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ABSTRACT

Faceted conical structures have been proposed as an alternative to the true conical
form to ease the fabrication and to lower the construction costs. In considering ice forces on
these structures, there was a concern with the validity of existing theories. The main
objectives of this study are to improve the understanding of the interaction processes and the
failure mechanisms of a level ice field against a faceted cone during continuous ice breaking,
and to provide engineers with a set of easy-to-apply formulae for ice load calculation. In this
thesis, the results of a three-part study, consisting of experimental and theoretical
investigations, are documented. In Part I, a pilot series of physical model tests were
conducted to provide a clear insight into the interaction processes. Some important
interaction features were identified from analysis of the test data which provided a
framework vital to further model development. In Part I, the unique rubble piling process
was further examined with the aid of existing particulate mechanics and a comprehensive
numerical analysis. A new rubble model was developed to predict the geometry of the rubble
and the forces exerted on the structure and the base support. In Part III. an appropriate ice
breaking model was selected from the existing theories for the adaptation of the new rubble
model. The new model, which considers the salient aspects of the rubble piling process,
agrees well with the experimental data.

The above developments and results are significant, because, for the first time, to the
knowledge of the author, an ice load model has been established to account for the effect of

rubble in ice loading on a multifaceted cone based on essential features of the interaction.



The results provide a useful framework for further model development. The state-of-the-art
is such that it is now possible to incorporate rubble load in the force calculation with higher
degree of confidence. The methodology for doing so has been developed and presented

herein, and constitutes the main contribution of this work to the state-of-the-art.
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Chapter 1 Introduction

1.1 Background

Ice mechanics and ice engineering research in Canada have assumed increased
importance due to the growing interest in exploration of natural resources and industrial
developments in its Arctic offshore regions. A major driving force behind the heightened
interest has been hydrocarbon developments in the continental shelf in the Arctic and sub-
Arctic seas. Canada has a vast infrastructure dependent on oil and gas and there are no
competing fuels on the horizon. Oil and gas are predicted to continue to make up about 60%
of Canada’s energy consumption for the next two decades, as predicted by Canadian
government for the year 2020 (Natural Resources Canada, 1993). The total recoverable
reserves for the Frontiers was conservatively estimated at 22 Billion Bbls of oil and 275
Trillion Cfs of gas, with the largest reserves being located at the Grand Banks and the
Beaufort Sea (Natural Resources Canada, 1993). Such vast quantities of petroleum reserves
ensure a secure source of future supply for Canada in place of the rapidly depleting oil
reserves in Western Canada. This has heightened the need for improving current technology
to lower the costs of oil production from ice covered areas, and stimulated significant activity
in the development of novel offshore structures during the past two decades.

The development of new concepts and designs for engineering structures in ice
infested waters poses many challenging problems related to determination of ice loads and

assessment of the overall safety of such structures. Conical form at the water line has been



considered to be better than vertical surfaces in protecting vulnerable structures operating in
these regions and helping them to withstand severe ice forces, since this configuration
reduces ice loads by causing ice features to break in bending. Conical structures also provide
a natural and smooth transition from a wide-base to a narrow deck supporting the
superstructure.

Although great efforts have been put into both theoretical and experimental
investigations concerning ice forces on conical structures [see Wessels and Kato (1989)],
serious problems still remain unsolved. A review of the ice load prediction methods for
conical structures by Chao (1992) reveals a high degree of uncertainty in ice force prediction,
mainly due to the lack of full scale measurements and the absence of proper analytical tools
to model the complex three dimensional ice-structure interaction problem. It results in "over-
designing” to compensate for current lack of knowledge. Suchoverdesign leads to excessive
construction costs and reduces a project’s feasibility. Furthermore, early experimental and
theoretical work on ice-cone interaction were entirely devoted to smooth cones which had
narrower necks relative to the water line diameter. However, by mid-1980's it had become
apparent that new designs, incorporating sloping flat faces (facets) and wide necks above the
ice waterline, may be more cost effective and practical, i.e., ODECO AMDP (Chabot, 1985).
Such a structure is presently considered for operation in Russian waters off Sakhalin Island.
These structural concepts can also be implemented in structures located in less severe ice
environments, i.e., bridge piers and lighthouses.

No prior study related to ice forces on faceted cones existed before 1988 (Croasdale
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and Muggeridge, 1993). The fundamental interaction processes were not fully understood.
Since the flat facet and its sharp corners were unique to a faceted cone, it was suspected that
such features would lead to an ice breaking and clearing process substantially different from
that of a smooth cone. Inconsidering ice forces on these structures, there was a concern with
the validity of existing theories in predicting ice forces knowing that their geometry was
significantly different from the true conical form. The anticipation of rubble accumulation
in front of the structure also led to a concern that the ice clearing forces would be greater than
the predicted values, obtained using current theories. In order to enhance the understanding
of how ice would fail and clear around such structures, and to develop a proper ice load
estimation formulae, model testing and better theoretical formulation of the interaction were
proposed.

In 1988 the Memorial University of Newfoundland (MUN) collaborated with the
[nstitute for Marine Dynamics (IMD) and the Institute of Mechanical Engineering (IME) of
the National Research Council of Canada (NRC), Esso Resources Canada Limited (ERCL),
Exxon and Mobil in a university-industry program to perform an extensive series of physical
model tests in order to better understand how ice floes and ridges would fail and clear around
such structures, and how well existing theories predicted the global loads. The results of the
various components of the program are described by Croasdale and Muggeridge (1993).
While results of each series of tests have been separately documented [Metge and Weiss
(1989). and Metge and Tucker (1990) for ERCL's test series; Irani et al (1992) for IME's

series, and Lau et al (1993b) for IMD's series], and published [Irani and Timco (1993);



Timco et al (1993); Lau et al (1993a); [zumiyama et al (1993, 1994) and Wang et al,
(1997)], only very simple analyses were performed and they were fragmented in nature.
Many aspects of the interaction processes and the effects of various factors on ice loads were
not fully addressed.

[ conducted the model test program in IMD with the assistance of Mr. J.R. Tucker
of MUN during my stay in the institute. Analysis of the results from the IMD series,
supplemented by additional data analysis of the accompanying series, and subsequent ice

force modelling form the bulk of the research effort for this thesis. Focus is devoted to level

icc tests only.

1.2 Scope and Objectives

The main objectives of this study are:

(i) To improve the understanding of the interaction processes and failure
mechanisms of a level ice field against a faceted cone during continuous ice
breaking, and

(ii)  To provide engineers with a set of easy-to-apply formulae for ice load
calculations.

In this work, the major issues addressed are:

(1) Whether the existing theories, proposed based on earlier experiences with

smooth cones, were accurate enough for predicting ice forces on comparable

faceted cones; and,



(ii) If the existing theories did not adequately predict ice forces on faceted cones,

what modifications were necessary to correct the deficiencies.

From a more practical point of view a load prediction model, applicable to the faceted
cone shape, was to be developed for design purposes. The model should reflect accurately
the dominant interaction processes generated by this unique shape.

While an improved ice force prediction model is proposed here to suit the practical
need of designers, the theoretical modelling effort is kept to a minimum. Existing analyses
of ice force on smooth cone were used when deemed appropriate. The improved model
represents the most comprehensive attempt to incorporate fundamental processes in its

problem treatment and forms a new conceptual framework for future model refinements.

1.3  Approaches and Methodologies

This research investigation consists of experimental, numerical. and theoretical
studies described here in three parts. The approach promises the most versatile and relevant
procedure for improving our understanding of the ice-structure interaction problem for the
multifaceted cone.

In part one, the pilot series of physical model tests are reported. The physical model
tests were planned to provide a clear insight into the interaction processes by combining
relevant observations and interpretation of results. The ice forces corresponding to peak load
events were identified for each test, along with the associated interaction processes. The

observed unique interaction processes helped to formulate a conceptual model, which would



provide a focus and outline of the phenomena to be investigated, and the methods to be used
to investigate these phenomena.

The model tests also provided a unique set of experimental data to assess the validity
of existing formulae for predicting ice loads on a faceted cone. Comparisons were made of
the experimental results with the predictions of a leading theoretical model developed for
computing ice forces on smooth cones. The comparison further underlined the deficiency
of existing theories in predicting ice forces on faceted cones.

It became evident during the early part of the model tests that the ice pile-up induced
by the flat facet was a typical behaviour of ice around the faceted cones as opposed to the
smooth cones. A proper understanding of the particulate mechanics and the formation
process of ice rubble held the key to further studies in this area; this forms the focus of part
two of this research. Theories in the field of particulate mechanics were examined. and a
new rubble model was developed from appropriate theories to predict the geometry of a fully
developed rubble and the load it exerted on the structure. The geometry of the rubble was
deduced based on a simple interaction geometry and mass balance considerations; whereas
the equations for calculating the boundary forces exerted by the rubble at it’s interfaces with
the wall and the base support were empirically formulated from a rigorous interpretation of
a series of numerical simulations of earth pressure on a retaining wall. The numerical
simulations were carried over a broad spectrum of interaction conditions using the discrete
element method (DEM), implemented in a 2-D version of the computer code DECICE.

Part three was devoted to the development of a new ice force model which took into



account the main features of the interaction processes associated with faceted cones. In view
of the existence of many ice breaking models, detailed modelling of the phenomenon of ice
breaking under load was not carried out in this work; instead, the existing analytical models
of ice forces on sloping structures were critically assessed through an extensive comparison
with experimental data, and a base model of ice breaking was selected. This base model was
further incorporated into the new rubble model developed in part two, resulting in a set of
mathematical formulae which were established based on experimental observations and basic
mechanics of ice. These formulae represent in a concise and general fashion the description
of ice breaking and clearing phenomena, the observed relationship between the processes,
the basic mechanisms that underlie such relationships, and the relationships among relevant

ice and structure parameters.

1.4 Organization of the Thesis

This thesis consists of a total of nine chapters. The first two chapters form the
introductory study to the thesis. Chapter | discusses the issues addressed in this work. The
relevant background, approaches and methodologies are briefly described. Chapter 2
consists of a literature review, which focuses on previous studies and modelling of ice loads
on sloping structures. The existing theoretical models and the associated ice-structure
interaction processes observed in relevant model tests are summarized, with the limitations
and shortcomings of the previous studies discussed. The subsequent seven chapters, viz.,

Chapters 3 to 8, are divided into three parts, corresponding to the three stages of this study



already mentioned above.

Part I documents the results of the experimental investigation, which consists of two
chapters, Chapters 3 to 4. Chapter 3 describes the tests and summarizes the results. Chapter
4 identifies the salient aspects of the ice cone interaction processes, and presents the anaiysis
of peak ice loads. The last section of Chapter 4 serves as a conclusion of this part, where the
findings are summarized and a conceptual model is presented, which forms the framework
for further model development.

The unique pile-up process of ice around a faceted cone forms the focus ot Part II.
This part consists of three chapters: Chapters 5 to 7, which document the results of a
subsequent rubble modelling. Chapter 5 summarises the constitutive behaviour of a rubble
under load. The deformation characteristics of a rubble in front of an inclined wall are
identified, and the existing techniques for load calculation are examined. Chapter 6 presents
a rubble model for predicting the geometry of an ice rubble in front of a multi-faceted cone.
Chapter 7 consists of two parts which summarize the results of a series of numerical
simulations using a discrete element code. The first part examines the shear strength of the
rubble via a series of shear test simulations; whereas, the second part presents a set of
empirical equations to compute the load exerted on an inclined wall and the base support by
the rubble.

Chapter 8 constitutes Part III of this thesis. This part is dedicated to the presentation
of a new ice force model. In the first half of Chapter 8, a base model for ice breaking is

selected for incorporation into new rubble model developed in Part II of this thesis. In the



latter part of Chapter 8, the new ice force model is developed, documented, and validated.
The final chapter summarizes the research efforts and contributions made throughout
this study. Conclusions arising out of this study and recommendations for future work in this

area are given in this chapter.



Chapter 2 Literature Review

The faceted cone is a structure proposed for future oil and gas developments in the
Arctic and sub-Arctic regions; consequently, there is no theoretical and/or experimental
studies on such structures available in open literature. Since the faceted cone possesses a
basic conical form with inclined surfaces, a review of studies carried out on inclined
structures, i.e., conical structures and inclined planes, could be helpful to the present
research. Thus, the literature available on ice interaction with an inclined structure is
reviewed and discussed in this chapter. Emphasis is laid on the available theoretical
modelling of ice loads on the structure and the observed ice-structure interaction processes;
the physical modelling of ice load is only briefly discussed.

Over the last two decades, significant progress has been made in developing models
to predict ice loads on inclined structures (including conical structures and sloping planes).
Extensive reviews of the existing analytical and empirical methods were given by Sodhi
(1987). Marcellus et al (1988), Cammaert and Muggeridge (1988), and Sanderson (1988).
Wessels and Kato (1989) reviewed the ice failure modes around conical structures, and
summarized the available model scale and full scale measurements. Evaluations of the
performance of several methods were given by Croasdale (1980), Timco (1984a), Marcellus
et al (1988), and Chao (1992).

Section 2.1 gives an overview of the dominant interaction processes as observed in

model tests. The subsequent theoretical models are summarized in Section 2.2. The work
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described in this thesis was conceived as part of a larger project with collaboration among
many participants. A general overview of the whole test program is given in Section 2.3.
The major findings reported by other participants are also summarized in the section.
Section 2.4 compares various modelling approaches and gives a state-of-the-art assessment

of the present available expertise on ice force predictions on conical structures.

2.1 Ice-Structure Interaction Processes
2.1.1 Conical Structures

The following description of the interaction between a conical structure and a level
ice sheet is based on the studies reported by Croasdale (1980), Sodhi (1987), Wessels and
Kato (1989), and others. Additional details of the failure processes and ice forces
encountered by sloping structures have been obtained from experiments carried out by
Haynes et al (1983), Wessels (1984). Kato (1986), Hirayama and Obara (1986), Clough and
Vinson (1986), Maattanen (1986), Lau et al (1988), and Lau and Williams (1991).

As an ice sheet advances toward a conical structure, local crushing of ice occurs at
the ice-structure interface. The local crushing creates an interaction force normal to the
structure surface. In addition, because the ice is sliding upwards relative to the surface, a
frictional force is also generated. These forces create in-plane and out-of-plane forces, and
an edge moment; and a complex three dimensional stress state is induced in the ice. As the
ice sheet continues to advance, the stresses increase until failure of the advancing ice sheet

occurs in either one or a combination of the following failure modes: bending, crushing,

11



shear, buckling, and splitting. Observations show that the bending failure is more dominant
than the other modes of failure under interaction conditions such as low inclination angle
(10° to 60%), low ice-cone friction coefficient, small ice thickness, and low speeds of ice
movement.

For a bending failure of ice sheet, the failure mechanism is governed by the flexural
stresses induced in the ice in both radial and circumferential directions. [f the cone is small
compared to the ice thickness, radial cracks radiating at 60° intervals initiate the failure. The
peak load, however, occurs when circumferential cracks develop and wedges of ice break off.
With increasing cone diameter the curvature of the cone surface at the waterline decreases.
and the maximum tensile stresses of the ice cover change from circumferential direction to
the radial direction. This process causes the ice sheet to fail first circumferentially and
thereafter radially.

Failure modes other than bending can dominate under specific loading conditions.
With increasing steepness and roughness of the cone surface, or ice thickness, the failure
mode also changes gradually from bending to shear or crushing. At higher speeds, the failure
maode changes abruptly from bending to shear or crushing due to dynamic effects (Wessels,
1984: and Haynes et al, 1983). The speed at which the transition of failure modes takes
place was found to increase with the increase in the inclination angle (Haynes et al, 1983).

The influence of shear stresses on determining failure modes becomes more
important with increasing ice thickness and is finally predominant for thick ice fields
(Maattanen, 1986). Observation of actual fracture patterns in thin ice reveals that pure
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bending occurs when circumferential cracks form at distances slightly higher than the
characteristic lengths; and with increase in thickness, the average length of broken pieces
decreases which may indicate a combination of bending and shear failures (Wessels, 1984;
and Lau et al, 1988).

Michel (1978) has described the condition where ice sheets interact with inclined
structures having an inclination to the horizontal of greater than 75°. For structures in this
category, crushing will generally take place before bending.

After the local failure of an ice sheet the broken ice pieces, pushed by the
approaching ice sheet, rotate until they are parallel to the inclined surface, and begin to ride
up the face of the structure (which has been termed ride-up); then the ice clears around and
slides down the back side of the cone. As the ice pieces rotate, water drag and inertia forces
are developed on the structure. The broken ice pieces sliding up the inclined surface also
develop frictional and gravity forces on the surface.

The geometry of structure above the waterline has a significant influence on the way
the broken ice clears around the structure. On a cone with relatively narrow superstructure,
the ice can clear around the structure easily: however, for a wide conical structure or a
sloping plane, the ice may reach the superstructure and roll back onto itself, creating
additional ice on the slope of the structure, which may lead to an ice rubble pile in front of
the structure, interfering with the ice breaking process.

If the ice is weak, the load applied to the unbroken ice sheet by the broken ice pieces,

as they are being pushed up the cone surface, may cause the ice sheet to fail in bending with
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the broken ice pieces sliding down the front of the cone.

2.1.2 Sloping Planes

Many experiments have been conducted to study the features of ice failure processes
and the associated ice loads on narrow and wide sloping planes (Zabilansky et al, 1975;
Sorensen, 1978, Haynes et al, 1983; Timco, 1984b; Frederking and Timco, 1985; Michel
and Picard, 1989; Valanto. 1989; and Finn, 1991). The observed failure modes and the
interactions are similar to those described in the previous section. The features of ice failure
processes, particular to ice interaction with sloping planes, were summarized as follows
(Sorensen. 1978; and Timco. 1984b):

As the ice sheet is lifted upwards by a narrow plane, two radial cracks extend outward
from the corners of the plate at an angle of about 30° according to Michel and Picard (1989)
and Frederking and Timco (1985), and 45° according to Finn (1991), to the sides of the plate.
forming a cantilever beam with the width slightly wider than the structure. Occasionally, a
radial crack also emanates from the centre of the plate (Finn, 1991; and Michel and Picard,
1989). When the flexural stress in the ice sheet exceeds the strength of the ice, a
circumferential crack forms at a finite distance from the structure, and the peak load is
attained. Under some circumstances, the peak force could occur during the radial cracking
(Frederking and Timco, 1985).

Upon further advance, the broken ice slabs slide up the front face reaching the top of

the structure. The ice which overhangs the sides of the inclined plane usually breaks off due
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to its own weight. In comparing with conical structures, the ice clearing around a sloping
plane is less efficient. The broken ice slabs usually reach the top of the structure. If they are
not cleared off, they may roll back onto themselves, leading to an ice rubble pile in front of

the structure, which interferes with the ice breaking process.

2.2 Models for Ice Force Predictions

The development of computational methods for ice loads on sloping structures has
been limited because of the lack of knowledge about the dynamic nature of interactions. and
the complex rheological behaviour of ice and boundary conditions during the interaction.
In order to meet the practical needs of designing structures with conical forms, various
computational methods have been developed by making assumptions that would permit
analysis of the problem using available theoretical procedures. The simplest method to treat
the interaction is to assume that the structure is rigid and that only the deformation and
failure of ice sheet are considered. [t should be noticed that all the analytical formulae were
derived based on observations from small-scale model tests with gentle sloped cones (i.e.,
~ 45° to the horizontal), thin ice, low friction coefficient and low ice speed, in which bending
failure is dominant.

In the following sections, several approaches for predicting sheet ice loads on
inclined structures are reviewed, which cover essentially all the important known models,
and are representative of the available approaches. These approaches generally fall into two
basic types:
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(i) Analytical formulations based on elastic or plastic analysis, and

(ii)  Semi-empirical formulae based on experimental data.

2.2.1 Analytical Formulations

Classical analytical procedures have been adopted to investigate the effects of an ice
sheet impinging on a single conical structure. The forces depend on the mechanisms of
failure and the geometry of the structure. Usually dynamics, creep and other effects are

completely neglected with some justification.

2.2.1.1 Croasdale's Approach

Croasdale (1980) proposed a simple two-dimensional theory for wide structures
based on the theory for beams on elastic foundations (Hetenyi, 1946). The ice sheet was
treated as a semi-infinite elastic beam on elastic foundation subjected to a horizontal force,
F.. and vertical force, F,, at one end. At the instant of first contact, the relationship between

F, and F, can be derived by resolving the forces, viz.,

F. = FE @2-1)

-

where & is called resolution factor defined as:

SLOC + COSOL

= ——— = tan(a+tan'p) (2-2)
COSa —| sina ’
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with o being the angle of the slope from the horizontal and p, the friction coefficient.
The maximum value of F, is limited by the flexural (tensile) strength of the ice sheet
with an vertical edge loading supported by an elastic foundation. The horizontal force per

unit width of the structure, generated at the instant of first failure of ice, is given by:

F 5\
Lx _ 0,680, (Y“' T : (2-3)
D E

where D is width of the structure; G&,, bending strength; ¥,. weight density of water; t, ice

thickness; and E is elastic modulus of ice. For subsequent interaction, an extra force is
required to push the ice up the slope. The corresponding total force experienced by the

structure is

F, ws)%
where:
£, = 0.68E 2-5)
. sina + p Ccose
g, = &(sina + pucosa) + . (2-6)

tanx
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with z being the free-board, and y the weight density of ice.

In the above relationship (Equation 2.4), the first term (on right hand side) can be
considered as the force necessary to break the ice, and the second term can be considered as
the force necessary to push the ice pieces up the sloping structure. It could be a simplified
2-D relationship for a wide structure, but as the structure width decreases relative to the
characteristic length of ice, the zone of ice tailure will be wider than the structure itself, and
most of the ice pieces will not necessarily ride-up the structure but clear around it. For
narrow structures, Croasdale suggested a simple correction to adjust the two dimensional
force by the ratio of the length of the circumferential crack divided by the structure width,
i.c.. multiplying the ice breaking component by

ol
4D

1 +

@-D

where |, is the characteristic length for the plate given as

)
¢ - 2-8)

lew

However, other investigators (Ralston, 1977; and Nevel, 1980 and 1992) have given more

rigorous analyses of the three-dimensional problem.
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In 1994, Croasdale et al extended their three-dimensional analysis to incorporate
adjustments for in-plane compression as well as effects of ice rubble build-up in front of the
structure. The in-plane compression creates a compressive stress in the ice sheet increasing
it’s effective flexural strength. The increase in load was computed through an iterative
process. The modifications for the presence of ice rubble include: the force necessary to
push the advancing ice sheet through the ice rubble; the additional force necessary to push
the ice blocks up the slope through the ice rubble; and, the additional force necessary to lift
and shear the ice rubble on top of the ice sheet. Croasdale pointed out that the model was
simple to use and could be easily incorporated into a probabilistic methodology. He further
asserted that the model gave results similar to more complex models, i.e., Nevel's model
(1992) although simplistic assumptions had been made.

His model is based on simple mechanics and provides a good appreciation of the
important roles various parameters and processes play on ice force development. It can be
a useful starting point for the development of more complex approaches, and will be

examined in a greater detail in Chapter 9.

2.2.1.2 Nevel's Approach

In a three dimensional case when the zone of failure extends wider than the structure,
the failure occurs after the formation of radial cracks when a circumferential crack takes
place. Therefore, the simple beam theory has to be replaced by a more complicated plate

theory. and the ice force problem is reduced to the prediction of the forces necessary to:
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(1) Initiate radial or circumferential cracks in a semi-infinite floating ice sheet,

and

(i) Fail a series of truncated ice wedges, formed by radial cracking of the ice, as

it advances against the cone.

Nevel (1965) performed numerical integration to determine the bending moment
required to initiate failure of an semi-infinite floating ice plate. He treated the problem as
a semi-infinite plate on an elastic foundation with a load applied near the ice edge. The
maximum deflection which occurred at the edge under load, the moment which caused the
initial radial cracking of the plate, the distance from the edge at which a circumferential crack
would occur, and the moment that caused the circumferential crack were calculated and
given in graphical and tabulated forms.

If the failure was initiated by radial cracking, a series of truncated ice wedges would
form. and the subsequent failure was reduced to the prediction of forces necessary to fail

these wedges. Nevel (1972) gave the failure force P on the tip of a truncated wedge to be:

6P
b,or’

a a’?
= 1.05 + 2.0(—1:) - O.S(Z) 2-9)

where a is the distance from the tip of the wedge over which it is loaded, and b, is a constant

defining the width of the wedge, b, in the equation

b = bx (2-10)



with x being the distance along the wedge. His analysis compares favourably with published
data on the ultimate load carrying capacity of ice sheets.

Nevel (1980) further analysed the wedge on an elastic foundation subjected to an in
plane force and edge moment and he considered the buckling and bending of this wedge. An
exact solution was obtained by means of a contour integral in a complex plane. In general,
the solution shows that this additional moment is small because the deflection of the ice
wedge is small when failure of the wedge occurs. However, the effect of in-plane
compression becomes increasingly important for steeper cones and thicker ice.

Recently, Nevel (1992) refined the existing analytical theories and presented a
rigorous treatment of ice forces and moments on conical structures from ice floe. The new
theory included either simultaneous or sequential breaking forces and the ride-up forces. The
ice cover was treated as an idealized truncated wedge based on his earlier work (1980). Of
particular significance is the development of forces from ice sliding on the surface of the
cone. The analysis identified where the forces acted on the cone, and hence allowed the
determination of moments. Furthermore, the in-plane compression and edge moment were
incorporated in the solution.

In general, the cone could be multi-sloped, composed of a number of conical sections
with the vertical neck of the cone being the smallest section. For each broken ice piece, the
forces which act on the cone were determined along with those which were transmitted to
the broken ice piece below. The analysis proceeded from the neck section to the waterline
with a resultant ice load from the broken ice pieces acting on the floating ice wedges.
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To calculate the wedge failure load, Nevel used his solution for the deflection of a
wedge on an elastic foundation (Nevel, 1980) by considering the bending of a wedge beam,
with it's free end being acted on by a shear force, a bending moment, and a compressive
horizontal force. For sequential breaking, it was assumed that the maximum load on the
cone occurred when the centre wedge failed. Hence, the maximum force was the sum of
force from the wedge nearest the centre which failed and all other wedges that did not fail.
In simultaneous breaking, the breaking loads for all the wedges were summed.

A computer program was written which allowed sufficient variations of the input
parameters permitting the simulation of realistic ice condition. His solution was rather
complicated and too lengthy to be reproduced here and the reader is referred to the original

paper for full details (Nevel, 1992).

2.2.1.3 Ralston's Approach

Croasdale’s and Nevel’s approaches were based on the theory of elastic plate or beam
on elastic foundation. An analysis by Ralston (1977), was based on an elastic-plastic
representation of the ice failure. He used three-dimensional plate theory, and plastic limit
state analysis, where the work done by external forces was equated to the rate of energy
dissipation. The use of an upper-bound procedure of plastic limit analysis led to a
mathematical model for both sheet ice failure and ride-up on a conical structure. The derived

formulae for the horizontal F, and the vertical forces F, were expressed as follows:

(9]
(18]



F, = AJA0? + AjyD® + Ay «(D* - D)) (2-11)

F_ = BF_+ B,y uD* - D)) (2-12)

where D, and D were top and waterline diameters of the cone, respectively; A, and A,,

coefficients dependent on:

(2-13)

and A,, A,, B, and B, were coefficients dependent on the cone angle and ice friction. Values
for the coefficients were given in his paper.

In both the equations given above (Equations 2.11 and 2.12), the last term (on the
right hand side) is due to ice pieces sliding over the cone surface, and the other terms resuit
from ice breaking. According to observations, radial cracks occur before circumferential
cracks and not simultaneously. These circumferential cracks give the maximum assumed ice
loading condition. The elastic analyses of failure follow closely each stage of crack
development, while the simultaneous formation of the circumferential and radial cracks
assumed in Ralston's model is not realistic. Therefore, Ralston's plastic approach tends to
overestimate the bending resistance of ice. Maattanen and Hoikkanen (1990) modified
Ralston's solution to omit the contribution of energy dissipation due to radial cracking. This

result gave a better fit to their model test data and field measurements. Nevertheless,
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Ralston’s theory has been regarded widely to be satisfactory in predicting ice forces after

extensive comparisons with experimental data.

2.2.1.4 Maattanen's Approach

Full-scale measurements (Maattanen and Mustamaki, 1985; Hoikkanen, 1985) have
indicated that a rubble pile is likely to form in front of a conical structure. Previous scale
model tests and theoretical models do not consider the effects of pile-up.

Maattanen (1986) refined the analytical models by taking into account the effect of
the ice rubble pile on the bending moment distribution in the ice sheet in front of the
structure. The model is formulated using finite element methods capabie of both bending
and buckling analysis. A constant thickness ice sheet is moving laterally and breaking
against an inclined wall under a triangular shaped ice rubble pile. The rubble pile is treated
by using classical Coulomb's soil mechanics. The two dimensional model is based on the
bending theory of a beam on elastic foundation. The loading consists of horizontal and
vertical edge reaction loads and distributed vertical and horizontal rubble loads. Different
ice failure modes are considered.

Anexample calculation shows that the ice rubble pile loading enhances edge crushing
and shearing, changes the location of the maximum bending moment, and results in smaller
broken floes than predicted by previous models. With the same bending moment level the
ice load could increase by about 50% due to the ice rubble.

In a subsequent work, Maattanen and Hoikkanen (1990) extend the analysis to a three
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dimensional case. The beam theory is replaced by a more complicated wedge plate theory.
The new ice force calculation procedure is compared with results of full scale measurement
and scale model tests. The correspondence between the calculations and measurements

appears to be good.

2.2.2 Empirical Formulae

Empirical and semi-empirical formulae have been proposed based on small scale
model tests (Afanas'ev et al, 1971; Edward and Croasdale, 1976; Pearce and Strickland,
1979:. Brooke, 1981; Hirayama and Obara, 1986; and Kato, 1986). The total force was
customarily split into two components:

(i) The force essential for breaking the ice, and

(ii) The force necessary to cause the broken ice to slide up the surface.
Dimensional analysis has been the main tool in finding the form of equations. The
coefficients in each formula are then determined by linear regression analysis of data from
respective experiments. The empirical formulae are summarized in this section. The test
variables for each test data sets, and the coefficients of the respective formula are listed in

Table 2.1.

Afanas'evetal (1971) proposed the following empirical relationship based on elastic

plate theory:

F, = a,0of*tana 2-14)



where

“ = ToaL (2-15)

with S, being the length of the circumferential crack given as

S = l 6 -_— _l'-'
= ; + -

Their results give only the breaking component of the force exerted by the ice sheet.
Although this formula underestimates the force, the effects of ice strength, ice thickness, and
cone angle are clearly included and the trends seem reasonable.

Edwards and Croasdale (1976) performed a series of model tests on 45° cones with
a friction coefficient of 0.05. They dimensionally argued that the horizontal force F, on the

cone should be

F. =agp® + ayDt’ 2-17)

Ry

where a, and a, are constants. The first term is the ice force caused by ice breaking, and the
second term is the force generated due to ice riding up the structure slope. The ride-up force
component is a function of D and t*, while the breaking component is independent of the
width of the cone at waterline. The form of the empirical expression is similar to Ralston's

plasticity model except that the ice ride-up component contains Dt* rather than D*t. Ralston
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(1977) commented that if the ice clearing term was re-written in terms of D*t, the coefficients
would also be approximately those computed by his analysis for the test conditions. Data
from model tests showed reasonable agreement.

Pearce and Strickland (1979) claimed that the equation

F, =agot® + ayD% (2-18)

fitted their experimental data.

Brooks (198 1) adapted the general form of ice resistance equation for an ice breaking

ship to fixed, upward-breaking, conical structures as:

F,=agop® + ayD"t'? + a,yD*v? 2-19)

where V is the velocity of the ice. The first term is the ice breaking component, the second
term is the ice ride-up component. and the third term accounts for the inertia effects of the
moving ice sheet. Dimensional analysis yields relationships between the exponents in each
term of the equation. The coefficients, a,, a,, a,, and the exponents were determined from
a limited data set derived from model tests with a 45° cone. The test variables included
waterline diameter, ice flexural strength, ice thickness, and ice velocity.

Based on their model tests and several other published test data sets, and dimensional

analysis, Hirayama and Obara (1986) proposed the following formula:



-
LS

D 0.34 - l - 'Blana
F_= a"(ljt2 (—) + alYaDzz (L) (___.___._.,_....) (2-20)
4 D sing

¢

Their results agreed well with other published test data and with the theoretical results of
Ralston (1977). However, the data showed a slight dependency of ice breaking component
on (D/1,}, and such dependency was not observed in previous tests. Ralston explained that
the apparent discrepancy was due to the small values of (D/1,) tested by other investigators,
which was typically limited to a range of less than 0.5. When (D/]_) << 1, there will be no
dependence on the cone diameter.

Kato (1986) published the following empirical formula:

F, =agot® + a(D® - Dyt (2-21)

where the coefficients a, and a; were functions of cone configuration, coefficient of friction,
and relative velocity between ice and structure. Kato kept the friction coefficient between
ice and the structure at 0.09 in his model tests. Since the coefficients in the analytical
expression were also dependent on the friction coefficient, he commented that it was

necessary to investigate the dependency of these coefficients on the coefficient of friction.

2.3 MUN/ERCL/NRC Multi-Faceted Cone Tests
The experimentai work conducted by the author was carried out as part of a larger

project, entitled *“MUN/ERCL/NRC Multi-Faceted Cone Study”, a collaboration between
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Memorial University of Newfoundland (MUN), the National Research Council Canada
(NRC), Esso Resources Canada Limited (ERCL), Exxon and Mobil. As the major focus of
the collaborative program was on ridges, only limited amount of data were obtained for level
ice. Nevertheless, sufficient data on level ice were obtained from which valuable insights
were gained and further mathematical modelling was made possible. In Section 2.3.1, the
test program is briefly summarized, followed by a review of the findings contributed by other

participants of the program. Emphasis is given to the level ice tests as they form the focus

of the present study.

2.3.1 Test Program
The principal objectives of the collaborative program were:
(i) To understand how multi-year ice floes and ridges would interact
with a multifaceted cone; and
(i) To investigate the effects of ice-structure interaction and the
forces developed on faceted conical structures having the
diameter of the above-water vertical "neck” to be almost as
large as the waterline diameter.
Under the cooperative agreement, ERCL was responsible for the testing of two large
scale models (1:10 and 1:20) in their outdoor basin in Calgary. The test program for MUN
and NRC involved testing of small and a medium size models at NRC's indoor facilities -

a [:50 scale model at the Institute for Mechanical Engineering (IME) in Ottawa and 1:25 and
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1:50 scale models at the Institute for Marine Dynamics (IMD) in St. John's. With model tests
conducted in four different scales, the results of this program could be used to determine the
influence of any scaling effects on modelling ice-structure interaction as well as to provide
a good comparison of model ice results with those where "naturally grown" saline ice was
used, i.e., ERCL’s series.

The principal dimensions of the prototype and model structures are shown in Figure
2.1 and summarized in Tabie 2.2; the circumscribed diameters are given for base, waterline,
collar and neck dimensions. The dimensions are based on the geometry of several large
cxploration drilling structures designed for the Beaufort Sea. These concepts incorporate
sloping flat faces (facets) and wide necks above the ice waterline. The structure is a six-
faceted multi-angle cone having a circumscribed diameter of 115.5 m at the base, 30.0 m at
the waterline and 23.1 m at the neck. A similar structure with a 11.6 m wide neck was also
modelled to study ice interaction with cones having a smaller neck to waterline diameter
ratio. The number of sides was chosen to emphasize the effect of using a multifaceted
structure as distinct from a smooth cone. The slope of the sides, 5:6 or about 40°, was close
to that proposed for several exploration drilling structures. The steep 2:1 slope section
between the neck and the larger lower section was designed to prevent thick ice pieces from
jamming against the neck.

During the IME test, the model was elevated to give a larger waterline diameter to
increase the loads on the structure for reasonable accuracy of the measurement. This resulted

in a scale of approximately 1:30 at the waterline for IME's tests. IME's tests were carried out
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only with small-neck model, whereas both IMD's and ERCL's tests used both small and large
neck models.

The ice sheet used in the IME and IMD test series was made of EG/AD/S model ice
developed by Timco (1986), whereas saline ice was used in ERCL's test series. Flexural
strength of the ice sheet was measured using several insitu beams. In most of the tests, the
beam loads were measured by applying the load, both in the upward and downward
directions. The elastic modulus, ice density and friction coefficient were also measured
during all the tests except the IME series. Several measurements for the compressive and
shear strength were also carried out for IMD's tests.

The models in IMD's and ERCL's facility were tested in a face-on orientation in
which a facet was facing the approaching ice. Two additional orientations, edge-on and
intermediate, were also tested in [IME's series to examine the effect of orientation.

ERCL's series primarily focussed on ridge loads on structure. Data from the level
ice tests were limited in nature which prevented detailed parametric evaluation.
Nevertheless, ERCL's tests were performed in a much larger scale than the existing tank
experiments, and natural grown ice were used, which provided valuable data for ice force
model validation. On the other hand, IMD’s and IME's test series provided a substantial
amount of data in level ice under various highly controlled test conditions; hence they
provided valuable data for detailed parametric evaluation and process identification.

The measured ice properties along with the configuration of the test condition ineach

test for ERCL's and IME’s series are extracted from respective data report and reproduced
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in Appendix A for quick reference.

2.3.2 Analysis of IME’s Test Results

Rubble building is an essential part of the ice clearing process. Large amounts of
rubble accumulate in front of the cone, and impose substantial loading on the structure and
the intact ice sheet.

[zumiyama et al (1994) analysed the model test data obtained in NRC- IME's facility,
and provided quantitative information on the formation of the rubble field and its effects on
the ice torces. They identified four types of rubble formed in front of the faceted cone with
face-on orientation. A schematic of each rubble type is shown in Figure 2.2 with the
following description given after [zumiyama et al (1994):

0] A-Type:

When the ice was strong, the ice pieces were very large compared to

its thickness. The broken ice pieces would ride-up the model and fall off the

side of the facet readily. The rubble field that formed was smail.

(ii) B-Type:

This type of rubble field was commonly observed. To form this type
of rubble field, the ice pieces which fell from the top of the cone would roll
back down the front of the cone, and form a single-thickness rubble field as

a steady-state condition.



@iii) C-Type:

This type of rubble field was also quite common. It was similar to the

B-Type, except that the ice pieces broke up into many small pieces as they

rolled down the front of the model, when the ice strength was low. This

created a rubble field consisting of small ice blocks and crushed, mushy ice.

(iv) D-Type:

This type of rubble field was not common. It generally occurred when

the ice was both thick and strong, and large pieces of ice would pile up in

front of the cone.

The occurrence of various types of rubble was found to be a function of ice strength
and ice thickness. Figure 2.3 shows the occurrence of the different types of rubble in
strength-thickness domain.

The size of broken ice pieces played an important role in the rubble formation process
and the ice force exerted on the model. lzumiyama et al also performed a piece size analysis
with data from the IME series. They reported the average sizes of ice pieces at the neck, Ly,
and L, were directly proportional to the parameter, L = (6/Y,)", as shown in Figure 2.4.
The Ly and L, are defined in Figure 2.5.

[zumiyama et al also showed the ratio of the maximum ice force on the model, Fy,
to that in the no rubble condition, F;g, as a function of L/D, where D is the maximum
waterline diameter of the model (Figure 2.6). The effects of the rubble field on the ice force
were shown to be a function of ice piece size, ice strength and ice thickness. Based on their
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tests, the rubble can increase the ice load by a factor of 1.5 to 2.5.

2.3.3 Analytical Models

Croasdale et al (1994) and Izumiyama et al (1993) have developed ice force models
concurrently based on observations from the muiti-faceted cone experiments.

Croasdale et al (1994) compared his model with the experiments conducted in
ERCL’s outdoor test basin where ice rubble was present as shown in Figure 2.7. Their
model is reviewed in Section 2.2.1.1. The size of the rubble was estimated from
photographs. It should be noted that Croasdaie et al only developed a theory for single slope
cone structures, while the test structures were multi-sloped. The procedure by which he
adapted his theory to the multi-sloped cone was not provided. Despite a large scattering of
data at the lower measured load levels, his predictions agreed quite well with the
experimental data, and provided an upper-bound to the measurements.

[zumiyama et al (1993) extended Frederking and Timco's work (1985) on ice forces
on inclined panels, and developed a model for ice force exerted on a face-on oriented cone
with rubble present. By considering various force components on the ice sheet contacting

the facet at the waterline as shown in Figure 2.8, they identified the following component for

ice force:

F. =V, +V,+R+ (P + Rsina 2-22)

~

where F, is the total vertical force; Vg, the vertical force required to break ice; Vg, the force
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due to rotation of ice; R, the force due to the weight of ice rubble; and P is the force due to
the weight and friction of ice pieces on the facet. For further details about each individual
force components, please refer to their paper.

[zumiyama et al established the validity of their model under no rubble condition by
comparing their model predictions with the peak force in the initial portion of force time
series, where ice rubble was absent, as shown in Figure 2.9. The figure shows good
agreement between model prediction and measurements. Furthermore, the comparison
shows that the existing model treatment of the ice force on conical structures is applicable
to a faceted cone for the prediction of the ice breaking and ride-up forces, if the unique
geometry of the faceted cone is properly considered.

[zumiyama et al's model requires the vertical force R due to the weight of rubble to

be known. To estimate the values of R, [zumiyama et al introduced a rubble coefficient, Cg,

where:

R = Coyy, wi,t (2-23)

with w, being the width of facet at waterline; Y, weight density of ice; ¥,, weight density of
water; and |, the breaking length taken as half of the characteristic length. This rubble
coefficient gave the relative index to the volume of rubble ice field. They established the
relationship of the rubble coefficient as a function of ice thickness and strength by back-
calculating the coefficient of each test using their model (Figure 2.10). [zumiyama et al
pointed out the complexity of rubble modeiling, and the various factors affecting its
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formation. Although, a functional relationship was observed between the rubble coefficient
and the ice thickness and strength, the large scattering of data testifies to the complexity of
rubble piling, and further study and accumulation of data are needed.

[zumiyama et al’s and Croasdale et al's models were formulated based on a limited
set of test data. The functional relationships of the rubble geometry, ice mechanics, and
clearing process to the basic ice and structure parameters had not been adequately
established. The lack of such relationships from models severely limited their applicability
to a wider range of ice and structure conditions. Despite the over-simplification of the
interaction process, both models have clearly identified the interaction between the important

force components, which may form the basis for future model developments.

24 Comparison of Models and Discussions

Many of the empirical formulae reviewed so far take a common form:

F.=aop® + ayD™ (2-24)

X

where the coefficients a, and a, are functions of structural shape, coefficient of friction and
relative velocity. Since it is considered that the breaking component is due to bending which
relates to a factor of o, t*, and the ride-up component relates to a weight of ice mounted on
the structure, the form is reasonable.

The fundamental limitation of the empirical formulae has been that they have
modelled only a particular situation and hence cannot be extended to other situations. This
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limitation leads to a wide range of values obtained for the respective coefficients. As shown
by Croasdale (1980) and Chao (1992), a substantial variation of force prediction still exists,
and a conclusive confirmation of the empirical approaches has not been reached.

Most analytical models for forces on a conical structure have calculated either F, or
F,, and used the resolution factor, &, to calculate the other force component, i.e., Equation
2.1. The resolution factor is theoretically derived for a sloping plane; and, therefore, it
would hold for forces on an inclined plane only. For a cone local ice failure and deflection
of the sheet distributes the force around the circumference. Bercha and Danys (1975) have

shown that if F, is uniformly distributed around the front half of the circumference, then the

ratio of the net forces obtained by integrating the respective force distributions around the

circumference is given by

€ =

Al

3 (2-25)

Thus, the value of the resolution factor depends on the distribution of the forces around the
cone. Lau and Williams (1991) have shown that such consideration is vital in the
interpretation of experimental data.

All analytical models and empirical formulae reviewed so far essentially describe
quasi-static behaviour in which the inertial loads are low enough to be neglected. Results
from many model tests (Haynes et al, 1983; Wessels, 1984; Maattanen, 1986; and Lau and
Williams, 1991) have shown a speed effect on failure mode and ice force, and it is widely
recognized that a static analysis may not suffice to explain the dynamic effect.
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The influence of shear stresses on determining failure modes becomes more
important with increasing ice thickness. Since the existing theories are formulated by
assuming pure bending failure using classical theories of thin beam or plate on elastic
foundation with the shear stress across ice thickness being ignored, the validity of these
formulae in predicting failure of thick ice may be questionable. Furthermore, failure modes
other than bending may dominate under certain indentation conditions.

Limited field measurements of ice loads on conical shaped bridge piers and
lighthouses have been made and reported in the literature (Danys and Bercha, 1975; Alberta
Research Council, 1980; Oshima et al, 1980; Hoikkanen, 1985; Frederking et al. 1985;
Maattanen and Mustamaki, 1985; Frederking et al, 1992; Maattanen, 1994; Cheung, 1997;
Brown et al, 1998). The ice failure mode observed was usually different from existing
theoretical and experimental models. It was also observed that a rubble pile is likely to form
in front of a conical structure (Maattanen and Mustamaki, 1985; Hoikkanen, 1985). This
large amount of rubble, accumulated in front of the cone, imposes substantial loading on the
structure and the intact ice sheet. An ice clearing component as much as 80% of the total
load on the structure has been measured in the work described in this thesis. Previous model
tests and theoretical models do not consider the effects of pile-up. Omission of such factors
in those analytical and empirical formulations might have severely underestimated the ice
forces.

The foregoing review of past research shows that the most general and advanced

analytical theories available at present have the theoretical weakness of application limited
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to thin ice, small resolution factor and low interaction speed in which pure bending failure
is dominant. They are also limited to the initial stage of the interaction before any significant
rubble piles up around the cone. However, the prevailing practice of component delineation
according to the two dominant interaction phenomena, i.e., ice breaking and ice clearing, is
consistent with the currently available experience of ice loads on conical structures.

Preliminary analysis of results has been reported (Croasdale and Muggeridge, 1993)
in which reasonably good agreement has been found between forces measured from the
faceted cone tests and those computed using the existing theories for smooth cones. It now
appears that this agreement is accidental since the ice clearing pattern is totally different from
that postulated in the smooth cone models.

The present state of rubble modelling as exhibited by the two models formulated
concurrent to this research, i.e., [zumiyama et al (1993) and Croasdale et al (1994), shows
two weaknesses:

(1) The rubble geometry was highly uncertain. The existing models select rubble
height on the basis of limited observations from tank tests. The dependency
of rubble geometry in ice and structure parameters has not been formulated
which limits use of the models to a narrow range of ice and structure
conditions.

(i1) The stress-state of the rubble is highly uncertain. The assumptions and
simplifications with regard to the state of the rubble may not be valid which

can cast doubt on the validity of the treatment. Information on the stress-state
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of the rubble is fundamental to rubble modelling.
In the subsequent analysis of the experimental data and the numerical analyses
developed for ice load computation, an effort is made to improve the modelling procedure

and thus remove those limitations.
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Table 2.1

Test conditions of each data set used in model formulation and coefficients of the associated formula

Cone Cone Neck Ice Flexural Ice Friction lce‘
_ . ) L i Velocity | a,, a, and
Test Angle | Waterline | Waterline | Thickness | Strength | Modulus | Coeff. v o d'
o () D (cm) D, (cm) t (cm) o, (kPa) | E (MPa) n () (cmy/sec) 2
Afanas'evetal | 3045, a, Eq.
- - - 2 ; p 0
(1971) 60 12-18 9.7 30-35 | 37-40 294 n.a. n.a. 515
Edward & @ =16
Croasdale 45 | 25-100 0 17-68 | 1-41 | na. 0.05 na. | * 0
(1976) W=0
Pearce &
Strickland 45,60 73.7 489 1.3-99 13.8 6.9 n.a. 1.27 n.a.
(1979)
= 0,285
, 63.5 - 3.56 - 10.3 - =L
Brooks (1981) 45 102.6 n.a. 5.02 273 ~7.5 n.a. A8-1.09] a =547
a,=797
Hirayama & 104 - 35- . ) a,=243
Obara (1986) 50 - 80 375 4.0-30.5 | 0.65-3.1 | 27-710 2000 n.a. n.a. a =07
34.2 -
Kato (1986) 45 - 80 34.9 14 - 29 20-50 10- 40 n.a. 0.09 n.a, n.a
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Table 2.2 Prototype and model geometries: symbols given in Figure 2.1
Prototype ERCL-Esso Basin NRC-IMD I\IIISI(];
Dimension 11 !arge 1:10 large | 1:10small | 1:20 large | 1:25 large | 1:25 small | 1:50 Jarge slmf;(l)l
neck (m) neck (m) neck (m) neck (m) neck (m) neck (m) neck (m) neck (m)
Base, a 115.5 7.75 1.75 1.75 3418 3418 3418 1.84
Waterline™”, b 34.65 3.465 3.465 1.74 1.386 1.386 0.693 1.15
Collar, ¢ 30.0 30 3.0 1.50 1.201 0.739 0.601 0.60
Neck, d 23.1 2.31 1.155 1.155 0.924 0.462 0.462 0.23
Height 1, e 29.2 1.667 2.083 1.708 0.800 0.966 1.016 0.58
Height 2, { 1.67 0.167 0.583 0.084 0.067 0.233 0.033 0.333
Height 3, g 6 0.6 0.6 0.30 0.240 0.240 0.120 0.134
Height 4, h 20 1.4 1.0 1.00 0.800 0.400 0.400 0.197
Note: “The base width was not modelled in model scale

“The waterline of NRC-IME’s model was modelled in 1:30 scale
All diameters are corner to corner




-

21 |

5:6 / // ’

as

(9]
,

Figure 2.1 Test structure geometry. All diameters are corner to corner; and all slopes
are of facet centres, given as a ratio of vertical to horizontal.

Figure 2.2 Rubble field types (after [zumiyama et al, 1994)
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Figure 2.3

Figure 2.4

150 .

T T
. A-T 8 A-Type
Mostly A-Type o e ® B-Type
e —_ a 4 C-Type
// O D-Type
< 7/
& wob / e _
& /
g |/
-] / o®
5] ] B- and C-Type
[ .
3
E, S0 L ¢ ® ° -
o . a °
® //‘ ® A a T ~ -
Mostdy C-Type <8
1 1 L
20 30 40 S0 60
Thickness, mm

Rubble types in strength-thickness domain (after [zumiyama et al, 1994)

SC0

300

200~

L,andLl,, mm

('c(t/Yw )°-5' mm

Piece size, Ly and L, versus the parameter, (ct/y, )", for IME's tests

(after Izumiyama et al, 1994)

44



ice sheet

Figure 2.5 Figure showing the definition of ice piece size, L, and L_ (after
[zumiyama et al, 1994)
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Figure 2.6 Increase in total load due to rubble (after [zumiyama et al, 1994)
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Figure 2.7 Comparison of Croasdale et al's model with tests in ERCL’s series (after
Croasdale et al, 1994)
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Figure 2.8 [ce forces treated in Izumiyama et al’s model (after Izumiyama et al, 1993)
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Figure 2.9 Comparison of [zumiyama et al’s model with tests in IME’s series where
ice rubble was absent (after [zumiyama et al, 1993)
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Figure 2.10  Rubble coefficient as a function of ice thickness and ice strength derived
from IME’s test data (after [zumiyama et al, 1993)
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Part I The Experiment

Chapter 3 Test Program

Part I documents the results of the experimental investigation conducted in IMD’s
test basin and the additional data analyses. As a part of this task, the results from all three
test series were consolidated and analyzed. The test results were put into a spread-sheet
containing relevant ice and structure conditions, ice forces and the associate failure
processes. The available video recording made for each test was examined to identify the
interaction processes and the corresponding failure mechanisms associated with each test
condition. The influence of various parameters on ice loads and the associated failure
processes were assessed through the parametric evaluation. The parameters considered
include ice advancing speed, structure orientation, ice strength and thickness. The loads
measured in the three test series were compared with predictions from a leading force
prediction algorithm. The discrepancies found indicated a necessity for further model
development.

Through detailed analysis of the dominant interaction processes and the associated
force levels under a wide range of test conditions, answers to the following three questions
were sought:

(1) Was there any similarity or otherwise between the faceted and smooth cones,

in terms of interaction processes and the associated force levels?
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(ii) Do the existing models provide satisfactory predictions of the model test

measurements?

(ili)  What additional underlying processes are generated due to the new cone form

that would be needed to improve the model prediction?

The test program conducted in IMD has been documented in Lau et al (1993b). In
this chapter, the test program is briefly described. It should be pointed out from the start that
the test program conducted in IMD is unique. It ventured into two new areas: Structural
shape and ice thickness regime. Firstly, the inclined facet obstructed the clearing of broken
ice. leading to rubble pile-up (rubble pile up was not observed in previous model tests with
smooth cones). Secondly, the advance in ice modelling techniques and the increase of model
basin size permitted testing in ice up to 0.16 m thickness without compromising scaling,
adequate run distance and boundary conditions. The ice thickness of 0. 16 m targeted in these
tests increased the ice thickness regime to about two times beyond those previously
attempted with cones. Tests in thick ice led to ice breaking patterns different from those
observed from previous tests conducted in thinner ice. The above two characteristics are new
for such tests, and will be examined in detail in the following chapters.

A brief description of the test facility, test structure, instrumentation, data acquisition
system, and the model ice is given in Section 3.1 to 3.3. The test matrix and results are

documented in Sections 3.4. Emphasis is given to level ice tests only.
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3.1 Test Facility and Structure

The model tests were carried out in the ice tank at the Institute for Marine Dynamics
(IMD), St. John's, Newfoundland (Jones, 1993). The ice testing basin was 96 m long, {2 m
wide and 3 m deep with a useable ice sheet length of 76 m. The main towing carriage,
weighing 80,000 kg, had a speed range of 0.001 m/s to 4.000 m/s with an accuracy of 0.1%.
The computer for the drive control and the data acquisition system were housed in the
thermally insulated control room on the carriage.

The experimental set-up is shown in Figure 3.1. The structure was tested at two
scales, 1:25 and 1:50, with a large neck, and additional tests were performed in 1:25 scale
with the smaller neck. Dimensions of the three model configurations are shown in Figures
3.2 t0 3.4. The model was designed in modules to allow the scales and neck sizes to be
easily changed. The main component of the model is the lower cone structure to which
various necks and collars could be attached to facilitate these changes. The model was
constructed of 1/4" thick marine grade aluminum plates welded to a rigid frame of 2" x 4"
aluminum channels. The model surface was finished to a friction coefficient, W, of 0.09.

The model was rigidly mounted to the underside of the ice tank carriage through a
specially designed towing post constructed from 12" x 12" x 12" steel box beam. The cone
and the neck sections were instrumented separately to measure the forces and moments about
the three major axes.

For each cone, an insitu dynamic test was performed to measure its natural
frequency. Analysis of the force signals showed two dominant frequencies of the set-up at
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about 3 and 11 Hz (Lau et al, 1993b).

3.2  Instrumentation and Data Acquisition System

The global load measuring system consisted of a series of 3 six-component load cells
placed between two steel plates as shown in Figure 3.5. The upper plate was attached to the
tow post and the model was rigidly secured to the lower plate. To enhance the system, the
load cells were rigidly fixed to one plate by hemispherical bearings while the other plate was
secured by a bolted connection. The installation of these bearings resulted in a significant
reduction of residual moments on the transducers and the system was capable of measuring
the loads to within an acceptable error range (2% and 5% for forces and moments,
respectively).

One AMTI model SRMC8-6-20000 and two AMTI model SRMC8-6-10000 six
component load cells were used in this configuration. The forces and moments were
resolved to a global X, Y, Z coordinate system shown in Figure 3.6. The origin of the global
coordinate system was located along the centerline of the cone at the water level. The X-axis
was positive in the direction of ice motion, the positive Z-axis was directed vertically
upwards, and the direction of the Y-axis was such that X, Y, Z formed a right handed
coordinate system.

The loads on the neck were measured by one or two AMTI model SRMC6-6-4000
six-component load cells rigidly mounted between the lower cone and the neck. The 1:25
large neck model was equipped with two dynamometers; while, both the 1:25 small neck
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and 1:50 large neck models were fitted with only one of the dynamometers. The load cell
configuration for these models are shown in Figures 3.7 and 3.8. Using the known geometry
of the system, the forces experienced by the neck were resolved to the global origin of the
model.

Accelerations of the model in the three principle axis were measured using three
Systron Donner accelerometers and the deflection of the tow post and the model were
measured by two Schaevitz linear voltage displacement transducer during tests.

A schematic arrangement of the data acquisition system is given in Figure 3.9.
Excitation for the transducers was provided by the NEFF System 620 Series 300 signal
conditioner. The transducer outputs from the load cells and the LVDT's were filtered by a
10 Hz analog low pass filter and digitized at a rate of 50 Hz whereas the accelerometer
outputs were filtered by 100 Hz and digitized at a rate of 200 Hz by a NEFF System 620
Series 100 amplifier/multi-plexer and stored in a Vax 11/750 computer for analysis. The
analog outputs of the transducer were recorded by a KYOWA RTP-600B 14 channel tape
recorder, to allow examination of the high frequency components of the signals.

Video recordings were made of all tests using four colour video cameras which
provided overhead, sides, and underwater coverage. The video recordings were synchronized
with the data acquisition system, with an accuracy of 0.5 second. Significant ice events were

also documented in the form of 35 mm colour prints by a number of still cameras.

3.3 Model Ice

The experiments were carried out using EG/AD/S model ice. The structure and
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properties of this ice are described in Timco (1986). The ice growth process and the ice
formation modelled that of full scale sea ice, giving a realistic vertical distribution of
mechanical properties. The percentage concentrations of EG/AD/S for the present test series
were 0.39/0.036/0.04. Density of the ice, p, was 920 kg/m’. For each ice sheet, flexural
strength, 6, was measured frequently throughout the test period. The values reported at test
time were interpolated from the strength versus time curve for the ice sheet. Both downward
and upward breaking flexural strengths were measured. Typically, the upward breaking
flexural strength, G;,, was about one half of the downward breaking strength, 6. The
effective elastic modulus, E, was determined from deflections of ice plate under a given load
(Sodhi et al. 1982). The ratio of elastic modulus to upward breaking flexural strength, E/o,,
ranged from 4000 to 12000. The reported ice thickness, t, was the average over
approximately 30 measurements for the ice sheet with a standard deviation of 2.5%. Other
properties, including compressive strength, 6., shear strength. 6, ice-cone friction and ice

density. were also measured. The procedures for producing and characterizing level ice

sheets are described in detail in Lau et al (1993b).

3.4  Test Matrix and Presentation of Results

The test matrix with details of the test program are given in Table 3.1. It was
developed to accommodate the testing of two scales (1:25 and 1:50) of model, two sizes of
neck at one scale (1:25), and a variety of sheet ice strengths and thicknesses over a five week

period. The models were tested in the face-on orientation.
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A total of 18 tests were conducted in 5 ice sheets. In each ice sheet, level ice tests
were performed at model velocities of 0.01 m/s, 0.04 m/s and 0.06 m/s to assess the effect
of different interaction rates. The ice conditions for each test run are summarized in Table
3.2. A number of tests (MUNCONE3, MUNCONE4 and MUNCONE7) were conducted
over a period of two days to obtain variation of ice strengths.

For the first run of each test, the ice pile in front of the structure was cleared away to
permit the ice to come into full contact with the front perimeter of the cone at waterline. A
run distance of 3 m was required for the test to reach a quasi-steady state. To speed up this
process in subsequent runs, the rubble built up from the prior run was not cleared from the
model prior to the start of the run.

In Figure 3.10 the test matrix is plotted together in full scale with the matrices of
ERCL's and IME's test series to facilitate cross comparison among tests performed in the
three tanks. Only the tests with a face-on orientation were plotted together, since they were
the only orientation tested in all three tanks. In IME, the model was built at 1:50 scale but
tested in the scale of approximately 1:30 at waterline. Since the effective waterline width
of the structure is an important parameter affecting the ice loads, the data were scaled up by
a factor of 1:30 according to the cone's waterline. It should be noted that the neck diameter
must also be scaled accordingly, i.e.. inscribed neck diameter is equal to 6 m in full scale.

The test data were analysed and plotted in the form of time-traces for the following
parameters:

(i) three global force components; and

(i) three neck force components.
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The plots tor the individual tests are presented in Appendix B.

The time series for the tests MUNCONE3 to MUNCONES®6 were digitally filtered
with an upper cut-off frequency of 2.75 Hz before plotting. During test MUNCONE?7, the
intact ice sheet rode up onto the collar resulting in failure of the ice in high frequency.
Hence, the time series were not digitally filtered in order to retain the high frequency
interaction data.

The sheet ice test results are summarized in Tables 3.3. Basic statistical analyses
were performed on the time series of the measured forces. Only the steady state portion of
the force records was analysed and plotted.

The mean peak forces were determined by finding up-crossings of the time trace
above a reference level equal to the mean of the data plus one standard deviation. The
maximum value between this point and the next down-crossing of the same level was
designated a peak. The mean peak force was the mean of the above peaks. In Figure 3.11
the mean peak horizontal and vertical forces are plotted against mean force plus one and a
haif times standard deviation. The correlation is good except for the tests where the shear
type failure occurred (not included in Figure 3.11). Thus, the peak forces for this test series
can be estimated as one and a half times the standard deviation above the mean of the force

record.
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Table 3.1

Test matrix for level ice tests in IMD's series

Test M t Ot E
(cm/s) (cm) (kPa) (MPa)

TEST MUNCONE3; MODEL.: 1:25S; SHEET NO. |

001 1 15.8 444 383

002 6 15.8 441 383

003 4 15.8 43.6 383

005 4 14.8 294 164
TEST MUNCONE4; MODEL: 1:25L; SHEET NO. 2

001 1 16.0 41.1 389

002 6 16.0 40.6 389

003 4 16.0 404 389

006 4 16.4 19.7 188
TEST MUNCONES; MODEL.: 1:25L; SHEET NO. 3

001 l 9.5 30.7 156

002 6 9.5 30.2 156

003 4 9.5 299 156
TEST MUNCONE6; MODEL: 1:25L; SHEET NO. 4

002 4 12.4 225 120

003 \ 12.4 22.5 120

004 6 12.4 22.5 120
TEST MUNCONE?7 ; MODEL.: 1:50L; SHEET NO. 5

001 1 16.0 33.7 524

002 6 16.0 33.2 524

003 4 16.0 32.8 524

006 4 16.3 18.7 236
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Table 3.2 Summary of ice conditions for each test

t
t O, Ogy

p
Test (cm) (kPa) (kpa) Ejofd OJ ord 0\'/ ot‘d (Egmg) My

MODEL: 1:25S; SHEET NO. 1

MUNCONE3_001 | 158 | 444 79.8 | 4810 | NA NA 916 0.11

MUNCONE3_002 | 15.8 | 44.1 79.4 | 4810 | NA NA 916 0.11

MUNCONE3_003 | 158 | 43.6 78.7 | 4810 | NA NA 916 0.11

MUNCONE3_005 | 14.8 | 294 424 |3796 | NA NA 921 0.09

MODEL.: 1:25L; SHEET NO. 2

MUNCONE4_001 | 16.0 | 41.1 747 |5212 | 5.2 1.5 914 0.09

MUNCONE4_002 { 16.0 | 40.6 73.5 | 5212 | 5.2 1.5 914 0.09

MUNCONE4_003 | 16.0 | 404 729 |5212| 5.2 1.5 914 0.09

MUNCONE4_006 | 164 | 19.7 39.0 | 4615 | 5.2 1.8 923 0.09

MODEL.: 1:25L; SHEET NO. 3

MUNCONES_001 | 9.5 30.7 434 | 3002 | 49 2.1 928 0.09
MUNCONES_002 | 9.5 30.2 41.6 | 3002 | 4.9 2.1 928 0.09
MUNCONES_003 | 9.5 29.9 40.8 13002} 49 2.1 928 0.09

MODEL: 1:25L; SHEET NO. 4

MUNCONEG6_002 | 124 | 22.5 360 3213} 54 1.9 919 0.08

MUNCONE®6_003 | 124 | 22.5 354 3213 | 54 1.9 919 0.08

MUNCONEG6_004 | 124 | 225 35.1 | 3213 | 54 1.9 919 0.08

MODEL.: 1:50L; SHEET NO. 5

MUNCONE7_001 | 16.0 | 33.7 70.2 18494 | 38 1.7 918 0.08

MUNCONE7_002 | 16.0 | 33.2 69.7 | 8484 | 3.8 1.7 918 0.08

MUNCONE7_003 | 16.0 | 32.8 69.3 | 8494 | 3.8 1.7 918 0.08

MUNCONE7_006 | 16.3 | 18.7 428 | 5383 | 4.7 1.5 920 0.08

Note: ! g, - bottom in tension; G, - top in tension
fu fd
All tests run in face-on orientation.
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Table 3.3 Summary of level ice test results

GLOBAL GLOBAL NECK
HORIZONTAL VERTICAL HORIZONTAL
FORCE (kN) FORCE (kN) FORCE (kN)
Test Max | Mean | StDev | Mean | Max | Mean | StDev | Mean | Max | Mean [ StDev | Mean
Peak Peak Peak

MUNCONE3_001 452 { 378 | 0351 429 | 546 1 470 | 041 | 530 | 0.60 | 0.23 | 0.12 | 047
MUNCONE3_002 508 | 418 | 052 | 494 | 606 | 497 | 055 | 5.72 | 049 | 0.21 | 0.09 | 0.39
MUNCONE3_003 532 | 433 | 050 | 505 | 6.65 | 567 | 0.51 | 637 | 051 | 0.20 | 0.09 | 0.38
MUNCONE3_005 342 | 293 ] 025 | 323 | 422 | 387 | 022 | 4.18 | 036 | 0.19 ] 0.05 | 0.29

MUNCONE4_001 525 | 431 | 045 | 501 | 537 | 433 1039 | 472 | 033 ] 0.19 | 005 | 0.29
MUNCONE4_002 627 | 502 | 058 | 591 | 657 | 549 | 059 | 633 | 040 | 0.27 | 005 | 0.37
MUNCONE4_003 654 | 509 | 06! | 601 | 694 | 581 | 060 | 6.74 | 048 | 033 | 0.04 | 04]
MUNCONE4_006 508 | 4.17 | 045 | 496 | 507 | 450 | 0.31 | 486 | 031 | 0.16 ] 0.01 ] 0.26

MUNCONES_001 216 { 1.78 | 013 1 195 | 2.17 | 1.82 | 0.15 | 198 | 0.10 | 0.05 | 0.02 | 0.09
MUNCONES_002 238 1 1851023 | 227 | 335 189 | 024 | 249 | 021 | 0.12 | 0.05 | O.15
MUNCONES5_003 225 1 177 1 0.18 | 204 | 226 | 1.83 ] 0.18 | 2.15 | 0.21 | 0.14 | 0.01 } 0.16

MUNCONE6_002 308 § 265 | 0.21 | 295 | 328 | 282 | 0.19 | 3.14 | 0.25 | 0.18 | 0.02 | 0.22
MUNCONE6_003 296 | 256 | 0.17 | 281 | 3.16 | 285 | 0.13 | 3.06 | 021 | 0.12 | 0.02 } 0.16
MUNCONEG6_004 326 | 274 | 0.19 | 306 | 346 | 3.02 | 0.14 | 327 | 0.19 ] 0.13 | 0.02 | 0.17

MUNCONE?7_001 886 | 687 | 141 | 851 | 410 ] 243 | 046 | 340 | 098 | 0.54 | 0.14 | 0.82
MUNCONE7_002 999 ) 592 | 134 | 843 | 580 | 343 | 0.78 | 486 | 1.01 { 050 | 0.15 | 0.80
MUNCONE7_003 1040 678 | 1.44 | 905 | 556 | 341 | 0.76 | 479 | 098 | 0.54 | 0.14 | 0.82
MUNCONE7_006 634 | 403 | 0.65 | 545 | 3.66 | 257 | 036 | 3.16 | 097 | 042 | 0.12 | 0.66

Note: Horizontal - (+) toward the model; Vertical - (+) downward
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Figure 3.3 Dimensions of the 1:25 small neck model. All diameters are corner to
corner; all slopes are of the facet centres and given as a ratio of vertical to
horizontal. All dimensions in millimetres.

Figure 3.4 Dimensions of the 1:50 large neck model. All diameters are comer to
comner; all slopes are of the facet centres and given as a ratio of vertical to
horizontal. All dimensions in millimetres.
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Lower Load Cell Plate

AMTI MC8 Load Cell

Figure 3.5 Global load measurement assembly

Figure 3.6 Orientation of global coordinate axes with respect to the mode! structure
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Figure 3.7

Figure 3.8

™\— Vertical Neck

AMTI MC6 Load Cell

Attachment to Lower
Cone

Neck load cell arrangement for the 1:25 large neck model

Load Cell

Attachment to
Lower Cone

Neck load cell arrangement for the 1:50 large neck and 1:25 small neck
models
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Chapter 4 Analysis of Tests

The ice failure and clearing processes around a faceted cone, in a quasi-steady-state
ice breaking, have been identified for each test for the IMD's and IME's tests. Most tests in
ERCL's series were performed with an ice sheet typically shorter than two characteristic
lengths in the direction of ice motion, resulting in a significant end effect. Ice pieces were
typically very large, and most of the runs were stopped before a quasi-steady-state interaction
was achieved. The breaking and the subsequent clearing of ice were complex. Nevertheless,
the breaking and clearing patterns were similar to those observed in the early stage of the ice-
cone interaction observed in tests from other tanks.

Information on the ice breaking patterns. i.e., crack imprint and piece size. is of vital
importance in the interpretation of the test results. The dominant failure modes, which are
generally difficult to discern, can be inferred from the crack imprint and the resulting broken
ice piece size. The crack pattern and piece sizes are also important in determining the
subsequent interaction process, i.e., the manner in which the ice rides up the structure and
the subsequent nature of the rubble pile-up, and the ice force on the model. In this work,
piece size analyses were conducted using video recording of the multi-faceted cone
experiments. The factors influencing the piece sizes were examined, and the relationship
between ice piece size and the ice thickness and strength was established. The results were
compared with previous model test data and the findings of [zumiyama et al (1994).

An important aspect of the model tests is the observation of a rubble pileup in front
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of the faceted cone models. The influence of a rubble buildup in the MUN/ERCL/NRC
multi-faceted cone experiments is addressed with emphasis on tests conducted in IMD’s
tank. The analysis provides further insights into the formation process of ice rubble, and the
effects of important ice-structure interaction parameters on rubble geometry during steady-
state ice rubble clearing.

The latter part of this chapter documents the results of ice force analysis carried out
on the three test series with the focus given to the IMD’s test data. The steady-state portion
of the load trace of each test was analysed, and the ice breaking and clearing components of
the total ice force were identified. The consistency of data among the three test series was
assessed using a semi-empirical formula developed from IMD's series. Measurements from
all tests were then compared with predictions from a leading theoretical ice force model,
developed for smooth cones, to assess the validity of existing models for predicting ice loads
on a faceted cone.

Section 4.1 gives a summary of the dominant features of ice structure interaction and
the various failure processes observed from tests conducted in the three model basins. The
process consists of three major components: namely the ice breaking mechanism, the ride-up
process and the ice rubble formation process. Main features associated with ice breaking
mechanism and rubble formation process are further analysed and discussed in Sections 4.2
and 4.3, respectively. Section 4.4 presents the general aspects of the ice load, including the
load distribution and the ratio of horizontal to vertical forces, and the ratio of neck to global

forces. Section 4.5 presents the semi-empirical formula, and examines the data consistence
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among the three test series. A comparison of the test results with Nevel's model is given in
Section 4.6. Section 4.7 summarizes the results obtained from Part I of this investigation.

A conceptual model is proposed, which forms the framework for Parts I and Part I of this

study.

4.1 Ice-Structure Interaction and Failure Processes

The interaction process with faceted cones was similar to that observed from previous
tests with sloping structures as shown in a series of snapshots during a typical test run (Figure
4.1). The failure mechanism was typically governed by the flexural stresses induced in ice
in both radial and circumferential directions due to bending of the ice sheet. For a faceted
cone with a face-on orientation, a pair of radial cracks initiated from the two edges of the
front facet, forming a series of three truncated wedges upon initial contact. The two side
wedges forced against the facets on the two respective sides, and a central wedge pushed
against the front facet. A radial crack also started from the centre of the front facet in most
of the IMD tests

Upon further advance of the ice sheet, circumferential cracks developed and wedges
of ice broke off. The front wedge slid up the front facet, over the collar and neck, reaching
the top of the structure, and fell back onto the advancing ice sheet resulting in a rubble pile-
up in front of the cone, interfering with the ice-breaking process. On the other hand, the side
wedges slid up the side facets and cleared around the cone without difficulty.

In the case of thinner and weaker ice used in IME’s series, in sliding up the front
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facet, the ice which was overhanging the sides of the inclined plane usually broke off due to
its own weight, and slid around the side facets. In IMD’s tests, such secondary breaking did
not occur due to the stronger and thicker ice used. Instead, the ride-up ice formed a shielding
wall effectively increasing the width of the front facet to a width slightly wider than the facet
width at the waterline (Figure 4.2). This increase substantially facilitated rubble piling. The
build up of rubble pile continued until a quasi-steady ice clearing process was achieved with
a constant number of ice pieces accumulated in front of the cone.

If the cone was oriented in an edge-on mode, the rubble pileup did not occur due to
the absence of a flat face perpendicular to the oncoming ice movement. Typically, a radial
crack initiated from the frontal cone edge and propagated along the centerline. This resuited
in two truncated wedges, with the two wedges forcing themselves against the facets on the
two respective sides. With the advance of the ice sheet, the truncated wedges failed, rode up
the front facets, over the collar and neck, and cleared around the cone without difficulty. A
quasi-steady ice clearing process was achieved with a constant breaking and clearing of ice.

The profile of the crack patterns associated with the two orientations is shown in
Figure 4.3. The circumferential cracks run at a distance from the cone perimeter with a given
characteristic length resulting in cyclical ice loading (Figure 4.4).

For the cone with a small freeboard, i.e., IMD's 1:50 scale model tests, the intact ice
sheet rode up onto the collar and was caught by the transition of the collar and the cone
before any circumferential crack could form. The loading geometry resulted in the failure

of ice in shear mode, with failure occurring along the grain boundaries of the columnar
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model ice. Small chips of ice broke off from the intact ice sheet and extruded from the cone
resulting in high frequency cyclical loading (Figure 4.5).' The channel formed by the model's
passage appeared very regular at the approximate width of the collar diameter. Piles of
extruded ice were formed on either side of the channel. The ice chips cleared around the
neck with only a small pileup.

QOccurrence of the shear mode of failure was determined by whether the ice sheet
reached the cone-collar transition before it failed in bending; hence the failure mode was
very sensitive to the ratio of the effective modulus to the flexural strength, E/c,, of ice. The
extrapolation of the results to full scale should be cautioned since the E/g; ratio of the model
ice typically may vary from as low as 500 to 2000, much smaller than the full scale values
measured in the field (which are of the order of 5000); hence the maximum deflection at
failure in the field as predicted from model tests is correspondingly higher than expected.
For example, Keinonen et al (1993) compared the properties and behaviour of field ice and
EG/AD/S model ice by performing field and model wedge breaking tests and found the
deflection of ice predicted from model tests to be between 3 and 10 times higher than basic
elastic deflection measured in the field for the test velocity of 5 cm/s due to the excess
plasticity of the EG/AD/S ice at low loading rates.

Other failure modes of the ice sheet were also observed. For example, for thin and

"Tests MUNCONE4_003 and MUNCONE7_006 were tested with the same ice speeds
and run distances.
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weak ice used in the IME’s test series, bearing failure of the ice sheet occurred before a
significant amount of ice piled up in front of the cone, due to the weight exerted on the
unbroken ice sheet by the broken ice pieces, as they were being pushed up the cone surface.
Once a bearing failure occurred, ice pieces got jammed between the structure and the
oncoming ice sheet, leading to complex contact geometry. After that, the cone experienced
a short period of non-steady state loading. The occurrence of this failure mode as a function
of ice strength and thickness is shown in Figure 4.6. This type of bearing failure did not

occur for test conditions targeted in IMD’s test series.

4.2 Ice Breaking Mechanisms

Different model geometries and ice regimes result in a variety of failure patterns as
discussed in the preceding section. In Section 4.2.1, the breaking patterns observed in the
IMD’s 1:25 scale model tests are further examined. Special attention will be given to the
cracking mechanism during steady-state interaction process for obvious reasons. Section
+.2.2 gives a comprehensive analysis of the broken pieces as observed in the present test

series as well as the previous tests. The analysis points to the need for further studies in this

area.

4.2.1 Breaking Pattern Observed in IMD’s Series
The broken ice pattern could be inferred and reconstructed from the video recording

by considering the shape of each broken piece as sketched in Figure 4.3b. A pair of radial
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cracks first propagated to a short distance comparable to the ice thickness, and then
converged toward each other to form a circumferential crack. The two radial cracks made
an angle of up to 30° from the direction of the ice advance. Another crack started from the
centerline in between the other two cracks.

This observation was contrary to the failure mechanism routinely assumed in
previous treatments of the problem as discussed in the following section. The radial cracks
did not propagate into the ice far enough to form wedges which behaved as infinite wedges;
instead, the failure mechanism observed from [MD's test series was associated with the
ultimate failure of finite cantilever beams.

The history of crack development determined the boundary condition and loading at
ultimate failure. i.e.. how far the radial cracks propagated into the intact ice sheet at the onset
of the ctrcumferential cracking, which effectively determined the length of the wedge to be
bent. In the following section, three common beam bending scenarios associated with

flexural failure are further discussed.

4.2.1.1 Common Beam Failure Scenarios
If we follow the mode of crack development from the first impact, three failure
scenarios could be identified, depending on beam length:
() Formation of a cusp by circumferential cracking with limited radial cracking;
(ii) Formation of circumferential cracks by cantilever beam failure. The radial

crack length was substantially less than 3 times the ice characteristic length.

71



As a result, the wedge failed as a finite cantilever wedge, having a
circumferential crack at its root; and

(iii)  Formation of circumferential cracks after extensive radial cracking. The

radial cracks propagated at least 3 times the characteristic length of ice
dissecting the ice into wedges before ultimate failure occurred. The wedge
could be assumed to fail as a semi-infinite wedge.

Nevel has pioneered the theoretical analysis of ice breaking due to interaction with
a cone. He assumed that the radial cracks propagated to such an extent that the wedges
behaved as independent infinite wedges (Case 3). Early experience from small scale model
tests conducted in thin ice tended to confirm his theory. Since then, most of the subsequent
ice cone modeling investigations assumed this failure scenario. Only recently has this
assumption been called into question, based on the increasing understanding of fracturing
mechanisms and recent experiments in thicker ice.

With increasing ice thicknesses, Bazant and Li (1993) showed the onset of ice failure
changed from radial cracking to circumferential cracking. Hence, the loading geometry was
changed from a semi-infinite wedge beam (Case 3) to a cantilever beam (Case 2) and
eventually to a plate (Case 1). Numerical analysis (Valanto, 1992; Jebaraj et al, 1992;
Bazant and Li, 1993; and Derradji-Aouat, 1994) and test data (see next section) tend to

support this observation.
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4.2.2 Piece Size Analysis

Generally the ice breaking process produced a variety of piece sizes. Ettema et al
(1991) suggested that it was chaotic in nature. Varsta (1983) showed that the ice cusp size
and force on a landing craft bow was dependent on the velocity, and hence the loading rate.
Tatinclaux (1986) measured the ice floe distribution in the wake of a simple wedge in urea
and synthetic model ice. He found that the average ice piece size, L, was independent of the
characteristic length of ice; instead, it was directly proportional to the parameter, (G,/y,,)",

as follows:

L, =C (-L)? @1)

where 6, was the flexural strength of ice; t, the ice thickness; and, ¥, the specific weight
of water. The constant C depended on the kind of ice, with C being equal to 0.54 and 0.254
for urea doped ice and synthetic ice, respectively. In this report, the parameter, (G t/y, )", was
called the "breaking length” L, for convenience.

In this section, the size relationship is further examined using the faceted cone test
data obtained from the three tanks. The data sets were supplemented with data from four
other test series conducted with similar model structures [Lau et al (1988) and Lau and
Williams (1991) with a 45° smooth downward breaking cone; Sodhi et al (1985) with a 45°

smooth upward breaking cone; and Timco (1984b) with a 45° upward breaking sloping
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plane]. These model tests were performed in urea or EG/AD/S ice, with the exception of
ERCL’s tests which were conducted in thick naturally grown saline ice. Despite slight
differences in model shape, these tests were conducted in ice and structure conditions similar
to one another. To further reduce the possible influences of test parameters other than ice
thickness and strength, data from tests with comparable cone and interaction conditions, i.e..
ice advancing speed, friction coefficient, cone angle and waterline diameter, were chosen for
analysis. The range of variations for each parameter is given in Table 4.1.

For IMD's, ERCL's, IME's and Lau et al's tests (1988), L, , was estimated from video
recordings made of each test by counting the number of circumferential cracks, and the
corresponding run duration and velocity. To ensure that the estimated values of L, were
representative of the primary ice breaking length, the values were compared with those
obtained from bow imprints taken after tests, i.e., Lau et al’s tests; and in the cases where
bow imprints were not available, i.e., IMD's series, comparisons were made with the broken
ice pattern inferred and reconstructed from the video recordings (see Section 4.2.1). For the
other tests where the piece size was not reported, it was estimated from the tce breaking

frequency, f, and the ice speed, V, using the following relationship:

1%
L == 4-2
L= 7 4-2)

which gives the average size of the ice blocks during primary failure due to circumferential
cracking.
Figure 4.7 shows the ice piece size L, versus the length L, observed in all seven
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model test series. The data were further grouped according to ice thickness either larger or

smaller than 0.045 m. The relationship

L, =054L, 4-3)

as developed by Tatinclaux for urea doped ice was also plotted in the same figure. The
figure shows a good agreement of Tatinclaux's relationship with data obtained in ice thinner
than 0.045 m. For thicker ice, the dependency of L, on the factor L, is negligible, and the

following relationship fitted the test data very well:

L, = 0.15 + 0.039L, (4-4)

Figure 4.8 shows the ratio of piece size to characteristic length, L,/l_, as a function
of ice thickness, t, for the multi-faceted cone and the supplementary test series. The data
indicated a clear relationship between the L, /i, and ice thickness despite a large variation of
ice strength.

Simple elastic theory predicted a value of 0.78 for the ratio, L,/l, (Afanas’ev et al,
1971), and the value was independent of ice thickness. However, Figure 4.8 shows that this
was valid only for a very thin ice, and the ratio decreased with increasing ice thicknesses.
The dependency of piece size on ice thickness reflects the complexity of ice-breaking
process, and contributes to the scale effect. The data also suggest a lower limit for the ratio,
L,/l. , and the tests conducted in IMD's and ERCL's ice tanks with ice sheets thicker than 9

cm clearly reflect a similar viewpoint. The following equation fits the data very well:
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% = 0.0168; %4 4-5)

This observed trend is also consistent with the results from field observations. Inthe
case of ship-ice interaction, Keinonen (1983) pointed out:

"In model tests, the ice is broken into large cusps, the typical size of ice

blocks being anywhere between 3-6 times the ice thickness. In full scale, the

typical blocks are radically smaller being in the range of 0.5-2 times the ice

thickness."

This apparent lack of scaling of the broken piece size is of significance for modelling
the dynamics of ice and rubble clearing around a structure, and leads to difficulty in model
testing of fragmented ice.

Further review of model tests with other sloping structures (both model and full
scales) confirmed the previous finding as shown in Figures 4.9 and 4.10.

Figure 4.9 shows the non-dimensional piece size observed in the wake of six ice
breaker hulls (both model and full scale) taken from Tatinclaux (1986) with a mode! wedge,
and the Kigoriak in both model and full scale trials, Howard and Abdelnour (1987) with the
1:8 scale R-Class model, and Valanto (1993) with the IB Kapitan Sorokin in full scale.

Figure 4.10 is extracted from the piece size data reported by Keinonen et al (1993)
who conducted 28 tests on an inclined indenter moving against a simply supported wedge.

The tests were conducted at the ESSO outdoor basin in Calgary using natural saline ice with
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thickness varying from 0.16 to 0.29 m and a flexural strength of approximately 200 kPa. The
indenter angle of 25° 50° and 75° to the horizontal were tested with two wedge angles of 90°
and 120°. All tests were conducted using two indenter speeds: 0.05 m/s and 0.30 m/s. Only
data associated with the lower speed are plotted in Figure 4.10.

Both figures indicate a limiting value of 0.2 for L /1_ in full scale. This value is a bit
higher than 0.1 associated with the multi-faceted cone tests. [t may be due to the different
ice breaking processes observed.

One explanation for the discrepancy between the theories and test data is the non-
inclusion of shear action across the ice thickness in the existing analytical treatments of
failure. The characteristic length of a beam (or plate) on an elastic foundation was derived
solving the differential equation of the elastic line using classical theory of an elastic beam
(or plate) on elastic foundation (Hetenyi, 1946), i.e., a thin beam (or plate) with small
deflection. The classical theory, which neglects the effect of transverse shear (i.e., shear
modulus, in effect, is set to infinity), becomes unreliable in the case of beams (or plates) of
considerable thickness, especially in the case of the highly concentrated loads experienced
in the types of interactions investigated. Furthermore, with a ice piece size to characteristic
length ratio of as low as 0.1, the transverse shear would play an important role in ice
breaking. Buckling may also occur with increasing thickness and cone angle which lead to
smaller piece sizes (Derradji-Aouat, 1994).

Satisfactory modeling of ice failure mechanisms is an essential requisite for the

proper computation of ice forces on the structure; however, an adequate examination of the
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problem is outside the scope of this work. Nevertheless, it is reasonable to assume the piece

sizes encountered in full scale to be 0.1 to 0.2 |, according to the present analysis.

4.3 Ice Rubble Formation Process
In the present study, the rubble types as observed in the IMD's test series were
identified and shown in the strength-thickness domain with IME’s test data. The rubble field
classification scheme developed by [zumiyama et al (1994) was adopted (see Figure 4.11).
For IMD tests, C-Type rubble field was typically formed in front of the 1:25 scale
models; however, rubble field was not observed in front of the 1:50 scale model as the small
crushed ice pieces cleared around the cone readily. The C-Type rubble field was
significantly larger than those of the same type observed in IME's tests due to a larger ice
thickness and model neck, and a smaller freeboard. The rubble fieid tended to accumulate,
till it reached the neck section.
The C-type rubble field consisted of small ice blocks and crushed, mushy ice. In
IME's tests, these small ice blocks were created when the weak ice pieces fell from the top.
breaking and rolling down the front of the model. This secondary ice breaking is important,
since the degree of breakage determined which of the three types, designated A-type, B-type
and C-type, would occur. Degree of breakage, which was highly dependent on the thickness
and shape of the ice pieces and the ice strength, increases from A-type to B-type to C-type.
In IMD's tests, a crack extended from the centre of the front facet creating two ice pieces

before they rolled down from the top of the cone. Such a mechanism was sufficient to create
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small ice pieces even though the ice was relatively thick and strong. The ice pieces at the
neck, which were typically cubic in shape, rolled down the front facet resulting in a rubble
pile of randomly oriented ice pieces.

The manner in which the rubble evolved and changed shape during the interaction,
i.e., its geometry and size, could be explained in terms of ice generation and clearing
processes. The ice in front of the cone could be divided into 3 zones: a central accumulation
zone and two side clearing zones. Understanding of the main features of these zones is vital
to a satisfactory rubble modelling. The ice generation and clearing processes associated with
these zones will be examined in detail in Chapter 6.

It is recognized from this study that a unique rubble surface profile is generated
during steady-state accumulation by a process similar to dumping process from a line source.
In this case, the free-surface of the rubble is governed by a slope stability criterion with the
slope angle, 1, being equal to the angle of repose, ¢,, of the rubble material. This surface
profile, together with the rubble height profile around the cone’s perimeter, defines the
geometry of the rubble mass.

It is also recognized that the rate of ice supply is balanced by the rate of ice clearing
during the steady-state portion of the interaction, and the geometry and mass of the rubble
can be estimated by geometric considerations and mass balance.

The above-mentioned slope stability and mass balance criteria constitute the two
fundamental aspects of the clearing processes which will be examined in detail in Chapters
5 and 6.
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4.4 General Characteristics of Ice Load
4.4.1 Ice Load Distribution and Ratio of Horizontal to Vertical Forces

[t can be shown that if the vertical force, F,, is uniformly distributed around the front
half of a six-faceted cone with a face-on orientation, the ratio of the net horizontal to vertical

forces, F./F,, obtained by integrating the respective force distributions is given by a

resolution factor:

W
g

Einy = (4-6)

where & is the resolution factor for a sloping plane; and the value of this resolution factor is
a good measure of the distribution of ice forces around the cone.

Table 4.2 summarizes the experimental values of the horizontal to vertical peak force
ratio measured in the three test series, i.e., &,.... The theoretical values of the resolution
factor for the two limiting cases, &,,,, and &, and the estimated percentage of ice force
distributed on the front facet, %, are also given. &,,, corresponds to the case where the
vertical force is uniformly distributed around the front half of the cone; whereas, & is
calculated assuming all ice forces are acting on the cone section at the front facet.

In general, the experimental values, &, .. = F,/F,, were close to the theoretical values,
&, for 2-D loading suggesting that the major portion of the load (with more than 70%) was

distributed along the front facet during the peak force events. This observation was contrary

to the observations obtained from previous model tests with smooth cones where the
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resolution was found to be governed by &, i.e., Equation 2.25.

Figure 4.12 shows the relationship of the non-dimensional resolution factor, &,,_./E
and the non-dimensional waterline width, D/1.. for existing test data for smooth cones. The
data sets contain data from 10 level ice test programs done worldwide on conical structures
with a total of ~400 data points (Afanas'ev et al, 1971; Verity, 1975, Edwards et al, 1975:
Edwards and Croasdale, 1976; Manders and Abdelnour, 1978; Hirayama and Akamatsu,
1982; Wessels, 1984; Sodhi et al, 1985; Lau et al, 1988; and [zumiyama et al, 1991).

The experimental value, &, has been non-dimensionalized by & The upper timit
(= 1) corresponds to the 2-D case where all loads are assumed to act on the front edge of the
cone. The lower limit (= 2/x) corresponds to the 3-D case where the forces are uniformly
distributed along the front perimeter of the smooth cone. .,/ is generally lower than the
value for the 2D case and in many cases is close to what is expected for a uniform
distribution, particularly for D/I_ greater than 1. It is consistent with the observation that for
a very narrow structure, ice-cone contact is concentrated at the front edge of the cone. and
with the waterline width increases, the ice-cone contact increases from the front edge toward
the side of the cone, and eventually full contact of ice with the front half of the cone occurs
with a certain waterline (Hirayama and Obara, 1986).

The values of D/1, for the faceted cone series were a lot greater than 1, and a uniform
distribution was expected. The reason for this difference between the smooth cones and the

faceted cones is not clearly understood, but might be attributed to two reasons. Firstly, the
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resolution factor was calculated assuming all load to act on the conical section only. The
large amount of rubble pile-up on the collar and the neck section would increase the
resolution factor since they have an inclination larger than that of the cone section. The
second reason is that the ride-up and pile-up would primarily occur on the front facet, which

would distribute most of the clearing loads onto the front facet in a two-dimensional manner.

4.4.2 Ratio of Neck to Global Forces

Freeboard is the most important parameter influencing the ice loads on the neck.
With a large freeboard the broken ice can clear around the cone without a significant amount
of ice pieces accumulating on the neck. Figure 4.13 shows the effect of freeboard on the
ratio of the neck to global horizontal loads for the level ice tests. The freeboard is non-
dimensionalized by the ice thickness. The ratio of the neck to global force increases with
the decrease of non-dimensional freeboard. The non-dimensional neck force is below 0.16
for all tests except the two runs tested in a very strong ice with a small freeboard to thickness

ratio, i1.e., ERCL's Tests 2 and 4.

4.5 Semi-Empirical Formulae

In this study, the ice breaking and clearing components of the total ice force, during
steady-state ice loading, were analysed. The ice breaking component is the force needed to
break the ice. The ice clearing component is the load imposed by the broken ice pieces as

they slide up the cone surface. These two components are attributed to completely different
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mechanisms, and they were isolated and treated separately for deeper understanding of the
interaction. A semi-empirical formula, based on experimental measurements and basic
mechanics of ice, was developed as a way to compare the results obtained from the three ice
tanks.

Table 4.3 gives a summary of the mean peak force, F,, and the associated ice
breaking and clearing force components, i.e., F, and F,, measured in IMD's 1:25 scale model
test series. The ice clearing force, F,, is assumed equal to the mean trough force. The ice
breaking force. F,, is obtained from subtracting the ice clearing force from the mean peak
force as shown in Figure 4.14. In the present test series, a major portion of the total load in
the structure was observed to be due to ice clearing, with the ice breaking force sometimes
contributing to as little as 20% of the total ice forces.

The mean peak and trough forces were determined by the up-crossing method as
described in Section 3.4. Since there was a concern with the dynamic effects during the
unloading phase after the ice failed which tended to affect the trough force, the time-history
records were filtered through a 1.5 Hz low pass filter before analysis.

The semi-empirical formula was developed from IMD's 1:25 scale model tests.’
Predictions from this formula are then compared with the measurements from the other two
tanks to assess the consistence of results among the three tanks. As noted above a review of

existing empirical and analytical formulae for ice load computation on cones suggested the

*The experimental results with the 1:50 scale model were excluded due to the
shearing/crushing failure observed during tests.
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following common form for the horizontal ice force:

F_= a"a,t2 + alyth 4-7)

where the coefficients, a, and a,, are functions of structural shape and coefficient of friction.
The first term is the ice force caused by ice breaking, and the second term is the ice force due
to ice riding up the structure slope. Experimental data also indicated that the vertical force
was relatively independent of cone angle and friction coefficient, and the horizontal force
could be related to the vertical force through a resolution factor, &, which depended on the
inclination angle and the ice-structure friction coefficient. Therefore, the following form was

used in the present analysis:
2, k, &k 2 ky ky
F = E(a"o,t-(o, t") + a yDt(o, 1)) (4-8)

where 6,1*' and 6,"*f** are empirical functions, which take into account the influence of pile-
up on the breaking and clearing forces; k,, k,, k., k;, a, and a, are empirical coefficients
which are optimized to fit the experimental data.

The ice breaking and ice clearing components of the general expression were derived

individually from the IMD’s data resulting in the following expression for the horizontal

force:

F, = ET11og%0,>*t0%) + L0SyD (o, "%y 4-9)



In Figures 4.15 and 4.16, the ice breaking and the ice clearing forces predicted by Equation
4.9 are compared to the experimental data. In the above comparisons, the scatter in data may
be partly due to the effects of neck size and velocity which are not included in the above
formulation.

In Figure 4.17, the total force predicted from Equation 4.9 is compared with the
experimental data from the three tanks. In general, Equation 4.9 predicts the model test
results well, indicating a good agreement among the results obtained from the three model

basins, with loads measured extending more than three orders of magnitude.

4.6  Comparison with Theoretical Prediction

Theoretical loads corresponding to the level ice experiments were calculated by
applying the elastic model due to Nevel (1992). This model is shown to be satisfactory in
predicting ice forces after extensive comparison with the existing experimental data. (See
Chapter 8.1). The mean features of the model have been reviewed in Section 2.2.1.2.

Figures 4.18 and 4.19 show a comparison of the total horizontal and vertical peak
loads measured from the three tanks with the loads calculated from Nevel's theory.” The
agreement between the theoretical predictions and measured forces is remarkably good for

the ERCL and IME series; however, this theoretical model consistently under-predicts the

‘Again, the experimental results with the IMD's 1:50 scale model were excluded from the
comparison due to the shear/crushing failure observed during tests which was mentioned in
Section 4.2.
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ice loads measured in IMD's tests by an average of 46%. Two points should be noted here.
Firstly, a majority of tests conducted in IME’s and ERCL’s series do not have a substantial
amount of rubble piling in front of the structure. Furthermore, ERCL's ice thickness was less
uniform than the ice from other two tanks, resuiting in non-simultaneous ice breaking, and
most tests were stopped before any significant amount of ice could accumulate on the cone.
Hence, the theory might possibly overestimate the ice breaking components while
underestimate the ice clearing component of the total ice force.

To show this, the model predictions were compared with the results from the IMD’s
test series to assess the accuracy of the model to predict the individual force components.
Only components of the horizontal force were compared. Figures 4.20 and 4.21 give the
results of comparison for the ice breaking and ice clearing components, respectively. The
model predicts well the breaking component of the lower forces measured in thinner ice. but
underpredicts those of the higher forces measured in thicker ice; whereas the model
consistently under-predicts the ice clearing component by about 30%, and again, the higher
the force the higher the error. Since ice rubble tends to increase the ice clearing components
of ice force due to its dead weight, the model is expected to under-estimate the clearing
component. This weight could also increase the breaking load somewhat by imposing an

in-plane compression at the tip of the supporting ice sheet as discussed in Chapter 8.

4.7 Summary and Discussions

Based on observations from model tests, aconceptual model is formulated to describe
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qualitatively the primary interaction processes. The conceptual model provides a conceptual
basis for the mathematical modelling outlined hereafter. In Section 4.7.1 the major findings
of the test program are summarized, and the need for further ice force modelling discussed.
In Section 4.7.2 the general features of the interaction behaviour under investigation are

briefly described, and a method to incorporate the effect of rubble in the existing ice load

models is presented.

4.7.1 The Need for Further Ice Force Modelling

The validity of the existing theories for predicting global loads on a faceted cone is
one of the principal concerns from industry's point of view. The analysis of ice sheet loads
with a leading ice force predictor developed for smooth cones indicates that the theory would
likely under-predict the clearing component of ice loads. Particularly, the error in ice load
estimation might be quite large when a large rubble field piles in front of the structure,
justifying further studies to develop some new formulae for the estimation of ice loads on
such structures.

Important insights have been obtained from a closer analysis of the model testresults.
The process of ice failure and clearing during its interaction with the faceted structure has
indicated the presence of many new features. This process is substantially different from
that of a smooth cone and a two-dimensional sloping plane. The facet comers, acting as
stress concentration points, seem to play important roles because two cracks propagate from

the corners in many of the tests. In addition, the flat facet and large neck tend to prevent
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efficient ice clearing and initiate rubble piling in front of the structure.

Failures other than that due to bending modes have been observed from the tests.
These may be due to the complex three-dimensional stress state induced in the ice sheet.
Piece size measurements significantly diverge from those predicted by existing theories
which are formulated using classical theories of thin beam or plate on elastic foundation with
the non-inclusion of shear action across the ice thickness. Previous studies have shown that
the failure mode could gradually alter from bending to shear with increasing ice thickness.
Incorporating the three-dimensional nature of ice behaviour into the investigation of the
problem is essential to advance our present understanding of the interaction process.

Rubble building is an essential part of the ice clearing process. The large amount of
rubble, accumulated in front of the cone, imposes a substantial loading on the structure and
the intact ice sheet. An ice clearing component as much as 80% of the total load on the
structure has been measured (see Table 4.3). The factors which contribute to the amount of
ride-up and rubble formation, and their subsequent effects on the interaction process were
poorly understood. Omission of these factors may lead to a severe underestimation of ice
forces.

Although a considerable amount of data was obtained from model tests mentioned
in the previous section, a number of important ice-structure parameters, i.e., number of
facets, cone angle, ice-ice and ice-cone friction coefficients, etc., were not varied in the test
program, and the results were valid only for the conditions and geometries of the

experiments. Due to the limited numbers of parameters examined, these model tests were
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more useful in confirming and calibrating algorithms for ice loads rather than in directly
providing equations for design ice loads. It is therefore considered likely that it would be
helpful to perform mathematical modelling in order to extend the observed relationships to
more general interaction conditions and geometry. The modelling is supplemented by a
series of numerical simulations to be presented in Chapter 7. The simulations provide
information on the complex stress conditions and load distributions, and how the loads were
transmitted and distributed along the ice sheet and on the surface of the structure, which is
helpful to a better understanding of the basic mechanical processes that take place duringthe
interaction.

On faceting a cone and enlarging the size of the neck, the interaction and failure
mechanisms were significantly altered. Existing theories of ice loads on a cone could not
explain this change. Since there are obvious economical advantages in incorporating flat
facets and large necks in the design of conical structures, an ice force model that allows for
the effects of cone facets, neck size, and the rubble pile, would be an asset to the industry.
Obviously, many issues associated with the three basic processes of ice breaking, ice ride-up,
and the ice piling should be addressed in a comprehensive study. However, the time
constraint imposed on this research prevented a comprehensive examination of the problem.
Instead. a decision was made to focus further efforts on the formation of ice rubble in front
of the structure and its effect on ice loads, as no previous model has adequately accounted
for its effects.

In the following, a conceptual model is presented which provides a method for
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considering the dominant processes, and a framework to incorporate a rubble model into the
existing ice force models. Attention is given to the better characterization of rubble pile-up
phenomenon and the associated ice load. Since the issues related to ice breaking and ice
ride-up have been studied previously in greater detail, the knowledge gained from these

studies is used in the present work.

4.7.2 Conceptual Model for Ice Forces Exerted on an Inclined Plane

The model is proposed to explain the interaction processes between a faceted cone
and a level ice sheet during a continuous ice breaking mode. It provides an outline of the
phenomena to be investigated, and a framework for incorporating rubble load theory into
existing ice force models. The model is detailed enough to describe the interaction processes
as well as to obtain the form of equations for individual force components.

The geometry of the problem is presented for a two-dimensional case in Figure 4.22.
For simplicity, the model is given in 2-D, and a constant thickness ice sheet is moving
horizontally and breaking against a faceted cone under an ice rubble pile, the shape of which
is yet to be determined. From a modelling point of view, it is convenient to divide the
interaction process into three major simultaneous phenomena, i.e., (1) ice breaking, (2) ride-
up, and (3) rubble pile-up, where different features dominate. The first phenomenon is the
failure of ice under contact forces imposed by the cone, the ride-up ice and the rubble
surcharge. The second phenomenon is the pushing of a layer of broken ice up the cone

surface. The third phenomenon is the clearing of a rubble surcharge around the cone due to
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the continuous movement of the level ice past the cone. The three phenomena are mutually
dependent. The constitutive properties of the rubble and ride-up ice depend on the
geometrical and mechanical properties of the constituent ice pieces which are generated by
the breaking of the ice sheet, and the size of ice pieces generated during ice breaking is in
turn affected by the additional loading imposed by the rubble and ride-up ice. The ice
breaking and ride-up processes have been extensively studied and many models are available
to predict the total load due to their effects. However, the rubble pile-up process is less well
understood. For each process, some of the aspects regarded as important and/or unique to
the present investigation are briefly described below.

Figures 4.23 and 4.24 summarize the loads exerted on the ice sheet, the ride-up and
the pile-up which should be taken into account. The weight of the pile-up, W, =W_+ W,
is partly supported by the ride-up ice and partly by sheet ice, i.e., distributed loads q_ and g;.
The force, N, required to lift the rubble surcharge and break the ice sheet, acts at the bottom
edge of the ice sheet. As the ice moves and rides up along the cone. frictional forces, q\;;.
N, and q,, are also developed at the ice-rubble, ice-cone, and rubble-cone interfaces
respectively, where L and i, are the ice-ice and ice-cone friction coefficients at the respective
interfaces. A component, P, acting at the top edge of the ice sheet is also required to push
the ice up the slope. The failure of the ice sheet can take place either by bending, shearing,
crushing, buckling, or a combination of them. The velocity of ice is assumed to be high

enough that brittle ice failure mode is predominant. During a quasi-steady state ice
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interaction, some constant amounts of rubble ice pile up in front of the structure, when the
rate of ice supply is equal to the rate of ice clearing. The underlying ice sheet may fail
before this quasi-steady state is reached.

The rubble is under constant shearing due to constant deformation of the rubble. To
take into account the effects of this rubble ice in ice force prediction, the amount and
distribution of the rubble and associated forces exerted at the inclined boundary (with the
ride-up ice) and the base (on the supporting ice sheet) must be known. The rubble pile
formation mechanism is a complicated process involving the dynamic balance between the
supply of ice pieces due to continuous ice breaking, and the clearing process of ice as the
rubble pile moves past the cone. Understanding these two processes is the key to modelling
the mechanism of rubble formation: besides. other factors such as the size and distribution
of rubble ice, and the dynamic interactions between the individual ice pieces must also be

considered.



Table 4.1 General test conditions of the model test series used in piece size analysis

Sloping Plane Smooth Cone Facct.ed C(?ne
PARA (face-on orientation only)
METER . Lau & Lau et al, Sodhi et al, IMD IME ERCL
Timco, 1984 {4 1iams, 1991 1988 1985 1:25 1:50 1:20
Conc(:}nglc. 45 45 45 45 40 40 40
Breaking
Direction Up Down Down Up Up Up Up
Waterline
Diamelter, 1.0 1.28 1.28 1.5 1.38 1.24 1.72
(m)
Friction 0.02 0.15 0.15 0.1 0.09 0.01 0.08
V‘(’:;’/‘i')'y ’ <0.06 0.01/0.05 0.01/0.05 0.02/0.06 {0.01/0.04/0.06 0.06 0.06
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Table 4.2

Summary of the horizontal to vertical force ratio for level ice tests measured
in the three series on multifaceted cones: face-on orientation only

Test Friction E = No. of
: Coefficie meas™ 13 Esar P grom Data
Series nt, |, E/F, Points
0.791 +
0 0.046 0.833 0.555 0.899 15
'IME
1.162 +
0.1 0.085 1.018 0.679 1.283 7
*[MD 000 | %213% 1 0908 | o065 0.830 14
0.08
087 +
ERC 0.1 0.177 1.018 0.679 0.709 10
Note: | A friction coefficient of O is associated with runs 1 to 38, and a friction
coefficient of 0.1 is associated with runs 39 to 66.
2 1/25th scale model tests only
3 % force distribution on front facet calculated by the following equation:

t—"':ﬂ - cos(60”)
% . S e ———
front 1 - cost6a®)
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Table 4.3 Summary of total, breaking and clearing ice forces measured in IMD series:

1:25 scale model

Test A\ Fo F. F, F,/F, (o % t
(#) (m/s) (N) (N) (N) (kPa) (m)
Test Set: Small neck model with neck size: 0.231 m
3.1 0.01 4287 2890 1397 0.309 44.4 0.158
3.2 0.06 4942 3200 1742 0.337 44.1 0.158
3.3 0.04 5049 3100 1949 0.366 43.6 0.158
3.5 0.04 3232 2400 832 0.243 29.4 0.148
Test Set: Large neck model with neck size: 0.462 m
4.1 0.01 5005 2950 2055 0.391 41.1 0.160
4.2 0.06 5907 3800 2107 0.336 40.6 0.160
4.3 0.04 6006 3500 2506 0.383 40.4 0.160
4.6 0.04 4963 3150 1813 0.357 19.7 0.164
5.1 0.01 1953 1520 433 0.200 30.7 0.095
5.2 0.06 2274 1450 824 0.346 30.2 0.095
5.3 0.04 2035 1440 595 0.264 29.9 0.095
6.2 0.04 2950 2150 800 0.260 22.5 0.124
6.3 0.01 2810 2050 760 0.257 22.5 0.124

6.4 0.06 3060 2250 810 0.249 22.5 0.124

Note: Waterline diameter: 1.386 m; friction coefficient: 0.09; and ice density: 930 kg/m.
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Figure 4.4 Load trace showing typical cyclical ice loading (MUNCONE4_003)
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Figure 4.7 Ice piece size, L, versus breaking length, L,, with curve fitting for ice
thickness larger than 0.045 m. Tatinclaux’s equation for urea ice is also given.
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Figure 4.9 Model/Full scale icebreaker test results showing the effect of ice thickness, t,
on the ratio of ice piece size to characteristic length, L;/l_.. Data include low
speed test with urea and sea ice.
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Figure 4.10

Figure 4.11
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Figure 4.14
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Figure 4.15  Comparison of horizontal breaking force measured in IMD’s series to

breaking force predicted by Equation 4.9
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Figure 4.22  Geometry of the conceptual model for ice forces exerted on an inclined plane

Figure 4.23  The loads exerted on supporting ice sheet
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Part II Ice Rubble Modelling

Chapter S Ice Rubble Under Load

The process of ice rubbie pile-up around a conical structure has been poorly
understood. When a rubble mass clears around a structure, the load that can be imposed on
the structure is influenced by a number of parameters, including: structure form, speed,
porosity, roughness, lateral confinement of the rubble, and the size-shape-strength-and-
roughness of ice fragments comprising the ice rubble. Furthermore, geometry of the rubble
field and loading conditions at its boundaries would give rise to a complex state of stress
distribution.

In order to understand and to quantify the influence that a rubble field has on ice-cone
interaction behaviour, it is necessary to examine both the kinematic and the dynamic aspects
of the rubble clearing processes. The manner in which ice blocks are generated and cleared
around the structure determines the size and shape of the rubble formation. This rubble
mass, in turn, being pushed against the structure, exerts forces on the ride-up ice and the
supporting ice sheet. Until now there has been very few research studies dedicated specially
to this subject. However, the problems encountered in the studies of rubble load on
structures are quite similar to those found in soil mechanics; while the constitutive material
differs, the similar particulate nature of the materials provides the common ground.

In this and the following two chapters, a rubble model is developed to model ice
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rubble behaviour in front of a faceted conical structure. Basic theories of soil mechanics are
explored, and the geometry of the rubble and the associated forces are modelled with the aid
of numerical simulations. This chapter focuses on the basic mechanical behaviour and the
failure processes of ice rubble under loading conditions typical of the ice-cone interaction
process. Chapter 6 presents a simple method to characterize and compute the geometry of
a fully developed rubble from known ice and structure conditions. The predictions agree
well with the experimental data. In Chapter 7, a set of empirical equations are developed to
calculate forces exerted by a cohesionless granular mass, i.e., ice rubble, on a retaining walil
using a series of discrete element analysis. These equations are further incorporated into an
ice force model which will be presented in Chapter 8.

The model developed in this work involves three important phenomenological
parameters: the angle of internal friction, the angle of repose, and the earth coefficient
function. The first parameter is a constitutive property of granular materials with Coulomb-
type shear behaviour. The second parameter characterizes the natural slope of granular
materials being dumped. The third parameter describes the stress state of a rubble mass
under various loading conditions. The second and the third parameters are functions of
loading conditions, and are closely related to the first parameter. In Section 5.1, the shear
strength of granular matertals is discussed, followed by a brief review of laboratory
measurements of ice rubble shear properties. In Section 5.2, the surface profile of a rubble
pile due to the natural dumping process is explored. The angle of repose, an important

geometrical parameter of this profile, is discussed in detail. In Section 5.3, the behaviour of
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granular materials under stresses is examined. The characteristic stress states of the granular
materials under arbitrary loads, as described by various earth coefficients, are identified and
further explored. Based on basic theories of soil mechanics, it is concluded that the
cohesionless rubble is in an elastic state throughout its mass during the typical ice-cone
interaction process under investigation. Finally, two existing methods for the computation
of wall thrust exerted by an earth mass at-rest are assessed in Chapter 5.4.
5.1 Shear Strength of Ice Rubble
Mostly, ice rubble studies were carried out due to the concerns expressed for the
integrity of the structure encountered by ice ridges. In most of the instances, the ridges fail
in shear with the maximum loads experienced by the structure are limited by the shear
strength of the rubble materials. Therefore, measurements of rubble mechanical properties
were mainly focussed on shear strength. The shear strength of an ice rubble under isothermal
conditions is basically made up of:
(1) The structural resistance to displacement of the ice blocks because of
the interiocking of the ice blocks,
(11) The frictional resistance to translation between the individual ice
blocks at their contact points, and
(1ii)  The cohesion (adhesion) between the surfaces of the ice blocks.
For a cohesionless material, cohesion is negligible, while the resistance to

deformation is influenced strongly by its frictional resistance at the contact surface and the
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interlocking between ice blocks. A knowledge of the possible magnitude of this shear

resistance and the factors that influence it are essential to a rational design.

5.1.1 Phenomenological and Structural Approaches for Material Description

The mechanical behaviour of rubble is a complex reflection of its structure. Like
other particulate materials, the deformation is brought about by mutual sliding and rotation
of the ice blocks. The existence of mutual contacts restricts the freedom of motion of the
individual block resulting in strength and rigidity of the ice rubble. The number and strength
of the contact bonds are to a large extent determined by the size, shape, roughness and
strength of the discrete blocks, the nature of the interaction between the various phases, the
state of the ice rubble in question (e.g., its density and void ratio). and its texture.

The mechanical behaviour of ice rubble material can be studied using two different
approaches: the phenomenological approach and the structural approach. In the
phenomenological approach the laws governing the processes are deduced from the
correlation between the input and the output data of a system whose dimensions greatly
exceed those of their constitutive units; and hence, the real substances are replaced by
mathematical models of structureless continua. The structural approach, on the other hand,
analyses the mechanical behaviour based on the interaction between the fundamental
constitutive units of the system. Phenomenological conclusions are then made possible
through statistical synthesis.

Since the phenomenological characteristics are a result of rubble structure, a
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structural definition is the fundamental one. A formulation of the phenomenological
relations as a statistical synthesis of structural analysis would be ideal solution. This is the
only way in which one can correctly understand and pay due regard to their specific structural
characteristics which lead to constitutive relations of particulate materials. However, a
complete structural analysis is frequently unsuccessful even in the case of the simplest
deterministic systems, such as mono-crystals (Macmillan, 1972). For instance, in the
statistical characterization of particulate materials, it has been often found to be incapable
of describing the complete behaviour. In the present work, phenomenologically formulated

mechanical laws useful in simple engineering computation are adopted.

5.1.2 Phenomenological Descriptions of Cohesionless Granular Materials
A classical foundation for the entire phenomenological approach was laid by
Coulomb (1773). For the shear strength of soils. Coulomb derived a simple expression using

“the law of friction and cohesion™ proposed for soil substances by Amontons (1699):

T =c + otand (5-1)

where T and o, are the shear and normal stresses on the failure surface, respectively; c is the
cohesion; and ¢ is the effective angle of intemnal friction. This definition of strength was

further refined by Mohr (1882), who proposed the idea of representing graphically the

combination of stresses by a circle. In the Mohr-Coulomb failure criterion, the strength of
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a granular soil can be represented by the Mohr failure envelope, which is a line drawn
tangent to the Mokhr circles representing the state-of stress at the peak points of the stress-
strain curves under various confining stresses. For cohesionless materials, the cohesion is
negligible, i.e., the internal friction dominates the deformation characteristics and becomes
the principal mechanical parameter of the materials.

Rubble is neither a solid nor a liquid, but it has some of the characteristics of both of
these states of matter. It differentiates itself from fluids as described by Delanges (1788):
“when poured, retain their shape, when excavated, do not fill the depression, after being
shaken or otherwise disturbed, settle rapidly as soon as the external impulse no longer acts™.
However, on the other hand, it is similar to fluids in its tendency to exert a lateral pressure
against an object with which it comes in contact due to the Poisson’s ratio effect. This
characteristic can be measured by the coefficient of lateral pressure. K, i.e., the reciprocal of
the ratio between the vertical stress and the horizontal stress which tends to resist lateral
deformation of the material. As we shall see, this K-coefficient is closely related to the
internal friction of the material.

An important implication of the Mohr-Coulomb theory is that in a general three
dimensional stress state, the intermediate principal stress has no influence on the failure
criterion. This is approximately true. The behaviour of granular materials may be influenced
by many factors, such as void ratio, gradation of grain sizes, loading path, temperature, time,
and stress history. In recent years, an increasing number of other failure criteria have been

proposed to give a better modelling of the most significant aspects of granular material
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behaviour, including non-linearity, inelasticity, shear dilatancy, and path dependency (see
Table 5.1). An overview of failure criteria for engineering materials, especially geological
materials, was given by Desai and Siriwardane (1984), including elasticity model, classical
plasticity models and other more recently developed models.

In the light of recent research, the linear Mohr-Coulomb model does certainly not
mean the last word in strength theory, and in some problems it has proved inadequate in
describing the true behaviour of unconsolidated ice rubble (Ettema and Urroz-Aguirre, 1991
Sayed et al, 1992; and Leset and Sayed, 1993). Yet, for engineering purposes, it has become
a very useful and dependable tool for judging, by strength computationS. the danger of failure

in solid bodies under general stress conditions.

5.1.3 Effect of Initial Void Ratio on Internal Friction

The internal friction of a granular material in a given state is the result of a number
of factors and influences, i.e., the void ratio of the material, the confining stresses, the rate
of loading, etc.. which act upon the material at the moment of its shear failure. Of these
factors, void ratio' is by far the most important. This ratio, which is a function of block
shape and size distribution, can have a profound influence upon the rubble’s internal friction.

The internal friction angle, ¢, of a cohesionless Coulomb material is made up of two

'The ratio of the volume of the pores to the volume of the solids in a rubble sample is

called "void ratio”; while porosity is defined as the volume of the pores to the total volume of
the rubble sample.

116



components: firstly, the frictional resistance arising from the sliding between particles;
secondly, the structural resistance due to the interlocking of the particles. The former is
solely a property of the material; whereas, the latter is purely geometric. The effect of
particle interlocking is illustrated in Figure 5.1. In loosely packed materials, to start shear
it is only necessary to make the particles slide upon one another. In a dense pack, the
particles are interlocked with its neighbours, and have to move upwards and slip along the
shear plane during shear. This tendency to dilate during shear was first observed by
Reynolds (1885), and is known as the Reynolds dilatancy. The denser the packing, the
greater is the tendency to dilate.

The influence of the dilatancy on the behaviour of granular materials has been studied
by Rowe (1962), Been and Jetferies (1985). Bolton (1986}, Goddard and Bashir (1990),
Bashir and Goddard (1991); Goddard (1992), Balendran and Nemat-Nasser (1993),
Pouliquen and Renaut (1996), and Schanz and Vermeer (1996). Houlsby (1991) gave an
excellent review on the relationships between the friction angle, dilation angle, density and
pressure in a granular material.

In a typical tri-axial strength test, the shear stress-strain behaviour of granular
materials at a given normal load depends on the initial packing density (Lambe and
Whitman, 1979). Figure 5.2 shows schematically two types of characteristic stress-strain
curves. For densely packed samples, the shear stress increases with the strain, reaching a
peak. ¢,, and then gradually decreasing to some constant value, ¢,,. Over this range of
strains. there is usually an initial reduction in the volume of the sample due to compression
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followed by an increase due to dilatancy. The maximum shear strength, 7, is referred to as
peak strength, ¢,° The denser the sample, the more the stress-strain curve shows a
pronounced peak and the subsequent stress decreases following this peak. On the other hand,
in case of loosely packed samples, the stress-strain curve does not show a pronounced peak,
and instead the stress increases asymptotically to the critical value while the volume
decreases. At very large strain both dense and loose samples achieve the same void ratio, e,,
exhibit little or no tendency to further volume change: and the deviatoric stress for both
curves becomes essentially constant. The strength for this state is referred to as constant
volume strength, ¢.,.' At this state, the sample can deform without volume change.
Figure 5.3 further shows the relationship between the internal friction angle, ¢, and
the initial void ratio, e, (Rowe, 1962). This trend of higher ¢ for denser soil is always the
same regardless of the type of granular materials. And, hence, this internal friction angle, ¢,

is not a material property but depends strongly on the void ratio which reflects the degree of

interlocking between blocks.
Since the strength at the ultimate condition for a particular sample is the same
regardless of its initial void ratio, ¢_, may be thought of as a material property. The value of

¢., can be approximated with reasonable accuracy by the angle of repose, ¢,,1.e., 9., =0, (see

* ¢ and its variants, i.e., ¢, and ¢,,, are actually internal friction angles; however, they are
commonly reterred to as the strength of cohesionless materials in soil mechanics.

‘The angle is sometime referred to as ultimate, critical or residual angle (Lambe and
Whitman, 1979).
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Section 5.2).

Beside the void ratio, the internal friction is also dependent on the rubble
composition, stress state, stress history, temperature, stress and strain rates, and the structure
of the rubble. From Figure 5.1, it is clear that the angle of internal friction is also influenced
by the grain size distribution and grain shape (Holtz and Gibbs, 1956) (see Table 5.2). The
interlocking is particularly important as the angular ice blocks tend to interlock more
thoroughly than round blocks. The general influence of the other variables outlined above

with respect to soils has been detailed by Mitchell (1976).

5.1.4 Limitations of the Phenomenological Approach

The forces and movements induced by rubble-cone interaction processes are analysed
primarily from a macroscopic point of view, which means that the rubble mass is assumed
to be a continuum rather than composed of individual material parts, and the ice blocks are
uniformly distributed throughout the body. Such an assumption will be sufficiently valid as
long as voids are small and irregularities are present only on a scale small enough in
comparison to the size of the structure under consideration.

In a typical ice-rubble interaction situation there are transients. Even after steady-
state is reached, sizeable fluctuation of ice load can be observed which is superimposed on
the constant base line. Although this fluctuation can be attributed to the nature of ice
breaking and ride-up cycles, it may also be partly attributed to the pulsating clearance of

rubble ice due to the discrete nature of broken ice pieces and the local variation of geometric
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and mechanical properties.

In a typical rubble/structure system, a quantitative answer can only be given from
case to case based on detailed statistical considerations that are beyond the scope of this
research. Qualitatively, however, one can imagine that with decreasing size of the ice pieces,
with respect to the structure dimensions, the discrete nature of the rubble becomes of lesser
significance increasing the accuracy of a continuum macroscopic description. Observations
from the present model tests, in terms of the geometry of the rubble and the associated loads
on the models, suggest that the size effect is not significant even with the structure width to
piece size ratio as low as 4.

[f, however, the dimensions of the ice pieces became comparable to the structure
width. the pulsating nature of ice clearance may become significant. In such situations.
methods which account for the discrete nature of the interaction, i.e., discrete element

modelling, should be employed and the fluctuation phenomena taken into account.

5.1.5 Laboratory Measurements of Rubble Strength

Knowledge of the mechanical properties of bulk rubble is a prerequisite for analysis
of rubble mass behaviour. The mechanical properties, such as internal friction and cohesion,
can be determined through shear strength tests. These tests also allow the influence of strain
rate and other variables such as block size and distribution, temperature, etc.. to be
investigated.

Most of the studies to date have been carried out in the laboratory, many of which
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have been performed on artificially generated ice rubble using some form of the direct shear
box or the simple shear apparatus. From these empirical test results, constitutive
relationships have been derived. The type of apparatus used in published shear box
experiments and the general results obtained are reviewed by Ettema and Urroz-Aguirre
(1989 and 1991). The main features of these properties are briefly reviewed here. More
detailed information can be found in the cited references.

The first comprehensive study into the properties of rubble ice was conducted by
Prodanovic (1979) who performed direct shear tests on submerged samples. His results
indicated that the bulk rubble obeys the Mohr-Coulomb criterion, under a certain range of
stresses and displacement rates, i.e., Equation 5.1.

Other experiments by Keinonen and Nyman (1978), Weiss et al (1981), Hellman
(1984), Gale et al (1985), Wong et al (1987), Sayed (1987), Urroz-Aguirre and Ettema
(1987) and Case (1991) are in agreement with this conclusion, but there is an enormous
spread in the reported values of friction angle and cohesion. For example, angles of internal
friction have been reported from 11° to 65°, while cohesion has usually been reported to be
negligible, but has also been reported to be up to 20 kPa by Sayed (1987). The shear box test
results are summarized in Table 5.3.

The extreme variation in reported experimental results for the shear strength of ice
rubble testifies to the complexity of what may seem a simple measure of resistance to shear.
This variation may be attributed in part to the different testing methods used. Early tests

used direct shear boxes (Prodanovic, 1979; Weissetal, 1981; Hellman, 1984; and Fransson
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and Sandkvist, 1985). Other tests were done using simple shear box (Urroz-Aguirre and
Ettema, 1987), a plane-strain box (Sayed, 1987; and Sayed et al, 1992), and a small tri-axial
cell (Wong et al, 1987). The direct shear boxes do not give a well defined failure plane
within the sample; consequently, the stress and strain measurements cannot be properly
quantified. The set-up used by Urroz-Aguirre and Ettema (1987), Sayed et al (1992), and
Wong et al (1987) overcame this problem by producing uniform deformation in the sample.
Different sample preparation methods, range of stresses, strain rates, sample temperature,
melting or freezing of the samples, and the difficulty in proper scaling of the bulk material
further complicate the problem as well.

Bruneau (1997) collected laboratory ice rubble shear data from the literature and
compared them with the theoretical behaviour of a loose and dense sand. He concluded that
the lower bound strength of ice rubble undergoing shear was similar to that of loose sand.
He conjectured that the higher strength is attributed to various degrees of interblock bonding.
Chao (1993) developed regression equations for estimating apparent cohesion and effective
internal friction angle for unconsolidated ice rubble using four sets of ice rubble shear
strength measurements (Prodanovic, 1979; and Weiss et al, 1981; Fransson and Sandkvist,
1985: and Case, 1991). It was found that the thickness and flexural strength of the ice pieces
are the most important factors in determining the cohesion of the ice rubble. For the internal
friction of the ice rubble, void ratio appears to be the most important parameter. Although
the regression analysis was based on limited measurements of 10 - |5 data points, his

findings regarding the internal friction are in agreement with other granular materials.
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Recent studies on ice rubble mechanics indicated the importance of micro-mechanical
interaction between constituent ice pieces in determining the overall mechanical properties
of the ice rubble. Hopkins and Hibler (1991) conducted a series of discrete element
simulation with a two-dimensional shear box filled with blocks which have a length to
thickness distribution characteristic of pressure ridges. Particle shape, angularity, uniformity,
mixture anisotropy, and compactness were modelled rigorously within the limits of the two-
dimensional simulation. The results showed clearly that variations in the coefficient of
friction have a great effect on the shear strength of angular rubble. They also demonstrated
that local rearrangement of block and breakage are competing mechanisms for the relief of
local forces on the nominal failure plane. Breakage which depended primarily on load
produced a load dependence in the shear strength. Their resuits demonstrated the need to
take account the micro-mechanical properties and interactions between the constituent ice
blocks in rubble research, and also the versatility of Discrete Element Method, as these
factors could be readily incorporated into the problem.

In interpreting the available laboratory measurements, two characteristics of rubble
ice must be kept in mind. The first is the breakage of constituent ice blocks under confining
pressures, which varies widely from test to test. Unlike other granular material, i.e., soils,
the strength of ice is relatively weak, and considerable breakage of ice blocks may occur
under even a moderate pressure. This breakage substantially affects the interlocking of the
sample which is reflected in a lower internal friction at higher pressure. The second is the

size of the sample. Unlike testing of real soils, rubble samples used in previous tests are
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made from various sources, ranging from large size field ice to small size manufactured ice
cubes. Early tests used relatively small test chambers, which might have led to size effects.
Furthermore, all data on mechanical properties are from small scale laboratory tests, and
uncertainties remain regarding the extrapolation of small scale data to field conditions.

Recently, comprehensive field experiments were carried out near Borden, Prince
Edward [sland adjacent to the Confederation Bridge to develop reliable and practical
methods for characterizing the insitue strength of ice rubble in first-year ridges and rubble
fields (Bruneau et al, 1998). Two insitu shear strength testing methods were attemnpted. The
first, referred to as the direct shear approach, involved the horizontal displacement of a
pre-cut ridge core slab. Forcing the solid ice layer sideways resulted in the shearing of bonds
with the underlying ice rubble keel. The second approach, referred to as the downward punch
technique, involved the vertical displacement of a pre-cut block of the ridge's refrozen layer.
The technique provided a vertical failure of the underlying keel. Ancillary measurements
were made of level ice thickness, ridge depths, ridge profiles, refrozen layer core samples,
water salinities, sail heights, block size dimensions and weather conditions. Careful analysis
of the data set will provide significant information on the deformation properties of ice
rubble.

The measurement of the strength properties of ice rubble have been focussed on its
plastic failure state under high to medium pressure. Only a few have been performed at the
low pressure regime. Whereas, the rubble in front of a cone is expected to be in a loose state,

i.e.. cohesionless and under low confining pressure, and hence the test conditions may not

124



model the stress state that exists in the rubble under a typical interaction. At the rubble’s free
surface, the rubble is at the limit plastic state characterized by the internal friction angle at

it’s loose state, ¢,. (See Section 5.2) Inside the rubble mass, the rubble is at it’s elastic
state, which can also be related to ¢, (see Section 5.3). This &, is essential to model the

rubble behaviour associated with the problem under investigation; yet, such measurements

associated with ice rubble are scanty.

5.2 Rubble’s Surface Profile Due to Natural Dumping Process

[f a dry granular cohesionless material, i.e., dry, clean sand, is poured slowly from
a not very high level onto a smooth horizontal plane, it will form a cone with it’s free surface
inclined at a definite angle to the plane due to the internal friction of the material. The
limiting slope formed by this process is called the angle of repose, ¢,, and it presents the
maximum inclination at which the material will just begin to move down the slope. Since
the poured material generally finds itself in a loose state, the maximum stable slope angle,
9, is about equal to the angle of internal friction for the loose state, ¢.,. The existence of this
angle of repose has been shown in various text books on soil mechanics, i.e., Lambe and
Whitman (1979).

Observations from experiments indicate that a similar slope failure process constantly
takes place at the free surface of the rubble as a result of constant dumping of ice blocks onto

its surface: and hence the rubble’s free surface profile may be conveniently assessed by the



simple, empirical measurement of its angle of repose assuming the scale of the ice pieces is

smail.

5.2.1 Variation and Maintenance of Rubble Surface Profile
When rubble clears around the cone, three processes may arise:
(i) Continuous dumping of ice blocks from the top to the rubble’s free

surface;

(i) Removal of ice blocks at the foot of the rubble as they move and clear

from the side, and

(ii1)  Increase of the free surface inclination of the rubble as it slides up the
cone.

All three processes tend to increase the surface slope of the rubble, and hence ensure
a unique surface profile of the rubble to be maintained at its angle of repose by continuous
failure of its free surface. The third process happens only when the rubble is allowed to slide
up the wall with the underlying ice, when the static friction is high enough to prevent sliding
between the rubble and the underlying ice. When this condition occurs, it also accentuates
the effects of the other two processes.

During steady-state rubble accumulation, the rubble slope fluctuates between two
limiting values. Initially, the slope angle is less than the angle of repose. The slope increases
through the aforementioned three processes until the slope is larger than the angle of repose

for the rubble material, and progressive slope failure occurs. Up to this point, the motion of

126



ice pieces is slow and static equilibrium is maintained at each time instant. However, after
the on-set of the slope failure, the motion of the toppling ice pieces is large and substantial
kinetic energy is acquired by the toppling ice and the subsequent failure is dynamic. The
slope alter failure is substantially less than the angle of repose.

Cantelaube-Lebec et al (1995) reported an 8 degree difference between the angle of
repose just after an avalanche, and the angie of maximum stability just before the avalanche
in their experiment on the equilibrium conditions at the surface of a flowing 2-dimensional
granular medium. The pre-avalanche slope angle represents the limiting condition which
corresponds to the maximum amount of rubble loading on the cone.

Various aspects of gravity driven granular flows of particies down inclined surfaces,
similar to the avalanche process, have also been studied by Savage and Nohguchi (1988), Jan
et al (1992), Abu-Zaid and Ahmadi (1993), Chou (1994) and Pouliquen and Renaut (1996).

Another process was also observed during tests which could limit the maximum
rubble slope. Before the limiting angle of repose can be reached, all of the rubble mass can
slide down the facet, thus decreasing the slope. This is expected to happen when the cone
angle is steep or the ice-ice friction is low. Again, the pre-failure condition is static.

The angle of repose is affected by measuring methods and many parameters. Three
methods commonly used to measure the angle of repose are described by Linoya (1993), viz.,
injection method, discharge method and tilting method. Brown and Richard (1990) have
described each of these methods anid discussed the various parameters affecting the angle of

repose. Linoya et al (1990) have identified the various factors influencing the angle of repose
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for granular materials, such as: particle size, size distribution, void fraction, injection rate,

falling distance and size of heap.

5.3  Stress-State of Ice Rubble
5.3.1 Behaviour of Granular Material Under Stress

Stresses within a granular mass are caused by the external loads applied to the
granular mass and by its own weight. Since rubble mass is made up of blocks, it is essential
to understand how a mosaic of granular material behaves under stress. Classical theories
governing the earth pressure on a retaining wall form the logical starting point due to the well
explored nature of the subject and the similarity of the interaction processes under
investigation.

The stress state of a granular mass, under various loading conditions, can be
described using the concept of earth pressure ratio function. In soil mechanics, this function
1s commonly expressed by a ratio called the coefficient of lateral stress, and is denoted by

the symbol K:

Oh
K = o (5-2)

where G, and G, are the horizontal and the vertical stresses, respectively. The value of K can

vary over a wide range depending on the magnitude of the lateral (horizontal) pressure which
can develop in the rubble mass. This lateral pressure can be related to the strength and
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stress-strain properties of the material and deformations which occur within the mass as a
result of lateral movements. There are three distinct kinds of lateral pressure, and a clear
understanding of the nature of each is essential. In the special case, where there has been no
lateral strain within the soil, the coefficient of lateral stress is said to be in the “at-rest™
condition, and is denoted by the coefficient of elastic equilibrium at rest, K,. K, describes
the geostatic stress condition. Coefficients for the two plastic limit equilibriums, K, and K.
can also be identified. K, and K, describe the two plastic limits at which rigid plastic
material yields plastically.

To illustrate the material behaviour at these three states, consider a level soil mass
of semi-infinite extent retained by a smooth, rigid, wall as shown in Figure 5.4 which
summarizes the general relationships between lateral deformation and pressure. For
simplicity, the soil is assumed to be homogeneous, isotropic and cohesionless. The granular
material tends to slip laterally and seek its natural slope. This tendency results in a push
against the wall.

The vertical stress G, is controlled by gravity, and can be estimated from a profile of

overburden stress with depth. For the condition where the soil deposit is normally
consolidated®, the total vertical stress in the homogeneous soil at any depth of z is equal to

the weight of the overburden:

*A condition in which the existing overburden pressure represents the maximum vertical
pressure the soil mass has been subjected in its history.
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ov = ZY: (5'3)

where Y, is the total unit weight of the soil. There are no shear stresses upon vertical and
horizontal planes within the soil; and hence, in the case of a horizontal ground surface, the
vertical and horizontal components of the overburden stress are also principal stresses. 1f
these stresses are associated with zero lateral deformations of the soil, i.e., the unyielding
wall depicted in Figure 5.4b, they are referred to as the lateral stress at rest and the earth
pressure coefficient is designated K.

The horizontal stress, 6,, and hence the earth coefficient, K, are highly influenced by
the current soil state. If the wall of Figure 5.4 is allowed to move away from the retained soil
mass, the soil starts to expand in the horizontal direction, following the wall movement. (See
Figure 5.4a) The lateral expansion of the soil against a smooth wall does not affect the
vertical stress within the soil, but leads to a decrease in the lateral stress. Any element of soil
will then behave just like a specimen of a tri-axial test in which the confining stress is
decreasing while the axial stress remains constant. The soil’s shear strength acts opposite
to the direction of the expansion resulting in shearing resistance developed within the soil
mass, and hence the lateral soil pressure on the wall decreases. When the soil develops its
maximum shearing resistance with increasing lateral expansion, a sliding surface is formed
in the soil behind the retaining wall, and the horizontal stress exerted on the wall decreases
to a certain minimum, and no further decrease in the horizontal stress is possible. The

horizontal stress for this condition is called the active stress, and the ratio of horizontal to
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vertical stress is called the coefficient of active stress and is denoted by the symbol K.

If the same wall moves into the retained soil mass, the soil is compressed in the
horizontal direction, with the soil shearing resistance acting to oppose the lateral
compression (see Figure 5.4c). Any element of the soil is now in just the condition of a tri-
axial specimen being failed by increasing the confining pressure while holding the vertical
stress constant. When sufficient lateral movement occurs, the shearing strength of the soil
is fully mobilized and the reaction of the resulting lateral earth pressure reaches its maximum
value. The horizontal stress condition is called the passive stress, and the ratio of horizontal
to vertical stress is called the coefficient of passive stress, K...

Figure 5.4 illustrates the important fact that lateral pressures change gradually in
accordance with wall movement, and reach the fully active or passive conditions only when
adequate movement has occurred. Until such movement is achieved, the lateral pressure
acting on the wall is intermediate between the two limiting values, and the soil is said to be
in a state of elastic equilibrium. Results of large scale model tests are reported by
Tschebotarioff (1951).

The active and passive earth pressures constitute the ultimate case. The state of stress
at this two extreme situations are called Rankine states, after the British engineer Rankine
(1858) who noted the relationship between the active and passive conditions. For a simple
case of a level cohesionless fill behind a frictionless vertical wall, the magnitudes of K, and

K, are given by:
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sind

K = —2%
“ 1 + sind 5-4)
1 + sind
K = — 279 .
P 1 - sind -5)

The range of K values can be large. For ¢ = 35°, the possible range of earth pressures

is as follows:

Earth pressure Symbol Computed as K coefficient
Active K Eq. 5.4 0.27
At Rest K, Eq.5.7 043
Passive K, Eg. 5.5 3.69

The two limiting values K, and K, vary by factor of 13.7. Thus, it is important to identify
the appropriate values for K to match a particular deformation and failure process.

The at-rest stress state is of practical and theoretical significance to the present
investigation, since stress state is established when the backfill is placed behind a rigid wall
without allowing any lateral strain, i.e., soil deposited behind a rigid unyielding wall, a
process similar to the disposition of ice rubble in front of a rigid cone wall through end
dumping process. This process results in a cohesionless granular piie in loose state, and,
thus, the initial state of the rubble can be characterized by K.

When the soil is in a state of elastic equilibrium, the stresses in the lateral direction
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can be computed from the stress-strain relationships of the soil assuming a linear isotropic
material behaviour. The isotropic linear elastic body is characterized by two parameters: the
Young’'s modulus of elasticity, E, and the Poisson’s ratio, v, or with the use of another set
of elastic constants -- the modulus of rigidity, G, and the Lamé’s constant, A.

The relationship between lateral and vertical strains is described by Poisson’s ratio’,
v; and for the condition of zero lateral strain the relationship between the principle stress

(horizontal stress and vertical stress) are related by the ratio:

K =2 __V

(44 -
o, 1 -v

(5-6)

Matsuo et al (1978) compared the measured earth pressure at rest on a retaining wall with
the results from finite element computation, and showed that the elastic theory is applicable
to evaluate earth pressure at rest if the Poisson’s ratio can be properly given. The classical
model of linear elasticity has been modified for use with dry cohesionless granular materials
to account for the non-linearity of the stress-strain relationships of particulate structures.
Even with these major modifications, accurate predictions of loads due to small deformations

are very difficult to make due to a lack of knowledge of the stiffness moduli and strains as

SWhile the concept of Poisson’s ratio used in continbum mechanics is still valid for a
granular mass, it should be noted that, the Poisson’s ratio is used here to describe the behaviour
of the whole granular mass, i.e., not the individual discrete ice block. As the stress-state of the
rubble depends on it’s load history, the Poisson’s ratio of the rubble is not a material property
and varies with the stress-state.
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they change from point to point within the granular body.

Several theoretical and empirical relationships for K, have been postulated for loose
sands as summarized in Table 5.4 [Jaky, 1944 and 1948; De Wet. 1961; Brooker and
Ireland, 1965; Wierzbiczky (see Rymsza (1979)); Feda, 1982; Matsuoka and Sakakibara,
1987; and Szepeshdzi, 1994]. However, experimental values of K are best represented by

a simple expression given by Jaky (1948):

K, =1 -sind (5-7)

The validity of this formula has been established by Szepeshdzi (1994) and Mayne
and Kulhawy (1982). After giving a detailed examination of Jdky's equation, Szepeshazi
found the Jdky’s equation and its variations compared well with 152 measurements from a
variety of soils. Mayne and Kulhawy (1982) conducted an extensive review of laboratory
data from over |70 different soils as shown in Figure 5.5 (Mayne and Kulhawy, 1982).

Statistical analysis conducted on K for all available data indicated:

K =1 - 1.003sind (5-8)

o

having a sample correlation coefficient, r = 0.802. The scattering of data may be due to the
variations of the other index properties of the soil, i.e., liquid limit, plasticity index, clay
fraction, uniformity coefficient, void ratio, etc.

Many other investigators have also corroborated the results, i.e., Simons (1958);

Brooker and Ireland (1965); Bishop (1971); Pruska (1972); Wroth (1972); Myslivec
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(1972); Andrawes and El-Sohby (1973); Lambe and Whitman (1979); Fukagawa and Ohta

(1988); Mesri and Hayat (1993); and Feda et al (1995).

5.3.2 Expected Stress State of a Typical Rubble in Front of a Faceted Cone

When the rubble is formed by a natural dumping process, the clearing of the rubble
from the structure is analogous to the bulk material transport on an inclined belt conveyor
as the supporting ice sheet and the ride-up ice act as the belt conveyor. And hence the rubble
in front of the cone may constantly be subjected to two simultaneous processes.:

(1) The deposition of granular material in loose state in front of the

structure during the initial formation; and

(i1) The ride-up of rubble onto the facet in which the rubble is forced to

conform to the underlying support when the rubble is conveyed up the
facet.

The first process results in a rubble with stress associated with the at-rest state. The
second process may affect the stress state within the rubble, with the stress-state deviating
from the at-rest condition and moving toward the two plastic limits, depending on the type
of deformation in question, i.e., compression or extension

The real interaction process may be a good deal more complicated than the simple
picture presented above, but the essential process is nevertheless clear. It is expected that the
maximum force that is exerted by the rubble on the wall would correspond to the elastic

equilibrium state with a K value somewhat close to K, and it can diverge from K, depending
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on the effect of the second process. In all likelihood, such a change is negligible as long as
the rubble is allowed to clear from the structure; therefore, in the present study, the effect
of the second process on ice load is assumed to be negligible, and is not studied.

Possible extra load due to horizontal compression may be of concern, if the rubble
is prevented from riding-up the structure; however, it should be noted that the rubble will
not attain the passive state, even in this case. It is illustrated as follows:

General equations for passive earth pressure coefficients, K, can be established

graphically through Poncelet’s constructions (1840) for various wall angies, o, rubble angle,
1%, wall friction angle, ¢,,, and the internal friction angle, ¢, of the rubble material (Jumikis,
1962). The expected rupture angle, £2, as defined in Figure 5.6 is given as follows (Jumikis,

1962):

tan(¢-a)+/tan(d-a)[tan(d-a) +cot(d +(90° +1)][ | +tan( -, ~(90° +1))cot (G +(90° +1)]

tanQQ =
1 +tan(-¢_-(90° +1))[tan(d -a) +cot(¢+(90° +1)]

(5-9)

It should be noted that when the rubble angle, 1, is equal to the angle of repose, ¢, the
rupture angle, £, is equal to zero and the actual rupture line would make an angle ¢ below

the horizontal level.

The above formula suggests that for an discrete rubble mass accumulated in front of

® In this thesis, the rubble angle, 1, is reckoned as negative above and positive below the
horizontal plane which is different from the common convention used in the field of soil
mechanics. In the case under investigation, the angle is always positive.
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an inclined wall, passive shear failure within the rubble will not occur during a typical
interaction process, due to the large positive inclination of the free surface of the rubble. Any
shearing failure (if there is any) will take place at the bottom of the rubble, where a weak

shearing plane already exists, way before the shear strength of the rubble is fully mobilized.

5.4  Analytical Methods for the Computation of Wall Thrust Exerted by Earth Mass
at the At-Rest State

The problem of the earth pressure within rubble at the "at-rest’ state or near it
corresponds to one of the calculation of the earth pressure at rest for triangular fills.

The calculation methods of earth pressure at the ultimate Coulomb's and Rankine's
equilibrium states have been studied and examined by many researchers and engineers
(Coulomb, 1773; Caquot and Kerisel, 1948; Terzaghi and Peck, 1967; Packshaw, 1969;
James and Bransby, 1971; and Shields and Tolunay, 1973); but there is no satisfactory
method to compute the lateral pressure on walls due to fill at the at-rest state. Technical
literature for the calculation of lateral pressures on a rigid wall due to a triangular fill, as in
the present case, is limited.

In this section, two existing methods for the calculation of lateral pressures on a rigid
wall due to a triangular fill are described: Melkote’s elastic analysis (Melkote, 1977) and
limit equilibriumn methods. The discussion focuses on the limit equilibrium methods, while

Melkote’s method is only briefly described.
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5.4.1 Melkote’s Method

Melkote has developed a set of equations to compute earth pressures exerted on
retaining walls by triangular fills as in the case of wrap-around for transition blocks, between
earth dams and concrete spillways. His method consists of two steps by recognizing two
important features of the problem, i.e., the fill is triangular in shape and the pressure is
exerted in an ‘at rest’ condition. His derivations are based on Jiirgenson’s work (1934) on
strip loads on semi-infinite masses. In this method. the vertical wall pressures due to the
triangular fill are first estimated by calculating the vertical pressures due to a quarter infinite
fill against the retaining wall on the basis of integration of Boussinesq’s Equation (1885) for
a single concentrated load acting on a semi-infinite medium; and then unloading the fill in
strips beyond the actual embankment section. The horizontal pressures are then obtained by
multiplying the vertical pressures with the coefficient of earth pressure at rest. His method
is also applicable to a wall inclined at any angle, and a fill consisting of any number of layers
with different densities and compaction characteristics. Due to the complexity of the
derivation, the equations are not presented here.

Melkote's method has rarely been used as designers favour simpler methods.

5.4.2 Limit Equilibrium Methods
A simpler and widely used method, which may be applicable to the problem under
investigation, is the limit equilibrium method commonly used in slope stability analysis

(Huang, 1983). This method is based upon states of limit equilibrium which have dominated
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earth pressure problems for over two hundred years. The analysis essentially applies the
principles of static equilibrium to a relatively simple geometry in which slip on
discontinuities is governed by a specified shear strength model. It involves making an
estimate of the weights to be resisted, the geometry and the shear strength of the failure
surface, and the amount of shear mobilized within the granular mass. The stability of
individual slopes is expressed as a factor of safety, F,, which is the ratio of forces resisting
movement to the forces tending to induce sliding. When the mass is stable, the factor of
safety is higher than unity; and when the factor of safety is equal to unity, the slope will be
unstable, i.e., at limiting equilibrium. A factor of safety smaller than unity implies an
impossibly steep slope.

Most problems in slope stability are statically indeterminate, and hence various levels
of simplification are used in order to arrive at a unique solution. This leads to a variety of
methods (Fellenius, 1936; Bishop, 1955; Morgenstern and Price, 1965; Seed and Sultan,
1967; Spencer, 1967; Wang et al, 1972; and Janbu, 1973), ranging from the simple wedge
method (Seed and Sultan, 1967) to the very sophisticated finite-element method (Wang et
al, 1972). In this section, the simple wedge method is presented to illustrate the general
computational procedures of the limit equilibrium methods.

As we have already shown in the previous section, any sliding will occur at the pre-
existing sliding plane, and the principle underlying stability calculation of the triangular
rubble mass is the failure in shear along the sliding planes, when the driving forces exceed

the resisting forces. The forces on the ice contact surfaces, due to the rubble, can be
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reasonably estimated by assuming that the rubble is made up of a number of hypothesized
rigid blocks piled up against the inclined surface and considering the equilibrium of forces
for each of these blocks. By considering the rubble blocks as rigid bodies, it is possible to
predict rubble forces on the cone with the aid of rigid body mechanics. The simplest analysis
consists of two rigid blocks moving along the contact surfaces: the support and the incline,
as shown in Figure 5.7." The lower block has a weight, W,; and the upper block has a

weight, W,, resting on the incline with an angle, a. The dimensions of W, and W, are given.
The rubble is assumed to be cohesionless, and have a natural slope, \ = ¢. The contact
surfaces between the rigid blocks, support, and wall as well as each other form potential
failure planes. The sliding resistance of the rubble at the wall and the support is governed
by ice friction angle, ¢,.

The distribution of forces on each plane depends on the interaction force between the
two sliding blocks and can be determined by considering the two blocks jointly. Figure 5.8

shows the free-body diagram for each block. The angle of the inter-block force, ¢, is
required for solution, and may be assumed equal to the developed friction angle, i.e., tan¢,

= tan¢/F %, with F, being the factor of safety commonly used in limit equilibrium analysis.

"The mechanism in Figure 5.7 is not strictly kinematically feasible for the rigid blocks
analysis, because any downward vertical movement of the upper block will cause the block to
lock up at point A. This difficulty can be overcome by assuming that sufficient localised
deformation occurs in the region around point A to allow the mechanism to operate.

®At the verge of failure, the friction at the sliding planes, along the support and the
incline, is fully mobilized, i.e., equal to tan¢,; however, the friction between the two rigid blocks
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By assuming that the factor of safety, F,, is everywhere the same, applying equally to tan¢
for the rubble material between blocks, and to tan¢, at the wall and the support, there are a
total of four unknowns, P, F, N, and N,; where P is the force acting between the two blocks,
and N, and N, are the forces normal to the failure planes. The problem is statically
determinate with four unknowns and four equations, two from each block.

For the lower block, summing all forces in the vertical direction and the horizontal

directions, and solving for N, and P:

N - W, cosd,
| =
tan -
cosd, - ( ¢") sind, (5-10)
F.f
N tand
P=-——x -
F cosd, (5-1D)
or P, in term of the unknown F_only:
W, tan
P = and, (5-12)

F cosd, - tand)u sind,

For the upper biock,

may not be fully mobilized, i.e., the angle of the inter-block force is less than or equal to tan ¢,
depending on the value of F,.
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cos(dp, - @) - (ta:tb") sin(d, - @) (5-13)

F .
P - : (5-14)

or P, in term of the unknown F, only:

W, [sina - (ta:d,") cosa

P = - -
an ¢u ' (5-15)
cos(p, - @) - 5 sin(p, - a)

s

The equation for the factor of safety F, as a function of input parameters ¢, ¢,,, &, W,
and W, can be determined by equating Equations 5.12 and 5.15. Once F_ is obtained, N,, N,
and P can be computed from Equations 5.10, 5.13 and 5.15. A computed value of F, greater
than unity means sliding at the potential failure plane does not take place; while, a values
of F, smaller than unity means that the sliding failure will occur with a given rubble angle.
In such cases, the rubble angle should be reduced and a new F, computed until a value of
unity for F, is obtained. The corresponding rubble angle is the maximum angle which can
satisfy the static equilibrium condition.

By assuming the rubble as rigid blocks, the limit equilibrium methods ignore the

flexibility of the rubble mass. Furthermore, the assumed value of ¢, highly influences the
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stress distribution on the potential sliding plane, and the associated factor of safety. For
example, Figures 5.9 to 5.11 show the safety factor, the limiting rubble angle, and the
horizontal wall thrust, calculated from the fore-mentioned method, as a function of ¢,/¢ for
h=1m,a=50°¢=30°and ¢,= 11.3° and 21.8°. A commonly accepted way to estimate
9, has yet to be developed.

In Chapter 7, empirical equations to calculate wall thrust due to a triangular fill at the
at-rest state will be formulated from a series of numerical simulations. The equations are

simple to use and yet account fully for the discrete nature of the fill materials.
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Table 5.1 Summary of failure criteria proposed for granular materials (after Evgin and Sun,
1989)

[sotropic Criteria Anisotropic Criteria

l. Hill (1950)
(for orthotropic materials)
2. Generalization of Mohr Coulomb's
l. Mohr-Coulomb Criteria
a. Baker and Krizek (1970)
2. Drucker-Prager (1952) b. Boehler and Sawzuck (1970)
a. Bishop (1971) c. Nova and Sacchi (1979)
3. Tsai-Wu
a. Tsai and Wu (1971)
b. Wu (1974)
c. Saadaetal. (1983)

Table 5.2 Effect of angularity and grading on peak friction angle (after Terzaghi, 1955)

Shape and Grading Loose Dense
Rounded, uniform 30° 37
Rounded. well graded 34° 40°
Angular, uniform 35° 43°
Angular, well graded 39° 45°
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Table 5.3

Summary of laboratory shear box tests on ice rubble

Test Shearing | Initial Normal Test Cohesion | Friction
Author Pcrl'o;mc d Material Tested Rate Void Pressure | Temp. c Angle, ¢
(mmv/s) | Ratio, e, (kPa) (*C) (kPa) (")
Keinonen & i o (1
Nyman Direct shear Block 3'21’[5::::;’;;6 (t=block n.a. (:;5:9' 05-15 n.a. 0.11 47
(1978) ) )
Prodanovic Vertical . BT i ) ) 0.26 -
(1979) shear Max. block size: 8t, saline ice 19-38 n.a. 00-27 n.a. 0.58 47-53
Weiss et al Vertical Similar to above, max. block 0.23 - -40 -
’ - ') - - -
(1981) shear size: 41 3-25 1.00 0.0-28.0 -20.0 1.7-34 1-34
Al . ice chip, commercial ice
Hellman | Vertical | 0 diameter 30 mm), and [ 16-920 | na. | 00-40| o | o00-58 | 43-65
(1984) shear .
urea-doped ice
Gale ct al .| Max. cube size: 9.5 mm, fresh ) 0.67 - ) )
(1985) Direct shear water ice n.a 100 51-140 -1 n.a. n.a.
Urroz- Parallelepiped blocks, max.
Aguirre & Simple dimension from 16 to 95 mm, ) ‘
Ettema shear fresh water and polyethylene 2 na 0.6 0 n.i. 35-32
(1987) ice
Plane strain .
Sayed . 30 mm cubic blocks, fresh 0.67 - -10.0
S ’ ; 25 - ’ - -
(1987) comp':csslo waler ice n.a. 0.85 2.5-35.0 220 10 -20 27-45
. . 2-
Case (1991) | Direct shear | Block size: 1.3, EG/ADIS ice | 1 na. na. 20 | W20 | 27-49
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Table 5.4

Different equations for coefficient of pressure of loose soil at rest

Source

Equation

Jiky (1944) - original

K, = K, (1 - Zsing)

Jaky (1948) - simplified K, =1 -sind
De Wet (1961) K = 2= sin*d
- xin'd

Brooker and Ireland (1965)

K, = 095 (1 - sind)

Wierzbiczky ((see Rymsza (1979))

K = tan*(45" - %)

o

Feda (1982)

. . tand - [—(V_“ J

(ﬁn ) 2an ﬁ

B is the ratio of the elastic and plastic axial strains

Matsuoka and Sakakibara (1987)

K = —!

o 1 - 2sind

Szepeshizi (1994)

- l - H { <in¢ J
( sing) - sind) (sind - /35 - dsind -
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Figure 5.2 Typical stress-strain curves for loose and dense samples
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Figure 5.6 Graphical illustration of Q used in Equation 5.9
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Chapter 6 Rubble Geometry Idealization

When an ice sheet encounters an obstacle in its path, the amount of ice blocks that
can be generated and piled up in front of the structure is influenced by a number of structure
and ice parameters. A realistic modelling of the rubble field and the mechanism of its
formation is essential to an accurate ice load estimate.

In this Chapter, a new model to predict the shape and size of the rubble is presented
based on insights obtained from the earlier experiments (Chapter 4) and the basic soil
mechanics theories (Chapter 5). The purpose of this model is to compute the geometry of
the rubble based on simple yet essential interaction processes and mechanical principles.
Section 6.1 describes the general features of the interacting systems and the assumptions
used. The discussion forms the conceptual basis of the rubble geometry idealization. In
Section 6.2, an idealized geometry of a fully developed ice rubble is presented. Such a
rubble is expected to pile-up in front of a faceted cone during typical rubble generation and
clearing processes. The geometry is uniquely defined by the rubble’s angle of repose, and
the characteristic rubble heights along the cone perimeter. The methodology to predict the
amount of ice piled up via mass balance considerations is also described.! Section 6.3
presents the detailed derivation of the basic equations for the rubble height calculations. The

key heights are the maximum heights of the rubble along the front facet and side of the cone.

'McKenna and Bruneau (1997) used a very similar mass balance technique to estimate
rubble build-up on conical structures during ridge interactions by considering the projected area
of the advancing ice and the amount of ice rubble cleared.
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The derivations are validated in Section 6.4 by comparing the predicted values of the

maximum heights to the corresponding measurements from physical model tests.

6.1 General Features and Assumptions of the Interacting System

A considerable simplification of the analysis can be realized by recognizing the
principal features of ice generation, ice supply and ice clearing processes associated with the
interaction between a relatively thick and strong slow moving ice sheet and a face-on
oriented faceted cone. Figure 6.1 describes the typical ice breaking pattern observed in the
model tests. The ice sheet in front of the cone can be divided into 3 characteristic zones: an
accumulation zone located directly in front of the front facet and a clearing zone located on
both sides of the accumulation zone (the ice tends to accumulate in the accumulation zone
and clear from the clearing zone). For simplicity, the width of the accumulation zone is
equal to the facet width at the waterline®, w;; whereas, the width of the clearing zones is
almost equal to the projected waterline width of the side facet in the direction of ice
movement.

If the ice is thick and strong, the train of ice biocks generated from the accumulation
zone will be allowed to ride up the front facet, reaching the neck intact, and form an inclined
wall with a constant width, w,, as shown in Figure 6.2. This wall forms a barrier preventing

any ice clearing through it; and any ice generated from the ice breaking can only clear

*The width of the accumulation zone is influenced by the ice breaking pattern, and a more
precise method to estimate this width is given in Section 8.2.1.1.
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beyond the wall at both sides. Hence, analogous to those of the ice sheet, accumulation and
clearing zones can also be identified within the rubble, as shown in Figure 6.3.

When the ride-up ice from the accumulation zone reaches the neck, the broken ice
blocks fall back onto the accumulation zone following a path parallel to the centerline of the
cone. These ice blocks contribute to a constant supply of ice blocks into the rubble. On the
other hand, the ice blocks generated from the clearing zone ride up the side facet and clear
around the cone without obstruction; and hence, they do not contribute to the supply of the
rubble.

Since the rubble is sitting on top of the ride-up ice, it follows the same clearing
process of the underlying ice. In most case, the friction between the rubble and the
underlying ride-up ice is sufficient to prevent any sliding between the interface. As a result,
the rubble is transported up the facets with the underlying ice acting as a conveyer belt. The
ice blocks located in the accumulation zone cannot clear around the cone, but instead tumble
back onto the accumulation zone due to the obstruction of the neck located directly in their
path. These blocks eventually move sidewards into the clearing zone. Once the ice blocks
are in the clearing zone, they ride up and clear from the side facet with the riding-up ice. The
idealized flow pattern around the cone is also given in Figure 6.3.

The rubble surface profile is generated by a process analogous to the process of berm
construction by end dumping of granular materials from a line source, i.e., at the end of a belt
conveyor. Although the rubble is constantly pushed forward by the front facet, the speed is

so slow that it does not seem to affect the process. This process results in a rubble with a
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surface profile governed by slope stability criterion where the slope of the rubble is equal to
the angle of repose of its constituent material. With this surface profile known, the geometry
of the rubble can be uniquely defined with a given height profile around the cone perimeter.

The size and shape of the rubble at any instant during its development depend on the
balance between the supply and clearance of ice blocks to the rubble system. At the steady
state rubble clearing process, a constant amount of rubble piles up in front of the structure,
and its mass can be estimated by geometric consideration and a mass balance calculation.

Neglecting the discrete nature of the ice flow, the rate of ice supply into the rubble
depends on the thickness and velocity of the ice sheet and size of the cone; and the rate of
ice clearing from the rubble depends on the size of the rubble formation. At the earlier stages
of the rubble growth, the rate of ice clearing is low as most ice blocks are situated in the
accumulation zone. As the rubble grows, the rate of ice clearing from the sides increases
with increasing amount of the ice blocks moving into the clearing zone, until the rate of ice
clearing equals to the rate of ice supply. When this condition occurs, the rubble is fully
developed. As the rubble grows, the slope tends to be constant, equal to the angle of repose.
Figure 6.4 shows the geometry of the rubble as it grows in size.

To simplify the problem treatment, the following six assumptions are used for the

analysis:

(i) Rubble Generation Process:

The rubble pile is generated by end dumping of ice blocks from a line source
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located at the neck directly above the front facet.

(i1) Cohesionless Ice Blocks:

The constant deformation of the rubble mass prevents any cohesion

being developed within the rubble.

(iii) Full Mobilization of Shear Strength at Rubble’s Free Surface:

The shear strength is fully mobilized at the rubble's free surface. It
follows from assumptions (i) and (ii) that the free surface of the rubble is

equal to the angle of repose of the material.

(iv)  Full Rubble Development:
The rubble is allowed to develop fully without the bearing failure of

the supporting ice sheet.’

(v) uasi-Stati ilibrium State of Rubble:

The ice velocity is slow enough that the dynamic motion of the ice

* This condition is valid for relatively strong ice tested in IMD’s series; however, this
may not always be the case. The maximum amount of rubble may not be developed due to
failure of the supporting ice sheet, as observed in several tests conducted in IME. In such cases,
the strength of the supporting ice sheet has to be considered (see Section 7.6.2).
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blocks can be ignored.* The rubble in front of the cone is assumed to

maintain a quasi-static equilibrium state at all time. It follows that:

(a) The shape of the fully developed rubble can be deduced from
considering the static stability of the rubble around the structure
alone. In other words, the dynamic motion of the individual ice block
does not alter this stable shape.

(b) The inertial impact of ice blocks tumbling down the slope will not de-
stabilize the natural slope of the rubble. i.e.. the slope maintains at its

angle of repose.

(vi)  No Interaction Between the Free Surface and the Rubble-Ice Interface
The existence of the structure does not modify the free surface profile
of the rubble, i.e., the rubble is thick enough that there is no interaction
between the free surface and the ice-structure interface. The free-surface
maintains it's angle of repose independent of the ice-structure interface
condition. Thus, a unique gcometry of the rubble can be obtained by first
forming a heap of rubble from a line source and then superimposing it on to

the structure.

*Observation from model tests shows no discernible effects on the piling process or the
geometry of the rubble with speed up to 2 m/s full scale.
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6.2 Ideal Geometry and Mass Balance
Figure 6.5 shows the idealized geometry of the rubble system surrounding a simple
faceted cone. Only the front right quarter of the cone is shown. The free surface of the

rubble always maintains at its natural angle of repose, ¢,, in the radial direction. The profile

of rubble height around the front perimeter of the cone is defined by three characteristic
heights, h., h,,, and h_,, which are the heights of rubble at the side of the cone, at the edge of
the front facet. and the maximum heights along the front facet, respectively. In the present
model. the values of h, h,, and h_, are derived, and the variation of height between these
three points along the cone perimeter is assumed to be linear. The increase of height from
the edge of the front facet toward its centerline is due to the end effect typical of a three-
dimensional heap formation from a line source with finite length (see Section 6.3.3); and the
increase of height from the edge of the front facet toward the side of the cone is due to the
ride-up of the rubble ice along the side facet. The rubble height profile along the cone’s
perimeter, together with the known geometry of the cone and the assumed natural angle of
repose, uniquely define the geometry of the rubble.

The above idealized geometry is deduced from considering the main features of the
rubble generation and clearing processes, and is in agreement with observations from model
tests (see Figure 4.1d). Once this geometry is deduced, the size of the rubble, i.e., the values
of h,, h,, and h,,, can be obtained through mass balance calculation.

To illustrate this, please refer to the rubble system shown in Figure 6.6. Again, only
the front right quarter of the system is shown. The rubble’s free surface, the cone surface,
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and an imaginary vertical plane form the boundaries of the system under consideration. The
ice blocks are supplied into the system at the top of the rubble, and eventually clear through
the cross-section of the rubble intersected by the vertical plane. i.e.. cross-sectional area, A.

The general mass balance equation governing the selected system is given as follows:

R, =R, +R (6-1)

where R, and R, are the rate of ice supply to and clearing from the rubble system,
respectively; and R, is the rate of ice accumulation in the system.
In the case of a steady flow, there is no mass accumulation within the rubble system.

Thus, the rate of mass supply to the rubble system is equal to the rate of mass clearing from

the system:

RI = R(‘ (6-2)

Since all the ice mass riding up the front facet must eventually enter into the rubble
system as ice supply to the system, the rate of ice supply is equal to the rate of ice displaced

by the front facet; and hence:

R

s T W, v (6-3)

where w, is the waterline width of the front facet; t, is the ice thickness; and V is the ice
advancing speed.
The rate of ice clearing through an arbitrary cross-section in the rubble mass is a
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function of the area of the cross-section, A, as well as the velocity, V_, and the porosity, p.

of ice passing through it

R, = 2(1 - pAV, (6-4)

The factor of 2 reflects the fact that same cross-section, A, exists at both sides of the cone.

In the present derivation, two imaginary vertical planes are selected, a front reference
plane and a side reference plane which intersect the rubble mass with the cross-sections
associated with hy and h , respectively. Since the rubble moves with the underlying ice
sheet, the speeds of ice clearing through these two reference planes are assumed to be equal
to the ice advancing speed V. By equating the ice clearing rate to the ice supply rate, i.e.,

Equations 6.3 and 6.4, and letting V_equal to V:

A=l (6-5)
21 - p)

The geometry of A is defined by the angle of repose at the rubble surface, the cone angle at

the ice cone interface, and an unknown height which is determined in the next section.

6.3 Derivation of Basic Equations for Characteristic Heights of Rubble
6.3.1 Rubble Height at the Edge of Front Facet, h,,
Because of its proximity to the source of ice supply, the geometry of the frontal

portion of the rubble is highly affected by the way the ice blocks are supplied into the rubble
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system.

Figurc 6.7 shows the geometry of a rubble pile formed by dropping ice blocks from
a line source. If we ignore the end effect due to the finite width of the line source, the rubble
will have a central wedge section with length equal to the width of the line source, and a half
cone section formed at each of the two ends. The free surface of the rubble has an angle
cqual to the angle of repose, ¢,, of the dumped material. Suppose that we dump material
from a finite line source onto an inclined plane with the same width as the source, the
expected geometry of the rubble is illustrated in Figure 6.8. In another words, the geometry
of the rubble formed in front of a structure can be obtained by super-imposing the rubble on
the structure.

To perform a mass balance calculation for h,, only the frontal portion of the rubble
is considered. Figure 6.9 defines the rubble system to be considered. The cone in this
problem consists of three sections, with the subscript | denoting the lowest section and
subscript 3 the neck section. The geometry of the cone, in terms of the height, h,, and the
slope, o, of each section is known. The slope of the rubble is equal to ¢,. In this figure, the
rubble reaches the vertical neck, but the analysis also applies to rubble with its height at the
edge of the ride-up ice below level of the neck. To simplify the calculation, the thickness of
the ride-up ice is ignored, and the width of the ride-up ice wal! is assumed equal to w;. The
reference plane intersects the rubble at the side of the ride-up ice on the neck and front facets

to form a cross-section A ;. Itis assumed that some ice will be trapped between the side-facet



and the back of the ride-up ice wall, preventing any ice to pass through cross-section A, and
the trapped ice is not considered in this analysis. The rest of the rubble system interfaces
with the side-facet at area A,; and, hence, the ice, which is supplied from the top of the front
facet, must clear from the rubble system through cross-section A .

Figure 6.10 shows the geometry of A corresponding to the Cross-Section A-A as
defined in Figure 6.9. The cross-sectional area, A, can be obtained by considering the

geometry of the system:

Ay =22 -4, (6-6)

where A, is the projection of A, (see Figure 6.9) onto the reference vertical plane where the

ice is directly blocked by the portion of the structure protruding beyond the ride-up ice wail.

Since:
h .
B, = —~ -

d tand, (6-7)

then:
h’
A, = —T— -A, (6-8)
7 2tand, ‘

When the rubble increases in height, the front reference plane moves toward the rear
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part of the cone with increasing C,, until, and unless, the h is equal to or greater than h,,
and portion of the cone blocking the ice movement increases with increasing B, and h,,,.
The shape of A, depends on the geometry of the cone, i.e., &, h ;, and the height h,, or
length B, as defined in Figure 6.10. In Figures 6.9 and 6.10, B, and h,, are shown at their
maximum values. The o ., corresponding to each cone section can be obtained by tracing
the interaction between the cone and the vertical reference plane. It can be shown that when
the plane intersects the cone surface at a particular section, the intersecting line always makes
an angle equal to the cone’s side angle, o, ,, with the horizontal, where i is the corresponding
section: and hence o4, = o;. It can also be shown that the following relationships hold for

a six-tfaceted cone of any cone inclinations and sections:

TR
— = an =
c. (6-9)
and
tana _
= = $in60 (6-10)
tano,

where o, and ¢, are the slopes of the centerline and edges of a facet at section i, respectively.

The distance C,, is equal to:
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h -h h - h

_ f "n-1 i i-1
Cub - * 2[=|Jl‘l
tanc tane.

n t

(6-11)

where the subscript, n. is the highest section of the cone the rubble reaches, and h,, is equal
to zero. Substituting Equations 6.10 and 6.11 into Equation 6.9:

h, - h h - h
B = (’f—"' + _'_..__.i_l.) sin30“ .
" Lint g (6-12)

The height h,, can be calculated from B, o, and h, i.e.,

h

- h
hnh - (Buh N z:-‘l.m—l v) [anar.m " hm I (6“13)

4

where m is the number of sections blocking the ice clearing. In the above equation, m cannot
be calculated a-priori; however, unless the height of the lowest cone, h,, is very small, for
all intents and purposes, the ice will only be blocked by the lowest section of the cone, i.e..
m = I, with h,, equal to (B, tan a _,). In this case, A, can be calculated from the following

equation:

I L2
Bnb hub = ; Bnb [ana.r.l (6-14)

ub =

|-

Combining Equation 6.14 and Equation 6.8 gives:
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Letting A from Equation 6.5 equal to A ; in Equation 6.15, h can be solved:

W, ! 2
h,, = T + B tane | | tand,

L -p)

where B, is computed from Equation 6.12.°

(6-15)

(6-16)

To compute the value of B, the highest section, n, which the rubble reaches must

be known. The value n can be obtained via trial and error method by assuming an arbitrary

n, and then the corresponding h,, is calculated and compared with h,. the height of the

assumed section. If his greater than h,, then the actual n is greater than the assumed value,

and a higher value for n must be assumed until h, is smaller than the assumed h,.

For an unlikely event that m is greater than 1, A_, and h, can be calculated from the

following generalized equations:

L] h . 1 1
Aw = 5 Dt M ( B )]

tan,  tana

sh+1

*Provided the value of n is known, Equations 6.12 and 6.16 form a set of two

(6-17)

simultaneous equations with two unknowns, B, and h,. B, and h, can be solved by iterative
procedure by letting the initial value of h; equal h,. A few iterations will give a converged value

of hy.
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X
w I h,

h"f - , - * Z::l.nrl h’; ( l - l ) ] tan(b’ (6.18)

(L -p) tana_ tane tane

5=l

where h,;, is computed from Equation 6.13, and the trial value of h, is computed via the
above trial and error method by assuming an arbitrary m (in an ascending order) for each

assumed n value.

6.3.2 Rubble Height at the Side of Cone, h,

For the calculation of the characteristic rubble height at the side of the cone, h,
consider an imaginary vertical axial plane of symmetry in the cone, B-B, which intersects the
rubble at the side of the cone with a cross-section A, as shown in Figure 6.11. Again, to
maintain a constant amount of ice mass within the rubble system, the rate of ice supply to the
rubble system must be equal to the rate of ice clearing through A .

The cross-section, A, is depicted in Figure 6.12. The slope of the rubble is equal to

0,. Again similar to Equation 6.8:

h 2
A - rs - A 6-19
" 2tand, ob ¢ )

where A, a function of h, h, ¢, and n, is given as the following:
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L[ oA o 1 |
Aub = : * Zhl.n—l hl ( - )] (6'20)

tana“ tane

where the subscript n denotes the highest section where the rubble reaches (see Figure 6.12).

Substituting Equation 6.20 into Equation 6.19 leads to the following equation for A ;:

l l 2 ( 1 l J 2 ( l | J J
A e hr\' = = ) ~ h,‘ - -
“ 207 V‘tung, tane, 2o tane,  tane (6-21)

sael

By substituting Equation 6.5 into Equation 6.21, h, can be solved:

W

! N 1
: * Et—l.n-lhf ( h )

i . (l - p) [anau Iana‘\_"'l (6'22)

ry l l
\ tanp, tanc

YJ

To compute the highest section. n, of the cone which the rubble reaches. trial and

error procedure similar to those given in the preceding section can be used.

6.3.3 Derivation of Generalized Equation for Maximum Rubble Height Along the
Front Facet Face, h,,,
Observations from model tests indicate that the rubble edge along the front facet is
not level. The rubble height profile is parabolic with the height decreasing from a maximum

value, h, . at the centerline of the front facet to h, at the edge. This decrease can be
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attributed to the end effect during the formation process of a three-dimensional rubble pile
from a finite line source with a constant output rate along it’s length. In this section, this
effect is explained and a simplification in regarding the rubble geometry is made in order to
arrive at a simple relation between h,, and h;. The implication of this approximation and its
correction are then addressed. Due to geometric complexity of a multi-sloped cone. only the
equations associated with single sloped cones are derived in this section.

The phenomenon of end effect due to dumping from a finite line source is illustrated
in Figure 6.13 for a simple two-dimensional case. If there is no lateral restraint. a portion of
the dumped material at the two ends will slide down the heap to form a laterat slope: and
thus decrease its height at the two ends. Conceptually, the end effect can be illustrated by
replacing the heap formation with two steps process as shown in Figure 6.14. The rubble
material is first dumped within the two lateral wall restraints, and then. the lateral wall
restraints are released to allow materials at both ends to collapse to form the lateral slopes.
The profile of the heap can be computed by letting area A, equal to area A,. The length, w,
can be viewed as the portion of the line source which is subjected to the end effect. Figure
6.15 shows the dimension of a two-dimensional heap formed in front of a facet by the
process depicted in Figure 6.14. As material is added to the heap, the length w will increase
with increase of B, h,;, and h_,. If w is smaller than 0.5 w, a trapezoidal profile is formed

with:

w = 0.58B (6-23)
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and the maximum height:

h, = Buand, = 2h, (6-24)

as shown in Figure 6.15a. The maximum value of w is limited to 0.5 w,, when a triangular
profile is formed. If the heap is allowed to grow further, the dimensions B, h; and h_, will

increase while w is kept constant. The maximum height:

h,.'" = h'f oW tan¢r = hr, + 0.5“),— [an‘br (6'25)

as shown in Figure 6.13b.

To extend the analysis to a three-dimensional case analogous to the rubble formation
in front of a conical structure. the problem is simplified by assuming the geometry of the
rubble in front of the cone to be identical to that formed by dumping materials in front of an
inclined plane. Figure 6.16 shows half of the rubble mass formed in front of a sloping plane
by a line source with the lateral movement of ice blocks restrained. The right hand side is
the plane of symmetry through the centerline of the sloping plane. Figure 6.17 shows the
final shape of the rubble after the removal of lateral restraint on the left hand side. The
inclined plane is selected in order to simplify the derivation. The plane intersects the rubble
over an area, part of which is a triangle, egj, with an area A;. (See Figure 6.17.) The

derivation is only for a single slope structure with the front facet wide enough such that w
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is less than Y2 w..* To further simplify the computation, the curved free surface on the lateral
slope is approximated by a plane surface. The width, w, can be computed by equating the
volume, V, of the wedge abcdef in Figure 6.16 to the volume, V, of the pyramid abcj in

Figure 6.17 and is given as:

W =

w |

(6-26)

B and h,, are related to B, and h,, respectively, by a simple proportionality of 1.5, i.e.:

3
B = ;Bi (6-27)
and
M = Sy (6-28)
Combining Equations 6.26 and 6.27:
_ B,
W = ? (6'29)

These relationships, applicable to cases with w less than ¥2 w,, are independent of ¢, and a.

To compute w using Equation 6.29, B, must be known. B | can be estimated by a

method similar to those used in the previous section by considering the cross-section A in

“For the size of the structures encountered in the field, w is generally less than Y2 w;.
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Figure 6.17; and B, is given as:

(6-30)

r -
B, = —Lcos [sin’I (Sl_mb )
(I - p)sing, sina

Despite a slight difference between the cross-section used in the derivation of the h, in
Secction 6.3.1 and the one used here, the h,computed in Section 6.3.1 can be used to estimate
h,, via Equation 6.28.7

In the above derivation, V, , i.e., the volume abcj of Figure 6.17. is assumed to be a
pyramid. Since the volume abgcj is part of a right circular cone bisected by an inclined plane,
the surface acj is a curved surface and an exact solution should treat line aj as a circular arc,
as shown by a dotted line in the figure. The approximate solutions of w and h_, aiways

under-estimate the exact values. and the error increases with increasing o.

To adjust for the error incurred by the assumption, consider the base of the lateral
portion of the rubble as shown in Figures 6.18. The area A,, i.e., triangle abj, is the
approximate base area of the lateral portion of the rubble deposited in front of the inclined
plane, whereas the area, A, + A, is the true base area. The values of A; and A, are given in

the following relationships:

A; = r-sinar(l - cose,) (6-31)

2

"For a reasonably deep cone, i.e., cone angle, a > 45° and rubble angle, ¢, = 35°, the h;;
derived from the vertical or the inclined reference planes are within 1% of each other.
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e o o
A, = L - risin (—5] cos (——’) (6-32)
360 2

where,

(6-33)

The exact values of w and h_ can be obtained by the following relationships:

ol
W = EBI T (6.34)
h
h, = '
| - _l_ (A3 * A.;) (6-35)
3\ a4,

For example, for the case of a cone with an angle of o equal to 53° and a rubble with
slope equal to the angle of repose, ¢, = 35°. A .and A, equal to 0.20Ir and 0.083r,

respectively. and the ratio, (A;+A,)/A; = 1.41. Therefore, the exact solution for w and h_,

are equal to 0.57B | and 1.887h, according to Equations 6.34 and 6.33, respectively.
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64 Validation of Ice Rubble Geometry Prediction Model

The predictions for h, and h,, from the above model are compared to the
measurements with the two :25 scale models tested in the IMD’s series. Only those tested
with a velocity of 0.04 m/s were examined.® The large necked model was tested in 0.094 m,
0.123 m and 0.160 m thick ice, and the small necked model was tested in 0.158 m thick ice.
with a total of four data points. The model predictions and the relevant measurements are
given in Table 6.1. An example calculation is given in Appendix C. The angle of repose,
¢,. was about 35" estimated from the video recording. This value is used in the model
predictions. To use the equation for h,,, the structure is assumed to have an average slope,
o.,.. of 49.8” and 56.9° for the small and the large necked models, respectively. The
computed h, is only slightly sensitive to the @, i.e.. the h_, is within 5% computed from
... ranging from 40° to 60°. The computed w for all tests is less than 0.5 w,, indicating a
trapezoidal rubble height profile along the front facet.

Despite limited data used, the predictions from the derived equations give excellent
agreement with the measurements from the selected tests with the difference between the
computed and the measured values for h,, and h,, being 2.6% and 1.2% (on the average),

respectively. It is expected that such agreement will hold for other faceted cone structures

provided that the interaction assumed in this work prevails.

"There was no discernable effect on ice force or ice clearing process due to ice velocity.
The rubble heights measured from the selected tests were considered representative to those
associated with tests conducted with different velocities.
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The model predicts that the rubble height at the edge of the front facet is lower than
the rubble height at the side of the cone. This prediction is consistent with the general
observations from model tests in which the rubble is forced to ride-up the side facet with its
height increasing graduaily toward the side of the cone (see Figure 4.1d).

This model assumes the rubble slope is governed by ¢, of the rubble material. In the
case where the rubble angle, t, is smaller than ¢, due to premature sliding failure of the
rubble, the actual 1 should be used. With the reduction of t, the rubble heights will be
reduced as shown in Figure 6.19.

There is no rubble accumulation for a cone with edge-on orientation since all ice will
slide along the side facet and clear around the cone continually. For cones oriented between
the face-on and edge-on directions, the ice blocks can slide along the side facet or fall back
onto the on-coming ice sheet. The balance of these two tendencies governs the motions of

the blocks. No consideration is given to this, and this mode! is valid for faceted cones with

face-on orientation only.
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Table 6.1 Comparison of predictions from the new geometry model and the
measurements from IMD’s tests

Measurements Predictions
Test Model t w/w, h, h_, h, h, h,.,
(m) (m) (m) (m) (m) (m)

MUNCONE3 | 1:25S | 0.158 | 043 0.49 0.68 0.48 0.36 0.67
MUNCONES | 1:25L | 0.095 | 0.35 0.35 0.51 0.33 0.27 0.51
MUNCONES6 | 1:25L | 0.124 | 041 0.37 0.57 0.36 0.30 0.58
MUNCONE4 | 1:25L | 0.160 | 0.46 0.39 0.65 0.39 0.34 0.66

Common Parameters:

' Parameter Model 1:25S Model 1:25L
h, (m): 0.233 0.067
h, (m): 0.466 0.307
w, (m): 0.693 0.693
o, () 39.8 39.8
o, () 63.4 63.4
e (2 49.8 56.9
p () 0.3 0.3
¢, (°): 35 35

Note: 'Subscript: I - lower cone, 2 - collar
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Figure 6.7 Geometry of a rubble pile formed by dropping ice blocks from a line
source. Note: Half cones formed at the two ends

Figure 6.8 Rubbie geometry in front of an inclined plane formed by end dumping
from a line source
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Ride-Up
Ice Wall-

Figure 6.9 Rubble system selected in the calculation of h (only the front right quarter
of the rubble is shown)
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hrm = hrr + 0.5 Wr tan(br -

(b) w=0.5w, @)w<05w,

Figure 6.15  Figure showing the dimensions of a two-dimensional heap formed by the
process depicted in Figure 6.14, when: (a) w < 0.5w,, and (b) w = 0.5w,
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B=r sin«,

Figure 6.18  Base of the lateral portion of the rubble: coordinates a, b. and j
corresponding to those in Figure 6.17, and coordinate o is the vertical
projection (on to the base) of coordinate c in Figure 6.17

Nondimensional Rubble Heights,

0.75

25 27 29 31 33 35
Rubble Angle, t (°)

Figure 6.19  Figure showing the decrease of rubble heights with the decrease of
rubble angle. Rubble heights have been non-dimensionalized with

heights computed at 1 = ¢, =35°.
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Chapter 7 Discrete Element Analysis of Rubble

Loads on an Rigid Inclined Wall

Discrete element analysis (DEM) using the computer program DECICE has provided
a powerful simulation tool for complementing analytical and experimental work. [t is
particularly appropriate for cases in which contact behaviour between adjacent ice blocks
govern the mechanical properties of the ice rubble. The versatility of DEM in modelling ice
related problems has been demonstrated in a number of recent works (Babic et al, 1990;
Hopkins and Hibler, 1991; Hopkins, 1992; Evgin et al, 1993; Loset, 1994a and 1994b;
Hopkins, 1995; Sepehret al, 1997: Sayed, 1997, Katsuragi et al, 1997, Wang et al, 1997: and
Sayed and Timco. 1998).

In the present study, the problem of rubbie loads exerted on the faceted cone is treated
as a two-dimensional problem using the DECICE2D, a two-dimensional version of the
discrete element code DECICE.! The numerical investigation has been divided into two
parts. [n part one, the geometries of a one-dimensional compression (cedometer) test (Lambe
and Whitman, [979) and a simple gravity test were simulated to evaluate the internal friction

parameters for simulated ice rubble blocks, i.e., the internal friction angle, ¢, the

' The appropriateness of DECICE in ice related problems has been demonstrated by the
author in his previous work, including modelling of rubble shear properties, ice force on a
moored buoy (McKenna et al, 1997), ice interactions on a bridge pier (Lau, 1994a), and jamming
of floes at bridge piers (Lau, 1994b).
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corresponding ‘at-rest’ earth pressure coefficient, K, and the angle of repose, ¢,. The effects
of ice shape and friction were investigated. In part two, the loads exerted on an unyielding
retaining wall and the base support by a rubble pile were addressed. The effect of rubble
height, rubble slope, wall inclination, and the internal friction of the rubble were examined,
and a set of equations were formulated from the results of the simulations. These equations
are incorporated into the ice force model presented in Chapter 8.

In this chapter the results of the analysis are summarized. Section 7.1 describes
bricfly the main features of the DECICE computer code. The results of studies on
simulations of rubble mass behaviour at the “at-rest” state are presented in Section 7.2.
Section 7.3 summarizes the results of the load computation for rubble at the same stress state,
from which an equation for the computation of total wall thrust is derived and presented for
a variety of simulated ice and structure conditions. Equations for the other components are
derived in Section 7.4. The equations are extended to walls with multiple slopes in Section

7.5. and finally, the application of the new formula for other loading conditions is discussed

in Sections 7.6.

7.1 Main Features of the DECICE Computer Code

DECICE is a two- and three-dimensional discrete element computer program for
solving complex solid mechanics problems involving multiple interacting bodies undergoing
fracturing. In this method, the problem domain is divided into discrete elements. Each
element is considered as a distinct body which interacts with, or disconnects from,
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neighbouring elements during loading. The movement of each block is governed by the laws
of motion due to unbalanced forces acting on the element. Elements may be rigid or
deformable. The deformability, frictional, and damping characteristics of the interfaces
between elements are represented by spring-slider-damper systems which are located at
contact points between elements. Prescribed force displacement relations for the spring-
slider-damper system allow evaluation of normal and shear forces between elements. The
algorithmic detail of DECICE is described in the DECICE theoretical manual (Intera
Technology, Inc, 1986c¢).

DECICE has been calibrated against a wide set of experimental and field results,
including ice ride-up and pile-up on artificial island side-slopes (Hocking et al, 1985a),
dynamic impact of ice on an offshore structure (Hocking et al, 1985b), ice ride-up and ice
ridge cone interaction (Hocking et al, 1985c), identification of ice properties (Intera
Technology. Inc., 1986a), analysis of spray ice platform (Applied Mechanic, Inc., 1985), and
ice ridging loads (Intera Technology, Inc., 1986b).

Recently. the author (1994a) has performed an independent verification of DECICE
in ice force prediction and simulation. A series of six runs, which simulate the dynamics of
sheet ice interaction with a 60° conical bridge pier, were conducted using DECICE3D, a 3-D
version of DECICE. The results were verified with model tests carried out in the tank of the
Institute for Marine Dynamics (Spencer et al, 1993) and the available field observations
around Finnish Kemi I lighthouse in the Gulf of Bothnia (Hoikkanen. 1985; and Maattanen

and Hoikkanen, 1990). Figure 7.1 shows the interaction of the ice blocks, the cone and the
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ice sheet from a typical DECICE simulation of ice forces on a 60° cone in ice. A plot of
predicted versus measured horizontal peak forces is shown in Figure 7.2. A close agreement
between the calculated peak force values with the experimental measurements suggests that

DECICE is a promising simuiation tool for solving ice cone interaction problems.

7.2 Simulations of Rubble Mass at the *‘At-Rest” Condition

For a cohesionless ice rubble, the most important and commonly used
phenomenological descriptor to describe the mechanical behaviour of the rubble is its
internal friction angle, ¢. During a typical rubble piling, the rubble’s free surface is at a state
of limit plastic equilibrium characterized by the angie of repose. ¢,; while, inside the rubble,
it is at elastic state characterized by the lateral coefficient of earth pressure at rest, K. These
two parameters can be related to the internal friction angle of the rubble material in a loose
state. @_,. and are essential to model the rubbie behaviour; yet, measurements associated with
ice rubble are not available.

The main objectives of this part of the analysis, using DECICE simulations. are to:

(1) Obtain the internal friction angle of the bulk rubble which is to be used in the
subsequent load simulations; and,

(i) Verify the relationship between the internal friction angle, the lateral
coefficient of earth pressure at rest, and the angle of repose of the rubble

materials in the range of expected field conditions.
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Two series of simulations were conducted. In the first series, rubble samples with
a wide range of ice piece aspect ratio, AR, and ice friction, yi, were prepared and the at-rest
earth coefficient was computed via two test set-ups: (i) a simple gravity test, and (ii) the
standard oedometer test. From the earth coefficient, the corresponding internal friction angle
was computed using Jdky’s equation. In the second series, six rubble masses were allowed
to form in front of an inclined wall with a process analogous to the material dumping or
avalanche, a formation process similar to that taking place in a typical ice/cone interaction.
The natural angle of repose. ¢,, thus formed and the material's internal friction angle, ¢, were
compared.

The main parameters common to each simulation are summarized in Table 7.1. The
analyses were conducted as two-dimensional (plane strain) problems using the explicit time-
stepping solution scheme. In this study, the ice blocks were modelled by the simply
detormable perfectly elastic solid element. The specimens were tested in a dry condition.
Furthermore, element cracking was not allowed. This condition was confirmed during
selected preliminary runs, in which the stress within each element was sufficiently low and
element fracture was not observed. The stress-strain relationship is linear elastic in each
element with an elastic modulus of 0.2E7 N/m’ and a contact stiffness of 0.2E8 N/m?, chosen
for computation efficiency. The effects of elastic modulus and contact stiffness on the K,
values were not examined; however, the these values are in line with the values used by

Sayed (1995) and Hopkins and Hibler (1991) in their simulations of rubble shear properties,
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the results of which compared well with experimental data.* For these simuiations. the added
masses and moments of inertia were not included. The details of the simulations and the

results are given in the following sub-sections.

7.2.1 Generation of Rubble Ice Samples

Three sets of rubble samples with uniform piece sizes ranging from0.16 mx 0.16 m,
0.16 m x 0.32 m, and 0.16 m x 0.48 m, were prepared. These corresponded to the aspect
ratios, AR, of 1:1, 1:2 and 1:3, respectively. Each set consisted of 3 samples with ice
friction. W, set at 0, 0.2, and 0.4. The chosen values of ice friction, i = 0.2 and 0.4, reflect
the range of values frequently quoted for design purposes. The density of ice was 900 kg/m’.
The rubble samples were prepared via a natural dumping process as shown in Figure 7.3.
Firstly, a total of 475 pieces of randomly oriented ice blocks with a prescribed piece size and
contact friction were generated by normal randomizing method within a rectangular area
formed by three frictionless rigid elements representing two side-walls and a bottom plate.
The rectangular area had a height, h, approximately 3.5 times the width, b, of the base. After
the random generation, the blocks were then allowed to fall and compact at the bottom of the
box by applying gravitational acceleration to the elements. Vibration of ice blocks due to

inter-block collisions was damped by applying a 35% critical mass damping. A semi-

“Sayed (1995) used a spring constant of 0.265E7 N/m between rigid sphere resulting in an
etfective elastic modulus of the bulk rubble of approximately 7 MPa which agreed well with the
experimental values reported by Lgset and Sayed (1993).
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randomly packed form was created through the impacting of blocks on the boundaries and
between blocks. After compaction, the sample had a height to width ratio of approximately
2to I. The packing condition of the assembly was considered to be loose, and the cohesion
was set to zero. Figure 7.4 shows the final configuration of the rubble samples after the
initial compaction.

The initial void ratio®, ¢, of the bulk sample was dependent on the ice friction as
shown in Figure 7.5. This reflects the fact that the inter-block sliding is easier for a lower

contact friction resulting in a much denser configuration during natural deposition process.

7.2.2 Computations of the CoefTicient of Lateral Earth Pressure at Rest, K,

Two methods of measuring the coefficient of lateral earth pressure at-rest, K, i.e..
a simple gravity method and the oedometer test. were simulated.

After all the blocks had settled down, the forces acting on the bottom plate and the
side-walls were summed. Since no external load was applied to the rubble sample except
its own self-weight. it is dubbed “gravity method”. Since there was no friction between the
ice blocks and the rigid boundaries, shear stresses upon vertical and horizontal planes within
the rubble sample were not allowed to develop; and the principal axes coincided with the

horizontal or vertical axis, the ratio of the principal stresses was equal to the coefficient of

*The void ratio, ¢,, for two dimensional cases is defined as the ratio of the area of void to
the area of the solid mass in an arbitrary cross-section. The void ratio for three-dimensional
cases can be estimated as 3.33¢ assuming the sample is made up of an assemblage of spheres.
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lateral stress at rest, K,. By assuming a linear increase of stresses with depth from the top
surface®, the horizontal and vertical stresses, p,,, and p,,. at the bottom surface of the sample

were calculated:

(8]

P
Pun (—’) (7-1)
h

by

pln' = (7'2)

where h and b are the height and width of the sample, respectively: and P, and P, are the
sum of the normal forces exerted on the wall and the base. respectively: and, thus. K:

p)\‘l PII'I b
K, == =2 (P—) (7;) -3)
by

by

The geometry and variables used for Equations 7.1 to 7.3 are shown in Figure 7.6.
A summary of the coefficient of lateral earth pressure at rest. K, estimated by this

method is given in Table 7.2. The internal friction angle for each sample as calculated from

“The assumption implied that the horizontal wall thrust, P, will act at a distance L,
equal to 1/3 h from the bottom of the sample. To verify this assumption, the point of action of P,
was computed for each simulation. For all cases, P, acted on the side wall within a distance
0.045h from the assumed point of action.
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Jiky's equation’:

K, =1 - sind (7-4)

is also given in the table. The subscript [ associated with the symbols K, and ¢ refers to the
gravity tests.

A comparison of the earth pressure coefficient at rest, K, and the associated aspect
ratio of the ice pieces, AR, is given in Figure 7.7. The data shows no discernible effects of
the ice pieces geometry on the earth pressure coefficient. However, there is a significant
dependency of the earth pressure coefficient at rest, K, on the contact friction, |1, as shown
in Figure 7.8. The coefficient shows a higher sensitivity to ice friction at the lower friction
values.

Figure 7.9 shows the same set of data comparing the internal friction angle. ¢, and
the associated ice friction. u. Since the internal friction is a combined function of ice block
interlocking and friction, the values corresponding to zero ice friction can be a measure of
the effect of the block interlocking, which contribute up to about 10 degrees to the internal
friction angle. This angle is analogous to the effective roughness angle used in rock
mechanics to explain the higher apparent angle of friction due to visible roughness and other

surface irregularities (Patton, 1966; and Hoek and Bray, 1981), and can be referred to as the

*In practical soil mechanics, Jiky’s equation is an approximation. The validity of this
formula has been explored in Section 5.3.1.
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“interlocking angle”. Within the range of ice friction examined, the internal friction angle
is roughly equal to the arithmetic sum of this angle and the contact friction angle.

The above simulation is relatively simple to perform and the stress and strain
conditions are similar to the field conditions studied. A more popular test, called oedometer
test, was also simulated for comparison with the gravity test. In this test, stress is applied to
the sample along the vertical axis, while strain in the horizontal direction is prevented. The
results of the oedometer test simulation are summarized in Table 7.3. In this table, the
subscript 2 associated with the symbols K, and ¢ denotes the oedometer tests. Only the
samples with contact friction values of 0.2 and 0.4 were tested. Figure 7.10 shows the
configuration of the oedometer test simulation. In this case, gravity force was set to zero, and
a top plate was added to the problem setup. The rubble, initially in a loose condition, was
compressed one dimensionally in strain controlled manner giving no strain in the lateral
direction. The top plate moved and compressed the sample with a velocity of 0.4 m/s, while
the forces on the side-walls, and the top and bottom plates were monitored continually. The
vertical velocity corresponded to axial strain rates ranging trom 0.04/s to 0.07/s depending
on the height of each sample. Again, assuming a uniform load distribution along the
sample's surface, the p.;, Py K,2» and ¢, can be computed at any instant during the test.
Figure 7.11 shows an increase of the horizontal stress with increasing vertical stress during
a typical test simulation.

Figure 7.11 exhibits density-dependent assembly characteristics with aslight decrease
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of K, , with time. This decrease is a manifestation of increasing degree of interlocking as the
samples become denser upon compression. In order to compare the K, values obtained from
these tests to the gravity tests, the K, value corresponding to the moment of first contact
between the top plate and the ice was estimated from the data points before comparison, i.e.,
K, value at the same void ratio. A comparison of the values of K and ¢ estimated from the
gravity tests and the oedometer tests are given in Figures 7.12 and 7.13, respectively. Again,
the subscript | refers to the gravity tests and the subscript 2 denotes the oedometer tests. The
figures show good agreement between the values of K and ¢ from the oedometer and gravity

tests.

7.2.3 Angle of Repose Tests

In this series of simulations, the number of ice blocks in each sample was increased
from 4735 to 950 pieces to give a better surface profile for the angle of repose computations.
The simulations were performed on the three standard rubble samples, with ice friction equal
to 0.2 and 0.4. A total of six runs were conducted. The samples were prepared with the
same method given in Section 7.2.1. After each rubble sample was prepared, the rigid side-
wall at the right side of the box was changed into a movable element, which moved slowly
away from the rubble sample with a velocity of 0.22 m/s as shown in Figure 7.14. The
surface of the bottom plate had a coefficient of friction equal to 0.2, while the friction at the

wall was set to zero. Initially, both sliding of the ice blocks at the bottom surface and the
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failure of the rubble surface occurred; however, the bottom sliding ceased at the latter part
of the simulation due to the frictional resistance at the bottom, and the final profile of the
rubble was determined by slope failure. Damping of ice blocks is not necessary in this case
as the friction between ice blocks was sufficient to damp out the slight vibration induced by
the ice blocks rolling down the slope. Table 7.4 summarizes the results from this simulation
series.

Figure 7.15 shows the configurations of the rubble at the end of each simulation run.
The profile of the natural angle varies significantly along the surtace of the rubble depending
on the local variations of ice block orientation and interlocking which affect the sliding
conditions of the surface ice along the free surface. Typically the surface slope at the mid-
hill section had lesser variation than those of the top and the bottom sections where the
slopes were sub-critical. Therefore, the angle of repose, ¢,, was determined by taking the
best fit of the slope profile at the mid-section only. In Figure 7.16, this angle is compared
with the rubble’s internal angle. ¢,, obtained from the gravity test simulations. The angles
of repose are up to 4.5° smaller than the rubble’s internal friction angles.

The above angle of repose was measured after the avalanche condition. The slightly
lower values of the angle of repose measured may be due to the specific avalanche condition
used. With the constant activity at the free surface due to the rolling down of the rubble

blocks. it is expected that the maximum angle will be somewhat lower than the angle of

repose of the material.
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7.3 Development of Equations for Rubble Loads in 2-D

In this section a set of equations for rubble load computations, i.e., the total thrust
force and its angle of attack, are presented for a variety of ice and structure conditions. These
equations are formulated by:

(1) First, deducing the form of the principal equation and identifying the relevant
functions from examining the existing earth pressure equations for various
loading geometries and conditions: and, then,

(i1) Performing a series of DECICE simulations, the analysis of which either
confirms the selected relationship or gives a better functional relationship
between the total thrust force and the relevant variables identified in the
principal equation.

The equations provide the best fit to the DECICE results, and are applicable to acohesionless
rubble mass of various heights and internal frictions which is deposited in front of an
unyielding wall with single or multi-slopes. The rationale behind the selected form equation
and relevant functions is described in Section 7.3.1. The matrix for the DECICE simulations
is described in Section 7.3.2; and a detailed analysis is in Sections 7.3.3to 7.3.6. A general
equation for thrust force calculation is formulated and validated. In Section 7.3.7. empirical
equations to estimate the amount of friction mobilized at the wall are presented. [f this
friction is known, the other components of the rubble load, acting on the wall and the
supporting ice sheet. can be computed from the wall thrust via a simple force balance

calculation. Finally, in Section 7.3.8, the results of the DECICE analysis are summarized.
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7.3.1 Form of Earth Pressure Equation and Relevant Functions

Research on the pressure exerted by a variety of cohesionless granular materials, i.e..
loose sand, on a retaining wall has been a subject of concern to scientists over the last two
centuries. In all the various theories used in solving this problem, the expression for the total

thrust exerted on a wall takes the following common form:

P = ';'Yl;h 2K(a.1,d>.¢w) (1-5)

where:
Y, = bulk density of the granular material,

h = vertical height of the backfill,

o = angle of the inclination of the inner face of the wall measured from the horizontal
plane,
1 =  angle of the inclination of the free surface of the backfill in relation to the horizontal

plane, reckoned as negative above and as positive below this plane,’

® = angle of internal friction of the backfill,
¢, = angle of wall friction, and
K = earth pressure coefficient function,

and the form of K(o,1.9,9,) depends on the loading geometry and the state of stress in the

°In this thesis 1 is defined as positive below the horizontal which is different from the
convention commonly used in soil mechanics.
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backfill. For example, Coulomb’s equations for computing active thrust, P,, and passive

resistance, P_, exerted on an inclined wall with a sloping backfill are given as (Liu and Evett,

1987):
P, = %’ybhll sin*(ec +$) ’ }
2 . - —— - iy
sin‘a sin(u—d)w)( l+\] Sl.n(d) ¢w) srn(d) 1) ) (7-6)
sin(ee-¢,.) sin(a-1)
9 .‘nl(a_ )
Pp = %Yhh' [ St d)

sin(p+d, ) sin(p-v) ) : (7-7
sin(ee+¢,) sin(ac-1)

sin’e sin(a+,) ( I +J

In addition. Reimbert and Reimbert’'s (1974) empirical equations applicable to wali thrust.
when the backfill is on the verge of significant plastic deformation in active or passive

manners, are given as:

P - lyp? (180" - 2¢) 2 (1 . )(180" “a - ¢) %)
: 180"\ 90° - ¢

(2 ) - 2 (o e)
: 2 180" - 2¢ 180" 1 90" - ¢

where n in Equation 7.9 is equal to 1 in the case of rotational passive resistance and 2 in the

%)
o=
~



case of translatory passive resistance.

As for the “at-rest’ state, there is not yet a commonly acceptable general equation to
compute the wall thrust applicable to inclined wall with sloping backfill, due to the lack of
studies in this area. Nevertheless. for the case of a level cohesionless normally consolidated
fill behind a frictionless vertical unyielding wall, the wall thrust can be calculated using the

following formula where the fill is assumed to be at the geostatic state:

P = %Yhh 2Kn (7'10,

The variables used in Equations 7.5 to 7.10 are defined in Figure 7.17.’

Equation 7.5 is a good starting point for the present analysis, i.e., all previous soil
pressure equations are of this form. In this work. Equation 7.5 is assumed, and the form of
K(o.t.0.9,) is deduced through a series of DECICE simulations.

Reimbert and Reimbert's equations, i.e.. Equations 7.8 and 7.9. are particularly
relevant to the present investigation as their equations apply to loading conditions similar to
the present case, and were validated by extensive experimentation. They are by far the
simplest. and provide a clear delineation of the etfects of a, \, ¢, and ¢, on the K function.

Forexample, in Reimbert and Reimbert’s Equation, the K function takes the following form:

"Note that the direction of the thrust as defined in Coulomb’s Equation and the Reimbert
and Reimbert’s Equation are different.

203



Kb, = Kaud) - K (1 - 2] (B0 e o]
180" 90’ - ¢

or the following generalized form:

Ko, d.d,) = K'(d) K" K"(d.a) K"(D,) (7-12)

The first term on the right hand side of Equation 7.12 is a function of ¢ only, the form of

which depends on the particular stress state of the backfill. (The corresponding functions for

other stress states are given in Section 5.3.1.) The second term is a function of t only which
accounts for the effect of backfill inclination. The third term is a function of & and ¢, which

accounts for the effect of wall inclination. The last term is equal to | indicating no influence

of ¢, on the K function.

Reimbert and Reimbert’s K function serves as a logical starting point for the analysis
of the DECICE results. Since the rubble is deposited in front of an unyielding wall, the

rubble is expected to be at the ‘at rest’ state. Therefore, K'(¢) is assumed to be a function

of ¢ in the form of ‘1-sind’ via Jiky’s equation. i.e.,

K'(®) = (I - sind) (7-13)

The theoretical and experimental validities of Equation 7.13 for cases with vertical

frictionless wall and level fill have been shown in previous sections. It is also hypothesized



that the Reimbert and Reimbert’s (1974) coefficient functions corresponding to K*’, K’’’ and
K'""* for the effects of rubble inclination, wall inclination and wall friction are also valid for

the "at rest’ state under investigated, since the ‘at rest’ state is located in between the two

states® Reimbert and Reimbert studied. i.e.,

2
K" = (l - ”—‘J (7-14)

K”I(a.d)) - (180" - - d’)

v (7-15)

K",) =1 (7-16)

These assumptions lead to the following general equation for the thrust applicable to an

inclined wall with a sloping backfill:

) . 2 - @ -
P, = Lvhh'(l - sind) (l - = )(180 2 ¢) (7-17)
2 180° 90" - ¢

For the case of a vertical wall, i.e., & =90°, Equation 7.17 is reduced to the following form:

*Description of these two states is given in their paper (Reimbert and Reimbert, 1974).
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P, = —y,h*(l - sind) tl - =" J (7-18)

o

I\Jl——

The wall friction, ¢, affects the total wall thrust, P_, through the amount of friction
actually mobilized at the wall surface. This mobilized wall friction is called “effective wall
friction’, denoted as ¢',, in this thesis. It was anticipated that the relationship between ¢,, and
¢’ . and hence between P, and ¢ .. would take a complicated form as the relationship was
expected to not only depend on the geometry but also on the history of the loading. Various
functional relationships derived between total wall thrust and wall friction can testify to that.
For example, Reimbert and Reimbert’s experiments (1974) showed that the wall friction, ¢,,.
had no effect on the magnitude of the wall thrust; while others, i.e., Equations 7.6 and 7.7,
give various functional relationships. Limited computational resources prevented an in-
depth derivation of K"*'*; however, the DECICE analysis shows that K’’’ is approximately

equal to | suggesting that the wall friction has negligible influence on the total wall thrust.

7.3.2 Overview of DECICE Simulations and Analyses

Equation 7.5 suggests that a direct proportionality exists between the total thrust
force, P,, and the height squared, h*, of the fill. This proportionality is independent of the
earth pressure coefficient function, K. Before a comprehensive investigation of the K

function, a number of DECICE simulations were conducted to verify this dependency.



Validation of this proportionality ensured the scalability” of the DECICE results to other
heights. After that, the four variables, 1, o, ¢ and ¢,, were systematically varied, and their
effects on the earth pressure coefficient function, K, and hence the total wall thrust were
examined and delineated. The range of variations for each parameter is given in Table 7.5,
with tat 1, 0.75 and 0.5 times the base value of 22.5°, a from 90° to 45°, ¢ at 24.2° and 33.2°,
and ¢, set at 0°, 1 1.3 and 21.8°. The ice friction angle at the base of the rubble, ¢,, was set
to 11.3". The bulk weight density/unit width, ¥,, of the material varied from 6807 N/m’ to
6950 N/m* (with an average of 6887 N/m*) depending on the height of rubble sample. The
mass density/unit width, ¥, of the material used was 8829 kg/m°. These ranges were
expected to encompass the ice and structure conditions encountered in the field.

The test configuration and sample geometry for each test conducted in this series are
given in Figure 7.18. In the DECICE analysis, the condition with the non-displacing
boundary is analogous to the at-rest earth pressure condition in the field. A total of 48 runs
were conducted. For each test configuration, the forces exerted on the wall and the base were
computed. The results are summarized in Table 7.6. The variables are defined in Figure
7.19.

The linear dependencies of total wall thrust, P,, on h*, and the assumed K'’ are

validated in Sections 7.3.3 and 7.3.4, respectively; whereas, the validities of Equations 7.18

and 7.17 in thrust force predictions are assessed in Sections 7.3.5 and 7.3.6. Table 7.7 lists

“Scalability also implies repeatability. i.e., repeatability of data in different scales.
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the computed values of different functions or functional groups used in the analyses

conducted in those sections.

7.3.3 Validation of Linear Dependency of Thrust Force on Rubble Height Squared,

3

h?

To validate the linear dependency of the thrust force on h’, three base cases with
different combinations of ¢, and a were selected for DECICE simulation. i.e., o0 = 90° and
¢,=0" a=90"and ¢,= 11.3°, and o =45°and ¢, = 21.8° and the height of the rubble. h,
for each case was then systematically reduced by /3 and 2/3 times while keeping the other
parameters constant. The rubble angle, 1, and the internal friction angle, ¢. are kept at 22.5°
and 24.2° respectively for all cases. A total of nine simulation runs were conducted, and the
results are summarized in Table 7.8. In the table, P, is the value for the total wall thrust in
the DECICE simulation, and P,,_,  is the scale-up value of P, corresponding toh =4.8 m
using the scaling ratios, (Wh ) and (Y/,.s)- The second factor was applied to reduce the
variation due to varying weight density between cases. If applying this scale-up factor to
ciach simulated wall thrust produces the same thrust as the simulation with h = 4.8 m. this
would tend to confirm h* dependency for the thrust. This is confirmed by the present

simulations. The scaled-up values of the thrust, P, _, . all lie within 2.5% of the simulated

values at h = 4.8 m for each set.

208



7.3.4 Validation of Linear Dependency of Thrust Force on the Function, 1 - -2
180°

To validate the linear dependency of the total wall thrust, P,, on the assumed K"', i.c.,

LIy

| - — . acorrelation analysis was performed on all DECICE simulations to establish
180"

the degree of correlation between P, and K. for constant e, ¢, and ¢,. Since h and ¥,
differed from case to case, the K’ was multiplied by y,h* before comparison to eliminate the

variation due to h and ¥,. The y-intercept of the unknown regression line was assumed to be

Zero, 1.e.,

PAl

renlnwls- 2 -
b 180° (7-19)

where m is the slope. With this assumption, the number of degrees of freedom, df, can be
taken as (n-1), since there exist only one independent relationship involving the n pairs of

values of P,and yh? ll - i} . This allows the correlation coefficient to be computed
180

for a data set with as few as two data points.

Table 7.9 summarizes the results of the correlation analysis. The test matrix has been
given in Section 7.3.2. Data with same «, ¢, and ¢,, are grouped together resulting into 18
possible data sets. In the table, the coefficient of determination, r*, the correlation
coefficient, r, and the degrees of freedom, df. of each test set are summarized. The minimum

values of r required to establish the confidence level of 90%. 95% and 99% for a given df are
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also listed.'" If the computed r value is above the required minimum value, it can be
concluded with the corresponding confidence level that a linear relationship exists between
the examined variable pair, P,and v, h* ll - ‘—;)‘-J . The table shows the two variables
were highly correlated with all r values being higher than 0.937. All data sets with more than
three data pairs, i.e.. df > 2, has r values exceeding 99% confidence level. The data set with
only two data pairs, i.e., df = |, gives a lower confidence level, the uncertainty of which is
a direct result of the small number of data pairs used; however, all of them are either close

to or cxceed the 90% confidence level. It can be concluded with a high degree of confidence

that linear correlation exists between the P, - K*’ variable pair.

7.3.5 Validity of Equation 7.18 for Vertical Walls
In this section. the validity of Equation 7.18 for wall thrust computation associated
with vertical walls is assessed. The results from DECICE simulation runs conducted with

a frictionless vertical wall and a backfill with a value of 1 set at 1, 0.75. and 0.5, times the
base value of 22.5° were selected for analysis. The ¢ was 24.2° and 33.2" which correspond
to the ice contact coefficient of friction, u, of 0.2 and 0.4, respectively. In addition, the
simulation runs with wall friction angle, ¢,,, equal to 11.3° and 21.8° were also analysed.

This was to examine the sensitivity of the above equation to wall friction.

'“The 95% confidence indicates there is only a 5% chance of having r as large as those in
the table when no correlation exists. In order to conclude at a given confidence level that the
correlation does exist, the calculated r should exceed the tabulated value of r.
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The parameters for the base cases and their variations associated with this task are
listed in Table 7.10. (Please refer to Table 7.6 for the details of the individual tests and Table
7.7 for the computed values used in this analysis.) Figure 7.20 gives the comparisons of the

total wall thrusts computed by Equation 7.18 and the simulated values for the three values
of ¢,.. The data shows a remarkable agreement between the values computed from Equation

7.18 and the values obtained from the simulations. Linear regression conducted on the three

individual sets of data give the following results:

aopred = 0'988P,,__",ﬂ“l; rl:0.996
Pu.pred - 1'025P,,_",md; r*=0.992

and
P".Pm, = 1.073P, . .» r2=0.991

for the three ¢, values of 0°, 11.3° and 21.8° respectively.

The data shows a slight dependency of the measured P, on the wall friction angle
with a decrease of thrust by 3.7% to 8.5% (on average), when the wall friction angle
increases from 0° to 11.3° and 21.8°, respectively.

It is concluded that Equation 7.18 is valid for the thrust computation for a vertical

wall and a rubble with varying 1 and ¢. Wall friction slightly decreases the measured P_; and



hence the prediction slightly errs on the conservative side by omitting the effect of wall

friction. The effect of wall friction will further be explored in Section 7.3.7.

7.3.6 Validity of Equation 7.17 for Inclined Walls

Existing earth pressure theories suggest a significant effect of the wall inclination on
the thrust exerted upon a retaining wall by the earthfill. For example, for a granular fill, with
an internal friction angle, ¢ = 25° inclined at its angle of repose, i.e., t = ¢ = 25", the
Coulomb equation (Equation 7.6) predicts an increase of thrust by 67% when a smooth wall
changes it’s incline from 90° to 45° while Reimbert and Reimbert’s equation (Equation 7.8)
gives a 69% increase for the same change.

In this section, the analysis is extended to examine the effects of wall angle on the
total wall thrust, and the validity of Equation 7.17 for inclined wall is assessed. Four base
cases with a combination of 1 = 22.5° and 17.3° and ¢ = 24.2° and 33.2° were selected and
tested with o values 90°, 75°, 60° and 45°. The simulations were conducted with ¢, = 11.3°
and 21.8°. The runs related to this series are listed in Table 7.11. Again, please refer to
Tables 7.7 for the computation results.

Figure 7.21 gives a comparison of the P, computed from Equation 7.17 and the
corresponding simulated wall thrust. The figure clearly shows a substantial over-estimation
of the wall thrust by Equation 7.17. The over-estimation increases with the increased
deviation of wall angle from the vertical. For example, Equation 7.17 overestimates the

thrust by 23% , 20%. and 29% when the wall angle changes from 90° to 75° to 60° to 45°,
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respectively.

Despite the discrepancy, the general trend predicted by Equation 7.17 is consistent
with the results from the DECICE simulations in which the thrust decreases with the increase
of the wall angle, and the rate of decrease is larger for a larger rubble angle, as shown in

Figure 7.22. Therefore, the form of the assumed K’’’ was retained but modified to fit the test

data. It was found by trial that the following function agreed well with the data:

1
) - - ') —
K" (a.d) = (180 ¢ “‘b) : (7-20)
90" - 2¢
This gives the tollowing general equation for the thrust:
1 2 | 180° 20) 5
P, = :Yhhl(l - sind) (l L )( x '(b) 3 (7-21)

180"/ % 90" - 24

Figure 7.23 shows a comparison of the P, computed from Equation 7.21 and the

corresponding thrust on the wall in the simulation for the two values of ¢,,. Linear regression

conducted on the two individual sets of data gave the following results:

1.065P r:=0.973

o.pred o.simul®

and

r=0.965

"
i

= 1.070P

o.pred osemul®



for the ¢,, values of 11.3”and 21.8° respectively. Equation 7.21 only slightly over-estimates

the simulated values in the order of 7% with a r* value better than 0.965 for the two values
of ¢,. Again, the overestimation can be attributed to the omission of the effect of wall

friction on P,.

7.3.7 Derivation of Effective Wall Friction, ¢’

The angle of wall friction is often assumed to be a material property but this
assumption is incorrect. It depends upon the direction of movement, the amount of
movement and the properties of the material. Moreover. it may also vary along the wall.
Hence it is a response and not a property.

During transportation of the rubble ice up the cone facets, the rubble tends to slide
down due to it’s own weight. Because of friction between the rubble and the ride-up ice. the
tendency is to cause a downward frictional force on the ride-up. The magnitude of this force
is limited by the friction angle, ¢,. between the rubble and the ride-up ice. For ice, ¢,
typically has a value ranging from 11.3° to 21.8°, and is frequently quoted toward the lower
end.

When the relative motion between the rubble and the ride-up is not sufficient to fully
mobilize the available frictional resistance at the interface, the amount of friction mobilized

is indeterminate. However, the effective wall friction angle, ¢’,, can be computed

empirically from the data by considering force equilibrium at the interface. and is given by



the following equation:

P _sin(a) - Pwhcos(a))

P .cos(a) + P_ sin(a)

¢, = tan’ (

(7-22)

The angle, ¢’,, together with the wall inclination, o, determines the direction of the

thrust exerted on the wall. In order to maintain equilibrium condition, the thrust always acts

upon the wall at an angle:
@, =90 - (a - b, (7-23)

measured from the horizontal plane. In orderto accurately predict the direction of the thrust,
and hence its horizontal and vertical components, this ¢’ must be known.

Figures 7.24 and 7.25 show the ¢’, computed from Equation 7.22 as a function of
o for ¢, equal to 11.3"and 21.8°, respectively. The data set includes tests with 1 =22.5" and
17.3". and ¢ = 24.2° and 33.2". The data show a definite dependency of ¢’ on the cc and ¢,
while the trends with other parameters were of lesser significance. Comparing the two
figures, the value of ¢, is substantially higher with the higher value of ¢,, for the same cone

angle. Despite a large scatter in data, the trends are linear with the following two equations

fitting the data with o between 60° to 90°:

[

¢, = - 0.256la + 24.758; r?=0.779 (71-24)



for ¢, = 11.3°, and

!

$. = - 03407 + 39.339; r® = 0.842 (7-25)

(]

for ¢, =21.8", respectively: and the value of ¢’,, is always smaller than or equal to the value
of §,.

In Figures 7.24 and 7.25, the broken lines correspond to ¢’, = ¢, which is the
limiting value corresponding to the condition of full friction mobilisation at the wall.
Equations 7.24 and 7.25 predict that such conditions would occur when o < 53° for ¢, =
i11.3" and a0 < 44° for ¢, = 21.8”, respectively. Since wall inclination of most offshore
structures are designed within the range of 40° to 60°, as a rule-of-thumb the wal! friction will
be fully or almost fully mobilized at the wall for the commonly quoted coefficient of ice
friction between 0.2 to 0.4, i.e., the friction mobilized on the wall for p =0.2 and 0.4 is 83%
and 80% of wall friction, respectively, for a = 60°. It should be noted that although the
frictional resistance is exhausted at the wall, the frictional resistance at the rubble’s bottom
tace may still be sufficient to hold the rubble in static equilibrium.

When the frictional resistance at both the wall and the supporting ice sheet are fully
mobilized. i.e.. ¢’ = ¢, and ¢’, = ¢,, the rubble starts to slide down the slope. These
conditions are reached for two simulations, i.e.. Runs R12W2_2and R12W3_2. Figure 7.26

is a snap-shot of Run R12W3_2 showing the whole rubble mass sliding down along the wall

and the supporting ice surfaces.



7.3.8 Summary of the Formulae Derived from Best Fit of DECICE Data
Based on the DECICE simulations, a simpie expression was formulated to calculate

the thrust exerted on an unyielding wall, from a knowledge of the ice and structural

parameters:

!
s . 2 o _ - _
3 lth‘ (l - smd)] (l S )(180 ¢ 2¢) 3 (7-26)
2 180" 90" - 2¢

with P, making an angle:
@, = 90" - (@ - ) (7-27)
from the horizontal, where the effective wall friction angle, ¢, is the angle of friction

mobilised at the wall. This effective wall friction angle was found to be a function of the

wall inclination, ¢, and the wall friction angle, ¢,,, with the following empirical relationships:

¢, = - 0.256le + 24.758 (7-28)

for ¢, = 11.32°; and

/

b,

- 03407 + 39.339 (7-29)

for ¢, = 21.8", respectively. The ¢’ is always smaller than or equal to ¢,,.

The equation is similar to the universal formula proposed by Reimbert and Reimbert.



i.e., Equations 7.8 and 7.9. The coefficient for maximumthrust, (23 -2¢)? g replaced
b

1807 - 2

by the coefficient at rest, K, = (1 - ¢), of the granular material, which reflects the appropriate

at rest stress condition in the ice rubble. The coefficient, 1 - =% | suggested by Reimbert
180°

and Reimbert (1974) to account for the effects of backfill’s inclinations for the maximum

active and the minimum passive state is found to be applicable to the “at rest’ state of stress

W0 e 9 fortheeffect of wall

90 - ¢

as well. However, Reimbert and Reimbert’s coefficient,

inclination significantly overestimates the simulated thrust on the wall, specially for a small

t
(180 - a -:o)_‘

9 2

wall angle. Instead, a coefficient function. , is found to give a much better

agreement with the DECICE simulation.

7.4 Load Components Distributed on the Wall and the Supporting Ice Sheet
The weight of the ice rubble is partly supported by the ride-up ice and partly by the
supporting ice sheet. The horizontal and vertical components of the thrust exerted on the

ride-up ice are given by the following equations:

wh

[
o0 _ -" -
Y1 - sind) (1 - )('80 @ 'd’) Tcos(90° -(a-d)) (7-30)
1807\ 90" - 2

o] —

1
P =Lyt - sing) (1 -2 )('80 o - 24’) *$in(90” -(a-¢,,))  (7-31)
2 180"\ 90° - 26

The horizontal and vertical forces exerted on the supporting ice sheet can be

computed through a consideration of simple force equilibrium as shown in Figure 7.27; and
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arc given as the following:

i = P (7-32)

P, =W -P, (7-33)

while W/ is the weight of the rubble computed from its known geometry and bulk density.
The contact friction mobilized at the bottom surface of the rubble is equal to:

P
¢, = tan’' ("Pi) (7-34)

by

and is limited to ¢y, the friction angle at the supporting ice surface.
Table 7.12 summarizes a result of least squares fit of computed force components to

corresponding simulated values for the cases with the three wall friction angles, respectively.

The analysis shows good overall agreement for the force components.

7.5 Application of the New Formula for Walls with Multiple Slopes
Equations 7.30 and 7.31 can be generalized and applied to walls with multiple slope
angles. Forexample, for a multi-sloped wall retaining a rubble, as illustrated in Figure 7.28,

the pressure. p. at a depth hy measured from the maximum height of the rubble is given by:



I
b = YAl - sind) (1 2 ](180 ~a - 2¢) 3

(7-35)
180~ 90" - 2¢

and the thrust for an arbitrary section, i:

R , 2 180° - o - 20)
Pu.: = iYh(hh.l- - ht.i—)(l - Sind)) (l - =L )( : ¢) 3 (7'36)
2 180” 90° - 2¢

where h, and h,  are the vertical distance of the top and bottom level of an arbitrary section

i measured trom the maximum height of the rubble.
The total horizontal and vertical forces exerted on the wall are, therefore:

Puh =

19—

. n s, s (1807 - @ - 29) 5 ,
Y, (1 - sind) (l - ) s By - h”')( : “cos(90" -(a, -, )X7-37)
§ 180" 2 ix (b, : 90" - 2¢ 2

-
I

LYY

| —

, , 2 , , (180° - &, - 24) + ,
¥, (1 - sind) (l - _"_) N C AR M ( : sin(90° (e, -, ))(7-38)
h 180" Z 1k ne h. 90”_2¢ X

where k is the number of sections covered by the rubble. The effective friction angle for
section i, ¢’

w1

is calculated from Equations 7.24 or 7.25, and is less than or equal to the wall

friction angle ¢, ..

The weight of the rubble per unit width is given as:

9
[
o



: [ : ( : : J ; t : : J J
W o= — h> | — - - h. -
T2 Yo | tant  tana, Z‘ AT Vtana,  tana (7-39)

where h, is the rubble height, h, is the height of section i, and k is the highest section the
rubble reaches.

For example. for the retaining wall and backfill of Figure 7.29, simple geometric
consideration gives the base lengths, b,, b,, and b, equal to 4.8562, I, and 0.57735 m
respectively, with the total cross-sectional area of the rubble equal to 8.2842 m” and the

weight of the rubble equal to 58909 N/m. With ¢, = I 1.3 common for each section, ¢’ is

obtained from Equation 7.24 as 1.7, 9.4", and 1 1.3° for the upper, the middle and the lower
sections, respectively. Substituting ¢’ for the respective section into Equations 7.37 and
7.38.P,,, and P, are computed as 10923 and 11384 N/m. respectively. Finally, the normal
force, P,,. and the frictional resistance, P, acting on the base are computed from Equations
7.32 and 7.33 as 10923 N/m and 48596 N/m, respectively.

An example calculation for Test MUNCONES3 is given in Appendix C.

7.6 Application of the New Formula for Other Loading Conditions

Two other loading conditions are of interest to designers. The first is associated with
the basal sliding at the rubble/ice interfaces. and the second one associated with bearing
failure of the supporting ice sheet. Both conditions may limit the maximum slope and height

that a rubble can attain, and hence, limit the maximum load that a rubble can exert on the
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structure. In this section, application of the new model formula to the aforementioned cases

is briefly described.

7.6.1 Maximum Slope of Rubble with Basal Sliding at the Rubble/Ice Interfaces

When rubble is pushed up a sloping plane. the free surface slope of the rubble is
limited by one of the two failure criteria: slope instability and basal sliding as described in
Chapter 5. The first criterion limits the rubble angle to the material’s angle of repose:
whereas. the second criterion prevents further ride-up of the rubble mass onto the slope.
And, hence, the second criterion further limits the maximum angle that the rubble can attain.
If the surtace slope momentarily increases beyond this limiting value, the whole rubble will
stide down the sloping plane to seek for the limited equilibrium state exhibited by Runs
RI2W2_2 and R12W3_2 conducted in the previous section.

The equations presented in Section 7.3 can also be applied to the limiting equilibrium
state on the onset of this basal sliding. In this case. the value of siope angle, t, is unknown
which is to be determined by back calculation using the known frictional resistance at both
the wall and the supporting ice sheet, i.e..¢’, =0, and §', =, [t is expected that the angle,
L. will be a function of wall angle, internal friction angle, and ice friction at the interfaces.

The corresponding thrust, P,, is the maximum load that can be exerted on the structure.

(8]
[
2



7.6.2 Maximum Rubble Height Limited by Bearing Failure of the Supporting Ice

Sheet

The supporting ice sheet may fail before the full development of the ice rubble, which
limits the amount of ice piled up in front of the cone, and the size of the rubble is no longer
determined by the mass balance requirement, but is rather limited by the strength of the
supporting ice sheet. This type of bearing failure was observed in a number of tests
conducted in IME’s series when the ice sheets were weak and thin. In this case, the height
of the rubble, h, is unknown. The h can be determined by back calculation using the
equations derived in Section 7.3 with the known bearing resistance, i.e., P,, calculated from
bearing analysis of the underlying ice sheet. Again, the corresponding thrust, P, is the

maximum load that can be exerted on the structure.



Table 7.1 DECICE parameters for the simulations of rubble mass at the "at-rest”
condition

Solution Scheme Two—diplensional.plain-strgin explicit
time-stepping algorithm
Time Step Length Program generated default value
Constitutive Model Perfectly elastic
Element - Ice Blocks Simply deformable solid
Element - Walls, Top and Base Plates Rigid
Ice Elastic Modulus (Pa) 0.2E7
Inter-Element Stiffness (Pa) 0.2E8
Ice Density (kg/m’) 900
Poison Ratio 0.3
Gravity No gravity for the oedometer tests, and 1-
g for all the other tests




Table 7.2 Summary of the coefficient of lateral earth pressure at rest, K, ,, estimated by
gravity method

h b u Pwh th pwh pbv Ku ¢l
(m) | (m) N) | (N) | (N/m) | (N/m) !

Set 1: Piece Size=0.16 mx 0.16 m
Pli 5.20 2.75 0 92271 |107361 | 17744 | 39042 | 0.909 5.2

P12 5.50 2.75 0.2 63361 {107361] 11520 | 39040 | 0.590 | 24.2
P13 5.80 2.75 0.4 51257 |107361 | 8837 | 39040 | 0.453 33.2
Set 2: Piece Size =0.16m x 0.32 m
P21 7.30 3.89 0 163410 ]214721 1 22385 | 55198 | 0.811 10.9
P22 7.60 3.89 0.2 1176101214721 ] 15475 | 55198 | 0.561 26.1
P23 8.10 3.89 04 |106891]214721] 13196 | 55198 | 0.478 | 31.5
Set 3: Piece Size =0.16m x 0.48 m
P31 8.70 4.80 0 250528 [322082 ] 28796 | 67100 | 0.858 8.1

P32 9.60 4.80 0.2 |184705}322082] 38480 | 67100 | 0.573 | 25.2
P33 10.10 | 4.80 04 1139972322082 ] 13859 1 67100 | 0.413 | 35.9

Test

N
%]
(]



Table 7.3 Summary of the coefficient of lateral earth pressure at rest, K ,, measured from the oedometer tests

TCS[ Sdglplmg h b }-l P wh Pb\' p\\h ph\- K . ¢1 E)\(/':;;S;):d‘:led
oint (m) (m) (N) (N) (N/m) (N/m) o ) P.=0N
Set I: Piece Size=0.16 mx 0.16 m
Q12 M 5.44 275 | 02 44861 38983 8242 14176 0.581 24.7 |K,,=0.593
- 2 5.32 ) ' 114702 | 105361 21544 38313 0.562 26.0 , = 24.0°
Ql13 1" 5.69 275 | 04 27460 31695 4823 11526 0.419 356 |K,,=0419
nd 557 | © ) 80137 101877 14377 37046 0.388 37.7 o, =34.5°
Set 2: Piece Size=0.16 mx 0.32 m
Q22 " 7.84 389 | 02 55657 50969 7095 13103 0.542 273  |K,,=0.566
2M 7.68 ’ | 140712 | 142019 18329 36509 0.502 299 {¢, =25.7°
Q23 1 8.13 389 | 04 2889 3006 355 773 0.460 32.7  |K,.,=0.460
2" 7.97 ' ' 67232 72075 8440 18528 0.456 33.0 ¢, =32.7°
Set 3: Piece Size=0.16 m x 0.48 m
Q2 " 9.41 450 | 02 80011 75039 8502 15633 0.544 27.1  |K,,=0.593
- on 9.21 ' ' 192033 | 185920 20850 38733 0.538 27.5 ¢, =269°
i 10.16 319 252 21 53 0.406 364 |K,,=0407
B3 5T 996 | 480 | %4 35807 1 23092 | 3604 | 9165 | 0393 | 374 o, =364°

Note: Forces Measured on the two side walls are within 0.46% of each other; whereas, those measured on the top and bottom
plates are within 1.1%. The values given are the average values.



Table 7.4 Summary of the angle of repose, ¢,, estimated from the rubble’s natural slope
after slope failure

9, o, o/¢,

Test . ) ) )
Set |: Piece Size=0.16 mx 0.16 m

S12 0.2 24 24.2 0.99

S13 04 31 33.2 0.93
Set 2: Piece Size =0.16 mx 0.32 m

S22 0.2 25 26.1 0.96

$23 0.4 27 31.5 0.86
Set 3: Piece Size=0.16 mx 048 m

S32 0.2 22 25.2 0.87

S33 0.4 32 359 0.89

Table 7.5 Matrix of DECICE simulations of the thrust exerted upon a retaining wall by
cohesionless granular materials at "at-rest” state of stress

Parameters Variation
Height of Rubble, h (m) from 1.6 to 4.8
Rubble Angle, 1 () 225,173, 11.7
Wall Angle, o (*) 45, 60, 75, 90
Internal Friction Angle of Rubble, ¢ (°) 24.2,33.2
Friction Angle at Wall, ¢, (*) 0,113,218
Friction Angle at Base, ¢, (°) 1.3
Number of Tests 48




Table 7.6 Summary of DECICE simulations of the thrust exerted upon a retaining wall
by cohesionless granular materials at "at-rest” state of stress

Pwh =

Test h b o ! o Yo P
bh

(my | (m | () ) () |(N/m?)

Pwv va Po aﬂ
NN N O

(N)
Set l: ¢,=0°
RI12_1 4.80 | 11.59 90 225 24.2 | 6940 | 35139 0 193019} 35139 | 0.0
RI12A_1 | 3.20 7.73 90 22.5 24.2 | 6839 | 15355 0 84530 | 15355 | 0.0
R12B_I| 1.60 3.86 90 22.5 24.2 | 6876 | 3805 0 21249 | 3805 0.0
RI3_1 4.80 ] 11.59 90 22.5 33.2 | 6940 | 27603 0 193019127603 | 0.0
R22_1 3.60 | 11.59 90 17.3 24.2 | 6892 | 21365 0 143747121365 | 0.0
R23_1 3.60 | 11.59 90 17.3 33.2 ] 6892 | 17485 0 1437483 17485 | 0.0
R32_1 2.40 | 11.59 90 11.7 24.2 | 6826 | 10360 0 94926 | 10360 | 0.0
R33_1 2.40 i1.59 90 11.7 33.2 6826 | 8638 0 94926 | 8638 0.0
Set2: ¢,=11.3°
R12_2 4.80 11.59 90 22.5 24.2 | 6940 | 33227 ] 1601 J191418] 33265 2.8
RI12A_2 | 3.20 7.73 90 225 24.2 | 6837 | 14407 | 271 | 84239 ] 14410 1.1
RI12B_2 | 1.60 3.86 90 22.5 24.2 | 6873 | 3644 408 | 20833 | 3666 6.4
R13_2 4.80 ] 11.59 90 22.5 33.2 | 6940 } 27364 | 554 ]192466] 27369 1.2
R22_2 3.60 | 11.59 90 17.3 242 | 6892 120417 | S38 |143209] 20425 1.5
R23_2 3.60 | 11.59 90 17.3 33.2 ] 6892 | 17039 | 754 }142993] 17056 | 2.5
R32_2 2.40 | 11.59 90 11.7 24.2 | 6826 | 9728 | 1139 93787 | 9794 6.7
R33_2 240 | 11.59 90 11.7 33.2 | 6826 | 8277 766 | 94160 | 8312 5.3
RI2W1_2{ 4.80 ] 10.30 75 22.5 24.2 | 6950 | 30967 | 12927 | 158917 33557 | 22.7
R12W2 21 480 | 8.82 60 225 | 242 Sliding Failure
R12W3_2] 4.80 6.79 45 22.5 24.2 Sliding Failure
RI13W1_2] 4.80 | 10.30 75 22.5 | 33.2 | 6950 | 27091 | 8435 [163408] 28374 | 17.3
R13W2_2] 4.80 8.82 60 22.5 33.2 | 6928 |} 24685 {21594 1125005} 32797 | 41.2
R13W3_2] 4.80 6.79 45 22.5 33.2 | 6876 | 19294 | 28940 | 83074 | 34782 | 56.3
R22IWI_21 349 10.30 75 17.3 24.2 | 6896 | 18075 ] 6333 117670} 19152 ] 19.3
R22W2 2| 3.34 8.82 60 17.3 24.2 | 6854 | 16428 | 13160 | 87687 ] 21049 | 38.7
R22W3 2| 3.06 6.79 45 17.3 24.2 | 6807 } 10097 | 15015 ] 55663 | 18094 | 56.1
R23W1_2] 349 | 10.30 75 17.3 33.2 | 6896 | 16102 | 6092 j117911} 17216 | 20.7
R23W2 2] 3.34 8.82 60 17.3 33.2 | 6854 ] 16153 | 12396 | 88452 | 20361 | 37.5
R23W3 2{ 3.06 6.79 45 17.3 33.2 | 6807 110190 | 14111 ] 56567 | 17405 | 54.2 |

~
~
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Table 7.6 Summary of DECICE simulations of the thrust exerted upon a retaining wall
by cohesionless granular materials at "at-rest” state of stress (cont’d)

P,=
TCS[ h b a L ¢ Yh i;h Pv.'v va Po
m MmO ©)  |(N/md) (;B NN ™N] O

Set3: ¢, =21.8°
RI2_3 4.80 111.59] 90 | 22.5 1 24.2 | 6940 {31030 | 6246 [186773]31652] 11.4
RI3_3 480 1 11.59] 90 | 22.5 | 33.2 | 6940 |]25700] 4180 |1890001 26038{ 9.2
R22.3 | 3.60 |11.59] 90 | 17.3 | 24.2 | 6892 |19304] 3117 J140630] 19554] 9.2
R23_3 3.60 | 11.59] 90 17.3 | 33.2 {1 6892 |16150] 2412 |141335{16329} 8.5
R32_3 240 1 11.59] 90 11.7 | 24.2 | 6826 | 9701 | 1619 ]93307] 9836 | 9.5
R33.3 | 240 [11.59] 90 | 11.7 | 33.2 | 6826 | 7862 | 1479 |93447] 8000 | 10.7
RI2WI1_3 | 480 | 10.30) 75 | 22.5 | 24.2 | 6950 | 29983 ] 16540 |155309] 34243 ] 28.9

R12W2_3 | 4.830 | 8.82 | 60 | 22.5 | 24.2 | 6929 ]23407 ]| 28376 1 18235] 36784 | 50.5
RI2W3_3 | 480 | 6.79 | 45 ] 22.5 | 24.2 ] 6926 | 1510933568 ] 69264 | 38612] 65.8
RI2W3A_3] 3.20 | 4.53 ] 45 | 22.5 | 24.2 | 6733 | 6651 | 14826133927 ] 16250] 65.8
Ri2ZW3B_3] 1.60 | 2.26 ] 45 | 22.5 | 24.2 | 6892 | 1628 | 3622 | 8853 | 3971 | 65.8
RI3WI_3 1480 ]11030] 75 ] 22.5 | 33.2 ]| 6950 ]24595] 13315 |158525]27968 | 28.4
RI3W2 3] 480 | 8.82 | 60 | 22.5 | 33.2 ] 6904 ]22900] 27100 J119000] 35480 | 49.8
RI3W3 31480 ] 6.79 | 45 | 22.5 | 33.2 | 6926 | 15269 ]34946]77883 138136} 66.4
R22W1_3 | 349 | 10301 75 | 17.3 | 24.2 | 6896 |17336] 7716 }116287] 18976] 24.0
R22W2 3 ] 334 | 882 | 60 | 17.3 | 24.2 | 6854 | 13908]16660|184188121702] 50.1

R22W3_3 | 3.06 | 6.79 | 45 | 17.3 | 24.2 | 6807 | 8277 | 18077 |52600 | 19882 ] 65.4
R23W1_3 | 349 |110.30] 75 ] 17.3 | 33.2 | 6896 | 14833 | 7468 116535 16606] 26.7
R23W2 31334 | 882 ]| 60 | 17.3 | 33.2 | 6854 |13274|15130|85717]20128} 48.7
R23W3_3] 3.06 ] 6.79 ] 45 | 17.3 | 33.2 | 6807 | 8389 |17035]53642}18989] 63.8
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Table 7.7

Computed values for DECICE Analyses conducted in Sections 7.3.3to 7.3.6

2 o P, P, P pre
Test P("ﬁ"ﬁ“ Hh( '(';‘)“80) EQ'718) | €0 717 | EQT21)
(N) (N) (N)
Setl: ¢,=0°
R12_1 35139 119928 35383 35383 35383
RI2A_1 15355 52523 Not Computed
RI12B_1 3805 13202 Not Computed
R13_1 27603 119928 27130 27130 27130
R22_1 21365 72188 21298 21298 21298
R23_1I 17485 72188 16330 16330 16330
R32_1 10360 34208 10093 10093 10093
R33_1 8638 34208 7739 7739 7739
Set2: ¢,=11.3°
R12_2 33265 119928 35383 35383 35383
RI2A 2 14410 52510 Not Computed
RI12B_2 3666 13197 Not Computed
RI3_2 27369 119928 27130 27130 27130
R22_2 20425 72188 21298 21298 21298
R23 2 17056 72188 16330 16330 16330
R32_2 9794 34208 10093 10093 10093
R33_2 8312 34208 7739 7739 7739
RI12W1_2 33557 120102 43513 35435 39265
R12W2 2 Sliding Failure
RI12W3 2 Sliding Failure
RI13WI1_2 28374 120102 34344 27169 32011
RI3W2 2 32797 119716 41386 27082 35598
RI13W3 2 34782 118813 48172 26878 38359
R22W1_2 19152 67927 24610 20041 22207
R22W2_2 21049 61713 26509 18208 21821
R22W3 2 18094 51489 25581 15191 19397
R23W]_2 17216 67927 19424 15366 18105
R23W2_2 20361 61713 21334 13961 18351
R23W3 2 17405 51489 20876 11648 16623
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Table 7.7 Computed values for DECICE Analyses conducted in Sections 7.3.3 t0 7.3.6

(cont’d)
> o P, pre P, ore Py pre
Test P(ﬂg}‘;“ i '(12\}; 1809 £Q 718 | E€QTAT) | EQTT21)
(N) (N) (N)
Set 3: ¢, =21.8°

R12_3 31652 119928 35383 35383 35383

R13_3 26038 120028 27153 27153 27153

R22 3 19554 72188 21298 21298 21298

R23_3 16329 72188 16330 16330 16330

R32_3 9836 34208 10093 10093 10093

R33_3 8000 34208 7739 7739 7739
RI2ZW1 3 34243 120105 43514 35436 39266
R12W2_3 36784 119726 51429 35324 42332
RI2W3 3 36812 109073 54189 32181 41090
RI2ZW3A_3 16250 25855 Not Computed
RI2W3B_3 3971 6616 Not Computed
RI3W1_3 27968 120099 34343 27168 32010
RI3W2 3 | 35480 119309 41245 26990 35477
RI3W3_3 38136 119676 48522 27073 38637
R22W1_3 18976 67927 24610 20041 22207
R22W2_3 21702 61713 26509 18208 21821
R22W3 3 19882 51489 25581 15191 19397
R23W1 3 16606 67927 19424 15366 18105
R23W2_3 20128 61713 21334 13961 18351
R23W3_3 18989 51489 20876 11648 16623
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Table 7.8 Results of simulation runs to validate the direct proportionality between the
rubble height squared, h*, and the total wall thrust, P, (1 =22.5° and ¢ = 24.2°
for all cases)

Test ( rl:l) (N]/’:nz) (l;‘o) (Whyo)* | (Vo Yorss) P(° i:};“ P/P,, .3
Setl: =90 and ¢,=0"

R12_1 4.8 6940 35139 1.000 1.000 35139 1.000
RI2A_I 3.2 6838 15355 0.444 0.985 35066 0.998
R12B_I 1.6 6876 3805 0.111 0.991 34758 0.989

Set2: «=90°and ¢,=11.3°

RI2_2 4.8 6940 33265 1.000 1.000 33265 1.000
RI2A_2 3.2 6874 14410 0.444 0.990 32734 0.984
RI2B_2 1.6 6950 3666 0.111 1.001 32945 0.990

Set3: aa=45%and ¢,=21.8°
RI12W_3 4.8 6926 36812 1.000 1.000 36812 1.000
RI2W3A_3 3.2 6733 16249 0.444 0.972 37608 1.022
RI2W3B_3 1.6 6892 3971 0.111 0.995 35915 0.976

Note: ™ Pypys = Po/ (Whyg)* 7 (Y/Yorss)



Table 7.9

Results of the correlation analysis of the P, - K’ data pairs

o ) o, £ r df 90% | 95% | 99%
0 1.000 | 1.000 4 0.729 | 0811 | 0917
242 | 11.3 | 1.000 | 1.000 4 0.729 | 0811 | 0917
21.8 | 0997 | 0.999 2 0.900 | 0.950 | 0.990
% 0 0.995 | 0.997 2 0.900 | 0.950 | 0.990
332 | 11.3 | 0998 | 0.999 2 0900 | 0950 | 0.990
218 | 0997 | 0998 2 0900 | 0950 | 0.99
rea |13 | 1000 | 1000 L 0.988 | 0.997 | 1.000
21.8 | 1.000 | 1.000 1 0.988 | 0.997 | 1.000
& , |13 | o9ss | 099 1 0988 | 0997 | 1.000
P2 508 | 0993 | 0996 1 0.988 | 0.997 | 1.000
242 11.3 NA (too few samples)
218 | 0878 | 0.937 1 0988 | 0.997 | 1.000
0 o |Lt3 | o948 | 0974 I 0.988 | 0.997 | 1.000
32 208 | o979 0.989 1 0988 | 0997 | 1.000
242 i1.3 NA (too few samples)
| 218 | 0986 | 0.993 3 0.805 | 0.878 | 0.959
* o [13 | 0964 | 0982 1 0988 | 0.997 | 1.000
32 508 | 0969 | 0985 ! 0988 | 0997 | 1.000
Note: 1. Number of sample pairs, n = df +1, where df is the number of degrees of

freedom
Minimum values for 90%, 95% and 99% confidence level are taken from
Fisher and Yates (1970).
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Table 7.10 Base cases and their variations selected to assess the validity of Equation 7.18
for vertical walls

Base Parameters Test Run (Base Test. R}ln
Case) (Variation)
o () o, () 1=225() 1=17.3 (") 1=113(0)
24.2 0 RI2_1 R22_1 R32_1
33.2 0 R13_1 R23_1 R33_1
242 11.3 RI2_2 R22_2 R32_2
33.2 1.3 R13_2 R23_2 R33_2
24.2 21.8 R12_3 R22_3 R32_3
33.2 218 R13_3 R23_3 R33_3
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Table 7.11 Base cases selected to assess the validity of Equation 7.17 for inclined walls

Test Run Base Parameters

Base Case h (m) L) o) o, )
R12_2 48 225 24.2 11.3
R13_2 4.8 225 33.2 11.3
R22 2 3.6 17.3 24.2 11.3
R23_2 3.6 17.3 33.2 1.3
R12_3 4.8 225 24.2 21.8
R13_3 4.8 225 33.2 21.8
R22_3 3.6 17.3 24.2 21.8
R23_3 3.6 17.3 33.2 21.8

Note: For the base case, o0 =90° the wall angle of each case was varied from 90° to 75" to
60° to 45° with the runs bearing the extension W1, W2, and W3 respectively.
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Table 7.12 Least squares fit of force components computed from Equations 7.31, 7.32,
and 7.34, to values obtained directly from simulation runs assuming ¢, equal
to 0°, 11.3° and 22.5°

Least Squares Fit (P ,=m P )
Force Component o, (O m r

0 0.989 0.997

P,, 1.3 1.062 0.961

225 1.093 0.973

11.3 0.969 0.968

P 225 1.042 0.982

0 1.000 1.000

P.. 1.3 0.999 0.999

225 0.995 0.999
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Figure 7.1 Figure showing the interaction of ice blocks, cone and ice sheet from a
typical DECICE simulation (after Lau, 1994a)
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Figure 7.2 Simulated versus measured horizontal peak forces for a 60 degrees cone in
level ice (after Lau, 1994a) (Axis scaling is not given due to data
propriety)
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Figure 7.6 Pressure distributions of rubble sample assumed in the gravity test
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Figure 7.8 Comparison of earth pressure coefficient at rest, K, and the associated
contact friction, y, for aspect ratio, AR = 1, 2 and 3: gravity method
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Figure 7.16 Comparison of the angle of repose, ¢,, and the associated internal friction
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Figure 7.17  Definition of variables commonly used in various earth equations: (a)
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direction of total wall thrust as defined in Coulomb’s equation and
Reimbert and Reimbert’s equation are different.)
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Figure 7.18  Test configuration and sample geometry for each test simulation
conducted for the thrust equation formulation. The results are given in
Table 7.6.
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Figure 7.19  Definition of variables used in Table 7.6
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Figure 7.20 Comparison of the predictions from Equation 7.18 and the total thrust
measured on the wall for the three values of wall fnction, ¢, =0°, 11.3°
and 21.8°. in DECICE simulations
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measured on the wall for the two values of wall friction, ¢, = 11.3° and
21.8° in the DECICE simulations

5.5E+4
$ 50E+4 | | FAZ =25
T 4sees FR2 =28
¢ - P42 =17
G 40E+4 | . - R =T
= o
= 35E+4 | x o
®
S 30E+4 | °
.¢! x
2 25E+4 | x
3 a
‘_gf 2.0E+4 | $ * a a
E . -
E 156+ |
1.0E+4

30 45 60 75 90 105
Wall Angle, a (degrees)

Figure 7.22  Effects of the wall angle on wall thrust for a combination of internal
friction angle, ¢, and rubble angle, 1 (wall friction, ¢,, = 21.8°)

249



4.E+04 | | ¢.=113 °

1.E+04 { »

z

3 ; Rl
& - ¢.=218 %+
m- L 4

¥ 3E+04 |

g o

£=

-

z

2 2E+04 | ,,":’

E R 4

3 e

h

°

1]

B

b~

G

[+

0.E+00
0.E+00 1E+04 2.E+04 3.E+04 4.E+04

Simuiated Total Wal Thrust, P . (N)

Figure 7.23  Comparison of the predictions from Equation 7.21 and the thrust on the

wall in the DECICE simulation
> 15
@ ¢, =-02561a +24.758
g 125 - r?=0.7992
.& . 8 . 8
s 10-
2 o
a a
o 75 - o °
g
§ 5- °
'ﬁ <]
&
[ 25 - °
g
o o

30 45 60 75 80 105
Wall Angie, a (degrees)

Figure 7.24  Computed effective friction angle at wall, ¢’,, versus wall angle, a, for wall
friction angle, ¢,, = 11.3°. The broken line corresponds to ¢’, = ¢, =11.3°,
and the regression line fits data with a between 60° to 90°.

250



27.5
25 -
225 .
20 -
175 -
15 -
125 -
10 -
75 -
5 - ¢, =-0.3407a +39.339
25 - = 0.8387

0. _-
30 45 60 75 90 105

Wall Angie, o (degrees)

Effective Friction Angle at Wall.4.,, (degrees)

Figure 7.25 Computed effective friction angle at wall, ¢’,, versus wall angle, a, for
wall friction angle ¢,, = 21.8°. The broken line corresponds to ¢’,, = ¢,, =
21.8° and the regression line fits data with a between 60° to 90°.

Figure 7.26  Snap-shot of Run R12W3_2 showing the whole rubble mass sliding down
along the wall and the supporting ice surfaces.
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Part 111 Ice Force Model

Chapter8 Development of a New Ice Force Model

In Chapter 6, a new rubble geometry prediction model was formulated from mass
balance and interaction geometry considerations. With the geometry of the rubble known,
the forces imposed by the rubble on the ride-up ice and the supporting ice sheet can then be
computed via the set of equations derived in Chapter 7. These forces, interacting with the
ride-up ice and the supporting ice sheet, affect the magnitude of loads acting on the cone.

While the estimation of the load imposed by the ride-up ice is rather simple, the
breaking behaviour of ice under the complex geometry imposed by both the rubble and the
ride-up ice is complex. Many models have been constructed to predict ice forces on cone for
the cases where there is no rubble buildup. In this chapter, those models are examined, and
a base model is selected to model the breaking behaviour of intact ice. The new rubble
model is then incorporated into the base model to compute the peak ice load exerted on the
cone due to the passage of a combined ice sheet/rubble system.

[n Section 8.1 the base model is selected from four representative models. The
primary criterion for selection is the degree of simplicity and accuracy. The adaptation of
the rubble model to the base model is presented in Section 8.2; while, in Section 8.3 the new

ice force model is validated by the experimental results presented in Part [ of this thesis.



8.1 Selection of Base Model for Modelling of Ice Breaking Behaviour of Intact Ice

In Section 8.1.1 the experimental data and the analytical models used for comparison
are briefly described. All data and models are for smooth cones only. In Section 8.1.2, a
method to adapt the 2-D model to 3-D cases is presented. This method is incorporated into
the Croasdale’s model to give a better representation of the 3-D nature of ice load. In Section

8.1.3. accuracy of the existing mathematical models is assessed and discussed.

8.1.1 Experimental Data and Ice Force Models for Smooth Cones, with Ride-Up Ice,

But No Rubble

The data set utilizes data from ten test programs done worldwide on smooth conical
structures with a total of 226 data points (Afanas'ev et al. 1971, Verity, 1975; Edwards et
al, 1975; Edwards and Croasdale, 1976; Manders and Abdelnour, 1978; Hirayama and
Akamatsu, 1982; Wessels, 1984; Sodhi et al, 1985; Lau et al, 1988; and [zumiyama et al,
1991). The test condition of each program is summarized in Table 8.1. These data
encompass most of the data available during the last 25 years which have been widely cited
in the open literature. All tests were conducted in model basins where the uniformity of ice
properties was highly controlled, and the ice properties and load data were well documented.

Three widely used analytical/mathematical models for smooth cones were chosen as
possible candidates for the base model. They are:

(i) Nevel’s elasticity model (1992);

(ii) Ralston’s plasticity model (1977); and
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(1i1)  Croasdale’s 3-D model (1980) with in-plane force adjustment (Croasdale et
al, 1994).
In addition, Croasdale’s model was modified to give a better representation of the 3-D
geometry of ice loading. The modified model is referred to as ‘Lau-Croasdale’ model in the
rest of the section. The modification is described in Section 8.1.2.

These models are representative of the existing major model treatments of ice forces
on conical structures. The models and their particular modelling features have been reviewed
in Chapter 2.

Ralston’s model allows computation of failure load due to two types of failure
criteria, i.e., Johansen and Tresca failure criteria. In this work, the Johansen failure criterion
was assumed.'

For Nevel's model, the computer program supplied by Nevel (1992) was used.
Nevel's computer program provides calculations for a combination of selected interaction
conditions including: sequential or simultaneous ice breaking, inclusion or exclusion of ice
pieces on neck section, and active or passive ice actions, with a total of 8 possible interaction
scenarios. Computations for each assumed scenario is given elsewhere (Lau, 1999). In the
present comparison, ice load for each individual test was computed for all 8 scenarios and

then averaged to give the model prediction for that test.

'In the present test sets, computation using Tresca failure criterion gives an overall 12.5%
higher force values in both the horizontal and the vertical directions than that computed using the
Johansen failure criterion.
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8.1.2 3-D Modification of Croasdale’s Model

Croasdale’s (1980) provided a method to adapt his 2-D model to a 3-D case, i.c.,
narrow structures, by considering the length of circumferential cracks to extend beyond the
structures. For example, in Croasdale's model, the total horizontal and vertical forces, Hy
and Vigr, exerted on the front half of the smooth cone can be expressed in the following

simplified form:

Hpor = Fs Vior (8-1)

Vior = Vp Lc + W, (8-2)

where F; is the resolution factor for a sloping plane, &, as defined in Equation 2.2; L. is the
total length of the circumferential crack; W, is the total weight of ride-up ice; and V', is the
effective breaking load per unit width of ice beam under combined bending and in-plane
compression. As noted already, the concern here is only with a single layer of ice, of
thickness, t, riding up the front half of the cone with no rubble accumulation on top of the

ice layer or ice sheet. L, W, and V', are expressed as follows:

L =D (1 “2"') (8-3)
= + -
¢ 4D

N
n
~



Wm=D(:JtY 8-4)

)3
v, = 0680, (YE ) (8-5)

where ythe weight density of ice; y,, the weight density of water; E. the elastic modulus of
ice: t, the ice thickness; D, the waterline width of the structure; o, the inclination angle;
z. the tree-board: 1., the characteristic length of ice; and ¢, is the effective flexural strength
of the ice beam under combined bending and in-plane compression. The method to compute
o', is given by Croasdale et al (1994) and is further discussed in Section 8.2.7.

It has been shown in Chapter 4 that the 3-D distribution of ice loads is important,
particularly in a larger scale, and F; in Equation 8.1 should be approximately equal to (2/r)§
(sce Section 4.4.1). By assuming F; is equal to ¢, Croasdale’s model tends to overestimate

the horizontal force component. Furthermore, while the equations for L-and W, are derived
considering a sloping plane, their application to conical structures omits of the 3-D nature
of ice load distribution caused by the cone’s curvature.

The following method is proposed by the present author to adapt Croasdale’s 2-D

model to a 3-D case, which gives a better representation of the 3-D nature of ice loading on

258



the cone. The method considers the direction of ice force distribution around the cone
surface, and gives a better estimation of W, and L. It first computes and integrates the
distributed ice forces along the front perimeter of the cone to give the net vertical loads, and
then calculates the net horizontal force by the appropriate resolution factor for a 3-D case,
i.e., (2/m)E.

For modelling purposes, only the loads on the front half of the cone are considered,
and full coverage of ride-up ice on this half of the cone is assumed as shown in Figure 8.1.
The total weight of ride-up ice, W, is given in the following expression:

D +D -
W, = n( - )(—-—) Ly (8-6)
4 sing

where D and D, are the waterline and neck diameters of the cone, respectively.

The breaking force is computed by considering simultaneous failure of a series of
wedge beams along the cone’s front perimeter (see Figure 8.1). Each beam has a breaking
length. L, derived from the theory of semi-infinite elastic beam on elastic foundation

(Hetenyi, 1946), i.e.,
1
L == R
L 4 ¢ (8 7)

The distance of the circumferential crack to the centre of the cone is equal to [D/2 + (nt/4)1 ]

and the total length of the circumferential crack, L, is given as follows:



)
L.=m (g + n"] (8-8)

With the W, and L. given in Equations 8.6 and 8.8, the vertical load on each wedge beam

is computed via Croasdale’s 2-D model, i.e., Equation 8.2, and then summed up to give the

net vertical breaking load, Vgt

' .,5 % TEI_ D +D -
V'ruT - 0.680f (Y‘;S ) n(ﬂ + ‘] + 11:( z )( = )l‘y (8-9)

Since that the vertical load, Vg, is uniformly distributed along the front half of the cone,

the horizontal load, Hyqy, is related to Vi, by &, (see Section 4.4.1), i.e.,

~

Heor = &p Vior = = & Vior (8-10)

A

The adjustment for the effect of in-plane compression on ¢’ can be performed tor each beam

in the same manner as suggested by Croasdale et al (1994) (see Section 8.2.7).

8.1.3 Resulit of Model Assessment
Figure 8.2 compares the predicted horizontal force. F, .4, computed from Lau-
Croasdale’s model to the horizontal mean peak force, F, ..., measured from each test in the

data sets listed in Section 8.1.1, and the comparison for the vertical force is shown in Figure



8.3. Comparisons for the Croasdale’s model, the Nevel's model, and the Ralston’s model
are shown in Figures 8.4 to 8.9. Table 8.2 summarizes the average and standard deviation
of the predicted to measured mean peak force ratio, F./F.... associated with each test data
set. The data are plotted in Figures 8.10 and 8.11 for two respective directions. Both the
Nevel’s and the Ralston’s models give very high estimates of the horizontal forces measured
for the 80° cone model in the Hirayama et al’s tests (Series #3), i.e., 13.8 and 12.8 times the
measured values, respectively; hence, the statistics were computed without the
corresponding runs. Figure 8.12 gives the overall average F,./F,., ratio for each ice force
model, and the associated statistics are summarized in Table 8.3.°

Ralston’s model over-estimates ice loads by 41% in both the horizontal and vertical
directions and is eliminated from further consideration. This over-prediction is a
consequence of the plasticity modelling (see Section 2.2.1.3).

Croasdale’s and Nevel's models predict well the ice force in the vertical direction
with overprediction by merely 4% and 6 %, respectively; however, these models over-
estimate the horizontal ice force by 37% and 12%, respectively. The over-prediction of ice
force in the horizontal direction by the Croasdale’s model is due to the 2-D treatment of load
distribution; whereas, the source of over-prediction for the Nevel’s model is uncertain.

Overall, Lau-Croasdale’s model gives the best agreement with test data for both the

horizontal and the vertical loads with an average F./F,.. value of 0.92 and 1.0l for the

*The values given in Table 8.3 is the arithmetic mean of the statistics calculated for each
test set as given in Table 8.2. This gives equal weighting for each test set.
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respective directions. The 8% discrepancy between the predicted and the measured
horizontal force values is mainly contributed by the discrepancy between the measured and
predicted resolution factors associated with tests with smaller ratio of waterline diameter to
ice characteristic length, when the measured resolution factor diverges from the assumed

value of (2/r)€ and moves toward & as the ratio decreases (See Figure 4.12).

All the models deal with forces from the ice sheet and ride-up ice, not considering
the forces due to rubble, Based on the above assessment, Lau-Croasdale’s model is selected

as the basis for further model formulation to include the effect of rubble.

8.2 Formulation of Ice Force Model with Rubble at a Faceted Cone

The problem of ice rubble loading on cones is essentially a three-dimensional
problem. Any satisfactory treatment of the problem would have to account for the three-
dimensional nature of the interaction as in the previous section. However. a complete three-
dimensional treatment of the problem would lead to complexities too difficult for analysis.
Instead, a pseudo-three-dimensional treatment of the interaction was performed by
recognizing the two-dimensional nature of the interaction geometry associated with
individual facet. This treatment results in a set of simple equations which can be easily
incorporated into a probabilistic methodology.

In this model, only the front half of the cone is considered, and the loading on each
facet is treated two-dimensionally. The horizontal and vertical forces in the plane
perpendicular to each facet are first computed using a two-dimensional model. These forces
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are then transformed inte their X and Z Cartesian components using the appropriate
resolution factors and summed up vectorially to give the net force on the cone.

Section 8.2.1 describes the general features and assumptions of the interaction

The basic governing equations to transform the interactive forces on a particular facet into
components acting along the principal axes directions are given in Section 8.2.3. Section
8.2.4 describes the various force components to be considered in the model, followed by
detailed derivations of each component in Sections 8.2.5 and 8.2.6. Section 8.2.7 describes

the computational procedure to adjust for the effect of in-plane compression on failure load.

8.2.1 General Features and Simplifications of the Ice-Structure Interaction

The interaction processes under investigation are quite complex resulting from the
complex interaction geometry existing between the rubble, the ride-up ice and the structure.
Simplifications were adopted to generate fairly realistic representations of a range of ice
structure interaction conditions while at the same time providing computational simplicity.
The general features and the simplifications of the interaction system with regard to the ice
breaking pattern, the rubble and ride-up ice geometries and weights, and the load distribution

and failure of ice sheet are described in the following section.

8.2.1.1 Characteristic Ice Breaking Pattern

The characteristic ice crack patterns are depicted schematically in Figure 8.13. Two
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radial cracks make an angle, 6., extending outward from the corners of a facet forming a

cantilever beam with the width, d_, slightly wider than the structure. The d_, is related to 8,

and the broken beam length, L, by the following relationship:

d, =w, + 2L,tanf (8-11)

cr

where w, is the width of facet at waterline. In the present model, the values of 0, is assumed
to be 30°, and the L; can be computed from the empirical equation derived in Section 4.2.2,
i.e., Equation 4.5, or from field measurements. As depicted in Figure 8.13. the same value
of ice breaking width, d_,, is assumed for broken wedge in front of the three facets.

The broken ice pieces riding up the central facet are trapezoidal in shape. This train

of ride-up ice results in an ice wall with an average width, w_, ., being:
l
W = ;(d" +w) = w, + LjtanB (8-12)

As these ice pieces eventually contribute to the ice supply to the rubble, w,, . should be used
to calculate the rubble geometry as the width of the central zone, i.e., by simply replacing w,

with w,, . in the equations given in Chapter 6.

8.2.1.2 Heights, Width, and Weights of Rubble in Front of the Front Facet
At the front facet, the rubble increases in height from the two edges reaching a

maximum value at the centerline. In order to compute total thrust on the facet using the



equations derived in Chapter 7, an average height and width of the rubble in front of the front

facet, i.e., h.. and w, ., must be estimated. h__ is given by the following equation:

h.,.= 11,1. + (h,, - hrf) (l - Y J (8-13)

W

r.ec

where h, is the rubble height at the edge of the front facet; h_, is the maximum rubble height
at the front facet; w is the width computed from Equation 6.34 (see Section 6.3.3). and w,_
is the width of the rubble. w,_ is equal to w,, ., which can be computed via Equation 8.12.

The total weight of the rubble, W, _. in front of the front facet is given as:

l 2 l l 2 1 I
W = = w_lh,',( - J‘ e hf( - JJ -
re ZYh Py «“ \and tane, Z; k-1 tan, tane:,_ (8-14)

where v, is the bulk weight density of the rubble; ¢, the rubble inclination; ¢, and h,, the cone

angle and height of an arbitrary section i, respectively; and k is the highest section the rubble

reaches.

8.2.1.3 Weights of Ride-Up Ice on Individual Sections on the Front Facet

In the present model, the weight of ride-up ice covering the individual sections is
needed. Observation from model tests showed an average extrusion of 5 pieces of ice
constantly maintained on the neck beyond the top of the rubble before they fell onto the on-
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coming rubble. Therefore, the following ride-up height on the front facet, h,, .. is assumed:

llrll.l' = SLL * hr.t.‘ (8'15)

or

h,, =SL, +h, (8-16)

whichever is greater. h, is the base height of the neck section from the waterline.
With ride-up ice reaching the neck, all sections are covered with ice. The weight of

rice-up ice, W, ., covering an arbitrary section, i, is given as:

h .

sina,

erl.L'.l = Y t 'Vru.r

8-17)

where h,, is the length of ride-up ice of an arbitrary section i as defined in Figure 8.14. For

the neck section, h, ; is equal to h, . minus h;; and for the lower sections, h, , is equal to h,,,

minus h,.

8.2.1.4 Heights, Width, and Weights of Rubble in Front of the Side Facets
The average rubble height in front of the side facet, h,, is taken as the average of the

height at the edge of the front facet, h,, and the height at the side, h , i.e.,

r.s %(hrx * hrf) (8' 18)
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The total weight of rubble, W, in front of the side facet can be estimated by divided
the portion of rubble mass in question into two volumes, V| and V,;, as shown in Figure 8.15.
V, is approximately equal to the volume resulting from rotating the cross-section A by 90°
about axis Z, (see Figure 8.15). V| can be computed using the following equation:

V= [ h,;-( ) - Zf.l.k-nl':( T TS H (8-19)

3 - 2
tan"d  tan‘ey tan‘x;,  tan°e,

V, is approximately equal to a volume formed by two equal and parallel cross-sections, A
and A, with a distance d;; between them. The distance d,, depends on h,,; and is computed

by the tollowing expression:

d, = LD, cos3ry + 1M
= —D,__cos * .
n = 57k tan(ez,) (8-20)

~J

where k is the highest section the rubble reaches at the edge of the front facet, and D, ,, is the

diameter of the k+1 section.’ Therefore, V,, can be computed using the following equation:

V. -A_d ( w’"“')( e h'f)
= = : —D, cos(30") + -

and the total weight of the rubble, W__, in front of the side facet is given as:

'If the rubble reaches the neck section, D, ,, is assumed equal to D,. the diameter of the
neck section.
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W,.=W+V)y, (8-22)

Again, an average width of the rubble, w, , at the side facet is needed to calculate the total
wall thrust due to rubble. This width can be approximated by assuming an equivalent rubble
in front of the facet with a constant width w,_ and a height h, .. w, is calculated by dividing

the total volume, V, + V,, by the cross-sectional area of the equivalent rubble, A, = W /Y,

where W is the weight of the rubble per unit width computed by Equation 7.40, and v, is the

bulk weight density of the rubble, i.e.,

VeV

% [ h (L - — ) - Zi:l.k-l hi ( - : J ] ®-29

tant  tane, tane,  tana, ,

8.2.1.5 Weights of Ride-Up Ice on Individual Sections on the Side Facets

The amount of ice riding-up the side facets can be estimated by considering the
amount of ice on the side zone, with width of the side zone, d, = 0.5 (D - w_, ), which must
be displaced by the cone, i.e., the shaded area, abc, as shown in Figure 8.16, with the total

weight of ride-up ice, W, ,, displaced being:

A 24
e = Y\ s W (8-24)



for a six-faceted cone.
The coverage of ride-up ice on the side facet is not constant which leads to uneven
weight distribution along the facet. To simplify the computation, the weight is assumed to

be distributed evenly along the fowest section of the facet.

8.2.1.6 Load Distribution and Failure of Ice Sheet

The base model selected in Section 8.1 computes the breaking load resulting from
simultaneous bending failure of a series of wedge beams loaded at their tips. While this
loading condition is a good characterization of the contact loads imposed on the supporting
ice sheet by the ride-up ice and the cone, the presence of rubble significantly modifies the
load distribution the intact ice experiences. In addition to a concentrated load transferred via
the ride-up ice to the tip of the ice sheet, the rubble distributes its mass and imposes a
triangular load distribution along the supporting ice sheet. The effect of this distributed load
on the breaking behaviour of the supporting ice sheet is not examined in this work; instead,
the load is assumed to act at the tip of the supporting ice sheet as assumed in previous
models. Since the distributed load can be transformed into a point load as well as a moment
applied at the tip of the ice beam with the moment tending to facilitate breaking of ice,
omission of this moment renders the approximation conservative.

Different failure modes due to a combination of axial, shear, and bending stresses can
also occur; however, only ice failure due to bending is modelled in this model. Failure due

to other modes should be considered during the design process.
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8.2.2 Coordinate System and Geometry

Consider a quarter of a faceted conical structure above the waterline which has an
inclination of angle o, with respect to the horizontal, as shown in Figure 8.17. Let (XYZ)
be a right handed Cartesian coordinate system. The water surface is the (Z=0)-plane. The
+X-axis is opposite to the motion of the ice; the +Z-axis is directed upward through the
center of the cone; and the +Y direction is then toward the viewer when viewing the (X-Z)-
plane.

The ice moves from the X direction and the broken ice pieces slide over the cone in
planes parallel to the X-Z plane as shown by the path in Figure 8.17. Consider an ice piece
on the surface of the cone at position b. At this point there is a force, N, normal to the
surface of the cone and a frictional force, u N, tangential to the surface of the cone where y,
is the coefficient of ice friction.

Plane abd is a plane parallel to the X-Z plane with line ab coincident with the ice
path. Plane bed is a plane perpendicular to the cone surface. The angle 0 is the angle
between plane bed and plane abd. For the 6-faceted cone, 8 equal to 0° for the front facet and

60° for the side facets. The angle y is the angle of the frictional force at any point on the

cone surface with respect to the X-axis and can be related to 8 and a:

tany = tanocosd (8-25)



8.2.3 Normal and Frictional Forces on Each Facet
The equations for the direction cosines, cos(xy) and cos(zy), of any normal force, N,

on the front half of the cone are given as follows:

cosx, = -sinecos@ (8-26)

cosz,, = -COsQ (8-27)

where xy and zy are the angle between the normal force and the respective axes, and the

angles, a and 0, are between 0° and 90° as shown in Figure 8.17. The scalar quantities,

INlcos(xy) and iNicos(z,), are equal to the components of N in the direction of the respective
X and Z axes. If the ice path is parallel to X-Z plane, the equations for the direction cosines

of the frictional force. cos(xg) and cos(zg), on the front half of the cone are given as follows:

cosx. = -cosy (8-28)

cosz, = siny (8-29)

The components, F, and F,, along the negative X and Z axis of any normal force N
and its frictional force U N at any point on front half of the cone surface can be resolved

using the direction cosines, i.e.,

F_ = N(cosxy + pcosx,) = N(sinacos@ + p cosy) (8-30)



F. = N(cosz, + pcosz;) = N(cosee - p siny) (8-31)

And, hence. F, is related to F, through the following ratios:

sinacos® + p cosy
~ (8-32)
cose. - p siny

FI
F:

For the forces acting at the front facet, where y = a and 0 = 0, Equations 8.30 to 8.32 get

reduced to the following familiar form:

F_ = N(sina + p coso) (8-33)
F. = N(cosa - p sina) (8-34)
F, sine + p cosa

— = ' = § (8-35)

F cosa - {4 sina

[f we let X' be the direction perpendicular to the side facet at the waterline as shown

in Figure 8.17, then F,. and F, at any point on the surface of the side facet are related by &.

and the following relationship between F,. and F, is valid:

(88
~J
(%]



(8-36)

£

F F. (sinacose + pjcosq.t)
13 cosa - usiny

By treating the side facet as a simplified two-dimensional system, the total horizontal force.

F,.. on the facet is computed first, and then resolved to F, using Equation 8.36.

8.2.4 Overview of Various Force Components
Consider the general interaction between the ice and a sloping wall in a simplified
2-D system as shown in Figure 8.18. The load on the cone is derived from two sources:

(i) The contact load exerted directly on the cone surface by the ride-up and the
rubble as they are being pushed up the slope by the ice sheet, i.e., the reaction
forces of Hy and Vg, and,

(ii) The contact load exerted by the ice sheet at the waterline as it slides up the
slope, i.e., the reaction forces of Hy and V. This load is limited by the
ultimate failure of the ice sheet.

The rubble interacts with and imposes loads on the riding-up ice and the supporting ice sheet,
ie., P.w, P,w, and P,,w_, as shown in Figure 8.18 (with w_being the width of rubble).
These loads are eventually transferred onto the cone as additional loads. Equations to
compute these loads have been derived in the Chapter 7.

The total force acting on the cone can be related to the forces acting at the tip of the

ice sheet as shown in Figure 8.19 with the forces imposed by the rubble included. H; and
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V; are the total horizontal and vertical forces acting at the top edge of the ice sheet, i.e.,

H_ = Pcosa + P, w_ (8-37)
V, = Psina + P, w, (8-38)

where P is the force required to push ice blocks up the slope through ice rubble. Equations

to compute P are derived in Section 8.2.5. The reactions of H; and V eventually act on the

cone surface through the ride-up ice, i.e..
H, = H, (8-39)

S r ru T (8'40)

where Hy and V, are the total horizontal and vertical forces on the cone surface above
waterline: and W, and W, are the total weights of the ice rubble and the ride-up ice,

respectively.

H, and V,, in Figure 8.19 are the total horizontal and vertical forces acting at the

bottom edge of the ice sheet, i.e.,

Hy, = VwE (8-41)



Vo =Vo+ Vyd, (8-42)

Where V', is the effective breaking load per unit width of the ice beam under combined
bending and in-plane compression, and d_, is the crack length. In this model V’, is calculated
using Equation 8.5 as derived by Croasdale et al (1994). The reactions of Hy, and V,, give
total loads on the cone surface at the waterline.

Therefore, the total horizontal and vertical loads on the cone, Hyor and Vg, are

given as follows:

Hppr = Hg + Hy, = Hp + H, (8-43)
VTOT = VS + VW = Vbl dcr + wr * wru (8'44)

H. and H,, are derived in Section 8.2.6, V', is computed in Section 8.2.7, and Equations to

compute W,_and W, are given in Sections 8.2.1.2 t0 8.2.1.5 with a given amount of ride-up

and rubble ice for the respective facets.

8.2.5 Forces Required to Push Ice Blocks Up the Slope Through Ice Rubble
Figure 8.20 shows the forces acting on a layer of ride-up ice at an arbitrary cone

section, i. Force balance at direction parallel to the structure slope gives:
P =W, sina, + Nnu + P, _‘.wrsintb", i+ P.cos(er,, - @) (8-45)
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where P_,, and ¢',, ,, are the rubble thrust force per unit width of rubble and its angle of action
exerted on the ride-up ice, W, is the weight of the ride-up ice, and P,,, is the total force
transferred from the above conical section. P_; and ¢’ ; are computed from the universal
equation given in Chapter 7.

Force balance perpendicular to the structure slope gives:

N,, = P, wgcos,, + W_cosa, + P, sin(a,, - @) (8-46)

By substituting Equations 8.46 into Equation 8.45, P, is found:

P, = W_ (sing, + pcose) + P, w(sind,, + p cosd,, )

. 8-47

+ P, [cos(ee,, - @) + psin(a,, - )] 6-47)
The forces, P,, are determined for each section proceeding from the neck to the lowest

cone section at the waterline, with the lowest cone being designated as the first section. W,

and w, are equal to W, _; and w, . respectively, for the front facet. Likewise, W, and w, are

equal to W, .; and w,, for the side facets.

8.2.6 Forces Acting on the Ice Sheet at Waterline
The forces acting on the tips of an ice wedge have been shown in Figure 8.19. H; and
V; are the horizontal and vertical components of the forces necessary to push the ice blocks

and the rubble up the slope. The components, which are assumed to act at the top of the
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wedge tip, are given as:

&
3
'

= Pcose; + P,w, (8-48)

V, = Psina, + P, w, (8-49)

where P, is the total force transferred to the top of the ice sheet from the pushing of the ride-
up ice through the ice rubble; @, is the cone angle at the waterline; and Py, and P, are the
forces per unit width of rubble acting on the ice sheet due to the pushing of the ice sheet
under the rubble. The P, and P,, are computed from the rubble model.

The vertical component, V,,, of the contact load acting on the bottom tip of the ice

sheet is given as follows:

) 3
Vo = Vp + V,d = Pgsina, + P, w, + 0.680, (1'15_) d, (8-50)

The horizontal component, Hy,, of the contact load acting on the bottom tip of the ice sheet

is related to V:

cr

t3) <
H, = V,E = [ Psine, + P,w_+ 0.680,’(7‘; ) d ]E (8-51)

where & is defined by Equation 2.2.
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8.2.7 Modification of Breaking Load for In-Plane Force (Croasdale et al, 1994)
The horizontal force acting on the ice sheet, i.e., Hyqgr, creates an in-plane

compression and an edge moment at the ice edge. The maximum tensile stress per unit width

along the bottom surface of the beam due to the combined out-of-plane bending and in-plane

compression, equal to the effective flexural strength of ice, 6°,, i.e.,

E 1

AEAL

o Vet VR + Hy 3H -V, s VDRl P Ny (8-52)
f t t 0.68

The first term on the right hand side of Equation 8.52 is the compressive stress due
to the in-plane compression (-ve). The second term is the tensile stress due to the combined
edge moment applied at the top and bottom tip of the wedge. The eccentricity is assumed
equal to ¥z of ice thickness. The last term is the maximum tensile stress of the ice beam due
to transverse load only (Hetenyi, 1946).

The above equation can be written as below:

o, Vot VOB - Hp  3[H -V, + VORI

o = . , A (8-53)

where G, is the flexural strength measured by transverse loading only;, and V’, is given in
Equation 8.5. The value of ¢’; can be obtained by trial and error method using G, as the

initial strength. Several iterations are needed to converge to a new value for ¢’;. In the
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following comparison, the decrease of effective strength due to edge moment is ignored,

which tends to give a more conservative prediction.

8.3  Validation of the New Ice Load Model

The experimental data from the IMD'’s series and the ERCL's series are chosen for
the validation of the new ice force model. The model assumes uniformity of test condition:
therefore, mean peak force is compared. Since Metge and Weiss (1989) and Metge and
Tucker (1990) reported only the maximum loads, F,,, on the structure, their data was adjusted
by assuming the following relationship between the mean peak load. F,,..,, and the maximum

load, F_, hold:

« 4 me

Fmtu.t = (8'54)

The relationship is true for the IMD's data. The computed and the measured ice forces, i.e.,
F,.q and F_.., are summarized in Table 8.4. An example computation is given in Appendix
C.

Figures 8.21 and 8.22 plot the model predictions against ERCL’s and IMD’s test data,
respectively. Results from linear regression for the two comparisons are given in the
respective figures. The comparison shows good agreement between model predictions and
test data. On average, the model overpredicted the horizontal ice force by 12.9% for ERCL's

data, and underpredicted by 8.9% for the IMD’s data; whereas, it underpredicted the vertical
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ice force by 1.4% for ERCL’s data. and 13.1% for IMD’s data.

Despite limited data, the agreement between model predictions and experiment data
in the horizontal direction is significant, as the loading in this direction tends to destabilize
the structures, and accurate estimation of this force component is important. Nevertheless,
the discrepancy of load warrants further refinement of the model.

One source of error may be attributed to the ice breaking model used. The failure
mechanism observed from IMD’s test series was associated with the ultimate failure of finite
cantilever beams (see Section 4.2), while the ice breaking model used in this work is for
semi-infinite beams. Models based on failure of a semi-infinite beam may not predict well
the ice breaking load with thick ice. This observation is consistent with IMD’s data in which
the comparison of the load is good for the thinner ice (i.e., the semi-infinite beam formula
may be valid), and the degree of underprediction increases with the increasing ice thickness;
however, further investigation is needed to verify the above observation.

The underestimation in the vertical direction may also partly due to the omission of
ice loading at the back half of the cone. This amount of ice cannot be estimated precisely.
However, if we arbitrarily assumed 50% of the ride-up and rubble ice loading on the front
side facet would load on the back side facet as well, the model will overestimate ERCL's

data by 8.4% and underestimate IMD’s data by 2.7% in the vertical direction.
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Table 8.1

Summary of test conditions used in the selected test programs

Test Reference o D Ice o t No. of
Set ) (m) Type (kPa) (cm) {Data Pts.
1 S"dlhgisest al, 45 1.5 |EGADS |20451 | 4590 | 28
2 [ frumiammetal | go | 929 |EGADS [ 24591 | 1846 [ 19
3 Ai‘;ﬁi‘t‘:&f‘l‘g‘gz :;%”3% 0.14,0.17 T:;:_"r 11771 | 0609 | 46
4 Cii‘:;‘;f;‘;’;‘fm 45 0.2%).5, saline | 1411 | 1968 | 20
5 Af““‘;z'f?‘ée““' 30635' 0.12-0.28 saline | 401 3 14
6 Ag:'j‘e“l‘:;i“]“gdn 45 |067, 15| satine | 112112250} 23
7 Wessels 30,3 "O?j i |EGADS | 601 |3070| 14
g L“l“g‘;‘;" 30635, "O?f 41528' EGADS | 2447 1 | 3068 | 54
9 Verity, 45 33 | saline P10-495i[68-235| 8
1975
o | Bawmsetal | s '%_;2”%.:551’ synthetic| 2098 i | 0.7-89 | 40
Note: 'Arrow indicates loading directions.




Table 8.2 Summary of average and standard deviation of the predicted to measured
mean peak force ratio, F,./F.. in each test data set

Lau- L Lau- Croasdale{Croasdale| Nevel Nevel | Ralston | Ralston
Test [Statistics Croasdale [Croasdale
F, F, F, F, F, F, F, F,

| Average| 0.83 0.71 1.58 0.95 1.24 0.89 1.33 0.95

StDev 0.17 0.10 0.35 0.15 0.24 0.14 0.27 0.13
Average| 1.01 1.50 1.36 1.60

2 N/A N/A N/A N/A
StDev 0.28 0.56 0.45 0.31

3 Average| 0.88 1.29 1.27 1.20 1.19 1.28 2.69 2.21

StDev 0.17 0.23 0.25 0.22 0.22 0.77 0.65 042

4 Average | 0.65 0.81 1.27 1.19 0.80 1.00 0.97 1.05

StDev 0.18 0.13 0.42 0.36 0.27 0.27 0.24 0.12
Average| 0.59 0.83 0.53 1.12

5 N/A N/A N/A N/A
StDev 0.13 0.20 0.13 0.28
Averaget [.14 1.56 1.30 1.37

6 N/A N/A N/A N/A
StDev | 0.50 0.57 0.48 0.50

7 Average| 0.99 0.97 1.29 0.87 1.30 1.02 1.42 1.13

StDev 0.33 0.16 0.58 0.23 0.51 0.23 0.50 0.17

8 Average| 1.34 1.15 1.68 0.92 1.39 1.21 1.35 1.13

StDev 0.74 041 1.11 0.30 0.61 0.52 043 0.35

9 Average| 0.96 1.07 1.46 1.10 I.13 1.03 1.91 1.73

StDev 0.35 0.39 0.51 0.39 0.38 0.36 0.72 0.66

10 Average| 0.85 1.08 1.21 1.02 0.99 0.99 1.62 1.68

StDev 0.22 0.31 0.32 0.27 0.32 0.26 0.37 0.52

(0]
(o]
()



Table 8.3 Summary of average and standard deviation of the predicted to measured

mean peak force ratio, F./F, ., of all tests for each ice force models

Lau- Croasdale Nevel Ralston
Croasdale
Average 0.92 1.37 1.12 1.41
Ft.pn:d/Ft.m:;u‘.
StDev 0.21 0.23 0.26 0.46
Average 1.01 1.04 1.06 1.41
Fz.prcd/F zmeas
StDev 0.19 0.12 0.12 0.43
Table 8.4 Summary of measured loads from IMD’s and ERCL’s test data and the forces
predicted by the new model
Test Measured Peak Force Predicted Mean Peak
» Maximum, F_ Mean, F_ Force. F .,

) F, F, F, F, F, F,

(kN) (kN) (kN) (kN) (kN) (kN)
ERCL Test Series (1:10 scale)
TI_RI 10 11 9.26 10.2 11.4 11.9
T2_RI 19 22 17.6 20.4 16.2 16.4
T2_R2 20 20 18.5 18.5 274 28.3
T3_RI1 30 38 27.8 35.2 27.6 29.0
T4_R1 30 35 27.8 324 328 34.2
IMD Test Series (MUNCONE)

3_001 N/A N/A 4.29 5.30 4.03 4.04
4_001 N/A N/A 5.00 4.72 4.28 4.38
5_001 N/A N/A 1.95 1.98 2.04 2.14
6_003 N/A N/A 2.81 3.06 2.78 293

Note: Test condition for each test is given in Chapter 3.
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0.5L¢

Figure 8.1 Breaking and ride-up patterns assumed in Lau-Croasdale’s model (only
the front right quarter of the cone is shown)
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Figure 8.16  Geometry of ice rode up the side facet (only the front right quarter of
the cone is shown)

Figure 8.17  Coordinates and geometry (only the front right quarter of the cone is
shown)









Figure 8.22

Predicted Mean Peak Force, Fpred (N)

3000 +

1000

a Horizontal |

L Fx‘pmd = 0-91 59Fx_meas

= 0.9378

Fz.p[ed = 0.8686Fz_mgas
¥ =0.7953

1000 2000 3000 4000 SO00 6000
Measured Mean Peak Force, Fmeas (N)

Comparison of model prediction and IMD’s test data

295



Chapter 9 Conclusions and Recommendations

This study employed experimental, numerical and analytical methods to study ice
forces on a faceted cone due to the passage of a level ice field during continuous ice
breaking. The main objectives were to improve our understanding of the interaction and
failure processes. and to provide engineers with a set of easy-to-apply formulae for ice load
calculation.

Both objectives of the study were reached. First, the experimental investigation
provided a clear insight into the interaction processes and the failure mechanisms through
relevant observations and interpretation of model test results. The suitability of the existing
theories for predicting ice forces on comparable faceted cones was assessed and deficiencies
identified. The deficiencies were then addressed and an improved load prediction model was
developed in the subsequent numerical and analytical investigations. The model represents
the most comprehensive attempt to date to incorporate fundamental processes in the problem
treatment and provides a new conceptual framework for future model refinements.

Focus was put on developing a physical sense of the general processes, and a
quantitative sense of the magnitude of ice force expected. Simple theories were used, and
the mathematical treatment of the topic was kept to minimum. Insofar as possible, the
accuracy and range of applicability of the models were evaluated by comparison with
experimental data. The model predictions of the rubble geometry, ice movement and the

associated forces agreed well with the interaction determined by experiment.
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Sections 9.1 to 9.3 highlight the major conclusions drawn regarding the results of the

experimental, numerical, and analytical investigations, respectively. Section 9.4 summarizes

the main contributions made in the course of this investigation. Recoinmendations for

further work are given in Section 9.5.

9.1

Conclusions From the Experimental Investigation (Part I)

In the present study, the results from the multi-faceted cone tests conducted in three

ice tanks were consolidated and analyzed. The following conclusions can be drawn for the

results of the experiments:

(i)

(11)

Interaction Process: The interaction process was substantially different from that
of a smooth cone and a two-dimensional sloping plane. The flat facet and large neck
tended to prevent efficient ice clearing. and rubble building was found to be an
essential part of the ice clearing process. An ice clearing component which is as
much as 80% of the total load on the structure has been measured. No previously
reported work identifies the factors which contribute to the amount of ride-up and
rubble formation, and their subsequent effects on the interaction process; this
omission can lead to a severe underestimation of the ice forces.

Ice Breaking Mechanism: Piece size measurements significantly diverged from
those predicted by existing classical thin plate theories. This study has shown the
important influence of ice thickness on ice breaking. Incorporating the three-

dimensional nature of ice behaviour into the problem treatment is essential to
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(111)

(iv)

9.2

advance our present understanding of the ice breaking process.

Efficiency of Existing Models in Predicting Ice Forces on Multifaceted Cones:
The analysis of ice sheet loads with a leading ice force predictor revealed that the
presently available theory for smooth cones can give sufficiently accurate prediction
of ice loads on faceted cones when rubble piling is absent; however, it also indicated
that the theory would likely under-predict the clearing component of ice loads. The
error in ice load estimation may be quite large when a large rubble field piles in front
of the structure, justifying the development of new formulae for the estimation of ice
loads on such structures.

Conceptual Model: A conceptual model was proposed to explain the observed
interaction processes between a faceted cone and a level ice sheet during a
continuous ice breaking mode. It outlines the three primary interaction processes,
i.e., ice breaking, ride-up, and rubble pile-up, where different features dominate, and

provides a means of incorporating rubble load theory into existing ice force models.

Conclusions From the Numerical Investigation (Part II)

In Part II, the unique rubble piling process was further examined with the aid of

existing particulate mechanics and a comprehensive numerical analysis. A new rubble model

was developed to predict the geometry of the rubble and the forces exerted on the structure

and the base support. Based on the result of the rubble modelling, the following conclusions

may be drawn regarding the formation process, material properties, stress state, geometry and
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associated load of a rubble;

(i)

(i)

(iii)

Formation Process: The basic mechanical behaviour and the failure processes of
ice rubble under loading conditions typical of the ice-cone interaction process have
been examined in Chapter 5. It is concluded that the flow process of ice blocks
around the structure can be idealized as quasi-static and steady, and the material as
cohesionless coulomb material. The rubble is formed by a natural dumping process,
and the clearing of the rubble from the structure is analogous to the bulk material
transport on an inclined belt conveyor as the supporting ice sheet and the ride-up ice
act as the belt conveyor. Furthermore, the shear strength is fully mobilized at the
rubble's free surface.

Stress State: Based on basic theories of soil mechanics. it is concluded that the
cohesionless rubble is in an elastic state throughout its mass during the typical ice-
cone interaction process under investigation. Three important phenomenological
parameters: the angle of internal friction, the angle of repose, and the ‘at rest’ earth
coefficient function were identified and further explored. These parameters are
essential in modelling of rubble behaviour associated with the problem under
investigation; yet, measurements associated with ice rubble are scanty.

Model Geometry: A new model to predict the shape and size of the rubble has
been presented based on insights obtained from the experiments and the basic soil
mechanics theories. The idealized geometry is uniquely defined by the rubble’s angle
of repose, and the characteristic rubble heights along the cone perimeter. The amount
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(1v)

of ice piled up was calculated via mass balance considerations. Despite limited data
used, the predictions from the derived equations give exceilent agreement with the
measurements from the experiment.
Rubble Load: Discrete element analysis using the computer program
DECICE has provided a powerful tool for complementing the analytical and
experimental work. The analysis helped the development of a semi-empirical
equation for the computation of total wall thrust for a variety of ice and structure
conditions. The equation is simple to use and yet accounts fully for the discrete
nature of the rubble materials. The following conclusions may be drawn regarding
the formula that was developed:

(a) The formula retains the form used in theories of earth pressure on retaining
walls, and it represents a best fit of the DECICE results.

(b) The proposed equation for rubble load may be applied to design problems;
but with caution, since only limited checks have been made.

(c) The formula can be adapted to the existing ice breaking model with ease. It
substantially reduces the mathematical complexity of the model formulation
by allowing the load exerted on the ride-up and supporting ice sheet to be
computed via simple semi-empirical equations. The modular nature of the
model allows its adoption to future and more advanced ice breaking models

with the same degree of ease.
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Conclusions From the Ice Force Modelling (Part III)

In Part ITI, a base model is first selected from the existing theories to model the

breaking behaviour of intact ice, and the new rubble mode! is then incorporated into the base

model to compute the peak ice load exerted on the cone due to the passage of a combined ice

sheet/rubble system. The following conclusions may be drawn regarding the model that was

developed herein:

(i)

(ii)

9.4

Base Model: As it gives the best agreement with experiments, Croasdale’s (1980)
model. with the 3-D modifications suggested in this thesis, was selected as the base
model for ice breaking load.

Ice Load Model: The model is based on a pseudo-three-dimensional treatment
of the interaction, by recognizing the two-dimensional nature of the interaction
geometry associated with individual facets. It does so in enough detail to allow
exploration of first order effects resulting from changes in the most important design
parameters. The expression for ice load has been established in detail. Experimental
data affirmed the validity of the developed ice load model and demonstrated its

ability to account for the effect of rubble piling.

Contributions of This Work

The physical experiments reviewed and the numerical experiments performed in this

work provide a clear insight into the interaction processes and improves our understanding

of the dominant ice-structure interaction processes taking place around faceted cones. They
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also provide a set of valuable data useful in confirming and calibrating algorithms for ice
loads. A new ice force model has also been developed to compute ice load on the faceted
cones. Although the problem was highly idealized, it accurately captured the essential
features of a typical interaction and predicted the ice forces well.

The above developments and results are significant, because, for the first time, to the
knowledge of the author, an ice load model has been established to account for the effect of
rubble in ice loading on a multifaceted cone based on essential features of the interaction.
The results provide a useful framework for further model development.

The state-of-the-art is such that it is now possible to incorporate rubble load in the
force calculation with higher degree of confidence. The methodology for doing so has been

developed and presented herein, and constitutes the main contribution of this work to the

state-of-the-art.

9.5 Recommendations for Future Work
While considerable effort has been expended to document the model. no sensitivity
analysis has been performed for the model developed in Chapter 6 through 8.
Comprehensive sensitivity analyses would help to identify the most important parameters.
Limited experimental data have prevented a comprehensive assessment of the
accuracy and limitations of the model, which constitutes a potential weakness of this work.
Furthermore, the model was developed from model test data. Some assumptions may be

valid in the ideal conditions of the ice tank, but may not be sustainable in the field where the
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scale is larger and inhomogeneities more prevalent. Until it is calibrated against full scale
data, there will always be uncertainty. A comprehensive assessment of the model results
against field measurements (when available) will give a better sense of its accuracy and
limitations for different ranges of ice and structure conditions.

The theoretical developments of rubble behaviour draw heavily on soil mechanics.
Most of the phenomenological theories and correlations used are empirical, i.e., they are
based on observation and results of experimental measurements on soil materials under
specific conditions. For example, Jiky’s equation for lateral earth pressure at rest, used in
the present study to estimate internal friction angle of ice rubble, is known to be valid for
normally consolidated soils. Despite the particulate nature of both soils and ice rubble,
uncertainty still remains concerning the applicability of the soil mechanics theories to rubble
behaviour. Improvements in the theories developed in this study depend crucially upon the
availability of accurate field data, i.e., shear strength, rubble geometry and ice load
measurements. This would seem to be an area ripe for experimental research.

Due to the pilot nature of this work, there are many aspects of the interaction, which
it has not been possible to explore; however, it is evident from the results that a useful
modelling framework has been developed. The immediate need is for the incorporation into
the theory of some of the more complex aspects of the interaction with respect to rubble

piling and ice loads.
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9.5.1 Refinements of the Rubble Model

The model is applicable to thick and strong ice impacting on the structure at low to

moderate velocity. In order to extend the model to other conditions, the following factors

should be considered in further modelling:

(1)

(i)

(ii1)

(iv)

(v)

Dynamic Rubble Piling: This requires more complicated assumptions for ice
block motions within the rubble mass and for ice generation and clearing rates.
Deformation of Rubble Mass: The possible increase of load on the wall due
to deformation of the rubble mass as it is pushed against and up the cone wall should
be included as suggested in Section 5.3.2.

Secondary Breaking of Ride-Up Ice: If the ice in question is thin and weak,
i.e., first vear ice around a bridge pier, secondary breaking of the ride-up ice may
occur which increases the width of the side zones, and the width of the accumulation
zone decreases. This will affect the mass balance and profile of the rubble in front
of the cone and should be incorporated into further model treatments.

Rubble Cohesion: If the rubble mass is allowed to stagnate in front of the
structure for a period of time, cohesive strength may develop within the pile and
increase the rubble load.

Effective Wall Friction: A better picture of the functional relationship between
wall friction and ice force awaits the development of a theory to predict the effective
friction mobilized at the wall.

[t is desirable to develop a purely theoretical rubble model that wouid, at a future
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date, replace the empirical formulations presently adopted in this research. Furthermore,
measurements on ice rubble material properties to better defined the shear strength in the

loose state are needed.

9.5.2 Refinements of the Ice Force Model
The present study analysed rubble loading on the basis of the interaction observed in
IMD’s tests. Other failure modes, and test conditions have not been accounted for; however,
the methodology used here can be extended to those cases. A number of areas require further
attention. These include:
(i) Ice Breaking Component: The ice breaking is modelled comparatively crudely
and much work is needed to improve the mode! prediction as indicated in Section
4.2,
(i1) Further Model and Field Tests: I[mprovements in the theory of this study and
the development of extensions depends crucially upon the availability of accurate

complete field data; therefore, large-scale field tests are strongly recommended.
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Appendix A
Summary of Test Conditions, Configurations,

and Results of ERCL’s and IME’s Test Series:

Level Ice
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The measured ice properties, configurations and results associated with each test for
the individual test series in the “MUN/ERCL/NRC Muiti-Faceted Cone Study™ are extracted
from respective data report and reproduced here for quick reference.

The measured ice properties along with the configuration of the test condition in each
test for the two test series are given in Tables Al and A2; whereas, the results of each test
series are consolidated and summarized in Tables A3 and A4.

Tables A3 summarizes the mean, maximum, and peak values of the global and neck
forces measured in the IME's level ice tests. The force statistics are computed only for the
steady state portion of the force records. Table A4, on the other hand, gives only the
maximum loads measured in the ERCL's level ice tests since most of the runs were stopped
before a quasi-steady-state interaction was achieved.

Peak force analysis was not carried out on IME's tests; instead, the peak forces were
calculated as suggested by Irani and Timco (1993) as the sum of the mean plus one and a half
times the standard deviation of the force record. It should be noticed that after publishing
their data report, Irani and Timco (1993) have since revised and published their global load

measurements. The data given in Tables A3 are the revised values.
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Table Al

Matrix for level ice tests;: NRC-IME series

LEVEL ICE PROPERTIES
Test Model Orient. \" t Oy, Oy
) ) (cmv/s) (cm) (kPa) (kPa)
C_001 15 2.6 2.6 46 73
C_002 15 9.8 23 46 73
C_003 15 4.8 23 46 73
C_004 15 2.2 33 104 166
C_005 5 3.8 3.7 104 166
C_006 15 6.2 3.7 104 166
C_007 15 2 24 24 29
C_008 15 4 2.3 24 29
C_009 15 6 22 24 29
C_010 15 2.2 4 58 67
C_0l1 15 4.1 3.8 58 67
C_012 15 6.1 4.1 58 67
C_013 15 2 1.7 42 67
C_014 15 4.3 1.6 42 67
C_015 15 6 1.8 42 67
C_016 0 6 14 96 72
C_017 0 6 2.4 73 122
C_018 0 6.1 2.1 37 59
C_019 0 6.2 2.3 13 2
C_020 0 59 5.7 23 37
C_021 0 5.8 5.7 11 17
c_022 0 59 34 84 134
C_023 0 6 3.3 29 47
C_024 0 5.8 34 16 25
C_025 0 6 4.5 78 125
C_026 0 6 4.6 64 102
C_027 0 6 4.7 51 82
C_028 0 5.7 4.4 63 81
C_029 0 5.7 42 28 45
C_030 0 5.7 4.5 16 26
C_031 30 5.7 24 22 56
C_032 30 5.7 ) 9 7
C_033 30 5.7 1.8 3 17
C_034 30 5.7 3.5 71 TE
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Table Al

Matrix for level ice tests: NRC-IME series (continued)

LEVEL ICE PROPERTIES
Test Model A" t (s 7% Oy
Orient. (°) (cm/s) (cm) (kPa) (kPa)

C_035 30 5.7 34 64 44
C_036 30 5.8 34 13 25
C_037 30 6.2 5.6 41 60
C_038 30 5.9 5.6 40 40
C_039 30 6.2 49 39 44
C_040 30 6.2 5.1 30 1S
C_041 30 59 5.4 14 12
C_042 0 6 33 40 41
C_043 15 6.1 3 40 41
C_044 30 6 3.3 40 41
C_050 0 6.2 2.8 Il 21
C_054 0 6.1 4.2 40 80
C_055 0 5.8 3.6 27 76
C_056 0 59 3.5 24 49
C_057 0 59 3.6 10 25
C_060 0 6 3 9 36
C_061 15 59 3.1 9 36
C_062 30 6 3.1 9 36

Note: a,, = upward breaking flexural strength; o, = downward breaking flexural strength

Structure orientation: 0° = face-on; 15° = intermediate; 30° = edge-on

A friction coefficient of O is associated with runs | to 38, and a friction coefficient

of 0.1 is associated with runs 39 to 66.
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Table A2

Matrix for level ice tests: ERCL series

Test \% t o; E
(cm/s) (cm) (kPa) (MPa)
Year One: 1988-89; 1:10S
TI_RI 6 33 165 1136
Year One: 1988-89; 1:10L
T2_R2 6 34 183 836
T3_R2 6 27 249 1129
T4 _RI1 6 12 159 1590
Year Two: 1989-90; 1:20L
T1_RI 6 25 50 203
TI_R2 6 25 50 203
T2_RI 6 32 35 288
T2_R2 6 36 141 1154
T3_RI1 6 38.5 125 569
T3_R2 6 38.5 125 569
T4_RI 6 41 141 853
T4_RI 6 41 141 853
T5_RI 6 5 na na
T5_R2 6 5 na na
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Table A3 Summary of level ice test results: NRC-IME series (Irani and Timco, 1992;
and Irani et al, 1992)

GLOBAL * GLOBAL * NECK *
HORIZONTAL VERTICAL HORIZONTAL
FORCE (kN) FORCE (kN) FORCE (kN)
Test Mean | Max. | Peak | Mean | Max. | Peak { Mean | Max. | Peak

0.132]0.219 | 0.164 | 0.176 | 0.262 [ 0.221 | 0.00 | 0.03 | 0.007
0.117 } 0.214 | 0.161 | 0.173 | 0.261 [ 0.227 | 0.00 | 0.04 | 0.006
0.122 1 0.188 | 0.153 | 0.162 | 0.233 | 0.207 | 0.00 | 0.03 | 0.010
0.189 } 0.335 | 0.269 | 0.244 | 0.417 | 0.337 | 0.01 | 0.04 | 0.019
0.161 | 0.288 | 0.227 | 0.222 | 0.369 | 0.320 | 0.01 | 0.03 |0.011
0.160 | 0.236 ] 0.218 | 0.218 | 0.334 | 0.307 | 0.01 | 0.03 | 0.014
0.113]10.143]10.134 | 0.152|0.192 | 0.182 | 0.00 | 0.01 |0.006
0.108 | 0.150 ] 0.129 | 0.151 | 0.206 [ 0.179 | 0.00 | 0.01 |0.005
0.115]0.1751 0.140 | 0.157 | 0.208 | 0.193 | 0.00 | 0.01 | 0.005
0.284 | 0.438 | 0.366 | 0.374 | 0.541 | 0.463 | 0.01 | 0.04 |0.002
0.280 | 1.420 | 0.430 | 0.320| 0.470 { 0.410 | 0.01 | 0.10 |0.029
0.295 | 0.465 | 0.410 | 0.404 | 0.633 { 0.554 | 0.00 | 0.00 }0.014
0.074 | 0.105 ] 0.097 | 0.111 | 0.159 { 0.144 | 0.00 | 0.01 | 0.004
0.060 | 0.086 | 0.081 | 0.089 | 0.128 | 0.115 | 0.00 | 0.00 |0.002
0.064 | 0.093 | 0.087 | 0.095§0.129 ] 0.123 | 0.00 | 0.01 |0.002
0.210{ 0.690 | 0.300 | 0.281 {1 0.609 | 0.381 | 0.01 | 0.12 }0.003
0.11310.183 ] 0.152 1 0.12510.203 | 0.174 | 0.00 | 0.04 | 0.010
0.110 } 0.160 | 0.140 | 0.140 0.190 | 0.170 | 0.00 | 0.01 | 0.005
0.11510.160 | 0.146 | 0.149]1 0.210 | 0.191 | 0.00 | 0.01 |0.006
0.390 | 0.630 | 0.500 | 0.510] 0.710 | 0.630 | 0.01 | 0.10 |0.034
0.360 | 0.600 | 0.450 | 0.470| 0.620 | 0.550 | 0.01 | 0.10 | 0.034
0.199 | 0.324 | 0.266 | 0.280 | 0.484 | 0.375 | 0.01 | 0.03 |0.013

BB EIaGEGRESee o uawy —

23 0.190 1 0.345 | 0.250 | 0.265| 0.414 | 0.345 | 0.01 | 0.04 | 0.014
24 0.176 { 0.382 1 0.233 | 0.230| 0.386 | 0.288 | 0.01 | 0.08 | 0.024
25 0.386 | 1.593 | 0.649 | 0.510] 1.396 | 0.772 | 0.01 | 0.28 | 0.043
26 0.398 { 0.887 | 0.578 | 0.534] 0.890 | 0.742 { 0.01 | 0.05 |0.026
27 0426 | 0.811) 0.619 | 0.563|0.940 | 0.795 | 0.01 | 0.05 | 0.030
28 0.300 | 0.540 | 0.420 | 0.360 | 0.058 | 0.500 | 0.01 | 0.05 | 0.025
29 0.333 1 0.650 | 0.428 | 0.432 ]| 0.652 | 0.540 | 0.01 | 0.04 |0.026
30 0.254 1 0.339 | 0.306 | 0.353 | 0.469 | 0.419 | 0.01 | 0.03 |0.018
31 0.077 1 0.097 | 0.090 | 0.124 | 0.155 { 0.144 | 0.00 | 0.00 | 0.002
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Table A3 Summary of level ice test results: NRC-IME series (Irani and Timco, 1992;
and Irani et al, 1992) (cont’d)

GLOBAL * GLOBAL * NECK *
HORIZONTAL VERTICAL HORIZONTAL
FORCE (kN) FORCE (kN) FORCE (kN)
Test Mean | Max. | Peak | Mean | Max. | Peak | Mean | Max. | Peak
32 0.069 | 0.088 | 0.079 | 0.109 | 0.133 ] 0.122 | 0.00 | 0.00 | 0.00
33 0.056 | 0.08 | 0.072 | 0.088 | 0.135]0.114 | 0.00 | 0.00 | 0.00
34 0.15 | 0.225 | 0.197 | 0.238 | 0.354 } 0.305 | 0.00 | 0.02 | 0.0!
35 0.157 | 0.22 | 0.196 | 0.243 | 0.314 | 0.290 | 0.00 | 0.02 | 0.0!
36 0.113 | 0.161 | 0.137 | 0.181 | 0.246 | 0.215 | 0.00 | 0.01 | 0.00
37 0.355 | 0.606 | 0.489 | 0.527 | 0.802 | 0.691 | 0.01 | 0.05 | 0.02
38 0.348 1 0.595 | 0.482 | 0.499 | 0.823 ] 0.662 | 0.01 | 0.07 | 0.02
39 0.253 | 0.37 | 0.328 | 0.382 | 0.516 } 0.482 | 0.00 | 0.03 | 0.0l
40 0.193 | 0.291 | 0.246 | 0.308] 04 }[0.370 | 0.00 | 0.02 | 0.01
4] 0.18 | 0.24 | 0.211 | 0.294 | 0.362 } 0.332 | 0.00 | 0.02 | 0.01
42 0.149 1 0.226 { 0.198 | 0.16 [ 0.212 | 0.199 | 0.00 | 0.01 | 0.01
43 0.132 ] 0.253 1 0.199 | 0.147 | 0.259 | 0.213 | 0.00 | 0.G61 | 0.01
44 0.123 | 0.161 j 0.143 | 0.134 | 0.173 } 0.159 | 0.00 | 0.01 | 0.00
50 0.164 | 0.313 | 0.226 | 0.167 | 0.243 | 0.196 | 0.00 | 0.01 | 0.00
54 0.428 | 0.707 } 0.577 | 0.35310.554 j 0470 | 0.01 | 0.05 | 0.02
55 0.237 | 0421 } 0.317 | 0.202 | 0.331 | 0.260 | 0.00 | 0.02 | 0.01
56 0.248 | 0429 | 0.334 | 0.21 | 0.331 } 0.272 | 0.00 | 0.02 | 0.01
57 0.268 | 0.426 | 0.358 | 0.242| 0.35 [ 0299 | 0.00 | 0.02 | 0.0l
60 0.166 | 0.314 | 0.238 | 0.167 | 0.261 | 0.214 | 0.00 | 0.01 | 0.00
61 0.168 | 0.285 ] 0.23 | 0.15810.235}10.206 | 0.00 | 0.01 | 0.00
62 0.145 1 0.199 | 0.176 | 0.145 | 0.196 ] 0.177 | 0.00 | 0.01 | 0.00

Note: Global forces are taken from Irani and Timco (1993). Neck forces are estimated
from time-history given in Irani et al (1992).
*Horizontal - (+) toward the model; Vertical - (+) downward
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Table A4 Summary of level ice test results: ERCL series
GLOBAL * GLOBAL * NECK *
HORIZONTAL VERTICAL | HORIZONTAL
FORCE (kN) FORCE (kN) FORCE (kN)
Test Max Max Max
Year One: 1988-89; 1:10
TI1_Rl 40 48** 1.5
T2_R2 10 8 0.8
T3_R2 17 19 NA
T4_R1 12 &) 0
Year Two: 1989-90; 1:20
Ti_RI1 10 11 0.7
TI_R2 1.5 4 0.8
T2_RlI 19 22 5
T2_R2 20 20 8
T3_R1 30 38 2.5
T4_R1 30 35 5
TS5 Rl 2 4 0

* Horizontal - (+) toward the model; Vertical - (+) downward
**Typo error in original report
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APPENDIX B

Load Time History of Tests Conducted in
IMD’s Test Series
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DIRECTION - BROAD ON FLEX STR (down) = 74 7 UPa
SPEED = 1. em/s FLEX STR (up) = 41.4 kP»

MULTIFACETED CONE TESTS A=

25.00, NRC/IMD




6%t

FORCE ON NECK IN X, Y, Z DIRECTIONS

MUNCONE 4 001

0.4 —
 §
AVE = D.19 kN
Y'Y p— MAX = 0.93 kN
MIN = D.I1 KN
STD = D.09 kN
-~ D24 -
» \‘ ....... F
~
~ AVE = -0.04 &N
0.rep-—— MAX = D.08 kN
8 MIN = -0.07 kN
x STD = D.02 kN
o 0.0 S RN (RS S _
X L e Ik b e F
Q"Wﬁi\m\.fv"'& 3 ‘
0.0l --—1& {1 AVE =« 0 0d kN
\ o MAX = 0 05 kN
"‘;-’ MIN = 0 U0 kN
STD = 0 01 &N
-0.08
205 300 319 KK 349 360 375 390 409 420 439
TIME (s)
NECK SIZE ~- LARGE $CE THICKNESS = 16.0cm NO RIDGE
FRICTION -- 0.09 ICE DENSITY - 914, g/ m-2 STEADY STATE PORTION ONLY
DIRECTION ~- BROAD ON FLEX STR (down) = 7¢.7 kPa
SPEED - 1. um/e FLEX BTR (up) = 41.1 «Ps

MULTIFACETED CONE TESTS

A

25.00, NRC/IMD




0s¢t

FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS

MUNCONE4 002

8.0 — Fx
AVE = 0.02 kN
MAX = 6.27 kN
MIN = 2.91 kN
1.0 o Ol EER B [ o 4--—- -] sTD = 0.88 uN
S e e F,
- . \.J\hk‘ . o S | ave « ~0.20 kn
- it | MY A
o 8TD = 0.3¢ kN
o
‘.0 N . .. e - - M v flr e e ewmiemegh cnm comwe v oo !...._., pp— f e e e l"\z
A
L Wﬂl VT"»’\M« \\MTu ez i
MIN o ©.67 KN
-8.0 ST = 0 8¢ &N
12.% 24 17.5 50 62.5 78 87.% 100
TIME (s)
NECK SIZE - - LARGE ICE THICKNESS = 16.0 cm NO RIDGE
FHICTION -- 0.00 ICE DENSITY « 814, kg/m-3 STEBADY STATE PORTION ONLY
DIHECTION -~ BHOAD ON PLEX STR (down) = 73.8 kPa
SPEED - 4, em/o PLEX 3TR (up) = 40.0 kP»s
MULTIFACETED CONE TESTS A=25.00, NRC/IMD




16¢

FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS

MUNCONE4 003

7.5 F
X
AVE = 8 00 kN
L | 11 Mallis LT T AV M I““l h‘ MAX = 8.5%¢ kN
5.0 r ’ ’ WY Y ‘o T U1l
! MIN = 2.40 kN
8TD = 0.61 kN
— 2.3 F
RN I A K AN AY N I A A R y
- AVE = 0 00 KN
HO—M 3 | MAX « 1.28 kN
I ) MIN = -1 39 kN
po! STD = 0 33 kN
o) 2.5
Fay
............... F
l F
5.0 AVE =« -8 81 kN
Y " M MAX = ) 20 KN
MIN = &6 vée kN
15 30 49 60 78 80 108 120 139 150
TIME (s)
NECK SIZE - - LARGE ICE THICKNESS = 16.0 cm NO RIDGE
PRICTION -- 0.00 ICE DENSITY = 91¢6. kg/m -3 STEBADY SBTATE PORTION ONLY
DIRECTION - - BROAD ON PLEX STR (down) = 72 9 kPas

SPEED = 4. cm/e

PLEX STR (up)

= 40.¢ kPa

MULTIFACETED CONE TESTS

A =25.00, NRC/IMD
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FORCE ON NECK IN X, Y, Z DIRECTIONS

MUNCONE4 _002

N.45 F
x
AVE = 0 27 &N
MAX = 0 4U KN
h MIN = 0D.18 KN
0.3 4 STD = 0.55 kN
,\ y ,,
R R A Y RN A BRVRNRY B L AN B /I A A L A I y
- 4
- N B AVE = D.OD KN
N 0.15 MAX = 0.08 KN
U MIN = -0.048 KN
x . STD = 0 02 KN
O i g " R 3 3 " .
fime ‘{}4‘""{"&. -\,J \V’ l\‘_} '"\-./\ %W‘\ t\'ﬁp“’\rdw \ Lﬁ NI\ F
0.0l Iy D N . "y - v j
,.-V{IL e T Y ‘ E!'NL' 2
AVE = 0 03 KN
MAX = 0.08 kN
MIN = 0.01 KN
8TD = 0.01 kN
~0.19
12.5 23 37.%5 50 62.9 78 100
TIME (s8)
NECK SIZE - - LARGE ICE THICKNESS = 16.0cm
PHICTION - - 0.00 ICE DENSITY = 01¢. kg/m -3 STBADY STATE PORTION ONLY
DINECTION -~ - BROAD ON FLEX BTR (down) = ?73.8 kPas
SPEED = 6. ¢cm/» PLEX STR (up) = 40.8 kPa

MULTIFACETED CONE TESTS

A=25.00, NRC/IMD




FORCE ON NECK IN X, Y, Z DIRECTIONS MUNCONE4 003

gst

n.5 F
X
AVE = 0 33 kN
n.4|-— 8 MAX = 0.4 kN
MIN = 0.22 ki
8TD = 0.04 kN
—_ 0.3}
” VN ....... F,
5 . AVE = ~0.01 kN
“ 0.2 MAX = 0.07 kN
U . MIN = -0.086 kKN
& STD « 0.02 kN
o) 0.1
N | T T Y T Y I T T F
.\\nf"\h “-ﬂ\' 2
0. %;m%—— AVE = 0.03 kN
'.r\\ MAX = 0 08 kN
MIN » 001 kN
1 STD = 0.0f kN
120 139 150
TIME (s)
NECK NIZK - LARUR ICE THICKNES® = 8.0 cm NO RIDGE
FRICTION -- 0.00 ICE DENSITY - Ple. kg/m-3 STBADY BTATE PORTION ONLY
DIRECTION -~ BROAD ON FLEX STR (down) = 72.0 kPa
SPEED =« 4. ¢cm/e FLEX 8TR (up) = 40.4 kP

MULTIFACETED CONE TESTS A =25.00, NRC/IMD
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FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS

MUNCONE4_006

6.0

F
b
AVE = ¢ 1?7 kN
MAX = 85.00 kN
MIN - 2.82 kN
3.0 Y v 8TD = 0.4% uN
P
z ------- P
v y
- ey ", o AVE = -D.i2 kN
0.0 N L ™, MAX = 0.87 kN
m v\.. .y .
O MIN = -0.72 kN
< 3TD = 0 20 KN
o
[
SN - = E— F
b L '
N ) Aj., LAWY M-wk Pu‘ },. LAY AVE = -4.80 kN
'-A\.Mo. -.' ka_.'na A: \v'“‘-.-'i} ‘“h"'\»"'mﬂ. Nyt \".""..J""j ‘\w.’\\-.)..,."m--"‘ u‘x = -3.98 k“
MIN = -3.067 kN
-6.0 STD @« 0.31 KN
1] 100 110 120 130 140 190
TIME (3)
NECK SIZE - - LARGE ICE THRICKNESS = 0.4 cm NO RIDGE
FRICTION -- 0.09 ICE DENSITY = 9BY. kg/m -3 STERADY STATS PORTION ONLY
DIRECTION - - BROAD ON PLEX STR (down) = 390.0 kPa
SPEED = 4. tem/o PLEX BTR (up) = 10.7 kPae

MULTIFACETED CONE TESTS A=25.00, NRC/IMD




SSt

FORCE ON NECK IN X, Y, Z DIRECTIONS

MUNCONE 4 006

0.375

F
x
AVE = 0.106 kN
MAX = 0.31 kN
MIN = D. 07 kN
0D.25 STD = 0.09 kN
- F
; y
-~ AVE = D.UR kN
0124 MAX = 0.08 KN
8 MIN = -0.03 kN
x STD = 0 02 kN
o
=
0.0 F,
AVE = 0.03 KN
MAX = 0.07 kN
MIN = D UI kN
STD = L.U] KN
0,129
/11] 10D i10 120 130 140 150
TIME (s)
NECK SI1ZE - - LARGE ICE THICKNESS = 10.4cm NO RIDGE
FRICTION -- 0.00 ICE DENSITY - 923, kg/m~23 STEADY STATE PORTION ONLY
DIRECTION - BROAD ON FLEX STR (down) = 39.0 kPa
SPEED - 4. em/0 FLEX STR (up) = 10.7 kPs

MULTIFACETED CONE TESTS

A

25.00, NRC/IMD




95t

FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS

MUNCONES 001!

2.5 F
x
AVE = | .78 kN
MAX = 2.)0 kN
MIN = §.16 KN
1.25 1 STD = 0.13 kN
- F
S T e e e R R I A y
% N £ e AVE = 0.02 kN
~ vy | - . ody s *vee ra R
0.0 N L 4 ‘MWL.‘?:M NS < w‘o\_y'.‘ MAX = 0.2¢ kN
‘8 MIN = —-0.24 kN
& STD = 0.11 kN
o
fay
oyttt F_
’ "f'.;\'v\vl\
L r\ ™ S r- AVE o -1 .82 kN
™ BN e \ . 1 wid PN o
N Py ‘--}.,..-..« _J_,./ e - J\\'-.r’ MAX = -).40 KN
MIN = -2.17 KN
&8 S3TD =« 0 Id kN
400 429 4980 479 300 528 550 579
TIME (1)
NECK SIZE - - LARGE ICE THICKNESS = 0. ¢ cm NO RIDGE
FRICTION -~ 0.00 ICE DENSITY = 080. kg/m -~ STRADY STATE PORTION ONLY
DIRECTION -~ DROAD ON PLEX STR (down) = 43.4 kPa
SPEED = 1. em/o PLEX STR (up) = 30.7 kPa

MULTIFACETED CONE TESTS AN=25.00, NRC/IMD




LSt

FORCE ON NECK IN X, Y, Z DIRECTIONS MUNCONES 001

n.12 F
X
AVE = 0.08 kN
MAX » 0.10 kN
h.oof-——- MIN = 0.01 kN
8TD = 0.0 kN
z u."“ bl el el L oL & 1 1 __ _fum &w KN Il YXEE __._J] esssess r,
4
- AVE = D.01 KN
MAX = 0.03 kN
fd IN 000 kN
O pooaft P
x A STD « 001 kN
o
b | a SNl (YRS YRR L AN | TR WM F
2
T Al 4 e —
AVE = 0 00O &N
MAX = 0. 02 KN
MIN = D.DO KN
STD =~ 0.00 KN
n.03
400 429 450 473 500 8298 5%0 5758
TIME (s)
NECK SIZE - -~ LARGE ICE THICKNESS = 9.4cm NO RIDGE
PRICTION -- 0.00 ICE DENSITY = 929. kg/m~23 STEBADY STATE PORTION ONLY
DIRECTION -~ BROAD ON PLEX STR (down) = 43.4 kPa
SPEED = 1. ¢cm/s PLEX STR (up) = 30.7 kPa

MULTIFACETED CONE TESTS

A=25.00, NRC/IMD
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FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS

MUNCONES 002

2.5 px
AVE = | 88 kN
MAX = 2 38 KN
1 25 MIN « 1.13 uN
8TD = 0.23 KN
_—
P ] eeeeme-
Z 0 "“‘WWW 7 F,
- AVE = -0.08 kN
MAX = 0.26 KN
[A]
O ' A MIN = -0 368 kN
! -1.2% A N /,q f STD = 0.13 XN
o A P Ko '
8 LY ' \/ 1 A \'\ m ‘\h‘v/ *‘vvf \./\M\J\« b 'W«\‘f‘\'“ r‘ ‘(j
‘/ oy 3 " A\ WY pl
-2.9
‘ AVE = -1 .00 kN
MAX = -1.02 kN
MIN = -3.35 kN
-9.78 3TD = 0.24 kN
16 24 K 40 48 56 64 72 60 B8 ']
TIME (s)
NECK SIZE - - LARGE ICE THICKNESS = 9.4 cm NO RIDGE
FRICTION -- 0.D® ICE DENSITY = 028. kg/m-3 STEADY STATE PORTION ONLY
DIHECTION - - BROAD ON PLEX STR (down) = 41.6 UPa
SPEED = 6, cm/» PLEX STR (up) = 30.2 kPae

MULTIFACETED CONE TESTS

A =25.00, NRC/IMD
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FORCE ON NECK IN X, Y, Z DIRECTIONS

MUNCONES 002

0.25

F‘
 §
AVE = 0 13 kN
o.1enf MAX ® 0.21 kN
MIN = -0 48 kN
S8TD = 0.09 kN
— n.o F
:‘: y
- , AVE = D.UL KN
U R} MAX = 0 04 KN
8 MIN = -0 06 N
STD = 0 01 kN
ot )
o .25
e~ 1 1t 1t w1 1 1 bl e F
z
09791 B P SUNS S [RUNUSN IR (N SR AVE = 0 0L WN
MAX = 0 0¢ kN
MIN = 0 00 KN
8TD = 0 04 kN
-0.5
16 24 32 40 48 56 64 72 80 a8 ']]
TIME (s)
NECK SIZE - - LARGE ICE THICKNESS = 9.4 cm NO RIDGE
PHICTION -- 0.09 ICE DENSITY = 020. kg/m-2 STEADY STATE PORTION ONLY
DIRECTION - - BROAD ON PLEX STR (down) = 41.8 kPa
SPEED - o. om/» PLEX STR (up) = 30.2 kPs

MULTIFACETED CONE TESTS

A

25.00, NRC/IMD
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FORCE ON NECK IN X, Y, Z DIRECTIONS MUNCONES 003
.24 F
X
AVE = 0 14 kN
MAX = D.25 kN
018} —4 MIN = 0 04 kN
STD ~ 0.0 KN
; el . AN M A0 AL T L | “‘ nr_ | ]| ------- l~‘y
" )
- AVE = D U1 kN
MAX =« 0 U4 KN
8 MIN = -0 01 kN
x 0. .04 ' 35TD = 0 01 kN
Q
ke ) h W . U T F
. WM%%WW"J :
AVE = D 0L kN
MAX = 0 03 KN
MIN = 0 00 kN
STD = 0.00 kN
h.06
1e.h 2y 37.5 50 62.3 7% 87.3 100 112.8 12%
TIME (s)
NECK SIZE -- LARGE ICE THICKNESS = f9S.4cm NO RIDGE
FRICTION -- 0.090 ICE DENSITY - 028. kg/m -3 STEADY STATE PORTION ONLY
DIRECTION -- BROAD ON FLEX STR (down) = 40.8 kPa
SPEED = 4. cm/s FLEX STR (up) = 290.9 kPa
MULTIFACETED CONE TESTS A =25.00, NRC/IMD




19¢

FORCE ON STRUCTURE INX, Y, Z D

IRECTIONS MUNCONES 003

2.4 F
AVE = 1.77 kN
16l MAX = Z2.80 KN
MIN = 1.2¢ XN
STD = 0.16 kN
- n.8f P
:-'/‘I ------- y
. L A. AVE = -0.02 kN
. BLY, O T Y, .ﬁ,?y,zhw[\,l A
" s.0 \ W 3 Nl B 7 ¥ | Max < 030 kn
» MIN @ -0.9¢ kN
x STD « D 11 kN
o) b.o]—
.
............... F
1.6 A‘x A f "“w}l & 1 ave ) -: KN
- I} FAY - -},
\ /N \/ " v \J L~ M'MV(M / KJ‘»W’J\\ /‘\4‘ MAX = - (.32 kN
\ 4 MIN = -2.20 kN
24 STD = 010 kN
12,5 25 37,3 50  62.3 73  B7.9 100 112.5 128
TIME (s)
NECK SIZE -~ LARGE ICE THICKNESS = 0.4 cm NO RIDOE
PRICTION - - 0.00 ICE DENSITY - 880. kg/ m -3 STRADY STATS PORTION ONLY
DINECTION - - BHOAD ON PLEX STR (dewn) o 40.8 kPs
SPEED « 4. cm/» PLEX STR (up) o 20.0 kPa

MULTIFACETED CONE TESTS

A =25.00, NRC/IMD




FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS MUNCONEG _002

9t

4.0 F
X
AVE =» 32 60 KN
MAX = 3 U8 KN
MIN = 1.80 kN
2.0 } ! ¥ STD = 0 21 kN
z F
i i y
S . o] Ave = -0.10 kN
. W‘WWW MAX = 0.21 kN
8 A" A iy MIN = -0.68 kN
= STD = 0 19 kN
(@)
Y G SENISSUSS WG S SE—— T F
4
A AL A AL I MA A AR | e - 2o e
- ) \/ ) W MAX = -2.18 KN
MIN = -3.%0 kN
4.0 , STD = 0.10 kN
4o 80 100 120 140 160 180
TIME (s)
NECK SIZE - - LARGE ICE THICKNESS <« 12.64cm NO RIDGE
FRICTION -- 0.08 ICE DENSITY = 019. hg/m-2 STEADY STATE PORTION ONLY
DIRECTION - - BROAD ON PLEX STR (down) = 30.0 kPa
SPEED = 4. cm/e PLEX STR (up) = Z8.0 kPa

MULTIFACETED CONE TESTS A =25.00, NRC/IMD
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FORCE ON NECK IN X, Y, Z DIRECTIONS

MUNCONEG6 002

0.3 F
x
AVE = 0.18 kN
MAX = 0.28 kN
MIN = 0.13 kN
0.2 8TD = 0.02 kN
—_
S I 'R 1 2 L L R F
4
~ AVE = -D.01 kN
0.1 MAX = 0.04 kN
‘8 MIN = -0.04 kN
= " STD = 0.01 kN
o e o ) v M X
- n.ol- \JL ¥ ﬁ" Wf;kfﬁw 'VJ'W‘J ey ' f\"}t{ AV Woae 104\ | F
' Y wh hﬂ‘h!' 14 ! 2
W, VJ AVE ~ 0 02 KN
MAX = 0 Ue kN
MIN « 0 U1 kN
"y STD = 0.00 KN
() (1] 100 120 140 160 180
TIME (s)
NEUK NSIZE LANGE 1CE THICKNENN - (2.4 vIn NO NIDGER
FIICTION 008 ICE DENBITY = 910, kg/m -3 STEADY STATE PORTION ONLY
DIHECTION - - BROAD ON FLEX STR (down) = 30.0 kPa
SPEED « 6. om/» FPLEX STR (up) = 22.0 kPa

MULTIFACETED CONE TESTS

A

25.00, NRC/IMD




FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS MUNCONEG 003

P9t

3.0 F
r x
AVE = 2 86 KN
MAX = 2. 00 kN
1.5 N MIN = .47 kN
STD » 0.17 kN
- mreven-  F
: 0.0 T R AT TR A Y A y
~ AVE = ~-0.03 kN
MAX = D0.2% kN
s . MIN = -0.23 KN
1.5 - - T - : -
o 8sTO 0 U8 KN
(@]
Fasy “‘WM\’M M ............... F
AVE = -2 .88 kN
MAX = - .40 kN
MIN = -3.00 kN
4.5 STD = U 13 kN
L]] 100 150 200 29%0 00 s 400 430
TIME (s)
NECK SIZE - - LARGE ICE THICKNESS = (2.6 cm NO RIDGER
FRICTION -~ 0.00 ICE DENSITY - 9160. kg/m-~3 BTRADY STATE PORTION ONLY
DIRECTION ~-- BROAD ON PLEX STR (down) = 30.4 kPa
SPEED = 1. cm/9 PLEX STR (up) = 22.5 kPs

MULTIFACETED CONE TESTS A=25.00, NRC/IMD




S9¢

FORCE ON NECK IN X, Y, Z DIRECTIONS

MUNCONEG 003

SPEED = 1. ecm/o

PLEX STR (up) = 22.8 kPa

n.24 F
X
AVE = 0.12 kN
MAX = 0.21 kN
0. MIN « 0.00 kN
STD = 0.02 kN
o~
Z oi2l——HIRI A MR- UEATE - R M NS I AR 5 11 SO LSRN 1 et Fy
4
- AVE = 0.00 kN
MAX = 0.03 kN
‘8 MIN = -0.03 kN
p .o STD = O UL kN
(@)
f F
2
D.v
AVE = 0.01 kN
MAX = 0D.02 kN
MIN = -~0.01 kN
STD = 0.00 kN
“0.068 .
Hu 100 150 200 250 300 350 400 450
TIME (s)
NECK SIZE - - LARGE ICE THICKNESS = 12.4cm NO RIDGE
PRICTION -~ 0.00 ICE DENSITY = 010. kg/m-~3 STEADY STATE PORTION ONLY
DINECTION -- BROAD ON PLEX BTR (down) = 38.4 kPa

MULTIFACETED CONE TESTS

A=25.00, NRC/IMD
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FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS MUNCONE®B _004

3.75

F
x
AVE = 2.74¢ KN
2.5 MAX = 3.26 kN
MIN = 2.00 kN
STD = 0. 10 KN
- 1.25 F
: """" y
- ” AVE » -0.00 kN
0.0 v MAX = 0.30 KN
[#%]
(8} MIN = -0.45 UN
x STD = 0 12 kN
(@) 1.2858
e
............... F
z
2.5 0 & 1 Mu\ ! )} AVE = -3 OR KN
,‘,‘}\4”: ?J\y}wﬂrb‘ﬁ; jy,M'»J\A : ,LI \ vv/\ A Mw A MAX » -2.44 kN
IP ‘A N T 'N v MIN = .60 KN
.70 ‘ J ST = 0 14 KN
15 J0 4 60 7% 00 109 1440 139 1980
TIME (»)
NECK NIZE -~ LARGS ICE THICKNESS = 12.¢4 cm NO RIDGE
FPRICTION ~-- 0.00 ICE DENSITY = 910. kg/m-2 STEADY STATE PORTION ONLY
DIRECTION -~ BROAD ON FLEX STR (down) = 35.1 kPa
SPEED = 6. om/» PLEX STR (up) « R2.8 kPa

MULTIFACETED CONE TESTS

A =25.00, NRC/IMD
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FORCE ON NECK IN X, Y, Z DIRECTIONS

MUNCONEG _004

b b ek — 555
B T AL e

FHICTION

DIHECTION -~ BROAD ON

SPEED =

8. cm/s

ICE DENBITY o 940. kg/m-

PLEX STR (down) = 133.1 kPa
PLEX STR (up) = 22.8 kPs

9

STBADY STATE PORTION ONLY

MULTIFACETED CONE TESTS A

25.00, NRC/IMD




FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS MUNCONE7_OOI
10.0 F
b ¢
AVE = 0 47 kN
7.5 MAX = 8 88 KN
MIN = 0D 91 KN
2TD = 1.41 kN
- 5.0 l
Z b timBTRvIenanet LAt te e i met et ettt stsk Rl ARIELAHERY - p’
i , AVE = D.B¢ KN
“ 2.5 I 3| | MAX = 1.04 kN
o {‘f‘ MIN = -0 80 kN
x 'L gm ! STD = 0 43 kN
o 0.0
'8
............... F
F 3
2.8 AVE o -2.43 kN
MAX = 0 41 kN
MIN = -4.10 kN
-5.0 STD = D.40 kN
270 100 330 360 360 420 450 480 810 340
TIME (s)
NECK SIZE - - SMALL JCE THICKNESS = j8.0cm NO RIDGE
FRICTION -~ 0.08 ICE DENSBITY e 918. kg/m -3 STEADY STATE PORTION ONLY
DIRECTION - - BROAD ON FLEX STR (down) = 70.2 kPa
SPEED = 1. um/e PLEX STR (up) = 33.7 kPa

MULTIFACETED CONE TESTS

A=50.00, NRC/IMD




FORCE ON NECK IN X, Y, Z DIRECTIONS MUNCONE7 00!

69¢

1.0 F
X
AVE = 0 84 kN
0.75 ' MAX = D.08 KN
MIN = -D.07 kN
STD = 0.14 uN
— 0.5 P
'i ....... ,
— ' AVE = -0.08 kN
0251 T1m - ' MAX = 0.2¢ kN
‘(‘j MIN « -D.30 kN
@ STD « 0.08 KN
o) n.0}
49 LETRAME TR N R Y LI Pl YU O RE IVRPNTIE YLD
\' ; Fy
0.251 - ] AVE = 0 07 KN
MAX = 0 13 kN
MIN = ~0.02 kN
0.5 STD =« 0.02 kN
270 300 330 J80 300 420 450 480 810 340
TIME (8)
NECK SIZE - - SMALL ICE THICKNESS = 36.0 cm NO RIDGE
FRICTION -- 0.08 ICE DENBITY - 910, kg/m-~3 STRADY STATE PORTION ONLY
DIRECTION - - BROAD ON PLEX STR (dewn) = 70.2 kPa
SPEED = |, om/» PLEX STR (up) = 33.7 kPa
MULTIFACETED CONE TESNTS A=0500.00, NRC/IMD




FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS MUNCONE7 002

oLt

10.0 ] F
x
AVE = 0.032 KN
MAX = 9.9090 kN
MIN = 2.10 kN
5.0 STD = 1.3¢ kN
2 e A e N O F,
A
- w R Jm AVE & 0 30 kN
@ "-““‘ MAX = 2.28 KN
U MIN & -} .8)1 kN
x ) STD » 0 63 kN
o o 7
/9
5.0 I | Bae o e Se— IR F
2
AVE & -3.43 kN
MAX = -0.359 kN
MIN = -5 80 kKN
10.0 | STD » 0.79780 kN
42 40 48 56 64 72 80 a8 ']
TIME (s)
NECK SIZE -~ SMALL ICE THICKNESS = 180.0cm NO RIDGE
FRICTION ~- 0©.00 ICE DENBITY - 010. kg/ m~3 STBADY STATE PORTION ONLY
DIHECTION -- BROAD ON FLEX STR (down) = 660.7 xPa
NPEED - 4. umn/e PLEX ATR (up) = 33.%2 kPse

MULTIFACETED CONE TESTS A=50.00, NRC/IMD




PORCE ON NECK IN X, Y, 2 DIRECTIONS MEING OGN /7 00,

1L€

1.2 Y —_— F
b ¢
AVE = 0 80 kN
MAX = 1.01 kN
MIN = -D. 02 kN
0.8 STD = 0.1% kN
o~
z ------- F
v, Yy
- AVE = -0.00 kN
0.4 i MAX = 0 10 kN
‘8 MIN © -0 23 kN
< 3TD « 0 06 kN
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APPENDIX C

- Example Calculation to Illustrate the Application
of Equations Developed in Chapters 7to 9
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An example calculation for Test MUNCONE3_00! is shown here to illustrate the

usage of equations developed in Chapters 6 to 8 for the computation of ice loads on faceted

cones. Values of the relevant parameters are given as follows:

(1)

(i)

(iii)

(iv)

v)

Ci

Ice Properties: Thickness, t =0.1583 m; flexural strength, o, = 44.38 kPa; elastic
modulus, E = 362.2 MPa; ice-structure friction coefficient, u, = 0.1; and weight
density, Y= 8985 N/m’.

Rubble Properties: Rubble angle, 1 = 35° internal friction angle, ¢ = 35° wall
friction angle, ¢, = 11.3°; bulk weight density, ¥, = 6290 N/m?, and porosity, p =
0.3.

Water Foundation: Weight density, v, = 9839 N/m’.

Structure Dimensions: Height of cone section, h;, = 0.233 m; height of collar

section, h, =0.473 m; facet width at waterline, w, = 0.693 m; cone angle, o, =

39.8°% collar angle, o, = 63.4°; neck angle; o, = 90°; cone angle at side, Q,
35.8°% collar angle at side, ., = 60°; neck angle at side, a,; = 90° and average
cone angle, o, =49.8°.

Ice Breaking Pattern: Angle between radial crack and x-axis; 6, = 30°; and

measured broken piece size, L =0.1511 m.

Rubble Height Calculation(Chapter 6)
The width of ride-up ice wall at front facet, w,,, is equal to 0.7802 m, computed by
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Equation 8.12.

C.1.1 Rubble Height at Side of Front Facet: h,

The cross-section of rubble at both side of cone, A., is equal to 0.08822 m*, computed
from Equation 6.5. The rubble height at side of the front facet, h,, and the corresponding
value of B, can be computed using Equations 6.12 and 6.16, respectively, via a trial and error
procedure, by arbitrarily assuming a value of n and h
First trial: n = | with an initial value of h,=h, =0.233 m
B, =0.2798 m and h,, = 0.4039 m
Since h > h,, then n must be greater than 1.

Second trial: n =2 with an initial value of hy=h,=0473 m
B, =0.2039 m and h,; = 0.3802 m
Since h; < h,, then n must be equal to 2.

Therefore, the rubble reaches the collar section with h, being equal to 0.380 m.

C.1.2 Rubble Height at Side of Cone: h,,
The rubble height at side of the cone, h,, can be computed using Equation 6.22 via
a similar trial and error procedure:
First trial: forn=1, h;=2.0347 m
Since h, > h,, then n must be greater than 1.

Second trial: forn=2, h,=0.5087 m
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Since h, > h,, then n must be greater than 2.
Third trial: forn=3,h,=0.4947 m

Therefore, the rubble reaches the neck section with h; being equal to 0.495 m.

C.1.3 Maximum Rubble Height at Front Facet: h,,,

The maximum rubble height at the front facet, h_, is computed as the following:
B, = 0.4507 m (Equation 6.30); ¢, = 53.7° (Equation 6.33 with @ = a,,.); A;=0.1705r
(Equation 6.31); A, =0.06809 r* (Equation 6.32); (A, + A,)/ A;=1.3994; w=0.3154m
(Equation 6.34); w/w,; = 0.4042 (implies a trapezoidal profile); and h,, = 0.7126 m
(Equation 6.35 with h, = 0.3802 m).

Therefore, the rubble has a trapezoidal profile along the front facet with hr,, being

equal to 0.713 m.

C.2  Rubble Load Calculation(Chapter 7)
Rubble loads for the center and the side facets are calculated separately for the

respective equivalent rubble heights, h,. and h, ..

C.2.1 Rubble Load Per Unit Width on Center Facet
h,. =0.5783 m (Equation 8.13)
(i) Load per unit wj indivi
(a) Lower cone section, j=1: ¢',, = 11.3° (Equation 7.29); o, = 61.49° (Equation
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7.28); P,, = 268.0 N/m (Equation 7.37); P,,, = 127.9 N/m (Equation 7.38); and
P,., = 235.5 N/m (Equation 7.39)
(b) Collar section, i=2: ¢’,,=8.51% a,,=35.0° P,,=117.5N/m; P, ,=96.1 N/m;
and P,,,=67.5 N/m
(c) Neck section,i=3: ¢',;=1.709°% ;= 1709 P,;=9.1 N/'m; P,,;=9.1 N/m;
and P,,;=0.3 N/m
(ii)  Total 1
P..=233.1 N/m (Equation 7.38); P ., =303.3 N/m (Equation 7.39); P ,, =233.1
N/m (Equation 7.33); P,, = 727.4 N/m (Equation 7.34); and W, . = W, = 1030.6 N/m
(Equation 8.14)
(iil)  Eguivalent ru wij

w,. = w,, =0.7802 m (Equation 8.12)

C.2.2 Rubble Load Per Unit Width on Side Facet
h,, = 0.4375 m (Equation 8.18)

) Lo i wi o divi

(a) Lower cone section.i=1: ¢',,=11.3°a,, =61.49° P, =186.2 N/m; P,,, =889
N/m; and P,,, = 163.7 N/m

(b) Collar section, i =2: ¢’,,=8.51% a,,=35.0% P,,=454 N/m; P, =37.1 N/m;

and P, , = 26.IN/m
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(¢) Neck section, i=3: ¢',,=1.709°; a,,=1.709°; P,; =0 N/m; P,,;=0N/m; and
P,.:=0N/m
(ii) Total load:
P, =126.1 N/m; P,, = 189.8 N/m; P,, =126.1 N/m; P,,=249.3 N/m; and W, =
439.0 N/m (Equation 8.14 with V, = 0.02181 m’ [Equation 8.19] and V,, = 0.02175 m’
[Equation 8.21])
(it1)  Equivalent rubble width:
w,, = 0.559 m (Equation 8.23 with A_, = 0.0698 m*)

C.3  Ice Load Calculation (Chapter 9)

Ice loads for the center and the side facets are calculated separately.

C.3.1 Ice Load on Center Facet
(i) ~ Beam cracking length:

Assuming the ice cracking pattern as shown in Figure 8.13, Equation 8.11 gives a
value of 0.1511 m for the beam cracking length, d_-
(i)  Ride-up and rubble heights. h,, . and b

h,. =0.5783 m (from Section C.2.1)

Since h,. > (h, =h, =0.473 m), then h. = 1.334 m (Equation 8.15),and h, ; =h, -
h,=0.233m,h ,=h;-h,=0240m,and h, ;=h,,_ -h =0.861 m.
(i)  Weight of ride-up ice,. W _.:
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(a)

(b)

(iv)

(a)
(b)
(c)

v)

(a)

(b)

(c)

w,, . is equal to 0.7802 m (from Section C.1).

Weight on individual sections: W, ., =404.7N; W __,=2973N; and W ;=

955.2 N (Equation 8.17)

Total weight: W, .=W__,+W_ ,+W__.,=1657.1 N

Forces required to push ice s ough i bbl
LetP,=0Nand o, = a, =90°

Neck section, i =3: P, =956.2 N (Equation 8.45)

Collar section, j=2: P,=1207.7N

Lower cone sectiop, i=l: P, =1519.2N

Force com waterli ra¥rHwVw:

Assume initial value of 6', = 6, = 44.38 kPa;

1% iteration: V', =217.5 N/m (Equation 8.5); Hy = 1350 N (Equation 8.48); V.=
1540 N (Equation 8.49); V,, = 1729 N (Equation 8.50); § = 1.0435 (Equation 2.2);
H,, = 1804 N (Equation 8.51); H;oy = 3153 N (Equation 8.43); and Vo =2650 N
(Equation 8.44).

Update the effect flexural strength for in-plane force: Substitute the old value of ¢,
into G,, and calculate the new value of 6’; using Equation 8.53. Repeat the above
Steps (a) and (b) until 6°; converges.

Final results: 6',=68.11 kPa; V', =333.9N/m; H;=1349N; V:=1540N; V,,

= 1830 N; Hy = 1902 N; Hyor = 3258 N; and Vior = 2751 N.
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C.3.2 Ice Load on Side Facet
1) Beam ¢ in
Assuming the ice cracking pattem as shown in Figure 8.13, Equation 8.1 gives a

value of 0.86744 m for the beam cracking length, d_,.
(ii)  Rubble height, h, :
h,, = 0.4375 m (from Section C.2.2)
(iii) Weight of ride-up ice, W, .
Total weight: W, . = 187.5 N (Equation 8.24)
Distributing the total weight of ride-up ice on the lowest section gives: W _,=W_,
=0NandW,_,=W_ ., =187.5N.
(iv) forc ng X' — ired to push i slope through ice rubble
P;:
w,, = 0.559 m (from Section C.2.2.iii)
LetP,=0Nand o, = @, =90°%
(a) Neck section. i = 3: P, =0 N (Equation 8.45)
(b) Collarsection.i=2: P,=6.6N

(c)  Lowerconesection.j=l: P,=1744N
(v)  Force components along X'- Z axes at waterline: Hy.Vr. HwaVw:

Assume initial value of ¢’; = 6, = 44.38 kPa;

(a) * iteration: V', =217.5 N/m (Equation 8.5); H; =204.5 N (Equation 8.48); V.=
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251.0 N (Equation 8.49); V,,=439.7 N (Equation 8.50); £ =1.0435 (Equation 2.2);

H,, =458.8 N (Equation 8.51); H;or =663.3 N (Equation 8.43); and Vo =621.6

N (Equation 8.44).
(b)  Update the effect flexural strength for in-plane force: Substitute the old value of 6°,

into o, and calculate the new value of &', using Equation 8.53. Repeat the above
Steps (a) and (b) until 6’; converges.

(c) Final results: 6',=49.37 kPa; V', =242.0N/m; H;=204.5N; V;:=251.0N; V,
=460.9 N; Hy =481.0N; Hyor =685.5 N; and Vor = 642.8 N.

(vi)  Force component of Hror Along X-Z Axes:

Hror (stong x axier = 383.8 N (Equation 8.36)

C.3.3 Total Ice Load on Cone

V1ot toun = V10T troen + 2 V1ot igey = 4051 N

HTO‘!' (total) =HTOT tfronn + 21'11‘0‘r (side, along X axis) — 4041.5N
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