

Improving the Two-Electron Integral Computation

in MUNgauss

by

©Km:lhan Saputantri
Mc1norial University of N wfoundland , St.John s,

N cwfoundland and Labrador, Canada

M. c. , People's Friendship University Moscow USSR(1995)

A thesis submitted to the
School of Graduate Studies
in partial fulfillment of the

requirements for th degree of
Master of Science

Computational Science
Memorial University of Newfoundland

N ovcmbcr 2007

Improving the Two-Electron Integral Computation In

MUNgauss

by

Kushan Saputantri

Memorial University of Newfoundland, St.John's, Newfoundl and and

Labrador, Canada

Abstract

A major step in the self consistent field metho l is assembling and diagonalizing the

Fock matrix. In order to form the Fock matrix, one-electron integrals, overlap inte­

grals, and two-electron integrals must be computed. Computation of the two-el ctrou

integrals is the most time consuming and computationally difficult among them. The

focus of this research is to improve the two-electron iutegral computation code iu

MUNgauss.

Improved the two-electron integral computatiou code by introducing new Fortran

90/ 95 features, where applicable. Specialized subroutines were introduced to replace

general two-electron computation subrout ine I2ER_SPDF, in orclcr to compute less

complicated two-electron integrals. Parall l implementation of subroutine I2ER_SPDF

was also inw~stigated.

T he two-electron integral code was improved by using Fortrau 90 modules to improve

readaLility, d ficieucy, awl orgauizatiou. Derived types, "select case", and ''do" con-

structs were introduced to ituprove readability. T he introduction of dynamic lllCIHor.

a llocation rl'duced the usa.gf' of metuory and improved the code efficiency.

Sul>routiue I2ER_SPDF can be tipecialized by icleutifyiug th tihell(s,p,d ,f) quad ru­

plets before calliug the subroutine to compute the two-electron integrab . Specialized

subroutines were introduced to compute two-electrou integrals belonging to the ssss

quadruplet to dddd quadruplet. Introduction of specialized subroutines to compute

simpler types of integral reduce· the memory usage and reduc s the t im speut 0 11

two- lectrou integral computa tion .

Two-electron integrals are labeled using iudic s I, J , K , ami L. For a gi veu set of in­

dices I , J , K, and L, there are three unique blocks of two-electrou integrals. They are:

IJI<L, ILJI and IKJL. Three mutually independent blocks IJKL, ILJK and IK.JL

were compu ted i11 parallel using three pro essors on the same node. Shared memory

para llel :omputing with Open IP was used for this purpose.

Results of t he improved code aud old code were compared for accuracy as well as time

speut on computation using SCI Alt ix(Vcrdaudi) housed at Memorial ui vf:' rsity.

11

Acknowledgement

First all(! forenwst I would like to express my sincere gratitude to supervisor, Dr.

Raymond Poirier , for contiuuous guida11ce, encouragements, and funding. I would like

to thank A En t for computing facilities and all the students of theoretical chemistry

rr.s<'a.rrh g roup fo r t.hcir effort in hC'Iping to tnak<' t.his projf'rt a. s twrrss. Finally, [

would like to thank my wife for all the encouragement, guidance, and understanding.

lll

Contents

Abstract

Acknowledgement

List of Figures

List of Tables

List of Appendices

1 The Electronic Schrodinger Equation

1.1 T he wavefunction

1.2 T he Hartree-Fock equation .

1.2.1 T he Introduction of Basis Set

1.3 Roothaan 's Equation

1.3.1 T he Orthogonalization of the Basis Set

1 .4 Sclf-consist.cmt-fir.ld (SCF) P roccdm c

1.5 Two-Electron Integrals

1.5.1 Product of Two Gaussian F\mctious .

1.5.2 T he Laplace Transform

1.5.3 The Gamma Fnuction Integral .

1.5.4 Two-Electron Integrals with Gamma F\mction Methocl

1.5.5 Two-Electron Integral::; with Higher Augular

Momentum

IV

lll

vi

vii

Vlll

1

3

4

6

6

8

10

11

Ll

14

15

16

17

1.5.6 Two-Elect.rou Int grals with Rys Quadrature l\ T thod 20

2 Why use Fortran 90/95 ? 22
2.1 New Fortrau 90 Features 23

2.1.1 Free Source Form 23

2.1.2 "'if-then-else if-end 'if" oustrurt 23

2.1.3 "select case,. S tatemeut 24

2.1.4 "do" Construct 21

2. 1.5 Modules ... 25

2.1.6 Dyuamic Memory Allocation . 26
2.2 ew features in Fortrau 95 . 27
2.3 Opf'11MP 27

2.3.1 Shared Memory Archite ture 2
2.3.2 Why use Open IP ... 29

3 Computation of Two-Electron Integrals 33
3.1 Implern 'Htation of the Rys polynomial Method . 34

3.1.1 Module mod_idfclc 34
3.1.2 ubrouti11e IDFCL 34

3.1.3 Subroutiue I2ER_SPDF 36
3.1.4 Subroutine 12ER_GSPDF 38
3.1.5 Specialized Subroutines . 40
3.1.6 Parallel Computatio11 of Integrals 42

4 Conclusion 49

A Two-Electron Integral for s Type Functions 51

B Modul mod_idfclc 55

Bibliography 70

v

List of Figures

l- l A molecular coordinate system: i, j = electrons; A, B= nuclei 2

2-1 A canonical shared memory architecture 31

2-2 A canonical message passing archi tecture 32

Vl

List of Tables

2.1 Compariug shared memory all(! distributed memory models 30

3.1 Three blocks of integrals in the cas of (ss I pp) for I =I J =f. K =I L. 40

3.2 Integral computation t iming with specialized subroutine'S using basis

set ST0-3G. 45

3.3 Integral computation t iming with specia lized subrouti11cs using basis

set 6-31G(d). 46

3.4 Integral computation timing with specialized subroutines usiug basis

set 6-311G(d,p). 7

3.5 A verag integral computation timing iu seconds using s quential and

parallel 12 B /-LS' P f) P with ST0-3G basis set. 4.8

3.6 Average i11tegral computatiou timing in seconds using s qu utial and

parallel 12ER _BPDF with the 6-31G (cl) basis set 48

vii

List of Appendices

Two-Electron Integral for s Type Functions

Module 'lfi()(Udfdr:

viii

51

55

Glossary of terms and symbols
(! : hamiltonian operator

<P : wavduudion

E : euergy of the syst '111

1· : positiou v rtor

a : alpha pin functiou

tJ : beta spin function

w : spin variabl

W : slater detcrmiuant

:\. : spiu orbital

f : coulomb operator

£ : exchauge operator

E : orbital eu rgy

f : fock operator

¢ : basis function

'1/J : molecular orbital

S' : overlap matrix

F : Fo k matrix

uml> r of ~1 ctron

Z : Atomic uumber of nucleus

'\1 : Laplacian operator

X : Transformation matrix

P : Density matrix

G : Two-electrou part of the Fock matrix

E1. t:2 : Exponents of new Gaussians

G 11 : Gaussian function centered at A

f' : Gmnuta function

IX

Chapter 1

The Electronic Schrodinger

Equation

According to t.he Born-Oppenheimer approximation, nuclei a re much heavier than

electrons and movP more slowly, th rcforc to a good approximation oue can cousicler

the electrous iu a molecule to l>e llloviug in a field of fixed uud •i . Tht:· Scltrbdiuger

equation for a systr.m of r.lr.drons in a firlrl of fixed nnrlri is callrd t.hr. r iC'd.rouic

Schroclinger equatiou ,

(1.1)

where, H,.tPc is t it Hamiltonian op rator for a system like that shown in F igure 1-1,

/ <I>etec) is th wavefunction, ami E(,h•r is the total electroni en rgy of the system.

Nuclei a re d 'scribed by t he position ve ·tors FlA and R8 . Electrons a re described by

position vectors 1·; a ud r i . Hamiltonian operator is given in eq.(1.2) ,

' 1 2 N AI ZA 1
Ht'll·c =-2 2:~. - LL -,. + LL~

i= l •= I A -=L tA i = l .i>i 'J

(1.2)

where, first term reprei:ieuts the kinetic energy of electrons , second term represents

attraction bctw 'eu el ctrons and nuclei, a ucl tbircl tern1 n =!presents repulsion between

electrons. The solution to the electronic Schrodiuger equation is t he electronic wave­

functiou. Th electronic euergy (E,·fcc) . and electronic wavefunction (<I>e/n·) depend

1

As B ,_

0

X

z

n

I

-~

y

Figure 1- l: A molecular coordinate .-yst rn : ·i, j = electrons; A B= nuclei

2

explicitl.Y 011 d<:•ctrouic coordiuatP .. but d pend parametrically ou the unclear coor-

di11atrs [1],

<l>dcc = <P({·r, }; { R,l}) (1.3)

(1.·1)

The total euergy is given as:

(1.5)

1.1 The wavefunction

Accordiug to eq. (1.2) , the electronic Hamiltonian depends only 011 the spatial coor­

dinates of the cl ctrons, but to describe an electron completely, spin must a lso be

specified. Therefore, two spin fnnct.ions , (t(w) and fJ(w), which rcprescut ::;pin up and

spin down are introduced in relation to nomelativistic theory. The::;e are functions of

the spin variable w, aud they are taken to be complete aud orthonormal. Accordingly,

an ele tron can b d scribed with three spatial coordinates and a spin coordiuate. If

these four coordinat s are denoted collccti vely as x, then the wavefunction for an

ekctron syst.C'm can be dcscrihcrl as <T> (x 1 , x2 , ... :eN). According to the antisyrnmetry

principle, electrons must be described by wavefunctions which arc antisymmetric with

respect to the interchange of the coordinates of a pair of electrons. A wavefunctiou

that satis fie Schrodinger's equation and the antisymmetry property can b obtained

by using Slater determinants. The Slater determinant for a ::;ystem with -electrons

can he written as follows,

3

xi(.-ci)

A.;(x2)

XJ (xt)

xJ(x2)

A.k(.cl)

.-\.k(.-c2)

where (!) '/2 is the normalization factor, ami \ represents spin orbitals. This

Slater det ' nuinaut has N electrons occupying 1 spiu orbitals, anrl the electrons are

iudistiilguislmble.

1. 2 The Hartree-Fock equation

According to the Hartree-Fock approximation, the simplest anti. ynunctric wavefunc­

tion which cau be used to describe the grouud state of <:Ill V- lectron system is a

sing! Slater rlctenniuant,

(1.6)

According to t he variational principle, the be. t spin orbitals are thos spiu orbital '

which miuimizc the electronic energy F:0 ,

Eo = (lllo/H/Illo) = L (a /h/ a) + ~ L (abl/ab)
n ab

= L (a/ft/a) + ~ L (ab/ab) - (ab/ba)
a ab

(1.7)

Spin orbitals can b systematically chaugeu while preserving the orthouonnality uutil

the energy is minimized aud the quatiou that represents the best spin orbitals cau

be obtaiued , cq.(1.8).

where,

l~(x , ha(xl) + L [! /xb(.-z:2)/
2 '~' !2'] dx2 \':a(.r,)

bf a

- L [I' x~(x2h.a(x2)r12'] dx2Xb(.r,) = C:a X:a(.ri)
bf; a · -

~ 1 2 L ZA h(x l) = - - \7 - -2 .,.
A LA

(1.)

(1.9)

is the sum of the kinetic energy and potcut ial energy of an elc 'tron. In eq. (1.) , the

. ~f'oncl and th ird t.c·rrns r~pr~. ~nt th~ c•lcc:tron-ckf'tron intr.raf'tion. The fi rst. of t. h~

1

two-electron tenus is calkd the coulomb tC'rm, and the second is called the exchauge

term. The coulomb term is the tota l average potential acting ou the electron y"

arising from N - 1 clPctrons in other spin orbitals. It is convenient. to define the

coulomb operator as:

(1.10)

The ex hang term which arises from the antisymmetry property of the single det ·r­

minaut. wavefnnction does not have a classi al explauatiou as for the coulomb term.

The exchange operator is defined <'t.s,

(1. 11)

Using the abov two terms, eq.(1.8) can b written as follows:

[h (;rt) + L fb(·r,l) - L ~(.7:,)] \:a(.rl) = E"Xa(:rt)
bf.a bf.n

(1.12)

By removing the restriction b f. a, eq. (l.l2) cau be convert d to a11 eigenvalue typ

equation ,

(1.13)

where,](x 1) is the Fock operator

](xl) = h(xi) + l)ftlT t) - ~(~cJ)] (1.14)
b

The Hartree-Fock equa tion over spin orbital can be convert d to au -quation over

spatial orbitals by integrating out th spin functions. A spatial orbita l 7/{r) is a

function of the position vector r and d •scribes th spatial distribution of an electron

such that i·t,bi(T)j2dT is the probability of findiug the electron in t.hc small volume

element dr· smrounding T. The resulting equation is given a.s follows[1]:

(1.15)

5

1.2.1 The Introduction of Basis Set

The Har t rre-Fock equation can be couver ted to a u a lgebraic cqnatiou by introducing

the bHsis set.. Using T< known basis functions { </>1,(r)l1' = 1, 2 . .. , T<} , the unknown

molecula r orbitals can be written as linear expansions

1\

l/1i = L cl"¢1, i = 1, 2,!<.: (1.16)
Jl= l

where C1,i is expiUl ion coefficien t and cf>1, is ba..'liS function . 1oJecuJar calculations are

performed Utiing b<:U:>is sets, which arc composed of a finite HUJubcr of basis fuuctious

centered a t each a tomic nucleus . The most widely u ed typ s of basis functions

are Slater type functions and Ga ussian typ functions. Even though Slater type

functions can more accura tely represent atomic orbitals, Gau sian type functions

a re used widely because of the eas of c mputation. The uunormalized Cartesian

Gaussian function with center R can be wr it ten as:

where r = (x , y , z) represents t he coordinates of the electron, a t he Gaussian

exponent, and n denotes a set of int gers L, m and n.

1.3 Roothaan's Equation

By replacing t he molecular orbitals in q .(l.15) with a lin ar combination of basis

functions, the following is obtained ,

(1.1)
v v

Mult iplying on t he left by <P: and integra ting , gives

L c,l, 1+ ¢:(1·J)](1·1}¢v(rt)dr, = €; L c,l! 1+ ¢:(r,)¢ ,/(Tt)d7·t
v v

(1.19)

(j

Th<' ovNlap matrix and Fock matrix ar<' dc·fin<d a..c; follows.

The overlap mat rix:

(1.20)

The Fock matrix:

j ·+
~Ill = - (1.21)

In eq.(1.20), Sis a. l\ x r,· Hermitian matrix wh re [{is the number of basis functions.

Although basis functions are normaliz d and linearly indepcmlent , they arc not or­

thogonal to each other. Therefore, t he basis functions overlap with a mag11itude of

0 ::; jS11vl ::; 1. In eq.(1.21), the Fock matrix is a /(x [{ Hermitian matrix. The

011 -electron Fock operator }(r1) and a set of one-electron basis fun tious <PJ.L define

the Fork matrix. U ing the above definitions of the Fock matrix and the oYerlap

matrix, the Hartree-Fock equation ca11 be written as follows:

i = 1, 2, .. , [((1.22)
v v

The single matrix equation, or the compact form of the above, is called Roothaan 's

equation, and i · given by,

PC = SCc (1.23)

where C is the [{ x K square matrix of expansion coefficients,

C =

7

and E is a diagonal matrix of orbital cncrgie~,

E tl ()

0 c 22
E=

0 0

0

0

sing the linear expansion of molecular orbitals, the F
11

v elenJent of the Fock matrix

cau be writ ten as

N/ 2

~IV = H;;~re + L L C>.nC;11 [2 (Jivl ~\o-) - (!UIIo- ..\)] (1.24)
a >.a

H1~0:" + L P;.a [cL/ vl ..\o-)- ~ (Jivlo- ..\) J (1.25)
>.a

= rrcorP G
J.W + JW (1.26)

where, H~~rr" is the one-elect ron part and G1w is the two-electron part that depends on

the density matrix P and contribution from the two-electron integrals. The density

matrix can b wri t ten using expansion ·oefficients as follows:

N/ 2

P1w = 2 L CJ.J.aC~a (1.27)

1.3.1 The Orthogonalization of the Basis Set

For an orthonormal basis set , Roothaan 's equation is au eigenvalu equation wit h S

being a unit matrix. In this case, the igenvalues and eigenv-ctors are found simply

by diagonalizing th Fock matrix. For th is purpose, an orthonormal ba..<;is set (q/) can

be found using a transformation matrix X ,

It = 1, 2, .. , K (1.28)

wh<'re

aud Kronecker delta 6 is defined as,

if I = j

if i f: j

Substituting eq .(1.2) into eq.(1.29), the following equation is obtained .

1+ !.+ _, ¢>>1·)¢>~(r)dr =

~ ~ x;,, 1 ¢>; (T)cjJ"(T)dTXrrv

L L x;/-Ls>.aXav = 6,w
). fT

Therefore X must be chosen such that,

x +sx = 1

(1.29)

(1.30)

(1.31)

(1.32)

where x+ is the complex conjugate of the matrix X. T her are two common way

to obta.iu a transformation matrix. T he first method is called symmetric orthogoual­

ization , ancl uses the inverse square root of S for X . The s coud method is called

canonical orthogonalization, in which the transformation matrix i obtained by di­

viding colnrnus of unitary matrix by th square root of t he COIT spouding eigenvalu .

Once t he tra11sformation matrix is known, the relationship betw cu t lH" current coef­

ficicut ntatrix and l ite !Jl'l!ViOUS coeffi ·icllt lllatrix CCLII be OUlaitWd.

c' = x - 'c, C = XC' (1.33)

Substit ution of "<l · (1.33) into eq. (1.23) gives

PX •' xc'c

9

Multiplying eq. (l.34) on the left by x+ gives

(1.35)

and replacing x+ F X by F' gives

F'c' = c' f (1.36)

Roothaau 's equa tion, eq. (l.36), is uow a classic eigenvalue equation , awl cau be solv d

for C' by diagoualizing F' . G i veu c', C cau ue fonud usiug C = X c'.

1.4 Self-consistent-field (SCF) Procedure

The self-con ist nt-field procedure is the omputational procedure for ubtaiuiug the

restricted clos d shell wavefunction for a molecule. The self-consisteut-field solut ion

b obtaiucd with n finite basis set. The general SCF procedure is a1:1 fullows[l]:

1. Det nnine the nuclear cooniiuates RA, atomic number ZA, mtmber of elcctrous

, and a oasis set for a giv 11 molecule.

2. Com put overlap integrals S,...,, oue-electrou integrals !f1<;~re , aud two-el ctron

iutegrals (p,vi Aa).

3. Obtain the trausformation matrix X.

4. Compute a reasonable gues for the deusity matrix fJ.

5. Compute the matrix C, using eq.(l. 25) .

6. Add G and the ore Hamiltoniau Hcm·e to obtain the matrix Fusing eq.(1.26).

7. Compute the t rausformed Fock matrix F' = x + F X .

8. Diagoualize F' to obtain C' and c.

10

9. Compute(' = XC'.

10. Form th' uew density matrix P = 2CC+ using eq.(1.27).

11. Determine whether the procedure has converged, comparing the previous den­

sity matrix aud the current density matrix. If not go to step 5.

12. If the procedure has converged stop the process.

1.5 Two-Electron Integrals

Two-electron integrals over basis fuuctions have the following form:

(1.37)

where <b: is a basis function on nucleu · A, cent red at RA, and th integral involves

four centers: RA, Ra, Rc and R0 . Linear combinations of Gaussian type fuuctions

are us d as an approximation for basi. fu tious eq. (1.17).

1.5.1 Product of Two Gaussian Functions

Two-electron integrals can be calculated relatively easily with Gaussia.t1 functions

because th · product of two Gaussian fuuctious , each ou different ccuters is another

Gaussian function on a third center, which lies on the line joining the first two Gaus­

sian fuuctions[2]. A ·cordingly, the product of two Gaussian functions centered on .4

and 8 is a new Gaussian with center P eq.(l.3) and the con taut K p is given in

eq.(l.40). T he expou nt of the new Gau. sian Pis t 1 = a + /3. Similarly the product

of two Gaussiau functions centered on C and n produces a new Gaussian centered

on Q eq (1.39) ,aud th constant f(Q is given in the eq.(l.41) . T he exponent of the

Gaussian Q is f 2 = 1 + <5.

(1.3)

11

and,

,\.Q = cxp (-, ~JCD1)

where (;18)2
= (A- 8)2 and (C D)1 = (C - 0)2 . The coordinate

Gaussian enters P a nd Q are given by the following formula.<;:

p = _a,..-A_+_/-:::3 B_
(n + /1)'

(1.39)

(1.·10)

(1.41)

of the IICW

(1.42)

(1.43)

The g ueral expression for the product of two Gaussian type functions is as follows :

G G = x1 ym zn exp(- n1·2)x1' ym' z'" exp(- ,:)1·2) A 8 · AAA A·88 B iJ 8 (1.44)

where G A aud G 8 are Gaussian function centered on uu leu A and nucleus 8

respectively. The Gaussian product has b eeu generalized by including th angular

part as cubi harmouic ftmctions: (:r~1 yA' zA) (x~y'[;' z'£) . The normalization factors

for the Gau siau functions a re not included in this equation. Iu ord r to derive the

product of the angular part, .XA can be expre sed as follows:

(1.45)

12

Then . 1:~1 becomes:

(1.4G)

The product x~.c~ can be written as:

l+l'

= Lfk(l,l', J>J1L, 1 1 Ux):c~ (1.47)
k=O

The product of two Gaussians, eq.(1.44) , becomes,

l+l' m+m' 11+n'

GAGa = l\p L L L fk.JkJk,:r:;ry;uz;•exp(-c ,r~) (1.48)
kx=O ku=O k,=O

The abov quation can be separated into Cartesian cornponeuts as

G G - F' Gucycz A B - \ prp P'1> (1.49)

where

a; = L !kh h~" exp(-(,h;) (1.50)
kh

h represents :r, y or z, and

_ Ll Ll' - 1- 1- :J l'-j (z) (z') fk, - PAx f Bx . .
' . z J

•=0 j=O
(1.51)

i+j=k

13

1.5.2 The Laplace Transform

The Laplace transform is used t.o rrplacc th " ~ term in the two-electron integral with

a Gaussian typ fun tion eq.(1.37). A new integration variable p is introduced , and a

grueral expression for (f.)>. is derived in place of f.. The explicit form of the Laplace

transform is:

L(t) = 1+ cxp(- lp)g(p)dp

Replacing l by r 2 and g(p) by p~ - l in cq.(1.52) gives the following

Letting u = pr2 give ,

Using the Gamma function method we obtaiu

(1) >. 1 1 {::} - exp(-r2p)p~- 1 dp
;: - f(A/2) 0

Eq. (1. 56) can also be written as

by letting u2 = p.

(1.52)

(1.53)

(1.54)

(1.55)

(1.56)

(1.5 7)

1.5.3 The Gamma Function Integral

The Gamma function is described by the integral

(1.58)

This integral is nonzero as long as k is an even integer. Therefore eq.(l.58) can be

written as:

D;:.(-v) = 2 (0+ r k 1 lo Xp(-~t2)l'-dt

, - (k+ l) /2 1 +oo exp(-u)u(k - 1)/2du (if 'U = r t2)

= 'Y-(k+ l)/2r (;;;; 1) (1.59)

The Gamma function can be written recursively as,

f (v) = (v - l)f(v - 1) (1.60)

where v is an integer greater than one. This recursive formula can be derived by

following the steps given below:

lo
+oo

f(v)= uv- 1 exp(-u)du
. 0

(1.61)

Letting r· = uv- l and dv = exp(- u)du , the following expression is obtained:

f(-u) = [u (u- l) exp(- n)J : + (u - 1) 1+ exp(-·u)u11
-

2du = (u - l)r(u - 1) (1.62)

Thus:

Fr.('Y) = 1 - (k+ ll / 2 cc ~ 1) !If(~) (1.63)

where,

c ~ ~}~ ~ c ~ ~) c ~ 3) c ~5) m m
15

In the par t icular ca::;e where k: = 0,

Fo('Y) = 1+ exp(- -yt2)dt = v;;
= 1 - 112r (~) (l.G4)

Therefore,

(1.65)

In the case where k is an eveu iuteger

F-. (~) = -(k+I J/ 2 (k ~ 1) !! l:ff
k y "y 2kf 2 V II ' (1.66)

in the case where k is an odd integer :

(1.67)

1.5.4 Two-Electron Integrals with Gamma Function Method

The general form of the two-electron integrals between Gaussian-type functions (abicd)

is given by:

(1.68)

where, G A , G a, Gc,and Go are four Gaussian functions centered on A, B, C and

D respectively. Variables r 1 and r-2 represent the distance from the center of the

coordinate system to the first and the second electron respectively. In the above

equation ,.~2 can be replaced by the following term using Laplace transform eq.(l.57):

(1.69)

16

ff t.hc final product of Ganssians i, . f'parat.ccl acrordinp; t.o thr routrihut.ion from t.h~

:t: , y, aud ::: coordinates, the followiug form cau be obtained:

(1. 70)

where J(p ami f(Q are constants given in cq.(l.40) and eq.(1.41) , ul'7l ,(~R l and [;R)
are of the form:

u,:R) = r+ r+ h~·h~h'/:':'' h ';;' exp(-p(h2-h l) 2)
.fo Jo

x exp(-fl (hi - P,.)2
) exp(-t2(h2 - Q,l)dh, dh2 (1.71)

h E {:r, y , z }. The final form of t.h~ simplest two-dcctron intq~ml (ssis..,.), given in

eq.(1.72) can be obtained by following th steps given in Appendix A ,

1.5.5 Two-Electron Integrals with Higher Angular

Momentum

(1.72)

Given the formula for two-electron integrals over s functions , two-cl ctron integral

for higher angular momentum have to be derived. S. F. Boys[3] iutroducecl a method

that uses differentiation of two-electron iiitcgrals of s type functions over nu lear co­

ordinates to obtain those over higher angular momentum.

Lambda r presents the sum of l,m a nd n given in eq.(1.17), and it is lo::;ely related to

the total angular momentum numb r. The Angular momentum iud x is represented

by n = (l. m, n). The functions with Lambda equal to 0, 1, 2 .. are referred to as

s, p, d .. respectively. The single component of the s shell with augular momentum

index 0 = (0, 0. 0) is designated as s. Tb compou nts of the p shell have angular

momentum indices l;(i = :c:, y , :::), where l; is d~fined by I i = ((5;.c. 6;y , r5,:::) using

Kronecker delta. In this particular case th se components will be designated p
7

. Py

17

and 7'z . The C'artesia n Gaussian funct ion r.q. (L. L 7) satisfies the following di ffcrr.ntial

relationship[·!],

[) - -
BR

1
d>(r , an, R) = 2n¢(r , n , IT + 11 , R) - N,(n)¢(r , n, 11. - 1i, R) (1. 73)

where i = :r. y, z , a nd ;(n) is the value of the i 1" component of t he augular rno­

mcHtum index n. The differential rela tion in eq.(1.73) allow the derivaLives of two­

electron integrals to be written as linear combina tions of two- lectron integrals of

lower angula r momentum. The first derivativ can be wri t ten as follows:

a (k) _ [-] (k) [- J (k) BA; (ab, cd) - 2a (a + l ,)b, cd - N; (a.) (a - 1,)b, cd (1.74)

Recursive equa tions can be derived after some mathematical manipulation of eq. (1. 74) .

Those qua tions can be used to obtain the recurrence expre::;sions for two-electron in­

tegrals over Ca rtesian Gaussia n functions . The two-electron integral [(a + l)b, cd] (k)

cau be decomposed into lower angular momentum functions as follow::;:

(P;- A,)(ab, cd)(k) + (W;- Pi)(ab, cd)(k+ t)

1 [- p -] +-
2

i(a) [(a - l ;)b, cd](k) - - [(a - 1;)b, cd] (k+ll
t 1 (2

+-
2

1
;(b) [[a(b - 1i), cdtiC> - ~[a(b - 1;) , cd]{ic+ t)]

f t (2

1) [() l (k+ I) + () N;(c ab, c - 1; d
2 (j + (2

1 (d)[()](k+l) + () i ab, c d - 1; 2 ([+ (2
(1. 75)

For example, using eq.(1.75), the following r curreuce expression for (p.;sj, sk 1) (o) can

be obtained :

T he two-electron integral [a (b + 1 J, rd] (k) can be decomposed into lower angular

1

momentum functious as follows:

[a (b + 1.~) ,cd] (k) = (?1 - B1)(ab,cd)(k) + (W1 - Pj)(ab,cd)Ci.-+t)

+-j-NJ(a) [[(a- 11)b, cd](k)- £. [(o- 1;)b, cd](k+t)]
-Ct t2

+-
2
1

V1(b) [[a(b- 11). cd] (kl- £.[a(b- 1;). cd](k+tl]
(j (2

+
2

(
1

) NJ(b) [ab, (c- !1)d](k+l)
(j + (2

1 -
+ Nj(a)[ab, c(d- 11)](k+Ll (1.76)

2(ft + <2)

The following expression for (PiP}, skSt) (O) can be obtained from the above,

(7Wj, 8k8l)(o) = (/j - !JJ)(fJi.'ij , 8k.'iL)(O) + (WJ- l j)(pi .c;j , .'ik.'it)(l) +

~~ ((sisj,Sksl) (O)- ;(si J,sksL)(J))

The two-electron integral [ab, (c + 11)dj(k) can be expressed using lower angular mo­

meutum functions as follows:

[ab , (c + lk)d](iC) = (Qk- Ck)(ab, cd)(k) + (Wk - Qk)(ab. cd)(k+L)

+__!_ k(d) [[ab, c(d - lk)] (kl - £.[ab, c(d - lk)](k+Jl]
2~:2 f2

+_!_Nk(c) [[ab, (r·- 1k)d] (A:J- £.[ab, (c - 1k)d](k+ll]
. 2~:2 (2

+ (1
) Nk(b)[a(b - 1k) , l:d] (k+L)

2 (j + (2

+ (1
) Nk(a)[(a - 1k)b, cd](k+t) (1.77)

2 f[+ (2

An expressiou for the (7Ji8,7Jk.'i)(o) can be obtained from the above,

The general expression for the two-electron integra l [ab, c(d + 11)]0<) cUI lw written as

19

follows:

[ab, c(d + 1,)](k) = (Ql- D,)(ab. cd)(k) + (Wt- Q1)(ab, cd) (A·+ 1l

+~N,(d) [[ab,c(d - 1t)](i<l- £ [ab.c(d - 11)](i< 1)]
2c2 c2

1 [- p -] +-
2

, ,(c) [ab, (c- 1,)d](kl- -[ab, (c- 11)d] (k+ 1l
t2 (2

+
2

(
1

) N1(b)[a.(b- 11), cdjlk+l)
(1 + (2

+ (1
) N1(a)[(a - 1t)b, cd](k+ 1

) (1.7)
2 Et + (2

An expression for the (p;sj , Pks1)(o) cau be obtaiued from the above,

()
{0)

PiPi, PkPt

1.5.6 Two-Electron Integrals with Rys Quadrature Method

The Rys quadrature method gives an alternative method to th Gamma function

method in computing two-electron integrals over Gaussian function . In this method

the Gaussian product theorem is appli d twice to eq.(1.70) , after introducing the

following variables,

.,,2 = (2 + p

h2 = 2Qh + pht
(2 + p

f. "2P
T/1 = (j + -­

t2 + p

h
1

= c1 Ph+ (c2pj(E2 + p))Qh
LJ + L2P/((.2 + p)

20

The following terms are iutrodnced to simplify the equat ions,

The two-ele ·troll repulsion integral can be written as follow

(1. 79)

Introducing the new variable t , which atisfies the rela tiou hip t2 = r!f:o, eq.(1.79)

become::;,

where,

h E {x, y, z }. In the above expression 1}1ry2 = c: 1t:2 / (l - t2) . Therefore, 11~R) is an

even polynomial of t . This integral can be computed by Rys quadrature method

with[5, 6, 7] :

p (t2) = f (R) f (R) f (R)
L x y :

(ab/cd) =
2~{':;r.q t J~Rl(t,) J~Rl(ti) J;Rl (t ;)W,

i = l
(1. 2)

where,!,~· > L/ 2, and t i and W; are the roots and the weights of the J,;th Rys polynomial.

21

Chapter 2

Why use Fortran 90/95 ?
•

Fortrall 90/ 95 has been used ill progra.mmillg the two-electron pa kage in M gauss.

A team lead by John Backus developed the Fortran or t.he Formula translation sys­

tem in 1954. It is one of the earliest high level programming languages, and its fir t

staudard wa.c:; cr ated in 1966. A new standard was created in 1976 and was named

Fortran 77. The need to modernize the Fortran 77 became apparent with the emer­

genc of uew languages like C aud C++.

The new standard of Fortran 90 has a ll the good features of Fortran 77 as well as

many new feature of modern lauguagcs. Fortran 90 has almost all the features that

are important to scientific programming and most of the features of object oriented

languages. Unlike most languages, Fortran is detiigned to generate ex cutable codes

that are highly optimized and run extremely fast. Fortran has been widely used by

scientists and engineers for many y ars, and algorithms and cod already exist for

many probl ms. Fortran 77 remains a subset of Fortran 90/ 95 and code written ill

Fortran 77 cau be nsed along with the Fortran 90/95 cod .

With the increase in size aud complexity, modem computing is moving toward the

use of parallel computers. However most of the procedural programming languages

use a linear m mory model with th xception of Fortran 90/ 95. A linear memory

model a.ssurnes that consecutive elements of an array arc consecutive iu memory.

22

This is a rem;ouablc assumption for traditional computers but. complt'tcly incorrect

when it couu,,s to parallel computing. Fortran 90 has addressed thi:-> problem, aud Ins

provided standardized language support for parallel computing. This includes array

syntax and mauy intriusic functions for doing array operations[].

2.1 New Fortran 90 Features

The two-electron iutegral package uses a number of new features available in Fortran

90. Some of these features are described below.

2.1.1 Free Source Form

One importaut feature in Fortran 90 is the free source form which makes it possible

to have:

• names as loug as 31 characters

• lines up to 132 characters in length

• semi-colon as the statement separator for multiple statemeuts per line

• option to in lnde source text from files .

2.1.2 "if-then-else if-end if" Construct

The "·if-then-else if-end if" coustruct make. the carle more readable.

if (logical- expression) then

statement- !

else if (logical- expression) then

statement- 2

end if

Ill order to enhance the readability, ommands like Commands like "continue" and

"go to " arc u. ed only rarely.

23

2.1.3 "select case" Statement

Another s '1 'ctive cxecutiou statelllrut Fortran 90 has is the "st'l('ct ta8c" statement.

selectcase(I)

case(1)

statement-!

case(2)

statement-2

case default

statement-default

end select

The "select case" expression is evaluated, aud the resultiug value i the case iudex.

The case iudex is ornpared to the case selector of each case statement. If a match

occurs, the statement block associated with that case statement is executed. If no

match occurs no tatement block is executed. After the execut ion of th construct i

complete or no match occurred the control is transferred to the . ta.t ment after the

"end select" statement.

2.1.4 "do" Construct

The "do " construct specifies the repeated execution of a sta.tem nt block.

outer: do i=l,n

inner: do j =l,m

statement block

if(condition) cycle

if(condition) exit outer

end if

end do inner

21

end do outer

The it ration couut of a loop can be determined at the bcgitmiug of •xccu tiou of thr

"do., construct., unlrss it is indefinite. You can curt ail a pccific iteration with t.be

·'rycle" st atem ~ut aud the ·'e:L·it" stat<'mcut terminates the loop.

2.1.5 Modules

Modnles :ue collections of data , type definitions aucl procedur '<kfiuitions, which gives

a. more secure aud general replacement for the common block concept. Variables, data.

or subprograms that are declared in Fortran 90 modules can be mad ~ available hy

the compiler to all subprograms which use the module usiug "include" statement.

Following is au example of a module:

module mod_idfclc

'***
Date last modified: Version 2 .0 *
Author:

*
Description:

*
'***
!Modules:

USE program_manager

USE program_defaults

USE constants

implicit none

!Public variables

integer, public

integer, public

LAMAX,LBMAX,LCMAX,LDMAX 'SHARED

MTYPE,LENTQ

25

*

integer, public : : IGEND,JGEND,KGEND,LGEND

double precision, public :: XA,YA,ZA,XB

integer,public :: Irange,Jrange,Krange,Lrange

'Private variables

integer, private :: IX,IY,IZ,JX,JY,JZ,KX,KY,KZ,LX,LY,LZ

double precision, private :: G2DFX(13),G2DFY(13),G2DFZ(13)

'Module contains a subroutine

CONTAINS!>>

subroutine I2ER_SPDF

!code belong to the subroutine goes here

end subroutine I2ER_SPDF

end module mod_i dfclc

iodule mod_idfclc u es three modules: program_manager, program_defaults and

constants. Variables are declared next and module contains the subroutine I2ER_SPDF.

2.1.6 Dynamic Memory Allocation

Another new feature of Fortran 90 that is hendicial for scimtifie codes is the dynamic

memory management. It is the allocation of memory during the runtime. Fortran 77

is capabl of only static allocation, as a re ult code has to be rccompil ·d for different

problem size. or different number of proce sors. T he only altf·rnativ is to declare

a single large array at compile time and then, at runtime, assign indi es to point to

different locations within the array for nsn by diffcrc~nt qnantitirs. This rc>snlts in

code that is very difficult to maintain.

With Fortran 90 w can declare the arrays as allocatable, and the problem size and

26

the llUJuber of processors can be read iu a t runtime, with arrays a llocated to the size

required . Dep ending on the problem , arrays may be different size on different pro­

cessors . T his improves the performance through improved cadw utilization a.<> well

as saving mr mory.

2.2 New features in Fortran 95

Another uew s tandard of Fortran, Fortran 95 was introduced in 1996. It is a relatively

small change compared to the chang betwee11 Fortran 77 and Fortran 90. There are

some major features, some minor corr ctious, and few uew intrinsic fuuctions in the

new standard. Some of these are to keep Fortran in step wi th t he work in the High

Performance For tra n (HPF) ar a. The major features iuclude[9]:

• FORALL statement and construct

• pure aud elemental user defined subprograms

• initia l associa tion sta tus for pointers

• implicit initialization of deriv d typ obj cts.

Some of the minor features introduced in Fortran 95 are as follows:

• uew intrinsic function NULL

• n w intrinsic function CPU_ TIME

• automa tic deallocation of a llocatable arrays

2.3 OpenMP

OpenMP is a11 application program interface which supports multi-pla tform ·hared

memory parallel programming in C,C 1-+, and Fortran. Open 1P is compatible with

most a rchitectures including Unix and Windows ·T. Join tly d v •loped by a group

27

of softwar and hardware vendors, Open~IP has now become the standard of the

shared memory parallel computing, and is recognized by most of the major computer

mauufact urers.

OpenMP is not a programming language. It is cousist of a set of compiler dir ctives

that describe the parallelism of the source code, along with a supporting library of

subroutine available to applications. These directives are iustructions to a compil r

supporting OpenMP. They arc ignored as comments by compilers tha t do not support

OpenMP.

2.3.1 Shared Memory Architecture

OpenMP has been designed primarily for hared memory mul tiproc sors. Figure 2-1

shows the archi tecture of shared memory computers. The mo t important character­

istic of shared memory computers is the ability of all processors to a cess memory

directly through a logically directed connection. Distributed shar d memory(DSM)

computers belong to the same family.

The alternative to t he shared memory configuration is distributed memory, as shown

in Figure 2-2. In distributed m mary, each processor in the system is only capa­

ble of directly addressing memory physi ally associated with it. In ord r to access

information in memory connected to oLh r processors, the user mu t explicitly pass

messages through some network conn cting the processors. Usually distributed mem­

ory systems are programmed using m ssage passing libraries such as 1essage Pa.c; -

ing Interfa e(MPI). Distributed hared memory systems can be programmed using

OpcnMP and Il leS ·age passiug intcrfa ·e together for efficicu y Most larger systems

are distributed memory computers b cau e there is a practical limit to the number

of processor. that an be supported in traditional shared memory a r hitecture. A

comparison of two programming models are given i11 Table 2.1.

2

2.3.2 Why use OpenMP

Recl'ntly there has been an increase of shared memory parallel systems sine they

arc affordable ruHl coutaiu iucrcasiug muuber of processors. Meanwhile, uwst of the

programming models available are designed mainly for distributed memory systems.

Therefore, OpenMP was created as a standard and portable application program­

miug interface for writing shared memory parallel programs. Opeu fP is a parallel

programming model for shared memory aurl distributed shared memory mul tiproces­

sors. There are other implementation models that could be used instead of OpenMP,

including Pthreads and MPI.

IPI is portable, widely used, and it is the accepted standard for message passing

programs, but in a shared memory machine, message passing is not required to share

data. "Message pa.ssiug is considered a difficult way to program because it requires a

great deal of time. In addition to that the program data structure has to be explicitly

partitioned , as well as the entire application must be parallelized.

Pthreads is au accepted shared memory model but there is little Fortran support for

Pthr ads. Even for C and C++ based applications, it is considered low level and

awkward. It is also more suitable for t ask parallelism rather than data parallelism.

OpenMP became the industry standard recently, and it is a step in a long history

of shared memory programming models. Most of the shared memory hardwar ven­

dors support orne subset of t he OpenMP functionality, but complete application

portability had IJOt been achieved yet. OpenMP uses compiler directives to suppor t

parallelism through calls to runt ime library routines. These directives can be ernb d­

ded within a program written in Fortran, C or C++.

One big advantage of OpenMP is that it can be used iu writi11g new parallel code

as well as in parallelizing existing code. In addition, it is easier to write portable

29

Table 2.1: Comparing shared mern ry ami distributed memory models

Featme Shared memory Distributed Memory

Ability to Paralklizc Rclativ<'ly ca~y to clo. Reward Rrlativcly diffirnlt..
:;mall part:; of au ver:;u:-; effort varie:; widely ov ·rlwa<.b arc high
application
Cmnplexity of code

Amotmt of additional
code required
R.radahili ty

SimplP algorithms arc
easy to implemt'llt

Small in rt'asc of code
2-25 percent
ca..<;y to read

Significant additional
overhead , even for :;imple
algorithms

ignifi ant amount of
message handling code
ditfirnlt to rrad

code using dire tives, because they ar automatically ignored by compilers that do

not support OpcuMP. All of the functionality of Open IP can not bP achieved by

only using dir tiv s. In addition to directives, OpenMP also includes a small set of

runtime library routines and environment variables. OpenMP is in lepcndeut of the

operating system or the machine, and compilers exist for almost a ll the versions of

UNIX as well as Windows NT[lO].

30

PROCESSORS

\

\
PO P1 P2 P3

MEMORY

Figure 2- 1: A cauonical shared memory ar hitecture, where PO-P3 ar processors.

31

PROCESSORS

' \
PO P1 P2 P3

MO M1 M2 M3

INTERCONNECTION NETWORK

Figure 2-2: A canonical message pru;~ing architecture, where PO-P3 a re proc ssors,
and MO-M3 are mr mory associated with proces ·ors.

32

Chapter 3

Computation of Two-Electron

Integrals

Two methods are available in MU gauss to evaluate two-electron integrals. The Rys

polynomial method eq.(l.82) is us d to cornput two-electron integrals between s-typc,

p-type, d-type and f-type shells. The current implementation of the Gamma function

method eq.(l.71) is limited to computation of two-electron integrals involving s-type

and p-type shells. Subroutine I2ECLC by d fault calls both subroutiue IDFCLC and

subroutine ISPCLC, but the u er has the option of choosing one of them. Subroutin

IDFCLC is called fir t to compute th integral with d-type aud f-typc hell , a.nd

subroutine ISPCLC is called to comput the integrals betweeu s- type and p-type shelJs

as given below.

if (LI2EDF) then

call IDFCLC

if(MUN_PRTLEV.GT.O)call PRT_I2E_details ('IDFCLC', IDFCNT)

end if ! LI2EDF

if (LI2ESP)then

call ISPCLC

if(MUN_PRTLEV.GT.O)call PRT_I2E_details ('ISPCLC', ISPCNT)

end if ! LI2ESP

33

3.1 Implementation of the Rys polynomial Method

3.1.1 Module mod_idfclc

Module mod_idf clc contains all the variables as well as all the subroutines used iu

the Rys polynomial part of the code. The variables accessible inside and outside th

module are declared as public, while the variables accessible only inside the module

are declared as private. The variables initialized inside the parallel part of the code

are declared a Lhread private with the ''thn;adprivate" directive. The "thr·eadpri­

vate" dir ctive is used to identify a list of variables as being private to each thread,

and a private copy of that list of variables is created for each thread. Therefore,

every reference to a thread private variable withiu the parallel section of the code

refers to a variaule instance of the private copy of the executing thread. Threads

cannot refer to thread private variables belonging to another thread. Other than the

declarations, module mod_idfclc contains general subroutines used in two-electron

integral computation, specialized ubroutines for two-electron int .gral computation,

subroutin s m;ed in sorting integrals and storing, as well as all the ubroutines call d

insid integral computation subroutines.

3.1.2 Subroutine IDFCLC

The subroutine IDFCLC loops over the sh 11 types (s,p,d ,f) , identifying the shell

quadruplets (the type of integral) and calls the appropriat specialized subroutine.

The generalized subroutine I2ER_SPDF i ailed as the default asf'. For example, a

minimal basis set. of each carbon atom iu molecule C60 consists of ls, 2s, and 2p shell

types, t her fore carbon has three shell types. Altogether, molecule CHo has a total of

60 x 3 = 180 shells which are described as atom shells.

Thf' idc!nt.ification of shell qnadrnpkt. lwfore the! a.tom shdl loop n ·dur<'s checking,

34

ami improws thr C'ffi rirnry of the' rod<' . Thr fnn rt.ion which c!dcrmin<'s t.h<' t) ' J)(' of

t.he integrals, DEFCASE, is a! o iucludcd in subroutine IDFCLC usiug the Fort ran

commaud "tonta'ins". Part of fuuction IDFCLC is illustrated below.

Loop over Ishell

Loop over Jshell

Loop over Kshell

Loop over Lshell

!allocate arrays to store the integrals

!determine the ICASE(identification of shell quadruplets)

!using DEFCASE which returns ICASE

select case (ICASE)

case (1)

call I2ER_SSSS

case (2)

call I2ER_SSSP

case (3)

call I2ER_SSPP

case (4)

call I2ER_SPPP

case (5)

call I2ER_PPPP

case (6)

call I2ER_SSSD

case (10)

call I2ER_SSDD

case (13)

call I2ER_SDDD

case (15)

call I2ER_DDDD

case (7,8,9,11,12,14,16 :)

35

call I2ER_SPDF

end select

! deallocate the arrays

end do ! Lshell

end do ! Kshell

end do ! Jshell

end do ! !shell

3.1.3 Subroutine 12ER_SPDF

Module mod_idfclc contains a generalized subroutine called I2ER_SPDF which com­

putes iut grals belonging to all the shell quadruplet types using th Ry polynomial

method.

subroutine I2ER_SPDF

Modules used in subroutine

implicit none

Variable declarations

Loop over the atomic shells

do Iatmshl=IFRST,ILAST

do Jatmshl=JFRST,JLAST

do Katmshl=KFRST,KLAST

do Latmshl=LFRST,LLAST

Determine the coincidences (Mtype)

call DEF_shells (Jatmshl, Katmshl, Latmshl, Jshell, Kshell, Lshell)

if((ABEXP+CDEXP).le.I2E_expcut)then

Int_pointer=>IJKLs

36

call I2ER_GSPDF

end if

if(LTWOINT)then

call DEF_shells (Latmshl, Jatmshl, Katmshl, Lshell, Jshell, Kshell)

if((ABEXP+CDEXP) . le.I2E_expcut)then

Int_pointer=>ILJKs

call I2ER_GSPDF

end if

end if

if(Mtype.eq.l)then

call DEF_shells (Katmshl, Jatmshl, Latmshl, Kshell, Jshell, Lshell)

if((ABEXP+CDEXP) . le.I2E_expcut)then

Int_pointer=>IKJLs

call I2ER_GSPDF

end if

end if

end do

end do

end do

end do

First, subroutin I2ER_SPDF loops over a tom shells belonging to specific atoms, and

detennin s all th shell information. Subroutine DEF _shells takes t h four atom

shells as pa ra rn ·ter in the order of th iutegral, and initia lizes the variables accord­

ingly. Subroutiue I2ER_GSPDF computes all the integrals for th given atom shell

quadruplet.

For a given s t of {'ijkl} atom shell iudiceH, there a re three unique integra ls. They

are: (ij lkl) , (illjk) , and (ikljl) . Iu the sequential version , these thre blocks

of integrals are computed by calling the . ·ubroutine DEF _shells and the subroutine

I2ER_GSPDF three times sequentially.

37

Determiuation of coincidences (l\ltypc) in the ::;hell quadruplet hr lps to reduce th

munber of tiH1es the I2ER_GSPDF is called. If th re e:u·E' coiucideuces in the shell

quadruplet, symmetry can be used and all the integrals can be contputed b.v calling

GSPDF once or twice. Part of the subroutiuc I2ER_SPDF i · given h<'low,

3.1.4 Subroutine 12ER_GSPDF

Subroutine I2ER_GSPDF computes all the two-electron integral for a given atom shell

quadruplet.

subroutine I2ER_GSPDF

!Modules :

implicit none

!Local variables and data goes here

!Initialization of arrays

! Loop over the Gaussian expansions

do Igauss=IGBGN,IGEND

do Jgauss=JGBGN,JGEND

do Kgauss=KGBGN,KGEND

do Lgauss=LGBGN,LGEND

!Obtain the gaussian exponents

!Loop over roots of the Rys Polynomial

do IZER0=1,NZERO

!loop over atomic orbitals .

do IAO=ISTART,IEND

do JAO=JSTART,JENDM

do KAO=KSTART,KENDM

do LAO=LSTART,LENDM

!Two- electron integral over primitives are computed using eq . (1 .82)

end do ! LAO

3

end do ! KAO

end do ! JAO

end do ! IAO

end do ! IZERO

do IAO=l,Irange

do JAO=l,JENDM

do KAO=l,KENDM

do LAO= 1 , LENDM

! Apply contraction coefficients .

end do ! LAO

end do ! KAO

end do ! JAO

end do ! IAO

end do Dloop ! Lgauss

end do Cloop ! Kgauss

end do Bloop ! Jgauss

end do Aloop ! Igauss

End of loop over gaussians!

End of routine I2ER_SPDF

return

end subroutine I2ER_GSPDF

%

First , subroutine I2ER_GSPDF loops over the Gaussian expansion~ , followed by looping

over the routs of the Rys polynomial and cornputiug the components J~R)(ti), I~R) (t;),

and ri R)(ti) (see eq.(1.82)). In the loop over the AOs (for example, P.r., Py and Pz are

the AOs belouging to the p-type atom shell), the two-electron iutegrals are computed

39

using eq. (1.82) . Fina lly, contraction coefficients a rc applied and int<'grals a r(' stored in

arrays IJKLs, ILJKs, IKJLs. The three blocks of integrals IJKLs, ILJKs, a.ud IKJLs

rcsultiug from three calls to subroutine I2ER_GSPDF are as given iu Table 3.1 for the

case of (ss I pp) .

Table 3.1: Three blocks of integrals in the case of (ss I pp) for I =f J =f /<.: =f L.

IJKL ILJK IKJL
ss ?_y ?_y S PxSPx S?_yS ?_y
ss /~y]Jy SPxSPy S l\Sl \ ·
SSP.'(Pz S P.'(S Pz S P.'(S Pz
SSPyPx SPyS?_y SPySPx
SSPyPF SPFSPF SPy S Py
SSPyPz S PySPz SPySPz
SSJJz Px S PzSPx SPzSl~'(
SSPz Py S P2 SPF SPz SPy
SSPz Pz SP2 SPz SPzSPz

3 .1.5 Specialized Subroutines

Other than I2ER_SPDF, there are currently nine specialized subroutines used in MUNgauss

to compute two-electron integrals. Two-electron integrals between the s-type shells

(ss Iss) to d- type shells (dd I dd) are done using specialized subroutines. For exam-

ple, subroutine I2ER_SSSS contains the atom shell loop similar to the I 2ER_SPDF, and

instead of calling the generalized subroutine I2ER_GSPDF it calls the corresponding

specialized subroutine I2ER_GSSSS.

Use of specialized subroutines for t he nine simplest types of integrals increases the

efficiency of the code. It reduces the amount of memory used, because the general case

allocates fixed size arrays that do not change with the problem size. The specialized

case allocates arrays specific to the problem size. The number of subroutine calls

inside the specialized functions are less, compared to the general case, because most

of the code is written inline. The specialized subroutine for I2ER_GSSSS does not

40

loop over the Rys polynomial root::;, because the munber of root::; is oue. Similarly, it.

docs not loop over the AOs, because all four orbitals are s-type.

subroutine I2ER_GSSSS

!Modules:

implicit none

ILocal Scalars

!Commence loops over Gaussian expansion .

do Igauss=IGBGN,IGEND

do Jgauss=JGBGN,JGEND

do Kgauss=KGBGN,KGEND

do Lgauss=LGBGN,LGEND

Computes the integral using eq . (1.82)

apply contraction coefficients.

end do Dloop ! Lgauss

end do Cloop ! Kgauss

end do Bloop ! Jgauss

end do Aloop ! !gauss

End of loop over gaussians

return

end subroutine I2ER_GSSSS

Tables 3.2-3.4 show the improvement achieved by the addition of specialized ::;ub­

routin s for ST0-3G , 6-31G(d), and 6-311C (d ,p) ha.'lis sets respectively. Specialized

subroutines have been added individually to the code to observe the improvement.

Percentage of improvemen t::; were computed relative to the general ca::;e subrout iue

I2ER_GSPDF.

41

For the ST0-3G ba..-;is set (Table 3.2), test cases II P anrl 1/20 do not show any

improve:-'ment with the addit ion of specialized ::;ubrout iues. S 'Hsitivit.v of the t iming

is not rnnngh to show difft·n ·uces in sut itll test ca::;es. The ot!H-'r t.c::;t <'a,...:;es show abont

60% improvuuC'llt with t.hr addi t ion of SSSS-PPPP subroutiucs, but show very li t tle

i111provement witlt the addition of SS D-DDDD subroutines because then' a re 110 d

t_v pe fu11ctious iuvo\ved i11 most of the test rases. For the 6 - 3 lC:(rl) basis set (Tabl

3.3), smaller t st rases showerl about "l5o/c improvement wi th the addi tion of SSS -

DODD subroutirte , which is reducrd to about 10% for the bigger molecules. The

improvement achieved with the addi tion of SSS-PPPP subroutiues is far greater than

t he improvrm ut. achieved wi th the addi t ion of SSSD-DDDD uhroutines. For the

6 - 31LC:(rl, p) be:1Sis set (Table 3.1), an improvement of about 4Uo/c is observed for all

the test rases. In t he rase of larger basis sctc with d functions, subrout ine I2ER_GSPDF

is used ofteu , therefore the improv .meut achi ved by th use of specialized subroutines

is reduced.

3.1.6 Parallel Computation of Integrals

Coincidences occur in shell quadruplets only about 20o/c of the t ime. T herefore, all

three integral blocks (ij I kl) , (ill jk) a llCl (ik I jl) have to b ' calculated for most

of the shell quadruplets. If the three blocks ran b e done in pa rallel using three pro­

cessors, compu tation time can b 3 improved . This can be done u:;ing t he OpenMP

directive ''sect'ions ". The "sect'ions" directive is useful where three tasks do not d -

pend on ach others re:;ult.s. With directiv "sections", it is possible to perform an

ent ire sc tion of code iu parallel, assigning each task to a differeut thread . T he pa ral­

lel ction s tart· with the d ire tive "pamll l '' and ends with end pamllcl". T he cod

for the en t ire sequence of tasks or sections, begins wit h a "sections" di rective anrl

ends wit h a "end ·er:tions" eli recti vc. T h part of the code execu ted on each processor

ha...;;; to b separa ted by a "sect-ion'' dir tive.

By default a ll the variables are decla red sha red Pxcept t he variables declared tltread

private in the r' pective modules. T herf' fore every variable that is ini t ialized inside

·12

t he pantlkl t>t•c tion has to l>e decla red thread private. ThP "ban'i('r·" directive of

the end of the parallel section is US('d to synchrouize the process. If t here a re 110

coincideuces in the shell quadruplet. , au equal amou11t of work iR done 0 11 a ll t hree

processors. The parallel implementation of I2ER_SPDF is as follows .

!$0MP PARALLEL DEFAULT(SHARED)

!$0MP SECTIONS

!$0MP SECTION

call DEF_shells (Jatmshl, Katmshl, Latmshl, Jshell, Kshell, Lshel l)

if((ABEXP+CDEXP).le.I2E_expcut)then

Int_pointer=>IJKLs

call I2ER_GSPDF

end if

!$0MP SECTION

if(LTWOINT)then

call DEF_shells (Latmshl, Jatmshl, Katmshl, Lshell, Jshell, Kshell)

if((ABEXP+CDEXP) . le . I2E_expcut)then

Int_pointer=>ILJKs

call I2ER_GSPDF

end if

end if

!$0MP SECTION

if(Mtype.eq.1)then

call DEF_shells (Katmshl, Jatmshl, Latmshl, Kshell, Jshel l, Lshel l)

if((ABEXP+CDEXP).le.I2E_expcut)then

Int_pointer=>IKJLs

call I2ER_GSPDF

end if

end if

!$0MP END SECTIONS

!$0MP BARRIER

43

!$0MP END PARALLEL

Parallel and sequential versions of subroutine I2ER_SPDF were C0111JY:tred using as t

of selecteu test cases on a SCI Altix (Vcrdaudi) housed a t Memorial uiversit.y. The

ST0-3C and 6-31C(d) ba~is sets were us •d for the computation. Th complete cod E'

for the pa ra llel mod_idfclc is given in the ppt•ndix B.

Au awrag timing illlprovement of 25% is observed for molecules containing a toms

from the third and fourth row of the periodic table. For the test. cases couta iuing a.

large number of atoms from the fir l and sf'cond row elemenls, an average improve­

ment of 7 fc is observed . Every Openl\[P directive involves overhead [11]. If t he work

performed in t he parallel sections is smaller , and the number of Opeul\IP directives is

higher , overh ad au reduce the gain achieved by the parallel processiug. Therefore,

big test cases with large numbers of atoms belonging to first aud second row clements

tend to give l<'ss improvement with this type of implementation . Work performed

inside the pa ra ll I ections has to be considerably la rge to achieve good results wit h

para llel proce siug.

14

Table 3.2: Integral computation timing in second with specialized ubroutine . The basi set used was T0-3G. Specialized
sulJroutines SSSS, SSSP, SSPP, SPPP, PPPP SSSD,SSDD,SDDD.and DDDD have been added one by one to the code. The
machine used was a SGI Altix (Verdandi).

Molecule PDF ssss SSP SSPP SPPP pppp SSSD SSDD SDDD DDDD Improvement
HF 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 00%
H20 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 00%
CCl4 3.67 3.56 3.55 2.32 1.74 1.57 1..57 1.57 1.57 1.57 57% c.n
C2 H6 0.33 0.26 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 60%
C3 H 1.21 1.01 0.98 0.52 0.4 0.47 0.47 0.47 0.47 0.47 61%
Cs H12 6.3 5.24 2.69 2.46 2.42 2.43 2.43 2.43 2.42 2.42 62%
C'oHt4 11.42 9.46 9.45 4.79 4.35 4.28 4.2 4.2 4.2 4.2 62%
1G_pep 2.35 2.10 2.11 1.13 0.96 0.93 0.93 0.93 0.93 0.93 60%
2G_pep 16.52 14.91 14.91 7. 3 6.50 6.23 6.22 6.23 6.23 6.22 62%
3G_pep 47.32 42.77 22.25 18.10 17.16 17.13 17.14 17.13 17.13 63%
4G_pep 94.11 5.04 44.14 35.56 33.66 33.60 33.60 33.60 33.54 64%

Table 3.3: Integral computation timing in seconds with specialized ubrout ines. The babis et used was 6-31G(d). Specialized
subroutinet:> SSSS, SSSP. SSPP, SPPP, PPPP SSSD, SSDD, SDDD, and DODD have been actded one by one to the code. The
machine u ed was a SGI Altix (Verdandi).

Molecule SPDF ssss SSSP SSPP SPPP pppp SSSD SSDD SDDD DODD Improvf'mcnt

HF 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 40%
H20 0.08 0.07 0.06 0.05 0.05 0.05 0.05 0.03 0.05 0.05 37%

,.:::,. CCl4 3 .0 37.26 34.29 29.07 25.3 23. 0 23.09 22.92 22.92 22. 39%
0";

C2 H6 1.70 1.45 1.1 1.04 1.01 1.01 0. 9 0. 8 0. 0. 48%
G'J lf 6.4 5.60 4.57 3.99 3.93 3.8 3.36 3.37 3.37 47%
CsH12 33.71 29.63 24.33 21.10 20.42 20.40 17. 6 17. 17.92 46%
C6HI 4 5 .99 52.10 42. 6 37.15 35. 9 36.29 31.62 31.65 31.9 40%
1G_pep 15.66 14.60 12.63 10.96 10.46 10.40 9.2 9.29 9.30 40%
2G_pep 103.65 97.54 7.69 73.52 69. 2 69.09 63.04 63.31 62. 5 39%
3G_pep 2 0.17 274.27 234. 3 172.49 172.93 172.69 3 %
4G_pep 569.69 532.2 462.56 351.01 351.01 350.09 3 %

Table 3.4: Integral computation timing in econd with specialized ubroutine . The basi ' set used was 6-311G(d,p) . Specialized
subroutines SSSS, SSSP. SSPP, SPPP, PPPP SSSD, SSDD, SDDD, and DDDD have been added one by one to the code. The
machine used was a SGI Altix (Verdandi).

Iolecule SPDF ssss SSSP SSPP SPPP SSSD SSDD SDDD DDDD Improvement
HF 0.12 0.11 0.10 0.09 0.08 0.08 33'1(
H20 0.24 0.22 0.19 0. 16 0.15 0.15 0.14 0.14 0.14 0. 14 41%

,!:>. CCl4 30.66 30.21 2 .45 25.10 22.79 21.72 21.31 21.15 21.19 21.1 31% ~ C2H6 6.29 5.7 4.77 3.94 3.72 3.6 3.49 3.46 3.45 3.46 45o/c
C3I/s 23.42 21.65 18.00 14.97 14.12 13.9 13.22 13.09 13.0 13.11 44%
CsH12 117.14 10 .29 91.22 76.70 72.58 71.74 68.15 67.46 67.47 67.53 42%
C5H14 202.45 1 7.53 15 .56 133. 0 127.70 125.19 11 .89 117.89 117.76 11 .29 41%
1G_pep 38.64 36.65 31. 8 27.13 25.45 25.05 23.74 23.47 23.45 23.56 39%
2G_pep 245.0 231.47 203.3 174.20 164.18 164.02 154.61 152.15 151.72 152.5 37%
3G_pep 673.59 643.22 567.11 492.35 469.7 461.59 437.32 43 .90 435.44 35%
<!G_pep 13 0.73 1317. 4 1175.55 1030.12 977.00 962.22 921.63 922.65 920. 8 34%

Table 3.5: AvcragC' integral cmupntation ti llling in seconds usiug ::>C'qut>nlia l and par­
allel !'2 ER_S' PDF with ST0-3G basis set. The machine used was a Altix (Vcrdandi).

Molecule l:it'quentia l Parallel Im prove111eut

HF 0.01 0.01 00%
S'n H1 1. 3 1.16 36o/c
Sn2 HG ltl.50 9.53 3-1%
S'n.1 Hw 103..12 7-l.GO 27%
C Cl4 3.68 2.91 21%
G e:I H 'd 16.69 12.90 23lfr
G 4Hw 39.0 30.04 23%
1G_p p 2.35 1.93 1 %
2G_pep 17.52 13.5 23%
3(;_pep -19.31 39.31 20%
4C_pep 97.tl 73.6 2-llfr

Table 3.6: A v rage iutegraJ computatiou timing in second using St'quent ial and par­
allel 12ER_SP DF with 6-31G(d) basi. set. The machine used was a CI ltix
(Vercla ndi).

1olecule seq ueu t i a! Parallel Improvement

l!F 0.05 0.05 OOo/c
nl-14 3.57 2.43 32%

Sn2 HG 29. 15 19.06 35o/c
C C:l4 3 .13 26.22 31%
Ge3 H 44.22 30.43 J 2'Yc
G 4 H 10 116.39 79.19 32o/c
1G_pep 16.67 12.3<! 26%
2G_pep 103.72 90.12 13%
3(; _pep 283.42 265.49 6.3%
4G_pep 567. 10 542.tl8 !J.J%

tl

Chapter 4

Conclusion

In ab initi S ,f computations, two-electron iu tegral computation bone of the major

time consuming steps. lmproviug th two-electron integral part of th code is very

important for th improvement of SCF computation tirnillg. This re card1 focuses Oil

the improvement of the l'viU ganss code ill timing, orgallizat ion , ami n'adability.

The Organizatioll aud readability of two-electron integral cod in M Ngauss ha been

improved using new Fortran 90/ 95 features. Int roduction of :-;pPc:ialized subroutim.s

r due s the rn mory usage, and improves the computation timing. Special ized sub­

routines do not follow all the steps of the generalized subroutine, there by saviug

tim when computing less complicated types of integral . Average improvemeut of

the timi11g with the iutrodu tion of niu subroutines to compute ::;:-;ss to dddd type

iutegrals is about 40%. With the increasing complexity of the ::;p cialized subroutines,

improvement gained with the addition of specialized subrout iue is reduced.

Three uniqu blocks of integrals, IJKL, IKJL, and ILJK, for a given set of i11dices

were computed in parallel, using Op nMP. About 25% average improvement in SCF

timing achieved for test cases containing atoms from the third and fourth row of t he

perio lie table, whit little improvemr nt is ol served with larg tc:-;t case::; containing

more atoms from the first and s ·ond row of th · periodic table. Tf the workload

perform d in the parallel . ection · is ·umll , the overhead of the parallrl dircctivr. can

19

exceed the gain achieved by para llel procl'ssing. Large ovcrhrad compared to the

work douc 011 t.hc processor · explains the smaller improvem ·ut for test ca~cs with

comparatively more first and second mw <'lf•nwuts.

As future r<:'search, para llelization rau be movl:'d up to th . a tom shrll level using

Op<:'n lP loop scheduling. This increa.c;e · t h amount of work done 0 11 the processors,

which should improve the timing for cvrry test case.

50

Appendix A

Two-Electron Integral for s Type

Functions

Startiug from eq. (1. 72) , two-ele ·tron integral equatiou for :; t.ype functious can b

derived as follows. Given h1 = hQ + Q,. and h2 = hp + P,., we obtain

u<Rl = 11 h.
0 0

Since exp(-pPQ~) does not depeud 011 h 1 and h2 , it cru1 be taken out of the integral ,

(A.2)

I11 t he cas of ' type fu11ctions, kh = lh = mh = nh = 0 where, h = .r, y or z.

T herefore, t he integral can be solved as follows,

(H) -2 In [2 -U,. (sss) = exp(- pPQ1J exp - (f 1 + p)hP - 2pPQhhP
. 0

+ P
2

(hp + P'Q,y] dh1 f exp[- (t:2 p)Z2]dZ (A.3)
t2 + P Jo

51

\•.:h!:'r<' Z=hQ - p(hv + /'(j,) / (c 2 p). T he integral ovC'r Z has thC' ·olution Z =

J1r/ (c2 p) which gives,

l ',;m(S.'i8) = exp(-pPQ~)J7r/(t 2 + p) 1oo exp [- (c 1 p) h~

- 2pPQ,h
1
, + p

2

(hp + PQ,Jl] rlh
1

(A. 1)
(')_ + p

T h l'f'tlla iuing part of the equation ran be solved using a similar ~ubst.itutiou as

follows,

= [
p27'Q~]1 [(.(__ tt _+_p.:......:)(_f2_ P_:_) _-_p2_)h_..!:_~ - 2 f:.JQ h exp exp -- P h JJ
(c2 + p) o ~2 P

52

+ 2p2h.,PQh] dht
(~'2 + p)

Eq.(A.S) i · implifieu by introducing .H, where Af is defiued as:

:l- 2 2
=> ((tC2 + (E t + c2)p) /\I2 = (tt (2 + (t + E2)p h2 + P PQpc2

L2 + P e::2+ P P (cte::2 + (tt +c2)p)(e::2 p)

2pPQ~~.c2hp
(c2 + p)

By introducing the above term into eq.(A.5), the following exprei'sion is be obtained:

53

B.v iutcgrating t he above exprc~~ion the followiug is obtained.

(A.7)

By replaciug the expressiou for U" into the rq.(1.70), the following form of the two­

clectrou iu tcgral (s .~lss) can be obtaiued:

(.<is-jss) = 3 p exp r.p ,\.p n."Q7r~ l - 1/2 ((l f2 (PQ2)p) l
[f(f2 + (f, + (2)] 2 . 0 (((2 + ({ , t'}.)p

(A.9)

In the above equation 1 + [p(t: 1 + t 2)] / c1l 2 term is replaced by (1 - 12) - 1. T herefore

the upper limit of iu tegrat ion chang -s from infini ty to 1, and lower limit doe ' not

change.

and

a nd

Using t hese quations in eq.(A.9) giv ,

(A.lO)

(A.ll)

The final form of the simplest two dectrou iutegral (ssjss) is:

(A.12)

54

Appendix B

Module mod_idfclc

Code for the parallel implementatiou of mod_idfclc is given here.

MODULE mod_idfclc

'***

Date last modified : July 2006 Version 2.0 *

*
Description: module used by the OF two-electron i ntegral *

parallel implementation *

'***
!Modules:

USE program_manager

USE program_defaults

USE constants

USE type_molecule

USE type_basis_set

USE i2e_module

implicit none

.15

!Global variables from module_df_integrals

'Variables that gets initialized in separate threads

!are declared as thread private.

integer:: LAMAX

integer,private : :LBMAX, LCMAX,LDMAX 'SHARED

!$0MP THREADPRIVATE(LBMAX,LCMAX,LDMAX)

integer:: MTYPE,ICASE !Iand ICASE do not belong

integer : : LENTQ

integer:: IGEND

integer,private: :JGEND,KGEND,LGEND

!$0MP THREADPRIVATE(JGEND,KGEND,LGEND)

integer:: IGBGN

integer,private: :JGBGN,KGBGN,LGBGN

!$0MP THREADPRIVATE(JGBGN,KGBGN,LGBGN)

integer,private:: CCAsave,CCBsave,CCCsave,CCDsave

!$0MP THREADPRIVATE(CCAsave,CCBsave,CCCsave,CCDsave)

integer,private:: AOI,AOJ,AOK,AOL !Used in IDFCLC1 and 2

logical:: LTWOINT

logical:: Lsort

double precision,dimension(:),allocatable

double precision,dimension(:),allocatable

double precision,dimension(:),allocatable

double precision,dimension(:),allocatable

IJKLS

IKJLS

ILJKS

TQ

!public variables used in I2E_SPDF,def and specialized subroutines

double precision:: XA,YA,ZA

double precision,private: :XB,YB,ZB,XC,YC,ZC,XD,YD,ZD !shared

!$0MP THREADPRIVATE(XB,YB,ZB,XC,YC,ZC,XD,YD,ZD)

integer:: Irange

56

integer,private: : Jrange,Krange,Lrange !shared

!$0MP THREADPRIVATE(Jrange,Krange,Lrange)

integer:: !ATOM

integer,private : : JATOM,KATOM,LATOM

!$0MP THREADPRIVATE(JATOM,KATOM,LATOM)

integer:: Iatmshl,Jatmshl ,Katmshl,Latmshl

double precision:: Piconst !Global

double precision,private :: EXPARG

!$0MP THREADPRIVATE(EXPARG)

double precision,private : : ABEXP,CDEXP

!$0MP THREADPRIVATE(ABEXP,CDEXP)

!public variables used in def and speci alized subrout ine

i nteger,private:: LABMAX,LCDMAX,LPQMAX

!$0MP THREADPRIVATE(LABMAX,LCDMAX,LPQMAX)

integer,private:: NZERO

!$0MP THREADPRIVATE(NZERO)

integer: : lEND

integer,private : :KEND , LEND,JEND

!$0MP THREADPRIVATE(JEND,KEND,LEND)

integer:: !START

integer,private : : JSTART,KSTART,LSTART

!$0MP THREADPRIVATE(JSTART,KSTART,LSTART)

logical,private:: LRABCD,LRAB,LRCD

!$0MP THREADPRIVATE(LRABCD,LRAB,LRCD)

logical ,private :: IIKK, IATMSHL_EQ_KATMSHL , JATMSHL_EQ_LATMSHL

logical,private :: IATMSHL_EQ_JATMSHL,IJIJ,KATMSHL_EQ_LATMSHL

!$0MP THREADPRIVATE(I IKK,IATMSHL_EQ_KATMSHL,JATMSHL_EQ_LATMSHL)

!$0MP THREADPRIVATE(IATMSHL_EQ_JATMSHL, I JIJ,KATMSHL_EQ_LATMSHL)

double precision,private : : RABSQ,RCDSQ

!$0MP THREADPRIVATE(RABSQ,RCDSQ)

57

CONTAINS!>>

subroutine I2ER_SPDF

!***
Date last modified: September 23, 1996

Author: R.A . Poirier

Version 2.0 *

*
Description :

*
'***
! Modules:

implicit none

Local Scalars

logical Ldebug

integer i

call PRG_manager ('enter', 'I2ER_SPDF', 'UTILITY')

Ldebug=Local_Debug

include "start_atmshl_loop"

parallel section, variables are shared by default, and

number of threads used is declared as three.

Only if the ICASE is greater than 2 computation is done in parallel .

Number of threads used is three .

!$0MP PARALLEL DEFAULT(SHARED) IF(ICASE>2) NUM_THREADS(3)

!$0MP SECTIONS

!$0MP SECTION

call DEF_shells (Jatmshl, Katmshl, Latmshl, Jshell, Kshell, Lshell)

if((ABEXP+CDEXP) .le . I2E_expcut)then

58

call I2ER_GSPDF(IJKLs)

end if

1$0MP SECTION

if(LTWOINT)then

call DEF_shells (Latmshl, Jatmshl, Katmshl, Lshell , Jshell, Kshell)

if((ABEXP+CDEXP) .le . I2E_expcut)then

call I2ER_GSPDF(ILJKs)

end if

end if

!$0MP SECTION

if(Mtype.eq . l)then

call DEF_shells (Katmshl, Jatmshl, Latmshl, Kshell, Jshell, Lshell)

if((ABEXP+CDEXP).le.I2E_expcut)then

call I2ER_GSPDF(IKJLs)

end if

end if

!$0MP END SECTIONS

!$0MP END PARALLEL

ISTART=Basis%shell(Ishell)(.XSTART

IEND=Basis%shell(Ishell)%XEND

Irange=IEND- ISTART+l

JSTART=Basis%shell(Jshell)%XSTART

JEND=Basis%shell(Jshell)%XEND

Jrange=JEND- JSTART+l

KSTART=Basis%shell(Kshell)%XSTART

KEND=Basis%shell(Kshell)%XEND

Krange=KEND- KSTART+l

59

LSTART=Basis%shell(Lshell)%XSTART

LEND=Basis%shell(Lshell)%XEND

Lrange=LEND- LSTART+1

LENTQ=Irange*Jrange*Krange*Lrange

if(Mtype.eq.1)then

Lsort=.false .

end if

if(ICASE.eq .2)Lsort=.false.

if(ICASE.eq . 6)Lsort= . false.

!if(Mtype .eq.3)then

!write(6,'(4i6)')Iatmshl

!do i = 1,lentq

! write(6, '(3F20.6)')IJKLs(i),ILJKs(i),IKJLs(i)

! end do

! end if

if(Lsort)then

call SORTALL(IJKLs,ILJKs,IKJLs,TQ,Irange,Jrange,Krange, &

Lrange,LENTQ,MTYPE)

end if

call I2E_SHLN

Note that IKJLS and ILJKS are swi t ched

end do Lloop Latmshl

end do Kloop Katmshl

end do Jloop Jatmshl

end do Iloop Iatmshl

End of loop over shells.

GO

I End of routine I2ER_SPDF

call PRG_manager ('exit', 'I2ER_SPDF', 'UTILITY')

return

end subroutine I2ER_SPDF

subroutine I2ER_GSPDF(IJKLs)

'***

Date last modified : September 23, 1996

Author : R. A. Poirier

Version 2 .0 *

Description :
*
*

'***

! Modules:

implicit none

Input array

double precision, dimension(MAXI NT),INTENT(INOUT)

Local Scalars

COR_ INDEX

Ldebug

IV,INTC,JENDM,KENDM,LENDM,NJKL,NKL,NJK

IX,IY,IZ,JX,JY,JZ,KX,KY,KZ,LX,LY,LZ

IGAUSS,JGAUSS,KGAUSS,LGAUSS

IAO,JAO,KAO,LAO

IZERO, I ERROR

IJKLS

integer

logical

i nteger

integer

integer

integer

integer

integer

integer

integer

CCA,CCB,CCC,CCD

INDIX(20),INDIY (20),INDIZ(20),INDJX(20), I NDJY (20)

INDJZ(20),INDKX (20), INDKY(20),INDKZ(20)

61

INOLX(20),INOLY(20),INOLZ(20)

double precision XINT(11)

double precision

double precision

double precision

double precision

double precision

double precision

double precision

double precision

XAP,YAP,ZAP,XBP,YBP,ZBP,XCQ,YCQ,ZCQ,XOQ,YOQ, &

ZOQ,PQX,PQY,PQZ,RPQSQ

A2DF(174),CCPX(48),CCPY(48),CCPZ(48),CCQX(48), &

CCQY(48),CCQZ(48)

G20FX(13),G20FY(13),G20FZ(13),XIP(256),YIP(256),&

ZIP(256)

TP(7),WP(7) !private

CC1,CC2,CC3 !moved from the module OF int

AS,BS,CS,OS !moved from module OF int

RHO,TWORHO,DXYZ,ZTEMP,RHOT2,ZCONST

EPAB,EPABI,EPABA, EPABB,EQCO,EQCOI,EQCOC, &

EQCDO,EABCO,EP2I,EABCDI

double precision, dimension(:), allocatable · · TQprim

DATA INDIX/0,64,0,0,128,0,0,64,64,0,192,0,0,64,128,128,64,0,0,64/, &

INOIY/0,0,64,0,0,128,0,64,0,64,0,192,0,128,64,0,0,64,128,64/, &

INOIZ/0,0,0,64,0,0,128,0,64,64,0,0,192,0,0,64,128,128,64,64/, &

INOJX/0,16,0,0,32,0,0,16,16,0,48,0,0,16,32,32,16,0,0,16/, &

INOJY/0,0,16,0,0,32,0,16,0,16,0,48,0,32,16,0,0,16,32,16/, &

INDJZ/0,0,0,16,0,0,32,0,16,16,0,0,48,0,0,16,32,32,16,16/, &

INDKX/0,4,0,0,8,0,0,4,4,0,12,0,0,4,8,8,4,0,0,4/, &

INDKY/0,0,4,0,0,8,0,4,0,4,0,12,0,8,4,0,0,4,8,4/, &

INDKZ/0,0,0,4,0,0,8,0,4,4,0,0,12,0,0,4,8,8,4,4/, &

INDLX/1,2,1,1,3,1,1,2,2,1,4,1,1,2,3,3,2,1,1,2/, &

INDLY/1,1,2,1,1,3,1,2,1,2,1,4,1,3,2,1,1,2,3,2/, &

INDLZ/1,1,1,2,1,1,3,1,2,2,1,1,4,1,1,2,3,3,2,2/, &

XINT/1.000,2.000,3 .000,4.000,5.000,6.000,7.000,8 .000, &

62

9.0D0,10 .0D0,11 .000/

Begin:

A2DF(1:174)=ZERO

CCPX(1:48)=ZERO

CCPY(1:48)=ZERO

CCPZ (1 : 48) =ZERO

CCQX(1 :48)=ZERO

CCQY(1:48)=ZERO

CCQZ(1:48) =ZERO

allocate(TQprim(lOOOO),STAT=IERROR)

include 'mungauss_gaussian_AB'

include 'mungauss_gaussian_CD'

TQprim(l :LENTQ)=ZERO

IF(EXPARG .LE . I2E_expcut)THEN

NOTE: Must zero CCP's if this step is skipped!!!

if(LRAB)then

EPABA=AS*EPABI

EPABB=BS*EPABI

XAP= EPABB*(XB-XA)

YAP= EPABB*(YB-YA)

ZAP= EPABB*(ZB-ZA)

XBP=-EPABA*(XB-XA)

YBP=-EPABA*(YB- YA)

ZBP=- EPABA*(ZB- ZA)

call GETCC_XYZ (CCPX, CCPY, CCPZ, XAP, YAP, ZAP, XBP, YBP, &

ZBP, LAMAX, LBMAX)

63

end if

if(LRCD)then

EQCDC=CS*EQCDI

EQCDD=DS*EQCDI

XCQ= EQCDD*(XD-XC)

YCQ= EQCDD*(YD-YC)

ZCQ= EQCDD*(ZD- ZC)

XDQ=-EQCDC*(XD-XC)

YDQ=-EQCDC*(YD- YC)

ZDQ=-EQCDC*(ZD-ZC)

call GETCC_XYZ (CCQX, CCQY, CCQZ, XCQ, YCQ, ZCQ, XDQ, YDQ, &

ZDQ, LCMAX, LDMAX)

end if

PQX=(CS*XC+DS*XD)*EQCDI- (AS*XA+BS*XB)*EPABI

PQY=(CS*YC+DS*YD)*EQCDI- (AS*YA+BS*YB)*EPABI

PQZ=(CS*ZC+DS*ZD)*EQCDI- (AS*ZA+BS*ZB)*EPABI

RPQSQ=PQX*PQX+PQY*PQY+PQZ*PQZ

EABCD=EPAB*EQCD

EABCDI=ONE/(EPAB+EQCD)

RHO=EABCD*EABCDI

ZTEMP=Piconst*DEXP(- EXPARG)*DSQRT(EABCDI)/EABCD

EP2I=ONE/(EPAB+EPAB)

call IJKLA2 (A2DF, LABMAX, LCDMAX, EQCD, EP2I)

64

DXYZ=RHO*RPQSQ

call RPOLX (NZERO, DXYZ, TP, WP)

TWORHO=RHO+RHO

do IZERO=l,NZERO

RHOT2=TWORHO*TP(IZERO)

ZCONST=ZTEMP*WP(IZERO)

if(ZCONST.le.I2E_PQCUT2)cycle

G2DFX (1) =ONE

G2DFY(1) =0NE

G2DFZ(1) =ZCONST

XIP(l) =ONE

YIP (1) =ONE

ZIP(1)=G2DFZ(1)

IF(LPQMAX .GE.2)THEN

G2DFX(2) =RHOT2*PQX

G2DFY(2) =RHOT2*PQY

G2DFZ(2) =RHOT2*PQZ*G2DFZ(1)

IF(LPQMAX .GE.3)THEN

do IV=3,LPQMAX

G2DFX(IV) =RHOT2*(PQX*G2DFX(IV- 1) - XINT (IV- 2)*G2DFX(IV-2))

G2DFY(IV) =RHOT2*(PQY*G2DFY(IV- 1)-XINT(IV-2) *G2DFY(IV-2))

G2DFZ(IV)=RHOT2*(PQZ*G2DFZ(IV-1) - XINT(IV-2) *G2DFZ(IV-2))

end do

end if ! LPQMAX.GE .3

IF(LRABCD)THEN

call ABCD4C (A2DF, G2DFX, CCQX, CCPX, XIP, LAMAX, LBMAX, &

65

LCMAX, LOMAX)

call ABC04C (A20F, G20FY, CCQY, CCPY, YIP, LAMAX, LBMAX, &

LCMAX, LOMAX)

call ABC04C (A20F, G20FZ , CCQZ, CCPZ, ZIP, LAMAX, LBMAX, &

LCMAX, LOMAX)

else IF(LRCO)THEN

call AAC03C (A20F, G20FX, CCQX, XIP, LAMAX, LBMAX, LCMAX, &

LOMAX)

call AAC03C (A20F, G20FY, CCQY, YIP, LAMAX, LBMAX, LCMAX, &

LOMAX)

call AAC03C (A20F, G20FZ, CCQZ, ZIP, LAMAX, LBMAX, LCMAX, &

LOMAX)

else IF(LRAB)THEN

call ABCC3C (A20F, G20FX, CCPX, XIP, LAMAX, LBMAX, LCMAX, &

LOMAX)

call ABCC3C (A20F, G20FY, CCPY, YIP, LAMAX, LBMAX, LCMAX, &

LOMAX)

call ABCC3C (A20F, G20FZ, CCPZ, ZIP, LAMAX, LBMAX, LCMAX, &

LOMAX)

else

call AABB2C (A20F, G20FX, XIP,

call AABB2C (A20F, G20FY, YIP,

call AABB2C (A20F, G20FZ, ZIP,

end if LRABCO

end if LPQMAX .GE .2

Commence loop over atomic orbitals .

INTC=O

JENOM=JENO

KENOM=KENO

66

LAMAX, LBMAX, LCMAX, LOMAX)

LAMAX, LBMAX, LCMAX, LOMAX)

LAMAX, LBMAX, LCMAX, LOMAX)

do IAO=ISTART,IEND

IF(Iatmshl_EQ_Jatmshl)JENDM=IAO

IF(IJIJ)KENDM=IAO

IX=INDIX(IAO)

IY=INDIY(IAO)

IZ=INDIZ(IAO)

do JAO=JSTART,JENDM

JX=INDJX(JAO)+IX

JY=INDJY(JAO)+IY

JZ=INDJZ(JAD)+IZ

do KAO=KSTART,KENDM

LENDM=LEND

IF(Katmshl_EQ_Latmshl)LENDM=KAO

IF(IJIJ.AND .IAO.EQ .KAO) LENDM=JAO

KX=INDKX(KAD)+JX

KY=INDKY(KAO)+JY

KZ=INDKZ(KAD)+JZ

do LAO=LSTART,LENDM

LX=INDLX(LAD)+KX

LY=INDLY(LAO)+KY

LZ=INDLZ(LAD)+KZ

INTC=INTC+l

TQprim(INTC) =TQprim(INTC) &

+(XIP(LX)*YIP(LY)*ZIP(LZ))

end do ! LAO

end do ! KAO

end do ! JAO

end do ! I AO

end do IZERO

end if EXPARG .LE. I2E_expcut

67

Apply contraction coefficients .

NJKL = Jrange*Krange*Lrange

NKL = Krange*Lrange

NJK = Jrange*Krange

INTC = 0

COR_INDEX = 0

JENDM Jrange

KENDM Krange

do IA0=1, Irange

CCl=BASIS/.ccbyao(CCA+IA0-1)

IF(Iatmshl_EQ_Jatmshl)JENDM IAO

IF(IJIJ)KENDM = IAO

do JA0=1,JENDM

CC2=CC1*BASIS/.ccbyao(CCB+JA0-1)

do KA0=1,KENDM

CC3=CC2*BASIS/.ccbyao(CCC+KA0-1)

LENDM=Lrange

IF(Katmshl_EQ_Latmshl)LENDM=KAO

IF(IJIJ.AND . IAO.EQ .KAO)LENDM=JAO

do LA0=1,LENDM

INTC=INTC+1

COR_INDEX=(IA0-1)*NJKL+(JA0-1)*NKL+(KA0-1)*Lrange+LAO

IJKLS(COR_INDEX)=IJKLS(COR_INDEX) &

+TQprim(INTC)*CC3*BASIS/.ccbyao(CCD+LA0- 1)

end do ! LAO

end do I KAO

end do ! JAO

6

end do IAO

CCD=CCD+Lrange

end do Dloop ! Lgauss

CCC=CCC+Krange

end do Cloop I Kgauss

CCB=CCB+Jrange

end do Bloop ! Jgauss

CCA=CCA+Irange

end do Aloop ! Igauss

deallocate(TQprim,STAT=IERROR)

End of loop over gaussians

End of routine I2ER_GSPDF

return

end subroutine I2ER_GSPDF

end module mod_idfclc

69

Bibliography

[1] Szabo, A. aud Ostluud, N. S. (1996) . ln Modern Quantmn Chcrnist1y. 2nd

Edition, Dover publications Inc., pg 39· 41, pg 43-·16, pg 111 1l·1, pg 136· 137,

pg 1-l5- ltl6.

[2] Dude!, R., LeRoy, G., Peeters, D.and Sena, 1. (19 3). In Quantum Ch cmist1y.

John Wil y a nd sons, New York, pg 176- 199.

[3] Boys, S.F. (1950). Electronic wavefunct'ions, A General m ethod of calculation

for- stat·ionmy states of any molec-ular system , Proc. R. Soc. Loudon, pg 542- 554.

[4] Obara, S. and Saika, A. (19 6). Effic·ient recursive computation of moleculm·

·integml · over Cartes-ian Gaussian functions, J.Chcm. Phys. vol. cl pg 3963-

3973.

[5] Ry , J. aud Dupuis, M. (1976) Numerical Integration w;'ing Rys Polynomials,

Journal of C01nput.Chem. ,vol 21, pg ltl.4- 165.

[6] Rys, J .,Dupuis, M . and King, H.,F. (1976) Numerical Integmt·ion using Ry

Polynomials, Journal of Comput.Chem. ,vol 21 , pg 144- 165.

[7] Ry ·, J .,Dupuis, M. and King, H.F. (1983) Computation of Electmn Repulsion

Integmls ·using Rys Quadmtm·e m ethod, .Journal of C'Omput. lwm. ,vol 4, o. 2,

pg 154.- 157.

[8] Redwine, C. (1995) Upgrading to Fo'l'tmn 90, Springer, pg 1 100.

[9] Slr ightbolme, J ., Information Ser·v'ices and Systems Th new features of Fortran

9f , 22nd May 2006.

70

[10] luwdra.R. , Dagum, L .. r<ohr, 0 ., i\[Hydan, D., :\lcDowtld, J. ami r\lC'non,

R.(2001) Parallel Pmgmmming in OpenMP, ~Iorgau K<mfmanll Publishers, pg

l5- 200.

[11] Bull J.~I. (1999) Mesm-ing Synchnmisation and Schcduliug Ourrhmds i11

OpenM P, Proc edings of the First European Workshop 011 (pe11 IP, Lund,

Sweden pg 99 105.

71

