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Abstract 

Yell0\,.1ail flounder (Limandaferruginea) is a candidate species for cold-water 

aquaculture development in Atlantic Canada. However. mal-pigmentation and high 

larval mortality are still major obstacles to the successful culture of this species. 

Starvation due to inadequate nutrition is believed to be a major cause of this mortality. In 

particular. lipid nutrition has shov.n significant effects on the early development in a 

number of marine species. This study is the first examination of the dietary lipid 

requirements of yellov.1ail flounder larvae. 

Specifically. marine fish require the dietary polyunsaturated fatty acids 

docosahexaenoic acid (DHA. 22:6n-3), eicosapentaenoic acid (EPA. 20:5n-3) and 

arachidonic acid (AA. 20:4n-6) for normal grov.th and development. Consequently. in 

Chapter Two (Part A) an experiment was designed to study the role of dietary ratios of 

these fatty acids on the early growth. survival, lipid composition. and pigmentation of 

yellov.tail flounder. Rotifers were enriched with experimental emulsions with high 

concentrations ofDHA DHA+EPA. or DHA+AA orv.ith a control (no DHA, EPA or 

AA) emulsion. After four weeks. larvae fed the high DHA diet were significantly larger 

(9 7 ± 0.2 mm. p<0.05) and had higher survival (221 ± 0.4'%). while larvae fed the 

control diet were significantly smaller (73 ± 0.2 mm. p<0.05) and showed lower survival 

(5 2 ± 1.9%). Larval lipid class and fatty acid profiles showed significant differences 

(p<0.05), with fatty acids reflecting dietary levels in the high PUF A diets. The incidence 

of mal-pigmentation was higher in the high DHA+AA diet (92%) than in all other 
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treatments (<64%). It was concluded that yellowtail larvae require diets that are highly 

enriched ~ith DHA while elevated dietary AA exerts negative effects on larval 

pigmentation. 

In Chapter Two (Part B) I examined the changes in gro\\'th and lipid composition 

that occurred when larvae of differing nutritional status were fed one diet of enriched 

Artemia. Significant changes in larval lipid class and fatty acid composition were 

observed a tier just two weeks of feeding on enriched Arremia. Control larvae showed a 

period of "lipid recovery· while animals fed all other treatments showed a period of 

decreased lipid unsaturation. However. all larvae demonstrated a dramatic increase in 

size despite decreased dietary highly unsaturated fatty acids (HUF A). Therefore. it was 

concluded that high levels of HUF A may not be as essential during later larval 

development as during initial stages of first-feeding. 

In Chapter Three the lipid composition of mal-pigmented (MP) and normally 

pigmented (NP) newly settled yellowtail flounder were compared in order to elucidate a 

possible connection between lipids and pigmentation development. NP fish were found 

to be significantly larger than MP fish (p=0.04) at the time of 100% settlement. Higher 

relative amounts oftriacylglycerols were found in NP fish (p=0.02) while MP fish had 

higher relative amounts of phospholipids (p=0.008). NP fish had higher relative amounts 

of DHA in the polar lipids of the body (p=0.03) and in the total lipids of the eye (p=0.04) 

than did MP juveniles. These data support previously proposed theories for the 

importance of DHA in pigmentation development. 
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Chapter I - General Introduction 

Human consumption of seafood is increasing in part due to its positive effects on 

human health. Beneficial effects of dietary seafood. relating especially to omega-3 fatty 

acids. are now known for human cardiovascular disease. hypertension. auto-immune 

disorders. and infant neural development (Leaf & Weber. 1988: Newton. 2000: Arts et 

aL 200 I). The United Nations has predicted that in 20 I 0, global demand for seafood 

products will be I 05 to II 0 million tonnes (MT). However, this demand cannot be met 

from the wild fishery, whose production has plateaued at 90 MT. In contrast, aquaculture 

has shown dramatic gro\\th during the past decade from 13 MT to a projected 3 5 MT in 

the year 20 I 0 (Report on the State of World Fisheries and Aquaculture. United Nations 

Publication, FOA 1998) 

Despite its vast aquatic environment. Canada is still a minor contributor to world 

aquaculture production. During the past l5 years. the increase in aquaculture production 

has been significant with reported production levels of0.003 MT and 0 .1 MT 

respectively in 1986 and 1999 (Canadian Department of Fisheries and Oceans statistics). 

As the 1999 Canadian aquaculture production represents less than 0.3% of the estimated 

2010 world demand (35MT). there is a tremendous opportunity to be exploited by the 

expansion of this industry. 

Atlantic Canada's fishing industry has been economically devastated due to the 

collapse of many ground fish stocks (Hutchings et al.. 1997: O ' Rielly. 2000). This region 

has many promising qualities relating to future aquaculture development such as: 

traditional fisheries knowledge, a large skilled employment base, a vast coastal 

environment. and pre-established seafood markets. Consequently, there is a pressing 



need for research into the development of nev.- aquaculture industries The Canadian 

Department of Fisheries and Oceans reported that in 1999 over 98~/o of the total national 

aquaculture production was composed of salmonids. blue mussels. and American oysters. 

Clearly. diversification and increased research into candidate species suited to our cold

water marine environment is necessary 

1.1 Yellowtail Oounder biology and aquaculture 

Yellm.\1ail flounder is a right-eyed small-mouthed flatfish ofthe order 

Pleuronectiformes (Scott & Scott. 1988) This species is believed to have potential in 

cold-water aquaculture due to its established foreign market. high filet-to-body ratio. lo-~ 

commercial supply. and relatively high gro\.\1h rates at low temperatures (Brown et al. 

1995; Brown. 2000) Since 1994. research into yellowtail flounder culture has been 

ongoing at the Ocean Science Centre. Logy Bay. Newfoundland. Most of these studies 

have focused on aspects oflarval rearing (French. 1995: Puvanendran & Brown. 1995: 

Copeman. 1996: Morris. 1997; Rabe & Bro\..,·n. 2000). juvenile husbandry and nutrition 

(Whalen. 1999; Purchase et al.. 2000). and control ofbroodstock reproduction (Manning 

& Crim. 1998) 

Yello\.\tail flounder inhabit the continental shelfofthe Northwestern Atlantic 

Ocean from Labrador to Chesapeake Bay and are normally found at depths between I 0 

and 100m (Brodie & Walsh, 1994). They have benthic adult and juvenile stages and a 

pelagic larval stage. Adults and juveniles co-occur on sandy substrates mainly on the 

Southeastern Shoal of the Grand Banks. Larvae are also found in high numbers on the 

Southeastern Shoal. which is now believed to serve as a nursery area (Walsh. 1992) 
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Historically. the highest concentrations of adult yellowtail were found in N AFO 

regulatory divisions 3L. 3N. and 30. with 3N being the most important in terms of 

fishing effort. From 1975 to 1995 yellowtail flounder showed a dramatic decline in 

abundance which strongly correlated with increased commercial catches. particularly 

during 1985 and 1986 (Brodie et al.. 1998). Reductions in abundance resulted in a 

moratorium on commercial fishing from 1994 to I 997 prompting an interest in 

aquaculture development. 

Yellov.tail flounder are batch spawners and in captivity produce on average 14-

22 batches per season with a typical total production of 550 000 eggs (Manning & Crim. 

1998). Eggs are small. ranging between 0.7 and 1.0 mm in diameter (Laurence & 

Howell. 1981 ; Tilseth. 1990) with larvae hatching at approximately 65-degree days. 

Yellov.taillarvae are underdeveloped. small (2 0-3 5 mm}. and have limited yolk reserves 

at hatch. Therefore, providing the correct nutrition to these larvae is both important for 

larval survival and a challenge to the aquaculture industry. 

1.2 The importance of lipid nutrition in marine larviculture 

A major obstacle to the successful mass culture of marine finfish species is 

extremely high mortality during the larval phase. Starvation is thought to be a primary 

cause of this mortality both in the wild and under culture conditions (Hunter. 1981 ; 

Lavens et al. . 1995). Due to the limited amount ofyolk present at the time of first

feeding. both the quantity and quality of food available are ofvital importance The 

switch from endogenous to exogenous feeding is termed a ·critical period' due to high 

levels of mortality which are concentrated over this short period of time (May, 1973 ). If 
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larvae do not receive proper nutrition during this period they pass a ' point of no return· 

and undergo irreversible starvation (Hunter. 1981) 

Factors such as total protein. total lipid. and various vitamins and minerals are 

important in defining dietary quality for first-feeding marine larvae (Watanabe & Kiron. 

1994; Ronnestad et al.. 1999). However. during the past three decades. certain 

polyunsaturated fatty acids (PUF A) have been shown to play a crucial role in the early 

development ofmarine fish larvae (Bell et al.. 1986; Watanabe. 1993; Sargent et al., 

1995; Takeuchi. 1997; Sargent et al.. 1999) Also. providing correct relative and absolute 

amounts of dietary PUFA affects the early survival and development in a number of 

marine species (Rainuzzo et al., 1997). 

Lipids are generally defined as a group of compounds that are soluble in organic 

solvents but are typically insoluble in water. They are often classified by the presence or 

absence of fatty acids and also by differences in polarity. Fatty acids are the simplest 

lipids and are found as constituents of other lipid classes such as wax esters, 

triacylglycerols and phospholipids Fatty acids are characterised by their hydrophilic 

carboxyl head group and hydrophobic hydrocarbon tail Saturated fatty acids (Sf A) have 

a hydrocarbon tail without double bonds while monounsaturated fatty acids (MUFA) 

have one double bond and polyunsaturated fatty acids have two or more double bonds 

(PUFA). In aquaculture. highly unsaturated fatty acids (HUFA) usually refers to those 

with four or more double bonds. The simple nomenclature A:Bn-C is often used to 

describe the structure of fatty acids where A refers to the number of carbon atoms, 8 

refers to the number of double bonds and C refers to the position of the first double bond 



with reference to the methyl end of the molecule. Figure 1.1 shows examples of these 

different types of fatty acids and demonstrates this simple nomenclature 

Lipids play a vital role in both cell membrane function. energy storage and as 

substrates forthe formation of biologically active molecules Parrish (1988) described 

the lipid classes commonly found in the marine environment both in dissolved and 

particulate matter. Figure I 2 illustrates examples of the lipid classes which are most 

commonly discussed in aquaculture: in order of increasing polarity these are wa.x esters 

("WE). triacylglycerols (TAG). free fatty acids (FFA). sterols (ST), and phospholipids 

(PPL) 

Wax esters (WE) are an important energy reserve for copepods. which are the 

dominant prey for many species of marine lan·ae in the wild Copepods in high latitudes 

can contain greater than 80°o of their lipids as WE (Kattner & Krause. 1987) TAG are 

the principal form of endogenous energy storage in fish and in enriched live-foods. while 

FFA are normally found in small amounts (<10% oftotallipid) in both live-food and 

marine larvae. Generally, FFA have been viewed as products oftissue breakdown due to 

poor storage of samples (Parrish. 1988. Arts et al.. 200 I). ST play a major structural role 

as components of cell membranes and are also used as precursors for steroid hormones 

(Nes. 1974) PPL are also important in maintaining cell membrane structure. however. 

they also provide vital energy reserves for the early development of certain marine 

species (Fraser. 1988) 

PUFA ofthe n-3 and n-6 series. docosahexaenioc acid (22:6 n-3. DHA). 

eicosapentaenoic acid (20:5 n-3. EPA). and arachidonic acid (20:4 n-6. AA) are essential 

for marine fish because they require them for normal growth and development but 



A:Bn-C 
A=numbcr of carbon 
B=nwnbcr of double bonds 
C=posllJon of double bond rclaU\'C to methyl end 

Saturated fatty acid, 16:0 

Monounsaturated fatty acid. 18: I n-9 

Polyunsaturated fatty acid, 18:3n-3 

Highly unsaturated fatty acid, 22:6n-3 

0 

Figure 1.1: Examples of fatty acid structure and nomenclature 
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Figure 1.2: Lipid classes commonly discussed in aquaculture 
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cannot synthesise them ·de /lm'o · from shorter chain precursors. It was previously 

thought that .:14 desaturase was used to convert 22:5n-3 and 22:4n-6 into 22:6n-3 and 

22:5n-6. respectively (Sargent. 1995). However, Figure 1.3 shows the current views on 

the pathways for the elongation and desaturation of PlJF A of the n-3 and n-6 series. It is 

now believed that :l6 and .15 are used to produce 24:6n-3 and 24:5n-6 which are then 

shortened to 22 6n-3 and 225n-6 respectively by P-oxidation (\'oss et aL 199 L Buzzi et 

al.. 1996). 

The differing abilities of marine and freshwater species to chain elongate and 

desaturate shorter chain dietary precursors into longer chain HUF A can be predicted by 

examining their natural diet. The marine environment is characterised by elevated levels 

of long chain fatty acids (with 20 and 22 carbons) of the n-3 series. which are produced in 

large amounts by marine algae Marine phytoplankton may contain approximately 20% 

oftheir dry weight as lipid. of which up to 50°·o ofthe fatty acids may be n-3 HUFA 

(Sargent et al.. 1985). Zooplankton. which feed heavily on phy1oplankton. maintain high 

levels ofthese n-3 HUFA in their energy reserves (Evjemo & Olsen. 1997) In contrast. 

freshv .. ·ater ph~1oplankton have high levels of !8:3n-3 and 18:2n-6 while having low 

levels of C20 and C22 fatty acids. The terrestrial contribution of lipids to the freshwater 

environment is significant and is also characterised by high levels of 18:3n-3 and 18:2n-

6. Therefore. most marine species show little ability to chain elongate and desaturate 

C 18 PUFA because C20 and (22 are present in high amounts in their diet. However, 

freshv;ater fish generally do not have C20 and C22 fatty acids in their diets and therefore 

must synthesise their required amounts from shorter chain dietary precursors. 



A 6 - desatura.~ 

18:3n-3 --•• 18:4n-3 

eloa,_ l 
6 5- desalur.&.<~e 

20:4n-3 --•• 20:5n-3 

eloa,_ l 
22:5n-3 22:6n-3 

elon~a.-.e l i j3-oxidation 

24:5n-3 --••24:6n-3 
6 6 - daatu rlllle 

A 6 - desalu ralle 

18:2n-6--•• l8:3n-6 

elon~.,. l 
6 5 - desalu ra.~~e 

20:3n-6 --•• 20:4n-6 

eloa,_ l 
22:4n-6 22:5n-6 

elon,_ l j jH>ltidation 

24:4n-6 __ ,..,24:5n-6 
6 6 - daaturase 

Figure 1.3: Desaturation and elongation pathways for polyunsaturated fatty acids 
(PUFA) of the n-3 and n-6 series 

(after Voss et al., 1991; Buzzi et al., 1996) 
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Currently. a major challenge to successful marine lanriculture is the production of 

live-feed organisms which is costly. labour intensive. unpredictable. and often provides 

sub-optimal nutrition. However. live-feeds are necessary due to both the small size of 

larvae during first-feeding and their strong reliance on visual cues. Both ofthese issues 

make the formulation of dry diets particularly difficult. although. considerable progress 

has been made in this area (Le Ruyet et al.. 1993; Barrows & Rust. 2000) The two most 

common live-feeds ~sed in marine larviculture are rotifers (8rachio11us plicatilis) and 

brine shrimp (Artemiafrandscana) . Wild zooplankton have also been used successfully 

for the production of marine larvae. particularly in Norway (Olsen et al .. 1999). 

However. wild zooplankton are often unavailable in sufficient quantities and with optimal 

species composition during peak larval production Also. availability is variable due to 

dependence on oceanic conditions 

Hov-;ever. the development of intensive culture techniques for marine copepods 

such as Tishe sp. and Amonardia sp. shows promise ( Stonrup & Norsker. 1997; Stottrup. 

2000) Cultured copepods are able to consen·e DHA and EPA when maintained on a diet 

containing low levels of these fatty acids. They also have a much higher level of n-3 

HUFA present in their polar lipid portion when compared to rotifers and Anemia (Nanton 

& Castell. 1998; Nanton & Castell, 1999). A prevalent postulate in marine larviculture is 

that larval foods should have a similar composition to either fish roe or wild marine 

zooplankton (Sargent. 1995; Sargent et al. 1999). 

Table I. I compares the lipid composition of fish roe from two marine species to 

live-food organisms commonly used in aquaculture Generally. both fish roe and wild 

marine copepods have higher levels of phospholipids and lower overall levels oflipid per 
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Table 1.1: Lipid composition of the roe from two species of marine fish and lin-
foods commonly used for tint-feeding of marine lan·ae. 

~ 

Copepodsi Copepodsl Atlantic Haddock· Enriched Artemia Enriched 
Lipid cod' Roe Rotifers Nauplii7 . IC 

Artemta 
Components Roe ~.6 

Total lipid 
(% drv weight) 13.2 10.7 9-11 21 .2 9.2 19.2 - -
Lipid classes 
(

0 o total lipid) 
Triacylglycerols 12.5 8 3 19 6 55 5 234 76.2 
Sterols 61 9.5 9.3 27 12.5 

.., .., 

.) .) 

Phospho I i pi ds 71 5 70.9 59.6 24 .9 123 57 

Fatty acids 
(

0 o fatty acids) 
16 0 23 .7 27.4 8-12 13 .7 67 20.6 12 0 
18.1n-9 11 .0 4.8 1.0 Ill 22.8 24 .1 
18:3n-3 0 .3 n.d. II 0.6 119 144 
204n-6 (AA) 1.9 1.0 0 .6 0 .7 n.d. 1.6 
20 5n-3 (EPA) 15.3 13.7 21-24 13 2 18.6 n.d 8.7 
22 :6n-3 (DHA) 28 6 314 40-45 44.4 35 .9 n.d. 9 .6 
Total SFA 28.1 32.7 22.3 10.0 31.3 204 
Total Ml.JFA 20.3 14.5 6 .2 23 .6 36 I 30 7 
Total PUFA 46. 1 47.1 674 65 8 21 9 48 9 
DHAEPA 19 .., .., _ _ .) 

1.8-1 9 34 I 9 I. I 
EPA:AA 8.1 13 .7 ..,.., 26.6 54 

1.:: Tocher et al .. 1984 (Fish caught near Gourdon. Scotland) 
3 Evjemo & Olsen. 1997 ( Temora longicornis. collected from halibut hatcheries in 
Norway. 93% copepodid V and adult stages) 
" McEvoy et al .. 1998 (63% Calanoid nauplii. 21.3'% f;·urytemora affinis adults. collected 
from Svartatjohn marine lagoon, Norway) 
~ Oie et aL , 1997 (slow growing rotifers cultures maintained on bakers yeast and Super 
Selco then short term enriched with DHA-Selco, fatty acid and total lipid data only) 
6 This study (Rotifers enriched with DHA emulsion for 12 hours, lipid class % data) 
7 

Navarro et al., 1993 (Great Salt Lake nauplii) 
"This study (Anemia enriched with DHA-Selco for 24 hrs) 
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dry weight than enriched rotifers and Artemia. The fatty acids profiles ofboth 

zooplankton and fish roe are characterised by higher levels of DHA. EPA. and moderate 

levels of AA, while nauplii from Great Salt lake Artemia have undetectable amounts of 

these fatty acids and elevated levels of 18: I n-9 and 18:3n-3 (Table 1.1 ). Following 

enrichment, Anemia have elevated levels ofboth DHA and EPA. however, these values 

are still considerably lower (50%) than those found in marine copepods and fish roe. 

Growth, survival. and pigmentation often improve when larvae are fed wild zooplankton 

compared to enriched rotifers or Artemia (Seikai et. al.. 1987: Naess & lie, 1998) It is 

now believed that these differences in culture success are to some extent due to 

differences in lipid composition betv.:een the two food sources. 

Much attention has been focused on lipid enrichment of both rotifers and 

Artemia. This is made challenging, particularly in Artemia, by physiological processes 

that occur within live-food such as: retroconversion of DHA to EPA in first-feeding tanks 

prior to consumption. autoxidation of PUF A. and lipid class conversions (McEvoy et al.. 

1998 ). However. significant advances have been made using speciality oils, which are 

particularly high in DHA such as tuna orbital oil and purified algae lipid extracts. The 

lipids from Crypthecodinium cuhnii are high in DHA and purified extracts from this algal 

species were used in the rotifer enrichments described in Chapter Two. Also, vitamin C. 

vitamin E and lecithin were added to enrichment oils in order to minimise oxidation. In 

this study, husbandry protocols were adapted in order to reduce enrichment loss in live

feeds. This was accomplished by reducing the time that live-food remained in first

feeding tanks prior to larval consumption. 
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1.3 Objectives 

The objective of Chapter Two was to use dietary manipulation in yellov.tail 

flounder larvae, in order to determine both the importance of essential fatty acids in early 

growth, survival and pigmentation. as well as the time required for nutritionally deficient 

larvae to recover. The objective of Chapter Three was to investigate a possible role for 

lipids in pigmentation development by comparing the lipid composition of normally and 

mal-pigmented fish . 



Chapter 2 - Effect of dietary ratios of DHA. EPA and AA on early growth. sun-ivai. 
lipid composition. and pigmentation of yello"·tail nounder (Limancla fe"uginea) 

2.1 Introduction 

The importance of polyunsaturated fatty acids (PUF A) in larval fish nutrition has 

been extensively investigated during the past 20 years (Wantanabe. 1993: Wantanabe & 

Kiron. 1994: Sargent et al .. 1999). Docosahexaenoic acid (DHA 22:6n-3 ). 

eicosapentaenoic acid (EPA. 20: Sn-3 ). and arachidonic acid ( AA 20:4n-6) are essential 

fatty acids (EFA) for many marine species. However. li\·e-foods that are commonly used 

for first-feeding of marine larvae. such as rotifers and Artemia. are naturally low in these 

PUFA Therefore. enrichment of live foods with lipids rich in PUFA prior to feeding is 

usual I y necessary. 

Recently the importance of considering the relative amounts of DHA. EPA. and 

AA simultaneously has been demonstrated (McEvoy et al., 1998: Estevez et al .. 1999; 

Sargent et al .. 1999)_ This is due to competitive interactions between not only DHA and 

EPA. but also between EPA and AA The DHA and EPA competition results from both 

molecules using the same enzyme system to esterify fatty acids into phospholipid 

backbones. Given that DHA is naturallv found at verv high levels in neural tissue. it is . - -
believed to play a specialised role in neural membrane structure and function Therefore. 

elevated dietary EPA relative to DHA is postulated to have a negative impact on larval 

neural function and thus growth and survival (Bell et al., 1995; Rodriguez et al., 1997). 

The competitive interactions between EPA and AA are important in the formation 

of eicosanoids. Eicosanoids are a group of biologically active molecules. once known as 
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local hormones. which include prostaglandins. thromboxanes. and leukotrienes. 

Eicosanoids play a wide variety of localised physiological roles in fish which can range 

from ionic regulation to the induction of egg shedding in ripe females (Sargent. 1995). 

EPA and AA are both substrates for the formation of eicosanoids. v .. ·ith AA being the 

preferred substrate and producing eicosanoids of higher biological activity (Bell et al. 

1994 ). EPA produces eicosanoids of lower biological activity and therefore modulates 

the efficiency of AA. Atlantic halibut (Hlppo~/os.\7/S hippoglossus) and turbot 

(Scophrhalmus maximus) larvae when fed high levels of AA relative to EPA developed 

high levels of mal-pigmentation (McEvoy et al., 1998; Estevez et aL 1999). These 

results are hypothesised to be a result of stress induced by elevated eicosanoid activity 

(Estevez et aL 1999. Sargent et al.. 1999) 

The yello\\tail flounder is a candidate species for cold-water aquaculture in 

Atlantic Canada. Howe,·er. high mortality and mal-pigmentation are still substantial 

challenges to the successful early culture of yello~tail. Both of these issues have been 

associated with the PUF A content of live food used in first-feeding in a number of marine 

flatfish species (Rainuzzo et al.. 1997; Sargent et al .. 1999). Currently, there are no 

studies that have addressed the optimal lipid requirements of yellowtail flounder larvae. 

Therefore. this experiment was designed to investigate the role of dietary ratios of 

DHA EPA and EPA AA on their early growth. survival, and pigmentation. 
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2.2 Materials and Methods 

2.2.1 Emulsions 

Dr. Moti Hare! of the University of Maryland prepared the four experimental 

emulsions tested in this study. Three emulsions were formulated by blending different 

ratios of DHA and AA rich triacylglycerols (TAG) from heterotrophic algae production 

(DHASCO and A.RASCO. Martek BioSci. Columbia, MD USA) and a marine oil (TG 

22133. Marine Lipids Leknes. Norway). The fatty acid composition ofDHASCO and 

:\RASCO were 49% DHA and 54% A.A respectively and both had less than 0.5% EPA 

The marine oil contained approximately 20 % DHA and 30 % EPA A fourth emulsion 

was prepared as a control using olive oil. which was low in PUF A. A mixture of 2 % 

alginic acid. 2% polyoxyethylene sorbitan monooleate (Tween 80). I %ascorbic acid. I 

%vitamin E. I %silicon based anti-foaming agent (Sigma Co. MO. USA) and 5% soy 

lecithin (80 °·'o PC Archer Daniels Midland Co Decatur. IL. USA) were added to the oils 

Oil mixtures were emulsified with equal amounts of distilled \'> .. ater by first homogenising 

at low speed (Uitra-turrax T8. lKA Labortechnik. Staufen. Germany) for 15 seconds and 

then sonicating for an additional 15 seconds at one third of the maximum sonication 

energy level (Sonifier 450: Branson Sonic Power Company, Danbury, CT. USA). 

Emulsions were stored under nitrogen at 4°C for daily use. 

2.2.2 Rotifers 

Rotifers were cultured on baker's yeast. Saccharomyce.,· cere1·isiae, and culture Selco 

(lNVE. Denderrnond. Belgium) for five days prior to enrichment. They were then taken 

from stock cultures and placed into smaller I 0-L enrichment vessels at a density of 5 X 
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10~ rotifers L"1 Two batches of enriched rotifers were produced every 24 hours. Rotifer 

batches were enriched for approximately 12 hours at 0. I g of enrichment oil L"1 of rotifer 

culture. Enrichment was added at time zero and after six hours of enrichment Emulsions 

\vere blended in I L of distilled water for two minutes prior to addition to enrichment 

vessels. Rotifers were sampled from each enrichment vessel in triplicate for lipid analysis 

four times during the experiment 

2.2.3 Anemia 

AU larval groups were fed identically enriched Artemia (Great Salt Lake. UT. 

USA) Enrichment alternated daily bet\ .. ,.een .24 hrs of DHA Selco (INVE. Denderrnond. 

Bel~ium) or 24 hrs of Algamac (Bio-Marine. Hav.1horne. CA. USA) Second instar stage - - -
Artt:mia were stocked in 300-L tanks at a density of2 X 10~ animals L"1 During 

enrichment. the temperature was maintained at 26°( and vigorous bottom aeration was 

applied. Enrichment was added at a concentration of2 g per 106 animals. After 12 hours 

of enrichment, Artemia were transferred to a new enrichment vessel to receive a second 

12-hour enrichment. Artemia were sampled in triplicate four times during the 

experimental period, with two sampling days, respectively, for each Algamac and DHA 

Selco. 

2.2.4 Larviculture 

Yello\\1ail flounder broodstock were collected from Witless Bay, Ne\Nfoundland and 

brought to the Ocean Sciences Centre in late June of 1998. Eggs for this experiment were 

obtained from these fish between July 6 to 7, 1998 and were pooled to obtain the required 
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quantity. They were then incubated in a 300-L cylindro-conical upwelling tank and 

hatched at approximately 60-degree-days. 

At 100% hatch, larvae were transferred to eight 230 L round, flat-bottomed tanks 

at a density of 60 larvae L-1 Water flow was set at 2-L min·• and aeration was provided 

by one airstone placed in the centre of each tank. Fish were reared at ambient temperature 

-13uC ( I 0. 5" -16. soc) on a 24-hour photoperiod of -I 000 lux. 

Differentially enriched rotifers were added to tanks twice per day at a density of 

7000 prey L-1
• from day 2 to 28 post-hatch (Puvandndran & Brown, 1995; Rabe& 

Brown. 2000). Tanks were ·greened' daily with a 50:50 mix of I 0 L of !sochrysis 

galhc.ma and Namwchloropsis ·'PP This combined algae mixture had a concentration of 

6.1 X 10111 cells L-1
. After day 30. identically enriched Artemia were added to aJI tanks 

tv.·ice per day at a density of 2000 prey L -I 

2.2.5 Growth and Sun-h·al 

Standard length. body depth. dry weight. and ash free dry weight v•ere measured at 

I 00 % hatch and at weeks 2. 3, 4. 6 and 13. Standard length was defined as the length in 

mm from the tip of the snout to the end of the notochord. Body depth was defined as the 

width of the larvae just posterior to the anus not including the fin fold . Larvae were 

sampled and placed in beakers that were kept on ice and were then sacrificed using an 

overdose of 3-aminobenzoate methane sulphonate (MS 222). Measurements were 

completed within 30 minutes of death to minimise shrinkage due to osmotic loss These 

measurements were completed on 15 larvae tank·' week-1 using a dissecting microscope 

and a depression slide. 
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After morphometric measurements. larvae were washed with 3 % ammonium 

formate to remove salt. and five larvae were placed on a I. 5 em:! pre-weighed foil. This 

method resulted in three samples of five larvae being analysed for dry weight tank·1 week· 

1
. At week 13 only one larva was place on each foil due to their increased size. The foils 

were dried at 60°C for 24 hours. Foils were then stored in a desiccator and reweighed. 

Ash weights were also taken on the same samples by placing them in a muffie furnace 

( 450°C) for a further 12 hours and then re-\.,.·eighing. 

Yellm .. lail flounder larvae are too small and fragile to easily determine survival in 

large tanks during the first few weeks post-hatch. Therefore. after the rotifer-feeding 

period at four weeks. survival was determined by counting larvae in sub samples of \Vater 

Aeration was increased prior to sampling to provide enhanced mixing of the tank water 

and then each tank was thoroughly stirred with a glass rod. Five sub-samples of four L of 

water were counted per tank to calculate an average number of larvae per tank. At week 

13 all remaining larvae were counted. 

2.2.6 Lipid samples: 

Lipid samples were taken from eggs and larvae throughout the experiment Three 

samples of 500 individuals were taken on both day tv .. ·o of incubation and at I 00 % hatch. 

Triplicate samples from each tank were also collected after weeks three, four and six for a 

total of six samples taken per treatment. The number of individuals per sample was based 

on the dry weight from the previous week. Samples ranged between 10 and I 00 

individuals and 10 to 30 mg dry weight. 
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2.2. 7 Lipid Analysis 

Lipid samples were placed directly in chlorofonn and stored under nitrogen at 

-20°C until analysis. Lipids were extracted in chlorofonn and methanol according to 

Parrish ( 1998) using a modified Folch procedure (Folch et al . 1957). Samples were 

homogenised and then sonicated and centrifuged fourtimes in an 8 4:3 (v/v/v) 

chlorofonn:methanol:water solution. The sonication and centrifugation \vere carried out 

four times and the chlorofonn layers were collected and pooled. 

Lipid classes were detennined using thin layer chromatography with flame 

ionisation detection (TLC/FID) with a MARK V Iatroscan, as described by Parrish 

( 1987). Lipid extracts were spotted on silica gel coated Chromarods and a three stage 

development system was used to separate lipid classes The first separation consisted of 

two developments in 99: I 0 05 (v/v/v) hexane:diethyl ether formic acid. The first 

development was for 25 minutes followed by a second development for 20 minutes The 

second separation consisted of a 40-minute development in 80 20 I (v/v/v) hexane:diethyl 

ether:formic acid. The last separation consisted of two 15-minute developments in I 00% 

acetone followed by two I 0-minute developments in 5:4: I ( v/v/v) 

chloroform:methanol:water. After each separation the rods were scanned and the three 

chromatograms were combined to fonn one complete chromatogram using T -data scan 

software (RSS Inc .. Bemis, TN. USA) A calibration curve was used to conven given 

peak areas into lipid mass values. The standards used in the calibration curve were: n

nonadecane (hydrocarbon). cholesteryl palmitate (steryl ester), hexadecan-3-one (ketone), 

tripalmitin (triacylglycerol), palmitic acid (free fatty acid). hexadecan-1-ol (alcohol), 
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cholesterol (sterol). glyceryl-I-monohexadecanoate (acetone mobile polar lipid), DL-a

phosphatidylcholine (phospholipid). :\II standards were obtained from Sigma Chemical 

Inc. (St. Louis. MO. USA). 

Total lipid as well as neutral and polar lipids were analysed for fatty acid 

composition. Prior to separation of total lipids. 23 :0 tricosanoic acid methyl ester \vas 

added to larval fish extracts at an amount that was approximately I 0 % of the total fatty 

acids. Preliminary analysis of samples without 23 :0 revealed that it would be a suitable 

internal standard. Total lipids were separated into neutral and polar lipids using column 

chromatography (Yang. I995; Budge. 1999) Glass wool was placed in the tip of a 

Pasteur pipette so that it just filled the tip. and pipettes were then placed in a muffle 

furnace ( 45041C) for 12 hours to remove any organic contamination. Approximately 0 8 g 

of activated silica gel was packed into each pipette. Prior to use. silica gel was activated 

in an oven at I I OoC for one hour. The silica was washed with four ml of methanol 

followed by four ml of chloroform. Lipid extracts were applied to the top of the column 

and the neutral lipids were eluted with three ml of99: I :0.5 (v/v/v) 

chloroform:methanol:formic acid. The remaining polar lipids were removed using six ml 

of methanol 

Fa tty acid methyl esters ( F Al\.1Es) were prepared by transesterification with I 0% 

BF, in methanol (Morrison & Smith. 1964). Lipid extracts were evaporated to near 

dryness under nitrogen and 0.5 ml of hexane and one ml ofBF,/methanol were added. 

Vials were shaken and sealed with Teflon tape before placing in an oven at 85oC for one 

hour. Samples were removed from the oven and allowed to cool for five minutes. Then 
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0 5 ml of choloroform extracted water and two ml of hexane were added and the mixture 

was shaken, centrifuged and the upper layer containing the FAME was removed. 

A Varian model 3400 GC equipped with a Varian 8100 autosampler was used for 

fatty acid analysis. The column was an Omegawax 320 column. 30m. 0 32 mm i.d. 0.25 

J.lm film thickness {Supelco. Ind .. Bellefonte. PA. USA) Hydrogen v.·as used as the 

carrier gas and the flow rate was set at 2 ml minute·• The column temperature profile was 

as follows: 65°( for 0.5 minute. hold at 195°C for IS minute after ramping at 40°C 

minute·'. and hold at 220°( for 0 75 minute after ramping at 2°( minute·• The injector 

temperature increased from 150 to 250°( at 200°( minute·• . Peaks were detected by 

flame ionisation and the detector was held at 260~C Fatty acid peaks were integrated 

using Varian Star Chromatography Software (version 4.02) and identification was made 

with reference to known standards (PlfFA I and 37 Component FAME Mix. Supelco 

Inc). 

2.2.8 Pigmentation and Eye Migration 

Pigmentation. eye migration. and orientation of the fish were classified at week 13 . 

Scales were used to summarise the range in both pigmentation ( 1-6) and eye migration ( 0-

3) that were based on categories pre\iously defined for Atlantic halibut (Simplified from 

Gara et al, 1998; Table I & 2) These tv.·o classifications were made while viewing the 

fish on a flat petri dish from directly above Also. the side on which the fish were lying 

was recorded. These parameters along with wet weight were recorded for 50 fish per 

tank . 
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Table 2.1: Categoril-'S of pigmentation used in e\aluation of yello\\ tail flounder 
(Simplified from Gara et aL 199M) 

--~~t~ori~ of P!&_l!!_entatio~_..!!_efinit!._~--------
1 No pigmentation 'isible 
2 Pigmentation only visible on the head 
3 Pigmentation \tsible on the head and tail 
~ Pigmentation , ·isible on the head and abdomen 
5 Completely pigmented on the ocular side 
6 Completely pigmented on both the ocular and blind side 

., .. 
-·' 



Table 2.2: Categories of eye migration used in evaluation of yellowtail flounder 
(Simplified from Gara et al.. 1998) 

Categories of Eye 
Migration 
0 
I 
2 

3 

Definition 

Blind stdc eye not yet \isible 
Blind side eye only partially \isiblc but not the full diameter 
Blind side eye diameter fully \isible but not past the dorsal 
margm 

Blind side eye 'isiblc and fully past the dorsal margin 



2.2. 9 Statistical Analysis 

Differences in gro~1h and fatty acid parameters amoung treatments were analysed 

using an ANOVA ~ith tanks nested into treatments. In all cases. except for week six lipid 

data. the effect of tanks was not found to be significant and was dropped from the model. 

Week six lipid data were analysed based on tank means due to differences between tanks 

in the same treatment The interaction term between treatments and \'leek was significant. 

Therefore. one way ANOVAs with Tukey·s multiple comparison test were used to 

compare weekly differences in these parameters between treatments. Significance was set 

at alpha= 0.05 Residuals versus fitted values were examined to check for normality and 

heteroscedasticity. Body depth and dry weight data were log transformed and certain 

percentage data was arcsine-square root transformed in order to meet the assumption of 

the model. 

Pigmentation and eye migration and side of settlement data were analysed for 

difference between treatments using a G-test based on the chi-square distribution. Where 

differences were detected. three a prwri multiple comparison test where carried out to 

detect differences between treatments with an alpha 0fO.OS 
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2.3 Results Part A: 

Effects of feeding differently enriched rotifers during the first four weeks post-hatch on 
gro\\-th. survival. lipid composition. and pigmentation of yello\\-tail flounder 

2.3.1 Lipid composition of emulsions 

The four experimental emulsions were similar in lipid class composition with 

triacylglycerol (TAG) as their main component. The DHA. DHA+AA.. and control 

emulsions were -8M·o TAG with alcohol ( ALC). sterol CST). acetone mobile polar lipid 

(A.\1PL) and phospholipid (PPL) making up the remainder ofthe emulsions However. 

the DHA+EPA emulsion had less TAG. 64°·o. and more ALC. 12%. than the other three 

emulsions (Table :u. p<O 05). The DHA-t·EPA emulsion was the only one that 

contained the marine oil 

Table 2.4 shows the fatty acid composition of the four emulsions. The emulsions 

that were high in polyunsaturated fatty acids (PUFA) contained high levels ofDHA 

(36.0-43 .3%). while the control emulsion had only 0.5% DHA. The DHA+EPA 

treatment had a high level of EPA { 14 2%) and the DHA+AA emulsion had a high level 

of AA (8 9°•o}. The major monounsaturated fatty acid (MUFA) in all emulsions was 

18: I n-9, however. the control diet contained higher levels of this fatty acid (70°'o) than 

the other emulsions (-22%. Table 24). 



Table 2.3: Lipid class composition of the four experimental emulsions (mean± SEM. n=J) 

Lipid class DHA DHA+EPA DHA•AA CONTROL 
(~·o of total lipid)* 

± 05~ Triacylglyccrols K6.3 ± I ~" 6-U 83 6 ± I ~· 87.0 ± . .> . .> 

Free Fatty Acids 1.2 ± 05 05 ± 0.1 13 ± 0.1 19 ± 

Alcohols 2.1 ::: t.o· 12 3 ::: 05 ~ 2.8 ± 0.9 "' 2.4 ± 
Stl!rols 2.7 ± 0 .8 74 ::: 2 6 3 () ± 04 14 ± 

Acetonc-Mobik 2.5 ::!: 0.1 5 8 ::: I 3 23 ± 07 08 ± 
Polar Lipids 
Phospholipids 

~ .., 
± 0.2 6 I ± 1.0 5.4 ± 1.5 6.0 ± _, ·-' 

*Also contained < I% hydrocarbons, ketones. and diacylglycerols. 
ah Different letters represent a significant difference between emulsions (One Way 
ANOVA with Tukey's Multiple Comparison Test. p < 0.05. F J.K) 
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Table 2.4: Fatty acid composition of the four experimental emulsions (mean± SEM. n=J) 

Fatty acids DHA DHA+EPA DHA+AA CONTROL 
(%total) 

14:0 140±0.1 8.4 ± 0.0 11.5 ± 0.3 0.6 ± 0.0 
16:0 10.7 ± 0.0 6.9 ± 0.0 10.3 ± 0.1 12 .6 ± 0 .2 
18:0 1.1 ± 0 .1 1.9 ± 0.0 2.9 ± 0 .1 2.2 ± 0.2 
LSFA• 26.1 ± 0.2 17.8 ± 0.1 25.1 ± 0.6 16.8 ± 1.4 

16 ln-7 1.1 ± 0.0 1.2 ± 0.0 1.0 ± 0 0 1.2 ± 09 
18 ln-9 24 .7 ± 0. 1 186 ± 02 23 I ± 0 6 69 5 ± 1.0 
2:MUF:\h 26.2 ± 0.2 21.5 ± 0.6 24.6 ± 0.7 71.3 ± 2.0 

18 2n-6 2.6 :I: 0.0 1 .5 ::t 00 3 9 :t: 0 I I 0. I ± 0 I 
20An-6 (AA) O.i ± 0 0 1.6 ::: 0 {) 84 :i:: 02 () 0 ::: ()() 

20:5n-3 (EPA) 0 I ± 0.1 141 ± 0.2 0 I ± 0 () 0 () ::: 00 
225n-3 0 5 ± 0 0 2 .6±00 0 4 ::: () 0 ()( ::: 00 
22 6n-3 (OHA) 43 .3 ± 04 374±0.3 36 () ± 0 4 () 5 :i:: 0 I 
2:PUFA' 47.7 ± 0.5 60.7 ± 0.6 50.3 ± 0.7 11.9 ± 0.3 

aincludesai-15 :0. 15:0, i-17:0.ai-17:0. 170,20:0 
~ includes 18:1 n-11, 18: I n-7. 18: I n-5. 20: I n-9. 20: I n-7. 22: I n-11. 22 : I n-9, and 24: 1 

"includes 16:2n-6. l6:2n-4, 16:3n-4, 16:4n-3, 18:3n-3, 18:4n-3. 20:2n-6. 20:3n-6, 
20:4n-3, 22 :4n-6 and 22:5n-6 
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2.3.2 Lipid Composition of Rotifers 

Follov .. ·ing enrichment. all rotifer groups contained approximately 16% ( 160 

flg.mg-1
) oftheir dry v.·eight as lipid (Table 2.5)_ TAG was the major lipid class in all 

rotifer groups reflecting high levels ofT AG in enrichment emulsions The PUFA 

enriched rotifers had significantly higher levels ofTAG (-54'%) than the control group 

(38%). while levels of free fatty acids were significantly higher in the control treatment 

(20 5%) than in the PUFA enriched groups (-3 .9%). PPL levels were similar in all 

treatments and accounted for -26% of the total lipid. 

The fatty acid composition of the enriched rotifers is given in Table 2_6_ All 

rotifer groups contained -19'!/o saturated fatty acids (SFA) while the control diet had 

higher levels ofMUFA (64%. p<O 05) than seen in the three PUFA treatments (-35%) 

Control rotifers had lower levels ofPUFA (-20%. p<0.05) than all other groups. v .. ·hile 

the DHA +EPA treatment had the highest levels of PUF A ( 49°1a. p<O 05 )_ Levels of 

PUF A in the rotifers reflected that of enrichment emulsions The three PUF A treatments 

resulted in high levels of DHA (2 I_ 5-28.2%) with various levels of EPA (3 _5- I I 0%) and 

AA (I .2-7. I%). The control treatment had low concentrations of all these PUF A 

(<2.5%). The ratio ofDHA:EPA in the rotifers varied significantly among groups from a 

high of8 : I in the DHA treatment to a low ofO 7: I in the control diet. Similarly, there 

was a \Vide range in the DHA:AA ratio from a high of24: 1 in the DHA treatment to a 

lov.· of2.5: 1 in the control treatment. The EPA:.AA ratio was highest in the DHA+EPA 

treatment ( 5: I) and significantly lower in the DHA + AA enriched group (0.5: I) 



Table 2.5: Lipid class composition of rotifers enriched for 12 hours using four different oil 
emulsions (mean± SEM. n = 4). 

DHA 
Total lipid* 169.7 ± 3 .~ 

(~g. mg-') 

Lipid class 
(%total lipid) 
Steryi!Wa'\: Esters 

Methyl ketones 

T riacylglyccrols 

Fr~..-c Fatty Acids 

Sterols 

Acl!tonc Mobile 
Polar Lipids 
Phospholipids 

4.1 

2.1 
55.5 
4.3 
2.7 
3 I 

24.9 

::t 1.4 
± 0.6 

± 1.5" 
± 0 9" 
± 0.6 
± 0.8 

± 05 

DHA+EPA 

168.2 ± 15.3 

.t. ; :: 1.1 
1.9 ± 0.7 

52.3 ± i .... .. - _, 
4 5 ± 0.9·' 

2.3 ± ox 
5 3 ± 0.8 

26 [ ± IX 

DHA+AA CONTROL 

156.5 ± 22.-t 165 .2 ± 9.6 

~4 ::: 09 3.9 :: 1.4 
2.7 ± 0.5 2.0 ± 0.5 

53 .9 ::: 3. ] ;' 31< .0 ± -U~ 

2.8 ± 0 .8' 20 5 ± 3 o" 
2.8 :: 03 2 7 :: 02 
3 l) ± 1.1 2 6 :: ()l) 

24.8 ± OY 2ft. 7 :: 20 

*Also contained< 2.5 % l!thyl ketones. glyccryl cstl!rs. alcohols_ and diacylglyccrols 

"~Different letters represent a significant difference among groups p < 0.05. F : 1:. Oni!-Way 
ANOVA with Tukcy·s Multiple Comparison Test 

:w 



Table 2.6: Fatty acid composition of rotifers enriched for 12 hours using four different oil 
emulsions (mean± SEM. n = 4). 

Fatty acid DHA DHA-rEPA DHA+AA CONTROL 
(~'o toui) 

I-tO 69 ± 0 .3'' 3 7 ::: o .. r 5 . .t ::: 0.2' I 8 ::: 05' 
16·0 10 3 ± Oc.J Y.3 :t: O.'i 9.7 ::: 01'( 101 ± 14 
18:0 2.8 ± 01 .. ., 0.1 3.3 ± 0 .1 "' .. 0 I ~ - ::: ~ __ , ::t: 

rsrA' 21.0 ± 1.2 17.6 ± 1.3 19.6 ± 1.2 16.7 ± 1.6 

lfi . ln-7 4 .9 ± 0.4 4c.J ± 0.4 4.7 ± 0.5 5.6 ± 0.5 
18:ln-9 26.7 ± l .o·' 20.1< ± 0.4" 26.4 ± 0.8~ 52.1 ± 10' 
18: ln-7 0 .7 ± 0.4 2.0 ± 0.4 1.1 ± 0 .4 18 :t 09 
20: ln-9 2.0 ± 0.1 2.3 ± 0.3 2.0 ± 0.1 2.0 ± 0.2 
r MUFA2 36.8 ± t.3• 33.4 ± 0.4· 36.3 ± o.s· 63.5 ± 1.3b 

l8 :2n-6 4.5 ± 0 .. . 
. ~ 4.4 ± 0 .4~ 5.5 ± 0.4" 10.2 ± () 5r 

20:3n-6 0.2 ± 0 .0 12 :t: 08 0.7 :t 00 03 ± 0.0 
20.4n-6 12 ± o.cr· 11 :t 0.4~ 7.1 ± 0 2.: 0 7 ± 0.0" 
20:4n-3 (AA) 0 .7 ::: 0 .1 I 3 ± 0 .1 0.7 ::: 01 0 7 ::: 00 
20.5n-3 (EPA) 3.5 ± 0 "'" ~ I I 0 ::: 0 .2' 3.2 ::: () 2 ''~ 2.5 ::: 0 . 2~ 

225n-3 2.0 ± 0 .... 
. ~ .u ::: 0 .3" 2.0 ::: o I' Jj ± 0 I'' 

22 :6n-3 (DHA) 28 .2 ::: 0.5 '' 21 5 ::: () 7" 23 4 ::: o x" I 7 ± () I' 
r PliFA3 42.1 ± 0.4· 49.0 ± t.O" 44.2 ± Lr 19.8 ± OS 

DHA/EPA 8.2 ± 0.7· 1.9 ± 0.1" 7.5 ± 0.6· 0.1 ± o.o< 
DHA/AA 24.5 ± u· 10.5 ± 1.4" 3.3 ± o.o< 2.5 ± o.zc 
EPA/AA 3.0 ± 0.3· 5.4 ± 0.7· 0.5 ± 0.0" 3.7 ± 0.4. 

1 
includes ai-15 :0. 15 :0. i-17:0. ai-17:0. 17 0. and 20 0 

2 
includes 18: I n-11. 18: 1 n-5. 20: ln-7. 22 : I n-Il. 22: I n-9. and 24: I 

3 
includes 16:2n-4. 16:3n-4. 16:4n-3. 18:3n-3. 18:-tn-3. 20:2n-6. 22:4n-6. and 22:5n-6 

•r Different letters represent a significant difference among groups p<0.05. F , 1: . One-Way 
ANOVA with Tukey ·s Multiple Comparison Test 

:n 



2.3.2 Growth and Sun"il·al 

Larvae grew and survived in all treatments throughout the first four weeks of - -
rotifer feeding. Feeding differently enriched rotifers over the first four weeks resulted in 

differences in standard length (p<O.OS. Fu~). body depth (p<O.OS, F:u44~o and dry weight 

(p<O 05. FJ.5<> . ) . After only two weeks post-hatch. larvae fed the DHA enriched diet were 

significantly larger in terms of standard length than larvae from the control and the 

DHA+EPA enriched diets. By v.'eek four. larvae in the DHA treatment were significantly 

larger than all other groups while the control treatment was significantly smaller There 

was no significant difference between larvae from the DHA-r-EPA and DHA+AA groups 

(Figure 2. I a) 

The effect of diet on body depth and dry weight was similar to that on standard 

length At week four. larvae fed the control diet were significantly smaller in body depth 

and dry weight than all othe; treatments Conversely. larvae in the DHA treatment were 

significantly larger than the DHA+EPA and control groups in terms of dry weight and 

body depth. There were no significant differences between the DHA-r-EPA or DHA+AA 

treatments in either body depth or dry weight (Figures 2.1 b & 2. lc) . 

At week four, trends in survival reflected those seen in grmvth. Larvae in the 

DHA enriched treatment showed the highest survival (22%) whereas survival in the 

control group was lowest (5%). Larvae from the DHA+AA group had a survival of 19% 

while the DHA+EPA group had 12% survival (Figure 2.2) 

... ., 
-'-



Figure 2.1: Morphometric measurements and mass of yello-wtail flounder larvae fed four 
types of differently enriched rotifers for the first four weeks post-hatch Data are mean ~ 
SEI\t 
(a) Standard length. n=30 (P<O 05. Fu 1(, ) 

(b) Body depth. n=30 (P<0.05. FJ.IIc.) 

(c) Dry weight. n=6. (P<O 05, Fu o). 

at>.: Different letters represent significant differences betv.·een dietary groups (AN OVA. 
Tukey 's Multiple Comparison). 
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Figure 2.2: Percent survi\·al of yellowtail flounder larvae after 

four weeks of feeding on differently enriched rotifers. 

Data are mean + SO. n=2. 
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2.3.4 Lipid composition of eggs and larvae at lOOo/. hatch 

There were no significant differences in lipid class and fatty acid composition 

between eggs (3 days post-fertilisation) and larvae at 100% hatch (Table 2 .7 & 2 8). 

Both contained -6% of their dry weight as lipid. PPL. the major lipid class. accounted 

for 63'% of total lipid. ST was the second largest lipid class at 131% while TAG was 

present in low levels in both eggs and larvae ( -4%) SF A.. MUF A. and PUFA accounted 

for on average 29. 21. and 50% of the total fatty acids respectively. In both groups. the 

major SFA was 16:0 (21%), while the major MUFA was 18: ln-9 (10%) and the major 

PUF A was DHA (24%). EPA was also present in significant amounts ( 16%) and this 

resulted in a DHA:EPA ratio of approximately 1.51 in both eggs and larvae 

36 



Table 2.7: Lipid class composition of yellowtail nounder eggs and lan·ae at 100°/o hatch. 
(mean± SEM. n=3) 

Egg I 00% hatch 
-··-·--·-·---··--- ··- --- ·-·- ---·-
Total lipid 
(~g.mg· ') 
Lipid Class 
(%total lipid) 
Hydrocarbons 

Glyceryl esters 

T nacylglyccrols 

Free Fatty Acids 

Alcohols 

Sterols 

Diacylglyccrols 

Acctonc-M obi le 
Polar Lipids 
Phospholiptds 

66.3 ± 1.1 62.0 ± 3. 1 

1.3 ± 0.4 3.4 ± 0.6 
OA ± 0.4 04 :: 0.4 
4.7 ± 12 2Y ± 0.1 
6.3 ± O.X 6.1 ± 0.7 
2.7 ± 12 1.3 ± 0.2 

118 ± 12 11.5 ± 06 
00 ± 0.0 1.3 ± 0.4 
6 ., ± 1.9 y., ± 1.3 

64.1 ± 1.6 62 y ± I. X 
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Table 2.8: Fatty acid composition of yellowtail flounder eggs and lan·ae at 100% 
hatch (mean ± SEM. n=J) 

% total fatty acids Eggs 100% hatch 
14:0 2.0 ± 0 . 1 2 I :l: 03 
160 20 .7 ± 0.9 213 :: 0.6 
18:0 3.0 ± 0 . 1 5.3 :l: 2. 1 

~SFA ' 278 ± 0 .8 30.8 :::: I q 

16: ln-7 
~ ., 
~ -- ± 1.5 3 .9 ± 0.8 

18: 1n-9 10. 1 ± 0.8 9 .9 ± 0.9 
18: ln-7 4.7 ± 0.1 4 .7 ± 0.0 
20: 1n-9 1.0 ± 0.3 0 .9 ± 0.4 
20: 1n-7 0.5 ± 0 .2 0.3 ± 0.3 
I MUFAn 20.9 ± 1.2 206 ± 0.5 

18 2n-6 LO ± 0.0 12 - 0.3 
20 4n-6 (AA) 2.4 ± 0.3 2 .7 ± 01 
10::\n-3 (EPA) 17.3 ± 0 . 1 15 6 :::: 19 
215n-3 3 8 ± 01 3_5 :::: 04 
22 6n-3 (OHA) 24 4 ± 09 23 4 ::: 03 

I PUFA' 513 ± 05 48 .6 ::: 2.4 

DHA/EPA 14 ± 0 .1 I 5 ::: 0.2 
DHA/AA 10.8 ± 2 .1 !( 8 ::: 0.1 
EPAIAA 7.6 ± 1.1 5 9 ± 0.6 

a includes ai-15 :0, 15 :0, i-17 :0. ai-17 :0, 17:0, and 20:0 
h includes IS : In-11, IS : ln-5, 22:1n-ll , 22:1n-9, and 24:1 
"includes 16:2n-4, 16:3n-4, 16:4n-3, 18:3n-3, 18:4n-3, 20:2n-6, 20:3n-6, 20:4n-3 , 

22 :4n-6 and 22 :5n-6 



2.3.5 Lipid Class Composition of Lanrae 

Figure 2.3a shows the amount of lipid per dry weight from hatch until the end of 

the rotifer-feeding period. Larvae from the DHA and DHA+EPA diets increased from 

-60 J.lg.mg·1 at hatch to -126 J.lg.mg-1 at week four. while larvae from the control and 

DHA+AA diets had onlv -87 J.le.mg·1 at week four. Most treatments showed a trend of - - -
increasing lipid from hatch until the end ofv,·eek four. however. larvae from the 

DHA+AA group decreased in total lipid from week three to week four 

TAG increased significantly in all groups from I 00% hatch until the end of the 

rotifer stage (Table 2.9. Figure 2.3b). At both weeks three and four. larvae fed the high 

PUFA diets had significantly higher percentages ofT AG (-18-22%, p<O.OS) than larvae 

in the control group ( 11%). PPL also increased in all treatments over the first four weeks 

post-hatch. However. there was no significant difference between dietary groups. 

The larval condition index TAG/ ST is shown over the first four weeks post-hatch 

in Figure 1.3c. This factor increased in all treatments during the first four weeks from a 

low of04 at 100% hatch. Larvae in the high PUFA treatments showed higher condition 

factors at weeks three and four than larvae in the control group (Table 2 9. Figure 2 3c. 

p<0.05). 
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Figure 2.3: Lipids in yell0\~1ail flounder fed four types of differently enriched rotifers 
for the first four weeks post-hatch. Data are mean ± SEI\1 (n=6} 
(a) lipid dry weight"1 

(b) TAG(%) 
(c) TAG/ST 
* represents a significant difference between dietary groups, ANOV A. Tukey's Multiple 
Comparison test (P<0.05, FJ.2o) 

~() 
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Table 2.9: Lipid class composition of lan-ae after four " ·eeks of feeding on 
differently enriched rotifers (mean ± SEM. n=6) 

Total Lipid* 
(IJ.g.mg·l) 

Lipid class 
(%total lipid) 
T riacylglyccrols 

Free Fatty Acids 

Sterols 

Diacylglyccrols 

Acetone-Mobile 
Polar Lipids 
Phospholipids 

TAG/ST 

DHA 

128.9 ± 9.4 

20.6 ± 0 .8. 

1.8 ± 0 .1 

7. 1 ± 0 .4 

3.1 ± 0 .7 

1.6 ± 0.3 

65 . 1 ± 1.0 

3.0 ± 0 .2 ,, 

DHA+EPA DHA+AA 

123 .7 ± 12. 1 874 ± 6.6 

22.5 ± 0 .8. 17.9 ± 1.5. 

2.6 ± 0 .6 3.0 ± 0.6 

6.9 ± 0.-t 6.6 ± 0 .4 

3.5 ± 0 .6 5.0 ± 0.6 

1.1 ± 0.4 1.5 ± 0.2 

61.5 ± I. I 63 .7 ± 3.7 

3.3 ± 0"" I ·-' 2.7 ± 0 .2. 

*Also contain <I~ o hydrocarbons. steryl/wa.x cstcrs. kctoncs. and glyccryl csters 

CONTROL 

886± 124 

10.5 ± I ... h 
·-' 

3 .9 ± 0 .5 

8 .8 ± 0 .6 

6 .1 ± 2.2 

1.3 ± 0.6 

68 .3 ± 2.5 
1.2 ± 0 .2 h 

'" Diffcrcnt letters rcprcscnt a significant difference among groups p<0 .05. F : :" . One \\'ay 
:\NOVA with Tukcy·s Multiple Comparison Tcst 



2.3.6 Lan·al fatty acid composition 

There was less than 5% difference in the relative fatty acid composition of larvae 

between week three and four (Appendix a & b. Table 2. 10) At either time. the DHA 

treatment contained significantly higher levels of DHA (p<0.05) than all other groups. 

while larvae in the control group had significantly IO\\-·er levels (Table 2.10. Figure 2.4). 

The DHA+EPA treatment had the highest relative and absolute amounts of EPA and 

larvae in the DHA+AA group had the highest level of AA (p<0.05. Figure 24) The 

control diet had the lowest levels of DHA. EPA. and AA with a higher level of I 8 :2n-6 

and I 8: I n-9 (p<O.OS). The DHA:EPA ratio in the total lipid was different amoung all 

dietary groups with the DHA treatment having the highest and the control treatment the 

lowest (Table 2. I 0. p<O 05 ). 

Dietary groups showed different trends when the relative incorporation of specific 

fatty acids \vas examined (Figure 2.5) Larvae in the high PUFA diets had fatty acid 

profiles that closely reflected dietary levels. while in the control treatment, larvae showed 

preferential retention of PUF A and a decrease in 18: I n-9 compared to dietary levels 

(Figure 2.5). All larvae had lower relative levels of 18: I n-9 in their bodies than in their 

diet. In all cases. larvae had higher levels of AA than were presented in the diet and this 

was especially true ofthe control treatment which had 0.7% AA in the diet and 2.8% AA 

in the larvae. EPA was present in larval tissue in higher amounts than found in rotifers 

except for in the DHA+EPA treatment. which had approximately the same amount. The 

control treatment larvae also showed higher levels of22:5n-3 in their bodies (3 5%) than 

was seen in the enriched rotifers ( 1. 7%). DHA was not conserved in the high 



Table 2.10: Fatty acid composition of week-four lan·ae fed differentially enriched 
rotifers (mean± SEM~ n=E) 

DHA 
Total Fatty Acids 6~ 01 ± 13 .00 
(!lg.mg·1 dr)· \\1) 

% total fatty acids 
I-tO 
16:0 
18:0 

~SFA ' 

16: ln-7 
I 8 .1n-ll 
18: ln-9 
IX : ln-7 
20 ln-9 
~ MUFA: 

I 8:2n-6 
20:4n-h (AA) 
20:5n-3 (EPA) 
22:5n-3 
22:6n-3 (OHA) 
~ PUFA~ 

DHA/EPA 
DHA/AA 
EPAIAA 

4. 1 
11.0 
4 .9 

21.5 

50 
10 

21.4 
2.5 
2.0 

34. 1 

5.0 
2.2 
4 .8 
2.0 

27.1 
+4.4 

5.6 
12.5 
2.2 

± 0.2' 
± 0.2 · 
± 0 . 1" 
± 06 

::!:: 0 . 1 ' 
± 02 
::!:: 0 5 " 
::!:: 0 .1. 

::: 0 . 1. 

::: 1.2 ' 

± 0.2'' 
± oo ·' 
± o.o· 
± 0 .0" 
± 1.1 " 
± 1.6 . 

± 0 .2'' 
± 0 .5 . 

± o.o· 

DHA+EPA 
60.6 ± 3.6 

3.2 ± 0 ~ h 
·-' 

11.3 ± 0 .2 . 

5 .6 ± 0.1 t-

219 ± 0 .6 

5 8 :::: 0 .1 t-

l 4 ± 0 0 
18 \) ± 0 9 t-

2.4 ± 0 I h 

2.2 ::!:: 0 . 1 ;tl' 

33.X :::: 15"' 

4 .8 ± 0. 1. 

2.6 ± 0 .2 h 

!0.1 ± 0.4 b 

3.6 ± 0 . 1 t-

Ul.7 ± I.O b 

44.3 ± 1.9 ' 

14 ± O.Oh 
7., ± 0.2 ~ 

34 ± 0 .2' 

1 mcludcs ai-15 :0. 15 :0. i-17:0. ai-17:0 . 17:0. and 20 :0 
~includes 18:1n-5. 20 ln-7. 22 ln-11. 22: ln-4. and 24:1 

DHA+AA CONTROL 
39.1 ± 0.7 ~8 . 1 ± 13 .~ 

3A ± O . o~> 1.6 ± OA" 
11.9 ± 0 .2 ah 11.7 ± 0 . 6 ~ 

5.4 ± oo.r 6 .0 ± 0 .3 h 

22.1 ± 0 .3 22 . 1 ± I 5 

5.0 ± 0 . 1 ' 6 .2 ± 0 I ~ 

1.2 ::!:: 00 1.1 - 0 1 
185 ± 0 .6 " 265 ::: 0 .7 " , ~ 

± 0 . 1" ~ ~ ± 0 . 1 ~ ~ - -' 
_, _, 

2.1 ± 0.0 ' 2 5 ± o.ot-
31.2 ± 1.0 ' 42 I ± 1.1 " 

5.3 ::!:: 0 .2 t- 108 ± o o" 
8.0 ± 0 .2 ' 2.8 ± 0 . 1 J 

4.6 ± 0 .4 . 6 .7 ± 0 .0 ' 
2. 1 ± 0 . 1 a 3.5 ± 0 .1 t-

22.3 ± 1.0 . 7.0 ± 0_2 ' 
46.7 ± 2 .4 " 35 8 ± 0 .9 3 

44.) ± 0 .6 " II ± 0 OJ 

2 8 :i:: 01 " ., -_ _ ) ± 01 J 

0.6 ± 0 .1 ' 2.4 ::%: 0. I J 

J includes 16:2n4. l6:3n4. 16:-tn-3. 18:3n-3. 18 :4n-3. 202n-6. 20 3n-6. 20-tn-3. 22 :4n-6. and 
22:5n-6 

""'Different letters represent a significant difference among groups p < 0 .05. F ;:.,. One-Way 
ANOVA with Tukcy·s Multiple Comparison Test 



Figure 2.4: Fatty acid composition (pglmg dry weight) of larvae after four 
weeks of feeding on difTerendy enriched rotifers. 
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Figure 2.5: Relative proportions of specific fatty acids in larvae 
compared to dietary levels after four weeks of feeding 

on differently enriched rotifers 
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PUFA treatments. however. the control group had much higher levels (6 90.'o) than in 

enriched rotifers (I . 7%). 

The neutral and polar fatty acid composition of larvae after week four is given in 

Table 2.11 . Larvae in all groups had higher levels of SF A and PUFA in their polar lipids 

than in their neutral lipids. Conversely. all groups had higher levels ofMUFA in their 

neutral lipid portion than in their polar lipids. In particular. DHA was concentrated in the 

polar lipid fraction. while in larvae fed the high PUFA diets EPA was present in slightly 

higher levels in the neutral lipid portion. Only larvae in the control treatment showed 

higher levels of EPA in the polar lipids than in the neutral. AA was also concentrated in 

the polar lipid portion and in the DHA+AA diet was present as -10% ofthe fatty acids in 

the polar lipids (Figure 2.6) The DHA/EPA ratio in all groups was higher in the polar 

lipid portion than in the neutral lipids. This ratio was highest in the DHA and DHA+AA 

treatments at -7: I and lowest in the control treatment at -I . 5: I. 

2.3. 7 Relationship of Dietary DHAIEPA and growth and survival 

The relationship between dietary DHAIEPA and grO\'<th and survival at week four 

was significant (p<0.005). The highest ratio ofDHA/EPA was found in the DHA 

treatment followed by DHA+AA. DHA+EPA. and control treatment. Of all the 

relationships, the most significant relationship was between larval survival at week four 

and dietary DHAIEPA (Figure 2.7a, r= 86.5%, p=O.OOI). Standard length and dry 

weight were also significant related to dietary DHAIEP A, although, body depth showed 

the most significant relationship (Figure 2. 7b, r2 =75 .4%, p=0.005) . 

. .p 



Table 2.11: Fauy acid composition of the neutral and polar lipids of yellowtail Oounder larvae after 
feeding on differently enriched rotifers for four weeks post-hatch (mean ± SEM, n=6) 

%, of total fatly DHA DHA Polar DUA+EPA DHA+EPA DHA+AA DHA+AA Control Conlrol Polar 
acids Neutral Neutral Polar Neutral Polar Neutral -·--·-·---------··-- ·····-·----·-·····-··---·-·-------···--··-----···---·-·-----····--·--·-·---------·-···-····-·--·-······--------·--------·-· .. -·--·-------
l-4 :11 ld±IU 2.7±11.2 -4.M±11.2 2.1±11.1 l•2±11(, 2.2±11.1 2.-4±11.2 1.11±00 
J(, ;o (J.l ±11.11 12.1 ±IIJ, 5.1J ±II. I 12.5 ±11.1 (, 1) ±112 12.6 ±0 2 K. l ±11.5 I21J ± 2 2 
IK:O 1.K±0.2 7.0±0.6 -4 .5±11.211 7.0±11.K l 1J±III 7.1±11.2 5.-1±1.1 7.8±11 
I:SFA• 17.1±0,6 2J.U:t:l.6 16,.&:t:4Ut 22.N:t:I.J 19.~:1:2.1 2J.2:t:U.~ 17 • .a:t:2.~ 2J.l:t:J.~ 

lfdn-7 
IM:In-9 
l!Un-7 
20: I n-IJ 
1: MUFAh 

I K:2n-6 
211:.an-<• (AA) 
20:5n-J (EPA) 
22 :5n-J 
22:6n-1 (DHA) 
~ PUFA• 

DHA/EPA 
DIIA/AA 
EPA/AA 

1') ±0.1 
27.7 ± II.M 

2.11 ± 0.2 
2.7±111 

.u ... ± .... 

6.-1 ± 0.2 
1.6 ±II II 
5. 1 ±11.1 
2.1 ±0.1 

I1JH±111 
JIJ • .a O.N 

1.1J ±11.11 
12.6±11.2 
1 '\±II. I 

1.2 ± 11.1 
17.-4 ±II ... 
2.8 ±11.2 
1.7 ± 11.1 

2(1,) ± .... 

.. . , ±0.2 
u ±0.1 
-t .K ± 0.1 
1.1) ± 11.11 

11 1) ±2.0 
~0.7 2.N 

7.11 ±11.2 
10.1 ±ti.IJ 
15 ±11.1 

• includes 15:11. ai-15:11. i-17:11. 17:11. and 211:0 

K . .a ±0.1 
22.2 ± 11.] 

2.8 ±0.2 
1.11 ± 11.1 

.aO.I ±U.N 

(d ±11.41 
2 ... ±11 ... 

12 ... ±II. I 
1.1J ±(1.11 

12.1J ±ll..a 
.u.~ t.J 

1.11 ± (1.11 
5.6 ± 1.2 
5 .. '\ ±O.IJ 

• includes IM: I n-5. 20: I n-7. 22 : I n·ll. 22 : I n-IJ. 2-U 

1 K ± 11.2 
l.'i .ll :i-11.2 
11±11.1 
l..'i ±II I 

2.a.7±1.0 

1.K±IIO 
1 1)±0.2 
IJ.7±11 ... 
'\ . 1) ± 0.1 

21UI ± 1 . .'\ 
~2.~ 2.1 

2 I)± 11.11 
7 .1 ±11.7 
2 . .'i ± 11 .2 

(),5 ± 1.2 
H .O ± 2.1 

2.0 ±11.1 
2.1) ±II. I 

JK.N ±.a.J 

6 .11 ± 1.1 
7. 7 ± 11.11 

57 ±IU 
2.2 ±0.1 

U . l ±15 
.... 7 ... 6 

2.5 ±IIA 
I.K ± 11.2 
lUI ±00 

c includes l6:2n-.J. lldn--4. 16:-tn-1. IK::ln-l. 20:2n.(,, 211:1n-<•. 211:4n-1. and 22 :4n-6 

1.1 ±II II 

15A ± 11.7 
2.K ±11.41 
1.7 ±(I,() 

2.a.J ±lUI 

.. . 1 ±11.2 
IJ.K ±0.1 
4.1 :i 11.5 
2.2 ±11.2 

21J.I ±11.2 
!li2.~ l.!li 

7.2 ±11.1) 
1.11 ±11.11 
11.4±11.1 

I),() ± 11.11 
U .H ± I.K 

1.7±1.11 
1 1)±11.5 

~( •. 0 :t:J.7 

9 .. '\ ±IU 
1.2±11.1 
17±11.2 
1.4 ±11.2 
2.5 ±0.1 

Ut,!li 3.2 

0.7±1)(1 
O.K ±CHI 
1.2 ±11.11 

11J ±II 5 
22.2 ±I II 

:U±01 
2.1 ±112 

JJ.l ±2.1 

11.7 ±()(, 

.J .7±0.2 
7.2 i. I.!! 
5.1±11.2 

111.5 ±II(, 
.. J.7 J.!li 

u ±ll.l 
2.'!±11.2 
1.5±11.4 



Fieure 2.6: The hiehly unsaturated fatty acid composition of the neutral and 
polar lipids in yellowtail flounder larvae after four weeks of 

feedine on differently enriched rotifers 

PL PL PL 
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c:::::::l EpA 
c::::sJ AA 

-:!e. 40 
Q -

DHA 
DlET 

DHA+EPA 
DIET 

NL 

DHA+AA 
DIET 

Dietary Treatments 

Bars are means (n=6). 
NL= neutral lipid and PL= polar lipid 
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Figure 2. 7a: The relationship between (a) survival and (b) body depth (mm) at week 
four and dietary DHA:EPA for yellov.tail flounder fed four types of differently enriched 
rotifers. Symbols are tank means. 
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2.3.8 Pigmentation. Eye migration. and Orientation 

ln Table 2.12. pigmentation data are categorised as either normal (stages 5-6) or 

mal-pigmented on the ocular side (stages 1-4). High proportions of mal-pigmented fish 

were observed in all dietary groups at the end ofthe experiment. However. at least 39% 

offish were normally pigmented in the DHA DHA+EPA.. and control groups. In the 

DHA+AA treatment. there was a significantly higher proportion of albinos (p<O 05) with 

only 8% of the fish normally pigmented on their ocular side 

Eye migration is presented as either complete (stage 3) or incomplete (0-2) In all 

treatments. the percentage of fish with complete eye migration was very low and 

averaged -52%. The DHA+EPA treatment had the highest levels of complete eye 

migration at 75% (Table .2. 11. p<O 05) The percentage of fish that were settled on their 

right or left side is also shown in Table 2 12. 



Table 2.12: Pigmentation. eye migration. and orientation ofyellowtail nounder fed 
differently enriched rotifers for the first four weeks post·hatch. 

Diet % Normal % Complete % Right sided 

·······-·····························-······!-~S!!!~.!!~.~io'!. ..... _ ... E.Y..~ .. ~igt_~~~-~~ ........ .9!..~~!:1.!.~.~-i-~~---····-····· 
DHA 47 47 61 
DHA+EPA 39 75* TI 
DHA+AA 8 * 46 57 
CONTROL 46 42 84 

Data are the m crage of duplicate tanks except for the control treatment where data are from only 
one tank. 

*Represents a significant differences in the odds ofha\·ing nonnal pigmentation or complete eye 
mrgration. G-tcst. Chi-square df=3. 



2.4 Results Part B 

Effects on gro'Wth survival and lipid composition of feeding one Artemw diet to 
larvae of differing nutritional status 

2.4.1 Lipid composition of Anemia 

The lipid class and fatty acid composition of Artemia after 24 hours of enrichment 

is given in Tables 2.13 & 2.14. TAG was the major lipid class in enriched Anemia and 

was on average 63% of the total lipid. As in the rotifers. the average percent SF A. 

MUF A. and PUFA in Artemia were -24%. 31%, and 46% respectively. Also. like 

rotifers, the major SFA in Artemia was 16:0 while the major MUF A was 18: ln-9. 

However. the PUF A composition of Artemia was very different from that of the enriched 

rotifers The major PUFA in enriched Artemw v.:as 18 3n-3. \...,·hile this fatty acid made up 

<1% of enriched rotifers. DHA was on average 7% of the total fatty acids in Artemia. 

which is much lower than the levels in PUFA enriched rotifers (21 .5 - 28.2%) EPA and 

AA on average made up 8% and 2~·'0 of the total fatty acids. While. the DHA:EPA 

DHA:AA, and EPA:AA ratios were 0.8: I. 4: I, and 4: I respectively in enriched Artemw. 



Table 2.13: Lipid class composition of Anemia enriched for 24 hours with Algamac 
or DHA Selco. Data are means± SD (n = 2). 

Lipid class Algamac DHA Sclco A,·cragc 
(% total lipid) 
Lipid per dry 151.8 ± 33 .2 192.7 ± ~5 .6 172.3 ± 20.5 
weight (~g.mg· ') 
Ketones 1..1 ± 0.1 0.6 ± 0.3 1.0 ± 0.3 

T riacylgl yccrols 50.0 ± 1.2 76.2 ± .. u 63.1 ± 13 . I 
Frt.'t! Fattv Acids 12.0 ± JK M6 ± 1.0 10.3 ± 17 
Sterols 5.-J ± 0.1 ~ ~ ± 0.5 ·U ± 1.1 ~ · -' 

Diacylglycc:rols 0.-J ± 0.~ 0.7 ± 0.0 0.5 ± 0.2 

:\cetone-Mobilc 6.0 ± 2.7 ~ . 5 ± 0.7 5.2 ± 0 .8 
Polar Lipids 
Phospholipids 23 I ± ~ ' .) __ 5.7 ± 2.1 14A ± 8.7 
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Table 2.14: Fatty acid composition of Artemia after enrichment with Algamac 
or DHA Selco for 24 hours. Data are means ± SD (n = 2). 

% total fatty acids Algamac 
1~ : 0 2.4 ± 0.1 
16:0 15 .3 ± 1.0 
18:0 7.1 ::!:: 1.7 
I SFA. 27 I :±: 26 

16: In-7 1.1 ± 0.9 
IS: In-<1 19.7 ± 1.9 
18: ln-7 9.1 ± 0.9 
I MUFA., 30.3 ± 0.2 

lli :3n4 1.2 ± 0.0 
18 2n-6 5.6 ± 1.0 
18 3n-3 18 3 ± 1.3 
18 ..Jn-3 2.1 ± 00 
20 -+n-6 (AA) 2.6 :1: 0.2 
20 5n-3 (EPA) 7.5 ± 06 
22 6n-3 (OHA) .. .. 

.J . .J ± u~ 
~ PUFA' 42.6 :±: , -... . :-

DH.AJEPA OA ± 0.2 
DH.AJAA 1.4 ± 0.8 
EPNAA 3.0 ± 0.5 

• includes ai-15 :0. 15:0. i-17:11. 17:0. and 20:0 
'' includes UUn-5. 211: ln-9. 20:ln-7 and 2-4:1 

DHA Sdco :\\crag~ 

2.1 ± 0.1 2.3 ± 0.1 
12.0 ::!:: 0.1 13.7 ± 1.7 
~0 ::!:: 0.0 5.5 ::!:: 1.1 

20 . ~ :::: 0.1 23 .8 ± 3.6 

0.2 ± 0.0 0.7 :±: 0.~ 

24.1 ± 0.0 21.9 ± 2.2 
5.4 :±: 0.1 7.3 :±: 1.8 

30.7 :±: 0.0 30.5 ± 0.2 

1.3 ± 0.1 1.2 :±: 0.0 
7.7 ± 0.1 6.7 ± 1.0 
I~~ :::: 16 16 . ~ ± 2.0 
2.3 ± 0 I 2.2 ± OJ 
I 6 :::: 0.1 2.1 ± 0.5 
8.7 ± 05 !U ± 0.6 
9 6 :::: 0.9 6.5 ± 

.. ., 

.J . -

48 .4 :::: 0.1 45 7 ± 
.. , 
.J .... 

I I :::: 0.0 0.8 :1: 03 
5.Y :::: 0.2 3.7 :1: 1 .3 
5.4 ± 0.0 4.2 ± 1.2 

' includes l6:2n4. l6: .. n-3. 20:2n-6. 20:3n-6. 20:-4n-3. 22 :5n-6 and 22:5n-3 



2.4.2 Growth and Sunrival 

At \veek six. after two v.-eeks of feeding on identically enriched Artemia, there 

were no differences between larvae in the DHA. DHA+EPA. or DHA+AA treatments in 

any of the growth parameters. However, larvae from the control group were still smaller 

than all other treatments in terms of standard lenbrth (Figure 2.8a. p<O.OS ). body depth 

(Figure 2.8b. p<O 05). and dry weight (Figure 2 8c. p<O.OS) From week four to six. 

there \vas a dramatic increase in both body depth and dry weight v.·hen compared to the 

increase in standard length. This change in gro\\<1h pattern coincided with the onset of 

metamorphosis and first observations of newly settled larvae. 

From week six to week t 3, larvae in all treatments had more than doubled in size 

(Figures 2.8). At this time, there were significant differences between tanks of the same 

treatment in all of the growth parameters. Therefore. differences between treatments 

were not statistically investigated. Interestingly. there v.·as a significant relationship 

between the number of fish L-1 in each tank and their standard length (r2 = 76.6%. 

p<O 005. Figure 2.9a). body depth (r1 = 64 4%. p<O 01, Figure .2 .9b) and dry weight (r2 = 

77.2%, p<O.OOS. Figure .2 .9c). 

Survival from week four to 13 was variable between tanks within the same 

treatment and ranged from 4 -18% (Figure 2. I 0). 

57 



Figure 2.8: Morphometric measurements of yellowtail flounder larvae fed four types of 
differently enriched rotifers for the first four weeks post-hatch followed by identically 
enriched Artemia. 
(a) Standard length. n=30 (P<0.05. FJ.tlt.) 

(b) Body depth. n=30 (P<O.OS. F:u t6) 

(c) Dry weight, n=6, (P<O.OS. Fuo) 
* represents a significant differences between dietary groups (ANOVA, Tukey·s Multiple 
Comparison). Data are mean± SEM. 
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Figure 2.9: The relationship between stocking density and (a) standard length. (b) body 
depth and (c) dry weight at the end of week 13 . Data are tank means ± SEM ( n= 15 for 
standard lenh>th and body depth. n=3 for dry \veight) . Significance for regression analysis 
was alpha= 0 05. Fr.7 . 
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Fig 2.10: Percent survival of larvae from week 4 to week 13 
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2.4.3 lipid class compo§ition of lanae 

At the end of the rotifer feeding period, larvae from the DHA and DHA+EPA 

diets had on average -12.5% oftheir dry weight as lipid while larvae from the control 

and DHA+AA diets had -8.8% (Results Pan A Table 2.9). However. after two 

additional weeks offeeding on identical Anemia all groups had between 12.8 to16.6% 

lipid (Figure 2.11a. Table 2.15). Larvae in the control treatment showed a dramatic 

increase from an average of -8.8% at week four to 16.5% at week six. 

After two weeks of feeding Artemia, there were no significant differences in the 

relative amounts ofTAG or the TAG/ST ratio between larval groups (p<O.OS. Table 

2. 15 ). At both weeks three and four. larvae from the control diet had lower TAG and 

T AGIST ratio than all other treatments (Figure 2. 11 b & 2. 11 c). From week four to six. 

larvae originally fed the DHA and DHA-t-EPA diets showed a decreasing trend in their 

TAG/ST ratio. while larvae originally fed the DHA+AA diet showed an increasing trend. 

and larvae originally fed the control diet showed a dramatic increase from 1.2 to 2.6 

(Figure 2.11 c). At the end of week six, larvae in the control treatment had a higher 

percentage ofPPL than larvae in all other groups (Table 2.15, Figure 2.11d. p<O.OS). 
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Figure 2.11: Lipids in yellowtail flounder fed four types of differently enriched rotifers 
for the first four weeks post-hatch followed by two weeks of identically enriched 
Artemia. 
(a) lipid dry weighf1 

(b) TAG(%) 
(c) TAG/ST 
(d) PPL (%) 

*represents a significant difference between dietary groups (ANOVA, Tukey·s Multiple 
Comparison test, P<O.OS, FL!o Data are mean ± SEM (n=6) 
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Table 2.15: Lipid class composition of week-six larvae fed differentially enriched rotifers 
for four weeks post-hatch followed by identically enriched Artemia. Data are mean ± SD 
(n=2). 

Total lipid 
(J.Lg.mg.J) 

Lipid ciass 
(%total lipid) 
T riacylgl yccrols 
Free Fatty Acids 
Sterols 
Diacylglycerols 
Acetone-Mobile 
Polar Lipids 
Phospholipids 
TAGIST 

DHA 
13S 9 ± 14.2 

18.9 ± 0 .4 
1.5 ± 0 .7 
7.6 ± 0 .3 
2.3 ± 0 .2 
1.7 ± 0.4 

67.8±09 
2.5 ± 0 .1 

DH.A+EPA 
142 .2 ::: 15 3 

18.5 ± 0.4 
0 .6 ± 0.1 
7.6 ± 0.6 
2 .6 ± 0.1 
1.9 ± 0.1 

68 6 ± 0.1 
2 5 ± 02 
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DHA~AA CONTROL 
1285 :::: 24.5 165 I ± 5.2 

20.0 ± 0.7 16.8 ± 0.9 
0.4 ± 0.1 0.8 ± 0.4 
7.0 ± 0.2 6.4 ± 0.1 
1.9 ± 0.2 2.1 ± 04 
1.7 ± 0. 1 1.8 ± 0.2 

68 .6 ± 0.7 71K ± 0.2 
2.9 ± 03 2.6 ± 0.2 



2.4.4 Fatty acid composition of lanrae 

The fatty acid composition of larvae at the end ofweek six is shown in Table 

2.16. The total fatty acids ranged from -96 11g.mg-1 in the DHA+AA group to a high of 

-117 ll£ mg-1 in the control treatment. The control group had higher levels of total fatty 

acids per unit dry weight than larvae in all other treatments (p<O.OS) However, larvae 

from the DHA+AA treatment still had a higher percentage of AA than larvae in all other 

treatments. Also. larvae from the control diet still had a lower relative amount of DH.-\ in 

their bodies than all other groups (p<0.05, Table 2.16 ). 

The most dramatic changes in larval fatty acid composition between week four 

and week six were in the PUFA (Figure 2.12a) The 18:3n-3 which was <1% of larval 

fatty acids at week four accounted for on average 14 5% of the total fatty acids. in all 

dietary groups, at week six (Table 2. 16) The I 8 4n-3 was also present at week six at 

<!5° 'o of the total fatty acids whereas at week four this fatty acid made up <0 3% of the 

total. A relative decrease in the level of DHA was seen in larvae from the high Pl1FA 

groups while in larvae from the control diet this level stayed constant. The proportion of 

EPA in larval tissues increased from week four to week six in all treatments except the 

DHA+EPA group (figure 2.12a). Similarly. the level of AA in larval tissue remained 

constant in all treatments except for larvae in the DHA+AA diet; where it decreased from 

-8% at week fourto -3% at week six (Figure 2.12a) 

There were differences in the fatty acid composition of the larvae compared to 

dietary levels found in Artemia (Figure 2.12b) The most dramatic difference was in the 

level of22:5n-3 in the larvae compared to the diet . ln all dietary groups 22·Sn-3 was 
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Table 2.16: Fatty acid composition ofweek-six larvae fed differentially enriched rotifers 
for four weeks post-hatch followed by identically enriched Artemia. Data are means :: 
SD (n=2). 

% fatty acids DHA DHA+EPA DHA+AA CONTROL 
Total fattv acids 108.1 5 .1. 97 7 ± 5.1' 96 7 6 ~ . 117.8 .. ""'~ ± ± . .:> ± .) _j 

(llg.mg . .-) 
14:0 1.0 ± 0.0 1.1 ± 0.0 1.0 ± 0.0 1.0 ± 00 
16:0 11.5 ± 0.2 12.4 ± 0.3 11 .8 ± 0 . 1 12.3 ± 0.1 
ai-170 I. I ± 0.0 1.1 ± 0.0 1.1 ± 0.0 1.1 ± 0.0 
18:0 5.3 ± 0.0 5 .4 ± 0.0 5 .3 ± 0 . 1 - ~ 

-' ·-' ± 0.0 
!: Sf:\1 20.8 ± O.J" 21.9 ± 0.5" 20.9 ± 0.3· 21.5 ± 0.2 ~ 

lo: ln-7 3 .4 ± 0.3 3.5 ± 0.1 3 7 ± 05 ~ J 
.:> - ± 03 

IXIn-7 55 ± 0. 1" ol ± () I"'" 50 ± 0 , .• r 6 .2 ± o.t 
I X ln-4 19.0 ± 0.1 IY 2 ~ 0 I 19 0 ~ 0 .4 I~J . 7 ~ 0.2 
20 ln-4 1.8 ± 00 I X ~ () 0 17 ± 00 1.7 ± 0 I 
!: MUFA~ 31.0 ± 0.7 31.7 :± 0.4 31 .3 ± 1.0 31.8 ± 0.8 

16 3n4 10 ± 0.0 I I ± {) () I 0 :: 00 I I :!:: ()() 

I X 2n-6 5.5 :!: o o·· 5 5 ~ () 0 I 50 ~ o I , 5 lj ~ 0 I " 
I X 3n-3 14 3 ± 0 .2 14 . 1 ~ () 4 1-U ~ on 15 0 ± () 3 
I i< 4n-3 2.2 ± 0 .0 1.2 ± 0 I 22 :t 0 I 2 I ± ()() 

20:-tn-6 2.4 ± o.o· 2.6±0.1. 3.0 ± O.Oh 2 .7 ± o.o· 
20:5n-3 8.0 ± 0.1 8.9 ± 0.4 !U ± 0. 1 9.1 ± 0 I 
22:5n-6 0.9 ± 0.0 0.9 ± 0 0 11 ± 0 .0 II ± 00 
22:5n-3 1.3 :!: 0.1 1.4 ± 0.1 1.2 ± 00 1.3 ± 0.0 
22:6n-3 10.4 ± 0 -. .) 7.8 ± 0.1' 8.8 ± 0.7 · 6 .5 ± 0.7" 
!: PUF.-\J 48.2 ± 0.9 46.4 ± 1.3 47.7 ± 1.7 46.6 ± 1.3 

DHA/EPA 1.3 ± 0.1 . 0.9 ± 0.1"' 1.1 ± 0.1 .h 0.7 ± 0.1 h 

DH:\1:\:\ 4.J ± 0.2 a 3.0 ± 0.1 " 3.0 ± 0.2 r 2.4 ± O.l h 
EPA/A:\ 3.J ± o.o· 3.5 ± 0.1 ·I 2.7 ± o.or 3,4 ± 0,) I 

includes 15 0 ai-15 :0 i-17 017 0.20:0 
: mcludes IX : In-5. 20 ln-7. 22 :1n-ll. 22 ·1n-Y. 2-U 
J mcludes l6 :2n-4. 16:-tn-3. 20:2n-6. 20:3n-6. 20An-3 

"hDiffcrcnt subscripts represent a significant d ifference between dtctal}· groups. One Way 
ANOVA. f;1. p <0 05 



Figure 2.12: Ratios of fatty acid proponions in yelloMail flounder fed differently 
enriched rotifers for four weeks post hatch followed by identically enriched Arremta for 
two weeks: a) Relative change in larval fatty acid composition from week four to week 
six. The solid line indicates where the proportions at week four were equal to those at 
week six. b) Relative proportions of specific fatty acids in larvae compared to dietary 
levels Bars are means± SEM (n=6) The solid line indicates where the proportions in 
the larvae are equal to those in the diet 
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approximately three times higher in larval tissue than it was in Artemia. Enriched 

Artemia showed lower levels of AA than all larval groups. ln the DHA+EPA and control 

diets. EPA was found at slightly higher levels in the larvae than in the diet while in the 

DHA and DHA+AA larvae. it was present in the same amount as in the diet. The control 

group was the only treatment that did not have higher levels ofDHA in their bodies than 

was found in enriched Artemia. The 18:3n-3 was present in lower levels in larvae than in 

their diet . 

The distribution of fatty acids in the neutral and polar lipids is given in Table 

2. 17. Similar to week four. all dietary groups showed a concentration of DHA in the polar 

lipid portion at the end of week six (Figure 2. \3 ). However. in the high PUF A treatments 

this conservation was more dramatic than at week four EPA was also concentrated in all 

groups in the polar lipid portion This differs from week four when only the control 

group showed higher levels of EPA in the polar lipid ln all treatments \8.3n-3 and 

18\n-9 made up larger percentages ofthe neutral than the polar lipid (Table 217) 
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Table 2.17: Neutral and polar fatty acid composition of six-week-old yellowtail tlour.der larvae that were fed 
differently enriched rotifers for 4 weeks post-hatch followed by identically enriched Artemia. 

Data are means± SD (n=2) 

•y., of total fatly DHA DIM DHA+EPA DUA+EPA DHA+AA DHA+AA CONTROL CONTROL 
acids NEUTRAL POLAR NEUTRAL POLAR NEUTRAL POLAR NEUTRAL POLAR .................................................................. ........................................ ...... ................................. ..................... ··································································· ···· ················ ······································-······ 

1-l :O 1.7 ±(I.( I II'J ±lUI I. 7 ± (1.11 n .•J ± 0 .11 1.6 ± 0.0 0.1J±CI. I 17 ±0.1 O.IJ ±(1.(1 
lfdl 7.(,±0.1 12.'1 ±0.1 K.5 ± 0.1 12.6±11.1 7A ±0.2 12.1 ±0.1 K2±01 12.K ±0.1 
I K:O -l .2 ± 0. I 6A ±0.2 .... ±(I.( I 6 .1 ±0 (I .... ±0.1 6.6 ± U. l -l1±00 (, .. ±0.1 
L Sfo'A• I~.IJ:t:II.J 21.7 ±0.1 17.0 :t:II.J 21.J ±0. 1 1~.7 ±0.0 21.0 ±41.1 ll1.~ :t:O.J 21.~ ±0.2 

I K: ln-'J 22A ±0.1 U.IJ ±0.2 21.2 ±0.5 15.K :t 11.2 22 .'1 ±u.s 15.6±0.1 217±11.2 16.2 ±U.] 
IK: In-7 6.7 ±0.2 5.2 ±!I. I 7.-l±U. I 5.K±II. I 7.1 ±00 5.(, ± 0.1 7.6±111 60 ±0.1 
16: ln-7 5 ... ±(1.(1 1.6 :t: lUI 5.-l±ll. l 2.0 ± 11.11 5J ±0.2 1.8 ±0.2 5 .. i 0 .1 I.K ± !1.11 
20: I n-IJ 2.1 ±Cl.CI 1.] ±CUI 2.7±0.1 1.-l±ll. l 2.5 ± 0.0 lA ±(1.11 2 .. ± 0.1 1.1 ±II. I 
LMUFA" J8.~ ±O.J 21.11 :t:fi.J .ao . .a ±o.7 2~.7 ±O . .a J9.~ ±11.2 2~.1 ±O.l .ao.7 ±0.2 2~.9 ±0.~ 

l6:1n--l lA ±lUI 0.7 ±11.(1 lA ± (1.(1 II 7 :t lUI 1.4 ± (1.11 0.7 ±11.11 1.-l .i: 11.11 0 . 7 ±CHI 
I K:2n-(, 5.-l±OO 5.-l ±CHI 5.1 ±0.1 55 ±(Ill 5 ... ±0.1 5A ± 11.1 5.2 ± 0 .2 6.0 ± Cl.ll 
IK:1n-1 1'>.2 ±11.1 9.7±0.2 I X. I ±II(, lll . .'i :r o . I I'J. I ± 0.6 IO . .'i ± Cl . .l IX7±07 I U ±fl.fl 
I X:-tn-1 1.(1 ± 0.0 1.1 ± 11.11 1.5 ±()I) 12±011 1.(1 ±0.1 I. 2 ±(I.! I 1.-l±O.O 1.1 ± (1.(1 

-.1 211 :-trl-f,(AA) 1.5 ±11.1 4.6±0.] 1.-'±11.1 4.5 ±0 2 2.11 ± 0.1 -l .'J±O. I IIJ±O-l ..... ±0.1 
1-.J 

211:]n-1 1.5±15 1.2±1.2 1.0 ±lUI 2A±O.O 1.11 ±0.1 2.4 ± 0.1 2.9±11.1 2A ± 0.1 
20:.'in-1(EPA) -l .(, ±CUI 10.2 ± 0.2 .. . 7±0.1 11.-'±01 ..... ±0.-l W .2 ±OA .. 5±110 12.0 ±IIA 
22 :-tn-(, 11. 1 ± 11. 1 II.( I ± 11.11 11 .1 ±0. 1 0 .0 iII.( I 0.2 ± (1.11 (I.() ±(I.( I 11. 1 ±1111 (1.(1±(1.(1 
22 :5n-6 0.1 ±(1.11 I I ± ti.CI 0 .2 ± (1.(1 1.0±0.1 01±0.1 1.1 ±0.0 0 2 ± 0.1 1.0 ± 0.1 
22 :5n-1 (I I) ±(I.( I 1.5 ±lUI I o ± 0 .11 I 'J±O. I 0.9±0.1 I .6 ±CUI 0 K ±CUI I. 7 ±().I) 
22:fllt-l(DI·IA) 1.5±11.-l l(d ±!1.2 25±11.2 1\.M:tll.l 2.7 ±0.5 11.7 ±0.7 1.9±11.1 lJ.lJ ± O.IJ 
t PlJFA• ..... 2 :t: 1 ... !'iJ . .a :t 1.0 .a2.7 :t: 1.0 ~J.I :t:fi.J .a.a.N ±0.2 !'iJ.9 ±0.1 42.8 ±fl.(, !'i2.(,:t:fl.7 

DHNEPA O.K ± 11 .1 I.CI ± (l.J II 5 ±(l.CI 1.0 :t.O. I ()(, ±0.1 1 ... ± 0.1 0 .. ±0.0 O.K ± 11.1 
DHNAA 2.5 ±0.7 ].5 ± 0.2 1.7±0.2 2.(, ±(1.11 1.-l ±CU 2.M ±0 2 II ±CU 2.1±0.2 
EPNAA 1.1 ±Cl.(, 2.1 ±11.2 u ±11.2 2.5 ±0.2 2.2 ± 0.2 2. 1 ±(I.( I 2.5 :t 0.5 2.7 ±0.1 

• includes 15:0 ai-15 :0 i-17 :O 17:0.20:0 
"includes IK : Jn-5. 20: ln-7. 22 : In- II. 22 ln-IJ. 2·U 
c includes l6:2n-·t. 1(•:-ln-1. 211:2n-6. 21Un-<•. 211-tn-1 
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Figure 2.13: Comparison of the neutral and polar highly unsaturated fatty acid 
composition of yellowtail flounder larvae after four and 
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2.5: Discussion (Part A) 

This is the first study to examine the effect of dietary lipid on the early growth 

and development of yellowtail flounder larvae. Due to limitations on the number of 

dietary treatments that could be investigated. diets were chosen to provide maximal 

information on not only the importance ofDHA (22:6n-3) but also EPA (20:5n-3) and 

AA (20:4n-6). 

2.5.1 Rotifer lipid composition 

Rotifers enriched with the control emulsion (-70% 18: ln-9) had a significantly 

higher level of free fatty acid (FFA) than all other rotifer groups (Table 2.5). Rainuzzo et 

al. ( 1994) fed rotifers emulsions enriched with different lipid classes (triacylglycerol. wax 

ester, ethyl ester. or phospholipid) and found that rotifers maintained a constant level of 

phospholipid independent of the enrichment emulsion. Rotifers fed wax ester emulsions 

had elevated levels of TAG indicating that rotifers are able to hydrolyse wax esters and 

oxidise fatty alcohols into fatty acids. Further. rotifers were able to assimilate these fatty 

acids into the TAG lipid fraction (Rainuzzo et al.. 1994) 

The elevated level of FF A in our study could indicate that rotifers were able to 

hydrolyse the TAG from the emulsions but were unable to re-assimilate such high levels 

of 18: I n-9 into there own membrane or storage lipids. Oleic acid ( 18: I n-9) is commonly 

used as a control enrichment (Watanabe 1993; Watanabe & Kiron, 1994; Furuita et al .. 

1998) however lipid class data for other rotifers enriched with high levels of this fatty 

acid are not available. 



A challenge to providing live-food \\ith proper enrichment is the loss oflipid that 

can occur in first-feeding tanks prior to larval consumption (McEvoy et aL 1998). Olsen 

et al. ( 1993) examined the effect of both temperature ( 5-IS"C) and time of starvation on 

the rate of lipid loss in rotifers The rate was found to be low at temperatures < S"C with 

essentially no loss oflipids up to four days. However. the rate of lipid loss was found to 

increase exponentially with temperatures above 8°C. Rainuzzo et al. ( 1989) also 

examined the rate of lipid loss in enriched rotifers and found that at I O.,C they lost only 

10% oftheir n-3 fatty acids per day. Temperatures during the rotifer-feeding period were 

< 12°C here. Also. high flow rates (2-L min.1
) ensured that live-food did not remain in 

feeding tanks for prolonged periods. Approximately ten tank volumes were exchanged 

every 24 hours and observations of prey levels showed that < I 00 prey L.1 were available 

just two hours after feeding. 

2.5.2 Lan·al growth and sun·ival 

Diet had a significant effect (p<O.OS) on both gro\\th and survival during the first 

four weeks post-hatch. After four weeks, larvae in the DHA diet were significantly larger 

while larvae in the control diet were significantly smaller than all other treatments 

(Figure 21 ). Rabe & Brown (2000) examined a pulse feeding strategy for rearing 

yello\\lail flounder. They found that after four weeks of feeding on rotifers which were 

maintained on culture Selco and enriched v .. ·ith microalgae (T-Isochrysis), larvae reached 

a standard length of -9 mm. Here larvae ranged between 7.3- 9.7 mm in standard length 
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after four weeks. This demonstrates that the experimental emulsions produced gro\\th 

comparable to trials using more typical enrichment methods. 

Trends in survival reflected those seen in growth. with larval survival in the DHA 

diet the highest (-22%) and that in the control diet the lowest (-5%). Survival is often 

low and variable for new cold-water aquaculture species Rabe & Brown (2000) reported 

survival for yellowtail flounder during the first two weeks post-hatch to range between 

1.4 and 17.3% and survival from weeks 2 to 7 ranged from I 5 to 13 .8%. These studies 

represent findings for larvae that were reared in small containers (30-300 L) and it is 

probable that higher survival would easily be achieved using larger first-feeding tanks. 

A significant relationship between dietary DHA:EPA and larval growth and 

survival was found in this study {Figure 2.7). The dietary DHA:EPA ratio ranged from 

-8: I in the DHA diet to -I : 1 in the control diet. Rodriguez et al. ( 1997) investigated the 

effect of dietary ratios of DHA: EPA on early development of larval gilt head sea bream 

(Sparus aurara). They used DHAEPA ratios in the range I 4: I - OJ I and found a 

significant positive relationship between the DHA:EPA ratio in the larval polar lipids and 

larval total length after two weeks. Furuita et al. ( 1999) examined the effect of EPA and 

DHA on the growth, survival and salinity tolerance of Japanese flounder (Paralichthys 

olimceus) larvae. They found no difference in growth in relation to EPA and DHA. 

However. larvae receiving the high DHA diet demonstrated better 'vitality' after 

exposure to stress tests {high salinity water. 65 ppt). Estevez et al. ( 1999) also tested a 

range ofDHA:EPA ratios (0. 1-3.1) on the early development of turbot (Scophthalmus 
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maximus) larvae and found that there was no significant difference between dietary 

groups in either grov.th or survival. 

The biological significance of dietary DHA EPA can be viewed in terms of 

competitive interactions between fatty acids for incorporation into phospholipids, 

specifically competition for the enzymes that esterify fatty acids onto the 

glycerophospho-base backbone. Previous studies have shown that high levels of di-22 :6 

n-3 species are present in the eyes and brains of Atlantic cod (Gadus morhua), sea bass 

(Dict!ntrarchus lahrax). turbot and herring (Ciupea harrengus) (Bell & Dick. 1991 ; 

Mourente et al. 199 L Bell et at.. 1995: Bell et aL 1996) Diets deficient in DHA have 

been shown to change the fatty acid composition of neural tissue and decrease foraging 

efficiency at low light intensities in juvenile herring (Bell et al, 1995) Yellov.-tail 

flounder larvae are also visual predators and it is therefore probable that dietary 

composition could affect their early foraging behaviour and thus grov.th and survival. 

Examination of the lipid composition of eggs/yolk has been suggested as a 

method for determining the nutritional requirements of newly hatched larvae. Typically a 

dietary DHA:EPA ratio of2:1 is found in marine species and has thus been suggested as 

adequate for larval feeding (Tocher & Sargent. 1984; Sargent. 1995. Sargent et al.. 1999) 

However. analysis of eggs and just hatched larvae here resulted in a DHA:EPA ratio of 

14: I and 1.5: I respectively (Table 2.8) These eggs were collected from fish that were 

captured only a week prior to spawning and therefore, the egg composition should reflect 

a wild broodstock diet. There is no previously published data on the lipid composition of 

yellov.-tail flounder eggs and larvae. Still, for other marine species, evidence points to a 

77 



connection between lipid composition and egg and early larval survival. Navas et al. 

( 1997) reported that decreased TAG and increased n-3 fatty acids were correlated with 

higher egg quality in European sea bass (Dicellfrarchus lahrax). Similarly, Zhu (1999) 

found that decreased TAG and increased EPA were associated with better fertilisation 

success in Atlantic halibut. Fernandez-Palacios et al. ( 1995) found that for sea bream 

improved fecundity. hatching success and larval survival were obtained using broodstock 

diets with 1.6% n-3 HUFA (ofthe total fattv acids). while 3 . 2~·o caused decreased 

fecundity and yolk sac hypertrophy in newly hatched larvae. 

This is the first study to demonstrate a relationship between dietary DHA:EPA 

and increased rearing success using a ratio as high as 8 : I . The elevated DHA used here 

was achieved by utilising a speciality TAG oil. This oil was produced by a heterotrophic 

dinoflagellate, Crypthe,·odinium c:ohnii. which contains DH:\ as the sole HUF A (Manek 

BioSci Columbia. MD USA). The majority of studies in larval nutrition use emulsions 

based on fish oils which typically ha,'e a DHA:EPA ratio of < 2: I; with tuna orbital oil 

providing the highest ratio at -3 .61 (McE\·oy et al .. 1996; Estevez eta!.. 1999) This 

relationship between extraordinarily high dietary DHA:EPA and increased rearing 

success is new and calls into question the theory of ·nature knows best'. Further studies 

using novel DHA enrichment products, similar to that used here. may show this 

relationship in other marine species. 
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2.5.3 Pigmentation 

There were high levels of mal-pigmention in all dietary treatments. However. 

larvae that received high levels of dietary A.A. during the first four weeks post-hatch show 

a significantly lower proportion of normal pigmention (8%) than all other dietary groups 

(>39%. Table 2.12). Although pigmentation can only be categorised after 

metamorphosis. the factors that determine pigmentation are influential during the larval 

phase. These results indicate that the sensitive period for determination of pigmentation 

in yelloVItail flounder is within the first four weeks post-hatch. Flexion of the notochord 

( 45" upward) and an increase in body depth relative to standard length both occurred 

during the fourth week. Both of these obsen·ations indicate that week four represented 

the onset of metamorphosis. At week six. the beginning of eye migration and the first 

incidence of settling behaviour were observed. 

Seikai et al. ( 1987) estimated the larval stage at which nutrition had an impact on 

later pigmentation in Japanese flounder. Live-feed known to induce albinism (Anemia 

nauplii and rotifers) or normally pigmentation (copepods and rotifers) were fed in 

different sequences in order to deduce the ·pigmentation window· This critical period 

was found to occur at about 8 mm standard length during the pre-metamorphic period 

when larvae began to increase in body depth. Naess & Lie ( 1998) conducted a similar 

experiment with Atlantic halibut (Hippoglossus hippoglossus) and also found that the 

sensitive period was the initial stage of metamorphosis: standard length 16 mm and dry 

weight 2.8 mg. In agreement with this, the ' pigmentation window' for yelloVItail 
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flounder also occurs during the pre-metamorphic stage. standard length < 9 mm and body 

depth < 1.6 mm. 

Relatively little is known about the significance of AA on the early growth and 

development of larval fish and the existing results point to species-specitic and age-

specific requirements l found that AA had no positive effect on gro\\<th or survival and 

had a negative effect on pigmentation. when included at 0.8% dietary dry weight (7% of 

total fatty acids) Castell et a!. ( 1994) found that AA had grov.th promoting effects in 

juvenile turbot when included at between 0.3 and 1.0% of dietary dry weight. Bessonan 

et al. ( 1999) also found a gro\\<th and survival promoting effect of dietary AA when 

included at between I 0 and 1.8% of dietary dry weight. However. this effect was 

masked when the DHA:EPA ratio was altered. 

McEvov et at. ( 1998) and Estevez et al. ( 1999) investigated the effects of EPA - -
and AA on pigmentation in Atlantic halibut and turbot In both these studies. high levels 

of DHA \vere present in all diets and the EPA AA ratio was varied. It was concluded that 

given adequate DHA. pigmentation was dependent on AA and not EPA. A high 

incidence of mal-pigmentation was found in turbot larvae that received diets containing 

EPA:AA ratios of 1.4: I and 0.3: I. Here, the DHA+AA diet also produced high levels of 

mal-pigmentation and the EPA:AA ratio was 0.5 : I. Estevez et al. (1999) noted that mal-

pigmentation occurred when levels of AA and EPA increased and decreased respectively 

in the phosphatidylinositol (PI) fraction of the brain. Given that AA is the preferred 

dietary precursor for the production of eicosanoids (Bell et al. 1994 ), elevated albinism 

was hypothesised to result from the effects of increased brain eicosanoid production on 



both the nervous and endocrine functions associated \\'ith metamorphosis. Notably, 

Estevez et al. ( 1997) also found that increased dietary AA had a positive influence on 

pigmentation in Japanease flounder. which reiterates that there are species specific 

dietary requirements. 

Sargent et al. ( 1999) hypothesised that increased levels of dietary AA may cause a 

generalised state of stress due to elevated eicosanoid production. Although our levels of 

mal-pigmentation were highest in the DHA+AA group, levels of mal-pigmentation were 

still high in all dietary treatments Larval survival was estimated during week four and 

this process involved vigorous aeration and stirring of tank water. Therefore. it is 

possible that this stressful event may have influenced pigmentation in all treatments It is 

likely that stressful activities such as enumeration or transferring of larvae should be 

avoided until well afterthe ·pigmentation window·. If high levels of mal-pigmentation 

can be attributed to generalised stress, then improvements in pigmentation of yellowtail 

flounder may be achieved using lower stocking densities. lower water exchange 

(turbulence). larger tanks. lower light intensity, increased tank algae concentrations and 

antibiotics baths. 

2.5.4 Larval lipid composition 

Lipid class analysis showed that the control treatment had significantly (p<O.OS) 

lower levels ofT AG and TAG/ST ratios than larvae in all other treatments (Figure 2.3) 

Relative improvements in larval condition in other species, such as herring and Atlantic 

cod have been attributed to elevated total lipid, TAG per dry weight and T AGIST ratios 
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(Fraser. 1989~ Lochman et al .. 1995). However. larvae from the DHA+EPA and 

DHA+AA treatments did not differ in growth or survival despite larvae from the 

DH..A.+EPA group tending towards higher total lipid dry weighf1 (p<0.09). 

Yello\\-taillarvae fed the high PUFA diets had lipid compositions \·vhich generally 

reflected dietary levels. while larvae in the control diet had elevated level of PL !fA and 

reduced levels of 18: I n-9 compared to dietary levels (Figure 2.5). The high levels of AA 

(-4x). DHA (-4x). and EPA (-2.5x) show evidence for preferential retention ofthese 

fatty acids and point to their dietary essentiality. while high leveis of22 :5n-3 (-2.5x) may 

represent evidence for chain elongation. Larvae in the PUF A enriched treatments (DHA 

present as 22-28% of dietary fatty acids) did not show any preferential retention of DHA 

compared to dietary levels. indicating that the actual requirement for DHA may be lov.·er 

than 22%. Interestingly. all treatments except for the DHA+EPA had higher levels of 

EPA in the larvae than in the diet. This could indicate that EPA is not needed at the high 

levels found in the DHA+EPA enrichment (II%) Similarly. AA was also conserved in 

all groups but to a lesser extent in larvae receiving a diet containing higher levels of AA. 

Curiously. larvae with the DHA enriched diet had higher incorporation efficiency for AA 

( -1.8x) than larvae in the DHA+EPA ( -1.2x) enriched group which could indicate a 

competitive interaction between EPA and AA for incorporation into phospholipids. 

Elevated levels of specific fatty acids in larval tissue compared to dietary levels 

have been referred to as incorporation efficiency (Castell et al. , 1994) However, it is 

difficult to differentiate whether this elevation is due to preferential retention/uti lisation 

or chain elongation/desaturation. Tocher ( 1993) examined the metabolism of EPA and 
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18:3n-3 in primary cultures of brain astrocytes from juvenile turbot and found very low 

levels ofboth ~5 and .14 desaturase activity Therefore. it was concluded that very little 

DHA could result from the elongation and desaturation of 18:3n-3 and EPA. However. 

Tocher et aL ( 1992) also found significant elongation of EPA to DHA in mixed brain cell 

culture from juvenile turbot. When juvenile herring were fed a pelleted diet devoid of 

22 Sn-3. DHA and low in EPA. there was significant incorporation of22:5n-3 in the eye 

phospholipid with no increase in DHA after four weeks (Bell et al.. 1995) This indicates 

that herring have the ability to chain elongate 183n-3 and EPA to 22:5n-3 but cannot 

complete the final desaturation step to form DHA The ability of larval yello\\1ail 

flounder to desaturate and elongate 18:3n-3 or EPA to DHA has not yet been 

investigated. Nevertheless. based on trends for other carnivorous marine organisms it is 

probable that they have very low levels of desaturase activity and are dependent on pre· 

formed dietary DHA. 

Examination ofthe neutral and polar fatty acid composition ofthe larvae 

demonstrated that PUFA. 18 I n-9. 16 0 and 18 0 were the major fatty acids in the polar 

lipid. while monounsaturated fatty acids were generally found at much higher levels in 

the neutral lipid (Table 2. II). In particular. DHA was incorporated into the polar lipids 

and in the control treatment this was particularly evident ( Sx higher than in neutral 

lipids). The control treatment was the only group that showed higher levels of EPA and 

22: Sn-3 in their polar lipid fraction. These results indicate that yellowtail flounder have 

similar molecular species composition in the polar lipid to that of other cold water marine 

species. Bell & Dick ( 1991) described the molecular species of the major phospholipids 



in the muscle. liver. retina and brain of Atlantic cod. They found that 16:0/22:6 and 

16:0/20:5 accounted for 18% and 22% respectively of the PC fraction of the muscle \vhile 

22:6/22 6 and 18:1/22:6 made up 20°/o and 13% respectively ofthe PE fraction . The PS 

fraction was found to be particularly high in 18:0/22:6 which accounted for 36% of the 

total . 

2.5.5 Conclusions 

Based on the results of this study it can be concluded that dietary PUFA have a 

pronounced effect on early growth, survival. and pigmentation in yello-wtail flounder 

larvae High dietary levels of DHA relative to EPA had gro~th promoting effects and 

this relationship was observed throughout a wide range ofDHA.EPA ratios ( 1·1 to 81) 

Elevated dietary AA caused an increase in mal-pigmentation and therefore. the 

·pigmentation windov.·' was concluded to be within the tirst-four weeks post hatch. 

Further investigations into the role of husbandry induced stress on pigmentation are 

recommended. as high levels of mal-pigmentation were observed in all treatments. 

Enrichment of live-food with DHA is essential for this species, however further studies 

are needed to confirm whether enrichment with EPA and AA is necessary Based on the 

incorporation efficiency of PUF A imo larval tissue and on the relative amounts of PUF A 

in the neutral and polar lipid fractions. a ratio ofDHA:EPA:AA of 10:1.5: I could be used 

as a starting point for further investigations into the dietary requirements of yellowtail 

flounder larvae. 



2.6: Discussion (Part 8) 

This section focuses on the changes in grov.th and lipid composition that occurred 

when larvae of differing nutritional status were fed one diet of enriched Anemia. 

Although factors such as stocking density and prey levels were not controlled. dramatic 

changes in larval lipid class and fatty acid composition were observed. 

2.6.1 Artenria lipid composition 

The PUFA composition of the enriched Anemia was very different from that of 

the enriched rotifers (Table 2. 13 ). High levels of 18:3n-3 were found in Artemia enriched 

with both Algamac and DHA Selco. Navarro et al. (1993) reported that freshwater 

nauplii generally have elevated levels of 18:3n-3 and very low amounts of EPA and DHA 

(< 0 5%). Enrichment of Anemia with highly unsaturated fatty acids (HUFA) is also 

complicated by retro-conversion ofDHA to EPA within the animal (Navarro et al.. 

1999) Levels ofDHA were low and the average DHA:EPA ratio in enriched Artemta 

was 0. 8: I. Artemia had 15% and I 9% lipid dry weighf1 respectively. when enriched 

with Algamac or DHA Selco. These results are within the range reported in other studies 

(Blair et al .. 1998; Olsen et aJ ., 1999). There is considerable variation in the literature for 

live-food lipid levels following enrichment with commercial products. This variation 

between studies could be due to physical differences in enrichment parameters or 

variations in Anemia-cyst batch quality. 
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2.6.2 Growth and Sun"ival 

Stocking density significantly affected growth during the Artemia-stage. 

particularly in the DHA and control treated larvae (Figure 2. 9). Due to differential 

survival during the first four weeks. there were different stocking densities during the 

Anemia-stage. Stocking density was not adjusted to the lowest level of survival ( 5%) in 

all treatments because adequate numbers offish were required at the end ofthe 

experiment to determine pigmentation rates. 

There is little available information on the effect of stocking density on early 

larval gro\\th and survival However. stocking density has been shown to affect gro\\th 

and survival in a few species ,..,·hen food a\·ailability is limiting Baskerville-Bridges & 

Kling (2000) examined the effects of stocking density on Atlantic cod larvae. They 

found that cod reared at ISO and 300 larvae L"1 showed no difference in growth during 

rotifer feeding. However, after two weeks of feeding on Artemia, larvae at the lower 

density had significantly higher growth rates. In a second experiment, larvae were reared 

at four different densities (50-300 larvae L-1
) and food levels were constantly adjusted to 

3-prey mr 1 This resulted in no differences in grov.th or survival. Therefore. it was 

concluded that differences in grov.th observed in the first experiment were a result of 

food limitation at high stocking densities. - -
Daniels et al. ( 1996) also found that stocking density had no effect during the 

early larval phase in southern flounder (Paralichthys lethostigma) but significantly 

affected growth and survival during metamorphosis. Based on this study. a two step 

hatchery rearing protocol with high densities during the initial larval period and reduced 



densities during metamorphosis was recommended. No published data are currently 

available for the effect of stocking density on yellowtail flounder during their larval 

period However. studies on juvenile fish showed that yellowtail flounder (0+, -10 g) 

stocked at 90% bottom coverage had lower gro"Wth rates and higher gross food 

conversion ratios than fish stocked at 13% and 45%. (Boyce. 2000) 

Food levels were not adjusted to match stocking densities during the Anemia

feeding stage and all tanks received Artemia at a rate of 4000 prey L"1 day"1
. At the 

beginning of the Artemia-feeding, this resulted in the control group receiving -1330 

Artemia larvae·' day·' while the DHA treatment received -300 Artemia larvae·' day-1. 

From weeks six to thirteen. it was observed that tanks with higher densities had more 

pelagic larvae However. more research is required to elucidate whether these results are 

due to a behavioural response resulting from limited surface area for settlement or due to 

slower gro"Wth and development as a result of food limitation. 

A rapid increase in gro\\th was observed during the ArtemJa-feeding stage (Figure 

28) Enhanced growth rates during the Anemia-phase have previously been reported for 

yellowtail flounder larvae (Puvandndran & Brown, 1995; Rabe & Bro\\n, 2000). 

Improved foraging efficiency, increased prey size, and better digestive efficiency likely 

influenced the observed increase in growth. Rabe & Brown (2000) showed that 

yellov.tail flounder became more efficient predators during the first seven weeks post

hatch While. Morris ( 1997) investigated prey size selection in yellowtail larvae and 

found that larvae <4.5 mm selected small rotifers, >4.5 mm larvae selected larger rotifers, 

and >8 mm larvae selected Artemia. Consumption increased rapidly after 8 mm in 
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standard length with -2 and 24 Artemia found in the b"llt at 8.2 mm and 10.9 mm 

respectively. Studies on ingestion rates and prey selection have sho-wn that in both turbot 

and halibut larger larvae also prefer larger prey items (Cunha & Planas. 1993; Olsen et 

al.. 2000). Digestive capacity likely also increased during the first few weeks post-hatch 

due to both considerable enzymatic and gut morphological development (Baglole et al.. 

1997; Baglole et al.. 1998). Enriched Artemia contained very low levels ofDHA and 

therefore. it seems counterintuitive that lipid nutrition alone could explain the observed 

increase in groMh. A more reasonable explanation is presumably a combination of 

behavioural. physiological. and morphological development 

2.6.3 Lan-ai lipid composition 

Larvae in the control treatment showed a period of 'lipid recovery· from week 

four to six (Figure 2. 1 I). They demonstrated dramatic increases in both relative levels of 

TAG (I 0-16%) and lipid dry \\-1.1 (88-165 1-1g mg·') It is likely that this compensatory 

accumulation of lipid is due to the previously low PUF A composition of control rotifers. 

Larvae possiblv h~d difficulty assimilating lipid from the control rotifers given that they 

were high in 18: ln-9 and low in PUFA (20%). DHA (2%) and EPA (2%) As previously 

discussed. cold-water marine larvae show a high level of membrane specificity for 

PUF A. particularly in eye and neural tissue (Bell & Dick, 1991; Bell et al.. 1995) The 

Anemia diet had higher levels ofPUFA (45%), DHA (6.5%) and EPA (8.1%) than found 

in the control rotifers. Therefore, it is possible that control larvae showed a 

compensatory effect in terms of membrane formation . At week six, control larvae had 



higher levels ofPPL dry wt-1 
( ... 119 J.,Lg.mg·1

) than larvae in other dietary groups ( ... 88 

Jlg.mg· 1 
). which supports this hypothesis. 

Larvae quadrupled their dry weight from week four to six and therefore. it is 

interesting that significant differences in lar.·al fatty acids still remained between dietary 

treatments (Table 2.16). These differences reflected rotifer lipids. with larvae in the high 

PlJFA diets still having significantly higher levels of DHA than the control treatment. 

Also. larvae in the DHA+AA groups still had significantly higher levels of AA. These 

data agree with previous studies which have found that marine larvae conserved DHA 

and AA during early larval development and periods of starvation. thus reconfirming 

their essentiality (Rainuzzo et at. 1994. Sargent. 1995 ). 

The level of 18 3n-3 present in Anemia ( ... J8%) is much higher than that found in 

natural food items such as copepods. -1-2~C. (Norsker & Stottrup. 1994: Nanton & 

Castell. 1999). The 18:3n-3 accounted for -14% ofthe total fatty acids in yello""'tail 

after only two weeks of feeding on Artemia. Sargent et al. ( 1999) discussed the problem 

of elevated 18:3n-3 given that this fatty acid can compete with DHA and EPA for the 

transacylases and acylases that esterify fatty acids onto phospholipid backbones. Here 

yello""'tail flounder had ... 1 O~'o of the fatty acids in their polar lipid present as 18 : 3n-3 

after only two weeks of Artemia-feeding. However. given the high levels of PPL found in 

control larvae. \'<·hich had the lowest levels ofDHA and highest levels of 18:3n-3, 

elevated 18:3n-3 did not inhibit the formation of phospholipids. However. the effect of 

18:3n-3 on fluidity and function of phospholipids has yet to be investigated. 
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The total level of HUF A (DHA, EPA, and AA) in larval tissue decreased during 

Artemia-feeding and larvae directed relatively more HUF A into the polar lipid than into 

the neutral lipid (Figure 2. 13 ). Levels of HUF A dropped in the polar lipid from - 42-

300-·o and in the neutral lipid from 28-9% from week four to six. Most of this decrease 

was due to lower levels ofDHA. Decreasing HUFA coupled with increasing 18 3n-3 

demonstrates a trend towards decreased levels of tissue unsaturation. Nonetheless. these 

molecular changes occurred during a period of increased growth. This suggests high 

levels ofHUFA may be unnecessary during later larval development. 

Decreased demand for HUF A during late larval development could be due to a 

relative decrease in the amounts of neural tissue, such as eyes and brain. which typically 

require elevated levels of HUF A (Mourente et al. . 199 I. Bell et al. 1995) For example. 

the ratio of eye diameter (mrn): body depth (mm) decreased in this study from -1 .1. 13. 

and I :6 respectively at weeks three. four and six Another possible explanation for 

decreased HUF A requirements during Artemia-feeding is the relative increase in culture 

temperatures. High levels ofunsaturation are typically associated with fish living in 

colder environments and are believed to aid in maintaining membrane fluidity and 

structure (Hazel & Williams, 1990; Sargent et al ., 1995; Dunstan et al., 1999). During 

early larval development(< four weeks) culture temperatures in this study averaged 

- I2°C however, during the first two weeks of Artemia feeding. temperatures were 

routinely -I6°C. 
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2.6.4 Conclusions: 

The transition from rotifer feeding to Anemia feeding was characterised by a 

period of ·tipid recovery' in the control larvae and a period of decreased unsaturation in 

all other treatments. Larvae demonstrated a dramatic increase in size despite decreased 

levels of dietary HUF A. Given poor lipid nutrition. increased foraging and digestive 

capacity with age likely explain the acceleration in growth. Therefore. it is concluded 

that high levels ofHUFA may not be as essential during later larval development as 

during initial stages of first-feeding. Hov.;ever. further studies are required to determine 

the exact dietary HUFA requirements during the late larval period A significant effect 

of stocking density on gro\'.th was observed. Further studies are recommended to clarify 

the role of both stocking density and prey availability on growth and settling behaviour 

during metamorphosis. 
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Chapter 3 - Comparison of the lipid composition of mal-pigmented and 
normally pigmented newly settled yellowtail Oounder 

(Umamla fern~ginea). 

3.1 Introduction 

Mal-pigmentation is common in a number of cultured flatfish species (Seikai et 

al.. 1987; Rainuzzo et al.. 1994; Baker et al. , 1998; Gara et aL. 1998: Naess & Lie, 1998). 

Pigmentation abnormalities reduce the market value offish and consequently represent a 

significant challenge to the aquaculture industry. In addition. juveniles produced for 

enhancement of wild stocks are likely more \Ulnerable to predation as they are unable to 

blend into their natural benthic environments (Godin. 1997) Recently, it has also been 

suggested that abnormally pigmented Atlantic halibut are more susceptible to skin 

damage from ultraviolet radiation than normally pigmented fish (Bricknell et al , 1996 ). 

The exact mechanism behind the development of abnormal pigmentation is not 

known. However, environmental/husbandry, nutritional, and neuroendocrinal activity are 

thought to be important (Kanazawa, 1993; Denson & Smith, 1997; Venizelos & Benetti. 

1999; Estevez et al .. 200 I) Numerous studies have shown that early lipid nutrition 

affects later pigmentation in several flatfish species (See Section 1 5 3) Further. wild 

copepods have been shown to be more effective in inducing normal pigmentation than 

rotifers and Artemia (Naess et al .. 1998; McEvoy et al., 1998). Rainuzzo et al ( 1994) 

found that the DHA:EPA ratio in the polar lipid of turbot larvae was positively correlated 

with levels of normal pigmentation. However. other dietary factors such as the AA:EP A 

ratio. and levels of vitamin A, phospholipid, and DHA have also been correlated with 

pigmentation development (Kanazawa, 1993; McEvoy et al., 1998; Estevez et aL, 1999) 



The lipid composition of normally pigmented (NP) and mal-pigmented (MP) fish 

has been compared in both Atlantic halibut (McEvoy et aL. 1998) and Japanese flounder 

(Estevez & Kanazawa. 1996). NP Atlantic halibut fry had significantly higher amounts 

of DHA and EPA present in the phosphatidylcholine (PC) fraction of the eye than MP 

fry. While in Japanese flounder. MP fish showed better grov .. th and higher neutral lipids 

in the body. Normal pigmentation was also associated with higher relative amounts of 

PUF A present in the polar lipid of larval brains and eyes. 

This study was designed to compare the lipid composition ofMP and NP juvenile 

yellowtail flounder. Lipid classes and fatty acids were examined in different body zones 

to account for known variations between the body and neural tissue. The objectives of 

this study were two-fold : I) to elucidate a possible connection between lipids and 

pigmentation and 2) to provide baseline data on the lipid composition of different body 

zones within a new aquacultured species. 
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3.2 Materials and Methods 

3.2.1 Live-food 

Rotifers were cultured on baker's yeast and culture Selco (INVE, Belgium) for five 

days prior to enrichment. They were then taken from stock cultures and placed into 300-

L enrichment vessels at a density of 3 X I 0~ rotifers L"1 Rotifer batches were enriched for 

approximately 18 hours using 0.3 g of A..lgamac-30 I 0 per I 06 rotifers. Algamac was 

blended in 3 L of fresh water and \Vas added to rotifer enrichment vessels at time zero and 

after nine hours of enrichment. Rotifers were sampled in triplicate for lipid analysis twice 

during this experiment. 

Second instar stage Artemia were stocked into a 300-L tanks at a densitv of 2 X - . 
I 0 5 animals L"1

. During enrichment. the temperature was maintained at 26°C and vigorous 

bottom aeration \Vas applied . AJgamac 3 0 I 0 was added at a concentration of 2 g per I 06 

animals. After 12 hours of enrichment. Artemia were transferred to a new enrichment 

vessel to receive a second 12-hour enrichment. Artemia were sampled in triplicate twice 

during the experimental period for lipid analysis. 

3.2.2 Lan-iculture 

Eggs for this experiment were obtained from yellowtail flounder broodstock 

between July 4 and 9. 1999 and were pooled to obtain the required quantity. They were 

then incubated in a 300-L cylindro-conical upv.·elling tank and hatched at approximately 

65-degree-days. At 100 % hatch. larvae were transferred into two 300-L cylindro-conical 

upwelling tanks at a density of 30 larvae L-1 
. Water flow was set at 2-L min·• and one air 



stone placed in the centre of each tank provided aeration. Larvae were reared under 

ambient temperatures ( 12"-I8°C) using a 24-hour photoperiod with the light intensity of 

-800 lux. 

Enriched rotifers were added to tanks tv .. ·ice per day at a density of 7000 prey L"1 

for the first four weeks post-hatch. Tanks were ·greened· daily with 5 L of /sochrysis 

galhana. Larvae were transferred into a 3000-L tank after four weeks and Artemia were 

fed twice per day at a density of 2000 prey L ·1
. The water level was reduced to -I 000 L 

from week eight until the end ofweek 12 in order to aid ')..ith settling beha\iour. 

3.2.3 Lipid and Morphometric Samples 

Larvae were sampled at the end of twelve weeks as this was the earliest time at 

which pigmentation and eye migration could be defined AJso. this was the point at which 

-I ooo.-;, of the fish demonstrated settling behaviour. At this time. juveniles were sampled 

for both morphometric measurements and lipid analysis. Pigmentation was defined as in 

Section 2.2.8. Five normally pigmented (classification 5) and five mal-pigmented juveniles 

(classification I ) were first sampled for standard length and body depth. :\fter this. their 

eyes and heads were dissected and measurements ofv.·et weight, drv weight and ash-free - . -
dry weight were taken on these three body zones (See Section 2.2.5 for morphometric 

sampling) These data were also compared to morphometric data collected from 13-week 

old fish in 1998 (Section 2.2.5). 
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Ten normally pigmented (NP) and ten mal-pigmented (t\.1P) fish were sampled for 

lipid analysis. Juveniles were sacrificed using an overdose ofMS-222 and their standard 

length, body depth. and wet weights were recorded. The eyes. heads and bodies were 

dissected on ice and the parts from two fish were pooled into each lipid sample. This 

resulted in 5 samples of NP and 5 samples of MP fish for eye. head. and body zones 

Lipid samples were stored, extracted. and analysed as described in Section 2 2. 7 

In addition, a phospholipid class separation \Vas performed using thin layer 

chromatography with flame ionisation detection (TLCffiD) and a MARK V latroscan 

(latron Laboratories. Tokyo, Japan). Lipid extracts were spotted on silica gel coated 

Chromarods and a two stage development system was used to separate phospholipid 

classes. The first separation consisted of two developments in acetone. The first 

development was for 12 minutes followed by a second development for I 0 minutes The 

rods were then dried and all lipid classes except for the phospholipids were scanned A 

development of 3 5 minutes in 70:3 5. 3. 5 ( \A/v) chloroform methanol water was used to 

separate phospholipids classes Rods were scanned and a chromatogram of phospholipid 

classes was obtained using T-data scan software (RSS Inc., Bemis, TN, USA). A 

calibration curve was used to convert peak areas into lipid mass values. The standards 

used in the calibration curve were: phosphatidylcholine, phosphatidyletholamine. 

phosphatidyl-L-serine. sphingomyelin. and lysophosphatidylcholine. All standards were 

obtained from Sigma Inc. (St. Louis .. MO. USA) 

In order to explain discrepancies between the lipid class composition of newly 

settled yellowtail flounder and other flatfish species (McEvoy et al.. 1998: Estevez & 

96 



Kanazav.:a 1996).1ipid class data collecteJ from week-6larvae in 1998 (Section. 24.6) 

were also discussed. 

3.2.5 Statistical Analysis 

Differences in size and lipid parameters between mal-pigmented and normally 

pigmented fish were analysed using aT-test (a= 0.05). Residuals versus fitted values 

were examined to check for normality and heteroscedasticity. Certain percentage data 

were arcsine-square root transformed in order to meet these assumptions. 

Principle components analysis was used to simplify this multivariate data set by 

transforming correlated variables into a set of uncorrelated principal components (Minitab. 

version I 0 2) This technique was employed using 15 fatty acid and 3 lipid class 

parameters from the eyes. bodies and heads on MP and NP fish. Two coordinates were 

described that accounted for the largest and second largest variance among the samples. 

This allowed a display of the major trends within the data set without significant loss of 

total original variation. 
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3.3. Results 

3.3.1 Live-food 

A summary oflipids present in both enriched rotifers and Artemia is shown in 

Table 3. I. Rotifers had I 06 Jlg of lipid per mg dry weight while Artemia had higher 

levels of lipid per dry weight at 165 J.lg.mg·' . The major lipid class in both rotifers and 

Artemia was TAG which accounted for 45% and 52% respectively ofthe total lipids. 

Rotifers contained -20% SF A. 25% MUFA, and 51% PUF A while Anemia !lad higher 

relative amounts ofSFA (26%) and MUFA (30%) and lower levels ofPUFA (42%) The 

major PUF A in rotifers was DHA (29%). while this fatty acid was present at low levels in 

Artemia (4%). The major PUF A in Anemia was 18 :3n-3, which accounted for 18% of 

the total fatty acids. 

3.3.2 Size of normally and mal-pigmented juveniles 

Ten mal-pigmented (MP) and ten normally pigmented (J'I,.rp) fish were measured at 

the end ofthe experiment to determine differences in size. The wet weight ofNP and MP 

fish was on the average 0.6 g and 0.4 g respectively (Figure 3 . I a) NP fish had an 

average body depth of -15 mm while MP fish were on average 14 mm (Figure 3. I b). 

Figure 3.Ic shows that the standard length ofNP fish (35 mm) was significantly longer 

than that ofMP fish, 32 mm (Tu~< = 2.2. p=0.04). Differences in the size ofNP and MP 

fish were also observed in the 1998 production season (Chapter 2.2. 5. final morphometric 

sampling at week 13, 15 fish per tank). Figure 3.2a shows that 1998 NP fish had a higher 

wet weight at the end of the experiment than MP fish. NP fish also had greater body 

depths 



Table 3.1: Summary data on the lipid composition of rotifers and Anemia enriched 
with Algamac for 18 hours. 

% total lipid 
Triacylglycerol 
Sterol 
Phospholipid 

% total fatty acids 
rsFA 
IMUFA 

18:3n-3 
AA 
EPA 
DHA 
IPUFA 

Data are mean ± SEM. n=6. 

Rotifers 

44.9 ± 2.4 
10.7 ± 7.6 
26.3 ± 4.6 

19.8 ± 0.4 
24.8 ± 0.4 

0.3 ± 0.0 
3.3 ± 0 0 
3.9 ± 0 I 

28 8 ± 0 6 
50.9 ± 10 

Anemia 

99 

51.5 ±3.3 
6.8 ± 2.8 

20.4 ± 5.5 

26.4 ± 1.4 
30.1 ± 1.2 

17.5±2.0 
2.0 ± 0.3 
8 .0 ± 1.0 
4 .0 ± 0 2 

42.0 ± 0.6 



Figure 3.1: The (a) wet weight. (b) body depth and (c) standard length ofnonnally 
pigmented fish compared to mal-pigmented fish at the end of week 12 ( 1 999). Data are 
mean± SEM (N= 15 larvae per group. significance forT-test was alpha= 0.05. Tu~< )· 
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Figure 3.2: The (a) wet weight. (b) body depth and (c) standard length of normally 
pigmented fish compared to mal·pigmented fish at the end of week 13 ( 1998). Data are 
means± SEM (N=120 larvae total. 35 normally pigmented, 85 mal·pigmented. alpha= 
0.05). 
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and standard lengths than MP fish although this difference was not significant (Figure 

.. "b & ., ., ) -' ·- -'.-C . 

3.3.3 Lipid class composition of juveniles 

The lipid class composition of the bodies from NP and MP fish is shown in Table 

.. ., 
-' -- · MP and NP fish contained 24% and 23%. respectively of their dry weight as lipid. 

The major lipid class in both MP and NP fish was TAG although significantly more of 

the total lipid was comprised ofTAG in t-..rp fish (77%) than in MP fish {70~'o)(Tuc= -2.8, 

p=0.02). Neutral lipids accounted for significantly more of the total lipid in NP than in 

MP individuals {Tuc= -3.6, p=0.007). The relative amount of phospholipid was 

significantly higher in MP fish than in NP fish (T1.t<= 3.5, p=0.008). Phosphatidylcholine 

(PC) was the major phospholipid in both types of fish. accounting for 6-8% of the total 

lipids. 

The head lipid class composition ofNP and MP fish is shown in Table 3.3. Lipid 

accounted for 13% and IS% of the dry weight respectively in MP and NP fish. As in their 

bodies. the major lipid class was TAG with NP fish having 33% TAG and MP 26%. l\fP 

fish contained significantly lower levels ofneutrallipids than NP animals (Tuc= -3 .8. 

p=O.OOS). Conversely. MP fish had relatively higher levels of phospholipids (TJ.l! = 4 L 

p=0.004) and total polar lipid (Tuc = 3.8. p=O.OOS) than NP fish. 

Eye tissue contained lower levels of lipid per dry weight than both the bodies and 

heads (Table 3.4). MP fish had eyes with 8.5% lipid while NP fish contained 8.9% lipid. 

The major lipid class in the eye was phospholipid and MP fish contained significantly 



Table 3.2: Comparison of the body lipid class composition of normally and 
mal-pigmented newly settled yellowtail Rounder. Mean ± SEM. n=5. 

Mal-Ei&!!!cntcd NormaJh· Pigmented 
Total Lipids per Dry Weight 237.7 ± 25A 225.6 ± 20.6 
(J.lg.mg·l) 
Total Lipid (mg.carcass'1) 21.3 ± 3.0 35.6 ± 8.6 

(%total lipid) 
Triacylglyccrols 70 3 ± 1.9* 77.1±1.5 
free fatty Acids 1.6 ± 0.5 2 .0±1U 
Sterols 56± 0.7 ~ . 5:: 0.5 
Diacylglycerols 04.J±09 I 3 :t0.6 
Total Neutral Lipid 78.3 ± 1.4* 84.9 ± 1.1 

Acetone Mobile Polar Lipids 5 . I ± 11.5 4 .0 ± 0.6 

Phosphatidycho line 8.4 ± 0.5 5 .8 ±11.3 
Phosphatid~·cthanolaminc 5.7±0.2 3 .5±0.3 
Sphingomyelinc 0.3 ± 0.11 0 .5±0.2 
Phosphatidylserine 1.0 ± 0.2 0 .6 ±11.2 
L ysophosphatidylchol inc 0.8 ± 0.2 0 .6 ±0.1 
Total Phospholipids 16.2 ± u• 11.0 ± 0.7 

Total Polar LiE ids *21.3 ± 1(, 15 .0+1.2 

• T-tcst. p<0.05 mal-pigmented fish were significantJ~ diffcrcm from normall~ pigmented fish 
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Table J.J: Comparison of the head lipid class composition of normally and 
mal-pigmented newly settled yellowtail flounder. Mean± S£M. 

Total Lipids per Dry Weight 
(Jlg.mg·t) 
Total Lipid (mg.hcad.1

) 

(%total lipids) 
Triacylglycerols 
Free Fatty Acids 
Sterols 
Diacylglyccrols 
Total Neutral Lipid 

Acetone Mobilc Polar Lipids 

Phosphatidycholinc 
Phosphatidycthanolaminc 
Sphingomyclinc 
Phosphatidylscrinc 
L ysophosp hatid y I choli nc 
Total Phospholipids 

Total Polar Lipids 

Mal-pigmented 
13~ . 3 ± 15.2 

2.3 ± 0.3 

26.3 ± 1.6 
2.3 ± 0.6 
14.2 ± 0.8 
0.6 ± 0.6 

~3 .4 ± Jl)• 

6.5 ± 0.3 

21).5 ± 1.1. 
5.2 ± 1.3 
2.Y±05 
11. 1 ± 0.6 
5.0 ± 0.4 

16.2 ± IY 

55.2 ± 2.0• 

Normalh· Pigmented 
153 .6 ± 16.~ 

3.1 ± 0.3 

33.05 ± 4 .0 
3.58± 1.0 
14.26 ± 1.3 
4.75 ± 0.4 
55 .6 ± 2 I 

6.0 ± 0.5 

20 9 ± 1.6 

6.4 ± 1.3 
1.7 ± 0 .3 
6 .1±1.7 
2.9::!: 0 .5 
11.0±0.7 

44.0 ± :.! .2 

• T -test. p<tUl5 mal-pigmented fish were significantly different from nom1ally· pigmented fish 
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Table 3.4: Comparison of the eye lipid class composition from normally and 
mal-pigmented newly settled yellowtail nounder. Mean ± SEM. 

Mal-~igmcnted Normal!\' Pigmented 
Total Lipids per Dry Weight 85 .9 ± 2 .9 89.0 ± 6.4 
(j.lg.mg-1) 
Total Lipid (j.lg.cyc- 1

) 79 .5 ± 5 .0 79 5:! 8.3 

(%total lipids) 
Triacylglycerols 8 l):!:: 0 .9* 1~ . 8:! 1.5 
Free Fatty Acids 
Sterols 15 .4:! 0.6• 1!U±06 
Diacylglycerols 2.0 ± 0_1 1.5±0.5 
Total Neutral Lipid 28 5 ± 1.1* 35 .9 ± 1.0 

Acetone Mobile Polar Lipids 2.1 ±0. 1 1.2 ± 0.2 

Phosphatidycholine 42 .8 ± 7 .4 42.5 ± 6 .7 
Phosphatidyethanolaminc 4.8 ± 1.5 4.7 ± 1.4 
Sphingomyeline 2.1 ± 0.7 0.6 ± 1.1 
Phosphatidylserine I!U±3 .0 !53 ± 7.8 
Lysophosphatidylcholinc 3.5::3 . 1 1.0 ± 1.0 
Total Phospholipids 71 .5 ± 1.2* 64 1 :!:: 1.2 

Total Polar Lipids 73 1 ± s.o• 65.4 T 1.0 

* T-tcst p<0.05 mal-pigmented fish were significant!~ different from normally pigmented fish 
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higher relative amounts of phospholipid than ~rp fish (TI.I< = 3.6. p=0.007). Conversely. 

NP fish contained higher relative amounts of neutral lipids and in panicular TAG (T J.lC = -

2.7, p=0.026). Generally, NP fish contained high relative amounts ofTAG than MP fish 

while MP fish had significantly higher levels of phospholipids present in all body parts. 

3.3.4 Fatty acid composition of juveniles 

Table 3.5 shows the neutral and polar fatty acid composition from both MP and 

NP larvae. The eyes were not separated into neutral and polar lipids due to the limited 

amount of lipid present in these samples. Therefore. the eye fatty acid data is expressed 

as a percent ofthe total fatty acids. However. phospholipids represented --80% of the 

total acyl lipid in the eye and. therefore. the fatty acid composition of the total lipid is 

likely similar to the composition of just the polar lipid. 

SF A were present in the bodies. heads. and eyes of larvae at --20%, 25%. and 

40% respectively (Figure 3.3 ). The major SFA present was 16 0. however. 18.0 was 

present at high levels in the polar lipids ofthe head and in the total lipids ofthe eye 

(Table 3.5) Generally. neutral lipids contained higher levels ofMUFA and lower levels 

of PUF A than the polar lipids. MUF A were present at higher levels in bodies and heads 

than in the eyes (Figure 3.3). 

PUF A were seen at higher levels in the polar lipids than in the neutral lipids but 

this trend was not observed in the head lipids ofMP fish. The major PUFA present in the 

neutral lipids was 18:3n-3. while DHA was the major PUF A in the polar lipids of the 

body and head as well as the total lipids of the eye. DHA was found at higher levels in 
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Table 3.5: Neutral and polar fatty acid composition of mai-IJigmenled amd normally pigmented 
newly sellled yellowtail flounder larvae 
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Figure 3.3: Summary of the fatty acid composition in the different body zones of newly 
settled mal-pigmented versus normally pigmented yellov.tail flounder. 
(a) Eye total lipid 
(b) Head polar lipid 
(c) Body polar lipid 

* represents a significant difference between normally and mal-pigmented fish (T -test. 
P<O.OS, TI.K Data are means± SEM. (n=S). 
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the membranes ofl\I'P fish than MP fish. However. this relationship was only significant 

in the polar lipid fraction ofthe body (Figure 3.3c, p=0.03). EPA was present equally in 

both the neutral and polar lipids and this resulted in a higher DHA: EPA ratio in the polar 

lipids than in the neutral lipids of the head and bodies. The total lipids of the eye 

contained low levels of EPA. which resulted in a high DHA:EPA ratio in the eye. This 

ratio was significantly higher in the eyes ofNP fish (-12:1) than in MP fish (-8 :1)(Figure 

3 .3a., p=0.04 ). 

3.3.5 Principal Components Analysis 

Principle component analysis allowed the description ofthe majority of the 

variance in the data set using IS fatty acid parameters and 3 lipid class parameters 

Figure 3 .4a shows the coefficients plotted for the first two principle components. These 

principle components cumulatively accounted for 77% of the total variance. The first PC 

accounted for 64% of the total variance and separated lipid parameters into those 

associated with membranes and those associated with storage. Lipids associated with 

membranes such as phospholipids. DHA 18:0 and 16:0 loaded negatively onto this axis. 

Conversely. lipid parameters associated with storage such as percent TAG. 18:3n-3, and 

lipid dry weighf1 loaded positively onto the PC I axis. The PC 2 axis accounted for only 

13% of the total variance and separated lipid parameters based on the level of 

unsaturation. PUFA. DHA. AA, aud 22:5n-3 were positively loaded on this axis while 

MUFA. SF A. 18: ln-9 and 14:0 were negatively loaded along PC 2. 

112 



Figure 3.4: Principle components analysis (PCA) of lipid data from eyes, heads, and 

bodies of MP and NP juvenile yellm.vtail flounder. Five samples ofMP and NP fish 

tissue were analyzed from each body zone. The fatty acid parameters used were 14:0, 

16:0, 16: ln-7. 18:0. !Sin-9, 20: ln-9, 20:4n-6 (AA). 20:5n-3 (EPA). 22:5n-3. 22 :6n-3 

(DHA). DHA:EPA. ~SF A. ~MVF A. l:PUF A. TAG. PPL. UPlD per dry weight 

(Jlg.mg-'). 

(a) Lipid parameter coefficients for PCI and PC2 

(b) Eves. heads and bodies scores for PC 1 and PC2 
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Figure 3 .4b shows the scores for the eyes. heads. and bodies of NP and MP fish 

plotted along PC I and PC2. Eyes grouped together on the negative side of the axis while 

bodies grouped together on the positive side of PC I . The grouping of eyes on the 

negative segment of the axis was expected. as eyes have high levels of polar lipid present 

in the form of highly unsaturated phospholipids. Bodies were associated with very high 

levels of lipid and. in particular. TAG which resulted in their position on the positive side 

of PC I. Heads were located near the origin of PC I indicating their intermediate lipid 

composition. consisting of approximately equal amounts of membrane and storage lipids 

No separation between MP and NP fish into clusters was observed. This indicated that 

differences between body zones were greater than between NP and MP fish within a 

g1ven zone. 
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3.4: Discussion 

3.4.1 Siz~ of juveniles 

In both 1998 and 1999. normally pigmented (NP) yellov.1ail flounder were 

significantly larger than mal-pigmented (MP) fish. McEvoy et al. ( 1998) examined 

differences in both lipid composition and size between NP and MP Atlantic halibut. 

Differences were compared between MP and NP fish fed Super Selco enriched Anemia 

or a copepod diet. The copepod treatment resulted in higher levels ofNP fish (92%) than 

the Artemia reared group (66%). Fish were also significantly larger in the copepod 

treatment. However, NP and MP fish within the Artemia treatment showed no 

differences in size. 

On the other hand. a similar studv bv Estevez & Kanazawa (1996) showed 

opposite results. Japanese flounder fed enriched rotifers/Artemia resulted in variable 

sized NP and MP fish . l\1P fish. however, were significantly larger than NP fish at day 

50 post-hatch. This increased size was hypothesised to result from differences in visual 

abilities between NP and MP fish. Further, MP fish were stated to grow faster due to 

their 'better vision under bright illuminations' . The light intensity used (600-1000 lux) 

was thought to be too stressful for the NP fish and thus caused a relative reduction in 

growth. A similar level of light intensity was used here with no adverse effects observed 

on the growth of NP yellowtail flounder. 

Purchase ( 1997) examined the effects of three different photo periods on the 

!:,7fOwth and survival ofMP and NP I+ year old (5.0 em standard length) yellowtail 

flounder and found no differences in growth between NP and MP fish. This disagrees 
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with the data presented here. However. this study examines the size of newly settled 

larvae while Purchase ( 1997) used 1 + fish . The differences in age may be a possible 

explanation for these variable results. As in other flatfish species. such as winter 

flounder. compensatory juvenile growth has been observed in fish that grew slowly as 

larvae (Bertram et al.. 1993; Bertram et al.. 1997). Therefore. it is possible that the !\1P 

fish studied by Purchase ( 1997) were also smaller at settlement but these differences were 

masked by a year of compensatory gro-v.th. 

3.4.2 Lipid class composition of juveniles 

Lipid accounted for- 23% of the dry weight in the body in both NP and MP fish . 

Whalen ( 1999) compared the lipid composition in wild juvenile (I+ year class) yelloVvtail 

flounder to that of cultured juveniles. Cultured fish were found to have much higher 

levels of lipid per dry weight in both the liver ( 14%) and muscle (8.4%) than wild fish 

(3 6%. 13% respectively). In this study. TAG w:1:; i.ile main lipid class in the body ofMP 

and NP juveniles. accounting for 70% and 77% ofthe total lipid respectively Whalen 

( 1999) also found TAG was the major lipid class in the flesh of both cultured (87%) and 

wild fish (60%). Therefore, both studies indicate that cultured yellov.tail flounder use 

their flesh as a major storage sight for neutral lipids. 

Newly settled yellowtail flounder had higher levels of lipid dry weighf1 (23%) 

and TAG (-74%) than reported for other flatfish species. Estevez & Kanazawa {1996) 

reported that lipids accounted for -I 0% of the dry weight in newly settled Japanese 

flounder with only -16% of the total lipid as TAG. McEvoy et al. ( 1998) reported that 
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newly settled Atlantic halibut contained only -31% of the total lipids in the carcass as 

TAG. However. the measurements on both Japanese flounder and Atlantic halibut were 

taken at a younger age/developmental stage than those for yellowtail. Japanese flounder 

were measured on day 50 post-hatch ( -65 mg wet weight) while Atlantic halibut were 

measured on day 43 past first-feeding ( -140 mg wet weight). Here. yellowtail flounder 

were sampled on day 84 past first feeding when larvae weighed -400 mg and were 100% 

sen led. 

Yellowtail flounder of a similar age/developmental stage to Japanese flounder and 

Atlantic halibut. cited above. were sampled in 1998 (Section 2.4 3 ). On day 43 past first

feeding. yellov.taillarvae had on average 14% oftheir dry weight as lipid and -18'% 

present as TAG. Therefore. differences in lipid composition between yello'-"lail analysed 

in this chapter and other flounder species can likely be explained by variation in the age 

at sampling. Further. days 43-84. which represents the six weeks following the first 

observations of settling behaviour, may be a time during which yellowtail flounder 

dramatically increase their neutral lipid storage. 

Comparisons of the lipid composition ofNP and MP fish revealed that levels of 

TAG were significantly higher in both the body and eye lipids ofNP fish (Table 3 2 and 

3.4 }. However. the opposite trend was observed in Japanese flounder where l'v1P fish had 

higher relative amounts of TAG in body lipids than NP fish (Estevez & Kanazawa. 

1996). No differences in the carcass lipid class composition were found between NP and 

MP Artemia-fed Atlantic halibut juveniles (McEvoy et at., 1998). 
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Comparisons between the different body zones showed that more lipid dry 

weighf1 was present in the bodies, -230 JJg.mg·•. than in the head, -143 ~g . mg·• . or eyes, 

-87.5 J.lg.mg·' for both NP and :MP fish. Most of this increase in lipid can be accounted 

for by increased relative levels ofTAG in the body (-73%) compared to the head (43%) 

or eyes ( 10%) (Tables 3.2-3 4. Figure 3 4) However, Japanese flounder showed the 

opposite trends with higher percentages of lipid dry weighf1 in the brain ( -28~.-o) and eyes 

( 18%) than in the body (I 0%). They also had higher percentages ofT AG in the eye 

(35%) than in either the brain (II%) or body ( 16%) (Estevez & Kanazawa, 1996) 

Atlantic halibut showed similar percentages ofT AG in both their eyes and carcass, -30«% 

of total lipid (McEvoy et al., 1998). As discussed previously. differences in the amount 

of lipid and percentage of neutral lipid storage seem to vary depending on both the 

species and developmental stage/nutritional status. 

3.4.3 fatty acid composition of ju\'eniles 

Both NP and MP fish preferentially retained PUF A in their polar lipid rather than 

their neutral lipid and this trend was upheld in the body, head and eyes (Table 3.5). 

Within the HUFA. DHA and AA were found at higher levels in the polar lipid while EPA 

was found equally in neutral and polar (Previously discussed in Section 2.5.4 & 2.6.3 ). 

Interestingly, the percent PUF A present in the eye was lower than that in the body and 

head. This was due to reduced relative levels of 18:2n-6, 18:3n-3, AA, and EPA As a 

result. there were higher ratios ofDHA:EPA in the eye tissue than observed in either the 

head or body. 
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The eyes contained higher levels of SF A than in other tissues. The major SF A 

present in the eyes were 16:0 and 18:0, while the major PUFA present was DHA. Bell & 

Dick ( 1993) described the molecular species composition of the phospholipids present in 

the eyes of juvenile herring. In the PC fraction of the eye the phospholipid molecular 

species. I6:0/22:6, 18·0/22:6. and 22:6/22:6 were present as 30%, 10% and 15'% 

respectively. Similarly, Bell & Dick ( 1991) described the molecular species present in 

the retinal phospholipids of Atlantic cod and found that 16:0/22:6, 18:0/22:6, and 

22:6/22:6 were present at 23%. 9%. 30% respectively in the PC fraction. Therefore. the 

proportions ofthe fatty acids present in the eye suggest the molecular species 

composition of yello~1ail flounder eyes are similar to those reported for other marine fish 

spectes. 

A significantly higher percentage of DHA was found in the body polar lipids from 

NP (23%) fish compared to MP fish ( 19%) This trend, although not significant, was also 

observed in comparisons of head and eye tissue (Figure 3.3). Similarly, Estevez & 

Kanazawa ( 1996) reported significantly higher levels of DHA present in the polar lipids 

ofthe head and eyes in NP Japanese flounder compared to MP fish . However. McEvoy 

et al. ( 1998) found higher absolute amounts of DHA present in the eyes of NP Atlantic 

halibut than 1\fP fish . I found that the DHA:EPA ratio was also significantly higher in 

NP fish eyes than in eyes from MP fish. This was not observed in Japanese flounder or 

Atlantic halibut as EPA was also found in higher relative and absolute levels in NP fish 

eyes. 
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In yello\\-tail flounder. Japanese flounder, and Atlantic halibut differences 

between NP and l\1P fish were related to either higher relative or absolute amounts of 

DHA present in neural tissues. particularly in the eye. Further. Bell & Dick ( 1993) 

correlated the levels of di-DHA phospholipids in the eye to the appearance of rods in the 

retina of juvenile herring. Rod outer segment membranes have been found to be 

particularly high in di-DHA phospholipids in other vertebrates (Stinson et al.. 1991) 

Rods and cones are the two types of photoreceptor cells present in the retina of 

larval fish with rods playing an important role in vision at low light intensities. Both 

herring and sole (Solea solea) larvae hatch with all cone retinas and rods are recruited 

during larval development. especially during the onset of metamorphosis (Sandy & 

Blaxter. 1980). This increase in rod concentration co-occurs with behavioural changes 

such as a switch from pelagic to benthic life in flatfish or the onset of schooling 

behaviour in pelagic species. Interestingly. rod recruitment also coincides with the 

sensitive period for the influences of nutrition on later pigmentation in flatfish. the 

·pigmentation window· (previously discussed in Section 2 53) 

Kanazawa ( 1993) proposed a nutritionally based hypothesis for the occurrence of 

abnormal pigmentation in hatchery-reared flatfish. He stated that vitamin A, DHA. and 

phospholipids were important in the formation of rhodopsin in the eye and that a lack of 

rhodopsin impaired vision. Further, impairment of vision was hypothesized to cause a 

deficiency in neural (central nervous system) and thus hormonal stimulation 

(melanophore stimulating honnone) which are essential for the formation of 

melanophores. However. there is currently no evidence linking decreased rhodopsin 
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levels in the eye or melanophore-stimulating hormone in the integument to abnormal 

pigmentation. Furthermore. a lack ofDHA rich phospholipids may impair not only 

visual membrane function. but also general neural function and, in particular. 

melanophore cell-membrane function. 

Estevez et al. (2001) investigated a possible mechanism behind the nutritional 

influence on pigmentation development in Japanese flounder. The roles of 

adrenocorticotropin (ACTH) and melanocyte-stimulating hormone (MSH) were 

investigated in relation to the development of pigmentation in Japanese flounder 

Flounder were fed a diet high in AA known to induce high levels of I\1P fish. and a 

control diet of tuna orbital oil. known to induce high levels of normally pigmented fish 

(See Section 2.5 3 for discussion ofthe importance of dietary AA:EPA ratio in 

pigmentation) ACTH and MSH were then measured, however. no differences in 

volumes of ACTH and MSH producing cells or total pituitary volume was detected in 

relation to increased levels of ~1P fish. 

Conclusions 

The NP fish were significantly larger than MP fish at the time of I 00°-'o 

settlement Generally, yello\\-tail flounder juveniles had high levels of lipid per dry 

weight both compared to younger larval stages and other species. There were differences 

between the lipid composition of different body zones and between NP and I\1P fish 

within these zones. NP fish had a higher percentage of their lipid as TAG while I\1P fish 

had higher relative amounts of phospholipids. NP fish showed higher levels ofDHA in 
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the polar lipid of the body and higher ratios ofDHA:EPA in their eyes. Higher relative 

and absolute amounts ofDHA in the neural tissues ofNP fish have been reported for 

other marine species. 

These data tend to support previous proposals for the importance of DHA in 

visual and thus neural and hormonal development. However. behavioural and 

histological studies are required to validate whether DHA actually affects visual function 

during the 'pigmentation window' . Further. nutrition has yet to be directly linked to any 

of the mechanisms involved with pigmentation development, such as levels of rhodopsin 

in the eye, numbers of rods in the retina, or levels of MSH in the larvae. 
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Chapter 4 - Summary of Experiments and Suggestions for Further Research 

This study is the first investigation of the essential fatty acid requirements of 

yellov.1ail flounder larvae. Purified algae lipid extracts were used in rotifer enrichments 

which allowed the investigation of extreme dietary ratios of DHA: EPA: AA. Dietary 

PUFA significantly affected gro-w1h and survival during the first four weeks post-hatch; 

with larvae in the DHA diet showing the highest and those in the control diet the lowest 

grov.th and survival. Both growth and survival were positively correlated with unusually 

high DHA:EPA ratios (8: I). Therefore. the theory ·nature knows best" (2: I ratio) may 

not describe optimum dietary lipid levels for early larval development. Further research 

is required using high DHA products to validate this finding in other marine species. 

The ·pigmentation window' was determined to be within the first four weeks 

post-hatch. High dietary AA (8%) during this period increased the incidence of mal

pigmentation. The effect of AA on pigmentation is interesting in terms of a functional 

effect of diet on pigmentation development This result has been demonstrated in other 

flatfish species and is thought to result from increased stress due to elevated eicosanoid 

activity. particularly in the brain. However. the role of eicosanoids in pigmentation 

development has not yet been shown on a molecular level. High levels of mal

pigmentation in all dietary groups indicate that husbandry factors other than diet should 

also be investigated in relation to pigmentation. 

Grm\th during the Artemia phase (weeks 6-13) was affected by factors other than 

dietary PUF A Stocking density was negatively correlated with size at the end of week 

13 . However. it is not clear whether this result is due to food limitation or a behavioural 
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response to overcrowding. An examination of the role of stocking density on both 

growth and settling behaviour should be completed in order to design optimum rearing 

protocols for this species. 

During the Anemia phase. larvae in the control diet showed a period of ·tipid 

recovery' and compensatory growth while all other groups showed decreased levels of 

PUF A in their tissues. However. all treatments showed increased gro""'th despite 

decreased dietary HUF A. Therefore, it was concluded that increased foraging and 

digestive capacity with age explained the observed acceleration in groMh. High levels of 

dietary HUF A may not be as essential during this developmental stage. Further 

nutritional investigations to determine the optimal dietary HUF A requirements could 

result in the elimination of live-food enrichments for late larval stages. 

A comparison of the lipid composition between MP and NP juveniles showed 

significant differences in both lipid class and fatty acid composition. NP fish had high 

DHA in their polar body lipids and a higher DHA:EPA ratio in the eye total lipid. NP 

fish were also larger and had higher relative amounts of neutral lipid storage than MP 

fish. Higher levels ofDHA in the polar lipids of the eye have been reported for other 

species of marine flatfish. The connection between HUF A in neural tissue and 

pigmentation development has not yet been fully investigated. 
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Appendi.1 A I: Lipid class composition of week- three larvae fed differentially enriched 
rotifers (mean= SEM. n=6) 

DHA DHA +EPA DHA+AA Control 

Total lipid 103.8 ± 15.4 78.7 ± 18.0 88.9 ± 9 .8 78.0 ± 6.4 
(J.lg/mg) 
Lipid class 
(%of total lipid) 
Triacylglyccrols 19.5 ± O.J' 202 ± 0.6'' 16.9 ± 0 .7' 12.5 ± 0.8 ~ 

Free Fatty Acids 5.1 :::: 0.4 5.9 :!: 0 .~ ~ . 8 ± 0 4 8.7 :::: 10 

Sterols 9.3 ± 0.34 9 8 :::: 0 .3 9.!! :::: 0.5 12.3 ± 0 3 

Diacylglyccrols 18 ± 0.5 1.1 :::: 0.4 2.2 ± 0.8 19 ± 0.4 

Acetone-Mobile 2.8 ± 0.2 _, 5 .2 ± 0.4~ 3.0 ± 0.3 ' 2.4 ± 0.4 ,, 

Polar Lipid 
Phospholipid 59.0 ± 1.2 56.6 ± 1.3 62.4 :::: 10 60.7 ± 0 .9 

TAGIST 2.1 ± 0 I" 2.1 ± 0.2 " 1.8±03' 0.9 ± 0 I~ 

HC. Stcryl/wax esters. KET. and GE present at < I%. 

137 



Appendix Al: Fatty acid composition ofweek-three larvae fed differentially enriched 

rotifers (mean± SEM. n=6) 

%of total fattY DHA DHA+EPA DHA+AA CONTROL 
acids 

14:0 4.3 ± 0.3 3.1 ± 0.1 3.5 ± 0.0 1.3 ± 0.1 
16:0 11.8 ± OA 11 .5 ± 0 I 11.9 ± 0.4 12.3 ± 0.2 
18:0 5.3 :!: 0 .2 6.3 ± o I 5.9 ± 0.2 6 .0 ± 0. 1 

rsrA· 2J.J :i: 0.1 22.5 ± 0.1 22.8 :i: 0. 7 21.8 ± 0.3 

16: ln-7 5.4 ± 0.1 5.8 ± 0.1 5.3 ± 0.0 6.5 ± 0.2 
18: In- II 1.1 ± 0 .1 1.5 ± 0.0 1.2 ± 0.1 0 .0 ± 0.0 
18: ln-9 19.0 ± 0 .2 17.1 ± 0.2 18 .6 ± 0.1 26.9 ± 1.4 
18: ln-7 2.4 ± 0 .1 3.0 ± 0.0 2.4 ± 0.0 3 .4 ± 0.1 
20· In-I.J 2.0 ± 0.1 2.1 ± 0.0 2.0 ± 0.0 2 3 ± 0.0 
rMUFA" 31.8 :i: 0.1 31.9 ± o . .: 31.7 ± 0.0 41.3 :i: 1.8 

16 3n-4 0.5 ± 0.0 1.4 ± 0 9 0.4 ± 0 0 1.1 ± 0.4 
l8 :2n-6 3.8 ± 0 .0 3.8 ± 0.0 4.5 ± 0 I 10.3 ± 04 
20:4n-6 2.4 ± 0 .1 2.7 ± 0.1 7.9 ± 0.1 2.7 ± 0.1 
20:5n-3 5.5 ± 0 .1 10.0 ± 0.2 4.3 ± {) 0 7.2 ± 0.3 
22:5n-6 0.5 ± 0.1 0.3 ± 0 .0 0.4 ± 0.1 1.1 ± 0.5 
225n-3 2.3 ± 0.1 3.6 ± 0 .1 2.2 ± 0.0 3.9 ± OJ 
22:6n-3 27.7 ± 0.1 20.2 ± 0 .6 22.8 ± 0.9 7. 1 ± 0.4 

rPUFK 44.9 ± 0.1 45.6 ± 0.4 45.5 ± 0.6 36.9 :i: 1.6 

DHA/EPA 5.1 ± 0 .1 2.0 ± 0.0 5.3 ± 0 .2 1.0 ± 0.0 
DHA/AA 11 .7 ± 0.4 7.5 ± 0 .1 2.9 ± 0 .1 2.6 ± 0.1 
EPA/AA 2.3 ± 0.0 3.7 ± 0 .1 0.6 ± 0 .0 2.6 ± 0 .0 

•includes ai-15 :0. 15:0. i-17:0. ai-17:0. 17:0. and 20:0 
b includes 18: I n-5. 20: I n-7. 22: I n-11. 22: I n-9. and 24: I 
c includes l6:2n-4. 16:3n-4. 16:4n-3. l8:3n-3. 18:4n-3. 20:2n-6. 20:3n-6. 20:4n-3. and 22:4n-6 










