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ABSTRACT 

Faceted conical structures have been proposed as an alternative to the true conical 

form to ease the fabrication and to lower the construction costs. ln considering ice forces on 

these structures, there was a concern with the validity of existing theories. The main 

objectives of this study are to improve the under5.tanding of the interaction processes and the 

failure mechanisms of a level ice field against a faceted cone during continuous ice breaking, 

and to provide engineers with a set of easy-to-apply formulae for ice load calculation. In this 

thesis. the results of a three-part study, consisting of experimental and theoretical 

investigations, are documented. In Part I. a pilot series of physic~ model tests were 

conducted to provide a clear insight into the interaction processes. Some important 

interaction features were identified from analysis of the test data which provided a 

framework vital to further model development. ln Part 0, the unique rubble piling process 

was further examined with the aid of existing particulate mechanics and a comprehensive 

numerical analysis. A new rubble model was developed to predict the geometry of the rubble 

and the forces exerted on the structure and the base support. In Part ill. an appropriate ice 

breaking model was selected from the existing theories for the adaptation of the new rubble 

model. The new model, which considers the salient aspects of the rubble piling process, 

agrees well with the experimental data. 

The above developments and results are significant, because. for the first time, to the 

knowledge of the author, an ice load model has been established to account for the effect of 

rubble in ice loading on a multifaceted cone based on essential features of the interaction. 
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The results provide a useful framework for further model development. The state-of-the-art 

is such that it is now possible to incorporate rubble load in the force calculation with higher 

degree of confidence. The methodology for doing so has been developed and presented 

herein. and constitutes the main contribution of this work to the state-of-the-art. 
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NO'MENCLATURE 

A"h The projection of cone obstructing ice movement as defined in Figure 6.10 

associated with Art, or in Figure 6.12 associated with Ar. 

Ar1 Cross-section of rubble as defined in Figure 6. 9 

A.... Cross-section of rubble as defined in Figure 6.11 

AR Aspect ratio defined as the ratio of ice thickness to piece size 

B,,h Length defined in Figures 6.9 and 6.11 for hrf and hr~ computations, respectively. 

Brr Length defined in Figure 6.9 for hrf computations 

B" Length defined in Figure 6.11 for hr. computations 

C"h Length defined in Figures 6.9 and 6.11 for hrf and hr. computations, respectively. 

D Width of structure 

E Effective elastic modulus of ice sheet 

Fh Breaking component of ice force 

F, Clearing component of ice force 

F111 Maximum force 

F m""' Measured force 

F mp Mean peak force 

F, Factor of safety 

F,. y.1. Force components along the respective Cartesian axes 

F.... Horizontal component along x' axis 

Hs Horizontal force acting on cone surface as defined in Figure 8.19 
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HT Horizontal force acting on top tip of wedge beam as defined in Figure 8.19 

HmT Total horizontal force as defined by Equation 8.43 

Hw Horizontal force acting on bottom tip of wedge beam as defined in Figure 8.19 

K Earth pressure coefficient function 

K" Earth pressure coefficient function: active state 

K" Earth pressure coefficient function: at-rest condition 

~ Earth pressure coefficient function: passive state 

K'. K". K'" and K"" 

Various coefficient functions as defined by Equation 7.12 

Lc Circumferential crack length 

LL Broken piece size as defined in Figure 2.5 (see Equations 4.1 - 4.5) 

Lw Broken piece size as defined in Figure 2.5 

~ Broken length, (crrt!Yw}lfz (see page 71} 

N Normal force 

P Earth pressure associated with earth pressure equations; or. Ride-up force 

tangential to cone surface as defined by Equation 8.47 

Pa Force exerted by rubble: active thrust 

P hn Force exerted by rubble: horizontal force acting on bottom support 

P hv Force exerted by rubble: vertical force acting on bottom support 

P,, Force exerted by rubble: total wall thrust (at-rest condition) 

P P Force exerted by rubble: passive resistance 
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P pr~d Force exerted by rubble: predicted 

P,;mut Force exerted by rubble: simulated 

P "'h Force exerted by rubble: horizontal force acting on wall 

P _.,. Force exerted by rubble: vertical force acting on wall 

R Rubble force defined in Izumiyama et al's model (Equation 2.23) 

R" Rate of ice supply into the system 

R~ Rate of ice clearing from the system 

R, Rate of ice accumulation in the system 

RMS Root-mean-squared value 

V Ice velocity 

V s Vertical force acting on cone surface as defined in Figure 8.19 

V T Vertical force acting on top tip of wedge beam as defined in Figure 8.19 

V TOT Total vertical force as defined by Equation 8.44 

V w Vertical force acting on bottom tip of wedge beam as defined in Figure 8.19 

V 11 Beam breaking load under transverse load 

V' h Effective beam breaking load under bending and inplane compression as defined 

by Equation 8.5 

V~ Velocity of ice passing through a cross-section 

W, Weight of rubble ice 

W r.~ Weight of rubble ice displaced by front facet surface of a six faceted cone as 

defined by Equation 8.14 
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w,., Weight of rubble ice displaced by side facet surface of a six faceted cone as 

defined by Equation 8.22 

W m Weight of ride-up ice 

W m.c Weight of ride-up ice displaced by front facet surface of a six faceted cone as 

defined by Equation 8.17 

W ru., Weight of ride-up ice displaced by side facet surface of a six faceted cone as 

defined by Equation 8.24 

X. Y.Z Cartesian axes as defined in Figure 8.17 

X' Axis with direction perpendicular to side facet at waterline as shown in Figure 

8.17 

d"' Breaking width of ice beam as defined in Figure 8.13 

d, Projected width of side facet as defined in Figure 8.16 

c Cohesion 

e,, Initial void ratio 

h or h, Rubble height 

h" Vertical distance of bottom level of a wall section from maximum height of 

rubble as defined in Figure 7.28 

hn Height of neck section from waterline 

hr.c Equivalent rubble height at front facet as defined by Equation 8.13 

hr., Equivalent rubble height at side facet as defined by Equation 8.18 

hrt Rubble height at edge of front facet as defined by Equation 6.18 
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h,"' Maximum rubble height at front facet as defined by Equation 6.35 

h"' Rubble height at the side as defined by Equation 6.22 

hru Ride-up height 

hnu: Equivalent ride-up height at front facet as defined by Equations 8.15 or 8.16 

h, Vertical distance of top level of a wall section from maximum height of rubble as 

defined in Figure 7.28 

I, Characteristic length of ice sheet as defined by Equation 2.8 

p Pressure 

p Porosity 

Thickness of ice 

w Horizontal distance from hrr to hnn as defined in Figure 6.17 

\V1 Width of facet at waterline 

w,, Average width of rubble at front facet (assumed equal to wru_,) 

w,, Equivalent width of rubble at side facet as defined in Figure 8.23 

w ru . .: Average width of ride-up at front facet as defined in Figure 8.12 

x" Direction cosine of frictional force in x-direction as defined by Equation 6.28 

X:-~ Direction cosine of normal force in x-direction as defined by Equation 8.26 

z Free-board of structure 

z" Direction cosine of frictional force in z-direction as defined by Equation 6.29 

z~ Direction cosine of normal force in z-direction as defined by Equation 8.27 

a. Cone angle 
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aa\C Average cone angle 

a.P Inclination of total wall thrust, P
0

, from the horizontal 

a, Cone angle at side of cone 

y Weight density of ice 

Yh Bulk weight density of granular material 

Yw Weight density of water 

e Angle between plane bed and plane abd as defined in Figure 8.17 

ec, Angle between radial crack and x-axis 

Angle of inclination of rubble surface 

j.l, lee-structure friction 

ll' Effective ice-structure friction 

v Poisson's ratio 

~ Resolution factor for 2-D interaction as defined by Equation 2.2 

.;, Resolution factor as defined by Equation 2.5 

.;2 Resolution factor as defined by Equation 2.6 

S)o Resolution factor for 3-D interaction with smooth cone as detined by Equation 

2.25 

~'o.r Resolution factor for 3-D interaction with faceted cone as defined by Equation 

4.6 
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p Density of ice 

cr1 Flexural strength of ice 

cr'r Effective flexural strength of ice, including effect of in-plane compression, as 

defined by Equation 8.53 

cr11 Horizontal stress 

cr" Normal stress 

cr, Vertical stress 

t Shear stress 

cj> Angle of internal friction 

cj>h Angle of base friction 

cj>'" Angle of effective base friction 

<!>.,, Angle of internal friction corresponding to constant volume strength 

ct>.~ Angle of inter-block friction as defined in Figure 5.8 

ct>r Angle of internal friction corresponding to peak strength 

$, Angle of repose 

cj>" Angle of wall friction 

cj>'..... Angle of effective wall friction 

<l>ll Angle of ice friction 

'V Angle of friction force with respect to the x-axis as defined in Figure 8.17 
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Chapter 1 Introduction 

1.1 Background 

Ice mechanics and ice engineering research in Canada have a.."isumed increased 

importance due to the growing interest in exploration of natural resources and industrial 

developments in its Arctic offshore regions. A major driving force behind the heightened 

interest has been hydrocarbon developmems in the continental shelf in the Arctic and sub

Arctic seas. Canada has a vast infrastructure dependent on oil and gas and there are no 

competing fuels on the horizon. Oil and gas are predicted to continue to make up about 60% 

of Canada's energy consumption for the next two decades. as predicted by Canadian 

government for the year 2020 (Natural Resources Canada. 1993). The total recoverable 

reserves for the Frontiers was conservatively estimated at 22 Billion Bbls of oil and 275 

Trillion Cfs of gas. with the largest reserves being located at the Grand Banks and the 

Beaufort Sea (Natural Resources Canada. 1993). Such vast quantities of petroleum reserves 

ensure a secure source of future supply for Canada in place of the rapidly depleting oil 

reserves in Western Canada. This has heightened the need for improving current technology 

to lower the costs of oil production from ice covered areas. and stimulated significant activity 

in the development of novel offshore structures during the past two decades. 

The development of new concepts and designs for engineering structures in ice 

infested waters poses many challenging problems related to determination of ice loads and 

assessment of the overall safety of such structures. Conical form at the water line has been 



considered to be better than vertical surfaces in protecting vulnerable structures operating in 

these regions and helping them to withstand severe ice forces, since this configuration 

reduces ice loads by causing ice features to break in bending. Conical structures also provide 

a natural and smooth transition from a wide-base to a narrow deck supporting the 

superstructure. 

Although great efforts have been put into both theoretical and experimental 

investigations concerning ice forces on conical structures [see Wessels and Kato (1989)), 

serious problems still remain unsolved. A review of the ice load prediction methods for 

conical structures by Chao ( 1992) reveals a high degree of uncertainty in ice force prediction. 

mainly due to the lack of full scale measurements and the absence of proper analytical tools 

to model the complex three dimensional ice-structure interaction problem. lt results in "over

designing" to compensate for current lackofknowledge. Suchoverdesign leads to excessive 

construction costs and reduces a project's feasibility. Furthermore. early experimental and 

theoretical work on ice-cone interaction were entirely devoted to smooth cones which had 

narrower necks relative to the water line diameter. However, by mid-1980's it had become 

apparent that new designs. incorporating sloping flat faces (facets) and wide necks above the 

ice waterline. may be more cost effective and practical, i.e., ODECO AMDP (Chabot, 1985). 

Such a structure is presently considered for operation in Russian waters off Sakhalin Island. 

These structural concepts can also be implemented in structures located in less severe ice 

environments. i.e., bridge piers and lighthouses. 

No prior study related to ice forces on faceted cones existed before 1988 (Croasdale 
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and Muggeridge, 1993). The fundamental interaction processes were not fully understood. 

Since the flat facet and its sharp comers were unique to a faceted cone, it was suspected that 

such features would lead to an ice breaking and clearing process substantially different from 

that of a smooth cone. In considering ice forces on these structures, there was a concern with 

the validity of existing theories in predicting ice forces knowing that their geometry was 

significantly different from the true conical form. The anticipation of rubble accumulation 

in front of the structure also led to a concern that the ice clearing forces would be greater than 

the predicted values. obtained using current theories. ln order to enhance the understanding 

of how ice would fail and clear around such structures, and to develop a proper ice load 

estimation formulae, model testing and better theoretical formulation of the interaction were 

proposed. 

In 1988 the Memorial University of Newfoundland (MUN) collaborated with the 

lnstitute for Marine Dynamics (lMD) and the Institute of Mechanical Engineering (lME) of 

the National Research Council of Canada (NRC). Esso Resources Canada Limited (ERCL), 

Exxon and Mobil in a university-industry program to perform an extensive series of physical 

model tests in order to better understand how ice floes and ridges would fail and clear around 

such structures, and how well existing theories predicted the global loads. The results of the 

various components of the program are described by Croasdale and Muggeridge ( 1993). 

While results of each series of tests have been separately documented [Metge and Weiss 

( 1989). and Metge and Tucker ( 1990) for ERCL's test series; lrani et al ( 1992) for IME's 

series, and Lau et al (l993b) for IMD's series], and published [Irani and Timco (1993); 
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Timco et al (1993); Lau et al (l993a); Izumiyama et al (1993, 1994) and Wang et al, 

( 1997)], only very simple analyses were performed and they were fragmented in nature. 

Many aspects of the interaction processes and the effects of various factors on ice loads were 

not fully addressed. 

I conducted the model test program in IMD with the assistance of Mr. J .R. Tucker 

of MUN during my stay in the institute. Analysis of the results from the IMD series, 

supplemented by additional data analysis of the accompanying series, and subsequent ice 

force modelling form the bulk of the research effort for this thesis. Focus is devoted to level 

icc tests only. 

1.2 Scope and Objectives 

The main objectives of this study are: 

(i) To improve the understanding of the interaction processes and failure 

mechanisms of a level ice field against a faceted cone during continuous ice 

breaking, and 

(ii) To provide engineers with a set of easy-to-apply formulae for ice load 

calculations. 

In this work, the major issues addressed are: 

(i) Whether the existing theories, proposed based on earlier experiences with 

smooth cones, were accurate enough for predicting ice forces on comparable 

faceted cones; and, 
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(ii) If the existing theories did not adequately predict ice forces on faceted cones, 

what modifications were necessary to correct the deficiencies. 

From a more practical point of view a load prediction model, applicable to the faceted 

cone shape, was to be developed for design purposes. The model should reflect accurately 

the dominant interaction processes generated by this unique shape. 

While an improved ice force prediction model is proposed here to suit the practical 

need of designers, the theoretical modelling effort is kept to a minimum. Existing analyses 

of ice force on smooth cone were used when deemed appropriate. The improved model 

represents the most comprehensive attempt to incorporate fundamental processes in its 

problem treatment and forms a new conceptual framework for future model refinements. 

1.3 Approaches and Methodologies 

This research investigation consists of experimental, numerical. and theoretical 

studies described here in three parts. The approach promises the most versatile and relevant 

procedure for improving our understanding of the ice-structure interaction problem for the 

multifaceted cone. 

In part one, the pilot series of physical model tests are reported. The physical model 

tests were planned to provide a clear insight into the interaction processes by combining 

relevant observations and interpretation of results. The ice forces corresponding to peak load 

events were identified for each test, along with the associated interaction processes. The 

observed unique interaction processes helped to formulate a conceptual model, which would 
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provide a focus and outline of the phenomena to be investigated, and the methods to be used 

to investigate these phenomena. 

The model tests also provided a unique set of experimental data to assess the validity 

of existing formulae for predicting ice loads on a faceted cone. Comparisons were made of 

the experimental results with the predictions of a leading theoretical model developed for 

computing ice forces on smooth cones. The comparison further underlined the deficiency 

of existing theories in predicting ice forces on faceted cones. 

lt became evident during the early part of the model tests that the ice pile-up induced 

by the tlat facet was a typical behaviour of ice around the faceted cones as opposed to the 

smooth cones. A proper understanding of the particulate mechanics and the formation 

process of ice rubble held the key to further studies in this area; this forms the focus of part 

two of this research. Theories in the field of particulate mechanics were examined. and a 

new rubble model was developed from appropriate theories to predict the geometry of a fully 

developed rubble and the load it exerted on the structure. The geometry of the rubble was 

deduced based on a simple interaction geometry and mass balance considerations; whereas 

the equations for calculating the boundary forces exerted by the rubble at it's interfaces with 

the wall and the base support were empiricaHy formulated from a rigorous interpretation of 

a ~eries of numerical simulations of earth pressure on a retaining wall. The numerical 

simulations were carried over a broad spectrum of interaction conditions using the discrete 

element method (OEM), implemented in a 2-D version of the computer code DECICE. 

Part three was devoted to the development of a new ice force model which took into 
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account the main features of the interaction processes associated with faceted cones. In view 

of the existence of many ice breaking models, detailed modelling of the phenomenon of ice 

breaking under load was not carried out in this work; instead, the existing analytical models 

of ice forces on sloping structures were critically assessed through an extensive comparison 

with experimental data. and a base model of ice breaking was selected. This base model was 

further incorporated into the new rubble model developed in part two, resulting in a set of 

mathematical formulae which were established based on experimental observations and basic 

mechanics of ice. These formulae represent in a concise and general fashion the description 

of ice breaking and clearing phenomena, the observed relationship between the processes. 

the basic mechanisms that underlie such relationships. and the relationships among relevant 

ice and structure parameters. 

1.4 Organization of the Thesis 

This thesis consists of a total of nine chapters. The first two chapters form the 

introductory study to the thesis. Chapter l discusses the issues addressed in this work. The 

relevant background, approaches and methodologies are briefly described. Chapter 2 

consists of a literature review, which focuses on previous studies and modelling of ice loads 

on sloping structures. The existing theoretical models and the associated ice-structure 

interaction processes observed in relevant model tests are summarized, with the limitations 

and shortcomings of the previous studies discussed. The subsequent seven chapters. viz., 

Chapters 3 to 8, are divided into three parts, corresponding to the three stages of this study 
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already mentioned above. 

Part I documents the results of the experimental investigation, which consists of two 

chapters. Chapters 3 to 4. Chapter 3 describes the tests and summarizes the results. Chapter 

4 identifies the salient aspects of the ice cone interaction processes. and presents the analysis 

of peak ice loads. The last section of Chapter 4 serves as a conclusion of this part, where the 

findings are summarized and a conceptual model is presented, which forms the framework 

for further model development. 

The unique pile-up process of ice around a faceted cone forms the focus of Part II. 

This part consists of three chapters: Chapters 5 to 7. which document the results of a 

subsequent rubble modelling. Chapter 5 summarises the constitutive behaviour of a rubble 

under load. The deformation characteristics of a rubble in front of an inclined wall are 

idcnti tied. and the existing techniques for load calculation are examined. Chapter 6 presents 

a rubble model for predicting the geometry of an ice rubble in front of a multi-faceted cone. 

Chapter 7 consists of two parts which summarize the results of a series of numerical 

simulations using a discrete element code. The first pan examines the shear strength of the 

rubble via a series of shear test simulations; whereas, the second part presents a set of 

empirical equations to compute the load exerted on an inclined wall and the base support by 

the rubble. 

Chapter 8 constitutes Part ill of this thesis. This part is dedicated to the presentation 

of a new ice force model. In the first half of Chapter 8, a base model for ice breaking is 

selected for incorporation into new rubble model developed in Part ll of this thesis. In the 
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latter part of Chapter 8, the new ice force model is developed, documented, and validated. 

The final chapter summarizes the research efforts and contributions made throughout 

this study. Conclusions arising out ofthls study and recommendations for future work in this 

area are given in this chapter. 
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Chapter 2 Literature Review 

The faceted cone is a structure proposed for future oil and gas developments in the 

Arctic and sub-Arctic regions; consequently. there is no theoretical and/or experimental 

studies on such structures available in open literature. Since the faceted cone possesses a 

basic conical form with inclined surfaces, a review of studies carried out on inclined 

structures. i.e., conical structures and inclined planes, could be helpful to the present 

research. Thus, the literature available on ice interaction with an inclined structure is 

reviewed and discussed in this chapter. Emphasis is laid on the available theoretical 

modelling of ice loads on the structure and the observed ice-structure interaction processes; 

the physical modelling of ice load is only brietly discussed. 

Over the last two decades, significant progress has been made in developing models 

to predict icc loads on inclined structures (including conical structures and sloping planes). 

Extensive reviews of the existing analytical and empirical methods were given by Sodhi 

( 1987). Marcellus et al ( 1988). Cammaen and Muggeridge ( 1988), and Sanderson ( 1988). 

Wessels and Kato ( 1989) reviewed the ice failure modes around conical structures. and 

summarized the available model scale and full scale measurements. Evaluations of the 

performance of several methods were given by Croasdale ( 1980). Timco ( 1984a), Marcellus 

et al ( 1988), and Chao ( 1992). 

Section 2.1 gives an overview of the dominant interaction processes as observed in 

model tests. The subsequent theoretical models are summarized in Section 2.2. The work 
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described in this thesis was conceived as part of a larger project with collaboration among 

many participants. A general overview of the whole test program is given in Section 2.3. 

The major findings reported by other participants are also summarized in the section. 

Section 2.4 compares various modelling approaches and gives a state-of-the-art assessment 

of the present available expertise on ice force predictions on conical structures. 

2.1 Ice-Structure Interaction Processes 

2.1.1 Conical Structures 

The following description of the interaction between a conical structure and a level 

ice sheet is based on the studies reported by Croasdale ( 1980), Sodhi ( 1987), Wessels and 

Kato ( l 989). and others. Additional details of the failure processes and ice forces 

encountered by sloping structures have been obtained from experiments carried out by 

Haynes et al ( 1983 ), Wessels ( 1984 ). Kato ( 1986 ). Hirayama and Obara ( 1986 ), Clough and 

Vinson ( 1986). Maattanen (1986), Lau et al (1988), and Lau and Williams (1991). 

As an ice sheet advances toward a conical structure, local crushing of ice occurs at 

the ice-structure interface. The local crushing creates an interaction force normal to the 

structure surface. In addition, because the ice is sliding upwards relative to the surface, a 

frictional force is also generated. These forces create in-plane and out-of-plane forces, and 

an edge moment; and a complex three dimensional stress state is induced in the ice. As the 

ice sheet continues to advance, the stresses increase until failure of the advancing ice sheet 

occurs in either one or a combination of the following failure modes: bending, crushing, 
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shear, buckling, and splitting. Observations show that the bending failure is more dominant 

than the other modes of failure under interaction conditions such as low inclination angle 

( l0° to 60°), low ice-cone friction coefficient, small ice thickness, and low speeds of ice 

movement. 

For a bending failure of ice sheet, the failure mechanism is governed by the flexural 

stresses induced in the ice in both radial and circumferential directions. (f the cone is small 

compared to the ice thickness, radial cracks radiating at 60° intervals initiate the failure. The 

peak. load, however, occurs when circumferential cracks develop and wedges of ice break off. 

With increasing cone diameter the curvature of the cone surface at the waterline decreases. 

and the maximum tensile stresses of the ice cover change from circumferential direction to 

the radial direction. This process causes the ice sheet to fail first circumferentially and 

thereafter radially. 

Failure modes other than bending can dominate under specific loading conditions. 

With increasing steepness and roughness of the cone surface, or ice thickness, the failure 

mode also changes gradually from bending to shear or crushing. At higher speeds, the failure 

mode changes abruptly from bending to shear or crushing due to dynamic effects (Wessels, 

1984: and Haynes et al. 1983). The speed at which the transition of failure modes takes 

place was found to increase with the increase in the inclination angle (Haynes et al, 1983 ). 

The influence of shear stresses on determining failure modes becomes more 

important with increasing ice thickness and is finally predominant for thick ice fields 

( Maattanen, 1986 ). Observation of actual fracture patterns in thin ice reveals that pure 
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bending occurs when circumferential cracks form at distances slightly higher than the 

characteristic lengths; and with increase in thickness, the average length of broken pieces 

decreases which may indicate a combination of bending and shear failures (Wessels, L 984; 

and Lau et al. 1988 ). 

Michel ( 1978) has described the condition where ice sheets interact with inclined 

structures having an inclination to the horizontal of greater than 75°. For structures in this 

category, crushing will generally take place before bending. 

After the local failure of an ice sheet the broken ice pieces, pushed by the 

approaching ice sheet, rotate until they are parallel to the inclined surface, and begin to ride 

up the face of the structure (which has been termed ride-up); then the ice clears around and 

slides down the back side of the cone. As the ice pieces rotate, water drag and inertia forces 

arc developed on the structure. The broken ice pieces sliding up the inclined surface also 

develop frictional and gravity forces on the surface. 

The geometry of structure above the waterline has a significant influence on the way 

the broken ice clears around the structure. On a cone with relatively narrow superstructure. 

the ice can clear around the structure easily: however, for a wide conical structure or a 

sloping plane. the ice may reach the superstructure and roll back onto itself. creating 

additional ice on the slope of the structure. which may lead to an ice rubble pile in front of 

the structure, interfering with the ice breaking process. 

[f the ice is weak, the load applied to the unbroken ice sheet by the broken ice pieces. 

as they are being pushed up the cone surface. may cause the ice sheet to fail in bending with 
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the broken ice pieces sliding down the front of the cone. 

2.1.2 Sloping Planes 

Many experiments have been conducted to study the features of ice failure processes 

and the associated ice loads on narrow and wide sloping planes (Zabilansky et al. 197 5; 

Sorensen. 1978; Haynes et al, 1983; Timco, 1984b; Frederking and Timco, 1985; Michel 

and Picard. L 989; Valanto. L 989; and Finn. 199 L). The observed failure modes and the 

interactions are similar to those described in the previous section. The features of ice failure 

processes. particular to ice interaction with sloping planes, were summarized as follows 

(Sorensen. 1978; and Timco. 1984b): 

As the ice sheet is lifted upwards by a narrow plane, two radial cracks extend outward 

from the comers of the plate at an angle of about 30° according to Michel and Picard ( 1989) 

and Frederking and Timco ( 1985), and 45° according to Finn ( 1991 ), to the sides of the plate. 

forming a cantilever beam with the width slightly wider than the structure. Occasionally, a 

radial crack also emanates from the centre of the plate (Finn, 1991; and Michel and Picard, 

1989). When the flexural stress in the ice sheet exceeds the strength of the ice, a 

circumferential crack forms at a finite distance from the structure, and the peak load is 

attained. Under some circumstances, the peak force could occur during the radial cracking 

(Frederking and Timco, 1985). 

Upon further advance. the broken ice slabs slide up the front face reaching the top of 

the structure. The ice which overhangs the sides of the inclined plane usually breaks off due 
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to its own weight. [n comparing with conical structures, the ice clearing around a sloping 

plane is less efficient. The broken ice slabs usually reach the top of the structure. [f they are 

not cleared off, they may roll back onto themselves. leading to an ice rubble pile in front of 

the structure. which interferes with the ice breaking process. 

2.2 Models for Ice Force Predictions 

The development of computational methods for ice loads on sloping structures has 

been limited because ofthe lackofknowledge about the dynamic nature ofinteractions. and 

the complex rheological behaviour of ice and boundary conditions during the interaction. 

In order to meet the practical needs of designing structures with conical forms, various 

computational methods have been developed by making assumptions that would permit 

analysis of the problem using available theoretical procedures. The simplest method to treat 

the interaction is to assume that the structure is rigid and that only the deformation and 

failure of ice sheet are considered. (t should be noticed that all the analytical formulae were 

derived based on observations from small-scale model tests with gentle sloped cones (i.e., 

- 45" to the horizontal), thin ice, low friction coefficient and low ice speed, in which bending 

failure is dominant. 

In the following sections, several approaches for predicting sheet ice loads on 

inclined structures are reviewed, which cover essentially all the imponant known models, 

and are representative of the available approaches. These approaches generally fall into two 

basic types: 
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(i) Analytical formulations based on elastic or plastic analysis, and 

(ii) Semi-empirical formulae based on experimental data. 

2.2.1 Analytical Formulations 

Classical analytical procedures have been adopted to investigate the effects of an ice 

sheet impinging on a single conical structure. The forces depend on the mechanisms of 

failure and the geometry of the structure. Usually dynamics, creep and other effects are 

completely neglected with some justification. 

2.2.1.1 Croasdale's Approach 

Croasdale ( 1980) proposed a simple two-dimensional theory for wide structures 

based on the theory for beams on elastic foundations (Hetenyi, 1946). The ice sheet was 

treated as a semi-intinite elastic beam on elastic foundation subjected to a horizontal force, 

F,, and vertical force, F~.. at one end. At the instant of first contact, the relationship between 

F, and F~. can be derived by resolving the forces, viz., 

(2-l) 

where ~ is called resolution factor defined as: 

sina +f.! cos« 
·' (2-2) 

cosa -).1 sina 
.f 
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with a. being the angle of the slope from the horizontal and J.l~ the friction coefficient. 

The maximum value of Fz is limited by the flexural (tensile) strength of the ice sheet 

with an vertical edge loading supported by an elastic foundation. The horizontal force per 

unit width of the structure, generated at the instant of first failure of ice, is given by: 

F ( sf ---:: = 0.68a Y .,.} ~ ~ 
D f E 

(2-3) 

where D is width of the structure; err, bending strength; Yw• weight density of water: t, ice 

thickness; and E is elastic modulus of ice. For subsequent interaction, an extra force is 

required to push the ice up the slope. The corresponding total force experienced by the 

structure is 

(2-4) 

where: 

~I = 0.68~ (2-5) 

sina + fl.rcosa 
~(sina + fl.rcosa) + 

tan a 
(2-6) 
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with z being the free-board. and y the weight density of ice. 

In the above relationship (Equation 2.4 ). the first term (on right hand side) can be 

considered as the force necessary to break the ice, and the second term can be considered as 

the force necessary to push the ice pieces up the sloping structure. It could be a simplified 

2-D relationship for a wide structure, but as the structure width decreases relative to the 

characteristic length of ice. the zone of ice failure will be wider than the structure itself. and 

most of the ice pieces will not necessarily ride-up the structure but clear around it. For 

narrow structures, Croasdale suggested a simple correction to adjust the two dimensional 

force by the ratio of the length of the circumferential crack divided by the structure width. 

i.e .. multiplying the ice breaking component by 

4D 
(2·7) 1 + 

where lc is the characteristic length for the plate given as 

1. = (~\± 
( 12y r ... 

(2·8) 

However, other investigators (Ralston, 1977; and Nevel, 1980 and 1992) have given more 

rigorous analyses of the three-dimensional problem. 
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In 1994. Croasdale et al extended their three-dimensional analysis to incorporate 

adjustments for in-plane compression as well as effects of ice rubble build-up in front of the 

structure. The in-plane compression creates a compressive stress in the ice sheet increasing 

it's effective tlexural strength. The increase in load was computed through an iterative 

process. The modifications for the presence of ice rubble include: the force necessary to 

push the advancing ice sheet through the ice rubble; the additional force necessary to push 

the ice blocks up the slope through the ice rubble; and. the additional force necessary to lift 

and shear the ice rubble on top of the ice sheet. Croasdale pointed out that the model was 

simple to use and could be easily incorporated into a probabilistic methodology. He further 

asserted that the model gave results similar to more complex models, i.e., Nevel's model 

( 1992) although simplistic assumptions had been made. 

His model is based on simple mechanics and provides a good appreciation of the 

important roles various parameters and processes play on ice force development. It can be 

a useful starting point for the development of more complex approaches, and will be 

examined in a greater detail in Chapter 9. 

2.2.1.2 Nevel's Approach 

In a three dimensional case when the zone of failure extends wider than the structure, 

the failure occurs after the formation of radial cracks when a circumferential crack takes 

place. Therefore, the simple beam theory has to be replaced by a more complicated plate 

theory. and the ice force problem is reduced to the prediction of the forces necessary to: 
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( i) Initiate radial or circumferential cracks in a semi-infinite floating ice sheet, 

and 

(ii) Fail a series of truncated ice wedges, formed by radial cracking of the ice, as 

it advances against the cone. 

Nevel ( 1965) performed numerical integration to determine the bending moment 

required to initiate failure of an semi-infinite floating ice plate. He treated the problem as 

a semi-infinite plate on an elastic foundation with a load applied near the ice edge. The 

maximum deflection which occurred at the edge under load, the moment which caused the 

initial radial cracking of the plate, the distance from the edge at which a circumferential crack 

would occur, and the moment that caused the circumferential crack were calculated and 

given in graphical and tabulated forms. 

If the failure was initiated by radial cracking, a series of truncated ice wedges would 

form. and the subsequent failure was reduced to the prediction of forces necessary to fail 

these wedges. Nevel ( 1972) gave the failure force P on the tip of a truncated wedge to be: 

6P 

b a t 1 

" I 

3 
= 1.05 + 2.0(~) - 0.5(~) 

l l (" c 
(2-9) 

where a is the distance from the tip of the wedge over which it is loaded, and bo is a constant 

defining the width of the wedge, b, in the equation 

b = b X 
" 

(2-10) 
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with x being the distance along the wedge. His analysis compares favourably with published 

data on the ultimate load carrying capacity of ice sheets. 

Nevel ( 1980) further analysed the wedge on an elastic foundation subjected to an in 

plane force and edge moment and he considered the buckling and bending of this wedge. An 

exact solution was obtained by means of a contour integral in a complex plane. ln general, 

the solution shows that this additional moment is small because the deflection of the ice 

wedge is small when failure of the wedge occurs. However, the effect of in-plane 

compression becomes increasingly important for steeper cones and thicker ice. 

Recently. Nevel (1992) refined the existing analytical theories and presented a 

rigorous treatment of ice forces and moments on conical structures from ice floe. The new 

theory included either simultaneous or sequential breaking forces and the ride-up forces. The 

ice cover was treated as an idealized truncated wedge based on his earlier work ( 1980). Of 

particular significance is the development of forces from ice sliding on the surface of the 

cone. The analysis identified where the forces acted on the cone, and hence allowed the 

determination of moments. Furthermore, the in-plane compression and edge moment were 

incorporated in the solution. 

In general. the cone could be multi-sloped, composed of a number of conical sections 

with the vertical neck of the cone being the smallest section. For each broken ice piece, the 

forces which act on the cone were determined along with those which were transmitted to 

the broken ice piece below. The analysis proceeded from the neck section to the waterline 

with a resultant ice load from the broken ice pieces acting on the floating ice wedges. 
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To calculate the wedge failure load, Nevel used his solution for the deflection of a 

wedge on an elastic foundation (Nevel, 1980) by considering the bending of a wedge beam, 

with it's free end being acted on by a shear force, a bending moment, and a compressive 

horizontal force . For sequential breaking, it was assumed that the maximum load on the 

cone occurred when the centre wedge failed. Hence, the maximum force was the sum of 

force from the wedge nearest the centre which failed and all other wedges that did not fail. 

In simultaneous breaking, the breaking loads for all the wedges were summed. 

A computer program was written which allowed sufficient variations of the input 

parameters permiuing the simulation of realistic ice condition. His solution was rather 

complicated and too lengthy to be reproduced here and the reader is referred to the original 

paper for full details (Nevel. 1992). 

2.2.1.3 Ralston's Approach 

Croasdale' sand Nevel's approaches were based on the theory of elastic plate or beam 

on elastic foundation. An analysis by Ralston ( 1977), was based on an elastic 4 plastic 

representation of the ice failure. He used three4 dimensional plate theory, and plastic limit 

state analysis, where the work done by external forces was equated to the rate of energy 

dissipation. The use of an upper-bound procedure of plastic limit analysis led to a 

mathematical model for both sheet ice failure and ride-up on a conical structure. The derived 

formulae for the horizontal Fx and the vertical forces Fz were expressed as follows: 
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(2-11) 

(2-12) 

where D" and D were top and waterline diameters of the cone, respectively; A1 and A2, 

coefficients dependent on: 

(2-13) 

and A~, A.h 8 1 and B:! were coefficients dependent on the cone angle and ice friction. Values 

for the coefficients were given in his paper. 

In both the equations given above (Equations 2.11 and 2. 12), the last term (on the 

right hand side) is due to ice pieces sliding over the cone surface, and the other terms result 

from ice breaking. According to observations, radial cracks occur before circumferential 

cracks and not simultaneously. These circumferential cracks give the maximum assumed ice 

loading condition. The elastic analyses of failure follow closely each stage of crack 

development, while the simultaneous formation of the circumferential and radial cracks 

assumed in Ralston's model is not realistic. Therefore, Ralston's plastic approach tends to 

overestimate the bending resistance of ice. Maattanen and Hoikkanen ( 1990) modified 

Ralston's solution to omit the contribution of energy dissipation due to radial cracking. This 

result gave a better fit to their model test data and field measurements. Nevertheless, 
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Ralston· s theory has been regarded widely to be satisfactory in predicting ice forces after 

extensive comparisons with experimental data. 

2.2.1.4 Maattanen's Approach 

Full-scale measurements (Maattanen and Mustamaki. 1985; Hoikkanen. 1985) have 

indicated that a rubble pile is likely to form in front of a conical structure. Previous scale 

model tests and theoretical models do not consider the effects of pile-up. 

Maattanen ( 1986) refined the analytical models by taking into account the effect of 

the ice rubble pile on the bending moment distribution in the ice sheet in front of the 

structure. The model is formulated using finite element methods capable of both bending 

and buckling analysis. A constant thickness ice sheet is moving laterally and breaking 

against an inclined wall under a triangular shaped ice rubble pile. The rubble pile is treated 

by using classical Coulomb's soil mechanics. The two dimensional model is based on the 

bending theory of a beam on elastic foundation. The loading consists of horizontal and 

vertical edge reaction loads and distributed vertical and horizontal rubble loads. Different 

ice failure modes are considered. 

An example calculation shows that the ice rubble pile loading enhances edge crushing 

and shearing. changes the location of the maximum bending moment, and results in smaller 

broken floes than predicted by previous models. With the same bending moment level the 

ice load could increase by about SO% due to the ice rubble. 

In a subsequent work, Maattanen and Hoikkanen ( 1990) extend the analysis to a three 
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dimensional case. The beam theory is replaced by a more complicated wedge plate theory. 

The new ice force calculation procedure is compared with results of full scale measurement 

and scale model tests. The correspondence between the calculations and measurements 

appears to be good. 

2.2.2 Empirical Formulae 

Empirical and semi-empirical formulae have been proposed based on small scale 

model tests (Afanas'ev et al, 1971; Edward and Croasdale, 1976; Pearce and Strickland. 

1979: Brooke, 1981; Hirayama and Obara, 1986; and Kato. 1986). The total force was 

customarily split into two components: 

(i) The force essential for breaking the ice. and 

(ii) The force necessary to cause the broken ice to slide up the surface. 

Dimensional analysis has been the main tool in finding the form of equations. The 

coefficients in each formula are then determined by linear regression analysis of data from 

respective experiments. The empirical formulae are summarized in this section. The test 

variables for each test data sets, and the coefficients of the respective formula are listed in 

Table 2.1. 

Afanas'ev et al ( 1971) proposed the following empirical relationship based on elastic 

plate theory: 

F 
-~ 

(2-14) 
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where 

s 
ll ::: __ .r;...._ 

" 1.93(. 
(2-15) 

with S, being the length of the circumferential crack given as 

s 
X 

1.76 ( D + 1t(.) 
2 4 

(2-16) 

Their results give only the breaking component of the force exerted by the ice sheet. 

Although this formula underestimates the force. the effects of ice strength. ice thickness. and 

cone angle are clearly included and the trends seem reasonable. 

Edwards and Croasdale ( 1976) performed a series of model tests on 45° cones with 

a friction coefficient of0.05. They dimensionally argued that the horizontal force F,_ on the 

cone should be 

F a o t 1 
+ a 1yDt 2 

.r " J (2-17) 

where ao and a1 are constants. The first term is the ice force caused by ice breaking, and the 

second term is the force generated due to ice riding up the structure slope. The ride-up force 

component is a function of D and t2
, while the breaking component is independent of the 

width of the cone at waterline. The form of the empirical expression is similar to Ralston's 

plasticity model except that the ice ride-up component contains Dt2 rather than D2t. Ralston 
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( 1977) commented that if the ice clearing tenn was re-written in terms ofD~. the coefficients 

would also be approximately those computed by his analysis for the test conditions. Data 

from model tests showed reasonable agreement. 

Pearce and Strickland ( 1979) claimed that the equation 

(2-18) 

fitted their experimental data. 

Brooks ( 1981) adapted the general form of ice resistance equation for an ice breaking 

ship to fixed, upward-breaking, conical structures as: 

(2-19) 

where V is the velocity of the ice. The first term is the ice breaking component, the second 

term is the ice ride-up component. and the third term accounts for the inertia effects of the 

moving ice sheet. Dimensional analysis yields relationships between the exponents in each 

term of the equation. The coefficients, <lu. a1, a2, and the exponents were determined from 

a limited data set derived from model tests with a 45° cone. The test variables included 

waterline diameter, ice flexural strength, ice thickness, and ice velocity. 

Based on their model tests and several other published test data sets, and dimensional 

analysis. Hirayama and Obara ( 1986) proposed the following formula: 
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(2-20) 

Their results agreed well with other published test data and with the theoretical results of 

Ralston ( 1977). However, the data showed a slight dependency of ice breaking component 

on ( Dll.), and such dependency was not observed in previous tests. Ralston explained that 

the apparent discrepancy was due to the small values of (0/l.:) tested by other investigators, 

which was typically limited to a range of less than 0.5. When (0/lc) << 1, there will be no 

dependence on the cone diameter. 

Kato ( 1986) published the following empirical formula: 

F 
_[ (2-Zl) 

where the coefficients <1u and at were functions of cone contiguration, coefficient of friction, 

and relative velocity between ice and structure. Kato kept the friction coefficient between 

ice and the structure at 0.09 in his model tests. Since the coefficients in the analytical 

expression were also dependent on the friction coefficient, he commented that it was 

necessary to investigate the dependency of these coefficients on the coefficient of friction. 

2.3 MUNIERCLINRC Multi-Faceted Cone Tests 

The experimental work conducted by the author was carried out as part of a larger 

project, entitled "MUNIERCUNRC Multi-Faceted Cone Study", a collaboration between 

28 



Memorial University of Newfoundland (MUN). the National Research Council Canada 

(NRC). Esso Resources Canada Limited (ERCL). Exxon and Mobil. As the major focus of 

the collaborative program was on ridges. only limited amount of data were obtained for level 

ice. Nevertheless. sufficient data on level ice were obtained from which valuable insights 

were gained and further mathematical modelling was made possible. ln Section 2.3 . 1. the 

test program is briefly summarized. followed by a review of the findings contributed by other 

participants of the program. Emphasis is given to the level ice tests as they form the focus 

of the present study. 

2.3.1 Test Program 

The principal objectives of the collaborative program were: 

( i) 

(ii) 

To understand how multi-year ice floes and ridges would interact 

with a multifaceted cone; and 

To investigate the effects of ice-structure interaction and the 

forces developed on faceted conical structures having the 

diameter of the above-water vertical "neck" to be almost as 

large as the waterline diameter. 

Under the cooperative agreement. ERCL was responsible for the testing of two large 

scale models (I: 10 and l :20) in their outdoor basin in Calgary. The test program for MUN 

and NRC involved testing of small and a medium size models at NRC's indoor facilities -

a I :50 scale model at the lnstitute for Mechanical Engineering (IME) in Ottawa and 1:25 and 
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l :50 scale models at the Institute for Marine Dynamics (11\10) in St. John's. With model tests 

conducted in four different scales. the results of this program could be used to determine the 

influence of any scaling effects on modelling ice-structure interaction as well as to provide 

a good comparison of model ice results with those where "naturally grown" saline ice was 

used. i.e .. ERCL's series. 

The principal dimensions of the prototype and model structures are shown in Figure 

2.1 and summarized in Table 2.2; the circumscribed diameters are given for base, waterline, 

collar and neck dimensions. The dimensions are based on the geometry of several large 

exploration drilling structures designed for the Beaufort Sea. These concepts incorporate 

sloping flat faces (facets) and wide necks above the ice waterline. The structure is a six-

faceted multi-anele cone having a circumscribed diameter of ll5.5 mat the base. 30.0 mat .... .... 

the waterline and 23.1 mat the neck. A similar structure with a ll.6 m wide neck was also 

modelled to study ice interaction with cones having a smaller neck to waterline diameter 

ratio. The number of sides was chosen to emphasize the effect of using a multifaceted 

structure as distinct from a smooth cone. The slope of the sides, 5:6 or about 40", was close 

to that proposed for several exploration drilling structures. The steep 2: 1 slope section 

between the neck and the larger lower section was designed to prevent thick ice pieces from 

jamming against the neck. 

During the IME test, the model was elevated to give a larger waterline diameter to 

increase the loads on the structure for reasonable accuracy of the measurement. This resulted 

in a scale of approximately l :30 at the waterline for I:ME's tests. lME's tests were carried out 
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only with small-neck model. whereas both IMD's and ERCL's tests used both small and large 

neck models. 

The ice sheet used in the IME and IMD test series was made of EG/ AD/S model ice 

developed by Timco ( 1986), whereas saline ice was used in ERCL's test series. Flexural 

strength of the ice sheet was measured using several insitu beams. In most of the tests, the 

beam loads were measured by applying the load, both in the upward and downward 

directions. The elastic modulus, ice density and friction coefficient were also measured 

during all the tests except the IME series. Several measurements for the compressive and 

shear strength were also carried out for IMD's tests. 

The models in IMD's and ERCL's facility were tested in a face-on orientation in 

which a facet was facing the approaching ice. Two additional orientations, edge-on and 

intermediate, were also tested in IME's series to examine the effect of orientation. 

ERCL's series primarily focussed on ridge loads on structure. Data from the level 

ice tests were limited in nature which prevented detailed parametric evaluation. 

Nevertheless, ERCL's tests were performed in a much larger scale than the existing tank 

experiments, and natural grown ice were used, which provided valuable data for ice force 

model validation. On the other hand, IMD's and lME's test series provided a substantial 

amount of data in level ice under various highly controlled test conditions; hence they 

provided valuable data for detailed parametric evaluation and process identification. 

The measured ice properties along with the configuration of the test condition in each 

test for ERCL' s and IME• s series are extracted from respective data report and reproduced 
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in Appendix A for quick reference. 

2.3.2 Analysis of IME's Test Results 

Rubble building is an essential part of the ice clearing process. Large amounts of 

rubble accumulate in front of the cone. and impose substantial loading on the structure and 

the intact ice sheet. 

Izumiyamaet al ( 1994) analysed the model test data obtained in NRC-IME's facility, 

and provided quantitative information on the formation of the rubble field and its effects on 

the ice forces. They identified four types of rubble formed in front of the faceted cone with 

face-on orientation. A schematic of each rubble type is shown in Figure 2.2 with the 

following description given after lzumiyama et al (1994): 

(i) A-Tyoe: 

When the ice was strong, the ice pieces were very large compared to 

its thickness. The broken ice pieces would ride-up the model and fall off the 

side of the facet readily. The rubble field that formed was small. 

(ii) 8-Tyoe: 

This type of rubble field was commonly observed. To form this type 

of rubble field. the ice pieces which fell from the top of the cone would roll 

back down the front of the cone, and form a single-thickness rubble field as 

a steady-state condition. 
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(iii) C-Tyoe: 

This type of rubble field was also quite common. It was similar to the 

8-Type, except that the ice pieces broke up into many small pieces as they 

rolled down the front of the model, when the ice strength was low. This 

created a rubble field consisting of small ice blocks and crushed, mushy ice. 

(iv) D-Tvoe: 

This type of rubble field was not common. It generally occurred when 

the ice was both thick and strong, and large pieces of ice would pile up in 

front of the cone. 

The occurrence of various types of rubble was found to be a function of ice strength 

and ice thickness. Figure 2.3 shows the occurrence of the different types of rubble in 

strength-thickness domain. 

The size of broken ice pieces played an imponant role in the rubble formation process 

and the ice force exened on the model. lzumiyama et al also performed a piece size analysis 

with data from the lME series. They reponed the average sizes of ice pieces at the neck. Lw 

and LL, were directly proponional to the parameter, L = (Ortl"fw)'", as shown in Figure 2.4. 

The Lw and LL are defined in Figure 2.5. 

Izumiyama et al also showed the ratio of the maximum ice force on the model, Fp 

to that in the no rubble condition. FTo• as a function of UD, where D is the maximum 

waterline diameter of the model (Figure 2.6). The effects of the rubble field on the ice force 

were shown to be a function of ice piece size, ice strength and ice thickness. Based on their 

33 



tests, the rubble can increase the ice load by a factor of 1.5 to 2.5. 

2.3.3 Analytical Models 

Croasdale et aJ ( 1994) and Izumiyama et aJ ( 1993) have developed ice force models 

concurrently based on observations from the multi-faceted cone experiments. 

Croasdale et al ( 1994) compared his model with the experiments conducted in 

ERCL's outdoor test basin where ice rubble was present as shown in Figure 2.7. Their 

model is reviewed in Section 2.2.1.1. The size of the rubble was estimated from 

photographs. lt should be noted that Croasdale et a1 only developed a theory for single slope 

cone structures, while the test structures were multi-sloped. The procedure by which he 

adapted his theory to the multi-sloped cone was not provided. Despite a large scattering of 

data at the lower measured load levels, his predictions agreed quite well with the 

experimental data, and provided an upper-bound to the measurements. 

[zumiyama et al ( 1993) extended Frederking and Timco · s work ( 1985) on ice forces 

on inclined panels, and developed a model for ice force exerted on a face-on oriented cone 

with rubble present. By considering various force components on the ice sheet contacting 

the facet at the waterline as shown in Figure 2.8, they identified the following component for 

ice force: 

F_ = V
8 

+ VR + R + (P + R)sina (2-22) 

where Fz is the total vertical force; V 8 , the vertical force required to break ice; V R• the force 
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due to rotation of ice; R. the force due to the weight of ice rubble; and P is the force due to 

the weight and friction of ice pieces on the facet. For further details about each individual 

force components, please refer to their paper. 

lzumiyama et al established the validity of their model under no rubble condition by 

comparing their model predictions with the peak force in the initial portion of force time 

series. where ice rubble was absent, as shown in Figure 2.9. The tigure shows good 

agreement between model prediction and measurements. Furthermore. the comparison 

shows that the existing model treatment of the ice force on conical structures is applicable 

to a faceted cone for the prediction of the ice breaking and ride-up forces. if the unique 

geometry of the faceted cone is properly considered. 

Izumiyama et al' s model requires the vertical force R due to the weight of rubble to 

be known. To estimate the values of R. Izumiyama et at introduced a rubble coefficient, CR. 

where: 

(2-23) 

with wr being the width of facet at waterline; y. weight density of ice; y..,. weight density of 

water; and 111 • the breaking length taken as half of the characteristic length. This rubble 

coefticient gave the relative index to the volume of rubble ice field. They established the 

relationship of the rubble coefficient as a function of ice thickness and strength by back

calculating the coefficient of each test using their model (Figure 2.10). Izumiyama et al 

pointed out the complexity of rubble modelling, and the various factors affecting its 
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formation. Although, a functional relationship was observed between the rubble coefficient 

and the ice thickness and strength, the large scattering of data testifies to the complexity of 

rubble piling, and further study and accumulation of data are needed. 

Izumiyama et al's and Croasdale et al's models were formulated based on a limited 

set of test data. The functional relationships of the rubble geometry, ice mechanics, and 

clearing process to the basic ice and structure parameters had not been adequately 

established. The lack of such relationships from models severely limited their applicability 

to a wider range of ice and structure conditions. Despite the over-simplification of the 

interaction process, both models have clearly identified the interaction between the important 

force components, which may form the basis for future model developments. 

2.4 Comparison of Models and Discussions 

Many of the empirical formulae reviewed so far take a common form: 

(2-24) 

where the coefficients <~o and a1 are functions of structural shape, coefficient of friction and 

relative velocity. Since it is considered that the breaking component is due to bending which 

relates to a factor of O'r t!. and the ride-up component relates to a weight of ice mounted on 

the structure, the form is reasonable. 

The fundamental limitation of the empirical formulae has been that they have 

modelled only a particular situation and hence cannot be extended to other situations. This 
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limitation leads to a wide range of values obtained for the respective coefficients. As shown 

by Croasdale ( 1980) and Chao ( 1992), a substantial variation of force prediction still exists, 

and a conclusive confirmation of the empirical approaches has not been reached. 

Most analytical models for forces on a conical structure have calculated either F ~ or 

Fl. and used the resolution factor, ~.to calculate the other force component, i.e .• Equation 

2.1. The resolution factor is theoretically derived for a sloping plane; and. therefore. it 

would hold for forces on an inclined plane only. For a cone local ice failure and deflection 

of the sheet distributes the force around the circumference. Bercha and Danys ( 1975) have 

shown that if FL is uniformly distributed around the front half of the circumference, then the 

ratio of the net forces obtained by integrating the respective force distributions around the 

circumference is given by 

(2-25) 

Thus, the value of the resolution factor depends on the distribution of the forces around the 

cone. Lau and Williams ( 1991) have shown that such consideration is vital in the 

interpretation of experimental data. 

All analytical models and empirical formulae reviewed so far essentially describe 

quasi-static behaviour in which the inertial loads are low enough to be neglected. Results 

from many model tests (Haynes et al, 1983; Wessels, 1984; Maattanen, 1986; and Lau and 

Williams. 1991) have shown a speed effect on failure mode and ice force, and it is widely 

recognized that a static analysis may not suffice to explain the dynamic effect. 
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The influence of shear stresses on determining failure modes becomes more 

important with increasing ice thickness. Since the existing theories are formulated by 

assuming pure bending failure using classical theories of thin beam or plate on elastic 

foundation with the shear stress across ice thickness being ignored, the validity of these 

formulae in predicting failure of thick ice may be questionable. Furthermore, failure modes 

other than bending may dominate under certain indentation conditions. 

Limited field measurements of ice loads on conical shaped bridge piers and 

lighthouses have been made and reported in the literature (Danys and Bercha. 1975; Alberta 

Research Council, 1980; Oshima et al, 1980; Hoikkanen. 1985; Frederking et al. 1985; 

Maattanen and Mustamaki, 1985; Frederking et al, 1992; Maattanen, 1994; Cheung, 1997; 

Brown et al, 1998). The ice failure mode observed was usually different from existing 

theoretical and experimental models. It was also observed that a rubble pile is likely to form 

in front of a conical structure (Maattanen and Mustamaki, 1985; Hoikkanen, 1985). This 

large amount of rubble, accumulated in front of the cone, imposes substantial loading on the 

structure and the intact ice sheet. An ice clearing component as much as 80% of the total 

load on the structure has been measured in the work described in this thesis. Previous model 

tests and theoretical models do not consider the effects of pile-up. Omission of such factors 

in those analytical and empirical formulations might have severely underestimated the ice 

forces. 

The foregoing review of past research shows that the most general and advanced 

analytical theories available at present have the theoretical weakness of application limited 
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to thin icc. small resolution factor and low interaction speed in which pure bending failure 

is dominant. They are also limited to the initial stage of the interaction before any significant 

rubble piles up around the cone. However, the prevailing practice of component delineation 

according to the two dominant interaction phenomena, i.e., ice breaking and ice clearing, is 

consistent with the currently available experience of ice loads on conical structures. 

Preliminary analysis of results has been reported (Croasdale and Muggeridge, 1993) 

in which reasonably good agreement has been found between forces measured from the 

faceted cone tests and those computed using the existing theories for smooth cones. It now 

appears that this agreement is accidental since the ice clearing pattern is totally different from 

that postulated in the smooth cone models. 

The present state of rubble modelling as exhibited by the two models formulated 

concurrent to this research, i.e., lzumiyama et a1 ( 1993) and Croasdale et al ( 1994 ), shows 

two weaknesses: 

(i) The rubble eeometrvwas highly uncertain. The existing models select rubble 

height on the basis of limited observations from tank tests. The dependency 

of rubble geometry in ice and structure parameters has not been formulated 

which limits use of the models to a narrow range of ice and structure 

conditions. 

{ii) The stress-state of the rubble is highly uncertain. The assumptions and 

simplifications with regard to the state of the rubble may not be valid which 

can cast doubt on the validity of the treatment. lnfonnation on the stress-state 
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of the rubble is fundamental to rubble modelling. 

ln the subsequent analysis of the experimental data and the numerical analyses 

developed for ice load computation. an effort is made to improve the modelling procedure 

and thus remove those limitations. 
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Tahle 2.1 Test conditions of each data set used in model formulation and coefficients of the associated formula 

-·----- ---·----· ___ , ___ ___ -------- - -- -·----- --··- ----~----- ---··------

Cone Cone Neck Ice Flexural Ice Friction Ice 

Test Angle Waterline Waterline Thickness Strength Modulus Coeff. Velocity au, ai and 

(l (u) D(cm) D" (em) t (em) crr (kPa) E (MPa) Jl~ () 
v a2 

(em/sec) 

Afanas'ev et al 30,45, 
12- 18 9.7 3.0-3.5 37-40 29.4 au: Eq. 

( 1971) 60 
n.a. n.a. 

2.15 

Edward & 
au= 1.6 Croasdale 45 25. 100 0 1.7 - 6.8 I - 41 n.a. 0.05 n.a. 

(1976) a1 =6.0 

Pearce & 
Strickland 45,60 73.7 48.9 1.3- 9.9 13.8 6.9 n.a. 1.27 n.a. 

( 1979) 

63.5- 3.56- 10.3- a11 = 0.285 
Brooks ( 1981) 45 

102.6 
n.a. 

5.92 22.3 
-7.5 n.a. .18- 1.09 a1 = 5.47 

a2 = 797 

Hirayama & 
50-80 

10.4-
4.0-30.5 0.65-3.1 27-710 

35- ao = 2.43 
Obara ( 1986) 37.5 2000 

n.a. n.a. 
a1 =0.7 

Kato (1986) 45.80 34.2-
14-29 2.0-5.0 10 - 40 0.09 

34.9 
n.a. n.a. n.a. 
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Table 2.2 PrOIOlypc and model gcomcrrics: symbols given in Figure 2.1 

Prototype ERCL-Esso Basin 

I: 1 large 1:10 large I: 10 small 1:20 large 
Dimension neck (m) neck (m) neck (m) neck (m) 

Base", a 115.5 7.75 7.75 7.75 

Waterline"", b 34.65 3.465 3.465 1.74 

Collar, c 30.0 3.0 3.0 1.50 

Neck, d 23.1 2.31 1.155 1.155 

Height I, e 29.2 1.667 2.083 1.708 

Height 2, f 1.67 0.167 0.583 0.084 

Height 3, g 6 0.6 0.6 0.30 

Height4, h 20 1.4 1.0 1.00 

Note: "The base width was not modelled in model scale 
""The waterline of NRC-IME's model was modelled in I :30 scale 
All diameters are corner to corner 
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I :25 large 
neck (m) 

3.418 

1.386 

1.201 

0.924 

0.800 

0.067 

0.240 

0.800 

NRC-I MD NRC-
IME 

I :25 small I :50 large 
1:50 

small neck (m) neck (m) 
neck (m) 

3.418 3.418 1.84 

1.386 0.693 1.15 

0.739 0.601 0.60 

0.462 0.462 0.23 

0.966 1.016 0.58 

0.233 0.033 0.333 

0.240 0.120 0.134 

0.400 0.400 0.197 



Figure 2. 1 
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are of facet centres. given as a ratio of vertical to horizontal. 
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Figure 2.3 

Figure 2.4 
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Figure 2.5 

Figure 2.6 
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Figure 2.7 

Figure 2.8 
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Part I The Experiment 

Chapter 3 Test Program 

Part I documents the results of the experimental investigation conducted in lMD's 

test basin and the additional data analyses. As a part of this task, the results from all three 

test series were consolidated and analyzed. The test results were put into a spread-sheet 

containing relevant ice and structure conditions, ice forces and the associate failure 

processes. The available video recording made for each test was examined to identify the 

interaction processes and the corresponding failure mechanisms associated with each test 

condition. The influence of various parameters on ice loads and the associated failure 

processes were assessed through the parametric evaluation. The parameters considered 

include ice advancing speed, structure orientation, ice strength and thickness. The loads 

measured in the three test series were compared with predictions from a leading force 

prediction algorithm. The discrepancies found indicated a necessity for further model 

development. 

Through detailed analysis of the dominant interaction processes and the associated 

force levels under a wide range of test conditions, answers to the following three questions 

were sought: 

( i) Was there any similarity or otherwise between the faceted and smooth cones, 

in terms of interaction processes and the associated force levels? 
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(ii) Do the existing models provide satisfactory predictions of the model test 

measurements? 

(iii) What additional underlying processes are generated due to the new cone form 

that would be needed to improve the model prediction? 

The test program conducted in IMD has been documented in Lau et al ( 1993b). In 

this chapter, the test program is briefly described. It should be pointed out from the start that 

the test program conducted in 1MD is unique. It ventured into two new areas: Structural 

shape and ice thickness regime. Firstly, the inclined facet obstructed the clearing of broken 

ice. leading to rubble pile-up (rubble pile up was not observed in previous model tests with 

smooth cones). Secondly, the advance in ice modelling techniques and the increase of model 

basin size permitted testing in ice up to 0.16 m thickness without compromising scaling, 

adequate run distance and boundary conditions. The ice thickness of0.16 m targeted in these 

tests increased the ice thickness regime to about two times beyond those previously 

auempted with cones. Tests in thick ice led to ice breaking patterns different from those 

observed from previous tests conducted in thinner ice. The above two characteristics are new 

for such tests, and will be examined in detail in the following chapters. 

A brief description of the test facility, test structure, instrumentation, data acquisition 

system, and the model ice is given in Section 3.1 to 3.3. The test matrix and results are 

documented in Sections 3.4. Emphasis is given to level ice tests only. 
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3.1 Test Facility and Structure 

The model tests were carried out in the ice tank at the Institute for Marine Dynamics 

(IMD), St. John's, Newfoundland (Jones, 1993). The ice testing basin was 96 m long, 12m 

wide and 3 m deep with a useable ice sheet length of 76 m. The main towing carriage, 

weighing 80,000 kg, had a speed range ofO.OOl rnls to 4.000 m/s with an accuracy ofO. l %. 

The computer for the drive control and the data acquisition system were housed in the 

thermally insulated control room on the carriage. 

The experimental set-up is shown in Figure 3.1. The structure was tested at two 

scales, 1 :25 and 1:50, with a large neck, and additional tests were performed in 1:25 scale 

with the smaller neck. Dimensions of the three model configurations are shown in Figures 

3.2 to 3.4. The model was designed in modules to allow the scales and neck sizes to be 

easily changed. The main component of the model is the lower cone structure to which 

various necks and collars could be attached to facilitate these changes. The model was 

constructed of 1/4" thick marine grade aluminum plates welded to a rigid frame of 2" x 4" 

aluminum channels. The model surface was finished to a friction coefficient, J.l,, of 0.09. 

The model was rigidly mounted to the underside of the ice tank carriage through a 

specially designed towing post constructed from 12" x 12" x Y2" steel box beam. The cone 

and the neck sections were instrumented separately to measure the forces and moments about 

the three major axes. 

For each cone, an insitu dynamic test was performed to measure its natural 

frequency. Analysis of the force signals showed two dominant frequencies of the set-up at 
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about3and ll Hz(Lauetal,l993b). 

3.2 Instrumentation and Data Acquisition System 

The global load measuring system consisted of a series of 3 six -component load cells 

placed between two steel plates as shown in Figure 3.5. The upper plate was attached to the 

tow post and the model was rigidly secured to the lower plate. To enhance the system. the 

load cells were rigidly fixed to one plate by hemispherical bearings while the other plate was 

secured by a bolted connection. The installation of these bearings resulted in a significant 

reduction of residual moments on the transducers and the system was capable of measuring 

the loads to within an acceptable error range (2% and 5% for forces and moments, 

respectively). 

One AMTI model SRMCS-6-20000 and two AMTI model SRMCS-6-l 0000 six 

component load cells were used in this configuration. The forces and moments were 

resolved to a global X. Y. Z coordinate system shown in Figure 3.6. The origin of the global 

coordinate system was located along the centerline of the cone at the water level. The X-axis 

was positive in the direction of ice motion, the positive Z-axis was directed vertically 

upwards, and the direction of the Y-axis was such that X, Y, Z formed a right handed 

coordinate system. 

The loads on the neck were measured by one or two AMTI model SRMC6-6-4000 

six-component load cells rigidly mounted between the lower cone and the neck. The l :25 

large neck model was equipped with two dynamometers; while, both the l :25 small neck 
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and I :50 large neck models were fitted with only one of the dynamometers. The load cell 

configuration for these models are shown in Figures 3.7 and 3.8. Using the known geometry 

of the system. the forces experienced by the neck were resolved to the global origin of the 

model. 

Accelerations of the model in the three principle axis were measured using three 

Systron Donner accelerometers and the deflection of the tow post and the model were 

measured by two Schaevitz linear voltage displacement transducer during tests. 

A schematic arrangement of the data acquisition system is given in Figure 3.9. 

Excitation for the transducers was provided by the NEFF System 620 Series 300 signal 

conditioner. The transducer outputs from the load cells and the L VDT's were filtered by a 

I 0 Hz analog low pass filter and digitized at a rate of 50 Hz whereas the accelerometer 

outputs were tiltered by 100Hz and digitized at a rate of 200 Hz by a NEFF System 620 

Series 100 amplifier/multi-plexer and stored in a Vax 11nso computer for analysis. The 

analog outputs of the transducer were recorded by a KYOWA RTP-6008 14 channel tape 

recorder, to allow examination of the high frequency components of the signals. 

Video recordings were made of all tests using four colour video cameras which 

provided overhead, sides, and underwater coverage. The video recordings were synchronized 

with the data acquisition system. with an accuracy of0.5 second. Significant ice events were 

also documented in the form of 35 mm colour prints by a number of still cameras. 

3.3 Model Ice 

The experiments were carried out using EG/ AD/S model ice. The structure and 
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properties of this ice are described in Timco ( L 986). The ice growth process and the ice 

formation modelled that of full scale sea ice, giving a realistic vertical distribution of 

mechanical properties. The percentage concentrations ofEG/ AD/S for the present test series 

were 0.39/0.036/0.04. Density of the ice, p, was 920 kglm3
• For each ice sheet, flexural 

strength, O'r, was measured frequently throughout the test period. The values reported at test 

time were interpolated from the strength versus time curve for the ice sheet. Both downward 

and upward breaking flexural strengths were measured. Typically. the upward breaking 

tlexural strength, O'ru• was about one half of the downward breaking strength. O'rd· The 

effective elastic modulus. E. was determined from deflections of ice plate under a given load 

(Sodhi et al. 1982 ). The ratio of elastic modulus to upward breaking t1exural strength, Elcrru• 

ranged from 4000 to 12000. The reported ice thickness. t, was the average over 

approximately 30 measurements for the ice sheet with a standard deviation of 2.5%. Other 

properties. including compressive strength, crc, shear strength. cr\, ice-cone friction and ice 

density. were also measured. The procedures for producing and characterizing level ice 

sheets are described in detail in Lau et al ( 1993b). 

3.4 Test Matrix and Presentation of Results 

The test matrix with details of the test program are given in Table 3.1. It was 

developed to accommodate the testing of two scales ( 1 :25 and 1 :50) of model. two sizes of 

neck at one scale ( L :25), and a variety of sheet ice strengths and thicknesses over a five week 

period. The models were tested in the face-on orientation. 
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A total of 18 tests were conducted in 5 ice sheets. In each ice sheet, level ice tests 

were performed at model velocities of 0.0 1 m/s, 0.04 m/s and 0.06 m/s to assess the effect 

of different interaction rates. The ice conditions for each test run are summarized in Table 

3.2. A number of tests (MUNCONE3, MUNCONE4 and MUNCONE7) were conducted 

over a period of two days to obtain variation of ice strengths. 

For the first run of each test, the ice pile in front of the structure was cleared away to 

permit the ice to come into full contact with the front perimeter of the cone at waterline. A 

run distance of 3 m was required for the test to reach a quasi-steady state. To speed up this 

process in subsequent runs, the rubble built up from the prior run was not cleared from the 

model prior to the start of the run. 

In Figure 3. 10 the test matrix is plotted together in full scale with the matrices of 

ERCL · s and IME · s test series to facilitate cross comparison among tests performed in the 

three tanks. Only the tests with a face-on orientation were planed together, since they were 

the only orientation tested in all three tanks. In IME, the model was built at I :50 scale but 

tested in the scale of approximately 1:30 at waterline. Since the effective waterline width 

of the structure is an important parameter affecting the ice loads, the data were scaled up by 

a factor of I :30 according to the cone's waterline. It should be noted that the neck diameter 

must also be scaled accordingly, i.e .. inscribed neck diameter is equal to 6 m in full scale. 

The test data were analysed and planed in the form of time-traces for the following 

parameters: 

(i) three global force components; and 

(ii) three neck force components. 
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The plots for the individual tests are presented in Appendix B. 

The time series for the tests MUNCONE3 to MUNCONE6 were digitally filtered 

with an upper cut-off frequency of 2.75 Hz before plotting. During test MUNCONE7, the 

intact ice sheet rode up onto the collar resulting in failure of the ice in high frequency. 

Hence, the time series were not digitally filtered in order to retain the high frequency 

interaction data. 

The sheet ice test results are summarized in Tables 3.3. Basic statistical analyses 

were performed on the time series of the measured forces . Only the steady state portion of 

the force records was analysed and plotted. 

The mean peak forces were determined by finding up-crossings of the time trace 

above a reference level equal to the mean of the data plus one standard deviation. The 

maximum value between this point and the next down~crossing of the same level was 

designated a peak. The mean peak force was the mean of the above peaks. ln Figure 3. 11 

the mean peak horizontal and vertical forces are plotted against mean force plus one and a 

half times standard deviation. The correlation is good except for the tests where the shear 

type failure occurred (not included in Figure 3.1 1 ). Thus, the peak forces for this test series 

can be estimated as one and a half times the standard deviation above the mean of the force 

record. 
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Table 3.1 Test matrix for level ice tests in IMD's series 

Test 
v t Oru E 

(crnls) (em) (kPa) (MPa) 

TEST MUNCONE3; MODEL: L:25S; SHEET NO. L 

001 1 15.8 44.4 383 
002 6 15.8 44.1 383 
003 4 15.8 43.6 383 
005 4 14.8 29.4 164 

TEST MUNCONE4; MODEL: 1 :25L; SHEET NO. 2 

001 1 16.0 41.1 389 
002 6 16.0 40.6 389 
003 4 16.0 40.4 389 
006 4 16.4 19.7 188 

TEST MUNCONE5; MODEL: 1 :25L; SHEET NO. 3 

001 1 9.5 30.7 156 
002 6 9.5 30.2 156 
003 4 9.5 29.9 156 

TEST MUNCONE6; MODEL: 1 :25L; SHEET NO. 4 

002 4 12.4 22.5 120 
003 1 12.4 22.5 120 
004 6 12.4 22.5 120 

TEST MUNCONE7 ; MODEL: l :50L; SHEET NO. 5 

001 1 16.0 33.7 524 
002 6 16.0 33.2 524 
003 4 16.0 32.8 524 
006 4 16.3 18.7 236 
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Table 3.2 Summary of ice conditions for each test 

t I I 

Test Oru Orll 
Elord ajard (em) (kPa) (k.Pa) 

MODEL: 1 :25S; SHEET NO. 1 
MUNCONE3_00 1 15.8 44.4 79.8 4810 NA 
MUNCONE3_002 15.8 44.1 79.4 4810 NA 
MUNCONE3_003 15.8 43.6 78.7 4810 NA 
MUNCONE3_005 14.8 29.4 42.4 3796 NA 

MODEL: 1 :25L; SHEET NO. 2 

MUNCONE4_00 l 16.0 41.1 74.7 5212 5.2 

MUNCONE4_002 16.0 40.6 73.5 5212 5.2 

MUNCONE4_003 16.0 40.4 72.9 5212 5.2 

MUNCONE4_006 16.4 19.7 39.0 4615 5.2 

MODEL: 1 :25L; SHEET NO. 3 

MUNCONE5_001 9.5 30.7 43.4 3002 4.9 

MUNCONE5 002 9.5 30.2 41.6 3002 4.9 

MUNCONE5_003 9.5 29.9 40.8 3002 4.9 

MODEL: 1 :25L; SHEET NO.4 

MUNCONE6_002 12.4 22.5 36.0 3213 5.4 

MUNCONE6 003 12.4 22.5 35.4 3213 5.4 

MUNCONE6_004 12.4 22.5 35.1 3213 5.4 

MODEL: 1 :SOL; SHEET NO. 5 

MUNCONE7 _00 1 16.0 33.7 70.2 8494 3.8 

MUNCONE7 002 16.0 33.2 69.7 8484 3.8 

MUNCONE7 003 16.0 32.8 69.3 8494 3.8 

MUNCONE7 006 16.3 18.7 42.8 5383 4.7 

Note: 1 crru - bottom in tension; Ord - top in tension 
All tests run in face-on orientation. 
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O/Ord 
p 

(kg/m3) 
J.l, 

NA 916 0.11 
NA 916 0.11 

NA 916 0.11 

NA 921 0.09 

1.5 914 0.09 

1.5 914 0.09 

1.5 914 0.09 

1.8 923 0.09 

2.1 928 0.09 

2.1 928 0.09 

2.1 928 0.09 

1.9 919 0.08 

1.9 919 0.08 

1.9 919 0.08 

1.7 918 0.08 

1.7 918 0.08 

1.7 918 0.08 

1.5 920 0.08 



Tahle 3.3 Summary of level ice test results 

GLOBAL GLOBAL NECK 
HORIZONTAL VERTICAL HORIZONTAL 
FORCE (kN) FORCE (kN) FORCE (kN) 

Test Max Mean StDev Mean Max Mean StDev Mean Max Mean StDev Mean 
Peak Peak Peak 

MUNCONE3_00 I 4.52 3.78 0.35 4.29 5.46 4.70 0.41 5.30 0.60 0.23 0.12 0.47 
MUNCONE3_002 5.18 4.18 0.52 4.94 6.06 4.97 0.55 5.72 0.49 0.21 0.09 0.39 
MUNCONE3_003 5.32 4.33 0.50 5.05 6.65 5.67 0.51 6.37 0.51 0.20 0.09 0.38 
MUNCONE3 005 3.42 2.93 0.25 3.23 4.22 3.87 0.22 4.18 0.36 0.19 0.05 0.29 
MUNCONE4_001 5.25 4.31 0.45 5.01 5.37 4.33 0.39 4.72 0.33 0.19 0.05 0.29 
MUNCONE4_002 6.27 5.02 0.58 5.91 6.57 5.49 0.59 6.33 0.40 0.27 0.05 0.37 
MUNCONE4_003 6.54 5.09 0.61 6.01 6.94 5.81 0.60 6.74 0.48 0.33 0.04 0.41 
MUNCONE4 006 5.08 4.17 0.45 4.96 5.07 4.50 0.31 4.86 0.31 0.16 0.01 0.26 
MUNCONE5_001 2.16 1.78 0.13 1.95 2.17 1.82 0.15 1.98 0.10 0.05 0.02 0.09 
MUNCONE5_002 2.38 1.85 0.23 2.27 3.35 1.89 0.24 2.49 0.21 0.12 0.05 0.15 
MUNCONE5 003 2.25 1.77 0.18 2.04 2.26 1.83 0.18 2.15 0.21 0.14 0.01 0.16 
MUNCONE6_002 3.08 2.65 0.21 2.95 3.28 2.82 0.19 3.14 0.25 0.18 0.02 0.22 
MUNCONE6_003 2.96 2.56 0.17 2.81 3.16 2.85 0.13 3.06 0.21 0.12 0.02 0.16 
MUNCONE6 004 3.26 2.74 0.19 3.06 3.46 3.02 0.14 3.27 0.19 0.13 0.02 0.17 
MUNCONE7_001 8.86 6.87 1.41 8.51 4.10 2.43 0.46 3.40 0.98 0.54 0.14 0.82 
MUNCONE7 _002 9.99 5.92 1.34 8.43 5.80 3.43 0.78 4.86 1.01 0.50 0.15 0.80 
MUNCONE7 _003 10.40 6.78 1.44 9.05 5.56 3.41 0.76 4.79 0.98 0.54 0.14 0.82 
MUNCONE7 _006 6.34 4.03 0.65 5.45 3.66 2.57 0.36 3.16 0.97 0.42 0.12 0.66 

Note: Horizontal-(+) toward the model; Vertical- (+)downward 
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Figure 3.1 

Figure 3.2 

Experimental set-up showing a 1:25 scale large neck model mounted 
under the main carriage 

800 

! [ 240 

f 
800 

Dimensions of the 1:25 large neck model. All diameters are corner to 
corner; all slopes are of the facet centres and given as a ratio of vertical to 
horizontal. All dimensions in millimetres. 
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Figure 3.3 

Figure 3.4 

988 233J 

JL___~------~----~34~18~~------------~ 

Dimensions of the 1:25 small neck model. All diameters are comer to 
corner; all slopes are of the facet centres and given as a ratio of vertical to 
horizontal. All dimensions in millimetres. 

Dimensions of the l :50 large neck model. All diameters are comer to 
comer; all slopes are of the facet centres and given as a ratio of vertical to 
horizontal. All dimensions in millimetres. 
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Upper Loacl Cell Plat.e 

Mornen t.leaa ConnecUon 

Figure 3.5 

Figure 3.6 

Lower Loacl Cell Plat.e 

~-- AMTI MCB Loacl Cell 

Global load measurement assembly 

Orientation of global coordinate axes with respect to the model structure 
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Figure 3.7 

Figure 3.8 

'-- Vertical Neck 

AMTI MC6 Load Cell 

Attachment to Lower 
Cone 

Neck load cell arrangement for the 1 :25 large neck model 

'\..._Vertical 
Neck 
AMTI MC6 
Load Cell 

Attachment to 
Lower Cone 

Neck load cell arrangement for the l :50 large neck and l :25 small neck 
models 
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Figure 3.10 Matrix showing lMD's, IME's and ERCL's level ice tests in thickness
strength domain (full scale); face-on orientation only 
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Figure 3.11 Comparison of mean peak force and mean force plus one and a half times 
standard deviation (IMD's 1:25 scale model tests) 
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Chapter 4 Analysis of Tests 

The ice failure and clearing processes around a faceted cone, in a quasi-steady-state 

ice breaking, have been identified for each test for the IMD's and !ME's tests. Most tests in 

ERCL's series were performed with an ice sheet typically shorter than two characteristic 

lengths in the direction of ice motion, resulting in a significant end effect. Ice pieces were 

typically very large, and most of the runs were stopped before a quasi-steady-state interaction 

wa...; achieved. The breaking and the subsequent clearing of ice were complex. Nevertheless, 

the breaking and clearing patterns were similar to those observed in the early stage of the ice

cone interaction observed in tests from other tanks. 

Information on the ice breaking patterns. i.e., crack imprint and piece size. is of vital 

importance in the interpretation of the test results. The dominant failure modes, which are 

generally difficult to discern, can be inferred from the crack imprint and the resulting broken 

ice piece size. The crack pattern and piece sizes are also important in determining the 

subsequent interaction process, i.e., the manner in which the ice rides up the structure and 

the subsequent nature of the rubble pile-up, and the ice force on the model. In this work, 

piece size analyses were conducted using video recording of the multi-faceted cone 

experiments. The factors influencing the piece sizes were examined, and the relationship 

between ice piece size and the ice thickness and strength was established. The results were 

compared with previous model test data and the findings of Izumiyama et al ( 1994). 

An important aspect of the model tests is the observation of a rubble pileup in front 
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of the faceted cone models. The influence of a rubble buildup in the MUN!ERCUNRC 

multi-faceted cone experiments is addressed with emphasis on tests conducted in IMD's 

tank. The analysis provides further insights into the formation process of ice rubble, and the 

effects of important ice-structure interaction parameters on rubble geometry during steady

state ice rubble clearing. 

The latter part of this chapter documents the results of ice force analysis carried out 

on the three test series with the focus given to the IMD' s test data. The steady-state portion 

of the load trace of each test was analysed, and the ice breaking and clearing components of 

the total ice force were identified. The consistency of data among the three test series was 

assessed using a semi-empirical formula developed from IMD' s series. Measurements from 

all tests were then compared with predictions from a leading theoretical ice force model, 

developed for smooth cones, to assess the validity of existing models for predicting ice loads 

on a faceted cone. 

Section 4.1 gives a summary of the dominant features of ice structure interaction and 

the various failure processes observed from tests conducted in the three model basins. The 

process consists of three major components: namely the ice breaking mechanism, the ride-up 

process and the ice rubble formation process. Main features associated with ice breaking 

mechanism and rubble formation process are further analysed and discussed in Sections 4.2 

and 4.3, respectively. Section 4.4 presents the general aspects of the ice load, including the 

load distribution and the ratio of horizontal to vertical forces. and the ratio of neck to global 

forces. Section 4.5 presents the semi-empirical formula, and examines the data consistence 
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among the three test series. A comparison of the test results with Nevel's model is given in 

Section 4.6. Section 4.7 summarizes the results obtained from Part I of this investigation. 

A conceptual model is proposed, which forms the framework for Parts U and Part ill of this 

study. 

4.1 Ice-Structure Interaction and Failure Processes 

The interaction process with faceted cones was similar to that observed from previous 

tests with sloping structures as shown in a series of snapshots during a typical test run (Figure 

4.1 ). The failure mechanism was typically governed by the flexural stresses induced in ice 

in both radial and circumferential directions due to bending of the ice sheet. For a faceted 

cone with a face-on orientation, a pair of radial cracks initiated from the two edges of the 

front facet, forming a series of three truncated wedges upon initial contact. The two side 

wedges forced against the facets on the two respective sides, and a central wedge pushed 

against the front facet. A radial crack also started from the centre of the front facet in most 

of the lMD tests 

Upon further advance of the ice sheet, circumferential cracks developed and wedges 

of ice broke off. The front wedge slid up the front facet, over the collar and neck, reaching 

the top of the structure, and fell back onto the advancing ice sheet resulting in a rubble pile

up in front of the cone, interfering with the ice-breaking process. On the other hand, the side 

wedges slid up the side facets and cleared around the cone without difficulty. 

In the case of thinner and weaker ice used in IME's series, in sliding up the front 
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facet, the ice which was overhanging the sides of the inclined plane usually broke off due to 

its own weight. and slid around the side facets. In IMD's tests. such secondary breaking did 

not occur due to the stronger and thicker ice used. Instead, the ride-up ice formed a shielding 

wall effectively increasing the width of the front facet to a width slightly wider than the facet 

width at the waterline (Figure 4.2). This increase substantially facilitated rubble piling. The 

build up of rubble pile continued until a quasi-steady ice clearing process was achieved with 

a constant number of ice pieces accumulated in front of the cone. 

If the cone was oriented in an edge-on mode, the rubble pileup did not occur due to 

the absence of a flat face perpendicular to the oncoming ice movement. Typically, a radial 

crack initiated from the frontal cone edge and propagated along the centerline. This resulted 

in two truncated wedges. with the two wedges forcing themselves against the facets on the 

two respective sides. With the advance of the ice sheet, the truncated wedges failed, rode up 

the front facets, over the collar and neck, and cleared around the cone without difficulty. A 

quasi-steady ice clearing process was achieved with a constant breaking and clearing of ice. 

The profile of the crack patterns associated with the two orientations is shown in 

Figure 4.3. The circumferential cracks run at a distance from the cone perimeter with a given 

characteristic length resulting in cyclical ice loading (Figure 4.4). 

For the cone with a small freeboard, i.e .• lMD's l :50 scale model tests. the intact ice 

sheet rode up onto the collar and was caught by the transition of the collar and the cone 

before any circumferential crack could form. The loading geometry resulted in the failure 

of ice in shear mode, with failure occurring along the grain boundaries of the columnar 
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model ice. Small chips of ice broke off from the intact ice sheet and extruded from the cone 

resulting in high frequency cyclical loading (figure 4.5). 1 The channel formed by the model's 

passage appeared very regular at the approximate width of the collar diameter. Piles of 

extruded ice were formed on either side of the channel. The ice chips cleared around the 

neck with only a small pileup. 

Occurrence of the shear mode of failure was determined by whether the ice sheet 

reached the cone-collar transition before it failed in bending; hence the failure mode was 

very sensitive to the ratio of the effective modulus to the flexural strength, E1<1r, of ice. The 

extrapolation of the results to full scale should be cautioned since the E1<1r ratio of the model 

icc typically may vary from as low as 500 to 2000, much smaller than the full scale values 

measured in the field (which are of the order of 5000); hence the maximum deflection at 

failure in the field as predicted from model tests is correspondingly higher than expected. 

For example, Keinonen et al ( 1993) compared the properties and behaviour of field ice and 

EG/ A DIS model ice by performing field and model wedge breaking tests and found the 

det1ection of ice predicted from model tests to be between 3 and 10 times higher than basic 

elastic deflection measured in the field for the test velocity of 5 crnls due to the excess 

plasticity of the EG/AD/S ice at low loading rates. 

Other failure modes of the ice sheet were also observed. For example, for thin and 

1Tests MUNCONE4_003 and MUNCONE7_006 were tested with the same ice speeds 
and nm distances. 
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weak ice used in the IME's test series. bearing failure of the ice sheet occurred before a 

significant amount of ice piled up in front of the cone, due to the weight exerted on the 

unbroken ice sheet by the broken ice pieces, as they were being pushed up the cone surface. 

Once a bearing failure occurred, ice pieces got jammed between the structure and the 

oncoming ice sheet, leading to complex contact geometry. After that, the cone experienced 

a short period of non-steady state loading. The occurrence of this failure mode as a function 

of ice strength and thickness is shown in Figure 4.6. This type of bearing failure did not 

occur for test conditions targeted in IMD's test series. 

4.2 Ice Breaking Mechanisms 

Different model geometries and ice regimes result in a variety of failure patterns as 

discussed in the preceding section. In Section 4.2.1, the breaking patterns observed in the 

IMD's 1:25 scale model tests are further examined. Special attention will be given to the 

cracking mechanism during steady-state interaction process for obvious reasons. Section 

4.2.2 gives a comprehensive analysis of the broken pieces as observed in the present test 

series as well as the previous tests. The analysis points to the need for further studies in this 

area. 

4.2.1 Breaking Pattern Observed in IMD's Series 

The broken ice pattern could be inferred and reconstructed from the video recording 

by considering the shape of each broken piece as sketched in Figure 4.3b. A pair of radial 
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cracks first propagated to a short distance comparable to the ice thickness, and then 

converged toward each other to form a circumferential crack. The two radial cracks made 

an angle of up to 30° from the direction of the ice advance. Another crack started from the 

centerline in between the other two cracks. 

This observation was contrary to the failure mechanism routinely assumed in 

previous treatments of the problem as discussed in the following section. The radial cracks 

did not propagate into the ice far enough to form wedges which behaved as infinite wedges; 

instead, the failure mechanism observed from lMD's test series was associated with the 

ultimate failure of finite cantilever beams. 

The history of crack development determined the boundary condition and loading at 

ultimate failure. i.e .. how far the radial cracks propagated into the intact ice sheet at the onset 

of the circumferential cracking, which effectively determined the length of the wedge to be 

bent. In the following section, three common beam bending scenarios associated with 

flexural failure are further discussed. 

4.2.1.1 Common Beam Failure Scenarios 

If we follow the mode of crack development from the first impact. three failure 

scenarios could be identified, depending on beam length: 

(i) Formation of a cusp by circumferential cracking with limited radial cracking; 

(ii) Formation of circumferential cracks by cantilever beam failure. The radial 

crack length was substantially less than 3 times the ice characteristic length. 
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As a result, the wedge failed as a finite cantilever wedge, having a 

circumferential crack at its root; and 

(iii) Formation of circumferential cracks after extensive radial cracking. The 

radial cracks propagated at least 3 times the characteristic length of ice 

dissecting the ice into wedges before ultimate failure occurred. The wedge 

could be assumed to fail as a semi-infinite wedge. 

Nevel has pioneered the theoretical analysis of ice breaking due to interaction with 

a cone. He assumed that the radial cracks propagated to such an extent that the wedges 

behaved as independent infinite wedges (Case 3). Early experience from small scale model 

tests conducted in thin ice tended to confirm his theory. Since then, most of the subsequent 

ice cone modeling investigations assumed this failure scenario. Only recently has this 

assumption been called into question, based on the increasing understanding of fracturing 

mechanisms and recent experiments in thicker ice. 

With increasing ice thicknesses, Bazant and Li ( 1993) showed the onset of ice failure 

changed from radial cracking to circumferential cracking. Hence, the loading geometry was 

changed from a semi-infinite wedge beam (Case 3) to a cantilever beam (Case 2) and 

eventually to a plate (Case l ). Numerical analysis (Valanto, 1992; Jebaraj et al, 1992; 

Bazant and Li, 1993; and Derradji-Aouat, 1994) and test data (see next section) tend to 

support this observation. 
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4.2.2 Piece Size Analysis 

Generally the ice breaking process produced a variety of piece sizes. Ettema et a1 

( 1991) suggested that it was chaotic in nature. Varsta (1983) showed that the ice cusp size 

and force on a landing craft bow was dependent on the velocity, and hence the loading rate. 

Tatinclaux ( 1986) measured the ice floe distribution in the wake of a simple wedge in urea 

and synthetic model ice. He found that the average ice piece size.~. was independent of the 

characteristic length of ice; instead. it was directly proportional to the parameter. (aft/ywf". 

as follows: 

(4·1) 

where crr was the t1exural strength of ice; t, the ice thickness; and, Yw• the specific weight 

of water. The constant C depended on the kind of ice, with C being equal to 0.54 and 0.254 

for urea doped ice and synthetic ice. respectively. ln this report. the parameter, (crrtlYwf\ was 

called the "breaking length" ~ for convenience. 

In this section, the size relationship is further examined using the faceted cone test 

data obtained from the three tanks. The data sets were supplemented with data from four 

other test series conducted with similar model structures [Lau et a1 ( 1988) and Lau and 

Williams ( 1991) with a 45° smooth downward breaking cone; Sodhi et a1 ( 1985) with a 45° 

smooth upward breaking cone; and Timco ( l984b) with a 45° upward breaking sloping 
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plane]. These model tests were performed in urea or EG/AD/S ice, with the exception of 

ERCL's tests which were conducted in thick naturally grown saline ice. Despite slight 

differences in model shape, these tests were conducted in ice and structure conditions similar 

to one another. To further reduce the possible influences of test parameters other than ice 

thickness and strength, data from tests with comparable cone and interaction conditions, i.e .. 

ice advancing speed, friction coefficient, cone angle and waterline diameter, were chosen for 

analysis. The range of variations for each parameter is given in Table 4.1. 

For IMD's, ERCL's, IME's and Lau et al's tests ( 1988), LL• was estimated from video 

recordings made of each test by counting the number of circumferential cracks, and the 

corresponding run duration and velocity. To ensure that the estimated values of Lt were 

representative of the primary ice breaking length, the values were compared with those 

obtained from bow imprints taken after tests, i.e .• Lau et al's tests; and in the cases where 

bow imprints were not available. i.e .• IMD's series, comparisons were made with the broken 

ice pattern inferred and reconstructed from the video recordings (see Section 4.2.1 ). For the 

other tests where the piece size was not reported, it was estimated from the ice breaking 

frequency. f. and the ice speed, V, using the following relationship: 

v 
f 

(4-2) 

which gives the average size of the ice blocks during primary failure due to circumferential 

cracking. 

Figure 4. 7 shows the ice piece size ~ versus the length 4, observed in all seven 

74 



model test series. The data were further grouped according to ice thickness either larger or 

smaller than 0.045 m. The relationship 

(4-3) 

as developed by Tatinclaux for urea doped ice was also plotted in the same figure. The 

figure shows a good agreement ofTatinclaux's relationship with data obtained in ice thinner 

than 0.045 m. For thicker ice, the dependency of ~on the factor Lt. is negligible, and the 

following relationship fitted the test data very well: 

LL :: 0.15 + 0 .039Lb (4-4) 

Figure 4.8 shows the ratio of piece size to characteristic length, LL/Ic, as a function 

of icc thickness, t. for the multi-faceted cone and the supplementary test series. The data 

indicated a clear relationship between the LJlc and ice thickness despite a large variation of 

ice strength. 

Simple elastic theory predicted a value of0.78 for the ratio, LJlc: (Afanas'ev et al, 

1971 ). and the value was independent of ice thickness. However, Figure 4.8 shows that this 

was valid only for a very thin ice. and the ratio decreased with increasing ice thicknesses. 

The dependency of piece size on ice thickness reflects the complexity of ice-breaking 

process. and contributes to the scale effect. The data also suggest a lower limit for the ratio, 

Lt!l..: , and the tests conducted in IMD's and ERCL's ice tanks with ice sheets thicker than 9 

em clearly reflect a similar viewpoint. The following equation fits the data very well: 
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LL ., = 0.0 168/ -0 ·94-

/c 
(4-5) 

This observed trend is also consistent with the results from field observations. In the 

case of ship-ice interaction, Keinonen ( 1983) pointed out: 

"In model tests, the ice is broken into large cusps, the typical size of ice 

blocks being anywhere between 3-6 times the ice thickness. In full scale, the 

typical blocks are radically smaller being in the range of 0.5-2 times the icc 

thickness." 

This apparent lack of scaling of the broken piece size is of significance for modelling 

the dynamics of ice and rubble clearing around a structure. and leads to difficulty in model 

testing of fragmented ice. 

Further review of model tests with other sloping structures (both model and full 

scales) confirmed the previous finding as shown in Figures 4.9 and 4.10. 

Figure 4.9 shows the non-dimensional piece size observed in the wake of six ice 

breaker hulls (both model and full scale) taken from Tatinclaux ( 1986) with a model wedge, 

and the Kigoriak in both model and full scale trials, Howard and Abdelnour ( 1987) with the 

l :8 scale R -Class model, and V alan to ( 1993) with the m Kapitan Sorokin in full scale. 

Figure 4.10 is extracted from the piece size data reported by Keinonen et al ( 1993) 

who conducted 28 tests on an inclined indenter moving against a simply supported wedge. 

The tests were conducted at the ESSO outdoor basin in Calgary using natural saline ice with 
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thickness varying from 0.16 to 0.29 m and a flexural strength of approximately 200 kPa. The 

indenter angle of 25°, 50° and 75° to the horizontal were tested with two wedge angles of 90° 

and 120°. All tests were conducted using two indenter speeds: 0.05 m/s and 0.30 m/s. Only 

data associated with the lower speed are plotted in Figure 4.10. 

Both figures indicate a limiting value of 0.2 for Ldlc in full scale. This value is a bit 

higher than 0.1 associated with the multi-faceted cone tests. [t may be due to the different 

ice breaking processes observed. 

One explanation for the discrepancy between the theories and test data is the non

inclusion of shear action across the ice thickness in the existing analytical treatments of 

failure. The characteristic length of a beam (or plate) on an elastic foundation was derived 

solving the differential equation of the elastic line using classical theory of an elastic beam 

(or plate) on elastic foundation (Hetenyi, 1946}, i.e., a thin beam (or plate) with small 

detlection. The classical theory, which neglects the effect of transverse shear (i.e., shear 

modulus, in effect. is set to infinity), becomes unreliable in the case of beams (or plates) of 

considerable thickness. especially in the case of the highly concentrated loads experienced 

in the types of interactions investigated. Furthermore, with a ice piece size to characteristic 

length ratio of as low as 0.1. the transverse shear would play an important role in ice 

breaking. Buckling may also occur with increasing thickness and cone angle which lead to 

smaller piece sizes (Derradji-Aouat, 1994). 

Satisfactory modeling of ice failure mechanisms is an essential requisite for the 

proper computation of ice forces on the structure; however, an adequate examination of the 
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problem is outside the scope of this work. Nevertheless, it is reasonable to assume the piece 

sizes encountered in full scale to be 0.1 to 0.2 lc according to the present analysis. 

4.3 Ice Rubble Formation Process 

In the present study, the rubble types as observed in the lMD's test series were 

identified and shown in the strength-thickness domain with lME's test data. The rubble field 

classi tication scheme developed by Izumiyama et al ( 1994) was adopted (see Figure 4.11 ). 

For IMD tests, C-Type rubble field was typically formed in front of the l :25 scale 

models~ however, rubble field was not observed in front of the l :50 scale model as the small 

crushed ice pieces cleared around the cone readily. The C-Type rubble field was 

significantly larger than those of the same type observed in IME's tests due to a larger ice 

thickness and model neck, and a smaller freeboard. The rubble field tended to accumulate. 

till it reached the neck section. 

The C-type rubble field consisted of small ice blocks and crushed, mushy ice. In 

IME's tests, these small ice blocks were created when the weak ice pieces fell from the top, 

breaking and rolling down the front of the model. This secondary ice breaking is important, 

since the degree of breakage determined which of the three types, designated A-type, 8-type 

and C-type, would occur. Degree of breakage, which was highly dependent on the thickness 

and shape of the ice pieces and the ice strength, increases from A-type to B-type to C-type. 

In IMD's tests, a crack extended from the centre of the front facet creating two ice pieces 

before they rolled down from the top of the cone. Such a mechanism was sufficient to create 
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small ice pieces even though the ice was relatively thick and strong. The ice pieces at the 

neck, which were typically cubic in shape, rolled down the front facet resulting in a rubble 

pile of randomly oriented ice pieces. 

The manner in which the rubble evolved and changed shape during the interaction, 

i.e., its geometry and size, could be explained in terms of ice generation and clearing 

processes. The ice in front of the cone could be divided into 3 zones: a central accumulation 

zone and two side clearing zones. Understanding of the main features of these zones is vital 

to a satisfactory rubble modelling. The ice generation and clearing processes associated with 

these zones will be examined in detail in Chapter 6. 

It is recognized from this study that a unique rubble surface profile is generated 

during steady-stme accumulation by a process similar to dumping process from a line source. 

In this case, the free-surface of the rubble is governed by a slope stability criterion with the 

slope angle, t. being equal to the angle of repose, «Pr• of the rubble material. This surface 

profile, together with the rubble height profile around the cone's perimeter. defines the 

geometry of the rubble mass. 

It is also recognized that the rate of ice supply is balanced by the rate of ice clearing 

during the steady-state portion of the interaction, and the geometry and mass of the rubble 

can be estimated by geometric considerations and mass balance. 

The above-mentioned slope stability and mass balance criteria constitute the two 

fundamental aspects of the clearing processes which will be examined in detail in Chapters 

5 and 6. 
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4.4 General Characteristics of Ice Load 

4.4.1 Ice Load Distribution and Ratio of Horizontal to Vertical Forces 

lt can be shown that if the vertical force, F1 , is uniformly distributed around the front 

half of a six-faceted cone with a face-on orientation, the ratio of the net horizontal to vertical 

forces, F/F1 , obtained by integrating the respective force distributions is given by a 

resolution factor: 

~3DJ (4·6) 

where ~ is the resolution factor for a sloping plane; and the value of this resolution factor is 

a good measure of the distribution of ice forces around the cone. 

Table 4.2 summarizes the experimental values of the horizontal to vertical peak force 

ratio measured in the three test series, i.e., ~m=,· The theoretical values of the resolution 

factor for the two limiting cases, ~Jd.f• and ~. and the estimated percentage of ice force 

distributed on the front facet, %rmnl• are also given. ~Jd.f corresponds to the case where the 

vertical force is uniformly distributed around the front half of the cone; whereas, ~ is 

calculated assuming all ice forces are acting on the cone section at the front facet. 

[n general, the experimental values, ~m=' = F/F1 , were close to the theoretical values, 

~.for 2-D loading suggesting that the major portion of the load (with more than 70%) was 

distributed along the front facet during the peak force events. This observation was contrary 

to the observations obtained from previous model tests with smooth cones where the 
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resolution was found to be governed by ~30, i.e .• Equation 2.25. 

Figure 4. 12 shows the relationship of the non-dimensional resolution factor. ~mc:al~ 

and the non-dimensional waterline width. Dllc. for existing test data for smooth cones. The 

data sets contain data from 10 level ice test programs done worldwide on conical structures 

with a total of -400 data points (Afanas'ev et al. 1971; Verity. 1975; Edwards et al, 1975; 

Edwards and Croasdale, 1976; Manders and Abdelnour, 1978; Hirayama and Akamatsu, 

1982; Wessels. 1984; Sodhi et al, 1985; Lau et al, 1988; and lzumiyama et al, 1991 ). 

The experimental value, ~m=~· has been non-dimensionalized by~. The upper limit 

( = l ) corresponds to the 2-D case where all loads are assumed to act on the front edge of the 

cone. The lower limit(= 2/rt) corresponds to the 3-D case where the forces are uniformly 

distributed along the front perimeter of the smooth cone. ~mea./~ is generally lower than the 

value for the 20 case and in many cases is close to what is expected for a uniform 

distribution, particularly for D/lc greater than I. [t is consistent with the observation that for 

a very narrow structure, ice-cone contact is concentrated at the front edge of the cone. and 

with the waterline width increases, the ice-cone contact increases from the front edge toward 

the side of the cone, and eventually full contact of ice with the front half of the cone occurs 

with a certain waterline (Hirayama and Obara, 1986). 

The values of Dllc for the faceted cone series were a lot greater than l, and a uniform 

distribution was expected. The reason for this difference between the smooth cones and the 

faceted cones is not clearly understood, but might be attributed to two reasons. Firstly, the 
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resolution factor was calculated assuming all load to act on the conical section only. The 

large amount of rubble pile-up on the collar and the neck section would increase the 

resolution factor since they have an inclination larger than that of the cone section. The 

second reason is that the ride-up and pile-up would primarily occur on the front facet. which 

would distribute most of the clearing loads onto the front facet in a two-dimensional manner. 

4.4.2 Ratio of Neck to Global Forces 

Freeboard is the most imponant parameter influencing the ice loads on the neck. 

With a large freeboard the broken ice can clear around the cone without a significant amount 

of ice pieces accumulating on the neck. Figure 4.13 shows the effect of freeboard on the 

ratio of the neck to global horizontal loads for the level ice tests. The freeboard is non

dimensionalized by the ice thickness. The ratio of the neck to global force increases with 

the decrease of non-dimensional freeboard. The non-dimensional neck force is below 0.16 

for all tests except the two runs tested in a very strong ice with a small freeboard to thickness 

ratio. i.e .• ERCL's Tests 2 and 4. 

4.5 Semi-Empirical Formulae 

ln this study. the ice breaking and clearing components of the total ice force. during 

steady-state ice loading, were analysed. The ice breaking component is the force needed to 

break the ice. The ice clearing component is the load imposed by the broken ice pieces as 

they slide up the cone surface. These two components are attributed to completely different 
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mechanisms, and they were isolated and treated separately for deeper understanding of the 

interaction. A semi-empirical formula, based on experimental measurements and basic 

mechanics of ice, was developed as a way to compare the results obtained from the three ice 

tanks. 

Table 4.3 gives a summary of the mean peak force, F mp• and the associated ice 

breaking and clearing force components, i.e., Fb and Fe• measured in lMD's l :25 scale model 

test series. The ice clearing force, Fo.:, is assumed equal to the mean trough force. The ice 

breaking force. F11 , is obtained from subtracting the ice clearing force from the mean peak 

force as shown in Figure 4.14. In the present test series, a major portion of the total load in 

the structure was observed to be due to ice clearing. with the ice breaking force sometimes 

contributing to as little as 20% of the total ice forces. 

The mean peak and trough forces were determined by the up-crossing method as 

described in Section 3.4. Since there was a concern with the dynamic effects during the 

unloading phase after the ice failed which tended to affect the trough force, the time-history 

records were filtered through a 1.5 Hz low pass filter before analysis. 

The semi-empirical formula was developed from lMD's 1:25 scale model tests.:! 

Predictions from this formula are then compared with the measurements from the other two 

tanks to assess the consistence of results among the three tanks. As noted above a review of 

existing empirical and analytical formulae for ice load computation on cones suggested the 

:!The experimental results with the l :50 scale model were excluded due to the 
shearing/crushing failure observed during tests. 
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following common form for the horizontal ice force: 

(4-7) 

where the coefficients. a0 and a1, are functions of structural shape and coefficient of friction. 

The first term is the ice force caused by ice breaking, and the second term is the ice force due 

to icc riding up the structure slope. Experimental data also indicated that the vertical force 

was relatively independent of cone angle and friction coefficient, and the horizontal force 

could be related to the vertical force through a resolution factor. ~.which depended on the 

inclination angle and the ice-structure friction coefficient. Therefore. the following form was 

used in the present analysis: 

(4-8) 

where cr/'"t1 and a, k!f'-3 are empirical functions, which take into account the influence of pile-

up on the breaking and clearing forces; k
0

, k1, k2• k3, <1a and a1 are empirical coefficients 

which are optimized to fit the experimental data. 

The ice breaking and ice clearing components ofthe general expression were derived 

individually from the IMD's data resulting in the following expression for the horizontal 

force: 

r: , -0.56 0 0~ , o.os o .• , 
F~ ~(11lal-<ar t · -) + l.05yD-r(o1 t ... -)) (4-9) 
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In Figures 4.15 and 4.16, the ice breaking and the ice clearing forces predicted by Equation 

4.9 are compared to the experimental data.ln the above comparisons. the scatter in data may 

be partly due to the effects of neck size and velocity which are not included in the above 

formulation. 

In Figure 4.17, the total force predicted from Equation 4.9 is compared with the 

experimental data from the three tanks. In general, Equation 4.9 predicts the model test 

results well, indicating a good agreement among the results obtained from the three model 

basins, with loads measured extending more than three orders of magnitude. 

4.6 Comparison with Theoretical Prediction 

Theoretical loads corresponding to the level ice experiments were calculated by 

applying the elastic model due to Nevel ( 1992). This model is shown to be satisfactory in 

predicting ice forces after extensive comparison with the existing experimental data. (See 

Chapter 8.1 ). The mean features of the model have been reviewed in Section 2.2.1.2. 

Figures 4. 18 and 4. 19 show a comparison of the total horizontal and vertical peak 

loads measured from the three tanks with the loads calculated from Nevel's theory.3 The 

agreement between the theoretical predictions and measured forces is remarkably good for 

the ERCL and lME series; however, this theoretical model consistently under-predicts the 

'Again. the experimental results with the IM.D's 1:50 scale model were excluded from the 
comparison due to the shear/crushing failure observed during tests which was mentioned in 
Section 4.2. 
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ice loads measured in IMD's tests by an average of 46%. Two points should be noted here. 

Firstly, a majority of tests conducted in IME's and ERCL's series do not have a substantial 

amount of rubble piling in front ofthe structure. Furthermore, ERCL's ice thickness was less 

uniform than the ice from other two tanks, resulting in non-simultaneous ice breaking, and 

most tests were stopped before any significant amount of ice could accumulate on the cone. 

Hence, the theory might possibly overestimate the ice breaking components while 

underestimate the ice clearing component of the total ice force. 

To show this, the model predictions were compared with the results from the IMD's 

test series to assess the accuracy of the model to predict the individual force components. 

Only components of the horizontal force were compared. Figures 4.20 and 4.21 give the 

results of comparison for the ice breaking and ice clearing components, respectively. The 

model predicts well the breaking component of the lower forces measured in thinner ice. but 

underpredicts those of the higher forces measured in thicker ice; whereas the model 

consistently under-predicts the ice clearing component by about 30%, and again, the higher 

the force the higher the error. Since ice rubble tends to increase the ice clearing components 

of ice force due to its dead weight, the model is expected to under-estimate the clearing 

component. This weight could also increase the breaking load somewhat by imposing an 

in-plane compression at the tip of the supporting ice sheet as discussed in Chapter 8. 

4. 7 Summary and Discussions 

Based on observations from model tests, a conceptual model is formulated to describe 
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qualitatively the primary interaction processes. The conceptual model provides a conceptual 

basis for the mathematical modelling outlined hereafter. In Section 4. 7 .l the major findings 

of the test program are summarized, and the need for further ice force modelling discussed. 

In Section 4. 7.2 the general features of the interaction behaviour under investigation are 

brietly described, and a method to incorporate the effect of rubble in the existing ice load 

models is presented. 

4. 7 .I The Need for Further Ice Force Modelling 

The validity of the existing theories for predicting global loads on a faceted cone is 

one of the principal concerns from industry's point of view. The analysis of ice sheet loads 

with a leading ice force predictor developed for smooth cones indicates that the theory would 

likely under-predict the clearing component of ice loads. Particularly, the error in ice load 

estimation might be quite large when a large rubble field piles in front of the structure. 

justifying further studies to develop some new formulae for the estimation of ice loads on 

such structures. 

Important insights have been obtained from a closer analysis ofthe model test results. 

The process of ice failure and clearing during its interaction with the faceted structure has 

indicated the presence of many new features. This process is substantially different from 

that of a smooth cone and a two-dimensional sloping plane. The facet comers, acting as 

stress concentration points, seem to play important roles because two cracks propagate from 

the comers in many of the tests. In addition, the flat facet and large neck tend to prevent 
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efficient ice clearing and initiate rubble piling in front of the structure. 

Failures other than that due to bending modes have been observed from the tests. 

These may be due to the complex three-dimensional stress state induced in the ice sheet. 

Piece size measurements significantly diverge from those predicted by existing theories 

which are formulated using classical theories of thin beam or plate on elastic foundation with 

the non-inclusion of shear action across the ice thickness. Previous studies have shown that 

the failure mode could gradually alter from bending to shear with increasing ice thickness. 

Incorporating the three-dimensional nature of ice behaviour into the investigation of the 

problem is essential to advance our present understanding of the interaction process. 

Rubble building is an essential part of the ice clearing process. The large amount of 

rubble, accumulated in front of the cone. imposes a substantial loading on the structure and 

the intact ice sheet. An ice clearing component as much as 80% of the total load on the 

stmcture has been measured (see Table 4.3 ). The factors wh:Ch contribute to the amount of 

ride-up and rubble formation. and their subsequent effects on the interaction process were 

poorly understood. Omission of these factors may lead to a severe underestimation of ice 

forces. 

Although a considerable amount of data was obtained from model tests mentioned 

in the previous section. a number of important ice-structure parameters. i.e .• number of 

facets, cone angle, ice-ice and ice-cone friction coefficients, etc .• were not varied in the test 

program, and the results were valid only for the conditions and geometries of the 

experiments. Due to the limited numbers of parameters examined, these model tests were 
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more useful in confirming and calibrating algorithms for ice loads rather than in directly 

providing equations for design ice loads. It is therefore considered likely that it would be 

helpful to perform mathematical modelling in order to extend the observed relationships to 

more general interaction conditions and geometry. The modelling is supplemented by a 

series of numerical simulations to be presented in Chapter 7. The simulations provide 

information on the complex stress conditions and load distributions. and how the loads were 

transmitted and distributed along the ice sheet and on the surface of the structure. which is 

helpful to a better understanding of the basic mechanical processes that take place during the 

interaction. 

On faceting a cone and enlarging the size of the neck. the interaction and failure 

mechanisms were significantly altered. Existing theories of ice loads on a cone could not 

explain this change. Since there are obvious economical advantages in incorporating flat 

facets and large necks in the design of conical structures. an ice force model that allows for 

the effects of cone facets. neck size. and the rubble pile. would be an asset to the industry. 

Obviously, many issues associated with the three basic processes of ice breaking, ice ride-up, 

and the ice piling should be addressed in a comprehensive study. However. the time 

constraint imposed on this research prevented a comprehensive examination ofthe problem. 

lnstead. a decision was made to focus further efforts on the formation of ice rubble in front 

of the structure and its effect on ice loads, as no previous model has adequately accounted 

for its effects. 

In the following, a conceptual model is presented which provides a method for 
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considering the dominant processes, and a framework to incorporate a rubble model into the 

existing ice force models. Attention is given to the better characterization of rubble pile-up 

phenomenon and the associated ice load. Since the issues related to ice breaking and ice 

ride-up have been studied previously in greater detail, the knowledge gained from these 

studies is used in the present work. 

4. 7.2 Conceptual Model for Ice Forces Exerted on an Inclined Plane 

The model is proposed to explain the interaction processes between a faceted cone 

and a level ice sheet during a continuous ice breaking mode. It provides an outline of the 

phenomena to be investigated, and a framework for incorporating rubble load theory into 

existing ice force models. The model is detailed enough to describe the interaction processes 

as well as to obtain the form of equations for individual force components. 

The geometry of the problem is presented for a two-dimensional case in Figure 4.22. 

For simplicity, the model is given in 2-D, and a constant thickness ice sheet is moving 

horizontally and breaking against a faceted cone under an ice rubble pile, the shape of which 

is yet to be determined. From a modelling point of view, it is convenient to divide the 

interaction process into three major simultaneous phenomena, i.e., ( l) ice breaking, (2) ride

up. and (3) rubble pile-up, where different features dominate. The first phenomenon is the 

failure of ice under contact forces imposed by the cone, the ride-up ice and the rubble 

surcharge. The second phenomenon is the pushing of a layer of broken ice up the cone 

surface. The third phenomenon is the clearing of a rubble surcharge around the cone due to 
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the continuous movement of the level ice past the cone. The three phenomena are mutually 

dependent. The constitutive properties of the rubble and ride-up ice depend on the 

geometrical and mechanical properties of the constituent ice pieces which are generated by 

the breaking of the ice sheet, and the size of ice pieces generated during ice breaking is in 

tum affected by the additional loading imposed by the rubble and ride-up ice. The ice 

breaking and ride-up processes have been extensively studied and many models are available 

to predict the total load due to their effects. However, the rubble pile-up process is less well 

understood. For each process. some of the ao;pects regarded as important and/or unique to 

the present investigation are briefly described below. 

Figures 4.23 and 4.24 summarize the loads exerted on the ice sheet, the ride-up and 

the pile-up which should be taken into account. The weight of the pile-up, Wr = W~ + W;, 

is partly supported by the ride-up ice and partly by sheet ice. i.e .• distributed loads qc and qi. 

The force, N. required to lift the rubble surcharge and break the ice sheet, acts at the bottom 

edge of the ice sheet. As the ice moves and rides up along the cone. frictional forces. q;flii• 

N, and qc~s• are also developed at the ice-rubble, ice-cone. and rubble-cone interfaces 

respectively, where f.1 and Jl~ are the ice-ice and ice-cone friction coefficients at the respective 

interfaces. A component, P, acting at the top edge of the ice sheet is also required to push 

the ice up the slope. The failure of the ice sheet can take place either by bending, shearing, 

crushing, buckling, or a combination of them. The velocity of ice is assumed to be high 

enough that brittle ice failure mode is predominant. During a quasi-steady state ice 
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interaction. some constant amounts of rubble ice pile up in front of the structure, when the 

rate of ice supply is equal to the rate of ice clearing. The underlying ice sheet may fail 

before this quasi~steady state is reached. 

The rubble is under constant shearing due to constant deformation of the rubble. To 

take into account the effects of this rubble ice in ice force prediction, the amount and 

distribution of the rubble and associated forces exerted at the inclined boundary (with the 

ride-up ice) and the base (on the supporting ice sheet) must be known. The rubble pile 

formation mechanism is a complicated process involving the dynamic balance between the 

supply of ice pieces due to continuous ice breaking. and the clearing process of ice as the 

rubble pile moves past the cone. Understanding these two processes is the key to modelling 

the mechanism of rubble formation: besides. other factors such as the size and distribution 

of rubble ice. and the dynamic interactions between the individual ice pieces must also be 

considered. 
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Tahlc 4.1 General test conditions of the model test series used in piece size analysis 

Sloping Plane Smooth Cone 
Faceted Cone 

(face-on orientation only) 
PARA-
METER Timco, 1984 

Lau & Lau et al, Sodhi et al, IMD IME ERCL 
Williams, 1991 1988 1985 1:25 1:50 1:20 

Cone Angle, 
45 45 45 45 40 40 40 (0) 

Breaking Up Down Down Up Up Up Up 
Direction 

Waterline 
Diameter, 1.0 1.28 1.28 1.5 1.38 1.24 1.72 

(m) 

Friction 
0.02 0.15 0.15 0.1 0.09 0.01 0.08 

Velocity, 
<0.06 0.01/0.05 0.01/0.05 0.02/0.06 0.01/0.04/0.06 0.06 0.06 

(rnls) 
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Table4.2 

Test 
Series 

'IME 

1 IMD 

ERC 

Note: 

2 
3 

Summary of the horizontal to vertical force ratio for level ice tests measured 
in the three series on multifaceted cones: face-on orientation only 

Friction 
~mc::IS= 

No. of 
Coefficie ~ ~Jd.f %fron1 

3 Data 
F/Fz nt, Jls Points 

0 
0.791 ± 

0.833 0.555 0.899 15 
0.046 

0.1 1.162 ± 
1.018 0.679 1.283 7 

0.085 

0.09 
0.913 ± 

0.998 0.665 0.830 14 
0.08 

0.1 0.87 ± 
1.018 0.679 0.709 10 

0.177 

A friction coefficient of 0 is associated with runs l to 38, and a friction 
coefficient of 0.1 is associated with runs 39 to 66. 
l/25th scale model tests only 
% force distribution on front facet calculated by the following equation: 

t,.. .. , · C.: OS( 60") 
% . = ~t __ _ 

front I - COS( 60") 
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Table 4.3 

Test 
(#) 

3.1 

3.2 

3.3 

3.5 

4. 1 

4.2 

4.3 

4.6 

5.1 

5.2 

5.3 

6.2 

6.3 

6.4 

Summary of total, breaking and clearing ice forces measured in IMD series: 
l :25 scale model 

v Frot Fe Fb FbI Ftot Cfru t 
(m/s) (N) (N) (N) _f_kPa) (m) 

Test Set: Small neck model with neck size: 0.231 m 

0.01 4287 2890 1397 0.309 44.4 0.158 

0.06 4942 3200 1742 0.337 44.1 0.158 

0.04 5049 3100 1949 0.366 43.6 0.158 

0.04 3232 2400 832 0.243 29.4 0.148 

Test Set: Large neck model with neck size: 0.462 m 

0.01 5005 2950 2055 0.391 41.1 0.160 

0.06 5907 3800 2107 0.336 40.6 0.160 

0.04 6006 3500 2506 0.383 40.4 0.160 

0.04 4963 3150 1813 0.357 19.7 0.164 

0.01 1953 1520 433 0.200 30.7 0.095 

0.06 2274 1450 824 0.346 30.2 0.095 

0.04 2035 1440 595 0 .264 29.9 0.095 

0.04 2950 2150 800 0.260 22.5 0.124 

0.01 2810 2050 760 0.257 22.5 0 .124 

0.06 3060 2250 810 0.249 22.5 0 .124 

Note: Waterline diameter: 1.386 m; friction coefficient: 0.09; and ice density: 930 kg!m. 
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Figure 4.1 

(a) (b) 

(c) (d) 

Photos showing a typical ice breaking, ride-up and rubble piling sequence (Test MUNCONE4_001): (a) initial 
contact, (b) ice ride-up, (c) rubble accumulation, and (d) fully developed rubble pile 



Figure4.2 

Figure 4.3 

Photo from IMD's series showing the ride-up of ice and the rubble pile (Test 
MUNCONE6_003) 
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(b) 

Profile of crack patterns associated with the (a) edge-on and (b) face-on 
orientations 
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Figure 4.5 

FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS MUNCONE 7 006 
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Figure 4.4 

FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS 
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Figure4.8 

Figure 4.9 
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Figure 4.10 

Figure 4.11 
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Figure 4. 12 
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Figure 4.14 

Figure 4.15 
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Figure 4.16 Comparison of horizontal clearing force measured in IMD's series to clearing 
force predicted by Equation 4.9 
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Figure 4.22 Geometry of the conceptual model for ice forces exerted on an inclined plane 
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Figure 4.23 The loads exerted on supporting ice sheet 
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Figure 4.24 The loads exerted on pile-up ice 
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Part II Ice Rubble Modelling 

Chapter 5 Ice Rubble Under Load 

The process of ice rubble pile-up around a conical structure has been poorly 

understood. When a rubble mass clears around a structure, the load that can be imposed on 

the structure is influenced by a number of parameters, including: structure form, speed, 

porosity, roughness, lateral confinement of the rubble, and the size-shape-strength-and

roughness of ice fragments comprising the ice rubble. Furthermore, geometry of the rubble 

field and loading conditions at its boundaries would give rise to a complex state of stress 

distribution. 

In order to understand and to quantify the influence that a rubble field has on ice-cone 

interaction behaviour, it is necessary to examine both the kinematic and the dynamic aspects 

of the rubble clearing processes. The manner in which ice blocks are generated and cleared 

around the structure determines the size and shape of the rubble formation. This rubble 

mass, in tum, being pushed against the structure, exerts forces on the ride-up ice and the 

supporting ice sheet. Until now there has been very few research studies dedicated specially 

to this subject. However, the problems encountered in the studies of rubble load on 

structures are quite similar to those found in soil mechanics; while the constitutive material 

differs, the similar particulate nature of the materials provides the common ground. 

In this and the following two chapters, a rubble model is developed to model ice 
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rubble behaviour in front of a faceted conical structure. Basic theories of soil mechanics are 

explored, and the geometry of the rubble and the associated forces are modelled with the aid 

of numerical simulations. This chapter focuses on the basic mechanical behaviour and the 

failure processes of ice rubble under loading conditions typical of the ice-cone interaction 

process. Chapter 6 presents a simple method to characterize and compute the geometry of 

a fully developed rubble from known ice and structure conditions. The predictions agree 

well with the experimental data. ln Chapter 7, a set of empirical equations are developed to 

calculate forces exerted by a cohesionless granular mass, i.e., ice rubble, on a retaining wall 

using a series of discrete element analysis. These equations are further incorporated into an 

ice force model which will be presented in Chapter 8. 

The model developed in this work involves three important phenomenological 

parameters; the angle of internal friction. the angle of repose, and the earth coefficient 

function . The first parameter is a constitutive property of granular materials with Coulomb

type shear behaviour. The second parameter characterizes the natural slope of granular 

materials being dumped. The third parameter describes the stress state of a rubble mass 

under various loading conditions. The second and the third parameters are functions of 

loading conditions, and are closely related to the first parameter. In Section 5. 1, the shear 

strength of granular materials is discussed, followed by a brief review of laboratory 

measurements of ice rubble shear properties. In Section 5.2, the surface profile of a rubble 

pile due to the natural dumping process is explored. The angle of repose, an important 

geometrical parameter of this profile, is discussed in detail. In Section 5.3. the behaviour of 
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granular materials under stresses is examined. The characteristic stress states of the granular 

materials under arbitrary loads, as described by various earth coefficients, are identified and 

further explored. Based on basic theories of soil mechanics, it is concluded that the 

cohesionless rubble is in an elastic state throughout its mass during the typical ice-cone 

interaction process under investigation. Finally, two existing methods for the computation 

of wall thrust exerted by an earth mass at-rest are assessed in Chapter 5.4. 

5.1 Shear Strength of Ice Rubble 

Mostly, ice rubble studies were carried our due to the concerns expressed for the 

imcgrity of the structure encountered by ice ridges. In most of the instances, the ridges fail 

in shear with the maximum loads experienced by the structure are limited by the shear 

strength of the rubble materials. Therefore, measurements of rubble mechanical properties 

were mainly focussed on shear strength. The shear strength of an ice rubble under isothermal 

conditions is basically made up of: 

( i) The structural resistance to displacement of the ice blocks because of 

the interlocking of the ice blocks, 

(ii) The frictional resistance to translation between the individual ice 

blocks at their contact points, and 

(iii) The cohesion (adhesion) between the surfaces of the ice blocks. 

For a cohesionless material, cohesion is negligible, while the resistance to 

deformation is influenced strongly by its frictional resistance at the contact surface and the 
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interlocking between ice blocks. A knowledge of the possible magnitude of this shear 

resistance and the factors that influence it are essential to a rational design. 

5.1.1 Phenomenological and Structural Approaches for Material Description 

The mechanical behaviour of rubble is a complex reflection of its structure. Like 

other particulate materials, the deformation is brought about by mutual sliding and rotation 

of the icc blocks. The existence of mutual contacts restricts the freedom of motion of the 

individual block resulting in strength and rigidity of the ice rubble. The number and strength 

of the contact bonds are to a large extent determined by the size. shape, roughness and 

strength of the discrete blocks, the nature of the interaction between the various phases. the 

state of the ice rubble in question (e.g .. its density and void ratio). and its texture. 

The mechanical behaviour of ice rubble material can be studied using two different 

approaches: the phenomenological approach and the structural approach. In the 

phenomenological approach the laws governing the processes are deduced from the 

correlation between the input and the output data of a system whose dimensions greatly 

exceed those of their constitutive units; and hence, the real substances arc replaced by 

mathematical models of structureless continua. The structural approach, on the other hand, 

analyses the mechanical behaviour based on the interaction between the fundamental 

constitutive units of the system. Phenomenological conclusions are then made possible 

through statistical synthesis. 

Since the phenomenological characteristics are a result of rubble structure, a 
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structural definition is the fundamental one. A formulation of the phenomenological 

relations as a statistical synthesis of structural analysis would be ideal solution. This is the 

only way in which one can correctly understand and pay due regard to their specific structural 

characteristics which lead to constitutive relations of particulate materials. However, a 

complete structural analysis is frequently unsuccessful even in the case of the simplest 

deterministic systems, such as mono-crystals (Macmillan, 1972). For instance, in the 

statistical characterization of particulate materials, it has been often found to be incapable 

of describing the complete behaviour. In the present work, phenomenologically formulated 

mechanical laws useful in simple engineering computation are adopted. 

5.1.2 Phenomenological Descriptions of Cohesionless Granular Materials 

A classical foundation for the entire phenomenological approach was laid by 

Coulomb ( 1773 ). For the shear strength of soils. Coulomb derived a simple ex. pression using 

"the law of friction and cohesion" proposed for soil substances by Amontons ( 1699): 

(5-1) 

where 't and crn are the shear and normal stresses on the failure surface, respectively; c is the 

cohesion: and <1> is the effective angle of internal friction. This definition of strength was 

further refined by Mohr (1882), who proposed the idea of representing graphically the 

combination of stresses by a circle. In the Mohr-Coulomb failure criterion, the strength of 
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a granular soil can be represented by the Mohr failure envelope, which is a line drawn 

tangent to the Mohr circles representing the state-of stress at the peak points of the stress

strain curves under various confining stresses. For cohesionless materials, the cohesion is 

negligible, i.e., the internal friction dominates the deformation characteristics and becomes 

the principal mechanical parameter of the materials. 

Rubble is neither a solid nor a liquid, but it has some of the characteristics of both of 

these states of matter. It differentiates itself from fluids as described by Delanges ( 1788): 

"when poured, retain their shape, when excavated, do not fill the depression, after being 

shaken or otherwise disturbed, settle rapidly as soon as the external impulse no longer acts". 

However, on the other hand, it is similar to fluids in its tendency to exert a lateral pressure 

against an object with which it comes in contact due to the Poisson's ratio effect. This 

l:haracteristic can be measured by the coefficient of lateral pressure. K, i.e., the reciprocal of 

the ratio between the vertical stress and the horizontal stress which tends to resist lateral 

deformation of the material . As we shall see, this K-coefficient is closely related to the 

internal friction of the material. 

An important implication of the Mohr-Coulomb theory is that in a general three 

dimensional stress state, the intermediate principal stress has no influence on the failure 

criterion. This is approximately true. The behaviour of granular materials may be influenced 

by many factors, such as void ratio, gradation of grain sizes, loading path, temperature, time, 

and stress history. In recent years, an increasing number of other failure criteria have been 

proposed to give a better modelling of the most significant aspects of granular material 
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behaviour, including non-linearity, inelasticity, shear dilatancy. and path dependency (see 

Table 5. 1 ). An overview of failure criteria for engineering materials, especially geological 

materials, was given by Desai and Siriwardane ( 1984), including elasticity model, classical 

plasticity models and other more recently developed models. 

In the light of recent research, the linear Mohr-Coulomb model does certainly not 

mean the last word in strength theory, and in some problems it has proved inadequate in 

describing the true behaviour of unconsolidated ice rubble (Ettema and Urroz-Aguirre, 1991 ; 

Sayed et al, 1992; and L0set and Sayed, 1993). Yet, for engineering purposes, it has become 

a very useful and dependable tool for judging, by strength computations, the danger of failure 

in solid bodies under general stress conditions. 

5.1.3 Effect of Initial Void Ratio on Internal Friction 

The internal friction of a granular material in a given state is the result of a number 

of factors and intluences, i.e., the void ratio of the material, the confining stresses, the rate 

of loading, etc .. which act upon the material at the moment of its shear failure. Of these 

factors, void ratio' is by far the most important. This ratio, which is a function of block 

shape and size distribution, can have a profound influence upon the rubble's internal friction. 

The internal friction angle, $, of a cohesionless Coulomb material is made up of two 

'The ratio of the volume of the pores to the volume of the solids in a rubble sample is 
called "void ratio" ; while porosity is defined as the volume of the pores to the total volume of 
the rubble sample. 
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components: firstly, the frictional resistance arising from the sliding between particles; 

secondly. the structural resistance due to the interlocking of the particles. The former is 

solely a property of the material; whereas. the latter is purely geometric. The effect of 

particle interlocking is illustrated in Figure 5.1. In loosely packed materials, to start shear 

it is only necessary to make the particles slide upon one another. In a dense pack, the 

particles are interlocked with its neighbours. and have to move upwards and slip along the 

shear plane during shear. This tendency to dilate during shear wa..o,; first observed by 

Reynolds ( 1885). and is known as the Reynolds dilatancy. The denser the packing, the 

greater is the tendency to dilate. 

The influence ofthe dilatancy on the behaviour of granular materials has been studied 

by Rowe ( 1962). Been and Jefferies ( 1985). Bolton ( 1986). Goddard and Bashir ( 1990). 

Bashir and Goddard ( 1991 ); Goddard ( 1992), Balendran and Nemat-Nasser ( 1993), 

Pouliquen and Renaut (1996), and Schanz and Vermeer (1996). Houlsby (1991) gave an 

excellent review on the relationships between the friction angle, dilation angle, density and 

pressure in a granular material. 

In a typical tri-axial strength test, the shear stress-strain behaviour of granular 

materials at a given normal load depends on the initial packing density (Lambe and 

Whitman. 1979). Figure 5.2 shows schematically two types of characteristic stress-strain 

curves. For densely packed samples, the shear stress increases with the strain, reaching a 

peak. cj>P, and then gradually decreasing to some constant value, cl>c\'· Over this range of 

strains, there is usually an initial reduction in the volume of the sample due to compression 
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followed by an increase due to dilatancy. The maximum shear strength, 'tP' is referred to as 

peak strength, cpP.~ The denser the sample, the more the stress-strain curve shows a 

pronounced peak and the subsequent stress decreases following this peak. On the other hand, 

in case of loosely packed samples, the stress-strain curve does not show a pronounced peak, 

and instead the stress increases asymptotically to the critical value while the volume 

decreases. At very large strain both dense and loose samples achieve the same void ratio, ecv• 

exhibit little or no tendency to further volume change: and the deviatoric stress for both 

curves becomes essentially constant. The strength for this state is referred to as constant 

volume strength, <l>.:v·"' At this state, the sample can deform without volume change. 

Figure 5.3 further shows the relationship between the internal friction angle,$. and 

the initial void ratio, en (Rowe, 1962). This trend of higher$ for denser soil is always the 

same regardless of the type of granular materials. And, hence, this internal friction angle, cp, 

is not a material property but depends strongly on the void ratio which reflects the degree of 

interlocking between blocks. 

Since the strength at the ultimate condition for a particular sample is the same 

regardless of its initial void ratio, '1>cv may be thought of as a material property. The value of 

'1>~ ... can be approximated with reasonable accuracy by the angle of repose, '1>r• i.e., '1>.:v = '1>r (see 

~ <1> and its variants, i.e., cpP and '1>.:\·• are actually internal friction angles; however, they are 
commonly referred to as the strength of cohesionless materials in soil mechanics. 

1The angle is sometime referred to as ultimate, critical or residual angle (Lambe and 
Whitman, 1979). 
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Section 5.2). 

Beside the void ratio, the internal friction is also dependent on the rubble 

composition, stress state, stress history, temperature, stress and strain rates, and the structure 

of the rubble. From Figure 5.1, it is clear that the angle of internal friction is also influenced 

by the grain size distribution and grain shape (Holtz and Gibbs, 1956) (see Table 5.2). The 

interlocking is particularly imponant as the angular ice blocks tend to interlock more 

thoroughly than round blocks. The general influence of the other variables outlined above 

with respect to soils has been detailed by Mitchell ( 1976). 

5.1.4 Limitations of the Phenomenological Approach 

The forces and movements induced by rubble-cone interaction processes are analysed 

primarily from a macroscopic point of view, which means that the rubble mass is assumed 

to be a continuum rather than composed of individual material pans, and the ice blocks are 

uniformly distributed throughout the body. Such an assumption will be sufficiently valid as 

long as voids are small and irregularities are present only on a scale small enough in 

comparison to the size of the structure under consideration. 

In a typical ice-rubble interaction situation there are transients. Even after steady

state is reached, sizeable fluctuation of ice load can be observed which is superimposed on 

the constant base line. Although this fluctuation can be attributed to the nature of ice 

breaking and ride-up cycles, it may also be partly attributed to the pulsating clearance of 

rubble ice due to the discrete nature of broken ice pieces and the local variation of geometric 
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and mechanical properties. 

In a typical rubble/structure system, a quantitative answer can only be given from 

case to case based on detailed statistical considerations that are beyond the scope of this 

research. Qualitatively, however, one can imagine that with decreasing size of the ice pieces, 

with respect to the structure dimensions. the discrete nature of the rubble becomes of lesser 

significance increasing the accuracy of a continuum macroscopic description. Observations 

from the present model tests, in terms of the geometry of the rubble and the associated loads 

on the models, suggest that the size effect is not significant even with the structure width to 

piece size ratio as low as 4. 

If, however, the dimensions of the ice pieces became comparable to the structure 

width. the pulsating nature of ice clearance may become significant. In such situations. 

methods which account for the discrete nature of the interaction. i.e., discrete element 

modelling, should be employed and the fluctuation phenomena taken into account. 

5.1.5 Laboratory Measurements of Rubble Strength 

Know ledge of the mechanical propenies of bulk rubble is a prerequisite for analysis 

of rubble mass behaviour. The mechanical properties, such as internal friction and cohesion, 

can be determined through shear strength tests. These tests also allow the influence of strain 

rate and other variables such as block size and distribution. temperature, etc.. to be 

investigated. 

Most of the studies to date have been carried out in the laboratory, many of which 
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have been performed on artificially generated ice rubble using some form of the direct shear 

box or the simple shear apparatus. From these empirical test results, constitutive 

relationships have been derived. The type of apparatus used in published shear box 

experiments and the general results obtained are reviewed by Ettema and Urroz-Aguirre 

( 1989 and 1991 ). The main features of these properties are briefly reviewed here. More 

detailed information can be found in the cited references. 

The tirst comprehensive study into the properties of rubble ice was conducted by 

Prodanovic ( 1979) who performed direct shear tests on submerged samples. His results 

indicated that the bulk rubble obeys the Mohr-Coulomb criterion. under a cenain range of 

stresses and displacement rates, i.e., Equation 5.1. 

Other experiments by Keinonen and Nyman ( 1978), Weiss et al ( 1981 ). Hellman 

( 1984 ). Gale et a1 (1985), Wong et al (1987), Sayed (1987), U rroz-Aguirre and Ettema 

( 1987) and Case ( 1991) are in agreement with this conclusion, but there is an enormous 

spread in the reported values of friction angle and cohesion. For example, angles of internal 

friction have been reponed from 11° to 65°, while cohesion has usually been reponed to be 

negligible, but has also been reported to be up to 20 kPa by Sayed ( 1987). The shear box test 

results are summarized in Table 5.3. 

The extreme variation in reported experimental results for the shear strength of ice 

rubble testifies to the complexity of what may seem a simple measure of resistance to shear. 

This variation may be attributed in part to the different testing methods used. Early tests 

used direct shear boxes (Prodanovic, 1979; Weiss et al, 1981; Hellman, 1984; and Fransson 
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and Sandkvist, 1985). Other tests were done using simple shear box. (Urroz-Aguirre and 

Ettema, 1987), a plane-strain box. (Sayed, 1987; and Sayed et al, 1992), and a small tri-axial 

cell (Wong et al, 1987). The direct shear boxes do not give a well defined failure plane 

within the sample; consequently, the stress and strain measurements cannot be properly 

quanti tied. The set-up used by Urroz-Aguirre and Ettema ( 1987), Sayed et al ( 1992), and 

Wong ct al ( 1987) overcame this problem by producing uniform deformation in the sample. 

Different sample preparation methods, range of stresses, strain rates, sample temperature. 

melting or freezing of the samples. and the difficulty in proper scaling of the bulk material 

further complicate the problem as well. 

Bruneau ( 1997) collected laboratory ice rubble shear data from the literature and 

compared them with the theoretical behaviour of a loose and dense sand. He concluded that 

the lower bound strength of ice rubble undergoing shear was similar to that of loose sand. 

He conjectured that the higher strength is attributed to various degrees of interblock bonding. 

Chao ( 1993) developed regression equations for estimating apparent cohesion and effective 

internal friction angle for unconsolidated ice rubble using four sets of ice rubble shear 

strength measurements (Prodanovic, 1979; and Weiss et al. 1981; Fransson and Sandkvist, 

1985; and Case, 1991). It was found that the thickness and flexural strength of the ice pieces 

are the most important factors in determining the cohesion of the ice rubble. For the internal 

friction of the ice rubble, void ratio appears to be the most important parameter. Although 

the regression analysis was based on limited measurements of 10 - 15 data points, his 

findings regarding the internal friction are in agreement with other granular materials. 
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Recent studies on ice rubble mechanics indicated the importance of micro-mechanical 

interaction between constituent ice pieces in determining the overall mechanical properties 

of the ice rubble. Hopkins and Hibler ( 1991) conducted a series of discrete element 

simulation with a two-dimensional shear box filled with blocks which have a length to 

thickness distribution characteristic of pressure ridges. Particle shape, angularity, uniformity, 

mixture anisotropy, and compactness were modelled rigorously within the limits of the two

dimensional simulation. The results showed clearly that variations in the coefficient of 

friction have a great effect on the shear strength of angular rubble. They also demonstrated 

that local rearrangement of block and breakage are competing mechanisms for the relief of 

local forces on the nominal failure plane. Breakage which depended primarily on load 

produced a load dependence in the shear strength. Their results demonstrated the need to 

take account the micro-mechanical properties and interactions between the constituent ice 

blocks in rubble research, and also the versatility of Discrete Element Method, as these 

factors could be readily incorporated into the problem. 

In interpreting the available laboratory measurements, two characteristics of rubble 

ice must be kept in mind. The first is the breakage of constituent ice blocks under confining 

pressures, which varies widely from test to test. Unlike other granular material, i.e., soils, 

the strength of ice is relatively weak, and considerable breakage of ice blocks may occur 

under even a moderate pressure. This breakage substantially affects the interlocking of the 

sample which is reflected in a lower internal friction at higher pressure. The second is the 

size of the sample. Unlike testing of real soils. rubble samples used in previous tests are 
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made from various sources, ranging from large size field ice to small size manufactured ice 

cubes. Early tests used relatively small test chambers, which might have led to size effects. 

Furthermore, all data on mechanical properties are from small scale laboratory tests, and 

uncertainties remain regarding the extrapolation of small scale data to field conditions. 

Recently. comprehensive field experiments were carried out near Borden, Prince 

Edward Island adjacent to the Confederation Bridge to develop reliable and practical 

methods for characterizing the insitu strength of ice rubble in first-year ridges and rubble 

ticlds (Bruneau et al, 1998). Two insitu shear strength testing methods were attempted. The 

tirst. referred to as the direct shear approach, involved the horizontal displacement of a 

pre-cut ridge core slab. Forcing the solid ice layer sideways resulted in the shearing of bonds 

with the underlying ice rubble keel. The second approach. referred to as the downward punch 

technique, involved the vertical displacement of a pre-cut block ofthe ridge's refrozen layer. 

The technique provided a vertical failure of the underlying keel. Ancillary measurements 

were made of level ice thickness, ridge depths. ridge prot1les, refrozen layer core samples. 

water salinities. sail heights, block size dimensions and weather conditions. Careful analysis 

of the data set will provide significant information on the deformation properties of ice 

rubble. 

The measurement of the strength properties of ice rubble have been focussed on its 

plastic failure state under high to medium pressure. Only a few have been performed at the 

low pressure regime. Whereas, the rubble in front of a cone is expected to be in a loose state, 

i.e .. cohesionless and under low confining pressure, and hence the test conditions may not 

124 



model the stress state that exists in the rubble under a typical interaction. At the rubble's free 

surface. the rubble is at the limit plastic state characterized by the internal friction angle at 

it's loose state, $,v· (See Section 5.2) Inside the rubble mass, the rubble is at it's elastic 

state. which can also be related to cpcv (see Section 5.3). This $cv is essential to model the 

rubble behaviour associated with the problem under investigation; yet, such measurements 

associated with ice rubble are scanty. 

5.2 Rubble's Surface Profile Due to Natural Dumping Process 

If a dry granular cohesionless material, i.e., dry, clean sand, is poured slowly from 

a not very high level onto a smooth horizontal plane. it will form a cone with it's free surface 

inclined at a definite angle to the plane due to the internal friction of the material. The 

limiting slope formed by this process is called the angle of repose, cpr, and it presents the 

maximum inclination at which the material will just begin to move down the slope. Since 

the poured material generally finds itself in a loose state, the maximum stable slope angle, 

<l>r· is about equal to the angle of internal friction for the loose state, cpcv· The existence of this 

angle of repose has been shown in various text books on soil mechanics, i.e., Lambe and 

Whitman ( 1979). 

Observations from experiments indicate that a similar slope failure process constantly 

takes place at the free surface of the rubble as a result of constant dumping of ice blocks onto 

its surface; and hence the rubble's free surface profile may be conveniently assessed by the 
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simple, empirical measurement of its angle of repose assuming the scale of the ice pieces is 

small. 

5.2.1 Variation and Maintenance of Rubble Surface Profile 

When rubble clears around the cone, three processes may arise: 

( i) Continuous dumping of ice blocks from the top to the rubble's free 

surface; 

( i i) Removal of ice blocks at the foot of the rubble as they move and clear 

from the side, and 

(iii) Increase of the free surface inclination of the rubble as it slides up the 

cone. 

All three processes tend to increase the surface slope of the rubble. and hence ensure 

a unique surface profile of the rubble to be maintained at its angle of repose by continuous 

failure of its free surface. The third process happens only when the rubble is allowed to slide 

up the wall with the underlying ice, when the static friction is high enough to prevent sliding 

between the rubble and the underlying ice. When this condition occurs, it also accentuates 

the effects of the other two processes. 

During steady-state rubble accumulation, the rubble slope fluctuates between two 

limiting values. Initially, the slope angle is less than the angle of repose. The slope increases 

through the aforementioned three processes until the slope is larger than the angle of repose 

for the rubble material, and progressive slope failure occurs. Up to this point. the motion of 
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ice pieces is slow and static equilibrium is maintained at each time instant. However. after 

the on-set of the slope failure, the motion of the toppling ice pieces is large and substantial 

kinetic energy is acquired by the toppling ice and the subsequent failure is dynamic. The 

slope after failure is substantially less than the angle of repose. 

Cantelaube-Lebec et al ( 1995) reported an 8 degree difference between the angle of 

repose just after an avalanche. and the angle of maximum stability just before the avalanche 

in their experiment on the equilibrium conditions at the surface of a flowing 2-dimensional 

granular medium. The pre-avalanche slope angle represents the limiting condition which 

corresponds to the maximum amount of rubble loading on the cone. 

Various aspects of gravity driven granular flows of particles down inclined surfaces. 

similar to the avalanche process, have also been studied by Savage and Nohguchi ( 1988). Jan 

et al ( 1992). Abu-Zaid and Ahmadi ( 1993), Chou ( 1994) and Pouliquen and Renaut ( 1996). 

Another process was also observed during tests which could limit the maximum 

rubble slope. Before the limiting angle of repose can be reached. all of the rubble mass can 

slide down the facet, thus decreasing the slope. This is expected to happen when the cone 

angle is steep or the ice-ice friction is low. Again, the pre-failure condition is static. 

The angle of repose is affected by measuring methods and many parameters. Three 

methods common( y used to measure the angle of repose are described by Linoya ( 1993 ). viz .• 

injection method, discharge method and tilting method. Brown and Richard ( 1990) have 

described each of these methods and discussed the various parameters affecting the angle of 

repose. Linoya et al ( 1990) have identified the various factors influencing the angle of repose 
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for granular materials, such as: particle size, size distribution, void fraction, injection rate, 

falling distance and size of heap. 

5.3 Stress-State of Ice Rubble 

5.3.1 Behaviour of Granular Material Under Stress 

Stresses within a granular mass are caused by the external loads applied to the 

granular mass and by its own weight. Since rubble mass is made up of blocks. it is essential 

to understand how a mosaic of granular material behaves under stress. Cla'\sical theories 

governing the earth pressure on a retaining wall form the logical starting point due to the well 

explored nature of the subject and the similarity of the interaction processes under 

investigation. 

The stress state of a granular mass. under various loading conditions. can be 

described using the concept of earth pressure ratio function. In soil mechanics. this function 

is commonly expressed by a ratio called the coefficient of lateral stress, and is denoted by 

the symbol K: 

K 
a, 

a,. 
(5·2) 

where crh and cr .. are the horizontal and the vertical stresses, respectively. The value of K can 

vary over a wide range depending on the magnitude of the lateral (horizontal) pressure which 

can develop in the rubble mass. This lateral pressure can be related to the strength and 
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stress-strain properties of the material and deformations which occur within the mass as a 

result of lateral movements. There are three distinct kinds of lateral pressure. and a clear 

understanding of the nature of each is essential. In the special case, where there has been no 

lateral strain within the soil. the coefficient of lateral stress is said to be in the .. at-rest" 

condition. and is denoted by the coefficient of elastic equilibrium at rest, Ka. Ka describes 

the geostatic stress condition. Coefficients for the two plastic limit equilibriums, ~ and ~(,.. 

can also be identified. ~ and 1<,. describe the two plastic limits at which rigid plastic 

material yields plastically. 

To illustrate the material behaviour at these three states, consider a level soil mass 

of semi-infinite extent retained by a smooth, rigid, wall as shown in Figure 5.4 which 

summarizes the general relationships between lateral deformation and pressure. For 

simplicity, the soil is assumed to be homogeneous, isotropic and cohesionless. The granular 

material tends to slip laterally and seek its natural slope. This tendency results in a push 

against the wall. 

The vertical stress CJv is controlled by gravity, and can be estimated from a proftle of 

overburden stress with depth. For the condition where the soil deposit is normally 

consolidated", the total vertical stress in the homogeneous soil at any depth of z is equal to 

the weight of the overburden: 

"'A condition in which the existing overburden pressure represents the maximum vertical 
pressure the soil mass has been subjected in its history. 
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(S-3} 

where Ys is the total unit weight of the soil. There are no shear stresses upon vertical and 

horizontal planes within the soil; and hence, in the case of a horizontal ground surface, the 

vertical and horizontal components of the overburden stress are also principal stresses. If 

these stresses are associated with zero lateral deformations of the soil, i.e., the unyielding 

wall depicted in Figure 5.4b, they are referred to as the lateral stress at rest and the earth 

pressure coefficient is designated Ko-

The horizontal stress, ah, and hence the eanh coefficient, K. are highly influenced by 

the current soil state. If the wall of figure 5.4 is allowed to move away from the retained soil 

mass. the soil starts to expand in the horizontal direction, following the wall movement. (See 

Figure 5 .4a) The lateral expansion of the soil against a smooth wall does not affect the 

vertical stress within the soil, but leads to a decrease in the lateral stress. Any element of soil 

will then behave just like a specimen of a tri-axial test in which the confining stress is 

decreasing while the axial stress remains constant. The soil's shear strength acts opposite 

to the direction of the expansion resulting in shearing resistance developed within the soil 

mass. and hence the lateral soil pressure on the wall decreases. When the soil develops its 

maximum shearing resistance with increasing lateral expansion. a sliding surface is formed 

in the soil behind the retaining wall, and the horizontal stress exerted on the wall decreases 

to a certain minimum, and no further decrease in the horizontal stress is possible. The 

horizontal stress for this condition is called the active stress, and the ratio of horizontal to 
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vertical stress is called the coefficient of active stress and is denoted by the symbol ~<:.. 

If the same wall moves into the retained soil mass. the soil is compressed in the 

horizontal direction. with the soil shearing resistance acting to oppose the lateral 

compression (see Figure 5.4c). Any element of the soil is now in just the condition of a tri

axial specimen being failed by increasing the confining pressure while holding the vertical 

stress constant. When sufficient lateral movement occurs. the shearing strength of the soil 

is fully mobilized and the reaction of the resulting lateral eanh pressure reaches its maximum 

value. The horizontal stress condition is called the passive stress. and the ratio of horizontal 

to vertical stress is called the coefficient of passive stress. ~· 

Figure 5.4 illustrates the important fact that lateral pressures change gradually in 

accordance with wall movement. and reach the fully active or passive conditions only when 

adequate movement has occum:d. Until such movement is achieved. the lateral pressure 

acting on the wall is intermediate between the two limiting values. and the soil is said to be 

in a state of elastic equilibrium. Results of large scale model tests are reported by 

Tschebotarioff ( 1951 ). 

The active and passive earth pressures constitute the ultimate case. The state of stress 

at this two extreme situations are called Rankine states. after the British engineer Rankine 

( 1858) who noted the relationship between the active and passive conditions. For a simple 

case of a level cohesionless fill behind a frictionless vertical wall. the magnitudes of 1<:. and 

~ are given by: 
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Ku = - sincl> 

+ sincl> 
(54) 

KP 
+ sincl> 

- sincl> 
(S-S) 

The range of K values can be large. For c1» = 35°, the possible range of earth pressures 

is as follows: 

Earth pressure Symbol Computed as K coefficient 

Active Ka Eq. 5.4 0.27 

At Rest Ka Eq. 5.7 0.43 

Passive ~ Eq. 5.5 3.69 

The two limiting values ~and Ka vary by factor of 13.7. Thus, it is imponant to identify 

the appropriate values forK to match a particular deformation and failure process. 

The at-rest stress state is of practical and theoretical significance to the present 

investigation, since stress state is established when the backfill is placed behind a rigid wall 

without allowing any lateral strain, i.e., soil deposited behind a rigid unyielding wall, a 

process similar to the disposition of ice rubble in front of a rigid cone wall through end 

dumping process. This process results in a cohesionless granular pile in loose state, and, 

thus, the initial state of the rubble can be characterized by Ka-

When the soil is in a state of elastic equilibrium, the stresses in the lateral direction 
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can be computed from the stress-strain relationships of the soil assuming a linear isotropic 

material behaviour. The isotropic linear elastic body is characterized by two parameters: the 

Young's modulus of elasticity, E, and the Poisson's ratio, v, or with the use of another set 

of elastic constants-- the modulus of rigidity, G, and the Lame's constant, A. 

The relationship between lateral and vertical strains is described by Poisson's ratio5
• 

v; and for the condition of zero lateral strain the relationship between the principle stress 

(horizontal stress and vertical stress) are related by the ratio: 

oh v 
K,-- = ---

011 - v 
(5-6) 

Matsuo et al ( 1978) compared the measured earth pressure at rest on a retaining wall with 

the results from finite element computation, and showed that the elastic theory is applicable 

to evaluate earth pressure at rest if the Poisson's ratio can be properly given. The classical 

model of linear elasticity has been modified for use with dry cohesionless granular materials 

to account for the non-linearity of the stress-strain relationships of particulate structures. 

Even with these major modifications, accurate predictions of loads due to small defonnations 

are very difficult to make due to a lack of lmowledge of the stiffness moduli and strains as 

5While the concept of Poisson's ratio used in continuum mechanics is still valid for a 
granular mass, it should be noted that, the Poisson's ratio is used here to describe the behaviour 
of the whole granular mass, i.e., not the individual discrete ice block. As the stress-state of the 
rubble depends on it's load history, the Poisson's ratio of the rubble is not a material propeny 
and varies with the stress-state. 
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they change from point to point within the granular body. 

Several theoretical and empirical relationships for Ku have been postulated for loose 

sands as summarized in Table 5.4 [Jaky, 1944 and 1948; De Wet. 1961; Brooker and 

lreland. 1965; Wierzbiczky (see Rymsza ( 1979)); Feda. 1982; Matsuoka and Sakakibara. 

1987; and Szepeshazi. 1994]. However. experimental values of)(., are best represented by 

a simple expression given by Jciky ( 1948): 

K = 1 - sin"" 
tl 't' (5-7) 

The validity of this formula has been established by Szepeshazi ( 1994) and Mayne 

and Kulhawy (1982). After giving a detailed examination of Jaky's equation. Szepeshazi 

found the Jak.y's equation and its variations compared well with 152 measurements from a 

variety of soils. Mayne and Kulhawy ( 1982) conducted an extensive review of laboratory 

data from over 170 different soils as shown in Figure 5.5 (Mayne and Kulhawy. 1982). 

Statistical analysis conducted on Ku for all available data indicated: 

K = I - 1.003sin"" 
" 't' (5-8) 

having a sample correlation coefficient. r = 0.802. The scattering of data may be due to the 

variations of the other index properties of the soil. i.e .• liquid limit. plasticity index. clay 

fraction, uniformity coefficient, void ratio, etc. 

Many other investigators have also corroborated the results, i.e., Simons ( 1958); 

Brooker and Ireland (1965); Bishop (1971); Pru~ (1972); Wroth (1972); Myslivec 
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( 1972); Andrawes and El-Sohby ( 1973); Lambe and Whitman ( 1979}; Fukagawa and Ohta 

( 1988); Mesri and Hayat (1993}; and Feda et al (1995). 

5.3.2 Expected Stress State of a Typical Rubble in Front of a Faceted Cone 

When the rubble is fonned by a natural dumping process. the clearing of the rubble 

from the structure is analogous to the bulk material transport on an inclined belt conveyor 

as the supporting ice sheet and the ride-up ice act as the belt conveyor. And hence the rubble 

in front of the cone may constantly be subjected to two simultaneous processes: 

(i) The deposition of granular material in loose state in front of the 

structure during the initial formation; and 

(ii) The ride-up of rubble onto the facet in which the rubble is forced to 

conform to the underlying support when the rubble is conveyed up the 

facet. 

The first process results in a rubble with stress associated with the at-rest state. The 

second process may affect the stress state within the rubble, with the stress-state deviating 

from the at-rest condition and moving toward the two plastic limits. depending on the type 

of deformation in question, i.e .• compression or extension 

The real interaction process may be a good deal more complicated than the simple 

picture presented above, but the essential process is nevertheless clear. It is expected that the 

maximum force that is exerted by the rubble on the wall would correspond to the elastic 

equilibrium state with a K value somewhat close to Ku. and it can diverge from Ku depending 
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on the effect of the second process. In all likelihood. such a change is negligible as long as 

the rubble is allowed to clear from the structure; therefore. in the present study. the effect 

of the second process on ice load is assumed to be negligible, and is not studied. 

Possible extra load due to horizontal compression may be of concern. if the rubble 

is prevented from riding-up the structure; however, it should be noted that the rubble will 

not attain the passive state, even in this case. It is illustrated as follows: 

General equations for passive earth pressure coefficients, ~. can be established 

graphically through Poncelet's constructions ( 1840) for various wall angles. a, rubble angle. 

t 6
• wall friction angle, ~w• and the internal friction angle,~. of the rubble material (Jumikis. 

1962). The expected rupture angle. n. as defined in Figure 5.6 is given as follows (Jumikis. 

1962): 

tanO = tan(cp -cx>•ytan<ct> -cx)[tan(ci»-a)+cot(cll +(90° +\)][ 1 +tan(-+ ... -(90° •l)}cot(cl» +(90° +\)1 (S .. 
9

) 
I +tan( -ct>,.. -(90° +l))[tan(cl»-a)+cot(ct>+(90° +\)] 

It should be noted that when the rubble angle. l, is equal to the angle of repose. ~. the 

rupture angle, n, is equal to zero and the actual rupture line would make an angle ct» below 

the horizontal level. 

The above formula suggests that for an discrete rubble mass accumulated in front of 

6 In this thesis, the rubble angle, \, is reckoned as negative above and positive below the 
horizontal plane which is different from the common convention used in the field of soil 
mechanics. In the case under investigation, the angle is always positive. 
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an inclined wall, passive shear failure within the rubble will not occur during a typical 

interaction process. due to the large positive inclination of the free surface of the rubble. Any 

shearing failure (if there is any) will take place at the bottom of the rubble, where a weak 

shearing plane already exists, way before the shear strength of the rubble is fully mobilized. 

5.4 Analytical Methods for the Computation ofW all Thrust Exerted by Earth Mass 

at the At-Rest State 

The problem of the eanh pressure within rubble at the 'at-rest' state or near it 

corresponds to one of the calculation of the eanh pressure at rest for triangular fills. 

The calculation methods of earth pressure at the ultimate Coulomb's and Rankine's 

equilibrium states have been studied and examined by many researchers and engineers 

(Coulomb, 1773; Caquot and Kerisel, 1948; Terzagbi and Peck, 1967; Packshaw, 1969; 

James and Bransby, 1971; and Shields and Tolunay, 1973); but there is no satisfactory 

method to compute the lateral pressure on walls due to fill at the at-rest state. Technical 

literature for the calculation of lateral pressures on a rigid wall due to a triangular fill, as in 

the present case, is limited. 

In this section, two existing methods for the calculation of lateral pressures on a rigid 

wall due to a triangular fill are described: Melkote's elastic analysis (Melkote, 1977) and 

limit equilibrium methods. The discussion focuses on the limit equilibrium methods, while 

Melkote' s method is only briefly described. 
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5.4.1 Melkote's Method 

Mel.kote has developed a set of equations to compute earth pressures exened on 

retaining walls by triangular fills as in the case of wrap--around for transition blocks, between 

eanh dams and concrete spillways. His method consists of two steps by recognizing two 

important features of the problem, i.e., the fill is triangular in shape and the pressure is 

exerted in an ·at rest' condition. His derivations are based on Jurgenson's work (1934) on 

strip loads on semi-infinite masses. In this method. the vertical wall pressures due to the 

triangular fill are first estimated by calculating the vertical pressures due to a quarter infinite 

fill against the retaining wall on the basis of integration of Boussinesq' s Equation ( 1885) for 

a single concentrated load acting on a semi-infinite medium; and then unloading the fill in 

strips beyond the actual embankment section. The horizontal pressures are then obtained by 

multiplying the vertical pressures with the coefficient of earth pressure at rest. His method 

is also applicable to a wall inclined at any angle, and a flll consisting of any number of layers 

with different densities and compaction characteristics. Due to the complexity of the 

derivation, the equations are not presented here. 

Mel.kote' s method has rarely been used as designers favour simpler methods. 

5.4.2 Limit Equilibrium Methods 

A simpler and widely used method, which may be applicable to the problem under 

investigation, is the limit equilibrium method commonly used in slope stability analysis 

(Huang, 1983). This method is based upon states of limit equilibrium which have dominated 
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earth pressure problems for over two hundred years. The analysis essentially applies the 

principles of static equilibrium to a relatively simple geometry in which slip on 

discontinuities is governed by a specified shear strength model. It involves making an 

estimate of the weights to be resisted. the geometry and the shear strength of the failure 

surface, and the amount of shear mobilized within the granular mass. The stability of 

individual slopes is expressed as a factor of safety. F1 , which is the ratio of forces resisting 

movement to the forces tending to induce sliding. When the mass is stable, the factor of 

safety is higher than unity; and when the factor of safety is equal to unity. the slope will be 

unstable, i.e .• at limiting equilibrium. A factor of safety smaller than unity implies an 

impossibly steep slope. 

Most problems in slope stability are statically indeterminate, and hence various levels 

of simplification are used in order to arrive at a unique solution. This leads to a variety of 

methods (Fellenius, 1936; Bishop, 1955; Morgenstern and Price, 1965; Seed and Sultan, 

1967; Spencer,l967; Wangetal,1972; andJanbu,l973),rangingfromthesimplewedge 

method (Seed and Sultan, 1967) to the very sophisticated finite-element method (Wang et 

al. 1972). In this section, the simple wedge method is presented to illustrate the general 

computational procedures of the limit equilibrium methods. 

As we have already shown in the previous section, any sliding will occur at the pre

existing sliding plane, and the principle underlying stability calculation of the triangular 

rubble mass is the failure in shear along the sliding planes, when the driving forces exceed 

the resisting forces. The forces on the ice contact surfaces. due to the rubble, can be 
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reasonably estimated by assuming that the rubble is made up of a number of hypothesized 

rigid blocks piled up against the inclined surface and considering the equilibrium of forces 

for each of these blocks. By considering the rubble blocks as rigid bodies. it is possible to 

predict rubble forces on the cone with the aid of rigid body mechanics. The simplest analysis 

consists of two rigid blocks moving along the contact surfaces: the suppon and the incline, 

as shown in Figure 5.7.7 The lower block has a weight, W 1; and the upper block has a 

weight, W :!• resting on the incline with an angle, a. The dimensions ofW 1 and W 2 are given. 

The rubble is assumed to be cohesionless, and have a natural slope, t = ~. The contact 

surfaces between the rigid blocks, suppon. and wall as well as each other form potential 

failure planes. The sliding resistance of the rubble at the wall and the suppon is governed 

by ice friction angle, ~u· 

The distribution of forces on each plane depends on the interaction force between the 

two sliding blocks and can be determined by considering the two blocks jointly. Figure 5.8 

shows the free-body diagram for each block. The angle of the inter-block force. ~d• is 

required for solution. and may be assumed equal to the developed friction angle, i.e .• tan~d 

= tan~/F~8 , with F~ being the factor of safety commonly used in limit equilibrium analysis. 

'The mechanism in Figure 5.7 is not strictly kinematically feasible for the rigid blocks 
analysis, because any downward vertical movement of the upper block will cause the block to 
lock up at point A. This difficulty can be overcome by assuming that sufficient localised 
deformation occurs in the region around point A to allow the mechanism to operate. 

8 At the verge of failure, the friction at the sliding planes, along the suppon and the 
incline, is fully mobilized, i.e., equal to tan~11 ; however, the friction between the two rigid blocks 
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By assuming that the factor of safety, F5 , is everywhere the same. applying equally to tancj) 

for the rubble material between blocks. and to tancj)11 at the wall and the suppon. there are a 

total of four unknowns, p. F s• N I and N2; where pis the force acting between the two blocks, 

and N 1 and N:! are the forces normal to the failure planes. The problem is statically 

determinate with four unknowns and four equations. two from each block. 

For the lower block. summing all forces in the venical direction and the horizontal 

directions, and solving for N 1 and P: 

w.coscl>d 
Nl = ------~(t_an_cl>-~~~)--.-~-

coscl>d - sm"' F d 
.f 

(5-10) 

p (5-11) 

or P, in term of the unknown F~ only: 

p = (5-11) 

For the upper block. 

may not be fully mobilized. i.e .• the angle of the inter-block force is less than or equal to tan Q. 
depending on the value of F5• 
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N2 = 
W2coscl»d 

cos(cl>d - ex) - ( tancl»~) sin(cl>d - ex) (S-13) 

Fs 

N2 [sinex - ( tancl>~) cosex] 
(S-14) p = 

Ff 

cosct>d 

or P, in term of the unknown Fsonly: 

w2 [sinex - ( tancl>~) cosex] 

p ::: F.f 
(S-IS) -( ':4>,) sin(cl>• - a:) cos(cl>d - ex) 

.f 

The equation for the factor of safety F~ as a function of input parameters ~d• ~~~·a. W 1 

and W2 can be detennined by equating Equations 5.12 and 5.15. Once F, is obtained. N 1• N2 

and P can be computed from Equations 5.10, 5.13 and 5.15. A computed value ofF, greater 

than unity means sliding at the potential failure plane does not take place; while. a values 

of F~ smaller than unity means that the sliding failure will occur with a given rubble angle. 

In such cases, the rubble angle should be reduced and a new Fs computed until a value of 

unity for F, is obtained. The corresponding rubble angle is the maximum angle which can 

satisfy the static equilibrium condition. 

By assuming the rubble as rigid blocks, the limit equilibrium methods ignore the 

flexibility of the rubble mass. Funhermore, the assumed value of ~d highly influences the 
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stress distribution on the potential sliding plane, and the associated factor of safety. For 

example, Figures 5.9 to 5.11 show the safety factor, the limiting rubble angle, and the 

horizontal wall thrust. calculated from the fore-mentioned method, as a function of cp/cp for 

h = 1 m. a= 50°, cp = 30° and cp11 = 11.3° and 21.8°. A commonly accepted way to estimate 

<Pd has yet to be developed. 

In Chapter 7. empirical equations to calculate wall thrust due to a triangular fill at the 

at-rest state will be formulated from a series of numerical simulations. The equations are 

simple to use and yet account fully for the discrete nature of the fill materials. 
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Table 5.1 Summary of failure criteria proposed for granular materials (after Evgin and Sun, 
1989) 

Isotropic Criteria Anisotropic Criteria 

l. Hill (1950) 
(for orthotropic materials) 

2. Generalization of Mohr Coulomb's 
I. Mohr-Coulomb Criteria 

a. Baker and Krizek ( 1970) ., Drucker-Prager ( 1952) b. Boehler and Sawzuck ( 1970) 
a. Bishop ( 1971) c. Nova and Sacchi ( 1979) 

3. Tsai-Wu 
a. Tsai and Wu ( 1971) 
b. Wu (1974) 
c. Saada et al. ( 1983) 

Table 5.2 Effect of angularity and grading on peak friction angle (after Terzaghi, 1955) 

Shape and Grading Loose Dense 

Rounded, uniform 30° 37° 

Rounded. well graded 34° 40° 

Angular, uniform 35° 43° 

Angular. well graded 39° 45° 
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Table 5.3 Summary of laboratory shear box tests on ic.:c ruhhlc 

Test 
Shearing Initial Normal Test Cohesion Friction 

Author Performed 
Material Tested Rate Void Pressure Temp. c Angle, q, 

(mm/s) Ratio, e,, (kPa) ("C) (kPa) (") 

Keinonen & Block 3.21, saline ice (t=block 0.54-
Nyman Direct shear 

thickness) 
n.a. 

0.59 
0.5- 1.5 n.a. 0.11 47 

( 1978) 

Prodanovic Vertical Max. block size: 81, saline ice 19 - 38 0.0- 2.7 
0.26-

47-53 
(1979) shear 

n.a. n.a. 
0.58 

Weiss et al Vertical Similar to above, max. block 
3-25 

0.23-
0.0- 28.0 

-4.0-
1.7-3.4 II- 34 

( 1981) shear size: 41 1.00 -20.0 

Hellman Vertical 
ice chip, commercial ice 

( 1984) shear 
(mean diameter 30 mm), and 1.6-92.0 n.a. 0.0-4.0 (} 0.0- 5.8 43-65 

urea-doped ice 

Gale el al 
Direct shear 

Max. cube size: 9.5 mm, fresh 0.67-
51-140 - I 

( 1985) water ice 
n.a. 

1.00 n.a. n.a. 

Urroz- Parallelepiped blocks, max. 
Aguirre & Simple dimension from 16to 95 mm, 2 n.u. 0.6 () 35-52 

Ettema shear fresh water and polyethylene 
n.a. 

( 1987) ICC 

Sayed 
Plane strain 

30 mm cubic blocks, fresh 0.67 - -I 0.0, 
(1987) 

compressio water ice 
n.a. 

9.85 
2.5 - 35.0 

-22.0 
J() -20 27-45 

n 

Case (1991) Direct shear Block size: 1.31, EG/AD/S ice I n.a. +2.0 
0.52-

27-49 n.a. 
0.82 
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Table 5.4 Different equations for coefficient of pressure of loose soil at rest 

Source Equation 

1 aky ( 1944) - original K Ku ( 1 ., . ~ :: + -=-sm ) 
" 3 

1 aky (1948) - simplified K :: l - sin<l> 
" 

De Wet (196 l ) K = 
I - sin!lj) 

" I • lsin!lj) 

Brooker and Ireland ( 1965) K 
" 

= 0.95 (I - sin <I>) 

Wierzbiczky ((see Rymsza ( 1979)) K = tan2(45" - !.) 
" 3 

Feda ( 1982) tan<l> - ,fi -l I - 21} ) 

K = 2v'2!1 . !}) 

" 
( 

1 
· 

2
1} ) - 2tan<t> - ,fi 

v'2n · P> 
P is the ratio of the elastic and plastic axial strains 

Matsuoka and Sakakibara ( 1987) K = 
I 

" I • :!sin$ 

Szepeshazi { 1994) K :: (l - sin$) l sin$ J 
" !I · sin$) (sin$ • ./4.5 • 4sin4i • 3\ 
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Figure 5.3 

Figure 5.4 
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Figure 5.5 

Figure 5.6 
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Figure 5.9 
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Figure 5.11 
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Chapter 6 Rubble Geometry Idealization 

When an ice sheet encounters an obstacle in its path, the amount of ice blocks that 

can be generated and piled up in front of the structure is influenced by a number of structure 

and ice parameters. A realistic modelling of the rubble field and the mechanism of its 

formation is essential to an accurate ice load estimate. 

In this Chapter, a new model to predict the shape and size of the rubble is presented 

based on insights obtained from the earlier experiments (Chapter 4) and the basic soil 

mechanics theories (Chapter 5). The purpose of this model is to compute the geometry of 

the rubble based on simple yet essential interaction processes and mechanical principles. 

Section 6. 1 describes the general features of the interacting systems and the assumptions 

used. The discussion forms the conceptual basis of the rubble geometry idealization. In 

Section 6.2. an idealized geometry of a fully developed ice rubble is presented. Such a 

rubble is expected to pile-up in front of a faceted cone during typical rubble generation and 

clearing processes. The geometry is uniquely defined by the rubble's angle of repose, and 

the characteristic rubble heights along the cone perimeter. The methodology to predict the 

amount of ice piled up via mass balance considerations is also described.' Section 6.3 

presents the detailed derivation of the basic equations for the rubble height calculations. The 

key heights are the maximum heights of the rubble along the front facet and side of the cone. 

'McKenna and Bruneau ( 1997) used a very similar mass balance technique to estimate 
rubble build-up on conical structures during ridge interactions by considering the projected area 
of the advancing ice and the amount of ice rubble cleared. 
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The derivations are validated in Section 6.4 by comparing the predicted values of the 

maximum heights to the corresponding measurements from physical model tests. 

6.1 General Features and Assumptions of the Interacting System 

A considerable simplification of the analysis can be realized by recognizing the 

principal features of ice generation, ice supply and ice clearing processes associated with the 

interaction between a relatively thick and strong slow moving ice sheet and a face-on 

oriented faceted cone. Figure 6. l describes the typical ice breaking pattern observed in the 

model tests. The ice sheet in front of the cone can be divided into 3 characteristic zones: an 

accumulation zone located directly in front of the front facet and a clearing zone located on 

both sides of the accumulation zone (the ice tends to accumulate in the accumulation zone 

and clear from the clearing zone). For simplicity. the width of the accumulation zone is 

equal to the facet width at the waterline2
, wr; whereas, the width of the clearing zones is 

almost equal to the projected waterline width of the side facet in the direction of ice 

movement. 

If the ice is thick and strong. the train of ice blocks generated from the accumulation 

zone will be allowed to ride up the front facet, reaching the neck intact. and form an inclined 

wall with a constant width, Wr, as shown in Figure 6.2. This wall forms a barrier preventing 

any ice clearing through it; and any ice generated from the ice breaking can only clear 

1The width of the accumulation zone is influenced by the ice breaking pauem, and a more 
precise method to estimate this width is given in Section 8.2.1. L. 
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beyond the wall at both sides. Hence, analogous to those of the ice sheet, accumulation and 

clearing zones can also be identified within the rubble, as shown in Figure 6.3. 

When the ride-up ice from the accumulation zone reaches the neck, the broken ice 

blocks fall back onto the accumulation zone following a path parallel to the centerline of the 

cone. These ice blocks contribute to a constant supply of ice blocks into the rubble. On the 

other hand, the ice blocks generated from the clearing zone ride up the side facet and clear 

around the cone without obstruction; and hence, they do not contribute to the supply of the 

rubble. 

Since the rubble is sitting on top of the ride-up ice, it follows the same clearing 

process of the underlying ice. ln most case, the friction between the rubble and the 

underlying ride-up ice is sufficient to prevent any sliding between the interface. As a result, 

the rubble is transported up the facets with the underlying ice acting as a conveyer belt. The 

ice blocks located in the accumulation zone cannot clear around the cone, but instead tumble 

back onto the accumulation zone due to the obstruction of the neck located directly in their 

path. These blocks eventually move sidewards into the clearing zone. Once the ice blocks 

are in the clearing zone, they ride up and clear from the side facet with the riding-up ice. The 

idealized flow pattern around the cone is also given in Figure 6.3. 

The rubble surface profile is generated by a process analogous to the process of berm 

construction by end dumping of granular materials from a line source, i.e., at the end of a belt 

conveyor. Although the rubble is constantly pushed forward by the front facet, the speed is 

so slow that it does not seem to affect the process. This process results in a rubble with a 
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surface pro tile governed by slope stability criterion where the slope of the rubble is equal to 

the angle of repose of its constituent material. With this surface profile known, the geometry 

of the rubble can be uniquely defined with a given height profile around the cone perimeter. 

The size and shape of the rubble at any instant during its development depend on the 

balance between the supply and clearance of ice blocks to the rubble system. At the steady 

state rubble clearing process. a constant amount of rubble piles up in front of the structure, 

and its mass can be estimated by geometric consideration and a mass balance calculation. 

Neglecting the discrete nature of the ice flow, the rate of ice supply into the rubble 

depends on the thickness and velocity of the ice sheet and size of the cone; and the rate of 

ice clearing from the rubble depends on the size of the rubble fom1ation. At the earlier stages 

of the rubble growth. the rate of ice clearing is low as most ice blocks are situated in the 

accumulation zone. As the rubble grows. the rate of ice clearing from the sides increases 

with increasing amount of the ice blocks moving into the clearing zone, until the rate of ice 

clearing equals to the rate of ice supply. When this condition occurs, the rubble is fully 

developed. As the rubble grows, the slope tends to be constant, equal to the angle of repose. 

Figure 6.4 shows the geometry of the rubble as it grows in size. 

To simplify the problem treatment, the following six assumptions are used for the 

analysis: 

( i) Rubble Generation Process: 

The rubble pile is generated by end dumping of ice blocks from a line source 
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located at the neck directly above the front facet. 

(ii) Cohesionless Ice Blocks: 

The constant deformation of the rubble mass prevents any cohesion 

being developed within the rubble. 

(iii) Full Mobilization of Shear Strength at Rubble's Free Surface: 

The shear strength is fully mobilized at the rubble's free surface. It 

follows from assumptions (i) and (ii) that the free surface of the rubble is 

equal to the angle of repose of the material. 

(iv) Full Rubble Development: 

The rubble is allowed to develop fully without the bearing failure of 

the supporting ice sheet.3 

( v) Quasi-Static EQuilibrium State of Rubble: 

The ice velocity is slow enough that the dynamic motion of the ice 

'This condition is valid for relatively strong ice tested in IMD's series; however, this 
may not always be the case. The maximum amount of rubble may not be developed due to 
failure of the supporting ice sheet, as observed in several tests conducted in IME. In such cases, 
the strength of the supporting ice sheet has to be considered (see Section 7.6.2}. 
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blocks can be ignored.~ The rubble in front of the cone is assumed to 

maintain a quasi-static equilibrium state at all time. [t follows that: 

(a) The shape of the fully developed rubble can be deduced from 

considering the static stability of the rubble around the structure 

alone. In other words, the dynamic motion of the individual ice block 

does not alter this stable shape. 

(b) The inertial impact of ice blocks tumbling down the slope will not de-

stabilize the natural slope of the rubble. i.e .. the slope maintains at its 

angle of repose. 

(vi) No Interaction Between the Free Surface and the Rubble-Ice Interface 

The existence of the structure does not modify the free surface profile 

of the rubble. i.e .. the rubble is thick enough that there is no interaction 

between the free surface and the ice-structure interface. The free-surface 

maintains it's angle of repose independent of the ice-structure interface 

condition. Thus. a unique geometry of the rubble can be obtained by first 

forming a heap of rubble from a line source and then superimposing it on to 

the structure. 

~Observation from model tests shows no discernible effects on the piling process or the 
geometry of the mbble with speed up to 2 m/s full scale. 
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6.2 Ideal Geometry and Mass Balance 

Figure 6.5 shows the idealized geometry of the rubble system surrounding a simple 

faceted cone. Only the front right quarter of the cone is shown. The free surface of the 

rubble always maintains at its natural angle of repose. q,r• in the radial direction. The profile 

of rubble height around the front perimeter of the cone is defined by three characteristic 

heights, h~, hrf• and hrm• which are the heights of rubble at the side of the cone, at the edge of 

the front facet. and the maximum heights along the front facet. respectively. In the present 

modeL the values of hrs, hrf. and hnn are derived. and the variation of height between these 

three points along the cone perimeter is assumed to be linear. The increase of height from 

the edge of the front facet toward its centerline is due to the end effect typical of a three

dimensional heap formation from a line source with tinite length (see Section 6.3.3); and the 

increase of height from the edge of the front facet toward the side of the cone is due to the 

ride-up of the rubble ice along the side facet. The rubble height profile along the cone's 

perimeter, together with the known geometry of the cone and the assumed natural angle of 

repose, uniquely define the geometry of the rubble. 

The above idealized geometry is deduced from considering the main features of the 

rubble generation and clearing processes, and is in agreement with observations from model 

tests (see Figure 4.ld). Once this geometry is deduced, the size of the rubble, i.e., the values 

of hr,, hrf• and hrm. can be obtained through mass balance calculation. 

To illustrate this, please refer to the rubble system shown in Figure 6.6. Again, only 

the front right quarter of the system is shown. The rubble's free surface, the cone surface, 
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and an imaginary vertical plane form the boundaries of the system under consideration. The 

ice blocks are supplied into the system at the top of the rubble. and eventually clear through 

the cross-section of the rubble intersected by the vertical plane. i.e .. cross-sectional area. A. 

The general mass balance equation governing the selected system is given as follows: 

R R + R 
.( tJ c: (6-l) 

where R, and Rc are the rate of ice supply to and clearing from the rubble system. 

respectively; and R" is the rate of ice accumulation in the system. 

In the case of a steady tlow. there is no mass accumulation within the rubble system. 

Thus. the rate of mass supply to the rubble system is equal to the rate of mass clearing from 

the system: 

R R ' .. (6-2) 

Since all the ice mass riding up the front facet must eventually enter into the rubble 

system as ice supply to the system. the rate of ice supply is equal to the rate of ice displaced 

by the front facet; and hence: 

(6-3) 

where w r is the waterline width of the front facet; t. is the ice thickness; and V is the ice 

advancing speed. 

The rate of ice clearing through an arbitrary cross-section in the rubble mass is a 
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function of the area of the cross-section, A, as well as the velocity, v ... and the porosity, p. 

of ice passing through it: 

R.. 2(1 - p)AV .. (6-4) 

The factor of 2 reflects the fact that same cross-section. A, exists at both sides of the cone. 

In the present derivation, two imaginary vertical planes are selected, a front reference 

plane and a side reference plane which intersect the rubble mass with the cross-sections 

associated with hrf and h r.;• respectively. Since the rubble moves with the underlying ice 

sheet. the speeds of ice clearing through these two reference planes are assumed to be equal 

to the ice advancing speed V. By equating the ice clearing rate to the ice supply rate, i.e .• 

Equations 6.3 and 6.4. and letting Vc equal to V: 

2(l - p) 
(6-5) A = 

The geometry of A is defined by the angle of repose at the rubble surface, the cone angle at 

the ice cone interface. and an unknown height which is determined in the next section. 

6.3 Derivation of Basic Equations for Characteristic Heights of Rubble 

6.3.1 Rubble Height at the Edge of Front Facet, hrf 

Because of its proximity to the source of ice supply, the geometry of the frontal 

portion of the rubble is highly affected by the way the ice blocks are supplied into the rubble 
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system. 

Figure 6. 7 shows the geometry of a rubble pile formed by dropping ice blocks from 

a line source. If we ignore the end effect due to the finite width of the line source, the rubble 

will have a central wedge section with length equal to the width of the line source, and a half 

cone section formed at each of the two ends. The free surface of the rubble has an angle 

equal to the angle of repose, 4>r• of the dumped material. Suppose that we dump material 

from a finite line source onto an inclined plane with the same width as the source, the 

(!Xpected geometry of the rubble is illustrated in Figure 6.8. In another words, the geometry 

of the rubble formed in front of a structure can be obtained by super-imposing the rubble on 

the structure. 

To perform a mass balance calculation for hrt"• only the frontal portion of the rubble 

is considered. Figure 6. 9 defines the rubble system to be considered. The cone in this 

problem consists of three sections, with the subscript 1 denoting the lowest section and 

subscript 3 the neck section. The geometry of the cone, in tenns of the height, h;. and the 

slope, a ;. of each section is known. The slope of the rubble is equal to cl»r· In this figure , the 

rubble reaches the vertical neck, but the analysis also applies to rubble with its height at the 

edge of the ride-up ice below level of the neck. To simplify the calculation, the thickness of 

the ride-up ice is ignored, and the width of the ride-up ice wall is assumed equal to Wr. The 

reference plane intersects the rubble at the side of the ride-up ice on the neck and front facets 

to form a cross-section Arf. It is assumed that some ice will be trapped between the side-facet 
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and the back of the ride-up ice wall. preventing any ice to pass through cross-section A2 and 

the trapped ice is not considered in this analysis. The rest of the rubble system interfaces 

with the side-facet at area A3 ; and, hence, the ice, which is supplied from the top of the front 

facet, must clear from the rubble system through cross-section A". 

Figure 6. 10 shows the geometry of Arf corresponding to the Cross-Section A-A as 

detined in Figure 6.9. The cross-sectional area, A", can be obtained by considering the 

geometry of the system: 

8,/lrt- - A 
ob 2 

(6-6) 

where A.,n is the projection of A1 (see Figure 6.9) onto the reference vertical plane where the 

icc is directly blocked by the portion of the structure protruding beyond the ride-up ice wall. 

Since: 

then: 

~ 
tan<t>,. 

hrf2 

2tancl>,. 
-A 

(6-7) 

ob (6-8) 

When the rubble increases in height, the front reference plane moves toward the rear 
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part of the cone with increasing cob• until, and unless, the hrf is equal to or greater than h!, 

and portion of the cone blocking the ice movement increases with increasing Bob and hoh· 

The shape of Auh depends on the geometry of the cone, i.e., Cln.i• h i• and the height hob or 

length Boh as defined in Figure 6. 10. In Figures 6.9 and 6.10, Bob and hobare shown at their 

maximum values. The a. rf.i corresponding to each cone section can be obtained by tracing 

the interaction between the cone and the vertical reference plane. It can be shown that when 

the plane intersects the cone surface at a particular section, the intersecting line always makes 

an angle equal to the cone' s side angle, a s.i • with the horizontal, where i is the corresponding 

section: and hence arf.i = <l...i· It can also be shown that the following relationships hold for 

a six-faceted cone of any cone inclinations and sections: 

B o/1 tan30" (6-9) c 
"" 

and 

tan a 
__ .f_., == sin60" 
tan a . 

I 

(6-10) 

where ai and a s.• are the slopes of the centerline and edges of a facet at section i, respectively. 

The distance Coh is equal to: 
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(6-ll) 

where the subscript, n. is the highest section of the cone the rubble reaches. and ho is equal 

to zero. Substituting Equations 6.10 and 6. 11 into Equation 6.9: 

8 
"" 

(hrt - lz,. -1 

tan a .r.n 
L lz - lr I) 

-' --'-- sin30 " + P l.n · I tan a 
r.1 

The height h""' can be calculated from Boh• a, and h. i.e., 

( lz-lz) 1z = 8 - ' ; · 1 tana .. ~~ ,, E,, l.m - 1 tan a .r.m 
r.1 

(6-12) 

(6-13) 

where m is the number of sections blocking the ice clearing. In the above equation. m cannot 

be calculated a-priori; however, unless the height of the lowest cone, h 1• is very small. for 

all intents and purposes, the ice will only be blocked by the lowest section of the cone, i.e .. 

m = t. with ho"' equal to (800 tan a s.1). In this case. Aab can be calculated from the following 

equation: 

A _!_B I 
ob 2 ob r,b 

1 :! 
- Bob tana. 1 2 .. (6-14) 

Combining Equation 6.14 and Equation 6.8 gives: 
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Letting A from Equation 6.5 equal to Arf in Equation 6.15, hrf can be solved: 

w, t 

(l - p) 

~ 

+- B,:i,tana 1 f. 
(6-16) 

where 8 ,,0 is computed from Equation 6.12.5 

To compute the value of Bob• the highest section. n, which the rubble reaches must 

be known. The value n can be obtained via trial and error method by assuming an arbitrary 

n. and then the corresponding hr1 is calculated and compared with hn. the height of the 

a-.sumed section. If hr1 is greater than h", then the actual n is greater than the assumed value. 

and a higher value for n must be assumed until hrf is smaller than the assumed hn. 

For an unlikely event that m is greater than 1. Aob and hrf can be calculated from the 

following generalized equations: 

tana ) l 
f,t•l 

(6-17) 

5Provided the value of n is known, Equations 6.12 and 6.16 form a set of two 
simultaneous equations with two unknowns. Bo and hrf. 8 0 and hrr can be solved by iterative 
procedure by letting the initial value of hrf equal hn. A few iterations will give a converged value 
of hrr· 
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[ 
wt t 

( l - P,) 
+ --- -tan_«_. -) l tan$ r 

~.,·I 

(6-18) 
tan ex 

.f.tn 

where hnh is computed from Equation 6. 13, and the trial value of hrf is computed via the 

above trial and error method by assuming an arbitnrry m (in an ascending order) for each 

assumed n value. 

6.3.2 Rubble Height at the Side of Cone, hn 

For the calculation of the characteristic rubble height at the side of the cone, hrs, 

consider an imaginary vertical axial plane of symmetry in the cone, 8-B. which intersects the 

rubble at the side of the cone with a cross-section Ars as shown in Figure 6.11. Again, to 

maintain a constant amount of ice mass within the rubble system, the rate of ice supply to the 

rubble system must be equal to the rate of ice clearing through Ars. 

The cross-section. Ars, is depicted in Figure 6.12. The slope of the rubble is equal to 

<l>r· Again similar to Equation 6.8: 

A 
f'5 

h 2 
r .f - A 

ob (6-19) 
2tan$ r 

where Anb• a function of h, hrs, cxs and n, is given as the following: 
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A ob 
+E 1 2( 1 

i ~ l.n - I '• tan a . 
.f.l 

mnoc . ) ] 
s.1 ·I 

(6-20) 

where the subscript n denotes the highest section where the rubble reaches (see Figure 6. 12). 

Substituting Equation 6.20 into Equation 6.19leads to the following equation for Ars: 

tana J J 
.f. l·l 

By substituting Equation 6.5 into Equation 6.21. hrs can be solved: 

hrl" 

w, t 

(l - p) 
+E 1 2( 1 

•-l.n I z, tana 
'·' 

tanoc,.,J 

tan a 
fJI 

(6-21) 

(6-22) 

To compute the highest section. n. of the cone which the rubble reaches. trial and 

error procedure similar to those given in the preceding section can be used. 

6.3.3 Derivation of Generalized Equation for 1\'laximum Rubble Height Along the 

Front Facet Face, hrm 

Observations from model tests indicate that the rubble edge along the front facet is 

not level. The rubble height profile is parabolic with the height decreasing from a maximum 

value. hrm. at the centerline of the front facet to h" at the edge. This decrease can be 
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attributed to the end effect during the formation process of a three-dimensional rubble pile 

from a finite line source with a constant output rate along it's length. In this section. this 

effect is explained and a simplification in regarding the rubble geometry is made in order to 

arrive at a simple relation between hnn and hrf. The implication of this approximation and its 

correction are then addressed. Due to geometric complexity of a multi-sloped cone. only the 

equations associated with single sloped cones are derived in this section. 

The phenomenon of end effect due to dumping from a finite line source is illustrated 

in Figure 6. 13 for a simple two-dimensional case. If there is no lateral restraint. a portion of 

the dumped material at the two ends will slide down the heap to form a lateral slope; and 

thus decrease its height at the two ends. Conceptually. the end effect can be illustrated by 

replacing the heap formation with two steps process as shown in Figure 6.14. The rubble 

material is tirst dumped within the two lateral wall restraints, and then. the lateral wall 

restraints arc released to allow materials at both ends to collapse to form the lateral slopes. 

The profile of the heap can be computed by letting area A 1 equal to area A!. The length, w. 

can be viewed as the portion of the line source which is subjected to the end effect. Figure 

6 . 15 shows the dimension of a two-dimensional heap formed in front of a facet by the 

process depicted in Figure 6.14. As material is added to the heap. the length w will increase 

with increase of B, hrf• and hnn. If w is smaller than 0.5 We, a trapezoidal profile is formed 

with: 

w 0.58 (6-23) 
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and the maximum height: 

(6-24) 

as shown in Figure 6. 15a. The maximum value of w is limited to 0.5 w r• when a triangular 

profile is formed. If the heap is allowed to grow further. the dimensions B. hrt and hrm will 

increase while w is kept constant. The maximum height: 

lz = lz ,. w tan"' = lz . + 0.5w tan"' rm rf 'f' r rf r 'f' r (6-25) 

as shown in Figure 6. 15b. 

To extend the analysis to a three-dimensional case analogous to the rubble formation 

in front of a conical structure. the problem is simplified by assuming the geometry of the 

rubble in front of the cone to be identical to that formed by dumping materials in front of an 

inclined plane. Figure 6.16 shows half of the rubble mass formed in front of a sloping plane 

by a line source with the lateral movement of ice blocks restrained. The right hand side is 

the plane of symmetry through the centerline of the sloping plane. Figure 6. 17 shows the 

tina! shape of the rubble after the removal of lateral restraint on the left hand side. The 

inclined plane is selected in order to simplify the derivation. The plane intersects the rubble 

over an area. part of which is a triangle. egj. with an area A5• (See Figure 6.17.) The 

derivation is only for a single slope structure with the front facet wide enough such that w 
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is less than Yz Wr.6 To further simplify the computation, the curved free surface on the lateral 

slope is approximated by a plane surface. The width, w, can be computed by equating the 

volume. V"., of the wedge abcdef in Figure 6.16 to the volume. V P' of the pyramid abcj in 

Figure 6.17 and is given as: 

8 

3 
(6-26) 

B and hnn are related to 8 1 and hrf, respectively. by a simple proportionality of 1.5, i.e.: 

8 

and 

Combining Equations 6.26 and 6.27: 

w 

~8 
2 I 

3 -lz 
2 rf 

(6-27) 

(6-28) 

(6-29) 

These relationships, applicable to cases with w less than '12 Wr, are independent of <1>r and a.. 

To compute w using Equation 6.29, 8 1 must be known. B 1 can be estimated by a 

method similar to those used in the previous section by considering the cross-section A5 in 

6 For the size of the structures encountered in the field, w is generally less than '12 w r· 
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Figure 6.17; and 8 1 is given as: 

w r t cos [sin - I ( sin<l> ) ] 
(l - p)sin<l>r sin« 

(6-30) 

Despite a slight difference between the cross-section used in the derivation of the hn· in 

Section 6.3.1 and the one used here. the hrfcomputed in Section 6.3.1 can be used to estimate 

h,"' via Equmion 6.28. 7 

In the above derivation, V P , i.e., the volume abcj of Figure 6.17, is assumed to be a 

pyramid. Since the volume abcj is pan of a right circular cone bisected by an inclined plane, 

the surface acj is a curved surface and an exact solution should treat line aj as a circular arc, 

as shown by a dotted line in the figure. The approximate solutions of w and hrm always 

under-estimate the exact values. and the error increases with increasing a. 

To adjust for the error incurred by the assumption. consider the base of the lateral 

portion of the rubble as shown in Figures 6.18. The area AJ, i.e .. triangle abj, is the 

approximate base area of the lateral ponion of the rubble deposited in front of the inclined 

plane. whereas the area, A3 +A", is the true base area. The values of A3 and A" are given in 

the following relationships: 

~ r· 
-sin« ( 1 - cosar) 2 r 

(6-31) 

"'For a reasonably deep cone, i.e., cone angle, a> 45°· and rubble angle, cl>r = 35°, the~
derived from the venical or the inclined reference planes are within l% of each other. 
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360 
r 'sin ( i) cos ( i) (6-32) 

., 
1tr-a 

r 

where. 

( 
tan<P ) ar = cos -I __ r 

tan a 
(6-33) 

The exact values of w and h"" can be obtained by the following relationships: 

(6-34) 

Jznn = 
I _ _!_ ( A3 + A-') 

3 A3 

(6-35) 

For example, for the case of a cone with an angle of a equal to 53° and a rubble with 

slope equal to the angle of repose. «t»r = 35°. A 3and A_. equal to 0.20lr and 0.083r, 

respectively. and the ratio, (A3+A .. )/A3 = 1.41. Therefore, the exact solution for wand~ 

are equal to 0.578 1 and l.887hrf, according to Equations 6.34 and 6.35, respectively. 
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6.4 Validation of Ice Rubble Geometry Prediction Model 

The predictions for hrs and hrm from the above model are compared to the 

measurements with the two l :25 scale models tested in the IMD's series. Only those tested 

with a velocity of0.04 m/s were examined.~ The large necked model was tested in 0.094 m. 

0.123 m and 0. 160 m thick ice. and the small necked model was tested in 0.158 m thick ice. 

\vith a total of four data points. The model predictions and the relevant mea.,urements are 

given in Table 6. 1. An example calculation is given in Appendix C. The angle of repose. 

Q>,. was about 35" estimated from the video recording. This value is used in the model 

predictions. To use the equation for hrm, the structure is ao;sumed to have an average slope. 

a"'"' of 49.8" and 56.9° for the small and the large necked models. respectively. The 

~.:omputed hrm is only slightly sensitive to the a.,"·c• i.e .. the hrm is within 5% computed from 

a"'" ranging from 40" to 60°. The computed w for all tests is less than 0.5 Wr· indicating a 

trapezoidal rubble height protile along the front facet. 

Despite limited data used, the predictions from the derived equations give excellent 

agreement with the measurements from the selected tests with the difference between the 

computed and the measured values for h..,. and hrm being 2.6% and 1.2% (on the average). 

respectively. It is expected that such agreement will hold for other faceted cone structures 

provided that the interaction assumed in this work prevails. 

MThere was no discemable effect on ice force or ice clearing process due to ice velocity. 
The rubble heights measured from the selected tests were considered representative to those 
associated \Vith tests conducted with different velocities. 
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The model predicts that the rubble height at the edge of the front facet is lower than 

the rubble height at the side of the cone. This prediction is consistent with the general 

observations from model tests in which the rubble is forced to ride-up the side facet with its 

height increasing gradually toward the side of the cone (see Figure 4.ld). 

This model assumes the rubble slope is governed by .Prof the rubble material. In the 

case where the rubble angle. t. is smaller than c!»r due to premature sliding failure of the 

rubble, the actual t should be used. With the reduction of t. the rubble heights will be 

reduced as shown in Figure 6.19. 

There is no rubble accumulation for a cone with edge-on orientation since all ice will 

slide along the side facet and clear around the cone continually. For cones oriented between 

the face-on and edge-on directions, the ice blocks can slide along the side facet or fall back 

onto the on-coming ice sheet. The balance of these two tendencies governs the motions of 

the blocks. No consideration is given to this, and this model is valid for faceted cones with 

face-on orientation only. 
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Table 6.1 Comparison of predictions from the new geometry model and the 
measurements from IMD' s tests 

Measurements Predictions 

Test Model t w/wr hili hnn hili h~ hnn 
(m) (m) (m) (m) (m) (m) 

MUNCONE3 1:25S 0.158 0.43 0.49 0.68 0.48 0.36 0.67 

MUNCONE5 1:25L 0.095 0.35 0.35 0.51 0.33 0.27 0.51 

MUNCONE6 1:25L 0.124 0.41 0.37 0.57 0.36 0.30 0.58 

MUNCONE4 1:25L 0.160 0.46 0.39 0.65 0.39 0.34 0.66 

Common Parameters: 

1 Parameter Modell:2SS Modei1:2SL 

h1 (m): 0.233 0.067 

h2 (m): 0.466 0.307 

Wr (m): 0.693 0.693 

a, (o): 39.8 39.8 

~ CO): 63.4 63.4 

aa~l: e>: 49.8 56.9 

p (): 0.3 0.3 

4>r e>: 35 35 

Note: 1 Subscript: 1 -lower cone, 2- collar 

176 



Figure 6.1 

Figure 6.2 

Ice breaking pattern showing the location of the accumulation and clearing 
zones (arrows indicate direction of ice movement) 

Ride-up pattern of ice generated from the accumulation and clearing zones 
(arrows indicate direction of ice movement) 
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Figure 6.3 

Figure 6.4 

---

Geometry of a typical rubble showing the location of the accumulation and 
clearing zones (arrows indicate direction of ice movement) 

Geometry of a typical rubble at times t1, !2 and t
3 

as it grows in size (t
1 
< !2 

< t3 and arrows indicate direction of ice movement) 
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Figure 6.5 

Figure 6.6 

Geometry of an idealized rubble surrounding a faceted cone (only the front 
right quarter is shown) 

Ice Supply 
Rate, 0.5 ~ 

Ice Clearing 
Rate, 0.5~ 

Rubble system selected for mass balance calculation (arrows indicate 
directions of ice movement and only the front right quarter is shown) 
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Figure 6.7 

Figure 6.8 

~ // / q,, 

(a) Front View 

Central 
Wedge 

(b) Top View 

Geometry of a rubble pile formed by dropping ice blocks from a line 
source. Note: Half cones formed at the two ends 

Rubble geometry in front of an inclined plane formed by end dumping 
from a line source 

180 



Figure 6.9 

Ride-Up 
Ice Wall · 

Rubble system selected in the calculation of hrr (only the front right quarter 
of the rubble is shown) 
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~f 
Section 2 

Section 1 

Ride-Up 
Ice Wall 

Figure 6.10 Geometry of An corresponding to the Cross-Section A-A as defined in 
Figure 6.9: (a) front view~ (b) top view 
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Figure 6.11 

~ / 

/ 
/ 

4. // 

Rubble system selected for the calculation of rubble height at the side of 
the cone, hrs 

Section 3 

Section 2 

~s 

Section 1 

7 7 7 7 7 7 7 

Figure 6.12 

j<O( ___ B---lArs_l~llll(~---___::_:::_--~~ I 
Cross-sectional view B-B as defined in Figure 6.11 showing the geometry 
of Ars 
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Figure 6.13 

Figure 6.14 

-(a) (b) 

(c) 
(d) 

Formation of two-dimensional rubble pile from a line source: (a) to (c) 
lateral slope formed by depositing materials at both ends; (d) lateral slope 
is not formed due to lateral restraints at both ends 

(b) 

Rubble formation by two consecutive processes: (a) heap formation with 
lateral restraints (no end effect); (b) lateral slope formation by releasing 
the lateral restraints 
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/ 
hrf / 

.·/ : 4>r 

(b) w =0.5 Wr 

B 

l 

:-c---· .... 
B 

(a) w < 0.5 Wr 

Figure 6. 15 Figure showing the dimensions of a two-dimensional heap formed by the 
process depicted in Figure 6.14, when: (a) w < 0.5wr, and (b) w = 0.5wr 
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Figure 6.16 Rubble mass formed in front of a sloping plane by a line source with 
lateral movements of ice blocks restrainted 

Figure 6.17 Final shape of the rubble with the lateral restraint on the left hand side 
removed 
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r = ~/tan<f>r .... · ~~--------------.... 
·.cr 

/~ · 
-... ~ 

Figure 6. 18 Base of the lateral portion of the rubble: coordinates a. b. and j 
corresponding to those in Figure 6.17, and coordinate o is the vertical 
projection (on to the base) of coordinate c in Figure 6.17 
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Figure 6.19 Figure showing the decrease of rubble heights with the decrease of 
rubble angle. Rubble heights have been non-dirnensionalized with 
heights computed at t = cj)r = 35° . 

187 



Chapter 7 Discrete Element Analysis of Rubble 

Loads on an Rigid Inclined Wall 

Discrete element analysis (OEM) using the computer program DEC ICE has provided 

a powerful simulation tool for complementing analytical and experimental work. It is 

particularly appropriate for cases in which contact behaviour between adjacent ice blocks 

govern the mechanical properties of the ice rubble. The versatility of DEM in modelling ice 

related problems has been demonstrated in a number of recent works (Babic et al, 1990; 

Hopkins and Hibler, 1991; Hopkins, 1992; Evgin et al, 1993; Loset. 1994a and 1994b; 

Hopkins. 1995; Sepehret al, 1997: Sayed, 1997; Katsuragi et al, 1997; Wang et al. 1997; and 

Sayed and Timco. 1998). 

In the present study, the problem of rubble loads exerted on the faceted cone is treated 

as a two-dimensional problem using the DECICE2D, a two-dimensional version of the 

discrete element code DECICE. 1 The numerical investigation has been divided into two 

parts. In part one. the geometries of a one-dimensional compression ( oedometer) test (Lambe 

and Whitman, 1979) and a simple gravity test were simulated to evaluate the internal friction 

parameters for simulated ice rubble blocks, i.e ., the internal friction angle, cp, the 

1 The appropriateness of DECICE in ice related problems has been demonstrated by the 
author in his previous work, including modelling of rubble shear properties, ice force on a 
moored buoy (McKenna et al, 1997), ice interactions on a bridge pier (Lau, 1994a), and jamming 
of noes at bridge piers (Lau, 1994b ). 
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corresponding 'at-rest' earth pressure coefficient,((,, and the angle of repose, <l>r· The effects 

of ice shape and friction were investigated. In part two, the loads exerted on an unyielding 

retaining wall and the base support by a rubble pile were addressed. The effect of rubble 

height, rubble slope, wall inclination, and the internal friction of the rubble were examined, 

and a set of equations were formulated from the results of the simulations. These equations 

are incorporated into the ice force model presented in Chapter 8. 

In this chapter the results of the analysis are summarized. Section 7.1 describes 

brict1y the main features of the DECICE computer code. The results of studies on 

simulations of rubble mass behaviour at the "at-rest'' state are presented in Section 7.2. 

Section 7.3 summarizes the results of the load computation for rubble at the same stress state, 

from which an equation for the computation of total wall thrust is derived and presented for 

a variety of simulated ice and structure conditions. Equations for the other components are 

derived in Section 7.4. The equations are extended to walls with multiple slopes in Section 

7.5: and finally, the application of the new formula for other loading conditions is discussed 

in Sections 7 .6. 

7.1 Main Features of the DECICE Computer Code 

DECICE is a two- and three-dimensional discrete element computer program for 

so 1 ving complex solid mechanics problems involving multiple interacting bodies undergoing 

fracturing. In this method, the problem domain is divided into discrete elements. Each 

element is considered as a distinct body which interacts with, or disconnects from, 
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neighbouring elements during loading. The movement of each block is governed by the laws 

of motion due to unbalanced forces acting on the element. Elements may be rigid or 

deformable. The deformability, frictional, and damping characteristics of the interfaces 

between elements are represented by spring-slider-damper systems which are located at 

contact points between elements. Prescribed force displacement relations for the spring

slider-damper system allow evaluation of normal and shear forces between elements. The 

algorithmic detail of DECICE is described in the DECICE theoretical manual (lntera 

Technology, Inc. I 986c). 

DECICE has been calibrated against a wide set of experimental and field results, 

including ice ride-up and pile-up on artificial island side-slopes (Hocking et al, 1985a). 

dynamic impact of ice on an offshore structure (Hocking et al, 1985b). ice ride-up and ice 

ridge cone interaction (Hocking et al. 1985c), identification of ice properties (lntera 

Technology. Inc .. 1986a), analysis of spray ice platform (Applied Mechanic. Inc., 1985), and 

ice ridging loads (lntera Technology, Inc., 1986b). 

Recently. the author ( 1994a) has performed an independent verification of DEC ICE 

in ice force prediction and simulation. A series of six runs, which simulate the dynamics of 

sheet ice interaction with a 60° conical bridge pier, were conducted using DECICE3D, a 3-D 

version of DECICE. The results were verified with model tests carried out in the tank of the 

Institute for Marine Dynamics (Spencer et al, 1993) and the available field observations 

around Finnish Kemi I lighthouse in the Gulf of Bothnia (Hoikkanen. 1985; and Maattanen 

and Hoikkanen, 1990). Figure 7.1 shows the interaction of the ice blocks, the cone and the 
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ice sheet from a typical DECICE simulation of ice forces on a 60° cone in ice. A plot of 

predicted versus measured horizontal peak forces is shown in Figure 7 .2. A close agreement 

between the calculated peak force values with the experimental measurements suggests that 

DECfCE is a promising simulation tool for solving ice cone interaction problems. 

7.2 Simulations of Rubble Mass at the "At-Rest" Condition 

For a cohesionless ice rubble. the most important and commonly used 

phenomenological descriptor to describe the mechanical behaviour of the rubble is its 

internal friction angle, <J>. During a typical rubble piling. the rubble's free surface is at a state 

of limit plastic equilibrium characterized by the angle ofrepose. <1>r; while. inside the rubble. 

it is at elastic state characterized by the lateral coefficient of earth pressure at rest. K0 • These 

two parameters can be related to the internal friction angle of the rubble material in a loose 

state. <l'n· and are essential to model the rubble behaviour~ yet, measurements associated with 

icc rubble are not available. 

The main objectives of this part of the analysis. using DECICE simulations. are to: 

( i) Obtain the internal friction angle of the bulk rubble which is to be used in the 

subsequent load simulations; and, 

(ii) Verify the relationship between the internal friction angle. the lateral 

coefficient of earth pressure at rest. and the angle of repose of the rubble 

materials in the range of expected field conditions. 
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Two series of simulations were conducted. In the first series, rubble samples with 

a wide range of ice piece aspect ratio. AR, and ice friction, IJ., were prepared and the at-rest 

earth coefficient was computed via two test set-ups: (i) a simple gravity test, and (ii) the 

standard oedometer test. From the earth coefficient, the corresponding internal friction angle 

was computed using Jak.y's equation. ln the second series, six rubble masses were allowed 

to form in front of an inclined wall with a process analogous to the material dumping or 

avalanche, a formation process similar to that taking place in a typical ice/cone interaction. 

The natural angle of repose. q,,, thus fonned and the material's internal friction angle. q,, were 

compared. 

The main parameters common to each simulation are summarized in Table 7 .I. The 

analyses were conducted as two-dimensional (plane strain) problems using the explicit time

stepping solution scheme. In this study, the ice blocks were modelled by the simply 

deformable perfectly elastic solid element. The specimens were tested in a dry condition. 

Furthermore. element cracking was not allowed. This condition was confirmed during 

selected preliminary runs, in which the stress within each element was sufficiently low and 

element fracture was not observed. The stress-strain relationship is linear elastic in each 

element with an elastic modulus of0.2E7 N/m1 and a contact stiffness of0.2E8 N/m2
, chosen 

for computation efficiency. The effects of elastic modulus and contact stiffness on the f<u 

values were not examined; however, the these values are in line with the values used by 

Sayed ( 1995) and Hopkins and Hibler ( 1991) in their simulations of rubble shear properties, 
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the results of which compared well with experimental data.:! For these simulations. the added 

masses and moments of inertia were not included. The details of the simulations and the 

results are given in the following sub-sections. 

7 .2.1 Generation of Rubble Ice Samples 

Three sets of rubble samples with uniform piece sizes ranging from 0.16 m x 0.16 m. 

0.16 m x 0.32 m. and 0.16 m x 0.48 m. were prepared. These corresponded to the aspect 

ratios, AR. of l: l. l :2 and l :3, respectively. Each set consisted of 3 samples with ice 

friction. J.l, set at 0, 0.2, and 0.4. The chosen values of ice friction. J..L = 0.2 and 0.4, retlect 

the range of values frequently quoted for design purposes. The density of ice was 900 kglm3
• 

The rubble samples were prepared via a natural dumping process as shown in Figure 7 .3. 

Firstly. a total of 475 pieces of randomly oriented ice blocks with a prescribed piece size and 

contact friction were gener.tted by normal randomizing method within a rectangular area 

formed by three frictionless rigid elements representing two side-walls and a bottom plate. 

The rectangular area had a height. h. approximately 3.5 times the width, b, of the base. After 

the random generation, the blocks were then allowed to fall and compact at the bottom of the 

box by applying gravitational acceleration to the elements. Vibration of ice blocks due to 

inter-block collisions was damped by applying a 35% critical mass damping. A semi-

~Sayed ( 1995) used a spring constant of 0.265E7 N/m between rigid sphere resulting in an 
effective elastic modulus of the bulk rubble of approximately 7 MPa which agreed well with the 
experimental values reported by L0set and Sayed ( 1993). 
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randomly packed form was created through the impacting of blocks on the boundaries and 

between blocks. After compaction, the sample had a height to width ratio of approximately 

2 to l. The packing condition of the assembly was considered to be loose. and the cohesion 

was set to zero. Figure 7.4 shows the final configuration of the rubble samples after the 

initial compaction. 

The initial void ratio3
, e0 , of the bulk sample was dependent on the ice friction as 

shown in Figure 7 .5. This reflects the fact that the inter-block sliding is easier for a lower 

contact friction resulting in a much denser configuration during natural deposition process. 

7.2.2 Computations of the Coefficient of Lateral Earth Pressure at Rest, Kn 

Two methods of measuring the coefficient of lateral earth pressure at-rest. ~. i.e .. 

a simple gravity method and the oedometer test. were simulated. 

Afler all the blocks had settled down, the forces acting on the bottom plate and the 

side-walls were summed. Since no external load was applied to the rubble sample except 

its own self-weight. it is dubbed "gravity method". Since there was no friction between the 

ice blocks and the rigid boundaries, shear stresses upon vertical and horizontal planes within 

the rubble sample were not allowed to develop; and the principal axes coincided with the 

horizontal or vertical axis, the ratio of the principal stresses was equal to the coefficient of 

'The void ratio, e,, for two dimensional cases is defined as the ratio of the area of void to 
the area of the solid mass in an arbitrary cross-section. The void ratio for three-dimensional 
cases can be estimated as 3.33e assuming the sample is made up of an assemblage of spheres. 
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lateral stress at rest, K0 • By a.,suming a linear increase of stresses with depth from the top 

surface.~. the horizontal and vertical stresses, p.,..h and Pbv• at the bouom surface of the sample 

were calculated: 

(7-l) 

P,,. 

b 
(7-2) 

where h and bare the height and width of the sample, respectively: and P wh and P1w are the 

sum of the normal forces exerted on the wall and the ba.,e. respectively: and, thus, K0 : 

(7-3) 

The geometry and variables used for Equations 7.1 to 7.3 are shown in Figure 7.6. 

A summary of the coefficient of lateral earth pressure at rest. ~<.,. estimated by this 

method is given in Table 7 .2. The internal friction angle for each sample as calculated from 

.~The assumption implied that the horizontal wall thrust, P wh• will act at a distance Lp 
equal to l/3 h from the bottom of the sample. To verify this assumption, the point of action of P wh 
was computed for each simulation. For all cases, P wh acted on the side wall within a distance 
0.045h from the assumed point of action. 
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Jaky's equation5
: 

K 
(J 

1 - sin<l> (7-4) 

is also given in the table. The subscript 1 associated with the symbols K., and cp refers to the 

gravity tests. 

A comparison of the earth pressure coefficient at rest, 1<.,, and the associated aspect 

ratio of the ice pieces, AR, is given in Figure 7.7. The data shows no discernible effects of 

the ice pieces geometry on the earth pressure coefficient. However. there is a significant 

dependency of the earth pressure coefficient at rest, ~. on the contact friction, J.l. as shown 

in Figure 7 .8 . The coefticient shows a higher sensitivity to ice friction at the lower friction 

values. 

Figure 7. 9 shows the same set of data comparing the internal friction angle. cp, and 

the associated ice friction. J.l. Since the internal friction is a combined function of ice block 

interlocking and friction. the values corresponding to zero ice friction can be a measure of 

the effect of the block interlocking, which contribute up to about 10 degrees to the internal 

friction angle. This angle is analogous to the effective roughness angle used in rock 

mechanics to explain the higher apparent angle of friction due to visible roughness and other 

surface irregularities (Patton, 1966; and Hoek and Bray, 1981 ), and can be referred to as the 

~In practical soil mechanics, Jaky's equation is an approximation. The validity of this 
formula has been explored in Section 5.3.1. 
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.. interlocking angle ... Within the range of ice friction examined, the internal friction angle 

is roughly equal to the arithmetic sum of this angle and the contact friction angle. 

The above simulation is relatively simple to perform and the stress and strain 

conditions are similar to the field conditions studied. A more popular test, called oedometer 

test. was also simulated for comparison with the gravity test. ln this test, stress is applied to 

the sample along the vertical axis, while strain in the horizontal direction is prevented. The 

results of the oedometer test simulation are summarized in Table 7 .3. In this table. the 

subscript 2 associated with the symbols ~and$ denotes the oedometer tests. Only the 

samples with contact friction values of 0.2 and 0.4 were tested. Figure 7.10 shows the 

configuration of the oedometer test simulation. In this case, gravity force was set to zero, and 

a top plate was added to the problem setup. The rubble, initially in a loose condition, was 

compressed one dimensionally in strain controlled manner giving no strain in the lateral 

direction. The top plate moved and compressed the sample with a velocity of 0.4 mls. while 

the forces on the side-walls, and the top and bottom plates were monitored continually. The 

vertical velocity corresponded to axial strain rates ranging from 0.04/s to 0.07/s depending 

on the height of each sample. Again. assuming a uniform load distribution along the 

sample ' s surface. the Pwh• Pbv• Ka.:!• and $1 can be computed at any instant during the test. 

Figure 7.11 shows an increase of the horizontal stress with increasing vertical stress during 

a typical test simulation. 

Figure 7.11 exhibits density-dependent assembly characteristics with a slight decrease 
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of K.,.:! with time. This decrease is a manifestation of increasing degree of interlocking as the 

samples become denser upon compression. ln order to compare the Ka values obtained from 

these tests to the gravity tests, the 1<.,.1 value corresponding to the moment of first contact 

between the top plate and the ice was estimated from the data points before comparison. i.e., 

K" value at the same void ratio. A comparison of the values of Ka and tt> estimated from the 

gravity tests and the oedometer tests are given in Figures 7.12 and 7. 13, respectively. Again, 

the subscript 1 refers to the gravity tests and the subscript 2 denotes the oedometer tests. The 

ligures show good agreement between the values of K,, and tt> from the oedometer and gravity 

tests. 

7.2.3 Angle of Repose Tests 

In this series of simulations, the number of ice blocks in each sample was increased 

from 4 75 to 950 pieces to give a better surface profile for the angle of repose computations. 

The simulations were performed on the three standard rubble samples, with ice friction equal 

to 0.2 and 0.4. A total of six runs were conducted. The samples were prepared with the 

same method given in Section 7 .2.1. After each rubble sample was prepared, the rigid side

wall at the right side of the box was changed into a movable element, which moved slowly 

away from the rubble sample with a velocity of 0.22 m!s as shown in Figure 7.14. The 

surface of the bottom plate had a coefficient of friction equal to 0.2, while the friction at the 

wall was set to zero. Initially, both sliding of the ice blocks at the bottom surface and the 
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failure of the rubble surface occurred; however. the bottom sliding ceased at the latter part 

of the simulation due to the frictional resistance at the bottom. and the tinal profile of the 

rubble was determined by slope failure. Damping of ice blocks is not necessary in this case 

as the friction between ice blocks was sufficient to damp out the slight vibration induced by 

the ice blocks rolling down the slope. Table 7.4 summarizes the results from this simulation 

series. 

Figure 7.15 shows the contigurations of the rubble at the end of each simulation run. 

The profile of the natural angle varies significantly along the surface of the rubble depending 

on the local variations of ice block orientation and interlocking which affect the sliding 

conditions of the surface ice along the free surface. Typically the surface slope at the mid

hill section had lesser variation than those of the top and the bouom sections where the 

slopes were sub-critical. Therefore. the angle of repose, cl>r• was determined by taking the 

best fit of the slope profile at the mid-section only. ln Figure 7 .16. this angle is compared 

with the rubble's internal angle. Q> 1, obtained from the gravity test simulations. The angles 

of repose are up to 4.5° smaller than the rubble's internal friction angles. 

The above angle of repose was measured after the avalanche condition. The slightly 

lower values of the angle of repose measured may be due to the specific avalanche condition 

used. With the constant activity at the free surface due to the rolling down of the rubble 

blocks, it is expected that the maximum angle will be somewhat lower than the angle of 

repose of the material. 
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7.3 Development of Equations for Rubble Loads in 2-D 

In this section a set of equations for rubble load computations, i.e., the total thrust 

force and its angle of attack, are presented for a variety of ice and structure conditions. These 

equations are formulated by: 

(i) First, deducing the form of the principal equation and identifying the relevant 

functions from examining the existing earth pressure equations for various 

loading geometries and conditions: and, then, 

{ ii) Performing a series of DEC ICE simulations. the analysis of which either 

confirms the selected relationship or gives a better functional relationship 

between the total thrust force and the relevant variables identified in the 

principal equation. 

The equations provide the best fit to the DECICE results. and are applicable to acohesionless 

rubble mass of various heights and internal frictions which is deposited in front of an 

unyielding wall with single or multi-slopes. The rationale behind the selected form equation 

and relevant functions is described in Section 7 .3.1. The matrix for the DECICE simulations 

is described in Section 7 .3.2; and a detailed analysis is in Sections 7 .3.3 to 7 .3.6. A general 

equation for thrust force calculation is formulated and validated. In Section 7 .3. 7. empirical 

equations to estimate the amount of friction mobilized at the wall are presented. If this 

friction is known, the other components of the rubble load, acting on the wall and the 

supporting ice sheet. can be computed from the wall thrust via a simple force balance 

calculation. Finally, in Section 7 .3.8, the results of the DECICE analysis are summarized. 
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7 .3.1 Form of Earth Pressure Equation and Relevant Functions 

Research on the pressure exerted by a variety of cohesionless granular materials, i.e .. 

loose sand, on a retaining wall has been a subject of concern to scientists over the last two 

centuries. In all the various theories used in solving this problem, the expression for the total 

thrust exerted on a wall takes the following common form: 

(7-S) 

where: 

yh = bulk density of the granular material. 

h = vertical height of the backfill, 

a = angle of the inclination of the inner face of the wall measured from the horizontal 

plane. 

= angle of the inclination of the free surface of the backfill in relation to the horizontal 

plane. reckoned as negative above and as positive below this plane,6 

<P = angle of internal friction of the backfill, 

<P,.., = angle of wall friction. and 

K = earth pressure coefficient function, 

and the form of K(a,t.ct>.cl>w) depends on the loading geometry and the state of stress in the 

t'iln this thesis t is defined as positive below the horizontal which is different from the 
convention commonly used in soil mechanics. 
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backfill. For example, Coulomb's equations for computing active thrust, Pa, and passive 

resistance, P P' exerted on an inclined wall with a sloping backfill are given as (Liu and Evett, 

1987): 

p ~y/r2l sin2(a+~) 

) ' J <I 

sin2a sin( a-~,) ( l + 
sin(<l>+<P ... > sin{cP+1.) 

sin{ a -4>\\..) sin( a -1.) 

(7-6) 

P,, I ~ l sin:!(a -4>) 

)'J ~y,,h-

sin2a sin( a +<I>,..) ( I ·~ sin( <P +<I> ... ) sin( <P -1.) 

sin( a +<I>,) sin( a -I.) 

(7-7) 

In addition. Reimbert and Reimbert's ( 1974) empirical equations applicable to wall thrust. 

when the backtill is on the verge of significant plastic deformation in active or passive 

manners. are given as: 

p<l : J...y lz:! ( 180
11 

- 24>):! (t 
:! b 180" + 24> 

21. ) ( 180" - a - 4> ) 
18011 90" - <P 

(7-8) 

P, 1 Y lz 2[ ( 180" : ~:) :! ( 180" + 24>) nj (1 _ 21. ) ( 180" - a - <t>) (7•9) 
~ b 1801

' 180" - 24> 180" 90" - 4> 

where n in Equation 7.9 is equal to lin the case of rotational passive resistance and 2 in the 
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case of translatory passive resistance. 

As for the ·at-rest' state. there is not yet a commonly acceptable general equation to 

compute the wall thrust applicable to inclined wall with sloping backfill, due to the lack of 

studies in this area. Nevertheless. for the case of a level cohesionless normally consolidated 

till behind a frictionless vertical unyielding wall. the wall thrust can be calculated using the 

following formula where the fill is assumed to be at the geostatic state: 

p =.!. !z"!K , y, ~ ~ (7-10) 

The variables used in Equations 7.5 to 7.10 are detined in Figure 7.17.7 

Equation 7.5 is a good starting point for the present analysis. i.e .. all previous soil 

pressure equations are of this form. In this work. Equation 7.5 is assumed, and the form of 

K(a.t.')>.$ .... > is deduced through a series of DECICE simulations. 

Reimbert and Reimbert' s equations, i.e .. Equations 7.8 and 7 .9. are particularly 

relevant to the present investigation as their equations apply to loading conditions similar to 

the present case, and were validated by extensive experimentation. They are by far the 

simplest. and provide a clear delineation of the effects of a, t, q>, and G>w on the K function. 

For example. in Reimbert and Reimbert ' s Equation, the K function takes the following form: 

' Note that the direction of the thrust as defined in Coulomb' s Equation and the Reimbert 
and Reimbert's Equation are different. 
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K(a,l.<f>,Q>J K(a,\,<f>) K'<4>> (1 _ ~) ( 180
11 

- a - <t>) 
180" 90" - <t> 

(7-11) 

or the following generalized form: 

K(a,l.,cf>,cf>w> = K'(Q>) K11(l.) K111(Q>.a) K'"'<4>) (7-12) 

The first term on the right hand side of Equation 7.12 is a function of <1> only, the form of 

which depends on the particular stress state of the backfill. (The corresponding functions for 

other stress states are given in Section 5.3.1.) The second term is a function of l only which 

accounts for the effect of backfill inclination. The third term is a function of a and<)>, which 

accounts for the effect of wall inclination. The la~t term is equal to 1 indicating no influence 

of <Pw on the K function. 

Reimbert and Reimbert's K function serves ao,; a logical starting point forthe analysis 

of the DECICE results. Since the rubble is deposited in front of an unyielding wall. the 

rubble is expected to be at the 'at rest' state. Therefore, K'(c!») is assumed to be a function 

of ¢lin the form of '1-sin<!>' via laky's equation. i.e .. 

K/(4>) = ( 1 - sin<!>) (7-13) 

The theoretical and experimental validities of Equation 7.13 for cases with vertical 

frictionless wall and level fill have been shown in previous sections. It is also hypothesized 

204 



that the Reimbert and Reimbert's ( 1974) coefficient functions corresponding to K", K"' and 

K"" for the effects of rubble inclination, wall inclination and wall friction are also valid for 

the 'at rest' state under investigated, since the ·at rest' state is located in between the two 

states)\ Reimbert and Reimbert studied. i.e .. 

(7-14) 

:: ( 
180" - a - ,~,. ) 

K 111(a.<t>> '+' 
90" - <t> 

(7-15) 

(7-16) 

These assumptions lead to the following general equation for the thrust applicable to an 

inclined wall with a sloping backfill: 

p 
" 

~) ( 180" - a - <t>) 

180" 90" - <t> 
(7-17) 

For the case of a vertical wall, i.e .• a= 90°, Equation 7.17 is reduced to the following form: 

~Description of these two states is given in their paper (Reimbert and Reimbert, 1974). 
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p 
" (7-18) 

The wall friction, <Pw• affects the total wall thrust, P0 , through the amount of friction 

actually mobilized at the wall surface. This mobilized wall friction is called ·effective wall 

friction·, denoted as$'"' in this thesis. It was anticipated that the relationship between <l>w and 

<!>'".and hence between Po and <l>w• would take a complicated form as the relationship was 

expected to not only depend on the geometry but also on the history of the loading. Various 

functional relationships derived between total wall thrust and wall friction can testify to that. 

For example. Reimbert and Reimbert's experiments ( 1974) showed that the wall friction, <l>w• 

had no effect on the magnitude of the wall thrust: while others, i.e., Equations 7.6 and 7. 7. 

give various functional relationships. Limited computational resources prevented an in-

depth derivation of K""; however, the DEC ICE analysis shows that K"" is approximately 

equal to I suggesting that the wall friction has negligible influence on the total wall thrust. 

7.3.2 Overview of DECICE Simulations and Analyses 

Equation 7.5 suggests that a direct proportionality exists between the total thrust 

force. P", and the height squared, h1
, of the fill. This proportionality is independent of the 

earth pressure coefficient function, K. Before a comprehensive investigation of the K 

function, a number of DECICE simulations were conducted to verify this dependency. 
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Validation of this proportionality ensured the scalability9 of the DECICE results to other 

heights. After that, the four variables, L, o., cp and 'Pw• were systematically varied, and their 

effects on the earth pressure coefficient function, K. and hence the total wall thrust were 

examined and delineated. The range of variations for each parameter is given in Table 7.5, 

with tat l, 0.75 and 0.5 times the base value of22.5°, o. from 90° to 45°, cp at 24.2° and 33.2°, 

and <Pw set at 0". 11.3° and 21.8°. The ice friction angle at the base of the rubble. cpb, was set 

to 1 1.3" . The bulk weight density/unit width, yb, of the material varied from 6807 N/m1 to 

6950 N/m ~(with an average of 6887 N/m .!) depending on the height of rubble sample. The 

mass density/unit width. y, of the material used was 8829 kg/m1
. These ranges were 

expected to encompass the ice and structure conditions encountered in the field. 

The test configuration and sample geometry for each test conducted in this series are 

given in Figure 7.18. In the DECICE analysis. the condition with the non-displacing 

boundary is analogous to the at-rest eanh pressure condition in the field. A total of 48 runs 

were conducted. For each test configuration. the forces exerted on the wall and the base were 

computed. The results are summarized in Table 7 .6. The variables are defined in Figure 

7.19. 

The linear dependencies of total wall thrust. P
0

, on hz. and the assumed K" are 

validated in Sections 7 .3.3 and 7 .3.4, respectively; whereas, the validities of Equations 7.18 

and 7.17 in thrust force predictions are assessed in Sections 7.3.5 and 7.3.6. Table 7.7 lists 

"Scalability also implies repeatability. i.e .• repeatability of dala in different scales. 
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the computed values of different functions or functional groups used m the analyses 

conducted in those sections. 

7 .3.3 Validation of Linear Dependency of Thrust Force on Rubble Height Squared, 

h2 

To validate the linear dependency of the thrust force on h1
• three base cases with 

different combinations of tl>w and a were selected for DECICE simulation. i.e., a= 90" and 

<!> ... = 0". a = 90" and <l>w = 11.3". and a = 45° and <t>w = 21.8"; and the height of the rubble. h. 

for each case was then systematically reduced by l/3 and 2/3 times while keeping the other 

parameters constant. The rubble angle, l, and the internal friction angle, <)>. are kept at 22.5" 

and 24.2" respectively for all cases. A total of nine simulation runs were conducted. and the 

results are summarized in Table 7 .8. In the table. Po is the value for the total wall thrust in 

the DECICE simulation. and Po.h=-J.s is the scale-up value of P.,corresponding to h = 4.8 m 

using the scaling ratios, (h/h-'.!i and (Y-r/Yb.-uJ· The second factor was applied to reduce the 

variation due to varying weight density between cases. If applying this scale-up factor to 

each simulated wall thrust produces the same thrust as the simulation with h = 4.8 m. this 

would tend to confirm h2 dependency for the thrust. This is confirmed by the present 

simulations. The scaled-up values of the thrust, Po. h--4.S• all lie within 2.5% of the simulated 

values at h = 4.8 m for each set. 
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7 .3.4 Validation of Linear Dependency of Thrust Force on the Function, 1 - .....!!... 
1110" 

To validate the linear dependency of the total wall thrust, P
0

, on the assumed K", i.e., 

I - _2.:_ • a correlation analysis was performed on all DECICE simulations to establish 
ll!!Y' 

the degree of correlation between P" and K". for constant a, $. and cf»w· Since h and yb 

differed from case to case. the K" was multiplied by ybh1 before comparison to eliminate the 

variation due to hand Yb· The y-intercept of the unknown regression line was assumed to be 

zero. i.e., 

p 
" (7-19) 

where m is the slope. With this assumption. the number of degrees of freedom. df. can be 

taken as (n-1 ). since there exist only one independent relationship involving then pairs of 

values of P., and ylz 1 l1 - ..2:..) . This allows the correlation coefficient to be computed 
180" 

for a data set with as few as two data points. 

Table 7.9 summarizes the results of the correlation analysis. The test matrix has been 

given in Section 7.3.2. Data with same ex, q,, and$.,.. are grouped together resulting into 18 

possible data sets. In the table, the coefficient of determination, r. the correlation 

coefficient, r, and the degrees of freedom, df. of each test set are summarized. The minimum 

values of r required to establish the confidence level of90%. 95% and 99% for a given df are 
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also listed. 10 If the computed r value is above the required minimum value. it can be 

concluded with the corresponding confidence level that a linear relationship exists between 

the examined variable pair. P 0 and y b It 2 ll - ~J . The table shows the two variables 
IRO" 

were highly correlated with all r values being higher than 0.937. All data sets with more than 

three data pairs. i.e .. df <: 2. has r values exceeding 99% confidence level. The data set with 

only two data pairs, i.e .. df = l, gives a lower confidence level, the uncertainty of which is 

a direct result of the small number of data pairs used; however, all of them are either close 

to or exceed the 90% confidence level. It can be concluded with a high degree of contidence 

that linear correlation exists between the Po - K" variable pair. 

7.3.5 Validity of Equation 7.18 for Vertical Walls 

In this section. the validity of Equation 7.18 for wall thrust computation associated 

with vertical walls is assessed. The results from DECICE simulation runs conducted with 

a frictionless vertical wall and a backfill with a value oft set at 1, 0. 75. and 0.5, times the 

base value of 22.5° were selected for analysis. The¢> was 24.2° and 33.2', which correspond 

to the ice contact coefficient of friction, J.l, of 0.2 and 0.4, respectively. In addition, the 

simulation runs with wall friction angle, cl>w• equal to 11.3° and 21.8° were also analysed. 

This was to examine the sensitivity of the above equation to wall friction. 

11The 95% confidence indicates there is only a 5% chance of having r as large as those in 
the table when no correlation exists. In order to conclude at a given confidence level that the 
correlation does exist. the calculated r should exceed the tabulated value of r. 
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The parameters for the base cases and their variations associated with this task are 

listed in Table 7.10. (Please refer to Table 7.6 for the details of the individual tests and Table 

7.7 for the computed values used in this analysis.) Figure 7.20 gives the comparisons of the 

total wall thrusts computed by Equation 7.18 and the simulated values for the three values 

of$,... The data shows a remarkable agreement between the values computed from Equation 

7. 18 and the values obtained from the simulations. Linear regression conducted on the three 

individual sets of data give the following results: 

P = 0.988P . · 
11.pred tr.<lmul' 

p 
o.prt>c/ l.025P · ,, ... n,nur 

and 

for the three <P,.. values of 0". 11.3" and 21.8°, respectively. 

The data shows a slight dependency of the measured P" on the wall friction angle 

with a decrease of thrust by 3.7% to 8.5% (on average), when the wall friction angle 

increa'ies from 0" to 11.3" and 21.8'\ respectively. 

It is concluded that Equation 7.18 is valid for the thrust computation for a vertical 

wall and a rubble with varying t and cp. Wall friction slightly decreases the measured P "; and 
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hence the prediction slightly errs on the conservative side by omitting the effect of wall 

friction. The effect of wall friction will further be explored in Section 7.3.7. 

7 .3.6 Validity of Equation 7.17 for Inclined Walls 

Existing earth pressure theories suggest a significant effect of the wall inclination on 

the thrust exerted upon a retaining wall by the earthfill. For example, for a granular ti.ll, with 

an internal friction angle, «!> = 25°, inclined at its angle of repose. i.e .• t = cp = 25", the 

Coulomb equation (Equation 7.6) predicts an increase of thrust by 67% when a smooth wall 

changes it's incline from 90" to 45°~ while Reimbert and Reimbert ' s equation (Equation 7.8) 

gives a 69% increase for the same change. 

In this section, the analysis is extended to examine the effects of wall angle on the 

total wall thrust, and the validity of Equation 7.17 for inclined wall is assessed. Four base 

cases with a combination oft= 22.5° and 17.3" and cp = 24.2° and 33.2° were selected and 

tested with a values 90°. 75", 60" and 45°. The simulations were conducted with cp,.. = 11.3" 

and 21.8". The runs related to this series are listed in Table 7.11. Again. please refer to 

Tables 7.7 for the computation results. 

Figure 7.21 gives a comparison of the Po computed from Equation 7.17 and the 

corresponding simulated wall thrust. The figure clearly shows a substantial over-estimation 

of the wall thrust by Equation 7.17. The over-estimation increases with the increased 

deviation of wall angle from the vertical. For example, Equation 7.17 overestimates the 

thrust by 23%. 20%, and 29% when the wall angle changes from 90° to 75° to 60° to 45°, 

212 



respectively. 

Despite the discrepancy. the general trend predicted by Equation 7.17 is consistent 

with the results from the DEC ICE simulations in which the thrust decreases with the increase 

of the wall angle. and the rate of decrease is larger for a larger rubble angle. as shown in 

Figure 7.22. Therefore, the form of the assumed K'" was retained but modified to fit the test 

data. It was found by trial that the following function agreed well with the data: 

= ( 
180" - a - 2,..) --~ K "' ( a.<t>) 'f' ' 

90" - 2<l> 
(7-20) 

This gives the following general equation for the thrust: 

p .. (7-21) 

Figure 7.23 shows a comparison of the P., computed from Equation 7.21 and the 

corresponding thrust on the wall in the simulation for the two values of 'l>w· Linear regression 

conducted on the two individual sets of data gave the following results: 

P = l.065P . · 
o.pr~d o_rrmul' 

and 

p 
o.pr~d 

l.070P . I; o .. nmu 
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for the<!>"' values of 11.3" and 21 .8°, respectively. Equation 7.21 only slightly over-estimates 

the simulated values in the order of 7% with a r value better than 0.965 for the two values 

of$.,... Again. the overestimation can be attributed to the omission of the effect of wall 

friction on P ... 

7.3.7 Derivation of Effective Wall Friction, ct>' w 

The angle of wall friction is often assumed to be a material property but this 

assumption is incorrect. It depends upon the direction of movement. the amount of 

movement and the properties of the material. Moreover. it may also vary along the wall. 

Hence it is a response and not a property. 

During transportation of the rubble ice up the cone facets, the rubble tends to slide 

down due to it's own weight. Because of friction between the rubble and the ride-up ice. the 

tendency is to cause a downward frictional force on the ride-up. The magnitude of this force 

is limited by the friction angle, c!>w• between the rubble and the ride-up ice. For ice, <l>w 

typically has a value ranging from ll.3" to 21.8", and is frequently quoted toward the lower 

end. 

When the relative motion between the rubble and the ride-up is not sufficient to fully 

mobilize the available frictional resistance at the interface, the amount of friction mobilized 

is indeterminate. However, the effective wall friction angle, <P' w• can be computed 

empirically from the data by considering force equilibrium at the interface. and is given by 
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the following equation: 

I 

<t>l\' (7-22) 

The angle.$' ..... together with the wall inclination, a, determines the direction of the 

thrust exerted on the wall. In order to maintain equilibrium condition. the thrust always acts 

upon the wall at an angle: 

(7-23) 

measured from the horizontal plane. In order to accurately predict the direction of the thrust, 

and hence its horizontal and vertical components. this$' .... must be known. 

Figures 7.24 and 7.25 show the $' .... computed from Equation 7.22 as a function of 

a for$ .... equal ro 11.3" and 21.8". respectively. The data set includes tests with t = 22.5" and 

17.3". and q, = 24.2u and 33.2". The data show a definite dependency of$' won the a and$ ..... 

while the trends with other parameters were of lesser significance. Comparing the two 

ligures. the value of$'"' is substantially higher with the higher value of$ .... for the same cone 

angle. Despite a large scatter in data, the trends are linear with the following two equations 

tiuing the data with a between 60° to 90°: 

<t>~. = - 0.2561 a + 24. 758; r 1 = 0.779 (7-24) 
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for ct> .... = L L .3", and 

<jl~. = - 0.3407a + 39.339; 
, 

r- 0.842 (7-2S) 

for ct> ... = 2 L .8", respectively; and the value of<!>' w is always smaller than or equal to the value 

In Figures 7.24 and 7.25. the broken Lines correspond to <I>' w = <l>w• which is the 

limiting value corresponding to the condition of full friction mobilisation at the wall. 

Equations 7.24 and 7.25 predict that such conditions would occur when a < 53° for <l>w = 

ll.3" and a < 44" for <l>w = 21.8" , respectively. Since wall inclination of most offshore 

structures are designed within the range of40" to 60", as a rule-of-thumb the wall friction will 

be fully or almost fully mobilized at the wall for the commonly quoted coefficient of ice 

friction between 0.2 to 0.4. i.e .. the friction mobilized on the wall for J.l = 0.2 and 0.4 is 83% 

and 80% of wall friction, respectively. for a = 60°. It should be noted that although the 

frictional resistance is exhausted at the wall, the frictional resistance at the rubble's bottom 

face may still be sufficient to hold the rubble in static equilibrium. 

When the frictional resistance at both the wall and the supporting ice sheet are fully 

mobilized. i.e .. <I>'"' = <l>w and <1>' b = <l>b• the rubble starts to slide down the slope. These 

conditions are reached for two simulations, i.e .. Runs Rl2W2_2 and Rl2W3_2. Figure 7.26 

is a snap-shot of Run R 12W3_2 showing the whole rubble mass sliding down along the wall 

and the supporting ice surfaces. 
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7.3.8 Summary of the Formulae Derived from Best FitofDECICE Data 

Based on the DECICE simulations. a simple expression was formulated to calculate 

the thrust exerted on an unyielding wall. from a knowledge of the ice and structural 

parameters: 

p 
(I 

""-1 Yt/t ~ (l - sin<l>) (1 - ~) ( 180" - a - 2<1>) * 
' 180" 90" - 2<1> 

(7-26) 

with P,, making an angle: 

a. p 90" - (a. - <t>: .. ) (7-27) 

from the horizontal. where the effective wall friction angle. <?' ~~. .• is the angle of friction 

mobilised at the wall. This effective wall friction angle was found to be a function of the 

wall inclination. a. and the wall friction angle. <?w• with the following empirical relationships: 

~: •. = - 0.256la + 24.758 (7-28) 

for <?w = l 1.32"; and 

I 
~1\' = - 0.3407a. + 39.339 (7-29) 

for <?w = 21.8°. respectively. The<?' w is always smallerthan or equal to <?w· 

The equation is similar to the universal formula proposed by Reimbert and Reimbert. 
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i.e .. Equations 7.8 and 7 .9. The coefficient for maximum thrust. ( ll!!Y' · .2<1> ) 2 

!80" • .!ljl 
. is replaced 

by the coefficient at rest.~= ( l - cp), of the granular material. which reflects the appropriate 

at rest stress condition in the ice rubble. The coefficient. 1 - ~ . suggested by Reimbert 
180" 

and Reimben ( 1974) to account for the effects of backtitrs inclinations for the maximum 

active and the minimum passive state is found to be applicable to the 'at rest' state of stress 

aswell. However.ReimbertandReimbert'scoefficient. 180
" · a · ljl .fortheeffectofwall 

90" . ljl 

inclination significantly overestimates the simulated thrust on the wall, specially for a small 
I 

( ll!O" · a - 24> )1 wall angle. Instead. a coefficient function. . is found to give a much better 
9!Y' :!ljl 

agreement with the DECICE simulation. 

7.4 Load Components Distributed on the Wall and the Supporting Ice Sheet 

The weight of the ice rubble is partly supported by the ride-up ice and partly by the 

supporting ice sheet. The horizontal and vertical components of the thrust exerted on the 

ride-up ice are given by the following equations: 

p 
u·h 

I ., .-~.. ( _ 2 t. ) ( 180" - ex - ? <1>) * ' .... _y,h-(1 -sin'+') I - · cos(90"-(cx-<f>,.)) 
I 180" 90" - 2<1> ' 

(7-30) 

P,.T = .!.y lz 2(1 - sin<!>) (t - 2t. ) ( 180" - ex - 2<1>) tsin(90" -(a-<t>:,.)) 
2 b 180" 90" - 2<1> 

(7-31) 

The horizontal and vertical forces exerted on the supporting tee sheet can be 

computed through a consideration of simple force equilibrium as shown in Figure 7.27; and 
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arc given as the following: 

(7-32) 

Pb,· w p 
r W\' (7-33) 

while W, is the weight of the rubble computed from its known geometry and bulk density. 

The contact friction mobilized at the bottom surface of the rubble is equal to: 

,t., 1 _ ·I (pbh) 
'¥b - tan -

P!J,. 
(7-34) 

and is limited to q,b, the friction angle at the supporting ice surface. 

Table 7.12 summarizes a result of least squares fit of computed force components to 

corresponding simulated values for the cases with the three wall friction angles, respectively. 

The analysis shows good overall agreement for the force components. 

7.5 Application of the New Formula for Walls with Multiple Slopes 

Equations 7.30 and 7.31 can be generalized and applied to walls with multiple slope 

angles. For example. for a multi-sloped wall retaining a rubble, as illustrated in Figure 7 .28. 

the pressure. p. at a depth hd measured from the maximum height of the rubble is given by: 
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p ( 21 ) ( 180" - a - 2<1> ) 1 yblz)l - sin<f>) l -
180" 90" - 2<1> 

(7-35) 

and the thrust for an arbitrary section. i: 

p 
fl.l 

1 ( .., 1 ) ( 180" - ct - 24») .!.. 
-y h(h1 .! - h, .!)( l - sin<l>) 1 - --- ' -' 
.., '·' ·' 180" 90" - 2<1> 

(7-36) 

where h,_, and h,_, arc the vertical distance of the top and bottom level of an arbitrary section 

i measured from the maximum height of the rubble. 

The total horizontal and vertical forces exerted on the wall are. therefore: 

P .... h = ..!.y (I - sinQ>) (1 - ~) r ,
1

, (h, ~ - h, ~) (ISO" - CL; -
2<1>) 1cos(90''-(a -<1>~.,)'(7-37) 

') h !80" z-, -' , I .I 90" - 2Q> I • 

( ) 
, ( 180" - CL - 2<j)) .!.. , 

P,.y = ..!.y (I -sin$) I - _2:_ L oJ'·(/z,!- ,, ") I 
1sin(90"-(CL -<!> .. ))(7-38) 

2 I> I 80" 1 
... .I ·' 90''- 2Q> 1 

.r 

where k is the number of sections covered by the rubble. The effective friction angle for 

section i. ~~ w.•• is calculated from Equations 7.24 or 7 .25. and is less than or equal to the wall 

friction angle ~w.i· 

The weight of the rubble per unit width is given as: 
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tana J J 
t·l 

(7-39) 

where hr is the rubble height. hi is the height of section i. and k is the highest section the 

rubble reaches. 

For example, for the retaining wall and backfill of Figure 7.29. simple geometric 

consideration gives the base lengths. b1, b:!• and b1 equal to 4.8562. 1. and 0.57735 m 

respectively. with the total cross-sectional area of the rubble equal to 8.2842 m~ and the 

weight of the rubble equal to 58909 N/m. With <P ... = 11.3" common for each section. c)l',.. is 

obtained from Equation 7.24 as 1.7", 9.4", and 11.3" for the upper. the middle and the lower 

sections. respectively. Substituting$' .... for the respective section into Equations 7.37 and 

7.38. P"'11 and P"'.,. are computed as 10923 and 11384 N/m. respectively. Finally. the normal 

force. Phh• and the frictional resistance. Phv acting on the base are computed from Equations 

7.32 and 7.33 as 10923 N/m and 48596 N/m. respectively. 

An example calculation for Test MUNCONE3 is given in Appendix C. 

7.6 Application of the New Formula for Other Loading Conditions 

Two other loading conditions are of interest to designers. The first is associated with 

the basal sliding at the rubble/ice interfaces. and the second one associated with bearing 

failure of the supporting ice sheet. Both conditions may limit the maximum slope and height 

that a rubble can attain. and hence, limit the maximum load that a rubble can exert on the 
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structure. In this section, application of the new model formula to the aforementioned cases 

is briet1y described. 

7 .6.1 Maximum Slope of Rubble with Basal Sliding at the Rubble/Ice Interfaces 

When rubble is pushed up a sloping plane. the free surface slope of the rubble is 

limited by one of the two failure criteria: slope instability and basal sliding as described in 

Chapter 5. The first criterion limits the rubble angle to the material's angle of repose; 

whereas. the second criterion prevents further ride-up of the rubble mass onto the slope. 

And. hence. the second criterion further limits the maximum angle that the rubble can attain. 

lf the surface slope momentarily increases beyond this limiting value. the whole rubble will 

slide down the sloping plane to seek for the limited equilibrium state exhibited by Runs 

R l2W2_2 and R l2W3_2 conducted in the previous section. 

The equations presented in Section 7.3 can also be applied to the limiting equilibrium 

state on the onset of this basal sliding. In this case. the value of slope angle. t. is unknown 

which is to be determined by back calculation using the known frictional resistance at both 

the wall and the supporting ice sheet, i.e .. $' w = c!>w and$' b = c!>b. It is expected that the angle, 

t. will be a function of wall angle, internal friction angle. and ice friction at the interfaces. 

The corresponding thrust, P
0

, is the maximum load that can be exerted on the structure. 
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7.6.2 ~laximum Rubble Height Limited by Bearing Failure of the Supporting Ice 

Sheet 

The supporting ice sheet may fail before the full development of the ice rubble, which 

limits the amount of ice piled up in front of the cone. and the size of the rubble is no longer 

determined by the mass balance requirement, but is rather limited by the strength of the 

supporting ice sheet. This type of bearing failure was observed in a number of tests 

conducted in L\1E's series when the ice sheets were weak and thin. In this case, the height 

of the rubble, h. is unknown. The h can be determined by back calculation using the 

equations derived in Section 7.3 with the known bearing resistance, i.e., Ph.-• calculated from 

bearing analysis of the underlying ice sheet. Again, the corresponding thrust, P0 , is the 

maximum load that can be exerted on the structure. 
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Table 7.1 DECICE parameters for the simulations of rubble mass at the "at-rest" 
condition 

Solution Scheme Two-dimensional plain-strain explicit 
time-stepping algorithm 

Time Step Length Program generated default value 

Constitutive Model Perfectly elastic 

Element - Ice Blocks Simply deformable solid 

Element- Walls, Top and Base Plates Rigid 

Ice Elastic Modulus (Pa) 0.2E7 

Inter-Element Stiffness (Pa) 0.2E8 

Ice Density (kg/m3
) 900 

Poison Ratio 0.3 

Gravity 
No gravity for the oedometer tests, and l-

g for all the other tests 
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Table 7.2 

Test 

p 11 

P12 

P13 

P21 
P22 

P23 

P31 

P32 
P33 

Summary of the coefficient of lateral earth pressure at rest. ~. 1 • estimated by 
gravity method 

h b pwh pbv Pwh Pbv 
~.I 

<PI 
(m) (m) fl (N) (N) (N/m) (N/m) (0) 

Set 1: Piece Size= 0.16 m x 0.16 m 
5.20 2.75 0 92271 107361 17744 39042 0.909 5.2 
5.50 2.75 0.2 63361 107361 11520 39040 0.590 24.2 
5.80 2.75 0.4 51257 l0736l 8837 39040 0.453 33.2 

Set 2: Piece Size = 0.16m x 0.32 m 
7.30 3.89 0 1634l0 214721 22385 55198 0.811 l0.9 
7.60 3.89 0.2 117610 214721 15475 55198 0.561 26.1 
8.10 3.89 0.4 106891 214721 13196 55198 0.478 31.5 

Set 3: Piece Size= 0.16m x 0.48 m 
8.70 4.80 0 250528 322082 28796 67100 0.858 8.1 
9.60 4.80 0.2 184705 322082 38480 67100 0.573 25.2 
10.10 4.80 0.4 139972 322082 13859 67100 0.413 35.9 
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Tuhle 7.3 Summary of the codficienl of lateral earth pressure at rest, K,, 1, measured from the oedomcter tests 

Sampling h b pwh P,". Pwh p,,. <P1 
!Extrapolated 

Test Jl Ko,2 Values at 
Point (m) (m) (N) (N) (N/m) (N/m) (") 

pwh= 0 N 
Set I : Piece Size = 0.16 111 x 0.16 111 

Q12 
p• 5.44 

2.75 0.2 
44861 38983 8242 14176 0.581 24.7 Ku.2 = 0.593 

2nd 5.32 114702 105361 21544 38313 0.562 26.0 <P2 = 24.0° 

Q13 
r• 5.69 

2.75 0.4 
27460 31695 4823 11526 0.419 35.6 Ku,2 = 0.419 

2"d 5.57 80137 101877 14377 37046 0.388 37.7 <)l2 = 34.SO 
Set 2: Piece Size = 0.16 m x 0.32 m 

Q22 
p• 7.84 

3.89 0.2 
55657 50969 7095 13103 0.542 27.3 Ku,2 = 0.566 

2"d 7.68 140712 142019 18329 36509 0.502 29.9 <P2 = 25.7" 

Q23 
P' 8.13 

3.89 0.4 
2889 3006 355 773 0.460 32.7 Kn,2 = 0.460 

2"tl 7.97 67232 72075 8440 18528 0.456 33.0 «1»2 = 32.7° 
Set 3: Piece Size = 0.16 m x 0.48 m 

Q32 
I,, 9.41 

4.80 0.2 
80011 75039 8502 15633 0.544 27.1 Ku,2 = 0.593 

2"d 9.21 192033 185920 20850 38733 0.538 27.5 <P2 = 26.9° 

Q33 
p• 10.16 

4.80 0.4 
319 252 21 53 0.406 36.4 K u.2 = 0.407 

2"d 9.96 35892 43992 3604 9165 0.393 37.4 cp_? = 36.4" 

Note: Forces Measured on the two side walls arc within 0.46% of each other; whereas, those measured on the top and bottom 
plates are within 1.1 %. The values given are the average values. 
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Table 7.4 

Test 

Sl2 
S13 

S22 
S23 

S32 
S33 

Table 7.5 

Summary of the angle of repose. <l>r• estimated from the rubble's natural slope 
after slope failure 

!l 
<l>r <I> I <1>/<1>1 
(0) (0) (N) 

Set 1: Piece Size= 0.16 m x 0.16 m 
0.2 24 24.2 0.99 
0.4 31 33.2 0.93 

Set 2: Piece Size =0.16 m x 0.32 m 
0.2 25 26.1 0.96 
0.4 27 31.5 0.86 

Set 3: Piece Size= 0.16 m x 0.48 m 
0.2 22 25.2 0.87 
0.4 32 35.9 0.89 

Matrix of DEClCE simulations of the thrust exerted upon a retaining wall by 
cohesionless granular materials at "at-rest" state of stress 

Parameters Variation 

Height of Rubble, h (m) from 1.6 to 4.8 

Rubble Angle, t (0
) 22.5, 17.3, 11.7 

Wall Angle, a (0
) 45,60. 75.90 

Internal Friction Angle of Rubble, cp (0
) 24.2. 33.2 

Friction Angle at Wall, <l>w (0
) o. 11.3, 21.8 

Friction Angle at Base, cpb (0
) 11.3 

Number of Tests 48 
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Table 7.6 

Test 

Rl2 I 

R12A I 

RI2B I 

Rl3 I 
R22 I 

R23 1 
R32 I 
R33 I 

Rl2 2 

R12A 2 

RI2B 2 
R13 2 
R22 2 
R23 2 

R32 2 
R33 2 

RI2W1 2 
RI2W2 2 

RI2W3 2 

RI3WI 2 
RI3W2 2 

RI3W3 2 
R22WI 2 
R22W2 2 

R22W3 2 
R23W1 2 
R23W2 2 
R23W3 2 

Summary of DEC ICE simulations of the thrust exerted upon a retaining wall 
by cohesionless granular materials at "at-rest" state of stress 

h b a. l «!> Yh 
pwh = pwv pbv Po <Xp 

pbh (m) (m) (0) (0) (0) (N/m~) 
(N) 

(N) (N) (N) (0) 

Set l: «!>w = Oo 
4.80 11 .59 90 22.5 24.2 6940 35139 0 193019 35139 0.0 
3.20 7.73 90 22.5 24.2 6839 15355 0 84530 15355 0.0 

1.60 3.86 90 22.5 24.2 6876 3805 0 21249 3805 0.0 
4.80 11.59 90 22.5 33.2 6940 27603 0 193019 27603 0.0 
3.60 11.59 90 17.3 24.2 6892 21365 0 143747 21365 0.0 
3.60 11.59 90 17.3 33.2 6892 17485 0 143748 17485 0.0 

2AO 11.59 90 11.7 24.2 6826 10360 0 94926 10360 0.0 

2.-tO 11 .59 90 11.7 33.2 6826 8638 0 94926 8638 0.0 

Set 2: «!>w = 11.3° 
4.80 11.59 90 22.5 24.2 6940 33227 1601 191418 33265 2.8 

3.20 7.73 90 22.5 24.2 6837 14407 271 84239 14410 1.1 

1.60 3.86 90 22.5 24.2 6873 3644 408 20833 3666 6.4 

4.80 11.59 90 22.5 33.2 6940 27364 554 192466 27369 1.2 

3.60 11.59 90 17.3 24.2 6892 20417 538 143209 20425 1.5 

3.60 11.59 90 17.3 33.2 6892 17039 754 142993 17056 2.5 

2.40 11.59 90 11.7 24.2 6826 9728 1139 93787 9794 6.7 

2.40 11.59 90 11.7 33.2 6826 8277 766 94160 8312 5.3 

4.80 10.30 75 22.5 24.2 6950 30967 12927 158917 33557 22.7 

4.80 8.82 60 22.5 24.2 Sliding Failure 

4.80 6.79 45 22.5 24.2 Sliding Failure 

4.80 10.30 75 22.5 33.2 6950 27091 8435 163408 28374 17.3 

4.80 8.82 60 22.5 33.2 6928 24685 21594 125005 32797 41.2 

4.80 6.79 45 22.5 33.2 6876 19294 28940 83074 34782 56.3 

3.49 10.30 75 17.3 24.2 6896 18075 6333 117670 19152 19.3 

3.34 8.82 60 17.3 24.2 6854 16428 13160 87687 21049 38.7 

3.06 6.79 45 17.3 24.2 6807 10097 15015 55663 18094 56.1 

3.-t9 10.30 75 17.3 33.2 6896 16102 6092 117911 17216 20.7 

3.34 8.82 60 17.3 33.2 6854 16153 12396 88452 20361 37.5 

3.06 6.79 45 17.3 33.2 6807 10190 14111 56567 17405 54.2 
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Table 7.6 

Test 

Rl.2 3 

Rl3 3 

R22 3 

R23 3 

R32 3 

R33 3 

RI2WI 3 

R12W2 3 

Rl2W3 3 

R12W3A 3 

RI2W3B 3 

RI3WI 3 

RI3W2 3 

RI3W3 3 

R22Wl 3 

R22W2 3 

R22W3 3 

R23WI 3 

R23W2 3 

R23W3 3 

Summary of DEC ICE simulations of the thrust exerted upon a retaining wall 
by cohesionless granular materials at "at-rest" state of stress (cont'd) 

h b (l t cl> Yt. 
P.,..h = 

P.,...., pbv Po Up 
pbh (m) (m) (0) (0) (0) (N/m1

) 
(N) 

(N) (N) (N) (0) 

Set 3: cp..., = 21.8° 

4.80 11.59 90 22.5 24.2 6940 31030 6246 186773 31652 11.4 

4.80 11.59 90 22.5 33.2 6940 25700 4180 189000 26038 9.2 

3.60 11.59 90 17.3 24.2 6892 19304 3117 140630 19554 9.2 

3.60 11.59 90 17.3 33.2 6892 16150 2412 141335 16329 8.5 

2.40 11.59 90 11.7 24.2 6826 9701 1619 93307 9836 9.5 

2.40 11.59 90 11.7 33.2 6826 7862 1479 93447 8000 10.7 

4.80 10.30 75 22.5 24.2 6950 29983 16540 155309 34243 28.9 

4 .80 8.82 60 22.5 24.2 6929 23407 28376 118235 36784 50.5 

4.80 6.79 45 22.5 24.2 6926 15109 33568 69264 38612 65.8 

3.20 4.53 45 22.5 24.2 6733 6651 14826 33927 16250 65.8 

1.60 2.26 45 22.5 24.2 6892 1628 3622 8853 3971 65.8 

4.80 10.30 75 22.5 33.2 6950 24595 13315 158525 27968 28.4 

4.80 8.82 60 22.5 33.2 6904 22900 27100 119000 35480 49.8 

4.80 6.79 45 22.5 33.2 6926 15269 34946 77883 38136 66.4 

3.49 10.30 75 17.3 24.2 6896 17336 7716 116287 18976 24.0 

3.34 8.82 60 17.3 24.2 6854 13908 16660 84188 21702 50.1 

3.06 6.79 45 17.3 24.2 6807 8277 18077 52600 19882 65.4 

3.49 10.30 75 17.3 33.2 6896 14833 7468 116535 16606 26.7 

3.34 8.82 60 17.3 33.2 6854 13274 15130 85717 20128 48.7 

3.06 6.79 45 17.3 33.2 6807 8389 17035 53642 18989 63.8 
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Table 7.7 Computed values for DECICE Analyses conducted in Sections 7.3.3 to 7.3.6 

Po.m.:-.1s 'Ybh2(l-2lll80°) Po.pn:d Po.pred Po.pn:d 

Test (N) (N) 
(EQ. 7.18) (EQ. 7.17) (EQ. 7.21) 

(N) (N) (N) 
Set 1 : cj)w = 00 

R 12 1 35139 119928 35383 35383 35383 
R12A 1 15355 52523 Not Computed 
Rl2B l 3805 13202 Not Computed 
Rl3 l 27603 119928 27130 27130 27130 
R22 l 21365 72188 21298 21298 21298 
R23 l 17485 72188 16330 16330 16330 
R32 l 10360 34208 10093 10093 10093 
R33 l 8638 34208 7739 7739 7739 

Set 2: cj)w = 11.3° 
Rl2 2 33265 119928 35383 35383 35383 

Rl2A 2 14410 52510 Not Computed 
R12B 2 3666 13197 Not Computed 
Rl3 2 27369 119928 27130 27130 27130 
R22 2 20425 72188 21298 21298 21298 
R23 2 17056 72188 16330 16330 16330 
R32 2 9794 34208 10093 10093 10093 
R33 2 8312 34208 7739 7739 7739 

R12Wl 2 33557 120102 43513 35435 39265 
Rl2W2 2 Sliding Failure 
R12W3 2 Slidin~ Failure 
Rl3Wl 2 28374 120102 34344 27169 32011 
Rl3W2 2 32797 119716 41386 27082 35598 
R13W3 2 34782 118813 48172 26878 38359 
R22W1 2 19152 67927 24610 20041 22207 
R22W2 2 21049 61713 26509 18208 21821 
R22W3 2 18094 51489 25581 15191 19397 
R23W1 2 17216 67927 19424 15366 18105 
R23W2 2 20361 61713 21334 13961 18351 
R23W3 2 17405 51489 20876 11648 16623 
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Table 7.7 

Test 

R12 3 
R13 3 
R22 3 
R23 3 
R32 3 
R33 3 

R12W1 3 
R12W2 3 
R12W3 3 

Rl2W3A 3 
Rl2W3B 3 
R13W1 3 
R13W2 3 
RI3W3 3 
R22WI 3 
R22W2 3 
R22W3 3 
R23W1 3 
R23W2 3 
R23W3 3 

Computed values for DECICE Analyses conducted in Sections 7.3.3 to 7.3.6 
(cont'd) 

p n.mc:as yhh:!(l-2t.ll80°) Po.p~d Po.p~d Po.p~d 

(N) (N) 
(EQ. 7.18) (EQ. 7.17) (EQ. 7.21) 

CN) (N) (N) 

Set 3: cpw = 21.8° 

31652 119928 35383 35383 35383 
26038 120028 27153 27153 27153 
19554 72188 21298 21298 21298 
16329 72188 16330 16330 16330 
9836 34208 10093 10093 10093 
8000 34208 7739 7739 7739 
34243 120105 43514 35436 39266 
36784 119726 51429 35324 42332 
36812 109073 54189 32181 41090 
16250 25855 Not Computed 

3971 6616 Not Computed 

27968 120099 34343 27168 32010 
35480 119309 41245 26990 35477 
38136 1 19676 48522 27073 38637 
18976 67927 24610 20041 22207 
21702 61713 26509 18208 21821 
19882 51489 25581 15191 19397 
16606 67927 19424 15366 18105 
20128 61713 21334 13961 18351 
18989 51489 20876 11648 16623 
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Table 7.8 

Test 

Rl2 1 
R12A 1 
R12B 1 

Rl2 2 
R12A 2 
R128 2 

Rl2W 3 
Rl2W3A 3 

Rl2W38 3 

Results of simulation runs to validate the direct proportionality between the 
rubble height squared. h2

, and the total wall thrust, Po (t = 22.5° and <1> = 24.2° 
for all cases) 

h Yb Po (hlh.u)2 (Yt/Yb·~.s) 
•po.h=4.R 

p JPo.h=4.8 (m) (N/m2) (N) (N) 

Set I : a = goo and <!>w = oo 

4.8 6g4o 35l3g 1.000 1.000 3513g 1.000 
3.2 6838 15355 0.444 o.g85 35066 o.g98 

1.6 6876 3805 0.111 o.gg1 34758 o.g8g 

Set 2: a= goo and c!>w = 11.3° 

4.8 6g4o 33265 1.000 1.000 33265 1.000 
3.2 6874 14410 0.444 o.g9o 32734 o.g84 

1.6 6950 3666 0.111 1.001 32g45 0.9go 

Set 3: a. = 45° and c!>w = 21.8° 
4.8 6926 36812 1.000 1.000 36812 1.000 
3.2 6733 16249 0.444 0.972 37608 1.022 
l.6 68g2 3g71 0.111 0.995 35915 o.g76 
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Table 7.9 

a. 

90 

75 

60 

45 

Note: l. 

2. 

Results of the correlation analysis of the Po- K" data pairs 

4l 4lw 
~ 

df 90% 95% 99% r r 

0 1.000 1.000 4 0.729 0.811 0.917 

24.2 11.3 1.000 1.000 4 0.729 0.811 0 .917 

21.8 0.997 0.999 2 0.900 0.950 0.990 

0 0.995 0.997 2 0.900 0.950 0.990 

33.2 11.3 0.998 0.999 2 0.900 0.950 0.990 

21.8 0.997 0.998 2 0.900 0.950 0.990 

11.3 1.000 1.000 1 0.988 0.997 1.000 
24.2 

21.8 1.000 1.000 l 0.988 0.997 1.000 

11.3 0.983 0.992 l 0.988 0.997 1.000 
33.2 

21.8 0.993 0.996 1 0.988 0.997 1.000 

11.3 NA (too few samples) 
24.2 

21.8 0.878 0.937 l 0.988 0.997 1.000 

11.3 0.948 0.974 l 0.988 0.997 1.000 
33.2 

21.8 0.979 0.989 l 0.988 0.997 1.000 

11.3 NA (too few samples) 
24.2 

21.8 0.986 0.993 3 0.805 0.878 0.959 

11.3 0.964 0.982 l 0.988 0.997 1.000 
33.2 

21.8 0.969 0.985 1 0.988 0.997 1.000 

Number of sample pairs, n = df +1. where df is the number of degrees of 
freedom 
Minimum values for 90%, 95% and 99% confidence level are taken from 
Fisher and Yates ( 1970). 
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Table 7.10 Base cases and their variations selected to assess the validity of Equation 7.18 
for vertical walls 

Base Parameters 
Test Run (Base Test Run 

Case) (Variation) 

<!> ('1) cj)w (o) t = 22.5 (0
) t = 17.3 (0

) t = 11.3 (0
) 

24.2 0 Rl2 - 1 R22 - I R32 - 1 

33.2 0 R13 - 1 R23_l R33 - 1 

24.2 11.3 Rl2_2 R22_2 R32_2 

33.2 11.3 Rl3_2 R23_2 R33_2 

24.2 21.8 Rl2_3 R22_3 R32_3 

33.2 21.8 R13_3 R23_3 R33_3 
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Table 7.11 Base cases selected to assess the validity of Equation 7.17 for inclined walls 

Test Run Base Parameters 

Base Case h (m) l (0) <1> (0) tl>w {o) 

Rl2_2 4.8 22.5 24.2 11.3 

Rl3_2 4.8 22.5 33.2 11.3 

R22_2 3.6 17.3 24.2 11.3 

R23 2 3.6 17.3 33.2 L 1.3 -

Rl2_3 4.8 22.5 24.2 21.8 

Rl3 3 4.8 22.5 33.2 21.8 -

R22_3 3.6 17.3 24.2 21.8 

R23 3 3.6 17.3 33.2 21.8 -

Note: For the base case. a= 90°; the wall angle of each case was varied from 90° to 75° to 
60'> to 45° with the runs bearing the extension WI, W2. and W3 respectively. 
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Table7.l2 Least squares fit of force components computed from Equations 7 .3l. 7 .32. 
and 7 .34, to values obtained directly from simulation runs assuming q,"' equal 
to 0°, 1l.3° and 22.5° 

Least Squares Fit (Pprcd = m P,;mut) 

Force Component {j>w (o) 
, 

m r 

0 0.989 0.997 

pv.h 11.3 1.062 0.961 

22.5 1.093 0.973 

L 1.3 0.969 0.968 
PW\" 

22.5 1.042 0.982 

0 1.000 1.000 

p!l\ 11.3 0.999 0.999 

22.5 0.995 0.999 
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Figure 7.1 

Figure 7.2 

--~II~ :SECSI S.l!\! 
! OIP1£HSION 1111 

sa .a 

Figure showing the interaction of ice blocks. cone and ice sheet from a 
typical DECICE simulation (after Lau. 1994a) 
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increase · · ,... 
Measured Horizontal Force 

Simulated versus measured horizontal peak forces for a 60 degrees cone in 
level ice (after Lau. l994a) (Axis scaling is not given due to data 
propriety) 
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Figure 7.3 

Figure 7.4 

(a) (b) (c) 

Snap-shots showing generation process of rubble sam:r:;rple: (a) random 
generation of ice blocks; (b) free falling of ice blocks; ; ; and (c) final 
configuration of rubble sample 
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(a) (b) (c) 

Final configuration of rubble samples after initial coiiUiD.paction: ice piece 
size: (a) 0.16 m x 0.16 m; (b) 0.16 m x 0.32 m; and o (c) 0.16 m x 0.48 m 
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Figure 7.5 

Figure 7.6 
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Figure 7.7 

Figure 7.8 
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aspect ratio, AR, for contact friction, ~ = 0, 0.2 and 0.4: gravity method 
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Figure 7.9 
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Comparison of internal friction angle, <1> 1, and the associated contact 
friction, J.l. for aspect ratio, AR = l, 2 and 3: gravity method 

Side 
Plate 

T op PI ate 

.r 

Bottom Plate 

Side 
Plate 

Figure 7.10 Configuration of oedometer tests: side and bottom plates fixed while the 
top plate moves downward at V = 0.4 rnls 
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Figure 7.12 Comparison of the at-rest earth pressure coefficient, ~2• in simulated 
oedometer tests and the corresponding coefficient, ~- 1 , estimated from 
gravity test simulations 
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Figure 7.13 Comparison of the internal friction angle, q,2, estimated from oedometer 
test simulations and the corresponding internal friction angle, c1> 1, from 
gravity test simulations 

(b) (C) 

Figure 7.14 Snap shots of RunS 12 at (a) t = 0 s, (b) t = 15.3 sand (c) t = 30.6 s 
showing a typical angle of repose tests 
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Figure 7.1Sa Final configuration of rubbles in the angle of repose tests: (i) Test Sl2; 
(ii) Test Sl3; and (iii) Test S22 
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(v) 

Figure 7.15b Final configuration of rubbles in the angle of repose tests: (iv) Test S23; 
(v) Test S32; and (vi) Test S33 
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Figure 7.16 Comparison of the angle of repose, ,,. and the associated internal friction 
angle •• 1• obtained from gravity test simulations 
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Figure 7.17 Definition of variables commonly used in various eanh equations: (a) 
Coulomb's equation; and (b) Reimben and Reimben's equation. (The 
direction of total wall thrust as defined in Coulomb's equation and 
Reimben and Reimben's equation are differenL) 
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RI2Wl .t: RIJWt R22WI 4t R23WI 

Rt2W2 .t: RIJW2 R22W2 A R23W2 
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IS I ~ I 
RI2W38 Rt28 

Figure 7.18 Test configuration and sample geometry for each test simulation 
conducted for the thrust equation formulation. The results are given in 
Table 7.6. 
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Figure 7.19 Defmition of variables used in Table 7.6 
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Figure 7.20 Comparison of the predictions from Equation 7.18 and the total thrust 
measured on the wall for the three values of wall ftictio~ +w = 0°, 11.3°, 
and 21.8°. in DECICE simulations 
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Figure 7.21 
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Comparison of the predictions from Equation 7 .I 7 and the total thrust 
measured on the wall for the two values of wall friction, cpw = 11.3° and 
21.8°, in the DECICE simulations 
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Figure 7.22 Effects of the wall angle on wall thrust for a combination of internal 
friction angle, cp, and rubble angle, t (wall friction, cp"' = 21.8°) 
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Figure 7.23 Comparison of the predictions from Equation 7.21 and the thrust on the 
wall in the DECICE simulation 
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Figure 7.24 Computed effective friction angle at wall,+'.., versus wall angle, a, for wall 
friction angle, +w = 11.3°. The broken line corresponds to + 'w = +w = 11.3°, 
and the regression line fits data with a between 600 to 900. 
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Figure 7.25 Computed effective friction angle at wall, f w• versus wall angle. a., for 
wall friction angle «Pw = 21.8°. The broken line corresponds to q,' w = q,w = 
21.8°. and the regression line fits data with a. between 60° to 90°. 

Figure 7.26 Snap-shot of Run R12W3_2 showing the whole rubble mass sliding down 
along the wall and the supporting ice surfaces. 
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Figure 7.27 Force equilibrium of the rubble body 

Po.~ ~~ 
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Figure 7.28 Figure of a rubble retained by a multi-sloped wall showing the wall thrust 
and the wall angle of each section 
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Figure 7.29 Data for sample calculation showing the use of the derived equations 

253 



Part III Ice Force Model 

ChapterS Development of a New Ice Force Model 

In Chapter 6, a new rubble geometry prediction model was formulated from mass 

balance and interaction geometry considerations. With the geometry of the rubble known, 

the forces imposed by the rubble on the ride-up ice and the supponing ice sheet can then be 

computed via the set of equations derived in Chapter 7. These forces, interacting with the 

ride-up ice and the supporting ice sheet. affect the magnitude of loads acting on the cone. 

While the estimation of the load imposed by the ride-up ice is rather simple, the 

breaking behaviour of ice under the complex geometry imposed by both the rubble and the 

ride-up ice is complex. Many models have been constructed to predict ice forces on cone for 

the cases where there is no rubble buildup. In this chapter, those models are examined. and 

a base model is selected to model the breaking behaviour of intact ice. The new rubble 

model is then incorporated into the base model to compUle the peak ice load exerted on the 

cone due to the passage of a combined ice sheet/rubble system. 

In Section 8.1 the base model is selected from four representative models. The 

primary criterion for selection is the degree of simplicity and accuracy. The adaptation of 

the rubble model to the base model is presented in Section 8.2; while, in Section 8.3 the new 

ice force model is validated by the experimental results presented in Part [ of this thesis. 
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8.1 Selection of Base Model for Modelling of Ice Breaking Behaviour of Intact Ice 

In Section 8.1.1 the experimental data and the analytical models used for comparison 

are briefly described. All data and models are for smooth cones only. In Section 8.1.2. a 

method to adapt the 2-D model to 3-D cases is presented. This method is incorporated into 

the Croasdale's model to give a better representation of the 3-D nature ofice load. In Section 

8.1.3. accuracy of the existing mathematical models is assessed and discussed. 

8.1.1 Experimental Data and Ice Force Models for Smooth Cones, with Ride-Up Ice, 

But No Rubble 

The data set utilizes data from ten test programs done worldwide on smooth conical 

~tructures with a total of 226 data points (Afanas'ev et al. 1971. Verity, 1975; Edwards et 

al. 1975; Edwards and Croasdale, 1976; Manders and Abdelnour, 1978; Hirayama and 

Akamatsu, 1982; Wessels, 1984; Sodhi et al, 1985; Lau et al, 1988; and lzumiyama et al, 

1991 ). The test condition of each program is summarized in Table 8.1. These data 

encompass most of the data available during the last 25 years which have been widely cited 

in the open literature. All tests were conducted in model basins where the uniformity of ice 

properties was highly controlled, and the ice properties and load data were well documented. 

Three widely used analytical/mathematical models for smooth cones were chosen as 

possible candidates for the base model. They are: 

(i) Nevel's elasticity model (l992); 

(ii) Ralston's plasticity model ( 1977); and 
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(iii) Croasdale's 3-D model (1980) with in-plane force adjustment (Croasdale et 

al, 1994). 

In addition, Croasdale's model was modified to give a better representation of the 3-D 

geometry of ice loading. The modified model is referred to as 'Lau-Croasdale' model in the 

rest of the section. The modification is described in Section 8.1.2. 

These models are representative of the existing major model treatments of ice forces 

on conical structures. The models and their particular modelling features have been reviewed 

in Chapter 2. 

Ralston· s model allows computation of failure load due to two types of failure 

criteria, i.e .. Johansen and Tresca failure criteria. In this work. the Johansen failure criterion 

was assumed. 1 

For Nevel's model, the computer program supplied by Nevel (1992) was used. 

Nevel's computer program provides calculations for a combination of selected interaction 

conditions including: sequential or simultaneous ice breaking, inclusion or exclusion of ice 

pieces on neck section, and active or passive ice actions, with a total of 8 possible interaction 

scenarios. Computations for each assumed scenario is given elsewhere (Lau, 1999). In the 

present comparison, ice load for each individual test was computed for all 8 scenarios and 

then averaged to give the model prediction for that test. 

1 In the present test sets, computation using Tresca failure criterion gives an overall 12.5% 
higher force values in both the horizontal and the vertical directions than that computed using the 
Johansen failure criterion. 
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8.1.2 3-D Modification of Croasdale's Model 

Croasdale's (1980) provided a method to adapt his 2-D model to a 3-D case, i.e., 

narrow structures, by considering the length of circumferential cracks to extend beyond the 

structures. For example. in Croasdale's model, the total horizontal and vertical forces, HToT 

and V TOT• exerted on the front half of the smooth cone can be expressed in the following 

simplified form: 

(8-l) 

(8-2) 

where F; is the resolution factor for a sloping plane,~. as defined in Equation 2.2~ Lc is the 

total length of the circumferential crack; W ru is the total weight of ride-up ice; and V' b is the 

effective breaking load per unit width of ice beam under combined bending and in-plane 

compression. As noted already, the concern here is only with a single layer of ice, of 

thickness. t. riding up the front half of the cone with no rubble accumulation on top of the 

ice layer or ice sheet. Lc, W ru and V' b are expressed as follows: 

( 
1t11 ) 

L =D l +--'· 
c 4D 

(8-3) 
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D l~J t y 
sma (8·4) 

v: · 0.6so; ( Y{) 0 
(8-S) 

where y the weight density of ice~ Yw• the weight density of water~ E. the elastic modulus of 

icc: t. the ice thickness: D, the waterline width of the structure; a, the inclination angle; 

z. the free-board; lc, the characteristic length of ice; and cr' r is the effective flexural strength 

of the ice beam under combined bending and in-plane compression. The method to compute 

cr'.- is given by Croasdale et al ( 1994) and is further discussed in Section 8.2.7. 

It has been shown in Chapter 4 that the 3-D distribution of ice loads is important. 

particularly in a larger scale. and F; in Equation 8.1 should be approximately equal to (2/7t)~ 

(see Section 4.4.1 ). By assuming F~ is equal to~. Croasdale's model tends to overestimate 

the horizontal force component. Furthermore, while the equations for Lc and W ru are derived 

considering a sloping plane, their application to conical structures omits of the 3-D nature 

of ice load distribution caused by the cone's curvature. 

The following method is proposed by the present author to adapt Croasdale' s 2-D 

model to a 3-D case, which gives a better representation of the 3-D nature of ice loading on 
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the cone. The method considers the direction of ice force distribution around the cone 

surface, and gives a better estimation of W ru and Lc. It first computes and integrates the 

distributed ice forces along the front perimeter of the cone to give the net vertical loads, and 

then calculates the net horizontal force by the appropriate resolution factor for a 3-D case, 

i.e .. (2/7t)c;. 

For modelling purposes, only the loads on the front half of the cone are considered. 

and full coverage of ride-up ice on this half of the cone is assumed as shown in Figure 8.1. 

The total weight of ride-up ice, W ru• is given in the following expression: 

(8·6) 

where D and Dn are the waterline and neck diameters of the cone, respectively. 

The breaking force is computed by considering simultaneous failure of a series of 

wedge beams along the cone's front perimeter (see Figure 8.1 ). Each beam has a breaking 

length. LL• derived from the theory of semi-infinite elastic beam on elastic foundation 

(Hetenyi, 1946). i.e .• 

~{ 
4 L' 

(8-7) 

The distance of the circumferential crack to the centre of the cone is equal to [D/2 + ( n/4 )lc] 

and the total length of the circumferential crack. Lc, is given as follows: 
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rt(.) 
+-

4 
(8-8) 

With the W"' and Lc given in Equations 8.6 and 8.8, the vertical load on each wedge beam 

is computed via Croasdale's 2-D model, i.e., Equation 8.2, and then summed up to give the 

net vertical breaking load, V TOT: 

(8-9) 

Since that the vertical load, VToT• is uniformly distributed along the front half of the cone, 

the horizontal load, HToT• is related to V TOP by s30 (see Section 4.4.1 ), i.e., 

(8-10) 

The adjustment for the effect of in-plane compression on a' c can be performed for each beam 

in the same manner as suggested by Croasdale et al ( 1994) (see Section 8.2.7). 

8.1.3 Result of Model Assessment 

Figure 8.2 compares the predicted horizontal force, F:\.pn:d• computed from Lau-

Croasdale's model to the horizontal mean peak force, F,.me-.1.'' measured from each test in the 

data sets listed in Section 8.1.1, and the comparison for the vertical force is shown in Figure 
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8.3. Comparisons for the Croasdale's model. the Nevel's model. and the Ralston's model 

are shown in Figures 8.4 to 8.9. Table 8.2 summarizes the average and standard deviation 

of the predicted to measured mean peak force ratio. Fpm~IF mea.'• associated with each test data 

set. The data are plotted in Figures 8.10 and 8.11 for two respective directions. Both the 

Nevel's and the Ralston's models give very high estimates of the horizontal forces measured 

for the 80" cone model in the Hirayama et al's tests (Series #3). i.e .. 13.8 and 12.8 times the 

measured values, respectively; hence. the statistics were computed without the 

corresponding runs. Figure 8.12 gives the overall average Fpn:d/Fmo:-o~s ratio for each ice force 

model, and the associated statistics are summarized in Table 8.3.! 

Ralston· s model over-estimates ice loads by 41% in both the horizontal and venical 

directions and is eliminated from further consideration. This over-prediction is a 

consequence of the plasticity modelling (see Section 2.2.1.3). 

Croasdale's and Nevel's models predict well the ice force in the vertical direction 

with overprediction by merely 4% and 6 %, respectively; however, these models over-

estimate the horizontal ice force by 37% and 12%. respectively. The over-prediction of ice 

force in the horizontal direction by the Croasdale's model is due to the 2-D treatment ofload 

distribution; whereas, the source of over-prediction for the Nevel's model is uncertain. 

Overall, Lau-Croasdale's model gives the best agreement with test data for both the 

horizontal and the vertical loads with an average F pn:d/F me-... , value of 0. 92 and 1.0 I for the 

!The values given in Table 8.3 is the arithmetic mean of the statistics calculated for each 
test set as given in Table 8.2. This gives equal weighting for each test set. 
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respective directions. The 8% discrepancy between the predicted and the measured 

horizontal force values is mainly contributed by the discrepancy between the measured and 

predicted resolution factors associated with tests with smaller ratio of waterline diameter to 

ice characteristic length. when the measured resolution factor diverges from the assumed 

value of (2/7t)~ and moves toward~ as the ratio decreases (See Figure 4.12). 

All the models deal with forces from the ice sheet and ride-up ice. not considering 

the forces due to rubble. Based on the above assessment, Lau-Croasdale's model is selected 

as the basis for further model formulation to include the effect of rubble. 

8.2 Formulation of Ice Force Model with Rubble at a Faceted Cone 

The problem of ice rubble loading on cones is essentially a three-dimensional 

problem. Any satisfactory treatment of the problem would have to account for the three

dimensional nature of the interaction as in the previous section. However. a complete three

dimensional treatment of the problem would lead to complexities too difficult for analysis. 

Instead. a pseudo-three-dimensional treatment of the interaction was performed by 

recognizing the two-dimensional nature of the interaction geometry associated with 

individual facet. This treatment results in a set of simple equations which can be easily 

incorporated into a probabilistic methodology. 

In this model. only the front half of the cone is considered. and the loading on each 

facet is treated two-dimensionally. The horizontal and vertical forces in the plane 

perpendicular to each facet are t1rst computed using a two-dimensional model. These forces 
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are then transformed into their X and Z Cartesian components using the appropriate 

resolution factors and summed up vectorially to give the net force on the cone. 

Section 8.2.1 describes the general features and assumptions of the interaction 

system. The coordinate system and geometry of the problem are described in Section 8.2.2. 

The basic governing equations to transform the interactive forces on a particular facet into 

components acting along the principal axes directions are given in Section 8.2.3. Section 

8.2.4 describes the various force components to be considered in the model. followed by 

detailed derivations of each component in Sections 8.2.5 and 8.2.6. Section 8.2.7 describes 

the computational procedure to adjust for the effect of in-plane compression on failure load. 

8.2.1 General Features and Simplifications of the Ice-Structure Interaction 

The interaction processes under investigation are quite complex resulting from the 

complex interaction geometry existing between the rubble, the ride-up ice and the structure. 

Simplifications were adopted to generate fairly realistic representations of a range of ice 

structure interaction conditions while at the same time providing computational simplicity. 

The general features and the simplifications of the interaction system with regard to the ice 

breaking pattern, the rubble and ride-up ice geometries and weights, and the load distribution 

and failure of ice sheet are described in the following section. 

8.2.1.1 Characteristic Ice Breaking Pattern 

The characteristic ice crack patterns are depicted schematically in Figure 8.13. Two 
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radial cracks make an angle, ecr• extending outward from the corners of a facet forming a 

cantilever beam with the width, dcr• slightly wider than the structure. The d,r is related to ecr 

and the broken beam length, ~ by the following relationship: 

(8-11) 

where Wr is the width of facet at waterline. In the present model. the values of ecr is assumed 

to be 30". and the 4. can be computed from the empirical equation derived in Section 4.2.2. 

i.e .. Equation 4.5, or from field measurements. As depicted in Figure 8.13. the same value 

of ice breaking width, dcr• is assumed for broken wedge in front of the three facets. 

The broken ice pieces riding up the central facet are trapezoidal in shape. This train 

of ride-up ice results in an ice wall with an average width, wru . .:• being: 

w ru.c 
l -(d + w

1
) 

2 a 
(8-12) 

As these ice pieces eventually contribute to the ice supply to the rubble, w nu: should be used 

to calculate the rubble geometry as the width of the central zone, i.e .• by simply replacing Wr 

with wru.c in the equations given in Chapter 6. 

8.2.1.2 Heights, Width, and Weights of Rubble in Front of the Front Facet 

At the front facet, the rubble increases in height from the two edges reaching a 

maximum value at the centerline. In order to compute total thrust on the facet using the 
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equations derived in Chapter 7. an average height and width of the rubble in front of the front 

facet. i.e .• hr.~ and wr.c• must be estimated. hr.c is given by the following equation: 

w) 
~, ... (8-13) 

r,c 

where h" is the rubble height at the edge of the front facet; hrm is the maximum rubble height 

at the front facet; w is the width computed from Equation 6.34 (see Section 6.3.3). and wr.r: 

is the width of the rubble. wr.c is equal to wru.c• which can be computed via Equation 8.12. 

The total weight of the rubble. Wr.c· in front of the front facet is given as: 

w r .( · 
~v liz 2 1_1 __ 1 ) _ ~ h zl_l 

r,c r ,C' ~tan <I> tan(X.(; L....,l · l.k - J I tan(Xj tancx . ) j 
r·l 

(8-14) 

where yh is the bulk weight density of the rubble;$. the rubble inclination;~ and hi. the cone 

angle and height of an arbitrary section i. respectively; and k is the highest section the rubble 

reaches. 

8.2.1.3 Weights of Ride-Up Ice on Individual Sections on the Front Facet 

ln the present model. the weight of ride-up ice covering the individual sections is 

needed. Observation from model tests showed an average extrusion of 5 pieces of ice 

constantly maintained on the neck beyond the top of the rubble before they fell onto the on-
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coming rubble. Therefore, the following ride-up height on the front facet, ~.c• is assumed: 

(8-15) 

or 

(8-16) 

whichever is greater. hn is the base height of the neck section from the waterline. 

With ride-up ice reaching the neck, all sections are covered with ice. The weight of 

rice-up ice. W ru.~ . ·· covering an arbitrary section, i. is given as: 

w 
TU,<' ,I 

lzL.1 
= Y t W ru.c 

sin«; 
(8-17) 

where h1_, is the length of ride-up ice of an arbitrary section i as defined in Figure 8.14. For 

the neck section. hl..i is equal to hru.c minus hn; and for the lower sections, hL.• is equal to hi+ I 

minus h,. 

8.2.1.4 Heights, Width, and Weights of Rubble in Front of the Side Facets 

The average rubble height in front of the side facet, hr_,, is taken as the average of the 

height at the edge of the front facet. hrt, and the height at the side, hn, i.e., 

(8-18) 
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The total weight of rubble, W r.s• in front of the side facet can be estimated by divided 

the portion of rubble mass in question into two volumes, V1 and V11, as shown in Figure 8.15. 

Y1 is approximately equal to the volume resulting from rotating the cross-section A by 90° 

about axis Z1 (see Figure 8.15). V1 can be computed using the following equation: 

Y11 is approximately equal to a volume formed by two equal and parallel cross-sections, Arf 

and A", with a distance d 11 between them. The distance d11 depends on hrr and is computed 

by the following expression: 

(8-20) 

where k is the highest section the rubble reaches at the edge of the front facet, and Dk+t is the 

diameter of the k+ 1 section.3 Therefore, V11 can be computed using the following equation: 

( w t)(t h -h) V = A d = ru.c -D cos(30") + J.:. rf 
II r.r II 2(l-p) 2 1.:.·1 tan(ak) (8-21) 

anct the total weight of the rubble, Wr_,, in front of the side facet is given as: 

'lf the rubble reaches the neck section, Dk+ 1 is assumed equal to Dn. the diameter of the 
neck section. 
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(8-22) 

Again, an average width of the rubble, wr_~, at the side facet is needed to calculate the total 

wall thrust due to rubble. This width can be approximated by assuming an equivalent rubble 

in front of the facet with a constant width wr_, and a height hr_,. wr.s is calculated by dividing 

the total volume, V1 + V11 , by the cross-sectional area of the equivalent rubble, Acq = W /Yb· 

where Wr is the weight of the rubble per unit width computed by Equation 7.40, and yb is the 

bulk weight density of the rubble, i.e., 

w 
rs 

tana J l 
•·I 

8.2.1.5 Weights of Ride-Up Ice on Individual Sections on the Side Facets 

(8-23) 

The amount of ice riding-up the side facets can be estimated by considering the 

amount of ice on the side zone, with width of the side zone, ds = 0.5 (0- wru_,), which must 

be displaced by the cone, i.e., the shaded area, abc, as shown in Figure 8.16, with the total 

weight of ride-up ice, w ru •. ~· displaced being: 

(l)l t )( )2 W =y- D-w 
ru.r 8 tan30" ru.c 

(8-24) 
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for a six-faceted cone. 

The coverage of ride-up ice on the side facet is not constant which leads to uneven 

weight distribution along the facet. To simplify the computation, the weight is assumed to 

be distributed evenly along the lowest section of the facet. 

8.2.1.6 Load Distribution and Failure of Ice Sheet 

The base model selected in Section 8.1 computes the breaking load resulting from 

simultaneous bending failure of a series of wedge beams loaded at their tips. While this 

loading condition is a good characterization of the contact loads imposed on the supponing 

icc sheet by the ride-up ice and the cone. the presence of rubble significantly modifies the 

load distribution the intact ice experiences. In addition to a concentrated load transferred via 

the ride-up ice to the tip of the ice sheet, the rubble distribmes its mass and imposes a 

triangular load distribution along the supponing ice sheet. The effect of this distributed load 

on the breaking behaviour of the supporting ice sheet is not examined in this work; instead, 

the load is assumed to act at the tip of the supporting ice sheet as assumed in previous 

models. Since the distributed load can be transformed into a point load a~ well as a moment 

applied at the tip of the ice beam with the moment tending to facilitate breaking of ice, 

omission of this moment renders the approximation conservative. 

Different failure modes due to a combination of axial, shear, and bending stresses can 

also occur; however, only ice failure due to bending is modelled in this model. Failure due 

to other modes should be considered during the design process. 
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8.2.2 Coordinate System and Geometry 

Consider a quarter of a faceted conical structure above the waterline which has an 

inclination of angle a. with respect to the horizontal, as shown in Figure 8.17. Let (XYZ) 

be a right handed Cartesian coordinate system. The water surface is the (Z=O)-plane. The 

+X-axis is opposite to the motion of the ice; the +Z-axis is directed upward through the 

center of the cone: and the+ Y direction is then toward the viewer when viewing the (X-Z)

plane. 

The ice moves from the X direction and the broken ice pieces slide over the cone in 

planes parallel to the X-Z plane as shown by the path in Figure 8.17. Consider an ice piece 

on the surface of the cone at position b. At this point there is a force. N, normal to the 

surface of the cone and a frictional force, IJ.sN, tangential to the surface of the cone where J.ls 

is the coefticient of ice friction. 

Plane abd is a plane parallel to the X-Z plane with line ab coincident with the ice 

path. Plane bed is a plane perpendicular to the cone surface. The angle e is the angle 

between plane bed and plane abd. For the 6-faceted cone, e equal to oo for the front facet and 

60" for the side facets. The angle 'V is the angle of the frictional force at any point on the 

cone surface with respect to the X-axis and can be related toe and a: 

tamiJ = tanacose (8-25) 
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8.2.3 Normal and Frictional Forces on Each Facet 

The equations for the direction cosines, cos(xN) and cos(zN}, of any normal force, N, 

on the front half of the cone are given as follows: 

cosx.v = -sinacose (8-26) 

cosz.v = -cosa (8-27) 

where X:-~ and zN are the angle between the normal force and the respective axes, and the 

angles. a and 8, are between oo and 90° as shown in Figure 8.17. The scalar quantities, 

INicos(xN) and INicos(zN), are equal to the components of N in the direction of the respective 

X and Z a.'<.es. If the ice path is parallel to X-Z plane. the equations for the direction cosines 

of the frictional force. cos(xF) and cos(zF}, on the front half of the cone are given as follows: 

COSXF = -COSW (8-28) 

(8-29) 

The components, F, and Fz• along the negative X and Z axis of any normal force N 

and its frictional force ~sN at any point on front half of the cone surface can be resolved 

using the direction cosines, i.e., 

(8-30) 
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F. = N(cosz.v + fJ,cos.:F) = N(cosa - fJ,simll) 

And. hence. F, is related to FL through the following ratios: 

F 
.f 

F_ 

sinacos6 + llscosliJ 

cosa - fJ,sinliJ 

(8-31) 

(8-32) 

For the forces acting at the front facet. where 'V = a. and e = 0, Equations 8.30 to 8.32 get 

reduced to the following familiar form: 

Ff = N(sina + J.l,coscx) 

F. 

F 
.f = 

F_ 

N(cosa - J.l sincx) 
.r 

sincx + ll _rcosa 

cos ex - ll rsina 
= ~ 

(8-33) 

(8-34) 

(8-35) 

If we let X' be the direction perpendicular to the side facet at the waterline as shown 

in Figure 8.17, then F~- and Fz at any point on the surface of the side facet are related by~. 

and the following relationship between F~ . and F, is valid: 
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F 
.t 

Ft , ( sinacose + J.l_rcosliJ) 

~ cosa - J.l sinliJ .r 

(8-36) 

By treating the side facet as a simplified two-dimensional system. the total horizontal force. 

F,. on the facet is computed first, and then resolved to F, using Equation 8.36. 

8.2.4 Overview of Various Force Components 

Consider the general interaction between the icc and a sloping waH in a simplified 

2-D system as shown in Figure 8.18. The load on the cone is derived from two sources: 

(i) The contact load exerted directly on the cone surface by the ride-up and the 

rubble as they are being pushed up the slope by the ice sheet. i.e .• the reaction 

forces of H5 and V s~ and. 

(ii) The contact load exerted by the ice sheet at the waterline as it slides up the 

slope, i.e .• the reaction forces of Hw and V w· This load is limited by the 

ultimate failure of the ice sheet. 

The rubble interacts with and imposes loads on the riding-up ice and the supporting ice sheet, 

i.e .. P"wr• Pbhwr• and Pbvw'"' as shown in Figure 8.18 (with wr being the width of rubble). 

These loads arc eventually transferred onto the cone as additional loads. Equations to 

compute these loads have been derived in the Chapter 7. 

The total force acting on the cone can be related to the forces acting at the tip of the 

ice sheet as shown in Figure 8.19 with the forces imposed by the rubble included. HT and 
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V T are the total horizontal and vertical forces acting at the top edge of the ice sheet. i.e .• 

H = Pcosa. + P w T bll r (8-37) 

(8-38) 

where P is the force required to push ice blocks up the slope through ice rubble. Equations 

to compute P are derived in Section 8.2.5. The reactions of HT and V T eventually act on the 

cone surface through the ride-up ice. i.e .. 

Hs = HT (8-39) 

w + w - v 
r ru T (8-40) 

where Hs and V s are the total horizontal and vertical forces on the cone surface above 

waterline: and Wr and W ru are the total weights of the ice rubble and the ride-up ice. 

rcspecti ve 1 y. 

Hv .. · and V w in Figure 8.19 are the total horizontal and vertical forces acting at the 

bottom edge of the ice sheet. i.e., 

(8-41) 
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(8-42) 

Where V' b is the effective breaking load per unit width of the ice beam under combined 

bending and in-plane compression. and dcr is the crack length. In this model V' b is calculated 

using Equation 8.5 as derived by Croasdale et al (1994). The reactions of Hw and V w give 

total loads on the cone surface at the waterline. 

Therefore, the total horizontal and vertical loads on the cone. HTar and V TOT• are 

given as follows: 

(8-43) 

(8-44) 

HT and Hw are derived in Section 8.2.6, V' b is computed in Section 8.2.7, and Equations to 

compute W r and W ru are given in Sections 8.2.1.2 to 8.2.1.5 with a given amount of ride-up 

and rubble ice for the respective facets. 

8.2.5 Forces Required to Push Ice Blocks Up the Slope Through Ice Rubble 

Figure 8.20 shows the forces acting on a layer of ride-up ice at an arbitrary cone 

section, i. Force balance at direction parallel to the structure slope gives: 

(8-45) 
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where P o.i• and cp' w.i• are the rubble thrust force per unit width of rubble and its angle of action 

exerted on the ride-up ice, W ru.i is the weight of the ride-up ice, and P;.1 is the total force 

transferred from the above conical section. Po.i and cp' w.i are computed from the universal 

equation given in Chapter 7. 

Force balance perpendicular to the structure slope gives: 

N.,. = P .w cos ... ~.,- + W .cosa. + P 1sin(ex. 1 - ex,.) 
... lJ.I r 'f'"'. 111.1 I I • l • 

By substituting Equations 8.46 into Equation 8.45, P; is found: 

pi = w rw,i(sinexi + llscosex;) + Po.iw r(sincl>~.i + ll.rcoscl>~) 
+ P,. 1[cos(exH - a;) + f..lvsin(cxH - ex;)] 

(8-46) 

(8-47) 

The forces, P;. are determined for each section proceeding from the neck to the lowest 

cone section at the waterline. with the lowest cone being designated as the first section. W ru.• 

and wr are equal toW ru.c:.i and wr.,;• respectively. for the front facet. Likewise. W ru.i and wr are 

equal tow ru.~.i and wr.s for the side facets. 

8.2.6 Forces Acting on the Ice Sheet at Waterline 

The forces acting on the tips of an ice wedge have been shown in Figure 8.19. HT and 

V T are the horizontal and venical components of the forces necessary to push the ice blocks 

and the rubble up the slope. The components. which are assumed to act at the top of the 
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wedge tip, are given as: 

(8-48) 

(8-49) 

where P1 is the total force transferred to the top of the ice sheet from the pushing of the ride-

up ice through the ice rubble; a.1 is the cone angle at the waterline; and Pbh and Pb,· are the 

forces per unit width of rubble acting on the ice sheet due to the pushing of the ice sheet 

under the rubble. The Pbh and Pbv are computed from the rubble model. 

The vertical component, V w• of the contact load acting on the bottom tip of the ice 

sheet is given as follows: 

(8-50) 

The horizontal component. Hw. of the contact load acting on the bottom tip of the ice sheet 

is related to V 8 : 

(8-51) 

where~ is defined by Equation 2.2. 
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8.2. 7 Modification of Breaking Load for In-Plane Force (Croasdale et al, 1994) 

The horizontal force acting on the ice sheet, i.e.. HTOT• creates an in-plane 

compression and an edge moment at the ice edge. The maximum tensile stress per unit width 

along the bottom surface of the beam due to the combined out-of-plane bending and in-plane 

compression, equal to the effective flexural strength of ice, a' r• i.e .. 

(8-52) 

The first term on the right hand side of Equation 8.52 is the compressive stress due 

to the in-plane compression ( -ve). The second term is the tensile stress due to the combined 

edge moment applied at the top and bottom tip of the wedge. The eccentricity is assumed 

equal to '11 of ice thickness. The last term is the maximum tensile stress of the ice beam due 

to transverse load only (Hetenyi, 1946). 

The above equation can be written as below: 

, (V~ + Vr)~ + Hr a, = + ______ .;.... 

t 
(IJ-53) 

where <lr is the flexural strength measured by transverse loading only; and V' b is given in 

Equation 8.5. The value of a' r can be obtained by trial and error method using Or as the 

initial strength. Several iterations are needed to converge to a new value for o' r· In the 
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following comparison, the decrease of effective strength due to edge moment is ignored. 

which tends to give a more conservative prediction. 

8.3 Validation of the New Ice Load Model 

The experimental data from the IMD's series and the ERCL's series are chosen for 

the validation of the new ice force model. The model assumes uniformity of test condition; 

therefore, mean peak force is compared. Since Metge and Weiss (1989) and Metge and 

Tucker ( 1990) reponed only the maximum loads. F m• on the structure, their data was adjusted 

by assuming the following relationship between the mean peak load. F me:~.'' and the maximum 

load. F m• hold: 

F ML<Lf = 
F,. 

1.08 
(8-S4) 

The relationship is true for the IMD' s data. The computed and the measured ice forces, i.e., 

Fprcd and F me:l.'' are summarized in Table 8.4. An example computation is given in Appendix 

c. 

Figures 8.21 and 8.22 plot the model predictions against ERCL' sand IMD' s test data. 

respectively. Results from linear regression for the two comparisons are given in the 

respective figures. The comparison shows good agreement between model predictions and 

test data. On average, the model overpredicted the horizontal ice force by 12.9% for ERCL's 

data, and underpredicted by 8.9% for the IMD's data; whereas, it underpredicted the vertical 
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ice force by 1.4% for ERCL's data. and 13.1% for IMD's data. 

Despite limited data. the agreement between model predictions and experiment data 

in the horizontal direction is significant, as the loading in this direction tends to destabilize 

the structures, and accurate estimation of this force component is important. Nevertheless, 

the discrepancy of load warrants further refinement of the model. 

One source of error may be attributed to the ice breaking model used. The failure 

mechanism observed from IMD' s test series was associated with the ultimate failure of finite 

cantilever beams (see Section 4.2), while the ice breaking model used in this work is for 

semi-infinite beams. Models based on failure of a semi-infinite beam may not predict well 

the ice breaking load with thick ice. This observation is consistent with IMD's data in which 

the comparison of the load is good for the thinner ice (i.e., the semi-infinite beam formula 

may be valid), and the degree of underprediction increases with the increasing ice thickness; 

however, further investigation is needed to verify the above observation. 

The underestimation in the vertical direction may also partly due to the omission of 

ice loading at the back half of the cone. This amount of ice cannot be estimated precisely. 

However, if we arbitrarily assumed 50% of the ride-up and rubble ice loading on the front 

side facet would load on the back side facet as well, the model will overestimate ERCL's 

data by 8.4% and underestimate IMD's data by 2.7% in the vertical direction. 
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Table 8.1 Summary of test conditions used in the selected test programs 

Test a D Ice a/ t No. of 
Set 

Reference 
(0) (m) Type (kPa) (em) Data Pts. 

l 
Sodhi et al, 

45 1.5 EGADS 20-45 T 4.5-9.0 28 1985 

2 
Izumiyama et al, 

60 
0.5, 0.6, 

EGADS 24-59 l 1.8-4.6 19 
1991 0.7 

Hirayama and 50,60, 
0.14, 0.17 

fresh-
1177 1 0.6-0.9 46 3 

Akamatsu, 1982 70,80 water 

4 Edwards and 
45 

0.25, 0.5, 
saline 1-41 r 1.9-6.8 20 Croasdale, 1976 l.O 

5 
Afanas'ev et al, 30,45. 

0.12-0.28 saline -:'0 r 3 14 1972 60 

6 
Manders and 

45 0.67, 1.5 saline 11-21 1 2.2-5.1 23 
Abdelnour, 1978 

7 
Wessels. 30, 45, 1.08, 1.28, 

EGADS 60l 3.0-7.0 14 
1984 60 1.48 

8 
Lau et al, 30, 45, 1.08, 1.28, 

EGADS 24-47 1 3.0-6.8 54 
1988 60 1.48 

9 
Verity, 

45 3.3 saline ~10-495 r 6.8-23.5 8 
1975 

10 
Edwards et al, 

45 
0.10, 0.15, 

synthetic 20-98 i 0.7-8.9 40 
1975 0.31, 0.61 

Note: 1 Arrow indicates loading directions. 
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Table 8.2 

Test 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Summary of average and standard deviation of the predicted to measured 
mean peak force ratio, F 11m/F mc:as• in each test data set 

Lau~ Lau~ 
Croasdale ~roasdale Nevel Nevel Ralston Ralston 

Statistics Croasdale ~roasdale 

F~ Fz f~ Fz F" Fz F" Fz 
Average 0.83 0.71 1.58 0.95 1.24 0.89 1.33 0.95 

StDev 0.17 0.10 0.35 0.15 0.24 0.14 0.27 0.13 

Average l.Ol 1.50 1.36 1.60 
N/A N/A N/A N/A 

StDev 0.28 0.56 0.45 0.31 

Average 0 .88 l.29 1.27 1.20 1.19 1.28 2.69 2.21 

StDev 0. 17 0.23 0.25 0.22 0.22 0.77 0.65 0.42 

Average 0.65 0.81 1.27 1.19 0.80 1.00 0.97 1.05 

StDev 0.18 0.13 0.42 0.36 0.27 0.27 0.24 0 .12 

Average 0.59 0.83 0.53 1.12 
N/A N/A N/A N/A 

StDev 0.13 0.20 0.13 0.28 

Average 1.14 1.56 1.30 1.37 
N/A N/A N/A N/A 

StDev 0 .50 0.57 0.48 0.50 

Average 0.99 0.97 1.29 0.87 1.30 1.02 1.42 1.13 

StDev 0 .33 0.16 0 .58 0.23 0.51 0.23 0.50 0 .17 

Average 1.34 1.15 1.68 0.92 1.39 1.21 1.35 1.13 

StDev 0.74 0.41 1.11 0.30 0.61 0.52 0.43 0.35 

Average 0.96 L07 1.46 l.lO 1.13 1.03 1.91 1.73 

StDev 0.35 0.39 0.51 0.39 0.38 0.36 0.72 0.66 

Average 0.85 1.08 1.21 1.02 0.99 0.99 1.62 1.68 

StDev 0.22 0.31 0.32 0.27 0.32 0.26 0.37 0.52 
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Table 8.3 

F <.pred/F <.mea.' 

F,,pred/Fz.mca> 

Table 8.4 

Test 

(#) 

T1_R1 

T2_R1 

T2_R2 

T3_R1 

T4_R1 

3_001 
4_001 
5_001 
6 003 

Summary of average and standard deviation of the predicted to measured 
mean peak force ratio, Fpm/F me;Js• of all tests for each ice force models 

Lau- Croasdale Nevel Ralston 
Croasdale 

Average 0.92 1.37 1.12 1.41 

StDev 0.21 0.23 0.26 0.46 

Average 1.01 1.04 1.06 1.41 

StDev 0.19 0.12 0.12 0.43 

Summary of measured loads from IMD's and ERCL's test data and the forces 
predicted by the new model 

Measured Peak Force Predicted Mean Peak 

Maximum, Fm Mean, Fm..,, Force. Fpn:d 

F. Fz F. Fz F, Fz 
(kN) (kN) (kN) (kN) (ki'l) (k.N) 

ERCL Test Series ( I : 10 scale) 
10 11 9.26 10.2 11.4 11.9 

19 22 17.6 20.4 16.2 16.4 

20 20 18.5 18.5 27.4 28.3 

30 38 27.8 35.2 27.6 29.0 

30 35 27.8 32.4 32.8 34.2 

IMD Test Series (MUNCONE) 
N/A N/A 4.29 5.30 4.03 4.04 

N/A N/A 5.00 4.72 4.28 4.38 
N/A N/A 1.95 1.98 2.04 2.14 

N/A N/A 2.81 3.06 2.78 2.93 

Note: Test condition for each test is given in Chapter 3. 
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Figure 8.1 Breaking and ride-up patterns assumed in Lau-Croasdale's model (only 

the front right quarter of the cone is shown) 
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Figure 8.2 

Figure 8.3 
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Figure 8.4 

Figure 8.5 
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Figure 8.6 

Figure 8.7 
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Figure 8.8 

Figure 8.9 
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Figure 8.12 

Figure 8.13 

1.6 

1.4 ~ ~ 

1.2 

en 1 <1l 
Q) 

E 
LL - 0.8 

"0 
Q) 

c. 
LL 0.6 

0.4 

0.2 

0 

Lau- Croasdale Nevel Ralston 
Croasdale 

Model 

Average predicted to measured peak force values for each ice force model 

Ice Motion 
• 

Schematic of crack pattern in front of a faceted cone 

290 



hL . ,1 

Figure 8.14 Coverage of ride-up ice on an arbitrary section i 

Figure 8.15 Geometry of rubble mass in front ofthe side facet showing the idealized 
volumes, V 1 and Vu 
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Figure 8.l6 Geometry of ice rode up the side facet (only the front right quarter of 
the cone is shown) 

Figure 8.l7 Coordinates and geometry (only the front right quarter of the cone is 
shown) 
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Figure 8.18 General interaction between ice and sloping structure showing ice forces 
on ride-up ice and the ice sheet 

VT = pbv wr+ Psina 
HT = Pbhwr + Pcosa,,- V' d 
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)' 

Figure 8.19 Forces acting at the tip of the ice wedge 
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Figure 8.20 Forces acting on a layer of ride-up ice at an arbitrary cone section 
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Figure 8.21 Comparison of model prediction and ERCL' s test data 
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Figure 8.22 
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Chapter 9 Conclusions and Recommendations 

This study employed experimental, numerical and analytical methods to study ice 

forces on a faceted cone due to the passage of a level ice field during continuous ice 

breaking. The main objectives were to improve our understanding of the interaction and 

failure processes. and to provide engineers with a set of easy-to-apply formulae for ice load 

calculation. 

Both objectives of the study were reached. First, the experimental investigation 

provided a clear insight into the interaction processes and the failure mechanisms through 

relevant observations and interpretation of model test results. The suitability of the existing 

theories for predicting ice forces on comparable faceted cones was assessed and deficiencies 

identified. The deficiencies were then addressed and an improved load prediction model was 

developed in the subsequent numerical and analytical investigations. The model represents 

the most comprehensive attempt to date to incorporate fundamental processes in the problem 

treatment and provides a new conceptual framework for future model refinements. 

Focus was put on developing a physical sense of the general processes, and a 

quantitative sense of the magnitude of ice force expected. Simple theories were used, and 

the mathematical treatment of the topic was kept to minimum. lnsofar as possible, the 

accuracy and range of applicability of the models were evaluated by comparison with 

experimental data. The model predictions of the rubble geometry, ice movement and the 

associated forces agreed well with the interaction determined by experiment. 
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Sections 9.1 to 9.3 highlight the major conclusions drawn regarding the results of the 

experimental, numerical. and analytical investigations, respectively. Section 9.4 summarizes 

the main contributions made in the course of this investigation. Recotrunendations for 

further work are given in Section 9.5. 

9.1 Conclusions From the Experimental Investigation (Part I) 

In the present study. the results from the multi-faceted cone tests conducted in three 

ice tanks were consolidated and analyzed. The following conclusions can be drawn for the 

results of the experiments: 

(i) Interaction Process: The interaction process was substantially different from that 

of a smooth cone and a two-dimensional sloping plane. The flat facet and large neck 

tended to prevent efficient ice clearing. and rubble building was found to be an 

essential part of the ice clearing process. An ice clearing component which is as 

much as 80% of the total load on the structure has been measured. No previously 

reported work identifies the factors which contribute to the amount of ride-up and 

rubble formation. and their subsequent effects on the interaction process; this 

omission can lead to a severe underestimation of the ice forces. 

(ii) Ice Breaking Mechanism: Piece size measurements significantly diverged from 

those predicted by existing classical thin plate theories. This study has shown the 

important influence of ice thickness on ice breaking. Incorporating the three

dimensional nature of ice behaviour into the problem treatment is essential to 
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advance our present understanding of the ice breaking process. 

(iii) Efficiency of Existing Models in Predicting Ice Forces on Multifaceted Cones: 

The analysis of ice sheet loads with a leading ice force predictor revealed that the 

presently available theory for smooth cones can give sufficiently accurate prediction 

of ice loads on faceted cones when rubble piling is absent; however. it also indicated 

that the theory would likely under-predict the clearing component of ice loads. The 

error in ice load estimation may be quite large when a large rubble field piles in front 

of the structure. justifying the development of new formulae for the estimation of ice 

loads on such structures. 

(iv) Conceptual Model: A conceptual model was proposed to explain the observed 

interaction processes between a faceted cone and a level ice sheet during a 

continuous ice breaking mode. It outlines the three primary interaction processes. 

i.e .. ice breaking. ride~up. and rubble pile-up. where different features dominate. and 

provides a means of incorporating rubble load theory into existing ice force models. 

9.2 Conclusions From the Numerical Investigation (Part U) 

In Part n. the unique rubble piling process was further examined with the aid of 

existing particulate mechanics and a comprehensive numerical analysis. A new rubble model 

was developed to predict the geometry of the rubble and the forces exerted on the structure 

and the base support. Based on the result of the rubble modelling. the following conclusions 

may be drawn regarding the formation process. material properties. stress state, geometry and 
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associated load of a rubble: 

( i) Formation Process: The basic mechanical behaviour and the failure processes of 

ice rubble under loading conditions typical of the ice-cone interaction process have 

been examined in Chapter 5. It is concluded that the flow process of ice blocks 

around the structure can be idealized as quasi-static and steady, and the material as 

cohesionless coulomb material. The rubble is formed by a natural dumping process. 

and the clearing of the rubble from the structure is analogous to the bulk material 

transport on an inclined belt conveyor as the supporting ice sheet and the ride-up ice 

act as the belt conveyor. Furthermore, the shear strength is fully mobilized at the 

rubble's free surface. 

(ii) Stress State: Based on basic theories of soil mechanics. it is concluded that the 

cohesionless rubble is in an elastic state throughout its mass during the typical ice

cone interaction process under investigation. Three important phenomenological 

parameters: the angle of internal friction, the angle of repose, and the 'at rest' earth 

coefficient function were identified and further explored. These parameters are 

essential in modelling of rubble behaviour associated with the problem under 

investigation; yet, measurements associated with ice rubble are scanty. 

(iii) Model Geometrv: A new model to predict the shape and size of the rubble has 

been presented based on insights obtained from the experiments and the basic soil 

mechanics theories. The idealized geometry is uniquely defined by the rubble's angle 

of repose, and the characteristic rubble heights along the cone perimeter. The amount 
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(iv) 

of ice piled up was calculated via mass balance considerations. Despite limited data 

used, the predictions from the derived equations give excellent agreement with the 

meaC\urements from the experiment. 

Rubble Load: Discrete element analysis using the computer program 

DECICE has provided a powerful tool for complementing the analytical and 

experimental work. The analysis helped the development of a semi-empirical 

equation for the computation of total wall thrust for a variety of ice and structure 

conditions. The equation is simple to use and yet accounts fully for the discrete 

nature of the rubble materials. The following conclusions may be drawn regarding 

the formula that was developed: 

(a) The formula retains the form used in theories of earth pressure on retaining 

walls. and it represents a best tit of the DECICE results. 

(b) The proposed equation for rubble load may be applied to design problems; 

but with caution, since only limited checks have been made. 

(c) The formula can be adapted to the existing ice breaking model with ease. It 

substantially reduces the mathematical complexity of the model formulation 

by allowing the load exerted on the ride-up and supporting ice sheet to be 

computed via simple semi-empirical equations. The modular nature of the 

model allows its adoption to future and more advanced ice breaking models 

with the same degree of ease. 
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9.3 Conclusions From the Ice Force Modelling (Part Ill) 

In Part m. a base model is first selected from the existing theories to model the 

breaking behaviour of intact ice, and the new rubble model is then incorporated into the base 

model to compute the peak ice load exerted on the cone due to the passage of a combined ice 

sheet/rubble system. The following conclusions may be drawn regarding the model that was 

developed herein: 

(i) Base Model: As it gives the best agreement with experiments, Croasdale's ( 1980) 

model. with the 3-0 modifications suggested in this thesis. was selected as the base 

model for ice breaking load. 

(ii) Ice Load Model: The model is based on a pseudo-three-dimensional treatment 

of the interaction, by recognizing the two-dimensional nature of the interaction 

geometry associated with individual facets. It does so in enough detail to allow 

exploration of first order effects resulting from changes in the most important design 

parameters. The expression for ice load has been established in detail. Experimental 

data affirmed the validity of the developed ice load model and demonstrated its 

ability to account for the effect of rubble piling. 

9.4 Contributions of This Work 

The physical experiments reviewed and the numerical experiments performed in this 

work provide a clear insight into the interaction processes and improves our understanding 

of the dominant ice-structure interaction processes taking place around faceted cones. They 
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also provide a set of valuable data useful in confirming and calibrating algorithms for ice 

loads. A new ice force model has also been developed to compute ice load on the faceted 

cones. Although the problem was highly idealized, it accurately captured the essential 

features of a typical interaction and predicted the ice forces well. 

The above developments and results are significant, because, for the first time, to the 

knowledge of the author, an ice load model has been established to account for the effect of 

rubble in ice loading on a multifaceted cone based on essential features of the interaction. 

The results provide a useful framework for further model development. 

The state-of-the-art is such that it is now possible to incorporate rubble load in the 

force calculation with higher degree of confidence. The methodology for doing so has been 

developed and presented herein. and constitutes the main contribution of this work to the 

state-of-the-art. 

9.5 Recommendations for Future Work 

While considerable effort has been expended to document the model. no sensitivity 

analysis has been performed for the model developed in Chapter 6 through 8. 

Comprehensive sensitivity analyses would help to identify the most important parameters. 

Limited experimental data have prevented a comprehensive assessment of the 

accuracy and limitations of the model, which constitutes a potential weakness of this work. 

Furthermore, the model was developed from model test data. Some assumptions may be 

valid in the ideal conditions of the ice tank, but may not be sustainable in the field where the 
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scale is larger and inhomogeneities more prevalent. Until it is calibrated against full scale 

data, there will always be uncertainty. A comprehensive assessment of the model results 

against field measurements (when available) will give a better sense of its accuracy and 

limitations for different ranges of ice and structure conditions. 

The theoretical developments of rubble behaviour draw heavily on soil mechanics. 

Most of the phenomenological theories and correlations used are empirical, i.e .• they are 

based on observation and results of experimental measurements on soil materials under 

specific conditions. For example. laky's equation for lateral earth pressure at rest. used in 

the present study to estimate internal friction angle of ice rubble, is known to be valid for 

normally consolidated soils. Despite the particulate nature of both soils and ice rubble. 

uncertainty still remains concerning the applicability of the soil mechanics theories to rubble 

behaviour. Improvements in the theories developed in this study depend crucially upon the 

availability of accurate field data, i.e., shear strength. rubble geometry and ice load 

measurements. This would seem to be an area ripe for experimental research. 

Due to the pilot nature of this work, there are many aspects of the interaction, which 

it has not been possible to explore; however. it is evident from the results that a useful 

modelling framework has been developed. The immediate need is for the incorporation into 

the theory of some of the more complex aspects of the interaction with respect to rubble 

piling and ice loads. 
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9.5.1 Refinements of the Rubble Model 

The model is applicable to thick and strong ice impacting on the structure at low to 

moderate velocity. In order to extend the model to other conditions, the following factors 

should be considered in further modelling: 

(i) 

( i i) 

Dynamic Rubble Piling: This requires more complicated assumptions for ice 

block motions within the rubble mass and for ice generation and clearing rates. 

Deformation of Rubble Mass: The possible increase of load on the wall due 

to deformation of the rubble mass as it is pushed against and up the cone wall should 

be included as suggested in Section 5.3.2. 

(iii) Secondary Breaking of Ride-Up Ice: lf the ice in question is thin and weak, 

i.e .. tirst year ice around a bridge pier, secondary breaking of the ride-up ice may 

occur which increases the width of the side zones, and the width of the accumulation 

zone decreases. This will affect the mass balance and profile of the rubble in front 

of the cone and should be incorporated into further model treatments. 

(iv) Rubble Cohesion: If the rubble mass is allowed to stagnate in front of the 

structure for a period of time, cohesive strength may develop within the pile and 

increase the rubble load. 

(v) Effective Wall Friction: A better picture of the functional relationship between 

wall friction and ice force awaits the development of a theory to predict the effective 

friction mobilized at the wall. 

It is desirable to develop a purely theoretical rubble model that would, at a future 
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date, replace the empirical formulations presently adopted in this research. Furthermore, 

measurements on ice rubble material properties to better detined the shear strength in the 

loose state are needed. 

9.5.2 Refinements of the Ice Force Model 

The present study analysed rubble loading on the basis of the interaction observed in 

lMD · s tests. Other failure modes, and test conditions have not been accounted for: however, 

the methodology used here can be extended to those ca'ies. A number of areas require further 

attention. These include: 

(i) Ice Breaking Component: The ice breaking is modelled comparatively crudely 

and much work is needed to improve the model prediction as indicated in Section 

4.2. 

(ii) Further Model and Field Tests: Improvements in the theory of this study and 

the development of extensions depends crucially upon the availability of accurate 

complete field data; therefore, large-scale field tests are strongly recommended. 
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Appendix A 

Summary of Test Conditions, Configurations, 

and Results ofERCL's and IME's Test Series: 

Level Ice 
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The measured ice properties. configurations and results associated with each test for 

the individual test series in the "MUNIERCUNRC Multi-Faceted Cone Study" are extracted 

from respective data report and reproduced here for quick reference. 

The measured ice properties along with the configuration of the test condition in each 

test for the two test series are given in Tables A l and A2; whereas. the results of each test 

series are consolidated and summarized in Tables A3 and A4. 

Tables A3 summarizes the mean, maximum, and peak values of the global and neck 

forces measured in the IME's level ice tests. The force statistics are computed only for the 

steady state portion of the force records. Table A4, on the other hand, gives only the 

maximum loads measured in the ERCL's level ice tests since most of the runs were stopped 

before a quasi-steady-state interaction was achieved. 

Peak force analysis was not carried out on IME's tests; instead, the peak forces were 

calculated as suggested by Irani and Timco ( 1993) as the sum ofthe mean plus one and a half 

times the standard deviation of the force record. It should be noticed that after publishing 

their data report, Irani and Timco ( 1993) have since revised and published their global load 

measurements. The data given in Tables A3 are the revised values. 
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Table Al Matrix for level ice tests: NRC-IME series 

LEVEL~EPROPERT~ 

Test Model Orient v l Oru Ord 
(0) (cm/s) (em) (kPa) (kPa) 

C_OOI 15 2.6 2.6 46 73 
C_002 15 9.8 2.3 46 73 
C_003 15 4.8 2.3 46 73 
C_004 15 2.2 3.3 104 166 
c_oo5 15 3.8 3.7 104 166 
C_006 15 6.2 3.7 104 166 
C_007 15 2 2.4 24 29 
C_008 15 4 2.3 24 29 
C_009 15 6 2.2 24 29 
C_OlO 15 2.2 4 58 67 
C_OII 15 4.1 3.8 58 67 
C_OI2 15 6.1 4.1 58 67 
C_Ol3 15 2 1.7 42 67 
C_OI4 15 4.3 1.6 42 67 
C_OI5 15 6 1.8 42 67 
C_Ol6 {) 6 3.4 96 72 
C_OI7 {) 6 2.4 73 122 
C_OI8 0 6.1 2.1 37 59 
C_Ol9 0 6.2 2.3 13 21 
C_020 0 5.9 5.7 23 37 
C_021 0 5.8 5.7 11 17 
C_022 0 5.9 3.4 84 134 
C_023 0 6 3.3 29 47 
C_024 0 5.8 3.4 16 25 
C_025 0 6 4.5 78 125 
C_026 0 6 4.6 64 102 
C_027 0 6 4.7 51 82 C_028 0 5.7 4.4 63 81 C_029 0 5.7 4.2 28 45 C_030 0 5.7 4.5 16 26 C_031 30 5.7 2.4 22 56 C_032 30 5.7 2 9 27 C_033 30 5.7 1.8 3 17 C_034 30 5.7 3.5 71 112 
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Table AI Matrix for level ice tests: NRC-IME series (continued) 

LEVEL ICE PROPERTIES 

Test 
Model v t Oru Oro.~ 

Orient. e) (cmls) (em) (kPa) (kPa) 

C_035 30 5.7 3.4 64 44 
C_036 30 5.8 3.4 13 25 
C_037 30 6.2 5.6 41 60 
C_038 30 5.9 5.6 40 40 
C_039 30 6.2 4.9 39 44 
C_040 30 6.2 5.1 30 15 
C_04L 30 5.9 5.4 14 12 
C_042 0 6 3.3 40 41 
C_043 15 6.1 3 40 41 
C_044 30 6 3.3 40 41 
C_050 0 6.2 2.8 I I 21 
C_054 0 6.1 4.2 40 80 
C_055 0 5.8 3.6 27 76 
C_056 0 5.9 3.5 24 49 
C_057 0 5.9 3.6 LO 25 
C_060 0 6 3 9 36 
C_06L 15 5.9 3. L 9 36 
c 062 30 6 3.1 9 36 

Note: Oru = upward breaking flexural strength; Ord =downward breaking flexural strength 
Structure orientation: 0° =face-on; 15° =intermediate; 30° =edge-on 
A friction coefficient of 0 is associated with runs L to 38, and a friction coefficient 

of 0. L is associated with runs 39 to 66. 
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Table A2 Matrix for level ice tests: ERCL series 

Test 
v t Or E 

(cm/s) (em) (kPa) (MPa) 

Year One: 1988-89; 1: 1 OS 

Tl Rl 6 33 165 1136 

Year One: 1988-89; I: 10L 

T2_R2 6 34 183 836 
T3_R2 6 27 249 1129 
T4 Rl 6 12 159 1590 

Year Two: 1989-90; 1 :20L 

Tl_RI 6 25 50 203 
TI_R2 6 25 50 203 
T2_RI 6 32 35 288 
T2_R2 6 36 141 1154 
T3_Rl 6 38.5 125 569 
T3_R2 6 38.5 125 569 
T4_RI 6 41 141 853 
T4_RI 6 41 141 853 
T5 Rl 6 - 5 na na 
T5 R2 6 5 na na 
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Table A3 

Test 

l 
2 
3 
4 
5 
6 
7 
8 
9 
lO 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

Summary of level ice test results: NRC-IME series (Irani and Timco. 1992; 
and Irani et al. 1992) 

GLOBAL* GLOBAL* NECK* 
HORIZONTAL VERTICAL HORIZONTAL 

FORCE(kN) FORCE(kN) FORCE (kN) 

Mean Max. Peak Mean Max. Peak Mean Max. Peak 

0.132 0.219 0.164 0.176 0.262 0.221 0.00 0.03 o.oo; 
0.117 0.214 0.161 0.173 0.261 0.227 0.00 0.04 0.006 
0.122 0.188 0.153 0.162 0.233 0.207 0.00 0.03 0.010 
0.189 0.335 0.269 0.244 0.417 0.337 0.01 0.04 0.019 
0.161 0.288 0.227 0.222 0.369 0.320 0.01 0.03 0.011 
0.160 0.236 0.218 0.218 0.334 0.307 0.01 0.03 0.014 
0.113 0.143 0.134 0.152 0.192 0.182 0.00 0.01 0.006 
0.108 0.150 0.129 0.151 0.206 0.179 0.00 0.01 0.005 
0.115 0.175 0.140 0.157 0.208 0.193 0.00 0.01 0.005 
0.284 0.438 0.366 0.374 0.541 0.463 0.01 0.04 0.002 
0.280 1.420 0.430 0.320 0.470 0.410 0.01 0.10 0.029 
0.295 0.465 0.410 0.404 0.633 0.554 0.00 0.00 0.014 
0.074 0.105 0.097 0.111 0.159 0.144 0.00 0.01 0.004 
0.060 0.086 0.081 0.089 0.128 0.115 0.00 0.00 0.002 
0.064 0.093 0.087 0.095 0.129 0.123 0.00 0.01 0.002 
0.210 0.690 0.300 0.281 0.609 0.381 0.01 0.12 0.003 
0.113 0.183 0.152 0.125 0.203 0.174 0.00 0.04 0.010 
0.110 0.160 0.140 0.140 0.190 0.170 0.00 0.01 0.005 
0.115 0.160 0.146 0.149 0.210 0.191 0.00 0.01 0.006 
0.390 0.630 0.500 0.510 0.710 0.630 0.01 0.10 0.034 
0.360 0.600 0.450 0.470 0.620 0.550 0.01 0.10 0.034 
0.199 0.324 0.266 0.280 0.484 0.375 0.01 0.03 0.013 
0.190 0.345 0.250 0.265 0.414 0.345 0.01 0.04 0.014 
0.176 0.382 0.233 0.230 0.386 0.288 0.01 0.08 0.024 
0.386 1.593 0.649 0.510 1.396 0.772 0.01 0.28 0.043 
0.398 0.887 0.578 0.534 0.890 0.742 0.01 0.05 0.026 
0.426 0.811 0.619 0.563 0.940 0.795 0.01 0.05 0.030 
0.300 0.540 0.420 0.360 0.058 0.500 0.01 0.05 0.025 
0.333 0.650 0.428 0.432 0.652 0.540 0.01 0.04 0.026 
0.254 0.339 0.306 0.353 0.469 0.419 0.01 0.03 0.018 
0.077 0.097 0.090 0.124 0.155 0.144 0.00 0.00 0.002 
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Table A3 

Test 

32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
50 
54 
55 
56 
57 
60 
61 
62 

Summary of level ice test results: NRC-IME series (Irani and Timco, 1992; 
and Irani et al, 1992) (cont'd) 

GLOBAL* GLOBAL* NECK* 
HORIZONTAL VERTICAL HORIZONTAL 

FORCE(kN) FORCE (kN) FORCE (kN) 

Mean Max. Peak Mean Max. Peak Mean Max. Peak 

0.069 0.088 0.079 0.109 0.133 0.122 0.00 0.00 0.00 
0.056 0.08 0.072 0.088 0.135 0.114 0.00 0.00 0.00 
0.15 0.225 0.197 0.238 0.354 0.305 0.00 0.02 0.01 

0.157 0.22 0.196 0.243 0.314 0.290 0.00 0.02 0.01 
0.113 0.161 0.137 0.181 0.246 0.215 0.00 0.01 0.00 
0.355 0.606 0.489 0.527 0.802 0.691 0.01 0.05 0.02 
0.348 0.595 0.482 0.499 0.823 0.662 0.01 0.07 0.02 
0.253 0.37 0.328 0.382 0.516 0.482 0.00 0.03 0.01 
0.193 0.291 0.246 0.308 0.4 0.370 0.00 0.02 0.01 
0.18 0.24 0.211 0.294 0.362 0.332 0.00 0.02 0.01 

0.149 0.226 0.198 0.16 0.212 0.199 0.00 0.01 0.01 
0.132 0.253 0.199 0.147 0.259 0.213 0.00 0.01 0.01 
0.123 0.161 0.143 0.134 0.173 0.159 0.00 0.01 0.00 
0.164 0.313 0.226 0.167 0.243 0.196 0.00 0.01 0.00 
0.428 0.707 0.577 0.353 0.554 0.470 0.01 0.05 0.02 
0.237 0.421 0.317 0.202 0.331 0.260 0.00 0.02 0.01 
0.248 0.429 0.334 0.21 0.331 0.272 0.00 0.02 0.01 
0.268 0.426 0.358 0.242 0.35 0.299 0.00 0.02 0.01 
0.166 0.314 0.238 0.167 0.261 0.214 0.00 0.01 0.00 
0.168 0.285 0.23 0.158 0.235 0.206 0.00 O.Ol 0.00 
0.145 0.199 0.176 0.145 0.196 0.177 0.00 0.01 0.00 

Note: Global forces are taken from Irani and Timco (1993). Neck forces are estimated 
from time-history given in Irani et a1 ( 1992). 
*Horizontal-(+) toward the model; Venical- (+)downward 
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Table A4 Summary of level ice test results: ERCL series 

GLOBAL* GLOBAL* 
HORIZONTAL VERTICAL 

FORCE (kN) FORCE(kN) 

Test Max Max 

Year One: 1988-89; l: l 0 

Tl_Rl 40 48** 
T2_R2 10 8 
T3_R2 17 19 
T4_Rl 12 15 

Year Two: 1989-90; 1 :20 

Tl_Rl lO 11 
T1_R2 1.5 4 
T2_R1 19 22 
T2_R2 20 20 
T3_Rl 30 38 
T4_R1 30 35 
T5 Rl 2 4 

Note: *Horizontal-(+) toward the model; Venical- (+)downward 
**Typo error in original report 
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NECK* 
HORIZONTAL 

FORCE (kN) 

Max 

1.5 
0.8 
NA 
0 

0.7 
0.8 
5 
8 

2.5 
5 
0 



APPENDIXB 

Load Time History of Tests Conducted in 
IMD's Test Series 
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FOHt'E ON STHtJCTtJHE IN X, Y, Z DIRECTIONS M UN C C1 N E 3 0 0 1 

u.u.---------.---------~----------r---------.---------~----------, 

. :1. 0 -----------t------+ 

~ I" I l l "' \ •,_,,Yo·, ,.,...,,•,•'•,'(·· •, l ' l. 1~ Jr.J'•.-.... , ,~. !"j ... .... t , I \ o ~ j .. 
···-... ' ' :~ .: J ':· ... : ; l···-· ... j !:. ~1'-J>is\ .. ,, •. • · 

•• '\.. . ..... ~~~ . .. - ··-...·· ... · ••••. , .. .... J u ... 
•• . ......... ... ,.....i · ••• ···"·_..... • \,,\ • .• ,.,:".. • . . .. - .... ·· ....... v.···· · 

-u u~--------~--------~----------._ ________ ~--------~----------J 

F 
X 

AVE 3 . ?8 kN 

MAX a. 4 . fl2 kN 
MIN • 1.!)2 kN 

STD "' 0 . 3~ kN 

AVE • -0 . 11 kN 

MAX • 0 !14 kN 

MIN -0 81 kN 

STD .. 0 19 kN 

............... F 
z 

AVE "' ·· 4 . 70 kN 

MAX -i!.21 kN 
MIN ., -!L46 kN 

!:lTD • 0 41 kN 

z 4 (j Z80 no 360 400 440 480 

TIME (s) 
---------------------------~r---------------------------~----------------------------~ 

NECK SIZE -- SMALL 

FRICTION -- 0.11 

DIRECTION-- BROAD ON 

Sl•t:t;o-= 1 . em/• 

ICE THICKNESS 1~ . 8 em 
ICE DENSITY • 916. ka/m~J 

FLEX STR (down) = 79 . 8 kPa 

PL!X STR (up) • 44 . 4 kPa 

MULTIFACETED CONE TESTS 

NO RIDGE 
STEADY STATE PORTION ONLY 

25.00, NRC/IMD 



FOHCE ON NECK IN X, Y, Z DIRECTIONS MUNIONE 3 001 

11 . 7~~--------~---------.--------~----------r---------~---------, F 
X 

AVE O.ll kN 

MAX O . GO kN 

WIN 0.03 kN 

0 ' 5 - ----+-------+- -----+H------+------+--A----t STD = 0 . 12 kN 

II.~ 5 

F 
y 

AVE • 0 00 kN 

MAX • 0 08 kN 
MIN 

STD 

- u fl2 k N 

0 02 kN 

F 
2 

AVE "' 0 02 kN 
MAX II 117 kN 

MIN •· 11 . 111 kN 

11 . ~~~--------~--------~--------~----------._ ________ ~--------~ ~TU • II Ill kN 

;.! HI ~ltD 

NECK SIZE -- SMALL 

•'HICTION - -0 . 11 

UIIU!CTION - - IIROAD ON 

~ I' t: t: D -= I . c m I ! 

360 

TIME (s) 

41JU 

ICE THICKNESS 1~ . 8 em 

ICE DENSITY • 918. kc/m~:J 
PLf!X STR (down) • 79 . 8 kPa 

fLEX STH (up) • t• 4 kPa 

HD 4HU 

------------·- -------
NO RIDGE 
STEADY STATE PORTION ONLY 

MULTIFACETED CONE TESTS 'A- 25.00, NRC/IMO 



w 
.1:-
N 

FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS MUNCONE3_002 

7.5r------r------r------r------.-----~------.------.------,------, 

.-
~. 

~ 

~ 

u 
~ 
0 
~ 

AVE • • Ill kN 

NAX ... !Lilt kN 

NIN • 2 . 36 kN 

STD • 0.~2 kN 

F 
y 

AVE .. -0 03 kN 

NAX • J 12 kN 

NIN -12~kN 

STD • 0 34 kN 

............... f' 
z 

AVE .. -4 07 kN 

NAX -<! . 9~ kN 

NIN -II UO kN 

7 . 5~----~----_.----~------~----~----~------~----~----_j :11' P • 0 fl !) k N 

10! . 5 25 37 . 5 

N ~; c K .S IZ E •· - S N A L L 

t ' Ill c: 1' I 0 N · .. 0 . 1 1 

lliHt::C:TION --BROAD ON 
:ii'££P a 6 . em/a 

50 62.5 75 87 . 5 

'1' I M I·; ( ~ ) 

ICE THICKNESS .. 1~ . 8 em 
ICE IH:N.SITY • 916 . kl/m-3 
FLEX STR (down) a 7Q 4 kPa 

fLEX .STR (up) • 44.1 kPII 

MULTIFACETED CONE TESTS 

100 112 . 5 

NO RIDGE 
STEADY .STA1't: f'ORTION ONLY 

25.00, NRC/IMD 



FORCE ON NECK IN X, Y, Z DIRECTIONS MUNCONE3 00 2 

0 . 5.------.------,-------r-----~------,-------r-----~-------.------, -- F 
X 

AVE "' (] ~ 1 kN 
ll ' 4 -- -- - - ----------- ----- . ----- ---- ,___ ,--+-----11--it-tt------tt-----t MAX .. u 49 kN 

MIN " u 0~ kN 

STD - 0 . 09 kN 

- II . 3 1--:-H-1-- -t----.-lcl--+--

~ 

~ -· 
~ 

LJ 

" 
UJ 

0 
~ ~ 
w 

0 . 2 t-i-t-·t'l~H~t-t+-t-=t--f~-i+t--ft-t-.rt-l.--+-H~flt-Ht-t-l-tt-~-t+~H--ti1HwHfft-f-lH-'-\ ---t 
) \ ~ ' 1\ 1 ~ ~ \ I 

\ ---\ \ --- "---- -- - - ---- . ~- --- ____ ·j_ -- ------II . l 

------- F 
y 

AVE .. II . 0 U kN 

MAX - 0 . 0~ kN 

MIN = -0 04 kN 
STD .. 0 Ul kN 

........ .. ..... F' 
:t 

ll . U AVE "' 0 0~ kN 

MAX = u llll kN 

MIN - 0 00 kN 

0 . 1 ~----_.------~------._----~------~------._----~------~----~ 
STD "" 0 . II I kN 

I :.! . fl :t 7 ' 5 50 (12 . 5 75 87 . fl ltiU 112 . 5 

TIME(::~) 
-- -- -----------------·. ------ - --------------,----------------- ---- ---

NECK SIZE - - SNALL ICE THICKNESS = I~ 8 em NO RIDGE 

t ' HICTION ---11 . 11 ICE I)ENSITV .. 916 . k&/m-3 STEADY STATE PORTION ONLY 

II I II t; C ·r I o N - -· b H 0 A D 0 N t'LEX STH (down)"' ?9 . 4 kl'a 
:-;I ' t. ~II - II , 11111/• I'LtX 11TIC (up) - 44 . 1 kl'• 

MULTIFACETED CONE TESTS A= 25.00, NRC/IMO 



FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS MUN CONE 3_003 

fj . () ,------,...----r-----,...----,.----....,-----.-----, 

:J . II 

- (i. 

-o.o~---~------~-----~----._ ____ _. _____ ._ ___ -J 

:!II 40 6U 110 100 1~0 140 160 

TIME (s) 

F 
X 

AVE t 33 kN 

MAX .. !L 32 kN 

MIN .. 2. 37 kN 

STD 0. ~0 kN 

--·-··- F 
y 

AVE -0 2 J kN 

MAX ~ 11 . 110 kN 

MIN - I :.!0 k N 

~ 1' 1> ... u :J~ kN 

F 
'1. 

AVE .. ·· I'; II? k N 

MAX- · :lftftlcN 

MIN - .. U. tln kN 

llTil - U !:II kN 

-------------------------r-------------------------~----------------------~ 
N£CI{ .sJZ£ - .. SMALL 

t ' IIICTION -- 11 . 11 
LIIIIEC'I'ION -- llROAl> ON 

SPF.EU "' 4 . cm/t 

ICE THICKNESS 1~ . 8 c:m 
ICE llENSITY - 916 . ka/m~:t 
I'LEX STR (down)=: 76 . 7 kP11 

FLEX STR (\lp) .. 43 . 6 kP• 

NO RIDGE 
STEADY STATE PORTION ONLY 

MULTIFACETED CONE TESTS A- 25.00, NRC/IMD 



~ 
VI 

F'OHCF. ON NECK IN X, Y, Z DIRECTIONS M 1.1 N C (l N F 3 0 0 ') 

II. fi F 
X 

AVE .. 0 ~ 0 

MAX u !'ll 

u .. 5 -- ·-- ·-------·· ~----- ---------- -------- -·--- ·-- MIN 0 03 

STD "' 0 09 

-z IJ . J 
.!.C 

~ 

u ll . I 5 
Q:; 

0 
~ 

o.u 

- -. - ·- -~ _,\_ -· 
-·-~--

i\-\\~ -\, ~ 1\ \ t _ ~~ \ \ \ \ 1--·-4 -- v ' '\ \ ~ ' l ~ \ ' \ \ --

:·~ ~ \ 
~:t:;).~~- .. .:-. i\ .~ A I i ........ r .. · .. J-.., ..... .t·"'·· ... ~'\. ;, ,I' !'-.. f·· '., f'- 't·· J, .. :·· ... • ··.Ji .. ,.J '-i .... ; >..i ~-~-... ··.·~ r·._.f,,.,j ... 'fl . ';..r• '•1 ., .. v ·. "'-'} --·- , ..... \..'' 1 !' ...... ,_. .._., ...... .1' -"'•., ¥" I ,: • ' 

~/ 
,~,. .. , li ~ . ,, 

F 
y 

AVE - 0 (IJ 

MAX - u 113 

MIN . - II Uti 

STD 0 02 

F 
2 

AVE II 02 

MAX II 116 

MIN II 110 

l'ITII u Ill 
II I ft 

:!II 4U 60 uu JUU l:.!U uu ltiU 

Nt:CK ~Itt:-- SMAI.L 
fHICTION -- 0 . 11 
IIIIHC:TION - - ltltOAD ON 

s I' f. t: U "' f . •• rn I ' 

TIME (s) 

ICE THICKNESS • J~ . ll em 
ICE DENSITY • 916 . k&/m-3 
FLEX STR (down) • 711.7 kPa 

f'l.EX STR (up) .. 43.8 kPa 

MULTIFACETED CONE TESTS 

l'tO RIDGE 
STEADY STATE PORTION ONLY 

25.00, NRC/IMD 

kN 

kN 

kN 
kN 

leN 

leN 

leN 

kN 

kN 
kN 
kN 
kN 



F 0 IU. E 0 N S T H U C T ll H E I N X . Y , Z U l H E C T l 0 N S t1 U N ( (J N F 3 0 0 t~, 

·I :, .-----~---r----~---,-----r---.,.-----r----r-----, 

..,._ 
.J"\ .A ~ .No/" 

v v 1\f 

I . fl · ______ .,_ ___ +-----+----- ---- -+----11-----+-----t----i 

11 . 11 

- I . fi ----- · - +-- ----+------4----+ - ---+---+----+- ---1-----t 

-- :1. () . . -- ------. -- ·--;--- ·------- --· f- ----· ------ __ ____ l _ __ - -- ----· ------- '--- -------

j~J j'\ A (I i\ : ·' I~ 
:·., I; ! ~~ '• .- ·· '• . , • • , J \ 1\ : ~ - i \ \ '·1 

'• •\ \ ... ·· '• . , . , •, ·;l· ~ · } I ! '. ' • . ;·:,.• ' ' • ...... . ~ •• )~ • .''~' .. '' .... / . / ' • ········ ··I ·· ....... .•...• • \ ....... .-··" ·/ '•\ ............ . 

4 . 5L-----~----~~----~----~------~----_. ______ ~----~----~ 
li II I ill 711 114 UIJ 1111 Ill~ IIIII 114 

'I' I M 1·: ( :!! ) 

... 
X 

AVE 2 II:J kN 

MAX :t . 42 kN 

MIN i! 115 kN 

STU ... 0 . 0!0 kN 

------· F y 

AVE "" -IJ 110 kN 

MAX • U 4:1 kN 

MIN -IJ flO kN 

STD .. 0 16 kN 

............. .. f' 
4! 

A V £ ~ - :1 . H 7 k N 

MAX :1 . 1111 k N 
MIN 4 . 0!0! kN 

STD U i!:! kN 

·-.-- --------------
NEC~ K SIZE -- SMALL 

t'ltiC'I'ION -- 11 . 09 

UIJIECTION -- tiUOAD ON 

s I' t: t: D "' f . ~ 111 I ' 

ICE THICKNESS • 1• . 11 c:m 

ICE DENSITY • 921 . kl/m-:J 

t'l£X STR ldown)"' 42 3 kP" 

fLt:X STR (up) "' 29 . 3 kP11 

NO RIDGE 

STEADY STATE PORTION ONLY 

M tJ L T IF' ACE T E IJ C 0 N E TESTS A - 25.00, NRC/IMD 



F 0 H r E 0 N N E C K I N X , Y . 'l D I lU~ C T I 0 N S MUNCCJN[ 3 OO S 

11.4 F 
lC 

AVE u IU kN 

.--.. 
~ 
.!( 

~ 

u 
IX 

u. :J2 MAX • 0 36 kN 

~~ MIN "' 0 Oft kN 

r\ STD • 0 . O!ll kN 

0 . ~ .. 

---~ 
N 
~-

I'\ 

"" \ ~~ f 
~ ~~ -~ ~--

y 

.M. AVE • 0 00 kN 
II . I 6 - -.\ V1 ' 

,, 
v '--J MAX • II 02 kN 

~ MIN - 0 . IIi! kN 

\ ~ STD 0 0 I kN 

0 ll. till ---·- -- - - --- -------- 1--------·t-- - ·--+-----+------+-----+--------
l.oJ 

""' ~ ..... f z 

U. O AVE 0 Oi! kN 
MAX .. 0 OJ kN 
Ml N - ll 1111 kN 

11.1111 '----.....a...---'----......1..---.L.----.1..---"------'----"------' 
STD 0 01 kN 

li II 611 ?H tl-4 00 06 10~ 108 1 l -4 

TIME (s) 
.. " .. ,_, , -- --·-· ------- ------ - --·--.-----------------r---------------------1 
Nl·:t:l\ :iJZt; ~NALL ICt: 1'HICKNES~ - •• . II Clll NO RIDGE 
t' llll ~ '1'111 N · II . 0 9 ICE DENSITY • U21 . ka/m-3 STEADY BTATE PORTION ONLY 
II Jilt: C TIn N - ·- It A OA D 0 N FLEX STA (clown) •• •2 . :1 kPa 

!it't:!U =- • · urn/• PLEX !TA (up) "' 29.3 kP1 

MULTIFACETED CONE TESTS 25.00, NRC/IMD 



FORCE ON STRUCTURE IN X, Y, z DIRECTIONS MUN CONE.i - 001 

(i. 0 -- F 

~~ 
X 

~ ,./· .. r__,_, r---f'V ~) AVE "' • . 31 kN 
~~ - ~ ~ I .A "· MAX .. 5 . ~5 kN 4 . 0 lJ v r ~ ' ~" ~' ) MIN .. z . 33 kN 

STD .. 0 . 4~ kN 

- i.! . O 
z ------- F 
~ v-··\ y 

j\' ,, ,.:-, ... , ,_,,,~ 
AVE .. 0 . 0~ kN - . ' ·~ .. ~· 

, , .. -, I . ,, ..... 
0 . 0 - .. . ~ -.•'•'t/'•• T 

. . ''""". .... -... ,. .. -: MAX - t . 0 t kN 
~ 

.. _ .. _ .. " 
u MIN .. -0 78 kN 

I); 
STD - 0 :16 kN 

0 i! . U ·- ·- - .. - .. --· · --· - · · ------ ------ - ···-- -·- --- ----~ - ---- -----

~ 
~ l F ~ l "'\ ~ 

............... 
I •. ;--. 

.--~--t~ 
z 

. -. ~\ ..... , ... 

~ ............ :=:-.:.. -;::+ \J I, -- )~- -·I . II . ------- - ; . ~j f" -- --- -· ----- - ~- - AVE - - • . :t:t kN .-............... ,.•' '" ' ......... . ·• ...... ..... , .• ·._ .... _,,... .... I .... . ··· .......... ,f MAX .. -l: . ?:J kN ······• . .... 
MIN .. -5 . :J7 kN 

- 0 . 0 lfTD . 0 :J9 kN 

i! u ft JUO 315 330 :!45 360 375 390 405 420 435 

TIME ( s ) 
----~---

NECK SIZE -- LARGE ICE THICKNESS .. 10 . 0 c:m NO RIDGE 
FRICTION -· - ll. 09 ICE DENSITY - Ult . k&/ m ·3 S TEA 0 Y S 1' AT E P 0 R T I 0 N 0 N L Y 
Ill llt:C~ 'I'ION - ltROADON FLEX STR lduwn) - H 7 kPa 
Sf>t:t:D .. I, um/s FLEX STR (up) - 4 t . I kPa 

MULTIFACETED CONE TESTS 'A - 25.00, NRC/IMD -



FORCE ON NECK IN X, Y, Z DIRECTIONS MUNCONEtt 001 

II ·~----~----~----T-----~----~----~----~-----T----~----~ 

II . :1 I! .. ... -- •-----t 

- ll . i.!f 

z 

-
11.1111 

11 . 0 

- II . 08 '--___ ._ __ ....._.;....._...._ ___ _._ __ ...._ __ ~---'---.....J.----t.--...J 

i!H~ :tOO JU J:JU 310 37~ JUO 40~ 420 

TIME (e) 

ICI THICICNI88 • 18 . 0 em NO IIDOI 

- F • 
AVI • 0 J 8 kN 

MAX . o.:n kN 

MIN • o. && kN 
lTD • 0.05 kN 

------- F 
y 

AVE • -0 . 01 liN 
MAX • O . Uit liN 
MIN • -0 . 07 kN 

sTD • o .oa kN 

............... ~, 

I 

AVE . 0 u~ "" MAX . u 0~ kN 

MIN . u IJO kN 
liiTD . u u & kJII 

ru; C IC SIZE - - LAI 0 I 
fMICTION -- 0 . 01 
IHAECTION -- IROAD ON 
H •• r. r. u - I . u nl I • 

ICI DINIITY • lat. ka/m~3 8TIADY ITATI PORTION ONLY 
PLI!X ITit (down) • 7 • . 7 kP1 
PLIX 8TR (up) • .1.1 kPe 

MULTIFACETED CONE TESTS A= 25.00, NRC/IMD 



FOHl'E ON STRUCTURE IN X, Y, Z DIRECTIONS MUNCONE~_OO~ 

a . or-------r-------~------~------~------~------~------~ - F 

.. . u 

-

•. u A I .. 
1\JV\ 

X 

AVI • D 02 kN 
MAX . 1.27 kN 
MIN . a .u kN 
•To U . ftl "" 

-----·· F , 
AVE • -0 .11 kN 

MAX - 0.18 kN 
MU • -J.:tll kN 

lTD • 0.34 kN 

'""""""" l;o 
z 

AVt: • !\ • ., kN 

MAX • · :t . ll:t kN 

MIN • lt . ll7 kN 

- a . u~------~------~--------._------~------~--------._------~ liTO • U &It kN 

I 0!. ~ 

NECK SIZE -- LARGI 
flliCTION -- 0 . 01 
biiUCTION -- lllOAD ON 
l'll'ttu-- a . &rm/• 

:17 '~ 62.~ 7~ 

TIME (s) 

ICE THICKNESS • 11 . 0 em 
ICI DIMIITY • IU. ka/m-3 
PLIX ITI (down) • 73 . 0 kPI 
PLEI ITR (up) • 40.1 I&Pa 

87 '~ 100 

NO RIDOI 
ITIADY ITATI POITION ONLY 

MULTIFACETED CONE TESTS "A - 25.00, NRC/IMD 



•• 0 H c E 0 N s T R u c T u R E I N X I y . z D ( R E c T I 0 N s MUNCONE't_003 

~ 

u 
Q:; 

7.~~----~----~------~----~------~-----r------~----~----~ 

0 ·l.5r-----~-----4~----~----~------+------+------~----~----~ 

f&, 

- !\ . 0 

7 . 5~----~----_.------~----~----_.----~~----._----~----~ 

- F 
X 

AVE . 0 08 kN 
MAX • I.!U kN 
MIN • 2 .• u kN 
lTD • 0 . 11 kN 

-----·- F 
)' 

AVI . 0 uo kN 
MAX• l . lll kif 

Ml N • - I . 38 k N 

STD • 0 l3 kN 

............... F 
z 

AVE • · !\II kN 

M A X • :1 ;: II lc N 

MIN • II 114 leN 

lTD • u eo k N 

I 5 30 60 75 80 10~ 13~ 1~0 

"ECK SIZE -- LAROI 
t'HICTION -- 0 . 08 
UIHECTION -- BROAD ON 
SPEED .. 4 . em/• 

TIME (s) 

ICE THICKNESS • 18.0 ~:m 
ICE DINIITY • IU. ka/m-3 
PL!X STR (down) • 72 . 1 kPa 
PLI:X STR (up) • 40 . 4 kPa 

NO IIDOI 
ITIADY IITATI PORTION ONLY 

MULTIFACETED CONE TESTS A - 25.00, NRC/IMD 



FOH<.:E ON NECK IN X, Y, Z DIRECTIONS MUNCONE Lt _ 002 

11 . 4~~------~------~------~--------r-------,--------r------~ - F' 

- U. I !'l · ·· .. ·- ·-·--- ---··- · ·---t--·---t---

· · U . I ~ '---------L---------'---------11--------...L...-----....L..-------'---------' 

l( 

AVt: - 0 it? leN 
MAX • u •u kN 
MIN - 0 . 11 kN 

STD - o . u~ kN 

--~---- F 
1 

AVI • 0 . 00 liN 

MAX • 0 . 01 kN 

MIN • -0 .04 kif 

STD • 0 02 kN 

............... t' 
I 

AVE • 0 OJ kN 

WAX a 0 . 00 kN 

MIN • 0 . 01 kN 

8TD • U . IH kN 

12 . 5 37 . 5 87 . ~ 100 

TIME (a) 

· - -·-·---------------------~--------------------------~--------------------------~ 
ru:cK SIZE-- LAROI 
t'HICTION .. - 0.01 

lUll t: c: T I n N - - lilt 0 AD 0 N 
lii'!P.D • e. um/t 

ICE THICKNIII • U . O em NO RIDGI 
JCI DIN81Tf • IU . kl/m - 3 8TIADY ITATI PORTION ONLY 
PLII 8TR Uewn) • 73 . 0 IIPa 
PLIJ ITR Cup) • 40 . 1 kPa 

MULTIFACETED CONE TESTS A - 25.00. NRC/IMD 



~ 
VI 
~ 

.-
z 
~ 

~ 

u 
~ 
0 
~ 

FOH<:F. ON NECK IN X, Y, Z Dlf{ECTIONS MUNCONE Lt _ 001 

O . fir-----~----~------~----~------~-----r------~----~-----, 

11 . 2~-----r----_,------1-----~------+------+------~-----r----~ 

u . a•-----~------+- ----r----_,~----1-----~------+------+----~ 

-- F 
X 

AYI • 0:13 kN 
MAX • 0 . 41 leN 

MIN - O . iU leN 

lTD - o.o. kN 

----··· F 
'I 

AVI . -0 . 0 I leN 

MAX - 0 . 0? leN 

WIN - -U .OIIIcM 

STD • 0 . 02 kN 

............... F 
I 

AVE • 0 . 03 kN 

MAX • 0 01 leN 

WIN • 0 01 kN 

STD • 0 . 01 kN 

on 00 10~ lJ~ 1~0 

TIME (s) 
. ------- --- -------------,-----------------------------,--------------------------

I'H:I ' K H11.r. - I.AMUI ICI THICICNIII • U . O em NO IIIDQI 
t ' HICTION - - 0.08 
DIHIECTIOM --BROAD ON 
~f't:t:D • • · e~m/e 

ICE DINIITY • IU. llc/m-3 
PLIX ITR (down) • 71 .8 IIPa 
PLIX ITII (up) • tO . t IIPa 

ITIADY ITATI POIITIOM ONLY 

MULTIFACETED CONE TESTS A - 25.00, NRC/IMD 



FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS MUNCONE "1_006 

s.or---------~--------~--------~--------~---------r--------~ F 

-

. :a.n - . 

-6 . 0~----._ ____ ._ ____ ~----~-------L-----~ 

-- X 

AVE . • l 7 kN 
WAX • 5 . 01 kN 

MIN • 2 . 12 kN 

lTD • O.t& kN 

------- F , 
AVI • -0 . 12 kN 

WAX • 0 . &'7 kN 

MIN • -0.72 kN 

lTD • 0 II kN 

............... F 
I 

AVI • -t . DO kN 

lUX • -:1 .31 kN 
WIN • -fl.07 kN 
lTD • O . ll kN 

flU 100 J I U 120 JJO ltD uo 
TIME (s) 

----·--·-·---------------..,-----------------------r---------------1 
Nt:CIC .!IIZE -- LARGI 

fRICTION -- 0 . 08 

DIRECTION -- BROAD ON 
SP!tD • t . em/a 

JCI THJCIUU88 • U.t em 
JCI DINIITY • U3. kt/m~3 
PLIX STR (dewn) • 31 . 0 kPa 
PLIX ITR (up) • &1.7 IIPa 

NO IIDOI 
ITIADY ITATI POITJON ONLY 

M U L T I Jo, A C E T E D C 0 N E T E S T S A - 25.00, NRC/IMD 



~ 

"" "" 

FOHCE ON NECK IN X, Y, Z DIRECTIONS MUNCONE ~ _006 

0 . 375r-------~~------~--------~--------~---------r--------~ F 

u. ~~ --

-z 
;.: 

Cl . li!rt 
r:..:l 
u 
g:; 
0 
j:L, 

0.0 

X 

AVE • U A G kN 
MAX • o. :u kM 

MIN - D 07 kM 

lTD . o.oa kN 

------- F ., 
AVI . 0.02 kN 
MAX • 0.111 liN 

MIN • -11.03 kN 

lTD • 0 U2 kN 

............... F 
z 

AVE • 0 03 kN 

MAX • 0.07 kN 

MIN • U Ill kN 

- 1).12~~--------._ ________ ._ ________ ~--------~--------~--------~ IITP • U.Dt liN 

'"' 100 I I U IZU IJD 140 l"U 

1' I ME ( tt) 
-· ....... ----------r--------------~------------------1 

NECK SIZE -- LARD I 
fMICTION -- 0.01 
IIIII t! c: T 1 UN .. 1111 0 AD 0 N 

:-; I' t: r. II - 4 . " m I t 

ICE THICKNI:81 • 11 . • em 
ICE DIN81TY • 823. lla/m~3 
I'LEX ITR (down) • :11.0 kPa 
PLEX !!ITR (up) • 11.7 kPa 

NO RIDOit 
8TIADY ITATI PORTION ONLY 

MULTIFACETED CONE TESTS ~ - 25.00, NRC/IMD 



FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS MUNCONE5_001 

-
~ 

u 
g; 
0 

"" 

2 . 5~------~------~------~--------~------~-------T------~ 

t . z~r---+---~------~-------;--------+-------~-------+------~ 

-1.~~·--------~------~-------;--------+-------~-------+------~ ,,_ r 
\~... '~, .... ,.. "' r· \ .,.,..,! ....... 

\ • ./ 
....... ,, ...• -"'''·r 

~ . ~~------~------~------~--------4-------~------_. ______ __ 
Hill 4 ~~ •~o 47~ ~00 

TIME (a) 

ICI THICKNIII • l.t em NO IIDG I 

-- F 
X 

AVE • 1 78 kN 

MAX • 2 . U kN 
MIN • a. u kN 

lTD • 0 . ll kN 

------- F 
1 

AVE • 0 . 02 kN 
MAX • O . :U kN 

MIN • -0 . 2• kN 

lTD • O. aa kN 

F z 
AVI! • -I . Ill kN 

MAX • - l.tD kN 

MIN • -2.17 kN 

IITP • U && kN 

NECk SIZE -- LAIOI 
FRICTION -- 0 . 01 
DIR!CTION --BROAD ON 

ICI DINIITY • Ill. ka/m-t ITIADY ITATI POITION ONLY 

.51'E!P • a. om/1 
PLII ITA (dOWih) • t3.t kP1 
rux STR (up) • :10.1 kP• 

MULTIFACETED CONE TESTS ~ - 25.00, NRC/IMD 



~ 
v. ...... 

fo' 0 H (' 1<: () N NEt I< IN X I y I z ()I HE c T I 0 N s MUNCONE5 001 -

11.1~~------~------~--------~------~------~~------~------~ -- F • 
AVI - O.OD "" MAX • 0.1 D "" II . flO ---·----t-----+-----·---+-----~~----,1 MIN • D. D l "" lTD • D . OI "" 

....... f , ;, 
~ - AVI - 0 . 01 kN 

MAX • 0.03 kN 
MIN - 0 DO kN 
aTD • 0 1.11 kN 

w 
u 
Q:; 

n. o:t 

0 
............... F ""' • 11 . 11 

AVE - U PU liN 

MAX • U Ul kN 
MIN .. 0.00 kN 
lTD . 0 . DO kN 

11 . 0~~------~------~--------._ ______ _. ________ ~------~------~ 
400 HJO 47~ ~00 ~7!:» 

TIME (a) 

ICE THICKNESS • 8.4 em NO AIDGI Nl::CK ~Ill:! ·-- LARGI 
PJUCTION -- 0 . 08 
IJIIUCTION -- BROAD ON 

ICE DENSITY • 821. kl/m~3 8TIADY ITATI PORTION ONLY 

SPf:f:() ... I . t:nt/1 

FLII STA (durn) • 43 . 4 kPa 
PLII STA (up) • 30 . 7 kPa 

MULTIFACETED CONE TESTS A - 25.00, NRC/IMD 



~ 

"" 00 

FORCE ON STRUCTUR£ IN X, Y, Z DIRECTIONS 

-· ~ 
.:.: 

~ 

u 
a: 
0 

""" - ~ , ~ 

MUNCONE5_002 

-- F • 
AVI . ' ID liN 
MAX . 2 . :.tl liN 
MIN • ' 13 I&N 
lTD • D Ill I&N 

••••••• F 
'1 

AVE • - 0 . 0& kN 
MAX • 0 . 21 kN 

MIN• - D31kN 

STD • D 13 kN 

............... F 
z 

- 3 . 7~~----~----~----._ ____ ._ __ --._ ____ ~----~----~----~----~ 

AVE • -I. 18 liN 

MAX • -I .02 kN 
MIN • -J . :t!l kN 

STD • 0 .2t liN 

16 Z4 

NECK SIZE - - LARGE 
FRICTION - - 0 . 08 

UIIUCTION -- BROAD ON 

HPilt:ll • e. em/• 

4U f8 110 88 96 

TIME (s) 

ICE THICitNEIS • 8 .• em NO RIDQI 

ICE DENIITY • 821 . lla/m-3 STEADY ITATI PORTION ONLY 

PLII ITR (down) • U . l kPa 
PLII IITR (lo&p) • 30 . 1 IIPe 

MULTIFACETED CONE TESTS A = 25.00. NRC/IMD 



FORCE ON NECK IN X, Y, Z DIRECTIONS MUNCONES 002 

~ 
u 
~ 

0 . 25r-----~----~----~----~----~----~----~-----r----~-----, 

II . I i.!!\ 

~-····"· 

U . l:.!~ --- -·--- ---+--

0 . 11.0!5 --

~ 

II . :1? f1 

- 0 . ~~----~----._----~----~----~----~----~----_. ____ _. ____ -J 

I ti 32 40 72 80 88 9(1 

TIME (s) 

-- F' • 
AVE • 0 li kN 

WAX • O . itl kN 
WIN • -0 48 kN 
lTD • O . IIS kN 

-----·- F 
)' 

AVE • 0 . 1.1& kN 

WAX • Ll 04 kN 
WI M • - 1.1 04 k M 

~TD • 0 Ill kN 

............... F 
z 

AVE - 0 IJ& kN 

WAX - 1.1 1.14 "" WIN . 0 1.10 "" lTD . 1.1 Ill "" 

--- ... --- - ----- ------------.,.----------------~--------------------t 

I'H t: K .!liZ t: - - LA II Q ll 

flflt:TION - - O.Ot 
DIIU:CTION - - BROAD ON 
:il•rrP .. II . am/1 

ICE THICKN&II 8 . 4 em 
ICE DENSITY • Ul . kl/m • 3 
FLEX .!ITR (down) • 41 . I kPa 
fLEX ITR (up) • 30.11 I&Pa 

NO RIDGE 
ITIADY ITATI PORTION ONLY 

MULTIFACETED CONE TESTS A - 25.00, NRC/IMD 



w 
~ 

FOHCE ON NE(;K IN X, Y, Z DIRECTIONS MUNCONE5_003 

11 . 24~----~----~------~----~------~-----r------~----~-----, -- f' • 
AVE • 0 .. liN 

WAX - o.za kN 
0 . I H WIN • 0 04 kN 

lTD .. o . o a kN 

;, II . I :.! 
,!( 

-----·- I·' 
y 

AVE - 0 U I liN 

~ 

u II. 0 ti -· 
IX 

WAX . 0 U4 liN 

WIN - -0 0 I kN 

lTD . 0 O& "" 0 
~ .. ....... ...... ., 

I 
u.u --

AVE - 0 0 l kN 

WAX - 0 OJ kN 
WIN • 0 00 kN 
lTD - o. 00 kN 

ll.OtiL-----~----~------~----_. ______ ._ ____ -L------~----~-----J 
I :.! . fl J7 . ~ ~u (j 2 . ~ 87 , !) IUU I U . 6 u~ 

TIME (s) 
-.. ·-· ·--·-------------..----------------,-----------------1 

IHCK SU! -- LARGE 
f' RICTION -- 0 . 08 

DIRECTION - - BROAD ON 
SPEIW • 4 . cm/t 

ICE THICKNE18 • ll . f em 
ICE DENIITY • 821 . 11&/m-3 
FLEX ITA (down) • 40.1 kPa 

rux sTit (up) • 21.1 kP• 

MULTIFACETED CONE TESTS 

NO RIDGI 
ITIADY ITATI PORTION ONLY 

25.00. NRC/IMD 



FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS MUNCONE5_003 

4l 
u 
~ 

II. 8 ·------~--,..__-

u. fl .. . 

0 -o.u ---
r..... 

. l . • ~----~----_.----~------._ ____ ~ ____ _. ______ ~----~----~ 

l~.!) 37 , !) 62. ~ 87.5 100 112.5 

TIME (a) 

- F 
X 

AVE . l . 77 kN 
MAX • I . ID kN 
MU • a. a• kN 

lTD . D. &I kN 

--·--·- f, y 

AVE • -0 . 01 kN 

lUX • 0 :U kN 

MIN • -o.:u kN 

lTD • 0 ll kN 

............... F 
I 

AV I • - I . 13 II N 
MAX • -1 . :12 liN 

MIN • -l . li:l kN 

lTD • 0 II liN 

. --· ·---------------r-----------------------------------~----------------------------~ 
NF.C: K SIZE -- LARGB 
t'ltiC:TION -· - 0.01 
IIIIII!C:1'1UN · - IUIOAD UN 

u•t:t:ll ... • · c:m/• 

ICE THICICNEII • t . • em 
ICE DINIITY • Ill. kl/m-3 
PLIIX ITII Uewn) • 60.1 kPa 
PL!I ITI (up) • 11.1 kPa 

NO IIDOI 
ITBADY ITATI POitTION ONLY 

MULTIFACETED CONE TESTS >.. - 25.00, NRC/IMD 



-
-

FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS MUNCONE6_002 

f . or--------~------~~------~--------~--------~--------~ --- F 
X 

AVI • a ID kN 
... x • J Ul kN 
... N . l. 10 liN 
lTD • 02& kN 

••••••• F , 
~~~~~~~~~~ri~~=1~~1\~~~~~~~~~~~~~~~ AVI • -0 . 10 liN 0.01 .. AX • 0 3& kN 

0! . 0 

.. IN • -0 .1& kN 

STD • 0 I 5 kN 

............... F 
J 

AVI • -a . la kN 
.. AX • -2.U kN 
.. IN • -:1 .11 liN 

f. I) L-----L-.-----'L------'L----......I----......1------' lTD • D. II liN 

tiU BU IUU 120 UO 110 180 

TIME (s) 

-----------------------r--------------------------,---------------------------1 
NECK SIZE -- LAROI 
I'HICTION -- 0 . 01 

UIJtt:f:T IUN -- .ROAD Olt 

ICE THICKNIII • 12 . 4 em 
ICE Df!NIITY • Ill . 111/m-3 
PLII ITR Uewn) • :n .o IIPa 
PLII ITI (upJ • 11.0 IIPa 

NO IIDGI 
ITIADY ITATI PORTION ONLY 

~•·r.ED • 4 . em/• 

MULTIFACETED CONE TESTS A - 25.00, NRC/IMD 



-
-

FORCE ON NECK IN X, Y, Z DIRECTIONS MUNCONE6_00.2 

0 . 3r---------~--------~--------~---------r--------~--------~ 

o . ar-----+-------1------~---------r-------~------~ 

.. U. I ..._ _____ ..._ ____ -'------'-----......_----""""""'----~ 

-- F 
X 

AVE . 0 . II kN 

WAX • 0 . 25 kN 

IUN • D. U kN 
lTD • 0 . 01 kN 

••••••• F 
y 

AVI • -0 .01 kN 

WAX • 0 . 04 kN 

WIN • -0 . 04 kN 
STb • 0 . 01 kN 

............... F z 
AVE .. 

0 '"' 
kN 

MAX . u 04 kN 

MIN - U U I kN 
lTD • o.uu kN 

flU IIU IOU •~u 140 160 180 

'I' I M E ( tl} 
... .. --·--- ·-·-· ----------.---------------------.....------------------t 

N t·: l ' l\ I'll tot: I, AIICitl I(' tl 1'111t ' IC N lOIII • l il. 4 t ' 111 NU IIIDUI 
I·' II I 1:'1' I U N II. CJ II 

UIIUCTION -- ltROADON 
lii'P.r.U., 4 . CIUI/e 

ac: a:: Ut::NIIII1' Y - tu. ka/m-:J 
PLIX ITII (down) • 31 . 0 kPa 
PI.!X IITR (up) • 11.0 kPa 

1111'1AbY IITA1'1 .. OIITION ONLY 

MULTIFACETED CONE TESTS A - 25.00, NRC/IMD 



FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS MUNCONE6_003 

-- F 
X 

l.~r---~----+----~---4----+-----~--~~--~ 

AYE • 2 &I k" 

MAX • 2 . 81 k" 

Ml" • 1 . 47 kN 

lTD • 0.17 kN 

1 . r, 

F 
y 

AYE •-0 .03kN 

MAX • O. U kN 

Ml N • -0 2~ kN 

liTO • U 1.11 kN 

............... F 
z 

4 . ~------~~------------~------~------~------~------~-----J 

AVE • - 2.16 kN 

MAX • -le . ill kN 
MIN • -l . la liN 

lTD • U Ll liN 

~~~ IOU uu 200 2~0 300 l&U 400 4~0 

'f I ME (a) 
... -. --· --·- ·------.,----------------..----------------t 

NECK snE - ·- LAROI 
PHICTIO" -- 0 . 01 
DIIUCTION -- BROAD ON 

SPEED • I. cm/e 

ICI THICKNIII • &2 . 4 em 
ICI DINIITY • Ill. kl/m~3 
PLI!I ITR (down) • 35 .• lcPa 
PL!ll STR (up) • 11 . 0 kPa 

NO RIDOI 
IT lADY ITATI PORTION ONLY 

M lJ L T I Jo' A <; E T E D C 0 N E T E S T S >.. - 25.00, NRC/IMD 



w 

"' VI 

FOHCE ON NECK IN X, Y, Z DIRECTIONS 

0 ' 18 

-z 0 . 12 
.!.: 

~ 

u II . Uil 
g:; 
0 
"'"-

o.u 

MUNC ONE. 6 _ 00 3 

-- F 
" 

AVE • 0 u kN 

WAX • 0 . 21 kN 

WIN . 0 . 01 kN 

lTD • 0 . 02 kN 

·····-- F , 
AVE • 0 . 00 kN 

MAX • 0 . 03 kN 

MIN • -0 .03 kN 

BTD • 0 UA kN 

............... F' 
z 

· ll.UtiL-----~------_. ______ ~------~------~------._------~----~ 

AVE • 0 . 01 kN 

MAX • 0 02 kN 

WIN • -0 .01 I&N 
STD • 0 . 00 kN 

!•II IOU I~U 2UU 3Utt 3~tt 400 

TIME(~) 
.. -. ·- ··--·------------.-----------------,~---------------t 

N E c: K S I Z I! - - LA R G I 
fltiCTION -- 0 . 01 
Ulllt!t:TJUN -- IIIIOAD ON 
lit'ttP.. 1 . em/• 

ICI THICINI81 • 12 . • em 
ICI DI:NIITY • 111. k&/m-3 
PLII ITR (llown) • 3lt.4 I&Pa 
rux STR (up) • aa.ct kPa 

NO liDO! 
8TIADY ITATI PORTION ONLY 

MULTIFACETED CONE TESTS 'A. - 25.00, NRC/IMD 



FOHCE ON STRUCTURE IN X, Y, Z DIRECTIONS MUNCONE.6_00'1 

J . 75~----~----~----~----~------~----~----~----~----~ - F 
X 

AVE • a . 74 I&N 

MAX • 3 . 28 kN 

WIN • 2.00 kN 

•TD • 0 . 11 kN 

- 1 . ~5~----~-----+------~----4------+----~~----4------+----~ 

~ 

u 
Q:; 
0 l . i!r. -----

~ 

F 
'1 

AVE • -0 . 0& kN 

MAX • 0 . 30 I&N 

WIN • -0 . 4~ kN 

STD • 0 12 kN 

F z 

: t . ~~L-----~----_. ______ L-----~--_. ______ L---~----_.----~ 

AV I • - :J 01 I& N 

WAX .. -li!.U kN 
WIN • :1 4CI liN 

n·u • u • • kN 

1ft :t 0 6U 10 IU~ uu 1 J~ uu 
1'1MF. (t~) 

. . --- . ··---··· -· .. ... -----------------·--.--------------
Nt:l:K Hilt:-- LAIOI 
t'HIC'I' ION -- 0.01 
DIR!CTIUN -- BROAD ON 

SPE!D "' I. cm/1 

IC£ THICIUIII • U.f em 
ICE DINIITJ • Ill. kl/m~'l 
PLIX ITR (down) • 3~.1 kPa 
PLIX ITII (vp) • 11.5 kPa 

NO IIDGI 
ITIADT ITATI PORTION ONLY 

MULTIFACETED CONE TESTS 'A - 25.00, NRC/IMD 



FOHCE ON NECK IN X, Y, Z DIRECTIONS MUNCONE6 OOi 

-

II . i! r---....,....--"""'T""--~----r----r------r---r----....,....---,. 

U. I tJ · ·• · ·- ·J+-t-

ll . li! 

0 . 08 -----4---+----~---+---r---~----+--~~--~ 

- 0 04~--~----_.----~------._----~----~------~----~---~ 

f' 
X 

AVI . 0 • l kN 
WAX • 0 all kN 
MIN . D . DI kN 
•TD . 0 Ctl kN 

······- F 'Y 

AVE • -0 . 01 liN 

MAX • D 03 kN 
MIN • -0 03 kN 

lTD • 0 Dl kN 

........... .. .. F z 
AVE . 0 02 kN 
aux - 0 OJ kN 
WIN . 0 Ul kN 
STD - 0 . 00 kN 

11; 30 60 75 uo 105 120 150 

TIME (s) 
- ..... ·---·· ·--------·---y---------------r---------------f 

Nt:C'I( :i11.t: I.AHCIII 
t'ltll ' 'I' 1 n N 11 . 111 

UIMECTION -- BROAD ON 
SPU!D ,.. I. om/1 

ICI THICKNIIIII • &2 . t em 
ICI DINIITY • Ill . ka/m•:J 
PLII STI (41own) • 3& . J kPa 
PLII ITI (up) • 1& . 5 kPa 

NO 11001 
ITIADY ITA'U POITION ONLY 

MULTIFACETED CONE TESTS ~ - 25.00, NRC/IMD 



FOHCE ON STRUCTURE IN X, Y, Z DIRECTIONS MUNCONE 7 _00 1 

too~----~----~----~~----~----~----~~----~----~----~ -- F 

? . 5 

- ~.0 

-

.. i! ' ~ 

X 

AVE • I 17 kN 

MAX • I II kN 
MIN • P 81 kN 

lTD • I . U kN 

F 
'1 

AVE • 0 . 24 kN 

MAX • 1 . If kN 

Ml N • -0 88 kN 

lTD • 0 43 kN 

............... F 
a 

-~ . o~----~----_.------~----~------------~----~-----------J 

AVE • -a .•:t kN 

MAX • 0 U kN 
MIN • -f.IU kN 
lTD • D . • l kN 

:!?II :too 

Nt!C ~ K MIU~ · - ~MALL 

t'HICTIUN -- 0 . 01 

hiREr.TION -- BROAD ON 
:1 ,. t: t: IJ ... I . IIIU I • 

:no :tiO 380 4;t0 450 

TIME (s) 

ICE THICICNIII • li . U em 
ICE DINIIITY • 1111. k&/m-3 
PL!I STA (down) • '70 .2 kPa 
PLil ITR (Up) • 33.7 kPa 

4110 &10 

___ .. ____ , __ 

NO IIDOI 
ITIADY 8TATI POITION ONLY 

MULTIFACETED CONE TESTS A = 50.00, NRC/IMD 



~ 

$ 

FOHCE ON NECK IN X, Y, Z DIRECTIONS MUNCONE7_001 

0 . 7!) 

0.5 
z 
.!i: -
~ 
u 
a:; 
0 0 . 0 

""' 
ll.l ~ 

-- F • 
AVE • 0 ~4 k N 

MAX • 0 . 81 kM 
Ml M • - 0 . 01 k N 

lTD • 0 . 14 kN 

---···· F 
'I 

AYI • - O. Oit liN 
MAX • 0 . 24 liN 
MIN • -O .:tl liN 

lTD • 0 . 01 kN 

............... F 
I 

11 . ~~----~----~------._ ____ _. ______ ._ ____ ~----~------~-----J 

AVE • 0 07 t&N 

MAX • 0 ll kN 

MIN • -O.U2 kN 

.MTD • 0 .02 kN 

0.:711 :fUO 

N t:CK SIZE SMALL 
t'MICTION -- 0.01 
IHIUCTION -- BROAD ON 

:it'IEED • 1 . cm/1 

:no :nu 310 420 450 

ICE THICKNESS • 11 . 0 em 
ICI DINIITI' • Ill. kl/m-3 
PLII ITR (dewn) • 70 .1 kPa 
PL!I ITR (upt • :13 . 7 kPa 

480 IUD 540 

NO IIIDOI 
ITIADY ITATI PORTION ONLY 

J\ - r, o . o o . N I( <: / I M D 



w 
~ 

FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS 

-z 
~ 

II. 0 
~ 
u 
~ 
0 

""' 

MUNCON£ 7 002 

- F 
X 

AVI • 0 .11 II" 
MAX • I . II leN 
MIN • 2 . II leN 
lTD • &.34 leN 

--·---- F 
'1 

AVE • 0 :J D "" MAX • a . ~e& I&N 
MIN • -I .II liN 
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APPENDIXC 

. Example Calculation to Dlustrate the Application 
of Equations Developed in Chapters 7 to 9 
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An example calculation for Test MUNCONE3_001 is shown here to illustrate the 

usage of equations developed in Chapters 6 to 8 for the computation of ice loads on faceted 

cones. Values of the relevant parameters are given as follows: 

(i) Ice Properties: Thickness, t = 0.1583 m; flexural strength. Gr = 44.38 kPa; elastic 

modulus, E = 362.2 MPa; ice-structure friction coefficient, J.ls = 0. 1; and weight 

density,"(= 8985 N/m3
• 

(ii) Rubble PrQnenies: Rubble angle, l = 35°; internal friction angle, ct1 = 35°; wall 

friction angle,$,., = 11.3°; bulk weight density, 'Yb = 6290 N/m3
; and porosity, p = 

0.3. 

(iii) Water Foundation: Weight density, "fw = 9839 N/m3
• 

(iv) Structure Pimensiops: Height of cone section, h1 = 0.233 m; height of collar 

section, h! = 0.473 m; facet width at waterline, Wr = 0.693 m; cone angle, a.1 = 

39.8°; collar angle,~= 63.4°; neck angle; a.3 = 90°; cone angle at side.~-~ = 

35.8°; collar angle at side,~ = 6QO; neck angle at side, ~ = 9QO; and average 

cone angle, ~ve = 49.8°. 

(v) Ice Brealcing Pattern: Angle between radial crack and x-axis; 8cr = 30°; and 

measured broken piece size, Lt. = 0.1511 m. 

C.l Rubble Height Calculation(Cbapter 6) 

The width of ride-up ice wall at front facet, w ru.c• is equal to 0. 7802 m, computed by 
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Equation 8.12. 

C.l.l Rubble Height at Side of Front Facet: h,., 

The cross-section of rubble at both side of cone. A. is equal to 0.08822 m2• computed 

from Equation 6.5. The rubble height at side of the front facet, tin. and the corresponding 

value of80 can be computed using Equations 6.12 and 6.16, respectively, via a trial and error 

procedure, by arbitrarily assuming a value of n and ~: 

First trial: n = 1 with an initial value of hn = h1 = 0.233 m 

8 0 = 0.2798 m and hrt = 0.4039 m 

Since hn > h1, then n must be greater than 1. 

Second trial: n = 2 with an initial value of hn = h2 = 0.473 m 

8 0 = 0.2039 m and hrt = 0.3802 m 

Since hr1 < h2 , then n must be equal to 2. 

Therefore, the rubble reaches the collar section with hn being equal to 0.380 m. 

C.1.2 Rubble Height at Side of Cone: b,. 

The rubble height at side of the cone, ~. can be computed using Equation 6.22 via 

a similar trial and error procedure: 

First trial: for n = l, ~ = 2.0347 m 

Since ~ > h,, then n must be greater than l. 

Second trial: for n = 2. ~ = 0.5087 m 
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Since hi'!<> h2, then n must be greater than 2. 

Third trial: for n = 3,1tn = 0.4947 m 

Therefore, the rubble reaches the neck section with 1tn being equal to 0.495 m. 

C.1.3 Maximum Rubble Height at Front Facet: hn~~ 

The maximum rubble height at the front facet, ~. is computed as the following: 

B1 = 0.4507 m (Equation 6.30); <Xr = 53.7° (Equation 6.33 with a= Clave); A3 = 0.1705 r 

(Equation 6.31); A4 = 0.06809 r (Equation 6.32); (A3 + A4 ) I A3 = 1.3994; w = 0.3154 m 

(Equation 6.34); w/wr = 0.4042 (implies a trapezoidal profile); and ~ = 0.7126 m 

(Equation 6.35 with b,r = 0.3802 m). 

Therefore, the rubble has a trapezoidal profile along the front facet with hrm being 

equal to 0.713 m. 

C.2 Rubble Load Calculation(Chapter 7) 

Rubble loads for the center and the side facets are calculated separately for the 

respective equivalent rubble heights, ~.c and ~.s· 

C.2.1 Rubble Load Per Unit Width on Center Facet 

hr.c = 0.5783 m (Equation 8.13) 

(i) Load oer unjt width on indivjdual sections: 

(a) Lower cone section, j = 1: ,, w.t = 11.3° (Equation 7.29); ~.1 = 61.49° (Equation 
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7.28); P0 • 1 = 268.0 N/m (Equation 7.37); P..,h. t = 127.9 N/m (Equation 7.38); and 

P wv.t = 235.5 N/m (Equation 7.39) 

(b) Collar section. i = 2: ~, w.2 = 8.51 °; Clp.2 = 35.0"; Po.2 = 117.5 N/m; P wt1.2 = 96.1 N/m; 

and P wv.2 = 67.5 N/m 

(c) Neck section. i = 3: ~, w.J = 1. 709°; ~.J = l. 709°; P o.J = 9 . I N/m; P wh.J = 9.1 N/m; 

and P wv.J = 0.3 N/m 

(ii) Total rubble load: 

P wh = 233.1 N/m (Equation 7.38); P wv = 303.3 N/m (Equation 7 .39); P bh = 233.1 

N/m (Equation 7.33); Pbv = 727.4 N/m (Equation 7.34}; and Wr.c = Wr = 1030.6 N/m 

(Equation 8.14) 

(iii) Equivalent rubble wjdth: 

wr.c = WN.C = 0.7802 m (Equation 8.12) 

C.2.2 Rubble Load Per Unit Width on Side Facet 

hr.,.= 0.4375 m (Equation 8.18) 

(i) Load ner ynit width on jndividual sections: 

(a) Lowerconesectiop.j= 1: ~'w.t= 11.3°0,.1 =61.49°; P0 •1 = 186.2N/m; Pwh.1 =88.9 

N/m; and Pwv.t = 163.7 N/m 

(b) Collar section. j- 2: ~, w.2 = 8.51°; ~ = 35.00; P 0 .2 = 45.4 N/m; Pwh.2 = 37.1 N/m; 

and P wv.2 = 26.1N/m 
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(c) Neck section. i=3: ''w3 = 1.709°; <Xp3 = 1.709°; P03 =0N/m; Pwh.3=0N/m; and 

Pwd =0 N/m 

(ii) Totalload: 

Pwh = 126.1 N/m; P""' = 189.8 N/m; Pbh = 126.1 N/m; Pbv = 249.3 N/m; and Wr_, = 

439.0 N/m (Equation 8.14 with V1 = 0.02181 m3 [Equation 8.19] and V 11 = 0.02175 m3 

[Equation 8.21]) 

(iii) Eguivalent rubble width: 

wr.~ = 0.559 m (Equation 8.23 with Aeq = 0.0698 m2
) 

C.3 Ice Load Calculation (Chapter 9) 

Ice loads for the center and the side facets are calculated separately. 

C.3.1 Ice Load on Center Facet 

( i) Beam crackim~ lep&Jh: 

Assuming the ice cracking pattern as shown in Figure 8.13, Equation 8.11 gives a 

value of 0. 1511 m for the beam cracking length, der 

(ii) Ride-up and rubble heights. ~.c..imlb,.c: 

hr.c = 0.5783 m (from Section C.2. 1) 

Since b,,c > (~ = h2 = 0.473 m), then ~.c = 1.334 m (Equation 8. 15), and hu = h2 -

h, = 0.233 m, hw = h3 - h2 = 0.240 m, and hw = ~.c -11n = 0.861 m. 

(iii) Weight of ride-up jce. W ru.cj: 
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wru.c is equal to 0.7802 m (from Section C. I). 

(a) Weight on individual sections: W ru.c.l = 404.7 N; W ru.c.2 = 297.3 N; and W ru.cJ = 

955.2 N (Equation 8.17) 

(b) Total weight: W ru .r: = W ru.c.l + W ru.c.l + W l1l.c.3 = 1657.1 N 

(iv) Forces required to push ice blocks up the slooe through ice rubble. P.: 

Let P"' = 0 N and a 4 = ~ = 90"; 

(a) Neck section. i = 3: P3 = 956.2 N (Equation 8.45) 

(b) Collar section. i- 2: P2 = 1207.7 N 

(c) Lower cone section. i =1: P1 = 1519.2 N 

( v) Force comoonenrs at wmerline. HT..YT~w...Yw: 

Assume initial value of a'c = CJr = 44.38 k.Pa; 

(a) I~~ iteration: V' b = 217.5 N/m (Equation 8.5); HT = 1350 N (Equation 8.48); VT = 

1540 N (Equation 8.49); V w = 1729 N (Equation 8.50); ~ = 1.0435 (Equation 2.2); 

Hw = 1804 N (Equation 8.51); HTOT = 3153 N (Equation 8.43); and VTOT = 2650 N 

(Equation 8.44 ). 

(b) Update tbe effect flexural strepKJb for in-plane force: Substitute the old value of ct r 

into Gr, and calculate the new value of CJ' r using Equation 8.53. Repeat the above 

Steps (a) and (b) until CJ'rconverges. 

(c) Final results: a'r=68.ll kPa; V'b=333.9N/m; HT= l349N; VT= 1540N; Vw 

= 1830 N; Hw = 1902 N; Hror = 3258 N; and Vror= 2751 N. 
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C.3.2 Ice Load on Side Facet 

(i) Beam cracking length: 

Assuming the ice cracking pattern as shown in Figure 8.13. Equation 8.1 gives a 

value of0.86744 m for the beam cracking length. dcr 

(ii) Rubble height. 1\~\: 

~.s = 0.4375 m (from Section C.2.2) 

(iii) Weight of ride-yp jce. W -u= 

Total weight: W ru .s = 187.5 N (Equation 8.24) 

Distributing the total weight of ride-up ice on the lowest section gives: W ru.J = W ru.2 

= 0 Nand W ru.J = W ru.s = 187.5 N. 

(iv) forces along X'- Z axes required to oosh ice blocks yp the slone through ice rubble. 

wr_, = 0.559 m (from Section C.2.2.iii) 

Let P 4 = 0 N and a 4 = ~ = 90"; 

(a) Neck section i = 3: P3 = 0 N (Equation 8.45) 

(b) Collar sectjon. i- 2: P2 = 6.6 N 

(c) Lower cone section. j =1: P1 = 174.4 N 

(v) Force comoopents a}opg X'- Z u;es at waterljpe· HT.YT~w~w,;. 

Assume initial value of a' r = Gr = 44.38 kPa; 

(a) In iteratjon: V' b = 217.5 N/m (Equation 8.5); HT = 204.5 N (Equation 8.48); VT = 
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251.0 N (Equation 8.49}; V w = 439.7 N (Equation 8.50}; ~ = 1.0435 (Equation 2.2); 

Hw = 458.8 N (Equation 8.51 ); HTOT = 663.3 N (Equation 8.43 ); and V ror = 621.6 

N (Equation 8.44 ). 

(b) Update the effect flexural suengtb for in-plage forsce: Substitute the old value of a'r 

into Gr. and calculate the new value of a'r using Equation 8.53. Repeat the above 

Steps (a) and (b) until a'rconverges. 

(c) Final results: a' r = 49.37 kPa; V' b = 242.0 N/m; HT = 204.5 N; V T = 251.0 N; V w 

= 460.9 N; Hw = 481.0 N; HTar = 685.5 N; and Vror = 642.8 N. 

(vi) Force comoonent ofHror. Alopg X-Z Axes: 

HTOT 111JongXuisl = 383.8 N (Equation 8.36) 

C.3.3 Total Ice Load on Cone 

V TOT (lotal) = V TOT tfronll + 2V TOT (side) = 4051 N 

HTOT (lollll) =HTOT (fronll + 2HTOT (lide. alon& X wsJ = 4041.5 N 
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