

Improvir ; the Two-Elec ron Integral Computation
in MUNgauss

by

©Kushan Saputantri
Memorial University of Newfoundland, St.John's,
Newfoundland and Labrador, Canada,

M.Sc., People’s Friendship University Moscow, USSR (1995)

A thesis su nitted to the
School of Graduate Studies
m partial fulfillment of the
requirements for the degree of
Master of Science

Computational Science
Memorial University of Newfoundland

November)07

Improving the Two-Electron Integral Computation in

MUNgauss
by
Kushan Saputantri
Memorial U iversity of Newfoundland, St.John's, Newfoundland and

Labrador. Canada

Abstrac

A major step i the self consistent field ethod is asscmbling and diagonalizing the
Fock matrix. In order to form the Fock matrix, one-clectron integrals, overlap inte-
grals, and two-clectron integrals nust. be computed. Computation of the two-electron
integrals is the most time consuming and computationally difficult among them. The
focus of this rescarch is to improve the two-electron integral computation code in

MUNgauss.

Improved the two-clectron integral computation code by introducing new Fortran
90/95 features, where applic: e, Specia ed subroutines were introduced to replace
general two-clectron computation subre ine I2ER_SPDF, in order to compute less
complicated two-electron integrals, I allel imp nentation of subroutine I2ER_SPDF

was also investigated.

The two-clectre integral code was improved by using Fortran 90 modules to improve

readability; efliciency, and organization. Derived types. “select case”, and “do” con-

structs were introduced to improve readability. The introduction of dynamic memory

allocation reduced the usage of mewory and improved the code cfficiency.

Subroutine T2ER_SPDF can be specialized by identitying the shell(s,p.d.f) quadru-
plets before calling the subroutine to compute the two-clectron integrals. Specialized
subroutines were introduced to compute two-clectron integrals belor ‘g to the ssss
quadruplet to dddd quadruplet. Introdnction of specialized subrontines to compute
sipler tvpes ¢ integrals reduces the memory usage and reduces the time spent on

two-electron integral computations.

‘Two-electron integrals are labeled using indices I, J, K, and L. For a given set of -
dices I, J, K, and L, there are three unique blocks of two-electron integrals. They are:
[JKL, ILJK and IKJL. Three mutu vy idependent blocks, [JISL, [LJIC and TKJL
were computed in parallel using three processors on the samne node. Shared Oy

parallel computing with OpenMP was u 1 for this purpose.

Results of the improved code and old code were compared for accuracy as well as time

spent on computation using SGI Altix(Verdandi) housed at Memorial University.

i

Acknowledgement

First and foremost 1 would like to express ny sincere grati le to supervisor. Dr,
Raymond Poirier, for continous guidance, cncouragements, and funding. T would like
to thank ACEnet for computin facilities and all the students theoretical chiemistry
research group e their effort in helping to make this project a suceess. Finally, [

would like to thank my wife for all the ¢ uragenent, guidance, and understanding.

Contents

Abstract
Acknowledgement
List of Figures
List of Tables

List of Appendices

1 The Electronic Schréodinger Equation

L.l The wavefunction

1.2 The Hartree-Fock equation
1.2.1 The Introduction of Basis Set

1.3 Roothaan’s Equation
1.3.1 The Orthogonalization of the Basis Set

L4 Self-cons ent-field (SCF) T cedure .. . 00 0000

1o Two w.ectron Integrals . . . 0 00000000
L.5.1 Product of Two Gaussian Functions
1.5.2 The Laplace Tra orm.
1.5.3 The Gamma Function Integral
1.5. 1 Two-Electron Integrals v h Gamma Function Method
L1.5.5 Two-Electron Iute als with Higher Angular

Momentwn . . 0 . 0

v

ii

vi

vii

viii

6
6

i

1.5.6° Two-Electron Integrals with Rvs Quadrature Method . . . 20)

2 Why use Fortran 90/95 ?

2.1 New Fortran 90 Features
211 Free Source Formw
L2 vif-then-else if-end if” Construet
2.1.3 “select case” Statement
2.L1 vdo” Coustruet
2.1.5 Modules
2.1.6 Dynamic Memory Allocation
2.2 New features in Fortran 95
23 OpenMP .00 00000
2.3.1 Shared Memory Archite we
232 Why use OpenMP

3 Comj tation of Two-Electron Integrals

3.1 huplementation of the Rys polynomial Method

3.1.1 Module mod_idfele
3.1.2 Subroutine IDFCLC
3.1.3 Subroutine R.SPDF
3.1.1 Subroutine 2ER.GSPDF
3.1.5 Specialized Subroutines
3.1.6 Parallel Compt ion of Integra

4 Conch 9n
A Two-Electron Integral for s Type Functions
B Module mod_idfcle

Bibliography

33

........... 31
........... 31
........... 31
........... 36
........... 38
........... 10

49

51

59

70

List of rigur--

-1 A wlecular coordinate system: 4, j — clectrons: A, B— nuclei

2-1 A canonical shared memory architecture

2-2 A canonical mess. - passing ar - iteeture .

List of Tables

2.1

3.1
3.2

3.3

3.1

3.5

3.6

Comparing shared memory and distributed menory models . . 0L

Three blocks of integrals in the case of (ss | pp) for T #J 4 K # L. .
[utegr. computation timing with specialized subroutines using basis
set STO-3G.o 0
[utegral computation timing with specialized subroutines using basis
set 6-31G(d). . ..o
Integral computation timing with specialized subroutines using basis
set 6-3LLG(d,p). . . oo
Average integral computation timing in seconds using sequential and
parallel 12I/R_.SPDF with STO-3G basis set.
Average integral computation timing in seconds using sequential and

parallel I2FR_.SPDF with the 6-31G(d) basis set.

Vil

16

18

List of Appendic s

Two-Electron Integral for s Type 1 nctions

Module III()([_/(U(‘](‘

viil

93]

(1§

(*l~ssary of terms and symbols

I hamiltonian operator

e~

¢ wavefunction

E : energy of the svstem

7 position vector

a : alpha spin function

31 beta spin function

w : spin variable

WU o slater determinant

\ ¢ ospin o Hital

S+ coulomb operator

X exchange operator

¢ : orbital energy

[fock operator

¢ : basis stion

¢ o molecular orbital

S overlap matrix

F 2 Fock matrix

N o Number of electrons

Z : Atomic number of nucleus

V i Laplacian operator

X Tro formation matrix

P : Density matrix

G : Two-clectron part of the Fock m: ix
¢1. €2 Exponents of new Gaussians
(7 4 : Gaussian function centered at A

I' : Gamma hunction

Chapter 1

1he rlectroni. Schrodinger

Equation

According to the Born-Oppenheimer approximation, nuclei are much heavier than
clectrons a1 move more slowly. therefore to a good approximation one can consider
the electrons in a molecule to be moving in a field of fixed nuclei. The Schridinger
equation for a system of eleetrons in a field of fixed nmuclei is called the eleetronie
Schrodinger equation,

Hotee | ure) Foe | B (1.1)

where, 1, 1s the Hamiltonian operator for a system like that shown in Figure 1-1,
| ©.pee) 18 the wavefunction, and £, .. is the total electronic energy of the system,
Nuclei are deseribed by the position vectors Ry and Ry, Electrons are described by

yosition vectors r; and r,. Hamiltonian operator is given in eq.(1.2),
i 4 g

N MM N N

Hoco = —%Zv‘;’ ~ TZ La s L (1.2)

r. [
i1 e [l VIR &

where, first termn represeuts the kinetic energy of electrons, second term vepresents
attraction between electrons and nuclei, and third term represents repulsion between
electrons. The solution to the electronic hradinger equation is the electronie wave-

function. The electronic energy (Fo...). and electronic wavefunctiou (P, ,.) depend

ria=ri-Ra v 4>
Tij=ri=T;j
A a-ri-Ra
4w -
v
Ras=Ra-F Ra .
i
I
Rs
B -
0] Y
X

Figure 1-1: A molecular coordinate system: ¢, j — electrons: A, B— nucloi

explicitly on electronie coordinates. but depend parametrically on the nuclear coor-

dinates [1],

Poee O({r}:{R}) (1.3)
E«'lu'_ E({h’\}) (11)
The total energy is given as:
LI} ‘\1
: RVA
[‘jmr = [1«1(fee t¥ # (15)
AL B>A AB

1.1 The wavefunctic __

According to ¢ (1.2), the clectronic Hamiltonian depends only on the spatial coor-
dinates of the electrons, but to describe an electron completely, spin must also be
specified. Therefore, two spin functions, a(w) and J(w), which represent spin up and
spin down are introduced in relation to nonrelativistic theory. These are functions of
the spin variable w, and they are taken to be complete and orthonormal. Accordingly,
an electron can be desceribed with three spatial coordinates and a spin coordinate. If
these four coordinates are denoted collectively as «, then the wavefunction for an V-
clectron system can be deseribed as ®(y, oo, ~.n). According to the antisynnnetry
principle, electrons must be described y wavefunetions which are antisyimnietric with
respect to the interchange of the coordinates of a pair of clectrons. A wavefunction
that satisfies Schrodinger's equation and the autisymnmetry property can be obtained
by using Slater determinants. The Slater determinant for a systetn with V-electrons

can be written as follows,

) o) \wl)
V(o . 2x) = Yoy — (V1) 12 nlz) oy () k()
i(ry) ylry) wlry)

where (V1) "2 iy the normalization factor, and \ represents spin orbitals. This
Slater determinant has N electrons occupyving N spin orbitals, and the clectrons are

indistinguishable.

1.2 The Hartree-Fock equation

According to the Hartree-Fock approximation, the simplost antisvinmetric wavefune-
tion whicli can be used to deseribe the ground state of an N-clectron system is a

single Slater determinant,

Wo) = N1z N X V) (1.6)

According to the variational principle, the best spin orbitals are those spin orbitals

which minimize the clectronic energy 1%,

. 1
Fo — (9| H|W,) - Z((l“llu.) ty v((ﬂ)[]ab)

{ an

o éZ(ab]ab) ~ (ablba) (L.7)

a ab

Spin orbitals can be systematically ¢ ged while preserving the orthonormality until
the energy minimized and the equation that represents the best spin orbitals can

be obtained, eq.(1.8).

hervale) F Y [/ ol J dra\a(n)

-2 [/ \E(lf'z)\a(‘l?z)"nzlJ desva(r) = cavala) (1.8)

bta

where,

. 1_. A
hay) = =5V~ Nt (1.9)

A

is the sum of the kinetic energy and potential energy of an electron. In eq.(1.8), the

sceond and third terns represent the eleetron-clectron interaction. The first of the

two-clectron terms is called the conlomb term. and the second is called the exchange
term. The counlomb term is the total average potential acting on the eleetron y,
arising from .V — 1 electrons in other spin orbitals. Tt is convenient to define the
coulomb operator as:

-~ ‘+x .y
,f/[,(.l'l) - / |\;,(‘I'3)'- 7';21({.1'2 (ll())

-
The exchange term which arises from the ant isvinnetry property of the single deter-
minant wavefunction does not have a classical explanation as for the conlomb term.

The exchange operator is defined as,

')(;:(-’:l)\n(-rl) = {/ \zt(-"z)"ul\11(-172)’1'1'2 W) (1.11)

0

Using the above two terms, eq.(1.8) can be written as follows:

hr) b3 H(n) Y Halr) [() = o) (1.12)
b#a hta
By removing the restriction b # a, eq.(1.12) can be converted to an eigenvalue type
equation,

f('rl)IXM> o jul\u> (113)

where, [(ry) is the Fock operator

f(il,'l) - Il) + ; [./ﬁh(.l'l] /y/;,(.l‘l)] (111)

n
The Hartree-Fock equation over spin orbitals can be converted to an equation over
spatial orbitals by integrating out the spin functions. A spatial orbital ¢(r) is a
function of the position vector r and deseribes the spatial distribution of an electron

such that [y, (r)[*dr is the probability of finding the electron in the small volume

clement dr surrounding r. The resulting equation is given as follows[1]:

Sodedr) = e () (1.15)

1.2.1 The Introduction of Basis Set

The Hartree-Fock equation can be converted to an algebraic equation by introducing
the basis set. Using A" known basis functions {¢, ()] — 1.2, ... A'}. the unknown

molecular orbitals can be written as linear expansions,
K
v E 0y =120 K (1.16)
ol

where (', is expansion cocfficient and o, is basis function. Molecular ealculations are
performed nsing basis sets, which are composcd of a finite munber of basis funetions
centered at ea atomic mcleus. The most widely used types of basis functions
are Slater type functions and Gaussian type functions. Even though Slater tvpe
functions can more accurately represent atomic orbitals, Gaussian type functions
are nsed widely because of the ease of computation. The unnormalized Cartesian
Gaussian function with center R can be written as:

ey, R) = (r — R) (y — R)"(z— R.)"exp [—u(r - R)'“’] (L.17)

where r = (r, y.2) represents the coordinates of the electron, o is the Caussian

exponent, and n denotes a set of integers [, m and n.

1.3 | oothaan’s Equation

By replaciug the molecular orbitals in eq.(1.15) with a linear combination of basis

functions, the f owing is obtained,

N Copuln) — N CL0,(m) {1.18)

o i

Multiplying on the left by o, and integrating. gives

+ +x
Z("m / d);,('rl).f("l)<3u("l)([’.l - ‘CiL('m/ ‘v";("l)C’l'(rl)‘{"l (11())

x

6

The overlap matrix and Fock matrix are defined as follows.
The over » matrix:

X
Sm—/ O) () dry (1.20)

X
The Fock atrix:

Chx .
o = / on () fr)o, () dr (1.21)

~
Incq.(1.20), Sis a A x K .ormitian matrix where A is the number of basis functions.
Althongh basis functions are normalized and linearly independent, they are not or-
thogonal to each other. Therefore, the basis functions overlap with a magnitude of

<

Sl < 10 Ineq.(1.21), the Fock matrix is & A x A Hermitian matrix. The
one-electron Fock operator f(r) and a set of one-clectron basis functions o, define
the Fock matrix. Using the above definitions of the Fock matrix and the overlap

matrix, the Hartree-Fock equation can be written as follows:
-y . s i ¥ - § - Y
§ F;w v 8 Ot v = 1|2~ K (122)
12 14

The single matrix cquation, or the compact form of the above. is called Roothaan’s
equation, and is given by,

F(' - SO (1.23)

where (Tis e N x I square watrix of expansion coefficients,

Crr 2 oo Crk

Cop Coy Cop
C -

Ckr Cr2 -0 Ckk

-1

and ¢ is a diagonal matrix of orbital energies,

sy 000
a 0 D) 0
0 0 S hk

Using the linear expansion of molecular orbitals, the £, clement of the Foek matrix

can bhe written as

N2
Fio = T+) O [20rlAa) = (vl)] (121)
@ Aa
wore 1
= T+ Z Py, [(;u/ Ag) — 5{uvlod) (1.25)
Ao -
— I, (1.26)

where, /1707 is the one-electron part and (7, is the two-clectron part that depends on
the density matrix P and contribution from the two-electron integrals. The density
matrix ca - be written using expansion coellicients as follows:

N/2

Pu = 2837007 (1.27)

nat g

o

1.3.1 he Orthogonalization of the Basis Set

1

For an or onormal basis set. ..oothaan’s equation is an cigenvalue equation with ¢
being a unit matrix. In this case, the cigenvalues and cigenvectors are found simply
by diagonalizing the Fock matrix. For this purpose, an orthonormal basis set (') can
be found using a transformation matrix X,

o Nx =12, K (1.28)

A Oy,

where

s E X
/ O, (r)0, (1) dr = B, (1.29)

T
8, = (1.30)
0 if i#)

Substitut g eq.(1.28) into eq.(1.29), the following equation is obtained.
| oltendr = / k‘, WA D Xoa(r) | dr
- ZZ’\';/I/ (");(7')0)0(")(1”'\"7!-'
A a o

SN NS N = 0 (L.31)
A a

A

I

Therefore X must be chosen such that,
XtSX =1 (1.32)

where X* s the complex conj e of the matrix X. There are two common ways
to obtain a trausformation matrix. The first method is called symmetrie orthogonal-
ization, ¢ | uses the inverse square root of S for X. The second method is called
canonical rthogonalization, in which the transformation matrix is obtained by di-
viding columns of unitary matrix by the square root of the corresponding cigenvalue.
Oncee the transformation matrix is known, the relationship between the current cocf-

ficient matrix and the previous cocticient matrix can be obtained.
< x'c. o Xxc (1.33)
Substitution of eq.(1.33) into eq.(1.23) gives

FX("—SX('¢ (1.31)

9

Multiplying eq.(1.31) on the left by X+ gives
(NFEN)CT - (NS (1.35)

and replacing, NTFEXN by F' gives

r ’ ’
¢ == (1.36)
Roothaan’s equation, eq.(1.36), is now a classic cigenvalue equation, and can be solved
1)y €4 |

’ . ..] . / . -y
for " by diagonalizing F'. Given (7, (" can be found ustug (" —= X'(".

1.4 Self-consistent-field (SCF) Procedure

The self-consistent-field procedure is the computational procedure for obtaining the
restricted closed shell wavefunction for a molecule. The self-consistent-field solution

s obtained wit a finite basis sct. The general SCF procedure is as follows[1]:

. Determine the nuclear coordinates R 4, atomic mumber Z 4, mumber of electrons

N, and a basis set for a given molecule.

core

s and two-electron

2. Compute overlap integrals Sy, one-electron integrals [/
integrals (pr|Ao).
3. Obtain the transformation matrix X.
1. Compute a reasonable guess for the density matrix /1.
24

5. Compute the matrix G, usin — eq.(1.25).

6. Add (v and the core Hamiltonian [7°" to obtain the matrix I using eq.(1.26).

=~

- . \ . ' F——
Con ute the transformned Fock matrix F NTEFY,

. . ! . M
8. Diagonalize F' to obtain ¢ and <.

10

’

9. Compute ("= X(".
10. Form the new density matrix 2 — 207"+ using eq.(1.27).

11. Determine whether the procedure has couverged, comparing the previous den-

sity mat = and the current density matrix. If not go to step 5.

12, 1f the procedure has conve . stop the process.

1.5 wo-Electron Integrals

Two-electron integrals over basis functions have the following form:

+x ot .
(parp|Aeop) = / / g’)l"h(l',)g')f(rl)rl‘.zlg’)/(\'(1'2)(;){[,)(7'2)(17'1(lr-g (1.37)
- X LA ¥

where (b;f is a basis function on nucleus A, centered at R, and the integral involves
four centers: R4,Rp, R and Ry, Lincar combinations of Gaussian type functions

are used as an approximation for basis fuctions eq.(1.17).

1.5.1 roduct of Two Gaussian Functions

Two-clectron integrals can be eulated relatively easily with Gaussian functions,
because the product of two Gaussian functions, cach on different centers is another
Gaussian function on a third center, which lies on the line joining the first two Gaus-
sian functions[2]. Accordingly, the product of two Gaussian functions centered on A
and B is a new Gaussian with center [e (1.38) and the constant K'p is given in
eq.(1.10). The exponent of the new Ganssian P is ¢ = a t 3. Similarly the product
of two Gaussian functions centered on €' and) produces a new Gaussian centered
on Q eq (1.39).and the constant g is given in the eq.(1.11). The expouent of the

Gaussian Q is ¢y = 4 + 4.

exp(-ard Y exp(t)'r',“),) = K, exp(—(1/",“’)) (1.38)

11

oxp(,.),.;{) exp(ar7)) — K¢ exp(~<-,r'é) (1.39)

and,

b
Kp =oexp (— 1B (1.10)

: W0
I\Q—('xp(—ﬂ Hs(/)) (1.11)

‘

where (i)™ — (A = B)? and (D)2 — (C — D)2 The coordinates of the new

Gaussian centers /2 and Q are given by the following formulas:

— adtop

P=— 1.12
(v +3) ()

T

o=t (1.13)
(7 +9)

The general expression for the product of two Gaussian type functions is as follows:

v ol om_n P2t 2
GaGp =y i exp(—ary) gy 2h exp(—Jr%) (1.11)
where (74 and Gp are Gaussian functions centered on mucleus A and nuclens B
respectively. The Gaussian product has been generalized by including the angular
. . . ’ [R . .
part as cubic harmonic function (45 21) (ebyl 2%). The normalization factors

for the Gaussian functions are not included in this equation. In order to derive the

product of the angular part, x4 can be expressed as follows:

I T /'Ir

Then !y becomes:

.r{,‘ —= (.I'Z,+m$)/

!

| —)—[71 I i
- 24, (l_).rp

10

The produet 24,05 can be written as:
Alp

o
1 T 1 TuR l ll
ety = T 7 () ()

—u j- 10

I+

! U
P S T !
e [Y PR TR (1) ()
A U r-a g0 t I
+j k
L+l

= > KU TA, T,)ak
k0

The product of two Gaussians, eq.(1.-11), becomes,

L+ mtm! nn’

Galip = Kp NN NT S Sx fA-J‘A"' Ky ks CXPL—t¢ 11‘2)
B 3 < ,)

14 -UP ~p
Kr=U Ky U R0

The above equation can be pa into Cartesian eomponents as
1 - nr 1 <
(7,4(1'1; = A P rp(r;(rp

where
- - 2
By o b exp(—e)

Ky

h represents r, y or z, and

! 4
TN) / /’
. PP
fkh T T (1‘) (.]>

L IV
irj k

(1.16)

(1.17)

(1.18)

(1.19)

(1.50)

1.5.2 The Laplace Transform

The Laplace transform is used to replace the ,1 term in the two-clectron integral with

a Gaussian type function eq.(1.37). A new integration variable p 1s introduced. and a

general expression for (%)"‘ is derived in place of ,l The explicit form of the Laplace

transforim is:

W
L(I):/ exp(=tp)g(p)dp
J0

Replacing £ by % and g(p) by /,§ in eq.(1.52) gives the following

+
L(r?) — / (:xp(—r?p)p“}*ldp

0

Letting u —= pr? gives,

) 1 Aot A
L{r) (,—) / exp(—u)uz 'du
Jo

Using the Gamma function method we obtain

(Mg

dp

1 L * .
< (l—) = f‘(/\—/c?;A exp(—=r-p)p

Eq.(1.56) can also be written as

1 A 1 b L \
() = / exp(—rfu?yuz du
r LiAa/<) Jo

by letting u? —= p.

Lt

1.5.3 The Gamma Function Integral

The Ganima tetion is described by the integral

+.x
Fo(v) = / exp(—~t2) ek di (1.58)

X0
This integral is nonzero as long as & is an even mteger. Therefore eq.(1.58) can be
written as:

o _
W)y = ‘2/ exp(*)tkdt

J0

_ AR k
= 3 (“1)/2/ exp(—w)u* "2y (if u = 4t?)

0
— o tRrD/2p (" - 1_> (1.59)

2

The Gamma function can be written recursively as,
l(v) =(v - HI'(r - 1) (1.60)

where ¢ is an integer greater than one. This recursive formula can be derived by

following the steps given helow:

+00
F(v) = / u" texp(—u)du (1.61)

J0

Letting r = «" ' and dv = exp(—u)du, the followinge ex ression is obtained:
k)

+x
F(o) = [u' D exp(u)]: + (0 - 1) / exp(—w)u"*du— (v - DI'(v - 1) (1.62)

JO

oo (R —1 1
Fi(y) —~ (kru/2 (AT)”F (E) (1.63)

Thus:

whiere,

In the particular case where & = 0,

+o¢) p
Fo(y) = / exp(=yt1)dt = /=

J ¥
Y 1
- ser(y) (161
Therefore,
1
r (E) =T (1.65)
In the case where * is an even integer
. /ey l_\‘ - 1 ”
Fi(y) = -0z ZL\/? (1.66)
znt
in the case where & is an odd integer:
Fe(v) =0 (1.67)

1.5.4 Two-Electron Integrals with Gamma Function Method

The general form of the two-electron integrals between Gaussian-type functions (ab|cd)

is given by:

+ou + 1
(ab|(f(l) = / / (1':1(1‘]_)(;3(1'1)'—(;Ew(l’g)(;[)(I'g)drl([’l‘g, (168)
-x J-ox Tr2

where, G, (g, Geyand Gp are four Gaussian functions centered on A, B, (! and
D respectively. Variables ry and ry represent the distance from the center of the
coordinate system to the first and the second electron respectively. In the above

equation can be replaced by the following term using Laplace transform eq.(1.57):

1 1

12 VT

+) .
/ exp(—ri)p " 2dp (1.69)
0

16

If the final product of Ganssians is separated according to the contribution from the
&y, and = coordinates, the following form can be obtained:

[—n[':\ e 3
(abled) — =" / P G AR L (1.70)
)

N3
VT

(D

where Ap and Ny are constants given in eq.(1.10) and eq.(1.11), I[f"”.(y and (';‘m

are of the form:

0 et
Ui = / MR B exp(=plhy — h)?)
JooJo
x oxp(—e(hy —) exp(—ea(hy — Q) dhdhe (L.71)

h € {r,y.2}. The final form of the simplest two-clectron integral (ss]ss), given in

eq.(1.72). can be obtained by following the steps given in Appendix A,

Y - =2 .

KNpKorm: (regr) t?
(ss]ss) = —L2QTE g (0209
f[fz(tl +'<‘-_3)§ f1+f2

1.5.5 Two-Electron Integrals with Higher Angular

Mo entum

Given the forr la for two-clectron integrals over s functions, two-clectron integrals
for higher angular momentum have to be derived. S. F. Bovs[3] introduced a method
that uses differentiation of two-clectron integrals of s type functions over nuclear co-

ordinates to obtain those over higher angular momentum.

Lamhda represents the sum of £,m and n given in eq.(1.17), and it is closely related to
the total angular momentum number. The Angular momentum index is represented
bv 7 = (I.m,n). The functions with Lambda equal to 0, 1, 2 .. are referred to as
s, P, d .. respectively. The single component of the s shell with angular momentinm
index 0 = (0,0.0) is des ated as 5. The components of the p shell have angular
mowmentmn indices 1,(i = r, y, z), where 1, is defined by I, — (8. 8,4.8,2) using

Kronecker delta. In this p: cular case these components will he designated p,. p,

17

and p.. The Cartesian Gaussian funetion eq.(1.17) satisfies the following differential
relationship| 1],
‘) .

Wo(r, a. . R) = 2a0(r.a.m+ 1,,R) - N,(@)o(r.a.7 - 1,,R) (1.73)
o,

where, @ = roy.ozoand V(1) is the value of the i component of the angular mo-
mentum index 7. The diff nt relation in eq.(1.73) allows the derivatives of two-
clectron integrals to be written as linear combinations of two-clectron mtegrals of
lower angular momentum. The first derivative can be written as follows:

13,

W(ab, ('(l)(;') = 2 [((1 F1,)b, cd] ® _ Ni(a) [(a - T,)bmd]) (L.7-1)
oA,

Recursive equations can be derived after some mathematical manipulation of eq.(1.71).
Those equations can be nsed to obtain the recnrrence expressions for two-electron in-
tegrals over Cartesian Gaussian functions. The two-clectron integre [(a -+ 1,)b, ed]™

can be decomposed into lower ar 1lar momentun functions as follows:

[(a + 1,)b, (‘d]m = (P, — A)(ab.cd)® + (Wi — D) (ab.ed)FHD
" a~ 1)b, m]“‘*”}

(2

+2_1—/\'l((1) [[((1 li)[)‘(.‘l](k) .

€1

+-1—N,-(b) [[u(b - 1,»),<‘(i](’;) - ﬁ[(l(g, _ li),r-d]“’“)]

2(; -
1

+i"((1 mAri((')[tLb' (¢ — 11_)(”(/\41)
1

. A 1 alkED vis
+———2((l+‘2)/\L(([)[ub,((d 1;)] (1.75)

. - . . 0
For example, using eq.(1.75), the following recurrence expression for (p,s,. .s'ks,)(' can

be obtained:
(pis;, .s-k.,s‘,)(m — (P, - ;1,~)(s,sj, sks,)(()) + (W, — I’,)(.s',-.s'_,‘ .qk.s,)(')

The two-clectron integral [a(b 1)oed]™ can be decomposed into lower a1 ilar

18

momentum functions as follows:

b+ 1,)ced® = (7 = B)(aboed)™ (W = P,)ab, cd)*+D

+‘)—A\v_,(u) {[((l, ~ 1))b. ed)® — ﬁ[(u - 1_,)1)‘('(1]"“”}
]

o

b

=

bV, (0) [w —1)ed))
I

72(<1 Fe)
I

+m‘\'j(u,)[u.b. o(d ~ IJ)}(L*” (1.76)

-

lath - 1,). r'r/]”H ”}

Ni(B)[ab, (¢ — b)(/]‘“l)

, , . 0 -
The following expression for (p,p;, s)t " can be obtained from the above,

(pibj, ssp) W = (= Bj) (s ses)'" + (W5 = P (pisjysps)™ ¢
A,)
21(1 ((Sr*'_;‘u*‘k-*'/)m) - f—l(“':”r '“‘Ic-"'l)(”)

The two-electron integral [ab. (¢ + 1)d]*) can be expressed using lower angular mo-

mentum functions as follows:

lab (4 L™ — (Qr — Ce)(ab.ed)® + (W5 — Q) (ab. cd)* D

1 . .
+— Vi(d) [Lab‘(‘(d - 1;‘.)]““) ~ L)[ab,(‘(d - 1,\‘)]‘“”}

2('2 (@]
1 . -
+—Ni{(0) [[ub. {e— lk)(/](k) - /—)[ub, {¢ - lk)l/](m])}
. 2(‘2 €9
1 .
————— Ni(D)ab — 1), cd]RtD
%2(“) k(D)a(b - 1g). cd]
I _
Vi(a@)[(a = 1i)b. cd)®HD (1.77)
2l +(2)

. 0 .
An expression for the (p;s, pes)' " ¢an be obtained from the above,

' {).I,k
(P:Hj,l)k#t)(“) - (Qk —(k)(l),s,,w-*‘kﬁ/)m) + (WA- - QA-)(M:-*'J, -‘5'}.-"‘/)(1) 1 ;((—5(-*‘,'*',,~"‘k”l)m
a0

The geneval expression for the t elee minte | 1 [ab. e(d + 1)]%) can be written as

19

follows:

[abye(d + 1)) = (@)~ I)l)((l()~(‘(1)kl') F (W = Qn)(aboad)*
*%—1—1\',((1) [[nb,('(d - 1,)]\‘:" _ f).[,,(,‘ (d — 1])]1/@11}

Zty &
LY w P k1)
+Tl\1(¢') [ab, (e — 1,)d]"™) — (—I[(zh,(v— 1,)d]
+— 1—1\' (M[alb - 1)) ('(1]”;“)
2((1 + (2) f ’ o
L)
’Fmt\{[(u)[((l —1)b, ('(1](k+l) (178)

. 0 .
An expression for the (pl,s'j.pks,)(" ¢an be obtained from the above.

(ppyo o) = (Qr — D)) (s o)™ 4 (W= Qo) (pipy. prsi)'
|

‘+‘— (sl .'I' y N M +) ’,.' . .S (1)
v+) (Ba(siny. prest) Sjpis,y. pres)t)

At
BY <(Pip_j\3k-"'l)(0) -

14
= (pip;. ~5'A-5l)(l)>

_4}
/3

1.5.6 Two ™lectron .ate rals with Rys Quadrat ‘e Method

The Rys quadrature method gives an alternative method to the Ganuna funetion
method in computing two-electron integrals over Gaussian functions. In this method
the Gaussian product theorem is applied twice to eq.(1.70), after introducing the

following variables,

= ot p
T 0n + phy
hy = 2 L
2t p
€af)
m “61+t 2{/;)
) -

-}— (4 (f:z{)/((z 1 ”H(Jh
y = e i
: (1 toap/lea +p)

20

‘The following terms are introduced to simplifv the equations,

t1e

(1+(‘3

f—=

v = by =)% 4 (b ~ hy)?

The two-clectron repulsion integral can be written as follows,

NI, (™ . 2P
abled) = —£4 / » Vexp [- oPCr -t)
(’) ﬁ Ju ! ! 0 + #

X H/ Izk{’h”’/ he P Wy exp(=y)dhydhodp (1.79)

h roy:

Iutroducing the new variable t, which satisfies the relationship 12 - I—}% eq.(1.79)

becomes,

YN K -1 —
(abled) — / exp(=g PC Y [N 1 g (1.80)
\/7”7U1 + e))3/2
where,
I,(l”) - (I}lljg)l/z/ hﬁ”h’,‘}’ / he Iy expl =1, (£2))dhy dh.y (1.81)
g x Jox

ho€ {r,y.z}. Inthe abo expression mne — epex/(1 — %), Therefore, l,(,”) is an

even polynomial of t. This integral can be computed by Rys quadrature method

with[f'), 6, 7]:
[,[,(['2) _ I_‘(rR)I!(JH)Ii[{)

2K
(abled) = = Z)10 T ()W, (1.82)
il

where k > L/2 and t; and W, are the roots and the weights of the A™ Rys polynomial

Chapter 2

Why 1.se Fortran 90/95 ?

Fortran 90/95 has been used in prograuuning the two-clectron package in MUNgauss.
A team lead by John Backus developed the Fortran or the Formula translation SVs-
tem in 1954 Tt is one of the earliest high level programming languages, and its first
standard was created in 1966, A new standard was created in 1976 and was named
Fortran 77. The need to modernize the Fortran 77 became appare: with the emer-

gence of new I zuages like C and C+ +.

The new standard of Fortran 90 has all the good features of Fortran 77 as well as
many new features of modern languages. Fortran 90 has almost all the features thet
are important. to scientific programming and most of the features of object oriented
languages. Unlike most languay Fortran is designed to generate executable codes
that are highly optimized and run extremely fast. Fortran has heen widely used by
sclentists and engineers for many years, and algorithms and code already exist for
many problems. Fortran . 7 remains a subset of Fortran 90/95 and code written in

Fortran 77 can be used along with the Fortran 90/95 code.

With the increase in size and complexity, modern computing is moving toward the
use of parallel computers. However most of the procedural programming languages
use a " car memory model th the exception of Fortran 90/95. A lincar memory

model assumes that consecn ¢ ele nts of © & Voare consecutive in o memory.

This is a reasonable assumption for traditional computers but completely incorreet
when it comes to parallel computing. Fortran 90 has addressed this roblem, and has
provided standardized language support for parallel computing. This includes arvay

syntax and me v intrinsic functions for doing array operations[s].

2.1 New Fortran 90 Features

The two-cleetron integral package wses a munber of new features available in Fortran

90. Somie of these features are described helow.

2.1.1 Free Source rorm
One important feature in Fort 190 is the free source form. which makes it possible
to have:

e names as long as 31 characters

e lines up to 132 characters in length

e semi-colon as the statement separator for multiple statements per line

e option to include source text from files.

2.1.2 “4f-then-else if- d if” Construct

The “if-then-else if-end if ™ construet makes the code more readable.

if (logical-expression) then
statement-1

else if (1« « ~-exp: ssiom) tl 1
statement-2

end if

In order to enhance the readability, commands like Commane like “continue” and

“goto™ arc used only rarely.

23

2.1.3 “select case” Statement
Another selective execution statement Fortran 90 has is the “select case” statement.

selectcase(I)
case(1)
statement-1
case(2)

statement-2

case default
statement-de; 11t

end select

The “select case™ expression is evaluated, and the resulting value is the case index.
The case index is compared to the ease sclector of each case statement. [f a mateh
oceurs, the statement block associated with that case statement is execeuted. If no
match occurs no statement block is executed. After the execution of the construct is
complete or no match occurred the control is transferred to the st: ment after the

“end scleet” statement,

2.1.4 “do” Construct

The “do” cous 1t specifies the repeated execution of a statement block.

outer: do i=1,n
inner: do j=1,m
statement block
if (condition) cycle
if(condition) exit outer
end if

id do i

end do outer

The iteration count of a loop can be determined at the beginning of exeeution of the
“do” construct, unless it is indefinite. You can curtail a specilic iteration with the

"eycle”™ statement, and the “exit” statement terminates the loop.

2.1.5 Modules

Modules are collections of data, type definitions and procedure definitions, which gives
a more secure and general replacement. for the common block concept. Variables, data
or subprograms that are declared in Fortran 90 modules can be made available by
the compiler to all subprograms which use the module using “include” statement.

Following is an example of a module:

module mod_idfclc

!***

! Date last modified: Version 2.0 =
! Author: *
!] scription: *
! *

!***
'Modules:
E pri 1 ir
pr. -am_ded s

USE constants

implicit none

'Public variabli

‘eger, public :: LAMAX,LBMAX,LCMAX,LDMAX !SHARED
integer, public :: MTYPE,LENTQ

integer, public :: IC._...,JGEND,KGEND,LGEND
double precision, public :: XA,YA,ZA,XB

integer,public :: Irange, Jrange,Krange,Lrange

'Private variables

integer, private :: IX,IY,IZ,JX,JY,JZ,KX,KY,KZ,LX,LY,LZ

double precision, private :: G2DFX(13) ,G2DFY(13),G2DFZ(13)
'Module contains a subroutine
CONTAINS!>>>>3>3555>35555>55055555 5555555550555 5555535355555 5555535>>
!

subroutine I2ER_SPDF

'code belong to the subroutine goes here

end subroutine I2ER_SPDF

end module mod_idfclc

Module mod_idfclc uses three modules: program_manager, program_defaults, and

constants. \Qwhﬂﬂesnme(kwlanxlnextandInoduk‘counnnsthesulwouthu'IQER_SPDF.

2.1.6 Dynamic Memory Allocation

Another new feature of Fortran 90 that is beneficial for scientific codes is the dynamic
memory management. It is the allocation of memory dur’ o e. Fortran 77
15 capable of only static allocation, as a result code has to be rece mpiled for different
problem sizes or different number of processors. The only alternative is to declare
a single large array at compile time and then, at runtime, assign indices to point to
different locations within the array for use by different. quantities. This results in

code that is very difficult to maintain.

With Fortran 90 we can declare the arrays as allocatable, and the problem size and

26

the number of processors can be read in at runtime. with arrays allocated to the size
vequired. Depending on the problem, arravs may be different sizes on different pro-
cessors. This improves the performance through improved cache ntilization as well

A8 Saving neniory.

2.2 New features in rortran 95

Another new standard of Fortran, Fortran 95 was introduced in 1996, [t is a relatively
simall change compared to the change between Fortran 77 and Fortran 90. There are
some major features, some minor corrections, and few new intrinsic functions in the
new standard. Some of these are to keep Fortran in step with the work in the High

Performance Fortran (HPF) area. The major features include[9):
e FORALL statement and construct,
e pure and clemental user defined subprograms
e initial association status for pointers
e implicit initialization of derived type objects.
Some of the m or features introduced in Fortran 95 are as follows:
e new intrinsic funetion NULL
e new intrinsic function« J_TII

o automatic deallocation of allocatable arrays

2.3 Ope MP

OpenMP is an application program interface which supports multi-platform shared
memory parall - pro ammi in C.C't ot and Fortra. OpenMD is compatible with

mearchitectnincluding U7 and Windows NT. Jointly developed by a group

27

of software and hardware vendors, OpenMP has now become the standard of the
shared memory parallel computing, and is recognized by most of the major computer

manufact urers.

OpenMP is not a programming language. [t is cousist of a set of compiler directives
that describe ¢ parallelism of the source code. along with a supporting library of
subroutines available to applications. Tl directives are instructions to compiler
supporting OpenMP. They are ignored as comments by compilers that do not support

OpendD.

2.3.1 Shared Memc_, Archit :ture

OpenMP has been designed primarily for — ared memory multiprocessors. Figure 2-1
shows the architecture of shared memory computers. The most muportant character-
istic of shared 1emory computers is the ability of all processors to access HEmory
directly through a logically directed com tion. Distributed shared memory (DSNI)

computers belong to the same family.

The alternative to the shared memory configuration is distributed memory, as shown
in Figure 2-2. In distributed mc ory, each processor in the systenn is only capa-
ble of directly addressing memory physically associated with it. In order to accoss
iformation in memory connected to other processors, the user must explicitly pass
messages through some network connectit — the processors. Usually distributed mem-
ory systems are programmed using message passing libraries such as Message Pass-
ing Interface(MPI). Distributed shared memory systems can be programmied using
OpenMIP” and message passing interface together for efficieney. Most wEer systems
are distributed memory comnputers becan there is a practical limit to the number
of processors that can be supported in traditional shared memory architecture. A

comparison of two programming models & given in Table ™ 1.

2.3.2 Why use OpenMP

Recently there has been an increase of ared memory parallel systems sinee they
are aflordable and contain increasing number of processors. Meanwhile, miost of the
programming odels available are desigt | mainly for distributed memory systems.
Therefore, OpenMP was created as a standard and portable application program-
ming interface for writing shared memory parallel programns. OpenMDP is a parallel
programming model for shared memory and distributed shared memory multiproces-
sors. There are other implementation models that could be used instead of OpenMD,

including Pthreads and MPLL

MPI is portable, widely used, and it is the accepted standard for message passing
programs, but in a shared memory machine, niessage passing is not required to share
data. Message passing is considered a difficult way to prograim because it requires a
great deal of tir . In addition to that the program data structure has to be explicitly

partitioned, as well as the entire applicati must be parallelized.

Pthreads is an accepted shared memory model but there is little . ortran support for
Pthreads. Even for C and C++ based applications, it is considered low level and

awkward. It is also more suitable for task rallelism rather than data parallelism.

OpenMP became the industry standard recently, and it is a step in a long history
of shared memory programming mod . N st of the shared memory hardware ven-
dors support some subset of the OpenMP functionality, but complete application
portability had not been achieved yet. OpenMP uses compiler directives to support.
parallelisin through calls to runtime library routines. These directives can be embed-

ded within a program written in Fortran, C or C1 t.

One big advantage of OpenMP is that it can be used i writing new parallel code

as well as in parall ing code. In 1diti it s casier to » portable

PROCESSORS

PO F P2 P3

MEMORY

Figure 2-1: A canonical shared memory architecture, where PO-P3 are processors.

31

PROCESSORS

PO P1 P2 P3

MO ‘ M1 M2 M3

INTERCONNECTION NETWORK

Figure 2-2: A canonical me 1ge passing architecture, where PO-P3 are Processors,

and MO-M3 are memory associated th pro Is.

Chapter 3

Computation of Two-Electron

Integrals

Two methods are available in MUNgauss to evaluate two-electron integrals, The Ryvs
polynomial method eq.(1.82) isu [tocon ute two-electron itegrals between s-type,
p-type, d-type and f-type shells. The current iimplementation of the Gamma function
method eq.(1.71) is limited to computatio of two-electron integrals involving s-tvpe
and p-type shells. Subroutine I2ECLC by default calls both subroutine IDFCLC and
subroutine ISPCLC, but the has the option of choosing one of them. Subroutine
IDFCLC is called first to compute the integrals with d-type and f-tvpe shells, and
subroutine __.'CLC is called to compute the integrals between s-type and p-type shells

as given below.

if (LI2EDF)then

call IDFCLC

if (MUN_PRTLEV.GT.0). (1 PRT_I2E_details ("IDFCLC’, IDFCNT)
end if ! LI2EDF
if (LI2ESP)then

call ISPCLC

if (MUN_PRTLEV....0)call PRT_I2E details (’ISPCLC’, ISPCNT)

end if ! LI2ESP

33

3.1 Implementation of t. : Rys polynomial Method

3.1.1 Module mod_idfqlc

Module mod_idfclc contains all the vark les as well as all the subroutines used in
the Rys polynomial part of the code. The variables accessible inside and outside the
module are der wed as public, while the variables accessible only inside the module
arce declared as private. The variables initialized inside the parallel part of the code
are declared as thread private with the “threadprivate”™ directive. The “threadpri-
vate” directive is used to identify a list of variables as being private to cach thread,
and a private copy of that list of variables is created for cach thread. Therefore,
every reference to a thread private varial -+ within the parallel section of the code
refers to a variable instance of the private copy of the executing thread. Threads
caunot refer to thread private variables belonging to another thread. Other than the
declarations, module mod_ic¢ :lc contains general subroutines used in two-electron
integral computation, specialized subrout s for two-clectron integral computation,
subroutines used in sorting inte als and s ring, as well as all the subroutines called

iside integral computation subroutines.

3.1.2 Subroutine 1_FCLC

The subroutine IDFCLC loops over the shell tyy (s,p.d.f), identifying the shell
quadruplets (the type of integ), and calls the appropriate specialized subroutine.
The generalized subroutine I 'DF is called as the default case. For example, a
minimal basis set of cach carbon atom in molecule Cig consists of 1s, 2s. and 2p shell
types, therefore carbon has three shell tyg Altogether, molecule gy has a total of

60 x 3 — 180 shells which are « ribed as atom shells.

The identification of shell ¢quadruplets bef o the atom shell loop reduces checking,

31

and improves the efficiency of the code. The function which determines the tvpe of
the integrals. DEFCASE. is also includc in subroutine IDFCLC using the Fortran

conmand “contains”. Part of function II CLC is illustrated below,

Loop over Ishell
Loop over Jshell
Loop o' : Kshell
Loop over Lshell
'allocate arrays to store the integrals
'determine the ICASE(ic itification of shell quadruplets)
'using DEFCASE which 1 :urns ICASE
select case (__..l_,
case (1)
call I2ER_SSSS
case (2)
call I2ER_SSSP
case (3)
call I2ER_SSPP
case (4)
call I2ER_SPPP
case (5)
call I2ER_PPPP
case (6)
call ~~ 7 773
case (10)
call I2ER_SSDD
case (13)
call I2ER_SDDD
case (15)
call I2E" "DDD
case (7,8,9. :)

call I2ER_GSPDF
end if
if (LTWOINT) then
call DEF_s! .1s (Latmshl, Jatmshl, Katmshl, Lshell, Jshell, Kshell)
if((ABEXP+CDEXP).le.I2E_expcut)then
Int_point ILJI
call I2ER_GSPDF
end if
end if
if (Mtype.eq.1)then
call DEF_sl! .1s (Katmshl, Jatmshl, Latmshl, Kshell, Jshell, Lshell)
if ((ABEXP+CDEXP) .1e.I2E :pcut)then
Int_point -=>IKJI
call IZ..._GSPDF
end if
end if
end do
end
end do

end do

First, subroutine iR_SPDF loops over atom shel belonging to spec atoms, and
determines all the shell information. Subroutine DEF_shells takes the four atom
shells as parameters in the order of the integral, and initializes the variables accord-
ingly. Subroutine I2ER_GSPDF computes all the integrals for the given atom shell
quadruplet.

For a given set of {ijkl} atomn shell indices, there are three unique integrals, They
are: (1j1k1), (i11jk), and (ik|jl). In the sequential version, these three blocks
of int als are computed * - calling subroutine DEF_shells and the subroutine

I2ER_GSPDF three times sequentially.

end do ! KAO
end do ! JAO
end « | TAD

end do ! IZERO

do IAO=1,Irange
do JAO=1, JENDM
do KAO=1,KENDM
do LAO=1,LENDM
! Apply contraction ct ‘fic: ts.
end do ! LAOD
end do ! KAO
end do JAO
end do ! TAO

end do I »op ! Ly

end do Cloop ! Kgauss
end do Bloop ! Jga
end do Aloop ! Igau:

! End of loop over u .at
! 7 1 of routine I2ER_SPDF
return
end subroutine I2ER_G! F

h

First, subroutine I2ER_GSPDF loops over t Claussian expansions, followed by looping
over the roots of the Rys polynomial 1l computing the components]‘i.m(t,). [,(,m(t,-),
and /ﬁm(f,-) (sec eq.(1."). In the loop over the AOs (for example, p,, Py and p, are

the AOs belonging to the p-type atom shell), the two-electron integrals are commputed

39

using q.(1.82). Finally, contraction cocflicients are applied and integrals are stored in
arrays LJIKLs, [LJKs, IIKJLs. The three blocks of integrals IJKLs, ILJIKs, and [IvJLs
resulting from three calls to subroutine I2ER_GSPDF are as given in Table 3.1 for the

case of (ss|pp).

Table 3.1: Three blocks of integrals in the case of (ss|pp) for I #J# K # L.

LInL ILJIX IKJL
SSPy Py SPySPy SPySPy
SSPx Iy SPySPy SPySIy
SSPyP, SPySP, SPySP,
SSPPy SP-SPy SPySPy
SS Py SPSPy SPySPy
SSH-Py; SPSP, SP-SP,
SO,y SP,SP SP,SPy
SSP, Py SP,SPy SP,SPy
SSP,P; SP,SP, SP,SP,

3.1.5 Specialized Subroutines

Other than I2ER_SPDF, there are currently nine specialized subroutines used in MUNgauss
to compute two-clectron integrals. Two-electron integrals between the s-type shells
(sslss) to d-type shells (dd|dd) are done using specialized subroutines. For exain-
ple, subroutine I2ER_SSSS coutains the atom shell loop similar to the I2ER_SPDF, and
instead of calling the meralized subroutine I2E™ ~SPDF it calls the corresponding

specialized subroutine I

Use of specialized subroutines for the nine sitnplest types of integrals increases the
efficiency of the code. It reduces the amount of memory used, because the general case
allocates fixed size arrays that do not change with the problem size. The specialized
case allocates arrays specific to the problem size. The mmnber of subroutine calls
inside the specialized funetions are loss. compared to the general case, hecause most

of the code is written inline. o specialized subroutine for __..._GSSSS does not

10

loop over the Rys polynomial roots, because the munber of roots is one. Similarly, it

does not loop over the AOs, because all four orbitals are s-type.

subroutine I2ER_GSSSS
' !Modules:
implicit none
! lLocal Scalars
! !Commen:< loops over Gaussian expansion.
do Igauss=IGBGN,IGEND
do Jgauss=JGBGN, JGEND
do Kgauss=KGBGN,KGEND
do Lgaus: .GBGN,LGEND

Computes the inte -al using eq.(1.82)

apply contract: | c .cients.

end do Dloop ! Lgau
end do Cloop ! | auss
end do Bloop ! . uss
end do Aloop ! Iga
! End of loop o1 - gai .al
return

end subroutine I2ER_(;SS

Tables 3.2-3.14 show the nuprovement achieved by the addition of specialized sub-
routines for STO-3G, 6-31G(d), and 6-311G(d.p) basis sets respectively. Specialized
subroutines have been added individually to the code to observe the improvement.
Percentage of improvements were computed relative to the general case subroutine

I2ER_GSPDF.

11

For the STO-3G basis set (Table 3.2), test cases 1117 and 11,0 do not show any
improvement with the addition of specialized subroutines. Sensitivity of the timing
5 uot enough to show differences in small test cases. The other test cases show about
GO% improvement with the addition of SSSS-PPPDP subroutines, but show very little
improvement with the addition of SSSD-DDDD subroutines because there are no d
type functions involved in most of the test cases. For the 6 31¢](d) basis set (Table
3.3), smaller test cases showed about 15% iimprovement with the addition of SSSS-
DDDD subroutines, which is reduced to about 109 for the bigger molecules. The
improvement achieved with the addition of SSSS-PPPP subroutines far greater than
the improvement achieved with the addition of SSSD-DDDD subroutines. For the
6 - 311G p) basis set (Table 3.1), an improvement of about 10% is observed for all
the test cases. [n the case of targer basis sets with funetions, subroutine I2ER_GSPDF
is used often, therefore the improvement achieved by the use of specialized subroutines

is reduced.

3.1.6 Parallel Computation of Integrals

Coincidences occur in shell quadruplets only about 20% of the time. Therefore, all
three integral blocks (ij1k1), (i11) and (iklj1) have to be calealated for most
of the shell gnadruplets. If the three blocks can be done in parallel using, three pro-
cessors, computation time can be improved. This can be done using the OpenMDP
directive “sections”. The “sections” directive is useful where three tasks do not de-
pend on cach others results. With directive “sections”, it is possible to perform an
entire section of code iu parallel, assigning each task to a different thread. The paral-
lel section starts with the directive “parallel” and ends with “end parallel”. The code
for the entire sequence of tasks. or sections, begins with a “sections™ directive and
euds with a “end scetions™ diveetive. The part of the code executed on each processor

has to be separated by a “section” directive.

By default all e variables e« ared sha | except the variables declared thread

private in the respective modules. Therefore every variable that is initialized inside

12

the parallel section has to be declared thread private. The “barrier™ directive of

the end of the parallel seetion is used to synchronize the process. If there are no
coincidences in the shell quadruplet, an equal amount of work is done on all three

processors. The parallel implementation of I2ER_SPDF is as follows

!$OMP PARALLEL DEFAULT (SHARED)
'$0OMP SECTIONS
'$OMP SECTION
call DEF_shells (Ja 3hl, Katmshl, Latmshl, Jshell, Kshell, Lshell)
if ((ABEXP+CDEXP) .le.I2E_expcut)then
Int_pointer=>IJKLs
call I2ER_GSPDF
end if
'$0MP SECTION
if (LTWOINT) then
call DEF_shells (Latr 11, Jatmshl, Katmshl, Lshell, Jshell, Kshell)
if ((ABEXP+CDEXP) .le.I2E_expcut)then
Int_pointe ILJKs
call I2ER_GSPDF
end if
end if
I$0MP SECTION
if (M 1-1
call DEI' hells (Ka 11, Ja . , Kshell, Jshell, Lshell)
if ((ABEXP+CDEXP) .. I2E_expcut)then
Int_pointer=>IKJLs
call I2ER_GSPDF
end if
end if
1$0MP END SECTIONS
'$0OMP BARRIER

13

{$OMP END PARA L

Parallel and sequential versions of subroutine I2ER_SPDF were compared using a set
of selected test cases on a SGI Altix (Verdandi) honsed at Mewmorial University. The
STO-3G and 6-31G(d) basis sets were used for the computation. The complete code

for the parallel mod_idfclec given in the Appendix B.

A average timing improvement of 25% is observed for molecules containing atonis
from the third and fourth row of the periodic table. For the test cases containing a
large mumber of atoms from the first and second row elements, an average inprove-
ment of 74 is observed. Every OpenMP directive involves overhead [11]. [f the work
performed in the parallel sections is smaller, and the number of OpenMP directives is
higher, overhead can reduce the gain achieved by the parallel processing. Therefore,
big test cases with large mmbers of atows belonging to first and second row elenients
tend to give less improvement with this type of implementation. Work perfornied
insicle the parallel sections has to be considerably large to achieve good results with

parallel processing.

Table 3.5: Average integral computation timing in seconds using sequential and par-
allel 12F°R SPDFE with STO-3G basis set. The machine used was a Altix (Verdandi).

Molecnle sequential - Parallel Tmprovement

I 0.01 0.01 Ot
Snll, 1.83 1.16 36%
Snally 1 1.50 9.53 3 1%
Snglly 103. 12 7160 27%
C'Cl, 3.68 2.91 20
Gleg Ty 16.69 12.90 23%
ey Hyy 39.08 30.0:1 239
17 _pep 2.35 1.93 18%
2 _pep 17.52 13.5 23%
3G pep 19.31 39.31 2004
G pep 97.1 73.6 21%

Table 3.6: Average integral computation timing in seconds nsing scquential and par-
allel 2R SPDF with 6-31G(d) basis set. The machine used was a SGI Altix
(Verdandi),

Molecuwe seauential Paralle]l Iinprovement

iIa U.Ud 0.00 00%
Snlly 3.57 2.13 329
Snykg 29.15 19.06 30
aar 3813 26.22 RV
(Fegly 1122 30.13 32
(re (111 116.39 79.19 32%
L pep 16.67 12.314 26%
20 _pep 103.72 90.12 13%
3Ci_pep 28312 265.19 0.3%
1G _pep O67.10 512,18 1.3%

Chapter 4

Conclusion

In ab initio SCI* computations, two-electron integral computation is one of the major
time conswnning steps. hmproving the two-electron integral part of the code is vervy
important for the improvement of SCIT computation timing. This rescarch focuses on

the improvem t of the MUNgauss code in timing, organization, and readability.

The Organization and readability of two-clectron integral code in MUNgauss has been
improved using new Fort 1 90/95 features. Introduction of specialized subroutines
reduces the memory usage, and improves the computation timing. Specialized sub>-
routines do not follow all the steps of the generalized subroutine, there by saving
time when computing less complicated types of integrals. Average improvement of
the timing with the introduction of nine subroutines to compute ssss to dddd tvpe
integrals is abe 1 10%. With the increasing complexity of the specialized subroutines,

improvernent gained with the addition of specialized subroutine is reduneed.

Three unique bloeks of integrals, IJIKL. IKJL. and ILJK. for a given set of indices
were computed in parallel, using OpenMDP. About 25% average improvement in SCE
timing achieved for test cas containing atoms from the third and fourth row of the
periodic table, while little iimprovement is observed with large test cases containing
more atoms from the first and second row of the periodic table. If the workload

performed in the parallel sections is aall. the overhead of the parallel directives can

19

exceed the gain achieved by parallel processing. Large overhead compared to the

work done on the processors explains the smaller improvenment for test cases with

comparatively more frst and second row elements.

As future research, parallelization can be moved up to the atom shell level using
OpenMDP loop selieduling. This increases the amount of work done on the processors,

which should improve the timing for every test case.

Appe: dix A

Two-Electron Integral for s 1ype

runctions

Starting from eq.(1.72), two-electron integral cquation for s tvpe functions can be

derived as follows. Given by hy + Q and hy — h, + P, we obtain

(i — / / R W R exp(—plhg — Dy - PQ,)?)
Jo

0

x exp(—¢;(h,)?) x (’Xl)(—fz(llQ)g)(lli|(”lg (A1)
Since ('xp(—pmi) does not depend on fip and hy, it can be taken out of the integral.

4~ explpan) [W el R - 2070,

0

~
/ Rt expl (oq k/;)h;‘:, v 2p0Q b + 2phhg)dhy dhy (A.2)
Jo
In the case of 5 type functions. Ay — 4y — my, — ny — 0 where, b — vy or .
I

Therefore, the integral can be solved as follows,

L) = exp(=pPQ) [exo [(o + g = 2070, h,
S0
20, + PO, ~ ,
v ”('%—")—’l] dh, / expl=(c2 +) 2202 (A.3)
2 rp Jo

where Z-=hy plh, + PQ,), (oo + p). The integral over Z has the solution 7 -

, —

v /(o ¢ p) which gives,

(’,(lm(x.sysgs) —(‘X})(——/)I’*Qi) T/(a /))/ (‘xp[(1 /))hf,
Jo
N 2h, :
mmqgw+ﬁll—%iﬂl]wn (AL
€t Iy

The remaining part of the equation can be solved using a similar substitution as

follows,

~
/ exp | —(e; + /))h‘fJ = 2pPQuh, +
0

/)2(’)” 4 I_)(;h)!] (”ll

i (€2 + p)
> , _ 2hE 4 P 1(i +2070,00),
- / exp [=(er + p)hs = 2pP0Qh, F/ pHm I ALY dh,
0 (€2 + p)

o _ * pih? ,)21_’(5,2 2070, Q)
- exp | =(ep + p)hd = 2pPQ,h, + L. - “| dh
/ R T Rl

r 2412 g2 T
x O Fples top)—pr)he R 21 20°h,P(
B / exp (G Fpdea tp) = p7)hy 2 POy + Qe 7h,IPQ, Jh,
0 (2 tp (2t p) (2 tp)
WT0 /x (e v oMes b p) = 02 on
- CexXp N ex —_— = =2p A
Plic im0y 2 £ p pent

20%h, PQ)
£ l——’l ")"} dh,
{c2 1 p)

' [2P0} /’“ ' [(e FoMes b oo) — /)2)11;“: 20l20), h (gt p)
- CXD oxXp - &
[\t o] Jo (2t p (2t p)

9 2/ Era)
+ /’)I‘l (V)h ll}l[
(€2 t p)

27O | > (0t e b p) ="M 2020, D0, + 200, 7Q, ¢
—exp |/ exp | —
(¢ +p) ta+p (¢

2P0; o o F G e 200 PO,
S ey {<_< el 2y 2,,(_}(,,” (A5)
(24 p) |)y (3 + p) (ta 4 p)

Eq.(A.5) is simplified by introducing M, where f is defined as:

‘[_I /)[)—thg
A » (12 + (61 +e2)p)

2 S
pr P2 2000, ¢,

= M= :
(e H (o Fa)p)? (et (o ta)p)

2
P

N (crea b (0t «2)/))‘”2 _ (eyes + (¢ # f))/)/z Hz/’—(,,);t:})
Gt p e b op (‘1*2 +oleyg f'.))l’)(fz b /’)
2000« 2y,
(e2 t p)

By introducing the above term into eq.(A.H), the following expression is be obtained:
A 14 1

TN 2P0
(’,(,H’(s.ws) exp L1} exp GRAYE
(24 p) (rer + (1 +e2)p 2t p)

/'\‘ oxp [A(flf;’ t{at f:)/))f/f:} 07
Jo '

(2t p)
—_))
1)2/)(’ PPy 2
(/'(l")('qslqs) —_ (\xp ﬁ } _—/ [
(2 b p aa Ela fa)pites tp)

/\(\p l: [SEP) + (f] + (‘3)/))ij| (IZ
(c24 p)

20 (e + ~ p)Z°
U1 (ss85) — exp r °)' Lt exp | — lacz £ {1 1 c2)p) dzZ (A.6)
(1(271' [f()/) (f2+/')

By integrating the above expression, the following is obtained.

ne (1(2[)—(2;/)
. - OXp
e 4 (o 1)) Gt (o b alp

U (ssss) =

(A7)

By replacing the expression for [, into the eq.(1.70), the following, form of the two-

cleetron integral (ss]ss) can be obtained:

Kphor L APQY + PQ; 1 PQ;
(ss]98) = Lo < / p rexp MIEIUC A 2z)p dp (AR)
lrea 1 (e Fea)]z Jo et (ot Glp
,-nl'/) } e 5 9 772
(s8]ss) — — Pnenm » M exp el dp (A.9)
. / I /
[(HQF(fl+t3)j2.n tiea (e Fealp

In the above equation 1+ [ple) + e2)]/c¢o term is replaced by (1 = 12) ', Therefore
the upper limit of integration changes from infinity to 1. and lower limit does not

change.

1. /)(tl }”'w\ FrFy
=+ —— and o= epea b opleg to€a
(l_’l) LR ‘ l—f*’ e /(‘l f)
(1eat? epeat(l —12) 2
= 5 0 and —-dl = dp
(tr t)L =17) Lt

Using these equations in eq.(A.9) gives,
{ | 124

/\'p/\'nvrg ! fltglz -1
(S'NIHS) = 3 B
[ag]z o Lot e)(l =6
[

R T
exp Mol 7) 2acel) (A.10)
ILLCIJ"S (o
I'nl\’ 1Tr::€ ' .,[’—()2f2
(ss|ss) — v T/ oxp Cif2 i (ALL)
crea(og Fea)? o €+ €2

The final form of the simplest two clectron integral (ssss) is:

N —; E1tog s ’2
(s5]s9) R, (_‘ (A.12)

creafeg)z AR

Appendix b

Module mod_idfcle

Code for the parallel implementation of mod_idfclc is given here.

MODULE mod_idfclc

1 ek ok s s ok koK koK K0k K koK K0k ok ok ok ok 2k ok 3k ok K K ok ok 3kl ok ok Sk Kk kK K K 3k ok 3k ok 3k ok ook kK ok o ok kK o ok ok o o ok

! Date last modified: July 2006 Version 2.0 x
| *
! Description: module used by t! DF two-electr: integral *
! parallel implementation *

1ok e o o ok 3k o o ok ok ok 3k ok ok 3k ke kK ok K K 3k 3k 3 K 3k K 3 3 Kk 3Ok Ok Ok Ok Okl ko 3K ok 3 3K Ok K ok K ok 3k sk 3k sk ok ok o ok o ok o ok
'Modules:

USE program_r ¢ r

USE program_de¢ 1wl

USE constants

USE type_molecule

USE type_basis. :t

USE i2e_module

IGlobal variables from module_df _integrals
'Variables that gets init: lized in separate threads
'are declared as thread private.
integ: :: LAMAX
integer,private ::LBMAX,LCMAX,LDMAX !SHARED
'$0MP THREADPRIVATE(LBMAX,LCMAX, LDMAX)
integer:: MTYPE,ICASE !Iand ICASE do not belong
integ« :: LENTQ
integer:: IGEND
integer,private: : JGEND,KGEND, LGEND
'$OMP THREADPRIVATE(JGEND,KGEND,LGEND)
integer:: IGBGN
integer,private: : JGBGN,KGBGN, LGBGN
'$OMP THREADPRIVATE (JGBGN,KGBGN,LGBGN)
integer,private:: CCAsav ,CCBsave,CCCsave,CCDsave
1$0MP THREADPRIVATE(CC, ve,CCBsave,CCCsave,CCDsave)
integer,prival : AOI,AD0J,A0K,AQL !'Used in IDFCLC1 and 2
logical:: LTWOINT
logic: :: Lsort
double precision,dimension(:),allocatable :: TJKLS
double precision,dir 1sion(:),allocatable :: IKJLS
double prec: ion,d lon(:),allocatable :: ILJKS

double precisi d nsion(:),allocatable :: TQ

'public variables used in I2E_SPDF,« ' and specialized subroutines
double precision:: XA,YA,ZA
double precision,pr .te::XB,YB,ZB,XC,YC,ZC,XD,YD,ZD !shared
'$OMP THREADPRIVATE(XB,YB,ZB,XC,YC,ZC,XD, YD, ZD)

integer:: Irange

CONTAINS!>>

subroutine I2ER_SPDF

!***

! Date last modified: Septemb 23, 1996 Version 2.0 *
! Author: R.A. Poirier *
! Description: *

Ao AR KR KR KK KK KKK JOR R KK KK KK K K koK ok KK o ko o ook ook o ok ok ok sk ok ok ok o oo K ook oo o o

| Modules:

implicit none
|
! Local Scalars
logical Ldebug
integer i
call PRG_manager (’en >, ’I2ER_SPDF’, 'UTILITY’)

Ldebug=Local _Debug

include “start_atmshl_loop"

! parallel section, variables are shared by default, and

! number of threads used : d o3t

! Only if tI ICASE : g iter than 2 computation is done in parallel.

! Number of threads used is three.

'$0MP PARALLEL DEFAULT (SHARED) IF(ICASE>2) NUM_THREADS(3)

'$OMP SECTIONS

!$0MP SECTION
call DEF_shells (Jatm ~ ., Kato "1, Latmshl, Js| .1, Kshell, Lshell)
if ((ABEXP+CI ~ P).1le. ‘pcut)then

s]
x

1 $0MP

1 $0MP

1 $0MP
t$OMP

call I2ER_GSPDF(IJKLs)
end if
SECTION
1f (LTWOINT) then

call DEF_shells (Lat: 11, Jatmshl, Katmshl, Lshell, Jshell, Kshell)

if ((ABEXP+CDEXP) .. I2E :pcut)then
call I2ER_GSPDF(ILJKs)

end if

end if

SECTION

if (Mtype.eq.1)then

call DEF_shells (} :mshl, Jatmshl, Latmshl, KsI

if ((ABEXP+CDEXP) .. I2E_expcut)then
call I2ER_GSPDF(IKJLs)

end if

end if

END SECTIONS

END PARALLEL

ISTART=Basis%sl .1(. 1ell)%XSTART
IEND=BasisYshell(Isl L1)%XEND
Trang. END-ISTART+1

JSTART=Basis%shell(Jshell)%XSTART
JEND=Basis%shell(Jshell)’XEND
Jrange=JEND-JSTART+1

KSTART=Basis' .1{Kshell)%XSTART
KEND=Basis/,] .1) END
Krange="""D-KSTART+1

1, Jshell, Lshell)

LSTART=BasisY%shell(l 1el11)%XSTART
LEND=F iis%shell(. 1el1)%XEND
Lrange=LEND-LSTART+1
LENTQ=Irange*Jrange*Krange*Lrange
if (Mtype.eq.1)then

Lsort=.false.
end if
if (ICASE.eq.2)Lsor false.
if (IC? ..eq.6)Lsor false.

lif (Mtype.eq.3)tl 1

lwrite(6,’ (4i6)’)Iatmshl

tdo i= 1,lentq

I write(6,’ (3F20.6)’)IJKLs(i),ILJKs(i),IKJLs(i)
I end do

lend if

if (Lsort)then

call SORTALL(IJKLs,ILJt IKJLs,TQ,Irange,Jrange,Krange, &

Lrang LENTQ,MTYPE)

end if

call I2E_SHLN
!
! Note that IKJLS and ILJKS are switched
end do Lloop ! Latr 1
end do Kloop ! Katmshl
end do Jloop ! Je hl
end do Iloop ! Iati 1

! d of loop over

60

! End of routine I2ER_SPDF
call PRG_manager («<it’, 'I2ER_SPDF’, ’UTILITY’)
return

end subroutine I2ER_SPDF

subroutine I2ER_GSPDF(IJKLs)

1ok g o ok o ok o ok ok o ok o ok ok ok sk ok ook ok ok o i ok ok sk ok R ROk Kok sk ok ok Kok sk ok ok K i ok ok kK oK 3K ok ok Kok ok koK ok ko ok K ok ok

! Date last modif 1: ¢ » ber 23, 1996 Version 2.0 *
! Author: R.A. Poirier *
! Description: *

15k s o o ok e ok ok ok ok kB ok ok ok K ok ok K ok K ok K ok K ok 3k ok ok ok i ok ok sk ok ok ok k3 K Kk ok ok ok koK ok ok ok o ok ok ok ok ok ok ok ok ok Kok K

I Modules:

implic : none

! Input array

double precision, .ion (MAXINT), INTENT(INOUT) :: IJKLS
! Local Scalars
integer :: COR_IND
logical :: Ldebug
teger :: IV,I.._.,.._..DM,KENDM,LENDM,NJKL,NKL,NJK
integer :: IX,IY,1Z,JX,JY,JZ,KX,KY,KZ,LX,LY,LZ
integer :: IGAUSS, JGAUSS,KGAUSS,LGAUSS
integer :: IAO,),KAO,LAO
integer :: IZERO, IERROR
integer :: CCA,CCB,CCC,CCD
integer :: INDIX(20),INDIY(20),INDIZ(20),INDJX(20),INDJY(20)
integer :: INDJZ')),INDKX(20),INDKY(20), INDKZ(20)

61

INDLX(20),INDLY(20),INDLZ(20)

double

double

double

double

double

double

double

double

double

double

precision ::

precision ::

precision ::

precision ::

precision ::
precision ::
precision ::
precision ::

precision ::

I 11)
XAP,YAP,ZAP,XBP,YBP,ZBP,XCQ,YCQ, ZCQ, XDQ, YDQ, &
ZDQ,PQX,PQY,PQZ,RPQSQ
A2DF(174),CCPX(48),CCPY(48) ,CCPZ(48),CCQX(48), &
CCQY (48) ,CCQZ(48)
G2DFX(13),G2DFY(13),G2DFZ(13),XIP(256),YIP(256) ,&
ZIP(256)

TP(7) ,WP(7) !private

CC1,CC2,CC3 !'moved from the module DF_int
AS,BS,CS,DS 'moved from module_DF_int

RHO, TWORHO,DXYZ,ZTEMP ,RHOT?2, ZCONST

EPAB,EPABI ,EPABA, EPABB,EQCD,EQCDI,EQCDC, &
EQCDD, EABCD,EP2I ,EABCDI

precision, dimension(:), allocatable :: TQprim

DATA INDIX/0,64,0,0,128,0,0,64,64,0,192,0,0,64,128,128,64,0,0,64/, &
INDIY/0,0,64,0,0,128,0,64,0,64,0,192,0,128,64,0,0,64,128,64/, &

INDIZ/0,0,0,64,0,0,128,0,64,64,0,0,192,0,0,64,128,128,64,64/, &

INDJX/0,16,0,0,: .0,0,16,16,0,48,0,0,16,32,32,16,0,0,16/, &
INDJY/0,0,16,0,0,32,0,16,0,16,0,48,0,32,16,0,0,16,32,16/, &

INnJZ/0,0,0,16,0,0,32,0,16,16,0,0,48,0,0,16,32,32,16,16/, &

INDKX/0,4,0,0,8,0,0,4,4,0,12,0,0,4,8,8,4,0,0,4/, &
INDKY/0,0,4,0,0,8,0,4,0,4,0,12,0,8,4,0,0,4,8,4/, &
INDKZ/0,0,0,4,0,0,8,0,4,4,0,0,12,0,0,4,8,8,4,4/, &

INDLX/1,2,1,1,3,1,1,2,2,1,4,1,1,2,3,3,2,1,1,2/, &
INDLY/1,1,2,1,1,3,1,2,1,2,1,4,1,3,2,1,1,2,3,2/, &
I
XINT/1.0D0,2.0D0,3.0D0,4.0D0,5.0D0,6.0D0,7.0D0,8.0D0, &

tz/1,1,1,2,1,1,3,1,2,2,1,1,4,1,1,2,3,3,2,2/, &

62

end if

if (LRCD) then

EQCDC=CS*EQCDI
EQCDD=DS*EQCDI

XCQ= EQCDD* (XD-XC)

YCQ= EQCDD*(YD-YC)

2CQ= EQu.ox(__ _.)
XDQ=-EQCDC* (XD-XC)
YDQ=-EQCDC* (.. -YC)
ZDQ=-EQCDC*(ZD-ZC)

call GETCC_XYZ (CCQX, CCQY, CcCQzZ, XCQ, YCQ, 2CQ, XbQ, YDQ, &
ZDQ, LCMAX, LDMAX)

end if
PQX=(CS*XC+DS*XD)*EQCDI—(AS*XA+BS*XB)*EPABI
PQY=(CS*YC+DS*YD) *EQCDI- (AS*YA+BS*YB) *EPABT
PQZ=(CS*ZC+DS*ZD) *EQCDI- 3*ZA+BS*ZB)*EPABI
’ RPQSQ=PQX*PQX+PQY*PQY+PQZ*PQZ
EABCD=EPAB*EQCD
EABCDI=0NE/ (EPAB+E(
RHO=EABCD*EABCDI

| ZTEMP=PIconst*DEXP(~E! .RG)*DSQRT(EABCDI)/EABCD

EP2I=0NE/ (EPAB+EPAB)
call IJKLA2 (A2DF, LABMAX, I MAX, EQCD, EP2I)

61

DXYZ=RHO*RPQ3Q
call RPOLX (NZERO, DXYZ, TP, WP)
TWORHO=RHO+RHO

do IZERO=1,NZERO
RHOT2=TWORHO*TP(I___.0)
ZCONST=ZTEMP*WP (I1ZERQ)

if (ZCONST.1le.I2E_PQCUT2)cycle
G2DFX(1, INE

G2DFY (1)=0NE

G2DFZ(1)=ZCONST

XIP(1)=0NE

YIP(1)=0NE

ZIP(1)=G2DFZ(1)

IF(LPQMAX.GE. 2] __EN

G2DFX (2)=RHOT2*PQX

G2DFY (2)=RHOT2+PQY
G2DFZ(2)=RHOT2*PQZ*G2DFZ(1)

IF(LPQMAX. ._.3, ...EN
do IV=3,LPQMAX

G2DFX(IV)=RHL __x(PQX*G2DFX(IV-1)-XINT(IV- =~ *G2DFX(IV-2))

G2DFY (IV)=RHOT2* (PQY*G2DFY (IV-1)-XINT (IV-2)*G2DFY(IV-2))

G2DFZ (IV)=RHOT2* (PQZ*(" FZ(IV-1)-XINT(IV-2)*G

end do

end if ! LP(QMAX.GE.3

IF(LRABCD) THEN

FZ(IV-2))

call ABCD4C (" F, (., CCQX, CCPX, XIP, LAMAX, LBMAX, &

LCMAX, LDMAX)
call ABCD4C (A2DF,
LCMAX, LDMAX)
call ABCD4AC (A2DF,
LCMAX, LDMAX)

else IF(LRCD)THEN
call AACD3C (A
LDMAX)
call AACD3C (A2DF,
LDMAX)
call AACD3C (A2DF,
LDMAX)

else IF(LRAB)THEN
call ABCC3C (A2DF,
LDMAX)
call ABCC3C (A2DF,
LDMAX)
call ABCC3C (A2DF,
LDMAX)

else
call AABB2C (A2DF,
call AABB2C (A2DF,
call AABB2C (I =,

end if ! LRABCD

end if ! LPQMAX.GE.2

G2DFY,

G2DFZ,

G2DFX,

G2DFY,

G2DFZ,

G2DFX,

G2DFY,

G2DFZ,

G2DFX,

G2DFY,
G2DFZ,

CCQy, CCPY, YIP, LAMAX, LBMAX, &

CCQZ, CCPZ, ZIP, LAMAX, LBMAX, &

CCQX, XIP, LAMAX, LBMAX, LCMAX, &

CCQY, YIP, LAMAX, LBMAX, LCMAX, &

CCQzZ, ZIP, LAMAX, LBMAX, LCMAX, &

CCPX, XIP, LAMAX, LBMAX, LCMAX, &

CCPY, YIP, LAMAX, LBMAX, LCMAX, &

CCpZ, ZIP, LAMAX, LBMAX, LCMAX, &

XIP, LAMAX, LBMAX, LCMAX, LDMAX)

YIP, LAMAX, LBMAX, LCMAX, LDMAX)
ZIP, LAMAX, LBMAX, LCMAX, LDMAX)

! Commence loop over atomic orbitals.

INTC=0
JENDM=JEND
KENDI END

66

do IAO=ISTART,IEND
IF(Iatmshl_EQ_Jatmshl) JENDM=IAQ
IF(IJIJ)KENDM=IAQ
IX=INDIX(IAQ)
IY=INDIY(IAOQ)
I NDIZ(IAO)
do JAO=JSTART, JENDM
JX=INDJX (JAD)+IX
JY=INDJY (JAQ)+IY
JZ=INDJZ(JAQ)+IZ
do KAO=KSTART,! __ DM
LENDM=LEND
IF(Katmshl_EQ_Latmshl) LENDM=KAD
“(IJIJ.AND.TAO.EQ.KAQ)LENDM=JAO
KX=INDKX (KAQ) +JX
KY=INDKY (KAQ)+JY
KZ=INDKZ (KAQ) +JZ
do LAQ=LSTART,LENDM
LX=INDLX (LAQO)+
LY=INDLY (LAQ) +KY
LZ=INDLZ(LAQ) +KZ
INTC=INTC+1
TQprim(INTC ‘"Qprim(INTC) &
+(XIP(LX)*YIP(LY)*ZIP(LZ))
end do ! LAO
end do ! KAD
end > ! JAO
end do ! IAO
end do ! IZERO

end if ! _..PARG.__.____« _ut

67

! Apply contraction coeffic 1its.

!
NJKL = Jrange*Krange*Lrange
NKL = Krange*Lrar :

NJK = Jrange*Krange

INTC = 0
COR_INDEX = 0

JENDM = Jrange

KENDM = K: ge
do IAO=1,Irange
CC1=BASISccb: »(CCA+IAO-1)
IF(C mshl_EQ_Jatmshl)JENDM IAOD
IF(IJIJ)KENDM IAD
do JAO=1, DM
CC2=CC1*BASIS},ccbyao(CCB+JAD-1)
do KAl . ,KENDM
CC3=CC2+BASISYccbyao(CCC+KAD-1)
LENDM=Lrang
IF(Katmshl_EQ_Latmshl)LENDM=KAO
IF(IJIJ.AND.IAO.EQ.KAQ)LEND 'AD
do LAO=1,] [DM
+1
COR_INDEX=(IAO-1)*NJKL+(JAD-1)*NKL+(KAO-1)*Lrange+LAQ
TJKLS(COR_INI ")=IJKLS(COR_INDEX) &
+TQprim (INTC) *CC3*BASISYccbyao (CCD+LAO-1)
end do ! LAOD
end do ! KAO
end do ! JAD

63

end do ! IAQD

CCD=CCD+Lrange
end do Dloop ! | 1uss
CCC=CCC+Krange
end do Cloop ! Kgauss
CCB=C' +Jrange
end do Bloop ! Jgauss
CCA=CCA+Irange
end do Aloop ! Igauss

deallocate(TQprim, STAT=IERROR)

! End of loop over gaussians

!

! End of routine I2ER_GSPDF
return
end subroutine I2ER_GSPDF

end module mod_idfclc

69

Bibliography

1]

B3l

]

6]

7]

Szabo, A. and Ostlund, N, S. (1996). In Modern Quantum Chomistry. 2nd
Edition, Dover publications Inc., pg 39 11, pg 13 16, pg L11 L1 pg 136 137,
pe 145 116.

Dudel, R., LeRoy, G., Peeters. D.and Sena, M. (1983). In Quantum Chemistry.

John Wiley and sons, New York, pg 176 199.

Boys, S.F. (1950). Electronic wavefunctions, 4 General method of calculation

for stationary states of any molecular system, Proc. R. Soc. London, pg 512 H5.1.

Obara, 5. and Saika, A. (1986). Efficient recursive computation of molccular
mtegrals over Cartesian Gaussian functions, J.Chem. Plhys. vol.81, pg 3963

3073.

Ryvs, J. 1 Dupuis, M. (1976) Numerical Integration using Rys Polynomials,

Journal of Comput.Chem.,vol 21, pg 111 165.

Rys, J.,Dupuis, M. and King, H..F. (1976) Numerical Integration using Rys

Polynomials, Journal .+ Cor _ut.Cheme,vol 21, pg 111 165,

Rys, J..Dupuis, M. and King, H.F. (1983) Computation of Electron Repulsion
Integrals using Rys Quadreture method, Journal of comput.Chem,vol 1, No. 2,

pg 151 157,
Redwine, C. (1995) Upgrading to Fortran 90, Springer, pg 1 100.

Sleightholme, J., Inf ition Sc ces and Systems. " new features of Fortran

95, 22nd May 2000.

L0] ChandracR., Dagum, L.. Kohr. D., Maydan. D.. MceDonald J. and Menon,
R.(2001) Parallel Progranirming in Open AP, Morgan Kaufmann Publishers. py
1h 200.

(1] Bulle JNL(1999) Mesuring Synchronisation and Scheduling OQverheads o
Opend P, Proceedings of the First Europeaun Workshop on OpenMP, Lund,
Sweden, pg 99 105,

