure 4.2.

x O—G{
: ,

X X X

X X °

Figure 4.2: An unsymmetric matrix and its directed graph.

X

For a symmetric matrix a connection from node i to node j implies that there is
also a connection from node j to node i. So the edge directions may be dropped. The

graph without arrows is called an undirected graph, as illustrated in Figure 4.3.

" OanOmu®
X X X
X X X
X X X °
Figure 4.3: A symmetric matrix and its directed graph.

A special case occurs when an undirected graph contains no cycles. If the graph is
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connected and a particular node is selected as the root, it is a rooted tree, as illustrated

in Figure 4.4.
x ox ©.
X X
B (. ©
XXX XX
X X X
x x OOG
Figure 4.4: A matrix and its rooted tree.
Since the matrix reordering and itioni i are d ibed using graph

theory, some basic terms which are used frequently in the next section are introduced
here.

G = (V,E) represents a graph. V denotes the set of nodes (or vertices) and E is
the set of edges connecting the nodes of the graph. The elements of E are commonly
expressed as node pairs, i.e.

EC{Gj)|ijeVi#i}
The number of elements of a set A is denoted by |A|. Two nodes i,j € V' are adjacent
to each other, if (3,7) € E. The adjacercy set of a node i is defined as
adj(i) ={j €V |(i,j) € E}.
Graph G = (V, E) is connected, if for every 4,j € V there is a path p from i to j, i.e.
Vi,j€V,3p=(,....5)-

Graph theory helps in visualizing the changing pattern of entries as elimination takes

place. Corresponding to the graph G, the elimination graph G; for node j is obtained
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by removing node j and adding a new edge (i, k) whenever (i, j) and (j, k) are edges of
G but (i,k) is not. For example, G, for the graph of Figure 4.3 has the representation
shown in Figure 4.5, with the new edge (2,4) added.

Figure 4.5: Elimination sequence for the matrix from Figure 4.3.

It is important to note that the graph structure of a structurally symmetric matrix

does not change when its rows and columns are dered with the same

matrix, i.e. G(A) = G(PAPT). Changing the ion matrix just the

node bering in the ing graph. C ly, finding a matrix permuta-

tion which generates minimal fill-in is equivalent to finding such a permutation of the

nodes which minimizes the size of the adjacent sets of nodes:
ladj (im)| = min(ladj(in)l), in € V\ {i1,- -1 tm—1}
for each elimination step m.

4.3.2 The minimum degree algorithm

It is known [6] that sparse matrix ization requires a ing of the rows and
columns in order to reduce the number of fill-ins. Among various algorithms, the
minimum degree approach has been proven to be very effective [11]. Let G be an
undirected graph and v a node in G. We use the notion adjg(v) to refer to the set of

nodes adjacent to v in G. The degree of v in G is denoted by |adja(v)|-
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The basic minimum degree ordering can be best described in terms of elimination
graphs. We use G, to represent the elimination graph obtained after the elimination
of v from the graph G. The graph G, can be obtained by deleting v and its incident
edges from G and then adding edges to connect the nodes that were adjacent to v into a
clique (a clique is a subgraph where every two nodes are adjacent). If v is not adjacent
toy in G, then:

adj, (v) = adje(v).

If v € adjo(y), we have
adjc, (v) = (adjc(v) U adje(v)) - {v,v}.

The basic algorithm is described as follows:

S={}
G is the graph of the matriz;
while S # V do

forv € V\S do

5(v) = ladj(v)|
end for;
select z € {y € V\ S | §(y) = min,ens(8(v)
S:=5u{z}
eliminate 2 and create G-
end while;
A i 4.2.1: The mini degree al,

Once z with minimum degree is selected, it is added to S, the set of reordered

nodes, and is eliminated from the current elimination graph. Rules on how to select z

are known as tie-breaking ies. Effective tie-breaking can signi reduce the

number of fill-in entries. Most impl ions of ing use random tie-breakil
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which is to select the nodes randomly, since there is no efficient tie-breaking procedure
available for general sparse linear systems.

<P

Figure 4.6: A structurally symmetric matrix pattern and its graph representation.
Here is an example. A structurally symmetric matrix and its graph representation
are given in Figure 4.6. The matrix will be reordered by applying the minimum degree
algorithm.
The initial minimum degree is §p = 3. We have
§={}T={1,2,3,6,89,10}, 4 =3.
Since random tie-breaking is used, any node in T can be chosen for elimination. If we
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set z = 10, the elimination graph G. turns out to be like that in Figure 4.7. The dash
line indicates the iil-in edge. The minimum degree &; decreases to 2. In the next loop

we have:
S ={10},T={6},6 =2.

Apparently we can only set z = 6. The elimination of node 6 does not introduce any
new edge because the nodes form a clique with its adjacent nodes in the current graph.
This is true for the remaining steps of eliminations. Finally, we have the permutation
P, = (10,6,2,8,4,1,5,3,7,9). The filled matrix pattern is shown in Figure 4.8. The

permutation P; results in an optimal elimination sequence with only two fill-in entries.

10 ¢ o @
e 6 o @
e ® 2 0 e
e e 0 8 o

e e 4 o .

e 1l e .

e 5 e o o

e 3 e o

© e 00T o

e e o 9

Figure 4.8: Pattern of the filled matrix F of P,APT.
For the same matrix, if we select z = 1 in the first step instead of z = 10, we will
have:
S={1}, T=1{2,3,6,8,9,10}, 6, =3.

Elimination of node 1 introduces one fill-in edge. With respect to the number of fill-in
edges, there is no difference between eliminating node 1 or node 10 in the first step.
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Figure 4.9: Elimination graphs after removing node 1 and node 2.

However, the situation changes if we select node 2 to be eliminated next. Removing
node 2 results in two additional fill-in edges (4, 10) and (4, 6), as shown in Figure 4.9.
Elimination of the remaining nodes does not generate fill-ins. The alternative permu-
tation is P, = (1,2,6,8,10,4,7,3,5,9). The filled matrix Fp,spy for permutation P,
is shown in Figure 4.10. From this picture we can see that P,APJ has four additional

fill-in entries compared to the filled matrix P, APT.
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